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1. Introduction  

The lungs are the most fundamental organs of the respiratory system. Their primary role is to facilitate 

gas exchange from the air into the blood.  This is performed via two mechanisms that are working in 

conjunction: ventilation and perfusion. Ventilation is seen at the macroscopic level, where mechanically 

generated negative pressure within the lungs and pleural space allows air to be drawn in during the 

inhalation phase. consecutively, the decrease in lung volume during exhalation increases the pressure in 

the lungs, forcing the air out. The effect of perfusion on the other hand occurs at the microscopic level. 

It ensures that oxygen is transported through the alveoli into the capillary network, where it can enter 

the arterial system. A disorder or disease of the airway that affects these mechanics is defined as 

“respiratory disease” (1). Respiratory diseases impose a staggering burden on today’s society, impacting 

hundreds of millions and killing over 4 million people a year (2).  

 

Imaging plays several important roles for the diagnostic workup to detect and identify specific 

respiratory diseases. It can be used for screening, differential diagnosis and monitoring of disease (3). 

In particular, radiological methods such as chest radiography (X-ray), computer tomography (CT) and 

magnetic resonance imaging (MRI) are used for pattern localization and assessment as well as evaluating 

regional distribution of involvement. Chest X-ray and CT are gold standard methods for morphological 

imaging, visualizing particular changes related to a subset of pulmonary pathologies (4). However, both 

(and especially CT) suffer from the downside of radiation exposure to the patient, which particularly for 

those with chronic illnesses will accumulate. Also, both are limited to only morphological evaluation, 

despite some novel methods in CT evaluating the lungs at their functional interface (5). MRI, in 

comparison, has a higher soft tissue contrast and does not expose the patient to ionizing radiation. This 

facilitates dynamic imaging ideal for functional evaluation and has been used to map the 

cardiopulmonary interactions as well as the impact of specific respiratory diseases on it (6). On the topic 

of functional lung evaluation with MRI, a method called Fourier decomposition (FD) has been 

presented, which is able to generate simultaneous ventilation and perfusion maps (7). These have been 

shown to display localized effects from several lung pathologies and potentially facilitate diagnosis (8–

10). However, their evaluation assumes that the patients’ breathing and perfusion frequency remains 

constant between cycles throughout a 1-2 minute measurement. This would be a problem already for 

healthy people due to natural occurring ventilation- and heart rate-variability, but patients with 

respiratory problems can show especially strong variation. For some complex diagnostic situations such 

as with diffuse parenchymal lung disease (DPLD) it may be required to evaluate the micro architecture 

(i.e. alveoli structure) of the lungs (11). This is the case when clinical and radiological data is not 

sufficient for a diagnostic conclusion and lung biopsy/sampling might be required to complement the 
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data. The biopsies are performed through a bronchoscope which provides access and guidance through 

the bronchial tree to find appropriate sampling locations (12). Decisions to perform a biopsy are always 

weighed between the probability of increasing diagnostic and treatment certainty against risk of 

complications (13). These complications include pneumothorax, haemorrhage and exacerbation of the 

DPLD (14). Recently, a new bronchoscopy-guided imaging method called probe-based confocal laser 

endomicroscopy (pCLE) was introduced, promising a less invasive microscopic visualization of the 

lower respiratory tract (15). However, even with pCLE structural assessment is mostly performed 

visually by pulmonologists risking a high intra- and inter-reader variability.  

 

This work has focused on developing two novel diagnostic methods. The first method concentrates on 

the macroscopic level, evaluating respiratory mechanics of ventilation and perfusion. This is a post 

processing algorithm that aims to address the effects of irregular breathing and cardiac frequency 

variation when applying FD on MR image sets. By accounting for frequency variability when generating 

ventilation and perfusion maps, a larger part of the respective signal variations could be utilized.  

The second method aims to evaluate the microstructure of the lung using automated segmentation and 

quantification of essential structures in pCLE snapshots selected by pulmonologists during standard 

examination. As current structural workflow relies on measures such as human observation and 

manually selected measurements, assessment could become more objective with decreased variability.  

1.1 Lung diseases 

Lung diseases comprise of a wide array of illnesses. They are characterised based on where they are 

situated and if they are chronic or acute. Chronic respiratory diseases are further divided into obstructive 

or restrictive diseases (16). In the following section we will focus particularly on several DPLDs, as 

well as pulmonary hypertension (PH). DPLDs are part of chronic obstructive and restrictive lung 

diseases, whereas PH oftentimes follows as results of the two (17). Both pathologies will be introduced 

followed by the potential of pCLE for diagnosis of DPLDs and of MRI for the diagnosis of PH.  

1.1.1 DPLDs 

DPLDs constitutes more than 200 entities, heterogeneously affecting lung parenchyma or pulmonary 

interstitium. These include a multitude of pathologies with similar clinical, radiological and lung 

function characteristics (18). They are usually referred to as interstitial lung diseases (ILD), although 

ILDs also includes diseases affecting alveolar space. DPLDs have a low prevalence (26/100 000 for 

females and 32/100 000 for males) compared to other pulmonary pathologies (19), but oftentimes a 

much higher mortality rate and general effect on quality of life (20). They present with varying 
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prognoses and disease behaviour, complicating simple classification. Instead specific pathologies are 

characterized by degrees of inflammation, fibrosis and weather the cause is known or unknown(21).  

Diagnosis of specific DPLDs is to this day a complex task since they share clinical, radiographic, 

physiological and pathological manifestations. High resolution CT (HRCT) is considered central 

amongst imaging modalities for detecting, and diagnosing many DPLDs (22) as it offers higher accuracy 

or lower adverse side effects compared to chest radiography and lung biopsy, respectively (23, 24). For 

these reasons, it has been specifically recommended for follow-up examinations to track efficacy of 

treatment, disease progression and complications (25–27). However, despite its advantages HRCT still 

struggles to yield consensus in the multi-disciplinary discussions. This is due to a large inter-rater 

variability, sometimes requiring further cytological and histological information (21, 28–30).  

1.1.2 PH 

Pulmonary hypertension (PH) is a disease associated with increased mortality and morbidity (31). Its 

total prevalence is unknown but estimates range between 5-52 cases per million people (32–36). It is 

characterized by a progressive increase of blood pressure within the arteries of the lungs leading to 

shortness of breath, syncope, tiredness, chest pain, swelling of the legs, and a fast heartbeat (37). 

Furthermore, if the mean pulmonary arterial pressure persists it could lead to irreversible remodelling 

of the pulmonary vasculature and eventually right heart failure (38, 39). PH is divided into five main 

subgroups categorizing these into pathophysiological mechanisms, clinical presentation, and therapeutic 

options (37):  

1. pulmonary arterial hypertension (PAH) 

2. PH due to left-heart disease  

3. PH due to lung disease and hypoxia  

4. chronic thromboembolic disease (CTEPH) 

5. PH due to unclear and/or multifactorial mechanisms 

Imaging modalities have a central role for detecting and classifying PH. For example, they facilitate 

tracking of treatment response, identification of potential underlying pathologies or non-invasive 

pulmonary pressure measurements (40). Amongst the standard diagnostic workup are 

echocardiography, CT and ventilation/perfusion (V/Q) scans, but a multitude of advanced imaging 

methods have presented new possibilities (41). Several of those are based on MRI, which has been 

highlighted for prognostic assessment and evaluation of CTEPH particularly (40). Standard diagnostic 

methods of CTEPH include either a V/Q scintigraphy scan or CT pulmonary angiography (CTPA) which 

can both exclude CTEPH with high sensitivity, specificity and accuracy (42). However, they both 
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expose patient to ionized radiation, which for long term patients will accumulate over many scans. Of 

the presented MRI methods, several aim to avoid contrast enhanced measurements (43–48), due to 

concerns of lasting depositions in brain skin and bones from the commonly used agent, gadolinium (49, 

50). 

1.2 Probe Based Confocal Laser Endomicroscopy 

To address the issue of inter-rater variability of HRCT as well as the invasive procedure of biopsies in 

diagnosis of DPLDs, pCLE has been presented as a novel imaging technique. It provides real time 

imaging of the respiratory tract and alveolar ducts based on the microstructures’ autofluorescence (51).  

Having overcome initial technical limitations of low specificity, it now offers in vivo visualization (52–

55). Having displayed structures correlating with histopathology in lung cancer, pCLE has raised the 

hope for a potential ‘optical biopsy’ as alternative to normal (56). Furthermore, Several studies have 

also showed its ability to track structural changes caused by different DPLDs (57–60). Specifically, 

increased elastin fibre thickness and density as well as number of cellular structures has been highlighted 

as important features that can be visualized with pCLE. However, previous DPLD studies with pCLE 

have relied on qualitative expert observer evaluation (57) or manual post processing methods (61, 62). 

If instead a process could automatically yield quantitative confirmation (aside from image selection), it 

would decrease diagnostic uncertainty for the examining pneumologists.  

1.2.1 Image Acquisition 

Since, the full alveoli image acquisition workflow has been previously described (63) only a shortened 

description will be given in the following section. 

The procedure is performed by firstly inserting the confocal mini probe into the working channel of a 

flexible bronchoscope. Patients receive a topical anaesthesia of the airways and are put in supine position 

for insertion of the bronchoscope. The bronchoscope is pushed down to the smallest reachable bronchi 

and followed by the advancement of the mini probe. It is pushed inside the working channel through the 

distal bronchiole until it reaches the alveolar system. The 1.4 mm probe ensures a deeper reach in the 

bronchial structure compared to the bronchoscope. Its laser light with a wavelength of 488�� has been 

shown to mainly excite autofluorescence from the elastin content in the alveoli structures. The probe is 

manually applied onto bronchial surfaces of the trachea or the bronchus to produce images and 

considerations are taken not to damage sensitive tissue. Video shots are acquired at 9-12 images/second, 

penetrating between 0 to 50 �� below the applied surface. Lateral and axial resolutions of the probe are 

3.5 ��, and 15 ��, respectively. The images offer a field-of-view diameter as large as 600 ��, meaning 

that only a small part of the bronchial surface can be imaged simultaneously. However, since the probe 
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can be moved without much added risk multiple regions can be evaluated per examination. The average 

added duration of the pCLE procedure is 11 minutes and the current workflow has the shots stored for 

later analysis.  

1.2.2 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung – Own 

contribution 

To address the qualitative approach of previous evaluation workflows and show the potential of 

automatic evaluation during examination, a two-step approach was considered:  

1. Develop a method for quantifying the alveoli elastin structures observed in the pCLE snapshots.  

2. Present a prototype of a fully automated workflow to assess doctors’ selected pCLE snapshots. 

Structural connectivity and two statistical elements based on the localized thickness estimates (64), 

applied on a binarization (65) of the selected snapshots emerged after testing several methods. I 

evaluated the three values on one snapshot from healthy tissue and one from tissue struck by IPF in a 

case report (66). The case study is included as additional contribution (Section 4.1 bellow) to provide 

context for the follow up publication. In the report I showed heightened quantitative values for the IPF 

case with all three values corresponding with structural differences observed by the pulmonologists. In 

the case study, I performed binarization manually with a standard thresholding method to delineate 

structure of interest (SOI) from background and unimportant structures for diagnostic decision 

(henceforth summarized as just ‘background’). To fully automate the workflow in the following 

publication, I instead used a machine learning approach for this step. 

1.2.2.1 Automatic Segmentation - Own contribution 

In the presented publication, ‘Automated evaluation of Probe-based Confocal Laser Endomicroscopy 

in the lung’ I used a machine learning model for pixel classification (67) to categorize all pixels in 

every selected snapshot into SOI or background. Machine learning builds a mathematical function 

based on training samples to make future predictions on test samples. The samples in this case were 

pixels in manually selected areas, called labels. Labelling was performed with the help of 

pulmonologists with experience of pCLE examination and DPLD diagnosis. I tested several classifiers 

with k-fold validation (68) to ensure an optimal choice of classifier. From this evaluation, random 

forest yielded the highest receiver operating characteristics (69). Random forest uses a collection of 

nonparametric statistical models called decision trees. The trees provide a solution to difficult decision 

problems where there are many classes and many available features related in a complex manner (70). 

The random forest in turn lets multiple trees generate a solution and uses their ensemble 'vote' to make 

a decision (71). By controlling the voting process of the trees, for instance through sectioning the trees 
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randomly (72), the method can minimize negative aspects of the process such as decision bias by the 

trees as a group. However, distribution of the data between selected classes can introduce bias to a 

models decision process (73, 74). Several techniques exist for overcoming imbalanced class problems 

(75–77). I selected under-sampling of the overrepresented class for this solution, due to its direct 

approach and computational efficiency compared to other methods. I selected an initial set of 205 

image processing features to train the model. The features were generated by processing the images 

through different types of image filters, which quantifies pixels’ individual appearances as well as 

their connection to their surroundings. Filters were obtained from a standard 2D-library (containing 

filters such as ‘median’, ‘gaussian’, ‘entropy’ and ‘neighbouring pixel’) (78). To select relevant 

features and exclude the superfluous ones has the outmost importance when training a classification 

model (79). Thus, I applied a method for selecting features based on minimal redundancy and 

maximum relevancy (MRMR) (80–82) yielding 84 final features.  

1.2.2.2 Structural Quantification - Own contribution 

To perform the quantification, a skeleton of the segmented structure was firstly extracted. I generated 

the skeleton by applying a thinning algorithm that leaves behind a single line of pixels, situated in the 

objects approximate mid-section (65). The algorithm further ensures that no connected parts are 

broken up. I then calculated structural connectivity on the skeleton, which quantifies the number of 

holes in a structure scaled with the skeleton’s length. The number of holes were quantified with the 

Euler number of a binary image. This solution considers patterns of convexity and concavity in local 

2-by-2 neighbourhoods as it counts the holes (65). I calculated the local thickness by estimating the 

distances between individual approximated midpoints from the skeleton and their closest edge pixel 

from the binary segmentation. I found the closest edge pixels by a k-nearest neighbour search (83) and 

comparing their the Euclidean distance. 

1.3 MRI 

MRI uses the concept of the nuclear magnetic resonance (NMR) phenomenon, first described 

experimentally by both Bloch and Purcell in 1946 (84, 85). The rapid development toward a clinical 

application has ensured that it is now a widely available, powerful clinical tool accessible in most 

hospitals (86, 87). However, lung MRI remains a difficult task, due to the intricate structure of the lung 

as well as their low proton density. This section will firstly focus on the principles of MRI, followed by 

highlighting problems and efforts of MRI in the lungs. This will lead to the presented work which 

addresses the issue of variable ventilation and perfusion frequency during the functional evaluation of 

the lungs. 
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1.3.1 Magnetic Resonance Imaging 

MRI makes use of the quantum magnetic spin property (I) of elementary particles to generate 

electromagnetic signals. To induce these signals a strong constant magnetic field is applied in one 

direction ��, followed by sequences of pulsed oscillating magnetic fields (radiofrequency (RF) pulses). 

These RF pulses excite particles with matching, resonant magnetic spin frequency. In turn, the excited 

particles themselves start to induce an electromagnetic RF signal (88), which can be recorded using 

receiver coils. By applying specialized sequences of RF pulses and magnetic gradient fields both 

strength and location of the signal excitation can be manipulated, facilitating the reconstruction of 

tomographic images of the human body. This introduction will offer only a short overview on the 

fundamentals of MRI. For a detailed review, the reader is referred to standard textbooks introducing 

MRI (89, 90).  

1.3.1.1 Magnetic spin 

The concept of a particle generating a RF signal can be understood by exploring the simplest example, 

the hydrogen nucleus 1H, i.e. proton. Protons are the most used nuclei for deriving MR signal due to 

their high prevalence in the human body (mostly in water molecules). All atomic nuclei are characterized 

by their atomic number � (amount of protons), mass number � (total number of protons and neutrons in 

the nucleus) and nuclear spin 	 (determined by their intrinsic spin quantum number 
, which in turn 

depends on the numbers of protons and neutrons in a given nucleus). 	 (equal to ½ for protons) is an 

intrinsic form of particle angular momentum described by quantum mechanics and connected to the 

magnetic moment � of the nucleus: 

 � = 	, [1] 

 

where  is the particle-specific gyromagnetic ratio.  

1.3.1.2 Magnetic macro spin in an external magnetic field  

For a single proton inside the magnetic field � = ���� the time-derivative of the magnetic moment � 

can be described classically by:  

 ��
�� = � × �, 

 

[2] 

which further insinuates that � precesses with the Larmor frequency (�� =  |�|) about the external 

magnetic field �. Without an external magnetic field, a collective of uniformly distributed proton spins 

will be directed in random orientations spatially (due to thermal motion) and produce a net 

magnetization of zero magnitude. But, as � is applied on the proton nuclei, individual magnetic 
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moments will be weakly slanted by their direction. This results in a non-zero expectation value 〈��〉 

along the direction of the magnetic field. The angular distribution of the magnetic momentum obeys the 

Boltzmann statistics (91): 

 ���) = exp �−!��)/#$)
% exp �− !��)#$ )&'��(�)

�
, 

 

 

[3] 

where the energy difference between two populations of spins is !��) = −��+,&� and � represents the 

angle between the magnetic moment � and the magnetic field �. With this in mind, 〈��〉 can be 

calculated as  

 〈��〉 = - ���)��
)

�
+,& �)&'��(� ≅ ℏ00��4#$ .  

[4] 

The above approximation is valid when thermal energies are high enough to render quantum effects 

negligible, or in other words during small degrees of polarization. This is true when #$ >  ℏ��, which 

for �� in standard MRI (between 0.3-3T) is fulfilled at room temperature. It should be said that 〈��〉 
only describes a mean of expected outcomes in magnetization measurements even for single protons. 

However, given the classical description of a single nucleus magnetic moment above, the macro-net 

magnetization 4 = 5��� can also be described by multiplying 〈��〉 with number of spins 67 in the 

measured volume. Similar to the one proton example, the temporal evolution 4�8) of a collective of 

proton nuclei in a magnetic field ��8) can be described with 

 �4��)
�� = 4�8) × ��8), [5] 

where the transverse component of the net magnetization will precess with frequency �� around ��8) 

as excitation is induced (see below). It is the precession of the transverse component that generates a 

signal via induced electromotive force in the receiver coils at the same frequency. 

1.3.1.3 Excitation and Relaxation 

When a RF pulse �9�8) =  �9 :cos ���8), sin ���8), 0A pushes the protons already affected by a 

constant magnetic field = ���� , 4�8) will be pushed away from equilibrium magnetization (4 =
5���) into the transverse plane. It will subsequently precess around � at �� until nearby proton 

interactions yield relaxation back to equilibrium. Generally,  �9�8) is much weaker in amplitude 

compared to �� and would not affect the net magnetization. But by applying RF pulses matching ��, a 

resonance effect is achieved resulting in a slow rotation of the net magnetization 4 away from the 
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equilibrium. The total flip angle B of the net magnetization caused by  �C will depend on its amplitude 

 �9, duration ∆8 and : 

 B =  �9∆8. [6] 

Following excitation, relaxation of magnetization occurs both in longitudinal and transverse direction 

at different time rates. Longitudinal magnetization (5�) exponentially approaches initial net 

magnetization 5� on a timescale $9 and is dependent on spin lattice interaction (i.e. energy that is 

released by relaxation is absorbed by the lattice). Transverse magnetization (5EF) decreases 

exponentially on a timescale $0 and is dependent on the decay of phase coherence that is obtained 

immediately after �C. However, generally decay of transverse magnetization is faster than 

$0relaxation due to magnetic field inhomogeneities. This results in further distortion of the spin-spin 

phase coherence. This effect is accounted for by the additional time factor $0 and the total decay of 

transverse magnetization is described by the combined time scale $0, where 

 1
$0∗ = 1

$0 + 1
$0′. 

[7] 

It should be noted that the additional effect accounted for by $0is reversible using a 180° refocusing 

pulse (see section 1.3.1.4). Specific relaxation times $1 and $0are tissue dependent and vary greatly 

based on macromolecules within the cells (92), which results in contrast in the final MR image. 

Similarly, different diseases effect macromolecular environments as well, resulting in total MR signal 

difference. Empirically the relaxation process in all directions can also be described by the Bloch 

equations (84): 

(5E(8 = �4 × �) − 5E$0 , 
(5F(8 = �4 × �) − 5F$0 , 

(5�(8 = �4 × �) − 5� − 5�$9 . 

[8] 

 

[9] 

 

[10] 

In the case of a constant and homogenous external magnetic field � = (0, 0, �0) the solution for 5� is 

given by: 

  5��8) =  5� − �5� − 5��0))KLM NO⁄ , [11] 

and by introducing the complex notation 5EF = 5E + '5F, the solution of the Bloch equations for the 

transverse magnetization is given by:  
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5EF�8) =  5EF�0)KQRMKLM NS⁄ . [12] 

1.3.1.4 Echo generation 

In the previous section it was noted that the $0′-relaxation can be reversed by applying a 180° 

refocusing pulse. $0′-relaxation is due to additional local field inhomogeneities caused by magnetic 

interference fields (or changes in susceptibility at surface boundaries). These constant local field 

inhomogeneities cause spatially dependent frequency variations of spins rotations, leading to 

accumulated phase delay. By applying a single 180° pulse at a predefined delay following the initial 

90° RF pulse, the spins eventually rephase at twice the original delay time. Since, the signal is read at 

the time of rephasing, this technique is known as a spin echo and is one of several solutions for phase 

refocusing. Other multi echo sequences are also readily available, when for example short time to 

refocus is essential.  

1.3.1.5 Spatial localization and k-space 

When a signal is recorded, contributions from the entire excited volume are measured. To reconstruct 

the final MR image it is necessary to separate and spatially assign all contributions. One example to 

achieve this would be to overlay a linear magnetic gradient field T��U, 8) = U ∙ W�8), with the magnetic 

field gradient W = ∇T� = �YZ[
YE , YZ[

YF , YZ[
Y� ) onto B=�0,0, ��), and thus spatially modulate B. Consequently, 

the total magnetic field strength in z direction will be given by 

 �\�U, 8) =  ��  +  T��U, 8), [13] 

and the Larmor frequency will be spatially dependent: 

��], 8) =  �� +  U ∙ W�8). [14] 

Neglecting relaxation effects in our example, the transverse magnetization after excitation can be written 

as: 

 5EF�U, 8) =  ^�U) KQ_�U,M)5EF�0), [15] 

where ^�U) = 6/` is the spatially varying spin density and a�U, 8) is a spatially dependent phase of 

the transverse magnetization that accumulated in �\�U, 8). Similar as in [6] a�U, 8) can be calculated 

from: 

a�U, 8) =   - ��U, b)(b
M

�
, 

= ��8 + U - W�b)(b
M

�
, 
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= ��8 + Uc�8), [16] 

where the spatial wave vector c�8) =  % (bW�b)M
�  defines the spatial frequency. The recorded signal 


�8) = 
�#�8)) is proportional to the spatial average of the transverse magnetization and integration 

over the volume ` results in: 


�8) ∝  - 5EF�U, 8)(eU
 

f
= 5EF�U, 0) - ^�U)KQUc�M)(eU

 

f
. [17] 

Thus, apart from a scaling factor, it equals the value of the Fourier transform of ̂ �U) at c�8). Since W�8) 

determines k-space points c�8), 
�c) can be measured for arbitrary #. Furthermore, if 
�c) is measured 

in a sufficient number of points c, ^�U) can be approximated with inverse discrete Fourier transform, 

since: 

^�U) ∝ g 
hcijKLQckU
i

. [18] 

Oftentimes in MRI, 
�c) is measured in a zero-centred grid of equidistantly spaced points cQ (where ' =
−6. . . �6 − 1)), called k-space. ^�U) can in that case be approximated with: 

^�U) = l g 
��∆#)KLQm∆nU
o

mpLo
, [19] 

 

where ∆# is the distance between two point and determines field of view (qr`) of the final image 

(qr` = 2t/∆#). The spatial resolution ∆] of an image can through this also be obtained, since∆] = 

qr`/26 = t/6∆#.  

1.3.1.6 Slice selection 

Although spatial assignment can be performed directly on a 3D-volume, a common separate step called 

slice selection is often applied to reduce the 3D reconstruction to 2D. This is performed by only exciting 

protons within a predefined slice with the applied RF pulses and involves two subsequent steps: 

1) A magnetic field gradient applied perpendicular to the plane of the selected slice, resulting in a linear 

variation of resonance frequencies along the field direction. 

2) An applied short RF pulse, which is specifically tailored to match the narrow range of frequencies 

contained in the selected slice. 
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The thickness and profile of the selected slice will depend on the envelope, amplitude, frequency 

bandwidth of the applied RF pulse. This ensures that subsequent sampling only must take place in two 

remaining dimensions. 

1.3.1.7 K-space sampling and image reconstruction 

Since the value of c�8) is dependent on the time integral over which W�8) is applied, appropriate choice 

of gradient fields can select a specific value of c�8) and thus measure 
�c) at arbitrary points in k-space. 

After the above slice selection step for example, k-space is traversed in a 2-D by activating �uE, uF) 

for �8E, 8F) amount of time to locate the specific positions �#E, #F) in k-space. This is followed by a 

readout gradient that collects signals points while k-space is traversed.  

1.3.1.8 Sequences 

To perform MR imaging a specific combination of the excitation, possibly refocusing pulses, spatial 

encoding, echo generation and signal acquisition is applied, which altogether is referred to as a pulse 

sequence. By varying these factors, specific contrast in brightness between tissue can be yielded. 

Particularly selection of repetition time ($v), echo time ($!) and the flip angle α have a strong influence 

on the contrast and how the image will be weighted. The TR is simply the time between two RF pulses 

and the TE the time between the application of a RF pulse and the recording of the signal.  

 

Figure 1: Diagram of RF and readout deciding TR and TE. In the example, the 180° refocusing pulse occurs at t=TE/2.  

As previously established, following excitation, 5� returns to 5� at relaxation rate $9 and 5EF returns 

to 0 at relaxation rate $0. However, $9 and $0 are tissue dependent, which can be exploited to generate 

contrast between organs and tissues in the reconstructed images. This is achieved by using specific 

combinations of the sequences parameters TE and TR as follows: Generally speaking, short  $v values 

(less than 300ms) lead to a $9-weighted image contrast and long $!-values (longer than 90ms) lead to 

a $0-weighted image contrast (since these values enhance the relaxation effects on the transversal 

magnetization at the time of the signal readout). In contrast, long $v- (longer than 1000ms) and short 

TE (shorter than 15ms) will instead suppress both $9and $0 relaxation effects, and the image contrast 

will mostly be based on local proton densities from the volume.  
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1.3.2 MRI of the Lungs 

MRI measurements in the lungs are difficult due to low proton density, short $0∗ relaxation time and 

motion artefacts. Proton density of the lungs has been measured to between 1/10 and 1/5 of other human 

tissues, depending on ventilation phase, subject position and measurement localization (93, 94). This 

translates to a much lower signal-to-noise ratio (SNR) from lung parenchyma compared to other tissue 

types. The short $0∗ relaxation time is due to the complex structure of the lungs. The transitions between 

tissue and air results in magnetic susceptibility gradients (95) and with very small structures compared 

to voxel size, the signal suffers particularly fast $0∗ dephasing. Thus imaging the lungs requires pulse 

sequences with $! as short as ideally 1-2ms (96). $0∗ dephasing is even faster at higher magnetic field 

strengths (97) leading to a weigh-off between the SNR gain due to higher magnetization vs. further 

shortening of $0∗.  

1.3.2.6 Balanced steady state free precession MR sequence  

A balanced steady-state free-precession (bSSFP) sequence generates a steady-state signal by refocusing 

the remaining transverse magnetisation after readout of the signal. It does so by applying additional 

pulses with alternating phases (flipped polarity) at the end of every $v interval (98). Consequently, the 

generated signal will be proportional to the ratio $0/$9for all $v that fulfils the condition $v <<
$9, $0(99). With optimised implementation to compensate banding artefacts (100) and using state of the 

art hardware, bSSFP has been shown to be feasible with $v as low as 3 ms. By sacrificing spatial 

resolution, bSSFP sequences have been shown to acquire up to 5 MRI slices per second (8), enabling 

the tracking of ventilation and perfusion related signal changes. bSSFP sequences also have the added 

advantage of offering intrinsic flow compensation along both phase and slice direction for 2D imaging 

(101, 102).  

1.3.2.7 Fourier decomposition MRI  

Fourier decomposition (FD) MRI is a free-breathing and non-contrast enhanced post-processing method 

applied on dynamic MRI image series to evaluate functional pulmonary information in the lung. During 

inhalation the lung expansion translates to a decreased amount of tissue per voxel, which lowers the 

proton density and connects signal variations with the breathing cycle (103). Blood perfusion is similarly 

connected to proton density due to capillary blood filling as well as intravoxel dephasing (7). The initial 

implementation of FD MRI acquires time-resolved 2D-MR images series with the bSSFP sequence. By 

non-rigidly registering all lung images to a mid-ventilation phase reference image, signal variations of 

lung regions are connected to specific voxels (104, 105). Signal variation over the whole time series can 

then be extracted from every voxel and their frequency content evaluated with a 1D-fast Fourier 

transform (FFT) in the temporal dimension. The spectral images are then separated into perfusion- and 
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ventilation-weighted functional maps based on their frequency content, yielding the relative amplitude 

and phase of both signals. Ventilation usually resides in frequency bands below 0.5 Hz and perfusion 

frequency over 0.75 Hz. Accordingly, they can be distinguished if the acquisition frequency overcomes 

the Nyquist-Shannon limit (106) and the spectral resolution is sufficiently high to distinguish frequency 

peaks.  

The amplitude maps’ feasibility to spot localized lung pathologies has already been highlighted in 

multiple studies (8–10) as well as the possibility to generate V/Q maps simultaneously (107). The phase 

information yielded from FD has also been suggested to yield relative estimates of signal arrival time 

between voxels. This could potentially highlight localized signal delays caused by pathologies (108, 

109). However, attention has been raised, that frequency variability of both ventilation and perfusion 

signals during image acquisition can result in problems for the accuracy with FD (110). FFT assumes 

constant frequency over a full measurement, which during any free breathing measurement is close to 

non-existent. A natural variability in frequency can always be expected in both signal variations even in 

the healthy subjects. However, particularly in patients with obstructed or restricted breathing, 

specifically high variations can be expected exacerbating the issue. This translates to inaccurate 

amplitude and phase maps generated by the FFT. 

1.3.3 Non-uniform Fourier decomposition MRI for ventilation and perfusion weighted imaging 

of the lung – Own contribution 

Two methods were initially introduced to account for frequency variability, by resorting multiple 

signal variations into an average single frequency ventilation cycle. However, these were complex 

multi-step methods utilizing exact phase estimation, peak finding and data resorting of image-(46) or 

k-space (111). The presented method, Non-uniform Fourier decomposition (NUFD) on the other hand, 

aimed to use the simplistic concept of standard FD while still accounting for the frequency variability.  

NUFD assumes only the following: 

- An equidistantly sampled oscillating signal with variable frequency can be reinterpreted as a 

non-equidistantly sampled signal with constant frequency. 

- Frequency variations for ventilation and perfusion in the lungs are consistent between voxels.  

I implemented this reinterpretation, by calculating new virtual non-equidistant time points, which 

compensates for the signal’s frequency variation. The virtual time points were calculated with a 

frequency-tracking step, yielding a correction factor. To estimate the frequency content of a non-

equidistantly spaced signal I used the non-uniform FFT (112) (NUFFT) instead of FFT, which will be 
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introduced in the following section. The final workflow, that I developed to generate ventilation- and 

perfusion-weighted NUFD maps can be summarized in the following steps: 

1. Perfusion and ventilation signals are extracted from a selected region of interest in the 

registered lung segments 

2. Frequency of perfusion and ventilation signals are tracked in the same time-frequency 

estimation using two ridges, with a penalty for jumping between peaks to avoid cross tracking. 

3. New virtual time points are calculated to compensates the signals’ frequency variation. 

4. The virtual time points were used for NUFFT in every pixel and ventilation and perfusion 

maps spectrally separated. 

Furthermore, SNR estimation of a signal in frequency spectrum is a well-established technique (110). 

Thus, I could perform a quantitative pixel-to-pixel comparison between generated NUFD and FD 

maps.  

1.3.3.6 Frequency tracking & correction - Own contribution 

Tracking frequency over time is a non-trivial task where complexity begins at the initial signal 

formulation 
�8). the standard Fourier transform splits 
�8) into distinct sinusoidal components and 

assumes constant frequency over its full measurement time. If signals are not perfectly sinusoidal and 

vary in frequency, spectral components will ‘spill’ out onto other frequency bins resulting in fewer parts 

of the signal being used for evaluation or even incorrect assessment of its parameters. The continuous 

wavelet transform (CWT) (114) has been presented as a solution to these issue, by instead describing 

the transform component as a general function x with a scalable window 1 yz . By doing so, it achieves 

signal descriptions in both time and frequency space: 

 {E�y, |) = - 
�8) 1
y

}

L}
x ~8 − |

y � (8,  

[20] 

where a and b are called the scale and translational variables, respectively. The CWT also has an inverse 

formalism to recover the original signal 
�8) and by selecting a considered function x, multicomponent 

signals can be incorporated into a single spectral line without interference between each component 

(114). From the CWT I could then track the combined instantaneous frequency (115) (IF) of the signal 

by estimating a ridge curve, following the signals’ max amplitude in the time-frequency domain (116). 

the precision of the IF estimate determines how well frequency is collected in the final NUFFT step. 

The synchro-squeezed wavelet transform collects signal energy with the same phase onto a single 

frequency bin (117) and have shown to improve frequency localization compared to standard CWT 
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(118). For this reason, I also applied this to the workflow. With IF estimated, I could calculate new time 

points at every index n with: 

 8̃m = ∆8
����m g ��8n)

m

np9
,  

[21] 

where ∆8 is the time between two time points in the original equidistant time vector, ����m is a scaling 

factor set to mean value of IF (which ensures that equal total acquisition time between the virtual and 

original time vector and ��8n) the instantaneous frequency at time point index #). I then used the non-

equidistant time vector as input to a type-1 NUFFT which quantifies frequency components qnof the 

new signal 
�8̃)�  through: 

 qn = 6�qq$h
�8̃m)j = g 
h8̃m� j exp �− 2t'#8̃m8̃o − 8̃9�
o

mp9
.  

 [22] 

2. Summary/Zusammenfassung 

2.1 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the 

lung  

Probe based confocal endomicroscopy (pCLE) is a novel imaging modality that provides real time 

videos of autoflourescent elastin structures within the alveoli. Changes in the elastin structure caused 

by diffuse parenchymal lung diseases (DPLD) can be shown on the captured images. However, these 

changes are oftentimes moderate and the evaluation of the performing physician relies mainly on the 

qualitative assessment of individual images selected manually after the examination. The focus of the 

publication “Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung” was 

to design and implement an automated workflow for the segmentation and quantitative evaluation of 

pCLE images followed by the analysis of its diagnostic potential to identify DPLDs. For this purpose, 

I trained and optimized a machine learning model for the automatic segmentation of structures of 

interest (SOI) in the recorded pCLE images. Furthermore, I developed an algorithm that calculates 

quantitative values describing the segmented alveolar structures' local thickness statistics and 

structural connectivity. I then analysed the workflow's diagnostic potential on images from 46 

subjects. Images from 38 patients (divided into 4 different DPLD groups) were analysed and 

compared against 8 subjects with images characterized as normal elastin structure by 

pulmonologists selecting snapshots. The DPLD groups were cryptogenic organizing pneumonia 

(COP), non-specific interstitial pneumonia (NSIP), idiopathic pulmonary fibrosis (IPF) and 

hypersensitive pneumonitis (HP). 
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The segmentations performed well, extracting SOIs while removing background, as confirmed by cross 

validation as well as the expert pulmonologist. The quantified structural connectivity, median thickness 

as well as the standard deviation of thickness showed statistically significant differences in all DPLD 

groups compared to the normal group (p<0.05). These results indicate that qualitatively described 

structural changes of alveoli elastin structure caused by different DPLDs (57–60) can be automatically 

quantified and used to distinguish healthy from diseased tissue using the developed framework. If 

implemented into the current clinical workflow, the presented method could offer quantitative 

evaluation of selected pCLE images, decreasing variability compared to current qualitative assessments 

and potentially offer real-time diagnostic confirmation of suspected DPLD structures. 

Die Sonden-basierte, konfokale Endomikroskopie (pCLE) ist eine neuartige Bildgebungsmodalität, die 

die Aufnahme von Echtzeitvideos von autofluoreszierenden Elastinstrukturen in den Alveolen 

ermöglicht. Auf den erfassten Bildern können sich Änderungen der Elastinstruktur darstellen, die durch 

diffuse parenchymale Lungenerkrankungen verursacht werden. Diese Änderungen sind jedoch häufig 

moderat und die Befundung des durchführenden Arztes beruht hauptsächlich auf einer qualitativen 

Beurteilung einzelner Bilder, die nach der Untersuchung manuell ausgewählt werden. Der Schwerpunkt 

der Veröffentlichung „Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the 

lung“ lag auf dem Entwurf und der Implementierung eines automatisierten Workflows zur 

Segmentierung und Auswertung der ausgewählten pCLE-Bilder, gefolgt von der Analyse des 

diagnostischen Potenzials zur Identifizierung von DPLDs. Hierzu habe ich zunächst ein Machine 

Learning Modell trainiert und optimiert, welches zu untersuchende Strukturen in den aufgenommenem 

pCLE Bildern automatisch segmentiert. Darüber hinaus habe ich einen Algorithmus entwickelt, welcher 

Statistik der lokalen Dicken und die strukturelle Konnektivität der segmentierten Alveolarstrukturen 

quantifiziert. Anschließend analysierte ich das diagnostische Potenzial des Workflows anhand von 

Bildern von 46 Untersuchungen. Insgesamt wurden Aufnahmen von 38 Patienten (mit vier 

verschiedenen DPLDs) analysiert und mit Aufnahmen von 8 weiteren Patienten verglichen, deren 

Elastinstruktur von den durchführenden Pneumologen als normal charakterisiert wurden. Die 

untersuchten DPLDs umfassten die kryptogene organisierende Pneumonie (COP), die unspezifische 

interstitielle Pneumonie (NSIP), die idiopathische Lungenfibrose (IPF) und überempfindliche 

Pneumonitis (HP).  

Sowohl das Kreuzvalidierungsverfahren als auch die visuelle Beurteilung eines erfahrenen 

Pneumologen bestätigten die gute Leistung der automatischen Segmentierungen der Elastinstrukturen. 

Die quantifizierte strukturelle Konnektivität, der mittlere Durchmesser sowie die Standardabweichung 

des Durchmessers zeigten statistisch signifikante Unterschiede in allen DLPD-Gruppen im Vergleich 
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zur normalen Gruppe (p <0,05). Diese Ergebnisse zeigen, dass zuvor qualitativ beobachtete strukturelle 

Veränderungen der Alveolenelastinstruktur, die durch verschiedene DPLDs verursacht werden (57–60), 

mithilfe des entwickelten Worflows vollautomatisch quantifiziert und von einer gesunden 

Elastinstruktur unterschieden werden können. Bei Implementierung in den aktuellen klinischen 

Arbeitsablauf könnte die vorgestellte Methode ausgewählte pCLE Aufnahmen quantitativ auswerten, 

die Variabilität im Vergleich zur aktuellen qualitativen Bewertungen verringern und potentiell eine 

Bestätigung in Echtzeit für die diagnose von pathologischen Elastinstrukturen bieten. 

2.2 Non-uniform Fourier decomposition MRI for ventilation and perfusion 

weighted imaging of the lung 

Fourier decomposition (FD) MRI is a non-invasive free breathing imaging processing method, used on 

lung image series for extracting local functional information about ventilation and perfusion. However, 

naturally occurring respiratory and cardiac frequency variations during image acquisition may corrupt 

the estimations. Thus, the focus of the publication “Non-uniform Fourier decomposition MRI for 

ventilation and perfusion weighted imaging of the lung” was to address signals’ frequency variation and 

consequently increase the robustness of pulmonary ventilation- and perfusion-weighted imaging. This 

was achieved by a two-step approach, where the first step entailed reinterpreting the equidistantly 

sampled varying-frequency signals to non-equidistantly sampled signals with constant frequency. For 

this, I reinterpreted the recorded signal by scaling the original measurement time points with their 

individual instantaneous frequencies. The signal’s instantaneous frequency was thereby tracked using a 

wavelet transform. For the second step I analysed the resulting non-equidistantly sampled signals with 

non-uniform Fourier decomposition (NUFD) to generate perfusion- and ventilation-weighted maps. I 

compared the developed NUFD workflow against standard FD by evaluating the signal-to-noise ratio 

(SNR) from the generated ventilation and perfusion maps of 11 patients and 5 healthy test subjects. This 

showed that the NUFD significantly increased average SNR in ventilation and perfusion for both groups 

(p<0.05). the maximum SNR increase in one test subject was 144.0% and in two CTEPH patients, the 

implemented NUFD method recovered perfusion signals which could not be analysed with standard FD. 

These results show that accounting for frequency variability, NUFD truly offers a free-breathing method 

with broad applicability. The frequency tracking step ensures that even patients with breathing 

difficulties and/or strong arrythmia can be included in examinations. Furthermore, the NUFD 

framework can be readily applied to current and past FD studies as it requires no changes to the image 

acquisition parameter. 

Die Fourier-Decomposition-MRT (FD) ist eine nicht-invasive Methode bei freier Atmung, die anhand 

von zeitlich aufgelösten Bildserien der Lunge Informationen über die lokale Ventilation und 

Durchblutung des Lungenparenchyms in Form von Parameterkarten gewinnen kann. Häufig auftretende 
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Schwankungen der Atem- und Herzfrequenz während der Bildaufnahme können jedoch die berechneten 

Ergebnisse verfälschen. Daher lag der Schwerpunkt der Veröffentlichung „Non-uniform Fourier 

decomposition MRI for ventilation and perfusion weighted imaging of the lung“ darin, die 

Frequenzschwankungen zu analysieren und zu korrigieren um damit die Robustheit und Genauigkeit 

der gewonnenen Information über Ventilation und Perfusion zu verbessern. 

Dies wurde durch einen zweistufigen Ansatz erreicht, bei dem im ersten Schritt die zeitlich äquidistant 

abgetasteten Signale mit schwankender Frequenz in nicht äquidistant abgetastete Signale mit konstanter 

Frequenz reinterpretiert wurden. Dazu habe ich die ursprünglichen Messzeitpunkte des Signals mit der 

individuellen Momentanfrequenzen skaliert. Die zeitaufgelöste momentane Frequenz des Signals wurde 

dabei unter Verwendung einer Wavelet-Transformation bestimmt. Für den zweiten Schritt analysierte 

ich die resultierenden, nicht äquidistant abgetasteten Signale mit der „Non-uniform Fourier 

decomposition“ (NUFD), um die perfusions- und ventilationsgewichteten Karten zu erstellen. Ich 

verglich die entwickelte NUFD-Methode mit der für gewöhnlich verwendeten standard Fourier 

Zerlegung, indem ich das Signal-Rausch-Verhältnis (SNR) aus den generierten Ventilations- und 

Perfusionskarten von 11 Patienten und 5 gesunden Probanden auswertete. Die Ergebnisse zeigten, dass 

die entwickelte NUFD-Methode das durchschnittliche SNR der Ventilations- und Perfusionskarten in 

beiden Gruppen signifikant erhöhte (p <0,05). Der höchste SNR-Anstieg bei einem Probanden lag bei 

144,0%, und bei zwei CTEPH-Patienten ermöglichte die NUFD-Methode die Analyse von 

Perfusionssignalen, die mit der standard Fourier Zerlegung nicht messbar waren. Diese Ergebnisse 

verdeutlichen, dass die NUFD-Methode mit Berücksichtigung der Frequenzschwankungen ein 

Verfahren mit breiter Anwendbarkeit bei echt freier Atmung bietet. Die Berücksichtigung der 

Frequenzschwankungen stellt sicher, dass auch Patienten mit Atembeschwerden und / oder starker 

Arrhythmie untersucht werden können. Darüber hinaus kann die NUFD-Methode problemlos auf 

aktuelle und bereits abgeschlossene Studien mit Fourier Zerlegung angewendet werden, da keine 

Änderungen am Aufnahmeprotokoll der MRT Bilder erforderlich sind. 
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3. Original publications 

3.1 Bondesson D, Schneider MJ, Silbernagel E, Behr J, Reichenberger F, 

Dinkel J (2020) Automated evaluation of probe-based confocal laser 

endomicroscopy in the lung. PLoS ONE 15(5): e0232847. 

https://doi.org/10.1371/journal.pone.0232847 
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3.2 Bondesson D, Gaass T, Dinkel J, Kiefer B. Non‐contrast‐enhanced 

perfusion and ventilation assessment of the human lung by means of 

wavelet decomposition in proton MRI. Proc Intl Soc Mag Reson Med 2016; 

24:1934. https:// doi-org.emedien.ub.uni-muenchen.de/10.1002/mrm.27803 
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4. Additional Contributions 

4.1 Silbernagel E, Bondesson D, Behr J, Dinkel J, Reichenberger F. Taking 

another view on lung fibrosis. Am J Respir Crit Care Med 2018;197:947–

948. https://www.atsjournals.org/doi/10.1164/rccm.201708-1683IM 
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5. List of abbreviations 
 

B  Magnetic field 

bSSFP  Balanced steady state free precession (sequence) 

COP    Cryptogenic organizing pneumonia 

CT  Computer tomography 

CTEPH  Chronic thromboembolic disease  

CTPA  CT pulmonary angiography  

CWT  Continuous wavelet transform  

DPLD  Diffuse parenchymal lung disease  

E   Energy difference between two populations of spins  

FFT  Fast Fourier transform 

FOV  Field of view 

FD  Fourier decomposition 

G  Magnetic gradient field 

HP  Hypersensitive pneumonitis 

HRCT  High resolution CT 

I  Quantum magnetic spin property 

ILD  Interstitial lung disease 

IPF  Idiopathic pulmonary fibrosis 

M  Macro-net magnetization  

MRI  Magnetic resonance imaging  

MRMR  Minimal redundancy and  maximum  relevancy 

NMR  Nuclear magnetic resonance 

NSIP  Non-specific interstitial pneumonia 

NUFD  Non-uniform Fourier decomposition  

PAH  Pulmonary arterial hypertension 
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PCLE  Probe-based confocal laser endomicroscopy 

PH  Pulmonary hypertension 

RF  radiofrequency (pulse) 

S  Recorded signal 

SNR  Signal-to-noise ratio 

SOI  Structure of interest 

T  Temperature/time  

TE  Echo time  

TR  Repetition time 

V/Q  Ventilation/perfusion (scan)  

X-ray  Chest radiography 

Z  Atomic number 

B   The total flip angle of the net magnetization 

μ   Magnetic moment of the nucleus 

a  Phase of the transverse magnetization 

��  Larmor frequency 

^  Spin density 

   Particle-specific gyromagnetic ratio  
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