Aus der Klinik und Poliklinik fiir Radiologie
Klinik der Ludwig-Maximilians-Universitit Miinchen

Direktor: Prof. Dr. med. Jens Ricke

Novel image processing methods for
characterizing lung structure and function

Kumulative Dissertation
zum Erwerb des Doktorgrades der Humanbiologie
an der Medizinischen Fakultét der

Ludwig-Maximilians-Universitit zu Miinchen

vorgelegt von
David Bondesson
aus Saxtorp

2020



Mit Genehmigung der Medizinischen Fakultit

Der Universitit Miinchen

Berichterstatter: Prof. Dr. med. Julien Dinkel

Mitberichterstatter: Prof. Dr. Med. Rudolf Maria Huber

Prof. Dr. Thorsten Johnson

Priv. Doz. Dr. Tobias Heer

Dekan: Prof. Dr. med. dent. Reinhard Hickel

Tag der miindlichen Priifung:  25.11.2020






Kumulative Dissertation



Contents

1.

4,

© N W

TNEFOAUCTION ...ttt ettt et et e sbe e st st st en e e b e beenaees 1
1.1 LIUNG QISEASES ..ttt ettt sttt ettt b e bt st et eb e e b e eaees 2
1.1.1 DIPLDS ..ttt ettt st st sttt ettt sttt neere e 2
1.1.2 PH ettt sttt e s 3
1.2 Probe Based Confocal Laser EndOmiCrOSCOPY ......ccceveereeruirueriernieeniienieeneeneeeee e eeeenaeens 4
1.2.1 IMAZE ACQUISTEION ...ttt ettt sttt ettt e be e sbe e st sateeateebeebeens 4
1.2.2 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung —
OWN CONUITDULION. ...ttt ettt ettt sttt et et s sa e st esr e saee b sreemaesnesaeenne e 5
1.3 MRI ettt ettt ettt st st sttt e b bt sttt et e reens 6
1.3.1 Magnetic Resonance Imaging ...........cccoooueiiiiniiniiiiiiiiiiieeeeeeeetete e 7
1.3.2 MRI Of the LUNES ..eveeiiiiieiiirteeeeee ettt sttt 13
1.3.3 Non-uniform Fourier decomposition MRI for ventilation and perfusion weighted
imaging of the Iung — Own CONribULION .......coviiriiiiiiiiiiiiie e 14
Summary/ZuSammenTaSSUNE ..........eevueereerierieeie ettt ettt esbeesbeeshtesabesabeebeenbeesbeesaees 16
2.1 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung................. 16

2.2 Non-uniform Fourier decomposition MRI for ventilation and perfusion weighted imaging of the

Original PUDLICALIONS ...co..iiiuiiiiiiiiieieeee ettt sttt sb e s s e st 20

3.1 Bondesson D, Schneider MJ, Silbernagel E, Behr J, Reichenberger F, Dinkel J (2020)
Automated evaluation of probe-based confocal laser endomicroscopy in the lung. PLoS ONE 15(5):
€0232847. https://doi.org/10.1371/journal.pone.0232847........c.cocereereeeneenieniieieeeeneenee e 20

3.2 Bondesson D, Gaass T, Dinkel J, Kiefer B. Non-contrast-enhanced perfusion and ventilation

assessment of the human lung by means of wavelet decomposition in proton MRI. Proc Intl Soc

Mag Reson Med 2016; 24:1934. https:// doi-org.emedien.ub.uni-muenchen.de/10.1002/mrm.27803
32

AdddItIONA] CONIIIDULIONS ....vvviviiiiiiiiiieiiietiieeeeeteeeeeeeeeeeeeeeeesaaeeeaeaeaeaaaeessasssatatetateretesttesaretetesetata.—... 43

4.1 Silbernagel E, Bondesson D, Behr J, Dinkel J, Reichenberger F. Taking another view on
lung fibrosis. Am J Respir Crit Care Med 2018;197:947-948.

https://www.atsjournals.org/doi/10.1164/rccm.201708-1683IM .......coveeiiiniiniiiiiiieneeneeee e 43
LiSt Of @bDIEVIAIONS .....eouviiiiiiiiiiiiieecete ettt et e sae e s s s 47
RETEIENCES ..ottt st ettt e be e bt s s 49
ACKNOWIBAZEIMENILS .....eentiiiieiiiiiii ettt ettt ettt sttt et e sbe e sbeesaaesare e 62
ATTIAAVIE .ottt ettt bbbt et bt et e bt s bt et e sb e st e b ebe et e 63






1. Introduction

The lungs are the most fundamental organs of the respiratory system. Their primary role is to facilitate
gas exchange from the air into the blood. This is performed via two mechanisms that are working in
conjunction: ventilation and perfusion. Ventilation is seen at the macroscopic level, where mechanically
generated negative pressure within the lungs and pleural space allows air to be drawn in during the
inhalation phase. consecutively, the decrease in lung volume during exhalation increases the pressure in
the lungs, forcing the air out. The effect of perfusion on the other hand occurs at the microscopic level.
It ensures that oxygen is transported through the alveoli into the capillary network, where it can enter
the arterial system. A disorder or disease of the airway that affects these mechanics is defined as
“respiratory disease” (1). Respiratory diseases impose a staggering burden on today’s society, impacting

hundreds of millions and killing over 4 million people a year (2).

Imaging plays several important roles for the diagnostic workup to detect and identify specific
respiratory diseases. It can be used for screening, differential diagnosis and monitoring of disease (3).
In particular, radiological methods such as chest radiography (X-ray), computer tomography (CT) and
magnetic resonance imaging (MRI) are used for pattern localization and assessment as well as evaluating
regional distribution of involvement. Chest X-ray and CT are gold standard methods for morphological
imaging, visualizing particular changes related to a subset of pulmonary pathologies (4). However, both
(and especially CT) suffer from the downside of radiation exposure to the patient, which particularly for
those with chronic illnesses will accumulate. Also, both are limited to only morphological evaluation,
despite some novel methods in CT evaluating the lungs at their functional interface (5). MRI, in
comparison, has a higher soft tissue contrast and does not expose the patient to ionizing radiation. This
facilitates dynamic imaging ideal for functional evaluation and has been used to map the
cardiopulmonary interactions as well as the impact of specific respiratory diseases on it (6). On the topic
of functional lung evaluation with MRI, a method called Fourier decomposition (FD) has been
presented, which is able to generate simultaneous ventilation and perfusion maps (7). These have been
shown to display localized effects from several lung pathologies and potentially facilitate diagnosis (8—
10). However, their evaluation assumes that the patients’ breathing and perfusion frequency remains
constant between cycles throughout a 1-2 minute measurement. This would be a problem already for
healthy people due to natural occurring ventilation- and heart rate-variability, but patients with
respiratory problems can show especially strong variation. For some complex diagnostic situations such
as with diffuse parenchymal lung disease (DPLD) it may be required to evaluate the micro architecture
(i.e. alveoli structure) of the lungs (11). This is the case when clinical and radiological data is not

sufficient for a diagnostic conclusion and lung biopsy/sampling might be required to complement the
1



data. The biopsies are performed through a bronchoscope which provides access and guidance through
the bronchial tree to find appropriate sampling locations (12). Decisions to perform a biopsy are always
weighed between the probability of increasing diagnostic and treatment certainty against risk of
complications (13). These complications include pneumothorax, haemorrhage and exacerbation of the
DPLD (14). Recently, a new bronchoscopy-guided imaging method called probe-based confocal laser
endomicroscopy (pCLE) was introduced, promising a less invasive microscopic visualization of the
lower respiratory tract (15). However, even with pCLE structural assessment is mostly performed

visually by pulmonologists risking a high intra- and inter-reader variability.

This work has focused on developing two novel diagnostic methods. The first method concentrates on
the macroscopic level, evaluating respiratory mechanics of ventilation and perfusion. This is a post
processing algorithm that aims to address the effects of irregular breathing and cardiac frequency
variation when applying FD on MR image sets. By accounting for frequency variability when generating

ventilation and perfusion maps, a larger part of the respective signal variations could be utilized.

The second method aims to evaluate the microstructure of the lung using automated segmentation and
quantification of essential structures in pCLE snapshots selected by pulmonologists during standard
examination. As current structural workflow relies on measures such as human observation and

manually selected measurements, assessment could become more objective with decreased variability.

1.1 Lung diseases
Lung diseases comprise of a wide array of illnesses. They are characterised based on where they are

situated and if they are chronic or acute. Chronic respiratory diseases are further divided into obstructive
or restrictive diseases (16). In the following section we will focus particularly on several DPLDs, as
well as pulmonary hypertension (PH). DPLDs are part of chronic obstructive and restrictive lung
diseases, whereas PH oftentimes follows as results of the two (17). Both pathologies will be introduced

followed by the potential of pCLE for diagnosis of DPLDs and of MRI for the diagnosis of PH.

1.1.1 DPLDs

DPLDs constitutes more than 200 entities, heterogeneously affecting lung parenchyma or pulmonary
interstitium. These include a multitude of pathologies with similar clinical, radiological and lung
function characteristics (18). They are usually referred to as interstitial lung diseases (ILD), although
ILDs also includes diseases affecting alveolar space. DPLDs have a low prevalence (26/100 000 for
females and 32/100 000 for males) compared to other pulmonary pathologies (19), but oftentimes a
much higher mortality rate and general effect on quality of life (20). They present with varying



prognoses and disease behaviour, complicating simple classification. Instead specific pathologies are

characterized by degrees of inflammation, fibrosis and weather the cause is known or unknown(21).

Diagnosis of specific DPLDs is to this day a complex task since they share clinical, radiographic,
physiological and pathological manifestations. High resolution CT (HRCT) is considered central
amongst imaging modalities for detecting, and diagnosing many DPLDs (22) as it offers higher accuracy
or lower adverse side effects compared to chest radiography and lung biopsy, respectively (23, 24). For
these reasons, it has been specifically recommended for follow-up examinations to track efficacy of
treatment, disease progression and complications (25-27). However, despite its advantages HRCT still
struggles to yield consensus in the multi-disciplinary discussions. This is due to a large inter-rater

variability, sometimes requiring further cytological and histological information (21, 28-30).

1.1.2 PH

Pulmonary hypertension (PH) is a disease associated with increased mortality and morbidity (31). Its
total prevalence is unknown but estimates range between 5-52 cases per million people (32-36). It is
characterized by a progressive increase of blood pressure within the arteries of the lungs leading to
shortness of breath, syncope, tiredness, chest pain, swelling of the legs, and a fast heartbeat (37).
Furthermore, if the mean pulmonary arterial pressure persists it could lead to irreversible remodelling
of the pulmonary vasculature and eventually right heart failure (38, 39). PH is divided into five main

subgroups categorizing these into pathophysiological mechanisms, clinical presentation, and therapeutic

options (37):
1. pulmonary arterial hypertension (PAH)
2. PH due to left-heart disease
3. PH due to lung disease and hypoxia
4. chronic thromboembolic disease (CTEPH)
5. PH due to unclear and/or multifactorial mechanisms

Imaging modalities have a central role for detecting and classifying PH. For example, they facilitate
tracking of treatment response, identification of potential underlying pathologies or non-invasive
pulmonary pressure measurements (40). Amongst the standard diagnostic workup are
echocardiography, CT and ventilation/perfusion (V/Q) scans, but a multitude of advanced imaging
methods have presented new possibilities (41). Several of those are based on MRI, which has been
highlighted for prognostic assessment and evaluation of CTEPH particularly (40). Standard diagnostic
methods of CTEPH include either a V/Q scintigraphy scan or CT pulmonary angiography (CTPA) which
can both exclude CTEPH with high sensitivity, specificity and accuracy (42). However, they both



expose patient to ionized radiation, which for long term patients will accumulate over many scans. Of
the presented MRI methods, several aim to avoid contrast enhanced measurements (43—48), due to
concerns of lasting depositions in brain skin and bones from the commonly used agent, gadolinium (49,

50).

1.2 Probe Based Confocal Laser Endomicroscopy
To address the issue of inter-rater variability of HRCT as well as the invasive procedure of biopsies in
diagnosis of DPLDs, pCLE has been presented as a novel imaging technique. It provides real time

imaging of the respiratory tract and alveolar ducts based on the microstructures’ autofluorescence (51).

Having overcome initial technical limitations of low specificity, it now offers in vivo visualization (52—
55). Having displayed structures correlating with histopathology in lung cancer, pCLE has raised the
hope for a potential ‘optical biopsy’ as alternative to normal (56). Furthermore, Several studies have
also showed its ability to track structural changes caused by different DPLDs (57-60). Specifically,
increased elastin fibre thickness and density as well as number of cellular structures has been highlighted
as important features that can be visualized with pCLE. However, previous DPLD studies with pCLE
have relied on qualitative expert observer evaluation (57) or manual post processing methods (61, 62).
If instead a process could automatically yield quantitative confirmation (aside from image selection), it

would decrease diagnostic uncertainty for the examining pneumologists.

1.2.1 Image Acquisition
Since, the full alveoli image acquisition workflow has been previously described (63) only a shortened

description will be given in the following section.

The procedure is performed by firstly inserting the confocal mini probe into the working channel of a
flexible bronchoscope. Patients receive a topical anaesthesia of the airways and are put in supine position
for insertion of the bronchoscope. The bronchoscope is pushed down to the smallest reachable bronchi
and followed by the advancement of the mini probe. It is pushed inside the working channel through the
distal bronchiole until it reaches the alveolar system. The 1.4 mm probe ensures a deeper reach in the
bronchial structure compared to the bronchoscope. Its laser light with a wavelength of 488nm has been
shown to mainly excite autofluorescence from the elastin content in the alveoli structures. The probe is
manually applied onto bronchial surfaces of the trachea or the bronchus to produce images and
considerations are taken not to damage sensitive tissue. Video shots are acquired at 9-12 images/second,
penetrating between O to 50 um below the applied surface. Lateral and axial resolutions of the probe are
3.5 um, and 15 um, respectively. The images offer a field-of-view diameter as large as 600 um, meaning

that only a small part of the bronchial surface can be imaged simultaneously. However, since the probe
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can be moved without much added risk multiple regions can be evaluated per examination. The average
added duration of the pCLE procedure is 11 minutes and the current workflow has the shots stored for

later analysis.

1.2.2 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung — Own
contribution
To address the qualitative approach of previous evaluation workflows and show the potential of

automatic evaluation during examination, a two-step approach was considered:

1. Develop a method for quantifying the alveoli elastin structures observed in the pCLE snapshots.

2. Present a prototype of a fully automated workflow to assess doctors’ selected pCLE snapshots.

Structural connectivity and two statistical elements based on the localized thickness estimates (64),
applied on a binarization (65) of the selected snapshots emerged after testing several methods. I
evaluated the three values on one snapshot from healthy tissue and one from tissue struck by IPF in a
case report (66). The case study is included as additional contribution (Section 4.1 bellow) to provide
context for the follow up publication. In the report I showed heightened quantitative values for the IPF
case with all three values corresponding with structural differences observed by the pulmonologists. In
the case study, I performed binarization manually with a standard thresholding method to delineate
structure of interest (SOI) from background and unimportant structures for diagnostic decision
(henceforth summarized as just ‘background’). To fully automate the workflow in the following

publication, I instead used a machine learning approach for this step.

1.2.2.1 Automatic Segmentation - Own contribution

In the presented publication, ‘Automated evaluation of Probe-based Confocal Laser Endomicroscopy
in the lung’ I used a machine learning model for pixel classification (67) to categorize all pixels in
every selected snapshot into SOI or background. Machine learning builds a mathematical function
based on training samples to make future predictions on test samples. The samples in this case were
pixels in manually selected areas, called labels. Labelling was performed with the help of
pulmonologists with experience of pCLE examination and DPLD diagnosis. I tested several classifiers
with k-fold validation (68) to ensure an optimal choice of classifier. From this evaluation, random
forest yielded the highest receiver operating characteristics (69). Random forest uses a collection of
nonparametric statistical models called decision trees. The trees provide a solution to difficult decision
problems where there are many classes and many available features related in a complex manner (70).
The random forest in turn lets multiple trees generate a solution and uses their ensemble 'vote' to make

a decision (71). By controlling the voting process of the trees, for instance through sectioning the trees



randomly (72), the method can minimize negative aspects of the process such as decision bias by the
trees as a group. However, distribution of the data between selected classes can introduce bias to a
models decision process (73, 74). Several techniques exist for overcoming imbalanced class problems
(75-77). 1 selected under-sampling of the overrepresented class for this solution, due to its direct
approach and computational efficiency compared to other methods. I selected an initial set of 205
image processing features to train the model. The features were generated by processing the images
through different types of image filters, which quantifies pixels’ individual appearances as well as
their connection to their surroundings. Filters were obtained from a standard 2D-library (containing
filters such as ‘median’, ‘gaussian’, ‘entropy’ and ‘neighbouring pixel’) (78). To select relevant
features and exclude the superfluous ones has the outmost importance when training a classification
model (79). Thus, I applied a method for selecting features based on minimal redundancy and

maximum relevancy (MRMR) (80-82) yielding 84 final features.

1.2.2.2 Structural Quantification - Own contribution

To perform the quantification, a skeleton of the segmented structure was firstly extracted. I generated
the skeleton by applying a thinning algorithm that leaves behind a single line of pixels, situated in the
objects approximate mid-section (65). The algorithm further ensures that no connected parts are
broken up. I then calculated structural connectivity on the skeleton, which quantifies the number of
holes in a structure scaled with the skeleton’s length. The number of holes were quantified with the
Euler number of a binary image. This solution considers patterns of convexity and concavity in local
2-by-2 neighbourhoods as it counts the holes (65). I calculated the local thickness by estimating the
distances between individual approximated midpoints from the skeleton and their closest edge pixel
from the binary segmentation. I found the closest edge pixels by a k-nearest neighbour search (83) and

comparing their the Euclidean distance.

1.3 MRI

MRI uses the concept of the nuclear magnetic resonance (NMR) phenomenon, first described
experimentally by both Bloch and Purcell in 1946 (84, 85). The rapid development toward a clinical
application has ensured that it is now a widely available, powerful clinical tool accessible in most
hospitals (86, 87). However, lung MRI remains a difficult task, due to the intricate structure of the lung
as well as their low proton density. This section will firstly focus on the principles of MRI, followed by
highlighting problems and efforts of MRI in the lungs. This will lead to the presented work which
addresses the issue of variable ventilation and perfusion frequency during the functional evaluation of

the lungs.



1.3.1 Magnetic Resonance Imaging

MRI makes use of the quantum magnetic spin property (I) of elementary particles to generate
electromagnetic signals. To induce these signals a strong constant magnetic field is applied in one
direction By, followed by sequences of pulsed oscillating magnetic fields (radiofrequency (RF) pulses).
These RF pulses excite particles with matching, resonant magnetic spin frequency. In turn, the excited
particles themselves start to induce an electromagnetic RF signal (88), which can be recorded using
receiver coils. By applying specialized sequences of RF pulses and magnetic gradient fields both
strength and location of the signal excitation can be manipulated, facilitating the reconstruction of
tomographic images of the human body. This introduction will offer only a short overview on the
fundamentals of MRI. For a detailed review, the reader is referred to standard textbooks introducing

MRI (89, 90).

1.3.1.1 Magnetic spin

The concept of a particle generating a RF signal can be understood by exploring the simplest example,
the hydrogen nucleus 'H, i.e. proton. Protons are the most used nuclei for deriving MR signal due to
their high prevalence in the human body (mostly in water molecules). All atomic nuclei are characterized
by their atomic number Z (amount of protons), mass number A (total number of protons and neutrons in
the nucleus) and nuclear spin I (determined by their intrinsic spin quantum number S, which in turn
depends on the numbers of protons and neutrons in a given nucleus). I (equal to %2 for protons) is an
intrinsic form of particle angular momentum described by quantum mechanics and connected to the

magnetic moment u of the nucleus:

u=vl, [1]

where Y is the particle-specific gyromagnetic ratio.

1.3.1.2 Magnetic macro spin in an external magnetic field
For a single proton inside the magnetic field B = Bye, the time-derivative of the magnetic moment u

can be described classically by:

an _ [2]
dt =Y XB,

which further insinuates that p precesses with the Larmor frequency (wy = y|B|) about the external
magnetic field B. Without an external magnetic field, a collective of uniformly distributed proton spins
will be directed in random orientations spatially (due to thermal motion) and produce a net

magnetization of zero magnitude. But, as B is applied on the proton nuclei, individual magnetic
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moments will be weakly slanted by their direction. This results in a non-zero expectation value (i)
along the direction of the magnetic field. The angular distribution of the magnetic momentum obeys the

Boltzmann statistics (91):

exp (—E(8)/kT)

P(6) = )
E(0), .
fon exp (— k(T))smedH (3]
where the energy difference between two populations of spins is E(8) = —uBcos6 and 0 represents the

angle between the magnetic moment pu and the magnetic field B. With this in mind, (¢,) can be

calculated as

T

(1) = f P(0)(ucos 0)sinfdl =
0

h?y?B,
4kT [4]

The above approximation is valid when thermal energies are high enough to render quantum effects
negligible, or in other words during small degrees of polarization. This is true when kT > yhB,, which
for By in standard MRI (between 0.3-3T) is fulfilled at room temperature. It should be said that (u,)
only describes a mean of expected outcomes in magnetization measurements even for single protons.
However, given the classical description of a single nucleus magnetic moment above, the macro-net
magnetization M = Mye, can also be described by multiplying (u,) with number of spins Ny in the
measured volume. Similar to the one proton example, the temporal evolution M(t) of a collective of

proton nuclei in a magnetic field B(t) can be described with

PO = ym(t) x B(D). (5]

where the transverse component of the net magnetization will precess with frequency w, around B(t)

as excitation is induced (see below). It is the precession of the transverse component that generates a

signal via induced electromotive force in the receiver coils at the same frequency.

1.3.1.3 Excitation and Relaxation

When a RF pulse B;(t) = B; [cos (wgt), sin (wyt),0] pushes the protons already affected by a
constant magnetic field = Bye, , M(t) will be pushed away from equilibrium magnetization (M =
Mye,) into the transverse plane. It will subsequently precess around B at w, until nearby proton
interactions yield relaxation back to equilibrium. Generally, B;(t) is much weaker in amplitude
compared to B, and would not affect the net magnetization. But by applying RF pulses matching wy, a

resonance effect is achieved resulting in a slow rotation of the net magnetization M away from the



equilibrium. The total flip angle « of the net magnetization caused by B4 will depend on its amplitude

B, duration At and y:

a =y B;At. [6]

Following excitation, relaxation of magnetization occurs both in longitudinal and transverse direction
at different time rates. Longitudinal magnetization (M,) exponentially approaches initial net
magnetization M, on a timescale T; and is dependent on spin lattice interaction (i.e. energy that is
released by relaxation is absorbed by the lattice). Transverse magnetization (M, ) decreases
exponentially on a timescale T, and is dependent on the decay of phase coherence that is obtained
immediately after B;. However, generally decay of transverse magnetization is faster than
T,relaxation due to magnetic field inhomogeneities. This results in further distortion of the spin-spin
phase coherence. This effect is accounted for by the additional time factor T, and the total decay of

transverse magnetization is described by the combined time scale T,, where

1 1 1 (7]

v + =
y T T

It should be noted that the additional effect accounted for by T,is reversible using a 180° refocusing
pulse (see section 1.3.1.4). Specific relaxation times 71 and T,are tissue dependent and vary greatly
based on macromolecules within the cells (92), which results in contrast in the final MR image.
Similarly, different diseases effect macromolecular environments as well, resulting in total MR signal
difference. Empirically the relaxation process in all directions can also be described by the Bloch

equations (84):

aM, M, [8]
Pl y(M X B) T,
dM. M
Yy _ _y [9]
It y(M X B) T’
dM, My — M,
dt _V(MXB)_T—I' [10]

In the case of a constant and homogenous external magnetic field B = (0, 0, Bo) the solution for M, is

given by:

Mz(t) = MO - (MO - MZ(O))e_t/Tl' [11]
and by introducing the complex notation My, = M, + iM,,, the solution of the Bloch equations for the

transverse magnetization is given by:



M,y (t) = Myy(0)ei@te t/T, [12]

1.3.1.4 Echo generation

In the previous section it was noted that the T,'-relaxation can be reversed by applying a 180°
refocusing pulse. T, -relaxation is due to additional local field inhomogeneities caused by magnetic
interference fields (or changes in susceptibility at surface boundaries). These constant local field
inhomogeneities cause spatially dependent frequency variations of spins rotations, leading to
accumulated phase delay. By applying a single 180° pulse at a predefined delay following the initial
90° RF pulse, the spins eventually rephase at twice the original delay time. Since, the signal is read at
the time of rephasing, this technique is known as a spin echo and is one of several solutions for phase
refocusing. Other multi echo sequences are also readily available, when for example short time to

refocus is essential.

1.3.1.5 Spatial localization and k-space
When a signal is recorded, contributions from the entire excited volume are measured. To reconstruct

the final MR image it is necessary to separate and spatially assign all contributions. One example to

achieve this would be to overlay a linear magnetic gradient field G,(x,t) = x - g(t), with the magnetic

8G, 8G, 8G,

field gradient g = VG, = (E’ 5y’ E) onto B=(0,0, By), and thus spatially modulate B. Consequently,

the total magnetic field strength in z direction will be given by

B,(x,t) = By + G,(x,0), [13]

and the Larmor frequency will be spatially dependent:

w(x,t) = yBy + yx- g(t). [14]
Neglecting relaxation effects in our example, the transverse magnetization after excitation can be written

as:

M,y (x,1) = p(x) e?®D M, (0), [15]
where p(x) = N/V is the spatially varying spin density and ¢@(x, t) is a spatially dependent phase of
the transverse magnetization that accumulated in B,(x,t). Similar as in [6] ¢(x,t) can be calculated

from:

t

o6t = v f w(x,dr,

0

t
= a)ot+xng(1:)dr,
0
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= wot + xk(t), [16]
where the spatial wave vector k(t) =y [ Ot dtg(t) defines the spatial frequency. The recorded signal
S(t) = S(k(t)) is proportional to the spatial average of the transverse magnetization and integration
over the volume V results in:

ik [17]
S(t) f My, (x,8)d3x = My, (x,0) Jp(x)e”‘ OFE
14 14
Thus, apart from a scaling factor, it equals the value of the Fourier transform of p(x) at k(t). Since g(t)
determines k-space points k(t), S(k) can be measured for arbitrary k. Furthermore, if S (k) is measured

in a sufficient number of points k, p(x) can be approximated with inverse discrete Fourier transform,

since:

p(x) ocz:s(kp)e‘”‘p". [18]
P

Oftentimes in MRI, S (k) is measured in a zero-centred grid of equidistantly spaced points k; (where i =

—N...(N — 1)), called k-space. p(xx) can in that case be approximated with:

N
p(x) =C z S(ndk)e—indkx, [19]
n=-N

where Ak is the distance between two point and determines field of view (FOV) of the final image
(FOV = 2m/Ak). The spatial resolution Ax of an image can through this also be obtained, sinceAx =
FOV /2N = n/NAk.

1.3.1.6 Slice selection
Although spatial assignment can be performed directly on a 3D-volume, a common separate step called
slice selection is often applied to reduce the 3D reconstruction to 2D. This is performed by only exciting

protons within a predefined slice with the applied RF pulses and involves two subsequent steps:

1) A magnetic field gradient applied perpendicular to the plane of the selected slice, resulting in a linear

variation of resonance frequencies along the field direction.

2) An applied short RF pulse, which is specifically tailored to match the narrow range of frequencies

contained in the selected slice.
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The thickness and profile of the selected slice will depend on the envelope, amplitude, frequency
bandwidth of the applied RF pulse. This ensures that subsequent sampling only must take place in two

remaining dimensions.

1.3.1.7 K-space sampling and image reconstruction

Since the value of k(t) is dependent on the time integral over which g(t) is applied, appropriate choice
of gradient fields can select a specific value of k(t) and thus measure S(k) at arbitrary points in k-space.
After the above slice selection step for example, k-space is traversed in a 2-D by activating (gy, gy)
for (¢, t,) amount of time to locate the specific positions (ky, k) in k-space. This is followed by a

readout gradient that collects signals points while k-space is traversed.

1.3.1.8 Sequences

To perform MR imaging a specific combination of the excitation, possibly refocusing pulses, spatial
encoding, echo generation and signal acquisition is applied, which altogether is referred to as a pulse
sequence. By varying these factors, specific contrast in brightness between tissue can be yielded.
Particularly selection of repetition time (T R), echo time (TE) and the flip angle a have a strong influence
on the contrast and how the image will be weighted. The TR is simply the time between two RF pulses
and the TF the time between the application of a RF pulse and the recording of the signal.

180° 180°

90° 90°

Al [Readou]. ............ NiY in Readout]

TR

Figure 1: Diagram of RF and readout deciding 7R and TE. In the example, the 180° refocusing pulse occurs at t=TFE/2.

As previously established, following excitation, M, returns to M, at relaxation rate T; and M,,, returns
to 0 at relaxation rate T,. However, T; and T, are tissue dependent, which can be exploited to generate
contrast between organs and tissues in the reconstructed images. This is achieved by using specific
combinations of the sequences parameters 7E and TR as follows: Generally speaking, short TR values
(less than 300ms) lead to a T;-weighted image contrast and long TE-values (longer than 90ms) lead to
a T,-weighted image contrast (since these values enhance the relaxation effects on the transversal
magnetization at the time of the signal readout). In contrast, long TR- (longer than 1000ms) and short
TE (shorter than 15ms) will instead suppress both T;and T, relaxation effects, and the image contrast

will mostly be based on local proton densities from the volume.
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1.3.2 MRI of the Lungs

MRI measurements in the lungs are difficult due to low proton density, short T, relaxation time and
motion artefacts. Proton density of the lungs has been measured to between 1/10 and 1/5 of other human
tissues, depending on ventilation phase, subject position and measurement localization (93, 94). This
translates to a much lower signal-to-noise ratio (SNR) from lung parenchyma compared to other tissue
types. The short T, relaxation time is due to the complex structure of the lungs. The transitions between
tissue and air results in magnetic susceptibility gradients (95) and with very small structures compared
to voxel size, the signal suffers particularly fast T, dephasing. Thus imaging the lungs requires pulse
sequences with TE as short as ideally 1-2ms (96). T, dephasing is even faster at higher magnetic field
strengths (97) leading to a weigh-off between the SNR gain due to higher magnetization vs. further

shortening of T

1.3.2.6 Balanced steady state free precession MR sequence

A balanced steady-state free-precession (bSSFP) sequence generates a steady-state signal by refocusing
the remaining transverse magnetisation after readout of the signal. It does so by applying additional
pulses with alternating phases (flipped polarity) at the end of every TR interval (98). Consequently, the
generated signal will be proportional to the ratio T, /T;for all TR that fulfils the condition TR <<
T1, T2(99). With optimised implementation to compensate banding artefacts (100) and using state of the
art hardware, bSSFP has been shown to be feasible with TR as low as 3 ms. By sacrificing spatial
resolution, bSSFP sequences have been shown to acquire up to 5 MRI slices per second (8), enabling
the tracking of ventilation and perfusion related signal changes. bSSFP sequences also have the added
advantage of offering intrinsic flow compensation along both phase and slice direction for 2D imaging

(101, 102).

1.3.2.7 Fourier decomposition MRI

Fourier decomposition (FD) MRI is a free-breathing and non-contrast enhanced post-processing method
applied on dynamic MRI image series to evaluate functional pulmonary information in the lung. During
inhalation the lung expansion translates to a decreased amount of tissue per voxel, which lowers the
proton density and connects signal variations with the breathing cycle (103). Blood perfusion is similarly
connected to proton density due to capillary blood filling as well as intravoxel dephasing (7). The initial
implementation of FD MRI acquires time-resolved 2D-MR images series with the bSSFP sequence. By
non-rigidly registering all lung images to a mid-ventilation phase reference image, signal variations of
lung regions are connected to specific voxels (104, 105). Signal variation over the whole time series can
then be extracted from every voxel and their frequency content evaluated with a 1D-fast Fourier

transform (FFT) in the temporal dimension. The spectral images are then separated into perfusion- and
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ventilation-weighted functional maps based on their frequency content, yielding the relative amplitude
and phase of both signals. Ventilation usually resides in frequency bands below 0.5 Hz and perfusion
frequency over 0.75 Hz. Accordingly, they can be distinguished if the acquisition frequency overcomes
the Nyquist-Shannon limit (106) and the spectral resolution is sufficiently high to distinguish frequency
peaks.

The amplitude maps’ feasibility to spot localized lung pathologies has already been highlighted in
multiple studies (8—10) as well as the possibility to generate V/Q maps simultaneously (107). The phase
information yielded from FD has also been suggested to yield relative estimates of signal arrival time
between voxels. This could potentially highlight localized signal delays caused by pathologies (108,
109). However, attention has been raised, that frequency variability of both ventilation and perfusion
signals during image acquisition can result in problems for the accuracy with FD (110). FFT assumes
constant frequency over a full measurement, which during any free breathing measurement is close to
non-existent. A natural variability in frequency can always be expected in both signal variations even in
the healthy subjects. However, particularly in patients with obstructed or restricted breathing,
specifically high variations can be expected exacerbating the issue. This translates to inaccurate

amplitude and phase maps generated by the FFT.

1.3.3 Non-uniform Fourier decomposition MRI for ventilation and perfusion weighted imaging
of the lung — Own contribution

Two methods were initially introduced to account for frequency variability, by resorting multiple

signal variations into an average single frequency ventilation cycle. However, these were complex

multi-step methods utilizing exact phase estimation, peak finding and data resorting of image-(46) or

k-space (111). The presented method, Non-uniform Fourier decomposition (NUFD) on the other hand,

aimed to use the simplistic concept of standard FD while still accounting for the frequency variability.
NUFD assumes only the following:

- An equidistantly sampled oscillating signal with variable frequency can be reinterpreted as a
non-equidistantly sampled signal with constant frequency.

- Frequency variations for ventilation and perfusion in the lungs are consistent between voxels.

I implemented this reinterpretation, by calculating new virtual non-equidistant time points, which
compensates for the signal’s frequency variation. The virtual time points were calculated with a
frequency-tracking step, yielding a correction factor. To estimate the frequency content of a non-

equidistantly spaced signal I used the non-uniform FFT (112) (NUFFT) instead of FFT, which will be

14



introduced in the following section. The final workflow, that I developed to generate ventilation- and

perfusion-weighted NUFD maps can be summarized in the following steps:

1. Perfusion and ventilation signals are extracted from a selected region of interest in the
registered lung segments

2. Frequency of perfusion and ventilation signals are tracked in the same time-frequency
estimation using two ridges, with a penalty for jumping between peaks to avoid cross tracking.
New virtual time points are calculated to compensates the signals’ frequency variation.

4. The virtual time points were used for NUFFT in every pixel and ventilation and perfusion

maps spectrally separated.

Furthermore, SNR estimation of a signal in frequency spectrum is a well-established technique (110).
Thus, I could perform a quantitative pixel-to-pixel comparison between generated NUFD and FD

maps.

1.3.3.6 Frequency tracking & correction - Own contribution

Tracking frequency over time is a non-trivial task where complexity begins at the initial signal
formulation S(t). the standard Fourier transform splits S(t) into distinct sinusoidal components and
assumes constant frequency over its full measurement time. If signals are not perfectly sinusoidal and
vary in frequency, spectral components will ‘spill” out onto other frequency bins resulting in fewer parts
of the signal being used for evaluation or even incorrect assessment of its parameters. The continuous

wavelet transform (CWT) (114) has been presented as a solution to these issue, by instead describing

the transform component as a general function ¥ with a scalable window 1/ q- By doing so, it achieves

signal descriptions in both time and frequency space:

[ee)

W, (a,b) = f S(t)éw (%) dt, [20]

where a and b are called the scale and translational variables, respectively. The CWT also has an inverse
formalism to recover the original signal S(t) and by selecting a considered function 1, multicomponent
signals can be incorporated into a single spectral line without interference between each component
(114). From the CWT I could then track the combined instantaneous frequency (115) (IF) of the signal
by estimating a ridge curve, following the signals’ max amplitude in the time-frequency domain (116).
the precision of the IF estimate determines how well frequency is collected in the final NUFFT step.
The synchro-squeezed wavelet transform collects signal energy with the same phase onto a single

frequency bin (117) and have shown to improve frequency localization compared to standard CWT
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(118). For this reason, I also applied this to the workflow. With IF estimated, I could calculate new time

points at every index n with:

i At <
=g Z f(to), o1

where At is the time between two time points in the original equidistant time vector, fy,0qn 1S 2 scaling
factor set to mean value of IF (which ensures that equal total acquisition time between the virtual and
original time vector and f (t;) the instantaneous frequency at time point index k). I then used the non-

equidistant time vector as input to a type-1 NUFFT which quantifies frequency components Fof the

new signal Sff) through:

2mikt,
tv—1t)

N
F. = NUFFT(S(%,)) = Z S(t,) exp <—

n=1

[22]

2. Summary/Zusammenfassung

2.1 Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the

lung
Probe based confocal endomicroscopy (pCLE) is a novel imaging modality that provides real time

videos of autoflourescent elastin structures within the alveoli. Changes in the elastin structure caused
by diffuse parenchymal lung diseases (DPLD) can be shown on the captured images. However, these
changes are oftentimes moderate and the evaluation of the performing physician relies mainly on the
qualitative assessment of individual images selected manually after the examination. The focus of the
publication “Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the lung” was
to design and implement an automated workflow for the segmentation and quantitative evaluation of
pCLE images followed by the analysis of its diagnostic potential to identify DPLDs. For this purpose,
I trained and optimized a machine learning model for the automatic segmentation of structures of
interest (SOI) in the recorded pCLE images. Furthermore, I developed an algorithm that calculates
quantitative values describing the segmented alveolar structures' local thickness statistics and
structural connectivity. I then analysed the workflow's diagnostic potential on images from 46
subjects. Images from 38 patients (divided into 4 different DPLD groups) were analysed and
compared against 8 subjects with images characterized as normal elastin structure by
pulmonologists selecting snapshots. The DPLD groups were cryptogenic organizing pneumonia
(COP), non-specific interstitial pneumonia (NSIP), idiopathic pulmonary fibrosis (IPF) and

hypersensitive pneumonitis (HP).
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The segmentations performed well, extracting SOIs while removing background, as confirmed by cross
validation as well as the expert pulmonologist. The quantified structural connectivity, median thickness
as well as the standard deviation of thickness showed statistically significant differences in all DPLD
groups compared to the normal group (p<0.05). These results indicate that qualitatively described
structural changes of alveoli elastin structure caused by different DPLDs (57-60) can be automatically
quantified and used to distinguish healthy from diseased tissue using the developed framework. If
implemented into the current clinical workflow, the presented method could offer quantitative
evaluation of selected pCLE images, decreasing variability compared to current qualitative assessments

and potentially offer real-time diagnostic confirmation of suspected DPLD structures.

Die Sonden-basierte, konfokale Endomikroskopie (pCLE) ist eine neuartige Bildgebungsmodalitit, die
die Aufnahme von Echtzeitvideos von autofluoreszierenden Elastinstrukturen in den Alveolen
ermoglicht. Auf den erfassten Bildern konnen sich Anderungen der Elastinstruktur darstellen, die durch
diffuse parenchymale Lungenerkrankungen verursacht werden. Diese Anderungen sind jedoch hiufig
moderat und die Befundung des durchfiihrenden Arztes beruht hauptsidchlich auf einer qualitativen
Beurteilung einzelner Bilder, die nach der Untersuchung manuell ausgewihlt werden. Der Schwerpunkt
der Veroffentlichung ,,Automated evaluation of Probe-based Confocal Laser Endomicroscopy in the
lung“ lag auf dem Entwurf und der Implementierung eines automatisierten Workflows zur
Segmentierung und Auswertung der ausgewihlten pCLE-Bilder, gefolgt von der Analyse des
diagnostischen Potenzials zur Identifizierung von DPLDs. Hierzu habe ich zunichst ein Machine
Learning Modell trainiert und optimiert, welches zu untersuchende Strukturen in den aufgenommenem
pCLE Bildern automatisch segmentiert. Dariiber hinaus habe ich einen Algorithmus entwickelt, welcher
Statistik der lokalen Dicken und die strukturelle Konnektivitit der segmentierten Alveolarstrukturen
quantifiziert. AnschlieBend analysierte ich das diagnostische Potenzial des Workflows anhand von
Bildern von 46 Untersuchungen. Insgesamt wurden Aufnahmen von 38 Patienten (mit vier
verschiedenen DPLDs) analysiert und mit Aufnahmen von 8 weiteren Patienten verglichen, deren
Elastinstruktur von den durchfilhrenden Pneumologen als normal charakterisiert wurden. Die
untersuchten DPLDs umfassten die kryptogene organisierende Pneumonie (COP), die unspezifische
interstitielle Pneumonie (NSIP), die idiopathische Lungenfibrose (IPF) und iiberempfindliche

Pneumonitis (HP).

Sowohl das Kreuzvalidierungsverfahren als auch die visuelle Beurteilung eines erfahrenen
Pneumologen bestitigten die gute Leistung der automatischen Segmentierungen der Elastinstrukturen.
Die quantifizierte strukturelle Konnektivitit, der mittlere Durchmesser sowie die Standardabweichung

des Durchmessers zeigten statistisch signifikante Unterschiede in allen DLPD-Gruppen im Vergleich
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zur normalen Gruppe (p <0,05). Diese Ergebnisse zeigen, dass zuvor qualitativ beobachtete strukturelle
Verinderungen der Alveolenelastinstruktur, die durch verschiedene DPLDs verursacht werden (57-60),
mithilfe des entwickelten Worflows vollautomatisch quantifiziert und von einer gesunden
Elastinstruktur unterschieden werden konnen. Bei Implementierung in den aktuellen klinischen
Arbeitsablauf konnte die vorgestellte Methode ausgewihlte pCLE Aufnahmen quantitativ auswerten,
die Variabilitit im Vergleich zur aktuellen qualitativen Bewertungen verringern und potentiell eine

Bestitigung in Echtzeit fiir die diagnose von pathologischen Elastinstrukturen bieten.

2.2 Non-uniform Fourier decomposition MRI for ventilation and perfusion
weighted imaging of the lung

Fourier decomposition (FD) MRI is a non-invasive free breathing imaging processing method, used on
lung image series for extracting local functional information about ventilation and perfusion. However,
naturally occurring respiratory and cardiac frequency variations during image acquisition may corrupt
the estimations. Thus, the focus of the publication “Non-uniform Fourier decomposition MRI for
ventilation and perfusion weighted imaging of the lung” was to address signals’ frequency variation and
consequently increase the robustness of pulmonary ventilation- and perfusion-weighted imaging. This
was achieved by a two-step approach, where the first step entailed reinterpreting the equidistantly
sampled varying-frequency signals to non-equidistantly sampled signals with constant frequency. For
this, I reinterpreted the recorded signal by scaling the original measurement time points with their
individual instantaneous frequencies. The signal’s instantaneous frequency was thereby tracked using a
wavelet transform. For the second step I analysed the resulting non-equidistantly sampled signals with
non-uniform Fourier decomposition (NUFD) to generate perfusion- and ventilation-weighted maps. I
compared the developed NUFD workflow against standard FD by evaluating the signal-to-noise ratio
(SNR) from the generated ventilation and perfusion maps of 11 patients and 5 healthy test subjects. This
showed that the NUFD significantly increased average SNR in ventilation and perfusion for both groups
(p<0.05). the maximum SNR increase in one test subject was 144.0% and in two CTEPH patients, the
implemented NUFD method recovered perfusion signals which could not be analysed with standard FD.
These results show that accounting for frequency variability, NUFD truly offers a free-breathing method
with broad applicability. The frequency tracking step ensures that even patients with breathing
difficulties and/or strong arrythmia can be included in examinations. Furthermore, the NUFD
framework can be readily applied to current and past FD studies as it requires no changes to the image

acquisition parameter.

Die Fourier-Decomposition-MRT (FD) ist eine nicht-invasive Methode bei freier Atmung, die anhand
von zeitlich aufgelosten Bildserien der Lunge Informationen iiber die lokale Ventilation und

Durchblutung des Lungenparenchyms in Form von Parameterkarten gewinnen kann. Haufig auftretende
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Schwankungen der Atem- und Herzfrequenz wihrend der Bildaufnahme konnen jedoch die berechneten
Ergebnisse verfilschen. Daher lag der Schwerpunkt der Veroffentlichung ,,Non-uniform Fourier
decomposition MRI for ventilation and perfusion weighted imaging of the lung® darin, die
Frequenzschwankungen zu analysieren und zu korrigieren um damit die Robustheit und Genauigkeit

der gewonnenen Information iiber Ventilation und Perfusion zu verbessern.

Dies wurde durch einen zweistufigen Ansatz erreicht, bei dem im ersten Schritt die zeitlich dquidistant
abgetasteten Signale mit schwankender Frequenz in nicht dquidistant abgetastete Signale mit konstanter
Frequenz reinterpretiert wurden. Dazu habe ich die urspriinglichen Messzeitpunkte des Signals mit der
individuellen Momentanfrequenzen skaliert. Die zeitaufgeloste momentane Frequenz des Signals wurde
dabei unter Verwendung einer Wavelet-Transformation bestimmt. Fiir den zweiten Schritt analysierte
ich die resultierenden, nicht &quidistant abgetasteten Signale mit der ,,Non-uniform Fourier
decomposition® (NUFD), um die perfusions- und ventilationsgewichteten Karten zu erstellen. Ich
verglich die entwickelte NUFD-Methode mit der fiir gewohnlich verwendeten standard Fourier
Zerlegung, indem ich das Signal-Rausch-Verhéltnis (SNR) aus den generierten Ventilations- und
Perfusionskarten von 11 Patienten und 5 gesunden Probanden auswertete. Die Ergebnisse zeigten, dass
die entwickelte NUFD-Methode das durchschnittliche SNR der Ventilations- und Perfusionskarten in
beiden Gruppen signifikant erhdhte (p <0,05). Der hochste SNR-Anstieg bei einem Probanden lag bei
144,0%, und bei zwei CTEPH-Patienten ermdéglichte die NUFD-Methode die Analyse von
Perfusionssignalen, die mit der standard Fourier Zerlegung nicht messbar waren. Diese Ergebnisse
verdeutlichen, dass die NUFD-Methode mit Beriicksichtigung der Frequenzschwankungen ein
Verfahren mit breiter Anwendbarkeit bei echt freier Atmung bietet. Die Beriicksichtigung der
Frequenzschwankungen stellt sicher, dass auch Patienten mit Atembeschwerden und / oder starker
Arrhythmie untersucht werden konnen. Dariiber hinaus kann die NUFD-Methode problemlos auf
aktuelle und bereits abgeschlossene Studien mit Fourier Zerlegung angewendet werden, da keine

Anderungen am Aufnahmeprotokoll der MRT Bilder erforderlich sind.
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Conclusion

Alveali elastin structures can be quantified based on their structural connectivity and thick-
ness statistics with a fully-automated algorithm and initial results highlight its potential for
distinguishing parenchymal lung diseases from normal alveoli.

Introduction

Diagnostics of diffuse parenchymal lung disease (DPLD) is to this day a complex task performed
using the collective information from clinical, radiological and histological criteria and analysed
in a multidisciplinary discussion [1-3].

However, even gold standard imaging methods such as high resolution computer tomogra-
phy (HRCT) [4,5] struggle to yield consensus with regards to diagnosis in DPLD with a large
interreader variability [5], advocating a need for additional diagnostic information in equivo-
cal cases [6]. For this reason, pathological specimens are sometimes necessary in the diagnostic
workup, such as surgical lung biopsy and more recently bronchoscopic cryobiopsy [7]. How-
ever, invasive tissue sampling methods, risk causing complications such as pneumothorax,
haemorrhage and acute exacerbation of the DPLD. To address this issue, probe-based confocal
laser endomicroscopy (pCLE) has been presented as a novel technique for providing imaging
of the respiratory tract and alveolar ducts in real time [8] based on the microstructures” auto-
fluorescence [9].

Image acquisition is done by introducing the pCLE probe through a flexible bronchoscope
during standard examination. The probe captures 12 images/second with the following image
parameters: Distal diameter = 1.4 mm, Field of view = 600 um, imaging depth =0 - 50 um, lat-
eral resolution = 3.5 um, axial resolution = 15 gm. The probe diameter of 1.4 mm ensures that
it can be pushed deep into the lung. It emits laser light with a wavelength of 488 nm which
excites autofluorescence from the elastin content in the alveoli structures. With a multitude of
technical improvements over the last 15 years to overcome the low specificity of autofluores-
cence defects [10,11], pCLE has shown promise as a diagnostic method to visualize lung tissue
in vivo [12,13]. Multiple studies [14-17] have investigated the structural changes of lung tissue
caused by different DPLDs and specifically highlighted increased elastin fibre thickness, den-
sity of fibres and number of cellular structures as important features. The aim of this study was
to develop a fully automatic workflow for quantifying these structural properties using pCLE
measurements and to perform a preliminary assessment of their diagnostic potential.

Materials and methods
Patient characteristics

46 patients were included in this study (mean agetstandard deviation = 70.1 + 8.2, 30 male
and 16 female, 29 ex-smokers (since more than 10 years), 15 non-smokers and 2 without info).
All patients were newly diagnosed in accordance with histological, radiological and clinical
results based on a multidisciplinary discussion. Each patient was assessed according to current
guidelines including HRCT, biopsy, pulmonary function test with blood gas analysis and
6-minute-walk test. All were referred for examination as part of workup of newly diagnosed
DPLD and in stable clinical condition. Of these, 11 were diagnosed with cryptogenic organiz-
ing pneumonia (COP), 8 with non-specific interstitial pneumonia (NSIP), 11 with idiopathic
pulmonary fibrosis (IPF) and 8 with hypersensitive pneumonia (HP). 5 patients with
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Sarcoidosis (without histological lung pulmonary involvement) were classified as normal
parenchyma. Additionally, pCLE was performed on the contralateral healthy lung of one
patient with an allergic bronchopulmonary aspergillosis as well as one with bronchial pneumo-
nia. HRCT showed no abnormality in these unaffected lungs. Lastly, pCLE was performed on
a patient with metastases from breast cancer in unaffected parts of the lung. Altogether, this
made for 8 patients classified as having normal elastin structure. Exclusion occurred based on
severe restriction (vital capacity or total lung capacity below 50% pred.), severe hypoxaemia
(pO2 < 55 mmHg), congenital or acquired disorder of the coagulation system, signs of pulmo-
nary hypertension, signs of infection, exacerbation or inability to undergo bronchoscopy for
any medical or legal reason. The study was approved by the local ethics committee of the
Ludwig Maximilians University Munich, Germany, (Record number 048/13). All patients
obtained information by a pulmonologist and gave their written informed consent to use the
pCLE mini probe during the bronchoscopy 24 hours prior to examination.

Image acquisition

The patients underwent bronchoscopy examination in combination with pCLE (Cellvizio,
Mauna Kea Technologies, France, Paris) with varying duration. The bronchoscopy examina-
tion was performed according to guidelines in rigid technique with patients under general
anaesthetic using a flexible bronchoscope (BE-Q 180, Olympus, Japan) to collect mucus sam-
ples for microbiological and cytological assessment as well as examine the bronchial tree. Next,
the pCLE probe was pushed through the working channel of the bronchoscope and further
into the peripheral compartment of the bronchial tree with fluoroscopic guidance until elastin
fibres of alveali ducts were reached. PCLE was performed in regions of the lung which showed
clear signs of pathology from the HRCT images. Neighbouring sub-segments were also exam-
ined in cases where no obvious pathological structure could be observed. No exogenous fluor-
ophores were required for this procedure. The pCLE recordings were taken during extractive
motion of the probe to limit contact pressure of the probe onto the tissue surface. Using Cellvi-
zio Viewer Software v.1.6.0 (Mauna Kea Technologies, Paris, France), snapshots from the
recordings that displayed characteristic alveoli elastin structure without elastin tension or pro-
cedure related changes were selected by two pulmonelogist experienced in interventional rigid
bronchoscopy to be quantified (Fig 1A). The pulmonologists were unaware of the results of
other performed diagnostic tests.

Image processing

A machine learning model [15] was trained for the fully automatic segmentation. Model train-
ing and pixel classification were performed in "Trainable Weka Segmentation’ [19] called
from Image] (Fiji) [20] as a plugin. 23 snapshots were manually labelled by the pulmonologists
(resulting in 267 elastin areas and 232 background areas constituting a total of 1060543-pixel
instances). The snapshots were randomly selected resulting in a set of 4 NSIP cases, 15 IPF
cases and 2 normal cases. 21 of the snapshots were used for training and tuning the classifier.
Since there were approximately 2.5 times more instances of background than elastin structure
in the labels, random undersampling [21] was performed to rebalance the classes. Features
were generated from a multitude of image filtering methods available in Trainable Weka Seg-
mentation that extract different spatial characteristics from an image. Classifiers were trained
on instances with an added correlation-based feature selection step [22] to minimize their
intraclass correlation while improving upon prediction accuracy. Features were ranked based
on their information gain ratio. The last 2 snapshots (with 77650 instances) were used as a test
set for comparing the classifiers. A random forest classifier with 200 trees yielded highest
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receiver operating characteristics on the test images (area of 98.8% under the curve) and was
thus selected for segmentation. A total of 131 representative screenshots from the 46 patients
were segmented (Fig 10) using this model. Representative shots entailed those that showed
characteristic elastin structure for pathological or normal healthy structure in accordance with
described criteria [14]. The segments were subsequently visually assessed by the two pulmo-
nologists to ensure that elastin structures of interest were included, and background textures
removed. In some instances, pixel classification was not able to determine with certainty if
some regions were holes or structure and could generate small regions that looked like pixel
noise with a mixture of both. To prevent an artificial increase of holes, those with a distance
between each other smaller than 2 gm were merged and holes smaller than 30 um filled in.
Numerical values were chosen empirically by pulmonologists. Due to an imbalanced number
of snapshots per patient, only the first snapshot from each examination was processed and
used for the statistical evaluation. Due to low signal to noise ratio (SNR) in some acquired
snapshots leading to segmentation irregularities, one HP measurement was excluded and in
two measurements the second snapshot was instead used for evaluation. The segments were
then evaluated based on their structural tissue connectivity C, (Fig 1C), median and standard
deviation of local thickness (T4 and o, respectively) (Fig 1D).

Image processing—Connectivity calculation. C, aimed to detect increases of intricacies
in the elastin structure associated with DPLDs by quantifying the number of holes of the seg-
mented elastin structure normalized with respect to the structure’s size. Firstly, to estimate a
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structure’s size, a skeleton was generated by applying a thinning algorithm (skeletonization)
[23], creating a one pixel thick topology-preserved medial axis structure (Fig 1 C). The skeleton
was considered a better value to scale with compared to the binary segmented area, since this
was not affected by pixelated edge effects. The number of holes was calculated from the Euler
number of the binary snapshots [23]. This quantifies the number of structures and the amount
of holes these structures inhibit. C; was then generated from the number of holes normalized
by the total length of the skeleton L1,

Image processing—Local thickness estimation. To estimate the local thickness T}, of a
structure, the distance from the local centre of the structure to the closest edge was used. Since
the generated skeleton represents local midpoint estimations, only the distance to the closest
neighbouring pixel d,, for all skeleton points must be determined. The nearest neighbour
pixel was found with a k-nearest neighbour algorithm [24] where the pixel with minimum
Euclidean distance was selected. Tjym was then calculated by doubling d,,,. Pathology groups
were then compared against the characteristically normal group for each parameter resulting
in 12 comparisons.

Statistical evaluation

For statistical comparison the Wilcoxon rank sum test (two-tailed) [25] was used. Differences
were considered to be statistically significant for p-values of less than 0.05 after applying Bon-
ferroni correction [26] (number of tests = 12).

Results

Image processing

The automatic segmentation algorithm performed well on the patient data in accordance with
the pulmonologists’ inspection. One HP-patient’s snapshots were removed from the evalua-
tion as only small parts of the structure remained after segmentation. Iig 2 depicts three exam-
ples of results generated by the alveoli structure evaluation. Fig 2A displays a normal alveoli
structure imaged in low SNR with resulting values Trea = 17.2 um, or= 8.6 ym and C, = 04
mm ™. Fig 2E displays an IPF patient with characteristic distortion and increased intricacies of
the alveolar structure. This resulted in higher values than in the normal tissue example: T,,.4 =
37.4 um, or=21.4 ymand C, = 5.2 mpr™". Fig 21 displays an NSIP patient where an apparent
large density was observed. The segmented image distinguished the characteristic crystalline
coating and included that as a structure to be evaluated. This too resulted in higher calculated
values compared to the normal case: Tineq = 24.3 um, or=11.6 wm and C, =4.9 .

Statistical evaluation

Significant differences were found when comparing the pathological cases against the normal
in all of values (Fig 3). When comparing group median of all variables, COP-, HP-, NSIP and
IPF- measurements all showed significant increases for Tyeq, o7 and C; with p<0.05.

Table | summarizes the group median difference of the three values between all pathology
snapshots and the normal snapshots. T, differences varied between 4.3 = 12.6 um (p < 0.05).
oy differences varied between 5.8 = 1.4 um (p < 0.05). C, differences varied between 1.70 - 3.76
mm_'(p < 0.05).

Discussion

‘We are presenting a follow up study to a previous review article [27], that first suggested a
semi-automatic method for the structural evaluation of alveoli elastin. Comparatively, this
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Original image Segmented image Skeleton image Thickness image il
]
Tiewd = 17.5 pm 50

oT=8.6 pm

Normal

IPF

NSIP

Fig 2. Three examples from every step of evaluation workflow. A-D) represent normal alveoli elastin structure with Toq =
17.5 pm, oy = 8.5 pm and C, = 0.4 mm™, E-H) represents IPF elastin structure with Ty = 37.8 pm, oy = 219 pmand C, = 5.1
1_|s.|_n_"_, I-L) represents NSIP structure with Toa=24.7 pm, or = 11.7 and C, = 4.9 mm™

/10,137 1Aoumal pone. G

work presents a fully automatic workflow and demonstrated that the evaluation of elastin
structure from pCLE snapshots can distinguish significant differences in elastin thickness and
tissue connectivity between normal and DPLD alveoli. When evaluating the structural connec-
tivity, median thickness and standard deviation of thickness COP, HP, NSIP and IPF showed

Median thickness [T..] Standard deviation of Thickness [o] Structural connectivity [C.]
3 8

Thickness [um]
Thickness [um]

(=]
Scaled Connectivity [mm™)

10l : . R : : -
Normal COP HP IPF NSIP Normal COP HP IPF NSIP Normal COP HP IPF NSIP
Fig 3. Value distributions of DPLD and normal structure evaluations for structural connectivity and thickness statistics, Box-and-whisker plots
displaying value ranges for Ty, oy and C,. Red line specifies group median. Bottom and top edges indicate the 25th and 75th percentiles, respectively
vt 2698, °: p 5 ~value<0.01.
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Table 1. Calculated median values for all measurement groups and difference between DPLDs and normal.

Tues-avg[um] Oyt m] Comarg[mm™] AT g-avgu m] Ay gl m] AC,yug[mm”™']
Normal 17.4 89 1.66 NiA N/A N/A
cop 248 172 36l 74(p=61"*10") 83 (p=54"107) 195(p=83"107)
HP 240 147 336 B6(p=37"107) 58(p=75*107) 1.70 (p= 0.013)
IPF 300 223 5.42 126 (p=0.016) 13.4 (p=0.014) 3.76(p=03"1077)
NSIP 21.8 121 378 43 (p=0.015) 32 (p=0019) 2,12 (p=0.013)

https!fdoiorg0 137 1fournal pone 0232847 1001

significant differences in all three values compared to normal elastin structure. This suggests that
the presented method for quantifying elastin of the alveoli can differentiate normal from diseased
structures and can support fully automatic assistance in diagnosis of DPLD. Furthermaore, since
the method offers multiple parameters for differentiating between normal and pathological
groups, more complex methods could potentially be developed for a holistic characterization.

In the presented study we opted for the conservative [28] Bonferroni p-value correction
due to a small patient sample size. Since the scope of this study was to show that the presented
methods can be of interest as a support tool when looking for DPLDs, we left further validation
to future studies with larger sample sizes.

The presented method aims to quantify features that have previously been reported to
change due to different DPLDs, such as increase/decrease of elastic fibres, disorganization of
elastic network and enlarged axial elastic fibre bundle diameter [14-17]. Similar elastin thick-
ness values were found here as in other work [29], albeit with a higher variability. This is to be
expected considering that the presented method takes all of the structure in the FOV into con-
sideration instead of only manually selected parts. To date, we know of no other quantitative
analyses for the intricacies of a structure such as the presented structural connectivity value.
Other observed structural changes [30] such as alveolar mouth size and increase of fluorescent
were not taken into consideration in the presented methods.

Previous studies have focused on expert abserver evaluation [14] or manual post processing
methods [30,31] when comparing different elastin of the alveoli. The presented method
instead offers quantitative values where the whole structure inside the FOV can be evaluated.
Using the presented method when evaluating local thickness for example, offers an average of
2734 + 1278 measurement points per patient which greatly reduces variability from outliers
compared to manual thickness estimates.

A machine learning approach was used for the pixel classification to fully automate the seg-
mentation step of the workilow, based on 21 snapshots from all patient measurements. Despite
the small number, the segmentation algorithm succeeded in separating structures in noisy snap-
shots (Fig 2A and 28) while still ignoring background structures (Fig 21 and 21). Since DPLD has
shown to decrease elastin’s autofluorescence [13,32] it is of high interest to ensure that structures
can be extracted even in low SNR snapshots, With the whole workflow running automatically,
the opportunity emerges for quantitative assistance in real time during bronchoscopy examina-
tion. The presented method could be called upon in real time as a pulmonologist moves the
PCLE probe through the lung and identifies a region of interest. The generated quantitative val-
ues can then be used to support the diagnosis of DPLD. Additionally, the suggested guiding capa-
bilities of pCLE during cryobiopsy [33] can also benefit from the presented method’s ability to
highlight DPLD-structures by offering further objective validation before sampling.

Since the algorithm used for segmentation is open source, its functions can easily be called
from other script languages. As more data is collected, the training model's segmentation capa-
bilities can certainly be improved but also allows for the use of more complex methods. With
deep learning approaches for example, structures could furthermore be fully automatically
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selected, segmented [34] before analysis with the presented method. This would further the
methods real-time capability and offer attending physicians suggestions of interesting ROI
rather than confirmation.

There are some limitations in this study. The primary factors are the absence of a histological
comparison to pCLE snapshots from the same regions in the lungs resulting in some uncertainty
as to whether pCLE can offer ‘optical biopsy’. Although the automatic segmentation’s perfor-
mance was satisfactory on most hots a larger measurement set is required to assess its capa-
bilities on different DPLDs and still unseen descriptors by the machine learning algorithm.

Given that the snapshots are taken from a very small fraction of the whole lung this could lead
to a poor morphological consistency of the evaluation method [16]. However, this is mitigated
already by the use of a guiding tool such as HRCT to select representative arcas of diseased tissue.
Variability can also be decreased by utilizing average parameter values generated from multiple
snapshots of different representative areas for every patient. Since pCLE is an in-vivo imaging
technique complementing bronchoscopy, it does not suffer the same increase of risk associated
with invasive techniques such as biopsy and could be used to examine multiple sections. So far,

procedures performed in multiple studies have shown no severe side effects other than minor
bleeding in 3 out of 42 patients [13,30] making it ideal for longitudinal studies.

As the presented method evaluates 3D structures on 2D images, unattached structures such
as macrophages in the alveolar space could potentially overlap and appear to be part of the
structure of interest. Furthermore, the workflow relies on the operating pulmonologist to
ensure a proper orientation of the probe relative to the area of interest. The first problem was
partly mitigated in this study by training the machine learning method to distinguish back-
ground structures from structures of interest, but more data would likely be required to test
the model’s generality. Future studies can further incorporate macrophages as a third segmen-
tation class to expand on the analysis potential of the method. Consideration can also be taken
by the performing pulmonologists if structures are overlapping or probe orientation needs
adjustment when selecting snapshot. Validation cohorts would be required to confirm the
clinical relevance of this method. In this initial study we have focused on the distinction
between normal and DPLD alveoli due to the small sample size. A next step would be to estab-
lish respective value ranges for different types of pathologies aiming to further assess the pre-
sented methods’ diagnostic potential.

Conclusion

In this study we presented a method for the quantitative evaluation of alveolar elastin structure
using pCLE images. We demonstrated that quantifying structural properties of the alveoli elas-
tin, such as thickness and connectivity, allows for the differentiation of DPLD and normal
lung tissue. We furthermore presented a framework for a fully automated workflow that can
be easily implemented into pCLE examinations. This can offer further assistance by providing
quantitative values to pulmonologists for the diagnosis of DPLDs.

Supporting information

51 Data.
(Z1P)

Author Contributions

Conceptualization: David Bondesson, Moritz J. Schneider, Edith Silbernagel, Jiirgen Behr,
Frank Reichenberger, Julien Dinkel.

PLOS ONE | hitps:/idoi org/10.1371/joumnal pone 0232847  May 6, 2020 am

28



PLOS ONE

Automated evaluation of PCLE in the lung

Data curation: Edith Silbernagel, Frank Reichenberger, Julien Dinkel.

Formal analysis: David Bondesson.

Funding acquisition: Jiirgen Behr, Julien Dinkel.

Investigation: Edith Silbernagel, Frank Reichenberger, Julien Dinkel.

Methodology: David Bondesson, Moritz ]. Schneider, Jiirgen Behr, Julien Dinkel.

Project administration: David Bondesson, Moritz |. Schneider, Jiirgen Behr, Julien Dinkel
Resources: Edith Silbernagel, Jiirgen Behr, Frank Reichenberger, Julien Dinkel.

Software: David Bondesson.

Supervision: Moritz J. Schneider, Jiirgen Behr, Julien Dinkel.

Validation: David Bondesson, Moritz |. Schneider, Edith Silbernagel, Frank Reichenberger.
Visualization: David Bondesson, Moritz |. Schneider.

Writing — original draft: David Bondesson.

Writing — review & editing: David Bondesson, Moritz ]. Schneider, Edith Silbernagel, Jiirgen
Behr, Frank Reichenberger, Julien Dinkel.

References

1. Flaherty KR, King TE, Raghu G, Lyneh JP, Colby TV, Travis WD, et al. Idiopathic Interstitial Pneumania.
Am .J Respir Crit Care Med. 2004 Oct 15; 170(8):904-10. hitps://dol.ora/10.1164/rcem. 200402-14700
PMID: 15256390

2. RaghuG, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, etal. An Official ATS/ERS/AJRS/ALAT

Statement: Idiopathic Pul y Fibrosis: Evidence-based Guidelfines for Diagnaosis and Management.
Am J Respir Crit Care Med. 2011 Mar 15; 183(6):788—824. hitps:/dal.om/10.1164/rcem.2009-040GL
PMID: 21471066

3. Doyle TJ, Hunninghake GM, Rosas 10. Subclinical Interstitial Lung Disease. Am .J Respir Crit Care
Med. 2012 Jun 1; 185{11):1147-53. hitps/doi 0rg10.11684/recm 201 108-1420PP PMID: 22366047

4. Hodnett PA, Naidich DP. Fibrosing intersiitial Lung Disease. A Practical High-Resolution Computed
Tomography—based Approach to Diagnosis and Management and a Review of the Literature. Am J
Respir Crit Care Med. 2013 May 14; 188{2):141-9. hitps:/fdoi.org/10.1164/reem. 20 1208-1544C1 PMID:
23672718

5. Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idio-
pathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018 Feb 1; 6(2):138—
53. hitos fdol.org/10 1018/S2213-2600(17)30433-2 PMID: 29154106

6. Martinez FJ, Chisholm A, Collard HR, Flaherty KR, Myers J, Raghu G, el al. The diagnosis of idiopathic
pulmonary fibrosis: current and future approaches. Lancet Respir Med. 2017 Jan 1; 5(1):61-71. hitps://
dolorn/10.10168/52213-2600(16)30325-3 PMID: 27932290

7. Hetzel J, Maldonado F, Ravaglia C, Wells AU, Colby TV, Tomassetti S, etal. Transbronchial Cryobiop-
sies for the Diagnosis of Diffuse Parenchymal Lung Diseases: Expert Statement from the Cryobiopsy
Waorking Group on Safety and Utllity and a Call for Standardization of the Procedure. Respiration. 2018;
95(3):188—200. hitps-//doi org0.1159/000484055 PMID: 22316560

8. Thiberville L, Moreno-Swirc 5, Vercauteren T, Peltier E, Cavé C, Bourg Heckly G. In Vive Imaging of the
Bronchial Wall Microstructure Using Fibered Confocal Fluorescence Microscopy. Am J Respir Crit Care
Med. 2007 Jan 1; 175({1):22-31. https-//dol.or/10.1 164/reem. 200605-6840C PMID; 17023733

9. Goualher GL, Perchant A, Genet M, Cavé C, Viellerobe B, Berier F, et al. Towards Optical Biopsies with
an Integrated Fibered Confocal Fluc pe. In: Medical Image Computing and Com-
puter-Assisted Intervention—MICCAI 2004 [Imternet]. Springer, Berlin, Heidelberg; 2004 [cited 2019
Mar 5]. p. 781-8. hitps:Mink springer com/chapte:/10.1007/978-3-540-30136-3 93

10. LeeP, Brokx HAP, Postmus PE, Sutedja TG. Dual digital video-autofluorescence imaging for detection
of pre-neoplastic lesions. Lung Cancer Amst Neth, 2007 Oct; 58(1):44-9.

PLOS ONE | hitps:/idoi org/10.1371/joumnal pone 0232847  May 6, 2020 /1

29



PLOS ONE

Automated evaluation of PCLE in the lung

11.

12

13.

14.

15.

16.

17.

18.

18.

21.

31.

lkeda N, Hayashi A, Iwasaki K, Honda H, Tsuboi M, Usuda J, et al. Comprehensive diagnostic bron-
choscopy of central type early stage lung cancer. Lung Cancer. 2007 Jun 1; 56(3):295-302. htips://doi.
ora/10.10164.lungean.2007.01.009 PMID: 17291623

Thiberville L, Salaiin M. Bronchoscopic Advances: On the Way to the Cells. Respiration. 2010; 79
(6):441-9. https://doi.org/10.1159/000313495 PMID: 20431326

Newton RC, Kemp SV, Yang G-Z, Elson DS, Darzi A, Shah PL. Imaging parenchymal lung diseases
with confocal endomicroscopy. Respir Med. 2012 Jan; 106{1):127—37. hittps://doi. org/10.1016f rmed.
2011.09.009 PMID: 22000588

Filner JJ, Bonura EJ, Lau ST, Abounasr KK, Naidich D, Morice RC, et al. Bronchoscopic Fibered Confo-
cal Fluorescence Microscopy Image Characteristics and Pathologic Correlations. J Bronchol Intery Pul-
monaol. 2011 Jan; 18(1):23.

Yick CY, von der Thilsen JH, Bel EH, Sterk PJ, Kunst PW. In vivo imaging of the airway wall in asthma:
fibered confocal flucrescence microscopy in relation Lo histology and lung funclion. Respir Res. 2011
12(1):85. hitps:/doi.org/10.1 1B6/1465-0921-12-85 PMID: 21695692

Yserbyt.J, Dooms C, Decramer M, Verleden GM. Probe-based confocal laser endomicroscopy of the
respiralory tract: A data consistency analysis. Respir Med. 2013 Aug 1; 107(8):1234—40. hitps //doi ora/
10.1016/.rmed.2013.04 018 PMID: 23706778

Meng P, Tan GL, Low SY, Takan A, Ng YL, Anantham D. Fibred confocal fluorescence microscopy in
the diagnosis of interstitial lung diseases. J Thorac Dis. 2016 Dec 28; 8(12):3505-3514.

Zadrozny B, Elkan C. Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayes-

ian Classifiers. In: Proceedings of the Eighteenth International Conference on Machine Leaming [Inter-

net]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2001 [cited 2019 Jul 1]. p. 609-616.

(HCML ‘01). hitp:/idl. acm.ora/citation.efm?id=645530.655658

Arganda-Carreras |, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, el al. Trainable Weka
tion: a machine leaming tool for microscopy pixel classification. Bioinformatics. 2017 Aug 1;

33(15):2424-6. hitps:/idoi.oral10. 1093/bivinformaltics/bix1 80 PMID: 28369169

Schindelin J, Arganda-Carreras |, Frise E, Kaynig V, Longair M, Pietzsch T. et al. Fiji: an open-source

platform for biological-image analysis. Nat Methods. 2012 Jul; 9(7):676-82. hitps//doi ore/10. 1038/

nmeth. 2019 PMID: 22743772

Chawla NV. Data Mining for Imbalanced Datasets: An Overview. In: Maimon O, Rokach L, editors. Data

Mining and Knowledge Discovery Handbook [Internet]. Boston, MA: Springer US; 2010 [cited 2019

Sep 20]. p. 875-86. hitps://doi.om/10.1007/978-0-387-00823 4 45

Peng Hanchuan, Long Fuhui, Ding C. Feature selection based on mutual information criteria of max-

dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005 Aug; 27

(B):1226-38. hitps.//dol. org/10. 1108/ TFAML.2005. 153 PMID: 16119262

Pratt WK. Digital Image Processing: PIKS Scientific inside [Internet]. 4th Edition. New York: John
Wiley & Sons, INC; 2007 [cited 2019 Jun 18]. 623 p. hitps//www.academia edu/30586970/Digital
Image Processing 4th Edition - William K Pratt

Friedman JH, Bentley JL, Finkel RA. An Algorithm for Finding Besl Matches in Logarithmic Expecled
Time. ACM Trans Math Softw. 1977 Sep; 3{3):209-226.

Wilcoxon F. Individuat Comparisons by Ranking Methods. Biom Bull. 1945; 1(6):80-3.

Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BM.J. 1995 Jan 21; 310
(6973):170. hitps:/doi.org/10.1136/bm].310.6973. 170 PMID: 7833759

Silbernagel E, Bondesson D, Behr J, Dinkel J, Reichenberger F. Taking Another View on Lung Fibrosis.
Am J Respir Crit Care Med. 2018 Feb 2; 197(7):947-8. htips-/fdol.or/10.1164/rcem 201708-1683IM
PMID: 29394081

Perneger TV. What's wrong with Bonferroni adjustments, BMJ. 1998 Apr 18; 316(7139):1236-8.
hitps:/fdoi.omf10.1136/bmj.316.7139.1236 PMID: 2553006

Salaun M, Dominique S, Roussel F, Genevois A, Jounieaux V, Zalcman G, et al. In vivo probe-based
confocal laser endomicroscopy in chronic diffuse parenchymal lung diseases. Eur Respir J. 2012 Sep

1; 40({Suppl 56):P3603.

Salailin M, Guisier F, Dominique 5, Genevois A, Jounieaux V, Bergot E, et al. In vivo probe-based con-
focal laser endomicroscopy in chronic interstitial lung diseases: Specific descriptors and correlation with
chest CT. Respirology. 20198 Aug 1; 24(8):783-91. hitps://dol arg/10.1111/resp 13507 PMID:

30811085

Yserbyt J, Dooms C, Decramer M, Verleden GM. Acute lung allograft rejection: Diagnostic role of

probe-based confocal laser er scopy of the resy y tract. J Heart Lung Transplant. 2014
May 1; 33(5):492-8. hilps.//doi. org/10. 1016/ healun 2014.01. 857 PMID; 24656287

PLOS ONE | hitps:/idoi org/10.1371/joumnal pone 0232847  May 6, 2020 10/1

30



PLOS ONE Automated evaluation of PCLE in the lung

32. Peng M, Liang TG, Anantham D. Probe-Based Confocal Laser Endomicroscopy of the Lungs. J Pulm
Respir Med [Internet]. 2016 [cited 2019 Jul 2]; 6(5). Available from: hitps:/www omicsonline org/open-
access/probebased-confocal-laser-endomicroscopy-of-the-lungs-2161-105X-1000373.ohp?aid=81460

33. Hariharan B, Arbelaez P, Girshick R, Malik J. Simultaneous Detection and Segmentation. in: Fleet D,
Pajdla T, Schiele B, Tuytelaars T, editors. Computer Vision—ECCV 2014. Springer International Pub-
lishing; 2014. p. 287-312. (Lecture Noles in Computer Science).

34. Wijmans L, Bonta Pl, Rocha-Pinto R, de Bruin DM, Brinkman P, Jonkers RE, et al. Confocal Laser
Endomicroscopy as a Guidance Tool for Transbronchial Lung Cryobiopsies in Interstitial Lung Disorder.
Respiration. 2019; 97(3):259-63. hitps://dol org/10.1159/000493271 PMID: 30428462

PLOS ONE | https:/idoi orq/10.137 1/joumnal pone 0232847  May 6, 2020 M

31



3.2Bondesson D, Gaass T, Dinkel J, Kiefer B. Non-contrast-enhanced
perfusion and ventilation assessment of the human lung by means of
wavelet decomposition in proton MRI. Proc Intl Soc Mag Reson Med 2016;
24:1934. https:// doi-org.emedien.ub.uni-muenchen.de/10.1002/mrm.27803

32



Received: 7 December 2018

Revised: 20 March 2019

Accepted: 15 April 2019

DOL: 101002/ mm. 27803

FULL PAPER

Magnetic Resonance in Medicine

Nonuniform Fourier-decomposition MRI for ventilation- and
perfusion-weighted imaging of the lung

David Bondesson'? | Moritz J. Schneider'> | Thomas Gaass® | Bernd Kiihn' |
Grzegorz Bauman™® | Olaf Dietrich' | Julien Dinkel'*

'Department of Radiology, University Hospital, LMU Munich, Munich, Germany

*Comprehensive Preumology Center {CPC-M). German Center for Lung Research (DZL). Munich. Germany
*Siemens Healthears Pty Ltd, Bowen Hills, Australia

“*Siemens Healtheare GmbH, Erlangen, Germany

“Division of Radiological Physics. Department of Radiology, University of Basel Hospital, Basel, Switzerland

"Department of Biomedical Engineering. University of Basel. Basel, Switzerland

Correspondence

David Bondesson, Marchioninistr. 135,
Munich, Bavaria, Germany 81377
Email: david. bondesson @ med uni-
muenchen.de

Funding information

The authors acknowledge partial funding
by the German Center for Lung Research
(DZL). but received no specific grant for
this research from any funding agency in
the public, commercial or not-for-profit
sector.

Purpose: To improve the robustness of pulmonary ventilation- and perfusion-
weighted imaging with Fourier decomposition (FD) MRI in the presence of respira-
tory and cardiac frequency variations by replacing the standard fast Fourier transform
with the more general nonuniform Fourier transform.

Theory and Methods: Dynamic coronal single-slice MR1 of the thorax was per-
formed in 11 patients and 5 healthy volunteers on a 1.5T whole-body scanner using
a 2D ultra-fast balanced steady-state free-precession sequence with temporal resolu-
tions of 4-9 images/s, For the proposed nonuniform Fourier-decomposition (NUFD)
approach, the original signal with variable physiological frequencies that was
acquired with constant sampling rate was retrospectively transformed into a signal
with (ventilation or perfusion) frequency-adapted sampling rate. For that purpose.
frequency tracking was performed with the synchro-squeezed wavelet transform.
Ventilation- and perfusion-weighted NUFD amplitude and signal delay maps were
generated and quantitatively compared with regularly sampled FD maps based on
their signal-to-noise ratio (SNR).

Results: Volunteers and patients showed statistically significant increases of SNR in
frequency-adapted NUFD results compared to regularly sampled FD results. For ven-
tilation data. the mean SNR increased by 43.4% +25.3% and 24.4% +31.9% in volun-
teers and patients, respectively: for perfusion data. SNR increased by 93.0%+36.1%
and 75.6% +62.8%. Two patients showed perfusion signal in pulmonary areas with
NUFD that could not be imaged with FD.

This is an open access aicle under the terms of the Creative Commons Attribution-NonCommercial License, which permits use., distribution and reproduction in any medium,
provided the original work 15 properly cited and is not used for commercial purposes.
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Conclusion: This study demonstrates that using nonuniform Fourier transform in
combination with frequency tracking can significantly increase SNR and reduce fre-

quency overlaps by collecting the signal intensity onto single frequency bins.

KEYWORDS
Fourier di i

1 | INTRODUCTION

Pulmonary Fourier-decomposition (FD) MRI is a noninvasive
free-breathing imaging method for extracting functionmal
information about ventilation and perfusion in the lung.' FD
MRI works on a registered series of dynamically acquired
MR images of the lung. in which periodic signal changes
associated with perfusion and ventilation can be spectrally
separated and subsequently analyzed. Both signal variations
are correlated with proton density variations, which are caused
by changes in capillary blood filling (together with intravoxel
dephasing effects) or changes in alveoli density, respectively. ™

Several studies have shown the FD method to be a via-
ble tool for spotting local pulmonary pathologies™® without
requirement of contrast-agent administration (neither intrave-
nous agents for perfusion nor gaseous agents for ventilation
assessment) or the health risks of radiation-based methods
(as. e.g.. CT or single photon emission CT). Inaddition to
mapping the spectral amplitude, it has also been suggested
that the phase information obtained by FD MRI could
potentially be used for estimating the signal arrival time. The
phase difference (between 2 voxels) of a single spectral fre-
quency component is proportional to the temporal shift of the
signals. Consequently, the signal arrival time {i.e.. the “'signal
delay™) can be mapped by evaluating the phase difference
compared to a starting point. Thus, localized delays of spa-
tial signal propagation caused by pathologies such as cystic
fibrosis, chronic obstructive pulmonary disease, chronic
thromboembaolic pulmonary hypertension (CTEPH), asthma,
or idiopathic pulmonary fibrosis™ could be displayed.

However, inevitable random variations of respiratory or
cardiac frequencies during free-breathing pulmonary mea-
surements can be reason for artificial signal loss when using
the established FD MR1 approach. Related methods that have
been proposed to overcome this problem require complex mul-
tiple-step post-processing including peak finding, exact phase
estimation and data resorting of k-space’ or image-space
data to use all of the measured signal variations as well as
recalibrate the signal contribution to a single frequency.

The purpose of this study was to return to the concep-
tual simplicity of the initially proposed FD method and to
improve its robustness (quantified in terms of signal-to-noise
ratio [SNR] maps) in the presence of frequency variations
by replacing the well-known fast Fourier transform with the

position, lung.

Fourier ransform. pulmonary MRI

more general nonuniform fast Fourier transform (NUFET).
This nonuniform Fourier-decomposition (NUFD) approach
requires transforming the original, evenly sampled signal
with variablefrequency into a signal with constant frequency
that is sampled at varying rate.

2 | THEORY

In almost all real-time ventilation and perfusion measurements,
signal frequencies vary nonlinearly over time. When calculating
the Fourier transform, this will not only spread the resulting
intensity over multiple frequency bins, but also cause phase
errors if spectral content overlaps. In the following sections, an
approach is described to correct for such frequency variations.

2.1 | Signal sampling

In the following. we consider an oscillating signal S(r) with
varying frequency fir) and assume that S(r) is sampled at equi-
distant sampling times f, =nAt with the constant sampling
interval Ar. If the signal frequency f{r) is varying. then the
numbers of sample points 1, per signal cycle will change cor-
respondingly (cf. Figure 1A). However. by transforming the
original sampling times 1, (together with the sampled signal
intensities) to “virtual.” nonequidistant sampling times 7., the
same sampled intensities appear as the time course of a virtual
single-frequency signal St Figure 1B). Thus, a uniformly
sampled signal with variable frequency can be transformed
into a nonuniformly sampled signal with constant frequency.

The calculation of the appropriate virtual, nonequidistant
sampling times 7, can be based on the instantaneous fre-
quency fir) of the signal, which can be determined byappro-
priate frequency-tracking techniques as described below.
To obtain identical virtual cycle durations of §G’), the n-th
sampling intervals A7, must be modified proportional to the
tracked frequency

£ (5)
AT, =Af——
resulting in the new sampling times
o Y M
=) Af o X () (2)
k=1 mean =i
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The scaling factor f,_. is to be chosen such that the total 3 | METHODS
sampling duration remains the same, ie. Ty—I =fy—iy.
Assuming 7,=1,=0. this is achieved by setting f,,.., tothe 3.1 | Image acquisition

scan valoe of the bocked frequency: Five healthy volunteers (24-28 vears old; 2 female and 3

1 N male) and 11 patients (5 with suspicion of CTEPH, 4 with

Fem= N Ef{ft) ; (3)  suspicion of idiopathic pulmonary arterial hypertension

& (PAH) and 2 with suspicion of idiopathic pulmonary fibrosis,

31-84 years old: 5 female and 6 male) underwent non—con-

%) | NUFFT trast-enhanced MRI under free-breathing conditions. None of
the healthy volunteers were smokers. Participants were meas-

Based on the new (virtual) sampling times 7, the selected  yured as preparation and part of a study (registration number
frequency component Fy (containing, e.g.. the ventilation  NCT02791282) and written informed consent was obtained
or the perfusiu_n component of a pulmonary measurement) from all subjects. Patients with pulmonary hypertension were
of the signal S(7) can be quantified by Fourier analysis.  referred to the study by means of the pneumology department
However. because the sampling times 7, are not equidistant,  with no other exclusion criteria than being able to undergo 25
this cannot be done using standard FFT algorithms: instead, min of measurement: thus, only the most severe cases were
a type-1 NUFFT is required to calculate the (equidistant) fre-  excluded. MRI was performed on a 1.5T whole-body scanner

quency spectrum of a signal defined at nonequidistant time (Siemens Magnetom Aera, Siemens Healthineers, Erlangen,
points.® The type-1 discrete nonuniform Fourier transform is Germany) with an 18-channel body array coil and 16 ele-
defined as ments of a spine array coil. Functional MRI data were ac-

quired in supine position (head first) for a single coronal

W mid-lung slice per subject. Dynamic single-slice imaging

F,=NUFFT {3 (_?")] &t z g (7,) exp (=2rikd, / (7 =T, B” was performed with a 2D ultra-fast balanced steady-state
n=1 free-precession (uf-bSSFP) s.equr:uce.” optimized to distin-

guish signal variations in the lung parenchyma. The main

This looks similar to a regular discrete Fourier trans- pulse sequence parameters were as follows: field of view =
form with the modification that the sampling times 7, arenot 450 % 450 mm”. matrix = 96 x 96 voxels. slice thickness
evenly spaced. = 15 mm, repetition time = 1,03 ms, echo time = (.36 ms,

35



BONDESSON er ar.

flip angle: 24.5° for volunteers and 24.5-80° for patients. For
volunteers. the temporal resolution was 115 msfimage, the
series consisted of 1024 images, resulting in total measure-
ment times of 117s. For the patients, the temporal resolution
varied between 115 and 216 msfimage, the series consisted
of 200 to 1024 images, resulting in total measurement times
between 40 and 117 s.

One of the 5 healthy test subject measurements was
repedted 6 times with changing amounts of frequency vari-
ability between them to investigate the stability of the com-
pensation. The frequency variability was simply yielded by
asking the test subject to change their ventilation rate more
or less within each measurement. Due to respiratory sinus
arrhythmia'® increased necessity for frequency tracking
in both perfusion and ventilation signal components was
expected.

3.2 | Image processing workflow

A prototype software, fMRLung 4.5 (Siemens Digital
Services, Princeton, NJ) was used to apply a nonrigid reg-

istration algorithm'™" to the measured image series. The

Magnetic Resonance in MedicineJE

reference image was chosen manoally based on the mean
value of the diaphragm signal in the apical-basal direction to
yield mid-ventilation position.

All further image processing was performed with Matlab
(The MathWorks, Natick, MA). The first 20 images were
discarded due to transient signal behavior of the uf-bSSFP
sequence. In every voxel, the DC signal was subtracted from
the time signal to focus purely on the variations. A region
of interest (ROL) was manually segmented (with function
‘roipoly, Matlab version 2018a) along the pleural lines cov-
ering both pulmonary veins as well as parenchyma collect-
ing both average perfusion and ventilation signal variations.
Subject-specific bandpass filtering was applied to separate
ventilation and perfusion components similar to the standard
FD method. Additional high pass filtering was applied on
the ventilation-weighted signal to remove frequencies below
0.07 Hz (corresponding to signal periods longer than 14 s).
which were considered baseline drift being substantially
slower than realistic breathing (Figure 2A).

Frequency tracking of the resulting signal-time course
was performed with the synchro-squeezed wavelet transform
(SWT) method (function “wsst”, Matlab version 20]3:1),’5

(A) Signal Extraction & Filtering

ROI signal

M Image

(B) Frequency Tracking

Time-Frequency Map - Ventilation Time-Frequency Map - Perfusion
" .

k 2
: & :
il i ol
: |
£ |' Frequency Ridge - Perfusion
Filtered Signal - Ventilation Filtered Signal - Porfusion i
1 : 1
i : i f
£ H E o £y
. Cpely " Time s L o S
() Non Uniformly Sampled Signals (D) NUFFT - Results
Corrected Signal - Ventilation Corrected Signal - Perfusion MNUFFT - Ventilation NUFFT - Parfusion
| 1| Ll
é E- 2 g‘f:
E. § Eml 5 ml ‘
S B T A S T " e i T TN
Tiwne [3] Thmee 3] Fregueesty HH Froquescy {Hi]

FIGURE 2 Workflow of NUFD MRI image processing. A, Extraction of ventilation and perfusion signal from large RO1 by band-pass
filtering. B, Resolting time-frequency map from SWT with tracked frequencies from ridge detection. C. Ventilation and perfusion signals displayed

with recalculated sampling points (frequency variations are reduced in comparison to A. D, Resulting NUFFT spectra from the curves in C,

showing that inlensity has indeed been collected onio a single frequency bin for both ventilation and perfusion
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which resulted in a 2D frequencies-over-time spectrum (time-
frequency map in Figure 2B, top). For SWT, the analytical
Morlet wavelet was selected as a mother wavelet over bump
wavelet, due to its narrower variance in time dimension. To
track the frequency of interest, a method called ridge detec-
tion can be used: e.g.. the function “wsstridge™ in Matlab.®
Ridge detection (Figure 2B. bottom) follows the frequency of
the maximum intensity signal component in the SWT spec-
trum by means of a penalized forward backward greedy al-
gorithm. The penalty parameter limits large frequency jumps
and was set to 0.3.

New “virtual” sampling times were then calculated
with Equation 2, as described above (Figure 2C). Then,
NUFFT was performed on the averaged lung ROI data,
yielding 2 frequency spectra (1 for ventilation. 1 for per-
fusion), in which the relevant frequency bins for ventila-
1ion fieq or perfusion fi.s could be determined (Figure 2D).
The NUFFT was implemenled" in Matlab with a Gaussian
gridding based method,'”'* which has shown to be yield
better reconstruction performance for NUFFT estimations
than methods combining other types of interpolation with
standard FFT."”

Finally, ventilation- and perfusion-weighted maps were
generated applying the NUFFT analysis (with the new sam-
pling times determined above) for every lung voxel, similar
as with the FD method. Amplitude maps were then calculated
from the frequency spectra with the ventilation and perfusion
frequencies fi.y and fi. extracted from the averaged ROIL
time signal.

Using the complex phase of the speciral frequency bin
of every voxel (after applying a 2D phase unwrapping algo-
rithm,*” another map termed “(signal) delay map™ was gen-
erdted showing the delay of the signal relative to a reference
voxel. The actual time delay ty.,, was calculated for each
voxel as

=8 ¢u_d’,1. Py ‘ﬁu_‘p

Liclay 2n  2xf )

where ¢ is the phase angle. g, is the phase of a reference
voxel (with the highest phase value. i.e., lowest time delay in
the analyzed ROI). and 7 is the cycle period, ie., the inverse
frequency T'= }r of the ventilation or perfusion frequencies
Soem d-udfp:rf‘

For comparison, FD maps (with amplitude data and
phase-based temporal delay data) were produced for all
measurements.

33 |

A standard method for SNR calculation of Fourier trans-
forms is to compare the amplitude of the signal frequency

Image evaluation

bin to the power of the noise frequency bins.”! In the pre-
sent study, SNR maps were calculated by dividing the sig-
nal of the ventilation and perfusion maps by the standard
deviation of the noise bins of each lung voxel. The SNR
maps were manually and separately segmented for both
perfusion and ventilation evaluation. The perfusion ROI
excluded the lower left lung where the heart moved into
the section; the ventilation ROl excluded the large pulmo-
nary vessels. To quantify and compare these SNR maps,
the average SNR (mean value) within the ROl was then
calculated. The percentage difference between SNR for
the NUFD and FD method was then calculated. Statistical
evaluation was lastly performed with 1-sample t-tests
(2-tailed) on percentage change of SNR, for patient and
volunteer measurements. respectively. Differences were
considered to be statistically significant if P-values were
less than 0.05.

4 | RESULTS

4.1 | SNR evaluation

Comparing NUFD to FD evaluation, a statistically signifi-
cant increase of average ventilation and perfusion SNRs
of healthy volunteers was found (including all measure-
ments from the variable frequency test). Ventilation SNRs
increased by 434%+253% (P < 0.001) and perfusion
SNRs by 93.0% +36.1% (P < 0.001). The average increase
of all eleven patients’ ventilation and perfusion SNRs from
NUFD compared to FD was also statistically significant with
24 4% +31.9% (P=0.03) and 75.6%+£62.8% (P=0.003),
respectively. All results are summarized in the Table 1.

Figure 3 displays an example of the resulting frequency
spectra from the averaged ROl signal of a typical volunteer
measurement, comparing the NUFD and FD approach. The
spread-out frequency components of the FD approach have
been collected and are clearly not overlapping in the NUFD
results. In addition, both NUFD ventilation and perfusion
have gained a clear increase of amplitude.

Figure 4 shows examples of SNR maps from the same
measurement. Both ventilation and perfusion maps display
substantially higher SNRs with the NUFD approach com-
pared to the FD evaluation.

4.2 | Influence of frequency variability and
volunteer data

Two of the resulting NUFD and FD maps from the repeated
volunteer measurements with different ventilation frequency
variability are presented in Figure 5. Improvements due to
the NUFD approach were especially prominent in ventila-
tion delay maps of measurement 2, in which the volunteer

was asked to breathe very irregularly. Using the FD method
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TABLE 1

SNR of volunteer and patien! measurements

SNR NUFD SNR FD
Volunteer ventilation (r=11) 144.1 + 32.6 1027 + 278
Volanteer perfusion (r=11) 523+1l6 2TB 68
Patients ventilation (r=11) 121.8 £ 64.5 95.1£41.1
Patients perfusion (r=11) 185+ 135 H2 £ 75

Magnetic Resonance in Ml:l:li::imeJirj

SNR results for ventilation and perfusion measurements from FD and NUFD method displaying average and standard deviation

(absulute) (relative) P-Value
4144177 4345 +253% 1% 107
245483 93.0% +36.1% T 107°
267 +£36.3 24.4% +31.9% 3% 1072

T34+79 75.6% + 62.8% Ik~

Average and stmdard devistion increase in SNR (ubsolute and relutive) between the 2 methods are also summarized with associated P-values:
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FIGURE 3 Frequency spectra from NUFD (A.C) and FD (B.D) MR1 hased on extracted and averaged RO1 signal for ventilation (A.B) and

perfusion (C.[3) component

resulted in a different signal delay pattern in the ventila-
tion case. Comparing the ventilation delay patterns between
measurements | and 2, the NUFD map of measurement 2
was substantially more similar to measurement 1 than the FD
maps. Generally, the perfusion delay maps illustrate consist-
ently the propagation of the perfusion signal from the large
central vessels to the pulmonary periphery.

In Table 2 below. a clearly improved average SNR is pre-
sented when comparing the NUFD and FD maps. However,

it should be noted that the SNR increase was not linearly cor-
related with frequency variability. In fact, the highest ventila-
tion frequency variability yielded the smallest increase in the
estimation of measurement 2.

The NUFD delays of perfusion (i-e.. fyay max = ldctaymin
within an individual map) ranged from 70 to 185 ms for
the different volunteers (mean value over all volunteers was
126+42.5 ms); for ventilation, the NUFD delays ranged from
180 to 370 ms (mean value was 280+ 68.9 ms).
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(4

FIGURE 4 SNR maps generated from NUFD and regularly sampled FD spectra in a healthy volunteer. A.B, Ventilation (V) SNR mups
displaying average SNRs of 195.3 and 144.2, respectively. corresponding to a +35.4% increase of SNR. C.D, Perfusion (Q) SNR maps displaying
average SNRs of 80 and 39 corresponding toa +106% increase of SNR

Amplitude
NUFD

(B)

)

(N)

FIGURE 5 Influence of frequency variability. A-H, Ventilation-weighted (V) amplitude and signal delay maps from 2 measurements; the
standard deviations of the ventilation frequencies were 0.01 Hz and .11 Hz, respectively. I-P. Perfusion-weighted (Q) amplitude and signal delay
mups from 2 measurements; the standard deviations of cardioe frequencies were (.04 Hz and 0.03 Hz. respectively
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TABLE 2 Resulting average SNR from 6 measurements with varying frequency variability

Ventilation Perfusion

1 2 3 4 5 [ 1 2 3 4 5 i
st () (Hz) 0014 011 0.03 0.05 0.05 0.04 .04 0.07 0.09 0.06 0.05 0.05
mean (T (Hz) 0.12 0.20 0.15 0:20 0.14 0.14 0.95 104 0.96 1.04 0.96 0.99
mean(SNRgy,, 96.6 9.7 824 724 524 919 351 21.0 27.1 217 324 271
mean(SNRyq 144.8 103.3 1118 127.9 112 1302 66,0 47.6 438 529 435 489
increase (SNR) 482 3.5 294 55.5 288 383 ing 26.6 16.8 312 11.1 21.8
increase (SNR) % 0% 4% 6% 7% 55 42% BR% 127% 62% 1445 M 81%

Table describes frequency variability stdif) (standard deviation of the tracked frequency) and mean frequency mean(f) for perfusion and ventilation signuls with SNRs

from FD and NUFD method a5 well as the absolute and relative SNR increase,

4.3 | Patient data

Two patients, 1 with suspicion of CTEPH and 1 with suspi-
cion of PAH are presented in Figure 6. Both show large per-
fusion defects in the amplitude maps from both the FD and
NUFD methods. However, when using the NUFD method,
the SNR was increased in the perfusion maps for both meas-
urements (from 11.5 to 19.6 in the CTEPH case, yielding
T1% increase and from 7.2 to 10.7 in the PAH case. yield-
ing 48% increase). This ensured that weaker blood pulsatil-
ity could be imaged in both cases, as can be seen, e.g.. in
Figure 6A.B.F.G. The PAH patient displayed a low but
noticeable signal increase. homogenously spread in the left
and right lung parenchyma with NUFD that could not be
noticed with FD: the CTEPH patient showed stronger signal
intensities in areas of the lower and upper right lung.

Patient PAH

Increased SNR becomes also apparent when comparing
the perfusion signal delay maps from FD and NUFD. For the
PAH patient (Figure 6D,E), the NUFD delay map shows a
smoother signal delay than the FD map, whose phase esti-
mate is strongly distorted by noise.

5 | DISCUSSION

In this work. a new method for pulmonary Fourier-decompo-
sition MRI based on the nonuniform Fourier transform was
presented and applied for visualizing signal amplitudes and
quantifying the signal delay in the lungs. It was demonstrated
that, by adding a frequency-tracking step to the original FD
method and switching perspective from variable signal fre-
quency to variable sampling frequency. spectrally spread-out

Patient CTEPH
NUFD FD

FIGURE 6 Perfusion-weighted NUFD and FD maps of patients with suspected PAH and CTEPH. A B.F.G. FD and NUFD perfusion-
weighted amplitude maps. D.E LI, Perfusion time delay maps. C.H, These 2 patients also had iodine-enhanced dual-cnergy CT pulmonary

giogram (CTPA)

(100/14080 kV, 165/140 mAref, pitch = | 2 for PAH patient and 90150580 kV. 6(0/46 mAref, pitch = 1.2

for CTEPH patient} performed as part of clinical routine within 3 months of their MR scans. The comparison shows that perfusion signal
improvements from NUFD coincides better with displayed iodine concemtration in both CTPA images. For the CTEPH patient. the CTPA image

displays the decreasing. yet still existing signal intensity in the upper and lower part of the right lung where the lower part is stronger than the

upper: This coincides better with the NUFD perfusion amplitude map than the one generated with FD
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signal contribution could be collected onto a single frequency
bin. Thiz led to lessened bin spread caused by frequency
variability as well as significant increase of SNR in both
healthy test subjects and patient measurements, which can be
expected o translate into more reliable quantitative results
and less noisy parameter maps.

The patient measurements shown in Figure 6 clearly
exemplify the difference NUFD can make for the evalua-
tion of functional maps compared to FD. The effects are
especially illustrated in the time delay maps comparing
NUFD and FD, in which the PAH patient (Figure 6D,E)
showed smoother progression and the CTEPH patient dis-
played further subtleties with better detectable signal pro-
gression (Figure 61.)) in the upper right lung. In both cases.
SNR was significantly improved. In the amplitude maps of
the PAH patient (Figure 6A,B), the signal was substantially
raised in voxels that had signal close to or lower than the
noise floor (i.e., the local noise level of these voxels) with
the FD method.

A key step of our new approach is frequency tracking of
either the respiratory or the cardiac frequency during the 1
to 2 min of measurement. Current signal processing studies
still discuss how best to describe signals with varying fre-
quencies as amalgamation of multiple components and have
specifically highlighted the influence of variable signal am-
|:l1itu:c|esA22 Variable amplitudes are expected in biological
signal variations (especially for ventilation-associated sig-
nals) and must be dealt with to avoid misleading added low
frequency components. With this in mind. the SWT method
was selected due to 1ts implementation where a variable am-
plitude factor is added to the regular wavelet transform defini-
tion. In addition, SWT has also been shown to offer improved
frequency localization in time compared with regular con-
tinuous wavelet transform.> The resulting time-frequency
representation of the SWT approach also helps to spread out
potential artifacts and noise over the 2D frequency-time spec-
trum resulting in more stable estimates than those performed
only in the (1D) time domain.

Because the NUFD method requires no changes in image
acquisition parameters, it can easily be implemented as a
complement to ongomg and future studies. The tracking of
the (free-breathing) respiratory frequency offers fewer lim-
itations for patient selection compared to regular FD MRL as
even patients strongly suffering from their conditions, which
have troubles to breathe regularly, can be examined.

Due to the possibility of determining the signal delay with
high temporal resolution from phase estimates, time delay
maps can be calculated to estimate how the perfusion or respi-
ratory signal propagates through microstructures in the lungs.
However, further studies are required to validate the resulting
delay maps quantitatively. The measured range of ventilation
delays throughout the lungs of healthy subjects was between
approximately 180 and 370 ms. This agrees well with results

from a dynamic spiral MRI slud_',r,:'I in which similar values
were shown for the gas delay during inhalation.

Similar to PREFUL" and SENCEFUL.” the proposed
NUFD method generates functional maps where all of the
signal contribution collected during the measurement can
be used. Because the same amount of signal is used for the
evaluation, one would expect similar SNR increases with the
NUFD approach as with the 2 other methods compared to FD.
NUFD MRLI. however, distinguishes itself in that it does not
require exact phase estimates for performing image or k-space
line resorting. thus simplifying the final implementation.

There are some limitations of this study. First, the pro-
posed NUFD approach requires an additional (in compari-
son to FD MRI) frequency-tracking step. There exist several
approaches for frequency tracking and here we used the
SWT in combination with ridge detection. Further studies
should compare this technique with other approaches (such
as, e.g.. frequency tracking by simple peak finding) to deter-
mine the most robust and reliable technique. Second, even
without frequency variability, NUFD MRI can suffer from
the same amplitude stability issues as was described for FD
MRL?* for which solutions such as \l\’il]dt:l\.\'ing:1 or matrix
pencil [itzi::l:nm|:|ncrsil.ic}n,3 are readily available. Thus, NUFD
estimates of both amplitude and phase can be expected to be
further improved upon with an optimal choice of a filtering
window function. However, because the focus of this study
was to compare the results between NUFD and FD MRI
(where windowing is not an efficient option due to the pre-
dominant influence of frequency variability in vive), this was
left out for future investigations. Furthermore. this is a proof
of principle study and future studies with larger sample size
are required to establish clinical relevance of the found SNR
improvements. Finally, it should be noted that because imag-
ing is performed in 2D, artifacts can occur as with the regular
FD method due to movement of structures in an out of the
slice which would likely occur at ventilation rate.

6 | CONCLUSIONS

This study presents a modification of functonal Fourier-
decomposition lung imaging with frequency-adapted Fourier
transform to compensate for variability in perfusion and ven-
tilation frequency. We demonstrated that using nonuniform
Fourier transform in combination with frequency tracking can
significantly increase SNR and reduce frequency overlaps by
collecting the signal intensity onto single frequency bins.
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ENDNOTES

* Generally, 3 types of NUFFT algorithms are differentiated: (1) Type-1
NUFFTs perform a spectral analysis of data pled at © icti:

. Hirsch JA, Bishop B. R
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volunteers and COPD, CTEPH. and CF patients. Magn Reson Med.
2018;79:2306-2314.

Bieri 0. Ultra-fast steady state free precession and its application
1o in vivo (1JH morphological and functional fung imaging at 1.5
tesla. Magn Reson Med. 2013:70:657-663.

33 y sinus arrt ia in |
how breathing pattern modulites heart rate. Am J Physiol.
1981:241:H620-HA29.

. Chefd'hotel C, Hermosillo G. Faugeras (). Flows of diffeomor-

for multimodal image registration. In: Proceedings IEEE

time points resulting in an equidistantly defined frequency spectrum: (2)
type-2 NUFFTs perform a spectral analysis of equidistantly sampled data
resulting in a nonequidistantly defined frequency spectrum; (3) type-3
NUFFTs combine type-1 and type-2 NUFFT. namely transforming a

nonequidi

I T

ly pled signal toa quidistantly defined frequency

spectrum.
b Code initially written by M. Ferrara at AFRL Sensors Directorate
Innovative Algorithms Branch.
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Figure 1. (A) High-resolution computed tomography imaging of the upper lobe, normal lung tissue

(1-mm slice). (B) High-resolution computed tomography of the lower lobe, fibrotic lung tissue (1-mm slice).

Cellvizio®

Figure 2. (A) Probe-based confocal laser endomicroscopy imaging of the upper lobe, normal lung

tissue. (B) Probe-based confocal laser endomicroscopy imaging of the lower lobe, fibrotic lung tissue.

A 61-year-old woman was admitted to the
hospital for an assessment of interstitial lung
disease. She presented with bilateral basal
crackles but had an otherwise uneventful
medical history, especially with regard to
environmental exposure, medication, or
rheumatic disorders.

High-resolution thoracic computed to-
mography showed reticular changes and
honeycombing in the basal segments of
the lower lung fields (Figure 1B), but normal
lung tissue in the upper lobes (Figure 1A),
consistent with usual interstitial pneumonia
pattern.

The patient underwent bronchoscopy
with probe-based confocal laser endomi-
croscopy (Cellvizio; Mauna Kea Technolo-
gies) for in vivo imaging of the alveolar
compartment. This technique is based on
laser-induced autofluorescence of elastic fi-
bers using a miniature probe that enables tis-
sue visualization at the microscopic level (1).

In the upper lobe (segment 3), normal
alveolar architecture was observed (Figure
2A); however, in the lower lobe (segment 9),
there was severe destruction and distortion
of the alveolar compartment (Figure 2B).

To generate qualitative images, image
stack data were initially binarized using a man-
ually selected threshold; this was then followed
by the segmentation of connecting struc-
tures using ImageJ/BoneJ (www.bonej.org)
(2). Average fiber thickness was calculated
within localized maps, using a cylinder fitting
algorithm (3) (Figures 3A and 3B). A medial
surface/axis thinning algorithm was used to

extract a topological skeleton of the fiber structures. The topological connectivity was calculated using the Euler characteristics (4) (Figures 4A
and 4B). Although fiber thickness enables assessment of an average density of alveolar structures by color transformation, topological

connectivity is @ measure of networking of elastic fibers within the alveolar compartment.
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Figure 3. (A) Thickness imaging of the upper lobe, normal lung tissue. Fiber thickness = 13.8. (B) Thickness imaging of the lower lobe, fibrotic lung tissue.

Fiber thickness = 31.1.

Figure 4, (A) Topologically conserved skeleton imaging of the upper lobe, normal lung tissue, topological connectivity = 91.3. (B) Topologically conserved
skeleton imaging of the lower lobe, fibrotic lung tissue, topological connectivity = 13.5.

At this time, imaging in lung fibrosis is mainly restricted to high-resolution thoracic computed tomography scan. Probe-based
confocal laser endomicroscopy and image postprocessing enables in vivo visualization of alveolar structures with description and
quantification of changes in lung parenchyma that have the potential to influence the differential diagnosis in interstitial lung disease.

This work was presented as a poster at the American Thoracic Society 2016 International Conference (5).

Author disclosures are available with the text of this article at www.atsjournals.org.
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5. List of abbreviations

bSSFP

COP

CT

CTEPH

CTPA

CWT

DPLD

FFT

FOV

FD

HP

HRCT

ILD

IPF

MRI

MRMR

NMR

NSIP

NUFD

PAH

Magnetic field

Balanced steady state free precession (sequence)
Cryptogenic organizing pneumonia

Computer tomography

Chronic thromboembolic disease

CT pulmonary angiography

Continuous wavelet transform

Diffuse parenchymal lung disease

Energy difference between two populations of spins
Fast Fourier transform

Field of view

Fourier decomposition

Magnetic gradient field

Hypersensitive pneumonitis

High resolution CT

Quantum magnetic spin property

Interstitial lung disease

Idiopathic pulmonary fibrosis

Macro-net magnetization

Magnetic resonance imaging

Minimal redundancy and maximum relevancy
Nuclear magnetic resonance

Non-specific interstitial pneumonia
Non-uniform Fourier decomposition

Pulmonary arterial hypertension
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PCLE
PH

RF

SNR

SOI

TE
TR
V/IQ

X-ray

Probe-based confocal laser endomicroscopy
Pulmonary hypertension

radiofrequency (pulse)

Recorded signal

Signal-to-noise ratio

Structure of interest

Temperature/time

Echo time

Repetition time

Ventilation/perfusion (scan)

Chest radiography

Atomic number

The total flip angle of the net magnetization
Magnetic moment of the nucleus

Phase of the transverse magnetization
Larmor frequency

Spin density

Particle-specific gyromagnetic ratio
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