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Kurzfassung
Die Entdeckung des Quanten‐Hall (QH) Effekts stellt die erste Beobachtung von topo‐
logischen Phasen in Quantensystemen dar: Physikalische (Transport‐) Eigenschaften
eines Festkörpers nehmen exakt ganzzahlige Werte an, unabhängig von mikroskopi‐
schen Details des Materials. Symmetriegeschützte topologische Zustände wurden mitt‐
lerweile vollständig klassifiziert und weitere topologische Ordnungen im Experiment
beobachtet. Fragen bezüglich des Zusammenspiels von topologischen Eigenschaften
und starker Teilchen‐Wechselwirkung bleiben jedoch unbeantwortet: Interaktionen lie‐
gen dem fraktionalen QH‐Effekt zugrunde und es wird vermutet, dass sie anyonische
Anregungen hervorrufen können. Ultrakalte Atome in optischen Gittern bieten vielver‐
sprechende Möglichkeiten, um diese Theorien zu überprüfen. Die Realisierung topo‐
logischer Bandstrukturen und starker Wechselwirkung in diesen Experimenten stellt
jedoch nach wie vor Schwierigkeiten dar.

In dieser Arbeit untersuchen wir alternative Wege, um topologische Eigenschaften in
Vielteilchensystemen zu realisieren und zu messen. Unserem Ansatz liegt die Analogie
von 2D QH‐Modellen, wie dem Hofstadter‐Modell, und Familien von 1D Systemen, al‐
so topologischen Pumpen, zugrunde. Mittels numerischer Methoden untersuchen wir,
ob es ähnliche Zusammenhänge in stark interagierenden Systemen gibt. Wir verwen‐
den den DMRG Algorithmus, um Grundzustände wechselwirkender Gittermodelle zu
finden. Dadurch beobachten wir Quantenphasenübergänge von einzelnen, endlichen
Modellen, sowie topologische Phasenübergänge der Familien von Grundzuständen.

Der erste Teil beschäftigt sich mit Familien von 1D Modellen. Wir stellen fest, dass
das Hinzufügen von Wechselwirkungen zu Mott‐isolierenden Phasen für halbgefüllte
Bänder führt, welche nicht triviale topologische Eigenschaften haben können. Außer‐
dembeobachtenwir, dass Teilchen‐Interaktion bereits existierende topologische Eigen‐
schaften ändern kann: Einige Systemeunserer Familie entsprechendemAB2 ionischen
Hubbard‐Modell, welches einen wechselwirkungsbedingten, zweifachen Phasenüber‐
gang zu einem stark korrelierten Isolator aufweist. Für starke Wechselwirkungen ist
die transportierte Ladung auch topologisch quantisiert, jedoch ändern sich Vorzeichen
und Betrag der Chern‐Zahl. Wir bestimmen den topologischen Index durch numeri‐
sche Integration der Vielteilchen Berry‐Krümmung und zeigen, dass er auch mittels
des Massenzentrums gemessen werden kann.

Im zweiten Teil behandeln wir die Beziehung von interagierenden 1D Ladungspumpen
und wechselwirkenden 2D QH‐Modellen. Um beide Systeme numerisch zu untersu‐
chen betrachten wir das Hofstadter‐Modell auf einem Zylinder und drücken es in ge‐
mischter Real‐ und Impulsraumbasis aus. In dieser können wir die Verbindung der in‐
teragierenden 1D und 2DModelle parametrisieren. Die zylindrische Geometrie erlaubt
uns außerdem topologische Eigenschaften zu bestimmen, indem wir permanente Strö‐
me als Antwort auf ein lineares Potential berechnen. Wir können den topologischen
Übergang der 1D Ladungspumpen reproduzieren, aber dasHofstadter‐Hubbard‐Modell
bleibt durch einen topologischen Phasenübergang von stark wechselwirkenden 1D Sys‐
temen getrennt. Zwischen den 1D und 2D Hubbard Modellen finden wir ferromagneti‐
sche Grundzustände, welche einige topologische Eigenschaften erklären könnten.
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Abstract
The discovery of the quantum Hall effect marks the first observation of quantum sys‐
temswith topological properties: Physical observables, typically related to transport, of
a solid‐state system take exactly integer‐quantized values, regardless of material prop‐
erties or microscopic details. Today, symmetry‐protected topological phases have been
fully classified, and other topological orders have also been observed in experiments.
However, there are open questions about the interplay of topological properties and
strong particle interaction: Interactions are at the heart of the fractional quantumHall
effect, and are conjectured to give rise to anyonic excitations. Ultracold atoms in optical
lattices promise to be the highly controllable experimental platform to test these theo‐
retical predictions. However, realizing topological band structures with strong particle
interactions in these experiments remains challenging.

In this thesis, we research alternative pathways to realizing and measuring topological
properties inmany‐body systems. Our approach is based on the analogy of 2D quantum
Hall models, e.g. the Hofstadter model, and families of 1D Hamiltonians, i.e., topologi‐
cal charge pumps. We study numerically, whether we can find a correspondence of 1D
and 2Dmodels as strong particle interactions are added. We use the DMRG algorithm to
find ground states of interacting lattice models. Thus, we can observe quantum phase
transitions of individual finite‐size models, and topological phase transitions of fami‐
lies of ground states.

The first part of this thesis considers families of one‐dimensional models. We find that
introducing interactions createsMott‐insulating phases for half‐filled bands, which can
exhibit nontrivial topological properties. Furthermore, we find that particle interaction
can also change existing topological properties: SomeHamiltonians of our family corre‐
spond to the AB2 ionic Hubbard model, which is known to have an interaction‐driven,
two‐fold quantum phase transition towards a strongly correlated insulator. For strong
interactions, the pumped charge remains topologically quantized, but sign and magni‐
tude of the Chern number change. We compute the topological index by numerically
integrating the many‐body Berry curvature, and we show how it can also be obtained
from center‐of‐mass measurements.

In the second part, we discuss the relation of interacting 1D charge pumps and inter‐
acting quantum Hall models. To study both systems numerically, we put the Hofs‐
tadter model on a cylinder, and express it in a mixed real‐ and momentum‐space ba‐
sis. Thereby, we can parameterize the connection of the interacting 1D and 2D mod‐
els. Furthermore, the cylindrical geometry allows us to probe topological properties by
computing persistent Hall currents as response to a linear potential. We can reproduce
the topological transition found in the interacting 1D charge pumps, but find that the
Hofstadter‐Hubbardmodel is separated by a topological phase transition from strongly‐
interacting 1D systems. Between the one‐ and two‐dimensional Hubbard limits, we find
models with a ferromagnetic ground state, which could explain some topological prop‐
erties.
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Publications
This work is based on the following publications.

Editors’ Suggestion
Quantum phases and topological properties of interacting fermions in one‐dimensional

superlattices
L. Stenzel, A. L. C. Hayward, C. Hubig, U. Schollwöck, and F. Heidrich‐Meisner

Phys. Rev. A 99, 053614 (2019) [1]

The realization of artificial gauge fields in ultracold atomic gases has opened up
a path towards experimental studies of topological insulators and, as an ultimate
goal, topological quantum matter in many‐body systems. As an alternative to the
direct implementation of two‐dimensional lattice Hamiltonians that host the quan‐
tum Hall effect and its variants, topological charge‐pumping experiments provide
an additional avenue towards studying many‐body systems. Here, we consider an
interacting two‐component gas of fermions realizing a family of one‐dimensional
superlattice Hamiltonians with onsite interactions, and a unit cell of three sites,
the ground states of which would be visited in an appropriately defined charge
pump. First, we investigate the grand‐canonical quantum phase diagram of indi‐
vidual Hamiltonians, focusing on insulating phases. For a certain commensurate
filling, there is a sequence of phase transitions from a band insulator to other insu‐
lating phases (related to the physics of ionic Hubbard models) for some members
of the manifold of Hamiltonians. Second, we compute the Chern numbers for the
whole manifold in a many‐body formulation, and show that, related to the afore‐
mentioned quantum phase transitions, a topological transition results in a change
of the value and sign of the Chern number. We provide both an intuitive and a con‐
ceptual explanation, and argue that these properties could be observed in quantum‐
gas experiments.
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Editors’ Suggestion
Topological phases in the Fermi‐Hofstadter‐Hubbard model on hybrid‐space ladders

L. Stenzel, A. L. C. Hayward, U. Schollwöck, and F. Heidrich‐Meisner
Phys. Rev. A 102, 023315 (2020) [2]

In recent experiments with ultracold atoms, both two‐dimensional (2D) Chern in‐
sulators and one‐dimensional topological charge pumps have been realized. With‐
out interactions, both systems can be described by the same Hamiltonian, when
some variables are being reinterpreted. In this paper, we study the relation of both
models when Hubbard interactions are added, using the density‐matrix renormal‐
ization‐group algorithm. To this end, we express the fermionic Hofstadter model
in a hybrid‐space representation, and define a family of interactions, which con‐
nects 1DHubbard charge pumps to 2DHubbard Chern insulators. We study a three‐
band model at particle density ρ = 2/3, where the topological quantization of the
1D charge pump changes from Chern number C = 2 to C = −1 as the interac‐
tion strength increases. We find that the C = −1 phase is robust when varying
the interaction terms on narrow‐width cylinders. However, this phase does not ex‐
tend to the limit of the 2D Hofstadter‐Hubbard model, which remains in the C = 2
phase. We discuss the existence of both topological phases for the largest cylinder
circumferences that we can access numerically. We note the appearance of a fer‐
romagnetic ground state between the strongly interacting 1D and 2D models. For
this ferromagnetic state, one can understand the C = −1 phase from a band‐struc‐
ture argument. Our method for measuring the Hall conductivity could similarly
be realized in experiments: We compute the current response to a weak, linear po‐
tential, which is applied adiabatically. The Hall conductivity converges to integer‐
quantized values for large system sizes, corresponding to the system’s Chern num‐
ber.
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List of symbols
In alphabetical order.

A Berry connection
α magnetic flux α = p/q per plaquette in the Hofstadter model,

or superlattice wave number in a charge pump
ĉ† SU(2)‐invariant fermionic particle creator
C Chern number
χHall linear Hall current response
δ superlattice phase (in chapter 3), or angle of twisted boundaries (in chapter 4)
∆ many‐body energy gap, cf. section 2.2.1 for definitions
E energy
ϵ electric field
F Berry curvature
ĵ current density operator
k quasimomentum coordinate
K total quasimomentum, i.e., ZW symmetry label of a many‐body state
L linear system size
m MPS bond dimensions
Mi MPS tensor on site i
µ chemical potential
N total particle number
ν band index
p numerator of α
q denominator of α, i.e., number of Hofstadter bands
ρ particle density, i.e., N/(LW ); Electrical resistivity in chapter 1
S total spin, i.e., SU(2) symmetry label
σ label of spin‐1/2 degree of freedom; Also, electrical conductivity in chapter 1
t[y] tunneling rate [along y]
τ time (in units t−1)
θ angle of twisted boundaries in chapter 3
U interaction strength; Also, voltage in chapter 1
V potential strength: Superlattice potential in chapter 3,

and weak, linear potential in chapter 4
W width of 2D lattice, typically the circumference of a cylinder
x real‐space coordinate along L in lattice sites
y real‐space coordinate alongW in lattice sites
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Context & Outline
I am struck by how important the use of stripped down toymodels has been
in discovering new physics. It also used to be thought that one‐dimensional
models were just “homework exercises” to be carried out before tackling the
“real” three‐dimensional systems. F. Duncan M. Haldane [3]

Forty years ago, the discovery of the quantum Hall effect [4] kick‐started research in
entirely new phases of matter: Quantum systems, comprising many particles, exhibit
exactly integer‐quantized physical properties, regardless of noise, or dirt, or other mi‐
croscopic details. The robust properties of such systems were quickly related to the
mathematical concept of topology—and the 2016 Nobel Prize in physics honored theo‐
retical contributions to topological quantum matter [5].

The first part of chapter gives a brief, historical review of topology in condensedmatter
physics. The aspects which are relevant for understanding this thesis will be discussed
in more detail in chapter 1. The second section touches on the recent progress in real‐
izing topological phases in ultracold‐atom experiments. These very clean, and highly
controllable quantum systems allow for experimental implementations of theoretical
“toy models”, and are the main motivation for this work.

Topological quantummatter

This section is based on the Nobel lecture by F. Duncan M. Haldane [3], who reviewed
the historical development of this research field. After the surprising experimental dis‐
covery of robust, integer‐quantized plateaus of the Hall conductivity in 1980 [4], many
discoveries were made in a short time span. Arguably, experimental progress was
quicker than the theoretical research: Tsui, Störmer, and Gossard [6] discovered frac‐
tionally‐quantized Hall conductivity merely two years later. However, the rich physics
associated with this effect is beyond the scope of this thesis. Wewill only briefly discuss
possible generalizations of our methods to fractionally‐quantized states in section 5.2.

The unexpected observation in the experiment by Klitzing et al. [4] was that the con‐
ductivity is totally insensitive to changes of charge carrier density. A naive explanation
using Landau levels, as we will show in section 1.2, would expect that the number of
charges has to match the number of states in the relevant level perfectly in order to ob‐
serve such results. Whilemodern experimentalmethodsmight allow for such precisely
tuned configurations, it is clearly an unreasonable assumption for solid‐state physics.

On the theoretical side, it was quickly realized that disorder in the sample is the reason
behind quasi‐perfectly (1 : 109) quantized conductivity. Disorder allows for localized
states, which can be occupied by spare charges. Laughlin [7] made his famous argu‐
ment for the gauge invariance of the localized states, such that the conductivity cannot
change while a mobility gap exists. In 1982, Halperin [8] extended Laughlin’s analysis,
and noticed the importance of current‐carrying states at the edge of the clean sample.
To some extend, edge states can be understood as semi‐classical skipping orbits, but
they are key to the topological properties, due to the bulk‐edge correspondence [9].
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In the same year, Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [10] took a dif‐
ferent route, and were able to relate bulk properties to a topological invariant. They per‐
formed calculations for the Hofstadter model [11], which was an odd choice at the time:
The model rather applies to magnetic fields which are much stronger than realizable
in solid‐state systems. TKNN also did not include disorder in the Hamiltonian. Thus,
despite the topological nature of the TKNN invariant, their result is not robust under
changes of the carrier density. Nowadays, different implementations of artificial gauge
fields allow for the experimental realization of the Hofstadter model [12–14]. This mo‐
tivates us to choose a similar setting as TKNN, and we will discuss their derivation in
section 1.4.

This thesis will not follow the historical order, and we will first introduce topology via
the Berry phase in section 1.3. Berry’s paper was only published in 1984 [15], but the
relation of the TKNN invariant and Berry’s was quickly discovered by Simon [16]. Ac‐
tually, Simon’s paper was published already in 1983, because Berry [15] was held up by
the referees [17]. These relations give us the Berry curvature, an analog of the magnetic
field in parameter, or momentum space. Its integral over a closed manifold then yields
the topological invariant, i.e., the Chern number.

So far, topological properties were only known in “esoteric, field‐dependent” models
(quote: Haldane [3]), like the Hofstadter model. However, in 1988 Haldane realized
that a net magnetic field is not necessary for a non‐trivial Chern number, but that it is
sufficient to break the time‐reversal symmetry. At the time, the Haldanemodel [18] was
no less of a toy model than the Hofstadter model, but today it has also been realized
experimentally [19, 20].

Haldane’smodel also served as inspiration for the discovery of a new class of symmetry‐
protected topological (SPT) phases. In 2005, Kane and Mele [21] proposed a time‐rever‐
sal symmetric model by basically combining conjugate copies of the Haldane model
for each spin species. Due to preservation of time‐reversal symmetry its Chern number
must vanish, as does the charge Hall current. However, the helical edge modes are pre‐
served, and can be related to aZ2 topological invariant. This in turn relates to quantized
spin Hall conductivity. The quantum spin Hall effect [22] was soon after discovered by
König et al. [23] in 2007. We note that combining conjugate Chern insulators is too sim‐
plistic: Realistic Hamiltonians which describe the quantum spin Hall effect contain
spin‐orbit coupling [24], such that the total spin is not a good quantum number.

The subsequent research on topological insulators is beyond the scope of this introduc‐
tion. However, we want to comment on the use of definitions: Commonly, “topological
insulator” is only used for models without an external magnetic field, and similarly
“Chern insulator” may only be used for models exhibiting the quantum anomalous Hall
effect. We think that these definitions do not really apply to the setting in cold‐atom
gases, because each term in the Hamiltonian has to be engineered, anyway. We will
use “Chern insulator” more inclusively for any quantum phase which is associated to a
non‐trivial Chern number.

Today, the classification of SPT phases has been completed [25]. But the interplay of
particle interactions and topological properties remains of research interest thanks to
new experimental methods to engineer Hamiltonians.
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Topological phases in ultracold‐atom gases

The lattice models studied in this thesis are not directly targeted at particular exper‐
imental realization. The Hamiltonians are rather clean “toy models”, and additional
terms, like traps or disorder, would have to be considered to describe real physical
systems. However, we are very much motivated by the recent progress in quantum
simulation using ultracold atomic gases in optical lattices.

The main advantage of engineering Hamiltonians for cold‐atom gases over solid‐state
materials is the ability to tune particle interactions [26, 27]. In particular onsite, Hub‐
bard interactions, which are also of some theoretical interest, are commonly imple‐
mented. While there are other approaches to quantum simulation of topological mod‐
els, they tend to be more limited than ultracold atoms: Photonic systems have been
used to realize a number of topological Hamiltonians [28]—however, there is currently
no way to implement interactions. Superconducting qubits have also been used as
quantum simulator of topological systems [14, 29]. While qubits promise to be themost
versatile approach to quantum simulation, the accessible system sizes are currently
very limited.

In order to implement a topological band structure in cold‐atom experiments [30], one
typically has to engineer complex tunneling amplitudes in a 2D lattice [31–33]. Artificial
gauge fields can for example be realized using laser‐assisted tunneling in order to im‐
print phases [34]. The 2DHofstadter Hamiltonian was implemented in real space using
this method [12, 13, 35].

Since this approach requires laser‐driven coupling between adjacent lattice sites, one
can rethink the idea of dimensionality, and use e.g. spin [36] or momentum [37] as a
synthetic dimension. The number of sites along the synthetic dimension is typically lim‐
ited, but the edge states, due to their topological nature, are preserved [38]. These chiral
edge modes were observed using the spin degree of freedom as a synthetic dimension
[37, 39–41]. Furthermore, limited number of spin states can be mitigated by using pe‐
riodic boundaries [42]. Synthetic‐dimensional optical lattices have also been used to
simulate spin‐orbit coupling [43–47].

A different approach to realizing artificial gauge fields is based on Floquet engineering
[48, 49]. Applying a periodic force to a cold‐atom system can yield an effective, time‐
independent Hamiltonian which may include gauge fields [50]. This approach yielded
experimental realizations of the Haldane model [19, 51, 52]. Due to the driving forces,
the topological invariants in Floquet systems are defined on periodic quasienergy bands
with no exact analog in energy‐conserving systems [53, 54].

So far, most experiments have been performed with either non‐interacting particles
or hard‐core interactions. In this case, the topological properties also exists in a fam‐
ily of lower‐dimensional Hamiltonians [55]. The resulting models often do not contain
complex terms, potentially simplifying the experimental setup. In realizations of pa‐
rameterized models, the Zak phase obtained through shifting superlattice potentials
was measured [56], as well as the Berry phase gained by moving a wave packet around
a Dirac cone [57].
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As we will discuss in section 1.5.2, families of 1D periodic lattices can also represent
topological charge pumps, which have been realized with ultracold atoms [58, 59]. The
concept of reducing physical dimensions while increasing the parameter space has
been extended to simulate 4D quantum Hall physics [60]: Realizing a two‐dimensional
charge pump in optical lattices, the second Chern number [61] can be measured [62].

Having argued that both interactions and topological bands can be realized in ultra‐
cold‐atom experiments, it is the next logical step to put both things together, and study
the rich physics of interacting topological phases of matter [63]. Unfortunately, such
experiments have so far only been performed in the few‐body limit [64], or certain 1D
systems [58, 65] due to heating: Implementations of complex tunneling rates typically
do not conserve energy, andwill therefore increase the temperature indefinitely [66, 67].
However, the relevant timescales depend on experimental parameters, and optimizing
the lifetime of low‐energy states in driven systems is a field of active research in ultra‐
cold atoms [68–74].

xiv



Outline

This thesis is structured as follows: Chapter 1 introduces the physics of the quantum
Hall effect, and motivates the models studied in the following chapters. We start from
the simplest description, i.e., Landau levels in section 1.2. Section 1.3 motivates the
definition of the Berry curvature, and in section 1.4, we follow TKNN to derive a similar
formula, albeit with different assumptions, and a different interpretation. We proceed
to introduce the paradigmatic Hofstadter model in section 1.5, and discuss its topologi‐
cal band structure, as well as its relation to Thouless pumps.

Chapter 2 discusses our numericalmethods. Primarily, we rely on the DMRG algorithm:
We will only sketch this method in section 2.1, because implementing DMRG was not
part of this thesis. Instead, we will discuss the numerical observables used throughout
the following chapters in more detail in section 2.2. We will also touch on our methods
to improving, and verifying convergence of the DMRG algorithm in section 2.3.

Chapter 3 and 4 discuss our numerical findings in one‐ and two‐dimensional lattice
models. In chapter 3, we restrict ourselves to strictly 1D systems. Topological proper‐
ties are then defined for a family of models, which may be interpreted as a topological
charge pump. We discuss insulating phases in 1D superlattice models in section 3.2,
and recover the quantum phase transitions of the well‐known ionic Hubbard model
for some members of our family of Hamiltonians. We continue to discuss topological
pumping in those interacting insulators in section 3.3. We find that interactions both
create and change topological indices as the quantum phase transitions open and close
many‐body gaps. We try to give an intuitive explanation for our findings, and discuss
whether these effects are observable in a cold‐atom experiment.

In chapter 4, we proceed to studying two‐dimensional descriptions of Hofstadter mod‐
els. We show in section 4.2 that the 1D topological transitions, discussed in section 3.3,
can also be observed as quantized Hall conductivity in a cylindrical geometry—albeit
with an uncommon choice of particle interactions. We observe a topological transi‐
tion as we go to the usual 2D Hofstadter‐Hubbard model, which seems to remain adi‐
abatically connected to the free Hofstadter model. In section 4.3, we find a region in
our space interaction parameters where the ground state is ferromagnetic. Ferromag‐
netism has implications for topological properties, and this observation seems to sup‐
port our intuitive argument from section 3.3. We conclude by extending our results to
the isotropic Hubbard‐Hofstadter model in section 4.4.

Chapter 5 discusses directions in which our research could be continued. A main open
question is understanding the mechanism for the ferromagnetic ground state. In sec‐
tion 5.1, we propose a way to derive an effectivemodel, whichwould rely on a particular
choice of interaction terms. Section 5.2 discusses applying our numerical methods to
fractional quantum Hall states. We show preliminary results for a simplified lattice
model, and describe the problems which prevented us from obtaining more and better
results.
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1A brief introduction to quantumHall physics
This chapter introduces the quantum Hall effect and its relation to topology. It aims to
give context to some concepts used in the rest of this thesis—but has no aspirations to be
exhaustive. For a more in‐depth introduction to quantumHall physics, we recommend
the lecture notes by David Tong [75], which are the basis for some parts of this chapter.
However, many modern books on condensed‐matter theory cover topological phases,
and discuss the quantum Hall effect from different angles [76–79].

1.1 QuantumHall effect

The quantum Hall effect was discovered by Klaus von Klitzing [4] in 1980, and he was
awarded the Nobel Prize five years later [80]. Interestingly, he did not share the prize
with any theoretical physicists who explained the effect. However, this discovery cre‐
ated a much larger field of theoretical research, which was acknowledged by the 2016
Nobel Prize. In this context, some original publications on quantum Hall physics were
also referenced [5].

The measurements by Klitzing et al. [4] are shown in fig. 1.1. They were performed in
a 2D electronic system at Helium temperatures, subject to a constant, perpendicular
magnetic field. The current I along the long axis, parallel to UPP , is also constant. The
density of free electrons is controlled by, and proportional to, the gate voltage Vg.

The measurements of longitudinal voltage UPP , and transversal Hall voltage UH show
notable features for the same carrier density: UH takes a constant value while UPP van‐
ishes for some gate voltages Vg. On these plateaus, the Hall voltage takes the constant
values

UH = I × 1

i

h

e2
, i ∈ N . (1.1)

The measurements of UH and UPP directly relate to the resistivity tensor ρ: Assuming
a homogeneous and isotropic medium, and applied electric field ϵ, the steady‐state ob‐
servables fulfill

ϵ =

(
UPP /L
UH/W

)
= ρj =

(
ρxx ρxy
−ρxy ρxx

)(
I/W
0

)
, (1.2)

which yields for a plateau, where UPP = 0,

ρxy = −UH

I
, and ρxx = 0 . (1.3)

The fact thatUPP vanishes greatly improves the accuracy of themeasurements ofUH at
the respective plateaus. The aspect ratioL/W of the 2DHall devices becomes irrelevant,
as do any imperfections of the orthogonal alignment of the voltage probes [4, 81].

While formally equivalent, one sometimes prefers to study the conductivity tensor,

σ := ρ−1 =
e2

h

(
0 i
−i 0

)
, i ∈ N . (1.4)
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Figure 1.1: Discovery of the quantum Hall effect by Klitzing et al. [4]. Hall voltages are mea‐
sured at a constant current I = 1µA, such that the shown plateaus of UH

correspond to RH = 1
i
h
e2

for i ∈ {2, 3, 4, 6, 8, 12}. In this experiment, the
magnetic field is constant at B = 18T, and the carrier concentration is di‐
rectly proportional to the gate voltage Vg. The label n denotes the respective
Landau levels, which are occupied four times due to spin and valley degree
of freedom. The plateaus coincide with the vanishing voltage UPP , parallel
to the current I.

The fact that ρxx = σxx = 0 seems counterintuitive, the system is an insulator despite
the constant current I. The catch is that the current is orthogonal to the voltage, there‐
fore no work is performed on the system, and there is no dissipation.

1.2 Landau levels

The first ingredient to understanding quantized Hall conductivity is basic quantumme‐
chanics: The motion of a charged particle in a magnetic field, cf. Landau and Lifschitz
[82]. While the remaining chapters consider lattice models, we will start with a contin‐
uum description, and introduce the lattice in section 1.4.2.

The Hamiltonian for a particle with charge −e and mass m subject to a magnetic field
is given by minimal coupling,

Ĥ =
1

2m

(
p̂+ eÂ

)2
, (1.5)
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where Â is the vector potential of the external field. Here, and in the rest of this work,
wewill restrict the particles’ motion to the x‐y plane, and apply an orthogonalmagnetic
field B. We will use the Landau gauge, such that

Â =
(
0 Bx̂ 0

)T
. (1.6)

Noting that the Hamiltonian preserves momentum p̂y, we can express it in the respec‐
tive basis, using eigenvalues }ky,

Ĥ =
1

2m

(
p̂2x + (}ky + eBx̂)2

)
, (1.7)

and find a set of 1D harmonic oscillators shifted in x by −}ky
eB . The eigenenergies are

therefore given by

En =
e}B
m

(
n+

1

2

)
, (1.8)

and, interestingly, do not depend on ky momentum. This indicates a macroscopic de‐
generacy of the energy levels. The allowed momenta ky are restricted by the boundary
conditions. Assuming that the centers of all oscillators need to be inside the 2D system
of widthW and length L, there is a second constraint,

ky =
2π

W
× n, n ∈ N0 , and ky ≤

eBL

}
, (1.9)

such that the degeneracyD of each energy level is proportional to the system’s surface,

D =

⌊
eBLW

2π}

⌋
. (1.10)

Applying an electric field

In order to induce a Hall current, we add a linear potential along the x direction, corre‐
sponding to an applied voltage U = ϵL,

Ĥ − eϵx̂ =
1

2m

(
p̂2x +

(
eBx̂+ }ky −

ϵm

B

)2)
+ }ky

ϵ

B
− ϵ2m

2B2
. (1.11)

We will use a similar setup to compute Hall responses numerically in section 4.1.2. The
electric field shifts the centers of the harmonic oscillators by −ϵm/B, polarizing the
system. However, we can ignore such shift when we only care about bulk properties.
The additional term which is linear in ϵ and ky is more relevant: It lifts the degeneracy
of each Landau level and creates a current along the y axis,

⟨v̂y⟩bulk = ⟨∂τ ŷ⟩bulk =

〈
1

i}

[
ŷ, Ĥ − eϵx̂

]〉
bulk

=
ϵ

B
, (1.12)

where we denote the time by τ in order to avoid confusion with the tunneling rate t in
the following chapters. Putting things together, we find for the current along the y axis
of a fully occupied Landau level,

I = −e ⟨v̂y⟩
D

W
= −e

2

h
U . (1.13)

CHAPTER 1. A BRiEF iNTRODUCTiON TO QUANTUM HALL PHYSiCS 3



source

drain

Figure 1.2: Topology of a quantum-Hall experiment. Considering the leads as part of the
experiment (left), it can be understood as a flux‐pierced disc or cylinder (cen‐
ter) as in Laughlin’s argument [7]. It is topologically equivalent to a domain
with two flux‐pierced holes (right), as considered by Avron and Seiler [85].
Illustration inspired by Avron and Seiler [85].

This matches the Hall voltageUH in eq. (1.1), measured for each plateau—Landau levels
can give the correct value for the quantizedHall conductivity. However, that is not what
makes the data in fig. 1.1 remarkable. The fact that UH(Vg) exhibits plateaus, which do
not depend on the precise particle number, is something Landau levels cannot explain.

In short, the great precision of the quantized plateaus is actually due to disorder in
the sample, and the localized states it creates. We do not actually consider disorder in
this thesis, because we are rather interested in experimental realizations with ultracold
atoms: Optical lattices are pretty much perfectly clean and periodic, and in order to
realize disorder, aperiodic optical potentials have to be added [83, 84]. Therefore, we
do not expect to observe Hall plateaus in our numerical simulations. However, the
robustness of the Hall plateaus can be understood in terms of the system’s topology,
which we will discuss in the following sections.

1.3 Berry phase

In order to define topological quantities, we need to talk about boundary conditions.
They are at the heart of the famous argument by Laughlin [7], why localized states do
affect quantized conductivity: It relies on using a geometry which is periodic in y, a
Corbino ring, such that flux can be threaded though its center. Changing the flux adi‐
abatically pumps extended states from one side to the other, while localized states are
unaffected. We will come back to topological charge pumping in section 1.5.2.

Assuming certain boundary condition might be unsatisfying, physically. However, as
pointed out by Avron and Seiler [85], the experimental setup of fig. 1.1 is not topologi‐
cally trivial: When the connections of source and drain, as well as the Hall probes are
taken into account, one ends up with a toroidal geometry, see fig. 1.2. Using a cylindri‐
cal geometry, we may thread a flux δ trough the hole, equivalent to introducing a twist
angle to the periodic boundaries. We assume that we can increase the flux adiabatically,
and that the system is gapped for all values of δ. Under these circumstances, the adia‐
batic theorem tells us that the system needs to return to the initial state as δ → δ + 2π.
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When we say that the system returns to its initial state after a cyclic and adiabatic evo‐
lution, we mean that the final state is in the same equivalence class: There can always
be a complex phase ϕ, which usually is physically irrelevant,

|ψ⟩ δ → δ+2π−−−−−−−→
adiabatically

eiϕ |ψ⟩ . (1.14)

In order to calculate the phase, we introduce an instantaneous eigenbasis {|ψn(δ)⟩} for
each δ,

Ĥ(δ) |ψn(δ)⟩ = En(δ) |ψn(δ)⟩ . (1.15)

We prepare a state |ψ(τ = 0)⟩ in an eigenstate |ψn(δ)⟩ for δ = δ(τ = 0). Assuming that
state is gapped for the entire evolution, |ψ(τ)⟩will remain in the nth eigenstate, but will
acquire a complex phase,

|ψ(τ)⟩ = exp
(
−i
}

∫ τ

0
dτ ′E

(
δ
(
τ ′
)))

eiγ(τ) |ψn(δ(τ))⟩ . (1.16)

The first exponential is just the time evolution of the eigenstate. But there is an addi‐
tional, geometric phase γ, related to the change of eigenstates with respect to δ. This is
known as the Pancharatnam‐Berry phase [15, 86], and we can find an expression for it
by plugging our ansatz, eq. (1.16), into the Schrödinger equation,

dγ
dτ

= i ⟨ψn(δ) | ∂δψn(δ)⟩
dδ
dτ

. (1.17)

Here, we have assumed that |ψn(δ)⟩ is differentiable, putting some constraints on the
gauge choices. However, this will not be relevant for us studying only finite differences
numerically in section 2.2.3. More importantly, eq. (1.17) is not uniquely defined, as
it depends on the gauge chosen for |ψn(δ)⟩. But that is okay, in the end, we are only
interested in the phase after completing a closed loop C in parameter space,

γ(C) =
∮
C
dδ i ⟨ψn(δ) | ∂δψn(δ)⟩︸ ︷︷ ︸

=:An(δ)

. (1.18)

We see that the phase does not depend on time τ anymore, assuming that the evolu‐
tion is adiabatic. Therefore, we may define the Berry connection An(δ), which is time‐
independent, but depends on gauge.

1.3.1 Berry curvature

In order to define further physical, i.e., gauge‐invariant quantities we have to consider
a higher‐dimensional parameter space. We will take a family of Hamiltonians Ĥ(δ),
parameterized by a vector of parameters δ ∈ P ⊂ Rd.

As a consequence, the Berry connectionA also becomes a vector. Oncemore assuming
differentiability of the ground state w.r.t. δ, we find,

A(δ) := i ⟨ψ(δ) |∇δψ(δ)⟩ . (1.19)
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Under reasonable assumptions on our parameter space P, we can rewrite the path in‐
tegral over C = ∂S into an integral over the surface it encloses. Here, the fact that we
considered δ in a d‐dimensional parameter space comes back to bite us: We are used
to the same procedure, expressing the magnetic fieldB = ∇×A in terms of its vector
potential. But this vectorial definition only works in 3D.

We will briefly work in the d‐dimensional case, but in the rest of this thesis we will only
explicitly consider the parameter space spanned by two flux piercings P = T2. Under‐
standing of differential geometry will not be required, though we may recommend the
book by Hubbard and Hubbard [87] to the avid reader. Using the generalized Stokes’
theorem, we find

γ =

∮
∂S

∑
i

Ai(δ)dδi =
∫
S
d

(∑
i

Ai(δ)dδi

)
=

∫
S

∑
ij

∂Ai(δ)

∂δj
dδj ∧ dδi . (1.20)

We can thus introduce the Berry curvature as the field, which is integrated over S. Typi‐
cally, the tensorial Berry curvature is defined in an antisymmetrized way [75, 88],

Fij(δ) =
∂Aj

∂δi
− ∂Ai

∂δj
. (1.21)

The Berry curvature F has the desired properties of a field, i.e., it is local in P (unlike
γ(C)), and gauge independent (unlike A(δ)). The latter will become more obvious in
section 1.3.2.

In most cases, two‐ or three‐dimensional parameter spaces P suffice. The case of a 3D
system was considered in the original paper by Berry [15]. The Berry curvature F can
then be interpreted as a vector, just like the magnetic field in real space,

Fk :=
∑
i,j

ϵkijFij = (∇×A)k . (1.22)

In section 2.2.3, we will only compute the Berry curvature in a 2D parameter space,
which has only a single independent entry. However, we will extend the parameter
space in section 3.3.3, which could also be described by a tensorial curvature.

1.3.2 Poles & degeneracies

Working in a higher dimensional space, we can now close the (orientable) surface S =
∂V and apply Stokes’ theorem a second time to arrive at an integration over the enclosed
volume V. Defining ∂i := ∂

∂δi
, we find∮

S

∑
ij

∂jAi(δ)dδj ∧ dδi =
∫
V

∑
ijk

∂k∂jAi(δ)dδk ∧ dδj ∧ dδi . (1.23)

This integral does not directly relate to γ(C), anymore, but it is easy to compute: If
∂k∂jAi exists everywhere in V, the derivatives commute, while the wedge product anti‐
commutes. The integral therefore needs to vanish—which is simply a generalization of
the three‐dimensional statement div rotA = 0.
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However, there can be poles of the Berry curvature F , defined in eq. (1.21). Once again,
we use a countable eigenbasis {|ψn(δ)⟩ , n ∈ N0} for eachHamiltonian Ĥ(δ). The Berry
curvature of the ground state |ψ0⟩ can then be written as

Fij = ∂iAj − ∂jAi = 2ℑ⟨∂jψ0 | ∂iψ0⟩ = 2
∑
n>0

ℑ [⟨∂jψ0 |ψn⟩ ⟨ψn | ∂iψ0⟩] . (1.24)

We left out n = 0 when inserting the identity, because from |ψn⟩ being normalized it
follows that

i ⟨ψn | ∂iψn⟩ ∈ R , (1.25)

such that this term does not contribute to the sum in eq. (1.24). The terms ⟨ψn | ∂iψ0⟩
depend on gauge choice, and require the derivative to be well defined. We can refor‐
mulate the expression by acting on the instantaneous basis with a partial derivative,(

∂iĤ
)
|ψn⟩+ Ĥ |∂iψn⟩ = (∂iEn) |ψn⟩+ En |∂iψn⟩ , (1.26)

and take the overlap with a second eigenstatem ̸= n,〈
ψm

∣∣∣ ∂iĤ ∣∣∣ψn

〉
+ Em ⟨ψm | ∂iψn⟩ = En ⟨ψm | ∂iψn⟩ . (1.27)

This yields an explicitly gauge‐independent expression of the Berry curvature, which
exhibits poles for parameters δ where the ground state |ψ0⟩ becomes degenerate,

Fij = 2
∑
n>0

ℑ⟨∂jψ0 |ψn⟩ ⟨ψn | ∂iψ0⟩ = 2
∑
n>0

ℑ

〈
ψ0

∣∣∣ ∂jĤ ∣∣∣ψn

〉〈
ψn

∣∣∣ ∂iĤ ∣∣∣ψ0

〉
(En − E0)2

. (1.28)

The integrated Berry curvature over a closed, orientable surface S can therefore be
written as

1

2

∮
S

∑
ij

Fij(δ)dδj ∧ dδi = 2πC , C ∈ Z . (1.29)

where the Chern number C is given by the enclosed degeneracies.

1.4 TKNN equation

We have introduced the Berry curvature F in eq. (1.28), and shown that integrating it
over a closed, orientable surface in parameter space yields integer quantized values.
Here, we will derive a very similar formula for two‐dimensional lattice models. This
derivation was published by Thouless, Kohmoto, Nightingale, and den Nijs [10], and
their result is therefore known as TKNN equation. They take a more “physical” ap‐
proach, starting from linear‐response theory, and find that the integral of the Berry
curvature actually relate to physical observables.
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1.4.1 Linear Response

Quantized Hall conductivity can be probed by applying weak external fields. Therefore,
wewant to compute low orders of the system’s response to a perturbation—in particular
the linear response. We follow the original derivation of the Kubo formula [89], but sim‐
ilar steps can be found in most books on many‐body physics [90, 91], or lecture notes,
for example by Giamarchi et al. [92].

We consider a non‐perturbed system which is described by a constant Hamiltonian Ĥ0.
Initially, the system is in a steady state, described by a density matrix ρ̂. At time τ =
0 a weak, time‐dependent perturbation Ĥp is turned added. Thus, the state ρ̂′ of the
perturbed system becomes time‐dependent,

Ĥ(t) = Ĥ0 + Ĥp(τ) ,
dρ̂(t)
dτ

=
i
}

[
Ĥ(τ), ρ̂(τ)

]
. (1.30)

We assume that the physical state will only be slightly perturbed. Thus, we express the
density matrix ρ̂ by the unperturbed state ρ̂0 and a small, time‐dependent perturbation
ρ̂p(τ),

ρ̂(τ) = ρ̂0 + ρ̂p(τ) . (1.31)

We can split the equation of motion and ignore quadratically small terms,

dρ̂p(τ)
dt

≈ i
}

[
Ĥ0, ρ̂p(τ)

]
+

i
}

[
Ĥp(τ), ρ̂0

]
. (1.32)

The first commutator corresponds to the ‘naturalmotion’ due to the unperturbedHamil‐
tonian Ĥ0. We get rid of it by switching to the interaction picture, which is the Heisen‐
berg picture with respect to the time‐independent Hamiltonian Ĥ0. We transform the
density matrix as,

ρ̂Ip(τ) := e−iĤ0τ/} ρ̂p(τ) eiĤ0τ/} . (1.33)

The first term of the equation of motion, eq. (1.32), thus vanishes,

dρIp
dτ

=
1

i}

[
Ĥ0, ρ

I
p(τ)

]
+ e−iĤ0τ/} dρp

dτ
eiĤ0τ/}=

i
}

[
Ĥ I

p, ρ0

]
, (1.34)

and we can formally integrate the equation,

ρ̂Ip(τ) =
i
}

∫ τ

0
dτ ′
[
Ĥ I

p(τ
′), ρ̂0

]
. (1.35)

Thus, we compute how the expectation value of an observable Ô changes due to the
perturbation of the density matrix,〈

Ô
〉
(τ) =

i
}
tr
(
ÔI(τ)

∫ t

0
dτ ′
[
Ĥ I

p(τ
′), ρ̂0

])
=

i
}
tr
(∫ τ

0
dτ ′ρ̂0

[
ÔI(τ), Ĥ I

p(τ
′)
])

.

(1.36)
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In order to arrive at the Kubo formula for the response to a weak external field h(τ), we
consider linear coupling to an operator P̂ I(τ),

Ĥ I
p(τ) = h(τ)P̂ I(τ) . (1.37)

Thus, we define the susceptibility χ,

χ(τ, τ ′) =
i
}
Θ(τ − τ ′)

〈[
ÔI (τ) , P̂ I (τ ′)]〉

0
, (1.38)

such that the linear response of an operator Ô to a weak applied field h(τ) can be ex‐
pressed as 〈

Ô
〉
(τ) =

∫
dτ ′ χ(τ, τ ′)h(τ ′) . (1.39)

Note that the time dependence in equation eq. (1.38) is merely the time evolution due to
Ĥ0. Therefore, we use its eigenbasis Ĥ0 |n⟩ = En |n⟩ to simplify the expression for the
susceptibility—this is usually called frequency representation, or Lehmann representa‐
tion,

χ(τ, τ ′) =
iΘ(τ − τ ′)

}Z
∑
n,m

(
e−βEn − e−βEm

)
ei(Em−En)(τ−τ ′)/}

〈
n
∣∣∣ Ô ∣∣∣m〉〈m ∣∣∣ P̂ ∣∣∣n〉 ,

(1.40)
where we expanded the commutator. We find that the susceptibility only depends on
time differences. Even though we will only be interested in constant fields in the end,
it turns out to be easier to express the calculations in frequency space. We perform the
Fourier transformation in the upper half‐plane,

χ(ω) =

∫
dτ ei[ω+i0+]τ χ(0, τ)

=
1

}Z
∑
m,n

e−βEn − e−βEm

ω + (Em − En)/}

〈
n
∣∣∣ Ô ∣∣∣m〉〈m ∣∣∣ P̂ ∣∣∣n〉 . (1.41)

The response in eq. (1.39) simplifies, and becomes a product in frequency space,〈
Ô
〉
(ω) = χ(ω)h(ω) . (1.42)

1.4.2 Quantized Hall response

To arrive at the TKNN equation, we just have to plug in the operators relevant to Hall
conductivity. As we did in section 1.2, we have to apply an external electric field to
observe a Hall current. Thus, we add a time‐dependent vector potential via minimal
coupling,

p̂→ p̂− qA(τ) . (1.43)

Here, the potential A is in addition to the vector potential which may, or may not [93],
already be included in the unperturbed Hamiltonian Ĥ0. The linearized perturbation
now couples to the current operator ĵ,

Ĥp = A(τ) · ĵ . (1.44)
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The conductivity tensor σ is thus given by the linear current‐current response, i.e., we
find in frequency space,〈

ĵ
〉
(ω) = σ(ω)ϵ(ω) , where ϵ(ω) = iωA(ω) . (1.45)

Eventually, we are interested in the off‐diagonal entries of σ, and want to find the re‐
sponse to a constant electric field, i.e., ω → 0. Plugging the current operators into the
Kubo formula, eq. (1.41), and taking the low frequency limit, we find

σ(ω) =
1

i}ωZ
∑
m,n

e−βEn − e−βEm

ω + (Em − En) /}

〈
n
∣∣∣ ĵx ∣∣∣m〉〈m ∣∣∣ ĵy ∣∣∣n〉

ω≪1
≈ 1

i}Z
∑
n,m

[
e−βEn − e−βEm

ω(Em − En)/}
+

e−βEn − e−βEm

(Em − En)2/}2

]〈
n
∣∣∣ ĵx ∣∣∣m〉〈m ∣∣∣ ĵy ∣∣∣n〉 . (1.46)

The first summand in the brackets∝ ω−1 is symmetric under exchange ofm↔ n, such
that its contribution to σ is purely imaginary. We can therefore ignore it, even though
it seems to diverge for ω → 0.¹

Finally, we introduce a lattice, and take the low‐temperature limit, i.e., only consider
the ground state. Assuming the Fermi energy EF lies in a band gap, we can express it
by a sum over occupied bands ν, and integrate over the Brillouin zone,

σxy =
1

}
∑
ν

∮
BZ

dkx dky
∑
m

Em>EF

ℑ

〈
k, ν

∣∣∣ ĵx ∣∣∣m〉〈m ∣∣∣ ĵy ∣∣∣k, ν〉
(EF − Em)2 /}2

. (1.47)

Since ĵ is a single‐particle observable, we need only sum over single‐particle states |m⟩.
Furthermore, we can restrict the sum over m to states above the Fermi energy, since
other terms would cancel. TKNN [10] realized that the velocity operator for Bloch elec‐
trons can be expressed by derivatives of the unperturbed Hamiltonian,

ĵ =
e

}

(
∇kĤ0

)
. (1.48)

Therefore, we can directly use our results fromeqs. (1.28) and (1.29) to evaluate eq. (1.47),
and find the TKNN formula,

σxy =
e2

2πh

∑
ν

∮
BZ

dkx dky
∑

Em>EF

ℑ

〈
k, ν

∣∣∣ ∂kxĤ0

∣∣∣m〉〈m ∣∣∣ ∂kyĤ0

∣∣∣k, ν〉
(EF − Em)2

=
e2

h

∑
ν

Cν .

(1.49)

Unsurprisingly, the result looks a lot like the Hall conductivity measured by Klitzing
et al. [4], see eq. (1.4). Except that the Chern number can also be a negative integer.
Though, it is surprising that this calculation is actually really precise: Even for very
weak perturbations, linear response is not typically accurate to 10−9.

¹For quantumHall systems, the term proportional to ω−1 actually vanishes due to gauge invari‐
ance, cf. ref. [75].
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Figure 1.3: The fractal Hofstadter-butterfly band structure. For magnetic flux α = p/q per
lattice plaquette, there are q energy bands, albeit the two center bands touch
for even denominators q. We increased the size of energy bands for large q
for visualization purposes.

1.5 The Hofstadter model

The TKNN formula motivates the notion of a topological band structure, and relates
it to quantized physical observables. Now, we also need a model Hamiltonian which
possesses bands with nontrivial Chern numbers.

Throughout this thesis, we will be studying variants of the Harper‐Hofstadter Hamil‐
tonian [11, 94], which was already used in the derivation by Thouless et al. [10]. Using
annihilation (creation) operators ĉ(†) of spin‐1/2 fermions on a square lattice of width
W and length L, it can be expressed as,

ĤH =

L∑
x=1

W∑
y=1

∑
σ=↓,↑

(
−ty e2iπαx ĉ†x,y,σ ĉx,y+1,σ − tĉ†x,y,σ ĉx+1,y,σ

)
+H.c. (1.50)

Particles tunnel between adjacent lattice sites in x (y) direction at rate t(y). Analog to
the Landau gauge chosen for the magnetic field in section 1.2, there is an x‐dependent
complex phase as particles hop along the y direction. As a particle moves around a
lattice plaquette, it gains a phase e2iπα, corresponding to α flux quanta per plaquette.

By this definition, the two spin species are uncoupled, and observe the same flux pierc‐
ing. Thus, the model breaks time‐reversal symmetry, which is required to find nonzero
Chern numbers. On can also define, and realize [12], a time‐reversal symmetric variant
of the Hofstadter model by making the sign of α spin dependent. The model may then
realize the quantum spin‐Hall effect, described by a Z2 topological invariant.

The Hofstadter model is not actually a good description for condensed‐matter systems:
As noted by Hofstadter [11], extremely strong magnetic fields would be required to re‐
alize α = O(1) magnetic flux‐density per plaquette in a typical crystal. Yet, he was
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fascinated by the fractal spectrum of the Hamiltonian: The band structure of the Hof‐
stadter model strongly depends on the parameter α. Assuming a rational flux density
α = p/q, and periodic boundaries along the width, ĉ(†)x,W+1,σ ≡ ĉ

(†)
x,1,σ, we can perform a

Fourier transformation along the y axis,

ĤH =
L∑

x=1

W∑
ky=1

∑
σ=↓,↑

[
−ty cos (2π(αx+ ky/W )) n̂x,ky ,σ − tĉ

†
x,ky ,σ

ĉx+1,ky ,σ

]
+H.c. (1.51)

Here, the cosinusoidal dispersion relation inherits the spatial dependence of the gauge
field in eq. (1.50). As a result, the magnetic unit cell is q sites long, which reduces the
number of allowed momenta kx, and generally creates q energy bands. We show the
resulting “butterfly” spectrum in fig. 1.3. As noted already in the original work by Hof‐
stadter [11], the case of irrational flux α is particularly interesting from a theoretical
point of view. We will briefly touch on this case in the context of section 1.5.2.

1.5.1 Topological band structure

Most bands ν of the Hofstadter model exhibit nontrivial Chern numbers Cν ̸= 0, which
are defined by identifying δ in eq. (1.29) with quasimomenta {kx, ky}T2 , as we did for
the TKNN formula in eq. (1.49). We do not have to diagonalize eq. (1.51), and compute
the Berry curvature explicitly, because the Chern numbers are solutions to a simple
diophantine equation [10, 95, 96],

r = srq + Crp , where sr, Cr ∈ Z ∧ |Cr| ≤ q/2 . (1.52)

When the Fermi energy lies in the rth band gap, the total Chern number of all occupied
bands is given byCr =

∑r
ν=1Cν . Conversely, the Chern number of the νth band is given

by the difference of the Chern numbers of the adjacent gaps, Cν = Cr=ν − Cr=ν−1.

The band structure for α = 1/3, which we consider in this thesis, is shown in fig. 1.4.
For this case, we will label the lower, middle, and upper band by ν = l,m, u to avoid
confusion with the indices for the gaps. In this case, eq. (1.52) gives C1 = 1, s1 = 0 and
C2 = −1, s2 = 1, such that we have Chern numbers Cl = 1, Cm = −2 and Cu = 1.

Due to particle‐hole symmetry, we can relate the topological index of the rth gap to the
(r′ := q−r)th gap via sr′ = 1−sr andCr′ = −Cr. From this, we can follow that for even
denominators, q ∈ 2Z, the Chern number of the central gap needs to vanish, Cq/2 = 0
However, this is no solution to eq. (1.52)! The contradiction is resolved by the fact, that
the q/2th band gap does not exist: For all even values of q, the center bands touch, and
the Chern number is ill defined.

1.5.2 Charge pumps

In the previous section 1.3, and 1.4, we have used that, for a free model, quasimomen‐
tum is formally the same thing as any other parameter δ of the Hamiltonian. By this
analogy, we can reinterpret themixed real‐ andmomentum‐space representation of the
Hofstadter Hamiltonian in eq. (1.51) as a family of 1D systems,

ĤH(δ) =

L∑
x=1

∑
σ

[
−V

2
cos (2παx+ δ) n̂x,σ − tĉ†x,σ ĉx+1,σ

]
+H.c. (1.53)
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Figure 1.5: Chern numbers in the Hofstadter butterfly. The color of each rth band gap in
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numbers are bounded by |Cr| ≤ q/2, and diverge in a continuum limit—the
corresponding gaps also become arbitrarily small, such that the limit q →∞
is not physically relevant. The color scale is logarithmic for |Cr| > 2 in order
to make Cr = 1 and Cr = −1 distinguishable.
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Obviously, renaming variables does not affect topological properties. However, their
physical interpretation changes: In such cases of a periodic potential, shifted by a pa‐
rameter δ, Thouless [55] discovered that the number of particles transported through
the lattice in each adiabatic cycle δ → δ + 2π is integer quantized in the infinite‐size
limit. Therefore, such models are commonly referred to as Thouless pumps or topologi‐
cal charge (as opposed to: spin) pumps.

We will only motivate the relation of pumped particles and topological invariants, a
more pedagogic derivation can be found in the book by Asbóth et al. [97]. We assume
adiabatic pumping, i.e., that the time‐dependent state |ψ(τ, k)⟩ is close to the instanta‐
neous ground state, | ⟨ψ(τ, k) |ψ0(δ(τ), k)⟩ | ≈ 1. The ansatz wave function, as used by
Thouless [55], needs to take excited states into account,

|ψ(τ, k)⟩ = exp
[
−i
}

∫ τ

0
dτ ′E0(δ(τ

′), k)dτ ′
]

×

[
|ψ0(δ, k)⟩+ i}

∑
n>0

|ψj(δ, k)⟩
⟨ψn(δ, k) | ∂δψ0(δ, k)⟩

En − E0

dδ
dτ

]
. (1.54)

We can reuse the expression for the velocity (particle current) operator in terms of ∂kĤ,
we have already seen in section 1.4, and express it using the spectral decomposition of
Ĥ,

v̂ =
1

}
∂kĤ =

1

}
∑
n

([∂kEn] |ψn⟩ ⟨ψn|+ En |∂kψn⟩ ⟨ψn|+ En |ψn⟩ ⟨∂kψn|) . (1.55)

The number of pumped particles∆N is then given by expectation value of the velocity
operator, integrated over one pump cycle, and over all momenta k,

∆N =

∫
dτ
∮
BZ

dk
2π
⟨ψ(τ, k) | v̂ |ψ(τ, k)⟩ . (1.56)

We are only interested in the case of fully occupied bands. This simplifies the overlap
in eq. (1.56), since ∮

BZ
dk ∂kEn = 0 , (1.57)

and we are left with an integer quantized result,

∆N =

∮
dδ
∮

dk
2π

∑
n>0

i ⟨∂kψ0(δ, k) |ψn(δ, k)⟩ ⟨ψn(δ, k) | ∂δψ0(δ, k)⟩+H.c. = C . (1.58)

This derivation requires a system which is both infinite and periodic [55]. However,
the deviations from integer values found in finite models are typically well behaved
[98, 99], and 1/L extrapolation may be used to improve the results. We show finite‐
size corrections for the free model, discussed in this section, in fig. 1.6. Variants of
topological pumps have been realized both in ultracold‐atomic systems [58, 59, 62, 100]
and using photonics [101, 102].

The 1D model given in eq. (1.53) is also interesting for irrational flux densities α. It is
then known as the Audry‐Andrémodel [103], and of theoretical interest for its transition
to an Anderson‐localized state with potential strength V [104–109]. It has been realized
using ultracold atoms [110, 111] and photonic systems [101].
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Figure 1.6: Finite-size deviation from the quantized result of the Thouless pump. Data are
shown for the free model given in eq. (1.53) and system sizes L ∈ {120, 150,
210, 300, 900, 1500, 4500}. For a single spin species, we reproduce the inte‐
ger quantized Chern number of the lowest band Cl = 1 upon polynomial
finite‐size extrapolation in 1/L. Data are computed in an open system, cor‐
responding to somemodels studied in section 3.3. In this setting, finite‐size
effects are due to the finite extent of edge states.

1.6 Discussion

We have now introduced the basic physical concepts required for our numerical anal‐
ysis in the following chapters. We want to briefly recapitulate some results, and put
them into context.

Integer‐quantized Hall conductivity can be understood in terms of basic quantum me‐
chanics, which yields Landau levels, or in terms of a topological band structure in lat‐
tice models. For strong magnetic fields, the latter exhibits richer physics, as the quan‐
tized Hall conductivity can be of either sign. We do not really care about the absolute
sign of the Hall conductivity—we actually use opposite conventions in chapter 3 and
chapter 4, corresponding to ref. [1] and ref. [2]. However, in section 3.3.2 and section
4.2 we will study topological transitions, where the sign of the Chern number changes
with interaction strength.

Introducing topology, we can understand that integer‐quantization is protected by the
energy gap. This strong statement comes at a cost: We have to consider boundary con‐
ditions. Following the TKNN derivation in section 1.4, we have swept them under the
rug: By integrating over quasimomenta kx,y, we have implicitly assumed an infinite,
toric system.

While it is instructive to define topology of band structures on the {kx, ky} space, this
can only work when the quasimomenta are good quantum numbers. In order to define
topological invariants in interacting systems, we will have to introduce twisted bound‐
ary conditions [112, 113], as we used in section 1.3. Instead of going the instructive way
via linear response as in section 1.4, the analogy of twist angle δ and quasimomentum
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ky can also be read off from the Fourier‐space Hamiltonian. Choosing a spatially homo‐
geneous implementation of the twist angle,

Ĥ(δ) =
∑
x

ty eiδ/W ĉ†y ĉy+1 +H.c. → Ĥ(δ, ky) =
∑
ky

2ty cos (ky + δ/W ) n̂ky , (1.59)

we find that ky and δ enter the free Hamiltonian in the sameway. Therefore, one should
consider the Berry curvature definition on a family of Hamiltonians to be the more
general one, and topological band structure to be the special case for free models.

Considering a family of Hamiltonians on some parameter space might seem unsatisfy‐
ing, and variable twist angles may not be realizable in some experimental setups. In‐
deed, for typical Hamiltonians, the dependence of bulk properties on twist angles is
exponentially suppressed in linear system size [114]. In particular, this means that the
Berry curvature becomes constant in the parameter space of twist angles [115, 116], for
sufficiently large systems.

Lastly, a comment on the dimensionality of parameter spaces. In his original paper,
Berry [15] studied a three‐dimensional parameter space, which is required to create de‐
generacies in generic Hamiltonians. By only considering two quasimomenta, we find
the Hofstadter model to be gapped throughout, but still topologically nontrivial. By the
parameterization of eq. (1.50), we have wrapped the Brillouin zone around the degen‐
erate points. For the one‐dimensional model in eq. (1.53), representing a charge pump,
it is easy to see how to recover the degeneracies: By sending the superlattice potential
strength V , or, equivalently, the anisotropy ty/t in eq. (1.51) to zero, we recover a 1D
tight‐binding model, and all gaps vanish.
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2Methods & observables
This section will outline the numerical methods, and define the observables used in
this thesis. Most results were obtained using the density‐matrix renormalization‐group
algorithm (DMRG) [117–119] for ground‐state search. We will sketch this method in sec‐
tion 2.1, and note some aspects which are particular to our simulations. The following
section 2.2 will introduce the observables which we study in the rest of this thesis. Sec‐
tion 2.3 will discuss some of our methods to improve and verify DMRG accuracy.

2.1 DMRG 101

The DMRG algorithm was invented by Steven R. White [117] in 1992, and is, in general,
the methods of choice to numerically solve 1D models. Implementing the DMRG algo‐
rithm was not part of this work, instead we used the SYTEN toolkit [120]. This section
will therefore be brief: We will introduce some definitions used in the following chap‐
ters, and point out the algorithm’s capabilities and limitations. For the more interested
reader, we recommend the review by Ulrich Schollwöck [119], and also the thesis of
Claudius Hubig [121], who implemented most of our DMRG toolkit.

2.1.1 Matrix‐product states

We consider a lattice of length L, where each site i has d degrees of freedom, i.e., there
exists a local basis {ĉ†σi |0⟩} with a countable set of labels |{σi}| = d for spin, particle
number, etc. Any state can then be written as,

|ψ⟩ =
∑
σ1

· · ·
∑
σL

cσ1,..., σL

L∏
i=1

ĉ†σi
|0⟩ , cσ1,..., σL ∈ C . (2.1)

Thanks to second quantization, this expression looks harmless. But, the indices give
it away, the coefficient tensor c is a huge object with O(dL) entries. While there are
constraints on c, normalization, symmetries, etc., a generic states for L = O(100) can
never be represented on a classical computer.

The simplest way to make the coefficient tensor c manageable is by approximating it
with a product of coefficients,

cσ1,..., σL

product state−−−−−−−→
L∏
i=1

cσi , cσi ∈ C . (2.2)

Such product state is defined by O(dL) coefficients, however it does not allow any cor‐
relations between sites i ̸= j, rendering it useless for many‐body physics.

Matrix‐product states are—as the name suggests—also product states, but use matrices
rather than scalar variables,

cσ1,..., σL

MPS−−→
L∏
i=1

(Mi)σi
, (Mi)σi

∈M (mi−1 ×mi, C) , (2.3)
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where we have introduced the bond‐dimensions mi. A priori, it is not clear that this
approximation is useful. However, we reduced the number of parameters to O(m2dL),
assumingmi ≈ m constant, and we recover the product state form = 1.

Graphical representation

Equation (2.3) looks deceivingly simple, because we let matrix multiplication take care
of all contracted indices. Here, we introduce a graphical representation which retains
readability while making tensor contractions explicit.

Treating the local basis of dimension d on the same footing as the correlation bonds of
dimension m, A is a tensor of rank 3. We will thus represent it by a circle with three
“legs”, as shown in fig. 2.1 (a). Suitable tensor legs can be connected, which represents
a contraction of the corresponding dimension. The coefficient tensor c is a contraction
over all MPS bonds, as shown in fig. 2.1 (b).

Importantly, the contraction fig. 2.1 (b) can also be performed in reverse: Any finite
coefficient tensor c canbe decomposed into anMPSbymeans of repeated singular value
(SVD) or QR decomposition, cf. ref. [119]. This statement means that MPS are dense in
the full Hilbert space. However, it is rather of theoretical interest, since the required
bond dimensionsm will be exponential in system size L.

2.1.2 Ground‐state search

Having introduced MPS, DMRG can be understood as a variational optimization of the
state’s energy [122, 123], one site at a time [119, 124]. Here, we will sketch this method,
and comment on the DMRG3S algorithm [125], which we use throughout this thesis.

The optimization of the MPS tensors can be performed efficiently, because the Hamil‐
tonian can also be decomposed into a series of local low‐rank tensors. Since a Hamilto‐
nian Ĥ connects two states, the tensors representing the correspondingmatrix‐product
operator (MPO) needs to have two physical legs. As shown in fig. 2.1 (c), such tensors
of rank r ≥ 4 can be decomposed into r − 2 rank‐three tensors. Generating MPOs for
arbitrary Hamiltonians efficiently is not trivial, we refer the reader to ref. [126] formore
details on our methods. We denote the bond‐dimensions of the MPO by wi.

Once we have the MPO tensors and a suitable matrix‐product state, expectation values
can be computed via a contraction of the tensor network as shown in fig. 2.1 (d). Note
that the order in which tensor legs are contracted greatly affects numerical cost.

The single‐site DMRGmethod then optimizes the total energy by solving the eigenvalue
equation shown in fig. 2.2 for one site i at a time. The optimization is performed during
a right (left) sweep over the MPS: The optimized tensor M ′i is then contracted with Wi

and Li−1 (Ri+1) yielding Li (Ri). The procedure is then repeated for site i + 1 (i − 1),
where the tensor Ri+1 (Li−2) had been stored in the previous sweep.

This primitive version of a single‐site DMRG algorithm unfortunately tends to get stuck.
To find the true ground state, one either increases the unit cell and optimizes two sites at
once, or adds perturbations to the optimized single‐site tensors. We choose the latter,
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(b)

(a)

(c)

(d)

Figure 2.1: Graphical representation of MPS and MPO tensors. (a) depicts an MPS tensor
with three legs, as it is of rank three. In order to match our color scheme of
section 2.1.3, we draw bonds representing MPS correlations in orange, and
bonds encoding the Hamiltonian in blue. (b) is the graphical representation
of eq. (2.3): Contracting an MPS reproduces the coefficient tensor cσ1,...,σL .
Bonds 0 andL are one dimensional, and are therefore not shown tensor legs.
(c) shows a MPO tensor with four indices. Higher‐rank tensors can always
be decomposed into rank‐three tensors. Expectation values are computed
by contracting a tensor network as depicted in (d). Here, the ‘upper’ MPS
tensors are obtained through Hermitian conjugation. The choice of shape
for each tensor is inspired by refs. [119, 121].

Figure 2.2: Graphical representation of the single-site DMRG eigenvalue problem. The opti‐
mized tensor M ′i is found via a Lanczos method where Li−1, Mi, Wi and
Ri+1 are contracted along the thin lines in each iteration. The Li−1 (Ri+1)
tensors can be restored from the previous right (left) DMRG sweep.
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since it tends to perform better when the Hamiltonians are inhomogeneous, or con‐
tain long‐range terms. The choice of perturbation generally affects numerical cost and
speed of convergence. A detailed description of our DMRG3S method and comparison
with related algorithms can be found in ref. [125].

2.1.3 Boundaries and dimensionality

The reasonwhyDMRGworks sowell for ground states of 1Dmodels is the entanglement
area law: When we split a ground state of a gapped, local Hamiltonian into two, simply
connected parts, their entanglement is proportional to the area, which separates them,
rather than the volume of the subsystems [127, 128], due to exponentially decaying cor‐
relations. This area law is particularly favorable in 1D, because the area of any such
bisection is independent of system size [129].

Entanglement entropy

To be more explicit, we partition a lattice into parts A and B, such that a state |ψ⟩ ∈
H = HA ⊗HB can be Schmidt decomposed as,

|ψ⟩ =
∑
j

sj |aj⟩ |bj⟩ , |aj⟩ ∈ HA, |bj⟩ ∈ HB . (2.4)

The entanglement entropy SAB is then defined in terms of the Schmidt values sj,

SAB := −
∑
j

|sj |2 log |sj |2 . (2.5)

We are primarily interested in the entanglement of a bipartition along one bond of the
MPS. In that case, Schmidt values, or singular values are cheaply obtained during each
DMRG sweep.

Importantly, the number of Schmidt values is given by the bond dimensions m at the
bisection, and thus, the entanglement is bounded by S ≤ logm. Conversely, the en‐
tanglement area law means that finite bond dimensions m suffice to describe ground
states of non‐critical 1D systems.

Periodic boundaries

Most numericalmethods perform better formodels with periodic boundary conditions,
because quasimomentum conservation can be exploited. For DMRG, this is generally
not true, because periodic boundaries increase the entanglement of the MPS. As we
sketch in fig. 2.3, any MPS bond then has to encode two physical nearest neighbors.
Therefore, periodic boundaries generally double the entanglement at each bond, such
that bond‐dimensionsm→ m2 would be required to achieve similar precision.

Note that this rough argument assumes a homogeneous model. The entanglement of
the states simulated in chapter 3, will depend on bond i. Choosing the lowest‐entangle‐
ment bond to cross through the entire MPS can then improve numerical performance.
This is a baby version of lattice reordering, which is important for DMRG in quantum
chemistry applications [130–134].
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Figure 2.3: Representing a periodic systemwith an openMPS.The periodic boundary yields
long‐distance entanglement in the MPS chain. If the state breaks transla‐
tional symmetry, shifting MPS sites can reduce the entanglement entropy,
and numerical cost.

W

L
Site / Tensor
MPS bond
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Figure 2.4: Representing a 2D systemwith a 1DMPS. TheMPS (orange)moves through the
2D lattice (blue) in a “Z” shape. As an example, we show a lattice of length
L = 3 and width W = 4, with periodic boundary conditions only along
the width. As a result, the thick, orange MPS bond in the center needs to
encode 6 =W +2 physical bonds, shown by the thick blue lines. Assuming
an area law, the entanglement grows affinely in the system’swidth, requiring
exponentially large MPS bond dimensions.

2Dmodels

DMRG can also be used for finite, higher‐dimensional lattice models: We just have to
map the terms of a 2D Hamiltonian onto a 1D MPS chain with long‐range interactions
as sketched in fig. 2.4.

Unfortunately, the area law in 2D will make things difficult for us: The entanglement
at any bond of such MPS will be proportional to the width W of the system. Thus,
simulating 2D model generally requires bond dimensionsm → mW+1, and we have to
limit ourselves toW ≤ 6 in this thesis.
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Figure 2.5: Decomposition of an MPS using local quantum numbers. Each dense tensor
blockMi,qj carries a vector (for each symmetry) of quantum numbers qj =
(qj,left qj,top qj,right)

T , where the number of entries corresponds to the rank
ofMi. For Abelian symmetries, only blocks with qright + qtop − qleft = 0 can
be nonzero, where the signs correspond to the direction of the arrows.

The exponential cost clearly stems from the fact that our ansatz does notmatch the phys‐
ical model. Indeed, there are variational wave functions, e.g., projected entangled pair
states [135, 136], which are more efficient for representing 2D area‐law states. Unfortu‐
nately, though, the ground‐state search in these tensor networks ismore expensive than
DMRG. Therefore, DMRG results compare quite well with “real” 2D methods [137–139],
and we expect DMRG to be advantageous for the ladder‐like systems studied here.

2.1.4 Symmetries

The performance of DMRG can be improved when symmetries of the Hamiltonian are
taken into account. In this work, we use particle number conservation, and the SU(2)
spin symmetry. In chapter 4, we study 2D models on a cylinder, and we also exploit
quasimomentum conservation along the system’s width.

Abelian

In order to implement an Abelian symmetry, there need to be well‐defined quantum
numbers for the physical index σi on each site. For the particle number, this is usu‐
ally trivial, because the local basis is built‐up from particle‐creation operators. For any
state which preserves the symmetry, we can also label the MPS bonds with quantum
numbers: Each rank‐three MPS tensorMi can then be decomposed into blocks labeled
by a vector of quantum numbers,

Mi =
⊕
j

Mi,qj , qj,left = qj,top + qj,right , ∀i, j , (2.6)
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and only blocks which preserve the symmetry are possible. Such tensor decomposition
is sketched in fig. 2.5. Here, we also show arrows on each tensor leg, indicating the
“direction” of the symmetry labels, i.e., for Abelian symmetries, the signs in eq. (2.6).

Enforcing quasimomentum conservation is slightly more involved. Firstly, our Hamil‐
tonian needs to preserve momentum, meaning there have to be periodic boundaries.
Then, we need a description of the model, where quasimomentum has local symmetry
labels, i.e., express it in k space. Finally, we need to take into account that the quasi‐
momentum is 2π periodic, and tensor blocks need to be merged accordingly. The last
point is a technicality, and rather straightforward. Let us elaborate on the prior ones:

• Aswe discussed in section 2.1.3, periodic boundaries are generally inefficientwith
DMRG. This also holds for 2D models: As sketched in fig. 2.4, cylindrical bound‐
aries increase the required bond dimensions for an area‐law state. However, mod‐
els with periodic boundaries may converge much quicker inW → ∞, especially
when twist angles are taken into account [140–142], such that the increased cost
might be worth it.

• In order for k to be a local quantum number, we need to Fourier transform the
model into momentum space. This simplifies the kinetic terms, but increases the
complexity of real‐space interactions: Onsite Hubbard repulsion will be delocal‐
ized over the entire system. This does not only have consequences for the MPO
construction, but it also means that the Hamiltonian becomes nonlocal, and the
entanglement area law need not hold.

Performance wise, quasimomentum conservation yields W tensor blocks, which gen‐
erally reduces the numerical cost as O(m3) → O(W (m/W )3). This argument is a bit
simplistic, because the entanglement may be different in Fourier space. We are not
aware of a general relation of bond dimensionsm in real space and momentum space,
for fixed accuracy. The bond dimensions m required to achieve a target accuracy de‐
pend onmodel parameters, like interaction strength, system size, and particle number,
but also on the ordering of k labels along theMPS [143–146]. In our simulations, we find
it to be advantageous to exploit the quasimomentum conservation along the width of
an elongated cylinder. For the narrow widthsW ≤ 6 studied here, the loss of the entan‐
glement area law seems to be outweighed by the benefits of the additional symmetry.
In contrast, enforcing momentum conservation along a 1D model typically yields poor
performance.

Non‐Abelian

Enforcing non‐Abelian symmetries, e.g., SU(2) spin symmetry, in DMRG is not a new
idea [147]. However, they are less commonplace in tensor‐network toolkits, because
their implementation is technically more involved than for Abelian symmetries. We
will not go into any details, which can be found in the thesis by Claudius Hubig [121],
but discuss the consequences of SU(2) invariance from a user’s perspective.

Firstly, the dimension of the local basis is reduced: we can no longer tell ↑ and ↓ states
apart, but only label them as S = 0 (vacuum or doubly occupied) or S = 1/2 (singly
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occupied). These quantum numbers can be attached to each tensor leg, and, as we had
seen with Abelian symmetries, only tensor blocks with matching labels may be con‐
tracted. The technical difficulties now stem from the fact that the outgoing quantum
number qleft is not uniquely determined by the incoming legs qright and qtop. Instead, the
possible combinations are given by (generalized) Clebsch‐Gordon coefficients.

For the user, this just means that in addition tomakingMPS tensorsmore sparse (as the
AbelianSz symmetrywould do), we canwork in a reduced space. Since theHamiltonian
is SU(2) invariant, we can ignore the Sz quantum label: A single vector for spin S is
sufficient to describe the 2S+1 dimensional subspace. Therefore, we effectively reduce
the required bond dimensionsmi by a factor

mi,U(1)

mi,SU(2)
≈ ⟨2Si + 1⟩ . (2.7)

where we average the occupation of symmetry labels at eachMPS bond—i.e., Si denotes
the total spin to the right of bisection i. This relation is not exact, since ⟨Si⟩ depends
on the magnitude of the respective Schmidt values, while the ratio of bond dimensions
does not.

ForHamiltonianswithHubbard‐like particle‐particle repulsion, the ground state is usu‐
ally the global spin‐singlet. In this case, one typically findsmi,U(1)/mi,SU(2) ≈ 2.5. Since
DMRG scales as m3, and the overhead for operations involving Clebsch‐Gordon coeffi‐
cients is generally small, one should then expect a speed up by a factor of 16. However,
the performance advantage can be much larger when the true ground state is in an
S > 0 symmetry sector. We will discuss one such case in section 4.3.

2.2 Observables

This section will define the observables we use to characterize ground states and quan‐
tum phases. We can obviously compute the state’s energy, which is optimized variation‐
ally, and expectation values of local observables, e.g. the particle number, which are
used to label symmetry sectors, cf. section 2.1.4. These basics are explained in most
reviews on MPS, e.g. ref. [119]. Importantly, due to enforcing SU(2) spin symmetry, the
Sz expectation values vanish identically,〈

Ŝz
〉
:=

1

2
⟨n̂↑ − n̂↓⟩ = 0 . (2.8)

Furthermore, we can only compute the SU(2)‐invariant single‐particle correlators,〈
ĉ†i · ĉj

〉
:=

〈(
ĉ†i,↑ ĉ†i,↓

)
·
(
ĉj,↑
ĉj,↓

) ∣∣∣∣
S=0

〉
. (2.9)

Details on the definition and implementation of such SU(2) invariant operators can be
found in ref. [121]. We can thus compute the spin‐independent one‐particle (reduced)
density‐matrix (OPDM) ρ(1), which contains all single‐particle correlators,

ρ
(1)
i,j =

∑
σ

〈
ĉ†i,σ ĉj,σ

〉
. (2.10)
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We use the OPDM in chapter 3 to extract occupations of eigenstates of the free Hamilto‐
nian. The noninteracting eigenbasis is obtained from a linear transformation ĉν,k̃,σ =∑

j

(
aν,k̃

)
j
ĉj,σ. For nondegenerate states, we can thus compute the total occupation nν

of the νth bands
nν :=

∑
k̃

⟨n̂ν,k̃⟩ =
∑
i,j

(
aν,k̃

)†
i
ρ
(1)
i,j

(
aν,k̃

)
j
, (2.11)

where ⟨n̂ν,k̃⟩ =
∑

σ⟨n̂ν,k̃,σ⟩ and ⟨n̂ν,k̃,σ⟩ is the quasi‐momentum distribution function of
fermions with spin σ in the νth band, with ν ∈ {l,m, u} corresponding to the lower,
middle and upper band, respectively.

2.2.1 Energy gaps

By adapting the DMRG algorithm, we can not only find the ground state but also few
excited states, which gives us access to the energy gap ∆. Since we are speaking of
many‐body states, we can define different types of gaps.

The first gap is between the lowest‐lying states for the same symmetry labels S, N (and,
potentially, K). We will call this the internal gap ∆int. It is obtained by performing a
second DMRG run, while projecting out the true ground state [119],

∆int := E1(N,S[,K])− E0(N,S[,K]) . (2.12)

This gap is related to topological quantization, i.e., the many‐body Chern number of
the ground state in a given symmetry sector changes only if ∆int vanishes. We can
already see this from eq. (1.28), where the operators ∂iĤ only couple states in the same
symmetry sector.

As an alternative, we can compute the lowest‐energy states in different symmetry sec‐
tors. Varying the total particle number, we define the charge gap in a symmetric way,

∆charge(N) = [E0(N + 2, S = 0) + E0(N − 2, S = 0)− 2E0(N,S = 0)] /2 . (2.13)

This is the discretized second derivative of the ground‐state energy, and can also be
understood in terms of the chemical potential µ when considering ground states,

∆charge(N) = ∂Nµ(N)
∣∣
S,V

= ∂2NE(N)
∣∣
S,V

. (2.14)

Following this analogy, we may also compute the chemical potential as the first dis‐
cretized derivative of E0 with respect to N . A finite charge gap ∆charge corresponds to
an incompressible, i.e., insulating state.

Analogously, we may define the gap ∆spin for ground states in different spin sectors. If
the singlet is the lowest‐energy sector, we define

∆spin(N) = E0(N,S = 1)− E0(N,S = 0) . (2.15)

We note, for the numerically inclined, that ∆spin < ∆int is possible in this definition.
Had we defined∆spin using only Sz symmetry labels, the internal gap would always be
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Figure 2.6: The internal energy gap ∆int compared to the local gap ∆local of Lanczos states
during a two-site DMRG sweep. Data are shown for the 2D model studied in
chapter 4 and parameters L = 18,W = 3, Ud = 30t, δ = π and ty = 1.5t. We
take the square root of the sum of the two‐site energy variances var2(Ĥ) to
estimate the error of∆int. This typically overestimates the error, see section
2.3.1.

smaller than or equal to the spin gap, ∆int ≤ ∆spin, because there is a Sz = 0 represen‐
tant in all S multiplets.

We can also define the single‐particle gap as a combination of spin and charge gap,

∆single = [E0(N + 1, S = 1/2) + E0(N − 1, S = 1/2)− 2E0(N,S = 0)] /2 . (2.16)

In the bulk of the system, the behavior of this gap can be related to spin and charge
gaps. However, it may be qualitatively different to ∆charge and ∆spin in the presence of
single‐particle edge modes.

In chapter 4, wewill also enforce quasimomentum conservation, yielding an additional
ZW invariant. We do not consider the gap related to this quantum number here, be‐
cause the lowest‐energy state is always in the sector with total quasimomentumK = 0,
and the gap to higher K values is much larger than all other gaps. However, this rela‐
tion is not generally true: We will discuss ground states withK > 0 in section 5.2, and
such states also exist in the doped 2D Fermi‐Hubbard model [121, 145].

Computing energy gaps is numerically more expensive than the initial ground‐state
search: For ∆int and ∆spin, we need to compute an excited state, and the additional
states required for ∆charge are generally not gapped. Therefore, the entanglement area
law needs not hold. We note that there is a method to obtain larger parts of the low‐en‐
ergy spectrum through a single, two‐site DMRG sweep [148]. Since this method is imple‐
mented in the SYTEN toolkit, we used it for some systems, but could not find agreement
with true orthogonalization in most cases. One such comparison is shown in fig. 2.6
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Figure 2.7: Finite-size effects can yield non-linear contributions to response functions. Here,
we show the Hall current jy as response to a linear potential V . For values
of the twist angle δ ̸= 0, the response in jy is linear in the range of V shown
here. However, for δ = 0, finite‐size effects yield an exponentially decaying
contribution as V → 0. The lines are the result of fitting eq. (2.17). We have
subtracted the fit parameter a(δ) for all curves. Data correspond to a cut
through fig. 4.7 for Ud = 30t.

2.2.2 Susceptibilities

In addition to ground‐state observables as a function of model parameters, we will be
interested in linear ground‐state responses to weak perturbations in chapter 4. In prin‐
ciple, we just search ground states for different strengths of the perturbation, and com‐
pute the observable of interest. In practice, this will not always give sufficient results.

Firstly, the ground states need to be accurate enough to resolve potentially very small
perturbations. We will come back to improving DMRG accuracy in section 2.3. Sec‐
ondly, we encounter finite‐size effects which cause non‐linear responses for very weak
perturbations. An example for such behavior is shown in fig. 2.7: The blue curves for
δ ≈ 0 are close to a quantum phase transition, yielding non‐linear behavior of the Hall
current jy for a very weak external potential V . Clearly, performing a linear fit to these
curves will not give reasonable results.

We expect a proper finite‐size analysis to take care of these effects. However, performing
amore elaborate data analysis for small systems is cheaper than simulating larger ones.
We find that an exponentially decaying contribution explains the data in fig. 2.7 well,

jy(V ) ≈ a+ χHallV + b e−cV . (2.17)

To avoid over fitting, we add terms ∝ |b| and ∝ 1/|c| to the cost function, such that the
exponential correction is weak and long range.
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Figure 2.8: Determining linear susceptibility through numeric differentiation. Markers cor‐
respond to finite differences of data from fig. 2.7. The horizontal lines show
the result of taking a robust mean similar to eq. (2.18). The shaded regions
indicated the corresponding cost functions, which we interpret as the error
of our fit. The dashed lines are the result of fitting eq. (2.17) as shown in
fig. 2.7 for the same data set.

As an alternative method for extracting linear response, we compute finite differences,
and fit a “mean” value, which disregards very far outliers, e.g.,

χHall = argmin

[∑
i

cost
(∣∣∣∣jy(Vi+1)− jy(Vi)

Vi+1 − Vi
− χHall

∣∣∣∣)
]
. (2.18)

We choose slowly increasing cost functions, like cost(z) = ln(1 + z) to suppress the
effect of outliers due to nonlinearities or convergence issues.

The results of both fitting methods are compared in fig. 2.8. Here, both fits give similar
results, but themore complex ansatz eq. (2.17) seems tomatch the data better. However,
data were chosen for illustrative purposes, and inmany cases we have fewer data points
and more noise. For those parameters, we trust eq. (2.18) to yield less biased, and more
robust results.

2.2.3 Berry curvature

Formany‐body systems, quasimomentum is no longer a good quantum number. There‐
fore, we cannot use the instructive TKNN formula [10] to compute the Berry curvature,
but we need to resort to the definition based on external parameters, we motivated in
section 1.3. Here, we will consider finite 1D Hamiltonians, which depend periodically
on a superlattice phase δ, and a twist angle θ, tomatch the setting of chapter 3. However,
the phase δ can also be interpreted as a second twist angle in a 2D lattice, such that this
method could be applied to the models discussed in chapter 4. We do not compute the
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Berry curvature for interacting 2D models, because using DMRG to find ground states
on a toric geometry is exceedingly expensive, cf. section 2.1.3.

We will use the method published by Fukui et al. [149], which directly corresponds to
the definitions from Niu et al. [113] for a discrete set of models for parameter (δ, θ).
This approach replaces the derivates used in eq. (1.21) with a line integral around each
plaquette in parameter space (δ, θ) → (δ′, θ) → (δ′, θ′) → (δ, θ′) → (δ, θ). This is pretty
much the same idea as discretizing the vector potential A to arrive at the Hofstadter
model, cf. eq. (1.50). The resulting expression is, of course, gauge independent and
does not require derivatives, which tend to be numerically unstable,

F(δ, θ) = ℑ ln
⟨δ, θ | δ′, θ⟩ ⟨δ′, θ | δ′, θ′⟩
⟨δ, θ′ | δ′, θ′⟩ ⟨δ, θ | δ, θ′⟩

, (2.19)

Ĥ(δ, θ) |δ, θ⟩ = E0(δ, θ) |δ, θ⟩ . (2.20)

We will generally use a homogeneous spacing∆δ,θ for the parameters,

δ′ := δ +∆δ , θ′ := θ +∆θ . (2.21)

The step size ∆δ,θ has to be chosen with some care, because the resulting many‐body
Chern number,

C =
1

2π

∑
δ,θ

F(δ, θ) , (2.22)

will always be an integer, even if it is the wrong one, e.g. if the grid is too coarse. We
find that taking the real part of the overlaps in eq. (2.19), i.e.,

errF (δ, θ) ≈ ℜ ln
〈
δ, θ
∣∣ δ′, θ〉 〈δ′, θ ∣∣ δ′, θ′〉 〈δ′, θ′ ∣∣ δ, θ′〉 〈δ, θ′ ∣∣ δ, θ〉 , (2.23)

gives a good check for numerical consistency. Using MPS, calculating the overlaps in
eq. (2.19) is straightforward once the ground states are found. The Berry curvature for
one strongly‐correlated insulating phase is shown in fig. 2.9 as an example.

Symmetry in parameter space

The family of Hamiltonians, whose ground states give the topological invariant in eq.
2.22 is defined on a torus {Ĥ(δ, θ)}T2 , and we choose the parameters to be 2π periodic.
However, in chapter 3, theHamiltonianwill exhibit a higher symmetrywith respect to δ:
Shifting δ → δ+2π/q, merely translates the lattice by j sites. Here, q is the denominator
of the wave number α = p/q of the superlattice, and j is defined through the modulo
inverse,

pj = 1 mod q , where j > 0 . (2.24)

Since the lattice is periodic, a translation does not change physical properties, but it
does change the MPS description and its entanglement, cf. section 2.1.3. Therefore, it
is advantageous to restrict DMRG simulations to a subset of δ ∈ [0, 2π), and to infer the
full Berry curvature by exploiting the symmetry.
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Figure 2.9: Berry curvature for a strongly interacting model. Data are computed for the
models from chapter 3 for L = 24, V = 3t, U = 12t and ρ = 2/3. The
integrated curvature yields a Chern number C = 1. Only ground states for
δ ∈ [0, 2π/3) were simulated. All other overlaps were obtained exploiting
the symmetry in parameter space, see section 2.2.3. The curvature is com‐
puted from 6× 6 values for the parameters δ and θ.

Restricting the ground‐state search to parameters δ, δ′ ∈ [0, 2π/q), we can construct the
remaining states via,

|δ + 2π/q, θ⟩ = T̂j exp

(
−iθ

j−1∑
l=0

n̂l

)
|δ, θ⟩ . (2.25)

where the phase stems from the inhomogeneous implementation of the twisted bound‐
ary conditions in section 3.1. The operator T̂j translates the state by j sites, which can be
realized with MPS by a repeated application of SWAP gates. Such gates are commonly
used for time‐evolution methods [150, 151].

We canuse eq. (2.25) to find the remaining terms of eq. (2.19). If both superlattice phases
δ and δ′ are shifted, the overlap remains unchanged,〈

δ + 2π/q, θ
∣∣ δ′ + 2π/q, θ

〉
=
〈
δ, θ
∣∣ δ′, θ〉 . (2.26)

For different values of θ, the overlap will change as we translate δ and δ′ by 2π/q,

〈
δ + 2π/q, θ

∣∣ δ + 2π/q, θ′
〉
= ⟨δ, θ|

[
exp

(
i
(
θ − θ′

) j−1∑
l=0

n̂l

)∣∣δ, θ′〉] . (2.27)

Finally, we have to take special care for overlaps between the regions δ ∈ [0, 2π/q) and
δ ∈ [2π/q, 4π/q). In this case, the translation operators T̂j do not cancel, and we need
to shift the MPS,

⟨2π/q −∆δ, θ | 2π/q, θ⟩ = ⟨2π/q −∆δ, θ|

[
T̂j exp

(
−iθ

j−1∑
l=0

n̂l

)
|0, θ⟩

]
. (2.28)
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Importantly, the Berry curvature is not invariant under a transformation δ → δ + 2π/q
due to inhomogeneous gauge choice in section 3.1, and the overlaps have to be com‐
puted after the operator application. The Berry curvature shown in fig. 2.9 is computed
fromground states for six values of δ ∈ [0, 2π/3) and six different twist angles θ ∈ [0, 2π),
which is the spacing we use for most simulations in section 3.3.

2.3 Convergence

Having sketched the DMRG algorithm, we shall touch on how to improve and verify its
convergence. There are generally two reasons why DMRG gives wrong results:

(i) The maximal bond dimensions m are insufficient for a “good” description of the
true ground state. The DMRG result is then not an eigenstate of Ĥ, but a low‐
entanglement superposition of low‐energy states. As the contribution of the true
ground state should increase with bond dimensions, extrapolation can improve
the results.

(ii) DMRG can also get stuck due to a bad initial MPS, or an insufficient number of
sweeps. This ismore common in 2D, or periodic 1D lattices, whereDMRG can have
a hard timemoving particles through theMPS. The result can still be an eigenstate
of Ĥ, such methods for detecting (i) are generally insensitive to this problem.

Most of the systems studied in this thesis are numerically rather simple, given the opti‐
mized toolkit [120], and available computational resources. Therefore, we are generally
not too worried about (i). However, we will study a rather high‐dimensional parameter
space, which requires many DMRG runs, and thus, robust methods to avoid (ii).

2.3.1 Energy variance

If the bond dimensions m are insufficient to represent the true ground state |ψ0⟩ of a
Hamiltonian Ĥ, DMRG will end up in some superposition of eigenstates {|ψn⟩}. This
can be detected by computing the variance of Ĥ for the DMRG result |ψDMRG⟩,

var
(
Ĥ, ψDMRG

)
:=
〈
ψDMRG

∣∣∣ Ĥ2
∣∣∣ψDMRG

〉
−
〈
ψDMRG

∣∣∣ Ĥ ∣∣∣ψDMRG

〉2
. (2.29)

The variance is zero if, and only if, |ψDMRG⟩ is an eigenstate of Ĥ. If we assume that only
the two lowest‐energy states contribute,

|ψDMRG⟩ = a |ψ0⟩+ b |ψ1⟩ , a, b ∈ C , (2.30)

the error of the DMRG result becomes,

∆DMRG :=
〈
ψDMRG

∣∣∣ Ĥ ∣∣∣ψDMRG

〉
−
〈
ψ0

∣∣∣ Ĥ ∣∣∣ψ0

〉
= |b|2 (E1 − E0) . (2.31)

Using the internal gap∆int := E1 − E0 (cf. section 2.2.1), we can furthermore compute
the variance,

var
(
Ĥ, ψDMRG

)
=
(
|b|2 − |b|4

)
∆int . (2.32)
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2

10-7

10-6

10-5

10-4

10-3

¢
D
M
R
G
=
t

±= ¼

±=0:8¼

±=0:6¼

±=0:4¼

±=0:2¼

±=0

Figure 2.10: Estimating the DMRG error ∆DMRG from the two-site variance var2. We esti‐
mate the true ground‐state energy E0 by assuming a linear dependence
∆DMRG = c(δ) var2(Ĥ, ψDMRG). The coefficient c(δ) is obtained by a fit to
the shown data sets. Results were computed for the 2Dmodel discussed in
chapter 4 for parameters L = 18,W = 3, Ud = 25t, Uo = 15t and ty = 1.5t,
which corresponds to a numerically rather challenging regime. Bond di‐
mensions up to mSU(2) = 2 × 104 were used for each curve, however, the
accuracy depends strongly on the value of the twist angle δ.

Our assumption in eq. (2.30) requires the DMRG error to be significantly smaller than
the internal gap∆DMRG ≪ ∆int. We can thus approximate to low orders,

∆DMRG = ∆int
1−

√
1− 4 var

(
Ĥ, ψDMRG

)
/∆2

int

2

≈
var
(
Ĥ, ψDMRG

)
∆int

+
var
(
Ĥ, ψDMRG

)2
∆3

int
+ . . . . (2.33)

This relation is interesting, because ∆int is a quantity we typically try to compute, see
section 2.2.1.

Unfortunately, computing ⟨Ĥ2⟩ is significantly more expensive than evaluating ⟨Ĥ⟩ or
performing the ground‐state search. Instead, we use an approximation to var, the two‐
site variance var2 [152]. As shown in this reference, var2 can be very accurate, especially
for var(Ĥ) < 10−8t, when formally exact methods can fail due to insufficient floating
point precision. For the models studied in ref. [152], the variance is on the same order
as the true DMRG error.

As shown in fig. 2.10, the two‐site variance seems to be proportional to the true error
for our models. However, the prefactor should depend on model parameters, as we
expect it to be related to the energy gap, cf. eq. (2.33). For the simulations shown in
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fig. 2.10, our error estimate in eq. (2.33) does not seem to hold, but the DMRG error is
much smaller:

δ = 0 δ = 0.2π δ = 0.4π δ = 0.6π δ = 0.8π δ = π

var2(Ĥ)/∆DMRG/t 11.0 13.0 9.36 6.00 5.38 4.42
∆int/t 0.075 0.065 0.061 0.052 0.050 0.0499

There are two obvious explanations for this discrepancy:

• var2 might not be a good approximation to the full variance for 2D models with
long‐range entanglement in the MPS.

• Our ansatz in eq. (2.30) is wrong, and higher excited states contribute to the low‐
entanglement DMRG result.

We find the second point to be more convincing, since we generally expect var2 ≤
var, but further research is necessary. For now, we will just use the result ∆DMRG ∝
var2(Ĥ, ψDMRG) and assume that both quantities are on the same order of magnitude.

2.3.2 Initial states and sweeping

Making sure that DMRG does not get stuck in the wrong state is conceptually easy, but
requires more care as the number of different DMRG simulations increases. Our ap‐
proaches fall into three categories:

• Improving the inital state for DMRG. Starting from states which are believed to be
similar to the true ground state can greatly improve convergence speed, but will
generally bias the ground‐state search.

• Adding additional terms to the Hamiltonian to “guide” DMRG. The terms are usu‐
ally rampeddown in later stages of the ground‐state search, but bias the algorithm,
e.g. might break a symmetry of the ground state.

• Post‐selecting DMRG results. Ideally, one has obtainedmultiple DMRG results for
the same parameters, using different initial states, or sweeping procedures. As
DMRG is a variational method, the more accurate result is then determined by
the lower energy. We can extend this energy comparison to weakly‐perturbed
states, which we compute to determine susceptibilities, cf. section 2.2.2.

Reusing initial states

Several times in this thesis, we will sample over a twist angle, or, equivalently, a su‐
perlattice phase δ. It is tempting to think that twist angles do not significantly affect
physical properties. However, for narrow systems this is wrong, and we are particu‐
larly interested in the values of δ where states become degenerate.

In this case, biasingDMRGcanbe advantageous: In fig. 2.11, we compare the energies of
a left‐E← and right‐movingE→ parameter sweep over δ. The model exhibits nearly‐de‐
generate edge states which are notoriously hard to resolvewhen starting from a random
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Figure 2.11: Reusing DMRG results for a parameter sweep. We perform a left← (right→)
sweep over the parameter δ, i.e., go from δ → δ− 2π/100 (δ → δ+2π/100),
and reuse a truncated version of the previous DMRG result as initial state.
For some values of δ, there are edge states in our system. By the choice
of initial state, DMRG is biased towards keeping the previous edge state,
even if the other one becomes energetically favorable. As indicated by the
gray, vertical lines, we can thus determine the parameters where both edge
states are degenerate. The dashed lines indicate where DMRG jumps to
the true ground state, despite the wrong starting point. For other values of
δ, both energies agree to machine precision, |E← − E→| ≈ 10−14t. Data
were computed for fig. 3.19, for length L = 120, and interaction strength
U = 3.2t.

initial MPS. Instead, we truncate the DMRG result for δ to bond dimensionsm′ ≈ 0.1m,
and use it as initial state for δ′. DMRG will then quickly converge to a low energy result,
but it will require several iterations to move the edge state through the model. Being
aware of this bias, we sweep over δ in both directions, and obtain consistent results for
both edge states.

Using initial states as bias is also advantageous when computing ground‐state suscepti‐
bilities in section 2.2.2. There, we compute ground states for different values of a weak
perturbation. A “perfect” overlap with the true ground state might not be necessary in
that case, but it is important that the superposition of eigenstates in the DMRG result
is unchanged as we increase the perturbation strength.

Sweeping

Having discussed the advantages of biasing DMRG towards previously obtained results:
Most simulations in this thesis were started from random initial states. While this is
generally good enough for 1D models, systems with periodic boundaries, as studied in
chapter 3, sometimes required up to a thousand sweeps at small bond dimensions in
order to converge. This was particularly problematic for strong superlattice potentials,
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which effectively reduce the tunneling rate along the lattice. In these cases, it is very
effective to include long‐range hopping terms between superlattice cells, or to ramp‐up
the strength of the superlattice potential while sweeping.

2.3.3 Energy filtering for weak perturbations

Measuring susceptibilities requires particularly accurate DMRG results. We are inter‐
ested in the ground‐state response to very weak perturbations, in order to remain in the
regime of linear response, cf. section 1.4.1. Depending onmodel Hamiltonian, this may
require perturbations smaller than 10−3t, and generally yields responses on a similarly
small scale.

However, we can use the assumption of linear response to our advantage, and require
linear behavior of the ground‐state energy Egs(V ) on perturbation strength V ,

Egs = Egs(V ) + cV . (2.34)

In section 4.1.2, we perturb the system using a linear potential, which is, in our defini‐
tion, a positive semi‐definite operator. It follows that the response coefficient c ≥ 0 is
nonnegative.

Starting from a DMRG result for potential strength V , we truncate the state, and use
it as starting point for V + ∆V . Thus, the DMRG error ∆DMRG = EDMRG(V ) − Egs(V )
should only decrease as V is increased step by step, while the energy Egs(V ) increases
with V .

As a result, we expect EDMRG(V ) to be a convex function, and we find an approxima‐
tion E∗gs by fitting the lower, linear envelope to the DMRG data. In practice, we use a
asymmetric, differentiable cost function for the fitting procedure,

cost =
∑
V

(
−A

(
E∗gs(V )− EDMRG(V ) +O

)
+ exp

(
B
[
E∗gs(V )− EDMRG(V ) +O

]))
.

(2.35)

The prefactor B controls the allowed deviation below the “lower envelope”, and large
values of B ≈ 102, . . . , 106/t are chosen for accurate results. The value of A did not
affect the result significantly, and was generally chosen as A ≈ 1/t. Unfortunately,
we can only verify these parameter choices heuristically, by studying results of the fit
procedure similar to fig. 2.13. The termO denotes an offset shifting theminimumof the
cost to the positionE∗gs = EDMRG, i.e.,O := 1/B logA/B. The shape of the cost function
for typical parameters is shown in fig. 2.12. This figure also includes real DMRG results
after the fitting procedure, and their contribution to the sum in eq. (2.35).

We choose a smooth cost function in order to improve the convergence of theminimiza‐
tion method. Using automatic differentiation via the Autograd package [153] in Python,
we find robust results for sufficiently large data sets. The downside of using a smooth
function is, that we will allow EDMRG < E∗gs in some cases, as shown in fig. 2.12 on
the left. Since we are not really interested in the precise value of Egs, but only use E∗gs

CHAPTER 2. METHODS & OBSERVABLES 35



-10-3 0 10-3 10-2 10-1 100 101
EDMRG(V)=t¡E ¤

gs (V)=t

10-2

10-1

100

co
st

0

¼
2

¼

±

Figure 2.12: Cost function for fitting a lower envelope. The colored data points correspond
to summands in eq. (2.35) after minimization. For the parameters A =

1/t, B = 103/t shown here, we can reduce the error to roughly ∆DMRG .
10−2t, by choosing a cutoff after minimization. The gray line at ∆cutoff =

5 × 10−3t denotes the maximal deviation from E∗gs we allow in this case.
Data are computed for the hybrid‐space model discussed in chapter 4, and
parameters L = 12, W = 6, Ud = 18t, Uo = 0 and multiple values of the
twist angle δ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} × π. The result of the filtering
procedure is shown in fig. 2.13.

to define a threshold to filter data, we think this is not an issue, as long as the cutoff
is on similar order as the minimal deviation, ∆cutoff ≈ −min(EDMRG − E∗gs). Given
sufficient data quality and quantity, we can typically find a range of ∆cutoff where the
susceptibilities do not depend on the precise value of the cutoff.

The result of the fitting andfiltering procedure is shown infig. 2.13. Data are shown for a
system with large circumferenceW = 6, such that convergence was more problematic.
Therefore, we used multiple random initial states and different step sizes∆V , yielding
this rather large, but inhomogeneous data set.

This filtering method is by no means crucial: For the smaller system widths, which
we usually consider, only very few data points will be filtered out. However, these few
outliers can effect the results quite drastically.
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Figure 2.13: Filtering DMRG results by comparing variational energies. Data are shown
for the hybrid‐space Hofstadter‐Hubbard model with parameters W = 6,
L = 12, Ud = 18t, Uo = 0. Markers represent variational DMRG results,
those with gray outline lay above the threshold ∆cutoff = 5 × 10−3t shown
in fig. 2.12, and will be ignored in further analysis. Due to the strong de‐
pendence ofEDMRG on V and δ, only extreme outliers can be seen with the
bare eye. The lines are the result of fitting eq. (2.34) using the lower enve‐
lope in eq. (2.35).
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3Interacting charge pumps
In this chapter, we will employ the analogy of 2D quantum Hall models and 1D charge
pumps we have discussed in section 1.5.2, and study the interplay of interactions and
topological properties in a family of 1D models. This chapter mostly follows our first
publication [1].

The non‐interacting Hofstadter model [11] can be mapped exactly to a family of 1D
lattice models with an applied superlattice potential (bichromatic lattice), sketched in
fig. 3.1. Varying the phase δ adiabatically, i.e., shifting the superlattice, this family of
models corresponds directly to the charge pumps discovered by Thouless [55]. Such
charge pumps have been studied in ultracold atoms, realizing superlattices realized by
using standing‐wave laser potentials, whose relative phase is varied slowly in order to
drive the pump [58, 59, 100] (see [62, 102] for higher‐dimensional versions).

These experiments with (commensurate) superlattices, as well as the theoretical inter‐
est in charge pumps, triggered theoretical investigations of 1D superlattice Hamiltoni‐
ans, and themany‐body physics of fermions and bosons in these systems (see, e.g., [154–
158]). For a superlattice with a wavelength double the base lattice length, as studied
previously [58, 59], one produces the Rice‐Mele model [159], a paradigmatic model for
topological charge pumps with spatially dependent potentials and tunneling strengths.

The topological quantization of charge transport in Thouless pumps requires that the
system remains in its ground state as the Hamiltonian parameters are varied. This im‐
plies that the uniquemany‐body ground statemust remained gapped, such that an adia‐
batic limit is well defined. Therefore, there has been great interest in finding insulating
quantum phases for both bosonic [157, 160–163] and fermionic [155, 160] systems.
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Figure 3.1: Schematic representation of the superlattice model. Fermions hop between adja‐
cent sites with rate t and the onsite potential strength varies cosinusoidally
with amplitude V = 3t. The superlattice potential is invariant under trans‐
lations by q = 3 sites and shifted with the phase δ. If there are two particles
on one lattice site, the energy is increased by U .
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Furthermore, one can also establish an analogy to the quantumspinHall effect by study‐
ing families of such 1D Hamiltonians with a spin‐dependent optical potential [155, 160].
This requires that one works with two‐component gases. Recently, anyons have also
been studied: A variation of the statistical angle, i.e., exchange statistics, can also drive
transitions between phases with different topological properties [164].

The Hubbard model in the presence of onsite potentials has been studied previously in
the context of the ionic Hubbardmodel [165–184]. Most of this attention has been to the
two‐site periodic potential [165–167, 170–177, 179–182, 184], although some extensions to
the three‐site model have also been studied [168, 178, 183], which apply to our model at
certain values of the superlattice phase. In the two‐site version, it was found that at half
filling, the system undergoes a sequence of transitions from a band‐insulating state
to a correlated insulator (CI) with increasing U , with an intermediate spontaneously‐
dimerized insulating (SDI) phase which breaks the lattice‐inversion symmetry [165–167,
170–177, 179–182, 184].

We then use our knowledge of the phase diagram to study the topological properties of
various families of adiabatically‐connected 1D Hamiltonians, parameterized by δ and a
twist angle θ (introduced via twisted boundary conditions). We classify these families
by amany‐body Chern number, an integer‐quantized topological invariant. In the limit
of large systems, the Chern number corresponds to the quantized charge transport in a
Thouless charge pump [10], which could readily be observed in an experiment.

We find that the presence of quantum phase transitions in our model leads to interac‐
tion‐induced changes in the Chern number. Along with numerical evidence, we pro‐
vide an intuitive explanation for these topological transitions based on the atomic limit
and properties of the band structure. An essential aspect is sketched in fig. 3.2: De‐
pending on whether U ≪ V or U ≫ V , the lowest site in the unit cell is doubly or
singly occupied, respectively. This behavior survives away from the atomic limit, in
the sense that one can think of the U ≪ V case as a (doubly) filled lowest band, while
in the U ≫ V case, the two lowest bands are effectively filled with only one component.
These situations translate into different total Chern numbers on finite systems.

Furthermore, we show that the topological structure can be understood in terms of
degeneracies associated with the transition between symmetry‐protected topological
phases driven by the Hubbard interaction. We note that the interpretation as a topo‐
logical charge pump may not be justified in the thermodynamic limit since there exist
parameter regions without a global many‐body gap, as required for adiabatic charge
pumping. These regions occur for special values of the superlattice phase δ, as will be
discussed later, and exhibit vanishing spin gaps resulting in globally gapless states. We
remind the reader that in ultracold quantum‐gas experiments, we are dealingwithfinite
particle numbers that are comparable to what we reach in our numerical simulations.

Our results agree with previous literature wherever we overlap [154, 155, 157]. Further‐
more, a similar transition from a band to a strongly‐correlated insulator was observed
in the spin‐imbalanced case in the samemodel in [155], in this case leading to a change
in the spin Chern number.

This chapter is structured as follows: In section 3.1, we start by introducing the Fermi‐
Hubbard‐Harper Hamiltonian in detail and discuss symmetries of the model. In sec‐

40



0 1 2 0 1 2
x in Lattice Sites

−3

0

3

6

La
tt

ic
e 

Am
pl

itu
de

(b) UÀ V(a) U¿ V

0

π/6

π/3

Su
pe

rla
tt

ic
e 

Ph
as

e 
±

Figure 3.2: Schematic representation of band-insulator and correlated-insulator phases in one
superlattice cell. These phases occur for α = 1/3 and superlattice phase
δ = π/3 at density ρ = 2/3. For this configuration, the two “upper” lat‐
tice sites are energetically degenerate. (a) For weak repulsion U ≪ V , both
particles are localized at the lowest‐potential site. (b) Double occupation is
suppressed for strong interactions U ≫ V .

tion 3.2, we present a grand‐canonical phase diagram for the Fermi‐Hubbard‐Harper
model, and we discuss physical properties of the insulating phases for single Hamilto‐
nians Ĥ(δ, θ) of the family. Then, in section 3.3, we discuss topological properties of the
family of ground states for {Ĥ(δ, θ)}T2 . We conclude with a summary and an outlook
contained in section 3.4.

3.1 1D Fermi‐Hubbard‐Harper model

We consider a one‐dimensional tight‐binding chain with spin‐1/2 fermions. Themodel
is expressed in terms of real‐space fermionic annihilation (creation) operators ĉ(†)x,σ and
particle‐number operators n̂x := n̂x,↑ + n̂x,↓, acting on site x, and on spin component
σ,

Ĥ(δ) = −t

 L−1∑
x=0,σ

ĉ†x,σ ĉx+1,σ +H.c.

+ V
∑
x

cos(2παx+ δ)n̂x + U
∑
x

n̂x,↑n̂x,↓ . (3.1)

where L is the number of sites. Here, t is the nearest‐neighbor tunneling strength, and
U is the onsite Hubbard interaction. Additionally, there is a commensurate superlat‐
tice potential with amplitude V , and wavenumber α ≡ p/q ∈ Q, p and q being coprime.
Relative to section 1.5.2, we have changed the sign of the superlattice potential V and
phase δ. As a consequence, the Chern numbers shown in fig. 3.3 have opposite sign
compared to fig. 1.4. A schematic representation of the model is shown in fig. 3.1. This
model corresponds to the Harper equation [94] on a lattice, with added Hubbard inter‐
actions [185].
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We consider both open boundary conditions, ĉL,σ = 0 and twisted boundaries, ĉL,σ =
eiθ ĉ0,σ. The twist angle θ ∈ [0, 2π) corresponds to a flux piercing of the ring. Periodic
boundary conditions are obtained for θ = 0. Throughout this chapter, we are also inter‐
ested in families of Hamiltonians parameterized by δ, θ ∈ [0, 2π) defining a torus. We
will refer to such families as {Ĥ (δ, θ)}T2 . We define total particle density, ρ = N/L,
which is twice the filling factor, owing to the spin degree of freedom. N =

∑
x⟨n̂x⟩ is

the total number of particles. The insulating states of interest appear at commensurate
densities, i.e., ρ = l/q for some integer 0 ≤ l ≤ 2q, which corresponds to l total fermions
per unit cell.

We will focus on the case α = 1/3, which is the smallest‐denominator case in the
Harper‐Hofstadter model that has band gaps. However, similar physics is expected
to be found for higher values of q, as is the situation in the bosonic case [163]. The case
of even q (e.g., α = 1/4) potentially offers further interesting physics, due to the pres‐
ence of a band touching around E = 0, although this touching is expected to be lifted
in optical‐superlattice experiments due to the induced modulated tunneling. However,
we leave the study of these effects to later work.

3.1.1 Correspondence to Harper‐Hofstadter model

As discussed in section 1.5.2, the 1D charge pump is a direct analog of 2D quantum
Hall systems. Not taking interactions ∝ U into account, eq. (3.1) is a representation of
the Hofstadter model in mixed real and momentum space: δ = ayky is the position in
ky‐momentum space, where ay is the lattice spacing and V = 2ty corresponds to the
hopping rate along that direction.

Expressing the onsite interaction term ∝ U in the original 2D Harper‐Hofstadter pic‐
ture, the interaction would be semi‐‘local’ in hybrid space. That is, the repulsion is on‐
site in the x direction but infinite‐range along the y direction. Such interactions are not
found in traditional electronic materials, however, anisotropic interactions could pos‐
sibly be implemented using synthetic lattice dimensions [36, 186, 187]. We will discuss
the relation of this interacting 1D charge pump with the Hofstadter‐Hubbard model
in chapter 4. Furthermore, 1D superlattices have been realized with ultracold atoms
[58, 59, 110, 111]. These 1D systems provide the main motivation for this research.

The family of 1DHamiltonians thus inherits the topological properties of theHofstadter
model, cf. section 1.5.1. Following section 1.3, the Berry curvature is defined on a fam‐
ily of Hamiltonians [16, 188], which is generally the case for interacting models. For a
many‐body system, we can introduce twisted boundary conditions, such that the Chern
number is defined with respect to the twist angle θ [113],

C ({|ψ⟩}) = 1

π

∫ 2π

0
dθ
∫ 2π

0
dδ ℑ⟨∂δψ(δ, θ) | ∂θψ(δ, θ)⟩ , (3.2)

where |ψ(δ, θ)⟩ is the unique many‐body ground state.

For L → ∞, twisted boundaries do not affect bulk properties [113–116], and the family
{Ĥ(δ, θ)}T2 can realize a topological charge pump: As δ is changed adiabatically to δ +
2π, a quantized amount of C charges is transported through a periodic system [55].
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Figure 3.3: Topological bandstructure for the noninteracting Fermi-Hubbard-Harper model
for α = 1/3, V = 3t, as a function of δ. The bands correspond to the disper‐
sion relation of the Harper‐Hofstadter model, shown also in fig. 1.4, when
identifying δ with the transversal momentum ky. Thus the Chern numbers
describing the topology associated with a each set of bands are the same
as for the 2D Harper‐Hofstadter model, where C{l,m, u} = {−1, 2, −1} for
lower, middle and upper band respectively.

3.1.2 Symmetries

The Fermi‐Hubbard‐Harper model possesses several symmetries which can help un‐
derstand ground‐state and topological properties. In the gauge chosen for eq. (3.1), it is
obvious that Ĥ(δ, θ) is invariant under shifts by 2π of both twist angle θ and superlattice
phase δ. However, for periodic boundary conditions, there is a higher symmetry related
to the superlattice phase: Shifting δ → δ + 2π/q merely corresponds to a translation of
the superlattice with an additional gauge transformation. We exploit this symmetry to
restrict the numerical effort for computing the Berry curvature, as described in section
2.1.4.

The q‐fold symmetry of the superlattice phase δ is sometimes referred to as fractional
charge pumping [189, 190]: When thenumber of chargeswhich are transportedper pump
cycle δ → δ+2π is quantized toC, this symmetry requires fractionally‐quantized charge
transport C/q as δ → δ + 2π/q. This observation brings the fractional quantum Hall
effect to mind, however, the mechanism is somehow reversed: Numerical simulations
also show quantized charge transport in fractional quantum Hall systems as the twist
angle of a infinite cylinder is varied adiabatically [141, 144, 191, 192]. However, in these
systems,multiple pump cycles δ → δ+n×2π have to be completed in order to transport
C ∈ Z particles, since the ground‐state manifold is degenerate.

The 2D Harper‐Hofstadter model is particle‐hole symmetric around E = 0. For the
Fermi‐Hubbard‐Harpermodel of eq. (3.1), this symmetry is not present at any individual
value of δ. However, by simultaneously shifting δ → δ + π, and θ → −θ, the particle‐
hole symmetry is recovered.
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The interaction term in eq. (3.1) also preserves the particle‐hole symmetry: Exchanging
ĉ†x,σ ↔ ĉx,σ in eq. (3.1), we find a shifted superlattice δ → δ+π and reversed flux θ → −θ.
Shifting θ does not change the Chern number as the curvature is integrated over the
entire torus. But changing the direction of the flux θ flips the sign of the Berry curvature
in eq. (3.2) and thus changes the many‐body Chern number: C(ρ, U) → −C(2 − ρ, U).
Note that this implies C(1, U) = −C(1, U) = 0. Because of the particle‐hole symmetry,
it is sufficient to study phases and their topological properties for ρ ≤ 1.

We further note that in the case of periodic boundary conditions, at values of δ = 2πn/3
and δ = 2π(1/6 + n/3) for n ∈ Z, the system also possesses an inversion symmetry.
The presence of an inversion symmetry allows for the existence of one‐dimensional
symmetry‐protected topological states [193, 194]. These special δ points are important
for the understanding of possible topological properties of a family of Hamiltonians,
{Ĥ(δ, θ)}T2 . For δ = 0, 2π/3, and 4π/3, there are no topological transitions at ρ < 1, yet
they occur at ρ′ = 2− ρ by particle‐hole symmetry.

More specifically, a lattice‐inversion symmetry constrains the many‐body Zak phase
which is defined as

φ = i

∫ 2π

0
dθ ⟨ψ(δ, θ)|∂θψ(δ, θ)⟩ . (3.3)

The Zak phase can have only two values φ = 0, π mod 2π, differing by exactly π. These
two values of the Zak phase are topological invariants that cannot change under symme‐
try‐preserving perturbations of the Hamiltonian without closing the many‐body gap.

For open boundary conditions, the choice of the unit cell can become important. This
is typical of symmetry‐protected topological states, where the choice of boundaries de‐
termines the presence or absence of gapless edge states [97]. In our case, a choice of
δ = π/3 leads to an intra‐cell site‐centered symmetry, meaning that the lattice will re‐
tain its inversion symmetry. For δ = π and δ = 5π/3 the lattice loses its inversion
symmetry with open boundary conditions. We refer to these situations as symmetric
and asymmetric lattice configurations, respectively.

3.1.3 Strong‐coupling limit

In order to understand the phases present in our model, we also use Schrieffer‐Wolff
(SW) perturbation theory to simplify the problem in certain limits. In particular, SW
theory allows us to understand the effective spin‐sector behavior typical of Mott insu‐
lators when there is a significant charge gap.

For the single‐band one‐dimensionalHubbardmodel at half‐filling (ρ = 1), any nonzero
Hubbard interaction induces a charge gap [195]. In the limit of t ≪ U , the Hubbard
interaction projects out doubly‐occupied sites, as these sites have energyU . The ground
state therefore lives in the manifold of singly‐occupied sites.

One can then use Schrieffer‐Wolff perturbation theory to derive an effective Hamilto‐
nian which describes the low‐energy physics in this manifold of states [195]:

Ĥeff
S = J

∑
x

Ŝx · Ŝx+1 +O
(
t2/U2

)
. (3.4)
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Here, Ŝx labels the spin‐1/2 degree of freedom on site x and J = t2/U is the induced
spin‐spin interaction. The effectivemodel is thewell‐known isotropicHeisenberg chain,
which has gapless spin excitations [196]. Importantly, as the groundstate manifold and
the original Hamiltonian have a global SU(2) symmetry, the effective Hamiltonian will
also contain only SU(2) invariant terms.

In the present case of a model with a lower degree of translational symmetry and away
from half filling, the effective model is more complicated. Following ref. [178], we can
write the effective strong‐coupling model as follows:

Ĥ = − t
∑
x,σ

P̂
(
ĉ†x+1,σ ĉx,σ +H.c.

)
P̂ +

∑
x

V cos(2πx/3 + δ)n̂x

+
∑
x

∑
η=±1

tchi P̂

[
ĉ†x+η,σ ĉx−η,σ

(
2Ŝx · Ŝx−η −

1

2
n̂x

)]
P̂

+
∑
i

Jx

(
Ŝx · Ŝx+1 −

1

4
n̂xn̂x+1

)
.

(3.5)

Here, P̂ =
∏

x (1− n̂x,↑n̂x,↓) projects out all double occupations, Ŝx =
∑

αβ ĉ
†
x,ασαβ ĉx,β

are the spin operators, tchx are the effective correlated tunneling strengths, and Jx are
the effective spin couplings:

Jx =
4t2U

U2 −∆2
x,x+1

,

tchx =
1

2

(
t2

U +∆x,x+1
+

t2

U −∆x,x−1

)
,

(3.6)

where∆x,x′ = V cos(2πx′/3+ δ)−V cos(2πx/3+ δ) is the potential difference between
sites x and x′. Terms of higher order in t/U have been omitted. This model describes a
generalized t‐J model, which reduces to the homogeneous case when V = 0.

The strong‐coupling limit (U ≫ ∆, t) can be studied by solving first for the distribution
of the charge degrees of freedom, and then treating the terms proportional to Jx and
tchx perturbatively. This charge distribution can be determined by finding the ground
state of a system of noninteracting spinless fermions ĉ†x on the lattice in question. The
effective spin Hamiltonian is then obtained by projecting the Hamiltonian in eq. (3.5)
onto the charge distribution.

3.2 Quantum phases of the 1D Fermi‐Hubbard‐Harper model

In this section, we discuss quantum phases of ground states for individual Ĥ(δ, θ) from
the family of Hamiltonians {Ĥ(δ, θ)}T2 . As the twist angle θ is a boundary effect, it does
not affect bulk physics in the thermodynamic limit [115, 116]. However, the superlattice
phase δ can affect quantum phases. For example, the SDI phase (to be discussed in sec‐
tion 3.2.3) appears only for certain values of δ, related to the lattice‐inversion symmetry
discussed in section 3.1.2.
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Figure 3.4: Grand-canonical phase diagram. Ground‐state phases of the Fermi‐Hubbard‐
Harper model with α = 1/3, computed for δ = π/3 and V = 3t with open
boundaries. For particle density ρ ∈ {2, 4}/3, there are band insulators (BI)
forU = 0. AtU ≈ 8t, ρ = 2/3, there is a transition to a spontaneously dimer‐
ized insulator (SDI), and then to a strongly‐interacting correlated insulator
(CI). Mott insulators appear for half‐filled bands, ρ ∈ {1, 3, 5}/3. The phase
boundaries µ(U, ρ± 1/L) are extrapolated in L→∞.

Quantized charge transport in the family of Hamiltonians can only occur if the physical
state is insulating for the entire pump cycle [55, 113]. Conversely, the Chern number of
the manifold of ground states can only change when the many‐body gap closes. Thus,
we start by studying insulating phases.

In the following sections, we restrict ourselves to a three‐site superlattice, α ≡ p/q =
1/3. For this configuration, there are three separated energy bands, which are all topo‐
logically nontrivial, see fig. 3.3. Furthermore, we will choose V = 3t as the strength of
the potential unless stated otherwise. For this value of V /t, the band gaps are compa‐
rable to the hopping matrix elements t. We find that significantly stronger superlattice
potentials do not change the physical behavior, qualitatively.

3.2.1 Grand‐canonical phase diagram

In order to obtain the phase diagram for the Fermi‐Hubbard‐Harpermodel we compute
ground states for various particle numbers and interaction strengths U . As mentioned
in section 2.2.1, we can infer the chemical potential µ, and the {µ,U} phase diagram
from ground‐state energies for different particle numbers.

A phase diagram obtained from DMRG data for open boundaries is shown in fig. 3.4 for
δ = π/3. The analysis of the charge gap (as defined in eq. (2.13)) suggests the existence of
insulating phases for five different fillings. At ρ = 2/3 and 4/3, there are band insulators,
already present without interactions at U = 0. Furthermore, for half‐filled bands, ρ ∈
{1/3, 1, 5/3}, Mott‐insulating phases emerge for U > 0.
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Figure 3.5: Partially integrated momentum-distribution function and real-space double occu-
pation for ρ = 1/3. We show data for superlattice amplitude V = 3t and
phase δ = π/3. P (2) is the double occupation averaged over one superlattice
cell. Increasing the interaction strength U suppresses double occupation
for the MI phase. In momentum space, all particles remain in the lowest
band, but, as U increases, states below and above the Fermi wave number
kF become evenly occupied. The lines are guides to the eye.

An interesting sequence of phases exists at filling ρ = 2/3: upon increasing U/t, the BI
ultimately (via two transitions) turns into a correlated insulator at U ≫ t. We use the
term CI to distinguish this large U/t phase from MIs, which originate from half‐filled
bands at U = 0. The term CI is also used in parts of the literature in the same context
[174]. We find evidence (see section 3.2.3) that the intermediate phase is a bond‐ordered
spontaneously‐dimerized insulating (SDI) phase separating the BI and CI phases at den‐
sity ρ = 2/3, indicated in fig. 3.4.

We also draw attention to the linear behavior of the phase transitions for large µ and
large U . In this regime, the insulating phases have density ρ ≥ 1, i.e., at least one
Fermion per site. This makes the energy of adding a particle dominated by the interac‐
tion energy and therefore directly proportional to U .

3.2.2 Mott insulator at density ρ = 1/3

For particle density ρ = 1/3, and without interactions U , the lowest band is half‐filled,
and we are in a metallic phase for all δ, θ. As we saw in fig. 3.4, a charge gap opens for
weak interactions and the phase appears to be a Mott insulator for all U > 0.

While the charge gap (cf. eq. (2.13)) is comparable to the size of the gaps for the band‐
insulating phases in fig. 3.4, there can be gapless spin excitations for the infinite system
in this Mott insulator (see the discussion in section 3.2.2).

Increasing onsite repulsion U obviously suppresses the double occupation P (2)
x on all

lattice sites x. In fig. 3.5, we illustrate that real‐space double occupation decreases with
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U . Moreover, also in momentum space, occupation numbers change as a function of
increasing interaction strength. As shown in the same figure, for U = 0, the lower half
of the lowest band is fully occupied by each spin species. When interactions increase,
in the range considered in fig. 3.5, the particles mostly remain in the lowest band of the
noninteracting model, but we approach a constant momentum‐distribution function
⟨n̂ν=l,k⟩ = 1 for the entire lowest band.

Only considering single‐particle observables ĉ†x,σ ĉx′,σ, such as particle number P (1)
x or

the momentum‐distribution function ⟨n̂ν,k⟩, the system behaves much like free, spin‐
less fermions at the same particle density: For a single species of fermions, double
occupation is prohibited by Pauli’s exclusion principle, and, without interactions, the
lowest band would be singly filled at density ρ = 1/3.

Strong coupling limit for ρ = 1/3

For ρ = 1/3, the charge distribution is the same as that of a system with a filled lowest
band of the noninteracting spinless model. One then recovers the effective model:

Ĥeff =
1

2

∑
j

Jeff
(
Ŝj · Ŝj+1 −

1

4

)
, (3.7)

where

Jeff ≈ 1

N

N−1∑
j=0

[
Jj ⟨n̂jn̂j+1⟩′ + 2tchj

〈
ĉ†j−1ĉj+1n̂j

〉′
+ 2tchj+1

〈
ĉ†j+2ĉjn̂j+1

〉′ ]
. (3.8)

The expectation values ⟨·⟩′ are taken with respect to the spinless‐fermion background
[178]. This model is a “squeezed” Heisenberg chain, where the empty sites have been
eliminated, and the Ŝj refer to the spins attached to the jth fermion, which will be
centered at the jth unit cell on average. This chain therefore has length N = ρL.

The spin chain inherits symmetries from the underlying lattice and the charge distri‐
bution. For ρ = 1/3, this implies that the couplings are homogeneous, and we recover
the standard Heisenberg model, with one spin per unit cell. The effective spin model
therefore predicts that the system has gapless spin excitations in the strong‐coupling
limit, which is consistent with our numerical data. Note that this result is independent
of δ and θ.

3.2.3 Insulators at density ρ = 2/3

The system at density ρ = 2/3 has a complicated phase diagram with several transi‐
tions. The basic structure of the phase diagram is illustrated in fig. 3.6. To give a brief
overview, at U = 0 the system is a band insulator with a filled lower band. Apart from
the symmetric lines along δ = π/3, π, and 5π/3, the BI survives at all U/t, and becomes
strongly correlated as U/t increases.

Along the symmetric lines, there are twophase transitions, which are sketched infig. 3.7.
First, atUc1 the system undergoes an Ising‐like transition from the BI to a doubly‐degen‐
erate SDI [169, 171, 174, 178, 181]. At a larger interaction strength Uc2 , there is a second
transition of the Berezinskii‐Kosterlitz‐Thouless (BKT) type to a CI with gapless spin
excitations [167, 169, 171, 172, 174, 178, 181].
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Figure 3.6: Phase diagram for the ρ = 2/3 insulators. Throughout the δ‐U plane, the sys‐
tem is adiabatically connected to the band insulator at U = 0. However,
along three lines at δ ∈ {1, 3, 5} × π/3, the lattice has a symmetry in the su‐
perlattice potential which leads to the phase structure sketched in fig. 3.7.

Figure 3.7: Schematic representation of the energy-gap structure for δ = π/3 at ρ = 2/3.
Along this line, there are two critical values of U , Uc1 and Uc2 . Uc1 marks an
Ising‐like transition between a band insulator (BI), and a spontaneously‐
dimerized insulator (SDI), as was demonstrated in previous works [171, 174,
178, 181]. The second critical value Uc2 is the point of a BKT‐like transition
between the SDI and a correlated insulator (CI). We also show the behavior
of various energy gaps in these different phases for different types of exci‐
tations. The band insulator is completely gapped throughout. The global
many‐body gap is identical to the internal gap in the BI and closes at Uc1

when the ground state becomes doubly degenerate in the SDI, while the
charge and spin excitations remain finite. The transition between SDI and
CI at Uc2 occurs when the spin gap closes.
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Band insulator

At fermion density ρ = 2/3 there is a charge gap at U = 0 (see fig. 3.4), corresponding to
the band gap of the Hofstadter model, see fig. 3.3. We find that even strong interactions
preserve the properties of the band‐insulating phase formost parameters δ of the family
defined in eq. (3.1). This band insulator is adiabatically connected to all points in the
{U, δ} parameter space, except for the lines with the SDI and the gapless CI phases, as
sketched in fig. 3.6. While there is no phase transition throughout this region (except
at δ ∈ {π/3, π, 5π/3}), there is a smooth change to a gapped strongly correlated state as
U increases.

Spontaneously‐dimerized insulating phase

At δ ∈ {π/3, π, 5π/3}, between the CI phase and the BI phase, there is an intermediate
bond‐ordered phase, typical of ionic Hubbard models [165–184]. This phase has been
studied by amapping to an exactly solvable SU(3) antiferromagnetic Heisenberg chain
[173] where the state was found to have both spin and charge dimerization. The dimer‐
ization spontaneously breaks the lattice‐inversion symmetry which occurs at these val‐
ues of δ.

The situation is illustrated in fig. 3.8. The choice of boundary conditions is particularly
relevant for the SDI phase, where the symmetric configuration at δ = π/3 splits a dimer,
leading directly to the existence of gapless edge modes, and the asymmetric configura‐
tions each support one of the two SDI ground states.

A numerical study of the two‐site ionic Hubbard model [174] suggests that bulk many‐
body gap and spin gap close at different interaction strengths, indicating the two‐step
sequence of phase transitions, while the charge gap does not close at any point. The
case of a three site unit‐cell, relevant to the present case of α ≡ p/q = 1/3 was studied
in both ref. [178] and ref. [183], where the same situation was found.

To identify the spontaneously‐dimerized phase, sketched in fig. 3.8, we compute the
bond‐order parameter:

〈
B̂
〉
=

1

L/3

L/3−1∑
j=0,σ

〈
ĉ†3j,σ ĉ3j+1,σ − ĉ†3j+1,σ ĉ3j+2,σ +H.c.

〉
. (3.9)

For our case of a three‐site superlattice (q = 3) with phase δ = π/3 according to fig. 3.2,
site 0 and 2 are energetically degenerate while site 1 is lower in energy.

For a system with periodic boundary conditions, the BI and CI phases preserve the lat‐
tice‐inversion symmetry, implying that the bond‐order parameter vanishes, i.e., ⟨B̂⟩ =
0. However, in the SDI, the lattice symmetry is spontaneously broken, leading to a dou‐
bly‐degenerate ground state, and a finite value for ⟨B̂⟩. In fig. 3.9, we show the bond‐
order parameter ⟨B̂⟩ as a function ofU for open boundary conditions. The finite length
of the system leads to a nonzero ⟨B̂⟩ in the BI and CI phases, but ⟨B̂⟩ disappears in the
thermodynamic limit [174, 178]. However, the appearance of the SDI phase is consistent
with our data for large, but finite, system sizes.
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Figure 3.8: Lattice configuration for open boundary conditions. Different choices of δ
change the boundary conditions. These boundary conditions determine
edge‐state properties of the ground state of the SDI phase: The two asym‐
metric lattice configurations δ = π and δ = 5π/3, support left‐ and right‐
dimerized ground states, respectively. These dimers are combinations of
the two configurations illustrated in fig. 3.2. However, for δ = π/3, the sym‐
metric lattice configurations support neither ground state, leading to the
existence of gapless edge modes.
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Figure 3.9: Bond-order parameter across the BI-SDI-CI transition. At δ = π/3, the superlat‐
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shown in fig. 3.2. Data are computed for open boundaries without inversion
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indicate the two phase transition as determined from the gap data shown in
fig. 3.10.
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Figure 3.10: Gaps at the phase transitions for δ = π/3. All data were computed with open
boundaries. (a) Finite‐size gaps ∆ vs interaction strength U for L = 600.
(b) Spin gap, divided by chain length L such that the data should collapse
above the BKT transition. (c), (d) Rescaled data for (c) charge and (d) inter‐
nal gap computed for L ∈ {30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360,
450, 600}, colored from dark to bright. In (c) and (d), we present a scaling
collapse using Ũ = L1/ν(U − Uc) and ∆̃ = L−ζ/ν∆ with different parame‐
ters ν, ζ and Uc estimated from the finite‐size data.

We show finite‐size data in fig. 3.10 (a) for all three gaps defined in eqs. (2.12), (2.13)
and (2.15). Data were obtained with open boundary conditions and L = 600 for super‐
lattice phase δ = π/3. The charge gap exhibits a minimum at U/t ≈ 8 while spin and
internal gap decrease monotonously with U . This behavior is suggestive of a vanishing
spin gap at large U/t and a zero of the internal gap at a lower critical value of U , which
we will further substantiate below. The fact that the internal gap becomes very small
for U/t & 8 is due to degenerate edge modes.

Quantitatively, we determine exponents and critical values of the interaction strength
for the first transition from a scaling collapse of the charge and internal gap in fig. 3.10
(c) and (d). We use the pyfssa package [197, 198] to estimate parameters to these scaling
relations:

Ũr = L1/ν(U − Ur) , ∆̃r = L−ζr/ν∆r . (3.10)

Here, r ∈ {int, charge} labels the gaps and the critical interaction, where Uint = Ucharge
= Uc1 . We find general agreement between the data for the excitation gaps shown in
fig. 3.10 and the data for ⟨B̂⟩ = 0 shown in fig. 3.9 regarding the extent of the SDI phase.
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Figure 3.11: Scaling collapse for the spin gap at δ = π/3. Data and colors are the same as for
fig. 3.10 (b) and the parameters ν, ζ, Uc2 for the finite‐size scaling collapse
were determined numerically from eq. (3.10). The system sizes used in the
scaling collapse are L ∈ {30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360,
450, 600}.

The scaling collapse of both gaps leads to the same value for critical interaction strength
Uc1 related to the first transition and the exponent ν ≈ 1 matches an Ising transition
(see, e.g., refs. [174, 181]).

The spin gap should scale according to the BKT universality class at the transition from
SDI to CI and therefore, L∆spin is expected to become independent of L at the phase
transition. The data shown in fig. 3.10 (b) is consistent with a BKT transition at some
Uc2/t & 8. We estimate the critical interaction strength Uc2 using a (conventional, non‐
BKT) scaling collapse shown in fig. 3.11 and obtain Uc2/t ≈ 8.03. Our system sizes are
not large enough to reliably extract the critical value from a BKT scaling. Therefore,
Uc2/t ≈ 8.03 has to be understood as a lower bound to the actual critical value.

Correlated insulator

Only for particular values of the superlattice phase δ ∈ {1, 3, 5} × π/3, we observe
transitions to correlated insulating phases. For these values of δ, themodel corresponds
to the AB2 ionic Hubbard chain [183]. This lattice configuration is sketched in fig. 3.2:
Two lattice sites are energetically degenerate, while the third site is lower in energy. In
an ‘atomic picture’ (i.e., t→ 0), for density ρ = 2/3, we would expect different states for
small and large interaction strength U compared to the superlattice potential V : If U is
weak, there are two particles localized in the site of the lowest energy. Strong repulsion
U ≫ V prohibits double occupation, and therefore, there is only one particle in the
potential minimum, while the other particle is delocalized over the remaining sites.

Assuming the atomic limit t ≪ V , we can relate real‐space and band occupations.
When we choose a homogeneous gauge, total quasimomentumK is a conserved quan‐
tity for the noninteracting Hamiltonian eq. (3.1). Thus, we can express it in momentum
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Figure 3.12: Band occupation for ρ = 2/3. We show the band insulator to correlated
insulator transition with the lowest band filled, ρ = 2/3, for δ = π/3, θ = 0.
For a given superlattice potential strengthV , particles are transferred to the
middle band as the interaction strengthU increases. The occupation of the
upper band remains small (nu . 0.1) everywhere. The color bar encodes
the difference of particle density in lower and middle band, i.e., nl−nm =

0 corresponds to equally filled bands. The gray, solid line indicates the
topological phase transition where the Chern number changes, as shown
in fig. 3.17. Calculations are performed for L = 18 and periodic boundary
conditions.

space, using a vector of q = 3 creation operators ĉ†k,σ for each spin σ and momentum k,

Ĥ =
∑
k,σ

ĉ†k,σ

 V cos(δ) −t −t ei(k−3θ/L)

−t V cos
(
2π
3 + δ

)
−t

−t e−i(k−3θ/L) −t V cos
(
4π
3 + δ

)
 ĉk,σ , (3.11)

This q×qmatrix becomes diagonal for strongpotentials t/V → 0. In this limit, the states
of each band are supported on only one lattice site in each superlattice cell. Therefore,
we should expect that, given a strong potential V , the interaction does not only suppress
double occupation in real space, but also in momentum space.

We show the density difference for the band occupation of the lower two bands for
different U and V in fig. 3.12. For a sufficiently large potential strength V /t & 3 our
argument seems to hold and double occupation of bands is suppressed monotonically
by increasing U/V . In the large U limit, we find that the two lowest bands are occupied
evenly. This corresponds to the charge density of a spinless‐fermion model with the
same density. In the atomic limit, where U, V ≫ t, we can estimate the location of the
crossover to occur at V = 3U/2, where the double occupancy becomes energetically
unfavorable for increasing U .
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Strong coupling limit for ρ = 2/3

Wecan again study the spin sector in the strong‐coupling limit by performing Schrieffer‐
Wolff perturbation theory, as in section 3.1.3 and section 3.2.2. For ρ = 2/3, we recover
an effective spin chain of lengthLeff = Lρ = N . This also implies that the effective spin
model has a unit cell of two spins, which we label A and B. The spin physics is then
governed by the effective Hamiltonian:

Ĥeff
S =

∑
j

[
JŜj,A · Ŝj,B + J ′Ŝj,B · Ŝj+1,A

]
. (3.12)

Here, the Ŝj,A(B) labels the A(B) spin in the jth unit cell, and J and J ′ are the effective
couplings derived from eq. (3.5) by averaging over the ground‐state charge distribution.
The intra‐ (J ) and inter‐ (J ′) cell couplings are in general different. However, in cer‐
tain symmetrical cases, which we discuss in more detail further on, the couplings can
indeed become identical.

In the generic case ofJ ̸= J ′, this periodic variation in the spin coupling opens a gap and
gives rise to a dimerized state in the spin‐sector in the stron‐coupling limit [196]. At the
points δ ∈ {π/3, π, 5π/3}, described by the ionic AB2 Hubbard model [178], the system
has a site‐centered inversion symmetry resulting in J = J ′ and the spin excitations
again become gapless.

To help illustrate the nature of these states, we consider two specific cases of δ in the
atomic limit U ≫ V ≫ t. For δ = 0, the unit cell has two sites with energy −3/4V , cou‐
pled with inter‐site tunneling t, and one site with onsite potential +3/4V . At density
ρ = 2/3, the ground state has both lower sites occupied, and the energetically unfavor‐
able site is unoccupied. This high‐energy site can be adiabatically eliminated, resulting
in an effective inter‐cell tunneling t′ = 3t2/2V . The result is an intra‐site spin coupling
J ′ = 4t2/U , and a much lower inter‐cell coupling J = 9t4

UV 2 . Thus, the spin‐sector is
gapped.

For δ = π/3, the potential structure of the unit‐cell is inverted, compared to the δ = 0
case. This precise case has been studied in detail by Torio et al. [178]. Here, we have
one occupied site with onsite potential −3V /4, and two sites with energy +3V /4 shar‐
ing a fermion. This state has an inversion symmetry around the lower occupied site.
Combined with the lattice‐translation symmetry, this implies:

J = J ′ ∼ t2U

U2 −
(
3V
2

)2 . (3.13)

Thus, at points where δ ∈ {1, 3, 5}×π/3, the spin‐dimerization disappears and the spin
sector becomes gapless [172].

The different phases in the strong‐ and weak‐coupling limits can be understood in the
context of symmetry‐protected topological states. At the δ = π/3 point, the model has
a lattice‐inversion symmetry around the first site in the unit cell. This lattice‐inver‐
sion symmetry, combined with the U(1) charge conservation, can give rise to a one‐
dimensional symmetry‐protected topological phase. Such phases can be classified by
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Figure 3.13: Gaps at the phase transitions and inversion symmetry. Data were computed for
open boundaries atL = 600, and ρ = 2/3. We consider (a) δ = π/3, which is
inversion symmetric, and (b) δ = πwhich is not inversion symmetric. Edge
states only exist for δ = π/3, explaining the qualitatively different behavior
of the single‐particle gap in the large‐U limit.

the many‐body Zak phase φ (see eq. (3.3)), which can only take values of 0 and π when
the inversion symmetry exists. We consider the atomic limit, where U, V ≫ t: In this
limit, when U ≪ V , we have the lowest site occupied with a spin singlet. This state
has φ = 0. Alternatively, in the U ≫ V limit, the lowest site is occupied with one
fermion and one inter‐site dimer occupied. This phase has φ = π. As these states are
characterized by different values of a topological invariant (as long as the lattice‐inver‐
sion symmetry is preserved), the many‐body gap necessarily closes as the Hamiltonian
is adiabatically transformed between the two limits.

In summary, for U ≫ t, V , the ρ = 2/3 insulator has a gapped spin‐dimerized ground
state, except for the special, symmetric lines, where there is a gapless correlated‐insu‐
lator phase.

Bulk and edge symmetry

As is well‐known from DMRG studies [199], the particular choice of lattice termination
can have important effects on the excitation spectrum. This is directly related to the
presence of gapless edge modes in symmetry‐protected topological states [200]. In our
model, we have this situation in the ρ = 2/3 insulating phases, where the system has
additional lattice symmetries along δ = 2π/6 + 2πn/3.

When considering the three‐site superlattice with open boundaries, a shift of the su‐
perlattice phase δ by 2π/3 changes the properties of the edge: For the configuration
sketched in fig. 3.2, a shift δ → δ + 2π/3 removes the lattice‐inversion symmetry, such
that we have two energetically higher sites on one end. This explains why the disconti‐
nuities in fig. 3.15, related to edge states, do not have the same symmetry as the bulk.

Computing the single‐particle gap, cf. section 2.2.1, we observe in fig. 3.13 that the de‐
generate edge states only appear for a ‘symmetric’ choice of boundaries. We observe in
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Figure 3.14: Gaps at other values of δ. Data were computed for open boundaries at L =

600 and ρ = 2/3, corresponding to fig. 3.13, however, the superlattice is
shifted via δ → δ + π corresponding to V → −V . We consider (a) δ =

4π/3, which is inversion symmetric and (b) δ = 0 which is not inversion
symmetric. The inversion‐symmetric lattice hosts a gapless spin mode at
the boundaries, leading to the vanishing spin gap.

the same plot how the spontaneously dimerized phase (SDI) is prohibited by asymmet‐
ric boundaries: Only one dimerization is allowed and thus the internal energy gap has
a local maximum for U/t ≈ 7.9, when long‐range dimer order appears.

In fig. 3.14, we show the four gaps (charge, single‐particle, spin and internal gap) as
a function of U/t for δ = 0 and 4π/3. At these values, there is no gap closing as U/t
increases (compare fig. 3.6). We observe that the charge and single‐particle gap are
identical for the values of U/t considered in the figure. The spin gap is the smallest gap
in both cases, while the internal gap exhibits a weak decrease with U/t. For δ = 4π/3,
which is inversion symmetric, there exist spin‐edge modes and therefore, the spin gap
vanishes. For systems with open boundary conditions, the band insulator has gapless
edge states at δ = 4π/3. The location of these edge states smoothly changes with in‐
creasing U .
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3.3 Topological properties

The family {Ĥ(δ, θ)}T2 of 1Dmodels in eq. (3.1) inherits topological properties from the
2D Harper‐Hofstadter model for U = 0: At density ρ ∈ {2, 4}/3, the filled Hofstadter
bands (see fig. 3.3) are topologically nontrivial. Thus, a quantized amount of charge is
pumped during a cycle δ → δ + 2π in the infinite 1D model, cf. eq. (3.1).

When we include interactions and the ground‐state manifold remains gapped, we can
compute Chern numbers as described in section 2.2.3. In this section we study topolog‐
ical properties of the interacting insulating phases discussed previously.

In addition to the many‐body Berry curvature, we also compute the center‐of‐mass co‐
ordinate X(δ) for open boundary conditions. It can easily be evaluated using DMRG,
and has also been measured in experiments [58, 59]. The definition ofX(δ) is:

X(δ) =
1

L

∑
x

x ⟨ψ(δ)| n̂x |ψ(δ)⟩ . (3.14)

Here, |ψ(δ)⟩ is the ground state at a given δ. Note that flux θ is merely a static gauge
transformation for open boundaries, and thus does not matter here. As we compute
ground states for each value of δ independently, there is no accumulation of charge
at either end during a pump cycle: The center‐of‐mass coordinate returns to its initial
value as δ → δ + 2π. Instead, quantized charge transport can be observed as disconti‐
nuities of the center‐of‐mass coordinate. These discontinuities correspond to the shift
of an occupied edge mode from one side of the system to the other [201].

As the Chern numbers are computed for a finite L with periodic boundary conditions
there are some subtle points we must address. Firstly, for finite systems there are no
gapless excitations in any insulating phase. We can therefore compute Chern numbers
from unique ground states. However, spin excitation gaps in someMott‐insulating, and
correlated‐insulating phases close as L → ∞. Therefore, the meaning of the Chern
number in this limit, or equivalently, the stability of charge transport quantization in
the related charge pump, is not guaranteed. We discuss this issue in more detail in
section 3.3.4.

3.3.1 Mott insulator at density ρ = 1/3

At density ρ = 1/3, the lowest band is half‐filled. As discussed in section 3.2.2, adding
onsite interactions opens a charge gap for all δ, θ, and the phase becomes insulating.
While this insulator has gapless spin excitations for L→∞, the ground‐state manifold
for finite systems is gapped already for 0 < U ≪ t. Thus, we compute Chern numbers
for this phase as described in section 2.2.3.

For all systems sizes 12 ≤ L ≤ 42 considered here we find a Chern number C(ρ =
1/3, U > 0) = −1 = Cl, which is equal to the Chern number Cl of the lowest band of
the noninteractingHofstadtermodel. Wemotivated this finding in section 3.2.2: Single‐
particle observables in the strongly‐interacting phase approach the expectation values
for spinless, free fermions in the charge sector. Therefore, we might expect to find the
Chern number for a single species of free fermions, which would fill the lowest band,
C(ρ = 1/3) = Cl.
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continuities corresponding to −1 times the Chern number of the respec‐
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Data are obtained for length L = 60.
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Figure 3.16: Internal gap for the topological transition. The Chern number of the ground‐
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We also compute the center‐of‐mass coordinate X in the strongly interacting regime
as a function of δ, shown in fig. 3.15. We observe a single jump of the center‐of‐mass
coordinate eq. (3.14) by the negative value of the Chern number (solid line in the figure).
The discontinuity is located at δ = 4π/3, when the two ‘lower’ sites in the superlattice
potential are energetically degenerate, see fig. 3.2.

Note that this center‐of‐mass curve perfectly lies on top of the one for the free model
(U = 0) at density ρ = 2/3. This illustrates that the charge degrees of freedom in
the strongly interacting phase behave much like a single component, free fermi gas,
underlining our analogy with spinless fermions.

3.3.2 Topological transition at density ρ = 2/3

At density ρ = 2/3, we find that there are (at least) two different topological families,
depending on the strength of the interaction U . In section 3.2.3, we saw that at density
ρ = 2/3 there are a number of phases in the {δ, U} parameter space. We find that
the first of these phase transitions closely coincides with a topological transition in the
Chern number. This transition occurs when the many‐body gap closes in the {δ, θ}
manifold, at a critical U = Utop, which, in general, is dependent on the system size, but
should converge to Uc1 in the L→∞ limit [178]. Since the SDI phase is very narrow for
our choice of parameters, we do not make any statement about the Chern number in
the parameter regime that includes the SDI phase.

Weak interactions at density ρ = 2/3

Without interactions, the system is a band insulator that corresponds exactly to the
ground state of the Harper‐Hofstadter model with the lowest band filled. Thus, the
Chern number for density ρ = 2/3 is given by two times the Chern number of the lowest
Hofstadter band, C(ρ = 2/3) = −2. When we vary both interaction and superlattice
potential strength, we consistently find a Chern number C(ρ = 2/3, U < Utop) = −2.

We find that for a finite lattice with periodic boundaries, themany‐body gap closes only
at one critical interaction strength Utop, and only at three points on the {δ, θ}manifold:
δ ∈ {1, 3, 5}π/3, θ = 0, as shown for δ = π/3 in fig. 3.16. In the thermodynamic limit,
we expect this transition to occur when the system undergoes a phase transition to the
SDI phase at Uc1 .

The center‐of‐mass coordinate for theweakly‐interacting systemduring the pump cycle
is shown in fig. 3.15 (dot‐dashed line). The amplitude of the discontinuities agrees with
the negative Chern number, i.e., −C = 2. The values of δ where the jumps occur are
not directly related to the symmetry of the lattice, but also depend on the interaction
strength U .

Strong interactions at density ρ = 2/3

For strong interactions, U > Utop, the internal gap reopens for the entire ground‐state
manifold of {Ĥ(δ, θ)}T2 for finite system lengths (see fig. 3.16). As shown in fig. 3.17, we
consistently find C = +1 in the presence of strong interactions. However, the global
many‐body gap closes at certain points due to the existence of gapless spin excitations.
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Considering the center‐of‐mass coordinate for one cycle δ → δ + 2π in an open chain,
we find that strong interactions change sign and amplitude of the jumps in fig. 3.15.
For strong interactions U/t = 16 (dashed line in the figure), the discontinuity always
occurs at δ = π/3, the point of lattice‐inversion symmetry, see section 3.1.2. Thus, the
quantization of the pump cycle directly corresponds to the edge states of the SPT phase
of the 1D chain at δ = π/3.

Similar to the charge pump at density ρ = 1/3 discussed in subsection 3.3.1, we can
understand the change of the Chern number from band occupations. We found in
section 3.2.3 that interactions suppress double occupation of lattice sites as well as
double occupation of bands. Expectation values of single‐particle observables in the
limit U ≫ V ≫ t thus approach the values for spinless fermions. Indeed, for spinless
fermions at density ρ = 2/3, we would expect the Chern number Cl +Cm = −1+ 2 = 1
which agrees with the numerically computed many‐body Chern number.

Atomic limit

In fig. 3.17, we show a heuristically‐determined line, which separates both topological
phases. Here, we will show that the linear dependence does not hold for largeU, V ≫ t,
and use the atomic limit to derive the correct slope.

Considering δ = π/3, each superlattice unit cell consists of one site at potential−V and
two lattice sites at V /2. Thus, there are two possible ground‐state configurations in the
atomic limit, i.e., t → 0, as sketched in fig. 3.2. We can simply compare their energies:
The energy of the configuration with a single particle on the lowest‐potential site, i.e.,
fig. 3.2 (b), is given by Esingle = −V /2− t. The competing state, i.e., fig. 3.2 (a), for weak
interactions with a doubly occupied center site has energyEdouble = U−2V . Therefore,
we expect the transition between both phases to occur when Esingle = Edouble, i.e., for
Vc =

3
2Uc − t.
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4Uc − 3.2t. Extending the
parameter range, we find that Vc(Uc ≫ t) is actually smaller than this
estimate: For Uc > 40t, the critical potential strength is rather given by
Vc =

2
3U − t, which we would expect in the atomic limit.

This estimate for the phase transition does not agree with data shown in fig. 3.17, where
we have found Vc = 3

4Uc − 3.2t. But the discrepancy is simply due to U and V being
too small: As we consider superlattice strengths V > 40t in fig. 3.18, we find that the
approximation in the atomic limit seems to hold.

3.3.3 Interaction‐induced degeneracies

The transition between the band‐ and correlated‐insulating states at density ρ = 2/3
can be understood through certain interaction‐induced degeneracies, as exemplified
in fig. 3.16 for δ = π/3.

The degeneracies exist as points in the two‐dimensional {U, δ} parameter space, which
has the topology of a cylinder. The situation is illustrated in fig. 3.19 (a). The entire
{U, δ} parameter space is simply connected through adiabatic transport. However, it
is not possible to deform the entire closed path with CBI = −2 (in the band‐insulating
region) into the CCI = 1 path (in the correlated region), as this would require crossing
the degeneracies.

Each of these degeneracy points has a Chern number Cd = −1 associated with it, cor‐
responding to the path encircling the point in the {U, δ} parameter space, as shown in
fig. 3.19 (a). A pump cycle which encircles one of these points will transport a quantized
charge of −1. This can be seen directly from the change in the center‐of‐mass value as
one moves along this path in fig. 3.19 (a).

Finally, consider three paths each encircling one of these points in counter‐clockwise
direction, as shown in fig. 3.19 (b). These three paths can be composed to produce
two paths, one for the band‐insulating path, and one for the correlated‐insulator path,
but in the direction of −δ. The Chern number of the band insulator at this density is

62



0 π/3 2π/3 π 4π/3 5π/3
Superlattice Phase ±

0

4

8

12

16
In

te
ra

ct
io

n 
U
=t

(a)

CBI = ¡ 2

CCI =1

Cd = ¡ 1

−1.0

−0.5

0.0

0.5

Ce
nt

er
-o

f-M
as

s X
¡CCI = ¡ 1

CBI = ¡ 2

Cd = ¡ 1 Cd = ¡ 1 Cd = ¡ 1

(b)

±

U

±

U

±

U

Figure 3.19: Center-of-mass coordinate and topological structure for paths in the {U, δ} pa-
rameter space at ρ = 2/3. (a) Quantized charge transport corresponds to dis‐
continuities ofX when computed from ground states with open boundary
conditions. The purple circles at δ ∈ {1, 3, 5}×π/3 and U = Utop ≈ 8t sym‐
bolize three topologically protected degeneracies in the case of V /t = 3.
Any path encircling counterclockwise exactly one of these degeneracies
has a Chern number Cd = −1, as it crosses exactly one jump changing
X by +1 (indicated by the dotted lines). Data are obtained for L = 60 and
open boundary conditions. (b) Three paths encircling one degeneracy each
can be deformed and composed to form two separate paths: The U < Utop

path and the U > Utop path. As this is a smooth deformation, the sum of
all Chern number cannot change, and the difference in Chern numbers
between the two paths must be 3× Cd = −3.
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CBI = −2, and we found CCI = 1 for the path in the large U/t phase that includes the
CI phases. This implies that CBI − CCI = 3Cd, which is indeed the case.

3.3.4 Chern numbers on gapless systems

We must also address the question of the Chern number in the thermodynamic limit.
For finite systems, there are no gapless spin excitations in any insulating phase, such
that the Chern numbers computed in the previous sections are well‐defined. However,
in the case ofMott and correlated insulators, the spin excitations can become gapless as
L → ∞ (see the discussion in section 3.1.3, and section 3.2.3). This raises the question
of the validity of such a topological classification in the thermodynamic limit: Do the
gapless spin excitations preclude the possibility of adiabatic charge transport, or does
the charge gap allow for quantized charge transport?

For the ρ = 1/3Mott insulator, the system does not pass through any phase boundaries.
This would suggest that adiabatic charge transport is well defined in this phase and
remains quantized, reflecting the topology described in section 3.3.1.

For the ρ = 2/3 path in the strongly interacting regime, the system is gapped every‐
where, except at the three points at δ ∈ {π/3, π, 5π/3} where there is a correlated insu‐
lator without spin‐charge separation [178]. This state is also associated with a (weakly)
divergent electric susceptibility [174, 181] which would suggest a possible breakdown of
adiabatic transport when taking the system along this path. As our present results do
not provide further insight into these issues we leave them for future work.

Next, we consider the consequence of these issues on the practical question of exper‐
imental observations. It is expected that the topological properties of our model will
manifest themselves in a quantized charge transport for ultracold atoms in an optical
lattice acting as a charge pump. This has been recently demonstrated in the case of
bosons [58] and fermions [59]. In both these cases, the experiment was conducted with
spinless particles, in a completely gapped phase. So far, there have been no such experi‐
ments with strongly‐interacting systems. In these experiments, the charge transported
was only approximately quantized, due to several factors: Finite‐size effects, non adia‐
baticity from finite pump time, technical heating and the presence of an harmonic trap.
As such, it is not clear that the fluctuations due to the spin degree of freedom would be
discernible, particularly for very strong interactions, where the prefactor of the electric
susceptibility is expected to be very small [174]. Moreover, quantum‐gas experiments
work with finite particle numbers of typically N ∼ 100 atoms or less per one‐dimen‐
sional system, and charge pumps are performed only for a limited number of cycles
[58, 100]. Therefore, we expect that an experiment could show the predicted transition
at ρ = 2/3 from C = −2 to C = 1 during the accessible first pump cycles.

Wenote that the optical superlattices considered in these cold‐atomexperiments induce
modulated tunneling terms, in addition to the staggered potential considered in this
chapter. For the Rice‐Mele model, such modulated tunneling is necessary to open a
gap at the inversion‐symmetric points of the potential phase δ. In our case, the system
is already gapped at these points, and the additionalmodulated tunneling is expected to
only increase the size of gaps in the system. While the altered tunneling will change the
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quantitative predictions of this chapter, for moderate modulations we suspect that this
will not lead to a qualitatively different phase structure or topology to the one presented
here.

3.4 Summary

In this chapter, we studied a one‐dimensional fermionic lattice model with a superlat‐
tice potential and onsite repulsion. For a family of these systems defined on a torus of
parameters, we can define a topological invariant. In the limit of large system sizes we
can also interpret such families as topological charge pumps. Without interactions, the
family of Hamiltonians maps directly to the 2D Harper‐Hofstadter model and thus is in
the same topological class.

A particularly interesting situation arises at certain values of the superlattice phase,
where, as a function ofU/t, a series of transitions exists, fromaband insulator to a spon‐
taneously‐dimerized insulator to a correlated insulator. Theory and previous works
[174, 178, 181] predict that these transitions are Ising and BKT, respectively, which is con‐
sistent with our numerical data. We argue that the first transition leads to a degeneracy
in the full two‐dimensional parameter space and a change of the Chern number from
C = −2 to C = 1. The SDI phase is too narrow for the parameters considered here, and
hence we don’t make a statement about the Chern number there. This change of the
Chern number can be understood from simple intuitive arguments in the atomic limit
resulting from a competition of the superlattice potential strength V with the interac‐
tion strength U . The change of the Chern number is clearly seen in our finite‐size data,
and we expect that this U ‐driven transition should be detectable in a charge‐pumping
experiment. Different from the fermionic Rice‐Mele model [157], we do not observe a
breakdown of the charge pump when studying the same quantities as in [157] on finite
system sizes. The presence of gapless spin excitations along special points of the pump
cycle parameterized by δ may ultimately spoil the quantization of C at large U/t, but
we expect that for the first pump cycles that can typically be accessed in a quantum‐
gas experiment the pumped charge should remain quantized. The clarification of this
question, theoretically related to the degree of spin‐charge separation, and its investiga‐
tion in time‐dependent simulations, including trapping potentials etc., is left for future
research.

Alternatively, it might be possible to realize the same topological phases in a single 2D
lattice, by substituting back δ → ky. In this setting, one would get rid of the adiabatic
pump cycle, and measure the topological invariant as a quantized susceptibility, i.e.,
the Hall conductivity. The next chapter will study this case, and discuss whether the
quantization is robust under changes of the interaction terms.
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42D interacting quantumHall systems
In noninteracting models, spatial dimensionality is a question of interpretation. As
discussed in section 1.5.2, we may formally treat the quasimomentum like any other
parameter of the Hamiltonian. Therefore, the topological properties of infinite 2D lat‐
tices can be related to those of a one‐parameter family of infinite 1D models [55], or to
those of a two‐parameter family of finite 1D lattices [112].

This analogy is at the basis of our numerical studies of the 1D charge pump in the pre‐
vious chapter 3. We found that the inclusion of Hubbard interactions can change their
topological properties: Without interactions, the Chern number of the family of pump
models is C = 2, but strong repulsion changes it to C = −1. Note that we adapted the
sign convention for C compared to chapter 3 such that it matches our choice in section
1.5.

We found in section 3.3.2 that the topological transition is related to a series of two 1D
quantum phase transitions, which occur for certain values of the pump parameter. For
these configurations, the 1D charge pump corresponds to the three‐site ionic Hubbard
model [165, 166, 168–175, 178, 183]. The interaction‐driven change of topological prop‐
erties in charge pumps with either fermions or bosons has also been studied in related,
earlier papers [155, 157, 158].

The analytic one‐to‐one correspondence of charge pumps and 2D quantum Hall mod‐
els breaks down when real‐space interactions are introduced. In this chapter, we study
numerically whether 1D charge pumps and 2D quantum Hall models with Hubbard in‐
teractions are adiabatically connected. In particular, we try to find a phase with Chern
number C = −1 in the Hubbard‐Hofstadter model, which is adiabatically connected
to the C = −1 interacting charge pump. Most of the results discussed here have been
published in ref. [2].

In order to connect 1D and 2D physics, we express the model in a mixed real‐ and mo‐
mentum‐space representation, called hybrid space [144, 146]. In hybrid space, we can
tune the interactions in such a way that the 1D Hubbard charge pump and the 2D Hub‐
bard‐Hofstadter model become the limiting cases.

We compute the Hall conductivity by measuring persistent currents as a response to an
adiabatically applied linear potential. We observe a finite Hall conductivity in insulat‐
ing phases, which converges to integer values as we increase system size. We identify
topological phases with two non‐zero Chern numbers.

Several experiments with ultracold atoms and artificial gauge fields have already mea‐
sured the response to an external, linear potential [35, 39–41]. There are different theo‐
retical proposals tomeasure Chern numbers in such setups using bosonic wave packets
[48, 202–204] or fermionic systems [205] under the action of a constant force. More re‐
cently, there are also proposals to measure fractionally quantized Hall drifts in setups
inspired by ultracold‐atom experiments [206, 207]. A method for measuring non‐quan‐
tized Hall responses in interacting lattice models that is similar to ours has recently
been proposed [208].
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We find that the C = −1 phase exists in large regions in our space of interaction pa‐
rameters. However, our results suggest that the Hofstadter‐Hubbard model remains
adiabatically connected to the band‐insulating phase with a Chern numberC = 2, even
for large interactions. Thus, the 1D and 2D limits would be separated by a topological
transition. Most results are obtained in the narrow‐cylinder limit of widthW = 2. We
discuss the existence of the strongly interacting C = −1 phase for wider systems, up to
W = 6.

Finally, we discuss the appearance of a ferromagnetic (FM) ground state for some inter‐
action parameters inside theC = −1 phase. The FM phase exists for all system sizes we
consider, but does not extend to the 2D or 1D limit. An FM state has the Chern number
C = −1 since the system is then equivalent to free spinless fermions.

This chapter is structured in the following way: In section 4.1, we discuss the hybrid‐
space Hofstadter model with Hubbard interactions and its relation to the Hubbard‐
Harper model studied in chapter 3. Section 4.2 discusses the Hall conductivity depend‐
ing on interaction parameters of the model. We reproduce the topological transition of
the 1D charge pump in section 4.2.1, and study the extended parameter space in the nu‐
merically accessible regime of a small systemwidth in section 4.2.2. In section 4.2.3, we
show that both topological phases persist for wider systems. In section 4.3, we discuss
the ferromagnetic ground state, which exists for some interaction parameters. Extend‐
ing our analysis published in ref. [2], we show in section 4.4 that both the topological
properties and the ferromagnetic ground state also exist in the isotropic model. We
conclude with a summary in section 4.5.

4.1 Fermi‐Hofstadter‐Hubbard model

The Hofstadter‐Hubbard Hamiltonian for spinful fermions, σ ∈ {↓, ↑}, on a cylinder of
length L and circumferenceW can be written as,

Ĥ =
L∑

x=1

W∑
y=1

[∑
σ

(
− ty e2πiαx−iδ/W ĉ†x,y,σ ĉx,y+1,σ

− tĉ†x,y,σ ĉx+1,y,σ +H.c.
)
+ Un̂x,y,↑n̂x,y,↓

]
.

(4.1)

The boundary conditions are implemented via ĉL+1,y,σ ≡ 0 and ĉx,W+1,σ ≡ ĉx,1,σ. The
onsite Hubbard repulsion is of strength U . The model is sketched in fig. 4.1 (a). The
hopping term along the ring includes a complex phase: A particle hopping around one
plaquette gains a phaseα, corresponding to amagnetic flux piercing. In this chapter, we
stick to the case of α = 1/3, i.e., one flux quantum per three lattice sites. We choose this
value of the flux because 3 is the smallest integer denominator for which the Hofstadter
model exhibits fully‐gapped, topologically nontrivial bands [10]. There is also a flux
δ piercing the cylinder along its height, which we interpret as an angle twisting the
boundaries. Twist angles may be used to define many‐body topological invariants [113].
We will average over δ to reduce the effects of a finite widthW .

In this chapter, we only study the phases at fixed particle density ρ = 2/3, i.e., two
spin‐1/2 fermions per every three sites. For α = 1/3, and in the free case U = 0, this
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Figure 4.1: Sketch of the Hofstadter-Hubbard model. (a) Real‐space representation on a
cylindrical geometry, with a twist angle δ implemented via homogeneous,
complex hopping rates along the y direction. The magnetic field is im‐
plemented via position‐dependent complex phases, sketched here for flux
α = 1/3. The interaction is proportional to U , and is purely onsite. (b) Hy‐
brid‐space representation, obtained via a Fourier transformation along the
axis with periodic boundary conditions (see also ref. [209]). The fluxα = 1/3

corresponds to a three‐site periodic superlattice potential and its amplitude
is shown in light blue. The interaction is now delocalized over each ring: We
split the terms Ĥint = Ĥint,o + Ĥint,d according to eq. (4.3) into terms which
are diagonal (onsite) in the hybrid‐space basis, Ĥint,d, and the rest, which is
off‐diagonal (ring‐wise) in hybrid space, Ĥint,o. The interaction terms have
strengthsUd andUo, respectively. Themodel sketched in (b)maps to (a) only
when U = Ud = Uo. Note that the number of sites along each dimension is,
of course, preserved when going from (a)→ (b). A different number of sites
was chosen in (a) and (b) for visualization purposes.
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corresponds to a band insulator with Chern number C = 2, as the lowest band has
Cl = 1 and is filled by both spin species. We choose anisotropic tunneling rates ty = 1.5t
such that the parameters correspond to the charge pump considered in chapter 3.

4.1.1 Hybrid‐space representation

By Fourier transforming eq. (4.1) along the periodic y‐axis, we find a mixed real‐ and
momentum‐space representation, which we call hybrid space,

Ĥ =
∑
x,k,σ

[
− 2ty cos(2π(αx+ k/W )− δ/W )n̂x,k,σ − tĉ†x,k,σ ĉx+1,k,σ

]
+ Ĥint . (4.2)

The hybrid‐space model is sketched in fig. 4.1 (b). Not taking Ĥint into account, eq. (4.2)
can be understood as a set of uncoupled 1D chains, which are labeled by quasimomen‐
tum k. There is an additional cosinusoidal potential depending on k, i.e., a superlattice.

In hybrid space, the onsite Hubbard repulsion becomes delocalized over each ring,

Ĥint =
U

2

∑
x,y

ĉ†x,y · ĉx,y
(
ĉ†x,y · ĉx,y − 1

)
=

U

2W

∑
x

∑
k,p,q

(
ĉ†x,k · ĉx,p

)
×
(
ĉ†x,q · ĉx,k+q−p

)
− U

2

∑
x,k

n̂x,k

=: UdĤint,d + UoĤint,o ,

(4.3)

where we use spinor operators, ĉ = (ĉ↑, ĉ↓)
T to simplify the notation, cf. section 2.2.

In the last line, we split the interaction into two parts: Ĥint,d contains contributions
that are diagonal in the hybrid‐space indices x, k. All remaining, (mostly) off‐diagonal
terms are grouped in Ĥint,o, which is delocalized over each ring. Note that terms propor‐
tional to the total particle number

∑
x,k n̂x,k only shift the chemical potential and can

be neglected when the particle number is fixed by the numerical method. Explicitly,
the interaction terms take the following form,

Ĥint,d :=
1

2W

∑
x,k

n̂x,k(n̂x,k − 1) , (4.4)

Ĥint,o :=
1

2W

∑
x,k

(∑
p,q

[1− δk,pδk,q]
(
ĉ†x,k · ĉx,p

)
×
(
ĉ†x,q · ĉx,k+q−p

)
− [W − 1] n̂x,k

)
.

(4.5)

The term Ĥint,d looks like the normal Hubbard interaction, scaled byW−1. This term
thus corresponds to the 1D interactions in a charge pump as Ud =W U1D.

The parameterization of eq. (4.4) allows us to relate 1D charge pumps with interactions
(Uo = 0, Ud > 0) to the interacting 2D Hofstadter model (Ud = Uo > 0), as sketched in
fig. 4.2. In this figure, these limiting cases are represented by the blue and orange lines.
Note that while both Ĥint = Ĥint,d + Ĥint,o and Ĥint,d are positive semidefinite, Ĥint,o is
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Figure 4.2: Sketch of the parameter space created by splitting the interaction term according
to eq. (4.3). At Uo = 0, the interaction is onsite in the hybrid‐space rep‐
resentation, such that the system consists of uncoupled Hubbard‐Harper
chains with a periodic potential. For the 1D model, there exists a critical
interaction strength Uc,1D, where the Chern number changes from C = 2 to
C = −1, cf. section 3.3.2. Due to the prefactor in eq. (4.4), we obtain a factor
ofW for the critical value of Ud. When we fix U = Ud = Uo, we recover the
original 2DHubbard interaction. Note that both Ĥint,d and Ĥint,d+Ĥint,o are
positive semidefinite, however Ĥint,o is not. Therefore, the interaction can
be attractive for Uo > Ud, which we do not consider.

not. Thus, for Uo > Ud, the interactions can become attractive, and we do not consider
this case here.

As shown in fig. 4.2, there is a topological phase transition from Chern number C = 2
to C = −1 for Uo = 0 and a critical interaction strength Ud = W Uc,1D, corresponding
to uncoupled 1D superlattice chains, which we discussed in section 3.3.2. We expect
weakly‐interacting systems with parameters Ud, Uo ≪ W × Uc,1D to be adiabatically
connected to the free model, and thus, to have Chern number C = 2.

For the strongly‐interacting 1D charge pump with Chern number C = −1, both bulk
and spin gaps vanish for certain values of the pump parameter, cf. section 3.2.3. This
corresponds directly to the gap closing in the ionic Hubbard model [166, 174]. While
the system remains insulating, i.e., the charge gap remains open, the topological quan‐
tization could, in principle, break down as perturbations are added. Here, we want
to find out whether the C = −1 phase obtained in the strongly interacting 1D limit,
Ud > W Uc,1D, also exists with 2D interactions, 0 < Uo ≤ Ud.

4.1.2 Hall conductivity

In the first part of this section, we describe our setup for computing the Hall response,
and define the observables. Then, we show how these measurements can be related to
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topological quantization for simulations performed in finite‐size systems.

We use a method to compute the Hall conductivity, which could very similarly be re‐
alized in experiments with cold atoms. In order to probe the Hall current, we add a
weak (V ≪ t) linear potential to the Hamiltonian. The potential is constant along the y
(equivalently: k) direction and increases linearly along the x direction,

V̂ = V
∑
x,k,σ

x n̂x,k,σ . (4.6)

This corresponds to a constant electric field along the x‐direction. We may then com‐
pute the current response to a weak field V̂ as described in section 2.2.2. For the sys‐
tems we study in this chapter, potential gradient strengths 0 ≤ V ≤ 10−3t, . . . ,×10−2t
typically yield linear‐response behavior.

The cylindrical geometry sketched in fig. 4.1 (a) allows for persistent ground‐state cur‐
rents along the rings. Taking the twist angle δ and anisotropic tunneling rates into
account, we can express the intra‐ring current as

ĵy(x) :=
ity
W

∑
y,σ

e2πiαx−iδ/W ĉ†x,y,σ ĉx,y+1,σ +H.c.

=
2ty
W

∑
k,σ

sin(2π(αx+ k/W )− δ/W )n̂x,k,σ .

(4.7)

Note that in the hybrid‐space representation, ĵy is a sum of operators acting on a sin‐
gle site. This is related to the fact that the legs in the free hybrid‐space Hamiltonian
given in eq. (4.2) are not coupled. The Hall‐current response to V ̸= 0 is thus due to
a polarization along the direction of the potential gradient, which depends on k and x.
This is sketched in fig. 4.3: In response to a weak potential V̂ , which is switched on
instantaneously, particles hop along the x direction in such a way that a Hall current
⟨ĵy⟩ as defined in eq. (4.7) is created. We choose a quench for fig. 4.3 because there are
no currents along the x direction in the ground state of an open system. The relation of
polarizability and Hall conductivity is also discussed in the context of hybrid Wannier
orbitals [210] which is equivalent to our hybrid‐space representation [98, 211].

We define the linear Hall response to a weak potential gradient as

χHall := 2π ∂V

〈
ĵy(x)

〉
x∈bulk

∣∣∣
V→0

, (4.8)

where we restrict the average to rings in the bulk of the cylinder. In most cases, we find
it sufficient to ignore 3 or 6 (a multiple of q) rings on either end of the cylinder, in order
to observe bulk behavior.

Quantized Hall response

The Hall response defined in eq. (4.8) can be computed in any interacting, finite‐size
system, but does not take integer values, which one would like to see for topologically
quantized systems.
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Figure 4.3: Response to a potential gradient V in hybrid space. We show the system at
a short time τ t = 0.2 after switching on a potential gradient of strength
V = 0.01t: We use a time‐dependent simulation for this illustration as there
are no currents along the x direction in the ground state on a cylinder. Data
are shown for the bulk of a noninteracting system of size W = 9, L = 60,
with twist angle δ = 0.2π. The size of an arrow indicates the amplitude
of the particle current in the x direction, the size of the circles encodes the
occupation number ⟨n̂x,k⟩ on a lattice site. Colors indicate the particle num‐
ber difference compared to before the quench, ∆n = ⟨n̂(τ)⟩ − ⟨n̂(0)⟩. Note
that in the free model, the hybrid‐space legs are uncoupled and the current
⟨ĵy(x, k)⟩ appears as a quasimomentum‐dependent polarization along the x
direction.

To define the Chern number for a finite, interactingmodel, one usually employs twisted
boundaries for both spatial dimensions to define the Berry curvature on the parameter
space of twist angles [113]. We have introduced the numerical approach by Fukui et al.
[149] in section 2.2.3, and employed it to compute exactly integer‐quantized Chern num‐
bers from a finite number of finite‐size ground states in section 3.3.

To recover the integer quantization of the linear Hall response χHall, we need to average
over the twist angle δ

⟨χHall⟩δ = C ∈ Z . (4.9)

We show the dependence of the Hall response χHall on the twist angle δ for different
interaction strengths in fig. 4.4. The amplitude of χHall depends strongly on δ for the
narrowwidthW = 3 consideredhere. Computing the average over δ, we recover integer
values for ⟨χHall⟩δ, up to a precision of 5 × 10−3. This is consistent with the finite‐size
deviations of the free model, shown in fig. 1.6.

Compared to the method by Fukui et al. [149] to numerically integrate the Berry curva‐
ture, which we describe in section 2.2.3, the δ average does not give integer values by
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Figure 4.4: Dependence of the Hall susceptibility on the twist angle δ. Data are shown for a
narrow cylinder of W = 3 and L = 24. χHall is extracted from a linear fit
to ⟨ĵy(V )⟩ as the potential V is applied adiabatically, cf. section 2.2.2. The
Hall response χHall depends strongly on the twist angle δ and interaction pa‐
rameters. Only the δ average is integer quantized: The dashed lines indicate
the corresponding averages, and take integer values up to finite‐size effects,
which are on the order of 10−3. We observe that for each parameter combi‐
nation of Ud and Uo, the response χHall has the same sign for all values of δ.

design. Instead, wemay converge to an integer as the number of samples and the system
size increases. We expect this to happen if and only if the system is in a topologically
nontrivial, insulating phase.

Response to a weak quench

In an experimental setup, it might not be realistic to prepare ground states for several
strengths of the linear potential. Instead, it is probably easier to prepare the ground
state for V = 0, and to measure the Hall current after switching on a weak field V > 0.

The Hall response to a quenched potential V = 0.01t at time τ = 0 in the free model is
shown in fig. 4.5. We find that the Hall currents oscillate around the values we expect
from the adiabatic calculations in fig. 4.4. I.e., the time‐averaged Hall current takes
the value 2πjy(δ) = χHall(δ)V . Therefore, twist‐angle averaging is necessary in narrow
systems.

In fig. 4.5 we find that the time evolution has to be performed over several inverse tun‐
neling rates to find reliable results. This means that the time evolution will typically be
numerically more expensive than the strictly adiabatic approach. More research would
be needed for possible experimental implementations: An experiment in synthetic di‐
mensions could realize the cylindric boundary conditions used here [42], and allow for
persistent Hall currents. For a real‐space setup with open boundaries, edge effects will
surely become relevant on time scales τ t = O(W ).
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Figure 4.5: Hall current jy as response to a weak quench. Data are shown for the free Hof‐
stadter model of length L = 60 and width W = 3. The amplitude of the
current jy depends on the twist angle δ, as we expect from fig. 4.4, and the
average (shown in gray) oscillates around 2πjy = CV .

4.2 Hall conductivity in the S = 0 ground state at ρ = 2/3

In this section, we study the adiabatic Hall response χHall to a weak gradient, given in
eq. (4.6), for different parameters of the model eq. (4.2). We restrict the DMRG ground‐
state search to the spin‐singlet sector, S = 0.

This section is structured as follows: In section 4.2.1, we reproduce the 1D topological
phase transition already discussed in section 3.3.2. Specifically, we run simulations for
widthW > 1, but fix the off‐diagonal interaction strength to Uo = 0, and measure topo‐
logical invariants via persistent Hall currents. In section 4.2.2, we extend the parameter
space to 0 < Uo ≤ Ud, but restrict ourselves to widthW = 2. Finally, in section 4.2.3,
we present data for wider cylinders and Uo > 0, and discuss how critical interaction
strengths scale with the width.

4.2.1 Quasi‐1D limit Uo = 0

For Uo = 0, eq. (4.2) can be interpreted as a series of W uncoupled 1D superlattices
with different superlattice phases δ. In this section, we verify that computing χHall re‐
produces the topological transition of section 3.3.2. Unlike for chains, we do not keep
particle numbers on each leg fixed individually, which could in principle yield a differ‐
ent behavior.

In fig. 4.6, the Hall conductivity for a cylinder of width W = 2 is shown for various
interaction strengths Ud and twist angles δ. We find that the Hall conductivity depends
both on the twist angle δ and the interaction strength Ud. The average ⟨χHall⟩δ, shown
as dashed, black line, assumes the quantized values C = 2 (C = −1) for weak (strong)
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Figure 4.6: Hall response for an adiabatically applied potential V for W = 2. Data are
shown without off‐diagonal interaction terms, i.e., Uo = 0. Therefore,
we expect to observe the topological transition known from 1D systems at
Ud ≈ 8Wt. The thin colored lines represent data for different twist angles
δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} × π. The dashed, black line
is the average over these δ values. Close to the 1D quantum phase transition
for δ = 0 at Ud ≈ 16t, the conductivity diverges, such that an extrapolation
in L is necessary, see fig. 4.8. The χHall axis is logarithmic for |χHall| > 1 in
order to emphasize the values between χHall = C ∈ {−1, 0, 2}.

interactions. We cannot resolve the topological transition accurately due to the short
length of the simulated systems.

For most values of δ, the Hall response crosses χHall(Ud) = 0 continuously at the topo‐
logical transition. Even though the susceptibility is not quantized in a single, finite‐
size system, we can observe the change of sign and amplitude of χHall associated with
the topological transition from a single twist angle δ. The exception are values close to
δ = 0, for which χHall diverges. We discuss this case in the next section.

We also show a plot for the Hall response in a wider cylinder, W = 3, in fig. 4.7. This
width is commensurate with themagnetic unit cell at α = 1/3. As expected, we observe
the transition from C = 2 to C = −1 at Ud ≈ 8Wt. We cannot resolve the behavior of
χHall at the phase transition for δ ≈ 0. For other values of δ, the error of χHall is small,
and the curves are smooth, even at the point where χHall changes sign. In the quasi‐1D
case, the Hall response for systems of different widths can be related via

χHall(2W, δ, 2Ud, Uo = 0)

=
[
χHall(W, δ, Ud, Uo = 0) + χHall(W, δ + π, Ud, Uo = 0)

]
/2 . (4.10)

We verified this relation numerically with simulations for widthW = 6 (not shown).
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Figure 4.7: Hall conductivity across the quasi-1D phase transition, when Uo = 0, forW = 3,

L = 24. The thin colored lines are data for different twist angles δ ∈ {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}×π. The dashed, black line is the average
over these values of δ. Close to the 1D quantum phase transition for δ = 0

at Ud ≈ 8tW , the conductivity diverges such that an extrapolation in L is
necessary, see fig. 4.8. The χHall axis is logarithmic for |χHall| > 1, in order
to suppress outliers for δ = 0, and to focus on the topological transition.

Divergence at the phase transition

Without twist angle, δ = 0,¹ and for Uo = 0, the k = 0 leg corresponds to the AB2

ionic Hubbard model [168, 178, 183]. This 1D model exhibits two phase transitions as a
function of the interaction strength, which we discussed in section 3.2.3: From a band
insulator, to a spontaneously dimerized insulator, to a correlated insulator [166]. For
the parameters chosen in here, we cannot resolve both transitions because the criti‐
cal values of the interaction strength Ud are very close to each other and much longer
systems would be required, cf. section 3.2.3, and refs. [171, 174, 181].

In the intermediate SDI phase, different dimer orientations create a two‐fold ground‐
state degeneracy [166], see also fig. 3.8. For the ionic Hubbard model, this causes a
diverging electric susceptibility [174, 181], due to the different center‐of‐mass (COM) po‐
sitions of both dimer configurations. In the hybrid‐space representation, the different
COM positions along the x direction for fixed quasimomentum k = 0 correspond to
different currents ⟨ĵy⟩, as defined in eq. (4.7).

In fig. 4.8, Hall currents close to the topological transition are shown for different sys‐
tem lengths. To reduce the numerical cost, results are computed forW = 2. However,
since the divergence of ⟨ĵy⟩ is only due to the k = 0 leg, increasingW should not make
a qualitative difference when the legs are uncoupled at Uo = 0.

¹Keep in mind that the sign of the intra‐ring kinetic term∝ ty redefines δ compared to section
3.2.3.
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Figure 4.8: Finite-length dependence of the Hall current close to the topological phase transi-
tion. Data are shown forW = 2 at Uo = 0 and δ = 0 for L ∈ {18, 24, 30, 36,
42, 48, 54, 60}. Unlike for other plots, we do not perform a linear fit of χHall
because the response can be nonlinear close to the transition. Here, we
compute the Hall current as ∆jy := jy(V ) − jy(0), where jy = ⟨ĵy⟩ is com‐
puted for ground states, and V = 2.8× 10−3t. For L→∞, the Hall current
diverges, and changes its sign at the phase transition Ud ≈ 16t, where the
1D superlattice model exhibits a spontaneously dimerized phase. For other
twist angles δ, the response χHall does not diverge, but crosses through zero
continuously, as shown in fig. 4.6.

We find that for longer cylinders, the interaction strength Ud at which ∆jy5 = 0 ap‐
proaches the critical value W × Uc,1D ≈ 16t from below. The diverging Hall response
indicates a discontinuity in ⟨ĵy⟩ for L→∞.

4.2.2 Thin‐cylinder limit

In order to study a broad range of interaction strengths Ud, Uo, we choose a width of
W = 2, which is the easiest to study numerically. In the real‐space representation, the
case of W = 2 seems to be special: If there are only two legs, a particle cannot move
around the “cylinder”, and thus all complex tunneling rates vanish, and there is no flux,
cf. [212],

ĤW=2 =
∑
x

1∑
y=0

(
− ty cos(2παx− δ/2)ĉ†x,y · ĉx,y+1

− tĉ†x,y · ĉx+1,y +H.c.
)
+ Ĥint .

(4.11)

However, we argue that this is rather due to the chosen basis: In the hybrid‐space rep‐
resentation in eq. (4.2), there are no complex phases, anyway. We discuss the effect of
a larger width in the following section 4.2.3.
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Figure 4.9: Hall response for a cut through fig. 4.10 at Ud = 40t. Thin, colored lines show
the fitted value of χHall, the corresponding shaded regions indicate the un‐
certainty as measured by the cost of the fit: Higher cost corresponds to less
linear behavior of ⟨ĵy⟩ (V ), due to numerical errors and finite‐size effects.
Errors are larger than in fig. 4.6, because the terms of Ĥint,o greatly increase
the numerical complexity. The average over all δ values is shown as dashed,
black line. It takes the value χHall = −1 up to Uo = 30t and χHall = 2 for
Uo & 37t. Data are show for W = 2, L = 30, δ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1,
1.2, 1.4, 1.6, 1.8}×π. Greater numerical precision and more samples would
be required to show integer quantization. The χHall axis is logarithmic for
|χHall| > 1, in order to suppress the outliers for δ = 0, see section 4.2.1, and
to focus on the topological transition.

We show a plot for the Hall conductivity χHall for finite Uo ≥ 0, and fixed Ud = 40t
in fig. 4.9. We find that the C = −1 phase also exists for 36t & Uo ≥ 0, but does not
extend to the Hofstadter‐Hubbard model, for Ud = Uo. The sign of the response χHall
does not depend on the twist angle δ, except close to the transition, where a finite‐size
extrapolation would be required, cf. section 4.2.1. The errors of the fits are larger than
for Uo = 0 as in fig. 4.6, because the increased number of terms in Ĥint,o makes the
problem numerically harder.

Figure 4.10 shows the Hall conductivity for various interaction strengths Ud and Uo. We
find that theC = −1 phase extends to the regionUo > 0 for strong interactionsUd > 16t,
depicted by the blue region. As we further increase Ud, the C = −1 region becomes
larger, such that it approaches the Hubbard‐Hofstadter limit on the diagonal, at Ud =
Uo.

The data in fig. 4.10 are averaged over 10 values of the twist angle δ. This is not neces‐
sarily sufficient to verify integer quantization, as one can see by the slight variations in
color. However, as the quantization is topological, it suffices to verify integer values for
single combinations of interaction strengths Ud and Uo, as shown in fig. 4.4.
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Figure 4.10: Topological phase diagram as a function of interaction strengths for W = 2. A
horizontal cut at Uo = 0, corresponding to the quasi‐1Dmodel, is shown in
fig. 4.6. We find that the C = −1 phase extends to finite values of the ring‐
wise interactions Uo. For large Ud, the topological transition approaches
the diagonal Ud = Uo. However, the Hofstadter‐Hubbard model (Ud =

Uo) remains in the C = 2 phase, which is adiabatically connected to the
band insulator, for all interaction strengths considered. A cut of this plot at
Ud = 40t is shown in fig. 4.9. The gray line indicates the topological phase
transition, and it is estimated from the shown data set. Data are shown
for L = 30, W = 2 and averaged over δ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8}×π. We have computed χHall for the parameters indicated by gray
dots. In between those points, we use an interpolation for visualization
purposes.

The gray line in fig. 4.10 shows our estimate of the phase boundary between C = −1
and C = 2 phases. Up to U = Ud = Uo = 60t, the Hofstadter‐Hubbard model seems to
remain in the C = 2 phase, which is adiabatically connected to the free model. This re‐
sult indicates that there is a topological phase transition between interacting 1D charge
pumps and the interacting 2D Hofstadter‐Hubbard model.

4.2.3 Transition in wider cylinders

As stated in the previous subsection, the case ofW = 2 seems to be different fromwider
cylinders. While we expect the C = −1 phase to exist in the quasi‐1D limit (Uo = 0) for
any system size, the required interaction strength Ud is proportional to the width W
due to the prefactor in eq. (4.4). Thus, the C = −1 phase might not exist in the 2D
thermodynamic limit.

In order to answer this question, we have to simulate wider systems, which is in general
exponentially hard, cf. the discussion in section 2.1.3. Therefore, we can only perform
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Figure 4.11: Hall response for systems of different widthsW at interaction strength Ud = 40t.
All systems exhibit C = −1 and C = 2 topological phases, even though
40t ≤ 8Wt for the widest cylinders shown. Data are computed for the sin‐
gle twist angle δ = π. Therefore, we can only infer the sign, but not the
magnitude of ⟨χHall⟩δ. Data are obtained for L = 30.

simulation for select cuts through the topological phase diagram shown in fig. 4.10. In
addition, wewill only consider a single value of δ: We cannot verify integer quantization
of χHall, but we will only consider the sign of χHall(δ). The assumption that the sign of
χHall(δ) is based on our observations for W = 2. For wider systems, we expect the
dependence on twist angle δ to decrease.

Results for interaction Ud = 40t and widths W ∈ {2, 3, 4, 5, 6} are shown in fig. 4.11.
We use DMRG bond‐dimensions up to mSU(2) = 104, which might still be insufficient
for systems of width W = 5, 6. While the error bars are larger for these system sizes,
and there are fewer data points due to convergence issues, the behavior is qualitatively
consistent: For W = 5 and Ud = 40t ≈ Uc,1DW , the topological transition occurs
for Uo = 0, i.e., in the quasi‐1D model. Surprisingly, the Hall response is negative for
0 < Uo ≤ 30t. This indicates the existence of the C = −1 phase for a larger parameter
space than we had expected from fig. 4.10. The data for W = 6 are more noisy, but
consistent with this observation: Even though Ud = 40t < 6× Uc,1D, the C = −1 phase
seems to exist for Uo > 0.

In fig. 4.12, we show the boundary of the C = −1 phase for Uo ≤ Ud at widthsW ∈ {2,
3, 4, 5, 6}. We observe that the shape of the phase boundary changes with width: For
W ≥ 4, there exist regions of C = −1 at smaller Ud than what we would expect from
scaling upW = 2 data, i.e., Ud,crit(Uo > 0) < W Uc,1D.

The data in fig. 4.12 might indicate that parts of the phase boundary do not change with
W . Close to Ud = 25t, Uo = 15t, there might be a point where the phase boundaries
for W ∈ {2, 3, 4} coincide. However, we could not obtain reliable data for W = 5, 6
to confirm this observation. If any part of the phase boundary is independent of the
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Figure 4.12: Topological transition for different widths. The colored regions indicate the
C = −1 phase, the lines are guides to the eye. Parameters in the gray
region, Uo > Ud have not been considered for this plot. For Uo = 0 the
critical interaction strength Ud,crit scales proportional toW . For finite Uo,
the dependence on width decreases. Data were obtained for length L = 30.
For W = 2, we use data from fig. 4.10, averaging over ten twist angles δ.
Results for wider cylinders were computed only for fewer values of δ.

width, theC = −1 phase will also exist in the 2D thermodynamic limit for finite Ud and
Uo.

4.2.4 Interacting quench dynamics

So far, we have computed the Hall response χHall strictly adiabatically, meaning that
we perform DMRG sweeps for each value of the potential strength V . As described in
section 4.1.2 for the free model, weak quenches should generally yield the same results.
In fig. 4.13, we show that the change of the Chern number can also be measured in
such quench experiments. While the system size shown in fig. 4.13 is too small to ob‐
serve quantization, both the sign and the amplitude of χHall change as the interaction
strength crosses the critical value Ud ≈ 24t. We show data for a single twist angle δ,
since averaging over twist angles might not be possible in experiments, either.

In order to probe the regime of linear response, we switch on a weak potential 0 < V ≪
t, such that the state remains “close” to the ground state. Therefore, the entanglement
entropy does not increase strongly with τ , and rather long times τ t > 10 can be reached
at small bond dimensions.

The data in fig. 4.13 are obtained using a single‐site variant of the TDVP algorithm
[151, 213]. We use a step size of∆τ t = 0.1 and fix the bond dimensions atmSU(2) = 3000.
We verify the results up to τt = 10 by comparing with other simulations in fig. 4.14.
There is very good agreement with the two‐site TDVP method, and with the result of
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Figure 4.13: Time-dependent response of the Hall current ⟨ĵy⟩ after quenching a linear poten-
tial from V = 0 to V = 0.02t. The data are shown for L = 18, W = 3, δ = 0,

Uo = 0 for different interaction strengths Ud. We average the current over
time τ to suppress oscillations. The gray, horizontal lines indicate values
for C ∈ {−1, 0, 2}. For a finite system size, we would have to average over
several twist angles δ in order to observe quantization and the topological
transition at Ud ≈ 24t. We restrict the simulation time to τ t ≤ 10 for small
and large Ud, because there was no ambiguity in the sign of ⟨ĵy⟩.

simulations performed with ∆τ t = 0.05, as well as mSU(2) = 5000. Here, we have cho‐
sen the interaction strengths to be very close to the quantum phase transition for δ = 0,
which we expect to be the numerically most challenging case. The states compared
in fig. 4.13 themselves are different, i.e., the entanglement entropy is larger for greater
bond dimensions or two‐site methods (not shown), but that seems to be irrelevant for
the observable of interest, jy. Comparing time‐evolution methods for other, non‐criti‐
cal parameters yields similar agreement (not shown).
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Figure 4.14: Comparing variants of the TDVPmethod for time evolution. Data are shown for
single‐site and two‐site algorithms for different step sizes∆τ and maximal
bond dimension mSU(2). We choose parameters Ud = 24t, Uo = 0, δ = 0

at size L = 18 and W = 3, corresponding to one curve in fig. 4.13. Up to
τ t = 10, all results agree very well, comparisons for longer times have not
been performed.

4.3 Ferromagnetic ground state

In the previous section 4.2, we have restricted the DMRG ground‐state search to the
spin‐singlet, S = 0, symmetry sector. We find the singlet to be the lowest‐energy state,
both for 1D superlattices, see section 3.2.3, and for the 2D Hofstadter‐Hubbard model.
However, for some parameters in the C = −1 phase, spin sectors with S > 0 exhibit
lower energies. In particular, the true ground state can be in the ferromagnetic (FM)
sector with S = N/2.

In our model, eq. (4.2), the charge degrees of freedom of any ferromagnetic ground
state behave exactly as a system of spinless fermions would. This brings us back to the
argument from section 3.3.2, that topological properties of a strongly‐interacting spin‐
singlet state could be deduced from a spinless model with the same particle density.

4.3.1 Ferromagnetism for WidthW = 2

In fig. 4.15, we show the energy difference between the ground‐state energy in the fer‐
romagnetic sector EFM and the lowest energy spin‐singlet state ES=0. Depicted by the
blue region, there exists an FM region for strong interactions Ud & 40t, and finite, but
smaller, interaction strength 0 < Uo < Ud.

Note that we define the FM region by the energy difference EFM − ES=0, but do not
take other spin sectors into account. Spin sectors with 0 < S < N/2 can be energeti‐
cally favorable, but we only observe finite‐S ground states at the phase boundary. Deep
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Figure 4.15: Energy difference between the lowest-energy ferromagnetic state, and the ground
state in the spin-singlet sector. The spin singlet is the true ground state both
for the 1D superlattice model and the 2D Hofstadter model. Data corre‐
spond to the systems shown in fig. 4.10, the gray line indicates the topo‐
logical transition that we show in that plot. The gap is averaged over twist
angles δ, and computed for L = 30 and W = 2 for the interaction parame‐
ters indicated by the gray dots. The shading is interpolated for visualization
purposes.

inside the red, spin‐singlet (blue, FM) region, the energy increases (decreases) mono‐
tonically as a function of total spin S. Therefore, taking all spins S into account would
not change the phase diagram qualitatively. The precise position of EFM = ES=0 also
depends on the twist angle δ.

In fig. 4.15, we also show the gray line depicting the topological phase boundary from
fig. 4.10. We find that the FM ground state lies entirely inside the C = −1 phase.

4.3.2 The FM ground state for wider cylinders

In fig. 4.16, we show how the extent of the FM ground state changes for wider cylinders.
The boundary does not seem to change significantly as the system gets wider. Some
fluctuations have to be expected, because the position of the boundary also depends on
the twist angle δ, and going to largerW effectively changes δ.

This result seems to indicate that the FM phase also exists for large systems at finite Ud

and Uo. If the appearance of the FM phase is related to the fact that we observe C = −1
in the spin‐singlet state, this would suggest that the C = −1 phase also exists for larger
systems at finite Ud when Uo > 0.
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Figure 4.16: Region with a ferromagnetic ground state for different widths. The shaded re‐
gion indicates where the ferromagnetic state is lower in energy than the
spin singlet, i.e., the blue area in fig. 4.15. The lines are only guides to the
eye. Error bars indicate the step size used for the interaction strength Uo.
Data are shown for L = 30, δ = π, except for W = 2, which is averaged
over 10 values of δ as in fig. 4.15. The boundaries do not seem to change
strongly when going to wider systems. We expect the dependence onW to
be smaller, when a twist‐angle average is performed.

4.3.3 Hall response in different spin‐S symmetry sectors

For an FM state, we would indeed expect a Chern number C = −1: Double occupation
is prohibited by Pauli’s principle, both in real space, and in hybrid space. Therefore,
both ⟨Ĥint,d⟩ and ⟨Ĥint⟩ = ⟨Ĥint,o+Ĥint,d⟩ vanish, and the spatial component of thewave
function equals that of free, spinless fermions. As we had already argued in section
3.3.2, a single species of fermions at particle density ρ = 2/3 would occupy the lowest
two bands of the Hofstadtermodel, such that the total Chern number would be the sum
of the lowest two bands, C = 1− 2 = −1.

At this point, enforcing the spin‐SU(2) symmetry, rather than the Abelian Sz symmetry
is more than a technicality: Had we fixed Sz = 0 we would expect DMRG to converge a
state in the S > 0 sector, whenever we are in the FM region. In that case, it would be
easy to understand why DMRG results exhibit spinless‐like behavior. However, fixing
S = 0, as we did in section 4.2, does not allow DMRG to find a representant of the FM
state.

To elucidate the dependence of the ground‐state energy and Hall response on total spin
S, we show numerical data for two interaction strengths in fig. 4.17. For the parameters
Ud = 40t and Uo = 20t, the spin singlet yields C = −1 and EFM < ES=0 such that
we are in the FM phase as discussed in section 4.3. Computing ground states for all
other possible spin multiplets, we find that the state for S = 18 is actually the true
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Figure 4.17: Ground-state energy and Hall response in different symmetry sectors of the total
spin S. Data are displayed for L = 30, W = 2 and Ud = 40t and are
averaged over δ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}×π. We show data
for different values for U0: For Uo = 20t, we are in the C = −1 phase. In
this case, the Hall response agrees with C = −1 for all values of S, and the
FM state (S = 20) is slightly lower in energy than the spin singlet. For Uo =

40t, we find ⟨χHall⟩δ = C = 2 in the spin‐singlet ground state. Increasing
S leads to an increase of the ground‐state energy, but the Hall response
remains consistent with C = 2 up to S = 10. For larger S, we recover the
C = −1 phase since all interaction terms vanish for an FM state. We show
the standard deviation of the ground‐state energy with respect to δ by the
shaded region.

ground state at this interaction strength. However, the states are nearly degenerate
withEFM−ES=18 being on the order of 10−4t. For stronger interaction Ud, the FM state
is the true ground state, but the sectors remain nearly degenerate. Our results for the
Hall response ⟨χHall⟩δ, which we average over ten values for δ, do not depend on spin.
They agree with the Chern number C = −1 for all values of S.

For Ud = Uo = 40t, the energy increases monotonically in S and the spin singlet is the
true ground state. Since the singlet state is in the C = 2 phase, and the FM state has
C = −1, the Chern number can, in general, not be independent of S. Our data suggest
that the Hall response ⟨χHall⟩δ deviates from C = −1 and C = 2 for N/8 < S < 3N/8.
The breakdown of quantization is plausible because in the free model, the topological
invariant is only well defined when either S = 0 or S = N/2.

4.4 Isotropic model ty = t

In the previous sections, and in our paper [2], we have considered the case of an an‐
isotropic model with tunneling rates ty = 1.5t. The value was chosen to match the
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Figure 4.18: Hall response χHall in the isotropic model for Ud = 22t, Uo = 20t. As for the
anisotropic model, ty = 1.5t, shown in fig. 4.4, the sign of χHall(δ) is con‐
stant, but the magnitude varies with the twist angle. The average over all
δ ∈ [0, 2π) agrees with ⟨χHall⟩δ = C = 2 within error, as shown by the hori‐
zontal, blue line. Data are computed for L = 30, W = 2 to match fig. 4.20.

superlattice potential from the previous chapter 3. This raises the question whether an
anisotropy is required for the appearance of C = −1 phases, and the ferromagnetic
ground state. While we did not find the value of V ∼ 2ty to be relevant in the 1D charge
pump in section 3.3.2, the role of anisotropic tunneling rates in the Hofstadter model is
generally an interesting question [214–216].

4.4.1 Topological phases

Simulating the isotropic Fermi‐Hofstadter‐Hubbardmodel in hybrid space, we find that
both the C = 2 and the C = −1 topological phase exist in the narrow‐cylinder limit. In
fig. 4.18, we show the Hall response χHall(δ) for strong interactions Ud & Uo ≫ t. The
errors for each value of δ are small, however, χHall(δ) exhibits sharp peaks, such that
we slightly underestimate the average ⟨χHall⟩δ. Regardless, the average agrees well with
Chern number C = 2.

The existence of a C = −1 phase, which cannot be adiabatically connected to the free
Hofstadter model, is of greater interest. Figure 4.19 shows the Hall response for two
strongly‐interacting systems in the C = −1 phase. We find that the sign of χHall(δ)
changes relative to fig. 4.18 for all values of δ, which is consistent with our observations
for ty = 1.5 in section 4.2. Using the same DMRG setup as for fig. 4.18, the errors in
fig. 4.19 are significantly larger, and the results are less consistent, i.e., less symmetric
under δ → −δ.

In fig. 4.20, we show the topological phase diagram for the isotropic model. Qualita‐
tively, it is identical to the one of the anisotropic model shown in fig. 4.10. As we had
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Figure 4.19: Hall responseχHall in the isotropicmodel in theC = −1 phase. Numerically, we
observe more noise than for the C = 2 phase shown in fig. 4.18. The sign
of χHall(δ) remains constant, and the average ⟨χHall⟩δ agrees with C = −1
within the error. Data are computed for L = 30, W = 2 and interaction
strength Ud = 30t.

expected from the 1D results shown in fig. 3.17, the topological transition occurs for
smaller values of Ud. Here, the number of samples of δ is insufficient to show integer
quantization in the C = −1 phase, in particular close to the phase transition, where
χHall(δ) diverges for some values of δ, cf. section 4.2.1.

4.4.2 Ferromagnetic ground state

The ferromagnet phase forUd ≈ Uo/2≫ t also exists in the isotropicmodel. Figure 4.21
shows the FM‐singlet energy gap for Ud = 30t. The data are taken from the simulations
for fig. 4.20. The singlet is lower in energy than the FM state for all smaller values of
Ud which are shown there. Ud = 30t seems to be right at the onset of the FM phase,
as the spin singlet is still energetically favorable for some twist angles δ. Similar to the
topological transition, the FM transition occurs for weaker interactions Ud when ty = t,
compared to ty = 1.5t, considered in section 4.3.

4.5 Summary

We studied the fermionicHofstadtermodel numerically on a cylinder, in a hybrid‐space
representation. Weconsidered tunable interactions such that onsite repulsion inhybrid
space (1D superlattice limit) and onsite repulsion in real space (2D Hubbard‐Hofstadter
limit) are the limiting cases. This parameterization allows us to connect interacting 1D
charge pumps to interacting 2D Chern insulators.

For weak interactions, the 1D and 2D models are adiabatically connected to the same
freemodel, thus, they exhibit the same topological properties. The 1Dmodel undergoes
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quantum phase transitions for strong interactions [165, 166, 168–175, 178, 183], which
we discussed in section 3.2.3. In section 3.3.2, we found that the topological properties
change as a result [1, 155].

In the quasi‐1D case, where the hybrid‐space legs are uncoupled, we reproduced the
interaction‐driven topological transition from aC = 2 topological insulator to one with
Chern number C = −1. Depending on system size, averaging the Hall currents over
twisted boundaries may be necessary to show topological quantization.

The interacting C = −1 insulator is robust under changes of the interaction terms.
In our parameterization, it almost reaches the 2D Hubbard‐Hofstadter limit. We veri‐
fied the existence of the interacting C = −1 phase for numerically accessible cylinder
widthsW ∈ {2, 3, 4, 5, 6}, and found that it extends to larger parameter regions than we
would expect from scaling up data forW = 2.

We computed the Hall response directly by applying a weak potential gradient adiabat‐
ically. Similar setups have already been realized in experiments with ultracold atoms
[35, 39, 40]. We showed that we can measure an integer‐quantized Hall response even
for strongly‐interacting systems. Our approach relies on periodic boundaries along
the width of the system, which may be realizable in synthetic dimensional lattices [36].
However, weak quenches in open systems should yield similar results.

We also observed a region between 1D and 2D Hubbard interaction, where a ferromag‐
netic (FM) state is lower in energy than the spin‐singlet sector. This region lies entirely
inside theC = −1 phase. We showed that the FM phase exists for all widths considered.
The phase boundary does not seem to depend strongly on the widthW , indicating that
the FM phase is robust for larger systems. An FM ground state necessarily has Chern
number C = −1, due to the bandstructure of the Hofstadter model. This may indicate
that the C = −1 phase in the spin‐singlet symmetry sector is related to the FM ground
state. Most of the simulations were performed for the anisotropic Hofstadter model,
ty = 1.5t, in order to relate our results to chapter 3. However, we found qualitatively
the same physical effects when ty = t, as we would have expected from section 3.3.2.

The family of models studied in this chapter is clearly motivated from theoretical con‐
siderations. However, tunable onsite and leg‐wise interactions can be realized in syn‐
thetic‐dimensional lattices [217]. While our results show that two‐leg ladders suffice to
observe a topological transitions, further research on more readily realizable models is
necessary.

CHAPTER 4. 2D iNTERACTiNG QUANTUM HALL SYSTEMS 91





5Outlook
In this thesis, we studied one‐ and two‐dimensional interactingHamiltonianswith topo‐
logical properties using numerical methods. Our goal was to predict quantum phases
and their properties in rather small systems, akin to possible realization with ultracold
atoms in optical lattices. There are different ways to continue this research:

• Studying experimental realizations. We chose parameters like the flux density
α = 1/3, or the interaction terms in section 4.1 for theoretical considerations.
The Hamiltonians realized in (synthetic‐dimensional) experiments will certainly
differ, and require further numerical research. In addition, the simulations will
become more challenging when finite temperatures are taken into account. Cur‐
rently, most cold‐atomexperiments use bosonic particles, andwewould generally
expect that they exhibit qualitatively different behavior.

• Understanding the ferromagnetic ground state. The FM ground state, discussed
in section 4.3, was a surprising discovery for us. Whether this phase persists in
the thermodynamic limit, or in related physical models, is an open question. We
will elaborate in section 5.1.

• Studying fractional quantumHall insulators. The long‐termgoal of realizing inter‐
acting topological phases in ultracold atoms is to observe fractional quantumHall
systems, and their anyonic excitations. In principle, we believe that the settings
used in section 4.1.2 should also work for fractionally‐quantized Hall conductivity
in small lattice models. However, we have not been able to produce conclusive
results, yet. We discuss our preliminary findings in section 5.2.

5.1 Understanding ferromagnetic phases

In our simulations of the Hofstadter model with hybrid‐space interactions, we found
a parameter space, where the energy of the ferromagnetic state EFM is lower than the
ground state in the spin‐singlet sectorES=0. This property is rather interesting, because
an FM state behaves like spinless fermions, meaning that:

• An FM state puts strong constraints on the degrees of freedom of the system,
greatly increasing the kinetic energy. Naively, one might think that a singlet state
should be able to mimic the properties of the charge degrees of freedom of an FM
state. However, this is prohibited by the different exchange symmetries of charge
and spin sector.

• An FM state exhibits exactly the same topological properties we found for strongly
interacting S = 0 systems.

So far, we were able to show that the FM phase is robust when going to wider cylinders
in section 4.3.2, and that it does not depend on anisotropic tunneling rates in section
4.4.2. But there are important, unanswered questions:
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• Can we relate the topological properties of the ferromagnetic state to those of the
spin singlet?

• Can we find an effective description, i.e., in terms of spin‐spin interactions?

• Is thismechanism for ferromagnetismparticular to ourHamiltonian, or is itmore
general to magnetic models with interactions, which are not onsite?

The latter could put our research in the context of ferromagnetism in the Hofstadter
t‐j model [218], or possibly in the context of itinerant ferromagnetism, which has also
been studied using ultracold atomic gases [219].

5.1.1 Interactions in the FM region

We want to briefly discuss the derivation of an effective model to explain the ferromag‐
netic phase. Since the interactions in chapter 4 are inspired by the Hubbard model,
it seems reasonable to follow the derivation for the t‐J model [220, 221], which is an
effective description of the strongly‐repulsive 2D Hubbard model.

First, we have to “choose” the large energy scale. In section 4.3we found the FM state for
Ud > Uo & 40t. Our numerical results suggest that a parameterization Ud = 2Uo should
capture the relevant physics. In that case, the interaction terms can be expressed in a
suggestive form, using both real‐ and hybrid‐space operators,

Ĥint = UdĤint,d +
Ud

2
Ĥint,o =

Ud

4

∑
x,k

n̂x,k (n̂x,k − 1) +
Ud

4

∑
x,y

n̂x,y (n̂x,y − 1) . (5.1)

Here, the strength of interactions which are onsite in hybrid space, and those onsite in
real space is the same. Therefore, our approximation should treat them equally.

Following the t‐J derivation [220, 221], this would mean performing a Gutzwiller pro‐
jection onto singly‐occupied sites in both bases. We have not computed this projector
explicitly, but given that the bases are related via a Fourier transform, it seems plausible,
that only Pauli’s exclusion principle can fulfill these constraints. In that case, deriving
the J term, an effective spin‐spin interaction, would be pointless, and ferromagnetism
would just be a consequence of onsite repulsion in orthogonal bases.

5.1.2 Particle & hole doping

As numerical approach to understanding the ferromagnetic ground state, one may ask
whether it depends on precise preparation. As an example, we study the robustness
with respect to particle and hole doping into the singlet ground states for interactions
Ud = 2Uo, as discussed in the previous subsection.

In fig. 5.1, we show that the FM state also exists when one or two holes are doped into
a width W = 2 cylinder. Here, we compare the FM ground state with the lowest‐en‐
ergy spin singlet or doublet, depending on particle number. The low‐S states become
more favorable as more holes or particles are introduced. However, the general trend
of E(FM) − E(S ≤ 1/2) over Ud is the same for all curves, and we expect that the FM
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Figure 5.1: Ferromagnetic energy gap for particle and hole doping atW = 2. Data are show
for interaction strengths Ud = 2Uo, which we discussed in section 5.1.1. We
consider a system of length L = 30 and particle density ρ = 2/3, and dope
n ∈ {−4, 3, 2, 1, 0, 1, 2, 3, 4} particles. We perform DMRG in the lowest total
spin multiplet S ∈ {0, 1/2}, and compare with the ferromagnetic state for
the same particle number. The shaded regions indicate var2(Ĥ)1/2, which
is typically larger than the numerical error, cf. section 2.3.1.

state becomes the true ground state for all particle numbers when the interaction is
further increased. We find an asymmetry for particle or hole doping, i.e., the energy
difference E(FM)− E(S ≤ 1/2) is always larger for particle‐doped states than for hole
doping. This is simply a consequence of choosing particle density ρ = 2/3, which is
a band insulator in the ferromagnetic state, i.e., additional particles have to overcome
the band gap.

We have performed simulations for cylinders of widthW = 3, 4, and found qualitatively
similar results: The FM state becomes less favorable when either particles or holes are
doped. However, for sufficiently strong interactions, the FM state seems to be the true
ground state. We believe that these findings support our argumentation of the previous
subsection, i.e., for this model, ferromagnetism is a consequence of onsite repulsion in
orthogonal bases.
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5.2 Fractional quantumHall effect

A primary goal to studying topological phases in ultracold atomic systems, is the real‐
ization of states with intrinsic topological order. The primary examples are fractional
quantum Hall (FQH) states [222], which typically exist in strongly interacting systems.
This field of research is fueled by the theoretical prediction of non‐Abelian, anyonic
excitations [75, 223] with possible applications, e.g. to topological quantum computing
[224]. So far, there is little experimental evidence for the existence of anyons in con‐
ventional condensed‐matter systems. Ultracold atomic gases hold out the prospect of
more conclusive results, because of the possibilities to engineer Hamiltonians, and to
perform advanced measurements.

Over the last ten years, various numerical studies on models which may be realizable
with optical lattices have been performed. From a theoretical perspective, the question
of how to unambiguously identify fractional Chern insulators in small lattice systems
is particularly relevant. In principle, the definition of the Berry curvature with respect
to twist angles [113] can also work in that case [225, 226], however, the ground‐state
degeneracy needs to be taken into account [149]. Similarly, one can directly probe the
topological ground‐state degeneracy in a typical numerical setup: By adiabatic flux‐
insertion, i.e., varying the angle of twisted boundaries, the degenerate states can be
transformed into each other [226–232]. Other approaches to detecting topological order
rely on the entanglement entropy [141, 192, 230, 233, 234], or the entanglement spectrum
[141, 144, 229, 235].

These quantities can easily be computed, and are of theoretical interest, but are gen‐
erally difficult to access in an experiment. Bridging the gap to ultracold‐atom exper‐
iments, FQH states in (synthetic) flux‐ladder systems [236–238], and in Floquet‐engi‐
neered topological bands [231, 239, 240] have been studied. The realization of fractional
Chern insulators in quasi‐1D systems, as studied in this thesis, can be probed bymeasur‐
ing either edge currents in open ladders [236, 237], or the polarization as function of flux
insertion, which is directly related to the Hall conductivity [144, 191, 192, 232, 238, 241]
in a cylindrical geometry. Recently, it was shown that the displacement of an atomic
cloud as response to an electric field can also be related to fractionalized conductivity
[206, 207].

We expect that a fractionalHall conductivity can also bemeasured as a current response
to a weak linear potential, i.e., a static electric field. As described in section 4.1.2, this
requires a cylindrical geometry to facilitate persistent currents jy, and to allow for the
external potential. Generally, averaging over a twist angle will be necessary to verify
quantization, cf. section 4.1.2. Therefore, this approach is not necessarily easier to real‐
ize, experimentally, than adiabatic flux insertion [144, 191, 192, 232, 238, 241]. However,
the dependence on the twist angle should decrease for larger cylinder circumferences,
such that “almost” quantized conductivies could be measured in a single, sufficiently
large experimental setup.

As a first test of our approach, we follow the numerical study by Schoonderwoerd et al.
[192] who found a Chern‐insulator to fractional‐Chern‐insulator transition in a spinless
Fermi‐Hofstadter systembymeans of adiabatic flux insertion in an infinite‐DMRGsetup.
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We will thus study the spinless Hofstadter model with nearest‐neighbor interactions,

Ĥ =
L∑

x=1

W∑
y=1

[(
− ty e2πiαx−iδ/W ĉ†x,y ĉx,y+1 − tĉ†x,y ĉx+1,y +H.c.

)
+ U (n̂x,yn̂x,y+1 + n̂x,yn̂x+1,y)

]
.

(5.2)

We choose the same parameters as ref. [192]: Isotropic tunneling rates ty = t, α = 3/11
flux quanta per plaquette, and the lowest band fully occupied at ρ = 1/11. For these
parameters, the band gap is only about 0.04t, and we have to reduce the strength of the
applied linear potential V accordingly, cf. section 4.1.2.

As in chapter 4, we perform the DMRG ground‐state search in hybrid space. The kinetic
part of the Hamiltonian looks exactly like its spinful counterpart,

Ĥ =
∑
x,k

[
− 2ty cos(2π(αx+ k/W )− δ/W )n̂x,k − tĉ†x,k ĉx+1,k

]
+ Ĥint . (5.3)

Both interaction terms become three‐fold sums, the term for neighbors along the sys‐
tem’s width also acquires a complex phase,∑

x,y

n̂x,yn̂x,y+1 =
1

W

∑
x

∑
k,p,q

e2iπ(k−p)/W ĉ†x,k ĉx,pĉ
†
x,q ĉx,q+k−p , (5.4)

∑
x,y

n̂x,yn̂x+1,y =
1

W

∑
x

∑
k,p,q

ĉ†x,k ĉx,pĉ
†
x+1,q ĉx+1,q+k−p . (5.5)

The sum of terms acting on different rings in eq. (5.5) might yield complicated MPOs
as the system’s width increases. However, the terms preserve total quasimomentumK,
such that we can restrict DMRG to states which preserve the ZW symmetry [144]. This
is probably not necessary for performance improvements, but it will allow us to study
the competition between differentK sectors.

Numerically, thismodel ismuch simpler than the 2D systems studied in chapter 4: With‐
out the spin degree of freedom, the local dimensionality is only 2, and the small particle
density greatly reduces the number of possible states. Furthermore, at the relevant in‐
teraction strengths, the particles typically remain in the lowest energy bands, such that
much larger systems can be simulated when the Hamiltonian is projected onto the rel‐
evant space [227, 229, 233]. However, the topological ground‐state degeneracy could
create numerical difficulties: Resolving the entire ground‐state manifold might require
sequential DMRG runs with orthogonalization. In section 5.2.2, we show how it may be
possible to label the different ground states with quantum numbers.

5.2.1 Narrow‐cylinder limitW = 2

As a starting point, we consider the limit of width W = 2, and restrict ourselves to a
single length L = 33. As the interactions are not onsite, we do not expect that the case
W = 2 directly corresponds to wider cylinders.
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Figure 5.2: Hall response for the free Hofstadter model for α = 3/11, ρ = 1/11, L = 33,

W = 2. Data are shown for an applied linear potential V = 10−4t. Even in
the freemodel, averagingχHall over twist angles δ is pointless, because there
are severe outliers. However, there are regions of the parameter δ, where
χHall oscillates around the expected, quantized value χHall = 4 (indicated by
the horizontal line). We will restrict our simulations to the shaded region,
where χHall is well behaved.

Unfortunately, computing the Hall response is more difficult than in chapter 4, even for
the noninteractingmodel. We show data for the narrow, freemodel in fig. 5.2, obtained
by applying V ∈ {0, 10−4t} as described section 4.1.2. The Hall response χHall exhibits
strong dependence on twist angle δ, and also its sign changes—unlike for all simulations
in chapter 4. Since the outliers can be orders of magnitude larger than the expected,
quantized value, averaging over the twist angle is pointless in the interacting model.

We try to circumvent the difficulties of the twist‐angle average by restricting the range
of δ considered for the interacting DMRG simulations. While this approach lacks the‐
oretical motivation, both numerical studies, and experiments are often restricted to a
single twist angle, such that this approachmight suffice to gain first insights. ForW = 2,
we only perform DMRG for twist angles δ in the shaded region in fig. 5.2, where χHall(δ)
oscillates smoothly around the Chern number of the lowest band, C = 4.

By this choice of twist angles, one should assume thatχHall(δ) for theweakly interacting
system is also smooth. This is indeed the case, as shown in fig. 5.3. However, we have
to take into account, that the true ground state is in the quasimomentumK = 1 sector.
We find a qualitatively different behavior for the lowest‐energy state in theK = 0 sector.
However, theK = 0 states might not be insulators for weak interactions, such that our
method to compute χHall would be ill defined.

In fig. 5.4, we show data for the Hall response with strong interactions U = 2t. Here,
data for both quasimomentum sectors deviate significantly from the Chern number
in the free model C = 4—but also from the expected, fractional result χHall = 1/3.
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Figure 5.3: Hall response for the spinless Hofstadter model for weak interactions U = 0.4t.
The ground state is in the K = 1 quasimomentum sector, and exhibits a
response oscillating around χHall = 4 (gray horizontal line), as expected
from the free model shown in fig. 5.2. In contrast, sign and amplitude of
χHall depend strongly on δ for the lowest‐energy state in the K = 0 sector.
Data are simulated for L = 33,W = 2.
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Figure 5.4: Hall response for the spinless Hofstadter model for strong interactionsU = 2t. For
strong interactions, the ground state lies in theK = 0 sector. The following
analysis will be restricted to the shaded region where the K = 0 curve ap‐
proaches and touches the value χHall = −1/3. The horizontal lines indicate
χHall ∈ {−1/3, 4}. Data are simulated for L = 33,W = 2.
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Instead, the Hall response for K = 0, which is the true ground state, is negative for
most values of δ, and touches χHall = −1/3. In order to improve our data quality, but
without theoretical motivation, we further restrict the range of twist angles δ to the
shaded region in fig. 5.4 for the following numerical analysis.

While we cannot observe fractional quantization, it appears that the change of the Hall
response and the transition between both quasimomentum K sectors coincide. In
fig. 5.5 we compare the energy in the K = 0 and K = 1 sectors, and find that their
energy difference crosses zero close to U = 0.9t. This is significantly smaller than the
critical interaction strength Uc ≈ 1.6t found by Schoonderwoerd et al. [192], but that
might be due to the special case ofW = 2.

We can understand the energy difference between both sectors by looking at the occu‐
pation imbalance of hybrid‐space legs: For the free model, we expect both legs to be
occupied by the same number of particles, thus,

|⟨N(k = 1)−N(k = 0)⟩δ| = 0 . (5.6)

This is true, as shown by the orange line in fig. 5.5. This configuration is only possible
for K = 1, which contains the true ground state. However, for strong interactions
U & t, it turns out to be energetically favorable to put all particles on the same leg. This
configuration is only allowed in theK = 0 symmetry sector.

So does this change of quasimomentum K actually coincide with the change of χHall?
Our preliminary data show that it might. In fig. 5.6, we show the Hall response χHall
for select values of the twist angle δ and different interaction strengths U . We choose
quasimomentumK depending on U , such that data are only shown for the true ground
state. While we cannot verify (fractional) quantization, the data for eachK ground state
are remarkably independent of interaction strength.

In order to make the point that the consistency of the curves in fig. 5.6 is notable, we
also show data for the excited K sectors in fig. 5.7. We find that the response χHall is
only constant w.r.t. U in the true ground state.

We are surprised to find thatχHall(δ) ≤ 0 in the strongly‐interacting case formost values
of δ. It is tempting to say that the sign of the Hall current is ill defined on a W =
2 “cylinder”, as there is no sense of direction along y. Then, one could try to relate
χHall = −1/3 plateaus to the expected C = 1/3 topological index [192]. But there are
two shortcomings in this line of argumentation: Even thoughwidthW = 2 cylinders are
a particular case, we found consistent results with largerW in section 4.2. In addition,
the results discussed here are limited by the choice of twist angles.

It is rather peculiar that the change of ground‐state quasimomentum appears to coin‐
cide with the changing Hall response χHall:

• The change of K labels of the lowest‐energy sector is probably an effect of finite
size and small filling. Had we chosen a configuration with an even number of
particles on each leg, e.g. L = 44, we would expect K = 0 to be the ground state
for all interaction strengths U : In that case, the K = 0 sector would comprise
both the state with equal occupation on both legs, and themaximally imbalanced
one.
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Figure 5.5: Energy difference and leg-occupation imbalance for both quasimomentumK sec-
tors. The red diamonds show the energy difference between states in the
K = 0 andK = 1 sector. Blue and orange lines show the occupation differ‐
ence between k = 0 and k = 1 leg of each of those states. For U = 0, the
lowest energy is achieved when both legs are occupied by the same number
of particles. This is only possible in theK = 1 state, which is the true ground
state. For strong interactions, the lowest energy is achieved when all parti‐
cles are located on the same leg. Thus, the K = 0 sector contains the true
ground state. Data are averaged over the values of δ in the shaded region
of fig. 5.4. Here, the shaded region of the energy difference indicates the
minimal (maximal) values with respect to δ. Data are simulated for L = 33,
andW = 2.

• A topological transition requires some many‐body gap to close, cf. section 1.3.2.
So far, we only encountered closing of the gap within one symmetry sector in sec‐
tion 3.3.2. The ferromagnetic ground state, discussed in section 4.3, is another ex‐
ample, where the ground‐state symmetry sector changes. However, in that case,
the topological transition and the change of symmetry labels occur for different
parameters, and the change of ground‐state symmetry labels did not affect topo‐
logical properties.

In the end, this preliminary discussion is limited by the fact that the “topological tran‐
sition” is ill defined. A proper definition of a topological index would also require peri‐
odic boundaries along the system’s length, including a second twist angle, or at least a
careful finite‐L analysis.

5.2.2 Wider cylinders

Increasing the cylinder’s width should generally suppress the effect of twist angles [114–
116], but the behavior need not be monotonous for the narrow systems accessible with
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Figure 5.6: Hall responseχHall only considering select values of δ, and the appropriate ground-
state sector. Forweak interactionsU ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}×t,
the K = 1 sector comprises the true ground state. Conversely, for strong
interactions U ∈ {1, 1.2, 1.4, 2} × t, we show data for theK = 0 sector. The
horizontal lines indicate χHall ∈ {−1/3, 4}. Data are simulated for L = 33,
andW = 2.
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Figure 5.7: Hall response χHall over interaction strength. Data are averaged over the values
of δ used in fig. 5.6. The shaded region indicatesminimal andmaximal χHall
for those values of the twist angle. We find that χHall is independent of U
only when the respective K sector comprises the true ground state. Data
are computed for L = 33 andW = 2.
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Figure 5.8: Hall response forW = 3, and various interaction strengths. Data are shown for
the ground state for each δ. Curves for U ∈ [0, 0.8t] seem qualitatively sim‐
ilar, though strongly vary in amplitude. Data for U ∈ [0.9t, 1.4t] are some‐
what inconsistent, and only for U ∈ [1.6t, 2t], the dependence on U seems
to decrease. The horizontal lines indicate χHall ∈ {1/3, 4}Data are obtained
for L = 33.

DMRG. We find that the range of twist angles δ where χHall is smooth in the free model
can be smaller forW > 2 than shown in fig. 5.2. The following numerical simulations
have only been performed for twist angles where χHall(δ) is well behaved in the free
model.

Unfortunately, the quality of the results for wider cylinders is not as good as the data for
W = 2. This may be due to our restriction of twist angles δ, but could also be caused by
more general limitations of our approach. Either way, we leave these issues for future
research.

WidthW = 3

For W = 3, we again find a transition of ground‐state symmetry labels K: This time,
K = 0 is the ground‐state sector for U = 0, and K = 1, 2 become the lowest‐energy
states for large U . With strong interactions, the sign of E(K = 1)−E(K = 2) depends
on twist angle δ: For the parameters studied here, the states of these symmetry sectors
can be related by relabeling δ → 9π/11− δ.

Choosing the lowest‐energy K sector for each value of δ, we produce the analog of
fig. 5.6 for width W = 3. In fig. 5.8 we find χHall(δ) strongly varies with the interac‐
tions U , but we are unable to find a clear transition. This time, we find χHall > 0 with
strong interactions, and there are points close to χHall = 1/3 where χHall(δ) becomes
independent of U . But χHall strongly depends on δ for all interactions U , such that a
twist‐angle average does not make much sense.
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Figure 5.9: Transition ofK ground-state symmetry labels forW = 3. For weak interactions
K = 0 contains the lowest energy state, at largeU ,K = 1 orK = 2 comprise
the ground state for different values of δ. Data are computed forL = 33, and
averaged over the twist angles shown in fig. 5.8. The shaded region indicates
minimal and maximal energy difference over those values of δ.

In fig. 5.9 we compare ground‐state energies in different quasimomentum K sectors.
We find that the critical interaction strength U ≈ 0.9t for the transition of ground‐state
symmetry sectors is consistent with results forW = 2. However, at this point we cannot
say whether this transition is related to a change of topological invariants.

WidthW = 4

Going to wider cylinders, we will not discuss the competition of different quasimomen‐
tum symmetry sectors in detail: For a range of intermediate interaction strengths, there
is close competition between states of different K labels, and we are not entirely sure
whether we resolve them accurately. Instead, we will focus on interaction strengths
U , where a single K sector is the unique ground state—at least for the twist angles we
study.

In fig. 5.10, K = 2 comprises the true ground state (for all δ) only for weak, or very
strong interactions. In the gray shaded region, 0.8t ≤ U ≤ 4t, states of different K
labels become energetically degenerate, and we are not yet sure how to deal with this
case.

Only studying K = 2, we find decent agreement with χHall = 4 for weak interactions.
We are unable to establish integer quantization, but this may be attributed to the small
range of twist angles, δ ∈ [13, 17]× π/11. Finally, we seem to observe the expected Hall
response χHall = 1/3, albeit only for very strong interactions U ≥ 4t.

The error in fig. 5.10 corresponds to minimal and maximal χHall(δ) observed. It seems
intriguing that for U ≥ 4t, we observe only a weak dependence on the twist angle,
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Figure 5.10: Hall response over interaction U forW = 4, L = 33. Data are averaged over
twist angles δ ∈ [13, 17] × π/11. The quasimomentum K = 2 sector com‐
prises the ground state for weak and strong interactions at these twist an‐
gles. However, in the gray region states for other values of K become de‐
generate. The “error” is determined from minimal and maximal χHall in
this range of twist angle δ.

0.3 ≤ χHall(δ) ≤ 0.35. This might just be for a lucky choice of δ values, or that could
mean that the twist‐angle average is not necessary for these parameters and system
dimensions.

WidthW = 6

ForW = 6, we find a unique ground state only for weak or strong interactions, similar
to our observation forW = 4. This time, we find the energies for states inK ∈ {1, 3, 5}
to be energetically degenerate at intermediate interaction strengths.

We show the ground‐state energies of all momentum sectors for an intermediate inter‐
action strength U = 3t in fig. 5.11. At this point, we have to wonder whether the degen‐
eracy is actually related to the topological degeneracy of a fractional Chern insulator.
In the setup of pumping via adiabatic flux insertion, cf. [141, 144, 191, 192], there need to
be three degenerate ground states to allow for a C/3 quantization. However, we would
have expected that the entire ground‐state manifold lies in a single quasimomentum
sector, and we are unsure how the differentK sectors are adiabatically connected.

Putting the question of degenerate ground state at intermediate interaction strengths
aside, wefind agreementwithχHall = 4 forweak, andχHall = 1/3 for strong interactions
in fig. 5.12. In this plot we show data for all competing states K ∈ {1, 3, 5}, however
K = 3 is the unique ground state in both limiting cases.
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Figure 5.12: Change of Hall response χHall with interaction U for W = 6. We only show
data forK ∈ {1, 3, 5}, which are energetically degenerate for U in the gray
shaded region, see fig. 5.11. The horizontal lines indicate χHall ∈ {1/3, 4}.
Data forK = 3, which appears to be the unique ground state for both weak
(U ≤ 1.5) and strong interactions (U > 3t), agrees well with these (frac‐
tionally‐) quantized values of the Hall response. The “error” is determined
from minimal and maximal χHall in this range of twist angle δ.
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