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Zusammenfassung

Die Untersuchung von Galaxienhaufen eröffnet einen wichtigen Weg zum Verständnis der Zusam-
mensetzung und Entwicklung des Universums und seines verborgenen dunklen Sektors. Da
Galaxienhaufen zu einem großen Teil aus dunkler Materie bestehen, geben praktische Methoden
zu ihrer Entdeckung in Beobachtungsdaten keine direkte Information über ihre Gesamtmassen,
und es wird notwendig, andere Methoden wie die Gravitationslinsentechnik zu verwenden, um
auf ihre Massenverteilung zu schließen.

Im ersten Teil der Arbeit erstelle ich eine Kalibration der Beziehung von beobachtbarer
Galaxienzahl zur Gesamtmasse für Galaxienhaufen im mittels des schwachen Gravitationslin-
seneffektes. Die Daten hierfür wurden durch die Dark Energy Survey gesammelt und reduziert.
Desweiteren entwickle ich Methoden zur Quantifizierung und Verbesserung der Robustheit und
systematischen Unsicherheit von Messungen des schwachen Gravitationslinseneffektes. Diese
Kalibrierung der Massen von Galaxienhaufen ist ein entscheidendes Bindeglied, das die kos-
mologische Theorie mit der beobachteten Realität verbindet. Sie ermöglicht es, Sie ermöglicht
es, kosmologische Schlüsse aus den Massen und Häufigkeiten von Galaxienhaufen zu ziehen.
Darüber hinaus untersuche ich eine Art von systematischem Fehler bei der
Schätzung des schwachen Gravitationslinseneffektes von Galaxienhaufen, die mit der potenziell
falschen Schätzung der Linsengeometrie aufgrund der Kontamination des Quellgalaxienkatalogs
durch Galaxien, die mit dem Zielhaufen assoziiert sind, zusammenhängt. In diesem Zusam-
menhang validiere ich eine Korrekturmethode, die sich auf die geschätzte photometrische Rot-
verschiebungs-Wahrscheinlichkeitsverteilungsfunktion der Quellgalaxien stützt.

Schließlich konstruiere ich synthetische optische Beobachtungen von Galaxienhaufen, mit
denen die Messmethoden in einer vollständigen Art und Weise von simulierten Bilddaten bis zu
wiedergefundenen Haufenmassen verglichen werden kann. Um dies zu erreichen, erstelle ich ein
transparentes statistisches Modell unter Verwendung eines datengesteuerten Ansatzes zur Mes-
sung und Beschreibung der photometrischen Eigenschaften von Galaxienhaufen und ihrer Umge-
bung und erstelle simulierte Beobachtungdaten von Galaxienhaufen, die die reale Verteilung von
Galaxien und ihre beobachteten photometrischen Eigenschaften imitieren und extrapolieren.





Abstract

The study of galaxy clusters opens a prominent pathway towards understanding the composition
and evolution of the Universe and its hidden dark sector. As galaxy clusters are to a large extent
composed of dark matter, practical methods to detect them in observational data do not give direct
information about their total masses, and it becomes necessary to make use of other methods such
as gravitational lensing to infer their mass distributions.

In the first part of the thesis I perform a weak lensing calibration of the observable - mass
relation for galaxy clusters in the optical observational dataset collected and reduced by the Dark
Energy Survey, and develop the methods to quantify and improve the robustness and systematic
uncertainty of weak lensing measurements. This cluster mass calibration is a crucial link con-
necting and anchoring cosmological theory to the observed reality, and facilitates the ongoing
efforts to derive cosmological constraints from the masses and abundances of galaxy clusters.
I furthermore investigate a type of systematic bias in cluster weak lensing estimates which re-
lates to the potentially incorrect estimation of the lens-geometry due to the contamination of the
source galaxy catalog by galaxies associated with the targeted cluster. In relation to this I validate
a correction method which relies on the estimated photometric redshift probability distribution
function of source galaxies.

Finally I construct synthetic optical observations of galaxy clusters, which can be used to
benchmark weak lensing measurement in an end-to-end fashion from mock observations to re-
covered cluster masses. To achieve this I create a transparent statistical learning model using
a data driven approach to measure and model the photometric properties of galaxy clusters and
their sky-environments, and generate mock galaxy cluster observations which mimic and extrap-
olate the real distribution of galaxies and their observed photometric properties.





Chapter 1
Introduction

Over the course of the last decades it has been revealed that most of the Universe is composed of
previously unexpected forms of matter and energy, aptly named as dark matter and dark energy,
which presents our physical understanding of the cosmos with a new frontier often referred to
as the dark sector of the Universe (Bertone & Hooper, 2018; Huterer & Shafer, 2018). While
phenomenological descriptions are abound, the nature of these components is as of yet unclear.

The research direction of this thesis is set at investigating the matter distribution and masses
of astrophysical objects known as galaxy clusters. Clusters are to a large extent composed of
dark matter, and through their abundance and growth since the dawn of cosmic history they
are informative about the composition and evolution of the Universe and its hidden dark sector
(Allen et al., 2011; Weinberg et al., 2013). Hence the study of galaxy clusters has in recent years
become a prominent pathway towards understanding the nonlinear growth of cosmic structure
(Kravtsov & Borgani, 2012), and in constraining the cosmological parameters of the Universe
(Dodelson et al., 2016). While the practical methods to detect galaxy clusters in observational
data are different between different observation strategies, available wavelengths and targeted
redshifts ranges, they do not give direct information about cluster masses, therefore it becomes
necessary to calibrate a so-called observable - mass relation (Weinberg et al., 2013).

Weak gravitational lensing on the other hand provides a practical and robust method to study
the mass properties of galaxy clusters (Bartelmann & Schneider, 2001). It relies on estimating
the shapes or ellipticities of background source galaxies, which show an apparent preferential
tangential alignment around massive lens objects such as galaxy clusters. This preferential align-
ment is induced by the gravitational potential of the lens system, therefore, lensing is sensitive
to the total mass of an object, not just its baryonic component, and is insensitive to the dynam-
ical state of the mass distribution. Furthermore, weak lensing mass measurements are readily
scalable to a statistical ensemble of targets in wide field surveys, and for this reason the lensing
based calibrations of the observable-mass relations became a standard practice for galaxy cluster
based cosmological analyses. However, in spite of the great invested effort, current cosmological
constraints are still dominated by uncertainties in the calibration of cluster masses (Rozo et al.,
2010; Mantz et al., 2015; Planck Collaboration et al., 2016; Bocquet et al., 2019).

The aim of this thesis is to perform a weak lensing calibration of the observable - mass rela-
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tion for galaxy clusters in the optical observational dataset collected by the Dark Energy Survey
(DES, DES Collaboration et al., 2016), and to develop the methods to quantify and improve the
robustness and systematic uncertainty of the needed weak lensing measurements. This cluster
mass calibration measurement is a crucial link connecting and anchoring cosmological theory
to the observed reality, and facilitates the ongoing efforts within DES to derive cosmological
constraints from the masses and abundances of galaxy clusters (DES Collaboration et al., 2020).

The thesis is divided into three chapters of original research:

1. In the first part of original research presented in chapter 2 and published in McClintock
& Varga et al. (2019), we use weak lensing to measure the projected mean galaxy cluster
mass profiles of galaxy clusters identified in DES Year 1 (Y1) data via the redMaPPer
algorithm (Rykoff et al., 2014) across different samples selected by redshift and richness
– an optical mass proxy. We then develop a modeling framework to derive mean cluster
masses from the projected profiles, and use these masses to calibrate the mass–richness–
redshift relation. These masses and the observed cluster abundances are then used by
DES Collaboration et al. (2020) to derive cluster cosmology constraints from the DES Y1
dataset.

2. In the second part of original research, presented in chapter 3 and published in Varga et al.
(2019), we investigate a type of systematic bias in cluster weak lensing estimates which re-
lates to the potentially incorrect estimation of the lens-geometry due to the contamination
of the source galaxy catalog by galaxies associated with the targeted cluster. We estimate
the performance of a correction method for this effect which uses the estimated photo-
metric redshift probability distribution function of source galaxies, and use it to validate
cluster mass profile measurements obtained in chapter 2.

3. Finally, in chapter 4 of the thesis we embark on the task to create a full synthetic testbed
for cluster weak lensing measurements. Building upon our experience from the previous
chapters, we identify that the interplay between different observational and systematic
effects can be best characterized in a unified benchmark which tests the measurement in an
end-to-end fashion from mock observations to recovered cluster masses. Constructing such
mocks which capture the key observational and physical properties of galaxy clusters in
DES is non-trivial. In this last chapter of original research therefore we develop a statistical
learning model using a data driven approach to measure the photometric properties of
galaxy clusters and their sky-environments. In turn this model is then used to generate
plausible mock galaxy clusters and model their line-of-sights in a way which captures the
real distribution of galaxies and their observed photometric features. This work hence sets
the ground for a dedicated cluster image simulation analysis estimating the performance
of past and upcoming cluster mass calibration measurements.

In the following our goal is to briefly recapitulate the theoretical concepts serving the basis
of the original research presented in the later chapters of the thesis.
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1.1 Standard Cosmological Model

On macroscopic scales the physical reality is described within the framework of the theory of
general relativity. The current standard cosmological model is also formulated in this language,
and we introduce its relevant ingredients below based on the reviews of Mukhanov (2005) and
Hogg (1999)

General relativity describes the world as a four dimensional Lorentzian manifold with a met-
ric tensor gαβ . This manifold is commonly referred to as space-time, since it unifies the classical
concept of space and time into a single entity. The essence of general relativity is that matter and
energy induces a 4-curvature in space-time, reflected in the change of the local metric. In turn
the change in metric changes the trajectories of motion available for matter and light (Mukhanov,
2005). Mathematically this can be expressed in the Einstein field equation1

Rαβ –
1
2
δαβ R – δαβΛ = 8πG Tαβ . (1.1)

This equation is formulated for 4-tensor fields, where Rαβ and R is the so called Ricci curvature
tensor and Ricci scalar respectively which are calculated from the metric tensor gµν and its first
and second order derivatives, δαβ is the unit matrix, Λ is the so-called cosmological constant,
while Tαβ is the stress-energy tensor of the matter content of the universe. G is the Newtonian
gravitational constant. In principle, knowing Tαβ , which is completely dependent on the micro-
physics of matter, the field equation can be solved. The above simple form is however deceptive
as solving the Einstein field equation is non-trivial, and exact solutions are only known in special
cases with symmetries.

1.1.1 An Expanding Universe

A key epistemological assumption in thinking about the universe is the cosmological principle,
which states that on sufficiently large scales the properties of the universe are the same for all ob-
servers (Mukhanov, 2005). In mathematical terms this means that the universe on large scales is
assumed to be homogeneous and isotropic. This principle can be experimentally tested, and cur-
rent observations about the large scale distribution of galaxies (Alam et al., 2017) and the cosmic
microwave background (Planck Collaboration et al., 2018) indeed confirm that the cosmological
principle holds on length scales larger than hundreds of Mpc.

The cosmological principle enables us to approach describing the Universe in a perturbative
way. One can decouple the question into modeling a large-scale homogeneous and isotropic
background cosmology, and into the study of small scale physics of perturbations upon the large-
scale background.

In this approach hence one needs only to study the background model to understand the
large scale evolution and properties of the universe. The symmetries of this large-scale back-
ground allow us to find an exact solution metric for the Einstein equation, which is known as the

1Assuming c = 1 units following Mukhanov (2005)
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Friedmann-Lemaitre-Robertson-Walker (FRW) metric (Mukhanov, 2005). For this metric the
infinitesimal line-element is expressed in spherical coordinates as

ds2 = gµνdxµdxν = dt2 – a2(t)

[
dr2

1 – Kr2 + r2dΩ2

]
, (1.2)

where t is a time parameter, while r and Ω refer to the radial and angular coordinates respectively.
K is the spatial curvature parameter which differentiates globally closed spherical (K > 0), flat
euclidean (K = 0) and open hyperbolic (K < 0) space-times. The line element decouples into a
time-independent spatial component within the square brackets and a time-dependent prefactor
denoted by the a(t) scale factor. The normalization of the scale factor is arbitrary, and it is
customary to choose it to be a(t = today) = 1.

The above metric allows for explicit time evolution of the background cosmology, whereby
space can expand or contract as the scale factor changes. Such expansion was indeed discovered
by Hubble (1929) based on the apparent recession of galaxies. The detection of cosmic expansion
gave rise to the standard big bang model of cosmology. This model at present can accommodate
most observational facts about the Universe, and can be loosely described as the idea that the
current state of the Universe is a product of cosmic expansion. During this expansion out of
relatively simple initial conditions of a hotter and denser early state form the elements, stars,
planets and galaxies we experience today (Mukhanov, 2005). In this picture the rate of cosmic
expansion is characterized by the Hubble parameter defined as

H(t) =
ȧ(t)
a(t)

(1.3)

where the current measurements indicate that H0 ≡ H(t = today), the value of the expansion rate
at present is approximately on the order of 70 km / s / Mpc based on a wide range of measure-
ments (Riess et al., 2016; Planck Collaboration et al., 2018). Recent measurements furthermore
indicate that the expansion of the Universe is in fact accelerating with time.

Finding the actual expansion history can be done by re-expressing Equation 1.1 using the
FRW metric from Equation 1.2 and the symmetry considerations of the cosmological principle
and solving the Friedmann equations (Huterer & Shafer, 2018)(

ȧ
a

)2
=

8πG
3

∑
i

ρi –
K
a2 +

Λ

3
, (1.4)

(
ä
a

)
= –

4πG
3

∑
i

(ρi + 3pi) +
Λ

3
, (1.5)

where the summation goes over the different constituent species of the universe. ρi and pi refers
to the energy density and pressure of a species respectively. Together these terms constitute the
diagonal of Tαβ i which are the only nonzero components allowed by the cosmological principle.

In practice, the different matter and energy species are commonly described by a fluid model,
where the energy and pressure is related via an effective equation of state parameter wi (Huterer
& Shafer, 2018), such that

pi = wi ρi (1.6)
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An often used reference energy value is the critical density which is the energy density of a
spatially flat universe K = 0 with Λ = 0

ρc(t) =
3H(t)2

8πG
. (1.7)

Using this critical density, a density parameter of the different constituent species can be
defined as Ωi = ρi/ρc. For the case of the cosmological constant this is defined as ΩΛ = Λ/(3H2

0),
while for curvature ΩK = K/(3 a2). During cosmic expansion different matter and energy species
become diluted to a different extent, which can be expressed from Equation 1.4 and Equation 1.5
as

Ωi(t) = Ωi · a(t)–3(1+wi) , (1.8)

where Ωi represents the value of the density parameter in the present time.
A useful quantity in observationally describing the cosmic expansion history is the redshift

z experienced by a photon, which arises due to cosmic expansion between the time of emission
from a distant source and absorption by the observer (Hogg, 1999):

z =
λobs

λemitted
– 1 . (1.9)

This kind of cosmological redshift arises in addition to possible proper motion of the emitter or
the absorber, and can be expressed from the scale factor at different times as

z =
a(tobs)

a(temitted)
– 1 . (1.10)

Redshifts are a thus preferred way of quantifying look-back time into cosmic history due to their
direct connection to an observable quantity.

In the expanding background the distance between two points can be calculated by integrating
the line element along the shortest path between the points on a space-like hypersurface (Hogg,
1999). This simple distance definition is denoted as the proper distance DP(t), which is time
dependent due to the cosmic expansion or Hubble flow. Based on the form of the metric in
Equation 1.2 the expansion can be factored out by defining the comoving distance as DC =
DP(t)/a(t).

These distance measures are defined between events at the same time, therefore for observa-
tional applications they have to be modified to be applicable for events observed in the past at
redshift z and an observer in the present. For this scenario following Hogg (1999) the comoving
distance is given as

DC(z) =
∫ 0

z

dz′

H(z′)
. (1.11)

Alternatively, the transverse comoving distance between two events at redshift z with apparent
angular separation δθ is given by DM(z) · δθ where

DM(z) =


1

H0
√

Ωk
sinh(H0

√
ΩkDC(z) for ΩK > 0

DC(z) for ΩK = 0
1

H0
√

Ωk
sin(H0

√
ΩkDC(z) for ΩK < 0

, (1.12)
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and where the possible spatial curvature of space must be taken into account. A further distance
metric relevant to this work is the angular diameter distance which is used when converting
apparent angular δθ separations of events into proper physical separation δx at redshift z, such
that DA(z) ≡ δx/δθ, or

DA(z) =
DM(z)
1 + z

. (1.13)

A curious property of this distance definition is that it is not a monotonically increasing function
of redshift, and in fact objects at high redshift appear increasingly larger on the sky. However
this is counteracted by the faster than classical decrease of surface brightness, as expressed in the
so-called luminosity distance

DL(z) = (1 + z) DM(z) . (1.14)

1.1.2 The ΛCDM paradigm

In our standard picture the stress-energy of the Universe is made up by the following types of
components (Mukhanov, 2005; Weinberg, 2008; Planck Collaboration et al., 2018):

• Radiation: Photons and relativistic particles such as neutrinos with effective equation
of state w = 1 / 3 (as defined in Equation 1.6). While at very early times the universe
was dominated by radiation, due to the steep dilution of energy density as ρν ∝ a–4(t) it
quickly became subdominant during cosmic expansion.

• Baryonic Matter: Non-relativistic particles described by standard model physics which
interact electromagnetically2 . Hence all visible matter: stars, planets, dust and gas belong
in this category. On very large scales matter is modeled as a pressureless dust, hence w = 0
and ρm ∝ a–3(t).The density parameter of baryons today is Ωb ≈ 0.04.

• Dark Matter: A type of matter which does not interact electromagnetically, and outweighs
traditional baryonic matter in the total energy budget by several factors. On cosmological
scales the effective equation of state of dark matter is identical to baryonic matter. Dark
matter is often modeled as cold dark matter (CDM) which means that it has no intrinsic
thermal kinetic energy, and it is further often assumed to be collisionless or non-self in-
teracting. The density parameter of dark matter today is ΩDM ≈ 0.25, however the more
commonly used parameter is the total amount of matter Ωb + ΩDM = Ωm ≈ 0.29.

• Dark Energy: A type of homogeneous energy density responsible for the observed accel-
erating expansion of the Universe. In the simplest model equivalent to the cosmological
constant Λ, in which case w = –1 where ρΛ ∝ a(t) that is it does not become diluted with
cosmic expansion and as dominant component (ΩΛ ≈ 1) drives an exponential expansion
of the Universe a(t) ∝ eH t. Current measurements indicate that the density parameter of
dark energy today is ΩΛ ≈ 0.71.

2Hence in a cosmological context electrons are also considered to be baryons
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The above outlined energy components define the Λ - cold dark matter (ΛCDM) paradigm. The
key feature of this model is that at present times ∼ 96% of the energy budget of the universe is
made by the dark sector composed of dark matter and dark energy, and is thus not available for
direct observation. Since dark matter does not interact with photons, small initial perturbations
in the dark matter field are free to undergo gravitational collapse and form structures even when
baryonic matter is still coupled with radiation in the early universe. Hence in the ΛCDM picture
cosmic structure is initially formed by dark matter, and only at a later time after decoupling from
photons can baryonic matter play a role. Furthermore since today the energy budget is already
dominated by dark energy resulting in the accelerating expansion of the Universe. Based on the
Friedmann equations the spatial curvature K of the metric can also appear as an effective energy
density defined by ΩK = K/(3 a2), however in our present picture the Universe is measured to be
very close to spatially flat3, hence ΩΛ ≈ 1 – Ωm

1.1.3 Growth of Structure and the Halo Model
A crucial observational fact in cosmology is that small temperature and density perturbations are
already visible in the cosmic microwave background (CMB) at z ≈ 1100, which is the earliest
directly observable state of the universe. These density perturbations can be described as a
Gaussian random field for which it is customary to define the density contrast as δ = ρ/ρ–1. At the
time of the CMB δ ∼ 10–5. It is our understanding that these small initial perturbations are the
seeds of today’s structure, and their growth and evolution is governed by gravitational collapse
(Mukhanov, 2005). The role of gravity is to drive the collapse of overdensities, which in turn
results in the emptying out of under-densities. As these density fluctuations grow, their evolution
can be initially described in a perturbative regime, known as the regime of linear growth where
δ << 1. In this linear regime the growth of perturbations can be expressed via a multiplicative
linear growth function D(a) such that at any spatial length scale δ(a) ∝ D(a) (Huterer et al.,
2015).

A useful description of the properties of the density field is done through the 2-point corre-
lation function ξ(r) =

〈
δ(x) δ(x′)

〉
with r =

∣∣x – x′
∣∣ and the power spectrum P(k) which is the

Fourier transform of the correlation function. A commonly used parameter relating to this is the
amplitude of density fluctuations σR measured at smoothing scale R, which can be expressed
from the (linear) power spectrum as

σ2
R(a) =

∫ ∞
0

k3

2π2 Plin(k, a) W2(kR) dln k , (1.15)

where W is the Fourier transform of the spherical top hat filter (Huterer et al., 2015). The value
of σ8 = σR(a = 1) with R = 8 Mpc h–14 is a commonly used cosmological parameter and its
value is measured to be σ8 ≈ 0.81 (Planck Collaboration et al., 2018).

As perturbations grow, eventually they reach the non-linear phase when δ ∼ 1 or greater.
An illuminating example for this phase is the gravitational collapse of an overdensity distributed

3Alternatively, in an inflationary picture the process of inflation drives K to approach zero(Mukhanov, 2005)
4h = H0/(100 km/s/Mpc)
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Figure 1.1: Illustration of the spherical collapse model. top: Real space expansion and collapse.
bottom: change in density contrast according to linear and non-linear theory. Figure adapted
from Knobel (2012).
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according to a spherical top hat embedded in an expanding homogeneous background. An il-
lustration of this collapse is shown on top panel of Figure 1.1: Initially each concentric mass
shell of the overdensity follows the background expansion or Hubble flow indicated as R̄(τ ),
but over time they decouple from it indicated by RP(τ ) and start contracting under their self-
gravity. A perfectly spherical top hat overdensity would collapse into a point. For more general
or perturbed distributions instead the system reaches virial equilibrium where the kinetic energy
of the dissipationless system counteracts further gravitational collapse. In this final virialized
stage the system contracted to approximately half its size at turnaround5 (Kravtsov & Borgani,
2012; Knobel, 2012). Hence this collapse process out of an initial small overdensity creates a
gravitationally bound object known as a halo.

The bottom panel of Figure 1.1 shows the above spherical collapse process, but expressed in
terms of the density contrast of the collapsing volume δ(τ ) and the density contrast as predicted
by the growth of linear perturbations δlin(τ ). Initially these two descriptions agree (when δ << 1),
however as the collapse proceeds these two descriptions deviate. While linear theory predicts
δc = 1.69 at the time of the collapse, the actual virial overdensity is ∆vir = δvir + 1 ≈ 178
independently of the mass of the formed halo. Hence halo masses are commonly quoted as the
mass enclosed within a sphere having the virial overdensity Mvir or 200 times the cosmic average
matter density M200m.

Linear theory nominally breaks down for δ ∼ 1, yet the above finding still means that over-
densities for which δlim > δc = 1.69 will form virialized halos. This connection enables us to
express the number and mass distribution of said halos from linear theory, defining the halo mass
function (Huterer et al., 2015)

dn
dM
≡ d2N

dM dV
= F(σ)

ρM
M

d lnσ–1

dM
(1.16)

where σ is defined according to Equation 1.15 but using the the radial scale corresponding to
M = (4π/3) R3ρM with ρM = ΩM ρcrit, and F(σ) denotes the fraction of collapsed objects, which
according to the formalism of Press & Schechter (1974) can be estimated as

F(σ) =
1√

2 π σ2
exp

(
–

1
2
δ2

c
σ2

)
. (1.17)

Equation 1.16 makes it explicitly visible that the halo mass function captures the abundance
of halos both in terms of volume density and also in terms of density per mass element. Hence
halos provide a cosmological probe which is sensitive to both the geometry of the Universe,
and also to the growth of cosmic structure (Huterer & Shafer, 2018). While the above formulas
are an elegant way of expressing the halo mass function from linear theory, it is not sufficiently
accurate for the needs of precision cosmology. For this reason studies in recent literature adopted
empirical formulas motivated by the above, which are fitted to the measured halo mass functions
in numerical simulations (Tinker et al., 2008; McClintock et al., 2019).
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Figure 1.2: The large scale structure of the Universe in observations as traced by galaxies (left
and upper segments) and in numerical simulations as traced by dark matter halos (bottom and
right segments). The radial direction represents the redshift direction. Figure adapted from
Springel et al. (2006).
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1.1.4 The Cosmic Web
The gravitational collapse of initial overdensities in the cosmic matter field gives rise to bound
objects known as halos, but the time it takes to form a virialized halo depends on the spatial
extent of the overdensity: Smaller spatial scales undergo collapse, decoupling and virialization
quicker than larger scales. The size and density of the formed halo is relative to the cosmic
matter density at the time of its formation, therefore in an expanding cosmic background halos
which form earlier are not only smaller but also denser than their later forming counterparts.
Furthermore, due to the disparate collapse timescales involved, some smaller halos are already
fully formed by the time larger scale overdensities start to collapse, therefore these superstruc-
tures form out of the mergers of smaller halos (Springel et al., 2006). This phenomenon is often
denoted as the hierarchical formation of cosmic structure, and results in a system where halos are
not simply smooth overdensities but themselves are composed of smaller subhalos embedded in
the superstructure.

Based on the local geometry of overdensities, gravitational collapse can happen not only
in three dimensions, which would form halos, but also in two dimensions, forming structures
known as filaments6. This type of process results in a pattern known as the cosmic web. Because
of the hierarchical formation smaller halos are already embedded in the currently collapsing
structures and can act as tracers of the large scale structure. Such a scenario is illustrated on
Figure 1.2, which shows the cosmic web made visible through the distribution of galaxies in
different observational datasets (left and upper segments) and in numerical simulations as the
distribution of halos (right and bottom segments) (Springel et al., 2006). Both observational data
and simulation results paint a consistent picture where filaments of matter, halos and galaxies
connect into the knots of the cosmic web. Meanwhile initial underdensities grow emptier as time
passes, visible only as voids bounded by overdense filaments and knots.

1.2 Non-linear Baryonic Structures
In a direct observational scenario, of the above described structures we can only see the baryonic
matter component. In particular, the visible segment of the electromagnetic spectrum is domi-
nated by stellar emission, and for this reason the galaxies in which these stars reside became a
fundamental tracer of cosmic structure. Galaxies initially form within their own halo, however
through mergers over cosmic history some of them end up embedded in larger structures known
as galaxy groups and galaxy clusters (Kravtsov & Borgani, 2012), and became subhalos within
them.

1.2.1 Galaxies in Optical Wavelengths
Galaxies are gravitationally bound systems of stars, gas and dust within a dark matter halo or
subhalo. While their mass is dominantly in the form of dark matter, their most apparent observa-

5For a virialized system the total kinetic energy K and the potential energy V is related as K = –1/2V .
6and also in 1D forming so-called sheets, however these are less manifest in simulations or observations.
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Figure 1.3: Morphological classification of galaxies along the Hubble Sequence. Figure adapted
from Kormendy & Bender (1996).

tional feature is that they are the environments where star formation can efficiently happen within
the cosmos. Stars are formed out of the gravitational collapse of gas clouds, and thus sustained
star formation requires both a steady gas reservoir and a process for gas to cool and contract by
radiating its thermal energy away.

The visible properties of galaxies are closely connected to the properties of their current stel-
lar components, and this in turn is the product of their star formation history over cosmic time.
The sum of stellar light determines the net spectral energy distribution (SED), while the orbital
distribution of stars within the potential well determines the morphology of the galaxy. From
the morphological point of view galaxies are traditionally classified along the Hubble sequence
illustrated in Figure 1.3, where they are grouped into two main groups based on their light distri-
bution: elliptical and spiral galaxies (Kormendy & Bender, 1996).

Spiral galaxies are named after the prominent spiral arm features visible in them which are
regions of recent star formation. They are also characterized by a galactic disk defined by the
largely coherent orbits of stars and gas within the potential well, and a central stellar component
known as the bulge which is classically regarded as dynamically distinct from the disk. In some
cases spiral galaxies also possess a bar-like feature defined by the stellar orbits in their central
region which leads to further morphological and dynamical classifications. Elliptical galaxies in
turn are characterized by the chaotic individual orbits of stars and it is their velocity dispersion
which keeps the system in gravitational equilibrium. They are thus described by a simpler set
of morphologies as triaxial ellipsoids, which is often expressed as the shapes of their isophotes.
There are several narrower categories beyond the top-level simple picture including S0 galax-
ies inhabiting a transitional morphology between spirals and ellipticals, and different types of
irregular galaxies which do not fit into other categories.

The typical spectral energy distribution of different morphological types is illustrated in Fig-
ure 1.4 (Molino et al., 2014). These SEDs form a sequence from elliptical (Ell) galaxies, through
spirals (Sbc, Sbd) to starburst galaxies (SB). This sequence is defined by the age of the stellar
population of the galaxy, therefore it is visible that spiral and elliptical galaxies differ not only
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Figure 1.4: Typical galaxy spectral energy distributions (SEDs) for different morphological types
and starburst galaxies (SB). Figure adapted from (Molino et al., 2014).

in their morphology but also in their star formation history. Elliptical galaxies have a very old,
passively evolving stellar population, while spiral galaxies have ongoing star formation and their
overall stellar components are younger. The SEDs of star forming galaxies are dominated by the
freshly formed hot young stars. When star formation ceases, an event known as quenching, the
short lived hot stars expire soon after7, and only colder and redder stars remain. As quenched
galaxies age, their SEDs change only through the passive evolution of their stars. For actively
star forming galaxies however the SED is strongly determined by the rate and history of star
formation, which results in a substantially greater variability within and between the different
galaxy types.

A practical way of describing galaxies in observational studies is by positioning them on a
color-magnitude diagram. This carries similar information to comparing the SEDs of different
galaxies, and measuring magnitudes and colors (magnitude differences) is significantly easier
than measuring spectra. Figure 1.5 shows the color-magnitude diagram of an exemplary galaxy
population, where in addition the morphological classification of the galaxies is also shown. El-
lipticals are indicated by red markers, while different types of spiral galaxies are shown as blue
or green markers. It is visible that the galaxies are divided into two populations, a preferentially
bluer spiral population distributed in the blue cloud, and a redder elliptical galaxy population
distributed along the red sequence (Tinker et al., 2013). Galaxies can become brighter by form-

7Stellar life-cycles of 10-100 million years for O or B type stars are almost instantaneous compared to cosmo-
logical timescales
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Figure 1.5: Color-magnitude diagram of galaxies in the Sloan Great Wall (see uppermost corner
segment of Figure 1.2). The marker color indicates observed morphology red: elliptical and S0,
green: Sa and Sb, blue: generic spirals and irregulars. Figure adapted from Gavazzi et al. (2010).
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ing stars, however the merger of galaxies is also a possible pathway of growth. Mergers disturb
the dynamical state of galaxies, disrupt the disk structure of spiral galaxies, and they can induce
quenching. This is indeed visible on Figure 1.5 as the brightest galaxies are preferentially red el-
lipticals, which were able to increase their brightness by incorporating the the stellar components
of other galaxies via mergers as opposed to in-place star formation.

1.2.2 Galaxy Clusters

The most massive gravitationally bound structures in the Universe today are galaxy clusters,
which correspond to the highest peaks in the initial cosmic density field. These massive halos
form out of the mergers of smaller galaxy groups and galaxies in a hierarchical way (Kravtsov &
Borgani, 2012; Allen et al., 2011). The distinction between galaxy groups and clusters is some-
what arbitrary, both being the product of the same formation process, albeit the terms indicate
different mass scales with clusters commonly denoted as halos with masses of M200 ≥ 1014 M�.
Mergers promote quenching in the infalling galaxies which leads to galaxy clusters hosting a
characteristic population of quenched elliptical galaxies distributed along the red-sequence. Thus
the bulk of the stellar mass within a cluster is actually formed outside of the halo, when the even-
tual cluster member galaxies were still independent and the dominant members of their own
halos.

A prominent element of galaxy groups and clusters is the central galaxy (or brightest cluster
galaxy, BCG) which in an equilibrium system is positioned at the deepest point of the potential
well8, while the other member galaxies inhabit subhalos and orbit within the main cluster halo.
In this setting strong tidal effects act on the subhalos, stripping matter from them and transferring
it to the main cluster halo. The stellar component of this stripped material is visible as the intra-
cluster light (ICL), which together with the central galaxy is estimated to contain a substantial
fraction of the stellar mass of the galaxy cluster (Kluge et al., 2020; Zhang et al., 2019a). An
often used metric of the galaxy content of clusters is the richness which is defined as the number
of galaxies in the cluster brighter than some limiting magnitude, although in practice richness
estimates are usually formulated with a more narrow galaxy selection in mind. Figure 1.6 shows
the optical g, r, i band color composite image of the galaxy cluster MACS J0416.1-2403, which
is one the most massive known halos identified to date, visible here as an overdensity of luminous
red-sequence galaxies (Ebeling et al., 2001).

The luminous stellar component constitutes only approximately 1% of the total mass of a
galaxy cluster, with most of the matter being in the dark matter halo, and approximately 10% of
the mass is present in the form of gas bound in the cluste rs gravitational potential, also known
as the intra-cluster medium. Due to the depth of the potential well, accreted gas infalling to
the cluster is heated to very high temperatures (up to 108 K) and radiates thermally in X-ray
wavelengths (Kravtsov & Borgani, 2012). The hot gas (plasma) component gives rise to an
additional pathway for the direct observation of galaxy clusters: Photons originating from the
cosmic microwave background (CMB) suffer inverse Compton scattering on the electrons of

8During mergers of similarly sized clusters it can sometimes appear that that there are more than one similarly
bright galaxies, or that the brighter galaxy is in fact not the one closer to the center of the mass distribution.
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the plasma in the ICM, a process known as the Sunyaev-Zel’dovich effect. The result of this
scattering is that depending on the observed wavelength range clusters appear as shadows or
bright spots on maps of the CMB.

The dark matter, gas and galaxy components of galaxy clusters show a large degree of self-
similarity in their distributions across a wide range of masses. This in practical terms means that
clusters at different masses can be well described as scaled versions of each other (Kravtsov &
Borgani, 2012). Self-similarity is also manifested in a universal density profile for cluster sized
halos, the Navarro-Frenk-White NFW profile (Navarro et al., 1996)

ρNFW(r) =
ρcrit δc(

r
rs

)(
1 + r

rs

)2 , (1.18)

where rs is the scale radius of the halo, while δc is known as the characteristic overdensity
of the halo. In practice these parameters are more commonly expressed equivalently by the
radius containing 200 or 500 times the cosmic mean matter density r200m or r500m, and the
concentration parameter c respectively.

1.3 Weak Gravitational Lensing
In the language of general relativity, light rays follow the null geodesics of spacetime where
ds2 = 0. In the presence of massive objects these paths are no longer straight lines, and light
rays become deflected due to the inhomogeneous gravitational potential. This effect is called
gravitational lensing (Bartelmann & Schneider, 2001).

In the following we introduce a specific lensing scenario following Bartelmann & Schneider
(2001), illustrated in Figure 1.7, which is applicable for the weak field limit of general relativity.
Here a light bundle emitted by a distant source is deflected by the gravitational potential of a lens
mass distribution before it reaches the observer. For small deflection angles the trajectories of
light rays can be approximated as straight lines before and after the deflection. Furthermore in the
cosmological context the relevant distances are much larger than the size of the lens, motivating
the thin-lens approximation where the lens mass distribution can be expressed as a surface mass
density Σ(ξ) localized on the lens plane. For this setting the deflection angle is expressed as

α̂̂α̂α(ξ) =
4G
c2

∫
dξ2Σ(ξ′)

ξ – ξ′∣∣ξ – ξ′
∣∣2 . (1.19)

The true angular position of a light bundle or source at which it would be visible to the
observer without lensing β, and the lensed or deflected angular position θ, are connected via the
lens equation

β = θ –
Dds
Ds

α̂̂α̂α
(
Ddθ

)
, (1.20)

where Ds, Dd, Dds refer to angular diameter distances (Equation 1.13) to the source, to the lens,
and between the source and the lens respectively.
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Figure 1.6: Color composite image (g, r, i) of the galaxy cluster MACS J0416.1-2403. Figure
courtesy of Daniel Gruen and the DES deep field program.
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Figure 1.7: Lens geometry and light deflection path in a simple weak lensing scenario. Figure
adapted from Bartelmann & Schneider (2001).

Depending on the mass distribution and the distances involved, the lens equation can have
multiple solutions for a single β, known as multiple images. The criterion for this is given by the
critical surface mass density

Σcrit =
c2

4πG
Ds

Dd Dds
, (1.21)

which is used to define the convergence or dimensionless mass density

κ(θ) =
Σ(Ddθ)

Σcrit
. (1.22)

κ ≥ 1 is a sufficient criterion to produce multiple images and this is known as the strong lensing
regime, while κ < 1 is known as the weak lensing regime, although this term is most often used
for κ << 1.

During lensing light bundles suffer differential deflection, which results in the change in
their size and shape. This mapping can be locally linearised and it is then described by the weak
lensing Jacobian matrix

A(θ) =
∂β

∂θ
=

(
δij –

∂2Ψ(θ)
∂θi∂θj

)
=
(

1 – κ – γ1 –γ2
–γ2 1 – κ + γ1

)
, (1.23)
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where Ψ is the lensing potential defined from the convergence in a 2D analogy of the classical
gravitational potential,

Ψ(θ) =
1
π

∫
d2θ′ κ(θ′) ln

∣∣θ – θ′
∣∣ , (1.24)

and a new quantity: gravitational shear γ ≡ γ1 + iγ2 is introduced. According to the lensing Ja-
cobian, initially circular light sources are mapped into ellipses. The anisotropic shape distortion
is described by the shear, while the change in area is releated to both κ and γ as expressed by the
magnification

µ ≡ 1
detA

=
1

(1 – κ)2 – γ2 . (1.25)

The great practical advantage of weak lensing relies in the fact that by observing the distorted
images we can reconstruct some properties of the lens potential. To demonstrate this, first let us
consider that observationally one does not simply measure γ, but the reduced shear

g =
γ

1 – κ
, (1.26)

which is directly related to the ellipticity e = e1 + ie2 of the distorted light bundle defined such
that |e| = (a – b)/(a + b) where a and b are the major and minor axes of the light bundle.9

So far we invoked the assumption of initially circular light bundles, but lack of access to such
idealized tracers does not limit the applicability of weak lensing measurements. In a general
case we can consider lensing experienced by an ensemble of tracers, such as background source
galaxies each with an intrinsic shape and size. The shape of source galaxies can be character-
ized by the ellipticity e or second moment of their light distributions. It is assumed that true
background galaxies have no preferential intrinsic orientation 〈eintr〉 ≈ 0, thus in an unbiased
measurement scenario the reduced shear experienced by an ensemble of tracers can be expressed
as 〈e〉 ≈ 〈g〉. This naturally depends dominantly on the accuracy of estimating galaxy shapes,
and only holds exactly in an ideal scenario.

Gravitational shear is directly related to the mass distribution: Each mass element in the lens
plane induces a shear field which is aligned tangentially with respect to it, and the net shear at
each point is found as the integral over all mass elements (Kaiser & Squires, 1993). In turn, the
net tangential shear measured at projected radius R around a lens can be expressed as

〈γT(R)〉 = κ(< R) – 〈κ(R)〉 , (1.27)

where 〈·〉 refers to the expectation value integrated over a circle of radius R, and κ(< R) refers to
the mean convergence measured within the disc of radius R around the targeted point (Mellier,
1999). This equation can be transformed into the actual surface mass density by multiplying with
Σcrit

Σcrit · 〈γT(R)〉 = Σ(< R) – 〈Σ(R)〉 ≡ ∆Σ(R) (1.28)

where ∆Σ is the excess surface mass density. This equation is formulated for γT, and is therefore
only fully applicable for measurements of gT in the weak shear limit. Furthermore this type of

9In the weak shear limit of γ � 1 and κ� 1, g ≈ γ.
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inversion constrains the surface mass density only up to an additive constant, a phenomenon
known as the mass sheet degeneracy. Nevertheless, knowing a theoretical model for the lens
mass distribution, ∆Σ can be predicted, and thus the total mass of the lens system can be derived
from the model fit. This is the method which serves as the basis for the weak lensing mass
calibration presented in this thesis.

1.4 The Dark Energy Survey
The Dark Energy Survey (DES) is an optical imaging sky survey covering a footprint of 5000
deg2 near the southern galactic cap with g, r, i, z band observations (DES Collaboration et al.,
2016). The survey is conducted using the 570 megapixel Dark Energy Camera (DECam) in-
stalled on the 4-m Blanco Telescope at the Cerro-Tololo Inter-American Observatory (CTIO)
(Flaugher et al., 2015). The primary science driver of DES is to constrain the dark energy equa-
tion of state parameter w (see Equation 1.6) from a combination of cosmological probes sensitive
to the growth of structure and the expansion of the Universe at late cosmic times. In this con-
text the design and operations of DES are centered around using weak gravitational lensing to
connect the properties of directly observable tracers such as galaxies or galaxy clusters with the
underlying distribution of dark matter.

Observations in DES are organized into six seasons. These were preceded by a science ver-
ification (SV) survey performed from November 2012 to February 2013 at a restricted footprint
of approximately 140 deg2 but at the eventual target depth of DES corresponding to a 10σ i-band
limiting magnitude of 23.5 (DES Collaboration et al., 2016). The main survey operations started
in August 2013, and these consist of three main data and science releases based on the data col-
lected up the first year (Y1), third year (Y3) and fifth year (Y6) of observations. Currently DES is
analyzing data taken up to February 2016 at the end of the third year of observations. The cumu-
lative footprints of the different seasons are shown on Figure 1.8 where the Y1 area is indicated in
red, while the black contour shows the footprint of the Y3 and Y6 areas. In addition to the main
survey footprint DES also covers a set of deep field regions aimed at supporting the DES su-
pernova cosmology program (Abbott et al., 2019) by repeated observations at an approximately
weekly cadence, while also complementing the DES wide field survey with approximately 2-3
mag deeper observations.

One of the primary data products of the DES main survey is a base photometry catalog (de-
noted as the GOLD catalog) derived from the galaxies and stars identified in the survey footprint
of an observational season. These catalogs, i.e. the Y1 GOLD (Drlica-Wagner et al., 2018) or
Y3 GOLD (DES Collaboration, in prep a) catalogs are the primary science ready photometric
data products of DES. In addition to the fluxes and basic photometric properties of each object,
they contain the photometric calibrations and corrections and ancillary data products such as
observational masks or star-galaxy separation flags needed to define a suitable input dataset for
cosmology analyses.

While the relevant chapters of this thesis introduce the relevant data products and concepts
in more detail, within the following sections we recapitulate some of the general methods and
considerations underlying the thesis.
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Figure 1.8: Observational footprint of the Dark Energy survey. (red area:) year 1 (Y1) footprint.
(black circles:) Deep field regions. (black contour:) year 3 (Y3) and year 5 (Y6) footprint.
Figure adapted from Drlica-Wagner et al. (2018)

1.4.1 Cluster Finding in Photometric Data

In optical wavelengths galaxy clusters appear as overdensities of galaxies. Many of these cluster
member galaxies are quenched, elliptical galaxies distributed along the red sequence. While not
all cluster members are red or elliptical, in the context of identifying clusters, searching for them
as overdensities of red-sequence galaxies presents a powerful and fundamental method, as their
SED and evolution can be modeled more simply than that of other galaxy types (Koester et al.,
2007; Weinberg et al., 2013). Furthermore this kind of approach benefits from the fact that it
can directly be applied in the photometric catalogs of wide area sky survey such as DES at no
additional observational cost.

Within DES the galaxy clusters are identified using the redMaPPer: red-sequence Matched-
filter Probabilistic Percolation algorithm (Rykoff et al., 2014, 2016). The base input for redMaP-
Per is the DES GOLD photometry catalog and a small set of spectroscopic seed galaxies. These
seed galaxies are used to train the initial model for the red-sequence at different redshifts which
is then iteratively expanded and re-trained with the galaxies in the photometric dataset. The al-
gorithm uses a spatial and color based matched-filter to identify overdensities of galaxies which
are likely located at the same redshift, and from these constructs catalogs of cluster candidates.
Cluster candidates are assumed to be centered on one of the galaxies in the photometry catalog,
while galaxies which according to the matched-filter might be red members of a cluster candidate
become possible members with a membership probability pmemb.

RedMaPPer derives cluster redshifts from the pmemb weighted individual red-sequence based
photometric redshifts of potential member galaxies, and assigns an optical richness estimate λ to
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each cluster candidate which is defined based on the effective number of cluster members as

λ =
∑

i

pmemb; i : Ri < Rλ and L / L? > 0.2 . (1.29)

Here Ri is the projected radius from the cluster center expressed in physical units at the redshift
of the cluster candidate, while Rλ is a search radius chosen maximize the correlation of lambda
with cluster mass. L / L? is the relative luminosity of the potential member galaxy compared to
the characteristic galaxy luminosity at the considered redshift.

Based only on the matched-filtering step, the same cluster might be found multiple times
with slightly different central galaxy candidates, and the separation of structures which overlap
in projection is ambiguous. This is remedied by the percolation component of redMaPPer where
in an iterative approach member galaxies are reassigned and the pmemb values are updated, and
clusters candidates are joined or separated until convergence is reached with respect to the rich-
ness and redshift values of the surviving cluster candidates, thus defining the redMaPPer cluster
catalog. In this percolation step member galaxies are re-evaluated as a potential cluster centers,
and based on this the final cluster center is determined in a probabilistic way with potentially
multiple centeral galaxies each with probability pcen.

In practice studies using redMaPPer employed two distinct type of cluster catalog: a flux-
limited, and a locally volume limited catalog. The difference between these two versions is their
treatment of the survey limiting magnitude. The volume limited catalog considers only clusters
where the galaxy luminosity threshold in Equation 1.29 is above the survey magnitude limit,
effectively defining a redshift or volume limit for the catalog. Given that the survey limiting
magnitude can vary within the footprint due to the unevenness of observational conditions or
gaps this is referred to as a locally volume limited selection. In turn, the flux limited version
considers cluster candidates where some of these galaxies are undetected, and their presumed
contribution to the richness of the cluster is extrapolated based on the brighter detected cluster
members. In principle this allows greater redshift range for the cluster catalog, however at the
cost of increased richness and redshift uncertainty.

Complementing the galaxy cluster catalog, redMaPPer also creates a catalog of reference
random points, whose spatial and redshift distribution is representative of the footprint and vol-
ume of the cluster catalogs. The shape of the footprint for a sample of galaxy clusters depend on
both their richness and redshift. This behavior originates from the gaps and non-trivial masking
geometry of the survey, which means that a low richness higher redshift cluster may fit into a
given unobstructed area in the survey, while a lower redshift higher richness cluster may have
a large fraction of its galaxies masked from the input catalog. For this reason random points
are labeled also with a richness and redshift value, using which, one can reconstruct the actual
survey volume and footprint of the specific type of clusters.

1.4.2 Galaxy Shape Estimates
As introduced in section 1.3, the excess surface mass density profile of a gravitational lens can be
inferred from the preferential tangential alignment of background source galaxies. This measure-
ment relies on estimating the redshifts of the source galaxies, that is estimating the lens-geometry,
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and on estimating the shapes and alignments of the images of source galaxies. In the following
we briefly review the practical methods and considerations involved in performing galaxy shape
measurements in the Dark Energy Survey based on Jarvis et al. (2016) and Zuntz et al. (2018).

1.4.2.1 Data Preparation

The aim of this effort is to construct a catalog of source galaxies where for each an ellipticity
(shape) value e = e1 + i e2 is estimated, along with the necessary corrections and photometric
selection flags. The starting dataset for this are the single exposures taken by DES in the differ-
ent observing bands, and data reduction is done in parallel with the construction of the GOLD
photometry catalog. Image processing starts with low-level calibration of single-band single-
exposure images to detect observational artifacts, measure the noise levels and regularize the
observations. Following this, single exposure images are coadded into deeper detection images
and the GOLD photometry catalog is created (Drlica-Wagner et al., 2018). At this stage stars
and galaxies are distinguished based on their different distributions on a size–magnitude dia-
gram, and a subset of suitable stars are selected to estimate and model the point spread function
(PSF) on each single exposure10.

The next step in data processing is to collate the observational data for each photometry
detection listed in the GOLD catalog. This is done by creating small cut-out images or postage
stamps of each object in all single exposure images and in each band, and these are collected into
a multi-epoch data structure (MEDS). This way the available observational data can be queried
efficiently based on the selected object, while treating different exposures with different PSFs
and observational conditions separately.

1.4.2.2 Galaxy Shapes and Observational Effects

Before discussing the actual shape measurement methods employed in DES, it is illuminating
to consider how the observed signal comes to be. This is illustrated on Figure 1.9, where the
observed images on the rightmost panels roughly correspond to what is visible on a postage
stamp image, and where the top and bottom rows correspond to galaxies and stars respectively.
Galaxies are extended objects with potentially complicated morphologies, however in a practical
scenario we have little a priori information about their true individual intrinsic properties such
as their sizes, shapes or morphological types. Throughout the journey to the observer, a gravi-
tational lensing signal g is imprinted on the images of galaxies which induces a small distortion
in them (exaggerated on Figure 1.9). The quantity of interest when constructing a weak lensing
source catalog is this lensed shape or ellipticity, however this cannot be directly measured. The
actual detected images are produced as a product of additional observational and instrumental
effects. These include a convolution (smearing) by the PSF of the atmosphere and the telescope,
a discretization of the signal due to the pixel grid of the detector, and finally noise originating
from the detector and atmospheric background.

While the above series of observational effects imprinted on galaxy images present a daunt-
ing scenario, in fact they can be measured and characterized directly from observational data.

10In the case of DES Y1 in fact the PSF is estimated and modeled for each CCD detector separately
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Figure 1.9: Origin of the measured signal from the physical object to the detector readout for the
case of a galaxy (top) and for a star (bottom). Figure adapted from Bridle et al. (2009)

Stars, which are point sources, are transferred through the same measurement process, and their
apparent shapes and sizes can be used to model the PSF and the characteristics of the detector.
This scenario is illustrated on the bottom row of Figure 1.9, where it is explicitly noted that
stars do not carry any lensing signal. The two key inputs needed for estimating the shape of a
galaxy are the postage stamp images of a galaxy, and the PSF models estimated at the location
of the galaxy for each exposure. This latter step is necessary as the PSF varies not only between
different observations but also within the focal plane of the telescope. Hence the PSF model is
constructed by interpolating the PSFs of a set of tracer stars.

There are two broad approaches for reconstructing the lensed galaxy shape from the above
described measurements. The forward modeling approach formulates an analytic model for the
intrinsic surface brightness distribution of each galaxy. This model is then transformed to a
prediction for each single exposure postage stamp by convolving it with the corresponding PSF,
and the result is fitted to the observed galaxy images. In the case of the DES Y1 dataset, the
IM3SHAPE algorithm (Zuntz et al., 2013) falls into this category, which assumed a bulge or
disk (i.e. De Vaucouleours or exponential) light profile model for the intrinsic morphology of
galaxies. The shape estimate of the galaxy is then derived from the ellipticity parameter of
the intrinsic light distribution model. In turn, the inverse modeling approach measures shape
estimates of the observed smeared and noisy images, and aims to correct these biased estimates
for the observational effects. Historically the KSB algorithm (Kaiser et al., 1995) follows this
approach. The METACALIBRATION algorithm (Huff & Mandelbaum, 2017; Sheldon & Huff,
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2017) in its implementation for DES Y1 also technically falls into this latter category, as it derives
a naive ellipticity estimate by fitting a multivariate Gaussian light profile directly to each observed
image and then estimates a correction or response term for each based on the observational data.
However, the theoretical approach of METACALIBRATION can be formulated for both a forward
and an inverse modeling way. This method is further introduced in section 1.4.2.4.

1.4.2.3 Systematics and Shear Bias Parametrization

In a survey like the Dark Energy Survey most source galaxies are observed at a rather low signal
to noise, which leaves considerable ambiguity about their intrinsic properties: The noisy and
pixelated image shown on the rightmost top panel of Figure 1.9 is not at all an unreasonable
representation of how a typical source galaxy with complex intrinsic morphology is observed
in a survey. In a scenario like this, different a priori assumptions and analysis choices need to
be invoked to calculate the ellipticity. Realistically it is inevitable that at least some of our a
priori assumptions and choices are incorrect about the galaxies and the observational effects we
encounter, and the result of this is a potential bias in the estimated quantities.

In fact the quantity of importance is not the bias in the galaxy shapes themselves, but the
potential bias in the gravitational shear g derived from their ensemble mean ellipticities. To
underline the distinction it is illustrative to consider that galaxies have complicated morphologies
and their isophotal shapes and major axis directions can change with radius, hence there is no
unique way to assign a single ellipticity to a real galaxy.

The traditional way to express shear bias is by writing it as an expansion around the true
shear signal (Heymans et al., 2006)

gest
i = (1 + mi) gtrue

i + αePSF
i + ci , (1.30)

where the subscript indicates the i-th component of the complex quantity. gtrue
i is the true net

gravitational shear imprinted on an ensemble of source galaxy images, while gest
i is the estimated

one. The parameters mi and ci is known as the multiplicative and additive bias respectively, ePSF
i

is the ellipticity of the PSF while α is a PSF leakage parameter.
The main types of biases which lead to non-zero mi, ci and αi terms are commonly described

in the example of a forward modeling method, however they are equally important albeit less
obvious to delineate in inverse modeling approaches (Jarvis et al., 2016; Zuntz et al., 2018;
Samuroff et al., 2018). These types are

• Model bias which arises when an incorrect light profile model is used to describe the shape
of a galaxy (Voigt & Bridle, 2010; Kacprzak et al., 2014).

• Noise bias or estimator bias which arises when during the light model fit a single maxi-
mum likelihood or maximum posterior point is used instead of the potentially asymmetric
likelihood or posterior distribution (Kaiser et al., 2000; Bernstein & Jarvis, 2002; Refregier
et al., 2012).

• Selection bias or representation bias which relates to preferentially selecting objects whose
shapes are aligned in a particular way. For example, selecting for rounder sources can
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introduce a bias by promoting the leakage of faint stars (which carry no shear) into the
source galaxy catalog, while galaxies whose shapes align with the PSF can be detected with
higher significance (Hirata & Seljak, 2003; Miller et al., 2007; Bernstein & Armstrong,
2014a; Fenech Conti et al., 2017).

• Neighbor bias which arises from the blending of multiple light sources in a crowded field
which can influence the derived shape estimates or the source selection. Furthermore, in
the case of unresolved blends, the derived net ellipticity can no longer be directly related
the gravitational shear since in reality each component is sheared separately (Hoekstra
et al., 2017; Samuroff et al., 2018; Euclid Collaboration et al., 2019).

Given the multitude of systematic effects, the calibration of shear estimates is one of the most
important tasks in a weak lensing analysis. This can take two conceptual forms:

A Explicitly measuring the mi, ci and αi bias terms of the shear estimation algorithm in an
image simulation, then using the measured bias values to directly correct the shear in a real
observation. This scenario in DES is followed by the IM3SHAPE algorithm.

B Self-calibrating from observational data. This approach in DES is followed by the META-
CALIBRATION algorithm.

Neither of these approaches is intrinsically correct, and their performance must be validated.
Given that in the real world there is no suitable reference dataset to be used for the validation
of shape estimation methods, validation is also performed using image simulations. There is
however a fundamental difference between validating a method in a simulated setting, and cali-
brating it in the same kind of simulation: The aim of validation is to convince us of the efficacy
of a method and estimate its performance and systematic uncertainty. However, calibration di-
rectly transfers information from the simulation into the real measurement, therefore there the
measured shears are correct only to the extent the simulation was representative of reality.

1.4.2.4 Metacalibration

Based on its excellent performance in a validation setting and the fact that it does not rely on
calibration simulations several DES analyses opted to adopt the METACALIBRATION algorithm
as their fiducial shear estimate (Sheldon & Huff, 2017; Zuntz et al., 2018). Given its relevance
to the present thesis we briefly overview the key features of this algorithm.

The primary input data for METACALIBRATION are the multi-epoch data structures of in-
dividual source galaxies described in section 1.4.2.1, which contain both the single exposure
images of the objects and also the corresponding PSFs. To increase signal-to-noise, multiple
observational bands are processed jointly. From this, first a naive shape estimate is calculated by
fitting a multivariate Gaussian model to the observed images using the ngmix algorithm. This is
naturally a very biased estimate of the shape of the galaxy. However the essence of METACAL-
IBRATION is to provide an innovative way to correct this biased estimator into a very accurate
estimator of the mean gravitational shear 〈γ〉 ≈ 〈g〉. In the following we denote the estimated
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ellipticity as e following Huff & Mandelbaum (2017) and Sheldon & Huff (2017), however cau-
tion the reader to not interpret this as an intrinsic property of a galaxy, rather as an intermediate
quantity used in estimating mean shear.

The essence of METACALIBRATION is to express the estimated shape of a galaxy in the
presence of gravitational shear by the Taylor expansion

e = e|γ=0 +
∂e

∂γ
γ + ... . (1.31)

Assuming weak shears and no intrinsic galaxy alignments the estimated mean galaxy shape is
then related to the gravitational shear as

〈e〉 = 〈Rγ γ〉 , (1.32)

where
Rγ; i,j = ∂ei / ∂γj (1.33)

is the shear response matrix. Note that in the case of an unbiased shape estimator, Rγ is the unit
matrix. From the above, the mean gravitational shear can be then approximated as

〈γ〉 ≈ 〈Rγ〉–1 〈e〉 ≈ 〈Rγ〉–1 〈Rγγ〉 . (1.34)

The essence of METACALIBRATION is to estimate the response term from the observation
itself and use it to correct for the bias of the naive shape estimates (Huff & Mandelbaum, 2017;
Sheldon & Huff, 2017). In practice this is performed by numerical image manipulations where an
observation is first deconvolved from the PSF, a small artificial shear γ∆ ≈ 0.01 is applied, and
then its is re-convolved with a representation of the PSF to produce a slightly sheared version of
the original observation. From these artificially sheared images the shear response is expressed
via finite differences in analogy to Equation 1.33 as

〈Rγ; i,j〉 =
〈e+

i 〉 – 〈e–
i 〉

∆γj
, (1.35)

where 〈e+ –
i 〉 represents the ensemble average of the i-th component of galaxy shapes derived

from images with positive or negative artificial shear applied along the j-th shear direction, and
∆γ = 2γ∆. This shear response term corresponds to the calibrations addressing the model bias
and the noise bias of the naive shape estimator, and thus can be used to derive precise and accurate
estimates of the mean gravitational shear.

The correction for a different systematic effect: selection bias can also be calculated from the
artificially sheared images used in the above step. For this we make use of the fact that selection
bias relates to objects preferentially entering or exiting the source catalog depending on their
ellipticities. Hence by performing source selection not on the original observed images, but on
the artificially sheared ones one can quantify the ellipticity dependence of the selection function.
Sheldon & Huff (2017) formulates this in a similar way to Equation 1.35, where the selection
response is expressed as

〈RS; i,j〉 =
〈ei〉S+ – 〈ei〉S–

∆γj
, (1.36)
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where 〈ei〉S+ – represents the ensemble average of the i-th component of galaxy shapes derived
from the unsheared images but selected based on the sheared images with positive or negative
artificial shear applied along the j-th shear direction.

Combining the above response terms the mean shear experienced by a galaxy sample can be
expressed as

〈γ〉 ≈ 〈R〉–1 〈e〉 , (1.37)

using a combined response term defined as

〈R〉 ≡ 〈Rγ〉 + 〈RS〉 . (1.38)

The end product of the METACALIBRATION shear estimation algorithm is a catalog contain-
ing the naive shape estimates for source galaxies ei, the four sheared shape estimates of each
galaxy e+ –

i , and the selection flags derived from the four sheared images of each galaxy. From
these data products the mean shapes and the shear and selection response terms can be calcu-
lated for the appropriate galaxy ensembles, and hence we can derive an estimate on the mean
gravitational shear.

1.4.3 Photometric Redshift Estimation
In addition to source galaxy shapes, the second essential ingredient of weak lensing measure-
ments is an estimate of the lens geometry, for which the distances of source galaxies must be
estimated from observational data. In practice this takes the form of estimating the redshifts of
source galaxies, which can then be turned into an angular diameter distance through a cosmo-
logical model. In an ideal setting, the redshift of a galaxy can be directly estimated from the
observed positions of emission or absorption lines in their spectral energy distribution (SED).
This type of redshift estimates are commonly referred to as spectroscopic redshifts. Measuring
the SEDs with sufficient resolution however requires targeted observations and a relatively large
investment of observational time for each galaxy, which is not feasible for wide area sky sur-
veys such as DES. Instead, the redshifts of galaxies must be estimated from the integrated flux
measured in wide bandpass filters, and this type of estimate is usually denoted as a photometric
redshift or photo-z (Bonnett et al., 2016; Hoyle et al., 2018).

An illustration on the schematic of photometric redshift estimation is shown on Figure 1.10,
adapted from Buchs et al. (2019). The figure illustrates the location and spectral throughput
of u, g, r, i, z, Y , J, H, Ks observational bandpass filters used in the deep fields of DES. Of these
only the g, r, i, z filters are fully measured in the wide field area of DES. The top panel of the
Figure 1.10 illustrates the imprint of redshift on the fluxes within the different filters with a set
of example SEDs overlayed corresponding to a quenched elliptical galaxy at different redshifts.
The ratio of fluxes in the different bandpass filters corresponds to the colors of the galaxy, and the
behavior shown in this panel is loosely referred to as the color-redshift relation. This relation is
the basis of most widely used photometric redshift algorithms11, including the the ones employed

11While there are photo-z methods which employ explicit galaxy SED templates, and methods which attempt
to learn the color-redshift mapping in a non-parameteric way, the fundamental properties and limitations of these
methods maare very similar.
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Figure 1.10: Redshift estimation schematic for a wide band sky survey. Top: Galaxy SEDs
at different redshifts can be distinguished based on their relative fluxes (colors) measured in
different bandpass filters, also known as the color-redshift relation. Bottom: Illustration of a
degeneracy in the color-redshift relation where different galaxy types at different redshifts can
produce similar fluxes in a bandpass filter. Figure adapted from Buchs et al. (2019).
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in the later chapters of this thesis (i.e. BPZ Benítez, 2000, EAzY Brammer et al., 2008), therefore
we restrict our discussion to the fundamental properties of these methods.

Observational uncertainties in the flux (color) measurement manifest as an uncertainty in
the galaxy redshifts derived from the color-redshift relation. For this reason it is beneficial to
instead of considering point estimates, that is single redshift values, introduce the redshift prob-
ability distribution function p(z) of a galaxy whose shape and width captures said uncertainties.
This formalism allows us to incorporate a further complication related to photometric redshift
estimates, namely that the color-redshift relation is degenerate between galaxy type (SED) and
redshift. This fact is illustrated on the bottom panel of Figure 1.10, where two distinct galaxy
types located at different redshifts possess a very similiar observed SED. For this example the
degeneracy is only broken by the infrared bands, which means that these two galaxy types and
redshifts would not be distinguishable in the DES wide field survey, and there a bimodal p(z)
would have to be assigned. In fact due to the wide variety of intrinsic galaxy SEDs and the
considerable redshift range probed by current sky surveys (with source galaxies up to 〈z〉 ≈ 1.1)
these degeneracies are not localized to specific examples. Hence when estimating the photomet-
ric redshifts of a galaxy the redshift estimate must be marginalized over all galaxy types and
redshfits, and the resulting photo-z p(z) usually spans a relatively large redshift range (Hoyle
et al., 2018).

Where does the information come from to correctly perform the above marginalization? In
broad terms DES and other similar sky surveys use spectroscopic or narrow-band reference or
training datasets such as the COSMOS field (Scoville, 2003) or the DES deep fields where the
mapping between colors, magnitudes and redshift can be learned. Learning this mapping from
observational training data, and then applying it to estimate the p(z) of galaxies in the full survey
dataset is the core task of photometric redshift estimation. Within this topic the bulk of the
effort is usually spent on validating the redshift estimates, which in brief relates to quantifying
their systematic uncertainties and correcting their biases based on tests against other alternative
redshift estimates (Bonnett et al., 2016; Davis et al., 2018; Hoyle et al., 2018; Buchs et al., 2019).

In the context of data products, the photometric redshift estimates are derived based on the
colors and magnitudes of the galaxies identified in DES. The base photometric catalog for this is
by default the DES GOLD catalog, however for weak lensing measurements in some cases the
photometry catalog constructed by the METACALIBRATION algorithm is also used. The contents
of a photometric redshift catalog in DES include for each galaxy the mean redshift estimate 〈z〉
and Monte-Carlo samples drawn form the p(z).
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1.5 A Primer on Cluster Cosmology
As already introduced in section 1.1.3, the mass function of halos is sensitive to the parameters
and properties of the cosmological model. In an empirical setting however massive halos are
not observed directly, instead we see them as groups and clusters of galaxies. This means that
theoretical or numerical predictions on the halo mass function must be related to the distribution
of clusters as function of directly observed or measured quantities. In the following I briefly
outline the analysis strategy adopted by the Dark Energy Survey Cluster Cosmology working
group (DES Collaboration et al., 2020) in its year 1 analysis.

In the optical dataset of DES Y1 galaxy clusters are identified via the redMaPPer algorithm
(section 1.4.1) and characterized by the observed optical richness parameter λobs, whereas the
redshifts zobs of clusters are estimated from the ensemble of cluster galaxies. The superscript obs
is explicitly written out in this section to indicate that both of these quantities are considered to be
a noisy and potentially biased measurement compared to the intrinsic true values of the clusters
λtrue and ztrue, although in the case of cluster redshifts this is estimated to be a minor effect.
The connection between observed cluster richness and mass is not a-priory known to sufficient
precision to enable the direct use of the richness function of galaxy clusters for cosmological
inference. The masses of galaxy clusters must be calibrated externally, in the case of DES this
can be performed via weak lensing measurements.

A characteristic property of weak lensing measurements is that the signal-to-noise is low,
therefore either an exceptionally massive set of clusters or a larger statistical ensemble of lower
mass clusters is needed to reach precise and accurate mass constraints. DES provides very large
catalogs of clusters within the mass range from M200m ≈ 1014M� to M200m ≈ 1014.8M�,
which are suitable for the ensemble lensing strategy of mass calibration. This means that the
cosmology analysis must be formulated for a binned analysis where the only direct inputs are
mean cluster properties within bins of observables, that is in bins of richness and redshift.

In this strategy the two primary measurements adopted by (DES Collaboration et al., 2020)
are the mean number of clusters 〈N〉 in a bin richness and redshift, and the mean weak lensing
cluster mass 〈M〉 of the corresponding cluster sample. These quantities are related to the halo
mass function such that

〈N〉 =
∫ ∞

0
d ztrue

∫ zmax

zmin

dzobs
∫ λmax

λmin

dλobs 〈n |λobs, ztrue〉 dV
dztrue P(zobs | ztrue) (1.39)

and
〈n |λobs, ztrue〉 =

∫ ∞
0

dM
dn
dM

P(λobs|M, ztrue) (1.40)

where dn/dM is our theoretical or numerical estimate of the halo mass function and P(λobs|M, ztrue)
is a conditional probability of the richness – mass – redshift relation. P(zobs | ztrue) captures un-
certainty in cluster redshift estimates, λmin, λmax and zmin and zmax refer to the boundaries of
the richness and redshift bin respectively, and

dV
dz

= Ωmask(z)cH–1(z) D2
c(z) (1.41)
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refers to the comoving volume element of the sky survey with angular footprint Ωmask.
From the same ingredients the mean cluster mass can be expressed as

〈M〉 =
1
〈N〉

∫ ∞
0

d ztrue
∫ zmax

zmin

dzobs
∫ λmax

λmin

dλobs 〈nM |λobs, ztrue〉 dV
dztrue P(zobs | ztrue) (1.42)

where
〈nM|λobs, ztrue) =

∫ ∞
0

dM
dn
dM

M P(λobs|M, ztrue) . (1.43)

Using the above formulations, the predictions of cosmological theory can be compared with
observations of the abundance and masses of galaxy clusters. The further details of this model
and discussing its various analysis choices are beyond the scope of this thesis, and hence we refer
the reader to the methods review of Costanzi et al. (2019). The following chapters of original
research presented in this thesis relate primarily to the precise and accurate measurement of 〈M〉.
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Chapter 2
Weak Lensing Mass Calibration of
redMaPPer Galaxy Clusters

Scientific context The aim of this chapter is to calibrate the masses of galaxy clusters via weak
lensing for the clusters identified in the DES year 1 dataset using the redMaPPer algorithm. These
measurements are then used in the Dark Energy Survey to derive cosmological constraints from
the abundances and masses of galaxy clusters. This work fits into the broader cluster cosmology
analysis the following way:

• The redMaPPer cluster finder is run on the DES Y1 data and a catalog is constructed of the
identified clusters along with their estimated redshift, and richness – an optical mass proxy
(see section 1.4.1). Defining a binning scheme in richness and redshift we can measure the
detected number of clusters as function of observables, which is in turn can be related to
the mean number of clusters 〈N〉 (Equation 1.39) expected from the halo mass function,
the cosmological model and the survey strategy.

• We develop a cluster weak lensing measurement framework for DES Y1 dataset tailored
to the format and performance of the source galaxy catalog and photometric redshift in-
formation available in the survey, and measure mean ∆Σ profiles of clusters in bins of
richness and redshift. We then define a model for the mass profile and for a series of mod-
ulating systematic effects and estimate the mean cluster mass corresponding to each bin of
redshift and richness. This mean cluster mass can be then directly related to the to the 〈M〉
expressed in Equation 1.42 expected from the cosmological model.

• Using the derived mean cluster masses we fit the mean of the richness–mass relation. This
is done to quantify the performance of the measurement, by propagating the statistical
and systematic uncertainty of the mass estimates across the different bins into an uncer-
tainty estimate on the mean observable–mass scaling, which is the leading systematic of
cosmology analyses.
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Therefore the first two of the above points constitute the direct inputs of the cosmology analy-
sis performed in DES Collaboration et al. (2020), while the last point relates to estimating the
performance of the mass calibration.

Authorship and publication The research presented in this chapter has been conducted within
the Dark Energy Survey, and was published as Dark Energy Survey Year 1 results: weak lensing
mass calibration of redMaPPer galaxy clusters in the Monthly Notices of the Royal Astronomi-
cal Society, volume 482, pages 1352–1378 (McClintock, Varga et al., 2019).

This project has been lead by two corresponding authors with equal contribution: T. McClin-
tock and T. N. Varga (myself). According to DES publication policy the additional authors of the
paper are divided into a first tier with direct contribution to the research in terms of data analysis
or substantive discussion, second tier authors whose work indirectly enabled the analysis and
whom are listed alphabetically, and a so-called builder-tier also listed alphabetically and which
consists of people whose work contributed to DES infrastructure as a whole.

The primary contributions of the corresponding authors is divided as the following:

• T. N. Varga: Data processing and preparation (section 2.2.3, section 2.2.4), weak lens-
ing profile measurement (section 2.3.1), systematic tests (section 2.4.1, section 2.4.1.2,
section 2.4.1.3), cluster member contamination estimates (section 2.4.2), empirically mea-
sured covariance model components (section 2.3.2.1, section 2.3.2.2).

• T. McClintock: Cluster mass fitting and likelihood (section 2.5), mass-richness scaling
fit (section 2.6), analytically modeled covariance model components (section 2.3.2.3, sec-
tion 2.3.2.4).

Among the first tier authors E. Rykoff created the redMaPPer catalog for the DES Y1 dataset
(section 2.2.2), while T. Shin performed the calculation of the multiplicative redshift bias correc-
tion (section 2.4.3). We furthermore thank the advisory contribution of D. Gruen, E. Rozo, and
S. Seitz. In addition to this P. Melchior and J. P. Dietrich provided useful discussion on model-
ing cluster triaxiality and projection systematics (section 2.5.4.2), Y. Zhang provided measure-
ments on the centering properties of redMaPPer galaxy clusters from multi-wavelength follow up
(Zhang et al., 2019b), J. DeRose contributed the numerical simulations used in section 2.5.4.1,
and E. Sheldon contributed useful discussions about the use of metacalibration in the cluster
weak lensing scenario. All first tier authors contributed to the discussion section of the paper. In
accordance with DES publication policy this paper has gone through internal review and collab-
oration wide review before the submitting to the journal.

The following part of this chapter reproduces the paper as it was accepted for publication in
the journal with minor edits to suit the thesis format, while keeping the substantive part of the
work unchanged. The acknowledgments and appendix of the original paper are reproduced in
Appendix A.
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Abstract We constrain the mass–richness scaling relation of redMaPPer galaxy clusters iden-
tified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters
into 4× 3 bins of richness λ and redshift z for λ ≥ 20 and 0.2 ≤ z ≤ 0.65 and measure the mean
masses of these bins using their stacked weak lensing signal. By modeling the scaling relation as
〈M200m|λ, z〉 = M0(λ/40)F((1 + z)/1.35)G, we constrain the normalization of the scaling relation
at the 5.0 per cent level as M0 = [3.081 ± 0.075(stat) ± 0.133(sys)] · 1014 M� at λ = 40 and
z = 0.35. The richness scaling index is constrained to be F = 1.356± 0.051 (stat)± 0.008 (sys)
and the redshift scaling index G = –0.30 ± 0.30 (stat) ± 0.06 (sys). These are the tightest mea-
surements of the normalization and richness scaling index made to date. We use a semi-analytic
covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our
analysis accounts for the following sources of systematic error: shear and photometric redshift
errors, cluster miscentering, cluster member dilution of the source sample, systematic uncertain-
ties in the modeling of the halo–mass correlation function, halo triaxiality, and projection effects.
We discuss prospects for reducing this systematic error budget, which dominates the uncertainty
on M0. Our result is in excellent agreement with, but has significantly smaller uncertainties than,
previous measurements in the literature, and augurs well for the power of the DES cluster sur-
vey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid and
WFIRST.

2.1 Introduction
Galaxy clusters have the potential to be the most powerful cosmological probe (Dodelson et al.,
2016). Current constraints are dominated by uncertainties in the calibration of cluster masses
(e.g., Mantz et al., 2015; Planck Collaboration et al., 2016; Rozo et al., 2010). Weak lensing
allows us to determine the mass of galaxy clusters: gravitational lensing of background galaxies
by foreground clusters induces a tangential alignment of the background galaxies around the
foreground cluster. This alignment is a clear observational signature predicted from clean, well-
understood physics. Moreover, the resulting signal is explicitly sensitive to all of the cluster
mass, not just its baryonic component, and is insensitive to the dynamical state of the cluster.
For all these reasons, weak lensing is the most robust method currently available for calibrating
cluster masses. It is therefore not surprising that the community has invested in a broad range of
weak lensing experiments specifically designed to calibrate the masses of galaxy clusters (von
der Linden et al., 2014b,a; Applegate et al., 2014a; Hoekstra et al., 2015; Okabe & Smith, 2016;
Mantz et al., 2015; Melchior et al., 2017; Simet et al., 2017b; Murata et al., 2017; Dietrich et al.,
2019; Miyatake et al., 2018; Medezinski et al., 2018a).

The Dark Energy Survey (DES) is a 5,000 square degree photometric survey of the southern
sky. It uses the 4-meter Blanco Telescope and the Dark Energy Camera (Flaugher et al., 2015)
located at the Cerro Tololo Inter-American Observatory. As its name suggests, the primary
goal of the DES is to probe the physical nature of dark energy, in addition to constraining the
properties and distribution of dark matter. Owing to its large area, depth, and image quality, at its
conclusion DES will support optical identification of ∼ 100, 000 galaxy clusters and groups up
to redshift z ≈ 1. We use galaxy clusters identified using the redMaPPer algorithm (Rykoff et al.,
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2014), which assigns each cluster a photometric redshift and optical richness λ of red galaxies.
To fully utilize these clusters, one must understand mass-observable relations (MORs), such as
that between cluster mass and optical richness. Weak lensing can establish this relation – with
high statistical uncertainty for individual clusters, but low systematic uncertainty in the mean
mass scale derived from the joint signal of large samples.

In this work, we use stacked weak lensing to measure the mean galaxy cluster mass of
redMaPPer galaxy clusters identified in DES Year 1 (Y1) data. We use these data to calibrate the
mass–richness–redshift relation of these clusters. In Melchior et al. (2017) we provided a first
calibration of this relation using DES Science Verification (SV) data. There, we were able to
achieve a 9.2 per cent statistical and 5.1 per cent systematic uncertainty. Here, we update that re-
sult using the first year of regular DES observations, incorporating a variety of improvements to
the analysis pipeline. Our results provide the tightest, most accurate calibration of the richness–
mass relation of galaxy clusters to date, at 2.4 per cent statistical and 4.3 per cent systematic
uncertainty.

The structure of this section is as follows. In section 2.2, we introduce the DES Y1 data
used in this work. In section 2.3 we describe our methodology for obtaining ensemble cluster
density profiles from stacked weak lensing shear measurements, with a focus on updates relative
to Melchior et al. (2017). A comprehensive set of tests and corrections for systematic effects is
presented in section 2.4. The model of the lensing data and the inferred stacked cluster masses
are given in section 2.5. The main result, the mass–richness–redshift relation of redMaPPer
clusters in DES, is presented in section 2.6. We compare our results to other published works
in the literature in section 2.7, discuss systematic improvements made in this work compared to
Melchior et al. (2017) in section 2.8, and conclude in section 3.5. In Appendix A.2 we present
the DES Y1 redMaPPer catalog used in this work for public use. Supplementary information on
the analysis is given in additional appendices.

Unless otherwise stated, we assume a flat ΛCDM cosmology with Ωm = 0.3 and H0 = 70
km s–1 Mpc–1, with distances defined in physical coordinates, rather than comoving. Finally,
unless otherwise noted all cluster masses refer to M200m. That is, cluster mass is defined as the
mass enclosed within a sphere whose average density is 200 times higher than the mean cosmic
matter density ρ̄m at the cluster’s redshift, matching the mass definition used in the cosmological
analyses that make use of our calibration.

2.2 The DES year 1 data
DES started its main survey operations in 2013, with the Year One (Y1) observational season
running from August 31, 2013 to February 9, 2014 (Drlica-Wagner et al., 2018). During this
period 1839 deg2 of the southern sky were observed in three to four tilings in each of the four
DES bands g, r, i, z, as well as∼1800 deg2 in the Y-band. The resulting imaging is shallower than
the SV data release but covers a significantly larger area. In this study we utilize approximately
1500 deg2 of the main survey, split into two large non-contiguous areas. This is a reduction from
the 1800 deg2 area due to a series of veto masks. These masks include masks for bright stars
and the Large Magellanic Cloud, among others. The two non-contiguous areas are the “SPT”
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Figure 2.1: Surface density of source galaxies in the METACALIBRATION catalog within the DES
Y1 footprint in the “S82” field (top) and the “SPT” field (bottom).

area (1321 deg2), which overlaps the footprint of the South Pole Telescope Sunyaev-Zel’dovich
Survey (Carlstrom et al., 2011), and the “S82” area (116 deg2), which overlaps the Stripe-82
deep field of the Sloan Digital Sky Survey (SDSS; Annis et al., 2014). The DES Y1 footprint is
shown in Figure 2.1.

In the following we briefly describe the main data products used in this analysis, and refer
the reader to the corresponding papers for more details. The input photometric catalog, as well
as the photometric redshift and weak lensing shape catalogs used in this study have already been
employed in the cosmological analysis combining galaxy clustering and weak lensing by the
DES collaboration (Abbott et al., 2018).

2.2.1 Photometric Catalog
Input photometry for the redMaPPer cluster finder (section 2.2.2) and photometric redshifts (sec-
tion 2.2.4) was derived from the DES Y1A1 Gold catalog (Drlica-Wagner et al., 2018). Y1A1
Gold is the science-quality internal photometric catalog of DES created to enable cosmologi-
cal analyses. This data set includes a catalog of objects as well as maps of survey depth and
foreground masks, and star-galaxy classification. In this work we make use of the multi-epoch,
multi-object fitting (MOF) composite model (CM) galaxy photometry. The MOF photometry si-
multaneously fits a psf-convolved galaxy model to all available epochs and bands for each object,
while subtracting and masking neighbors. The typical 10σ limiting magnitude inside 2′′ diameter
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apertures for galaxies in Y1A1 Gold using MOF CM photometry is g ≈ 23.7, r ≈ 23.5, i ≈ 22.9,
and z ≈ 22.2. Due to its low depth and calibration uncertainty, we do not use Y band photometry
for shape measurement or photometric redshift estimation.

The galaxy catalog used for the redMaPPer cluster finder is constructed as follows. Bad
objects that are determined to be catalog artifacts, including having unphysical colors, astro-
metric discrepancies, and PSF model failures are rejected (Section 7.4 Drlica-Wagner et al.,
2018). Galaxies are then selected via the more complete MODEST_CLASS classifier (Section
8.1 Drlica-Wagner et al., 2018). Only galaxies that are brighter in z band than the local 10 σ lim-
iting magnitude are used by redMaPPer. The average survey limiting magnitude is deep enough
to image a 0.2 L∗ galaxy at z ≈ 0.7. Finally, we remove galaxies in regions that are contaminated
by bright stars, bright nearby galaxies, globular clusters, and the Large Magellanic Cloud.

2.2.2 Cluster catalog
We use a volume limited sample of galaxy clusters detected in the DES Y1 photometric data us-
ing the redMaPPer cluster finding algorithm v6.4.17 (Rykoff et al., 2014, 2016). This redMaPPer
version is identical to the v6.3 algorithm described in Rykoff et al. (2016) but updated to accom-
modate the new redMaGiC galaxy catalogs (Rozo et al., 2016; Elvin-Poole et al., 2018). The
redMaGiC algorithm selects luminous red galaxies in such a way as to minimize the photometric
redshift uncertainties, which serves as an input to redMaPPer in order to construct a red sequence
(Rozo et al., 2016).

Two versions of the redMaPPer cluster catalog are generated: a “flux limited” version, which
includes high redshift clusters for which the richness requires extrapolation along the cluster lu-
minosity function, and one that is locally volume-limited. By “locally volume-limited” we mean
that at each point in the sky, a galaxy cluster is included in the sample if and only if all cluster
galaxies brighter than the luminosity threshold used to define cluster richness in redMaPPer lies
above 10σ in z, 5σ in i and r, and 3σ in g according to the survey MOF depth maps (Drlica-
Wagner et al., 2018). That is, no extrapolation in luminosity is required when estimating cluster
richness. At the threshold the galaxy sample is > 90 – 95 per cent complete. It is this volume-
limited cluster sample that is used in follow-up work deriving cosmological constraints from the
abundance of galaxy clusters. Consequently, we focus exclusively on this volume-limited sample
in this work. It contains more than 76,000 clusters down to λ > 5, of which more than 6,500 are
above λ = 20. The format of the catalogs are described in section A.2.

redMaPPer identifies galaxy clusters as overdensities of red-sequence galaxies. Starting from
an initial set of spectroscopic seed galaxies, the algorithm iteratively fits a model for the local
red-sequence, and finds cluster candidates while assigning a membership probability to each
potential member. Clusters are centered on bright galaxies selected using an iteratively self-
trained matched-filter method. The method allows for the inherent ambiguity of selecting a
central galaxy by assigning a probability to each galaxy of being the central galaxy of the cluster.
The final membership probabilities of all galaxies in the field are assigned based on spatial, color,
and magnitude filters.

The distribution of cluster richness and redshift of the DES volume-limited cluster sample is
shown in Figure 2.2. The richness estimate λ is the sum over the membership probabilities of all
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Figure 2.2: Redshift–richness distribution of redMaPPer clusters in the volume limited DES Y1
cluster catalog, overlaid with density contours to highlight the densest regions. At the top and on
the right are histograms of the projected quantities, zλ and λ, respectively, with smooth kernel
density estimates overlaid.
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Figure 2.3: Photometric redshift performance of the DES Y1 redMaPPer cluster catalog, as
evaluated using available spectroscopy (333 clusters). Upper panel: Gray contours are 3σ con-
fidence intervals, and the two red dots are the only 4σ outliers, caused by miscentering on a
foreground/background galaxy. Lower Panel: photo-z bias and uncertainty. The comparatively
large uncertainty from 0.3 < z < 0.4 is due to a filter transition.

galaxies within a pre-defined, richness–dependent projected radius Rλ. The radius Rλ is related
to the cluster richness via Rλ = 1.0(λ/100)0.2 h–1Mpc. This relation was found to minimize
the scatter between richness and X-ray luminosity in Rykoff et al. (2012). A redshift estimate
for each cluster is obtained by maximizing the probability that the observed color-distribution of
likely members matches the self-calibrated red-sequence model of redMaPPer.

Figure 2.3 shows the photometric redshift performance of the DES Y1 volume-limited redMaP-
Per cluster sample. The photometric redshift bias and scatter are calculated by comparing the
photometric redshift of the clusters to the spectroscopic redshift of the central galaxy of the clus-
ter, where available. Unfortunately, the small overlap with existing spectroscopic surveys means
that our results are limited by small-number statistics: there are only 333 galaxy clusters with a
spectroscopic central galaxy, and only 34 (six) with redshift z ≥ 0.6 (z ≥ 0.65). Nevertheless,
the photometric redshift performance is consistent with our expectations: our redshifts are very
nearly unbiased, and have a remarkably tight scatter — the median value of σz/(1 + z) is≈ 0.006.
An upper limit for the photometric redshift bias of 0.003 is consistent with our data.

Of particular importance to this work is the distribution of miscentered clusters – both the
frequency and severity of their miscentering. Based on the redMaPPer centering probabilities,
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we would expect ≈ 80 per cent of the clusters to be correctly centered, meaning the most likely
redMaPPer central galaxy is at the center of the potential well of the host halo. In practice, the
fraction of correctly centered galaxy clusters is closer to ≈ 70 per cent, as estimated from a
detailed comparison of the redMaPPer photometric centers to the X-ray centers of redMaPPer
clusters for which high-resolution X-ray data is available (Zhang et al., 2019b; von der Linden
et al., 2018). The expected impact of this miscentering effect, and the detailed model for the
miscentered distribution from Zhang et al. (2019b); von der Linden et al. (2018) is described in
section 2.5.2.

2.2.3 Shear catalogs
Our work uses the DES Y1 weak lensing galaxy shape catalogs presented in Zuntz et al. (2018).
Two independent catalogs were created: METACALIBRATION (Sheldon & Huff, 2017; Huff &
Mandelbaum, 2017) based on NGMIX (Sheldon, 2015), and IM3SHAPE (Zuntz et al., 2013). Both
pass a multitude of tests for systematics, making them suitable for cosmological analyses. While
the Y1 data is shallower than the DES SV data, improvements in the shear estimation pipelines
and overall data quality enabled us to reach a number density of sources similar to that from DES
SV data (Jarvis et al., 2016).

In this study we will focus exclusively on the METACALIBRATION shear catalog because
of its larger effective source density (6.28 arcmin–2) compared to the IM3SHAPE catalog (3.71
arcmin–2). The difference mainly arises because METACALIBRATION utilizes images taken in
r, i, z bands, whereas IM3SHAPE relies exclusively on r-band data. In the METACALIBRATION

shear catalog the fiducial shear estimates are obtained from a single Gaussian fit via the NGMIX

algorithm. As a supplementary data product METACALIBRATION provides (g, r, i, z)-band fluxes
and the corresponding error estimates for objects using its internal model of the galaxies.

Galaxy shape estimators, such as the NGMIX model-fitting procedure used for METACALI-
BRATION, are subject to various sources of systematic errors. For a stacked shear analysis, the
dominant problem is a multiplicative bias, i.e. an over- or underestimation of gravitational shear
as inferred from the mean tangential ellipticity of lensed galaxies. This bias needs to be charac-
terized and corrected. Traditionally, this is done using simulated galaxy images – with the critical
limitation that simulations never fully resemble the observations.

The METACALIBRATION catalog, in contrast, uses the galaxy images themselves to de-bias
shear estimates. Specifically, each galaxy image is deconvolved from the estimated point spread
function (PSF), and a small positive and negative shear is applied to the deconvolved image
in both the ê1 and ê2 directions. The resulting images are then convolved once again with a
representation of the PSF, and an ellipticity is estimated for these new images (Zuntz et al.,
2018). These new measurements can be used to directly estimate the response of the ellipticity
measurement to a gravitational shear using finite difference derivatives:

Rγ =
∂e

∂γ
. (2.1)

Selection effects can also be accounted for by examining the response of the selections to shear.
The application of a weight when calculating the mean shear over an ensemble is effectively a
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type of smooth selection, and is accounted for in the same way. We describe this effect with a
selection response Rsel, which leads to the response-corrected mean shear estimate

〈γ〉 ≈ 〈R〉–1〈R · γ〉 ≈ 〈R〉–1〈e〉 (2.2)

from biased measurements e with a joint response R ≈ Rγ + Rsel (Sheldon & Huff, 2017).
R is a 2×2 Jacobian matrix for the two ellipticity components e1, e2 in a celestial coordinate

system. For the METACALIBRATION mean shear measurements in this work, we calculate the re-
sponse of mean tangential shear on mean tangential ellipticity. R is close to isotropic on average,
which is why other recent weak lensing analyses (Troxel et al., 2017; Prat et al., 2018; Gruen
et al., 2018; Chang et al., 2018a) have assumed it to be a scalar. For the larger tangential shears
measured on small scales around clusters, however, we account for the fact that the response
might not be quite isotropic by explicitly rotating it to the tangential frame.

Tangential ellipticity eT is related to e1, e2 (and likewise γT to γ1 and γ2) by

eT = –e1 cos(2φ) – e2 sin(2φ) , (2.3)

where φ is the polar angle of the source in a coordinate system centered on the lens. For the shear
response, the corresponding rotation is derived from Equation 2.1 and Equation 2.3 as

Rγ,T = Rγ,11 cos2(2φ) + Rγ,22 sin2(2φ)+(
Rγ,12 + Rγ,21

)
sin(2φ) cos(2φ) .

(2.4)

For the METACALIBRATION selection response, no such rotation can be performed as the term
itself is only meaningful for ensembles of galaxies. In this case, we exploit that the orientation of
source galaxies should be random relative to the clusters, which suggest a symmetrized version
of the response in the tangential frame:

〈R(T)
sel 〉 ≈

1
2

Tr〈Rsel〉 where 〈Rsel〉i,j ≈
〈ei〉S+ – 〈ei〉S–

∆γj
. (2.5)

In the above equation 〈ei〉S± denotes the mean un-sheared ellipticity of galaxies when selected
based on their artificially sheared images. Four sheared images are created by applying positive
(+) and negative (–) shears of magnitude ∆γ = 0.01 along the ê1 and ê2 directions separately.
Errors introduced from this approximation are sub-dominant due to the already small bias asso-
ciated with source galaxy selection. A detailed discussion of additional possible systematics in
our specific analysis is presented in section 2.4.1.

Blinding procedure

As a precaution against unintentional confirmation bias in the scientific analyses, both weak
lensing shape catalogs produced for DES Y1 had an unknown blinding factor in the magnitude
of e (Zuntz et al., 2018) applied to them. This unknown factor was constrained between 0.9 and
1.1. While we made initial blinded measurements for this work, the factor was revealed as part
of unblinding the cosmology results of Abbott et al. (2018).
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In accordance with the practices of other DES Y1 cosmology analyses, we have further
adopted a secondary layer of blinding. Specifically, we blindly transform the chains from our
MCMCs to hide our in-progress results, and to prevent comparison between our cluster masses
and those estimated using mass–observable relations from the literature. Chains of the parame-
ters in the modeled lensing profiles and the mass–richness relation were unaltered after unblind-
ing.

2.2.4 Photometric redshift catalog

In interpreting the weak gravitational lensing signal of galaxy clusters as physical mass profiles
we need to employ information about the geometry of the source-lens systems by considering
the relevant angular-diameter distances. To calculate these distances we rely on estimates of the
overall redshift distribution of source galaxies, and also on information about the individual P(z)
of source galaxies.

We use the DES Y1 photometric redshifts estimated and validated by Hoyle et al. (2018)
using the template-based BPZ algorithm (Benítez, 2000; Coe et al., 2006). It was found by
Hoyle et al. (2018) that these photo-z estimates were modestly biased, introducing an overall
multiplicative systematic correction in the recovered weak lensing profiles. We determine this
correction and its systematic uncertainty in section 2.4.3.

In order to be able to correct selection effects due to the change of photo-z with shear while
utilizing the highest signal-to-noise flux measurements for determining the source redshift dis-
tribution, we use two separate BPZ catalogs: one generated from METACALIBRATION-measured
photometry (for selecting and weighting sources), and one from MOF (see section 2.2.1) pho-
tometry (for determining the resulting source redshift distributions). Details of this are described
in the following section.

2.3 Stacked lensing measurements

2.3.1 Mass density profiles

Gravitational lensing induces distortions in the images of background galaxies, often called
“sources”. In the limit of weak gravitational lensing, these are characterized by the ellipticity
e, which is related to the “reduced shear” via

g ≡ γ

1 – κ
= 〈e〉. (2.6)

In the equation above, g is the reduced shear, while γ is the shear and κ is the convergence (e.g.
Bartelmann & Schneider, 2001).

The gravity of a localized mass distribution, such as a galaxy cluster, induces positive shear
along the tangential direction with respect to the center of the overdensity. This net tangential
shear results in the stretching and preferential alignment of the images of background galaxies
along the tangential direction. The magnitude of the azimuthally averaged tangential shear γT
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at projected radius R can be predicted from the line-of-sight projected surface mass density Σ of
the lens mass distribution by the relation

γT =
Σ(< R) – Σ(R)

Σcrit
≡ ∆Σ(R)

Σcrit
. (2.7)

Here Σ(< R) represents the average surface mass density within projected radius R, and Σ(R)
represents the (azimuthal) average of the surface mass density at R. For the case of reduced shear
this equation holds only in linear order, therefore we account for the effect of κ in our model
described in section 2.5.3.2.

The geometry of the source–lens system modulates the amplitude of the induced shear signal,
and is characterized by the critical surface mass density

Σcrit(zs, zl) =
c2

4πG
Ds

DlDls
(2.8)

in Equation 2.7. Here Ds, Dl and Dls are the angular diameter distances to the source, to the lens,
and between the lens and the source. Estimating the ∆Σ signal thus relies on robustly estimating
the redshifts of the galaxy clusters and the source galaxies. The lens redshifts are the photometric
redshift estimates from the redMaPPer algorithm. The statistical uncertainty on these estimates
is found to be ∆zl ≈ 0.01 (Rykoff et al., 2016), which is negligible compared to other sources of
error in the lensing measurement, allowing us to treat these redshifts as point estimates.

Source redshifts are also estimated from photometry, and are described by a probability dis-
tribution pphot(zs) for each source galaxy. We can therefore only estimate an effective critical
surface density

〈Σ–1
crit〉i,j =

∫
dzs pphot(zs,i) Σ–1

crit(zl,j, zs,i) , (2.9)

where i and j index the source and the lens in a lens-source pair. Note that here we choose to
express the inverse critical surface density, which is the predicted amplitude of the lensing signal
in Equation 2.7. We consistently define it as zero if zs ≤ zl. For reasons of data compression, we
will in fact not use the full integral over pphot(z) later, but rather replace Equation 2.9 by Σ–1

crit
evaluated at a random sample of the pphot(z).

2.3.1.1 The lensing estimator

Due to the low signal-to-noise of individual source-lens pairs we measure the stacked (mean)
signal of many source galaxies around a selection of clusters.

Sheldon et al. (2004) show that the minimum variance estimator for the weak lensing signal
is

∆̃Σ =

lens∑
j

src∑
i

wi,j eT; i,j

/
〈Σ–1

crit〉i,j∑
j,i

wi,j
, (2.10)
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where the summation goes over all source–lens pairs in some radius bin and eT; i,j is the tangential
component of the ellipticity of source i relative to lens j. The optimal weights, proportional to
the inverse variance of eT; i,j/

〈
Σ–1

crit

〉
, are

wi,j = 〈Σ–1
crit〉2i,j

/
σ2
γ,i , (2.11)

where σ2
γ,i is the estimate on the variance of the measured shear estimate of galaxy i relating to

both the intrinsic variance of shapes and also to the uncertainty originating from shear estimation.

2.3.1.2 Practical lensing estimator

This estimator can be equivalently understood as a mean tangential ellipticity, weighted by the
expected shear signal amplitude of each galaxy 〈Σ–1

crit〉. It is normalized by the expected signal
per unit ∆Σ, i.e. the 〈Σ–1

crit〉-weighted mean of the 〈Σ–1
crit〉. With this in mind, and including shear

and selection response (see section 2.2.3), we define the estimator we use in practice as

∆̃Σ ≡

∑
j,i
ωi,j eT; i,j

∑
j,i
ωi,j Σ

′–1
crit;i,j RT

γ,i +

(∑
j,i
ωi,j Σ

′–1
crit;i,j

)
〈RT

sel〉
. (2.12)

In the above, 〈RT
sel〉 is calculated via Equation 2.5 separately for source galaxies selected in each

radial bin and each richness – redshift bin, where the corresponding selections were defined by
the photometric redshift estimates derived from the sheared METACALIBRATION photometries.
The small number of source galaxies at small radii introduces some noise to the estimated re-
sponse, however due to the intrinsic environmental dependence of RT

sel, this cannot be readily
substituted or approximated with other, less noisy quantities. By considering the expectation
value

〈eT; i,j〉 = ∆Σ Σ–1
crit;i,j RT

i , (2.13)

it is easy to see that the definition of Equation 2.12 yields an unbiased estimate of ∆Σ.
Equation 2.12 includes two simplifications to make calculations less computationally de-

manding. First, for the normalization, we replace the expectation value of Σ–1
crit by a Monte

Carlo estimate
Σ

′–1
crit;i,j = Σcrit(zlj , zMC

si ) , (2.14)

where zMC
si is a random sample from the pphot(zs) distribution estimated with BPZ using MOF

photometry. Second, the weights are chosen as

ωi,j ≡ Σ–1
crit

(
zlj , 〈z

MCAL
si 〉

)
if 〈zMCAL

si 〉 > zlj + ∆z , (2.15)

with 〈zMCAL
s 〉 being the mean redshift of the source galaxy estimated from METACALIBRATION

photometry. Given the width of our photometrically estimated p(z), this is close to the optimal
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weight. We use a padding of ∆z = 0.1 for source selection. We found that including the source
weights provided by METACALIBRATION does not introduce a significant improvement in the
signal-to-noise of the measurement.

The use of two different photometric estimators is necessary because when calculating the
selection response, the internal photometry of the METACALIBRATION, with measurements on
sheared images, must be used for all selection and weighting of sources. Hoyle et al. (2018) find
this photometric redshift estimate to have a greater scatter than the default MOF photometry. We
therefore opt to use the METACALIBRATION photo-z estimates only for selecting and weighting
source-lens pairs. When normalizing the shear signal to find ∆Σ, we utilize the MOF-based
photo-z estimates.

2.3.1.3 Data vector binned in redshift and richness

In estimating the lensing signal through Equation 2.12 we utilize a modified version of the pub-
licly available XSHEAR code1 and the custom built XPIPE python package.2 The core implemen-
tation of the measurement code is identical to the one used by Melchior et al. (2017).

We group the clusters into three bins in redshift: z ∈ [0.2; 0.4), [0.4; 0.5), and [0.5; 0.65),
as well as seven bins in richness: λ ∈ [5; 10), [10; 14), [14; 20), [20; 30), [30; 45), [45; 60), and
[60;∞). The redshift limit z = 0.65 of our highest redshift corresponds roughly to the highest
redshift for which the redMaPPer cluster catalog remains volume limited across the full DES
Y1 survey footprint. The ∆Σ profiles were measured in 15 logarithmically spaced radial bins
ranging from 0.03 Mpc to 30 Mpc. For our later results we will only utilize the radial range
above 200 kpc. Scales below this cut are included only in our figures and for reference purposes,
and are excluded from the analysis to avoid systematic effects such as obscuration, significant
membership contamination, and blending. This radial binning scheme yields similar S/N across
all bins. The measured shear profiles are shown in Figure 2.4.

We find a mild radial dependence in the typical value for METACALIBRATION shear response
〈Rγ,T〉, the asymptotic values are 0.6, 0.58 and 0.55 as a function of increasing cluster redshift.
For the selection response we find an asymptotic value of 〈Rsel〉 ≈ 0.013, 0.014, and 0.015.

2.3.2 Covariance matrices
The ∆Σ profiles estimated in the previous section deviate from the true signal due to statistical
uncertainties and systematic biases. We construct a description for the covariance of our data
vector below and calibrate the influence of systematic effects in section 2.4.

Statistical uncertainties originate from the large intrinsic scatter in the shapes of source galax-
ies, the uncertainty in estimating their photometric redshifts, and due to the intrinsic variations
in the properties and environments of galaxy clusters. Furthermore, our maximum radius is
much larger than the 0.22 degree median separation between clusters in the catalog. This means
that source galaxies are paired with multiple clusters, possibly generating covariance between
between different radial ranges and/or across different cluster bins in richness and redshift.

1https://github.com/esheldon/xshear
2https://github.com/vargatn/xpipe

https://github.com/esheldon/xshear
https://github.com/vargatn/xpipe
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To quantify the correlation and uncertainty involved in the measurement we construct a semi-
analytic model for the data covariance matrix following the framework developed by Gruen et al.
(2015). Our use of a semi-analytic covariance (SAC) matrix is motivated by explicit covariance
estimators exhibiting non-negligible uncertainty and possible biases, for instance from jackknife
regions that are not completely independent. Both of these problems lead to a biased estimate of
the precision matrix (i.e. the inverse covariance matrix), which in turn will bias the posteriors of
likelihood inference (Friedrich et al., 2016).

Instead, we predict several key contributions of the observed covariances, namely those due
to correlated and uncorrelated large scale structure, stochasticity in cluster centering, the intrinsic
scatter in cluster concentrations at fixed mass, cluster ellipticity, and the scatter in the richness–
mass relation of galaxy clusters. Only the shape noise contribution is estimated directly from the
data, as detailed below.

While we rely on the SAC matrix estimates in the remainder of our analysis, we compare
the SAC matrices to those derived using a standard jackknife method. We use jackknife (JK)
resampling with K = 100 simply-connected spatial regionsRk selected via a k-means algorithm
on the sphere.3 The jackknife covariance is defined following Efron (1982):

C
∆̃Σ

=
K – 1

K

K∑
k

(
∆̃Σ(k) – ∆̃Σ(·)

)T
·
(

∆̃Σ(k) – ∆̃Σ(·)
)

, (2.16)

where ∆̃Σ(·) = 1
K
∑

k ∆̃Σ(k) and ∆̃Σ(k) denotes the lensing signal estimated via Equation 2.12
using all lenses except those in region Rk. Using this method, we calculate the covariance
between all radial bins in a single richness and redshift bin, as well as the covariance between
adjacent richness and redshift bins.

Figure 2.5 shows an example of the structure of the jackknife estimated correlation matrix
between neighboring bins in richness and redshift. We find no significant correlation between
richness/redshift bin and therefore treat each bin independently, even though some systematic
parameters may be shared between bins.

2.3.2.1 Shape noise

The large intrinsic variations of the shapes of galaxies (shape noise) in the source catalog con-
stitute a dominant source of uncertainty in lensing measurements. We estimate the covariance
originating from both the random intrinsic alignments and also the stochastic positions of source
galaxies. In order to do so, we make use of the measurement setup outlined in section 2.3.1.3,
but each source is randomly rotated to create a new source catalog. We generated 1000 such
independent rotated source catalogs, and performed the lensing measurement with each. The
resulting data vectors are consistent with zero, as the random rotation washes away the imprint
of the weak lensing signal. However, their scatter is indicative of the covariance due to shape
noise.

3https://github.com/esheldon/kmeans_radec

https://github.com/esheldon/kmeans_radec
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Figure 2.5: Jackknife estimated correlation matrix of ∆̃Σ of a single richness-redshift selection
with λ ∈ [20; 30) and z ∈ [0.2; 0.35) (upper left panel). The off-diagonal blocks display the
correlation matrix between the reference profile and the neighboring richness bin λ ∈ [30; 45)
(upper right panel), and the neighboring redshift bin z ∈ [0.35; 0.5) (lower left panel)



52 2. Weak Lensing Mass Calibration of redMaPPer Galaxy Clusters

We estimate the shape noise covariance matrix for each of the 1000 realizations using the
spatial jackknife scheme outlined above in section 2.3.2. The final shape noise covariance matrix
estimate is obtained by averaging all 1000 of these jackknife covariance matrices. We expect this
method to be less noisy compared to estimating the covariance matrix from the 1000 independent
measurements of the rotated ∆Σ vector only.

2.3.2.2 Uncorrelated LSS

Line of sight structures which are not physically connected to the cluster leave an impact on
the lensing signal. We cannot remove them from the signal, but we can estimate their expected
contribution to the covariance. For an individual cluster, the covariance of the ∆Σ profile at radii
θi, θj due to uncorrelated large scale structure (uLSS) can be written as (e.g. Schneider et al.,
1998; Hoekstra, 2003; Umetsu et al., 2011)

CuLSS
ij = 〈Σ–1

crit〉–2
∫

ldl
2π

Pκ(l)J2(lθi)J2(lθj) , (2.17)

where Pκ is the power spectrum of the convergence, and J2 is the Bessel function of the first kind
of order 2.

Naively, one would expect that the variance of a cluster stack due to uncorrelated large scale
structure to scale simply as 1/Nclusters. In practice, however, the positions of galaxy clusters
are correlated, and the area around them overlaps on large scales. Consequently, we expect the
variance due to uncorrelated structure to decrease somewhat more slowly than 1/Nclusters.

We estimate this source of noise by measuring random realizations of the signal due to shear
fields induced by log-normal density fields with the appropriate power spectra and skewness. We
calculate the latter with the perturbation theory model of Friedrich et al. (2018) for the Buzzard
cosmology (DeRose et al., 2019; Wechsler et al., 2018), using the log-normal parameter κ0 at
a 10’ aperture radius. As our cluster sample spans a range in redshift, a different shear field is
calculated for each of the three redshift bins. This is done such that the shear fields are calcu-
lated at the lens-weighted mean source galaxy redshifts found during the initial measurement in
section 2.3.1.3. We then pass these shear fields through the measurement pipeline using a spatial
mask reflecting the actual source number density variations across the footprint, and estimate
the covariance matrix for each realizations using 100 spatial jackknife regions for each bin in
richness and redshift.

This above procedure was repeated 300 times, and the final covariance matrix due to uncor-
related LSS is taken to be the mean of the 300 jackknife covariance estimates.

2.3.2.3 Correlated LSS and halo ellipticity

Following Gruen et al. (2015), we model correlated large scale structure using a halo model ap-
proach. We assume correlated halos can be adequately described using only two parameters: the
mass M of the correlated halo, and the projected distance Rh from the cluster. The mass distri-
bution of the halos is assumed to follow the halo mass function, while their spatial distribution
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Figure 2.6: The four individual components to our Semi-Analytic Covariance (SAC) matrix.
Clockwise from top left: Shape noise component from randomly rotating sources, correlated
LSS and ellipticity component from integrating over configurations of the host cluster and its
correlated halos, uncorrelated LSS from integrating over large scale structure, and finally scatter
in the M – λ relation, M – c relation, and miscentering distribution. Dark colors correspond to
low covariance and the colors are log scaled to show trends. Light colors are normalized to the
total covariance in the SAC. See section 2.3.2 for details.
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is modeled as a Poisson realization of the density field defined by the appropriate halo–cluster
correlation function. That is, the excess density of halos of mass M a distance R from the halo is

ρh(M, Rh) = b(Mcl)b(M)wmm(Rh)
dn
dM

, (2.18)

where wmm is the projected linear correlation function at the redshift of the cluster, b(M) is the
halo bias, and dn/dM is the halo mass function, or the number of halos per unit volume per unit
mass (Tinker et al., 2008).

Given a model for the halo profile Σ(R|M), the contribution of a halo at location Rh to the
mean surface density Σ of the cluster in radial bin Ri is Σi(M, Rh) = Σmisc(Ri|M, Rh), where
Σmisc is a miscentered halo profile. Because of the Poisson-sampling assumption, the covariance
matrix is generated by the mass profiles of individual halos, so that the correlated large scale
structure contribution to the covariance matrix can be written as

CcLSS
ij =

∫
(2πRhdRh)dM ρh(M, Rh)∆Σi(M, Rh)∆Σj(M, Rh) . (2.19)

In practice, the above predicted covariance matrix is further rescaled by a constant factor cali-
brated on simulations. This is meant to account for additional variance not captured by linear bias
and Poisson noise, due to filamentary structure and higher order statistics in the spatial distribu-
tion of the correlated halos (e.g. the non-zero three-point function). A more detailed derivation
of the above equation and its calibration is found in Gruen et al. (2015).

A very similar calculation can be made for characterizing the contribution due to halo elliptic-
ity (to the covariance matrix – for the effect on the mean signal, see section 2.5.4.2). If ρell(q,µ)
is the distribution of the halo axis ratio q and the line-of-sight orientation angle θ relative to the
major axis such that cos θ = µ, then one finds (Gruen et al., 2015)

Cell
ij =

∫
dqdµ ρell(q,µ)∆Σi∆Σj , (2.20)

where ∆Σi is the contribution to the bin Ri under the assumption that the halo has an axis ratio q
and an orientation µ.

2.3.2.4 M–c scatter, M-λ scatter and miscentering

Halos at a given mass have some intrinsic scatter in their M–λ relation. A rough estimate of the
intrinsic scatter in the mass–richness (M–λ) relation is ∼ 25 per cent (Rozo & Rykoff, 2014;
Farahi et al., 2019), and it causes an increase in the variance of stacked measurements of ∆Σ.
This scatter causes an even larger increase in the variance, since it propagates into quantities that
depend directly on the mass, including the M – c relation. In addition, concentration (e.g. Diemer
& Kravtsov, 2015; Bhattacharya et al., 2013) and miscentering possess some intrinsic scatter
from halo to halo themselves.

Scatter in the M–λ relation causes variance on all scales, since the bias b(M) directly depends
on the mass. By comparison, scatter in the M – c relation primarily affects small scales where
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the 1-halo term dominates. Similarly, some cluster centers are misidentified in our stacks, which
creates additional covariance at small scales where the signal is substantially suppressed.

We modeled the combined contribution to the SAC from scatter in M–λ, scatter in concentra-
tion at fixed mass, and miscentering of individual clusters in our stacks by doing the following:

1. For each cluster in our stack, assign a mass by inverting a fiducial M–λ relation (Melchior
et al., 2017) and assuming 25 per cent scatter. This is not identical to 25 per cent scatter in
the M–λ relation, however this choice negligibly affects this component of the covariance
matrix.

2. For each cluster, assign a concentration (including scatter) based on Diemer & Kravtsov
(2015).

3. For each cluster, make a draw from our centering prior described in section 2.5.2. In other
words, some fraction fmis of clusters in the stack are miscentered, and the distribution of
the amount of miscentering is given by p(Rmis).

4. Calculate ∆Σ for each cluster and average these signals to generate a signal for the entire
stack.

5. Repeat this process many times, and use these independent realizations to estimate the
corresponding covariance matrix between the various radial bins.

Using Simet et al. (2017b) as our fiducial M–λ relation or using the Bhattacharya et al. (2013)
mass–concentration relation had no impact on the final SAC matrix. We have also verified that
using half as many realizations as our fiducial choice (1000) did not appreciably change the
resulting covariance matrix. The same is true for changes in the richness scatter or miscentering
model parameters within reasonable ranges.

2.3.2.5 Semi-analytic covariance matrix

Following Gruen et al. (2015), the full SAC matrix is obtained by adding each of the above
contributions. The individual components described in the previous subsections are shown in
Figure 2.6. Figure 2.7 demonstrates the differences between the SAC and jackknife covariance
matrices. The top two panels show the correlation matrix R of the SAC and CJK respectively,
where the correlation matrix is defined via

Rij =
Cij√
CiiCjj

. (2.21)

Similarly, to visualize the difference between CSA and CJK we define the residual matrix

Qij =
CSA

ij – CJK
ij√

CSA
ii CSA

jj

. (2.22)
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Figure 2.7: Comparison between the semi-analytic covariance matrix and the jackknife estimated
covariance matrix. Top left: Correlation matrix of the SAC matrix. Top-right: Correlation matrix
of the jackknife estimate. Bottom left: Comparison of the errors in the SAC and jackknife esti-
mate along with the contributions to the SAC error from each individual component. The line
showing the SAC errors lies almost on top of the shape noise contribution, confirming that it is
the dominant source of covariance. Bottom right: Residual matrix Q (see Equation 2.22) that
represents the difference between the SAC and jackknife covariance matrices. See section 2.3.2
for details.
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We show this residual matrix in the bottom right panel of Figure 2.7. Finally, in the lower left
panel we show the difference between the errors along the diagonal between the CJK and the
SAC, along with each of the contributions to the SAC; the lower panel shows the fractional dif-
ference between the diagonal entries. As expected, shape noise is the dominant contributor to the
SAC matrix, with uncorrelated LSS becoming important at the largest scales. This explains why
the choices we had to make in modeling the non-shape noise components did not significantly
affect the resulting SAC matrix or the posteriors analysis.

Using the SACs in our analysis provides two major improvements: minimal bias from invert-
ing the covariance matrix, and less overall noise in the off-diagonal elements which improves
the mass measurement. In Melchior et al. (2017) we demonstrated that noise in the jackknife
covariance matrix led to an increase of ≈30 per cent in the uncertainty of the mass of the stack.
Using the SACs reduces the contribution of the covariance to the error budget by 10 per cent
compared to the jackknife estimated covariance.

2.4 Systematics

2.4.1 Shear systematics

The METACALIBRATION shear catalog and the associated calibration of the source redshift dis-
tributions (Hoyle et al., 2018) passed a large number of tests performed by Zuntz et al. (2018) and
Prat et al. (2018). Here we briefly enumerate the constraints on the most relevant systematics,
and refer the reader to the corresponding papers for a more detailed analysis.

We parametrize the various potential biases in the dataset as:

gi = (1 + mi)g
tr
i + αPSFePSF

i + ci , (2.23)

where gtr
i is the true shear, while gi is the shear estimate, and αPSF relates to the contamination

from the PSF ellipticity ePSF
i .

In weak lensing surveys the three main sources of bias are commonly found to be model
bias, noise bias, and selection bias (or representativeness bias). In order to account and correct
for these sources of error, the METACALIBRATION algorithm performs a self-calibration on the
actual data by shearing the galaxy images during the measurement, and using the thus calculated
responses to correct the shear estimates. To quantify the effectiveness of this self-calibration,
Zuntz et al. (2018) ran the METACALIBRATION pipeline on a set of simulated galaxy images
using GALSIM (Rowe et al., 2015). The images were produced from high resolution galaxy
images from the COSMOS sample, and processed to resemble the actual DES Y1 observations
both in noise and PSF properties. Based on this test scenario Zuntz et al. (2018) found no
significant multiplicative bias m or additive bias c present in the dataset.

Zuntz et al. (2018) further investigated the multiplicative biases due to blending of galaxy
images, due to the potential leakage of stellar objects into the galaxy sample, and due to potential
errors in the modeling of the PSF. They found blending as the only component with a net bias,
with the other sources being consistent with zero, although contributing to the uncertainty on the
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value of m. The final multiplicative bias estimates were found to be m = [1.2 ± 1.3] · 10–2 with
a 1σ Gaussian error. They found no evidence of a significant additive bias term.

Prat et al. (2018) tested for the presence of residual shear calibration biases in the DES Y1
galaxy-galaxy lensing analysis by splitting the source sample by various galaxy properties and
parameters of the observational data. They showed that within the statistical uncertainty of the
respective galaxy-galaxy lensing signals, and including the differences in redshift distributions
induced by the splitting, no differential multiplicative biases between any of the splits are signif-
icantly detected.

In addition to the above calibrations during the construction of the shear catalog, we perform
additional sanity checks relevant to stacked weak lensing measurements in the subsections below.

2.4.1.1 Second order shear bias

Due to the larger tangential shear near massive clusters, this analysis is more strongly affected by
non-linear shear response than previous DES Y1 lensing analyses (see the discussion in section 9
of Sheldon & Huff 2017). This response biases cluster masses higher than they would be other-
wise. To test this effect, we modify the measured ∆Σ profiles by adding the leading non-linear
shear bias term, at third order in γt = ∆Σ× Σ–1

crit, as

∆Σ′obs =
∆Σobs〈Σ–1

crit〉 – αNL

(
∆ΣModel〈Σ–1

crit〉
)3

〈Σ–1
crit〉

, (2.24)

where ∆ΣModel is the optimized model discussed in section 2.5. For the amplitude of non-
linear shear bias we choose αNL = 0.6 (Sheldon & Huff, 2017). We model the profile of the
highest richness stack at z ∈ [0.2, 0.35] where, for the source redshift distribution of DES Y1,
this effect is strongest. The recovered mass changes by less than 1 per cent, demonstrating that
our recovered mass–richness–redshift relation is robust to non-linear shear bias within our error
budget.

The choice of α = 0.6 in our test is motivated by the image simulations used in Sheldon &
Huff (2017). Other simulations find a range of values of similar magnitude. Since the effect
is smaller than the overall shear uncertainty, yet its calibration is uncertain, we choose not to
implement a correction in our final model.

2.4.1.2 B-modes

Gravitational lensing due to localized mass distributions can only produce a net E-mode signal
in the shear field, which corresponds to the tangential shear γt. This allows for a simple null test
for the presence of systematics: any non-zero cross-shear (i.e. a non-zero B-mode) must be due
to systematics. We compute the cross-shear by projecting the shears to the direction 45◦ from the
tangential direction. We estimate the stacked B-mode signal for all richness and redshift bins,
and calculate the corresponding χ2 values using the jackknife estimate of the covariance matrix.
We find χ2/11 < 18/11 for all richness bins with λ > 20, indicating that our measurement is
consistent with no systematics at a p > 0.1 level.
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2.4.1.3 Random point test

In spite of not being detected by Zuntz et al. (2018) and section 2.4.1.2, additive shear systematics
may be present in the data, which could manifest as net signals visible on all radial scales. In
order to test for such potential systematics we measure the lensing signal around a set of random
points chosen by the redMaPPer algorithm (Rykoff et al., 2016). These points are selected via
weighted random draws to mirror the distribution of DES Y1 redMaPPer clusters both in angular
distribution, as well as in redshift and richness.

As additive systematics would affect the lensing profiles of galaxy clusters and random points
the same way, the systematic effect can be calibrated out by subtracting the profile of random
points from the profile of clusters. While we find no significant net signal around random points,
we nevertheless apply this calibration, and subtract the signal of 105 random points from the ∆̃Σ
of each bin in richness and redshift. Thanks to the large number of random points used, this
subtraction does not introduce significant noise to the measurement.

A motivation for subtracting the signal around random points from the measurement, regard-
less of the presence of systematics, is presented by Singh et al. (2017). They found that the
random subtracted signal relates to the matter over-density field around the lenses, while the
un-subtracted lensing signal traces the matter density field, which carries additional variance on
large scales. Indeed, the precursor study of the present paper (Melchior et al., 2017) found a
similar trend. We note that when constructing our SAC matrix we always apply the random
point subtraction described above to ensure that our covariance matrix properly accounts for the
reduced covariance that this estimator enables.

2.4.2 Correction for cluster members in the shear catalog
Due to uncertainty in photometric redshift estimates, foreground galaxies can be included in the
source catalog used in our lensing measurements. So long as the ensemble redshift distribution
dn/dz of the sources is properly estimated, this is accounted for in our analysis. In the projected
vicinity of galaxy clusters there is however a systematic effect biasing the naive redshift estimates
of galaxies: the presence of a large cluster member population and the associated large-scale
matter overdensity localized at the cluster redshift. For rich clusters, these member galaxies could
make up a significant fraction of all detected galaxies in a particular line of sight. Consequently,
due to intrinsic imperfections in the selection, some of these galaxies leak into the source catalog
used in the weak lensing measurement. Cluster member galaxies are randomly aligned (Sifón
et al., 2015), meaning their contamination results in a measured lensing signal which is biased
low due to the dilution of actual source galaxies within the catalog.

It is therefore important for weak lensing studies to characterize and correct this dilution
when interpreting the measurements.4 There have been several approaches in the literature to
correct for the net effect of cluster member contamination. For instance, Sheldon et al. (2004)
estimated the correction factor from the transverse correlation of source galaxies around galaxy
clusters, while Gruen et al. (2014) and Melchior et al. (2017) estimated the contamination rate

4This correction is also referred to as a boost factor as the measured signal should be boosted to correct for the
contamination
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Figure 2.8: The photo-z correction factor to Σ–1
crit as described in section 2.4.3. The gray hatched

region indicates the 1σ range of the correction factor. Red points with error bars show the cor-
rection factors applied to each redshift bin.

based on the color or photometric redshift p(z) information of galaxies in different radial separa-
tions from the cluster. One can also make simple color cuts (Schrabback et al., 2018b; Medezin-
ski et al., 2010, 2018c) or photo-z cuts (Applegate et al., 2014b) on the source population to
mitigate the contamination, or estimate its effect based on the increased galaxy number density
around the lenses (Dietrich et al., 2019; Hoekstra et al., 2015; Simet et al., 2017a).

In this study we adopt the approach of our precursor analysis from the Science Verification
data release of DES (Melchior et al., 2017), in which we make use of the estimated p(z) of the
source galaxy sample to calculate the cluster contamination fraction fcl along with a correspond-
ing covariance matrix Cfcl estimated via spatial jackknifing, and use this quantity to recover the
contamination corrected lensing profile:

∆̃Σcorr(R) =
∆̃Σ(R)

1 – fcl(R)
. (2.25)

Using this p(z) decomposition approach is further motivated by the complexity of the shear se-
lection function in our analysis, which limits our ability to measure the correlation function of
source galaxies. A detailed description of this method, along with validation on simulated DES-
like mock observations is presented in an accompanying paper Varga et al. (2019).



2.4 Systematics 61

2.4.3 Photometric redshift systematics

The redshift distribution of our selected source galaxies was estimated using BPZ (Benítez, 2000)
in the implementation of Hoyle et al. (2018). In BPZ or similar photometric redshift estimation
procedures, one assumes a variety of galaxy spectral energy distribution (SED) templates and
priors for the relative abundance of galaxies as a function of luminosity and redshift. Any devi-
ation from these assumptions in the DES source galaxy sample can cause biases in photometric
redshift estimates which must be calibrated.

For the cosmology analyses of the lensing two-point functions (Troxel et al., 2017; Dark
Energy Survey Collaboration, 2016), this calibration was performed in two independent ways,
and with consistent results: by the redshift distributions of samples of galaxies with high-quality
30-band photo-zs from COSMOS, matched to DES lensing source galaxies (Hoyle et al., 2018),
and by the clustering of lensing source galaxies with redMaGiC (Rozo et al., 2016) galaxies as a
function of the redshift of the latter (Davis et al., 2018; Gatti et al., 2018).

For this work, we adapt the COSMOS calibration of Hoyle et al. (2018) to estimate the bias
of our ∆Σ measurements, and the uncertainty in that bias. To this end, we select and weight
galaxies from COSMOS in the same manner as for our measurements of the cluster ∆Σ profiles.

Following Hoyle et al. (2018, their section 4.1), we randomly sample 200,000 galaxies in our
data and match them to COSMOS galaxies according to their flux in each band and their intrinsic
size. From this COSMOS resampling, we select and weight galaxies as per section 2.3.1.2 and
section 2.3.1.3. From the COSMOS 30-band we calculate the weighted mean true Σ

′–1
crit,TRUE.

From noisy MOF griz BPZ redshift distribution samples we get a mean Σ
′–1
crit,MEAS that relates

the weighted mean tangential shear to the ∆Σ profile. As in the denominator of Equation 2.12,
we use a weight ω×R for the means. Because the source selection, ω weight, and Σ

′
crit depends

on lens redshift, we repeat this exercise for the range of cluster redshifts sampled by our catalog,
zl = 0.2 . . . 0.65. A bias in Σ

′–1
crit translates directly into a multiplicative bias in ∆Σ.

We estimate four sources of uncertainty in the calibration of photometric redshift distributions
(see Hoyle et al., 2018, their sections 4.2-4.5): 1) an uncertainty due to cosmic variance from the
relative scatter of average Σ

′–1
crit,TRUE in the resampling of the 368 simulated COSMOS footprints,

to which we add the (subdominant) statistical uncertainty due to the limited sample size from
bootstrap resamplings in quadrature; 2) an uncertainty due to photometric zeropoint offsets from
realizations of photometric zeropoint calibration offsets; 3) an uncertainty due to the morphology
matching, which we estimate as half the difference between the estimated Σ

′–1
crit,TRUE of the

sample with size+flux matching and that obtained without the size matching; and 4) a systematic
uncertainty of the matching algorithm by a comparison between the fiducial Σ

′–1
crit,TRUE value

and that of the aforementioned 368 resampled simulated COSMOS fields. Effects 1, 3, and 4
contribute to the systematic uncertainties with similar size, while effect 2 is smaller but not quite
negligible.

We define our model for the bias as

Σ
′–1
crit,MEAS

Σ
′–1
crit,TRUE

≡ 1 + δ , (2.26)
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with the mean value given from the COSMOS analysis, and an uncertainty due to the four effects
mentioned above. This ratio depends on lens redshift through the selection/weighting of sources
and the source redshift dependence of photo-z bias. It is plotted across the entire lens redshift
range in Figure 2.8. The red points show the ratio at the mean redshifts of the bins used in our
analysis. This multiplicative factor is fully degenerate with shear systematics (see section 2.4.1)
and is assumed to be correlated across redshift bins. δ is incorporated in our analysis by a prior
that varies between each stack. The variation between richness bins is small compared to the
variation across cluster redshift bins.

δ =


0.009± 0.021 for z ∈ [0.2, 0.35]
0.002± 0.020 for z ∈ [0.35, 0.5]
0.004± 0.022 for z ∈ [0.5, 0.65].

(2.27)

This prior is combined with the prior on m and included in the final likelihood as described in
section 2.5.3.3.

2.5 The stacked lensing signal

2.5.1 Surface density model

Our surface density model remains unchanged from Melchior et al. (2017). The lensing signal is
given by Equation 2.7. The quantities Σ(R) and Σ(< R) are given by

Σ(R) =
∫ +∞

–∞
dχ ∆ρ

(√
R2 + χ2

)
, (2.28)

where R is the projected separation and χ the separation along the line of sight in comoving units
and

Σ(< R) =
2

R2

∫ R

0
dR′ R′Σ(R′) . (2.29)

If the shear signal is caused by halos of mass M, the average excess three dimensional matter
density is given by

∆ρ(r) = ρ(r) – ρm = ρmξhm(r | M) , (2.30)

where ρm = Ωmρcrit(1 + z)3 is the mean matter density in physical units at the redshift of the
sample, ρcrit is the critical density at redshift zero, and ξhm(r | M) is the halo–matter correlation
function at the halo redshift.

At small scales ξhm is dominated by the so-called “1-halo” term while at large scales it is
dominated by the “2-halo” term. We use the Zu et al. (2014) update to the Hayashi & White
(2008) model of ξhm. This is

ξhm(r | M) = max {ξ1h(r | M), ξ2h(r | M)} . (2.31)
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For the 1-halo term we use a Navarro et al. (1996, hereafter NFW) density profile ρNFW(r | M)

ξ1h(r | M, c) =
ρNFW(r | M, c)

ρm
– 1 , (2.32)

where
ρNFW(r | M, c) =

Ωmρcritδc

(r/rs) (1 + r/rs)2 . (2.33)

The concentration c = r200m/rs is left as a free parameter, with a flat prior as per Table 2.1. This
differs from the analysis in Melchior et al. (2017), in which we forced the halo concentration to
follow the concentration–mass relation of Diemer & Kravtsov (2015).

For the two-halo term ξ2h(r | M) we use the non-linear matter correlation function ξnl scaled
by the halo bias b(M) of Tinker et al. (2008) as

ξ2h(r | M) = b(M)ξnl(r) . (2.34)

ξnl is the 3D Fourier transform of the non-linear power spectrum Pnl (Smith et al., 2003; Taka-
hashi et al., 2012), given by

ξnl(r) =
∫ ∞

0

dk
k

k3Pnl(k)
2π2 j0(kr) , (2.35)

where j0(z) is the 0th spherical Bessel function of the first kind. The power spectrum is computed
using the CLASS code5 (Lesgourgues, 2011; Blas et al., 2011). We repeated our analysis using
the linear matter correlation function ξlin and found nearly identical results as discussed later in
section 2.6.3.1.

2.5.2 Miscentering correction
We have thus far assumed that we can measure the stacked shear profile of clusters relative to
the “center” of the halo as defined in an N-body simulation. Our simulations use the spherical
overdensity algorithm ROCKSTAR as implemented in Behroozi et al. (2013). If cluster centers
are not properly identified, or are “miscentered”, then the observed weak lensing signal in annuli
around these clusters will be suppressed. As in Melchior et al. (2017), we model the recovered
weak lensing signal as a weighted sum of two independent contributions: a contribution ∆Σcen
from properly centered clusters, and a contribution ∆Σmis from miscentered clusters,

∆Σmodel = (1 – fmis)∆Σcen + fmis∆Σmis . (2.36)

∆Σcen is given by Equation 2.7. When a cluster is miscentered by some radial offset Rmis, the
corresponding azimuthally averaged surface mass density is (e.g. Yang et al. (2006); Johnston
et al. (2007))

Σmis(R | Rmis) =
∫ 2π

0

dθ
2π

Σ

(√
R2 + R2

mis + 2RRmis cos θ
)

. (2.37)

5http://class-code.net/

http://class-code.net/
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Letting p(Rmis) be the distribution of radial offsets for miscentered clusters, the corresponding
mean miscentered profile Σmis is

Σmis(R) =
∫

dRmis p(Rmis)Σmis(R | Rmis) . (2.38)

It is this quantity that we use to model the miscentered profile term in Equation 2.36.
Zhang et al. (2019b); von der Linden et al. (2018) measure the centering fraction and center-

ing distribution of redMaPPer clusters by comparing the reported centers to those derived from
high resolution X-ray data (where available). Here, we summarize their findings. The miscen-
tering distribution p(Rmis) has the form

p(Rmis) =
Rmis

(τRλ)2 exp
(

–
Rmis
τRλ

)
(2.39)

where Rλ is the cluster radius assigned by redMaPPer, and τ = Rmis/Rλ. Note that this is
a Gamma distribution instead of the Rayleigh distribution used in, e.g. Simet et al. (2017b);
Melchior et al. (2017). This model choice is justified in Zhang et al. (2019b); von der Linden
et al. (2018). We use a combination of the posteriors of Zhang et al. (2019b); von der Linden et al.
(2018) to set the priors of the miscentering parameters fmis and τ , as detailed in Table 2.1. The
prior uncertainties conservatively encompass the spread in best fitting values and the confidence
intervals of both works. It corresponds to a miscentering fraction fmis = 0.25 ± 0.08, that is,
roughly ≈ 75 per cent of the redMaPPer clusters are correctly centered. Because the variation
in Rλ within each richness bin is mild, we ignore variations in Rλ across the bin, and set Rλ to
the radius of a cluster whose richness is equal to the mean richness of the clusters in the bin. We
have explicitly verified that if use the median rather than the mean cluster richness, the difference
between our predicted profiles is insignificant relative to our statistical errors.

2.5.3 Multiplicative corrections
Multiplicative corrections to our model include boost factors, reduced shear, and shear+photo-z
biases. These adjust our model according to

∆Σfull(R) =
AmG(R)
B(R)

∆Σmodel . (2.40)

In this equation,Am is the multiplicative correction due to shear and photometric redshift biases,
G(R) is the multiplicative correction due to using reduced shear, and B(R) is the boost factor
correction.

2.5.3.1 Boost factor model

In section section 2.4.2, we discussed how membership dilution biases the recovered weak lens-
ing profile by a factor 1 – fcl. This factor is known as a boost factor because to correct for it
in the lensing profile, one would increase the measured signal. We decided to not apply this
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factor to our data, and instead dilute the theoretical profile. To marginalize over the statistical
uncertainty in our boost factor measurements, we parameterize the boost factor B ≡ (1 – fcl)–1

by constructing a model for the cluster-member contamination using a two component (B0 and
Rs) NFW profile:

Bmodel(R) = 1 + B0
1 – F(x)
x2 – 1

, (2.41)

where x = R/Rs, and

F(x) =


tan–1

√
x2–1√

x2–1
: x > 1

1 : x = 1
tanh–1

√
1–x2√

1–x2 : x < 1

. (2.42)

We fit the boost factors measured in each bin along with the lensing profile of that bin. This
introduces two additional parameters in our model, B0 and Rs, for each richness and redshift bin.

2.5.3.2 Reduced Shear

We account for the fact that we measure the reduced shear g rather than true shear γ, as seen in
Equation 2.6, by multiplying our lensing model by

G(R) =
1

1 – κ
=

1
1 – Σ(R)Σ–1

crit
. (2.43)

Here, Σ–1
crit is the same as that in 2.4.3 and Σ(R) is

Σ(R) = (1 – fmis)Σcen + fmisΣmis , (2.44)

where Σcen is given by Equation 2.28 and Σmis is given by Equation 2.38. This adjustment has
a negligible effect on our results, and introduces no new free parameters to our analysis.

2.5.3.3 Shear+photo-z bias

The factor Am = 1 + m + δ combines the effects of shear (m, section 2.4.1) and photo-z (δ,
section 2.4.3) systematic uncertainties. Zuntz et al. (2018) found a shear calibration of m =
0.012 ± 0.013. The photo-z bias comes from Hoyle et al. (2018) and varies between cluster
stacks.

Since both m and δ are assigned Gaussian priors, the width of the prior on Am is obtained by
adding the widths of the priors on m and δ in quadrature. We arrive at

Am =


1.021± 0.025 for z ∈ [0.2, 0.35]
1.014± 0.024 for z ∈ [0.35, 0.5]
1.016± 0.025 for z ∈ [0.5, 0.65].

(2.45)
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Figure 2.9: The mass calibration C = Mtrue/Mobs from adopting our model of the correlation
function in Equation 2.31 as a function of λ and redshift. The solid line and hatched region are
the best fit model and 1σ uncertainty of the calibration. Error bars on the measured calibrations
are the fitted intrinsic scatter σC .

The typical systematic uncertainty of ≈ 2.5 per cent represents a significant improvement over
the typical systematic uncertainty of ≈ 3.8 per cent we achieved in Melchior et al. (2017). This
dramatic improvement in accuracy is primarily driven by the improved shear calibration achieved
in the DES Y1 data with METACALIBRATION.

For the following data releases of DES, we anticipate that improvements in the treatment of
blended objects can further reduce the multiplicative shear bias. This implies that uncertainties in
the calibration of photometric redshift estimates will likely be our dominant measurement related
systematic. Significant improvements on this will require either extended calibration data sets or
a hierarchical treatment that uses survey data to inform redshift estimation consistently.

2.5.4 Stacked mass corrections
We expect the masses we measure in section 2.5.5 to be biased with respect to the true mean
mass of the stacks. This bias arises from two sources: our model presented above is not a true
description of cluster lensing profiles, and effects due to triaxiality and projection. We account
for both sources of bias by calculating a correction C applied to the expected mass of the stack
Mtrue = C〈M〉, as detailed in the section below. This is applied after the lens modeling is com-
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plete, but before modeling the mass–observable relation from our stacked masses in section 2.6.

2.5.4.1 Modeling systematics

The model presented above for ∆Σ is not perfect; our analytic model for the halo-mass corre-
lation function in Equation 2.31 does not match density profiles in simulations (Melchior et al.,
2017; Murata et al., 2017), in particular in the transition between the 1-halo and 2-halo regimes.
In lieu of a fully calibrated model, we correct for any bias imparted by our choice of model by
using our likelihood analysis to estimate halo masses of synthetic data generated from N-body
simulations. The halos are drawn from an N-body simulation of a flat ΛCDM cosmology run
with GADGET (Springel, 2005). The simulation uses 14003 particles in a box with 1050 h–1Mpc
on a side with periodic boundary conditions and for softening of 20 h–1kpc. The simulation
was run with the cosmology Ωm = 0.318, h = 0.6704, Ωb = 0.049, τ = 0.08, ns = 0.962, and
σ8 = 0.835. Halos of mass 1013 h–1M� are resolved with 100 particles. We discard all informa-
tion below 5 softening lengths, and verified that the choice of extrapolation scheme for describing
the correlation function below this scale does not impact our results. Halos were defined using
a spherical overdensity mass definition of 200 times the background density and were identified
with the ROCKSTAR halo finder (Behroozi et al., 2013).

The simulation is used to construct the synthetic ∆Σ profiles of galaxy clusters at four dif-
ferent snapshots: z ∈ [0, 0.25, 0.5, 1]. There were ∼420,000 halos at z = 1 and ∼830,000 halos
at z = 0. We used snapshots instead of lightcones for two main reasons: we wanted to maximize
the number of halos we had available to perform the calibration, and we found that the synthetic
profiles to only weakly depend on redshift. Instead of splitting halos into mass subsets as in Mel-
chior et al. (2017), we assigned a richness to each halo by inverting the mass–richness relation
of Melchior et al. (2017) and adding 25 per cent scatter. We then grouped our halos into richness
subsets identical to how we grouped our clusters. For each of these halo subsets we measured
the halo-matter correlation function with the Landy & Szalay (1993) estimator as implemented
in CORRFUNC6 (Sinha & Garrison, 2017). We numerically integrate the halo-matter correlation
function to obtain the ∆Σ profile as described in section 2.5.1.

This ∆Σ profile contains none of the systematics that exist in the real data. To incorporate
them, we modified this profile with the multiplicative corrections described in section 2.5.3 and
miscentering corrections in section 2.5.2. We took the central values of our priors in Table 2.1
as well as values for B0 and Rs from modeling the boost factors independently and modified the
simulated ∆Σ profile according to Equation 2.47. The observed mass Mobs for this simulated
profile was obtained by using the same pipeline that we apply on the real data. When evaluating
the likelihood in Equation 2.50, we used the semi-analytic covariance matrix corresponding to
the nearest cluster subset in redshift.

Denoting Mtrue as the mean mass of the halos in the simulated stack, the calibration for each
simulated profile is seen in Figure 2.9. The calibration C = Mtrue/Mobs was then modeled as a

6https://github.com/manodeep/Corrfunc

https://github.com/manodeep/Corrfunc
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function of the mean richness of the simulated stack λ̄ in the form

C(λ̄, z) = C0

(
λ̄

λ0

)α( 1 + z
1 + z0

)β
. (2.46)

The free parameters in our fit are C0, α, and β with pivot values at z0 = 0.5 and λ0=30, as well as
the intrinsic scatter σC of the calibration. The mean model bias for our cluster stacks is ≈ 4 per
cent with C0 = 1.042±0.004, α = 0.03±0.006, and β = 0.025±0.012 as well as σC = 0.01. We
repeated this process while assuming different amounts of intrinsic scatter in the M–λ relation
from 10 per cent up to 45 per cent, as well as with no intrinsic scatter which is equivalent to
the treatment of Melchior et al. (2017). We found that the amount of model bias increased with
scatter in the M–λ relation. The model bias from Melchior et al. (2017) was recovered when no
intrinsic scatter was present and using covariance matrices from that analysis.

We incorporated the dependence of the calibration on the intrinsic scatter in the M–λ relation
as follows. We took the calibration described above at 25 per cent scatter to be our fiducial model
as estimated in Rozo & Rykoff (2014). In addition to the covariance between C0, α, and β, we
add additional uncorrelated uncertainty to each of these terms equal to half of the difference
between the mean values obtained for these parameters assuming 15 per cent and 45 per cent
scatter. This increased the variance of all three parameters C0, α and β slightly. As discussed
further in 2.8, the calibration contributed 0.73 per cent to the overall systematic uncertainty on
the normalization of the M–λ relation.

2.5.4.2 Triaxiality and projection effects

Photometric cluster selection preferentially selects halos that are oriented with their major axis
along the line of sight. Similarly, cluster selection is affected by other objects along the line of
sight, which increases both the observed cluster richness and the recovered lensing mass. These
two effects have been studied closely elsewhere (White et al., 2011; Angulo et al., 2012; Noh &
Cohn, 2012; Dietrich et al., 2014), and have competing effects on the recovered cluster masses.
Dietrich et al. (2014) determined that triaxiality leads to an overestimation of the weak lensing
mass and requires a correction factor of 0.96±0.02, while Simet et al. (2017b) argued projection
effects require that the recovered masses be multiplied by a factor of 1.02 ± 0.02. Together,
triaxiality and projection effects modify the recovered weak lensing masses by a multiplicative
factor of 0.98±0.03. Our treatment is identical to that of Melchior et al. (2017), where additional
details are provided. Although these two effects mildly depend on richness and redshift, we
assume them to be constant in this analysis. We show the cumulative effect in Table 2.6. For
reference, we have estimated the number of galaxy clusters that have another cluster within a
500 kpc radius along the line of sight. The number of such cases with λ ≥ 20 is about 30, or 0.4
per cent of our sample, and thus negligible.

These effects as well as the correction for model bias are applied to the masses after fitting the
lensing and boost factor data as described in section 2.5.5, but before modeling the M–λ relation
in section 2.6.
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2.5.5 The complete likelihood
The full model of the weak lensing profile is

∆Σ =
AmG(R)
B(r)

[
(1 – fmis)∆Σcen + fmis∆Σmis

]
. (2.47)

Written this way the model includes the multiplicative bias Am, the boost factor B(r), the re-
duced shear correction G(R), and miscentering effects fmis and ∆Σmis. Using the semi-analytic
covariance matrices C∆Σ described in section 2.3.2.5, the log-likelihood of the kth ∆Σ profile is

lnL(∆Σk | Mk, c,Am, Rmis, fmis, B0, Rs) ∝ –
1
2
DT

k C–1
∆ΣDk (2.48)

where D = (∆̃Σ – ∆Σ) and ∆̃Σ is the measurement from Equation 2.12.
The boost factor covariance matrix Cfcl is estimated from jackknifing. With this the corre-

sponding log-likelihood of the measured fcl,k in cluster subset k given the parameters in Equa-
tion 3.21 is

lnL(fcl,k | B0, Rs) ∝ –
1
2
BT

k C–1
fcl
Bk (2.49)

where Bk = (B – Bmodel)k. Each boost factor Bk is fit in conjunction with the associated lensing
profile for the kth subset, allowing us to account for any degeneracies between the parameters in
the respective models.

The total log-likelihood for a single cluster subset is

lnLk = lnL(∆Σk | Mk, c,Am, Rmis, fmis, B0, Rs)+
lnL(fcl,k | B0, Rs) .

(2.50)

Our goal is to constrain masses of independent cluster subsets Mk and boost factor parameters.
Constraints on the latter are informed by both their effect on the ∆Σ profile as well as indepen-
dent measurements of fcl. The weak lensing and boost factor profiles are fit simultaneously, but
each cluster subset is fit independently of other subsets.

2.5.6 Stacked cluster masses
A complete list of the model parameters describing each cluster stack as well as their corre-
sponding priors are summarized in Table 2.1. The likelihood is sampled using the package em-
cee7 (Foreman-Mackey et al., 2013), which enables a parallelized exploration of the parameter
space. We use 32 walkers with 10000 steps each, discarding the first 1000 steps of each walker
as burn-in. We checked the convergence with independent runs of 5000 steps per walker that
yielded identical results. After 14 steps the chains of single walkers become uncorrelated (with
a correlation coefficient |r| < 0.1). This is much shorter than the total length of the chain. As a
result the number of independent draws between all walkers is ≈ 20500.

7http://dan.iel.fm/emcee

http://dan.iel.fm/emcee
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Figure 2.10: Posteriors for the parameters describing the lensing profile ∆Σ and the boost factor
profile B for the bin z ∈ [0.2, 0.35), λ ∈ [20, 30). Contours show the 1σ, 2σ, and 3σ confidence
areas. Black lines show the prior distributions. The mass presented here is uncalibrated, meaning
it has not been corrected for modeling systematics, projection effects, or cluster triaxiality (see
section 2.5.4).
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Parameter Description Prior
log10 M200m Halo mass [11.0, 18.0]
c200m Concentration [0, 20]
τ Dimensionless miscentering offset 0.17± 0.04
fmis Miscentered fraction 0.25± 0.08
Am Shape & photo-z bias Equation 2.45
Bcl

0 Boost magnitude [0,∞]
Rcl

s Boost factor scale radius [0,∞]

Table 2.1: Parameters entering L(∆Σ) (Equation 2.48) and L(B)(Equation 2.49) Flat priors are
specified with limits in square brackets, Gaussian priors with means ± standard deviations.

The calibration correction described in 2.5.4 was applied to the recorded chains for each
cluster subset. Specifically, for each point in the chain, we randomly sample the mass calibration
factor C(λ, z) from its posteriors to adjust the mass. Further, we also apply the effect of triaxiality
and projection effects (section 2.5.4.2), both of which add 2 per cent to the uncertainty of each
mass. In practice this is written as

M = C(λ, z)G(0.96, 0.02)G(1.02, 0.02)×M0 , (2.51)

where G is a Gaussian and M0 are the “uncalibrated” masses in the chains. In this fashion, our
final posteriors are properly marginalized over the uncertainty in the calibration factor C as well
as triaxiality and projection effects.

In order to characterize the contribution of both statistical and systematic uncertainties to our
final results we perform our analysis three different times with three different sets of assumptions.
These three analyses we run are:

• Full: All parameters (concentration, Shear+photo-z, boost factors, miscentering) are al-
lowed to vary within their priors. This is our fiducial analysis.

• FixedAm: Am is set to the center of its prior distribution but all other parameters are
allowed to vary. This determines the contribution from the shape and photo-z uncertainties.

• OnlyMc: Only mass and concentration are free. All other parameter priors are set to
δ-functions at their central values. This represents our statistical uncertainty on the mass.

Table 2.2 contains the results of the Full analysis. Full posteriors from the cluster subset z ∈
[0.2, 0.35) and λ ∈ [20, 30) are shown in Figure 2.10. The corresponding data and best-fit model
are shown in Figure 2.11, where we also demonstrate the combined effects of miscentering, boost
factors, reduced shear, and multiplicative bias. The best fit model for each richness and redshift
bin is over-plotted on top of the weak lensing data in Figure 2.4.

From the Full analysis we can see the contribution of the various systematics to our final
results. The boost factors amount to a correction of ≈ 2 per cent to ∆Σ at R = 1 Mpc. The
posteriors on the miscentering parameters are equal to the priors, demonstrating that these pa-
rameters are only weakly constrained by the weak lensing data. In our earlier analysis (Melchior
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Figure 2.11: Fit with all components of the ∆Σ andBmodels for the cluster subset z ∈ [0.2, 0.35)
and λ ∈ [20, 30). The top two panels show the best fit models in red compared to the data.
Unfilled points are not included in the fit. Top left: the black dot-dashed line is ∆Σcen while the
blue dashed line is ∆Σmis. The weighted mean of these two yields the green solid line, and then
applying the boost factor model, reduced shear, and multiplicative bias yields the final model
in red. Top right: the red line is our NFW model for the boost factors. Bottom: the fractional
difference between our data and models. The total χ2 is 45 with 21 degrees of freedom, which
is acceptable despite the imperfect fit of our simple model to the boost factors. The boost factors
are measured from the data with small uncertainty, which is why the small mismatch with respect
to the best-fit model causes a relatively large χ2 but negligible effect on the recovered mass.
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λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
[20, 30) 14.191 ± 0.013 ± 0.032 14.162 ± 0.013 ± 0.033 14.083 ± 0.015 ± 0.048
[30, 45) 14.477 ± 0.014 ± 0.031 14.446 ± 0.014 ± 0.031 14.456 ± 0.015 ± 0.041
[45, 60) 14.608 ± 0.011 ± 0.044 14.643 ± 0.011 ± 0.044 14.648 ± 0.016 ± 0.056
[60,∞) 14.913 ± 0.014 ± 0.038 14.899 ± 0.015 ± 0.038 14.879 ± 0.023 ± 0.061

Table 2.2: Calibrated masses for each richness-redshift stack. All masses are in units of log10M�
using the M200m definition. Listed uncertainties are split into the symmetric 68 per cent confi-
dence intervals of the systematic and statistical components, in that order. Adding the two in
quadrature gives the total uncertainty on the mass.

et al., 2017) we found a weak correlation between fmis and M, which did not appear in this work.
This was due to our use of the Diemer & Kravtsov (2014) M–c relation. We determined this
by running one additional configuration in which the concentration was fixed by the Diemer &
Kravtsov (2014) M–c relation, thus increasing the correlation between fmis and M. At present,
the contribution of miscentering to the mass is sub-dominant to other sources of systematic un-
certainties in our final error budget (cf. Table 2.6). The multiplicative bias Am follows the prior
and is degenerate with mass.

The OnlyMc likelihood evaluation allows us to quantify the statistical and systematic un-
certainties of the fiducial analysis. The difference in quadrature between the uncertainties in the
Full and OnlyMc configurations represents the total systematic contribution to the error bud-
get, while the OnlyMc alone provides the statistical contribution. The central values for each
cluster subset along with statistical and systematic contributions to the uncertainties are presented
in Table 2.2.

2.6 The mass–richness–redshift relation

The quantity we aim to constrain in this paper is the mean massM(λ, z) of clusters of galaxies
at a given observed richness λ and redshift z, similar to what was done in Melchior et al. (2015).
Note that this is different from constraining the mean (and possibly distribution) of richness
at given mass, or the full distribution of mass at given richness, as done in e.g. Simet et al.
(2017b); Murata et al. (2017). In particular, we neither constrain nor require a model of the
intrinsic scatter in richness, hence making this analysis largely independent from the choices in
subsequent cluster cosmology studies based upon it.

We note that an assumed value of the intrinsic scatter is used in two places: the semi-analytic
covariance matrices described in section 2.3.2.5 and the calibration described in section 2.5.4.1.
For the covariance, this assumption had a negligible effect compared to the shape noise. While
the overall calibration did depend on the amount of scatter, we took a conservative approach by
treating the difference in calibration between assuming 15 per cent and 45 per cent scatter as a
systematic uncertainty. In this way, our final results are not sensitive to the amount of assumed
intrinsic scatter.
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2.6.1 Modeling the mass–richness relation
We fit a redshift-dependent power-law relation between cluster richness and cluster mass. Specif-
ically, we set

M(λ, z) ≡ 〈M |λ, z〉 = M0

(
λ

λ0

)Fλ
(

1 + z
1 + z0

)Gz

, (2.52)

where M0, Fλ, and Gz are our model parameters. We select pivot values λ0 = 40 and z0 = 0.35,
which are very near the median values of the cluster sample. NoteM is the expectation value of
the mass of a halo as a function of richness and redshift.

The expected mass of a given cluster subset k represents a weighted mean of the masses of
the individual clusters in that stack. We then have

Mk =

∑
j∈k ŵjM(λj, zj)∑

j∈k ŵj
. (2.53)

We take the weight ŵj of the jth cluster to be the sum of the weights of all lens–source pairs
wj,i around that cluster from 0.3 Mpc and above and verified that the choice of radial range does
not affect our recovered masses. Individual cluster weights ŵj differ from unity. This is because
1) the lensing weight of each lens–source pair given by Equation 2.11 depends on the cluster
redshift, and 2) in a given radial bin there are more sources associated with low redshift clusters
since that bin subtends a larger angle on the sky compared to the same bin around a high redshift
cluster. In other words, the mass in the bin is skewed toward the average mass of the lower
redshift clusters in the bin.

The impact of the weak lensing weights on the stacked mass estimates can be characterized
by the ratio

a =
M0
Mŵ

. (2.54)

We report the quantity log a in Table 2.3. We chose to report log a rather than a which has the
computational advantage that one need only add log a to the mass values in Table 2.2 to arrive
at an estimate of the mean cluster masses of cluster in a bin with unit weighting (as opposed
to mean weak lensing weighted masses). The corrections in Table 2.3 are used to correct the
recovered cluster masses to unit-weighted masses in the DES Y1 analysis of cluster abundances
(DES collaboration, in preparation).

2.6.2 Mass covariance
The purpose of our different chain configurations (Full, FixedAm, and OnlyMc) is to allow
us to estimate the contribution of each systematic to the final uncertainty on the mass calibration
parameters M0, Fλ, and Gz. In our analysis there are seven sources of systematic uncertainty:
multiplicative shear bias, multiplicative photo-z bias, miscentering, boost factors, modeling sys-
tematics, triaxiality and projection.

We discuss how we combine all systematics to arrive at a full covariance matrix between our
bins that respects the covariance in our systematic error budget. The reader will recall that the
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λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
[20, 30) –1.372× 10–3 –8.744× 10–4 –4.501× 10–4

[30, 45) –2.979× 10–3 –3.278× 10–3 –6.660× 10–4

[45, 60) –8.258× 10–4 –7.856× 10–5 –1.903× 10–3

[60,∞) 3.043× 10–3 –4.061× 10–3 6.264× 10–3

Table 2.3: The logarithm of the mean mass correction factor log10 a from Equation 2.54. This
represents a correction to the stacked cluster masses due to the fact that different clusters con-
tribute to the measured mass in a different way than they contribute to ∆Σ.

original chains we obtain from fitting the weak lensing profiles are processed via Equation 2.51
to account for the effect of calibration, triaxiality, and projection effects. If we let M0 denote our
unprocessed chains, and M denote the chains post-processing, in order to derive the statistical
uncertainty only in our mass measurement we generate a new chain M̃ via

M̃ = C̄ × 0.96× 1.02×M0 . (2.55)

The difference in the variance between chain M in Equation 2.51 and that of chain M̃ represents
the uncertainty associated with calibration, triaxiality, and projection effects. We will use the M
without a ∼ to denote the chains post-processed as per Equation 2.51, and M̃ for chains post-
processed as above.

The OnlyMc chain configuration contains only the statistical uncertainty in our analysis.
For this reason, the covariance matrix describing the masses in this configuration is diagonal.
We define the statistical uncertainty of the ith mass σ2

i,stat

σ2
i,stat = Var

(
M̃OnlyMc

i

)
. (2.56)

We also isolate the uncertainty associated with shear and photo-z systematics. To do so, we note
the Full chain configuration includes all sources of uncertainty. Consequently, the difference
in the variance between this chain and the FixedAm chain represents the uncertainty associated
with shear and photo-z systematics. Therefore, we define

σ2
i,S+Pz = Var(MFull

i ) – Var(MFixedAm
i ) . (2.57)

Finally, the uncertainty associated with modeling systematics (calibration, triaxiality, and pro-
jection effects) takes the form

σ2
i,mod = Var(MFull

i ) – Var(M̃Full
i ) . (2.58)

By construction, the full uncertainty σ2
i,Tot satisfies

Var(MFull
i ) = σ2

i,stat + σ2
i,S+Pz + σ2

i,mod . (2.59)
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We now define three different covariance matrices. First, Cstat is diagonal, with Cstat
ii = σ2

i,stat.
When we fit the weak lensing masses using this covariance matrix, we recover the statistical
uncertainty in our scaling relation parameters. Second, CS+Pz is defined via

CS+Pz
ii = σ2

i,stat + σ2
i,S+Pz (2.60)

CS+Pz
ij =

[
σ2

i,S+Pzσ
2
j,S+Pz

]1/2
. (2.61)

Note the shear and photo-z components of the uncertainty are perfectly correlated across all bins.
Fitting the weak lensing mass with this covariance matrix, and subtracting the statistical uncer-
tainty in quadrature, enables us to calculate the uncertainty in our scaling relation parameters
associated with shear and photo-z systematics. Third, CFull is defined via

CFull
ii = σ2

i,stat + σ2
i,S+Pz + σ2

i,mod (2.62)

CFull
ij =

[(
σ2

i,S+Pz + σ2
i,mod

)(
σ2

j,S+Pz + σ2
j,mod

)]1/2
. (2.63)

Just like the shear and photo-z calibration uncertainties, modeling systematics are assumed to be
perfectly correlated across all bins. The posteriors for the scaling relation parameters derived
with this covariance matrix represent our full error budget, and the difference in quadrature
between these errors and those obtained using the covariance matrix CS+Pz give us the error
budget associated with modeling systematics.

2.6.3 Likelihood for the mass–observable relation
We model the likelihood of the recovered weak lensing masses as Gaussian in the log. This is
illustrated in Figure 2.12, which shows the posterior for each of the 12 cluster bins with λ ≥ 20,
along with the corresponding Gaussian approximation. We rely on the λ ≥ 20 cluster bins
exclusively as it is only these systems for which we are confident we can unambiguously map
halos to clusters and vice-versa. The full likelihood function is

lnL(Mobs | M0, Fλ, Gz) ∝ –
1
2

(∆ log M)T C–1
M (∆ log M) , (2.64)

where CM is the covariance between the mass bins for a particular configuration (see sec-
tion 2.6.2). In the above equation ∆ log M is the difference between the measured mass of each
cluster subset and our model for the expected mass given as per Equation 2.52. Thus, for the kth
bin

∆ log Mk = log Mk – logMk . (2.65)

We sample the posterior of the MOR parameters using emcee with 48 walkers taking 10000
steps each, discarding the first 1000 steps of each walker as burn-in. Table 2.4 summarizes
the posteriors of our model parameters, while Figure 2.13 shows the corresponding confidence
contours. All parameters in the M–λ–z relation have flat priors.

We explicitly enforce correlated uncertainties of shear, photo-z, modeling systematics, and
triaxiality and projection effects. Miscentering and boost factors are considered independent
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Figure 2.12: The calibrated posteriors of the masses for each cluster stack. Uncertainties appear
above each panel, and are highlighted by the blue shaded regions. Gaussian approximations to
these posteriors appear as black dashed lines.

Parameter Description Posterior
log10 M0 Mass pivot 14.489± 0.011± 0.019
Fλ Richness scaling 1.356± 0.051± 0.008
Gz Redshift scaling –0.30± 0.30± 0.06

Table 2.4: Parameters of the M–λ–z relation from Equation 2.64 with their posteriors. The mass
is defined as M200m in units of M�. The pivot richness and pivot redshift correspond to the
median values of the cluster sample. Uncertainties are the 68 per cent confidence intervals and
are split into statistical (first) and systematic (second).
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across cluster subsets. These independent uncorrelated systematics will tend to average out
across bins.

In order to distinguish between the systematic and statistical contribution to the error budget
on the M–λ–z relation parameters, we repeat the analysis using the statistical errors from the
OnlyMc run. That is, we calculate Equation 2.64 using only the uncertainties measured from
the OnlyMc run, or the Cstat

M covariance matrix. The central values of the measured masses
from the OnlyMc run are nearly identical to the Full run, as are the parameters in the M–λ–z
relation. The difference in quadrature between the two uncertainties represents the systematic
contribution while the excess uncertainty from the OnlyMc run is the statistical contribution.
These uncertainties are reported in Table 2.4.

Our results imply that galaxy clusters of richness λ = 40 at redshift z = 0.35 have a mean
mass of log10M = 14.489 ± 0.011 (stat) ± 0.019 (sys). The richness scaling is slightly steeper
than linear at Fλ = 1.356 ± 0.051 (stat) ± 0.008 (sys), while the mass shows a weak redshift
dependence of Gz = –0.30±0.30 (stat) ±0.06 (sys) consistent with no evolution. This amounts to
a 5.0 per cent calibration (2.4 per cent statistical, 4.3 per cent systematic), of the M–λ–z relation.

In Melchior et al. (2017), we found that the dominant systematic uncertainty stemmed from
shear and photo-z systematics, as was the case in Simet et al. (2017b). By repeating our analysis
with the FixedAm run, which includes all systematics except Am, we are able to quantify the
contribution from these sources. We found that the posterior distributions from the M–λ–z rela-
tion are significantly reduced, and that shear and photo-z systematics alone account for 48 per
cent of the systematic uncertainty. This means that the remaining 52 per cent of the systematic
uncertainty is due to modeling systematics, projection effects, and cluster triaxiality.

2.6.3.1 Alternative model using ξlin

Hayashi & White (2008) used a similar model to ours, but with the linear matter correlation
function for their 2-halo term. This causes very different behavior near the 1-halo to 2-halo
transition region, which can affect the fitting procedure, as discussed in Melchior et al. (2017).
We repeated our entire analysis, including recomputing the calibration, using ξlin in place of ξnl.
The masses of the stacks changed by less than 1 per cent, as did the normalization of the M–λ
relation log10 M0. This means that our approach of calibrating the masses is largely robust to our
choice of model.

2.6.3.2 Additional tests

We performed additional tests to verify our results. To ensure against possible small-scale sys-
tematic effects, we repeated our analysis with a more conservative radial cut of 500 kpc rather
than 200 kpc. The resulting M–λ–z relation changed only in the mass scale, with M0 changing
by 0.2σ.

We also tested against possible differences in modeling systematics between large and small
scales. By dividing each ∆Σ profile at 2 Mpc into large and small scale samples we could fit
these regimes independently. While the constraining power was greatly diminished, the recov-
ered masses were consistent with each other and the fiducial value within errors. No trend was
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red. The analysis by Baxter et al. (2018) in orange used the same clusters as this work and found
a consistent scaling relation over the richness range it probed.
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observed in the differences between the recovered masses in any of these tests compared to the
fiducial masses in Table 2.2.

Lastly, we tested an extension of Equation 2.52 where Fλ(z) = Fλ,0 + zFλ,1 and found Fλ,1
consistent with 0 at the 1.2σ level. Therefore, if any redshift evolution exists in the richness
scaling, we are unable to resolve the behavior at present.

2.7 Comparison to Results in the Literature
We compare our calibration of the M–λ relation to previous results from the literature. The
specific richness–mass relations we consider are summarized in Table 2.5, and we describe below
the origin of each of these.

• Melchior et al. (2017) was the precursor to this analysis. In that work, we calibrated the
mass–richness relation of redMaPPer clusters in the DES Science Verification data. A
detailed description of the changes between that analysis and this one appears in the next
section.

• Baxter et al. (2018) used the lensing of the Cosmic Microwave Background as measured
by the South Pole Telescope to measure the mass–richness relation of DES Y1 redMaPPer
clusters. Their analysis focused on 7066 clusters with richness 20 ≤ λ ≤ 40. The upper
limit was set to avoid potential biases in the recovered masses from contamination by
thermal Sunyuaev-Zel’dovich emission by the clusters.

• Simet et al. (2017b) measured the mass–richness relation of redMaPPer clusters found in
the Sloan Digital Sky Survey (SDSS). While their analysis is similar in spirit to ours, there
are numerous methodological differences, including modeling choices (Simet et al. only
fit the 1-halo term in the lensing profile), different radial scales used in the fit, a different
shape catalog, and different photometric redshift catalogs.

• Murata et al. (2017) measured the richness–mass relation of SDSS redMaPPer clusters
assuming a Planck cosmology. We compute the mean mass at λ = 40 as well as the local
slope at this point in the scaling relation.. As demonstrated in Murata et al. (2017), their
work and Simet et al. (2017b) are consistent with each other, despite the fact that they
used different models for ∆Σ, different radial scales and slightly different richness bins.
Of special note is the fact that while Simet et al. (2017b) modeled only the 1-halo term
using an NFW profile (along with a calibration step to correct for any biases introduced by
this choice), Murata et al. (2017) used an emulator approach to simultaneously model the
1-halo and 2-halo terms of the lensing profile. In addition, the authors used both lensing
profiles and cluster abundances, and assumed a fixed mass–concentration relation. These
significant differences add information to the mass–richness relation, allowing for more
precision than using lensing alone, as is the case in our analysis.

• Baxter et al. (2016) analyzed the cluster clustering of SDSS redMaPPer clusters. By mea-
suring the angular correlation function of clusters they were able to constrain the amplitude
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of the mass scaling relation to 18 per cent, in which their dominant systematic was uncer-
tainty in the bias–mass relation.

• Farahi et al. (2016) measured masses using stacked pairwise velocity dispersion measure-
ments of SDSS redMaPPer clusters. Their measurements serve as a good cross check
against other analyses of SDSS clusters, but found that they are ultimately less precise due
to large uncertainties in velocity bias.

• Saro et al. (2015) measured the mass–richness relation of galaxy clusters by assuming a
Planck cosmology to determine the observable–mass relation of clusters from the South
Pole Telescope (Bleem et al., 2015). They then matched these SPT clusters to redMaPPer
clusters from the DES Science Verification data, and use the overlap sample to determine
the richness–mass relation. We invert the relation using the method of Evrard et al. (2014)
in order to show the comparison in Figure 2.14.

• Mantz et al. (2016) compared the scaling relation measured from the Weighting the Giants
mass estimates for individual redMaPPer clusters in SDSS from Applegate et al. (2014b)
to that of the Simet et al. (2017b) analysis. They found the two scaling relations in good
agreement, which is also the case when compared to our measurement.

• Geach & Peacock (2017) constrained the mass–richness relation of redMaPPer clusters
found in SDSS using convergence profiles measured from Planck data. They constrain
the normalization of the scaling relation at the ∼ 11.5% level, but are unable to replicate
this for the scaling index. Of course, this measurement will improve in the future as both
optical cluster catalogs expand and CMB lensing maps improve. Their method will provide
a necessary cross check on any potential mass bias due to unknown systematics.

Table 2.5 summarizes these scaling relations. Critically, the richness definition λ is sensitive
to the details of image processing, source detection, choice of magnitudes, etc, and can therefore
vary systematically from one survey to the next. We explicitly correct for this impact cross-
matching DES Y1 clusters to DES SV and SDSS redMaPPer clusters, and measuring the richness
offset. We find

λDES SV = (1.08± 0.16)λDES Y1 (2.66)
λSDSS = (0.93± 0.14)λDES Y1 . (2.67)

In these equations, the error is the standard deviation in the richness ratio, not the error on the
mean. We apply these corrections to the SDSS and DES SV scaling relations before comparing
to our result. So, for instance, if the scaling relation for data set X takes the form

〈M|λX〉 = AλαX (2.68)

and the ratio λX/λDES Y1 = r, then the scaling relation for Y1 richnesses is

〈M|λDES Y1〉 = ArαλαDES Y1. (2.69)
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Figure 2.15: Comparison of the predicted mass at λ = 40 and z = 0.35 as well as the richness
scaling relation between this work (gray bands) and other results from the literature.

Finally, all scaling relations that do not explicitly incorporate redshift evolution are transported
from their quoted pivot redshift to our chosen pivot redshift z = 0.35 using our best fit redshift
evolution.

Figure 2.15 and Table 2.5 show the mass at λ = 40 and z = 0.35 as well as the richness
scaling index for each of the scaling relations described above.

Notably, we do not include some recent cluster calibration measurements. van Uitert et al.
(2016) was not included because they used a different cluster finding algorithm and focused on
significantly lower richness clusters. They were, however, able to constrain the mass–richness
scaling relation at the 5% level using lensing and cluster-satellite correlations for low redshifts.
Miyatake et al. (2018) and Medezinski et al. (2018a) calibrated the masses of SZ detected clus-
ters in ACT and Planck, respectively. However, their primary focus was on investigating the
hydrostatic mass bias, and not on cluster scaling relations, since their sample sizes were signif-
icantly smaller than ours. Nevertheless, we anticipate this narrative to change in the near future
with with larger HSC cluster catalogs.

2.8 Systematic Improvements From DES SV to DES Year 1,
and from Year 1 to Year 5

Our current analysis has multiple significant improvements relative to Melchior et al. (2017), the
precursor to this work. Specifically:

• Shear calibration related errors on mass decreased from 4 per cent to 1.7 per cent, based
primarily on the data driven correction of shear biases with METACALIBRATION. This
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implies that the shear calibration uncertainty is no longer the dominant source of systematic
error in our weak lensing analysis.

• The largest contribution to the systematic uncertainty is now photo-z errors. In the purely
COSMOS-based calibration applied in this work, we find only a minimal improvement
between SV and Y1.

• The ≈ 15 per cent increase in uncertainty due to using noisy jackknife estimates of the
covariance matrix (Dodelson & Schneider, 2013) of the weak lensing profiles was entirely
removed through the use of a semi-analytic covariance matrix.

• Uncertainty from modeling systematics decreased from 2 per cent to 0.73 per cent. In
Melchior et al. (2017), the model calibration corrections were computed by stacking halos
in mass bins. By contrast, our current analysis assigns richness according to a fiducial
richness–mass relation, allowing us to stack in richness bins and to therefore accurately
compute the correction for a richness bin. Relative to our SV analysis, the amplitude of this
correction increased, while its uncertainty was reduced, from 1.00±0.02 to 1.042±0.004.
The increase in the correction is primarily due to the richness binning of the halos as well
as the fact that by using the Y1 covariance matrix, the impact of small differences on large
scales between our analytical model and numerical simulations is amplified, leading to
larger correction factors. More importantly, however, the uncertainty on this correction
was greatly reduced. This is due to the semi-analytic covariance matrix as well as allowing
for intrinsic scatter of the calibration factors. While we use the semi-analytic covariance
matrix for calibration on the simulated profiles, the matrix does not adequately describe the
uncertainty in any systematic differences between the model and real data. Additionally,
we now fit for the associated systematic uncertainty from the dispersion in the calibration
data. Both of these factors result in a decrease in the systematic error budget.

• The mass–concentration relation of galaxy clusters is allowed to float in this analysis, while
it was held fixed in Melchior et al. (2017). The fixed mass–concentration relation in our
SV analysis was necessitated by the relatively low S/N of the weak lensing measurements.
By contrast, our current analysis enables us to marginalize over concentration, which in
turn should make our results significantly more robust to the impact of baryonic physics in
the cores of galaxy clusters.

All in all, the reduced statistical and systematic uncertainty in our analysis has reduced the
error in the amplitude of the mass–richness relation from 11.2 per cent to 5.0 per cent. Unlike
our analysis in Melchior et al. (2017), our current constraints are close to systematics limited.
Without improved systematics between now and the end of the survey, the improved statistics of
the Year 5 data will only decrease our total error budget from 5.0 per cent to ≈ 4 per cent. Evi-
dently, further reducing systematic uncertainties in future weak lensing mass calibration analysis
is imperative.

Photometric redshift errors currently dominate the systematic error budget. Significant im-
provements in the weak lensing mass calibration of galaxy clusters will require new algorithms
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for calibrating photometric redshifts. A joint constraint from high-fidelity photo-zs of matched
reference samples and clustering redshifts (Gatti et al., 2018; Davis et al., 2018), as done in
Hoyle et al. (2018), is not feasible for higher redshift sources due to the limited redshift range of
available spectroscopic or redMaGiC catalogs. Alternatively, source selection criteria that take
into consideration photometric redshift uncertainty could lead to a desirable trade off between
statistical and systematic uncertainty. With some combination of these approaches, reducing the
photometric redshift uncertainty by a factor of two for a year 5 analysis seems plausible.

Related to this, in our current analysis we have assumed that all systematics are perfectly
correlated across all redshift and richness bins. This is likely too conservative. In particular,
photometric redshift systematics are unlikely to be perfectly correlated across all redshift bins:
the selection of the source population, and their relative signal contribution as a function of
source redshift, differ as a function of lens redshift. Adequately characterizing the covariance
in the systematic uncertainties associated with photometric redshift errors seems like a relatively
simple way to significantly decrease our systematic error budget. For instance, if one were
to assume that the photometric redshift systematics were entirely uncorrelated, the associated
systematic would be reduced by a factor of 1/

√
3, rendering photometric redshift errors sub-

dominant. This is clearly unrealistic, but it does illustrate that characterizing the covariance in
the systematics may lead to significant reductions in the total error budget.

Following photometric redshift uncertainties, three different effects come in at the ≈ 2 per
cent level: shear systematics, triaxiality effects, and projection effects. Of these, shear system-
atics are the least problematic. We fully expect shear calibration uncertainties will continue to
decrease over the coming years, and they will no longer be a major source of error for cluster
mass calibration. By contrast, the current systematic error estimates for triaxiality and projection
effects clearly demonstrate that there is a significant need for a detailed study of these on weak
lensing mass profiles, such as in the recent work of Osato et al. (2018).

Additional, but less urgent, upgrades to our analysis are also possible. For instance, follow-
ing Murata et al. (2017), an emulator based approach to modeling the halo-matter correlation
function or ∆Σ directly can potentially greatly reduce the modeling calibration and its contri-
bution to the uncertainty. Centering errors will also continue to decrease as the availability of
multi-wavelength data continues to increase.

Finally, systematics that we have thus far ignored need to be better addressed. For in-
stance, intrinsic alignment by cluster member galaxies even if its effect is very small (Sifón
et al., 2015), which impact membership dilution estimates. Likewise, a study of the impact on
baryonic physics on our weak lensing calibration methodology is necessary. While we expect
these sources of error to be subdominant in our present study, quantifying the systematic error
associated with these effects will be increasingly important in the future.

2.9 Summary and Conclusions
We measured the stacked weak lensing signal of redMaPPer cluster in the DES Y1 data. The
clusters were divided into 21 subsets of richness and redshift. The mean mass of each cluster
stack was estimated for those subsets with λ ≥ 20 and 0.2 ≤ z ≤ 0.65. Our model incorporated:
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Source of systematic SV Amplitude Error Y1 Amplitude Error
Shear measurement 4% 1.7%
Photometric redshifts 3% 2.6%
Modeling systematics 2% 0.73%
Cluster triaxiality 2% 2.0%
Line-of-sight projections 2% 2.0%
Membership dilution + miscen. ≤ 1% 0.78%
Total Systematics 6.1% 4.3%
Total Statistical 9.4% 2.4%
Total 11.2% 5.0%

Table 2.6: Systematic error budget on the amplitude of the mass–richness relation as measured
with the DES Y1 data compared to the DES SV result of Melchior et al. (2017). The shear
(section 2.4.1), photo-z (section 2.4.3), modeling systematics (section 2.5.4.1), triaxiality, and
projection effects (section 2.5.4.2) are conservatively taken to be perfectly correlated between
cluster stacks. Membership dilution (section 2.4.2) and miscentering (section 2.5.2) are assumed
to be independent. Statistical and systematic errors are added in quadrature to arrive at the total
error.

• Shear measurement systematics (section 2.4.1),

• Source photometric redshift uncertainties (section 2.4.3),

• Source sample dilution by cluster members (section 2.4.2, section 2.5.3.1),

• Cluster miscentering (section 2.5.2),

• Model calibration systematics (section 2.5.4),

• Triaxiality & projection effects (section 2.5.4.2).

The mean masses of the cluster subsets were used to determine the mean cluster mass as a
function of richness and redshift according to Equation 2.52. We emphasize that the full analysis
was performed blindly: the paper underwent internal review by the DES collaboration prior to
unblinding, and no changes to the analysis were made post-unblinding.

We summarize our constraints on the scaling relation as follows: for clusters at our pivot
richness of λ0 = 40 and pivot redshift of z0 = 0.35, the mean cluster mass is

M0 = [3.081± 0.075± 0.133] · 1014 M�. (2.70)

The slope Fλ for the mass–richness relation is

Fλ = 1.356± 0.051± 0.008, (2.71)

and the slope Gz governing the redshift evolution of the mass–richness relation is

Gz = –0.30± 0.30± 0.06, (2.72)
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where the first and second set of errors correspond to statistical and systematic errors, respec-
tively. The full scaling relation is given by Equation 2.52. This scaling relation is in excellent
agreement with, while being significantly more precise and accurate than, previous results from
the literature: Mantz et al. (2016); Saro et al. (2015); Simet et al. (2017b); Baxter et al. (2018);
Murata et al. (2017); Melchior et al. (2017).

The 5.0 per cent constraint on the amplitude of the mass–richness relation is systematics dom-
inated, with our systematic error alone reaching 4.3 per cent. We stress the systematic uncertainty
in the shear and photometric redshift catalogs have been extensively tested and validated, so we
are confident our systematic error budget is robust. Halo triaxiality and line of sight projections
are now an important contributor to the total systematic error, and represent a critical path for
minimizing the overall error budget for future analyses

Mass calibration remains the limiting factor for the ability of testing cosmological models
with cluster counts. Nevertheless, this work represents a significant step forward: we were able
to reduce the systematic error budget from 6.1 per cent in DES Science Verification to 4.3 per
cent in DES Year 1. While we will need to achieve similar level of improvements for future
analyses including DES Year 5 and LSST Year 1 to significantly improve upon our results, we are
confident that we will be able to rise to the challenge: the story of weak lensing mass calibration
is one of ever decreasing systematic errors, a trend that to this day shows no signs of abating.
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Chapter 3
Validation of Weak Lensing Cluster
Member Contamination Estimates
from P(z) Decomposition

Scientific context In the previous chapter 2 a crucial step of the analysis, the correction for
cluster member galaxies contaminating the source galaxy catalog, also known boost factors was
left as a side note in section 2.4.2 to be performed, validated and presented in detail in a separate
study. This contamination effect, already illustrated on Figure 2.11, results in an order unity
modulation of the intrinsic true lensing signal on small scales, therefore it needs to be correctly
accounted and corrected for in a weak lensing measurement aiming at precise and accurate cluster
masses.

In this chapter of original research we now embark on the task to test and validate the perfor-
mance of an estimator for the cluster member contamination, which was first used in the cluster
weak lensing analysis of Melchior et al. (2017) performed with the DES Science Verification
dataset, and was motivated by the approach of Gruen et al. (2014) and Dietrich et al. (2019).
This method makes use of the the photometric redshift probability distribution function P(z) of
source galaxies, which it decouples into two non-negative terms corresponding to a contaminat-
ing and a background component and estimates the contamination rate from the mixing factor
between the two components. In the following we perform a full scale validation on a simu-
lated sky survey approximately mirroring the observational properties of DES Y1, and apply the
method to the actual DES Y1 data. We note that in addition to the current work of McClintock
& Varga et al. (2019), the approach has since been used in a variety of cluster lensing studies in
recent years by Chang et al. (2018b), Medezinski et al. (2018c), Stern et al. (2018), Pereira et al.
(2020).

Authorship and publication The research presented in this chapter has been conducted within
the Dark Energy Survey, and was published as Dark Energy Survey Year 1 results: validation of
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weak lensing cluster member contamination estimates from P(z) decomposition in the Monthly
Notices of the Royal Astronomical Society, volume 489, pages 2511–2524 (Varga et al., 2019).

The single leading author of this study is T. N. Varga (myself). According to DES publication
policy the additional authors of the paper are divided into a first tier with direct contribution to
the research in terms of data analysis or substantive discussion, second tier authors whose work
indirectly enabled the analysis and whom are listed alphabetically, and a so-called builder-tier
also listed alphabetically and which consits of people whose work contributed to DES infrastruc-
ture as a whole. In this study the first author was responsible for the full extent of leadership
of the work, including data processing and the execution of the analysis. Further contributions
from first tier authors are as follows: J. DeRose provided the Buzzard suite of mock sky-surveys
constructed based on numerical simulations (DeRose et al., 2019), while T. McClintock con-
tributed access to the Monte-Carlo Markov chains used in McClintock & Varga et al. (2019). We
furthermore thank the advisory contribution of D. Gruen, E. Rozo, and S. Seitz.

All first tier authors contributed to the discussion section of the paper. In accordance with
DES publication policy this paper has gone through internal review and collaboration wide re-
view before the submitting to the journal.

The following part of this chapter reproduces the paper as it was accepted for publication in
the journal with minor edits to suit the thesis format, while keeping the substantive part of the
work unchanged. The acknowledgments of the original paper are reproduced in Appendix B.
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Abstract Weak lensing source galaxy catalogs used in estimating the masses of galaxy clus-
ters can be heavily contaminated by cluster members, prohibiting accurate mass calibration. In
this study we test the performance of an estimator for the extent of cluster member contamina-
tion based on decomposing the photometric redshift P(z) of source galaxies into contaminating
and background components. We perform a full scale mock analysis on a simulated sky sur-
vey approximately mirroring the observational properties of the Dark Energy Survey Year One
observations (DES Y1), and find excellent agreement between the true number profile of con-
taminating cluster member galaxies in the simulation and the estimated one. We further apply the
method to estimate the cluster member contamination for the DES Y1 redMaPPer cluster mass
calibration analysis, and compare the results to an alternative approach based on the angular cor-
relation of weak lensing source galaxies. We find indications that the correlation based estimates
are biased by the selection of the weak lensing sources in the cluster vicinity, which does not
strongly impact the P(z) decomposition method. Collectively, these benchmarks demonstrate
the strength of the P(z) decomposition method in alleviating membership contamination and en-
abling highly accurate cluster weak lensing studies without broad exclusion of source galaxies,
thereby improving the total constraining power of cluster mass calibration via weak lensing.

3.1 Introduction
Galaxy clusters trace the highest peaks of the cosmic density field and their abundance and
distribution constitutes a powerful cosmological probe (Allen et al., 2011; Dodelson et al., 2016).
This mode of inference poses two major tasks: detecting galaxy clusters from observational data,
and defining a mass–observable relation (MOR) to compare the observed cluster abundances
with the predicted ones. The efficient pathways to identify galaxy clusters differ between the
available wavelengths and targeted redshifts ranges: In optical wavelengths and low-redshifts
(z < 1) clusters can be detected as an overdensity of quenched, red, early type galaxies (Koester
et al., 2007; Rykoff et al., 2014), giving rise to the cluster mass proxy known as optical richness
(λ ). In other wavelengths clusters can be identified through the X-ray emission (Truemper,
1993; Mantz et al., 2010) or through the Sunyaev-Zeldovich effect (Sunyaev & Zeldovich, 1970,
1972; Bleem et al., 2015) induced by the presence of hot intra-cluster gas. While these methods
are suitable to detect clusters, they do not provide a direct measure of their masses. The MOR
must be calibrated using additional information.

The best method for calibrating cluster masses today is via weak gravitational lensing, as
it is directly sensitive to the gravitational potential. For this reason weak lensing cluster mass
calibration studies (von der Linden et al., 2014b,a; Applegate et al., 2014b; Hoekstra et al., 2015;
Mantz et al., 2015; Okabe & Smith, 2016; Battaglia et al., 2016; Melchior et al., 2017; Simet
et al., 2017b; Murata et al., 2017; Dietrich et al., 2019; McClintock & Varga et al., 2019) have
become a necessary component of cluster cosmology analyses. Weak lensing mass estimates
carry their own set of uncertainties, both systematic and statistical. It is expected that to fully uti-
lize the statistical power of ongoing sky surveys, the amplitude of the MOR must be calibrated
with at most a few percent total uncertainty (Weinberg et al., 2013). With the growing depth,
area, and statistical power of various sky surveys the proper characterization of systematic un-
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certainties is becoming the highest priority. Indeed, current analyses are systematics dominated
(e.g. Table 6 of McClintock & Varga et al., 2019), meaning that to improve on the overall cos-
mological constraining power we have to improve our understanding of systematic errors in the
mass calibration.

One important systematic impacting weak lensing analyses is the contamination of the source
galaxy catalog by galaxies associated with the cluster. This contamination is a result of the uncer-
tainty in photometric redshift estimates, as few-band surveys do not provide enough information
to select a pure and close to complete background sample of galaxies. Contaminating galaxies di-
lute the measurement, requiring one to boost the raw signal to recover the true signal. Hence the
effect is traditionally referred to as the boost factor (Sheldon et al., 2004; Applegate et al., 2014b;
Hoekstra et al., 2015; Gruen et al., 2014; Simet et al., 2017b; Melchior et al., 2017; Medezinski
et al., 2018d; Leauthaud et al., 2017). Conversely, when many-band photometric information
is available, the contamination can be strongly reduced, but with increased observational cost
(Applegate et al., 2014b).

Previous studies made use of multiple approaches in characterizing cluster member contami-
nation: Sheldon et al. (2004) and Simet et al. (2017b) estimated the boost factor profiles from the
transverse correlation of source galaxies around cluster centers, while Applegate et al. (2014b)
and Medezinski et al. (2018d,b) utilized the color information in a “color-cut” method. Gruen
et al. (2014) and Dietrich et al. (2019) estimated the correction factor from decomposing the
source population into a cluster and background component. This latter method was expanded
by Melchior et al. (2017) who estimated the contamination rate based on a decomposition of the
photometric redshift probability distribution function ( P(z) ) estimates of source galaxies, which
was also employed by Chang et al. (2018b) and Stern et al. (2018).

In this study we aim to validate the cluster member contamination estimates obtained through
P(z) decomposition, and provide a detailed description for the case of the DES Y1 cluster weak
lensing analysis of McClintock & Varga et al. (2019). The structure of this paper is as follows:
In section 3.2 we outline the framework and formalism of the P(z) decomposition method, in
section 3.3 we perform tests on simulated DES-like observations as well as actual DES data, and
finally in section 3.4 we present the boost factor results used in the DES Y1 redMaPPer weak
lensing cluster mass calibration (McClintock & Varga et al., 2019).

For the DES Y1 data analysis, we assume a flat ΛCDM cosmology with Ωm = 0.3 and
H0 = 70 km s–1 Mpc–1, with distances defined in physical coordinates, rather than comoving.
The DES-like mock observations assume a flat ΛCDM cosmology with Ωm = 0.286, H0 = 70
km s–1 Mpc–1, Ωb = 0.047, ns = 0.96, and σ8 = 0.82.

3.2 P(z) decomposition formalism
Our aim is to estimate the cluster member contamination affecting weak lensing measurements.
With an estimate of the contamination rate that has sufficiently low systematic and statistical
uncertainty, we can correct for the bias in the raw weak lensing signal.

The present approach infers the fraction of contaminating cluster member galaxies fcl from
the photometric redshift P(z) probability distribution function (p.d.f.) of the appropriately se-
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lected and weighted source galaxies. By comparing the P(z) of sources near clusters with the
P(z) of galaxies in field lines-of-sight we identify a feature indicative of the presence of cluster
galaxies. The schematic of this approach is illustrated on Figure 3.1 for a selection of galaxy
clusters. The three left panels show the average P(z) of galaxies at three different transverse
separations from the clusters, along with the reference P(z) of field galaxies. The feature char-
acteristic for the cluster member contamination is shown as a red Gaussian curve. We note that
the position of the Gaussian is expected to be at a higher redshift than the redshift range of the
targeted clusters, as only those cluster member galaxies contribute to the contamination whose
redshift estimates are significantly biased high. The relative strength of this feature at different
radii is taken as a tracer of the cluster member contamination rate profile fcl(R), shown on the
right panel of Figure 3.1.

3.2.1 Weak lensing formalism
Weak lensing analyses of galaxy clusters rely on a large sample of background source galaxies.
The images of these background source galaxies are distorted due to the gravitational potential
of the lens (the galaxy cluster), and thus can be used to trace the underlying matter distribution
of the lens (Bartelmann & Schneider, 2001)

In most scenarios a catalog of background source galaxies is constructed from optical imag-
ing data, and thus their exact distances are not known. To remedy this, photometric redshift
algorithms are employed to provide an estimate of their redshifts. Such methods involve large
uncertainty for individual galaxies, and potential bias for the ensemble, due to the limited infor-
mation available (Hoyle et al., 2018; Hildebrandt et al., 2017). The uncertainty of photometric
redshifts mean that the background source catalog can only be defined in approximate terms,
such that it may also include foreground galaxies, and galaxies which are at the lens redshift. In
contrast, the redshifts of galaxy clusters are typically known with very high precision either from
spectroscopic follow up, or from the ensemble photometric redshift estimates of their red clus-
ter member population (Rykoff et al., 2016:McClintock & Varga et al., 2019). In this analysis
we neglect any uncertainty in the cluster redshift zlens, and consider that the uncertainty in the
redshift of source galaxies zsrc is captured in their P(zsrc) p.d.f.

The photometric redshift P(z) assigned to a galaxy is determined by its observed properties,
most commonly its colors, and also by our prior knowledge about its likely redshifts. To reach
good photo-z performance (e.g. low bias) the prior should be strongly dependent on the selection
function. Defining this in practice requires a reference sample of galaxies for which the mapping
between redshift and observed properties is known, and is representative of the target galaxy
selection. Hence when redshift estimates calibrated with one selection are used together with
a significantly different selection during the science analysis, they are no longer guaranteed to
retain their fiducial performance. (Bonnett et al., 2016; Hoyle et al., 2018).

Background galaxies (zsrc > zlens) at different redshifts (distances) contribute to the lensing
signal with different amplitudes. This is characterized by the inverse of the critical surface
density:

Σcrit(zlens, zsrc) =
c2

4πG
Ds(zsrc)

Dl(zlens) Dls(zlens, zsrc)
, (3.1)
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where Ds, Dl and Dls denote angular diameter distances to the source galaxy, the lens, and
between the lens and the source respectively.

In a cluster weak lensing scenario the quantity of interest is the average tangential component
of the reduced gravitational shear gT = γT/(1 – κ) where γ is the weak lensing shear and κ is the
convergence. This is estimated from the shapes and alignments of the source galaxies through the
ellipticity measure e, where we assume that 〈e〉 ≈ 〈g〉. The shear signal is related to the excess
surface mass density ∆Σ, expressible from the physical mass distribution of the lens system via:

γT(R) =
Σ(< R) – Σ(R)

Σcrit
=

∆Σ(R)
Σcrit

, (3.2)

and the convergence is defined as

κ(R) = Σ(R) / Σcrit , (3.3)

where R is the projected separation from the lens, Σ(< R) and Σ(R) refer to the average surface
mass density within radius R, and at radius R, respectively.

Following Sheldon et al. (2004) we define the maximum likelihood estimator for the stacked
excess surface mass density of multiple clusters:

∆̃Σ =

src∑
i

lens∑
j

wi,j eT
i,j

/
〈Σ–1

crit〉i,j

src∑
i

lens∑
j

wi,j

=

src∑
i

lens∑
j

wi,j ∆Σi,j

src∑
i

lens∑
j

wi,j

, (3.4)

with weights
wi,j = 〈Σ–1

crit〉2i,j
/
σ2

e, i , (3.5)

Here eT
i,j corresponds to the tangential component of the estimated ellipticity e of the i-th source

galaxy relative to the j-th lens, σ2
e,i is the variance of the estimated shape for galaxy i, and

〈Σ–1
crit〉i,j =

∫
dzsrc Pi(zsrc) Σ–1

crit, i,j(zlens, zsrc) (3.6)

is defined as the effective inverse critical surface density for source-lens pair i, j.1. We note that
∆Σ relates to γ, however the distortion of source galaxies is determined by g, thus the effect of
magnification must be accounted for during the modeling of the measured lensing signal.

The ∆̃Σ estimator defined in Equation 3.4 is unbiased if the redshift p.d.f. P(zsrc) is estimated
correctly. In general, intrinsic bias in the photometric redshift estimates would also bias the weak
lensing measurement2, while uncertainty alone can be propagated self-consistently (Applegate

1We estimate 〈Σ–1
crit〉i,j, as 〈Σcrit〉i,j is less numerically stable.

2Depending on the form of the lensing estimator, it is possible for the redshift estimate to be biased in a way
such that the lensing estimator is still unbiased. This however does not hold for arbitrary photo-z bias.
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et al., 2014b). For this reason, weak lensing surveys spend great effort calibrating photometric
redshifts for their weak lensing source galaxy catalogs (Kelly et al., 2014; Hoyle et al., 2018;
Hildebrandt et al., 2017; Tanaka et al., 2018). In case the photometric redshifts are biased,
it requires additional work and loss of constraining power to ensure that the photo-z bias is
appropriately propagated into the systematic error budget of the final scientific results (Abbott
et al., 2018).

3.2.2 Boost factor formalism

Galaxy clusters represent a large overdensity of physically associated galaxies, consisting both
of actual cluster member galaxies, and also the galaxies inhabiting correlated structures. Thus
cluster lines-of-sight are different from the average line-of-sight: The galaxy overdensity is con-
centrated at a tight peak in redshift, much narrower than the resolution of photometric redshift
estimates of individual galaxies. In the transverse direction, the number density of the cluster-
related galaxy population decreases as one moves away from the cluster center, where different
galaxy populations (e.g. red and blue cluster galaxies) follow different radial profiles (Navarro
et al., 1996; Rykoff et al., 2014).

Observationally, the weak lensing source galaxy catalog is built from galaxies selected ac-
cording to morphological, photometric and spatial selection criteria (Zuntz et al., 2018; Hilde-
brandt et al., 2017; Mandelbaum et al., 2018), and galaxies associated with the targeted clusters
also enter the catalog if they satisfy those criteria. Ideally cluster galaxies would be excluded
(e.g. as in Schrabback et al., 2018a) since they are at the lens redshift and carry no lensing sig-
nal. However in a wide field survey, priors used to estimate photometric redshifts do not account
for the presence of the targeted clusters. Consequently the redshift estimates can be greatly bi-
ased, and allow for cluster galaxies leaking into the source catalog with non-zero weights. Hence
in the above picture the cluster member contamination can be viewed as a form of selection or
representativeness bias impacting the redshift estimates. The redshift bias may further depend
on galaxy type, resulting in different rates of contamination by different populations of cluster
galaxies. Thus defining a high purity background sample of sufficient volume may not be pos-
sible. We note that depending on the radial separations, the contamination can originate from
both the targeted galaxy clusters and also from galaxies in the correlated matter structures. For
reasons of brevity we refer to both of these sources as cluster member contamination, as they can
not be disentangled based purely on available redshift information.

To quantify the required boost factor correction we need to consider the impact of contami-
nation on the ∆̃Σ estimator defined in Equation 3.4. Following the method developed in Gruen
et al. (2014) and extended in Melchior et al. (2017), we assume a model for the true line-of-sight
distribution of source galaxies selected during the measurement as a combination of two terms:
a cluster galaxy component which is effectively a Dirac-δ function located at zclust, and a non-
cluster or background component taken to be the lensing weighted distribution of source galaxies
in field lines-of-sight.

Via the above line-of-sight model, we can expand Equation 3.4 into the sum of contributions
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from the cluster (cl) and background (bg) terms:

∆̃Σest =

∑
j,i∈cl

wi,j∆Σi,j +
∑

j,i∈bg
wi,j∆Σi,j∑

wi,j

=


∑

j,i∈cl
wi,j∑

wi,j

 〈∆Σi,j〉cl︸ ︷︷ ︸
0

+


∑

j,i∈bg
wi,j∑

wi,j

 〈∆Σi,j〉bg︸ ︷︷ ︸
〈∆Σi,j〉true

(3.7)

of which 〈∆Σi,j〉cl carries no signal, while 〈∆Σi,j〉bg is the “true” signal we would estimate if
there was no contamination.

∑
j,i∈cl and

∑
j,i∈bg denotes a sum over source-lens pairs with

cluster members and background galaxies respectively. We furthermore define the effective con-
tamination rate of cluster galaxies fcl via

fcl =

∑
j,i∈cl wi,j∑

j,i wi,j
, (3.8)

which we can use to express the boost correction needed to recover the true signal

∆̃Σcorr(R) =
∆̃Σ(R)

1 – fcl(R)
. (3.9)

Here ∆̃Σ denotes the raw measured lensing signal obtained from Equation 3.4, ∆̃Σcorr(R) de-
notes the lensing signal corrected for contamination, and B ≡ (1 – fcl)–1 is referred to as the
boost factor. Hence in the above framework the cluster member contamination correction for a
given measurement scenario is completely characterized by the fcl(R) profile.

3.2.3 Estimating the contamination using P(z) decomposition
We estimate the contamination rate from the available color–magnitude information of source
galaxies, where, due to the overdensity of the cluster we expect that the contaminating cluster
galaxies will appear as a sub-population. We follow Melchior et al. (2017), and make use of the
observed lensing-weighted average redshift probability distribution of the sources

P(z | R) =

∑
i,j wi,j Pi(z, R)∑

i,j wi,j
, (3.10)

which contain information compressed from color–magnitude space into a probability distribu-
tion function. We measure this at different projected radii R around the cluster. The weights wi,j
for each source are identical to the ones introduced in Equation 3.4. In this framework the esti-
mated redshifts represent information compression from the color–magnitude space into a single
P(z) estimate per sample. Contaminating cluster members contribute to the average photometric
redshift P(z)-s differently in different radial ranges. Thus by tracking the changes in the P(z) as a
function of radius, we can recover an estimate of the underlying cluster member contamination.
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We model the observed redshift distribution P(z | R) as a combination of two terms, reflecting
the cluster and background populations defined in section 3.2.2:

P(z | R) = fcl(R) · Pmemb(z) + (1 – fcl(R)) · Pbg(z) , (3.11)

where Pmemb(z) is the redshift distribution of contaminating cluster member galaxies and Pbg(z)
is the distribution of background galaxies (Gruen et al., 2014; Melchior et al., 2017). We approx-
imate the second term by the appropriately weighted redshift distribution of the average survey
field line-of-sight: Pbg(z) ≈ Pfield(z). As an ansatz we consider Pmemb(z) to be a Gaussian dis-
tribution. The validity of this assumption is tested in section 3.3.2.5. The free parameters of the
decomposition are the mean and width of the Gaussian Pmemb(z), and the contamination rate
fcl(R).

An example for this P(z) decomposition method is shown on Figure 3.1 for the case of DES
Y1 data. There, a qualitatively similar behavior is visible for the different radial bins, and the
contamination increases with decreasing radius.

3.3 Method validation
We perform a validation benchmark to test the robustness and performance of the P(z) decompo-
sition boost estimates. First, we outline the primary assumptions of the decomposition method
in section 3.3.1, validate the method in a mock analysis scenario in section 3.3.2, and perform
consistency tests on DES Y1 data in section 3.3.3.

3.3.1 Model assumptions
The P(z) decomposition method relies on several assumptions about both the contaminating and
the background galaxies which impact the efficacy of the method. Some of these we explore
below, i.e. the potential intrinsic alignment of cluster galaxies (section 3.3.1.1), the impact of
weak lensing magnification (section 3.3.1.2), and the influence of blending and intra-cluster light
on photometry used in the decomposition estimates (section 4.5.3). Other assumptions are tested
in later sections, i.e. the Gaussian ansatz for Pmemb(z) (section 3.3.2.5), and the influence of the
chosen background model (section 3.3.3.3).

3.3.1.1 Intrinsic alignments

Contaminating galaxies physically connected to the lens system possess an intrinsic alignment
due to the tidal forces acting between them. When cluster members are included in a lensing
measurement, intrinsic alignments could appear as negative tangential shear around clusters due
to the preferential radial orientation of galaxies. This effect is difficult to decouple from the
physical lensing signal. Recent spectroscopic follow-up studies of Hao et al. (2011); Sifón et al.
(2015) found no significant signal for preferential alignments of cluster member galaxies with
respect to the cluster centers. Huang et al. (2018) found significant detection only when con-
sidering a high luminosity subset of galaxies, but no detection when considering their complete
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galaxy sample. For this reason we assume that the dominant effect of contaminating cluster
members is the dilution of the lensing signal.

3.3.1.2 Magnification

Weak lensing magnification caused by the potential of the cluster changes the observed number
density and luminosity function of background galaxies. This translates into biased photomet-
ric redshift estimates for background galaxies, which would result in the P(z) of background
galaxies near clusters to be different from the P(z) of the similarly weighted galaxies in field
lines-of-sights. Gruen & Brimioulle (2017, their Appendix C), however, finds, that under re-
alistic survey assumptions biases in photometric redshift estimates due to the increased flux of
magnified sources, and due to the different surface density of magnified galaxies are sub per-cent
effects that partially cancel one another.

3.3.1.3 Impact of blending and intra-cluster light

The potential bias due to blending and source obscuration in the estimated P(z)-s is difficult to
estimate, as it would require detailed understanding of detection and shape measurement selec-
tion probabilities, as well as the photometric transfer function of representative source galaxy
samples in cluster fields (see e.g. Chang et al., 2015; Suchyta et al., 2016). To a first approxima-
tion, we expect blending and source obscuration to uniformly impact all source galaxies, leading
to an amplitude shift in the P(z) of the selected source galaxies. However given the excellent
match of the cluster background population P(z) and the field background population P(z) at
large z � zl (visible in Figure 3.1), we assume that the impact of these effects is strongly sub-
dominant. In section 3.3.3.3 we nevertheless perform a simple consistency test for differences in
the background P(z).

The presence of intra-cluster light biases the photometric redshift estimates, influencing the
recovered P(z)-s in a manner similar to blending. However (Gruen et al., 2019, their Appendix
A) estimated the impact of this effect to be negligible for the radial scales considered in this
study.

3.3.2 Benchmark on the Buzzard mock observations

We test the P(z) decomposition method against the true cluster member contamination in a sim-
ulated environment, mirroring the measurement setup of McClintock & Varga et al. (2019). In
section 3.3.2.1 and section 3.3.2.2 we introduce the simulated observations and the mock galaxy
clusters. In section 3.3.2.3 we perform the P(z)-decomposition on the simulated Buzzard data.
In section 3.3.2.4 we determine the true contamination of our photo-z selected source sample. In
section 3.3.2.5 we test the validity of the Gaussian ansatz for Pmemb(z). Finally, in section 3.3.2.6
we discuss the agreement between the true and estimated contamination rates.
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3.3.2.1 Buzzard simulated lightcones

The Buzzard-suite of cosmological simulations (DeRose et al., 2019) consists of mock DES
Y1 catalogs generated by combining three N-body lightcones created using L-Gadget2, a ver-
sion of Gadget2 (Springel, 2005) optimized for memory efficiency. The initial conditions were
set up via 2nd order Lagrangian perturbation theory using 2LPTIC (Crocce et al., 2006). The
lightcones were produced on the fly using simulation boxes with volumes 10503, 26003, and
40003 (h–1Mpc)3; the corresponding particle masses are 3.3 × 1010, 1.6 × 1011 and 5.9 ×
1011 h–1M�. The resulting lightcones were joined at redshifts 0.34 and 0.9, arranged such that
the highest resolution simulations are used at lower redshifts. These simulation boxes assume a
flat ΛCDM cosmology with Ωm = 0.286, H0 = 70 km s–1 Mpc–1, Ωb = 0.047, ns = 0.96, and
σ8 = 0.82. The galaxy catalogs were created by assigning galaxies to dark matter particles via
the ADDGALS algorithm (Wechsler et al., 2018). ADDGALS calibrates the relation between the
large scale density and the r-band absolute magnitudes of galaxies as measured using subhalo
abundance matching (Conroy et al., 2006; Reddick et al., 2013; Lehmann et al., 2017) in a high
resolution N-body simulation. For each simulated galaxy, SEDs are assigned from the SDSS
DR7 VAGC (Cooper et al., 2011) by finding the galaxy in the data with the closest match in
Mr – Σ5 – z space, where Mr is the galaxy’s rest frame r-band absolute magnitude and Σ5 is
the distance to the 5th-nearest galaxy in projection (see Appendix E2 of DeRose et al., 2019).
Photometric noise is added in accordance with the DES Y1 depth map of Drlica-Wagner et al.
(2018), and g,r,i,z fluxes in the DES filters are generated from the previously assigned SEDs.

In this study we use version 1.3 of the Buzzard mock catalogs. Only the main “SPT”-area
of DES Y1 is simulated, and the footprint is restricted to RA < 0 to exclude areas where the
DES coverage is more inhomogeneous. This yields a simulated sky survey with a total area of
1120 deg2. The resulting galaxy fluxes include the effect of weak lensing magnification based on
ray tracing along their lines-of-sight, with the highest redshift galaxy being located at z = 2.35
(DeRose et al., 2019). For the purposes of the current measurement we selected sources in a way
that is meant to approximate the source selection in the DES Y1 analysis (Zuntz et al., 2018) by
applying S/N cuts following MacCrann et al. (2018). This sample is defined purely to mirror the
properties of actual DES source galaxies, and does not contain shear or photometry systematics.
We then run the BPZ template based photometric redshift algorithm (Benítez, 2000; Coe et al.,
2006) on this mock catalog to obtain a P(z) estimate for each source galaxy with equivalent
settings as used by Hoyle et al. (2018) for the DES Y1 data. Given plausible galaxy colors and
identical measurement setup, we expect BPZ to possess similar performance in Buzzard as in the
DES Y1 data

3.3.2.2 Simulated galaxy clusters

In order to obtain a simulated cluster sample similar to the one presented by McClintock & Varga
et al. (2019), we run the redMaPPer algorithm (Rykoff et al., 2014) on the mock galaxy catalogs
with the same configuration as the real DES Y1 data.

RedMaPPer is a red-sequence based optical matched filter cluster finder which produces an
estimate on the position, the optical richness λ, and redshift of the detected clusters. This yields
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Figure 3.2: Fraction of red galaxies as a function of radius around redMaPPer clusters within
the Buzzard mock observation across different redshift ranges but fixed richness. Shaded areas
indicate 1σ statistical uncertainties estimated from Jackknife resampling.

a cluster catalog with comparable distribution in angular position and redshift to the catalog in
the DES Y1 dataset. A catalog of reference random points is also generated, which are defined
as positions and redshifts where the survey conditions (e.g. mask and observational depth) allow
clusters of given richness to be detected.

While the redMaPPer algorithm is sensitive only to the overdensity of red-sequence galaxies,
we also test the blue galaxy content of clusters as they are expected to significantly contribute
to the contamination. We calculate the fraction of red galaxies as a function of radii using a rest
frame magnitude limit of mr > –19. For this we take a galaxy as red if it belongs to the red
sequence defined in the rest frame color – magnitude space, which in practice corresponds to a
cut of (g – r) > 0.2 · r – 0.028. Figure 3.2 shows this red fraction across different redshift ranges,
where we find good qualitative agreement with previous observational studies (e.g Butcher &
Oemler, 1978; Hansen et al., 2009, their Figure 12). The red fractions are different across dif-
ferent redshift bins with a larger blue cluster member population at higher redshifts, which is
expected from the time dependence of the galaxy quenching process.

A difference between the real and mock cluster catalogs is that clusters in the simulation ap-
pear to have a stronger redshift evolution in richness at a given halo mass relative to expectations
from existing scaling relations. This fact along with the reduced simulated footprint results in a
lower number of clusters in richness bins at low redshift compared to McClintock & Varga et al.
(2019). In addition, the DES Y1 data is deeper than the reference dataset used by the ADDGALS

algorithm to populate SEDs, and for this reason the mock galaxy populations and their rela-
tive abundances at faint magnitudes or high redshifts might differ from reality. Because of this,
as well as because of differences in source galaxy selection and between our real and synthetic
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datasets, we do not expect the cluster member contamination rates in the mock observations to be
equal to our DES Y1 measurements. Nevertheless, the mocks include many qualitative aspects
of the real observations, and for this reason we make use of them as a controlled environment to
benchmark and validate the performance of the P(z) decomposition under somewhat simplified
circumstances.

3.3.2.3 Decomposition results in simulated catalogs

We estimate boost factors for the redMaPPer clusters in the mocks using an identical measure-
ment setup as McClintock & Varga et al. (2019). Hence the ∆Σ estimator takes the form of:

∆̃Σ =
∑
ωi,jeT;i∑
ωi,jΣ

′–1
crit;i

(3.12)

with
ωi,j ≡ Σ–1

crit

(
zlj , 〈zsi〉

)
if 〈zsi〉 > zlj + 0.1 . (3.13)

Where Σ′–1
crit;i is calculated at a source redshift randomly drawn from the corresponding P(z),

while Σ–1
crit

(
zlj , 〈zsi〉

)
represents the value at the mean redshift of the source. The mock galaxy

catalog does not include shear biases thus we set the shear and selection responses to unity (?,
?)see Equation 12 of][]rmy1.

Following Equation 3.7 and Equation 3.8, the contamination fraction is given by:

fcl =

∑
cl ωi,jΣ

′–1
crit;i,j∑

ωi,jΣ
′–1
crit;i,j

. (3.14)

We divide the clusters into bins of redshift z ∈ [0.2; 0.4), [0.4; 0.5), and [0.5; 0.65), and richness:
λ ∈ [5; 10), [10; 14), [14; 20), [20; 30), [30; 45), [45; 60), and [60;∞). ∆̃Σ is calculated in 11
logarithmically spaced radial bins ranging from 0.2 Mpc to 30 Mpc. For each cluster sample and
radial range we save min(Npairs ; 2 · 104) representative source-lens pairs selected in a uniform
random way, and calculate the mean P(z) of that source population weighted by ωΣ′–1

crit. The
estimate on fcl(R) is then found by the P(z) decomposition method outlined in section 3.2.3.
For the field component we take the P(z) of sources in the outermost radial bin, which we find
to be identical to the weighted P(z) of sources selected around random points in a series of
Kolmogorov-Smirnov tests.

The decomposition is calculated by considering all radial scales simultaneously where we
require the redshift positions and widths of the cluster components to be identical at different
radial ranges. The mixing amplitudes fcl(R) between the cluster and reference P(z) are left free
across radial bins. Hence the inner radial scales where the contamination is stronger provide
constraints about the cluster component for the outer radial ranges. The fcl profile model for
a cluster sample has Nrbin + 2 free parameters, and the decomposition is performed via a least
squares Levenberg-Marquardt algorithm, where the optimized quantity is the mean squared de-
viation between the measured P(z | R) and the model prediction defined in Equation 3.11. This
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boost factor calculation algorithm is implemented in the XPIPE python package3, which was also
used by Chang et al. (2018b) and McClintock & Varga et al. (2019), and contains an identical
setup to Melchior et al. (2017).

To estimate the uncertainty on the recovered fcl(R) we use jackknife (JK) resampling follow-
ing Efron (1982):

CJK
f̃cl

=
K – 1

K

K∑
k

(
f̃cl(k) – f̃cl(·)

)T
·
(

f̃cl(k) – f̃cl(·)
)

, (3.15)

where f̃cl(·) = 1
K
∑

k f̃cl(k) and f̃cl(k) denotes the contamination rate estimated via Equation 3.14.
We make use of K = min{100 ; Nclust} simply-connected spatial regions Rk for each cluster
sample, defined via a spherical k-means algorithm4, and f̃cl(k) is calculated from all clusters
except those in region Rk. With this method we estimate the covariance between all radial
ranges within each richness and redshift bin.

The recovered contamination profiles are shown in Figure 3.3, and are qualitatively similar to
those observed in the real data. The overall behavior is consistent with theoretical expectations:
For all cluster bins the contamination rate decreases with increasing redshift, and a clear trend is
apparent where richer clusters at a given redshift range produce greater contamination rates.

3.3.2.4 True contamination in simulated catalogs

We calculate the true contamination as the excess rate for galaxies to be located within the im-
mediate Sj ≡ [zj – ∆z; zj + ∆z] vicinity of the clusters, defined via

f true
cl ≡

Nc∑
j

∑
zs,i∈Sj

ωi,jΣ
′–1
crit;i,j

Nc∑
j

Ns∑
i
ωi,jΣ

′–1
crit;i,j

–

Nr∑
l

∑
zs,i∈Sl

ωi,jΣ
′–1
crit;i,l

Nr∑
l

Ns∑
i
ωi,jΣ

′–1
crit;i,l

, (3.16)

where Nc refers to the number of clusters, Nr to the number of random points, and Ns to the
number of source galaxies, while ωi,j is the lensing weight associated with the source-lens pairs
defined in Equation 3.13. Sj and Sl refer to the immediate true redshift vicinities of clusters and
random points respectively. That is, f true

cl is the probability of finding a galaxy within the redshift
range S around the clusters, minus the same probability for random lines-of-sight, where the
second term we obtain by saving source-lens pairs around redMaPPer random points. This is
equivalent to a cylindrical selection of contaminating galaxies, which is motivated by the fact
that the contamination originates not only from physically bound galaxies, but also from galaxies
in the extended correlated structures.

Figure 3.4 illustrates the above approach. It is clear that a large fraction of source-lens pairs
near cluster centers (blue) actually lie at the cluster redshift. Comparing this with the distribution

3https://github.com/vargatn/xpipe
4https://github.com/esheldon/kmeans_radec

https://github.com/vargatn/xpipe
https://github.com/esheldon/kmeans_radec
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Figure 3.4: Schematic for estimating the true cluster member contamination fraction in the Buz-
zard mock observations. The figure shows histograms of the weighted, true redshift separation
of source lens-pairs at different radial distances from galaxy clusters with z ∈ [0.35; 0.5) and
λ ∈ [30; 45). Blue: source-lens pairs at low radial scales around clusters (R < 0.78 Mpc). Black:
source–lens pairs around redMaPPer selected random points in the same radial range. Gray
dashed: ∆z = ±0.05 vicinity of the cluster redshift.

of galaxies around random points (black), the contamination rate is taken as the excess area under
the curve within the ±∆z (dashed) region. Based on Figure 3.4, we adopt ∆z = 0.05 as our
fiducial redshift width for the purposes of computing the true contamination rate. The resulting
f true
cl profiles are shown on Figure 3.3 as the blue shaded regions, where the 1σ uncertainties are

estimated from jackknife resampling using the same approach as in section 3.3.2.3.

3.3.2.5 Validity of Gaussian cluster model

With the formalism introduced in section 3.3.2.4, we can compute the average, weighted, photo-
metric redshift P(z) for likely cluster galaxies which are located within the ±∆zTRUE vicinities
of clusters. As shown on Figure 3.5 these P(z)-s have a prominent peak located slightly above
the cluster redshift range. Cluster galaxy P(z)-s also possess a long tail extending up to high
redshifts. This is an intrinsic feature of photometric redshift estimation, as some cluster galaxies
have spectral types that exhibit these types of degeneracies.

Figure 3.5 also shows the best fit Gaussian cluster component models Pmemb(z). These are
obtained from the decomposition method in section 3.3.2.3 and are not informed of the true
cluster member P(z)-s. Due to the chosen analytic form of Pmemb(z), the long high redshift tail
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Figure 3.5: Comparison of the Gaussian P(z) component model with the actual P(z)-s of likely
cluster galaxies in the Buzzard mock observations. Colored curves: P(z) of source galaxies
within ±∆zTRUE of the clusters, in different cluster redshift bins, but at the same richness and
radial bin. Dashed curves: Best fit curves of the Gaussian cluster component model Pmemb(z).
Note that the shown P(z)-s are normalized for z ∈ [0; 3.5].

of the actual cluster galaxy P(z)-s can not be recovered, which results in the apparent offset of the
(normalized) p.d.f-s on Figure 3.5. For the shown samples the best fit Gaussian contains within
1σ 57%, 47% and 56% of probability of the actual P(z) of cluster members. Nevertheless, the
Gaussians recover the approximate position and width of the peaks, and possesses fewer degrees
of freedom than alternative high-skewness models.

3.3.2.6 Discussion of simulation benchmarks

Figure 3.3 compares the boost factor profiles estimated from P(z) decomposition from simula-
tions as described in section 3.3.2.3, with the actual cluster member contamination rate calculated
in section 3.3.2.4. We find that our estimated boost factors are in excellent agreement with the
true member contamination rates in the Buzzard mock simulations. The uncertainties shown in
Figure 3.3 are estimated via Jackknife resampling, and do not incorporate systematic uncertain-
ties. Hence we estimate this systematic uncertainty by requiring consistency between the true
and estimated fcl profiles across all parameter bins with Nclust > 50. Via this approach we find
a global relative systematic uncertainty of δsys < 1 percent across different richness – redshift
selections, where the total covariance is given by Ci,j = CJK

i,j + δi,j · f 2
cl; i · δ2

sys
We note that the simulated galaxy catalogs include the effects of magnification with the typi-
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cal angular resolution of 0.6 arcminutes, corresponding to approximately 0.15, 0.2 and 0.24 Mpc
in the different redshift bins. While this low resolution allows for only weak constraints, the
good agreement between the estimated and true fcl profiles indicate that magnification does not
play a significant role in the resolved radial ranges.

The purpose of this simulation benchmark is to test how well the P(z) decomposition pre-
dictions match the contamination within the simulation, not to extrapolate for the real DES data.
Thus we do not require full realism from the simulated environment. Nevertheless, the simulated
color distribution of galaxies has been studied by DeRose et al. (2019) in a setup nearly identical
to version 1.3 of Buzzard used in the present study. They found the simulated galaxy properties
to be broadly consistent with reality except for a slight systematic shift on the color of the blue
cloud. We do not anticipate that this manifests in a qualitative difference on the performance
of the boost factor estimator compared to real data. We however note that the presented mock
scenario is constructed to resemble the DES analysis setup, including the choice of photometric
redshift estimation algorithm. For this reason the observed performance is not necessarily in-
dicative for a significantly different survey and analysis scenario. While the abundances, radial
profiles, and color properties of cluster galaxies in the simulation may be slightly different from
reality, we expect Buzzard to be qualitatively similar to the real DES Y1 data. Hence we take
the excellent performance of the P(z) decomposition in this setting as a strong motivation for its
applicability for real observations.

3.3.3 Analysis on DES Y1 Data
In this section we apply the P(z) decomposition method to DES Y1 data, following the exact
measurement setup presented in McClintock & Varga et al. (2019). The structure of this section
is the following: in section 3.3.3.1 we present the relevant parts of the DES Y1 dataset relating
to the galaxy cluster catalog and the weak lensing source galaxies, in section 3.3.3.2 we derive
the form of the necessary boost factor correction, while in section 3.3.3.3 present a simple test
on the robustness of our contamination model, and finally in section 3.3.3.4 we compare with the
alternative method of correlation based boost factor estimate.

3.3.3.1 The DES Y1 dataset

The DES Y1 observations cover approximately 1800 deg2 of the southern sky in g,r,i,z bands.
These observations are processed via a variety of photometric data reduction steps into the Y1
GOLD catalog (Drlica-Wagner et al., 2018) which is the main science quality catalog of DES.
Using the fiducial multi-epoch, multi-object fitting algorithm (MOF) DES finds the 10σ limiting
magnitudes of this dataset for 2” apertures to be g ≈ 23.7, r ≈ 23.5, i ≈ 22.9 and z ≈ 22.2.
Based on these observations McClintock & Varga et al. (2019) defined a locally volume limited
catalog of galaxy clusters identified via the redMaPPer algorithm. In the Y1 footprint the average
MOF limiting magnitude is deep enough to detect a 0.2 L∗ galaxy up to z ≈ 0.7, thereby setting
the maximum depth of the volume limited cluster sample.

Approximately 1500 deg2 of this catalog is further processed by the METACALIBRATION

algorithm (Huff & Mandelbaum, 2017; Sheldon & Huff, 2017) to define a source galaxy sample
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(Zuntz et al., 2018). This source galaxy catalog consists of an ellipticity estimate ei for each
galaxy, along with ancillary quantities used to perform the bias calibration via the response R =
Rγ+Rsel of the ellipticity estimates to shear and the source galaxy selection function respectively.

Photometric redshift P(z)-s are calculated via the BPZ template based algorithm (Hoyle et al.,
2018). Two separate redshift estimates are derived: one based on the MOF-based galaxy col-
ors listed in the GOLD catalog, and a second based on the photometric model obtained from
METACALIBRATION.

Hoyle et al. (2018) found the derived redshift estimates to be mildly biased in the mean
redshift, which McClintock & Varga et al. (2019) corrected by introducing a multiplicative cali-
bration to the the final weak lensing measurements. Weak lensing measurements are dominantly
sensitive to the mean redshift of the source dn/dz, while the P(z) decomposition method is sensi-
tive not to absolute shifts, bit differences in relative shape of P(z)-s. Due to this, as the expected
effect of a shift is estimated to be negligible we do not explicitly apply such redshift bias correc-
tion.

3.3.3.2 Contamination estimator for DES Y1-like data

In this section we derive the required boost factor correction for the ∆Σ estimator employed for
the DES Y1 analysis. For this, Equation 3.12 and Equation 3.13 are replaced with:

∆̃Σ =
∑
ω̂i,jeT;i∑

ω̂i,jRT
γ; i,jΣ

′–1
crit; i,j

. (3.17)

where
ω̂i,j ≡ Σ–1

crit

(
zlj , 〈z

MCAL
si 〉

)
if 〈zMCAL

si 〉 > zlj + 0.1 , (3.18)

which is the general form of the estimator. Here we neglected the selection response term, which
McClintock & Varga et al. (2019) found to be subdominant compared to the shear response RT

γ ,
where the superscript refers to the response matrix rotated into the tangential frame. In the above
estimator the weighting and selection is performed based on the mean METACALIBRATION based
redshift estimates 〈zMCAL

si 〉, while Σ′–1
crit; i,j is calculated using a random draw from the MOF-

based redshift P(z).
Following Equation 3.7 and Equation 3.8 we find the contamination rate to be:

fcl =

∑
cl ω̂i,jRT

γ; i,jΣ
′–1
crit; i,j∑

ω̂i,jRT
γ; i,jΣ

′–1
crit; i,j

. (3.19)

We perform the P(z) decomposition in a setup identical to section 3.3.2.3, but using weights
according to Equation 3.19, and make use of a randomly selected, representative subsample of
the source-lens pairs from McClintock & Varga et al. (2019). The detailed description of our
results is presented in section 3.4, while the boost profiles themselves are shown on Figure 3.6.
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3.3.3.3 Sensitivity to background component choice

The performance of the P(z) decomposition method is dependent on how well the ansatz for
the background component resemble the p.d.f. of actual background galaxies. Furthermore, the
average P(z) estimated for a galaxy sample may contain minor features (e.g. wiggles and peaks)
which depend on the internal setup of the photometric redshift algorithm (e.g. distribution of
templates within the BPZ algorithm), and do not themselves relate to the physical distribution
of galaxies (Bonnett et al., 2016; Melchior et al., 2017). Differences originating from these
non-physical reasons may also impact the robustness of the contamination estimates.

We test the self-consistency of the decomposition method and its sensitivity to the minor
features in the estimated P(z)-s by extending the fiducial P(z) decomposition analysis with a
second step. In this second step the reference P(z) model is updated from the “field” P(z) to the
observed P(z) at R ≈ 1 Mpc minus the Gaussian cluster model found in the previous step. The
fcl fit is then repeated with this new reference P(z) component, while keeping the position and
width of the Gaussian cluster model component unchanged. The resulting boost factor profiles
are shown on Figure 3.7, overlaid with the fiducial boost factor profiles. The two iterations agree
very well, and following the approach used in section 3.3.2.6 we estimate a relative systematic
uncertainty of < 1 percent, motivating that the choice for the background component propagates
to only a negligible difference in the final contamination profiles.

3.3.3.4 Comparison with correlation based boost factors

An alternative way for estimating boost factors is via the angular clustering of source galaxies
around clusters, as only the contaminating galaxies are correlated with the cluster (Sheldon et al.,
2004; Applegate et al., 2014b; Hoekstra et al., 2015; Simet et al., 2017b; Leauthaud et al., 2017).
We calculate this correlation function via the estimator:

Corr =
NR
ND
· DD

RR
– 1 , (3.20)

where DD and RR are defined as
∑
ωRT

γΣ′–1
crit around redMaPPer clusters and random points

respectively, while ND refers to the number of clusters, and NR to the number of random points
(Landy & Szalay, 1993). The results of this measurement are shown on Figure 3.7. The correla-
tion function estimates are, for many cluster samples, preferentially lower than the P(z) decom-
position estimates, especially at the two lower redshift selections.

This can be understood as clusters impacting the spatial distribution of source galaxies in
ways other than contamination by cluster galaxies: e.g. the density and blending of cluster mem-
bers may lead to a bias against selecting sources near clusters (Simet et al., 2017a; Leauthaud
et al., 2017; Zuntz et al., 2018), which can explain the preferential lower estimates. Such effects
cannot be captured by random points, as they relate to the presence of the cluster in the line-
of-sight, and are not well characterized for the DES Y1 METACALIBRATION shear catalogs. By
contrast, the P(z) decomposition method is insensitive to color-agnostic fluctuations in the source
selection, and to the number density profile of source galaxies.
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3.4 Results for DES Y1 data

3.4.1 Boost factor estimates
We present the contamination rate estimates from applying our method to the DES Y1 data in
Figure 3.6. In the present calculation we consider all cluster selections, but note that in Mc-
Clintock & Varga et al. (2019) only the λ > 20 clusters enter the determination of the mass–
observable relation. The qualitative behavior of the contamination rate profiles agrees well with
the theoretical expectation of decreasing contamination with increasing radius. As expected, the
amplitude of the contamination increases with cluster richness. Furthermore, the contamination
rates are higher for low-redshift clusters, as for those fainter cluster member galaxies can also be
detected, whose photometric redshifts are less accurate.

We find that the “peak” in the P(z) due to contaminating galaxies is very prominent at low
radii for all cluster bins, and the presence of this feature is critical for the applicability of the
decomposition method. The best fit parameters of the Gaussian Pmemb(z) model are presented
in Figure 3.8, along with the used prior ranges. The means of these best-fit Gaussian Pmemb(z)
distributions differ from the redshift ranges of the clusters. However this is expected from the
way source galaxies are selected in the DES analysis: only those cluster member galaxies enter
the source selection whose estimated mean redshift scatters towards higher redshifts.

The contamination rate profiles fcl(R) shown in Figure 3.6 can be directly translated into a
multiplicative correction factor B ≡ (1 – fcl)–1 necessary for recovering an unbiased estimate on
∆Σ via Equation 3.9.

3.4.2 Analytic boost factor model
We model the boost factor profile using a Navarro-Frenk-White (NFW) profile (Navarro et al.,
1996):

Bmodel(R) = 1 + B0
1 – F(x)
x2 – 1

, (3.21)

where x = R/Rs, and

F(x) =


tan–1

√
x2–1√

x2–1
: x > 1

1 : x = 1
tanh–1

√
1–x2√

1–x2 : x < 1

. (3.22)

This model has two free parameters per cluster bin: B0 and Rs which characterize the amplitude
and scale radius of the correction profile respectively.

The best fit boost model profiles are overlayed on Figure 3.6 to the raw contamination rate
estimates. Following the approach used in section 3.3.2.6 we estimate a relative systematic
uncertainty of < 1 percent. In McClintock & Varga et al. (2019) these fits are performed in a
joint likelihood analysis together with the mass profile model and systematic corrections. This
way the estimated statistical uncertainty of the boost factors is propagated self-consistently into
their final mass constraints. The model parameters are not tied to the mass parameters of clusters
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Figure 3.8: Best fit parameters for the Gaussian Pmemb component found for the P(z) decompo-
sition in the DES Y1 data. The colors indicate the various cluster redshift bins: z ∈ [0.2, 0.35),
z ∈ [0.35, 0.5) and z ∈ [0.5, 0.65) is denoted by magenta, orange and green respectively. (Top
panel:) mean redshift of the cluster member components. The dashed colored lines indicate the
prior range for the mean of the cluster component. (Bottom panel:) standard deviation of the
cluster member components.
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to allow for freedom in describing the boost factors. Due to the excellent performance of the
P(z) decomposition method in our tests, and as the systematic uncertainty found in a simulated
environment was subdominant compared to the Jackknife error estimate, McClintock & Varga
et al. (2019) did not assume any additional systematic uncertainty to this source of systematic
error.

We note that in the Monte Carlo chains run by McClintock & Varga et al. (2019) the Rs and
B0 parameters were found to be degenerate, hence the increase in actual contamination does not
translate into an obvious increase in B0. However this was found to propagate into only a mild
change in the boost factor profile over the studied radial range. The recovered cluster masses
were robust against degeneracy in the boost factor model parameters, and are not significantly
impacted. Nevertheless, we find that the scale radius of the contamination component is typ-
ically at least twice as large as the scale radius of the NFW halo. This is consistent with the
expectation that the galaxy distribution of clusters can be described as an NFW distribution with
lower (approximately half) concentration than the underlying dark matter halo (Budzynski et al.,
2012).

3.5 Summary and Conclusions
In this study we carried out a detailed method validation on the P(z) decomposition cluster mem-
ber contamination estimation algorithm proposed by Gruen et al. (2014) and Melchior et al.
(2017). This approach relies on the decomposition of the average redshift P(z)-s of source galax-
ies around galaxy clusters into a cluster member and background component, to obtain an es-
timate on the relative number of contaminating galaxies which are mistakenly included in the
source galaxy catalog. Since its inception this method has been used by studies ranging from the
DES Science Verification cluster mass calibration (Melchior et al., 2017), to cluster weak lensing
studies focusing on the detection of the splashback-feature (Chang et al., 2018b), and to the mass
calibration of SPT selected clusters (Stern et al., 2018). It also serves as an important constituent
of the weak lensing mass calibration on DES Y1 (McClintock & Varga et al., 2019), which will
be used in deriving cosmological constraints based on the number counts of optically identified
galaxy clusters (DES Collaboration et al., 2020).

In order to demonstrate the applicability of P(z) decomposition based boost factors we per-
formed a series of tests benchmarking various aspects of the approach. We find the following:

• The method performed well in a mock survey simulation (section 3.3.2), yielding excel-
lent agreement between the estimated contamination rates and the actual true number of
contaminants extracted from the truth catalogs of the simulation.

• Within the mock analysis we investigated the validity of the Gaussian ansatz for the cluster
P(z) component (section 3.3.2.4). We found that it recovers the approximate redshift and
width of the peak within the P(z) of the contaminating galaxies. Furthermore the Gaussian
ansatz did not appreciably bias the estimated contamination.

• We tested the sensitivity of the contamination estimates to the choice of the background
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P(z) component on DES Y1 data (section 3.3.3.3), and found an excellent agreement be-
tween the boost factors derived via the fiducial and alternative background components.

• We compared the method with an alternative, transverse correlation based contamination
estimate in section 3.3.3.4. We found indications that the alternative method is preferen-
tially underestimating the contaminations, which is likely an imprint of the radial source
galaxy selection function. This is expected to impact the decomposition predictions to a
lesser extent as it does not make use of the number profile of sources.

Excluding galaxies from the source catalog can also reduce the cluster member contamina-
tion, however it may also reduce the statistical power of the measurement if the exclusion criteria
are too broad. Hence it presents a trade-off in the total error budget between the systematic un-
certainty originating from boost factors and statistical uncertainty such as shape noise. However
based on the consistency tests presented in this paper, and on the fact that boost factors played a
strongly subdominant role in the total error budget of McClintock & Varga et al. (2019) it appears
that the P(z) decomposition method is sufficient to provide boost factor estimates for current clus-
ter weak lensing analyses. We note that this determination is dependent on the characteristics of
the sky survey e.g. depth, area, number of filters. Notably cluster weak lensing studies such as
Medezinski et al. (2018d,b); Miyatake et al. (2018) in the ongoing Hyper Suprime-Cam Survey
(Aihara et al., 2018) favored the approach of trying to excluding cluster member galaxies via
color - color or P(z) cuts.

During the DES Y1 analysis we propagated uncertainties by making use of a simple ana-
lytic model – an NFW profile – to describe the boost factor correction. Previously Melchior
et al. (2017) also used an analytic model, while others such as Chang et al. (2018b) and Stern
et al. (2018) chose to directly use the recovered boost factor profiles in correcting their ∆Σ mea-
surements. While the NFW model was found to be a sufficient description for the analysis of
McClintock & Varga et al. (2019), it is likely that with the increasing precision of future studies
more complex boost factor models might become necessary.

We quantified several possible sources of systematic uncertainty impacting the P(z) decom-
position method, finding < 1 percent relative systematic uncertainty based on benchmarks on
mock observations, < 1 percent relative systematic uncertainty originating from the choice of the
background P(z) component, and < 1 percent relative systematic uncertainty from requiring good
global agreement between the numerical boost factor estimates and the analytic model. From
these contributions we estimate that the decomposition method under optimal circumstances can
provide boost factor estimates with approximately 2 percent relative global systematic uncer-
tainty. However we note that specific circumstances such as the performance of the photometric
redshift algorithm, or the source galaxy selection function will impact the accuracy and precision
of the P(z) decomposition method.





Chapter 4
Synthetic Galaxy Cluster
Observations Based on DES Y3 Data

Scientific context The previous chapters of original research (chapter 2 and chapter 3) focused
on developing a cluster mass measurement method for the DES Year 1 dataset. The aim of those
analyses was to estimate the mean cluster mass via weak lensing for a population of clusters
within a bin of observables, which is broadly composed of two major tasks:

1. Measure the lensing profile. This includes preparing the input dataset of source galaxies
with shape and photometric redshift estimates and performing the stacked weak lensing
measurement to obtain ∆Σ(R) or γT(θ) and a corresponding covariance estimate. Further-
more, this step includes the characterization and correction for photometric redshift and
shape estimation biases influencing the the lensing profile.

2. Estimate cluster masses based on the lensing profile. This includes defining the mass
model, applying the necessary corrections, performing the likelihood analysis, and finally
estimating the mean cluster mass 〈M〉 for the parameter bin. Furthermore additional cal-
ibrations relating to cluster mis-centering, selection effect and model bias corrections are
also performed at this stage.

Of these, step 2 is closely related to the selection function used in defining the cluster sample,
while step 1 is largely related to the dataset and sky survey.

The task we now embark on aims to investigate the performance of weak lensing profile mea-
surements (step 1). During this next chapter of original research we aim to construct a synthetic
test environment for galaxy cluster weak lensing, by creating mock observational data products
mimicking those in real cluster lensing measurements. The produced mock observations will
allow future studies to perform a complete end-to-end reproduction of a weak lensing analy-
sis including the photometric analysis from survey-like images, shape and photometric redshift
estimation, and the measurement of the lensing profile using a setup identical to the real DES
analysis, and to propagate the various systematic biases and noise terms in precision weak lens-
ing measurements into a joint uncertainty estimate.
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4.1 Introduction
The study of galaxy clusters has in recent years become a prominent pathway towards under-
standing the nonlinear growth of cosmic structure, and towards constraining the cosmological
parameters of the universe (Kravtsov & Borgani, 2012; Weinberg et al., 2013). Weak gravita-
tional lensing provides a practical method to study the mass properties of clusters, as it is directly
connected to the gravitational potential of the targets, and it is readily scalable to a statistical en-
semble of targets in wide field surveys. For this reason the lensing based mass calibration of
galaxy clusters became a standard practice for galaxy cluster based cosmological analyses (Rozo
et al., 2010; Mantz et al., 2015; Planck Collaboration et al., 2016; Bocquet et al., 2019).

Weak lensing measurements rely on estimating the shapes or ellipticities of background
source galaxies, which enables inferring a quantity called gravitational shear γ. The shear field
is directly related to the gravitational potential of the targeted (lens) object, and by estimating
the preferential orientation of source galaxies one can learn about the projected mass distribu-
tion within the lens system (Bartelmann & Schneider, 2001). In practice, there are multiple
approaches in estimating the ellipticity of a galaxy. Commonly used methods include model
fitting and measurements of second moments, with several innovative approaches developed in
recent literature (Zuntz et al., 2013; Refregier & Amara, 2014; Miller et al., 2013; Bernstein &
Armstrong, 2014b; Huff & Mandelbaum, 2017; Sheldon & Huff, 2017).

Irrespective of the chosen family of algorithms, the performance of the shear estimates cannot
be a-priory guaranteed, and needs to be validated in a series of tests (Jarvis et al., 2016; Zuntz
et al., 2018; Samuroff et al., 2018). This validation commonly involves the creation of mock
observations, image simulations which are then processed and used to estimate the bias and
uncertainty of the different methods in a controlled measurement scenario (Massey et al., 2007;
Bridle et al., 2009; Mandelbaum et al., 2015; Samuroff et al., 2018; Kannawadi et al., 2019; Pujol
et al., 2019). Furthermore the bias of lensing measurements may vary within the survey footprint
due to to blending with other light sources both fully resolved and unresolved, differences in
galaxy properties (e.g. morphology, shear level) and the local selection function of the catalog.
This is especially important in the case of galaxy clusters, which present a significant deviation
from the cosmic median line-of-sight due the overdensity of cluster member galaxies (Hansen
et al., 2009; To et al., 2019), their diffuse intra-cluster light (ICL) (Zhang et al., 2019a; Gruen
et al., 2019; Kluge et al., 2020) and the characteristically stronger shears induced in their vicinity
(see section 2.4.1.1). These considerations pose a requirement to extend the validation of the
weak lensing estimators to cluster weak lensing scenario.

The aim of this study is to create synthetic observations of galaxy clusters, which enable per-
forming a full-scale mock cluster weak lensing analysis in a controlled survey-like environment.
Our approach is to construct a statistical learning algorithm to generate plausible mock galaxy
clusters and model their lines-of-sight in a way which captures the real distribution of galaxies
and their observed photometric feature (e.g. luminosity, color, morphology) distributions with
respect to the properties of the targeted clusters. These mock clusters and lines-of-sight are then
rendered into images in the same format as actual survey observations and can further processed
with the standard data reduction and analysis pipelines of the survey.

The essence of our statistical learning algorithm is to estimate the radius dependent color
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distribution of cluster member galaxies by comparing the radial color distribution around galaxy
clusters and a set of reference random points in a relatively shallow wide field survey. We further
use this distribution as a prior for the galaxy features of fainter galaxies and their joint distribution
measured from a well characterized small area deep field survey. This approach transforms the
deep field distribution to resemble the feature distribution of cluster member galaxies and field
galaxies respectively. It keeps the additional features measured accurately in the deep field data,
and extrapolating the luminosity function of the mock line-of-sight to fainter magnitudes. Galaxy
clusters are therefore reconstructed jointly with the line-of-sight galaxies using more precise and
accurate photometric solutions from the deep field data, and inheriting features not directly mea-
sured in the wide field, e.g. additional bands, morphology parameters or redshifts. This approach
shortcuts the computational cost and limited representation of reality of numerical simulations.
The creation of a mock line-of-sight with galaxy positions and properties is formulated as a
random draw from a feature distribution which enables efficient scalability for generating large
numbers of mock cluster realizations required for benchmarking precision measurements.

This work is done in preparation of a cluster weak lensing benchmark analysis for the Dark
Energy Survey, and therefore aims in its scope to focus on its particular observational details.
Nevertheless the presented algorithm is expected to be easily generalized to other upcoming sur-
veys such as LSST (LSST Science Collaboration et al., 2009) and Euclid (Amendola et al., 2018)
as well. The structure of this chapter is the following: First in section 4.2 we introduce the DES
year 3 dataset, in section 4.3 we outline the statistical approach used in modeling the synthetic
lines-of-sight, in section 4.4 describe the concrete results of the galaxy distribution models de-
rived from the DES Y3 dataset, and finally in section 4.5 outline the method for generating mock
observations for DES Y3.

In the following, unless otherwise indicated, we assume a flat ΛCDM cosmology with Ωm =
0.3 and H0 = 70 km s–1 Mpc–1, with distances defined in physical coordinates, rather than
comoving.

4.2 DES Y3 Data
At present, the Dark Energy Survey (DES) is processing and analyzing the first three years of
observations made between 2013 August 15 and 2016 February 12 (DES Collaboration et al.,
2016; DES Collaboration, in prep a). This Year 3 (Y3) dataset has achieved nearly full footprint
coverage albeit at shallower depth, with on average 4 tilings in each band out of the eventually
planned 10 tilings. From the full 5000 deg2, the effective survey area is reduced to approximately
4400 deg2 due to the masking of the Large Magellanic Cloud and bright stars. In parallel to the
wide field survey a smaller, deeper supernova deep field survey is also conducted covering 27
deg2 in 4 patches. These consist of in total 10 un-dithered pointings of the Dark Energy Camera
(DECam, Flaugher et al., 2015) repeated on a weekly cadence, reaching resulting in a deep field
survey 1.5 - 2 mag deeper than the wide field survey.

The DES Y3 footprint is shown in Figure 4.1. Due to data availability, of the four deep field
patches only three is considered in the present study. These consist of 8 partially overlapping
tilings and are denoted as SN-C, SN-E and SN-X, and their location is also shown on Figure 4.1.
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In the following we introduce the different DES Y3 data products used in the chapter, and refer
the reader for section 1.4 for a more fundamental introduction to the DES survey strategy. We
note that these photometric catalogs and the galaxy cluster catalog will serve as the basis of the
fiducial weak lensing cosmology analyses performed within the scope of the DES Y3 effort.

4.2.1 Wide Field Data

The science quality photometric catalog of DES Y3 is the Y3A2 GOLD dataset (DES Collab-
oration, in prep a). This includes catalogs of photometric detections and parameters from the
wide field survey as well as the corresponding maps of the characteristics of the observations,
foreground masks, and star-galaxy classification.

Data processing starts with single epoch images for which de-trending and photometric cor-
rections are applied. They are subsequently co-added to facilitate the detection of fainter objects.
The base set of photometric detections is obtained via SExtractor (Bertin & Arnouts, 1996) from
r + i + z coadds. The fiducial photometric properties for these detections are derived using
the single-object-fitting (SOF) algorithm based on the ngmix (Sheldon, 2015) software which
performs a simultaneous fit of a bulge + disk model to multi-epoch exposures while for each
exposure, modeling the point spread function (PSF) as a Gaussian mixture. An expansion of this
model is the multi-object-fitting (MOF) (Drlica-Wagner et al., 2018; Zuntz et al., 2018) approach
where in addition to the above first step friends-of-friends (FoF) groups of galaxies are identified
based on their fiducial models, and in a subsequent step the galaxy models are corrected for all
members of a FoF group in a combined fit. While for the Y3A2 GOLD dataset the SOF and MOF
photometry were found to yield similar solutions, it is expected that in crowded environments
due to its more advanced treatment of blending the MOF photometry would perform better.

The fiducial depth of the Y3A2 photometric catalog is characterized as the 10σ limiting mag-
nitude for 2′′ apertures which are found to be g = 24.28, r = 23.95, i = 23.34 and z = 22.63 (DES
Collaboration, in prep a). We note that all magnitudes used in the present analysis are defined in
the AB system. When considering the 10σ detection limit for galaxies in SOF photometry the
depth is reduced to g = 23.78, r = 23.56, i = 23.04, z = 22.39. As an alternative measure of
survey depth the detection completeness of galaxies is estimated on the overlap between DES Y3
wide and deep field surveys, where it is found that the SOF galaxy catalog is 99% complete for
galaxies with i < 22.5. Star - galaxy separation is performed based on the morphology derived
from SOF and MOF quantities, which for the i < 22.5 sample has 98.5% efficiency and 99%
purity, yielding approximately 226 million extended objects out of a base sample of 390 million
detections.

SOF and MOF derived magnitudes are corrected for atmospheric and instrumental effects us-
ing a forward modeling approach, a spectral energy distribution (SED) based chromatic correc-
tion on a per object level, and a correction for interstellar extinction to obtain the final corrected
magnitudes MAG_CORRECTED.
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Figure 4.1: Footprint of targeted clusters in DES Y3. Blue markers: location of Deep field
regions COSMOS, SN-C, SN-E, SN-X (marker size not to scale)

Figure 4.2: Distribution of redMaPPer clusters in DES Y3 dataset in the volume limited sample.
solid black: narrow redshift selection, blue dotted: DES Y1 cluster cosmology selection
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4.2.2 RedMaPPer Cluster Catalog

We consider an optically selected sample of galaxy clusters identified by the redMaPPer algo-
rithm in the DES Y3 data. The base input for this cluster finding is the Y3A2 SOF photometry
catalog described above, from which redMaPPer identifies galaxy clusters as overdensities of
red-sequence galaxies. The redMaPPer version used in DES Y3 is v6.4.22+2, which is equiv-
alent to v6.4.17 (used in chapter 2 for the DES Y1 catalog) with minor updates. For a more
detailed introduction we refer the reader to section 1.4.1 and section 2.2.2.

Two cluster catalogs are defined: a flux-limited and a locally volume limited sample in a
similar manner to section 2.2.2. For the present study we consider the latter, as that sample
assumes no extrapolation of the cluster luminosity function during the cluster identification. For
DES Y3 the survey limiting magnitude is deep enough to image a 0.2 L∗ galaxy at z ≈ 0.65,
which corresponds to i ≈ 22.55, thereby setting the redshift limit for the volume limited cluster
catalog.

The volume limited redMaPPer cluster catalog contains more than 869,000 clusters down to
λ > 5 and more than 21,000 above λ > 20. The spatial distribution of the latter higher richness
sample is shown on Figure 4.1, and the richness and redshift distribution is shown on Figure 4.2.
In addition to the cluster catalog, a catalog of reference random points is also provided which are
drawn from the part of the footprint where survey conditions permit the detection of a cluster of
given richness and redshift.

4.2.3 Deep Field Data

The supernova (SN) and deep field survey is a concurrent side survey of DES which was followed
up on a roughly weekly cadence in u, g, r, i, z, Y bands taking up approximately 30% of the total
DES observation time (DES Collaboration, in prep b). The deep field survey is organized into
four distinct supernova fields: SN-S, SN-X, SN-C and SN-E. These areas are divided into a total
of 10 DECam pointings resulting in a deep field footprint of 27 deg2, which in contrast with the
wide field survey are not dithered to improve survey depth and PSF modeling.

The deep field observational campaign serves a two-fold scientific motivation: enabling the
DES SN cosmology program (Abbott et al., 2019), and providing testing ground for benchmark-
ing the photometric performance of the DES wide field survey. Furthermore the overlap of the
deep fields with external multi-band data from the VIDEO survey (Jarvis et al., 2013) for fields:
SN-X, SN-C, SN-E enables the improvement and benchmarking of photometric redshift esti-
mates for wide field objects, by providing J, H, K band coverage. These overlap fields consists
of 8 of the 10 DECam pointings. In addition to the above DES also covered the COSMOS field
(Scoville, 2003), however due to the different observation strategy that is not part of the present
analysis.

The deep field data processing strategy differs from the wide field in that here in addition to
the DES observing program, images from community DECam observations are also included.
This results in significantly more single exposure images than planned for in the fiducial survey.
Together with the depth of the DES data, this allows for multiple co-addition strategies aimed
for different science cases. In the present study we consider only the detections derived from
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the COADD_TRUTH stacking strategy which aims to to optimize for reaching approximately
10× the wide field survey depth while requiring that the deep field resolution (FWHM) be no
worse that the median FWHM in the wide field data (DES Collaboration, in prep b). The deep
field detection and photometric processing is done jointly between DES observations and the
corresponding external survey data from VIDEO which are re-analyzed to arrive to a joint pho-
tometric solution. A key difference compared to Y3A2 GOLD is that the MOF algorithm is run
with "forced photometry" where astrometry and deblending is first done using DECam data, and
only in a second step are infrared bands incorporated while keeping the detections and morphol-
ogy of the DECam solutions. For the resulting MOF magnitudes photometric corrections are
applied in the same manner as for the Y3A2 GOLD dataset.

Due to availability, in the present analysis we only consider the MOF catalog from the SN-
X, SN-C and SN-E fields. For these fields (DES Collaboration, in prep a) performed detailed
consistency tests comparing the deep field derived stellar properties with expected galactic stellar
populations and comparing the photometry solutions between the deep field and the re-analyzed
wide field observations over the same footprint, finding very good agreement.

As an experimental data product, a photometric redshift estimate is provided by DES Col-
laboration (in prep a) for the deep field galaxies via the EAzY algorithm (Brammer et al., 2008).
These photometric redshift estimates are obtained by fitting a mixture of stellar population tem-
plates to the ugrizJHK band fluxes of the deep field galaxies. The possible galaxy redshifts and
stellar template parameters are varied jointly to obtain a redshift probability distribution. In the
case of photometric redshift estimation, estimating the redshift p.d.f is only the first step, and
the resulting redshifts need to be validated and corrected for biases (Hoyle et al., 2018). This
validation step usually takes significant additional effort, and was not performed by the DES
collaboration for the EAzY catalog at the time of the writing of this study. Nevertheless, as the
algorithm presented in this analysis does not rely on photometric redshifts, but considers them
only as an additional feature of galaxies which was measured in the deep field survey, we include
the EAzY photometric redshift estimates in the deep field input catalog. They however serve
only as a placeholder quantity, and we caution the reader to only consider them as such.

4.3 Statistical Model
The essence of this study is to measure and model the average galaxy content of redMaPPer
selected galaxy clusters within a cluster sample and to use this measurement to create mock
galaxy clusters. These mock clusters are constructed to represent the typical cluster line-of-sight,
and do not aim to capture cluster-to-cluster or line-of-sight to line-of-sight variations.

By construction, the clusters identified by redMaPPer are always centered on a bright central
galaxy (BCG). Central galaxies form a unique and small subset of all galaxies, and therefore
we treat them separately from non-central galaxies. In our synthetic observations we always
consider a mock central galaxy with the mean redMaPPer BCG properties to correspond to the
mean cluster. Thus the task for the rest of this section is left as to model the properties and
distribution of non-central galaxies (in the following simply denoted as galaxies).

Our approach is formulated in two steps: First, measuring and modeling galaxy properties
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and distributions. Secondly based on the model, generate mock lines-of-sight consisting of sim-
ulated galaxies, and render them into survey-like observations mimicking the exposures taken
by real telescopes, while applying the appropriate weak lensing effects. The resulting mock ob-
servations then allow us to benchmark cluster weak lensing measurements in a controlled test
scenario.

Throughout this analysis we assume that galaxies are to first order sufficiently described by
a set of observable features, primarily provided by the DES photometric processing pipeline.
The key features are: i-band magnitude mi with de-reddening and other relevant photometric
corrections applied, multi-band colors~c = (g – r, r – i, i – z), galaxy redshift zg, and morphology
parameters ~s describing the scale radius, ellipticity and flux ratio of the two components of the
ngmix SOF/MOF bulge + disk galaxy model. The full list of features and their relation to the
DES Y3 data products is listed in Table 4.1

Our aim is to model the distribution of galaxies in the space of the above features as a function
of projected separation R from galaxy clusters of richness λ and redshift z. This distribution
cannot be directly measured from the DES wide field survey, as the bulk of the galaxy population
lies beyond the completeness threshold magnitude of i ≈ 22.5, where photometric errors come
to dominate the derived features. To counteract this limitation we adopt a two-step approach:
First a target distribution of reference colors and radius (~cref ; R |λ, z) is measured in the wide
field survey. In the second step the wide field target distribution is used as a prior for resampling
the galaxy features measured in the DES deep fields. Comparing the target distribution around
clusters and around a set of reference random points enables us to isolate the feature distribution
of cluster members. Thus the resampling can transform the deep field feature distribution into an
estimate on the full feature distribution of cluster member galaxies it can transfer the additional
features measured accurately only in the deep field data, and extrapolate the cluster population
to fainter magnitudes.

Figure 4.3 shows an illustration of a mock cluster generated as a result of this analysis at the
level of a galaxy catalog and also as a fully rendered DES Y3-like coadd image, along with an
actual redMaPPer cluster taken from the DES Y3 footprint with similar richness and redshift.

The flowchart of the algorithm used in the statistical model of the clusters is shown in Fig-
ure 4.4, which introduces the various components shown is the purpose of this section. The struc-
ture is therefore the following: in section 4.3.1 we describe the measurement of the radial feature
correlation function around galaxy clusters and random points (Radial Correlator), in
section 4.3.2 we introduce the methodology of the various feature distributions as kernel density
estimates (KDE Pipeline), in section 4.3.3 we outline the statistical background subtraction
and survey extrapolation method implemented in Survey Resampling, and finally in sec-
tion 4.3.4 describe the full algorithm for isolating the cluster member feature distribution.

4.3.1 Photometric Feature Correlation Function
We group galaxy clusters into two bins of richness λ ∈ [30; 45) and [45; 60), and three bins
of redshift z ∈ [0.3; 0.35), [0.45; 0.5) and 0.6; 0.65) where each sample is processed separately.
Our binning scheme is motivated by the selections of chapter 2 which served as the basis for DES
Y1 cluster cosmology DES Collaboration et al. (2020). In this pathfinder study however we only
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Figure 4.3: Real and synthetic galaxy cluster side by side. Top: gri color composit image of
a real redMaPPer galaxy cluster in the DES Y3 footprint. Second row: gri color composit
image of a synthetic galaxy galaxy cluster representative of λ ∈ [45 60), z ∈ [0.3; 0.35). Third
row: brightness distribution of the synthetic light sources for cluster members (red/brown) and
foreground and background objects (blue). Darker shades and larger symbols correspond to
brighter objects. Bottom row: exaggerated shear map of background sources (magenta ellipses)
with the shade representing redshift, cluster members (black) and foreground sources (blue).
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Y3A2 GOLD column value description

FLAGS_FOOTPRINT 1 restricts catalog to fiducial survey footprint

FLAGS_FOREGROUND 0 excludes regions masked due to foreground objects

bitand(FLAGS_GOLD, 122) 0 photometric processing failure exclusion based on SOF

EXTENDED_CLASS_SOF 3 high purity galaxy sample based on SOF model

Table 4.2: Y3A2 GOLD catalog query cuts used in obtaining the survey data from the DES Data
Management System (DESDM, Mohr et al., 2008)

cover their central richness bins, and enforce a narrower redshift selection to reduce the smearing
of observed photometric features (e.g. red sequence) due to mixing of different redshift cluster
members. While this smearing is not a limitation for the presented emulator algorithm to model
the observed feature distributions, reduced smearing and redshift mixing enables powerful sanity
checks in evaluating performance. The binning scheme of this study and of chapter 2 is shown
together with the underlying distribution of clusters in Figure 4.2.

In the following we outline the approach used for measuring the distribution of photometric
features as a function of the projected separation R from the targeted clusters in a given bin. This
calculation corresponds to the step RadialCorrelator indicated by green rectangles on the
algorithm outline flowchart (Figure 4.4).

4.3.1.1 Database Query and Filtering

The base dataset for this measurement is a subset of the Y3A2 GOLD photometric catalog se-
lected via the flags listed in Table 4.2, queried from the DES Data Management system (DESDM,
Mohr et al., 2008). The flags are chosen to yield a high-completeness galaxy sample while ex-
cluding photometry failures. For each cluster in a given cluster selection we select all entries
from this base catalog which are approximately within a pre-defined search radius θquery ≈ 6 deg
around the cluster.

In practice this query is implemented by first constructing a low resolution equal-area pix-
elization of the sky using the HEALPix algorithm (Górski et al., 2005) with nside=16, as-
signing a pixel ID for each entry of the base catalog, and then performing an inclusive disk
query around the cluster position to find objects residing in healpix pixels which fully or par-
tially overlap with the search region of radius θquery. This query step drastically reduces the size
of the galaxy catalog, and within the selected subset we directly calculate the projected radial
separation of each galaxy from the cluster positions.

4.3.1.2 Weighted Catalog Subsampling

Given the very large number of galaxies which are at a large separation from the targeted clusters,
directly storing the above dataset is not feasible. Furthermore, the same galaxy can appear mul-
tiple times at different radii around different nearby clusters. Therefore, our aim is to construct a
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Figure 4.4: Algorithm flowchart of the cluster emulator pipeline. The inputs of the pipeline are
the cluster and reference random point catalog (section 4.2.2), the DES wide field (section 4.2.1)
and deep field survey (section 4.2.3). The Radial Correlator module is described in sec-
tion 4.3.1, the emulated features are listed in Table 4.1, the KDE Pipelinemodule is described
in section 4.3.2, while the Survey Resampling module along with the overview of the al-
gorithm is presented in section 4.3.4.
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much smaller subsample of the above dataset whose points can be used to reconstruct the same
distribution and can be stored efficiently, while also accounting for galaxy multiplicities.

To achieve the above, first we measure the total radial number profile of galaxies which is
the sum of the number profiles measured around individual clusters in the selection in radial bins
arranged as R ∈ [0; 10–3) arcmin, [10–3; 0.1) arcmin, and in 50 consecutive logarithmically
spaced radial bins between 0.1 arcmin and 100 arcmin. Following the above, from each radial
range we draw Ndraw = min(Nbin; Nth) galaxies where Nbin is the number of galaxies in the
radial bin, and Nth = 10000 is a threshold number which allows that the subsampled dataset can
be efficiently stored.

The random draw of galaxies is equally partitioned across the Nclust clusters in the cluster
selection. That is, from the vicinity of each cluster approximately Ndraw / Nclust galaxies are
drawn without replacement from each radial bin. To account for the number threshold Nth, for
each drawn galaxy a weight

wbin = Nbin/Ndraw (4.1)

is associated. This way the subsampled distribution retains its shape, and the number of tracers
representing the distribution is reduced in an adaptive way: At low radii all galaxies around
clusters can be admitted to the subsample with unity weight, while at large radii only a small
fraction is admitted with a correspondingly larger weight. For each selected galaxy the full
catalog row is transferred from the GOLD catalog, and through the random draw the same galaxy
can enter multiple times, but at different radii.

The outcome of the above algorithm is a galaxy photometry catalog also containing the pro-
jected radius R of each entry measured from the targeted cluster sample with a weight of each
entry. This dataset is denoted as the RadialClusterData on the algorithm flowchart (Fig-
ure 4.4), and it is a representation of the radial photometric feature and galaxy density distribution
around the targeted clusters. The measurement is repeated also with the sample of reference ran-
dom points selected in the same richness and redshift range as the cluster sample, yielding the
dataset denoted as RadialFieldData. This second dataset is representative of the typical
field galaxy distributions, however through the spatial and redshift distribution of the reference
random points it also directly measures and incorporates the impact of survey inhomogeneities
and masking.

4.3.2 Kernel Density Representation of Survey Data
Our aim is to generalize the features of a finite set of observed galaxies into an estimate on
the multivariate feature probability distribution function (p.d.f.) which they are drawn from.
We achieve this task via kernel density estimation, which is preceded by a data standardization
step, and the resulting density estimates are validated by a cross validation scheme. These steps
correspond to the flowchart outtake on the left side of Figure 4.4 denoted as KDE Pipeline.

4.3.2.1 Kernel Density Estimates

Kernel density estimation (KDE) is a type of unsupervised learning algorithm (Parzen, 1962;
Hastie et al., 2001). The essence of this algorithm is to estimate and recover the (possibly mul-
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tivariate) p.d.f. p(x) based on a set of independent identically distributed random variables (r.v.)
X̂ = X1, X2, ... Xi which are draws from p(x). This recovery is achieved by convolving the dis-
crete set of points with a Kernel function Kh(r), where the reconstructed p.d.f. is expressed as

pn(x) =
(
X̂ ? Kh

)
(x) =

1
n

n∑
j=1

Kh
(
x – Xj

)
. (4.2)

Here, h is the bandwidth which sets the smoothing scale during the p.d.f. reconstruction. Parzen
(1962) showed that this above form yields a consistent estimator of the p.d.f for a wide range of
kernel choices. That is, it is asymptotically unbiased and the estimator variance approaches zero
as the sample size increases: |p(x) – pn(x)| → 0 , Var(pn) → 0 : n → ∞, where h → 0 in the
same limit.

A common choice of kernel function is a Gaussian kernel, which we adopt in the present
study:

K(r, h) =
1√

(2π h)d
exp

(
–

1
2

r2

hd

)
, (4.3)

where the multivariate nature of the dataset is made explicit by formulating the kernel for d di-
mensional data with a single bandwidth h, proportional to the variance of the Gaussian. This
kernel is continuous, therefore from a set of discrete data points we arrive to a continuous esti-
mate of the p.d.f. Due to the wings of the Gaussian distribution, gaps and undersampled regions
are modeled to have non-zero probability, therefore we expect this method to be less sensitive
to sparse data compared to alternative kernels with finite support. Finally, the use of a Gaussian
kernel enables the efficient drawing of random samples from the reconstructed p.d.f pn(x), as
each draw is translated into a random draw from one of the kernels centered on a sample point,
and this is numerically feasible in d dimensions.

For the practical calculation of KDEs we make use of the scikit-learn implementation
of the above algorithm1 which is available as a phyton package. This implementation combines
the KDE algorithm with a decision tree, to optimize the numerical cost of constructing the density
estimate for very large multi-dimensional datasets.

4.3.2.2 Data Standardization

The dataset used here for constructing the KDE may have features with very disparate scales. In
the case of a photometric dataset this is apparent as the value range and distribution of galaxy
magnitudes and galaxy colors is markedly different. This means that any single bandwidth h
(smoothing scale) is not equally applicable for all dimensions.

To address this we transform the input features before the KDE step into a set of new features
which are better described by a single bandwidth parameter, a process called standardization.
First we subtract the mean of each feature, then perform a principle component analysis (PCA)
to find the eigendirections of the input features (Hastie et al., 2001). Using these eigendirections

1https://scikit-learn.org/stable/modules/density.html

https://scikit-learn.org/stable/modules/density.html
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we then map the features of each galaxy into a set of eigenfeatures. Finally, these are standardized
by dividing each eigenfeature by its estimated standard deviation among the sample.

The principle component analysis is performed via the scikit-learn implementation2

which defines it via the singular value decomposition of the dataset:

X = U · D · VT . (4.4)

Here X is the n× d matrix composed of the stack of the n observed d dimensional data points X̂.
U and V are the left- and right handed singular vectors respectively, and the diagonal matrix D
contains the singular values in decreasing order. In this formalism the principle component vec-
tors are the column vectors of U ·D (Hastie et al., 2001). This formalism does not accommodate
for weights in the measured dataset X̂, such as the ones defined by Equation 4.1. To remedy this,
instead of using the full dataset with weights, we perform a weighted draw of ∼ 105 galaxies
with replacement to obtain a representative subset of galaxies. This representative subset is used
in the PCA and the principle components of the subset are then used to transform the full dataset
containing the weights.

The transformation outlined above corresponds to the PCA Standardization section of
the algorithm flowchart shown in Figure 4.4.

4.3.2.3 Bandwidth Selection

The performance of a kernel density estimate according to Equation 4.2 depends on the band-
width h, which in the case of a Gaussian kernel corresponds to the variance of the kernel. While
for n → ∞ the optimal bandwidth h → 0 approaches zero (Parzen, 1962), for a finite dataset
drawn from a p.d.f of general form (e.g. not a Gaussian), the optimal bandwidth cannot be
calculated in an analytic way.

For this reason we perform a data driven optimization to find the optimal bandwidth for the
KDE. During this, the starting dataset is split into training and test data, a KDE pnis constructed
via the training data, and a performance score is calculated on the test data xj:

S =
1
N

N∑
j

ln pn(xj, h) . (4.5)

During the bandwidth selection the score S is maximized over a grid of proposed bandwidths,
which is equivalent to maximizing the probability of the test data given the training data.

Splitting the data into one training and one test set may introduce over-fitting into the op-
timization, as the algorithm and bandwidth may be artifically tuned to provide good results for
a single particular test scenario. A way around this is to adopt a leave-one-out cross-validation
strategy (Hastie et al., 2001), where the same base data is split into k equal parts, and from these
each part is once considered as the test data, and the remainder is used as the training data. In

2https://scikit-learn.org/stable/modules/decomposition.html

https://scikit-learn.org/stable/modules/decomposition.html
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this approach the score S is calculated k times on a different training and test combination, and
a joint cross-validation score is estimated as

CVk(pn, h) =
1
k

k∑
i=1

Si . (4.6)

Here Si is evaluated on points in the i-th subset, while the KDE is trained on points not in the i-th
subset. The final KDE is then constructed from the full dataset using the bandwidth maximizing
the CVk score, where we adopt k = 5.

Originating from the PCA standardization step, bandwidths can be expressed relative to the
standard deviation σ = 1 of the various standardized eigenfeatures. Based on this we evaluate the
cross validation score on a logarithmically spaced bandwidth grid from 0.01σ to 1.2σ for each
KDE shown on Figure 4.4. We find that h ≈ 0.1σ simultaneously provides a good bandwidth
estimate for the deep field and the wide field KDEs, hence we adopt it as a global bandwidth for
further calculations.

This above cross-validation bandwidth selection step, along with the construction of the final
KDE using the optimized bandwidth corresponds to the Kernel Density Estimation
section of the algorithm flowchart shown on Figure 4.4.

4.3.3 Cluster and Field Population Estimates
The aim of this section is to model the radial feature distribution of cluster member galaxies for
different samples of galaxy clusters, and to separate this from the distribution of foreground and
background galaxies which we expect to be be similar to field galaxies of the median survey line
of sight. The input data product for the following calculations is the feature p.d.f. estimated from
the various deep field and wide field galaxy catalogs using the kernel density estimate pipeline
introduced in section 4.3.2 The full list of features along with their definitions from DES Y3 data
products is shown in Table 4.1.

First, in section 4.3.3.1, we formally define the statistical background subtraction used to
estimate the feature distribution of cluster members. This formal definition is not yet straight-
forward to evaluate in practice, and has to be updated to a more practical approach. Meanwhile,
in section 4.3.3.2 we introduce the extrapolation scheme used in combining deep field and wide
field data. Finally in section 4.3.3.3 we introduce and overview a rejection sampling approach
which can be used to combine and jointly perform the operations defined in section 4.3.3.1 and
section 4.3.3.2.

4.3.3.1 Statistical Background Subtraction

When measuring the correlation of galaxy positions and features with cluster positions as per-
formed in section 4.3.1, all line-of-sight galaxies are included. Hence, the cluster members are
mixed with foreground and background galaxies, which dilute and contaminate the measure-
ment. Photometric redshift estimates available for the wide field DES surveys (Y1 Hoyle et al.,
2018 or Y3 DES Collaboration, in prep c) are not precise enough to isolate a sufficiently pure and
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redshift bin cluster redshift range components comment

1 z ∈ [0.3; 0.35) ~cwide;z1 = (c1, c2) g – r, r – i colors

2 z ∈ [0.45; 0.5) ~cwide;z2 = (c1, c2) g – r, r – i colors

3 z ∈ [0.6; 0.65) ~cwide;z3 = (c2, c3) r – i, i – z colors

Table 4.4: Reference colors for the redshift ranges of the different cluster selections

complete sample of cluster member galaxies across the full range of galaxy populations (e.g. not
only the red sequence). Therefore, to avoid the above limitation, we perform a statistical back-
ground subtraction (Hansen et al., 2009). That is, instead of separating the line of sight galaxy
population into disjoint sets of cluster and non-cluster galaxies, we only aim to estimate the over-
all feature distribution of cluster member galaxies, while allowing each galaxy to contribute to
both distributions with non-zero weight.

We formulate the statistical background subtraction as performed on the p.d.f.-s of different
galaxy feature distributions p(~θ, R |λ, z), where ~θ is the list of features considered, and R is the
projected separation from the targeted positions on the sky, while λ and z are the richness and
redshift of the targeted clusters. In practice, each p.d.f. corresponds to a KDE constructed on
the relevant features and radius following section 4.3.2, after estimating the radial distributions
according to section 4.3.1. In this framework we describe the line-of-sight galaxy population as
a two-component system, with a cluster member population, and a field population. The sum of
these two (after normalization) yields the total galaxy population pclust(~θ, R |λ, z) measured in
projection around clusters. Subtracting an appropriate estimate of the field population from the
total population thus then yield an estimate on the cluster member population’s pmemb(~θ, R |λ, z).
Following the approach already introduced in chapter 3 we approximate the field population as
the projected feature distribution around a corresponding sample of reference random points
prand(~θ, R |λ, z). In this study, both the cluster positions and the corresponding set of reference
random points are provided by the redMaPPer algorithm. Random points are also labeled by
richness and redshift to indicate which cluster selection they are representative of.

Based on the above, the feature distribution of cluster member galaxies can be written as the
excess probability of finding a galaxy around a cluster compared to a random point:

pmemb(~θ, R) =
n̂r

n̂c – n̂r

[
n̂c
n̂r

pclust(~θ, R) – prand(~θ, R)
]

(4.7)

where in practice both p.d.f-s on the right hand side are measured in the wide field dataset accord-
ing section 4.3.2, and n̂c and n̂r refer to the mean number of galaxies detected within Rmax around
clusters and random points. These factors are necessary as p.d.f.-s are normalized to unity, but
clusters are overdense compared to median line-of-sight (i.e. n̂c > n̂r), which has to be accounted
for during the background subtraction. Equation 4.7 is formulated as an operation on the p.d.f.,
but it is mathematically equivalent to directly subtracting the multi-dimensional histograms of
the two distributions. For practical application the p.d.f. formalism carries benefits compared to
histograms: The kernel density estimate of the p.d.f. is less susceptible to shot-noise, and the
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representation of the distributions is less impacted by the curse of dimensionality as there is no
need to uniformly cover the parameter space with a histogram grid (Hastie et al., 2001).3

While as described above the operation defined in Equation 4.7 is correct, yet it is impractical
to carry out numerically because of the way the KDE representations of p.d.f-s are constructed
and stored. For this reason we will define an equivalent mathematical operation in a later section
(section 4.3.3.3) which is used in the actual calculations. However, before introducing that, we
first investigate the additional task of survey depth extrapolation which we also have to perform
in modeling the cluster member galaxy feature distributions.

4.3.3.2 Survey Depth and Feature Extrapolation

The statistical background subtraction formally defined in Equation 4.7 estimates the the fea-
ture distribution of the cluster member population pmemb(~θ, R |λ, z), under the assumption that
the ingredient p.d.f.s pclust(~θ, R) and prand(~θ, R) are calculated correctly from the kernel density
estimation step outlined in section 4.3.2. However the approach carries the limitation that it is
only applicable for those features ~θ and their respective value ranges which are covered by the
wide field dataset. Furthermore, the formalism implicitly assumes that the p.d.f-s are dominated
by the intrinsic distribution of properties, and not by measurement errors. To fulfill this require-
ment the wide field data must be restricted to a parameter range where photometry errors play a
subdominant role, and the completeness of the survey is high.

The above requirements necessitate excluding the bulk of the galaxy population from the
background subtraction scheme, as for the DES Y3 GOLD wide field survey the 99% complete-
ness depth is i < 22.5 (DES Collaboration, in prep a), and this includes only a minor fraction of
all galaxies in any line of sight. Especially important in relation to this study are galaxies whose
flux is great enough to meaningfully contribute to the total light in a part of the sky, yet they are
not fully resolved or they cannot be detected with confidence using standard survey photometry
pipelines (Suchyta et al., 2016). Nevertheless these partial or non-detections have a significant
impact on the photometric performance of survey data products (Hoekstra et al., 2017; Euclid
Collaboration et al., 2019; Eckert et al., 2020). Therefore they must be modeled and included
in the statistical description of a line-of-sight. A distinct undetected population of galaxies is
associated with galaxy clusters, which are the faint-end of the cluster member galaxy popula-
tion. The feature distribution of these galaxies is markedly different from the distribution of faint
galaxies in the field (cosmic median) line-of-sight. Therefore to model cluster lines-of-sight both
populations have to be accounted for.

To characterize the properties of galaxies faint enough to only have incomplete detections in
the DES wide field survey, we make use of the DES deep field survey. Owing to≈ 80 greater ex-
posure time over many epochs, the completeness depth of the deep fields in the COADD_TRUTH
mode is ∼ 2 mag deeper than the wide fields (DES Collaboration, in prep b), and the measured
fluxes and models of galaxy morphology are less impacted by noise at fixed magnitude compared
to the DES Y3 GOLD wide field catalog.

3The memory required for representing a p.d.f. based on N points in d dimensions scales as: ∝ nd
bin for a

histogram with uniform bin sizes, while for the KDE method scales as ∝ N. In case of a decision tree based KDE
as used by scikit-learn the scaling goes with ∝ nleaf where nleaf ≤ N
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Figure 4.5: An illustration of the re-weighting approach according to Equation 4.17. left: color-
magnitude diagram of galaxies measured in projection with R ∈ [10–0.5; 1) arcmin around
redMaPPer galaxy clusters with λ ∈ [45; 60 and z ∈ [0.3; 0.35) in the DES wide field survey.
center: transformed deep field distribution according to Equation 4.17. right: color magnitude
diagram of galaxies measured in the DES deep field survey. dashed: wide field completeness
magnitude i ≈ 22.5. The color scale and contour levels are identical in the three panels. It is
visible, that for the i < 22.5 magnitude range, the color based re-weighting was able to reproduce
the color-magnitude distribution of the line-of-sight

Our aim is therefore to combine the galaxy distributions of the deep field and the wide field
in a way where we obtain information about the extrapolation of the various feature distributions
pmemb(~θ, R |λ, z), pclust(~θ, R |λ, z) and prand(~θ, R |λ, z) to fainter magnitudes. Furthermore,
even for i < 22.5 there are features such as the ngmix SOF/MOF morphology model which are
measured more robustly for deep fields, and we aim to make use of this additional information.

To achieve this task, we first denote the target of the operation p̃D(~θ, R |λ, z) where the
subscript D indicates that the distribution is estimated down to a completeness limit of i ≈ 24.5.
In the following we decompose ~θ into two sets of features: ~θwide which can be measured from
the wide field dataset, and ~θdeep which can only be reliably measured from the deep field dataset,
thus

p̃D(~θ, R |λ, z) ≡ p̃D(~θdeep, ~θwide, R |λ, z) . (4.8)

Here we note that R, λ, and z are features and quantities which also only originate from the wide
field dataset. We note that all features in θwide can also be measured with confidence in the deep
field, but the reverse is not necessarily true.

We formulate Equation 4.8 as a transformation of naive proposal distribution, expressed by
the factorization:

p̃D(~θdeep, ~θwide, R |λ, z) = pD:prop(~θdeep, ~θwide, R |λ, z) (4.9)

× F̃(~θdeep, ~θwide, R |λ, z) .

Here we separate the task into two parts, where the proposal distribution pD:prop carries infor-
mation measured from the deep fields, and the multiplicative term F̃ represents the required
transformation of the p.d.f. to fulfill the previously defined criterions.
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As there is no cluster information from the deep field survey, the proposal p.d.f. cannot
depend on λ and z, that is

pD;prop(~θdeep, ~θwide, R |λ, z) = pD;prop(~θdeep, ~θwide, R) , (4.10)

and for the same reason in the proposal distribution ~θdeep and ~θwide cannot be correlated with R:

pD:prop(~θdeep, ~θwide, R |λ, z) = pD(~θdeep, ~θwide) · pD:prop(R) . (4.11)

Here pD(~θdeep, ~θwide) can be directly measured from the deep field survey, and pD:prop(R) is
chosen to capture the approximately uniform surface density of galaxies, e.g. pD:prop(R) ∝ R.

The remaining task is to find an appropriate multiplicative term F̃(~θdeep, ~θwide, R |λ, z) which
transforms the proposal distribution pD:prop into the target distribution p̃D. Since p̃D depends on
λ, z and R, and pD:prop is independent of these, the F̃ term must contain all such information.
Furthermore, the correlation between ~θdeep and R cannot be measured from wide field data,
therefore we approximate F̃ as

F̃(~θdeep, ~θwide, R |λ, z) ≈ F(~θwide, R |λ, z) . (4.12)

A necessary consistency constraint placed on F is expressed as

p̃D(~θwide, R |λ z)
∣∣∣
W

= pD;prop(~θwide, R)× F(~θwide, R |λ, z)
∣∣∣
W

(4.13)

= pW (~θwide, R |λ, z) (4.14)

where the W subscript indicates a p.d.f. estimated from wide field data, and the |W subscript
denotes that the otherwise greater magnitude range is restricted to the wide field completeness
magnitude of i ≈ 22.5. From the above constraint it is then possible to find the simplest form of
F, as

F(~θwide, R |λ, z) =
1
V̂

pW (~θwide, R |λ, z)

pD;prop(~θwide, R)
∣∣∣
W

(4.15)

=
1
V̂

pW (~θwide, R |λ, z)

pD(~θwide)
∣∣∣
W
· pD;prop(R)

(4.16)

where V̂ is a normalization factor to account for the different volumes of the wide field and deep
field parameter spaces, e.g. the difference in the limiting depth of i < 22.5 versus i < 24.5.

From the combination of Equation 4.11 and Equation 4.16 we can then write our estimate on
the target distribution as

p̃D(~θdeep, ~θwide, R |λ, z) ≈
pD(~θdeep, ~θwide) pW (~θwide, R |λ, z)

V̂ · pD(~θwide)
∣∣∣
W

, (4.17)



4.3 Statistical Model 141

where pD;prop(R) drops out, and the approximation is composed entirely of p.d.f-s which can be
directly measured from the wide field or deep field data.

Equation 4.17 is only the simplest of the allowed extrapolation equations, and with external
information on the correlations of the various features more complex formulations are possible.
Nevertheless this form already possesses a set of useful qualities, which allow us to incorporate
it into our analysis and calculations in the way described below. We note however that this is not
a unique, albeit a practically useful way of doing so.

First, as the above Equation 4.17 distinguishes wide field and deep field features, we define
what is meant by this in practice. Here we take ~θwide = ~cwide as a set of colors measured in
both the wide field survey and deep field survey, and ~θdeep = (m, ~s,~cdeep, zg) is a vector com-
posed of magnitudes, colors, morphology parameters and redshifts measured in the deep field
survey according to Table 4.1. From the wide field observations we have information about the
distribution of galaxy colors around clusters as function of projected radius R within a cluster
sample, but only down to the wide field completeness magnitude i < 22.5. For the deep field, we
have information about the full set of galaxy photometry and morphology features, but no infor-
mation relating to clusters (that is no R, λ or z), but down to a deeper completeness magnitude
of i < 24.5. The meaning of Equation 4.17 is to combine these two sets of information. As is
visible in Equation 4.10 this can be thought of as a re-weighting of the deep field feature p.d.f. by
a weight factor, where the weight factor captures the cluster related information. In the present
formulation, this re-weighting is done based on the ~cwide set of colors, which are measured in
both the wide and the deep field data (for the different cluster redshift samples these are listed in
Table 4.4). This framework conserves the color dependent luminosity function, and in general it
obeys that

p̃D(~θdeep| ~θwide, R, λ, z) ≡ pD(~θdeep| ~θwide) (4.18)

Ṡince magnitudes are part of ~θdeep, this means that the the final p.d.f. estimate inherits the
luminosity function of the deep fields, along with all additional features which are measured in
the deep fields. Hence the survey depth is extrapolated in a smooth and continuous way.

An illustration of this approach is shown on Figure 4.5, where the left panel shows the
target distribution, the color-magnitude diagram of galaxies measured in projection with R ∈
[10–0.5; 1) arcmin around redMaPPergalaxy clusters with λ ∈ [45; 60 and z ∈ [0.3; 0.35) in the
DES wide field survey. The right panel of this figure shows the comparable color magnitude dia-
gram of galaxies measured in the DES deep field survey, with the wide field completeness mag-
nitude shown as the vertical dashed line. The center panel of this figure shows the transformed
deep field distribution according to Equation 4.17, where the radial color distribution around the
cluster sample was used as the target p.d.f. The color scale is identical in the three panels, and
iso-probability contours are added to trace the parts of the distribution where the color scale satu-
rates. It can be seen that for the i < 22.5 magnitude range, the color based re-weighting is able to
reproduce the color-magnitude distribution of the line-of-sight: reconstructing the red-sequence
and blue cloud of the cluster line of sight out of deep field galaxies. Furthermore, once can see
that by applying this re-weighting to the deep field galaxy distribution, the observed magnitude
distribution of each color cell is retained down to the deep field cutoff magnitude.
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Figure 4.6: Illustration of statistical background subtraction via rejection sampling according to
Equation 4.22. (black:) scaled p.d.f measured around clusters pclust / M. (teal:) scaled p.d.f.
measured around reference random points prand / n̂c

n̂r
M. The black and teal vertical dashed lines

indicate the probability of the different events needed independently fulfill the two inequalities
in the r.h.s of Equation 4.22, while the length of the magenta dashed line is proportional to joint
probability of the two events.

4.3.3.3 Rejection Sampling

The aim of this section is to jointly perform the statistical background subtraction (section 4.3.3.1)
and the survey depth extrapolation (section 4.3.3.2), generating random samples from the thus
isolated and extrapolated cluster member feature distribution.

Generating a multivariate random variable which is distributed according to a p.d.f. of generic
form is not trivial (MacKay, 2002). The KDE representation of p.d.f.-s adopted in section 4.3.2
avoids this limitation by reducing the random draw from the p.d.f. into a random draw from a
Gaussian kernel. However the KDE approach introduces an independent difficulty, as the p.d.f.
is not known analytically. Evaluating it is computationally much more expensive than drawing
random samples, as it requires summing over the contribution of all data points whose kernel
has non-zero contribution. Furthermore, the KDE representation does not lend itself readily to
performing abstract operations on the p.d.f. such as subtracting or dividing two distinct KDEs,
as they are built on different datasets and decision trees.

In light of the above, we adopt an approach where instead of directly performing the back-
ground subtraction operation defined by Equation 4.7 or the survey extrapolation defined by
Equation 4.17, we aim to generate random samples from the target distribution p̃D; memb which
is the estimate on the feature distribution of the cluster member galaxies extrapolated with deep
field features and limiting magnitudes. For this we make use of an approach known as rejection
sampling or alternatively accept - reject sampling or von Neumann rejection (MacKay, 2002).
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The essence of rejection sampling is to generate random variables distributed according to a tar-
get distribution ptarg(~α) by performing random draws from a proposal distribution pprop(~α). The
crucial benefit is that this approach only requires that the target probability can be numerically
evaluated, and it does not rely on knowing its analytic form.

For each random realization ~αi drawn from pprop(~α), an acceptance criterion is defined using
a second draw ui from a uniform distribution U[0; 1). Proposal draws fulfilling the inequality

ui <
ptarg(~αi)

M · pprop(~αi)
(4.19)

are accepted, while draws which do not fulfill it are discarded. The ~αi values meeting the above
selection are guaranteed to be distributed according to ptarg (MacKay, 2002). The factor M
appearing in the above inequality is defined to ensure that

M · pprop(~α) > ptarg(~α) : ∀~α . (4.20)

There is a simple geometric interpretation of rejection sampling, which is that M · pprop
defines an upper envelope function for ptarg, and the acceptance rate for ~αi is proportional to the
distance between this envelope function and ptarg. That is where the upper envelope function
closely approximates the target distribution the acceptance rate is close to unity. Naturally this
means, that the numerical efficiency of the rejection sampling algorithm greatly benefits from
finding a proposal distribution which is similar to the target distribution, although this is not a
mathematical requirement of the method.

We now formulate the statistical background subtraction and extrapolation in the language of
rejection sampling. As introduced in section 4.3.3.1, the cluster member galaxy population can
be statistically defined as the feature dependent galaxy excess compared to a reference random
line-of-sight. This can be equivalently expressed as a galaxy with feature ~βi having membership
probability

pmemb(~βi) = P
[

prand(~βi) < ui ·
n̂c
n̂r

sup
(

pclust(~βi)
)

<
n̂c
n̂r

pclust(~βi)
]

(4.21)

where in the right hand side P[·] refers to the probability that the double inequality is fulfilled,
n̂c and n̂r refer to the normalization factors of pclust and prand respectively, sup(·) refers to the
supremum of the function over the parameter space, and it is assumed that the proposed ~β is
distributed uniformly over the parameter space. Since in practice pclust is not known exactly,
we can rewrite the above equation by replacing it with an appropriately chosen valueM which
fulfills that n̂c

n̂r
pclust <M and prand <M:

pmemb(~βi) ∝ P
[

prand(~βi) < ui ·
n̂c
n̂r
M <

n̂c
n̂r

pclust(~βi)
]

, (4.22)

in which case the equality turns into a proportionality. The geometric meaning of this approach
is illustrated on Figure 4.6, which shows the appropriately scaled version of the pclust and prand
p.d.f.-s as the black and teal curves respectively. The probability of the two events appearing in
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the inequalities in the right hand side (r.h.s.) of Equation 4.22 are indicated by the lengths of the
black and the teal lines, while the joint probability of the two events happening at the same time
is shown by the length of the magenta line.

The acceptance rate can be increased by using a cleverly choosen proposal distribution pprop
which is other than uniform. In this case the above equation needs to be modified as

pmemb(~βi) ∝ p
[

prand(~βi) < ui ·
n̂c
n̂r
M · pprop <

n̂c
n̂r

pclust(~βi)
]

. (4.23)

The above form can be transformed to resemble Equation 4.19 and make the similarities with the
simple rejection sampling approach manifest:

pmemb(~βi) ∝ p

 prand(~βi)
n̂c
n̂r
M · pprop

< ui <
pclust(~βi)
M · pprop

 (4.24)

where ui is drawn from U[0; 1), and prand(~βi) and pclust(~βi) are the feature p.d.f. of galaxies
measured in projection around reference random points and galaxy clusters respectively. n̂c/n̂r
is the average relative overdensity of galaxy count in the cluster line-of-sight compared to a
reference random line of sight.

Equation 4.24 has limited practical use, since both prand and pclust can be measured directly
from data, negating the the need for resampling. Nevertheless Equation 4.24 can be used to
incorporate the survey extrapolation according to Equation 4.17. For this we adopt the proposal
distribution as defined by Equation 4.11, that is

pprop = pprop(~θdeep, ~θwide, R |λ, z)

= pD(~θdeep, ~θwide) · pW; rand(R |λ, z)

= pD(m, ~c, ~s, zg) · pW; rand(R |λ, z) (4.25)

which we use to draw the proposal random samples from. Furthermore we define a restricted
proposal distribution which contains only features contained within ~θref , that is

prp = prp(~θwide, R |λ, z)
= pD(~cwide) · pW; wide(R |λ, z) , (4.26)

which can be directly compared with pclust and prand.
Combining the above, we can generate random samples from the survey extrapolated pmemb,

by drawing samples {mi, ~ci, ~si, zg;i, Ri} from Equation 4.25, and considering the subset which
fulfills the extrapolated membership criterions

n̂r
n̂c

pW; rand(~cwide;i, Ri |λ, z)
M · pD(~cwide;i) · pW; rand(Ri |λ, z)

< ui (4.27)

and

ui <
pW; clust(~cwide;i, Ri |λ, z)

M · pD(~cwide;i) · pW; rand(Ri |λ, z)
. (4.28)
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As a null-test, we can also perform the same resampling for the galaxies around random
points, which using the same proposal distribution as above, is defined by the criterion

ui <
n̂r
n̂c

pW; rand(~cwide;i, Ri |λ, z)
M · pD(~cwide;i) · pW; rand(Ri |λ, z)

. (4.29)

In the above formalism the factor M must be chosen appropriately to ensure that Equa-
tion 4.20 holds. In practice there is no given recipe forM, and the suitable value must be found
for the actual samples proposed. In addition, as the p.d.f.-s in this analysis are estimated numeri-
cally, the measurement noise can lead to small fluctuations in them. This, especially in the wings
of the distributions where probabilities are small, can manifest as ptarg/pprop being very large,
necessitating a very large value of M. This would lead to an artificially low acceptance rate
imposed by noise and poorly sampled regions. To regularize this behaviour we relax the require-
ment onM and in practice only require that Equation 4.20 be fulfilled for 99% of the proposed
points. We explore theM range in an iterative fashion up to 500, and find only no significant
change in the distribution of the samples forM > 40, hence in the following we adoptM≈ 100
for the criterions Equation 4.27, Equation 4.28 and Equation 4.29.

4.3.4 Algorithm Overview
Based on the methods introduced in the previous sections, we now overview the complete algo-
rithm used to estimate the feature distribution of cluster member galaxies. The flowchart for this
algorithm is shown on Figure 4.4.

The primary inputs for the calculation are the photometric catalog of DES Y3 GOLD indi-
cated as Wide Field Survey introduced in section 4.2.1, the photometry and photometric
redshift catalog of the DES Y3 deep and supernova survey indicated as Deep Field Survey
on Figure 4.4 introduced in section 4.2.3, and the redMaPPer cluster and reference random point
catalog indicated as Cluster Catalog and Reference Randoms respectively, which are
introduced in section 4.2.2.

4.3.4.1 Data Preparation

In the first calculation step, the wide field dataset and the cluster and reference random catalogs
are combined by the operation indicated as Radial Correlator on Figure 4.4, which is in-
troduced in section 4.3.1. The essence of this step is to construct a set of features for each galaxy
in the wide field catalog, and to measure the radial distribution of galaxies around clusters and
reference random points. The features for wide field detected galaxies consists of i-band magni-
tude, g–r, r– i, i–z colors, and the additional projected radius measured from the reference point.
The exact definition of these features from the DES Y3 GOLD catalog is shown in Table 4.1.
The outcome of this calculation is two new dataset composed of a catalog of galaxies with the
above features defined with the target cluster positions denoted as Radial Cluster Data
and with the reference random points denoted as Radial Field Data. This latter is moti-
vated by the approximation that the environments of the reference random points measure the
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galaxy properties of the typical field lines-of-sight. For the deep field survey we directly trans-
form the DES deep field data into the set of features listed in Table 4.1. The used features are
i-band magnitude, g – r, r – i, i – z colors, a photometric redshift estimate zg for each galaxy, and
three morphology parameters used in the ngmix SOF/MOF galaxy model: absolute ellipticity,
area, bulge / disk fraction.

In the following step, from the galaxy feature dataset, kernel density estimates of the under-
lying feature p.d.f.-s are constructed according to the approach introduced in section 4.3.2. From
the three datasets a total of five separate KDEs are constructed as shown on Figure 4.4, which are
listed along with the list of features and value ranges in Table 4.3. In short, these KDEs corre-
spond to the estimate on the radial color distribution of galaxies around selections of redmapper
clusters in the DES wide field survey P(~cref , R |λ, z) denoted as Cluster CR KDE, to the
corresponding radial color distribution around reference random points denoted as Field CR
KDE, and to the radial galaxy profile around refernce random points in the wide field survey
P(R |λ, z) denoted as Field R KDE. From the deep field feature dataset two KDEs are con-
structed, one covering all features with their full value ranges P(m, ~c, ~s, zg) denoted as DEEP
Full KDE, and one containing only the distribution of wide field colors restricted to the wide
field depth P(~cref denoted as DEEP C KDE. For the full deep field KDE the magnitude range is
set as i < 25.5, which is done to avoid edge-effects in estimating the KDE, however in the future
when drawing random samples we always restrict the drawing range to i < 24.5.

In the above, folowing section 4.3.3.2, we only considered a set of reference colors ~cref for
the wide field, which are a subset of the available colors ~c. These were selected to bracket the
approximate location of the D4000 break at the targeted cluster redshift range, and are listed in
Table 4.4.

4.3.4.2 Survey Resampling

In the following step we perform the statistical background subtraction and survey extrapolation
via resampling, as defined in section 4.3.3.3.

First, a proposal distribution is defined, from the combination of the DEEP Full KDE and
FIELD R KDE modules, which is given by Equation 4.25, and denoted as Full Proposal
in Figure 4.4.

From the full proposal distribution a random sample is drawn

~θi = (mi, ~ci, ~si, zg;i Ri) , (4.30)

and a corresponding restricted random vector is defined using a subset of the values of the re-
spective elements

~θi;wide = (~ci:wide, Ri) . (4.31)

The probability of this restricted draw is then evaluated with three different distributions: The
Cluster Target Score and the Field Target Score are found by evaluating ~θi;ref
with Cluster CR KDE and Field CR KDE respectively. The Restricted Proposal
Score is found by evaluating ~θi;ref with a restricted proposal distribution defined based on the
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modules DEEP C KDE and FIELD R KDE (both of which is restricted to i < 22.5) follow-
ing Equation 4.26. This probability is then multiplied by the factor M = 100, as defined in
section 4.3.3.3.

From the above three scores two ratios are taken: The ratio of the Cluster Target
Score and Proposal Score corresponds to the right hand side of Equation 4.28 and is de-
noted as Cluster Ratio (CL), and the ratio of Field Target Score and Proposal
Score correspond to the left hand side of Equation 4.27 and is denoted as Field Ratio
(FL).

Combining the above with a uniform random draw ui drawn from U[0; 1) indicated as
Uniform Draw allows us to evaluate the inequality given by Equation 4.27 and Equation 4.28
for the random draw ~θi;ref and the corresponding ~θi. This inequality corresponds to the decision
denoted as the element FL < U < CL in Figure 4.4. For random draws where this criterion is
fulfilled, ~θi is accepted as a sample from the extrapolated cluster member distribution and col-
lated to the dataset indicated as Cluster Members. For random draws which do not fulfill FL
< U < CL, a further decision is taken corresponding to the inequality defined in Equation 4.29,
indicated as the element U < FL. Random draws ~θi which fulfill this criterion are accepted as
samples from the extrapolation of the field distribution, and are collated in the dataset indicated
as Field Objects. Random draws which fulfill neither of these criteria are discarded, and a
new random draw is performed to get ~θi+1.

Using the above approach, the random draws can be repeated until a sufficiently large sam-
ple is accepted for the cluster member and the field object dataset. These accepted draws can
either be used directly to construct mock observations, or alternatively a KDE can then be con-
structed to estimate the p.d.f. of the cluster members and extrapolated field galaxies, denoted
as Cluster Member KDE and Extrapolate Field KDE. Estimating the extrapolated
feature distribution of cluster member galaxies was the target of this work, and is achieved via
the above algorithm. A further outcome of this implementation is that a cluster member KDE is
constructed, no further p.d.f. evaluations are necessary, and subsequent samples can be drawn di-
rectly from the final cluster member KDE. Although this cluster member KDE incurs additional
smoothing compared to its input samples, it enables a drastic reduction in computational cost in
generating further samples, enabling the efficient scalability of the algorithm.

In addition, the consistency of the extrapolated field distribution estimate with the wide field
and deep field galaxy distributions provides a useful null-test for judging the performance of the
method.

4.3.4.3 Nested Spherical Cluster Model

The above sections provide the recipe to estimate the Cluster Member KDE. However, a
practical limitation of the method is that since the proposal Ri values are drawn from the full
considered radial range around clusters and reference random points (see Table 4.3) the larger
radial ranges will be much better sampled than the lower radius ranges because of the increase
in surface areas p(R) ∝ R. Due to this geometric behaviour, ensuring that the cluster member
distribution is well sampled at all radii becomes computationally expensive.

A simple way around this problem is to split the radial range into a set of radial bins, and
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radial bin radial range [arcmin] padding range [arcmin]

1 [10–1.5; 10–0.5) [10–1.5; 100)

2 [10–0.5; 100) [10–1.5; 100.5)

3 [100; 100.5) [10–1.5; 101)

4 [100.5; 101) [10–1.5; 101.2)

Table 4.5: Nested Sphere definitions for the radial bins

repeat the resampling for each bin separately. To avoid edge-effects in the KDEs caused by the
sharp radial bin edges, instead of disjoint radial ranges we define a set of four nested concentric
spheres. Each sphere covers a target radial range, but extends from a lower limit out to a padding
radius beyond the upper limit of the target radius, as listed in Table 4.5. However, when drawing
samples, only those within the target radial range are considered for the resampling. Therefore
while the resampling is performed separately for the different radial ranges, consistency between
the KDEs is enforced by the fact that they are derived from shared information due to the radial
overlap.

This approach repeats the resampling scheme four times, yielding estimates for both the
Cluster Member KDE and the Extrapolated Field KDE for the different radial ranges.
While each of these p.d.f.-s is individually normalized to unity, we express the relative probabil-
ity pl of a member galaxy residing in a given radial bin rl around a cluster as

pl ≈
n̂c; l – n̂r; l

pl(i < 22.5)

/∑
l

n̂c; l – n̂r; l
pl(i < 22.5)

(4.32)

where n̂c; l, n̂r; l is the average number of galaxies around clusters and random points residing
in the radial bin in the wide field dataset, and pl(i < 22.5) is the probability that based on
the Cluster Member KDE in radial bin l a galaxy is bright enough to be in the wide field
selection. While this formalism is similar to the direct background subtraction scheme defined is
section 4.3.3.1, it is only used to approximate the relative weight of different radial ranges, and
does not influence the estimation of the feature p.d.f.-s within the radial ranges.

4.4 Model Results
In this section we present our statistical model for the different sets of galaxy populations mea-
sured from the DES data, and overview the properties of the estimated cluster member galaxy
population which is obtained as the result of the statistical background subtraction and survey
depth extrapolation. These task are performed with the aim of creating an emulator for the galaxy
distribution, that is to construct a statistical model which enables generating random realizations
of the underlying galaxy populations. This approach enables us to subsequently generate mock
observations.
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In addition to the above, as a sanity check we also overview the properties of the extrapo-
lated galaxy feature distribution measured around random points, to test the consistency of the
statistical resampling method defined in section 4.3.

4.4.1 Input Feature Distributions
The primary inputs for the measurement presented in this paper are the distribution of galaxy
properties around galaxy clusters and reference random points in the DES wide field survey
(section 4.2.1), and the distribution of galaxy properties in the DES deep fields (section 4.2.3).

Throughout the statistical modelling process presented in section 4.3, galaxy properties are
collated into features, which are listed in Table 4.1. The dependence of wide field galaxy features
on the distance from clusters and reference random points is measured during the analysis, and
from the deep field and wide field feature dataset a feature probability distribution function is
estimated using kernel density estimates. For each targeted sample of galaxy clusters a total of
five different p.d.f.-s are estimated as listed in Table 4.3. Of these distributions in the following
we present the distribution measurements and the corresponding KDE estimates for the two pri-
mary distributions: The distribution of features around clusters in the wide field data (Cluster
CR KDE), and the distribution of all measured features in the deep field dataset (Deep Full
KDE). This restriction is motivated as the distribution estimates for Field CR KDE and Field
R KDE measured in the same framework as Cluster CR KDE but around reference random
points, while Deep C KDE is comprised of a subset of Deep Full KDE.

4.4.1.1 Distributions of wide field galaxies around clusters

Figure 4.7 shows the measured feature distribution of galaxies around a selection of redMaPPer
galaxy clusters with λ ∈ [45; 60) and z ∈ [0.3; 0.35). The features of this distribution are
the reference colors ~cref = (g – r, r – i) and the projected radial separation R measured from
the target galaxy cluster centers. Using these sets of features a KDE is constructed according
to section 4.3.2, whose model for the p.d.f is shown as the continuous curves and contours on
Figure 4.7. Visualizing the full joint distribution of these three features is non-trivial, therefore
we only show a selected set of slices (conditional distributions), and the corresponding KDE
model. We note that the KDE is constructed globally for all features and the full value range,
and not only for the shown conditional distributions. The top left two panels of Figure 4.7
show the distributions of galaxy colors at different projected radii from the cluster centers for
all galaxies with i < 22.5. The histograms correspond to the measured distribution, while the
continuous curve represents the appropriate slice of the global KDE model. It is visible that
there is a prominent radial dependence as the red sequence becomes increasingly dominant for
small radii. This represents the increased prevalence of red cluster member galaxies in the line-
of-sight, as blue cloud galaxies become a subdominant component. The KDE model provides
a good overall description of these galaxy distributions capturing the two-component nature of
the galaxy population. It recovers the position and the approximate relative weight of the red
sequence population, and also approximates the extreme peak of the red sequence distribution.
We note that since the targeted galaxy clusters span a redshift range ∆z = 0.05, the width of the
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Figure 4.7: Distribution of galaxy features with i < 22.5 around redMaPPer galaxy clusters
(λ ∈ [45; 60), z ∈ [0.3; 0.35) in the DES wide field dataset . Top left and center: g – r and
r – i color histograms of galaxies in bins of projected radius. histogram: DES data. contours:
KDE reconstruction. The radial bins correspond to the radial shells defined in Table 4.5 Top
right: Surface density profile of galaxies around the targeted cluster sample. black: measured
profile. color: KDE reconstruction of the surface density profile, color coded to the radial bins
of the the top left and center panels. Bottom: g – r - r – i color distribution of galaxies in the
four radial shells. histogram: DES data. contours: KDE reconstruction. We note that the KDE
is constructed globally for the full magnitude and feature ranges, and not only for the shown 2d
marginal distribution.

observed red sequence population is measured to be wider, by this dispersion, compared to its
intrinsic width.

The top right panel of Figure 4.7 shows the surface density profile of galaxies with i < 22.5
around the selected cluster sample in the wide field survey as the solid black curve, and colored
curves show the corresponding KDE models for the four nested shells according to section 4.3.4.
In addition to the target range of the KDEs which are shown as the full colors, as a consistency
test the interior continuation of the KDE model for each nested spherical bin (Table 4.5) is shown
as the dotted lines, of which only the one corresponding to the outermost radial range shows a
mild deviation from the respective profile of the data. It is visible that for the wide field galaxy
selection used in this study (see Table 4.2) the cluster represents a very significant overdensity,
with the surface density profile declining with radius and reaching the survey average at large
radii.
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The measured radial surface density profile and the KDE models show very good agreement.
This is a strong indication of the performance of the KDE representation of the survey data,
since the KDE method estimates the absolute number density of galaxies, and not the the surface
number density. Recovering these two profiles is a markedly different task, as due to the increase
in surface area element with radius, the number density profile possesses an asymptotic power-
law density profile, while the surface density profile remains within the same order of magnitude
at all radii. Therefore the excellent agreement between the measured and recovered surface
density profile means that the deviation between the measured and modeled density is small over
a density range of several orders of magnitude (as set by the change in area element).

The bottom panels of Figure 4.7 show the g – r - r – i color-color diagram of galaxies with
i < 22.5 in the same four radial bins as used in the upper panels. The histograms correspond
to the measured distributions, while the contours represents the appropriate slice of the global
KDE model and correspond to 2%, 5%, 20%, 40%, 60% and 80% of the peak of the conditional
probability density. It is visible that using a global fit for all three features and the full parameter
ranges, the KDE estimate is able to at the same time recover both the central behaviour of the
distributions (blue and red contours compared with green and blue histogram cells), and the
wings of the distributions (gray contours compared with gray and brown histogram cells).

4.4.1.2 Distributions of deep field galaxies

Figure 4.8 shows the g – r - r – i and the r – i - i – z color - color diagrams of the deep field
galaxies in four different magnitude ranges. The measured distribution is shown as a histogram,
and the corresponding KDE model is represented by the contours defined as 2%, 5%, 20%, 40%,
60% and 80% of the peak of the conditional p.d.f. shown. In a similar manner, Figure 4.9
shows the color-magnitude diagrams measured with the above colors and i-band magnitudes.
It is visible that for both figures, the global KDE model is able to simultaneously provide an
excellent description for both the center and also for the wings of the distribution.

Figure 4.10 shows the distribution of features related to the morphology parameters of the
ngmix galaxy model. The left panel shows the marginal distribution of the size proxy feature
log10(1 + T) with i-band magnitude, where T is the effective area of the galaxy measured in
arcseconds (see Table 4.1). We note that the appearance of negative T values is related to noise
incurred during the ngmix photometry fit, as very small and zero size objects (such as stars)
sometimes are fitted with nominally negative sizes. Naturally, when rendering such objects the
render-size is set to 0. The measured distribution is shown as a histogram, and the corresponding
KDE model is represented by the contours defined as 2%, 5%, 20%, 40%, 60% and 80% of
the peak of the conditional p.d.f. shown. In a similar manner, the right panel of Figure 4.10
shows the corresponding distribution between estimated absolute galaxy ellipticity |g| and i-band
magnitude. For both cases the measured distributions and the KDE model of the p.d.f-s show
excellent agreement.

The center panel of Figure 4.10 shows the histograms of the bulge/disk ratio of the ngmix
galaxy model for two magnitude bins 19.5 < i < 21 and 21 < i < 22.5, along with the correspond-
ing KDE model. The panel shows that brighter galaxies are more likely to be bulge dominated
(e.g. described by a De Vaucouleur light profile) compared to fainter galaxies, which is in ac-
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Figure 4.8: Distribution of g – r, r – i, i – z galaxy colors in the DES deep field dataset in bins of
i-band magnitude. histogram: DES data. contours: KDE reconstruction. We note that the KDE
is constructed globally for the full magnitude and feature ranges, and not only for the shown 2d
marginal distribution.
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Figure 4.9: Distribution of the g – r, r – i, i – z galaxy colors against i-band magnitude magnitudes
in the DES deep field dataset. histogram: DES data. contours: KDE reconstruction. We note
that the KDE is constructed globally for the full magnitude and feature ranges, and not only for
the shown 2d marginal distribution.
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Figure 4.10: Distribution of galaxy morphology parameters in the DES deep field dataset, as
listed in Table 4.1. histogram: DES data. contours / curves: KDE reconstruction. We note that
the KDE is constructed globally for the full magnitude and feature ranges, and not only for the
shown marginal distributions.
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Figure 4.11: Redshift distributions of deep field galaxies estimated by the EAzY algorithm for
the DES dataset (section 4.2.3), along with the correlation of i-band magnitude and size proxy
against redshift. histogram: DES data. contours / curves: KDE reconstruction. We note that
the KDE is constructed globally for the full magnitude and feature ranges, and not only for the
shown marginal distributions
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cordance with expectations from galaxy evolution (Gavazzi et al., 2010). The peak appearing at
0.5 is an imprint of the morphology prior of the deep field photometry pipeline, and it becomes
prominent for the fainter galaxy selection as there the available information to constrain mor-
phology from survey observations diminishes. KDE estimates cannot reproduce the hard cutoff
edges [0; 1] of the bulge/disk value ratios, and for this reason we cap the distributions around
0 and 1 to restrict the p.d.f. model to the appropriate interval, so that values greater than 1 or
lower than 0 receive a value of 1 or 0 respectively. Nevertheless, with this modification, the KDE
model is able to provide a good description of the observed bulge / disk distributions.

Figure 4.11 shows the estimated redshift distribution of the deep field galaxies, as predicted
by the EAzY algorithm (Brammer et al. 2008 see section 4.2.3). The center panel shows the
marginal redshift p.d.f. along with the KDE reconstruction for two different magnitude ranges,
and the left and right panels show the correlation of photometric redshift estimate with i-band
magnitude and galaxy size respectively. As expected, the photometric redshift algorithm predicts
that fainter galaxies are at higher redshifts, and that higher redshift galaxies appear on average
smaller.

4.4.2 Cluster Member Feature Distributions
We now discuss the output of the statistical modeling presented in section 4.3, which is the pri-
mary result of this study. In short, the model performs a statistical background subtraction to
isolate the cluster member galaxies of redMaPPer selected galaxy clusters. It extrapolates the
cluster member population to fainter magnitudes by reconstructing the cluster member galaxy
distribution from deep field galaxies, thereby keeping the additional features measured on better
quality data in the deep field catalog. The end products of these operations is a set of random
samples drawn from the feature p.d.f. of the cluster member galaxies, and a set of random sam-
ples which are drawn from the extrapolated field galaxy population. For both of these samples
a KDE is constructed according to section 4.3.2, whose purpose is to provide a computationally
efficient way of generating samples (albeit at the cost of increased smoothing), since the full re-
jection sampling algorithm carries a large computational cost due to the multiple KDE scorings
and low acceptance rate. The resulting models allow us to estimate in a statistical way the full
structure of a line-of-sight, along with the population of cluster member galaxies, foreground and
background galaxies, and accounting for the redshift distributions of the various components.

The above statistical modeling is performed for a set of six cluster selections arranged in
richness as λ ∈ [30; 45) and λ ∈ [45; 60) and redshift z ∈ [0.3; 0.35), z ∈ [0.45; 0.5) and
z ∈ [0.6; 0.65) as shown on Figure 4.2, and it is the models for these samples which we describe
in detail below.

4.4.2.1 Line-of-Sight Model

A key outcome of the statistical background subtraction and survey extrapolation scheme is a
spatial and photometric model for an observed galaxy cluster line-of-sight. Using the emulated
model for the feature distribution and relative abundance of cluster member galaxies, and the
emulated model feature distribution of the foreground and background galaxies (field galaxies)
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Figure 4.12: Line of sight model for the redshift distribution of galaxies near clusters with λ ∈
[45; 60) and z ∈ [0.3; 0.35) within the projected radial range R ∈ [1; 3.16). (magenta, orange)
redshift distribution model around clusters in different magnitude bins. (blue, green) photometric
redshift distribution measured in the DES deep fields in different magnitude bins. grey dashed
limits of the cluster redshift range. It is visible that the cluster contains a significant fraction of
galaxies in the line of sight.

we can construct the line of sight as a combination of these two terms. In this line of sight
model the cluster member galaxies are located at the mean cluster redshift, while the line of sight
galaxies inherit the redshift p.d.f. specific for their deep field observed features. This line-of-
sight galaxy distribution model is illustrated by the redshift distributions shown on Figure 4.12
for a cluster sample with λ ∈ [45; 60) and z ∈ [0.3; 0.35) where the emulated redshift p.d.f
of galaxies with i < 22.5 and within the radial range R ∈ [1; 3.16) arcmin is shown as the
magenta histogram, which is a combination of a cluster member term located at z = 0.325, and
a field term. As comparison the redshift p.d.f. of deep field galaxies is shown in blue for the
same magnitude range. Owing to the extrapolation part of the analysis, the reconstructed line of
sight is modeled down to the deep field limiting magnitude of i < 24.5. It contains a faint cluster
member population in addition to the faint end of the field galaxy population shown as the orange
histogram, with the comparison redshift distribution of the deep field galaxies is shown as the
green histogram.

The above line-of-sight model therefore incorporates the appropriate redshifts at which galax-
ies reside, and allows us to correctly take the lens geometry into account when constructing a
mock observation and apply an appropriate redshift dependent lensing effect onto the galaxies.
It is furthermore visible in Figure 4.12 that the redshift distribution of galaxies near a cluster in
projection is significantly different from the one in the deep fields, due to the prominent overden-
sity at the cluster redshift. This aspect of the line-of-sight model enables us to construct mock



156 4. Synthetic Galaxy Cluster Observations Based on DES Y3 Data

0

10

20

30

40

ga
l [

ar
cm

in
2 ]

i mag < 22.5

[45; 60)
z [0.3; 0.35)

[45; 60)
z [0.45; 0.5)

[45; 60)
z [0.55; 0.65)

1.5 1.0 0.5 0.0 0.5 1.0
log10R [arcmin]

0

10

20

30

40

ga
l [

ar
cm

in
2 ]

[30; 45)
z [0.3; 0.35)

Cluster members
Residual field
LOS model
Cluster LOS
Measured field

1.5 1.0 0.5 0.0 0.5 1.0
log10R [arcmin]

[30; 45)
z [0.45; 0.5)

1.5 1.0 0.5 0.0 0.5 1.0
log10R [arcmin]

[30; 45)
z [0.55; 0.65)

Figure 4.13: Line of sight model for the surface density of galaxies around galaxy clusters with
different richness and redshift. (orange) Surface density profile measured around redMaPPer
clusters. The width of the shaded area represents the Poisson uncertainty propagated into surface
density. (gray) Surface density of galaxies measured around reference random points. (green)
model for the surface density profile of field galaxies within the cluster line-of-sight. (magenta)
model for the surface density profile of cluster member galaxies in the cluster line-of-sight.
(black dashed) model for the total galaxy surface density profile in the cluster line-of-sight (the
sum of the green and magenta curves).

observations where we can test the impact of the galaxy cluster on the performance of photomet-
ric redshift estimates. In cluster weak lensing measurements this manifest itself as the problem of
boost factors or cluster member contamination as introduced in chapter 3, as well as propagatig
blending-related photometry effects onto the performance estimates of photometric redshifts.

Figure 4.13 shows the measured and modeled galaxy surface density profiles for the six
cluster richness and redshift samples considered in this study. To enable comparison with the
surface density profiles measured directly in the DES wide field survey the magnitude range is
restricted to i < 22.5. For each cluster sample (each panel) we show the measured projected
galaxy surface density around the clusters in DES, indicated by the orange lines, and the surface
density profile around the corresponding sample of reference random points as the gray lines.
The width of these lines indicates the Poisson uncertainty of the number of galaxies in each
radial bin, propagated into an error on the surface density. It is visible that at large radii the
measured surface density profile around clusters approaches the approximately uniform surface
density distribution measured around the reference random points.
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The model for the field population is shown as the green lines on Figure 4.13. This distri-
bution corresponds to the background model during the statistical background subtraction, but it
is constructed from the re-weighting and resampling of deep field galaxies in section 4.3.4. The
excellent agreement between this and the profile measured around random points in the DES
wide field data is a strong consistency test of the the statistical model, and is an indication that
the statistical background subtraction is performed correctly.

The model for the pure cluster member distribution is shown as the magenta curves on Fig-
ure 4.13. It is visible that this component captures the radial variations in surface density, and
this density profile approaches zero at large radii, consistent with the finite extent of the cluster
galaxy populations. The model for the full surface density profile is then obtained as the sum of
the cluster member (magenta) and the field (green) population estimates, and this surface density
profile is shown as the black dashed lines, which can then be directly compared with the galaxy
profiles measured in the DES data around clusters (orange lines). It is visible that overall the two
lines agree well. The downturn of the surface density profiles at low radii is explained by the
drop in galaxy detection efficiency due to the higher galaxy density. Obscuration and blending is
expected to play an increased role, and the presence of the bright cluster galaxy (BCG) and the
intra-cluster light (ICL) is expected to reduce the performance of photometry.

4.4.2.2 Galaxy Distributions for Clusters and Field

The distribution of photometric features such as colors and magnitudes of the different galaxy
populations and their relative weights are also modeled during the background subtraction and
feature extrapolation, as presented in section 4.3. Galaxy clusters host a characteristic popula-
tion and overdensity of quiescent red galaxies distributed along the red-sequence. These galaxies,
along with the non-red cluster member component and the foreground and background galaxies,
constitute the galaxies in a line-of-sight. As presented in section 4.4.2.1, galaxy clusters manifest
as an overdensity compared to the median galaxy surface density on the sky. This overdensity
and the corresponding radial profile is different for the different galaxy populations, color and
magnitude ranges. Throughout this analysis we measure and model the projected feature distri-
bution around clusters, as presented in section 4.4.1.1, and the essence of the applied method is
to decouple this into a model on the feature distribution (in this case of color and magnitude) of
cluster member galaxies, and foreground/background (i.e. field) galaxies.

Figure 4.14, Figure 4.15 and Figure 4.16 represent the measurements and the models corre-
sponding to the color and magnitude distribution of galaxies considered in this analysis for the
three higher richness cluster samples λ ∈ [45; 60) z ∈ [0.3; 0.35), [0.45; 0.5) and [0.6; 0.65)
respectively. Given that the relevant subspace of the feature space spans four dimensions: two
colors, i-band magnitude and projected radius, we can only show a subset of selected conditional
distributions in print. For the three cluster redshift ranges we show galaxy distribution in g – r,
g–r and r– i colors respectively. There are three magnitude ranges shown for each cluster sample
(panel), the first two [19; 21) and [21; 22.5) is fitted to the DES wide field data, while the third
[23; 24) is a pure extrapolation based on the algorithm.

The color distributions measured in the corresponding magnitude and radial range around
galaxy clusters in the DES wide field data are shown as the orange histograms, with the height
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Figure 4.14: Conditional color distribution of galaxies around galaxy clusters across four pro-
jected radial regimes (shown in the different columns) around galaxy clusters with λ ∈ [45; 60)
and z ∈ [0.3; 0.35). The distribution of galaxies are shown in g – r, g – r and r – i colors respec-
tively. There are three magnitude ranges shown (rows), the first two [19; 21) and [21; 22.5) is
fitted to the DES wide field data, while the third [23; 24) is a pure extrapolation based on the al-
gorithm. Orange: color p.d.f. measured as a histogram around galaxy clusters in DES data. The
height of the shaded area indicates the Poisson uncertainty propagated into the normalized his-
togram. Blue: color distribution measured within the corresponding magnitude range in the DES
deep fields. This distribution is identical for each column and for all cluster samples. Green:
Model for the color distribution of foreground and background galaxies in the line of sight. Ma-
genta: Model for the color distribution of cluster member galaxies. Black dashed: Model for
the full line of-sight, which can be directly compared with the orange histogram. Gray dotted:
1σ location of the redMaPPer red-sequence cluster member galaxies.
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of the colored area representing the Poisson uncertainty of the measurement. As a comparison
for each cell the respective conditional color distribution measured in the DES deep fields is
shown (blue histogram). This population naturally has no radial dependence, and therefore the
histogram is identical in the different columns of each panel. Due to the large number of deep
field galaxies, the noise in the deep-field histogram is negligible. Out of the above two popula-
tions, only the deep field one is measured down to the third magnitude bin i ∈ [23; 24), therefore
the orange cluster measurement is not shown there. It is visible that the color distribution around
clusters shows a strong radial trend, with the orange histogram approaching the blue with in-
creasing radius. A dominant driver of this trend is increasing prominence of the red-sequence at
low radii, which manifests as a peak in the color distribution. It is also visible that the relative
weight of the red-sequence is greater for brighter galaxies, and the difference between cluster
and field line of sights is also greater for brighter galaxies. As a reference, the location of the
redMaPPer red-sequence model is indicated by the vertical gray dotted lines on Figure 4.14, Fig-
ure 4.15 and Figure 4.16. These lines correspond to the 1σ range of the membership probability
weighted color distribution of redMaPPer cluster members for that cluster richness, redshift and
galaxy magnitude range. It is visible that both the location and also the width of the peak of the
orange histogram coincides with the the location of the redMaPPercluster members, indicating
that it is indeed an imprint of the red-sequence. We note that in the current case the width of the
red-sequence is determined not only by its intrinsic width, but also by the redshift range of the
cluster sample which broadens it compared to that at a single redshift. The indicated width of
the red-sequence is calculated considering the full magnitude range. The location of the peak of
the measured cluster line-of-sight shows a consistent slight shift between the brighter and fainter
magnitude range, which is indicative of the slight slope of the red-sequence.

Figure 4.14, Figure 4.15 and Figure 4.16 show the emulator model for the galaxy distribu-
tions around galaxy clusters as the black dashed lines, which can be directly compared with
the orange histogram of the corresponding raw measurement. This model is derived without
direct information about the wide field galaxy luminosity function around clusters, and only
using information from the deep field data. Nevertheless, as visible on the upper two rows of
Figure 4.14, Figure 4.15 and Figure 4.16, the line of sight model can describe the magnitude
dependent color variations of the galaxy distributions, and well approximate the relative weight
of the red-sequence peak, albeit while slightly over-estimating its width. The bottom row of each
panel shows the model for galaxies in the line of sight with i ∈ [23; 24). Due to the extrapola-
tion part of the approach, the model extends for these fainter magnitudes, even though the cluster
lines-of-sight are not measured. For all three redshift ranges, the extrapolated model differs from
the deep field color distribution, by increasing the probability of the redder colors. However only
for the highest (z ∈ [0.6; 0.65)) and lowest (z ∈ [0.3; 0.35)) redshift range does this take the
form of a well defined peak at the continuation of the red-sequence. This shortcoming is likely
related to the bandpass coverage of the 4000 angstrom break at the z ∈ [0.45; 0.5) redshift range
by g – r and r – i colors, and given the good performance in the two other redshift ranges is likely
not an intrinsic limitation of the extrapolation method.

The above described model for the full line-of-sight is expressed as a non-negative linear
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Figure 4.15: Conditional color distribution of galaxies around galaxy clusters across four pro-
jected radial regimes (shown in the different columns) around galaxy clusters with λ ∈ [45; 60)
and z ∈ [0.45; 0.5).The distribution of galaxies are shown in g–r, g–r and r–i colors respectively.
There are three magnitude ranges shown (rows), the first two [19; 21) and [21; 22.5) is fitted to
the DES wide field data, while the third [23; 24) is a pure extrapolation based on the algorithm.
Orange: color p.d.f. measured as a histogram around galaxy clusters in DES data. The height
of the shaded area indicates the Poisson uncertainty propagated into the normalized histogram.
Blue: color distribution measured within the corresponding magnitude range in the DES deep
fields. This distribution is identical for each column and for all cluster samples. Green: Model
for the color distribution of foreground and background galaxies in the line of sight. Magenta:
Model for the color distribution of cluster member galaxies. Black dashed: Model for the full
line of-sight, which can be directly compared with the orange histogram. Gray dotted: 1σ
location of the redMaPPer red-sequence cluster member galaxies.
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combination of a cluster member and a residual field component,4 indicated by the magenta
and the green curves respectively in Figure 4.14, Figure 4.15 and Figure 4.16. Both of these
components are derived according to the resampling approach presented in section 4.3.3.3, and
thus they are not directly estimated from data. These two components correspond to the similarly
color coded lines on Figure 4.13, and while the cluster member galaxies are placed at the mean
cluster redshift of the bin, the galaxies in the residual field population are distributed along the
full line-of-sight.

The distribution and properties of foreground and background galaxies is independent of the
cluster galaxy population. For this reason it is expected for the model for the residual field
to be independent of radius. Furthermore, while the bright tip of the DES deep fields is not
fully representative of the actual median DES wide field survey line of sight due to sample
variance, they still provide a reasonable reference distribution. Comparing the residual field
model (green curve) with the deep field distribution (blue histogram) on Figure 4.14, Figure 4.15
and Figure 4.16, it is visible that there are no strong radial variations in the distributions, and
that the residual field indeed approximates the deep field distribution, with only minor deviations
visible at the faint end of the panels (lowest row on each panel).

Finally, the color distribution model for cluster member galaxies (magenta curve on Fig-
ure 4.14, Figure 4.15 and Figure 4.16) shows both a significant radial trend, and a strong de-
viation from the residual field component across all cluster richness and redshift samples and
radial ranges. It is visible that the cluster members contain a prominent red-sequence compo-
nent, whose strength decreases with radius and magnitude. Due to the overdensity of the cluster,
at low radii cluster member galaxies dominate the line of sight, and their distribution closely
resembles the color distribution of all line-of-sight galaxies (as most galaxies are actually in the
cluster). With increasing radius the cluster member distribution becomes bluer, yet a significant
fraction of red galaxies remain in the brighter magnitude range.

The radial color evolution of the cluster member galaxy population can be described by the
approximate red-fraction, whose radial profile for the six cluster richness and redshift bins is
shown in Figure 4.17. The regions of the radial color-color space used defining galaxies as "red"
and "blue" are indicated by the black dashed lines in Figure 4.18 for the three different cluster
redshift samples. As visible these regions are chosen to bracket the position of the red sequence
which is dominant at low radii. and this way estimate the approximate red-fraction of the galaxy
sample as function of radius.

Figure 4.17 shows the approximate red-fraction for two magnitude ranges, a brighter bin cov-
ering i ∈ [19; 22.5) shown in magenta, which coincides with the DES wide field depth, and a
fainter bin covering i ∈ [22.4; 24.5) shown in orange which is derived from a purely extrapo-
lated color-color distribution. Profiles from the higher richness cluster sample are shown as the
solid lines, while the profiles from the lower richness samples are shown as the dashed lines.
There appears to be no significant difference between the richness bins. The bright galaxy sam-
ple shows a clear monotonic trend in all redshift and richness samples, where the red fraction
decreases from approximately unity at very low projected radii to approximately 30% - 40% at

4We denote the residual field as such, as it is the field population estimate obtained from the resampling and
extrapolation, and it is not directly fitted to the deep field dataset.
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Figure 4.16: Conditional color distribution of galaxies around galaxy clusters across four pro-
jected radial regimes (shown in the different columns) around galaxy clusters with λ ∈ [45; 60)
and z ∈ [0.6; 0.65). The distribution of galaxies are shown in g – r, g – r and r – i colors respec-
tively. There are three magnitude ranges shown (rows), the first two [19; 21) and [21; 22.5) is
fitted to the DES wide field data, while the third [23; 24) is a pure extrapolation based on the al-
gorithm. Orange: color p.d.f. measured as a histogram around galaxy clusters in DES data. The
height of the shaded area indicates the Poisson uncertainty propagated into the normalized his-
togram. Blue: color distribution measured within the corresponding magnitude range in the DES
deep fields. This distribution is identical for each column and for all cluster samples. Green:
Model for the color distribution of foreground and background galaxies in the line of sight. Ma-
genta: Model for the color distribution of cluster member galaxies. Black dashed: Model for
the full line of-sight, which can be directly compared with the orange histogram. Gray dotted:
1σ location of the redMaPPer red-sequence cluster member galaxies.
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Figure 4.17: Approximate red fraction of cluster members as a function of projected radius
for six different cluster richness and redshift samples. (magenta) estimated red fraction for the
wide-field magnitude range. (orange) estimated red fraction derived from the depth extrapolated
cluster member distribution. The definition of the color cells are listed at the top of each panel.

large radii approaching 10 arcmin. This qualitative behaviour is consistent with theoretical ex-
pectations (Butcher & Oemler, 1978; Hansen et al., 2009) and the measurement from numerical
simulations presented in chapter 3 (see Figure 3.2). The same behaviour is not uniformly true for
the fainter red-fraction profiles, where while some cluster samples show a prominent red galaxy
population at the center, the decline is much faster for these fainter populations than the brighter
counterparts for the same clusters, and at large radii the galaxy population appears to show lesser
color gradients, and appear to be bluer.

4.4.2.3 Photometric Redshifts of Cluster Members

In chapter 3 of this thesis we highlighted a systematic effect originating from mis-estimating
the photometric redshifts for cluster member galaxies. Resulting from that, cluster members can
enter the background source galaxy catalog and bias the lensing measurement. As discussed
there, this is primarily a result of using the redshift p.d.f of galaxies in the median cosmic line of
sight as representative for galaxies with the additional selection in the vicinity of a galaxy cluster
at cluster redshift zclust.

Using the presented line-of-sight model for cluster members and field galaxies we can illus-
trate the full extent of this type of bias. The redshift information in this model originates from
the deep field data and is estimated by the EAzY algorithm (Brammer et al., 2008). In the cluster
and line-of-sight model this photometric redshift is used only for the foreground and background
galaxies, while cluster members are placed at the cluster redshift. Nevertheless it is illuminat-
ing to inspect what redshifts are predicted for cluster members. One can formulate this as the
question: Given the connection between features and redshift in the deep fields, what would we
conclude on the redshift distribution of cluster member galaxies? This form of prior or training
based inquiry is the core of the photometric redshift algorithms used in current surveys (Bonnett
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Figure 4.18: Color-color diagrams of the cluster member components for the three higher rich-
ness cluster samples located at different redshifts. The region delimited by the black dashed lines
indicate the areas used to calculate the approximate red fraction in Figure 4.17
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Figure 4.19: Photometric redshift distributions extrapolated from the deep field dataset for the
cluster member and foreground and background galaxies in the line-of-sight model.

et al., 2016; Hoyle et al., 2018). As visible, it does not take information about the fact that we
are considering objects with a specific selection function, namely cluster member galaxies.

The photometric redshift distributions predicted for the various line-of-sight components are
illustrated on Figure 4.19 for galaxies around clusters with λ ∈ [45; 60] and z ∈ [0.3; 0.35].
There the blue line shows the photometric redshift p.d.f. of deep field galaxies, while the green
line shows the modeled redshift p.d.f. for the foreground and background galaxies in the line-
of-sight. This latter p.d.f follows the deep field p.d.f. well, which is expected to an extent since
the deep field observations are chosen and constructed to be a test dataset for the typical galaxy
properties and distributions in the wide field data. The location of the targeted galaxy clusters in
redshift is indicated by the vertical orange region, and the photometric redshift p.d.f. assigned to
the cluster member galaxies is shown as the magenta curve. It is visible that the cluster member
redshift p.d.f. is markedly different from both the deep field and also from the foreground and
background p.d.f. and shows a prominent peak centered at the redshift range of the targeted
clusters with a tail extending to higher redshifts.

In reality, all member galaxies are located within z ∈ [0.3; 0.35], and the difference between
that range and the magenta curve is representative of the uncertainty of photometric redshifts of
cluster member galaxies. The above shown behaviour drives the leakage of cluster members into
the background source sample, and ends up biasing the cluster mass measurements. While the
study in chapter 3 used a specific redshift related selection function of the weak lensing analysis,
the above results can be approximately compared with the redshift p.d.f. shown on Figure 3.5,
which shows similar widths and shape for the redshift p.d.f. of the cluster galaxy component.
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Technically, for cluster member galaxies a more precise photometric redshift could be derived
by fitting a red sequence model. This is however adding extra information about the SED of the
galaxies. The above noisy redshift estimate instead assumes that the distribution of galaxy SEDs
and redshifts in the deep field is representative of the targeted galaxy population.

4.5 Generating Random Lines-of-Sight
The previous sections described the results of the statistical model for the galaxy content of
galaxy clusters, and the line of-sight distributions of the foreground and background galaxies.
The aim of this section is then to generate mock cluster images where each is representative of the
galaxy content of the mean cluster within a given range of cluster observables, and also contain
the mean line-of-sight within which clusters reside in the survey. To achieve this, first a draw of
non-central galaxies is performed (section 4.5.1), then the gravitational shear and magnification
effects are applied in section 4.5.2, then the model for the central galaxy and the intra-cluster light
is constructed section 4.5.3, and finally the resulting cluster model is rendered into a survey-like
exposure using a simplified version of the DES galsim image simulation pipeline in section 4.5.4.

To render galaxies into images we make use of the ngmix bulge + disk light profile model
(Sheldon, 2015) whose parameters are the position, magnitudes (fluxes), effective size T , shape
(g1; g2) and the bulge / disk fraction of the galaxy. These parameters are derived from the
features of the statistical model used in this analysis (see Table 4.1).

4.5.1 Random Draws of Galaxy Populations
In the statistical model (section 4.3) the distribution of non-central galaxies are represented by
probability distribution functions, which includes two main components: the distribution of clus-
ter member galaxies (satellites) and the distribution of foreground and background galaxies in
the respective lines-of-sight. Using these, a synthetic cluster and line-of-sight can be created
through random draws from the p.d.f. of the different components. Here each draw corresponds
to adding a new galaxy to a mock field-of-view catalog with an angular and redshift position,
and the photometric and morphological features contained within the model. In the following
we describe the details on constructing mock cluster fields-of-view at the level of these mock
catalogs.

The p.d.f. representation of the galaxy distributions do not carry information about the abso-
lute number of objects, therefore this needs to be set based on the observed number of galaxies.
In real observations only the bright end of the luminosity function is observed in the survey (i.e.
i < 22.5) therefore the number of fainter galaxies must be defined according to their relative
probability in the model p.d.f. Furthermore, the galaxy distribution model is divided into four
wide bins in projected radius as described in section 4.3.4.3 and listed in Table 4.5 to improve
the numerical performance of the calculations.

Based on the above, constructing a mock galaxy catalog is performed the following way:

1. For each radial range l, calculate N̂C;l and N̂R;l the mean number of galaxies with i < 22.5
around clusters and random points respectively in radial range l listed in Table 4.5.
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2. Estimate the number of objects belonging to the cluster, and to foreground and background
objects based on Equation 4.32. Furthermore, to discretize the expected galaxy number,
for each radial range we take a Poisson random number of galaxies based on the mean
number as

NM;l = Poisson

(
N̂C;l – N̂R;l

pmemb;l (i < 22.5)

)
, (4.33)

and

NR;l = Poisson

(
N̂R;l

prand;l (i < 22.5)

)
. (4.34)

3. Draw cluster members NM;l times from pmemb;l and foreground and background galaxies
NR;l times from prand;l.

4. For cluster members set the redshift as zclust.

5. Convert the projected radius feature Ri into 2D position assuming circular symmetry in a
flat-sky approximation via

RAi = Ri cosφi (4.35)
DECi = Ri sinφi , (4.36)

where φi is drawn from U[0; 2π), and where the mock cluster is located at RAtarget = 0
and DECtarget = 0.

The outcome of the above recipe is a galaxy catalog which contains cluster members and for-
and background galaxies each distributed according to their respective statistical models derived
from the survey data, but extrapolated to a fainter limiting magnitude, and the surface density of
galaxies is set to the mean surface density measured around galaxy clusters.

A useful regularization of the above method is to update step 1 by only measuring N̂C;l
from data, and expressing N̂R;l as a function N̂C;l using the statistical model. In practice this is
achieved by taking the ratio of accepted events during the rejection sampling (see section 4.3.3.3)
which only fulfill Equation 4.29, to the amount of events which fulfill both Equation 4.29 and
Equation 4.28. This latter formulation avoids scenarios when due to measurement noise by
chance N̂R;l > N̂C;l.

Lastly, we note that the above approach considered constructing galaxy clusters as a sum of
independent draws of non-central galaxies. In case of a complicated cluster finder and selec-
tion function, this assumption might be incorrect as the cluster finder might rely on additional
correlations and connections within the cluster member galaxies.5 Hence the above approach is
admittedly only the simplest way to construct mock clusters, and if required the resulting mock
galaxy distributions can be further filtered based on the selection function of a cluster finder.

5Technically independent random draws could produce a mock cluster, albeit at low likelihood, where every
galaxy is much fainter than the mean brightness of the parent distribution. Such an outlier mock cluster might not
be detected by cluster finders
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4.5.2 Cluster Lens Model and Galaxy Shapes

The essence of these simulations is to benchmark weak lensing measurements, and this requires
us to define a mass model for the galaxy cluster and apply the appropriate gravitational shear to
background galaxies. For this we make use of the mass models and mass constraints found in
chapter 2 of this thesis. The present analysis uses a richness binning scheme which is a subset
of that in chapter 2. Furthermore, as that analysis did not find a significant redshift evolution in
the richness-mass scaling, we can approximate the relevant mean cluster masses for the present
mocks with the appropriate values listed in Table 2.2, that is M200m ≈ 1014.45 M� for the
λ ∈ [30; 45) bin and M200m ≈ 1014.65 M� for the λ ∈ [45; 60) bin across the three different
redshift bins.

In the following we only consider the mass model for the 1-halo term which is dominant
on the small scales considered in this study, and consists of a spherically symmetric mass dis-
tribution with Navarro-Frenk-White (NFW) mass profile (Navarro et al., 1996, also see Equa-
tion 2.33). This lens mass distribution is placed at the cluster redshift zclust and subsequently
gravitational shear and magnification is applied to line-of-sight galaxies based on their true red-
shifts assigned by the model. The lensing effect induced by a NFW halo can be expressed
analytically following (Oaxaca Wright & Brainerd, 1999), or by inverting the approach followed
in section 2.5.1, to obtain the projected surface mass density profile Σ(θ) and the excess surface
mass density profile ∆Σ(θ) (defined according to section 1.3).

From these density profiles we express the convergence experienced by the image of the i-th
source galaxy with redshift zi and angular separation θi from the cluster center as

κi =

{
Σ(θi) / Σcrit(zclust, zi) zi > zclust
0 zi ≤ zclust

(4.37)

where Σcrit(zclust, zi) is the critical surface density defined in Equation 1.21. In a similar manner,
the tangential shear is given by

γT; i =

{
∆Σ(θi) / Σcrit(zclust, zi) zi > zclust
0 zi ≤ zclust .

(4.38)

In practice, the quantities of interest are the reduced tangential shear gT; i ≡ γi · (1 – κi)–1 and

the magnification µi ≡
(

(1 – κi)2 – γ2
T; i

)–1
. A shape parameter of this form gi = (g1; i; g2; i) is

indeed an input in the ngmix galaxy model, therefore this formulation can be directly used in
creating mock galaxy light profiles. The magnification is however only applied as the simplest
possible approximation, by modulating the total flux of the galaxy light models Flensed; i = µi Fi
in an a-chromatic way. This is technically incorrect, as magnification does not directly increase
the total flux, but increases the apparent sizes of sources at fixed pre-seeing surface brightness.

In the above we described the approach gravitational lensing impacts the shape and flux of
galaxies, but these quantities must be simulated together with the intrinsic shape of galaxies
egal. In this model we assume no preferential intrinsic alignment and therefore the shape of each
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z ∈ λ ∈ 〈i〉 〈g – r〉 〈r – i〉 〈i – z〉 〈T〉 [arcsec2] 〈|g|〉
[0.3; 0.35) [30; 45) 17.76 1.36 0.54 0.32 28.90 0.14

[0.3; 0.35) [45; 60) 17.62 1.38 0.54 0.31 33.20 0.14

[0.45; 0.5) [30; 45) 18.58 1.85 0.70 0.37 21.92 0.15

[0.45; 0.5) [45; 60) 18.50 1.85 0.71 0.37 28.43 0.14

[0.6; 0.65) [30; 45) 19.36 1.83 1.01 0.44 16.90 0.17

[0.6; 0.65) [35; 60) 19.18 1.83 1.02 0.45 22.44 0.16

Table 4.6: Properties of the mean bright central galaxy (BCG) across the different cluster richness
and redshift bins. For each BCG the bulge (DeVaucouleours) fraction is set to unity.

galaxy is determined by the absolute ellipticity |e|i as defined by the feature~s1 in Table 4.1. From
this the shape of each galaxy is given by

egal; i =
(

egal; 1
egal; 2

)
i

=
(

–|e|i · cos(2φi)
–|e|i · sin(2φi)

)
(4.39)

where φi is a random angle drawn from U[0, π).
From the combination of the gravitational reduced shear and the intrinsic shape of the object

we can calculate a net shape distortion Jacobian for each galaxy, which transforms the intrinsi-
cally circular light model into the desired shape and alignment as

Anet; i = Agrav; i · Aintr; i = (1 – κ)
(

1 – g1 –g2
–g2 1 + g1

)
·
(

1 – egal; 1 –egal; 2
–egal; 2 1 + egal; 1

)
(4.40)

where the first two terms refer to the weak lensing Jacobian expressed for reduced shear, while
the rightmost term relates to the intrinsic ellipticity and alignment of the galaxy. From the above
matrix product the net e1 and e2 values can be derived as

enet; 1 = g1 + egal; 1 – g1egal; 1 – g2egal; 2 ≈ g1 + egal; 1 (4.41)

enet; 2 = g2 + egal; 2 – g1egal; 2 + g2egal; 1 ≈ g2 + egal; 2 , (4.42)

and these in turn can then be directly used as an input for the intrinsically circular ngmix galaxy
light distribution model used in rendering the galaxies into images.

4.5.3 BCG and Intra-Cluster Light Model
A prominent feature of galaxy clusters is the presence of a bright central galaxy (BCG) and
a surrounding distribution of intra-cluster light (ICL) emitted by a diffuse stellar component
bound in the cluster halo. These components contain a significant fraction of the total optical
light emitted by the cluster, therefore accounting for them is essential in a dedicated simulation
of synthetic galaxy cluster observations (Zhang et al., 2019a; Kluge et al., 2020).
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Figure 4.20: Surface brightness model for the intra-cluster light (ICL) and bright cluster galaxy
(BCG). The joint model is found as the sum of the BCG and a tapered ICL model.

By construction galaxy clusters identified by redMaPPer are always centered on a bright red-
sequence galaxy. This is a simplified view of reality, as in recent mergers or in non-equilibrium
systems the more cental galaxy might not be red or the brightest, or there might be multiple sim-
ilarly bright BCGs (Rykoff et al., 2014). Nevertheless originating from the special location they
inhabit, the central galaxies of massive halos follow a different evolutionary track compared to
satellite galaxies. It is observed that their properties are closely tied to the mass and properties
of their cluster (Postman & Lauer, 1995), and their luminosity function is approximately Gaus-
sian at fixed cluster properties (Hansen et al., 2009). Based on these observations we model the
synthetic central galaxy in the mocks as having the mean properties of the redMaPPer central
galaxies in the cluster sample. The relevant mean central galaxy features are listed in Table 4.6
for the different cluster redshift and richness samples. The central galaxies are assumed to have
a De Vaucouleours light profile, and the only stochastic element in the model is their random
orientation in the plane of the sky with fixed ellipticity |g|.

The total light in the central region of a cluster is however not fully described by the above
model, as there is a continuous transition between the light usually associated with the central
galaxy and the intra-cluster light (Kluge et al., 2020). Zhang et al. (2019a) investigated the prop-
erties of the ICL for redMaPPer selected galaxy clusters in DES with zclust ∈ [0.2; 0.3), by
conducting a stacked analysis mapping the the diffuse light of the ICL down to surface bright-
ness of 30 mag arcsec–2. Furthermore, they investigated the richness (mass) dependence of the
ICL, finding a self-similarity of the light profile when expressed in units of R200m. Using these
findings Gruen et al. (2019) constructed a simple model for the ICL observed around redMaP-
Per clusters in DES. This model extrapolates from the measurement of Zhang et al. (2019a) in
terms of cluster mass using the self-similarity of the profiles, and also in terms of cluster red-
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Figure 4.21: Synthetic center of a mock galaxy cluster without (left) and with the intra-cluster
light model applied (rigth), as defined in Figure 4.20

shift by assuming a simple passively evolving stellar population within the ICL. We note that
this latter assumption is closely related to the formation history and age of the, ICL which is
poorly constrained from current observational studies due to the difficulty of high redshift obser-
vations. Hence in case of a late-forming ICL the above extrapolation overestimates the total light
contained in it at early times. Furthermore the model neglects the mild radius dependent color
gradient in the ICL, where the outer ranges are slightly bluer.

In the following we adopt the above ICL model of Gruen et al. (2019). As a simplification
we assume that the colors of the ICL are identical to the mean colors of BCGs at that redshift
and cluster richness sample. The remaining task is to construct a joint light model for the BCG
model and smooth ICL component which can be efficiently rendered into mock images. The light
profiles of these two components are illustrated on Figure 4.20: The ICL component extends to
large radii as an approximate power law surface density light profile, while the ngmix BCG
light model is dominant in the inner regions. Because of their overlap, these components cannot
be directly added to each other. Therefore we define a tapered ICL model where the tapering
scale is set by the size of the BCG component θS =

√
TBCG. Using a simple empirical sigmoid

tapering we define a joint light profile model

µ(θ) = µBCG(θ) +
(

1 –
1

1 + e2 (θ–θS)

)
µICL(θ) , (4.43)

which is shown on Figure 4.20 as the magenta dashed curve. As visible this joint model captures
both the small scale and the large scale behaviour of the light profile, while smoothly connecting
the two components.
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Figure 4.22: Real and synthetic galaxy cluster side by side. Top: gri color composit image
of a real redMaPPer galaxy cluster in the DES Y3 footprint. Second row: gri color composit
image of a synthetic galaxy galaxy cluster representative of λ ∈ [45 60), z ∈ [0.3; 0.35). Third
row: brightness distribution of the synthetic light sources for cluster members (red/brown) and
foreground and background objects (blue). Darker shades and larger symbols correspond to
brighter objects. Bottom row: exaggerated shear map of background sources (magenta ellipses)
with the shade representing redshift, cluster members (black) and foreground sources (blue).
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An illustration of this joint BCG + ICL light profile in the mock cluster images is shown
on Figure 4.21. The two panels show an identical set of mock galaxies for a synthetic cluster
corresponding to the cluster bin with λ ∈ [45; 60) and z ∈ [0.3; 0.35), however the left panel
shows only the ngmix galaxy models, while the right panel also shows the ICL component
added using the above formula.

4.5.4 Synthetic Survey-like Images
The last step of creating mock observations is to render the above defined components into syn-
thetic survey-like images. Simulated galaxy images are the bedrock of estimating the perfor-
mance of weak lensing methods, and therefore they were the topic of extensive study in recent
literature (Massey et al., 2007; Bridle et al., 2009; Mandelbaum et al., 2015). These efforts
also extend to the calibration and validation of the DES weak lensing shape estimation methods
(Jarvis et al., 2016; Zuntz et al., 2018; Samuroff et al., 2018). In the following we make use of
a simplified version of the image simulation pipeline developed for the Y3 data release of DES
(N. et al., in prep ).

The construction of a synthetic observation starts with a catalog of photometric objects which
will inhabit the mock image. For this study this catalog contains the parameters of the ngmix
light distribution model for each entry which are pixel position in the image, shape (g1; g2), size
T , De Vaucouleours fraction, and fluxes in g, r, i, z bands. This catalog corresponds to a random
realization of a mock line-of-sight constructed according to section 4.5.1. The galaxy shapes
are defined according to section 4.5.2 where magnification effects are also applied. Finally the
central galaxy is added as defined in section 4.5.3. At this stage stars and foreground objects
can be added according to their density at the targeted galactic latitude of the mock observations.
In the present pathfinder study we only consider a simplified scenario and add a stellar sample
drawn from the deep field catalog according to their relative density in the deep field footprints.

Synthetic images are created via a customized version of the DES Y3 image simulation
pipeline (N. et al., in prep ), which renders images based on a galaxy image simulation pack-
age GalSim (Rowe et al., 2015), while using an extension package for the ngmix light profile
model used in the actual DES Y3 analysis6. This model describes the galaxies as a combination
of two terms: an exponential light profile (disk) and a De Vaucouleours (bulge) light profile.
Given that most galaxies in a DES-like survey are poorly resolved, an additional constraint is
enforced by setting the effective radius of both light profile components to be identical.

In the following, we consider a simplified setup of the observational scenario of DES where
we directly simulate the so-called co-added survey images. Under real circumstances due to
variations in observing conditions and the point spread function (PSF) between exposures the
net PSF in co-added images is difficult to model, hence the DES shape estimation pipeline itself
takes single exposure images as input. In a simulation such variations can be factored out and that
allows us to simplify the simulation setup into deeper mock co-added images with well-behaving
PSFs.

The synthetic co-added images are constructed the following way:

6https://github.com/esheldon/ngmix, the ngmix.gmix.GmixBDF model.

https://github.com/esheldon/ngmix
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1. First the image canvas is defined with its desired dimensions and pixel scale, which in the
case of DES is 0.27 arcsec / pixel. In the DES Y3 image simulation pipeline the canvas
is defined as a 10k×10k pixel rectangle, however in the current analysis only the inner 10
arcminute (≈ 2222 pixel) radius circle will be populated with photometric objects.

2. For each object a small cutout image (postage stamp) is constructed. The light model is
defined using ngmix, convolved with a representation of the mock PSF, then rendered into
a postage stamp. The size of the postage stamp is defined to contain approximately 99%
of the light of the galaxy. In each postage stamp the galaxy is approximately located in the
center, with small offsets applied to account for the position of the light source relative to
the pixel grid. In the case of the current pathfinder cluster simulations the PSF is modeled
as a Gaussian with a full-width half-maximum (FWHM) of 0.9 arcsec, which is roughly
equal to the median DES observing condition (Drlica-Wagner et al., 2018).

3. After the creation of all postage stamps from the input catalog, they are added onto the
main canvas at their intended pixel positions.

4. A noise map is applied to the image. This can be either a homogeneous noise over the
entirety of the image, or a localized noise map intended to mimic the depth variations and
gaps of the underlying single epoch images. In the current set of mock clusters we take
the noise properties of a randomly selected DES tile (DES2122+0209) and apply Gaussian
noise matched to reproduce the median flux of the unmasked regions of the reference tile in
the chosen observational band. Choosing the noise level for synthetic images is however
not straightforward, as a substantial amount of light which is traditionally attributed to
the sky level or to background noise in fact originates from undetected faint stars and
galaxies (Hoekstra et al., 2017; Euclid Collaboration et al., 2019; Eckert et al., 2020). In
the framework of the present analysis many of these undetected sources are explicitly part
of the rendered objects, therefore as a rough approximation we reduce the background
noise variance by half for illustration purposes. In a more targeted analysis the noise
level reduction should be set iteratively such that the combination of artifical noise and
undetected sources reproduces the measured noise.

5. Finally the tapered ICL model defined according to section 4.5.3 is evaluated for the pixel
positions of the mock image and the additional light component is added onto the synthetic
observation. In this step to ensure the light profile and the BCG joins continuously, we
assume that the ICL has the same ellipticity and major axis direction alignment as the
central galaxy.

This concludes the creation of a single mock observation, and the steps are repeated for each
simulated observational band.

The end result of the above algorithm is a synthetic image of mock galaxy clusters con-
structed according to their measured optical properties in DES observations. The composition
of this type of mock cluster is illustrated on Figure 4.3 and Figure 4.22 where a gri-band color
composit image is shown for synthetic clusters side by side with redMaPPer clusters with similar
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observable parameters. The real and simulated survey images appear very similar qualitatively,
with the obvious difference of observational imperfections and masked objects appearing in the
real observations. While the synthetic images do contain an approximate stellar population based
on faint stars observed in the deep field, very bright stars which need to be masked or low red-
shift foreground galaxies are not currently reproduced in the mock observations. Furthermore
low redshift foreground objects such as galaxies with visible disc and spiral arm features are not
contained in the scope of the present analysis.

In addition to the color composite images Figure 4.3 and Figure 4.22 also illustrate the com-
position of the lines-of-sight. The third row of each figure shows the brightness distribution of
the cluster component with brown/red symbols, and the foreground and background component
with blue symbols. The shade and size of the symbols indicate the brightness with fainter objects
shown as smaller markers. It is visible that many of the faint objects are barely or not at all
discernible on the composite images. Yet these unresolved sources influence the performance
of photometric methods (Hoekstra et al., 2017; Euclid Collaboration et al., 2019). The bottom
row of each figure shows the exaggerated gravitational shear imprinted on background sources
(the ellipticities are increased by a factor of 20). The background sources are shown in as darker
color for low redshift and lighter color for high redshifts. Cluster members are shown in black
symbols with, while foreground objects are shown as blue. The different brightness values are
indicated by their different sizes.

While the galaxy populations of the λ ∈ [30; 45) and λ ∈ [45; 60) bins are found to be
close in terms of their galaxy surface density profiles, clusters show greater differences between
the different redshift ranges. This is illustrated by Figure 4.23, which shows synthetic galaxy
clusters with λ ∈ [45; 60) in the z ∈ [0.3; 0.35), z ∈ [0.45; 0.5) and z ∈ [0.6; 0.65) cluster
samples. These color composit images show a striking illustration of the changes in the visible
properties of galaxy clusters across cosmic time. Additional examples of mock clusters for the
different redshift ranges are shown on Figure 4.24, Figure 4.25 and Figure 4.26.
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Figure 4.23: Synthetic galaxy clusters corresponding to redMaPPer clusters with λ ∈ [45; 60)
across the different redshift ranges
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Figure 4.24: Synthetic galaxy clusters corresponding to redMaPPer clusters with z ∈ [0.3; 0.35)
and λ ∈ [45; 60)
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Figure 4.25: Synthetic galaxy clusters corresponding to redMaPPer clusters with z ∈ [0.45; 0.5)
and λ ∈ [45; 60)
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Figure 4.26: Synthetic galaxy clusters corresponding to redMaPPer clusters with z ∈ [0.6; 0.65)
and λ ∈ [45; 60)
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4.6 Summary and Conclusions
We have presented the results and algorithm of a pathfinder study aiming to generate synthetic
galaxy cluster observations purely from observational data taken by the Dark Energy Survey up
to its third year of observations. The focus of this work was to construct a test environment for
galaxy cluster weak lensing studies where the interplay between analysis choices and different
types of systematic effects related to source galaxy selection, shape and photometric redshift
estimation can be studied in a controlled manner.

In the presented analysis we

• Measured the galaxy feature correlation function around clusters in projection (section 4.3.1).

• Developed a framework for representing galaxy distributions as p.d.f.-s via KDE (sec-
tion 4.3.2).

• Performed a statistical background subtraction (section 4.3.3.1) and (section 4.3.3.3).

• Extrapolated survey depth using information from the deep fields (section 4.3.3.2).

• Combined the above steps into a recipe on how to render mock galaxy clusters (sec-
tion 4.5).

The statistical results of this work are presented in section 4.4, while example realisations of
synthetic galaxy cluster observations are shown on Figure 4.23, Figure 4.24, Figure 4.25 and
Figure 4.26.

Our method addresses three distinct problems arising with simulated data:

A Synthetic galaxy clusters are generated to match their observed properties in the Dark
Energy Survey, and extrapolations of the galaxy populations are performed where neces-
sary, based also directly on observational data from the deep fields of DES. This approach
ensures that the created synthetic observations match observed reality in terms of their
galaxy populations. Therefore the method does not rely on numerical simulations of bary-
onic structure formation and galaxy evolution to construct galaxy clusters and hence it is
independent from assumptions and approximations inherent in cosmological simulations.

B Via the statistical learning approach new realizations of synthetic observations can be cre-
ated at minimal computational cost. This allows the creation of large samples of mock
cluster images which in turn allow the precise and accurate characterization of systematic
uncertainties in cluster lensing measurements.

C The used algorithm is formulated as a explicit recipe instead of a black box model such
as a neural network, therefore the different components can be readily modified if need be
and external information can be added in a targeted way.

This work was done in preparation of a dedicated cluster weak lensing benchmark analysis
for the Dark Energy Survey, and the details of the algorithm were tuned to the format of that
dataset. However the method is easily generalized to other similar large area sky surveys such as
LSST (LSST Science Collaboration et al., 2009) and Euclid (Amendola et al., 2018) as well.
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Chapter 5
Summary and Conclusions

Weak gravitational lensing provides a powerful and fundamental way to connect optical obser-
vations with the properties of the hidden dark sector of the Universe. In order to make use of this
mode of inference, in this thesis we developed the analysis formalism and measured, calibrated
and characterized weak gravitational lensing profiles and halo masses within the observational
dataset of the Dark Energy Survey (DES).

Our first aim was to perform the weak lensing mass calibration of galaxy clusters selected by
the redMaPPer algorithm in the DES year 1 data, which serves as the input of the DES cluster
cosmology analysis (McClintock & Varga et al., 2019). As part of this work:

A1 We developed the formalism for weak lensing profile measurements and calibrations in the
DES Y1 data. We split clusters into 4× 3 bins of richness λ and redshift z for λ ≥ 20 and
0.2 ≤ z ≤ 0.65 and measured their respective stacked weak lensing signal.

A2 We calculated a semi-analytic covariance matrix to characterize the statistical errors in the
recovered weak lensing profiles.

A3 We derived the mean cluster masses for the richness and redshift bins while accounting for
the different calibrations and systematic uncertainties at the likelihood level.

A4 Our analysis accounted for the following sources of systematic error: shear and photo-
metric redshift errors, cluster miscentering, cluster member dilution of the source sample,
systematic uncertainties in the modeling of the halo–mass correlation function, halo triax-
iality, and projection effects.

A5 We modeled the richness - redshift - mass relation and constrained the normalization of
the scaling relation at the 5.0 per cent level. This is the tightest measurements made to
date, and our result is dominated by systematic uncertainities which alone reach 4.3 per
cent. Alas, the calibration of the richness - redshift - mass relation still remains the limiting
factor for testing cosmological models with cluster counts.
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As part of the above weak lensing mass calibration, we carried out a detailed validation of
a method for correcting the lensing signal for cluster members contaminating the source galaxy
catalog and diluting the lensing signal (Varga et al., 2019). During this work:

B1 We decompose the photometric redshift P(z) of source galaxies used in the weak lensing
measurement into contaminating and background components, and estimate the contami-
nation from the relative amplitude of these two components.

B2 We tested the method in a mock survey simulation, finding excellent agreement between
the estimated contamination rates and the actual true number of contaminants extracted
from the truth catalogs of the simulation. From this comparison we estimate a systematic
uncertainty of δsys < 1 for the P(z) decomposition method.

B3 We investigated the validity of the Gaussian ansatz for the cluster P(z) component within
the mock analysis. We found that this method recovers the approximate redshift and width
of the peak within the P(z) of the contaminating galaxies.

B4 We tested the sensitivity of the contamination estimates to the choice of the background
P(z) component on DES Y1 data, and found an excellent agreement between the boost
factors derived via the fiducial and alternative background components.

B5 We compared the method with an alternative, transverse correlation based contamination
estimate. We found indications that the alternative method is preferentially underestimat-
ing the contaminations, which is likely an imprint of the radial source galaxy selection
function. This is expected to impact the decomposition predictions to a lesser extent as it
does not make use of the number profile of sources.

Finally, motivated by the utility of the mock survey simulation used in the previous step,
we construct synthetic optical observations of galaxy clusters to create a test environment for
cluster weak lensing studies, where the interplay between analysis choices and different types of
systematic effects related to source galaxy selection, shape, and photometric redshift estimation
can be studied in a controlled manner (Varga et al., in prep). As part of this work:

C1 We measured the projected galaxy distribution around redMaPPer selected galaxy clusters
in the DES year 3 data in two bins of cluster richness (λ ∈ [30; 45) and λ ∈ [45; 60)) and
three narrow bins in cluster redshift (z ∈ [0.3; 0.35), z ∈ [0.45; 0.5) and z ∈ [0.6; 0.65)).

C2 We developed a statistical learning framework for representing the radial distribution of
galaxy features (colors, magnitudes, morphology parameters) around the galaxy cluster as
probability distribution functions.

C3 We estimated the feature distribution of cluster member galaxies by comparing the galaxy
feature distributions around galaxy clusters and the corresponding set of reference random
points. In contrast to redMaPPer our formulation also includes non-red-sequence and faint
cluster member galaxies.
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C4 We extrapolated the cluster member galaxy feature distribution below the limiting magni-
tude of the wide field DES survey by incorporating information about the galaxy distribu-
tion in the DES deep fields.

C5 From the combination of the above steps we defined a recipe for constructing mock galaxy
clusters as random draws from the feature probability distribution function of cluster mem-
ber galaxies.

C6 We rendered mock cluster and line-of-sight catalogs into synthetic cluster images in the
same format as actual survey observations.

In this framework the synthetic galaxy clusters are thus generated to match the galaxy distri-
butions in real observational data, and they are thus independent from the assumptions and ap-
proximations inherent in cosmological simulations. Furthermore new realizations of synthetic
cluster images can be created at minimal computational cost, and in turn this will allow future
analyses the precise and accurate characterization of systematic uncertainties in cluster lensing
measurements based on large suites of synthetic cluster images.

Impact on the Scientific Field
The weak lensing profile measurement setup and the cluster member contamination calibration
used for the DES year 1 (Y1) analysis was collated in the xpipe analysis pipeline designed
and implemented by myself. The measurement pipeline is now part of DES infrastructure and is
documented and made publicly available1.

The DES Y1 galaxy cluster mass calibration has also enabled a series of further scientific
studies, whose results we discuss briefly in the following:

• Chang et al. (2018b) investigated the so-called splashback feature around galaxy clusters
in DES. The splashback feature relates to the first apocenter, or turnaround point of mat-
ter accreting onto the dark matter halo, and the splashback radius rsp defines a boundary
for the halo which is connected to the dynamics of the cluster, as opposed to simply the
overdensity. In simple terms, the splashback feature manifests as a rapid steepening in
the halo mass profile near rsp. In their analysis both the galaxy number density profiles
and the weak lensing mass profiles were measure around a sample of redMaPPer selected
galaxy clusters in DES Y1 with λ ∈ [20; 100) and z ∈ [0.2; 0.55), and the weak lensing
profile measurement was performed by myself based on the formalism and contamination
correction presented in this thesis. The mean mass for the cluster sample was estimated
to be M200m = 2.5 × 1014 M�, and a strong evidence of a splashback-like steepen-
ing of the galaxy density profile is found at rgal

sp = 1.13 ± 0.07 Mpc/h. Furthermore the
study demonstrates for the first time the existence of a splashback-like steepening of the
matter profile of galaxy clusters derived purely from weak lensing measurements with
rWL
sp = 1.34± 0.21 Mpc/h.

1https://xpipe.readthedocs.io

https://xpipe.readthedocs.io
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• Pereira et al. (2020) presents a mass calibration of an alternative cluster mass proxy: µ?
derived from the stellar masses of galaxy clusters in DES Y1. Stellar mass is expected to
have less intrinsic scatter with respect to halo mass than richness (e.g. the λ defined by
redMaPPer ) and is furthermore estimated to be less affected by projection effects. Hence
this kind of alternative mass calibration is an important eventual consistency check for
cosmology analyses based on the masses and number counts of galaxy clusters. In their
calibration they use∼ 6, 000 galaxy clusters initially identified by redMaPPer , but selected
based on their estimated stellar masses and redshifts into 12 subsets within 0.1 ≤ z < 0.65
and stellar mass (µ?) up to ∼ 5.5 × 1013 M�. Their analysis follows closely that of the
work presented in this thesis by fitting a joint mass–µ?–z scaling relation using cluster
masses derived from the stacked weak lensing signal in the individual bins, and their weak
lensing profiles were measured by myself using the xpipe package developed in this
thesis.

• DES Collaboration et al. (2020) presents the Y1 cluster cosmology results of DES based
on a joint analysis of the counts and weak lensing masses of redMaPPer clusters, using the
weak lensing mass calibration described in this thesis. They report surprisingly low values
for S8 = σ8(Ωm/0.3)0.5 = 0.65± 0.04 and Ωm = 0.179+0.031

–0.038 . These σ8 – Ωm posteriors are
in 2.4σ tension with the DES Y1 3x2pt results (Abbott et al., 2018), and in 5.6σ tension
with the Planck CMB analysis (Planck Collaboration et al., 2018). Internal consistency
tests, and the consistency of the cluster number counts with external data indicate that the
tension is primarily driven by the mass estimates of low richness (λ < 30) clusters. Given
that systematic effects of the weak lensing measurement itself impact this richness range
the least, the cause of the tension is likely to be the incorrect interpretation of the lensing
profiles when deriving the cluster masses. This can be expressed as the impact of the pho-
tometric cluster selection on the stacked lensing profiles of clusters, which results in the
derived cluster masses to be biased low compared to a mass selected cluster sample. As a
selection effect which could give rise to the necessary level of mass bias was not yet identi-
fied, the better understanding of the details of photometric cluster selection from different
observational and simulation based efforts have become the priority for the following era
of research.

• The lensing without borders (LWB; Leauthaud et al., in prep) is an ongoing comparison
project aiming to test the consistency of weak lensing measurements across six distinct
wide area lensing surveys: SDSS, CS82, CFHTLenS, DES, HSC, and KiDS. The main
idea of this project is that since ∆Σ is a physical quantity, the measured values for a shared
sample of lens galaxies should agree between the analysis choices and approaches of the
different surveys. The goal of LWB is to perform a blind comparison of the ∆Σ ampli-
tudes, and in turn this provides an empirical end-to-end test of systematics in weak lensing
measurements. The DES side of these calculations were performed by myself using the
xpipe package developed in this thesis. While this work is still under preparation, the
initial post un-blinding results seem to indicate an overall broad consistency between the
measurements of the different surveys and DES. However this result is limited by the rela-
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tively large statistical uncertainty caused by the typically small overlap region of the DES
Y1 footprint and the footprint of the reference set of lens galaxies.

Closing Remarks
• In this thesis we measured, calibrated and characterized the ∆Σ profiles of galaxy clusters

in the year 1 dataset of the Dark Energy Survey. These results passed an extensive set of
tests conducted both in this thesis and in the other scientific studies enabled by this work.

• The observed tension in the DES cluster cosmology analysis likely relates to the interpre-
tation of the lensing profiles, and not to a bias in the lensing profiles themselves. For this
reason future studies must focus on the multi-probe and multi-wavelength characterization
and calibration of the selection effects in galaxy cluster catalogs defined based on optical
data.

• With the increasing statistical power, and improved calibration of weak lensing measure-
ments new and innovative science cases relating to the non-linear evolution of structure
can be studied with current and upcoming lensing datasets. In addition to the splashback
feature, the mass evolution of cluster member galaxies also presents a lucrative direction,
which however necessitates the the creation of dedicated end-to-end simulations of galaxy
cluster weak lensing measurements in a controlled synthetic environment.
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A.2 The redMaPPer v6.4.17 cluster catalog
The full redMaPPer DES Y1A1 catalogs will be available at
http://risa.stanford.edu/redmapper/ in FITS format. The catalogs will also be
available from the online journal in machine-readable formats. We note that this is of the same
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format as (Rykoff et al., 2016), and we point the reader to that paper for further details. The
cluster catalog is described in Table A.1, and the associated members in Table A.2. The catalog
is the “full” catalog, with all clusters with λ > 20, and the volume-limited subset is flagged with
the VLIM flag. The map of the maximum redshift of the volume-limited catalog is described in
Table A.3, and the random points are described in Table A.4.

A.3 Parameter posteriors
When fitting the weak lensing profiles some parameters are not constrained by a prior and are also
not shared between cluster bins. These are the halo concentration c, the boost factor amplitude
B0, and the boost factor scale radius Rs. Table A.5 shows the posteriors for these three parameters
for each cluster bin. As seen in Figure 2.10 B0 and Rs are highly degenerate.
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Table A.3: redMaPPer zmax Map Format

Name Format Description
HPIX INT(8) HEALPIX ring-ordered pixel number (NSIDE=4096)
ZMAX FLOAT(4) Maximum redshift of a cluster centered in this pixel
FRACGOOD FLOAT(4) Fraction of pixel area that is not masked

Table A.4: redMaPPer Random Points Catalog Format

Name Format Description
RA FLOAT(8) Right ascension in decimal degrees (J2000)
DEC FLOAT(8) Declination in decimal degrees (J2000)
Z FLOAT(4) Redshift of random point
LAMBDA FLOAT(4) Richness of random point
WEIGHT FLOAT(4) Weight of random point

Table A.5: Lensing profile parameters not constrained by priors or shared between cluster bins.
Uncertainties are the 68 per cent confidence intervals. Note that in the highest redshift and
richness bin, the boost factor profile model scale radius had a bimodal distribution. This did not
affect the mass estimate at all.

λ z ∈ [0.2, 0.35) z ∈ [0.35, 0.5) z ∈ [0.5, 0.65)
Concentration c
[20, 30) 5.81 ± 1.03 5.68 ± 1.14 4.76 ± 1.62
[30, 45) 4.53 ± 0.74 6.24 ± 1.08 3.61 ± 0.72
[45, 60) 4.38 ± 0.96 5.41 ± 1.17 4.76 ± 1.21
[60,∞) 4.65 ± 0.82 3.19 ± 0.56 3.73 ± 1.02
Boost factor amplitude B0
[20, 30) 0.34 ± 0.05 0.05 ± 0.01 0.13 ± 0.05
[30, 45) 0.37 ± 0.06 0.14 ± 0.04 0.13 ± 0.08
[45, 60) 0.27 ± 0.05 0.05 ± 0.02 0.09 ± 0.06
[60,∞) 0.23 ± 0.03 0.21 ± 0.17 0.03 ± 0.04
Boost factor scale radius Rs [Mpc]
[20, 30) 0.44 ± 0.06 0.89 ± 0.24 0.38 ± 0.11
[30, 45) 0.50 ± 0.07 0.44 ± 0.10 0.44 ± 0.18
[45, 60) 0.80 ± 0.15 1.72 ± 0.95 0.85 ± 0.37
[60,∞) 1.37 ± 0.21 0.51 ± 0.23 35.94 ± 29.69
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