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Abstract

Abstract

Membranes delineate all living cells and compartmentalize eukaryotic cells into or-
ganelles. Dynamically shaping the cells and the organelles, membranes help to main-
tain specific micro-environments and play an important role in many physiological
functions. Cryo-electron tomography (ET) is a leading technique for three-dimensional
(3D) visualization and analysis of membrane morphology in a close-to-native state and
molecular resolution. However, there is currently a lack of computational methods that
can analyze membrane morphology directly from cryo-ET data. Adaptation of existing
algorithms from other fields to cryo-ET and development of new algorithms are crucial
for the analysis and interpretation of membrane segmentations from cryo-ET. During
this dissertation, the following contributions were made.

1. An open-source Python software package for membrane and surface curvature
estimation, called PyCurv, was created and actively maintained. The algorithms
included in PyCurv were extensively benchmarked on artificial and biological
data. Compared to three currently existing methods, PyCurv was the most
accurate and robust to noise not only for cryo-ET data, but also for data origi-
nating from other imaging techniques like magnetic resonance imaging (MRI)
and light microscopy. An early version of the method showed a significant in-
crease in endoplasmic reticulum (ER) membrane curvature in the tomograms
with polyQ-expanded huntingtin (Htt) exon I fibrils. Using a recent version
of PyCurv, significant curvature differences of cortical ER (cER) membranes
were found in yeast cells expressing different plasma membrane (PM) tether
proteins under different conditions, highlighting peaks of extreme curvature.

2. An algorithm for calculation of the density of membrane-bound macromole-
cules was developed. After detection of membrane-bound ribosomes by template
matching and segmentation of ER membranes in tomograms of mammalian cells
with the Htt fibrils, the algorithm confirmed that less ribosomes were bound to
ER membranes near the Htt fibrils than further away from the fibrils.

3. An algorithm for measurement of distances between membranes in mem-
brane contact sites (MCS) was implemented. Applied to membrane segmenta-
tions in tomograms of yeast cells, it determined the typical membrane distances
in different MCS and revealed significant differences between cells expressing
certain ER-PM tethering proteins. While some of the proteins formed MCS with
a shorter ER-PM distance, other proteins stabilized cER sheets with a shorter
luminal thickness.
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Zusammenfassung

Zusammenfassung
Lebende Zellen sind von Membranen umgeben, auch die Organellen innerhalb der
eukaryontischen Zellen. Membranen formen Zellen und Organellen, helfen spezifische
Mikroumgebungen aufrechtzuerhalten und spielen eine wichtige Rolle bei vielen phys-
iologischen Funktionen. Die Kryoelektronentomographie (Kryo-ET) ist eine führende
Technik für die drei-dimensionale Visualisierung und Analyse der Membranmorpholo-
gie in einem beinahe natürlichem Zustand und einer molekularen Auflösung. Dennoch
mangelt es derzeit an Methoden zur Analyse der Membranmorphologie direkt aus
Kryo-ET-Daten. Die Anpassung vorhandener Algorithmen an Kryo-ET und die En-
twicklung neuer Algorithmen sind ausschlaggebend für die Analyse und Interpretation
der Membransegmentierungen aus Kryo-ET. Während dieser Dissertation wurden die
folgenden Beträge geleistet.

1. Ein Open-Source-Python-Softwarepaket zur Abschätzung der Krümmung von
Membranen und anderen Oberflächen, namens PyCurv, wurde erzeugt und
aktiv gepflegt. Die in PyCurv enthaltenden Algorithmen wurden ausführlich
auf synthetischen und biologischen Daten getestet. Verglichen mit drei derzeit
vorhandenen Methoden war PyCurv am präzisesten und robustesten gegen
Rauschen für Kryo-ET-Daten, als auch für Daten aus anderen bildgebenden
Verfahren wie Magnetresonanztomographie (MRT) und Lichtmikroskopie. Eine
frühe Version der Methode zeigte eine signifikante Steigung in der Membran-
krümmung des endoplasmatischen Retikulums (ER) in den Tomogrammen
mit Fibrillen aus dem polyQ-expandierten Huntingtin-(Htt)-Exon-I. Mithilfe
einer neueren PyCurv-Version wurden signifikante Unterschiede in der Mem-
brankrümmung vom kortikalen ER (kER) in Hefezellen erkannt, wo verschie-
dene Plasmamembran-(PM)-bindende Proteine unter verschiedenen Bedingun-
gen exprimiert wurden. Bemerkenswert waren Membran-Hügeln mit einer
extremen Krümmung.

2. Ein Algorithmus zur Berechnung der Dichte der membrangebundenen Makro-
molekülen wurde entwickelt. Nach Erkennung der membrangebundenen Ri-
bosomen mittels Template-Matching und Segmentierung der ER-Membranen
in den Tomogrammen der Säugetierzellen mit den Htt-Fibrillen, bestätigte der
Algorithmus, dass weniger Ribosomen an die ER-Membranen in der Nähe der
Htt-Fibrillen gebunden waren als weiter weg davon.

3. Ein Algorithmus zur Berechnung der Distanzen zwischen den Membranen
in den Membran-Kontakt-Stellen (MKS) wurde implementiert. Nach dessen
Anwendung auf Membransegmentierungen in Tomogrammen der Hefezellen
wurden die typischen Membrandistanzen in verschiedenen MKS erfasst und
signifikante Unterschiede zwischen den Zellen erkannt, wo bestimmte ER-
PM-bindende Proteine exprimiert wurden. Manchen Proteine formten MKS
mit kürzeren ER-PM-Distanzen, während andere Proteine dünne kER-Blätter
stabilisierten.
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1 Introduction

1.1 Biological and biochemical aspects of membrane
curvature

1.1.1 Roles of membrane curvature in cellular processes

Membranes mark the limits of all cells and divide eukaryotic cells into compartments
or organelles, which maintain specific environments distinct from the cytoplasm. Mem-
branes consist of a phospholipid bilayer interspersed with other lipids, like cholesterol,
as well as integral and peripheral proteins forming curved, closed surfaces (Kozlov
et al., 2014). Phospholipids are amphipatic molecules with a hydrophilic head and a
hydrophobic tail, consisting of two acyl chains. In aqueous solution, the hydrophobic
tails stick to each other, while the hydrophilic heads face the solution, forming a bilayer.
Integral proteins insert their hydrophobic domains into the lipid bilayer interior (me-
diated by Van-der-Waals interactions), while peripheral proteins are attracted to the
bilayer surface with their hydrophilic domains (by electrostatic or hydrogen bonding
forces) (Kozlov et al., 2014).

Changes in PM morphology and curvature are involved in many phenomena, e.g.
endo- and exocytosis, phagocytosis and filopodia formation (Bassereau et al., 2018).
Furthermore, generation and maintenance of membrane curvature of intracellular
organelles is crucial for maintaining cellular functions and trafficking (McMahon and
Boucrot, 2015; Bassereau et al., 2018). A common feature of intracellular organelles, e.g.
ER, Golgi cisternae, mitochondria cristae and endocytic vesicles, is the large membrane
curvature with radii in the range of 10–30 nm, which are only a few times larger than
the 4–5 nm thicknesses of the membranes (Kozlov et al., 2014). Different organelles
have characteristic shapes, which are dynamically changing according to the needs
of the cell or in the process of organelle maturation (Rafelski and Marshall, 2008;
McMahon and Boucrot, 2015). The shapes of the organelles are often highly complex,
with a large ratio between the area and the enclosed volume (lumen), in order to
facilitate the molecular exchange between the lumen and the cytosol (Kozlov et al.,
2014).

To enable molecular exchange between different parts of the cell, small vesicles
enclosing the required molecules by their membrane are constantly being formed
and detached from organelles, transferred to a target organelle and fused with its
membrane. The detachment process is called membrane scission and is crucial for
budding of coated vesicles, e.g. from the ER, Golgi, endosomes or PM, and also for
virus budding (Hurley and Hanson, 2010; Rossman and Lamb, 2013; McMahon and
Boucrot, 2015). The opposite process is called membrane fusion (Martens et al., 2007;
Martens and McMahon, 2008). Interestingly, some tethering proteins and enzymes can
sense membrane curvature, mediating vesicle targeting or protein activation (McMahon
and Boucrot, 2015). Furthermore, transmembrane receptors having an intrinsic shape

1



1 Introduction

Figure 1.1: Cellular functions involving membrane curvature. Illustration of the most impor-
tant cellular functions involving membrane curvature: organelle shaping, membrane
scission and fusion, protein sorting and enzyme activation. Source: (McMahon and
Boucrot, 2015), see for abbreviations.

are preferably sorted into membrane regions accommodating this shape. See Figure 1.1
for the illustration of the most important cellular functions involving membrane
curvature.

1.1.2 Cellular mechanisms for generation, sensing and
maintenance of membrane curvature

On the one hand, a pure lipid bilayer tends to be flat given the symmetry of its
monolayers (if both have the same lipids) and is resistant to bending due to its
elastic properties caused by the interactions between the lipid molecules in each
monolayer (Kozlov et al., 2014; McMahon and Boucrot, 2015). On the other hand, any
bilayer tends to be continuous without edges and holes by adopting a closed shape,
which can only be achieved by bilayer bending (Helfrich, 1986; Kozlov et al., 2014). The

2



1.1 Biological and biochemical aspects of membrane curvature

result of these competing phenomena is that a bilayer fragment larger than 200 nm in
diameter adapts a closed spherical shape, which can only be deformed by introducing
asymmetry into the bilayer or applying force to its surface (Kozlov et al., 2014). The
asymmetry can be introduced either by changing the composition and/or number
of lipid molecules in the two monolayers (Devaux, 2000) or by asymmetric protein
crowding on the two membrane sides (Stachowiak et al., 2012; Kozlov et al., 2014;
McMahon and Boucrot, 2015). Only specialized proteins have sufficient forces to curve
the membrane or the ability to sense and maintain high local membrane curvature, by
the mechanisms described below (Kozlov et al., 2014; McMahon and Boucrot, 2015).
See Figure 1.2 for the illustration of the different mechanisms of membrane curvature
generation and stabilization.

Changes in lipid composition and asymmetry

Different lipids have different shapes depending on their headgroup sizes and acyl
chain saturation (McMahon and Boucrot, 2015). Clustering of many lipids with the
same shapes and orientation causes the monolayer to spontaneously adopt their curva-
ture. Cylindrical lipids (e.g. Phosphatidylcholine and phosphatidylserine) form a flat
monolayer. Conical lipids with a small headgroup (e.g. phosphatidylethanolamine,
phosphatic acid, diacylglycerol or cardiolipin) impose a negative curvature. A double
bond induces a kink in an acyl chain (e.g in oleic acid), so that it occupies more space,
also leading to a negative curvature. Inverse conical lipids with a large headgroup
(e.g. lysophosphatidylcholine or phosphatidylinositol phosphates) favor a positive
curvature (Chernomordik and Kozlov, 2003; Di Paolo and De Camilli, 2006; Zimmer-
berg and Kozlov, 2006; McMahon and Boucrot, 2015). Lipid asymmetry between the
two monolayers is actively maintained by specialized proteins, e.g. by lipid flippases,
lysophospholipid acyltransferases, phospholipase A or sphingomyelinases (Graham
and Kozlov, 2010; McMahon and Boucrot, 2015).

Protein crowding

A higher concentration of proteins at one side of the membrane has been suggested
to induce its curvature (Stachowiak et al., 2012), however the efficiency of this non-
specific mechanism is very low according to theoretical predictions and experimental
evidence (Kozlov et al., 2014; McMahon and Boucrot, 2015).

Clustering of shaped transmembrane domains

Transmembrane proteins (e.g. ion channels, receptors and transporters) with a conical
or inverted conical shape can impose this shape on their associated membranes (Fertuck
and Salpeter, 1974; MacKinnon, 2003; Unwin, 2005; Aimon et al., 2014; Fribourg
et al., 2014; McMahon and Boucrot, 2015). Many integral membrane proteins cluster
(directly or via connecting proteins (Boudin et al., 2000; Eckler et al., 2005)), building
a local scaffold on the membranes (McMahon and Boucrot, 2015). For example,
transmembrane receptors cluster in forming endocytic clathrin-coated pits, stabilizing
them and so supporting the generation of membrane curvature (Ehrlich et al., 2004;
McMahon and Boucrot, 2015).

3



1 Introduction

Figure 1.2: Mechanisms of membrane curvature generation and stabilization. Illustration of
the main mechanisms of membrane curvature generation and stabilization: lipid
composition, clustering of shaped transmembrane proteins, protein motif insertion,
protein scaffolding and oligomerization as well as cytoskeletal scaffolding. Source:
(McMahon and Boucrot, 2015), see for abbreviations.
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1.1 Biological and biochemical aspects of membrane curvature

Insertion of hydrophobic or amphipathic protein domains

A very efficient way of inducing local membrane curvature is a shallow insertion of
a small hydrophobic or amphipathic protein domain between the lipid headgroups,
acting like a wedge (Kozlov et al., 2014; McMahon and Boucrot, 2015). For example, the
insertion of hydrophobic loops present at the tip of the C2 domains of synaptotagmin-1
and Doc2b (Martens et al., 2007; Hui et al., 2009; Groffen et al., 2010) induces high
membrane curvature (McMahon et al., 2010; McMahon and Boucrot, 2015). Besides
the shallow insertions, there are also integral insertions spanning the whole membrane
thickness, e.g. transmembrane domains of ATPases or the acetylcholine receptor,
which have intrinsic shapes and thus are likely to generate some local membrane
curvature (Kozlov et al., 2014). The shallow protein insertions were experimentally
shown (Ford et al., 2002) and predicted (Campelo et al., 2008; Lai et al., 2012; Braun
et al., 2012; Fuhrmans and Marrink, 2012; Cui et al., 2013) to generate membrane
curvature much more efficiently than the integral insertions (Kozlov et al., 2014).

Scaffolding by hydrophilic protein domains

Scaffolding by peripheral proteins can also efficiently generate or support membrane
curvature at a microscopic level by oligomers assembled into larger, curved struc-
tures (Kozlov et al., 2014; McMahon and Boucrot, 2015). Coat proteins such as clathrin,
COPI and COPII polymerize and bind via adaptor proteins to the membrane, stabi-
lizing its spherically-shaped curvature during vesicle budding (Kirchhaussen, 2000;
Jensen and Schekman, 2011; McMahon and Boucrot, 2011; Zanetti et al., 2012; Faini
et al., 2013; Kozlov et al., 2014; McMahon and Boucrot, 2015). The crescent-shaped
monomeric or dimeric Bin/Amphiphysin/Rvs (BAR) domains bind to membranes
and favor the formation of cylindically-shaped tubules (Peter et al., 2004; Itoh and
De Camilli, 2006; Frost et al., 2007; Boucrot et al., 2012; Kozlov et al., 2014; McMahon
and Boucrot, 2015). Also oligomers of dynamin family proteins that are involved in
endocytosis act as cylindrical scaffolds (Ferguson and De Camilli, 2012; Kozlov et al.,
2014). U-shaped ATP syntase dimers assemble into helical arrays that form tubular
cristae in ciliate mitochondria (Mühleip et al., 2016).

Scaffolding by cytoskeleton and molecular motors

Filopodia are formed by actin filament bundles that polymerize against tensed PM (Born-
schlogl et al., 2013), whereas intracellular membrane tubes are formed by molecular
motors that accumulate at the tips of microtubules and anchor to the membranes (Leduc
et al., 2010; Kozlov et al., 2014). Interestingly, membrane tubes generated by pulling
or pushing forces must be straight, which is normally the case for filopodia (Jaiswal
et al., 2013) but not for ER and trans-Golgi tubules, which are bent (Voeltz et al., 2002;
Shibata et al., 2006; Kozlov et al., 2014). Thus, it is probable that the pulling mechanism
by microtubules takes place in the early stages of the tubules formation, but their
membrane curvature is stabilized and completed by other mechanisms, e.g. scaffolding
by reticulons and/or DP1/Yop1p proteins (Kozlov et al., 2014).
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Combination of multiple mechanisms

To sum up, shallow hydrophobic insertions and strongly curved protein scaffolds are
the most effective mechanisms generating membrane curvature of organelles (Kozlov
et al., 2014). Usually, multiple of the aforementioned mechanisms are combined to
efficiently induce membrane curvature: Insertions of domains and scaffolding can be
performed by the same or different proteins involved in the same cellular process,
building networks of interactions combining sensing, induction and stabilization of
membrane curvature (McMahon and Gallop, 2005; McMahon and Boucrot, 2015).

1.2 Cryo-electron tomography

1.2.1 Advantages of cryo-ET for 3D visualization of membranes

Cryo-ET is since a few decades the leading technique for obtaining accurate 3D
reconstructions of cells, organelles or macromolecular assemblies in situ, i.e. in their
unperturbed environment, and at molecular resolution (Lučić et al., 2005; Beck and
Baumeister, 2016). This was enabled by many technological advances in sample
preparation techniques, imaging devices and computational methods (Lucic et al.,
2013; Wagner et al., 2017). In cryo-ET, a cellular sample is rapidly frozen and two-
dimensional images are acquired for different tilts inside an electron microscope. These
images are then computationally aligned and reconstructed into a 3D volume of the
cellular interior, called tomogram.

Cryo-ET is much better suited to study membrane morphology and membrane-
associated complexes (Collado and Fernández-Busnadiego, 2017) than alternative
related techniques. Conventional electron microscopy involves chemical fixation and
dehydration of cells or tissues at room temperature, embedding into resin or plastic,
sectioning into slices and staining with heavy metal salts to increase contrast. These
procedures can cause distortions and rearrangements of internal membranes (Murk
et al., 2003) as well as aggregation artifacts (Lučić et al., 2005). Rapid freezing/freeze-
substitution involves substitution of water in cells or tissues by an organic solvent
with chemical fixatives at around -80°C, also followed by resin or plastic embedding,
sectioning and staining. Avoiding the dehydration procedure preserves the membranes
better, however aggregation artifacts still occur (Dubochet and Sartori Blanc, 2001). In
addition, the staining limits the obtained resolution beyond the molecular level (Lučić
et al., 2005). The rapid freezing preparation used in cryo-ET enables in situ imaging
of frozen-hydrated cells in a close-to-native functional state with the best structural
preservation (Lučić et al., 2005; Beck and Baumeister, 2016; Collado and Fernández-
Busnadiego, 2017).

Cryo-ET has been applied to study membrane morphology and curvature in recon-
stituted preparations (Lee, 2010; Cardone et al., 2012; Bharat et al., 2014; Chlanda et al.,
2016; Chen et al., 2019) and intact cells (Yao et al., 2017; Bharat et al., 2018). Studying
virus-host membrane fusion, Lee (2010) observed a funnel neck of tight curvature
(15 nm-wide inner diameter) linking influenza virus and liposome membranes, Car-
done et al. (2012) found that virions are capable to bind liposomes tightly enough
to alter their curvature, and Chlanda et al. (2016) theoretically and experimentally
determined cholesterol concentration inducing spontaneous negative curvature re-
quired for hemifusion. Studying endocytosis, Chen et al. (2019) described how the
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1.2 Cryo-electron tomography

Figure 1.3: Cryo-electron tomography workflow. Schematic representation of the cryo-ET
workflow, consisting of vitrification (usually by plunge freezing) and thinning
(usually by cryo-FIB) of biological specimen, data acquisition by ET and data
analysis procedures. Source: (Lucic et al., 2013).

vesicle curvature arises during clathrin coat assembly and its dependence on cargo
recruitment. Bharat et al. (2014) studied synaptic vesicles fusion and found that soluble
N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and regula-
tory proteins induce local membrane protrusions in the PM towards primed vesicles,
reducing the activation energy needed for fusion. Later, Bharat et al. (2018) studied
the formation of BAR-domain coats on PM in yeast, only observing dense scaffolds
on highly curved membranes (30-60 nm diameter). In bacterial cell division, Yao et al.
(2017) observed short FtsZ filaments forming more frequently on the outer curvature
side of the cell, driving asymmetric constriction.

1.2.2 Sample preparation and data acquisition

In cryo-ET workflow (Figure 1.3), cells are first vitrified to preserve them in a nearly
physiological state (Lučić et al., 2005). Vitrified cells are then usually thinned down to
100-250 nm thick lamellas by cryo-focused ion beam (FIB) milling (Rigort et al., 2012a).
The grid containing the sample is then transferred to a cryo-transmission electron
microscope (TEM), Figure 1.4). Next, the sample is tilted around an axis inside the
TEM, acquiring two-dimensional (2D) images of a cellular region of interest at each tilt
(see Section 1.2.3). Finally, the tilt series are computationally aligned and reconstructed
into a tomogram, which is a 3D density map or gray-value image of the cellular interior
(see Section 1.2.4).

Vitrification

The purpose of vitrification is to rapidly freeze the specimen to reach the temperature
below -140°C at which water turns into vitreous ice, before damaging ice crystals can
form (Lučić et al., 2005). Vitreous ice is amorphous like a liquid but more viscous,
thus the specimen is preserved at a nearly physiological state. The vitrification is done
by plunge-freezing for thin specimens (up to 10 µm) or by high-pressure freezing for
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thick specimens (up to a few hundred µm). In plunge-freezing, a specimen is blotted
on an electron microscopy grid until it is only covered by a thin film of a liquid and
then plunged into liquid ethane or ethane-propane mixture. In high-pressure freezing,
a specimen is pressurized while being cooled down by liquid nitrogen.

Cryo-FIB milling

To be penetrated by electrons and to reduce electron scattering interactions (see the
next paragraph), the specimen must be thin enough (Amos et al., 1982). To acquire high
resolution tomograms using current electron microscopes operated in intermediate
voltage ranges, sample thickness should be below 500 nm, ideally in range of 100-
250 nm. This thickness is only satisfied by small prokaryotic cells and peripheral
regions of some eukaryotic cells. To overcome this limitation, cryo-FIB/scanning
electron microscope (SEM) dual-beam microscope (Marko et al., 2006; Rigort et al.,
2012a) was developed and is currently used to prepare thin slices of cells, called
lamellas. The SEM is used for imaging the sample surface and the FIB for eroding or
“milling” down unwanted material by ion current. The microscope is also equipped
with a cryo-transfer system, a cryo-stage and a nitrogen gas cooling system for keeping
the sample vitrified. To protect the front of the lamella from a successive erosion
during milling, the sample is first covered with an organometallic platinum compound
using a gas-injection system (Hayles et al., 2007).

The SEM is used to visualize the surface of the sample using the FIB (1-30 keV) (Bäuer-
lein, 2018). Inelastically scattered electrons from the beam lead to emission of low-
energy secondary electrons (<50 eV) from the sample atoms, in amount mainly de-
pending on the surface geometry. Elastically scattered electrons reflected from the
sample (backscattered electrons) contribute to the contrast between areas with different
chemical compositions. The FIB is usually equipped with a Gallium ion source, which
is used to precisely mill down the top and the bottom parts of a target cell, leaving
a thin lamella with the structure of interest. The material is removed from the cell
surface by the process of sputtering (Marko et al., 2006) in several steps (usually rough
milling, fine milling and polishing). It is possible to estimate the thickness profile of
the lamella using the SEM (5-10 keV) and eventually correct it (Bäuerlein, 2018).

Cryo-TEM imaging

A vitrified specimen or a lamella can be imaged at high vacuum and liquid nitrogen
temperature in a cryo-TEM (Figure 1.4). High vacuum inside the microscope column
is needed to minimize electrons collision with gas atoms in order to keep the electron
beam coherent and monochromatic. Cooling the specimen holder to a low temperature
is needed to keep the vitrified specimen hydrated and solid (Castón, 2013). In our
usual setting, cryo-TEM is operated at high electron voltages, usually 300 kV. The high
voltage of the electron beam enables the electrons to penetrate the cellular sample.

TEM can detect electrons that are unscattered, elastically scattered (at lower-angles)
or inelastically scattered. The unscattered electrons do not hit the sample and remain
unchanged. The elastically scattered electrons interact with the potential field of
atomic nuclei and are deflected with unchanged amplitude (brightness) and wave
length (energy) but with a phase shift (difference in path length), contributing to image
formation together with the unscattered electrons. The inelastically scattered electrons
interact with the outer electrons of specimen atoms and transfer some of their energy to
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1.2 Cryo-electron tomography

Figure 1.4: Cryo-transmission electron microscope. Schematic diagram a typical TEM system
used for cryo-ET in Martinsried. Source: (Kochovski, 2014).
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the atoms, causing radiation damage to the specimen. Since the inelastically scattered
electrons are slowed down, they would form an image in a different plane and thus
have to be filtered out. An objective lens aperture is used to block electrons scattered
at large angles, i.e. elastically scattered but only a subset of inelastically scattered
electrons. Since inelastically scattered electrons have a different energy, they can be
filtered out using a post-column energy filter operated in “zero-loss mode” (Grimm
et al., 1996, 1997).

Electron scattering results in an intensity variation between different regions in the
image, known as contrast. There are two types of contrast: amplitude and phase
contrast. Since a part of the scattered electrons gets filtered out by the aperture or the
energy filter, some incident electrons do not reach the detector. Thus, the amplitude
of the electron wave changes locally, resulting in the amplitude contrast. The phase
contrast arises from the phase shift of the electron wave function while being elastically
scattered from the sample. The contrast of unstained, frozen-hydrated specimens
mainly arises from the phase contrast and to a lower extent from the amplitude
contrast (Toyoshima and Unwin, 1988). Thus, the amplitude contrast is disregarded
from now on.

The image contrast is defined by the contrast-transfer function (CTF). The CTF is an
oscillating and slowly attenuating function and is mainly influenced by defocus values
(Figure 1.5A): Using no or small defocus, high spatial frequencies are retained but not
the low spatial frequencies, resulting in images with a very low contrast. To increase
the phase contrast, defocusing of the objective lens and subsequent computational
image correction for the oscillations of the CTF is common (Castón, 2013; Beck and
Baumeister, 2016), e.g. using NovaCTF (Turoňová et al., 2017) or IMOD (Kremer et al.,
1996) software packages. To avoid these steps and enable imaging in focus, phase
plates were developed. For TEM, the Volta phase plate (VPP) (Danev et al., 2014)
applies a nearly quarter-wave phase shift to the scattered electrons relative to the
unscattered ones and thus inverts the contrast at the low frequencies (from sine to
cosine, Figure 1.5B). The VPP is a continuous carbon film positioned at the objective
aperture in the back focal plane in TEM (Fukuda et al., 2015).

The image formed on the TEM image plane is a two-dimensional projection of the
electrostatic potential of the specimen convoluted with the inverse Fourier transform of
the CTF (Lučić et al., 2005). The image can be viewed on a fluorescent screen, recorded
analogously on a photographic film or digitally by a camera. Originally in ET, charge-
coupled device (CCD) cameras were used (Krivanek and Mooney, 1993), which first
converted electrons into photons by a scintillator and then detected those. However,
due to backscattering of electrons into the scintillator resulting in spread of the signal,
the performance of CCD cameras was not sufficient for higher spatial frequencies
and acceleration voltages (Fan and Ellisman, 2000). Later on, single electron-counting
detectors, or direct electron detector (DED)s, were developed, e.g. K2 Summit (Gatan
Inc.) (Booth et al., 2012) that was used in these studies. A DED can directly detect
electrons, resulting in substantially increased resolution and sensitivity (as measured
by detective quantum efficiency) as well as a faster readout, compared to the CCD
cameras and the film (Faruqi and Henderson, 2007; Mooney, 2017). Normally, beam-
induced motion of the specimen leads to image blurring, see Section 1.2.3. Li et al.
(2013) confirmed that the combination of rapid readout and nearly noiseless electron
counting by a DED allows to correct image blurring to subpixel accuracy, restoring
the intrinsic image information to a near-atomic resolution for single particle analysis
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1.2 Cryo-electron tomography

A

B

Figure 1.5: Theoretical contrast-transfer function. (A) The CTF depending on the defocus,
three defocus values are visualized here: 0 µm (grey), -0.50 µm (blue) and -5.0 µm
(red). For 0 µm defocus, low frequencies are almost completely lost and mainly
high frequencies are transferred, leading to a very noisy image. Increasing the
defocus improves the contrast for low frequencies (blue and red areas) but with the
disadvantage of the loss of high resolution information. This is due to an intensified
dampening of the CTF for higher frequencies, which is well visible for the red
curve (defocus=-5.0 µm), where the oscillations vanish quickly. (B) The CTF at 300
kV, defocus=0 nm for conventional TEM (grey curve) and VPP TEM (blue curve).
The essential difference is clearly visible for low frequencies: While low frequency
information is lost with conventional TEM (grey area), there is a significant transfer
of low frequency information with the VPP (blue area). At high frequencies, the
CTF is comparable. Source: (Bäuerlein, 2018).
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(SPA). Recently, full atomic resolution has been achieved (Nakane et al., 2020; Yip et al.,
2020). A major advantage of the DEDs for cryo-ET is their ability to film multiple
shortly exposed (∼200 ms) micrographs, called frames, which can be aligned before the
tomogram reconstruction (Section 1.2.4).

1.2.3 Tilt series acquisition

In order to collect data for a tomogram, a single-tilt series of micrographs is recorded at
different angles by tilting the specimen holder, usually from -60° to +60° at 2° angular
increment. To achieve a more isotropic resolution, it is possible to record a double-tilt
series consisting of two single tilt-series, rotating the specimen by 90° around the beam
direction after the first series (Mastronarde, 1997). All tomograms used in this work
were acquired by single-tilt series. There are different tilt-schemes, e.g.: unidirectional,
bidirectional and dose-symmetric, which differ in the collection order of micrographs
but all have a constant angular increment (Hagen et al., 2017). In the unidirectional
tilt-scheme used in these studies, tilts are collected sequentially from one angular
extreme to the other.

Due to mechanical inaccuracies of the specimen holder and the physical influence
by the electron beam, the specimen moves during tilting, requiring a compensating
adjustment. Since manual adjustment would overexpose the specimen to the electron
beam, the automation of tilt series acquisition was crucial for minimizing the cumula-
tive electron dose. The first developed procedures (Dierksen et al., 1992, 1993) allowed
the acquisition of the first cryo-tomograms under low-dose conditions (Dierksen et al.,
1995; Grimm et al., 1997). The well established SerialEM software (Mastronarde, 2005)
was used in these studies.

The automated acquisition of each micrograph consists of three steps: tracking,
autofocusing and exposure (Dierksen et al., 1992). In the tracking step, a micrograph is
recorded at a very low dose and the lateral displacement of the specimen compared
to the previous tilt angle is calculated. The autofocusing step adjusts the defocus
according to the specimen movement in the beam direction. Both steps are performed
at another location on the grid along the tilt axis to minimize the electron damage of
the resulting tomogram. In the exposure step, projections of the object of interest are
recorded. The beam-induced motion of the specimen cannot be avoided during the
exposure step, leading to smearing of the image.

1.2.4 Frame alignment and tomogram reconstruction

After tilt-series acquisition, the frames of each tilt are aligned, reducing the motion-
induced smearing and so improving the sharpness and resolution of the resulting
image. To align the K2 Summit frames for the tomograms used in this work, K2Align
software 1 (Li et al., 2013) was used.

To reconstruct the 3D object from its 2D projections acquired during a tilt series, the
projections have to be first aligned to a common coordinate system and then combined
into one tomogram (Figure 1.6). The alignment algorithm has to determine the tilt axis
angle and the lateral shifts, which are not fully eliminated by the automated tracking
procedure, and optionally other changes like magnification and rotation (Lučić et al.,
2005). The alignment algorithms based on cross correlation (Guckenberger, 1982) and

1https://github.com/dtegunov/k2align
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1.2 Cryo-electron tomography

Figure 1.6: Principle of tomography. Projections of the specimen are recorded from different
directions by tilting the specimen holder (left). The 3D reconstruction of the sample
is obtained most commonly by backprojection into a common 3D reconstruction
body (right). Source: (Lučić et al., 2005).

Fourier-space common lines (Liu et al., 1995) are usually noise sensitive and thus only
useful for high-contrast or paracrystalline data (Taylor et al., 1997). Other alignment
algorithms, e.g. (Han et al., 2015), require addition of fiducial markers to the specimen,
which can be tracked across projections due to their high contrast. Then, the projections
are aligned using a least-squares algorithm (Lučić et al., 2005; Wan and Briggs, 2016).
As it is not possible to add fiducial markers under cryo conditions after FIB-milling, a
cross-correlation alignment algorithm has to be used for lamellae. Such an algorithm
tracks image patches along the micrographs, optimizing their alignment iteratively.
This is computationally intensive but can be executed in parallel for each patch and
combined using overlaps. The IMOD software package (Kremer et al., 1996) offers
semi-automatic algorithms for tilt series alignment using fiducial markers or patch-
tracking (the latter was used in the publications within this thesis). For alignment,
user interaction is required in order to choose initial markers and discard markers or
patches leading to high alignment errors.

After aligning the projections, a tomogram can be reconstructed. The mapping
between the 2D projections into the 3D space can be explained in Fourier space by the
central slice theorem (Figure 1.7): The Fourier transformation of a 2D projection equals
to a slice in the 3D Fourier space of the imaged object (De Rosier and Klug, 1968;
Crowther et al., 1970). Since interpolation in Fourier space is very computationally
demanding, real space-based reconstruction algorithms are commonly used (Lučić
et al., 2005; Wan and Briggs, 2016). The most common reconstruction algorithm in
cryo-ET is the weighted back-projection (WBP), in which the projections are projected
back to generate a 3D reconstruction of the imaged object (Wan and Briggs, 2016). Due
to the tilting geometry, lower frequencies in Fourier space are sampled homogeneously
up to a certain frequency (defined by Crowther et al. (1970), “Crowther criterion”),
whereas higher frequencies are undersampled (Figure 1.7). Therefore, projections
are weighted accordingly prior to reconstruction. Weighting is done in Fourier space
either using an analytical or an exact weighting scheme (Lučić et al., 2005). The
analytical weighting function grows with the frequency in the direction perpendicular
to the tilt axis and approaches the exact weighting for small tilt increment. An exact
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Figure 1.7: Data sampling in Fourier space. A projection of an object with thickness d corre-
sponds to a central slice of thickness 1/d in Fourier space. Therefore, the three-
dimensional information of the specimen (outside of the missing wedge) is gathered
homogeneously up to frequency kC (Crowther criterion). Source: (Lučić et al., 2005).

weighting scheme calculates the sampling density in Fourier space using the known
size of the object of interest in the specimen. The IMOD software package (Kremer
et al., 1996) also offers tomogram reconstruction using WBP, which was used in the
publications accompanying this thesis. The reconstruction is approached differently
by algebraic reconstruction technique (ART) (Gordon et al., 1970; Crowther et al.,
1970), which formulate projections as a system of algebraic equations and aim to
invert it approximately using an iterative algorithm. However, these algorithms lead
to unsatisfactory reconstructions (Gilbert, 1972). The reconstruction is improved in
the simultaneous iterative reconstruction technique (SIRT) (Gilbert, 1972), where the
initial reconstruction is performed by unweighted back-projection, then the differences
between the original projections and those mapped to the volume are iteratively
minimized. Iterative reconstruction algorithms have two major advantages: i) They
can determine proper weighting consistently and in a parameter-free manner, ii) they
offer an easy interpolation of constraints; However, the established constraints are
either not applicable to complex biological specimens like cells used in cryo-ET, or
the improvement over WBP is marginal (Lučić et al., 2005). Moreover, while these
iterative methods preserve the low-resolution signal better, they may loose the high-
resolution information that is below the noise level (Wan and Briggs, 2016). A more
recent iterative reconstruction method, INFR, uses nonuniform fast Fourier transform
(NUFFT) and claims to yield better reconstructions than WBP, also filling up the
missing wedge with meaningful low-frequency information without prior assumptions
about the data (Chen and Förster, 2014). This and other new algorithms have been
shown to perform better than WBP for low-resolution test data, but it remains to
be shown whether these methods maintain high-resolution information as well as
WBP (Wan and Briggs, 2016).
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Figure 1.8: Missing wedge. The illustrations show schematically the sectors in the Fourier
domain that remain unsampled because of the limited tilt range. In single-axis
tilting, there is a missing wedge. The table contains percentages of the Fourier space
that are covered for different tilting ranges. The missing information in real space
is illustrated below. Source: (Lučić et al., 2005).

1.2.5 Limitations and artifacts of cryo-ET

Since the electron beam damages biological specimens in ice, destroying or falsifying
high frequency information in projection images, those have to be recorded under low
electron dose conditions (Frangakis and Förster, 2004; Lučić et al., 2005). Consequently,
the resulting tomograms have a low signal-to-noise ratio (SNR).

Because in practice it is unfeasible to tilt the sample beyond ∼± 60°, in single-tilt
tomography there is a wedge of unsampled information in the Fourier space. This
artifact, called missing wedge, causes nonisotropic resolution, i.e. the features look
elongated along the electron beam direction (Z-axis), and surfaces like membranes
perpendicular to the tilt axis (Y-axis) are also not visible (Lučić et al., 2005). Thus,
membrane regions are missing at the top and the bottom of both the Y- and the Z-axes
(Figure 1.8). To avoid wrong results, the missing wedge has to be considered by
computational methods that process tomograms directly or indirectly, e.g. membrane
segmentation or curvature estimation (see Sections 1.3.4 and 1.4.5, respectively).

1.3 Computational methods for cryo-ET

1.3.1 Denoising algorithms

To increase the SNR, different denoising algorithms are used to identify noise and
remove it from the tomogram. However, as a side effect, the algorithms also remove a
certain amount of the signal.

The simplest denoising algorithms used in tomography apply linear filtering ope-
rations, e.g. low-pass filtering and median filtering in Fourier space (Lučić et al.,
2005). Also Wiener deconvolution (or Wiener filter) (Wiener, 1964) is applied in Fourier
space, minimizing the impact of noise at frequencies which have a poor SNR. An
implementation is available2, which was used in (Salfer et al., 2020) accompanying this
thesis.

2https://github.com/dtegunov/tom_deconv
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In real space, nonlinear filtering algorithms, e.g. nonlinear anisotropic diffusion
(NAD) (Frangakis and Hegerl, 2001; Fernández and Li, 2003) and bilateral denois-
ing (Jiang et al., 2003), can achieve a better signal preservation. NAD uses variation
of the gray levels in the image and can enhance membranes (Frangakis and Förster,
2004; Lučić et al., 2005). A recent implementation (Moreno et al., 2018) allows a
straightforward and fast usage of NAD, which was also used in (Salfer et al., 2020).
Bilateral denoising uses gray values and their proximity and can effectively suppress
noise without blurring the high resolution details (Jiang et al., 2003; Frangakis and
Förster, 2004). Algorithms based on wavelet transformation (Stoschek and Hegerl,
1997), which uses the fact that the signal has characteristic features not present in the
noise, preserve high-frequency spatial information better, but are very computation-
ally expensive, and the transformation is applied to 2D slices and not to the full 3D
image (Frangakis and Förster, 2004; Lučić et al., 2005). Nonlinear denoising is usually
not applied for further quantitative image processing, but it may be beneficial for
segmentation algorithms (Frangakis and Förster, 2004; Martinez-Sanchez et al., 2014;
Lučić et al., 2016) (see Section 1.3.4).

Recently, approaches applying deep learning for image restoration have been intro-
duced (Lehtinen et al., 2018; Krull et al., 2019; Laine et al., 2019; Batson and Royer, 2019).
Adapted for cryo-TEM data, cryo-Content-Aware Image Restoration (CARE) (Buch-
holz et al., 2019a,b) can train deep neural networks by using registered pairs of noisy
images. Those networks can then be used to denoise single projections and whole
tomographic volumes.

1.3.2 Particle picking and structural classification

Template matching is an imaging technique that correlates an image with respect to
a smaller model (template) to search for coincidences (matching). In the context of
biological samples, the aim is to find all occurrences of a known structure (template)
in a microscopy image, also known as molecular recognition (Böhm et al., 2000; Lučić
et al., 2005). The template is usually derived from a medium- or high-resolution
structure obtained by X-ray crystallography or SPA (Beck and Baumeister, 2016). In
“visual proteomics” (Nickell et al., 2006; Förster et al., 2010; Asano et al., 2016), a
tomogram is matched against a library of templates, creating a “protein atlas” with
positions and angular orientations of protein complexes inside the cell.

The standard template matching algorithm of Frangakis et al. (2002) is based on a
normalized cross correlation function that normalizes the subtomograms according
to local variance. The local constrained cross correlation function that accounts for
the missing wedge is used in the algorithm MolMatch (Förster, 2005; Förster et al.,
2010). Template matching is very computationally expensive, because many cross
correlations must be performed iteratively to sample the complete rotational space of
the template for each subtomogram. To reduce the computational time, MolMatch
can run in parallel for overlapping subtomograms. There is an older MATLAB
implementation in TOM software toolbox for tomography (Nickell et al., 2005) and a
newer Python implementation in PyTOM toolbox (Hrabe et al., 2012), both were used
in Bäuerlein et al. (2017) accompanying this thesis. Recent deep learning approaches
use convolutional neural networks (CNN) for automated annotation of cryo-electron
tomograms (Chen et al., 2017; Moebel et al., 2020), extracting macromolecular structures
like ribosomes. The latter method, DeepFinder (Moebel et al., 2020), can also localize
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and identify small macromolecules, several macromolecular species simultaneously or
differentiate specific states of the same macromolecular species, like membrane-bound
and cytosolic ribosomes.

In practice, template matching sensitivity and specificity are compromised by several
factors like image SNR, macromolecular weight and crowded cellular environments.
Besides the true matches (true positives), some occurrences matching the template
(particles) are missed by the detection function (false negatives) and some wrong
matches are found (false positives). To reduce the false negatives and increase the
sensitivity, one can modify the search parameters, albeit at the cost of more false
positives. To filter out the false positives and increase the specificity, the resulting
particles can be classified manually and/or automatically, e.g. by multivariate sta-
tistical analysis (Frangakis et al., 2002), using constrained correlation (Förster et al.,
2008), hierarchical clustering (implemented and described by Hrabe et al. (2012)),
Autofocused 3D classification (Chen et al., 2014) or deep learning (CNN) (Che et al.,
2018; Moebel et al., 2020). The newest CNN-based method, DeepFinder, can localize
additional macromolecules that had been missed by template matching or discarded
during manual classification. To find ER-bound ribosomes in Bäuerlein et al. (2017)
accompanying this thesis, manual screening and distance-based filtering were followed
by constrained principle component analysis and k-means clustering.

Template-based methods can only find occurrences of a known structure in a tomo-
gram. To discover new complexes in situ, a template-free method for detection and
classification of membrane-bound complexes, PySeg, was recently developed (Martinez-
Sanchez et al., 2020). PySeg extends the segmentation method (Sousbie, 2011) based on
discrete Morse theory (Milnor, 1963; Forman, 2002) combined with affinity propagation
(AP) clustering algorithm (Frey and Dueck, 2007). AP clustering is unsupervised and
thus does not require information on the number of optimal classes, like k-means
and hierarchical clustering do, but can determine it from the data. It has been shown
in (Martinez-Sanchez et al., 2020) that PySeg outperforms common template matching
and clustering approaches, i.e. based on automated pattern mining (Xu et al., 2019),
deep learning (Yu and Frangakis, 2011; Xu et al., 2017; Chen et al., 2017) and the dif-
ference of Gaussian picking (Voss et al., 2009) methods, for sparsely distributed small
(∼150 kDa) membrane associated complexes. Moreover, PySeg reduces the influence of
the missing wedge and it was the only method that detected small membrane-bound
complexes and provided the best resolution of class averages (Martinez-Sanchez et al.,
2020). Altogether, PySeg generates sufficiently homogeneous particles sets and initial
references for subsequent subtomogram averaging.

1.3.3 Subtomogram averaging

A tomogram usually contains multiple copies of the same particle in different, ideally
random, orientations. However, each single subtomogram is noisy and affected by
the missing wedge. Luckily, the missing information is usually not at the same
location in the subtomograms. Thus, it is possible to improve the SNR and reduce the
missing wedge of the target structure by averaging the subtomograms. For this, the
subtomograms from the particle picking and classification procedures are iteratively
aligned, refining the angular orientation of each particle, and an improved average
is calculated (Lučić et al., 2005; Beck and Baumeister, 2016; Wan and Briggs, 2016).
The most popular software packages implementing subtomogram alignment and
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averaging algorithms are RELION (Bharat and Scheres, 2016) and emClarity (Himes
and Zhang, 2018). For symmetrical structures, symmetry can be used to obtain a higher
resolution (Walz et al., 1997; Förster et al., 2005). Repetitive structures, e.g. filaments,
can be divided into shorter elements and averaged (Guo et al., 2018b). The obtained
structures are usually in the 1-3 nm resolution range. Under favorable conditions,
resolutions in the subnanometer range can be achieved (Guo et al., 2018a; O’Reilly
et al., 2020), in principle even near-atomic range is possible (Beck and Baumeister,
2016).

1.3.4 Segmentation of membranes and proteins

Segmentation labels structural components present in images voxel by voxel. In
tomography, segmentation defines where each structure, e.g. a certain organelle, is
spatially located in the cellular subvolume and delineates its shape, which is necessary
for both qualitative and quantitative tomogram interpretation. Many algorithms have
been developed that can segment membranes automatically (Martinez-Sanchez et al.,
2011, 2012; Mosaliganti et al., 2012; Martinez-Sanchez et al., 2014). However, in most
cases a manually supervised post-processing is required to enable a quantitative
analysis due to the complexity of the cellular context and the low SNR. Martinez-
Sanchez et al. (2014) developed an automatic membrane segmentation method based
on tensor voting, TomoSegMemTV. TomoSegMemTV accounts for distortion caused by
the missing wedge by omitting the membrane regions vanished or elongated (Martinez-
Sanchez et al., 2014). In the publications accompanying this thesis, we first generated
membrane segmentations automatically from tomograms using TomoSegMemTV and
then refined manually using Amira Software (Thermo Fisher Scientific3). Manually
segmenting the lumen of membrane compartments was found useful for the correct
membrane surface extraction (Salfer et al., 2020). A new membrane segmentation
method, LimeSeg (Machado et al., 2019), which is deployed in the ImageJ environment4

or available on GitHub5, is based on the concept of “surfels” (surface elements) rather
than voxels. It provides simultaneous segmentation of numerous non overlapping
objects, also highly convoluted ones, and is robust to big datasets.

Apart from membranes, there are segmentation methods for other molecular den-
sities that are hard to detect by template matching. Rigort et al. (2012b) developed
an automated segmentation method for actin filament networks in cryo-tomograms,
which is integrated in the Amira software and was also used to segment other cy-
toskeletal filaments like microtubules (Chakraborty et al., 2020). Bäuerlein et al. (2017)
(part of this thesis) applied this method to segment huntingtin fibrils. The algorithm
represents filament centers by short and connected lines, which can be used to calculate
filament length, orientation, density, stiffness (persistence length) and detect branching
points (Rigort et al., 2012b). Lučić et al. (2016) developed a method for hierarchical
detection of small, pleomorphic (i.e. variable in size and shape) membrane-bound
molecular complexes in cryo-tomograms, called Pyto, which was applied to segment
short filaments between synaptic vesicles (linkers) and between the vesicles and presy-
naptic terminal (tethers) (Fernández-Busnadiego et al., 2013; Lučić et al., 2016) as
well as ER-PM contacts formed by extended synaptotagmins (Fernández-Busnadiego

3https://www.thermofisher.com/.../amira-life-sciences-biomedical.html
4http://sites.imagej.net/LimeSeg
5https://github.com/NicoKiaru/LimeSeg
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et al., 2015). Recently, automated segmentation methods based on CNN have been
developed for cryo-ET, like the method of Chen et al. (2017), which is available in
the EMAN2.26 (Tang et al., 2007) software package. This method can be trained to
segment a wide range of classes of geometrical features, like filaments, membranes
and periodic arrays or isolated macromolecules. It operates on the tomogram slice by
slice, is fast and largely avoids distortions due to the missing wedge.

1.4 Surface curvature estimation

Computational methods calculating quantitative descriptors, like local surface cur-
vature, are of central importance for the interpretation of membrane segmentations.
Those quantitative descriptors are a key for answering relevant biological questions.

1.4.1 Quantitative surface curvature descriptors

Surface normals, principal curvatures and principal directions

Surface curvature descriptors are studied in differential geometry and characterize
the local geometry of a surface. For this, a membrane has to be first modeled as a
single-layered, curved surface embedded in 3D space (Martinez-Sanchez et al., 2011).
Curvature is defined locally at each point on the surface. In theory, there is an infinite
number of curved lines along the surface passing through each point, leading to an
infinite number of curvature values. However, at each point there are two directions,
called principal directions, in which the bending is maximum or minimum, notated here
as t1 and t2, respectively. The principal directions are orthogonal vectors embedded
on the tangent plane to the surface at each point (do Carmo, 1976). The maximum
and the minimum curvatures defined by the principal directions are called principal
curvatures and notated here as κ1 and κ2, respectively.

Mean curvature, Gaussian curvature, curvedness and shape index

From the principal curvatures, different combined surface curvature measures can be
computed for each point, e.g.: mean curvature H (Equation 1.1), Gaussian curvature K
(Equation 1.2), curvedness C (Equation 1.3) and shape index SI (Equation 1.4) (Koenderink
and van Doorn, 1992).

H =
κ1 + κ2

2
(1.1)

K = κ1κ2 (1.2)

C =

√
κ2

1 + κ2
2

2
(1.3)

SI =
2
π

atan
κ1 + κ2

κ1 − κ2
(1.4)

6http://www.EMAN2.org
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1.4.2 Data structures approximating smooth surfaces

Biological membranes have to be represented in a discrete way in order to be processed
computationally. There are two main categories of data structures approximating a
smooth surface: polygon meshes and point-based alternatives.

Polygon and triangle meshes

Piecewise planar surfaces in three dimensions (3D) are usually represented by polygon
meshes, consisting of planar faces that share their vertices and edges. Faces are simple
convex polygons, most commonly triangles (Meyer et al., 2003) (Figure 1.9A), because
triangle is the simplest polygon. Advantages of triangles over e.g. quadrilaterals
are compactness in memory, efficiency of rendering and subdivision (Tobler and
Maierhofer, 2006). Graphics hardware has been first optimized and specialized for
triangle rendering (Kobbelt and Botsch, 2004; Hoppe, 1999; Sander et al., 2007; Fenney,
2018). Moreover, the triangle mesh intrinsically stores important data about the surface,
e.g. surface orientation, area and connectivity information. Surface orientation is
defined by triangle normal vectors (normals), which point consistently inwards or
outwards the shape approximated by the mesh, depending on the convention (we
used the inwards-pointing normals). Area of the triangle mesh surface is simply the
sum of areas of all triangles in the mesh, which is an approximation of the area of
the underlying smooth surface. The globally consistent connectivity between triangles
allows to calculate shortest distances along the surface, called geodesic distances (Dijkstra,
1959; Kimmel and Sethian, 1998; Sun and Abidi, 2001), and find neighboring triangles
within a certain geodesic distance (Page et al., 2002).

Point-based alternatives

Point-based geometry offers alternative surface representation techniques, e.g. point
clouds (Figure 1.9B) and surface splats. These techniques are simpler and offer more
flexibility than triangle meshes, because they neither have to store nor to maintain the
globally consistent connectivity information (Kobbelt and Botsch, 2004). This can be
advantageous for certain applications, e.g. efficient real time rendering or geometry
manipulation of highly complex 3D models. Especially elliptical splats yield good
surface approximation since they can be aligned to the principal directions of the
underlying surface.

In this thesis, a graph-based representation of triangle meshes was developed and
used in our algorithms. The possible advantage of using a point-based data structure
is discussed in Section 3.2.

1.4.3 Curvature estimation algorithms

Curvature estimation algorithms can be classified into three main categories: discrete,
analytical and tensor voting-based.

Discrete

The first category of discrete curvature estimation algorithms uses discretized formulae
of differential geometry. These formulae try to approximate the underlying surface
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A B

Figure 1.9: Data structures approximating smooth surfaces. (A) Triangular mesh and (B)
point cloud representing a horse. Source: Discrete geometry Lecture 2 by Alexander
and Michael Bronstein (https://slideplayer.com/slide/4789180/).

from the given triangle mesh (Polthier and Schmies, 1998; Desbrun et al., 1999; Meyer
et al., 2003; Szilvási-Nagy, 2008). However, the approximation is often not precise
for noisy, coarsely triangulated surfaces, as usually only a 1-ring neighborhood is
used, i.e. directly neighboring triangle vertices sharing an edge with the central
vertex (Razdan and Bae, 2005). An exception is the method of Szilvási-Nagy (2008),
which uses a user-defined neighborhood of an arbitrary size. The popular method of
Meyer et al. (2003) estimates Gauss curvature (K) using the discretized Gauss-Bonnet
theorem (Polthier and Schmies, 1998) and mean curvature (H) using the discrete
Laplace-Bertrami operator (also used for fairing irregular meshes by Desbrun et al.
(1999)). The principal directions are estimated using least-square fitting of an ellipse,
the so called curvature tensor. However, the directions are not robust for coarse,
triangulated surfaces and therefore not recommended to use for the computation of
principal curvatures. Thus, the principal curvatures are derived from the Gauss and
mean curvatures.

Analytical

The second category are analytical algorithms that either fit surfaces (Goldfeather and
Interrante, 2004; Razdan and Bae, 2005) or curvature tensors (Taubin, 1995; Theisel
et al., 2004; Rusinkiewicz, 2004) to local patches of the mesh containing a central vertex
and a small neighborhood of triangles around it. Subsequently, the algorithms derive
principal curvatures and directions from the fitted model. The drawback of the surface
fitting algorithms is their computational complexity, since the fitting process includes
an optimization step. This optimization improves their robustness to noise but not
their susceptibility to surface discontinuities (Page et al., 2002). The difference between
the algorithms is in the number of fitted parameters, which usually correlates with
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the goodness of the fit. For example, Goldfeather and Interrante (2004) proposed
three principal direction approximation methods and found that their cubic-order
method additionally using the normal vectors at adjacent vertices outperforms the
other two quadratic-order methods, especially on irregular meshes. An interesting
algorithm is the biquadratic Bézier method of Razdan and Bae (2005), which has
an advantage of a more flexible surface fit (at a cost of more parameters to fit), as
it uses 2-ring neighborhood and outperforms the cubic-order method (Goldfeather
and Interrante, 2004). In the subcategory of the curvature tensor algorithms, Taubin
(1995) defines a symmetric matrix with eigenvectors corresponding to the principal
directions and eigenvalues from which the principal curvatures can be obtained by
fixed homogeneous linear transformations. He estimates this matrix per triangle vertex
using vertex pairs sharing an edge (1-ring neighborhood).

Tensor voting-based

Algorithms using 2-ring neighborhood or also the neighboring normals proved superior
over algorithms using only 1-ring neighborhood. Especially, 1-ring neighborhood is not
sufficient for noisy data (Razdan and Bae, 2005). The higher the resolution of scanned
surfaces, the bigger the neighborhood yielding the best results, because it compensates
the scanning errors (Magid et al., 2007). There is a category of curvature estimation
algorithms incorporating a bigger neighborhood to fit a curvature tensor (Tang and
Medioni, 1999; Page et al., 2002; Tong and Tang, 2005). These algorithms are based
on Medioni’s tensor voting theory (Medioni et al., 2000) for discerning shape features
in a point cloud. Tang and Medioni (1999) robustly estimated curvature sign and
principal directions from noisy point cloud data, and Tong and Tang (2005) extended
this method to estimate also the magnitude of principal curvatures. Page et al. (2002)
combined the discrete formulation from Taubin (1995) with the voting scheme from
Tang and Medioni (1999) and used a geodesic neighborhood of triangles to robustly
estimate normal vectors, principal directions and curvatures for each triangle vertex.
However, we found that the algorithm of Page et al. (2002) leads to wrong curvature
sign estimation for non-convex surfaces (Salfer et al., 2020). To sum up, all tensor
voting-based algorithms aim to increase the robustness of principal directions and
curvatures estimation for noisy surfaces with discontinuities.

Triangle vertex vs. face-based

Most of the algorithms estimate curvature at triangle vertices, but some operate on
triangle faces (Theisel et al., 2004; Rusinkiewicz, 2004; Szilvási-Nagy, 2008) (Figure 1.10).
Theisel et al. (2004) estimate curvature tensor as a smooth function on each triangle,
using triangle normals linearly interpolated from vertex normals (Figure 1.10). The
method slightly outperforms the cubic-order method of Goldfeather and Interrante
(2004). A method of Rusinkiewicz (2004) estimates first the triangle normals using
the vertex normals from 1-ring neighborhood, then the curvatures for each triangle
face using the triangle edges (Figure 1.10) and least squares fitting of the curvature
tensor, and finally averages curvatures for each triangle vertex from the adjacent
triangles. This algorithm is efficient, robust, free of degenerate configurations, where
other algorithms fail, and is accurate even on irregularly tessellated and moderately
noisy meshes. A discrete method of Szilvási-Nagy (2008) estimates normal, principal
and Gaussian curvatures on triangle barycenters (Figure 1.10) using a user-defined

22



1.4 Surface curvature estimation

Figure 1.10: Triangle mesh geometry. Schematic representation of two neighboring triangles
from an arbitrary triangle mesh, showing the basic components: triangle face,
edge, vertex, barycenter (“center”) as well as vertex and triangle normal vectors
(“normal”).

geodesic radius. The method is not dependent on estimated normal vectors, and the
defined osculating circle approximates the underlying surface in third order. The
method works in regions with long, narrow triangles where vertex-based methods fail.
To sum up, face-based curvature estimation algorithms yield more robust results than
vertex-based algorithms on irregularly tessellated and moderately noisy meshes.

1.4.4 Curvature estimation methods in biological imaging

Curvature estimation methods were mainly developed for analysis of MRI data,
especially for the human brain. The widely used software package FreeSurfer (Dale
et al., 1999) includes a curvature estimation module (Pienaar et al., 2008) that was
used to analyze human brain development. Additionally, a “Gaussian-curvature-
based variable-radius filter” was introduced in order to analyze curvatures of brains
of different sizes. Mindboggle (Klein et al., 2017) is a newer open source brain
morphometry software, which was applied to the largest dataset of manually labeled
and publicly available brain images (Mindboggle-101 (Klein and Tourville, 2012; Klein,
2016)7) to demonstrate its use in studies of shape variation in healthy and diseased
humans. Both methods are based on discrete curvature estimation algorithms operating
on triangle vertices using a small neighborhood of triangles. Studying human fetal
brain development, Hu et al. (2012) estimated the principle curvatures (κ1 and κ2) by a
voxel intensity-based method (Thirion and Gourdon, 1993), then used the shape index
(SI) to locale the gyral nodes and sulcal pits and the curvedness (C) to quantify the
sharpness of the cortical surfaces. For MRI heart data, curvature of the interventricular
septum was estimated using smoothing 2D spline surfaces and differential geometry
operators (Moses and Axel, 2004).

7http://mindboggle.info/data.html, https://osf.io/nhtur/
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For fluorescence microscopy data, custom software based on cubic B-splines, which
are splines comprised of piecewise degree-3 Bézier curves, was used to quantify the
absolute curvature of curved microtubules (Bechstedt et al., 2014). However, this
algorithm is only applicable for linear structures but not to surfaces. Curvatures of
C. elegans cellular membranes were estimated based on local surface fitting using
smooth point cloud surfaces (Xu et al., 2018). Another local surface fitting method,
included in Amira Software, was recently used to estimate the curvedness (C) at contact
zones in cultured mouse cerebellar neurons from block-face EM data (Hoffman et al.,
2020).

To achieve robust results on the noisy images using nearly all the methods mentioned
above (except for the one from Hu et al. (2012), which avoids surface modeling), the
surfaces had to be strongly smoothed. How problematic smoothing can be depends on
the relative size of the feature of interest compared to the pixel size.

To define constriction sites at tomographic cross-sections of dividing bacterial cells,
Yao et al. (2017) wrote a Python software tool8 that finds curvature maxima and
the radius of curvature of the inner membrane by fitting a centripetal natural cubic
spline. Also analyzing tomographic slices, Chen et al. (2019) fitted a spline curve to
membrane profiles of clathrin-coated pits and estimated their curvature according to
Boutin (2000). However useful for these specific cases, these methods are not capable
of measuring curvature of arbitrary membranes in 3D. The aforementioned methods
applying smoothing on surfaces are not suitable for cryo-ET data, as this would lead
to the loss of small structural details in nanometer range, eliminating high curvature
information. Thus, another solution has to be found to enable a reliable curvature
estimation on noisy surfaces, as will be discussed below.

1.4.5 Limiting factors for membrane curvature estimation in
cryo-ET

Quantization noise

The first step towards membrane curvature estimation in tomograms is membrane
segmentation. Besides the errors possibly generated during the automated and manual
membrane segmentation process, discretization of segmented data using binary voxels
(1 membrane and 0 background) is the major limiting factor for membrane curvature
estimation. This binary discretization is known as quantization noise (Magid et al.,
2007). The second step towards membrane curvature estimation is surface extraction
from the segmentation. The surface should ideally be smooth and free from artifacts.
However, surface extraction algorithms would need gray-level values to achieve sub-
voxel precision, i.e. to extract smooth surfaces. For this reason, the quantization noise
present in the segmentations leads to step-wise surfaces. Thus, curvature estimation
algorithms for cryo-ET should be robust to noisy surfaces. As seen in Section 1.4.3,
the algorithms based on tensor voting are the most successful in coping with noisy,
coarsely triangulated surfaces and thus look the most promising for cryo-ET.

8https://github.com/jewettaij/sabl_mpl/
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Missing wedge and surface borders

Another limiting factor for curvature estimation of membranes from cryo-tomograms
is the missing wedge (described in Section 1.2.5), which causes features to appear
elongated in the beam direction and surfaces to be partially missing. The elongated or
missing membrane regions in a tomogram are also missing in the automated segmen-
tation (see Section 1.3.4) and should also be omitted during the manual refinement.
Consequently, it is not possible to estimate curvature covering the whole membrane,
the missing regions will remain undersampled. Since closed surfaces cannot be fully
recovered, membrane surfaces in cryo-ET will always have borders. As seen in Sec-
tion 1.4.3, curvature estimation on discrete surfaces requires a certain neighborhood
around each point, thus curvature estimation at and near surface borders would also be
affected, unfortunately especially in tensor voting-based algorithms that use a bigger
neighborhood.

1.5 Motivation

Cryo-ET combined with segmentation methods is a powerful technique to visualize
biological membranes in 3D, in a close-to-native state and at molecular resolution
(Section 1.2.1 and 1.3.4). However, computational methods specialized on membrane
morphology analysis did not exist or were unable to cope with imaging artifacts
present in cryo-ET data, especially surface noise and holes (Section 1.2.5). Therefore,
the general aim of my dissertation was to develop algorithms that help quantitatively
analyze membrane biology from cryo-ET membrane segmentations.

The main aim was to estimate membrane curvature. Analyzing Huntington’s
disease (HD) model cells expressing exon I of polyQ-expanded Htt gene using cryo-ET,
we observed that Htt fibrils interacted with and deformed cellular endomembranes,
especially ER. We hypothesized that Htt fibrils induce high membrane curvature,
perhaps leading to ER membrane disruption (Bäuerlein et al., 2017). Furthermore, we
wanted to compare curvature of cER membranes in different tether protein mutants in
yeast to better understand the contribution of the individual protein families to cER
membrane morphology. For example, we wanted to visualize and analyze peaks of
extreme curvature on the cER membrane facing the PM, which were more frequently
observed in cells expressing only the tricalbin family tethers than in the wild type
cells (Collado et al., 2019). Since existing publicly available curvature estimation
methods were based on discrete approaches using only a small neighborhood of
triangles (Section 1.4.3 and 1.4.4), these methods were sensitive to surface noise present
in cryo-ET data (Section 1.4.5). Approaches based on tensor voting and geodesic
neighborhood found in the literature (Page et al., 2002; Tong and Tang, 2005) seemed
promising but the code was not publicly available. Therefore, we wanted to implement
and adapt these algorithms to our data. Moreover, algorithms facilitating calculation
of geodesic distances and filtering of surface borders had to be developed.

A secondary aim was to develop a method for calculation of density of membrane-
bound ribosomes. In tomograms of the HD model cells mentioned above, there seemed
to be less ribosomes on ER near Htt fibrils than further away from the fibrils (Bäuerlein
et al., 2017). In order to help to test this hypothesis, the idea was to find membrane-
bound ribosomes by template matching, map them to the ER membrane segmentation
represented by a graph and calculate their density on the membrane using geodesic
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distances.
Another secondary aim was to measure distances between membranes in different

MCS and in different ER-PM tether protein mutants in yeast, to better understand the
contribution of the individual protein families to intermembrane distances (Collado
et al., 2019). For this, we wanted to implement an algorithm using the membrane
surface graph representation and the surface normals estimation from the curvature
estimation method.
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Summary

In many neurodegenerative diseases, a certain protein aggregates into soluble oligomers
and large insoluble inclusion bodies (IBs). Whereas the oligomers are known to be
cytotoxic, little is known about the IBs contribution to pathology. Here, we analyzed
the architecture of IBs and their cellular interactions in situ and in 3D using VPP
cryo-ET and light microscopy.

Primary mouse neurons and human HeLa cells were transfected with different
constructs of polyQ-expanded Htt exon 1, which is found in IBs in HD patient neurons
and recapitulates HD-like symptoms in mice. All the construct types formed nearly
spherical and mostly cytosolic IBs that consisted of a dense network of radially
arranged fibrils. Large molecules like cytosolic ribosomes were abundant at the
inclusion body (IB) periphery but were mostly excluded from its core.

We observed that fibrils in the outer IB periphery closely contacted organellar
membranes, especially ER, and vesicles. ER membranes close to the fibrils were almost
devoid of ribosomes, indicating reduction of translation. The interactions with fibrils
often co-localized with ER and vesicle membrane deformations of extremely high
curvature. To quantify membrane curvature at nanometric scale, we developed a
previously lacking method for cryo-ET. According to our estimation, the ER curvature
was significantly higher at the IB interface than in distal areas or in cells without IBs,
suggesting that Htt fibrils can deform membranes. Moreover, some ER chaperones and
components of ER-associated degradation machinery accumulated in the ER around
the IBs, indicating ER stress. Furthermore, ER dynamics were largely reduced around
IBs. Altogether, these findings suggest that the abnormal interactions between Htt
fibrils and cellular endomembranes can contribute to HD pathology.

Author contribution

To quantitatively describe membrane-fibrils interactions, I segmented the membranes,
analyzed ER-bound ribosomes by template matching and calculated their density on
the membranes by applying a newly developed method. Moreover, I proposed and
implemented a new method for curvature estimation and analyzed curvature of ER
and vesicle membranes. Finally, I contributed to writing and revising the manuscript.
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SUMMARY

Expression of many disease-related aggregation-
prone proteins results in cytotoxicity and the forma-
tion of large intracellular inclusion bodies. To gain
insight into the role of inclusions in pathology and
the in situ structure of protein aggregates inside cells,
we employ advanced cryo-electron tomography
methods to analyze the structure of inclusions formed
bypolyglutamine (polyQ)-expandedhuntingtinexon1
within their intact cellular context. In primary mouse
neurons and immortalized human cells, polyQ inclu-
sions consist of amyloid-like fibrils that interact with
cellular endomembranes, particularly of the endo-
plasmic reticulum (ER). Interactions with these fibrils
lead to membrane deformation, the local impairment
of ER organization, and profound alterations in ER
membrane dynamics at the inclusion periphery.
These results suggest that aberrant interactions be-
tween fibrils and endomembranes contribute to the
deleterious cellular effects of protein aggregation.

INTRODUCTION

Protein aggregation is a hallmark of many neurodegenerative

disorders, including Huntington’s disease (HD), amyotrophic

lateral sclerosis, and Parkinson’s disease (Hipp et al., 2014;

Ross and Poirier, 2004). Soluble oligomeric aggregates have

been linked to toxicity in many of these proteinopathies, whereas

the large insoluble inclusions found in the brains of patients and

in animal and cellular models are often regarded as oligomer-

sequestering protective entities (Arrasate and Finkbeiner, 2012;

Bucciantini et al., 2002; Haass and Selkoe, 2007). However,

the exact contribution of inclusions to pathology remains poorly

characterized, and detailed structural information on inclusion

body (IB) organization in unperturbed cellular environments

is missing. The traditional methods of sample preparation

including chemical fixation, dehydration, and heavy metal stain-

ing are not compatible with high-resolution structural studies.

Recent technical advances make cryo-electron tomography

(cryo-ET) ideally suited to address the challenge of studying IB

structures in situ, enabling the analysis of their interactions

with their cellular environment. Cryo-focused ion beam milling

(cryo-FIB) opens windows into the interior of frozen-hydrated

vitrified cells by producing thin lamellas that can be studied in

three dimensions (3D) by cryo-ET (Mahamid et al., 2016; Rigort

et al., 2012a). Furthermore, cryo-ET imaging capabilities have

been dramatically expanded by the introduction of direct elec-

tron detectors (Li et al., 2013) and the Volta phase plate, which

enables imaging close to focus with maximum contrast (Asano

et al., 2015; Danev et al., 2014; Mahamid et al., 2016). Thus,

cryo-ET allows the 3D visualization of pristinely preserved cells

at molecular resolution.

Here, we capitalize on these developments to dissect IB archi-

tecture within unstained, frozen-hydrated, vitrified mammalian

cells, using polyglutamine (polyQ)-expanded huntingtin (Htt)

exon 1 as a model aggregating protein. The expansion of a polyQ

stretch in the N-terminal region of Htt renders the mutant protein

highly aggregation-prone and leads to HD in humans (Finkbeiner,

2011; Macdonald, 1993; Scherzinger et al., 1997). PolyQ-

expandedHtt oligomershavebeen implicated in themisregulation

of, among others, transcription, vesicular traffic, autophagy, and

the function of the endoplasmic reticulum (ER) and mitochondria

(Arrasate and Finkbeiner, 2012), but it is not knownwhether inclu-

sions play any role in these phenomena. Furthermore, several

other neurodegenerative disorders including spinal and bulbar

muscular atrophy and spinocerebellar ataxias are also caused

by polyQ expansions in otherwise non-related proteins (Orr and

Zoghbi, 2007). Our results show that inclusions of polyQ-

expanded Htt exon 1 are formed by fibrils that impinge on

cellularmembranes,especially thoseof theER.These interactions

result in membrane deformation and possibly rupture, as well

as impaired ER organization and dynamics around inclusion

bodies.

RESULTS

3D Architecture of Htt97Q Inclusion Bodies
Inclusion bodies in HD patient neurons are formed by N-terminal

fragments of Htt harboring the polyQ-expanded exon 1,
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expression of which suffices to recapitulate HD-like symptoms in

mice (Davies et al., 1997; DiFiglia et al., 1997; Mangiarini et al.,

1996; Yamamoto et al., 2000). We transfected mouse primary

neurons with GFP-tagged Htt exon 1 containing 97 Q (Htt97Q-

GFP). Non-apoptotic cells containing inclusions were identified

by live imaging and subsequently vitrified by plunge freezing

following a short incubation in medium containing 10% glycerol

to ensure full vitrification. Correlative microscopy allowed us to

target inclusions for cryo-FIB milling to yield 150- to 250-nm-

thick cellular lamellas that were imaged in 3D by Volta phase

plate cryo-ET (Figure S1). Htt97Q-GFP inclusions were roughly

spherical, �3 mm in diameter and mostly cytosolic, although

nuclear inclusions were also found. Both cytosolic and nuclear

inclusions consisted of a network of amyloid-like fibrils with a

diameter of 7–8 nm and length of 125 ± 81 nm (mean ± SD) (Fig-

ures 1A, 1B, 1E, 2A, and 2B). Thus, despite the similarity in fibril

length, the cellular organization of Htt97Q-GFP fibrils was very

different from the bundles of parallel fibrils formed by Sup35

yeast prions (Kawai-Noma et al., 2010; Saibil et al., 2012). The

analysis of fibril curvature provided insights into fibril flexibility.

We calculated an average fibril persistence length of 2.6 ±

0.1 mm (mean ± SD) and a Young’s modulus of 52 ± 2 MPa

(mean ± SD) (Figure S2A), in the range of other amyloid fibrils

or actin (Mahamid et al., 2016; Wegmann et al., 2010). Despite

the dense appearance of the network, the fibrils occupied less

than 3% of the IB volume (Figure 1F).

In situ fibrils were morphologically similar to those formed

in vitro, but did not associate laterally to form wider ribbons

(Scherzinger et al., 1997) (Figure 1A, inset). Interestingly,

Htt97Q-GFP fibrils were decorated by regularly spaced globular

densities of �6 nm in diameter consistent in size with GFP di-

mers. To further investigate the nature of these densities, cells

were co-transfected with untagged 97Q Htt exon 1 (Htt97Q)

and mCherry-ubiquitin. The latter can be conjugated to target

proteins in a manner similar to wild-type ubiquitin (Qian et al.,

2002) and its recruitment to inclusion bodies (Hipp et al., 2012)

served as a surrogate fluorescent marker for Htt97Q inclusions.

Given the relatively low transfection rates obtained in neurons,

these and further experiments were carried out in HeLa cells

to increase the number of cells amenable to cryo-ET analysis.

Htt97Q and Htt97Q-GFP inclusions in HeLa cells were almost

identical to those in neurons in terms of overall architecture

and fibril morphology (Figures 1E–1H and 3A–3E). Both in neu-

rons and HeLa cells the fibrils were radially arranged in most,

but not all inclusions (Figures 1A, 1B, 2, and 3A–3C). Although

Htt97Q-GFP and untagged Htt97Q fibrils were similar in diam-

eter and length (Figure 1E), untagged Htt97Q fibrils were not

decorated by additional densities (Figure 1H). This demonstrates

that the fibrils consisted of Htt97Q, and suggests a molecular or-

ganization in which the polyQ regions form the fibril core and the

more flexible C-terminal sequence protrudes outward (Bugg

et al., 2012; Isas et al., 2015; Lin et al., 2017). The presence of

GFP resulted in a 50% reduction in fibril density within the IB (Fig-

ure 1F) and a 25% increase in fibril stiffness (Figures S2A–S2C).

Htt97Q and Htt97Q-GFP fibrils were always observed as part

of inclusions, suggesting that inclusions are themain sites of fibril

growth in the cell (Ossato et al., 2010). Although only a small frac-

tion of IB volume was occupied by fibrils (Figure 1F), the core of

the aggregates was mostly devoid of large macromolecules

such as ribosomes, which were abundant at the IB periphery

(Figures 1A and 1B).

Htt97Q Fibrils Impinge on Cellular Endomembranes
For all cytosolic inclusions analyzed (N = 5 inclusions, neurons,

Htt97Q-GFP; N = 10, HeLa, Htt97Q-GFP; N = 8, HeLa, Htt97Q;

Table S1), fibrils in extended areas of the IB periphery visibly con-

tacted themembranesof various organelles. These includedmito-

chondria, lysosomes and, most prominently, the ER (Figures 1A,

1B, 3, S3B, and S3D; Movie S1), but no observable association

with autophagic structures. The electron densities of membranes

and fibrils often appeared continuous at points of contact (Figures

1D,3D,andS3D), indicating that thefibril-membranedistancewas

shorter than the pixel size (1.7 or 2.8 nm). Ribosome-free ER tubes

often protruded into the IB, apparently interacting extensively with

the fibrillar network (Figures 1B–1D, 3B, 3C, and 3G). Both the

ends and sides of fibrils directly touched the membranes, and

these regions displayed extremely highmembrane curvature (Fig-

ures 1C, 1D, and 3D–3F). A systematic analysis showed that ER

membrane curvature was higher at the IB interface than in more

distal areas, and also compared to ER membranes in cells ex-

pressing diffuse Htt97Q-GFP without visible inclusions or non-

pathogenic Htt25Q-GFP (Figures S2D and S4).

A heterogeneous population of vesicles was embedded in

most cytosolic inclusions (100% of inclusions, neurons, and

Htt97Q-GFP; 94%, HeLa and Htt97Q-GFP; 82%, HeLa and

Htt97Q) at sites of interaction with organelles (Figures 1A, 1B,

1D, and 3A–3F). Many of these vesicles were highly irregular in

shape and were often in contact with fibrils at regions of high

membrane curvature, suggesting that they resulted from the

disruption of organellar membranes following interaction with

the fibrils (Figures 1D and 3D–3F). Ribosomes were bound to

the membranes of some of these vesicles, suggesting that they

originated from ruptured ER membranes (Figures 3E and 3F).

Interestingly, similar membrane deformations at contact regions

with amyloid fibrils leading to membrane disruption were previ-

ously observed in vitro with liposomes (Milanesi et al., 2012).

Comparable IB architecture and membrane interactions were

found in cells expressing Htt64Q-GFP (Figures 2C and 2D),

arguing against a strong influence of the exact length of the

expanded polyQ tract on fibril arrangement and cellular interac-

tions. Htt97Q and Htt97Q-GFP nuclear inclusions were similar in

overall architecture to cytosolic ones but did not contain vesicles

and did not contact the inner nuclear membrane (Figures 2A and

2B), indicating differential mechanisms of cellular interaction

(Benn et al., 2005; Gu et al., 2015; Liu et al., 2015). In summary,

the fibrils forming cytosolic polyQ inclusions have the potential to

deform and perhaps disrupt cellular membranes in their prox-

imity, particularly those of the ER, both in mouse neurons and

in human cells.

Htt97Q Inclusions Alter ER Organization and Dynamics
Light microscopy in HeLa cells confirmed the association of

Htt97Q-GFP inclusions with the ER (Figure 4A). Interestingly,

some inclusions contained puncta positive for ER markers but

disconnected from the ER network (Figure 4B), in line with the

assumption that some of the vesicles found within inclusions
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Figure 1. Cytosolic Inclusions of Htt97Q-GFP Contain Amyloid-like Fibrils

(A) Tomographic slice of an IB in an Htt97Q-GFP-transfected mouse primary neuron. The cytoplasmic electron dense particles represent ribosomes (white

arrowheads). ER, endoplasmic reticulum; IB, Htt97Q-GFP inclusion body; Vs, vesicle. Inset: high-magnification image of Htt97Q-GFP fibrils (red arrowheads)

decorated by globular densities (green arrowheads).

(B) 3D rendering of the tomogram shown in (A). ERmembranes (red), Htt97Q-GFP fibrils (cyan), ribosomes (green), vesicles (white), andmitochondria (gold). Note

that the core of the IB is largely devoid of ribosomes, which are abundant at the IB periphery. Scale bars, 400 nm in (A) and (B) and 30 nm in (A) (inset).

(C) Magnified rendering of the region marked in (B) showing interaction sites (white circles) between Htt97Q-GFP fibrils and the ERmembrane. Scale bar, 50 nm.

(D) Magnified tomographic slices showing Htt97Q-GFP fibrils (red arrowheads) decorated by globular densities (green arrowheads) interacting with cellular

membranes in Htt97Q-GFP-transfected neurons. Scale bars, 100 nm.

(E) Histograms of fibril length in mouse neurons expressing Htt97Q-GFP (blue), HeLa cells expressing Htt97Q-GFP (green), and HeLa cells expressing Htt97Q

(gray) (number of fibrils: n = 11,481 neurons and Htt97Q-GFP; n = 7,648 HeLa and Htt97Q-GFP; n = 12,465 HeLa and Htt97Q; 4 tomograms for all conditions).

(F) Percentage of IB volume occupied by fibrils. The boxes and whiskers, respectively, indicate confidence intervals of 50% and 95% around the mean (solid line

inside each box). ** indicates p < 0.01; ns, not significant in an ANOVA analysis with Bonferroni post hoc test.

(G) Magnified tomographic slice of an Htt97Q-GFP-transfected HeLa cell showing an Htt97Q-GFP fibril (red arrowhead) decorated by globular densities (green

arrowheads).

(H) Magnified tomographic slice of an Htt97Q-transfected HeLa cell showing Htt97Q fibrils.

Scale bars, 50 nm in (G) and (H). Tomographic slices are 2.8-nm (A andD) or 1.7-nm (G andH) thick. The number of experiments and cells analyzed per condition is

shown in Table S1.

See also Figures S1, S2, and S4 and Table S1.
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by cryo-ET originated from ruptured ER membranes. Occa-

sionally, puncta positive for mitochondrial markers were also

observed inside Htt97Q-GFP inclusions (Figure S3A), but this

was not the case for other organelles, such as the Golgi appa-

ratus (Figure S3C). Thus, our light and electron microscopy

data indicate that the polyQ Htt exon 1 fibrils of inclusion bodies

interact most extensively with ER membranes.

We further investigated the consequences of this membrane

interaction by immunostaining for a variety of ER-resident pro-

teins. Interestingly, some ER chaperones (e.g. calnexin) and

components of the ER-associated degradation (ERAD) machin-

ery (e.g., Erlin-2, Sel1L) were enriched in the ER domain sur-

rounding the inclusions, whereas other ER proteins and ERAD

components (e.g., BiP, calreticulin, PDI, or p97) did not show

this pattern (Figure S3E; data not shown). In contrast, the trans-

locase component Sec61 was largely excluded from the IB

vicinity, consistent with the observation by cryo-ET that ER

membranes in contact with the IB were essentially devoid of

ribosomes (Figures 1C, 3B, 3C, and 3G). Thus, some, but not

all, of the components of the so-called ‘‘ER quality control

compartment’’ (Leitman et al., 2013a) accumulated around

Htt97Q-GFP inclusions. Strikingly, live cell imaging revealed a

complete ‘‘freezing’’ of ER dynamics in the vicinity of Htt97Q-

GFP inclusions (Figures 4C–4F and S3F–S3H;Movie S2). This ef-

fect was not merely steric, as the ER was highly dynamic around

other large cellular structures or the nucleus (Figures 4C and 4D).

Figure 2. Nuclear Htt97Q-GFP Inclusions in

Neurons and Cytosolic Htt64Q-GFP Inclu-

sions in HeLa Cells

(A) 1.7-nm thick tomographic slice of a nuclear IB

in an Htt97Q-GFP-transfected neuron. IB, Htt97Q-

GFP inclusion body.

(B) 3D rendering of the tomogram shown in (A).

Chromatin (orange), nuclear envelope membranes

(red), vesicles in the periphery of the IB (white), and

Htt97Q-GFP fibrils (cyan). Scale bars, 400 nm in

(A) and (B).

(C) 2.5-nm-thick tomographic slice showing an

IB in an Htt64Q-GFP-transfected HeLa cell. ER,

endoplasmic reticulum; IB, Htt64Q-GFP inclusion

body; Vs, vesicle.

(D) 3D rendering of the tomogram shown in (C). ER

membranes (red), Htt64Q-GFP fibrils (cyan), and

microtubule (gray parallel lines).

Scale bars, 250 nm in (C) and (D). The number of

experiments and cells analyzed per condition is

shown in Table S1.

See also Figures S2 and S4 and Table S1.

Altogether, these data suggest that the

interaction of Htt97Q-GFP fibrils with

ER membranes alters cell physiology

by locally impairing ER organization and

dynamics.

DISCUSSION

While polyQ-expanded Htt exon 1 forms

fibrils in vitro (Scherzinger et al., 1997), it

has remained controversial whether Htt in cellular inclusions is

present in granular or fibrillar form (Finkbeiner, 2011; Qin et al.,

2004;Waelter et al., 2001). Importantly, fibril formation is thought

to be required for neurodegeneration in HDmice (Gu et al., 2009).

Our cryo-ET data conclusively show that in vitrified frozen hy-

drated murine neurons and human cells, inclusions of polyQ-

expanded Htt exon 1 do consist of fibrils. The high resolution

of our images allowed us to resolve additional densities deco-

rating the fibrils formed by a GFP-labeled Htt97Q construct,

and to quantify the changes in fibril density and rigidity induced

by the GFP tag. Htt97Q fibrils were substantially thinner than

those found in heavy-metal stained preparations (Qin et al.,

2004), and sufficiently stiff to deform membranes (Roux, 2013).

The structure of in situ fibrils is consistent with that proposed

by recent NMR studies, in which the polyQ stretch forms the

amyloid core and the flanking regions protrude outward in a

bottlebrush fashion (Isas et al., 2015; Lin et al., 2017). However,

our data do not allow the molecular organization of the fibril core

to be resolved, possibly due to its structural heterogeneity (Hoop

et al., 2016; Lin et al., 2017). A comparative cryo-ET analysis of

endogenous polyQ inclusions in brain tissue is not yet technically

feasible and remains a goal for future research.

Wild-typeHtt is known to interactwith cellularmembranes (Ke-

gel-Gleason, 2013), and fibrils of polyQ-expandedHtt exon 1 and

other amyloids can cause membrane disruption in vitro (Milanesi

et al., 2012; Pieri et al., 2012). Our results suggest that as a
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cytopathological consequence of these phenomena, the fibrils of

Htt exon 1 inclusions impinge on and possibly disrupt cellular

endomembranes, most prominently those of the ER. As a result,

inclusions drive a reorganization of the ER network in their

periphery. Fibril-membrane interactions are thought to be largely

lipid-mediated (Burke et al., 2013; Kegel et al., 2005; Trevino

et al., 2012), andwhether any specificity for ERmembranes exists

(Atwal et al., 2007) remains to be determined. Although it is

possible that oligomers dissociating from fibril ends (Carulla

et al., 2005; Martins et al., 2008) contribute to these effects,

high concentrations of soluble Htt97Q-GFP did not disturb

membrane morphology in the absence of inclusions. Thus, fibrils

appear to be necessary for membrane deformation.

The region of the ER surrounding the inclusions showed

dramatically reduced membrane dynamics, suggesting that a

wide variety of cellular processes that depend on the dynamic

behavior of the ER (Zhang and Hu, 2016) might be affected as

a consequence. Moreover, translation is halted in these regions,

as ER membranes contacting fibrils lacked ribosomes and the

Sec61 translocon. The accumulation of ERAD factors and ER

Figure 3. Htt97Q Inclusions Interact with Cellular Membranes

(A) Tomographic slice from the interaction zone between an IB and cellular membranes in an Htt97Q-transfected HeLa cell. ER, endoplasmic reticulum; IB,

Htt97Q inclusion body; Vs, vesicles.

(B) 3D rendering of the tomogram shown in (A). ER membranes (red), ER-bound ribosomes (green), Htt97Q fibrils (cyan), and vesicles inside the IB (white).

(C) 3D rendering of ERmembranes and ER-bound ribosomes in the vicinity of Htt97Q fibrils in a different cell. Note that ER-bound ribosomes are depleted fromER

membranes directly interacting with Htt97Q fibrils but are abundant in more distal areas (see also G). Scale bars, 250 nm in (A)–(C).

(D) Magnified tomographic slices showing the sides and ends of Htt97Q (left and middle) and Htt97Q-GFP (right) fibrils (red arrowheads) interacting with cellular

membranes (white circles). The left panel shows the area boxed in (A) in a different tomographic slice.

(E) Magnified tomographic slice of a putative membrane-bound ribosome (white arrowhead) on a small vesicle contacted (white circles) by the Htt97Q-GFP fibrils

of an IB.

(F) 3D rendering of the vesicle shown in (E). Note the high curvature of the vesicle membrane at the sites of interaction with fibrils. Scale bars, 100 nm in (D)–(F).

(G) Visualization of the density of membrane-bound ribosomes in the area boxed in (C). Ribosome density is indicated by color and is lower (red) on ER

membranes in direct contact with fibrils. Scale bar, 250 nm. Tomographic slices are 1.7-nm thick. The number of experiments and cells analyzed per condition is

shown in Table S1.

See also Figures S2, S3, and S4, Table S1, and Movie S1.
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chaperones suggests that cytosolic inclusions locally induce

misfolding of ER luminal proteins causing ER stress. These re-

sults are consistent with previous findings that polyQ expres-

sion compromises ER function by perturbing ERAD, ER Ca2+

signaling and the ER redox state, leading to ER stress in cellular

and animal models (Duennwald and Lindquist, 2008; Higo et al.,

2010; Jiang et al., 2016; Kirstein et al., 2015; Kouroku et al., 2002;

Lajoie and Snapp, 2011; Leitman et al., 2013b; Tang et al., 2003).

ER stress markers are upregulated in Htt knockin mice and HD

patients, and alleviating ER stress is beneficial in various HD

models (Carnemolla et al., 2009; Lee et al., 2012; Leitman

et al., 2014; Vidal et al., 2012). Thus, beyond the toxic role of olig-

omeric aggregate species, our data suggest that the formation

of large fibrillar inclusions (Benn et al., 2005; Liu et al., 2015;

Ramdzan et al., 2017; Woerner et al., 2016) also contributes to

cytopathology.

Figure 4. Htt97Q-GFP Inclusions Locally Alter ER Organization and Dynamics

(A) HeLa cell co-expressing Htt97Q-GFP (green) and the ER luminal marker KDEL-mCherry (red). Note the accumulation of ER around the IB. Ncl, nucleus.

(B) HeLa cell expressing Htt97Q-GFP (green) and labeled with ER-Tracker (red). White arrowheads mark ER-positive structures inside the IB. Scale bars, 5 mm in

(A) and (B).

(C) Additional example of a HeLa cell co-expressing Htt97Q-GFP and KDEL-mCherry. A white arrow points to an Htt97Q-GFP-negative large cytoplasmic

structure around which ER dynamics are normal. IB, Htt97Q-GFP inclusion body.

(D) ER dynamics of the cell shown in (C) quantified as the variance of KDEL-mCherry pixel intensity over time for 20 s. Scale bars, 10 mm in (C) and (D).

(E) Quantification of ERmembrane dynamics in the vicinity of Htt97Q-GFP inclusions (n = 44HeLa cells). Note the substantial accumulation of ER (red curve; radial

average of KDEL-mCherry pixel intensity) at the IB periphery (x = 0). Membrane dynamics, assessed by the variance of KDEL-mCherry pixel intensity over time

(blue curve), were markedly slower in this ER domain than in more distal regions. Radial averages (solid lines) and 95% confidence intervals (shaded areas) are

shown. See Figures S3F–3H for individual traces.

(F) 3D representation of the boxed region in (D) around the IB.

See also Figure S3 and Movie S2.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-GRP78 BiP Abcam Cat# ab21685; RRID: AB_2119834

Rabbit polyclonal anti-Calnexin AbCam Cat# ab10286; RRID: AB_2069009

Chicken polyclonal anti-Calreticulin AbCam Cat# ab14234; RRID: AB_2228460

Rabbit polyclonal anti-Giantin AbCam Cat# ab24586; RRID: AB_448163

Rabbit monoclonal anti-PDIA6 AbCam Cat# ab154820

Rabbit monoclonal anti-Sec61A AbCam Cat# ab183046; RRID: AB_2620158

Rabbit polyclonal anti-SEL1L Sigma Cat# S3699; RRID: AB_1856660

Rabbit monoclonal anti- SPFH2/ERLIN2 AbCam Cat# ab128924; RRID: AB_11150974

Rabbit polyclonal anti-VCP Cell Signaling Cat# 2648; RRID: AB_2214632

Goat anti-Rabbit Cy3 Dianova Cat# 111-165-045; RRID: AB_2338003

Goat anti-Chicken Alexa Flour 633 Thermo Fisher Scientific Cat# A-21103; RRID: AB_2535756

Chemicals, Peptides, and Recombinant Proteins

Dulbecco’s modified Eagle medium (DMEM) Biochrom Cat# F0435

Fetal Bovine Serum (FBS) GIBCO Cat# 10270-106

L-Glutamine GIBCO Cat# 25030-024

Penicillin / Streptomycin GIBCO Cat# 15140-122

Non-essential amino acids GIBCO Cat# 11140-035

Trypsin GIBCO Cat# 12605-010

PBS GIBCO Cat# 20012-068

Lipofectamine 2000 Thermo Fisher Scientific Cat# 11668027

16% Formaldehyde Thermo Fisher Scientific Cat# 28908

Fluorescence mounting medium Dako Cat# S3023

Poly-D-Lysine hydrobromide Sigma-Aldrich Cat# P7886

Laminin Mouse Protein, Natural Thermo Fisher Scientific Cat# 23017015

Neurobasal Medium Thermo Fisher Scientific Cat# 21103-049

B27 Serum-free Supplement Thermo Fisher Scientific Cat# 17504044

L-Glutamine (100x) Thermo Fisher Scientific Cat# 25030081

Trypsin-EDTA Thermo Fisher Scientific Cat# 25200056

DNA-InTM Neuro MTI-GlobalStem Cat# GST-2101

Triton X-100 Sigma-Aldrich Cat# T9284

DAPI Thermo Fisher Scientific Cat# D1306

Critical Commercial Assays

Annexin V, Alexa Fluor 594 conjugate Thermo Fisher Scientific Cat# A13203

ER-Tracker Red Thermo Fisher Scientific Cat# E34250

Mito-Tracker Red Thermo Fisher Scientific Cat# M22425

Deposited Data

Cryo-EM structure of membrane-bound ribosome Pfeffer et al., 2012 EMDB: 2099

Cryo-EM structure of non membrane-bound ribosome Anger et al., 2013 EMDB: 5592

Experimental Models: Cell Lines

Human: HeLa cells ATCC ATCC CCL-2; RRID: CVCL_0030

Experimental Models: Organisms/Strains

Mouse primary neuronal culture: C57BL/6 (E17) MPI-Biochemistry RRID: CVCL_9115

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Wolfgang

Baumeister (baumeist@biochem.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
HeLa cells (female; ATCC CCL-2; RRID: CVCL_0030) were freshly obtained from ATCC and no unusual DAPI staining was observed,

indicating no mycoplasma contamination. Cells were seeded on holey carbon-coated 200 mesh gold EM grids (Quantifoil Micro

Tools, Jena, Germany) within ibidi m-dishes (ibidi, Munich) containing Dulbecco’s MEM (Biochrom) supplemented with 10% fetal

bovine serum, 2mM L-Glutamine, 100 Units/mL penicillin, 100mg/mL streptomycin and non-essential amino acids cocktail (GIBCO)

and cultured at 37�C with 10% CO2. The cells were transfected by lipofection using Lipofectamine 2000 (Invitrogen) with either

Htt25Q-GFP, Htt64Q-GFP, Htt97Q-GFP or Htt97Q together with mCherry-ubiquitin as per manufacturer’s protocol. In co-trans-

fected cells mCherry-ubiquitin formed a ring around Htt97Q inclusions that facilitated correlative microscopy (Hipp et al., 2012).

30 min prior to imaging the cells were stained with Annexin V conjugated to Alexa Fluor 594 (LifeTechnologies) to exclude cells

undergoing apoptosis from further analysis.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Plasmid: Htt25Q-GFP Bence et al., 2001 N/A

Plasmid: Htt97Q-GFP Bence et al., 2001 N/A

Plasmid: Htt97Q Schaffar et al., 2004 N/A

Plasmid: Htt64Q-GFP Holmberg et al., 2004 N/A

Plasmid: mCherry-Ubiquitin Eric J. Bennett and Ron R. Kopito N/A

Plasmid: KDEL-mCherry This study N/A

Software and Algorithms

Fiji Schindelin et al., 2012 https://fiji.sc/ RRID: SCR_002285

SerialEM Mastronarde, 2005 http://bio3d.colorado.edu/SerialEM/

MaskTomRec Fernandez et al., 2016 https://sites.google.com/site/

3demimageprocessing/masktomrec

TomoSegMemTV Martinez-Sanchez et al., 2014 https://sites.google.com/site/

3demimageprocessing/tomosegmemtv

Amira N/A https://www.fei.com/software/amira-3d-

for-life-sciences/ RRID: SCR_014305

Amira XTracing Module Rigort et al., 2012b http://www.zib.de/software/actin-segmentation

Pytom Hrabe et al., 2012 http://pytom.org/

TOM toolbox Nickell et al., 2005 https://www.biochem.mpg.de/tom

VTK N/A http://www.vtk.org RRID: SCR_015013

MATLAB and Python scripts used to calculate the

density of membrane-bound ribosomes and measure

ER membrane curvature

This study https://github.com/anmartinezs/polyqIB

MATLAB scripts used for the analysis of light

microscopy data and quantification of fibril persistence

length and ER membrane curvature measurements

This study https://github.com/FJBauerlein/Huntington

Other

ibidi 35 mm m-Dishes ibidi Cat# 81158

Poly-L-Lysine coverslips NeuVitro Cat# GG-12-PLL

Quantifoil grids 200 mesh Gold R2/1 Quantifoil Micro Tools N/A

Whatman paper #1 Sigma-Aldrich Cat# WHA10010155
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Hippocampal Neuron Culture and Transfection
Holey carbon-coated 200mesh gold EMgrids were sterilized in ethanol for 10min, washed several times in double distilled water and

transferred to culture dishes containing water. Grids and dishes were coated with poly-D-lysine (Sigma-Aldrich; 1 mg/ml in borate

buffer) and laminin (Thermo Fisher; 7.5 mg/ml in PBS) for 24 hr each, washed with PBS three times and placed in neurobasal medium

supplemented with B27 containing 0.5 mM Glutamine (all reagents from Thermo Fisher). During washes and medium exchange

steps, grids were transferred into another dish containing appropriate liquid to prevent grids from drying.

Mice (C57BL/6 background, either sex; RRID:CVCL_9115) were housed in an specific pathogen free facility with 12:12 hr light/dark

cycle and food/water available ad libitum. All animal experiments were performed in compliance with institutional policies approved

by the government of upper Bavaria. For preparation of neurons, hippocampi from embryonic day 17micewere separated from dien-

cephalic structures and digested individually with 0.25% trypsin containing 1mM2,20,200,20 0 0-(ethane-1,2-diyldinitrilo) tetraacetic acid
(EDTA) for 20 min at 37�C. Neurons were plated on the coated grids within 24-well plates (60,000 per well). After 6 days in culture at

37�C in 5% CO2, neurons were transfected with Htt97Q-GFP using DNA-In Neuro (GlobalStem) according to the manufacturer’s

protocol.

METHOD DETAILS

Plasmids and Antibodies
The plasmids expressing myc-tagged Htt25Q exon 1-GFP, Htt64Q exon 1-GFP, Htt97Q exon 1 and Htt97Q exon 1-GFP have been

described previously (Bence et al., 2001; Holmberg et al., 2004; Schaffar et al., 2004; Woerner et al., 2016). The plasmid expressing

mCherry-Ubiquitin was a kind gift from Eric J. Bennett and Ron R. Kopito. To generate the KDEL-mCherry construct (kind gift from

Lisa Vincenz-Donnelly), the signal peptide of human pulmonary surfactant-associated protein B (MAESHLLQWLLLLLPTLCGPGTA)

followed by one alanine residue and a myc tag was fused upstream to mCherry by PCR amplification. A C-terminal KDEL sequence,

as well as a 50 BamH1 and a 30 Not1 digestion site were also added by PCR amplification. The purified PCR product was then inserted

into the pcDNA3.1+ plasmid via BamH1/Not1.

The following primary antibodies were used for immunofluorescence: BiP (AbCam ab21685; RRID: AB_2119834), calnexin

(AbCam ab10286; RRID: AB_2069009), calreticulin (AbCam ab14234; RRID: AB_2228460), giantin (AbCam ab24586; RRID: AB_

448163), p97/VCP (Cell Signaling 2468; RRID: AB_2214632), PDIA6 (AbCam ab154820), Sec61A (AbCam ab183046; RRID: AB_

2620158), SEL1L (Sigma S3699; RRID: AB_1856660) and SPFH2/ERLIN2 (AbCam ab128924; RRID: AB_11150974). The following

secondary antibodies were used: Anti-Rabbit Cy3 (Dianova 111-165-045) and Anti-Chicken Alexa Fluor 633 conjugate (Thermo

Fisher Scientific A21103; RRID: AB_2535756).

Immunofluorescence
HeLa cells were seeded on poly-L-lysine coated glass coverslips (NeuVitro), transfected with Htt97Q-GFP and fixed 24-48 hr post-

transfection using 4% formaldehyde in PBS for 10 min, permeabilized with 0.1% (v/v) Triton X-100 in PBS (GIBCO) for 5 min and

blocked in 5%milk in PBS for 1 hr at room temperature. The cells were then washed and primary antibodies were applied overnight

at a dilution of 1:500 to 1:1000 in blocking solution at 4�C, washed in PBS and incubated with secondary antibodies at a dilution of

1:5000 in PBS at room temperature for 1-2 hr. Coverslips were stained with 500 nMDAPI in PBS for 5 min, washed several times with

PBS and mounted in fluorescence mounting medium (Dako).

To investigate the identity of the membranous structures contained inside inclusions, HeLa cells were transfected with Htt97Q-

GFP and loaded with either ER-Tracker Red or Mito-Tracker Red (Thermo Fischer) 24h after transfection. The cells were subse-

quently fixed and imaged as described below.

Correlative Light Microscopy and Live Cell Imaging
To locate cells containing polyQ inclusions and suitable for cryo-ET, cells were imaged in an atmosphere of 37�C and 10%CO2 using

a CorrSight light microscope (FEI, Hillsboro, USA) equipped with bright field and spinning disc confocal laser illumination (405/488/

561/640 nm), 20x (air, NA 0.8) and 63x (oil, NA 1.4) Plan Achromat objectives (Carl Zeiss, Jena, Germany) and a 1344 3 1024 pixel

camera with a pixel size of 6.4 mm (Hamamatsu Digital Camera C10600 ORCA-R2).

For correlative microscopy a map of the EM grid was acquired with 20x magnification (object pixel size 323 nm) in spinning disc

confocal mode. Htt97Q and Htt97Q-GFP-expressing HeLa cells and primary neurons were imaged 24 hr after transfection, as this

yielded the best compromise between cell death and formation of IB. Protein expression was allowed for 48-72h in Htt64Q-GFP-

expressing HeLa cells, as IB formation was slower.

For investigation of ER dynamics, HeLa cells were co-transfected with Htt97Q-GFP and KDEL-mCherry and imaged at 5-10 Hz

with 63x magnification (object pixel size 102 nm) in spinning disk confocal mode for 20-30 s. The z slice containing the maximum

IB diameter was analyzed further for each movie. Movies were first bleach-corrected using the exponential fit tool of Fiji (Schindelin

et al., 2012; RRID:SCR_002285) and further processed using in-houseMATLAB (MathWorks) scripts (available at https://github.com/

FJBauerlein/Huntington). The IB boundary (x = 0 in Figures 4E and S3F–S3H) was estimated as the line where Htt97Q-GFP intensity

dropped to 40% of its maximum value in each IB. A radial average of KDEL-mCherry pixel intensity was calculated from this mask

within the cytoplasm. The radial variance of KDEL-mCherry pixel intensity was calculated over time, and normalized by pixel intensity
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to account for different KDEL-mCherry expression levels in different cells. Themaximumof the curvewas scaled to 1. The normalized

variance was used as readout for ER membrane dynamics (blue curves in Figures 4E and S3H).

Cell Vitrification
After light microscopy the cells were incubated for 1-5 min in DMEM containing 10% glycerol as a cryo-protectant to ensure full vitri-

fication. The grids were thenmounted on a manual plunger, blotted from the back side usingWhatman paper #1 (Sigma-Aldrich) and

plunged into a 2:1 ethane:propane mixture cooled down to liquid nitrogen temperature.

Cryo-focused Ion Beam Milling
To prepare thin electron transparent lamellae containing polyQ inclusions and surrounding cellular structures, plunge-frozen grids

were first mounted into Autogrid frames (FEI). Autogrids were mounted into a dual-beam Quanta 3D focused ion beam (FIB) / scan-

ning electron microscope (SEM) (FEI) using a custom-built transfer shuttle and a cryo-transfer system (PP3000T, Quorum). The sam-

ples were kept at �180�C throughout FIB milling by the microscope’s cryo-stage. To target cells containing inclusions an overview

map of the EM grid was acquired by SEM at 10 kV at 100x magnification (object pixel size 1.1 mm) and correlated with the light mi-

croscopy map using MAPS software (FEI). Thereby, the fluorescence signal was overlaid on the correlated SEM micrograph. For

Htt97Q/mCherry-ubiquitin co-transfected cells a custom-made MATLAB algorithm (available at https://github.com/FJBauerlein/

Huntington) was applied to the correlated light microscopy/SEM image to select inclusions as ring-shaped structures and classify

them according to their size and usability in terms of distance to the grid bars. To protect the milling front of the lamellae, gaseous

organic platinum was frozen on top of the grid using a gas injection system. 15-30 mm wide lamellae were prepared in target cells

using a Ga+ ion beam at 30 kV at shallow angles (8-14�) in four consecutive steps: initially cells were abrased in 500 nm steps

from the top down with 500-1000 pA and imaged consecutively by SEM at 2.5 kV, 4.1 pA in integration mode to identify inclusions.

Further rectangular patterns were defined above and below the intended lamella with 2 mm spacing for the rough milling step (ion

beamcurrent of 500-1000 pA), followed by finemillingwith 800 nm spacing (200 pA) and a final polishing step down to the final lamella

thickness of 150-250 nm (50 pA). To reduce lamella charging during phase plate cryo-ET data acquisition a thin layer of pure metallic

Pt was sputtered onto the lamella under cryo conditions at the PP3000T transfer system with the following parameters: 5 mA

sputtering current, 500 V between stage and sputtering target and 10 s of exposure at 4.5x10�2 mbar.

Cryo-electron Tomography
Cryo-FIB lamellas were imaged using a Titan cryo-transmission electron microscope (FEI) equipped with a field emission gun

operated at 300 kV, a Volta phase plate (Danev et al., 2014), a post-column energy filter (Gatan, Pleasanton, CA, USA) operated

at zero-loss and a K2 Summit direct electron detector (Gatan). Low-magnification images of lamellas were recorded at 11,500x

(object pixel size 1.312 nm) and stitched using ICE (Microsoft Research) to produce complete lamella overviews. Phase plate align-

ment and operation was carried out as described (Fukuda et al., 2015). Upon phase plate conditioning, high-magnification (19,500x,

object pixel size 0.710 nm for Figure 1A; 33,000x, object pixel size 0.421 nm for all other tomograms) tilt series were recorded at lo-

cations of interest using the SerialEM (Mastronarde, 2005) low dose acquisition scheme with a tilt increment of 2�, typically spanning
an angular range from �52� to 70�. Target defocus was set to �0.5 mm. The K2 camera was operated in dose fractionation mode

recording frames every 0.2 s. For each tilt series, a new spot on the phase plate was selected. The total dose was limited to

70-150 e-/Å2.

Tomogram Reconstruction and Analysis
K2 camera frames were aligned using in-house software (available at https://github.com/dtegunov/k2align) following previously

developed procedures (Li et al., 2013). In brief, the relative shifts of the image between camera frames due to stage drift and

beam-induced motion were measured and corrected. A band-pass filter (0.001 - 0.250 of Nyquist frequency) was applied to aid

alignment. Hot pixels were corrected and frames with empty regions resulting from camera readout errors were discarded. For

each exposure, the aligned frames were added to provide a corrected image. The resulting corrected tilt series were aligned using

the patch tracking option of the IMOD package (Kremer et al., 1996) and reconstructed by weighted back projection. After recon-

struction, the tilt series were cleaned of surface contamination (ice crystals and sputtered metallic Pt) using the MaskTomRec soft-

ware (Fernandez et al., 2016), re-aligned and reconstructed again.

Membranes were automatically segmented using the TomoSegMemTV package (Martinez-Sanchez et al., 2014) and refined

manually when necessary using Amira (FEI Visualization Sciences Group; RRID:SCR_014305). PolyQ fibrils were automatically de-

tected using the XTracing Module in Amira (Rigort et al., 2012b). In brief, tomograms were denoised by a non-local means filter and

searched for a cylindrical template of 8 nm in diameter and 42 nm in length. The resulting cross-correlation fields were thresholded at

an empirical value of 0.68-0.72 that produced optimal numbers of true positives and negatives. The thresholded correlation fields

were used as starting point for the filament tracing process. The length and orientation distribution of the resulting fibrils was then

measured. The total volume occupied by fibrils was calculated by multiplying the total length of all fibrils by pr2, where r is the radius

of the fibrils, here 4 nm. The fraction of IB occupied by fibrils was determined by dividing the total fibril volume by the volume of a

manually traced envelope of the IB.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Persistence Length Analysis
The persistence length (LP) was determined using an in-house script (available at https://github.com/FJBauerlein/Huntington). LP is a

measure of the stiffness of polymers that can be defined as the average distance for which a filament is not bent. It is calculated as the

expectation value of cos q, where q is the angle between two tangents to the fibril at positions 0 and l (Nagashima and Asakura, 1980):

cosðq0 � qlÞ= e
�
�
l
�
Lp

�

Intuitively, the larger q (i.e., the smaller LP) the more flexible is the fibril.

The Young’s modulus E defines the relation between applied force and deformation of the fibril and can be calculated from LP as:

E =
LPkBT

I

where kB is the Boltzmann constant (1.383 10�23 m2 kg s-2 K-1), T is the absolute temperature (here 295 K) and I is the momentum of

inertia, which for a solid rod can be calculated from its radius r as:

I=
pr4

4

The force necessary to deform the cell membrane into filopodia-like extensions or to drive membrane fission by dynamin has been

estimated in the order of 20 pN (Roux, 2013), which would result in only a 1% axial deformation of an Htt97Q fibril according to:

E =
sðεÞ
ε

=
F=A0

DL=L0

where s is the stress applied (force F divided by the cross section of the fibril A0) and ε the resulting strain or deformation (the increase

in length DL divided by the initial length L0). Therefore, we conclude that Htt97Q fibrils could easily withstand or exert the forces

necessary to deform cellular membranes without rupturing.

Ribosome Template Matching and Calculation of ER-bound Ribosome Density
ER-bound ribosomeswere analyzed by templatematching using PyTomand TOMsoftware (Hrabe et al., 2012; Nickell et al., 2005). In

brief, tomograms were searched for the structure of a membrane-bound ribosome (Pfeffer et al., 2012) (Electron Microscopy Data

Bank, EMDB: 2099) downsampled to 40 Å resolution in a volume limited to < 100 nm distance from previously segmented ER mem-

branes. The top cross-correlation hits were screened visually and further filtered to discard ribosomes whose center was located

more than 18 nm away from the ER membrane. The remaining particles were aligned by real space alignment and classified into

six groups using constrained principle component analysis and k-means clustering. One of those classes yielded non-membrane

bound ribosomes and was discarded, whereas the others contained mainly true positives and were pooled.

Each membrane-bound ribosome center coordinate was mapped to a central voxel on the membrane plane of the ribosome tem-

plate and overlapped with the membrane segmentation using in-house MATLAB scripts to discard particles with wrong orientation.

The membrane segmentation was transformed into a graph (Deo, 2016) using the graph-tool python library (https://git.skewed.de/

count0/graph-tool) as follows: All voxels of the ER or vesicle membranes were added to the set of vertices. Then, all pairs of vertices

representing neighboring voxels were connected by edges, resulting in a fully connected graph. The shortest distances via the mem-

brane (geodesic distance) from each membrane voxel to the ribosome center voxels on the membrane (d) were calculated using the

graph-tool python library. The ribosome density (D) for each membrane voxel was defined as:

D=
X

ðreachable ribosomesÞ

1

d + 1

Thus, for every membrane voxel, the higher the number of reachable ribosomes and the shorter the distances to them, the higher

D value. These procedures are available at https://github.com/anmartinezs/polyqIB.

The cytosolic ribosomes shown in Figure 1B were detected by template matching using the structure of a cytosolic ribosome (Anger

et al., 2013) (EMDB: 5592).

Determination of ER Membrane Curvature
First, ER membrane segmentations were pre-processed with morphological operations to remove small holes. The segmentations

were then transformed into a signed, single-layer surface (a mesh of connected triangles) using in-house python software. This pro-

cedure was based on the Visualization Toolkit library (http://www.vtk.org; RRID:SCR_015013) implementation of Hoppe’s surface
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reconstruction algorithm (http://hhoppe.com/proj/thesis/). To recover surface mesh topology, a graph was constructed using the

graph-tool python library, so that every vertex of the graph represented the center of a surface triangle, and every edge of the graph

connected two adjacent triangles. The graph was then used to estimate geodesic distances between triangles as the shortest paths

along graph edges. For each triangle, a local neighborhood was defined by all triangles within 9 nm center-to-center distance. For

each neighborhood, themaximal andminimal principal curvatures (k1 and k2, respectively) were estimated by an in-house implemen-

tation of the normal vector voting algorithm (Page et al., 2002). To represent surface curvature as a single scalar value for every tri-

angle, principal curvatures were combined by computing curvedness (Koenderink and van Doorn, 1992), defined as:

Curvedness=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k22

2

r

These procedures are available at https://github.com/anmartinezs/polyqIB.

Statistical Analysis
The number of cells analyzed for each condition is shown in Table S1. Tomograms of poor technical quality or showing signs of cell

death were excluded. For optimal fibril tracing and subsequent analysis (fibril length, density, persistence length, Young’s modulus),

the 4 tomograms with best signal-to-noise ratio were selected for each condition as this procedure can be affected by noise (Rigort

et al., 2012b). This resulted in a large number of fibrils analyzed: n = 11,481, neurons, Htt97Q-GFP; n = 7,648, HeLa, Htt97Q-GFP;

n = 12,465, HeLa, Htt97Q. For the fibril density analysis, statistical significance was calculated by ANOVA analysis with Bonferroni

post hoc-test. The distributions of ER membrane curvature in the vicinity of inclusions and in control cells were compared by the

Kolmogorov–Smirnov test. The red line in Figure S2Dwas calculated as the IB/control ratio of curvedness for each bin and smoothed

using robust LOESS. ER dynamics were analyzed in 44 cells from 2 independent experiments. The analysis included all cells in which

IB size was in the range of those observed by cryo-ET, which was the case for the large majority of IB-containing cells.

DATA AND SOFTWARE AVAILABILITY

TheMATLAB and Python scripts used to calculate the density of membrane-bound ribosomes andmeasure ERmembrane curvature

are available at https://github.com/anmartinezs/polyqIB.

TheMATLAB scripts used for the analysis of light microscopy data and quantification of fibril persistence length and ERmembrane

curvature measurements are available at https://github.com/FJBauerlein/Huntington.
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Supplemental Figures

Figure S1. Correlative Light and Electron Microscopy Workflow, Related to Figure 1

(A) Lamellas were prepared in a dual beam focused ion beam/scanning electron microscope (SEM). (A) shows an overlay of live cell imaging and cryo-SEM

images of primary neurons growing on an EM grid and containing an Htt97Q-GFP IB (green). Scale bar, 50 mm.

(B and C) Side view of (A) imaged with the ion beam with low current before (B) and after (C) lamella preparation. Green circles mark the coordinates of the IB

obtained from correlation with the light microscopy image. The SEMand ion beam images are taken from different angles dictated by the geometry of the electron

and ion columns within the microscope chamber. With low currents, the ion beam generates secondary electrons that can be used for imaging (B, C). With higher

currents, the ion beam removes material from the cell allowing lamella production (C). Scale bars, 5 mm.

(D) Lamellas were transferred to a cryo-transmission electron microscope (TEM) for high-resolution imaging. (D) displays a TEM overview of the lamella shown in

(C). The lamella is a slab of the cell, and therefore appears as a line when imaged from themilling direction with the ion beam (C), or as a plane when imaged in the

TEM (D) from an angle roughly perpendicular to the milling direction (arrow). IC, ice crystal contamination deposited on top of the lamella; Mito, mitochondria; Pt,

remainder of the organometallic platinum layer evaporated on the cells prior to FIB milling. Scale bar, 1 mm. Inset: Thickness profile along the line marked in the

main panel, calculated from the intensity ratio between images recorded with and without energy filtering.

(E) Magnification of the region boxed in (D) containing the Htt97Q-GFP IB.

(F) 2.5 nm-thick slice of a tomogram recorded in the region shown in (E). Scale bars, 500 nm in (E) and (F).



Figure S2. Analysis of PolyQ Fibril Persistence Length and ER Membrane Curvature, Related to Figures 1, 2, and 3

(A–C) Linear fit for the total persistence length for all tomograms analyzed (Number of fibrils: n = 11,481, neurons; Htt97Q-GFP; n = 7,648, HeLa; Htt97Q-GFP;

n = 12,465, HeLa; Htt97Q; 4 tomograms for all conditions). The blue circles represent the original data. 95% confidence interval (dotted lines) and the values of the

persistence length (Lp), Young’s modulus (E) and coefficients of determination (R2) are indicated. The dashed horizontal lines mark the values of the fitting line at a

distance along the filament of 300 nm as indication of the slope of the line, fromwhich Lp is calculated. Note that the values are almost identical for Htt97Q-GFP in

HeLa cells and neurons, but different from Htt97Q in HeLa cells.

(D) Histograms of ER membrane curvedness values as a measure of curvature. Curvedness was calculated for ER membranes in the vicinity of inclusions (n = 4

tomograms, including two Htt97Q inclusions in HeLa cells, one Htt97Q-GFP IB in a neuron and one Htt64Q-GFP IB in a HeLa cell) and in control conditions (n = 3

tomograms, including one of a Htt97Q-GFP IB-containing HeLa cell in an area distal from the IB, one of a HeLa cell expressing diffuse Htt97Q-GFPwithout visible

IB and one of a HeLa cell expressing non-pathogenic Htt25Q-GFP; see Figure S4). The distributions of curvedness around inclusions and in control cells were

significantly different (p < 0.001 by Kolmogorov–Smirnov test). The red line shows the ratio between ER membrane curvatures around inclusions and in control

cells. Note that sites with curvatures above 1/10 nm-1 were 20%–60% more abundant in the vicinity of inclusions.



Figure S3. Interactions of Htt97Q-GFP Inclusions with Various Organelles in HeLa Cells, Related to Figures 3 and 4

(A) HeLa cell expressing Htt97Q-GFP (green) and loaded with Mito-Tracker (red). Note the mitochondria-positive structure inside the IB (white arrowhead). Other

empty regions inside the IB are Mito-Tracker negative (black arrowhead) and may correspond to other organelles. Scale bars, 5 mm.

(B) Tomographic slice showing a mitochondrion (Mito) embedded inside an IB in an Htt97Q-GFP-transfected HeLa cell. ER, endoplasmic reticulum; red ar-

rowheads, Htt97Q-GFP fibrils; Vs, vesicle. Scale bar, 250 nm.

(C) HeLa cell expressing Htt97Q-GFP (green) and stained with antibodies against the Golgi marker giantin (red). Scale bar, 5 mm.

(D) Tomographic slice on the interaction (white circle) between an Htt97Q-GFP fibril and the membrane of a lysosome (Lys). Scale bar, 100 nm.

(E) HeLa cells expressing Htt97Q-GFP (green) and stained with antibodies against the ER proteins (red) calnexin, SEL1L, ERLIN2, BiP, calreticulin and Sec61.

Scale bar, 5 mm.

(F–H) Individual traces (gray), radial averages (solid lines) and 95% confidence intervals (dashed lines) of Htt97Q-GFP IB intensity (F), KDEL-mCherry ER intensity

(G) and the variance of KDEL-mCherry intensity over time (H) for all live cell movies analyzed (n = 44) in Figure 4E. Tomographic slices are 2.5 nm (B) or 1.7 nm

(D) thick.



Figure S4. Normal Perinuclear ER Morphology in HeLa Cells in the Absence of PolyQ Inclusions, Related to Figures 1, 2, and 3

(A) Tomographic slice of an area of the nuclear periphery distal from the IB in a HeLa cell containing an Htt97Q-GFP IB.

(C) Tomographic slice of the nuclear periphery of a HeLa cell expressing diffuse Htt97Q-GFP and no visible IB.

(E) Tomographic slice of the nuclear periphery of a HeLa cell expressing Htt25Q-GFP.

(B, D, F) 3D renderings of the tomograms shown in (A), (C), and (E) respectively, tilted 25� along the x axis. ER membranes (red). In all cases, note the smooth ER

membranes, in contrast to the deformed ER membranes observed in the vicinity of polyQ inclusions (Figures 1, 2, and 3). ER, Endoplasmic reticulum; Lys,

Lysosome; Mito, Mitochondria; Ncl, Nucleus, Npc: nuclear pore complex, PM: plasmamembrane. Tomographic slices are 2.5 nm thick. Scale bars, 400 nm. The

number of experiments and cells analyzed per condition is shown in Table S1.
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Summary

MCS control lipid exchange in all eukaryotic cells. As most PM lipids are synthesized in
the ER, ER-PM MCS are critical modulators of lipid homeostasis, and their disruption
is linked to multiple diseases. ER-PM MCS are particularly abundant in yeast, where
several tethering proteins are important for cER formation, especially Ist2, Scs2/22 and
Tcb1/2/3. Deletion of all six proteins largely reduces the extent of ER-PM MCS. Here,
we investigated the effects of these tethers on the cER morphology using cryo-ET with
new computational methods, functional assays and theoretical modeling.

We observed that the cER of wild-type (WT) cells had a variable morphology with
both sheets and tubules and a broad distribution of distances to PM and luminal
thicknesses. Cells expressing only Ist2 or Scs2/22 still had substantial total levels
of cER, whereas Tcb1/2/3-only cell had markedly less cER than the WT. The cER
morphology was similar to WT in Ist2-only cells but with slightly shorter ER-PM
distances, whereas it was strikingly different in Scs2/22-only cells, which consisted
almost exclusively of extended and significantly narrower sheets but had a broader
range of ER-PM distances. In Tcb1/2/3-only cells, cER contained mostly tubules
and the overall ER-PM distance was significantly shorter. Estimated cER membrane
curvature was significantly lower in Scs2/22-only cells but higher in Tcb1/2/3 cells.

Peaks of very high curvature were found on the cER membrane side facing the
PM: occasionally in WT, more frequently in Tcb1/2/3-only cells but not in the other
mutants lacking Tcb1/2/3. Peaks with comparable morphology and frequency to WT
were found in tcb1∆ and tcb2∆, but not in tcb3∆ and tcb1/2∆ cells. Thus, Tcb3 and
either Tcb1 or Tcb2 are necessary for the formation of cER peaks. As Tcbs contain C2
domains that can induce membrane curvature and SMP domain that can transport
lipids, Tcbs could reduce the cER-to-PM distance and disturb the cER lipid bilayer
in order to facilitate lipid extraction, as confirmed by modeling. It was shown that
both SMP and C2 domains are required for cER peak formation. Upon heat stress,
PM integrity was compromised in all mutants lacking cER peaks, but not in WT cells,
thanks to the increase in the density of cER peaks. We propose the following model:
upon heat stress, Ca²+ enters the cells through the damaged PM and induces cER peak
formation, which increase the lipid transfer from cER to PM, enabling its repair.

Author contribution

To investigate cER morphology, I developed methods for membrane curvature de-
termination and intermembrane distances measurements and applied them to the
experimental cryo-ET data. I performed statistical analysis of the measurements,
including cER peak morphology and density as well as PM integrity assays, and
visualized the results. Finally, I contributed to writing and revising the manuscript.
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SUMMARY

Membrane contact sites (MCS) between the endo-
plasmic reticulum (ER) and the plasma membrane
(PM) play fundamental roles in all eukaryotic cells.
ER-PM MCS are particularly abundant in Saccharo-
myces cerevisiae, where approximately half of the
PM surface is covered by cortical ER (cER). Several
proteins, including Ist2, Scs2/22, and Tcb1/2/3 are
implicated in cER formation, but the specific roles
of these molecules are poorly understood. Here, we
use cryo-electron tomography to show that ER-PM
tethers are key determinants of cER morphology.
Notably, Tcb proteins (tricalbins) form peaks of
extreme curvature on the cER membrane facing the
PM. Combined modeling and functional assays sug-
gest that Tcb-mediated cER peaks facilitate the
transport of lipids between the cER and the PM,
which is necessary to maintain PM integrity under
heat stress. ER peaks were also present at other
MCS, implying that membrane curvature enforce-
ment may be a widespread mechanism to regulate
MCS function.

INTRODUCTION

Endoplasmic reticulum (ER)-plasma membrane (PM) membrane

contact sites (MCS) are critical modulators of Ca2+ and lipid ho-

meostasis in eukaryotic cells (Balla, 2018; Chang et al., 2017;

Cockcroft and Raghu, 2018; Saheki and De Camilli, 2017a; Ste-

fan, 2018). These structures, where the ER and the PM come

into close apposition (10 – 30 nm), mediate store-operated Ca2+

entry (Carrasco and Meyer, 2011), insulin secretion by pancreatic

beta cells (Lees et al., 2017), and excitation-contraction coupling

in striated muscle (Bers, 2002). Consequently, dysregulation of

ER-PM MCS is linked to multiple human diseases (Lacruz and

Feske, 2015; Landstrom et al., 2014; Rı́os et al., 2015).

ER-PM MCS are particularly abundant in the yeast Saccharo-

myces cerevisiae, where nearly half of the PM surface area is

covered by cortical ER (cER) (Manford et al., 2012; Pichler

et al., 2001; Quon et al., 2018; Toulmay and Prinz, 2012; West

et al., 2011). The loss of six proteins (Ist2, Scs2/22, and Tcb1/

2/3; ‘‘Dtether’’ cells) dramatically reduces the extent of ER-PM

association, indicating that these proteins are important ER-

PM tethers (Manford et al., 2012). Additional proteins, including

Ice2 and the yeast StARkin orthologs, are also implicated in

cER-PM function in S. cerevisiae (Gatta et al., 2015; Quon

et al., 2018). Loss of cER triggers PM lipid imbalance (Manford

et al., 2012; Quon et al., 2018), highlighting the physiological

importance of these membrane junctions.

Ist2 is a member of the anoctamin/TMEM16 protein family

(Whitlock and Hartzell, 2017). Ist2 resides on the ER membrane

and consists of eight transmembrane domains plus a long C-ter-

minal cytoplasmic tail that binds PM lipids (Figure 2A), thereby

tethering the ER and the PM (Fischer et al., 2009; J€uschke et al.,

2005; Maass et al., 2009; Manford et al., 2012). Deletion of Ist2 re-

sults in reduced cER levels, whereas Ist2 overexpression leads to

increased ER-PM MCS (Manford et al., 2012; Wolf et al., 2012).

Scs2/22 are orthologs of the mammalian VAMP-associated

proteins (VAPs), a family of ER-resident proteins widely impli-

cated in MCS formation (Murphy and Levine, 2016; Stefan

et al., 2011). Both Scs2 and Scs22 are C-terminally anchored

to the ER by a transmembrane segment and contain an N-termi-

nalmajor spermprotein (MSP) domain (Figure 2A). Scs2/22 func-

tion as ER-PM tethers thanks to the binding of their MSP domain

to PM proteins containing FFAT or FFAT-like motifs (Manford

et al., 2012; Murphy and Levine, 2016). A strong reduction in

cER levels is observed in Scs2/22 knockout (KO) cells (Loewen

et al., 2007; Manford et al., 2012).
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The tricalbin proteins (Tcb1/2/3) are orthologs of the

mammalian extended-synaptotagmins (E-Syts) and the plant

synaptotagmins (SYTs) (Pérez-Sancho et al., 2016; Saheki

and De Camilli, 2017b). Tcbs are likely anchored to the ER

membrane by a hairpin sequence (Giordano et al., 2013;

Saheki and De Camilli, 2017b) (Figure 2A) similar to those found

in ER morphogenetic proteins such as reticulons (Hu et al.,

2011). Tcbs harbor a synaptotagmin-like, mitochondrial, and

lipid-binding protein (SMP) domain that can bind and transport

lipids (Lee and Hong, 2006; Saheki et al., 2016; Schauder et al.,

2014; Toulmay and Prinz, 2012; Yu et al., 2016). SMP domains

have been found in multiple MCS-resident proteins and likely

play a key role in the intermembrane exchange of lipids at

these sites (Reinisch and De Camilli, 2016). C-terminal to the

SMP domain, Tcbs contain a variable number of C2 domains

(four in Tcb1/2 and five in Tcb3), some of which can bind

membrane phospholipids in a manner either dependent upon

or independent of Ca2+ (Creutz et al., 2004; Rizo and S€udhof,

1998; Schulz and Creutz, 2004). Both the SMP and the C2

domains are required for Tcb targeting to ER-PM MCS (Man-

ford et al., 2012; Toulmay and Prinz, 2012), and tethering likely

takes place via PM binding by C2 domains (Giordano

et al., 2013).

Although Ist2, Scs2/22, and Tcb1/2/3 are involved in the

appropriate formation of cER, the exact functions of these pro-

teins at ER-PM MCS are poorly understood. First, whereas Ist2

and Scs2/22 are important ER-PM tethers, their relative contri-

butions to cER generation remain unclear. The functions of

Tcbs are even more mysterious: Tcbs are bona fide ER-PM

tethers, because cER levels are significantly higher in mutants

expressing Tcbs but lacking Ist2 and Scs2/22 than in Dtether

cells (Manford et al., 2012). However, loss of Tcbs on their own

does not result in a substantial reduction in the amount of cER

(Manford et al., 2012; Toulmay and Prinz, 2012), suggesting

that the main role of Tcbs is not the mechanical anchoring of

the ER to the PM. More broadly, the physiological functions of

the mammalian E-Syts remain similarly unclear (Sclip et al.,

2016; Tremblay and Moss, 2016), although their capacity to

shuttle lipids at ER-PM MCS has been demonstrated (Bian

et al., 2018; Saheki et al., 2016; Yu et al., 2016).

Here, we aimed to dissect the functional roles of Ist2, Scs2/22,

and Tcb1/2/3 at ER-PM MCS. To this end, we used cryo-elec-

tron tomography (cryo-ET) to study the fine structure of the

cER within mutant cells lacking specific tethers. Thanks to the

advent of cryo-focused ion beam (cryo-FIB) technology and

direct electron detectors, cryo-ET allows high resolution 3D im-

aging of a virtually unperturbed cell interior at molecular resolu-

tion (Beck and Baumeister, 2016; Rigort et al., 2012; Wagner

et al., 2017). Given the narrow intermembrane space of MCS,

these structures are particularly sensitive to alterations intro-

duced by classical EM procedures such as chemical fixation,

dehydration, and heavy-metal staining, which can alter mem-

brane morphology. Therefore, cryo-ET is especially suited for

the high-resolution study of native MCS architecture (Collado

and Fernández-Busnadiego, 2017; Fernández-Busnadiego

et al., 2015). Our results show that, besides simply anchoring

the ER to the PM, each family of tethers uniquely contributes

to shaping the cER. In particular, Scs2/22 are associated with

cER sheets, whereas Tcbs favor cER tubules. Notably, Tcbs

are necessary for the generation of peaks of extreme curvature

at the cERmembrane that contribute tomaintaining PM integrity,

possibly by facilitating the transport of cER lipids to the PM.

RESULTS

MCS Architecture in S. cerevisiae

To study MCS architecture in situ by cryo-ET, S. cerevisiae cells

were vitrified on EM grids and thinned down to 100–200-nm-

thick lamellae using cryo-FIB. Lamellae were loaded into a

cryo-TEM (Figure S1), and tomograms were acquired at suitable

cellular locations. Cryo-tomograms of various MCS (Figures 1A

and 1B) revealed abundant proteinaceous densities of diverse

morphologies bridging the gap between the membranes (Fig-

ures 1C and 1D; Figure S2A). Interestingly, distance measure-

ments showed a characteristic intermembrane spacing for

different MCS. For example, while average nucleus-vacuole dis-

tance was 21 ± 7 nm (mean ± STD, N = 5 nucleus-vacuole MCS;

Figure 1E), ER-mitochondria junctions were significantly nar-

rower (16 ± 7 nm; mean ± STD, N = 5 ER-mitochondria MCS;

p < 0.05 by unpaired t test; Figure 1E).

To gain further insights into the molecular determinants of

MCS structure and function, we focused on ER-PM MCS,

Figure 1. Cryo-ET Imaging of MCS in WT S. cerevisiae

(A) 1.4 nm-thick tomographic slice showing cER-PM MCS (black arrows) and

ER-mitochondria MCS (purple arrows). The boxed area is magnified in (C). ER:

endoplasmic reticulum; cER: cortical ER; Golgi: Golgi apparatus; Mito: mito-

chondrion; PM: plasma membrane; Vac: vacuole.

(B) 1.4 nm-thick tomographic slice showing a nucleus-vacuole junction (yellow

arrow) and a multivesicular body-vacuole MCS (white arrow). The boxed area

is magnified in (D). MVB: multivesicular body; Nuc: nucleus.

(C) Magnification of the area boxed in (A). White arrowheads: intermembrane

tethers.

(D) Magnification of the area boxed in (B).

(E) Violin plots showing the distribution of intermembrane distances of cER-

PM, ER-mitochondrion and nucleus-vacuole MCS. The plots show the com-

plete distribution of values including all MCS analyzed. A white dot represents

the median, a black slab the interquartile range, and a black line 1.5x the in-

terquartile range. * indicates p < 0.05 by unpaired t test. N = 6 (cER-PM), 5 (ER-

mitochondria) and 5 (nucleus-vacuole) MCS in WT cells. Scale bars: 300 nm

(A, B), 50 nm (C, D). See also Figure S2; Table S1.
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perhaps the most abundant MCS in S. cerevisiae (Manford et al.,

2012; Pichler et al., 2001; Quon et al., 2018; West et al., 2011).

Cryo-ET analysis showed that the cER of wild-type (WT) cells

consisted of both membrane sheets and tubules (Figure 2B),

with an average thickness of 24 ± 6 nm (mean ± STD, N = 6

cER-PMMCS; Figure 2H). For 95%of theMCS area, ER-PMdis-

tance ranged from 16 to 34 nm, with an average of 23 ± 5 nm

(mean ± STD; Figures 1E and 2G). Thus, in WT cells the cER

had a variable morphology and a relatively broad distribution of

distances to the PM.

ER-PM Tethers Control cER Morphology
Because the simultaneous deletion of Ist2, Scs2/22, and Tcb1/

2/3 largely abolishes ER-PM MCS (Manford et al., 2012), we

Figure 2. cER Morphology in ER-PM MCS

Tether Mutants

(A) Domain structure of the main ER-PM tethers.

Ist2 is an ER multipass transmembrane protein with

a long and presumably unstructured cytosolic tail.

The C-terminal sorting signal (SS) binds the PM.

Scs2 and Scs22 are ER transmembrane proteins

containing an N-terminal MSP domain. Tcb pro-

teins are anchored to the ERmembrane by a hairpin

sequence. In their cytoplasmic C-terminus, Tcbs

contain an SMP domain and a variable number of

C2 domains. Panels B through F show 1.4-nm-thick

tomographic slices of cER in the indicated strains

(left) and 3D renderings in two perpendicular ori-

entations upon a 90� rotation along an axis parallel

to the PM (right). cER: cortical ER (pink); Nuc: nu-

cleus; PM: plasmamembrane (gold). (B) WT cell, (C)

Ist2-only cell, (D) Scs2/22-only cell, (E) Tcb1/2/3-

only cell, (F) Dtether cell. Insets in (B) and (E) show

cER peaks (blue arrowheads). Scale bars: 300 nm

(main panels); 25 nm (insets). Panels G, H, and I

show quantifications of cER-PM distance (G), cER

thickness (H) and cER peak density per mm2 of cER

membrane area (I). In G and H the violin plots show

the complete distribution of values for all MCS

analyzed. A white dot represents the median, a

black slab the interquartile range, and a black line

1.5 times the interquartile range. Panel I shows

average values (gray bars) and SE (error bars). HS:

heat shock (42�C for 10 min). *, **, and *** indicate,

respectively, p < 0.05, p < 0.01 and p < 0.01 by

unpaired t test (G, H) or Mann-Whitney U test (I).

N = 6 (WT), 7 (WT HS), 5 (Ist2-only), 5(Scs2/22-only),

9 (Tcb1/2/3-only), 5 (tcb1D), 5 (tcb2D), 5 (tcb3D),

5 (tcb1/2D), 5 (tcb1/2/3D), and 5 (tcb1/2/3D

HS) cER-PM MCS. See also Figures S1 and S2;

Table S1.

sought to understand the individual contri-

bution of each of these protein families to

ER-PM tethering. To that end, we per-

formed cryo-ET imaging of ER-PM MCS

in mutant cells expressing only one family

of tethers. These data confirmed previous

observations (Loewen et al., 2007; Man-

ford et al., 2012; Toulmay and Prinz,

2012; Wolf et al., 2012) that total levels of

cER were still substantial in cells express-

ing only Ist2 (scs2/22D tcb1/2/3D; ‘‘Ist2-only’’ cells; Figure S1B)

or the VAP orthologues Scs2 and Scs22 (ist2D tcb1/2/3D;

‘‘Scs2/22-only’’ cells; Figure S1C). However, cER levels in cells

expressing only Tcb1/2/3 (ist2D scs2/22D; ‘‘Tcb1/2/3-only’’

cells; Figure S1D) were markedly lower than in WT (Figure S1A),

although higher than in Dtether cells (Figure S1E), in agreement

with previous results (Manford et al., 2012).

Next, we investigated the fine morphology of the cER in these

mutants. In Ist2-only cells, the cER was a mixture of membrane

sheets and tubules similar to WT cells (Figures 2B and 2C).

Although average ER-PM distance was slightly shorter than

WT (21 ± 4 nm, mean ± STD, N = 5 cER-PM MCS; p < 0.05 by

unpaired t test; Figure 2G), cER thickness (25 ± 6 nm, mean ±

STD; Figure 2H) was comparable to WT, suggesting that Ist2 is
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an important contributor to the morphology of the cER in

WT cells.

Interestingly, cER morphology in Scs2/22-only cells was

dramatically different from WT. In these mutants, cER tubules

were rarely observed, as the cER consisted almost exclusively

of extended sheets (Figure 2D). Average ER-PM distance in

these cells spread across a wider range of values (26 ± 7 nm,

mean ± STD, N = 5 cER-PM MCS; Figure 2G). On the other

hand, the ER sheets observed in Scs2/22-only cells were signif-

icantly narrower than WT (18 ± 6 nm, mean ± STD; p < 0.01 by

unpaired t test; Figure 2H). These data show that while Scs2/

22 are not very effective in controlling ER-PM distance, they

are important determinants of cER width.

In contrast to Scs2/22-only cells, the cER was formed mainly

by membrane tubules in Tcb1/2/3-only cells (Figure 2E). Inter-

estingly, in these cells we also observed abundant peaks of

very high curvature on the membrane of the cER facing the

PM (Figure 2E, inset; Figure S2B). These peaks had a radius

of �10 nm at their base and protruded �7 nm from the cER

membrane (Figure S2C). The cER came into very close prox-

imity of the PM at cER peaks, narrowing to distances of 7–

8 nm (Figure S2C). Overall, the average cER-PM distance

was significantly shorter in Tcb1/2/3-only (20 ± 5 nm, mean ±

STD; N = 9 cER-PM MCS; p < 0.001 by unpaired t test; Fig-

ure 2G) than in WT cells (23 ± 5 nm, mean ± STD). Whereas

cER peaks were not found in Ist2-only (Figures 2C and 2I),

Scs2/22-only (Figures 2D and 2I), or Δtether (Figure 2F) cells,

they were also present in WT cells, albeit at a lower frequency

Figure 3. Quantification of cER Curvature

(A–D) 3D visualizations of cER curvedness in the

indicated strains. Insets in (A) and (D) show cER

peaks. (A) WT cell, (B) Ist2-only cell, (C) Scs2/22-

only cell, (D) Tcb1/2/3-only cell. (E) Quantification

of cER curvedness, shown as an exceedance plot.

The shaded lines represent the average across all

MCS ± SE for each bin (1 nm-1.). ** and *** indicate,

respectively, p < 0.01 and p < 0.001 by unpaired

t test. N = 6 (WT), 7 (WT HS), 5 (Ist2-only), 5 (Scs2/

22-only), and 9 (Tcb1/2/3-only) cER-PM MCS.

(F) Enhancement of the rate of lipid extraction by

membrane curvature according to a theoretical

model. The plot shows the rate of extraction

computed for a standard cylindrical lipid (black

curve) as well as for lipids of other shapes, such as

conical or inverted conical lipids (gray-shaded

area between the dashed, black curves). The value

of the radius of curvature of the experimentally

observed cER peaks is denoted by the dashed red

line. 1=Rcurv is equivalent to the curvedness for

k1=k2. See also Figures S3 and S4; Table S1.

(Figure 2B, inset; Figure 2I; p < 0.05 by

Mann-Whitney U test; Figure S2B). The

cER peaks in WT cells were morpholog-

ically indistinguishable from those found

in Tcb1/2/3-only cells (Figure S2C).

Therefore, the formation of high curva-

ture peaks at the cER is likely controlled

by the Tcb proteins. Because the peaks

were only found on the part of the cER

membrane opposed to the PM, these structures may be

involved in intermembrane exchange.

Altogether, these data show that each of the ER-PM tethers

play key and yet distinct roles in controlling cER morphology,

especially in terms of membrane curvature.

Quantitative Analysis of cER Membrane Curvature
Membrane curvature plays a major role in a wide variety of

cellular processes (Kozlov et al., 2014) and is a fundamental

determinant of ER morphology (Hu et al., 2011). Therefore, we

further analyzed the cER membrane curvature alterations

observed in the different ER-PM tether mutants. To that end,

we implemented an algorithm allowing a quantitative determina-

tion of membrane curvature in cryo-ET data (Kalemanov et al.,

2019). A global analysis was consistent with the visual impres-

sion that the average cER curvature observed in Scs2/22-only

cells was lower than in WT (p < 0.01 by unpaired t test; Figures

3A, 3C, and 3E), indicating the higher prevalence of cER sheets.

Conversely, the curvature of the cER membrane in Tcb1/2/3-

only cells was significantly higher thanWT (p < 0.001 by unpaired

t test; Figures 3A, 3D, and 3E), reflecting the more tubular cER

morphology in these cells. Local mapping of the curvature in

cER membrane renderings highlighted the presence of peaks

of extreme curvature (curvature radius% 10 nm; Figure 3A, inset)

in WT cells. These structures were enriched in Tcb1/2/3-only

cells compared to WT (Figure 2I; Figure 3D, inset), and absent

in tcb1/2/3D mutants (N = 5 cER-PM MCS; Figures 2I and 4E)

and cells expressing only Scs2/22 or Ist2 (Figures 2I, 3B, and
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3C). Therefore, this analysis reinforced the notion that Tcb1/2/3

are necessary for the generation of high curvature peaks on

the side of the cER membrane directly facing the PM.

To address the molecular basis of this phenomenon, we next

investigated which Tcb proteins were required for cER peak for-

mation by conducting cryo-ET of cells lacking specific Tcbs in

the presence of all other ER-PM tethers. In tcb1D (N = 5 cER-

PM MCS; Figures 4A and S2B) and tcb2D cells (N = 5 cER-PM

MCS; Figures 4B and S2B), cER peaks were similar in frequency

to WT cells (Figure 2I). cER peaks in these strains were also

morphologically comparable to WT (Figure S2C). In contrast,

no cER peaks were observed in tcb3D (N = 5 cER-PMMCS; Fig-

ures 2I and 4C) and tcb1/2D cells (N = 5 cER-PMMCS; Figures 2I

and 4D). Therefore, the expression of Tcb3 and either Tcb1 or

Tcb2 seems necessary for the efficient formation of cER peaks,

consistent with reports that Tcbs (and E-Syts) can form hetero-

dimers (Creutz et al., 2004; Giordano et al., 2013; Idevall-Hagren

et al., 2015; Schulz and Creutz, 2004).

cER Peaks May Facilitate Lipid Transfer
Next, we investigated the biological function of Tcb-mediated

cER peaks. Tcbs contain modules that can sense or induce

membrane curvature (hairpin anchor, multiple C2 domains) and

transport lipids (SMP domain) (Creutz et al., 2004; Lee and

Hong, 2006; Manford et al., 2012; Martens et al., 2007; Schauder

et al., 2014; Toulmay and Prinz, 2012). Tcbs may combine both

their curvature-generation and lipid-transport properties by con-

trolling the formation of cER peaks, which could facilitate cER-

to-PM lipid transport by (1) reducing the physical distance be-

tween cER and PM, and/or (2) disturbing the cER lipid bilayer

to facilitate lipid extraction and at the same time imposing

cER-to-PM directionality on the transfer process.

To address this possibility, we used a semi-quantitative model

(Campelo and Kozlov, 2014) to calculate how the induction of

cER membrane curvature may facilitate the lipid-transfer pro-

cess. We assume that this task is performed by a lipid-transport

module such as the SMP domain of Tcbs. The total free energy

required for lipid extraction by a lipid-transport protein (LTP) can

be expressed as the sum of two components. The first one is in-

dependent from membrane geometry, incorporating electro-

static interactions and membrane-independent interactions be-

tween the lipid and the LTP. The second component is

determined by the elastic stresses imposed on the membrane

by its geometry prior to LTP binding, and by how these stresses

change as a result of the lipid rearrangements caused by a partial

insertion of the LTP into the membrane. In turn, membrane ge-

ometry can be determined by its lipid composition and/or by

external factors such as curvature-generating proteins (Campelo

et al., 2008). We focused on this last scenario, as it is unlikely that

physiological lipid compositions result in the extrememembrane

curvatures of cER peaks (Campelo et al., 2008; Sorre et al.,

2009). With these premises, our calculations showed that the en-

ergy barrier for lipid extraction is reduced by �6 kBT when the

radius of curvature of the membrane is 10 nm (Figure S3), as

observed in Tcb-induced cER peaks. This is of similar magnitude

to the facilitation of sterol extraction from a flat membrane by an

LTP in comparison to its spontaneous desorption, estimated to

be �2–3 kBT (Dittman and Menon, 2017), and would result in a

�500-fold acceleration of the transfer reaction (Figure 3F).

Therefore, our model predicts that cER peaks greatly facilitate

lipid extraction by lipid transport modules.

cER Peaks Maintain PM Integrity
The synthesis of certain PM lipids—including phosphatidylinosi-

tol, phosphatidylserine, and sterols—is enhanced at the cER

(Pichler et al., 2001). Interestingly, tcb1/2/3D cells show PM

integrity defects upon heat stress (Omnus et al., 2016), a situa-

tion in which substantial traffic of lipids between the ER and

the PM may be necessary to repair heat-induced alterations.

Because Tcbs are required for the formation of cER peaks that

may facilitate ER-PM lipid transfer, it is possible that cER peaks

Figure 4. cER Peaks in Tcb Mutants

(A–E) 1.4-nm-thick tomographic slices of cER in the indicated strains (left) and

3D renderings of cER curvature (right). (A) tcb1D, (B) tcb2D, (C) tcb3D, (D) tcb1/

2D, (E) tcb1/2/3D cell. cER: cortical ER; Mito: mitochondrion; PM: plasma

membrane; Vac: vacuole. Insets in (A) and (B) show cER peaks (blue arrow-

heads). Scale bars for tomographic slices: 300 nm (main panels), 25 nm

(insets). See also Figure S2; Table S1.
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are important to maintain PM integrity under heat-stress

conditions.

To test this hypothesis, we performed PM integrity assays in

the different Tcb mutants. Cells were subjected to 42�C for

10 min, and PM integrity was monitored by measuring the entry

of extracellular propidium iodide into cells using flow cytometry

(Figure 5A). Because this dye is membrane impermeable, it

only enters cells with compromised PM integrity (Zhao et al.,

2013). Remarkably, these experiments revealed PM integrity de-

fects for all conditions in which cER peaks were not observed

(tcb3D, tcb1/2D cells, p < 0.01 by unpaired t test; tcb1/2/3D

cells, p < 0.001 by unpaired t test; Figure 5A), whereas PM integ-

rity in Tcb mutants showing cER peaks (tcb1D, tcb2D) was com-

parable to WT. Thus, there was a strong correlation between the

absence of Tcb-induced cER peaks and PM integrity defects.

However, the density of cER peaks was relatively low in WT

cells under nonstress conditions (Figures 2B, 2I, and 3A); cER

Figure 5. PM Integrity and cER Curvature un-

der Heat Stress

(A) Schematic of the propidium iodide assay to

assess PM integrity (left) and PM integrity mea-

surements of Tcb deletion mutants upon 10-min

incubation at 42�C (right). The entry of propidium

iodide in cells with compromised PM integrity was

measured by flow cytometry. The plot shows

average values (white/gray bars) for each

condition ± SE (error bars). *, **, and ***, respec-

tively, indicate p < 0.05, p < 0.01, and p < 0.001 by

Mann-Whitney U test (for tcb1D 26�C data, which

was not normally distributed) or unpaired t test (for

all other conditions). Four independent biological

repeats were performed for all conditions. (B and C)

1.4-nm-thick tomographic slices of cER in the indi-

cated strains (left) and 3D renderings of cER cur-

vature (right). Agg: aggregate; cER: cortical ER;

Mito: mitochondrion; Nuc: nucleus; PM: plasma

membrane; Vac: vacuole. (B) WT cell under heat

stress (HS). Insets show cER peaks (blue arrowhead

in the tomographic slice inset). (C) tcb1/2/3D cell

under heat stress. Scale bars: 300 nm (main panels),

25 nm (inset). See also Figures S2 and S4; Table S1.

peak area was equivalent to 0.15% of the

total cER area facing the PM in WT cells.

Could these rare structures play an impor-

tant role in maintaining PM integrity under

heat-shock conditions? To address this

question, we performed cryo-ET on heat-

shocked cells. As expected, cells showed

abundant amorphous aggregates in

various cellular locations (Miller et al.,

2015; Wagner et al., 2017) (Figure 5B).

Also, heat-shocked WT cells showed a

strong increase in the number of cER

peaks (N = 7 cER-PM MCS; p < 0.05 by

Mann-Whitney U test; Figures 2I and

5B), whereas these structures were absent

in heat-shocked tcb1/2/3D cells (N = 5

cER-PM MCS; Figures 2I and 5C). There-

fore, the Tcb-dependent formation of cER

peaks is induced by conditions that challenge PM integrity,

such as heat shock.

Of note, deletion of all Tcbs (tcb1/2/3D) did not result in integ-

rity defects as pronounced as Dtether (Figure S4A), and even in

the presence of Tcbs, tether mutants with severely impaired cER

formation (scs2/22D, Tcb1/2/3-only; Manford et al., 2012) also

suffered from PM integrity defects (Figure S4A). Therefore,

non-Tcb enriched areas of the cER may also be important for

PM integrity.

We investigated this issue combining theoretical modeling

with our experimental measures of peak size and abundance.

We assume that the cER membrane is completely flat outside

of cER peaks, and that LTPs are homogenously distributed at

the cER-PM interface. Taking into account the much higher

rate of lipid transfer predicted at cER peaks, our model indicates

that the total number of lipids extracted from cER peaks in WT

cells (0.15% of total cER membrane area) is roughly equivalent
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to that of the flat parts (99.85%of total cERmembrane area) (Fig-

ure S4B). Thus, lipid transfer at flat cER membranes may not be

negligible. Nevertheless, in heat-shocked WT cells the observed

�6-fold increase in cER peak density would translate into a

�5-fold more lipids transferred from cER peaks than from the

flat portions of the cER (Figure S4B). This analysis also shows

that increasing cER peak density can only substantially increase

lipid flowswhen the total levels of cER are high, possibly explain-

ing the PM integrity defects observed in mutants with less cER

such as scs2/22D or Tcb1/2/3-only (Figure S4A).

Tcb3 SMP and C2 Domains Are Necessary for cER Peak
Formation
The higher density of cER peaks observed in heat-shocked WT

cells provided a higher dynamic range to investigate by cryo-

ET the specific roles of Tcb3 domains in cER peak formation at

42�C. We investigated GFP-tagged Tcb3 constructs, either full

length (Tcb3-GFP), lacking the SMP domain (Tcb3 SMPD-

GFP), or all C2 domains (Tcb3 C2D-GFP). In agreement with pre-

vious studies (Manford et al., 2012; Toulmay and Prinz, 2012),

both truncations localized to the cER, although substantially

higher fluorescence was detected in the nuclear ER compared

to full-length Tcb3-GFP (Figure S4C).

We then inquired to what extent these Tcb3 constructs could

rescue the defects observed in tcb3D cells in terms of cER peak

formation (Figures 2I and 4C) and PM integrity (Figure 5A). Inter-

estingly, cryo-ET imaging of heat-shocked cells and PM integrity

assays revealed that neither truncation was able to complement

tcb3D mutants (Figures 6B–6E), while substantial recovery was

observed by expression of full-length Tcb3-GFP (Figures 6A,

6D, and 6E). These experiments indicate that the Tcb3 SMP

and C2 domains are involved in cER peak formation and rein-

force the correlation between PM integrity at elevated tempera-

tures and the presence of Tcb-mediated cER peaks.

Altogether, these data indicate that (1) Tcbs are necessary for

the formation of cER peaks; (2) cER peaks may facilitate ER-to-

PM lipid transfer; and (3) cER peaks are important to maintain

PM integrity under heat stress, a condition in which the PM

Figure 6. cER Peaks and PM Integrity in

Heat-Shocked Tcb3 Truncation Mutants

(A–C) 1.4-nm-thick tomographic slices of cER in the

indicated strains (left) and 3D renderings of cER

curvature (right). Agg: aggregate; cER: cortical ER;

Mito: mitochondrion; Nuc: nucleus; PM: plasma

membrane. (A) tcb3D + Tcb3-GFP HS, (B) tcb3D +

Tcb3 SMPD- GFP HS, (C) tcb3D + Tcb3 C2D-GFP

HS. Insets show cER peaks (blue arrowhead in the

tomographic slice inset). Scale bars for tomo-

graphic slices: 300 nm (main panels); 25 nm (insets).

The contrast of the tomographic slices in (A), (B),

and (C) was enhanced using a deconvolution filter.

(D) cER peak density per mm2 of cER membrane

area showing average values (gray bars) ± SE (error

bars). N = 7 (WT HS), 3 (tcb3D + Tcb3-GFP HS), 3

(tcb3D + Tcb3 SMPD-GFPHS), and 3 (tcb3D + Tcb3

C2D-GFP HS) ER-PM MCS. n.s. indicates p > 0.05

by Mann-Whitney U test. (E) PM integrity assay of

tcb3D cells complemented with Tcb3 truncation

mutants upon 10-min incubation at 42�C. The

plot shows average values (white/gray bars) for

each condition ± SE (error bars). n.s., *, **, and

***, respectively, indicate p > 0.05, p < 0.05, p < 0.01,

and p < 0.001 by unpaired t test. Four independent

biological repeats were performed for all conditions.

(F) Model for the function of cER peaks in main-

taining PM integrity. In WT cells, Tcbs generate

membrane peaks of extreme curvature on the

cER membrane. This may facilitate the extraction of

cER lipids and their delivery to the PM (top left). The

generation of cER peaks is the main structural role

of Tcbs at ER-PM MCS, as overall ER-PM tethering

is not substantially affected by Tcb1/2/3 deletion.

However, tcb1/2/3D cells lack cER peaks (bottom

left). Under heat stress, influx of extracellular Ca2+

through a damaged PM drives the localized forma-

tion of additional Tcb-mediated cER peaks, which in

turn facilitate sufficient delivery of cER lipids to the

PM to maintain PM integrity (top right). Absence of

cER peaks in heat stressed tcb1/2/3D cells leads to

PM integrity defects allowing influx of propidium

iodide (bottom right). See also Figure S4; Table S1.
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may require substantial lipid influx to restore its lipid homeosta-

sis. Interestingly, similar high curvature peaks were observed at

other ER-mediated MCS such as ER-mitochondria MCS (Fig-

ure S2D), suggesting that the induction of membrane curvature

may be a general mechanism to facilitate intermembrane lipid

exchange at various MCS.

DISCUSSION

ER-PM Tethers Shape the cER
MCS exist between essentially all cellular membranes, and a

great number of MCS-resident proteins and tethers have been

identified. However, the functions of many of these molecules

remain poorly understood (Bohnert and Schuldiner, 2018; Shai

et al., 2018; Valm et al., 2017; Wu et al., 2018). For example, it

is unclear why so many ER-PM tethers exist in S. cerevisiae

(Gatta et al., 2015; Manford et al., 2012; Quon et al., 2018), as

well as the possible functions of these proteins beyond the

mechanical anchoring of the membranes. Here, we employed

state-of-the-art in situ imaging by cryo-ET to reveal that

ER-PM tethers are critical determinants of cER morphology

and MCS function.

Our data confirm that Ist2 is an important ER-PM tether (Lavieu

et al., 2010; Manford et al., 2012; Wolf et al., 2012). The distribu-

tion of ER-PM distances was particularly narrow in Ist2-only

cells, indicating that Ist2 is very effective in maintaining an ER-

PM separation of about 21 nm. This is surprising, because Ist2

bridges the ER and the PM by a 340-amino-acid-long linker

that is predicted to be unstructured. This linker is probably not

fully extended, as this would allow it to span up to 120 nm, but

how it can precisely regulate intermembrane distance requires

further investigation.

ER-PM distances were more broadly distributed in Scs2/22-

only cells, possibly due to the promiscuous interactions of

Scs2/22 with different FFAT/FFAT-like motif proteins at the PM

(Murphy and Levine, 2016). Strikingly, the cER in these cells con-

sisted almost exclusively of extended, narrow sheets. How such

sheets are formed remains to be established, as direct interac-

tions of Scs2/22 in trans across the ER lumen appear unlikely,

given their short luminal sequences. In contrast to Scs2/22-

only cells, the cER was mainly formed by tubules in Tcb1/2/3-

only cells. This phenomenon may rely on the hairpin sequence

that anchors Tcbs to the ER membrane. Tcb hairpin sequences

could sense and/or generate membrane curvature as in reticu-

lons and other ER morphogenetic proteins (Hu et al., 2011).

Alternatively, it is also possible that the cER morphologies

observed in the different ER-PM tether mutants arise from the

dysregulation of additional ER-PM MCS factors (Quon et al.,

2018), other ER morphogenetic proteins, or lipids. However,

WT cER also consists of a mixture of sheets and tubules, which

could plausibly arise as a combination of themorphologies of the

individual ER-PM tethermutants. Therefore, it is possible that the

different families of tethers are enriched in partially segregated

cER subdomains, consistent with their punctate localization

observed by light microscopy (Creutz et al., 2004; Manford

et al., 2012; Toulmay and Prinz, 2012;Wolf et al., 2012). Similarly,

in plant andmammalian cells, different ER-PM tethers are known

to co-exist at the same MCS but form separate subdomains

(Giordano et al., 2013; Siao et al., 2016). Therefore, native ER-

PMMCSmay be established as a juxtaposition of molecular ter-

ritories enriched in different tethers.

Tcbs Form Highly Curved Peaks at the cER Membrane
Besides being generally tubular, the cER in Tcb1/2/3-only cells

was enriched in membrane peaks of extreme (< 10-nm radius)

membrane curvature, one of the highest observed in a cell (An-

tonny, 2011). cER peaks were also present in WT cells at a lower

frequency, suggesting that Tcbs generate these structures also

in the WT case. In fact, our study of Tcb-deletion mutants indi-

cated that the efficient formation of cER peaks requires expres-

sion of Tcb3 and Tcb1 or Tcb2, consistent with biochemical

evidence that Tcbs/E-Syts form heterodimers (Creutz et al.,

2004; Giordano et al., 2013; Idevall-Hagren et al., 2015; Schulz

and Creutz, 2004). Given that the SMP domain is important for

dimerization (Schauder et al., 2014), disruption of Tcb3-Tcb1/2

heterodimers may explain the lack of cER peaks in tcb3D cells

expressing Tcb3 SMPD-GFP.

A Tcb3 truncation lacking all C2 domains also failed to rescue

cER peak formation in tcb3D cells. On one hand, it is possible

that C2 domains are also involved in Tcb dimerization or oligo-

merization (Zanetti et al., 2016). Additionally, binding of at least

some C2 domains to the cER membrane may play an active

role in curvature generation, by analogy with other multi-C2

domain proteins. For example, the C2 domains of mammalian

SYT1 bind the PM in a Ca2+-dependent manner, generating cur-

vature in the PM (Martens et al., 2007). Although C2 domains

generally prefer negatively charged membranes such as the

PM, binding of E-Syt C2 domains to the ER membrane has

been speculated (Min et al., 2007; Schauder et al., 2014). The

exact mechanisms by which Tcb SMP and C2 domains could

generate cER peaks, perhaps synergistically with the hairpin

sequence, require further investigation.

Bona fide membrane curvature generators such as reticulons

have also been implicated in ER-PM MCS formation (Caldieri

et al., 2017), and there is increasing evidence for important roles

of curvature-sensing and/or generating proteins at other MCS

(Ackema et al., 2016; de Saint-Jean et al., 2011; Ho and Stroupe,

2016; Moser von Filseck et al., 2015; Voss et al., 2012), consis-

tent with our observations of high curvature peaks at, e.g., ER-

mitochondria MCS. Thus, membrane curvature may be an

important regulator of MCS function (Henne et al., 2015).

cER Peaks Are Important for PM Integrity under Stress
Most MCS harbor an intense nonvesicular exchange of lipids

(Cockcroft and Raghu, 2018; Lees et al., 2017; Saheki et al.,

2016), which is especially important at ER-PM MCS because

most PM lipids are synthesized in the ER. Moreover, the

E-Syts, mammalian orthologs of Tcbs, are directly implicated

in ER-PM lipid transfer, as their SMP domainmediates lipid bind-

ing and transport (Bian et al., 2018; Saheki et al., 2016; Schauder

et al., 2014; Yu et al., 2016). Because Tcb-induced cER peaks al-

ways faced the PM, we hypothesized that these peaks could

play a role in an ER-PM lipid transfer.

Consistent with this idea, our semi-quantitative modeling indi-

cated that cER peaks can dramatically enhance the rate of lipid

extraction from the cER by facilitating the shallow insertion of

lipid-transport modules into the lipid bilayer, in agreement with

experimental studies (Machida and Ohnishi, 1980; Moser von
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Filseck et al., 2015). cER peaks also shorten cER-PM distance

and can impose cER-to-PM directionality on the lipid transfer

process. Thus, cER-to-PM lipid transfer may be greatly

enhanced by Tcb-mediated cER peaks. It is also attractive to

speculate that Tcb SMP domains may play an active role in

such lipid transfer process.

The physiological roles of the Tcb protein family remain

enigmatic. On one hand, these molecules are highly conserved

and therefore likely to play important functions. However, no

major alterations were discovered in yeast cells lacking all

Tcbs (Manford et al., 2012; Toulmay and Prinz, 2012), nor in

mammalian cells or mice lacking all three E-Syts (Saheki

et al., 2016; Sclip et al., 2016; Tremblay and Moss, 2016).

E-Syt triple knockout cells did display an accumulation of diac-

ylglycerol at the PM upon phospholipase C activation (Saheki

et al., 2016), suggesting that the main function of E-Syts/Tcbs

is to respond to stimuli that perturb lipid homeostasis (Ste-

fan, 2018).

Our data suggest that one of such stimulus is heat stress.

Although Tcb1/2/3 deletion does not substantially reduce the

levels of cER, heat-shocked tcb1/2/3D cells suffer from PM

integrity defects (Omnus et al., 2016). Furthermore, our func-

tional assays of Tcb mutants showed a strong correlation be-

tween the absence of cER peaks and PM integrity defects

upon heat stress. Although the exact mechanisms by which

heat stress compromises PM integrity remain to be established,

heat alters PM protein and lipid homeostasis, as well as the

physico-chemical properties of the bilayer (Fan and Evans,

2015; Verghese et al., 2012; Zhao et al., 2013). PM repair likely

involves the addition of new lipids (Vaughan et al., 2014), and

ER-PM MCS regulate phospholipid biogenesis (Pichler et al.,

2001; Tavassoli et al., 2013). Thus, under conditions of PM dam-

age, Tcb-mediated cER peaks could maintain PM integrity by

ensuring sufficient flow of lipids synthesized in the cER toward

the PM.

Consistently, we observed a substantial increase in the num-

ber of cER peaks inWT cells under heat stress. Since membrane

binding of some Tcb C2 domains is regulated by Ca2+ (Schulz

and Creutz, 2004), the formation of new cER peaks upon heat

stress could be driven by the influx of extracellular Ca2+ through

a damaged PM (Andrews and Corrotte, 2018; Jimenez and

Perez, 2017). Ca2+ influx may trigger the binding of Tcb C2

domains to the cER membrane, inducing cER membrane curva-

ture in a way similar tomammalian SYTs (Martens et al., 2007). At

the same time, the cER is highly dynamic and explores most of

the cellular PM over a few minutes, possibly monitoring PM sta-

tus (Omnus et al., 2016). Thus, Ca2+ signals at sites of PM dam-

age may trigger formation of Tcb-mediated cER peaks exactly

where they are needed to locally enhance PM repair (Figure 6F).

This mechanism may act in parallel or synergistically with other

pathways to maintain PM homeostasis (Andrews and Corrotte,

2018; Jimenez and Perez, 2017; Omnus et al., 2016; Zhao

et al., 2013).

In fact, our calculations show that besides cER peaks, high

levels of cER may also be important for PM integrity, suggesting

that optimal cER-PM lipid flow requires joint efforts by Tcbs and

other tethers. Although our model indicates that the capacity to

extract lipids from cER peaks is much higher than from flat mem-

branes, lipid currents from cER peaks and flat areas appear

comparable in WT cells, given the minute fraction of cER area

occupied by peaks. However, lipid currents from cER peaks

may dominate upon heat shock due to the increase in cER

peak density, possibly explaining why the phenotypes of Tcb

mutants only become apparent under stress conditions.

The important role of Tcbs in maintaining PM integrity upon

stress agrees with findings on the plant SYTs, which also act

as ER-PM tethers and are important factors protecting PM integ-

rity from different stresses (Kawamura and Uemura, 2003; Lee

et al., 2019; Pérez-Sancho et al., 2015; Schapire et al., 2008;

Yamazaki et al., 2008). Other mammalian multi-C2 domain pro-

teins like SYT7 and dysferlin are directly implicated in PM repair

(Andrews and Corrotte, 2018; Jimenez and Perez, 2017). As with

yeast Tcbs, membrane binding by some C2 domains of plant

SYTs and mammalian E-Syts is regulated by Ca2+ (Giordano

et al., 2013; Idevall-Hagren et al., 2015; Pérez-Sancho et al.,

2015). Therefore, we propose that a crucial function of yeast

Tcbs, plant SYTs, and possibly mammalian E-Syts is to respond

to the influx of extracellular Ca2+ through a damaged PM by

forming cER peaks, which may enhance the cER-to-PM lipid

transfer necessary for PM repair. Further work should experi-

mentally determine the extent and composition of these

lipid flows.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Max Efficiency� DH5alpha Invitrogen Cat# 18258-012

Chemicals, Peptides, and Recombinant Proteins

Phusion� HF DNA Polymerase NEB Cat# M0530

DpnI NEB Cat# R0176

Propidium Iodide Invitrogen Cat# P3566

Critical Commercial Assays

QIAprep� Spin MiniPrep Kit Qiagen Cat# 27106

Deposited Data

Cryo-Electron Tomogram of cER-PM MCS in a Heat-Shocked WT

S. cerevisiae Cell

This study EMDB ID: EMD-10378

Cryo-Electron Tomogram of cER-PM MCS in a Heat-Shocked WT

S. cerevisiae Cell (NAD Filtered)

This study EMDB ID: EMD-10379

Experimental Models: Organisms/Strains

S. cerevisiae: Strain Background SEY6210: MATa leu2-3,112

ura3-52 his3-D200 trp1-D901 lys2-801 suc2-D9

(Robinson et al., 1988) ATCC: 96099

S. cerevisiae: Strain Background SEY6210.1: MATa leu2-3,

112 ura3-52 his3-D200 trp1 D901 lys2 801 suc2-D9

(Robinson et al., 1988) SEY6210.1

S. cerevisiae: Strain ANDY117: SEY6210 tcb1D::KANMX6 (Manford et al., 2012) ANDY117

S. cerevisiae: Strain ANDY118: SEY6210.1 tcb1D::KANMX6 (Manford et al., 2012) ANDY118

S. cerevisiae: Strain ANDY120: SEY6210.1 tcb2D::KANMX6 (Manford et al., 2012) ANDY120

S. cerevisiae: Strain YCS2359: SEY6210.1 tcb3D::HISMX6 This study YCS2359

S. cerevisiae: Strain YCS2430: SEY6210.1 tcb1D::KANMX6

tcb2D::KANMX6

This study YCS2429

S. cerevisiae: Strain ANDY214: SEY6210.1 tcb1D::KANMX6

tcb2D::KANMX6 tcb3D::HISMX6

(Manford et al., 2012) ANDY214

S. cerevisiae: Strain DBY356: SEY6210.1 scs2D::TRP1

scs22D:: HISMX6

(Stefan et al., 2011) DBY356

S. cerevisiae: Strain ANDY113

SEY6210.1 ist2D::HISMX6

(Manford et al., 2012) ANDY113

S. cerevisiae: Strain ANDY129: SEY6210.1 ist2D::HISMX6

scs2D::TRP1 scs22D::HISMX6

(Manford et al., 2012) ANDY129

S. cerevisiae: Strain ANDY176: SEY6210.1 ist2D::HISMX6

tcb1D::KANMX6 tcb2D::KANMX6 tcb3D::HISMX6

(Manford et al., 2012) ANDY176

S. cerevisiae: Strain ANDY196: SEY6210.1 scs2D::TRP1

scs22D::HISMX6 tcb1D::KANMX6 tcb2D::KANMX6

tcb3D::HISMX6

(Manford et al., 2012) ANDY196

S. cerevisiae: Strain ANDY198: SEY6210.1 ist2D::HISMX6

scs2D::TRP1 scs22D::HISMX6 tcb1D::KANMX6 tcb2D::

KANMX6 tcb3D::HISMX6

(Manford et al., 2012) ANDY198

Oligonucleotides

Fwd deltaTCB3_SMP: AAGAAACCTTGTCG

GATCGCGACATTATGGCTGCTCAATCAAAAGAAG

metabion N/A

Rv deltaTCB3_SMP: GCGATCCGACAAGGTTTCTT metabion N/A

Fwd TCB3-1: ATGACTGGCATCAAAGCTCAAGT metabion N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Plasmid: pRS415-TCB3-GFP-TADH1 (Manford et al., 2012) pAM43

Plasmid: pRS415-Tcb3 (1–491)-GFP-TADH1 (Manford et al., 2012) pAM44

Plasmid: pRS415-TCB3 SMPD-GFP-TADH1 This study pCB2

Software and Algorithms

Amira Thermo Fisher Scientific https://www.fei.com/software/amira-

3d-for-life-sciences/

RRID:SCR_014305

BD FACSDiva BD Biosciences https://www.bdbiosciences.com/en-us

RRID:SCR_001456

Fiji/ImageJ NIH https://imagej.net/Fiji#Downloads

RRID:SCR_002285

Graph-Tool 2.2.44 (Peixoto, 2017) https://graph-tool.skewed.de

IMOD (Kremer et al., 1996) http://bio3d.colorado.edu/imod/

RRID:SCR_003297

K2Align Dimitry Tegunov https://github.com/dtegunov/k2align

Mathematica 9.0 Wolfram Research, Inc. https://www.wolfram.com/mathematica

RRID:SCR_014448

MATLAB MathWorks https://www.mathworks.com/

RRID:SCR_001622

ParaView 5.5.2 (Ahrens et al., 2005) https://www.paraview.org

RRID:SCR_002516

Pyto (Lu�ci�c et al., 2016) N/A

Python 2.7.16 and 3.6.5 N/A https://www.python.org

RRID:SCR_008394

Python 2.7 Packages Installed via Pip or Anaconda:

matplotlib-1.5.1, networkx-1.11, nibabel-2.4.0,

numpy-1.11.3, skimage-0.12.3, scipy-0.18.1,

pandas-0.19.2, pathlib2-2.2.0, pathos-0.2.2.1,

pytest-4.6.2

N/A https://pypi.org

https://www.anaconda.com

RRID:SCR_008624

RRID:SCR_002498

RRID:SCR_008633

RRID:SCR_008058

Python 3 Packages Installed via Anaconda: matplotlib-

3.0.2, numpy-1.15.2, pandas-0.23.0, scipy-1.1.0,

seaborn-0.8.1, Statsmodels-0.9.0

N/A https://www.anaconda.com

RRID:SCR_016074

Python Software to Estimate Membrane Curvature and

Calculate Distances between Membranes

This study and (Kalemanov

et al., 2019)

https://github.com/kalemaria/pycurv

SerialEM (Mastronarde, 2005) http://bio3d.colorado.edu/SerialEM/

RRID:SCR_017293

TOM Toolbox (Nickell et al., 2005) https://www.biochem.mpg.de/tom

tom_deconv Dimitry Tegunov https://github.com/dtegunov/tom_deconv

TomSegMemTV (Martinez-Sanchez

et al., 2014)

https://sites.google.com/site/

3demimageprocessing/tomosegmemtv

TOMOAND (Fernández and Li, 2003) https://sites.google.com/site/

3demimageprocessing/tomoand

VTK 6.3.0 (Schroeder et al., 2006) http://www.vtk.org RRID: SCR_015013

Other

Quantifoil grids 200 Mesh Copper R2/1 Quantifoil MicroTools N/A

Whatman Filter Paper 597 Sigma Aldrich Cat# WHA10311814

Cover Glasses Carl Zeiss Cat# 474030-9000-000
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LEAD CONTACT AND MATERIAL AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ruben

Fernandez-Busnadiego (ruben.fernandezbusnadiego@med.uni-goettingen.de). Strains and plasmids are available from the authors

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast Strains and Cell Culture
The yeast strains used in this study are listed in the Key Resources Table.

All strains analyzed were previously reported (Manford et al., 2012; Robinson et al., 1988; Stefan et al., 2011), except YCS2359

(tcb3D) and YCS2429 (tcb1D tcb2D), which were created for this study. Chromosomal deletion of the TCB3 gene was performed

as previously described (Longtine et al., 1998). The tcb1D tcb2D double mutant strain (YCS2429) is a segregant from a genetic cross

of tcb1D (ANDY117) and tcb2D (ANDY120) single mutant strains.

Yeast colonies grown on YPD plates were inoculated in liquid YPD and incubated at 30�C until reaching 0.6 OD600.

Plasmid Construction
The constructs used in this study are listed in the Key Resources Table.

Plasmids pAM43 and pAM44were previously reported (Manford et al., 2012). For plasmid pCB2, the deletion of the SMPdomain of

TCB3 (272–479 aa) was created by linearizing the pAM43 vector using the Phusion� HF DNA polymerase (NEB). The sequences of

the two oligos used were: 50- AAGAAACCTTGTCGGATCGCGACATTATGGCTGCTCAATCAAAAGAAG - 30 and 50- GCGATCCGA

CAAGGTTTCTT -30. The resulting PCR product was treated with DnpI restriction enzyme (NEB) and later purified using the

phenol-chloroform protocol. The vector was re-circularized using Gibson strategy (Gibson et al., 2009) as described in https://

openwetware.org/wiki/Gibson_Assembly. The complete reaction was transformed in Max Efficiency� DH5alpha (Invitrogen) and

platted on an LB plate containing 100 mg/mL ampicillin. The plasmid was extracted using QIAprep� Spin Miniprep Kit (Qiagen)

and sequenced by Microsynth with the oligo : 50- ATGACTGGCATCAAAGCTCAAGT- 30.Plasmids were transformed into the strains

of interest.

Cells carrying plasmids were grown in complete synthetic media buffered at pH 6.25 with Soerensen buffer, lacking leucine to

maintain plasmid selection and with 2% glucose as carbon source.

METHOD DETAILS

Light Microscopy
Cells were grown in the appropriate liquid media and diluted the following day. Recovered cells reaching the exponential phase

(OD600=0.6-0.8) were briefly spun down, and confocal Z-stack images were acquired with an LSM780 microscope (Zeiss) at 633

magnification. The images were analyzed using Fiji software (NIH).

Cell Vitrification
Cryo-EM grids (R2/1, Cu 200 mesh grid, Quantifoil microtools) were glow discharged using a plasma cleaner (PDC-3XG, Harrick) for

30 s and mounted on a Vitrobot Mark IV (FEI).

A 3.5 ml drop of yeast culture was deposited on the carbon side of the grid before being blotted from the back using filter paper

(Whattman 597) at force setting 9 for 10 s. The grids were immediately plunged into a liquid ethane/propane mixture at liquid nitrogen

temperature and stored in grid boxes submerged in liquid nitrogen until usage.

Cryo-Focused Ion Beam Milling
Vitrified grids were mounted into Autogrid carriers (FEI), held in place by a copper ring. They were subsequently inserted in a dual-

beam Quanta 3D cryo-FIB / scanning electron microscope (SEM) (FEI) using a transfer shuttle and a cryo-transfer system (PP3000T,

Quorum). Inside the microscope, the sample was kept at -180�C using a cryo-stage throughout the milling process.

To protect the sample from unwanted damage by the ion beam, a layer of organic platinumwas deposited on top of the grid using a

gas injection system from a 13.5 mm distance for 9 s.

Small groups of cells located near the center of the grid square were targeted for milling. Milling was done at a 20� tilt. Several

sequential steps were taken, starting with the Ga2+ ion beam at 30 kV and 500 pA beam current for rough milling, down to 30 kV

and 30 pA for fine milling.

The final lamellae were around 14 mmwide and 150–250 nm thick. SEM imaging at 5 kV and 13 pA was used to monitor the milling

process. The final thickness was reached when the lamellae lacked contrast at 3 kV and 10 pA.

Cryo-Electron Tomography
Cryo-FIB lamellae were imaged at liquid nitrogen temperature in a Polara (tcb3D + Tcb3 SMPD-GFP, tcb3D + Tcb3 C2D-GFP,

tcb3D + Tcb3-GFP cells, as well as one experiment of tcb1/2/3D, tcb3D and tcb1D cells) or Titan Krios (all other cases) cryo-electron
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microscopes (FEI) equipped with 300 kV field emission guns, post column energy filters (Gatan) and K2 Summit direct electron de-

tectors (Gatan).

Lowmagnification (45003, 27-Å pixel size in Polara; 36003, 40-Å pixel size in Titan Krios; -100 mmdefocus) images of the lamellae

were taken to identify regions of interest. Tilt series were recorded using SerialEM software (Mastronarde, 2005) at higher magnifi-

cation (34,000 3, 3.509-Å pixel size in Polara; 42,000 3, 3.42-Å pixel size in Titan Krios; -5 mm defocus), typically from -46� to +64�

with increments of 2�. For one experiment of the tcb1/2/3D, tcb3D and tcb1D conditions, tilt series were recorded in Polara at

22,500 x (0.522-Å pixel size) using -5 mm defocus.

The cameras were operated in dose fractionation mode, producing frames every 0.2 s. 1/cos scheme was used to increase

the exposure time at higher tilt angles, resulting in exposure times of 1–2 s per projection image. Tilt series acquired in the Titan

Krios for the tcb1/2/3D, Dtether, WT heat shock and tcb1/2/3D heat shock conditions were recorded using a dose-symmetric

scheme (Hagen et al., 2017). All other tilt series were acquired using a unidirectional scheme. In all cases, the total dose per tilt series

was �120 e-/Å2.

K2 frames were aligned using in house software (K2Align) based on previous research (Li et al., 2013) and available at https://

github.com/dtegunov/k2align. The tilt series were aligned using patch-tracking and reconstructed by weighted back projection in

IMOD (Kremer et al., 1996). Tomograms were binned twice, to a final voxel size of �1.4 nm (2.1 nm for the tilt series recorded at

22,500 x). For visualization, the tomographic slices shown in all figures except Figures S2A, S2D, 6A, 6B, and 6Cwere denoised using

a non-linear anisotropic filter (Fernández and Li, 2003). The contrast of Figures S2A, S2D, 6A, 6B, and 6C was enhanced using a de-

convolution filter (https://github.com/dtegunov/tom_deconv) executed in MATLAB (MathWorks) using the functionalities of the TOM

toolbox (Nickell et al., 2005).

Membrane Segmentation and Surface Generation
Membranes were automatically segmented along their middle line using TomoSegMemTV (Martinez-Sanchez et al., 2014), and

refinedmanually using Amira (FEI). The intermembrane volumesweremanually segmented. Segmentations consisted of binary voxel

masks, which were smoothed using a Gaussian kernel with s of 1 voxel. From these segmentations, isosurfaces were generated us-

ing the Marching Cubes algorithm (Lorensen and Cline, 1987) with an isosurface level of 0.7. Finally, isosurfaces were transformed

into single-layer triangle mesh surfaces delineating the membranes. On average, surface triangles had an area of 0.6 ± 0. 4 nm2

(mean ± SD) for the PM and 0.7 ± 0. 4 nm2 (mean ± SD) for the cER membrane.

Membrane Curvature Determination
Curvature was estimated locally for each surface triangle using a novel algorithm (Kalemanov et al., 2019). Briefly, we used tensor

voting with a neighborhood of triangles defined by the RadiusHit parameter to denoise the surface normal vectors and then estimate

the principal directions and curvatures for each surface triangle center. The maximal (k1) and the minimal (k2) principal curvatures

were combined into a single scalar value for each triangle by calculating curvedness (Koenderink and van Doorn, 1992):

Curvedness =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k22

2

r
:

A RadiusHit value of 10 nm was used, limiting the size of the smallest feature measured reliably to a radius of 10 nm, i.e. a curved-

ness of 0.1 nm-1. Higher valueswere excluded from the analysis. Valueswithin 1 nm to the surface border were removed, as curvature

estimation was not reliable in these areas. The total number of cER triangles where curvature was measured in each condition is

shown in Table S1. Membrane curvature was visualized using ParaView (Ahrens et al., 2005).

Intermembrane Distance Measurements
To calculate distances between two membranes, surfaces following the cytosolic side of all membranes were generated. Denoised

normal vectors from the first surface (PM in ER-PMMCS, mitochondria in ER-mitochondria MCS, vacuole in nucleus-vacuole MCS)

were generated (see above) and extended until their intersection with the second surface. The Euclidean distance between the

source triangle center and the intersection point was calculated as the intermembrane distance. These measurements were per-

formed for all triangles of the first surface for which a normal vector intersected with the second surface within 50 nm (Table S1 shows

the total number of measurements for each condition).

To calculate cER thickness, a surface following the luminal side of the cERmembranewas generated. Denoised PMsurface normal

vectors were extended until their first and second intersections with the cERmembrane surface. The Euclidean distance between the

intersections was calculated as the cER thickness. These measurements were performed for all triangles of the PM for which cER

thickness was within 80 nm (Table S1 shows the total number of measurements for each condition).

Intermembrane distances at ER-PM, ER-mitochondria and nucleus-vacuoleMCSwere defined as the distances between the cyto-

solic leaflets of the membranes. cER thickness was calculated as the distance between the luminal leaflets of the cER membrane.

Given that the triangle-mesh surfaces go through the centers of the voxels on the edge of the segmentations, one voxel was added to

all distances for correction.
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cER Peak Morphology and Density Quantification
Measurements of cER peak height, radius and distance to the PM were done in tomographic slices using the measuring tool built in

IMOD. The cER peak density was calculated perMCS by dividing the number of cER peaks by half of the cER surface area, since cER

peakswere found only on the side of cER facing the PM. The cER surface areawas calculated by summing up the areas of all triangles

in the cER surface (the total cER surface area for each condition is shown in Table S1).

Membrane Modeling
To compute the change in the free energy barrier associated to the extraction of a lipid from a highly curved membrane as compared

to the extraction from a flatmembrane, we consider that the extraction is performed by a lipid transport protein (LTP). The lipid extrac-

tion reaction undergoes a series of steps, initiated by the binding and partial insertion of the LTP into the membrane (absorption),

followed by the lipid extraction and detachment of the protein-lipid complex from the membrane (desorption) (Dittman and Menon,

2017; Wong et al., 2017). Hence, the total free energy required for lipid extraction, εextr , corresponds to the change of the free energy

of the system (including both the membrane and the LTP) resulting from the extraction of lipids by one lipid transfer reaction of a sin-

gle LTP.

We can split this free energy of lipid extraction in two terms. The first one, denoted by ε0, corresponds to contributions independent

from membrane stress, such as hydrogen bonding and electrostatic interactions occurring during protein insertion, as well as LTP-

lipid chemical interactions occurring both within the membrane and in solution. The second term, denoted by εel, corresponds to the

elastic contribution dependent onmembrane stress (Campelo andKozlov, 2014).We denote byDεextr the change in the free energy of

lipid extraction from a highly curvedmembrane (associated with a total curvature J = 2=R, whereR is the radius of curvature, and the

local curvature at the tip of the peak is considered to be locally spherical; 1=R is equivalent to the curvedness for k1=k2) with respect to

the extraction from a flat membrane (J = 0Þ. Since ε0 is independent of the curvature or elastic stresses within the membrane, it fol-

lows that DεextrðJÞ = DεelðJÞ = εelðJÞ� ε
0
el, where ε

0
el = εelðJ = 0Þ.

To calculate the elastic part of the free energy of lipid extraction as a function of the membrane curvature, εelðJÞ, we consider that

the main contributions to this energy arise from the shallow insertion of a domain of the LTP into the cytoplasmic leaflet of the cER

membrane, εel;protðJÞ, and from the elastic energy relaxation of the extracted lipids, εel;lipðJÞ.
We consider an elastic model of the lipid monolayer as a three-dimensional, anisotropic elastic material (Campelo et al., 2008) to

compute the internal strains and stresses generated by the partial insertion of the LTP into the membrane, and hence the accumu-

lated elastic energy, εel;protðJÞ (Campelo and Kozlov, 2014; Campelo et al., 2008). One can define the curvature sensitivity parameter,

aJ, which accounts for the ability of a given protein domain to sense membrane curvature, and depends on the way the membrane

curvature has been generated (Campelo and Kozlov, 2014). It has been computationally shown that the elastic energy of insertion can

be written as εel;protðJÞ = ε
0
el;prot � aJ J, which allow us to write, Dεextr;protðJÞ = � aJ J, given that ε0el;prot is the curvature-independent

part of the protein insertion energy.

To compute the elastic energy relaxation of the lipid (or lipids) extracted by the LTP, we use the Helfrich model of membrane cur-

vature energy (Helfrich, 1973). According to this model, we can express the change in the free energy relaxation of N lipids, each of

which having a cross-sectional surface area, a0z0:6 nm2, and an effective spontaneous curvature (Zimmerberg and Kozlov, 2006),

zs, asDεextr;lipðJÞ = εextr;lipðJÞ� εextr;lipðJ = 0Þ = � km
2 Na0 ðJ2 � 2 J zsÞ, where kmz10 kBT is the bending rigidity of a single monolayer

(Niggemann et al., 1995). kBT is the product of the Boltzmann constant and the absolute temperature. We do not consider here a

possible dependence of the lipid free energy change on the lateral tension of the membrane, since we assume that there is no mem-

brane tension gradient appearing as a result of membrane bending and therefore the membrane is under the same lateral tension

regardless of its curvature.

In total, we can write down the free energy change for lipid extraction by an LTP as a function of the curvature of the donor mem-

brane as

DεextrðJÞ = � aJ J� km

2
Na0

�
J2 � 2 J zs

�
(Equation 1)

From the free energy change for lipid extraction, we can estimate the change in the rate of lipid extraction from a curvedmembrane

relative to the flatmembrane. Assuming Arrhenius kinetics, the rate of lipid extraction can bewritten as rðJÞ = Ae�εextr ðJÞ=kBT , whereA is

the Arrhenius prefactor, which we consider to be curvature-independent (Dittman andMenon, 2017). Hence, the change in the rate of

lipid extraction from a curved membrane relative to the flat membrane can be written as

rðJÞ
rð0Þ= e

�Dεextr ðJÞ
kBT (Equation 2)

The value of the curvature sensitivity parameter can be computationally calculated (Campelo and Kozlov, 2014), and depends on

different parameters, in particular, on the size and depth of the insertion. Importantly, it depends on the way the membrane curvature

has been generated. For membrane curvature generated by an externally applied torque (e.g. by protein scaffolds or by protein in-

sertions), a cylindrical insertion of radius 0.5 nm, length 2 nm, and inserted 0.8 nm into themonolayer, the curvature sensitivity param-

eter has been calculated to be aJ = 28 kBT nm (Campelo and Kozlov, 2014). Depending on the geometrical parameters, the curvature

sensitivity can range between aJz10--50 kBT nm (Campelo and Kozlov, 2014).
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The relative dependence of the two contributions to the free energy change in Equation (1) can be quantitated by the ratio rp=l =
Dεextr;protðJÞ
Dεextr;lipðJÞ = 2aJ

kmNa0
1

J�2 zs
. For the characteristic parameters mentioned above (aJ = 28 kBT nm; km = 10 kBT; a0 = 0:6 nm2;N = 1; J =

2=10 nm�1), the relative contribution to the extraction free energy of the protein insertion elastic energy ismuch higher than that of the

lipid curvature stress for a wide range of lipid spontaneous curvatures (Figure S3A). The lipid bending stress only dominates for pro-

tein insertions with a relatively low curvature sensitivity extracting many lipids with a very large negative spontaneous curvature

(conical lipids such as diacylglycerol, which has a spontaneous curvature zs;DAGz� 1 nm�1 (Szule et al., 2002)) (Figure S3B).

The plots of the calculated lipid extraction energy changes as a function of the membrane curvature, J, and of the curvature sensi-

tivity parameter, aJ, for the extraction of both cylindrical (zs = 0 nm�1) and highly conical (zs = � 1 nm�1) lipids are shown in Fig-

ure S3C. In addition, we present the computed values of the lipid extraction energy from a highly curved cER peak (radius of curvature

Rcurv = 10 nm) as a function of the curvature sensitivity parameter for a cylindrical lipid (Figure S3D) and as a function of the lipid

spontaneous curvature for aJ = 28 kBT nm (Figure S3E). Altogether, we can conclude that, for standard physiological conditions,

the extraction of lipids by LTPs is more efficient when occurring from highly curvedmembranes because these proteins have a better

insertion affinity into highly bent membranes associated with a large bending moment in the monolayer facing the PM.

Calculation of Lipid Extraction Currents
We define the lipid current as the total number of lipids extracted along the entire cER membrane per unit time, I =

R
rðJÞdA, where

the local extraction rate, rðJÞ, is integrated along the entire cERmembrane, which has a total surface area AcER. We consider that the

cERmembrane is formed by (i) highly curved peaks of constant curvature, J, with an area Apeak , and (ii) a flat region of zero curvature,

with an area Aflat = AcER � Apeak . Hence, the total lipid current is the sum of the lipid currents coming from the peaks and the flat part,

I = Ipeak + Iflat, where the peak current is Ipeak = rðJÞApeak , and the flat current, Iflat = rð0ÞAflat = rð0ÞðAcER � ApeakÞ.
We can relateApeak to the experimentally measured peak number density, fpeak , (Figure 2I) asApeak = fpeakAcERapeak , where apeak is

the average surface area of a single cER peak, which can be estimated from our cryo-tomograms to be apeakz400 nm2 (by modeling

the peak as a conic structure of base radiusz10 nm and height ofz7 nm, and hence average total curvature, J = 0:2 nm�1). More-

over, if we define the standard lipid current as the lipid current for a flat cER having a total surface area A0
cER and with no peaks, I0 =

rð0ÞA0
cER, we can express the peak, flat, and total lipid currents, respectively, as

Ipeak = I0
AcER

A0
cER

rðJÞ
rð0Þfpeakapeak ; (Equation 3a)

Iflat = I0
AcER

A0
cER

ð1�fpeakapeakÞ; (Equation 3b)

I = I0
AcER

A0
cER

�
1 +

�
rðJÞ
rð0Þ� 1

�
fpeakapeak

�
: (Equation 3c)

In Figure S4B we plot the total lipid current relative to the standard lipid current, I=I0,as a function of the peak density, fpeak , and of

the relative cER surface area AcER = AcER

A0
cER

, for the computed value of the lipid extraction rate at the peaks, rðJÞrð0Þ = 500. We can see that

the total amount of lipids being extracted from the cER depends not only on the number density of peaks per unit area, fpeak (hor-

izontal axis in Figure S4B), but also on the total amount of cER surface area (plotted relative to WT levels in Figure S4B, vertical axis).

When heat shocking WT cells, peak density increases from z4 mm�2 to z22 mm�2 (Figure 2I), and the total lipid current concomi-

tantly increases about 3-fold.

It is also informative to evaluate the relative contribution to the lipid current between the peaks and the flat part, which, from Equa-

tions (3a) and (3b), is

Ipeak

	
Iflat =

rðJÞ
rð0Þ

fpeakapeak

1� fpeakapeak
: (Equation 4)

Using the experimentally determined density of cER peaks, Ipeak=IflatðWTÞz0:8, whereas Ipeak=IflatðWT HSÞ z4:4. Therefore, in WT

cells the total number of lipids extracted from cER peaks is roughly equivalent to that of the flat parts, but lipid extraction from cER

peaks becomes dominant upon heat shock due to the observed increase in cER peak density (Figure S4B).

PM Integrity Assays
Cells were grown at 26�C to mid-log phase in rich media (YPD) or selective drop out media (YND) as required. Cells were shifted to

42�C for 10 min and (1OD600 equivalents) were collected, resuspended in PBS, and incubated with propidium iodide (Invitrogen) for

10 min. Cells were then washed twice with ddH2O and analyzed by flow cytometry (BD LSR II). For each condition, 10,000 cells were

measured. Background was determined by analyzing each of the cell strains prior to staining with propidium iodide. Four
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independent biological repeats were performed for all conditions. We noted that PM integrity defects were enhanced in mutant cells

grown in YPD compared to YND, consistent previous results (Omnus et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

For intermembrane distances (Figures 1E and 2G), cER thickness (Figure 2H) and cER curvedness (Figure 3E), a large number of

measurements (Table S1) was performed automatically for surface triangles (see above). The figures show the complete distribution

of values as violin plots (Figures 1E, 2G, and 2H) or histograms (Figure 3E), including all measurements for all MCS analyzed. For violin

plots, a white dot represents the median, a black slab the interquartile range, and a black line 1.5x the interquartile range. The his-

togram in Figure 3E shows the relative frequency of exceedance (calculated as 1 – cumulative relative frequency) of cER curvedness

averaged acrossMCS for each bin (solid line) ± SE (shaded area). Bin width was 1 nm-1. The frequency was weighted by triangle area

and normalized to the total surface area.

Because measurements of neighboring triangles are not statistically independent from each other, statistical comparisons be-

tween conditions were performed using the mean of the measurements for each MCS. Consequently, in the text we report N as

the number of MCS analyzed. In all cases, normality was assessed using Shapiro-Wilks test. To estimate statistical significance

we used t-test for normally distributed samples and Mann-Whitney-U test for non-normally distributed samples.

Figure 2I shows mean peak density per mm2 cER surface area for each condition ± SE. cER peak morphology measurements

(Figure S2C) were displayed by box plots. For PM integrity assays (Figures 5A, 6E, and S4A), average values from four independent

experiments were analyzed. Bar plots show mean values for each condition ± SE.

These data were statistically analyzed as reported above. The number of independent biological experiments, MCS studied and

measurements performed are reported in Table S1.

DATA AND CODE AVAILABILITY

The tomogram displayed in Figure 5A showing cER-PM MCS in a heat-shocked WT cell has been deposited at the Electron Micro-

scopy Data Base (EMDB) with accession numbers EMD-10378 (raw tomogram) and EMD-10379 (tomogram filtered by non-linear

anisotropic diffusion, as in Figure 5A).

The Python software used to estimate membrane curvature and calculate distances between membranes is available at https://

github.com/kalemaria/pycurv. The software depends on the following external packages: Pyto (Lu�ci�c et al., 2016), Graph-tool (Peix-

oto, 2017) and VTK (Schroeder et al., 2006). Graph-tool and VTK are respectively available at https://graph-tool.skewed.de/ and

https://vtk.org/.
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Figure S 1: Cryo-EM Overview Images of Cryo-FIB Lamellae. Related to Figure 2. Panels (A-E) 

show low magnification cryo-EM images of cryo-FIB lamellae milled through groups of cells. The 

profile of individual cells is marked by their cell wall. Pink lines mark cER (magnified in insets). CW: 

cell wall; cER: cortical ER; IC: ice crystal surface contamination; PM: plasma membrane. (A) WT 

cells, (B) Ist2-only cells, (C) Scs2/22-only cells, (D) Tcb1/2/3-only cells, (E) ∆tether cells. Scale bars: 3 

μm (main panels), 500 nm (insets). 

  



 



Figure S 2: High Magnification Images of ER-PM MCS. Related to Figure 1, Figure 2, Figure 4 and 

Figure 5. Gallery of magnified (A) tether structures and (B) cER peaks found in the different strains. 

White arrowheads: ER-PM tethers; red arrowheads: intraluminal cER tethers; blue arrowheads: cER 

peaks. cER: cortical ER; PM: plasma membrane. The images show 1.4 nm-thick tomographic slices. 

(C) Quantification of cER peak morphology in terms of radius, height and distance to the PM. All strains 

in which cER peaks were found are displayed except tcb3Δ + Tcb3-GFP. Boxes represent all 

measurements per strain: 6 (WT), 21 (WT HS), 24 (Tcb1/2/3-only), 7 (tcb1∆) and 15 (tcb2∆) cER peaks. 

The horizontal lines of each box represent 75% (top), 50% (middle) and 25% (bottom) of the values, 

whiskers 95% (top) and 5% (bottom), and a black triangle the average value. N = 6 (WT), 7 (WT HS), 

16 (Tcb1/2/3-only), 5 (tcb1∆) and 10 (tcb2∆) cER-PM MCS (cER peak morphology was analyzed in 7 

additional Tcb1/2/3-only and 5 tcb2Δ tomograms that were not used for other quantifications). * 

indicates p < 0.05 by unpaired t-test. (D) ER peaks (blue arrowheads) at ER-mitochondria MCS in WT 

cells. mito: mitochondrion. The contrast of the images in (A) and (D) was enhanced using a 

deconvolution filter. Scale bars: 25 nm. 

  



 

Figure S 3: Theoretical Model of How cER Peaks May Facilitate the Extraction of Lipids from the 

cER Membrane. Related to Figure 3 and STAR Methods. (A) Contribution of the protein insertion 

energy, Δ𝜀௘௫௧௥,௣௥௢௧(𝐽), to the total free energy change for lipid extraction relative to the elastic energy 



relaxation of lipid extraction, Δ𝜀௘௫௧௥,௟௜௣(𝐽), for different values of the effective spontaneous curvature of 

the extracted lipids, 𝜁௦ . When the relative contribution is larger than one, protein insertion energy 

dominates, whereas when the ratio is smaller than one, the elastic (bending) stress of the lipids 

dominates. (B) Transition line separating the regime of protein insertion domination (white region) from 

the regime of lipid bending stress domination (blue-shaded regions) for different values of the effective 

spontaneous curvature of the extracted lipids, 𝜁௦, and of the protein curvature sensitivity, 𝛼௃. The three 

lines correspond to the transition lines for extraction of 1, 2, or 4 lipids per protein (dark to light blue 

lines, see legend). (C) Energy barrier of lipid extraction from a curved membrane relative to a flat 

membrane (color code), Δ𝜀௘௫௧௥(𝐽), as a function of the total curvature of the membrane, 𝐽, and of the 

protein curvature sensitivity, 𝛼௃ . (Left) Extraction of a cylindrical lipid with no effective spontaneous 

curvature, 𝜁௦ = 0 . (Right) Extraction of a conical lipid with a large negative effective spontaneous 

curvature, 𝜁௦ = −1 𝑛𝑚ିଵ. Isoenergy lines are plotted on both graphs (solid and dashed black lines), as 

well as a dashed red line marking the experimentally observed total curvature of the cER peaks. kBT is 

the product of the Boltzmann constant and the absolute temperature. (D) Energy barrier for extraction 

of a cylindrical lipid (𝜁௦ = 0) from a cER peak (𝐽 = 0.2 𝑛𝑚ିଵ) relative to a flat membrane, Δ𝜀௘௫௧௥, as a 

function of the protein curvature sensitivity, 𝛼௃. (E) Energy barrier for lipid extraction from a cER peak 

(𝐽 = 0.2 𝑛𝑚ିଵ) relative to a flat membrane, Δ𝜀௘௫௧௥, as a function of the effective spontaneous curvature 

of the extracted lipids, 𝜁௦ , for the case of a lipid transfer protein with a curvature sensitivity, 𝛼௃ =

28 𝑘஻𝑇 𝑛𝑚. 

  



 

Figure S 4: PM Integrity Assays in Other Tether Mutants, Relative Contribution of cER Peaks and 

Flat Membranes to Lipid Transfer, and Localization of Tcb3 Truncations. Related to Figure 3, 

Figure 5, Figure 6 and STAR Methods. (A) PM integrity measurements of Ist2, Scs2/22, Tcb and 



Δtether mutants upon 10 min incubation at 42 °C (right). The plot shows average values (white/grey 

bars) for each condition ± SE (error bars). *, ** and *** respectively indicate p < 0.05, p < 0.01 and p < 

0.001 by Mann-Whitney-U test (for WT 42 °C data, which was not normally distributed) or unpaired t-

test (for all other conditions). Four independent biological repeats were performed for all conditions. (B) 

Plot of I/I0 (color coded), the lipid extraction current from cER peaks and flat parts of the cER membrane 

(I=Ipeak + Iflat) relative the current from a completely flat membrane (I0). The calculation was performed 

considering a 500 fold facilitation of lipid extraction by cER peak formation (Figure 3F) and modeling 

the peak as a conic structure of base radius of ~10 nm and height of ~7 nm (Figure S 2C). The X-axis 

shows the density of cER peaks, which is experimentally determined from cryo-ET data. The Y-axis 

shows the area of cER relative to WT, i.e. = 1 for WT cells and < 1 for conditions with reduced total 

levels of cER (e.g. Tcb1/2/3-only). The graph shows that for WT cells, the lipid flows from cER peaks 

and flat membranes are roughly equivalent (I/I0 ≈ 1.8; white circle). However, lipid flow from cER peaks 

dominates in heat-shocked WT cells (WT HS) due to the observed ~6-fold increase in cER peak density 

(I/I0 ≈ 5.4; grey circle). Note that increasing cER peak density can only substantially increase I/I0 when 

total levels of cER are high. (C) Light microscopy imaging by GFP fluorescence (mid-section confocal 

images; left) and DIC (right) of WT and tcb3Δ cells expressing the following constructs: full length Tcb3-

GFP, Tcb3 C2Δ-GFP and Tcb3 SMPΔ-GFP. Scale bars: 2 μm. 

  



Condition Number of 
experiments 

Number 
of MCS 

Total number of 
intermembrane 
distance 
measurements 

Total number of 
cER thickness 
measurements 

Total number of 
cER curvature 
measurements 

Total cER 
area 
analyzed 
(µm²) 

WT 2 6 685,160 531,487 2,612,817 1.7 

WT HS 2 7 - - - 1.7 

Ist2-only 2 5 663,763 525,115 2,327,393 1.5 

Scs2/22-only 2 5 478,590 388,246 1,824,833 1.1 

Tcb1/2/3-only 3 9 552,956 368,510 2,053,182 1.3 

Δtether 1 4 - - - 0.16 

tcb1Δ 2 5 - - - 0.9 

tcb2Δ 2 5 - - - 0.7 

tcb3Δ 2 5 - - - 0.8 

tcb1/2Δ 2 5 - - - 0.8 

tcb1/2/3Δ 2 5 - - - 1.4 

tcb1/2/3Δ HS 2 5 - - - 0.7 

tcb3Δ + Tcb3-
GFP HS 

2 3 - - - 0.3 

tcb3Δ + Tcb3-
SMPΔ-GFP 
HS 

2 3 - - - 0.4 

tcb3Δ + Tcb3-
C2Δ-GFP HS 

2 3 - - - 0.4 

ER-Mito 3 5 81,124 - - - 

Nuc-Vac 2 5 362,899 - - - 

 

Table S 1: Statistics of Cryo-ET Experiments. Related to Figure 1, Figure 2, Figure 3, Figure 4, 

Figure 5 and Figure 6. The column “Number of MCS” refers to ER-PM MCS in all cases except ER-

mitochondria (ER-Mito) and nucleus-vacuole (Nuc-Vac) MCS. In the following columns, “total” indicates 

aggregated values for all tomograms analyzed in each condition. The total number of intermembrane 

distance measurements reflects the number of triangles from the first membrane (PM in ER-PM MCS, 

mitochondria in ER-mitochondria MCS, vacuole in nucleus-vacuole MCS) from which normal vectors 



intersected the second membrane. The total number of cER thickness measurements reflects the 

number of triangles from the PM from which normal vectors intersected the cER membrane twice. The 

total number of cER curvature measurements reflects the number of triangles of the cER membrane. 

The total cER area analyzed is the sum of the area of all cER triangles. For the calculation of cER peak 

density, the number of cER peaks per condition was divided by half of the total cER area, as cER peaks 

were only found on the side of the cER membrane facing the PM. For simplicity, values are only shown 

for the conditions plotted (Figure 1E, Figure 2G, H, I, Figure 3E and Figure 6D). 
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2.3 Reliable estimation of membrane curvature for
cryo-electron tomography

Maria Salfer, Javier Collado, Wolfgang Baumeister, Rubén Fernández-Busnadiego &
Antonio Martínez-Sánchez, PLoS Comput Biol, 2020, DOI, URL.

Summary

Membrane curvature is crucial for many cellular functions like cell division, organelle
shaping and MCS. Cryo-ET is a leading technique for 3D visualization and analysis of
membrane morphology in a close-to-native state and molecular resolution. However,
different artifacts are introduced during image acquisition and tomogram analysis,
such as quantization noise and membrane holes. Available curvature estimation
methods cannot cope with some of these artifacts and thus cannot be applied directly
to membrane segmentations from cryo-ET. In this publication, we present PyCurv: a
software package for reliable estimation of curvature of membranes and other biological
surfaces from cryo-ET and other imaging techniques. This package generalizes and
improves the algorithms for curvature estimation developed in Sections 2.1 and 2.2.

The PyCurv workflow consists of the following steps. (1) From a membrane seg-
mentation, a single-layered, signed triangle mesh surface is extracted. (2) A spatially
embedded graph is generated to facilitate the calculation of geodesic neighborhood and
distances. (3) Surface normals are denoised for each triangle center using a geodesic
neighborhood of triangles defined by a parameter corresponding to the radius of the
smallest feature of interest. (4) The denoised normals and the geodesic neighborhood
are used to estimate the principal directions, principal curvatures and combined mea-
sures such as curvedness. We developed four algorithms that are based on tensor
voting, aiming to increase the sensitivity to small membrane details visible by cryo-ET
and the robustness to quantization noise.

First, we extensively evaluated the performance of our algorithms on synthetic
surfaces in comparison with three currently existing methods. Then, we applied our
best algorithm and the existing ones to biological membranes from cryo-ET data.
Moreover, we applied PyCurv to surfaces of C. elegans embryo cells from confocal
light microscopy and human brain cortex from MRI. Among all algorithms analyzed,
PyCurv was the most accurate and robust to noise not only for cryo-ET data, but also
for data originating from other imaging techniques. To conclude, PyCurv is a versatile
open-source software package that can be used to reliably estimate membrane and
surface curvature in a large variety of applications.

Author contribution

I contributed to find the best solution for membrane curvature estimation using cryo-ET
data. I developed and implemented the PyCurv algorithms, including benchmarking
on synthetic data and comparison to the three existing ones. I applied all algorithms to
new biological data from cryo-ET, light microscopy and MRI, visualized and analyzed
the results. I wrote and revised the manuscript, prepared the figures and a video
according to the requirements of the co-authors. I publicly shared the PyCurv code,
documentation and example data on GitHub. Finally, I deposited the used tomogram
and segmentation files into the EM Data Bank with the help from co-authors.
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Abstract
Curvature is a fundamental morphological descriptor of cellular membranes. Cryo-electron

tomography (cryo-ET) is particularly well-suited to visualize and analyze membrane mor-

phology in a close-to-native state and molecular resolution. However, current curvature esti-

mation methods cannot be applied directly to membrane segmentations in cryo-ET, as

these methods cannot cope with some of the artifacts introduced during image acquisition

and membrane segmentation, such as quantization noise and open borders. Here, we

developed and implemented a Python package for membrane curvature estimation from

tomogram segmentations, which we named PyCurv. From a membrane segmentation, a

signed surface (triangle mesh) is first extracted. The triangle mesh is then represented by a

graph, which facilitates finding neighboring triangles and the calculation of geodesic dis-

tances necessary for local curvature estimation. PyCurv estimates curvature based on ten-

sor voting. Beside curvatures, this algorithm also provides robust estimations of surface

normals and principal directions. We tested PyCurv and three well-established methods on

benchmark surfaces and biological data. This revealed the superior performance of PyCurv

not only for cryo-ET, but also for data generated by other techniques such as light micros-

copy and magnetic resonance imaging. Altogether, PyCurv is a versatile open-source soft-

ware to reliably estimate curvature of membranes and other surfaces in a wide variety of

applications.

Author summary

Membrane curvature plays a central role in many cellular processes like cell division,

organelle shaping and membrane contact sites. While cryo-electron tomography (cryo-

ET) allows the visualization of cellular membranes in 3D at molecular resolution and

close-to-native conditions, there is a lack of computational methods to quantify mem-

brane curvature from cryo-ET data. Therefore, we developed a computational procedure

for membrane curvature estimation from tomogram segmentations and implemented it

in a software package called PyCurv. PyCurv converts a membrane segmentation, i.e. a set
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of voxels, into a surface, i.e. a mesh of triangles. PyCurv uses the local geometrical infor-

mation to reliably estimate the local surface orientation, the principal (maximum and

minimum) curvatures and their directions. PyCurv outperforms well-established curva-

ture estimation methods, and it can also be applied to data generated by other imaging

techniques.

This is a PLOS Computational Biology Methods paper.

Introduction

Membranes define the limits of the cells and encompass compartments within eukaryotic

cells, helping to maintain specific micro-environments with different shapes and functions.

Membrane curvature is important for many cellular processes, including organelle shaping,

vesicle formation, scission and fusion, protein sorting and enzyme activation [1, 2]. There is a

plethora of cellular mechanisms for generation, sensing and maintenance of local membrane

curvature, e.g. clustering of conical lipids or transmembrane proteins, insertion of specific pro-

tein domains as well as larger scale scaffolding by e.g. cytoskeletal filaments [1, 3].

Cryo-electron tomography (cryo-ET) enables an accurate three-dimensional (3D) visualiza-

tion and analysis of the subcellular architecture at molecular resolution [4–6] and is particu-

larly well-suited to study membrane morphology. While other transmission electron

microscopy (TEM) techniques may cause membrane deformations by chemical fixation and

dehydration, cryo-ET allows imaging of fully hydrated vitrified cells in a close-to-native state

with minimal structural perturbations [7]. The nominal resolution of tomograms can reach

�2-4 Å per voxel, but tomograms are usually binned for membrane segmentation to enhance

contrast, resulting in voxel sizes of�0.8-1.6 nm. Subtomogram averaging allows to routinely

obtain structures in the 10-20 Å resolution range, although higher resolutions are in principle

attainable [8]. Cryo-ET can be used to study membrane morphology and curvature in recon-

stituted preparations [9–13] and intact cells [14, 15]. We have recently employed cryo-ET to

visualize peaks of extreme curvature on the cortical endoplasmic reticulum (cER) membrane

facing the plasma membrane (PM). These high curvature structures are formed by Tcb pro-

teins and help to maintain PM integrity under heat stress [16]. We have also used cryo-ET to

show that polyQ-expanded huntingtin exon I fibrils induce high curvature in the endoplasmic

reticulum (ER) membrane, perhaps leading to ER membrane disruption [17]. Since we lacked

a method to reliably quantify membrane curvature in noisy cryo-ET data, we developed a new

method, which we formally describe in this paper.

In cryo-ET, the vitreous sample is tilted around an axis inside the electron microscope,

while 2D images of a cellular region of interest are acquired for each tilt. The tilt series are then

computationally aligned and reconstructed into a tomogram, which is a 3D gray-value image

of the cellular interior. Because in practice it is unfeasible to tilt the sample beyond� ±60˚, in

single-tilt tomography there is a wedge of missing information in the Fourier space. This arti-

fact, called missing wedge [4], causes the features to look smeared out along the electron beam

direction (Z-axis), while surfaces perpendicular to the tilt axis (Y-axis) are not visible. Thus,

missing membrane regions appear at the top and the bottom of both the Y- and Z-axes.

Nevertheless, the missing wedge does not affect the automatically segmented membrane, the
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elongated regions are just omitted [18, 19]. Moreover in cryo-ET, the cells are illuminated by

only a low dose of electrons, resulting in tomograms of low signal-to-noise ratio. Segmenta-

tion, i.e. voxel labeling of structural components present in tomograms, is necessary for tomo-

gram interpretation. Available software packages can assist membrane segmentation [18, 20–

22], but in most cases human supervision is still necessary due to the complexity of the cellular

context and the low signal-to-noise ratio.

Currently, the interpretation of membrane segmentations is limited by the lack of computa-

tional methods to measure quantitative descriptors. Here, we quantitatively determine local

curvature descriptors of cellular membranes from tomogram segmentations. A membrane can

be modeled as a surface [23], so that curvature descriptors characterize its local geometry. For

a surface embedded in a 3D space, principal curvatures measure the maximum and minimum

bending at each point, while the principal directions define the directions of the principal cur-

vatures as orthogonal vectors embedded on the tangent plane to the surface at each point [24].

From the principal curvatures, both extrinsic (mean) and intrinsic (Gaussian) surface curva-

tures can be computed for each point.

An oriented triangle mesh is the most common way to represent discrete surfaces [25]. How-
ever, triangle mesh generation from a set of voxels [26] is not trivial because of the presence of
holes in membrane segmentations. Besides the errors generated during membrane
segmentation, quantization noise [27] is the limiting factor for describing local membrane geo-
metry. The term quantization noise includes here all accuracy limiting factors induced by the
discretization of segmented data using binary voxels (1 membrane and 0 background). This bin-
ary discretization leads to step-wise surfaces, since surface extraction algorithms would need
gray levels to achieve subvoxel precision.

Curvature estimation algorithms can be divided into three main categories: discrete, analyt-

ical and based on tensor voting. Discrete algorithms use discretized formulae of differential

geometry, approximating a surface from a mesh [25, 28–31]. However, the majority of those

algorithms use only a 1-ring neighborhood, i.e. triangle vertices sharing an edge with the cen-

tral vertex, and therefore are not robust for coarsely triangulated, noisy surfaces [32]. An

exception is [31], which uses a geodesic neighborhood of a certain size. Moreover, discrete

algorithms do not directly estimate the principal directions or principal curvatures [33]. Ana-

lytical algorithms fit surfaces [32, 34] or curvature tensors [35–37] to local patches of the mesh,

defined by a central vertex and a small neighborhood around it, and derive principal curva-

tures and directions from their model. The surface fitting algorithms are more robust to noise

but more susceptible to surface discontinuities [33]. The last category of algorithms applies

Medioni’s tensor voting theory [38] on a neighborhood of an arbitrary size to fit curvature ten-

sors, increasing the robustness of principal directions and curvatures estimation for noisy sur-

faces with discontinuities [33, 39, 40]. However, [33] leads to wrong curvature sign estimation

for non-convex surfaces, while [39, 40] were designed for point clouds instead of triangle

meshes. While most of the algorithms operate on triangle vertices because the computation of

distances on surfaces is straightforward, some operate on triangle faces [31, 36, 37], exhibiting

a more robust behavior on irregularly tessellated and moderately noisy meshes.

Discrete curvature estimation algorithms are included in two software packages for analysis

of magnetic resonance imaging (MRI) data of the human brain: the widely used FreeSurfer

[41] and the newer Mindboggle [42]. Curvature of the interventricular septum in the heart

from MRI was estimated in 3D using smoothing 2D spline surfaces and differential geometry

operators [43]. However, those algorithms require strong smoothing of surfaces to achieve

robust results, which would lead to a loss of high resolution details present in cryo-ET data.

For microscopy data, there is software to study curvature of linear cellular structures like

microtubules [44], which is not applicable to surfaces. For fluorescence microscopy data,
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smooth point cloud surfaces of cellular membranes were reconstructed and their curvatures

estimated based on local surface fitting [45]. Hoffman et al. [46] also used a local surface fitting

method to estimate membrane curvature from block-face electron microscopy data. However,

also these methods employ strong smoothing of surfaces, eliminating small structural details.

In cryo-ET, some membrane curvature approximation methods have been already proposed

[9, 14], but they only work on 2D slices and are not capable of measuring curvature on arbi-

trary membranes in 3D.

Here, we developed and implemented a method for robust membrane curvature estimation

from tomogram segmentations. In brief, the workflow has the following steps. (1) From a seg-

mentation, a single-layered, signed triangle mesh surface is extracted. (2) To extract the surface

topology, we generate a spatially embedded graph. Graph vertices depict triangle centers and

graph edges connect the centers of triangle pairs sharing an edge or a vertex. (3) Local curva-

ture descriptors are computed for every triangle center. We propose different procedures that

combine two established tensor voting-based algorithms [33, 40] but operate on triangle faces,

aiming to increase the robustness to membrane geometries present in cryo-ET and to mini-

mize the impact of quantization noise. Extensive evaluation of our algorithms and comparison

with three well-established ones [30, 41, 42] on synthetic and biological surfaces proved the

superiority of our approach in terms of accuracy and robustness to noise for cryo-ET and

other imaging techniques.

Materials and methods

Cryo-ET data collection and segmentation

As real-world test input files for PyCurv, in this study we used membrane segmentations from

in situ cryo-ET data collected from vitrified cells: a human HeLa cell [17], yeast Saccharomyces
cerevisiae (EMD-10767 and EMD-10765) and a primary mouse neuron (EMD-10766). The

cells were milled down to 150-250 nm thick lamellas using cryo-focused ion beam [16, 54] and

imaged using a Titan Krios cryo-electron microscope (FEI), equipped with a K2 Summit direct

electron detector (Gatan), operated in dose fractionation mode. Tilt series were recorded

using SerialEM software [55] at magnifications of 33,000 X (pixel size of 4.21 Å) for the HeLa

cell and the mouse neuron and 42,000 X (pixel size of 3.42 Å) for yeast, typically from -50˚ to

+60˚ with increments of 2˚. The K2 frames were aligned using K2Align software [56]. Tilt

series were aligned using patch-tracking and weighted back projection provided by the IMOD

software package [57]. The tomograms were binned 4 times to improve contrast prior to seg-

mentation, thus the voxel size of the final segmentations was 1.684 nm (HeLa cell and mouse

neuron) and 1.368 nm (yeast). The contrast of one tomogram of yeast (EMD-10767) was

enhanced prior to segmentation using an anisotropic filter [58], while the contrast of the other

tomogram of yeast (EMD-10765) and the one of the mouse neuron was enhanced using a

deconvolution filter executed in MATLAB (MathWorks) using the functionalities of the TOM

toolbox [59]. Membrane segmentations were generated automatically from tomograms using

TomoSegMemTV [18] using parameters s = 10 and t = 0.3 (HeLa cell), s = 12 and t = 4

(yeast) and s = 10 and t = 3 (mouse neuron) and further refined manually using Amira

Software (ThermoFisher Scientific). The lumen of membrane compartments was then filled

manually.

Data preprocessing algorithms

The first steps of the PyCurv workflow (Fig 1A) are the conversion of the input segmentation

into a surface and the extraction of its associated graph.
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Fig 1. PyCurv workflow. (A) UML activity diagram of the PyCurv workflow. If the input segmentation (in e.g. MRC format) is filled, the

surface is generated using the compartment segmentation, otherwise using the membrane segmentation algorithm. This step is omitted if

the input is a surface (in e.g. VTP format). From the surface, a graph is generated. If the graph has surface borders, they are removed.

Then, surface normals are estimated at each triangle center. Finally, principle directions and curvatures are estimated and different

combined curvature measures calculated using one of the tensor voting-based algorithms: RVV (Regular Vector Voting), NVV (Normal

Vector Voting, only for evaluation), AVV (Augmented Vector Voting, default algorithm) or SSVV (Surface Sampling Vector Voting). The

PLOS COMPUTATIONAL BIOLOGY Membrane curvature in cryo-electron tomography
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Surface generation. A surface can be extracted using PyCurv from two types of input

segmentations, a membrane segmentation or a compartment segmentation. This step is not

required if the input is directly a surface (Fig 1A).

Using the membrane segmentation surface generation algorithm, the segmented membrane

of interest (Fig 2B) from the binned tomogram (Fig 2A) was used as the input for an algorithm

[26] that reconstructs signed, single-layered triangle-mesh surfaces from an unorganized set of

points, here the membrane voxels (Fig 1B). This algorithm was designed for closed surfaces

without boundaries. However, most segmented membranes in cryo-ET are open, e.g. due to

noise or missing wedge artifacts. Attempting to close the surface, the algorithm generated large

artefactual surface regions beyond the segmentation (Fig 2D, transparent white). These regions

were largely discarded by applying a mask with the membrane segmentation (Fig 2D, yellow).

Since the masking was done with a distance threshold of three voxels in order to bridge upon

small holes in the segmentation, additional three voxels-wide border remained. This additional

border was removed in the final cleaning step (see Surface graph generation). We use the con-

vention that normal vectors ("normals") point inwards in a convex surface. However, since

membrane segmentations have boundaries, the algorithm [26] sometimes mistakenly initiates

normals on both sides (Fig 2D, red arrows). As a result, ridge-like patches appear along the

surface (Fig 2E), leading to holes in the cleaned surface (Fig 2F). In some cases, the surface

reconstruction can be improved by closing small holes in the segmentation using morphologi-

cal operators.

The compartment segmentation surface generation algorithm requires additional segmenta-

tion of the inner volume of a compartment enclosed by a membrane (Fig 2C). This unequivo-

cally defines the orientation of the membrane by closing its holes. After joining the membrane

and its inner volume masks, we generate an isosurface around the resulting volume using the

Marching Cubes algorithm [47]. Finally, we apply a mask using the original membrane seg-

mentation to keep only the surface region going through the membrane (again, except for the

additional border that is cleaned in the end). The surface orientation is recovered perfectly in

our experiments (Fig 2G). In some cases, especially where the membrane segmentation was

manually refined, Marching Cubes produces triangles standing out perpendicularly to the sur-

face (Fig 2H), leading to holes in the cleaned surface (Fig 2I). To correct those artifacts and

exploit the subvoxel precision offered by Marching Cubes, the compartment segmentation

mask was slightly smoothed using a Gaussian kernel with σ = 1 voxel before extracting the sur-

face (Fig 2J–2L).

In summary, although compartment segmentations require more human intervention, they

ensure smoother and well oriented surfaces. Thus, we choose this algorithm as the default for

the subsequent data processing.

Surface graph generation. Curvature is a local property. Thus, for a triangle-mesh sur-

face, curvature has to be estimated using a local neighborhood of triangles. If the neighbor-

hood is too small, one would measure only noise created by the steps between voxels. If the

neighborhood is too large, one would underestimate the curvature.

To estimate geodesic distances within membrane surfaces, we use the graph-tool python

library [48] to map the triangle mesh (Fig 1A and 1C) into a spatially embedded graph, here

output is a surface with all the calculated values stored as triangle properties (VTP format). All the processing steps (rounded rectangles)

are implemented in PyCurv. (B) Voxels of a segmentation of a vesicle from a cryo-electron tomogram of a human HeLa cell [17]. (C) A

surface (triangle mesh) generated from the membrane segmentation shown in (A). (D) Surface graph generated from the surface shown in

(B); the inset shows a magnified region of the graph mapped on top of the triangle mesh (triangles: yellow, graph vertices: black dots,

strong edges: red lines, weak edges: light blue lines). (E) The output surface with estimated normals, principal directions and curvatures as

well as several combined curvature measures. Here, curvedness is shown. See also the video in S1 Video.

https://doi.org/10.1371/journal.pcbi.1007962.g001
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Fig 2. Surface generation from membrane and compartment segmentations. (A) A filtered tomographic slice showing the cortical endoplasmic reticulum (cER)

and plasma membrane (PM) of a yeast cell (scale bar: 100 nm). Panels (B-C) show the same slice as in (A) with (B) the membrane segmentation of the cER and (C)

the compartment segmentation of the cER; the insets show 3D renderings of the full segmentations (including all tomographic slices). Panels (D-F) show a surface

generated from the cER membrane segmentation shown in (B): (D) The unmasked artefactual surface is shown in transparent white. The masked but uncleaned

surface is shown in yellow with normals (every 100th) as red arrows. Some of the normals erroneously point outside the cER lumen (see right inset). (E) A different

view of the uncleaned surface shown in (D), magnified. The red line marks an artifact. (F) The same magnified view as in (E) showing the cleaned surface in blue

with a hole resulting from removing the artifact shown in (E). Panels (G-L) show surfaces generated using the compartment segmentation shown in (C), (G-I)

without and (J-L) with Gaussian smoothing; the views are the same as in panels (D-F) column-wise: (G, J) Using the compartment segmentation, all normals point

inside the cER lumen (see the insets). (H) Without smoothing, triangles sticking out (red circle) in the uncleaned surface lead to a hole in the cleaned surface

shown in (I). (K-L) The cleaned smoothed surface is free from artifacts. The tomogram and segmentation are deposited in EM Data Bank (EMD-10767). See also

the video in S1 Video.

https://doi.org/10.1371/journal.pcbi.1007962.g002
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referred as surface graph. First, graph vertices are associated to triangle centroid coordinates.

Second, pairs of triangles sharing two triangle vertices are connected by strong edges, while

those sharing only one triangle vertex are connected by weak edges (Fig 1D). To approximate

the shortest paths along the surface between the centers of a source triangle and a target trian-

gle, the graph is traversed starting from the source vertex along all its edges until the target ver-

tex is found, using the Dijkstra algorithm [49]. Using both strong and weak edges increases the

number of possible paths and thus improves the estimation of the shortest path. The geodesic

distance is computed by summing up the lengths of the edges comprising the shortest path.

Another application of the surface graph is to remove surface borders to avoid wrong cur-

vature estimations in these regions. Using the surface graph, we can detect triangles at borders

because they have less than three strong edges. Then, triangles up to a certain geodesic distance

from the border can be found and filtered out from the surface.

Curvature estimation algorithms

We estimate membrane curvature from surface graphs (Fig 1A). This algorithm combines two

previously published algorithms that are based on tensor voting and curvature tensor theory

[33, 40], to increase the precision of curvature estimation for noisy surfaces. To estimate prin-

cipal curvatures, principal directions have to be estimated. For the estimation of principal

directions, surface normals are required. Surface normals are robustly estimated by averaging

normals of triangles within a geodesic neighborhood.

Parameters defining the geodesic neighborhood. Similarly to [40], here we define a

radius_hit (rh) parameter to approximate the highest curvature value we can estimate

reliably, i.e. rh-1. For each surface triangle center, we define its local neighborhood as

gmax ¼
p � rh

2
; ð1Þ

where gmax defines the maximum geodesic distance. In Eq 1, gmax is approximated by one

quarter of a circle perimeter with radius equal to rh (Fig 3A).

Estimation of surface normals. Normals computed directly from the triangle mesh are

corrupted by quantization noise. To avoid this, we have adapted the first step of the algorithm

proposed in [33], but estimating the normals for each triangle center instead of defining new

normals at each triangle vertex.

For each triangle centroid (or graph vertex) v, the normal votes of all triangles within its

geodesic neighborhood are collected and the weighted covariance matrix sum Vv is calculated.

More precisely, a normal vote~ni of a neighboring triangle (whose center ci is lying within gmax

of vertex v) is calculated using the normal~nci
assigned to this triangle:

~ni ¼ ~nci
þ 2 cos yi

~vci
k~vcik

; ð2Þ

where cos yi ¼ �
~ntci ~vc i
k~vc ik

,~nt
ci

is the transposed vector~nci
, ~vc i ¼ ci � v and 0� θi� π. This for-

mula fits a smooth curve from ci to v, allowing the normal vote~ni to follow this curve, so that

the angle θi between~ni and ~vci is equal to the angle between~nci
and -~vci. According to the per-

ceptual continuity constrain [38], the most appropriate curve is the shortest circular arc (Fig

3B). Then, each vote is represented by a covariance matrix Vi ¼ ~nt
i~ni, and votes from the geo-

desic neighborhood are collected as a weighted matrix sum Vv:

Vv ¼
P

wiVi; ð3Þ
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where wi is a weighting term calculated as follows:

wi ¼
ai

amax
exp �

gi
s

� �
: ð4Þ

The weight of the vote of a neighboring triangle increases linearly with its surface area ai, but

decreases exponentially with its geodesic distance gi to v. amax is the area of the largest triangle

in the whole surface and σ is an exponential decay parameter, which is set to fulfill 3σ = gmax,

so that votes beyond the geodesic neighborhood have almost no influence and can be ignored.

The votes collected into the matrix Vv are used for estimating the correct normal vector for

the triangle represented by vertex v. This is done by eigen-decomposition of Vv, which gener-

ates three real eigenvalues e1� e2� e3 with corresponding eigenvectors~e1,~e2 and~e3. The nor-

mal direction is equal in its absolute value to that of the first eigenvector. During construction

of Vv, the sign of normal votes is lost when Vi is computed. The correct orientation can be

recovered from the original normal~n, as the original surface was already oriented. Therefore,

Fig 3. Neighborhood parameters and voting geometry. (A) Schematic illustrating the rh and gmax parameters. gmax
is one quarter of the circle perimeter with radius equal to rh. gmax defines the maximum geodesic distance from a

surface triangle center to the centers of its neighboring triangles, approximated by the shortest path along the edges of

the surface graph. (B) Collection of normal votes in all proposed algorithms based on [33]. The rectangle denotes the

plane containing the circular arc (dashed line) between the neighboring triangle centers v and ci, the normal vector~nci
at ci and the normal vote~ni at v. (C) Collection of curvature votes for the NVV, RVV and AVV algorithms based on

[33]. The rectangle denotes the arc plane containing the triangle center v, its estimated normal~nv , its tangent~t i
towards neighboring triangle center vi and the projection~np

vi
of the estimated normal~nvi

at vi. (D) Collection of

curvature votes in the SSVV algorithm based on [40]. The rectangle denotes the plane containing the tangent vector~t i
at v of length = rh, ending with the point vt, and the normal vector~nv at v. The line l, crossing vt and parallel to~nv ,

intersects the surface (dashed) at point c.

https://doi.org/10.1371/journal.pcbi.1007962.g003
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the estimated normal is correctly oriented by:

~nv ¼

(
~e1 if cosð~nt~e1Þ > cosð� ~nt~e1Þ

� ~e1 otherwise:
ð5Þ

Estimation of principal directions and curvatures. For each graph vertex v, we use the

estimated normals~nvi
of its geodesic neighbors vi in order to cast curvature votes. The curva-

ture votes are summed into a curvature tensor. The resulting curvature tensor is decomposed

to find the principal directions and curvatures at vertex v. Below, we describe the basic curva-

ture estimation algorithm as an adaptation of [33] and [40].

Each neighboring vertex vi casts a vote to the central vertex v, where the votes are collected

into a 3x3 symmetric matrix Bv [35]:

Bv ¼
1

2p

X
wiki

~t i~t
t
i : ð6Þ

For each vi, three variables are computed:

1. Weight wi depending on the geodesic distance between vi and v, as defined in Eq 4 but

without normalizing by relative triangle area:

wi ¼ exp �
gi
s

� �
: ð7Þ

Also, all weights around the vertex v are constrained by ∑wi = 2π.

2. Tangent~t i from v in the direction of the arc connecting v and vi (using the estimated nor-

mal~nv at v) (Fig 3C):

~t i ¼
~t0 i
k~t0 ik

; ~t0 i ¼ ~vv i � ð~n
t
v~vv iÞ~nv: ð8Þ

3. Normal curvature κi [40]:

jkij ¼
j2 cos p� �i

2
j

k~vv ik
; ð9Þ

where ϕi is the turning angle between~nv and the projection~np
vi

of~nvi
onto the arc plane

(formed by v,~nv and vi). The following calculations lead to ϕi:

~pi ¼ ~nv �~t i; ~np
vi
¼~nvi

� ð~p t
i~nvi
Þ~pi

cos �i ¼
~nt

v~n
p
vi

k~nik
:

ð10Þ

For surface generation, we use the convention that normals point inwards in a convex sur-

face. Then, the curvature is positive if the surface patch is curved towards the normal and nega-

tive otherwise. Therefore, the sign of κi is set by:

ki ¼ � ~t t
i~n

p
vi
jkij: ð11Þ

For a vertex v and its calculated matrix Bv, we calculate the principal directions, maximum~t1

and minimum~t2, and the respective curvatures, κ1 and κ2, at this vertex. This is done using

eigen-decomposition of Bv, resulting in three eigenvalues b1� b2� b3 and their corresponding
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eigenvectors~b1;
~b2 and~b3. The eigenvectors~b1 and~b2 are the principal directions. The princi-

pal curvatures are found with linear transformations of the first two eigenvalues [35]:

k1 ¼ 3b1 � b2

k2 ¼ 3b2 � b1:
ð12Þ

The smallest eigenvalue b3 has to be close to zero and the corresponding eigenvector~b3 has to

be similar to the normal~nv [33].

Algorithm variants. We implemented the following algorithm variants within PyCurv.

Vector Voting (VV): Estimation of surface normals algorithm, which is the same for all our

algorithms listed below.

Regular Vector Voting (RVV): Estimation of principal directions and curvatures algorithm

described above. Modifications of this algorithm were implemented to determine the best

solution for cryo-ET:

Normal Vector Voting (NVV): In [33], curvature is computed as the turning angle ϕi divided

by arc length between the vertices v and vi, which is the geodesic distance between them, gi:

ki ¼
�i

gi
: ð13Þ

However, this definition of κi with the sign according to our normals convention (Eq 11) lead

to erroneous eigenvalue analysis of Bv. The eigenvalue analysis was only successful for κi > 0,

leading to wrong curvature sign estimation for non-convex surfaces (see Section Estimation of

the curvature sign).

Augmented Vector Voting (AVV): Here, the weights of curvature votes, prioritizing neigh-

bors with a closer geodesic distance to the central triangle vertex v, are normalized by relative

triangle area as for normal votes using Eq 4 instead of Eq 7.

Surface Sampling Vector Voting (SSVV): We implemented the algorithm GenCurvVote
from [40] to estimate the principal directions and curvatures. While RVV, NVV and AVV use

all points within the geodesic neighborhood of a given surface point v, in SSVV only eight

points on the surface are sampled using rh. For this, an arbitrary tangent vector~t i at v with

length equal to rh is first generated, creating a point vt in the plane formed by this tangent and

the normal~nv at v (Fig 3D). Then, a line l crossing vt and parallel to the normal~nv is drawn

and its intersection point c with the surface is found. The tangent is rotated seven times around

the normal by p

4
radians, generating another seven intersection points. Each vote is weighted

equally, thus Eq 6 simplifies to:

Bv ¼
1

8

X
ki
~t i~t

t
i : ð14Þ

The output of these curvature estimation algorithms comprises the surface with corrected nor-

mals, estimated principal directions and curvatures as well as different combined curvature

measures: mean curvature H (Eq 15), Gaussian curvature K (Eq 16), curvedness C (Eq 17) and

shape index SI (Eq 18) [50]. All these measures are stored as triangle properties in the VTP sur-

face output file that can be viewed using e.g. the free visualization tool ParaView [51] (Fig 1E).

H ¼
k1 þ k2

2
ð15Þ
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K ¼ k1k2 ð16Þ

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1
þ k2

2

2

r

ð17Þ

SI ¼
2

p
atan

k1 þ k2

k1 � k2

ð18Þ

The complete workflow of our method including the input, processing steps and output is

shown as an UML (Unified Modeling Language) activity diagram in Fig 1A. See also the video

in S1 Video.

Other algorithms. We used the following alternative curvature estimation algorithms

available in other software packages for comparison to our algorithms.

VTK [30]: The Visualization Toolkit (VTK) calculates curvature per triangle vertex using

only its adjacent triangles and applying discrete differential operators [25]. In order to be able

to compare VTK to our tensor voting-based algorithms operating on triangles, we average the

values of each curvature type at three triangle vertices to obtain one value per triangle. VTK

does not estimate principal directions.

FreeSurfer [52]: FreeSurfer’s function mris_curvature_stats [41] estimates mean,

Gaussian and principal curvatures, curvedness as well as other local and global derived curva-

ture measures per triangle vertex, based on osculating circle fitting. FreeSurfer fails on surface

edges and holes, so it cannot be applied to a cylindrical surface.

Mindboggle [42]: Mindboggle’s default algorithm (m = 0) estimates mean, Gaussian and

principal curvatures per triangle vertex, based on the relative directions of the normal vectors

in a small neighborhood. We choose the optimal radius of neighborhood parameter (n) for

each benchmark surface in the same way as for our algorithms (see Section Setting the neigh-

borhood parameter).

Results

Quantitative results on benchmark surfaces

Calculation of errors. We first evaluate the accuracy of our algorithms using bench-

mark surfaces with known orientation and curvature. For that purpose, we define two types

of errors:

1. For vectors (normals or principal directions):

Vector error ¼ 1 � j~vt �~vej; ð19Þ

where~vt is a true vector and~ve is an estimated vector for the same triangle, both having

length 1. The minimum error is 0, when the true and estimated vectors are parallel, and the

maximum error is 1, when the vectors are perpendicular.

2. For scalars (principal curvatures) we use:

Scalar relative error ¼ j
kt � ke

kt
j; ð20Þ

where κt is a true curvature and κe is an estimated curvature for the same triangle. The min-

imum error is 0, when the estimate equals to the true value, and there is no upper bound to

the error.
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Robust estimation of normals. Surface normals are required for a reliable estimation of

the principal directions and principal curvatures. In this experiment, we wanted to ensure that

VV restores the correct orientation of the normals. For this, we used a plane surface with artifi-

cially introduced noise to simulate the quantization noise present in surfaces generated from

cryo-ET segmentations. The true normals are those from the plane without noise (i.e. parallel

to Z-axis, Fig 4A). Noise was introduced to the original plane by moving each triangle vertex

in the direction of its normal vector with Gaussian variance equal to e.g. 10% of the average tri-

angle edge. As a result, the triangle normals of the 10% noisy plane were not parallel to each

Fig 4. Estimation of normals on a noisy plane. (A) True normals (black arrows) on a smooth plane surface (yellow). (B) Normals on a noisy plane, where each

triangle vertex in the original plane shown in (A) was moved in the direction of its normal vector with Gaussian variance equal to 10% of the average triangle edge.

Panels (C-D) show normals on the noisy plane corrected by VV with rh of (C) 4 or (D) 8 voxels. The neighborhoods of a central triangle are shown in a darker

yellow. (E) Cumulative relative frequency histogram of normal orientation error for the 10% noisy plane, for initial (uncorrected) normals and those corrected by

VV with rh of 4 or 8 voxels. (F) Area under the curve of cumulative relative frequency histograms of normal orientation errors, as shown in (E), for planes with

different noise levels. Initial normals and those corrected by VV with rh of 4 or 8 voxels are shown. Curve colors in (E-F) correspond to the colors of the normals in

(B-D).

https://doi.org/10.1371/journal.pcbi.1007962.g004
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other nor to Z-axis (Fig 4B), which was also reflected by the normal orientation errors up to

�30% (Fig 4E). Using VV with rh of 4 voxels, the original orientation of the normals was

almost restored (Fig 4C), and the errors reduced to below 10% (Fig 4E). Using rh of 8 voxels,

the estimation further improved (Fig 4D and 4E), since more neighboring triangles helped to

average out the noise. For planes with more noise, the normal orientation errors of the initial

normals and the estimated ones with rh of 4 voxels increased, reducing the area under the

histogram curve. However, the estimation stayed robust using rh of 8 voxels even for a 30%

noisy plane (Fig 4F). Thus, using VV with a high enough rh substantially restores the original

orientation of the normals.

Setting the neighborhood parameter. As shown above, the size of the neighborhood

defined by the rh parameter influences the estimation of normals. Therefore, choosing an

appropriate rh for the data is crucial for accurate curvature estimation.

To study the influence of rh in our different curvature estimation algorithms, we generated

a synthetic segmentation (253 voxels) of a sphere with radius of 10 voxels, emulating the quan-

tization noise present in cryo-ET data (the central slice of the sphere is shown in Fig 5A).

Then, we generated an isosurface of this segmentation and estimated its curvature using the

different algorithms and rh values. We define the optimal rh value for a sphere as the one

leading to the least errors in both estimated principal curvatures taken together. As above, we

measure the error rate by the normalized area under the cumulative error histograms. For this

spherical surface, the lowest errors were reached for rh = 10 voxels for AVV and rh = 8 voxels

for SSVV (Fig 5B and 5C, Table 1). These values are close to the sphere radius, suggesting that

the most robust estimation can be achieved using a rh approximately similar to the feature

radius. Performance of SSVV decreased drastically for rh = 10 voxels, because then less sam-

pling points at exactly this radius lie on the surface, preventing a reliable estimation (Fig 5C,

Table 1). Interestingly, the histogram area kept rising until rh = 16 voxels for RVV (Table 1),

which exceeds the sphere radius. Actually, the histogram area kept rising even beyond rh = 16

voxels for κ1 alone, whereas it started to decrease after rh = 12 voxels for κ2 (Table 1). For

practical reasons, we decided to always limit rh by the radius of the feature (Fig 5D).

The optimal rh, which can differ between surfaces and algorithms, defines a neighborhood

sufficient for robust estimation of curvature. Features with a radius less than rh are averaged

(RVV and AVV) or neglected (SSVV), so rh−1 can be set as a limit for the maximum curvature

that can be reliably computed.

Estimation of the curvature sign. To determine the correct procedure for curvature sign

determination, we used a torus as a benchmark, as this surface has regions with both positive,

κ1κ2 > 0, and negative, κ1κ2 < 0, Gaussian curvature. Analytically calculated κ2 is shown in

Fig 6A. VTK, Mindboggle and FreeSurfer estimated the curvature sign correctly (Fig 6D, 6F

and 6G). Whereas NVV did not distinguish negative from positive regions (Fig 6B), RVV

and SSVV differentiated these regions correctly (Fig 6C and 6G). Since RVV and SSVV both

calculate normal curvature using Eqs 9 and 11, while NVV uses Eq 13, the latter must be the

source of the erroneous curvature sign estimation. Therefore, we exclude NVV from further

consideration.

Accuracy of curvature estimation on smooth surfaces. To evaluate the performance of

the different curvature estimation algorithms, we first calculated the errors in principal direc-

tions and curvatures using smooth surfaces.

First, we applied the algorithms to the smooth torus surface shown in Fig 6A using for each

algorithm an rh optimal for κ2 (10 voxels for RVV, 9 voxels for AVV and 6 voxels for SSVV).

The~t2 error histogram is shown in Fig 6E, and very similar results were observed for~t1. SSVV

estimated both principal directions and curvatures (Fig 6E–6G) more accurately than RVV.
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AVV slightly outperformed RVV in the estimation of principal curvatures. However, VTK

estimated principal curvatures slightly better than the tensor voting-based algorithms for this

smooth surface with uniform triangles. Mindboggle with the optimal (for κ2) n = 4 voxels was

the best method for estimating κ1 (Fig 6F), but the worst for κ2 (Fig 6D and 6G), whereas Free-

Surfer performed the best for κ2 (Fig 6G). Note that the curvature errors for κ1 (Fig 6F) were

lower than for κ2 (Fig 6G) for all algorithms. A possible explanation is that κ1 is constant for a

torus and thus easier to estimate, while κ2 changes depending on the position.

We also compared the algorithms using a smooth spherical surface with a non-uniform tri-

angle tessellation, generated from a spherical volume mask smoothed using a 3D Gaussian

function (σ = 3.3) and applying an isosurface. Since both principal curvatures should be the

same for a spherical surface, they were considered together. Also, no true principal directions

exist for a spherical surface. For a sphere with radius = 10 voxels, the optimal values of rh

Fig 5. rh parameter choice. (A) A central slice of a synthetic segmentation of a sphere with radius = 10 voxels. Panels (B-D) show cumulative frequency

histograms of the κ1 and κ2 errors on the surface extracted from the segmentation shown in (A), using different rh (5-10 voxels) and algorithms: (B) AVV, (C)

SSVV and (D) RVV.

https://doi.org/10.1371/journal.pcbi.1007962.g005
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Table 1. rh parameter choice.

rh RVV AVV SSVV

κ1 κ2 κ1 and κ2 κ1 κ2 κ1 and κ2 κ1 κ2 κ1 and κ2

5 64.62% 83.59% 74.10% 78.32% 90.68% 84.50% 70.05% 81.97% 76.01%

6 70.21% 87.44% 78.82% 83.80% 94.12% 88.96% 77.85% 89.90% 83.87%

7 74.47% 90.41% 82.44% 87.46% 95.30% 91.38% 83.16% 93.81% 88.48%

8 78.27% 93.24% 85.75% 89.13% 95.67% 92.40% 88.03% 95.46% 91.75%

9 80.89% 95.73% 88.31% 90.11% 95.90% 93.00% 87.25% 89.53% 88.39%

10 82.76% 97.24% 90.00% 90.75% 96.09% 93.42% 57.63% 2.61% 30.12%

11 84.31% 97.93% 91.12% 90.72% 95.95% 93.34% 0.00% 0.00% 0.00%

12 85.12% 98.23% 91.67% 90.71% 95.46% 93.09%

13 85.55% 98.09% 91.82% 90.60% 95.14% 92.87%

14 85.95% 98.01% 91.98% 90.76% 95.08% 92.92%

15 86.15% 98.01% 92.08% 90.97% 95.02% 92.99%

16 86.35% 97.92% 92.13% 91.14% 94.92% 93.03%

17 86.53% 97.72% 92.13% 91.28% 94.86% 93.07%

Performance of our proposed algorithms on noisy sphere with radius = 10 voxels depending on rh (in voxels) is measured by normalized area of the cumulative

histograms of the principal curvature errors (separately and taken together). The “κ1 and κ2” maxima for each algorithm are shown in bold.

https://doi.org/10.1371/journal.pcbi.1007962.t001

Fig 6. Curvature sign, principal direction and curvature estimation accuracy for a torus. Panels (A-D) show visualizations of κ2 (voxel-1, triangles are color-

coded by curvature, see color bar on the right) and~t2 (every fourth vector is shown as an arrow from a triangle center): (A) true values calculated analytically for a

smooth torus surface with ring radius (rr) = 25 voxels and cross-section radius (csr) = 10 voxels, (B) estimated values using NVV, (C) RVV (both with rh = 8

voxels) and (D) Mindboggle (MB, with n = 4 voxels). Panels (E-G) show cumulative relative frequency histograms of the principal direction and curvature errors:

(E)~t2, (F) κ1, (G) κ2 on the torus surface using different algorithms: RVV, AVV, SSVV, VTK, MB and FreeSurfer (FS); the latter three algorithms only for

curvatures in (F-G), since they do not estimate principle directions; the optimal rh or n (in voxels) were used for each algorithm and are indicated in the legends.

https://doi.org/10.1371/journal.pcbi.1007962.g006
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were used: 10 voxels for RVV and AVV and 9 voxels for SSVV as well as the optimal n = 2 vox-

els for Mindboggle. VTK, Mindboggle and FreeSurfer had very high errors (Fig 7A, 7B and

7E). The maximum error was only�0.16 for RVV (Fig 7C and 7E), while AVV achieved a

substantial improvement (maximum error�0.03) over RVV (Fig 7D and 7E), presumably

because of the non-uniform tessellation of the sphere. SSVV performed slightly better than

AVV (maximum error�0.01; Fig 7E).

To test how stable the algorithms are for different curvature scales, we increased the radius

of the smooth sphere from 10 to 20 voxels, while leaving the rh and n values the same. All

algorithms performed almost the same as for the sphere with radius 10 voxels (Fig 7F).

Altogether, the evaluation results on smooth benchmark surfaces show that the tensor vot-

ing-based algorithms are quite stable to feature sizes variations (beyond rh) and irregular tri-

angles within one surface (Fig 7), whereas VTK, Mindboggle and FreeSurfer only perform well

for a very smooth surface with a regular triangulation (Fig 6). AVV can deal with non-uni-

formly tessellated surfaces better than RVV, likely because curvature votes are also weighted

by relative triangle area in AVV. In the original algorithm [33], weighting curvature votes by

triangle area would not make sense because normals and curvatures are estimated at triangle

vertices. Since we decided to estimate normals and curvatures at triangle centers instead, cur-

vature votes are cast by complete triangles and weighting them by triangle area proved to be

advantageous.

Fig 7. Accuracy of curvature estimation on a smooth spherical surface. Panels (A-D) show visualizations of κ2 (voxel-1) estimated by (A) VTK, (B) FreeSurfer

(FS), (C) RVV or (D) AVV on a smooth sphere with radius = 10 voxels, using rh = 10 voxels for RVV and AVV. Panels (E-F) show cumulative relative frequency

histograms of the principal curvature (κ1 and κ2) errors on a smooth sphere with radius = 10 (E) or 20 voxels (F) using different algorithms: RVV, AVV, SSVV,

VTK, Mindboggle (MB) and FS; the values of rh or n (in voxels) used for each algorithm are indicated in the legends.

https://doi.org/10.1371/journal.pcbi.1007962.g007
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Robustness to surface noise. Surfaces generated from segmentations of biological mem-

branes are not smooth, as the surface triangles tend to follow the voxel boundaries resulting in

steps. As we are considering binary voxel values, the size of the steps depends on the voxel size

of the segmented tomogram.

To test how the algorithms perform in presence of quantization noise, we generated a

step-like surface of a sphere with a radius of 10 voxels, as in Fig 5. As expected, VTK only

measured the curvature differences between directly neighboring triangles, resulting in high

errors, similar to Mindboggle (using the optimal n = 2 voxels) and FreeSurfer (Fig 8A, 8B

and 8E). To compare RVV, AVV and SSVV, we first used optimal rh values (10 voxels for

RVV and AVV and 8 voxels for SSVV, Fig 5B–5D, Table 1). The principal curvature errors

were higher for AVV and SSVV compared to the smooth sphere (5-10 fold, compare X-axis

scales in Figs 7E and 8E), but were similar for RVV. However, AVV outperformed SSVV in

this case (Fig 8C–8E), whereas the latter performed slightly better on the smooth spherical

surface (Fig 7E).

We compared again the accuracy of the algorithms for increasing feature size and a con-

stant rh value. When using a sphere with a radius of 30 voxels, VTK, Mindboggle and Free-

Surfer still performed extremely poorly, and the estimation accuracy of SSVV decreased

drastically, while the performance of AVV and RVV decreased only slightly (Fig 8F). The per-

formance of SSVV improved using a rh value similar to the sphere radius, 28 voxels, which

should be close to optimum (Fig 8G). Also the performance of AVV increased in this case,

while the performance of RVV stayed similar (compare Fig 8F and 8G).

Fig 8. Accuracy of curvature estimation on a spherical surface with quantization noise. Panels (A-D) show visualizations of κ2 (voxel-1) estimated by (A) VTK,

(B) FreeSurfer (FS), (C) AVV using the optimal rh = 10 voxels or (D) SSVV using the optimal rh = 8 voxels on a sphere with quantization noise and radius = 10

voxels. Panels (E-G) show cumulative relative frequency histograms of the principal curvature (κ1 and κ2) errors on a spherical surface with quantization noise and

(E) radius = 10 or (F-G) 30 voxels using RVV, AVV, SSVV, VTK, Mindboggle (MB) and FS; latter three algorithms only in (E-F). The values of rh or n (in voxels)

used for each algorithm are indicated in the legends.

https://doi.org/10.1371/journal.pcbi.1007962.g008
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Therefore, when quantization noise is present, all our algorithms perform better than

the currently available methods tested here. SSVV requires a higher rh in the range of the cur-

vature radius, while AVV is quite stable with a lower rh value. Using a very high rh is gener-

ally not advisable, as it would lead to the underestimation of curvatures at smaller surface

features. Since RVV performed consistently worse than AVV, we exclude RVV from further

comparison.

Higher errors at surface borders. As explained previously, membranes in cryo-ET seg-

mentations have holes and open ends. Thus, we aimed for a curvature estimation algorithm

that is robust to such artifacts.

Tensor voting-based algorithms use a supporting neighborhood in order to improve the

estimation, so holes much smaller than the neighborhood region do not affect them critically.

However, a vertex close to surface border has considerably less neighbors. Therefore, we

hypothesized that the estimation accuracy at vertices close to such borders would be worse. To

prove this hypothesis, we generated a smooth cylindrical surface opened at both sides with

radius = 10 and height = 25 voxels and evaluated the performance of our algorithms. Optimal

rh values were used for AVV (5 voxels) and for SSVV (6 voxels), as well as optimal n for

Mindboggle (2 voxels). FreeSurfer was not included in this test, since it failed on this open

surface.

As expected, both tensor voting-based algorithms made a worse estimation near borders:

AVV overestimated κ1 gradually when moving towards the borders and κ2 at the last triangles

(Fig 9A), while SSVV underestimated κ1 consistently and made a gradient of wrong estima-

tions for κ2 in the same region (Fig 9B). Since VTK does not use a bigger neighborhood, it

showed high errors at changes in the triangle pattern all over the cylinder (Fig 9C). Mindbog-

gle showed high errors for κ1 in a striped pattern and for κ2 at some patches near the borders

(Fig 9D). SSVV and AVV showed~t2 and κ1 errors in the same range (Fig 9E and 9F), while

VTK and Mindboggle made higher κ1 errors than our algorithms (Fig 9F). When excluding

values within the distance of 5 voxels to the graph border, the errors were virtually eliminated

for AVV and SSVV, but did not change for VTK (Fig 9G and 9H). For Mindboggle, we could

not exclude values at borders because our graph structure used for borders filtering is not

available for that method. However, as one can see in Fig 9D, the high κ1 errors of Mindboggle

would not have been eliminated with this strategy.

Altogether, these benchmark results demonstrate the validity of our tensor voting-based

algorithms and their robustness to quantization noise, especially of AVV. Additionally, curva-

ture estimations at surface borders can be erroneous, so they should be excluded from an

analysis.

Application to biological surfaces

Choice of algorithms and parameters for membranes from cryo-ET. AVV and SSVV

proved most robust to quantization noise in synthetic surfaces. To evaluate their performance

on real cryo-ET data, we used a cER compartment segmentation that contains several high

curvature regions or peaks [16].

First, we studied the relationship between the rh parameter and the feature size. For this,

we isolated a single cER peak with a maximum base radius of approximately 10 nm from a

tomogram and estimated its curvature using several rh values. We observed that real mem-

brane features have a diverse curvature distribution with several local maxima and minima

(Fig 10A and 10B). For low values of rh, the distributions of curvature are broad, getting pro-

gressively sharper with increasing rh. For AVV (Fig 10A), the maximum amount of values

around 0.1 nm-1 (corresponding to the 10 nm radius of the peak) is reached for rh = 10,
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Fig 9. Estimation accuracy on a cylindrical surface. Panels (A-D) show principal curvatures on a smooth cylinder with radius = 10 and height = 25

voxels estimated by different algorithms: (A) AVV using the optimal rh = 5 voxels, (B) SSVV using the optimal rh = 6 voxels, (C) VTK and (D)

Mindboggle (MB) using the optimal n = 2 voxels; the estimated κ1 and κ2 are shown in their original ranges; true κ1 = 0.1, true κ2 = 0 voxel-1. Panels

(E-H) show cumulative relative frequency histograms of the~t2 errors (E, G) and κ1 errors (F, H) on the cylinder using different algorithms: AVV,

SSVV, VTK and MB; latter two algorithms only for κ1 in (F, H); the optimal rh or n (in voxels) were used for each algorithm and are indicated in the

legends. In panels (G-H), values within 5 voxels to the graph border were excluded.

https://doi.org/10.1371/journal.pcbi.1007962.g009
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indicating that the feature is observed as a whole and its smaller components fade. Higher rh
no longer produce curvature values around 0.1 nm-1, indicating that the feature is averaged

out. A similar trend is observed for SSVV (Fig 10B), although this method produces less curva-

ture values around 0.1 nm-1, thus underestimating the real curvature of the feature.

Second, we visualized the principal curvatures of the feature using rh = 10 nm to analyze

the difference between the two curvature estimation algorithms. For this specific feature, its

principal curvatures estimated by AVV (Fig 10C) increased in the direction from the base to

the summit, while SSVV (Fig 10D) underestimated the curvatures, especially κ2. Since SSVV

sampled only surface points at distance equal to rh of 10 nm from each triangle center, it

“oversaw” the high curvature at and near the summit. Contrary to SSVV, AVV considered all

triangles within the geodesic neighborhood and thus estimated the curvature increase towards

the summit correctly. This example confirms that AVV performs better than SSVV for com-

plex surfaces like biological membranes.

Lastly, we applied AVV with rh = 10 nm to the full cER membrane surface, from which the

peak shown in Fig 10 was extracted (Fig 11A and 11B). For comparison, we also applied VTK

and Mindboggle to this surface (Fig 11C). Visually, n = 2 nm yielded the best results for Mind-

boggle. On this membrane surface, AVV clearly outperforms VTK and Mindboggle, which

Fig 10. Algorithms and parameters comparison using a small cER membrane feature from cryo-ET. Surface of a cER membrane region with maximum base

radius�10 nm (from the same tomogram of a yeast cell as the cER in Fig 11) was generated using the compartment segmentation. Panels (A-B) show relative

frequency histograms of κ1 estimated by (A) AVV or (B) SSVV using rh = 2, 5, 10, 15 and 20 nm. Panels (C-D) show visualizations of the estimated κ1 and κ2 (color

scale was set to the value range of [-0.1, 0.1] nm-1 in both panels) and the corresponding principal directions (black arrows, sampled for every forth triangle) by (C)

AVV or (D) SSVV using rh = 10 nm (scale bar: 20 nm, applies for both panels).

https://doi.org/10.1371/journal.pcbi.1007962.g010
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provide very noisy results with high values following the steps between neighboring triangles

and the surface borders (compare the values of curvedness in Fig 11A and 11C).

Curvature comparison across cellular organelles. To test our method on membranes

with different morphologies, we segmented the Golgi apparatus and Golgi-derived vesicles in

a tomogram recorded on a mouse neuron. A Golgi apparatus is composed of flat cisternae

stacked in a bent, semicircular shape. Again, we extracted the membrane surfaces using the

compartment segmentation and estimated the curvatures using AVV with rh of 10 nm (Fig

12A). To minimize borders effects, values within 1 nm to surface border were excluded for

Fig 11. Application of curvature estimation algorithms to a cER membrane from cryo-ET. Analysis of yeast cER membrane curvature on a surface generated

using the compartment segmentation. (A) Visualizations of the curvatures: κ1, κ2 and curvedness, estimated by AVV with rh of 10 nm (scale bar: 40 nm). The

insets show the peak feature from Fig 10 (scale bar: 20 nm). Color scale was set to the value range of [-0.1, 0.1] nm-1 for κ1 and κ2 and of [0, 0.1] nm-1 for

curvedness. (B) Relative frequency histograms of the curvatures estimated by AVV shown in (A). (C) Visualizations of curvedness on the same surface as in (A)

calculated by VTK (top) and Mindboggle (MB; using n = 2 nm; bottom), scale bar as in the main panel (A). Since curvedness ranges were larger for these

algorithms, color scales were set to the value range of [0, 0.5] nm-1 for VTK and [0, 1] nm-1 for Mindboggle. The tomogram and segmentation are deposited in EM

Data Bank (EMD-10765).

https://doi.org/10.1371/journal.pcbi.1007962.g011
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Fig 12. Application of AVV to Golgi and vesicles from cryo-ET. (A) Two different views of surfaces of Golgi and

vesicles (from a primary mouse neuron) generated using the compartment segmentation showing curvedness

estimated by AVV with rh of 10 nm. Color scale was set to the value range of [0, 0.1] nm-1 (scale bar: 100 nm). (B)

Relative exceedance frequency histograms (reversed cululative histograms with frequency normalized to the total

surface area of each compartment) of the curvedness of cER (shown in Fig 11A and 11B), Golgi and vesicles (shown in

panel A of this figure), excluding values within 1 nm to surface border. The tomogram and segmentations are

deposited in EM Data Bank (EMD-10766).

https://doi.org/10.1371/journal.pcbi.1007962.g012
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plotting. Fig 12B compares the curvedness of the cER (Fig 11) with that of the Golgi and

Golgi-derived vesicles. The histogram shows that the Golgi has much lower curvedness than

the other two organelles, whereas the cER reaches higher curvedness values than the vesicles.

The results can be visually confirmed: the thin and long Golgi cisternae are only slightly

curved, while the vesicles are smaller and thus much more curved (Fig 12A). The cER is gener-

ally less curved than the vesicles, but has high curvature at the peaks and sides of its sheets (Fig

11A). These data show that curvedness estimated by AVV can be a useful descriptor of biologi-

cal membranes.

Application to other data types. To demonstrate the applicability of AVV beyond cryo-

ET, we applied it to two other data types. The first data set is comprised of C. elegans embryo

cells imaged by confocal light microscopy and segmented by LimeSeg [22]. The cell surfaces

colored by their Gaussian curvature estimated by AVV using rh = 3 μm are shown in Fig 13A.

The second data set, taken from Mindboggle [42], are cortical pial surfaces of both human

brain hemispheres imaged by MRI and segmented by FreeSurfer [52]. The cortical surfaces

colored by their mean curvature estimated by AVV using rh = 2 mm are shown in Fig 13B.

Fig 13. Application of curvature estimation algorithms to other data types. (A) Surfaces of C. elegans embryo cells imaged by confocal light microscopy and

segmented by LimeSeg [22], colored by Gaussian curvature (μm-2) estimated by AVV using rh = 3 μm (scale bar: 5 μm). (B) Cortical pial surfaces of both human

brain hemispheres imaged by MRI and segmented by FreeSurfer [52], colored by mean curvature (mm-1) estimated by AVV using rh = 2 mm (scale bar: 20 mm).

Panels (C-D) show the same brain surface colored by mean curvature (mm-1) with the same color scale as in (B) estimated by (C) Mindboggle (MB; using n = 2

mm) and (D) FreeSurfer (FS).

https://doi.org/10.1371/journal.pcbi.1007962.g013
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The range of curvature values for the embryo and the brain is consistent with their sizes. Using

Mindboggle [42] with n = 2 mm (Fig 13C) and FreeSurfer [41] (Fig 13D), we obtained compa-

rable, but noisier, mean curvature distributions on the brain; FreeSurfer introduced finer-

grained noise than Mindboggle. Despite the lack of ground truth, this comparison suggests

that AVV provides a more accurate curvature estimation for different data types.

Implementation and availability

All the described algorithms and the tests on benchmark surfaces were implemented using

Python and are available in PyCurv at https://github.com/kalemaria/pycurv, along with the

experimental data sets and scripts allowing to obtain the results presented in the Section Appli-

cation to biological surfaces. PyCurv depends only on open source packages, including: Pyto

[53], Graph-tool [48] and VTK [30]. Note that FreeSurfer [52] and Mindboggle [42] had to be

installed and called externally for the evaluation; FreeSurfer version “stable v6.0.0” for Linux

and Mindboggle Docker container from 2019-09-24 were used.

Discussion

In this article, we described a method for the estimation of the local curvature of biological

membranes and validated it on synthetic and real data. The curvature estimation workflow

in PyCurv can be divided in two main steps. The first step is to represent the membrane as a

triangle mesh surface that can be obtained from two different types of segmentation: segmen-

tation of the membrane alone, or a filled segmentation of a membrane-bound cellular com-

partment. The second option usually demands more human intervention but the surface

orientation could be recovered perfectly in our experiments. Smoothing of the filled segmenta-

tion prior to surface extraction leads to less quantization noise because the surface is extracted

at subvoxel precision. Surface triangles are mapped to a graph to facilitate the computation of

geodesic distances and to filter border artifacts. The second step is to determine the underlying

surface orientation (represented by normal vectors), local curvatures and principal directions.

Here, we evaluated the performance of our curvature estimation algorithms, RVV, AVV

and SSVV (adaptations of [33] and [40]) against the publicly available VTK [30], FreeSurfer

[41] and Mindboggle [42]. Although we chose the optimal radius of the neighborhood (n)

parameter for each benchmark surface, Mindboggle performed poorly on irregular and noisy

surfaces. Also FreeSurfer, which performed the best on a smooth and regular surface, yielded

high errors on irregular and noisy surfaces. Moreover, FreeSurfer cannot be applied to surfaces

containing borders, so it is not applicable for cryo-ET data. Our tests using synthetic and bio-

logical surfaces showed that the proposed algorithms, RVV, AVV and SSVV, are more robust

to quantization noise than the above-mentioned existing methods. AVV performs better than

RVV for non-uniformly tessellated surfaces. For complex non-spherical surfaces like biological

membranes, AVV yields better results than SSVV. Therefore, AVV is the default algorithm in

PyCurv.

Curvature is a local property, so its value on discrete surfaces depends on the definition of a

neighborhood. Robustness to noise increases with the neighborhood size by averaging the con-

tributions of the neighboring triangles. However, features smaller than the neighborhood are

averaged out. Therefore, the neighborhood size defines the scale of the features that can be

analyzed. To achieve more reliable results for cryo-ET segmentations that contain holes, curva-

ture values at surface borders and/or higher than rh-1 should be excluded from the analysis.

PyCurv was already applied in a cryo-ET study in yeast proposing that cER membrane cur-

vature plays a key role in the regulation of ER-to-PM lipid homeostasis at membrane contact

sites [16]. Moreover, the analysis of data generated by MRI and light microscopy shows that

PLOS COMPUTATIONAL BIOLOGY Membrane curvature in cryo-electron tomography

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007962 August 10, 2020 25 / 29



our method can be applied to any segmented membrane compartments or other volumes

from which a surface can be extracted, originating from any 3D imaging technique. We con-

clude that the open-source Python package PyCurv can be used to reliably process cryo-ET

and other data to study membrane and surface curvature in a large variety of applications.

Supporting information

S1 Video. PyCurv workflow. The visualization of PyCurv processing workflow, as described

in Fig 1A, for the tomogram from Fig 2, showing in the order of occurrence: membrane and

compartment segmentations of the cortical ER, generated surface, normals estimated by Vector

Voting (VV) and curvedness estimated by Augmented Vector Voting (AVV) algorithms.

(MP4)
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Erratum

The covariance matrix used in Equation (3) on page 8 should be calculated as
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Equation (10) on page 10 should be
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3 Summary of results and discussion

3.1 Developed algorithms

3.1.1 Surface generation

First, we optimized surface generation from membrane segmentations to eliminate
border artifacts and have a notion of orientation, as described on page 6 and Figure 2
in (Salfer et al., 2020). Membrane segmentations (set of voxels) have to be represented
by surfaces (triangle meshes) since curvature is a feature of a single-layered surface.
However, one of the main limiting factors for membrane curvature estimation in cryo-
ET is quantization noise in the membrane segmentations, resulting in step-like surfaces
(Section 1.4.5). Therefore, our initial membrane segmentation surface extraction algorithm
used in (Bäuerlein et al., 2017) that is based on the surface reconstruction algorithm
from Hoppe et al. (1992) generates step-like surfaces among other artifacts caused by
wrong surface orientation (Figure 2B,D-E in (Salfer et al., 2020)). To overcome these
surface orientation artifacts, we proposed the compartment segmentation algorithm on
page e4 in (Collado et al., 2019), which requires additionally a filled segmentation
of the compartment but extracts the surface correctly using the Marching Cubes
algorithm (Lorensen and Cline, 1987) (Figure 2C and G in (Salfer et al., 2020)).

As seen from the evaluation results of the curvature estimation algorithms in PyCurv
software package (Salfer et al., 2020), smoother surfaces enable higher estimation
accuracy of the surface normals (pages 13-14, Figure 4F in (Salfer et al., 2020)), principal
directions and curvatures (pages 17-18, Figures 7E and 8E in (Salfer et al., 2020)).
However, a direct surface smoothing is not advisable, because it would fade small
membrane features such as Tcb-mediated cER peaks (Collado et al., 2019), which are
just ∼10 nm or ∼3.5 voxels in radius (e.g. Figure S2B-C in (Collado et al., 2019) and
Figure 11A in (Salfer et al., 2020)).

In our compartment segmentation surface extraction algorithm, sometimes triangles
protruding perpendicularly to the surface were produced at manually-segmented
regions by Marching Cubes (Figure 2H in (Salfer et al., 2020)). Smoothing the segmen-
tation prior to surface extraction helped to achieve subvoxel precision and eliminate
those triangles (Figure 2H in (Salfer et al., 2020)). To minimize the impact of quantiza-
tion noise and achieve subvoxel precision, we decided to smooth the filled membrane
segmentation only slightly prior to Marching Cubes application (Figure 2J-K in (Salfer
et al., 2020)).

3.1.2 Graph classes and their applications

To precisely compute the density of membrane-bound ribosomes, estimate membrane
curvature and detect surface borders, geodesic distances are required. In order to
easily calculate geodesic distances along a membrane, we decided to represent it by
a graph structure, which is a set of vertices and edges that connect pairs of vertices.
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Then, it is possible to find a shortest path between two vertices along the graph edges
using e.g. Dijkstra algorithm (Dijkstra, 1959) and to obtain the geodesic distance by
summing up the lengths of the edges along the shortest path, as described on page 8
in (Salfer et al., 2020). PyCurv implements two different types (classes) of graphs:
VoxelGraph and TriangleGraph.

The VoxelGraph class was used for the calculation of ribosome density on ER
membrane (see Section 3.1.3) in (Bäuerlein et al., 2017), as described on page e5 in
that paper. In brief, a VoxelGraph instance is generated directly from a membrane
segmentation by adding all membrane voxels to the set of vertices and connecting all
pairs of vertices representing neighboring voxels by edges.

The TriangleGraph class was used for the estimation of surface curvature descrip-
tors (see Section 3.1.4) in (Bäuerlein et al., 2017; Collado et al., 2019; Salfer et al., 2020).
A TriangleGraph instance is generated from a signed, single-layered triangle mesh
surface (e.g. extracted from a membrane segmentation), so that every triangle center is
added to the set of graph vertices. Then, neighboring triangle pairs sharing an edge
are connected by strong edges, while those sharing only a vertex are connected by weak
edges. Both edges types are involved in geodesic distances calculation, while only the
strong edges are used for borders detection. Borders detection is another advantage of
the graph representation that enables filtering out of wrong curvature estimations near
surface borders. See Figure 1A, D and pages 6,8 in (Salfer et al., 2020) for more details.

Both graph classes are implemented using the graph-tool python library1 (Peixoto,
2014). The shortest path Dijkstra algorithm is used for the three procedures: (1) to
calculate the geodesic distances to all reachable ribosomes from a VoxelGraph vertex
for the calculation of the ribosome density (page e5 in (Bäuerlein et al., 2017)), (2) to find
neighboring triangles within a maximal geodesic distance from a TriangleGraph
vertex for the estimation of surface curvature descriptors (pages 7-8 in (Salfer et al.,
2020)), and (3) to detect TriangleGraph borders for surface borders filtering (page 8
in (Salfer et al., 2020)). See Section 4.1.1 for a runtime analysis of the graph generation
algorithms.

3.1.3 Calculation of ribosome density on ER membrane

A computational approach for analyzing ribosome density on ER membrane was
developed and applied in (Bäuerlein et al., 2017). As discussed above (Section 3.1.2),
the membrane segmentation was represented by a graph that interconnects neighboring
membrane voxels by edges (VoxelGraph), instead of first extracting a surface and
then representing it by a graph that interconnects neighboring triangles by edges
(SurfaceGraph), as done for the curvature estimation (Section 3.1.4). In general,
it is not ideal to calculate surface-based properties on voxels. However, the voxel-
based approach was legitimate here for the following reasons. (1) The coordinates of
membrane-bound ribosomes obtained by template matching were projected on the
nearest ER membrane voxels. The projected ribosome coordinates were automatically
a subset of the VoxelGraph vertices, corresponding to the membrane voxels. Thus,
geodesic distances between the membrane voxels and reachable ribosome coordinates
could be directly calculated using the graph edges, as described above. (2) The
obtained ribosome density values also corresponded to membrane voxels, enabling

1https://git.skewed.de/count0/graph-tool
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color-mapping the ribosome density on the ER membrane segmentation, as visualized
in Figure 3G in (Bäuerlein et al., 2017).

As briefly described on page e5 in (Bäuerlein et al., 2017), the ribosome density (D)
for each membrane voxel was defined using the geodesic distances (d) to the projected
ribosome voxels on the membrane as:

D = ∑
1

d + 1
(reachable ribosomes)

Reachable ribosomes are those that can be reached via the membrane from the source
voxel by a path via the graph edges. In the denominator, 1 was added to d in order
to eliminate division by zero in case a ribosome is located at the source membrane
voxel (d=0). Thus, the contribution of each ribosome to D is maximum 1 and becomes
smaller as d grows. In conclusion, the higher the number of reachable ribosomes and
the shorter the distances to them, the higher the D value.

As clearly seen from the visualization in Figure 3G in (Bäuerlein et al., 2017),
ribosome density is low (starting with 0) at ER membrane regions interacting with
Htt fibrils and gradually raises (until 1.8) as ER distance from the fibrils increases. To
numerically prove this positive correlation, it would be possible to compute nearest
distances between ER segmentation voxels and fibril coordinates and correlate them to
the ribosome density.

3.1.4 Estimation of surface curvature of membranes

The original aim of this thesis was to quantitatively compare curvature of the ER
membranes interacting with a Htt inclusion to controls without an inclusion (Bäuerlein
et al., 2017). For this, I implemented the membrane segmentation procedure for surface
generation from a membrane segmentation (Figure 2B in Salfer et al. (2020)), as
summarized in Section 3.1.1. To reduce the surface artifacts that mainly occurred at
segmentation regions with holes, I first applied a morphological operator to close small
holes in the segmentation. Dilation (growth) followed by erosion (shrinkage) with a
cube of 3 or 5 voxels in size was sufficient for obtaining reasonable surfaces from those
seven segmentations. Additionally, small disconnected surface components up to 100
triangles were filtered out.

To estimate ER curvature in (Bäuerlein et al., 2017), I implemented the Normal Vector
Voting (NVV) algorithm from (Page et al., 2002) with adaptations. In brief, the original
algorithm calculates curvature descriptors per triangle vertex and geodesic distances
by linear interpolation upon the surface (Kimmel and Sethian, 1998; Sun and Abidi,
2001), whereas NVV calculates curvature descriptors per triangle face and geodesic
distances using our TriangleGraph structure. However, as shown in the evaluation
of our algorithms (page 14 and in Figure 6A-B in (Salfer et al., 2020)), NVV output only
positive principle curvatures, even for saddle surfaces like the inside of a torus, where
κ2 must be negative. As the magnitude of the estimated κ2 was comparable to the true
κ2, we decided to use curvedness in (Bäuerlein et al., 2017) (see page e6 in (Bäuerlein
et al., 2017) or Equation 17 on page 12 in (Salfer et al., 2020)), which is always positive
independent of the principal curvatures sign. To determine the neighborhood size
set by the maximal geodesic distance parameter gmax, my initial NVV version used k
parameter similar to the original algorithm (Page et al., 2002). While in the original
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algorithm k was multiplied by the average surface triangle edge length to set gmax, in
my initial version k was multiplied by the average weak triangle graph edge length.
Weak graph edges were used as they are more similar in length to the surface triangle
edges than the shorter strong graph edges. We set k to 3, resulting in gmax around
9 nm. Inspired by Tong and Tang (2005), the rh parameter was introduced in the
later NVV version described on pages 8-11 in (Salfer et al., 2020). This parameter
should be set to the radius of the smallest spherical feature of interest. Then, gmax
is set to 1/4 circumference of a circle with radius equal to rh. This enables a more
direct control over the scale of features to be estimated reliably. Moreover, rh can
be set independently from the triangle size of the input surface, contrary to k that
has to be adapted to it in order to achieve the desired gmax. See Section 4.2.1 and
Figure 4.3 for comparison of ER curvedness from Figure S2D in (Bäuerlein et al., 2017)
to the one estimated by the algorithm with corrected sign estimation and rh parameter,
Augmented Vector Voting (AVV), which is described on pages 10-11 in (Salfer et al.,
2020). Briefly, both algorithms showed higher ER curvedness values near Htt IBs (n=4
tomograms) than in the controls without Htt IBs (n=3 tomograms), the difference
was even higher using AVV. To see whether there is a negative correlation between
the distance to fibrils and ER membrane curvature, it would be possible to compute
shortest distances between the ER triangle centers and the Htt fibrils coordinates and
correlate them to the ER curvedness.

For comparison of curvature of cER in yeast cells expressing specific ER-PM tether
proteins in Figure 3E in (Collado et al., 2019), the AVV algorithm was used with rh
value of 10 nm to reliably estimate the curvature of cER peaks with radius of around
10 nm. To exclude unreliable estimations, values within 1 nm to the surface border
as well as triangles with curvedness above 0.1 nm-¹ were excluded from the analysis.
Later, we used the same workflow to estimate the curvature of Golgi cisternae and
Golgi-derived vesicles from a tomogram of a mouse neuron (pages 22-24 and Figure 12
in (Salfer et al., 2020)). See Section 4.2.2 and Figure 4.4 for a comparative analysis of
the estimated curvature distributions of all those organelles and of their curvatures
known from the literature.

Error analysis

A reliable curvature estimation method has to be robust to noise. In cryo-ET, there are
many possible noise sources: measurement noise during the image acquisition caused
by e.g. low SNR and missing wedge (Section 1.2.5), computational errors made by the
projections alignment algorithms for tomogram reconstruction (Section 1.2.4) as well as
by automatic and manual image analysis, e.g. membrane segmentation (Section 1.3.4).
Moreover, extraction of a surface from a segmented volume might also introduce errors
(Section 3.1.1). Since we could not account for all these sources of errors, we mainly
considered the quantization noise (Section 1.4.5). For range imaging data, which is
a 2D image showing the distance to points of an object from a specific point, it was
found that accuracy of curvature is limited mainly by combination of quantization
and smoothing error (Trucco and Fisher, 1995). On one hand, smoothing is necessary
for a better estimation of curvature on discrete data. On the other hand, smoothing
lowers the actual curvature values. The authors also found that smoothing a small
sphere deforms it and decreases its curvature. These findings must also apply for
microscopy data. In order not to loose small membrane features of interest, we decided
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not to smooth the surfaces much (Section 3.1.1) and instead average the information
contained in a bigger geodesic neighborhood (Section 2.3).

One could estimate small manual segmentation errors of one voxel at material
boundaries, e.g. between a membrane and the cytosol (Pienaar et al., 2008). Tomograms
usually have voxel sizes of ∼0.2-0.4 nm (equal in X, Y and Z) and are binned twice
for segmentation to increase contrast, resulting in segmentations with voxel sizes of
∼0.8-1.6 nm. Assuming a standing out incorrectly segmented voxel of size 1³ nm,
the surface reconstruction would produce a cubic bump at that place, which would
have the radius of curvature of one-half voxel, i.e., 0.5 nm. Thus, curvature values
above 1

0.5 = 2 nm-¹ are due to single voxel miss-classifications. Curvatures above this
value are unreliable and should be excluded from analysis. However, we already
suggested to use the rh parameter to approximate the highest curvature value PyCurv
can estimate reliably, which is 1⁄rh (Section 2.3). rh is usually set to a higher value than
one-half voxel, thus bounding the curvature at already lower values than 2 nm-¹, e.g.
0.1 nm-¹ for the default rh value of 10 nm. Therefore, PyCurv curvature estimation
algorithms are tolerant to quantization noise and small segmentation errors.

We evaluated our proposed four curvature estimation algorithms against three
currently existing ones using synthetic surfaces with known curvature, as summarized
in Section 2.3. This enabled calculation of errors between the estimated and the true
values for quantitative comparison between the algorithms. Vector error was calculated
for normals and principle directions and scalar relative error for principle curvatures
using, respectively, Equations 19 and 20 on page 12 in (Salfer et al., 2020).

To sum up, our surface curvature estimation algorithms were inspired by tensor
voting-based algorithms, especially by those of Page et al. (2002) and Tong and Tang
(2005) (Section 1.4.3). To correct the erroneous curvature sign in NVV, I combined
and adapted both algorithms leading to Regular Vector Voting (RVV). Then, I further
improved the accuracy on irregular surfaces resulting in AVV. Finally, Surface Sampling
Vector Voting (SSVV) was implemented for higher speed, however it was shown to be
less robust to variable feature size. The differences between the four algorithms are
explained on page 11 and the evaluation results are shown on pages 13-19 in (Salfer
et al., 2020). For an extensive runtime analysis of our two best-performing surface
curvature estimation algorithms, AVV and SSVV, see Section 4.1.2.

3.1.5 Calculation of intermembrane distances

To measure intermembrane distances at MCS in yeast (Collado et al., 2019), e.g. be-
tween cER and PM, Prof. Dr. Antonio Martínez-Sanchez initially implemented a
segmentation-based algorithm. In this algorithm, normals generated by TomoSeg-
MemTV (Martinez-Sanchez et al., 2014) at each voxel of the first membrane label are
extended until their intersection with the second membrane label. Then, the distances
between the two membranes are calculated as lengths of these extended normals. For
the distances to be closer to the shortest distances, the straighter membrane should be
chosen as the first membrane, e.g. PM in case of ER-PM MCS.

However, this segmentation-based algorithm has two major problems. First, only the
membrane voxels segmented automatically by TomoSegMemTV have a normal, but not
the manually added ones during the refinement with Amira software (Thermo Fisher
Scientific). Second, the distances calculated like this are between the central layers of
the two membranes, as TomoSegMemTV segments the central membrane ridges. Thus,

119



3 Summary of results and discussion

the calculated distances are bigger than the actual distances between the cytosolic
leaflets of the membranes. While the second problem can be approximately solved by
subtracting the membrane bilayer thickness in nm from the calculated distances, the
first problem leads to missing values.

To solve the major problems of the segmentation-based algorithm, we developed a
surface-based one, which has the following five steps. (1) The membrane segmentations
are grown by morphological operators to match the membrane thickness, and the
intermembrane cytosolic space is filled. (2) Surfaces following the cytosolic side of the
membranes are generated using the compartment segmentation algorithm. (3) NVV is
applied to the source membrane surface to denoise the normals. (4) Each denoised
normal is extended until the intersection with the target membrane surface. (5) The
Euclidean distance between the source triangle center of the normal and its intersection
point on the target surface is calculated. Additionally, the algorithm was extended to
calculate the cER thickness using the cER lumen segmentation. For this, Euclidean
distance is calculated between two intersection points of each PM normal and the
surface following the luminal side of the cER membrane. As triangle-mesh surfaces go
through the centers of the voxels on the edge of the segmentations, one voxel size in
nm is added to the distances and thicknesses for correction. For more details like the
used thresholds, see page e4 in (Collado et al., 2019). For full results, see Figure 2G-H
and pages 477-478 in (Collado et al., 2019) or Section 2.2 for a summary.

3.2 Future work

Our curvature estimation algorithms included in PyCurv can be used to quantify
the morphological descriptors of any segmented cellular membranous organelles in
tomograms of cells in a native state or under different conditions, like mutations of
certain proteins or heat stress. The long term plan is to characterize the curvature
profiles of different cellular organelles, and maybe even use curvature as a useful
descriptor to e.g. annotate membrane segmentations. See Section 4.2.2 as a first step in
that direction. Given enough reliably segmented data with curvature profiles, it would
be possible to train a model for classification of different organelles based on their
curvature. Such a model can help to automatically separate generic membrane labels
into different organelles and so shorten the manual labeling and refinement process.

Knowing the curvature landscape of cellular membranes raises the question which
proteins are responsible for the local curvature generation or maintenance. After
curvature estimation by PyCurv, it is possible to answer this question by filtering
the output membrane surface to regions having a certain curvature range and then
searching for candidate proteins near those regions by template matching or by a
template-free method e.g. PySeg (Section 1.3.2). To generate the search mask, a
distance threshold from the triangle vertices within the surface regions can be simply
used. Since the membrane surface is oriented, it is possible to look only for densities
on the cytosolic or lumenal side of the organelle. Ideally, PyCurv would connect
directly to PySeg to find those membrane-bound densities and cluster them using the
unsupervised clustering method AP.

One of the major limitations of applying PyCurv is that it requires nearly perfect
membrane segmentations to correctly extract surfaces, ideally with filled lumen (Sec-
tion 3.1.1). As explained in Section 1.3.4, due to the complexity and the low SNR in
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tomograms, segmentations generated by an automatic segmentation tool like TomoSeg-
MemTV (Martinez-Sanchez et al., 2014) still have to be refined manually, which is a
very time consuming task. One way to solve this limitation is to improve the automatic
membrane segmentation, e.g. by using deep learning-based methods like (Chen et al.,
2017). However, these methods are supervised and require a big training set, i.e. many
tomograms with manually refined membrane labels, which would be time consuming
to generate. Maybe the aforementioned unsupervised clustering of membrane profiles
by combination of PyCurv with PySeg can even help to improve membrane segmenta-
tions without any labeled training set. A different way would be to adapt the curvature
estimation algorithms to work on an alternative data structure generated directly
from unrefined membrane segmentations, instead of triangle meshes represented by
graphs. As mentioned in Section 1.4.2, there are more flexible point-based surface
representation techniques as point clouds and surface splats. Actually, the algorithm
of Tong and Tang (2005) was designed for point clouds. Elliptical splats might be
especially interesting for curvature estimation, as they can be aligned to the principal
directions of the underlying surface.

Another drawback of PyCurv is that the normals and curvature estimation algo-
rithms are calculation-intense. As described in Section 4.1.2, we have improved the
performance of the relevant algorithms by symmetric multiprocessing using several
parallel processes in a single processor. To go further with the parallelization, it
is possible to explore implementations that use other high-performance computing
architectures, such as computer clusters or graphics processing units.

Lastly, at the moment PyCurv is not an easy to use tool. Although all the code,
including workflow scripts, is documented and the curvature estimation workflow is
explained step-by-step, users should be familiar with basic Python programming. To
make PyCurv a broadly used tool that ideally everybody could apply to analyze their
favorite 3D data (not only from cryo-ET but also from e.g. confocal light microscopy
or MRI, see Figure 13 in (Salfer et al., 2020)), further developments are needed. A
minimum requirement is a command line interface with a detailed user manual. The
ideal solution would be an intuitive graphical user interface, but it would be very
time consuming to design and implement. Also making PyCurv available on other
operating systems apart from Linux, at least Windows, would be beneficial. The
big advantage of PyCurv is being an open source and publicly available project on
GitHub2, which makes it open for further developments and freely accessible to the
broad scientific community.

2https://github.com/kalemaria/pycurv
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4 Appendix

4.1 Runtime analysis of main PyCurv algorithms

For the runtime analysis described in this section, PyCurv version 2.1.0 was executed
on a single processor with 500 GB of RAM, 36 processors Intel(R) Xeon(R) CPU E5-2699
v3 @ 2.30GHz and a SUSE Linux Enterprise Server 12 SLES 12 SP 1 operating system.

4.1.1 Runtime analysis of graph generation

In both graph classes discussed in Section 3.1.2, large graphs are generated that include
all the voxels of the input segmentation (for VoxelGraph) or triangle centers of the
input surface (for TriangleGraph) in the set of vertices. This enables us to get as
many ribosome density or curvature values as possible for a reliable statistical analysis
or for a smooth gradient when visualizing the values on the membrane. However,
iterating over all neighboring vertices for each graph vertex and generating all unique
pairs of edges is computationally demanding and is not trivial to be parallelized due
to the serial nature. Graph generation is expected to grow linearly with the number of
voxels (for VoxelGraph) or triangles (for TriangleGraph), which might become time
consuming for a large segmentation or surface.

To analyze the runtime of the graph generation algorithms depending on the input
size, instances of VoxelGraph were generated for hollow spherical masks and instances
of TriangleGraph for noisy spherical surfaces with different radii (5, 10, ..., 50 vox-
els). As expected, the duration in seconds grows linearly with the number of voxels
for VoxelGraph (Figure 4.1A) and with the number of triangles for TriangleGraph
(Figure 4.1B), in both cases with a similar slope. Also the number of graph edges
grows linearly with the number of graph vertices. The slope is slightly higher for
TriangleGraph than for VoxelGraph, as the TriangleGraph has more edges per vertex.

4.1.2 Runtime analysis of curvature estimation

The surface curvature descriptors are estimated per triangle (represented by a Trian-
gleGraph vertex) and using a supporting neighborhood of triangles (defined by rh
parameter). Thus, normals and curvature estimation might become time consuming
for large surfaces and a bigger neighborhood.

To analyze the runtime depending on surface size, I applied our two best performing
algorithms, AVV and SSVV, to noisy sphere surfaces with different radii (5, 10, ...,
50 voxels) using a constant rh of 10 voxels. The duration of both algorithms, consisting
of normals and curvature estimation steps, grows linearly with the number of triangles,
however ∼2.4 times steeper for AVV (Figure 4.2A, processes=1, slope∼0.7) than for
SSVV (Figure 4.2B, processes=1, slope∼0.29), as estimated by fitting a straight line.
This is due to the difference between the two algorithms: While the normals estimation
step of SSVV is the same as for AVV and incorporates all the neighboring triangles

123



4 Appendix

A B

Figure 4.1: Runtime analysis of graph generation. (A) Duration of VoxelGraph generation
and its number of edges depending on number of voxels in the mask (number of
graph vertices). A hollow spherical mask with different radii (5, 10, ..., 50 voxels)
was used. (B) Duration of TriangleGraph generation and its number of edges
depending on number of triangles in the surface (number of graph vertices). A
noisy spherical surface with different radii (5, 10, ..., 50 voxels) was used. Both plots
in (A) and (B) were cropped to the same axes ranges.

defined by rh, in the curvature estimation step SSVV samples only 8 points around a
central triangle center, leading to a shorter duration of this step independent of rh.

As normals and curvatures are estimated per triangle using a local neighborhood,
these steps of our algorithms can benefit from parallel processing of subsets of graph
vertices on multiple cores. I implemented a parallelized version of the normals
estimation step (common for both algorithms) and of the curvature estimation step
for AVV (as it is already faster for SSVV). This implementation exploits a multi-core
single processor architecture by using a Python multiprocessing package Pathos1. In
this shared-memory context, several processes are executed simultaneously and the
operating system dynamically distributes them to the free available cores. Using
10 processes, the duration of both algorithms could be substantially shortened, still
growing linearly with the number of triangles but with a much lower slope (Figure 4.2A-
B, processes=10).

To analyze the runtime depending on the neighborhood size and the scalability of
the parallel implementation with number of processes, the algorithms were applied
to a noisy sphere surface with a radius of 10 voxels (having 1952 triangles) using
different rh values (8-10 voxels) and numbers of parallel processes (1-20). As before,
the duration of AVV (Figure 4.2C) is roughly twice higher than the duration of SSVV
(Figure 4.2D). Using a larger neighborhood set by a higher rh value results in longer
runtimes of both algorithms, especially for AVV, since both AVV steps incorporate all
the neighboring triangles.

Additionally, speedup of both algorithms for different rh values was calculated as a
ratio between the total duration of the sequential version (without multiprocessing) to
the total duration of the parallel version on n processes, for n=1-20. The total duration
here is comprised of the three steps:

1https://pypi.org/project/pathos/
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A B

C D

E F

Figure 4.2: Runtime analysis of curvature estimation. (A-B) Total duration of AVV and
SSVV dependent on number of triangles and processes (1 or 10). The runs were
performed on noisy sphere surfaces with different radii (5, 10, ..., 50 voxels) using
rh of 10 voxels. (C-D) Total duration of AVV and SSVV dependent on number of
processes (1-20) for different rh values (8-10 voxels). (E-F) Speedup of AVV and
SSVV dependent on number of processes (1-20) for different rh values (8-10 voxels);
ideal speedup that is equal to the number of processes is shown as a dashed black
line. For panels (C-F), the runs were performed on a noisy sphere surface with
radius of 10 voxels having 1952 triangles.
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1. graph generation (always sequential and the same for both algorithms),

2. normals estimation (sequential vs. parallel and the same for both algorithms),

3. curvature estimation (sequential vs. parallel for AVV and always sequential for
SSVV).

As predicted by Amdahl’s law (Amdahl, 1967; Hill and Marty, 2008), the speedup of
our parallel implementations is lower than the ideal linear speedup with the number
of processes (Figure 4.2E-F) and it is limited by the sequential part: Since the total
sequential part of SSVV is bigger compared to AVV, the speedup of SSVV (Figure 4.2F)
is slightly lower compared to AVV (Figure 4.2E) for a higher number of processes.
The slowdown in speedup, saturation for a certain number of cores available and
subsequent deterioration as seen here are normal due to other potential bottlenecks
in parallel computation like memory and I/O bandwidth2. The optimal number of
processes was around 16-18 for both algorithms (even 20 for AVV with rh of 10 voxels)
for this sphere surface example measurement.

As PyCurv application to real data involves additional pre- and postprocessing steps
like surface generation and cleaning (i.e. removing borders and small components), the
sequential part is higher. Therefore, the speedup is expected to reach saturation with
a lower number of processes. We set 10 processes as default for the parallel parts of
PyCurv algorithms. Despite its longer duration, as AVV is more robust to quantization
noise and feature size variation than SSVV (Salfer et al., 2020), we recommend to use
AVV for membranes from cryo-ET. For a typical cER membrane surface from (Collado
et al., 2019) leading to a graph with ∼400k vertices and ∼2480k edges, the whole
workflow from surface generation until curvature estimation took ∼10.85 hours using
10 processes, rh of 10 nm, the current PyCurv version and Python 3.7.4. The sequential
graph generation and surface cleaning took ∼15 minutes, the normals and curvature
estimation steps running in parallel on 10 processes took ∼4.63 and ∼5.86 hours,
respectively.

4.2 Unpublished membrane curvature estimation
results

4.2.1 ER curvature increase near Htt fibrils estimated by AVV

The corrected algorithm, AVV using rh of 10 nm, was applied to the ER membrane
segmentations from (Bäuerlein et al., 2017) to compare to the results obtained using the
initial algorithm, NVV using k of 3 (discussed in 3.1.4). The curvedness distributions
estimated by AVV are shifted towards lower values (Figure 4.3B) compared to NVV
(Figure 4.3A). The curvedness ratio between ER membranes in the vicinity of Htt IBs
(n=4 tomograms) and control conditions (n=3 tomograms) is even higher using AVV
compared to the initial NVV algorithm. As estimated by NVV, sites with curvedness
above 1/10 nm-1 were 20%–60% more abundant in the vicinity of inclusions, while AVV
estimation shows a much higher increase of around 70%-100%. This strengthens the
conclusion from the paper that Htt fibrils deform and disrupt endocellular membranes
by increasing their curvature.

2Amdahl’s law, Wikipedia, 2020-09-25, 13:42
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4.2 Unpublished membrane curvature estimation results

A B

Figure 4.3: ER membrane curvedness estimated by NVV vs. AVV. (A) Histograms of ER
membrane curvedness estimated by NVV using k=3, reproduced from (Bäuerlein
et al., 2017). The distributions around inclusions and in control cells were signif-
icantly different (p < 0.001 by Kolmogorov–Smirnov test). (B) Histograms of ER
membrane curvedness estimated by AVV using rh=10 nm. In both panels, curved-
ness was calculated for ER membranes in the vicinity of Htt IBs (n=4 tomograms,
including two Htt97Q IBs in HeLa cells, one Htt97Q-GFP IB in a neuron and one
Htt64Q-GFP IB in a HeLa cell) and in control conditions (n=3 tomograms, including
one of a Htt97Q-GFP IB-containing HeLa cell in an area distal from the IB, one of a
HeLa cell expressing diffuse Htt97Q-GFP without visible IB and one of a HeLa cell
expressing non-pathogenic Htt25Q-GFP). The red line shows the ratio between ER
membrane curvedness around IBs and in control cells.
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A B

Figure 4.4: Comparison of membrane curvature estimated by AVV in tomograms of dif-
ferent cER tether mutants, Golgi cisternae and Golgi-derived vesicles. (A) A
reverse-cumulative histogram (exceedance plot) of curvedness of cER in WT yeast
and its four main tether mutants as well as of Golgi and vesicles in mouse neurons.
(B) A histogram of κ1 of the WT and Tcb1/2/3-only cER, the Golgi and the vesicles.
In both panels, the solid line shows the mean value and the shaded region the
standard error for each bin either among tomograms (in case of cER) or regions (in
case of Golgi and vesicles).

4.2.2 Curvature comparison between different organelles

To more closely compare curvatures of different organelles, we combined the AVV
results for cER membranes from (Collado et al., 2019) with those for Golgi cisternae
and Golgi-derived vesicles from (Salfer et al., 2020). Please note that this comparison is
not ideal, because the cell types are very different. Figure 4.4A shows the curvedness
of cER in WT yeast and its four main tether mutants and the curvedness of Golgi
and vesicles in mouse neurons in one reverse-cumulative histogram. The solid line
shows the mean value and the shaded region the standard error for each bin either
among tomograms (in case of cER) or regions (in case of Golgi and vesicles). The
nearly spherical vesicles have the highest curvedness, even higher than the cER in the
mostly tubular Tcb1/2/3-only mutant. The narrow Golgi cisternae show the lowest
curvedness, even lower than the cER in the Scs2/22-only mutant that consists mostly
of thin sheets.

To compare our curvature estimation results to the organelle shapes and sizes
described by Kozlov et al. (2014), Figure 4.4B shows κ1 histograms of the WT and
Tcb1/2/3-only cER, the Golgi and the vesicles. According to Kozlov et al. (2014), ER
tubules are 30–50 nm thick (radius of 15–25 nm). Thus, κ1 of cER tubules should be
around 0.04-0.07 nm-¹. The distribution of κ1 of the cER in Tcb1/2/3-only mutant is
quite broad but includes substantially more values in that range than the WT cER
(Figure 4.4B). This is consistent with our observation that the cER in this mutant is
more tubular than in the WT (Collado et al., 2019). Moreover, Kozlov et al. (2014)
report that cisternae of the Golgi complex are 10–20 nm thick (radius of 5–10 nm). This
corresponds to the maximum κ1 at the cisternae sides between 0.1 and 0.2 nm-¹. Our
data complied with this as the maximum κ1 of the Golgi is 0.14 nm-¹.
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