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Abstract

The Helmholtz free energy is one of the central quantities of classical thermodynamics,
as it governs important chemical properties such as equilibria or reaction kinetics. It
is, therefore, a desirable quantity to measure, predict, and understand. Unsurprisingly,
many methods exist to compute free energy differences between two states of a system.
In this thesis, the density of states integration method (DSI) is developed; it detects
which subsystems mainly contribute to the free energy difference. The method utilizes
the velocity density of states function (VDoS) of each atom to calculate its contribution
to the vibrational free energy. It is possible without any approximation to assign
fractions of the vibrational free energy to meaningful subsystems, where the local free
energy difference is the sum over all atoms comprising that subsystem. In this way,
large local changes can be identified (free energy hot-spots), which is crucial for the
understanding of free energy differences. The validity and usefulness of DSI is shown
via several examples and comparison with state of the art free energy methods.

In addition to the development of DSI, this thesis also focuses on free energy barriers
in the context of investigating the reaction mechanism of Sirtuin 5, a lysine deacylase
class III. The relationship between the configuration of the enzyme’s active site and
the height of the reaction barrier is studied by computing minimal energy paths for
the catalyzed reaction starting from many different (educt) configurations. Using the
power of machine learning, atom-atom distances influencing the activation barrier are
identified, allowing for a comprehensive understanding of the interplay of the substrate
and residues within the active site of Sirtuin 5. Subsequently, we set out to compute
the free energy as a function of the reaction coordinate instead of a minimum energy
path.

Another theme of this thesis is the computation of spectroscopic observables in a cost
effective manner while simultaneously including important features of the experimental
setup. The inclusion of solvent molecules and finite temperature effects has a decisive
effect on the accuracy of the computed observables. In this context, we highlight
the importance of sampling atomic configurations (with and without explicit solvent)
and the non-negligible influence of electron correlation on the accuracy of computed
observables. Simulation protocols are developed that enable sampling, the inclusion of
correlation methods, and large quantum mechanical subsystems at a low computational
cost.
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Chapter 1
Introduction

The overall goal of this work is to comprehend the macroscopic behaviour of complex
(bio-)molecular systems in terms of their microscopic properties. For this purpose,
statistical thermodynamics are employed. In practice, complex systems are handled by
either Monte Carlo (MC) [1] or Molecular Dynamics (MD) [2–5] simulations. These
techniques use a number of algorithms that generate sequences (trajectories) of atomic
configurations. They can be applied to either gaseous, liquid, or solid phase systems;
simulations are no longer limited to a few atoms, and can today be performed for
systems of impressive size [6].
Crucial ingredients in the modelling of a molecular system are i) the choice of me-

chanics used, meaning either classical or quantum mechanics, and ii) which further
approximations are made with regard to the potential energy function. An atomic
model requires a quantum mechanical (QM) description. It has been shown, however,
that, for many biochemical problems, molecular mechanics (MM) (i.e., classical me-
chanics) are a reasonable choice. However, accurate observables and reaction energies
require quantum mechanics, as, for example, in the case of bond breaking, which is
difficult to describe classically. Especially biomolecular systems consist of so many
atoms that it is computationally infeasible to model them completely through QM. A
compromise can be reached by partitioning the system into QM and MM regions, where
only those atoms are included in the QM region that are important for the computation
of a specific property. This combined approach, dubbed QM/MM [7], has earned its
inventors the Nobel prize [8].
MD simulation has become a workhorse and is employed in many different fashions

in this thesis, ranging from only MM-MD, over QM/MM-MD, to exclusively ab initio
MD (AIMD). The Born-Oppenheimer approximation [9] has been invoked when the
system includes a QM part (i.e., the nuclei are treated classically). Hence, Newton’s
equations of motion have been solved to propagate the nuclear coordinates in time, and
not the Schrödinger equation [10].
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Chapter 1 Introduction

The research of this thesis is divided into two parts. One part uses existing protocols (a
sequence of computational steps) or designs new ones to compute observables accurately
in an economical manner. The employed modelling process aims to include as many
features of the experiment as possible, while at the same time keeping the computational
costs low. Such experiment-oriented protocols are important as they strengthen the
link between experimental and computational chemistry.
The other part of the research focuses on the Helmholtz free energy, the central

quantity of thermodynamics. Since it governs important chemical processes, e.g., equi-
libria and reaction kinetics, it is an important quantity to calculate. A novel method
was developed that can be used to divide a system into subsystems for which the free
energy is estimated. Linking contributions to the free energy to defined subsystems
offers valuable information for theoreticians and experimentalists alike, and helps them
interpret the size of the overall free energy.

Though the free energy is extremely useful, it is also very time consuming to compute,
as its value corresponds to a multidimensional integral over all variables that constitute
a system. MC or MD simulations can be used to sample the system, but the Helmholtz
free energy often converges either slowly or to the wrong result, therefore, algorithms
have been developed to speed up the convergence of such simulations [11, 12]. AIMD
or QM/MM-MD simulations can still be so costly that free energies have to be avoided
all together. One often resorts to searching for minimal energy configurations, which
can still be computationally expensive, but do not require sampling. However, the large
number of degrees of freedom in a biomolecular system make such minimisations difficult,
ergo global minima become hard, if not impossible, to find; one has access to only many
local minima. This means that large numbers of atoms make sampling at high levels of
theory too costly and minimisations at any level of theory almost meaningless. In this
work, we have harnessed the power of machine learning algorithms to ameliorate the
problem of investigating complex systems. Machine learning is a quickly growing field,
which focuses on monitoring many variables simultaneously and extracting information
from them (see section 2.4).
This cumulative dissertation is based on five publications and one manuscript, and

it is structured as follows. Chapter 2 presents the theory which forms the basis of
all these papers, Chapter 3 contains the publications, which present the results of
this dissertation, and Chapter 4 concludes this work together with an outlook. The
manuscripts are summarized briefly below.
Publication I introduces a method by which the vibrational part of the free energy

can be assigned to subsystems within a system. The method, which utilizes the vi-
brational density of states (VDoS) function, can also be used to compute free energy
differences between different states of the system. It builds upon a paper by Berens
et al. [13]. The VDoS function is multiplied with a weighting function (derived from
the harmonic oscillator model) and integrated to obtain the vibrational free energy.
Therefore, we have coined the term density of states integration (DSI) for this method.
Subsystems that predominantly contribute to these differences are identified as free
energy hot-spots. In this publication, we derive the algorithm and compare its numeri-
cal accuracy and convergence behaviour with existing and frequently used free energy
techniques, namely exponential averaging (EXP) [14] and Bennett’s acceptance ratio
(BAR) [15]. The analysis shows that free energy differences are described correctly espe-

2



cially when the system behaves harmonically. Problems arise when vibrations include
transitions over potential energy maxima. However, the results are still qualitatively
correct and help to interpret the total change in free energy, which can be reliably
computed by other algorithms (e.g., EXP or BAR).
Publication II uses the DSI and showcases its strength for two examples. The first

analyzes a standard MM problem, the binding of an inhibitor to the bromo- and extra-
terminal domain [16, 17]. The vibrational free energy hot-spots enable easy visualization
of the effects of inhibitor binding. The protein residues, mainly affected by the presence
of the inhibitor in the binding pocket, can be clearly identified. Interactions stabilizing
and destabilizing the complex can be distinguished. The second example demonstrates
a famous quantum effect in organic chemistry, namely the anomeric effect [18]. Its roots
are controversial [19–22]. Our hot-spots method allows to identify all atoms which take
part in this effect and how they do so. It is thus a powerful tool to analyze the locality
of effects. Additionally, the results for both examples align well with chemical intuition.
Publication III focuses on the utilization of QM/MM modelling in the description

of enzymatic reactions. The first reaction step of the desuccinylation reaction catalyzed
by Sirtuin 5 [23, 24] is investigated. First, MM-MD is used to sample configurations
of the fully solvated enzymatic system together with its reactant (a short peptide)
and co-factor NAD+. Many frames are taken from the MD trajectory as starting
configurations for the minimal energy path along the reaction coordinate (adiabatic
mapping). HF-3c/minix [25], a low-cost approximation of solving the Schrödinger
equation, is used. The computed reaction barriers scatter over a large range of energies,
as is expected when using many different configurations as educts for reaction path
simulations. In a small benchmark, we computed the reaction barrier for several starting
configurations not only with HF-3c but also with higher level methods. The benchmark
shows that HF-3c overestimates the energy barrier height in comparison to the higher
level methods, but in a predictable manner. Machine learning is used to connect
the value of the activation barrier to the configuration within the active site and to
determine geometrical parameters important for a near attack conformation [26–28], a
conformation which a molecular system has to assume in order for a reaction to happen.
It confirms the findings by Ryde [29] that barrier heights are broadly distributed and
very large numbers of configurations (MM trajectory frames) are needed to obtain a
reliable estimate of the effective free energy barrier.

In Manuscript IV we build upon Publication III and investigate the first reaction
step catalyzed by Sirtuin 5 further by using advanced sampling methods. Umbrella
sampling [12] is combined with MBAR [30], i.e., biased QM/MM-MD simulations along
the reaction coordinate are performed and afterwards the free energy surface is extracted
by removing the influence of the bias a posteriori. It is found that in Sirtuin 5 the
first step of the dicarboxylic acid deacylation proceeds via a concerted SN2 mechanism,
as it does for the deacetylation in homologous enzymes [31, 32]. The comparison of
the previously obtained minimal energy paths and the calculated free energy barrier
underlines that conclusions on a reaction mechanism or a reaction barrier height based
on minimal energy paths have to be taken with care. Subsequently, a reweighting of the
free energies from HF3c/minix to the popular B3LYP-D3/def2-svp [33–38] is attempted
to obtain a more reasonable barrier height. The reweighting fails, however, due to
lacking overlap of the configuration spaces associated with the two methods. A solution

3



Chapter 1 Introduction

will have to be found in future work as otherwise higher level QM-based free energies
or corrections will remain inaccessible.

In Publication V, the chemical shift of a 19F nucleus in a covalent inhibitor targeting
the oxidoreductase tryparedoxin of Trypanosoma brucei [39, 40] has been calculated.
The paper presents a multi-disciplinary study in which experimental NMRmeasurements
and theoretical computations are used to determine the predominant conformation of
the inhibitor-enzyme complex in solution. The starting point of the computational
investigation forms a co-crystal structure in which two different binding poses are
present [41]. MM-MD simulations are used to sample configurations of the solvated
system and the NMR shieldings are computed in a QM/MM ansatz based on the MM
trajectories. This study is the largest to date in terms of numbers of QM atoms and
configurations.
Publication VI deals with another spectroscopic observable, namely hyperfine cou-

pling constants (HFCC). They are an important property of radicals. Here, methods
previously developed in the Ochsenfeld group [42, 43] were used to enable fast and
accurate HFCC computations. In this publication we provide a protocol by which
observables, not only HFCCs, can be computed in a cost effective manner without
oversimplifying the experimental conditions. The impact of three contributions to the
observable was analyzed. It is shown that electron correlation, finite temperature sam-
pling, and modelling of the molecular environment (solvation) are crucial to a reliable
comparison with experiment. Those three contributions can be included separately
in an additive manner, circumventing expensive calculations that include all three
simultaneously.

4



Chapter 2
Theory

In the first section of this chapter, the basic equations of statistical mechanics will
be reviewed, many of which can be found in standard textbooks [44–46]. The second
section will present a detailed analysis of motions of molecules and how free energy
expressions can be derived from them. It will also outline the theory behind vibrational
hot-spots, the vibrational density of states integration method (DSI). The third section
concentrates on numerical algorithms to estimate free energy differences. All applica-
tions presented in this thesis and all formulas derived in this chapter assume equilibrium
conditions. Non-equilibrium methods based on the Jarzinsky equality [47, 48] and the
Crooks fluctuation theorem [49, 50] will not be discussed.
The fourth section will give a brief introduction to machine learning. The fifth and

final section highlights the importance of vibrational motions in computing observables.

2.1 Basics of Statistical Thermodynamics

2.1.1 Principal Idea and Ergodicity

The macrostate of a system is defined through macroscopic variables such as volume,
pressure, temperature, energy, or number of particles. In contrast, a microstate describes
the microscopic configuration of the system, meaning the instantaneous value of all
coordinates and momenta. Over time, the system moves from one microstate to another
exploring all accessible states, which are constrained by the macrostate. This means
that a measurement in the lab, which is usually performed on a long time scale relative
to the thermal fluctuations between microstates, measures an average value over many
microstates. In a thought experiment, the same average result could be achieved by
performing many measurements of the observable O, which probe only one microstate

5



Chapter 2 Theory

each.

Oobserved = 1
M

M∑
i=1

Oi (2.1)

Here, Oi denotes the value of the observable in measurement i, and M is the number of
measurements. If the number of these hypothetical measurements is large enough, one
can transform this sum into a weighted average where the weights, Pi, correspond to
the relative occurrence of the microstates

Oobserved =
∑
i∈S

PiOi = 〈O〉 , (2.2)

where S is the set of all microstates that fulfill the constraints of the system’s macrostate.
This set is called ensemble and eq. (2.2) therefore ensemble average. Thus, monitoring
the time evolution of a system over a long time period yields the same result as the
ensemble average of microstates:

∑
i∈S

PiOi
!= lim
t→∞

1
t

t∑
τ=0

O(τ) (2.3)

The relation in eq. (2.3) is termed ergodicity. It is generally assumed to be valid in
experiments as well as simulations, but it cannot – except in rare cases – be proven [51].
Unfortunately, there exist many cases in which ergodicity is not fulfilled, e.g., high

energy barriers cannot be passed and prohibit the system to visit all microstates. Gen-
erally, simulation methods to overcome such barriers are called enhanced sampling
techniques and are important to ensure the generation of proper ensembles. They will
be briefly discussed in Section 2.3.5.

2.1.2 Microcanonical Ensemble
The microcanonical ensemble describes the collection of all microstates in a system
where the macroscopic variables N (number of particles), V (volume), and E (total
energy) are fixed. As the total energy is constant, all states have the same probability

Pi = 1
Ω(N, V,E)dE . (2.4)

ΩdE is the number of microstates with energy E ± dE
2 , which also fulfill the additional

constrains V and N . In this case, the entropy S is proportional to the number of
available states

S = kB ln (ΩdE) . (2.5)

2.1.3 Canonical Ensemble
Under conditions relevant to most experimental setups, the temperature is fixed, but
the energy can fluctuate through exchange with the surroundings. An ensemble with
fixed N , V , and T (absolute temperature) is termed the canonical ensemble. As not all

6



2.1 Basics of Statistical Thermodynamics

microstates of the ensemble have the same energy, they occur with different probabilities

Pi ∝ e−βEi , (2.6)

with Ei the energy of microstate i and β = 1
kBT

the inverse thermal energy, with kB
being the Boltzmann constant. This form of the weight Pi is called the Boltzmann
factor. As the probability function has to be normalized, one finds

Pi = e−βEi∑
j∈S

e−βEj
= Q−1e−βEi . (2.7)

The sum of all Boltzmann weights Q is called the canonical partition function. It can be
expressed as the Laplace transform of the microcanonical density of states function [52].

Q(N, V, T ) =
∫

dE Ω(N, V,E) e−βE (2.8)

Here Q was replaced by an integral under the assumption that the energy levels are
distributed continuously, but it can also expressed as a sum over discrete energy levels.
Hence, the value of Ω(N, V,E)dE equals the degeneracy of an energy level. Boltzmann
weighted averages are performed in the same manner as indicated in eq. (2.2) for the
microcanonical ensemble.
The partition function is the central quantity in statistical thermodynamics from

which the various thermodynamic properties can be derived. One of the most important
properties is the (Helmholtz) free energy:

A = 〈E〉 − TS = −β−1 lnQ (2.9)

The left hand side of the equation is the thermodynamic definition of the Helmholtz
energy, the right hand side connects it to the partition function. The ensemble average
of the energy is called the internal energy, sometimes denoted by U . To get a more
explicit expression for the entropy, one can use the partial derivative of the free energy
with respect to T , based on a fundamental thermodynamic relation, the total differential
of A

dA = −S dT − p dV + µ dN ,

where p is the total pressure and µ the chemical potential.

7



Chapter 2 Theory

S = −
(
∂A

∂T

)
N,V

= kB lnQ+ kBT

(
∂ lnQ
∂T

)
N,V

= kB

(
lnQ+ T

Q

∑
i∈S

Ei
KBT 2 e

−βEi

)

= kB

(
lnQ+

∑
i∈S

βEiPi

)

= kB

(∑
i∈S

Pi lnQ−
∑
i∈S

Pi ln e−βEi
)

S = −kB
∑
i∈S

Pi lnPi (2.10)

The last line is the Gibbs entropy formula, which also holds for the microcanonical
ensemble (compare eq. (2.5)).

2.1.4 Problems in Defining Microstates
For large systems, it can be cumbersome to work with microstates, as their number
is extremely high. Additionally, in the case of classical systems, the microscopic con-
figuration of coordinates and momenta is of little interpretational value. They are
nonetheless of interest, as the transition from one microstate to another is at the core of
kinetic theories such as Markov State Models [53–55]. Therefore, one has to define the
microstates. This is commonly done by projecting out many degrees of freedom from
the high dimensional coordinate and momenta space, and subsequently characterising
regions in the lower dimensional space as microstates.

For small systems, a partitioning into microstates can often be done empirically. For
example, in the case of a small dipeptide (doubly capped amino acid) in solution, one can
partition the plane spanned by the two central dihedral angles φ and ψ (Ramachandran
plane) into three ranges α, β, and Lα. The exchange between those three ranges
captures the main kinetics of the backbone, which is important in studying protein
motions. However, this completely neglects any vibrational motion or movement of the
side chains or surrounding solvent [56, 57]. Thus, when defining the states empirically,
one has to focus on those degrees of freedom relevant to the research question.

This approach can usually not be used for a large system, as the number of degrees of
freedom is exceedingly large. Here, clustering approaches are useful [58–60]. All in all,
determining sensible microstates is very difficult and subject of its own research area.
Hence, it will not be discussed any further here.

Instead of expressing the Boltzmann distribution as a function of microstates, we will
recast Pi as weight of an energy level Ei with degeneration gi (number of microstates
with the same energy).

Pi = gi
Q
e−βEi (2.11)
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2.1 Basics of Statistical Thermodynamics

2.1.5 Phase Space
In general, the motions of a classical system are governed by Newton’s equations of
motion

−∇U = m~a

where U is the potential energy (U is used to avoid confusion with the volume V ), which
depends only on particle positions.
As all simulations performed in this thesis were either purely classical or Born-

Oppenheimer MD, the motion of a particle can be fully described by its position ~r
and its conjugate momentum ~p. The total energy, H, is thus a function of the set of all
N positions, ~rN , and momenta, ~pN .

H
(
~rN , ~pN

)
= K

(
~pN
)

+ U
(
~rN
)

(2.12)

Here, K denotes the kinetic energy (K is used instead of T to avoid confusion with the
absolute temperature T ) which depends solely on the momenta.
The space spanned by the set of positions and momenta is called phase space. It

contains all possible configurations and momenta of the system. From here on, all
equations will be formulated in terms of integrals over phase space.

Q =
∑
i∈S

. . . ⇒ Q ∝
∫

d~rN
∫

d~pN e−βH(~rN ,~pN) (2.13)

The value of the prefactor depends on the composition of the system. For a system of
N indistinguishable particles it is 1

N !h3N [44–46].
The integral on the right hand side of eq. (2.13) makes it much clearer than the

sum on the left hand side that the exploration of the entire phase space during one
computer simulation is virtually impossible. Even very long simulations on modern
high performance computers do not explore all of phase space, as the potential energy
surface (PES) is often rough and prohibits uniform sampling. A system spends most
of the time in those regions of phase space which correspond to a local minimum on
the PES. That is, however, not a violation of eq. (2.3), as any average is dominated by
those parts of phase space with a low total energy, since they have the largest weights.
Note that the partition function can be expressed in terms of microstates, energy

levels, or phase space. It is sometimes convenient to switch between those expressions,
as one can be more informative than the other.

2.1.6 Integration of Kinetic Energy
As a Boltzmann factor is an exponential of the total energy, it factorizes since the energy
can be written as a sum of kinetic and potential energies, and thus we can separate
the multidimensional integral into coordinate and momentum parts. The integral over
coordinates contains the potential energy, which can rarely be evaluated analytically.
The kinetic energy, however, has always the same form and the corresponding integral
can be done analytically.

9



Chapter 2 Theory

Q = 1
N !h3N

∫
d~pN e−βK(~pN)

∫
d~rN e−βU(~rN)

= 1
N !h3N

∫ ∞
−∞

dpNx
∫ ∞
−∞

dpNy
∫ ∞
−∞

dpNz e
−β
(∑N

i=1
p2
i,x

+p2
i,y

+p2
i,z

2mi

) ∫
d~rN e−βU(~rN)

= 1
N !

N∏
i=1

(
2πmi

h2β

)3/2 ∫
d~rN e−βU(~rN)

= 1
N !

N∏
i=1

Λ−3
i

∫
d~rN e−βU(~rN) (2.14)

Λi is called thermal de Broglie wavelength of particle i with mass mi. If no particles
(atoms) are destroyed, created, or change their mass, this remains the same when
we manipulate the potential. Thus, we will focus on the integral over configuration
space

{
~rN
}
.

Q ∝
∫

d~rN e−βU(~rN) (2.15)

The configurational integral is often abbreviated with Z.

2.1.7 Free Energy Differences
Equation (2.14) shows that evaluating Q exactly is very difficult [61]. Even if the system
is constrained, the phase space spanned is still enormous. Hence, obtaining the free
energy from eq. (2.9), is impractical.
Free energy differences are sometimes more easily obtained:

∆A = −β−1 ln Q1

Q0
(2.16)

∆A denotes the difference in free energy between two systems 0 and 1, Q0 and Q1 are
the respective partition functions. This definition is very general. For example, the
two systems could be the same, except for different constraints like an added potential,
they could refer to different parts of phase space along a reaction coordinate, or even
to different systems. Here, we focus only on changes within the canonical ensemble,
meaning the total number of particles N always stays constant. The fraction in eq. (2.16)
is numerically more stable than the difference of two separately computed free energies.
If only the potential energy function changes the fraction reduces to

Q1

Q0
=

1
N !h3N

∫
d~pN e−βK(~pN)

∫
d~rN e−βU1(~rN)

1
N !h3N

∫
d~pN e−βK(~pN)

∫
d~rN e−βU0(~rN)

=

∫
d~rN e−βU1(~rN)∫
d~rN e−βU0(~rN) . (2.17)

10
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If the mass of one or more particles changes, the corresponding integrals over the kinetic
energy no longer cancel, which was for example the case in Publication I, where we
corrected the fraction of configuration integrals accordingly.

Q1

Q0
=

3NA∏
i

√
2πm1

i

β

∫
d~rN e−βU1(~rN )

3NA∏
i

√
2πm0

i

β

∫
d~rN e−βU0(~rN )

(2.18)

All thermal wavelengths of particles that retained their mass cancel out; only those that
differ between the two states 0 and 1 remain.
It is easier to calculate free energy differences for similar systems (or states) than

the free energy itself. The integral over those parts of phase space with a high energy
are going to be similarly small for both states, such that only the ratio of the sum of
large Boltzmann factors is important. This ratio converges faster, as those are the more
frequently visited regions of phase space. Mathematical manipulations that aide the
numerical stability of this fraction will be presented in Section 2.3.
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Chapter 2 Theory

2.2 The Vibrational Free Energy Hot-Spots Method
Here, the theory behind the analysis method that we term “vibrational free energy hot-
spots”, which has been published in Publications I and II, is derived. The method is
also dubbed density of states integration (DSI). For a complete discussion, we will also
look at translational and rotational expressions which are neglected in DSI and make
comparisons with the two-phase thermodynamic approach [62, 63] in Section 2.2.8.

2.2.1 Simple Systems
The simplest systems that can be described analytically with statistical mechanics are
monatomic ideal gases and solids, as the former exhibit only translational and the
latter only vibrational motions. A more complex system is a dilute molecular gas. The
molecules not only translate, but they also rotate and vibrate internally. As the gas is
presumed to be dilute, intermolecular interactions are neglected. Hence, the Hamiltonian
is a sum of energies associated with those three motions. Additionally, each molecule
has an electronic and nuclear energy associated with corresponding degrees of freedom.
Since intermolecular interactions are absent, we can write the partition function as

Q = Qtrans ×Qrot ×Qvib ×Qelec ×Qnuc . (2.19)

The electronic partition function is relatively simple, as it is a sum over the electronic
states

Qelec =
∞∑
i=0

gie
−βεi , (2.20)

where εi is the energy of electronic state i and gi is its degeneracy. This sum can be
reformulated with respect to the ground state energy ε0.

Qelec = e−βε0
(
g0 +

∞∑
i=1

gie
−β∆εi

)
(2.21)

For most molecules and especially for all of those considered here, the energy gap ∆εi
is very large in comparison with the thermal energy, and thus, all terms in the sum
in eq. (2.21) are close to zero. Therefore, only the exponential of the ground state
energy and its degeneracy remain. For closed shell molecules, the ground state is not
degenerate (g0 = 1).
The nuclear energy levels are even further apart than the electronic ones, such that

the above arguments apply here especially. The influence of degenerate ground states
is usually neglected. From here on, we will not consider the nuclear partition function
further.
Following the above arguments, the Helmholtz energy can be written as

A = ε0 + Atrans + Arot + Avib (2.22)

In the next three sections, we will examine the latter three contributions in detail.
We note here in passing that a liquid cannot be reduced to such terms easily, as it is
dense. The translation and rotations of a molecule are hampered through contact with
neighbouring molecules and intermolecular potentials cannot be completely neglected
either. We will return to this discussion at the end of Section 2.2.
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2.2 The Vibrational Free Energy Hot-Spots Method

2.2.2 Translation of Non-interacting Particles
In the solid phase, translation does not occur; in the liquid phase it is strongly hindered.
The only phase for which translation can be described analytically is the gas phase.
Here, the model of non-interacting spheres is used, i.e., all particles move unhindered
through space. The Hamiltonian for such a particle contains only the kinetic energy.
Using the results from Section 2.1.6, we can write the partition function of a single
particle as

Qtrans = 1
h3

∫
d~p e−βT (~p)

∫
d~r e−βU(~r)

= 1
h3

√
2πm
β

3 ∫
V

d~r e0

Qtrans = V

Λ3 , (2.23)

where Λ is again the thermal de Broglie wavelength and V is the volume available to
the particle. Boltzmann statistics, as employed in this work, are only valid for particles
where Qtrans has a value much greater than one. The same result can be derived from
the model of a quantum particle in a three-dimensional box [44–46].

2.2.3 Rotation
The arguments concerning the restriction of translation also apply to rotation. In
the dilute gas phase, the analytical model is the rigid rotor in an otherwise field free
environment. For a spherical rotor, the quantum mechanical problem yields the energy
levels

EJ = J(J + 1)B , (2.24)
where J is the quantum number and B the rotational constant, here defined in the
dimension of energy.

B = ~2

2I
I is the moment of inertia. The partition function of one molecule is the sum over
Boltzmann factors of energy levels EJ

Qrot =
∞∑
J=0

(2J + 1)e−βJ(J+1)B , (2.25)

and the prefactor corresponds to the degeneracy of those levels. At room temperature,
the difference between exponents becomes rather small, so that the sum can be converted
into an integral.

Qrot =
∫ ∞

0
dJ (2J + 1)e−βJ(J+1)B

=
∫ ∞

0
dJ(J + 1) e−βJ(J+1)B

Qrot = (βB)−1 (2.26)
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For a non-spherical particle, where the moment of inertia tensor has three different
components on its diagonal, the solution becomes

Qrot =
√
π

σ

(
T 3

ΘAΘBΘC

)1/2

. (2.27)

σ is the symmetry number of the molecule and Θ, the rotational temperature, is defined
as

ΘA = ~2

2IAkB
,

where IA is the principal moment of inertia about axis A.

2.2.4 Vibration
Vibrations are most easily treated by the harmonic oscillator model. The potential
energy of the harmonic oscillator is

VHO =
∑
i

ki
2 q

2
i , (2.28)

where ki are the force constants and qi the displacements from the minimum position. In
molecules, q is called a normal mode as the harmonic modes consist of collective motions
which are distinct from motions of single atoms, and are therefore not denoted with ∆~r.
Each harmonic oscillator has a characteristic angular frequency which is directly linked
to the force constant.

ω =
√
k

µ

µ is the mass associated with the motion.
For the classical harmonic oscillator, we obtain Q according to eq. (2.13)

QCL
HO = 1

h

∫
dp
∫

dq e−βH(p,q)

= Λ−1
∫ ∞
−∞

dqe−β k2 q2

=
√

2πµ
h2β

√
2π
βk

= 2π
hβ

√
µ

k

= 2π
hβω

QCL
HO = (βhν)−1 (2.29)

Hence, the free energy of a classical harmonic oscillator is

ACL
HO = β−1 ln βhν . (2.30)
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Thus, the free energy increases monotonously with the frequency and changes more
slowly with increasing frequencies (higher force constants).

dACL
HO

dν ∝ 1
ν

However, for weak force constants with hν lower than the thermal energy, the free
Helmholtz energy falls off steeply towards −∞ for decreasing frequency.

In the quantal case, the solution of the time-independent Schrödinger equation yields

Ev = hν
(1

2 + v
)
, v = 0, 1, 2, . . . (2.31)

where v is the quantum number. Therefore, the partition function is

QQM
HO =

∞∑
v=0

e−βhν(
1
2 +v)

= e−
βhν

2

∞∑
v=0

e−βhνv

= e−
βhν

2
1

1− e−βhν

QQM
HO =

(
e
βhν

2 − e−
βhν

2
)−1

, (2.32)

where the sum was evaluated by means of the formula for a geometric series. The free
energy of the quantum harmonic oscillator is thus

AQM
HO = β−1 ln

(
e
βhν

2 − e−
βhν

2
)
. (2.33)

Here, we notice that for large frequencies, the first term in the logarithm dominates and
the free energy increases linearly with increasing frequency, not logarithmically. For
small frequencies, the free energy behaves identically to the classical oscillator. But the
cross over to negative free energies is only slightly shifted to hν = 2 ln

(
1+
√

5
2

)
β−1 ≈

0.96β−1 and not simply hν = β−1 as in the classical case.
For the discussion of numerical stability, it is important to underline that, in the high

frequency regime, a change in the force constant or frequency of the oscillator has a
small effect (especially in the classical case) on the free energy. However, in the low
frequency regime, even a small change can have a huge effect.

2.2.5 Vibrational Density of States
Vibrational Density of States Function

A non-linear molecule with NA atoms has 3 translational, 3 rotational, and 3NA − 6
vibrational degrees of freedom. If all normal frequencies are known, the vibrational
partition function becomes the product of 3NA− 6 single harmonic oscillator functions

Qvib =
3NA−6∏
i=1

qvib(νi) , (2.34)
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where νi is the eigenfrequency of harmonic mode i and q its partition function. According
to eq. (2.9), the total free energy is a sum of the free energies of all modes.

βAvib = −
3NA−6∑
i=1

ln qvib(νi) (2.35)

This sum can be turned into an integral over frequencies by using a function D(ν) that
selects the frequencies present in the system.

βAvib = −
∫ ∞

0
dν D(ν) ln qvib(ν) (2.36)

D(ν) is called the vibrational density of states function (VDoS). It should not be
confused with the density of states function Ω, mentioned in the Section 2.1.2 on the
microcanonical ensemble. In the case of 3NA− 6 normal modes, D(ν) consists of a sum
of Dirac delta functions which transforms eq. (2.36) back to eq. (2.35).

D(ν) =
3NA−6∑
i=1

δ(ν − νi) (2.37)

The delta functions at negative frequencies have been omitted, as we integrate only over
positive values. Eq. (2.36) was originally used for solids, where the vibrations are, to a
good approximation, harmonic. The same applies to molecular vibrations in the dilute
gas phase. In solution, however, motions are constrained, causing vibrational motion to
become anharmonic. Thus, D(ν) becomes more complex than a sum of delta functions.
For a real system the frequencies of the vibrational modes are not known a priori.

In order to estimate Avib or Qvib one has to determine D. It has been shown that
one can extract the VDoS from the Fourier transform of the velocity autocorrelation
function [64]

D(ν) =
∫ ∞
−∞

dt C(t) e−i2πνt , (2.38)

where the autocorrelation function is usually defined as:

C(t) = 〈v(t)v(0)〉
〈v(0)2〉

(2.39)

Following this definition, the autocorrelation function is normalized for the time lag
t = 0 and dimensionless. The averaging indicated by the brackets is performed over
different simulations or origins in time along the simulation:

〈v(t)v(0)〉 = 〈v(t+ τ)v(τ)〉τ = 1
ttotal − t

∫ ttotal−t

0
v(t+ τ)v(τ)dτ

As we were interested in the relative amplitudes of the motions within a molecule and
the motions of different species of atoms, we followed the derivation of Berens et al. [13]
and used the definition

D(ν) = 2β
NA∑
i=1

mi <
{∫ ∞
−∞

dt 〈~vi(t+ τ)~vi(τ)〉τ e
−i2πνt

}

= 4β
NA∑
i=1

mi

∫ ∞
0

dt 〈~vi(t+ τ)~vi(τ)〉τ cos (2πνt) , (2.40)
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where mi is the mass of atom i and < is the real part of the Fourier transform. In all our
studies, we performed the average of eq. (2.40) over at least 10 simulations. According
to the equipartition theorem, the vibrational density of states function, defined in
eq. (2.40), has to fulfill ∫ ∞

0
dν D(ν) = 3NA (2.41)

irrespective of whether a harmonic approximation is invoked or not. A detailed discussion
and derivation can be found in Ref. [13], where the above expressions were developed
to estimate the difference between a classical and quantum mechanical description of
vibrations and to correct corresponding free energy values for nuclear quantum effects.

As a side note, our numerical experiments had a finite time resolution of 1 fs (frequency
with which data were saved) which limits ν to 5 · 1014 Hz or 16 678 cm−1. This upper
limit is sufficient for capturing all vibrational motions in molecules, as the fastest
intramolecular vibrations are below 4 000 cm−1 [65].
There are two more frequently used methods (vide infra) to determine D(ν), even

though their connection to the VDoS is rarely acknowledged explicitly. Both approx-
imate the potential energy with harmonic functions and yield a result according to
eq. (2.37).

U(~rN) ≈ U0 +
∑
i,j

kij∆xi∆xj (2.42)

Here xi is any Cartesian or normal mode component, ∆xi a displacement from the
minimum, and U0 the value of the potential energy at the minimum.

Normal Mode Analysis

The most commonly used method is the normal mode analysis (NMA) [66, 67], which
calculates the Hessian Matrix

Hij = ∂2U

∂xi∂xj

at the global minimum configuration. The diagonalization of H yields the eigenfre-
quencies νi, which are then used to calculate the vibrational free energy according
to eq. (2.35). With increasing molecule size, the determination of the minimum con-
figuration as well as the construction and diagonalization of H become prohibitively
expensive.

Quasi-harmonic Analysis

The other method, which is in spirit similar to the DSI determination of the VDoS,
is called the quasi-harmonic analysis (QHA) [68, 69]. It uses information from MD
simulations to determine the vibrational frequencies, and thus circumvents the search
for a minimum. The frequencies νi are obtained by diagonalizing the mass weighted
covariance matrix [

M
1
2 σM

1
2 − β−1ν

]
M

1
2 ∆x = 0 , (2.43)

where M contains the atomic masses on the diagonal and σ is the covariance matrix,
defined as

σij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 . (2.44)
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The indicated ensemble averages are performed over all trajectory frames.
If the system is truly harmonic, all three methods yield exactly the same result.

NMA calculates the effect of small vibrations around the minimum and is numerically
exact for small temperatures. In the case of high temperatures, it neglects the effect
of occurring anharmonicities. QHA uses the distribution of coordinates to calculate
the frequencies. In the harmonic case, these distributions are Gaussian functions.
Any anharmonic behaviour smears out those distributions, and therefore leads to an
underestimation of the vibrational frequencies. Eqs. (2.40) and (2.36) do not suffer from
this underestimation of frequencies; there, D(ν) itself is uncoupled from a harmonic
approximation. The harmonic approximation enters the calculation of the vibrational
free energy through the weighting function representing the partition function of the
harmonic oscillator. One can interpret eq. (2.36) as a weighted combination of an
infinite number of harmonic oscillators, which is not restricted to 3NA distinct ones. In
this way, it captures deviations from perfect harmonic behaviour much better. However,
movements across local maxima of the PES cannot be correctly described by any of
those methods.

2.2.6 Partitioning the Vibrational Density of States Function

All aforementioned methods are similar in the way that they make use of eq. (2.36),
but there is one important difference. NMA and QHA calculate normal modes, which
are collective motions of the atoms in a molecule. They only allow a separation of
the vibrational free energy into the energies of the modes. The definition in eq. (2.40),
however, enables the determination of atomic contributions to the vibrational free energy,
as it is a superposition of atomic functions

D(ν) =
NA∑
j=1

Dj(ν) , (2.45)

where Dj(ν) is the VDoS of atom j. This allows the vibrational partition function to
be written without any loss of generality as

Qvib =
NA∏
j

∏
i

q(νi)Dj(νi)

=
NA∏
j

Qvib(j) , (2.46)

because

NA∏
j

q(νi)Dj(νi) = q(νi)D(νi) . (2.47)
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Therefore, the vibrational free energy can be expressed as a sum over single atom
contributions

Avib = −β−1 lnQvib

= −β−1 ln
NA∏
j

Qvib(j)


= −β−1
NA∑
j

lnQvib(j)

=
NA∑
j

Avib(j) . (2.48)

This partitioning of the vibrational free energy is very flexible. Without any additional
approximation, it can be defined for meaningful sets of atoms, e.g., all atoms of a
functional group or of an amino acid residue in a protein. This ansatz can be used as
an aide in the interpretation and especially the localization of changes occurring in the
system.

Note that this method focuses on the vibrational and not the total free energy, which
cannot be partitioned without sometimes severe approximations [70–73].

2.2.7 Definition of Hot-Spots
As aforementioned, free energy differences are numerically easier to obtain than absolute
values [61]. However, the above presented vibrational density of states method does in
principle estimate absolute vibrational free energies. When interpreting large changes
in the vibrational free energy computed via the VDoS, it is assumed that these changes
co-localize with regions within the system that mainly contribute to the total free energy
change.

When performing the density of states integration, the main obstacle are slow modes
which have small frequency values and converge slower than fast modes, as longer
simulation times are needed to characterize them correctly. As pointed out above, the
harmonic partition function changes rapidly for frequencies with hνβ < 1. Therefore,
numerical noise and convergence problems have an especially large impact in this region
of the spectrum. Computing the vibrational free energy difference between two states
can only overcome the numerical instability partially. Most of the numerical noise cancels
out, but deviations in the density of states spectrum due to insufficient convergence
will still have a large impact on the final result. These problems were studied in detail
in Publication I. In general, we compute the vibrational free energy change as the
integral over the vibrational density of state difference spectrum.

∆D(ν) = D1(ν)−D0(ν) (2.49)

∆Avib = −β−1
∫ ∞

0
dν ∆D(ν) ln qvib(ν) (2.50)

Very recently, an approach has been developed that uses the velocity autocorrelation
function instead of the VDoS, which is then also combined and integrated with a
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weighting function [74]. This ansatz circumvents the double integration of the velocity
autocorrelation function (Fourier transform followed by integration with weighting
function) and uses weighting functions for the Helmholtz free energy, which do not
approach −∞ for t → 0. It might, therefore, present a possible improvement to our
protocol with regards to numerical stability.

As we developed the DSI not for the calculation of free energy difference values, but
for their interpretation, we use a property of vibrational modes that makes this method
very useful, namely the locality of a mode. Fast modes are always strongly localized,
e.g., bond vibrations almost exclusively include the two atoms forming the bond. Also
bond angle and many dihedral angle vibrations can be considered fast and local with
respect to the number of involved atoms and frequency. Much slower modes, often
called lattice vibrations, occur where the whole or large parts of a molecule moves,
and the mode is thus said to be delocalized. Those modes are very hard to interpret,
both because of their complex behaviour and their contributions to the vibrational free
energy is smeared over many atoms.
We have defined hot-spots as small regions of a molecule where the vibrational free

energy per atom changes significantly between two states. Those hot-spots are easier
to interpret as they are local and numerically more stable, since they correspond to
changes in high frequency modes.
Differences in the internal energy or entropy can be retrieved in exactly the same

manner as for the free energy, namely integrating the product of VDoS and a weighting
function. To do so, one has to substitute −β−1 ln qvib(ν) in the integral by the respective
derivatives,

(
−∂ ln qvib(ν)

∂β

)
and

(
∂β−1 ln qvib(ν)

∂T

)
, as U = ∂βA

∂β
and S = −∂A

∂T
. This puts

all these three quantities on the same footing. Usually entropy and internal energy
differences are not as easily available as differences in the free energy itself [75, 76];
their values can be very informative about whether a process is more energetically or
entropically driven [61].

2.2.8 Differences between DSI and the Two-Phase Model
An approach that covers all kinds of internal motions has been used by the group of
Goddard [62, 63]. They designed a model which estimates the full partition function
(translation, rotation, and vibration) in the same manner, by computing and integrating
density of states spectra for each kind of motion Dtrans, Drot, and Dvib. It is called
the “two-phase thermodynamics” model (2PT). First, they separate off the center of
mass movement, one ~vtrans(t) per molecule. Afterwards, they determine the angular
velocity of each molecule as ~ω(t) and subtract it from their velocity vectors as well.
The remaining atomic velocities contain only vibrations. The separation of velocity
components is necessary, since including translational and rotational motions in the
vibrational density of states function would artificially increase low-frequency modes.
Consequently, they determined three density spectra, one vibrational Dvib as described
in eq. (2.40), one translational Dtrans where they use the total mass of the molecule
instead of an atom, and the rotational density Drot according to

Drot(ν) = 2β
3∑

A=1
IA <

{∫ ∞
−∞

dt 〈ωA(t+ τ)ωA(τ)〉τ e
−i2πνt

}
,
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where IA is again the principal moment of inertia about the A axis and ωA is the
corresponding angular frequency.
As described above, the best analytical models can be constructed for solids, which

only exhibit vibrations, and gases that are so dilute that translation and rotation can be
described in a field free environment. Lin et al. [62, 63] approximate the liquid state as
a linear combination of a gas-like and a solid-like component. They split Dtrans and Drot
into solid and gas parts, according to a “fluidicity” parameter f [62, 63]. All solid-like
components and Dvib are multiplied by the partition function for the harmonic oscillator
(eq. (2.29) or eq. (2.32)) and integrated as described above in eq. (2.36). Similarly, the
gas-like translational density spectrum is multiplied by the partition function for the
ideal gas (eq. (2.23)) and the rotational density spectrum is multiplied by the partition
function for the rigid rotor (eq. (2.25)). The reference energy V0 or ε0 (compare eq. (2.22)
or eq. (2.42)) is defined as the difference between the total energy and the vibrational
energy corrected by the rotational and translational fluidicities.

V0 = EMD − 3β−1NA(1− 0.5ftrn − 0.5frot)

This model was employed to estimate thermodynamic properties for molecular liquids [63,
77]. We have not used the solid-gas model for two reasons: First, we do not aim
to compute absolute thermodynamic properties, and second, the translational and
rotational degrees of freedom do not allow for any form of localization. Any microscopic
analysis can only be performed per molecule, e.g., studying differences in entropy within
a mixture.
A local resolution was achieved by the group of Heyden, who studied the solvation

entropy of small organic solutes [78] and proteins [79]. They introduced a grid of
volume boxes (“voxels”) centred around the solute and created spatially resolved VDoS
spectra which they treated with the 2PT formalism to obtain a spatially resolved
translational and rotational entropy function. They computed the difference between
the local entropy close to the solute and the bulk value to get a spatial resolution of the
solvation entropy. This helped them to distinguish strongly and weakly bound water
molecules [80]. However, this local resolution can only be performed for the solvent not
the solute, as long as translation and rotation are included. Due to the size of each
voxel, there is only enough data for the solvent.
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2.3 Coordinate-based Free Energies
Contrary to the vibrational free energy hot-spots, the methods presented in this section
do not depend on the velocities, but rather on the configurations created by means
of MD or MC simulations. In most of the following equations concerning free energy
differences, it is assumed that the kinetic energy contributions cancel exactly. In case
they do not cancel, a correction according to Section 2.1.6 has to be added.

Two kinds of free energies will be discussed in this section as they have been applied
in this research. The first is the difference in free energy between two systems (0 and
1) that have different potential energy functions.

β∆A = − ln Q1

Q0
= − ln

∫
d~rN e−βU1(~rN )∫
d~rN e−βU0(~rN )

(2.51)

Here ∆A denotes the difference ∆A = A1 − A0. In the following, all differences with a
∆-sign denote the “forward” direction, i.e., ∆U = U1 − U0 or ∆H = H1 −H0.

The second kind is the free energy as a function of a reaction coordinate ξ, which is
generally a function of many atomic coordinates. For generality, it is expressed here as
a function of all coordinates, ξ = ξ(~rN). Therefore, it is often referred to as collective
variable. A(ξ) is given as

βA(ξ) = − ln Z−1
∫

d~rN δ
(
ξ(~rN)− ξ

)
e−βU(~rN ) . (2.52)

2.3.1 Free Energy Perturbation Theory
Introduction

The central idea of perturbation theory can be summarized as follows. One starts with
a system that can be solved exactly or with sufficient accuracy, which is called the
reference or unperturbed system. The target system is then cast as a perturbation to
the reference. The effect of the perturbation is expanded in a series of the perturbation
parameter which is usually small. It is expected that this series converges quickly and
allows truncation after the first few terms [14, 81, 82].

However, computer simulations have rendered such an expansion unnecessary and the
equation behind free energy perturbation (FEP) has very little resemblance with the
original perturbation formalism. The name has been kept nonetheless. In recent years,
it has also been called exponential averaging (EXP) to avoid the term perturbation. It
is a widely used technique [83–85] that also forms the basis for many other free energy
difference formulas, some of which will be discussed later. To state the importance of this
method: “FEP is not only the oldest but also one of the more useful, general-purpose
strategies for calculating free energy differences.” [61]

Derivation

The target Hamiltonian H1 differs from the unperturbed system H0 by the amount of
the perturbation ∆H

H1 = H0 + ∆H (2.53)
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2.3 Coordinate-based Free Energies

Following eq. (2.16), one can derive:

e−β∆A = Q1

Q0
=

∫ ∫
d~rN d~pN e−βH1∫ ∫
d~rN d~pN e−βH0

=

∫
d~rN e−βU0e−β∆U∫

d~rN e−βU0

=
∫

d~rN P0(~rN)e−β∆U

= 〈e−β∆U〉0

The last line is the central equation of FEP. It states that the change in free energy ∆A
can be computed as the ensemble averaged exponential of the energy difference over
configurations from system 0 alone. As computer simulations do not require analytically
solvable reference, one can also obtain the free energy difference from simulations of
system 1:

β∆A = − ln 〈e−β∆U〉0 (2.54)

β∆A = ln 〈eβ∆U〉1 (2.55)
Similar expressions can be derived for any observable for which one wants to obtain an
ensemble average in a system that is not explicitly simulated.

Interpretation and Limits

Both expressions in eq. (2.54) or eq. (2.55) are exact and should yield the same result.
In practice, however, that is rarely the case. The two ensemble averages do not neces-
sarily show the same convergence behaviour. It is informative to switch to the energy
representation instead of the phase space formulation [12].

e−β∆A =
∫

d∆U P0 (∆U) e−β∆U (2.56)

This one-dimensional integral runs over the difference in potential energy between
systems 0 and 1. The integrand contains an exponential of the energy difference and
the distribution in ensemble 0 of the difference. For large systems, which contain many
particles that undergo many random movements, P0(∆U) can, because of the central
limit theorem [86], be assumed to form a Gaussian distribution. The result is depicted
in Figure 2.1. The majority of the area under the curve of the integrand in eq. (2.56)
lies in a region where P0 is very small, i.e., the value of the integrand depends on a
region of P0 which is not well known. Thus, the integral is reliable only if the systems
are sufficiently similar and P0 is very narrow. Methods that extract information about
the insufficiently sampled regions from the well known part of P0 are available [87–90].
Often, equations (2.54) and (2.55) do not converge to the same values, which has

to do with where the system’s important regions are located in configuration space
relative to one another. If those highly populated areas overlap, the forward and
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Figure 2.1: Depiction of the integrand in eq. (2.56) and its components. The perturbation ∆U
is given in units of β−1. The distribution P0(∆U) is a normalized Gaussian with
mean zero and a variance of 4β−2. The blue integrand is the product of the two
black curves. The shaded area lies outside of three times the confidence interval of
P0, and is thus obtained with very little accuracy.

backward perturbations are similar (Fig. 2.2a). If the two are disjoint, neither forward
nor backward perturbations will produce a reliable result (Fig. 2.2b). In the case where
one envelops the other, the transformation from the enveloping distribution to the
enveloped one will be far more accurate than any result derived from the opposite
transformation (Fig. 2.2c). However, for real systems it is usually unknown how the
important regions are located with respect to one another.

Determining changes in entropy and enthalpy, which constitute the free energy change,
are not as simple to derive as the free energy itself. The equations are not as numerically
stable as the pure free energy [76]. Therefore, it is not as simple to split the full free
energy into enthalpy and entropy as can be done with the DSI result.

2.3.2 Stratification or Staging
As mentioned above, free energy differences suffer from two problems that are both
related to the Boltzmann distributions of states 0 and 1. If the distributions are
sufficiently similar, the distribution of energy differences and the overlap of important
regions are both well behaved. Using that the free energy is a state function, one can
choose stages between the endpoints of the transformation (states 0 and 1) that mitigate
these problems [91]. It is common to sample systems of a mixed Hamiltonian.

H(λ) = (1− λ)H0 + λH1 (2.57)

The Hamiltonian H(λ) interpolates between the end states and enables the creation of
ensembles that connect the end points. A linear formulation is not necessary, but popu-
lar [61]. The intermediates do not have to be physically meaningful. The Hamiltonian
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H(λ) fulfills the following properties:

H(0) = H0

H(1) = H1

The difference between two adjacent interpolated Hamiltonians is:

∆Hi = H(λi+1)−H(λi) = ∆λi∆H (2.58)

Note that ∆H is the difference between the two end-point Hamiltonians. Using those
intermediate stages, the total free energy change can be calculated. If there are n stages
including the two end states, we get by using only the potential energy

β∆A =
n−1∑
i=i

β∆Ai = −
n−1∑
i=i

ln 〈e−β∆Ui〉λi = −
n−1∑
i=i

ln 〈e−β∆λi∆U〉λi . (2.59)

There is no ideal way of choosing n and ∆λi. For n, one has to balance numerical
accuracy and computational effort, and the change in λ is ideally chosen in a way that
there are more stages close to the end points than in the intermediate range, as the
convergence to the end points is the more critical part.

2.3.3 Using Forward and Backward Perturbations
As pointed out in the Section 2.3.1 on free energy perturbation, there are two ways
of calculating the free energy difference, a forward or a backward manner (eqs. (2.54)
and (2.55)), which are in principle equivalent, but do not always yield the same result.
However, it seems reasonable to extract information from both forward and backward
perturbations.
On first glance, the easiest way to do so appears to be the mean of a forward and

backward perturbation.

β∆A = 1
2
(
ln 〈eβ∆U〉1 − ln 〈e−β∆U〉0

)
The above average is, however, often worse than one of the perturbations alone, since
the distributions P (∆U) are not the same for forward and backward perturbations, so
that one result is typically more reliable than the other.

An improvement in the use of both forward and backward information is simple overlap
sampling (SOS) [92]. Here, one uses the simulation data of two adjacent stratification
stages to calculate the free energy difference via a not-simulated additional intermediate.

β∆Ai = − ln
(
〈e−β∆Ui/2〉0
〈eβ∆Ui/2〉1

)
(2.60)

In this way, one can make the distribution P (∆U) narrower without an extra simulation
for the artificial midpoint. There are other formulas that make use of the forward and
backward perturbations. The next section will deal with one of the better known
methods.
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(a)

(b)

(c)

Figure 2.2: Panels in the left column depict the Boltzmann distributions of system 0 (blue)
and system 1 (orange) in the x,y-plane. The right column shows the corresponding
distributions of the potential energy difference P (∆U). (a) The distributions overlap
and FEP will give similar results for either forward or backward perturbation. (b)
The important areas of the Boltzmann distributions are far removed from on another
and the distributions P (∆U) have no overlap. Either perturbation will predict the
wrong result. (c) Boltzmann distribution 0 envelops 1, thus the forward perturbation
will be very accurate whereas the backward perturbation misses important regions
of system 0.
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2.3.4 Bennett’s Acceptance Ratio
Bennett’s Acceptance Ratio (BAR), derived in 1976 [15], uses the information on both
forward and backward perturbations. The formula aims at minimizing the variance in
the free energy estimate. In the following derivation, Bennett’s reasoning is used, but
with more explicit intermediate steps, as the original paper itself is very brief.

The free energy difference defined in eq. (2.16) is a function of the ratio of partition
functions (∆A ∝ ln Q0

Q1
), which in eq. (2.17) is reduced to an integral over configuration

space (using only the potential energy function). The fraction can be expanded with
an integral over Boltzmann factors to turn it into a ratio of ensemble averages instead

Q0

Q1
=
Q0

∫
d~rN W (~rN)e−βU0(~rN )−βU1(~rN )

Q1

∫
d~rN W (~rN)e−βU0(~rN )−βU1(~rN )

= 〈We−βU0〉1
〈We−βU1〉0

, (2.61)

where W can be any finite function that has no roots. This is necessary to ensure
that the integrals used in numerator and denominator do not vanish. Without loss of
generality we can assume W (~rN) > 0.

For brevity’s sake, the argument of the potential energy functions U0 and U1, as well
as that of the function W , will be omitted in the following equations. In numerical
evaluations of the ensemble averages as sums over trajectory frames, the index naming
one configuration i will be added as an argument to the function, e.g., U0(~rNi ) = U0(i).

Assuming that simulations of the states 0 and 1 have been carried out with trajectories
of length n0 and n1, respectively, the exact estimate (integral over configuration space)
of the free energy difference between states 0 and 1 using eq. (2.61) is

β∆Aexact = ln 〈We−βU0〉1
〈We−βU1〉0

, (2.62)

whereas the numerical value of this difference based on the trajectories of length n0 and
n1 is obtained with

β∆Anum = ln
 1

n1

∑n1
j W (j)e−βU0(j)

1
n0

∑n0
i W (i)e−βU1(i)

 . (2.63)

The dimensionless expected squared deviation between ∆Aexact and ∆Anum is:

〈(β∆∆A)2〉 = σ2 = 〈β2 (∆Anum −∆Aexact)2〉

σ2 =
〈ln

 1
n1

∑n1
j W (j)e−βU0(j)

1
n0

∑n0
i W (i)e−βU1(i)

− ln
(
〈We−βU0〉1
〈We−βU1〉0

)2〉

=
〈ln

 1
n1

∑n1
j W (j)e−βU0(j)

〈We−βU0〉1

− ln
 1

n0

∑n0
i W (i)e−βU1(i)

〈We−βU1〉0

2〉
(2.64)
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If the sample size is large, the numerical averages are close to the exact ensemble
averages, i.e., the argument of the logarithm is close to 1, thus ln x ≈ x− 1.

σ2 =
〈 1

n1

∑n1
j W (j)e−βU0(j)

〈We−βU0〉1
− 1−

1
n0

∑n0
i W (j)e−βU1(i)

〈We−βU1〉0
+ 1

2〉

=
〈 1
n2

1

(∑n1
j W (j) e−βU0(j)

)2

〈We−βU0〉21
− 2

1
n0n1

(∑n0
i W (i) e−βU1(i)

) (∑n1
j W (j) e−βU0(j)

)
〈We−βU1〉0 〈We−βU0〉1

+
1
n2

0

(∑n0
i W (i) e−βU1(i)

)2

〈We−βU1〉20

〉

=
〈 1
n2

1

(∑n1
j W 2(j) e−2βU0(j) +∑n1

j

∑n1−1
j′,j′ 6=jW (j) W (j′) e−βU0(j)e−βU0(j′)

)
〈We−βU0〉21

− 2
1

n0n1

(∑n0
i W (i) e−βU1(i)

) (∑n1
j W (j) e−βU0(j)

)
〈We−βU1〉0 〈We−βU0〉1

+
1
n2

0

(∑n0
i W 2(i) e−2βU1(i) +∑n0

i

∑n0−1
i′,i′ 6=iW (i) W (i′) e−βU1(i)e−βU1(i′)

)
〈We−βU1〉20

〉

Now the expected value operator (〈 〉) is applied to every term individually.

σ2 =
1
n1

〈
W 2e−2βU0

〉
1

+ n1(n1−1)
n2

1

〈
We−βU0

〉2

1

〈We−βU0〉21
− 2〈We−βU1〉0 〈We−βU0〉1
〈We−βU1〉0 〈We−βU0〉1

+
1
n0

〈
W 2e−2βU1

〉
0

+ n0(n0−1)
n2

0

〈
We−βU1

〉2

0

〈We−βU1〉20

σ2 =

〈
W 2e−2βU0

〉
1

n1 〈We−βU0〉21
+

〈
W 2e−2βU1

〉
0

n0 〈We−βU1〉20
− 1
n0
− 1
n1

(2.65)

This expression can be used to minimize the squared deviation with respect to the
choice of function W . The ensemble averages from eq. (2.65) are written out explicitly
as functional σ2[W ].

σ2[W ] =

∫
d~rN W 2e−2βU0e−βU1Q−1

1

n1

(∫
d~rN We−βU0e−βU1Q−1

1

)2 +

∫
d~rN W 2e−2βU1e−βU0Q−1

0

n0

(∫
d~rN We−βU1e−βU0Q−1

0

)2 −
1
n0
− 1
n1

=

∫
d~rN

(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
W 2e−βU0e−βU1

(∫
d~rN We−βU1e−βU0

)2 − 1
n0
− 1
n1

(2.66)

To obtain the minimal squared deviation, one needs the functional derivative of σ2[W ]
with respect to W . Using a test function φ, the stationary point can be determined
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according to:

d
dεσ

2[W + εφ]
∣∣∣∣∣
ε=0

= d
dε

∫
d~rN

(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
(W + εφ)2e−βU0e−βU1

(∫
d~rN (W + εφ)e−βU1e−βU0

)2 − 1
n0
− 1
n1

∣∣∣∣∣∣∣∣∣
ε=0

=

∫
d~rN

(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
2We−βU0e−βU1φ(∫

d~rN We−βU1e−βU0

)4

(∫
d~rN We−βU1e−βU0

)2

−

∫
d~rN

(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
W 2e−βU0e−βU1

(∫
d~rN We−βU1e−βU0

)4

× 2
∫

d~rN We−βU1e−βU0
∫

d~rN φe−βU1e−βU0 != 0 (2.67)

∫
d~rN

(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
We−βU0e−βU1φ ×

∫
d~rN We−βU1e−βU0 =∫

d~rN
(
Q0

n0
e−βU1 + Q1

n1
e−βU0

)
W 2e−βU0e−βU1 ×

∫
d~rN φe−βU1e−βU0 (2.68)

At the stationary point of the functional σ2[W ], eq. (2.68) has to be fulfilled for any
arbitrary function φ. The products on both sides of the equation contain one term
with and one term without φ. As φ is arbitrary, the terms containing φ and the terms
without φ have to be pairwise equal. Hence,

W ∝ 1
Q0
n0
e−βU1 + Q1

n1
e−βU0

. (2.69)

This choice of W minimizes the squared error of an estimated free energy difference. To
get the working equation, which is referred to as BAR, one needs to insert the optimal
W into eq. (2.61).

Q0

Q1
= 〈We−βU0〉1
〈We−βU1〉0

=

〈
e−βU0

Q0
n0
e−βU1+Q1

n1
e−βU0

〉
1〈

e−βU1
Q0
n0
e−βU1+Q1

n1
e−βU0

〉
0

=

〈
1

Q0
n0
e−β∆U+Q1

n1

〉
1〈

1
Q0
n0

+Q1
n1
eβ∆U

〉
0

=

〈
n1
Q1

Q0n1
Q1n0

e−β∆U+1

〉
1〈

n0
Q0

Q1n0
Q0n1

eβ∆U+1

〉
0

=

〈
1

e
ln Q0n1
Q1n0

−β∆U
+1

〉
1〈

1

e
− ln Q0n1

Q1n0
+β∆U

+1

〉
0

Q0n1

Q1n0
(2.70)
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The function inside the ensemble average brackets is the Fermi function f(x) = (ex+1)−1.
The logarithm of the above expression yields the free energy difference:

0 = ln

〈
f
(
−β∆U − ln n0

n1
+ β∆A

)〉
1〈

f
(
β∆U + ln n0

n1
− β∆A

)〉
0

+ ln n1

n0
(2.71)

0 = ln
∑n1
j f

(
−β∆U(j)− ln n0

n1
+ β∆A

)
∑n0
i f

(
β∆U(i) + ln n0

n1
− β∆A

) (2.72)

Eq. (2.71) is the analytical result and eq. (2.72) the numerical equivalent, which has
to be used for evaluating trajectory data. Note that the definition of the free energy
difference is implicit. Thus, BAR has to be solved iteratively.

Eq. (2.71) has been derived by Shirts et al. [93] by a maximum-likelihood formulation
of the free energy problem. Therefore, given a certain data set, the BAR method yields
the most likely result and has the smallest possible squared error. It is practically and
numerically superior to free energy perturbation [85, 94, 95] as well as thermodynamic
integration [82]. In Publication I, we used the BAR estimator to determine the
accuracy of the vibrational hot-spots method. Even though the hot-spots are not
designed to yield precise free energy differences, it is important that the results show
the correct behaviour in order to use it as an interpretation tool.

2.3.5 Free Energy along a Reaction Coordinate and Umbrella
Sampling

Free Energy as function of ξ

Computing the free energy as a function of a variable ξ is conceptually a relatively simple
task. In practice, the Boltzmann distribution P (ξ) is approximated as a histogram along
the reaction coordinate.

P (ξ) =
∑n
i δ
(
ξ(~rNi )− ξ

)
n

(2.73)

Numerically, the delta function is evaluated with a certain histogram bin width around
ξ where it is equal to 1, and n is again the number of simulation frames. The free energy
is then simply:

A(ξ) = −β−1 lnP (ξ) (2.74)

Umbrella Sampling

In most applications, ξ describes a process connecting several regions in configuration
space. Those are often minima on the potential energy surface. However, minima are
separated by free energy barriers, such that exchange between them is rare. Therefore,
trajectories spend very little time in the transition area or do not venture into that
region at all during a simulation of normal duration. Hence, a histogram generated from
one trajectory contains very few or no data for the transition region or both minima,
which in turn results in bad estimates of the free energy in those regions.

30



2.3 Coordinate-based Free Energies

Techniques to overcome the problem of insufficient sampling of high energy regions
are dubbed importance sampling [11, 96]. One class of importance sampling methods
aims to modify the potential energy surface in such a way that all regions of ξ are
sampled with the same frequency. Well known methods are, for example, exponential
flooding [97] and metadynamics [98]. They introduce a time-dependent potential that
“learns” from the previous simulation and aims to flatten the free energy surface along
ξ so that the dynamics become diffusive. A time-independent approach is utilized by
the Umbrella Sampling method [12]. Here, one adds a biasing potential to increase the
duration of stay in a certain region of configuration space. Ideally, this potential has the
same effect as the time-dependent potentials and flattens the potential energy surface
significantly, allowing for more diffusive dynamics. A good choice of biasing potential
requires knowledge of the underlying energy surface. It has become very popular to
choose harmonic biasing potentials [99–101]

Bi(ξ) = ki
2 (ξ − ξi)2 , (2.75)

where the index i indicates a given biasing potential window along the reaction path
and ki is the corresponding force constant. These windows have the same effect as
staging and allow for a parallelization of the computational effort.

Removing Biasing Potentials

The Boltzmann distribution of the reaction coordinate in the biased ensemble PB(ξ) is
given as

PB(ξ) =

∫
d~rN δ

(
ξ(~rN)− ξ

)
e−β(U0+B)∫

d~rN e−β(U0+B)
= 1
QB

∫
d~rN δ

(
ξ(~rN)− ξ

)
e−β(U0+B) (2.76)

U0 denotes here the original potential energy function.
The unbiased distribution can recovered by [91, 102]

P0(ξ) = 1
Q0

∫
d~rN δ

(
ξ(~rN)− ξ

)
e−βU0

= 1
Q0

∫
d~rN δ

(
ξ(~rN)− ξ

)
e−βU0e−βBe+βB

=e
+βB(ξ)

Q0

∫
d~rN δ

(
ξ(~rN)− ξ

)
e−βU0e−βB

=PB(ξ)QB

Q0
e+βB(ξ) (2.77)

and inserting this into eq. (2.74) yields

A0(ξ) = AB(ξ)−B(ξ)− β−1 ln QB

Q0
. (2.78)

The last term is the free energy difference between the biased and unbiased system. It
corrects the absolute free energy values for the influence of the biasing potential. If
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only one biasing potential has been used, this correction can be neglected, as only the
relative values of A0(ξ) along ξ are of interest. However, when several different biasing
potentials have been used, it is important to determine these corrections to obtain one
continuous free energy surface, as each simulation contributes only fragments.
In principle, this free energy difference can be calculated via FEP or BAR. It is

desirable, however, to use the information from all simulations which overlap along
ξ and to compute the alignment free energy differences −β−1 ln QB

Q0
simultaneously to

have similar precision. The following section derives such algorithms.

2.3.6 WHAM and MBAR
Nowadays, there are a number of methods that can extract the original free energy
surface A0(ξ) from different biased simulations, which have potentially been carried
out at different temperatures. WHAM [103] and MBAR [30] need equilibrium data,
which are ideally not correlated. Umbrella integration combines umbrella sampling
with thermodynamic integration by assuming that the values of the reaction coordinate
within one umbrella window are in fact Gaussian distributed [100, 104]. DHAM [105]
and DHEMed [106] are based on a kinetic approach within the Markov State Model
framework, and TRAM [107], as it estimates multiensemble Markov models, is the
generalization to all of them.
As this thesis does not use Markov models, the focus in this section is on WHAM

and MBAR.

WHAM

The first algorithm to combine the data from several umbrella window simulations was
the Weighted Histogram Analysis Method (WHAM). It is able to combine data not only
from simulations with different biasing potentials, but also from simulations at different
temperatures.
The original WHAM formulation assumes that the overall potential U in one sim-

ulation is a linear combination of the original potential energy function and biasing
potentials. Here we will denote the potential energy function of simulation i simply
by Ui. The inverse thermal energy of run i is βi. All the data can be reweighted for
any new β or new potential U . The total number of simulations is denoted by S. The
WHAM equations [103] are therefore:

PU,β (U, ξ) =

S∑
i

ni (U, ξ) e−βU

S∑
i

ni e
βiAi−βiUi

(2.79)

βiAi = − ln
∑
U,ξ

PUi,βi (U, ξ) (2.80)

In eq. (2.79), β and U designate new values. Ai denotes the free energy of simulation
i and ni its total number of frames. ni (U, ξ) is the bin value for simulation i in a
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multidimensional histogram over values of both the coordinate ξ and potential energy
functions Ui. The free energies, Ai, of the different simulations are obtained via eq. (2.80)
and their difference corresponds to the third term on the right hand side in eq. (2.78).
Their absolute value is meaningless, but their relative magnitude is important. As the
free energies appear in both equations, WHAM has to be solved iteratively, e.g., in a
self-consistent manner.
While WHAM presented the first set of equations that enable a simultaneous eval-

uation of different umbrella window simulations, the multidimensional histogram over
potential energies and the reaction coordinates make it numerically complicated and
unstable. The histogram over potential energies is unnecessary if one is interested only
in the reaction coordinate ξ [108]. A formulation is warranted that focuses on deter-
mining the Ai before any reweighting takes place. That can easily be accomplished by
inserting eq. (2.79) into eq. (2.80). From here on, the distinction of different βi made
above will be dropped as all simulations in this thesis have been carried out at room
temperature. Hence,

e−βAi =
S∑
j

nj∑
k

e−βUi(j,k)∑S
l nl e

βAl−βUl(j,k) , (2.81)

where Ui(j, k) is the value of the potential energy function i in the kth frame of the
jth simulation. This equation already appeared in the original WHAM paper and
was re-derived by Shirts and Chodera [30], who called it MBAR (Multistate Bennett
Acceptance Ratio). It is also referred to as binless WHAM to highlight the fact that no
multidimensional histogram P (U, ξ) is needed.

MBAR

A short derivation of the connection between binless WHAM and Benett’s acceptance
ratio follows. The first step is to recast the function W from eq. (2.69).

W ∝ 1
Q0
n0
e−βU1 + Q1

n1
e−βU0

=
n1n0
Q0Q1

n0
Q0
e−βU0 + n1

Q1
e−βU1

∝ 1
n0 eβA0−βU0 + n1 eβA1−βU1

(2.82)

If this is inserted again into eq. (2.61) one can see that

e−βA0

e−βA1
=

1
n1

n1∑
j

e−βU0(j)

n0 eβA0−βU0(j) + n1 eβA1−βU1(j)

1
n0

n0∑
i

e−βU1(i)

n0 eβA0−βU0(i) + n1 eβA1−βU1(i)

n0∑
i

n1 e−βA0
n0 e−βA1 e

−βU1(i)∑1
m=0 nm eβAm−βUm(i) =

n1∑
j

e−βU0(j)∑1
m=0 nm eβAm−βUm(j)

n0∑
i

n1 e−βA0
n0 e−βA1 e

−βU1(i)∑1
m=0 nm eβAm−βUm(i) +

n0∑
i

e−βU0(i)∑1
m=0 nm eβAm−βUm(i) =

1∑
k=0

nk∑
l

e−βU0(k,l)∑1
m=0 nm eβAm−βUm(k,l)
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e−βA0

n0

n0∑
i

n0 e
βA0−βU0(i) + n1 e

βA1−βU1(i)∑1
m=0 nm eβAm−βUm(i) =

1∑
k=0

nk∑
l

e−βU0(k,l)∑1
m=0 nm eβAm−βUm(k,l)

e−βA0 =
1∑

k=0

nk∑
l

e−βU0(k,l)∑1
m=0 nm eβAm−βUm(k,l)

which is exactly the MBAR equation for two states. For more than two potentials, W
takes the generalized form [109]

Wi,j = ni e
βAi

S∑
l

nl e
βAl−βUl

, (2.83)

when it is applied to the expanded ratio

Qi

Qj

=
〈Wi,je

−βUi〉j
〈Wi,je−βUj〉i

.

Just like the WHAM equations, the MBAR equations have to be solved iteratively. The
most direct way is to do so self-consistently, which can, however, show slow convergence
close to the optimal set of Ai’s [30]. Therefore, the implicit MBAR equations are often
recast as minimization problem.

Optimization of Free Energy Constants Ai
To speed up convergence, optimization algorithms such as the Newton-Raphson [110] or
Broyden-Fletcher–Goldfarb-Shanno (BFGS) [111–114] methods can be used. In order
to make use of these algorithms, the equations above have to be reformulated in such
a manner that the desired result coincides with the root of a function. Eq. (2.81) can
easily be reformulated to:

gi = ni −
S∑
j

nj∑
k

ni e
βAi−βUi(j,k)∑S

l nl e
βAl−βUl(j,k) = 0 (2.84)

The multiplication by ni ensures symmetric derivatives. In this way, S functions gi
are obtained of which one aims to find the root simultaneously. In other words, one
seeks to reduce the vector g to 0, where (g)i = gi. Shirts et al. [30] proposed to use
Newton-Raphson, in order to avoid a third order tensor Hessian needed for BFGS.

The idea of finding the optimal Ai’s by minimizing an objective function (e.g., the gi
above) instead of a self-consistent procedure has also been applied to the binned WHAM
estimator by Zhu and Hummer [115], who then used BFGS. In another publication,
solving the set of equations by direct inversion of the iterative subspace (DIIS) [116]
has been proposed [117].

2.3.7 Reweighting
Sometimes it is not possible to generate enough configurations needed for the application
of free energy algorithms at the desired level of theory (the sampling of configuration
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space has to be thorough as the algorithms have been derived under the assumption
of equilibrium conditions). This is especially true when using quantum mechanical
methods in the context of AIMD or QM/MM-MD. Neighbouring configurations along a
trajectory are usually highly correlated and add little new information to those averages.
After data generation the same average values can be obtained with fewer data, but
unfortunately the many simulation steps in between data points are necessary for the
MD or MC algorithms to work. The number of potential energy function and gradient
evaluations might be too large to use a high level of QM theory, even though one desires
to know the free energy surface, A(ξ), on that level.
However, it is in general possible to sample a system at a lower level of theory and

estimate through a second, less demanding step the high level result. We have applied
this idea to the reaction mechanism of Sirt5 in Manuscript IV.
First, one needs to solve the unbinned WHAM or MBAR equations for the level of

theory which the umbrella simulations were performed at, in order to obtain the relative
free energies Ai. The free energy surface, A(ξ), can be computed for the low-level
potential energy function U0 using

βA0(ξ) = − ln
S∑
j

nj∑
k

δ (ξ(j, k)− ξ) e−βU0(j,k)∑S
l nl e

βAl−βUl(j,k) = − ln
S∑
j

nj∑
k

δ (ξ(j, k)− ξ)∑S
l nl e

βAl−βBl(j,k) .

(2.85)
The expression on the right hand side can be obtained by writing the potential energy
function of each umbrella window as Ul = U0 + Bl. The term U0 will therefore cancel
in numerator and denominator. In general, one can use any potential energy function
in the numerator, which results in the corresponding “reweighted” free energy surface.
Therefore, the reweighting equation reads for an arbitrary (desirably high-level) potential
energy function U1 [118]:

βA1(ξ) = − ln
S∑
j

nj∑
k

δ (ξ(j, k)− ξ) e−βU1(j,k)∑S
l nl e

βAl−βUl(j,k) = − ln
S∑
j

nj∑
k

δ (ξ(j, k)− ξ) e−β∆U(j,k)∑S
l nl e

βAl−βBl(j,k) ,

(2.86)
where again ∆U = U1 − U0. In practice, the Boltzmann distributions associated with
U0 and U1 have to have sufficient overlap as depicted in Fig. 2.2a, since otherwise the
exponential average becomes ill-conditioned and shows poor convergence behaviour (see
discussion about the limitations of FEP).
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2.4 Machine Learning

2.4.1 Introduction
The term Machine Learning refers to a growing field of statistical data analysis that
has become ubiquitous, e.g., in the form of handwriting or speech recognition, shop-
ping recommendations, risk management, or even clever computers that have mastered
games [119]. It covers a wide range of applications and fields; chemistry is no exception.
With the availability of freely accessible experimental databases, predictive models have
been built that can, for example, aid retro-synthesis [120] or predict new crystal struc-
tures [121]. It has also been used to enhance computational chemistry, where machine
learning is used to infer solutions of the Schrödinger equation from previous calculations.
In this way new functionals, basis set effects, observables, potential energy surfaces, and
more have been learned (see for example Ref. [122, 123] and references therein).

Some believe that machine learning can, with enough data and computational power,
become more powerful than human researchers [123]: “With machine learning, given
enough data and a rule-discovery algorithm, a computer has the ability to determine
all known physical laws (and potentially those that are currently unknown) without
human input.”

2.4.2 The Different Branches of Machine Learning
In general, the field of machine learning can be divided into three main categories, namely
supervised learning, unsupervised learning, and reinforcement learning. Reinforcement
learning can be described as explorative learning, where the algorithm takes new steps
(action) based on what it has seen and then needs a feedback, called reward, to make
its next decision.

Unsupervised learning uses unlabelled data (data with no specific output value) and
seeks to find patterns, which can be used to sort (clustering) or reduce the data to their
important components (signal preparation). The widely-known principal component
analysis [124] is such a dimensionality reduction technique. Clustering techniques such
as k-means [58] or DBSCAN [59], can be used to group similar data together. It can,
e.g., be used to identify groups of configurations representing wells in the potential
energy surface, which can be identified as microstates (see Section 2.1.4).
Supervised learning is an important category of machine learning for the natural

sciences. Here, the algorithm is supplied with labelled data and generates a model that
connects the features (input) with the label (output). However, there are a number of
different models and algorithms to choose from, regression analysis, decision trees, and
artificial neural networks, to name a few.

2.4.3 Selecting an Algorithm
Several key questions have to be addressed when building a supervised learning model.
One has to choose a suitable kind of data with respect to the research question, gener-
ate or acquire enough data, choose a suitable feature that represents the data, select
a model, train it, and finally evaluate it. The first two aspects are rather obvious.
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Feature and model selection are key to any successful modelling. Good features are
very important, ideally the representation has to be unique, e.g., for single molecules a
Coulomb matrix [125, 126] is often used, as it is insensitive to rotation and translation.
Other feature descriptions for chemistry are Bag of Bonds [127], XYZ-Coordinates, or
SMILES [128]. The fewer features used for input description the better.

When selecting an algorithm, one has to pay attention to the flexibility of the model.
An inflexible model is associated with a high bias, meaning it cannot adjust enough to
the true function, whereas, a very flexible model might generate a high variance, as it
creates a more complex function than the true underlying function. A suitable trade-off
between bias and variance needs to be found. As a consequence, with increasing model
complexity, more data is needed to fit the function well.
In mathematical terms, one seeks to find a function f of the feature vector x that

correctly predicts the label y. The deviation between the correct value of y and f(x)
is measured by a loss function L(y, f(x)). A popular loss function is the squared error
L(y, f(x)) = (y−f(x))2. Then to optimize f , the expected error of a function, which is
called its risk R, has to be estimated and reduced. The true risk, which is the weighted
average of the loss function over all feature-label pairs is unknown. Thus, the empirical
risk is calculated

Rn(f) = 1
n

n∑
i=1

L(yi, f(xi)) (2.87)

as an average over n samples. There is one important caveat: If f is complex enough it
can always reduce the empirical risk by overfitting the data. Therefore, the complexity
of f has to be kept as low as possible, which is related to the famous theorem of Occam’s
razor [129].
A common approach is to divide the training data into a learning and a test set,

which enables one to check for overfitting. One optimizes f on the learning set and then
evaluates its performance on the test set. This is especially important if f contains addi-
tional parameters that are not optimized in a normal learning procedure (minimization
of the risk). Such parameters are called hyperparameters and are often used to keep the
model complexity low. In an extra step an optimal setting of the hyperparameters has
to be found. To avoid an unfortunate split of the data in training and test set, by, for
example, putting crucial data exclusively into the test set, one can use bootstrapping
or cross-validation.

2.4.4 The Algorithm Used in Publication III
In Publication III, we learned the relationship between active site configuration of
the protein Sirtuin 5 and the height of the activation barrier for the reaction this en-
zyme catalyzes. 150 minimum energy paths from educt to product were computed,
where the configuration of the local educt minimum was used as feature vector and the
activation barrier height as label. The educt configurations were described by using
atom-atom distances, which were then reduced to a minimum by preselection through
cross-correlation analysis and requiring a minimal correlation between atom distances
and barrier height.
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We chose the elastic net regression model [130] to fit our data. It is a type of linear
regression model, for which f takes the form [131]

f(x) =
d∑
j=1

αjxj = αTx , (2.88)

where d is the dimension of the feature vector and αj and xj are the components of
the coefficient and feature vector, respectively. In the elastic net model, least-squares
regression [132] is combined with the penalty functions of Lasso [133] (L1 norm or
Manhatten norm of α, i.e., the sum of the absolute entries of α) and Ridge [134] (L2
norm or Euclidean norm of α) regression.

L(y, f(x)) = ||y − f(x)||22 + λ1||α||1 + λ2||α||22 (2.89)

The penalty of Lasso regression enforces variable selection, whereas the Euclidean norm
penalizes high coefficients. The effect of the additional penalty functions is called
regularization and helps to prevent overfitting. The machine learning process then
solves

arg min
α∈Rd

{
n∑
i

||y − f(xi)||22 + λ1||α||1 + λ2||α||22

}
(2.90)

for given λ1 and λ2, which are the two hyperparameters of this model.
In addition, we tested other regression models as reported in Publication III, but

the algorithm described above was the simplest that described the given data best.
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2.5 Inclusion of Experimental Conditions

2.5.1 Introduction
The principal aim of theoretical chemistry is to build predictive models and help ex-
plain experimental results. It is therefore important to compute quantities that are
measurable in the lab. In Publications V and VI, two spectroscopic observables were
computed that have a long computational history [135, 136], namely nuclear magnetic
resonance (NMR) shieldings and electron paramagnetic resonance (EPR) hyperfine
coupling constants (HFCC). The study of NMR chemical shifts focused on a biological
system consisting of an enzyme and covalent inhibitor. Simulations of different states
were used to determine the actual conformational state of the inhibitor-protein complex
in solution. The EPR study looked at a set of different organic radicals. A scheme
was devised to reduce computational cost, while at the same time reproducing the
experimental conditions more closely than standard procedures. This is the point that
unites both studies: calculating an observable under model conditions that mimic the
experiment.
In principle, observables are computed as ensemble averages according to eq. (2.2).

However, both Pi and Oi can potentially be sources of error. One can generally distin-
guish between an observable hypersurface and a configurational hypersurface, as both
energy and observable are a function of the atom coordinates. Consequently, the level
of theory used to generate the configurational ensemble does not have to be the same as
the one used for estimating the value of the observable for each configuration of atoms.
Traditionally, quantum-chemical benchmark studies put a large emphasis on the

accuracy of Oi; a less severe approximation to the Schrödinger equation yields a better
result for a certain configuration of the studied system [137, 138]. In Publication VI,
we also noted in accordance with previous findings that inclusion of electron correlation
is an important factor. However, the focus of this thesis is rather on Pi and modelling
experimental conditions than on electronic structure theory.

2.5.2 How to Approximate the Boltzmann Distribution
In the past, computational studies usually focused on the minimum energy configuration
of a molecule, since it would have the largest Boltzmann factor, and computed the
observable for this one configuration. However, experiments are usually carried out at
finite temperatures, so that the molecule samples also other conformations than the
global minimum. Here, two different kinds of explorations have to be distinguished: First
the vibrational motion of the molecule which is always present even at 0 K, and second
the population of local minima that have a higher energy than the global minimum.

The effect of thermal vibrations can be quite significant as studies on NMR and EPR
have shown (see, e.g., Refs. [139–141] and references therein). The impact of molecular
motion can be as significant as electron correlation effects.

The inclusion of vibrations through the method by Ruud et al. [140] requires second
derivatives of the observable with respect to all vibrational modes, which can become
costly already for medium sized molecules. The chemical shift itself is a second derivative
of the energy, and the number of vibrational modes increases with the system size.
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For systems larger than a few atoms, not only vibrations are important, but as well
the dependence of an observable on conformation. Therefore, other studies have laid
a focus on identifying all local minima of the potential energy surface for which the
observable is then computed [142].
Thus, to obtain a proper ensemble average vibrational motions have to be included

as well as all conformations accessible at the chosen temperature. To this end, one
can either combine conformational search algorithms with vibrational averaging, or use
sampling methods such as MD or MC to explore the configurational hypersurface, which
includes simultaneously conformational sampling and the vibrational displacement of
atoms. As structure generation and observable computation are disconnected, a less
costly level of theory appropriate for the system of interest can be chosen for structure
generation. Employed levels range from MM (e.g., Ref. [143] or Publication V), to ab
initio or mixed QM/MM (e.g., Refs. [144–146] or Publication VI).

2.5.3 Environmental Effects
Most experiments are not performed in either vacuum or the gas phase, but rather in
solution or matrix. The environment interacts with the studied molecule, and thus
influences the value of the observable. Environmental effects are, for example, especially
important for chemical shifts of polarizable hydrogen atoms [147]. The environment
can be described either implicitly through polarizable continuum models as done in
Publication X or explicitly through inclusion of solvent molecules.
In [142] was stated that the search for all minima is superior to sampling, as very

long trajectories might be needed to overcome high rotational barriers, and thus to
reach ergodicity. However, the inclusion of explicit solvent molecules makes the search
for local minima difficult, if not impossible. The sampling not only explores multiple
minima on the potential energy surface, but also includes vibrations. Therefore, in
Publications V and VI all mentioned effects - configurations, vibrations, and envi-
ronment - were included through MD simulations that sample the configuration space
while at the same time allowing inclusion of solvent molecules.

2.5.4 Reducing Computational Effort
In summary, an ideal scenario uses a protocol that generates a set of configurations
that closely resembles the Boltzmann distribution and uses an approximation to the
Schrödinger equation that does not neglect important electronic effects. Such a scenario
can obviously become costly. Hence, it is important to devise schemes that include the
contributions (sampling minima and vibrations, interactions with the environment, and
electron correlation), which are at the same time cost effective. In Publications VI we
have devised an additive protocol, which uses several levels of theory for both structure
generation and observable computation. It can be summarized with an equation:

〈O〉 = Olow−level + ∆method + ∆corr + ∆dyn + ∆solv (2.91)

It is possible to start out with the configuration of the global minimum and the cor-
responding observable value Olow−level, both obtained at low levels of theory, and then
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correct it stepwise. The minimum is re-optimized with a higher level of theory and the
observable is computed with the same low-level method as before for the new minimum
configuration, the observable difference between the minimum energy configurations is
denoted with ∆method. Dynamics are performed with the low-level structure method
and the observable is computed for many frames to approximate the ensemble aver-
age. The difference between the value corresponding to the low-level minimum and the
average over simulation frames is ∆dyn. The lower level of theory used for computing
observables can be corrected to a higher level including electron correlation for selected
configurations (∆corr). Solvation effects can be treated similarly (∆solv). In this way,
one can circumvent using exclusively high-level theories for structure generation and
observable computation. Some of those ideas have also been considered in Refs. [145,
148]. Such schemes help to obtain reliable estimates of the Boltzmann distribution as
well as of the observable, and thus values that can be more reliably compared with
experiment.
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3.1 Publication I: Calculating free energies from the
vibrational density of states function: Validation
and critical assessment

Laurens D. M. Peters, Johannes C. B. Dietschreit,
Jörg Kussmann, and Christian Ochsenfeld

“Calculating free energies from the vibrational density of states function:
Validation and critical assessment”
J. Chem. Phys. 2019, 150, 194111

Abstract: We explore and show the usefulness of the density of states function for computing
vibrational free energies and free energy differ- ences between small systems. Therefore, we compare this
density of states integration method (DSI) to more established schemes such as Bennett’s Acceptance
Ratio method (BAR), the Normal Mode Analysis (NMA), and the Quasiharmonic Analysis (QHA). The
strengths and shortcomings of all methods are highlighted with three numerical examples. Furthermore,
the free energy of the ionization of ammonia and the mutation from serine to cysteine are computed
using extensive ab initio molecular dynamics simulations. We conclude that DSI improves upon the
other frequency-based methods (NMA and QHA) regarding the treatment of anharmonicity and yielding
results comparable to BAR in all cases without the need for alchemical transformations. Low-frequency
modes lead to larger errors indicating that long simulation times might be required for larger systems.
In addition, we introduce the use of DSI for the localization of the vibrational free energy to specific
atoms or residues, leading to insights into the underlying process, a unique feature that is only offered
by this method.

The following article is reproduced in agreement with its publisher (AIP Publishing LLC) and can be found online at:

https://doi.org/10.1063/1.5079643
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ABSTRACT
We explore and show the usefulness of the density of states function for computing vibrational free energies and free energy differ-
ences between small systems. Therefore, we compare this density of states integration method (DSI) to more established schemes such as
Bennett’s Acceptance Ratio method (BAR), the Normal Mode Analysis (NMA), and the Quasiharmonic Analysis (QHA). The strengths
and shortcomings of all methods are highlighted with three numerical examples. Furthermore, the free energy of the ionization of ammo-
nia and the mutation from serine to cysteine are computed using extensive ab initio molecular dynamics simulations. We conclude that
DSI improves upon the other frequency-based methods (NMA and QHA) regarding the treatment of anharmonicity and yielding results
comparable to BAR in all cases without the need for alchemical transformations. Low-frequency modes lead to larger errors indicating
that long simulation times might be required for larger systems. In addition, we introduce the use of DSI for the localization of the vibra-
tional free energy to specific atoms or residues, leading to insights into the underlying process, a unique feature that is only offered by this
method.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5079643

I. INTRODUCTION

Free energy differences are closely connected to experimental
thermodynamic data (e.g., binding affinities, reaction energies, and
activation barriers of molecular transformations) as they incorporate
contributions from the internal energy as well as from entropy.1–7

Methods to calculate free energies or their differences are, there-
fore, of great interest in computational chemistry. Roughly, they can
be divided into two groups: (1) frequency- and (2) energy-based
methods.

In the first group, the free energy is calculated from frequen-
cies of molecular vibrations (or rotations).8 These frequencies can
be obtained from the second derivative of the energy with respect to
the nuclear coordinates at the minimum energy geometry or from
the covariance matrix taken from a molecular dynamics9–11 (MD)

or Monte Carlo12,13 (MC) simulation referring to the Normal Mode
Analysis14,15 (NMA) and the Quasiharmonic Analysis16,17 (QHA),
respectively. Energy-based methods calculate free energy differences
from sampled energies along MC or MD simulations, applying
exponential averaging theory18 (EXP), thermodynamic integration19

(TI), or Bennett’s acceptance ratio method20 (BAR).
All mentioned methods have, despite their great success and

broad fields of application,21–28 well-known shortcomings. The use
of NMA, for example, requires the search for the minimum energy
geometry (or geometries). It is, therefore, usually applied to small- or
medium-sized molecules, using quantum-mechanical (QM) meth-
ods. Free energy methods, using data from simulations (QHA,
EXP, TI, BAR), usually require a large number of steps to con-
verge, which is connected to the universal problem of sampling the
phase space sufficiently to estimate the ratio of partition functions.

J. Chem. Phys. 150, 194111 (2019); doi: 10.1063/1.5079643 150, 194111-1
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This challenge has been tackled in many publications,1–3,29 applying,
e.g., alchemical transformations or enhanced sampling techniques.
As this may still require long simulation times, the levels of the-
ory for these calculations range from molecular-mechanical (MM)
over semiempirical to combined quantum-mechanical/molecular-
mechanical (QM/MM) methods, depending on the size of the simu-
lated system and the problem at hand. Additional shortcomings are
the harmonic approximation in NMA and QHA and the neglect of
vibrational quantum effects30 in EXP, TI, and BAR.

An alternative approach has been proposed by Berens et al.31

by calculating free energies and free energy differences as a weighted
integral over the density of states function, which is determined
from sampled nuclear velocities along MD simulations. Although
already developed in 1983, this method [named integration of the
density of states method (DSI) in the following] has only been
used occasionally for absolute entropy calculations32,33 or the cal-
culation of solvation entropies.34–36 Therefore, its convergence with
respect to the simulation time and the number of independent
trajectories has not been investigated in detail. Nevertheless, we
expect the sampling problem to be as crucial in DSI as in the other
simulation-based methods as the vibrational partition function can
again only be approximated (in this case via the density of states
function).

In this work, we compare DSI to the established methods men-
tioned above and validate its use for (1) free energy calculations of
molecular transformations and (2) localization of the free energy to
specific atoms or residues. First, we briefly recapitulate the theory of
EXP, BAR, NMA, QHA, and DSI (Sec. II A) and introduce our novel
ansatz to obtain atomic contributions of vibrational free energy
changes using DSI (Sec. II B). Having listed the computational
details in Sec. III, we compare the free energy methods in Sec. IV.
For this purpose, we (1) investigate three numerical examples, (2)
determine the ionization potential of ammonia, and (3) calculate the
free transformation energy from serine to cysteine in vacuo from
ab initio MD simulations37,38 using HF-3c.39 Conclusions are drawn
in Sec. V.

II. THEORY
The free energy (A) and the free energy difference between

two systems 0 and 1 (∆A0→1) can be calculated from the partition
function (Q) as

A = −β−1 lnQ, (1)

∆A0→1 = −β−1 ln
Q1

Q0
, (2)

where β is equal to 1/(kBT) with kB being the Boltzmann constant
and T being the absolute temperature. It is generally assumed that
A can be separated into contributions of translation (Atrans), rota-
tion (Arot), and vibration (Avib) as well as the energy of the electronic
ground state (E)

A = E + Atrans + Arot + Avib

= E − β−1 ln{Qtrans ×Qrot ×Qvib}, (3)

where Qtrans, Qrot, and Qvib are the corresponding partition func-
tions. In this article, we restrict ourselves to the calculation of vibra-
tional free energies. In the simulations, this is realized by removing

the center of mass translation and the overall rotation of the system
in each step of the molecular dynamics simulation.

A. Review of free energy methods
1. Energy-based methods

The partition function of a canonical ensemble (NVT) is
defined as

Q∝ ∫ dx exp{−βU(x)}. (4)

U(x) is the potential energy at a given nuclear structure x, whereas
the kinetic energy terms are part of the proportionality constant.
Equation (2) can thus be transformed into

∆A0→1 = −β−1 ln ∫ dx exp{−βU1(x)}∫ dx exp{−βU0(x)} . (5)

U0(x) and U1(x) are the potential energy functions of systems 0 and
1, respectively. In exponential averaging theory (EXP), the difference
between the potential energies of the two systems ∆U = U1 − U0 is
calculated so that18

∆A0→1 = −β−1 ln⟨exp{−β∆U(x)}⟩0, (6)

where ⟨B(x)⟩0 denotes the ensemble average of B(x) over config-
urations sampled from the reference system 0. In many cases, the
underlying distribution of ∆U is too wide for an efficient calculation
of ∆A so that a coupling parameter λ ∈ [0; 1] is introduced, which
gradually transforms system 0 into system 1 and thus creates a better
overlap of the distributions2,18,40

Uλ(x) = (1 − λ)U0(x) + λU1(x). (7)

This transformation, which can be, for example, a chemical reac-
tion or an artificial (so-called alchemical) transformation, is then
separated into M sufficiently small steps of size ∆λi, and the free
energy difference of each step is calculated individually leading
to

∆A0→1 = −β−1
M−1∑
i=0

ln⟨exp{−β∆Ui(x)}⟩λi , (8)

with

∆Ui(x) = Uλi+1(x) −Uλi(x) = (λi+1 − λi)∆U(x) = ∆λi∆U(x) (9)

and
M−1∑
i=0

∆λi = 1. (10)

In the additive scheme of Eq. (8), forward (∆A0→1) and backward
(−∆A1→0) calculations of the free energy differ in almost all cases,
again due to the different distributions.41 This error can be reduced
by increasing the sampling of the system or by applying the double-
wide sampling scheme.42

A more sophisticated approach to obtain the “best” free energy
from forward and backward calculations has been derived by Ben-
nett in 1976 [see Eq. (11)].20 It minimizes the variance of ∆A and is
equivalent to its maximum likelihood estimator, as shown by Shirts
and Pande in 2003,43

0 = ln[ ∑N0→1
F f (M + β∆UF

0→1 − β∆A0→1)∑N1→0
B f (−M + β∆UB

1→0 + β∆A0→1)], (11)
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M = ln
N0→1

N1→0
. (12)

f is the Fermi function f (x) = 1
1+exp(x) ; ∆UF

0→1 and ∆UB
1→0 are

independent forward and backward perturbations, respectively; and
N0→1 and N1→0 are the corresponding numbers of frames. The
resulting Bennett’s Acceptance Ratio method (BAR) is known to
be more robust than EXP or thermodynamic integration (TI)
schemes.44–49

2. Frequency-based methods
Frequency-based methods assume that the potential energy

function can be approximated by a sum of NF − 6 harmonic
oscillators (harmonic approximation)

U(x) = NF−6∑
ij

kij(xi − x0
i )(xj − x0

j ), (13)

where NF is the number of degrees of freedom of the system
and kij are the force constants. In the Normal Mode Analysis
(NMA),14,15 the Hessian matrix (the second derivative of the energy
with respect to the nuclear coordinates) at the minimum energy
configuration (x0),

Hij = ∂2E
∂xi∂xj

, (14)

is diagonalized, yielding the normal modes νi, which are then used
to calculate the vibrational free energy either classically (CL) or
quantum-mechanically (QM)

ACL
vib = β−1∑

i
ln[βhνi], (15)

AQM
vib = β−1∑

i
ln [1 − exp(−βhνi)

exp(− 1
2βhνi) ], (16)

where h is the Planck constant. While NMA works well for small
systems, great care has to be taken in the case of large systems. Here,
NMAs have to be performed at all (relevant) local minima and the
results have to be weighted by the Boltzmann factor of the respective
minimum. This task becomes harder with increasing system size.

The search for minima is not required in the Quasiharmonic
Analysis (QHA)16,17 as it is performed after a molecular dynamics
or Monte Carlo simulation. Assuming ergodicity and that all xi are
Boltzmann distributed, νi can be obtained by diagonalizing the mass
weighted covariance matrix

[M 1
2 σM

1
2 − β−1ν]M 1

2 ∆x = 0, (17)

where M is the kinetic energy matrix and σ is the covariance matrix,

σij = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩. (18)

⟨ ⟩ symbolizes the average over all trajectory frames. The frequencies
obtained this way can then again be transformed into vibrational free
energies with Eqs. (15) and (16).

Frequencies obtained with QHA are always equal or lower to
those of the NMA since it approximates all possible minima along
one coordinate as well as its anharmonicity with one single harmonic
oscillator. This leads to a lower curvature of the potential energy
surface than actually present.

3. Integration of the density of states method
The vibrational partition function (Qvib) can also be calculated

as a product of the partition functions q(ν) of the single vibrational
modes with frequency ν. It is assumed that these partition func-
tions can be written as classic (qCL) or quantum (qQM) harmonic
oscillators

qCL(ν) = 1
βhν

, (19)

qQM(ν) = exp(− 1
2βhν)

1 − exp(−βhν) . (20)

The logarithm of the vibrational partition function can thus be
calculated from the following integral:31

lnQvib = ∫ ∞
0

dνD(ν) ln{q(ν)}. (21)

D is the density of states function, which singles out the specific
frequencies of the investigated system, while an infinite number of
harmonic oscillators (classical or quantum) is considered. D itself is
determined as the mass-weighted Fourier transform of the nuclear
velocity autocorrelation

D(ν) = 2β
NA∑
j=1

mj ∫ dt⟨vj(τ)vj(τ + t)⟩τe−i2πνt . (22)

mj and vj denote the mass and velocity vector of the nucleus j, respec-
tively, while NA is the number of atoms. Integration over the entire
density of states functions yields the number of degrees of freedom

NF = ∫ ∞
0

dνD(ν). (23)

Insertion of Eq. (21) into Eq. (1) yields the following expression for
the free energy:

A = E + β−1 ∫ ∞
0

dνD(ν)WA(ν). (24)

WA is, depending on the inserted q, the classical (WCL
A ) or quantum

(WQM
A ) weighting function

WCL
A (ν) = ln[βhν], (25)

WQM
A (ν) = ln [1 − exp(−βhν)

exp(− 1
2βhν) ]. (26)

If one assumes that D consists of delta functions at the frequencies
of the normal modes (νi) of a system, Eq. (24) with WCL

A and WQM
A

is equal to Eqs. (15) and (16), respectively. The difference between
the integration of the density of states method (DSI) and the other
frequency-based methods is, thus, that instead of NF − 6 harmonic
oscillators

Qvib = NF−6∏
i

q(νi), (27)

an arbitrary large number of harmonic oscillators (depending on the
simulation time) weighted by the density of states function

Qvib =∏
i

q(νi)D(νi) (28)
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are assumed to describe the system (harmonic approximation).
From Eq. (24), one can easily obtain the expression for free

energy differences

∆A0→1 = ∆E + β−1 ∫ ∞
0

dν∆D(ν)WA(ν), (29)

where ∆D = D1 − D0 and ∆E = E1 − E0.

B. Atomic contributions to the density of states
functions

Our ansatz to determine atomic contributions to the vibrational
free energy uses the fact that the density of states function from
Eq. (22) can be rewritten as a superposition of atomic functions

D(ν) = NA∑
j=1

2βmj ∫ dt⟨vj(τ)vj(τ + t)⟩τe−i2πνt
= NA∑

j=1
Dj(ν). (30)

This essentially means that the vibrational partition function can be
written, without any further loss of generality, as

Qvib = NA∏
j
∏
i

q(νi)Dj(νi)

= NA∏
j

Qvib
j (31)

because
NA∏
j
q(νi)Dj(νi) = q(νi)D(νi). (32)

Thus, the vibrational free energy can be written as a sum over atomic
contributions

Avib = −β−1 lnQvib

= −β−1 ln
⎡⎢⎢⎢⎢⎣
NA∏
j

Qvib
j

⎤⎥⎥⎥⎥⎦
= −β−1

NA∑
j

lnQvib
j

= NA∑
j
Avib
j . (33)

The above partitioning of the vibrational free energy is not restricted
to atoms. It can without any further assumption be grouped into
any meaningful collection of atoms such as residues or functional
groups. This ansatz can be used as an aide to interpret and local-
ize the changes occurring in the system, as shown in our previous
work.50 Please note that it uses the vibrational free energy only and
not the total free energy. For the partitioning of the latter, approx-
imate schemes exist21 but have been discussed to lead to unreliable
results.51,52 Our only assumption along with the harmonic approx-
imation is that the regions with the most prominent changes in the
vibrational free energy are also those which contribute the most to
the change in E and thus the total free energy change.

III. COMPUTATIONAL DETAILS
A. Classical and molecular dynamics simulations

The free energies of the numerical examples have been obtained
from classical NVT simulations of a particle (of mass 1 u) in a one-
dimensional harmonic (VH), Morse (VA), and double-well (VD)
potentials, respectively,

VH(x) = 1
2
kx2, (34)

VA(x) = DE × (1 − exp{−ax})2, (35)

VD(x) = 1
2
bx2(x − 0.5)2. (36)

The exact values for k, DE, a, and b are listed in the supplementary
material. To obtain an exact reference, we have integrated Eq. (5)
numerically on a grid using ≈106 points and a step width of 0.01
Bohr. For the harmonic oscillator, this procedure leads to an error
below 10−4 kJ/mol.

The free energies of the molecular systems have been obtained
from Born-Oppenheimer molecular dynamics simulations at the
HF-3c39 level of theory using the FermiONs++ program pack-
age53–55 with DFTD3 v3.156,57 and gCP v2.02.58 The center of mass
translation and the overall rotation of the system have been removed
at every step of the simulation.

All simulations use the Velocity Verlet59,60 propagator and the
random rescaling thermostat by Bussi, Donadio, and Parrinello,61

keeping the average temperature at 298.15 K. A different thermostat,
like a Langevin-thermostat, would in general have been better suited
to sample our small systems.47 However, the random changes of the
nuclear forces would severely impact the velocity autocorrelation
function and render our analysis impossible. Initial velocities have
been drawn from a Maxwell-Boltzmann distribution at 298.15 K.
Energies, velocities, and coordinates were written to files every 1 fs.
The numerical examples are simulated for 110 ps (10 ps equilibra-
tion time, 0.1 fs time step) or, in some cases, 1010 ps (10 ps equili-
bration time, 0.1 fs time step). The simulation times of the molecular
systems are 310 ps (10 ps equilibration time, 0.1 fs time step) in the
case of ammonia and 202 ps (2 ps equilibration time, 0.2 fs time
step) in the case of serine and cysteine. For every λ window, we
have calculated five independent trajectories and an equidistant ∆λ
of 0.1 has been applied. To show the convergence behavior of DSI in
the ammonia example, we have additionally conducted 10 indepen-
dent trajectories of 910 ps (10 ps equilibration time, 0.1 fs time step)
for NH3 and NH+

3 .

B. Ab initio alchemical transformations
Alchemical transformations are normally used in a molec-

ular mechanics (MM) context, where transforming one system
(0) into another system (1) is equal to gradually turning on (or
off) contributions to the potential energy.2 Here, we want to use
this concept with ab initio calculations, which do not allow for
such a fragmentation of the energy. To circumvent this problem,
we use an ansatz developed by Reddy et al.62 We perform two
energy and forces calculations (for systems 0 and 1) at every step
of the simulation and continue the trajectory along a weighted
force Fλ,
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Fλ = (1 − λ)F0 + λF1, (37)
where F0 and F1 denote the determined forces of system 0 and sys-
tem 1, respectively. Consequently, we use the weighted mass, tem-
perature, center of mass velocity, inertia tensor, and total angular
momenta in our thermostat and when removing the overall trans-
lation and rotation. In this work, we follow the single-topology
ansatz.63 In the case of the serine-cysteine transformation, this
means that both systems (0 and 1) share the same structure, with the
oxygen in system 0 being replaced by a sulfur in system 1. The use of
a dual-topology ansatz (the OH-group in system 0 and the SH-group
in system 1 have different structures, while the rest of the molecule
is shared) is also possible.62,64,65 However, when it is applied to
simulations without explicit solvent molecules, an MM region, or
geometrical constraints, the dual-topology ansatz leads to unstable
trajectories. The reason for this is that, when λ ≈ 0 or λ ≈ 1, the
OH– or SH–group is not “seen” by the shared part of the molecule,
leading to unphysical geometries (large C–O or C–S bonds) and con-
vergence problems of the self-consistent field algorithm. Constraints
or surroundings will prevent this.

C. Free energy calculations
The density of states function (D) was calculated from the

sampled velocities using Eq. (22) and subsequently rescaled so
that Eq. (23) yields the 3NA − 6 vibrational degrees of freedom
for the complete system. To allow for an easy comparison espe-
cially between chemically identical atoms, single atom spectra were
rescaled so that Eq. (23) yields three. ∆ADSI was calculated follow-
ing the integration in Eq. (24) or (29) and for the molecular exam-
ples adding E. E is determined as the potential energy at the mini-
mum geometry, which was for the intermediate systems (0 < λ < 1)
obtained by performing a geometry optimization with the weighted
forces [see Eq. (37)] until Fλ ≈ 0. ∆ABAR is determined from the
sampled potential energies by solving Eq. (11). In the case of the
serine-cysteine transformation, the free energy change due to the
mass change of the atom (oxygen to sulfur) was corrected by an
analytically derived constant for each window. For the derivation,
see the Appendix. ∆ANMA and ∆AQHA were obtained using Eqs. (15)
and (16). The frequencies (νi) for the NMA were determined using

the numerically calculated Hessian at the minimum energy geome-
try [Eq. (14)], while νi for the QHA were calculated as presented in
Eq. (17).

The vibrational parts ∆ADSI
vib and ∆ABAR

vib are calculated as

∆ADSI
vib = ∆ADSI − ∆E, (38)

∆ABAR
vib = ∆ABAR − ∆E. (39)

As we have simulated several replicas for each λ window, we conduct
a statistical analysis calculating the average free energy difference
(⟨∆A⟩) as

⟨∆A⟩ = 1
NENP

NE∑
i

NP∑
j
∆Aij, (40)

where ∆Aij is the free energy difference between the replicas i and j
of the educt and product, respectively, and NE and NP are their total
numbers. We, additionally, calculate the standard deviation of the
different ∆Aij. We do not list the inherent statistical error calculated
by Shirts and Pande45 since there is no analog for DSI.

IV. RESULTS AND DISCUSSION
A. Numerical examples

In order to prove that DSI yields the same results as other
free energy methods and to investigate the effect of the shape and
curvature of the potential on its accuracy, we carried out classical
simulations in an one-dimensional harmonic [Eq. (34)], a Morse
[Eq. (36)], and a double-well [Eq. (36)] potential and calculated three
free energy changes for each potential (for details, see Sec. III). The
free energy changes consist of changes in the curvature of the poten-
tial caused by variation of parameters k, a, DE, and b, resembling
changes in molecular angles, bonds, and dihedral angles, respec-
tively (the exact values are listed in the supplementary material).
The resulting ⟨∆A⟩s calculated using DSI, BAR, QHA, and NMA
as well as the exact results are shown in Tables I and II. For the
simulation-based methods, we also provide the standard deviation
of∆A from multiple trajectories. ⟨∆A⟩s of the individual λ-windows,
potential plots, and density of states plots can be found in the

TABLE I. Calculated free energy changes (average and standard deviation of ∆Avib in kJ/mol) of the harmonic and anhar-
monic potential (three transformations each) using NMA, QHA, BAR, and DSI. The exact result obtained from numerical
integration is given as a reference. The wavenumber (in cm−1) refers to the curvature of the potential at x = 0.

Potential Wavenumbers NMA QHA BAR DSI Exact

1000→ 2000 1.718 1.758 ± 0.041 1.709 ± 0.013 1.720 ± 0.002 1.718
Harmonic 500→ 1000 1.718 1.780 ± 0.068 1.755 ± 0.013 1.732 ± 0.003 1.718

100→ 500 3.990 4.488 ± 0.056 4.614 ± 0.042 4.166 ± 0.015 3.990100→ 500a 3.996 ± 0.048 3.858 ± 0.024 4.007 ± 0.002

1000→ 2000 1.718 1.796 ± 0.041 1.735 ± 0.015 1.757 ± 0.002 1.766
Anharmonic 500→ 1000 1.718 1.875 ± 0.076 1.787 ± 0.015 1.766 ± 0.004 1.764

100→ 500 3.990 4.635 ± 0.043 4.806 ± 0.032 4.260 ± 0.011 4.033100→ 500a 4.104 ± 0.070 3.885 ± 0.030 4.047 ± 0.002

aTrajectories with longer simulation times.
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TABLE II. Calculated free energy changes (average and standard deviation of ∆Avib in kJ/mol) of the double well potential
(three transformations) using NMA, QHA, BAR, and DSI. The exact result obtained from numerical integration is given as a
reference. The wavenumber (in cm−1) refers to the curvature of the potential at x = 0. Double well potentials can be seen as
“worst-case” examples for the frequency-based methods.

Potential Wavenumbers NMA QHA BAR DSI Exact

2000→ 2500 0.553 0.592 ± 0.062 0.581 ± 0.004 0.598 ± 0.005 0.608
Double well 1500→ 2000 0.713 4.243 ± 0.076 0.810 ± 0.008 0.910 ± 0.014 0.825

1000→ 1500 1.005 −0.159 ± 0.147 1.269 ± 0.008 1.682 ± 0.036 1.0681000→ 1500a −0.151 ± 0.042 1.224 ± 0.008 1.611 ± 0.029

aTrajectories with longer simulation times.

supplementary material. Please note that∆E is for all numerical cases
zero so that ∆A = ∆Avib.

Comparing the methods that use sampled data along clas-
sical simulations (QHA, BAR, DSI) in the harmonic and anhar-
monic cases (see Table I), DSI performs best, showing smaller
errors and standard deviations. In the latter case, it even out-
performs NMA, which is only exact, when harmonic potentials
are investigated. The error of all three simulation-based methods
increases with decreasing curvature (wavenumbers) of the inves-
tigated potentials. The standard deviations of BAR and DSI also
increase, while it remains constant in the case of QHA. The first
reason for the larger errors (and standard deviations) is the sam-
pling error as slower vibrations require longer simulation times to
be sampled accurately. The second reason is the choice of the ther-
mostat. As already discussed in Sec. III A, we are bound to veloc-
ity rescaling thermostats when applying DSI. These thermostats,
however, introduce errors in the free energy calculations, espe-
cially for systems with only a few degrees of freedom and for slow
modes. Consequently, we observe a decrease in the errors when
the relaxation time of the thermostat is increased (resulting in a
weaker thermostat). Longer simulation times tackle both problems
discussed above and, therefore, improve the errors (and standard
deviations of BAR and DSI) for the low-frequency harmonic and
anharmonic cases significantly (see footnote a in Table I), which
are then in good agreement with numerical test potentials found
elsewhere.45,66

For the frequency-based methods, the double well poten-
tial is a “worst-case” example as it cannot be described exactly
within the harmonic approximation. It features two types of move-
ments: the movement within one well and the slower move-
ment over the barrier (the inversion). With decreasing curvature
(wavenumber), the barrier height shrinks, increasing the proba-
bility of the inversion. This set up is not problematic for BAR
as it relies on energy averages and distributions and uses inter-
mediate systems (0 < λ < 1) to enhance the sampling effi-
ciency. This explains the small error and standard deviation
in Table II, which is comparable to the values of the other
examples.

For NMA, QHA, and DSI, it serves as a good showcase to illus-
trate the conceptual differences between these methods and to show
how well the actual potential can be approximated. In Fig. 1(a),
we have plotted the double well potential (1000 cm−1) and the
corresponding harmonic potentials, which are used by NMA and

QHA to approximate the potential and to calculate the free energy.
Figure 1(b) presents the same for DSI. The difference is that not a
single but a series of harmonic potentials (illustrated by the red and
blue areas) weighted by the density of states functions [also plotted
in Fig. 1(b)] are assumed to describe the system.

The NMA harmonic oscillator, derived from a finite differ-
ence calculation around x = 0, mimics the fast vibration, while
the QHA harmonic oscillator, derived from the distribution of x,

FIG. 1. (a) Double well potential (1000 cm−1) and corresponding harmonic oscil-
lators of NMA and QHA from which the free energy is calculated. (b) Double well
potential (1000 cm−1) and the series of weighted harmonic oscillators used in DSI
to obtain the free energy. The frequencies have been extracted from the density
of states function (see the subplot). Please note that the density of states function
(D(ν)) is given in β−1 × s; we have omitted the factor β in Eq. (22).
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is dominated by the slow vibration. In this example, the first is a
good approximation (most likely due to error compensation), while
the latter leads to erratic results (Table II). The density of states
function shows that both vibrations are considered in DSI as two
peaks with the same intensity appear in the spectrum. In this case,
both vibrations have the same probability due to the low barrier
height of around 2.5 kJ/mol ≈ RT. When larger barrier heights
are applied, the intensity of the fast vibration becomes significantly
larger than the intensity of the slow vibration (see the supplemen-
tary material). Note that the parameter b changes not only the
barrier height but also the curvature of the potential at the same
time.

In this example, longer simulation times lead to better DSI
results, but the difference to the exact result is still significantly larger
than in BAR. This indicates that even an arbitrary large number
of harmonic oscillators are incapable of describing the system cor-
rectly. However, the description of the system in DSI is physically
more correct than in the case of NMA and QHA, and the result-
ing free energy estimation is significantly better than in the case
of QHA.

B. Ionization energy of ammonia
As a first molecular example, we have chosen the ionization of

ammonia (NH3 → NH+
3 ). (Alchemical) ab initio molecular dynam-

ics simulations have been performed at the HF-3c level of theory
(see Sec. III for details). The results for the overall reaction and for
the individual λ-windows are listed in Table III.

Table III proves that the BAR result can be improved by tak-
ing into account intermediate λ-windows as the cumulative result
(using all intermediate windows) differs from the direct result
(using only the two end points) while featuring a 10 times smaller
spread. This is not the case for DSI. Since all contributions of the
intermediate λ-simulations for E and D cancel out, the results are

TABLE III. Calculated vibrational free energy changes (average and standard devi-
ation of ∆Avib in kJ/mol) of the ionization of ammonia (direct from the first to the
last λ-value and cumulative over all windows) and the intermediate λ-windows using
BAR, DSI, and NMA.

λ-window ∆ADSI
vib ∆ABAR

vib ∆ANMA
vib

0.0→ 0.1 −0.26 ± 1.05 −1.08 ± 0.03 . . .
0.1→ 0.2 −0.45 ± 0.82 −0.94 ± 0.03 . . .
0.2→ 0.3 −0.31 ± 0.65 −0.44 ± 0.04 . . .
0.3→ 0.4 −0.96 ± 0.59 0.22 ± 0.04 . . .
0.4→ 0.5 0.90 ± 0.79 0.35 ± 0.06 . . .
0.5→ 0.6 −0.48 ± 1.06 0.08 ± 0.05 . . .
0.6→ 0.7 −0.24 ± 0.86 −0.03 ± 0.03 . . .
0.7→ 0.8 −0.39 ± 0.55 −0.11 ± 0.02 . . .
0.8→ 0.9 0.36 ± 0.42 −0.17 ± 0.03 . . .
0.9→ 1.0 −0.41 ± 0.30 −0.22 ± 0.03 . . .

Cumulative −2.24 ± 2.70 −2.36 ± 0.12 . . .

Direct −2.24 ± 0.77 −2.50 ± 1.56 −1.97

Quantum corrected −13.76 ± 5.06 . . . −13.26

identical. Only the standard deviation is larger in the cumulative case
due to the noise between the intermediate states. The convergence
of the direct DSI result and the cumulative BAR result are shown
in Fig. 2.

The standard deviation on both curves decreases with increas-
ing simulation time. After 250 ps simulation time (per trajectory),
both methods yield the same result within one standard deviation of
the BAR curve, and at ≈300 ps, the mean results are nearly identi-
cal (see also Table III). Even longer simulations (up to 900 ps) do
not substantially affect the average DSI result, while the standard
deviation is reduced (see Fig. S7 of the supplementary material).
However, even when 2 × 10 trajectories of 900 ps are used in the DSI
calculation, the standard deviation is still approximately two times
larger than the one observed in BAR featuring an (almost) equivalent
amount of data points. If one takes into account that no alchemi-
cal simulations (one energy and force calculation per step instead of
two) are required for DSI, we could say that (for this example) the
standard deviations of DSI and BAR behave similarly with respect to
the computation time, while the average free energy change seems
to converge faster in the case of DSI. At this point, we also want to
mention that there are two factors which can decrease the accuracy
of DSI: Too short simulations and too long intervals between the
sampling of the nuclear velocities are applied (see Figs. S7 and S8 of
the supplementary material).

The results of DSI and BAR for the intermediate λ-windows
differ usually by about one standard deviation, except for 0.3→ 0.4.
The histograms of the improper dihedral of ammonia (Fig. S4 of
the supplementary material) reveal that for these cases the system
is similar to the double well system we have discussed in Sec. IV A,
which explains the larger error. In the other windows, the barrier
is either too high for a frequent inversion of the molecule or van-
ishes entirely. The figure also shows that for λ = 0.0 the simulation
has not spent equal amounts of time in the two minima of ammonia,
which should bias the BAR results. In general, we observe a relatively
high standard deviation for the DSI free energies of the intermedi-
ate λ-windows. The reason for this could be that mixed potential
energy surfaces tend to be more anharmonic or even nonharmonic
(e.g., the λ-window 0.3 → 0.4), showing larger errors and slower
convergence.

FIG. 2. Convergence of the total free energy change (⟨∆A⟩, solid line) of the ion-
ization of ammonia and the standard deviation (lighter area) with respect to the
length of the used trajectories using BAR and DSI. BAR contains information from
11 × 5 trajectories (five replicas for all 11 λ-windows), whereas the DSI result is
only based on 2 × 5 trajectories (five replicas for NH3 and NH3

+, respectively).
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Additionally, the DSI method offers two features that are not
accessible in energy-based methods. One can easily calculate the
quantum corrected free energy change (see the last line in Table III),
and one can map the change in ⟨∆ADSI

vib ⟩ to each atom or when deal-
ing with larger problems, groups of atoms or molecules. In the case
of the ionization of ammonia, the hydrogen atoms and the nitro-
gen atom gain vibrational free energy (0.59 kJ/mol and 0.46 kJ/mol,
respectively) since the bonds in NH+

3 are weaker than in NH3. This
is also reflected in the power spectrum (D, see Fig. 3), where nearly
all modes of NH3 are red-shifted in NH+

3 .
Figure 3 also shows the results of NMA and QHA as vertical

dashed lines. As one can see, the frequencies estimated with NMA
are in good agreement with D and are always positioned at the upper
bound of the peaks in D. This is due to the fact that NMA does not
consider any anharmonicity in the bond vibrations, which causes the
slight decrease in the vibrational frequency and the vibrational free
energy change (see Table III). QHA results clearly underestimate all
frequencies and suggest unreasonably slow motions, especially for
the inversion motion of NH3.

C. Mutation from serine to cysteine
The second example consists of the mutation from serine

to cysteine in vacuum. Mutations are a widely used tool in free

FIG. 3. Velocity density of states spectrum of NH3 and NH3
+. The frequencies

obtained from NMA and QHA are shown in red and green, respectively. Please
note that D(ν) is given in β−1 × s; we have omitted the factor β in Eq. (22).

TABLE IV. Calculated vibrational free energy changes (average and standard devi-
ation of ∆Avib in kJ/mol) of the mutation from serine to cysteine (direct from the first
to the last λ-value and cumulative over all windows) and the intermediate λ-windows
using BAR, DSI, and NMA.

λ-Window ∆ADSI
vib ∆ABAR

vib ∆ANMA
vib

0.0→ 0.1 −0.79 ± 3.03 0.56 ± 0.40 . . .
0.1→ 0.2 0.06 ± 2.94 −0.06 ± 0.51 . . .
0.2→ 0.3 −2.10 ± 3.70 −0.74 ± 0.26 . . .
0.3→ 0.4 0.40 ± 4.03 −0.43 ± 0.31 . . .
0.4→ 0.5 −3.37 ± 3.80 −0.35 ± 0.32 . . .
0.5→ 0.6 0.59 ± 3.47 −0.27 ± 0.10 . . .
0.6→ 0.7 −1.66 ± 3.57 −0.48 ± 0.10 . . .
0.7→ 0.8 −1.26 ± 4.38 −0.35 ± 0.10 . . .
0.8→ 0.9 0.66 ± 4.31 −0.35 ± 0.05 . . .
0.9→ 1.0 −1.47 ± 3.16 −0.31 ± 0.05 . . .

Cumulative −8.94 ± 12.46 −2.76 ± 0.85 . . .

Direct −8.94 ± 2.76 290.93 ± 177.98 −3.69

Quantum corrected −23.55 ± 7.24 . . . −15.76

energy calculations as they give access to, e.g., binding free energies.
We conducted extensive (alchemical) ab initio molecular dynamics
simulations of serine, cysteine, and intermediate structures (see
Sec. III for details) and calculated the free energy for the overall
reaction and for the individual λ-windows. The results are presented
in Table IV.

The one-step application of BAR in Table IV shows the wrong
sign and is about two orders of magnitude too large. Significantly
better results for similar one-step mutations have been reported for
MM simulations.67 However, the underlying data consisted of four
168 ns trajectories, which contain nearly 1000 times more confor-
mations than our ab initio simulations.

The results of direct DSI are, in comparison with direct BAR,
significantly better. The final results of DSI and BAR are within two

FIG. 4. Convergence of the total free energy change (⟨∆A⟩, solid line) of the
serine-cysteine transformation and its standard deviation (lighter area) with respect
to the length of the used trajectories using BAR and DSI. BAR contains informa-
tion from 11 × 5 trajectories (five replicas for all 11 λ-windows), whereas the DSI
result is only based on 2 × 5 trajectories (five replicas for serine and cysteine,
respectively).
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FIG. 5. Vibrational free energy change (⟨∆ADSI
vib ⟩ in kJ/mol) of each atom during the

mutation from serine to cysteine. The major changes occur exactly at the atoms
that are connected or close to the O/S-mutation.

FIG. 6. Velocity density of states spectrum of serine and cysteine. The fre-
quencies obtained from NMA and QHA are shown in red and green, respec-
tively. Please note that D(ν) is given in β−1 × s; we have omitted the factor β
in Eq. (22).

standard deviations of one another and both are also more than one
standard deviation off from the NMA results which lies between
the two results. Nevertheless, the standard deviations of DSI are
one order of magnitude larger than those of BAR. This and the
convergence plot of the free energies (see Fig. 4) indicate that
further sampling is required, mainly due to the larger amount of
low-frequency modes (see Fig. 6) in this example, which is beyond
the focus of the present manuscript.

Despite the numerical noise, the trend given by DSI is correct,
and localizing the vibrational free energy (Fig. 5) offers an explana-
tion where and why the free energy changes during the mutation.
It clearly shows that main contributors are the Cβ-atom as well as
the connected hydroxyl- or thiol-group. Slight contributions stem
also from the Cα-atom and the amino-group as the strength of
the intermittently formed hydrogen bond between hydroxy/thiol-
group and amino-group changes. This also has a small effect
on the carboxyl-group. These results agree well with chemical
intuition.

Figure 6 shows the power spectra of serine and cysteine as well
as the NMA and QHA results. The position of the NMA frequen-
cies and the main peaks in the power spectrum agree well. Both
show a large amount of low-frequency modes, so-called “breath-
ing modes.” Nevertheless, NMA neglects the anharmonicity of the
vibrations and the different minima of the system, leading to a differ-
ent free energy (see Table IV). QHA significantly overestimates the
existence of these modes and fails to find the high-frequency bond
vibrations.

V. CONCLUSION
In this work, we have tested and compared the density

of states method (DSI) to the more established free energy
methods such as Normal Mode Analysis (NMA), Quasihar-
monic Analysis (QHA), and Bennett’s Acceptance Ratio method
(BAR), calculating several numerical and two chemical exam-
ples. We show that DSI works similar to NMA and QHA, but
features the ability to correctly include anharmonicites, as the
partition function is approximated by an arbitrary large num-
ber of harmonic oscillators weighted by the density of states
function.

DSI delivers the same result as BAR for the numerical examples
and the ionization of ammonia. Regarding the mutation from serine
to cysteine, DSI correctly reflects the trend of the free energy, but fea-
tures larger standard deviations, mainly due to the large number of
low-frequency modes in the systems. This indicates that long simu-
lation times will be required for larger systems. Additional down-
sides of the method regarding free energy calculations are as fol-
lows: (1) larger memory requirements (3 × NA velocities have to be
stored in short intervals instead of one energy at arbitrary long inter-
vals), (2) Monte Carlo simulations and enhanced sampling methods
cannot be combined with DSI, and (3) ∆E has to be determined,
which will become tedious for large systems with many degrees of
freedom.

There are, however, also important advantages of the method,
when comparing to BAR:

1. For DSI, only the end points (no intermediates) are required.
This gives access to free energies of nearly all molecular
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transformations even at the ab initio level of theory, cir-
cumventing endpoint-catastrophes and alchemical transfor-
mations. Additionally, this can lead to a reduction of com-
putation time when DSI is applied to small molecular
systems.

2. Quantum-corrected vibrational free energies are directly
accessible.

3. A straightforward pattern to determine atomwise or residue-
wise contributions to the vibrational free energies exists.

We, therefore, think that DSI can be a good alternative to
standard free energy methods, especially when expensive ab initio
methods are applied to transformations of small to medium-sized
molecules. Furthermore, its ability to localize free energy changes at
atoms or residues is a valuable tool to gain insights into the under-
lying process(es), which can always be combined with energy-based
methods such as BAR.

SUPPLEMENTARY MATERIAL

The supplementary material comprises details on our numeri-
cal examples where we give details on the used potentials and show
the corresponding density of states plots as well as ∆A’s for the
intermediate λ-windows. For the ionization of ammonia, we present
dihedral distributions and ∆A convergence studies of the intermedi-
ate λ-windows. Additionally, we show the mapping of ∆ADSI

vib on the
individual atoms and the convergence ofADSI

vib with respect to simula-
tion time and the sampling frequency. For the serine-cysteine trans-
formation, we present the distributions of the C-O/S bond lengths
for all λ-windows.
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APPENDIX: INFLUENCE OF THE MASS CHANGE
IN THE FREE ENERGY OF THE TRANSFORMATION
FROM SERINE TO CYSTEINE

Changing the mass of a particle has an impact on the free energy
as the kinetic energy distribution of the particle changes. The canon-
ical partition function of a system consisting of NA distinguishable
particles has the form

Q = 1
h3NA ∫ dx3NA ∫ dp3NA exp{−βH(x3NA , p3NA)}. (A1)

The Hamiltonian (H) is usually split into the potential (U) and
kinetic energy (T) which are functions of the generalized coordinates
(x) and generalized impulses (p), respectively. Hence, the above inte-
gral can be split into the product of kinetic and potential energy
contributions

Q = 1
h3NA ∫ dx3NA exp{−βU(x3NA)}∫ dp3NA exp{−βT(p3NA)}

= 1
h3NA ∫ dx3NA exp{−βU(x3NA)}∫ ∞

−∞ dp3NA exp{−β 3NA∑
i

p2
i

2mi
}.

(A2)

The integration over the kinetic part can be carried out analytically
and yields

Q = 1
h3NA

3NA∏
i

√
2πmi

β ∫ dx3NA exp{−βU(x3NA)}. (A3)

If we consider now the free energy difference between two systems,
where not only the potential energy function changes but also the
mass of one particle, we can write

∆A0→1 = −β−1 ln[Q1

Q0
]

= −β−1 ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3NA∏
i

√
2πmi

1
β ∫ dx3NA exp{−βU1(x3NA)}

3NA∏
i

√
2πmi

0
β ∫ dx3NA exp{−βU0(x3NA)}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −β−1 ln

⎡⎢⎢⎢⎢⎣
√

m1

m0

3⟨exp{−β∆U}⟩0

⎤⎥⎥⎥⎥⎦. (A4)

In our case, m1 is mO, the atomic mass of oxygen, and m1 is mS, the
atomic mass of sulfur

∆A0→1 = −3
2
β−1 ln

mS

mO
− β−1 ln⟨exp{−β∆U}⟩0. (A5)

Thus, the results of BAR have to be corrected by

∆Amass
0→1 = −3

2
β−1 ln

mS

mO
= −2.58 kJ/mol. (A6)

For each individual λ-window, the correction reads

∆Amass
λ→λ+∆λ = −3

2
β−1 ln[1 + ∆λ

mS −mO(1 − λ)mO + λmS
]. (A7)
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I. NUMERICAL EXAMPLES

A. Harmonic Potential

TABLE S1. Used values (in atomic units) for k in the simulations of the initial (index 0) and final

(index 1) state.

Wavenumbers k0 k1

100 → 500 3.78e-04 9.46e-03

500 → 1000 9.46e-03 3.78e-02

1000 → 2000 3.78e-02 1.51e-01
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FIG. S1. (left) Harmonic potentials and density of states plots of the simulations. In addition,

their maxima (DSI) and the frequencies calculated with NMA and QHA are listed. (right) 〈∆A〉s

of the individual λ-windows of the corresponding simulations. Please note that the density of states

function (D(ν)) is given in β−1 × s; We have omitted the factor β in eq. (22).
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B. Anharmonic Potential

TABLE S2. Used values (in atomic units) for DE and a in the simulations of the initial (index 0)

and final (index 1) state.

Wavenumbers DE0 DE1 a0 a1

100 → 500 1.55e-02 3.10e-02 1.11e-01 3.91e-01

500 → 1000 1.55e-02 3.10e-02 5.53e-01 7.82e-01

1000 → 2000 1.55e-02 3.10e-02 1.11e+00 1.56e+00
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FIG. S2. (left) Anharmonic potentials and density of states plots of the simulations. In addition,

their maxima (DSI) and the frequencies calculated with NMA and QHA are listed. (right) 〈∆A〉s

of the individual λ-windows of the corresponding simulations. Please note that the density of states

function (D(ν)) is given in β−1 × s; We have omitted the factor β in eq. (22).
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C. Double Well Potential

TABLE S3. Used values (in atomic units) for b in the simulations of the initial (index 0) and final

(index 1) state.

Wavenumbers b0 b1

100 → 1500 3.78e-02 8.51e-02

1500 → 2000 8.51e-02 1.51e-01

2000 → 2500 1.51e-01 2.37e-01

6

Chapter 3 Publications

62



FIG. S3. (left) Double well potentials and density of states plots of the simulations. In addition,

their maxima (DSI) and the frequencies calculated with NMA and QHA are listed. (right) 〈∆A〉s

of the individual λ-windows of the corresponding simulations. Please note that the density of states

function (D(ν)) is given in β−1 × s; We have omitted the factor β in eq. (22).
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II. IONIZATION ENERGY OF AMMONIA

FIG. S4. Normalized distribution of the improper dihedral of ammonia for each λ-value over 100

bins. The histograms include the data of all five simulations per λ-value.
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FIG. S5. Convergence of the mean vibrational free energy change (〈∆A〉, solid line) and the

standard deviation of different trajectories (lighter area) using BAR and DSI for each λ-window.

The top panel shows the changes for 0.0→ 0.1, the second panel from the top pertains to 0.1→ 0.2,

and so forth.
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FIG. S6. Vibrational free energy change (〈∆ADSI
vib 〉 in kJ/mol) of each atom during the ionization

of ammonia. The hydrogen atoms loose 0.59 kJ/mol and the nitrogen atom 0.46 kJ/mol.
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FIG. S7. Convergence of the mean vibrational free energy (〈Avib〉, solid line) and the standard

deviation of ten different trajectories (lighter area) of NH3 and NH+
3 using DSI and different

intervals (τ) between the sampling of the nuclear velocities. The mean value at t = 900 ps is set

to zero. The mean vibrational free energy converges after a sampling of ≈ 200 ps. Its standard

deviation decreases constantly with increasing simulation time. The values of NH3 show a slower

convergence and a larger standard deviation, due to the higher amount of low-frequency modes.

11

3.1 Publication I

67



FIG. S8. Change of the mean vibrational free energies with the length of the interval between the

sampling of the nuclear velocities (τ) using DSI. Ten independent trajectories of NH3 and NH+
3 and

three different simulation times (t) are considered. The mean values at τ = 1 fs are set to zero.

The sampling rate has a larger impact on the result than the simulation length. An increasing τ

decreases the intensity of the N-H bond-stretching modes, leading to changes in the vibrational

free energy. The reason for this is that the sampling of these high-frequency modes becomes worse.

Applying τ > 4 fs the bond vibrations do not appear in the density of states spectrum. The effect

of τ on NH3 is larger, as the frequency of its bond vibrations is higher.
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III. MUTATION FROM SERINE TO CYSTEINE

FIG. S9. Histograms of the C-O/S bond length for each λ-window. The bond length histograms

are closely connected to the distribution of ∆U in each window.
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ABSTRACT: The free energy is one of the central quantities in material and natural
sciences. While being well-established, e.g., in drug design or catalyst optimization,
computational methods lack a straightforward way to gain deeper insights into the
calculated free energy, and thus the underlying chemical or physical processes. Here,
we present a generally applicable, spectrum-based ansatz that tackles this
shortcoming by identifying contributions from specific atoms or groups to the
vibrational free energy. We illustrate this in studies of the bromodomain-inhibitor
binding and the anomeric effect in glucose providing quantitative evidence in line
with chemical intuition in both cases. For the latter example we also report an
experimental infrared spectrum and find excellent agreement with our simulated
spectra.

■ INTRODUCTION

The free energy is the driving force behind every chemical
reaction. It determines, for example, the rate of an enzymatic
reaction or the scope of products formed during a catalytic
reaction. The prediction of free energies is, therefore, a key
challenge in modern quantum chemistry.1,2 For small,
unimolecular systems this is usually done via a frequency
analysis of the molecule using quantum mechanics (QM)
calculations. It is assumed that, in the vicinity of the minimum
energy geometry, all vibrations can be described as
independent harmonic oscillators (harmonic approximation).
For larger or multimolecular systems, this approach is not
feasible, as the harmonic approximation is not valid anymore
(due to the increasing number of anharmonic modes) and the
potential energy surface features an enormous number of local
minima, which have to be considered. In these cases, one
focuses on free energy differences, which can be computed
without having to know the absolute energy of both states, and
determines the free energy from sampled energies along Monte
Carlo3,4 or molecular dynamics (MD)5−7 simulations applying,
e.g., exponential averaging theory8 or Bennett’s acceptance
ratio method.9

While the mentioned methods have been used extensively in
different fields,10−13 the interpretation of their results is in
most cases not straightforward. The reason for this is that it is
not possible to separate the total free energy change into
contributions from different atoms or residues14 and, therefore,
to understand the underlying effects (e.g., bond weakening,
sterical clashes, new noncovalent interactions) causing the free
energy to change. Applying the conventional energy-based
methods,8,9 some approximate fragmentation is possible for

simple force fields;12,15 however, this is not possible when
nonadditive force fields (like the emerging polarizable force
fields16−18), QM calculations, or combined quantum mechan-
ics/molecular mechanics (QM/MM) are used.
In this work, we use and present a method that calculates the

vibrational part of the free energy from the vibrational density
of states function, which itself was the topic of experimental19

and theoretical studies.20,21 This approach has originally been
introduced by Berens et al.22 to estimate quantum corrections
to thermodynamic properties. It has been used occasionally to
compute absolute entropies,23 solvation effects such as
entropy,24 or helped identifying different water species around
a protein in solution25 by employing the additional
assumptions of the two-phase model.26 The calculation of
free energy changes in discrete volume units (so-called
“voxels”) by Heyden is also based on this approach.27

The applicability of the method of Berens et al.22 to free
energy calculations has been determined in a different study of
ours,28 where a more detailed derivation, validation, and
analysis of the method can be found. Here, we will focus
entirely on its capability of calculating atom- or residue-wise
contributions to the vibrational free energy and how these free
energy hot-spots can help to understand and interpret free
energy changes during molecular transformations. We start
with a brief summary of the density of states integration
method (DSI)22,28 in Section 2. There, we will also discuss
shortcomings of the method and how they affect the
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applicability and the interpretation of the results of our
approach. In Section 3 we list computational (and
experimental) details. In Section 4 we apply our method to
two prototypical, illustrative examples: (1) The binding of an
inhibitor to a bromodomain-containing protein and (2) the
visualization of the anomeric effect in glucose. An outlook is
given in Section 5.

■ THEORY
Density of States Integration Method. We extract the

free energy from the velocities (vj) of each atom j during a
molecular dynamics simulation. This is done by calculating the
density of states function (D(ν)) as the Fourier transform of
the velocity autocorrelation function

D m dt tv v( ) 2 ( ) ( ) e
j

N

j j j
i t

1

2∫∑ν β τ τ= ⟨ + ⟩τ
πν

=
−

(1)

β is equal to 1/(kBT) with kB being the Boltzmann constant
and T the absolute temperature. mj is the mass of atom j, and
N is the total number of nuclei. When neglecting contributions
from translation and rotation, the free energy (A) can be
calculated from a weighted integral over the frequency (ν)22,28

A E A E d D h( ) lnvib
1

0
∫β ν ν β ν= + = + [ ]− ∞

(2)

with E being the potential energy at the global minimum
energy geometry and h the Planck constant. The vibrational
part of the free energy (Avib) is thus calculated as a sum of an
arbitrarily large number of harmonic oscillators weighted by
D(ν).
Equations 1 and 2 indicate that Avib can be split into

contributions from the individual nuclei or residues, as D(ν) is
calculated as a sum over all atoms. In order to obtain atom- or
residue-resolved free energies, we recast eq 1 to
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Nregions is the number of regions in which we split the total
system and {N}i is the set of atoms that belong to the region i.
The regions can be chosen completely freely ranging from the
entire system over residues to individual atoms. This helps us
rewrite eq 2 to

A E
N

A i( )
i

regions

vib∑= +
(4)

Avib(i) is the vibrational free energy localized in region i. If
we consider free energy changes

A E
N

A i( )
i

regions

vib∑Δ = Δ + Δ
(5)

ΔAvib(i) indicates a change in the potential energy surface in
region i. Please note that the fragmentation of ΔAvib directly
evolves from its calculation from D(ν) and requires no
additional approximations or assumptions.

Interpreting Free Energy Hot-Spots. Two shortcomings
have to be considered when interpreting ΔAvib(i) for different
atoms or residues i. The first one is that we are investigating
only the vibrational part of the free energy (ΔAvib(i) instead of
ΔA(i)) without ΔE(i) and contributions from rotations and
translations. The latter are neglected, as the overall rotation
and translation of the system are removed, because keeping
them can lead to unwanted artifacts. Therefore, the sum over
all hot-spots yields ΔAvib and not the full free energy difference
(ΔA). A comparison to other free energy methods is, thus,
only meaningful when adding ΔE, which has been done for
small systems in ref 28 and is not possible for larger systems
(as the exact determination of ΔE becomes impossible).
However, Avib identifies regions where the potential energy
surface (and thus A) is changing and is, therefore, an excellent
tool to find and quantify free energy hot-spots, as shown
below.
The second shortcoming is that the Density of States

Integration (DSI) uses the harmonic approximation. It was
shown in ref 28 that DSI can (in contrast to other free energy
methods based on vibrational frequencies) describe the
anharmonic behavior of vibrations, as it considers the system
as a linear combination of a (nearly) infinite number of
harmonic oscillators. Free energy changes arising from
vibrations involving movements over local maxima in the
potential energy surface and very slow modes (such as
rotations of entire protein domains) can only be described
qualitatively but not quantitatively, leading to errors in the
calculation of Avib.

28 However, these errors partly cancel out,
because we investigate free energy differences. Moreover, slow
modes are normally delocalized over large parts of the systems
and thus do not substantially affect the free energy hot-spots
and their interpretation, as we focus mainly on local changes.

■ METHODS
Classical Mechanical Simulations. The crystal structures

of the apo-bromodomain (PDB 5O38)29 and the inhibitor-
domain complex (PDB 5O3B)29 were used as starting
structures. All molecules that were not protein, inhibitor, or
water were removed. Antechamber, part of the AmberTools
16,30 was used to parametrize the inhibitor. The force field
ff14SB31 was used for the simulations. The proteins were
solvated in a rectangular box with 10 Å of TIP3P32 water, and
neutralized with 2 chlorine ions. The simulation engine
NAMD33 was used. The energy of the system was minimized:
For the first 10,000 steps only the water molecules and for the
next 10,000 steps the full system. The system was heated over
30 ps to 300 K. In the following it was equilibrated for 200 ps,
and then a production run of 1 ns was carried out. The time
step was 0.5 fs, as no constraints such as SHAKE34 or
RATLLE35 were imposed on the system during the production
runs. Nonbonded interactions were evaluated at every step.
Periodic electrostatic interactions were computed with the
particle mesh Ewald summation method, with a sixth order
interpolation. We used a cutoff radius of 12 Å and a switching
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function that smoothly switches off interaction between 10 and
12 Å. A Verlet nearest neighbor list with a radius of 13.5 Å was
used. The temperature was controlled with the Berendsen
rescaling algorithm.36 Translation and rotation of the protein
were removed from the velocities after the simulation.
MDAnalysis37,38 was used to extract and process the velocities.
The convergence of the free energy difference is shown for
residue TRP-26 in Figure S6.
Quantum Mechanical Simulations. The quantum

chemistry package FermiONs++39−41 developed in our group
was used for the ab initio Born−Oppenheimer molecular
dynamics simulations. We used the HF-3c42 method that
includes dispersion (DFTD3 v3.1)43,44 and counterpoise
corrections (gCP v2.02).45 The Velocity Verlet algorithm46,47

and a stochastic rescaling thermostat48 were applied. The
structures of α-Glu, β-Glu, α-HCT, and β-HCT were
minimized at the same level of theory before the calculations.
The initial atom velocities were drawn at random from a
Maxwell−Boltzmann distribution at 298.15 K. The time step is
0.5 fs, and a ninth order extended Lagrangian scheme49 was
used to improve the SCF convergence. The system was
equilibrated for 5 ps. The production runs were 200 ps long,
and 20 independent simulations (different starting velocity
vectors and pseudorandom numbers in the thermostat) were
conducted for each molecule. Translation and rotation of the
molecule were removed at every step of the simulation. As
starting points, we used two different minima, both obtained
by energy minimizations. Additional conformers or a
subsequent weighting of the single simulations were not
required as the thermal energy of the molecule and the
simulation time were sufficient to explore the conformational
space. The sampling was monitored by the convergence of the
mean free energy difference; see Figure S5.

Free Energy Calculations. Vibrational free energies (Avib)
are calculated from the sampled nuclear velocities applying eqs
1 and 2. All atomic spectra were rescaled such that every atom
receives the same fraction of the total amount of degrees of
freedom.

Infrared Spectra. The experimental spectrum of D(+)-
glucose 1-hydrate (ITW Reagents, > 99%) has been measured
in this work as an average of 16 scans with 1 cm−1 resolution
using a Thermo Fischer Nicolet 6700 FT-IR apparatus.

■ RESULTS AND DISCUSSION

Inhibitor Bound to the BromodomainAn MM
Application. As a first demonstration of the presented
approach, we investigate the change of Avib during the binding
of a bromodomain-containing protein to an inhibitor. Proteins
of the bromo- and extra-terminal domain (BET) family are
involved in the recognition of acetylated lysine residues and
play an important role in epigenetic communication.50 Very
recently, potent mutant-selective inhibitors for BET have been
developed,29 which are meant as a tool for future in vivo
studies. Upon binding to the inhibitor, the potential energy
surface of BET is modified leading to conformational changes
in the protein which one would generally assume causes the
binding site to become tighter. Here, we want to stress that we
are focusing on calculating the changes of Avib upon binding
and do not attempt to compute the binding free energy, for
which energy-based methods such as the Bennett’s Acceptance
Ration method9 are more suitable. We expect though that the
atoms highlighted by our method are those which are the main
contributors to the free energy of binding.
We used the cocrystal structure of 9-ME-1 and BET as well

as the apo-crystal structure (PDB 5O3C and 5O3829) as a
starting point to investigate the effect of inhibitor binding to
the bromodomain motif. We conducted two independent

Figure 1. (a) Changes of the vibrational free energy (ΔAvib) within the bromodomain upon binding the inhibitor. The residues are colored
according to the changes in Avib going from the apo- to the complexed-form per residue. Blue residues indicate a gain (ΔAvib > 0, less movement),
and red residues indicate a loss in vibrational free energy (ΔAvib < 0, more freedom). The inhibitor is shown with van-der-Waals-spheres colored
according to atom types. (b) Interaction between the residues and the inhibitor. TRP-26 (van-der-Waals interaction), TYR-42 (hydrogen bond),
and CYS-81 (two hydrogen bonds) are highlighted. (c) Interactions within the helical part of the domain. Note that the color scales differ between
part a and parts b and c of the figure.
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classical molecular dynamics simulations in a water box and
computed the difference in vibrational free energy (ΔAvib) per
residue and per atom, where the residue-wise vibrational free
energy is just the sum over the corresponding atoms. The
changes in the vibrational free energy are shown in Figure 1.
Blue indicates a stiffening of the residue (ΔAvib > 0, shift
toward vibrations of higher frequency) upon the binding of the
inhibitor, whereas red (ΔAvib < 0, shift toward vibrations of
lower frequency) means that the residue can move more freely.
The overall change in ΔAvib is positive, already indicating a

stiffening of the motif due to the interaction with the inhibitor.
Many of those stiffer residues can be found in the binding
pocket (see Figure 1a+b), where their side chains show distinct
interactions with the inhibitor. Examples are TRP-26, which
interacts with the inhibitor via van-der-Waals interactions, and
TYR-42, which forms a hydrogen bond. Interactions between
the inhibitor and the backbone are also occurring. The peptide
group of LYS-30, for example, communicates with 9-ME-1 via
a water molecule. The only residue in the binding pocket,
which becomes more flexible, is CYS-81; its SH-group switches
between two hydrogen bond acceptors (one at BET and one at
the inhibitor). Both hydrogen bonds are not formed in the
apoprotein, where CYS-81 is constantly bound to a residue
which is inaccessible in the presence of the inhibitor. The
analysis, however, also shows that Avib does not only change at
the binding site, as parts of the α-helices are colored as well
(see Figure 1c). Reasons for these significantly smaller
contributions are subtle changes in the arrangement of the
helices.
In order to discuss if the values of the free energy hot-spots

(ΔAvib(i)) can be interpreted quantitatively (not only
qualitatively), one has to consider the individual vibrations

contributing to the free energy hot-spots. The changes of the
free energy in the binding pocket and at the helices are
dominated by local changes of stretching or bending
vibrations, arising from the interactions with the inhibitor or
the resulting changes in the arrangement of the helices. These
(rather) high-frequency modes should be described quantita-
tively correct with our method, as already discussed in Section
2 and ref 28. CYS-81 might be an exception as the switching
between two hydrogen bond acceptors features a low-
frequency mode over a local maximum. It is, however, an
excellent example how local effects change ΔAvib dramatically
and how this is detected by our method. Of course, we cannot
exclude that our method neglects possible low-frequency
modes, which affect large parts of the system. Yet, we were not
able to find such vibrations in RMSD-plots.
In previous experimental and theoretical studies,19,51 a

general mode softening (increase of the density of states
function for very small wave numbers) was reported for similar
protein-inhibitor systems. These new low-frequency modes
were identified as linear combinations of the rotational or
translational modes of the inhibitor and modes of the protein.
In our present study, this effect is not visible. The main reason
for this is that all our simulations were carried out including
explicit solvent molecules, while previous studies involved gas-
phase simulations and measurements of dried samples. As a
consequence, we describe the more realistic system and the
replacement of solvent by the inhibitor in the binding pocket
and not the mere binding event. Since the solvent molecules
located in the binding pocket also couple to the protein, no
mode softening during its replacement by the inhibitor is
observed.

Figure 2. (a) (top) Hyperconjugation and (bottom) dipole interaction discussed as origins of the anomeric effect in glucose.52 (b) Structures,
abbreviations, and atom labels of the investigated molecules. The possible transformations I to IV are aranged in a thermodynamic cycle. (c)
Change in the vibrational free energy per atom from β-Glu → β-HCT (transformation II), α-Glu → α-HCT (transformation I), and their
difference (II-I = IV-III). The latter is equivalent to the change of the free energy during the appearance of the anomeric effect reflecting the bond
strengthening of the O5−C1 bond and the bond weakening of the C1−O1 and C5−O5 bond.
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In summary, our approach has revealed the formation of a
tight inhibitor−protein complex, which also affects parts of the
helices of the protein. All interactions reported here were
found simply through the application of the presented method,
and no complex analysis of bond distances or dihedral angle
distributions and, thus, no a priori knowledge about the
binding process was necessary to identify any of them. In
addition, the power spectra (D(ν)) of the residues or atoms
were used to interpret the free energy hot-spots.
Anomeric EffectA QM Application. In the first

example we focused on intermolecular interactions, but our
method can also visualize changes of covalent bonds.
Therefore, we use, as a second example, ab initio molecular
dynamics instead of force field calculations to investigate the
anomeric effect. The anomeric effect appears in heterocycles
based on cyclohexane and leads to a stabilization of the axial
position of heteroatomic substituents adjacent to the
heteroatom within the six-membered ring.52 We investigate
this effect by looking at one famous representative, namely
glucose. Here, one encounters an unexpected stabilization of α-
glucose (α-Glu) with respect to β-glucose (β-Glu). The origin
of the anomeric effect has been under discussion for a long
time including experimental53 as well as theoretical54

contributions (see Figure 2a). The two debated causes are
hyperconjugation and dipole interactions, both stereoelec-
tronic effects. In this work, we restrict ourselves to the
visualization of the effect and highlight the involved atoms, as

our method does not allow for a distinction between the two
models.
The sole comparison of α-Glu and β-Glu would not only

incorporate the anomeric but also other effects, for example,
changes of the hydrogen bonds or the 1,3-diaxial interactions.
To isolate and visualize the anomeric effect, we have simulated
α-Glu, β-Glu, and their two analogues with the ring oxygen
being replaced by a CH2 moiety (α-HCT and β-HCT, the
abbreviation HCT stands for the IUPAC name 5-Hydroxy-
methyl-cyclohexane-(1,2,3,4)-tetrole) at the HF-3c42 level of
theory. Please note that the anomeric effect is only present in
α-Glu. It can, therefore, be investigated by analyzing the
difference between the transformations α-Glu → α-HCT (I)
and β-Glu → β-HCT (II) or between the transformations α-
Glu → β-Glu (III) and α-HCT → β-HCT (IV), as the other
effects cancel out. For structures and atomic labels see Figure
2b.
In order to visualize the anomeric effect, we show the

vibrational free energy differences (ΔAvib) of the trans-
formations I and II for selected atoms in Figure 2c (for the
corresponding vibrational spectra see Figure S1). Their
difference, which can be interpreted as the appearance of the
anomeric effect, is also shown. In both transformations (I and
II), the centers near the mutation site C7/O5 and (in the case
of I) O1 contribute to ΔAvib, whereas C2−4 are not affected by
the mutation. Their difference (II − I) reveals that ΔAvib of the
anomeric effect is mainly localized at C1, O1, and their
hydrogen atoms as well as at C5 and O5. It is in good

Figure 3. (a) Excerpt of the experimental IR-spectrum of crystalline glucose (monohydrate and mixture of the α- and β-anomer) showing the C−H
stretching vibrations for comparison to the simulated spectra below. (b) Labels of carbon atoms in α-Glu, β-Glu, α-HCT, and β-HCT. (c)
Calculated spectra (D(ν ̃)) of (top) α-Glu and (bottom) β-Glu showing the C−H stretching vibrations of the entire molecule (black) and the
contributions from the different C−H bonds (color). The splitting of molecular peaks enables a detailed inspection of the surroundings of the
individual atoms. For comparison to the experiment, the frequencies of the simulated spectra have been scaled by a factor of 0.82 (similar to the
reported 0.81 in our previous work55). (d) Same analysis for (top) α-HCT and (bottom) β-HCT. The peaks of H7 and H7′ (around 3050 cm−1)
are not shown as they cannot be compared to glucose.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.8b12309
J. Phys. Chem. A 2019, 123, 2163−2170

2167

3.2 Publication II

77



agreement with the bond strengthening of the O5−C1 bond
(C1 is red) and the bond weakening of the C1−O1 bond (O1
is blue), when the anomeric effect appears. Additionally, the
C5−O5 bond is slightly weakened (C5 is blue). The
comparably small contribution at O5 is the result of two
counteractive effects, the simultaneous strengthening and
weakening of its bonds to C1 and C5, respectively. All effects
are also visible in the distributions of bond lengths during the
simulations (see Figure S2) and can be interpreted
quantitatively, as they feature solely changes in (rather) high-
frequency modes.
The C−H stretching vibrations of the systems (Figure 3)

can also be used to prove the anomeric effect, as they are very
good sensors for changes in the surrounding chemical
environment. The superposition spectra of α-Glu and β-Glu
(black lines in Figure 3c) are in good agreement with the
experimental infrared spectrum measured in the present work
(Figure 3a) featuring both six peaks. Comparing α-Glu and β-
Glu (Figure 3c), we can identify two red-shifts (C1−H1 and
C5−H5), which do not appear in the HCT-spectra (Figure
3d). They can, therefore, be assigned to the anomeric effect
corroborating the previous result that the anomeric effect
affects the vibrations of C1, C5, and O1 as well as the
connected hydrogen atoms and not C2−C4 and C6.
Again, our method has discovered all atoms involved in the

anomeric effect, verifying the common picture of this complex
stereoelectronic effect (see Figure 2a) without any prior
knowledge or assumption. A detailed inspection of the spectra
(D(ν)) offers even more insights in the vibrational behavior of
the investigated molecules, as shown for this specific case.

■ CONCLUSION
Overall, the use of vibrational spectra calculated from nuclear
velocities, can lead to new and valuable insights into molecular
transformations. As the two examples have shown, we are able
to localize and, therefore, explain free energy changes. The
calculation is straightforward and does not require any a priori
knowledge about the system before the actual evaluation. We
have also shown that it is applicable to any level of theory for
the molecular dynamics simulations, ranging from force-field to
full quantum-mechanical calculations. Our results are in
absolute agreement with chemical intuition for which our
method provides a solid and generally valid fundament.
Although the central quantity of the approach is the vibrational
free energy (ΔAvib) and not the total free energy (ΔA), our
method allows for a quantification of effects, especially when
rather high-frequency vibrations are involved and when one
compares different ΔAvib’s of, e.g., different inhibitors or
different substituents. We suggest this ansatz to be used, e.g, in
drug or catalyst design, in addition to the calculation of
energies and the investigation of structural parameters for
gaining the complete picture of the problem at hand.
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1 Image Processing
All images containing molecular geometries which are coloured according to
changes in vibrational free energy were produced using VMD.[1] All plots
showing spectra and distributions were produced using the python-package
matplotlib.[2] The chemical structures were drawn with ChemDraw.

2 Data and Materials Availability
All inputs and trajectories are available upon request. PDB files (with
the free energy colouring), analysis scripts, and an interactive tutorial are
available at http://www.cup.lmu.de/pc/ochsenfeld/download/. NAMD
is freely available for non-commercial users, while FermiONs++ is not yet
available.
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3 Figures

Figure S 1: a+b, Vibrational spectra per atom for (a) α-HCT (black)
and α-Glu (inverted grey) and (b) β-HCT (black) and β-Glu (inverted
grey). The overlap (S) between the two spectra is calculated as S =
∫∞
0 I1(ν̃)I2(ν̃)dν̃/

√∫∞
0 I21 (ν̃)dν̃

∫∞
0 I22 (ν̃)dν̃, with I1 and I2 being the intensity

of the two spectra at a wavenumber (ν̃)). The overlap between α-Glu and
α-HCT is generally smaller than the overlap between β-Glu and β-HCT. The
wave number (ν̃) increases from left to right.
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Figure S 2: Distribution of bond lengths and angles of the simulations of (left
column) α-Glu and β-Glu and (right column) α-HCT and β-HCT, that serve
as an indicator for the anomeric effect. α-Glu exhibits, in comparison to β-Glu,
a shorter C1-O5 bond, a longer C1-O1 and C5-O5 bond, and a smaller C5-O5-
C1-C2 dihedral angle. Similar observations cannot be made, when comparing
the simulations of α-HCT and β-HCT.

S4

Chapter 3 Publications

84



Figure S 3: (Top) Experimental IR spectrum of crystalline glucose-mono-
hydrate (black) and simulated IR spectra (calculated as presented in ref. [3])
of α-Glu (orange) and β-Glu (blue). (Bottom) Computed vibrational power
spectra of α-Glu (orange) and β-Glu (blue). The power spectrum has different
intensities and also shows not IR-active vibrations exhibiting a small or no change
in the dipole moment. For comparison to the experiment, the frequencies of the
simulated spectra have been scaled by a factor of 0.82 (similar to the reported
0.81 in ref. [3]).
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Figure S 4: Other vibrations than the C-H stretching bond are affected by
the anomeric effect, e.g., the C-H deformation mode, which is clearly shifted in
the case of α-Glu. For comparison to the experiment, the frequencies of the
simulated spectra have been scaled by a factor of 0.82 (similar to the reported
0.81 in ref. [3]).
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Figure S 5: Convergence of ∆Avib for α → β glucose (top) and HCT (bottom).
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Figure S 6: Convergence of ∆Avib for the Bromodomain shown for residue
TRP-26, as it showed a large change in the free energy.
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ABSTRACT: Sirtuin 5 is a class III histone deacetylase that,
unlike its classification, mainly catalyzes desuccinylation and
demanoylation reactions. It is an interesting drug target that
we use here to test new ideas for calculating reaction pathways
of large molecular systems such as enzymes. A major issue
with most schemes (e.g., adiabatic mapping) is that the
resulting activation barrier height heavily depends on the
chosen educt conformation. This makes the selection of the
initial structure decisive for the success of the characterization.
Here, we apply machine learning to a large number of
molecular dynamics frames and potential energy barriers
obtained by quantum mechanics/molecular mechanics calculations in order to identify (1) suitable start-conformations for
reaction path calculations and (2) structural features relevant for the first step of the desuccinylation reaction catalyzed by
Sirtuin 5. The latter generally aids the understanding of reaction mechanisms and important interactions in active centers. Using
our novel approach, we found eleven key features that govern the reactivity. We were able to estimate reaction barriers with a
mean absolute error of 3.6 kcal/mol and identified reactive configurations.

■ INTRODUCTION

Computationally obtained reaction barriers are an excellent
link to experiment. They allow us to verify or propose new
reaction mechanisms, gain insights into kinetics, or compare
reactivities. However, the calculation of reliable activation
energies is a demanding task, especially for large molecular
systems, for example, enzymes.
There exists a large collection of static and dynamic methods

to model chemical reactions (e.g., adiabatic mapping,1 nudged
elastic band,2,3 string methods,4,5 transition path sampling,6

umbrella sampling,7 metadynamics,8 and many more).
Regardless of the method, there are two major challenges:
(1) the choice of the theoretical description, and (2) the
sampling bottleneck that leads to a ubiquitous dependency on
the chosen start conformation. One of the main tools of choice
for studying enzymatic systems is the combination of quantum
mechanics and molecular mechanics (QM/MM) (see e.g., refs
9−11). The description of the QM part varies between semi-
empirical (e.g., AM1 or SCC-DFTB)12−15 and ab initio
methods (e.g., HF or DFT).16−18 Besides the level of theory
chosen for the QM region, the extent of the QM sphere19−21

and the treatment of the boundary region play an important
role.9−11 With increasing computational power and novel
efficient methods, we are able to increase our attention to
detail (e.g., solvent effects), and apply higher level theoretical
methods. However, the second issue of selecting an initial
configuration is nearly as important as the accuracy of the
description of the electronic structure. In order to circumvent

the need to search for suitable starting structures from a vast
number of frames,22,23 extensive sampling would be needed.
Unfortunately, it becomes more and more demanding to
sample the phase space with increasing system size and
accuracy of the Hamiltonian. Therefore, for extended system
such as enzymes, exploring the entire phase space remains
prohibitively expensive at the QM/MM level. Start config-
urations can be taken from an MM-MD simulation.
Alternatively, it has been suggested to start from the crystal
structure, avoiding the selection problem entirely (see e.g., ref
24). However, the X-ray structures, which often differ from
structures in solution, are not guaranteed to be reactive.11 Even
if they are suited for the initial step of a reaction, problems
might arise for subsequent reaction steps.
Thus, it is paramount to develop a straight forward approach

for pinpointing reactive configurations visited during the MM-
MD, which are located at the beginning of reaction paths. The
work of Lodola et al.25 supports the importance of exploring
the influence of conformational changes. They show the power
of statistical tools, for example, principal component analysis,
to identify conformational changes dominating enzymatic
reactivity.25 In a recent study, Bonk et al.26 tried to link
geometry and reactivity using machine learning during
extensive transition interface sampling which enabled them
to find reactive trajectories more often.
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Here, we apply QM/MM adiabatic mapping to a large
selection of MM-MD frames to obtain an estimate of the
reaction barrier starting from these snapshots. Adiabatic
mapping is a straight forward approach to calculate the
potential energy profile of a reaction, where a predefined
reaction coordinate is gradually changed while the remaining
system is relaxed. It should be noted that adiabatic mapping is
not suitable for modelling reactions involving large structural
rearrangements or changes in solvation.11 We relate the initial
structures taken from the MD trajectory and the calculated
transition barriers using simple machine learning in order to
understand which conformational changes influence the
reactivity, and build a predictive model for activation energies.
The model is subsequently applied to all MD frames in order
to identify reactive regions within the trajectory. This set up is
intended to help identify suitable start frames and therefore
alleviate the need of extensive sampling, which is a true
limitation at the QM/MM level.
As a model reaction, we investigate the first step of the

desuccinylation reaction catalyzed by Sirt5, which belongs to
the class of histone deacetylases.27,28 Despite what its enzyme
class name suggests, Sirt5 mainly catalyzes the desuccinylation
or demanoylation of lysines and not a deacetylation.29 This
desuccinylation is thought to be a three step reaction which is
initiated by a nucleophilic attack of the substrate on the NAD+

cofactor that leads to the dissociation of nicotinamide.27,30−32

■ METHODS
Data Acquisition. Structure Preparation. The crystal

structure (PDB: 3RIY33) consists of a dimer of Sirt5 in the
complex with a histone tail peptide containing a succinylated
lysine (SLL) as well as NAD+. We selected the first monomer
in the file (chain A for Sirt5 and chain D for the peptide) as
well as the respective NAD+. Hydrogen atoms were added
using the program tleap from the program suite Amber16.34

The protonation state of titratable residues was set according
to PropKa.35,36 The zinc finger in Sirt5 was parametrized using
the ZAFF (Zinc Amber Force Field) parameters.37 For the
residue SLL, GAFF (Generalized Amber Force Field)
parameters38 were assigned using the Antechamber code,
which determined the atomic partial charges from an AM112

calculation with bond-charge corrections (AM1−BCC).39 The
parameters for NAD+ were taken from the AMBER parameter
database.40,41 All other parameters were taken from Am-
berFF14.42 Finally, the system was solvated by placing it in a
TIP3P43 water box with a distance of 17 Å in all three
dimensions at a density of 0.832 g/cm3. The system was
neutralized with one chloride ion.
MM-MD Simulation. Two minimizations (10 000 steps)

were carried out to prepare the solvated system. During the
first minimization, the protein was constrained and only the
water molecules were optimized. In the second step, the entire
system was subjected to the minimization. The system was
heated to 300 K by increasing the temperature by 1 K every
100 fs. Afterward, the system was equilibrated for 100 000 time
steps. During heating and equilibration, the temperature was
controlled with simple velocity rescaling. The following
production run was performed in the NPT ensemble for
200 ns. The pressure was kept at one atmosphere and the
temperature at 300 K with the Langevin Piston barostat and
Langevin thermostat implemented in NAMD.44 The time step
for equilibration and production was set to 2 fs. Nonbonded
interactions were evaluated explicitly within 10 Å and smoothly

switched off at 12 Å. A Verlet nearest neighbor list45 with a
radius of 13.5 Å was used to speed up the computations.
Periodic boundary conditions were used in all three directions.
Electrostatic interactions were evaluated with the particle mesh
Ewald method46 and an interpolation of the sixth order. The
MD simulations were carried out with the NAMD44 program
package.

QM/MM Calculations. We selected frames (every 0.5 ns)
from the production run as starting points for QM/MM
calculations. All the frames were minimized twice at the MM
level for 10 000 steps, again minimizing first only the solvent
and then the full system. Subsequently, the frames were
subjected to a QM/MM optimization. The QM region always
included the residues Arg105, Phe70, Phe223, His158, part of
NAD+, and the succinyl-lysine residue, as well as all water
molecules within 4 Å of the C1′ atom of the ribose in NAD+,
which are in total 139−151 atoms, depending on the number
of water molecules in the active site (Supporting Information,
SFigure 1 shows the QM region). The QM region was
described at the HF-3c47 level of theory and the MM region as
specified in the section “Structure Preparation”. The two
subsystems were coupled via electrostatic embedding. The
QM/MM calculations were performed within the ChemShell48

code, with the QM part treated by the program package
FermiONs++.49,50

We performed a small benchmark comparing HF-3c with
higher level DFT methods to show that it is well suited for our
endeavor. HF-3c consistently overestimates the reaction
barrier. Trends in higher and lower barriers are reflected
properly compared to DFT (see the Supporting Information
for more details).
The optimized structures were used as starting points for

adiabatic mapping pathways. The reaction coordinate was
defined as the difference between the C1′−O bond and the
C1′−N bond. While the C1′−O distance was reduced, the
C1′−N bond was elongated. In each step, the bond difference
was changed by 0.2 Å and fixed, while the remaining system
was minimized.

Machine Learning. Data Preprocessing. We are inter-
ested in the relation between the educt configuration and the
reaction barrier. Therefore, a representation of the geometry is
needed that is suited to describe structural changes. There are
several representations which are well established for chemical
investigations such as Bag of Bonds,51 XYZ-coordinates,
Coulomb-matrices,52,53 or SMILES.54 Each of these represen-
tations is appropriate for different problems. Even though there
is a number of established representations, we decided to
simply select the distances between all nonhydrogen atoms
within the QM region to describe the geometry in the active
site. This representation allows for a preliminary correlation
analysis which reduces the number of features in our system
(see next section). Additionally, no further calculation of, for
example, atomic charges is needed (which are heavily
influenced by the employed QM method). The collection of
interatomic distances is invariant to translation and rotation,
and therefore, avoids any problems that might otherwise occur.
Additionally, the number of water molecules within the QM
region was considered as an additional feature. All in all, this
added up to 2629 features.

Dimensionality Reduction. Because the outcome of a
machine learning fit is dependent on expressive features and
can be impaired by redundant or even insignificant variables,
the features were purged. The dimensions were reduced by a
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simple correlation analysis. All features with absolute
correlations <0.375 to the reaction barrier were omitted.
This value was chosen quite low to ensure that most of the
variations were captured. Further, the remaining features were
checked for strong absolute correlations >0.9 among each
other. If a pair of features were strongly correlated, one of them
was omitted. This resulted in a subset containing only 15
features out of the original 2629.
Model Selection, Refinement, and Application. There

exists a vast number of machine learning algorithms to choose
from. Because we want to predict activation energies, we are
trying to solve a typical regression problem from the
mathematical point of view. There are different types of
regression models, simple linear regression (least squares),
polynomial regression, support vector regression, decision tree
regression, to name a few.55,56 The predictive power of the
different machine learning models depends strongly on the
structure and size of the data, and the relation between the
target and feature variables. All machine learning scripts were
performed in python with a combination of pandas57 and
scikit-learn.58 We tested different supervised learning regres-
sion techniques, the results can be found in section “Machine
Learning Model Comparison” of the Supporting Information.
After testing we chose a sparse regression model, the elastic net
regressor.58,59

Elastic net regression includes variable selection and
regularization, which leads to a greater predictive power and
enhances the interpretability of the results. Methods including
regularization are especially suited for problems where little
data is available. They suppress overfitting by introducing a
cost function.59 Based on all 150 samples, an elastic net model
was built. The hyperparameter α, which controls the strength
of the bias, and the l1_ratio (the ratio between the l1- and l2-
type cost functions) were determined using fivefold cross
validation. To evaluate the performance of the model the
mean-absolute-error (MAE), RMSE, and R2 value were
calculated using threefold cross validation. To additionally
visualize the skill of the machine learning model on new
samples, the data set was randomly divided into a training and
testing set (2:1), fitted to the training set and applied to the
test set.
Lastly, the model was fitted to all the available data (all 150

frames), with the previously determined hyperparameters. The
final model was then used to predict the reaction barrier for
every MD frame (every 10 ps of the trajectory). For ten frames
with low predicted reaction barriers, adiabatic mapping as
described in the section “QM/MM Calculations” was carried
out to show that the model helps to find reactive frames. The
model generated here is not transferable, but the presented
protocol can be employed for other extended systems.

■ RESULTS AND DISCUSSION
Reaction Barriers Obtained by Adiabatic Mapping.

The combined QM/MM adiabatic mapping calculation of 250
reaction pathways starting from snapshots taken from an MM-
MD simulation gave reaction barrier heights between 22 and
80 kcal/mol. Figure 1 shows how the calculated reaction
barriers increase with an increasing number of water molecules.
As the MD simulation advances, the peptide and NAD+

slightly unbind and more water molecules coordinate the
carbonyl-oxygen involved in the first reaction step, and thus, its
nucleophilicity decreases. After 75 ns, the adiabatic mapping
approach was mostly incapable of describing the nicotinamide

cleavage, the desired products were no longer obtained. The
incapability to model the reaction expresses itself in very high
reaction barriers. Only the first 150 reaction pathways, starting
from snapshots taken within the first 75 ns of the MD-
trajectory, were included in the data-set for machine learning.
Figure 1 also shows that extended periods of the MD

trajectory are especially nonreactive. This underlines that if
only very few frames are picked or a very short MD simulation
is used as basis for further calculations, one can miss reactive
periods completely. The first 150 samples, each 0.5 ns apart
along the MD-trajectory, yield energy barriers between 21 and
60 kcal/mol. The distribution of the barrier heights is shown in
Figure 2. It highlights that educt configurations that lead to a

low energy transition are extremely rare. This emphasizes how
difficult it is to find an appropriate start frame, that closely
resembles the reactive enzyme complex and provides a
reasonable energy barrier. The large variation of reaction
profiles obtained with different initial configurations, and
therefore the importance of suited starting points has been
recognized early on (see e.g., refs 9, 25, 60−62).
As presumed by Ryde,63 the energy barriers roughly form a

Gaussian distribution. The arithmetic average is
37.62 kcal/mol, and the minimum activation barrier is
21.87 kcal/mol. The exponential average gives a good estimate
for the barrier and is suitable for comparison with experiments,
under the condition that the picked snapshots are well
chosen;64 here we obtain a value of 24.83 kcal/mol. The

Figure 1. Number of water molecules within 4 Å of the C1′ atom of
the ribose in NAD+ is shown in red. The computed HF-3c activation
energies are plotted in blue. The shaded area highlights the region
that was not included in the subsequent machine learning steps.

Figure 2. Distribution of the calculated energy barriers (adiabatic
mapping with HF-3c). The blue line indicates a smooth distribution
function fitted to the histogram. (1) Lowest barrier found, (2)
exponentially averaged barrier, (3) mean barrier.
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standard deviation, σ, within these 150 samples is 5.40 kcal/
mol. Based on the conclusions by Ryde,63 more than 106

samples would be needed to obtain an estimate of the
activation barrier within chemical accuracy (within 1 kcal/mol)
of the exponential average. In contrast, most studies have only
used a few snapshots (about 3−10).65−68 To avoid having to
calculate millions of pathways, we propose a strategic, scalable
approach. We suggest using machine learning based on
selected distances to pinpoint reactive regions within the
MM trajectory. This allows for strategic sampling of reaction
pathways that contribute significantly to the exponential
average, giving a more accurate estimate of the energy barrier
using less samples. Alternatively, productive snapshots from
the MD trajectory found by the machine learning model, can
be used for further (more accurate) QM/MM studies.
Machine Learning Performance. Using Elastic Net

regression with 15 input features and 150 samples, a model
was built to predict reaction energies from geometrical
features. With α set to 0.09 and l1_ratio equal to 0.5, a
MAE of 3.58 kcal/mol and a root mean squared error (RMSD)
4.46 kcal/mol is obtained. The R2 score, which describes the
percentage of the response variable variation that is explained,
is 0.28. In general an R2 score of 0.28 may be regarded as very
poor. However, with respect to the complexity of the system
and the very limited number of training points (100) a score of
0.28 is surprisingly high. Additionally, only 15 features were
needed to describe the problem to this level of accuracy, which
is possibly influenced by a much greater collection of residues.
To visualize the performance of the machine learning model,

the data set was randomly spilt into a test (50 samples) and a
training set (100 samples). This 1:2 division is similar to the
one made during one cycle of the threefold cross validation
used to assess performance. Subsequently the model was fitted
on the training set and applied to the test set. The predictions
for the test set versus the activation barriers calculated using
adiabatic mapping are shown in Figure 3. The predictions of

the regression model are in quite good agreement with the
actual activation barriers. The model is least accurate for the
extreme barriers, it overestimates low barriers and under-
estimates high barriers. These are the regions in the training
distribution of reaction barriers with the least number of
samples. In order to increase the predictive power of the
model, without prior knowledge of the system, more training
points are needed. We suggest to test if semi-empirical
methods might be a solution to the sampling bottleneck.

Another way to increase the predictive power is to iteratively
apply the model: calculate frames with predicted low barrier
heights, add the results to the training data, and enhance its
performance with every cycle. However, enhancing the
performance of the model is only necessary if the goal is to
predict a final energy barrier using this approach. That being
said, the model is able to differentiate between less and more
reactive frames. Therefore, this straight forward approach is
sufficient to identify regions of interest within the MD
trajectory, which is the intent of this work. Appropriate
starting geometries identified by the built model can then be
used for involved QM/MM studies, for example, aiming at
calculating a free energy reaction profile.

Analysis of the Resulting Feature Subset. The group of
features that remained after the two selection steps (explained
in section “Dimensionality Reduction”) is shown in the
following three tables (Tables 1−3). For each of the features,
the indices of the involved atoms (pdb file of the entire system
is attached to the Supporting Information), the Pearson
correlation coefficient to the activation energy, the elastic net
coefficient, and an explanatory figure are given. The distances
are grouped into 3 categories. The first category contains
distances between the binding pocket and either the substrate
or the cofactor (Table 1). The second group consists of
intramolecular distances of SLL and NAD+ (Table 2). The last
group contains the intermolecular interactions between SLL
and NAD+ (Table 3).
The features given in Table 1 are distances from the

substrate and the cofactor to the surrounding amino acids.
Two distances are between atoms of PHE 70 to SLL (1) and
NAD+ (2), which are anticorrelated to the activation energy
and contribute to the predictive model. The two features
indicate that PHE 70 and the attached backbone must allow
enough space for the nicotinamide leaving group to move out
of the binding pocket. Hence, if the SLL−PHE 70 and the
NAD+−PHE 70 distances increase, the activation barriers
become lower. Feature 3 and 4 show that the binding pocket
has to be compact and the NAD+ cofactor has to be located
deep in the active center for the reaction to take place.
The second category includes intramolecular distances. It

shows that small conformational changes within the reactants
clearly influence the reactivity. Features 5 and 6 express the
relative position of the nicotinamide to the ribose ring. As they
are very similar, feature 6 was eliminated by the elastic net
model due to its redundancy.
The alignment of the succinyl group plays a major role.

Feature 7 has the highest absolute coefficient of all the features
and therefore has the greatest impact on the predicted
transition barrier. Feature 7 expresses the distance between
the C4 atom and the terminal carboxyl group. This distance is
anticorrelated to the activation barrier, and thus the barrier is
lowest when the negatively charged carboxyl group is furthest
away from the reactive centers.
The last group is the largest, it contains eight features which

describe the relative positions of NAD+ and SLL. Features 8, 9,
and 10 are related to the previously explained feature 7. These
distances are also a measure of the relative position of the
carboxyl group, and therefore redundant, their coefficients are
small or zero. The other five distances between NAD+ and SLL
show all positive correlation to the energy barrier. They
indicate that the substrate and the cofactor have to be
sufficiently aligned in order for the reaction to take place.
Additionally, based on the large number of features containing

Figure 3. Scatter plot showing the performance of the Elastic Net
Regressor on a test set (50 random points which were not used for
learning).
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the ribose ring, we suspect that the pucker of the ring plays an
important role.
Application of the Trained Model to the Entire MD

Simulation. The final model, which was trained on all 150
samples, was applied to the entire MD-trajectory. The
predicted barrier heights for the initial step of the
dessuccinylation are shown in Figure 4. One can see the
general agreement between predicted (blue) and calculated
MD frames (orange). The changes in the reactivity are
captured and reflected by the estimated barriers. It is
interesting to note that there are periods in the MD trajectory
which are either reactive or nonreactive, and others in which
the reactivity oscillates very strongly.
The distribution of the predicted activation energies is

shown in Figure 5 on the left. It is compared to the initial
collection of barrier heights used for learning. The comparison

shows that the distribution of the predictions is much
narrower. This already suggests that the model will over-
estimate low energy transitions and underestimate high
barriers.
In order to check the reliability of the model for predicting

reactive regions within the MD trajectory, we selected 10
frames for which a low barrier was forecast and three additional
snapshots to represent the frames with higher predicted
activation energies. These three additional samples are the
frames at 25, 50, and 75% of the distribution of predicted
transition barriers. Starting from these snapshots, adiabatic
mapping calculations were carried out. The results for the
picked frames that were modeled are shown in Figure 5 on the
right. The predicted (ML) values and the calculated results
(adiabatic mapping with HF-3c) are compared. They are put

Table 1. Features 1−4 Used in the Elastic Net Modela

aThese four features describe the overall configuration of the active site. The atoms in between which the distance is measured is colored in green.
bAtom indices as in the pdb-file (see Supporting Information).

Table 2. Features 5−7 Used in the Elastic Net Model for
Describing Interactions Within SLL and NAD+a

aThe atoms in between which the distance is measured is colored in
green. bAtom indices as in the pdb-file (see Supporting Information).

Table 3. Features 8−15 Used in the Elastic Net Model for Describing the Interactions between SLL and NAD+a

aThe atoms in between which the distance is measured is colored in green. bAtom indices as in the pdb-file (see Supporting Information).

Figure 4. Section from the entire MD for which the activation
energies were predicted with the previously built model. The red dots
indicate the energy barriers calculated with adiabatic mapping.
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into context with the predicted barriers for all frames of the
MM trajectory and the samples originally given to the model
for training.
The predicted barrier heights and the calculated reaction

barriers for the thirteen frames are listed in Table 4.

The comparison of the calculated and predicted activation
energies shows that the designed model overestimates low
energy transitions. The start geometries that lead to low
transitions are few compared to the number of snapshots that
are unsuitable starting points for QM/MM reaction path
studies. From the original 150 samples only 9 had energy
barriers below 30 kcal/mol. Using the machine learning model
2 out of the 10 frames, thought to be suited, lead to barriers
lower than 30 kcal/mol. Therefore, the model allows us to
identify relevant frames that will contribute significantly to the
exponential average of the reaction barrier. For an accurate
estimate of the exponential average, more data points used for
training would be required. Improving the predictive model
and subsequently calculating the exponential average from all
predicted barriers could be an interesting approach to

approximate the true activation barrier, which then can be
compared to experiments. Overall, we are able to meet our goal
to strategically find reactive regions within the MD-trajectory.
Using the model, we are able to exclude the majority of frames
without needing to calculate them specifically.

■ CONCLUSIONS

Using simple machine learning techniques, we are able to find
reactive periods within the MD trajectory without prior
knowledge of the structural factors that govern the reactivity of
Sirtuin 5. The applied protocol enables us to identify the
structural features that stabilize the transition state, and thus
enhance the reactivity.
We found that the cofactor NAD+ and the substrate SLL

have to be located close together and be well aligned;
therefore, the compactness of the binding pocket is a
prerequisite. At the same time, there has to be sufficient
room for nicotinamide, the leaving group, to exit the active site.
Configurational changes within NAD+ and SLL are also
connected to the reactivity. The relative position of the
nicotinamide to the ribose ring in NAD+, the orientation of the
terminal carboxyl group of SLL and its salt bridge to the
neighboring ARG 105 are important structural features. Using
measurements of these changes we were able to estimate
activation energies with a MAE of 3.6 kcal/mol. For the initial
step of the desuccinylation, we found transitions with barriers
as low as 26 kcal/mol. We expect that the inclusion of dynamic
effects through free energy simulations and even more accurate
methods will yield a more reliable transition barrier than found
in the scope of this work. These results also support the
assumption that the dessucinylation investigated here has a
reaction mechanism which is analogous to the deacetylation by
Sirtuin 2, which has already been studied in greater detail.30−32

The straightforward approach we applied here to estimate
transition barriers is transferable to any extended system. It
greatly simplifies the search for appropriate educt conforma-
tions, which significantly influences the outcome of most QM/
MM-schemes to model enzymatic reaction mechanisms. The
approach is scalable and can be easily customized to meet
individual needs, by employing other descriptions for the MM
or the QM part, adjusting the number of samples or adding
further features.

Figure 5. Left: Distribution of the predicted barrier heights (blue). For comparison the distribution of the initially calculated barriers (adiabatic
mapping with HF-3c), used for learning, is given (orange). The arithmetic mean (1) and exponential average (2) of the predicted barriers are 37.60
and 33.02 kcal/mol, respectively. Right: Comparison of predicted (ML) and calculated (adiabatic mapping with HF-3c) reaction barriers for 10
frames with low energy transitions and three additional representative snapshots. The values shown here are listed in Table 4.

Table 4. Comparison of Predicted and Calculated Barrier
Heights for Ten Frames with Low Estimated Reaction
Barriers by the ML Modela

time Ea
Pred. Ea

Calc. ΔE
[ns] [kcal/mol]

34.70 31 36 5
36.89 31 35 4
38.44 30 35 5
41.14 30 26 −4
42.16 31 33 2
44.08 30 35 5
45.64 31 34 3
46.96 29 27 −2
47.85 30 32 2
50.58 31 31 0
52.39b 35 40 5
52.76c 37 34 −3
69.00d 40 47 7

aThree additional values are given for frames from 25, 50, and 75% of
the distribution of predicted transition barriers. Bold numbers indicate
calculated barriers that are below 30 kcal/mol. In general, all
calculated activation energies are close to the predicted values. The
MAE for these 13 samples is 3.6 kcal/mol. b25%. c50%. d75%.
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Visualisation

All images of molecular geometries were generated using VMD .1 All plots were produced

using the python-packages matplotlib 2 and seaborn. The chemical structures were drawn

with ChemDraw.

QM-region

SFigure 1: Visualisation of the QM-region. The substrate SLL is shown in black and the
co-factor NAD+ in red. Additionally, four amino-acids and zero to four water molecules were
included.

Besides the two reactants, SLL and the co-factor NAD+, four additional amino-acids and

zero to four water molecule were included. Therefore, the number of atoms included in the

QM-region varied from 139 to 152. The residues contained in the QM-region are shown in

Figure 1. The substrate SLL is shown in black, NAD+ in red, HIS 158 in grey, ARG 105

in blue, PHE 223 in magenta and PHE 70 in green. The residues were chosen based on

proximity to the reactive centers.

2
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Benchmark: HF-3c vs other functionals

To assess the accuracy of the HF-3c/minix for the description of the QM region, seven

frames that covered a 25 kcal/mol range were compared to results obtained by higher theory

methods. For those frames single point calculations were carried out for the educt and the

transition state at the B3LYP-D3/def2-tzvp, revPBE-D3/def2-tzvp, and PW6B95-D3/def2-

tzvp level of theory.3–11 The functionals were selected because of their general use (B3LYP

or revPBE) or because they were especially created for kinetic barriers (PW6B95). The

activation barriers were calculated from the single point energies. The QM/MM partitioning

and all interactions were treated as described in section “QM/MM Simulations”.

SFigure 2: Comparison of predicted barrier heights based on the QM/MM adiabatic mapping
paths generated with HF-3c. In all cases HF-3c is an upper limit to the barrier height, and
thus it consistently overestimates the activation energy. The values on the x-axis show when
the frames were picked from the MD-trajectory.

Figure 2 clearly shows that HF-3c is always proportional to the energy barriers estimated

with the other methods and consistently overestimates the barrier height. This consistency

allows us to use HF-3c/minix to distinguish frames higher and lower barriers, as we do not

aim to use it in order to estimate a value comparable to experiment.

3
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Machine Learning Model Comparison

Listed in the Table 1 are the results for the tested regression models. The numerical hyper-

parameters were determined using 5-fold cross validation. The MAE, RMSE, and R2 value

were calculated using 3-fold cross validation.

STable 1: Summary of the tested machine learning models. The mean absolute
error (MAE), the root-mean-squared-error (RMSE) and the R2 value for each
model are listed. Besides these measures of performance the chosen hyperpa-
rameters are given.

Model Hyperparameters MAE [kcal/mol] RMSE [kcal/mol] R2
Linear Regression 4.28 5.41 -0.06
Descision Tree Regression max depth=9 5.08 6.91 -0.54
Ridge Regression α = 20 3.57 4.46 0.28
Lasso Regression α = 0.1 3.71 4.59 0.23
Kernel Ridge Regression α = 20, kernel=’linear’ 3.55 4.44 0.28
Elastic Net Regression α = 0.06, l1 ratio=0.5 3.59 4.46 0.28
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Abstract: Human Sirtuin 5 (Sirt5) catalyzes the NAD+-dependent desuccinylation and de-
malonylation of lysine residues. While computational studies have so far mainly focused on the
deacetylation reaction catalyzed by related sirtuins, the desuccinylation reaction mechanism
remains computationally uncharacterized. As succession to our previous study (von der Esch
et al., JCTC 2019), where we analyzed the first reaction step of the desuccinylation by means
of QM/MM adiabatic mapping and machine learning, we use sophisticated Umbrella Sampling
to compute the free energy reaction profile of the initial reaction step. The computational
investigation leads to the conclusion that the NAD+ transfer, the first step of the deacyla-
tion reaction, is highly conserved among all sirtuins and proceeds via an SN2-type reaction
mechanism in Sirt5. Further, difficulties when estimating free energy barriers via exponential
averaging and limitations of free energy surface reweighting are discussed in detail.
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QM/MM Free Energy Investigation of the Initial Step of the Desuccinylation
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Human Sirtuin 5 (Sirt5) catalyzes the NAD+-dependent desuccinylation and demalonylation of lysine residues.
While computational studies have so far mainly focused on the deacetylation reaction catalyzed by related
sirtuins, the desuccinylation reaction mechanism remains computationally uncharacterized. As succession
to our previous study (von der Esch et al., JCTC 2019), where we analyzed the first reaction step of the
desuccinylation by means of QM/MM adiabatic mapping and machine learning, we use sophisticated Um-
brella Sampling to compute the free energy reaction profile of the initial reaction step. The computational
investigation leads to the conclusion that the NAD+ transfer, the first step of the deacylation reaction, is
highly conserved among all sirtuins and proceeds via an SN2-type reaction mechanism in Sirt5. Further, dif-
ficulties when estimating free energy barriers via exponential averaging and limitations of free energy surface
reweighting are discussed in detail.

Keywords: Sirt5, Reaction Pathway, Free Energy, QM/MM, Umbrella Sampling

I. INTRODUCTION

Post-translational modifications (PTMs) describe the
chemical alteration of proteins after their expression.
They greatly increase the variety of a cell’s proteome by
expanding the chemical space of the 20 canonical amino
acids and play an important role in, for example, protein
activity, cell signalling, or transcription.1 A frequently
modified residue is lysine. Best known is the interplay of
lysine acetylation2,3 and methylation4,5 fixing its charge
state to either neutral or positively charged, especially in
histone tails.

Acetylation is one of the possible modifications sub-
sumed under the group of ε-N-acylation of lysine. In
humans there are 18 lysine deacylases (KDACs). They
can be divided into four classes. Classes I, II, and IV are
Zn2+-dependent enzymes; their active site contains a cat-
alytically active zinc ion. Class III KDACs, known as sir-
tuins, also contain Zn2+, but they are NAD+-dependent.
The catalytic center is located next to an NAD+-binding
Rossmann-fold subdomain, whereas the zinc binding mo-
tif is spatially separated and ensures the structural in-
tegrity of the enzymes.6 Sirtuins are the mammalian ho-
mologs of the silent information regulator 2 (Sir2), a
highly conserved family of proteins found in archea and
eucariots.7,8 There are seven different sirtuin isoforms in
mammals that cover a wide range of lysine deacylations.
They not only catalyze lysine deactelyation, but also for
example desuccinylation and demyristoylation.9,10 In line

a)These two authors contributed equally to this work
b)Electronic mail: christian.ochsenfeld@uni-muenchen.de

with their wide range of catalytic activity, sirtuins can be
found in several different cell compartments such as the
nucleus or the mitochondria11, where they are involved
in various biological processes.12,13

This paper will focus on the catalytic activity of Sirt5,
which shows no detectable deacetylation but rather de-
malonylation and desuccinylation activity.14 It is located
in the mitochondria and its main target is the carbamoyl
phosphate synthetase 1 (CPS1).15 Its active site consists
of a hyrdophobic pocket with a positively charged argi-
nine (Arg105) at the end. Together with Tyr102, those
two residues position the negatively charged end of the
dicarboxylic acid modification for removal. Sirt5 trans-
fers succinyl (and malonyl) to its cosubstrate by cleaving
the ribosyl bond in NAD+ and thereby generating nicoti-
namide, a natural sirtuin inhibitor,16,17 and a mixture of
2’- and 3’-O-succinyl-ADP-ribose.14

A mutagenesis study of the His116 in the active site,
modification of NAD+, and sirtuin crystal structures
strongly suggest that no residue in the catalytic pocket
takes actively part in the first step of the reaction,18,19

namely the cleavage of the glycosidic bond between ri-
bose and nicotinamide, and the addition of the sub-
strate’s amide carbonyl oxygen to ribose, forming an im-
minium adduct (henceforth called intermediate). Said
intermediate was captured by using thioamide substrate
analogs.20,21 The NAD+ exchange reaction can either
proceed via an SN1-like step-wise or an SN2-like con-
certed mechanism. So far computational studies have
only focused on the initial step of the deacetylation reac-
tion in the bacterial sirtuin analogue Sir2Tm22 and the
yeast homolog yHst223. Both concluded that the first
step is very likely concerted.

In our previous publication we have analyzed the first
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reaction step catalyzed by Sirt5 by means of quantum
mechanics / molecular mechanics (QM/MM).24 We cal-
culated minimal energy paths for the first reaction step
by means of adiabatic mapping.25 Adiabatic mapping
calculations minimise the system while constraining a
collective variable to a specific set of values (in our case
the difference between the breaking glycosidic bond and
the forming bond between the amide carbonyl oxygen
and C1’ of ribose). For these paths we used 150 differ-
ent reactant configurations which were extracted from a
MM-molecular dynamics (MD) simulation of the Sirt5-
substrate complex solved in water. The study connected
the configuration of the active site with the calculated ac-
tivation energy by means of machine learning. We were
able to identify interactions of the substrate (a succiny-
lated peptide) and residues within the active site that
could increase or decrease the activation barrier. Due
to the complexity of the high-dimensional potential en-
ergy surface, the procedure drags the system from reac-
tant to intermediate by visiting many local minima. This
leads to a large scattering of the activation barrier as the
minimised reactant geometries also correspond to many
different local minima.

The effective, free energy activation barrier can best
be estimated as exponential average from many of those
minimal free energy barriers.26 However, Ryde27 has cau-
tioned that one needs quite a large number of minimal
energy activation barriers as the exponential average is
ill-conditioned and converges very slowly. He has pointed
out that many computational studies based on minimal
energies have very large error bars so that their conclu-
sions are questionable. Therefore, we study the actual
potential of mean force (PMF) for this system as a func-
tion of the reaction coordinate. We use Umbrella Sam-
pling28 and the same QM/MM setup as in our previous
study to explore important regions of configuration space
and evaluate the free energy as a function of the reaction
coordinate by means of Multistate Bennett’s Acceptance
Ratio (MBAR)29.

This manuscript starts with a brief introduction into
the difficulty of predicting effective energy barriers using
the exponential averaging and then outlines the equations
employed to compute the PMF based on QM/MM Um-
brella Sampling calculations. After reviewing the compu-
tational details in Section III, the obtained PMF of the
initial NAD+ exchange reaction and the resulting free
energy activation barrier are compared to the previously
determined minimum energy path and exponentially av-
eraged effective barrier. Section IV is concluded with a
detailed discussion of free energy reweighting, which was
used to determine the PMF at a higher level of theory
than that employed for the Umbrella Sampling.

II. THEORY

A. The Problem of the Ill-conditioned Exponential
Average

If the minimal energy activation barrier of the single

adiabatic mapping path i is denoted with ∆E‡i , then the
average activation barrier for n samples is

〈
∆E‡

〉
=

1

n

n∑

i

∆E‡i (1)

and its variance

σ2 =
〈(

∆E‡
)2〉−

〈
∆E‡

〉2
. (2)

The exponential average (EA) for this set of energies is
then computed as

∆E‡EA,num = −β−1 ln

(
1

n

n∑

i

e−β∆E‡
i

)
, (3)

where β = 1/kBT , with kB being the Boltzmann con-
stant and T the absolute temperature, which is fixed to
300 K within the scope of this work. As there are several
local minima along each degree of freedom (DoF) orthog-
onal to the reaction coordinate into which the system is
minimized, and the number of these DoF is very large in
extended biomolecular systems, one can assume that the
minimal energy reaction barriers are normal distributed
based on the central limit theorem.30 The exponential
average of normal distributed reaction barriers can be
calculated analytically using the arithmetic mean

〈
∆E‡

〉

and the variance σ2.

∆E‡EA,ana =
〈
∆E‡

〉
− 1

2
βσ2 (4)

Ryde27 performed numerical experiments, drawing ran-
dom numbers from a normal distribution and computed
the EA using eqs. (3) and (4). Ryde found that he
needed more than an exponentially increasing large num-
ber of samples for increasing σ to converge the exponen-
tial average within 95 % confidence of the known result.
This slow convergence of the exponential average impedes
also the computation of absolute free energies. Mean and
variance converge much faster than the exponential aver-
age, and thus the analytical expression (eq. (4)) using the
first and second moment of the underlying distribution is
more robust, but can only be employed if the distribution
of activation barriers is indeed Gaussian.

B. Multistate Bennett’s Acceptance Ratio

Each Umbrella Simulation i (called umbrella window)
is associated with a biasing potential Bi, which modi-
fies the original Born-Oppenheimer QM/MM potential
energy surface (PES) U0 to

Ui = U0 +Bi . (5)
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In order to recover the unbiased data, we used MBAR to
estimate the (relative) free energies Ai of each window
which were introduced by the biasing potentials Bi. The
free energy Ai of one window is implicitly defined as a
function of all simulation frames and all free energies

e−βAi =

S∑

j

nj∑

k

e−βUi(j,k)

∑S
l nl e

βAl−βUl(j,k)
, (6)

where S is the number of windows, ni the number of
frames in window i, and Ui(j, k) the value of the potential
energy function of window i for frame k from simulation
window j. The same QM/MM potential U0 function was
used in every window, and thus equation eq. (6) can be
simplified to the biasing potentials only, increasing its
numerical stability.

e−βAi =

S∑

j

nj∑

k

e−βBi(j,k)

∑S
l nl e

βAl−βBl(j,k)
(7)

Eq. (7) has to be solved self-consistently, but can alter-
natively be recast into a minimization problem

gi = ni −
S∑

j

nj∑

k

ni e
βAi−βBi(j,k)

∑S
l nl e

βAl−βBl(j,k)
= 0 , (8)

where all gi’s have to be zero for the exact solution. The
unbiased free energy as a function of the collective vari-
able ξ is recovered using

βA0(ξ) = − ln

S∑

j

nj∑

k

δ (ξ(j, k)− ξ)
∑S
l nl e

βAl−βBl(j,k)
. (9)

The Dirac delta function is evaluated with finite resolu-
tion using an indicator function 1ξ∈[ξmin,ξmax], which is
equal to one if ξ ∈ [ξmin, ξmax] and otherwise zero. We
refer to δξ = ξmax − ξmin as the bin width at which we
compute the free energy surface.

C. Free Energy Reweighting

Due to the immense number of QM energy and
force calculations necessary for QM/MM-MD simulations
and the connected high computational cost, free energy
reweighting is proposed as a mean to obtain the PMF
at a higher level theory without having to perform ad-
ditional MD simulations. The goal is to sample the sys-
tem’s configuration space using a cost effective method
and to subsequently reweight the resulting PMF based
on single point calculations at the desired level of theory.

The PMF A0(ξ) is associated with the QM/MM PES
U0, whereas we desire to know A1(ξ), the free energy
surface corresponding the potential energy function U1.

βA1(ξ) = − ln

S∑

j

nj∑

k

δ (ξ(j, k)− ξ) e−β∆U(j,k)

∑S
l nl e

βAl−βBl(j,k)
, (10)

where ∆U = U1 − U0. As the important regions within
configuration space differ between the two PES, the
Boltzmann weights for all frames will not be uniform.
Therefore, we define the reweighting entropy in accor-
dance with Li et al.31 to estimate the fraction of frames
lost for each value of ξ as

S(ξ) = −
∑S
j

∑nj

k δ (ξ(j, k)− ξ)P (j, k, ξ) lnP (j, k, ξ)

ln
(∑S

j

∑nj

k δ (ξ(j, k)− ξ)
)

(11)
and

P (j, k, ξ) = eβA1(ξ) e−β∆U(j,k)

∑S
l nle

βAl−βBl(j,k)
. (12)

S(ξ) is bounded to [0,1] and assumes its maximum of 1
if all frames within bin ξ have equal reweighting prob-
abilities. S(ξ) approaches 0 if very few frames dom-
inate the reweighting probability. Similar information
can be obtained by determining the maximum value of
the reweighting probability (Pmax(ξ)) for each bin.

III. COMPUTATIONAL DETAILS

A. General QM/MM Setup

As reference geometries for the umbrella simulations,
we used the adiabatic mapping path with the lowest acti-
vation barrier from our previous study24. We chose that
frame in order to prove that the barrier is underestimated
due to the minimizer identifying a local minimum with a
high energy as reactant rather than the lower basin con-
taining most reactant configurations. The same protein
residues within the active site, namely Arg105, His158,
Phe170, and Phe223, as well as succinyl-lysine (SLL) and
the ribose-nictonamide part of NAD+ were included in
the QM region (113 atoms in total). We only modi-
fied the location of the QM/MM border, avoiding a cut
through the peptide bonds along the protein backbone
and placed it between Cα and Cβ .

The QM region was described with HF-3c/minix32,
which has been shown to yield accurate chemistry but
elevated energies for transition states24. The activation
free energy will therefore be higher than one computed
with a higher level method, but we expect that SN1
and SN2 can be correctly discerned nonetheless. The
MM parameters for all standard protein residues were
taken from AmberFF1433, those for NAD+ from the
AMBER parameter database34,35. SLL was described
with GAFF36 parameters and AM1-BCC37 charges. For
the zinc finger we used ZAFF38 parameters. The em-
ployed water model was TIP3P.39 For the full origi-
nal MM setup see von der Esch et al.24 The QM/MM
calculations were performed with our in-house program
suite FermiONs++40–42 which uses the OpenMM 7.3
library43–45 to evaluate the MM subsystem.
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B. Details of the QM/MM Umbrella Simulations

For the restrained QM/MM-MD simulations we used
a Python interface for FermiONs++, which allows low-
level access to the QM engine. The propagation of atomic
coordinates, application of a thermostat, and evaluation
of the umbrella potential was done within Python, only
for the QM/MM energy and gradient evaluations the
PyFermiONsInterface was used. The MD simulations
were started from structures taken from the previously
obtained minimal energy path with the lowest barrier
height.24 All residues within 10 Å of the QM subsystem
were chosen to be active, thereby ensuring that there is
always a layer of frozen atoms enclosing the active atoms.
This ensures that no molecule can escape into the vacuum
surrounding the simulation box, as no periodic boundary
conditions were employed.

In order to distinguish between SN1 and SN2 reac-
tion type, the sampling was conducted along two di-
mensions, the breaking C1’-N bond between ribose and
nicotinamide and the forming bond O-C1’ between the
carbonyl oxygen and ribose. Hence, each umbrella win-
dow i was biased with two harmonic functions

Bi(x) =
1

2
k1,i(d1 − d1,i)

2 +
1

2
k2,i(d2 − d2,i)

2 , (13)

with x being a point in configuration space, d1 =
d(O− C1′), d2 = d(C1′ −N), as well as kj,i and dj,i be-
ing the force constant and equilibrium bond length of the
respective bond in the biasing potential i. The force con-
stants range from 200 to 600 kJ mol−1 Å−2, adapting to
the slope of the local PES. In total, 65 umbrella simu-
lations were carried out. The force constants are shown
pictorially in Fig. 6.

Each umbrella window simulation consists of three
parts: i) heating, ii) equilibration, and iii) production.
The system was propagated using the velocity Verlet
algorithm46 and the temperature was controlled using the
Langevin thermostat47. The initial forces assigned to the
active atoms where randomly chosen from the Maxwell-
Boltzmann distribution at 1 K. During heating the time
step was set to 0.1 fs and no thermostat was used. Every
10 time steps the velocities were rescaled in 1 K incre-
ments, reaching 300 K after 3000 time steps.

For equilibration and production, the time step was set
to 0.5 fs and the Langevin friction constant to 1 ps−1.
For increased speed and stability, we used the fully con-
verged extended Lagrangian method48 implemented in
FermiONs++49. The equilibration period was 1 ps long.
The production runs were at least 10 ps and a maximum
of 20 ps long. Simulations were terminated before the
20 ps limit, if the Mann-Kendall50–52 test indicated that
the mean of the two biased bond lengths had converged
and therefore equilibrium within the window had been
reached. Outputs were written every 2 fs.

C. Reweighting Simulations

To calculate the potential energy for frames at a differ-
ent level, a similar Python setup as for the MD was used.
The coordinates from the previously computed trajecto-
ries were employed by FermiONs++ for single point cal-
culations. We computed B3LYP-D3/def2-SVP53–58 and
PBEh-3c/def2-mSVP59 QM/MM energies.

D. MBAR Analysis

As only the relative values of the Ai’s calculated with
MBAR of each umbrella window are meaningful, the free
energy of the first window is set to zero. The start-
ing guess is zero for all windows. Eq. (7) was solved
self-consistently, suggested minimization algorithms such
as Newton-Raphson29 or DIIS60 did not improve the
results. At the end of each self-consistent cycle the
largest change in βAi was determined and convergence
was reached when it dropped under 10−7 and the norm
of gT = (g1, g2, . . . , gS) (gi’s are defined in eq. (8)) was
below 10−4, ensuring that a stable minimum had been
found.

The numerical errors of each bin were computed via
bootstrapping61 analysis. 10 bootstraping runs were per-
formed, drawing random frames from each simulation
with replacing and then performing 10 additional MBAR
analyses. The standard deviation between the bootstrap
samples of the free energy within each bin was used as
statistical error estimate.

IV. RESULTS AND DISCUSSION

A. Free Energy Surface of the Initial Reaction Step

The umbrella sampling method allows for easy paral-
lelization during the exploration of the free energy sur-
face. However, we still performed these simulations in
consecutive batches, filling in gaps between sampled ar-
eas that have been left by the previous set of simulations.
In total 65 umbrella simulations were carried out.

The algorithms WHAM62 or MBAR29, which is often
also called binless WHAM, assume that the input data
describe the simulated system in equilibrium and that
they are uncorrelated. We calculated the decorrelation
times of the biasing potential of each umbrella window,
the mean was 23 fs. Hence, the statistical inefficiency29,63

was 47 fs. Based on these findings, we used data 40 fs
apart to construct the free energy surface. For complete-
ness, results based on the full data set can be found in
the Appendix (Fig. 5). After determining the relative
free energies Ai, we used a bin width of 0.075 Å for both
bond lengths to evaluate eq. (9) (see Fig. 1A).

To obtain the free energy along a one-dimensional
reaction coordinate for the nucleophilic substitution,
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A)

B)

FIG. 1. A) Free energy surface of the first reaction step cat-
alyzed by Sirt5 calculated with HF-3c/MM. The minimal free
energy path (MFEP) connecting the reactant and intermedi-
ate state is shown in red. White areas were not visited during
the simulations. B) The free energy profile along the MFEP
(most likely reaction path), corresponding to the red line in
A). The difference of well depths and barrier height along the
MFEP are given explicitly.

we used Dijkstra’s algorithm64 to find the lowest en-
ergy path (Fig. 1B corresponding to the red line in
Fig. 1A) connecting the lowest point of the reactant basin
(d(C1′ −N) < 2 Å and d(O− C1′) > 2.5 Å) with the
lowest point of the intermediate basin (d(C1′ −N) >
2.75 Å and d(O− C1′) < 1.75 Å).

The position on the free energy surface of the line con-
necting the educt and product of the investigated reac-
tion step very clearly indicates a concerted mechanism.

The energy changes first very little as the carbonyl oxy-
gen approaches, but then the shortening of the (C1’-O)-
bond length is directly proportional to the elongation of
the (C1’-N)-bond in NAD+. After the new bond has
been formed, the energy decreases slightly further by
nicotinamide moving away from the ribose. The reac-
tion mechanism is therefore of SN2 type disregarding of
whether sirtuins catalyze a deacetylation or desuccinyla-
tion. The changes within the active site that lead to the
different substrate specificity of the seven sirtuins do not
change the overall conserved reaction mechanism.

B. Free Energy Paths vs. Minimal Energy Paths

The adiabatic mapping path that provided the start-
ing configurations for the umbrella windows on the
d(O− C1′)-d(C1′ −N)-surface, had predicted an activa-
tion energy of 91.6 kJ/mol, which is around 40 kJ/mol
smaller than the computed free energy barrier along the
MFEP (130.2 kJ/mol). The low minimal energy bar-
rier is very likely caused by the path starting off in a
local minimum that is already much higher in energy
than the majority of configurations forming the reactant
basin. This result strongly suggests that predictions of
reaction barriers or even reaction mechanisms based on
minimal energy paths can be misleading, as has already
been hinted by the strong scattering of minimal reac-
tion barrier values in our previous paper.24 The expo-

nentially averaged barrier, ∆E‡EA,num, which combines
all 150 paths, is also lower than the free energy barrier
(see Tab. I). Based on Ryde’s results the numerical ex-
ponential average has, because of the large variance, an
95 % confidence interval of roughly 2000 kJ/mol.

TABLE I. The numerical results of our previous machine
learning focused study on the reaction barriers of the first re-
action are summarized by their mean (

〈
∆E‡

〉
, eq. (1)), stan-

dard deviation (σ, eq. (2)), numerical exponential average

(∆E‡EA,num, eq. (3)), exponential average assuming a Gaus-

sian distribution (∆E‡EA,ana, eq. (4)), and the width of the

95 % confidence interval (∆∆E‡EA,ana). All numbers are given

in kJ/mol. The values of ∆∆E‡EA,ana are estimated based on
the results given in Ref. 27.

data set
〈
∆E‡

〉
σ ∆E‡EA,num ∆E‡EA,ana ∆∆E‡EA,ana

150 paths 157.4 22.9 104.0 52.0 20
ML 157.3 13.4 138.4 120.8 3

The analytical EA, ∆E‡EA,ana, is even lower than

∆E‡EA,num, which is due to the large scattering of the

computed barriers (large variance). The fact that the dis-
tribution of the 150 frames is bi-modal calls the applica-
bility of the analytical formula, which assumes a normal
distribution, into question. The distribution of energy
barriers predicted by our ML model on the other hand
is uni-modal and more narrow, as the fit underestimates
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high and overestimates low barriers. Its EA result, as
given in Tab. I, is much closer to the free energy bar-
rier based on umbrella sampling. The low-dimensional
ML model cannot incorporate the many DoF orthogonal
to the reaction and effectively averages over them, yield-
ing, to some degree surprisingly, a more realistic barrier
estimate.

C. Going from HF-3c to B3LYP

FIG. 2. QM/MM free energy at the level of B3LYP-D3/def2-
SVP//MM reweighted from HF-3c//MM. The free energy
surface is very uneven due to the large loss of information
shown in Fig. 3.

After having obtained the PMF at the level of HF-
3c/MM, we wanted to gain access to a PMF correspond-
ing to a higher level of QM theory, for example, B3LYP-
D3/def2-SVP, without having to explicitly simulate the
system again on the more accurate and computationally
more expensive PES. Therefore, we computed the po-
tential energy for all 26,189 MD frames that were used
to generate Fig. 1 with B3LYP-D3/def2-SVP//MM, and
used all of them to reweight the PMF via eq. 10. The
result, as seen in Fig. 2, is very uneven and does not re-
semble the HF-3c surface. To understand the cause of the
erratic result, we computed the reweighting entropy (see
Fig. 3). The analysis of the reweighting entropy showed
that in every bin most of the sampled information was
lost as one or a few frames had significantly larger Boltz-
mann weights than all other frames. This imbalance of
weights constitutes a huge loss of sampling information
and explains the noisy result of Fig. 2. It had been ex-
pected that the entropy would stay below 1, as some
HF-3c configurations are more similar to those generated
by B3LYP than others, but not that it is close to zero in
nearly all bins.

A)

B)

FIG. 3. A) Reweighting entropy and B) largest value of the
reweighting probability Pmax in each bin. Low entropy and
large probability values indicate that one or few frames dom-
inated all other frames within the bin, which is the case for
nearly every bin. This explains the shape of the free energy
surface shown in Fig. 10

We also tested reweighting to PBEh-3c/def2-mSVP in
the reactant basin, as we expected PBEh-3c to be closer
related to HF-3c, and therefore the loss of information
to be less severe. The result is similarly noisy as those
obtained for B3LYP.

To understand the reason for the large difference in
reweighting weights, the umbrella window located at
d(C1′ −N) = 1.7 Å / d(O− C1′) = 3.3 Å was also simu-
lated with PBEh-3c instead of HF-3c. This enabled us to
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FIG. 4. Distribution of ∆U = UPBEh−3c−UHF−3c for the um-
brella window d(C1′ −N) = 1.7 Å / d(O− C1′) = 3.3 Å. The
values of ∆U were shifted such that the mean of PHF−3c(∆U)
coincides with 0 kJ/mol. The two distributions PHF−3c(∆U)
and PPBEh−3c(∆U) have no overlap as their respective means
are about 350 kJ/mol apart, making the calculation of the free
energy difference between the two QM methods impossible.

perform forward and backward free energy perturbations
(FEP)65 calculating the change in free energy for switch-
ing from one PES to the other. The results of the for-
ward and backward perturbations differed by more than
300 kJ/mol and BAR66 did not yield a reasonable result.

These large discrepancies of the FEP results can be ex-
plained when looking at the distribution of the potential
energy difference based on either a HF-3c or a PBEh-
3c simulation. Fig. 4 shows the two distributions of the
energy difference ∆U = UPBEh−3c − UHF−3c. For any
free energy difference algorithm to work, the two distri-
butions have to have some overlap, ideally they superim-
pose. It follows that the configurations spaces of HF-3c
and PBEh-3c are significantly different for the chosen
QM size, such that not even the general free energy dif-
ference for changing the PES can be calculated, let alone
reweighting many small bins on a PMF. In general, the
problem can be mitigated by decreasing the QM size and
thereby making the PESs more similar.

However, even for the minimal QM region necessary for
this system (SLL, ribose, nicotinamide, and Arg105, all
in all 82 atoms) the two distributions are closer together
but still have no overlap. Reweighting from PBEh-3c to
B3LYP-D3/def2-SVP is not possible either for the min-
imal 82 atom-QM region (see Appendix C). It remains
to be tested, what the maximal QM size is that would
allow such a perturbation. Using alchemical intermedi-
ates, as they are often employed in MM simulations to
connect two states with significantly different important
configuration spaces, is not an economical option, since
it would come at the cost of the low and high level QM
method.

V. CONCLUSION AND OUTLOOK

Through computation of the PMF by means of
QM/MM-MD simulations and subsequent evaluation us-
ing MBAR we have characterized the inital step of the
dessucciylation reaction catalyzed by Sirt5. Our results
indicate that analogously to the first step of the deacety-
lation reaction the NAD+ transfer step of the dessuc-
ciylation reaction is of SN2 type. This suggest that the
differences in the active site, which give rise to varying
substrate specificities within the sirtuin enzyme family,
do not change the reaction mechanism.

The computation of the free energy reaction profile
(minimal free energy path connecting reactant and inter-
mediate) allowed us to evaluate the quality of free energy
activation barriers estimated by means of exponential av-
eraging. It was shown that the previously computed bar-
rier based on 150 adiabatic mapping pathways underesti-
mated the computed free energy barrier. This calls gen-
erally the reliability of reaction barriers and mechanisms
based on minimal energy paths into question.

In order to provide the free energy surface at a higher
level of theory reweighting was explored. However, when
reweighting from HF-3c/minix to B3LYP-D3/def2-SVP
and to PBEh-3c/def2-mSVP very noisy surfaces are ob-
tained. It was found, by analysis of the reweighting en-
tropy, that the reweighting process is dominated by a
few frames, which leads to a huge loss of information and
therefore erratic surfaces. Furthermore, it was shown
that there is no overlap of the ∆U -distributions, which
is the root cause for the reweighting not to work. Even
when reducing the QM subsystem to the bare minimum
for this system, reweighting remains impossible.

Currently, higher level PMFs remain inaccessible for
extended biological systems. Future work has to explore
the limiting QM size and the similarity of different levels
of approximation.

The first of several desuccinylation reaction steps has
now been shown to be independent of sirtuin specificity.
A following study has to identify the exact mechanism of
the remaining steps.
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Appendix A: Influence of Bin Width and Sample Number

The influence of bin size on the free activation energy
as well as the location of the minimal free energy path
connecting the two minima on the surface was tested.
Figure 5 indicates that there is no influence. Comparison
with Fig. 1 shows that inclusion of additional correlated
data points (closer together than 40 fs) does not improve
or change the result either.
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FIG. 5. All plots are based on the full data set (data points
are 2 fs apart). The bin sizes used for the surfaces in the
left column are the same along d(O− C1′) and d(C1′ −N).
The sizes are from top to bottom 0.01 Å, 0.05 Å, 0.075 Å, and
0.1 Å, respectively. The right column contains 1-D plots of the
minimal energy path connecting the two minima on the free
energy surface on the left. The difference of well depths and
the barrier along the MFEP are given in each plot. The value
of the free energy along the MFEP is clearly independent of
bin size.

Appendix B: Deviation of Umbrella Window Mean from
Bias Potential Minimum Position

Figure 6 visualizes the deviation of the mean along
d(C1′ −N) and d(O− C1′) within each umbrella win-
dow and the minimum of the biasing potential. Win-
dows placed near the high energy transition state region
or in one of the basins (either reactant or intermedi-

ate) show very little deviations between intended win-
dow mean (arrow base) and the computed mean (arrow
tip). Windows placed in regions, where the PMF changes
rapidly, deviate more strongly even if large force con-
stants have been used. This is due to the overestimation
of the transition barrier energy by HF-3c and correspond-
ing large forces. In contrast, much lower force constants
(160 kJ mol−1 Å−2) were used by Hu et al.22 for the
umbrella simulations of Sir2Tm, where they employed
B3LYP/6-31G∗ and calculated a free energy barrier of
only 65.8 kJ/mol.

FIG. 6. The origin of each arrow indicates the original window
placement, and therefore the center of each biasing potential
dj,i . The arrow’s color corresponds to the force constant in
kJ mol−1 Å−2. The arrow head points to the mean d(C1’-
O)/d(C1’-N) sampled in each umbrella simulation.

Appendix C: Reweighting from PBEh-3c to B3LYP

As PBEh-3c/def2-mSVP and B3LYP-D3/def2-SVP
are both DFT functionals combined with a similar basis
set, it was tested whether a reweighting from PBEh-3c
to B3LYP was possible. This reweighting is not pos-
sible either, as a test performed for the same umbrella
window as in the main text (d(C1′ −N) = 1.7 Å /
d(O− C1′) = 3.3 Å) proves, see Fig. 7.

At this point, it is not clear whether the perturbation
from one functional to the other is prohibited by the ac-
cumulation of small difference over the entire QM region
or whether there exist a few atoms within the system
which are the main cause.

3.4 Manuscript IV
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A)

B)

C)

FIG. 7. A) Reweighted free energy from PBEh-3c to B3LYP-
D3, B) reweighting entropy, S, and C) largest value of the
reweighting probability Pmax in each bin. As in Fig. 3, the
entropy and Pmax clearly show the total dominance of one or
few frames per bin.
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Predicting 19F NMR Chemical Shifts : ACombined Computational and
Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor
Complex
Johannes C. B. Dietschreit, Annika Wagner, T. Anh Le, Philipp Klein, Hermann Schindelin,
Till Opatz, Bernd Engels, Ute A. Hellmich,* and Christian Ochsenfeld*

Abstract: The absence of fluorine from most biomolecules
renders it an excellent probe for NMR spectroscopy to monitor
inhibitor–protein interactions. However, predicting the binding
mode of a fluorinated ligand from a chemical shift (or vice
versa) has been challenging due to the high electron density of
the fluorine atom. Nonetheless, reliable 19F chemical-shift
predictions to deduce ligand-binding modes hold great poten-
tial for in silico drug design. Herein, we present a systematic
QM/MM study to predict the 19F NMR chemical shifts of
a covalently bound fluorinated inhibitor to the essential
oxidoreductase tryparedoxin (Tpx) from African trypano-
somes, the causative agent of African sleeping sickness. We
include many protein–inhibitor conformations as well as
monomeric and dimeric inhibitor–protein complexes, thus
rendering it the largest computational study on chemical shifts
of 19F nuclei in a biological context to date. Our predicted shifts
agree well with those obtained experimentally and pave the way
for future work in this area.

Fluorine is considered a “magic” element in medicinal and
agricultural chemistry. It forms strong bonds to carbon, is the
smallest biocompatible hydrogen substitute,[1] has the ability
to form hydrogen bonds, and possesses a high electronega-
tivity. Its introduction into small molecules can increase
metabolic stability and allows the fine-tuning of physico-
chemical properties.[2] It is therefore not surprising that more

than 20% of all FDA-approved drugs and more than 30% of
all agrochemicals contain fluorine.[2] Replacing hydrogen by
fluorine has been used successfully to, for example, inves-
tigate the interaction of inhibitors with proteases, explore
their active site properties, and characterize inhibitors for
neglected tropical diseases. [3]

With its 100% natural abundance, high gyromagnetic
ratio, and the resulting high sensitivity, the spin-1/2 nucleus
19F is of particular interest for NMR studies.[4] While practical
advantages of fluorine for NMR spectroscopy have been
exploited for many decades, the performance of correspond-
ing quantum-chemical calculations for complex systems has
gained momentum only lately.[5]

Chemical shifts of compounds containing fluorine have
been calculated for many decades, from small molecules in
the gas phase over biological systems in solution to solid-
states.[6] The two most recent studies focusing on 19F chemical
shifts of biologically relevant molecules investigated crystals
of fluorinated tryptophans [7] or monofluorinated phenylala-
nines in a protein (Brd4). [8] In the case of the tryptophan
crystals, four molecules were used as a representation of the
entire crystal. For Brd4, a quantum-mechanical/molecular-
mechanical (QM/MM) setup was used with a buffer region of
4 and Boltzmann weighting of a few conformers. Nonethe-
less, the calculations differed from the measurements by
between one and more than 20 ppm even after improving
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predictions by linear regression to experimental data.
Another study benchmarked different levels of quantum-
chemical methods for fluorinated amino acids in implicit
solvent, achieving at best a mean absolute error of 2.68 ppm
with respect to the experiment.[9] Despite the impressive
progress in the field, this is not sufficient to explain subtle
differences in experimental spectra. Here, we use hundreds of
frames from molecular dynamics (MD) simulations to ensure
proper sampling of conformers and a significantly larger
buffer region in our QM/MM calculations to increase the
accuracy of our results.

Methods for computing NMR parameters range from
empirical programs, such as SPARTA ,+ [10] to highly accurate
QM calculations.[5, 11, 12] When using quantum-chemical meth-
ods, it has been shown that sufficiently large QM regions are
necessary when describing complex systems.[13, 14] However,
the inclusion of many atoms is computationally very demand-
ing. Thus, a plethora of methods has been devised to reduce
the computational effort.[14, 15] Here, we employ rigorous
linear-scaling formulations that allow us to exploit the locality
of the electronic structure within density-matrix-based theo-
ries. While this strongly reduces the computational scaling, for
example, for the computation of NMR chemical shifts within
density-functional theory from cubic to asymptotically linear,
the accuracy is numerically unchanged and fully con-
trolled.[5, 16]

As a medically relevant test system, we selected the
oxidoreductase tryparedoxin (Tpx), an essential enzyme of
Trypanosoma brucei, the parasite that causes African sleeping
sickness.[17] Tpx is inhibited by covalently binding to 2-
(chloromethyl)-5-(4-fluorophenyl)thieno[2,3-d]pyrimidine-4-
(3 )-one, CFT, which efficiently killsH T. brucei. [18, 19] CFT
carries a 4-fluorophenyl moiety (Figure 1A and Supporting
Information, Figure S5). The chlorine leaving group facili-
tates the covalent interaction with Cys40 in the active site of
Tpx.

In the asymmetric unit of our monoclinic crystals, three
protein chains with two different inhibitor orientations are
present (PDB: 6GXY, binding pose 1 for chains A and B,
binding pose 2 for chain C, Figure 1B).[19] In binding pose 1,
the covalently bound CFT features extensive intramolecular
interactions with the protein, including T-shaped -stackingp

interactions with Trp70 and a weak hydrogen bond of the CFT
fluorine with the backbone-H of Glu107. In binding pose 2,a

CFT is not in contact with the protein beyond the covalent
bond to Cys40, and its fluorine atom is solvent exposed
instead. In both, crystal and solution, CFT binding to the wild-
type protein in pose 1 leads to Tpx dimerization mediated by
extensive intermolecular inhibitor–inhibitor stacking and
inhibitor–protein interactions.[19] The dissociation constant
for the CFT-induced Tpx dimer is approximately 5 mm . In
binding pose 2, dimerization is structurally not possible. We

Figure 1. Interaction of T. brucei oxidoreductase tryparedoxin (Tpx) with a covalent inhibitor. A) cysteine-reactive CFT (top) and non-reactive MFT
(bottom). B) Overlay of Tpx–CFTmonomers in poses 1 and 2 as observed in our crystal structures (PDB: 6GXY).[19] C–F) Depiction of the QM
region and MM embedding. Tpx is shown in white, water in blue, and all atoms in the QM region as orange sticks. The inhibitor is highlighted in
red with its fluorine atom as green sphere. C) shows the Tpx–CFT dimer, D) the inhibitor in solution, E) the Tpx–CFTmonomer in pose 1, and
F) the Tpx–CFTmonomer in pose 2.
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identified residue Trp39 to be crucial for dimerization.
Mutation of this active-site residue to alanine (Tpx-W39A)
yields a protein that can still covalently interact with CFT, but
dimerization upon inhibitor binding is extremely weak
(Supporting Information, Figure S1).[19]

The 19F signals for free CFTand its unreactive analogue 2-
methyl-5-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4(3 )-one,H
MFT, which is missing the chlorine leaving group (Fig-
ure 1A), were measured in solution at 298 K. Both 19F
chemical shifts were found to be very similar ( 114.79 and
114.77 ppm, respectively). Upon binding of CFT to Tpx and
the subsequent dimerization, a downfield chemical shift of
approximately 0.3 ppm for the 19F signal ( 114.47 ppm) and
substantial line broadening are observed, in agreement with
incorporation of CFT into a high molecular weight, dimeric
complex (Figure 2). Hence, the simultaneous availability of
19F NMR and X-ray data for the Tpx–inhibitor system renders
it exceptionally well-suited for systematic 19F chemical shift
studies. At high concentrations (greater than 500 ), themm 19F
chemical shift for the CFT–Tpx complex does not depend on
the concentration of the protein–inhibitor complex. This
suggests that under these conditions the 19F chemical shift is
not influenced by the monomer/dimer equilibrium since these
concentrations are far above the KD for dimerization. Only
after significantly lowering the concentration, the 19F signal
starts to shift further downfield, indicating an increasing
population of the monomer in exchange with the dimer

(Supporting Information, Figure S2). However, due to limi-
tations in the signal-to-noise ratio for the 19F NMR measure-
ments at high dilution, the concentration of the complex could
not be reduced far enough below the KD ( 5 ) to reach! mm
conditions where the monomer is exclusively observed. In
agreement with the above observation, the measured chem-
ical shift for CFT bound to the W39A-mutant is shifted
further downfield by an additional approximately 0.8 ppm
compared to the WT complex ( 113.7 ppm). This mutant
does not significantly dimerize, and the distances from the
inhibitors fluorine group to the W39 C atom and to the W39a

indole group are more than 16 and 11.5 , respectively, and
thus should not affect the inhibitors 19F chemical shift. Ergo,
this mutant can be used as a reference point for the 19F
chemical shift of CFT bound to a Tpx monomer.

In contrast to small organic molecules, the free energy
landscape of solvated biomolecules typically does not possess
one deep minimum, but rather a multitude of energetically
close configurations that are thermodynamically accessible at
physiological temperatures. In the NMR experiment, this
implies the recording of an ensemble-averaged NMR chem-
ical shift. Therefore, many different configurations of the
system have to be taken into account to compute the observed
chemical shift.[20] It has been demonstrated that inclusion of
bond-length and bond-angle vibrations is often crucial for
reliable chemical-shift computations.[21, 22] Furthermore, the
different relative orientations of molecules have to be
accounted for as well. Here, we present a robust methodology
based on MM-MD sampling and subsequent QM/MM
calculations of 19F NMR chemical shifts to identify CFTs
binding poses relevant in solution.

Based on the crystal structure of the Tpx–CFT complex
(PDB: 6GXY),[19] we computed separate MM-MD trajecto-
ries for free CFT and MFT in solution, for the monomeric
complex with CFT bound in either pose 1 or 2, and the Tpx-
dimer with both protomers binding to CFT in pose 1 (see the
Supporting Information for setup details). An analysis of the
complex stability during the simulations and inhibitor flexi-
bility is given in Figures S4–S8 and Table S2 in the Supporting
Information.

Subsequently, the 19F chemical shifts of the inhibitor were
calculated with our linear-scaling methods[5,16] for 200 snap-
shots taken evenly spaced in time from each MD trajectory.
All interactions of either the protein or solvent atoms with the
inhibitor were included explicitly. The aim was to perform
high quality 19F chemical-shift calculations on a large scale,
based on an adequate description of the accessible phase
space. The configurational ensembles included, for example,
different solvation patterns or orientations of the inhibitor
towards Tpx.

The high electron density of 19F renders its spectroscopic
properties, such as NMR chemical shifts, particularly chal-
lenging to calculate.[23] Motivated by previous studies,[12, 13] we
tested KT2[24] and B97-2[25] together with the NMR-specific
basis set pcS-1,[26] and the necessary QM buffer size (Support-
ing Information, Figure S9). Both functionals show identical
QM size convergence. As the radius of the QM region is
increased from 4 to 5 , the calculated chemical shift changes
by more than 0.5 ppm, highlighting the importance of

Figure 2. Comparison of experimentally measured (A) and calculated
(B) 19F NMR shifts. A) We compare CFT and MFT in solution, CFT in
the dimeric complex and the W39A monomeric mutant. In the experi-
ment, only one peak could be found for the monomeric protein.
B) The computed averages are shown as vertical lines with the SEM
indicated by an area shaded with decreased saturation. The calcula-
tions distinguish between two poses observed in the crystal structure
(Figure 1). Importantly, the calculations and the experiment reveal the
same ordering of peaks and indicate that pose 2 does not exist in
solution.
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a sufficiently large QM sphere. A 7 QM buffer region
around the inhibitor was found to be necessary to obtain size-
converged shifts. Hence, we performed QM/MM-NMR
calculations with KT2/pcS-1 for a 7 QM region. For the
dimeric wild-type Tpx–CFT complex, this region (Figure 1C)
includes more than 1000 atoms. In combination with the
200 sampling points taken from each of the individual MD
trajectories, this makes it one of the largest QM-based
19F NMR chemical-shift calculations reported so far.[7, 8, 27]

The QM size and the combined number of calculations in
this context are unprecedented and are at the frontier of what
is currently possible for such large biological systems. The
embedded QM regions are shown in Figure 1C–F. A detailed
description is given in the Supporting Information (Support-
ing Information, Table S3).

It is important to note that the values of the calculated 19F
shifts for individualMD frames are scattered over a large shift
range of about 60 ppm (Supporting Information, Figure S10).
This is, however, not unexpected due to bond-length and
bond-angle vibrations in the MD simulations.[21] The vibra-
tions causing these distributions, especially those of the C–F
bond, are fast processes on the spectroscopic time scale, and
thus are not observed experimentally. We use the experimen-
tally measured 19F signal of free CFT in solution as reference
for our calculated values, as relative shieldings are muchmore
accurate.

As expected, our calculated 19F chemical shifts correctly
predict that the chemical shifts for free CFTandMFTare very
similar to each other. Importantly, the predicted chemical
shift for the inhibitor bound to Tpx is calculated to be
downfield shifted compared to free CFT. An even more
pronounced downfield shift compared to free CFT is pre-
dicted for CFT bound to monomeric Tpx in binding pose 1.
This is in excellent agreement with what is observed
experimentally for CFT bound to the monomeric W39A
Tpx-mutant and in our dilution experiments (Supporting
Information, Figures S1 and S2). In contrast, for the mono-
meric complex in pose 2, a chemical shift is calculated that lies
between free CFT and the dimeric complex. Thus, our
calculations qualitatively predict the correct order of the 19F
chemical shifts for CFT in the different states, as well as the
true direction of chemical-shift changes induced by protein
binding and complex dissociation. They further suggest that
binding pose 2 of CFT observed in chain C of the crystal
structure is not relevant in solution, as one would then expect,
for CFT bound to the monomeric W39A mutant, a 19F signal
with a chemical shift in between those of free CFT and CFT
bound to dimeric wild-type Tpx. This agrees well with the
extended degree of solvent exposure of the inhibitor in this
binding pose (Supporting Information, Figure S8), thus
rendering it more similar to the free inhibitor. However, our
calculations overestimate the chemical-shift differences
between the different states. Already the calculated chemical
shift difference between free CFTand freeMFT (0.58 ppm) is
larger than the measured one (0.02 ppm). This pattern
continues for the other pairwise chemical-shift differences
(CFT vs. CFT–WT: 0.32 ppm/2.48 ppm; Dimer vs. Monomer
(pose 1): 0.77 ppm/0.97 ppm). Nevertheless, the computed
trend allows us to discriminate between the different struc-

tures observed experimentally and to assign the measured
shifts to a given conformer.

The accuracy of the prediction could be further increased
by using a higher level of theory, a larger basis set, or more
accurate dynamics (QM/MM-MD instead of MM-MD)
improving the description of bond lengths, vibrations, and
non-covalent interactions, which would entail, however,
significantly higher computational costs.

Our study underlines the usefulness of 19F NMR for the
investigation of complex protein–inhibitor interactions, show-
cases current computational possibilities, and illustrates the
power of predicting 19F NMR chemical shifts in a complex
biological system as a prerogative for further biomedical
applications and drug design.

Acknowledgements

C.O. acknowledges funding by the “Deutsche Forschungsge-
meinschaft” (DFG, German Research Foundation)—SFB
1309-325871075 and support as a Max-Planck Fellow at the
Max-Planck Institute for Solid-State Research in Stuttgart.
U.A.H. acknowledges support by the Carl Zeiss Foundation
and the JGU Mainz Inneruniversitre Forschungsfçrderung.
This work was supported by the Rhineland-Palatinate Nat-
ural Products Research Center and the Center for Biomo-
lecular Magnetic Resonance (BMRZ), Frankfurt University
which is funded by the state of Hesse. H.S. acknowledges
support from the Rudolf Virchow Center for Experimental
Biomedicine. We thank Elke Duchardt-Ferner, Benedikt
Goretzki, and Luise Krauth-Siegel for stimulating discussions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: African sleeping sickness · covalent inhibitors ·
NMR spectroscopy · quantum chemistry · structural biology

[1] E. Neil, G. Marsh, , , R153–R157.Chem. Biol. 2000 7
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Materials and Methods: 

Inhibitor synthesis:   
Synthesis of 2-(chloromethyl)-5-(4-fluorophenyl)thieno[2,3-d]pyrimidine-4(3H)-one (CFT) and 2-methyl-
5-(4-fluorophenyl)thieno[2,3-d]pyrimidine-4(3H)-one (MFT) was described previously [1]. 
 

NMR spectroscopy:  
Tpx WT and Tpx W39A were prepared as described previously [1, 2]. For 19F NMR measurements, the Tpx 
variants were incubated for 30 min with 4 mM TCEP in a 1:3 molar protein:CFT ratio. Free CFT was removed 
via size exclusion chromatography on a 24 mL high-resolution column (EnrichTM 70 10 x 300 SEC Bio-Rad 
Laboratories GmbH). Fractions containing Tpx-CFT were combined and concentrated to 1 mM (Tpx WT-
CFT) or 700 µM (Tpx W39A-CFT) in 25 mM NaPi pH 7.5, 150 mM NaCl containing 10% D2O.  
19F-NMR spectra of isolated inhibitors (100 µM, 1k scans) or protein-inhibitor complexes (see Table S1) 

were recorded on a Bruker AVANCE 3 600 MHz spectrometer with a Prodigy TCI cryoprobe (Bruker, 
Karlsruhe). All measurements were carried out at 298 K in Tpx buffer (25 mM NaPi pH 7.5, 150 mM NaCl) 
supplemented with 10% D2O and 3% DMSO.  

 
 
 Table S1: Parameters used for 19F NMR measurements of Tpx in complex with inhibitor. 

 

Construct Concentration scans 

Tpx WT-CFT 750 µM 512 

500 µM 512 

250 µM 512 

100 µM 2k 

50 µM 4k 

10 µM 50k 

Tpx W39A-CFT 700 µM 64 

 350 µM 64 

 200 µM 128 

 100 µM 256 

 50 µM 256 

 25 µM 512 
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Figure S1: Evolution of the CFT-Tpx W39A 19F NMR peak upon dilution. Only small shifts are observed 
indicating a residual, low affinity interaction between two CFT-bound Tpx W39A monomers. Therefore, the 
resulting peak at 25 µM protein was assumed as the representative of the true monomeric CFT-Tpx complex. 
Importantly, and in agreement with the effects observed for the WT protein and with some residual 
dimerization, the chemical shift displays a slight shift at lower protein concentrations. 

 

Figure S2: Evolution of the CFT-Tpx dimer peak upon dilution. At concentrations below 100 µM, the 19F 
peak of CFT-Tpx develops a shoulder shifted towards the direction of the chemical shift observed for the 
monomeric CFT-Tpx W39A bound construct, and thus indicates the increasing presence of CFT-Tpx 
monomers with decreasing protein concentration. 
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MD simulations: For the MD simulations, the protein was described by the AMBER force field ff14SB and 
CFT with the generalized AMBER force field (GAFF) [3, 4]. Partial charges were computed with the 
Gaussian03 program package on the HF/6-31G(d) level by fitting the electrostatic potential [5, 6]. For the 
protein, hydrogen atoms were added and the charge of the protein-inhibitor complex was neutralized with 
Na+ ions using tleap [7]. The covalent protein-inhibitor complex and both isolated compounds, CFT or MFT, 
were solvated in a truncated octahedral shell with the TIP3P water model with a 10 Å buffer around the 
complex or a 18 Å buffer around isolated CFT or MFT, respectively [8]. In the crystal structure (6GXY) of 
the Tpx-CFT complex [1], chains A and B in the unit cell are comparable (see Fig. S3). Therefore, CFT-Tpx 
pose 1 refers to chain A of the crystal structure, CFT-Tpx pose 2 to chain C and the CFT-Tpx dimer to chains 
A and B.  
 

 
Figure S3: Superposition of chains A and B of the crystal structure of the Tpx-CFT complex (6GXY). Due to 
the high resolution of 1.6 Å, no non-crystallographic symmetry restraints were employed during refinement. 
CFT of chain A is shown with carbon depicted in red, sulfur in yellow, nitrogen in blue, oxygen in pink and 
fluorine in white. Tpx of chain A is shown in dark gray. All atoms of CFT of chain B and Tpx of chain B are 
shown in light gray. The two structures are virtually indistinguishable.  

 
The MD simulations were performed with the AMBER14 software package [7]. First, the solvent was 

minimized for 1000 cycles with the simulation engine sander (Simulated Annealing with NMR-Derived 
Energy Restraints) with restraints on the protein-inhibitor complex with a force constant of 
500 kcal/(mol∙Å2), followed by 2500 cycles for the whole system. Afterwards, the system was gradually 
heated to 300 K over 100 ps. All production runs had a duration of 30 ns. 
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A B 

  

Figure S4: A) Backbone RMSD of the Tpx monomer (CFT in pose 1 and 2) and the Tpx dimer (chain A and 
B). In the dimeric case, each Tpx monomer was superimposed on itself. Tpx is more flexible in the 
monomeric pose 2 as the inhibitor does not reside in the binding site. B) Backbone RMSD of the Tpx dimer 
(chain A and B), where all frames were superimposed on the full dimer. These values are higher than in (A) 
as the dimeric complex is more flexible. Calculated mean and standard deviations are given in Table S2.  
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A B 

  

C  

 

 

Figure S5: Heavy atom RMSD of the inhibitor CFT in complex with a TPX monomer (pose 1 and 2) or in 
complex with the TPX dimer (chains A and B). In A) the atoms were aligned with the backbone of the 
respective Tpx chain, in B) with the backbone of the full dimer. C) shows the heavy atom RMSD of CFT and 
MFT in solution. The additional chlorine in CFT clearly increases its RMSD. Calculated mean and standard 
deviations are given in Table S2. 
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 7 

 
Figure S6: Two intermittent H-bond interactions between the backbone atoms of Ile109 of the TPX monomer 
and CFT in pose 1 (left column) and pose 2 (right column). The top row shows the H-bond with CFT as donor, 
in the bottom row CFT is the acceptor. Calculated mean and standard deviations are given in Table S2. 
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A B 

  
C D 

  
Figure S7: A) Selected atoms in blue for the calculation of the dihedral angle analyzed in B-D. B) CFT (top) 
and MFT (bottom) in solution, C) CFT bound to Tpx monomer (poses 1 or 2) or D) CFT in the Tpx dimer. 
Calculated mean and standard deviations are given in Table S2. 
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A 

 

B 

 

C 

 

D 

 

Figure S8: Comparison of the conformational space explored by the inhibitor CFT bound to Tpx in a 
monomeric complex during the MD simulations of poses 1 and 2. A/C display pose 1 and B/D pose 2. The 
angle of the view is indicated by the axes in the corner of each picture. The conformational space explored by 
the solvent exposed inhibitor in pose 2 is much greater than in pose 1. Yet, the inhibitor is nonetheless restricted 
in its motion by the protein surface as shown in D. Carbon atoms are shown in dark grey, nitrogen in blue, 
sulfur in yellow, and fluorine in pink. The protein backbone is shown in cartoon representation, the protein 
surface is visible as van-der-Waals spheres of the outer atoms. 
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Table S2: Calculated mean and standard deviations of the RMSD over the course of the MD simulations for the 
Tpx monomer and dimer, for CFT in solution or in complex with the Tpx monomer and dimer (see Figure S3, 
S4). To calculate the RMSD for Tpx all backbone atoms and for CFT all heavy atoms were considered and 
calculated in relation to the starting structure. Furthermore, mean and standard deviations were calculated for 
CFT-I109 distances (referring to Figure S5) or dihedrals of CFT (see Figure S6). 10,000 data points were 
included in the calculations. RMSD values and standard deviations (sdv) as well as distance values are given in 
Å, dihedrals in [°]. 

CFT / 
MFT 

CFT in 
solution 

MFT in 
solution 

Tpx-CFT 
monomer 

pose 1 

Tpx-CFT 
monomer 

pose 2 

TPX-CFT 
dimer chain 

A 

TPX-CFT 
dimer chain 

B 

mean 
RMSD 0.6 0.3 2.0 5.1 1.0 1.2 

sdv 0.2 0.2 0.6 1.4 0.4 0.5 

Tpx 
backbone 

CFT in 
solution 

MFT in 
solution 

Tpx-CFT 
monomer 

pose 1 

Tpx-CFT 
monomer 

pose 2 

TPX-CFT 
dimer chain 

A 

TPX-CFT 
dimer chain 

B 

mean 
RMSD - - 1.0 1.2 1.3 1.3 

sdv - - 0.1 0.2 0.3 0.3 

CFT to 
I109 

CFT in 
solution 

MFT in 
solution 

I109 C=O to 
HN CFT 

pose 1 

I109 NH to 
O=C CFT 

pose 1 

I109 C=O to 
HN CFT 

pose 2 

I109 NH to 
O=C CFT 

pose 2 

mean 
distance - - 2.1 2.6 4.6 2.3 

sdv - - 0.4 0.6 1.1 0.8 

CFT 
dihedral 

CFT in 
solution 

MFT in 
solution 

Tpx-CFT 
monomer 

pose 1 

Tpx-CFT 
monomer 

pose 2 

TPX-CFT 
dimer chain 

A 

TPX-CFT 
dimer chain 

B 

mean 
dihedral 88.6 89.1 90.3 81.6 55.2 50.2 

sdv 27.9 27.6 25.1 28.0 18.6 11.5 
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19F NMR chemical shift predictions: 

Initial decision on the setup 

Before calculating the NMR shifts for hundreds of frames, a small benchmark study was performed to 
estimate the optimal setup for this investigation. Frames from the simulation of the Tpx-CFT complex 
in pose 1 were selected. The QM/MM chemical shift calculations were performed at the DFT level for 
the QM part of the system (see definition below). The test calculations were performed with respect to 
DFT functional, QM-size convergence, and convergence criteria.  

The QM/MM calculations were performed with the ChemShell[9] package. The MM part was 
described with the exact same parameters as used for the molecular dynamics simulations. The software 
package FermiONs++[10-12] was used for the QM calculations. The QM/MM interactions were 
described by electrostatic embedding in an additive scheme. 

To study the size convergence behavior of the system, we performed calculations where the QM 
region included only the inhibitor, the inhibitor and all protein residues/water molecules surrounding it 
within 4, 5, 6, 7, and 8 Å, respectively (see Fig. S9). 

The use of a large basis set, like pcS-2 [13], increased the computational cost (when using KT2) by 
an order of magnitude compared to pcS-1, and was thus deemed too expensive. The higher 
computational time for B97-2 [14] than KT2 [15] necessitated the use of KT2 instead of the hybrid 
functional B97-2. A high number of grid points was used in order to provide reliable chemical shifts 
(150 radial points and 974 angular points in the Lebdev grids). In general, very conservative settings 
were used to ensure the correctness of the computed chemical shifts (integral threshold: 10-10, PreLinK 
threshold: 10-4, SCF convergence threshold: 10-7). 

 

 
Figure S9. Convergence study of two DFT functionals, KT2 and B97-2, with respect to the QM-size (buffer region around 
CFT). The graph displays the difference between the absolute 19F chemical shifts of the Tpx-CFT complex in pose 1 for 
increasing buffer regions around CFT. The convergence behavior of both DFT functionals is almost identical. 
 

 

Calculation of 19F NMR shifts 

From every MD simulation 200 frames were selected, which were evenly spaced in time, so that a 
representation of the Boltzmann distribution could be obtained. For every frame all atoms of protein 
residues and water molecules within 7 Å of any atom belonging to the inhibitor molecule were selected. 
Due to the different atom configurations in every MD frame, the actual number of atoms in the QM 
region fluctuated. The isotropic NMR shifts were computed for every frame. The shift distributions are 
reported in Figure S8 while we refer to the calculated means in the main article. The convergence of the 
computed shifts is controlled by looking at the convergence of the mean as well as the standard deviation 
(measured for the width of the underlying distribution) with the number of frames (Figure S9). 
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Table S3: QM system sizes within the QM/MM chemical shift calculations.  

System  CFT in 
solution 

MFT in 
solution 

Tpx-CFT pose 1 Tpx-CFT pose 2 Tpx-CFT dimer 

Mean No. 
of QM-
Atoms 

 491 481 893 877 1385 
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Figure S10: Comparison of 19F chemical shifts of CFT and MFT alone in solution, the inhibitor in complex with a 
Tpx monomer in the two distinct poses (pose 1: buried in the binding pocket; pose 2: solvent exposed), and the inhibitor 
in the dimeric complex with the Tpx WT. Distributions of 19F-chemical shifts computed for all MD frames. The bottom 
panel shows a gaussian function approximating the distributions above. The solid lines indicate the mean, the dashed 
lines the peak width at half height. 
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Figure S11: Changes in the mean of the 19F chemical shift and the standard deviation with increasing number of 
frames. Both quantities are indicators of convergence. 
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ABSTRACT
The calculation of hyperfine coupling constants is a challenging task in balancing
accuracy and computational effort. While previous work has shown the importance
of electron correlation and molecular dynamic contributions, we present a system-
atic study simultaneously analyzing the influence of both effects on hyperfine cou-
pling constants. To this end, we thoroughly study two organic radicals, namely the
dimethylamino radical and ethanal radical cation, proving the need to account for
conformational flexibility as well as the large influence of electron correlation. Based
on these results, we analyse the effect of electron correlation and dynamic simula-
tions on a set of 12 organic radicals, illustrating that both effects are vital for an
accurate in silico description on the same scale. Furthermore, we study the influ-
ence of solvation using the efficient nuclei-selected algorithm to obtain hyperfine
coupling constants with electron correlation for large systems, indicating the neces-
sity to include explicit solvent molecules. Finally, we introduce a composite approach
to incorporate all contributions for hyperfine coupling of radicals in solution at com-
paratively low computational cost. This is successfully tested on the hydroxylated
TEMPO radical in aqueous solution, where we are able to compute a 14N-HFCC of
44.4 MHz compared to the experimentally measured 47.6 MHz.

KEYWORDS
Computational Chemistry; Hyperfine Coupling Constants; Molecular Dynamics;
Electron Correlation; Solvation Effects

1. Introduction

Electron paramagnetic resonance (EPR) spectroscopy is an important tool for study-
ing radicals. As a non-invasive method, it is indispensable in research tackling many
biological systems [1, 2]. However, the ab initio computation of the EPR parameters,
namely the hyperfine coupling constants (HFCCs) and the g-tensors, remains chal-
lenging. These open-shell properties can be calculated using the unrestricted approach
which incorporates spin polarization and delocalization, but can lead to erratic results
due to spin contamination. This can be improved by using a spin restriction within
the restricted-unrestricted ansatz by Rinkevicius et al. [3], where spin contamination
is overcome while still including spin polarization. Nonetheless, the computationally

∗
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less demanding unrestricted approach often leads to reliable results, especially for well
localized radicals and when using density functional theory (DFT) [4–8].

Based on an unrestricted framework, further aspects need to be considered: EPR-
specific basis sets have been demonstrated to be important [9, 10], and while DFT
is often highly accurate, higher-order levels of theory systematically taking electron
correlation into account are often necessary. This includes methods such as second-
order Møller-Plesset perturbation theory (MP2), double hybrid (DH)-DFT [6, 11], and
coupled cluster approaches [5, 12–16], as well as different multi-reference ansätze [17–
19].

Even with elaborate methods, extensive basis sets, and in absence of spin contami-
nation, the results can deviate from experimental values due to the neglect of dynamic
contributions, i.e. vibrational averaging. This was shown in recent work by Massolle et
al. [20] on verdazyl radicals, where computational results at the DFT-level are im-
proved by averaging over frames from a molecular dynamics (MD) simulation based
on a quantum mechanically derived force field [21]. Similarly, studies on nitroxide
radicals show that considering both vibrational averaging and solvent effects leads to
more accurate results within the DFT framework [22, 23]. The influence of molec-
ular and intermolecular motion of explicitly solvated benzosemiquinone was studied
in detail by Asher and Kaupp [24]. Nonetheless, solvent effects are often small, and
work by Rinkevicius et al. [25] shows that a description of the environment by means
of molecular mechanics theory can be sufficient. Very recent work from the Cappelli
group has used successfully a polarizable QM/MM ansatz for the Proxyl and TEMPO
(2,2,6,6-Tetramethylpiperidinyloxyl) radical [26].

A thorough investigation of the effect of the bending angle of the methyl radical, its
incorporation within an ab initio MD (AIMD) simulation [27], and its solvation [28]
also mandates the correct description of dynamic contributions. Similarly, significant
ro-vibrational contributions were shown in the analysis of out-of-plane bending in
H2NO [29], of dimethyl nitroxide [30], and of other organic radicals [31–33]. Here,
we also want to mention recent corresponding work in the computation of nuclear
magnetic resonance shielding tensors by Grimme et al. [34]. that considers a set of
conformers or rotamers to accurately describe flexible molecules in solution.

While both, the effect of electron correlation and dynamic contributions signifi-
cantly improve the in silico results, their combined description is computationally
cumbersome. A straightforward approach is to perform an MD simulation and com-
pute the EPR parameters for a set of frames. This requires the cost for computing
the EPR parameters per frame to be small, allowing a sufficient number of frames to
be computed for accurately incorporating the vibrational and rotational motion. The
description of the correlation contribution by the cheapest wavefunction-based ansatz,
MP2, is still expensive due to its conventionally large scaling behavior of O(N5) as
well as its large prefactor. This also applies to DH-DFT that contains a second-order
perturbation theory term analogous to MP2 [11]. The prefactor can be reduced by
the resolution-of-the-identity (RI) approximation [35–40], whereas linear scaling be-
havior can be achieved by a reformulation in, e.g. atomic orbitals (AO) [41], using
distance-including integral estimates [42, 43]. The required analytic energy gradients
for the computation of molecular properties at the MP2-level have been developed in
the AO-basis [44]. By introducing the RI approximation and a Cholesky decomposi-
tion [45, 46] of the (pseudo-)density matrices (CDD) in the computation of AO-MP2
energy gradients [44], we recently presented a low-scaling, low-prefactor implementa-
tion to compute HFCCs [47]. By computing only selected nuclei, the computational
cost can be reduced further [48]. Using these methods, large-scale computations of
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HFCCs based on multiple frames from an MD simulation have become possible.
This work simultaneously analyses the effect of both dynamic contributions and

electron correlation on the HFCCs, thus providing a computational protocol towards
the calculation of accurate HFCCs for large molecular systems using the efficient quan-
tum chemical methods introduced above. We highlight the importance of accounting
for dynamic contributions by investigating in depth the dependence of the HFCC on
geometric parameters, such as bond lengths, and bond and dihedral angles of two or-
ganic radicals, ethanal and dimethylamine. Subsequently, we analyse the contribution
of electron correlation and dynamic contributions on isotropic HFCCs of a set of 12
organic radicals which also includes the two aforementioned examples. We chose or-
ganic molecules as their single-configurational character and the appearance of only
light nuclei allow for a good description using DFT-based methods. Dynamic contri-
butions are considered by computing a set of snapshots from an AIMD simulation
(e.g. Refs. [49–51]) of the radicals using the fast small basis set Hartree-Fock method
(HF3c) [52] and the efficient three-fold corrected Perdew-Burke-Ernzerhoff generalized-
gradient-approximation (PBEh3c) [53]. The effect of electron correlation is shown by
comparing the isotropic HFCCs both at the Hartree-Fock (HF) and DFT-level, as
well as using RI-CDD MP2 and DH-DFT. Finally, solution effects are considered both
with continuum solvation models [54] and with explicit solvent molecules by means of
a hybrid quantum mechanical/molecular mechanics (QM/MM) ansatz. Based on these
results, we present a pragmatic composite approach to incorporate electron correlation,
dynamic contributions, and solvent effects.

2. Theory

The isotropic HFCC can be calculated in the absence of spin-orbit coupling by [55]

aiso(k) =
µ0

3
gegN(k)βeβN〈Sz〉−1ρ(k), (1)

where µ0 is the permeability of the vacuum, ge is the electronic and gN (k) is the nuclear
g-factor of nucleus k, βe is the Bohr magneton, βN is the nuclear magneton, and 〈Sz〉 is
the mean value of Sz in the current electronic state. ρ(k) is the Fermi-contact integral
(real-space spin density), which is

ρ(k) =
∑

µν

Pα−βµν 〈φµ(r)|δ(r − rk)|φν(r)〉, (2)

where Pα−βµν is the difference between the α- and β-electron density matrices of the
basis functions φµ and φν , and the nucleus is located at rk.

For methods beyond Hartree-Fock or DFT, the respective energy equation needs
to be perturbed with respect to the nuclear magnetic moment Mk of nucleus k [55].
Thus, analytic gradients of the MP2 expression are required both for HFCCs at the
MP2-level and at the DH-DFT level. We resort to our RI-CDD MP2 gradients [47] and
the selected-nuclei ansatz [48] in the present work to efficiently obtain the correlation
contributions also for large systems.
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Figure 1. Graphical definitions of different contributions to the observable. We define the dynamic contribu-

tion ∆dyn as the difference between optimization and a dynamics simulation at the same level of theory. The
influence of the level of theory used for structure generation is called ∆method; in this paper it is the difference

in influence between HF3c and PBEh3c. ∆corr denotes the effect of correlation on the computation of HFCCs.

3. Computational Details

The isotropic HFCCs were obtained at the HF-, DFT-, DH-DFT-, and MP2-level us-
ing the respective implementation in the program package FermiONs++ [56–58]. The
MP2-contributions are hereby computed using the aforementioned RI-CDD ansatz [47]
and a QQR-based integral screening [42, 43]. The Laplace expansion coefficients are se-
lected based on the minimax-approximation [59]. The extents of the QQR-type integral
estimates are determined with the same thresholds as in Ref. [43]. The QQR-screening
threshold was set to 10−8 and seven Laplace expansion points were chosen based on the
study of the accuracy in Ref. [47]. The Density matrix-based Laplace-transformed Un-
restricted Coupled-Perturbed Self-Consistent-Field Theory (DL-UCPSCF) [60] equa-
tions were converged to a threshold of 10−4. Deviations of less than 1 MHz can be
expected with these thresholds [47]. The frozen core approximation was not used in our
MP2 computations. All computations were performed with the highly accurate basis
set EPR-III [9, 10], with the exception of both the reference coupled cluster compu-
tations with singles and doubles excitations (CCSD) [61], which were obtained with
the program package Cfour [62] using the basis set def2-TZVPP [63]. The auxiliary
basis set def2-TZVPP-RI/JK by Weigend [64] was chosen for the computations using
the basis set EPR-III [9, 10]. For efficient DFT calculations on the TEMPO radical
we used the newly implemented, exact semi-numerical exchange to gain the necessary
speed up needed for such a large number of basis functions [65–67].

The AIMD simulations at the HF3c- [52] and PBEh3c-level [53] were performed as
canonical (NVT-)ensembles with the Velocity Verlet propagator [68, 69] at 298.15 K,
using the Bussi-Donadio-Parrinello thermostat [70]. Each simulation included a 100 fs
equilibration period and a 10 ps production run with a time step of 0.1 fs. Geometries
were saved every 1 fs. Furthermore, the fully converged extended Lagrangian Born-
Oppenheimer MD (XL-BOMD) method [71] was used to speed up SCF convergence.
HFCCs were computed for every 100 fs of the trajectory.
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Our study of solvation effects on the hydroxylated TEMPO radical involved
two additional kinds of simulations: one in which the solvent (water) was mod-
elled as a polarizable continuum, and another which considered explicit solvent
molecules in a QM/MM ansatz. All solvent simulations were performed with HF3c.
We chose the conductor-like polarizable continuum model (C-PCM) SWIG (Switch-
ing/Gaussian) [72–74], which uses Gaussian charge distributions instead of point
charges centered on all tesserae. The dielectric constant of the continuum was set
to 78.355 to model water and the additive constant in the denominator to 0.5 in order
to be analogous to the conductor-like screening model COSMO [75]. The volume of
the molecule was determined at every time step using the atomic radii defined by
Bondi [76]. The remaining settings are identical to the vacuum simulations.

For the explicit solvent simulation, TEMPO was parametrized with Antecham-
ber [77], which is part of AMBER16 [78], assigning GAFF parameters [79] and AM1
charges [80]. A charge of -1 had to be assumed as Antechamber can only handle sin-
glet configurations. TEMPO was then solvated in a box of SPC/E solvent [81] with
a 15 Å distance between the solute and the box faces. The system was neutralized
with one sodium ion, placed far away from the TEMPO molecule. We then carried
out 20000 steps of steepest decent energy minimization, 30 ps of heating, and a 200 ps
equilibration run under NVT conditions using the NAMD engine [82] and periodic
boundary conditions. All bonds to hydrogen atoms were kept fixed with SHAKE [83]
and the time step was 2 fs. The temperature was kept constant using the Langevin-
Piston thermostat with a damping constant of 1 ps−1. Non-bonded interactions were
cut-off at 12 Å and smoothly switched off starting at 10 Å. A Verlet-nearest neighbor
list was used with a radius of 13.5 Å. Periodic electrostatic interactions were evalu-
ated with the Particle Mesh Ewald method and a polynomial interpolation of order
6. The non-bonded interactions were evaluated at every step and a full electrostatic
calculation was performed every second step.

The last frame of the equilibration run was centered on the TEMPO radical. In
the subsequent QM/MM-AIMD all water molecules within 4 Å of the hydroxylated
TEMPO molecule were treated quantum mechanically (TEMPO: 30 atoms, water:
198 atoms), whereas all other water molecules were kept frozen to prevent a mixing of
QM and MM waters. A 5 ps QM/MM-AIMD was performed using the same settings
as before, with the exception of the time step of 0.25 fs. The first picosecond was
discarded as equilibration phase. We extracted again 100 frames equally spaced in
time for HFCC computations and all presented results are normal averages over these
frames.

4. Results

A variety of contributions to the accuracy of in silico HFCCs were studied in this
work, namely the effect of dynamics (∆dyn), electron correlation (∆corr), and solvation
(∆solv). Figure 1 illustrates our definition of the two former contributions, a definition
of the latter can be found in Figure 7. The dynamic contribution ∆dyn is defined
as the difference of the average HFCCs from a set of structures obtained from an
AIMD-simulation to the static HFCC of the optimized structure both in vacuum.

We start our analysis by illustrating the influence of ∆dyn and ∆corr independent
of solvation effects, first in-depth on two systems and subsequently on our benchmark
set of 12 organic radicals. Solvation will be studied in Sec. 4.3.
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(a) HF3c (b) PBEh3c

(c) HF3c (d) PBEh3c

Figure 2. Distributions of bond lengths, bond angles, and dihedral angles in the AIMD simulation of the
ethanal radical cation at room temperature at the HF3c- and PBEh3c-level. Average bond lengths, bond

angles, and dihedral angles are given with their standard deviation in the legend. The average is indicated with

a straight line, a normalized Gaussian distribution with the same standard deviation is centred around the
mean of the distribution. The value of the minimum energy geometry is shown as a dashed line.
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Figure 3. Distributions of the N-C bond length and and the ∠(C-N-C) bond angle in the AIMD simulation of

the dimethylamino radical at room temperature at the HF3c- and PBEh3c-level. The average bond length and

bond angle and the standard deviation is indicated. The average is indicated with a straight line, a normalized
Gaussian distribution with the same standard deviation is centred around the mean of the distribution. The

value of the minimum energy geometry is shown as a dashed line.

4.1. The dimethylamino radical and the ethanal radical cation

In this section, we study in detail the dependence of the HFCCs on bond lengths,
bond angles, and dihedral angles of both the dimethylamino radical and the ethanal
radical cation.

We first analyse the distribution of the bond angles, bond lengths, and the dihedral
angle in the ethanal radical cation as obtained from both a HF3c- and a PBEh3c-based
AIMD. The results are shown in Figure 2. Anharmonicity can clearly be seen by visual
comparison with Gaussian distributions.

In general, the distributions are similar between the HF3c- and the PBEh3c-based
AIMD. In the case of the ethanal radical cation, the distribution of all bond angles are
broader with PBEh3c. The bond length variations are less than 0.1 Å for all bonds
and both methods. The changes in the mean bond angles are significantly larger than
for the dimethylamino radical which shows only deviations less than 1◦.

Irrespective of the close similarities of the mean bond lengths and angles, specific
care has to be taken as to what level of theory is employed to describe the dynamic
contributions, i.e. an accurate description of the potential energy surface of the system
is paramount. This is shown in Table 1, where the isotropic HFCCs of both systems
obtained from the HF3c- and PBEh3c-optimized structures as well as from averaging
over the respective AIMD simulations are compared. As can be seen, considerable
deviations (larger than 20 MHz) occur in the case of the hydrogen atom between the
results obtained with structures obtained at the HF3c-level in comparison to HFCCs
of PBEh3c-optimized structures. The deviation is larger than the influence of the
dynamics, as shown in Table 1, where the HFCCs obtained from the respective AIMD
simulation are depicted. It has to be noted, though, that (i) the deviation due to using
the HF3c- instead of PBEh3c-MD simulations is partially less severe than the effect
of differing methods used for the HFCC computation shown in Table 1, and that (ii)
the description of dynamic contributions between HF3c and PBEh3c is comparable,
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Table 1. Isotropic HFCCs in MHz computed at the three levels of theory (B3LYP, B2PLYP, and MP2)

of the dimethylamino radical and the ethanal radical cation using the HF3c-optimized and the PBEh3c-
optimized structures as well as structures obtained from respective AIMD-simulations. Dynamic contribu-

tions ∆dyn (see Figure 1) are also shown. Experimental results are available for three nuclei. 1H (HCO):

381 [84], 14N: 41.4 [85], 1H: 76.7 [85]

Nucleus
Opt. structure AIMD simulation ∆dyn

HF3c PBEh3c ∆method HF3c PBEh3c ∆method HF3c PBEh3c

B3LYP
Ethanal radical

17O -40.8 -43.6 -2.8 -40.1 -43.1 -3.0 0.7 0.5
13C (HCO) 40.7 42.9 2.1 40.5 43.3 2.8 -0.2 0.4
13C (CH3) -83.1 -73.4 9.7 -85.7 -75.4 9.7 -2.6 -2.0
1H (HCO) 364.8 335.5 -29.3 377.7 348.6 -29.1 12.9 13.1

Dimethylamine radical

14N 35.4 34.7 -0.7 36.0 35.4 -0.6 0.6 0.7
13C -29.9 -32.0 -2.1 -30.4 -32.5 -2.1 -0.5 -0.5
1H 72.7 80.0 7.3 75.2 82.6 7.4 2.5 2.6

RI-CDD B2PLYP
Ethanal radical

17O -50.6 -54.6 -4.0 -49.3 -53.7 -4.4 1.3 0.9
13C (HCO) 44.3 47.3 3.0 43.5 47.1 3.6 -0.8 -0.2
13C (CH3) -97.7 -85.5 12.2 -100.4 -87.9 12.5 -2.7 -2.4
1H (HCO) 374.5 339.6 -34.9 388.6 355.0 -33.6 14.1 15.4

Dimethylamine radical

14N 40.8 40.1 -0.7 41.5 41.0 -0.5 0.7 0.9
13C -33.5 -36.0 -2.5 -34.1 -36.5 -2.4 -0.6 -0.5
1H 71.2 78.4 7.2 73.7 80.9 7.2 2.5 2.5

RI-CDD MP2
Ethanal radical

17O -45.6 -49.3 -3.7 -43.7 -48.4 -4.7 1.9 0.9
13C (HCO) 48.2 51.0 2.8 46.3 50.4 4.1 -1.9 -0.6
13C (CH3) -102.5 -88.3 14.2 -105.6 -91.1 14.5 -3.1 -2.8
1H (HCO) 337.8 298.6 -39.2 355.1 315.0 -40.1 17.3 16.4

Dimethylamine radical

14N 36.9 36.8 -0.1 37.7 37.7 0.0 0.8 0.9
13C -31.7 -34.2 -2.5 -31.6 -34.0 -2.4 0.1 0.2
1H 63.5 69.8 6.3 65.5 71.9 6.4 2.0 2.1

as can be seen from the ∆dyn values in Table 1. The latter motivates the computation
of the dynamic contributions based on a HF3c-based AIMD trajectory.

Though dynamic contributions result in changes in the HFCCs, these are on the
same order as the differences between the results obtained from DFT, post-Kohn-Sham
(KS), and post-HF methods in Table 1. While this is not always the case, as shown
in Section 4.2, where the neglect of dynamic contributions leads to results strongly
deviating from experimental findings for a variety of radicals, the results in Table 1
motivate a careful choice of the method with which the isotropic HFCCs are computed.
Furthermore, it has to be noted that the results obtained from the AIMD simulation
are not always closer to the experimental results. Two reasons can be named for this:
first and foremost the error of the approximation to the Schrödinger equation itself and,
second, the exact experimental conditions were not sufficiently replicated, therefore,
including solvent effects can be crucial.

The reason for the significant dynamic contributions, apart from the anharmonicity
in the distribution of the structural parameters in the AIMD simulation, is the strong
and non-linear dependency of the HFCCs on the bond lengths, bond angles, and
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dihedral angles. In order to investigate this relationship systematically, we start with
a PBEh3c-optimized structure of both the dimethylamino radical and the ethanal
radical cation. Subsequently, we modify one structural parameter, i.e. the bond length,
bond angle, or dihedral angle, at a time, and compute the isotropic HFCCs of all nuclei
for each structure using the hybrid functional B3LYP, the DH-DFT method RI-CDD
B2PLYP, HF, RI-CDD MP2, and CCSD.

The results for the ethanal radical cation are shown in Figure 4. Noteworthy is the
strong dependence of the isotropic HFCCs on the geometry, especially for the hydrogen
nuclei. While for most nuclei the dependency of the HFCC on the structural parameters
is consistent throughout the different methods studied in this work, the importance of
correlation can be deduced from the differing results obtained with HF. This is most
apparent in the dependency of the 13C (HCO)-HFCC on the angle ∠(C-C=O) and the
angle ∠(O=C-H), as well as on both bond lengths. In general, the HF results deviate
substantially from the results obtained with the other methods. Thus, irrespective
of dynamic contributions, HF computations are incapable of correctly describing the
spin density in the ethanal radical cation, so that methods incorporating electron
correlation are required, which is reflected in the high amount of spin contamination
found in HF calculations. Furthermore, strong non-linear dependencies indicate that
dynamic contributions will change the in silico results considerably.

Similar results are obtained with the dimethylamino radical in Figure 5, except
for the description of the hydrogen atoms, where HF is found in between the other
methods which take electron correlation into account. HFCCs of both the carbon and
the nitrogen nucleus strongly depend, however, on electron correlation.

One can make two general observations in Figures 4 and 5. For one, HF and B3LYP
almost always give extreme values for the HFCCs and electron correlation methods
lie in-between. Secondly, no method is unfortunately the closest to CCSD for every
nucleus, where we would expect CCSD to be the method that describes electron cor-
relation best. The fact that DFT is the other extreme compared to HF is in agreement
with findings that HF yields very localized and DFT usually very delocalized singly
occupied molecular orbitals (SOMOs) [86].

4.2. Study of a set of organic radicals

In order to determine both the influence of electron correlation and dynamic contribu-
tions on the accuracy of HFCCs, we computed the HFCCs based on AIMD simulations
at the PBEh3c-level of theory for a set of organic radicals shown in Figure 6.

4.2.1. Convergence with the number of frames

Prior to comparing the results of all radicals, we analysed in detail the convergence
with respect to the number of MD frames for which the HFCCs were computed. This
is shown in SFigure 1 for a selection of three radicals (2, 3, and 11). Converged results
require more than 5 ps (here 50 frames). Noteworthy is radical 3, where a significant
standard deviation is apparent, especially in the HFCCs of the hydrogen atoms. This
can be explained by a Jahn-Teller distortion of the CH-bonds, which will be discussed
in detail in Section 4.2.2.
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Figure 4. Dependency of the isotropic HFCCs of the different nuclei in the ethanal radical cation on the bond

angles ∠(C − C = O) and ∠(O = C −H), the bond lengths δ(C-C) and δ(C-H), and the dihedral angle. The
PBEh3c-based geometry optimization (vertical dashed line) leads to ∠(C-C=O) = 124.8◦, ∠(O = C −H) =

114.2◦, δ(C−C) = 1.496 Å, δ(C−H) = 1.111 Å, and ∠(dihedral) = 180.0◦. All computations were performed

with the def2-TZVPP basis set. The CCSD values were joined by a line to guide the eye. On the y-axis, 13C
is a shorthand for 13C (CHO) and 13C for 13C (CH3).
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Figure 5. Dependency of the isotropic HFCCs of the different nuclei (carbon, nitrogen, and hydrogen) in the

dimethylamino radical on the δ(N-C) bond length and the ∠(C-N-C) bond angle. The PBEh3c-based geometry

optimization (vertical dashed line) results in δ(N-C) of 1.428 Å and ∠(C-N-C) of 112.04◦. All computations
were performed with the def2-TZVPP basis set. The CCSD values were joined by a line to giude the eye.

Figure 6. Organic radicals investigated in this work.

11

3.6 Publication VI

153



Table 2. Average and maximum correlation contributions ∆corr (defined as

the difference to the respective KS- or HF-result) and dynamic contributions
∆dyn as indicated in Figure 1 in the computation of isotropic HFCCs of the

radicals in Figure 6 excluding erratic RI-CDD-MP2 results due to spin con-

tamination. All results are in MHz.

B3LYP RI-CDD-B2PLYP RI-CDD-MP2

< ∆corr > — 9.4 26.9
max(∆corr) — 39.8 102.2

< ∆dyn > 10.7 11.3 30.9
max(∆dyn) 157.9 154.3 151.4

4.2.2. Molecular dynamic and electron correlation contributions

The isotropic HFCCs of all organic radicals shown in Figure 6 were calculated with the
PBEh3c-optimized structure and from the respective PBEh3c-AIMD simulation with
B3LYP, RI-CDD B2PLYP, and RI-CDD MP2. The average dynamic and correlation
contributions are shown in Table 2, highlighting that both are significant for the overall
obtained HFCCs. Taking electron correlation into account significantly changes the
computed HFCCs. This is most apparent by comparing the HF- and RI-CDD-MP2
results, which deviate by 26.9 MHz on average. Similarly, the correlation contribution
at the DH-DFT-level is significant. The larger magnitude of the correlation effect at
the RI-CDD-MP2-level than at the RI-CDD-B2PLYP-level can be explained by the
known overestimation of correlation effects by MP2, the scaling of 0.27 present in
the B2PLYP functional, and by the fact that electron correlation is also partially
included in the hybrid-DFT ansatz. Overall, molecular dynamic contributions change
the computed HFCCs on average by 10.7 MHz for B3LYP, by 11.3 MHz for RI-CDD-
B2PLYP, and by 30.9 MHz for RI-CDD-MP2. For the latter method, we disregarded
the systems with high spin contamination. While the dynamic contributions are on
the same order as the correlation contributions, a detailed analysis discloses that for
a variety of systems the inclusion of dynamic effects is indispensable for the accurate
description of the system. The larger magnitude of the dynamic contribution in the
case of RI-CDD-MP2 can be attributed to the inaptitude of HF-determinants for
the description of the potential energy surface of these organic radicals. It is further
instructive to look at the maximum contribution of both effects, as shown in Table
2. It clearly shows, that the neglect of those contributions can in severe cases lead to
meaningless results, which is especially valid for the dynamic contributions.

A detailed presentation of the results of all radicals is shown in Table 3, where we
also state experimental results if available. While a comparison to the experimental
results is instructive, caution is warranted as the AIMD simulations do not necessarily
replicate the experimental conditions. The experimental conditions include a variety
of temperatures and solvents/matrices, whereas all AIMD simulations were performed
at room temperature in the gas phase for the sake of reliably comparing the influence
of dynamic and correlation contribution across all radicals in Figure 6.

At this point, we want to mention that the signs indicated in the experimental
results are not directly obtained from the experiment, but are assigned afterwards
using theoretical results. In the cases where the sign obtained with B3LYP, RI-CDD-
B2PLYP, and RI-CDD-MP2 deviates from the corresponding reported values based
in the experimental column, our absolute values match with the experimental results
and are consistent. We thus conclude that the original assignment of the sign could
be erroneous in line with previous theoretical work [87, 88]. We hence indicate our
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proposed sign in parentheses.
It has to be noted that some of the radicals exhibit energetically close lying minima.

In radical 5, e.g. geometry optimizations with PBEh3c lead to either a radical with
A1 or with B1 symmetry. The A1 symmetry structure has a high localization of the
spin density at the nitrogen nucleus with an isotropic HFCC of 110.3 MHz versus
-4.3 MHz obtained from the B1 structure (both results were obtained with the B3LYP
functional). Our PBEh3c-AIMD simulation confirms that we stay on the A1 potential
energy surface throughout the simulation, as the HFCCs obtained from 100 AIMD
frames range from 73.9 MHz to 151.5 MHz. Such artefacts can be circumvented by
verifying that the potential energy of the optimized start structure is the lower bound
within the whole simulation.

In most cases, including electron correlation via RI-CDD-MP2 significantly improves
the agreement between the in silico HFCCs and the experimental results (see 14N-
HFCC in radical 1 and 2, 19F-HFCC in radical 9, 11B-HFCC in radical 12, and the
1H-HFCCs in radicals 3, 8, and 12). In this analysis, we disregarded the radicals with
extensive spin contamination, i.e. radicals 5, 10, and 11. These systems are more
accurately described at the DH-DFT-level. In general, DH-DFT seems to yield better
results than MP2 with respect to the experimental values (see, e.g. 14N-HFCC in
radicals 1, 2, 5, 6, and 11, 19F-HFCC in radical 9, 13C-HFCC in radicals 7, 10, and
11, and 1H-HFCCs in radicals 7, 8, 10, 11, and 12).

While the choice of optimal double hybrid functionals is challenging, recent work [89]
showcases that a correct determination of the optimal HF exchange contribution as well
as spin component scaling in the second-order correlation contribution can significantly
improve the computational results. In this work, we chose the two well-established
functionals B3LYP and B2PLYP. Comparing the two functionals is complicated, as
they vary in their HF-exchange contributions. Thus, differences can not directly be
related to the additional treatment of electron correlation. However, B2PLYP signifi-
cantly improves the in silico results in most cases with respect to the B3LYP results
(see, e.g. for the 14N-HFCC in radicals 1, 2, 5, and 11, the 19F-HFCC in radical 9,
the 13C-HFCCs in radicals 10 and 11, and the 1H-HFCCs in radicals 1, 2, 3, 4, 7,
and 10).

As shown in Table 2, the neglect of dynamic contributions can be severe. The large
magnitude of the dynamic contribution can be seen in the hyperfine splitting of the
alkane radical cations, namely of the ethane radical 3 and the butane radical 4. These
represent special cases, where a Jahn-Teller distortion breaks the symmetry of the six
CH-bonds at the terminal methyl groups [90–92]. This can be verified experimentally
by looking at the low temperature EPR spectrum of the ethane radical cation, which
exhibits a triplet splitting due to a localization of the spin density at two equivalent
hydrogen atoms [90, 91]. Moving to higher temperatures, dynamic contributions lead
to a septet splitting, as on average all six hydrogen atoms have become equivalent [90,
91]. This is not due to a disappearance of the Jahn-Teller distortion, but due to
this effect becoming dynamic. Our results confirm this behavior, as two C-H bonds
are shorter (1.07 ± 0.03 Å) than the remaining four (1.13 ± 0.03 Å) in the AIMD
simulation. We thus expect a significant change in the obtained HFCCs when dynamics
are considered via an AIMD simulation. We can confirm the low-temperature splitting
in our computations of radical 3, where we obtain HFCCs close to the experimental
results. When moving towards higher temperatures, our computations confirm the
septet splitting.
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Table 3.: Influence of dynamic contributions and electron correlation on the HFCCs in MHz of radicals 1-12

in Figure 6. HFCCs are obtained (1) using the PBEh3c-optimized structure and (2) from averaging 100 frames

from PBEh3c-AIMD simulations at 298.15 K. Experimental results are shown where available obtained from
varying experimental conditions. Erroneously attributed signs according to our computations are indicated in

parentheses. The electron correlation contribution estimated via second-order perturbation theory is shown

in parentheses in the in silico columns. Erratic RI-CDD MP2 results due to spin contamination are omitted,
indicated by the respective average < Ŝ2 > value (the threshold is 0.8, the mean spin contamination of the

accepted calculations is 0.76).

Nucleus
B3LYP RI-CDD B2PLYP RI-CDD MP2

exptl.
1 2 1 2 1 2

Radical 1

14N 34.7 35.3 40.8 (-9.4) 41.6 (-9.6) 30.8 (-41.1) 37.6 (-36.3) 41.4 [85]
13C -32.0 -32.7 -36.4 (6.4) -37.3 (6.6) -34.1 (30.8) -34.3 (32.4) —

1Ha 119.9
}

82.6
116.7 (3.7)

}
80.3 (1.9)

100.8 (-5.1)
}

71.8 (-3.4)

}
76.7 [85]

0.1 0.0 (-1.8) -8.0 (-13.8)

Radical 2

14N 34.5 34.9 40.8 (-9.1) 41.2 (-9.4) 63.7 (-8.5) 34.3 (-39.0) 40.1 [85]
13C (CH) -26.8 -27.1 -30.0 (7.4) -30.3 (7.8) -16.7 (42.1) -25.8 (35.0) —

13Cb (CH3)
70.0

}
41.1

69.9 (1.5)
}

40.7 (0.3)
91.9 (24.5)

}
37.3 (-4.2)

—

14.0 13.9 (-0.6) 50.0 (-9.8) —
1H (CH) 34.2 46.9 33.1 (0.0) 46.0 (1.2) 0.3 (-33.7) 37.7 (-5.6) 40.1 [85]

1Hb (CH3)
22.2

}
2.2

21.1 (2.2)
}

1.8 (0.9)
8.5 (-5.4)

}
2.2 (3.8)

}
1.8 [85]

-2.8 -3.0 (0.5) -18.3 (-13.1)

Radical 3

13C 20.5 8.6 17.7 (-2.6) 4.7 (-0.2) 6.3 (-14.1) -5.7 (-7.1) —

1Hc 471.0
}

149.5
461.6 (4.8)

}
145.7 (1.0)

445.4 (23.2)
}

136.8 (12.7)
427.4

-19.7 -23.3 (5.0) -26.2 (17.6) 141.0 [90, 91]

Radical 4

13C (CH3) -9.9 -10.9 -12.1 (0.5) -13.0 (9.4) -10.2 (8.2) -13.8 (6.7) —
13C (CH2) 8.9 13.1 7.3 (2.5) 11.6 (1.5) 6.4 (0.1) 0.0 (-12.3) —
1H (CH2) 9.4 13.6 7.7 (3.1) 11.8 (4.0) 10.3 (20.1) 8.5 (15.6) —

1Hd (CH3)
214.2 154.3 197.5 (14.0) 142.3 (9.5) 179.7 (34.5) 125.9 (19.6) 171.8 [90, 91]

20.9 39.8 18.6 (1.2) 36.1 (3.0) 14.0 (0.4) 30.5 (6.9) 22.4 [90, 91]

Radical 5

14N 110.3 110.6 117.2 (-20.6) 116.4 (-20.9)

< Ŝ2 > =
1.1997

< Ŝ2 > =
1.2345

114.9 [93]
o-13C 35.1 33.8 38.5 (-11.5) 37.5 (-14.2) —

m-13C -14.0 -11.9 -15.9 (10.2) -14.5 (12.1) —

p-13C -10.5 -12.1 -10.7 (8.3) -12.1 (9.2) —
o-1H 93.9 91.4 89.9 (4.6) 88.0 (3.5) 82.1 [93]

m-1H 35.5 31.2 32.2 (9.5) 28.4 (10.9) 31.3 [93]

p-1H 22.5 23.7 16.4 (1.8) 16.7 (-2.1) 24.1 [93]

Radical 6

14N 143.5 142.5 146.8 (0.5) 146.4 (2.5) 145.9 (-7.7) 134.1 (-15.8) 152.0 [94]
17O -58.2 -57.0 -68.1 (-7.0) -66.9 (-7.7) -70.9 (3.5) -69.5 (-3.5) (-)62.2 [94]

Continued on next page

aThe non-dynamic computations exhibit four and two equivalent hydrogen atoms, leading to two separate
hydrogen HFCCs. Averaging over these HFCCs results in 80.0 MHz (B3LYP), 77.8 MHz (RI-CDD-B2PLYP),

and 63.9 MHz (RI-CDD-MP2).
bBoth 13C (CH3) and 1H (CH3) exhibit differences between the HFCCs of the nuclei in the non-dynamic

computations. Averaging results in 42.0 MHz (B3LYP), 41.9 MHz (RI-CDD-B2PLYP), and 71.0 MHz (RI-CDD-
MP2) for 13C (CH3) and 2.7 MHz (B3LYP), 2.2 MHz (RI-CDD-B2PLYP), and -9.8 MHz (RI-CDD-MP2) for
1H (CH3).

cAt low temperatures (4 K), the experimental results show a triplet splitting of 427.4 MHz, whereas at higher

temperatures (77 K) a septett splitting of 141.0 MHz is obtained. The in silico results match this splitting
pattern.
dSimilar to radical 10, a Jahn-Teller distortion can be observed at low temperatures. From the PBEh3c-

optimized structure, two distinct hydrogen HFCCs of the methyl groups can be observed.
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Table 3 – Continued from previous page

Nucleus
B3LYP RI-CDD B2PLYP RI-CDD MP2

exptl.
1 2 1 2 1 2

Radical 7

13C 79.8 114.6 85.1 (-26.0) 120.0 (-26.3) 59.3 (-101.5) 94.8 (-102.2) 107.4 [95]
1H -64.4 -58.4 -70.1 (13.0) -64.0 (12.5) -71.9 (49.8) -65.9 (48.6) (-)64.6 [95]

Radical 8

17O -43.6 -43.1 -57.2 (20.5) -60.8 (16.7) -48.8 (79.4) -45.5 (83.2) —
13C (HCO) 42.9 43.2 48.4 (-1.8) 47.6 (-2.3) 51.3 (-5.5) 52.7 (-4.2) —
13C (CH3) -73.4 -75.4 -84.6 (13.3) -84.1 (18.1) -89.3 (41.1) -111.1 (26.9) —
1H (HCO) 335.5 356.3 329.3 (33.4) 355.0 (37.3) 301.0 (51.9) 334.2 (65.7) 381 [91]
1H (CH3) -3.0 -0.6 -5.3 (3.4) 0.5 (7.9) -8.9 (-5.7) -23.8 (-9.5) -8 [91]

Radical 9

13C 728.0 737.1 745.6 (-22.5) 754.9 (21.8) 750.1 (-67.6) 762.2 (-64.9) —
19F 393.3 390.4 408.7 (-3.4) 406.5 (-4.5) 370.1 (-47.9) 398.0 (-16.9) 405.0 [96]

Radical 10

13C (CH) 314.5 296.5 321.6 (-38.4) 304.1 (-39.8)

< Ŝ2 > =
0.9399

< Ŝ2 > =
0.9459

301.5 [97, 98]
13C (CH2) -11.9 -17.0 -17.3 (16.6) -22.8 (18.0) -24.1 [97, 98]
1H (CH) 53.2 44.6 46.0 (12.8) 37.4 (13.5) 38.7 [97, 98]
1H Z-(CH2) 178.7 182.5 177.9 (2.8) 181.9 (2.2) 184.8 [97, 98]
1H E-(CH2) 113.8 120.7 112.7 (-0.4) 119.6 (0.1) 111.0 [97, 98]

Radical 11

13C -68.0 -70.2 -77.7 (19.3) -80.0 (21.8)
< Ŝ2 > =

0.9356
< Ŝ2 > =

0.9410

81.1 [99]
14N 23.1 23.1 27.2 (-9.1) 27.2 (-9.4) 28.6 [99]
1H 235.7 240.0 235.4 (8.3) 239.7 (7.3) 244.8 [99]

Radical 12

11B 363.7 342.0 366.5 (-14.9) 345.0 (-15.5) 357.7 (-43.1) 336.0 (-45.8) 358 [100]
1H 42.5 35.6 39.5 (5.2) 32.4 (5.8) 26.1 (17.9) 19.4 (19.9) 38 [100]

In the case of the butane radical cation, a triplet splitting is also observed ex-
perimentally at 77 K. We can confirm this splitting in both our PBEh3c-optimized
structure and in the results based on our AIMD simulation, where we see two discrete
hydrogen-HFCCs with the larger component arising from two hydrogen atoms leading
to the observed triplet splitting. While the inclusion of dynamic contributions leads to
a reduction of the HFCCs in the direction of the experimental values, they overshoot,
which is in line with our room temperature simulation resulting in a larger reduction.

The HFCCs obtained from the PBEh3c-optimized structures of radicals 1 and 2
show that the spin density is primarily located at four of the six hydrogen atoms.
An analysis of the C-H bond lengths shows in analogy to the ethane radical that
two C-H bonds are shorter than the remaining four (1.089 Å vs. 1.098 Å). When MD
contributions are considered, this distortion is averaged resulting in HFCCs that closely
match the experimental results. Notwithstanding, similar results can be obtained from
averaging the six hydrogen-HFCCs obtained with the PBEh3c-optimized structure. We
therefore considered dynamic contributions in our overall analysis in Table 2 only by
comparing to the averaged results. The effect is analogous in radical 2.

Another example of extensive dynamic contributions is the methyl radical 7. Op-
timizing the structure leads to a planar configuration. When vibrational averaging
is considered, non-planar configurations also contribute to the overall HFCCs, which
leads to considerable changes of up to 40 % and to a better agreement with the exper-
imental findings. It is apparent, that the spin density at the carbon atom increases,
whereas the spin density at the hydrogen nuclei decreases considerably for B3LYP,
RI-CDD-B2PLYP, and RI-CDD-MP2.
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Table 4. Comparison of the HFCCs in MHz obtained from the HF3c- (optHF3c) and PBEh3c-optimized structure

(optPBEh3c) and from HF3c- (dynHF3c) and PBEH3-simulations (dynPBEh3c) to the combined HF3c/PBEh3c-approach
(dyncomb ). The latter HF3c/PBEh3c approach consists of adding the dynamical correction as obtained from an HF3c-AIMD

simulation to the HFCCs obtained with the PBEh3c-optimized structure.

Nucleus optHF3c optPBEh3c dynHF3c dynPBEh3c ∆method(opt) ∆method(dyn) ∆dyn(HF3c) ∆dyn(PBEh3c) dyncomb

Radical 1

B3LYP

14N 35.4 34.7 35.7 35.3 -0.7 -0.4 0.3 0.6 35.0
13C -29.9 -32.0 -30.6 -32.7 -2.1 -2.1 -0.7 -0.7 -32.8
1H 72.7 80.0 75.1 82.6 7.3 7.5 2.4 2.6 82.4

B2PLYP

14N 41.5 40.8 41.9 41.6 -0.7 -0.3 0.4 0.8 41.2
13C -33.9 -36.4 -34.8 -37.3 -2.5 -2.5 -0.9 -0.9 -37.3
1H 70.7 77.8 73.1 80.3 7.1 7.2 2.4 2.5 80.2

Radical 8

B3LYP

17O -40.8 -43.6 -40.1 -43.1 -2.8 -3.0 0.7 0.5 -42.9
13C (HCO) 40.7 42.9 40.9 43.2 2.2 2.3 0.2 0.3 43.1
13C (CH3) -83.1 -73.4 -86.3 -75.4 9.7 10.9 -3.2 -2.0 -76.6
1H (HCO) 364.8 335.5 379.9 356.3 -29.3 -23.6 15.1 20.8 350.5
1H (CH3) -0.4 -3.0 -0.1 -0.6 -2.6 -0.5 0.3 2.4 -2.7

B2PLYP

17O -53.7 -57.2 -56.2 -60.8 -3.5 -4.6 -2.5 -3.6 -59.7
13C (HCO) 45.9 48.4 45.5 47.6 2.5 2.1 -0.4 -0.8 48.0
13C (CH3) -96.7 -84.6 -98.4 -84.1 12.1 14.3 -1.7 0.5 -86.3
1H (HCO) 363.0 329.3 383.8 355.0 -33.7 -28.8 20.8 25.7 350.1
1H (CH3) -2.8 -5.3 -0.3 0.5 -2.3 0.8 2.5 5.8 -2.6

Radical 9

B3LYP

13C 530.9 728.0 535.8 737.1 197.1 201.3 4.9 9.1 732.9
19F 492.8 393.3 489.1 390.4 -99.5 -98.7 -3.7 -2.9 389.6

B2PLYP

13C 548.8 745.6 554.3 754.9 196.8 200.6 5.5 9.3 751.0
19F 508.5 408.7 503.4 406.5 -99.8 -96.9 -5.1 -2.2 403.6

4.2.3. Composite HF3c/PBEh3c approach

The results in Table 3 include dynamic contributions using the PBEh3c-AIMD simu-
lations. Especially when moving towards larger molecular systems, the computational
cost for such high-level MD simulations will become prohibitive. While the results in
Table 1 indicate that the computationally cheaper HF3c method leads to deviating
results, these can mostly be attributed to a differing optimized ground state structure
(see Figures 2 and 3). The dynamic contributions, however, are approximated decently
using the HF3c-based AIMD simulations. Thus, we investigate whether adding the
∆dyn contribution at the HF3c-AIMD level to the HFCCs obtained with a PBEh3c-
optimized structure can be considered a viable pragmatic approach. This is shown in
the following Table 4.2.3, where we compare the results for radicals 1, 8, and 9 using
this combined HF3c/PBEh3c-approach (dyncomb) to the respective HFCCs obtained
from HF3c- and PBEh3c-AIMD simulations, respectively.

The results obtained directly from the HF3c-AIMD simulation deviate significantly
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Figure 7. Graphical definitions of solvent effects, similar to Figure 1. We split the solvent effect ∆solv into two
components, ∆solv(mol. prop.) and ∆solv(structure). The structural component denotes the effect of solvation

on the molecular structure. The molecular property effect describes the influence of solvation on the HFCC

calculation for any given configuration.

from the respective PBEh3c-based results. This confirms the findings in Table 1. How-
ever, by adding the dynamic correction as obtained from the HF3c-AIMD simula-
tion to the HFCCs of the PBEh3c-optimized structure, this error can be removed,
and results decently incorporating the dynamical effect are achieved. This composite
HF3c/PBEh3c ansatz is analogous to respective work on nuclear magnetic resonance
shielding constants [101], where the dynamic contribution is obtained at a lower level
of theory and added to the stationary high-level results. That such a composite ap-
proach is applicable shows a small statistical analysis performed on data from Table 3
(shown in section 4 of the SI). A drastic example where this combined approach leads
to improved results in the computation of the HFCCs is radical 9, where the HF3c
geometries exhibit significantly smaller δ(C-F), and thus lead to strongly deviating
results. The dynamic contribution, however, is correctly incorporated, leading to good
results using the combined HF3c/PBEh3c ansatz. The results of radical 9 reinforce the
necessity to perform high-level geometry optimizations in order to obtain comparable
results.

4.3. Solvation

In addition to correlation effects and dynamic contributions, we consider the influence
of solvation. The change in the obtained geometry by incorporation of solvent effects
during geometry optimisations and dynamic simulations is called structural solvation
effects henceforth (∆solv(structure)); the effect of including solvation (via PCM or
explicit solvent molecules) in the computation of the HFCCs is termed molecular
property solvation effect (∆solv(mol. prop.)).

When the effect of the solvent on the HFCCs is to be considered, two effects can be
distinguished: (i) specific interactions of the molecule with the solvent requiring explicit
solvent molecules and (ii) broader contributions that can be captured by continuum
solvation models [54].

To study the influence of the solvent on the in silico isotropic HFCCs, we analysed
the 14N-HFCC of a hydroxylated TEMPO-radical. TEMPO has previously been stud-
ied in detail by Barone et al. [22], where including dynamic contributions as well as
continuum solvent contributions by the means of COSMO was vital for the accurate
description. In a very recent study, they also used explicit solvation in a QM/MM
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ansatz, where TEMPO was treated quantum mechanically and the water molecules
with a polarizable force field [26]. In our study of the 14N-HFCC of the hydroxylated
TEMPO-radical, we analyse both the influence of the solvent and dynamic contribu-
tions, considering both molecular property and structural solvation effects as defined in
Figure 7 with either the C-PCM or with explicit solvent molecules within the QM/MM
ansatz, where we include several solvation shells in the QM-sphere. To increase the ef-
ficiency in the computation of the 14N-HFCCs in the frames obtained from the AIMD
in the presence of explicit solvent molecules, our new selected-nuclei ansatz was used
for the RI-CDD B2PLYP computations [48]. We obtain both ∆dyn and ∆solv as de-
fined in Figures 1 and 7 at the HF3c-level and improve our results by the composite
HF3c/PBEh3c scheme ∆method introduced in Section 4.2.3. Other than in the work
by Barone et al. [22, 102], we do not employ the basis set N07D or the auxiliary basis
set def2-SVP-RI. We use for the sake of consistency and generality the same triple-ζ
basis EPR-III and RI-basis def2-TZVPP-RI/JK as we have throughout this paper.

All solvation results are summarized in detail in STables 1 and 2. Distributions of the
HFCCs computed for the MD frames within the different settings can be found in SFig-
ures 2-4. STable 1 presents the HFCCs calculated for optimized structures, STable 2
contains averages over configurations taken from the three different AIMDs. Both ta-
bles clearly outline the solvation contributions ∆solv(structure) and ∆solv(mol. prop.),
as well as ∆corr. Also, STable 1 contains ∆method(opt) and STable 2 ∆dyn. The central
result presented in those tables is that the contributions ∆solv(mol. prop.) and ∆corr

are independent of the degree of solvation used during the structure generation, and
∆solv(structure) and ∆dyn are independent of the level of theory used to compute the
HFCC. The only effect that varies with every combination of settings is ∆method(opt)
(maximum difference 1.5 MHz).

Unfortunately, the dissection of the various contributions to the HFCCs is incom-
plete as one cannot estimate the dynamic effects present in the QM/MM system, as
there is no clearly defined global minimum. Thus, we can only comment on the fact
that solvation (in the case of PCM) seems to dampen the dynamics, as one would
guess based on chemical intuition, and we expect the same effect for the QM/MM
case. The size of the structural solvent effect (∆solv(structure)) is in this case smaller
for QM/MM than for PCM. Far more important and again aligned with our intu-
ition is the size of the molecular property solvent effect. It is considerably larger in
the QM/MM setting than the PCM case, as the quantum mechanically treated sol-
vent molecules around the hydroxylated TEMPO significantly influence the electron
density at the radical.

We can use these surprisingly constant contributions to extrapolate high level results
from lower level calculations. Due to its costs, we have not performed PBEh3c AIMDs,
but use ∆method(opt) for extrapolating the result easily within 1 MHz of accuracy.
Table 4.3 shows how the different increments can be added together to extrapolate an
B3LYP HFCC that would result from a PBEh3c-QM/MM-MD.

One can go even further, and correct the B3LYP result with a mean ∆corr of 4.4 MHz
taken from the PBEh3c optimized structures to extrapolate the B2PLYP result (see
STable 1). That means, a result that requires a PBEh3c-QM/MM-MD and hundreds
of B2PLYP calculations can be estimated by performing one PBEh3c optimization and
one B2PLYP calculations on the solute alone. This is very important as performing
double-hybrid calculations on large QM systems is prohibitively expensive with regard
to computation time and memory requirements.

Using this composite approach, we improve the agreement with experiment signif-
icantly from the B3LYP@vac//HF3c@vac opt. HFCC, which differs from the experi-
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Table 5. Assembly of high level 14N-HFCCs of the hydroxylated TEMPO-radical in MHz,

taking into account ∆method and ∆dyn as defined in Figure 1 and the structural and molecular

property solvent contributions as defined in Figure 7. A detailed analysis of the data can be
found in STables 1 and 2. The < ∆corr > is extracted from the optimized PBEh3c structures

as difference between B3LYP and B2PLYP. The experimental result in an aqueous solution is

47.6 MHz according to Ref. [103].

Contribution Explanation B3LYP B2PLYP

HF3c@vac opt. 25.5

< ∆method > ≈ +8.4

∆solv(structure) QM/MMdyn − vacdyn -0.8
∆solv(mol. prop.) B3LYP@QM/MM − B3LYP@vac +4.5

∆dyn HF3cdyn@vac − HF3copt@vac +2.4

< ∆corr > B2PLYP//PBEh3copt − B3LYP//PBEh3copt – +4.4

PBEh3c@QM/MM 40.0 44.4

mental result by 22 MHz, to a value which is only about 3 MHz lower than the ex-
perimental result (B2PLYP@QM/MM//HF3c@QM/MM). This shows how important
proper solvation (∆solv(structure) and ∆solv(mol. prop.)), dynamics, electron correla-
tion, but also the method used for structure generation are, when trying to compare
with experimental results.

Thus, a thorough study on the HFCC of a radical in solution requires a set of
computations following our protocol. The effect of the solvent in this specific example
exceeds the effect of the dynamic contribution. Based on the results in Sec. 4.2.2 this
hints at a significant contribution that needs to be evaluated with care. While compu-
tationally cheap continuum solvation models can indicate the effect of the solvent, it
is also apparent that for a reliable description the inclusion of explicit water molecules
is necessary.

5. Conclusion

In this work, we studied a variety of organic radicals analyzing both the effect of elec-
tron correlation and dynamics simultaneously on the accuracy of the in silico HFCCs.
In our test set, electron correlation was shown to be a significant contributor, strongly
improving the accuracy. The importance of electron correlation can especially be seen
when comparing the HF results to the respective RI-CDD MP2 HFCCs. Despite the
functional B3LYP leading to results agreeing reasonably well with experimental re-
sults, our findings show that further inclusion of electron correlation as within DH-DFT
is beneficial and must not be neglected.

While electron correlation has to be considered for accurate results, neglecting dy-
namic contributions can in some cases lead to wrong results. In our test set, this
especially applies to alkane radical cations where the Jahn-Teller distortion turns dy-
namic. Therefore, we conclude that for reliable in silico HFCCs both effects must
be considered. When moving towards larger molecular systems using our established
methodology, the cost to compute the HFCCs taking electron correlation into account
can be reduced with our recently introduced efficient AO-based approach.

The last step when comparing to experiment is modelling the same molecular sur-
rounding in the computations as were used during the measurement, e.g. the inclusion
of explicit solvent molecules in a QM/MM approach. In this way, solvent effects can
simultaneously and accurately be described.
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The results suggest that obtaining the dynamic correction at a computationally
cheaper AIMD-level using our composite HF3c/PBEh3c approach can be sufficient in
many cases to capture most of the dynamic contribution, providing a good compro-
mise between accuracy and computational cost. This also applies to the inclusion of
solvation effects, where costs can be cut without loss of accuracy.
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1 Image Processing

All plots were generated using the python-package matplotlib[1]. The chemical structures were drawn
with ChemDraw.

2 Data and Materials Availability

All inputs and trajectories are available upon request. The program package FermiONs++ [2–4] is not
yet available for public usage.

3 Convergence with number of frames

(a) Radical 2 (b) Radical 3 (c) Radical 11

SFigure 1: Convergence of the mean isotropic HFCCs at the B3LYP level with the number of frames taken
from the PBEH3c-AIMD simulation. The frames are sorted chronologically. The standard error of the mean
is indicated in grey.

4 Data Analysis

We have performed a small statistical analysis in order to show the independence of the different contri-
butions. The only set of data that is large enough to allow for such a treatment is the one in Table 3.
We have computed the standardized covariance (C̃OV(X, Y ) = COV(X,Y )

σXσY
) for those 13C nuclei that do

not show a Jahn-Teller distortion (15 values). We looked at the following contributions: ∆dyn(B3LYP),
∆dyn(B2PLYP), ∆corr(opt), and ∆corr(dyn). The first two are the difference between the columns 1 and
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2 of the respective method; the latter two, are the difference between the column 1 of each method and
column 2 of each method, respectively.

X Y C̃OV(X, Y )

∆dyn(B3LYP) ∆dyn(B2PLYP) 0.997
∆corr(opt) ∆corr(dyn) 0.993

∆dyn(B3LYP) ∆corr(opt) 0.275
∆dyn(B3LYP) ∆corr(dyn) 0.284

∆dyn(B2PLYP) ∆corr(opt) 0.258
∆dyn(B2PLYP) ∆corr(dyn) 0.275

The results of this analysis is twofold: Firstly, the effects of the conformational ensemble (∆dyn) between
B3LYP and B2PLYP calculations as well as the e-correlation effect (∆corr) between optimized structure
and dynamics are highly correlated. This means that calculating one of those is as good as the other.
Secondly, different types of contributions show little covariance. Therefore, the level, at which the
conformational ensemble and the correlation effect are computed, are largely independent of one another.
These features justify to choose a set of calculations with as little computational effort as possible.
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5 Solvation

STable 1: This table contains the values from the optimized structures only. Notably, the size of the implicit
(∆solv(structure)) and explicit (∆solv(mol. prop.)) solvation contributions are independent of the method used
for the HFCC calculation. However, they depend on the level of theory used for structure generation. The
same is true for the difference between hybrid and double-hybrid functional (here noted with ∆corr). The
largest influence comes from ∆method.

HF3c PBEH3c ∆solv(structure) ∆method(opt)

e−-density

Struct.
Gen. @vac @PCM @vac @PCM HF3c PBEH3c vac PCM

B3LYP@vac 25.5 25.0 33.7 32.7 -0.5 -0.9 +8.2 +7.8
B3LYP@PCM 27.6 27.1 36.6 35.7 -0.5 -0.9 +9.0 +8.6
B2PLYP@vac 29.2 28.7 38.0 37.1 -0.5 -0.9 +8.8 +8.4
B2PLYP@PCM 31.6 31.0 40.9 40.0 -0.5 -0.9 +9.3 +9.0
∆solv(mol. prop.)
B3LYP +2.1 +2.1 +2.9 +3.0
B2PLYP +2.3 +2.3 +2.8 +2.9
∆corr

@vac +3.7 +3.7 +4.4 +4.4
@PCM +3.9 +3.9 +4.3 +4.3

STable 2: All results presented here in the right hand top corner are averages over AIMD simulations. All
dynamics were performed at the HF3c level of theory. As in STable 1, we separate off ∆solv(structure) and
∆solv(mol. prop.), and ∆corr. As we used only HF3c, there is no ∆method. By subtracting the corresponding
values from the geometry optimizations, we could calculate ∆dyn for all combinations except those involving
QM/MM, as the global minimum is not defined.

HF3c ∆solv(structure) ∆dyn

e−-density

Struct.
Gen. @vac @PCM @QM/MM PCM - vac QM/MM - vac vac PCM

B3LYP@vac 27.9 26.0 27.1 -1.9 -0.8 +2.4 +1.0
B3LYP@PCM 29.9 28.1 29.2 -1.9 -0.8 +2.4 +1.0
B3LYP@QM/MM – – 31.6 – – – –
B2PLYP@vac 31.6 29.8 30.8 -1.8 -0.8 +2.4 +1.1
B2PLYP@PCM 33.8 32.1 33.1 -1.7 -0.7 +2.2 +1.1
∆solv(mol. prop.)
B3LYP +2.0 +2.1 +2.1/4.5
B2PLYP +2.2 +2.3 +2.3/–
∆corr

@vac +3.7 +3.8 +3.7
@PCM +3.8 +4.0 +3.9
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SFigure 2: Distribution of the HFCCs calculated for one hundred frames from an AIMD in vacuum. Indicated
are the average value over the one hundred frames (dark blue) and the value calculated for the optimized
minimum energy geometry (black). The left column contains all HFCCs computed with B3LYP, the right
column all results from B2PLYP.

SFigure 3: Distribution of the HFCCs calculated for one hundred frames from an AIMD in PCM. Indicated
are the average value over the one hundred frames (dark blue) and the value calculated for the optimized
minimum energy geometry (black). The left column contains all HFCCs computed with B3LYP, the right
column all results from B2PLYP.
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SFigure 4: Distribution of the HFCCs calculated for one hundred frames from a HF3c QM/MM-MD which
included 66 water molecules in the QM-sphere. Indicated is the average value over the one hundred frames
(dark blue). The left column contains all HFCCs computed with B3LYP, the right column all results from
B2PLYP. The top two rows only use the geometries of hydroxylated TEMPO, only the lowest includes all
QM/MM atoms.
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Chapter 4
Conclusion and Outlook

The influence of different molecular configurations is the recurrent theme in the six
studies presented in this work. Without MD simulations none of these projects would
have been possible or would have reached the accuracy they did. The exploration of
configuration space and its inclusion in the description of a system, whether it concerns
energetics or observables, is crucial. Without sampling at finite temperatures, effects
like the vibrations of bonds or exchange between local minimum energy configurations
cannot be properly described.
The first two publications have introduced and showcased the method DSI, which

offers not only a way to analyze, but also to localize free energy differences. The
application of DSI is not limited to standard free energy problems such as the binding
of an inhibitor to a protein. As was shown by analyzing glucose, free energy hot-spots
can be used to identify all atoms involved in the anomeric effect, an intramolecular
stereoelectronic effect. Hence, DSI can be used to analyze molecular systems in small
detail down to single atoms.

Building on the presented results, DSI is now ready to be used in future studies. The
VDoS can be used to rate the strength of hydrogen bonds, which is especially important
in biomolecular systems, as hydrogen bonds often play a crucial role, e.g., in protein
residue interactions. Future work should also aim to improve the numerical stability of
the algorithm. The method’s dependence on slow modes has to be decreased, such that
relatively short trajectories are sufficient. The number of data points along a trajectory
has to be reduced as saving velocities every femtosecond accumulates large amounts of
data quickly. In this context, the influence of SHAKE [149] and RATTLE [150] have
to be analyzed. These two methods enable freezing vibrations within a system. Most
likely, RATTLE can be used in conjunction with DSI, as it not only modifies the relative
position of atoms but also corrects their velocities, which will create less or no artefacts in
the VDoS compared to SHAKE. The method from Ref. [74], which foregoes computing
the VDoS and directly calculates the free energy from the vibrational autocorrelation
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function, avoids using the weighting function, which changes rapidly for frequencies
near zero, and thus may most likely increase the numerical accuracy of vibrational free
energies.

The machine learning study on reaction barriers demonstrated how strongly minimal
energy paths depend on the starting configurations of the system. The potential energy
surface of biomolecular systems is so rough that a single or a few minimal energy paths
are meaningless when trying to estimate an effective reaction barrier height from them.
Our results agree with those of Ryde [29] that millions of frames are needed, many
more than the 150 frames we could afford, when one aims to estimate the free energy
barrier as an exponentially weighted average from those minimal energy paths. However,
machine learning helps to reduce the number of frames necessary and to locate those
regions within configuration space which allow a reaction to occur.
After machine learning, we went one step further and actually sampled the system

with QM/MM-MD to calculate the free energy profile along the first reaction step of
Sirt5. However, employing QM/MM makes an MD time step very costly. Usually, in the
context of QM/MM one aims for QM size converged results, meaning using a QM region
so large that the results do not change when increasing the QM region further. Working
with QM size converged regions is not possible yet when performing QM/MM-MDs of
biomolecular systems, as it would include all the thousands atoms within a sphere of
several Ångstroms around the reaction centre. Thus, we chose a QM region that included
a few atoms more than the bare minimum of necessary atoms. Another option to reduce
cost is to choose a lower level approximation when solving the Schrödinger equation.
Hence, we chose HF-3c/minix as a low level but still ab initio approach. However,
HF-3c seems to be unable to describe stretched bonds accurately, which always occur
during chemical reactions. This leads to a systematic overestimation of the reaction
barrier. We proved this as we compared the value of the HF-3c energy barrier to higher
level approximations with larger basis sets in the machine learning study. Therefore, it
was planned to use reweighting the HF-3c configurational ensemble to a more accurate
DFT method, but this appears to be less straightforward than expected. The potential
energy surface away from low energy configurations is so different that the reweighting
entropy loss is significant. 20 ps long MD simulations appear to be too short to perform
any kind of reweighting from HF-3c to DFT.
Future work will have to focus on combining the speed of seminumerical-DFT or

other fast methods developed within FermiONs++ [151–153] with MD. It will then be
possible to perform the sampling needed for free energies on a higher level of theory
than HF-3c, given that reactions which include the breaking or formation of bonds have
to be described.
The study on HFCCs has shown how crucial sampling in the form of MD is when

trying to compute accurate observables, i.e., computational protocols which focus solely
on minimum energy configurations should be avoided if possible. The MD sampling can
be performed on many different levels of theory ranging from MD over HF-3x/minix
to DFT. The level of theory used for the MD has a non-negligible influence on the
value of the observable, which luckily can be corrected without having to perform the
entire MD on a higher level of theory. Such corrections that reduce computational
time without reducing the accuracy of the theoretical description are important when
tackling systems beyond a few atoms and comparison to experiment is sought.
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Additional studies will have to prove that the findings for HFCCs are indeed trans-
ferable to other observables, such as for example, to NMR chemical shifts, and whether
even cheaper sampling such as MM-MD can be corrected in the same manner as was
possible for HF-3c to PBEh-3c in the case of small radicals. As this is very likely the
case, large (bio-)molecular systems can be tackled on a regular basis, as we have already
shown in the study on 19F NMR shifts. As a test case, the Tpx-CFT system could be
revisited and it has to be tested by how much the accuracy, which was already high,
can be improved further when systematic corrections are used.
To conclude, this thesis has laid the groundwork for the analysis tool DSI and has

successfully improved observable calculations by applying statistical thermodynamics,
opening the doors to exciting new projects.
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