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CHAPTER I: INTRODUCTION 

 

Influenza A viruses (IAV) are able to threaten the health of mammals, avian species and 

humans. Originating from waterfowl, which represent the natural reservoir of most of the 

different IAV subtypes, the caused disease can range from mild to very severe. Circulating IAV 

in poultry as well as in swine and equines can lead to huge economic losses and pose a 

potential zoonotic threat. Additionally to the zoonotic potential of IAV, annually recurring 

strains of IAV circulate in the human population and cause seasonal epidemics. 

Until 2012, 16 different hemagglutinin (HA) and 9 neuraminidase (NA) subtypes were known, 

and all of them were found in different kinds of aquatic birds. But the world of IAV was 

properly shaken up as two novel influenza A-like viruses (IALV) were identified with the help 

of next-generation sequencing in the feces of the little yellow-shouldered bat (Sturnira lilium) 

in Peru and the flat-faced fruit-eating bat (Artibeus planirostris) in Guatemala. Provisionally 

designated as H17N10 and H18N11, these viruses not only expanded the range of natural 

reservoirs for IAV, but also showed new extraordinary characteristics in comparison to 

conventional IAV. Neither the HA nor the NA are able to bind to sialic acid residues, the well-

known receptor molecule of “classical” IAV. In fact, MHC-II class proteins function as cell-entry 

mediators for the novel IALVs. In addition, they lack the ability to reassort with conventional 

IAV and the function of the NA protein is still unknown. These traits raised questions and 

challenges concerning the zoonotic potential, but also the route of infection and the 

pathogenesis within the original bat host species.  

Additional evidence was found, that supports the hypothesis of bats playing a major role as 

either being a natural host species of IAV or potential vessel for reassortmant processes. In 

2015, serological evidence of IAV in frugivorous bats from Africa, especially concerning H9 

specific antibodies, supported this theory. Four years later, a distinct H9N2 line of IAV was 

characterized and isolated from Egyptian fruit bats (Rousettus Aegyptiacus).  

On the one hand, the aim of this work was to investigate the zoonotic potential of the new 

bat influenza A viruses (batIAV), and on the other hand, to highlight the way of infection and 

pathogenesis in the natural host species. 
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CHAPTER II: REVIEW OF LITERATURE 

 

II.1 Influenza A viruses 

II.1.1 Definitions and taxonomy 
 

Influenza is a viral infection that occurs worldwide and can lead to epidemics, especially during 

autumn and winter, or even pandemics.[1, 2] Causative agents are influenza viruses (IV), which 

are part of the family Orthomyxoviridae and are divided into four different genera: 

Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus and Deltainfluenzavirus.[3-5] 

All four genera are represented by only one species each, namely Influenza A virus (IAV), 

Influenza B virus (IBV), Influenza C Virus (ICV) and Influenza D virus (IDV), respectively.[5] The 

cause of seasonal influenza epidemics of humans are IAV and IBV.[1] The division of the 

different genera is predicated on antigenic variation of the matrix proteins (M1) and 

nucleoproteins (NP).[6] Thogotovirus (TVs), Quaranjavirus (QVs) and Isavirus do belong 

likewise to the virus family and represent further genera.[7-9]  

 

IAV comprise a large diversity in their HA and NA genes. At the moment, 18 different subtypes 

of HA and 11 subtypes of NA are known.[4] Although IAV play a huge role in seasonal influenza 

epidemics and are the main cause of severe human pandemics, it comes as a surprise that 

almost all subtypes originate from waterfowl.[10, 11] Merely H17N10 and H18N11 descend 

from South American bat species.[12, 13] Beside mammals also birds can develop severe 

illness in consequence of an infection with IAV, especially from subtype H5 or H7. However, 

the infection appears to be without clinical signs in aquatic birds most of the time.[10] 
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Figure 1. Influenza A subtypes and their hosts  

Figure as presented in “Of ducks and Men: Ecology of a Zoonotic Pathogen in a Wild Reservoir Host” by 
Michelle Wille, Neus Latorre-Margalef, Jonas Waldenström 2017; ISSN: 2366-3324; doi: 10.1007/978-3-319-
60616-3_9 [14] * 

Waterfowl represent the natural host species of Influenza A viruses. Spillover events to other wild and 
domestic bird species are demonstrated. Swine take on the role of representing a mixing vessel by being 
susceptible to avian and human IAV. The role of bats in the ecology of IAV has yet to be determined.[14] 

*permission for reproduction in Chapter IX: Supplements 

 

Contrary, there is no classification for IBV based on different types of HA. Two antigenically 

and genetically distinct lineages are the reason for human influenza B epidemics. The two 

strains are referred to as yam88-like or vic87-like and are related to either B/Yamagata/16/88 

or B/Victoria/2/87, respectively.[15] Both lineages are co-circulating in the human population 

since 1983, but are fluctuating dependent on the region or time period.[15, 16]  
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Based on the clinical appearance, a discrimination between IAV and IBV in humans is not 

possible; however, IBV are allocated with an overall lower clinical attack rate.[17] 

The species of ICVs differs from above in public health importance, especially clinical 

appearance and frequency of occurrence. ICV cause a mild respiratory or even asymptomatic 

disease in humans. While mainly being encountered and isolated from children below the age 

of six, the seroprevalance among adults is much higher.[18, 19] Since ICV were isolated from 

pigs in China in 1981 and in the United States of America in 2011, the topic of a potential 

species transmission from pigs to humans arouse interest. [20, 21] 

The latest introduction to the family of Orthomyxoviridae is the genus of Deltainfluenzavirus 

with their species of IDV. They are distinctly related to ICV and are isolated from pigs, which 

can even develop clinical signs of a respiratory illness, in addition to cattle.[22, 23] There is 

also evidence of IDV being able to infect ferrets, the surrogate model for human influenza A 

disease.[3] 

 

 

II.1.2 Particle structure 
 

IAV are enveloped and polymorphic RNA viruses. Spheroidal forms with an average diameter 

of 80nm to 120nm prepossess most particles, but filamentous shapes are possible as well.[24-

26] The negative-sensed, single-stranded RNA genome comprises eight different segments, 

that code for at least 11 proteins.[27] RNA segments possess conserved and partially 

complementary 5′- and 3′-end sequences with promoter activity. As depicted in figure 2 

the helical, viral RNA is covered by multiple nucleoproteins to form ribonucleocomplexes 

(RNPs). Associated to each single genome segment are three polypeptides that form the viral 

RNA dependent RNA polymerase (RdRp). The two glycoproteins, HA and NA as well as the M2-

protein, which forms a proton-selective ion-channel within the viral membrane, are part of 

the lipid bilayer. The HA binds to sialic acid receptors (SRA) and is therefore initiating 

endocytosis. While human influenza viruses prefer α2,6-linked SRA, the receptor binding cite 

of the HA of avian species are the α2,3-linked ones.[28] Towards the center of the virion, a 

protein layer of matrix proteins (M1) succeeds the latter.[29] Other internal proteins are the 

polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), the polymeric acidic 

protein (PA), the nucleoprotein (NP) and the non-structural protein 2 (NS2).[27] 
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Figure 2. Influenza A virion structure  

Figure as presented in “Influenza: lessons from the past pandemics, warnings from current incidents.” By 
Horimoto T. and Kawaoka Y. 2005; PMID: 16064053; doi: 10.1038/nrmicro1208 [30] * 

*permission for reproduction in Chapter IX: Supplements 

 

 

II.1.3 Influenza A – a zoonosis 

II.1.3.1 Mechanisms of variation of IAV 
 

As already mentioned beforehand, the natural reservoir host species of IAV are aquatic 

birds.[10] At the moment, more than 10.000 bird species are known in general and 

estimations even suggest more than double that number, based on phylogenetic research.[31] 

Hence, IAV are globally spread and circulate in avian species as well as mammals, like swine 

and equines. In cases of spill over infections from their animal hosts to humans, IAV can lead 

to epidemics and even pandemics. IAV-infected humans can develop a respiratory, potentially 

fatal disease.[1, 2] The direct crossover of an avian influenza virus from e.g. birds to humans, 

however, is an exceedingly rare event, that requires the virus to adapt and is essentially 

induced by two mechanisms, called antigenic drift and antigenic shift.  
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Antigenic drift occurs through a long-term congregation of point mutations in the RNA, which 

finally can lead to changes in the amino acid (aa) composition.[4, 10, 32] It is the result of the 

proofreading deficiency of the RdRp.[4] Since the HA and the NA are the main immunogenic 

compartments of IAV, changes in the aa compound of these proteins can lead to the ability of 

evading the responses of the immune system.[33] These rapid occurring changes regularly 

confront vaccination programs with the challenge to adapt continuously to new IAV variants, 

which can cause seasonal influenza epidemics. Even though evading virus strains only arise 

every two to five years, it is important to constantly surveil new occurring IAV strains and 

adjust vaccine composition accordingly.[34]  

Since IAV contain eight different gene segments, reassortment events can take place in case 

of a coinfection in one host cell with two different IAV strains.[4, 35] As long as this process 

involves the HA and/or the NA gene segment, it is named antigenic shift.[36, 37] The progeny 

viruses might be able to evade the human immune system, due to their newly obtained 

features concerning their antigenic makeup.[33] In the event of a coinfection with two 

different IAV, there are mathematically 256 (28) different gene segment combinations and 

therefore progeny IAV possible.[37] Antigenic shifts represent an important part of IAV 

evolution and are the main reason for the repeated occurrence of influenza pandemics.[36] 

 

II.1.3.2 Avian influenza viruses 
 

Avian influenza viruses (AIVs) are important pathogens in the poultry industry, circulating for 

decades and causing devastating outbreaks.[4, 38, 39] AIV can be divided into two phenotypes 

based on their pathogenicity in chickens: low pathogenic (LP) and highly pathogenic (HP). One 

of the main virulence determinants of HPAIV is the multi basic cleavage site (MBCS) in the HA 

of the influenza A subtypes of H5 and H7.[40] In order to be infectious, the original HA0 from 

virus particles has to be cleaved into two parts, called HA1 and HA2.[40] The monobasic 

cleavage site of LPAIV can only be split by trypsin-like proteases, which are present in the 

upper respiratory tract and/or intestinal tract of birds, strictly limiting the infection 

likewise.[40-42] The MBCS of HPAIV however, can be cleaved by furin-like proteases, which 

appear to be pervasive, and therefore enable a systemic infection.[41, 42]  
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Besides the presence of a MBCS in the HA of H5 or H7 viruses, the World Organization for 

Animal Health (OIE) also determines the pathogenicity of AIV by in vivo testing in chickens. 

AIV, which surpass an intravenous pathogenicity index (IVPI) of 1.2 or higher, in either 6-weeks 

old chickens, or cause at least a fatality in 75% of four-to-eight-week-old chickens are 

identified as being highly pathogenic.[43] Besides the HA subtypes of H5 and H7, H9 viruses 

are also able to threat human public health, even though transmissions from birds to humans 

are exceedingly rare.[4, 38, 44] The following part highlights exemplarily four of the most 

important AIV concerning human health: H5N1, H7N7, H7N9 and H9N2. 

 

H5N1 

In 1997, the first cases of fatal human H5N1 infections were reported from Hong Kong. Overall, 

18 patients were infected, with six of them being lethal.[44-48] The origin of all genes of the 

causative virus appeared to be from AIV sources.[4, 44] After the recurrence of the virus in 

2003, a further spread from Asia to Europe, the Middle East and Africa started.[38, 44] For the 

first time, the crossing of the animal-to-human barrier was accomplished for H5N1 [4] and, 

despite of it being a very rare event, the number of fatal cases of AIV H5N1 in humans in 

percentage is quite high. Up to date (March 2020), the World Health Organization (WHO) 

reports a total of 861 cases and 455 deaths.[44, 49] The high percentage of fatal cases is the 

result of H5N1 being able to overcome the restriction to the respiratory tract and occasionally 

lead to systemic infections.[44, 50-54] Experiments in ferrets, which are the gold standard of 

human IAV research about virulence and transmission, showed, that human-to-human 

transmission of viruses with H5 HA is in the realms of possibility. In addition, H5N1 

distinguishes from other AIV by being able to kill high numbers of wild aquatic birds, which 

was first observed at the Lake Qinghai, in western China in 2005.[38, 55] 

 

H7N7 

It was 1996, when a 43-year-old woman in England, who was the owner of pet ducks, was first 

infected by an AIV of subtype H7, developing a right eye conjunctivitis. Subsequently, the virus 

was isolated and identified as A/England/268/96.[56, 57] Seven years later, a large outbreak 

of AIV of subtype H7N7 occurred in poultry in the Netherlands.[58]  
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Overall, during the outbreak also 86 poultry farm workers and three of their family members 

were infected, with 78 of them developing a conjunctivitis and even one fatal case.[58, 59] All 

internal genes of the H7N7 HPAIV in the Netherlands were descendants from a close-by 

circulating H7N7 LPAIV.[4, 59] Another case of transmission of H7N7 HPAIV from birds to 

humans happened in August 2013 in Italy, when three breeding and cleaning workers of a 

poultry farm developed conjunctivitis after an animal culling procedure.[60] 

 

H7N9 

In spring 2013, three Chinese citizens, who had contact to birds in variable ways, showed an 

infection of the lower respiratory tract, which was caused by the novel IAV H7N9.[61] While 

the low pathogenic H7N9 virus of avian origin did only cause mild or even no illness in poultry, 

it appears to symbolize a major threat to humans, which was certified by the death of all three 

above mentioned patients.[61, 62] The low pathogenicity in poultry leads to a major problem 

in detection and is only to be overcome by active virological surveillance programs.[62] In 

humans however, the virus can lead to a severe and fatal illness, comprising cough, high fever 

and pneumonia.[61, 62] Studies with ferrets further revealed transmission via direct 

contact.[62-64] Since February of 2013, the virus spread in China with overall 1568 confirmed 

cases, 616 of them being fatal.[65] Luckily, the H7N9-epidemic in China was successfully 

stopped after the introduction of a H5/H7 bivalent vaccine for chickens.[66] 

 

H9N2 

Unlike the above-mentioned HPAIV, LPAIV of subtype H9N2 are not able to attract much 

awareness concerning public health control and disease management.[67, 68] Not only are 

they present since the 1980s and have been isolated from terrestrial poultry worldwide, but 

also AIV of subtype H9N2 are endemic in several Eurasian and African countries.[4, 67-77] 

While threatening global poultry health, H9N2 and especially its reassortants are able to 

menace human health likewise.[78-80] The first ever isolation of H9N2 from two children in 

Hong Kong was published in 1999 and raised a special level of interest, regarding the fact of 

H9N2 being a LPAIV.[81]  
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The certainty that some LPAIV of subtype H9N2 prefer the human-type sialic acid receptor 

and are able to be transferred between ferrets via respiratory droplets emphasizes their 

zoonotic and pandemic potential.[67, 68] H9N2 viruses have changed significantly during the 

last decade, leading to an increase of laboratory confirmed cases in China between 2010 and 

2013.[68] Since 2015, 26 cases of confirmed human infections have been reported.[82] Based 

on phylogenetical analysis of the HA gene, LPAIV of subtype H9N2 are divided into two 

different lineages: the Eurasian and the American. The Eurasian lineage is furthermore split 

into three sublineages: while A/duck/Hong Kong/Y280/97 (Y280-like), A/Chicken/Beijing/1/94 

(BJ94-like) and A/Chicken/Hong Kong /G9/97 (G9-like) represent the Y280-like lineage, 

A/quail/Hong Kong/G1/97-like (G1-like) represents the G1-lineage and A/Duck/Kong 

Kong/Y439 (Y439-like) and A/chicken/Korea/38349-p98323/96 (Korean-like) are the 

representatives of the Korean lineage.[4, 68, 83] Right now, H9N2 viruses are in the center of 

attention, especially highlighting their contribution of gene segments to different zoonotic AIV 

in the past due to their reassortment potential.[4, 80, 84-86] 

 

II.1.3.3 Swine influenza and the mixing vessel theory 
 

As already described in chapter II.1.3.2, most of the potential pandemic IAV arise from 

reassortment between avian and human IAV strains. In terms of representing the mixing 

vessel for reassortment events, swine stepped into the center of attention.[87, 88] The base 

of this theory is formed by two major factors, the antigenetic and genetic similarities between 

some avian, human and swine IAV strains and the susceptibility of pigs to avian and human 

IAV strains likewise.[87] While the majority of AIVs favors α2,3-linked (avian-receptor) sialic 

acid residues, most of the human IAV prefer α2,6-linked (mammalian-receptor) ones.[89, 90] 

Swine are featured with both receptor types in their respiratory tract, leading to their 

susceptibility for avian and human IAV strains and building up the molecular foundation of the 

mixing vessel theory.[91] There is plenty of evidence, ranging from in vitro and in vivo 

experiments to natural occurring IAV reassortants, supporting and proving the role of swine 

in the creation of new potential pandemic virus strains.[92] The generation of “new” viruses 

was accomplished by infecting pigs with IAV of humans and swine simultaneously.[93-95]  
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Kida et al. furthermore proved, that pigs are susceptible to some AIV strains, too, and so 

potential triple-reassortants between human, swine and avian IAV are feasible.[92] The most 

noteworthy triple-reassortant was H1N1pdm09, representing the causative agent of the first 

and only influenza pandemic in the 21th century. In this case, avian-like swine viruses provided 

the NA and M gene segments, classical swine viruses the NP, NS, HA genes while the PB2, PB1, 

and PA originated from North American AIV.[4, 44, 96-98] In addition, natural genetic 

reassortants could be found in swine as well as in humans, respectively.[99, 100]  

Despite swine influenza viruses being important pathogens in the pig industry, human cases 

of infections with swine origin viruses are rare, with only 27 confirmed cases between 1990 

and 2010 in the USA.[101] Since 2010, a total of 430 cases of human infection with swine-

origin influenza A(H3N2) variant viruses (H3N2v) have been detected in the United 

States.[102] One of the main factors for transmission of IAV from pigs to humans and vice 

versa are farm workers that are frequently exposed to swine. They may serve as a bridging 

population for interspecies transmission.[103, 104] 

 

II.1.3.4 Risk factors of human infections with zoonotic influenza 

viruses 
 

In the last part of chapter II.1.3, Influenza A – a zoonosis, the sources and routes of human 

infections with zoonotic IV are highlighted. Although zoonotic infections are rare in 

comparison to seasonal IAV, the viruses might be able to mutate or reassort in animals or 

humans and develop the ability for an animal-to-human or even human-to-human 

transmission.[4] In general, IAV can be transmitted to humans via inhaling of dust or 

respiratory droplets, but also the conjunctiva appear to be an open door for some AIV, in 

particular ones of the subtype H7.[105, 106] It seems to be obvious, that the work, contact 

and handling of swine and essentially poultry, like purchasing on live bird markets (LBM), 

slaughtering, defeathering, cleaning, cooking and boiling of meat, demonstrate one of the 

main risk factors for humans to be committed to animal origin IAV.[105, 107] In Asia, the 

epicenter and source of three of the five pandemics in the last 100 years, and Egypt, live bird 

markets turn up to be one of the main risk factors for zoonotic transmissions of AIV.[4, 107] 
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The congregation of different bird species like chickens, ducks or geese from different sources, 

lead to the continuously circulating and disposition of AIV.[4, 107] Another example from Van 

Kerkhove et al. shows multiple variating risk factors for an AIV infection, depending on the 

region and the general customariness regarding poultry treatment. Even though most of the 

population in rural Cambodia had frequent contact to poultry, performing potential 

transmission risk activities, the overall number of H5N1 infections in this case was lower, than 

in comparable studies from Thailand and Vietnam.[108-110] Difference in poultry density per 

km2, a lower probability of handling ill chicken and barriers in successful AIV transmission can 

lead to variations.[108] For the latter one, food preparation and hygiene practices determine 

a major influence on AIV transmission to humans, e.g. boiling or heating up poultry before 

defeathering, like it is the habit in Cambodia.[108] Food hygiene procedures furthermore 

could lead into the risk of transmission being negligible.[111] 

 

 

II.2 The relevance of bats in virology 
 

Around 20% of all mammal species, overall more than 1300, are bats.[112, 113] A closer look 

on bats, or to be more precise, on the order Chiroptera, that is furthermore divided into 

Megachiroptera (megabats) and Microchiroptera (microbats), reveals, that at the moment 

(March 2020) 30 bat species worldwide are even entitled critically endangered.[114, 115] Bats 

are the only mammals that own the power to fly and often use echolocation in order to 

orientate themselves.[116] The main problems bats have to face are from anthropogenic 

activities, like deforestation, habitat loss, destruction of roosts or even simple hunting and 

killing. It does not come as a surprise, that all of the 52 European bat species and their roosts 

are legally protected.[117] In 2008, Jones at al. published, that the majority of Emerging 

infectious diseases (EIDs, 71,8%) is derived from wildlife.[118] Not only are EIDs threatening 

global economy and human health, they are also on a significant rise.[118, 119] The intensive 

contact and harassment of wildlife, and in this case especially bats, menaces the life and health 

of bats and humans likewise. Bats are described as one of the main sources and risks for 

zoonotic diseases, even harboring more zoonoses per species than rodents altogether.[120]  
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In addition, they merge several characteristics, which turn bats into perfect reservoirs for 

pathogens. Besides the already mentioned increasing contact through anthropogenic 

activities, bats live in very large colonies, they are able to travel and disseminate viruses over 

a quite large distance in a comparable short amount of time and are pleased with a long life 

for their relatively small body size.[115, 121] The differences between the immune systems of 

bats and humans are also worth to mention.  A bunch of highly pathogenic viruses, comprising 

filoviruses, coronaviruses, lyssa- and henipaviruses, are proved being transmissible from bats 

to humans.[115, 116] It is demonstrated, that several bat species contain a constrictive 

viraemia towards some of these viruses, which is probably the result of an overall different 

immune response.[122-128] The diverse antiviral response probably raised from a long 

coevolution of bats with their viruses, but was also influenced by factors like the evolution of 

flight.[123] Since bats are difficult to obtain, house and taken care of, not much about the 

differences in comparison to humans or rodents is known.  

  

  

II.3 Discovery and characteristics of bat influenza A-like viruses 
 

As already mentioned beforehand, bats are able to harbor a huge variety of potential zoonotic 

viruses. Recently, bats were identified to be also hosts to different subtypes of influenza A 

viruses, respectively.[12, 13, 129, 130] Here, the two influenza A-like viruses H17N10 and 

H18N11, which played the leading role in this work, are further described. 

 

H17N10 

In 2013, Tong et al. described the discovery and identification of an influenza A-like virus from 

bats. Of the overall 316 tested bats, the rectal swabs of three individuals from the little yellow-

shouldered bat (Sturnira lilium, family Phyllostomidae) were tested positive via pan-influenza 

quantitative reverse transcription PCR (RT-qPCR). Since additional specimens of one bat (liver, 

intestine, lung and kidney tissue) were also tested positive, an infectious process was 

estimated rather than the digestion of infected food.[12] Genome analysis with the use of 

next-generation sequencing (Illumina GAIIx and 454 pyrosequencing) and the Sanger-method 

revealed that the bat virus is more related to influenza A than influenza B or C viruses and was 

from now on called A/little-shouldered bat/Guatemala/164/2009 (A/bat/Guat/09).  
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The phylogenetic analysis led to the estimation, that the HA of A/bat/Guat/09 is closer related 

to the group 1 HAs (subtypes H1, 2, 5, 6, 8, 9, 11, 12, 13, and 16) than to the group 2 HAs (H3, 

4, 7, 10, 14, and 15).[12] Therefore, the HA diverged after the split of influenza A HA subtypes 

into group 1 and 2. On the other side, the NA of A/bat/Guat/09 is neither in a close relationship 

to influenza A nor to influenza B viruses. This indicates, that the NA of the bat virus probably 

shares an older ancestral with known influenza viruses.[12]  

 

H18N11 

In a second study, 116 bats were captured in the Peruvian Amazonian rainforest. Overall, 18 

different bat species were sampled and screened with a pan influenza RT-PCR. The rectal swab 

and the intestine of one flat-faced fruit-eating bat (Artibeus planirostris, family 

Phyllostomidae) was tested positive. Deep sequencing and Sanger analysis led to the whole-

genome information and designation of this virus as A/flat-faced bat/Peru/033/2010 

(A/bat/Peru/10).[13] The phylogenetic analysis revealed, that A/bat/Peru/10 is most closely 

related to A/bat/Guat/09, the virus found in bats from Guatemala a year before.[12, 13] Even 

though the relation between the two batIAV is the closest, in comparison to other influenza A 

viruses, there is still a huge evolutionary difference, that it is adequate to designate 

A/bat/Peru 10 as H18N11.[13] 

In order to investigate the spread and circulation of batIAV among bats, a panel of sera was 

analyzed with an indirect enzyme-linked immunosorbent assay (ELISA) to identify IgG 

antibodies. Specific IgG antibodies against either the HA or the NA of H18N11 were found in 

55 of the 110 Peruvian bats. Furthermore, the positive sera were also tested for antibodies 

against H17, H1 and H5, but none of the sera showed any kind of cross reactivity, indicating 

the designation of A/bat/Peru/10 as H18N11 once again. Five additional species were found 

to be seropositive as well.[13] The serological analysis of the Peruvian bats initiated a similar 

study, with the goal to examine the seroprevalence of antibodies against H17 or N10 among 

bats in Guatemala. Here, the ELISA detected specific antibodies against H17, indicating a 

widespread circulation of bat-influenza A-like viruses in New World bats.[13]  

Besides the influenza A viruses H17N10 and H18N11, that were found in the Little yellow-

shouldered fruit bat (Sturnira lilium) in Peru and the Flat-faced fruit-eating bat (Artibeus 

planirostris) in Guatemala, respectively, bats are hosts to other influenza A viruses as well.[12, 

13]  
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In 2015, Freidl et al. described the serological evidence regarding antibodies against H9 in the 

straw-colored fruit bat (Eidolon helvum) in Ghana.[130] Furthermore, a new Influenza A virus 

of subtype H9N2 was detected and isolated from Egyptian fruit bats (Rousettus Aegyptiacus) 

from the Nile delta.[129] 

 

Characteristics of bat influenza A viruses 

 

Two studies investigated the function of the glycoproteins by using the expression with 

vesicular stomatitis virus (VSV) based vector systems. In the first study, Hoffmann et al. found 

no susceptibility of frequently used human, monkey or canine cell lines in IAV research. 

However, three different kinds of bat-derived cell lines appeared to be susceptible to bat HA 

and NA carrying vector particles.[131] However, for a successful infection, pre-treatment of 

the pseudotypes with trypsin for the activation of the HA was necessary. The type II 

transmembrane serine protease TMPRSS2 was able to trigger the entry into cells, not only 

leading to the conclusion of bat HAs accommodating a monobasic cleavage site but also 

emphasizing the need of studies concerning the zoonotic potential of batIAV, since TMPRSS2 

is also available in humans.[131] Further experiments revealed the independency of bat HAs 

from sialic acid receptors, because no increase in cell entry was found upon treatment of the 

cells with a sialidase.[131] The study of Maruyama et al. also confirmed these findings with 

the help of VSVs pseudotyped with the HAs and NAs from batIAV.[132]   

One of the main attributes of IAV is the ability to reassort their gene segments and expand 

their genome variation in the case of a coinfection with another IAV. (Chapter II.1.3.1) 

Nevertheless, the generation of reassortants, consisting of genes from bat flu H17N10 and IAV 

SC35M, with the help of reverse genetics, failed, even using only a single bat segment.[133] 

Therefore, a general incompatibility of batIAV to reassort with conventional IAV could be 

demonstrated.[133] 
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Figure 3. Rescue trials using different combinations of batIAV H17N10 and SC35M segments  

Partial figure as presented in: “An infectious bat-derived chimeric influenza virus harbouring the entry machinery 
of an influenza A virus.” By Mindaugas Juozapaitis and Étori Aguiar Moreira 2014; PMID: 25055345; doi: 
10.1038/ncomms5448 [133] * 

Juozapaitis et al. 2014: “All genomic segments of the H17N10 (Bat), the authentic SC35M HA and NA segments 
combined with the internal segments of H17N10 (Bat-HA/NASC35M), ORF of HA/NASC35M with the non-coding 
regions of H17N10 (Bat-50 HA/NASC35M)or ORF of HA/NASC35M with noncoding region and about 100 nt of 
the 50 and 30 coding sequences of H17N10 (Bat-250 HA/NASC35M).”[133] 

*permission for reproduction in Chapter IX: Supplements 

 

The analysis of the crystal structure from the N10 revealed that it shares the same structural 

properties with the NA proteins of conventional IAV. Nevertheless, it misses conserved amino 

acids being responsible for sialic acid binding and cleaving. Therefore, N10 is not able to bind 

to sialic acids and does not have any kind of sialidase activity, which leads to the question, 

whether bat influenza NAs show any kind of enzymatic activity. Also, the mechanisms of 

interaction between bat influenza HA and NA has yet not been discovered.[134-136] Despite 

bat influenza HAs possess a similar overall structure with a conserved putative receptor-

binding site, compared to the HAs of conventional IAV, they are neither able to bind to the 

canonical human α2,6 sialic acid linked, nor to the avian α2,3 linked receptor. Hence, another 

unique mechanism has to form the basis of cell entry.[13, 137, 138] In fact, Karakus and 

Thamamongood et al. provided the evidence of major histocompatibility complex class II 

(MHC-II) human leukocyte antigen DR isotypes (HLA-DR) playing an important role in the cell 

entry process of batIAV.[139]  
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Thus, they linked the results of a transcriptomic analysis of susceptible and non-susceptible 

cell lines with a CRISPR-Cas9 screening. The expression of MHC-II of different species, 

comprising mice, chicken, bats or pigs, lead to the susceptibility of cells towards batIAV and 

the idea of a potentially broad host spectrum.[139] Since MHC-II represents ubiquitous 

proteins of the immune system in many species, including humans, the question if batIAV 

representing a potential zoonotic risk rose and put itself into an important subject of this 

work.[140] 
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CHAPTER III: OBJECTIVES 

 

The recent discovery of two influenza A-like virus sequences in South American bat species 

raised awareness, especially concerning the replication of these viruses within species, which 

are known to harbor zoonotic and health threatening viral agents. Up to this date, there were 

no studies available describing and characterizing the bat influenza A-like viruses in different 

kinds of animal models, in order to investigate their way of infection, pathogenesis, genetic 

stability and zoonotic potential, respectively. Both publications further highlight the potential 

importance of bats regarding virus reservoirs and virus distribution. 

 

1. Transmission experiments – Characterizing H18N11 and its variant rP11 

(Chapter IV.1) 

Little is known about the characteristics of both newly discovered batIAV up to this 

date. In order to understand the features regarding genetic plasticity, intraspecies 

transmission or zoonotic potential, in vitro analyses and in vivo transmission 

experiments in mice, ferrets and Jamaican fruit bats shall help to elucidate the yet 

unknown world of bat flu viruses of subtype H18N11. 

 

2. Inoculation of Carollia perspicillata with H18N11   

(Chapter IV.2) 

Seba’s short-tailed bats (Carollia perspicillata) combine the two features of 

representing an H18N11 antibody positive South American bat species with excellent 

characteristics regarding animal experiments. Therefore, the route of infection, the 

pathogenesis and the not yet determined role as a major virus distributor should be 

investigated in this bat animal experiment. 
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CHAPTER IV: RESULTS 
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CHAPTER V: DISCUSSION 

 

Ebola virus, the cause of a devastating outbreak in 2014, which lead to 11310 deaths in Guinea, 

Sierra Leone and Liberia, Severe acute respiratory syndrome coronavirus  (SARS-CoV) in China 

2003, pandemic IAV H1N1 2009, but also Rabies, are examples of zoonotic viruses, which were 

able to cross the species barrier between bats, other mammals and humans.[141-144] The 

most recent example is the ongoing SARS-CoV-2 pandemia, with more than 500 000 infected 

people worldwide and more than 20 000 deaths (26th of March 2020). The combination of 

significant rises in EIDs, bats being able to harbor a wide range of zoonotic viruses and the 

intensive contact and harassment of wildlife, especially concerning the numerous bat species 

worldwide, led to multiple questions regarding the newly discovered batIAV. Therefore, the 

main goal of the present study was to fathom the ability of the H18N11 batIAV to transmit 

among bats and to non-bat animals, and evaluate their potential zoonotic risk and further put 

the main focus on the characterization of H18N11 in the bat model.  

 

 

V.1 Transmission experiments – Characterizing H18N11 and its variant rP11 

(Chapter IV.1; publication I) 

 

In the majority of cases, IAV are connected to outbreaks among poultry and swine, potentially 

leading to the death of thousands of individual animals, either through the consequence of 

the disease itself or the necessity of major culling events in order to prevent further virus 

spreading.[145] Apart from the fact, that these outbreaks are able to cause major economic 

consequences, a significant amount of work force might be required for the sake of curbing. 

By all means, the ability of IAV to cross the barrier from their animal host species to humans 

takes the center of attention. Just the imagination of a connection between IAV and the order 

of Chiroptera, which are described to represent one of the main sources and risks of zoonotic 

diseases, automatically raises several important and mandatory to answer issues. Therefore, 

the discovery and publication of H17N10 and H18N11 from bats in Guatemala and Peru [12, 

13], respectively, immediately mounted concerns about their pathogenesis, capability to 

spread among bats and especially the possibility of spillover infections to humans, among 

other things.  
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In this present study, we investigated important properties of H18N11 corresponding to the 

pathogenesis, transmission and cell-tropism in vitro and in mice, ferrets and Neotropical 

Jamaican fruit bats. In 2016, Moreira et al. investigated the susceptibility of different cell-lines 

towards the newly discovered batIAV by using a recombinant vesicular stomatitis virus (VSV) 

model. Among more than 30 screened cell-lines, “Rie1495” cells of canine origin appeared to 

be one of the most potent candidates for future in vitro passaging experiments.[146] With the 

objective of unraveling the enigma of replication features and put the genetic stability to the 

touch, a series of in vitro passaging with wild type (wt) virus H18N11WT was conducted. Besides 

consecutively increasing viral titers, our studies showed two dominant mutations within the 

H18 and the inclusion of a premature stop codon in the N11 at G107X (publication I). Based 

on the number of passages, the final H18N11 virus variant was designated as “rP11”, encoding 

the mutations H18K170N250S and N11G107X.  

In order to get insights about the also observed rising titers and the potential properties of 

variant rP11 in comparison to H18N11WT upon passaging, recombinant viruses encoding 

different combinations of H18WT, H18K170N250S, N11WT and N11G107X among others. All viruses 

encoding the single amino acid mutation H18K170N250S were infectious and could be further 

propagated in vitro, regardless of which kind of neuramindase they were paired with. 

However, virus variants encoding H18WT were only infectious, if mated with a full-length 

N11WT. The in vitro infection experiments further demonstrated, that the higher viral titers 

achieved during the passaging on the Rie1495 cell-line are coherent with a higher infectivity, 

which is most likely connected with the two amino acid substitutions in the H18. This also 

indicates that NA independent virus variants (stop codon variants) are functional as long as 

the virus is also encoding the hemagglutinin variant H18K170N250S. Similar NA-negative, but 

attenuated, virus mutants were already described before e.g. for HPAIV H5N1 or IAV H1N1, 

using either cell or in ovo passaging methods.[147-150]  

The fact that N11-impaired virus variants containing the H18WT could not generate infectious 

and replicating virus particles demonstrates the necessity of a collaborating pair of H18wt and 

NA11wt, in a similar style compared to conventional IAV. Vice versa, NA-deletion requires the 

observed HA-mutations. The NAs of batIAV lack conserved amino acids responsible for binding 

to and cleaving from sialic acid residues, resulting in a non-existing sialidase activity.[134-136] 

(Chapter II.3)  
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However, there is evidence suggesting a similar function of batIAV NAs compared with their 

conventional IAV NA companions. Since batIAV use MHC-II molecules for cell-entry purposes, 

the function of the NAs is different, but in some general principles comparable.  The study of 

Weininger et al. revealed structural conformity between the NA of H17N10 and the 

staphylococcal enterotoxin I (SEI), which is able to bind to the β-chain of human MHC-II 

molecules.[151] Together with the information of full-length NA11 being able to 

downregulate the expression of MHC-II molecules (publication I), these evidences indicate an 

important interaction between the cell-entry mediator MHC-II and the NAs of batIAV. The 

detailed function of batIAV NAs however remains unclear and should be one of the main 

focuses of upcoming studies. 

 

In a next step, the analyses switched from a pure in vitro system of serial passaging on Rie1495 

cells to in vivo experiments in mice, ferrets and Neotropical Jamaican fruit bats (Artibeus 

jamaicensis, family Phyllostomidae). Based on the previous discovery of MHC- II molecules 

representing the major cell-entry mediator of H17N10 and H18N11[139], additional concerns 

rose about the epizootic and zoonotic potential of these batIAV. The previously mentioned 

genetic variability of H18WT and NA11WT, which both quickly adapted upon passaging in the in 

vitro cell system, equally lit the same discussion of H17N10 or H18N11 being able to 

potentially infect and pose a serious and yet unknown threat to humans. 

 

In order to examine replication properties and genetic stability in an in vivo model, we first 

inoculated C57BL/6 mice intranasally with a 105
 50% tissue culture infective dose (TCID50) with 

either WT-H18N11 or variant virus rP11, respectively. Interestingly, the results of the mice 

experiments matched the in vitro passaging in equal measure. While viral replication in both 

of the test series only appeared in the upper respiratory tract, viral titers showed up to be 

significant higher in the rP11 experiments compared to the WT-infected mice. Furthermore, 

rP11 was genetically stable in contrast to WT-H18N11. Therefore, these results could be 

interpreted in a similar vein to the in vitro experiments, namely that an efficient replication 

requires two mutations in the head domain of H18WT. In the ensuing experiments, an 

intranasal inoculation of immunodeficient C57BL/6 mice, which lack the functional type I and 

III interferon receptors, with either WT-H18N11 or rP11, should reveal the possibility of 

transmission to naïve contact mice or at least highlight the necessities to do so successfully. 
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However, viral replication was again strictly limited to the upper respiratory tract again for 

both viruses and we could not detect any transmission to contact animals, both 

foregrounding, that the mouse model might not be suitable for transmission experiments of 

bat-borne influenza A-like viruses without any further adaption. 

 

Two major factors influenced the decision to take the in vivo experiments a step further and 

inoculate ferrets as well as Jamaican neotropical fruit bats with both WT-H18N11 and rP11, 

respectively.  The first reason was that MHC-II molecules appeared to be one of the major 

parameters in the cell entry process of H18N11 bat influenza a-like viruses. In fact, these 

molecules are omnipresent in the world of mammals, including mice, bats, ferrets and, of 

course, humans.  

The second factor summarizes the in vitro passaging on Rie1495 and the series of experiments 

regarding the C57BL/6 mice. Both trials indicated rP11 being able to also replicate in a non-

bat mammal. 

Ferrets are the main animal model for research purposes of non-adapted human IAV. They 

mirror humans in characteristics regarding susceptibility, clinical signs and transmission 

features and are therefore well suited in order to investigate the zoonotic potential of rP11 

and WT-H18N11.[152-154] Since the mutant variant already demonstrated its potential in the 

mouse model, ferrets were inoculated using rP11 with a TCID50 of 107.  Four naïve contact 

ferrets were put into contact with the original 12 index ferrets after one day with the ultimate 

goal to observe successful transmission between the animals. Though only moderate levels of 

RNA could be measured with the help of RT-qPCR in the lungs, trachea and even brain of some 

of the index animals, it still demonstrated a general susceptibility of ferrets towards batIAV. 

However, there was no detectable amount of RNA in any organ of the contact individuals and 

no seroconversion, a fact that led to the conclusion of a general low potential zoonotic risk. 

Additionally, we could not observe any clinical signs among the ferrets emphasizing this 

interpretation likewise. Surprisingly, sequencing data revealed a mutation in the 

neuraminidase back to the original open reading frame of N11WT, suggesting a species 

dependent necessity of adaption regarding H18N11. Yet, another animal experiment with the 

same basic setup, but inoculation with the original WT-H18N11 demonstrated even lower 

replication levels, insinuating that batIAV are poorly adapted to ferrets or even non-bat 

mammals in general. 
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With both mice and ferrets showing very clear restrictions concerning replication and spread 

of H18N11, still data about replication in the natural bat host was missing. Therefore, with the 

goal to further examine transmission properties, we inoculated Jamaican neotropical bats 

with either WT-H18N11 or rP11 in a similar setup compared to the ferret experiments. Here, 

a different behavior could be observed. High loads of viral RNA in rectal swabs and actually 

infectious virus in feces samples indicated a distribution among bats through contaminated 

feces.  It is definitely not the first time, an IAV tends to prefer the gastrointestinal route, as a 

similar way of infection was already described by Webster at al. in ducks in the year of 1978. 

[155]  

This theory was further supported as not only viral loads could be detected in the feces of 

naïve contact bats, but they also developed mild clinical signs in the shape of nasal and ocular 

discharge. And the genetic plasticity of H18N11 surprised once again, as in the bat model, the 

variant rP11 reverted into its original genetic shape, comparable to changes seen in the ferret 

trials. It can be therefore finally concluded that rP11 appears to be a species-specific adaption 

rather than representing a mutant with basic advantages over the wild-type virus, and wild 

type H18N11 is best adapted for replication and spread in its natural bat host. 

 

Histopathological analyses regarding the ferrets and the bat experiments support the previous 

discovery of MHC-II molecules representing the major cell-entry mediator likewise. Viral 

antigen could be found in the follicle-associated epithelium (FAE) of the palatine and 

pharyngeal tonsils for ferrets and in the FAE of Peyer’s patches of Jamaican neotropical bats, 

all areas densely equipped with MHC-II molecules.  

 

In summary, the studies described in publication I demonstrate that H18N11 is only poorly 

adapted to non-bat species, especially ferrets, and therefore does most likely only pose a 

minor risk of a zoonotic spill-over to humans. However, the ability of WT-H18N11 to quickly 

adapt to new circumstances by generating an N11-negative variant advice to keep these newly 

discovered IAV under observation. In contrast, we could show a gastrointestinal pathway of 

the virus and further spread among Jamaican neotropical bats, a relative species of the flat-

faced fruit-eating bat (Artibeus planirostris) of which H18N11 originated from, a case that has 

to be further examined and confirmed in future studies.  
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Especially other bat infection experiments were necessary to allow a better understanding of 

host range and natural infection cycles. Therefore, Seba’s short-tailed bats (Carollia 

perspicillata) were inoculated with H18N11 in a first follow up study.  

 

 

V.2 Inoculation of Carollia perspicillata with H18N11  

(Chapter IV.2, publication II) 

 

Seba’s short-tailed bat (Carollia perspicillata) represents a common, relatively small and 

frugivorous bat species from Central- and South America.[156] Similar to the Flat-faced fruit-

eating bat (Artibeus planirostris) and the Jamaican fruit bat (Artibeus jamaicensis) they 

appertain to the family of the Leaf-nosed bats (Phyllostomidae) and further share their 

habitats.[156] Even though H18N11 was only detected and successfully sequenced from 

Artibeus planirostris, Artibeus jamaicensis and the Great fruit-eating bat (Artibeus lituratus), 

there is serological evidence for viral contact to batIAV of various species, including Seba’s 

short-tailed bats (Carollia perspicillata). Despite their biological and geographic connection to 

the original host species of H18N11, Seba’s short-tailed bats provide researchers all around 

the world with different advantages regarding potential animal experiments. They comprise 

the simplicity of obtainment, housing conditions like feeding, temperature and air moisture 

requirements in relation to other bat candidates. In addition, several publications about 

approaching these obstacles are accessible, mainly due to their history in reproductive 

research.[157-162] Interestingly, numerous publications covering up laboratory methods 

concerning Carollia perspicillata are available as well.[163-166] 

 

In my study, I could demonstrate that Seba’s short-tailed bats are in principal susceptible to 

an oronasal inoculation with WT-H18N11. Viral RNA could be detected in the upper 

respiratory tract and the intestine of the inoculated index animals (publication II). Further 

histopathological analysis revealed mild necrotizing alterations at the olfactory and 

respiratory epithelium, overall corresponding results compared to the already discussed 

inoculation of the Jamaican neotropical fruit bats.  
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Parallel findings of H18-specific RNA and IAV-matrixprotein immunoreactive cells in the nose 

and gut-associated-lymphoid-tissue (GALT) support the theory of an oronasal and 

gastrointestinal infection route. And it again backs up the findings of MHC-II molecules 

representing the major cell-entry mediator of batIAV. 

 

Since viral RNA was also detectable in pooled feces samples, we assumed that a transmission 

via rectal spreading might be possible, but no viral RNA could be detected in any of the tissues 

of the naïve contact bats, and there was no seroconversion. The first and most likely 

explanation for a failed transmission among the bats appears to be a potential species-

dependency or even dependency towards the genus of Neotropical fruit bats (Artibeus) in 

general.   

 

As mentioned in chapter II.2, 20% of mammals are bats of the order Chiroptera, which are 

also one of the main contributing factor of EIDs.[118, 119] There are more than 1300 different 

species known, making it one of the most diverse orders just behind rodents.[112, 113] 

Therefore, it does not come as a surprise that differences among bat species regarding virus 

transmission, susceptibility or pathogenicity occur on a regular basis. Concerning North 

American bat species, these evolutionary distinctions arose about a time frame of 3 to 60 

million years.[167, 168] The huge divergences between different bat species can also be 

observed regarding the surveillance, incidence and cross species transmission (CST) of 

lyssaviruses in North America.[167, 169] Though the most common colonial bat species of 

North America are the Big big brown bat (Epetesicus fuscus), Little brown bat (Myotis 

lucifugus) and the Mexican free-tailed bat (Tadarida brasiliensis), human cases of rabies are 

often associated with the more rare Silver-haired bat (Lasionycteris noctivagans).[169] This 

could provide another example of huge divergences in CST, especially between bats and 

humans or virus shedding. Further phylogenetic analysis of rabies viruses in North America 

revealed a strong species association and probably rare CSTs, even among bats, which also 

supports the theory of a species dependency of batIAV.[167, 168, 170, 171] 

We are also not able to exclude the improbable scenario of an already established, not 

detectable adaptive immunity against other, yet undetected, novel IAV.  
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During the animal trial, some of the bats developed a mild exsiccosis and catarrhal enteritis. 

Latter occurred between 9 and 20 dpi and peaked in the showcasing of green colored diarrhea. 

The late point in time excludes dietary reasoning but no other potential non infection-based 

causes. A further explanation for a failed transmission might be the superior antiviral response 

of bats of a higher age, as were used in this study. 

 

In conclusion, Seba’s short-tailed bats seem to be in general susceptible to WT-H18N11, but 

transmission to other individual bats failed, despite lesions in the upper respiratory tract and 

gastrointestinal clinical signs. We therefore assume, that these bats might not play a major 

role in the distribution and spreading of H18N11, despite positive antibody reactions.[13] 

Finally, Seba’s short tailed bats represent a rather poor overall model for investigation of not 

only H18N11 but also other viruses in the future. In comparison to the Neotropical Jamaican 

Fruit bats (publication I), they not only lack in terms viral transmission or showing of clinical 

signs, but are also much more difficult to handle, mainly because of their smaller size and the 

sensitivity towards anesthesia. 

 

Final conclusion 

 

The main goal was to investigate characteristics of batIAV, especially of H18N11 with the help 

of in vitro as well as different in vivo experiments. In doing so, we mainly focused on features 

regarding the genetic plasticity, intraspecies transmission, finding a suitable animal model and 

evaluation of the zoonotic potential. In the latter case, our findings suggest an overall low 

zoonotic risk. Ferrets, which also mirror the human α2,6-linked SAR, usually represent an 

established animal model for zoonotic IAV research. However, batIAV appear to be poorly 

adapted to non-bat mammals, especially ferrets, as both tested viruses, WT-H18N11 and rP11 

featured a weak replication and no transmission to contact animals at all. A potential zoonotic 

hazard can’t be excluded completely, mainly due to the fact of batIAV utilizing MHC-II 

molecules for a successful cell entry.  Therefore, ferrets might not represent the best animal 

model for a proper risk assessment in all cases. H18N11 tends to adapt rapidly upon in vitro 

propagating, leading to a virus variant harboring mutations in the HA and NA. Though the 

variant rP11 was able to infect and replicate well in the mouse model, it failed using ferrets or 

bats, leading to the conclusion of a more species dependent adaptability. 
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The in vivo experiments in both publications revealed, that Neotropical Jamaican fruit bats, a 

close relative to the original host species, the Flat-faced Fruit-eating bat, is by far the best 

model for further batIAV investigations. While batIAV appear to be poorly adapted to non-bat 

mammals like mice or ferrets in general, there was also a reduced replication and shedding 

efficiency of batIAV H18N11 in Seba’s short-tailed bats. 

Overall, the ongoing SARS-CoV 2 pandemia, with 500000 infected people and 20000 deaths 

(26th March 2020), once more proves, how important an early investigation of potential 

zoonotic EIDs is. The necessity of further studies concerning batIAV is therefore inevitable. 
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CHAPTER VI: SUMMARY 

 

In times of the ongoing SARS-CoV2 pandemic, which currently controls the whole world, they 

are suddenly back on everyone's lips again: bats. The main focus is on the diseases that these 

animals can carry and which so often cause serious and even deadly infections in humans. For 

scientists, on the other hand, research into zoonotic diseases that originate in bats is an 

omnipresent topic. Nevertheless, the world of virology was taken by surprise when the 

sequences of two novel influenza A viruses, known as H17N10 and H18N11, were discovered 

in two South American bat species in 2013. The combination of potentially zoonotic influenza 

viruses with the order of bats is both fascinating and frightening, as it is well known that lyssa-

, corona- and ebolaviruses share this common reservoir hosts. The two publications listed in 

this dissertation aim to analyse and discuss the properties of bat influenza viruses H17N10 

and H18N11. The main points are the analysis of the zoonotic potential, the genetic stability 

and also the finding of a suitable animal model for future animal experiments. In trials with 

ferrets, which are an excellent model animal for research on the human risk of influenza 

viruses, only a very low zoonotic risk was found. However, the fact that bat influenza viruses 

use MHC-II molecules as cell-entry mediators does not allow the complete exclusion of a 

zoonosis. Passages on the cell line Rie1495 led to rapidly occurring mutations in HA and NA, 

and a virus variant that is well adapted to the mouse model but could not replicate these 

results in ferrets and the Neotropical Jamaican fruit bat. From this we conclude that there is a 

strong but species-specific genetic plasticity. With the help of Seba’s short-tailed bats, which 

on paper have particularly advantageous properties for future animal experiments, we 

wanted to create an animal model for the future as well as testing the infection route, 

pathogenesis and viral shedding in a related bat species. While our results indicate oral uptake 

and gastrointestinal passage and excretion, Seba’s short-tailed bats, due to their difficult 

handling and lack of transmission of H18N11 to naive animals, were classified as less suitable 

for future animal experiments in comparison to the Neotropical Jamaica fruit bat. The results 

of the here described studies should also lead to further research on these highly interesting 

viruses, e.g. to further investigate and understand the role of bats in the spread and 

transmission of potentially zoonotic viruses by using the here established bat flu model. 
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CHAPTER VII: ZUSAMMENFASSUNG 

 

In Zeiten der SARS-CoV2 Pandemie, welche im Moment die ganze Welt in Atem hält, sind sie 

plötzlich wieder in aller Munde: Fledermäuse. Dabei liegt das Hauptaugenmerk vor allem auf 

den Krankheitserregern, die diese Tiere in sich tragen können und welche so häufig ernste und 

sogar tödliche Infektionen beim Menschen hervorrufen können. Für Wissenschaftler dagegen, 

ist die Erforschung zoonotischer Krankheiten, bei denen der Ursprung oft in Fledermäusen zu 

finden ist, ein allgegenwärtiges Thema. Dennoch wurde die Welt der Virologie ordentlich 

durcheinandergewirbelt, als im Jahr 2013 die Sequenzen zweier neuartiger Influenza A Viren, 

welche als H17N10 und H18N11 bezeichnet werden, in zwei südamerikanischen 

Fledermausarten entdeckt worden sind. Die Kombination von potenziell zoonotischen 

Influenzaviren mit der Ordnung von Fledertieren, ist dabei zugleich faszinierend aber ebenso 

beängstigend, ist es doch weitreichend bekannt, dass auch Tollwut-, Corona- oder Ebolaviren 

diesen gemeinsamen Ursprung teilen.  

Die beiden in dieser Dissertation aufgeführten Publikationen zielen darauf ab, die 

Eigenschaften dieser Fledermausinfluenzaviren zu erörtern. Der Fokus liegt dabei auf der 

Analyse des zoonotischen Potentials, der genetischen Stabilität aber auch dem Finden eines 

passenden Tiermodells für zukünftige Tierversuche.  

In Versuchen mit Frettchen, welche normalerweise ein hervorragendes Modelltier für die 

Erforschung von humanpathogenen Influenzaviren darstellen, zeigte sich glücklicherweise nur 

ein sehr geringes zoonotisches Risiko. Die Tatsache, dass Fledermausinfluenzaviren jedoch 

MHC-II Moleküle als Rezeptoren für das Eindringen in Zellen verwenden, lässt jedoch keinen 

vollständigen Ausschluss einer Zoonose zu. So führten Passagen auf der Zelllinie Rie1495 zu 

schnell auftretenden Mutationen im HA und NA und einer Virusvariante, welche gut an das 

Mausmodell angepasst war. Jedoch konnten diese Ergebnisse in Frettchen und der Jamaika-

Fruchtfledermaus nicht wiederholt werden. Daraus schließen wir auf eine starke, aber 

dennoch speziesspezifische genetische Plastizität.  

Mit Hilfe der Brillenblattnase, welche auf dem Papier besonders vorteilhafte Eigenschaften 

für zukünftige Tierversuche mitbringt, wollten wir zum einen ein Tiermodell für die Zukunft 

schaffen, als auch Infektionsroute, Pathogenese und Ausscheidung des Virus in einer 

verwandten Fledermausart testen.  
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Während unsere Ergebnisse auf eine orale Aufnahme und gastrointestinale Passage und 

Ausscheidung hindeuteten, erwiesen sich die Brillenblattnasen insgesamt aufgrund ihres 

schwierigen Handlings und einer nicht vorhandenen Transmission zu naiven Tieren im 

Vergleich mit der Jamaica-Fruchtfledermaus als weniger geeignet für zukünftige in vivo 

Studien.  

Die Ergebnisse dieser hier vorgestellten Arbeiten sollen auch dazu führen, diese interessanten 

Viren weiter zu erforschen, um z.B. die Rolle von Fledertieren bei der Verbreitung und 

Übertragung von Zoonosen an diesem Modell weiter zu ergründen. 
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CHAPTER IX: SUPPLEMENTS 

 

IX.1 Abbreviations 

 

Aa   Amino acid 

AIV   Avian influenza viruses 

CST   Cross species transmission 

EID   Emerging Infectious Diseases 

ELISA   Enzyme-linked immunosorbent assay 

FAE   Follicle-associated epithelium 

FAO   Food and Agriculture Organization of the United Nations 

GALT   Gut-associated-lymphoid-tissue  

HA   Hemagglutinin 

HLA-DR  Human leukocyte antigen DR isotypes 

HP   High pathogenic 

IALV   Influenza A-like virus 

IAV   Influenza A virus 

IBV   Influenza B virus 

ICV   Influenza C virus 

IDV   Influenza D virus 

IV   Influenza virus 

IVPI   Intravenous pathogenicity index 

LBM   Live bird markets 

LP   Low pathogenic 

MBCS   Multibasic cleavage site 

MHC-II   Major histocompatibility complex class II 

NA   Neuraminidase 

NP   Nucleoprotein 

NS2   Non-structural protein 2  

NT   Nucleotide 

OIE   World Organisation for Animal Health 
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PA   Polymerase acidic protein 

PB1   Polymerase basic protein 1 

PB2   Polymerase basic protein 2 

PCR   Polymerase chain reaction 

RdRp   RNA dependent RNA polymerase 

RNA   Ribonucleic acid 

RNP   Ribonucleocomplexes 

RT-qPCR  Quantitative reverse transcription PCR  

SARS-CoV  Severe acute respiratory syndrome coronavirus 

SEI   Staphylococcal enterotoxin I 

SRA   Sialic acid receptor 

TCID    Tissue culture infectious dose 

TMPRSS2  Transmembrane protease serine 2 

VSV   Vesicular stomatitis virus 

WHO   World Health Organization 

WT   Wild type 

 

 

 

IX.2 List of figures 
 

Figure 1. Influenza A subtypes and their hosts. ............................................................................... 3 

Figure 2. Influenza A virion structure. .............................................................................................. 5 

Figure 3. Rescue trials using different combinations of batIAV H17N10 and SC35M segments. .. 15 

 

 
 

 

 



 

81 
 

IX.3 Permissions for reproduction 
 

Figure 1. Permission for reproduction was granted by the Copyright Clearance Center’s 

RightsLink® service. 

Figure 2. Permission for reproduction was granted by the Copyright Clearance Center’s 

RightsLink® service. 

Figure 3. Permission for reproduction was granted by the Copyright Clearance Center’s 

RightsLink® service. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 
 

CHAPTER X: ACKNOWLEDGEMENT 

DANKSAGUNG 

 

Herrn Prof. Dr. Gerd Sutter und den Gutachtern möchte ich für die Beurteilung dieser Arbeit 

danken. 

Ein besonderer Dank gebührt meinem Mentor Prof. Dr. Martin Beer, der mir nicht nur 

ermöglicht hat, meine Dissertation am Friedrich-Loeffler-Institut anzufertigen, sondern auch 

immer mit Rat und Tat zur Seite stand. 

Herzlich bedanken möchte ich mich auch bei PD Dr. Donata Hoffmann, die in guten wie in 

schlechten Zeiten stets einen kühlen Kopf bewahrt hat und durch ihr hervorragendes 

Fachwissen, konstruktive Kritik und unzählige Stunden Korrekturlesen einen wesentlichen 

Beitrag zu dieser Arbeit beisteuerte. 

Natürlich gebührt mein Dank auch allen anderen Mitarbeitern des NRL für Affenpocken, bei 

denen neben der hervorragenden wissenschaftlichen und labortechnischen Unterstützung 

auch immer das notwendige Quäntchen Spaß nie zu kurz kam. Deshalb ein großes Dankeschön 

an Doris Junghans, Mareen Lange, Dr. Annika Franke, Saskia Weber, Dr. Kore Schlottau und 

natürlich Dr. Jacob Schön. 

Besonders bedanken möchte ich mich auch bei allen Tierpflegern des FLI, da sie mich zu jedem 

Zeitpunkt unterstützt haben, insbesondere bei den aufwendigen und anspruchsvollen 

Fledermausversuchen.  

Außerdem möchte ich mich bei allen Ko-Autoren dieser Arbeit bedanken. 

Last but not least gebührt ein unendlich großes Dankeschön meinen Eltern und meinen 

Geschwistern, die immer an mich geglaubt haben, auch wenn ich bereits am Boden war. 

Danke für eure Unterstützung. Man könnte sich keine bessere Familie wünschen! 

 


