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Abstract

The DNA in all organisms is constantly exposed to a variety of different substances and processes

that can lead to a plethora of different DNA damages. DNA double strand breaks (DSBs) are

one of the most deleterious types of DNA damage since they can cause severe chromosomal

rearrangements. Two basic mechanisms emerged for the repair of DSBs: Non-homologous end

joining (NHEJ) and homologous recombination (HR). NHEJ allows the direct ligation of two

DNA ends. This pathway can be employed throughout the cell cycle, however it can also lead

to insertions or deletions. HR is a more complex pathway that uses the sister chromatid as a

template and thus allows error free DSB repair after the DNA has been replicated.

One of the first protein complexes recognising a DSB is the Mre11-Rad50-Nbs1 (MRN)

complex. The heterotetrameric Mre11-Rad50 core complex (M2R2) is conserved in eukaryotes,

prokaryotes, archaea and phages and consists of the manganese dependent nuclease Mre11 and

the SMC-like ATPase Rad50. Rad50 is composed of a bipartite nucleotide binding domain

(NBD) and up to 500 Å long coiled coils that end in a zinc hook. The MRN complex is

implicated in DNA tethering as well as DNA damage signalling and telomere maintenance.

One of MRN’s main function is the initial processing of the DNA to prepare it for long range

resection required for HR. For this purpose, the complex has exonuclease and endonuclease

activity to cleave protein blocked DNA ends e.g. from abortive topoisomerases.

Despite many years of research, several questions about the MRN complex remain un-

answered. The ATP-bound Rad50 NBDs block the Mre11 nuclease active site and it is

not clear how the DNA can access the Mre11 nuclease for cleavage. Furthermore, the coiled

coils play an important role for the MRN complex, however their function is still not understood.

The first part of this thesis describes the biochemical characterisation of the Escherichia coli

Mre11-Rad50 (EcMR) complex. It was shown that EcMR dependent DNA binding and ATPase

activity increase with DNA length. The ATPase activity is also influenced by the DNA topology,

with linear DNA having the highest stimulatory effect. In addition, DNA distortion or melting

could be involved during endonucleolytic incision and this was shown by the use of various DNA

substrates. Interestingly, two different cleavage chemistries were observed for EcMR depending

on the nuclease activity. Thus, EcMR generates different DNA ends, leaving either 3′ or 5′

phosphorylated DNA ends, respectively.

In the second part of the thesis the structural data of the EcMR is described. The pivotal coiled

coil domain induces a high level of complexity and make the MR complex a challenging
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substrate for structural analysis. Due to the recent advances in cryo-EM, the full-length EcMR

complex was used for structural studies. Two structures of the head complex, consisting of

the Mre11 dimer and the Rad50NBD were determined to near atomic resolution. In the ATPγS

bound resting state, the EcMR head complex resembles previously observed MR structures from

other organisms. The Mre11 dimer is located in an autoinhibitory state below the Rad50NBD

and the coiled coils point outwards. The second structure captures the EcMR in an active,

DNA-bound cutting state in complex with ADP. In this conformation, the coiled coils clamp

around the DNA and form a rod that could be resolved up to a distance of 200 Å from the head.

Additionally, the Mre11 dimer dislocates from the bottom to the side of the Rad50NBD, which

allows access of the DNA to the nuclease active site, something that could not be observed in

previous Mre11:DNA structures.

The structural as well as biochemical data will be discussed and integrated into possible mod-

els.
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1 Introduction

1.1 DNA Damage

All cellular organisms, known today use deoxyribonucleic acid (DNA) to store their genetic in-

formation1. DNA itself is a reactive molecule constantly exposed to endogenous and exogenous

factors that cause DNA modifications and DNA damage2. DNA damage is a double-edged sword

for an organism. On the one hand, mutations resulting from DNA damage drive evolution and

help organisms to adapt to an ever changing environment. On the other hand, too much DNA

damage has severe consequences for an organism including death and disease1,2. Therefore, it is

important for the organism to repair DNA damage fast and effectively.

DNA damage can be caused by a plethora of endo- and exogenous factors (see Section 1.1.1

and 1.1.2). Thus, the organism has to deal with many different types of DNA damage, ranging

from simple base deamination and DNA adducts to severe DNA lesions, like highly toxic DNA

double strand breaks (DSBs)2.

Several DNA repair pathways have evolved and are used to repair different DNA lesions (see

Figure 1). This includes mismatch repair (MMR)3, base excision repair (BER)4 and nucleotide

excision repair (NER)5 which are required for the repair of mismatched nucleotides, abasic sites

and small to bulky adducts, respectively2. The repair of strand breaks in the DNA backbone

is mediated by pathways of single strand break repair (SSBR)6 or double strand break repair

(DSBR). In DSBR two major pathways exist: Non-homologous end joining (NHEJ) and homo-

logous recombination (HR, see Section 1.2.1 and 1.2.2)7,8. Interstrand crosslinks (ICLs) require

the Faconia anemia complex for repair9. A small subset of DNA lesions can be repaired by

direct reversal, often involving only a single enzyme e.g. photolyase, which reverses cyclobutane

pyrimidine dimers10.

In addition to DNA damage repair, cells also posses mechanisms to allow DNA damage tol-

erance, one of which are the translesion synthesis (TLS) polymerases that are less stringent in

their base-pairing requirements and can replicate damaged DNA2,11. The DNA damage response

(DDR) of a cell does not only involve DNA damage repair, but also processes for detection and

signalling of the damage11.

The response of a cell to DNA damage can have several outcomes and depends on different

factors, e.g. the cell type, cell cycle state and the type and amount of DNA damage. Generally,

a low dose of DNA damage results in the activation of pro-survival pathways, like DNA repair,

cell-cycle checkpoints and senescence. However, if the DNA damage persists or cannot be re-

paired, the balance between pro-survival and pro-death pathways shifts towards the pro-death
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1 Introduction

pathways, including apoptosis, necrosis and high levels of autophagy12.

The importance of DNA damage repair is highlighted by various diseases resulting from defects

in these repair pathways. This includes cancer, which is the second leading cause for death in the

United States13 and the European Union14 and results from mutations in the DNA. Accumula-

tion of DNA mutations are also associated with neurodegenerative diseases like Alzheimer’s and

Parkinson’s as well as ageing. In meiosis and different processes involving the immune system,

DNA damage and its subsequent repair are needed (see Section 1.1.3.1 and 1.1.3.2) and therefore

defects in DNA damage repair are also implicated in immune deficiencies and infertility11.

DNA damaging proteins are of interest for drug targets especially for the treatment of cancer.

Cancer cells often lost many of the cell-cycle checkpoints which allows an uncontrolled DNA

replication and proliferation of the cell1. However, it also makes these cells susceptible to DNA

damage since sites of damage will accumulate in these cells and eventually trigger cell death15.

Therefore, DNA damaging substances are already used to treat cancers (e.g. radiotherapy or

topoisomerase inhibitors)11.

In addition, many cancer inactivate certain genes that are involved in DDR (e.g. breast cancer

1 and 2 (BRCA1 and BRCA2) in ovarian cancer)16,17. As a result, these cells often have DNA

damage repair defects, which increases their susceptibility to DNA damaging substances. Fur-

thermore, these cells are often sensitive to agents that inhibit a second DNA repair pathway that

is used as a replacement of the inactivated repair pathway16. For instance, it was found that

BRCA deficient cells are much more susceptible to inhibition of PARP than cells with wildtype

BRCA18. Cell death resulting from the combined inhibition of two genes, while the inhibition

of each gene on its own has little effect is known as synthetic lethality19.

Detailed knowledge about DDR processes will therefore help us to understand basic cellular

mechanisms and find treatment for various diseases.

Figure 1: Different types of DNA damage introduced by endo- and exogenous factors.
The upper part of the Figure shows different DNA damaging agents and the DNA damage
these agents can generate in the DNA. Below the DNA are the different repair pathways
used to repair these DNA lesions shown. Figure modified from2.
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1 Introduction

1.1.1 Exogeneous Sources for DNA Damage

Ionizing radiation (IR) encloses different types of energetic radiation, like ultraviolet (UV) light

(A, B and C) as well as α-, β- and γ-radiation from radioactive decay and X-rays2. UV light is

one of the leading causes of skin cancer20 and IR can damage the DNA either directly (∼35%)

or indirectly by the generation of radicals, mostly from water, in proximity to the DNA21.

Exposure to IR leads to a variety of different DNA lesions, including SSBs, DSBs and pyrimidine

dimers, with the latter being a characteristic DNA damage generated upon exposure to UV

radiation21.

The DNA bases contain nucleophilic centres which react preferably with electrophiles and several

chemicals have been identified that attack these vulnerable positions in the DNA and cause a

variety of different DNA lesions21. Alkylating agents are highly abundant in the environment, e.g.

in tobacco smoke or fuel combustion products and can transfer an alkyl group on biomolecules.

While having cancerogenic effects themselves, members of this class of chemicals are also used

as chemotherapeutic drugs22.

Another example of carcinogenic environmental chemicals are polycyclic aromatic hydrocarbons

(PAH), which are present in tobacco smoke, charred food and when organic material is not com-

busted completely2. Interestingly, PAHs are not cancerogenic themselves, but their metabolic

intermediates are and these intermediates are mainly generated by the P450 monooxygenase

system in the liver21. The class of PAHs includes the very well studied and highly cancerogenic

benzo(a)pyrene21.

Naturally produced toxins produced from microorganisms and fungi can also result in DNA

damage2. The most cancerogenic natural product known to date is Aflatoxin B1 which is pro-

duced by Aspergillus flavus and Aspergillus parasiticus and especially toxic for the liver23.

The compounds listed above only represents a very small portion of the known exogeneous DNA

damaging substances.

1.1.2 Endogenous Sources for DNA Damage

DNA replication is a major factor in the generation of endogenous DNA damage. First, DNA

replication of incorrectly paired nucleotides leads to the fixation of a mutation2,24. Second, DNA

replication itself leads to misincorporated nucleotides, insertions and deletions.

Several DNA polymerases are known in human cells, and the two main DNA polymerases δ

and ε required for DNA replication have a very low error rate of 10−5 − 10−7, due to their

proof-reading activity25. Together with the MMR machinery that checks the replicated DNA

for mismatches, an error rate of 10−9−10−10 is achieved for DNA replication in human cells25,26.

For the human genome with 3 ∗ 109 bases this means that there are fewer than three mutations

per cell and cell cycle generated due to DNA replication.

Mistakes by the DNA replication machinery may stem from repetitive sequences that cause
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1 Introduction

slippage of the polymerase and lead to insertions or deletions27. Additionally, the use of NTPs

instead of dNTPs can lead to mutations28.

Topoisomerases are another class of enzymes that can lead to DNA damage. Topoisomerases

are required to relax the superhelical tension in the DNA generated during replication and tran-

scription29. During the reaction mechanism, a SSB or DSB is introduced in the DNA backbone

and a transient covalent bond between the DNA and a tyrosine residue of the topoisomerase

is formed30. In some instances, this complex stays covalently bound to the DNA, e.g. after

the encounter of aberrant DNA structures or adducts or the application of certain drugs, e.g.

camptothecin.31–33.

The DNA bases have certain chemical properties making them prone to alteration and two major

processes are base deamination and the generation of abasic sites.

Base deamination occurs most frequently on Cytosine and 5-methyl Cytosine and deamination

of a base results in a wrong base pairing24,34. 5-methyl Cytosine is often found in promotor

regions in mammalian cells35 and deamination causes GC → AT transitions2. The resulting

point mutations are a major cause of inherited diseases in humans24.

An abasic site is generated when the bond between sugar and base is cleaved, which leaves only

the sugar-phosphate backbone24. These lesions occur spontaneously or as intermediates in the

BER pathway4,34.

Reactive oxygen species (ROS) are by-products of the respiratory chain and other metabolic

processes36,37. Furthermore, ROS can be caused by radiolysis caused by the exposure to IR21.

This is the reason why DNA damage induced by ROS and IR is similar2. However, ROS are

also used by organisms e.g. as defence against pathogens38.

Several species of ROS are known e.g. superoxide anion (O.−
2 ), hydrogen peroxide (H2O2) and

the hydroxyl radical (HO.)39. The hydroxyl radical is the most reactive ROS and can be pro-

duced by Fentons reaction36,39. About 100 different DNA lesions caused by ROS are known2,

including oxidation of bases, ring opening of Guanine and Adenine and strand breaks36,40. Ad-

ditionally, ROS can also attack other biomolecules like lipids, which results in the generation of

various reactive species, like aldehydes or peroxyl radicals able to modify DNA39.

Organisms have developed several mechanism to avoid damage by ROS including spatial separa-

tion of the respiratory chain from the DNA and antioxidant enzymes, e.g. superoxide dismutase,

catalase and peroxiredoxin2,36. Elevated ROS levels are implicated in several diseases like cancer

and neurodegenerative diseases like Alzheimer’s and Parkinson’s39,41.

1.1.3 DNA Double Strand Breaks

Compared to other DNA lesions, DSBs are relatively rare events. For a replicating cell, it was

estimated that roughly 50 endogenous DSBs occur per cell and cell cycle42. The rate of DSB

generation in non replicative cells is much lower and estimated to be 0.05 DSBs per cell in diploid

fibroblasts42. DSBs belong to the most dangerous DNA lesions, despite their rare occurrance.
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1 Introduction

If left unrepaired they can lead to gross chromosomal aberrations, including translocation

and aneuploidy43. Exogenous DSB causing agents are for example IR or chemicals, including

chemotherapeutics. IR can cause a DSB by generating two SSBs located in one helical turn21.

Topoisomerase poisoning results in the trapping of a covalent topoisomerase-DNA complex and

the generation of either SSBs (administration of camptothecin) or DSBs (administration of

etoposide)44. Recently, it was also suggested that transcription is involved in the generation of

DSBs45.

Replication forks can be stalled by several factors e.g. the encounter of Thymidine dimers or

unusual secondary structures in the DNA44. DSBs can be formed in this process due to several

mechanisms, e.g. cleavage of the DNA backbone in stretches of ssDNA, or the generation

of DSBs in an attempt to restore a collapsed replication fork, using pathways that involve

endonucleases or fragile DNA structures46. An example of such a structure is the ”chicken foot”

structure that can be cleaved by nucleases, producing a one ended DSB (Figure 2)44.

Figure 2: Generation of a one sided DSB during replication by endonucleases. A replica-
tion fork stalls on a DNA lesion and regresses, which leads to the formation of a Holliday
junction. This structure is recognised by specific enzymes and subsequently cleaved which
leads to the generation of a one sided DSB. For faithful replication, steps from HR are
required to allow replication restart at a one sided DSB. Figure modified from44.

Despite the deleterious effects DSBs can have for the cell, the deliberate introduction of DSBs is

used in several cellular processes, especially during meiosis and the development of the immune

system (see below).

1.1.3.1 V(D)J Recombination

In the human body about 1011 different antibody molecules are found, which allows the organism

to react to a plethora of different exogenous and endogenous threats, like pathogens or toxins.
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1 Introduction

The antibody contains a variable region that binds to its antigen and a constant region that is

required for binding and signalling in the host organism47. The diversity of the antibody variable

region can partly be attributed to V(D)J recombination48.

V(D)J recombination takes place in B-cells for Immunoglobulin (Ig) generation and in T-cells

for T cell receptor (TCR) generation49. It is a recombination process in which the variable (V),

diversity (D) and joining (J) segments are ligated49. Recombination occurs at the recombination

signal (RS) sequences48. Recombination-activating gene-1 and -2 (Rag-1 and Rag-2) bind to two

RS sequences and introduce a DSB in each DNA strand50,51. As a result one hairpin end (coding

end) and one blunt dsDNA (signal end) end is generated per DSB51. Two blunt ends are ligated

precisely back together, while two coding segments are joined in an imprecise manner. This

requires opening of the hairpins and subsequently enzymes may delete or add nucleotides, which

increases the variability of the V region even further51. Repair of the DSBs is mediated by NHEJ

(see Section 1.2.1)48.

1.1.3.2 Immunoglobulin Class Switching

Five classes of antibodies (IgM, IgD, IgG, IgA and IgE) can be produced by B-cells, however,

naive B cells only express IgM and IgD antibodies52. The switch of an IgM producing B cell

to a B cell producing IgG, IgE or IgA is called Immunoglobulin class switching and improves

the response to different pathogens. For instance, IgG1 and IgG2 respond to viruses, while large

extracellular parasites are most effectively attacked by IgG4 and IgE52. In contrast to V(D)J

recombination, the constant region of the antibody is changed. This is achieved by deletion

of DNA between two switch regions53. For this purpose Cytosines in two switch regions are

deaminated and thereby converted to Uracil54. Enzymes of the BER or MMR pathways convert

the Uracils to DSBs which are then repaired by end joining pathways (see Section 1.2.1), thereby

deleting the DNA between both switch regions52.

1.1.3.3 Spo11-dependent Introduction of DSBs in Meiosis

Meiosis is a special type of cell division found in eukaryotic cells for the generation of cells

capable of sexual reproduction. It requires the generation of haploid cells from a diploid mother

cell and involves one round of DNA replication followed by two steps of cell division. In meiosis

I homologs of each chromosome and in meiosis II the sister chromatids are separated1.

DSBs in the DNA are generated in prophase of meiosis I55. The central protein that creates

double strand breaks is Spo11, which belongs to the family of IVA topoisomerase56–58. Like

other topoisomerases, Spo11 contains an active site tyrosine and a transesterification reaction

results in Spo11 covalently bound to the 5′ DNA end58. The DSBs are repaired by HR (see

Section 1.2.2). It should be noted that while in mitosis the sister chromatid is preferably used

as a template in HR, in meiosis the cell preferes to use the homologous chromosome thereby

creating genetic exchange between the paternal and maternal allels8,55.
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1 Introduction

1.2 DNA Repair

To circumvent the potentially deleterious effects DNA damage can have on an organism, several

pathways exist that can repair a variety of different DNA modifications.

Some base modifications can be directly reversed. For instance, the O6-alkylguanine DNA al-

kyltransferase can transfer an alkyl group from a Guanine to a Cysteine in its active site, being

inactivated itself in the process59.

Small base modifications, that do not cause significant distortion of the DNA helix, e.g. oxida-

tion, deamination or abasic sites, are removed by the BER pathway. In this pathway an abasic

site is generated by a glycosylase and is subsequently excised. The generated single nucleotide

gap is either filled with Polymerase β and ligated (short patch repair) or a longer complement-

ary stretch of DNA is synthesised in a strand displacement manner (long patch repair). The

generated flap is removed and the remaining nick in the DNA is ligated4.

For bulky DNA adducts, which distort the DNA helix, including pyrimidine dimers and

benzo(a)pyrene adducts, the NER pathway is used2,5. After initial recognition of the DNA

lesion, a long stretch of DNA including the lesion is excised, leaving a ssDNA gap behind.

The ssDNA gap is filled and subsequently ligated. NER can occur as global-genome NER or

transcription-coupled NER5.

MMR is an important pathway to decrease the error rate after DNA replication by about 100x

and in this pathway mismatched bases as well as insertion-deletion loops resulting from strand

slippage at repetitive sequences are recognised60,61. In E.coli, MutS recognises the DNA damage

and MutL is recruited once a DNA damage site has been found60. The damaged strand is incised

and subsequently removed by an exonuclease. Next, the excised DNA strand is resynthesized by

a DNA polymerase and the nick is repaired by a ligase3,26.

For the repair of ICLs, where bases from complementary strands are covalently linked, the

Fanconi anemia proteins mediate repair in a poorly understood mechanism. This pathway seems

to involve NER, TLS polymerases and HR62.

The two main pathways for the repair of DNA double strand breaks are non-homologous end-

joining (NHEJ) and homologous recombination (HR) and these two pathways will be discussed

below.

1.2.1 Non-Homologous End Joining

In the end-joining pathways, DSBs are repaired by direct ligation. This often involves pro-

cessing of the ends to remove chemical modifications or to generate microhomology. Therefore,

the end-joining pathways are more error-prone than HR. NHEJ can be divided into two path-

ways; classical NHEJ (c-NHEJ) and alternative NHEJ (alt-NHEJ, also microhomology medi-

ated end-joining (MMEJ) or θ-mediated end joining). While c-NHEJ needs no or only little

microhomology, alt-NHEJ requires 2-20 nucleotides microhomology and therefore more extens-

ive processing of the DNA ends7. Due to its high mutagenic potential, alt-NHEJ is regarded as
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1 Introduction

the backup pathway of c-NHEJ63.

Generally, NHEJ consists of three steps: Recognition of the DSB, processing by nucleases or poly-

merases and subsequent ligation (see Figure 3). In c-NHEJ, the DSB is bound by the Ku70/80

heterodimer, which is highly abundant in the cell7 and forms a tight complex with DNA64,65.

Together with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the DNA-

PK complex is formed, which serves as an interaction platform for other proteins involved in

c-NHEJ66,67. If the DSB consists of blunt ends and no processing of DNA ends is necessary,

the c-NHEJ specific DNA ligase IV in complex with X-ray repair cross-complementing protein 4

(XRCC4) can repair the DSB68. Indeed, for human proteins, the complex of Ku70/80, XRCC4

and DNA Ligase IV is sufficient to reconstitute c-NHEJ69.

However, DSBs often contain ends that are unsuitable for direct ligation, e.g. with chemical modi-

fications or overhangs. Therefore, several other proteins are involved in c-NHEJ. This includes

the nuclease Artemis, which degrades 3′ or 5′ overhangs and hairpins that are incompatible for

ligation70. In addition, resection can also result in the generation of microhomologous regions.

The two polymerases λ and µ (members of the Polymerase X family) are able to add nucleotides

in a template-dependent and template-independent manner71,72. Since Polymerase µ preferen-

tially adds nucleotides in a template-free manner, it generates microhomologous regions and

thereby helps in ligating incompatible 3′ overhangs73. Polymerase λ works in a template-based

manner and therefore is required at overhangs, where nucleotides have to be filled-in74.

Several other proteins are involved in processing the ends and making them ligatable (e.g. poly-

nucleotide kinase or Aprataxin) or stabilising the complex and promote the ligation reaction

(e.g. XRCC4-like factor (XLF) or paralogue of XRCC4 and XLF (PAXX))7.

The alt-NHEJ pathway seems to be used as a backup for the c-NHEJ pathway76. It requires

microhomology of 2-20 nucleotides7 and therefore 3′ overhangs, possibly generated by Mre11-

Rad50-Nbs1 (MRN) in complex with CtBP-interacting protein (CtIP, see Figure 3)77–80. In

addition, alt-NHEJ involves PARP1 which senses DSBs and promotes alt-NHEJ81,82. The poly-

merase θ then uses microhomologies between two 3′ overhangs to extend the DNA, using the

other strand as a template83. Finally, ligation is performed by DNA ligase I or III84. Inter-

estingly, Ku70/80 binding to DSBs inhibits alt-NHEJ, possibly by mechanisms, like competing

with PARP1 and suppressing resection85,86.

Alt-NHEJ and HR (see Section 1.2.2) seem to share the initial resection steps87, however, while

HR leads to an error-free repair of the DSB, alt-NHEJ is a mutagenic pathway that leads to

chromosomal translocations, deletions and duplications63.

The NHEJ pathway described above is found in mammalian cells, however, many bacteria are

also able to religate DSBs using NHEJ88. One study found that roughly 25% of the sequenced

prokaryotes contain one or more bacterial Ku homologues89. Additionally, bacterial ligases that

sometimes also include a polymerase and nuclease domain, have been identified. NHEJ in bac-

teria seems to be important if DSBs are introduced during the stationary phase (e.g. by IR)88.
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Figure 3: Basic steps in the repair pathways c-NHEJ and alt-NHEJ. On the left hand
site the basic steps of NHEJ are shown (orange background). Ku70/80 is one of the first
proteins that detects and protects the DSB. Clean DSBs can be ligated directly. Dirty
DSBs have to be processed first before they can be ligated. On the right hand steps of
the alt-NHEJ pathway are shown (blue background). In this pathway the MRN-CtIP
complex recognises the break and is responsible for initial short range resection and the
generation of short 3′ overhangs. This can reveal regions of microhomology. Alignment at
regions of microhomology and subsequent DNA polymerisation and ligation repairs the
break. Figure modified from7,75.

1.2.2 Homologous Recombination

HR is used in meiosis and mitosis to repair DSBs. In meiosis, HR is important for the exchange

of genetic information between both chromosomes (see Section 1.1.3.3), while in mitosis HR

enables an error-free repair of DSBs once the DNA has been replicated, which is the case in late

S and G2 phase90. The basic steps of HR are: (1) detection of the break, (2) long range resection

to generate 3′ ssDNA overhangs, (3) strand invasion of the ssDNA into the homologous duplex

DNA and formation of the synaptic complex, (4) DNA synthesis, displacement loop (D-loop)

and Holliday junction (HJ) migration (5) resolving the generated structure and ligation if nicks

were formed.

Proteins involved in HR are essential in all domains of life and can even be found in the T4

bacteriophage8.

HR is well studied in Escherichia coli, where two overlapping pathways exist for DSB repair, the

RecBCD pathway for the repair of DSBs and the RecF pathway for the repair of ssDNA gaps91.

The RecBCD pathway is responsible for more than 95% of DSB repair events in E.coli91.

RecBCD is the nuclease generating 3′ ssDNA overhangs. RecBCD possesses several enzymatic

activities including 3′-5′ DNA helicase activity and nuclease activity (RecB)92–94, recognition of
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Figure 4: Basic steps in the repair pathways HR and SSA. In HR and SSA, the double
strand break is detected by MRN, which works together with CtIP to generate the initial
3′ overhangs by short range resection. Subsequently, long-range resection over several
thousands of bases takes place and leaves long 3′ overhangs. For SSA (right hand site,
green background), stretches with more than 20 nucleotides are aligned after processing of
the DNA and ligation repairs the break. For HR (middle, grey background), RPA coates
the single stranded DNA and after homology search the homolog dsDNA stretch is
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Figure 4: invaded by the 3′ single strand. For SDSA (left hand site), the generated D-loop is disrup-
ted shortly after DNA replication, which allows annealing of the elongated single strand to
DNA of the original molecule. After DNA replication and ligation the break is repaired as
NCO products. Alternatively, a Holliday junction can be formed. This structure is either
resolved by dissolution (NCO products) or resolution (CO products). Figure modified
from7,75.

a specific DNA sequence95 (RecC), 5′-3′ DNA helicase activity (RecD)96 and ATPase activity

(RecB and RecD)97,98. RecBCD unwinds the DNA and degrades both strands rapidly until a

Chi (crossover hotspot instigator, also χ, 5′-GCTGGTGG-3′) sequence is encountered99,100,

a DNA sequence highly overrepresented in the E.coli genome101. Upon encountering a Chi

sequence RecBCD pauses and then continues degradation with a changed processivity, in which

the cleavage of the 3′ strand is reduced and the cleavage of the 5′ strand is upregulated99,102.

RecBCD also helps to coat the emerging 3′ ssDNA strand with RecA monomers,103 which

form a filament on ssDNA, called the presynaptic complex91. The RecA filament carries out

the search for the homologous sequence104. Only recently, data shed light on how the RecA

filament can locate the homologous sequence in millions of bases present in a bacterial cell.

Single molecule analysis showed that for homology search the coiled structure of the dsDNA

and the length of the RecA filament are important. Both factors enhance the probability of

finding a homologous sequence. Consequently, the intersegmental contact sampling model was

proposed, in which the RecA filament samples the dsDNA and forms weak contact with the

DNA. Stable contacts are formed with homologous DNA and subsequently other parts of the

filament will bind to this stretch of dsDNA105,106. Once the homologous sequence has been

found, the 3′ ssDNA pairs with the complementary strand of the duplex DNA (strand invasion)

and a heteroduplex is formed91, also called D-loop107.

To restore replication on an one sided DSB, the invading strand serves as a primer for DNA

synthesis which is followed by DNA replication, as well as disruption of the generated D-loop

structure107. Alternatively, the second resected strand can invade the template strand and two

Holliday junctions are formed104. Branch migration is then catalysed by RuvAB, in which

RuvA recognises the Holliday junction and RuvB is the motor protein that pushes the HJ

forward108–110. Additionally, RecG can migrate HJs and is likely involved in fork reversal to

enable replication restart at a stalled replication fork111–113. Migration of HJs or double HJs

(dHJs) results in DNA structures that require endonucleases to be resolved. This is either

achieved by RuvC, which cleaves HJs symmetrically, so that the resulting products can be

ligated directly75,114. This process is called resolution and either non crossover (NCO) or

crossover (CO) products can be produced91. The second option for resolving HJs is dissolution

which results strictly in NCO products and is catalysed by RecQ (helicase) and Topo III (type

IA topoisomerase), which passes one strand of DNA through the other91,115.

In eukaryotic cells the MRN (Mre11-Nbs1-Mrx2 (MRX) in S. cerevisiae) complex together with

CtIP (Sae2 in S. cerevisiae, Ctp1 in S.pombe) is required for the initial resection at DSBs (see
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Section 1.3 and Figure 4)116. MRN/MRX has a 3′-5′ exonuclease activity that would not pro-

duce the required 3′ overhangs117,118. However, recent data indicate, that MRN incises the 5′

DNA strand next to a DSB and resects towards the DNA end119,120. Likely, this incision creates

an entry site for the exonuclease 1 (EXO1) or the helicase-topoisomerase BLM-TopIIIα-RMI1

in complex with the nuclease DNA2121,122. Both are involved in the long-range resection of

the 5′ strand and the generation of the 3′ overhang116, equivalent to RecBCD in E.coli. EXO1

has 5′-3′ exonuclease activity123 and is also involved in MMR124. Independent of EXO1, the

DNA2-Sgs1 complex is also able to resect the 5′ DNA strand125. Additionally, this long range

resection requires the remodelling of chromatin which is executed by human SMARCAD1 (Fun30

in S.cerevisiae)126,127.

Single-stranded DNA in the cell is coated by RPA (single-stranded DNA binding protein (SSB)

in E.coli) and later replaced by the RecA homologue Rad51 which formes nucleofilaments with

ssDNA8. While E.coli only possesses one Rad51 homologue (RecA), humans have five Rad51

paralogues that assemble into two different complexes106. Rad52 in yeast mediates the replace-

ment of RPA with Rad51106,128,129. In human cells the exchange of RPA with Rad51 is catalysed

by BRCA2, which is absent in S.cerevisiae106,130. Stabilisation of the presynaptic filament is con-

veyed by Rad54131.

Protein members of the RecA family have a highly conserved catalytic domain106 and homology

search likely occurs similar to the bacterial RecA protein, however, this process is still enigmatic.

It has been found that a microhomology of only eight nucleotides is sufficient to extended the

lifetime of a Rad51-ssDNA-dsDNA complex132.

Subsequently, the D-loop has to be formed, which means the ssDNA has to replace the analog-

ous strand in the dsDNA8. Recently it was shown, that yeast Rad54 promotes the formation of

D-loops from synaptic complexes with its ATP-dependent motor activity133,134.

Once the D-loop is formed, three outcomes are possible: Synthesis-dependent strand annealing

(SDSA), dHJs and break-induced replication (BIR)44.

SDSA seems to be the preferred pathway for HR in mitosis, since it produces mainly NCO

products and thereby prevents the loss of heterozygosity (LOH)8,106,135. The severity of LOH

is highlighted by the development of tumours in hereditary retinoblastoma, which stem in an

estimated 40% of the cases from LOH by inter homologue HR136. Thus, LOH is prevented in

mitotic cells by (1) using the sister chromatid instead of the homologous chromosome at a ratio

of 100 to 1 and (2) preferring NCO products137.

For SDSA the D-loop migrates during the DNA synthesis along the sister strand that serves as

template for DNA replication106. Reconstitution of DNA synthesis of a D-loop in vitro requires

PCNA, RFC and Polymerase δ for the yeast and human system138,139. The D-loop seems to

be a highly dynamic structure8 and its disruption allows the extended 3′ DNA end to anneal

with its original DNA strand counter part106. Subsequent DNA synthesis and ligation repairs

the break106.

Alternatively, a dHJ can be formed resulting from D-loop extension and a subsequent second

annealing step mediated by Rad52 in yeast106,140. The dHJ structure is migrated in both direc-
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tions during DNA synthesis106. Ligation results in a four-way branched DNA molecule that is

resolved by two different mechanisms.8. Dissolution is catalysed by the BLM-TopIIIα-RMI 1/2

complex in humans and leads to NCO products141. Resolution can either occur symmetrically

by GEN1 or asymmetrically by MUS81-EME1 or SLX1-SLX475,142–144. Symmetric resolution

leads to CO products, while asymmetric resolution generates NCO products75.

Single-strand annealing (SSA) is a mutagenic repair pathway of DSBs and requires extensive

resection of the DNA duplex and generation of 3′ ssDNA overhangs145. In contrast to HR,

however, the resulting 3′ overhangs are annealed at homologous regions by Rad52 in an Rad51-

independent fashion7,145,146. The non-homologous 3′ ssDNA overhangs are then removed by

XPF-ERCC1 or by the MSH2-MSH3 complex, which are members of the NER and MMR re-

pair pathways, respectively7,147,148. In SSA genetic information is always lost and the extensive

resection can lead to deletions of more than 25 kb145,149. Furthermore, SSA between different

chromosomes results in translocations145. This is also a result of the mammalian chromosome

structure that includes many repetitive DNA sequences, e.g. Alu elements, providing the more

than 20 bp of homology needed for SSA7,150.

1.2.3 Regulation of NHEJ and HR

Tight regulation of NHEJ and HR are necessary during the cell cycle. HR can only take place

once DNA has been replicated, so in late S and G2 phase90.

Figure 5: Regulation of HR and NHEJ dependent on the cell cycle. CDK activity is low at
the beginning of the cell cycle which results in unphosphorylated and inactive MRN and
CtIP. Progression of the cell cycle to S-phase when replicated DNA is available, results in
CDK-dependent phosphorylation of proteins that are required for resection during HR.
Figure modified from90.

NHEJ can be active throughout the cell cycle, however, both HR and NHEJ are largely inhibited

during mitosis and only very limited DNA repair is done from late prophase onwards, even though
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sensing and signalling of DSBs in mitotic cells is similar to interphase90,151,152. Regulation of

HR and NHEJ pathways depends on cyclin-dependent kinases (CDKs) and the activity of CDKs

rises continuously from G1 to the start of mitosis90. The central point that commits DSB repair

to either HR or NHEJ is the long range resection to generate the 3′ overhangs needed for

HR153. Therefore, CDKs are involved in phosphorylating and thereby activating end resection

enzymes like EXO1154, NBS1155 or CtIP156 (see Figure 5). Additionally, BRCA1 and 53BP1

work antagonistically and either promote resection or inhibite it, respectively90. Thus, 53BP1

moves the repair pathway towards NHEJ and BRCA1 promotes DNA end resection and thereby

HR90.

As a result of cell cycle regulation, NHEJ occurs 50 times more in G1, while the ratio of NHEJ:HR

changes to 4:1 in mammalian somatic cells in S and G2 phase7.

It should be noted, however, that NHEJ and HR do not necessarily compete with each other.

One ended DSBs that arise from collapsed replication forks can not be repaired by c-NHEJ63

and do need HR to resume replication. On the other hand, clean DNA ends without any adducts

or damaged nucleotides are likely repaired by NHEJ157.
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1.3 The MRN complex

The MRN complex consists of the three proteins meiotic recombination 11 (Mre11), Radiation

sensitivity 50 (Rad50) and Nijmegen breakage syndrome 1 (Nbs1, also nibrin, X-ray sensitive 2

(Xrs2) in yeast). While Mre11 and Rad50 are widely distributed in the phylogenetic tree and can

be found in bacteria, archaea, eukaryotes and phages158, Nbs1 is only present in eukaryotes157.

The structure of the core complex is highly conserved and consists of a Mre11 dimer and a Rad50

dimer (M2R2, see Figure 6). Nbs1 is less conserved and the stoichiometry of M:R:N either 2:2:1

or 2:2:2116.

The MRN complex has a plethora of different functions. It is one of the first protein complexes

that detects a DSB in the cell and processes the DNA end to prepare it for subsequent repair

pathways like HR and alt-NHEJ116. Additionally, the complex is also involved in signalling to the

cell that a DSB occurred via the kinase ataxia telangiectasia mutated (ATM)157, which in turn

phosphorylates hundreds of proteins that are involved in cell cycle, DDR and apoptosis159,160

(see Section 1.3.5.1). In the next sections, the individual components of the complex and their

function will be described.

Figure 6: The MRN complex (A) Depiction of the different domains in EcMR (top) and hsMRN
(bottom). (B) Model for the MR core complex. Mre11 (blue), Rad50 with its long coiled
coils (orange) and the zinc hook (gree) are indicated. Figure modified from157.

1.3.1 Mre11

Mre11 was first identified in 1993 in a screen for proteins involved in meiotic recombination

in yeast161 and is the nuclease of the complex. It consists of a N-terminal nuclease domain,

followed by the capping domain, a flexible linker and the Rad50-binding helix-loop-helix (HLH)

motif162,163. In eukaryotes, the HLH motif is followed by a C-terminal domain, which is required

for DNA binding (see Figure 6 A)164. A conserved glycine-arginine-rich (GAR) motif was iden-

tified in multicellular eukaryotic organisms, which is important for DNA binding, regulation of

Mre11 nuclease activity and localisation of Mre11 to DNA damage foci165.
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Eukaryotic Mre11 has 3′-5′ exonuclease activity on dsDNA117,164 and endonuclease activity on

ssDNA166. The same basic nucleolytic activities have been observed for the MR and the MRN

complex117,118. Nuclease activity of Mre11 is strictly Mn2+ dependent117,118,164 and the exo-

nuclease of eukaryotic Mre11 is ATP independent and further stimulated by the presence of

Rad50117. Binding of Mre11 to DNA has been observed for circular (supercoiled or nicked)

dsDNA, however no nuclease activity could be observed on these substrates164. Mre11 is also

able to cleave hairpin substrates on its own, albeit with a reduced efficiency over the exonuclease

activity117.

Nbs1 has been shown to stimulate the hsMR complex to cleave a blocked DNA end endonuc-

leolytically. Simultaneously, Nbs1 restricts the 3′-5′ exonuclease activity of hsMR on a free DNA

end167. On a nicked and blocked substrate, the complex first digests the DNA from the nick to-

wards the blocked DNA end and then endonucleolytically cuts the strand opposite of the nick167.

Additionally, in yeast the MRN interacting protein Sae2 specifically stimulates the endonuclease

activity of the yeast MRX complex. This results in the preferred cleavage of the 5′ terminated

DNA strand about 10-15 nucleotides distant to the blocked DNA end122.

Enzymatic activities on a blocked DNA end are required in different biological settings. The

exonucleases Exo1 and Sgs1-Dna2, involved in 5′-3′ long range resection in HR8, cannot resect

a DNA end blocked by Ku 70/80, but need a nick in close proximity to this end121. This results

in a bidirectional resection model with EXO1 or Sgs-DNA2 resecting away from the DSB, while

MRN resects the DNA towards the DSB168. The preference of MRN to cleave a blocked DSB

on the 5′ strand possibly stems from its involvement in cleaving the meiotic topoisomerase II-

like protein Spo11 (Rec12 in fission yeast), which binds covalently to the 5′ end of DNA (see

Section 1.1.3.3)56. Indeed, Spo11 removal has been found to be dependent on MRN and Ctp1

in yeast169. Interestingly, a nuclease dead mutant of Mre11 (H134S in yeast, H85S in Pyrococcus

furiosus) mimics the ∆Mre11 phenotype in S.pombe in response to genotoxic chemicals166. On

the other hand, a mutation that does only affect the 3′-5′ exonuclease (H68S in yeast, H52S

in P. furiosus) only shows mild effects in response to genotoxic substances, indicating that the

endonuclease is required for the repair of DSBs in S.pombe166.

Structures of different Mre11 constructs have been solved from various organisms and high

structure conservation was found at the N-terminus of Mre11 from different species and domains

of life162,163,170–174. The nuclease domain resembles the catalytic domain found in calcineurin

like Ser/Thr phosphatases162. In the nuclease active site seven conserved residues coordinate two

Mn2+ ions162. The capping domain is located adjacent to the nuclease domain and might have

an influence on the DNA substrate specificity162. The HLH motif is composed of two helices

connected by a short linker and binds to the Rad50 coiled coils about six helical turns distal

to the NBD. This binding site provides the main interactions between Rad50 and Mre11163. In

the eukaryotic CtMR complex this interaction site is more extensive and consists of at least five

helices that bind to the Rad50 coiled coils175. Mre11 forms a dimer in all structures solved so

far116,162,163,170–174 and the dimer interface is formed by a four helix bundle166. Hydrophobic

residues with a high sequence identity among different species are responsible for the interactions
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Figure 7: Crystal structure of the Mre11 dimer in complex with different DNA sub-
strates. (A) Structure of the P. furiosus Mre11 nuclease and capping domain in complex
with AMP. The binding site of the nucleotide binding domain is hinted with an orange
circle. An enlargement of the active site with the two bound manganese ions is shown
(pdb: 1ii7). (B) Structure of a PfMre11 dimer in complex with DNA in the synaptic
conformation shown in front and bottom view (pdb: 3dsd). (C) Structure of a PfMre11
dimer in complex with DNA in the branched conformation shown in front and bottom
view (pdb: 3dsc). (D) Structure of a Methanococcus janaschii Mre11 dimer in complex
with DNA shown in front and bottom view (pdb: 4tug).

17



1 Introduction

between these helices166. The dimer interface is present in all structures solved so far, apart

from the human Mre11 dimer, in which a disulphide bridge between two Cysteines (C146) is

formed173. This Cysteine bridge would restrict the movement between Mre11 dimers and reduce

the flexibility that is observed in structures of yeast Mre11116. Interestingly, while the structure

of the nuclease domain is conserved among different species, the orientation between two Mre11

monomers in a dimer is not strictly conserved, resulting in different angles of Mre11 monomers

towards each other116.

One question that could not be solved so far is, how DNA is bound and processed by Mre11.

Crystal structures of PfMre11 dimers in complex with two different DNA substrates revealed

how two DNA molecules might be bridged by the Mre11 complex or how a collapsed replication

fork might be bound by Mre11. However, since the DNA did not access the active site directly,

these structures could not explain how the DNA is processed by Mre11166. Additionally, if Rad50

is present and bound to ATP, it blocks the Mre11 active site (see Figure 8) as well as the DNA

binding sites found in Mre11 (see Figure 7)166,171,176. However, ATP hydrolysis is indispensable

for the endonuclease activity of Mre11122,177 and this conundrum could not be solved so far.

Separation of function mutations have been found for Mre11 and Rad50. These mutations cause

the loss of some, but not all functions of the complex. Mouse models showed that nuclease activity

of Mre11 is required for DSB repair by HR and genomic stability following IR or replicative

stress, but not for signalling of DNA damage178. Similarly, Mre11D16A cannot process DNA and

causes MMS sensitivity and shortened telomeres, even though the DNA binding activity is still

intact164.

1.3.2 Rad50

Rad50 belongs to the family of structural maintenance of chromosomes (SMC) proteins and has

a similar structure (see below). A hallmark of SMC proteins is the N- and C-terminal nucleotide

binding domain (NBD A and NBD B, respectively) separated by long coiled coils157,179. In Rad50

these coiled coils can extend between 15 nm in the T4 bacteriophage and 50 nm in eukaryotic

Rad50 and the N- and C-terminal parts of the coiled coils are connected by a conserved zinc

hook domain116. NBD A and B interact with each other and thus the whole Rad50 monomer

folds back onto itself, generating a Zn hook on one end and a NBD on the other end, separated

by antiparallel coiled coils (see Figure 6)157. The structure of the NBD is related to ATP-

binding cassette (ABC) transporters180 and upon ATP binding, the NBD A and B of two

Rad50 monomers dimerise and sandwich two ATP molecules between them180,181 (see Figure

8).

Five highly conserved motifs are present in the Rad50 NBD, that are required for ATP binding

and hydrolysis. In the N-terminal domain the Walker A motif and the Q-loop are present.

In the C-terminal domain of Rad50, the signature motif, Walker B and the D-loop can be

found180(Figure 9).
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Figure 8: Open and closed conformations of the MR head complex in response to ATP
binding. Crystal structure of the Thermotoga maritima MR head complex in its open
nucleotide free state (pdb: 3QG5) and in its closed nucleotide bound state (pdb: 3QF7).

Rad50 is a very weak ATPase and hsMR hydrolyses ATP only with a rate of 0.05 ATP per

molecule and minute182. Similar low rates have been measured for the MR complex from other

species182,183. ATP hydrolysis of MR is stimulated by the addition of dsDNA by 10 to 20 fold,

in yeast and human, respectively. Additionally, the ATPase rate could be enhanced 2 fold by

the addition of Nbs1182. The characteristic of a low ATPase rate is shared by the SMC proteins,

that hydrolyse 0.1-2 ATP/sec per SMC dimer184. The hydrolysis rate is far slower than for

other proteins involved in DNA metabolism, e.g. about 740 ATP molecules for RecBCD per

s−1 and RecBCD molecule are hydolysed185. This might indicate that ATP hydrolysis in the

MRN complex serves as a switch rather than an energy source that allows translocation along

the DNA like helicases180. However, how ATP binding and the hydrolysis cycle is coupled to

the function of the MR complex is not known to date184. For the NBDs several separation of

function mutations have been found. These Rad50S mutations are located on the β-sheets and

have a much more severe defect in meiosis than in DNA repair (highlighted in Figure 9 A)186.

Three structures have been solved of Rad50 NBDs in complex with double stranded

DNA175,187,188. For Thermotoga maritima, dsDNA is bound to residues in the coiled coils and

the tip of the NBD, while for Methanococcus janaschii and Chaetomium thermophilum, dsDNA

is bound across the NBD175,187. These structures explain the requirement of ATP for DNA

binding, however, in these conformations the dsDNA cannot access the active site of Mre11 (see

Figure 9). The hydrolysis of ATP might lead to disengaged NBDs, which was proposed to result

in the opening of the NBDs and the subsequent accommodation of DNA in the Mre11 active

site (Figure 8)181.
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Figure 9: Structures of the Rad50 NBDs in complex with DNA. (A) Structure of the
Chaetomium thermophilum Rad50 NBDs (pdb: 5dac) in complex with nucleotides (green)
and DNA (red). Rad50S mutants are located on the β-sheets and indicated in blue. (B)
Structure of the Thermotoga maritima Rad50 NBDs (pdb: 4w9m) in complex with nuc-
leotides (green) and DNA (red). The Mre11 HLH motifs are shown in blue. (C) Structure
of the Methanococcus janaschii Rad50 NBDs (pdb: 5dny) in complex with nucleotides
(green) and DNA (red). The Mre11 dimer is shown in blue. (D) Domain organisation of
Rad50 with the important motifs involved in ATP binding and hydrolysis indicated in the
domain overview and the crystal structure of the Pyrococcus furiosus Rad50 NBDs (pdb:
1f2u). The C- and N-terminus of the right monomer is coloured in different shades of
orange. Conserved motifs in the ATPase are highlighted: Walker A motif/P-loop (blue),
Q-loop (brown), signature motif (violet), Walker B motif (green) and D-loop (red).

In the folded structure a conserved zinc hook is located opposite to the ATPase head domain.

The zinc hook is present in homologs of Rad50 in all species189. It consists of a CX1X2C mo-

tif189, with X1 being Proline (85%) or Tyrosine (10%) and X2 mostly being Leucine (80%) or

Valine190. Zinc induces dimerization in the zinc hook domain, resulting in a zinc ion that is

coordinated tetrahedrally by four Cysteines (two from each Rad50 polypeptide chain)189. X-ray

crystallography has shown that the zinc hook can exist in two different conformations189,191

(see Figure 10 A and B). The zinc hook of P. furiosus adopts a conformation in which the two
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coiled coils extend in opposite direction, allowing bridging of DNA molecules as far a 1200 Å

apart189. More recently, the structure of the human zinc hook was solved, which adopted a rod

like conformation, in which both coiled coils extend into the same direction. In this study an

additional dimerization interface and a break in the coiled coils in close proximity to the zinc

hook was discovered. This break might be required to enable structural changes that occur upon

ATP hydrolysis191.

Mutations in the zinc hook region of the protein have severe consequences for the protein func-

tion. Deletion of the zinc hook results in a ∆Rad50 like phenotype192,193. Interestingly, separation

of function mutations do not only exist for the ATPase domain of Rad50 but also for the zinc

hook domain. Disturbing the coiled coil dimerization interface close to the zinc hook or destabil-

ising residues in the zinc hook region causes a phenotype in which the ability to repair DNA

is still intact, but signalling of DNA damage is impaired191,194. Interestingly, the zinc hook do-

main can be substituted by other dimerization domains which partly restores MRN functions116.

Replacing the zinc hook with the inducible FKBP dimerization cassette, partially rescues the

phenotype, however, only if homodimerization is induced192. This indicates that dimerization

of the zinc hook is one important function of this domain.

The connecting feature between the globular ATPase head and the zinc hook are the antiparallel

coiled coils. The exact function of the coiled coils has not been determined, yet, and also the

question why the coiled coils have to be so long could not be answered. Intriguingly, the coiled coil

length is conserved between related species but differs between different domains of life116. This

might indicate that chromosome organisation in different organisms requires a certain length of

the Rad50 coiled coils. Truncation of the coiled coils has effects on several functions of the MRN

complex and leads to reduced telomere length and spore viability in yeast193. However, studies

with truncated coiled coils are difficult to perform since shortening of the coiled coils might alter

the structure and thereby the functionality of the coiled coils. The coiled coils also seem to be

involved in DNA binding and are required for efficient binding of MRN to DNA196.

The coiled coils are a highly flexible structure that can adopt a variety of different conformations

and do not only contain α-helices but also certain breaks with increased flexibility. For human

Rad50, two of such flexible regions have been described, allowing the coiled coils to adopt

a range of different conformations197 and analysis of the human MRN complex with atomic

force microscopy (AFM) revealed that the coiled coils change their conformation from an open

structure to a parallel orientation upon DNA binding (Figure 10 C)195. This highlights the high

flexibility of the coiled coils and might explain the two different conformation of the zinc hook

found in X-ray crystallography189,191.

The class of SMC proteins is composed of three different complexes in eukaryotes: Cohesin

(SMC1/3), Condensin (SMC2/4) and SMC5/6184. SMC proteins are highly conserved and are

present in all three domains of life and almost all species198. In eukaryotes, the SMC proteins are

heterodimers, while in prokaryotes homodimers are formed184. The closest relative of the SMC

proteins are members of the Rad50 superfamily and both have a similar overall architecture (see

Figure 11)179,198. Like in Rad50 their N- and C-terminus consists of an ABC ATPase domain.
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Figure 10: The zinc hook of PfRad50 and hsRad50. (A) Crystal structure of the P.furiosus
zinc hook in an open conformation that could tether two DNA molecules via intermolecu-
lar interactions between two Rad50 molecules (PDB: 1l8d). (B) Crystal structure of the
human zinc hook in a closed conformation that shows a rod like conformation of the
Rad50 coiled coils and intramolecular interactions between two Rad50 molecules (PDB:
5gox). (C) AFM images of hsMRN without (left) and with (right) DNA. Figure in C
adopted from195.

Instead of a zinc hook, the SMC proteins contain a hinge domain, which is connected to the

head by flexible coiled coils179. Interestingly, substitution of the hinge domain with the Rad50

zinc hook in Bacillus subtilis does not affect the funtion of the SMC protein199.

In complex with additional factors, SMC proteins fulfil several important functions in the cell.

Cohesin holds sister chromatids together and condensin is required for the condensation of the

chromosomes during cell division. SMC5/6 is the least well researched complex and involved in

DNA repair200.

Recently, parts of the E. coli SMC protein MukBEF coiled coil structure was solved. A flexible

elbow region in the coiled coils was identified which allows bending of the coiled coils and brings

head and hinge domain in close contact. This shows that the coiled coils do not only serve as a

linker between head and hinge/zinc hook but are also involved in the molecular function of the

proteins201. However, to date folding of the coiled coils has not been reported for Rad50.
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Figure 11: The prokaryotic and eukaryotic SMC proteins. The SMC proteins are related to
Rad50 and have a similar domain organisation. ABC ATPase domains are located at
the C- and N-terminus and in the middle of the sequence the hinge domain is located,
analogous to the Rad50 zinc hook. The hinge and the ABC ATPase domains are sep-
arated by coiled coils (top). The two halves of the sequence fold back onto themselves
in the tertiary structure (middle). In prokaryotes one homodimeric SMC protein exists
(second from left) while eukaryotic organisms contain three different SMC proteins, Co-
hesin (Smc1/3), Condensin (Smc2/4) and Smc5/6. Figure adopted from179.

1.3.3 Nbs1

Nbs1 is only present in eukaryotes and less conserved than Mre11 and Rad50190. In fission

yeast Nbs1 is denoted Xrs2. No enzymatic activity could be attributed to Nbs1 to date and

it seems to serve as a protein interaction platform and scaffolding protein. Nbs1 consists of a

N-terminal fork head associated (FHA) domain followed by two breast cancer associated 1 C

terminus (BRCT) domains202 (see Figure 12 A). FHA domains are present in several proteins

and involved in different cellular processes, like DNA repair or transcription203. These domains

recognise phosphothreonine residues and indeed, S.pombe Nbs1 has been shown to bind a phos-

phorylated Ctp1 peptide with its FHA domain (Figure 12 B)202,203. BRCT domains are found

in proteins involved in DDR and can occur as single or multicopy domain204. BRCT domains

are important interaction domains, e.g. for proteins or phosphorylated peptides204. Interaction

of the Nbs1 FHA-BRCT-BRCT domain is best studied for mediator of the DNA-damage check-

point 1 (MDC1), which binds to Nbs1 after phosphorylation of its SDT motifs205,206. The result

of this interaction is a prolonged retention time of MRN on the site of a DSB206,207.

The C-terminus of Nbs1 does not seem to harbour any known folds, however conserved motifs

involved in DSB signalling have been associated with this region of the protein116. Crystal struc-

tures of S. pombe Mre11 nuclease and capping domain together with the Mre11 binding peptide

from Nbs1 (residues 474 to 531) revealed that two Nbs1 peptides bind to one nuclease domain

each. In addition, one Nbs1 molecule engages a loop on top of Mre11. This loop in Mre11 is

specific to eukaryotes and binds to the highly conserved NFKxFxK motif. Interestingly, this
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interaction results in an asymmetric complex, despite the 2:2 stoichiometry of Mre11 and Nbs1

(Figure 12 C)170.

At the very C-terminus of Nbs1 an acidic patch, as well as a FxY/F motif are located that

are important for interaction with HEAT repeats of the ATM kinase208. The acidic patch is a

conserved motif that is also present in ATRIP (interacts with the kinase ATM- and Rad3 related

(ATR)) and Ku80 (interacts with the kinase DNA-PKcs, see Figure 13)209. Additionally, NBS1

contains nuclear localisation signals and without Nbs1, Mre11 and Rad50 do not translocate to

the nucleus210,211.

Figure 12: Structures of Nbs1 and the Mre11 dimer in complex with a Nbs1 peptide.
(A) Domain organisation of Nbs1. (B) Structure of the FHA, BRCT1 and BRCT2
domains of Nbs1 (green) in complex with a phosphorylated Ct1p peptide (rose) from S.
pombe (pdb: 3huf). (C) Mre11 dimer (blue) in complex with two Nbs1 peptide molecules
(green) S. pombe (pdb: 4fbq).
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1.3.4 CtIP

One of the most important interaction partners of MRN is CtBP1 interacting protein (CtIP,

Ctp1 in fission yeast and Sae2 in budding yeast)212 which is a largely unstructured protein with a

N-terminal coiled coil tetramerization domain213,214. Highly conserved parts in CtIP/Sae2/Ctp1

are only the oligomerisation domain at the N-terminus and two motifs at the C-terminus

(RHR/RNR in CtIP/Ctp1 and Sae2, CXXC in CtIP/Ctp1),215. Between these domains resides

an intrinsically disordered region, which facilitates interaction with several proteins215, like

Nbs1202 or BRCA1216,217.

The enzymatic functions of CtIP and its homologues are still not fully understood.

CtIP/Ctp1/Sae2 have been shown to bind DNA213,214,218,219. In addition, some studies report

a nuclease activity for CtIP218,219, however, others fail to find any nuclease activity122,177,214.

The DNA binding activity might be important to bridge DNA ends214,220. It is known that

CtIP/Ctp1/Sae2 is a cofactor for MRN/X and stimulates its nuclease activity122,221,222. In vitro

this has been described for the budding yeast MRX complex which was stimulated in the pres-

ence of Sae2 to endonucleolytically cleave a dsDNA 10-15 bp away from a streptavidin block.

This cleavage occurred preferably on the 5′ terminated strand122 and a similar behaviour could

also be observed for phosphorylated CtIP and MRN from human177.

CtIP/Ctp1/Sae2 contains several motifs for phosphorylations212. Phosphorylation by CDK on

Sae2 S267 is important for DNA resection, as is the analogue phosphorylation site T847 in

CtIP156,223. Thus, the phosphorylation by CDK allows the cell to control DNA resection and

restrict it to S and G2 phase.

1.3.5 MRN in a Cellular Context

1.3.5.1 DNA Damage Signalling

Aside from its enzymatic activities and DNA resection function, the MRN complex is also

involved in DNA damage signalling, which occurs through ATM and possibly also ATR224.

Together with ATR and DNA-PKcs, ATM belongs to the PI3K-like protein kinases (PIKK)

and all three proteins phosphorylate a plethora of substrates on Ser or Thr225. Every kinase is

activated by a different DNA structure; DNA-PKcs recognises DSBs bound by Ku226 while ATR

binds to RPA coated ssDNA227, which results from processing during repair via HR or stalled

replication forks. ATM is recruited to DSBs via Nbs1 (see Figure 13)209,228. Interestingly, the

C-terminal interaction motif for their respective kinase is shared by Nbs1, Ku80 and ATRIP209.

Activation of the kinases results in many cellular changes, like checkpoint activation and DNA

repair or apoptosis and senescence224.

ATM is a catalytic inactive dimer and upon DNA damage this homodimer transitions to its

active monomer form225. The exact mode of interaction between MRN and ATM is not known,
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Figure 13: Signalling of DNA-PK, ATR and ATM. Three main kinases are involved in DNA
damage signalling. DNA-PKcs is activated by Ku70/80 and DSBs (green), ATM is
activated by MRN and DSBs (yellow) and ATR is activated by ATRIP and single
stranded RPA-coated DNA. Activation of the kinases has an effet on several cellular
processes, like cell cycle and cell death. Figure from224.

yet. The ATM interaction site maps to the C-terminal residues of Nbs1 (see Figure 12)209, how-

ever, the corresponding region on ATM has not been found, yet.

MRN promotes ATM activation, as seen by in vitro experiments monitoring the phosphorylation

status of known ATM substrates229,230. In addition, the presence of DNA ends together with

MRN increases ATM activation even further230. Additionally, ATM activation by MRN seems

to require ATP binding to Rad50, but not ATP hydrolysis196 and Mre11 nuclease activity seems

to be dispensable for ATM activation and signalling178,196.

Interestingly, MRN does not only recruit and activate ATM in response to DSBs228,231 but

all three proteins are also amongst its phosphorylation targets232–234. ATM-dependent phos-

phorylation of MRN has different effects. For instance, Nbs1 phosphorylation is important for

induction of the S-phase checkpoint232,235 and preventing Mre11 phosphorylation leads to de-

fects in HR, possibly by limiting resection by EXO1234. In addition to MRN, ATM activation

results in the phosphorylation of more than 700 proteins on more than 900 sites159,160. This also

includes other kinases meaning that ATM-dependent signalling is not only restricted to ATM

substrates224. It should be noted, that the structure of the DSB changes in the course of its

repair. In the beginning it is a blunt ended DSB that is transformed to a 3′ ssDNA RPA coated

overhang when repaired through HR. This change also shifts signalling by ATM to signalling by

ATR, which recognises ssDNA225.
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1.3.5.2 Telomere Maintenance

The linear chromosomes of eukaryotes pose a challenge to cells, due to their similarity to DSBs

and the shortening of the chromosome that occurs in each round of replication. This shortening

of the chromosome is a side effect of the replication occuring in 5′-3′ direction and removal of

the RNA primer from the lagging strands leaves a shorter 5′ strand. To avoid any loss of ge-

netic information from the chromosome end and to protect the ends from recognition as DSBs,

telomeres are present in eukaryotic cells to protect the chromosome end43.

In vertebrates, telomeres consist of duplex DNA repeats (5′-TTAGGG-3′ in humans) of thou-

sands of base pairs and a 3′ overhang of several hundred bases which is associated with six

proteins that form the shelterin complex157. In humans and other higher eukaryotes, a t-loop

is formed, in which the single stranded DNA overhang invades the DNA duplex and base pairs

with the complementary strand, similar to the strand invasion intermediate present in HR (see

Figure 14)43. The telomeres are shortened in every cell cycle, which limits the number of rep-

lication cycles157 and thereby exhibits a tumour suppressor function43.

Dysfunctional telomeres are generated when protection of the chromosome ends is abolished, e.g.

by losing parts of the shelterin complex. Telomeres can then be recognised by DNA repair pro-

teins and consequently are processed by NHEJ or HR factors to attempt repair. For a cell this has

severe consequences, including cell cycle arrest, apoptosis and chromosomal aberrations43,236.

Figure 14: The structure of telomeres. The end structures of chromosomes are made up of
telomeres, consisting of thousands of base pair long repeats and a 3′ overhang of several
hundred base pairs. Together with the six proteins of the shelterin complex the telomere
is formed. Figure from157.

Initially, studies in yeast suggested a connection between telomeres and MRX, since the

disruption of any of the MRN complex components led to shortened telomeres237,238. Later it
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was shown, that recruitment of telomerase regulators was facilitated by telomere associated

MRX in late S-phase239. Analogous to the yeast MRX complex, Nbs1 and Mre11 were found

to localise to telomeres in human fibroblasts240 and the interaction of all three members of the

MRN complex with the shelterin protein TRF2 has been shown by immunoprecipitation241. A

crystal structure of human Telomeric repeat-binding Factors 2 (TRF2) TRF homology domain

in complex with a Nbs1 peptide (aa 419-449), indicated one interaction that might recruit

MRN to the telomeres. Interestingly, this interaction is dependent on phosphorylation of S432

of Nbs1, which is dependent on CDK2 and thus couples this interaction to the cell cycle. As a

result, Nbs1-TRF2 interaction is present in G1 and decreases in S and G2242.

Dysfunctional telomeres lead to the accumulation of DNA damage response factors in hu-

man diploid fibroblasts (e.g. γ-H2AX, 53BP1 and Nbs1)243 and the generation of telomere

dysfunction-induced loci236. Similar to DSBs, MRN is required to activate ATM at dysfunc-

tional telomeres79,178.

Cells do possess a reverse transcriptase, called telomerase, which is able to maintain telomere

length. This protein is usually inactivated in somatic cells, however, most cancers use the

telomerase to keep dividing. An alternative pathway is the Mre11-dependent and recombination-

based alternative lengthening of telomeres (ALT)157, thus MRN is implicated in the continuous

division of a subset of cancer cells.

1.3.5.3 Virus defence

Several viruses have been found to interact with DNA damage repair proteins, either to enhance

their own replication or to circumvent detection244. Recognition of viral DNA can lead to re-

pair attempts, rendering the viral DNA unusable for further viral reproduction or causing DNA

damage signalling that might result in apoptosis244.

Thus some viruses exist that contain proteins able to interact with MRN and alter its be-

haviour157. For instance, Adenovirus 5 contains oncoproteins, that are required during viral

replication to avoid the formation of concatemers245. The Adenovirus 5 proteins target MRN

for degradation and mislocalise MRN245,246. Consequently, if these viral proteins are not present

concatemer formation depending on MRN and its nuclease activity is observed245. Additionally,

a local DNA damage response is elicited by ATM in response to Adenovirus infection, which

allows host DNA replication and inhibits viral DNA replication246.

In addition to Adenoviruses, human papillomavirus 16 and Kaposi sarcoma herpesvirus also

seem to employ strategies to circumvent MRN antiviral effects157,247,248.

The inhibition of MRN and other DNA repair factors might be a reason for the tumorigenic

potential that is exhibited by some of these viruses157.
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1.3.6 Involvement of the MRN Complex in Disease

Several germline mutations in the MRN complex are known, causing different syndromes, albeit

with similar characteristics. Only hypomorphic mutations in humans were described, possibly

because a complete loss of gene function is lethal, as seen in mice116,178 and all disorders are

autosomal recessiv249.

Mutations in Mre11 cause ataxia-telangiectasia-like disease (ATLD), which is similar to the phen-

otype seen in patients with ataxia-telangiectasia (AT) caused by mutations in ATM. Nijmegen

breakage syndrome (NBS) is caused by mutations in NBS1, while NBS-like disorder (NBSLD)

patients carry mutations in Rad50. A hallmark of all syndromes is the increased genome instabil-

ity, which causes a cancer predisposition in NBS and AT patients. Since only very few cases of

ATLD and NBSLD have been reported, a predisposition for cancer can neither be excluded nor

included190.

Additionally, patients with ATLD and AT exhibit neurodegeneration, cerebellar ataxia and im-

munodeficiency116,249. Patients with NBS and NBSLD show microcephaly, mental retardation

and in the case of NBS also immunodeficiency116,249. However, it was also reported that muta-

tions in Mre11 can cause a NBSLD phenotype249. The clinical presentation varies with the type

of mutation any of the three proteins carry. For instance, about 30 cases of ATLD are repor-

ted in the literature but only two presented with early onset of malignancies250,251. This shows

that MRN is a highly intricate complex and that the functions of Mre11, Rad50 and Nbs1 are

intertwined and cannot be separated from each other.

Data from structural studies and patient screens can be used to understand the effect of muta-

tions in these complexes. N117S in human Mre11 (N122 in S.pombe), interacts with a con-

served phenylalanine of the NFKxFxK motif and causes ATLD3 and 4116,252. Several other

mutations can be mapped to the interaction sites between Mre11 and Nbs1. This includes the

Mre11W210C mutation (causing ATLD7/8)253 , Mre11W243R (ATLD 17/18)254 and Mre11D113G

(NBSLD)249 116. These mutations do not only affect complex stability and function but can also

have an effect on the protein levels of Rad50 or Nbs1250,255. Furthermore, some of the known

mutations lead to decreased Mre11 protein levels due to degradation e.g. nonsense-mediated

mRNA decay251 or alternative splicing events250.

Premature degradation of Rad50 was observed in a patient with two different mutations in

Rad50, reducing protein levels to only 5% compared to wild type cells256.

For NBS patients, slightly more cases (over 150) have been reported in the literature. The most

prominent mutation found in NBS patients is the 657del5 mutation, which leads to a premature

stop codon. Due to the reinitiation of translation at an other start codon, two protein fragments

of NBS1 are generated with amino acids 1-221 and 218-745257,258.

DDR proteins are often mutated in cancers and mutations in MRN have been found in more than

50 cancers157 however, less than 1% of cancer patients carry MRN gene variations259. Several

studies have connected alterations in all three components of MRN to different types of cancer

including breast cancer260, acute myeloid leukemia (Rad50)261 and prostate cancer (Nbs1)262.
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MRN is also an interesting target in cancer therapy. Targeting Rad50 in different cells leads to

an increased sensitivity for other DNA damaging substances259. Furthermore, administration

of the Mre11 exonuclease inhibitor mirin sensitizes different cancer cell lines to genotoxic sub-

stances, e.g. glioblastoma cells to alkylating agents263. This indicates, that MRN might not only

be involved in the formation and progression of cancer but also serves as a promising cancer

target.
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1.4 The Bacterial MR Complex

In prokaryotes and archaea the MRN complex consists only of the Mre11 dimer and the Rad50

dimer157. Despite little sequence conservation, the structure of the Mre11 N-terminus, and the

general complex assembly is quite conserved amongst species116. However, in contrast to the

eukaryotic complex, E. coli cells do not require MR to be viable264. In E. coli the homologs of

Mre11 and Rad50 are called SbcD and SbcC, respectively. For clarity reasons, the E.coli complex

will be named EcMR throughout the text.

EcMR has similar enzymatic activities to eukaryotic MRN. 3′-5′ exonuclease activity on dsDNA

ends and endonuclease activity on closed ssDNA was observed for EcMR 265,266. In contrast

to the eukaryotic complex, the EcMR dsDNA exonuclease activity is ATP-dependent. Cleavage

of ssDNA only requires Mre11 and is ATP and Rad50 independent265. EcMR is also able to

cleave hairpins, preferably at the 5′ end of the bubble near the transition site from loop to

double-strand266,267. This cleavage is dependent on the binding of ATP but not its hydrolysis.

The resulting products carry a 5′ phosphate group and a 3′ OH group267. Interestingly, one

study found that EcMR cleaves hairpins, dsDNA and also cruciforms in a plasmid in steps of

∼10 bp268.

Similar to the eukaryotic MRN complex, EcMR was shown to incise blocked DNA ends with

20-28 nucleotides distance to the block269. Cleavage of a blocked DNA end is a relevant in vivo

activity and helps to clear abortive topoisomerases and one study reported elevated gyrase-DNA

levels in E.coli cells lacking the MR complex (see Figure 15)264.

DSB repair in E.coli relies mainly on the RecBCD pathway and to a lesser extend on the RecFOR

pathway (see Section 1.2.2). However, one study found, that E.coli cells are less viable when

EcMR is deleted in a strain in which DSBs are introduced by a DNA-methylation dependent

endonuclease, which might point to a role in DSB repair depending on the type of DSB270. It

should be noted, that the role of MR possibly differs in different bacterial cells. For instance,

in Bacillus subtilis, MR deficient cells show slightly increased MMC sensitivity and271 and in

Deinococcus radiodurans deletion of MR causes increased susceptibility to γ-radiation272.

In E.coli, Rad50 seems to localise to replication forks, while Mre11 was distributed throughout

the cell273. EcMR is partly regulated by RpoS, a factor that responds to different types of

cellular stress, e.g. starvation, high/low pH or DNA damage274. EcMR expression increases RpoS

dependent during the post exponential phase in rich medium or was constitutively upregulated

during growth on minimal medium273.

What is the function of EcMR if it is not required for the viability of cells? Several studies find

a connection between genetic stability and EcMR. Early experiments indicated that Rad50 is

involved in the processing of palindromic DNA structures and interferes with the replication of a

palindrome containing Phage λ 275. Later it was shown, that EcMR activity on a palindrome is

replication dependent and that a two-ended DSB is created after the replication fork passed. The

repair of this DSB requires proteins from the RecBCD pathway, the replication restart protein

PriA and the Holliday junction processing enzymes RuvABC and RecG276. Palindromes and
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Figure 15: Main enzymatic activities of EcMR. The four main nucleolytic activities of EcMR
include ssDNA endonuclease activity, 3′-5′ exonuclease activity, hairpin opening activity
and dsDNA endonuclease activity on blocked DNA ends.

interrupted palindromes (also spaced inverted repeats) in DNA are places of increased genomic

instability and their ability to form hairpin and cruciform structures can result in the alteration

in DNA sequence e.g. deletions277. EcMR seems to play an important role in maintaining the

genome integrity, since inverted chromosomal duplications were found in EcMR RecA mutant

strains of E.coli278.

Similar to palindromes, triplet repeats are a cause of DNA instability and different human

diseases279. Triplet repeats are able to form pseudo-hairpins and EcMR is able to cleave the

pseudo-hairpin in a similar fashion as a regular hairpin on the loop/duplex-DNA transition

region. The ability to cleave these pseudo-hairpins prevents E.coli from amplification of triplet

repeats and thus a higher degree of DNA instability266. This has also been shown on a cellular

level, where deletion of EcMR was necessary to generate triplet repeat expansion280. Similarly,

propagation of a plasmid with (TGG)24 present on the leading strand is severely impaired,

however, deletion of EcMR restores propagation in E.coli281.

Additionally, EcMR might be involved in the final steps of DNA replication. To complete DNA

replication in bacteria, the two generated DNA strands have to be merged at the ter region. This

process seems to dependend on EcMR and ExoI. Mutations of EcMR and ExoI gives viable

cells, however, close inspections of the ter region shows DNA amplifications. Joining of the DNA

ends is also dependent on RecA and RecBCD and EcMR is possibly required to cleave an over

replicated intermediate282.

Analysis of EcMR with scanning force microscopy (SFM) indicated a mainly heterotetrameric

form (M2R2, 73%) in which the coiled coil apexes present the main interaction interface283.

Heterodimers have been observed to a lesser extend (21%) as well as multimers (4%). The

overall contour length from apex to head domain was 39 nm, albeit heterogeneity in the length

distribution was observed in EcMR (24-57 nm). The conformations found for EcMR and also the

archaeal MR complex were quite different from the conformations observed for the eukaryotic
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complexes of human and yeast protein (heterotetramers mainly joined at the heads with or

without zinc hook engagement and a higher amount of multimers). However, it should be noted,

that no ATP or ATPγS was used in this study283. Since ATP leads to the engagement of the

head complex181 this might be the reason for the observed dimeric head structures of EcMR.

The only structural information available on EcMR before this thesis came from a crystal

structure of the Mre11 dimer with the residues 1-340 (nuclease and capping domain)174. This

crystal structure shows that the active site is very similar to the structures of PfMre11 and

TmMre11. Differences between the structures could be found in other parts e.g. the angle between

the two nuclease domains. However, since Rad50 is not present in these structures the differences

might be attributed to the missing ATPase. The mutation of any of the active site residues (D8,

H10, D48, N83, H84, H184, H222, H224) results in a nuclease dead protein. Like the eukaryotic

Mre11, the nuclease is clearly dependent on Mn2+ ions, since only the addition of manganese

results in DNA degradation by Mre11174.
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1.5 Objectives

The MR(N) complex is a key player in HR in eukaryotes and the MR core complex is conserved

across all domains of life. MR(N) has been studied extensively over the last decades from differ-

ent organisms, however, several questions remain unanswered. The crystal structures solved so

far cannot explain how the DNA accesses the Mre11 nuclease active site. In addition, the coiled

coils were always shortened for X-ray crystallography despite being vital for the complex func-

tion. Many studies used thermophilic organisms for biochemical and structural studies. Proteins

from these organisms often require higher temperatures to function properly, however, at these

temperatures the increased autohydrolysis rate of ATP and melting of dsDNA pose problems

for biochemical analyses.

Thus, the aim of this work was to elucidate the mechanism that underlies the DNA binding

and processing properties of the MR complex by structural and biochemical means. The EcMR

complex is used as a model protein and has the advantage of being a simpler system than the

MRN complex from eukaryotic organisms, since it has no additional post-translational modific-

ations or cofactors. In addition, it comes from a mesophilic organism, which allows thorough

biochemical characterisation. Furthermore, the full-length complex can be purified in sufficient

amounts from E. coli cells.

In the first part of this thesis, biochemical assays were used to characterise EcMR. Mainly,

nuclease and ATPase activity as well as DNA binding were analysed. DNA substrates of different

length and composition (e.g. AT- and GC-rich DNA) elucidated the DNA binding and cleavage

properties of EcMR.

The main goal of this work was solving the structure of the full-length EcMR:DNA complex

with cryo-electron microscopy (cryo-EM). Cryo-EM allows the use of full-length proteins and

the presence of flexible domains in the protein structure. In order to elucidate if the full-length

coiled coil domain has an effect on the head domain, EcMR in complex with ATPγS was solved.

Additionally, this DNA-free structure served as a good reference to understand DNA induced

structural changes.

In a second step, the cryo-EM structure of full-length EcMR in complex with a 60bp dsDNA

and ADP was solved. Biochemical assays were used to validate the solved structures and support

the proposed model.
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2.1 The bacterial Mre11–Rad50 homolog SbcCD cleaves opposing

strands of DNA by two chemically distinct nuclease reactions

Jan-Hinnerk Saathoff, Lisa Käshammer, Katja Lammens, Robert Thomas Byrne, Karl-Peter

Hopfner, The bacterial Mre11–Rad50 homolog SbcCD cleaves opposing strands of DNA by

two chemically distinct nuclease reactions, Nucleic Acids Research, Volume 46, Issue 21, 30

November 2018, Pages 11303-11314, https://doi.org/10.1093/nar/gky878

Summary

In this publication the biochemical properties of EcMR are characterised. We found, that DNA

binding and DNA-dependent ATPase stimulation was dependent on the length of the dsDNA

substrate. Furthermore, ATPase stimulation was DNA topology dependent and maximal

EcMR ATPase stimulation was observed with linear DNA, while supercoiled DNA showed

the lowest stimulation. In accordance with previously published data on EcMR, we observed

exonuclease activity on free and endonuclease activity on protein blocked DNA ends. The

endonucleolytic incision was located 20-25 bp away from the protein block and was sensitive

to the stability of the DNA duplex, since AT/GC-content and the presence of a DNA bubble

influenced the endonuclease activity. The Mre11 dimer interface was investigated using the

destabilising V68D mutant and the MV 68DR complex incised the DNA endonucleolytically only

in the presence of a DNA bubble. To investigate the chemistry of the cleavage reaction, DNA

products of the EcMR cleavage reaction were treated with either phosphatase or kinase. Two

different cleavage chemistries were observed and 5′ clipping and 3′ endonuclease activity were

chemically similar as well as 3′ exonuclease and 5′ endonuclease. As a result, a DNA strand

that was exonucleolytically cleaved contains 3′ and 5′ OH groups, while a DNA strand after

endonucleolytic incision contains 3′ and 5′ phosphate groups.

Taken together, we propose a mechanism in which the DNA is melted by EcMR in the course of

the cleavage process. In our model, the differences in cleavage chemistry between the exonuclease

and the endonuclease reaction could be explained by opposite positioning of EcMR on the DNA.
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Author Contribution

I performed biochemical assays, especially nuclease assays and DNA binding assays together with

Jan-Hinnerk Saathoff to analyse the biochemical properties of EcMR. I was involved in analysing

and discussing the results together with Jan-Hinnerk Saathoff and Karl-Peter Hopfner.
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ABSTRACT

The Mre11–Rad50 complex is a DNA double-strand
break sensor that cleaves blocked DNA ends and
hairpins by an ATP-dependent endo/exonuclease ac-
tivity for subsequent repair. For that, Mre11–Rad50
complexes, including the Escherichia coli homolog
SbcCD, can endonucleolytically cleave one or both
strands near a protein block and process free DNA
ends via a 3′-5′ exonuclease, but a unified basis for
these distinct activities is lacking. Here we analyzed
DNA binding, ATPase and nuclease reactions on dif-
ferent DNA substrates. SbcCD clips terminal bases
of both strands of the DNA end in the presence
of ATP�S. It introduces a DNA double-strand break
around 20–25 bp from a blocked end after multiple
rounds of ATP hydrolysis in a reaction that correlates
with local DNA meltability. Interestingly, we find that
nuclease reactions on opposing strands are chemi-
cally distinct, leaving a 5′ phosphate on one strand,
but a 3′ phosphate on the other strand. Collectively,
our results identify an unexpected chemical variabil-
ity of the nuclease, indicating that the complex is
oriented at a free DNA end and facing a block with
opposite polarity. This suggests a unified model for
ATP-dependent endo- and exonuclease reactions at
internal DNA near a block and at free DNA ends.

INTRODUCTION

The maintenance and accurate replication of genomes are
fundamental processes in all kingdoms of life. Genome in-
tegrity is challenged by DNA damage caused by a large va-
riety of physical, chemical and biochemical activities. DNA
damage and complications in DNA replication can cause

genomic alterations ranging from point mutations to gross
chromosomal aberrations and aneupleuidy, which in hu-
mans is associated with the development of cancer and
other diseases. In all phylogenetic kingdoms the propaga-
tion and maintenance of the genome critically depends on
various pathways that detect, signal and repair DNA dam-
age and deal with replicative stress (1).

The nuclease Mre11 and the ATPase Rad50 form an
evolutionary highly conserved complex, which is involved
in genome maintenance and replication by detecting and
processing DNA double-strand breaks, hairpins and other
abnormal terminal DNA structures (2). The bacterial ho-
mologs are known as SbcC (ATPase) and SbcD (nuclease)
and form the SbcCD complex (3). The eukaryotic com-
plexes contain a third subunit, Nbs1 in mammals and Xrs2
in yeast, and are denoted MRN or MRX (2). MRN/X and
SbcCD detect DNA end structures and can process blocked
or obstructed DNA ends and hairpins to make them ac-
cessible for DSB repair (4–8). The main DSB repair path-
ways following DNA end processing by MRN/X are vari-
ous end joining reactions and homologous recombination
(HR) (9,10).

MRN has a variety of biochemical activities. It displays
3′-5′ dsDNA exonuclease and ssDNA endonuclease activ-
ities, and opens hairpins in the presence of ATP (4,11–
13). However, the physiologically most critical activity ap-
pears to be an ATP hydrolysis-dependent 5′ endonuclease
activity at a 15–25 bp distance from blocked DNA ends,
followed by limited 3′-5′ resection towards the DNA end
(14–18). The endonucleolytic incision is essential to remove
covalent DNA–protein crosslinks (DPCs), such as those
formed by abortive topoisomerases in cycling cells or by the
topoisomerase-like Spo11 during meiosis (8,19). MRN/X is
also capable of removing the DSB binding factor Ku from
DNA ends prior to HR (20–23). The mechanism of sensing
of blocked ends by MRN/X or SbcCD is unclear, but recent
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studies show that MRN can bind internal sites of DNA and
slide towards blocked DNA ends (24).

Like MRN/X, SbcCD has 3′-5′ exonuclease activity, cuts
the DNA near protein-bound DNA ends and cleaves hair-
pin structures 5′ of the loop (7,25). In vivo studies revealed
that SbcCD cleaves covalently bound topoisomerases from
DNA and removes specific DNA-secondary structures, in-
cluding hairpins and cruciform structures (3,26,27). This
role is conserved in budding yeast, where the Mre11 nu-
clease activity is essential to open hairpin structures and
prevent the formation of palindromic duplications (6,28).
More recent studies showed that SbcCD is critical in en-
abling proper replication termination by processing DNA
bridges between the duplicated chromosomes that arise af-
ter the two convergent replication forks have passed each
other (29).

Whereas the uncapping of hairpins and de-blocking of
protein-bound DNA ends appears to be an evolutionarily
conserved biochemical activity, pro- and eukaryotic com-
plexes also show some differences. MRN/X is much more
regulated through Nbs1/Xrs2 and requires the additional
factor CtIP/Sae2/Ctp1 for end resection (30,31). In con-
trast, SbcCD possesses intrinsic, robust endonuclease ac-
tivity by itself and can shorten the DNA ends further
through an ATP-dependent binary endonuclease activity
that cleaves both DNA strands, introducing serial DNA
double-strand breaks in ∼10 bp intervals (32). This endonu-
cleolytic cleavage of both strands has been recently reported
for MRN, suggesting that even the complete clipping of
blocked DNA termini is an evolutionarily conserved, inher-
ent activity of the complexes (33).

Mre11/SbcD forms a dimer via two protein phosphatase
2 family phosphodiesterase/nuclease domains (34), and
additionally contains a DNA-binding ‘capping’ domain
(35,36), a linker, and a Rad50 binding domain (RBD) (37).
SbcC/Rad50 contains an ATP-binding cassette (ABC) type
nucleotide binding domain (NBD) with a 15–50 nm long
antiparallel coiled-coil insertion that is capped by a zinc-
hook dimerization motif (38). Two Mre11 and two Rad50
monomers assemble with a globular DNA binding and pro-
cessing head module, containing the Mre11 dimer and two
Rad50 NBDs, and a rod or ring-like protrusion that is
formed by the two coiled-coils (34,39,40). Structural studies
revealed that the ATP-dependent dimerization of the Rad50
NBD is coupled to the binding of ∼20 bp of DNA (41,42).
However, previous studies have failed to provide a mecha-
nism for how MRN/SbcCD detects DNA ends, let alone
how it processes them in an ATP-dependent manner. In the
crystal structure of the ATP bound and ATP/DNA bound
conformations of Rad50, Mre11’s DNA binding cleft and
nuclease active site are blocked by the Rad50 dimer, al-
though ATP is required for nuclease activities of the com-
plex (42–44).

Here, we further investigate the ATP-dependent nucle-
ase activities of the SbcCD complex. We characterize the
influence of topology and length of DNA on stimulating
SbcCD’s ATPase, showing that relaxed DNA more effi-
ciently triggers ATP turnover than supercoiled DNA. The
presence of DNA ends primarily increases affinity, whereby
SbcCD binds ∼25–30 bp. Whereas exonuclease activity re-
quires ATP binding but not hydrolysis, endonuclease activ-

ity is robustly stimulated by blocked ends, ATP hydrolysis
and an increased AT-content. Together with quantitative es-
timation of ATP turnover per cleavage and the requirement
of SbcD dimer formation and dynamics, the data suggest a
model in which repeated ATP hydrolysis by SbcCD near a
blocked end generates a melted DNA amenable for cleav-
age. Most importantly, we find that DNA cleavage on op-
posing 3′ and 5′ strands, both at the DNA end and at in-
ternal sites, are chemically distinct and the phosphodiester
is hydrolysed either at the 3’ or at the 5’ side. The chemical
signature suggests a different binding polarity of SbcCD at
a DNA end compared to facing a protein block and helps
sterically unify endo- and exonuclease reactions.

MATERIALS AND METHODS

Cloning, protein expression and purification of SbcCD

The genes encoding SbcD and SbcC were cloned into the
plasmids pET21b and pET28 (with a modified multiple
cloning site), respectively. The gene encoding SbcD was
cloned such that the recombinant protein had a C-terminal
hexahistidine tag.

Recombinant SbcCD was produced by co-transforming
SbcC and SbcD plasmids into Escherichia coli BL-21 (DE3)
cells. A single colony was picked and grown in LB media to
an OD600 of 0.6 at 37◦C under aerobic conditions. Recom-
binant protein expression was induced by addition of 0.5
mM IPTG and the cultures were grown overnight at 18◦C.
Cells were harvested by centrifugation, resuspended in ly-
sis buffer (25 mM Tris pH 7.5, 150 mM NaCl, 10 mM Im-
idazole and 5 mM �-mercaptoethanol) and disrupted by
sonication. The lysate was cleared by centrifugation and
applied onto Ni-NTA resin (Qiagen), followed by 2 wash
steps with Lysis buffer and subsequent elution (25 mM Tris
pH 7.5, 100 mM NaCl, 200 mM Imidazole and 5 mM �-
Mercaptoethanol). The elution fractions were applied onto
a 1 ml Q HiTrap column (GE Healthcare) and eluted with
a linear gradient from 0–100% Buffer A (25 mM Tris pH
7.5, 100 mM NaCl) and Buffer B (25 mM Tris pH 7.5, 1000
mM NaCl). SbcCD eluted as one peak at 30% Buffer B and
the peak fractions were pooled, concentrated and further
purified by size-exclusion chromatography using a Super-
ose 6 10/30 GL column (GE Healthcare) equilibrated with
Buffer C (50 mM Tris pH 7.5, 150 mM NaCl, 10% glycerol).
SbcCD eluted as a single peak and the fractions of interest
were pooled, concentrated and flash frozen in 10 �l aliquots.

DNA substrates

For ATPase activation, �X174 RFI, RFII or Virion DNA
(New England BioLabs®) was used. Linear plasmid DNA
was produced by treating �X174 RFI with PsiI (New Eng-
land BioLabs®) followed by heat inactivation.

All oligonucleotides were purchased from Metabion
(Planegg, Germany) and purified via polyacrylamid gels.
RB22 (CGGGTAGTAGATGAGCGCAGGGACACCG
AGGTCAAGTACATTACCCTCTCATAGGAGGTG)
and RB27 (CACCTCCTATGAGAGGGTAATGTACT
TGACCTCGGTGTCCCTGCGCTCATCTACTACC
CG) were annealed in annealing buffer (50 mM NaCl, 25
mM Tris pH 7.5, 10 mM MgCl2) with a molar excess of 1.1
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of unlabeled oligo over the labeled oligo. Oligonucleotides
for ATPase and DNA binding assays had a different
sequence and were annealed in a 1:1 molar ratio. HS 21
(CGCTTTATCAGAAGCCAGACATTAACGCTTCT
GGAGAAACTCAACGAGCTGGACGCGGAT) was
annealed to the complement HS37 (ATCCGCGTCCAG
CTCGTTGAGTTTCTCCAGAAGCGTTAATGTCT
GGCTTCTGATAAAGCG). If shorter double-stranded
DNA was used, the HS21 sequence was trimmed on the 3′
end and annealed to the oligonucleotide with the respective
complement sequence. For the fluoresecence anisotropy
binding experiments, the dsDNA was 6-FAM labeled on
the 5′ terminus.

Nuclease assay

Nuclease assays were carried out in assay buffer (25 mM
Tris pH 7.5, 50 mM KCl, 5 mM MgCl2, 1 mM MnCl2,
0.1 mg/ml BSA, 1 mM DTT) with 1000 nM SbcCD (het-
erotetramer) and 200 nM of DNA substrate. Where indi-
cated, reactions were supplemented with a 15-fold excess of
a single-chain variable fragment against fluorescein (FAM-
scFv) (45) or Streptavidin (IBA) over DNA concentration.
Unless specified otherwise, reactions were started by DNA
addition. Reactions containing DNA with free ends were
incubated at 37◦C for 15 min, reactions containing end-
blocked DNA were incubated for 5 min. Reactions were
terminated by mixing 10 �l of the reaction with an equal
volume of 2× loading buffer (8 M urea, 20 mM EDTA, 6%
Ficoll® 400).

For kinase and phosphatase treatment, the nuclease re-
actions were terminated by heating to 80◦C for 15 min.
10 �l of the nuclease reaction were treated with either
T4 Polynucleotide Kinase or Antarctic Phosphatase (New
England BioLabs®) in the enzyme-specific 1× reaction
buffer in a final volume of 20 �l. The reactions were ter-
minated by adding equal volume of 2× loading buffer.
To generate short cleavage products, the 60 bp substrate
was treated with ExoIII, DnaseI (both New England Bio-
Labs®) and Benzonase® (Merck Millipore) according to
manufacturer’s specifications.

Reaction products were resolved on 12% denaturing
polyacrylamide gels (Rotiphorese® DNA sequencing sys-
tem) in 1× TBE buffer. Gels were run for 90 min at a con-
stant power of 32 W and scanned by a Typhoon fluores-
cence imager (GE healthcare). 6-FAM-labeled substrates
were imaged with a 473 nm laser and 510 nm filter. The im-
ages were analyzed and integrated with the ImageJ software.

ATP Hydrolysis assays to measure steady-state kinetics

To monitor the hydrolysis rate of ATP, the hydrolysis of
ATP was coupled to oxidation of NADH, which can be
monitored spectrophotometrically. The reaction buffer con-
tained NADH (0.35 mM), pyruvate kinase/lactate dehydro-
genase (20 U/ml PK, 30 U/ml LDH), phosphoenol pyru-
vate (2 mM) and ATP (1 mM). The assays were conducted
at 37◦C in assay buffer (25 mM Tris pH 7.5, 50 mM KCl,
5 mM MgCl2, 1 mM MnCl2, 1 mM ATP, 0.1 mg/ml BSA,
1 mM DTT) and the reaction was started by the addition
of SbcCD. The rate of NADH decay/oxidation was moni-
tored fluorometrically by measuring the absorbance at 340

nm on an Infinite M1000 microplate reader (Tecan) at 37◦C
over a period of 20 min. (46). Estimates of kinetic data (kcat,
KM, Kact) were determined by fitting reaction data to the
Michaelis-Menten equation with Prism (GraphPad).

Fluorescence anisotropy DNA binding assays

SbcCD dilutions were prepared in assay buffer (25 mM
Tris pH 7.5, 50 mM KCl, 5 mM MgCl2, 1 mM MnCl2, 1
mM DTT) and mixed with the DNA substrate (5 nM fi-
nal assay concentration, in assay buffer) in a 1:1 (v/v) ra-
tio. After incubation for 20 min at 25◦C, the fluorescence
anisotropy was measured at an excitation wavelength of 470
nM and emission wavelength of 520 nM. Data were an-
alyzed with Prism (GraphPad) and KD values determined
by fitting the anisotropy data to a bimolecular equilibrium
model: Y = Af − (Af − Ab) x

Kd − x

RESULTS

DNA ends and DNA topology differentially stimulate
SbcCD’s ATPase

Human and yeast MRN/X have ATPase rates <0.1
ATP/min, which is stimulated 20-fold for human MRN and
10-fold for yeast MRX by linear double-stranded DNA (ds-
DNA) (47,48). In the absence of DNA, we obtained a simi-
larly low ATPase activity with a kcat of 0.008 s−1 for SbcCD.
60 base pair (bp) dsDNA stimulated the ATPase hydroly-
sis 26-fold, while single-stranded DNA (ssDNA) had no ef-
fect. SbcCD has a KM for ATP hydrolysis of 46 ± 6 �M
in the presence of dsDNA (Supplementary Figure S1A), in
the same range as human MR(N) and phage T4 gp46/47
(48,49). Altogether, SbcCD displays similar basal ATPase
characteristics as its orthologs in other domains of life.

To test to the role of DNA topology on ATP hydroly-
sis we measured the stimulatory effect of a 5.4 kb plasmid
in (i) supercoiled (ii) relaxed (iii) linearized and (iv) single-
stranded state. SbcCD and ATP were kept at constant con-
centrations and the DNA was added in increasing amounts.
Circular single-stranded DNA did not stimulate ATP hy-
drolysis of SbcCD. The supercoiled plasmid activated the
ATPase up to 9-fold (kcat = 0.072 ± 0.006 s−1), whereas the
nicked plasmid activated the ATPase 26-fold (kcat = 0.21 ±
0.02 s−1). The increased activation of relaxed DNA is clearly
direct and not attributable to higher affinity binding, since
the Kact (concentration at half maximal activation) is 2-fold
lower for the supercoiled plasmid than for the nicked plas-
mid. It should be noted that even though nicked and su-
percoiled DNA can stimulate SbcCDs ATPase activity, we
did not observe any DNA cleavage activity. In contrast, lin-
earized plasmid DNA is readily degraded (Figure 1A, Sup-
plementary Figure S2). Comparing the ATPase stimulation
of a 60 bp dsDNA and a linearized plasmid revealed that 60
bp dsDNA is able to stimulate the ATPase activity stronger
than the linearized Plasmid at the same molarity (Supple-
mentary Figure S3).

Linearizing the plasmid with PsiI, which generates blunt
ends, stimulated kcat of ATP hydrolysis (0.200 ± 0.007 s−1)
similar to a nicked plasmid, however Kact is lowered 4-
fold, showing an increased affinity at lower DNA concen-
trations. One DNA break/hairpin in an E. coli cell would

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/46/21/11303/5114261 by guest on 10 January 2020

2 Publications

39



11306 Nucleic Acids Research, 2018, Vol. 46, No. 21

Figure 1. ATP hydrolysis stimulation and DNA binding of the SbcCDwt

complex. (A) The ATP hydrolysis rate of SbcCDwt was measured in depen-
dence to increasing plasmid DNA concentrations. Bacteriophage �X174
Plasmid DNA (5386 bp in length) was added as single-stranded, super-
coiled, nicked or linear DNA. The data were fit to a Michaelis–Menten
equation, error bars indicate the deviation from three replicates. (B) DNA
stimulation of ATP hydrolysis by the nuclease-deficient SbcCDH84Q com-
plex. The steady-state ATPase rates were measured at 37◦C in the presence
of 1 mM ATP, 5 mM MgCl2 and 1 mM MnCl2. DNA with 20–60 bp in
length was added as an activator. The data was fit to a Michaelis-Menten
equation, error bars represent the standard deviation of three measure-
ments. (C) DNA binding of SbcCDH84Q to 20–50 bp DNA was assayed in
the presence of 1 mM ATP, 5 mM MgCl2 and 1 mM MnCl2. DNA con-
centration was kept at 5 nM; the SbcCDH84Q concentration ranged from 2
to 1000 nM. Data points represent the change in fluorescence anisotropy
and the data were fit to a 1 to 1 binding equation. Error bars represent the
deviation from three independent experiments.

correspond to an approximately nanomolar concentration
of DNA breaks, not taking into account molecular crowd-
ing effects (50). At this concentration, the ATPase was acti-
vated 7-fold by linear DNA, but only 2-fold by nicked DNA
(Figure 1A, Supplementary Table S1C).

Our data show that both topological features of the DNA
and the presence of DNA ends affect the ATPase rate of
SbcCD. kcat is higher with relaxed DNA than with super-

coiled DNA, but it is not further enhanced by the presence
of DNA ends. DNA ends appear to primarily increase the
affinity of the complex but not its intrinsic ATP turnover
rate.

DNA length requirements for DNA binding and ATPase ac-
tivity

To determine the minimal length that is required for ro-
bust ATPase activation we tested dsDNA from 20 to 60
bp in length. A nuclease-deficient mutant (SbcCDH84Q) of
SbcCD was used in the assays to prevent DNA degrada-
tion during the course of the study. H84Q decreased the
ATPase activity of SbcCD by ∼15% (Supplementary Fig-
ure S1A). 20 and 25 bp DNA did not substantially stimu-
late ATP hydrolysis of SbcCD. A moderate activation was
obtained with 30 bp DNA. Increasing the length of DNA to
35 bp and longer robustly stimulated the ATPase rate (Fig-
ure 1B). Since we used concentrations of the SbcCD het-
erotetramer of 500 nM to also probe for effects of shorter
DNAs, binding affinities well <500 nM of DNA >40 bp
(see below) did not allow us to derive affinities in these stud-
ies. Rather, we titrated DNA end binding by SbcCD. In the
case of 50 and 60 bp DNA, the near maximal ATPase acti-
vation was already obtained at a concentration of 250 nM
DNA, where the concentration of DNA ends is the same
as the concentration of SbcCD. With shorter DNA, steric
competition might prevent productive (ATPase) binding of
two complexes to both DNA ends. In any case, the 20–25
bp minimal requirement for the DNA stimulation of AT-
Pase activity coincides well with the footprint of ATP bound
NBD dimers of Rad50, which is ∼20 bp.

To see how the DNA length dependent activation of
the ATPase coincides with DNA binding affinity, we mea-
sured DNA interaction through changes in the fluorescence
anisotropy of labeled DNA of different lengths. We first
tested DNA binding in the presence and absence of ATP.
SbcCD did not bind single stranded DNA (ssDNA) in ei-
ther the presence or absence of ATP. In addition, we could
not detect binding to dsDNA in the absence of ATP, indi-
cating that the formation of engaged NBDs is critical for
DNA binding by SbcCD (Figure 1B, Supplementary Fig-
ure S1C). Next, we evaluated the affinity of SbcCD in the
presence of 1 mM ATP for dsDNA oligonucleotides, rang-
ing from 20 to 50 bp in 5 bp increments. SbcCD shows low
affinity to 20 bp DNA and moderate affinity to 25 bp DNA
(KD = 146 ± 46 nM). However, lengthening the DNA to
30 bp DNA resulted in a notable increase in binding affin-
ity (KD = 43 ± 7 nM). Further lengthening of the DNA
did not affect the KD, which remained in the range of 50 to
60 nM (Figure 1C, Supplementary Figure S4). Therefore,
maximal DNA end binding has a ‘footprint’ of ∼25–30 bp,
whereby affinity is not enhanced by longer DNA.

Characterizing the nuclease activities of SbcCD on 60 bp
DNA

MRN/X and SbcCD comprise nuclease activities that are
conserved amongst bacteria, yeast and human, but also
show unexplained differences. Conserved functions are the
(i) 3′-5′ exonuclease on dsDNA, (ii) cleavage of dsDNA ad-
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Figure 2. Nuclease activity of SbcCDwt towards 60 bp DNA. (A) SbcCDwt

was assayed in the presence of 1 mM ADP or ATP(�S), 5 mM MgCl2
and 1 mM MnCl2 at 37◦C. The 60 bp DNA substrate was labeled on the
3′ end with 6-FAM. FAM-scFv is a single chain fragment that binds to
Fluorescein dyes with a KD of 4 nM. Reactions with unblocked DNA
substrates were quenched after 15 min, reactions containing FAM-scFv
were quenched after 5 min. The cleavage products were separated by Urea-
PAGE and visualized on a Typhoon scanner. Major cleavage products of
SbcCD are depicted above. (B) Nuclease assay as in (A), but with 5′ labeled
60 bp DNA.

jacent to a protein-blocked DNA end, (iii) cleavage of hair-
pin structures on the 5′ side of a hairpin, and (iv) cleavage
of 3′ and 5′ overhangs (7,11,12,25). On a long hairpin sub-
strate, SbcCD displayed a progressive ‘binary’ endonuclease
that nicks both DNA strands and introduces DNA double-
strand breaks in 10 bp intervals (32), an activity that has not
been reported so far for enzymes from other species.

To further characterize the nuclease activities of SbcCD,
we tested the degradation of a 60 bp DNA labeled with
a fluorescent dye at the 5′ or 3′ terminus. In the absence
of ATP and presence of ADP, faint low molecular weight
products appear which may point to a residual 3′ exonu-
clease activity independent of ATP. The presence of non-
hydrolysable ATP�S induces robust 3′-5′ exonuclease activ-
ity of SbcCD (Figure 2A, lanes 2–4). Of note, we also ob-
served a clipping activity near the 5′ end of DNA (Figure
2B, lanes 4 and 5). This is likely due to prior degradation
of the 3′ terminus, as phosphorothioate protection of the
complementary 3′ end led to a high reduction of this activ-
ity (Supplementary Figure S5, lanes 5–8). In the presence
of ATP, internal DNA cleavage products could be detected.
They appear most prominently at 27 bp from the 3′ end
and 23 bp from the 5′ end (Figure 2A and B, lane 5). We
then tested the cutting efficiency in the presence of a pro-
tein block, formed by an anti-fluorescein antibody derived
single-chain fragment variable (FAM-scFv) (45). The block
is similar in size to the streptavidin–biotin conjugate used in
previous experiments (7) and mimics a blocked DNA end

or a DNA–protein crosslink (DPC), structures that often
occur at DNA double-strand breaks (DSBs). The presence
of a protein block stimulated the endonucleolytic cleavage,
as predominantly endonuclease products appeared (Figure
2A and B, lane 6). In contrast to the exonuclease that is
fully active in the presence of ATP�S, the block-stimulated
endonucleolytic incision is highly decreased in presence of
ATP�S and therefore promoted by ATP hydrolysis (Sup-
plementary Figures S6 and S7A, lanes 4 and 5). An 80 bp
duplex DNA was also incised 27 bp from the DNA end,
therefore the 27 bp distance was determined by the labeled
DNA end (Supplementary Figure S5, lanes 1–4).

SbcCD’s endonuclease activity is sensitive to the melting sta-
bility of DNA

The mechanism how Mre11 family proteins such as SbcD
incise double-stranded DNA is not known yet. Structures
of Mre11 with dsDNA reveal that the manganese ions of
Mre11 are concealed in the active site and the bound B-
DNA is at least 5 Å away from a position that could be pro-
ductive for cleavage. At least endonucleolytic activity would
require, from sterical considerations on the basis of avail-
able structures, DNA duplex unwinding in order to reach
the active site metals. Indeed unwinding activity was re-
ported for the human MRN. This process was Nbs1- and
ATP-dependent and enhanced by a 44 nucleotide overhang
(11,51). Processive DNA unwinding of a 50 bp duplex was
also reported for MR from Thermotoga maritima (42).

To relate putative melting of duplex DNA to nucleolytic
incision, we designed DNA substrates with different local
AT and GC contents, since the local stability of B-DNA
can be tuned via the GC/AT content (52). 60 bp DNA was
modified from position 15 to 29 (relative to the 6-FAM dye)
with, (i) mixed AT/GC-content, (ii) 100% AT-content or
(iii) 100% GC-content. The endonuclease activity was tested
in both the presence and absence of a protein-bound DNA
end. The unlabelled DNA end was protected from degrada-
tion by phosphorothioates on the 3′ terminus.

As observed in previous assays, SbcCD cleaved 60 bp
DNA with mixed AT/GC content 27 bp from the 3′ end
with moderate activity (Figure 3A lane 5). Endonuclease
became more efficient with AT-rich DNA and almost van-
ished with GC-rich DNA (Figure 3A lanes 6–7). Therefore,
SbcCD’s endonuclease is sensitive to local stability of the
dsDNA and, as judged from AT/GC content, performs bet-
ter when the DNA can be melted more easily. Of note, the
cutting preference at AT-rich regions was overridden by a
protein block and the three duplex DNAs were incised with
apparently similar efficiencies (Figure 3A, lanes 8–10).

We next interrogated whether DNA stability affects AT-
Pase rates or DNA affinity. Indeed, SbcCD bound AT-rich
DNA with a higher affinity than GC-rich DNA. The affin-
ity increased 3-fold from a KD of 132 nM to 45 nM. In con-
trast, the AT/GC content did not affect the ATPase activa-
tion under the nuclease assay conditions (Figure 3B and C).
Thus, the increase in endonucleolytic efficiency or increase
in binding affinity to AT-rich DNA cannot be attributed to
higher ATPase rates. It rather appears that continuous AT-
Pase activity generates perhaps melted or otherwise confor-
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Figure 3. SbcCD cleaves double-stranded DNA dependent on the local AT/GC concentration and pre-melted DNA stretches. (A) Nuclease activity of
SbcCDwt was assayed in the presence 1 mM ATP, 5 mM MgCl2 and 1 mM MnCl2 at 37◦C. The DNA was labeled on the 3′ end with 6-FAM and contained
different AT/GC concentrations from position 15 - 29 (relative to the dye). FAM-scFv - single chain fragment that binds to the 6-FAM dye. (B) Dissociation
constants (KD) of SbcCDH84Q were obtained by fitting fluorescence anisotropy data to a 1 to 1 binding equation. Bar represents the mean of three values.
(C) The steady-state ATP hydrolysis rates of SbcCDwt were measured during the nuclease reactions in (A). Bar represents the mean of three values. (D)
The nuclease activity of SbcCDwt towards 60 bp DNA with pre-melted DNA regions (bubble) was tested. SbcCDwt cleaves the DNA substrates 5′ to the
pre-melted region

mationally altered DNA that is more efficiently bound and
cleaved by the nuclease.

To see how efficiently ATP hydrolysis and endonuclease
are coupled, we monitored the rate of ATP hydrolysis under
conditions identical to the nuclease assay (Figure 3C). In
the course of 60 bp DNA degradation, SbcCD hydrolyzed
approximately 800 molecules ATP to degrade one molecule
of DNA in the absence of a protein block. Protein-blocked
DNA used up 200 ATP molecules per DNA cleavage. Since
exonuclease activity is observed in the presence of the non-
or slowly hydrolysable analog ATP�S, it appears that cleav-
age of terminal nucleotides does not strictly require rounds
of ATP hydrolysis. However, the lack of endonuclease activ-
ity observed in the presence of ATP�S, and consistently the
high numbers of ATP hydrolysis events per endonucleolytic
cleavage suggest that rounds of ATP hydrolysis catalyze an
inefficient or reversible step prior or during cleavage.

Encouraged by these novel findings, we designed DNAs
with unpaired stretches of five nucleotides (bubbles) mim-
icking melted DNA at various distances from the DNA
ends. A protein-blocked 60 bp fully base paired duplex was

digested in the previously characterized pattern, having a
major incision species at 27 bp. Introduction of the bubble
from position 27 to 31 leads to incision events at position
31–35, another prominent cleavage product appeared at 27
bp. Locating the bubble at position 19–23 leads to a major
cleavage site at 25 nucleotides, position 21–25 guides the in-
cision to 27 bp (Figure 3D, lanes 2–5). Therefore, SbcCD
cleavage occurs at the 5′ side of unpaired DNA. Increasing
the length of the bubble to seven nucleotides reduced cutting
efficiency, so it is unlikely that SbcCD unwinds DNA very
extensively at this site. In the presence of non-hydrolysable
ATP�S we could not detect endonucleolytic degradation
with any of the substrates (Supplementary Figures S7 and
S8). These experiments suggest that the endonucleolytic in-
cision of duplex DNA by SbcCD is sensitive to the thermo-
dynamic stability of B-DNA and that some local changes in
DNA structure occur prior to endonuclease activity as a re-
sult of ATP hydrolysis cycles. However, preformed bubbles
do not relieve the necessity of ATP hydrolysis and are also
poorer endonuclease substrates than base-paired DNA. For
instance, ATP hydrolysis could also help load the complex
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Figure 4. SbcD dimer disruption affects endo- but not exonuclease activity.
(A) SbcD homodimeric interface (PDB: 4M0V). The view shows the SbcD-
SbcD four-helix bundle interaction. The interaction is mainly mediated by
a hydrophobic cluster consisting of Val68, Iso96, Phe99, and Leu100 on
the top of the four-helix bundle. (B) DNA substrates are schematized that
were used in (C). (C) Nuclease activities of SbcCDV68D was assayed in the
presence 1 mM ATP, 5 mM MgCl2 and 1 mM MnCl2 at 37◦C. SbcCDV68D

retains exonuclease activity, but looses endonuclease activity on duplex
DNA. The presence of bubbles re-establishes the endonuclease activity of
SbcCDV68D.

onto internal DNA in the presence of a block, but other
scenarios are also possible.

SbcD dimer interface dynamics during endonucleolytic
degradation of SbcCD

To investigate the impact of the SbcD dimer state during
nucleolytic processing, we compared the nuclease activi-
ties of SbcCDwt to a SbcCD complex with a destabilized
SbcD interface. The dimeric assembly of two SbcD pro-
tomers is mediated by a conserved four-helix bundle in-
teraction which bears a hydrophobic cluster consisting of
Val68, Ile96, Phe99 and Leu100 (Figure 4A) (53). The in-
terface was weakened by mutating Val68 to a negatively-
charged aspartate (SbcDV68D).

Right-Angle Light Scattering (RALS) analysis of the
SbcD nuclease and capping domain showed that SbcD
mainly forms a monomer during size-exclusion chromatog-
raphy in the absence of SbcC, with a very slight residual
fraction of 4% dimeric SbcD. This residual dimer is ab-
sent in SbcDV68D. Therefore, SbcD itself appears to be an
at least transient homodimer whereas the addition of a sec-
ond interface by SbcC in the presence of ATP induces sta-
ble complex formation of the SbcCD – head domain and
the full length complex (Supplementary Figures S9A and
B and S10). Mutations at similar sites in yeast and bacte-
riophage Mre11 have been analyzed before and found to
impact on the viability in vivo or nuclease characteristics in
vitro (35,54).

SbcCDV68D degrades dsDNA exonucleolytically in an
ATP-dependent fashion similar to SbcCDwt. Therefore,
the three-dimensional fold of SbcD and the catalytic
site is functional and the association between DNA and
SbcCDV68D is intact. Furthermore, a fully functional SbcD
dimer interface is apparently not required for exonuclease
activity, similar to the dispensability of ATP hydrolysis (but
not ATP binding) for the exonuclease. However, SbcCDV68D

did not show significant endonucleolytic activity and we
could not detect any dsDNA degradation in the presence of
ATP�S (Supplementary Figure S8). Introduction of a bub-
ble structure re-established the endonuclease activity. The
positions of the incision were identical to SbcCDwt, how-
ever, the cutting efficiency reduced by approximately 5-fold,
depending on the position of the bubble (Figure 4C). There-
fore, destabilization of the dimerization interface of SbcD
correlated with the loss of endonuclease activity of SbcCD.
The presence of unpaired DNA re-established the ATP de-
pendent endonuclease activity to some extent.

The nuclease and capping domain of SbcDV68D dis-
play similar ssDNA endonuclease activity towards a co-
valently closed single-stranded plasmid DNA as SbcDwt.
Full-length SbcCDwt and SbcCDV68D required ATP for ss-
DNA cleavage. Both proteins cleaved ssDNA with a simi-
lar efficiency in the presence of ATP. SbcCDwt also cleaved
in the presence of ATP�S, whereas the endonuclease of
SbcCDV68D was strongly reduced (Supplementary Figure
S11A and B).

These data suggest that a destabilized SbcD interface in-
duces a defect in SbcCD that affects the endo- but not
the exonuclease activity. SbcCDV68D also cleaves single-
stranded plasmid DNA and bubble structures in the pres-
ence of ATP. Therefore, the defect could be a dysfunction
of SbcCDV68D to generate a DNA substrate which is com-
petent for endonucleolytic cleavage. Introduction of a pre-
melted stretch compensates this defect and SbcCDV68D re-
gains endonuclease activity. The most likely explanation
is that SbcD dimers with a fully functional interface are
needed to generate melted DNA.

SbcCD cleaves opposing strands of dsDNA with different
chemistries, leaving 3′ and 5′ phosphates respectively

To further investigate and characterize the mode of cleav-
age catalysis, we treated the cleavage products with Antarc-
tic Phosphatase and T4 Polynucleotide Kinase enzymes and
compared them to the untreated cleavage products. The
addition or removal of the negatively-charged phosphate
changed the mobility of the oligonucleotides during elec-
trophoresis and allowed us to detect the presence or absence
of a phosphate group at the unlabeled termini.

Analysis of a 60mer DNA duplex with a 3′ label revealed
that the 3’ exonuclease products were not shifted by ki-
nase treatment but by phosphatase treatment, indicating the
presence of a 5′ phosphate and cleavage of the P–O5′

phos-
phoester bond (Figure 5A, lanes 6–8). The resulting cleav-
age products were validated using well characterized nucle-
ases ExoIII, DNase I and Benzoase (Supplementary Figure
S12, 55–58). Comparison of the cleavage products produced
by the different nucleases suggests that SbcCD can direcly
cleave the phosphodiester linkage of the 6-FAM at the 3′
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Figure 5. The position of SbcCD’s DNA backbone cleavage is cleavage- and strand-specific. (A) SbcCDwt was assayed in the presence of 1 mM ATP, 1
mM MnCl2 and 5 mM MgCl2 at 37◦C. The cleavage products of the quenched nuclease reactions were treated with T4 Polynucleotide Kinase or Antarctic
Phosphatase to remove or add a phosphate to the DNA ends. The altered electrophoretic migration indicates the absence or presence of a phosphate of
the cleavage products. (B) Nuclease assay as in (A), but with 60 bp DNA which was protein bound DNA end inducing endonuclease activity. (C) Nuclease
assay as in (A), but oligos were labeled at the unblocked DNA end. (D) DNA substrates and respective cleavage products in (A–C) are schematized. (E
and F) The chemical drawing shows the SN2 reaction during exo- and endonucleolytic cleavage of the phosphate backbone.

end. The major cleavage at the DNA end was observed to
be between base 3 and 4 (from the 3′ end), liberating a trin-
ucleotide (Supplementary Figure S12A). We also see to a
smaller amount cleavage between bases 1–2, 2–3, 4–5 and 5–
6, so there is apparently some structural flexibility in recog-
nition of 3′ 6-FAM bound DNA ends by SbcCD. This is
consistent with the ability of SbcCD to recognize and cleave
hairpins (33). Comparison of the exonuclease cleavage po-
larity of SbcCDwt and SbcCDV68D did not indicate any dif-
ferences (Supplementary Figure S13).

Analysis of the same 60mer DNA duplex, but with a 5′
label revealed two sets of products; endonuclease products
between 20 and 25 bp from the 5′ end, and short 5′ clip-
ping products. The endonuclease cleavage products were

not shifted by phosphatase treatment and therefore contain
a free 3′-OH, similar to the exonuclease cleavage products
on the complementary DNA strand. Interestingly, the 5’
clipping products were shifted by phosphatase treatment,
indicating the presence of a 3′-phosphate and cleavage of
the 3′

O–P bond. Therefore, the 5′ clipping apparently has a
different chemistry to the 3′-5′ exonuclease and 5′ endonu-
clease activities (Figure 5A, lanes 1–3).

Next, we assessed the cleavage chemistry of the 3′ en-
donuclease activity, using a protein block at the 3′ label. En-
donuclease products between 23–27 bp in length were not
affected by phosphatase treatment, but migrated faster after
kinase treatment. Thus, these products contained a 5′-OH,
indicating cleavage of the 3′

O–P bond (Figure 5B). This is
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similar to the 5′ clipping reaction, but apparently different
to the endonucleolytic cleavage of the 5′ strand. However,
the 5′ endonuclease produced cleavage fragments harbour
a 3′-OH, similar to the 3′-5′ exonuclease.

The observed 3′-OH could either be directly produced
from the endonuclease, or alternatively result from a 3′-
5′ exonuclease reaction of the nicked DNA. To clearly at-
tribute the observed cleavage chemistries to endonuclease
reactions, we analyzed DNA substrates that were fluores-
cently labeled on the DNA termini opposite to the protein-
blocked DNA end. Looking at the endonucleolytic prod-
ucts around 35 bp from the labeled end (∼25 bp from the
blocked end), we observed that the kinase treatment did not
result in a different mobility, whereas phosphatase treat-
ment led to slower migration of both 3′ and 5′ labeled
DNA (Figure 5C). These data suggest that––looking from
the blocked DNA-end––the 3′ strand is cleaved at the P-
O5′

-bond, leaving a 3′-phosphate, whereas the 5′ strand is
cleaved at the 3′

O-P-bond, leaving a 5′-phosphate (Figure
5E and F). It is likely that some cleavage products that do
not shift upon kinase treatment originate from a consecu-
tive endo–exo activity as has been observed for the human
MRN complex (33).

In summary, we unexpectedly observe that SbcCD
cleaves opposing strands with a chemically different nucle-
ase reaction. The exonuclease and clipping activities at the
DNA end operate in such a way that the phosphate groups
stay on the short nuclease products, leaving an unphospho-
rylated DNA end with free 3′-OH and 5′-OH. The DNA
end proximal endonuclease activities show the reverse po-
larity, as if the SbcCD complex is geometrically flipped and
just operates in the other direction. Here, both phosphate
groups stay at the newly formed (unblocked) DNA end,
while the dsDNA portion that contains the block contains
a 3′-OH and 5′-OH.

DISCUSSION

Orthologs of the Mre11–Rad50 complex function in the
processing of terminal DNA structures in all kingdoms of
life. While the primary substrates and targets for the ATP-
regulated nuclease activity, i.e. arrested topoisomerase–
DNA complexes, hairpins, abnormal replication interme-
diates and blocked DNA ends differ in different species,
Mre11–Rad50 complexes share similar nuclease activities:
they possess hairpin opening and 3′-5′ dsDNA exonucle-
ase activities and can cleave blocked DNA ends via an
endonuclease activity ∼15–25 bp inward from the block
(4,5,12,25,33). Collectively, these activities have been sug-
gested to clear diverse types of blocked ends and prepare
them for recombinational repair. A common mechanistic
basis for these nuclease activities by Mre11/SbcD and their
regulation or activation by ATP binding and hydrolysis by
Rad50/SbcC remains to be established.

In SbcCD, DNA binding, nuclease activation and ATP
binding or turnover are strongly coupled. In the absence
of ATP, we neither observe DNA binding nor detectable
nuclease activity. Robust activation of SbcCD’s ATPase by
DNA, or DNA binding to SbcCD requires 25–30 bp, by
and large consistent with a structural footprint of ∼20 bp
DNA on the ATP-bound NBD dimer of Rad50/SbcC pro-

teins (41,42). The slightly longer DNA needed for full affin-
ity binding and especially for full stimulation of ATP hy-
drolysis by SbcCD could indicate either a different confor-
mation of the complex when bound to a DNA end, or re-
flect some cooperative effects when more than one complex
is bound, as for instance indicated by recent studies (32).

Interestingly, we find that the ATPase is most robustly ac-
tivated by relaxed DNA, either in circular or in linear form,
but much less by supercoiled DNA. The presence of DNA
ends does not increase the maximum ATP turnover rates,
but rather increases the affinity of the DNA for SbcCD and
thus activates the ATPase at much lower DNA concentra-
tions. Structural results showing that Rad50/SbcC’s NBDs
do not directly recognize DNA ends is consistent with
circular DNA being able to fully activate SbcC’s ATPase
(42,43,59). Recent single-molecule studies showed that the
Mre11 subunit of the MRN complex is necessary for DNA
end recognition but not binding to internal DNA (24). It is
therefore plausible that high-affinity end-recognition pro-
ceeds via the SbcD subunit, whereas SbcC’s ATPase is ac-
tivated by the flanking DNA. However, it is yet unclear
how Mre11/SbcD and Rad50/SbcC would cooperate in
DNA binding and processing, since current structural stud-
ies have not shown that or how both subunits can simul-
taneously bind to DNA. Of note, the activation of SbcC’s
ATPase by relaxed DNA could be a medium-range sig-
nal to sense the presence of DNA breaks or palindromes.
While former readily leads to loss of superhelical tension,
latter can fold into cruciforms and can also lead to local
relaxation of DNA in otherwise supercoiled chromosomal
DNA.

Even under conditions of full ATP turnover, we do not
observe cleavage of circular supercoiled or circular nicked
DNA. In contrast, linear DNA is readily degraded. Clearly,
the activation of ATP hydrolysis by DNA is not sufficient
to trigger endonuclease activity and requires the presence
of DNA ends. In the presence of DNA ends, however,
ATP�S is sufficient to activate the exonuclease. Equivalent
results have been observed previously for SbcCD and the
homologous bacteriophage T4 gp46/47 complex, where it
was found that cleavage of the terminal 3′ base does not
need ATP hydrolysis, but further processive 3′-5′ exonucle-
ase activity does (49). On the contrary, the endonuclease of
SbcCD, which is robustly activated by DNA end blocks,
requires ATP hydrolysis in our hands, similar to observa-
tions made for eukaryotic homologs (5,33,60). Quantifica-
tion yields a relation of ATP turnover to endonuclease cuts
of around 100:1. Likely, a transient, reversible step is nec-
essary for a more infrequent endonucleolytic cleavage. A
putative mechanism is that ATP binding by SbcC leads to
the transient, but reversible local melting of DNA, which
could then be cleaved by SbcD. In support of this hypoth-
esis are our observations with DNA substrates containing
base bias (AT-rich and GC-rich), showing an inverse cor-
relation between thermodynamic stability and efficiency of
endonucleolytic cleavage. Of note, in other investigations of
SbcCD’s nuclease, ATP�S is sufficient to trigger endonu-
cleolytic cleavage (7,32). Perhaps on different DNA sub-
strates or under different experimental conditions, the ef-
ficiency of the complex is substantially increased that bind-
ing of ATP�S alone is sufficient to prepare DNA for cleav-
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Figure 6. Proposed model for the SbcCD Endo- and Exonuclease mech-
anism. The SbcCD dimer is shown schematically as a yellow triangle and
the cleavage site on DNA is indicated by a red cross. A protein block at the
DNA end (blue sphere) stimulates SbcCD’s endonuclease activity. Inter-
nal cleavage of the DNA requires ATP hydrolysis, the DNA is melted and
a transient bubble is formed. The DNA end is phosphorylated at the 5′ and
the 3′ termini (upper panel). For exonuclease activity the SbcD dimer is in
a reversed orientation, cleavage could involve fraying at free DNA ends.
The DNA end is hydroxylated at the 3′ and the 5′ termini (lower panel).

age, relaxing the requirement for the turnover of multiple
molecules of ATP. Nevertheless, our findings on the require-
ment of ATP vs ATP�S are generally consistent with what
has been observed for the activity of homologs (5,33).

The putative DNA melting required for endonucleolytic
cleavage requires a properly formed SbcD dimer, since mu-
tation of the dimer interface reduced endonuclease, but did
not reduce exonuclease or endonuclease on a substrate con-
taining a DNA bubble. Structural studies on Mre11 dimers
bound to DNA are so far consistent with endonucleolytic
cleavage requiring some DNA melting in order for the phos-
phoesters to reach the active site metals. In addition, the
unwinding or melting of short dsDNA has been observed
for eukaryotic and bacterial homologs in the presence of
ATP (11,42,51). At the DNA end, fraying or other sterical
features might already be sufficient for exonuclease activ-
ity, requiring only ATP�S-mediated binding of SbcCD to
DNA. In the case of internal DNA, however, multiple ATP
turnover cycles might be required to open and maintain the
DNA in a melted state until it is cleaved by SbcD.

For the endonuclease activity, it was first shown for the E.
coli homolog SbcCD and subsequently for the eukaryotic
MRN and MRX complexes, that Mre11–Rad50 complexes
can indeed cleave both strands of the DNA, introducing
a DNA double-strand break near the block. To better un-
derstand a common or distinct mechanistic nature of these
inherent endo- and exonuclease activities of Mre11–Rad50
complex proteins, we analyzed SbcCD’s ATP-dependent
nuclease activity in the processing of accessible and in-
accessible (protein blocked) DNA ends. We unexpectedly
found that the endonucleolytic cleavage reactions at op-
posing DNA strands are chemically distinct. One strand is
cleaved such that the phosphate remains at the 5′O, while
the opposing strand retains the phosphate at the 3′O. Us-
ing the conventional 5′-3′ directionality of DNA, we refer
to former activity as 3′

O–P cleavage (phosphate remains at
5′O) and to latter as P–O5′

cleavage (phosphate remains at
3′O). It was found before that SbcCD cleaves a hairpin at
the 5′ side with an 3′

O–P cleavage (61).
Interestingly, we also observed these two chemically dis-

tinct mechanisms at the cleavage reactions at the DNA

end, but with a reversed polarity: in addition to the well-
characterized 5′-3′ exonuclease activity (O–P cleavage), we
found that SbcCD possesses a 5′ clipping activity with P–
O cleavage. The observed pattern of 3′

O–P versus P–O5′
is

therefore not determined by the type of reaction (endo- or
exonuclease), but sterically determined by the DNA end. In
our opinion the most rational explanation is that SbcCD
complexes are situated at an accessible DNA end, and at
an internal site next to a blocked end with a reversed po-
larity. A plausible scenario is shown in Figure 6. Here, a
SbcD dimer is situated in such a way that the 3′ strand is
exonucleolytically clipped with an 3′

O–P cleavage reaction.
If the complex encounters a block through e.g. internal dif-
fusion or scanning, the SbcD dimer could have a differ-
ent orientation, thus the observed endonucleolytic cleavage
at the 5′ strand has the 3′

O–P cleavage chemistry. Consis-
tent with such a model are recent observations on the ba-
sis of the bipolar nuclease reaction: here it was proposed
that the hairpin/DNA end-bound terminal SbcCD com-
plex and subsequent SbcCD complexes are biochemically
distinct (32). For instance, the terminal complex can per-
form the hairpin opening reaction but may also temporarily
act as a block to stimulate endonuclease reactions by further
SbcCD complexes at internal sites. The nature of the 10 bp
periodicity of the subsequent endonuclease reactions com-
pared to the 20–25 bp of the initial cleavage from the end is
not clear yet and requires further investigation.

How can SbcD catalyze both 3′
O–P and P–O5′

cleavage
events? On the basis of its homology to other phosphodi-
esterases, the di-metal center of Mre11/SbcD is suggested
to coordinate and activate the phosphate and attacking hy-
droxyl ion. Mre11’s nucleolytic cleavage is proposed to be
an SN2-reaction, which requires the in-line nucleophilic at-
tack of a water molecule or hydroxyl ion (34). To produce
cleavage products with different cleavage chemistries, either
the positions of the water molecule and the phosphate on
the di-metal cluster are reversed or, perhaps more likely, wa-
ter and phosphate occupy the same position, but the strand
polarity is reversed. The currently available crystal struc-
tures of archaeal Mre11 homologs bound to DNA have
not revealed how DNA coordinates the active site metals,
since both strands are equally 10–15 Å away from the two
metal ions (35,36). While these structures support the steri-
cal need for DNA melting or deformation of DNA to allow
the backbones to reach the active site metals for endonucle-
olytic cleavage, it is possible that either strand could reach
the active site while maintaining the overall direction of the
DNA. In such a model, the different strand polarity, to-
gether with a maintained water and phosphate coordination
at the di-metal center, would result in the observed P–O5′

and 3′
O–P cleavage reactions on opposing strands.

In summary, we deconvolute and unify key aspects of
endo- and exonuclease type reactions in SbcCD. We reveal
an unexpected chemical asymmetry in the mode of cleavage
reactions that is apparently not determined by endo- ver-
sus exonuclease reactions, but best explained by a different
orientation of SbcCD during exonuclease and endonuclease
reactions with respect to the DNA end. It will be interest-
ing to also analyze eukaryotic homologs for similar activi-
ties. What governs such a polarity change in SbcCD is un-
clear and must await future studies. A possible scenario is
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that SbcCD can directionally and actively scan DNA, sim-
ilar to the recently described DNA transport activities of
the related SMC proteins (62), until encounter of a blocked
end leads to activation of the endonuclease. At an accessi-
ble DNA end, the directionality could be reversed through
preferential binding to the DNA end, resulting in proces-
sive exonuclease. Our comprehensive study sheds light on
the cleavage mechanism of the bacterial MR complex and
may help to understand the intricate action of its eukaryotic
counterpart.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Summary

In this publication we report the first cryo-EM structures that were solved using the full-length

EcMR complex. The resting state EcMR head complex bound to the ATP analogue ATPγS

resembled previously published structures of the head complex. The coiled coils were only

visible in close proximity to the Rad50NBDs since they were too flexible to be resolved. The

EcMR cutting state was solved in complex with ADP and a 60bp dsDNA. In the cutting

state, the Mre11 dimer moved to the side and formed a DNA binding channel together with

Rad50. This channel allowed the DNA to reach the active site of Mre11, which has not been

observed in previous MR crystal structures. Thus, our structure explains for the first time how

EcMR recognises a free DNA end and how the DNA is accommodated in the active site. The

DNA was mainly bound by residues located in the Rad50NBDs and the coiled coils. Mutations

in these DNA binding residues abolished DNA binding. Surprisingly, the coiled coils of both

Rad50 monomers interacted with each other in the cutting state and formed a rod that clamps

one dsDNA duplex between them. This rod was solved to a length of about 200 Å. A new

interaction site was formed between the Rad50 β-sheets of the NBD and the Mre11 nuclease

domain (denoted fastener). Mutations in the fastener strongly decreased exo- and endonuclease

activity of EcMR and a charge reversal mutant partially restored the nuclease activities.

Based on these results we propose a model in which the EcMR complex is present in an

autoinhibited state with open coiled coils, in which it scans the DNA for DSBs. Once a DSB

is found, the coiled coils can close and the movement of the nuclease dimer to the side allows

formation of a nuclease proficient complex.
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SUMMARY

DNA double-strand breaks (DSBs) threaten genome
stability throughout life and are linked to tumorigen-
esis in humans. To initiate DSB repair by end joining
or homologous recombination, the Mre11-nuclease
Rad50-ATPase complex detects and processes
diverse and obstructed DNA ends, but a structural
mechanism is still lacking. Here we report cryo-EM
structures of the E. coli Mre11-Rad50 homolog
SbcCD in resting and DNA-bound cutting states. In
the resting state, Mre11’s nuclease is blocked by
ATP-Rad50, and the Rad50 coiled coils appear flex-
ible. Upon DNA binding, the two coiled coils zip up
into a rod and, together with the Rad50 nucleotide-
binding domains, form a clamp around dsDNA.
Mre11 moves to the side of Rad50, binds the DNA
end, and assembles a DNA cutting channel for the
nuclease reactions. The structures reveal how
Mre11-Rad50 can detect and process diverse DNA
ends and uncover a clamping and gating function
for the coiled coils.

INTRODUCTION

DNA double-strand breaks (DSBs) are a frequent cause of gross

chromosomal aberrations and genome instability in all kingdoms

of life (Myung et al., 2001). They are produced by ionizing radia-

tion and genotoxic chemicals, arise at stalled and collapsed

replication forks, and are products of abortive topoisomerases.

Sensitive detection, signaling, and repair of DSBs is a critical

process throughout life to maintain the integrity of genetic infor-

mation (Blackford and Jackson, 2017; Ciccia and Elledge, 2010).

Repair of DSBs proceeds through homologous recombination

(HR) or end joining pathways, typically in a cell cycle-regulated

manner in eukaryotes (Chang et al., 2017; Hustedt andDurocher,

2016; Kowalczykowski, 2015;Wright et al., 2018). DNA resection

and synthesis in HR and ligation in end joining require chemically

‘‘clean’’ DNA termini, but DSBs can be chemically very heteroge-

neous, including covalent protein adducts. These ‘‘dirty’’ DNA

ends require nucleolytic processing by homologs of the

Mre11-Rad50 protein family to enable subsequent repair or

DNA damage signaling (Cejka, 2015; Hoa et al., 2016; Mimitou

and Symington, 2008; Oh et al., 2016; Paull, 2018; Rahal

et al., 2010).

Homologs of Rad50 and Mre11 are found in all kingdoms of

life. They form Mre112-Rad502 heterotetramers, where two

Rad50 ATP-binding cassette (ABC)-type nucleotide binding do-

mains (NBDs) and a Mre11 nuclease dimer assemble as a cata-

lytic headmodule that binds and cleaves DNA in a reaction regu-

lated by ATP-induced conformational changes between the two

NBDs (Hopfner et al., 2001). Rad50 homologs also possess

intriguing 15- to 60-nm-long coiled coils (CCs) that can form

large proteinaceous rings or rods, joined by an apical Zn-hook

dimerization motif (Hopfner et al., 2002; Moreno-Herrero et al.,

2005; Park et al., 2017). The CCs are functionally important

(Hohl et al., 2011), but their mechanistic role is not understood.

Eukaryotic Mre11-Rad50 interacts with Nijmegen breakage syn-

drome protein 1 (NBS1, known as Xrs2 in yeast), a protein that,

among other functions, recruits the DNA damage checkpoint ki-

nase ataxia telangiectasia mutated (ATM) (Carney et al., 1998;

Falck et al., 2005).

Prokaryotic Mre11-Rad50 (MR) and eukaryotic Mre11-Rad50-

Nbs1/Mre11-Rad50-Xrs2 (MRN/MRX) complexes have the

intriguing function to sense both, clean and blocked DNA ends

(Paull, 2018). The capability to clear blocked DNA ends is critical

in eukaryotes to maintain genome integrity and ensure proper

replication. Related functions exist in E. coli, where E. coli

Mre11-Rad50 (EcMR, also called SbcC-SbcD) processes palin-

dromic hairpins, cleaves near protein blocks, and is implicated in

the resolution of DNA replication termination structures (Con-

nelly et al., 2003; Eykelenboom et al., 2008; Wendel et al., 2018).

The nature of the block appears to be of no importance and

can be, for instance, streptavidin bound to biotinylated DNA

termini (Cannavo and Cejka, 2014), the eukaryotic DNA end

binding factor Ku (Reginato et al., 2017; Wang et al., 2017), or

an abortive topoisomerase (Neale et al., 2005). The hydrolysis

of ATP enables MR to cleave DNA 15–25 bp away from diverse

blocks through endonuclease activity (Cannavo and Cejka,

2014; Connelly et al., 2003; Deshpande et al., 2016; Neale

et al., 2005; Wang et al., 2017). MR(N) complexes also cleave
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hairpins and possess 30/50 exonuclease activity, either inward

from a clean DNA end or toward the DNA end following the inter-

nal endonucleolytic 50 incision (Garcia et al., 2011; Paull and Gel-

lert, 1998). It is mechanistically unclear how MR complexes can

detect and process these chemically diverse terminal DNA

structures without also cleaving internal DNA containing stable

proteins (e.g., nucleosomes). The mechanism of end recognition

and cleavage is even more puzzling because human MRN can

internally bind to and diffuse along DNA until a DNA block is

reached (Myler et al., 2017).

The structural mechanism of howMR(N) complexes sense and

process clean and blocked DNA ends is not understood. A

number of crystallographic studies with truncated proteins

(Rad50DCC) revealed the basic architecture of interactions at

the catalytic head domain and binding of DNA to Rad50 and

Mre11 (Lammens et al., 2011; Lim et al., 2011; Möckel et al.,

2012; Williams et al., 2008, 2011). ATP binding to Rad50 leads

to a tightly engaged Rad50 NBD dimer, forming a DNA binding

platform along the two NBDs (Hopfner et al., 2000; Liu et al.,

2016; Seifert et al., 2016). Strangely, the current crystallographic

studies suggest that Rad50 blocksMre11’s nuclease active sites

in this ATP state (Liu et al., 2016, Möckel et al., 2012; Lim et al.,

2011), although ATP is critical for nucleolytic processing by MR/

MRN (Cannavo and Cejka, 2014; Herdendorf et al., 2011; Paull

and Gellert, 1999; Saathoff et al., 2018). This incompatibility be-

tween structural and biochemical data in the processing of DNA

ends and a general lack of understanding of DNA end recogni-

tion by MR/MRN currently hampers conceptual advances in

the mechanism and biology of DSB repair (Paull, 2018).

Here we employed cryoelectron microscopy (cryo-EM) to

study the full-length E. coli Mre11-Rad50 homolog in resting

state (bound to adenosine-50-o-(3-thio-triphosphate) [ATPgS])
as well as in a DNA end recognition and the cutting state (bound

to DNA and ADP after ATP hydrolysis). The structures reveal

an unanticipated structural state that resolves the above-

mentioned mechanistic discrepancy. Rad50 forms the main

DNA binding element through both NBDs and CCs. Upon DNA

binding, the two Rad50 CC domains zip up and form a narrow

clamp around a single DNAduplex. This structural change allows

theMre11 dimer to move from the bottom to the side of the com-

plex and bind the DNA end. We biochemically show that this

state is also involved in the endonucleolytic DNA end processing

at blocked DNA ends. Rather than being mere linkers, the CCs

act as clamps and gates for the recognition and processing of

diverse DNA end structures. Our structures provide a new struc-

tural concept and framework for Mre11-Rad50 complex proteins

that clarify key aspects of DNA end recognition and processing.

RESULTS

The Cryo-EM Structure of EcMR in the ‘‘Resting’’ State
To reveal the mechanism of ATP-dependent DNA end sensing

and processing byMR complexes, we used cryo-electronmicro-

scopy and single-particle reconstruction on EcMR. We first ad-

dressed the structure of EcMR in the absence of DNA, vitrified

the protein in the presence and absence of ATPgS, and recorded

transmission electron micrographs. Without nucleotides, we did

not obtain homogeneous particles. Addition of ATPgS led to

visibly more homogeneous particles and enabled us to obtain

a 3.5 Å reconstruction and atomic structure of its DNA binding

andprocessingheadmodule (Figures 1A–1C; FigureS1; Table 1).

The catalytic head of EcMR consists of two EcRad50 NBDs and

the EcMre11 dimer. Both EcMre11s match the high-resolution

crystal structure of the EcMre11 nuclease extremely well

(EcMre11NUC, composed of phosphodiesterase and capping

domains) (Figure S2A) and are anchored to the EcRad50 CCs

via their C-terminal helix-loop-helix (HLH) domains. The

EcRad50NBDs are engaged by jointly binding two Mg2+-ATPgS

molecules in their interface and are situated in the DNA binding

cleft of the EcMre11NUC dimer (Figure S4A). The structure reca-

pitulates previous crystal structures of Mre11 bound to the trun-

cated (DCCs) Rad50NBD (Lim et al., 2011; Möckel et al., 2012;

Figure S2B). Although the head module is well resolved, the

�40-nm-long CCs are apparently flexible and only defined in

the reconstruction up to the binding site of EcMre11HLH. The

angle of protrusion of the two CCs from the head suggests

that they form wide, presumably flexible proteinaceous rings.

The precise shape needs to be determined in future studies.

We observed a homogeneous complex of approximately

(Mre11)2-(Rad50)2 (M2R2) stoichiometry in gel filtration and did

not see formation of higher-order complexes through addition

of ATP and DNA, supporting a model where the CCs are joined

within an M2R2 complex (Figure S2C).

In atomic force microscopy (AFM) studies, EcMR forms pre-

dominantly V-shaped M2R2 complexes, joined at the Zn-hook

(de Jager et al., 2004). In the absence of ATP, the EcMre11

nuclease domains were separated and attached each as mono-

mers to the disengaged EcRad50 NBDs. Thus, ATP promotes

stable head complexes with dimeric Mre11 by joining the two

Rad50 NBDs, and we consistently observed slight compaction

of the complex by ATP in solution (Figure S2C). Because

EcMR is constantly exposed to ATP in the cell but hydrolyzes it

only with 0.008 ATP/s/active site (Saathoff et al., 2018), the

obtained ATPgS-bound state likely represents a major autoinhi-

bited resting state of the complex with blocked Mre11

nuclease sites.

The Cryo-EM Structure of EcMR in the ‘‘Cutting’’ State
To understand how EcMR recognizes DNA ends, we reconsti-

tuted a complex of the nuclease-deficient EcMR mutant H84S

(EcMH84SR) with 60-bp double-stranded DNA (dsDNA) in the

presence of ATP and recorded transmission electron micro-

graphs. Three-dimensional reconstruction led to a cryo-EM map

at a nominal resolution of 4.2 Å that enabled us to derive a

near-atomic model of the EcMR catalytic head module and parts

of the CCs bound to DNA (Figure 1D–1F; Figure S3; Table 1). The

structure captures how EcMR senses and processes DNA ends,

and we denoted this condition the cutting state. Inspection of the

map at the nucleotide binding sites of the NBDs reveals the pres-

ence of Mg2+-ADP. Because ATP binding is critical for DNA bind-

ing by EcMR, the structure represents a post-ATP-hydrolysis

state, which appears to be quite long-living before ADP / ATP

exchange or DNA release (Figures S4B and S4C).

DNA end sensing induces two large conformational changes

in the cutting state compared with the resting state (Figures

1D–1F; Figures S1 and S3; Video S1). The CCs move inward,
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zip up, and fold into an apparently rod-like geometry. Intriguingly,

in this rod state, the CCs tightly clamp around a single dsDNA

duplex, whereas the EcMre11 dimer relocates from its auto-in-

hibited position at the ‘‘bottom’’ of the Rad50 NBD dimer to

the side of the NBD dimer. Here it forms, together with

EcRad50NBD, an active-site channel that harbors the DNA end.

Compared with the resting state, the cutting state can be de-

picted as an almost rigid body rearrangement of EcMre11NUC

and EcRad50NBD dimers, enabled by the flexible linker between

EcMre11NUC and EcMre11HLH (Figure S4D). EcRad50NBD also

undergoes some internal subdomain rotations and changes in

loop regions in response to DNA binding and ATP hydrolysis. Re-

positioning of the EcMre11NUC dimer at the side of the

EcRad50NBDs sterically requires the inward movement of the

CCs; thus, the rod formation of Rad50’s CCs presumably pre-

cedes or coincides with Mre11 dimer relocalization.

The two EcRad50NBDs generate a composite dsDNA binding

platform that spans 22 bp of a DNA duplex, with dsDNA protrud-

ing on both sides (Figures 1D–1F). One dsDNA arm extends from

the opposite side of the EcMre11 dimer location, whereas the

other arm is bound by EcMre11 in the channel. The latter is posi-

tioned for nucleolytic cleavage and likely represents the ‘‘free

DNA end’’ in the 30/50 exonuclease state. The pivotal role of

Mre11 in binding the DNA end is consistent with the critical

role of human Mre11 in DNA end sensing of MRN (Myler et al.,

2017). Interestingly, only one of the two EcMre11 subunits con-

tacts the DNA end (referred to as subunit ‘‘A’’), whereas EcMre11

(subunit ‘‘B’’) helps to position the actively cutting subunit.

In sum, the structures uncover an intriguingly asymmetric and

unanticipated structural state as the basis for DNA binding by

EcMR that clarifies the prevailing mystery of ATP-dependent

detection and processing of DNA ends by MR.

D

A CB

E F

Figure 1. Structure of EcMre11-Rad50 in the Resting and Cutting States

(A) Density map of the dimeric EcRad50 ABC ATPase (orange/yellow) bound to the EcMre11 nuclease dimer (light/dark blue) in the resting state in side view.

Subunits as well as the nucleotide binding domain (NBD) and coiled-coils (CC) are annotated. The CCs extend further (dots) but are not visualized in the map.

(B) Atomic model of the resting state catalytic head in front view, using the color code of (A).

(C) Scheme of the resting state catalytic head, using the color code of (A).

(D) Density map model of the cutting state in side view. DNA end binding leads to a large change in the architecture. The EcMre11 nuclease moves from its

autoinhibited location (gray and transparent) with blocked active sites to bind the DNA end in the cutting state. The NBDs and CCs generate a DNA binding clamp

and assemble with EcMre11, forming an active-site channel that harbors the DNA end. Only EcMre11 protomer A binds DNA (red), whereas EcMre11 protomer B

plays an architectural role. Color code as in (A) with DNA colored in red.

(E) Atomic model of the cutting state in top view using the same color code as in (D).

(F) Scheme of the cutting state catalytic head using the same color code as in (D).

See also Figures S1–S4, Table 1, and Video S1.
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A Fastener Loop Connects EcMre11NUC with
EcRad50NBD

To form the cutting state, the phosphodiesterase domain of

EcMre11 (A) is locked onto EcRad50NBD (B) by a loop in

EcMre11NUC, which we denote ‘‘fastener’’ (amino acids [aa]

137–149) (Figure 2A). The fastener binds the outer b sheet of

EcRad50NBD (B) and holds both domains in place by mainly

polar and ionic interactions. To validate this new interface, we

mutated the central K149EcMre11-E115EcRad50 salt bridge con-

necting the fastener and Rad50NBD. EcMre11Rad50E115K and

EcMre11K149ERad50 display reduced endo/exonuclease and

altered DNA binding activity, although the ATPase activity is

increased (Figures S4E and S4F). Remarkably, the charge-re-

verting double mutant EcMre11K149ERad50E115K rescues the

endonuclease on blocked DNA ends as well as the exonuclease

on free ends (Figures 2B and 2C). These data not only validate

the cutting state structure but also indicate that the observed

conformation is implicated in the endonucleolytic cutting of

blocked ends. The increased ATPase rate could be a result of

a weaker fastener-NBD interaction causing faster ADP-to-ATP

exchange within Rad50’s ATP cycle.

The Nuclease Active Site Is Located in a Transient
Channel between Mre11 and Rad50
In the active-site channel between EcMre11NUC and

EcRad50NBD, one DNA strand directly contacts the di-manga-

nese cluster and is properly positioned for nucleolytic cleavage

(the actual reaction is prevented by the H84SEcMre11 mutation)

(Figure 2D; Figure S5A). Difference density analysis is consistent

with the presence of two manganese ions, which are added to

the buffer prior to plunge freezing (Figures S5B and S5C). The

overall recognition is consistent with biochemically prevailing

30/50 exonuclease on free DNA ends and shows how DNA

binds to Mre11 in the active cutting state. The binding mode is

notably different from that obtained in crystallographic studies

of prokaryotic Mre11-DNA complexes in the absence of

Rad50. There, DNAwas bound across theMre11NUC dimer, sug-

gesting that Mre11 has different DNA binding modes (Fig-

ure S5C; Sung et al., 2014; Williams et al., 2008). Some density

extends from the di-metal binding site toward the exit of the

channel but has a poor quality that does not allow interpretation

(Figure 2E). Biochemical data show that EcMR preferentially

cleaves the 30 strand between terminal bases 3 and 4 (Saathoff

et al., 2018). Thus, the additional density could stem from DNA

that extends �3 bases beyond the di-metal cluster but may

also stem from a disordered EcMre11 loop (aa 188–203) (Fig-

ure S5D). This loop is not critical for cutting per se but seems

Table 1. Cryo-EMData Collection, 3DReconstruction, andModel

Refinement Statistics

EcMR Resting State EcMR Cutting State

(EMDB-10107) (EMDB-10116)

PDB: 6S6V PDB: 6S85

Data Collection and Processing

Magnification 130,000 165,000

Voltage (kV) 300 300

Electron exposure

(e–/Å2)

68 73.6

Defocus range (mm) –1.0 (–3.5) –1.0 (–3.5)

Pixel size (Å) 1.06 0.82

Symmetry imposed C2 C1

Initial particle

images (no.)

2,809,916 1,130,635

Final particle

images (no.)

142,229 151,271

Map resolution (Å) 3.5 4.2

FSC threshold 0.143 0.143

Refinement

Initial model used

(PDB code)

PDB: 4M0V,

homology model

of PDB: 3QF7

PDB: 4M0V,

Rad50 from

resting state

Model resolution (Å) 3.66 4.34

FSC threshold 0.5 0.5

Map sharpening B

factor (Å2)

–131 –194

Model Composition

Non-hydrogen

atoms

11,820 12,977

Protein residues 1,498 1,488

Ligands

Mn2+ 4 4

Mg2+ 2 2

ATPgS 2 –

ADP – 2

dsDNA – 63 nt

B factors (Å2)

Protein 83.3 66.03

Ligand

ATPgS 52.91 –

ADP – 73.63

dsDNA – 152.36

RMSDs

Bond lengths (Å) 0.009 0.007

Bond angles (�) 0.897 0.918

Validation

MolProbity score 1.82 2.27

Clashscore 6.21 18.66

Poor rotamers (%) 0.24 1.03

Table 1. Continued

EcMR Resting State EcMR Cutting State

(EMDB-10107) (EMDB-10116)

PDB: 6S6V PDB: 6S85

Ramachandran Plot

Favored (%) 92.22 91.87

Allowed (%) 7.78 8.47

Disallowed (%) 0.0 0.34
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to regulate the nuclease specificity (Figure S5E). Importantly, the

nuclease channel is wide enough to accommodate longer DNA

for endonucleolytic cleavage, as suggested by the biochemistry

(Figures 1D and 2B). However, structural alterations in dsDNA

(such as melting/unwinding) or changes in the protein are

required to accommodate internal DNA and avoid clashes in

the current conformation.

In summary, EcMre11 binds the DNA end through a transiently

formed channel, which is consistent with and can explain the

broad specificity of MR for diverse types of DNA termini.

The CCs Fold into a Rod Structure upon DNA Binding
To resolve more of the CCs, we employed different classification

schemes during the electron microscopy (EM) data evaluation

process that enabled us to reconstruct�1/3 of their macrostruc-

ture (Figure 3A). The CCs have a segmented structure and zip up

from themore flexible conformations into a closed ‘‘rod,’’ clamp-
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Figure 2. The Fastener Locks a Transient

Active-Site Channel between Mre11 and

Rad50

(A) The new EcMre11-EcRad50 interface in the

cutting state is stabilized by binding of the

EcMre11 fastener loop (blue) to the EcRad50 NBD

(orange).

(B) Functional analysis of the salt bridge between

E115EcRad50 and K149EcMre11. Although single

mutants reduce nuclease activity, both exonu-

clease (DNA I with a fluorescein label [green])

and endonuclease (DNA II with a fluorescein label

and protein block [triangle]) are substantially

rescued by a charge-reverting double mutant,

E115EcRad50+K149EcMre11.

(C) Quantification of (B) (n = 3 technical replicates).

Error bars indicate the standard deviation.

(D) Details of the interaction of the 30 strand at or

near the DNA end with the di-metal cluster of

EcMre11, showing that the DNA is poised for

cleavage in the observed cutting state (prevented

by the H84S mutation).

(E) The nuclease active site is located in a channel

between EcRad50 and EcMre11, which is princi-

pally large enough to accommodate hairpins and

even extended dsDNA for endonuclease, although

bending/melting of DNA or changes in the protein

assembly need to occur. Shown is the color-coded

density map superimposed with the structural

model. Additional density extending into the

structure could indicate some promiscuity in DNA

end binding.

See also Figures S4 and S5.

ing around the DNA duplex that is bound

at the NBDs (Figure 3B). DNA-induced

rod formation matches extremely well

the DNA-driven transition of human

MRN observed at low resolution by

atomic force microscopy (Moreno-Her-

rero et al., 2005), DNA-bound rods of

EcMR in AFM studies (de Jager et al.,

2004), and recent analysis of the human

Zn-hook (Park et al., 2017; Figure 3A). The Zn-hook dimers

joining the apices of the CCs can adopt open V-shaped and

closed rod-shaped dimers and, thus, may act as a hinge to allow

open, probably ring-like states and closed rod states of the CCs

(Hopfner et al., 2002; Park et al., 2017). Although, at this resolu-

tion, we cannot assign a sequence at the CCs, a highly

conserved sequence region (GEIR motif) in bacterial MR homo-

logs could mark an important site near the first CC-CC ‘‘zipper’’

contact (Figure 3B). We tested several mutations in this motif.

Although GEIR/GAIA did not lead to noticeable alteration of

the nuclease reactions, GEIR/AEIR robustly reduced endonu-

clease activity on blocked DNA ends, whereas exonuclease

activity on free DNA ends is almost as efficient as in the wild

type (WT) (Figure 3C; Figure S5E). Because this mutation still

leads to a complex with a stoichiometry and size similar to that

of the WT EcMR, the most plausible interpretation is that G/A

affects the structure and dynamics of the CCs, which appear
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to be particularly critical for ATP-dependent endonucleolytic

cleavage of blocked DNA.

In our reconstruction, we can visualize two more folded inter-

ruptions of the CCs that appear to form CC-CC zipper contacts

(Figure 3D). These interaction points match in shape a CC-CC

contact of the human hook element in the rod conformation

(Park et al., 2017) as well as regions of the ‘‘elbow’’ element of

the structural maintenance of chromosome (SMC) ABC-ATPase

MukB (B€urmann et al., 2019), indicating wider structural conser-

vation in the Rad50/SMC protein family. Although we cannot

assign a sequence motif to these elements yet, secondary struc-

ture analysis suggests that EcRad50 in total has at least five of

these folded interruptions in the CCs that could form zipper con-

tacts (Figure S5F).

The CCs Form a Clamp around DNA
The rod conformation is induced and stabilized by joint binding

of DNA by the CCs (e.g., K194 and K890) and the NBDs (e.g.,

R102, K128, and K130) (Figure 4A). Point mutations in DNA

binding residues in both NBDs and CCs did not affect basal

ATPase rates but nearly abolished DNA binding and DNA-

induced ATPase and nuclease activities (Figures 4B–4D).

Consistently, EcMRDCC and/or EcMRhook (C506S and C509S

mutations in the Zn-hook) lost high-affinity DNA binding (Fig-

ure S5G) and linear plasmid degradation activity (Figure S5H).

The strong effect of the CC lysines K194 and K890 on DNA bind-

ing and ATPase could also be due to the formation of CC-DNA

interactions in the pre-hydrolysis ATP state (not visualized

here). Alternatively, the cutting state structure could allow more

rapid ATP turnover. This is due to the fact, that the NBD dimer

A B C

D

Figure 3. The CCs Form a Long Rod upon

DNA Duplex Binding

(A) Low-resolution reconstruction and map

showing �200 Å of the zippered CCs emerging

from the DNA binding module (color code of Fig-

ure 1). The Zn-hook in rod conformation (PDB:

5GOX) is shown to visualize the approximate site

of EcMR.

(B) Left: medium-resolution reconstruction and

map showing the CCs up to the first zipper con-

tact. Right: pseudoatomic model visualizing the

large ring-to-rod transition of the CCs driven by

DNA binding. Top: a conserved sequence motif

(GEIR) maps to the region of the first zipper con-

tact.

(C) Mutating the GEIR motif affects endonuclease

activity on free and fluorescein-blocked DNA ends

(triangle) (see also Figure S5E).

(D) The dimeric CC apex at the human Zn-hook

(PDB: 5GOX) and the CC at the MukB elbow re-

gion (PDB: 6H2X) harbor a folded CC break

element that can be readily docked into the CC

zipper contact of EcMR.

See also Figure S5.

is not bound at the Mre11 dimer cleft

and, therefore, could more easily open

up for ADP/ATP exchange. Together,

these data show the CCs, their DNA-

clamping activity, and their proper Zn-hook-mediated dimeriza-

tion are functionally critical for high-affinity DNA binding and

ATP-dependent nuclease.

The interaction with the CCs noticeably bends DNA along the

NBDs compared with a crystal structure of archaeal MRDCC,

where DNA is much straighter and is not bound by the CCs (Fig-

ures 4E and 4F; Figure S6A; Liu et al., 2016). The observed bent

DNA conformation is more difficult to achieve with negatively

supercoiled DNA and may add to the sensing of damaged

DNA because negatively supercoiled DNA is present in undam-

aged E. coli chromosomes. Consistently, negatively supercoiled

DNA stimulates ATP hydrolysis by EcMRmuch less than relaxed

DNA (Saathoff et al., 2018).

Interestingly, the CC-mediated upward bending leads to a sin-

gle-base-pair registry shift along the NBDs compared with the

archaeal MR (DCC) ATPgS complex (Figures 4E and 4F). Thus,

it is also plausible that ATP-driven conformational changes in

the NBDs modulate the way DNA binds in MR and could affect

DNA processing. Although the details need to be clarified in

future studies, ATP-driven directional registry shifts (like in a

DNA translocase to promote directional movement) could help

detect the presence of stable protein-DNA adducts through a

steric filter by the CCs that allow DNA but not bulky adducts

to pass.

Loading onto Linear DNA Is Critical for the Processing of
DNA Blocks
Our structural analysis, in conjunction with analysis of the Zn-

hook, indicates that, in the cutting state, the CCs form a closed

rod all the way from the DNA binding head to the Zn-hooks,
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except for a fairly narrow opening near the NBDs that accommo-

dates one DNA duplex (Figure 3A). A second duplex between the

CCs (such as through entrapping a loop) would possibly interfere

with rod formation by preventing zipper contacts. Because the

GEIR motif mutation suggests that CC geometry is very sensi-

tively coupled to functional endonuclease, topological entrap-

ment of a linear DNA end rather than a loop could confer endo-

nuclease specificity toward DNA end structures.

To test this model, we analyzed a DNA fragment that contains

biotin moieties on both ends and is either double-blocked in a

linear (one streptavidin per end) or circular (both ends bound to

one streptavidin) fashion. Addition of EcMR leads to rapid

A B

C E F

D

Figure 4. The CCs Form a Chemo-mechanical DNA Clamp

(A) Details of the interaction of DNA with the CCs (top panel) and the NBD (bottom panel) of EcRad50, showing that the CCs and NBDs form a narrow gate and

clamp. Selected DNA binding residues are highlighted.

(B) Nuclease activity of EcMRDNA bindingmutants, analyzed with fluorescently labeled 60-bp DNA containing a free DNA end (DNA I) and a DNA end blocked by

a single-chain fragment against fluorescein (DNA II). The EcRad50 DNA-binding lysine and arginine were mutated to glutamate.

(C) Analysis of DNA-stimulated ATPase activity. The DNA binding mutants show no stimulation of ATPase but basal ATPase activity (n = 3 technical replicates).

The calculated mean is indicated by a black line. All ATP rates were measured with the nuclease dead Mre11H84Q mutant to avoid DNA degradation.

(D) DNA binding by fluorescence polarization anisotropy reveals that both NBD and CCs DNA binding residues are functionally critical (n = 3 technical repeats).

Error bars indicate the standard deviation. All DNA binding measurements were done with the nuclease dead Mre11H84Q mutant to avoid DNA degradation.

(E) Comparison of the DNA interaction of the cryo-EM EcMR cutting-state structure (left) with the X-ray structure ofMethanocaldococcus jannaschii (Mj) Rad50-

DNA (right).

(F) ADP-EcMR cutting state (right) binds DNA with a 1-bp registry shift across the NBDs compared with ATPgSMjRad50 (left) because of CC-mediated upward

bending and distortion of DNA.

See also Figure S6A.
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degradation of the linear but not the circular product in the same

reaction mixture, although both contain chemically identical pro-

tein-blocked nucleic acid termini (Figures 5A and 5B; Fig-

ure S6B). Consistently, EcMR binds to linear plasmid DNA with

higher affinity than circular supercoiled and relaxed DNA,

regardless of whether the DNA end is free or protein blocked

(Figures 5C and 5D). Because the only discriminating feature in

these studies is the DNA topology, a plausible role of the CCs

and their rod formation is the topological detection of DNA

breaks through a gating mechanism; i.e., rods can form when

a single duplex, but not a loop, threads through the CCs. In sup-

port of topological detection of blocks at linear DNA rather than

direct chemical recognition of DNA termini, we also find cleavage

of Ku70/80 blocked DNA ends by EcMR with an inward-shifted

cut site, as observed for eukaryotic MRN/MRX (Reginato et al.,

2017; Wang et al., 2017; Figure S6C). Thus, EcMRs biochemical

properties are very similar to the eukaryotic MRN-CtBP-interact-

ing protein (CtIP) in that it, too, cleaves at a defined distance from

a stable protein-DNA complex, irrespective of the nature of the

protein and the way it is bound to DNA. However, here we

show that the block needs to be on linear DNA rather than within

a DNA circle for recognition and cleavage, providing a DNA to-

pology/accessibility mechanism for the recognition of broken

DNA instead of chemical detection of free DNA termini.

Linking the Mre11 Dimer Slows Down Endonuclease
To load onto blocked DNA, the Mre11 dimer would need to relo-

cate from its autoinhibited conformation over the protein block to

A B C

D

E F G

Figure 5. Loading onto Linear DNA Is Critical for the Processing of DNA Blocks

(A) Assay for processing of internal and terminal protein blocks. DNA with 50 biotin (orange) is incubated with streptavidin (green), forming linear and circular

species. After incubation with EcMR, products are analyzed further using EcoRI digestion (black box) and heat denaturation.

(B) Streptavidin addition to linear DNA results in linear (�1,500-bp migration with one or two streptavidin-blocked DNA ends), circular (�2,000-bpmigration), and

different higher-order linear or circular species (asterisk). EcMR leads to selective digestion of the linear species and some of the higher-order species, pre-

sumably the linear ones. In contrast, the circular species is stable. EcoRI addition and heat denaturation confirm the topology of the circular species.

(C) Linear but not relaxed or supercoiled circular DNA efficiently competes for binding to EcMR with linear, 60-bp, fluorescently labeled DNA in fluorescence

polarization anisotropy experiments (n = 3 technical replicates). Error bars indicate the standard deviation.

(D) Like (C), but using a linear competitor with free or protein-blocked ends (n = 3 technical replicates). Error bars indicate the standard deviation.

(E) Scheme of the LisH-EcMR fusion approach to conformationally restrict and stabilize the Mre11 dimer.

(F) Time-dependent linear DNA degradation of 1,500-bp linear DNA containing a streptavidin block on both ends. WT EcMR rapidly degrades DNA to short

fragments, whereas LisH fusion proteins are severely (11-bp linker) or moderately (20-bp linker) compromised. Error bars indicate the standard deviation.

(G) Quantification of the occurrence of the less than 250-bp product over time in (F) (n = 3 technical replicates).

See also Figure S6.

Molecular Cell 76, 382–394, November 7, 2019 389

2 Publications

58



settle on the other side of DNA. Possibly, the Mre11 dimer tran-

siently opens up for this to occur, which is reasonable because

bacterial and archaeal Mre11NUC are monomeric in the absence

of Rad50 (Figure S6D; Hopfner et al., 2001; Saathoff et al., 2018).

We tested this hypothesis by fusing the Lis1 homology motif

(LisH) dimerization domain (Delto et al., 2015) to the N terminus

of EcMre11, which adds an additional tether between the two

Mre11NUC domains (Figure 5E). LisH stabilizes the Mre11 dimer

without leading to higher-order oligomers in EcMR (Figures

S6D and S6E). We assayed DNA degradation for two linker

lengths between LisH and Mre11 (11 and 20 residues) using

the linear DNA fragment with biotin-streptavidin blocks on both

sides (Figure 5F). Degradation of long DNA proceeds by repeti-

tive endonuclease reactions on both strands (Lim et al., 2015),

and we consistently observed the appearance of short DNA

(<250 bp) fragments. LisH-EcMR degrades plasmids in a de-

layed manner. LisH-20-EcMR’s endonuclease is 3–5 times de-

layed, although it has normal exonuclease. LisH-11-EcMR

hardly shows any endonuclease products (Figure 5G), although

its 30/50 exonuclease is only �3 times reduced compared

with the WT (Figures S6F and S6G). The lower exonuclease of

LisH-11-EcMR could originate from reduced loading on free

DNA ends, whichmight be at least facilitated by dimer dynamics.

The residual endonuclease activity of the 20-residue linker could

be because it might allow Mre11 dimers to disengage and re-

engage on the other side of DNA, with the LisH dimer remaining

at the original side of DNA. In any case, our data suggest that the

Mre11 dimer interface needs to be dynamic, especially for the

endonuclease reaction.

DISCUSSION

Mre11 and Rad50 are phylogenetically conserved DNA end-pro-

cessing machines (Paull, 2018; Syed and Tainer, 2018), required

to clear aberrant or blocked terminal DNA structures and hair-

pins to enable repair and maintain genome integrity, but the

mechanism of end recognition and processing by MR com-

plexes has remained unclear. Using cryo-electron microscopy

and biochemical analysis, we visualize resting and DNA cutting

states of the E. coli MR complex, revealing how MR binds and

processes DNA end structures. Our structures show that

EcMR adopts a nuclease-autoinhibited resting state in the

absence of DNA. DNA binding induces a global conformational

change that encompasses both the catalytic head module and

the CC region, leading to rod formation of the CCs and reposi-

tioning of the Mre11 dimer to the side of the complex, where it

assembles a DNA cutting channel and binds the free DNA end.

Combining our cryo-EM structures in the presence of ATPgS

with AFM data in the absence of nucleotides (de Jager et al.,

2004), a major state in the cellular environment could be M2R2,

possibly joined into a proteinaceous ring by the Rad50 Zn-

hook dimerization domains, although we do not want to rule

out other configurations (Figure 6). Linear DNA could then induce

the observed rod state in the CCs that enables and perhaps trig-

gers relocalization of the Mre11 protein from an auto-inhibited

state beneath the Rad50 NBDs to the active location at the

side. The Zn-hooks would act as hinges and remain joined,

consistent with crystallographic studies showing open and

closed/rod states in the Zn-hooks (Hopfner et al., 2002; Park

et al., 2017). Such a model is consistent with in vivo studies sug-

gesting that the CCs functionally connect hook and head ele-

ments through transmission of structural changes (Hohl et al.,

2015).We provide a putativemechanistic basis for this functional

coupling in vivo because formation of stable zipper contacts

along the CCs likely requires properly structured head and

hook regions. The previously observed DNA-induced rod forma-

tion of humanMRNCCs in low-resolution AFManalysis suggests

that this global conformational switching is a conserved feature

of MR/MRN/MRX complexes (Moreno-Herrero et al., 2005;

Park et al., 2017).

The CCs might also act as linkers of distant DNA elements (de

Jager et al., 2001; Hopfner et al., 2002; Seeber et al., 2016), in

addition to the functions in DNA clamping and gating proposed

here. Zn-hook dimerization might switch from intra- to intercom-

plex configurations, CC rods from different complexes could

interact by other means, or additional DNA interactions in the

CCs could mediate DNA tethering.

The CCs appear to be a critical structural switch with several

functions, including topological gating to DNA ends and assem-

bly of an active clamp for high-affinity DNA binding. The space

Figure 6. Model of DNA Sensing and Processing by MR

Proposed model of the sensing and cutting of DNA ends by EcMR. Binding of

internal DNA could lead to a scanning state (top panel). Encounter of a free

(center panels) or blocked (bottom panel) DNA end would allow ring-to-rod

transition of the CCs to form the high-affinity cutting state at or near DNA ends.

Free DNA ends are bound directly by Mre11, as seen in the cryo-EM structure.

Biochemical data suggest that a blocked end is bound in a reversed manner.

See also Figure S7.
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between the CCs near the NBDs can accommodate only one

DNA duplex. A second duplex within the CCs might prevent, or

at least interfere, with formation of a fully engaged rod with mul-

tiple zipper contacts, avoiding cutting of internal DNA because

the clamp around DNA might not form properly (Figure 6). Evi-

dence of such a global conformational role of CCs is supported

by biochemical analysis showing that mutations in the DNA bind-

ing residues of the CCs, CC truncation, or mutation of the Zn-

hook all have defective nuclease activity and no longer form

high-affinity DNA interactions.

Although we do not see degradation of circular DNA, even in

the presence of an ‘‘internal streptavidin-biotin’’ connecting

two DNA ends (Figures 5A and 5B), EcMR can still bind circular

DNA. Circular DNA stimulates EcMRs ATPase, so circular DNA

likely interacts with Rad50’s ATPase domains even though it is

not cleaved (Saathoff et al., 2018). Likewise, human MRN can

load to internal sites of DNA, followed by one-dimensional diffu-

sion until a DNA end is reached and DNA cleavage occurs (Myler

et al., 2017). Scanning is largely a property of the Rad50 protein

and does not even require the full CCs in the humanMRN setting,

whereas end recognition requires Mre11, in agreement with our

structure and consistent with the proposedmodel (Figure 6) (My-

ler et al., 2017). These peculiar properties could be explained if

interactions with circular DNA, still triggering ATP hydrolysis at

the NBDs, and with linear DNA are different. A possible explana-

tion is the apparent restriction of a stable rod conformation to a

single passage of DNA through the CCs (Figure 6).

Rod like-states could be a universal mechanistic feature of

Rad50/SMC proteins because rod formation and structural

changes are also proposed for the distantly related SMC protein

family, which forms cohesin and condensin complexes (Diebold-

Durand et al., 2017; Uhlmann, 2016). Although there are many

underlying functional and structural differences, the general ar-

chitecture of ABC ATPases coupled to CC rings/rods is quite

conserved between SMC proteins and MR. For instance, the

structural breaks in the CC rods that mediate the CC-CC zipper

contacts are similar to structural elements found in Rad50’s hook

and MukB’s elbow region, suggesting related architectural prin-

ciples (B€urmann et al., 2019; Park et al., 2017). Thus, although

the rod state of EcMRappears to be adapted to passage of a sin-

gle DNA duplex through the proteinaceous ring, a related mech-

anistic link between a certain number of DNA duplexes within

SMC protein rings (or their absence) and the head module could

be relevant for the dynamic interaction of SMC proteins with

chromosomal DNA, as shown by recent biochemical analyses

(Vazquez Nunez et al., 2019).

Our high-resolution structure of the cutting-state catalytic

head reveals howMR detects and processes a DNA end through

a new, previously unobserved asymmetric conformational state,

whereMre11 binds to the side of Rad50 to assemble a DNA-pro-

cessing channel (Figure 6). The transient formation of this chan-

nel and its structural properties offer an explanation of MR’s

broad nuclease reactions because it can accommodate different

DNA structures. The channel readily accommodates a free DNA

end, poised to cleave the 30 strand exonucleolytically, consistent

with the prevalence of 30 exonuclease on free DNA ends. The

channel could also accommodate nicked and bent dsDNA and

hairpins, explaining why MR readily opens hairpin structures

and can resect DNA 30/50 from the nick. The channel is also

wide enough to accommodate internal dsDNA. However, inter-

nal DNA would need to be bent/melted to fit into the channel,

and/or the protein adapts structurally. DNA bending/melting for

efficient endonuclease is indeed suggested by biochemical

studies (Cannon et al., 2013; Liu et al., 2016, ; Saathoff et al.,

2018), and the structural effect of the CCs on DNA geometry

and ATP-induced registry shifts of DNA along the NBDs are, in

principle, well suited to provide chemo-mechanical means for

triggering endonuclease activity. However, additional conforma-

tional states during the endonuclease reaction are possible as

well. For instance, EcMR-induced endonucleolytic cuts at

opposing DNA strands occur with a different cleavage chemis-

try, suggesting an additional mode of DNA approach to the di-

metal center (Saathoff et al., 2018). In addition, crystallographic

analysis shows alternative DNA binding modes of the Mre11

nuclease dimer in the absence of Rad50 (Sung et al., 2014; Wil-

liams et al., 2008). Although DNA was not bound at the di-metal

centers in these structures, these DNA contacts could represent

states during DNA end tethering or endonucleolytic reactions.

Thus, the requirement of the fastener-NBD interaction for endo-

nucleolytic processing suggests that key aspects of the cutting

state are also relevant for endonuclease, the precise mechanism

of endonucleolytic processing of blocked DNA by MR requires

future studies.

Our results provide some insights into the possible orientation

of MR relative to the block in such a reaction. It is unlikely that the

block is positioned directly at the exit of the active-site channel;

i.e., the location of the DNA end in the observed cutting state. In

such a scenario, DNA cleavage should occur closer to the end

than observed experimentally. Both the distance between the

block and the endonucleolytic cut sites and the cleavage chem-

istries in biochemical assays argue for location of the block at the

Mre11 distal side (Saathoff et al., 2018; Figure 6). This model,

suggesting that the CCs clamps are a filter for the block, would

explain the fairly consistent distance between endonucleolytic

cleavage and block (Cannavo and Cejka, 2014; Deshpande

et al., 2016; Saathoff et al., 2018) and mechanistically unify 30

exo- and 50 endonuclease through a simple flip of the location

of the Mre11 dimer relative to Rad50 on DNA. Loading of

EcMR in the flipped orientation would require transient dissocia-

tion of the Mre11 dimer, followed by reassembly on the other

side of the DNA duplex (Figure 6). Our LisH fusion proteins

indeed provide evidence that such transient disassembly is crit-

ical for endonuclease reactions but that reassembly of a func-

tional Mre11 dimer on DNA is crucial because mutations that

weaken theMre11 dimer interface cripple EcMR’s endonuclease

in vitro and MRN’s function in S. pombe in vivo (Williams

et al., 2008).

Finally, our results have implications for eukaryotic MRN/X,

which requires Nbs1/Xrs2 and CtIP/Sae2 constitutive or tran-

sient subunits for efficient DNA processing in vivo (Hoa et al.,

2016; Mimitou and Symington, 2008; Sartori et al., 2007) and

in vitro (Anand et al., 2016; Cannavo and Cejka, 2014; Desh-

pande et al., 2016). Comparison of the bacterial MR cutting state

with a model of a putative equivalent eukaryotic complex reveals

that the fastener loop of EcMre11 binds precisely to the surface

cluster of residues corresponding to S. cerevisiae Rad50S
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mutations (Figure S7; Alani et al., 1990). Rad50S mutations phe-

nocopy sae2D, cluster on a surface patch on the Rad50 NBDs,

and have been proposed early on (Hopfner et al., 2000) and

recently demonstrated to disrupt an interaction of Sae2 with

Rad50 (Anand et al., 2016). Intriguingly, in CtMre11 (also

SpMre11), this element is much shorter and conspicuously lacks

the long loop that locks EcMre11NUC to EcRad50NBD at the

‘‘Rad50S’’ site. It is therefore possible that, instead of a Mre11-

intrinsic fastener, the interaction of eukaryotic MRN in the cutting

state could be mediated by CtIP/Sae2, which interacts at

this site.

In summary, although structures of MRN-CtIP cutting states

and structures of MR complexes bound to blocked DNA are

needed to clarify activation of the eukaryotic system and the

endonuclease activity of MR/MRN, we present structural and

biochemical data that provide a new comprehensive framework

and mechanistic concept for the detection and processing of

diverse DNA ends by the Mre11-Rad50 nuclease complex.
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of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236.

Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activ-

ity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122–125.

Cannon, B., Kuhnlein, J., Yang, S.H., Cheng, A., Schindler, D., Stark, J.M.,

Russell, R., and Paull, T.T. (2013). Visualization of local DNA unwinding by

Mre11/Rad50/Nbs1 using single-molecule FRET. Proc. Natl. Acad. Sci. USA

110, 18868–18873.

Carney, J.P., Maser, R.S., Olivares, H., Davis, E.M., Le Beau, M., Yates, J.R.,

3rd, Hays, L., Morgan, W.F., and Petrini, J.H.J. (1998). The hMre11/hRad50

protein complex and Nijmegen breakage syndrome: linkage of double-strand

break repair to the cellular DNA damage response. Cell 93, 477–486.

Cejka, P. (2015). DNA End Resection: Nucleases Team Up with the Right

Partners to Initiate Homologous Recombination. J. Biol. Chem. 290,

22931–22938.

392 Molecular Cell 76, 382–394, November 7, 2019

2 Publications

61



Chang, H.H.Y., Pannunzio, N.R., Adachi, N., and Lieber, M.R. (2017). Non-ho-

mologous DNA end joining and alternative pathways to double-strand break

repair. Nat. Rev. Mol. Cell Biol. 18, 495–506.

Ciccia, A., and Elledge, S.J. (2010). The DNA damage response: making it safe

to play with knives. Mol. Cell 40, 179–204.

Connelly, J.C., de Leau, E.S., and Leach, D.R. (2003). Nucleolytic processing

of a protein-bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair

(Amst.) 2, 795–807.

de Jager, M., van Noort, J., van Gent, D.C., Dekker, C., Kanaar, R., and

Wyman, C. (2001). Human Rad50/Mre11 is a flexible complex that can tether

DNA ends. Mol. Cell 8, 1129–1135.

de Jager, M., Trujillo, K.M., Sung, P., Hopfner, K.-P., Carney, J.P., Tainer, J.A.,

Connelly, J.C., Leach, D.R.F., Kanaar, R., and Wyman, C. (2004). Differential

arrangements of conserved building blocks among homologs of the Rad50/

Mre11 DNA repair protein complex. J. Mol. Biol. 339, 937–949.

Delto, C.F., Heisler, F.F., Kuper, J., Sander, B., Kneussel, M., and Schindelin,

H. (2015). The LisH motif of muskelin is crucial for oligomerization and governs

intracellular localization. Structure 23, 364–373.

Deshpande, R.A., Lee, J.H., Arora, S., and Paull, T.T. (2016). Nbs1 Converts

the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease

Machine Specific for Protein-DNA Adducts. Mol. Cell 64, 593–606.

Diebold-Durand, M.L., Lee, H., Ruiz Avila, L.B., Noh, H., Shin, H.C., Im, H.,

Bock, F.P., Burmann, F., Durand, A., Basfeld, A., et al. (2017). Structure of

Full-Length SMC and Rearrangements Required for Chromosome

Organization. Mol. Cell 67, 334–347.e5.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular

graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

Eykelenboom, J.K., Blackwood, J.K., Okely, E., and Leach, D.R. (2008).

SbcCD causes a double-strand break at a DNA palindrome in the

Escherichia coli chromosome. Mol. Cell 29, 644–651.

Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruit-

ment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434,

605–611.

Garcia, V., Phelps, S.E.L., Gray, S., and Neale, M.J. (2011). Bidirectional resec-

tion of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244.

Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris,

J.H., and Ferrin, T.E. (2018). UCSF ChimeraX: Meeting modern challenges in

visualization and analysis. Protein Sci. 27, 14–25.

Herdendorf, T.J., Albrecht, D.W., Benkovic, S.J., and Nelson, S.W. (2011).

Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex.

J. Biol. Chem. 286, 2382–2392.

Hoa, N.N., Shimizu, T., Zhou, Z.W., Wang, Z.Q., Deshpande, R.A., Paull, T.T.,

Akter, S., Tsuda, M., Furuta, R., Tsutsui, K., et al. (2016). Mre11 Is Essential for

the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Mol.

Cell 64, 1010.

Hohl, M., Kwon, Y., Galván, S.M., Xue, X., Tous, C., Aguilera, A., Sung, P., and

Petrini, J.H. (2011). The Rad50 coiled-coil domain is indispensable for Mre11

complex functions. Nat. Struct. Mol. Biol. 18, 1124–1131.

Hohl, M., Kocha�nczyk, T., Tous, C., Aguilera, A., Krę _zel, A., and Petrini, J.H.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

ATP Sigma A3377

ATPgS Sigma A1388

ADP Sigma A0752

2-Mercaptoethanol Carl Roth 4227

DTT Carl Roth 6908

Imidazole Carl Roth 3899

b-Octylglycoside Sigma O8001

BSA New England bioLabs B9000S

FAM-scFv Prof. Dr. Pl€uckthun,

University of Z€urich

Pedrazzi et al., 1997;

Jermutus et al., 2001

N/A

Bradford Roti_Quant Carl Roth K015

Urea Carl Roth 3941

EDTA VWR International 6381-92-6

Ficoll 400 Carl Roth CN90.3

Rotiphorese DNA sequencing system Carl Roth A431.1

MgCl2 Merck 7791-18-6

MnCl2 Sigma M3634

Streptavidin IBA 2-0203-100

Pyruvat kinase/Lactatic dehydrogenase from

rabbit muscle

Sigma P0294

Phosphoenol Pyruvate ITW Reagents A2271

NADH Carl Roth AE12

TCEP Sigma 646547

SIGMAFAST Protease Inhibitor Cocktail Tablet,

EDTA free

Merck S8830

GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific SM0311

Deposited Data

EcMR coordinates (resting state) This Paper PDB: 6S6V

EcMR head EM map (resting state) This Paper EMDB: EMD-10107

EcMR coordinates (cutting state) This Paper PDB: 6S85

EcMR head EM map (cutting state) This Paper EMDB: EMD-10116

EcMR head with longer coiled coils EM map This Paper EMDB: EMD-10114

EcMR head with long coiled coils, low resolution

EM map

This Paper EMDB: EMD-10115

Full Gel Images This Paper https://doi.org/10.17632/g5ypj2dyj2.1

Experimental Models: Cell Lines

E. coli Rosetta Expression Systems N/A

E. coli BL21 Expression Systems N/A

E. coli XL1 Blue Expression Systems N/A

Spodoptera frugiperda sf21 cells Expression Systems N/A

Trichoplusia ni cells Expression Systems N/A

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Karl-Peter

Hopfner (hopfner@genzentrum.lmu.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Organisms as source for materials used in experiments
E. coli XL1 Blue cells were used for amplification of plasmid DNA.

E. coli BL21 (DE3) and E.coli Rosetta2 were used for recombinant protein expression.

Spodoptera frugiperda sf21 insect cells were used for virus production.

Trichoplusia ni insect cells were used for recombinant protein expression.

METHOD DETAILS

Expression and purification of EcMR
EcMre11fl (cloned in pET21b, 6xHis-tag) and EcRad50fl (cloned in pET29) were co-transfected into E. coli BL21 or Rosetta cells

(Novagen). E. coli cultures were grown in LB medium at 37�C to an OD600 of 0.6. Protein expression was induced with 0.5 mM

IPTG and carried out for 16 h at 18�C. The cells were harvested by centrifugation and the pellet was resuspended in lysis buffer

(25 mM Tris pH 7.5, 150 mM NaCl, 10 mM Imidazole and 5 mM b-Mercaptoethanol) before cell disruption by sonication. The cell

lysate was cleared by centrifugation and the supernatant was applied onto 2.5 mL of pre-equilibrated Ni-NTA (QIAGEN). The beads

were washed with 20 mL lysis buffer and 25 mL wash buffer (25 mM Tris pH 7.5, 125 mM NaCl, 20 mM Imidazole and 5 mM b-Mer-

captoethanol). The protein was eluted with 10 mL elution buffer (25 mM Tris pH 7.5, 100 mM NaCl, 200 mM Imidazole and 5 mM

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Oligonucleotides Metabion N/A, See Table S1

Recombinant DNA

pET21b-EcMre11 Saathoff et al., 2018 N/A

pET29-EcRad50 Saathoff et al., 2018 N/A

pACEBac1-pIDK-CtKu70/80 This Paper N/A

pBR322 Fermentas SD0041

Software and Algorithms

SerialEM Mastronarde, 2005 http://bio3d.colorado.edu/SerialEM/

MotionCor2 Zheng et al., 2017 https://msg.ucsf.edu/em/software/motioncor2.html

CTFFind4.1 Rohou and Grigorieff, 2015 http://grigoriefflab.janelia.org/ctffind4

Relion 2.1b1 Scheres, 2012 https://www3.mrc-lmb.cam.ac.uk/relion/index.php?

title=Main_Page

Phenix Afonine et al., 2018 https://www.phenix-online.org/

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Pymol Schrödinger https://pymol.org/2/

Chimera X Goddard et al., 2018 https://www.rbvi.ucsf.edu/chimerax/

COOT Emsley and Cowtan, 2004 https://www2.mrc-lmb.cam.ac.uk/Personal/

pemsley/coot/

Prism GraphPad N/A

EMAN2 Tang et al., 2007 http://blake.bcm.tmc.edu/EMAN2/

CryoSPARC Punjani et al., 2017 https://cryosparc.com/

SWISS-MODEL server Biasini et al., 2014 https://swissmodel.expasy.org/

3D-DART van Dijk and Bonvin, 2009 http://haddock.chem.uu.nl/dna/dna.php

Gautomatch Dr. Jack Zhang https://www.mrc-lmb.cam.ac.uk/kzhang/
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b-Mercaptoethanol). The eluate was applied onto a 1 mL HiTrapQ column (GE) and eluted by a step gradient with increasing salt

(Buffer A: 100 mM NaCl, 25 mM Tris pH 7.5, Buffer B: 1 M NaCl, 25 mM Tris pH 7.5). The peak fractions were pooled, concentrated

and purified via size-exclusion chromatography using a Superose 6 10/300 (GE Healthcare) column in size-exclusion buffer (125 mM

NaCl, 20 mM Tris pH 7.5, 10% Glycerol). The protein fractions of interest were pooled, concentrated, flash frozen and stored at

�80�C until further use.

Expression and Purification of CtKu70/80
Codon-optimized synthetic DNA (Genscript, Piscataway, USA) encoding ctKu70 (N-terminal human rhinovirus 3C-protease cleav-

able 6xHis-tag) and ctKu80 was PCR amplified and cloned into pACEBac1 and pIDC respectively and expressed using the MultiBac

technology (Bieniossek et al., 2008). Recombination steps were carried out in Escherichia coli XL1Blue cells (Stratagene) under

addition of Cre recombinase (NEB). Baculoviruses were generated in Spodoptera frugiperda (SF21) insect cells (IPLB-Sf21AE).

Trichoplusia ni High Five cells (Invitrogen) were co-infected with 1:5000 of baculovirus. Cells were cultured for 72 h at 27�C and har-

vested by centrifugation.

For purification, cells from 250 mL cells were disrupted in lysis buffer (50 mM HEPES pH 7.5, 1 M NaCl, 400 mM NH4OAc, 5%

glycerol, 0.5 mM TCEP supplemented with a SIGMAFAST Protease Inhibitor Cocktail Tablet, EDTA free (Merck)) and gently sonified.

Raw lysate was incubated for 1 h at 50�C and subsequently cleared by centrifugation at 34500 g and 4�C for 30 min. The supernatant

was applied onto 2mL of pre-equilibrated Ni-NTA (QIAGEN). The beads were washedwith 20mLwash buffer (50mMHEPES pH 7.5,

250mMNaCl, 10mM Imidazole and 0.5 mMTCEP). The protein was eluted with 10mL elution buffer (50mMHEPES pH 7.5, 250mM

NaCl, 500mM Imidazole and 0.5 mMTCEP). The affinity tag was cleaved by overnight incubation with human rhinovirus 3C-protease

at 4 �C during dialysis into low salt buffer (50 mM HEPES pH 7.5, 150 mM NaCl and 0.5 mM TCEP). The filtered protein was loaded

onto a 5 mL HiTrap Heparin HP column (GE Healthcare), equilibrated in the dialysis buffer and eluted with an increasing salt gradient.

The peak fractions were pooled, concentrated and purified via size-exclusion chromatography using a Superose 6 16/60 (GE Health-

care) column in size-exclusion buffer (20 mMHEPES pH 7.5, 200 mMNaCl and 0.5 mM TCEP). The protein fractions of interest were

identified by SDS-PAGE, pooled, concentrated, flash-frozen in liquid N2 and stored at �80 �C until required.

Nuclease assays
The nuclease reaction was carried out in assay buffer (25 mM Tris pH 7.5, 50 mM KCl, 5 mM MgCl2, 1 mM MnCl2, 0.1 mg/ml BSA,

1 mM DTT, 1 mM ATP) with 250 nM EcMR and 50 nM 6-FAM labeled 60 bp dsDNA substrate. Where indicated, reactions were sup-

plemented with a 15-fold excess of a single-chain variable fragment against fluorescein (FAM-scFv) to generate a blocked DNA end

(Pedrazzi et al., 1997). Prior to each nuclease reaction, the precise EcMR-concentration was determined according to Bradford using

the Roti-Quant solution (Roth). The reaction was started by protein addition and incubated at 37�C for 5min for a blocked dsDNA end

and for 15 min for an unblocked dsDNA. 10 mL of each reaction was terminated by mixing equal volume of loading buffer (8 M Urea,

20 mM EDTA, 6% Ficoll 400). The reaction products were resolved on 12% denaturing polyacrylamide gels (Rotiphorese� DNA

sequencing system) in 1x TBE buffer. Gels were run at 90 min at a constant power of 32 W and scanned by a Typhoon fluorescence

imager (GE healthcare). FAM-labeled substrates were imaged with a 473 nm Laser and 510 nm filter. The images were analyzed and

integrated with the ImageJ software.

ATPase assays
Weapplied an NADH-coupled assay tomonitor the ATP-hydrolysis rate of EcMre11-Rad50. EcMR (250 nM) was incubated at 37�C in

assay buffer (25 mM Tris pH 7.5, 50 mM KCl, 5 mM MgCl2, 1 mM MnCl2, 1 mM ATP, 0.1 mg/ml BSA, 1 mM DTT) in the presence of

NADH (0.35 mM), pyruvate kinase/lactate dehydrogenase (20 U/ml PK, 30 U/ml LDH, Sigma) and Phosphoenol Pyruvate (2 mM). To

stimulate EcMR’s ATPase activity, a 60 bp DNA (1000 nM) was added. The rate of NADH oxidation wasmonitored fluorometrically by

measuring the absorbance at 340 nm on an Infinite M1000 microplate reader (Tecan) over a period of 20 minutes. ATP turnover was

calculated using the steady-state rate and corrected for a buffer blank. All ATP rates were measured with the nuclease dead

Mre11H84Q mutant to avoid DNA degradation.

DNA binding assays
Fluorescence polarization anisotropy was used to monitor the interaction between EcMR and 35 bp DNA. 2.5 nM of 50 Fluorescein-
labeled DNAwas incubated with increasing concentrations of EcMR in assay buffer (25mMTris pH 7.5, 50mMKCl, 1mMATP, 5mM

MgCl2, 1 mMMnCl2, 1 mMDTT). After 20minutes at 25�C, the fluorescence anisotropy wasmeasured at an excitation wavelength of

470 nM and emission wavelength of 520 nM. All DNA binding measurements were measured with the nuclease dead Mre11H84Q

mutant to avoid DNA degradation. Data were analyzed with Prism (GraphPad) and KD values determined by fitting the anisotropy

data to a bimolecular equilibrium model:

Y = Af � Af � Abð Þ x

Kd � x
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Competitive DNA binding assay
For the competition assays, fluorescence polarization anisotropy was used to monitor the interaction between EcMR and long DNA

substrates. 2.5 nM of 35 bp 50 Fluorescein-labeled DNA was incubated with 50 nM EcMH84QR for 20 minutes at 25�C in assay buffer

(25 mM Tris pH 7.5, 50 mM KCl, 1 mM ATP, 5 mM MgCl2, 1 mM MnCl2, 1 mM DTT). For the competition reaction, increasing con-

centrations of plasmid DNA (pBR322) or 50 biotinylated 1500 bp were added and incubated for 20 minutes at 25�C. The fluorescence

anisotropy was measured at an excitation wavelength of 470 nM and emission wavelength of 520 nM. The anisotropy data were fit

with Prism (GraphPad).

Blocked dsDNA degradation assay
To test for degradation of linear and circular DNAwith a protein block, a 1500 basepair fragment was amplified by PCR using pET21b

vector as template and 50 biotinylated primers (for: ccgcgcacatttccccgaaaagtgcc, rev: ccagttgatcggcgcgagatttaatcg). DNA ends

were blocked in assay buffer (25 mM Tris pH 7.5, 50 mM KCl, 1mM ATP, 5 mM MgCl2, 1 mM MnCl2, 0.1 mg/ml BSA, 1 mM DTT)

with 52 nM DNA and 5 mM streptavidin at 20�C. The nuclease reaction was started by adding 50 nM of EcMR and incubated at

37�C. Quenching of the reaction was done after 0, 2.5, 5, 10, 30 and 60 minutes by adding 1.5 ml 200 mM EDTA per 6 ml reaction

mix. For agarose gel electrophoresis 6 ml reaction mix were diluted with 14 ml 1.6x loading dye and 8 ml of each sample were then

separated by horizontal agarose gel electrophoresis. The DNA and degradation products were separated by horizontal agarose

gel electrophoresis and imaged with a Typhoon fluorescence imager (GE healthcare) using 473 nm Laser and 510 nm filter. Degra-

dation products and educts were quantified using ImageJ.

Circularization Assay
Circularization of 50 biotinylated 1500 bp dsDNA was carried out in assay buffer (25 mM Tris pH 7.5, 50 mM KCl, 1mM ATP, 5 mM

MgCl2, 1 mMMnCl2, 0.1 mg/ml BSA, 1 mMDTT) with 20 nM DNA and 10 nM streptavidin at 20�C. The nuclease reaction was started

by adding 200 nM of EcMR and incubated 10 minutes at 37�C. The DNA and degradation products were separated by horizontal

agarose gel electrophoresis and imaged with a Typhoon fluorescence imager (GE healthcare) using 473 nm Laser and 510 nm filter.

Size Exclusion Analysis
For the size exclusion analysis ofEcMRwithout ATP andDNA, 20ml ofEcMRweremixedwith 30ml SECbuffer I (50mMKCl, 20mMTris

pH 7.5). For EcMR in complex with ATP, 20 ml EcMR were mixed with 5 ml 10x buffer (10 mM ATP, 10 mMMnCl2, 50 mMMgCl2) and

25 ml SECbuffer I. ForEcMR in complexwith ATP andDNA, 20 ml ofEcMRweremixedwith 5 ml 10x buffer and 25ml DNA (18 mM,60 bp).

All three samples were incubated at room temperature for 30 min and centrifuged with a table top centrifuge at full speed for 10 min.

50 ml of themixturewere injected onto a S6 5/150 column. For the samplewithout ATP andDNASECbuffer I was used. For the samples

with ATP and ATP and DNA SEC buffer II was used (50 mM KCl, 20 mM Tris pH 7.5, 5 mM MgCl2, 1 mM MnCl2, 1 mM ATP).

Cryo electron microscopy grid preparation
For the resting state EcMR:ATPgS complex, full length EcMR was purified as described previously with the exception that for the

buffers 2 mM DTT instead of 5 mM b-mercaptoethanol were used. After the ion exchange chromatography, the protein was pooled,

aliquoted and snap-frozen in liquid nitrogen. Prior to grid preparation the EcMR was thawed and purified via size exclusion chroma-

tography using a S6 5/150 column (buffer: 50 mM KCl, 20 mMHEPES, pH 7.5). The peak fraction was diluted to a final concentration

of 0.4 mg/ml and mixed with 10x buffer (10 mMMnCl2, 25 mMMgCl2 and 10 mM ATPgS). Right before grid preparation 5 mL b-octyl

glucoside were added to a final concentration of 0.05%. 4.5 mL of the protein solution were applied to Quantifoil R2/1 holey carbon

grids and frozen in liquid ethane using a Leica EM GP (Leica, 15�C and 95% humidity).

For the cutting state EcMR:DNA complex, 10x Buffer (10mMMnCl2, 25mMMgCl2 and 10mMATP) weremixed with 60 bp dsDNA

(fwd: 50-CGCTTTATCAGAAGCCAGACATTAACGCTTC TGGAGAAACTCAACGAGCTGGACGCGGAT-30) and the peak fraction of

EcMH84SR was added. Two datasets were collected on the EcMR:DNA complex with a protein:DNA ratio of 1:5 (dataset I) and 1:3

(dataset II) and protein concentrations of 0.3 mg/ml and 0.5 mg/ml, respectively. For incubation the complex was left on ice for at

least 30 min and the protein solution was applied to Quantifoil R2/1 holey carbon grids and frozen in liquid ethane using a Vitrobot

IV (FEI, 4�C and 95% humidity).

Cryo electron microscopy data collection
Data was collected with a FEI Titan Krios transmission electron microscope (300 kV) using a Gatan K2 detector and a Gatan GIF

Quantum energy filter (slit width 20 eV). SerialEM was used for data acquisition using customized scripts from Mike Strauss (Mas-

tronarde, 2005). For the resting state EcMR:ATPgS complex 8186 micrographs were collected with a pixel size of 1.06 Å and a total

electron dose of 68 e-/Å2. A defocus from �1.0 to �3.5 mM was used and 50 frames were collected in 10 s (0.2 s/frame).

For the cutting state EcMH84SR:DNA complex two datasets were collected with 9336 (dataset I) and 3475 (dataset II) micrographs.

Both datasets were collected with a pixel size of 0.82 Å and a total electron dose of 73.6 e-/Å2 dataset I and II. A defocus from�1.0 to

�3.5 mm was used and 25 frames were collected in 5 s (0.2 s/frame).
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Data processing and 3D reconstruction
Motioncor2 (Zheng et al., 2017) was used to align themicrographs. Subsequently, the alignedmicrographswere used for determining

the correlation transfer function with CTFFind 4.1 (Rohou andGrigorieff, 2015). Respectively, 6895micrographs were selected for the

resting state reconstruction. Unless stated otherwise all processing steps were performed with RELION 2.1b1 (Scheres, 2012). The

gold standard Fourier shell correlation 0.143 criterion was used to determine the resolutions of the reconstructions. RELION was

used for automatic B-factor determination. The exact processing schemes including particle numbers are illustrated in Figure S1

and S3. For the resting state reconstruction, initial manual picking was performed with EMAN2 (Tang et al., 2007) and 1607 particles

were picked manually. From the picked particles, 2D classes were calculated using RELION2.1b1. The four best classes were low

pass filtered to 20 Å and used for autopicking on a subset of 2935micrographs (subset I). From these micrographs, 998 166 particles

were picked and subjected to 2D classification and classes with clearly defined features were selected. A subset of these particles

was used to calculate an initial 3D model using CryoSPARC (Punjani et al., 2017). An initial 3D classification with six classes and C1

symmetry resulted in a reconstruction that was further used as reference. In parallel 2D classes calculated from subset I and low pass

filtered to 20 Å were used for autopicking on all 6895micrographs and in total 2 809 916 particles were picked. After 2D classification

1 187 179 particles were subjected to 3D classification (C2 symmetry) and from these four classes, the best two classes were

selected for further processing. Further sorting and 2D classification, yielded a dataset with 472836 particles. 3D Classification

into two classes resulted in two reconstructions, one with well-defined EcMre11 HLH motif and beginning of the EcRad50 coiled-

coils (30%) and one where this part is less well defined (70%). The map with a well defined HLH motif contained 142229 particles

and was used for further refinement. The final resolution of this reconstruction after solvent mask post-processing was 3.5 Å.

For the cutting state reconstruction, 7762micrographs were selected from the initial recorded 9336micrographs based onmanual

inspection of the CTF. Gautomatch (developed by K. Zhang, MRC Laboratory of Molecular Biology, Cambridge, UK, https://www.

mrc-lmb.cam.ac.uk/kzhang/Gautomatch) was used for initial particle picking. The four best classes with 54 556 particles were low-

pass filtered to 20 Å in RELION and used for autopicking in RELION. After several rounds of autopicking and 2D classification 149 098

particles were used to reconstruct an initial model in CryoSPARC. In the initial 3D classification 489 112 particles were classified into

four classes using C1 symmetry and one class with 100 194 particles was selected. Further classification yielded a final subset of 58

385 particles. Using the 2D classes generated from dataset I, 696 512 particles were picked in dataset II with RELION from 3178

micrographs (initial 3475). After 2D classification the selected 342 737 particles were subjected to 3D classification with the initial

model from a refinement run from dataset I. After particle polishing and movie processing the particles were joined together and sol-

vent masked post-processing resulted in a 4.2 Å reconstruction. After application of a larger mask covering a longer segment of the

coiled-coils, the same particles gave a lower overall resolution reconstruction, where the course of the coiled coils could be traced to

nine helical turns away from the head complex. To calculate the low resolution (�15 Å) reconstruction with longer coiled-coils, par-

ticles from dataset I were subjected to 3D classification and the one class with elongated coiled-coils (24 055 particles) was selected.

The box size of these particles was increased to 800 pixel and the particles were further classified with 2D and 3D classification

yielding in a reconstruction with 18833 particles.

Model building
UCSF Chimera (Pettersen et al., 2004) was used to dock the existing crystal structure of the EcMre11 nuclease and capping domain

(PDB: 4M0V) into the electron density. For EcRad50 an initial model calculated from the Thermotoga maritima structure (PDB: 3QF7)

with the SWISS-MODEL server. The resolution during refinement was restricted to 3.5 Å. The helix-loop-helix (HLH) motif was built

from poly-alanine helices generated in COOT (Emsley and Cowtan, 2004) and the linker between the two helices and the linker be-

tween capping domain and HLH motif were built manually.

For the cutting state reconstruction, UCSF Chimera was used to dock the crystal structure of the EcMre11 nuclease and capping

domain (PDB: 4M0V) into the electron density. The EcRad50 model from the resting state cryo-EM structure was used to build

EcRad50 in the processing state structure. Similarly, the HLHmotif was fitted into the processing state structure. The linker was built

manually into the density of the Mre11 (A) monomer. For the Mre11 (B) monomer the resolution was too low to allow building of the

linker. COOT was used for model building alternating with real space refinement in PHENIX 1.14 (Afonine et al., 2018) using the

EcMre11 crystal structure (4m0v) as reference model. Since the directionality and registry of DNA binding could not be determined

from the structure dsDNA we used an arbitrary registry from the DNA model generated using the webserver 3D-DART (van Dijk and

Bonvin, 2009) on the basis of our experimental sequence. This website was also used to bend the DNA using parameters for bend

angle (30), bend zone (9-20) and origin (8). COOT was used to refine the DNA using libg restraints alternating with real-space refine-

ment in PHENIX where base pairs as well as base stacking pairs were defined for refinement.

QUANTIFICATION AND STATISTICAL ANALYSIS

ImageJ was used for quantification of nuclease and plasmid assay products and educts. GraphPad Prism was used for plotting the

resulting quantification values (in Figures 2C, 5G, and S6G). Error bars are given as standard deviation of the mean.

GraphPad Prism was used for plotting triplicates of the DNA binding assay (in Figures 4D, 5C, 5D, S4C, S4F, and S5G). Error bars

are given as standard deviation of the mean.
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GraphPad Prism was used for plotting triplicates of the ATPase assay (Figures 4C and S4E). The calculated mean is indicated by a

black line.

DATA AND CODE AVAILABILITY

The coordinate files generated during this study are available at the protein data bank (https://www.rcsb.org/) with the accession

codes PDB: 6S6V (resting state) and PDB: 6S85 (cutting state).

The calculated reconstructions generated during this study are available at the Electron Microscopy Data Bank (https://www.ebi.

ac.uk/pdbe/emdb/) with the accession codes EMDB: EMD-10107 (resting state), EMDB: EMD-10116 (cutting state head complex at

4.2A), EMDB: EMD-10114 (cutting state head complex at 4.3A) and EMDB: EMD-10115 (cutting state head complex at 15A with long

coiled coils). Full gel images are deposited under the following https://doi.org/10.17632/g5ypj2dyj2.1

e6 Molecular Cell 76, 382–394.e1–e6, November 7, 2019

2 Publications

69



Molecular Cell, Volume 76

Supplemental Information

Mechanism of DNA End Sensing and Processing

by the Mre11-Rad50 Complex

Lisa Käshammer, Jan-Hinnerk Saathoff, Katja Lammens, Fabian Gut, Joseph
Bartho, Aaron Alt, Brigitte Kessler, and Karl-Peter Hopfner

2 Publications

70



 
 

 

 

 

 
 

2 Publications

71



Figure S1 Related to Figure 1| Cryo-EM processing scheme of the resting state 

 (A) Size exclusion profile of full-length EcMR. The peak used for grid preparation is indicated by 

an asterisk.  

 (B) Representative micrograph of the resting state EcMR complex bound to ATPS. 

 (C) The local resolution of the resting state reconstruction was calculated using ResMap and is 

shown as color-coded surface representation. 

 (D) The fifteen highest populated classes from the 2D classification of the EcMR in resting 

state are shown.  

 (E) Gold-standard Fourier shell correlation (FSC) for the resting state. The red line indicates the 

0.143 cutoff criterion which indicates a nominal resolution of 3.5 Å. 

 (F) Angular distribution of the particles used for the resting state reconstruction 

 (G) Flow chart showing the image-processing pipeline for the cryo-EM data analysis of the 

EcMR resting state. 
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Figure S2 Related to Figure 1| Resting State Analysis 

(A) Portion of the electron density superimposed with the 1.8 Å X-ray structure of EcMre11 (4M0V) 

shows the quality of the map. This starting model was subsequently adjusted and refined. 

(B)  Gel filtration retention volumes of EcMR in absence and presence of ATP and/or DNA shows 

homogeneous species and no formation of stable higher order oligomers as a function of ATP or 

DNA. ATP/DNA leads to a slight reduction of hydrodynamic radius.   

(B) Comparison of the resting state EcMR head with X-ray structures of the MR head from 

Thermotoga maritima (PDB: 3THO) and Methanocaldococcus jannaschii (PDB: 3AV0). All three 

structures show a related fold with slightly different orientations of the coiled coil. 
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Figure S3 Related to Figure 1| Cryo-EM processing scheme of the cutting state 

 (A) Size exclusion profile of full-length EcMRH84S. The peak used for grid preparation is indicated 

by an asterisk.  

 (B) Representative micrograph with the cutting state EcMRH84S in complex with ADP and DNA. 

 (C) The local resolution of the cutting state reconstruction was calculated using ResMap and is 

shown as a color-coded surface representation. 

 (D) The fifteen highest populated classes from the 2D classification of the EcMR in the cutting 

state are shown. 

 (E) Gold standard Fourier shell correlation (FSC) for the cutting state reconstruction. The red line 

indicates the 0.143 cutoff criterion which indicates a nominal resolution of 4.2 Å. 

 (F) Angular distribution of the cutting state reconstruction particles. 

 (G) Sorting scheme that was used to obtain the 4.2 Å reconstruction of the cutting state. 
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Figure S4 Related to Figure 1 and 2| Structural details of nucleotide and metal binding 

 (A) ATPγS-Mg2+ is visible in the nucleotide binding domain of the resting state reconstruction. 

The density for the nucleotide is shown and important nucleotide binding motifs are highlighted 

and color coded. 

 (B) ADP-Mg2+ is visible in the nucleotide binding domain of the cutting state reconstruction.  

 (C) Interaction of EcMR to fluorescein-labeled 60 bp DNA in the presence of ATP, ADP, ATPγS 

and no nucleotides monitored by the change in fluorescence anisotropy. DNA binding was 

detected in the presence of ATP and ATPγS, but not ADP. The data were fit to a 1 to 1 binding 

equation. Mean and standard deviation are indicated (n = 3, technical replicates).  

 (D) The linker between the HLH motif and the capping domain of Mre11 adopt different 

conformations in both monomers. In monomer B (left) no DNA is bound and the linker adopts a 
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closed conformation while in the DNA binding monomer A (right) an extended conformation is 

formed. 

(E) Steady-state ATPase rates of EcMR charge reverse mutants EcRad50E115K, EcMre11K149E and 

EcMre11K149ERad50E115K, stimulated by 60 bp DNA. Mean and individual data point (n = 3, 

technical replicates). 

(F) Interaction of EcMR charge reverse mutants with double-stranded DNA monitored by the 

change in fluorescence anisotropy. The data were fit to a 1 to 1 binding equation. Mean and 

standard deviation are indicated (n = 3, technical replicates). The following Kd values were 

calculated: EcMR: 51 ± 5 nM; EcMRE115K: 14 ± 4 nM; EcMK149ER: 132 ± 17 nM; EcMK149ERE115K: 17 

± 4 nM. 
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Figure S5 Related to Figure 2 and 3| Mutational analysis of Fastener-NBD interface and 

coiled-coil 

(A) Map at the EcMre11 active site (blue) bound to DNA (red).  

(B) Difference density analysis of EcMR in the cutting shows robust density (left panel) at the di-

metal site where crystallographic analysis of EcMre11 showed two manganese ions (right panel). 

The difference density was calculated using the command phenix.real_space_diff_map, for pdb 

maps without (left) and with (right) manganese ions. 

(C) Comparison of the Mre11 resting state to Mre11-DNA orientation of the cryo-EM EcMR cutting 

state and to the X-ray structures of Pyrococcus furiosus Mre11-DNA (pdb: 3DSC; bottom, left) 

and Methanocaldococcus jannaschii Mre11-DNA (pdb: 4TUG; bottom, right). 

(D) Rearrangement of the EcMre11 sealing loop (yellow) and EcMre11 fastener (green) in the 

resting- and cutting-state respectively. 

(E) Nuclease activity of EcMR mutants analyzed with fluorescently labeled 60 bp DNA containing 

a free DNA end (DNA I) and a DNA end which is blocked by a single-chain fragment against 

fluorescein (DNA II). To prevent exonucleolytic degradation, the unlabeled 3’ DNA end is 

protected by 10 consecutive phosphothioate linkages. The residues of EcMre11sealing loop are 

deleted in the EcMre11Δ188-203 mutant. 

 (F) Analysis of coiled-coil propensity along the protein sequence using DeepCoil (Ludwiczak et 

al., 2019) as implemented in the MPI ToolKit (Zimmermann et al., 2018). NBD’s N and C-terminal 

regions as well as the Zn-hook have low CC propensity as expected. However, the N- and C-

terminal parts of the CC domain have another 4 (1N,3N,4N,5N) and 5 (5C,4C,3C,2C,1C) regions 

of low CC propensity. 2N still has high CC propensity, but in our cryo-EM map pairs with 2C to 

form the CC break element 2. In total our density shows three CC break elements (1,2,3 in Figure 

3D) matching the sequence regions of 1N:1C, 2N:2C, 3N:3C. 4N:4C and 5N:5C might form two 

additional CC break elements towards the Zn-hook. 

 (G) Interaction of EcMRΔCC with double-stranded DNA monitored by the change in fluorescence 

anisotropy. The data were fit to a 1 to 1 binding equation. Mean and standard deviation are 

indicated (n = 3, technical replicates). 

(H) Plasmid assay of linearised pBR322 with the coiled-coil mutants EcMRhook and EcMRΔCC. Time 

points were taken after 10 and 30 min. 
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Figure S6 Related to Figure 4 and 5| Characterization of the LisH-EcMR constructs 

(A) Comparison of standard B-form -DNA (gray) to the DNA structure in theEcMR cutting-state 

structure (red). 

(B) Nuclease activity assays as in Figure 3A, B but with different DNA/streptavidin ratio leading 

to a larger fraction of the double-blocked linear species (II) over the circular (III). EcMR selectively 

degrades linear DNA. 

(C) Nuclease activity of EcMR wild type analyzed with 5’ fluorescently labeled 80 bp DNA 

containing a DNA end which is terminally-blocked by a single-chain fragment against fluorescein, 

scFv (DNA I) and in the presence Chaetomium thermophilum Ku70/80 (DNA II). The 3’ 

endonuclease shifts from 25 nucleotides (scFv-bound) to 35 nucleotides (Ku70/80-bound) 

approximately 10 bp inwards. 

(D) Size exclusion profiles of LisH-EcMre11NUC and EcMre11NUC. 
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(E) Size exclusion profiles of LisH-EcMR with 11 and 20 residue linker and EcMR. The runs were 

done with a S6 5/150 column. 

(F) Nuclease activity of LisH-EcMR with 11 and 20 residue linker and EcMR analyzed with 

fluorescently labeled 60 bp DNA containing a free DNA end. To prevent exonucleolytic 

degradation, the unlabeled 3’ DNA end is protected by 10 consecutive phosphothioate linkages. 

(G) Quantification of the exonuclease activity shown in (F), (n=3, technical replicates) 
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Figure S7 Related to Figure 6| Comparison of EcMR and a model for eukaryotic MRN.   

Structural alignment of EcMR cutting-state (left) with a model for eukaryotic MRN (right, obtained 

by docking the ATPS bound (Chaetomium thermophilum) CtRad50NBD-Mre11HLH complex (PDB: 

5DA9), the CtMre11NUC dimer (PDB: 4YKE), and the Mre11-interacting region of S. pombe Nbs1 

(PDB: 4FBW) onto the EcMR cutting state model, the relevant rad50S residues are shown as 

blue backbone patches. The EcMre11fastener helix binds to EcRad50 at precisely the surface 

location that harbors the Rad50S cluster of residues. The fastener loop (orange) is much shorter 

in eukaryotic Mre11 and binds Nbs1 (red). Thus, the bacterial Mre11fastener-Rad50 interaction could 

be replaced by a Mre11-Nbs1/CtIP-Rad50 interaction, explaining a wide range of biochemical 

data.  
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Table S1 Related to Key Resource Table| DNA oligomers used for the assays and the 

cryo-EM sample 

 

Oligonucleotide  Sequence 5’ to 3’ 

60 bp DNA fwd for nuclease CGGGTAGTAGATGAGCGCAGGGACACCGAGGTCAA
GTACATTACCCTCTC*A*T*A*G*G*A*G*G*T*G 

60 bp DNA rev for nuclease CACCTCCTATGAGAGGGTAATGTACTTGACCTCGGT
GTCCCTGCGCTCATCTACTACCCG-6-FAM 

60 bp DNA fwd for size 
exclusion analysis 

CGGGTAGTAGATGAGCGCAGG*G*A*C*A*C*C*G*A*G
*GTCAAGTACATTACCCTCTCATAGGAGGTG 

60 bp DNA rev for size 
exclusion analysis 

CACCTCCTATGAGAGGGTAATGTACTTGACCTCGGT
GTCCCTGCGCTCATCTACTACCCG 

80 bp DNA fwd for nuclease 
with Ku70/80 

CGGGTAGTAGATGAGCGCAGGGACACCGAGGTCAA
GTACATTACCCTCTCATAGGAGGTGCGCTTTATCAG
AAGCCAGAC 

80 bp DNA rev for nuclease 
with Ku70/80 

GTCTGGCTTCTGATAAAGCGCACCTCCTATGAGAGG
GTAATGTACTTGACCTCGGTGTCCCTGCGCTCATCT
ACTACCCG-6-FAM 

60 bp DNA fwd for ATPase 
assay 

CGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAG
AAACTCAACGAGCTGGACGCGGAT 

60 bp DNA rev for ATPase 
assay 

ATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGT
TAATGTCTGGCTTCTGATAAAGCG 

35 bp DNA fwd for DNA 
binding assay 

CGCTTTATCAGAAGCCAGACATTAACGCTTCTGGA 

35 bp DNA rev for DNA 
binding assay 

6-FAM- 
TCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCG 

60 bp DNA for EM fwd CGCTTTATCAGAAGCCAGACATTAACGCTTC 
TGGAGAAACTCAACGAGCTGGACGCGGAT 

60 bp DNA for EM rev ATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGT
TAATGTCTGGCTTCTGATAAAGCG 
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Movie S1 Related to Figure 1| Depiction of the conformational changes occurring upon 

DNA binding in EcMR 

The first part of the movie explains the structure of EcMR in the resting state and the movement 

of the Mre11 dimer upon DNA binding. Additionally, it depicts important structural features of the 

cutting state structure. The second part of the movie explains closing of the CCs using a morph 

between the resting state and the cutting state of EcMR. 
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3 Discussion

The MRN complex is a central player in the repair of DSBs. However, despite 20 years of

research, several questions remained unanswered especially regarding the binding and processing

of dsDNA. The MRN complex has been analysed extensively by X-ray crystallography from

different organisms, with and without DNA, however, for these studies the coiled coils always

had to be shortened drastically175,180,187,188. Since the coiled coils and the zinc hook play an

important role for the MR(N) complex, head complexes without the coiled coils cannot fulfil all

their functions192,193.

In the structures of Rad50 with DNA, the DNA binding site is located either only on the

NBDs175,187 or additionally on the coiled coils188 and this binding site is located opposite of the

Mre11 dimer location. In addition, DNA processing is ATP dependent, however, ATP binding

by Rad50 also leads to an autoinhibitory state, in which the Mre11 nuclease active site cannot

be accessed by the DNA181. Structures of Mre11 in complex with DNA showed that the DNA

seems to occupy the Rad50 binding site166,171,176,284.

Thus, two of the most puzzling questions regarding the MRN complex are:

(I) how does the dsDNA enter the active site and

(II) what is the function of the coiled coils.

The recent developments in cryo-EM allowed the use of full-length EcMR for structural and

biochemical studies. The EcMR complex is a good model system, since it has similar biochemical

and structural properties to its eukaryotic counterpart116. This includes the enzymatic activities

of 3′ to 5′ exonuclease and endonuclease activity on a blocked dsDNA end, ATPase activity

and the high structural conservation116,265,266,269 (see Section 2.1 and 2.2). However, EcMR

is not regulated by posttranslational modifications, has less interacting protein partners and

misses the presumably flexible Nbs1190. In contrast to many previously used organisms, E.coli

is a mesophilic organism and allows a more thorough biochemical analysis of the complex. For

instance, biochemical assays can be performed at 37°C with EcMR a temperature at which the

DNA duplex is more stable than at higher temperatures.

In the course of this work, the head complex of full-length EcMR was solved in complex with

ATPγS and denoted the resting state. The EcMR resting state head complex adopts a very

similar fold to the head complex structures solved previously with X-ray crystallography from

other organisms171,176,187 (see Section 2.2, Supplementary Figure S2). The nuclease active site

is blocked by Rad50 and thus, EcMR adopts an auto-inhibited state (see Figure 16). The

similarities between different structures indicates that shortening of the coiled coils does not
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3 Discussion

have a large impact on the structure of the MR resting state and highlights again the structural

conservation observed in the MR core complex.

Figure 16: The resting and cutting state structures of EcMR. (A) The resting state of EcMR
is shown in three different views. The Rad50 dimer is coloured in orange and the
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Figure 16: Mre11 dimer in blue. The two largest conformational changes that occur upon DNA
binding - Mre11 dimer movement and closing of the coiled coils - are indicated in the
front view of the resting state with arrows. The different domains of Mre11 are labelled
in the side view of the resting state. (B) The reconstructed densities of the cutting
state in top view (top) and side view (bottom) are shown. Since the complex adopts an
asymmetric conformation, the different monomers have assigned names: DNA-binding
Mre11 monomer (Mre11DNA, blue), DNA-free Mre11 monomer (Mre11free, light blue),
Rad50 monomer with an additional Mre11 interaction interface (Rad50prox, orange),
Rad50 monomer without additional Mre11 interaction interface (Rad50dist, yellow). In
the middle a model of the side view with important structural features is shown. In the
side view an overlay with the resting state structure (transparent) illustrates the Mre11
dimer movement.

In the cutting state structure, the head complex is bound to ADP and a 60 bp dsDNA, of which

∼35 bps are visible in the structure. The DNA is bound mainly by residues in the NBD and

coiled coils of Rad50 and can access the active site of Mre11. This is possible due to a large

movement (∼120°) of the Mre11 nuclease and capping domain to the side of Rad50. This state

likely represents the conformation of the exonuclease. The observed EcMR footprint of 22 bp

fits very well to the obtained biochemical data, that indicate a minimal requirement of 25-30

bp for DNA binding with high affinity and stimulation of the ATPase (see Section 2.1, Figure

1). Additionally, the cleavage of a blocked end occurs at a distance of 27 bp (from the 3′ end)

and 23 bp (from the 5′ end, see Section 2.1, Figure 2 and Section 3.4). The location of Mre11

at the end of the dsDNA explains the observed higher affinity of EcMR to DNA with ends (

see Section 2.2, Figure 5). A similar distance between the blocked end and the endonucleolytic

incision has also been reported for MR(N) from other organisms122,177. Crystal structures of

Rad50:DNA complex indicate a footprint of ∼ 20 bps175,187,188, which is similar to the 22bps

observed for EcMR. In accordance with the cutting state structure, single molecule imaging has

shown that in human MRN, Mre11 is the subunit responsible for end recognition285.

ATPγS is present in the Rad50 NBDs in the resting state, while in the cutting state ADP is bound

(see Section 2.2, Supplementary Figure S4), despite the use of ATP during grid preparation. This

indicates a post-hydrolysis cutting state and is in accordance with the about 26-fold activation

of the ATPase activity observed by EcMR in the presence of dsDNA (see Section 2.1). Similar

stimulation of the ATPase rate by DNA binding was reported for the human and the yeast MR

complex182,183.

The function of the coiled coils is still enigmatic. In the resting state, only very few turns of

the coiled coils could be resolved, due to flexibility and the coiled coils in close proximity to the

head complex clearly point outwards. This is in stark contrast to the cutting state structure,

in which the coiled coils are far better defined and form a rod, that could be resolved at a low

resolution to about 1/3 (∼200 Å) of the entire length of the coiled coils (see Section 2.2, Figure

3). Thus, the coiled coils of two Rad50 monomers interact with each other in the cutting state

and point inwards.

DNA binding residues are present in the coiled coils and DNA binding is abolished if these

residues are mutated. The ring to rod transition in response to DNA binding has also been
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observed for the human MRN complex with AFM195. Additionally, the human zinc hook has

recently been crystallised in a rod conformation191 (see Section 1.3.2, Figure 10). Thus, the rod

conformation of the coiled coils in response to DNA binding possibly represents a feature that

is conserved in pro- and eukaryotes. However, the role of this long coiled coil structure in a

cellular context, is not clear. Possibly, the coiled coils serve as protein interaction platform or

a domain to transfer signals from the zinc hook to the NBDs179, however, why they are this

long is still mysterious. It was postulated that two DNA strands could be bridged in trans via

the P.furiosus zinc hook (intermolecular model)189. Alternatively, an intramolecular model has

been proposed in which the zinc hooks of the same molecule engage and form a rod191,195. The

rod formation of the EcMR coiled coils also seems to indicate that the zinc hook engages rather

intramolecular than intermolecular in the cutting state. The observed movement of the coiled

coils also has implications for the proposed mechanisms (see Section 3.2).

Interestingly, binding of DNA results in the transition of a symmetric to an asymmetric complex.

In the resting state, no asymmetric structural properties were detected. However, in the cutting

state clearly an asymmetric complex is present (see Figure 16). This is mainly a result of a flexible

linker that connects the HLH of Mre11 with its capping domain. The linker in Mre11DNA is

elongated, while it adopts a closed conformation in the Mre11free monomer, which brings the

HLH and the nuclease domain in close proximity of each other (see Section 2.2, Supplementary

Figure S4). Due to the low resolution of this part of the structure it is not possible to analyse

the linker in the Mre11free monomer in further detail, however it might adopt a folded, e.g.

α-helical conformation.

The dsDNA binds to the nucleotide bound Rad50 dimer and can access the active site of the

Mre11DNA monomer and is thus also bound in an asymmetric manner. The DNA is slightly bend

in the EcMR cutting state (see Figure 16 and Section 2.2, Supplementary Figure S6). However,

since DNA binding in EcMR is only dependent on ATP binding but not its hydrolysis, DNA

binding probably is not the energy consuming step of the mechanism (see Section 2.2, Figure

S4).

We used a nuclease dead mutant (Mre11H84S) for the cryo-EM studies of the cutting state and

the DNA is perfectly located for cleavage in the Mre11 active site, something that has not been

observed before166,175,187,188,284. The 3′ end is bound close to the active site and cleavage would

take place between base 1 and 2 (as seen from the 3′ end bound in the active site) and possibly

liberates a nucleoside monophosphate. Thus after cleavage, a 3′ OH group would be present on

the residual DNA strand. This is in accordance with biochemical data on EcMR, which showed

that after cleavage, the 3′ strand (corresponding to the exiting nucleoside monophosphate) carries

a 5′ phosphate, while the 5′ strands (corresponding to the shortened dsDNA) contains a 3′ OH

(Section 2.1, Figure 5). MR(N) complexes also cleave hairpins266,267,286 and EcMR leaves a 5′

phosphate and a 3′ OH attached to the products267. Based on the same cleavage chemistry and

the space that is present next to the active site in EcMR, free DNA ends and hairpins are likely

bound and cleaved in a similar manner.
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3.1 Comparison with Other MR Structures

Three crystal structures of Rad50 in complex with DNA have already been solved from the

organisms T. maritima188, M. janaschii187 and C. thermophilum175 by X-ray crystallography

(see Section 1.3.2, Figure 9). Comparison to all of these structures indicates that the location of

the DNA binding residues on the Rad50 surface is similar in all four structures. Most residues in

these structures are located on top and close to the β-sheets of the NBD. Despite the variation

in amino acid sequence, a similar DNA binding mode is present in all structures.

One residue is involved in DNA binding in all structures and is located on the tip of a helix

(denoted DNA binding helix in Figure 17) pointing towards the DNA. In E. coli this corresponds

to residue K128 (K115 in T. maritima, T107 in M. janaschii, R132 C. thermophilum) and

mutation of this residue resulted either in decrease or complete loss of DNA binding175,187,188.

Additionally, a second binding site is located in the NBD (black circle in Figure 17). While the

residues of the NBD binding site are not conserved, the position of this DNA binding site is

situated at a similar location in Rad50 of E. coli, M. janaschii and C. thermophilum175,187. These

DNA binding residues could not be detected for T. maritima, however, this might be due to the

tilted orientation the DNA adopts in this structure188. An additional important DNA binding

site is located in the coiled coils of E. coli and in the T. maritima structure three additional DNA

binding residues are located in the coiled coils188. The coiled coils are not closed in any of the

crystal structures, possibly due to their limited length or the inability to crystallise with closed

coiled coils. Additionally, all crystal structures contain either AMP-PNP (T. maritima)188, or

ATPγS (M. janaschii and C. thermophilum)175,187 as ATP analogues and it is possible that the

prevention of ATP hydrolysis keeps the coiled coils in an open state.

DNA binding in EcRad50 is slightly asymmetric with the Rad50dist monomer engaging in more

DNA contacts than the Rad50prox monomer. These three additional residues are located in a

loop connecting two β-sheets of the NBD (Figure 17). The Rad50 residues R92 in M. janaschii

and K94 and R95 in T. maritima are located at a similar position187,188.

Thus, all Rad50 DNA binding sites identified in EcMR are also present in one or more crystal

structures, indicating a common DNA binding mode by Rad50 across different species. The

differences observed in the structures can likely be attributed to the shortened coiled-coils and

the presence of crystal contacts.

Comparing EcMR to other Mre11:DNA structures from P. furiosus166 and M. janaschii284

reveals several differences in the binding mode. In the structure presented here, the DNA accesses

the nuclease active site while in the other three structures the DNA is located several Ångstroms

away from the active site166,284 (see Section 1.3.1, Figure 7 and Section 2.2, Figure S5). In

E. coli only one monomer binds the DNA while in the other structures both monomers are

involved166,284. Only few DNA binding residues are present in the E. coli structure and they

are located close to the active site and in the capping domain. In the P. furiosus and the M.

janaschii structures additional binding sites located closer to the Mre11 dimer interface can be

found166,284. One interesting common feature involves the composition of the residues next to
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Figure 17: Comparison of DNA binding residues (A) Closeup of the Rad50 DNA binding
residues of E. coli. Four DNA binding sites are present in EcRad50: The coiled coils
(K194, K890), the tip of the DNA binding helix (K130, K128), the NBD (N63, S65,
S67, Q68, black circle) and a loop in the β-sheets (R102, N108, Q110, only in the
Rad50dist monomer, grey background). (B) Closeup of the Rad50 DNA binding residues
of T.maritima (pdb: 4w9m). The DNA binding residues in the coiled coils and the
DNA binding helix are labelled. (C) Closeup of the Rad50 DNA binding residues of C.
thermophilum (pdb: 5da9). The residues in the DNA binding helix are labelled and the
residues in the NBD are indicated with a black circle. (D) Closeup of the Rad50 DNA
binding residues of M. janaschii (pdb: 5dny). The residues in the DNA binding helix
are labelled and the residues in the NBD are indicated by a black circle.

the active site. In all three structures aromatic residues are located in this position (EcF15,

EcY16, PfY13, MjY13). Possibly these residues are involved in melting of the DNA, especially

for the endonuclease reaction (see Section 3.4). The differences in the structures might reflect

variations between organisms, point to a different DNA bound state in the endocut or they

result from artefacts in the crystallisation, due to the missing Rad50 dimer.

One structure of the P. furiosus Mre11 dimer in complex with AMP was solved previously by
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crystallography. In this structure the AMP is located close to the active site and is positioned

such that the phosphate is located close to the manganese ions162. This is similar to the terminal

base located in the active site of EcMR, which also points towards the manganese ions with its

phosphate. The sugar and base adopt a different conformation in the P. furiosus structure, likely

due to missing DNA.

3.2 Model for the EcMR Reaction Cycle

The role of the coiled coils for the complex function is not clear, yet. However, the most prominent

conformational change takes place in this domain. The coiled coils point outwards from the

EcMR head complex in the resting state. In addition they could not be resolved from the

cryo-EM data which points to a high degree of flexibility. For the model, it is propose that

the coiled coils form an open ring structure in the resting state. AFM studies with human

MR showed an open conformation of the coiled coils in the absence of DNA195. Additionally,

the zinc hook is an import dimerization domain, as shown by crystallographic and biochemical

studies189,191,192. AFM images with the EcMR complex showed mainly heterodimeric complexes

(MR) connected via their zinc hook. However, these experiments were performed in the absence

of ATP283 and the presence of ATP would induce additional dimerization in the Rad50NBDs 181.

Thus, the dimerization of the zinc hook and the Rad50NBDs without simultaneous interaction

of the coiled coils results in the proposed ring structure of the coiled coils in the resting state

(Figure 18, left).

The coiled coils in the cutting state cryo-EM reconstruction were solved to about 1/3 of the

estimated length, due to flexibility. However, the coiled coils in the cutting state are presumably

closed completely from the head domain to the zinc hook. This is based on the observation of

particles on several micrographs, in which the coiled coils form a rod on the entire length of the

coiled coils. Additionally, rod formation of the coiled coils induced by DNA addition has been

observed for the hsMRN 195 and crystallographic studies of the human zinc hook also indicates

a state with closed coiled coils for Rad50191.

One question that could not be solved to date, is how the MR(N) complex detects a DSB. The

DSB recognition protein Ku70/80 is highly abundant in the cell and forms a ring that can slide

on free DNA ends with an affinity in the low nanomolar range for DNA ends7,64,65. Compared

to Ku, MRN is much less abundant in the cell7. Furthermore, a DSB detection mechanism

similar to Ku would not explain the presence of the coiled coils and some biochemical findings

(see below). Thus, the existence of an additional state, denoted the scanning state, is proposed

(Figure 18, middle). The scanning state connects the resting and cutting state and suggests an

active movement of MR(N) along the DNA to detect DSBs.

This idea is supported by data from human Rad50, Cohesin as well as the bacterial MutS. A

recent single-molecule imaging study, reported sliding of MRN on DNA curtains, with Rad50

being the subunit responsible for the sliding activity. Additionally, the authors found, that MRN
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can hop over nucleosomes and even Q-dots (with a diameter of 10 nm), which would indicate

that an interface, possibly the zinc hook or the nucleotide binding domain opens up and allows

dissociation and subsequent association on the DNA285. Furthermore, Cohesin from human and

yeast has been shown to translocate on DNA287,288. MutS is involved in MMR and like Rad50

contains an ABC ATPase289. MutS slides along DNA to scan for mismatched bases by one

dimensional diffusion. Upon encountering a mismatched base pair the MutS dimer binds and

exchanges ADP for ATP, which changes the diffusional behaviour of the MutS dimer on the

DNA290.The relation of Rad50, Cohesin and MutS points to a DNA sliding property, shared by

all three proteins.

The scanning model is also supported by biochemical data that shows that EcMR binds a

supercoiled and relaxed plasmid with less affinity than a linearized plasmid (see also Section 2.2,

Figure 5). Similarly, the ATPase is stimulated maximally only in the presence of a linear and

not of a supercoiled plasmid (see Section 2.1). The model predicts that the coiled coils cannot

close in the absence of a DSB, due to their inability to close as long as a second DNA strand is

trapped between them. In this hypothetical scanning state, the Mre11 dimer is still located in

its autoinhibited position and can thus not cleave the DNA. If a break is present in the DNA,

the coiled coils are able to close and the Mre11 dimer can move from its autoinhibited position

to the side of the complex to form the nuclease proficient cutting state (see Figure 18).

Figure 18: Model for the Mechanism of the exonuclease. The Mre11 dimer is located below
Rad50 in an autoinhibitory position in the ATP bound resting state. The hypothetical
scanning state is indicated with a grey background. The MR(N) complex moves along
the DNA and only if a DSB is encountered are the coiled coils able to close and the
Mre11 dimer moves from its autoinhibited position to the nuclease proficient cutting
state.
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3.3 Implications for the Model from SMC Proteins and ABC

ATPases

For the distantly related SMC proteins, different conformations of the coiled coils have been

observed. Depending on the organism, rings, rods and V-shaped structures have been found179.

For instance, rods and V-shaped structures have been observed for the Bacillus subtilis SMC

protein Smc-ScpAB291,292, while for Cohesin and Condensin, rings or rods were found, respect-

ively293. Thus, the coiled coils seem to be similar for Rad50 and SMC proteins in that they can

adopt different conformations.

Structural and biochemical analysis of B. subtilis SMC indicated, that in its ATP bound state

the coiled coils point outwards, possibly generating a ring structure that has a second point of

engagement at the hinge domain. Thereby, ATP binding and simultaneous rod formation of the

coiled coils seems to exclude each other and only upon ATP hydrolysis are the coiled coils able

to engage, which results in a slight disengagement of the NBDs in the head292. Thus, the ATP

bound state seems to be similar in EcMR and BsSMC in that the coiled coils are open and

presumably form a ring structure. The hinge domain, corresponding to the Rad50 zinc hook,

is able to engage DNA and one possible interaction site is located between the coiled coils184.

This would require the coiled coils to stay in an open state in SMC proteins to be able to bind

DNA. Possibly, this corresponds to the scanning state of EcMR. However, in contrast to BsSMC,

the ATP hydrolysis does not result in a disengagement of the two Rad50 NBD domains in the

cutting state, albeit some conformational changes in the Rad50 monomers occur. Clamping of

the DNA between the two Rad50 monomers might prevent disengagement of the NBDs that

might otherwise occur more rapidly after ATP hydrolysis. Additionally, it cannot be excluded

that a state in which the head slightly disengages exists for EcMR (see below).

The coiled coils of EcMR do not form continuous helices, but contain several breaks and three

of these breaks are visible in the structure (see Section 2.2, Figure 3 and Supplementary Figure

S5, Figure ). Breaks in the coiled coils have also been reported for hsMRN191,197. SMC proteins

contain at least two distinct breaks in the coiled coils. The joint is located in close proximity to

the NBDs, while the elbow is located in a more central position in the coiled coils201,292. A recent

structure of the EcSMC protein MukB showed that the coiled coils fold back onto themselves at

the elbow, which brings the hinge and the NBDs in close proximity. For Cohesin from budding

yeast a similar conformation could be observed201. A conformation with folded coiled coils has

not been discovered for the EcMR complex on the micrographs or in any classification up to

date. Nevertheless, such a back folded structure could represent a transient state that is adopted

during the mechanistic cycle of EcMR and could not be captured by cryo-EM, yet. In the Cohesin

proteins, breaks in the coiled coils clearly create flexibility, which allows folding of the coiled

coils in half201. The breaks in the MR(N) coiled coils probably serve a similar purpose but if

they are required to allow the coiled coils to fold back onto themselves has to be determined in

the future.
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A study in B. subtilis SMC found a superstructure in the coiled coils, meaning cells were only

viable when the coiled coils were shortened or elongated with a certain periodicity199. Attempts

to truncate the Rad50 coiled coils resulted in defects in HR, telomere maintenance and meiotic

DSB formation193. Thus, the Rad50 coiled coils might possess such a periodicity, too, and

disturbing this superstructure might be one reason why Rad50 does not tolerate shortening of

the coiled coils very well.

Close inspection of the EcMR coiled coils suggests, that the coiled coils wind around each other

with a very slow periodicity. In the view shown in Figure 19, the Rad50prox coiled coil is located

behind the Rad50dist coiled coil in close proximity to the Rad50NBDs. At their first engagement

point, the GEIR motif, the coiled coils are located next to each other. At the point that is

located furthest away from the head complex, the Rad50dist coiled coil is located below the

Rad50prox coiled coils. This indicates a very low periodicity present in the EcMR coiled coils

located in close proximity to the head, with ∼ 1/2 turn in 150 Å. However, the function of this

superstructure is not clear, yet.

Figure 19: Density and ribbon model of the coiled coils of EcMR. Model of EcMR with
long coiled coils fitted in the cryo-EM reconstruction. The N-terminal and C-terminal
part of the antiparallel coiled coils are indicated, as well as the first interaction site
between the C-terminal portion of the coiled coils (GEIR interaction site). Breaks in
the coiled coils are indicated with blue arrow and numbers.

The ATPase cycle of EcMR is still enigmatic and the cutting state poses the question how ATP

and ADP exchange might occur. The cutting state represents a post-hydrolysis state, since ADP

is present in the structure. ADP seems not to be able to engage the NBDs of EcMR and does not
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result in DNA binding or degradation (see Section 2.1, Figure 2 and 2.2, Figure S4). However,

the cutting state bound to DNA and ADP seems to be long lived, since it was the major state

observed in cryo-EM, despite the presence of ATP. Possibly, the DNA holds the NBDs together

after the hydrolysis of ATP. Closer investigation of the EcMR surface reveals that no cavity large

enough to channel ADP to the outside is visible in the structure. Thus, exchange of ADP with

ATP likely requires opening of the Rad50-Rad50 interface, which has been observed previously

for T. maritima Rad50181. This might indicate that the DNA:MR complex disassembles each

time the ADP has to be exchanged for ATP. However, in light of the proposed DNA tethering

function of the MR complex166,189,294 and the stimulation of the ATPase activity of MR(N)

complexes from different organisms by DNA182,183, this seems unlikely. Alternatively, a state

with a Rad50 interface that opens only slightly for ADP-ATP exchange or a mechanism in

which ATP is hydrolysed in an alternating fashion by the two active sites is possible. Similar

mechanisms have been discussed for the related ABC transporters (see below).

ABC transporters are widely distributed in the phylogenetic tree and are an important class of

transporters that either import or export their substrate in or out of the cell295. In addition

to their NBD, ABC transporters contain a transmembrane domain296. Transport of substrate

molecules across the membrane is coupled to ATP hydrolysis in ABC transporters296, and two

basic models have been proposed.

In the switch model, the transporter exists in a ATP-bound state with engaged NBDs and in

an ATP free state with disengaged NBDs during the reaction cycle297. This is similar to the

situation observed in nucleotide-free and nucleotide-bound TmMR181. However, since the ATP

concentration in cells is relatively high (e.g. between 1 and 2 mM for E.coli cells298), most ATP

binding proteins, including Rad50 are likely bound to nucleotides most of the time. This might

indicate that once the NBDs have released ADP they are instantly bound by ATP. Thus, a

small dissociation of the two NBDs is probably enough to exchange ADP with ATP.

Alternatively, the constant contact model is proposed for ABC transporters, in which the two

NBDs are always connected by at least one bound ATP and hydrolyse ATP sequentially299,300.

A similar model for Rad50 would sidestep the question if the DNA can be bound while ADP

is exchanged for ATP since such a mechanism probably only requires small conformational

changes and would allow continued DNA binding.

For Rad50 it was shown that both active sites are required for ATPase activity. Mutations

on one or both active sites drastically decreased the ATPase activity in response to DNA

stimulation as well as nuclease activity, DNA binding activity and ATM activation182.

To decipher the ATP hydrolysis cycle of EcMR a more thorough biochemical characterisation

is necessary. The measurement of kon and koff values for the DNA binding might already give a

good hint of how rapid DNA is released from the complex. DNA release might also be coupled

to the cleavage reaction of the nuclease, which would not have been observed by us in cryo-EM,

due to the use of a nuclease dead Mre11 mutant. It should also be noted that the DNA cleavage

reaction of EcMR is very inefficient, requiring several hundred ATP molecules per cut (see
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Section 2.1).

Figure 20: Movement of the Rad50 dimers relative towards each other. (A) The Rad50
dimer is shown from below. The Rad50dist monomer is highlighted by a grey background.
The resting state Rad50 is shown as a grey backbone. The cutting state NBDs of Rad50
are coloured in different colours: the N-terminus of Rad50dist (orange), the C-terminus
of Rad50dist (green), the N-terminus of Rad50prox (red) and the C-terminus of Rad50dist

(blue). The N- terminal domain of the Rad50dist domain was aligned between the cutting
and the resting state. ADP is indicated in grey. (B) The ATP binding site containing
the aligned N-terminus of Rad50dist (orange) in close up. (C) The ATP binding site of
the not aligned N-terminus of Rad50prox (red).

The movement of Rad50 is much more complex than the movement of Mre11 and alignment of

EcRad50 in the cutting and the resting state indicate that conformational changes take place

in the Rad50NBDs (see Figure 20). Alignment of the Rad50dist N-terminal residues (aa1-176,

forming ATP binding site 1 in Figure 20) shows that this part of the protein aligns very well

in resting and cutting state (see Figure 20 A and B). Residues connecting the Q-loop (F157

onwards) and the coiled coils are situated slightly different in the cutting and the resting state

structure. The Rad50prox C-terminus that is involved in forming this ATP binding site is well
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aligned in proximity to the bound ADP but starts to deviate stronger past the nucleotide binding

site (compare the blue and green coloured C-terminus in Figure 20 B and C). This indicates

that the two ATP binding sites are shifted in respect to each other. Since the positions of the

conserved motifs in the NBDs180 are very similar in cutting and resting state it is not possible

to deduce the reason why ATP hydrolysis is stimulated upon DNA binding. A transition state

of EcMR in complex with DNA and an ATP homolog would certainly help to elucidate this

mechanism.

The largest deviation from the resting state structure in an alignment of the Rad50dist N-

terminus are the β-sheets in theRad50prox N-terminus (see Figure 20 B). To accommodate the

DNA an upward movement of this part of Rad50 is necessary, otherwise the protein and DNA

would clash. This also means that in the scanning state the NBDs have to move, to allow binding

of DNA, without closing of the coiled coils. Alternatively, the DNA might be bound in a different

fashion, e.g. not be bend as strong as in the final cutting state.

3.4 Model for the Endonucleolytic Cleavage Based on the Existing

Structure of the Exonuclease

The cutting state structure solved in this work shows the EcMR exonuclease activity. Assuming

the DNA binding mode is similar for the endo- and the exonuclease activity, biochemical data

in combination with the solved structure is used to discuss three possible models of the endo-

nuclease.

In the first and most likely model, the blocked DNA end is located next to Rad50, while the

DNA extends through a tunnel close to the active site. This assumption is primarily based on the

footprint of EcMR and the observed 23-27 bps that are located between a protein block and the

Mre11 cleavage site (see 2.1, Figure 2). The exit tunnel is formed between nuclease, capping and

linker domains of Mre11 and the NBD of one Rad50 monomer and has approximate dimensions

of 30x13 Å, which could allow the accommodation of a duplex DNA molecule, depending on the

binding mode. However, closer inspection of the DNA strand that is located in the active site

and addition of one more base to this strand shows that severe kinking of the dsDNA is required

to avoid clashes with the Mre11 nuclease domain (see Figure 21 A and B).

Since the nuclease domain has been crystallised from several organisms and only one conforma-

tion of the active site was observed in all these structures, it is likely to assume that the nuclease

adopts only one conformation162,171,187. However, this means that the DNA has to be bend

severely to exit the nuclease active site. If no other large conformational changes occur on the

protein level, additional melting of the DNA is required to allow accommodation in the exit

tunnel. A melting mechanism is supported by higher endonuclease activity observed on AT-

rich stretches of dsDNA and the partial rescue of the endonuclease deficient interface mutant

Mre11V 68D by bubbles in the DNA substrate (see Section 2.1). Additionally, extra density next

to the active site is present, that could either stem from the dsDNA or the sealing loop, which
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is unordered in the cutting state (see Figure 21 A). It was not possible to build the pairing

nucleotide opposite of the nucleotide located in the active site, due to poor density. This could

indicate a higher degree of flexibility stemming either from its terminal position in the DNA

duplex or melting of the DNA duplex by EcMR. Unwinding of a DNA end by hsMRN has been

reported previously286,301.

Another indication that the described exit tunnel might play a role for the endonuclease activ-

ity comes from biochemical data of the Mre11 linker between capping domain and HLH motif.

Changing the linker length increased the endonuclease activity for the addition of 5 and 8 aa

residues but not for 3 and 11 residues. The exonuclease activity was slightly increased in Mre11

linkers containing 5, 8 or 11 extra residues. However, the ATPase activity was similar to the

wild type (unpublished data). This might indicate that due to the increased flexibility of this

part of Mre11, the DNA can be accommodated better and cleaved more efficiently.

Interestingly, two different cleavage chemistries were found for EcMR and the 3′ exonuclease

and the 5′ endonuclease produce chemically equivalent cleavage products (see Section 2.1, Figure

5). Assuming the Mre11 nuclease does not adopt different conformations in these two states,

the DNA likely binds in a similar manner for 3′ exonuclease and 5′ endonuclease cleavage. This

would allow attacking and cleaving the bond between two nucleotides in a similar manner and

supports a model in which the 3′ exonuclease and the 5′ endonuclease bind DNA in the same

way relative to the nuclease active site. Indeed, the proposed endonuclease model would result

in a 3′ phosphorylated block free DNA end after cleavage (see Section 2.1, Figure 6).

The exit tunnel does not show a distinct charge that directly indicates DNA binding proper-

ties. In the beginning of the linker several arginine residues are spaced in close proximity from

each other (R339, R340, R342, R345), that could possibly help to guide the DNA through the

tunnel. Additionally, R225 of the Mre11 nuclease domain is located in close proximity to the

active site and might interact with the exiting DNA. However, since the DNA might be threaded

through the tunnel as ssDNA, other interactions, e.g. between the DNA bases and aromatic or

hydrophobic amino acid residues are possible.

The proposed structure of the endocut also has implications for the mechanism. For the

exonuclease state a simple flipping of the Mre11 dimer can be assumed. However, for the

proposed endonuclease state this is not possible, since the Mre11 linker would not be able

to move from a position above the DNA in the scanning state to a position below the DNA

in the endonuclease state. Since EcMR can cleave off blocks that are much larger than the

exit channel, it is very unlikely that the blocked DNA can actually be threaded through this

channel. Alternatively, an interface might open up to allow the blocked DNA to pass this

channel, which could be either the Rad50coiledcoils:Mre11HLH or the Mre11 dimer interface.

Since the Rad50coiledcoils:Mre11HLH interface represents the main interaction site between

Mre11 and Rad50 it seems more likely that the Mre11 dimer interface opens up. Linking

the Mre11 dimers with a LisH dimerization domain302 separated by a 8 or 11 aa linker,

indeed lowered the endonuclease activity of EcMR slightly (see Section 2.2, Figure 5 and

Supplementary Figure S6). However, it should be noted that a functional Mre11 dimer interface
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Figure 21: Possible DNA exit site for the endocut. (A) Additional density next to the active
site that could be DNA extending from the active site (left). Addition of one more
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Figure 21: base shows that a sharp kink is required in the DNA to be accommodate in the exit
tunnel. Likely, this sharp kink does not allow proper base pairing in the limited space
of the exit tunnel and results in melting of the DNA. The added base is shown in grey
(right). (B) The possible DNA exit channel in the Mre11DNA monomer, that would
correspond to a 5′ endonuclease that resembles the 3′ exonuclease. (C) The possible
DNA exit channel in the Mre11free monomer that is not engaged with the DNA in
the current structure. To accommodate the DNA structural rearrangement are neces-
sary, especially in the linker of Mre11. (D) Three possible models for the endonuclease.
The protein block would be bound next to the Rad50 dimer and the DNA is engaged
either by the Mre11DNA monomer (model I, possibly 5′ endonuclease) or the Mre11free

monomer (model II, possibly 3′ endonuclease). These two options are the preferred
models. Alternatively, the block might be located next to the Mre11 dimer (model III).

is important for the nuclease function166 and a mutation in the hydrophobic interface of

EcMre11 (Mre11V 68D) abolishes block induced endonuclease activity (see Section 2.1, Figure

4). Additionally, until now all structures of Mre11, either alone or in complex with Rad50 or

DNA show a dimer162,170,174,181,187.

In the second model that shall be discussed here, the DNA blocked end is also located next to

Rad50, however, the Mre11free monomer would be involved in DNA binding. The Mre11free

monomer is in a conformation, in which the linker is already located on the same side as the

capping and nuclease domain. Since the linker adopts a closed conformation in this monomer,

only a small opening is formed between the coiled coils and the nuclease domain, that would

not be large enough to accommodate a dsDNA duplex (see Figure 21 C). Additionally, in the

current conformation the DNA could not reach the active site of this Mre11free monomer. This

is due to the coiled coils located close to the Mre11 nuclease domain, which is a result of the

closed Mre11free linker.

However, if the linker adopts a similar elongated conformation as the Mre11DNA monomer this

would allow the DNA to reach the Mre11 active site without obligate opening of an interface.

Presumably, this would also require the linker of the Mre11DNA monomer to adopt a closed

conformation. Consequently, a very similar conformation to the one seen now would be adopted,

with the exception of Mre11free being involved in DNA binding. An alternative visualisation

is to imagine the Mre11 dimer swinging from its resting state position to the other side of the

Rad50 dimer while retaining DNA binding to the same Mre11 monomer as in the exonuclease

state.

Since 3′ and 5′ endonuclease display a different cleavage chemistry, this might result from DNA

binding to the Mre11free monomer. Possibly, this puts DNA and nuclease active site in an

alternative orientation towards each other, resulting in a different cleavage chemistry.

The two models described above do not exclude each other necessarily and a complex mech-

anism in which both Mre11 nuclease active sites are employed sequentially is possible. Such a

mechanism would explain the two active sites that are present in the EcMR complex and to

my knowledge also in all other known MR(N) complexes, while only one Mre11 monomer is

bound to DNA in the cutting state. Furthermore, it is not clear if the endonuclease cleavage of
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both strands is performed by the same EcMR molecule or sequentially by different molecules.

One important difference between the exo- and the endonuclease activity of EcMR is that

the exonuclease only requires binding of ATP while the endonuclease also depends on ATP

hydrolysis and was not functional with any of the commonly used ATP analogous in our hands.

This shows that in the endonuclease mechanism at least one step requires the energy from the

hydrolysis of ATP. Based on the two proposed models, bending and melting of the DNA could

be such a step. Since ATP hydrolysis is not necessary during exonucleolytic incision, this clearly

indicates a mechanistic difference.

In the third proposed model, the block is located next to Mre11. The active site would be located

closer to the blocked DNA end than in the other two models. Thus, smaller DNA fragments

should be cleaved off the blocked DNA end. One study reported a 10 bp spacing between the

cleavage sites of EcMR. These products were found with dsDNA, hairpins and palindromes,

and it was suggested that EcMR proteins serve as block for other EcMR complexes. Thus, the

authors propose a model in which several EcMR molecules sit on a DNA end and serve as a

molecular ruler268. However, the exonuclease structure indicates that the footprint for EcMR is

about 22 bp, which would not fit to the proposed 10 bp spacing.

In addition, the observed cleavage chemistry does not seem to fit the third model. The DNA end

from which a protein block was cleaved contains a 3′ and 5′ phosphate (see Section 2.1, Figure

6). We assume that in the observed cutting state a nucleotide monophosphate would be cleaved

off the 3′ DNA end and leave a 3′ OH group. Since the DNA is bound in the same way in model

three and the cutting state, the same cleavage mechanism is expected. Thus, the 3′ end of the

cleaved end would contain a 3′ OH and no 3′ phosphate group. This third model is considered

to be the most unlikely of the three proposed models.

In addition, a completely different arrangement of the single subunits or a second DNA binding

mode is also possible. Crystal structures of Mre11 with DNA shows the DNA bound different to

what was found in the cutting state166,284 (see Section 3.1 and 1.3.1, Figure 7). However, these

structures lack the NBDs of Rad50 and thus might not represent the DNA binding conformation

in the full-length complex. Since the structures were obtained with X-ray crystallography,

crystal contacts might have assisted the formation of the observed Mre11:DNA complexes.

Interestingly, MR(N) does not seem to show a particular preference for a specific block122,285

and EcMR’s endonuclease activity is stimulated by streptavidin, a single chain fragment for

fluorescein (FAM-scFv) and CtKu70/80 (see Section 2.2, Supplementary Figure S6). Of these

protein blocks, Ku70/80 is the most relevant, since in contrast to streptavidin and FAM-scFv

it sits directly on the DNA303 and is not attached via a flexible linker. Upon Ku70/80 binding,

the endonuclease cut of EcMR shifts from approx. 25 bp from the end to approx. 35 bp

from the end (see 2.2, Figure S6). Depending on the orientation of EcMR and Ku70/80

towards each other, the shift of 10 bp fits well with the DNA stretch covered by Ku70/80 in a
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crystal structure303. Similarly, eukaryotic MR has been shown to cleave Ku70/80 covered DNA

ends285.This indicates, that the recognition of protein blocked DNA ends might be similar in

eukaryotic and prokaryotic complexes.

However, this poses several questions: How is the MR(N) complex able to recognise Ku70/80

at a protein end? How is the Ku blocked end distinguished from other proteins on a DNA

e.g. Nucleosomes? And does MR(N) also recognise and possibly cleave other structures that

resemble protein blocked ends, e.g. RecA/RPA covered stretches of single-stranded DNA at the

boundary to dsDNA?

Ku forms a ring around the DNA303. Thus it is not very likely that MR(N) is able to melt the

DNA covered by Ku. This would mean that MR(N) not only melts DNA far outside its active

site but also works against the counterpressure Ku would generate on a melted DNA duplex.

Consequently, MR(N) probably does not recognise the DNA end by its increased ability to

melt. Since EcMR cuts various protein blocks, there is no requirement for a specific protein

bound to the DNA end that might be recognised. Interestingly, EcMR is not able to cut a

plasmid that has been circularised by streptavidin, while it is still able to cleave a plasmid

with two streptavidin blocked ends (see Section 2.2 Figure 5). Since the protein blocks are

chemically exactly the same, this indicates that the DNA topology might be the actual feature

that allows EcMR to distinguish a protein located on an end from a protein that is located in

a closed DNA ring. In the scanning mode proposed here, the coiled coils would be the domain

that enables the complex to recognise DNA ends (see Figure 18). Binding to a circular DNA

would prevent complete closing of the coiled coils and thereby the conformational change that

allows the nuclease to move from its autocatalytic position to its nuclease active state. This

would also provide an elegant mechanism to distinguish a protein blocked end from proteins

that are present on the DNA e.g. Nucleosomes, transcription factors or the transcription

machinery. Recognition of the DNA topology thus is an essential feature of the proposed

scanning mechanism (see Figure 18).

For the EcMR complex it would also be interesting to assess whether it is able to cleave

any structures that arise during DNA metabolism, e.g. during HR or replication. Since

these structures contain abnormal DNA structures like protein covered ssDNA8,91, it will be

interesting to test if this is recognised by MR(N) and if yes how DNA degradation is prevented

in a cellular context.

3.5 The Bacterial EcMR Complex as a Model for the Eukaryotic

System

The structures of the Mre11 nuclease and capping domain and the Rad50 NBDs are quite

conserved in their structure116. To illustrate if the eukaryotic complex could function sim-

ilar to EcMR, the S.pombe Mre11 dimer in complex with Nbs1170 was aligned onto the E.coli
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Mre11DNAand the C.thermophilum Rad50 dimer175 was aligned on the E.coli Rad50prox (see

Figure 22). The aligned monomers fit very well to EcMR, while the not aligned monomer, de-

viates for both Mre11 and Rad50. For Mre11 this might be a result of the different dimer angle

observed for different organisms116 and for Rad50 the binding of ADP and DNA with closed

coiled coils versus binding of Rad50 with bound ATPγS and open coiled coils is the reason175.

For the EcMR complex an additional interface is formed between Rad50 and Mre11 in the

cutting state, denoted the fastener. Mutations in this interface result in a decrease in nuclease

activity, especially endonuclease activity and a charge reversal can partially rescue the single

mutants. This interface is not formed in the eukaryotic model, since the corresponding loop is

not present in SpMre11 (see Figure A). The Mre11 fastener of E.coli interacts with the outer

β-sheets of Rad50 for which separation of function mutations have been reported. These Rad50S

mutants in S. cerevisiae seem to have more severe defects in meiosis than DNA repair186 and

map to the β-sheet that is involved in the new interaction site with the Mre11 fastener.

In the eukaryotic model Rad50 and Mre11 are located more than 6 Å apart from each other

at this new interface. Thus they do not seem to be able to interact directly with each other.

However, a new interaction platform might be created for other proteins, e.g. CtIP. Interestingly,

Nbs1 is also located very close to this site, which could mean, that an additional Nbs1 interaction

site is formed upon DNA binding. Alternatively, a protein that binds to this site would be in

very close proximity to Nbs1 and thus could interact with all three proteins of the eukaryotic

MRN complex at one site.

Inspection of the active site of the eukaryotic model shows that the DNA could be accom-

modated in a similar manner as in EcMR (see Figure 22 B) with only minor rearrangements.

Supposed in the endonuclease state the block is indeed located next to Rad50 and the DNA

extends through the opening next to the nuclease actives site as described in model I in Section

3.4 (see Figure 21 D, top), it would also be possible for the eykaryotic complex to adopt this

conformation as observed from the model (see Figure 22 B).

The CtRad50 structure was solved in complex with DNA and binding was observed to the NBD,

as in EcMR. Binding to the coiled coils was not observed in this crystal structure175, probably

a result of the shortened coiled coils. Due to the poor sequence conservation in the coiled coils,

it is not possible to identify the DNA binding residues corresponding to the ones identified in

the E.coli coiled coils based on the amino acid sequence. However, especially in the beginning of

the N-terminal coiled coil of C. thermophilum are several basic residues, that could be involved

in forming a DNA binding interface (K184, K187, R193, K196). These residues are conserved

in human, mouse and yeast in regard of their basicity and are either a lysine or arginine residue

(see Figure 22). In the C-terminal part of the coiled coils no such conserved residues could be

found, however, close to the coiled coils is a β-sheet insertion that possibly has to move together

with the coiled coils. In these β-sheets additional four Arginines are located (R1171, R1186,

R1185, R1191) that are quite conserved and might move towards the DNA in the cutting state.

Studies with the human complex have indicated that rod formation of the coiled coils can be

observed with crystallography191 and with AFM in response to DNA binding195. Future studies
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Figure 22: Alignment of eukaryotic structures on the EcMR cutting state. (A) The C.
termophilum Rad50 dimer (pdb: 5da9) and the S.pombe Mre11:Nbs1 complex
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Figure 22: (pdb: 4fbq) were aligned on Mre11DNAand EcRad50prox, respectively. EcMR is shown
in grey and the eukaryotic complexes are coloured in blue (Mre11), orange (Rad50)
and green (Nbs1). Positions of Rad50S mutants are shown in brown. A close up of the
EcMR fastener interface and the corresponding interface in the eukaryotic complex is
shown on the right hand side. (B) The possible active site of a eukaryotic complex. (C)
Possible DNA binding by the CtRad50 coiled coils. (D) Sequence alignment of the N-
and C-terminal part of the coiled coil domain of C. termophilum, S. cerevisiae, human
and mouse. Conserved basic residues are highlighted.

with the eukaryotic complex are necessary to elucidate the exact binding mode of MRN to DNA.

Taken together the result generated during this thesis provide first insight into the mechanism

of the full-length EcMR complex that can possibly also be extrapolated to the eukaryotic MRN

complex to large extends. The structural and biochemical data give a more comprehensive view

of the exonuclease and endonuclease activity and future studies will hopefully be able to depict

the mechanism in more detail.
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by human DNA polymerase λ, DNA polymerase µ and terminal deoxyribonucleotidyl transferase.

Journal of Molecular Biology, 339(2):395–404, 2004.

[72] Kristijan Ramadan, Giovanni Maga, Igor V. Shevelev, Giuseppe Villani, Luis Blanco, and Ulrich

Hübscher. Human DNA polymerase λ possesses terminal deoxyribonucleotidyl transferase activity

and can elongate RNA primers: Implications for novel functions. Journal of Molecular Biology, 328

(1):63–72, 2003.

[73] Jiafeng Gu, Haihui Lu, Brigette Tippin, Noriko Shimazaki, Myron F Goodman, and Michael R

Lieber. XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps.

EMBO Journal, 26(4):1010–1023, 2007.

[74] John M Pryor, Crystal A Waters, Ana Aza, Kenjiro Asagoshi, Christina Strom, Piotr A

Mieczkowski, Luis Blanco, and Dale A Ramsden. Essential role for polymerase specialization in

cellular nonhomologous end joining. Proceedings of the National Academy of Sciences of the United

States of America, 112(33):E4537–E4545, 2015.

110



4 Bibliography

[75] Haley D.M. Wyatt and Stephen C. West. Holliday junction resolvases. Cold Spring Harbor Per-

spectives in Biology, 6(9):a023192, 2014.

[76] Huichen Wang, Bustanur Rosidi, Ronel Perrault, Minli Wang, Lihua Zhang, Frank Windhofer, and

George Iliakis. DNA ligase III as a candidate component of backup pathways of nonhomologous

end joining. Cancer Research, 65(10):4020–4030, 2005.

[77] Emilie Rass, Anastazja Grabarz, Isabelle Plo, Jean Gautier, Pascale Bertrand, and Bernard S.

Lopez. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nature

Structural and Molecular Biology, 16(8):819–824, 2009.

[78] Anyong Xie, Amy Kwok, and Ralph Scully. Role of mammalian Mre11 in classical and alternative

nonhomologous end joining. Nature Structural and Molecular Biology, 16(8):814–818, 2009.

[79] Yibin Deng, Xiaolan Guo, David O. Ferguson, and Sandy Chang. Multiple roles for MRE11 at

uncapped telomeres. Nature, 460(7257):914–918, 2009.

[80] Mieun Lee-Theilen, Allysia J Matthews, Dierdre Kelly, Simin Zheng, and Jayanta Chaudhuri.

CtIP promotes microhomology-mediated alternative end joining during class-switch recombination.

Nature Structural and Molecular Biology, 18(1):75–80, 2011.

[81] Isabelle Robert, Françoise Dantzer, and Bernardo Reina-San-Martin. Parp1 facilitates alternative

NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch

recombination. Journal of Experimental Medicine, 206(5):1047–1056, 2009.

[82] Marc Audebert, Bernard Salles, and Patrick Calsou. Involvement of poly(ADP-ribose) polymerase-

1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.

Journal of Biological Chemistry, 279(53):55117–55126, 2004.

[83] David W Wyatt, Wanjuan Feng, Michael P Conlin, Matthew J Yousefzadeh, Steven A Roberts,

Piotr Mieczkowski, Richard D Wood, Gaorav P Gupta, and Dale A Ramsden. Essential Roles for

Polymerase θ-Mediated End Joining in the Repair of Chromosome Breaks. Molecular Cell, 63(4):

662–673, 2016.

[84] Deniz Simsek, Erika Brunet, Sunnie Yan-Wai Wong, Sachin Katyal, Yankun Gao, Peter J McKin-

non, Jacqueline Lou, Lei Zhang, James Li, Edward J Rebar, Philip D Gregory, Michael C Holmes,

and Maria Jasin. DNA ligase III promotes alternative nonhomologous end-joining during chromo-

somal translocation formation. PLoS Genetics, 7(6):e1002080, 2011.

[85] Minli Wang, Weizhong Wu, Wenqi Wu, Bustanur Rosidi, Lihua Zhang, Huichen Wang, and George

Iliakis. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ path-

ways. Nucleic Acids Research, 34(21):6170–6182, 2006.

[86] Jingxin Sun, Kyung Jong Lee, Anthony J. Davis, and David J. Chen. Human Ku70/80 protein

blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50

protein complex. Journal of Biological Chemistry, 287(7):4936–4945, 2012.

[87] Lan N Truong, Yongjiang Li, Linda Z Shi, Patty Yi Hwa Hwang, Jing He, Hailong Wang, Niema

Razavian, Michael W Berns, and Xiaohua Wu. Microhomology-mediated End Joining and Homo-

logous Recombination share the initial end resection step to repair DNA double-strand breaks in

mammalian cells. Proceedings of the National Academy of Sciences of the United States of America,

110(19):7720–7725, 2013.

111



4 Bibliography

[88] Claire Bertrand, Annabelle Thibessard, Claude Bruand, François Lecointe, and Pierre Leblond.

Bacterial NHEJ: a never ending story. Molecular Microbiology, 111(5):1139–1151, 2019.

[89] Stephen McGovern, Sonia Baconnais, Pierre Roblin, Pierre Nicolas, Pascal Drevet, Heloise Simon-

son, Olivier Pietrement, Jean Baptiste Charbonnier, Eric Le Cam, Philippe Noirot, and Francois

Lecointe. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruit-

ment of DNA ligase D for double strand breaks repair. Nucleic Acids Research, 44(10):4785–4806,

2016.

[90] Nicole Hustedt and Daniel Durocher. The control of DNA repair by the cell cycle. Nature Cell

Biology, 19(1):1–9, 2016.

[91] Stephen C. Kowalczykowski. An Overview of the Molecular Mechanisms of Recombinational DNA

Repair. Cold Spring Harbor Perspectives in Biology, 7(11):a016410, 2015.

[92] P E Boehmer and P T Emmerson. The RecB subunit of the Escherichia coli RecBCD enzyme

couples ATP hydrolysis to DNA unwinding. The Journal of Biological Chemistry, 267(7):4981–7,

1992.

[93] Jian Zhong Sun, Douglas A. Julin, and Jin Shan Hu. The nuclease domain of the Escherichia coli

RecBCD enzyme catalyzes degradation of linear and circular single-stranded and double-stranded

DNA. Biochemistry, 45(1):131–140, 2006.

[94] Jingdi Wang, Ruiwu Chen, and Douglas A Julin. A single nuclease active site of the Escherichia

coli RecBCD enzyme catalyzes single-stranded DNA degradation in both directions. Journal of

Biological Chemistry, 275(1):507–513, 2000.

[95] Naofumi Handa, Seishi Ohashi, Kohji Kusano, and Ichizo Kobayashi. χ*, a χ-related 11-mer

sequence partially active in an E coli recC* strain. Genes to Cells, 2(8):525–536, 1997.

[96] Mark S. Dillingham, Maria Spies, and Stephen C. Kowalczykowski. RecBCD enzyme is a bipolar

DNA helicase. Nature, 423(6942):893–897, 2003.

[97] I D Hickson, C N Robson, K E Atkinson, L Hutton, and P T Emmerson. Reconstitution of RecBC

DNase activity from purified Escherichia coli RecB and RecC proteins. The Journal of Biological

Chemistry, 260(2):1224–9, 1985.

[98] Hua Wei Chen, Biao Ruan, Misook Yu, Jing Di Wang, and Douglas A. Julin. The RecD subunit of

the RecBCD enzyme from Escherichia coli is a single- stranded DNA-dependent ATPase. Journal

of Biological Chemistry, 272(15):10072–10079, 1997.

[99] Dan A. Dixon and Stephen C. Kowalczykowski. The recombination hotspot χ is a regulatory

sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell, 73(1):

87–96, 1993.

[100] Piero R Bianco and Stephen C Kowalczykowski. The recombination hotspot Chi is recognized

by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5’-

GCTGGTGG-3’. Proceedings of the National Academy of Sciences of the United States of America,

94(13):6706–6711, 1997.

112



4 Bibliography

[101] Kazuharu Arakawa, Reina Uno, Yoichi Nakayama, and Masaru Tomita. Validating the significance

of genomic properties of Chi sites from the distribution of all octamers in Escherichia coli. Gene,

392(1-2):239–246, 2007.

[102] Daniel G Anderson and Stephen C Kowalczykowski. The recombination hot spot χ is a regulat-

ory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes and

Development, 11(5):571–581, 1997.

[103] Daniel G. Anderson and Stephen C. Kowalczykowski. The translocating RecBCD enzyme stimulates

recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell, 90(1):77–86,

1997.

[104] Stephan Uphoff and David J Sherratt. Single-Molecule Analysis of Bacterial DNA Repair and

Mutagenesis. Annual Review of Biophysics, 46:411–432, 2017.

[105] Anthony L. Forget and Stephen C. Kowalczykowski. Single-molecule imaging of DNA pairing by

RecA reveals a three-dimensional homology search. Nature, 482(7385):423–427, 2012.

[106] Scott W Morrical. DNA-pairing and annealing processes in homologous recombination and

homology-directed repair. Cold Spring Harbor Perspectives in Biology, 7(2):a016444, 2015.

[107] Silvia Ayora, Begoña Carrasco, Paula P Cárdenas, Carolina E César, Cristina Cañas, Tribhuwan
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John H.J. Petrini, and Yunje Cho. Eukaryotic Rad50 functions as a rod-shaped dimer. Nature

Structural and Molecular Biology, 24(3):248–257, 2017.

119



4 Bibliography

[192] Jed J.W. Wiltzius, Marcel Hohl, James C. Fleming, and John H.J. Petrini. The Rad50 hook domain

is a critical determinant of Mre11 complex functions. Nature Structural and Molecular Biology, 12

(5):403–407, 2005.
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Susceptibility Gene. Cancer Research, 64(4):1215–1219, 2004.

[263] Nancy Berte, Andrea Piée-Staffa, Nadine Piecha, Mengwan Wang, Kerstin Borgmann, Bernd Kaina,

and Teodora Nikolova. Targeting homologous recombination by pharmacological inhibitors en-

hances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer

Therapeutics, 15(11):2665–2678, 2016.

[264] Sandra Aedo and Yuk Ching Tse-Dinh. SbcCD-mediated processing of covalent gyrase-DNA com-

plex in Escherichia coli. Antimicrobial Agents and Chemotherapy, 57(10):5116–5119, 2013.

[265] John C. Connelly and David R F Leach. The sbcC and sbcD genes of Escherichia coli encode

a nuclease involved in palindrome inviability and genetic recombination. Genes to Cells, 1(3):

285–291, 1996.

[266] J. Connelly, E S de Leau, and D R Leach. DNA cleavage and degradation by the SbcCD protein

complex from Escherichia coli. Nucleic Acids Research, 27(4):1039–1046, 1999.

[267] J C Connelly, L A Kirkham, and D R Leach. The SbcCD nuclease of Escherichia coli is a structural

maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proceedings of the

National Academy of Sciences of the United States of America, 95(14):7969–74, 1998.

125



4 Bibliography

[268] Chew Theng Lim, Pey Jiun Lai, David R.F. Leach, Hisaji Maki, and Asako Furukohri. A novel

mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex. Nucleic Acids Research,

43(20):9804–9816, 2015.

[269] John C. Connelly, Erica S. De Leau, and David R.F. Leach. Nucleolytic processing of a protein-

bound DNA end by the E. coli SbcCD (MR) complex. DNA Repair, 2(7):795–807, 2003.

[270] Gareth A. Cromie and D. R F Leach. Recombinational repair of chromosomal DNA double-strand

breaks generated by a restriction endonuclease. Molecular Microbiology, 41(4):873–883, 2001.

[271] Judita Mascarenhas, Humberto Sanchez, Serkalem Tadesse, Dawit Kidane, Mahalakshmi

Krisnamurthy, Juan C Alonso, and Peter L Graumann. Bacillus subtilis SbcC protein plays an

important role in DNA inter-strand cross-link repair. BMC Molecular Biology, 7(1):20, 2006.

[272] Vidya A. Kamble and Hari S. Misra. The SbcCD complex of Deinococcus radiodurans contributes

to radioresistance and DNA strand break repair in vivo and exhibits Mre11-Rad50 type activity in

vitro. DNA Repair, 9(5):488–494, 2010.

[273] Elise Darmon, Manuel A. Lopez-Vernaza, Anne C. Helness, Amanda Borking, Emily Wilson, Zubin

Thacker, Laura Wardrope, and David R F Leach. SbcCD regulation and localization in Escherichia

coli. Journal of Bacteriology, 189(18):6686–6694, 2007.

[274] Aurelia Battesti, Nadim Majdalani, and Susan Gottesman. The RpoS-mediated general stress

response in Escherichia coli. Annual Review of Microbiology, 65:189–213, 2011.

[275] S K Kulkarni and F W Stahl. Interaction between the sbcC gene of Escherichia coli and the gam

gene of phage lambda. Genetics, 123(2):249–53, 1989.

[276] John K. Eykelenboom, John K. Blackwood, Ewa Okely, and D. R F Leach. SbcCD Causes a

Double-Strand Break at a DNA Palindrome in the Escherichia coli Chromosome. Molecular Cell,

29(5):644–651, 2008.
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List of Abbreviations

53BP1 p53-binding protein 1
Å Ångstrom
aa amino acid
ABC ATP-binding cassette
ADP adenosine diphosphate
AFM atomic force microscopy
ALT alternative lengthening of telomeres
alt-NHEJ alternative non-homologous end joining
AT ataxia-telangiectasia
ATLD ataxia-telangiectasia like disease
ATM ataxia-telangiectasia mutated
ATP adenosine triphosphate
ATPγS adenosine 5′-(γ-thio)triphoshpate
ATR Ataxia telangiectasia and Rad3 related
ATRIP ATR Interacting Protein
BER Base Excision Repair
BIR Break-induced replication
BLM Bloom syndrome protein
bp base pair
BRCA1/2 breast cancer 1/2
BRCT breast cancer carboxy terminus
CDK cyclin-dependent kinase
c-NHEJ classical non-homologous end joining
cryo-EM cryo-electron microscopy
C-terminus carboxy terminus
CTBP C-terminal-binding protein
CtIP CtBP-interacting protein
CO crossover
DDR DNA damage response
dHJ double Holliday junction
D-loop displacement loop
DNA deoxyribonucleic acid
DNA2 DNA replication ATP-dependent helicase/nuclease 2
DNA-PKcs DNA-dependent protein kinase catalytic subunit
DSB DNA double strand break
DSBR DNA double strand break repair
dsDNA double stranded DNA
EXO1 exonuclease 1
FHA forkhead associated
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GAR glycine-arginine-rich

G phase gap phase

HEAT Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A),

and the yeast kinase TOR1

HLH helix-loop-helix

HR homologous recombination

HJ Holliday junction

ICL interstrand crosslink

Ig immunoglobulin

IR ionizing radiation

KD dissociation constant

kDA kilo dalton

LOH loss of heterozygosity

MDC1 Mediator of DNA damage checkpoint 1

Mec1 mitosis entry checkpoint 1

MMEJ micro-homology mediated end joining

MMR mismatch repair

MMS methyl methanesulfate

M phase mitotic phase

Mre11 meiotic recombination 11

MR Mre11-Rad50

MRN Mre11-Rad50-Nbs1

MRX Mre11-Rad50-Xrs2

NBD nucleotide binding domain

Nbs1 Nijmegen breakage syndrome 1

NBS Nijmegen breakage syndrome

NBSLD NBS-like disorder

NCO non crossover

NER nucleotide excision repair

NHEJ non-homologous end joining

N-terminus amino terminus

PAH Polycyclic aromatic hydrocarbons

PARP Poly(ADP-ribose)-Polymerase

PAXX Paralogue of XRCC4 and XLF

PCNA Proliferating cell nuclear antigen

PDB Protein Databank

PI-3 kinase phosphatidylinositol-3

PIKK PI-3 kinase-like kinase

PTM post-translation modification
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PTO 1 protection of telomeres 1

Pol Polymerase

Rad50 radiation sensitive 50

Rag-1/2 Recombination-activating gene-1 and -2

Rap1 repressor and activator protein 1

RFC Replication factor C

RMI 1/2 RecQ-mediated genome instability protein 1/2

ROS reactive oxygen species

RPA replication protein A

RpoS RNA polymerase sigma factor

SFM Scanning force microscopy

SMARCAD1 SWI/SNF-related matrix-associated actin-dependent regulator of chro-

matin subfamily A containing DEAD/H box 1

SMC structural maintenance of chromosomes

SSA Single-strand annealing

SSB single strand break

SSB single-stranded DNA-binding protein

SSBR single strand break repair

S phase synthesis phase

Spo11 Sporulation 11

ssDNA single stranded DNA

SDSA Synthesis-dependent strand annealing

TIN 2 TRF1-interacting nuclear protein 2

T-loop telomere loops

TLS translesion synthesis

Top III Topoisomerase III

TPP1 TIN2- and POT1-interacting protein

TRF1/2 Telomeric repeat-binding Factors 1 and 2

TRFH TRF homology

UV ultraviolet

V(D)J variable, diversity, joining

wt wild type

XLF XRCC4-like factor

XPF Xeroderma pigmentosum group F-complementing protein

XRCC4 X-ray repair cross-complementing protein 4
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