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1  Introduction 

This chapter was adapted from: Jie Luo, Ernst Wagner and Yanfang Wang. Artificial peptides 

for antitumoral siRNA delivery. J. Mater. Chem. B, 2020, 8, 2020-2031. 

1.1 Nucleic acid formulation as therapeutic agents 

The therapy of macromolecules like proteins or nucleic acids (consisting of plasmid 

DNA, small interfering RNA siRNA, microRNA) is the promising way for infectious 

disease or cancer. As the therapeutic way, these macromolecules should be stable 

against degradation in the bloodstream and cleared by kidneys. 

Viral vectors have been widely investigated many years for intracellular nucleic acid 

delivery. However, the big obstacles of this kind of vector are immunogenicity and gene 

recombination with host. Therefore, non-viral vector appeals many researchers.  

In August 2018, FDA approved the first siRNA drug, Patisiran, a lipid nanoparticle (LNP) 

containing transthyretin (TTR) siRNA for treatment of hereditary transthyretin-mediated 

amyloidosis (ATTR). Extracellular and intracellular delivery has been critical for the 

success of siRNA cargo. A further refinement of delivery carriers will have a 

tremendous impact for efficacy of future nanomedicines. Three different directions can 

be considered: (i) chemical modifications of siRNA oligonucleotide backbone; (ii) 

covalent conjugation of siRNA with transport vehicles, such as with cholesterol for 

delivery to several organs, or with tri-(N-acetyl-galactosamine)-PEG for targeting the 

hepatocyte-specific asialoglycoprotein receptor; or (iii) supramolecular assembly into 

lipid-, peptide-, polymer- or inorganic-organic hybrid- based siRNA nanoparticles. 

siRNA LNPs have been developed for liver-specific applications and already reached 

drug status (see Patisiran, above). Givosiran, a completely chemically modified and tri-

(N-acetyl-galactosamine)-PEG conjugated siRNA targeting aminolevulinic acid 

synthase, was recently approved in November 2019 as second siRNA medicine 
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(GIVLAARI), as subcutaneously administered drug for the treatment of acute hepatic 

porphyria. Clinical studies are less advanced for cancer. Nevertheless, first tumor-

targeted siRNA polyplexes formed with cyclodextrin-oligocations and coated with 

transferrin-coated have already been tested in cancer patients and showed gene 

silencing of M2 subunit of ribonucleotide reductase (RRM2) in tumor tissue.  

1.2  Evolution of artificial peptides as siRNA nanocarriers 

Poly(amidoamines) already received a lot of attention in drug and gene delivery due to 

their favorable properties such as solubility, biocompatibility, low hemolysis and 

reduced cytotoxicity compared to other delivery carriers.[1] Hartmann and Börner 

applied SPS for generation of sequence-defined oligo(amidoamines) based on building 

blocks such as spermine and succinic acid.[2-5]  Such oligomers were firstly applied 

in plasmid DNA (pDNA) polyplex formulations, which presented an interesting starting 

point of the artificial peptide based strategy developed in our own laboratory. Synthetic 

peptides have been previously successfully applied as siRNA carriers or targeting 

ligands of siRNA formulations.[6-19] Lu and collaborators designed artificial lipo-

peptide carriers for siRNA delivery,[20-23] by combining one artificial building block 

triethylene tetramine with natural amino acids histidine, cysteine and conjugated oleic 

acid. Some of these carriers, such as EHCO (an ethylenediamine head group, a 

histidine-cysteine amino acid based linker and two oleic acid tails) and ECO (an 

ethylenediamine head group, a cysteine amino acid based linker and two oleic acid 

tails) were successfully applied in RGD-PEG siRNA formulations for tumor-targeted 

therapy in mice. Mixson and colleagues had designed linear and branched peptide 

libraries containing histidines (as endosomal buffering domain) and lysines (as nucleic 

acid binding domain) for pDNA and siRNA delivery.[11-16]  Langel and colleagues 

had developed a series of cell-penetrating peptides termed PepFects, which optionally 

also contained a fatty acid domain, for nucleic acid delivery.[17-19] 
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In our laboratory, in order to utilize the well-known proton sponge activity of 

polyethylenimine (PEI), which is a gold standard in successful pDNA transfection,[24-

26] the chemical amino ethylene motif was combined with the established methodology

of SPS of peptides. Schaffert et al [27] developed a versatile approach for incorporation 

of fluorenyl-methoxycarbonyl (Fmoc)- and t-butyl oxycarbonyl (Boc)-protected 

oligoamino acids, which allowed the synthesis of orthogonally protected cationic 

building blocks for Fmoc-SPS. Combined with lysines as the branching sites, cysteines 

as crosslinking terminals and fatty acids as hydrophobic domains, the designed 

artificial amino acids (tetraethylenepentamine artificial peptide Stp, Gtp, 

triethylenetetramine artificial peptide Gtt) were applied to establish more than 300 

linear, 3-arm, 4-arm, T-, i-, or U-shape sequence-defined oligomers for siRNA or pDNA 

delivery (Fig. 1).[28] Identification (ID) number, sequence, molecular characterization 

and biofunction of representative artificial peptides are displayed in Table 1. First proof-

of-concept studies proved the encouraging potential of such oligoaminoamides (OAA) 

in siRNA delivery. Results indicated that cysteine-containing 3-arm Stp-based oligomer 

displayed significantly higher gene silencing efficiency than the corresponding 

oligomer with alanines instead of cysteines. The i-shape oligomers with two cysteines 

and a hydrophobic domain indicated the important contribution of cysteines and 

hydrophobic fatty acids to stable siRNA complex formation, thereby significantly 

enhancing the internalization of formed nanoparticles into cells and the subsequent 

gene silencing efficiency. Meanwhile, the stabilization contributed by cysteines was 

able to be compensated by hydrophobic stabilization contributed by fatty acids. The U-

shape oligomers with diacyl groups were able to transfect in the absence of cysteines. 

The study not only highlighted the important role of cysteine and hydrophobic fatty 

acids in the design of oligomers, but also offer a convenient strategy to incorporate 

targeting ligands and shielding agents.[29, 30] The beneficial role of cysteine for siRNA 

delivery was further confirmed by Salcher et al in the evaluation of transfection 

efficiency by 4-arm oligomers.[31]  
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Based on SPS, precise sequence-defined artificial oligomers with different cationic 

building backbones (tetraethylenepentamine artificial peptide Stp, Gtp and Ptp, 

triethylenetetramine artificial peptide Gtt) and topologies (three-armed; T-shape, i-

shape and U-shape) were further optimized for nucleic acid delivery.[32] Although 

these cationic backbones have the same 1,2-diaminoethane proton-sponge motif, 

siRNA binding and reporter gene silencing experiments showed that Stp-containing 

oligomers have the greatest potential among these artificial amino acids. The 

screening of fatty acids incorporated in oligomers as hydrophobic domains revealed 

the most effective gene silencing with oligomers containing unsaturated fatty acids 

compared to oligomers with saturated fatty acids. In addition, it was proven that the 

topology of the investigated lipo-oligomers played a minor role in siRNA transfection 

efficiency as compared to the effect contributed by the incorporation of different 

building blocks, terminal cysteines and lipid moieties. By formulating with antitumoral 

EG5 siRNA, two promising oligomers, T-shape 49 with the sequence of C-Stp2-K[K-

(OleA)2]-Stp2-C and i-shape 229 with the sequence of C-Stp3-C-K-LinA2, exhibited 

efficient gene silencing and resulted mitotic monoastral spindles formation and cell 

cycle arrest both in vitro and in vivo. EG5 polyplexes upon intratumoral injection 

showed a significant inhibition of tumor growth in subcutaneous Neuro2A-eGFPLuc-

bearing mice.  
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Fig.1 Schematic overview of A) artificial oligo-amino acids (Stp, Gtp, Gtt, Ptp and Sph) used 

as cationic building block, and B) Stp-based oligomers with different topologies: linear, 2-arm 

with targeting ligand, 3-arm, 4-arm, i-, T- and U- shape. K, lysine; Stp, succinoyl-tetraethylene-

pentamine. 
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Table 1: Summary of representative artificial peptides in siRNA delivery. 

Oligomer ID Sequence (N→C) Topology* Biofunction Ref. 

49 C-Stp2-K[K-(OleA)2]-Stp2-C T-shape Efficient gene silencing, with siEG5 

both in vitro and in vivo.  

32 

229 C-Stp3-C-K-LinA2 i-shape 

386 C-Stp3-K(Stp3-C)2 3-arm Cysteine-containing oligomer 

exhibited significant stronger siRNA 

binding and higher gene knockdown 

as compared to the corresponding 

alanines-containing oligomer.  

28 

279 A-K[K(LinA)2]-Stp3-

K[K(LinA)2]-A 

U-shape Hydrophobic stabilization by four fatty 

acids may compensate the lack of 

disulfide crosslinking. 

28 

356 C-Stp4-K(PEG24-FolA)- 

Stp4-C 

2-arm Gene silencing activity depends on 

use of endosomolytic INF7-

conjugated siRNA.  

33 

640 K(Stp4-C)2-K(PEG24-E4-
MTX) 

2-arm γ-glutamic acid inserted into 

oligomers enhanced the antitumoral 

effect of nanoplexes as compared 

with 356.  

38 

454 C-Y3-Stp2-K[K(OleA)2]-
Stp2-Y3-C 

T-shape Y3-containing oligomer exhibited 

more stability, higher gene silencing 

efficiency and longer circulation time 

than Y3-free oligomer 49. 

47 

1027 C-Y3-(H-Stp)2-H-
K[K(CholA)2]- 

H-(Stp-H)2-Y3-C 

T-shape Histidine-containing oligomers 

showed enhanced gene silencing 

effect than corresponding histidine-

free oligomers among cysteine-

containing oligomers. 

50 

990(CholA) 
992(SteA) 

1082(MyrA) 

Y3-Stp2-K[G-ssbb-K(Fatty 
acid)2]-Stp2-Y3 

T-shape ssbb-containing oligomers for GSH-

triggered siRNA release exhibited 

higher transfection efficiency with 

lower cytotoxicity. 

39 

Series 
X1-MyrA-X2 

Y3-Stp2-X1-K[X2-
K(MyrA)2]- X1-Stp2-Y3 

(X1 and X2=L-Arg (R, RR) 
or D-Arg (r, rr) 

T-shape L-Arg dipeptides-containing 

oligomers for endolysosomal 

protease cathepsin B-triggered 

siRNA release displayed reduced 

cytotoxicity.   

42 

1106 K(N3)-Y3-Stp2-K[G-
K(CholA)2]-Stp2-Y3 

T-shape Azido groups were introduced to 

provide the option for subsequent 

copper-free click modification of 

shielding and targeting ligands. 

55 
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K, lysine; Stp, succinoyl-tetraethylene-pentamin; OleA: oleic acid; PEG, polyethylene glycol; 

CRC, cysteine-arginine-cysteine; ssbb, disulfide building block = succinoyl-cystamine; GSH, 

glutathione; MyrA, myristic acid; SteA, stearic acid; CholA, 5β-cholanic acid; Y3, tyrosine 

tripeptide. *Topologies of representative artificial peptides are displayed in Fig.1. 

1.3  Targeted siRNA nanoplexes 

Targeted delivery to tissues different from liver remains a major barrier in the process 

of siRNA therapeutics. Therefore, we present a series of targeted multifunctional 

artificial oligomers based on SPS chemistry.  

Dohmen and co-workers developed [33, 34] an oligoaminoamide core, terminated by 

cysteines for crosslinking, containing a monodisperse PEG chain at a defined central 

position and a folic acid (FolA) as cell targeting ligand. An endosomolytic influenza 

peptide, Inf7,[35, 36] was attached to the 5’-ends of siRNA sense strand to increase 

the endosomal escape ability. The multifunctional polyplexes with endosomolytic 

siRNA-Inf7 conjugates indicated a ligand- and Inf7- dependent reporter gene silencing. 

Stained slices of tumor harvested after 24 h i.t. treatment with of siEG5-Inf7 / oligomer 

356 with the sequence FolA-PEG24-K(Stp4-C)2 displayed the expected formation of 

mitotic asters. Although the siRNA-Inf7 356 polyplexes due to their small particle size 

exhibited a short systemic circulation time, the strong shielding effect of PEG chain 

prevented the unspecific affinity to other tissues. Based on oligomer 356 with FolA as 

targeting ligand, methotrexate (MTX) was coupled to the oligo(ethanamino)amide as 

dual-functional ligand to induce folate-receptor (FR) targeted cellular internalization as 

well as cytotoxic activity directed to dihydrofolate reductase (DHFR).[37] The MTX-

containing oligomers exhibited good cellular uptake and a cytotoxicity in FR-

overexpressing KB cells that was enhanced by synthetic oligo-glutamylation (En) of the 

ligand. Lee et al [38] evaluated these oligomers for dual antitumoral siRNA therapy 

(Fig. 2A and B).  
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Fig. 2 Bifunctional siRNA nanoplexes.  A) Schematic overview of the siRNA nanoplexes with 

MTX ligands and endosomolytic Inf7-siRNA conjugate.[38]  B) Oligomers with MTX 

polyglutamates. MTX was coupled to dPEG24 via the γ-glutamic acid (oligomers 638-641) or 

α-carboxy group (oligomer 642), and then linked to a 2-arm cationic backbone. E, glutamic 

acid. Tumor sizes C) and survival curves D) of KB tumor treated by the indicated different 

formulations, HBG buffer, 640, 640 containing siCtrl-Inf7 or siEG5-Inf7, or 356/siEG5-Inf7 

polyplexes.Reproduced from Lee et al.[38] with permissions of Elsevier.   

MTX-conjugated siEG5-Inf7 polyplexes exhibited efficient gene silencing in vitro as 

well as, upon intratumoral injection in KB tumors in mice, significantly extended 

retention of siRNA in tumors in vivo. Meanwhile, due to the dual antitumoral 

mechanism, siEG5-Inf7 polyplexes formed with oligomer 640 with the sequence of 

MTX-E4-PEG24-K(Stp4-C)2 mediated superior tumor suppression as compared to the 

FolA-conjugated 356 groups (Fig. 2C and D). 

1.4  Evolution of siRNA lipopolyplexes  

1.4.1 Biodegradable T-shape lipo-oligomers 
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For siRNA delivery, our studies indicated that extracellular stability of polyplexes is an 

essential requirement, yet the cytosolic release of siRNA in the intracellular space is 

also required. By introduction of a disulfide between the fatty acid domain and the 

cationic siRNA binding domain (Stp or Sph), Klein et al [39] used Fmoc-protected 

succinoyl-cystamine as disulfide building block (ssbb) and developed a library of bio-

degradable oligomers via SPS. The new bio-degradable lipo-oligomers containing 

ssbb block exhibited acidic pH-triggered endosomal escape analogously to the 

standard lipo-oligomers. The cytosolic glutathione (GSH) levels however was expected 

to trigger favorable cytosolic siRNA release of siRNA polyplexes. In addition, cleavage 

of the disulfide bond was expected to convert a detergent-like lipo-oligomer into a 

neutral lipid and a nontoxic small hydrophilic oligomer. Compared with the 

corresponding siRNA polyplexes formed with ssbb-free oligomers, the bio-cleavable 

oligomers demonstrated higher transfection efficiency with lower cytotoxicity.[39]  

For lipid nanoparticles, only 1-2% of siRNA is estimated to be released from 

endosomes into the cytosol,[40, 41] which apparently is sufficient to realize subsequent 

RNAi. It however also means that a large number of carriers are accumulating in the 

lysosomal compartment and may damage these organelles and cell functions. By 

precisely introducing short enzymatically cleavable L-arginine peptides (RR) between 

lipophilic di-myristic acid (MyrA) and the cationic Stp units via SPS, Reinhard et al.[42] 

developed a library of T-shaped oligomers for endolysosomal protease cathepsin B-

triggered siRNA release. Compared with analogous non-degradable oligomers, 

enzymatic bio-degradable lipopolyplexes containing L-arginine displayed reduced lytic 

activity after cleavage, thereby exhibited lower cytotoxicity without affecting the 

transfection efficiency. 

1.4.2 Targeted combination complexes TCP and TLP 

Based on previous studies, FR-targeted combinatorial polyplexes (TCP) were 

developed by co-formulating siRNA with two different oligomers to provide efficient 
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alternatives for multifunctional delivery system.[43, 44] To activate the cysteine thiol 

groups, 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) was reacted with one thiol-

containing oligomer, resulting in a TNB modified oligomer which would undergo rapid 

conjugation with another thiol-containing oligomer by formation of disulfide bonds. 

Based on previous work, oligomers with 2, 3 or 4-arm Stp/Sph without or with PEG-

FolA-conjugation were selected [28, 45, 46] or designed. The TCPs displayed 

significant gene silencing efficiency in FR-positive cells. Intravenous administration 

showed that TCP formed with a TNB-bearing PEGylated 4-arm Sph oligomer 873 of 

the sequence of K-(PEG24-FolA)-K-[K-(Sph4-C-TNB)2]2 with a 3-arm Stp oligomer 386 

of the sequence of C-Stp3-K-(Stp3-C)2 exhibited siRNA delivery into a subcutaneous 

L1210 leukemia site and a 46% reduction of EG5 mRNA.  

Afterwards, Lee et al [47] further developed FR-targeted lipopolyplexes (TLPs) by first 

formulating siRNA with an optionally tyrosine-containing oligomer and then co-

formulating targeted PEGylated oligomer 356 with the sequence of FolA-PEG24-

K(Stp4-C)2 by cysteine disulfide cross-linking for shielding and targeting modification. 

Fluorescence resonance energy transfer (FRET) showed that intracellular siRNA 

stability of TLP1 formed by tyrosine-containing oligomer 454 was superior compared 

with other TLPs formed by tyrosine-free oligomers. TLP1 showed folate ligand-

dependent siRNA accumulation in subcutaneous L1210 leukemia with a 65% EG5 

gene silencing. The results demonstrated that the incorporation of tyrosines was 

favorable to protect siRNA from cytosolic degradation, hence caused explicit changes 

to the RNAi effect. 

1.4.3 Surface shielded and targeted siRNA lipopolyplexes 

PEG shielding and targeting domains can be directly introduced into nanocarriers by 

SPS. This process however provides limitation to the nanoparticle design, formation of 

only very small nanoplexes in case of lipid-free formulations, or rather difficile 

combination formulations. An alternative approach presents the formation of stable 
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lipopolyplex core nanoparticles, followed by post-modification with a PEG-ligand shell. 

This covalent modification of siRNA core nanoparticles was performed in two different 

variations; either by coupling of cysteine thiols on the polyplex surface with maleimide- 

or OPSS- containing PEG-ligands (Fig. 3A);[48-51]  or via copper-free click reaction 

of lipopolyplexes generated with azido-containing oligomers with dibenzocyclooctyne 

amine (DBCO) PEG-ligands (Fig.3B). [52-57] The oligomers as well as the shielding 

and targeting ligands can be synthesized by SPS, which enables precise variation of 

functional units, such as PEG length, or the amount of attachment sites.  

Müller et al [48] used oligomers 454 with the sequence of C-Y3-Stp2-K[K-(OleA)2]-Stp2-

Y3-C and 595 with the sequence of CRC-Y3-Stp2-K[K-(OleA)2]-Stp2-Y3-CRC to prepare 

core siRNA polyplexes. Then the core polyplexes were modified by coupling with 

maleimide-PEG reagents with or without targeting ligand folic acid (FolA) to provide 

FR targeting and PEG shielding, respectively (Fig. 3A). The coupling efficiency of 

maleimide-PEG with oligomers was monitored via an Ellman’s assay. Modification with 

the standard FolA-PEG resulted in nanoparticle aggregation, most likely due to the low 

solubility of FolA. To resolve this problem, tetra-γ-glutamylated folate gE4-FolA was 

designed as ligand. The four negative glutamate charges improve solubility of FolA 

and provide the resulting nanoparticles with a negative zeta potential, which prevents 

nanoparticle aggregation by electrostatic repulsion interactions. The beneficial effect 

of such oligo-glutamylation in FR-targeted delivery was previously confirmed.[38, 58] 

PEGylated gE4-FolA polyplexes showed FR-mediated uptake and effective gene 

transfection efficacy in cervical carcinoma KB cells. Biodistribution of gE4-FolA 

formulations showed extended persistence in L1210 tumor bearing mice, however only 

a moderate in vivo delivery into the subcutaneous leukemia site.  

The epidermal growth factor receptor (EGFR) targeting peptide ligand GE11 was also 

introduced onto the surface of 454 siRNA (or microRNA) polyplexes by coupling 

maleimide-PEG-GE11 with the free cysteines.[49] The resulting GE11 454 siRNA (or 
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microRNA) lipopolyplexes showed enhanced cellular uptake in many EGFR-positive 

cell lines, and also functional delivery of microRNA-200c. Zhang et al [51] developed 

transferrin receptor (TfR) delivery on the basis of 454 siRNA polyplexes. Such 

designed Tf&Inf7 454 siRNA polyplexes displayed effective receptor specific 

internalization and enhanced gene silencing in TfR positive tumor cell lines. In vivo 

distribution further demonstrated the enhanced tumor persistence of siRNA for Tf&Inf7 

polyplexes in murine Neuro2A tumor bearing mice, as compared to the corresponding 

albumin or non-modified groups. 

By introducing azido lysine at the N terminus, Klein et al developed oligomer 1106 with 

the sequence K(N3)-Y3-Stp2-K[G-K(CholA)2]-Stp2-Y3 for click functionalization of 

polyplexes with DBCO reagents (Fig. 3B).[55] A library of defined PEG shielding and 

FolA targeting reagents were precisely synthesized by SPS. This library included 

different PEG lengths and monovalent (DBCO-PEG or DBCO-PEG-FolA) or bivalent 

DBCO with biodegradable linkers (DBCO2-ss2-PEG or DBCO2-ss2-PEG-FolA) for click 

modification, or double-click modification, respectively. Because of the instability of 

DBCO under standard 95% trifluoroacetic acid (TFA) deprotection, in the 5% TFA has 

to be applied in the final cleavage step of SPS. 1106 siRNA polyplexes incorporated 

with bivalent DBCO reagents was superior at size distribution, cellular internalization 

as well as gene silencing effect in vitro. Intravenous injection of the resulting 

1106/siEG5/DBCO2-ss2-PEG24-FolA lipo-polyplexes displayed extended tumor 

retention in L1210 tumor-bearing mice, with a knockdown of ~60% of target mRNA 

(Fig. 3C and Fig. 3D). The click reaction between DBCO and azide is highly specific 

and biorthogonal to other functional domains and without by-products. [59-61] 

Compared to the disulfide bonding modification, click modification will not affect the 

main purpose of cysteines and keep the stability of core polyplexes by internal disulfide 

crosslinking.  
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Fig. 3. Lipopolyplexes containing shielding and targeting domains. A) Cysteine-containing 

oligomers 454 or 595 were mixed with siRNA, and then the polyplexes were post-PEGylation 

with Mal-PEG24-FolA (FolA) or Mal-PEG24-gE4-FolA (gE4-FolA) by reaction with free cysteines 

on the surface of polyplexes.[48] FolA: folate acid. Reproduced from Müller et al.[48] with 

permission of American Chemical Society. B) siRNA polyplexes made with azido-bearing lipo-

oligomer 1106. Shielding or targeting reagents with monovalent or bivalent terminal DBCO 

were attached to the lipopolyplexes via click or double-click reaction with the exposed 

azides.[55] C) In vivo gene silencing efficiency of 1106/siRNA/DBCO2-ss2-PEG24-FolA 

lipopolyplexes. EG5 mRNA expression level in L1210 tumor mice was measured by qPCR.[55]  

D) Tumor sizes and survival curves of mice treated by HBG, PT, 1106/siRNA/DBCO2-ss2-

PEG24-FolA lipopolyplexes with siCtrl or siEG5, without or in combination with pretubulysin 

(PT). The arrows indicate the days of treatment.[55]  B) to D) reproduced from Klein et al. [55] 

with permission of Elsevier.  
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Conventionally, siRNA polyplexes were prepared by rapid manual pipetting up and 

down. Loy et al developed a microfluidic platform by designing two successive Y 

junctions for controlled and sequential formulation of functionalized polyplexes.[62] 

The core siRNA polyplexes were first assembled through single-meander channel 

(SMC). Then the polyplexes were click-modified with DBCO-PEG-FolA of different 

PEG lengths by a double-meander channel (DMC). The results demonstrated a clear 

influence of the PEG linker on gene silencing efficacy, which was consistent with 

previous findings. [55] 

1.5 Aim of thesis 

siRNA therapeutics has shown great potential, yet the downregulation of targeted gene 

expression may only partially inhibit tumor progression. Therefore, combined siRNA 

together with chemotherapeutic drugs or miRNA into one delivery system has to be 

developed to increase the therapeutic efficiency. Compared with monotherapy of 

cancer treatment, combination therapy enables different therapeutic entities 

simultaneously arrive the respective target site, results increased therapeutic efficiency 

due to the synergistic effect as well as lower side effects due to reduced dosage of 

chemotherapeutic drugs.[56, 63, 64] With regard to future optimization of this class of 

siRNA cancer therapeutics, emphasis has to be directed to (i) siRNA functionalized by 

chemical modification to combine with some antitumoral peptides/drug, and (ii) 

optimization of cationic oligo-formulation to fast attach to the tumor endothelial cells 

and achieve siRNA function in vivo.  

The first aim of the thesis was to present a monodisperse carrier synthesized by solid 

phase supported chemistry. The sequence-defined assembly contains two oleic acids 

attached to a cationizable oligoaminoamide backbone in T-shape configuration, and a 

terminal azide functionality for coupling to the atherosclerotic plaque-specific peptide-

1 (AP-1) as cell targeting ligand for interleukin-4 receptor (IL-4R) which is 

overexpressed in a variety of solid cancers. For combined cytosolic delivery with siRNA, 
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different apoptotic peptides (KLK, BAK and BAD) were covalently conjugated via 

bioreversible disulfide linkage to the 5’end of the siRNA sense strand. The optimized 

targeted carrier was complexed with dual antitumoral siEG5-KLK conjugates. The 

functionality of each subdomain was individually confirmed. The lipo-oligomer 

conferred stable assembly of siRNA conjugates and was click-shielded with 

dibenzocyclootyne-PEG-AP-1 (DBCO-PEG-AP-1). Structure-activity relationships of 

these oligomers were investigated, and the further mechanism of apoptotic peptide 

and siRNA in vitro function were also evaluated and discussed. 

The second aim of the thesis was that a cationizable sequence-defined lipo-

oligoaminoamide (lipo-OAA) modified with an N-terminal azide and HA modified with 

DBCO groups were used as clickable modules, respectively. By variation of the ratio 

of DBCO-HA to OAA azide of the siRNA nanoparticle, colloidal stable cationic and 

anionic HA-based siRNA polyplexes were established. Evaluation of these 

nanoparticles should explore any relations of surface charge with in vivo tumor 

accumulation, tumor penetration and subsequent gene silencing efficacy in vivo. The 

effect of the different coatings on the cellular uptake, endocytic pathways, endosomal 

escape in vitro, and tumor accumulation, tumor penetration, and gene silencing of 

siRNA carriers in vivo should also be evaluated.  
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2. Materials and Methods

2.1  Materials 

Materials: 2-Chlorotrityl Chloride resin, protected Fmoc-α-amino acids, N, N-

dimethylformamide (DMF), N,N-diisopropylethylamine (DIPEA), N-methyl-2-

pyrrolidone (NMP) and trifluoroacetic acid (TFA) were obtained from Iris Biotech 

(Marktredewitz, Germany). 1-hydroxybenzotriazole (HOBt), triisopropylsilane (TIS), 

dibenzocyclooctyne-PEG4-maleimide, dimethyl sulfoxide (DMSO) and oleic acid were 

purchased from Sigma-Aldrich (Munich, Germany). Syringe microreactors for peptide 

synthesis and (benzotriazol-1-yloxy) tripyrrolidino phosphonium hexafluorophosphate 

(PyBOP) were obtained from MultiSynTech (Witten, Germany). Fmoc-N-amido-

dPEG24-acid from Quanta Biodesign (Powell, Ohio, USA). siRNA duplexes were 

obtained from Axolabs GmbH (Kulmbach, Germany): eGFP-targeting siRNA (siGFP) 

(sense: 5’-AuAucAuGGccGAcAAGcAdTsdT-3’; antisense: 5’-

UGCUUGUCGGCcAUGAuAUdTsdT-3’) for silencing of eGFPLuc; EG5-targeting 

siRNA (siEG5) (sense: 5’-ucGAGAAucuAAAcuAAcudTsdT-3’; antisense: 5’-

AGUuAGUUuAGAUUCUCGAdTsdT-3’) for silencing EG5 motor protein; control 

siRNA (siCtrl) (sense: 5’-AuGuAuuGGccuGuAuuAGdTsdT-3’; antisense: 5’-

CuAAuAcAGGCcAAuAcAUdTsdT-3’); Cy5-labeled siRNA (Cy5-siAHA1) (sense: 5’-

(Cy5)(NHC6)GGAuGAAGuGGAGAuuAGudTsdT-3’; antisense: 5’-

ACuAAUCUCcACUUcAUCCdTsdT-3’); Apoptotic peptides modified siRNA, disulfide-

siEG5 (sense: 5’-(C6SSC6)ucGAGAAucuAAAcuAAcudTsdT-3’; antisense: 5’-

AGUuAGUUuAGAUUCUCGAdTsdT-3’) and disulfide-siCtrl (sense: 5’-

(C6SSC6)AuGuAuuGGccuGuAuuAGdTsdT-3’; antisense: 5’-

CuAAuAcAGGCcAAuAcAUdTsdT-3’); small letters: 2’-methoxy-RNA; s: 

phosphorothioate. Cell culture media, antibiotics and fetal calf serum (FCS) were 

purchased from Invitrogen (Karlsruhe, Germany), HEPES from Biomol GmbH 

(Hamburg, Germany), glucose from Merck (Darmstadt, Germany), agarose (NEEO 
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Ultraquality) and ammonia solution 25% from Carl Roth GmbH (Karlsruhe, Germany), 

and GelRed™ from VWR (Darmstadt, Germany). Cell culture lysis buffer and D-

luciferin sodium salt were obtained from Promega (Mannheim, Germany).  

2.2  Methods 

2.2.1  Loading of 2-chlorotrityl chloride resin with Fmoc-protected amino acids 

2-chlorotrityl chloride resin (500 mg, chloride loading 1.55 mmol/g) was swelled in dry 

DCM for 10 min for two times. Subsequently, 0.4 eq mmol Fmoc-L-Cys(Trt)-OH (or 

Fmoc-L-Tyr(tBu)-OH) and 0.9 eq mmol DIPEA were added to the resin and incubated 

at RT for 1 h. After removing the reaction solvents, the resin was incubated with a 

mixture of DCM/MeOH/DIPEA (80/15/5 v/v/v) for 10 min for two times at RT. After 

removal of the reaction mixture, the resin was washed 5 times with DCM and about 30 

mg of the resin was separated for the loading determination. Therefore, an exact 

amount of resin was treated with 1 mL deprotection solution (20% piperidine in DMF) 

for 1 h. Afterwards, the solution was diluted, and absorption was measured at 301 nm. 

The loading was then calculated according to the equation: resin load [mmol/g] = 

(A*1000)/(m [mg]*7800*df) with df as dilution factor. The rest resin was washed 3 times 

with DMF, and then was treated 5 times for 10 minutes with 20 % piperidine in DMF. 

Reaction progress was monitored by Kaiser test. Finally, the resin was washed 3 times 

with DMF, 3 times with DCM, 3 times with n-hexane and dried under vacuum. 

2.2.2  Synthesis of oligomers 

Oligoaminoamides were synthesized analogously as previously reported [28, 65-68] 

by standard Fmoc-based solid phase supported peptide synthesis in syringe reactors. 

2-Chlorotrityl chloride resin was used as solid support. The synthesis of oligomers 

contained three main process: loading, coupling and cleaving off the resin. The 

protocol of TFA cleavage condition was used as previously described, with pre-cooling 

to avoid hydroxylation of the oleic acid double bonds.[67] For the PEG-AP-1 targeting 
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domain, the 3-mercaptopropionic acid-PEG-AP1 sequence was synthesized manually 

by Fmoc solid-phase peptide synthesis using a syringe microreactor. After standard 

deprotection and cleavage condition (TFA/TIS/H2O 95:2.5:2.5), the peptide conjugate 

was specifically coupled via its N-terminal 3-mercaptopropionic acid with maleimide-

PEG4-DBCO at neutral pH in solution. For the apoptotic peptide syntheses, the 

sequences were synthesized by Fmoc solid-phase peptide synthesis using a syringe 

microreactor. An N-terminal cysteine was incorporated onto these apoptotic peptides 

for subsequent coupling with the free thiol of siRNA sense strand.  

2.2.3  Synthesis of different siRNA-Apoptotic peptide conjugates  

The sense strand of the applied siRNA contained a 5’-end modification with C6-ss-C6 

spacer. The modified siRNA was incubated with tris(2-chlorethyl) phosphate (TCEP, 

10 equiv.) for 30 min at 25 °C, resulting in a free thiol on the 5’-end. Purification was 

performed by ethanol precipitation and dissolved in water to a concentration of 1 mM. 

The apoptotic peptides were incubated with 5,5’-dithiobis (2-nitrobenzoic acid) (DTNB, 

10 equiv.) for 1h at RT to activate the thiol. The activation product was purified by 

HPLC (VWR Hitachi Chromaster consisting of 5430 Diode array detector and 5160 

gradient pump, Darmstadt, Deutschland). The products were separated with a XTerra 

C8 column (5 μm, 4.6 x 150 mm, Waters, Eschborn, Germany) and eluted with an 

ACN/0.1M triethylammonium acetate gradient (95:5 to 35:65 in 45 min, pH 8). Product 

containing fractions were lyophilized. The resulting activated apoptotic peptides (1.5 

equiv.) was incubated with free thiol of siRNA. The resulting siRNA-apoptotic peptide 

conjugates were purified by HPLC using the same conditions as described above. 

Fractions were collected and lyophilized and dissolved in 20mM HEPES buffered 5% 

glucose pH 7.4 (HBG) at a concentration of 500 ng/mL. The siRNA conjugates were 

analyzed in a 3.5% agarose gel (100 mV for 100 min) and MALDI-TOF-MS analysis. 

The dimer siRNA and pure siRNA were regarded as controls to determine the purity of 

siRNA conjugate. 
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2.2.4  Synthesis of modified Hyaluronic acid-DBCO 

HA (20 kDa sodium salt, 5 mg, 0.012 mmol monomers), NHS (N-hydroxysuccinimide, 

5eq. 0.06 mmol, 6.9 mg), EDC (3-(ethyliminomethyleneamino)-N,N-dimethylpropan-1-

amine; 5eq. 0.06 mmol, 11.5 mg) were dissolved in 100 mL activation buffer (0.1M, 

TES, 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid). The 

pH was adjusted to 7. Afterwards, DBCO-amine (2eq. 0.024 mmol, 6.6 mg) in DMF 

was added into above solutions. After overnight, the product was purified by dialysis 

with a 3500 Da cut-off membrane against deionized water. The yield of DBCO-HA was 

75 % by calculation of weight after lyophilization. The substitution degree for HA 

carboxylic groups was 8% according to the 1H-NMR spectrum, which was also 

confirmed by the increase in absorbance at 309 nm using an extinction coefficient of 

12,000 M-1 · cm-1. 

2.2.5  Kaiser Test 

Free amines of deprotected amino acids on the resin were determined qualitatively by 

the Kaiser test [67]. A small sample of DCM washed resin was transferred into an 

Eppendorf reaction tube. One drop of each 80 % phenol in EtOH (w/v), 5 % ninhydrin 

in EtOH (w/v) and 20 μM potassium cyanide (KCN) in pyridine (mixture of 1 mL 

aqueous 0.001 M KCN solution and 49 mL pyridine) were added. The tube was 

incubated at 99 °C for 4 min under shaking. The presence of free amines was indicated 

by a deep blue color.  

2.2.6  General Cleavage conditions 

All oligomers were cleaved off the resin by incubation with TFA–TIS–H2O (95 : 2.5 : 

2.5) (10 mL g−1 resin) for 90 min. The cleavage solution was concentrated by flushing 

nitrogen and oligomers were precipitated in 50 mL of pre-cooled MTBE – n-hexane (1 : 

1). All oligomers were purified by size exclusion chromatography using a Äkta purifier 

system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden), a Sephadex G-10 
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column and 10 mM hydrochloric acid solution–acetonitrile (7 : 3) as solvent. All 

oligomers were lyophilized.  

2.2.7  Cleavage of oligomers containing oleic acid 

The cleavage of the structures off the resin was performed according to an optimized 

protocol by incubation with TFA–TIS–H2O 95 : 2.5 : 2.5 (10 mL/g resin cooled to 4 °C 

prior to addition) for 30 min followed by immediate precipitation in 40 mL of pre-cooled 

MTBE – n-hexane (1 : 1). The oleic acid containing oligomers were then purified by 

size exclusion chromatography using a Äkta purifier system (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden), a Sephadex G-10 column and 10 mM hydrochloric 

acid solution–acetonitrile (7 : 3) as solvent. The oligomers were lyophilized. 

2.2.8  siRNA formulation 

500 ng of siRNA and the calculated amount of oligomers at the indicated 

nitrogen/phosphate (N/P) ratios were separately diluted in 10 µL of HBG. Only 

protonatable nitrogens were considered into N/P calculation. The oligomers solution 

was added in the nucleic acid solution and mixed by pipetting up and down (3 times) 

to obtain a homogeneous state. The polyplexes were incubated for 45 min at RT. For 

modification of siRNA polyplexes with DBCO agents, the ratio of volume of DBCO 

solutions and polyplexes was 1/4. Equivalents refer to the molar ratios of shielding or 

targeting agents to oligomers in the final solution. The incubation time between azide 

and DBCO click chemistry was 4 h. 

2.2.9  High-performance liquid chromatography (HPLC) 

The siRNA-Apoptotic peptides conjugates were purified by HPLC (VWR Hitachi 

Chromaster consisting of 5430 Diode array detector and 5160 gradient pump, 

Darmstadt, Deutschland). The products were separated with a XTerra C8 column (5 

μm, 4.6 x 150 mm, Waters, Eschborn, Germany) and eluted with an ACN/0.1M 
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triethylammonium acetate gradient (95:5 to 35:65 in 45 min, pH 8). Product containing 

fractions were lyophilized.  

2.2.10  1H-NMR spectroscopy 

1H NMR spectra was performed using a Jeol JNMR-GX 400 (400 MHz) or JNMR-GX 

500 (500 MHz) without TMS as internal standard. Deuterium oxide (D2O) was used as 

solvent. All chemical shifts were calibrated to the residual proton signal of the solvent 

and are reported in ppm. Data are presented as s = singlet, d = doublet, t = triplet, m 

= multiplet. The spectra were analyzed with MestReNova (MestReLab Research).  

2.2.11  MALDI mass spectrometry 

One μL matrix droplet consisting of a saturated solution of Super-DHB (sum of 2,5-

dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid) in acetonitrile / water (1 : 

1) containing 0.1 % (v/v) TFA was spotted on an MTP AnchorChip (Bruker Daltonics,

Bremen, Germany). After the Super-DHB matrix had crystallized, one μL of the sample 

solution (10 mg/mL in water) was added to the matrix spot. Samples were analyzed 

using an Autoflex II mass spectrometer (Bruker Daltonics, Bremen, Germany). All 

spectra were recorded in positive mode. 

2.2.12  siRNA binding assay 

A 2.5% agarose gel containing GelRed® was prepared. Formulations were prepared 

with 500 ng of siRNA and diluted to a final volume of 20 µL. Samples were mixed with 

loading buffer (6 mL of glycerol, 1.2 mL of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of 

bromophenol blue). Electrophoresis was performed at 100 V for 40 min. 

2.2.13  siRNA polyplexes stability in 90% serum 

Polyplexes were formed using 2.5 μg siRNA mixed with the oligomer at N/P 12 

resulting in a total volume of 10 μL. Afterwards, the incubation 90 μl fetal bovine serum 
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(FBS) was added to the samples. All samples had a final concentration of 90 % FBS. 

The samples were incubated at 37 °C for 2 h. 20 μL of the samples and 4 μL loading 

buffer were carefully mixed and a binding assay (see 2.2.12) was performed.  

2.2.14  Particle size and zeta potential 

Polyplexes were formed using 4 µg siRNA and diluted with HBG to a total volume of 

20 µL. After 45 min incubation time, polyplexes were diluted with HEPES solution to 

800 µL volume. The polyplex solution was measured in a folded capillary cell (DTS 

1070) using a Zetasizer Nano ZS (Malvern, Worcestershire, UK) with a flexible 

attenuator at an angle of 173 °. The refractive index of the solvent was 1.330 and the 

viscosity was 0.8872 mPa·s. Samples where measured three times with six sub runs 

each. Afterwards, zeta potential was measured with a flexible attenuator at a 90 ° angle. 

Samples were measured three times (10000 total counts, usually 12-15 sub runs). The 

temperature was set at 25 °C. 

2.2.15  Cell culture 

Human cervix carcinoma cells HeLa, KB (subclone of HeLa) and human liver 

carcinoma cells Huh 7 were cultured in Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 1 g/L glucose, 10% FBS, 4 mM stable glutamine, 100U/mL 

penicillin and 100 µg/mL streptomycin. Human breast adenocarcinoma cells MDA-MB-

231 stably transfected with the eGFPLuc gene (MDA-MB-231/eGFPLuc) and KB cells 

stably transfected with the eGFPLuc gene (KB/eGFPLuc) were cultured in RPMI 1640 

medium (Invitrogen, Karlsruhe, Germany), supplemented with 10% FBS, 4 mM stable 

glutamine, 100U/mL penicillin and 100 µg/mL streptomycin. Huh 7 cells stably 

transfected with the eGFPLuc gene (Huh 7/eGFPLuc) were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM)/Nutrient Mixture F-12 Ham, supplemented with 10% 

FBS, 4 mM stable glutamine, 100U/mL penicillin and 100 µg/mL streptomycin. Human 

lung carcinoma cells A549 was cultured in Dulbecco’s modified Eagle’s medium 
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(DMEM), supplemented with 4.5 g/L glucose, 10% FBS, 4 mM stable glutamine, 

100U/mL penicillin and 100 µg/mL streptomycin. The cells were maintained in 

ventilated flasks in the incubators at 37 °C with 5% CO2 in a humidified atmosphere. 

Cell lines were grown to 80-90% confluency and harvested. 

2.2.16  Cell internalization 

Cells were seeded in 24-well plates at a density (90000 cells/well for Huh 7) for 24h 

before the experiment. Polyplexes containing 1.35 µg of siRNA, including 20% Cy5-

labeled siRNA, were added into each well incubated 45 min at 37 °C in 5% CO2. 

Afterwards, cells were treated with PBS to remove non-bound polyplexes. Then cells 

were incubated with 500 I.U. heparin to remove the polyplexes associated to the cells 

surface. Finally, the cells were collected and resuspended in PBS buffer with 10% FBS. 

The samples were mixed with DAPI at a final concentration of 1 ng/µL before flow 

cytometry measurement. Dead cells were differentiated by DAPI fluorescence and 

removed by gating in order to analyze the cellular uptake of polyplexes into living cells. 

The amount of Cy5-labeled living cells was counted through excitation at 635 nm and 

detection of emission at 665 nm. The results were evaluated by the FlowJo 7.6.5 

software. All experiments were performed in triplicates. 

2.2.17  Endocytosis pathway 

For the endocytosis pathway, KB and Huh 7 cell lines were seeded into 24-well-plates 

at a density of 16000 cells/well. To determine the endocytosis pathway, the cells were 

pre-incubated with different inhibitors diluted in Millipore water at different 

concentrations (nystatin 15 μg/mL, sucrose 154 mg/mL, amiloride 133 μg/mL, sodium 

azide 1 mg/mL, HA 10 mg/mL) for 1 h at 37°C. The medium was changed and 

incubated at 37°C for 2h after adding polyplexes containing 1.35 µg of siRNA 

(containing 20% of Cy5-labeled siRNA). The samples were prepared for flow 

cytometric measurements with LSR Fortessa (BD biosciences, Singapore) as 
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described above. All experiments were performed in triplicates and evaluated by the 

FlowJo 7.6.5 software. 

2.2.18  Transmission electron microscopy (TEM)   

Carbon coated copper grids (Ted Pella, Redding, CA, USA, 300 mesh, 3.0 mm O. D.) 

were hydrophilized with a plasma cleaner under argon atmosphere. Afterwards, the 

grids were placed activated face down on 10 µL of the siRNA polyplex solution at N/P 

12 (diluted in water). Incubation time was 3 min. The liquid was removed using a filter 

paper. Subsequently, the copper grid was washed with 5 μL staining solution (1% 

uranyl format in purified water, Sigma-Aldrich, Munich, Germany), which was 

immediately removed. Staining was achieved with 5 µL of the same solution that was 

left on the grid for 5 s. Afterwards, all liquid was removed with a filter paper. Grids were 

stored at room temperature and they were analyzed using JEM 1011 transmission 

electron microscope (JEOL, Tokyo, Japan) at 80 kV acceleration voltage. 

2.2.19  Lysotracker assay  

For subcellular distribution, Huh 7 cell lines were seeded into 8-well chamber at a 

density (15000 cells/well) for 24h prior to the experiment. Polyplexes were formed as 

described using 20% Cy5-labeled siRNA at N/P 12 and diluted to a final siRNA 

concentration of 370 nM in HBG. After 2 h of incubation at 37°C, the medium was 

changed before 0.1 μL of LysoTrackerGreen solution (Fisher Scientific) was added into 

each well. The cells were washed twice with 100 μL PBS and incubated for 1h in 37°C 

incubators. After adding the Hoechst 33342, the cells were directly measured by 

confocal laser scanning microscopy. 

2.2.20  Gene silencing with siRNA 

Gene silencing experiments were performed with IL4 receptor-positive KB/eGFPLuc 

cells and Huh 7/eGFPLuc cells. Applied siRNAs were siGFP for silencing the eGFPLuc 
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fusion protein and the control siCtrl. Cells were seeded in 100 µL of medium using 96-

well plates at a density (8000 cells/well for Huh 7/eGFPLuc cells and KB/eGFPLuc 

cells) for 24h prior to the experiment. After the medium was replaced with 80 µL of 

fresh medium, cells were transfected with 20 µL of polyplexes containing 500 ng of 

siRNA at certain N/P ratio at 37 °C for 4 h. Afterwards, the medium was replaced with 

fresh one and cells were incubated 48h. Before measuring the luciferase activity, 100 

µL of cell lysis regent (Promega, Mannheim, Germany) was added to cells per well. 

The luciferase assay kit (Promega, Mannheim, Germany) and a Centro LB 96 plate 

reader luminometer (Berthold, Bad Wildbad, Germany) were used. The relative light 

units (RLU) were related to HBG buffer-treated control cells. 

2.2.21  Cell viability 

To measure cytotoxicity mediated by EG5 knockdown and/or apoptotic peptide 

conjugates, the apoptotic peptide modified siRNAs siEG5-apoptotic peptide (siEG5-

KLK, siEG5-BAK, siEG5-BAD) and their control siCtrl-apoptotic peptide conjugates 

(siCtrl-KLK, siCtrl-BAK, siCtrl-BAD) were used. Cells were seeded on 96-well plate in 

100 µL of medium 24h before the experiment. Medium was replaced by 80 µL of fresh 

medium. Formulation were formed using 20 µL of polyplexes containing 500 ng either 

siRNA or siRNA-apoptotic peptide conjugates at N/P ratio of 12. After incubation at 4h, 

the medium was replaced with 100 µL of fresh medium and cells were cultured for 48 

h. MTT assay (Life Technology, Darmstadt, Germany) was performed to evaluate the 

cell viability. The experiments were performed in triplicates using SpectraFluor Plus 

microplate reader (Tecan, Austria).  

2.2.22  Fluorescence microscopy of aster formation  

Huh 7 cells and KB cells (20 000 cell/well) were seeded in 300 µL of medium using 8-

well Lab-Tek chamber slides for 24 h. After seeding medium was replaced with 250 µL 

of fresh medium, 50 µL of polyplexes containing 1.5 µg of either siRNA or siRNA-
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apoptotic peptide conjugate was added. Medium was replaced by fresh medium 4 h 

after transfection. After 48 h medium was removed, PBS was added to wash the cells. 

The cells were fixed with 4 % PFA and then cell nuclei were stained by DAPI. The data 

was obtained from Axiovert 200 fluorescence microscope (Carl Zeiss, Oberkochen, 

Germany).  

2.2.23  JC-1 assay 

Huh 7 cells (140 000 cells per well) were seeded into 12-well plates for 24 h. The cells 

were incubated with 1) the 1208 + siCtrl + AP-1; 2) 1208 + siCtrl-KLK + AP-1; 3) 1208 

+ siEG5 + AP-1; 4) 1208 + siEG5-KLK + AP-1, loaded with siRNA at a dose of 2.7 µg 

for 4 hours.  The medium was replaced with fresh medium and cells were cultured for 

48 hours. Afterwards, the cells were collected and suspended in 1 mL of warm PBS 

buffer. For positive control, 1 µL of 50 mM CCCP was added and cells were incubated 

for 5 min. Afterwards, 10 µL of 200 µM JC-1 was added each sample and incubated 

for 20 min. Cells were collected and analyzed by a flow cytometry using 488 nm 

excitation. 

2.2.24  Annexin V-FITC / PI apoptosis assay 

Huh 7 cells (140 000 cells per well) were seeded into 12-well plates for 24 h. The cells 

were incubated with 1) the 1208 + siCtrl + AP-1; 2) 1208 + siCtrl-KLK + AP-1; 3) 1208 

+ siEG5 + AP-1; 4) 1208 + siEG5-KLK + AP-1, loaded with siRNA at a dose of 2.7 µg 

for 4 h. The medium was replaced with fresh medium and cells were cultured for 24 h 

and 48 h. Afterwards, the cells were collected and suspended in 0.5 mL of 1 × binding 

buffer, followed by washes twice with ice-cold PBS. Annexin V-FITC (2 µL, 0.15 mg/mL, 

BioVision, USA) was added into the cell suspension with an incubation for 15 min and 

the cells were immediately analyzed by a flow cytometry after adding 2 µL of propidium 

iodide PI (1 mg/mL, BioVision, USA). 
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2.2.25  Animal tumor model 

Female 8-week-old nude mice, Rj: NMRI-nu (nu/nu) (Janvier, Le Genest-Saint-Isle, 

France), were housed in isolated ventilated cages and acclimated for at least 7 days 

prior to experiments. Animals were injected with 5 × 106 Huh 7 hepatocellular 

carcinoma cells subcutaneously for biodistribution study and EG5 silencing assay in 

vivo. The body weight was recorded, and the tumor volume was measured by caliper 

and calculated as [0.5 × (longest diameter) × (shortest diameter)2]. All animal 

experiments were performed according to guidelines of the German law for the 

protection of animal life and were approved by the local animal ethics committee.  

2.2.26  Biodistribution 

For near infrared (NIR) in vivo imaging, unlabeled control siRNA (siCtrl) was spiked 

with 50% of Cy7-labeled siRNA (Cy7-siAHA1). When tumors reached the size of 500 

mm3, the mice (n = 3/per group) were anesthetized with 3% isoflurane in oxygen. 

siRNA polyplexes (N/P 12) in 250 µL of HBG were injected intravenously (i.v.), and 

fluorescence was measured with a CCD camera at different time points. For evaluation 

of images, efficiency of fluorescence signals was analyzed after color bar scales were 

equalized using IVIS Lumina system with Living Image software 3.2 (Caliper Life 

Sciences, Hopkinton, MA, USA).  

2.2.27  Gene silencing of EG5 in vivo 

When tumors reached 500 mm3, mice (n = 5/per group) were injected i.v. with siRNA 

polyplexes containing 50 µg of siEG5 or siCtrl (N/P 12) 48 h and 24 h before euthanasia. 

As a part of terminal procedure, blood samples were obtained by cardiac puncture for 

blood biochemistry examinations. After tumors were harvested and homogenized, total 

RNA was extracted using Trifast (Peqlab, Erlangen, Germany) according to the 

manufacturer’s protocol, and then the reverse transcription and qRT-PCR were 

performed. Total RNA was isolated followed by reverse transcription using qScriptTM 
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cDNA Synthesis Kit (Quantabio, Beverly, USA) according to the manufacturers’ 

protocols. Quantitative RT-PCR was performed in triplicates on a LightCycler 480 

system (Roche, Mannheim, Germany) using UPL Probes (Roche, Mannheim, 

Germany) and Probes Master (Roche, Mannheim, Germany) with GAPDH as 

housekeeping gene. The following probes and primer sequences were used: human 

GAPDH (ready-to-use in UPL, UPL Probe #45), human EG5 (UPL Probe #53) (forward: 

CATCCAGGTGGTGGTGAGAT, reverse: TATTGAATGGGCGCTAGCTT). Results 

were analyzed by the ΔCT method. CT values of GAPDH were subtracted from CT 

values of EG5. ΔCT values of cationic and anionic siRNA polyplexes groups were 

calculated as percentage relative to untreated HBG control groups. 

2.2.28  Blood biochemistry examinations 

To isolate plasma, blood samples were collected in EDTA-coated tubes (Multivette 600, 

Sarstedt, Nümbrecht, Germany) and centrifuged at 3000 rpm for 7 minutes. The 

supernatant was analyzed for clinical biochemistry parameters: alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) 

and creatinine in the Clinic of Small Animal Medicine, Faculty of Veterinary Medicine, 

Ludwig-Maximilians-Universität München. 

2.2.29  Staining, imaging and 3D reconstruction 

Mice (n = 3/per group) with tumor xenograft over 500 mm3 were injected intravenously 

with cationic or anionic polyplexes containing 50 µg of siCtrl spiked with 50% of Cy3-

labeled siRNA (Cy3-siAHA1) (N/P 12), and anesthetized with Ketamine/Xylaxin at 0.1 

mL/10g bodyweight at 5 min and 45 min after injection. Upon sacrification, mice were 

perfused transcardially using PBS at 10mL/min for 1min, followed by 1% 

paraformaldehyde PFA in PBS at the above same speed for 3min. Subsequently, mice 

were blocked with 1% BSA (97061-420; VWR, PA, USA) in PBS at 10mL/min for 1min 

and stained by 50mL DyLight 488 labeled lycopersicon esculentum tomato lectin (20 
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µg/mL in PBS, DL-1174-1; Vector Laboratories, Burlingame, CA, USA) at 10mL/min. 

Finally, mice were washed using 1% BSA in PBS for 1 min. Tumor xenograft and 

organs (kidneys) were harvested for 50 µm thick sections using a Vibratome (VT1000S; 

Leica, Wetzlar, Germany). Free-floating sections were then collected and mounted 

with antifade mounting medium (H-1400, Vector Laboratories, Burlingame, CA, USA) 

and scanned in a Z-stack manner with 1 µm interval using a confocal microscope 

system (LSM780, Zeiss, Oberkochen, Germany) within 12h due to the easily 

degradable character of tomato lectin. Corresponding 3D reconstruction was 

performed using Imaris 9.0.1(Bitplane, Belfast, UK). 
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3.  Results and Discussion 

3.1 IL4-receptor-targeted antitumoral apoptotic peptide - siRNA conjugate 

lipoplexes 

Section 3.1 has been adapted from: Jie Luo, Miriam Höhn, Sören Reinhard, Dominik M. Loy, 

Philipp Michael Klein and Ernst Wagner, Adv. Funct. Mater. 2019, 29, 1900697. 

siRNA has the potential to downregulate disease-related gene expression in a 

selective and sequence-dependent manner, and thereby provides a promising 

therapeutic approach for severe diseases including genetic diseases or cancer.[69] 

The first siRNA drug, Patisiran, a liposomal formulation of transthyretin (TTR) siRNA 

for treatment of hereditary transthyretin-mediated (ATTR) amyloidosis by gene 

silencing in the liver, has obtained market approval by the US FDA in August 2018.[70] 

Although the biological process of gene silencing is well understood, the main 

challenge of siRNA therapeutics remains the efficient delivery to target sites different 

from liver tissue.[71-73] Steps such as specific recognition of the target cells, stability 

and protection in the cellular environment, and entrance into the cytosol remain 

challenging bottlenecks in the delivery process. Naked siRNA molecules have limited 

stability in biological environments, subjected to fast elimination by the kidneys, and 

their crossing of cell membranes is restricted by the hydrophilicity, negative charge and 

large molecular weight. Thus chemical modification, conjugation or formulation of 

siRNA with carriers, such as liposomal or polymers-based complexes, can improve the 

intracellular delivery.[74-76] 

Sequence-defined oligoaminoamides present a class of nucleic acid carriers with 

multifunctionality and high chemical precision.[17, 77, 78] In our previous work, we 

developed a series of sequence-defined oligoaminoamide carriers with targeting and 

shielding domains for nucleic acid transfections.[28, 33, 79-81] Libraries of lipo-

oligomers were precisely assembled via solid phase-supported synthesis (SPSS) 
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using artificial oligoamino acids and fatty acids.[32, 65, 82, 83] These different 

structures of oligomers with functional moieties mediated enhanced cellular uptake, 

protection of siRNA against degradation, endosomal escape into the cytosol, and thus 

improved gene silencing efficiency. Introduction of shielding and ligand domains was 

found to be essential for specific siRNA delivery into cancer cells.[28, 84, 85] 

Polyethylene glycol (PEG) is known to improve stability of polyplexes and to shield 

their surface, thus reducing binding and aggregation with negative-charged serum 

proteins within the blood circulation.[86-88] Targeting ligands for binding to 

overexpressed cell surface receptors have been also taken into consideration for 

preferential transfection of the intended tissue.[65, 89] 

Based on our understanding of the relationship between structure and activity of 

previous oligoaminoamide libraries and nanoparticle shields, the present study aims at 

a more effective design of a dual-antitumoral siRNA conjugate formulated with a new 

precise multifunctional carrier. 

Previous studies applied siRNA targeting Eglin 5 (EG5), a member of the kinesin-5 

family, which is involved in the assembly of the mitotic spindle apparatus and required 

for centrosome separation.[90] EG5 silencing results in mitotic arrest and tumor cell 

death.[38, 91, 92] In our previous studies potent antitumoral activity required 

combination with other drug agents (methotrexate or pretubulysin).[38, 65] Pro-

apoptotic peptides present another class of potent anti-cancer agents, provided that 

they can be effectively delivered into cells, such as by covalent attachment to polymeric 

carriers.[93] Our current study explores the novel strategy to conjugate an apoptotic 

peptide with siRNA for efficient intracellular co-delivery. After screening siRNA 

conjugates with various apoptotic peptides (KLK, BAK, BAD), EG5 siRNA conjugated 

with KLK provided enhanced tumor cell killing by the combined mechanism of EG5 

silencing and destabilization of mitochondrial membranes.  
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Furthermore, the current study capitalizes on targeting the siRNA-apoptotic peptide 

containing nanoparticles to the interleukin-4 receptor (IL-4R), which is overexpressed 

on a variety of solid cancers.[94-96] AP1, a peptide designed as a ligand from 

atherosclerotic plaque-specific peptide-1, was utilized for binding to the IL-4R; this 

peptide has been previously used for tumor targeted liposome and nanoparticle 

delivery. 

3.1.1 Design and synthesis of azide-bearing T-shaped oligoaminoamides 

Based on the cationizable building block succinoyl-tetraethylene-pentamine (Stp) and 

related analogs,[28, 97] which enable electrostatic interaction with nucleic acids 

(polyplex formation) and endosomal escape of delivered cargo into the cytosol due to 

further endosomal protonation, we have synthesized by solid phase-supported 

synthesis (SPSS) a library of more than 1200 cationizable structures as carriers for 

drug,[98] protein,[99] and nucleic acid delivery.[80, 100] T-shapes present a 

topological subclass of such carriers especially suitable for the delivery of siRNA.[32, 

82, 101] siRNA is far smaller than plasmid DNA and therefore requires additional 

polyplex stabilization beyond electrostatic interaction.[30, 102] The T-shape structured 

oligomer 454 (Tab. 2), which was one starting point for this work, contains a cationic 

backbone of four repeats of Stp, as well as N- and C-terminal units of three tyrosines 

and a cysteine, as well as a central branch containing two oleic acids (OleA) for 

hydrophobic siRNA polyplex stabilization.[103, 104] An analog, oligomer 992 (Tab. 2), 

containing the bioreducible building block ssbb[66] incorporated into the 

oligoaminoamide backbone, was previously found to be more effective and 

biocompatible than the ssbb-free stable analog. N-terminal incorporation of an azido 

lysine into T-shape oligomers resulted in the design of oligomers like 1106 (Tab. 2) 

which enabled subsequent shielding and targeting of formed polyplexes by copper-

free click chemistry.[65, 105]  
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Designing new multifunctional oligoaminoamides (Fig. 4) for the IL-R4 targeted 

delivery of apoptotic peptide-siRNA conjugates, we considered the following five points. 

1) an azido function was to be incorporated into all oligomers for subsequent 

functionalization with AP1 targeting peptides; 2) as the cargo (siRNA-SS-apoptotic 

peptide) presents a bioreducible conjugate, the carrier had to be free of terminal 

cysteines as contained in 454; 3) optionally the bioreducible building block ssbb was 

incorporated into the oligomer backbone, in order to see whether a reducible 

lipopolyplex would perform better; 4) incorporation of histidines[79] and especially 

alternating histidine – Stp units might improve the endosomal escape capability;[79, 

98] and 5) extension of the cationic backbone by duplication of the Stp (or Stp-His) 

domains for enhanced polyplex stability.[81] Based on these considerations, we 

synthesized four oligomers (1208, 1209, 1210 and 1211) derived from oligomers 454 

and four bio-reducible oligomers (1217, 1218, 1219 and 1220) derived from the ssbb 

building block containing oligomers 992 (Fig. 4, Tab. S1, Fig. S1 and Fig. S2). 
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Fig. 4.  Overview of chemical compounds.  Schematic illustration of new sequence-defined 

oligomers, non-reducible (1208, 1209, 1210 and 1211) and bioreducible type (1217, 1218, 

1219 and 1220). Units of the oligomers: Y: tyrosine, K: lysine, H: histidine, Stp: succinoyl-

tetraethylene-pentamine, OleA: Oleic acid, G: glycine, ssbb: succinoyl-cystamine, ss building 

block. The ID are the internal database identification number. 
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Tab. 2 Sequences of plain lipo-oligomers. CholA: cholanic acid. Sequences (left to right) from 

N- to C-terminus. 

 

Tab. 3 Sequences of different apoptotic peptides, which were provided with N-terminal 

cysteines for conjugation with siRNA by disulfide bond formation, and AP-1 targeting and PEG 

shielding domains. Sequences (left to right) from N- to C-terminus. 

 

3.1.2 Design and synthesis of the AP-1 targeting domain 

For shielding and targeting siRNA core nanoparticles formed with the azido-lipo-

oligomers, DBCO–PEG-AP-1 conjugates were synthesized. In our previous work, 

DBCO-PEG-folate conjugates were synthesized completely by SPSS.[65] As DBCO 

was found unstable under standard (95% TFA) peptide deprotection and cleavage 

conditions,[65] a cleavage protocol using 5% TFA was developed. In the current work, 

a different strategy had to be applied. The IL-4 receptor binding peptide AP-1[94] 

(sequence listed in Tab. 3) was first synthesized by standard SPSS, with a precise 

monodisperse PEG24 (24 ethylene oxide units) and an N-terminal 3-mercaptopropionic 

acid also incorporated into the sequence. After cleavage of this PEG-AP-1 sequence 

from solid phase, the terminal thiol group was specifically reacted in solution with 

maleimide-DBCO at neutral pH. 

3.1.3 Design and synthesis of dual antitumoral siRNA-apoptotic peptide 

conjugates 

ID                             Oligomer sequences

 454                 C-Y3-Stp2-K(K(OleA)2)-Stp2-Y3-C

 992              Y3-Stp2-K(G-ssbb-K(CholA)2)-Stp2-Y3 

1106           K(N3)-Y3-Stp2-K(G-K(CholA)2)-Stp2-Y3
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The targeted siRNA polyplex delivery system is designed to include multifunctional 

substructures for siRNA intracellular delivery, but the overall siRNA antitumoral effect 

remains a critical decisive aspect. Short peptides containing pro-apoptotic subgroups 

that antagonize anti-apoptotic biological factors have been developed as means of 

restoring normal apoptotic signaling.[93] Some reported concept used lytic or apoptotic 

peptide covalently attached to polymeric carriers. Sarangthem et al. showed that 

elastin-like polypeptide (ELP) as basic delivery carrier could enhance the cytotoxic 

effect of peptide KLAK. Albarran et al. published that the incorporation of pH-

responsive, membrane-destabilizing poly (propylacrylic acid) (PPAA) markedly 

enhanced the killing effect of BAK BH3 peptides, which induces apoptosis via 

antagonization of suppressor targets such as Bcl-2. In our study, three apoptotic 

peptides (KLK, BAK, BAD), which are the antibacterial and mitochondrial membrane 

disruptive artificial peptide KLK, or peptides derived from the BH3 domain of BAK and 

BAD proteins (Tab. 3), for the first time were directly coupled to the siRNA’s backbone 

to ensure cytosolic co-delivery and thereby achieving a dual antitumoral effect. 

Cysteine was chemically integrated at the N-terminus of these peptides sequences, 

and the peptides were covalently conjugated to the 5’-end of the siRNA’s sense strand, 

to avoid any negative steric effect of the modification on the silencing efficiency. 

Importantly, the conjugate linkage by disulfide bond allows cytosolic separation of the 

two different antitumoral agents after delivery. When conjugates reach the cytosol of 

tumor cells, the strongly increased concentration of glutathione (GSH, ~ 1-11 mM) is 

supposed to cleave the disulfide linkage, and the two active substructures could 

thereby separately achieve their apoptotic functions in different pathways. As shown 

in Fig. 5A, the conjugates were prepared by activation of the apoptotic peptide’s C-

terminal cysteine and subsequent reaction with the siRNA’s thiol group. After 

purification of conjugates by high-performance liquid chromatography (HPLC), the 

purity of conjugates was analyzed by agarose gel electrophoresis; the apoptotic 
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peptide-siRNA conjugates were also analyzed by MALDI-TOF-MS (Fig. 5 B-D, Fig. 6 

and Fig. 7) 
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Fig. 5. A) Overall scheme of synthesized siRNA-apoptotic peptide by disulfide bond. B-D) 

Characterization of siRNA-apoptotic peptide, displayed for the siRNA-BAK conjugate; 

characterization of the other two siRNA-KLK and siRNA-BAD conjugates is shown in the 

Supplementary Information. B) Top: DTNB modified TNB-BAK peptide. Bottom: siRNA-BAK 

conjugate. C) MS data of BAK and siRNA-BAK conjugate. For the siRNA-BAK conjugate, the 

MS data show the molecular weight of two peaks from unconjugated antisense and conjugated 

sense strand. D) Gel electrophoresis to demonstrate the purity of siRNA-based conjugate. 

Free siRNA and disulfide dimer siRNA as control. E) Tris (2-carboxyethyl) phosphine (TCEP) 

was used to cleave the siRNA-BAK conjugate and the fragments were purified by HPLC and 

then characterized by MS, respectively. 
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Fig. 6 (A) HPLC data of siRNA-KLK conjugate. B) MS data of KLK (left) and siRNA-KLK 

conjugate (right). For the siRNA-KLK conjugate, the MS data show the molecular weight of 

two peaks from unconjugated antisense and conjugated sense strand. C) Gel 

electrophoresis to demonstrate the purity of siRNA-based conjugate. Free siRNA and 

disulfide dimer siRNA as control.  
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Fig. 7 (A) HPLC data of siRNA-BAD conjugate. B) MS data of BAD and siRNA-BAD 

conjugate. For the siRNA-BAD conjugate, the MS data show the molecular weight of two 

peaks from unconjugated antisense and conjugated sense strand. C) Gel electrophoresis to 

demonstrate the purity of siRNA-based conjugate. Free siRNA and disulfide dimer siRNA as 

control.  
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3.1.4 Screening of lipo-oligomers for siRNA delivery 

In aqueous solution, lipo-oligomers and siRNA spontaneously assemble into lipo-

polyplexes. The siRNA binding ability of lipo-oligomers was determined by measuring 

the electrophoretic mobility of siRNA in a 2.5% agarose gel (Fig. 8A). Different N/P 

ratios represent the ratio of protonatable amines (N) of the oligomers to phosphates 

(P) of the siRNA. To simulate in vivo stability, polyplexes were incubated with 90% fetal 

bovine serum for 2h and 24 h followed by the agarose gel electrophoresis assay. For 

the non-reducible oligomers (1208, 1209, 1210 and 1211), at 2 h incubation time, some 

siRNA was released from the polyplex at N/P of 6. At the N/P ratio of 12 and higher, 

the oligomers showed complete gel retardation of siRNA. At 24 h incubation time with 

serum, the qualitative analysis of released siRNA amount was 1210>1211>1209≥1208 

at N/P ratio of 12. The oligomers 1208 and 1209 with smallest hydrophilic backbones 

(4 Stp without or with histidines) showed best serum stability, with complete retention 

of siRNA at N/P ratios of 12 and higher. An N/P ratio of 12 was used for all formulations 

in the subsequent experiments.  

Polyplexes with the reducible oligomers 1217, 1218, 1219 released some siRNA at 

N/P ratio of 12 already after 2 h incubation with serum, whereas 1220 mediated higher 

stability. After 24 h incubation time, all reducible oligomer polyplexes showed 

significant siRNA release even at the highest N/P ratio of 20.  

The size and shape of siRNA polyplex was evaluated by dynamic light scattering (DLS) 

and transmission electron microscopy (TEM). Polyplexes had a hydrodynamic 

diameter of 150-300 nm by DLS (Tab. 4). Oligomers containing histidines and 

oligomers containing 8 Stp groups showed a trend of increased size compared to the 

histidine-free analogs and oligomers containing only 4 Stp groups, respectively.  
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Fig. 8. A) Gel electrophoresis of eight oligomers with siCtrl at different N/P ratios incubated 2h 

and 24h in 90% serum. B) Luciferase activity of siRNA formulations at different N/P ratios in 

KB/eGFPLuc cells. 
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Tab. 4 Particle size (z-average) and zeta potential of siCtrl formulations determined with a DLS 

zetasizer. The siRNA polyplex were prepared at N/P 12. 

 

 

To evaluate the transfection efficiency of untargeted oligomer polyplexes, gene 

silencing experiments (Fig. 8B) were performed in KB cells stably expressing an 

eGFPLuc fusion protein gene (enhanced green fluorescent protein/luciferase). 

Silencing of the eGFPLuc fusion protein by siRNA against was quantified by a standard 

luciferase assay. Oligomers 1208 and 1209 (containing 4 Stp units without or with 

alternating histidines, respectively) showed better transfection efficiency than the other 

oligomers. Interestingly, both oligomers with the longer hydrophilic backbones 

containing 8 Stp units (1210 and 1211) displayed far lower gene silencing activity. This 

was not predictable from previous results of DNA and siRNA delivery[12, 13, 98] and 

might reflect small differences such as in stabilizing domains (e.g. lipids) as well as in 

the nucleic acid cargo.[13, 30, 102] 

The reducible oligomers containing the ssbb building block showed lack of gene 

silencing efficiency. The reason is most probably based in the selected KB tumor cell 

system; while the ssbb building block was found to be most favorable in siRNA delivery 

to Neuro2A cells or DU145 cells,[79] it was observed to hamper siRNA delivery in KB 

/HeLa cells, most likely due to immature disulfide bond cleavage before or during 
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cellular internalization into these cells which contain a highly reductive potential.[106] 

Considering the above mentioned results, oligomers 1208 and 1209 were the most 

suitable candidates for the next steps, developing an AP-1 targeted siRNA delivery 

system and subsequent application for siRNA-apoptotic peptide conjugate delivery. 

3.1.5 Evaluation of AP-1 as targeting ligand for receptor-mediated siRNA delivery 

The azido function on the surface of 1208 and 1209 siRNA polyplex serves as anchors 

for modification of shielding and targeting domains. The amount of added DBCO 

surface modified-agents is indicated as molar equivalents (equiv.) related to the 

cationic oligomers (mol/mol). Obviously, as considerable extent of oligomers will be 

located within the interior of the core lipopolyplexes, only a fraction of azides will be 

available for nanoparticle surface modification. 

The unmodified 1208 and 1209 core lipopolyplexes had a hydrodynamic diameter of 

190-220 nm (Fig. 9). Modification with up to 1 equiv. of PEG-AP-1 did not show any 

considerable change in size of formulations, whereas modification with 0.75 and 0.1 

equiv. of PEG showed a decrease in size. The zeta potential of the two 1208 and 1209 

siRNA lipopolyplexes showed similar trends in PEG-AP-1 targeted and PEG shielded 

groups. For the 1208 oligomer, the PEG-AP-1 modification resulted in slightly 

decreased zeta potentials from 28.3 to 22.8 mV (Fig. 9C). In contrast, modification with 

ligand-free PEG represented a sharp decrease in zeta potential. Highest amount of 

PEG at ratio of 1 reduced zeta potential to 10 mV, indicating efficient shielding effect 

for the polyplex. The 1208 formulation with PEG-AP-1 targeting domain visualized by 

TEM (Fig. 9D) has a spherical shape and size around 100 nm, which is similar to 

unshielded 1208 polyplexes. Agarose gel electrophoresis (Fig. 9E) demonstrated a 

complete siRNA binding at N/P 12 for all formulations using different ratios of targeting 

and shielding modification.  
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Fig. 9. Particle size (z-average) (A), PDI (B) and zeta potential (C) of 1208 and 1209 

formulations with siCtrl, as determined by DLS zetasizer. Lipopolyplexes were prepared at N/P 

12 and modified with indicated different molar equiv. of shielding and targeting domains PEG 

or PEG-AP-1. D) TEM pictures of 1208 polyplex before (unshielded) and after 

functionalization with PEG-AP-1. Scale bars: upper graph 2 µm, lower graph 60 nm.  TEM 
experiment performed by Dominik Loy (Department of Pharmacy, LMU Munich). E) Gel 

electrophoresis of 1208 and 1209 formulations with PEG-AP-1 targeting domain or PEG 

shielding domain. 
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To verify AP-1 mediated receptor targeting, the IL-4R overexpressing human 

carcinoma cell lines KB (cervix), MDA-MB-231 (breast) and Huh 7 (liver) were selected 

and treated with PEG-AP-1 targeted or PEG shielded Cy5-labeled siRNA polyplexes 

as well as non-targeted, non-shielded control Cy5-labeled siRNA polyplex at N/P 12. 

Cells were incubated with all formulations for 45 min at 37 °C, to enable the cells to 

actively internalize polyplexes for a limited short period. Subsequently cells were 

washed by PBS and heparin before quantifying the Cy5 intensity by flow cytometry. 

The negatively charged heparin can largely dissociate extracellularly associated 

polyplexes from cell surface membranes. Fig. 10A displays cellular uptake of 

polyplexes by Huh 7 cells, which reaches highest cellular uptake at nanoparticle 

surface modification with 0.5 equiv. PEG-AP-1 targeted agent. Data indicate that AP-

1 can effectively target nanoparticles to Huh 7 cells. In contrast, modification of 

nanoparticles with more than 0.1 equiv. PEG agent decreased uptake of polyplex in a 

PEG-dependent fashion, indicating an efficient polyplex shielding by PEG. In CLSM 

images (Fig. 10B and Fig. 11), generated by an analogous protocol without the heparin 

washing step), the PEG-AP-1 targeting group showed higher degree of polyplex 

internalization into cells compared to the control and PEG shielded groups. To 

demonstrate that the binding of polyplexes to the Huh 7 cells is ligand-dependent, we 

performed an AP-1 peptide competition assay. As shown in Fig. 10A and Fig. 12, the 

cellular uptake of AP-1 targeted polyplexes was almost completely blocked when cells 

were pre-treated with high concentration of AP-1.  
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Fig. 10.  A) Uptake (upper graph) of targeted formulations into Huh 7 cells determined by 

flow cytometry after 45 min incubation at 37°C and heparin wash. 1208 siRNA polyplexes 

were prepared containing 20% Cy5-labeled siRNA and modified with different ratios of PEG-

AP-1 targeting or PEG-shielding agents. The ligand competition study (lower graph) was 

performed in the presence of excess free PEG-AP-1. Huh 7 cells were pre-incubated with 

100 µM of PEG-AP-1 for 45 min before incubation with 1208 siRNA polyplexes for 4h. PEG-

AP-1 targeted siRNA polyplexes were formed at N/P 12 using Cy5-labeled siRNA. The 

number of Cy5-positive cells was analyzed by flow cytometry. Polyplex positive control: 

without ligand competition. B) Cellular association of 1208 siRNA formulations in Huh 7 cells 

acquired by confocal laser scanning microscopy (CLSM). Cells were incubated with the 

formulations for 45 min at 37 °C and washed with PBS buffer. Actin cytoskeleton was stained 

with rhodamine phalloidin, nuclei were stained with DAPI and siRNA was Cy5-labeled. White 

scale bars indicate 25 µm.  Experiment performed by Miriam Höhn (Department of 
Pharmacy, LMU Munich). C) Gene silencing of targeted formulations in Huh 7/eGFPLuc cells 

(left) and KB/eGFPLuc cells (right). Polyplex formulations with 500 ng eGFP-targeted siRNA 

(siGFP) or control siRNA (siCtrl) and 1208 or 1209 were tested at N/P 12 with 0.5 molar 

equiv. of PEG-AP-1 targeting or PEG shielding domains. Cells were incubated with the 

formulations for 45 min at 37°C before cell culture medium was replaced. The luciferase 

activity of the eGFPLuc fusion protein was measured at 48 h. The results are presented as 

percentage of the luciferase gene expression obtained with untreated control cells. 
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Fig. 11 Cellular association of siRNA formulations in KB cells acquired by confocal laser 

scanning microscopy (CLSM). Cells were incubated with the formulations for 45 min at 37 °C 

and washed with PBS buffer. Actin cytoskeleton was stained with rhodamine phalloidin, 

nuclei were stained with DAPI and siRNA was Cy5-labeled. White scale bars indicate 25 µm. 

Experiment performed by Miriam Höhn (Department of Pharmacy, LMU Munich). 

Fig. 12 Ligand competition studies were performed with polyplexes in the absence or 

presence of excess free PEG-AP-1. In the competition experiments, MDA-MB-231 (A) and 

KB (B) cells were pre-incubated with 100 µM of PEG-AP-1 for 45 min before incubation with 

1208 siRNA PEG-AP-1 polyplexes for 4h. siRNA polyplexes were formed at N/P 12 using 

Cy5-labeled siRNA. The number of Cy5-positive cells was analyzed by flow cytometry.  

0

20

40

60

80

100

C
y
 5

 P
o

si
ti

v
e
 C

e
ll

s 
 (

%
)

1208 siRNA Polyplex

MDA-MB-231 cells

Polyplex Positive Control

PEG-AP-1 Pretreated

A

0

20

40

60

80

100

C
y
 5

  
P

o
si

ti
v
e
 C

e
ll

s 
 (

%
)

1208 siRNA Polyplex

KB cells

Polyplex Positive Control

PEG-AP-1 Pretreated

B



                                                                      Results and Discussion 

51 
 

 

Fig. 13  Gene silencing of targeted formulations in MDA-MB-231/eGFPLuc cells. Polyplex 

formulations with eGFP-targeted siRNA (siGFP) or control siRNA (siCtrl) and 1208 or 1209 

were tested at N/P 12. Cells were incubated with the formulations for 45 min at 37°C before 

cell culture medium was replaced. The luciferase activity of the eGFPLuc fusion protein was 

measured at 48 h. The results are presented as percentage of the luciferase gene 

expression obtained with untreated control cells. 

 

To evaluate the targeted transfection efficiency of formulations, gene silencing 

experiments were performed in Huh 7/eGFPLuc (Figure 10C, left), KB/eGFPLuc cells 

(Figure 10C, right), and MDA-MB-231/eGFPLuc (Fig. 13). The silencing of the 

eGFPLuc fusion gene product was evaluated by a luminometric luciferase assay. For 

non-modified 1208 and 1209 siRNA lipo-polyplexes, the knockdown of luciferase 

activity was almost 60% in Huh 7/eGFPLuc and 40% in KB/eGFPLuc, respectively. 

PEG-AP-1 targeting increased the gene silencing efficiency and PEG24 shielded 

domains decreased the silencing efficiency in both cell lines (Fig. 10C). The targeted 

1208 polyplexes provided the highest efficiency and were notably more effective than 

analogous 1209 polyplexes. The luciferase expression levels of cells treated with siCtrl 

polyplexes was not significantly altered, indicating that formulations had no intrinsic 



                                                                      Results and Discussion 

52 
 

unspecific cytotoxicity. Also in MDA-MB-231/eGFPLuc cells, PEG-AP-1 targeted 1208 

polyplexes resulted in the highest silencing efficiency (Fig. 13). In sum, in all three cell 

lines the targeted 1208 polyplexes (containing 4 Stp units without histidines in the 

oligomer backbone, analogously as in 454 and 1106) were most effective and more 

potent than targeted 1209 polyplexes (containing 4 Stp-histidine units per oligomer).  

3.1.6 Cell killing by siRNA-apoptotic peptide conjugates without or with IL4R-

targeted delivery 

We sought to investigate whether we could enhance the antitumoral cytotoxicity of 

siRNA lipopolyplexes by using siRNA conjugated with apoptotic peptides. An initial 

comparison of cell-killing by polyplexes with standard siRNA or the siRNA-apoptotic 

peptide conjugates was performed using the previously established lipo-oligomer 1106 

(Tab. 2) without shielding and targeting. 1106 had comparable transfection efficiency 

as 1208 in Huh 7/eGFPLuc cells and KB/eGFPLuc cells (Fig. 14). Standard siEG5 or 

siEG5 conjugated with one of the three apoptotic peptides (siEG5-KLK, siEG5-BAK, 

siEG5-BAD) or the analogous control siCtrl apoptotic peptide conjugates (siCtrl-KLK, 

siCtrl-BAK, siCtrl-BAD) were transfected into HeLa cells (Figure 6A, left) or A549 cells 

(Figure 6A, right). Cell killing effects were very consistent in both cancer cell types. As 

expected, siEG5 conjugates always mediated superior cell killing over the analogous 

siCtrl conjugates, clearly demonstrating RNA interference contributing to the 

antitumoral effect. Notably, siCtrl-peptide conjugates contributed an up to 40% 

reduction in cell viability, demonstrating a RNA interference-independent cell killing. 

Comparing the apoptotic peptide conjugate, cytotoxicities were in the order of siEG5-

KLK ~ siEG5-BAD > siEG5-BAK > siEG5 in HeLa cells, and siEG5-KLK > siEG5-BAD 

> siEG5-BAK ~ siEG5 in A549 cells (Fig. 15A). Biophysical analysis (binding, DLS and 

cellular uptake) did not show any significant difference between standard siRNA and 

siRNA-KLK conjugates (Tab. 5, Fig. 16 and Fig. 17).  
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Next we examined the cytotoxic effect of the three siEG5-apoptotic peptide conjugates 

or unmodified siEG5 1208 lipoplex formulation on Huh 7 cells (Fig. 15B) without or 

with PEG-AP-1 targeting or PEG-shielding. For the untargeted formulations, KLK-

siEG5 and BAD-siEG5 again enhanced cytotoxicity compared with siEG5 polyplexes, 

whereas the BAK-siEG5 did not present enhanced killing. Consistent with the other 

delivery results of the current report, in general PEG shielding of lipopolyplexes 

reduced and modification with the PEG-AP-1 targeted domain recovered or even 

enhanced tumor cell killing. In particular, PEG-AP-1 targeted 1208 polyplexes of KLK-

siEG5 conjugates showed significantly superior cytotoxicity in Huh7 cells. In sum, 

reviewing all data, out of the three investigated apoptotic peptide conjugates, only 

siEG5-KLK conjugates mediated a robust superior cell killing over siEG5 polyplexes, 

resulting in 2.15-fold, 2.04-fold and 1.77-fold reduced cell viability in HeLa cells, A549 

or Huh7 cells, respectively. To further explore the value of siRNA-KLK conjugates 

versus siRNA, dose-response relationships were performed in Huh 7 cells (Fig. 15C 

and Fig. 18). Fig. 15C shows cell-killing potency of untargeted (left) and AP-1 targeted 

(right) siEG5-KLK versus siEG5 polyplexes, formed either at the standard siRNA 

concentration of 370 nM and 1208 at N/P 12 (14.36 µM), or at different lower 

concentrations of siEG5-KLK conjugates or siEG5. The dose of 1208 was kept 

constant (at the fixed amount of 14.36 µM), in order to avoid delivery problems (such 

as hampered endosomal release) by carrier dilution. The dilution study demonstrated 

superior cell killing by siEG5-KLK even at <20 nM. Dilution studies performed with 

untargeted 1208 polyplexes at N/P 12 (Fig. 18), also demonstrated superior 

cytotoxicity of siEG5-KLK conjugates compared to siEG5. We inferred that the 

augmented tumor cell killing effect was mediated by a dual mechanism from both EG5 

gene silencing and KLK apoptotic peptide action. 
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Fig. 14 Comparison of oligomers 1106 and 1208. Gene silencing of untargeted formulations 

in Huh 7/eGFPLuc cells (upper) and KB/eGFPLuc cells (lower). Polyplex formulations with 

eGFP siRNA (siGFP) or control siRNA (siCtrl) and 1106 or 1208 were tested at N/P 12. The 

luciferase activity of the eGFPLuc fusion protein was measured at 48 h. The results are 

presented as percentage of the luciferase gene expression obtained with untreated control 

cells. 1106 as positive control for testing the gene silencing efficiency of 1208. 
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Fig. 15. Transfection with siEG5-apoptotic peptide or control siCtrl-apoptotic peptide 

conjugates as lipopolyplex formulations in three different cell lines.  A) Viabilities of HeLa cells 

(left) and A549 cells (right) after 48 h transfection with siRNA-apoptotic peptides conjugates 

formulated with 1106 at indicated N/P ratios without targeting and shielding domain.  B) Cell 

viability of Huh 7 cells after 48 h transfection with siRNA-apoptotic peptides conjugate 

formulations with 1208 at N/P = 12 with 0.5 molar equiv. of PEG-AP-1 targeting or PEG 

shielding domains. *** p < 0.001. C) Dose-response relationship of siRNA versus siRNA-KLK 

conjugates in Huh 7 cells. Untargeted (left) and AP-1 targeted 1208 polyplexes (right) formed 

with a fixed amount of 1208 (14.36 µM) and different concentrations of siEG5 or siEG5-KLK 

conjugates. Standard siRNA concentration was 370 nM (500 ng/well). 
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Tab. 5 Particle size (z-average) and zeta potential of polyplex formulations with siCtrl or 

siCtrl-KLK conjugate and 1208 determined with a DLS zetasizer. The polyplexes were 

prepared at N/P 12. 

P o l y p l e x Z - a v e r a g e n m M e a n  P D I M e a n  Z e t a  P o t e n t i a l m V

         s i C t r l

     s i C t r l - K L K

1 9 0 , 3  ±  2 , 5

1 8 5 , 6  ±  2 , 1

0 , 1 8  ±  0 , 0 1

0 . 2 1  ±  0 . 0 2

2 8 . 1  ±  0 . 5

2 9 , 5  ±  0 . 4

 

 

 

Fig. 16 Gel electrophoresis of 1208 formulations with siCtrl or siCtrl-KLK conjugate at 

different N/P ratios of 6 and 12. 

 

Fig. 17 Uptake of untargeted formulations into Huh 7 cells determined by flow cytometry after 

45 min incubation at 37°C and heparin wash. 1208 siRNA polyplexes were prepared 

containing 20% Cy5-labeled siRNA (Cy5-siCtrl and Cy5-siCtrl-KLK). ns: no significant 

difference. 
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Fig. 18 Dose-response relationship of siRNA-KLK conjugates versus siRNA in Huh 7 cells. 

Untargeted 1208 polyplexes at N/P 12 with different concentrations of siEG5 or siEG5-KLK 

conjugates were tested. Standard siRNA concentration (highest concentration) was 370 nM 

(500ng/well). 

3.1.7 Mechanism of augmented cytotoxicity of AP-1 targeted siRNA-KLK 

conjugates 

All subsequent experiments were performed with 0.5 equiv. PEG-AP-1 targeted 1208 

lipopolyplexes (N/P 12) identified above as the most potent delivery system. As 

mentioned above, EG5 is involved in the assembly of the mitotic spindle apparatus and 

responsible for centrosome separation in cell division. Thus, siRNA against EG5 would 

block the formation of bipolar mitotic spindles, causing cell-cycle arrest and 

subsequent apoptosis of tumor cells. Functional EG5 gene silencing was confirmed 

via aster formation of nuclear DNA (Fig. 19A and Fig. 20), where downregulation of 

EG5 induced a mitotic arrest in all siEG5 groups (siEG5-KLK and siEG5). Aster 

formation could not be observed after application of control siRNA groups (siCtrl-KLK 

and siCtrl). We further examined EG5-specific gene silencing at mRNA level in Huh 7 

cells by quantitative real-time polymerase chain reaction (qRT-PCR) (Fig. 19B).  All 

the siEG5 groups triggered efficient downregulation of EG5 mRNA expression levels. 

In the siCtrl groups, the mRNA expression levels were similar to untreated cells.  
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Fig. 19 Mechanism of AP-1 targeted 1208 mediated delivery of siEG5-KLK conjugates.  A) 

Mitotic aster formation induced by siEG5 in Huh 7 cells after 48 hours. Scale bars: 20 µm, and 

10 µm (magnification in right).  B) EG5 mRNA expression levels of different formulations after 

48 hours. C) Mitochondrial membrane disruption induced by siRNA-KLK conjugates

determined by using a JC-1 dye assay; flow cytometry data presenting the shift of green 

fluorescence by various polyplex treatments for 48 h (left), expressed as % mitochondrial 

membrane depolarization compared to the CCCP (carbonyl cyanide 3-chlorophenylhydrazone) 

positive control (right).  D) CLSM images of treated cells (scale bars: 50 µm) displaying high 

intensity of green JC-1 fluorescence (mitochondrial membrane depolarization) from the KLK 

conjugated groups (siEG5-KLK and siCtrl-KLK polyplex treatment for 48 h) and 50 µM of the 

mitochondrial membrane potential disrupter CCCP as positive control. From left to right: Red 

fluorescence of J-aggregates; blue stain of nuclei by Hoechst 33342; green fluorescence of 

monomeric form of JC-1; overlay of all images.  All experiments were performed with 1208 

polyplexes formed at N/P 12 and modified with 0.5 equiv. PEG-AP-1 targeting agent. 
Experiment performed by Miriam Höhn (Department of Pharmacy, LMU Munich). 
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Fig. 20 AP-1 targeted 1208 mediated delivery of siEG5-KLK conjugates. Mitotic aster 

formation induced by siEG5 in KB cells after 48 hours. Scale bars: 20 µm.  

Therefore, these results clearly supported that AP-1 targeted polyplexes enable 

efficient silencing of EG5 expression at mRNA level, followed by mitotic blockade and 

finally cell death in AP-1 receptor-positive cells. Meanwhile, comparing siRNA-KLK 

with peptide free siRNA, we found that the KLK apoptotic peptide did not influence the 

gene silencing of EG5, indicating that siEG5 and KLK independently contributed their 

function in the process of cell death.  

We next investigated the hypothesized function of KLK as inducer of intrinsic 

mitochondrial apoptosis pathway by using a JC-1 assay (Fig. 19C and 19D). The 

mitochondrial membrane potential ∆ψΜ is an important parameter of mitochondrial 

function and has been used as an indicator of cell death. JC-1 can enter the 

mitochondrion and change its fluorescent properties to red wavelength based on the 

aggregation of the probe. In healthy cells with high potential ∆ψΜ, JC-1 forms 

complexes known as J-aggregates with intense red fluorescence. However, in 

apoptotic cells with low potential ∆ψΜ, JC-1 remains in the monomeric form, which 

exhibits green fluorescence. The higher the ratios of green to red fluorescence, the 

lower is the polarization of the mitochondrial membrane. As shown in Fig. 19C, both 

KLK groups (siEG5-KLK and siCtrl-KLK) showed an enhanced shift of green 
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fluorescence, compared to the groups without KLK and negative JC-1 control groups, 

which indicated the higher ratio of cells were in the state of mitochondrial membrane 

depolarization. Comparing the flow cytometry histogram data of the siEG5-KLK and 

siCtrl-KLK groups, we conclude that the siEG5 had a very little influence on the KLK 

function of disruption of mitochondrial membrane. Confocal laser scanning microscopy 

(CLSM, Fig. 19D) confirmed the KLK induced mitochondrial membrane depolarization. 

The green staining is observed siCtrl-KLK and siEG5-KLK as well as the mitochondrial 

membrane potential disrupter CCCP, but not in healthy cells.  
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Fig. 21. Apoptosis of Huh 7 cells at 48 h (A) after transfection with different formulations 

determined by the annexin V-FITC/PI assay. The viable, early apoptosis, and late apoptosis 

cell populations (%) were shown in the lower left, lower right, and upper right quadrants, 

respectively. B) Confocal laser scanning microscopy of cells treated for 24 h. Green 

fluorescence, annexin V-FITC; blue fluorescence, nuclei stained by Hoechst 33342; red 

fluorescence, PI staining of nuclei. Scale bars, upper graph (white) 25 µm, lower graph (gray) 

50µm.  Experiment performed by Miriam Höhn (Department of Pharmacy, LMU Munich). 
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Fig. 22 Apoptosis of Huh 7 cells at 24 h after transfection with different formulations 

determined by the annexin V-FITC/PI assay. The viable, early apoptosis, and late apoptosis 

cell populations (%) were shown in the lower left, lower right, and upper right quadrants, 

respectively. 

We further characterized apoptosis of tumor cells induced from these two components 

(apoptotic peptide conjugated with siRNA) using an annexin V-FITC/propidium iodide 

(PI) assay, as depicted in Fig. 21. Annexin V staining of cells was used to indicate cell 

membrane changes (phosphatidylserine flips from the cytosol to the outer surface of 

the membrane lipid bilayer) that occur in the early stage of apoptosis. Annexin V 

specifically binds to phosphatidylserine in the presence of calcium. By using 

fluorescent-labeled annexin V, the apoptotic cells can be identified by flow cytometry 

or fluorescence microscopy. PI is a membrane impermeant DNA intercalating dye that 

is excluded from viable cells but can stain DNA of dying cells such as the late stage of 

apoptosis. Apoptosis of Huh 7 tumor cells treated with the different formulations for 24 

or 48 h (Fig. 21) was most pronounced for siEG5-KLK, followed by siEG5 > siCtrl-KLK 

>> siCtrl formulations. It has to be noted that the flow cytometric assay provides 

qualitative and not quantitative information, because viability of siEG5-KLK treated 

cells is low (only 20% at 48 h), and dead cells are largely not covered by the cytometric 

assay. Analysis at an earlier time point of 24 h confirms the results (Fig. 22), with 

siEG5-KLK treatment triggering the highest number of apoptotic stage (about 65% of 

cells). The early and late stage of apoptosis cells were also measured by confocal laser 

scanning microscopy (Fig. 21B) confirming that siEG5-KLK exhibits the best apoptosis 

inducing capacity. 
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3.2 Hyaluronate siRNA nanoparticles with positive charge display rapid 

attachment to tumor endothelium and penetration into tumors 

Section 3.2 has been partly adapted from: Jie Luo, Johannes Schmaus, Mochen Cui, Elisa 

Hörterer, Ulrich Wilk, Miriam Höhn, Maike Däther, Simone Berger, Teoman Benli-Hoppe, Lun 

Peng and Ernst Wagner, Hyaluronate siRNA nanoparticles with positive charge display rapid 

attachment to tumor endothelium and penetration into tumors, Journal of Controlled Release, 

2020. DOI:  

Small interfering RNA (siRNA) has emerged as a promising therapeutic approach for 

genetic diseases or cancer due to its potent gene-silencing activity.[69, 107-109] 

Within the last two years the first two siRNA drugs were approved, Patisiran 

(ONPATTRO) for treatment of hereditary transthyretin-mediated amyloidosis[110] and 

Givosiran (GIVLAARI) for treatment of hereditary acute hepatic porphyria,[111] and 

further siRNA drugs are in advanced clinical development.[112] Although arduous and 

impressive efforts have been made, a remaining challenge for siRNA therapeutics is 

the efficient delivery to target sites different from liver tissue and for non-inheritable 

common diseases including cancer. 

Cationic carrier-based siRNA delivery systems are highly dependent on a suitable 

control of relationship among physiochemical properties, stability of siRNA binding and 

toxicity.[29, 113, 114]  Among other examples, [14, 23, 115] cationic PEI polyplexes 

facilitate delivery of siRNA and microRNA into tumors, resulting in therapeutic RNAi 

efficacy.[116] However, complexes with high positive surface charge often are 

subjected to interaction and aggregation with blood components, inflammatory and 

innate immune responses after intravenous administration, thus yielding toxicities in 

vivo.[26, 117-120] To solve this issue, numerous hydrophilic natural or synthetic 

polymers such as polyethylene glycol (PEG) have been incorporated into polyplexes 

for surface shielding.[73] One encouraging strategy has been the introduction of a 

polyanionic coating with hyaluronic acid (HA) in order to shield the positive charge of 
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the nanoparticle.[121-124] In addition to surface shielding, HA can be also used for 

active targeting of CD44. CD44 is a cell surface adhesion molecule, which is expressed 

in most cell types, such as leukocytes, epithelial cells, endothelial cells and tumor cells; 

it was also found to be overexpressed in solid tumor vasculature. [125, 126] 

We previously prepared a series of sequence-defined oligoaminoamide (OAA) carriers 

[28] for intracellular transfer of siRNA or other nucleic acids with shielding (PEG, 

poly(N-(2-hydroxypropyl)methacrylamide) pHMPA, polysarcosine) and targeting 

(folate, epidermal growth factor EGF receptor or c-Met binding peptides, interleukin-4 

IL-4 or interleukin-6 IL-6 receptor binding peptides) domains.[33, 52, 80, 100, 127-130] 

These OAAs mediated ligand-enhanced cellular uptake, endosomal escape into the 

cytosol, protection of siRNA against degradation, and thus improved gene transfer or 

gene silencing efficiency. Results included successful systemic tumor targeting in vivo 

in mouse models resulting in therapeutic effects.[80, 128, 130] Based on our 

understanding of the structure and activity relationships of previous OAA libraries and 

post-modification strategies of polyplexes, the present study refined OAAs for stable 

siRNA lipopolyplex formation, suitable for subsequent surface modification with an 

anionic polymer for in vivo administration. For this purpose, hyaluronic acid (HA) was 

selected as the polyanion with good biocompatibility, biodegradability, cell targeting 

potential, and an excellent record of previous application for nanoparticle surface 

modification.[121-124] Commonly, electrostatic polyplex coating with HA has been 

performed. To avoid the risk of competitive displacement under in vivo conditions, our 

work aimed at covalent attachment of HA to siRNA nanoparticles via copper-free, 

strain-promoted alkyne-azide cycloaddition (SPAAC). Based on this intention, OAAs 

modified with an N-terminal azide and HA modified with DBCO groups were used as 

clickable modules, respectively. By variation of the ratio of DBCO-HA to OAA azide of 

the siRNA nanoparticle, colloidal stable cationic and anionic HA-based siRNA 

polyplexes were established. Evaluation of these nanoparticles should explore any 

relations of surface charge with in vivo tumor accumulation, tumor penetration and 
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subsequent gene silencing efficacy in vivo. We investigated the effect of the different 

coatings on the cellular uptake, endocytic pathways, endosomal escape in vitro, 

followed by study of tumor accumulation, tumor penetration in 3D sight, and gene 

silencing of siRNA carriers in vivo. 

3.2.1 Design of novel T-shaped lipo-oligoaminoamides 

A library of more than 1400 cationizable OAA structures had been developed by solid 

phase-supported synthesis (SPSS), based on the building block succinoyl-

tetraethylene-pentamine (Stp) and related analogs,[28, 97] for use as drug,[98] 

protein,[99] and nucleic acid delivery carriers[80, 100]. T-shaped lipo-OAAs belong to 

a topological subclass of such carriers that is well suitable for siRNA delivery. Oligomer 

1208 (see Fig. 23, middle left; non-reducible, no histidines, R = oleic acid) as an 

previously reported efficient representative[52] contains a cationic backbone of four 

repeats of Stp, terminated at both ends by three tyrosines and an N-terminal azido 

group. It is branched in T-shape configuration by a central lysine which carries a lipidic 

branch containing two oleic acids (OleA). The integration of tyrosine tripeptides and 

additional disulfide-forming terminal cysteines into the OAA design enhanced stability 

of polyplexes and subsequent transfection efficacy;[103, 131] the azido function 

enables subsequent covalent click-coupling.[65] From this starting point, in the current 

work we designed a new library (Fig. 23) consisting of three main classes of lipo-OAA 

backbones; a cysteine-containing disulfide stabilizing type, a non-reducible type, and 

a bio-reducible type containing a cystamine linkage between the lipid domain and 

cationizable Stp backbone; all classes were tested with different incorporated 

saturated and unsaturated fatty acids, and optional also endosomal buffering 

histidines[13, 132, 133] that were integrated into the Stp backbone in alternative 

fashion. Sequences of lipo-OAAs, library identification (ID) numbers, mass spectra and 

proton NMR spectra confirming these structures are presented in Tab. S2, S3 and Fig. 

S3, S4. 
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Fig. 23. Overview of chemical compounds. Schematic illustration of new sequence-defined 

oligomers, disulfide stabilizing, non-reducible and bioreducible types. Units of the oligomers: 

Y: tyrosine, K: lysine, H: histidine, Stp: succinoyl-tetraethylene-pentamine, G: glycine, 

saturated fatty acids (PalA: palmitic acid, SteA: stearic acid, Ara: arachidic acid, BehA: 

behenic acid, LigA: lignoceric acid), unsaturated fatty acids (OleA: oleic acid, LenA: linolenic 

acid), ssbb: succinoyl-cystamine, ss building block.  

3.2.2 Lipo-oligoaminoamides screening for siRNA delivery 

Screening the novel lipo-OAA library identified oligomer 1214 (Fig. 24A) (containing 

cysteines and histidines in the backbone as well as oleic acids in the lipidic domain) as 

the most suitable siRNA carrier for subsequent surface modification. siRNA polyplexes 

were formed by mixing at a defined azido-oligomer /siRNA N/P ratio and incubated for 

45 min. Based on previous titrations, the N/P ratio, representing the ratio of 

protonatable amines (N) of the oligomers to phosphates (P) of the siRNA (Tab. S2), 

was set to 12. The sizes, PDIs, and zeta potentials of siRNA polyplexes was 

determined by dynamic light scattering (DLS) (Fig. 24B and Fig. 25). Most polyplexes 

had a hydrodynamic diameter of 150-300 nm by DLS; the superior 1214 polyplexes 
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had a stable ~200 nm nanoparticle size, which was also confirmed by a low PDI of 

0.20. The average zeta potentials of siRNA polyplexes were around 20-30 mV; 1214 

had a relatively high zeta potential of +28.5 mV. 

Stability of siRNA / lipo-oligomer complexes was analyzed after incubation in 90% fetal 

bovine serum (FBS) followed by the electrophoresis in a 2.5% agarose gel (Fig. 26). 

For the first two classes of cysteine-containing disulfide stabilizing and non-reducible 

types, the oligomers without or with histidine modified backbone containing stearic acid 

(steA) or OleA fatty acids showed complete gel retardation of siRNA and no release of 

free siRNA. For the bioreducible type, all types of polyplexes showed significant siRNA 

release in serum. Incorporation of histidines had no significant influence on 

stabilization of non-reducible type of polyplexes. For disulfide-stabilizing oligomers 

containing PalA side chains, the alternative histidine-Stp backbone improved stability 

of siRNA polyplexes compared to the non-histidine backbone. Among the disulfide 

stabilization and non-reducible types, SteA and OleA both showed stronger binding 

with siRNA compared to other saturated and unsaturated fatty acid. In summary, the 

disulfide stabilizing oligomers containing cysteine, histidine and SteA or OleA 

hydrophobic fatty acid domains mediated suitable stabilization of siRNA polyplexes. 

Gene silencing experiments (Fig. 24C and Fig. 27) were performed using Huh 7 

hepatocellular carcinoma cells stably expressing an eGFPLuc (enhanced green 

fluorescent protein/luciferase fusion protein) marker gene. Specific silencing of the 

eGFPLuc fusion gene by siGFP was measured by a luminometric luciferase assay. 

Unspecific reduction of reporter activity was determined using the analogous siCtrl 

formulations. For all three types of oligomers (disulfide-stabilizing, non-reducible, and 

bioreducible types), oligomer 1214 mediated highest gene silencing efficiency, as 

indicated by the lowest eGFP-luciferase marker activity. In general, the stabilizing 

cysteine-containing class (including oligomer 1214) showed highest functional siRNA 

transfer, followed by non-reducible oligomers with moderate gene silencing, and the 
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bioreducible lipo-OAAs (containing the ssbb building block) lacking gene silencing 

efficiency in the screened reporter cells. In regard to the carbon numbers of fatty acids 

(from C16 to C24), C18 mediated higher silencing efficiency, and the unsaturated fatty 

acid OleA higher efficiency then the saturated fatty acid stearic acid, consistent with a 

previous lipo-OAA screen.[32] In sum, the screening for stabilizing and transfection-

active polyplexes revealed 1) terminal cysteines and 2) alternative Stp and histidine on 

the backbones, as well as 3) oleic acids as unsaturated fatty acids in the lipidic domain 

as most favorable elements. 
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Fig. 24. A) Chemical structure of oligomer 1214. Y: tyrosine, K: lysine, H: histidine, Stp: 

succinoyl-tetraethylene-pentamine, G: glycine, OleA: oleic acid. B) Particle size (z-average) 
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and zeta potential of siCtrl formulations determined with a DLS zetasizer. The 1214 siRNA 

polyplex were prepared at N/P 12. C) Gene silencing activity of siRNA formulations at N/P ratio 

12 tested by luciferase assays in Huh 7/eGFPLuc reporter cells. Specific gene silencing (using 

siGFP) is compared with unspecific reporter silencing (by siCtrl formulations). D) Click 

modification of siRNA polyplexes with HA-DBCO. Particle size (z-average) (E), PDI (E) and 

zeta potential (F) of 1214 formulations with siCtrl, as determined by DLS zetasizer. 

Lipopolyplexes were prepared at N/P 12 and modified with indicated different molar equiv. of 

HA-DBCO. G) Gel electrophoresis of 1214 formulations with different equiv. of HA-DBCO. The 

molar equivalents (equiv. HA) relate to the molar ratio of HA-linked DBCO to the azide of the 

cationic oligomers (DBCO/azide, mol/mol). 
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Fig. 25. Detailed presentation of zetasizer data as presented in main Fig.1B.  Particle 

size (z-average diameter in nm), PDI, and zeta potential of siCtrl formulations as determined 

with a DLS zetasizer. The siRNA polyplexes were prepared at N/P 12. 

 

Fig. 26. Gel electrophoresis of oligomers (disulfide stabilizing, non-reducible and 

bioreducible types) with siCtrl at N/P ratio 12 incubated for 4h in 90% serum.  
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Fig. 27. Detailed presentation of data as presented in main Fig.1 C. Luciferase activity of 

siRNA formulations (500ng siRNA/well) at N/P ratio 12 in Huh 7/eGFPLuc cells after 48 h 

incubation. 
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Fig. 28 Structure, NMR and UV-VIS of DBCO modified hyaluronic acid (HA). 
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Fig. 29 Gel electrophoresis of 1214 formulations with different equiv. of HA-DBCO. The 

molar equivalents (equiv. HA) relate to the molar ratio of HA-linked DBCO to the azide of the 

cationic oligomers (DBCO/azide, mol/mol). Polyplexes containing 500ng siRNA were 

incubated in 90% serum and analyzed at different time points.  

3.2.3 Hyaluronic acid (HA) for covalent modification of siRNA polyplexes 

For covalent decoration of lipo-OAA / siRNA polyplexes with polyanionic HA (Fig. 24D), 

we had designed lipo-oligomers such as 1214 with an N-terminal azido-lysine, and HA 

was modified with DBCO units as linkage modules. The modification degree of HA’s 

carboxylic groups with DBCO-amine was 8%, as confirmed by UV-VIS and NMR data 

(Fig. 28). This represents approximately 4 DBCO molecules per 20 kDa HA polymer 

chain. 

3.2.4 Formation and stability of cationic and anionic HA-modified siRNA 

polyplexes 

After screening of lipo-OAAs, oligomer 1214 was selected for all subsequent 

investigations. The azido function of 1214 exposed on the surface of siRNA polyplexes 

serves as anchor for polyplex modification with hyaluronic acid (HA). Each 20 kDa HA 

molecule was modified with approximately 4 DBCO linkers (see above) to enable 
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covalent copper-free, strain-promoted alkyne-azide cycloaddition (SPAAC) to the 

siRNA polyplexes. The amount of HA-DBCO is presented as molar equivalents (equiv.) 

of DBCO related to the cationic 1214 oligomer azides (mol/mol). Obviously, as 

considerable extent of oligomers will be located within the interior of the core 

lipopolyplexes, only a fraction of azides is available at the siRNA nanoparticle surface 

for click modification. 

Unmodified 1214 polyplexes had a hydrodynamic diameter of 200 nm (Fig. 24E). 

Modification with up to 0.2 equiv. of HA-DBCO or between 0.4 to 2.0 equiv. HA-DBCO 

did not show any considerable change in nanoparticle size, whereas modification with 

0.3 equiv. of HA-DBCO showed a sharp increase in size (around 810 nm), indicating 

the presence of aggregates. This was confirmed by the high PDI of 0.58 (Fig. 24E) 

and can explained by an almost neutral zeta potential (Fig. 24F). With the increase of 

HA-DBCO modification from 0.04 to 2.0 HA-DBCO, the zeta potential of the 1214 

siRNA lipopolyplexes decreased shifting from positive charge to negative charge (Fig. 

24F). The stability of positively and negatively charged polyplexes was also confirmed 

by agarose gel electrophoresis. Both the positively and negatively charged polyplexes 

displayed colloidial stability. In 20 mM HEPES buffered 5% glucose (HBG, pH 7.4) 

buffer (Fig. 24G), a complete siRNA binding at N/P ratio of 12 for all cationic and 

anionic formulations was observed. Also, in 90% serum, all formulations were stable 

up to 8h (Fig. 29). 

3.2.5 Gene silencing activity and cellular uptake of cationic and anionic HA / 

siRNA polyplexes 

Unless indicated differently, cationic and anionic polyplexes modified with 0.1 equiv. 

HA-DBCO or 0.8 equiv. HA-DBCO, respectively, were selected for subsequent 

experiments. Though the two nanoparticle formulations were similar in sizes (200.3± 

3.9 nm and 205.8 nm± 4,7 in diameter), the difference in zeta potential between low 

0.1HA (+22.7 mV) and high 0.8HA (-21.8 mV) is very large. These two formulations 
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(0.1HA and 0.8HA) also showed the highest cellular uptake in their cationic and anionic 

groups, respectively. Reporter gene silencing experiments with the two HA 

formulations were performed again in Huh 7/eGFPLuc (Fig. 30A). For unmodified 1214 

siRNA lipo-polyplexes, the knockdown of reporter activity was around 60%. Compared 

to this unmodified control, cationic HA modification polyplexes increased the gene 

silencing efficiency by further 5%. The anionic HA polyplexes mediated a higher 

silencing activity of 72% knockdown. eGFP-luciferase marker expression levels of cells 

treated with siCtrl polyplexes did not significantly change compared to untreated cells, 

indicating that the formulations did not have any intrinsic RNAi-independent cytotoxicity. 

Cellular uptake of cationic and anionic HA polyplexes was evaluated by flow cytometry. 

Cells were incubated with Cy5 siRNA formulations for 2 h at 37 °C, and washed with 

PBS and heparin for dissociation of extracellularly associated polyplexes from cell 

surface membranes before analysis. Fig. 30B displays the cellular uptake of siRNA 

polyplexes into Huh 7 cells. Both cationic and anionic polyplexes modified with 0.1 

equiv. HA-DBCO or 0.8 equiv. HA-DBCO, respectively, showed high uptake, which 

was superior over non-coated cationic 1214 siRNA polyplexes. The same formulations 

showed also the highest cellular uptake in KB cells (Fig. 31). 

Further on, endocytotic pathways of cationic and anionic HA siRNA nanoparticles into 

Huh 7 cells were characterized by monitoring the change of Cy5-siRNA internalization 

after pretreatment with different inhibitors for specific pathways,[121, 134] such as 

nystatin (15 μg/mL) for inhibiting caveolin-mediated endocytosis,[135] sucrose (154 

mg/mL) for inhibiting clathrin-mediated endocytosis,[136] amiloride (133 μg/mL) for 

inhibiting macropinocytosis,[137] sodium azide (1 mg/mL) for inhibiting energy-

dependent endocytosis[138] and excessive amount of free HA (10 mg/mL, 20 KDa) for 

competition of HA-mediated endocytosis (Fig. 30C-30D, Fig. 32 and Fig. 33). The 

cytotoxicity of inhibitors at indicated concentrations used in following experiments was 

evaluated and not significantly different from the HBG treated control cell group (Fig. 
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32). The pretreatment of sucrose inhibited the cellular uptake of cationic HA 1214 

polyplexes, suggesting clathrin-medicated endocytosis as main uptake mechanism, 

whereas both amiloride and sucrose inhibited anionic HA 1214 polyplex internalization, 

indicating both clathrin- and macropinocytosis-mediated uptake pathway (Fig. 30C). 

Negatively charged HA has been previously characterized to enter cells by 

macropinocytosis.[139] Entry of anionic 0.8HA polyplexes by macropinocytosis is 

consistent with the fact that the polyplex surface is completely covered with HA. 

Cationic medium-sized (~50-200 nm) nanoparticles such as PEI polyplexes were 

previously found to enter via clathrin- and/or caveolae-mediated endocytosis and not 

macropinocytosis.[140] In HA competition studies (Fig. 30D), excess amount of HA 

decreased cellular uptake of cationic and anionic HA polyplexes into Huh 7 cells by 

>76% or 46%, respectively. 

According to confocal laser scanning microscopy (CLSM) images (Fig. 30E and Fig. 

34), the anionic polyplexes with 0.8 equiv. HA-DBCO showed a higher degree of 

polyplex internalization in two cell lines (Huh7 and KB cells) compared to the non-

coated control and cationic 0.1 equiv. HA-DBCO polyplexes. For all following 

experiments, 1214 polyplexes with either 0.1 HA-DBCO or 0.8 HA-DBCO were 

selected as representative cationic or anionic HA siRNA nanoparticles, respectively. 

The subcellular distribution of cationic and anionic HA polyplexes in Huh 7 cells was 

examined using CLSM (Fig. 30F). After cells were incubated with the different 

polyplexes for 2h, siRNA was mainly colocalizing with Lysotracker, a late endosome 

and lysosome marker, indicating that both types of HA polyplexes were effectively 

taken up by Huh 7 cells into the endosomal compartment. 3D colocalization of cationic 

and anionic polyplexes with CD44 as cellular receptor of HA was demonstrated (Fig. 

35). 
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Fig. 30. Intracellular siRNA delivery mediated by cationic and anionic 1214 polyplexes. A) 

Luciferase activity of cationic and anionic formulations at N/P ratio 12 in Huh 7/eGFPLuc 

reporter cells. The luciferase activity of the eGFPLuc fusion protein was measured at 48 h. The 

results are presented as percentage of the luciferase gene expression obtained with untreated 
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control cells. (B) Uptake of 1214 formulations into Huh 7 cells was determined by flow 

cytometry after 2h incubation at 37°C. 1214 siRNA polyplexes were prepared containing 20% 

Cy5-labeled siRNA and modified with indicated different equiv. of HA-DBCO. C) Endocytosis 

pathways of cationic (left) and anionic (right) 1214 formulations characterized by different 

pretreatments with endocytosis inhibitors in Huh 7 cells determined using the flow cytometry. 

D) To test whether the HA-polyplexes uptake was mediated by receptor, the ligand competition

study was performed in presence of excess of HA (10 mg/mL, 20 kDa) in Huh 7 cells for 1 hour 

before adding various cationic (upper) and anionic (lower) 1214 HA-polyplexes for additional 

2 hours. siRNA polyplexes were formed at N/P 12 using Cy5-labeled siRNA. The number of 

Cy5-positive cells was analyzed by flow cytometry. Polyplex positive control: without HA 

modification competition. E) Cellular association of 1214 siRNA formulations in Huh 7 cells 

acquired by confocal laser scanning microscopy (CLSM). Cells were incubated with the 

formulations for 2h at 37 °C and washed with PBS buffer and heparin. Actin cytoskeleton was 

stained with rhodamine phalloidin, nuclei were stained with DAPI and siRNA was Cy5-labeled. 

Scale bars: 25 µm. F) Subcellular distribution of cationic and anionic 1214 HA formulations 

complexed with Cy5-siRNA in Huh 7 cells. The late endosomes and lysosomes were stained 

with LysoTracker Green. Scale bars: 50 μm.  The statistical significance was determined by 

one way ANOVA (A, B, C); unpaired t test (D). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001, n.s., not significant. Confocal microscopy was performed by Miriam Höhn 
(Department of Pharmacy, LMU Munich). 

Fig. 31 Uptake of 1214 formulations into KB cells (A) was determined by flow cytometry after 

2h incubation at 37°C. 1214 siRNA polyplexes (1.25 μg siRNA/well) were prepared containing 

20% Cy5-labeled siRNA and modified with different equiv. of HA-DBCO.  
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Fig. 32 Viability of Huh7 cells pre-treated with different inhibitors for 1h and subsequent 

incubation for 2h (upper) and 24h (lower) with unmodified (1214) and targeted cationic (0.1HA) 

or anionic (0.8HA) 1214 siRNA polyplexes. 

Huh7 cells were seeded on 96-well plates at a density (8000 cells/well) in 100 µL of medium 

24 h before the experiment. Medium was replaced by 80 µL of fresh medium. The cells were 

pre-incubated with 20µL of inhibitor solution (final concentration: nystatin 15 μg/mL, sucrose 

154 mg/mL, amiloride 133 μg/mL, sodium azide 1 mg/mL) for 1 h at 37°C. Afterwards, the 

medium changed and incubated at 37°C for 2h after adding different cationic and anionic 

formulations containing 0.5 µg of siRNA (N/P ratio of 12). The medium was then replaced with 

100 µL of fresh medium and cells were cultured for 2h and 24h time points. MTT assays (Life 

Technology, Darmstadt, Germany) were performed to evaluate the cell viability. The 

experiments were performed in triplicates using SpectraFluor Plus microplate reader (Tecan, 

Austria). The relative percentage were related to HBG buffer-treated control cells. 
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Fig. 33 Cellular uptake of cationic (upper) and anionic (lower) targeted 1214 siRNA polyplexes 

into KB cells determined by flow cytometry. Polyplexes (1.25μg siRNA/well) were formed at 

N/P 12 using 20% Cy5-labeled siRNA. Cells were pre-treated with different inhibitors for 1h. 
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Fig. 34 Cellular association of siRNA formulations in KB cells determined by confocal laser 

scanning microscopy (CLSM). Actin cytoskeleton was stained with rhodamine phalloidin, 

nuclei were stained with DAPI and Cy5-labeled siRNA was used. White scale bars indicate 

25 µm. Experiment performed by Miriam Höhn (Department of Pharmacy, LMU Munich).   

Fig. 35 Colocalization of cationic (upper) and anionic (lower) nanoparticles target CD44 

receptor using Imaris analysis. Scale bar: 10 μm. For enlarged figure, scale bar: 5 μm. 

Together with Mochen Cui (Faculty of Medicine, LMU Munich). 
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3.2.6 Delivery of cationic and anionic HA-modified siRNA polyplexes in vivo 

After the screening and evaluation of polyplexes for intracellular delivery, these 

formulations should undergo evaluation in tumor models in vivo by biodistribution and 

gene silencing assays. 1214 polyplexes and 1214 polyplexes with 0.1 equiv. or 0.8 

equiv. of HA-DBCO modification were analyzed for systemic biodistribution in mice 

bearing subcutaneous Huh7 tumors (Fig. 36A). Mice were injected with polyplexes 

formulating Cy7-conjugated siRNA via tail vein, and the biodistribution of the dye was 

monitored at various time points with a NIR bioimaging system. Compared to the 

unmodified 1214 siRNA polyplexes, it was interesting to note that the 1214 polyplexes 

with 0.1 equiv. of HA-DBCO modification rapidly appeared with a strong fluorescence 

signal in the tumor remaining high for up to 1 h, whereas anionic 1214 siRNA 

polyplexes with 0.8 equiv. of HA-DBCO modification did not accumulate in the Huh 7 

tumor as evidenced by the lack of pronounced fluorescence. In previous experiments 

with this tumor model, we had observed that analogous PEG shielded polyplexes did 

not accumulate in Huh 7 tumors (Fig. 37). The well-understood ‘passive’ enhanced 

permeability and retention (EPR) mechanism for PEGylated nanoparticles would 

require long-term circulation times. Consistent with our previous reports,[130] our class 

of siRNA polyplexes circulates only short-term (Fig. 38). Obviously, transient 

accumulation in tumors must proceed by a different “active” mechanism. Huh 7 tumor 

cells are known to express CD44. Therefore we also applied these formulations in 

another tumor mouse model bearing poorly differentiated CD44 deficient Neuro2a 

neuroblastoma cells known to be non-responsive for HA binding [141] (Fig. 39). 

Nevertheless, we observed also in this model that the cationic 0.1 equiv. HA-DBCO 

containing nanoparticles (0.1HA) display a higher tumor accumulation, compared to 

the cationic unmodified and the anionic 0.8 equiv. HA-DBCO containing (0.8HA) 

formulations. Apparently, 0.1HA polyplexes demonstrated favorable accumulation in 

both (CD44 positive Huh 7 and CD44 negative Neuro2A) tumor cell models. CD44 is 

known to be overexpressed in solid tumor vasculature.[125, 126] Therefore, we 
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hypothesize that in both cases a CD44/HA interaction with tumor vasculature might 

play an active role in the observed tumor accumulation. This hypothesis remains to be 

experimentally proven, for example by replacing HA for other anionic polymers, or by 

in vivo (HA/CD44) competition experiments. 

HA polyplexes were then analyzed for gene silencing in Huh 7 tumors (Fig. 36B). 

Polyplexes were prepared with siEG5 against the kinesin-related motor protein EG5 or 

siCtrl (50 μg of siRNA). Five mice per group were subcutaneously injected with Huh 7 

tumor cells and the weight of the animals was monitored. When tumors reached a size 

of 500mm3, the formulations were administered via tail vein twice at daily interval. At 

24 h after the second injection of formulations, the tumors were harvested, RNA was 

extracted and the EG5 mRNA levels were quantified by quantitative real-time 

polymerase chain reaction (qRT-PCR). The 1214 siEG5 group with 0.1 equiv. of HA-

DBCO modification induced a strong and significant downregulation of EG5 mRNA 

expression by ~78% in tumor treated animals as normalized to untreated HBG group. 

The unmodified 1214 siEG5 group mediated a moderate gene silencing (~30%) of EG5 

mRNA. Interestingly, the formulation of 1214 siEG5 with 0.8 equiv. of HA-DBCO, which 

was most effective in cell culture, revealed negligible gene silencing (~10% on EG5 

mRNA level). None of the control groups with siCtrl formulation showed significant 

reduction of EG5 mRNA as compared to animals treated with HBG control buffer. In 

summary, the 1214 formulation with 0.1 equiv. of HA-DBCO coating targeted Huh 7 

tumors and achieved a strong 78% knockdown of EG5 in vivo. 

Systemic circulation of siRNA polyplexes might also cause potential side effect and 

inflammatory response when they reach non-targeted tissues. Therefore, blood 

biochemistry examinations were carried out in order to realize the biocompatibility of 

the polyplexes (Fig. 36C-36F). Blood samples were collected 24 h after two injections 

of siRNA formulations in healthy mice and four relevant clinical parameters were 
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determined. There is no increase of liver enzymes (ALT and AST) or renal parameters 

(BUN and CREA) were found compared to the untreated HBG group. 
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Fig. 36. In vivo performance of siRNA polyplexes. (A) Biodistribution of siRNA formulations 

(50 µg siRNA, 50% Cy7-labeled, with 1214 at N/P 12) after i. v. administration in Huh 7 

tumor-bearing NMRI nude mice. Biodistribution was determined by NIR fluorescence 

bioimaging comparing unmodified 1214 siRNA polyplexes with polyplexes modified with 

different equiv. of HA-DBCO. The tumor sites containing accumulated siRNA nanoparticles 

are highlighted by white circles. Experiment performed by Johannes Schmaus (veterinary MD 
student, LMU Munich). (B) Tumor-targeted gene silencing efficiency of cationic and anionic 

1214 siRNA formulation with 0.1 and 0.8 equiv. of HA-DBCO with 50 μg of siEG5 or siCtrl 

(mean ± SEM; n=5). (C-F) Clinical biochemistry parameters creatinine (CREA), blood urea 

nitrogen (BUN), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) after 

the treatment (5 animals per group) were performed in the Clinic of Small Animal Medicine, 
Faculty of Veterinary Medicine, LMU Munich. Statistical analysis was performed by unpaired t 

test (B); one way ANOVA (C-F). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s., not 

Fig. 37 Biodistribution of siRNA formulations (50 µg siRNA, 50% Cy7 labeled, with 1198 at 

N/P 12) after i. v. administration in Huh7 tumor-bearing mice. The fluorescence scale between 

1.80e-5 and 1.70e-4. The tumor sites are highlighted by blue circles in lateral view. For 

structure of 1198 (His-free analog of 1214) see Table S2. Experiment performed by Sarah 
Kern (veterinary MD student, LMU Munich).

significant.
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Fig. 38 Biodistribution of siRNA formulations (50 µg siRNA, 50% Cy7 labeled, with 1214 at 

N/P 12) after i. v. administration in Huh7 tumor-bearing mice. Biodistribution was determined 

by NIR fluorescence bioimaging comparing unmodified 1214 siRNA polyplexes with polyplexes 

modified with different equiv. of HA-DBCO. The fluorescence scale between 1.40e-5 and 2.5e-4.

The tumor sites are highlighted by blue circles. Experiment performed by Johannes Schmaus 
(veterinary MD student, LMU Munich).
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Fig. 39 Biodistribution of siRNA formulations (50 µg siRNA, 50% Cy7 labeled, with 1214 at 

N/P 12) after i. v. administration in Neuro2a neuroblastoma-bearing mice. Biodistribution was 

determined by NIR fluorescence bioimaging comparing unmodified 1214 siRNA polyplexes 

with polyplexes modified with 0.1 or 0.8 equiv. of HA-DBCO. The fluorescence scale of upper 

and middle figures between 2.20e-5 and 7.00e-5. The fluorescence scale of lower figures 

between 5.50e-5 and 1.50e-4. The tumor sites are highlighted by blue circles. Experiment 
performed by Elisa Hörterer and Ulrich Wilk (veterinary MD students, LMU Munich).
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Fig. 40 Colocalization and microenvironmental distribution of cationic and anionic siRNA 

polyplexes in Huh 7 tumors. (A) Observation of three formulations (unmodified 1214, 0.1HA 

cationic and 0.8HA anionic polyplexes) after 5 min i.v. injection adhesion to endothelial cells 

of tumor blood vessels by confocal laser scanning microscopy. Scale bar = 20 μm. Enlarged 

sites from blood vessels to tumor tissue in the selected region. Scale bar = 2 μm. siRNA 

polyplexes were labeled with cy3, endothelial cells of blood vessels were stained with DyLight 

488 labeled lycopersicon esculentum (tomato) lectin. Yellow was meant to colocalization of 

nanopolyplexes (Red) in endothelial cells (Green). (B) Distribution of 0.1HA cationic siRNA 

polyplex in tumor tissues after 45 min i.v. injection. Scale bar = 20 μm. Enlarged sites, scale 

bar = 2 μm. (C) Quantitative data of cationic and anionic siRNA polyplexes colocalizing or 

having passed across tumor endothelium after 5 min i.v. injection. (D) Comparison of distance 

of 1214 0.1HA nanoparticles from endothelium after 5 min and 45 min i.v. injection. Statistical 

analysis was performed by unpaired t test (C, D). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001, n.s., not significant. Confocal microscopy was operated by Mochen Cui (Faculty of 
Medicine, LMU Munich)

3.2.7 Tumor penetration of HA coated siRNA polyplexes in vivo 

We further investigated the micro-environmental distribution of HA coated siRNA 

polyplexes in Huh 7 tumor mice by 3D analysis of 50 µm thick tumor/organ sections 

using CLSM microscopy (Fig. 40). This method is far more sensitive and space-

resolved than NIR fluorescence bioimaging and also more quantitative in micro-

environmental distribution of nanoparticles. We used Imaris software in 3-dimensional 

sight to demonstrate the accurate distribution of nanoparticles inside/outside the 

endothelium of tumor (Fig. 41-43) and in different organs (Fig. 44-45). As indicated in 

Fig. 40A, at the very early time point of 5 min post injection, the red fluorescence was 
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mainly retained within the endothelial cells of blood vessels. In the magnification figure 

of each formulation, the yellow dots indicate the colocalization of Cy3-nanoparticles 

within lectin-labeled endothelial cells, and the red dots show the nanoparticle released 

from endothelial cells. The 1214 polyplexes with 0.1 equiv. of HA-DBCO modification 

indicated much higher colocalization with endothelial cells, compared to the unmodified 

1214 polyplexes and anionic 1214 polyplexes with 0.8 equiv. of HA-DBCO (Fig. 40A, 

Fig. 41 and Fig. 42). Afterwards, at 45 min post-injection (Fig. 40B and Fig. 43), the 

fluorescence signals of 0.1 equiv. of HA-DBCO modified 1214 polyplexes diffused from 

blood vessels to further distribute in the extravascular regions. 

Fig. 41 Testing for colocalization for two formulations (0.1HA cationic and 0.8HA anionic 

polyplexes) after 5 min i.v. injection adhesion to endothelial cells of tumor blood vessels by 

confocal laser scanning microscopy. Scale bar = 20 μm. siRNA polyplexes were labeled with 

Cy3, endothelial cells of blood vessels were stained with DyLight 488 labeled lycopersicon 

esculentum (tomato) lectin. Yellow was meant to colocalization of nanopolyplexes (Red) in 

endothelial cells (Green). Confocal microscopy was operated by Mochen Cui (Faculty of 
Medicine, LMU Munich)



Results and Discussion 

94 

Fig. 42 Colocalization of 0.1HA cationic after 5 min i.v. injection adhesion to endothelial cells 

of tumor blood vessels as evaluated by confocal laser scanning microscopy. Scale bar = 20 

μm. siRNA polyplexes were labeled with Cy3, endothelial cells of blood vessels were stained 

with DyLight 488 labeled lycopersicon esculentum (tomato) lectin. Yellow was meant to 

colocalization of nanopolyplexes (Red) in endothelial cells (Green). Confocal microscopy 
was operated by Mochen Cui (Faculty of Medicine, LMU Munich)
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Fig. 43 Imaris reconstruction of 0.1HA cationic siRNA polyplexes in different site of Huh 7 

tumors. Observation of polyplex after 45 min i.v. injection from endothelial cells by confocal 

laser scanning microscopy. Scale bar = 15 μm. siRNA polyplexes were labeled with Cy3, 

endothelial cells of blood vessels were stained with DyLight 488 labeled lycopersicon 

esculentum (tomato) lectin. Yellow refers to colocalization of nanopolyplexes (red) with 

endothelial cells (green). Confocal microscopy was operated by Mochen Cui (Faculty of 
Medicine, LMU Munich)

Fig. 44 Distribution of 0.1HA cationic polyplexes in kidneys after 5min i.v. injection. Scale 

bar = 30 μm. siRNA polyplexes were labeled with Cy3, endothelial cells of blood vessels 

were stained with DyLight 488 labeled lycopersicon esculentum (tomato) lectin. Experiment 
performed by Mochen Cui (Faculty of Medicine, LMU Munich)
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Fig. 45 Distribution of 0.1HA cationic polyplexes in liver after 5min i.v. injection by confocal 

laser scanning microscopy. Scale bar = 30 μm. siRNA polyplexes were labeled with Cy3, 

endothelial cells were stained with DyLight 488 labeled lycopersicon esculentum (tomato) 

lectin. Experiment performed by Mochen Cui (Faculty of Medicine, LMU Munich)

The quantitative data of cationic and anionic siRNA polyplexes associated with 

endothelial cells are shown in Fig. 40C. Both cationic siRNA polyplex types (non-

coated and 0.1HA coated) show far higher association with endothelial cells after 5 

min i.v. than the negatively charged polyplexes (0.1HA > 1214 >> 0.8HA). In tumor 

sections, accumulation of 1214 unmodified HA nanoparticles was significant lower 

(~60%) than 0.1HA and far lower (~2%) for 0.8HA. Evaluation of the distribution of 

1214 0.1 HA polyplexes in tumor tissue with time (Fig. 40D) demonstrated that this 

formulation can penetrate from endothelial cells into the tumor core up to 40 μm within 

the short period of only 45 min.  

The other organs (kidneys, liver and brain) of tumor-bearing mice were also analyzed 

by confocal laser scanning microscopy (Fig. 44-45). We observed 0.1HA 1214 

polyplexes also distributed in kidneys and liver. 

3.2.8 Tumor-targeting mechanisms of HA siRNA polyplexes in perspective of 

state-of-the-art mechanistic models. 
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Our results obtained with cationic 200 nm nanosized 1214 0.1HA nanoparticles that 

are short-term circulating, attach to tumor endothelium within 5 min and subsequently 

penetrate into tumors in short time need to be placed in perspective with the common 

mechanistic models for tumor targeting.  

After investigations over several decades, the mechanisms of delivery of nanoparticle 

drugs into solid tumors (‘tumor targeting’) are still not fully understood. However, a 

series of reliable mechanistic models (Fig. 46) have been developed and are under 

continuous review and refinement. [142-156]  Nanoparticles sized up to 400 nm in 

diameter and well surface–shielded to enable a stable long-term systemic circulation  

may passively accumulate in solid experimental tumors, as can be explained by the 

mechanism of enhanced permeability and retention (EPR) effect of tumor tissues 

containing leaky blood vessels.[142-144]  This EPR principle was first observed by 

Maeda and colleagues in 1986. [142]  The passive tumor accumulation takes time 

(several hours to days), the enhanced permeability is attributed to the fenestration in 

leaky tumor blood vessels, and the retention of macromolecules or nanoparticles 

arises from the poor lymphatic drainage in tumors. Jain and colleagues independently 

confirmed this principle; they injected differently sized liposomes into blood and 

investigated molecular size dependence of microvascular permeability in tumors.[143] 

In the pharmacological and clinical reality, tumor targeting of nanoparticles is often 

suboptimum and far lower than an EPR effect might promise.[144, 145] Such low 

accumulation values can be partly attributed to suboptimum nanoparticle properties, 

such as lack of extended blood circulation times due to insufficient stability and surface 

shielding. Obviously, the demonstrated positive tumor targeting observed with our 

0.1HA siRNA nanoparticles cannot be explained by an EPR-dominated mechanism. 

Apart from nanoparticle issues, the EPR-effect can be strong in some solid tumor types, 

but between tumors a high heterogeneity in degree of accumulation was observed. 

[146] 
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Fig. 46 Possible mechanisms of nanoparticle accumulation in tumors. For details see section 

3.2.8.  Mechanistic models include passive enhanced permeability and retention (EPR) and 

active adhesion to tumoral vasculature. Transfer across tumor endothelial cell (EC) barrier can 

be by transfer between ECs (permeation or paracellular transport) or transcytosis. Examples 

of nanoparticles (NPs) from left to right: long circulated PEGylated NPs accumulating by the 

EPR effect, 0.1HA 1214 polyplexes, cationic PEGylated NPs, cationic liposomes, or NPs using 

transcytosis, respectively. 

As known from literature,[157, 158] nanoparticles with neutral and negative charges 

display a reduced absorption of serum proteins, resulting in longer circulation times in 

vivo. The extension of circulation time of nanoparticles would favor tumor accumulation 

by the mentioned EPR effect, but may not be the only and sufficient factor for achieving 

systemic delivery into tumors. In our study, the negatively charged, well coated 0.8HA 

siRNA nanoparticles neither accumulated nor mediated gene silencing in tumors.  

Another mechanistic solid tumor targeting model comprises effective adhesion to 

angiogenic tumor endothelial cells. Early work by Donald McDonald and 

coworkers[147] demonstrated that cationic liposomes or cationic DNA lipoplexes 

display high binding to tumor endothelial cells and internalization into tumors. Dellian 

et al. demonstrated[148] that modified cationized bovine serum albumin and IgG 
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extravasate faster from tumor endothelial cells into tumors compared to similar proteins 

with neutral or negative charges. More recent work by Kam Leong and Jun Wang 

demonstrated that a cationic surface charge on PEGylated stable nanoparticles was 

required for enhanced tumor penetration and therapeutic efficacy of anti-cancer 

nanomedicines.[149] Consistently, also in our study only the cationic 0.1HA-containing 

nanoparticles displayed very fast and effective attachment to tumor endothelium. 

However, in our study cationic charge was necessary but not sufficient for the observed 

fast tumor attachment of nanoparticles; coating with 0.1HA, a known ligand for cell 

surface CD44, was another requirement for nanoparticle attachment. CD44 is known 

to be overexpressed in several tumor types and also tumor vasculature. [125, 126] As 

0.1HA polyplexes demonstrated favorable accumulation in both CD44 positive Huh 7 

and CD44 negative Neuro2A tumor cells in vivo models, we hypothesize that in both 

cases a HA interaction with CD44 on tumor vasculature might play an active role in the 

observed tumor accumulation. 

The further process of 0.1HA nanoparticle penetration from tumor vasculature into the 

tumor was also a fast process as detectable by 3D confocal microscopy already at 45 

min after nanoparticle administration. The involved mechanism, transcellular transfer 

across endothelial cells, or paracellular transfer between endothelial cells of leaky 

vasculature, and a possible active participation of HA/CD44, remains to be clarified.  

Early pioneering work by Schnitzer in 1992 [150] reported that albumin is actively 

transported through the vascular endothelium by transcytosis. Schnitzer and co-

workers also found[151] that the active transendothelial portal to infiltrate tumors can 

be explained by caveolae pumping system. Recently, Chan and co-workers[152] 

reported that nanoparticles penetrate into tumors mainly through an active transcytosis 

process (up to 97%) across endothelial cells, rather than via the endothelial gaps or 

fenestrae. Recent evidence on penetration into tumor lesions via an active transcytosis 

process was provided by Tao and colleagues [153]. 
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4. Summary

In the first part, a systematic approach was applied to rationally design a more

effective and multifunctional carrier with dual-antitumoral siRNA conjugate based on 

the thorough understanding of the relationship between structure and activity of 

previously designed oligoaminoamides. We designed new siRNA carriers based on 

sequence-defined cationizable oligoaminoamides containing an N-terminal azido 

domain and a hydrophobic bis (oleic acid) domain attached with T-shaped topology in 

either a reducible or non-reducible form. Following a screening discovering the 

histidine-free lipo-oligomer 1208 formulation as most favorable for siRNA delivery, 

DBCO-functionalized PEG-AP-1 targeting and PEG shielding agents were designed 

for copper-free click chemistry surface functionalization by 1208 siRNA polyplexes 

via their integrated azido groups. Independently, three siRNA-apoptotic peptide 

conjugates were designed, and siEG5-KLK was identified as the most antitumoral 

entity. Incorporation of siEG5-KLK into the optimized PEG-AP-1 1208 nanoparticles 

which target IL-4 receptor-positive tumor cells induced a strong antitumoral effect, 

based on EG5 gene silencing and KLK mediated mitochondrial destabilization as two 

separate mechanisms. In sum, dual antitumoral siRNA-KLK conjugates and their 

targeted formulations present an encouraging strategy; future in vivo tumor targeting 

experiments will be critical for understanding their in vivo biosafety and potency. 

The ‘passive tumor targeting’ mechanism (EPR effect) requires a prolonged 

circulation of nanoparticles in blood for accumulation in tumors. This process cannot 

be utilized by the siRNA nanoparticles of the current study which are short-term 

circulating. Direct comparison of tumor penetration of three very similar siRNA 

nanoparticle formulations, containing the same optimized cationic 

lipooligoaminoamide core, but differing in the surface by charge and covalently 

coupled hyaluronic acid (HA) content (two cationic formulations: 0HA, 0.1HA, and one 

anionic: 0.8HA), demonstrated upon intravenous administration a very fast 
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accumulation of one formulation (0.1HA). This fast, apparently more active tumor 

targeting process differs from the well-established EPR mechanism. As evidenced by 

3D nanoparticle distribution within the tumor, 0.1HA-coated cationic siRNA 

nanoparticles attach to the tumor endothelium within 5 minutes and deeply penetrate 

into the tumor within 45 minutes. The finding that only one (0.1HA) of the two cationic 

systems and not the better shielded negatively charged (0.8HA) system is superior, 

goes beyond common knowledge. Common assumption would predict that better 

shielded NPs would result in improved blood circulation and subsequent improved 

tumor accumulation. The intravenous treatment with 0.1HA cationic nanoparticles 

also resulted in potent gene silencing in the distant tumor. Notably, neither the non-

coated cationic siRNA nanoparticles nor the analogous HA-coated anionic siRNA 

nanoparticles mediated such a strong tumor accumulation and gene silencing. The 

cationic formulation without HA displayed some reduced attachment to tumor 

vasculature and subsequent moderate gene silencing. Against our initial expectations 

based on in vitro results, the anionic siRNA nanoparticles with the high degree of HA 

coating and highest gene silencing activity in cell culture were neither accumulating 

nor gene silencing in the tumor in vivo. This was surprising because a complete 

coating with the natural carbohydrate biopolymer was predicted to provide a better 

surface shielding in the blood stream.  
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5   Supporting Information 

Tab. S1 Definition of protonable amines in the newly synthesized lipo-oligomers in N/P 

calculations. The new sequence-defined oligomers, non-reducible (1208, 1209, 1210 and 1211) 

and bioreducible type (1217, 1218, 1219 and 1220) differ in number of protonable N. For 

historic reasons and compatibility with our previous publications, only protonable nitrogens of 

the Stp backbone units were included in these calculations, but not protonable histidine 

nitrogens. Units of the oligomers: Y: tyrosine, K: lysine, H: histidine, Stp: succinoyl-

tetraethylene-pentamine, OleA: Oleic acid, G: glycine, ssbb: succinoyl-cystamine, ss building 

block. For siRNAs, the number of phoshates (P) of siRNA was always used as fixed value (i.e. 

42). Note that the few charges (if any) of conjugated apoptotic peptides were not included in 

the calculations. 

 

Oligomer 

MW 

free 

base 

MW 

(with 

HCl) 

amines 

in total 

protonable 

amines (N) structures: 

1208 
3022 3496.5 13 13 

K(N3)-Y3-Stp2-K(K(OleA)2)-

Stp2-Y3 

1209 
3844 4537.5 19 13 

K(N3)-Y3-(H-Stp)2-H-

K(K(OleA)2)-H-(Stp-H)2-Y3 

1210 
4107 5019.5 25 25 

K(N3)-Y3-Stp4-K(K(OleA)2)-

Stp4-Y3 

1211 
5478 6755.5 35 25 

K(N3)-Y3-(H-Stp)4-H-

K(K(OleA)2)-H-(Stp-H)4-Y3 

1217 3313 3787.5 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-

K(OleA)2)-Stp2-Y3 

1218 4135 4828.5 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-

ssbb-K(OleA)2)-H-(Stp-H)2-Y3 

1219 4399 5311.5 25 25 

K(N3)-Y3-Stp4-K(G-ssbb-

K(OleA)2)-Stp4-Y3 

1220 5769 7046.5 35 25 

K(N3)-Y3-(H-Stp)4-H-K(G-

ssbb-K(OleA)2)-H-(Stp-H)4-Y3 
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Fig. S1 MS data of the eight oligomers. 
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1208: Sequence (C→N) Y3-Stp2-[(OleA)2-K]K-Stp2-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 16 H, εH lysine and tyrosine), 3.1-3.65 (m, 

64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 5.05 – 5.25 (s, 4 H, -CH=CH- oleic 

acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

 

Fig. S2 NMR data of the eight oligomers. 
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1209: Sequence (C→N) Y3-(H-Stp)2-H-[(OleA)2-K]K-(H-Stp)2-H-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 28 H, εH lysine, tyrosine and histidine), 3.1-

3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino acids), 5.05 – 5.25 (s, 4 H, -

CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 

H, aromatic H histidine). 

 

Fig. S2 (continued). 
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1210: Sequence (C→N) Y3-Stp4-[(OleA)2-K]K-Stp4-Y3-K(N3) 

N
H

HN

N
H

H
N

N
H

H
N

N
H

H
N

N
H

H
N

O

O

O

O

HO HO

HO

O O

N
H

H
N

O

O

O

N
H

HO

HO

HO

H
N

N
H

H
N

N
H

H
N

O

O

HO

O

NH2

O

NH

HN

O

O

N3

eu

4

eu

4

h

h

g

g

g

g

b

b
f

fg c

e

e
g

c
ff

d

d

d

d

d

d

d

d
c c

e
e

c
c

c
c

e

e

e

ea

a

a

a

a

a

c

g

 

 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 36 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 16 H, εH lysine and tyrosine), 3.1-3.65 (m, 

128 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 5.05 – 5.25 (s, 4 H, -CH=CH- oleic 

acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

 

Fig. S2 (continued). 
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1211: Sequence (C→N) Y3-(H-Stp)4-H-[(OleA)2-K]K-(H-Stp)4-H-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 36 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 36 H, εH lysine, tyrosine and histidine), 3.1-

3.65 (m, 128 H, -CH2- Stp), 3.70-4.55 (m, 19 H, αH amino acids), 5.05 – 5.25 (s, 4 H, -

CH=CH- oleic acid), 6.60 -7.15 (m, 34 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 

10 H, aromatic H histidine). 

 

 

Fig. S2 (continued). 
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1217: Sequence (C→N) Y3-Stp2-[(OleA)2-K-ssbb-G]K-Stp2-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 24 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 24 H, εH lysine and tyrosine, -

CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino acids), 5.05 – 5.25 

(s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

 

Fig. S2 (continued). 
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1218: Sequence (C→N) Y3-(H-Stp)2-H-[(OleA)2-K-ssbb-G]K-H-(H-Stp)2-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 24 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 36 H, εH lysine, tyrosine and 

histidine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino acids), 

5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H 

histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

 

Fig. S2 (continued). 
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1219: Sequence (C→N) Y3-Stp4-[(OleA)2-K-ssbb-G]K-Stp4-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 40 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 24 H, εH lysine and tyrosine, -

CH2- ssbb), 3.1-3.65 (m, 128 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino acids), 5.05 – 5.25 

(s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

 

Fig. S2 (continued). 
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1220: Sequence (C→N) Y3-(H-Stp)4-H-[(OleA)2-K-ssbb-G]K-H-(H-Stp)4-Y3-K(N3) 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 72 H, βγδH lysine, βγδεH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 40 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 44 H, εH lysine, tyrosine and 

histidine, -CH2- ssbb), 3.1-3.65 (m, 128 H, -CH2- Stp), 3.70-4.55 (m, 21 H, αH amino acids), 

5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 34 H, -CH- tyrosine, aromatic H 

histidine), 8.45-8.60 (m, 10 H, aromatic H histidine). 

 

Fig. S2 (continued). 
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Tab. S2 Synthesized sequence-defined oligomers. Definition of protonable amines in N/P 

calculations. For historic reasons and compatibility with our previous publications, only 

protonable nitrogens of the Stp backbone units were included in these calculations, but not 

the also protonable histidine nitrogens. Units of the oligomers: Y: tyrosine, K: lysine, H: 

histidine, Stp: succinoyl-tetraethylene-pentamine, G: glycine, C: cysteine, ssbb: succinoyl-

cystamine, ss building block, PalA: palmitic acid, SteA: stearic acid, Ara: arachidic acid, 

BehA: behenic acid, LigA: lignoceric acid, OleA: oleic acid, LenA: linolenic acid. For siRNAs, 

the number of phosphates (P) of siRNA was always used as fixed value (i.e. 42).  

Disulfide-stabilizing type of oligomers 

Oligomer 

(library 

ID 

number) 

MW 

free 

base 

MW 

with 

HCl 

amines 

in total 

protonable 

amines(N) sequence (from N- to C- terminus) 

1336 3176.11 3651 13 13 K(N3)-C-Y3-Stp2-K(K(PalA)2)-Stp2-Y3-C 

1337 3232.22 3707 13 13 K(N3)-C-Y3-Stp2-K(K(SteA)2)-Stp2-Y3-C 

1198 3228.18 3703 13 13 K(N3)-C-Y3-Stp2-K(K(OleA)2)-Stp2-Y3-C 

1383 3288.32 3763 13 13 K(N3)-C-Y3-Stp2-K(K(AraA)2)-Stp2-Y3-C 

1384 3344.43 3819 13 13 K(N3)-C-Y3-Stp2-K(K(BehA)2)-Stp2-Y3-C 

1385 3400.53 3875 13 13 K(N3)-C-Y3-Stp2-K(K(LigA)2)-Stp2-Y3-C 

1200 3220.12 3695 13 13 K(N3)-C-Y3-Stp2-K(K(LenA)2)-Stp2-Y3-C 

1277 3998.95 4692 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(PalA)2)-H-(Stp-

H)2-Y3-C 

1278 4055.05 4749 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(SteA)2)-H-(Stp-

H)2-Y3-C 

1214 4051.02 4745 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(OleA)2)-H-(Stp-

H)2-Y3-C 

1386 4111.16 4805 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(AraA)2)-H-(Stp-

H)2-Y3-C 

1387 4167.26 4861 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(BehA)2)-H-

(Stp-H)2-Y3-C 

1388 4223.37 4917 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(LigA)2)-H-(Stp-

H)2-Y3-C 

1390 4099.06 4793 19 13 

K(N3)-C-Y3-(H-Stp)2-H-K(K(LenA)2)-H-

(Stp-H)2-Y3-C 
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Non-reducible type of oligomers 

Oligomer 

(library ID 

number)  

MW 

free 

base 

MW 

with 

HCl 

amine

s in 

total 

protonable 

amines(N) sequence (from N- to C- terminus) 

1360 

2969.8

2 3444 13 13 K(N3)-Y3-Stp2-K(K(PalA)2)-Stp2-Y3 

1361 

3025.9

3 3500 13 13 K(N3)-Y3-Stp2-K(K(SteA)2)-Stp2-Y3 

1208 

3021.9

0 3496 13 13 K(N3)-Y3-Stp2-K(K(OleA)2)-Stp2-Y3 

1371 

3082.0

4 3557 13 13 K(N3)-Y3-Stp2-K(K(AraA)2)-Stp2-Y3 

1372 

3138.1

4 3613 13 13 K(N3)-Y3-Stp2-K(K(BehA)2)-Stp2-Y3 

1373 

3194.2

5 3669 13 13 K(N3)-Y3-Stp2-K(K(LigA)2)-Stp2-Y3 

1320 

3792.6

6 4486 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(PalA)2)- 

H-(H-Stp)2-Y3 

1321 

3848.7

7 4542 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(SteA)2)- 

H-(H-Stp)2-Y3 

1209 

3844.7

3 4538 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(OleA)2)- 

H-(H-Stp)2-Y3 

1374 

3904.8

7 4598 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(AraA)2)- 

H-(H-Stp)2-Y3 

1375 

3960.9

8 4654 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(BehA)2)- 

H-(H-Stp)2-Y3 

1376 

4017.0

8 4711 19 13 

K(N3)-Y3-(H-Stp)2-H-K(K(LigA)2)- 

H-(H-Stp)2-Y3 
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Bioreducible type of oligomers 

Oligomer 

(library 

ID 

number)  

MW 

free 

base 

MW 

with 

HCl 

amines 

in total 

protonable 

amines(N) sequence (from N- to C- terminus) 

1348 3261.21 3736 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(PalA)2)-

Stp2-Y3 

1349 3317.32 3792 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(SteA)2)-

Stp2-Y3 

1217 3313.29 3788 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(OleA)2)-

Stp2-Y3 

1377 3373.43 3848 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(AraA)2)-

Stp2-Y3 

1378 3429.53 3904 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(BehA)2)-

Stp2-Y3 

1379 3485.64 3960 13 13 

K(N3)-Y3-Stp2-K(G-ssbb-K(LigA)2)-

Stp2-Y3 

1305 4084.05 4778 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(PalA)2)-H-(H-Stp)2-Y3 

1306 4140.16 4834 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(SteA)2)-H-(H-Stp)2-Y3 

1218 4136.12 4830 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(OleA)2)-H-(H-Stp)2-Y3 

1380 4196.26 4890 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(AraA)2)-H-(H-Stp)2-Y3 

1381 4252.37 4946 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(BehA)2)-H-(H-Stp)2-Y3 

1382 4308.48 5002 19 13 

K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-

K(LigA)2)-H-(H-Stp)2-Y3 

 

  



                                                                       Supporting information                                                                                                                                                                                     

115 
 

Tab. S3 Mass spectral data of all oligomers recorded with a Bruker MALDI-TOF instrument 

in positive mode. 

Disulfide stabilizing type of oligomers 

Oligomer 

ID 

Molecular 

Formula 

Calculated 

MASS 

Found 

MASS 

1336 C158H260N36O28S2 3176.1 3175.2 

1337 C162H268N36O28S2 3232.2 3233.5 

1198 C162H264N36O28S2 3228.1 3227.2 

1383 C166H276N36O28S2 3288.3 3287.8 

1384 C170H284N36O28S2 3344.4 3343.2 

1385 C174H292N36O28S2 3400.5 3400.8 

1200 C162H256N36O28S2 3220.1 3220.6 

1277 C194H302N54O34S2 3998.9 3997.8 

1278 C198H310N54O34S2 4055.1 4054.2 

1214 C198H306N54O34S2 4051.0 4050.1 

1386 C202H318N54O34S2 4111.1 4111.1 

1387 C206H326N54O34S2 4167.2 4166.5 

1388 C210H334N54O34S2 4223.3 4222.2 

1390 C202H306N54O34S2 4099.1 4098.4 

 

Non-reducible type of oligomers 

Oligomer ID 

Molecular  

Formula 

Calculated 

MASS 

Found  

MASS 

1360 C152H250N34O26 2969.8 2968.4 

1361 C156H258N34O26 3025.9 3026.5 

1208 C156H254N34O26 3021.8 3021.2 

1371 C160H266N34O26 3082.0 3080.9 

1372 C164H274N34O26 3138.1 3137.2 

1373 C168H282N34O26 3194.2 3193.2 

1320 C188H292N52O32 3792.6 3792.1 

1321 C192H300N52O32 3848.7 3847.1 

1209 C192H296N52O32 3844.7 3842.9 

1374 C196H308N52O32 3904.8 3902.8 

1375 C200H316N52O32 3960.9 3960.2 

1376 C204H324N52O32 4017.1 4016.2 
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Bioreducible type of oligomers 

Oligomer 

ID 

Molecular  

Formula 

Calculated 

MASS 

Found  

MASS 

1348 C162H267N37O29S2 3261.2 3260.2 

1349 C166H275N37O29S2 3317.3 3319.0 

1217 C166H271N37O29S2 3313.2 3312.0 

1377 C170H283N37O29S2 3373.4 3372.2 

1378 C174H291N37O29S2 3429.5 3428.4 

1379 C178H299N37O29S2 3485.6 3484.4 

1305 C198H309N55O35S2 4084.1 4083.2 

1306 C202H317N55O35S2 4140.1 4141.0 

1218 C202H313N55O35S2 4136.1 4135.0 

1380 C206H325N55O35S2 4196.2 4196.8 

1381 C210H333N55O35S2 4252.3 4253.2 

1382 C214H341N55O35S2 4308.4 4307.2 

 

 

Fig. S3 MS data of the selected oligomer 1214. 
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1214: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(OleA)2)-H-(H-Stp)2-Y3-C 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, histidine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic 

H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

 

Fig. S4 NMR data of the selected oligomer 1214. 
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NMR data of all listed oligomers 

Disulfide-stabilizing type of oligomers 

1336: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(PalA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- palmitic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- palmitic acid), 2.65-3.1 (m, 22 H, εH lysine, tyrosine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1337: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(SteA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine ,-CH2- stearic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 22 H, εH lysine, tyrosine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1199: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(LinA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 linoleic acid), 0.85-

2.25 (m, 58 H, βγδH lysine, βγδH azidolysine ,-CH2- linoleic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- linoleic acid), 2.65-3.1 (m, 26 H, εH lysine, tyrosine and 

azidolysine, βH cysteine, -C=C-CH2-C=C- linoleic acid), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-

4.55 (m, 11 H, αH amino acids), 5.05 – 5.25 (s, 8 H, -CH=CH- linoleic acid), 6.60 -7.15 (m, 

24 H, -CH- tyrosine). 

1383: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(AraA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine ,-CH2- arachidic acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- arachidic acid), 2.65-3.1 (m, 22 H, εH lysine, tyrosine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1384: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(BehA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine ,-CH2- behenic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- behenic acid), 2.65-3.1 (m, 22 H, εH lysine, tyrosine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1385: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(LigA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine ,-CH2- lignoceric acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 22 H, εH lysine, tyrosine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1200: Sequence (N→C) K(N3)-C-Y3-Stp2-K(K(LenA)2)-Stp2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 linolenic acid), 0.85-

2.25 (m, 46 H, βγδH lysine, βγδH azidolysine ,-CH2- linolenic acid), 2.25-2.60 (m, 20 H, -CO-
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CH2-CH2-CO- Stp, -CO-CH2- linolenic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine and 

azidolysine, βH cysteine, -C=C-CH2-C=C- linolenic acid), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-

4.55 (m, 11 H, αH amino acids), 5.05 – 5.25 (s, 12 H, -CH=CH- linolenic acid), 6.60 -7.15 (m, 

24 H, -CH- tyrosine). 

1277: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(PalA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- palmitic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- palmitic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, histidine 

and azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic 

H histidine). 

1278: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(SteA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine ,-CH2- stearic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, histidine 

and azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic 

H histidine). 

1214: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(OleA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, histidine and 

azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic 

H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

1386: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(AraA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine ,-CH2- arachidic acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- arachidic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, 

histidine and azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH 

amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, 

aromatic H histidine). 

1387: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(BehA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine ,-CH2- behenic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- behenic acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, histidine 

and azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic 

H histidine). 

1388: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(LigA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine ,-CH2- lignoceric acid), 2.25-2.60 (m, 20 H, -
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CO-CH2-CH2-CO- Stp, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 34 H, εH lysine, tyrosine, 

histidine and azidolysine, βH cysteine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH 

amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, 

aromatic H histidine). 

1390: Sequence (N→C) K(N3)-C-Y3-(H-Stp)2-H-K(K(LenA)2)-H-(H-Stp)2-Y3-C 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 linolenic acid), 0.85-

2.25 (m, 46 H, βγδH lysine, βγδH azidolysine ,-CH2- linolenic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- linolenic acid), 2.65-3.1 (m, 42 H, εH lysine, tyrosine, histidine 

and azidolysine, βH cysteine, -C=C-CH2-C=C- linolenic acid), 3.1-3.65 (m, 64 H, -CH2- Stp), 

3.70-4.55 (m, 17 H, αH amino acids), 5.05 – 5.25 (s, 12 H, -CH=CH- linolenic acid), 6.60 -

7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

 

Non-reducible type of oligomers 

1360: Sequence (N→C) K(N3)-Y3-Stp2-K(K(PalA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine,-CH2- palmitic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- palmitic acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 6.60 -7.15 

(m, 24 H, -CH- tyrosine). 

1361: Sequence (N→C) K(N3)-Y3-Stp2-K(K(SteA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine,-CH2- stearic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 6.60 -7.15 

(m, 24 H, -CH- tyrosine). 

1208: Sequence (N→C) K(N3)-Y3-Stp2-K(K(OleA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and azidolysine), 

3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 5.05 – 5.25 (s, 4 H, -

CH=CH- oleic acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1371: Sequence (N→C) K(N3)-Y3-Stp2-K(K(AraA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine,-CH2- arachidic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- arachidic acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 6.60 -7.15 

(m, 24 H, -CH- tyrosine). 

1372: Sequence (N→C) K(N3)-Y3-Stp2-K(K(BehA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine,-CH2- behenic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- behenic acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 6.60 -7.15 

(m, 24 H, -CH- tyrosine). 
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1373: Sequence (N→C) K(N3)-Y3-Stp2-K(K(LigA)2)-Stp2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine,-CH2- lignoceric acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 18 H, εH lysine, tyrosine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 9 H, αH amino acids), 6.60 -7.15 

(m, 24 H, -CH- tyrosine). 

1320: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(PalA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- palmitic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- palmitic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, histidine 

and azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino acids), 6.60 -

7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

1321: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(SteA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine ,-CH2- stearic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- stearic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, histidine 

and azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino acids), 6.60 -

7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

1209: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(OleA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 20 H, -CO-CH2-

CH2-CO- Stp, -CO-CH2- oleic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, histidine and 

azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino acids), 5.05 – 5.25 

(s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-

8.60 (m, 6 H, aromatic H histidine). 

1374: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(AraA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine ,-CH2- arachidic acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- arachidic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, 

histidine and azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino 

acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic 

H histidine). 

1375: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(BehA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine ,-CH2- behenic acid), 2.25-2.60 (m, 20 H, -CO-

CH2-CH2-CO- Stp, -CO-CH2- behenic acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, histidine 

and azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino acids), 6.60 -

7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

1376: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(K(LigA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine ,-CH2- lignoceric acid), 2.25-2.60 (m, 20 H, -

CO-CH2-CH2-CO- Stp, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 30 H, εH lysine, tyrosine, 
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histidine and azidolysine), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 15 H, αH amino 

acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, aromatic 

H histidine). 

 

Bioreducible type of oligomers 

1348: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(PalA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- palmitic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- palmitic acid), 2.65-3.1 (m, 26 H, εH lysine, tyrosine 

and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1349: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(SteA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine ,-CH2- stearic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- stearic acid), 2.65-3.1 (m, 26 H, εH lysine, tyrosine 

and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1217: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(OleA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 24 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 26 H, εH lysine, tyrosine and 

azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino acids), 

5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1377: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(AraA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine ,-CH2- arachidic acid), 2.25-2.60 (m, 24 H, -

CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- arachidic acid), 2.65-3.1 (m, 26 H, εH lysine, 

tyrosine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH 

amino acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1378: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(BehA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine ,-CH2- behenic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- behenic acid), 2.65-3.1 (m, 26 H, εH lysine, tyrosine 

and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH amino 

acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1379: Sequence (N→C) K(N3)-Y3-Stp2-K(G-ssbb-K(LigA)2)-Stp2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine ,-CH2- lignoceric acid), 2.25-2.60 (m, 24 H, -

CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 26 H, εH lysine, 

tyrosine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 11 H, αH 

amino acids), 6.60 -7.15 (m, 24 H, -CH- tyrosine). 

1305: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(PalA)2)-H-(H-Stp)2-Y3 
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1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 palmitic acid), 0.85-

2.25 (m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- palmitic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- palmitic acid), 2.65-3.1 (m, 38 H, εH lysine, tyrosine, 

histidine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH 

amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, 

aromatic H histidine). 

1306: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(SteA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 stearic acid), 0.85-

2.25 (m, 78 H, βγδH lysine, βγδH azidolysine ,-CH2- stearic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- stearic acid), 2.65-3.1 (m, 38 H, εH lysine, tyrosine, 

histidine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH 

amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, 

aromatic H histidine). 

1218: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(OleA)2)-H-(H-Stp)2-Y3 

1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 oleic acid), 0.85-2.25 

(m, 70 H, βγδH lysine, βγδH azidolysine ,-CH2- oleic acid), 2.25-2.60 (m, 24 H, -CO-CH2-

CH2-CO- Stp and ssbb, -CO-CH2- oleic acid), 2.65-3.1 (m, 38 H, εH lysine, tyrosine, histidine 

and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH amino 

acids), 5.05 – 5.25 (s, 4 H, -CH=CH- oleic acid), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic 

H histidine), 8.45-8.60 (m, 6 H, aromatic H histidine). 

1380: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(AraA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 arachidic acid), 0.85-

2.25 (m, 86 H, βγδH lysine, βγδH azidolysine ,-CH2- arachidic acid), 2.25-2.60 (m, 24 H, -

CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- arachidic acid), 2.65-3.1 (m, 38 H, εH lysine, 

tyrosine, histidine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 

17 H, αH amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 

(m, 6 H, aromatic H histidine). 

1381: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(BehA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 behenic acid), 0.85-

2.25 (m, 94 H, βγδH lysine, βγδH azidolysine ,-CH2- behenic acid), 2.25-2.60 (m, 24 H, -CO-

CH2-CH2-CO- Stp and ssbb, -CO-CH2- behenic acid), 2.65-3.1 (m, 38 H, εH lysine, tyrosine, 

histidine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 17 H, αH 

amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 (m, 6 H, 

aromatic H histidine). 

1382: Sequence (N→C) K(N3)-Y3-(H-Stp)2-H-K(G-ssbb-K(LigA)2)-H-(H-Stp)2-Y3 
1H NMR (500 MHz, Deuterium oxide) δ (ppm) = 0.60-0.85 (s, 6 H, -CH3 lignoceric acid), 0.85-

2.25 (m, 102 H, βγδH lysine, βγδH azidolysine ,-CH2- lignoceric acid), 2.25-2.60 (m, 24 H, -

CO-CH2-CH2-CO- Stp and ssbb, -CO-CH2- lignoceric acid), 2.65-3.1 (m, 38 H, εH lysine, 

tyrosine, histidine and azidolysine, -CH2- ssbb), 3.1-3.65 (m, 64 H, -CH2- Stp), 3.70-4.55 (m, 

17 H, αH amino acids), 6.60 -7.15 (m, 30 H, -CH- tyrosine, aromatic H histidine), 8.45-8.60 

(m, 6 H, aromatic H histidine). 
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6.  Abbreviations 

ACN  Acetonitrile  

Boc  tert-Butoxycarbonyl  

BSA Bovine serum albumin 

D2O  Deuterium oxide  

DAPI  4',6-Diamidino-2-phenylindole  

DBCO Dibenzocyclooctyne group 

DCM  Dichloromethane  

Dde  1-(4,4-Dimethyl-2,6-dioxocyclohex-1-ylidene)-3-ethyl  

DIPEA  N,N-Diisopropylethylamine  

DLS  Dynamic laser-light scattering  

DMEM  Dulbecco’s modified Eagle’s medium  

DMF  N,N-Dimethylformamide  

DMSO  Dimethylsulfoxide  

dsRNA  Double-strand RNA 

DTNB  5,5’-Dithio-bis(2-nitrobenzoic acid)  

EDTA  Ethylendiaminetetraacetic acid  

EGFP Enhanced green fluorescent protein 

FBS  Fetal bovine serum  

FCS Fluorescence correlation spectroscopy 

FITC Fluorescein isothiocyanate 

Fmoc  Fluorenylmethoxycarbonyl  

FolA  Folic acid  

FR  Folate receptor  
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GSH Glutathione 

Gtt Glutaroyl triethylene tetramine 

HA Hyaluronic acid 

HBG Hepes-buffered glucose 

HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 

HCl  Hydrochloric acid  

HEPES  N-(2-hydroxethyl) piperazine-N‘-(2-ethansulfonic acid)  

HOBt  1-Hydroxybenzotriazole  

INF7  An endosomolytic influenza virus derived peptide  

ivDde 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl  

LenA Linolenic acid 

LinA Linoleic acid 

MTBE  Methyl tert-butyl ether  

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  

MWCO Molecular Weight Cut Off 

MyrA  Myristic acid  

NaOH  Sodium hydroxide  

NHS N-Hydroxysuccinimide 

NMR  Nuclear magnetic resonance  

OleA Oleic acid 

PBS  Phosphate buffered saline  

PDI  Polydispersity index  

PEG  Polyethylene glycol  
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PyBOP  Benzotriazol-1-yloxy-tripyrrolidinophosphonium 

hexafluorophosphate  

RNA Ribonucleic acid 

RNase A Ribonuclease A 

RP-HPLC  Reversed-phase high performance liquid chromatography  

RPMI  Roswell Park Memorial Institute medium  

RT  Room temperature  

SEC  Size-exclusion chromatography  

siRNA Small interfering RNA 

Sph  Succinoyl-pentaethylene hexamine  

SPS  Solid-phase synthesis  

SteA Stearic acid 

Stp  Succinoyl-tetraethylene pentamine  

TEPA  Tetraethylene pentamine  

TEM  Transmission electron microscopy  

TFA  Trifluoroacetic acid  

THF Tetrahydrofuran 

TIS  Triisopropylsilane  
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