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Zusammenfassung 

Ein ischämischer Schlaganfall wird durch einen lokalisierten Zelltod verursacht, der auf 

eine Unterbrechung der Blutversorgung und einen Mangel an Glukose und Sauerstoff 

zurückzuführen ist. Es verursacht eine hohe Mortalität, Morbidität und die zunehmende 

sozio-ökonomischer Belastung. In den vergangenen Jahrzehnten wurde eine 

Wechselwirkung zwischen Immunität und Gehirn nach Schlaganfall etabliert. Nach einem 

ischämischen Schlaganfall beeinflusst das Immunsystem nicht nur das Gehirn, sondern 

auch der Schlaganfall trägt zur Modulation des peripheren Immunsystems bei. Alarmine, 

inflammatorische Moleküle, die nach einem Schlaganfall freigesetzt werden, können eine 

lokale Gehirnentzündung auslösen und auch die periphere Immunaktivierung vermitteln. 

Das Zytokin-induzierte Krankheitsverhalten wird als ein wichtiges pathophysiologische 

Element der Immunaktivierung nach einem ischämischen Schlaganfall angesehen. Daher 

charakterisieren wir verschiedene Verhaltensaspekte nach einem experimentellen 

Schlaganfall im Mausmodell mit einer breiten Palette verschiedener Verhaltenstests. 

Zusätzlich zeigten wir die Rolle von peripheren proinflammatorischen Zytokinen im 

Krankheitsverhalten nach Schlaganfall durch unsere ausgewählten Verhaltenstests. 

Andererseits ist es bekannt, dass nach einer tiefgreifenden frühen Aktivierung des 

peripheren Immunsystems eine schwere systemische Immunsuppression folgt. Die 

Immunsuppression nach Schlaganfall trägt vermutlich erheblich zu den häufigen 

Infektionen nach Schlaganfall bei, die häufig das klinische Outcome von 

Schlaganfallpatienten verschlechtern. Neben der Aktivierung des Immunsystems können 
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Alarmine auch eine Immunsuppression nach einem Schlaganfall auslösen. Um die 

Immunsuppression nach einem ischämischen Schlaganfall zu untersuchen, quantifizieren 

wir zunächst die Anzahl der peripheren Immunzellen und stellen fest, dass die 

Gesamtleukozyten und T-Zellen abnahmen. Danach zeigen wir, dass T-Zellen nach einem 

Schlaganfall absterben und dass dies mit der Stimulation von Alarminen zusammenhing. 

Schließlich untersuchen wir die möglichen molekularen Wege, die am Tod von T-Zellen 

nach einem Schlaganfall beteiligt sind. 
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Summary 

Ischemic stroke is caused by localized cell death due to the interruption of the blood supply 

and depletion in glucose and oxygen. It causes high mortality, morbidity, and the increasing 

socio-economic burden. In recent decades, an interaction between immunity and the brain 

after stroke has been established. It is not only the case that the immune system influences 

the brain after ischemic stroke, but stroke also contributes to the modulation of the 

peripheral immune system. Alarmins, inflammatory molecules released after stroke, can 

trigger local brain inflammation and mediate peripheral immune activation. Cytokine-

induced sickness behavior (CISB) is considered a key pathophysiological element of 

immune activation after ischemic stroke. Hence, we characterize different behavioral 

aspects after an experimental stroke in a mouse model with a broad battery of behavior 

tests. Additionally, we demonstrate the role of peripheral pro-inflammatory cytokines in 

sickness behavior after stroke through our selected behavior tests. It is known that, after a 

profound early activation of the peripheral immune system, severe systemic 

immunosuppression follows. The immunosuppression after stroke is believed to contribute 

significantly to frequent post-stroke infections, which often worsen stroke patients’ clinical 

outcome. In addition to immune system activation, alarmins may also trigger post-stroke 

immunosuppression. To investigate immunosuppression after an ischemic stroke, we first 

quantify the number of peripheral immune cells and find a reduction in total leukocytes 

and T cells after stroke. After, we demonstrate that T cells die after stroke, which is related 
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to alarmins’ stimulation. Finally, we investigate the possible molecular pathways involved 

in T cells’ death after stroke. 
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1 Introduction 

1.1 Ischemic stroke 

The brain is critically dependent on the continued oxygen and glucose transport, and blood 

supply disruption can result in irreversible cerebrum damage.1 Ischemic stroke is caused 

by localized cell death due to the restricted blood supply and depletion in glucose and 

oxygen.2 In 2017, stroke was ranked as the fifth cause of death by the American Heart 

Association following heart disease, cancer, chronic lower respiratory disease, and 

unintentional injury.3 Approximately 1.1 million Europeans suffer from a stroke each year, 

and ischemic stroke accounted for about 80% of these cases.4 Furthermore, the stroke 

incidence in Europe is expected to increase  by 1.5 million each year until 2025.4 It is also 

a leading cause of severe long-term disability: approximately 3% of men and 2% of women 

struggle with disabilities caused by a stroke.3 Although the understanding of strokes has 

developed in recent years, the therapy approaches are still limited, and the socio-economic 

burden continuously increases. 

1.1.1 Pathogenesis of ischemic stroke 

The possible mechanisms of ischemic stroke include in situ thrombotic occlusion, arterio-

arterial embolism, impaired clearance of emboli, branch occlusive disease, and 

hemodynamic insufficiency. Of these, arterio-arterial embolism, impaired clearance of 

emboli, and branch occlusive disease are more common, and arterio-arterial embolism 

frequently coexists with the impaired clearance of emboli.5  



Introduction 

16 
 

In situ thrombotic occlusion. In situ thrombotic occlusion begins with the atherosclerotic 

plaque cracking; the plaque instability is related to inflammation, autoimmunity, and 

genetic predisposition.6 The tissue factors released after endothelial surface disruption 

promote clot formation next to the plaque, and local occlusion of the artery and secondary 

arterio-arterial embolism can finally result in brain infarction. In situ thrombotic occlusion 

usually induces a single, large subcortical infarct that sometimes only influences the border 

area but rarely produces infarction of the whole region.5  

Arterio-arterial embolism. Debris is carried to distal branches when the blood flow 

breaks up the thrombus or plaque ulceration, after which arterio-arterial embolism takes 

place and leads to brain infarct.5 Internal carotid artery (ICA) atherosclerotic disease is the 

most frequent cause of cerebral embolism.7 The pattern of infarcts is multiple small cortical 

and subcortical lesions.5 

Impaired clearance of emboli. Arterial luminal narrowing and decreased perfusion impair 

bloodstream's ability to clear or rinse emboli and microemboli, which could further block 

supply to the arteries and lead to ischemia.8 The infarcts are multiple, small, and scattered 

and are along the border region.5 

Cardiac embolism. In addition to embolism from the arteries, cardiac embolism is another 

cause of embolism. Atrial fibrillation, systolic heart failure, recent myocardial infarction, 

patent foramen ovale, aortic arch atheroma, prosthetic heart valves, and infective 

endocarditis are the main risk factors of cardioembolic stroke.9 



Introduction 

17 
 

Branch occlusive disease. Branch occlusive disease is usually caused by the occlusion of 

perforating a branch orifice or lumen by atherosclerotic plaques. Neuroimaging 

examinations can detect the small subcortical and lacuna-like infarcts due to this 

mechanism.10 The pathological features of this type of branch occlusion include plaque 

hemorrhage microdissection and platelet and platelet-fibrin materials.11-14 

Hypoperfusion. Along with atherosclerosis, plaque gradually increases and blood vessels 

become narrower, which eventually leads to the turbulence of the blood flow. Disturbed 

blood flow ultimately results in the hypoperfusion of distal branches. Hypoperfusion in a 

particular region of the brain plays an important role in the development of infarct. The 

collateral circulation may, meanwhile, influence the size of the lesion. Patients with 

insufficient collaterals will suffer from hemodynamic strokes or transient ischemic attacks 

(TIAs).5 

These mechanisms are not isolated and in fact frequently co-exist. In addition to causing 

hypoperfusion, turbulence and fast flow velocity also increase the sheer stress on 

endothelium and can lead to plaque fissuring that could ultimately induce in situ thrombotic 

occlusion and arterio-arterial embolism.5 The impaired clearance of emboli is also an 

important concept that intertwines with hypoperfusion and embolization.8  

Because determining the cause of stroke is essential for choosing its management, an 

unambiguous, practical classification of ischemic stroke based on subtypes of pathogenesis 

is crucial in the clinic. The most widely used ischemic stroke classification system is based 
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on this pathogenesis and etiology, and it is the Trial of Org 10172 in acute stroke treatment 

(TOAST) classification.15 The TOAST system consists of five major subtypes: large artery 

atherosclerosis (embolus/thrombosis), cardiac embolism (high-risk/medium-risk), small-

vessel occlusion (lacuna), stroke of other determined etiology, and stroke of undetermined 

etiology (two or more causes identified, negative evaluation, incomplete evaluation).15  

1.1.2 Pathophysiologic processes after ischemic stroke  

In ischemic stroke, a sequence of multistep pathophysiological events may be caused by 

reducing the blood flow in a brain region. These events occur like a cascade (ischemic 

cascade) and follow each other in a varying order with overlapping features.16-18 The 

leading pathophysiologic events in ischemic cascade include energy failure, excitotoxicity, 

free radicals generation, blood-brain barrier (BBB) disruption, inflammation, and 

apoptosis.16 Hence, I focus on these mechanisms to introduce the pathophysiologic 

processes after ischemic stroke. 

Energy failure. Following the reduction of cerebral blood flow, glucose and oxygen that 

produce energy by undergoing oxidative phosphorylation are depleted in brain. This energy 

failure can cause an accumulation of lactate in the brain by anaerobic glycolysis. Lactate 

acidosis can induce many deleterious effects, such as free radical formation and loss of 

ionic homeostasis, and they can worsen ischemic brain injury.16,18-20 In addition, this step 

is crucial in ischemic cascade, which triggers the subsequent downstream mechanisms.18 

Because of the failure of adenosine triphosphate (ATP)-dependent ion (sodium and calcium) 
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transport after ischemia, subsequent ion dyshomeostasis causes reversible cytotoxic edema 

and leads to an excess of intracellular  Ca2+. 16,17 

Excitotoxicity. Neurons and glia depolarize with energy failure, causing the release of 

excitatory neurotransmitters in the brain, especially glutamate.2,16 Glutamate binds to 

glutamate receptors, such as the α-amino-3-hydroxy-5-methyl-4-propionate (AMPA) 

receptor and the N-methyl-D-aspartate (NMDA) receptor, promoting a significant influx 

of calcium and increasing the intracellular Na+ and Cl- levels.16,18 Excitotoxicity thus 

aggravates cell edema and causes necrosis, and it can even initiate molecular events that 

lead to apoptosis.2,18 

Free radicals generation. During the ischemic cascade, the excess of intracellular Ca2+, 

Na+, and adenosine diphosphate (ADP) can stimulate excessive mitochondrial oxygen 

radicals generation.18 These free radicals can directly damage lipids, protein, carbohydrates, 

and nucleic acid.21 At the cellular level, free radicals can damage any cellular component, 

such as mutations of the genome, lipid peroxidation, dysregulation of cellular processes, 

and membrane damage.16 At the vascular level, free radicals and their derivatives can cause 

vasodilation, increased BBB permeability, and the disruption of endothelial cell 

membranes.22 Ultimately, this damage trigger inflammation and results in a complex mix 

of neuronal death, including apoptosis, necrosis, and autophagy.2,23 

BBB disruption. In addition to free radicals, hypoxic and mechanical damage of 

endothelium, destruction of the basal lamina, and toxic damage of inflammatory molecules 
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are also potential causes of BBB disruption.16 Following the disruption of BBB 

permeability, albumin and other high-molecular-weight compounds extravasate from brain 

capillaries, which results in increased extracellular fluid and causes irreversible vasogenic 

edema and increased intracranial pressure.17,24 This may compress neurons, nerve tracts, 

and cerebral arteries, and it can also cause persistent ischemia and cerebral herniation.17 

Inflammation. In ischemic cascade, pro-inflammatory genes, including interleukin-1 beta 

(IL1B), tumor necrosis factor-alpha (TNFA), and transcription factors, are up-regulated 

within minutes of occlusion.25-28 Neutrophils followed by monocytes that interact with 

adhesion molecules at the vascular endothelium can transmigrate through the vascular wall 

from the blood into the brain parenchyma.29 The inflammatory mechanism is a critical 

pathophysiological process after ischemic stroke and the foundation of our study; this, it is 

introduced in greater detail in the paragraphs titled “Immune system activation after stroke” 

and “Immunosuppression after stroke.” 

Apoptosis. Unlike necrosis, which causes cell death in the ischemic core, apoptosis mainly 

occurs within the ischemic penumbra.17,30 Apoptosis can be triggered by excitotoxicity, 

free radical formation, inflammation, mitochondrial and deoxyribonucleic acid (DNA) 

damage, and cytochrome c release from mitochondria.31-33 It has been reported that 

caspases 1, 3, 8, and 9 are involved in ischemic stroke, and caspase activation can be 

triggered in response to many different pro-apoptotic signals following ischemia.16,32 

Apoptotic cell morphology is markedly different from necrotic cell morphology. Apoptotic 

cell's morphological characteristics are as follows: cytoplasm shrinkage, chromatin 
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condensation, membrane blebbing, and cell fragmentation by separating the bumps to form 

membrane-bound bodies that contain intact organelles and/or dense clumps (apoptotic 

bodies).32,34 

 

1.2 Alarmins 

Damaged or dead/dying cells can release or secrete normal cell constituents as the generic 

markers for damage, which are alarmins, also known as damage-associated molecular 

patterns (DAMPs).35,36 It has been found that pathogen-associated molecular patterns 

(PAMPs) can be recognized by pattern recognition receptors (PRRs) and lead to the 

synthesis and secretion of pro-inflammatory cytokines and chemokines.37 Similar to 

PAMPs, innate immune cells can also respond to alarmins through peculiar receptors and 

relevant signaling pathways, and can directly or indirectly boost immune responses.35,36 

Alarmins are structurally diverse molecules, such as DNA, heparan sulfate, uric acid, 

hyaluronan fragments, ATP, uridine-5'-triphosphate (UTP), reactive oxygen species (ROS), 

high mobility group box 1 (HMGB1), heat shock proteins (HSP), 

peroxiredoxin family proteins, amyloid-beta, and many other molecular patterns.36,38-41 In 

ischemic stroke, necrotic brain lesions are so-called “damaged tissue,” which can release 

alarmins to influence the immune system.40,42,43 The key alarmins involved in ischemic 

stroke are introduced in more detail below. 
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1.2.1 HMGB1 released from necrotic brain lesions after stroke 

HMGB1 is one of the pro-inflammatory alarmins released after ischemic stroke.42 It is a 

non-histone nuclear protein, and all cells can synthesize it.44 HMGB1 binds to the minor 

groove of linear DNA.45 In healthy and non-activated cells, it can also support the binding 

of several transcription factors to DNA.45 However, HMGB1 is released with a pro-

inflammatory cytokines function after necrotic cell death. 46 Innate immune cells may be 

further signaled by HMGB1 to respond to tissue injury.46 In stroke patients, HMGB1 serum 

concentration is massively increased in the first several hours after symptom onset.42 A 

similar increase has also been found at early time points after experimental stroke with 

large infarcts.42 Moreover, previous study has reduced HMGB1 expression by injecting 

HMGB1-shRNA into intra-striatal, and has found a reduction of infarct size and also 

microglia activation.47 These results suggest that after ischemic stroke, HMGB1 can be 

released from necrotic brain tissue into the peripheral blood circulation, and it can activate 

inflammation and aggravate brain damage. Nonetheless, no previous studies have 

demonstrated the cellular source of passively released HMGB1 in the acute phase after 

stroke. 

In addition to passively released HMGB1 by necrotic brain tissue after stroke, activated 

immune cells in the brain and in the peripheral immune system may also actively secrete 

HMGB1 in response to tissue injury.46 The active secretion of HMGB1 most likely 

originates from invasive monocytes in the brain and activated microglia and could further 
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explain the increased level of circulating HMGB1 over a prolonged time after ischemic 

brain injury.46-49 

1.2.2 Other key alarmins in tissue injury  

In addition to HMGB1, ATP, UTP, HSP60, Peroxiredoxin family proteins, and amyloid-

beta are also released as alarmins from injured tissue after ischemic stroke and cause the 

production of pro-inflammatory cytokines.38-41 

ATP belongs to the purine family, and ubiquitous ecto-ATP/ADPases (CD39) in healthy 

tissues keep its extracellular concentration low.50 Nevertheless, concentrations of 

extracellular ATP are increased during trauma, cell stress, or tissue injury. Extracellular 

ATP is involved in the recruitment and activation of macrophages, neutrophils, and 

dendritic cells, and it can serve as a chemotactic agent to facilitate the maturation of 

dendritic cells and to modulate the production of cytokines.51,52 Moreover, both in vitro 

and in vivo studies have demonstrated that extracellular ATP is a potent activator of the 

NOD-like receptor pyrin domain-containing-3 (NLRP3)-dependent interleukin-1 beta (IL-

1β) release from macrophages.53-55 In ischemic stroke, extracellular ATP increases due to 

stress and triggers microglia to develop several macrophage features, including ameboid 

morphology, migratory capacity, phagocytosis, and antigen presentation.56 

Additionally, HSP60 and β-amyloid released from the intracellular 

compartment after neuron necrosis also induce the expression of pro-inflammatory 

molecules for antigen presentation in invading leukocytes and primary dendritic cells.56 
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Therefore, the alarmins released from stressed cells and necrotic cells can cause an 

inflammatory response in both resident brain cells and invading leukocytes.   

1.2.3 Key receptors for alarmins 

Toll-like receptors (TLRs) consist of a extracellular domain, a transmembrane domain, 

and an intracellular domain, which is a receptor group for different microorganism-derived 

molecular patterns and recognizes alarmins.35,57 The extracellular domain is associated 

with ligand recognition, and the intracellular domain is crucial for signal modulation 

through the adaptor protein myeloid differentiation primary response 88 (MyD88).58 It has 

been demonstrated that, through stimulation of TLRs, the activation of the nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) can regulate pro-inflammatory 

cytokines’ production and the proliferation of different cells.59 Furthermore, stimulation of 

TLRs has also been related to the development of ischemic strokes.60 The main TLRs for 

HMGB1 are TLR2 and TLR4 (Figure 1). Increased expression of TLR2 and TLR4 on 

monocytes is linked to higher serum levels of IL-1β, interleukin-6 (IL-6), and tumor 

necrosis factor-alpha (TNF-α) in stroke patients.61 The TLR2 and TLR4 knockout mice 

had less damage to the brain and neuronal deficits in experimental stroke.62,63 Similarly, 

knockout MyD88, the downstream effector molecule in TLR signaling, also resulted in 

smaller stroke lesions in experimental stroke.64 These findings support the theory of an 

inflammatory worsening of stroke lesion via TLR signaling.  
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The receptor for advanced glycation end products (RAGE) is a cell surface multi-

ligand receptor of the immunoglobulin superfamily, and it contains one “V”-type and two 

“C”-type domains. It is capable of modulating cellular responses to tissue injury by 

interacting with several alarmin ligands, including HMGB146 (Figure 1). Like TLR2 and 

TLR4, HMGB1-RAGE signaling also promotes the activation of NF-κB in an MyD88-

dependent manner and allows the transcription of pro-inflammatory genes, such as TNFA, 

interleukin-6 (IL6), and IL1B.65 RAGE has been found to increase in human and murine 

brains after stroke66 and in vascular cells after experimental stroke.67 An earlier study has 

shown that ablation of RAGE in mice limited the infarction and abrogated activation of 

macrophages. 43 This finding further confirms the critical role of RAGE in stroke 

progress.43 Moreover, peripheral immune cells, including lymphocyte, monocyte, dendritic 

cell, and macrophage, also express RAGE.68-70 This leads to the notion that the HMGB1-

RAGE pathway could be a link between stroke and the peripheral immune system, and it 

could induce a sterile immune reaction after tissue injury. 

Purinergic receptors are a family of plasma membrane receptors involved in cytokine 

secretion, apoptosis, the proliferation of neural stem cells, and several cellular 

functions.71,72 The P2X7 receptor (P2X7R) is a member of the purinergic receptors (Figure 

1), and they can be detected in the hemopoietic lineage cells, including microglia, 

macrophages, and some lymphocytes.73 The P2X7R also serves as a PRR for the 

extracellular ATP-mediated MyD88/NF-κB pathway, inflammasome activation, and 

apoptotic cell death.74-77 ATP released by damaged neurons and glia cells within minutes 
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after ischemia can activate P2X7R on microglia to release pro-inflammatory cytokines.73,78-

80 The over-activation of P2X7R also produced excitotoxic neuronal death81 and mediated 

ischemic damage to oligodendrocytes and myelin.82 P2X7R-deficient mice have a 

pronounced attenuation of inflammatory responses, including chronic and neuropathic 

inflammatory pain.73 Thus, purinergic receptors can be a vital connection between the 

nervous system and the immune system.  

Figure 1: Key receptors for alarmins.  

Cell surface receptors RAGE, TLR2, and TLR4 are the main receptors for HMGB1. P2X7R can 

bind to ATP and transduce the signals into cell plasma. 
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1.3 Immune system activation after stroke 

The cross-talk between immunity and stroke has been explored in depth, and it is known 

that stroke can engage both innate and adaptive immunity.56 The immune system influences 

the brain after ischemic stroke, and stroke also contributes to the modulation of the 

peripheral immune system. 

1.3.1 Local brain inflammation after stroke 

Inflammation is a key pathophysiological process after ischemic stroke; it has been 

confirmed that local brain inflammatory processes after stroke can be induced by both 

clinical and experimental stroke.83,84  

Microglial cells, as the resident macrophages of brain, are activated and increased in cell 

count up to 16 weeks after two-hour middle cerebral artery occlusion (MCAO) in rats.85 

The pro-inflammatory genes, including the cytokines genes TNFA, IL1B and IL6, and the 

chemokines genes interleukin-8 (IL8), interferon gamma-induced protein 10 (IP10) and 

monocyte chemoattractant protein-1 (MCAP1), are upregulated locally in brain tissue 

within hours after stroke.86-91 There is solid evidence that, in response to ischemia, activated 

microglial cells and astrocytes are capable of releasing these pro-inflammatory cytokines 

and chemokines.92,93 These pro-inflammatory molecules induce the primary 

neuroinflammation after stroke and exacerbate the initial brain lesion46 (Figure 2). 
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The immune cells of the brain (microglia and dendritic cells) as well as neutrophils, 

macrophages, T cells, and other peripheral immune cells, which invade from the blood, can 

take part in tissue damage and secondary neuroinflammation.56 Some of the sodium 

transporters are stimulated after ischemic stroke onset and result in edema and degradation 

of tight junction-constituent proteins and integrins, which may lead to increased 

paracellular leakage at the BBB.94 Four to six hours after stroke onset, BBB breakdown 

becomes apparent. Afterward, inflammation contributes to continued barrier disruption.94 

Pro-inflammatory signaling expressed after stroke encourages vascular endothelial cells to 

express adhesion molecules, which generate blood monocytes, neutrophils, macrophages, 

and T cells that infiltrate the brain tissue with a consequent release of additional pro-

inflammatory mediators and secondary brain injury.29,94-97  Additionally, the accumulation 

of neutrophils and T cells in brain parenchyma can further enhance BBB permeability and 

worsen stroke outcomes.94 Several experimental studies have demonstrated that the 

inhibition of leukocyte invasion into the ischemic brain can improve stroke outcomes.98-100  

The way the local microglia, astrocyte, and peripheral immune cells are initially activated 

after stroke remains the key question in local brain inflammation. A bold hypothesis is that, 

when the initial inflammatory triggers are blocked after stroke, the inflammation after 

stroke is ablated. It has been reported that some of the alarmins, such as HMGB1, can be 

released after stroke.40,42,43 Endogenous alarmins released from necrotic cerebral cells may 

be one of the primary triggers of local brain inflammation. Alarmins released from necrotic 

tissue can activate central immunocompetent cells and result in pro-inflammatory 
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cytokines and more alarmin secretion. These pro-inflammatory molecules can aggravate 

the brain lesion through primary neruoinflammation.46 Moreover, alarmins and other pro-

inflammatory molecules can pass into the peripheral circulation and cause the activation of 

peripheral immune cells. Secondary neuroinflammation is induced after the migration of 

these activated immune cells from the blood into the injured brain parenchyma46 (Figure 

2).  

1.3.2 Peripheral immune system activation after stroke 

In addition to the inflammatory reaction in the brain, immunological alterations may exist 

in the bone marrow, spleen, blood, and other lymphoid organs. C- reactive protein, white 

blood cell counts, and the plasma concentration of pro-inflammatory cytokines (TNF-α, 

IL-6, and IL-1β) have been detected at increased levels in patients with stroke and correlate 

with stroke outcome in most studies.101-103 Six hours after experimental stroke, TNF-α, 

interferon-gamma (IFN-γ), IL-6, MCP-1, and IL-2 are secreted by activated splenic 

leukocytes.104 Additionally, unstimulated splenocytes express increased chemokines and 

chemokine receptors, including macrophage inflammatory protein-2 (MIP-2), C-C 

chemokine receptor type 1 (CCR1), C-C chemokine receptor type 2 (CCR2), C-C 

chemokine receptor type 7 (CCR7), C-C chemokine receptor type 8 (CCR8), and interferon 

gamma-induced protein 10 (IP-10).104  

While alarmins released after stroke can trigger local brain inflammation, these alarmins 

can also pass into the systemic blood circulation and mediate peripheral immune 
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activation46,65 (Figure 2). When neutralizing antibodies block HMGB1, splenic expression 

and serum concentrations of pro-inflammatory cytokines were significantly attenuated.42 

Moreover, in vitro stimulation of splenocyte cultures with HMGB1 resulted in the 

increased expression of cytokine secretion.42 

The majority of experimental and clinical studies have suggested that peripheral immune 

system activation has a deleterious role after stroke. Therefore, the antagonization of 

systemic pro-inflammatory molecules after stroke is a potential therapeutic approach to 

limiting cerebral tissue damage.103,105 
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Figure 2: Schematic diagram of immune system activation after stroke. 

Alarmins are passively released from necrotic cells after ischemic stroke onset and activate 

astrocytes and microglia in the surrounding tissue of the infarct core. Activated microglia and 

astrocytes release pro-inflammatory molecules and lead to primary neuroinflammation. Alarmins 

and pro-inflammatory cytokines pass into the peripheral circulation and induce peripheral immune 

cell activation. Some of the activated monocytes and lymphocytes from the peripheral immune 

system migrate into the brain parenchyma, release pro-inflammatory molecules, and lead to 

secondary neuroinflammation. The other activated peripheral immune cells secrete pro-

inflammatory cytokines and induce peripheral immune system activation. 
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1.3.3 Cytokine-induced sickness behavior (CISB) 

Cytokines are a group of small glycoproteins produced by a broad range of cells; they 

modulate the balance between humoral and cell-based immune responses, and they can be 

upregulated after stroke in the brain and the peripheral immune system. This release is a 

crucial feature of immune system activation after stroke. However, the hidden signaling of 

how these released cytokines impact the brain after stroke and the resulting 

pathophysiological implications remain unknown. TNF-α, IL-20, IL-1β, IL-10, IL-6, and 

tumor growth factor-beta (TGF-β) are the best-studied cytokines related to inflammation 

in ischemic stroke. Among these cytokines, IL-1β and TNF-α can exacerbate brain injury, 

while TGF-β and IL-10 may be neuroprotective.106,107  

In addition to brain damage, pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) can 

also cause sickness behavior, which is a series of typical behavioral alterations including 

malaise, anxiety, lassitude, loss of appetite, depression, hyperalgesia, sleepiness, reduction 

in grooming, and failure to concentrate.108-110 Sickness behavior was first reported in the 

context of infectious diseases, which have been investigated for decades.109 PAMPs and 

peripheral cytokines induced by PAMPs can mediate behavioral changes, which has been 

confirmed in two main communication pathways. One is a neural pathway: peripheral 

cytokines activate afferent nerves, such as vagal nerves and trigeminal nerves, to project to 

the central nervous system (CNS).111-114 The other is the humoral pathway: circulating 

PAMPs and cytokines induce the production and release of pro-inflammatory cytokines in 
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the circumventricular organs and choroid plexus, followed by the propagation of these 

immune signals into the brain parenchyma.115-119  

In addition to infectious diseases, patients with stroke and other non-infectious diseases 

may also experience fatigue, sleep disorders, motivational inhibition, cognitive dysfunction, 

and depression.120,121 In particular, post-stroke anxiety and depression can last from the 

acute stage until the chronic phase after stroke.122,123 However, it remains unknown whether 

the pathways mentioned above induce sickness behavior after stroke. When the pro-

inflammatory cytokines are antagonized, the sickness behaviors after stroke were 

significantly improved.42 This has led to a scientific interest in whether sickness behavior 

after stroke is also induced by peripheral cytokines. The same is true of PAMPs; alarmins 

released after stroke can also induce cytokine secretion by stimulating innate immune 

cells.65 Both HMGB1 neutralization and the elimination of its receptor RAGE attenuated 

the loss of body weight and hypothermia after stroke, which are the basal sickness markers 

in immune-mediated disease models.42 These findings support the hypothesis that sickness 

behavior after stroke may share the same pathway as infectious diseases, and it suggests 

the need for further investigations of CISB beyond focal deficits after stroke. In order to 

delve into this topic, a sensitive, specific behavior test battery is needed to provide the 

opportunity to observe behavioral improvements over time and monitor pharmaceutical 

treatment effects. In the literature, dozens of behavior tests have been identified for 

assessing sickness behavior, but those available tests do not simplify the choice of tests for 

specific time points after stroke.124,125 Thus, it is crucial to characterize different behavioral 
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aspects after stroke and to summarize a battery of behavioral acquisition approaches with 

the optimal choice of tests at specific time points after stroke. 

 

1.4  Immunosuppression after stroke 

Immune activation in the acute phase after stroke is followed by dramatic 

immunosuppression, which is characterized by splenic atrophy, lymphopenia, the reduced 

functional activity of monocytes, anti-inflammatory cytokines upregulation, and apoptosis 

of lymphocytes.126-129 This stroke-induced immunosuppression increases stroke patients’ 

susceptibility to infection; moreover, it is the most frequent medical complication after 

stroke, and it is an major cause of death and secondary morbidity.130-133 It has been noted 

that post-stroke immunosuppression could be a double-edged sword that increases the 

incidence of infections and limits the development of a pro-inflammatory response to the 

brain.56 The mediation of systemic immunosuppression after stroke is still not fully 

understood. There is proof that sympathetic activation and the accompanying release of 

glucocorticoids and catecholamine are possibly involved.83,134 

1.4.1 Stress mediators 

The sympathetic nervous system (SNS) innervates the spleen, bone marrow, the thymus, 

and lymph nodes.135,136 It has been proposed that post-stroke immunosuppression is due to 

the over-activation of SNS or hypothalamic-pituitary-adrenal axis (HPA), which can 

induce leukocytes apoptosis in the peripheral immune system.133 Catecholamines, 
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acetylcholine, and glucocorticoids can be released after SNS and HPA activation, and they 

all have immunosuppressive functions on different peripheral immune cells.137-141 The 

over-activation of the SNS after stroke also primes liver resident invariant natural killer 

cells (NK cells) to secrete the anti-inflammatory cytokine IL-10, which can enhance 

immunosuppression.142 Nonetheless, a clinical research has found intermediate increases 

of stress mediators after severe brain injuries, and none of the stress mediators was an 

independent predictor of post-stroke lymphocytopenia and bacterial infections.132 A 

previous animal study has found that the glucocorticoid receptor blocker RU486 did not 

prevent post-stroke lymphocyte dysfunction (i.e., a decrease of IFN-γ and an increase of 

IL-4 production) and bacterial infections.133 Moreover, lymphocytopenia after 

experimental stroke was not prevented by the blockade of beta-adrenergic receptors in vivo 

and in vitro.143 Nevertheless, recent results indicate that the soluble mediator HMGB1, 

which is released from the necrotic brain tissue, might be the initial event that triggers a 

multi-phasic systemic immune reaction after strok.42 Hence, pro-inflammatory indicators 

mediated by brain-released alarmins could bring a new connection for brain-immune 

interaction that also contributes to immunosuppression after stroke.46 

1.4.2 Soluble mediators 

HMGB1 passively released from necrotic brain tissue can behave as a cytokine, promoting 

inflammation and inducing inflammatory cytokine expression. Recombinant HMGB1 

prompts the induction of TNF-α, IL-1β, cyclooxygenase-2 (COX-2), and inducible nitric 

oxide synthase (iNOS), and it also increases ischemic death of neurons in vitro.144 The 
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microinjection of fully reduced recombinant HMGB1 into the parietal cortex of mice 

increases pro-inflammatory mediator transcript levels and sensitizes the tissue to ischemic 

damage.145 The main receptors for HMGB1 are RAGE, TLR2, and TLR4. A recent study 

has shown that RAGE and the protein MyD88 deficiency can prevent splenic and 

circulating blood lymphocyte reduction after brain ischemia.42 This finding suggests that 

HMGB1 partially mediates the immunosuppressive effect after ischemic stroke 

through the RAGE and TLR-MyD88 pathways. In addition, alarmins can stimulate TLR-

MyD88 to mediate NF-κB pathway activation, which acts as the first signal (priming) that 

promotes the transcription of several genes that encode inflammatory mediators.74 

However, the complete molecular pathways underlying post-stroke immunosuppression 

are still largely unknown and require further investigation. Further, other soluble mediators 

induced by acute brain damage might be related to the peripheral immune alteration. 

1.4.3 Pyroptosis in lymphopenia 

Lymphopenia is a key feature of immunosuppression after ischemic stroke, and previous 

studies have found that lymphopenia could because of lymphocyte death after stroke.129,133 

Several cell death forms have been established, including apoptosis, necrosis, pyroptosis, 

entosis, autophagy, and cornification. Among these means of cell death, pyroptosis is a 

newly identified pro-inflammatory form. It was first discovered in infection in 1992,146 but 

numerous studies have shown that it also occurs in sterile inflammation, including 

myocardial ischemia/reperfusion, renal ischemia/reperfusion, Alzheimer’s disease, 

traumatic brain injury, diabetic atherosclerosis, and temporal lobe epilepsy.147-152 The 
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progress of pyroptosis depends primarily on the activation of inflammatory caspases, 

including caspase-1 (canonical pathway) or caspase-4/5/11 (non-canonical pathway).153 In 

adjacent cells, alarmins released from necrotic cells function on cell membranes or 

intracellular receptors (PRRs) to induce inflammasome formation and activation of 

caspase-1 or caspase-11. Afterward, pyroptosis arises, and IL-1 and IL-18 are released.154-

157  

Previous research has demonstrated that pyroptosis can occur in microglia following 

ischemic stroke, which is resident macrophage that serves to provide the primary immune 

defense in the brain.158 Nevertheless, there is still a lack of evidence demonstrating that 

peripheral lymphocytes develop pyroptosis after stroke. In the non-canonical pathway, LPS 

binds to precursor caspase-4/5/11 in the cytosol of bacteria-infected cells, which 

contributes to the activation of caspase-4/5/11. However, the sterile inflammatory 

substances (alarmins) mainly activate caspase-1 to lead to the canonical inflammasome 

pathway.154 The immune reaction after stroke is also considered sterile inflammation, and 

a canonical pathway of pyroptosis in lymphocytes could be a potential mechanism of 

lymphopenia after stroke. The progression of pyroptosis depends primarily on the 

activation of inflammatory caspases,153 and in a sterile environment (stroke), caspase-1 

plays a critical role that is primarily activated to lead to the canonical inflammasome 

pathway.154 Caspase-1 activation usually arises in the inflammasome (a multi-protein 

complex), which contains three components: sensor-PRRs in the cytoplasm; effectors, the 

caspase-1 precursor (pro-caspase-1); and an apoptosis-associated, speck-like protein 
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containing a CARD (ASC), which is an adaptor protein that connects PRRs and pro-

caspase-1.154 Inflammasome activation has been demonstrated in macrophages,159 

dendritic cells,160 microglial,161 epithelial cells,162 neutrophils,163 monocytes,164 and T 

cells.165 Some inflammasomes need two distinct steps: priming (signal 1) and 

inflammasome assembly (signal 2) to activate inflammasome. Priming involves the 

activation of MyD88 and the NF-κB pathway, which upregulate the expression of 

inflammasome components.166 However, the mechanism and complete molecular 

pathways underlying lymphopenia after ischemic stroke are still not clear and require 

further investigation. 
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2 The aims of this study 

The aim of this study is as follows: (1) To characterize different behavioral aspects after 

large experimental stroke with a broad battery of behavioral acquisition approaches; (2) to 

optimize the choice of behavior tests at specific time points after stroke; (3) to investigate 

the role of the peripheral cytokines released in the acute phase after stroke in sickness 

behavior; (4) to explore the molecular pathways underlying post-stroke 

immunosuppression; and (5) to investigate the mechanism of peripheral immune cell death 

after stroke. 
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3 Materials and methods 

3.1  Materials and research animals 

3.1.1  Instruments 

 

 

 

 

Equipment Manufacturer 

Centrifuge  Eppendorf 

Laser Doppler Monitor and Probes Perimed 

DC Temperature Control System FHC 

Isoflurane Vaporizer Harvard Apparatus UK 

Surgery Instruments F.S.T 

Cylinder test Evonik chemie 

RotaRod TSE systems 

Von Frey filament Bioseb 

Elevated Plus Maze Noldus 

Open Field Noldus 

Porsolt Swim Test Biobserve Viewer 

Automated Cell Counter BioRad 

MagniSort® Magnet, 5ml Invitrogen 
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3.1.2 Reagents and materials 

General Reagents and Materials Catalog Number Manufacturer 

Iso-Vet 1000 mg/g AP/DRUGS/220/96 Piramal Healthcare UK 

Limited 

Silicon-Coated Filament 701912PKRe Doccol 

MagniSort® Mouse T cell Enrichment 

Kit 

8804-6820 eBioscience 

RPMI Media 1640  11875093 ThermoFischer 

Fetal Bovine Serum 10270-106 ThermoFischer 

Penicillin Streptomycin 15140-122 ThermoFischer 

7-AAD Red Fluorescent Live/Dead 

Stain 

6163 ImmunoChemistry 

Technologies 

Propidium Iodide Stain  638 ImmunoChemistry 

Technologies 

Caspase-1 Subfamily Inhibitor VX-765  inh-vx765-5 InvivoGen 

Cresyl Violet acetate C5042-10G Sigma-Aldrich 
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3.1.3  Antibodies 

 

3.1.4 Research animals 

All experiments of animal were undertaken within the guidelines for the use of laboratory 

animals and were authorized by the Upper Bavaria Government Committee 

(Regierungspraesidium Oberbayern). Wild-type C57BL/6J (six- to eight-week-old male) 

mice were purchased from Charles River Laboratories (Sulzfeld, Germany). Caspase-1-/- 

Caspase11tg167, MyD88-/-168, and RAGE-/-169 mice were bred in our Institute’s in-house 

breeding facility under specified, pathogen-free conditions.  Germ-free C57BL/6J mice 

were acquired from the Clean Mouse Facility of University of Bern (Bern, Switzerland). I 

excluded data from all mice that died during or after surgical procedures. Animals were 

randomized in the treatment groups, and data was analyzed by me and other investigators 

who were blinded to group allocation. Unblinding was completed once statistical analysis 

had been finished.  

Antibody Clone Manufacturer 

Anti-CD3 FITC or APC  17A2 eBioscience 

Anti-CD45 eF450  30-F11 eBioscience 

Anti-IL-1β B122 Bio X Cell 

Anti-TNF-α XT3.11 Bio X Cell 

Anti-IL-6 MP5-20F3 Bio X Cell 
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3.2 Methods 

3.2.1 Filamentous middle cerebral artery occlusion (fMCAo) 

fMCAo and sham surgeries were performed according to the previous protocols established 

by our lab.170,171 Mice were anesthetized with isoflurane (Iso-Vet 1000 mg/g, catalog# 

AP/DRUGS/220/96, Piramal Healthcare UK Limited) delivered in a mixture of 1/3 O2 and 

2/3 N2O using a vaporizer (Harvard Apparatus UK). To reveal the temporal bone, I 

produced an incision between the ear and the eye. To measure blood flow during operation, 

a laser Doppler probe (Perimed) was attached to the skull above the left middle cerebral 

artery (MCA) territory. The mice were then positioned in the supine position, an incision 

of the midline neck was produced, and the common carotid artery (CCA) and the left 

external carotid artery (ECA) were isolated and ligated, and the third loose knot on the 

CCA was formed. The left ICA was isolated and clipped by a microvascular clip. Next, a 

2mm silicon-coated filament (catalog #701912PKRe, Doccol) was inserted into the ICA 

through a small incision in the CCA, finally occluding the MCA after opening the clip 

on the ICA. The occlusion of MCA was indicated by a decrease in blood flow (decreased 

value of the laser Doppler flow signal <20% of baseline value). The third knot on the left 

ICA was closed to fix the filament in position. During the surgery, body temperature of 

each mouse was maintained at 36.5°C±0.5°C using the DC Temperature Control System. 

Mice were kept in a heated cage while recovering from anesthesia. The mice were re-

anesthetized after 60 minutes of occlusion, and the filament was removed from CCA. The 

mice were held in their home cage after recovery, with enabled access to food and water. 
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The same surgical procedure was provided to sham-operated mice, except that the filament 

was immediately removed after insertion. Exclusion criteria were as follows: (1) 

insufficient occlusion of MCA (decrease in blood flow to > 20% of baseline value); (2) 

death during the operation; and (3) lack of brain ischemia by histological examination. One 

hour after reperfusion, a stroke evaluation score was collected. A score from 0 (no stroke) 

to 5 (very severe stroke) based on general activity and body asymmetry ("modified 

Bederson Score") was performed to assess the deficits of mice after surgery.172 The 

animals were checked daily after surgery for signs of discomfort. 

3.2.2 Mouse blood collection and preparation 

Mice were deeply anesthetized with a mixture of ketamine (120 mg/kg) and xylazine (16 

mg/kg). Blood was collected by intracardiac puncture and placed in tubes containing 

anticoagulant EDTA for FACS or plasma preparation, or collected in covered test tubes for 

serum preparation. When preparing serum, the blood (in covered test tubes) was placed at 

room temperature for 15 minutes to clot and subsequently centrifuged at 2000 x g for 10 

minutes in a refrigerated centrifuge. The resulting supernatant was designated serum. For 

plasma preparation, the blood (in EDTA tubes) was centrifuged for 10 minutes at 3000 x 

g. The resulting supernatant was designated plasma. 
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3.2.3 Mouse organ sample collection and process 

Mice were deeply anesthetized with a mixture of ketamine (120 mg/kg) and xylazine (16 

mg/kg). After blood collection, mice were then transcardially perfused with normal saline, 

and spleens were removed into the cold PBS. Brains were then removed carefully and 

frozen on dry ice and stored at -80°C for later use. 

3.2.4 Behavior tests 

3.2.4.1  Body weight and body temperature 

To evaluate the general condition of the mice, their body weight and body temperature 

were measured before and on relevant days after fMCAo or sham surgery. Body weight 

was measured using an electronic weight scale, and rectal temperature was measured by a 

mouse rectal thermometer.   

3.2.4.2  Neuroscore 

The Neuroscore was used to assess the general condition deficits and focal neurological 

deficits of mice after experimental stroke. It was performed before and on the relevant days 

after fMCAo and sham surgery, and it was performed as described.173 The score ranged 

from 0 (no deficits) to 56 (poorest performance) and was calculated as the sum of the 

general and focal deficits (scoring sheets are in Appendix).  
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3.2.4.3  Cylinder test 

This test evaluates the use of the forepaws and body asymmetry by assessing behavioral 

imbalance and general activity at baseline and postoperative time points. Mice were 

positioned in a transparent acrylic glass cylinder (diameter 8 cm; height 25 cm), which 

was placed in front of a 90-degree mirror. The movement of mice in the 

cylinder was videotaped for five minutes. To assess independent forelimb use and body 

asymmetry, we calculated the contact to cylinder wall and ground by each forelimb during 

the mice’s complete rearing and landing by watching the recorded videos frame by frame. 

All rearing movements were also recorded and used as an indicator of the overall activity 

of the mice. 

3.2.4.4  RotaRod 

Mice were trained daily for three days before baseline acquisition and surgical procedures 

(fMCAo or sham). Baseline performance was acquired using the following strategy: the 

rod accelerated continuously from 8 to 40 rpm over 240 s. Per mouse and time point, three 

consecutive trials were acquired. The latency to fall off the rod was recorded. The post-

operative performance was evaluated by dividing the post-operative values by the baseline 

performance of the individual mouse. 
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3.2.4.5  Adhesive removal test 

This test was used for assessing sensory and motor deficits. A round adhesive sticker (4 

mm-diameter) was applied on the forepaw's palmar side; the same pressure was put when 

sticking each adhesive sticker. Two days before baseline acquisition, mice were habituated 

to the test cage and the adhesive placement. Baseline and postsurgical time points were 

acquired as three consecutive trials per mouse. The latency to contact the adhesive and the 

latency to remove the adhesive were recorded. The latency to contact the adhesive on the 

impaired paw was recorded to evaluate sensory deficit, and the latency to remove the 

adhesive was influenced by both sensory and motor deficits. 

3.2.4.6  Von Frey filament test 

This test evaluates the sensory deficits of the forepaws after brain injury. 

Mechanosensitivity can be determined as a threshold of force required to provoke a 

behavioral response, such as removing the stimulated paw. In up-down test methods, a lack 

of response to a specific filament strength determines that the next higher strength filament 

is used in the subsequent stimulus, whereas a positive response determines the use of the 

next lower strength filament.  

3.2.4.7  Elevated plus maze 

The elevated plus maze test was performed according to the protocol established before.174 

The apparatus used for the elevated plus maze test was in the shape of a plus sign and 
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consisted of two open arms (25 x 5 cm) that were vertical to two closed arms (25 x 5 cm) 

with a center open square (5 x 5 cm). Each closed arm was enclosed by 16 cm high wall. 

The whole apparatus was 50 cm above the floor and was made of plastic. All the 

experimental mice were moved to the test room 30 min before the first trial to habituate to 

the environment of the test room.174 A mouse was placed in one open arm with its head 

directed toward the central area. The elevated plus maze test was filmed using a video 

camera attached to a computer. In each trial, each mouse was allowed to move freely in the 

elevated plus maze for 5 min.  We performed one trial at each time point. The application 

used for acquiring and automatically analyzing the behavioral data was EthoVision XT. 

The number of entries (an entry is defined as the center point of the mouse entering the 

arm) into each arm, and the time spent in the open arms and closed arms was recorded and 

analyzed. 

3.2.4.8  Open field 

The open field test was performed according to the protocol established before.175 The 

apparatus consisted of four activity chambers. Each chamber (50 x 50 cm) was enclosed 

by 38 cm high wall and made of plastic. A series of 10x10 cm blocks were identified, and 

the central area consisted of nine blocks, while the peripheral area consisted of 16 blocks. 

A maximum of four individual mice could be recorded and tracked at the same time by 

using each chamber of the apparatus. All the experimental mice were moved to the test 

room 30 min before the first trial to habituate to the environment of the test room.175 Mice 

were placed in the middle of the chamber to begin and were allowed to move freely in the 
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chamber for 5 min in each trail. Each mouse received three trials at each time point with at 

least 10 min intervals between the trails. The application used for acquiring and 

automatically analyzing the behavioral data was EthoVision XT. The time spent in the 

peripheral area and the central area was recorded and analyzed. 

3.2.4.9  Sucrose consumption test 

This test is used to evaluate the lack of interest in rewarding stimuli (i.e., anhedonia) of 

mice after brain injury. This test was performed with mice that were single-caged for 24 

hours. Two drinking bottles were provided, one with plain water and the second one with 

3% sucrose solution. To counteract any locational bias, the bottle position was changed 

after 12 h. After 24 h, fluid intake was calculated by the ratio of sucrose solution volume 

against the total volume of fluid intake.176 

3.2.4.10 Porsolt swim test 

This test is used to assess depression-like behavior. Mice were placed in an inescapable 

transparent tank filled with water (22±2°C). The animals were videotaped for five minutes, 

and this test was only performed at postsurgical time points. The analysis was done frame-

to-frame to define the periods in which mice either struggled to escape, swam to explore, 

or floated without active movements.177  
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3.2.5 Anti-cytokine treatment 

According to previous study,42 the neutralization of circulating cytokines was 

accomplished by the intraperitoneal injection of 4mg/kg each of anti-IL-1 β, anti-TNF- α, 

and anti-IL-6 antibodies (all from Bio X Cell) in a total volume of 200 µl PBS 60 minutes 

before stroke induction. Control mice received 300 g of isotype control antibody. 

3.2.6 Preparation of cells from lymphoid organs and blood 

Mice were deeply anesthetized with a mixture of ketamine (120 mg/kg) and xylazine (16 

mg/kg). Blood was collected by the intracardiac puncture and placed in tubes containing 

the anticoagulant EDTA. The mice were then transcardially perfused with normal saline, 

and spleens were removed into the cold PBS. The spleens were homogenized and filtered 

through 40 μm cell strainers. The erythrocytes of both the blood and spleen samples were 

lysed with isotonic ammonium chloride buffer. Next, the samples were washed with PBS 

twice. The total count of cells per organ was calculated using an automated counter 

(BioRad). The total cell counts per µl blood were measured manually by a hemocytometer. 

The cell suspensions were then used for further experiments. 

3.2.7 Flow Cytometry  

The cells were labeled with specific antibodies in compliance with the manufacturer's 

instructions and conducted with flow cytometry to quantify the different cell populations. 
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The following mouse antigen-specific antibodies were purchased from eBioscience: CD3 

FITC or APC (17A2), CD45 eF450 (30-F11). 

3.2.8 Magnetic-activated cell sorting (MACS) 

After preparing single-cell suspensions, cells were washed once in MACS buffer and then 

purified for CD3+ T cells using commercially available MACS kits. We sorted T cells by 

negative selection (MagniSort® Mouse T cell Enrichment Kit, catalog #8804-6820, 

eBioscience) and manually separated cells with MagniSort® Magnet (Invitrogen) to avoid 

the touch of microbeads to targeted cells.  

3.2.9 In-vitro assay 

T cells isolated from the spleens of wild-type naïve mice (by MACS) were cultured in 96-

well plates with the medium (RPMI Media 1640+10%Fetal Bovine Serum+1%Penicillin 

Streptomycin). Each well contained 50,000 cells in 50µl volume. Serum from wild-type 

naïve, sham, and stroke mice was collected three hours after operations. Each well received 

50ul serum from an individual animal. Eighteen hours later, dead cells were stained by 7-

AAD (ImmunoChemistry Technologies, catalog #6163) or Propidium Iodide (PI; 

ImmunoChemistry Technologies, catalog #638) before analysis by flow cytometry. 

3.2.10 Reducing circulating alarmins 

According to previous study,170 mice were treated 30 min before surgery and four hours 

after surgery with an intraperitoneal bolus (4mg/kg) of soluble receptor for advanced 
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glycation end products (sRAGE) or a vehicle (saline) according to our previous study.170 

Mice were sacrificed 18 h post-reperfusion, and splenic and blood immune cells were 

analyzed by flow cytometry.  

3.2.11 In vivo caspase-1 inhibition 

Mice were injected intraperitoneally with caspase-1 subfamily inhibitor VX765 (100 

mg/kg in 15% Cremphor EL; catalog #inh-vx765-5, InvivoGen) or with vehicle 2 h before 

fMCAo ore sham surgeries. Mice were sacrificed 18 h post-reperfusion, and splenic and 

blood immune cells were analyzed by flow cytometry.  

3.2.12 Infarct volumetry 

According to the protocol we established before,171 serial coronal cross-sections (20-μm 

thick) were made in 400-μm intervals after brain removal. The sections were stained under 

standard protocols with cresyl violet, and scanned at 600 dpi. In each section, the area of 

infarction was measured using ImageJ software (NIH). We performed an edema correction 

for infarct volume using the following formula: (Ischemic area) = (Direct lesion volume) - 

[(Ipsilateral hemisphere) - (Contralateral hemisphere)]. The total infarct volume was 

quantified by integrating the measured areas and intervals between the sections. 

3.2.13 Statistical analysis 

Data were analyzed using GraphPad Prism version 6.0, and all data sets were tested for 

normality. For unrepeated measured data, the groups with normally distributed data were 
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tested using a Student’s t-test (for two groups) or ANOVA (for more than two groups); the 

groups without normally distributed data were analyzed using the Mann-Whitney U test 

(for two groups) or the Kruskal-Wallis test (for more than two groups). For repeated 

measured data, two-way ANOVA was used for analysis. Differences with a p-value <0.05 

were considered to be statistically significant.  
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4 Results 

4.1 Immune activation after experimental stroke: CISB 

Based on the published literature, we selected a battery of tests to assess different types of 

post-stroke behavior deficits up to 35 days after experimental stroke (Figure 3A). For focal 

deficits, we used the cylinder test, which was first developed by Schallert and has been 

proved efficient in detecting unilateral motor deficits of the forelimbs.178 Rotarod, a 

motorized treadmill, was designed for the semi-automatic evaluation of motor coordination 

and balance functions.179 The latency of rodents to fall off the rotating rod was recorded as 

a parameter of assessment.180 An adhesive removal test can be used to assess motor and 

sensory deficits.181 The time to sense and remove the adhesive was measured as an 

indicator of sensory and motor deficits. For a more detailed sensory deficit assessment, we 

used the von Frey filament test.182 As the first indicator of sufficient neurological deficits, 

we used a 56-point Neuroscore to assess general and focal deficits after stroke;173 it covered 

motor and sensory deficits and gave evidence of the lack of overall motivation after stroke. 

Anxiety and depression-like behavior after stroke were detected with elevated plus 

maze,183 open field,184 sucrose consumption test,185 and the Porsolt swim test.186,187 The 

time points to assess the above behavior tests and the general body condition (body weight 

and temperature) started seven days before the surgical procedures and lasted until 35 days 

after the surgical procedures (Figure 3B).  
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Figure 3: Representative scheme of the behavior test battery. 

(A) Individual tests cover separate domains of typical post-stroke behavior deficits. To classify 

motor deficits, the cylinder test and Rotarod were used. The adhesive removal test also covered 

motor (adhesive removal) and sensory (sensing of adhesive) deficits after stroke. The von Frey 

filament test was the only test that exclusively covered sensory deficits. The 56-point composite 

Neuroscore included motor and sensory deficits. Moreover, it gave evidence of the lack of overall 

motivation after stroke. Elevated plus maze and open field included the anxiety and motivation 

domains. Depression was acquired using the Porsolt swim test, which shows behavior aspects in 

inescapable situations, and the sucrose consumption test, which was used to detect possible 

changes in anhedonia after stroke. (B) Time points to assess the behavior tests from the battery 

above and the general body condition (body weight and temperature). ART, adhesive removal test; 

EPM, elevated plus maze; BL, baseline. 

 

4.1.1 Motor and sensory deficits can be quantified by behavior tests after 

experimental stroke 

To characterize CISB and the progression of focal deficits up to 35 days after surgery, six- 

to eight-week-old male C57BL6/J mice received either a 60 minutes fMCAo or a sham 

operation (Figure 4A, B). Body weight loss and hypothermia, key indicators of CISB,108 

were monitored during the experimental period of 28 days (Figure 4C, D).  
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Figure 4: Characterization of filamentous middle cerebral artery occlusion and the general 

body condition after the surgical procedures. 

(A) Schematic overview of the procedure of filamentous middle cerebral artery occlusion 

(fMCAo). A silicon-coated monofilament was introduced via the CCA and placed via the ICA at 

the bifurcation of the MCA for 60 minutes. (B) Representative cresyl violet brain sections of a 

transient MCA stroke; the imaginary red line surrounds the area of ischemic infarction. (C) Body 

weight progression within one month after stroke or sham surgery represented as a percentage of 

weight before the surgical procedure (two-way ANOVA, n=10-25 per group). (D) Body 

temperature progression within one month after stroke or sham surgery represented as a percentage 

of initial temperature before the surgical procedure (two-way ANOVA, n=12-25 per group). (C)-

(D) data are shown as box plots with mean + min to max. *P<0.05, **P<0.01, ***P<0.001. 
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Motor deficits could be detected after experimental stroke with the well-established test 

paradigms of the cylinder test and Rotarod in stroke mice compared to sham-operated mice. 

The cylinder test exhibited forelimb asymmetry during rearing movements up to 21 days 

after stroke compared to sham mice (Figure 5A). The latency to fall from the accelerating 

Rotarod decreased after stroke (Figure 5B). Differences in latency to fall could be detected 

up to 28 days after stroke compared to sham-operated mice. Both tests provided convincing 

information about motor deficits in mice with large ischemic stroke until the chronic phase 

of stroke outcome. 

To evaluate both somatosensory and motor outcomes, the adhesive removal test was 

applied. An increase of latency to remove the adhesive from the impaired paw in the acute 

phase after stroke was detected within the first two days after stroke (Figure 5D). Moreover, 

the latency to contact the adhesive on the impaired paw was increased up to seven days 

after stroke (Figure 5C). For further analysis of sensory deficits, the von Frey filament test 

was conducted to evaluate the change of the impaired paw’s sensory threshold after stroke. 

This was achieved by stimulating mouse paws with different sizes of monofilaments that 

provided different forces to a mouse paw. We found the threshold for paw retraction due 

to pain sensation was significantly higher in stroke-impaired paws seven days after surgery 

in comparison with stroke unimpaired paws and sham paws (Figure 5E).   
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Figure 5: Assessment of motor and sensory deficits up to 28 days after experimental stroke. 

(A) Quantification of cylinder test performance as forelimb use asymmetry up to 28 days after 

sham or stroke. The ratio of unimpaired to impaired forelimb use was calculated at each time point, 

and the values are shown as a percentage of the baseline (two-way ANOVA, n=10-11 per group). 

(B) Accelerating Rotarod for general motor deficit assessment up to 28 days after the surgical 
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procedure. Performance is shown as time spent on the rod (latency to fall) normalized to baseline 

performance (two-way ANOVA, n=10-12 per group). (C) Quantification of the adhesive removal 

test for the latency to contact the adhesive on stroke-impaired paws normalized to baseline 

performance (two-way ANOVA, n=10-11 per group). (D) Quantification of the adhesive removal 

test for the latency to remove the adhesive on stroke-impaired paws normalized to baseline 

performance (two-way ANOVA, n=10-11 per group). (E) Quantification of the von Frey filament 

test shown as the threshold for paw retraction due to pain sensation (the minimum force that was 

needed to obtain at least a 50% response throughout the attempts). Both front limbs of sham- and 

stroke-operated mice were compared up to 28 days after surgery (two-way ANOVA, n=10-11 per 

group). (A)-(D) data are shown as mean ± standard deviation (SD); (E) data are shown as median 

± range. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

A 56-composite Neuroscore was performed to quantify the overall deficits after stroke. As 

with previous tests, the Neuroscore also detected noticeable focal deficits up to seven days 

after surgery (Figure 6A). Accompanied with focal deficits, general deficits after stroke (in 

the aspects of fur, ears, eyes, posture, spontaneous activity, and epileptic behavior) were 

also very prominent up to seven days in comparison with sham-operated mice (Figure 6B). 

These general deficits are not the specific characteristics of stroke but can reflect the basic 

sickness status. The sum of focal and general deficit scores can provide immediate 

information regarding whether the induction of experimental ischemia leads to sufficient 

neurological impairment (Figure 6C). Taken together, these analyses demonstrate and 

characterize severe focal and general deficits after large experimental stroke.  
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Figure 6: 56-point composite Neuroscore: general and focal deficits. 

(A) Quantification of focal deficits acquired within the Neuroscore (two-way ANOVA, n=10-16 

per group). (B) Quantification of the general deficit section of sham- and stroke-operated mice 

(two-way ANOVA, n=10-16 per group). (C) The total score represents the addition of general and 

focal deficits to achieve an overall score (two-way ANOVA, n=10-16 per group). All graphs are 

shown as median ± range. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

 

4.1.2 Anxiety and depression can be detected after experimental stroke 

As is mentioned above, sickness behavior includes a lack of motivation and a higher level 

of anxiety. In order to assess the level of anxiety after stroke, elevated plus maze and open 

field were conducted on both sham- and stroke-operated mice. These two tests are based 
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on the instinctive aversion of rodents to open spaces and a preference to stay in enclosed 

or bounded spaces.175,188 An increase in the proportion of time spent in the open arms or 

central field can indicate anxiety reduction and increased exploratory activity. In the 

elevated plus maze, the ratio of time duration in the open arms to the closed arms steadily 

decreased within 14 days after stroke (Figure 7A, left panel). In addition, the frequency of 

entries into the open arms decreased in this period (Figure 7A, right panel). In the second 

setup for exploratory activity, open field, the ratio of time duration in the central to wall 

area in the open field was also reduced (Figure 7B left panel). Furthermore, the overall 

distance moved per trial continued to decrease over the whole experimental period of 28 

days (Figure 7B right panel), which indicates reduced activity after stroke. Moreover, the 

Neuroscore also gave evidence of a lack of overall motivation after stroke (Figure 6B). 

These results revealed an anxiety-like behavior and reduced motivation after experimental 

stroke.  

Rodents and other mammals have an innate preference for sweetened food or liquid.189 The 

reduced ability to experience pleasure (including sweet consumption) was defined as 

anhedonia, which is one of the core features of depression.190 Based on this rationale, the 

sucrose consumption test is often applied to evaluate depression-like behavior in different 

disease models. The previous research on depression-associated behavior in experimental 

epilepsy has shown that, when mice are offered both tap water and sweetened fluid, a 

healthy subject prefers the sweetened fluid, while an anhedonic animal consumes less of 

the sweet solution but an equal amount of tap water.176 According to the usage of the 
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sucrose consumption test in previous studies, we conducted this test to investigate the 

depression-like behavior in experimental stroke. Our results showed that, after 

experimental stroke, mice consumed less sucrose liquid compared to sham-operated mice 

up to 14 days after stroke (Figure 7C).  

Moreover, the Porsolt swim test was also performed to assess the mice's response to an 

inescapable situation. The Porsolt swim test was first developed by Porsolt and colleagues 

in 1977 to investigate the effect of antidepressant treatment on rodents.191,192 It sets up a 

situation in which “behavioral despair” is induced, and the animal loses hope of escaping 

from the water tank. As with the sucrose consumption test, some studies have also 

performed it to measure post-stroke depression.186,187 In our experiment, we found that, 

after stroke, mice showed a lower urge to escape the water tank. However, this effect could 

only be detected within the first 90 seconds after starting the experiment. (Figure 7D). This 

finding can be interpreted as “behavioral despair” and further confirms the presence of 

depressive disorders after stroke.191,192 
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Figure 7: Assessment of anxiety, motivation, and depression-like behavior after stroke. 

(A) Elevated plus maze was performed throughout 28 days after the operation. Exploration activity 

was quantified as a ratio of time spent in the open arms divided by time spent in the closed arms 

normalized to the baseline (left panel, two-way ANOVA, n=10 per group). The quantification of 
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the frequency of entries into the open arms throughout the elevated plus maze trial (right panel, 

two-way ANOVA, n=10 per group). (B) Quantification of exploration activity acquired as time 

spent in the central area divided by time spent in the wall area normalized to the baseline (left 

panel, two-way ANOVA, n=11 per group). Quantification of the overall distance moved during 

open field trials normalized to the baseline (right panel, two-way ANOVA, n=10-12 per group). 

(C) Quantification of sucrose consumption; data is shown as a change in sucrose preference (ratio 

of sucrose solution volume to the total volume of fluid intake) after stroke or sham surgery 

compared to the baseline preference (two-way ANOVA, n=6 per group). (D) Quantification of the 

Porsolt swim test performance as the distribution of movement ability (active escape attempt 

versus inactivity) within the first 90 s of the trial (two-way ANOVA, n=8-10 per group). All graphs 

are shown as mean ± SD. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

Together, these findings demonstrate that anxiety and depression-like behavior can be 

detected by behavior tests after experimental stroke.  

4.1.3 The sensitivity and specificity of different behavior tests 

To rate the behavior test panel at different time points after stroke, we ran the receiver 

operating characteristic (ROC) curve analysis for every test individually. This method is 

based on plotting the sensitivity of a test, which represents the probability of detection 

against the false positive rate, which is calculated as 1 – specificity. The area under the 

curve demonstrates the ability of the test to classify the stroke-induced deficits with the 

tests used correctly. We used all available time points and compared the area under the 

curve and p-value of the created ROC plots (Table1). Based on this analysis and the general 

advantages and disadvantages of the individual approach (stress for rodents, safety for 

animals, repetition, difficulty to perform, and time consumption), we developed a more 

accurate battery of behavior tests for each time point. The cylinder test, elevated plus maze, 

and sucrose consumption test were selected to assess motor deficits, anxiety, and 

depression-like behavior after experimental stroke. This battery could provide the ability 
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to classify a double-blind treatment approach against CISB within the first seven days after 

surgery against a control group.  

Table 1. ROC curve analysis of the behavior test battery 

Quantification of testability to classify differences between surgical procedure groups by receiver 

operating characteristics curves. Values are shown as the area under the curve (AUC>0.9 is marked 

in red). ART, adhesive removal test; EPM, elevated plus maze. 

 

4.1.4 Anti-cytokine treatment can improve sickness behavior after 

experimental stroke 

To investigate the role of the peripheral cytokines released in the acute phase after stroke 

in sickness behavior and confirm the usefulness of our optimized behavior test battery, 

three key pro-inflammatory cytokines, IL-1β, TNF-α, and IL-6, were antagonized before 
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operations, and key features of sickness behavior as selected above were analyzed (Figure 

8A). The same mice as in the battery characterization were used (six- to eight-week-old 

male C57BL6/J) and divided into the treatment and control groups (IgG isotype vehicle). 

We selected the cylinder test, elevated plus maze, and sucrose consumption test to address 

motor deficits, anxiety, and depressive behavior. In addition, we assessed body weight, 

body temperature, and the composite Neuroscore.  
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Figure 8: Physiological readouts after cytokine neutralization. 

(A) Schematic overview of the experimental timeline for cytokine neutralization. (B) Kaplan-

Meier curve of the overall survival rate after stroke surgery with anti-cytokines (63%) or control 

(52%) treatment. (C) Quantification of infarct volume seven days after stroke with anti-cytokines 

or control treatment (Student’s t-test, n=10-12 per group). (D) Weight progression one, three, and 

seven days after stroke with anti-cytokines or control treatment represented as a percentage of 

weight before the surgical procedure (two-way ANOVA, n=10-12 per group). (E) Temperature 

progression one, three, and seven days after stroke with anti-cytokines or control treatment 

represented as a percentage of temperature before the surgical procedure (two-way ANOVA, 
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n=10-12 per group). (D)-(E) data are shown as box plots with mean + min to max. Ctrl, control; 

aCyto, anti-cytokines. 

The general deficit score was reduced in the anti-cytokine treatment group after stroke in 

comparison to the control treatment group (Figure 9A, upper right panel). Combined in a 

total deficit score, general deficits were masked by the focal deficits (Figure 9A, lower left 

panel). Furthermore, the elevated plus maze was performed in order to assess anxiety 

behavior after stroke. Both the ratio of time duration in the open arms to the closed arms 

and the frequency of open arm-entering were higher in the anti-cytokine treatment group 

seven days after stroke (Figure 9C). To test for a possible lack of anhedonia, the sucrose 

consumption test was performed seven days after stroke. Both groups consumed less 

sucrose solution than in the baseline, but the anti-cytokine treatment group consumed more 

than control mice (Figure 9D).  

On the other hand, the infarct volume and mortality seven days after the operation did not 

show a significant difference between anti-cytokine and control treatment groups (Figure 

8B, C). Body weight and body temperature were also similar in the two groups (Figure 8D, 

E), but we anticipated that the body temperature would be different due to the role of IL-6 

in body temperature mediation. The cylinder test was applied at three and seven days after 

stroke operation; the ratio of non-impaired to impaired forelimb use while rearing against 

the wall was not different between anti-cytokine and control treatment groups (Figure 9B). 

Moreover, the focal deficits score of the composite Neuroscore also showed no differences 

between the two groups (Figure 9A, upper left panel).  
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These findings indicate that the neutralization of these cytokines can alter some behavioral 

aspects indicative of CISB, but it cannot alter the stroke outcomes. Thus, we speculate that 

the peripheral pro-inflammation cytokines might induce the sickness behavior after large 

experimental stroke, but they do not influence focal deficits and infarct lesions. Through 

our optimized behavior tests battery, we were able to acquire differences in sickness 

behavior due to cytokine neutralization after stroke. 
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Figure 9: Impact of cytokine neutralization on sickness behavior in the acute and subacute 

phases after stroke. 

(A) Quantification of the 56-points Neuroscore, focal deficit (upper left), general deficit (upper 

right), and total Neuroscore (lower left) at one, three, and seven days after stroke surgery with anti-

cytokine or control treatment (two-way ANOVA, n=10-12 per group). (B) Quantification of 

forelimb asymmetry in the cylinder test three and seven days after stroke with anti-cytokines or 

control treatment represented as a percentage of the baseline (two-way ANOVA, n=10-12 per 

group). (C) Quantification of the elevated plus maze seven days after stroke with anti-cytokines 

or control treatment. Exploration activity as time spent in open arms divided by time spent in 

closed arms normalized to the baseline (left panel, Mann-Whitney test, n=10-12 per group) and 

time-independent analysis as the frequency of entering the open arms (right panel, Student’s t-test, 

n=10-12 per group). (D) Quantification of sucrose preference seven days after stroke with anti-

cytokines or control treatment (Student’s t-test, n=10-12 per group). Graph (A) is shown as the 

median ± range. Graphs (B)-(D) are shown as mean ± SD. *P<0.05, **P<0.01. Ctrl, control; aCyto, 

anti-cytokines. 

 

 

4.2 Immunosuppression after experimental stroke 

It is known that, after a profound early activation on the peripheral immune system, severe 

systemic immunosuppression usually follows (Figure 10). Immunosuppression after stroke 

has been widely detected and is believed to make a significant contribution to widespread 

infections that often worsen the clinical outcome of patients with strokes.193 Previous 

studies have demonstrated immunosuppression after experimental stroke from the 

reduction in the number of peripheral immune cells and a significant increase in apoptosis 

T cells, B cells, and NK cells.129,194 However, the relationship between widespread 

immunosuppression and CNS pathology, as well as the concurrent systemic infection after 

stroke in animals and humans, are still not well understood. Thus, we further address the 

topic of immunosuppression after ischemic stroke. 
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Figure 10: Schematic diagram of the biphasic peripheral immunomodulation after stroke. 

An initial overactivation of the peripheral immune system changes in the later phase to an 

immunosuppressive phenotype. CISB, immune cell reduction, and infection are the key 

pathophysiological elements of the particular phases. 

 

4.2.1 Large experimental stroke induces leukocyte reduction in mice 

A previous study has detected a significant reduction of splenocytes in stroke mice 22 hours 

and 96 hours post-occlusion and spleen atrophy 96 hours after large experimental stroke.129 

To further investigate the earliest time point of immunosuppression after stroke, we 

experimented to observe and quantify the leukocyte reduction at the time points of two, six, 

12, and 18 hours after stroke. We found that, two hours after stroke, the total leukocyte 
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(CD45+ population) number in the spleen of stroke mice was more than the number of 

sham mice (Figure 11A). At six hours after stroke, the leukocyte number was slightly 

reduced in the spleen and significant until 18 hours after stroke (Figure 11A). Similar to 

the spleen, the number of circulating leukocytes in the blood was also increased two hours 

after stroke, but without significant effect. It was also decreased from six hours after stroke 

in the blood, but only until 18 hours after stroke, the effect was significant compared to 

sham mice (Figure 11B). The previous report has demonstrated that B cells that constitute 

the majority of splenocytes were decreased after stroke.129 In our study, we focused more 

on T cell reduction after large experimental stroke. After FACS analysis, we found that the 

change of the T cell number was almost the same as the total leukocytes in both the spleen 

and blood. The T cell number was decreased 12 hours after stroke in comparison to sham 

mice in the spleen, and it was decreased 18 hours after stroke in both the spleen and blood 

(Figure 11C, D).  
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Figure 11: The kinetic alternation of the peripheral leukocyte number after ischemic stroke. 

Number of leukocytes per spleen (A), number of leukocytes per µl blood (B), number of T cells 

per spleen (C), and number of T cells per µl blood (D) two, six, 12, and 18 hours after stroke or 

sham operations were analyzed by flow cytometry. All graphs are shown as mean ± SD. Data are 

representative of two individual experiments per time point; n=5-6 mice per group; P values were 

calculated by the Mann-Whitney U test. **P<0.01. 

Taken together, we found that large experimental stroke can induce leukocytes to increase 

in the superacute phase after stroke and also lead to a subsequent leukocyte decrease in 
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mice. The total leukocyte reduction can be detected as early as 18 hours after stroke in both 

the spleen and blood, in which T cells were detected as reduced 12 hours after stroke.  

4.2.2 Soluble mediators released after ischemic stroke induce T cell death 

As we mentioned above, soluble mediators like HMGB1 can trigger immunosuppression 

after stroke, but the complete molecular pathways are still unknown. We hypothesized that 

T cell reduction after stroke is also induced by soluble mediators released after ischemic 

stroke. In order to distinguish the effect of soluble mediators from other factors, we used 

an in vitro system in which T cells were only treated with serum and medium (Figure 12A). 

T cells were isolated by MACS from naïve mice spleens, cultured in 96-well plates, and 

challenged by the serum of naïve, sham, and stroke mice (three hours after operations). 

Eighteen hours later, cells were stained with anti-CD3 and 7-ADD or PI to quantify dead 

T cells. Our results showed that the percentage of dead CD3+ cells with the stroke serum 

challenge was higher than with the sham serum challenge, although the effect was not 

prominent in comparison with naïve serum treatment (Figure 12A). This result indicates 

that serum from stroke mice must contain molecules that can trigger T cell death.  

To exclude potential contamination with bacterial products, we used germ-free C57BL/6J 

mice and performed the surgeries in a relatively sterile environment to eliminate the effects 

from PAMPs. Similar to wild-type mice, we detected T cell reduction 18 hours after stroke 

in the spleen and blood (Figure 12B). This gave us the evidence that not bacterial, but 

sterile, host-derived mediators in the blood induce lymphocyte cell death after stroke. 
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Alarmins are host-derived mediators that can be released after ischemic stroke and lead to 

consequent immune alternations. We next reduced the circulating alarmins in vivo using 

sRAGE decoy receptors, and control mice received vehicle treatment. sRAGE is a soluble 

isoform of RAGE, and it acts as a decoy for RAGE ligands and prevents their interaction 

with the receptor.195 After the treatment, mice were conducted with stroke or sham 

operations. We obtained more T cells in both the spleen and blood in the sRAGE treatment 

group 18 hours after stroke (Figure 12C left and right panel). The infarct volume between 

treatment groups did not differ (Figure 12D), which means that the T cell reduction was 

not influenced by infarct volume size. These results indicate that reducing the circulating 

alarmins can attenuate T cell death after experimental stroke. 
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Figure 12:  Soluble mediators released after ischemic stroke induce T cell death. 

(A) T cells from naïve mice were challenged by naïve, sham, and stroke mice (three hours after 

operations) serum individually in vitro for 18 hours; dead cells were detected by 7-ADD or PI 

through flow cytometry analysis. Data are representative of two individual experiments, n=3-4 

mice (serum donor) per group. (B) T cell number per spleen (left panel) and T cell number per µl 

blood (right panel) 18 hours after stroke and sham operations were analyzed by flow cytometry in 

germ-free C57BL/6J mice. Data are representative of two individual experiments, n=5-7 mice per 

group. (C) T cell number in spleen (left panel) or in the blood (right panel) 18 hours after stroke 

was normalized to relevant sham mice in sRAGE and vehicle treatment groups; data are shown as 

a percentage of the sham mice T cell number of each treatment group. (D) Infarct volume 18 hours 

after stroke of sRAGE and vehicle treatment groups were quantified. Data are representative of 

three to five individual experiments; n=5-9 mice per group. All graphs are shown as mean ± SD. 

Kruskal-Wallis test (A), P values were calculated by the Mann-Whitney U test (B and C middle 

panel) or Student’s t-test (C left and right panel). *P<0.05, **P<0.01. 

Together, these findings demonstrate that soluble mediators released after ischemic stroke, 

most likely some alarmins, can induce T cell death and, further, immunosuppression.  
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4.2.3 Deletion of Myd88 reduces T cell death 

According to the results above, peripheral T cells and other leukocytes may be induced by 

alarmins and die after ischemic stroke. Thus, we hypothesized that pyroptosis might be the 

possible death form of T cells after ischemic stroke, and a canonical pathway of pyroptosis 

may be involved. 

In order to further investigate the mechanism of T cell death after stroke, we first tried to 

confirm the role of cell surface receptors (PRRs), which can recognize alarmins. TLRs are 

a class of receptors on the cell membrane and can recognize various alarmins and transduce 

signals into the cytoplasm via the adaptor protein MyD88.35,58 We thus used MyD88 

knockout (MyD88-/-) mice to investigate the role of TLRs in cell death after stroke. We 

found that the deletion of MyD88 can improve splenic leukocytes and T cell reduction after 

stroke in comparison with wild-type mice (Figure 13A, B). Afterward, we deleted RAGE, 

which has the potential to modulate the cellular response to tissue injury.46 Surprisingly, 

RAGE knockout (RAGE-/-) mice did not present an improvement in splenic leukocytes 

and T cell reduction in comparison to wild-type mice (Figure 13A, B). There was no 

difference in infarct volume among wild-type, RAGE-/-, and MyD88-/- mice (Figure 13C). 
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Figure 13: The effect of the deletion of RAGE or Myd88 in T cell death after stroke. 

The number of leukocytes in the spleen (A) and the number of T cells in the spleen (B) of WT, 

RAGE-/-, and Myd88-/- mice 18 hours after stroke were normalized to relevant sham mice. Infarct 

volume (C) 18 hours after stroke of WT, RAGE-/-, and Myd88-/- mice were quantified. Data are 

representative of three to five individual experiments, n=7-10 mice per group. All graphs are 

shown as mean ± SD. P values were calculated by one-way ANOVA (A&C) or the Kruskal-Wallis 

test (B). *P<0.05. WT, wild-type mice. 

These findings suggest that MyD88 is involved in leukocyte death after ischemic stroke. 

TLRs can interact with soluble alarmins released after stroke and transduce signals into the 

cytoplasm through MyD88, which may further induce pyroptosis. 

4.2.4 The deletion or inhibition of caspase-1 reduces T cell death 

In order to confirm the role of caspase-1 in T cell death, we deleted caspase-1 using 

caspase-1 knockout (caspase-1 -/- caspase-11tg) mice. We acquired more splenic leukocytes 

and T cells from the mice without caspase-1 expression after experimental stroke (Figure 

14A, left and right panel). There was no difference in infarct volume between wild-type 

and caspase-1 knockout mice (Figure 14B). Additionally, we pharmacologically inhibited 

caspase-1 by VX-765. In comparison with vehicle treatment, caspase-1 inhibition 
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attenuated splenic leukocyte death and T cell death after stroke (Figure 14C, left and right 

panel). The infarct volume did not differ between the two treatment groups (Figure 14D). 

 

Figure 14: Deletion or inhibition of caspase-1 reduces T cell death.  

(A) The leukocyte number in the spleen (left panel) and the T cell number in the spleen (right 

panel) of WT and caspase-1-/- caspase11tg mice 18 hours after stroke were normalized to relevant 

sham mice; data are shown as a percentage of the sham mice splenic leukocyte number and the T 

cell number of each strain. (B) The infarct volume 18 hours after stroke of WT and caspase-1-/- 

caspase11tg mice were quantified. Data are representative of two individual experiments; n=6-7 

mice per group. (C) The leukocyte number in the spleen (left panel) and the T cell number in the 

spleen (right panel) of Vehicle and VX-765 treatment groups 18 hours after stroke were normalized 

to relevant sham mice; data are shown as a percentage of the sham mice splenic leukocyte number 

and T cell number of each treatment. (D) The infarct volume 18 hours after stroke of Vehicle and 

VX-765 treatment groups were quantified. Data are representative of three individual experiments; 

n=7 mice per group. All graphs are shown as mean ± SD. P values were calculated by the Mann-

Whitney U test (A-B). **P<0.01. WT, wild-type mice. 
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Together, these results demonstrate the vital role of caspase-1 in peripheral immune cell 

death after ischemic stroke. Caspase-1 can induce leukocyte and T cell death, and it is 

crucial in the process of immunosuppression after stroke. 
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5 Discussion 

5.1  CISB after stroke 

CISB is a key feature of immune system activation after stroke, and the first part of this 

dissertation concerns characterizing different behavioral aspects after stroke and 

optimizing the choice of various behavior tests. In our study, we were able to acquire acute, 

sub-acute, and chronic deficits of focal as well as CISB deficits after large experimental 

stroke. We used a battery of the most common tests for behavioral performance assessment 

and classified them in categories: motor, sensory, anxiety and motivation, learning and 

memory, and depression. For post-hoc analysis, we ranked all behavioral approaches by 

their sensitivity and specificity using ROC curve analysis and established a more accurate 

battery of behavior tests for each time point after experimental stroke. 

5.1.1 Optimal behavior tests for focal deficit assessment 

In our study, we observed prominent focal deficits through the cylinder test, Rotarod, the 

adhesive removal test, and Neuroscore. These deficits can be explained by the infarct lesion 

generated by the transient stroke model, in which both the striatum and cortex were 

damaged.196 Both the cylinder test and Rotarod detected motor deficits in the (sub)acute 

phase. The cylinder test enables us to detect motor deficits up to day 21 while still providing 

high sensitivity and specificity (AUC=0.9909). A sensitive Rotarod test (AUC=0.9417) 

was possible up to day 28 after stroke. This gave us the option to choose certain tests 

according to different phases after stroke. It was reported that motor learning can also 
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influence Rotarod test readout.124 Animal performance gradually improves over time due 

to motor learning.124 Therefore, it is crucial to distinguish motor learning from actual 

recovery after stroke. Moreover, motivation is also an important factor in Rotarod 

testing.124 Mice with stroke often lack of motivation, which could result in falling off early. 

This would confuse our results on motor deficit assessment after stroke. However, 

accelerating the Rotarod always ends with mice falling from the apparatus; we considered 

that falling is harmful to a weak mouse with severe stroke and often aggravates mouse 

sickness condition. During the cylinder test, however, mice were simply placed in a 

transparent cylinder, which is safer to perform for a severe stroke model.  

The adhesive removal test combined motor function (removal of adhesive) with a sensory 

readout (recognition of adhesive). The recognition impairments (the latency to contact the 

adhesive) after stroke were detectable up to seven days post-lesion. Differences in the 

latency to remove the adhesive were only observable up to day two due to the high capacity 

of mice to compensate for the motor deficit. This problem was also visible in the ROC 

curve analysis, which revealed a low overall sensitivity of the parameter of the latency to 

remove the adhesive throughout the acquisition time points. Since animals react quickly to 

adhesives, the latency to contact in the adhesive removal test is usually extremely short and 

causes inaccuracy in measuring. Nevertheless, it is difficult to separate sensory deficits 

from motor deficits using this test, as it was designed for assessing initial sensorimotor 

deficits.181 Perception measurement in non-self-reporting subjects is always a challenge 

because perception is internal and individual.182 Blix, von Frey, Weber, Fechner, and others 
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investigated this problem in the late nineteenth century.182 Here, we performed the von 

Frey filament test and detected a large variability in the sensory threshold. Although the 

monofilaments provided a consistent force to a mouse paw, it is still difficult to distinguish 

the reaction due to a stimulus from spontaneous movements, as some mice are irritable 

after stroke.  

In consideration of the time it consumes, safety, cost, and operative difficulty, the 

combined 56-point Neuroscore is simpler and more sensitive to quantifying focal deficits 

after stroke. To avoid inaccuracy from subjective factors, it is necessary to be blinded when 

evaluating the scores in this test. Similarly, in clinical research and neurology wards, 

neurologic scores, such as the modified Rankin Score and the National Institutes of Health 

Stroke Scale, are regularly used to assess functional outcomes after stroke. Thus, 

neurologic scores could play an important role in translational medicine and bridge the gap 

between clinical trials and animal studies. However, more sensitive tests to assess stroke 

deficits should be established, and tests that are sensitive enough to detect therapeutic 

drugs' effect in stroke rehabilitation at relatively late time points should be developed.124 

5.1.2 The pitfalls of detecting anxiety, depression, memory, and learning 

deficits 

The elevated plus maze and open field in our study detected anxiety-like behavior. 

Compared to the open field, the elevated plus maze was slightly more prominent in 

evaluating the deficits up to 14 days after stroke. There was no detectable anxiety from 21 
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days after stroke in both tests. In clinical studies, post-stroke anxiety is correlated with 

post-stroke depression.197 Our results also show that the depression-like behavior was 

accompanied by anxiety up to 14 days after stroke. The differences in the Porsolt swim test 

were only detectable in the first 90 seconds. We speculate that both sham- and stroke-

operated mice were “desperate” and “exhausted” in the water tank after a long exposure to 

the apparatus, which resulted in a short struggling time overall in both groups. After the 

mice learned they would be rescued regardless after a five-minute trial, they may also have 

given up struggling after 90 seconds in both groups. The same problem also arose in the 

elevated plus maze and open field. When performing the tests frequently on the same set 

of mice, animals learn and remember the apparatus, and the tests lose their sensitivity to 

assessing deficits. Therefore, it is more important to choose certain time points to conduct 

these tests and avoid performing them frequently. However, anxiety-like behavior can also 

influence the assessment of depression in the Porsolt swim test since animals do not realize 

that they are in a hopeless situation and can become anxious due to the apparatus.176 Thus, 

a sucrose consumption test that can be performed in the home cage could eliminate stress 

factors and reflect the absolute depression level, and it could also detect the deficits with 

higher accuracy. Aside from the assessment of anxiety and exploratory locomotion in 

rodents, the open field can also evaluate motor function and activity.198,199 It is known that, 

after ischemic stroke, mice develop hypoactivity in the acute phase.124 We also found this 

phenotype from the decreased distance moved after stroke. Interestingly, subsequent 

hyperactivity, which starts several days after stroke and may last up to months, has also 

been reported.200,201 In the hyperactive phase, mice with motor deficits can still show high 
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locomotive activity with rotation preference in the open field.124 In our study, we also 

observed some stroke mice with fast rotation behavior during the open field test, but the 

distance moved in the apparatus remained very short, and we could not conclude 

hyperactivity from this parameter. Therefore, other behavior tests or parameters that can 

assess rotation behavior after stroke should also be considered. Additionally, the lighting 

condition is also a factor that could affect anxiety behavior. Dark light is normally related 

to increased exploratory behavior and reduced anxiety, while bright light is often associated 

with increased anxiety and reduced exploration.124 It is important to maintain the same 

lighting condition level between each trial of anxiety assessment. Thus, we always 

conducted the elevated plus maze and open field in the dark. 

5.1.3 Cytokines’ effect on sickness behavior after stroke 

Pro-inflammatory cytokines are rapidly and broadly expressed and secreted as early as six 

hours after experimental stroke.104 Therefore, we designed our anti-cytokine experiment to 

investigate the acute effect of the pro-inflammatory cytokines (TNF-α, IL-β, and IL-6) on 

sickness behavior after experimental stroke. The previous study showed that infarct 

volumes and focal sensorimotor deficits did not differ between control and anti-cytokine-

treated mice, while home cage behavior analysis revealed that the cytokine neutralization 

improved the disturbances of circadian rhythm induced by stroke and overall motility.42 

We also did not detect differences in infarct volume and focal deficits between the two 

groups. This again demonstrated that the neutralization of peripheral cytokines had no 

acute effect on primary brain lesions. In contrast, the elevated plus maze and sucrose 
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consumption test revealed that anxiety-like and depression-like behavior was improved by 

anti-cytokine treatment. This supports the concept of “CISB after stroke.” Interestingly, 

body temperature did not change after cytokine neutralization, which differed from our 

hypothesis because IL-6 plays an important role in body temperature mediation. As we 

neutralized cytokines from the peripheral immune system but not from the central immune 

system, this raised the concern that peripheral IL-6 neutralization may not affect the central 

IL-6 level and the flowing temperature mediation. However, the previous study showed 

that the inhibition of peripheral TNF by etanercept, which does not cross the BBB, can 

block the sickness behavior associated with CNS lesions.202 This result indirectly 

eliminated our concern. IL-6 is critical for inducing the febrile response during infection 

and for maintaining the core body temperature during cold exposure.203,204 Both PAMPs 

and alarmins can induce IL-6 secretion and a subsequent fever response.205,206 However, 

we did not observe a fever response in our study; on the contrary, the body temperature 

decreased after experimental stroke. Hypothermia can be observed after surgery and 

anesthesia, under systemic inflammatory response syndrome (SIRS), or due to other 

causes.207,208 In our study, the body temperature decreased not only in the stroke group, but 

also in the sham group. Therefore, the reason for the temperature change is most likely due 

to surgery and anesthesia rather than IL-6 increasing. This could partially explain why the 

neutralization of IL-6 did not alter the body temperature. However, mice that died before 

seven days after stroke were excluded from data analysis; these dead mice had more severe 

stroke, as well as lower body weight and body temperature. The exclusion of the data 
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concerning the dead mice could be another reason we did not detect differences in body 

weight and body temperature between the control and anti-cytokine treatment groups. 

5.1.4 Assessment of sickness behavior in other mouse strains and other stroke 

models 

Our behavior tests were applied on C57BL6/J mice, and the optimal behavior test panel 

was selected based on the behavioral phenotype of this specific wild-type, inbred strain. 

Different mouse strains could behave differently,209,210 and the specificity and sensitivity 

of these behavior tests may need to be re-evaluated before use in new strains. Types of 

aggressive behavior have been demonstrated individually in mice with the targeted deletion 

of specific genes in comparison with wild-type mice. Therefore, the tests to assess 

aggressive behavior may not be suitable for knockout mice with different aggressive 

behavior.211 The previous study has also shown the lack of aggression, the development in 

non-aggressive exploration, and anxiolytic-like behavior in TNF receptor-deficient 

mice.212 Meanwhile, these results also identify potent roles for TNF and TNF-receptor 

signaling in regulating aggression and anxiety-related behavior, and for modulating 

activity in brain domains that underlie these behaviors.212 Therefore, when investigating 

the roles of knockout genes in sickness behavior, we should also consider the different 

behaviors of knockout mice in normal conditions (baseline). It is suggested that further 

baseline characterization is necessary to exclude basic differences in test performance, 

especially when knockout mice are used.124 In fact, the differences can be significant, not 

only between wild-type and knockout mice, but also between individual mice. Therefore, 



Discussion 

90 
 

it may be necessary to subgroup the mice based on the primary variations of baseline 

performances.124 

Moreover, the stroke model we used was a large, severe stroke model; for some smaller 

stroke models, such as distal middle cerebral artery occlusion (dMCAo) and the 

photothrombotic stroke model, more sensitive and precise behavior tests such as the skilled 

reaching test and Catwalk gait analysis might be necessary for better assessment.213,214 

More automated behavior analyses also need to be developed in the future to reduce time 

consumption and rater bias. The previous study has used a novel automated home cage 

analysis system to analyze individual mouse activity in group-housed animals over long 

periods of time,215 while the conventional home cage test apparatus can only test a single 

mouse in each cage. Further, the novel home cage analysis system can provide unique 

insights into the relationship between individual and group behavior.215 Recently, a support 

vector machine has been used to automatically analyze the behavior of freely moving 

rodents.216 In comparison with conventional red-green-blue camera-based methods, the 

novel system operating on three-dimensional depth images enables stable performances 

regardless of the lighting condition and animal color contrast with the background; the 

lighting and the color contrast conditions are often the major problems in animal tracking 

for behavior tests.216 
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5.2  T cell reduction after stroke 

After the activation of the peripheral immune system in the acute phase post-stroke, severe 

systemic immunosuppression often follows. Therefore, the second part of this dissertation 

is focused on immunosuppression after stroke. Because of the critical role of T cells in the 

immune system and their dramatic reduction after stroke, we aim to investigate the reason 

for the T cell reduction and the possible mechanism behind it.  

5.2.1 Peripheral T cells die after large experimental stroke 

Previous animal studies have found that the spleen shrinks over one to four days after 

stroke,129,217 paired with a simultaneous increased release of lymphocytes and monocytes 

into the blood.218,219 However, in clinical research, a study of 30 patients with suspected 

acute ischemic stroke found that the spleen volume tended to decrease by 24 hours after 

symptom onset and then increase, and the blood neutrophil count showed an inverse 

association with spleen volume over the period of observation, while the blood lymphocyte 

count and monocyte count were not associated with spleen volume.220 Another study of 

100 patients with ischemic stroke or intracerebral hemorrhage also observed a biphasic 

change in splenic volume that decreased over 48 hours and then slowly increased. However, 

the splenic size was significantly related to blood neutrophil count and inversely associated 

with blood lymphocyte count, and it had no relationship with blood monocyte count.221 

Both animal and patient studies have demonstrated that splenic volume is inversely related 
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to blood lymphocyte count, which indicates that lymphocytes can be released into the blood, 

while the spleen shrinks after acute ischemic stroke.   

However, previous animal study has also reported that the leukocyte count in the blood 

was decreased, especially for B cells and CD3+ T cells.129 In our study, we observed that 

splenic T cell count reduction was accompanied by blood T cell count reduction after 

ischemic stroke. Thus, in our case, T cell count reduction in the spleen cannot be explained 

by the release of T cells from the spleen into the blood after stroke. We then formed two 

hypotheses about the peripheral T cells’ fate after stroke: one was that they migrated into 

other organs, and the other was they died after ischemic stroke. As we know, one of the 

key features of the neuroimmunological response to brain ischemia is that circulating 

leukocytes infiltrate into the brain. However, it was observed that fewer than 100,000 

CD45+ cells and 15,000 CD3+ cells migrated into the brain parenchyma per hemisphere 

five days after fMCAo.222 In our study, we found that more than 50% of splenic T cells 

(i.e., nearly 10 million) were reduced 18 hours after stroke. The T cells that had disappeared 

in the spleen far outnumber the T cells that infiltrate into the brain after stroke, and no 

previous studies have explained how and to which organ these massive numbers of T cells 

migrate. Thus, we hypothesized that peripheral T cells die after ischemic stroke.  

5.2.2 Apoptosis and pyroptosis in ischemic stroke 

Since we posited that the reduction in peripheral leukocytes and T cells was due to cell 

death, we further explored the cell death forms of T cells. The three defined pathways to 
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cell death that have been investigated intensively in recent years are apoptosis, pyroptosis, 

and necroptosis.223 Among these cell death forms, apoptosis was the first programmed cell 

death described.224 Previous studies have evaluated splenocyte apoptosis using annexin V 

assay or Terminal UDP-nick end labeling (TUNEL) assay. With fluorescein-labeled 

Annexin V, the translocation of phosphatidylserine to the external cell surface during 

apoptosis is detected.225 TUNEL is a another method established for detecting DNA 

fragmentation. During apoptosis, the 3’- hydroxyl termini in the double-strand DNA 

breaks can also be generated, which can be detected through TUNEL method.226 The 

previous study found an increase in annexin V staining in CD4+ T cells 22 hours after 

stroke and a striking increase in TUNEL+ cells in the spleen 96 hours after stroke.129 

Another study has also detected a marked increase in apoptotic lymphocytes from the 

spleen and thymus 12 hours after experimental stroke. The increased apoptosis affected all 

lymphocyte subsets and all thymocyte subsets. In addition, they showed that the 

pharmacological inhibition of either SNS or HPA prevented the lymphocyte apoptosis and 

lymphopenia induced by stroke.133 This finding revealed the role of stress mediators in 

post-stroke lymphocyte apoptosis and immunodepression. Our previous study found a 

significant suppressive feature of the expanding marrow-derived suppressor cells (CD11b+ 

Ly-6C+ population) on lymphocytes and a significant increase in the expression of Arg1 

in the splenic monocyte population.42 Marrow-derived suppressor cells were considered to 

provide a suppressive and toxic feature on lymphocytes through Arg1 upregulation, which 

may induce apoptosis in activated lymphocytes by restricting the essential concentration 

of L-arginine required for lymphocyte viability.227,228 This novel finding of marrow-

https://en.wikipedia.org/wiki/DNA_fragmentation
https://en.wikipedia.org/wiki/DNA_fragmentation
https://en.wikipedia.org/wiki/Apoptosis
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derived suppressor cells’ expansion and increased Arg1 expression could be another 

mechanism that explains the induction of lymphocytes’ apoptosis after stroke. 

In our study, we found that alarmins released after ischemic stroke can induce peripheral 

immune cell death. Many alarmins released from cellular stress and tissue injury are 

recognized by PRRs expressed on or in innate immune system cells to trigger the activation 

of the inflammasomes and subsequently induce pyroptosis.154-157 Pyroptosis is a newly 

identified pro-inflammatory form of cell death that differs from apoptosis. It is a mode of 

lytic cell death, which allows potential immunostimulatory molecules to be released. 

Pyroptosis was first defined in 1992,146 and the term itself was invented in 2001 after the 

finding that bacteria-infected macrophages underwent a dramatic lytic cell death 

depending on caspase-1 activity.229 In our study, through caspase-1 knockout and caspase-

1 inhibitor experiments, we found that the absence of caspase-1 attenuated splenic T cell 

death after stroke. This finding supports the role of caspase-1 in T cell death and proved 

our hypothesis that peripheral T cells may undergo pyroptosis after stroke. Although the 

traditionally defined form is caspase-1-mediated pyroptosis, studies have demonstrated 

that other caspases, such as caspase-11 (caspase-4 and -5 in humans),167,230 and more 

recently, the apoptotic effector caspase, caspase-3, are capable of triggering 

pyroptosis.231,232 Whether these caspases are also involved in T cell pyroptosis after 

ischemic stroke remains unknown, and future studies are needed. 

In the literature, alarmins have mostly been described as promoting inflammatory pathways 

in the innate immune system. In our study, we considered that alarmins also played an 
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important role in adaptive immunity and lead T cell death after ischemic stroke. It has been 

reported that alarmins can also shape the adaptive immune responses through the activation 

of specialized antigen-presenting cells.233 In addition, γδ T cells can be directly activated 

by alarmins via TLR1/2 and dectin receptors to sense tissue damage in stroke.234 T cell 

pyroptosis has been investigated for many years in HIV infection.235 Nevertheless, there is 

still an absence of evidence that T cells undergo pyroptosis in sterile inflammation. In our 

study, we did not confirm the direct role of alarmins and caspase-1 in T cell death; we only 

eliminated caspase-1 globally to observe the change in T cell reduction after experimental 

stroke. It is still not clear that T cell death after ischemic stroke is directly induced by 

alarmins or trigged by other activated immune cells from innate immunity. Experiments 

on specific caspase-1 knockout T cells should be performed to further investigate this 

pathway. 

5.2.3 HMGB1 in T cell death after stroke 

Pyroptosis can be triggered by both PAMPs and alarmins following numerous pathological 

stimuli, such as infection, heart attack, cancer, or stroke.236 In our study, we excluded the 

effect of PAMPs in T cell death after stroke with the germ-free C57BL/6J mice experiment 

and focused on danger signals released after sterile inflammation. We found that reducing 

the circulating alarmins, including HMGB1, can attenuate T cell death in the peripheral 

immune system. This finding showed an enhanced role of alarmins in T cell death after 

stroke.  
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Nonetheless, previous studies have not demonstrated the cellular source of passively 

released HMGB1 in the acute phase after stroke. Except for passive release of HMGB1 by 

cerebral necrotic tissue after stroke, activated cells in the brain and the peripheral immune 

system can also actively secrete HMGB1 in response to tissue injury.46 Interestingly, it has 

also been reported that inflammasome-mediated pyroptosis can promote the release of 

HMGB1.237 Cells undergoing unprimed pyroptosis (through a priming-free inflammasome 

activation system) appear to release a chemotactic isoform of HMGB1, while priming 

through surface TLRs during pyroptosis leads to the release of a TLR-agonist cysteine 

redox isoform of HMGB1.237 This form of HMGB1 is called disulfide HMGB1; it can 

interact with TLR4 receptors and activates NF-kB signaling in microglia/macrophages.238 

The disulfide HMGB1 can also increase neuronal cell death induced by NMDA in vitro 

via its interaction with TLR-4 receptors.239 Thus, the HMGB1 and some inflammasome 

components released after pyroptosis may also join the other extracellular alarmins to 

propagate inflammasome assembling and amplify pyroptosis. The interaction between 

HMGB1 and pyroptosis may explain the possible cellular sources of passively released 

HMGB1 after stroke. However, the more precise cellular sources of HMGB1 after 

ischemic stroke still require further investigation and research.  

5.2.4 Cell surface receptors in T cell death after stroke 

HMGB1's inflammatory roles are mediated through binding to the cell surface receptors, 

including RAGE, TLR-2, and TLR-4.240,241 The cytoplasmic domain of TLRs is important 

for signal transduction through interaction with the adaptor protein MyD88.58 It has been 
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proposed that MyD88's function as a downstream effector in TLR signaling is associated 

with post-stroke immunomodulation induced by HMGB1.46 In our study, we only detected 

the change in MyD88-/- mice that reduced the splenic leukocytes and T cell death after 

stroke, but with no alternation in RAGE-/- mice. In contrast to our finding, a previous study 

has demonstrated a novel pathway of HMGB1-induced pyroptosis through RAGE on 

macrophages.242 According to their results, an early detectable caspase-1 activation was 

NLRP3-dependent, and the late HMGB1-induced caspase-1 cleavage was independent of 

NLRP3 but involved the endocytosis of HMGB1, cathepsin B activation, and release from 

ruptured lysosomes.242 Both TLRs and RAGE and IL-1 receptors that bind to HMGB1 can 

interact with MyD88.46,65 Therefore, the role of MyD88 in immune cell death after stroke 

cannot be directly interpreted as the role of TLRs in cell death signaling. Further 

experiments should focus on TLR deletion in immune cell death after stroke. In 

addition,  TLR-MyD88 can mediate the activation of the NF-κB pathway, which acts as 

the first signal promoting the transcription of many genes that encode inflammatory 

mediators, including pro-IL-1β, and inflammasome components such as NLRP3 and 

ASC.74 Our result of MyD88 reveals its critical role in immune cell death after stroke and 

provides an indirect indication that the signal 1 priming may be necessary for pyroptosis 

in leukocytes after stroke. Moreover, we conducted the deletion of MyD88 and RAGE 

using global knockout mice. The cell-type specificity still needs to be further explored. 

Therefore, our future goal is verifying the receptors that induce leukocyte death after stroke 

in a specific cell type. Although we demonstrated that circulating alarmins play a role in 

peripheral leukocyte death after stroke, we could not confirm that HMGB1 is the main 
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alarmin involved in this pathway. Thus, other receptors that do not interact with HMGB1 

but rather with other alarmins may also take part in peripheral leukocyte death after stroke. 

5.2.5 Inflammasome complexes involved in caspase-1 activation 

Caspase-1 activation has long been regarded as the core of the process of pyroptosis, and 

it can be activated within different inflammasomes to against different infectious and 

immunological threats. In 2002, the inflammasome complex was proposed as a molecular 

platform for caspase-1 activation.243 In the past decade, extensive studies have found 

several inflammasomes with the ability to identify specific microbial challenges and 

endogenous hazards. Among these inflammasomes, the most characterized ones are 

AIM2/ASC, NAIP/NLRC4, NLRP3/ASC, Pyrin/ASC, and NLRP1. Previous study has 

summarized that the NAIP/NLRC4, Pyrin/ASC, and NLRP1 inflammasomes can 

recognize PAMPs, while the AIM2/ASC and NLRP3/ASC inflammasomes can be 

activated by DAMPs.157  

In our study, we did not investigate the inflammasome complexes that might be involved 

in caspase-1 activation after stroke. Because alarmins released from necrotic tissue trigger 

the sterile inflammation and immunosuppression after ischemic stroke, the focus of future 

analysis should be inflammasomes that are mainly stimulated by endogenous alarmins. 
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5.2.6 The non-canonical inflammasome pathway 

Although we did not address the role of caspase-11 (caspase-4 and -5 in humans) in T cell 

death after stroke in this project, a previous study has suggested that caspase-11 can also 

induce pyroptosis in a caspase-1 independent manner.167 Caspase-11 can induce a non-

canonical pathway that is mainly induced by PAMPs. Both intracellular Gram-negative 

bacteria released LPS, and circulating LPS from extracellular bacteria can directly and 

specifically bind to inflammatory caspases, including caspase-4/caspase-5 in humans and 

caspase-11 in mice. LPS binding stimulates oligomerization and the consequent activation 

of caspase-4/5/11. The activated caspase-4/5/11 can then not only trigger cell pyroptosis 

but also activate canonical NLRP3/ASC inflammasome to release IL-1β and IL-18.244  

Although there is no evidence that caspase-11 can also be triggered by alarmins, the 

interaction between non-canonical and canonical pathways exists. Active caspase-11 

causes NLRP3 inflammasome aggregation, resulting in caspase-1 activation, and pro-IL-

1β and pro-IL-18 production. Along with the infections after stroke, PAMPs may also take 

part in the T cell pyroptosis by activating the non-canonical pathway and aggravating 

immunosuppression. Thus, in the future, we will further investigate the roles of non-

canonical inflammasome pathway and caspase-11/4/5 in T cell death after ischemic stroke. 

 

 



Discussion 

100 
 

5.3  Concluding remarks 

CISB and immunosuppression are two of the main immune-mediated comorbidities after 

ischemic stroke. Alarmins released from necrotic cells are considered the triggers of these 

comorbidities in different phases after stroke. As the key pathophysiological element of 

immune activation after stroke, CISB can be detected immediately after stroke onset and 

can even last until the chronic phase. In this study, we characterized different behavior 

aspects after large experimental stroke with a broad battery of behavioral approaches and 

selected optimal behavior test panels for certain time points. Additionally, we demonstrated 

the role of peripheral pro-inflammatory cytokines in sickness behavior after stroke through 

our selected behavior tests. Immunosuppression is another comorbidity after ischemic 

stroke that increases the risk of severe infections. Our study found that the earliest time 

point when immune cell reduction occurred was as early as 12 hours after experimental 

stroke onset. Moreover, we demonstrated that T cell death after stroke was related to 

alarmin stimulation, while Myd88 and caspase-1 also participated in the T cell death. This 

cell death pathway is most likely associated with inflammasome assembling and caspase-

1 activation. However, our future research should focus on the pro-inflammatory cytokines’ 

influence on behavior domains and more detailed molecular pathways involved in T cell 

death after stroke (Figure 15). 
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Figure 15: Brain-released alarmins as mediators of immunological comorbidities after stroke. 

Alarmins released after ischemic stroke work as the main triggers in the mediation of 

immunological comorbidities. On the one hand, alarmins induce immune system activation and 

pro-inflammatory cytokine release. Pro-inflammatory cytokines influence behavior domains and 

induce sickness behavior. On the other hand, alarmins can also induce immunosuppression after 

stroke (T cell pyroptosis is most likely involved). After alarmins transduce the first and second 

signals into cell plasma through TLRs, Caspase-1 can be activated after inflammasome assembling; 

pro-IL-1 β and pro-IL-18 that are produced through the NF-κB pathway are cleaved by active 

caspase-1 and released extracellularly. Additionally, active caspase-1 can also induce cell death 

(pyroptosis). The imaginary arrows represent the mechanisms that need further investigation. 
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Appendix   

Scoring sheets for the 56 points Neuroscore 

 

General 

deficits 
Timepoint of scoring 

H
ai

r 

0. Hair neat and clean 

1. Fur dirty & local piloerection 

2. Piloerection and dirty hair > 2 body parts 

E
ar

s 

(m
o

u
se

 
in

 

o
p
en

 a
re

a)
 0.normal (ears are stretched laterally and behind; react by straightening to 

follow noises) 

1. Stretched laterally but not behind (one or both); react to noise 

2. Same as 1. But no reaction to noise 

E
y
es

 

0. Open & clean, following movements 

1. open & aqueous mucus, slowly following movements 

2. Open & dark mucus 

3. Ellipsoidal shaped & dark mucus 

4. Closed 

P
o
st

u
re

 
(p

la
ce

d
 

o
n
 

p
al

m
 

an
d

 

sw
in

g
 g

en
tl

y
) 

0. Mouse stands in an upright position with back parallel to palm; swinging 

does not effect 

1. Mouse stands humpbacked, Flattens body during swing 

2. Head or part of trunk lies on palm 

3. Mouse lies on side and is not able to gather stability 

4. Mouse lies in prone position and does not recover upright after swing 

S
p
o
n
ta

n
eo

u
s 

ac
ti

v
it

y
 (

m
o
u
se

 

in
 o

p
en

 a
re

a)
 

0. Mouse stays alert and explores actively 

1. Mouse seems alert, only explores sluggishly environment 

2. Mouse hardly explores surrounding area 

3. Mouse is somnolent and numb, few on-spot movements 

4. No spontaneous movements 

E
p
il

ep
ti

c 

b
eh

av
io

r 
(m

o
u
se

 

in
 o

p
en

 a
re

a)
 

0. None 

3. Mouse is reluctant to handling, show hyperactivity 

6. Mouse is aggressive, stressed and stares 

9. Mouse shows hyperexcitability, chaotic movements and convulsion after 

handling 

Generalized seizures associated with wheezing and unconsciousness 

Total Score for general deficits (0-28) 
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Focal 

deficits 
Timepoint of scoring 

B
o
d
y
 

sy
m

m
et

ry
 

(n
o
se

-t
ai

l 

o
b
se

rv
at

io
n
) 

0. Normal posture, trunk elevated, tail: straight 

1. Slight asymmetry, body leans to one side, tail: slightly bent 

2. Moderate asymmetry, body leans to one side, hindlimbs stretched, tail: bent 

3. Prominent asymmetry, body bent, one side lies on floor, tail: bent 

4. Strong asymmetry, body highly bent, constant lying on one side, tail: highly 

bent 

G
ai

t 
(m

o
u
se

 i
n

 

o
p
en

 a
re

a)
 

0. normal gait, symmetric and quick 

1. stiff & inflexible, humpbacked walk and slower  

2. Limping with asymmetric movements 

3. Trembling, drifting and falling 

4. No spontaneous movement (trembling after gentle push) 

C
li

m
b
in

g
 

(m
o
u
se

 
o
n
 
4
5
° 

ra
m

p
, 

p
la

ce
d
 i

n
 

ce
n
te

r)
 

0. normal, mouse climbs quickly 

1. Climbs with strain, limb weakness visible 

2. Holds on a slope, neither slip nor climb 

3. Slides down the ramp, unsuccessful fall prevention 

4. Immediately slips with no prevention effort 

C
ir

cl
in

g
 

b
eh

av
io

r 

(m
o
u
se

 i
n
 o

p
en

 

ar
ea

) 

0. Absent 

1. Predominantly one-side turns 

2. Circles to one side, not constantly 

3. Constant circling to one side 

4. Pivoting and swaying 

F
o
re

li
m

b
 

as
y

m
m

et
ry

 

(m
o
u
se

 

su
sp

en
d
ed

 b
y
 t

ai
l)

 

0. Normal 

1. Light asymmetry, mild flexion of the contralateral forelimb 

2. Marked asymmetry, clear flexion of contralateral limb, body bends ipsilateral 

3. Prominent asymmetry, contralateral forelimb adheres to trunk 

4. Strong asymmetry, little body/limb movement 

C
o
m

p
u
ls

o
ry

 

ci
rc

li
n
g
 (

m
o
u
se

 

fo
re

li
m

b
s 

o
n
 

b
en

ch
) 

0. Absent, a normal extension of forelimbs 

1. The tendency to turn to one side, extension of both forelimbs 

2. Circling movement to one side, slower movements 

3. Pivots to one side sluggishly, turns to one side 

4. Not advancing (front part of trunk on floor) 

W
h
is

k
er

 

re
sp

o
n
se

 

(m
o
u
se

 
in

 

o
p
en

 a
re

a)
 0. normal 

1. light asymmetry, responds slowly to stimulation on the contralateral side 

2. Prominent asymmetry, no response to contralateral side stimulation 

3. Absent contralateral response, slow ipsilateral response 
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4. Absent bilateral response 

Total Score for general deficits (0-28) 
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