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SUMMARY 
 
The aim of this doctoral thesis was to investigate the relationship between the processing of 

vestibular information, on the one hand, and higher cognitive functions such as visual (spatial) 

attention and perceptual decision making, on the other. In order to draw causal inference about 

the role of specific cortical regions in this interplay, two experimental studies were conducted 

which combined psychophysical task designs using verticality judgment tasks with transcranial 

magnetic stimulation (TMS).  

The first study employed a simultaneous TMS-EEG approach to examine the role of the right 

intraparietal sulcus (IPS) within the dorsal parietal cortex in verticality judgments – a cortical 

area that has repeatedly been associated with both the visual attention and vestibular systems. 

Facilitatory effects of right IPS TMS on the bias of verticality perception were reported and 

mirrored by EEG results, which pointed to a normalization of individual perceptual biases 

reflected in a fronto-central ERP component following the stimulation. In contrast, no effects 

of left IPS TMS on either behavioural or electrophysiological measures were observed and 

right IPS TMS did not modulate performance in a control task that used the same set of stimuli 

(vertical Landmark task). These findings point to a causal role of the right IPS in the neuronal 

implementation of upright perception and strengthen the notion of vestibular-attentional 

coupling. 

In the second study verticality judgments had to be made under different levels of perceptual 

demand to address the question of how perceptual decision making interacts with vestibular 

processing. Stimuli adapted from those used in the first study were presented in a visual search 

setting, which required perceptual and response switches, in a way that varied attentional 

demands. This task was combined with offline theta-burst TMS applied to the dorsal medial 

frontal cortex (dMFC). The dMFC has been found to crucially contribute to perceptual decision 

making and is connected to core parts of the vestibular cortical network. Analysis of distinct 

features of behavioural performance before as compared to following dMFC TMS revealed a 

specific involvement of the dMFC in establishing the precision and accuracy of verticality 

judgments, particularly under conditions of high perceptual load. 

In summary, the results of the two studies support the idea of a functional link between the 

processing of vestibular information, (spatial) attention, and perceptual decision making, 

giving rise to higher vestibular cognition. Moreover, they suggest that on a cortical level this 
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interplay is achieved within a network of multimodal processing regions such as the parietal 

and frontal cortices. 
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ABBREVIATIONS 
	
ADJ Methods of adjustment 
AIP Anterior intraparietal area 
CIP  Caudal intraparietal area 
CCW Counterclockwise 
CW Clockwise 
dDdR Different dimension different response 
dDsR Different dimension same response 
dMFC Dorsal medial frontal cortex 
EEG Electroencephalography 
ERP Event-related potential 
FEF Frontal eye fields 
fMRI Functional magnetic resonance imaging 
GVS Galvanic vestibular stimulation 
hVIP Human ventral intraparietal area 
IFG Inferior frontal gyrus 
IPL Inferior parietal lobule 
IPS Intraparietal sulcus 
LIP Lateral intraparietal area 
MIP Medial intraparietal area 
MRI Magnetic resonance imaging 
MSOs Multisensory orientation/integration centers 
MST Middle superior temporal area 
MT Middle temporal area 
PET Positron emission tomography 
PIVC Parietoinsular vestibular cortex 
PPC Posterior parietal cortex 
preSMA Pre-supplementary motor area 
PSE Point of subjective equality 
sDdR Same dimension different response 
sDsR Same dimension same response 
SPL Superior parietal lobule 
STG Superior temporal gyrus 
SVV Subjective visual vertical 
tDCS Transcranial direct current stimulation 
TEP TMS-evoked potential 
TMS Transcranial magnetic stimulation 
TPJ Temporo-parietal junction 
VFC Ventral frontal cortex 
VIP Ventral intraparietal area 
VOR Vestibular-ocular reflex 
2AFC Two-alternative forced choice 
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1 General introduction 
 

 

1.1 The role of spatial attention and perceptual decision making in vestibular cognition 
 

a. Fundamentals of attention 

 

Due to the limited processing capacity of the human visual system (Lennie, 2003) we are 

forced to select between simultaneously appearing stimuli. Therefore, there is a continuous 

competition for representation, analysis, and control between visual stimuli in our 

environment within our visual processing system. Due to this competition, ideally only those 

stimuli, which are currently relevant to our behavioural goals, will be processed. Accordingly, 

mechanisms that enable effective gating of relevant input, while discarding task-irrelevant 

information, are vital for our ability to successfully interact with our environment. This is 

achieved by a cognitive process termed visual attention (Awh et al., 2012; Beck & Kastner, 

2009; Desimone & Duncan, 1995; Duncan, 1984; Posner & Petersen, 1990; Reynolds & 

Chelazzi, 2004). Visual attention biases the competition between relevant and irrelevant 

sensory input in a way that modulates neuronal activity in the related sensory brain areas. 

Specifically, when an (ideally task-relevant) stimulus is attended, increases in firing rates of 

neurons tuned to the properties of that stimulus are observed while the processing of 

irrelevant stimuli gets suppressed (Kastner & Ungerleider, 2000; Moore & Zirnsak, 2017; 

Reynolds et al., 1999; Reynolds & Chelazzi, 2004). As a consequence, the perceptual 

properties (e.g. stimulus contrast) of attended stimuli are enhanced and processing of those 

stimuli is facilitated (Carrasco, 2011; Carrasco et al., 2004). In this way visual attention can 

lead to improved behavioural performance (such as improved accuracy levels or faster 

reaction times) and altered subjective perception of the visual environment (Carrasco & 

Barbot, 2019). Visual attention can be further subdivided into different categories of how 

visual information is processed, depending on which aspect of a stimulus is relevant and thus 

attracts attention. Examples of taxonomies using such categories are bottom-up vs. top-down 

attention (selective attention, i.e. whether a stimulus is relevant due to its physical saliency or 

its relevance for internal goals), feature-based attention (i.e. whether a stimulus possesses 
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relevant features such as a specific colour or shape), or spatial attention (i.e. whether a 

stimulus is located at a behaviourally relevant location). 

Neurophysiological research has extensively studied the underlying brain mechanisms of 

visual attention using various methodologies, such as single-cell recordings in animals, human 

brain imaging and stimulation, and patient lesion studies. This work has revealed a 

widespread network involving thalamo-cortical and cortico-cortical connections (for 

comprehensive reviews see e.g. Desimone & Duncan, 1995; Itti & Koch, 2001; Moore & 

Zirnsak, 2017). However, as visual attention is not a unitary cognitive mechanism but 

comprises several sub-aspects as mentioned above, there seems to be no common neural 

substrate of visual attention per se but rather each attentional aspect relies on its own specific 

neural mechanisms (Moore & Zirnsak, 2017; Nobre, 2001). Spatial attention, which enables 

selective processing of stimuli at relevant locations (and which the present thesis will mainly 

focus on), is assumed to depend on coordinated activity of areas within a fronto-parietal 

network (Corbetta & Shulman, 2002, 2011; see Fig. 1). Within this network there are two 

interacting sub-networks which are related to distinct roles in spatial attention: first, a 

bilaterally organized dorsal fronto-parietal network involving the frontal eye fields (FEF), 

intraparietal sulcus (IPS) and superior parietal lobule (SPL) that directly controls shifts in 

spatial attention according to current top-down goals. Secondly, there is a right-lateralized 

ventral fronto-parietal sub-network comprising the temporo-parietal junction (TPJ), inferior 

parietal lobule (IPL), superior temporal gyrus (STG) and ventral frontal cortex (VFC) that 

interferes with activity of the dorsal sub-network in case attention has to be reoriented to 

spatial locations containing highly salient or unexpected stimuli (in that way acting as a 

“circuit breaker”). This model, which was initially proposed based on brain imaging studies 

(Corbetta & Shulman, 2002), has also been supported by a number of patient studies which 

show that damage to the (particularly right) fronto-parietal network often causes an attentional 

impairment of the contralesional visual hemifield, a visuo-spatial disorder referred to as 

neglect (Corbetta, Kincade, Lewis, Snyder, & Sapir, 2005; Corbetta & Shulman, 2011). 

Several studies have found links between neglect and processing of vestibular information 

(see section 1.1d for details) pointing to a putative role of the visual attention system in 

vestibular processing. 
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Figure 1: The functional-anatomical model of the human fronto-parietal attention network as proposed 

by Corbetta and Shulman (Corbetta & Shulman, 2002). The dorsal fronto-parietal network is depicted 

in blue. The ventral fronto-parietal network is shown in yellow. 

 

 

b. Fundamentals of perceptual decision making  

 

Attention biases the weighting of the sensory information gathered from the different sensory 

systems according to its relevance. In order to reach a final percept of a stimulus and create an 

appropriate action, all the weighted information has to be combined and evaluated. This 

cognitive process is referred to as perceptual decision making. It involves the detection, 

discrimination, and categorization of sensory stimuli (Gold & Ding, 2013; Gold & Shadlen, 

2007; Hanks & Summerfield, 2017; Heekeren et al., 2008). A large body of both animal and 

human research, in conjunction with various methods of computational modelling (Mulder et 

al., 2014) have proposed that sensorimotor areas of particular (posterior) parietal and dorsal 

prefrontal regions form a functional network crucial for perceptual decision making (Hanks & 

Summerfield, 2017; Heekeren et al., 2008; Mulder et al., 2014; Najafi & Churchland, 2018). 

To study perceptual decision making, two-alternative forced choice (2AFC) tasks are 

commonly used. Such tasks require the participant to judge a specific property of a presented 

stimulus based on two possible alternatives, for example via a button press. By applying 

psychometric fitting to the collected data, the participant’s responses can then be linked to the 

actual physical properties of the stimulus (Gold & Ding, 2013; Klein, 2001). In that way 

conclusions about distinct features of behavioural performance and perception and can be 

drawn (Angelaki, 2014; Gold & Ding, 2013; Hanks & Summerfield, 2017; Mulder et al., 
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2014). In detail, during psychometric fitting of data collected from 2AFC tasks, the proportion 

of trials in which a specific property of a stimulus is rated as belonging to one of two possible 

alternatives is plotted against each possible level of the presented stimulus property (Fig. 2). 

For example, if the size of a stimulus A compared to the size of a stimulus B has to be judged 

(alternatives: larger vs. smaller), a psychometric fit could depict the proportion of trials where 

stimulus A was perceived as larger than the comparison stimulus against all presented size 

difference levels (i.e. ranging from stimulus A being maximally larger than stimulus B to 

stimulus A being maximally smaller than stimulus B). 

Earlier work on visual-vestibular interactions during perceptual discrimination tasks has 

shown that behavioural performance when analysed by means of psychometric fitting, as is 

done in the studies presented in this thesis, can be determined by two parameters (Angelaki, 

2014; Baccini et al., 2014; Dyde et al., 2006; Paci et al., 2011). First, based on the ‘sigma’ or 

standard deviation of the fitted psychometric curve perceptual precision can be inferred. This 

parameter reflects the sensitivity or reliability of perceptual decisions (i.e. how variable 

responses are). In addition, perceptual bias can be computed, which represents the accuracy of 

one’s perception in relation to the actual stimulus properties. This parameter is derived from 

the point of subjective equality (PSE) of the psychometric curve, i.e. the stimulus property 

level that corresponds to the 50% proportion of one alternative being chosen over the other 

(guessing point). However, while precision and bias can vary independently from one another, 

optimally, perceptual performance is both precise and unbiased at the same time. This can be 

illustrated with the example of the game darts: only players who throw the darts both on 

average based around the intended target (accuracy) and at the same time are precise in their 

throwing during the whole game (precision) will win the game.  
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Figure 2: Psychometric fitting. The proportion of responses regarding one alternative (e.g. stimulus A 

being larger in size than stimulus B; “observed data points”) is plotted as a function of the levels of the 

presented stimulus (e.g. the actual physical difference in size between stimulus A and B). The 50% 

point (i.e. point of subjective equality, PSE) obtained from the sigmoid fit to the data reflects the 

perceptual bias (Angelaki, 2014; Baccini et al., 2014; Dyde et al., 2006; Foxe et al., 2003). The 

standard deviation of the psychometric curve relates to the steepness of the slope of the sigmoid and 

provides a measure of the participant’s discrimination threshold, thus reflecting response variability or 

precision. A smaller standard deviation corresponds to a steeper slope, indicating less variable / more 

reliable discrimination performance (Angelaki, 2014; Dyde et al., 2006). 

 

 

c. Vestibular cognition / higher vestibular functions 

 

The vestibular system is fundamental for our ability to navigate and orient in the environment, 

establish and maintain balance and posture, and perceive self-motion (e.g. Dieterich & 

Brandt, 2018; Ertl & Boegle, 2019). In order to achieve those goals it not only processes 

sensory input arriving at the peripheral vestibular end organs in the inner ear (Goldberg et al., 

2012) but is also heavily involved in, and reliant on, the subsequent multisensory integration 

of vestibular information with input arriving from other senses such as vision, audition, or 

proprioception (Brandt & Dieterich, 1999). Such integration is realized within a widespread 

thalamocortical network ranging from vestibular nuclei in the brainstem, thalamic nuclei, and 
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cerebellar regions to a number of cortical areas (Brandt & Dieterich, 1999, 2017; Dieterich & 

Brandt, 2015; Lopez & Blanke, 2011; Lopez, Blanke, & Mast, 2012; Smith, Greenlee, 

DeAngelis, & Angelaki, 2017; zu Eulenburg, Caspers, Roski, & Eickhoff, 2012) which will 

be described in more detail in the following sections of this thesis. Thus, a constant interplay 

of peripheral and central processing steps is required for successful vestibular functioning. 

Accordingly, in the past vestibular disorders were traditionally subdivided as peripheral or 

central based on their underlying anatomical pathologies (Brandt, Strupp, & Dieterich, 2014). 

However, this rigid classification system was not able to explain some vestibular dysfunctions 

sufficiently. As a result, in recent years the role of cognition and higher brain functions such 

as attention or spatial memory in vestibular processing has been increasingly recognized 

(Besnard, Lopez, Brandt, Denise, & Smith, 2016; Bigelow & Agrawal, 2015; Brandt et al., 

2014; Dobbels et al., 2018; Frank, Sun, Forster, Tse, & Greenlee, 2016; Mast, Preuss, 

Hartmann, & Grabherr, 2014; Popp et al., 2017; Seemungal, 2014). This led to the proposal of 

an additional category of vestibular dysfunctions, termed “higher vestibular functioning” 

(Brandt & Dieterich, 2017; Brandt et al., 2014). Rather than classifying vestibular disorders 

based solely on their underlying anatomical deficits, the notion of “higher vestibular 

functioning” additionally takes functional aspects, such as accompanying cognitive symptoms 

and performance, into account. Higher vestibular disorders can arise from both peripheral or 

central vestibular lesions, affect cognitive performance, and are not limited to vestibular 

deficits alone but also involve other sensory modalities, i.e. are multisensory in nature (Brandt 

& Dieterich, 2017; Brandt et al., 2014). The term was chosen with analogy to the concept of 

higher visual disorders, which describes visual deficits that arise from dysfunctional cortical 

processing of visual information occurring after initial processing in the primary visual cortex 

(Ziehl & Kennard, 1996). 

An example disorder, which has been classified as both a higher visual disorder as well as a 

higher vestibular disorder, is spatial hemi-neglect (Brandt et al., 2014; Karnath & Dieterich, 

2006). Patients suffering from this disorder show an attentional impairment regarding the 

contralesional visual hemifield and consequently impaired processing of visual information 

within this hemifield due to lesions in areas of the fronto-dorsal attention network (Corbetta & 

Shulman, 2011). The observations of 1) high similarities in behavioural performance of 

neglect and vestibular patients (Karnath & Dieterich, 2006), 2) a close anatomical relation or 
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even overlap of the multisensory vestibular cortex and the fronto-dorsal attention network 

(Corbetta & Shulman, 2002; Dieterich et al., 2003), and 3) interactions of vestibular 

processing and neglect symptoms (Karnath & Dieterich, 2006; Rubens, 1985) have led to the 

claim to not only classify neglect as a higher visual deficit but also as a higher vestibular 

disorder (Brandt & Dieterich, 2017; Brandt et al., 2014). This strongly supports the notion of 

a functional link between the (spatial) attentional and vestibular systems (Arshad, 2017). 

 

 

d. Link between (spatial) attention, perceptual decision making, and the vestibular 

system 

 

Activity in sensory areas can be biased by attention in such a way that attention facilitates 

processing of relevant input while it suppresses distracting information (e.g. Carrasco, 2011). 

In addition, attention has been shown to interact with multisensory integration. More 

precisely, it is assumed that attention modulates multisensory integration under conditions of 

high competition between successive or concurrent inputs to different sensory modalities 

(Talsma et al., 2010). Both perceptual decision making (Najafi & Churchland, 2018) as well 

as vestibular processing (Brandt & Dieterich, 1999) rely on successful integration of sensory 

information from the different senses and therefore are likely to be influenced by attention. 

Although early decision making research mainly focused on unisensory stimuli (Najafi & 

Churchland, 2018), ecologically valid perceptual decisions require multisensory information 

and integration. Attention enables the weighting and biasing of sensory information 

processing according to its relevance to the decision at hand (Summerfield & de Lange, 

2014). For example, altered saliency levels and predictions of a stimulus depending on 

whether it is attended or not, have been found to be key aspects of perceptual decision making 

(Heekeren et al., 2008; Summerfield & de Lange, 2014). Given this functional link between 

attention and perceptual decision making it is not surprising that they also share common 

underlying neural substrates such as the dorsal parietal cortex and the frontal eye fields 

(Hanks & Summerfield, 2017; Summerfield & de Lange, 2014), regions which are also core 

parts of the human multisensory vestibular network (Dieterich & Brandt, 2015; Lopez & 

Blanke, 2011; Smith, Greenlee, DeAngelis, & Angelaki, 2017; zu Eulenburg et al., 2012). 
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Accordingly, a tight coupling of vestibular processing with attention (and perceptual decision 

making) is likely to exist and has been supported by both behavioural and neurophysiological 

research. 

In particular behavioural work on the relation between neglect and vestibular functioning has 

suggested a close connection between the spatial attention and vestibular systems. Intriguing 

similarities in biased gaze patterns during neglect and after vestibular stimulation have been 

described (Karnath & Dieterich, 2006). Neglect patients often show pathological deviations of 

eyes and head in the horizontal plane, directed towards the ipsilesional (typically right) side 

(Fruhmann-Berger, Proß, Ilg, & Karnath, 2006; Fruhmann-Berger & Karnath, 2005; Karnath, 

Fetter, & Dichgans, 1996). Vestibular stimulation can cause biases in eye and head position 

that closely resemble those of neglect patients. In detail, following unilateral vestibular failure 

constant shifts in gaze patterns and head position towards the affected side, occurring both at 

rest and during active motor performance, have been described (Karnath & Dieterich, 2006). 

On the other hand vestibular stimulation by means of unilateral caloric irrigation (Karnath et 

al., 1996; Sturt & Punt, 2013; Vallar, Bottini, Rusconi, & Sterzi, 1993) or optokinetic 

stimulation (Pizzamiglio et al., 2004; Reinhart et al., 2016; Schaadt et al., 2016) has been 

found to reduce or even normalize the pathological gaze patterns of neglect patients by 

inducing contralesional (i.e. typically leftward) gaze shifts (for a review see Rosetti & Rode, 

2002). In line with this, unilateral vestibular stimulation can be used to mimic the biased gaze 

and ocular exploration patterns of neglect patients in healthy participants (Karnath et al., 

1996). 

Supporting neurophysiological research reported closely related findings regarding the neural 

substrates of neglect / spatial attention and vestibular processing, mainly involving right-

hemispheric parietal, temporo-parietal and frontal areas (Karnath & Dieterich, 2006). The 

response amplitude of parietal neurons is not only influenced by the spatial position of a 

stimulus with respect to the retina but also by a number of non-retinal factors, such as 

vestibular information or posture (Andersen, Essick, & Siegel, 1985; Pouget & Driver, 2000; 

Pouget & Sejnowski, 2001). Gain-modulation of neurons in monkey parietal area 7a by 

vestibular (rotational) stimulation has been observed (Snyder et al., 1998). In a more recent 

fMRI study it was found that in addition to vestibular input another factor that modulates 

human parietal field representations is attention (Sheremata & Silver, 2015). Specifically, 
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increased visual field extents of both hemispheres occurred when participants covertly 

attended a moving stimulus. This is consistent with improved performance of neglect patients 

regarding processing of stimuli within the contralesional hemifield due to enhanced levels of 

attention, e.g. by means of phasic alerting (Fimm, Willmes, & Spijkers, 2006; Matthias et al., 

2010). Such enhancement of alertness levels can, among others, be achieved by means of 

vestibular stimulation leading to improved performance on visuo-spatial tasks (e.g. Ferrè, 

Longo, Fiori, & Haggard, 2013; Fink et al., 2003; Lenggenhager, Lopez, & Blanke, 2007; 

Utz, Dimova, Oppenländer, & Kerkhoff, 2010), supporting the notion of a vestibular-

attentional coupling. 

The previously described observations of neuronal gain-modulation by non-retinal factors, 

such as vestibular input or attention, are in agreement with the finding that a large number of 

parietal cells are of a multisensory nature. That is, they are sensitive to stimuli of different 

sensory modalities, such as visual, tactile, auditory, or vestibular information (e.g. Pouget & 

Driver, 2000), and are involved in the integration these different inputs (Bremmer, Duhamel, 

Hamed, & Graf, 1997) as well as in sensorimotor integration (Sereno & Huang, 2014). 

Accordingly, in many cases neglect not only affects performance in one sensory modality but 

emerges crossmodally (Driver & Spence, 1998; Funk, Finke, Müller, Preger, & Kerkhoff, 

2010; Kerkhoff, 2001; Làdavas, Pellegrino, Farnè, & Zeloni, 1998). This is possibly linked to 

polymodal interactions between different sensory inputs found at a neural level in the IPS 

(Duhamel et al., 1998) – a multimodal processing region within the parietal cortex, which 

contains neurons that are involved in the perception of axis orientation in three-dimensional 

space (Sakata et al., 1997) and which is an essential cortical structure for the processing of 

vestibular information (Göttlich et al., 2014; Grefkes & Fink, 2005; Helmchen et al., 2011) as 

is described in more detail in the next part of this thesis.  
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1.2 Parietal and frontal cortex contributions to vestibular processing   

 

a. The “human vestibular cortex” 

 

Knowledge about the anatomy and neurophysiology of the human central vestibular system 

mainly stems from studies using different types of vestibular stimulation (Palla & 

Lenggenhager, 2014) in combination with brain imaging techniques (Ertl & Boegle, 2019) as 

well as from neurological data from lesion studies in vestibular patients (Dieterich et al., 

2003; Fasold et al., 2002; Suzuki et al., 2001). After initial peripheral sensing and processing 

of vestibular (linear and rotational head acceleration) information in the vestibular organs 

located in the inner ears (i.e. the three semicircular canals and two otolith organs in each ear), 

the detected signals are forwarded to cortical structures via vestibular pathways passing 

through vestibular nuclei in the brainstem, the reticular formation, cerebellum, hypothalamus, 

and thalamus (Dieterich & Brandt, 2018; Hitier, Besnard, & Smith, 2014). On a cortical level, 

a widespread network responding to vestibular stimulation has been identified and has been 

suggested to form the human “vestibular cortex” (Guldin & Grüsser, 1998), which shows 

striking similarities to the vestibular cortical network identified in monkey (Brandt & 

Dieterich, 1999; Lopez & Blanke, 2011; see Fig. 3). One core of this network includes the 

posterior insula, retroinsular region and parietal operculum and consequently has been termed 

the parietoinsular vestibular cortex (PIVC) (e.g. Dieterich & Brandt, 2018). In addition, other 

hubs of this network involve regions of the somatosensory cortex, lateral and medial frontal 

cortex, TPJ, and the dorsal parietal cortex (for reviews see e.g. Dieterich & Brandt, 2015; 

Frank & Greenlee, 2018; Lopez, Blanke, & Mast, 2012; Lopez & Blanke, 2011; Smith, 

Greenlee, DeAngelis, & Angelaki, 2017; zu Eulenburg, Caspers, Roski, & Eickhoff, 2012). 

Although the human “vestibular cortex” receives and processes afferent vestibular 

information bilaterally, it is assumed to be particularly lateralized to the non-dominant 

hemisphere (i.e. right handers show predominant activations of right-hemispheric vestibular 

regions while for left handers the left hemisphere is more strongly activated; Dieterich et al., 

2003; Lopez et al., 2012; zu Eulenburg et al., 2012). Moreover, the human vestibular cortex is 

highly multisensory as most of the vestibular information which arrives at the cortical level 

becomes integrated with signals from other sensory domains (e.g. visual or somatosensory 
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information), or has already undergone such multisensory integration in earlier processing 

steps, such as in the brainstem (Dieterich & Brandt, 2015; Guldin & Grüsser, 1998; Lopez & 

Blanke, 2011). In line with this, dysfunctional multisensory interaction and integration can 

cause clinical vestibular symptoms such as vertigo and dizziness (Dieterich & Brandt, 2008).  

 

 
 

Figure 3: Schematic representation of the human vestibular cortex (adapted from Lopez & Blanke, 

2011). Areas were revealed by neuroimaging work during vestibular stimulation (red symbols: caloric 

stimulation, blue symbols: galvanic stimulation, yellow symbols: short auditory stimulation). The 

numbers on the cortex refer to the cytoarchitectonic areas defined by Brodmann.  

 

 

The aim of the present thesis is to investigate the interplay of the attentional, decision making 

and vestibular systems. As mentioned earlier, spatial attention is thought to be realized within 

a cortical network involving (right lateralized) parietal and frontal regions (Corbetta & 

Shulman, 2011) and perceptual decision making has also been associated with activations in 

these areas (Hanks & Summerfield, 2017; Summerfield & de Lange, 2014). In accordance 
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with that, in order to establish a potential link between (spatial) attention, perceptual decision 

making, and the vestibular system, the following sections focus on parietal and frontal 

contributions to vestibular processing. 

 

 

b. Involvement of the parietal cortex in vestibular processing 

 

Concerning the human parietal cortex functional imaging work using fMRI and PET 

protocols in combination with vestibular stimulation (Dieterich & Brandt, 2008; Lopez & 

Blanke, 2011) has reported vestibular related activations of the angular and supramarginal 

gyrus within the inferior parietal lobule (Bense, Stephan, Yousry, Brandt, & Dieterich, 2001; 

Bottini et al., 1994; Dieterich et al., 2003; Frank & Greenlee, 2014; Schlindwein et al., 2008; 

Stephan et al., 2005; Suzuki et al., 2001), the precuneus (Suzuki et al., 2001), the lateral 

superior parietal lobule (Vitte et al., 1996), and the IPS (Fasold et al., 2002; Suzuki et al., 

2001). Corresponding to that (Lopez & Blanke, 2011), microstimulation and tracer studies in 

monkeys reported activations of area 7 (putative homologue to human inferior parietal lobe; 

Faugier-Grimaud & Ventre, 1989) and areas located at the fundus of the IPS (Bremmer, 

Klam, Duhamel, Ben Hamed, & Graf, 2002; Bremmer, Schlack, Duhamel, Graf, & Fink, 

2001; Klam & Graf, 2003; Schlack, 2005; Schlack, Hoffmann, & Bremmer, 2002) in 

association with processing of vestibular information.  

The IPS is located on the lateral surface of the parietal lobe and separates the parietal lobe into 

the superior parietal lobule (SPL) and the inferior parietal lobule (IPL). Electrophysiological 

and anatomical work in non-human primates has shown that the IPS contains a row of 

subregions, which are functionally distinct and highly interconnected with each other in a 

modular fashion (Grefkes & Fink, 2005). According to their topographical arrangement in the 

macaque IPS these subregions have been termed anterior intraparietal area (AIP), ventral 

intraparietal area (VIP), medial intraparietal area (MIP), lateral intraparietal area (LIP), and 

caudal intraparietal area (area CIP). Together they are crucially involved in the perceptual-

motor coordination of eye and hand movements (Culham & Kanwisher, 2001; Grefkes & 

Fink, 2005). Moreover, the IPS has been linked to spatial information processing, visual 

attention, and plays an important role in the multisensory integration necessary for guiding 
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and controlling action in space (Greenberg et al., 2012; Grefkes & Fink, 2005; Lauritzen et 

al., 2009; Silver & Kastner, 2009). In macaques a functional dissociation within the IPS has 

been described: whereas its anterior parts are linked to processing of sensorimotor 

information, posterior regions are rather concerned with visual information (Grefkes & Fink, 

2005; Guipponi et al., 2013). Still, none of the subregions of the macaque IPS seem to 

respond to only one sensory modality, which highlights the importance of the IPS in 

multisensory processing (Grefkes & Fink, 2005) such as required during visual-vestibular 

interactions (Smith et al., 2017). With particular relevance for the present thesis, area VIP in 

the fundus of the IPS has been described as a key hub of the vestibular processing network 

(Lopez & Blanke, 2011). This area is closely connected to several visual areas (particularly 

middle temporal area (MT) and middle superior temporal area (MST)), as well as to motor, 

somatosensory, and auditory regions (Baizer et al., 1991; Lewis, 2000; Maunsell & van 

Essen, 1983). In addition, it receives vestibular information, responds to moving stimuli of 

different sensory modalities, and is consequently highly involved in the perception of self-

motion and object motion (Bremmer et al., 2002; Colby et al., 1993; Schlack, 2005). 

Furthermore, it has been suggested that vestibular signals are processed flexibly in area VIP 

depending on perception and attentional demands (Chen et al., 2018). Functional imaging 

work in humans has found an area, which constitutes the human homologue of monkey area 

VIP (hVIP; Bremmer et al., 2001.; Guipponi et al., 2013; Konen & Kastner, 2008; Sereno & 

Huang, 2006). Similar to the monkey area, hVIP is located within in the fundus of the IPS, 

mostly anterior to the angular gyrus (Sereno & Huang, 2014). A vestibular role of area hVIP 

has further been described by recent non-invasive brain stimulation studies, which reported 

effects on multisensory processing (Konen & Haggard, 2014) as well as on postural sway 

(Kaulmann et al., 2017) following hVIP stimulation. 

Evidence from human patient studies supports the involvement of the IPS, or parietal cortex 

more generally, in vestibular perception. Lesions to parietal structures have been found to be 

accompanied by vestibular dysfunctions and vice versa (Dieterich & Brandt, 2015). fMRI 

studies suggest that acute vestibular failure correlates with activity and glucose metabolism in 

the inferior and superior parietal lobules and the precuneus (Becker-Bense et al., 2014; Bense 

et al., 2004). Likewise, damage to the inferior parietal lobule has been linked to rotational 

vertigo (Nicita et al., 2010; Schneider et al., 2006; Urasaki, & Yokota, 2006). Electrical 



	 14	

stimulation of the IPS applied to awake patients during brain surgery has been shown to cause 

various vestibular sensations such as feelings of full body rotation in space, falling sensations, 

perceived self-motion through space (both of the whole body or single body parts), or 

illusions of motion of objects which are actually fixed in space (Blanke, Perrig, et al., 2000). 

Similarly, there are reports that invasive stimulation of the precuneus (Kahane et al., 2003) 

and the posterior parietal cortex (Blanke, Perrig, et al., 2000; Kahane et al., 2003) elicits 

various vestibular illusions in epileptic patients, including sensations of body tilt and sway, 

rotation, dizziness, falling or even flying, and distortions of verticality perception (Kremmyda 

et al., 2019). 

An increasing body of non-invasive brain stimulation studies (Ahmad et al., 2014; Ertl & 

Boegle, 2019) also points to a causal involvement of the parietal cortex in processing 

vestibular information. Several studies reported modulations of specific properties of the 

caloric-induced vestibular-ocular reflex (VOR) due to transcranial direct current stimulation 

(tDCS) over parietal cortical areas (Ahmad et al., 2014; Arshad et al., 2014, 2019; 

Kyriakareli, Cousins, Pettorossi, & Bronstein, 2013). In addition, parietal tDCS was found to 

alter thresholds of rotational self-motion perception (Kyriakareli et al., 2013) and to induce 

changes in tonic seated posture in stroke patients (Babyar et al., 2016). Distortions of distinct 

aspects of vestibular guided navigation, such as perceived changes of angular position in 

space (Seemungal, Rizzo, Gresty, Rothwell, & Bronstein, 2008a) or more general 

displacement perception (Seemungal, Rizzo, Gresty, Rothwell, & Bronstein, 2008b), have 

been observed following transcranial magnetic stimulation (TMS) applied over the posterior 

parietal cortex. A series of studies have suggested a causal role of the parietal cortex in 

verticality perception (Kheradmand & Winnick, 2017). Stimulation of different parietal areas 

such as the supramarginal gyrus (Kheradmand, Lasker, & Zee, 2015; Otero-Millan, Winnick, 

& Kheradmand, 2018), the temporo-parietal junction (Fiori et al., 2015; Santos et al., 2018; 

Santos-Pontelli et al., 2016), or the right superior parietal lobule (Lester & Dassonville, 2014) 

by means of tDCS or TMS has been found to lead to modulations of what is perceived as 

upright. Supporting the notion of a lateralization of the human vestibular cortex (Dieterich et 

al., 2003; Lopez et al., 2012; Schlindwein et al., 2008) the majority of these non-invasive 

brain stimulation studies reported stronger or exclusive stimulation effects when the 
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stimulation was applied to right parietal structures in right-handers as compared to left-

hemispheric or bilateral parietal stimulation (for a review see Kheradmand & Winnick, 2017).  

 

 

c. Involvement of the frontal cortex in vestibular processing 

 

In addition to parietal areas, regions within the frontal cortex have also been proposed to 

belong to the human vestibular cortex (e.g. Dieterich & Brandt, 2015; Lopez et al., 2012; 

Lopez & Blanke, 2011). However, in contrast to the large amount of research regarding 

parietal contributions to vestibular perception in the human, studies concerning vestibular-

related involvements of other cortical regions such as the frontal cortex are rather sparse. 

Brain imaging data in humans showed activations of frontal cortex areas including the inferior 

frontal gyrus (IFG) and operculum (Fasold et al., 2002; Frank & Greenlee, 2014; Lobel et al., 

1998; Miyamoto et al., 2007), superior and middle frontal gyri (possibly representing 

oculomotor-related activation of the human frontal eye fields due to vestibular input; Bense et 

al., 2001; Blanke, Spinelli, et al., 2000; Fasold et al., 2002; Lopez & Blanke, 2011; Miyamoto 

et al., 2007; Paus, 1996; Petit, Clark, Ingeholm, & Haxby, 1997; Stephan et al., 2005), 

primary motor cortex (Bense et al., 2001), and premotor cortex (Emri et al., 2003; Lobel et al., 

1998; Miyamoto et al., 2007) due to vestibular stimulation. Regarding frontal activations in 

animals, the primary motor cortex, premotor cortex and dorsomedial frontal cortex (dMFC) 

seem to be predominant in receiving and processing vestibular input (Ebata et al., 2004; 

Fukushima et al., 2010; Fukushima, Sato, Fukushima, Shinmei, & Kaneko, 2000; Lopez et al., 

2012; Lopez & Blanke, 2011; Sugiuchi, Izawa, Ebata, & Shinoda, 2005). In monkeys these 

areas are crucial for (oculo-) motor functioning. Thus, activations found there might not only 

represent processing of vestibular information but in addition are likely to reflect oculomotor 

activations related to vestibular perception (e.g. the generation and suppression of the 

vestibulo-ocular reflex; Ebata et al., 2004; Fukushima et al., 2000, 2010; Lopez & Blanke, 

2011).  

The dMFC is located on the dorsal brain surface anterior to the motor cortex. It lies anterior to 

the precentral sulcus and is surrounded by the superior frontal sulcus and cingulate cortex 

(Tehovnik et al., 2000). Behaviorally, the dMFC has been linked to various oculomotor 
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functions such as the integration of oculomotor and skeletomotor behavior and visuo-motor 

learning (Tehovnik et al., 2000). Accordingly, a high connectivity between the dMFC and 

other visual, motor, and oculomotor centers has been observed in monkeys and humans. 

Moreover, in humans this region is associated with higher-level cognitive and social functions 

such as social judgments, “theory of mind”, and perceptual decision making (Ferrari et al., 

2016; Keuken et al., 2014; Sallet et al., 2013). In a human fMRI study four areas within the 

dMFC were identified, including the supplementary motor area (SMA), presupplementary 

motor area (preSMA), prefrontal areas, and frontal polar areas (Sallet et al., 2013). 

Functionally, similar functional coupling patterns of these four areas with the frontal, medial 

prefrontal, and dorsal prefrontal regions to those observed in the macaque were reported. In 

addition, the preSMA within the dMFC is thought to be an essential part of a task general 

network for perceptual decisions in which it is specifically involved in setting response 

thresholds (Keuken et al., 2014). Recent imaging work has shown that the preSMA is 

modulated by task difficulty and exhibits close connections to the striatum, dorsolateral 

prefrontal cortex, IPS, IFG, and the insula (Keuken et al., 2014; Neubert et al., 2010; Swann 

et al., 2012; Weigard et al., 2019). As mentioned earlier the IPS, IFG, and insula are key hubs 

of the human vestibular network (e.g. Baier et al., 2012; Dieterich & Brandt, 2019; Lopez & 

Blanke, 2011; Smith et al., 2017; zu Eulenburg et al., 2012). The functional connectivity of 

these areas with the dMFC speaks in favor of a role of the dMFC in processing vestibular 

information. 

Indeed, in line with the above described correlational brain imaging work in humans, 

neurological data in epilepsy patients (Hewett & Bartolomei, 2013) also revealed frontal 

contributions to vestibular perception. Links between epileptic seizures in frontal regions and 

sensations of rotational vertigo have been found (Hochman, 1983; Joseph & Chand, 1993; 

Kluge, Beyenburg, Fernandez, & Elger, 2000; Lopez, Heydrich, Seeck, & Blanke, 2010), 

which in turn have been associated with out-of-body and disembodiment illusions (Lopez et 

al., 2010). Similarly, electric stimulation of the frontal cortex can cause feelings of vertigo 

and dizziness (Kim, Sunwoo, & Lee, 2016) and lead to further vestibular perceptions such as 

body sway and motion (Kahane et al., 2003). Lesions involving the inferior frontal gyrus (and 

in particular the inferior operculum) seem to be related to disturbed verticality perception 
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(Konzelmann, 2013) and visual orientation discrimination (Kim, Morrow, Passafiume, & 

Boller, 1984). 

In summary, there is a broad indication that the parietal as well as the frontal cortex (despite 

the literature situation being far more limited regarding the latter) critically contribute to 

vestibular processing. This is also supported by work showing strong functional connectivity 

between parietal and frontal areas and the PIVC, the core of the human “vestibular cortex” 

(Frank & Greenlee, 2018; Wirth, Frank, Greenlee, & Beer, 2018). In particular, due to their 

functional connectivity profiles with other vestibular key regions areas hVIP and the dMFC 

are likely to play a role in vestibular processing. Moreover, these areas are not only part of the 

human cortical vestibular system but also form a functional network for spatial attention and 

decision making (Corbetta & Shulman, 2002, 2011; Hanks & Summerfield, 2017) and are of a 

highly multisensory nature (Brandt, Strupp, & Dieterich, 2014; Dieterich & Brandt, 2015, 

2018). Therefore, it seems plausible that manipulation of activity within these areas, for 

example by means of non-invasive brain stimulation, could modulate vestibular-related 

perception. The studies of the present thesis aimed to shed more light on this question. To that 

end, effects of parietal (hVIP) and frontal (dMFC) brain stimulation on a fundamental 

vestibular-related perceptual process - verticality perception - were examined. Studying 

verticality perception seems to be particularly suited for investigating the interplay of the 

vestibular and attentional systems as it has been shown to be related to both of these, which 

will be described more closely in the following section. 

 

 

1.3 The subjective visual vertical (SVV) 

 

A standard test within the clinical routine of vestibular patients is the examination of their 

verticality perception. It is assumed that precise and stable perception of verticality is 

dependent on incoming multisensory signals from the visual, somatosensory, postural motor, 

and vestibular systems (Baier & Dieterich, 2014; Utz et al., 2011). In order to reach a final 

percept of what is upright these signals need to be integrated into an internal model (Barra et 

al., 2010; Bonan et al., 2015; see Fig. 4). Verticality perception can be behaviorally analyzed 

in terms of the subjective visual vertical (SVV), which provides a measurement of the 
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deviation of the subjectively perceived vertical axis from the true physical vertical within the 

roll plane (Van Nechel et al., 2000). The SVV task typically requires participants to align a 

visually presented line until they perceive it as being upright or, in case of a 2AFC task 

version, to judge the tilt direction of a flashed line or Gabor patch (clockwise vs. 

counterclockwise tilt). Healthy participants can usually perform the SVV task effortlessly 

with an accuracy of < 2 - 2.5 degree (Brandt, Dieterich, & Danek, 1994; Lopez, Lacour, 

Ahmadi, Magnan, & Borel, 2007), whereas patients suffering from injury to the either 

peripheral or central nervous structures can show severe pathological tilts in this task (Brandt 

et al., 1994; Brandt & Dieterich, 1994; Yelnik et al., 2002). These deviations in SVV can be 

due to impairments regarding initial verticality perception stages, during which the different 

sensory inputs are processed separately, as well as from the ensuing multimodal comparison 

and integration steps of those inputs (Van Nechel et al., 2000). 

 

 
 

Figure 4: Model of verticality representation (from Barra et al., 2012). The final verticality/SVV 

percept is determined by bottom-up sensory and motor information and the influence of top-down 

processes from cognitive systems. 

 

 

Human imaging and lesion studies suggest that there is no key brain region for the required 

integration of the different sensory input sources (Baier, Suchan, Karnath, & Dieterich, 2012). 
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Rather, several central multisensory brain areas such as the posterolateral thalamus (Barra et 

al., 2010; Brandt & Dieterich, 1994), posterior insula (Brandt et al., 1994), temporal gyrus 

(Rousseaux et al., 2015), and right parietal cortex (Baier et al., 2012; Darling, Pizzimenti, & 

Rizzo, 2003) seem to contribute to this process and have been suggested to form a large 

network responsible for verticality perception with dominant contributions coming from 

vestibular structures (Baier & Dieterich, 2014; Van Nechel et al., 2000). Accordingly, brain 

injury to a number of subcortical and cortical areas including a range of (predominantly right-

hemispheric) parietal regions can lead to pronounced tilts of the SVV. These tilts can remain 

unrecognized by the affected patients (Kerkhoff & Zoelch, 1998) despite the fact that they 

severely impair balance and gait ability and correlate with subjective vestibular disability 

(Bonan et al., 2007; Pérennou et al., 2008). Furthermore, they are associated with distinct 

postural disorders such as lateropulsion and pusher syndrome (for a review see Pérennou et 

al., 2014). Notably, the precise location of the lesion is important for determining both the 

direction of the tilt as well as its degree (Brandt & Dieterich, 1994). Specifically, it has been 

shown that lesions involving structures of the right hemisphere cause more severe tilts of the 

SVV as opposed to left-hemispheric lesions, pointing to a dominance of the right hemisphere 

in verticality perception (Baier et al., 2012; Baier & Dieterich, 2014) comparable to the earlier 

described right hemispheric dominance regarding vestibular processing in general as well as 

in spatial attention. 

Several studies (e.g. Bonan, Leman, Legargasson, Guichard, & Yelnik, 2006; Kerkhoff & 

Zoelch, 1998; Utz et al., 2011) have suggested a close relationship between verticality 

perception and visuo-spatial attentional performance. Stroke patients suffering from neglect 

demonstrate a more severe tilt of the SVV than stroke patients without neglect symptoms 

(Bonan et al., 2006; Saj, Honoré, Bernati, Coello, & Rousseaux, 2005). Likewise, postural 

disorders due to impaired verticality perception have been associated with neglect (Honoré et 

al., 2009). Verticality perception depends not only on bottom-up influences and low-level 

interactions between visuo-spatial and vestibular processes (see Fig. 4; Barra et al., 2012; 

Clément et al., 2009) but also on the creation of an internal model of one’s environment, 

which in turn relies on directions given from both ego- and allocentric reference frames 

(Barra et al., 2010). Parietal neurons have been found to be crucial for the formation of those 

reference frames (Barra et al., 2010; Borel, Lopez, Péruch, & Lacour, 2008; Pouget & 
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Sejnowski, 2001) as they are involved in the remapping and spatial transformation of 

coordinates coming from different sensory modalities (Sereno & Huang, 2014). In accordance 

with this, lesions studies in neglect patients suggest that the integration of egocentric and 

allocentric coordinate information is achieved within a parieto-temporal-occipital network 

including the IPS (Chechlacz et al., 2010). Similarly, in a study on the influences of top-down 

cognitive factors on verticality perception it was found that parietal neurons along the IPS are 

critical for becoming aware of the position of one’s own body in space and, in turn, for 

successful SVV estimates (Barra et al., 2012). 

Again, as a further link between spatial attention and verticality perception, neglect can occur 

within different reference frames depending on the exact site and size of the brain lesion 

(Chechlacz et al., 2010; Doricchi & Galati, 2000; Driver & Pouget, 2000; Olson, 2003) and 

also the SVV can be distorted with respect to different modalities such as the visual, haptic, 

and postural domain (Pérennou et al., 2014). Furthermore, such distortions were found to be 

associated with each other and dependent on neglect severity (Kerkhoff, 1999; Perennou et 

al., 2008). This might be attributed to the multisensory quality of neurons of core parts of the 

human cortical vestibular network, which process vestibular information arriving from the 

peripheral vestibular organs and at the same time respond to somatosensory, optokinetic, 

and/or visual information (Baier & Dieterich, 2014; Karnath & Dieterich, 2006). As already 

mentioned above, successful verticality perception (like spatial attention and perceptual 

decision making) relies on the successful integration of information coming from different 

sensory modalities, which consequently might also be achieved by such a “multisensory 

vestibular cortex” (Baier & Dieterich, 2014; Darling et al., 2003), including dorsal parietal 

regions such as the IPS (Karnath & Dieterich, 2006) or the ventral intraparietal area (VIP) in 

the fundus of the IPS (Bremmer et al., 2002; Chen et al., 2011).  

Considering all these similarities and links between spatial attention and verticality 

perception, it is feasible that spatial attention interacts with the integration of vestibular inputs 

with information from other sensory domains required for perceptual decision of what is 

upright, such as vision. This question was addressed in the two studies presented in this thesis 

by means of 2AFC paradigms using SVV stimuli. In addition, in order to be able to not only 

draw correlative conclusions about the relation between spatial attention, perceptual decision 

making and vestibular processing, but to further investigate the causal role of specific parietal 
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and frontal regions in vestibular perception, these SVV paradigms were combined with a 

neuroscientific research tool that allows establishing causal brain-behavior relationships: 

transcranial magnetic stimulation (TMS). 

 

 

1.4 Fundamentals of TMS-EEG 

 

a. TMS 

 

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique. In the 

1870s it was reported that current applied to the open brain led to action potentials in the 

human cortex (Fritsch & Hitzig, 1870). A century later, it became possible to evoke 

contractions of arm and hand muscles by means of brain stimulation through the intact scull, 

without the participant reporting any pain (Barker et al., 1985). This was achieved by TMS. 

Since then, TMS has become an increasingly popular neuroscientific method for manipulating 

cortical activity in humans (Hallett, 2007; Pascual-Leone, 2000; Walsh & Cowey, 2000). 

Magnetic stimulation is based on the principle of electromagnetic induction (see Fig. 5). 

During discharge a transient magnetic field is created around the TMS coil, which is 

positioned on the head. The magnetic field is proportional to the current intensity and induces 

an electrical field perpendicular to it for about 100-200µs. When the magnetic field within the 

coil builds up and decays again, an electric current is induced, which is used for stimulating 

cortical areas located beneath the coil through the intact scalp (Ruohonen & Ilmoniemi, 

2002). Depending on the orientation of the electrical field with respect to the neuronal 

membrane, its intensity and its duration, the pulse either depolarizes or hyperpolarizes the 

stimulated cortical neurons (Siebner & Ziemann, 2007). Nerve cells located at superficial 

cortical layers are more amenable to this type of stimulation than cells from lower structures 

as the strength of the magnetic field decays quadratically with increasing distance to the coil 

(Ridding & Rothwell, 2007). Generally, the depth range of a standard TMS coil is about 1-6 

cm at maximum intensity (Hess et al., 1987). Despite the produced magnetic fields being very 

focal in contrast to other, more direct brain stimulation techniques (e.g. microstimulation), 

TMS allows the stimulation of networks of neurons but not of single cells alone. Moreover, 
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varying orientation, position or material of the coil have been shown to have significant 

effects on the spatial resolution of TMS and thus, need to be carefully taken into consideration 

when designing TMS experiments (Stokes et al., 2005).  

 

 
Figure 5: Physics of TMS (adopted from Ridding & Rothwell, 2007). 

 

 

Neuroscientific research can benefit greatly from TMS as it helps to overcome a limitation of 

many of today’s neuroscientific research techniques (e.g. fMRI, EEG, PET), which is that 

those methods are only able to make inferences about the correlation between the activity of a 

certain brain area and a cognitive function. By contrast, TMS can be used to establish causal 

brain-behavior relationships as it selectively activates or deactivates neurons of the stimulated 

brain area. This possibility to induce temporary activity changes within roughly delimited 

brain regions in participants by means of TMS allows the study of the causal role of specific 

brain regions in different cognitive processes and behavior. By investigating the effects of 

stimulation of a particular brain region on certain aspects of behavior (e.g. reaction times or 

accuracy) sensory and higher brain functions can be mapped. For instance, TMS has been 

used to identify functional specialization of brain areas with respect to distinct attentional 

functions (Walsh & Cowey, 2000) and to examine attentional competition between 

hemispheres or within specific brain areas (Dambeck et al., 2006; Walsh et al., 1998). In 

addition, there is growing interest in the clinical use of TMS for the treatment of different 
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neurological and psychiatric patient groups, as well as for the diagnostics of movement 

disorders and central motor pathways (Ziemann, 2017).  

TMS has been used to study both verticality perception as well as perceptual decision making. 

It has been shown that offline theta-burst stimulation to specific parts of the parietal cortex, 

such as the supramarginal gyrus (Kheradmand et al., 2015), superior parietal lobule (Lester & 

Dassonville, 2014), or the temporo-parietal junction (TPJ; Fiori et al., 2015) can induce 

significant transient deviations of SVV biases in healthy participants. Likewise, shifts in 

verticality perception biases following transcranial direct current stimulation of the TPJ have 

been reported (Santos et al., 2018; Santos-Pontelli et al., 2016). However, such shifts could 

only be reported under conditions where the participants’ SVV was already biased due to e.g. 

tilted head positions (Kheradmand et al., 2015) or rod-and-frame effects (Lester & 

Dassonville, 2014) or when SVV tasks were used that required participants to verbally 

instruct an examiner to align a test line to the perceived vertical (Fiori et al., 2015; Santos et 

al., 2018; Santos-Pontelli et al., 2016). In the latter case it cannot be ruled out that the 

respective stimulation effects did not only emerge from modulated perceptual processes 

related to verticality perception but potentially also from altered processing at other stages. 

Moreover, all mentioned earlier studies used offline stimulation protocols. In contrast, in 

study 1 of this thesis, SVV performance was measured during ongoing brain stimulation in 

order to investigate immediate effects on brain activity and the relationship to behavior. 

Moreover, this study was the first to combine brain stimulation with concurrent brain imaging 

(using EEG) during a SVV task, which allowed to not only assess behavioral consequences of 

the stimulation, but in addition to examine associated effects on brain activity patterns.  

With respect to perceptual decision making, non-invasive brain stimulation work has mainly 

focused on stimulation of the frontal cortex. In a recent TMS study it has been shown that 

stimulation of the preSMA within the dMFC modulated decision thresholds (Berkay et al., 

2018). These findings were in line with earlier work that in addition reported an accuracy bias 

associated with increased decision thresholds due to preSMA inhibition induced by means of 

TMS (Tosun et al., 2017). Thus, TMS can be used to modulate perceptual decision making 

performance. Moreover, these studies point to a role of the dMFC in response selection during 

perceptual decision making. A row of earlier brain stimulation work has indicated that the 

dMFC might, however, not only be involved in response selection in general. Rather it seems 
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that it selectively plays a role in conditions where not only response conflicts occur but where 

at the same time perceptual selection demands are high (Becker et al., 2014; Duque et al., 

2013; Taylor et al., 2007). Using a visuo-motor task in combination with TMS stimulation of 

the dMFC and primary motor cortex (M1) it has been reported that dMFC stimulation 

affected M1 activity and in turn response switching. Again, this could however only be found 

when perceptual demands were high (Duque et al., 2013), suggesting that the dMFC is 

particularly involved in perceptual decision making when perceptual processing is difficult. In 

accordance with that, effects of dMFC TMS on motor cortex activity under conditions where 

action reprogramming was required have been described (Mars et al., 2009; Neubert et al., 

2010). To what extent the dMFC contributes to perceptual decision making in a visual-

vestibular context (such as during verticality judgments) has, however, not been investigated 

so far. Study 2 of this thesis aimed at shedding more light on this question by applying dMFC 

TMS during a SVV task of varying levels of perceptual demand. 

Although TMS offers important advantages over other neuroscientific methods it also has 

limitations. While TMS can be used to draw conclusions about even subtle changes in 

behavior caused by altered cortical activity following the stimulation, the temporal patterns of 

the induced alterations of cognitive processes cannot be inferred from it. Moreover, potential 

spreads of activity modulation from the targeted stimulation areas to other brain regions 

cannot be studied using TMS alone (Sack & Linden, 2003). In order to overcome these 

drawbacks TMS has to be combined with other neuroimaging methods such as PET or fMRI 

(Bestmann et al., 2004; Fox et al., 1997; Paus et al., 1997; Sack & Linden, 2003) or, 

particularly if the temporal dynamics of the stimulation effects are of interest, with 

electroencephalography (EEG) (Bestmann & Feredoes, 2013; Miniussi & Thut, 2010; Taylor, 

2018; Taylor & Thut, 2012; Taylor, Walsh, & Eimer, 2008). 

 

 

b. EEG 

 

Cognitive processing is determined by several subcomponents within the processing stream. 

In order to disentangle those components, neuroscientific methods providing high temporal 

resolution are required. Recording electrical activity of the cerebral cortex by means of 
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electroencephalography (EEG) offers this ability. By placing multiple electrodes along the 

scalp surface cortical activity related to neurophysiologically separate processing stages 

(ranging from early sensory processing to the motor output) can be measured on a millisecond 

scale (Luck, 2005). The EEG recording reflects electrical signals which are generated by 

simultaneous postsynaptic activity of firing neurons (Peterson et al., 1995). By averaging 

across voltage deflections of these signals locked to specific time points or events (such as the 

presentation of a stimulus), so called event-related potentials (ERPs) can be derived. By this 

means, a number of ERP components have been linked to different sensory, cognitive and 

motor processes. Apart from the time-locked ERPs another way to associate cognitive 

processes with brain activity patterns using EEG is to analyze oscillations of the EEG signal. 

Similar to ERPs, in the past almost every cognitive process has been related to either an 

event-related EEG oscillation or oscillation at rest (Herrmann et al., 2016). Comparing 

different properties of ERPs or oscillations (e.g. amplitude, latency or topography across the 

scalp) across different tasks, populations, or time points allows investigation of the 

neurophysiological mechanisms related to the processing of particular stimuli with a high 

temporal resolution. This has contributed greatly to a better understanding of the (particularly 

temporal) link between brain activity patterns and various behavioral functions. However, 

although several source localization techniques have been developed over the years, the exact 

intracranial source of a scalp-recorded EEG signal cannot be determined solely based on EEG 

data. Moreover, in contrast to TMS, EEG data are not suitable for deriving causal structure-

function relationships but can only provide correlative information. Combining EEG 

measurements with TMS can thus offer substantial advantages for investigating causal 

involvements of brain regions in behavior and cognition, which will be discussed in the 

following section of this thesis. 

 

 

c. TMS-EEG 

 

As described earlier, TMS offers the advantage to infer causality between brain structure and 

behavior. However, it does not allow the identification of cortical responses to the stimulation 

and cannot show potential activation spread from the stimulated area to other brain regions, 
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especially if those are not accessible for TMS (e.g. if they are located too deeply within the 

brain). By comparison, EEG offers insights into temporal dynamics of different stages of 

processing which are, however, only of a correlational nature. By combining TMS with 

concurrent EEG recordings of brain activity the limitations of both of these two methods can 

be overcome and valuable causal information about the timing of the interaction of activity in 

different cortical areas can be gained. The integration of the temporally and focally precise 

TMS stimulation with the high temporal resolution of EEG reveals information about both the 

activation sequence of cortical regions and their causal involvement in behavior. Recent 

technical developments have made the (online) combination of TMS-EEG possible by 

offering TMS compatible EEG electrodes. Beyond that, combined TMS-EEG presents the 

challenge of artefacts in the EEG, observed shortly following the pulses. These result from the 

electromagnetic discharges from the TMS coil and are several fold larger than the actual EEG 

potentials (Ilmoniemi et al., 1997). Recent technical and scientific developments have offered 

several hard- and software solutions to overcome this problem, such as adapted EEG 

amplifiers or offline artifact removal methods (Daskalakis et al., 2012; Hill et al., 2016). 

Due to this methodological progress TMS-EEG can be used to study several neuroscientific 

questions: modulations of the electrophysiological response of a cortical area following the 

stimulation (so called TMS-evoked potentials, TEPs), alterations of ongoing rhythmic brain 

activity (oscillations) due to the stimulation and causal consequences for behavior, and TMS 

induced modulation of functional cortical networks. Thus, TMS-EEG provides the 

opportunity to causally assess functional dynamics of the neurophysiological state of the 

cortex and the associated effects on behavior. TMS-EEG has been quiet intensively used for 

studying visual attention (Taylor & Thut, 2012). However, although there is growing interest 

in investigating vestibular processing using TMS or other non-invasive brain stimulation 

techniques there is, so far, hardly any work that combines brain stimulation with imaging 

methods, let alone EEG (Ertl & Boegle, 2019). One exception is the first study presented in 

the present thesis (chapter 2.1) which applied a TMS-EEG paradigm in order to study the 

causal role of the IPS within the dorsal parietal cortex in verticality judgments, on both 

behavioral and neurophysiological levels. 
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1.5 Aims of the present thesis 

 

This thesis comprises two experimental studies that aim to investigate the interplay between 

the vestibular, (spatial) attention, and perceptual decision making systems. To that end, 

distinct features of verticality perception assessed by means of 2AFC SVV paradigms were 

examined.  

The first study (chapter 2.1) was concerned with the role of the right IPS in verticality 

judgments. As described earlier this area has been related to spatial attention, vestibular 

processing, and multisensory integration and is therefore likely to play an essential role in 

verticality perception. Although earlier work has reported detrimental effects of TMS 

stimulation on SVV performance in healthy participants (Fiori et al., 2015; Kheradmand et al., 

2015; Otero-Millan et al., 2018), modulation of IPS activity by means of online TMS as 

applied in this study was not previously found to result in increased SVV biases. By contrast 

here a facilitatory effect of the stimulation was expected as 1) in lesion studies examining 

patients with pathological SVV deviations the IPS does not usually show up, 2) the mentioned 

previous studies stimulated areas located much more ventrally, and 3) parietal TMS has been 

shown to reduce the inhibition of other sensory and cognitive processes which normally occur 

due to parietal activity, in this way leading to so-called “paradoxical facilitation” of 

behavioural performance (Corbetta & Shulman, 2011; Duecker & Sack, 2015; Hilgetag, 

Théoret, & Pascual-Leone, 2001). In addition, in order to draw conclusions about the timing 

of potential TMS effects on behavioural performance and to study electrophysiological 

modulations of cortical activity following the stimulation, concurrent EEG was applied. 

In the second study (chapter 2.2) highly similar SVV stimuli were used to establish a possible 

link between vestibular processing and perceptual decision making. EEG analysis of the first 

study revealed effects over midline frontal electrodes related to individual SVV biases and 

demonstrated the importance of taking resting baseline SVV biases into account when 

examining TMS effects on verticality perception. In line with that, the second study employed 

an offline theta-burst protocol to the dorsal medial frontal cortex (dMFC), a cortical area that 

has been associated with perceptual decision making in general and uncertainty of perceptual 

decisions in particular (Berkay et al., 2018; Tosun et al., 2017). Moreover, the dMFC is 

closely connected to core vestibular areas (Baier et al., 2012; Keuken et al., 2014; Neubert, 
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Mars, Buch, Olivier, & Rushworth, 2010; Swann et al., 2012; Weigard, Beltz, Reddy, & 

Wilson, 2019) and has been associated with postural ability (Schöberl et al., 2017) and 

vestibular information processing (Fasold et al., 2002). The same SVV task as in the first 

study was used to classify participants based on their resting SVV bias. In addition, in order to 

vary perceptual and attentional demands, SVV judgments had to be made in a visual search 

setting that encompassed different levels of perceptual and response demands.  
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2 Projects 
	
 

The following chapter contains two original studies: One peer-reviewed, published study 

(chapter 2.1) and one manuscript submitted for publication (chapter 2.2).  
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2.1 Project 1: Egocentric processing in the roll plane and dorsal parietal cortex: A TMS-
ERP study of the subjective visual vertical. 

 

This study has been published as Willacker, L., Dowsett, J., Dieterich, M., & Taylor, P.C.J. 
(2019). Egocentric processing in the roll plane and dorsal parietal cortex: A TMS-ERP study 
of the subjective visual vertical. Neuropsychologia, 127, 113-122. 

 

Author contributions: 

Lina Willacker and Paul C.J. Taylor conceived the experiment. Lina Willacker and James 
Dowsett programmed the experiment. Lina Willacker collected the data and analyzed the data 
with help of James Dowsett. Lina Willacker wrote the paper, which was commented and 
revised by Paul C.J. Taylor and Marianne Dieterich. Lina Willacker is the only first author of 
this paper. 
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Egocentric processing in the roll plane and dorsal parietal cortex: A TMS-
ERP study of the subjective visual vertical
Lina Willackera,b,c,∗, James Dowsetta,b, Marianne Dietericha,b,c,d, Paul C.J. Taylora,b,c
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A R T I C L E I N F O

Keywords:
Subjective visual vertical
TMS-EEG
Intraparietal sulcus
Visual-vestibular interaction

A B S T R A C T

The intraparietal sulcus within the dorsal right posterior parietal cortex is associated with spatial orientation and
attention in relation to egocentric reference frames, such as left or right hemifield. It remains unclear whether it
plays a causal role in the human in the roll plane (i.e. when visual stimuli are tilted clockwise or anticlockwise)
which this is an important aspect of egocentric visual processing with clinical relevance in vestibular disorders.
The subjective visual vertical (SVV) task measures the deviation between an individual's subjective vertical
perception and the veridical vertical, involves the integration of visual, and vestibular information, and relies on
a distributed network of multisensory regions that shows right lateralization and inter-areal inhibition. This
study used combined TMS-EEG to investigate the role of the human dorsal parietal cortex in verticality per-
ception using the SVV task in darkness. Participants were sorted according to their baseline bias at this task i.e.
those with either a slight counterclockwise versus clockwise bias when judging a line to be truly vertical. Right
parietal TMS facilitated verticality perception, reducing the difference between groups. ERPs suggested that the
behavioral TMS effect occurred through normalizing individual SVV biases, evident frontally and late in the trial,
and which was abolished after right parietal TMS. Effects were site and task specific, shown with a homologous
left hemisphere control, and a landmark task performed on the same stimuli. These results support a right
lateralization of visual-vestibular cognition and a distinct representation of the roll plane for egocentric pro-
cessing in dorsal parietal cortex.

1. Introduction

Posterior parietal cortex has been associated with the co-ordination
between different sensorimotor representations. Transforming one re-
ference frame into another allows, for example, relating visual in-
formation to that from other systems. Verticality perception (e.g. dis-
criminating the orientation of a line tilted off-vertical, a common
psychophysical task) relies on afferent information coming from visual,
somatosensory, and vestibular systems (Brandt and Dieterich, 2017; Utz
et al., 2011), which need to be integrated into an internal model (Barra
et al., 2010; Bonan et al., 2015). Behaviorally, verticality perception
can be assessed by means of the subjective visual vertical (SVV) task, a
measurement of the deviation of the perceived vertical axis from the
physical vertical within the roll plane (Van Nechel et al., 2001). In the
SVV task the participant is asked to relate or align the orientation of an
external visual cue with their perception of what is upright. This task

engages the vestibular system, and indeed the SVV is used as a clinical
tool to measure disturbances within the vestibular system (e.g.
Dieterich and Brandt, 1993) as shown from converging evidence (re-
viewed in e.g. Dieterich and Brandt, 2015) ranging from patient lesion
(Baier et al., 2012a,b) to computational modelling studies (Glasauer
et al., 2018). The nature of any causal involvement of human dorsal
parietal areas in SVV however remains unclear, but would be in
agreement with the finding that a large number of parietal neurons are
sensitive to stimuli from different sensory modalities (e.g. Pouget and
Driver, 2000) and are involved in integrating them (Bremmer et al.,
1997).

Interactions between different sensory signals are found at a neural
level in the intraparietal sulcus (IPS, Duhamel et al., 1998) – an es-
sential cortical structure for the processing of vestibular information
(Göttlich et al., 2014; Grefkes and Fink, 2005; Karnath and Dieterich,
2006) comprising neurons which are involved in the perception of axis
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orientation in three-dimensional space (Sakata et al., 1997) and in-
cluding the macaque ventral intraparietal area (VIP) in the IPS fundus
(Bremmer et al., 2002; Chen et al., 2011; Laurens et al., 2017). TMS of
medial parietal regions at alpha-frequency (10 Hz) can bias processing
in different modalities and it has been postulated that this frequency
may be important for VIP contributions to multimodal processing (Heed
et al., 2015). Studies that have targeted a human analogue of VIP with
TMS have found effects indicative of multisensory processing (Konen
and Haggard, 2014) and on postural sway, suggesting a vestibular role
(Kaulmann et al., 2017).

Interference to parietal cortex has been modelled in terms of dis-
inhibition, whereby the parietal cortex normally inhibits or competes
with other processes. If parietal disinhibition is reduced by stimulation
or lesions, this leads to so-called “paradoxical facilitation” (Corbetta
and Shulman, 2011; Duecker and Sack, 2015; Hilgetag et al., 2001;
Kinsbourne, 1977). Reciprocal inhibition between sensory systems, in
particular between visual and vestibular systems, may be key to un-
derstanding not only vestibular function but also dysfunction (Brandt
et al., 2012; Dieterich and Brandt, 2015) such as the enhanced visual
activation after vestibular failure (Dieterich et al., 2007), or the deac-
tivations in vestibular cortex during visually induced self-motion per-
ception (Brandt et al., 1998), attenuating the sensory consequences of
action within a predictive coding framework (Klingner et al., 2016).
The current study attempts to combine the parietal and visual-vestib-
ular inhibition accounts, to investigate the role of dorsal parietal cortex
in verticality judgments. To this end, a combined TMS-EEG SVV para-
digm is used to investigate the causal contribution of the human dorsal
parietal cortex in verticality perception. We report evidence for ego-
centric roll-plane specific processing from a right-lateralised network
that normally finds balance between visual and vestibular systems
(Brandt and Dieterich, 2017). It was hypothesised here that disrupting
visual processing through parietal TMS would lead to facilitation of
vestibular processing, improving performance at the SVV task (through
paradoxical facilitation). Whereas normally participants would be ex-
pected to show inaccuracies (biases) at this task at baseline, these biases
would be reduced by TMS. A control task was used to test whether any
effects were specific to processing in the roll plane, a control site (left
hemisphere stimulation) to rule out for non-specific effects of TMS, and
online ERP was used to measure whether the effects of TMS included
aspects of processing that were normally modulated in cognition
without stimulation. By contrast, previous studies have found TMS to
increase the SVV tilt away from the stimulated side by disrupting much
more ventral areas, which show up in lesion analysis in patients with
abnormal SVV (Baier et al., 2012; Barra et al., 2010; Brandt and
Dieterich, 2017; Perennou et al., 2014). IPS does not usually show up in
these lesion analyses despite being associated with the processes in-
volving egocentric spatial cognition, visual-vestibular processing and
spatial attention (e.g. Duhamel et al., 1998; Konen and Haggard, 2014;
Laurens et al., 2017). Accordingly, IPS TMS then here was not expected
to lead to abnormal SVV tilt in one direction, but rather to facilitate
performance when visual information had to be processed in the ego-
centric roll plane.

2. Materials and methods

2.1. Participants

32 healthy right-handed (Oldfield, 1971; Salmaso and Longoni,
1985) participants (16 males, mean age: 27.4 ± 0.9 years) took part in
the study. This sample size was chosen to facilitate reliability of the
grand averages after splitting the participants into two groups ac-
cording to SVV bias (see below). All participants had normal or cor-
rected-to-normal vision. Participants had no history of vestibular
symptoms, nor of any neurological disorders, and all baseline SVV
measurements (see below) were within the normal range (−2° to +2°).
Written informed consent according to established safety guidelines for

TMS research (Rossi et al., 2009; Wassermann, 1998) was obtained
from all participants and the study was approved by the ethics com-
mittee of the medical faculty of the Ludwig Maximilian University of
Munich. Participants received either 10€ per hour or course credits for
participation.

2.2. TMS

TMS was delivered using a MagPro ×100 machine (Magventure,
Denmark) with a figure-of-eight coil (MCF-B70, outer winding dia-
meter: 97 mm). In the TMS blocks repetitive trains of 6 pulses were
applied on every trial starting at visual stimulus offset, with a frequency
of 10 Hz and an intensity of 110% of the individual active motor
threshold (mean intensity: 48% ± 1% of maximal stimulator output).
The TMS coil was held by the experimenter with the handle pointing
backwards. The target sites were defined anatomically based on in-
dividual structural 3T MRI scans as the point on the intraparietal sulcus
nearest the dorsal tip of the suprmarginal gyrus. This region is com-
parable to the most dorsal (and TMS-accessible) part of a large visual-
vestibular region shown in recent fMRI and DTI studies to extend from
there into the intraparietal sulcus where it includes a suggested po-
tential human homologue of monkey VIP (Frank et al., 2016; Smith
et al., 2017). TMS sites were marked on each participant's structural
MRI scan using infrared stereotactic registration (Brainsight, Rogue
Research, Canada), and converted into MNI space (mean MNI (x,y,z)
coordinates of right parietal sites: 45, −40, 56; the homologous left
hemispheric control site: 41, −48, 55; Fig. 1A). Note that inter-
individual variability in the position of the suparmarginal gyrus in
standard (MNI) space on an average reference brain leads to some
spread within the cluster of TMS sites: the variability here corresponds
well with reported previously in the literature for gyral features (e.g.
Mayka et al., 2006). In addition, the target areas were marked on the
EEG cap and foam “bridges” (height: 10.5 mm) were glued around them
to prevent the TMS coil from touching the EEG electrodes.

2.3. Procedure

Stimuli were presented on a 55.8 cm LCD PC screen (1680× 1050
pixel resolution) with a refresh rate of 60 Hz. Participants viewed the
display from a distance of 50 cm with their chin resting on a chin rest
and their eye level aligned with the center of the screen. The edges of
the screen were covered by a black paper circular cut-out of 28 cm
diameter, and all testing was conducted in an extremely darkened
room, to eliminate visual environmental cues about verticality. At the
beginning of each trial a white central fixation dot appeared for
1000ms on black background (Fig. 1C). Participants were instructed to
fixate this dot throughout the whole trial. Following that, the target
stimulus (a white line) was presented in addition to the fixation dot for
100ms. During the Subjective Visual Vertical (SVV) blocks the task was
to indicate whether the flashed line was tilted in a counterclockwise
(CCW) or clockwise direction (CW) relative to true vertical. During the
Landmark blocks participants had to decide whether the fixation dot
was located within the upper or lower half of the line. Participants were
instructed to respond as quickly and accurately as possible via button
presses with a custom-built response box using their right hand. An
index finger response was required if the line was perceived as being
tilted counterclockwise or if the dot was in the upper half of the line,
while a middle finger press indicated a clockwise tilt or that the dot was
in the lower half. After offset of the visual line stimulus, the central
fixation dot remained on the screen for 1000ms and, during TMS
blocks, six TMS pulses were delivered at 10 Hz starting immediately at
visual stimulus offset i.e. 100ms after visual stimulus onset. At the end
of each trial the fixation dot disappeared and the screen stayed blank
for a random interval of 2000–3000ms. In total, participants performed
six 5-min blocks of 60 trials (three SVV blocks and three Landmark
blocks, each with one of the three TMS conditions (no TMS, left or
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right) with block order counterbalanced between participants). Resting
EEG was measured during 2min central fixation blocks performed at
the start, middle and end of the whole experiment (part of a separate
ongoing study gathering participants' resting EEG).

2.4. Stimuli

Stimuli consisted of a straight, white line presented on a black
background. The central fixation point (diameter 0.6°) became black
when the line was flashed on top of it (so that the dot was still visible).
Lines were 23.2° of visual angle long and 1.2° wide. To prevent the
jagged edges which normally occur when near-vertical lines are pre-
sented on a conventional computer monitor, the edge of the lines were
blurred. Dot position remained central and line length remained con-
stant. Critically, both line orientation and vertical position were varied
across all trials. The orientation of the line within the roll plane could
deviate± 2° from the vertical, in steps of 0.17°, omitting true vertical
(0°) trials as has been done previously (Lopez et al., 2011) to prevent

additional confounds where exactly vertical stimuli can evoke higher
neural responses than tilted stimuli. In addition to the tilt angle of the
line, the ratio between the length of the upper and lower part of the line
was varied across all trials over a range of a ratio between 0.8 and 1.1
(i.e. maximal length upper part= 10.4° visual angle and length lower
part= 13.1° visual angle or vice versa; step size: 0.14°). Again, the top
and bottom parts of the line were never of equal length, as with the
orientation manipulation. For each participant a set of 60 randomly
combined tilt angle-bisection ratio lines was generated. The same set of
lines was presented on each block but in a random order. Each block
contained 60 trials (30 CW and 30 CCW tilts combined with 30 upward
and 30 downward bisections).

2.5. EEG

EEG was recorded continuously with a BrainAmp DC amplifier
(Brain Products, Munich, Germany) from 64 passive Ag-AgCl elec-
trodes, with all online filters deactivated (no notch filter) and a sam-
pling rate of 1000 Hz and impedance maintained≤ 10 kΩ. Electrodes
were placed according to the 10-10 system, with a left earlobe active
reference and ground right behind FPz. hEOG used electrodes either
side of the right eye, vEOG was derived from an electrode below the
right eye and FP2.

2.6. Data analysis

2.6.1. Behavior
Psychometric fitting of the observed data was used to assess in-

dividual SVV and Landmark performance (Angelaki, 2014; Baccini
et al., 2014; Dyde et al., 2006; Foxe et al., 2003; Lopez et al., 2011). The
point of subjective equality (PSE, reflecting a participant's individual
SVV and Landmark bias) and the steepness of the slope of the sigmoid
(i.e. standard deviation of the curve, providing a measure of the par-
ticipant's discrimination threshold, thus reflecting response variability
or uncertainty) were derived. To allow for negative values in the
measurements (i.e. CCW and downward biases), absolute (i.e. un-
signed) differences of biases between pairs of TMS conditions were
computed (i.e. absolute difference right TMS minus no TMS, absolute
difference left TMS minus no TMS, and absolute difference right TMS
minus left TMS; Fiori et al., 2015; Funabashi et al., 2012;
Gnanasegaram et al., 2016). Trials containing reaction times less than
200ms or exceeding 2000ms were excluded from analysis.

2.6.2. EEG
Offline, data were re-referenced to the average of the left and right

earlobes. As TMS pulses create artefacts in the EEG signal, the signal
recorded during the TMS blocks within time bins of 50ms after the
pulses was replaced by a “straight line” between the preceding and
following data point in the time windows 100-150ms, 200-250ms,
300-350ms, 400-450ms, 500-550ms, and 600-650ms after line onset.
A high-pass filter (low cutoff: 0.01 Hz), followed by a notch filter
(50 Hz), and a low-pass filter (high cutoff: 40 Hz) were applied for all
blocks. All analyses were performed in Matlab using customized scripts
and the EEGLAB Toolbox (Delorme and Makeig, 2004). For ERP ana-
lyses the data was segmented into 600ms segments, ranging from
200ms before to 400ms after line onset. The signal was baseline cor-
rected to the 200ms before stimulus onset. Trials were excluded from
analysis if the vEOG or hEOG channel signal exceeded 160 μV, or if a
channel's signal range (i.e. maximum-minimum of the signal) exceeded
200 μV during the segment (Sawaki et al., 2015). If fewer than 30 ar-
tifact free trials per block were obtained for any electrode, it was re-
moved completely from all analysis in order to ensure a sufficiently
high signal-to-noise ratio of the ERP averages. Twelve channels were
accordingly excluded (F3, FCz, FC1, FC4, C1, C2, C3, CP1, CP2, CP3,
CP4, & P2). Note that our conservative TMS artifact removal procedure
ensures clean data by ignoring the signal for 50ms time windows after

Fig. 1. A: Location of the right parietal and left parietal TMS sites for all 32
participants, overlaid on a 3D reconstruction of the template 152-MNI brain
(peeling depth: 14mm). B: Location of the right parietal and left parietal TMS
sites for an example participant. C: Trial sequence. The target stimulus (a white
line) was flashed (100ms) on top of the fixation dot. The line was either tilted
CW or CCW and was shifted either upwards or downwards from the screen
center. After line offset participants received TMS either over their right or left
parietal cortices. During SVV blocks participants judged the tilt direction of the
line (left or right tilt), during Landmark blocks they indicated the position of the
fixation dot within the line (in upper or lower half of the line).
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each pulse.

2.6.3. Statistics
The level of significance was set to p≤ 0.05. When necessary for

non-normally distributed data, non-parametric tests were used. In case
of violation of sphericity, degrees of freedom in the ANOVAs were
adjusted by Greenhouse-Geisser corrections. Unless otherwise stated,
results are presented as mean ± standard error.

3. Results

3.1. Behavior

3.1.1. Subjective visual vertical
Participants performed the SVV task accurately (85.0%). At the

group level, mean SVV tilt (the tilt of a line judged to be vertical) was
almost perfectly unbiased (0.1 ± 0.1°) with a range of individual va-
lues (−1.0°–1.3°) falling within normal limits (approx. ∼2°, Brandt
et al., 1994; Lopez et al., 2007). No direction-dependent effects of TMS
were found i.e. neither TMS condition biased the group mean SVV tilt
either towards a more clockwise or more counterclockwise direction
(p=0.8: right TMS: 0.2° ± 0.1°, left TMS: 0.1° ± 0.1°). To test for any
direction-independent improvement of performance after TMS, such
that biased performance at baseline was corrected and became more
aligned with the true vertical, effects of TMS are scored as absolute (i.e.
unsigned) differences relative to no TMS within each participant
(Funabashi et al., 2012; Gnanasegaram et al., 2016). Improvements of
SVV bias occurred after TMS to either area (Fig. 2A, absolute difference
right TMS - no TMS: mean= 0.52°± 0.1°, absolute difference left TMS
- no TMS: mean= 0.35°± 0.1°). Importantly, right TMS improved in-
dividual SVV bias to a greater extent than left TMS, meaning this effect
is site-specific and not confounded by the general sensation of receiving
TMS, demonstrable statistically as the significant difference between
the two absolute differences from baseline (t(31)= 2.6, p < 0.05,
Cohen's d= 0.61; Fig. 2A) as well as the significant difference from 0 of
the absolute difference between right TMS and left TMS (t(31)= 6.0,
p < 0.01, Cohen's d= 1.1).

The participants were sorted into those with a resting clockwise or
counterclockwise bias (18 versus 14 respectively). We then tested
whether these two groups were still statistically different after TMS or
whether the TMS had acted to homogenize the group. The significant
interaction between SVV subgroup and TMS condition (F
(1.6,48.8)= 3.8, p= 0.04, eta2= 0.11; Fig. 2B), indicated that the
extent to which the participants could be grouped varied with TMS
condition. To specify how this varied with condition, we first found that
the two subgroups differed in their SVV biases at baseline i.e. without
TMS (t(30)=−7.8, p < 0.01). That was to be expected given that we
had grouped the participants according to their SVV bias, but demon-
strated that the difference was statistically significant. The two groups
were still dissociable with left TMS (t(30)=−3.1, p= 0.01). Criti-
cally, with right TMS the two subgroups' SVV biases were no longer
different (t(30)=−1.6, p= 0.12). This shows a normalizing effect
specifically of right TMS on verticality perception. The threshold or
certainty in SVV judgments was influenced by neither right TMS nor left
TMS as compared to baseline (Friedman's test: p= 0.14). Furthermore,
there was no interaction between SVV subgroup x TMS condition for
SVV thresholds (F(1.2,36.2)= 1.1, p=0.32).

3.1.2. Vertical landmark control task
Accuracy at the Landmark task was comparable to the SVV

(Landmark: 83.2%, SVV: 85.0%, Wilcoxon signed rank test: p= 0.70).
The group mean did not show any detectable upward or downward bias
(0.0° ± 0.1°, range=−0.8°–0.4°; p= 0.71), and this did not change
with TMS (right TMS: 0.0° ± 0.0°, left TMS: 0.0° ± 0.0°; p= 0.40).
Right TMS did not have any effect similar to that above indicating that
the role of this target site is specific to the SVV task: there was no

difference in performance during right TMS compared to left TMS
(absolute difference no TMS-right TMS vs. absolute difference no TMS-
left TMS: Wilcoxon signed-rank test: p= 0.22).

By contrast, for the Landmark task a baseline bias dependent effect
of left TMS rather than right TMS was observed (F(1.7,49.9)= 9.5,
p < 0.01, eta2= 0.24; Fig. 3A). When separating participants into
participants with an upward bias (n=15) versus a downward bias
(n= 17) the two subgroups differed in their biases during no TMS (t
(30)= 7.0, p < 0.01) and also during right TMS (t(30)= 3.5,
p < 0.01), but not during left TMS (t(30)= 1.3, p=0.19). As for the
SVV task this again suggested a normalizing TMS effect, in this case,
however, regarding the left as opposed to the right hemisphere. Note

Fig. 2. A: Absolute group differences between the two TMS conditions and
baseline (no TMS). B: SVV biases during the 3 TMS conditions depending on
SVV subgroup (counterclockwise CCW vs. clockwise CW baseline SVV bias). C:
Individual SVV biases during the right and left TMS condition for each parti-
cipant.
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that evidence for this unexpected effect is weaker than the association
between the right hemisphere and SVV in that the initial effect on ab-
solute differences (above) was lacking. Importantly, and independently
of any potential role of the left hemisphere in vertical landmark jud-
gements, this shows that the causal role of the right parietal site in
verticality judgments is task-specific.

To ensure that the effect of right TMS on SVV bias described earlier
was not a result of participants in either one of the two SVV subgroups
(clockwise vs. counterclockwise bias) being more strongly influenced
by right TMS on visuo-spatial tasks in general, a subsequent analysis
examined the relation between TMS effect and SVV subgroup in the
Landmark task. No such interaction between SVV subgroup x TMS
condition was found (F(1.5,44.9)= 0.2, p=0.77; Fig. 3B). This con-
firmed that the normalizing effect of right TMS was specifically linked
to the SVV task, whereas a significant interaction would have pointed
towards a more global effect of right TMS on visual processing in-
dependent of task. An ANOVA included performance for both tasks and
TMS stimulations sites together, and although it did not show effects of
tasks, TMS condition nor the interaction between the two (all p's >
0.05), the three way interaction was evident, supporting a task- and
group- and site-specific effect (F(2,60)= 3.6, p < 0.05, eta2= 0.11).
Neither right nor left TMS affected Landmark thresholds as compared to
baseline (Friedman's test: p= 0.14).

3.2. Reaction times

Reaction times in the baseline (no TMS) SVV condition (665ms ± 31)
were significantly faster than those in the baseline Landmark condition
(738ms ± 30; t(31)=−4.2, p < 0.01, Cohen's d=0.43). In contrast to
the described bias results, reaction time analysis did not reveal a hemi-
sphere and task specific TMS effect on SVV performance. In detail, TMS
speeded reaction times in both tasks (F(1.6,50.0)=9.4, p < 0.01,
eta2=0.23), however, there was no difference in reaction times between
the respective right TMS and left TMS conditions within each task (SVV:
right TMS: 593.01 ± 29.64ms, left TMS: 612.18ms ± 31.62ms, t
(31)=−1.2, p=0.23; Landmark: right TMS: 653.78ms ± 31.11ms,
left TMS: 670.96ms ± 34.73ms, t(31)= , p=0.51) with no interaction
between TMS condition and task (F(2,62)=0.2, p=0.84).

3.3. ERP results

3.3.1. SVV
In order to identify potential candidates for an ERP correlate of

baseline SVV bias a difference wave was formed comparing participants
with a clockwise minus counterclockwise baseline SVV bias. We
adopted a strategy suggested recently in the ERP community (Luck and
Gaspelin, 2017) to address the inherent statistical problems (e.g. mul-
tiple comparison correction) of testing for differences between condi-
tions in rich datasets with many time points and electrodes. The logic is
to perform two orthogonal analyses on different datasets. The first step
examined only noTMS data and explored at which electrodes and time-
bins the difference between subgroups is the largest. The second step
focuses on those electrodes and time-bins but this time only tests the
TMS data. The key test is whether subgroups still differ after TMS
within this time and area of interest.

The difference wave butterfly plot comprised 4 peaks or troughs.
The largest waveform difference between the two baseline SVV sub-
groups was found around electrode FC2 at time bin 280 - 300ms post-
stimulus (i.e. after line onset; Fig. 4A). Participants with a CCW baseline
SVV bias displayed significantly higher FC2 amplitudes than partici-
pants with a CW bias in this particular time bin (3.5 μV ± 1.5 μV vs.
−0.6 μV ± 1.2 μV; t(30)= 2.1, p=0.04, Cohen's d= 0.76).

For completeness another analysis checked whether participants
with a CW or CCW bias differed significantly in the ERP amplitude at
the other peaks or troughs in the difference wave: PO7 was tested at
100-130ms, CPz at 175–200ms and Oz at 250–270ms, but none of
these showed group differences (all p's≥ 0.05).

The effects of TMS on brain activity mirrored those on behavior:
consistent with the behavioral SVV results, TMS affected participants'
FC2 amplitudes differently depending on whether they showed a CW or
CCW baseline SVV bias (F(2,2)= 3.00, p= 0.06, eta2= 0.90; Fig. 5).
FC2 amplitude between the two SVV subgroups differed during no TMS
(t(30)= 2.1, p=0.04, Cohen's d= 0.76), marginally during left TMS
(t(30)= 1.9, p= 0.07, Cohen's d= 0.67), but showed no difference in
FC2 amplitude during right TMS (t(20.45)= 0.1, p=0.90), which
again pointed towards a normalizing effect of right TMS for the SVV
task.

3.3.2. Vertical landmark control task
This frontocentral signal which correlated with baseline SVV tilt,

and was affected by TMS in the same way as behavior, did not show any
such relation during the Landmark task. There was no difference in FC2
amplitude between participants with an upward vs. downward bias
during the Landmark task either without TMS or in either TMS condi-
tion (F(2,2)= 6.1, p < 0.01, eta2= 0.17; t-tests: all p's > 0.19;
Fig. 6B). The task and hemisphere specificity of the TMS effect on be-
havior was further supported by the finding that FC2 amplitudes during
the baseline Landmark block were independent of SVV baseline sub-
group (F(2,2)= 2.5, p=0.09; Fig. 6A). FC2 amplitudes were in general
significantly more positive for the SVV than compared to the Landmark
task (F(1,31)= 18.6, p < 0.01, eta2= 0.38; no TMS: t(31)= 3.6,
p < 0.01, Cohen's d= 0.44; right TMS: t(31)= 2.4, p= 0.02, Cohen's
d= 0.31; left TMS: t(31)= 2.2, p=0.03, Cohen's d= 0.22). Neither a
significant main effect of TMS condition (F(2,62)= 1.9, p=0.17) nor
an interaction between TMS condition and task was observed (F
(2,62)= 0.6, p= 0.54). Taken together these results emphasized that
the normalizing effect of right TMS on verticality perception was also
reflected at an electrophysiological level within 300ms after stimulus
onset over frontocentral cortex, and that this was strikingly similar in
pattern to the behavioral effect.

4. Discussion

This study tested whether right dorsal parietal cortex plays a causal
role in the neuronal implementation of verticality judgments, with the

Fig. 3. A: Average Landmark biases during the 3 TMS conditions depending on
Landmark subgroup (downward vs. upward baseline Landmark bias). B:
Average Landmark biases during the 3 TMS conditions depending on Landmark
subgroup (counterclockwise CCW vs. clockwise CW baseline SVV bias).
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SVV task, compared to a Landmark task, using a common set of stimuli
for both tasks. The results show that participants displayed an inherent
clockwise or counterclockwise SVV bias, as well as a vertical pseudo-
neglect during baseline. In line with the hypothesis, right parietal TMS
reduced the normal SVV bias, improving performance, such that par-
ticipants with a resting counterclockwise (CCW) or clockwise (CW) bias
were shifted towards the veridical vertical. In contrast, no such nor-
malizing effect of right parietal stimulation on Landmark biases was
observed.

Right parietal stimulation did not increase relative, but rather ab-
solute, SVV biases and thus, did not mimic pathology of the primary
vestibular system. Rather our results suggest that as part of a larger
vestibular network (Brandt and Dieterich, 2017) the right parietal
cortex is involved in visual cognition in a vestibular context. Specifi-
cally, this area may be necessary in situations when visual-vestibular
interactions are task-relevant, by guiding perception in a vestibular-
relevant reference frame, the roll plane: successful verticality percep-
tion relies on the integration of visual, vestibular, and somatosensory
signals and has been linked to spatial attention (Karnath and Dieterich,
2006). Likewise, the right IPS has repeatedly been associated with
multisensory integration (particularly of visual-vestibular signals) and
attention (Baier et al., 2012a,b; Darling et al., 2003) and has been
proposed as a possible interface between spatial orientation and spatial
attention (Agosta et al., 2014; Kerkhoff and Zoelch, 1998). Right

parietal TMS might change the weighting of the different sensory inputs
within the integration process by decreasing the relative weight of the
more uncertain information source and at the same time increasing the
weighting of more certain information. Thus, when interfering with
activity over the right parietal cortex, endogenous information sources
(i.e. vestibular information coming from the otoliths) which are used
for a representation of one's environment were boosted while exo-
genous (visual information) sources might have been downgraded
within the multisensory integration process (Dieterich and Brandt,
2015; Brandt et al., 2012; Klingner et al., 2016). To what extent the
effect of TMS on SVV bias depends on the individual relative de-
pendency on the different sensory signals and their weighting within in
the integration process should be addressed in future studies. Ad-
ditionally, the source of the interindividual variability in resting per-
ceptual bias in itself could be explored, for example by measuring in-
terindividual differences in the extent of particular cortical areas (e.g.
Schwarzkopf et al., 2010), or the structural and functional connectivity
between them (e.g. Barch et al., 2013). In general, our results empha-
sise the importance of taking inter-individual variability in individual
resting perceptual biases into account when studying verticality judg-
ments in healthy subjects, particularly in combination with brain sti-
mulation interventions (Thomas et al., 2017; Varnava et al., 2013).

The electrophysiological effects of TMS were consistent with the
behavioral pattern. Right TMS had a homogenizing effect on the late

Fig. 4. A: ERP difference waves comparing participants with a clockwise minus counterclockwise baseline SVV bias in their ERP amplitudes for all recording
electrodes and the corresponding topoplot at time point 280ms after stimulus onset obtained during the baseline (no TMS) SVV measurements. B: ERP difference
waves comparing participants with a clockwise minus counterclockwise baseline SVV bias in their ERP amplitudes for all recording electrodes and the corresponding
topoplot at time point 280ms after stimulus onset obtained during the baseline (no TMS) Landmark measurements.

L. Willacker, et al. 1HXURSV\FKRORJLD���������������²���

���



	 37	
	

Fig. 5. A: Mean frontocentral (electrode FC2)
ERP time series during the 3 SVV TMS condi-
tions for each SVV subgroup (counterclockwise
CCW vs. clockwise CW baseline SVV bias). Grey
bars indicate interpolation times of the TMS
pulses. B: Mean frontocentral (electrode FC2)
ERP amplitudes during the 3 SVV TMS condi-
tions depending on SVV subgroup (counter-
clockwise CCW vs. clockwise CW baseline SVV
bias).

Fig. 6. A: Mean frontocentral (electrode FC2) ERP
time series during the 3 Landmark TMS conditions
for each SVV subgroup (counterclockwise CCW vs.
clockwise CW baseline SVV bias). Grey bars indicate
interpolation times of the TMS pulses. B: Mean
frontocentral (electrode FC2) ERP amplitudes during
the 3 SVV TMS conditions depending on Landmark
subgroup (upward vs. downward baseline Landmark
bias).
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frontocentral ERP component related to verticality judgment, while this
same component was not altered by TMS regarding the Landmark task.
Thus, right parietal TMS did not only homogenize behavioral SVV
biases but also their related neuronal correlate in the ERP. This suggests
that the effect of TMS did not solely consist of completely artificial
effects produced by functionally irrelevant changes in brain activity
(Krakauer et al., 2017) but is an example of the use of ERP with TMS to
show that the effects at least included those modulated during normal
cognition (Taylor, 2018). The no TMS trials in this study were used to
split the participants into the two subgroups, and the left TMS trials
were in the design as a control condition. Comparing and contrasting
right TMS with left TMS allows controlling for the non-specific artefacts
of TMS such as the sound and tactile sensation of receiving stimulation.
The sole comparison between TMS and no TMS conditions was avoided
here because non-specific artefacts are not present in the noTMS con-
dition and so such differences could be attributable to these non-neural
confounds. The immediate spatial resolution of EEG does not favour
strong inferences regarding spatial localisation, but future work may
explore the localisation of this effect with other analysis techniques or
methods and whether it reflects operation of a fronto-parietal network.
Parietal TMS can lead to frontal activations as measured with fMRI in
spatial cognition tasks (Hill et al., 2017; Leitão et al., 2017; Sack, 2009).
Importantly, the right parietal TMS effect on SVV judgments was not
attributable to the sound or feel of TMS in general or a speed-accuracy
trade off. Furthermore, the reported double dissociation of the TMS
effect between the SVV and Landmark task confirms that our results do
not reflect a general spatial attentional effect in all axes (including up-
down), but are specifically associated with spatial biases in the roll
plane. The control analyses also excluded the possibility that the SVV-
specific right TMS effect was confounded by the way of grouping par-
ticipants into two SVV subgroups (e.g. with participants in one of the
two subgroups showing greater learning effects during the experiment,
or being more susceptible to TMS in general, etc.) as no SVV subgroup
dependent TMS effects on Landmark biases were reported. We also
found some evidence that left parietal TMS (the control site) affected
performance at the vertical landmark task (the control task), although
we emphasise that this is was not statistically as strong as the main
effect of right TMS on the SVV, and left parietal TMS effects at vi-
suospatial tasks are less common as a rule (Rushworth and Taylor,
2006). However some exceptions to this are that left parietal TMS af-
fects discrimination of the local, less salient stimulus in tasks requiring
ignoring a global form (Mevorach et al., 2005, 2009) and this is specific
to 10 Hz TMS as used here (Romei et al., 2012). Furthermore left PPC
TMS may be a good example of network TMS effects: left PPC TMS
compensates for right parietal damage (e.g. Agosta et al., 2014), and
furthermore left IPS TMS was found to affect the EEG microstate to-
pography only during a visuo-spatial and not a semantic task (Croce
et al., 2018). Left parietal repetitive TMS affects functional connectivity
across the dorsal attentional network (Battelli et al., 2017). Future work
will be necessary to disentangle which key aspects of the task or net-
work underlie this effect.

The right IPS has been suggested to be one of the main integrators of
visuo-spatial orientation and attention (Agosta et al., 2014; Kerkhoff
and Zoelch, 1998) and a core region for the integration of ego- and
allocentric information (Chechlacz et al., 2010; Galati et al., 2000), a
prerequisite for an optimal perception of verticality and orientation in
space (Barra et al., 2010; Karnath et al., 1996). Right hemispheric le-
sions cause more severe tilts of the SVV than left-hemispheric lesions,
pointing to a dominance of the right hemisphere in verticality percep-
tion (Brandt and Dieterich, 2017), similar to what has been described
regarding visuo-spatial attention. In line with that, several studies
suggested a close relationship between visuo-spatial performance and
verticality perception (Bonan et al., 2006; Kerkhoff and Zoelch, 1998),
indicating a potential interplay between visual cognition and vestibular
processing, as suggested from other brain stimulation studies looking at
this or nearby regions (Arshad, 2017). The vestibular input for

navigation – tracking head position during motion – may be critical to
the intimate relationship between attention and navigation as two as-
pects of spatial exploration (Nau et al., 2018) and for parietal in-
volvement during navigation tasks (e.g. Nitz, 2012; Whitlock, 2017).

IPS is only one part of a highly distributed system (Grieves and
Jeffery, 2017). Patients suffering from injury to the peripheral or cen-
tral nervous structures can show pathological tilts in the SVV task
(Brandt and Dieterich, 1994; Brandt et al., 1994; Dieterich and Brandt,
1993; Glasauer et al., 2018; Yelnik et al., 2002), which can arise from
initial perceptual stages, during which the different sensory inputs are
processed separately, as well as from the subsequent integration steps of
the different input signals (Van Nechel et al., 2001). Based on findings
from various imaging and lesion studies there seems to be no single key
region for the required integration process (Brandt and Dieterich,
2017). Rather, several subcortical and cortical regions including the
right parietal cortex (Baier et al., 2012a,b; Darling et al., 2003) are
involved in this process and form a large network responsible for ver-
ticality perception (Brandt and Dieterich, 2017; Van Nechel et al.,
2001). Other nodes, areas and time-windows have been evident in
studies that used other methods, tasks. In particular, not separating out
participants according to bias can reveal other parts of the network, for
example a late ERP component associated with verticality judgments
localized to bilateral temporo-occipital and parieto-occipital areas
(Lopez et al., 2011). One other important part of the network that has
been stimulated with TMS or tDCS to affect the SVV (and other tasks
testing aspects of vestibular function) is a part of parietal cortex much
more ventral to the one stimulated here (Arshad, 2017; Kheradmand
et al., 2015; Leitão et al., 2017; Santos-Pontelli et al., 2016; Seemungal
et al., 2008). TMS of those more ventral regions increased SVV errors
(Fiori et al., 2015) and if the head is tilted the SVV errors are shifted in
the opposite direction of head tilt (Kheradmand et al., 2015; Otero-
Millan et al., 2018). Whereas those studies interpreted a role for more
ventral areas as generating an internal reference (Kheradmand and
Winnick, 2017), this more dorsal area can be framed as playing a role in
the relative weighting of sensory inputs (see above). Here by contrast a
much more dorsal parietal site was targeted on the basis of recent
imaging results suggesting a potential human homologue of VIP within
the IPS (Billington and Smith, 2015; Frank et al., 2016; Smith et al.,
2017). Future work with other methods can examine whether in the
human there is further functional subdivision with greater depth into
the IPS as might be expected from the macaque (Bremmer et al., 2002;
Chen et al., 2011; Laurens et al., 2017), but which is difficult to address
with TMS. Some recent imaging results show larger areas here that may
span both more superficial and deeper parts of the sulcus (Frank et al.,
2016; Smith et al., 2017). TMS has been instrumental in revealing that
different parts of the parietal lobe play different roles in spatial cog-
nition (Rushworth and Taylor, 2006; Sack, 2009).

The observed normalizing effect of right dorsal parietal TMS on SVV
biases in healthy controls suggests a potential relevance of non-invasive
brain simulation for clinical research as it might serve as a tool for not
only exploring (through transiently resetting) slight biases in verticality
perception as observed in our participants but also in pathological SVV
biases such as found in patients suffering from vestibular disorders or
neglect. Apart from this issue future work should concern the role of
hemispheric lateralization and handedness on the reported results. In
conclusion the present study points to an essential role of the right
dorsal parietal cortex in establishing the perception of visual vertical.
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2.2 Project 2: Reducing variability of perceptual decision making with offline theta-
burst TMS of dorsal medial frontal cortex. 
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Abstract 

 

Background: Recent evidence suggests that the dorsal medial frontal cortex (dMFC) may 

make an important contribution to perceptual decision-making, and not only to motor control. 

Objective/Hypothesis: By fitting psychometric functions to behavioural data after TMS we 

tested whether the dMFC is critical specifically for the precision and or bias of perceptual 

judgements. Additionally we aimed to disentangle potential roles of the dMFC in dealing with 

perceptual versus response switching. 

Methods: A subjective visual vertical task (SVV) was used in which participants weight 

visual (and other, e.g., vestibular) information to establish whether a line is oriented 

vertically. To ensure a high perceptual demand (putatively necessary to demonstrate a dMFC 

involvement) SVV lines were presented inside pop-out targets within a visual search array. 

Distinct features of perceptual performance were analysed before as compared to following 

theta-burst TMS stimulation of the dMFC, a control site, or no stimulation, in three groups, 

each of 20 healthy participants. 

Results: dMFC stimulation improved the precision of verticality judgments. Moreover, dMFC 

stimulation increased reaction times, selectively when both perceptual and response switches 

had occurred. 

Conclusion: These findings point to a causal role of the dMFC in establishing the precision 

and accuracy of perceptual decision making, demonstrably dissociable from an additional role 

in motor control in situations of high perceptual load. 

 

Keywords: dMFC; verticality perception; TMS; perceptual decision-making 
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Introduction 

In studies of perceptual decision-making, two independent features can be disentangled, by 

fitting a psychometric function to behavioural data from two-alternative forced choice (2AFC) 

paradigms [1]: bias (i.e. how biased perception of a stimulus is in relation to its actual 

properties) and precision (i.e. how reliable or variable perception of a stimulus is, also 

sometimes referred to as simply “threshold” or “sensitivity”). Although normally associated 

with lateral intraparietal cortex (LIP) or frontal eye fields (FEF), it is important to explore 

other areas [2], and dorsal medial prefrontal cortex in particular, including the 

presupplementary motor area (preSMA), has been linked [3]. In transcranial magnetic 

stimulation (TMS) studies, preSMA stimulation has modulated decision thresholds [4,5], in 

line with increased decision thresholds after preSMA inhibition [6]. Other work has 

elaborated the clear evidence for dMFC’s motor role [7–10]. Yet it remains unclear whether 

the human dMFC plays a causal role in controlling the precision of perceptual decision-

making. Moreover, appropriate explanations about the behavioural consequences of TMS on 

neural activity by means of computational modelling of recorded data are needed [11].  

The function of the dMFC in response control has conventionally been studied with 

exclusively visual stimuli. The integration of visual and vestibular information has attracted 

particular attention in terms of examining bias and precision [1,12–14]. Although a key 

visual-vestibular hub lies around inferior parieto-insular cortex [15–18], the network also 

encompasses medial frontal areas [16,19]. There are close connections between dMFC and 

core vestibular areas (e.g. inferior frontal gyrus and insula [8,20–24]). dMFC activity has been 

linked to the amount of body sway in patients with vestibular problems [25] and midline 

frontal effects were reported in a recent parietal TMS-EEG verticality perception study [26]. 

The dMFC is then a candidate for perceptual decision making during verticality judgments. 

The present study employed a visual search paradigm combining verticality perception 

(SVV) with perceptual switches and response switches. The first hypothesis was that TMS of 

the dMFC would interfere with the precision of verticality judgements. Given that previous 

work demonstrated a dMFC TMS effect on response selection on trials with high perceptual 

load [9,10,27,28], verticality judgments were made in a visual search setting. An additional 

non-search SVV condition was included to establish participants’ resting bias. Additionally, 
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in the search blocks, target defining and response defining features were orthogonal: this 

allowed testing the second hypothesis that dMFC TMS would specifically affect performance 

(in this case reaction times) in the more attentionally demanding situation, when the target-

defining dimension would switch from one trial to the next.  

 

Material and methods 

Participants 

60 right-handed participants [29,30] took part (mean age: 25.5 ± 3.4 years, 37 females). 

Participants were divided into three groups of 20. A first group received dMFC TMS (mean 

age: 25.5 ± 2.3 years, range: 22 – 30 years, 14 females). To control for general alerting effects 

of TMS, and practice effects, a control TMS group underwent TMS stimulation over the 

vertex (mean age: 24.5 ± 2.0 years, range: 21 – 29 years, 8 females) and a further group did 

not receive any TMS (mean age: 26.7 ± 4.8 years, range: 23 – 41 years, 15 females). There 

was no overlap between participants in the three groups except one case between the dMFC 

and control TMS group and two cases between the control TMS and no TMS group. Note that 

although full cross-over designs help exclude population-based biases, they also are more 

sensitive to training effects over sessions or unblinding of the participants. All participants 

had normal or corrected-to-normal vision, and no history of any neurological disorders. 

Written informed consent according to established safety guidelines for TMS research [31] 

was obtained from all participants and the study was approved by the local ethics committee. 

Participants received monetary compensation. 

 

TMS 

The two TMS groups received stimulation after the first half (i.e. after five out of ten blocks; 

“pre-session”; Fig. 1) of the experiment using a MagPro X100 (Magventure, Denmark) with a 

figure-of-eight coil (MCF-B70, outer winding diameter: 97 mm). TMS used the standard 

theta-burst TMS protocol used widely [49,52]: TMS lasted 47 seconds (200 bursts, each 

comprising three pulses at 50Hz, repeated every 200 ms (5Hz), 600 pulses in total) at 80% 
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active motor threshold (mean intensity: 27 % ± 6 % of maximal stimulator output; no 

intensity difference between the two groups: t(38) = 1.22, p = 0.23; dMFC group: 28 ± 1 %, 

control TMS group: 26 ± 1 %) to either the dMFC or the vertex. dMFC was defined as one 

and a half electrode positions anterior to electrode Cz according to the 10-20 International 

System [7,9]. A vertex control site, used in previous dMFC TMS studies [6,54] was chosen, 

because it is both near the active site and also over the midline, so that the two stimulation 

sites were well-matched for stimulation sensation – participants rate TMS over these regions 

similarly as low on scales of annoyance [32]. At the end of the experiment, coil positioning 

was confirmed for five participants in each TMS group using neuronavigation (Brainsight, 

Rogue Research, Canada, mean dMFC MNI (x,y,z) coordinates: -1, 36, 60; mean vertex MNI 

coordinates: -3, -12, 81). Despite variability of the stimulation sites in the y-axis within each 

TMS group the two groups did not overlap (Fig. 1). This target localisation method was based 

on previous dMFC TMS experiments [7,9,10]. One advantage of targeting midline areas is 

that the two hemispheres abut, meaning lower variability in the MNI x-axis than for other 

areas. Note the z co-ordinate of a TMS site does not imply the extent of stimulation depth. 

The TMS coil was held with the handle pointing backwards. Coil orientation was selected 

based on previous studies [7,9,10]. Note that with midline targets, holding the coil in any 

other way than parallel to the midline would lead to differential medial-lateral directions of 

induced current. During stimulation participants rested. 
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Figure 1: Upper panel: experimental procedure. During the pre-session and post-session two task blocks were 

performed (SVV and visual search; block order counterbalanced). Between sessions participants received either 

dMFC TMS, control site (vertex) TMS or rested. Lower panel: location of the dMFC (black dots) and vertex 

(white dots) TMS sites for 5 participants from each group. 

 

Procedure 

Stimuli were presented on a 55.8 cm LCD monitor (1680 x 1050 pixel resolution, refresh rate 

of 60 Hz). Viewing distance from the screen was fixed to 50 cm using a chin rest and 

participants’ eye level was aligned with the screen centre. In order to avoid any environmental 

cues for verticality, the experiment was conducted in an extremely darkened room and the 

monitor edges were covered by a black paper 28 cm diameter circular cut-out [26]. Trials 

began with a white fixation dot (Fig. 2). After 1000 ms the target display appeared, showing 

either a single white line for 100 ms (Subjective Visual Vertical (SVV) blocks) or a visual 

search array for 200 ms (search blocks). The search array consisted of 8 white lines out of 

which 7 distractor lines were either placed inside white circles or red squares while the target 

line was always positioned inside a red circle. During the SVV condition participants had to 

indicate whether the flashed line was tilted in a counterclockwise (CCW) or clockwise 

direction (CW) relative to true vertical. In the search condition the task was to judge the tilt 

direction of the target line. Next a blank screen was shown for 2000 - 3000 ms. Responses 
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were given as quickly and accurately as possible with a button box. Participants pressed the 

left button with their right index finger for CCW tilts and the right button with their right 

middle finger for CW tilts. 

Before the session, 24 practice trials of each condition were performed. For TMS groups 

participants’ motor thresholds were obtained after the practice block. Participants then 

performed the first five experimental blocks (“pre-session”; one SVV block of 60 trials and 

four search blocks of 50 trials each; block order counterbalanced between participants). 

Afterwards, either theta-burst TMS was applied, or participants were rested for one minute. 

For the no TMS group, potential influencing factors were equated with those of the TMS 

groups, such as time taken between the first and second part of the experimental blocks and 

the lightning of the room. After the TMS stimulation or break, respectively, the second half of 

the experimental blocks was performed (“post-session”; one SVV block of 60 trials and four 

search blocks of 50 trials each; same block order as for the pre-session). 

 

  

Figure 2: Left: Schematic trial sequence SVV task. Right: Search task.  
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Stimuli 

Stimuli were presented using Psychtoolbox [33]. In the SVV condition the target stimulus was 

a straight white line (23.2° of visual angle long, 1.2° wide) shown on black background and 

on top of the central fixation point (diameter 0.6°), which became black when the line was 

flashed. Tilt deviated up to ±2° from true vertical, in steps of 0.17°. No true vertical (0°) trials 

were included. 

For the search condition, stimuli consisted of 8 white, straight lines (3.0° long and 0.2° wide) 

drawn within the either circles (diameter: 3.4° visual angle) or squares (side length: 3.4° 

visual angle), at eight equidistant locations around fixation (distance from the centre: 12° 

visual angle). To adjust for the smaller stimuli compared to the SVV condition, a larger tilt 

range of ±4° from true vertical, in steps of 0.33°, was used, and truly vertical lines were 

included. Tilt angles of the 8 lines were different. The target stimulus always appeared within 

a red circle, with equal likelihood at any one of 8 possible locations, and could be different 

from the other seven distractor stimuli in one of two dimensions: either shape or colour. For 

shape pop-out trials, the red circular target was presented among lines within red, square 

distractors. For colour pop-outs, the red circular target was presented among lines within 

white, circular distractors. Search trials were classified relative to the preceding trial: same 

dimension (sD): the dimension of the distracting stimuli on the current trial matched the 

preceding trial; different dimension (dD): the dimension of the distracting stimuli on the 

current trial switched (i.e. either from shape to colour or from colour to shape); same response 

(sR): participants responded with the same button press; different response (dR): the 

participant’s response switched (either from CCW to CW tilt judgment or vice versa). These 

conditions were then combined into four trial types: sDsR, sDdR, dDsR, and dDdR (Fig. 3). 

For each of these types 100 trials were performed in a randomized order across blocks. 
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Figure 3: Schematic of the four switch trial types of the search task: A: same dimension, same response (sDsR), 

B: same dimension, different response (sDdR), C: different dimension, different response (dDdR), D: different 

dimension, same response (dDsR). 

 

Data analysis 

Psychometric fitting of the observed data was used to derive individual SVV performance 

[1,12,34–36]. The point of subjective equality (PSE, reflecting the individual SVV bias) and 

the steepness of the slope of the sigmoid (i.e. standard deviation of the curve, which gives a 

measure of the participant’s discrimination threshold, in that way reflecting response 

variability or precision) were computed for both tasks. Please note we use the term bias and 

not “accuracy” to reflect the PSE to make it more easily distinguishable from other analyses: 

In addition, the impact of dMFC TMS on performance in the two different tasks was 

investigated in terms of reaction times, accuracy, and perceptual versus response switching, 

analysed using ANOVA and post-hoc t-tests, with alpha set to 0.05 and effects sizes supplied 

when present. 
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Results  

TMS effects on precision  

Precision in the post-session differed from the pre-session according to both TMS and task 

(interaction Session (pre/post) x experimental group (dMFC, control, no TMS) x task (SVV, 

search): F(2,57) = 6.57, p < 0.01, eta2 = 0.19). TMS effects were specific to the search task 

(interaction Session x experimental group for search task: F(2,57) = 4.38, p = 0.02, eta2 = 

0.13; Fig. 4; for SVV task: F(2,57) = 1.75, p = 0.18). This pattern was driven by dMFC TMS 

decreasing the variability of responses compared to the pre TMS session (i.e. improved 

precision of SVV judgments; t(19) = 3.97, p < 0.01, Cohen’s d = -0.83) with no such effects 

following control TMS (t(19) = 1.49, p = 0.15) or no TMS (t(19) = -0.83, p = 0.42). This 

could not be explained by any baseline (pre TMS / break) differences between the three 

groups (F(2,59) = 1.68, p = 0.20). Moreover, the dMFC TMS effect was specific to the search 

task and did not occur in the SVV task (F(2,57) = 0.23, p = 0.79).  

 

  

Figure 4: Variability of SVV responses in the search task before TMS / break (pre) vs. after TMS / break (post) 

for the three experimental groups showing that dMFC TMS reduced variability (i.e. increased precision). 
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TMS effects on bias 

No changes regarding SVV bias were observed in either of the two tasks or for any of the 

three experimental groups (all p’s > 0.44). This was also true when participants were split on 

the basis of their performance in SVV blocks into those with a resting clockwise or 

counterclockwise bias (ANOVAs testing Session (pre/post) x experimental group (dMFC; 

control, no TMS) x SVV baseline bias subgroup (CW/CCW) all p’s > 0.57). 

 

TMS effects on accuracy  

An increase in accuracy (i.e. percent correct responses) during the search task specific to the 

dMFC TMS group was found. This was statistically evident as the interaction present in the 

search but not SVV blocks (Session x experimental group for search task: F(2,57) = 3.72, p = 

0.03, eta2 = 0.12; Session x experimental group for SVV task: F(2,57) = 0.20, p = 0.82; 

improvement of dMFC TMS group compared to preTMS during search task: t(19) = -3.82, p 

< 0.01, Cohen’s d = 0.83; Fig. 5). In contrast, accuracies for the control TMS group (t(19) = -

1.62, p = 0.12) and no TMS group (t(19) = -0.64, p = 0.53) did not differ between post- and 

pre- sessions. Again, there were no differences in baseline accuracy levels between the three 

groups here (F(2,59) = 1.68, p = 0.20) nor in the SVV task (F(2,57) = 0.20, p = 0.82). 

Accuracy was significantly higher in the SVV task as compared to the search task both in the 

pre-session (t(59) = 6.69, p < 0.01, Cohen’s d = -0.85) and the post-session (t(59) = 3.42, p < 

0.01, Cohen’s d = -0.40).  
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Figure 5: Accuracy (% correct responses) in the search task before TMS / break (pre) vs. after TMS / break 

(post) for the three experimental groups showing that dMFC TMS increased precision accuracy in the search 

task. 

 

TMS effects on perceptual versus response switching: reaction times 

Reaction times were faster after TMS or a break, as compared to baseline, regardless of 

experimental group or task (F(2,57) = 1.20, p = 0.31). To assess to what extent this speeding 

of reaction times was dependent on the type of information switch from one trial to the next, 

TMS effects on reaction times in the four different switch conditions of the search task (sDsR, 

sDdR, dDsR, & dDdR) were analysed. A significant interaction between Session (pre/post) x 

dimension switch (sD vs. dD) x response switch (sR vs. dR) x experimental group (dMFC 

TMS, control TMS, no TMS) (F(2,57) = 3.54, p = 0.04, eta2 = 0.11) as well as interactions 

between response switch x Session (F(1,57) = 5.46, p = 0.02, eta2 = 0.09) and response switch 

x experimental group (F(2,57) = 3.63, p = 0.03, eta2 = 0.11) indicated differential effects of 

TMS on both types of switch conditions for the three groups. dMFC TMS seemed to stop the 

speeding effect of reaction times as compared to baseline when both perceptual and response-

relevant features switched (within dMFC TMS group: Session x dimension switch x response 

switch: F(1,19) = 7.56, p = 0.01, eta2 = 0.29; dDdR condition: t(19) = 0.10, p = 0.92; Fig. 6). 



	 54	

In addition there was a significant Session x response switch interaction (F(1,19) = 6.58, p = 

0.02, eta2 = 0.26) exclusively for the dMFC group (other two groups: p’s > 0.58). In the 

experimental design the control TMS and no TMS group were considered as a baseline, 

meaning these results could either be interpreted as dMFC TMS slowing trials where both 

types of information switch, or preventing practice effects. As before, the dMFC TMS effect 

could not be attributed to baseline reaction times differences between the three groups 

(independent t-tests: all p’s > 0.13).  

 

 

Figure 6: Reaction times in the search task before TMS / break (pre) vs. after TMS / break (post) for the four 

different switch conditions of the search task for the three experimental groups. 

 

TMS effects perceptual versus response switching: accuracy 

Accuracy was also calculated in terms of percent correct and not psychometric fitting (due to 

the subdivision of data into 8 different trial types per block). This revealed a general response 

switch cost (main effects of response switch, sR vs. dR; F(1,57) = 33.83, p < 0.01, eta2 = 0.37) 

as well as sensitivity to the combination of response and dimension switch type over time 
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(Session x dimension switch x response switch: F(1,57) = 6.30, p = 0.02, eta2 = 0.10). 

Critically, interactions involving experimental group (dMFC TMS, control TMS, no TMS) 

(Session x experimental group:  F(2,57) = 11.46, p < 0.01, eta2 = 0.29; Session x response 

switch x experimental group: F(2,57) = 10.25, p < 0.01, eta2 = 0.27) suggested that accuracy 

was affected by TMS. Note that no 4-way interaction (TMS x dimension switch x response 

switch x experimental group: F(2,57) = 0.04, p = 0.96) nor any other main effects or 

interactions were observed. dMFC TMS improved accuracy on both the response switch trial 

types. Firstly it improved accuracy on dDdR trials as compared to baseline (t(19) = -2.18, p = 

0.04, Cohen’s d = 0.45; Fig. 7). Given that this accuracy increase was accompanied by slowed 

reaction times (see above, Fig. 6), this points to a potential speed-accuracy trade off (SAT) 

effect due to dMFC stimulation, consistent with previous studies. However, dMFC TMS also 

improved accuracy for the other type of response switch trials, on which no reaction time 

slowing was observed (sDdR trials, t(19) = -4.67, p < 0.01, Cohen’s d = 1.13). This suggests 

that dMFC TMS was both affecting the SAT and also increasing response switch costs. 

Additionally, in the no TMS group there was a significant decrease instead of increase in 

accuracy after the break on dDdR trials (t(19) = 2.69, p = 0.01, Cohen’s d = -0.74). 

Alternatively this may reflect an effect from vertex TMS e.g. due to spread. 
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Figure 7: Accuracy (% correct responses) in the search task before TMS / break (pre) vs. after TMS / break 

(post) for the four different switch conditions of the search task for the three experimental groups. 

 

TMS effects on switch conditions of the SVV task 

Investigating RT response switch costs in the SVV task, (as with search above) omnibus 

ANOVA including Session (pre/post) x response switch (sR vs. dR) x experimental group did 

not show an interaction (F(2,57) = 0.68, p = 0.51). However, if anything there was a trend in 

the opposite direction from in the search task, significant with post-hoc t-tests although not 

supported by intermediate ANOVAs. dMFC TMS seemed to induce a speeding rather than a 

slowing of dR reaction times (t(19) = 5.15, p < 0.01, Cohen’s d = -1.12). Regarding accuracy 

there were no interactions between Session x response switch x experimental group nor 

between Session x response switch nor between response switch x experimental group (all p’s 

> 0.11).  
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Discussion 

dMFC in the precision of perceptual decision making and the subjective visual vertical 

Dorsal medial frontal cortex (dMFC) activity correlates with trial-to-trial variations in 

response caution [37] and the dMFC has been proposed to be a part of a brain network for 

sensory evidence integration [38,39]. dMFC TMS can increase or decrease perceptual 

decision thresholds [4,6]. Here our task design allowed extending this previous work to 

investigate precision versus bias of perceptual decision-making. Proficient observers are both 

precise and unbiased. Higher precision reflects more reliable discrimination by the observer. 

Precision is a measure of variance in responses corresponding to the steepness of the fitted 

sigmoid, calculated as the ‘sigma’ of the cumulative Gaussian fit of the psychometric function 

[1]. “Bias” in this sense is the bias of the percept compared to the true stimulus value. dMFC 

TMS did not affect bias. A simple SVV task (without search) was used primarily to classify 

participants according to their resting baseline bias and to check for bias-specific effects 

during search: online parietal TMS has affected bias depending on participants’ resting bias 

[26]. However, while the dMFC is involved in establishing the precision of verticality 

judgments, particularly under situations of high perceptual load (such as during a search task 

setting), we did not find evidence that it plays a crucial role in the bias of verticality 

perception. 

dMFC lies outside the conventional network related to vestibular processing and the 

SVV [15–18], yet it is a main hub in a network that is responsible for perceptual decision 

making in which it exerts top-down control to other nodes such as the intraparietal sulcus 

(IPS) or insula [24,40], areas which form the human core vestibular region [15–17]. 

Moreover, dorsal medial frontal cortex may contribute to the processing of vestibular 

information [16,19]. A functionally relevant interaction between the right IPS and dMFC 

during verticality judgments should not be ruled out. Rather, future work should address the 

involvement of the fronto-dorsal spatial attention network with its cortical core regions 

located in the posterior parietal and frontal cortices [41,42] more closely. This may help 

illuminate a proposed broader relationship between the classical attentional and vestibular 

networks giving rise to higher vestibular cognition [43–45]. 
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dMFC in response control when perceptual demands are high 

dMFC is activated in visual search in the attentionally demanding situation where 

switches in the target-defining dimension are accompanied by response switches [27]. dMFC 

TMS affects action reprogramming only when the stimulus discrimination is hard and not 

easy [28]. The dMFC may be particularly critical for response selection if perceptual 

attentional demands are high [46]. This was generally the case here during the search task, but 

also in particular during the “dDdR” trials where response selection had to be made under 

conditions of difficult perceptual selection. The slowing of reaction times on dDdR trials with 

dMFC TMS was superimposed on top of an overall TMS-related speeding. In addition, the 

observed speeding of reaction times could reflect global practice effects in the search task as 

the same pattern of faster responses over time was also observed even for the no stimulation 

control group. This speeding was found on almost all conditions, with the single exception of 

the dDdR trials. Reaction times on these trials involving both perceptual (dimension) and 

response switches did no longer differ from baseline after dMFC TMS whereas reaction times 

in all other search task conditions (and importantly dDdR reaction times for the two control 

groups) were faster. Given that this only occurred under situations where both response and 

perception (dimension) switched (i.e. trials with high perceptual load), and only with dMFC 

TMS, this dDdR effect cannot be attributed to general non-site specific distraction from the 

TMS, but rather is evidence of dMFC TMS slowing reaction times on this condition. 

dMFC has been linked to the speed-accuracy trade off that occurs when both higher 

accuracy and slowed reaction times reflect more time spent on selecting relevant from 

irrelevant information [5,24,40,47,48]. This was also partly evident in the current study where 

dMFC TMS both lengthened reaction times and increased accuracy on these dDdR trials. 

Note that a speed-accuracy trade-off cannot fully explain all the effects during the 

dimension/response switch analysis because dMFC TMS affected accuracy on response 

switches independently of whether the dimension switched, whereas the reaction time effect 

was more selective.  
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Limitations and Outlook 

Future work could directly compare several areas with different tasks and protocols. 

Previous heterogeneous effects of dMFC TMS on decision threshold may be attributed to task 

difficulty [4–6,40,49]. The first continuous theta burst TMS study produced inhibitory effects, 

with excitation after intermittent bursts [50]. There may however be no direct 1:1 mapping 

between continuous/intermittent and inhibitory/facilitatory theta burst TMS: modelling 

suggests that continuous protocols elicit inhibitory and facilitatory effects simultaneously with 

different time-courses [51]. Accordingly there is now high variability evident in the literature 

[53]. Here, continuous theta burst facilitated performance. TMS effects may be highly task-

specific: future work dMFC TMS studies should use tasks that do not require orientation 

judgements. By using two sites and two different tasks, one with multiple switch types, we 

were able to dissociate between multiple hypotheses regarding dMFC function – this did 

necessarily increase the number of statistical tests performed. Future studies with simpler 

designs - only examining one task, site, or switch type - may allow replicating the core 

findings here with fewer tests and with multiple comparison correction. Additionally no 

effects on bias were found here with offline theta TMS as were found previously with an 

online 10 Hz TMS protocol [26] and this could be addressed directly by comparing both areas 

with both protocols. 
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3 General Discussion 
	
	
 

The aim of this thesis was to investigate the interplay of the attentional, decision making, and 

vestibular systems. The following sections will briefly summarize the two conducted 

experimental studies and discuss implications of their findings for the understanding of 

vestibular-attentional interactions, methodological considerations when studying human 

higher vestibular processing, and future clinical and scientific work.  
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3.1 Summary of findings 

 

The first study presented in this thesis (Willacker et al., 2019; chapter 2.1) aimed to examine 

the role of the right intraparietal sulcus (IPS) in verticality perception. Spatial orientation and 

navigation are dependent upon our ability to form a stable and precise perception of 

verticality, which in turn is posited to rely on a distributed network of multisensory regions. 

The right posterior parietal cortex, especially the right IPS, has been consistently associated 

with spatial orientation and attention. A combined EEG-TMS paradigm was applied to 

investigate the role of the human parietal cortex in both verticality perception (subjective 

visual vertical SVV task) and spatial attention (Landmark task) in healthy participants. 

Results indicated that repetitive right IPS TMS facilitated verticality perception by 

normalizing individual SVV biases, which was also reflected on an electrophysiological level 

over a frontocentral site. No such hemisphere-specific results were found for the Landmark 

task. Thus, this study points to a hemisphere-specific role of the ventral IPS region in 

verticality perception and spatial attention, and provides a promising new direction for 

furthering our understanding about the neural implementation of spatial orientation in healthy 

and clinical populations. In addition, it supports the ideas of right lateralization and 

disinhibition for healthy visual-vestibular processing.  

In the second study (chapter 2.2) the role of the human dorsal medial frontal cortex (dMFC) in 

verticality judgments during different levels of attentional load was investigated. Increasingly, 

TMS is being shown to improve performance in cognitive tasks. Such effects are normally 

only described in terms of relatively crude measurements such as reaction time or accuracy. 

This study used psychometric fitting to demonstrate that TMS can reduce variability – i.e. 

increase “precision”. This effect was shown for a specific brain structure-function relationship 

that is of particular interest: although the human dMFC has been linked to perceptual decision 

making, the nature of any causal involvement of this area in the precision and bias of 

perceptual judgments remained unclear prior to this study. Evidence for a causal involvement 

of the dMFC in establishing the precision and accuracy of perceptual decision making for 

verticality perception was reported, particularly in situations of high perceptual load.  
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3.2 Conclusions about the relationship between the attentional and higher vestibular 

systems 

 

The combined results from both conducted studies support the idea of a functional interplay 

between the vestibular, spatial attentional, and perceptual decision making systems. In 

addition, they emphasize that distinct behavioural features such as bias, precision, or accuracy 

contribute to overall verticality perception and can be modulated independently.  

Study 1 of this thesis (chapter 2.1) showed that the right IPS is involved in the establishment 

of the bias of verticality perception. However, no effects related to the threshold/precision of 

SVV judgments were observed. In contrast, the contribution of the dorsal medial frontal 

cortex (dMFC) to verticality judgments seems to follow the almost opposite pattern: study 2 

(chapter 2.2) did not find any evidence for a crucial function of this cortical area regarding 

SVV biases. Instead, the dMFC seems to play a role in the precision/uncertainty and accuracy 

of SVV estimates. This applied, however, only for situations where SVV judgments had to be 

made under conditions of high perceptual load (when the SVV was tested in a visual search 

surrounding) but not in a more standard SVV setting, as used in study 1 where no concurrent 

distracting visual information was presented next to the SVV line stimulus. This functional 

dissociation suggests a potential functional interaction between the right dorsal parietal cortex 

and the medial frontal cortex with respect to verticality perception or higher vestibular 

processing more generally. Optimal visual-vestibular perceptual performance is determined 

by both a small bias and high precision (Angelaki, 2014). While right lateralized parietal 

structures seem to contribute mainly to the perceptual bias, the frontal cortex is concerned 

with the uncertainty and reliability of vestibular related perception when perceptual and visual 

attentional demands are high. This is in agreement with earlier non-invasive brain stimulation 

work on parietal contributions to verticality perception which showed shifts in SVV biases 

due to interference with activity in parietal regions (Fiori, Candidi, Acciarino, David, & 

Aglioti, 2015; Kheradmand, Lasker, & Zee, 2015; Kheradmand & Winnick, 2017; Lester & 

Dassonville, 2014). In accordance with results from study 1, these previous studies did not 

report any modulations of perceptual precision related to the stimulation. Moreover, while 

parietal areas show up in lesion studies in patients that demonstrate pathological tilts of the 

SVV, reports on (medial) frontal lesions associated with disturbed verticality perception are 
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scarce (Baier & Dieterich, 2014; Baier, Suchan, Karnath, & Dieterich, 2012; Brandt & 

Dieterich, 1994; Brandt, Dieterich, & Danek, 1994; Dieterich & Brandt, 2018; Konzelmann, 

2013). Given  the findings of the two presented studies, this could be explained by the fact 

that only the bias (tilt) of patients’ SVV is typically investigated in clinical routine, while the 

precision of their verticality estimates is not taken into account. In addition, clinical SVV 

assessments do not include conditions of higher perceptual demand (such as in study 2). The 

medial frontal cortex, however, seems to be relevant for the precision of verticality 

judgments, particularly when perceptual load is increased. Therefore, the medial frontal 

cortex might have not been described as a typical lesion site associated with impaired 

verticality perception in vestibular or neurological patients despite it having a relevant role in 

establishing the distinct features of verticality judgments. To further substantiate the 

functional dissociation and interplay of the dorsal parietal and medial frontal cortices in 

visual-vestibular processing, future studies should compare the effects of reversed stimulation 

of the two regions during the two paradigms (i.e. dMFC stimulation applied to a SVV-

Landmark task as used in study 1 and IPS TMS during SVV judgments in a visual search 

setting). To test for direction effects of the proposed parietal-frontal correspondence 

combined stimulation paradigms are needed. Further, such paradigms would help to shed 

more light on the temporal sequence of parietal-frontal interactions during processing of 

visual-vestibular information. 

In general, the results of the two studies presented in this thesis strongly agree with the 

literature on higher vestibular functioning (Brandt & Dieterich, 2017; Brandt, Strupp, & 

Dieterich, 2014) and vestibular cognition (Besnard et al., 2016; Bigelow & Agrawal, 2015; 

Hitier et al., 2014; Seemungal, 2014; Smith, 2017). Such literature argues that vestibular 

processing is not solely reliant on the functioning of peripheral and core central vestibular 

structures but is also affected by, and interacts with, higher cognitive processes such as 

attention. By modulating activity within cortical regions proposed to be main hubs of the 

human fronto-dorsal spatial attention network (Corbetta & Shulman, 2002, 2011), and by 

varying perceptual demands during a visual-vestibular task, this thesis was able to 

demonstrate such interactions giving rise to higher vestibular functioning. Further, the regions 

stimulated in the present studies are considered to be highly multimodal (i.e. they respond to, 

and integrate, various sensory information, such as that required for optimal verticality 
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perception; Baier, Suchan, Karnath, & Dieterich, 2012; Baier, Thomke, et al., 2012; Darling, 

Pizzimenti, & Rizzo, 2003). Therefore, the present results complement the existing literature 

which suggests that the human “vestibular cortex” is multisensory in nature, with performance 

and perception being dependent upon constant interactions between different multisensory 

regions (Brandt & Dieterich, 2017). As such, the reported TMS effects on verticality 

perception should be considered as network effects concerning multiple parts of the human 

vestibular and attentional networks rather than effects limited to the stimulated regions 

themselves. Functionally the parietal cortex and dMFC are not strictly separable from other 

parts of the vestibular network as they are highly interconnected, both inter- and intra-

hemispherically (Brandt & Dieterich, 1999; Dieterich & Brandt, 2018; Lopez & Blanke, 

2011; Lopez et al., 2012; zu Eulenburg et al., 2012). This is also underpinned by the EEG 

findings from study 1, which showed fronto-central effects following IPS stimulation, thus, 

revealing parietal-frontal activation linked to visual-vestibular processing. 

The findings of the two studies in this thesis highlight the importance of multisensory 

integration for vestibular function, and strengthen the notion that parietal and frontal 

structures are part of a cortical network which mediates different inputs from the visual, 

auditory, proprioceptive, and vestibular sensory systems in order to reach a final vestibular 

percept (Brandt & Dieterich, 1999; Dieterich & Brandt, 2018). The behavioral effects of 

parietal and frontal TMS stimulation, as well as the impact of attentional load on verticality 

judgment, observed in the studies of this thesis might reflect an interaction of attention and 

multisensory integration processes for visual-vestibular functioning, similar to that described 

in the integration of other sensory information (Talsma et al., 2010). Moreover, the results of 

the two studies presented here are in line with earlier work, which showed that the parietal 

and frontal cortices are crucially involved in spatial cognition and topographic memory 

(Dieterich & Brandt, 2018; Howard et al., 2013). These regions contribute to the 

establishment, remapping, and integration of egocentric and allocentric coordinate 

information, which are necessary steps for the creation of an internal model of one’s position 

in space and for successful spatial perception, including verticality perception (Barra et al., 

2010, 2012; Borel et al., 2008; Chechlacz et al., 2010; Clément et al., 2009; Pouget & 

Sejnowski, 2001). These steps can be modulated by top-down influencing factors such as 
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attention (Barra et al., 2012), which is in accordance with the results from the studies of this 

thesis and the concept of higher vestibular functioning. 

The findings of study 1 support the idea of a lateralization of the human “vestibular cortex” to 

the non-dominant hemisphere (Dieterich et al., 2003; Lopez, Blanke, & Mast, 2012). The 

reported TMS effects on behavioral performance and electrophysiological activity were 

specific to stimulation of the right IPS in right-handers whereas TMS of the homologous left-

hemispheric area did not lead to any effects regarding verticality judgments. This again 

highlights the correspondence between the higher vestibular and attentional systems, with the 

spatial attention network also showing a right-lateralized dominance (Corbetta & Shulman, 

2002, 2011). 

 

 

3.3 Methodological considerations 

 

a. SVV measurement method and stimuli 

 

Verticality perception as studied in terms of SVV performance can be assessed in different 

ways. In the clinical examination of vestibular patients and in the majority of early verticality 

perception research, the SVV has commonly been examined by means of different methods of 

adjustment (ADJ) (Baccini et al., 2014). These require the patient/participant to align a 

visually presented line, which is tilted away from the true vertical by a specific degree, until it 

is perceived as vertical. The adjustment can happen manually (e.g. by repeated button presses 

or rotating a dial) or verbally (by instructing the examiner to tilt the line in a specific direction 

until it appears vertical). In contrast, the studies of the present thesis used a computerized two 

alternative forced-choice (2AFC) SVV task for the assessment of verticality judgments. This 

approach was chosen for several reasons. First, it allowed the applied online TMS stimulation 

in study 1 to be precisely timed and thus, be kept constant within the trial sequence. This 

enabled comparisons across participants, tasks and stimulation conditions, as well as the 

relation of stimulation effects to specific perceptual stages. Second, this approach meant that 

concurrent EEG could be recorded and time-locked to the different stages of the stimulus 

presentation, thereby offering the possibility of ERP analysis. Lastly, this approach allowed 
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the investigation of distinct features of SVV performance such as perceptual bias, precision, 

accuracy and/or reaction times. Specifically, individual SVV (and for study 1 Landmark) 

performance was derived by means of psychometric fitting of the observed data (see also Fig. 

2 in the General introduction). To calculate SVV biases, the percentage of clockwise (CW) 

responses within one experimental block was plotted as a function of the orientation (tilt 

angle) of the line. The 50% point (i.e. point of subjective equality, PSE) obtained from the 

sigmoid fit to the data reflects a participant’s individual SVV bias (Angelaki, 2014; Baccini et 

al., 2014; Dyde et al., 2006; Foxe et al., 2003; Lopez et al., 2011). The standard deviation 

relates to the steepness of the slope of the sigmoid and provides a measure of the participant’s 

discrimination threshold, thus reflecting response variability or uncertainty, with a smaller 

standard deviation corresponding to a steeper slope, indicating less variable/more reliable 

discrimination performance (Angelaki, 2014; Baccini et al., 2014; Dyde et al., 2006). The 

importance of examining both these two features of verticality perception and the possibility 

to modulate them independently from each other is demonstrated by the studies of the present 

thesis. 

Additionally, testing the SVV in a 2AFC task version offers various further advantages over 

ADJ SVV procedures (Baccini et al., 2014; Paci et al., 2011). Although estimates of 

perceptual bias and threshold can also be derived from ADJ paradigms, data gathered from 

2AFC SVV tasks are thought to be more robust against artefacts and therefore more reliable 

(Klein, 2001; Paci et al., 2011). Specifically, it has been shown that a range of experimental 

variables, such as initial tilt angle of the to-be-adjusted SVV line, method of adjustment 

(manually or verbally), length of the line, or speed of the line motion during the adjustment, 

significantly affect the final SVV estimate (Baccini et al., 2014). Moreover, as opposed to 

2AFC paradigms, ADJ methods do not allow the measurement of full psychometric functions, 

and may therefore ignore valuable aspects of behavioural performance (Baccini et al., 2014; 

Dyde et al., 2006; Klein, 2001; Paci et al., 2011). In addition, ADJ procedures are typically 

more complex, longer in duration and require a higher number of more complicated 

experimental instruments. Despite all the advantages of 2AFC SVV paradigms over ADJ 

methods, the viability of their application in SVV assessments of patients and their integration 

in the clinical routine still needs to be investigated. Future studies investigating the potential 

parameters that might influence 2AFC SVV measurement outcomes, such as trial numbers, 
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appropriate choice of the tested tilt angle range, or test-retest reliability, are needed in order to 

establish standards for future SVV research and clinical work. 

An important factor that must be considered when testing the SVV by means of computerized 

paradigms is the problem of presenting a near vertical line on a computer monitor. As the 

image is composed of pixels arranged on a grid, a near vertical line is actually a series of 

staggered vertical lines that are clearly distinguishable from a true vertical line. Most graphics 

software compensates for this problem by aliasing, which involves adding additional pixels in 

a gradient of intensity to create the illusion of a near vertical line when viewed from a 

sufficient distance. However, this solution is not optimal for an experimental investigation of 

the SVV. Firstly, the total luminance of a true vertical line is different from that of a near 

vertical line with additional pixels added during aliasing, and such a difference might result in 

ERP differences that are not truly related to verticality. Secondly, if the subject is close to the 

screen the differences in the image due to aliasing might serve as a cue (either conscious or 

unconscious) as to whether the line is vertical or not. As a solution to these problems, the 

SVV stimuli in the two experiments presented in this thesis were created by first calculating 

the true position of the line, and then assigning each pixel near this true position a random 

intensity within a range. The range of possible intensities decreases with distance from the 

line such that they reach zero (i.e. black) by a certain distance from the true line. This results 

in a “blurred” bar which contains no vertical edge at any point, but does have an average 

overall verticality, and a total luminance which is the same (i.e. the number of pixels with any 

given intensity is the same) regardless of the angle (Fig. 6). A white central fixation point 

from which the white bar emerged was present throughout the experiments. The fixation point 

consisted of a blurred circle, created in a similar way to the bars, i.e. each pixel was given a 

random intensity value within a certain range, which decreased to zero with distance from the 

true centre of the screen. This again ensured that the true vertical could not be perceived from 

looking at the fixation point.  
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Figure 6: SVV line stimulus used for the two studies of this thesis. 

 

 

b. TMS and EEG 

 

TMS complements and extends findings from other neuropsychological methods in the 

investigation of (human) brain-behavior relationships and physiology. As described in chapter 

1.4a the application of TMS offers an important advantage over other neuroscientific 

methods: not only can it be used to investigate whether a specific brain region functionally 

contributes to a given task but TMS can also be used to study causal rather than merely 

correlational brain-behavior relationships. In general, TMS effects are strongly dependent on 

a variety of stimulation parameters such as stimulation site, protocol, or coil type. At present, 

the exact cortical action mechanisms of TMS remain unclear and potentially vary greatly 

across participants and brain regions (Pascual-Leone, 2000). 

The human vestibular cortex encompasses several well-defined, anatomically separate cortical 

structures. Due to its relatively high spatial resolution, TMS can be used to study the role of 

these areas and their potential interactions with higher brain functions, such as attention, by 

interfering with a given brain region’s individual activity in a precise manner. However, as 

the applied pulses only reach neurons which are located just beneath the skull (Hess et al., 

1987; Ridding & Rothwell, 2007), TMS doesn’t allow the study of deeper brain areas and 

their relevance for cognition. Regarding the question of the interaction between the vestibular 

and attentional or decision making systems, TMS can therefore only be used for brain regions 



	 75	

which are close enough to the skull to be reached by the induced current. Thus, the role of 

deeper core areas of the human vestibular network in this interplay, such as the insula, cannot 

be studied by means of TMS alone. To overcome this issue, the combination of TMS with 

other neuroscientific techniques capable of investigating activation patterns of deeper brain 

regions is required. Such combined use of TMS together with other methods offering high 

temporal and/or spatial resolution (e.g. EEG or fMRI) would further enable the study of the 

neural dynamics of the applied stimulation. Despite the high variability in response to TMS, 

using individualized stimulation protocols that take factors such as an individual’s most 

effective stimulation site or optimal timing of stimulation pulses during a given task into 

account could maximise TMS effects. Once functional and anatomical data of a participant 

are available, TMS can be applied to individual hotspots of the vestibular and attentional 

networks, respectively. Further, finding ideal stimulation sites and timings could be clinically 

relevant as it could help patients to gain a maximum benefit from the stimulation. In this 

context, neuromodulation by means of TMS might serve as a promising therapeutic tool for 

the treatment of vestibular patients as well as for clinical research, which is discussed in more 

detail below in section 3.4. 

The results of this thesis demonstrate the capability of the attentional system to contribute to 

visual-vestibular perception. Particularly in the context of (spatial) attention studies, the 

inclusion of control conditions is crucial when formulating a TMS design. The clicking sound 

of the coil during discharge, the feeling of the coil on the head, and the sensation of the 

current on the scalp are all salient events, which can lead to (spatial) shifts or distraction of 

the participant’s attention. When considering SVV tasks where the tilt direction of the 

stimulus line has to be rated, it is important to take spatial attention shifts due to coil position 

on the head into account. Ideally, such paradigms should include a control stimulation site 

that is located over the same hemisphere as the test site in order to control for spatial biases 

towards the stimulated site. As in study 1 of this thesis a control site located over the opposite 

hemisphere from the active test site was chosen (in order to test for hemispheric differences 

related to verticality judgments) follow-up work including a control stimulation site on the 

same hemisphere is needed.  

The majority of previous human imaging work has applied fMRI to investigate verticality 

perception and vestibular processing, as this method allows the measurement of brain activity 
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from any region of the brain with a good spatial resolution (Ertl & Boegle, 2019). However, 

due to the supine position of participants and the restriction of head and body movements 

during data acquisition, (f)MRI does not allow naturalistic vestibular test settings. Lying 

positions create biases in verticality judgments (Lopez et al., 2008; Lopez et al., 2011; Luyat 

et al., 2005) and interfere with neural activity related to visuospatial processing (Arzy et al., 

2006). To overcome these issues and be able to record brain activity in a more naturalistic 

setting, study 1 of this thesis used EEG measurements to examine cortical activity related to 

visual-vestibular processing. EEG provides one of the highest temporal resolutions among all 

human non-invasive brain imaging techniques, thereby offering the possibility to draw 

conclusions about the timing of and temporal dynamics of perceptual events on a millisecond 

scale (Luck, 2005). Further, EEG can easily be combined with all common vestibular 

stimulation methods such as TMS or galvanic vestibular stimulation (GVS) (Ertl & Boegle, 

2019), which makes it highly attractive for the investigation of the vestibular system. Still, 

there are some major limitations of this method. EEG only detects activation coming from 

superficial cortical structures while signals from deeper structures (e.g. the insula) can only be 

inferred by applying source reconstruction algorithms. Such reconstructions, however, have a 

relatively high spatial uncertainty and may lead to imprecise activity estimations (Ertl & 

Boegle, 2019; Michel et al., 2001). Therefore, future research on higher vestibular processing 

would ideally combine multiple imaging techniques with vestibular stimulation in order to 

compare and confirm results of the different modalities. 

 

 

3.4 Clinical implications of presented findings and possible follow-up work 

 

Rehabilitation interventions for patients with distorted spatial orientation (e.g. verticality 

perception) and spatial attention deficits (e.g. visuo-spatial neglect) focus mainly on sensory 

manipulations (Rode et al., 1998) and corrective exercises (e.g. for the often tilted head or 

body) to promote symmetrical processing of different sensory inputs and to improve the 

patient’s perception of their own body in space, respectively (Bonan et al., 2015). At present, 

no therapeutic approach with the aim of manipulating the central integration of the different 

sensory inputs and the activity of the related cortical structures directly and non-invasively 
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has been established. The presented studies of this thesis show that TMS has the potential to 

serve as both a scientific and therapeutic tool that enables interaction with crucial 

multisensory integration processes and a re-balancing of symmetrical spatial processing. 

Spatial attention relies on balanced activity between the right and left parietal and frontal 

cortices (Corbetta & Shulman, 2002). The observation that spatial attention deficits are more 

frequent and severe after damage to right parietal structures (Corbetta et al., 2005) suggests a 

functional asymmetry between the two hemispheres (Mesulam, 1981). There are opposing 

theories regarding the right-hemispheric dominance in spatial attention: according to one 

model the right parietal cortex shifts attention to both hemifields while the left parietal cortex 

only shifts attention to the right hemifield (Heilman & Abell, 1980). In contrast, another 

model claims that the right hemisphere simply has a stronger bias to its contralateral (left) 

hemifield than the left hemisphere to the right hemifield (Kinsbourne, 1977). Moreover, TMS 

work has pointed to inter-hemispheric parietal competition and reciprocal inhibition related to 

spatial attention (Dambeck et al., 2006). In line with that, improvements in spatial attention 

performance by means of non-invasive brain stimulation have either focused on trying to 

increase activity within the lesioned hemisphere or to suppress the contralesional hemisphere 

and in that way decreasing its inhibitory effect on the other hemisphere (Agosta et al., 2014; 

Koch et al., 2012; Nyffeler et al., 2009). 

A computational model of visuo-spatial attention has been introduced, which in addition 

addresses spatial orientation and verticality perception (Brandt et al., 2012). Based on 

neuroimaging and patient studies, this model proposes a bilateral organization of spatial 

attention and orientation, which is dominated by the right hemisphere and contains so-called 

“multisensory orientation/attention integration centers (MSOs)” within both hemispheres. 

These MSOs direct attention towards the contralateral visual hemifield and form connections 

with vestibular, visual, and somatosensory input structures such as the thalamus, primary 

visual cortices (e.g. V1), and areas MT/V5. Moreover, they are interlinked with each other via 

interhemispheric transcallosal pathways, which are mainly inhibitory, i.e. they exert 

reciprocal inhibition in order to maintain a balanced distribution of attention across both 

visual hemifields (Agosta et al., 2014). Given such an interhemispheric inhibition/rivalry, a 

lesion to one of the MSOs would not only result in an attentional inhibition within the 

contralesional visual hemifield, but would also lead to a “disinhibition” - and thus to increased 
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activity levels - within the contralateral MSO. Indeed, in a recent study in right parietal 

patients, attentional performance levels in the contralesional (left) hemifield could be 

enhanced by means of inhibitory TMS of the left parietal cortex (Agosta et al., 2014). This 

behavioral improvement following disruption of the intact left parietal cortex might be 

attributed to a temporary recovery of interhemispheric balance due to a reduction of the 

hyperactivation of the stimulated hemisphere. Comparable results have also been found up to 

32 hours following a single session of inhibitory TMS to the contralesional hemisphere, 

indicating a long-term effect of the stimulation and therefore, a possible therapeutic approach 

for neglect patients (Nyffeler et al., 2009). Consistently, after a two-week period of regular 

TMS stimulation, improvements of neglect symptoms lasting up to one month after the last 

stimulation session, as well as a reduction of the previously hyperactivity of the intact (left) 

hemisphere could be shown (Koch et al., 2012). Results from study 1 of this thesis agree with 

the model. Yet, further studies on the interplay between spatial attention and vestibular 

processing are needed to establish if, and how, interhemispheric inhibition gives rise to 

difficulties in SVV perception and/or spatial attention performance, how these two perceptual 

processes relate to one another, and whether TMS might be used as a clinical tool for the 

treatment of pathological visual-vestibular processing. 

The studies described in the present thesis aimed to answer such questions in young, healthy 

control participants who did not report any history of neurological or vestibular disorders and 

who, without exception, exhibited non-pathological SVV values. In contrast, the question of 

whether the applied TMS stimulation leads to comparable (beneficial) behavioral effects in 

patients or participants that show disturbed SVV performance remains open. The studies 

presented in this thesis and the interhemispheric competition model suggest that future 

scientific work should continue to examine the role of fronto-parietal attention network 

structures in clinical populations. Key regions for future investigations are the right 

intraparietal sulcus (IPS) and its neighboring regions which have been proposed as the main 

integrator of visuo-spatial orientation and visuo-spatial attention (Agosta et al., 2014; 

Kerkhoff & Zoelch, 1998). For example, the hypothesis that disruption of left IPS activity by 

means of TMS would result in disinhibition of the homologous right parietal cortex, which 

could influence SVV as well as spatial attention performance, requires further investigation. 

This would provide one pathway to establish whether non-invasive brain stimulation might 
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serve as a clinical tool for the therapeutic treatment of impaired verticality perception and 

related vestibular and neurological dysfunctions. Further, differences between healthy and 

pathological visual-vestibular processing could be examined by studying TMS effects on 

verticality judgments while manipulating SVV biases in healthy populations using, for 

example, tilted head position (Otero-Millan et al., 2018; Otero-Millan & Kheradmand, 2016) 

or concurrent visual flow (Dockheer et al., 2018; Reinhart et al., 2016; Schaadt et al., 2016; 

Thilo & Gresty, 2002).   

Moreover, the present studies did not investigate the duration of the observed TMS effects on 

behavior but rather, focused on immediate stimulation consequences. Thus, further research is 

required to explore the possibility of long-term effects, or ideally improvements, in verticality 

perception using non-invasive brain stimulation of fronto-parietal structures. In addition, both 

studies of this thesis included only right-handed participants. Follow-up studies, using left 

handers and ambidextrous participants should be conducted in order to investigate how the 

proposed lateralization of the human cortical vestibular network (Dieterich et al., 2003; Lopez 

et al., 2012; zu Eulenburg et al., 2012) might modulate its interactions with higher cognitive 

functions such as attention.  

Lastly, the combined results of both studies, particularly study 1, demonstrate the importance 

of considering the individual resting SVV bias when studying (TMS effects on) verticality 

judgments. No TMS-induced modulations of SVV were reported on a group level in study 1. 

However, after subdividing participants according to their baseline bias, into a CW and CCW 

bias group, normalizing effects due to the stimulation were observed. These effects would 

have been overlooked if individual baseline biases had been neglected in the analysis. 

Accordingly, missing effects of parietal TMS or other empirical interventions on verticality 

perception in earlier research could potentially be the result of a failure to take individual 

baseline bias into account. Previous studies concerning spatial attention biases regarding the 

horizontal plane, confirm the need to include individual spatial asymmetry at baseline as a 

factor when studying spatial attention and modulation by means of brain stimulation (Thomas 

et al., 2017; Varnava et al., 2013).  
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3.5 Conclusion 

 

The results of the present thesis complement and enrich our knowledge of the interaction of 

the human attention, decision making, and vestibular systems through the use of TMS(-EEG). 

The findings strengthen the notion of a functional interplay of these systems during visual-

vestibular tasks, such as verticality judgments. Additionally, they suggest an anatomical-

functional dissociation of right dorsal parietal cortex and medial frontal cortex in verticality 

perception: while the right intraparietal sulcus is involved in the degree of how biased 

individual verticality perception is, dorsal medial frontal cortex was found to be related to 

perceptual precision and accuracy. Taken together these findings agree with the concept of a 

highly interconnected human cortical vestibular network, which is reliant on multisensory 

integration and modulated by higher cognitive functions such as attention. Altogether, the 

present thesis provides relevant theoretical and methodological implications for future clinical 

and scientific work in the field of higher vestibular processing. 
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