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Summary 

Maintaining a functional and healthy pool of mitochondria is critical for cellular homeostasis. 

This is ensured by the action of several quality control and stress response pathways. One of 

these pathways is the mitochondrial unfolded protein response (UPRmt), which is activated upon 

perturbation of mitochondrial proteostasis and specifically leads to increased expression of 

mitochondrial chaperones and proteases. Since the mitochondrial proteome is encoded by the 

mitochondrial as well as the nuclear genome, a high coordination of mitochondrial and nuclear 

gene expression is required.  

In chapter I it is shown that the inactivation of LRPPRC in mammalian cells results in an 

imbalance between mitochondria- and nuclear-encoded subunits of complex IV. This 

imbalance is counteracted by the activation of the UPRmt, which consequently helps to restore 

mitochondrial proteostasis. Interestingly, this response is conserved since the inactivation of 

the LRPPRC-like gene mma-1 in C. elegans also induces the UPRmt in this species.  

Chapter II describes a more global aspect of UPRmt regulation in C. elegans. In particular, the 

data indicates that the induction of autophagy, which is another cellular quality control 

mechanism, leads to the suppression of UPRmt in response to a block in mitochondrial fission 

or fusion. Noteworthy, increased autophagic flux does not restore mitochondrial morphology 

but rather increases mitochondrial membrane potential and thereby suppresses UPRmt. 

Moreover, lipid profiling in mutants with a block in mitochondrial fusion revealed increased 

levels of specific triacylglycerols (TGs), which is partially reverted by the induction of 

autophagy. This suggests that the breakdown of these TGs fuels mitochondrial metabolism and 

thereby increases mitochondrial membrane potential, which consequently leads to the 

suppression of UPRmt.  

Taken together, this study shows that the mitonuclear protein imbalance upon knock-down of 

LRPPRC is counteracted by the activation of UPRmt. Moreover, a so far unknown functional 

connection between UPRmt and autophagy has been established. Thus, these findings provide 

novel insights into how UPRmt is affected by changes in metabolism. 
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1 Introduction 

1.1 Caenorhabditis elegans 

The simple metazoan Caenorhabditis elegans (C. elegans) has been introduced into scientific 

research in the early 1960s by Sydney Brenner. Since then, the small (~1 mm) free-living 

nematode has been extensively used as a model organism for basic research especially in the 

field of animal development and programmed cell death. One key feature of C. elegans is its 

entirely mapped and invariant cell lineage (Sulston et al., 1983; Sulston and Horvitz, 1977). 

This makes cell fate prediction for every single cell as well as manipulation of individual cell 

lineages during development possible. In addition, the establishment of the RNA interference 

(RNAi) technique (Fire et al., 1998) made C. elegans an organism in which large-scale genetic 

screens can easily be performed. 

C. elegans has two natural sexes: hermaphrodites (XX) and males (XO). Hermaphrodites can 

either self-fertilize or mate with a male to produce offspring. The natural incidence of males 

after self-fertilization is very low (~0.2%) since this requires a spontaneous loss of the 

X-chromosome at meiosis (Hodgkin et al., 1979; Hodgkin and Doniach, 1997). However, the 

frequency of males can be increased upon incubation (~3 to 6 hours) at higher temperatures 

(~30°C).  

Importantly, C. elegans harbors several advantages that make it well suitable for daily 

laboratory use. First, C. elegans can be cultured and maintained on agar plates with E. coli as 

food source. Second, C. elegans has a short temperature-dependent life cycle and strains can be 

frozen at -80°C for long-term storage. Furthermore, transgenic animals can be generated by 

microinjection of DNA into the gonad and its transparency enables in vivo microscopy analysis, 

which is of particular relevance when examining fluorescently labeled proteins or, for example, 

organelles like mitochondria that can specifically be stained with fluorescent dyes.  

Altogether, C. elegans is a powerful model organism that is used to study various fundamental 

biological processes. Since 38% of C. elegans genes have orthologs in mammals (Shaye and 

Greenwald, 2011), this research will also contribute to acquire more knowledge of how diseases 

in higher organisms are regulated and how they can be fought against.   
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1.2 Mitochondria 

Mitochondria are organelles with an average size in diameter of 0.5 – 1 µm and found in most 

eukaryotic cells (except mature red blood cells). They are often referred to as the ‘powerhouse 

of the cell’ since one of their key function is the generation of adenosine triphosphate (ATP). 

In mammalian somatic cells, the number of mitochondria per cell primarily depends on the 

energy demand of the different cell types and varies considerably, ranging from about eighty to 

a several thousand (Kukat et al., 2011; Robin and Wong, 1988; reviewed in Bogenhagen, 2012).  

According to the endosymbiotic theory, mitochondria most likely evolved from an aerobic 

bacterial progenitor that was ingested by a primitive early eukaryotic cell. This explains why 

mitochondria are enclosed by a double membrane, the inner and outer mitochondrial membrane, 

making them distinct from all other non-nuclear organelles. The presence of the two membranes 

consequently also leads to the creation of two compartments in the mitochondria: the 

intermembrane space (IMS), which reflects the region between the inner and outer 

mitochondrial membrane, and the mitochondrial matrix, which describes the space enclosed by 

the inner membrane (Figure 1). The double membrane nature of the mitochondria was already 

described in the early 1950s by George Palade and Fritiof Sjöstrand by using electron 

microscopy analysis (Palade, 1952, 1953; Sjostrand, 1953). Interestingly, these studies 

additionally revealed the occurrence of inner membrane invaginations that project into the 

mitochondrial matrix and these inner membrane folds are known as ‘cristae’ (Figure 1). Cristae 

are vital for mitochondria’s role in ATP production because they lead to an increased surface 

area of the inner mitochondrial membrane. This is of importance since the mitochondrial 

respiratory chain complexes are all embedded in the inner mitochondrial membrane. Hence, an 

increased inner membrane surface area results in a higher competence of energy production.  

Another characteristic of mitochondria that can be explained by endosymbiotic theory is the 

presence of its own genome, the mitochondrial DNA (mtDNA). The mtDNA is found in the 

mitochondrial matrix (Figure 1) and one mitochondrion usually contains between 1 and 15 

copies of mtDNA (Kukat et al., 2011; Robin and Wong, 1988; Satoh and Kuroiwa, 1991; 

Wiesner et al., 1992). It encodes for only a small subset of all mitochondrial proteins as the 

nuclear DNA encodes for the vast majority of proteins composing the mitochondrial proteome. 

Specifically, the mtDNA in C. elegans, which is 13,794 nucleotides in length, encodes for 12 

protein subunits of the mitochondrial respiratory chain, 2 ribosomal RNAs and 22 transfer 

RNAs (Okimoto et al., 1992).  
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Mitochondria fulfill many more tasks in the cell besides their role in energy production. They, 

for example, function in the absorption and storage of calcium ions to regulate intracellular 

calcium homeostasis (reviewed in Giorgi et al., 2018; Rizzuto et al., 2012). In addition, 

mitochondria play a critical role in regulating programmed cell death (reviewed in Bock and 

Tait, 2020) and signaling via reactive oxygen species (ROS) (reviewed in Shadel and Horvath, 

2015). Furthermore, mitochondria are known to contribute to the immune response (reviewed 

in Breda et al., 2019) and to be involved in phospholipid synthesis as well as in the assembly 

of iron-sulfur clusters (reviewed in Braymer and Lill, 2017; Tatsuta and Langer, 2017). Due to 

its importance in cellular homeostasis, it is therefore not surprising that mitochondria have been 

associated with many human diseases like diabetes, Alzheimer’s or Parkinson’s (reviewed in 

Billingsley et al., 2018; Kwak et al., 2010; Perez Ortiz and Swerdlow, 2019).  

 

 

1.2.1 Mitochondrial dynamics  

In textbooks, mitochondria are usually illustrated as kidney bean-shaped and static organelles. 

In fact, mitochondria display varying morphologies among different cell types and are often 

organized in highly connected networks. Moreover, mitochondria are very dynamic organelles 

that frequently undergo fusion and fission events, which is referred to as ‘mitochondrial 

dynamics’. The balance of fusion and fission is adjusted by the cell in response to various 

stimuli and a balanced rate of fusion and fission events is important for maintaining 

mitochondrial function and, hence, cellular homeostasis (reviewed in Youle and van der Bliek, 

matrix

mtDNA

cristae

IMS

inner membrane
outer membrane

Figure 1. Mitochondria structure. Basic schematic of the main structural features of mitochondria. Figure 
modified based on (Labieniec-Watala et al., 2012). 
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2012). Upon energy demand, mitochondrial hyperfusion can, for example, lead to a higher rate 

of oxidative phosphorylation (Rossignol et al., 2004; Tondera et al., 2009). Furthermore, 

mitochondrial fusion results in the mixing of contents between mitochondria, which can serve 

as a complementation mechanism in order to fight the accumulation of misfolded proteins and 

mutated mtDNAs (Chen et al., 2005; Ono et al., 2001). If severe damage in mitochondria persist 

and cannot be restored, mitochondrial fission ensures the separation of these mitochondria from 

the network and the subsequent activation of mitophagy, a selective form of autophagy, finally 

leads to their elimination (reviewed in Palikaras et al., 2018; Pickles et al., 2018). In addition, 

mitochondrial fission is crucial for the proper partitioning of mitochondria during mitosis 

(Taguchi et al., 2007) and it has also been shown that mitochondria undergo excessive fission 

during apoptosis (Frank et al., 2001; Jagasia et al., 2005). Interestingly, blocking either 

mitochondrial fusion or fission has been shown to have implications in neurodegenerative 

diseases, underlining the importance of mitochondrial dynamics with respect to organismal 

health (Guo et al., 2013; Zuchner et al., 2004). 

 

1.2.1.1 Mitochondrial fusion 

Mitochondrial fusion and fission are both regulated by dynamin-related GTPases, several of 

them being highly conserved between yeast, worms, flies and mammals (reviewed in Hoppins 

et al., 2007). The first mitochondrial fusion gene identified was fuzzy onions (fzo) in Drosophila 

melanogaster, which was named after the aberrant appearance of mitochondria during 

spermatogenesis in the respective mutant (Hales and Fuller, 1997). Fzo belongs to the mitofusin 

(Mfn) class of proteins and members of this protein family have been shown to be embedded 

in the outer mitochondrial membrane (reviewed in Chan, 2012; Mozdy and Shaw, 2003). 

Moreover, mitofusins are known to mediate the tethering and fusion of mitochondria through 

their auto-oligomerization between opposing outer mitochondrial membranes (Figure 2) 

(Koshiba et al., 2004; Meeusen et al., 2004). Interestingly, the GTPase activity is crucial for the 

fusion process since defects in its domain lead to tethered but not fused mitochondria (Chen et 

al., 2003; Hales and Fuller, 1997; Hermann et al., 1998). Although both the N-terminal and 

C-terminal domain of metazoan mitofusins were initially thought to face the cytosol, a recent 

study provided evidence that the C-terminal domain localizes to the IMS (Mattie et al., 2018). 

This is of particular interest because the same study showed that the C-terminal domain is 

essential for the fusogenic function, suggesting that interactions in the IMS are key for the 

oligomerization of mitofusins and, hence, for their ability to mediate mitochondrial fusion. 

Introduction

5



 
 

Noteworthy, mammals possess two mitofusins, Mfn1 and Mfn2. Although they share ~80% 

sequence similarity, both proteins are required for efficient mitochondrial fusion and 

mitochondria only have residual fusion activity upon depletion of one of them (Chen et al., 

2003; Zorzano and Pich, 2006). Remarkably, the lack of either Mfn1 or Mfn2 results in a 

disparate mitochondrial phenotype. While cells lacking Mfn1 show highly fragmented 

mitochondria of small size, cells lacking Mfn2 display bigger mitochondrial fragments that tend 

to form aggregates (Chen et al., 2003). This is in line with findings that Mfn1 has a higher 

fusion and GTPase activity as compared to Mfn2 (Chen et al., 2003; Ishihara et al., 2004). In 

addition, it was shown that mitochondrial fusion is completely blocked in Mfn1/2 double 

knock-out cells (Chen et al., 2003). These results suggest that Mfn1 and Mfn2 function 

differently in regulating the mitochondrial fusion process. However, it also has been shown that 

mitochondria lacking Mfn1 can, at least to some extent, fuse with mitochondria lacking Mfn2, 

indicating that both mitofusins have at least partially redundant functions with respect to their 

competence in assisting mitochondrial fusion (Chen et al., 2005). Interestingly, Mfn2 has also 

been shown to be involved in the control of mitochondrial membrane potential as well as in the 

oxidation of glucose, pyruvate and fatty acids – all independent of its fusogenic function (Bach 

et al., 2003; Pich et al., 2005). It is worth mentioning that, in contrast to mammals, C. elegans 

only contains one mitofusin ortholog, FZO-1, and, as expected, its loss results in highly 

fragmented mitochondria (Breckenridge et al., 2008; Ichishita et al., 2008). 

After fusion of the outer mitochondrial membranes, it also requires the fusion of the inner 

mitochondrial membranes to complete the mitochondrial fusion process. In mammals, this is 

achieved by another dynamin-related GTPase called OPA1 (Figure 2). First evidence for its 

role in regulating mitochondrial dynamics arose from its homolog in yeast, Mgm1, which was 

initially shown to be essential for mitochondrial fusion and later demonstrated to be specifically 

implicated in the tethering and fusion of the inner mitochondrial membranes (Meeusen et al., 

2006; Wong et al., 2000; Wong et al., 2003). The C. elegans homolog of OPA1/Mgm1 is named 

EAT-3 and was already found in 1993 during a screen for eating defective mutants (Avery, 

1993). However it still lasted 15 years until its function in mitochondrial fusion was assessed 

(Kanazawa et al., 2008). OPA1, as well as Mgm1 and EAT-3, exists in two major isoforms 

(long and short) that are generated through proteolytic cleavage in the mitochondria (Chaudhari 

and Kipreos, 2017; Griparic et al., 2007; Herlan et al., 2003; McQuibban et al., 2003; Olichon 

et al., 2007). While the long isoform is integral in the inner mitochondrial membrane, its 

cleavage results in a short isoform that lacks the transmembrane domain. This more soluble 

isoform localizes to the intermembrane space. Interestingly, it has been proposed that both 
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isoforms are needed for efficient mitochondrial fusion (Griparic et al., 2007; Herlan et al., 2003; 

Mishra et al., 2014; Song et al., 2007). However, recent data from mammalian cells suggests 

that the short isoform of OPA1 rather facilitates mitochondrial fragmentation (Anand et al., 

2014; Wai et al., 2015). It will require further research in order to shed more light on the 

functions of the different isoforms of OPA1/Mgm1/EAT-3 with respect to their role in 

mitochondrial dynamics. 

Besides their task in controlling mitochondrial fusion, OPA1, Mgm1 and EAT-3 have also been 

shown to be involved in the regulation and maintenance of mitochondrial cristae structure since 

cristae were highly disorganized and shortened upon loss of these proteins (Frezza et al., 2006; 

Kanazawa et al., 2008; Meeusen et al., 2006; Olichon et al., 2003). Remarkably, a recent study 

revealed that mitochondria also display aberrant cristae in the absence of FZO-1 in C. elegans 

(Byrne et al., 2019), indicating that mitofusins may also be important for mitochondrial cristae 

formation and/or maintenance.  

Figure 2. Schematic representation of mitochondrial fusion. Fusion of the outer mitochondrial membranes is 
mediated by mitofusins (Mfn1/Mfn2/FZO-1) and fusion of the inner mitochondrial membranes is mediated by 
OPA1/EAT-3. Both steps are dependent on GTP hydrolysis. Figure modified based on (Mishra and Chan, 2016). 

Mfn1/Mfn2/FZO-1

OPA1/EAT-3

GTP                  GDP

GTP                  GDP
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1.2.1.2 Mitochondrial fission 

In 1999, both the yeast dynamin-related GTPase Dnm1 and its homolog in C. elegans, DRP-1, 

were found to be required for mitochondrial fission because their depletion led to highly 

elongated and interconnected mitochondria (Bleazard et al., 1999; Labrousse et al., 1999; 

Sesaki and Jensen, 1999). Two years later, this was also established for the mammalian 

homolog Drp1 (Smirnova et al., 2001). Drp1 is a primarily cytosolic-localized protein that can 

be recruited to the outer mitochondrial membrane where it oligomerizes and forms spirals 

around the membrane to drive its constriction in a GTP-dependent manner (reviewed in Kraus 

and Ryan, 2017). The exact mechanism of how Drp1 is recruited to its target membrane is still 

under investigation, yet several outer mitochondrial membrane receptors have been shown to 

assist in the recruitment of Drp1 in mammalian cells. These receptors are Mff, MIEF1 and 

MIEF2 (with MIEF1 and MIEF2 being largely redundant in function) (Gandre-Babbe and van 

der Bliek, 2008; Loson et al., 2013; Otera et al., 2010; Palmer et al., 2011). Remarkably, Mff 

and MIEF1/2 can independently recruit Drp1 to the mitochondrial surface (Loson et al., 2013; 

Palmer et al., 2013). C. elegans has two Mff homologs, MFF-1 and MFF-2, while MIEF1 and 

MIEF2 homologs are absent. Nevertheless, there may be additional receptors in C. elegans that 

aid in DRP-1 recruitment given that the defects in the mitochondrial network upon lack of both 

MFF-1 and MFF-2 is less severe than in drp-1 mutants (Shen et al., 2014). Noteworthy, the 

anti-apoptotic Bcl-2 family protein CED-9 can also act as a receptor for DRP-1 in C. elegans 

since it has been shown to interact with and recruit DRP-1 upon binding of the pro-apoptotic 

BH3-only protein EGL-1 in order to promote mitochondrial fission (Lu et al., 2011). A similar 

function may be fulfilled by mammalian Bcl-2 family members as some of them have also been 

implicated in the regulation of mitochondrial dynamics (reviewed in Autret and Martin, 2010). 

In yeast, Dnm1 recruitment is known to be dependent on a different receptor protein called 

fission factor 1 (Fis1) (Mozdy et al., 2000). Despite the presence of Fis1 homologs in mammals 

and C. elegans, it has been shown that they are not required for mitochondrial fission in these 

organisms (Osellame et al., 2016; Otera et al., 2010; Shen et al., 2014).  

Interestingly, there is emerging evidence that the ER and the actin network are also key players 

in the process of mitochondrial fission and start to act even before Drp1 comes into play. 

Specifically, it has been proposed that the ER localizes to future fission sites to promote and 

control curvature induction as well as the initial constriction of the membrane (Figure 3) 

(Friedman et al., 2011; Korobova et al., 2013). This Drp1-independent process is thought to 

rely on ER-associated actin and requires the formin protein INF2 as well as the spire protein 
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Spire1C for stimulation of actin polymerization, thereby generating the force for membrane 

constriction (Korobova et al., 2014; Korobova et al., 2013; Manor et al., 2015). Moreover, 

myosin-II has also been suggested to be implicated in this process (Hatch et al., 2014; Korobova 

et al., 2014). In a second step, Drp1 may then assemble on the sites that were pre-constricted 

by the ER to further promote the constriction and scission of the membrane with the help of 

actin fibers.  

 

1.2.2 Oxidative phosphorylation 

Most of the cell’s ATP is generated inside mitochondria via oxidative phosphorylation 

(OXPHOS). Two important mitochondrial metabolic pathways that directly feed into OXPHOS 

Figure 3. Proposed model of mitochondrial fission. The ER localizes to future sites of mitochondrial fission to 
promote mitochondrial constriction. Next, Drp1/DRP-1 oligomerizes on pre-constricted sites and forms spirals 
around the membrane in order to further drive its constriction, thereby facilitating mitochondrial fission. Figure 
modified based on (Nezich and Youle, 2013). 

ER

Mitochondrion

Drp1/DRP-1
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are fatty acid β-oxidation (FAO) and the tricarboxylic acid (TCA) cycle. The final products of 

FAO are NADH, FADH2 and acetyl-CoA (reviewed in Houten et al., 2016). Whereas the 

electron carriers NADH and FADH2 can directly be used for ATP production by OXPHOS, 

acetyl-CoA enters the TCA cycle. In the TCA cycle, acetyl-CoA is oxidized in a series of 

reactions resulting in the generation of further molecules of NADH and FADH2 (reviewed in 

Akram, 2014). Noteworthy, the central metabolic intermediate acetyl-CoA is not only fueled 

into the TCA cycle by FAO but also by other metabolic pathways that degrade carbohydrates 

or proteins. During OXPHOS, the electrons deriving from NADH and FADH2 are then, through 

a series of sequential redox reactions, transferred between the mitochondrial respiratory chain 

(MRC) complexes I – IV (Figure 4) (reviewed in Rich and Marechal, 2010; Sousa et al., 2018; 

van der Bliek et al., 2017) (see below). Herein, molecular oxygen serves as the final electron 

acceptor, resulting in its reduction to water. Importantly, the electron transport among the 

MRCs is coupled to the transfer of protons from the mitochondrial matrix into the IMS. This 

leads to the establishment of an electrochemical gradient across the inner mitochondrial 

membrane, which is harnessed by the final OXPHOS complex, ATP synthase (complex V), to 

catalyze the synthesis of ATP through phosphorylation of ADP (Figure 4).   

As mentioned above, five protein complexes are crucial for OXPHOS and the proper 

stoichiometric assembly of these multi-subunit complexes requires a high coordination between 

mitochondrial and nuclear gene expression since their proteins are encoded by both mtDNA 

and nuclear DNA. The MRC complex I (NADH dehydrogenase) is the largest of the five 

complexes and represents the entry point for electrons from NADH into the OXPHOS system 

(reviewed in Hirst, 2005). Specifically, via a series of redox reactions, two electrons are 

transferred from NADH to the electron acceptor ubiquinone, resulting in the formation of its 

reduced form, ubiquinol. Besides electron transfer, complex I additionally translocates four 

protons from the mitochondrial matrix into the IMS. Complex II (succinate dehydrogenase) is 

the smallest complex and consists of only four subunits, all of which are encoded by the nuclear 

DNA (reviewed in Cecchini, 2003). It functions in parallel with complex I to serve as a second 

entry site for electrons. Notably, complex II is not only an OXPHOS constituent but also a 

component of the TCA cycle where it catalyzes the oxidation of succinate to fumarate, thereby 

producing the electron carrier FADH2. The electrons from FADH2 are then utilized by complex 

II for reduction of ubiquinone to ubiquinol, though no further protons are translocated. 

Noteworthy, FADH2 can also be directed into complex II by FAO (see above). Next, the 

ubiquinol produced by complex I or II freely diffuses within the inner mitochondrial membrane 

and is subsequently used by complex III (cytochrome bc1 complex) for electron transfer to 
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cytochrome c via the Rieske protein, whereby the oxidation of one molecule ubiquinol leads to 

the reduction of two molecules cytochrome c (reviewed in Berry et al., 2000). More precisely, 

it is the iron in the heme group of cytochrome c that serves as the electron acceptor in this case. 

Importantly, the electron transfer mediated by complex III is also accompanied by the 

translocation of four protons into the IMS. The reduced cytochrome c molecules are then 

utilized by complex IV (cytochrome c oxidase or COX) in order to finally transfer the electrons 

(originating from NADH or FADH2) to oxygen, thereby generating water (reviewed in Calhoun 

et al., 1994; Yoshikawa et al., 2006). For this step, four molecules of reduced cytochrome c are 

needed, and four further protons are in total translocated across the inner mitochondrial 

membrane. Ultimately, proton flow through the ATP synthase back along the electrochemical 

gradient, which has been established by complexes I – IV, provides the energy to drive the 

phosphorylation of ADP to ATP (reviewed in Junge and Nelson, 2015).  

 

1.2.3 LRPPRC 

The French Canadian Leigh Syndrome is an early-onset neurodegenerative disease that is 

caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat containing) gene 

and associated with impaired complex IV activity (Mootha et al., 2003). LRPPRC is primarily 

found in mitochondria and plays an important role in the regulation of mitochondrial mRNA 

metabolism (Cooper et al., 2006; Mili and Pinol-Roma, 2003; Ruzzenente et al., 2012; 

Figure 4. Schematic overview of oxidative phosphorylation. Electrons (e-) deriving from NADH and FADH2

are transferred between the mitochondrial respiratory chain complexes I – IV and ultimately used to reduce
molecular oxygen to water. The electrochemical gradient that has been established by the action of the four
complexes is then harnessed by the ATP synthase in order to generate ATP. Figure modified based on (Benard et 
al., 2011).  
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Sasarman et al., 2010; Sterky et al., 2010). For that purpose, LRPPRC functions in a complex 

with the stem-loop RNA-binding protein SLIRP (Sasarman et al., 2010). The LRPPRC-SLIRP 

complex acts as an ATP-independent RNA chaperone and is able to locally relax the secondary 

structure of mitochondrial mRNAs in order to facilitate their polyadenylation and translation 

(Siira et al., 2017). More precisely, the LRPPRC-SLIRP complex not only promotes 

polyadenylation of mRNAs by stimulating mitochondrial poly(A) polymerase (mtPAP) activity 

but also stabilizes polyadenylated mRNAs in general (Chujo et al., 2012; Ruzzenente et al., 

2012). How exactly the LRPPRC-SLIRP complex controls mitochondrial translation is unclear, 

however, its inactivation has been shown to be detrimental for efficient mRNA translation and 

potentially also influences rRNA maturation (Lagouge et al., 2015; Ruzzenente et al., 2012; 

Siira et al., 2017). Although it has been initially proposed that LRPPRC depletion only affects 

the stability of specific COX mRNAs (Xu et al., 2004), it is now evident that LRPPRC acts 

globally on all mitochondrial mRNAs, with the exception of MT-ND6 (Ruzzenente et al., 2012; 

Siira et al., 2017). However, the mRNAs encoding for COX subunits seem to be more sensitive 

to the loss of LRPPRC as compared to all other mitochondrial mRNAs since they are found to 

be disproportionally decreased (Ruzzenente et al., 2012; Sasarman et al., 2010). This may 

account for the specific impairment of complex IV in patients suffering from French Canadian 

Leigh Syndrome. Furthermore, it was shown that reduced LRPPRC levels in mammalian cells, 

or reduced levels of the LRPPRC-like protein MMA-1 in C. elegans, result in mitochondrial 

hyperfusion in order to compensate for decreased complex IV activity by maintaining 

mitochondrial ATP production (Rolland et al., 2013). However, this response is of transient 

nature since prolonged knock-down of LRPPRC ultimately leads to mitochondrial 

fragmentation, decreased ATP levels and collapse of cellular function (Rolland et al., 2013). 

Consistently, fibroblasts from patients with French Canadian Leigh Syndrome have also been 

shown to display fragmented mitochondria (Sasarman et al., 2010). Moreover, it is worth 

mentioning that LRPPRC has additionally been implicated in several other diseases like cancer, 

Parkinson’s and neurofibromatosis type I (Arun et al., 2013; Gaweda-Walerych et al., 2016; 

Jiang et al., 2014; Li et al., 2014; Tian et al., 2012). 

 

1.2.4 The mitochondrial unfolded protein response  

The mitochondrial proteome is composed of more than 1000 proteins (Rhee et al., 2013). Nearly 

all these proteins are encoded by the nuclear DNA and synthesized in the cytosol. Hence, they 

need to be imported into mitochondria via the TIM/TOM complexes (reviewed in Chacinska et 
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al., 2009) and folded within the organelle. The folding of both mitochondrially translated and 

imported proteins is achieved by molecular chaperones like mtHSP70 and HSP60 (Cheng et 

al., 1989; Mizzen et al., 1989). Interestingly, mtHSP70 does not only function in protein folding 

but also plays an essential role at the mitochondrial import channel where it facilitates the 

import of proteins by interacting with the TIM complex (D'Silva et al., 2003; Gaume et al., 

1998; Voisine et al., 1999). Damaged or misfolded proteins are degraded by mitochondrial 

proteases, such as ClpXP or LONP1, to ensure the maintenance of mitochondrial protein 

homeostasis (Bota and Davies, 2002; Desautels and Goldberg, 1982; Kang et al., 2002; Wang 

et al., 1993). Once unfolded and/or misfolded proteins in the mitochondrial matrix start to 

accumulate, a retrograde quality control signaling pathway referred to as the ‘mitochondrial 

unfolded protein response’ (UPRmt) is activated (reviewed in Naresh and Haynes, 2019). This 

promotes the transcriptional upregulation of nuclear genes encoding for mitochondrial 

protective proteins (like the aforementioned chaperones and proteases) in order to re-establish 

mitochondrial proteostasis.  

The first evidence for the existence of such a mitochondria-specific stress response pathway 

was provided in mammalian cells upon depletion of mtDNA by exposure to ethidium bromide 

(Martinus et al., 1996). Because the overexpression of a misfolding-prone mitochondrial-

targeted protein had been shown to result in a similar response, this pathway was named UPRmt 

(Zhao et al., 2002). Since then, much has been learned about UPRmt and its molecular regulation 

through extensive studies in C. elegans. Specifically, UPRmt in C. elegans is mediated by the 

bZIP transcription factor ATFS-1 (activating transcription factor associated with stress-1), 

which possesses both an N-terminal mitochondrial targeting sequence (MTS) and a C-terminal 

nuclear localization signal (NLS) (Haynes et al., 2010; Nargund et al., 2012). In the absence of 

mitochondrial stress, ATFS-1 is imported into the mitochondrial matrix where it is degraded by 

the LONP-1 protease (Nargund et al., 2012). However, upon activation of the UPRmt, 

mitochondrial protein import is generally compromised, which leads to the accumulation of 

ATFS-1 in the cytosol and its subsequent import into the nucleus (Nargund et al., 2012). Once 

in the nucleus, ATFS-1 then promotes the expression of several stress response genes like 

chaperones (e.g., hsp-6, hsp-60) and proteases (e.g., clpp-1) (Nargund et al., 2012). 

Interestingly, this transcriptional activation is also tightly regulated by chromatin remodeling 

and requires the proteins LIN-65, MET-2, JMJD-1.2 and JMJD-3.1 (Merkwirth et al., 2016; 

Tian et al., 2016). While LIN-65 in conjunction with the histone methyltransferase MET-2 

mediates the condensation of global chromatin (Tian et al., 2016), the two histone demethylases 

JMJD-1.2 and JMJD-3.1 act to specifically open the chromatin structure of UPRmt target genes 
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(Merkwirth et al., 2016). Two additional proteins that participate in chromatin remodeling and 

UPRmt activation are DVE-1 and UBL-5 (Benedetti et al., 2006; Haynes et al., 2007; Tian et 

al., 2016). Both the homeobox transcription factor DVE-1 and the small ubiquitin-like protein 

UBL-5 normally localize to the cytoplasm but translocate into the nucleus upon disruption of 

mitochondrial protein homeostasis (Benedetti et al., 2006; Haynes et al., 2007). In the nucleus, 

DVE-1 and UBL-5 form a complex and bind to UPRmt gene promoters that have been made 

accessible by JMJD-1.2 and JMJD-3.1 to further promote remodeling of chromatin (Benedetti 

et al., 2006; Haynes et al., 2007; Tian et al., 2016). This keeps the respective genes in a 

transcription-competent state, which thereby facilitates binding of ATFS-1 and, hence, 

activation of UPRmt (Tian et al., 2016). Another layer of complexity in this regard has recently 

been added since it was shown that also the SUMO peptidase ULP-4 is required for UPRmt 

activation (Gao et al., 2019). More precisely, ULP-4 deSUMOylates DVE-1 in the cytoplasm 

to enable its import into the nucleus (Gao et al., 2019). Furthermore, ULP-4-dependent 

deSUMOylation also increases the stability and the transcriptional activity of ATFS-1 (Gao et 

al., 2019).   

As outlined above, the nuclear localization of ATFS-1 is key for UPRmt activation and requires 

hampered mitochondrial protein import. Initially, this impaired mitochondrial protein import 

has been proposed to be caused by the release of short peptides from mitochondria into the 

cytoplasm (Haynes et al., 2010). This was based on studies showing that the mitochondrial 

matrix protease CLPP-1 and the inner membrane-spanning ABC (ATP-binding cassette) 

transporter HAF-1 are required for proper UPRmt activation (Haynes et al., 2010; Nargund et 

al., 2012). CLPP-1 is known to cleave unfolded proteins into small peptides and it has been 

proposed that these peptides are subsequently transported across the inner membrane via HAF-1 

(Haynes et al., 2010; Nargund et al., 2012). The peptides are then thought to further diffuse 

across the outer mitochondrial membrane through porins or the TOM complex and this peptide 

efflux into the cytoplasm has been proposed to act as the signal that triggers UPRmt by blocking 

mitochondrial import (via an unknown mechanism) (Haynes et al., 2010). However, a recent 

study provided evidence that it is rather a decrease of mitochondrial membrane potential that 

acts as the signal for UPRmt activation (Rolland et al., 2019). Since mitochondrial membrane 

potential is intimately linked to mitochondrial import (Martin et al., 1991; reviewed in 

Kulawiak et al., 2013; Zorova et al., 2018), changes in the mitochondrial membrane potential 

can therefore regulate the import efficiency of ATFS-1 (Figure 5). In particular, mitochondrial 

import also depends on the net charge of the MTS of a protein (reviewed in Hartl et al., 1989) 

and a drop in mitochondrial membrane potential greatly decreases the import of ATFS-1 due to 
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its relatively ‘weak’ MTS whereas proteins with a ‘strong’ MTS (e.g., HSP-60) are still 

imported (Rolland et al., 2019). Thus, the MTS of ATFS-1 acts as a sensor for reduced 

mitochondrial membrane potential. 
 

 

Numerous genes have been shown to induce UPRmt when inactivated. Among them are, for 

example, all the three GTPases (fzo-1, eat-3 and drp-1) that regulate mitochondrial dynamics 

(Kim and Sieburth, 2018; Zhang et al., 2018). In addition, the depletion of SPG-7, which is a 

subunit of the mitochondrial m-AAA protease complex, has been exploited for studying the 

UPRmt (Benedetti et al., 2006; Haynes et al., 2007; Haynes et al., 2010; Lin et al., 2016; Nargund 

et al., 2015; Shao et al., 2016). Moreover, blocking mitochondrial translation by using 

doxycycline as well as the knock-down of mitochondrial respiratory chain components was 

shown to activate the UPRmt in C. elegans (Benedetti et al., 2006; Durieux et al., 2011; 

Houtkooper et al., 2013; Yoneda et al., 2004).  

The UPRmt in mammalian cells is not as well understood, but it has been shown that the pathway 

is at least partially conserved (reviewed in Melber and Haynes, 2018; Naresh and Haynes, 

2019). For instance, it has been shown that the bZIP transcription factor ATF5 shares 

similarities with ATFS-1 because it also harbors both a MTS and a NLS and its import into 

mitochondria is similarly regulated (Fiorese et al., 2016). In line with this, ATF5 was shown to 

Mitochondrion

ATFS-1 NLSMTS

DVE-1

UBL-5

Nucleus

DVE-1

UBL-5

ATFS-1
mt chaperones
mt proteases

low ΔΨm

mitochondrial stress

TOMTIMHSP-6HSP-60

CLPP-1

Figure 5. Schematic representation of UPRmt signaling in C. elegans. Mitochondrial stress leads to decreased 
mitochondrial membrane potential (ΔΨm) and thereby to impaired import of ATFS-1. Hence, ATFS-1 is imported 
into the nucleus where it cooperates with DVE-1 and UBL-5 in order to drive the expression of mitochondrial 
stress response genes like chaperones (e.g., hsp-6, hsp-60) and proteases (e.g., clpp-1), which ideally results in the 
reconstitution of mitochondrial homeostasis. Figure modified based on (Jovaisaite et al., 2014). 
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be able to regulate UPRmt in worms lacking ATFS-1 (Fiorese et al., 2016). Nevertheless, the 

regulation of UPRmt is thought to be more complex as compared to in C. elegans since two 

additional bZIP transcription factors, ATF4 and CHOP, have been shown to be required for 

UPRmt induction in mammals (Chung et al., 2017; Fusakio et al., 2016; Horibe and Hoogenraad, 

2007; Quiros et al., 2017). The exact function of the three transcription factors with respect to 

their roles in UPRmt activation stills needs to be determined. Importantly, UPRmt in mammalian 

cells is tightly connected to the integrated stress response (ISR), which is a common adaptive 

eukaryotic signaling pathway that drives the expression of stress response genes in order to 

restore cellular homeostasis (reviewed in Pakos-Zebrucka et al., 2016). The ISR is stimulated 

following diverse cellular stressors such as amino acid starvation, ER stress, mitochondrial 

stress or viral infection (Quiros et al., 2017; reviewed in Pakos-Zebrucka et al., 2016). Evidence 

indicates that mitochondrial dysfunction activates the ISR via the cytoplasmic kinase GCN2 

(Martinez-Reyes et al., 2012; Michel et al., 2015; Wang et al., 2016). More accurately, GCN2 

phosphorylates the translation initiation factor eIF2α, which results in inhibition of general 

protein synthesis while translation of mRNAs harboring upstream open reading frames 

(uORFs) is preferentially initiated (reviewed in Barbosa et al., 2013; Dever, 2002; Hinnebusch 

et al., 2016; Young and Wek, 2016). Interestingly, among the mRNAs that are preferentially 

translated upon phosphorylation of eIF2α are the mRNAs of all three transcription factors 

(ATF4, ATF5 and CHOP) that are required for UPRmt since they all harbor uORFs (Jousse et 

al., 2001; Lu et al., 2004; Teske et al., 2013; Vattem and Wek, 2004; Zhou et al., 2008). Thus, 

the activation of the ISR is a prerequisite for UPRmt induction in mammalian cells. However, 

this seems not be conserved in C. elegans as neither GCN-2 (the homolog of mammalian 

GCN2) nor phosphorylation of eIF2α is required for UPRmt activation in this organism (Baker 

et al., 2012; Rolland et al., 2019). 

 

1.3 Autophagy 

Autophagy (cellular ‘self-eating’) is the process of lysosomal degradation and recycling of 

cytoplasmic constituents, long-lived proteins or dysfunctional organelles (reviewed in Levine 

and Klionsky, 2004; Mizushima, 2007). It was first described in the 1960s (De Duve and 

Wattiaux, 1966) and has been extensively studied during the past decades (reviewed in Galluzzi 

et al., 2017). Three different types of autophagy can be distinguished: macroautophagy, 

microautophagy and chaperone-mediated autophagy. Microautophagy is the least understood 
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type and involves the uptake of cytoplasmic cargo into the lysosome through invagination or 

protrusion of the lysosomal membrane (reviewed in Mijaljica et al., 2011). Chaperone-mediated 

autophagy is a very selective form of autophagy and only involves cytosolic proteins that 

contain a KFERQ-like motif (Dice, 1990). These substrates are recognized and unfolded by 

specific chaperones, subsequently translocated across the lysosomal membrane and finally 

degraded within the lysosomal lumen (reviewed in Cuervo and Wong, 2014).  

 

1.3.1 Macroautophagy 

Macroautophagy (hereafter referred to as ‘autophagy’) is mediated by a cellular component 

called ‘autophagosome’ (Figure 6). More specifically, the induction of autophagy results in the 

establishment of a double-membrane structure called the ‘phagophore’, which elongates and 

ultimately engulfs the autophagic cargo by closure of the membrane structure, thereby giving 

rise to an autophagosome. The fusion of the autophagosome with a lysosome then leads to 

formation of an autolysosome, in which the engulfed cargo is finally degraded by acidic 

lysosomal hydrolases (reviewed in Feng et al., 2014; Mizushima, 2007; Nakatogawa et al., 

2009).  

 

 

 

 
 

 

Figure 6. Schematic model of the autophagy process. Upon induction of autophagy, a double-membrane 
structure named phagophore forms. The phagophore elongates and completely engulfs the autophagic cargo upon 
closure, thereby resulting in an autophagosome. Degradation of the autophagic cargo is then finally mediated by 
lysosomal hydrolases in the autolysosome, which derives from the fusion of the autophagosome with a lysosome. 
Figure modified based on (Melendez and Levine, 2009). 

 

Importantly, studies in mammalian systems have shown that autophagosomes can, prior to 

fusion with lysosomes, also fuse with early and late endosomes to form an intermediate hybrid 

Lysosome

Phagophore Phagophore
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organelle known as ‘amphisome’ (Berg et al., 1998; Gordon and Seglen, 1988; Tooze et al., 

1990). 

Seminal insights into the molecular basis of the autophagic machinery were initially gained by 

studies in Saccharomyces cerevisiae with the discovery of several autophagy-related (ATG) 

genes, many of them being conserved from yeast to humans (Harding et al., 1995; Klionsky et 

al., 2003; Thumm et al., 1994; Tsukada and Ohsumi, 1993; reviewed in Galluzzi et al., 2017). 

One of these genes is ATG1 and its homolog in C. elegans and mammals is unc-51 and ULK 

(unc-51-like kinase), respectively. The serine/threonine kinase Atg1/UNC-51/ULK is part of a 

complex that is required for initiation of phagophore assembly and the kinase 

TOR/LET-363/mTOR acts a key regulator of autophagy since it generally represses this 

complex (reviewed in Galluzzi et al., 2017; Palmisano and Melendez, 2019). However, in case 

of nutrient deprivation, TOR/LET-363/mTOR is inhibited, which in turn leads to de-repression 

of the Atg1/UNC-51/ULK initiation complex and thereby to induction of autophagy (reviewed 

in Galluzzi et al., 2017; Palmisano and Melendez, 2019). In addition to TOR/LET-363/mTOR, 

the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in 

regulating autophagy because it is also involved in nutrient sensing and was found to be able to 

inhibit TOR/LET-363/mTOR activity and/or to directly activate the Atg1/UNC-51/ULK 

complex (Egan et al., 2011; Gwinn et al., 2008; Inoki et al., 2002; Kim et al., 2011; Lee et al., 

2010). Interestingly, the membrane source for phagophore assembly is still under debate, but 

for mammalian phagophores it has been shown that they usually form near ER-mitochondria 

contact site-associated structures called omegasomes (Axe et al., 2008; Hayashi-Nishino et al., 

2009; Yla-Anttila et al., 2009). 

The commonly utilized autophagy marker in C. elegans is GFP::LGG-1. LGG-1 is homologous 

to yeast Atg8, which is a ubiquitin-like protein that is conjugated to phosphatidylethanolamine 

(PE) in the forming autophagosome and found on the inner as well as on the outer 

autophagosomal membrane (Ichimura et al., 2000; Kirisako et al., 1999). Although the exact 

function of Atg8 is still under investigation, it has been shown that Atg8 is involved in  

phagophore expansion and maturation of the autophagosome since Atg8 levels directly 

correlate with autophagosome size (Xie et al., 2008). Noteworthy, Atg8 is delipidated and 

released from the outer membrane during late stages of autophagy while the PE-conjugated 

Atg8 in the inner membrane is eventually degraded along with the autophagic cargo (Huang et 

al., 2000; Kirisako et al., 2000; Nair et al., 2012). Whereas only one Atg8 protein is present in 

yeast, several orthologs of Atg8 have been described in mammalian systems. They can be sub-
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divided into the LC3 and GABARAP families, but little is known about the exact function or 

redundancy of each ortholog with respect to their biological roles in regulating autophagosome 

biogenesis (reviewed in Lee and Lee, 2016; Slobodkin and Elazar, 2013). Interestingly, the two 

Atg8 orthologs in C. elegans, LGG-1 and LGG-2, are both not only implicated in 

autophagosome formation but also play a crucial role in autophagosome-lysosome fusion and 

recent evidence indicates that this holds true for mammalian Atg8 family proteins as well 

(Manil-Segalen et al., 2014; Nguyen et al., 2016b; Wu et al., 2015). 

One well-known function of Atg8-like proteins is that they mediate the selective removal of 

autophagic cargo. This is achieved by interaction with specific autophagy receptors like the 

mammalian p62/SQSTM1 (hereafter referred to as ‘p62’), which recognizes and binds to 

ubiquitinylated protein aggregates in order to deliver them into growing phagophores for 

subsequent degradation (Bjorkoy et al., 2005; Pankiv et al., 2007). Notably, the binding of p62 

to Atg8 family proteins in the phagophore is facilitated by a basic hydrophobic LC3-interacting 

region (LIR) motif that is common to all selective autophagy receptors (reviewed in Johansen 

and Lamark, 2011; Rogov et al., 2014). Since p62 itself is an autophagic substrate, increased 

levels of p62 are generally indicative of impaired autophagy (reviewed in Klionsky et al., 2016). 

This also applies to the C. elegans p62 homolog SQST-1, which is selectively degraded by 

autophagy during embryogenesis (Tian et al., 2010) and, hence, routinely used as a tool in order 

to check for hampered autophagy (reviewed in Chen et al., 2017; Zhang et al., 2015).  

Remarkably, autophagy genes have been shown to be required for health- and lifespan 

extension under certain conditions in several organisms, however, how exactly autophagy 

affects this beneficial outcome remains largely enigmatic (reviewed in Hansen et al., 2018). 

Furthermore, defects in the autophagic machinery have been linked to several human 

pathologies like cancer, myopathies, aging, neurodegeneration and metabolic diseases 

(reviewed in Choi et al., 2013; Saha et al., 2018).  

 

1.3.2 Mitophagy 

Mitophagy is a selective form of autophagy that specifically degrades mitochondria and the 

most well-characterized stress-induced mitophagy pathway is the PINK1/Parkin-mediated 

pathway (Figure 7). Interestingly, mutations in both PINK1 and Parkin have been shown to be 

implicated in early-onset Parkinson’s disease (Kitada et al., 1998; Valente et al., 2004). In the 

absence of mitochondrial stress, PINK1 is imported into the inner mitochondrial membrane via 
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the TOM/TIM complexes and cleaved by the PARL protease (Jin et al., 2010). Next, cleaved 

PINK1 translocates back into the cytosol where it is degraded by the proteasome (Lin and Kang, 

2008; Yamano and Youle, 2013). However, upon dissipation of the mitochondrial membrane 

potential, PINK1 import into mitochondria is compromised, resulting in the accumulation of 

PINK1 on the mitochondrial surface (Jin et al., 2010; Narendra et al., 2010). The auto-

phosphorylation of accumulated PINK1 then leads to activation of its kinase domain, which 

results in phosphorylation of several PINK1 substrates such as ubiquitin and this subsequently 

promotes the recruitment of the E3 ubiquitin ligase Parkin from the cytosol to damaged 

mitochondria (Kane et al., 2014; Okatsu et al., 2012; Shlevkov et al., 2016). Through 

phosphorylation by PINK1, Parkin is activated and eventually mediates polyubiquitination of 

its substrates on the outer mitochondrial membrane (Kane et al., 2014; Kondapalli et al., 2012; 

Koyano et al., 2014). Noteworthy, this entails a positive feedback loop since polyubiquitination 

of mitochondrial surface proteins by Parkin in turn provides additional substrates for PINK1 

phosphorylation and, hence, further drives the recruitment of Parkin molecules to damaged 

mitochondria (Ordureau et al., 2014). Finally, cytosolic autophagy receptors recognize and 

interact with ubiquitinated mitochondria to convey their incorporation into the autophagosomal 

degradation pathway (Lazarou et al., 2015).  
 

 

Figure 7. Schematic model of PINK1/Parkin-mediated mitophagy. PINK1 accumulates on depolarized 
mitochondria and subsequent Parkin recruitment results in ubiquitination of outer mitochondrial membrane 
proteins, which ultimately leads to the engulfment of damaged mitochondria into autophagosomes. Figure 
modified based on (Wang et al., 2019).    
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Remarkably, besides the PINK1/Parkin-mediated pathway, there also exists receptor-mediated 

mitophagy pathways that specifically act in response to various stimuli such as hypoxia or 

developmental cues (reviewed in Chakravorty et al., 2019; Palikaras et al., 2018). Three of those 

receptors are the outer mitochondrial membrane proteins BNIP3, NIX and FUNDC1 and all of 

them promote mitophagy by direct interaction with the autophagic machinery in a 

PINK1/Parkin-independent manner (reviewed in Liu et al., 2014a; Nguyen et al., 2016a; Villa 

et al., 2018). However, a crosstalk between the PINK1/Parkin-mediated pathway and receptor-

mediated pathways likely occurs since, for example, both BNIP3 and NIX have been shown to 

be able to regulate Parkin recruitment (Ding et al., 2010; Lee et al., 2011).  

In nematodes, mitophagy is not well-studied as compared to in mammalian systems, however, 

homologs of mammalian mitophagy genes have been identified. For instance, the C. elegans 

homologs of PINK1 and Parkin are PINK-1 and PDR-1, respectively, and both have been 

demonstrated to be crucial for selective removal of mitochondria under stress conditions 

(Cummins et al., 2019; Fang et al., 2019; Ryu et al., 2016). This also holds true for DCT-1, 

which is the nematode homolog of BNIP3 and NIX (Fang et al., 2019; Ryu et al., 2016). 

Furthermore, it has recently been shown that the loss of FNDC-1 (the C. elegans FUNDC1 

homolog) impairs the elimination of paternal mitochondria (Lim et al., 2019).  

 

1.4 ESCRT 

The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionary 

conserved machinery that mediates a specific membrane remodeling reaction, which involves 

membrane bending and abscission away from the cytosol (reviewed in Gatta and Carlton, 2019; 

Vietri et al., 2020). It has first been identified in the pathway of multivesicular body (MVB) 

formation during endocytosis, in which ESCRT facilitates the sorting of ubiquitinated 

membrane proteins into small intralumenal vesicles (ILVs) (Katzmann et al., 2001). Since then, 

ESCRT has also been implicated in many other cellular processes such as cytokinetic 

abscission, virus budding, neuron pruning, plasma membrane repair and nuclear pore quality 

control (Carlton and Martin-Serrano, 2007; Issman-Zecharya and Schuldiner, 2014; Jimenez et 

al., 2014; Webster et al., 2014). The ESCRT is composed of five different subcomplexes 

(ESCRT-0, -I, -II, -III and the AAA-ATPase VPS4) whereby ESCRT-III in conjunction with 

VPS4 acts as the functional key component in regulating membrane remodeling and scission 
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while ESCRT-0, -I and -II generally facilitate the targeted recruitment of ESCRT-III and VPS4 

(reviewed in Gatta and Carlton, 2019; Vietri et al., 2020). 

Interestingly, ESCRT has also been implicated in autophagy. In mammalian cells and flies, 

depletion of ESCRT components leads to defects in the autophagic process and it has initially 

been suggested that this is due to impaired fusion of autophagosomes with lysosomes 

(Filimonenko et al., 2007; Lee et al., 2007; Rusten et al., 2007; Tamai et al., 2007). More recent 

data from yeast and mammals, however, indicate that ESCRT is rather required for the sealing 

of phagophores (Takahashi et al., 2018; Zhen et al., 2019; Zhou et al., 2019). Hence, the 

autophagy impairment upon loss of ESCRT is most likely due to accumulation of unsealed 

phagophores. Surprisingly, studies in C. elegans showed that ESCRT depletion does not block 

but induce autophagy (Djeddi et al., 2012; Guo et al., 2014) and it has been proposed that this 

is an indirect pro-survival mechanism in response to enlarged endosomes (Djeddi et al., 2012). 

Furthermore, ESCRT has recently also been suggested to facilitate endosomal sequestration of 

mitochondria in an autophagy-independent mitochondrial clearance pathway in mouse 

embryonic fibroblasts (Hammerling et al., 2017). 
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INTRODUCTION 

Mitochondria are essential eukaryotic organelles that 
participate in processes such as cellular energy 
production, cell signaling and apoptosis [1-3]. The 
production of cellular energy by mitochondria produces 
as a byproduct reactive oxygen species (ROS). While 
the effect of ROS on the accumulation of mutations in 
the mitochondrial genome is still under debate, ROS 
have been shown to promote protein oxidation and 
consequently misfolding and/or unfolding of these 
proteins inside mitochondria [4,5]. The resulting 
proteotoxic stress has been shown to increase with age 
and to participate in several age-related disorders, such 
as neurodegenerative diseases [6]. To maintain 
mitochondrial proteostasis and, hence, mitochondrial 
function,  it   is   important that damaged   proteins are  
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eliminated by mitochondrial proteases and that 
mitochondrial chaperones assist in the folding of 
nascent proteins. Another challenge that mitochondria 
face is the fact that the assembly of complexes of the 
Electron Transport Chain (ETC) in the inner 
mitochondrial membrane (IMM) requires a proper 
stoichiometric ratio of their subunits. Hence, 
misfolding of one subunit of an ETC complex results 
in the failure to assemble the entire complex. 
Consequently, the other subunits will accumulate in 
the mitochondrial matrix and thereby compromise 
mitochondrial proteostasis. Finally, ETC components 
are encoded by the mitochondrial and the nuclear 
genome. In order to maintain their respective 
stoichiometric ratios, the expression of mitochondrial 
and nuclear encoded proteins therefore has to be 
properly coordinated [7]. 
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Abstract: The inactivation of the LRPPRC gene, which has previously been associated with the neurodegenerative
French Canadian Leigh Syndrome, results in a decrease in the production of mitochondria encoded subunits of complex IV,
thereby causing a reduction in complex IV activity. Previously we have shown that reducing complex IV activity triggers a
compensatory and conserved mitochondrial hyperfusion response. We now demonstrate that LRPPRC knock down in
mammalian cells leads to an imbalance between mitochondria encoded and nuclear encoded subunits of complex IV and
that this imbalance triggers the mitochondrial unfolded protein response (UPRmt). The inactivation of the LRPPRC like gene
mma 1 in C. elegans also induces UPRmt, which demonstrates that this response is conserved. Furthermore, we provide
evidence that mitochondrial hyperfusion and UPRmt are coordinated but mediated by genetically distinct pathways. We
propose that in the context of LRPPRC mma 1 knock down, mitochondrial hyperfusion helps to transiently maintain
mitochondrial ATP production while UPRmt participates in the restoration of mitochondrial proteostasis. Mitochondrial
proteostasis is not only critical in pathophysiology but also during aging, as proteotoxic stress has been shown to increase
with age. Therefore, we speculate that the coordination of these two mitochondrial stress responses plays a more global
role in mitochondrial proteostasis.
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Several mitochondrial stress response pathways that 
maintain mitochondrial function have been described. 
One or more of these pathways are activated, depending 
on the extent to which mitochondrial proteostasis is 
compromised or mitochondria are damaged. For 
example, severely damaged mitochondria, which have 
irremediably lost their membrane potential, are 
eliminated from the functional mitochondrial network 
by mitochondrial-specific autophagy (mitophagy) (see 
for review [8]). The accumulation of unfolded or 
misfolded mitochondrial proteins activates the 
mitochondrial unfolded protein response (UPRmt). This 
response leads to the increased production and import 
into mitochondria of chaperones (such as HSP60 and 
HSP70) and proteases (such as ClpP), which help 
misfolded proteins to fold properly or cause their 
degradation, respectively (see for review [9]). Finally, 
the mitochondrial hyperfusion response has recently 
been described in mammalian cells and in C. elegans. 
Various forms of stress, such as a decrease in complex 
IV activity, the inhibition of cytosolic protein 
synthesis or starvation, induce mitochondrial 
hyperfusion in order to maintain mitochondrial ATP 
production [10-12].  
 
The human LRPPRC gene encodes a leucine-rich 
pentatricopeptide repeat containing protein that is 
imported into mitochondria and that is mutated in 
patients with French Canadian Leigh Syndrome, a 
neurodegenerative disorder associated with complex IV 
deficiency [13]. Inside the mitochondrial matrix, the 
LRPPRC protein is part of a ribonucleoprotein complex 
that post-transcriptionally controls the expression of 
specific mitochondrial mRNAs such as the mRNA 
coding for COX I, a component of complex IV [14,15]. 
We have previously shown that reducing LRPPRC 
function in mammalian tissue culture cells or reducing 
the function of the LRPPRC-like gene mma-1 (mma, 
mitochondrial morphology-abnormal) in C. elegans 
leads to a decrease in the level of COX I and, 
consequently, a decrease in complex IV activity [11]. 
This decrease in complex IV activity is compensated by 
an evolutionarily conserved mitochondrial hyperfusion 
response [11]. COX I is one of three mitochondria-
encoded subunits of complex IV. The remaining 11 
subunits in mammals and 6 subunits in C. elegans are 
nuclear-encoded [16,17]. Therefore, we hypothesized 
that the reduction of COX I protein level upon LRPPRC 
mma-1 knock-down might cause an imbalance between 
nuclear- and mitochondria-encoded subunits and, hence, 
trigger UPRmt. Here we report that in addition to 
triggering a mitochondrial hyperfusion response, 
LRPPRC mma-1 knock-down also triggers UPRmt in 
both mammalian cell cultures and C. elegans. We 
propose that these two responses act together to 

maintain and restore mitochondrial function, in 
response to decreased complex IV activity. 
 
RESULTS 
 
LRPPRC siRNA leads to an imbalance between 
mitochondria-encoded and nuclear-encoded sub-
units of complex IV and triggers UPRmt 

 

 Inactivation of LRPPRC results in a decrease in the 
production of mitochondria-encoded subunits of 
complex IV [11,14,15]. We reasoned that this decrease 
may lead to an imbalance between mitochondria-
encoded and nuclear-encoded subunits of this complex 
and thereby trigger UPRmt. To test this hypothesis, we 
inactivated LRPPRC in SH-SY5Y cells using small 
interfering RNA (siRNA) and quantified the level of 
COX I protein (a mitochondria-encoded subunit of 
complex IV) and the level of COX IV protein (a 
nuclear-encoded subunit of complex IV). As shown in 
Figure 1A, the level of COX I protein decreases after 3 
days of LRPPRC siRNA (down to 50% of the level in 
control siRNA cells). In contrast, the level of COX IV 
protein remains stable, resulting in an imbalance 
between COX I and COX IV subunits with ~1.8 times 
more COX IV subunits than COX I subunits upon 
LRPPRC siRNA.  
 
In order to test whether this imbalance triggers UPRmt, 
we measured the levels of the mitochondrial chaperones 
HSP60 and HSP70 as well as the mitochondrial 
protease ClpP. We observed that 3 days of LRPPRC 
siRNA triggers a ~3-fold increase in the level of 
endogenous HSP70 protein (Figure 1B; n=3; p=0.0473 
by one sample t-test), a ~1.3-fold increase in the level of 
endogenous HSP60 protein (Figure 1B; n=3; p=0.178 
by one sample t-test) and a ~2.3-fold increase in the 
level of the endogenous mitochondrial protease ClpP 
(Figure 1B; n=3; p=0.0202 by one sample t-test). 
Similar results were observed using HEK293T cells 
(Figure S1). Based on these results, we conclude that 
the imbalance between nuclear- and mitochondria-
encoded subunits of complex IV caused by LRPPRC 
siRNA triggers UPRmt. 
 
The transient activation of UPRmt by LRPPRC 
siRNA correlates with the restoration of the balance 
between complex IV subunits 
 
 In order to test the effect of the induction of UPRmt 

upon LRPPRC siRNA on the balance between nuclear- 
and mitochondria-encoded complex IV subunits, we 
performed a time course experiment. The imbalance 
between COX I and COX IV is first observed after 3 
days of LRPPRC siRNA (Figure 2A). This time point 
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also corresponds to the highest level of induction of 
HSP70 and ClpP (Figure 2B). After 5 days of LRPPRC 
siRNA, the level of COX IV protein decreases (down to 
50% of the level in control siRNA cells), restoring the 
balance between COX I and COX IV subunits (Figure 
2A). This time point coincides  with  a  decrease  of  the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

levels of HSP70 and ClpP back to the levels measured 
in control cells (Figure 2B). A similar transient 
activation of UPRmt was observed in HEK293T cells 
(Figure S1). Therefore, the transient activation of UPRmt 
correlates with the restoration of mitochondrial 
proteostasis in the context of LRPPRC siRNA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Silencing of LRPPRC leads to an imbalance between mitochondria encoded and
nuclear encoded subunits of complex IV and triggers UPRmt. SH SY5Y cells were treated with control
or LRPPRC siRNA for three days and transferred for 24 hours to low glucose medium (5 mM) to enhance
oxidative phosphorylation. (A) Total protein extracts were analyzed by Western using anti LRPPRC, anti COX
I, anti COX IV and anti Actin antibodies. COX IV/COX I ratios are indicated. (B) The same protein extracts
as in panel A were also analyzed by Western using anti LRPPRC, anti HSP70, anti HSP60, anti ClpP and anti
Actin antibodies. Ratios relative to the control siRNA are indicated. (For all panels, quantifications are

based on data from three independent experiments; average values are shown and error bars indicate s.d.;
* p 0.05, *** p 0.001 by one way ANOVA for panel A and one sample t test for panel B).
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UPRmt and mitochondrial hyperfusion are transient 
responses to LRPPRC siRNA that follow similar 
kinetics 
 
We have previously shown that mitochondrial hyper-
fusion is a transient response, which peaks at 3 days of 
LRPPRC siRNA (Figure S2; day 3: 50% of cells have 
hyperfused mitochondria, 32% have tubular 
mitochondria and 18% have fragmented mitochondria). 
After 4 or 5 days of inactivation, the population of cells 
that display hyperfused mitochondria decreases while the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
population of cells that display fragmented mitochondria 
increases (Figure S2; day 5: 35% of cells have hyper-
fused mitochondria, 45% have tubular mitochondria and 
28% have fragmented mitochondria). Similarly, we 
observed that the induction of UPRmt is at its maximum 
at 3 days of LRPPRC siRNA, in both SH-SY5Y cells and 
HEK293T cells (Figure 2B, Figure S1). After 4 and 5 
days of inactivation, the UPRmt decreases in both cell 
lines (Figure 2B, Figure S1B). Hence, in mammalian cell 
culture, UPRmt and the mitochondrial hyperfusion 
response both are transient and follow similar kinetics. 

Figure 2. Upon LRPPRC siRNA induced UPRmt, mitochondrial proteostasis is restored. UPRmt in
SH SY5Y cells treated with control or LRPPRC siRNA for 2, 3, 4 or 5 days and transferred for 24 hours in low
glucose medium. (A) Total protein extracts were analyzed by Western using anti LRPPRC, anti COX I, anti
COX IV and anti Actin antibodies. COX IV/COX I ratios are indicated. (B) The same protein extracts as in
panel A were also analyzed by Western using anti LRPPRC, anti HSP70, anti HSP60, anti ClpP and anti
Actin antibodies. Ratios relative to the control siRNA are indicated. (For all panels, quantifications are based
on data from three independent experiments; average values are shown and error bars indicate s.d.; *
p 0.05, ** p 0.01, *** p 0.001 by one way ANOVA for panel A and one sample t test for panel B).
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Figure 3. Inactivation of mma 1 by RNAi in C. elegans induces ATFS 1 dependent UPRmt. Western analysis of (A) Phsp 6GFP
(mitochondrial Hsp70), (B) Phsp 60GFP (mitochondrial Hsp60) or (C) Phsp 4GFP (ER BiP) reporter strains treated with mock(RNAi), mma
1(RNAi) 1:5 dil. (diluted 1:5 (v/v) with mock(RNAi)) or spg 7(RNAi) 1:5 dil. (diluted 1:5 (v/v) with mock(RNAi)). Ratios of Phsp
6GFP/Tubulin, Phsp 60GFP/Tubulin and Phsp 4GFP/Tubulin relative to the mock(RNAi) treated animals are indicated (n=5 for Phsp 6GFP +
mma 1(RNAi); n=7 for Phsp 6GFP + spg 7(RNAi); n=6 for Phsp 60GFP + mma 1(RNAi); n=9 for Phsp 60GFP + spg 1(RNAi); n=5 for Phsp 4GFP).
Western analysis of the effect of mma 1(RNAi) on endogenous (D) HSP 6 or (E) HSP 60 protein level. Ratios of HSP 6/Tubulin and HSP
60/Tubulin relative to the mock(RNAi) treated animals are indicated (n=8 for HSP 6 and n=10 for HSP 60). (F) Western analysis of the
effect of ATFS 1 on mma 1(RNAi) induced UPRmt. mma 1(RNAi) or spg 7(RNAi) were diluted either with mock(RNAi) or atfs 1(RNAi).
Relative ratios of Phsp 6GFP/Tubulin are indicated (n=7 for mma 1(RNAi) and n=10 for spg 7(RNAi)). (G) Western analysis of the effect of
HAF 1 on mma 1(RNAi) induced UPRmt. Wild type Phsp 6GFP reporter strain (+/+) or Phsp 6GFP reporter strain carrying the haf 1(ok705)
loss of function mutation were analyzed. The relative ratios of Phsp 6GFP/Tubulin are indicated (n=5 for mma 1(RNAi) and n=6 for spg
7(RNAi)) (For all panels, average values are shown and error bars indicate s.d.; * p 0.05, ** p 0.01, *** p 0.001 by one sample t test).
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Inactivation of the LRPPRC-like gene mma-1 in C. 
elegans also induces UPRmt 

 
In order to address whether the induction of UPRmt in 
response to LRPPRC siRNA is conserved, we 
inactivated the LRPPRC-like gene mma-1 in C. elegans. 
We used the transcriptional reporters Phsp-6GFP, Phsp-

60GFP and Phsp-4GFP to monitor the expression of the 
genes encoding the mitochondrial HSP70 chaperone 
(hsp-6), the mitochondrial HSP60 chaperone (hsp-60) 
or the endoplasmic reticulum (ER) chaperone BiP (hsp-
4), respectively [18]. We reduced mma-1 function using 
RNA-mediated interference (RNAi) by feeding [19]. 
Specifically, we grew L4 larvae of the reporter strains 
on RNAi plates seeded with an Escherichia coli strain 
expressing double-strand RNA (dsRNA) of mma-1. The 
plates were seeded with mma-1(RNAi) bacteria diluted 
1:5 (v/v) with mock(RNAi) bacteria; hereafter referred to 
as ‘mma-1(RNAi) 1:5 dil.’. The expression of the 
reporters was analyzed four days later in the F1 
generation. Using these conditions, the level of MMA-1 
protein is reduced by ~40% (see below, Figure S4). As 
shown in Figure 3, the Phsp-6GFP reporter is strongly 
up-regulated in response to mma-1(RNAi) (on average 
~200-fold compared to mock(RNAi); Figure 3A; n=5; 
p=0.037 by one sample t-test). Phsp-60GFP expression 
was also increased in mma-1(RNAi) animals compared 
to mock(RNAi) animals, albeit to a lesser extent (Figure 
3B; n=9; p=0.011 by one sample t-test). Finally, mma-1 
knock-down did not affect the expression of the ER 
chaperone hsp-4 (Figure 3C; n=5; p=0.36 by one 
sample t-test). We also tested the effect of reducing the 
activity of the C. elegans homolog of paraplegin spg-7, 
which has previously been shown to induce UPRmt [18]. 
Using the RNAi conditions described above, the 
inactivation of spg-7 induces a strong up-regulation of 
the Phsp-6GFP reporter and a weak up-regulation of the 
Phsp-60GFP reporter but has no effect on the expression 
of the Phsp-4GFP reporter (Figure 3).  
 
In order to confirm the effect of mma-1(RNAi) on the 
expression of hsp-6 and hsp-60 at the levels of 
endogenous HSP-6 and HSP-60 protein, we used a 
mouse monoclonal anti-HSP-60 antibody [20] and 
generated rabbit polyclonal anti-HSP-6 antibodies. We 
confirmed that the anti-HSP-6 antibodies specifically 
recognize HSP-6 (Figure S3). Using these antibodies we 
found that the inactivation of mma-1 by RNAi leads to a 
~1.7-fold increase in the level of endogenous HSP-6 
protein (Figure 3D; n=8; p=0.024 by one sample t-test). 
In addition, we found that mma-1(RNAi) induces a ~1.4-
fold increase in the level of endogenous HSP-60 protein 
(Figure 3E; n=10; p=0.022 by one sample t-test). The 
discrepancy between the level of induction for 
endogenous proteins (~1.4-fold and ~1.7-fold for HSP-

60 and HSP-6, respectively) and for transcriptional 
reporters (~20-fold and ~200-fold for Phsp-60GFP and 
Phsp-6GFP, respectively) is most likely due to the copy 
number of the Phsp-6GFP and Phsp-60GFP transgenes 
integrated in the genome of the reporter strains; 
however, we cannot exclude that this discrepancy is 
also caused by post-transcriptional regulations of hsp-6 
and/or hsp-60 expression. Based on these results we 
conclude that mma-1(RNAi) induces UPRmt and the 
transcriptional up-regulation of the hsp-6 and hsp-60 
genes, which results in a significant increase in the level 
of endogenous HSP-6 and HSP-60 protein.    
 
mma-1(RNAi)-induced up-regulation of hsp-6 
transcription is dependent on ATFS-1 and HAF-1  
 
In C. elegans, UPRmt is dependent on the peptide 
exporter HAF-1 as well as the bZip transcription factor 
ATFS-1 [21,22]. Consistent with previous studies [22], 
we confirmed that the inactivation of atfs-1 by RNAi 
suppresses the up-regulation of the Phsp-6GFP reporter 
induced by spg-7(RNAi) (Figure 3F; n=7; p=0.0001 by 
one sample t-test). Furthermore, we found that mma-
1(RNAi)-induced UPRmt is suppressed by atfs-1(RNAi) 
as well (Figure 3F; n=10; p=0.0001 by one sample t-
test). To rule out that the effects observed are due to 
differences in RNAi efficiency, we quantified the 
knock-down of mma-1 using anti-MMA-1 antibodies 
[11]. As shown in Figure S4A, the efficiency of mma-
1(RNAi) in atfs-1(RNAi) animals is similar to that in 
wild-type animals (reduction by ~40% on average). 
Hence, the mma-1(RNAi)-induced up-regulation of hsp-
6 transcription is dependent on ATFS-1. In contrast, the 
haf-1 loss-of-function mutation ok705 only partially 
suppresses the up-regulation of Phsp-6GFP in response to 
mma-1(RNAi) (Figure 3G; n=5; p=0.0217 by one 
sample t-test). We observed a similar result for spg-
7(RNAi)-induced Phsp-6GFP up-regulation (Figure 3G; 
n=6; p=0.017 by one sample t-test). We confirmed that 
the effects observed were not due to differences in the 
efficiency of mma-1(RNAi) (Figure S4B).  Therefore, 
mma-1(RNAi) induces UPRmt in a manner that is 
dependent on the bZip transcription factor ATFS-1 and 
that is partially dependent on the peptide exporter HAF-
1. 
 
Strong depletion of MMA-1 protein leads to both 
mitochondrial hyperfusion and UPRmt induction 
whereas mild depletion of MMA-1 protein only leads 
to UPRmt  
 
When growing animals on ‘non-diluted’ mma-1(RNAi) 
plates, we achieved on average an ~80% reduction in 
the level of MMA-1 protein (Figure 4A; mma-1(RNAi)). 
Under these conditions, as previously reported, animals 
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exhibit hyperfused mitochondria in body wall muscle 
cells (76%; Figure 4A; n=17; two independent 
experiments) [11]. These animals also show a stronger 
UPRmt as reflected by the up-regulation of the Phsp-

6GFP reporter (on average ~600-fold compared to 
mock(RNAi) animals; Figure 4A). When reducing the 
level of MMA-1 protein by only 40% (mma-1(RNAi) 
1:5 dil.), the Phsp-6GFP reporter is still up-regulated (on  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

average 200-fold compared to mock(RNAi) animals; 
Figure 4A); however, these animals do not exhibit 
mitochondrial hyperfusion (6%; Figure 4A; n=16; two 
independent experiments). Hence, mild depletion of 
MMA-1 protein leads to the activation of the UPRmt 
pathway and strong depletion of MMA-1 protein 
additionally leads to the activation of the mitochondrial 
hyperfusion response pathway. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. mma 1(RNAi) induced mitochondrial hyperfusion is not dependent on ATFS 1 or HAF 1. (A) Strong depletion
of MMA 1 protein (mma 1(RNAi)) leads to both mitochondrial hyperfusion and UPRmt response whereas mild depletion of MMA 1
protein (mma 1(RNAi) 1:5 dil.) only leads to UPRmt. Average relative ratios of MMA 1/Tubulin and Phsp 6GFP/Tubulin are indicated.
Mitochondrial morphology in body wall muscles was assessed in L4 larvae of the F1 generation. Percentage of animals showing
fragmented, tubular or hyperfused mitochondria are indicated (n>10 for each condition; average values are shown and error bars
indicate s.d.). (B) Fluorescence microscopy analysis of wild type Pmyo 3mitoGFP reporter strain (+/+) or Pmyo 3mitoGFP reporter strain
carrying the haf 1(ok705) mutation or atfs 1(tm4525) mutation. (C D) Quantification of the different mitochondrial morphologies
observed (at least 15 animals were analyzed for each condition; two independent experiments were performed for panel C; three
independent experiments were performed for panel D; average values are shown and error bars indicate s.d.).
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mma-1(RNAi)-induced mitochondrial hyperfusion is 
independent of HAF-1 and ATFS-1  
 
In order to test whether the mitochondrial hyperfusion 
response induced by the inactivation of mma-1 is 
dependent on HAF-1 and ATFS-1, we used a transgene 
(bcIs78 [Pmyo-3mitoGFP]) that expresses mitochondrial 
matrix-targeted GFP in body wall muscles, which 
allows us to monitor steady-state mitochondrial 
morphology in these cells [11]. In an otherwise wild-
type background,  mma-1(RNAi)  causes  mitochondrial  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hyperfusion (64%, n=30, Figure 4B-D, three 
independent experiments) [11]. Similarly, mma-1(RNAi) 
causes mitochondrial hyperfusion in animals 
homozygous for the atfs-1 loss-of-function mutation 
tm4525 (67%, Figure 4B-C; n=19, two independent 
experiments). Finally, mma-1(RNAi) also causes 
mitochondrial hyperfusion in animals homozygous for 
the haf-1 loss-of-function mutation ok705 (45%; Figure 
4B-D; n=33; three independent experiments). Compared 
to the response in the wild-type and atfs-1(tm4525) 
background, the response in the haf-1(ok705) 

Figure 5. Mitochondrial hyperfusion and UPRmt act together to protect mitochondrial function. (A) Complex
IV of the ETC is composed of mitochondria encoded and nuclear encoded subunits. Upon LRPPRC mma 1 RNAi, the level
of mitochondria encoded subunits decreases, leading to a reduction in complex IV activity, which triggers the
mitochondrial hyperfusion response and an accumulation of unassembled nuclear encoded subunits, which triggers
UPRmt. (B) While mitochondrial hyperfusion helps to maintain ATP level in response to a reduction in complex IV activity
[11], UPRmt helps to restore the balance between mitochondria encoded and nuclear encoded subunits of this complex.
Mitochondrial hyperfusion can only compensate for reduced complex IV activity for a limited time. Prolonged inactivation
of LRPPRC mma 1 eventually leads to mitochondrial fragmentation and drop in ATP level as previously shown [11].
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background is slightly reduced; however, the difference 
is not statistically significant (p=0.22 by Student t-test). 
Based on these results we conclude that mma-1(RNAi)-
induced mitochondrial hyperfusion is independent of 
ATFS-1 and HAF-1. 
 
ATFS-1-dependent UPRmt is not essential for 
viability in response to mma-1(RNAi) 
 
We previously showed that mma-1(RNAi) causes 
synthetic embryonic lethality and synthetic midlarval 
arrest in the fzo-1(tm1133) loss-of-function mutant 
background, indicating that mitochondrial hyperfusion is 
essential for viability in response to mma-1(RNAi) [11]. 
To test whether UPRmt is also essential for viability in 
response to mma-1(RNAi), we inactivated mma-1 in 
animals carrying a loss-of-function mutation in the atfs-1 
gene (atfs-1(tm4525)) [22]. We found that mma-1(RNAi) 
does not cause any obvious embryonic lethality or 
midlarval arrest in atfs-1(tm4525) mutant animals (Figure 
S5A). We also performed the experiment using double 
RNAi (afts-1(RNAi)+mma-1(RNAi)) and did not observe 
any obvious synthetic lethality or arrest (Figure S5B). 
This indicates that in response to mma-1(RNAi), 
mitochondrial hyperfusion is essential for viability while 
ATFS-1-dependent UPRmt is not. 
 
DISCUSSION 
 
Depending on the type and the severity of the stress to 
which mitochondria are exposed, different mito-
chondrial stress responses (such as UPRmt, 
mitochondrial hyperfusion or mitophagy) can be 
activated in order to protect mitochondrial function 
[23]. Here, we show that reducing LRPPRC or mma-1 
function leads to an evolutionary conserved co-
activation of UPRmt and mitochondrial hyperfusion. 
Depletion of LRPPRC or MMA-1 protein results in a 
decrease in the production of mitochondria-encoded 
subunits of complex IV and thereby causes a reduction 
of complex IV activity [11,14,15]. Depletion of 
LRPPRC or MMA-1 protein also leads to an imbalance 
between nuclear-encoded and mitochondria-encoded 
subunits of this complex. We show that the activation of 
the UPRmt occurs when this balance and, hence 
mitochondrial proteostasis, is disrupted (Figure 2; day 3 
of LRPPRC siRNA). This finding suggests that the 
accumulation of unassembled complex IV subunits is 
most likely the signal that triggers UPRmt. Furthermore, 
our data indicate that UPRmt is transiently activated 
until mitochondrial proteostasis is restored (Figure 2; 
day 5 of LRPPRC siRNA). We, therefore, propose that 
the transient activation of UPRmt participates in the 
restoration of mitochondrial proteostasis by either 
proteolytic degradation of unassembled subunits by 

ClpP or assisted folding of nascent subunits by HSP70. 
In addition, the response may also involve the down-
regulation of the genes encoding nuclear-encoded 
subunits of complex IV.  
 
Whereas UPRmt and mitochondrial hyperfusion in 
response to LRPPRC mma-1 RNAi follow similar 
kinetics, genetic experiments in C. elegans indicate that 
the pathways that mediate these two responses are 
distinct. Specifically, LRPPRC mma-1 RNAi-induced 
UPRmt is dependent on the previously described HAF-1, 
ATFS-1 pathway, whereas LRPPRC mma-1 RNAi-
induced mitochondrial hyperfusion is not. This notion is 
furthermore supported by the fact that in C. elegans, a 
mild depletion of MMA-1 protein activates only the 
UPRmt pathway whereas a strong depletion of MMA-1 
activates both pathways. The pathway through which a 
reduction in LRPPRC mma-1 function induces 
mitochondrial hyperfusion remains to be elucidated. 
Similarly, the mechanism through which mitochondrial 
hyperfusion and UPRmt are coordinated is currently 
unknown. 
 
We propose that the mitochondrial hyperfusion 
response and UPRmt act together to maintain and restore 
mitochondrial function (Figure 5). We have previously 
shown that mitochondrial hyperfusion helps to maintain 
cellular ATP levels despite a reduction in complex IV 
activity caused by LRPPRC mma-1 RNAi [11]. We now 
propose that this transient compensation enables the cell 
to restore the balance between mitochondria-encoded 
and nuclear-encoded subunits of complex IV. However, 
as previously shown, prolonged inactivation of 
LRPPRC mma-1 eventually leads to mitochondrial 
fragmentation, a drop in ATP level and the loss of 
cellular and organismal functions [11]. The two 
mitochondrial stress response pathways we unraveled 
are therefore likely to be important for the maintenance 
of mitochondrial function in response to moderate and 
short-term changes in mitochondrial proteostasis. 
Interestingly, UPRmt as well as an ‘elongation’ of 
mitochondria are also induced in response to the 
infection of C. elegans by Pseudomonas aeruginosa 
[24]; however, how these two stress responses are 
induced in this context remains to be determined. In 
contrast, UPRmt and mitochondrial hyperfusion may not 
protect against more drastic and long-term changes in 
mitochondrial proteostasis, such as in C. elegans in 
which mma-1 has been chronically inactivated or in 
French Canadian Leigh Syndrome patients carrying 
mutations in the LRPPRC gene. In cell lines derived 
from these patients, mitochondria are fragmented [15], 
which indicates that the mitochondrial hyperfusion 
response has already failed. Whether UPRmt is activated 
in these cell lines is currently unknown. In case it is 
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activated, it will be interesting to determine whether this 
pathway contributes to the pathophysiology of this 
neurodegenerative disorder, which has not been 
completely elucidated yet.  
 
We previously showed that the mitochondrial 
hyperfusion response is essential for viability in 
response to mma-1(RNAi) [11]. In contrast, we present 
evidence that ATFS-1-dependent UPRmt is not essential 
for viability upon inactivation of mma-1. Furthermore, 
we show that ATFS-1-dependent UPRmt is also not 
essential for viability in response to spg-7(RNAi). One 
possible explanation for this finding is the existence of 
an ATFS-1-independent UPRmt pathway. Indeed, 
Haynes and co-workers have shown that while spg-
7(RNAi) induces the up-regulation of 685 genes, 294 of 
these genes are still up-regulated in atfs-1(tm4525) 
mutant animals [22]. Hence, in the context of mma-1 
inactivation, the ATFS-1-independent UPRmt in 
combination with the mitochondrial hyperfusion 
response may be sufficient for the completion of 
embryonic and larval development. 
 
The effect of the activation of UPRmt on aging remains 
controversial. While Houtkooper et al reported an 
extension of lifespan in response to the activation of 
UPRmt [7], Bennett et al observed no clear correlation 
between UPRmt and lifespan [25]. We and others have 
previously shown in C. elegans and in rat that 
mitochondrial fragmentation increases with age and that 
this fragmentation is accompanied with a loss of 
mitochondrial volume [26,27]. Interestingly, a recent 
study reports that fibroblasts isolated from long-lived 
human individuals exhibit hyperfused mitochondria 
[28]. While the genetic determinants resulting in this 
change in mitochondrial morphology remain unknown, 
the mitochondrial hyperfusion in the cells of these 
individuals has been shown to increase mitochondrial 
mass by preventing mitophagy [28]. Consequently, 
while the activity of their individual mitochondria 
decreases with age, the overall mitochondrial function 
of their cells is maintained, implicating a beneficial role 
of mitochondrial hyperfusion in aging [28]. In 
conclusion, a better understanding of UPRmt and the 
mitochondrial hyperfusion response has not only the 
potential to increase our knowledge of how cells 
respond to mitochondrial stress under physiological and 
pathophysiogical conditions (i.e. French Canadian 
Leigh Syndrome) but also during aging. 
 
MATERIALS AND METHODS 
 
General C. elegans methods and strains. C. elegans 
strains were cultured as previously described [29]. 
Bristol N2 was used as the wild-type strain. Mutations 

used in this study were described by Riddle and co-
workers [30] except: (LG IV) haf-1(ok705) (OMRF 
Knockout Group); (LG V) atfs-1(tm4525) (National 
BioResource Project). A summary of the transgenic 
lines is provided in Table S1. 
 
C. elegans RNA interference. RNAi by feeding was 
performed as previously described [11] with the 
following modifications. RNAi plates containing 1 mM 
IPTG were inoculated with 50 l of 0.5 OD600nm/ml of 
concentrated mma-1(RNAi) or spg-7(RNAi) bacterial 
clones from the Ahringer library [31] or diluted 1:5 
(v/v) with mock(RNAi) bacteria (HT115 bacteria 
transformed with the empty RNAi feeding vector 
pPD129.36) or atfs-1(RNAi) bacteria. 24 hours later, L4 
larvae were inoculated on the RNAi plates and 
incubated at 20ºC for 4 days. Mitochondrial 
morphology in L4 larvae of the F1 generation was 
analyzed by fluorescent microscopy as described [32]. 
For protein analyses, mixed-stage populations of worms 
were harvested and analyzed as described below. For 
the analysis of the effect of RNAi on C. elegans 
development, three wild-type (+/+), three atfs-
1(tm4525) and 15 fzo-1(tm1133) L4 animals (15 
animals of the fzo-1(tm1133) genotype were used since 
the broodsize of these animals is smaller) were 
inoculated on mock(RNAi), mma-1(RNAi) or spg-
7(RNAi) plates and incubated at 20°C for 18 hours. For 
the double RNAi experiment, three wild-type L4 larvae 
were inoculated on mock(RNAi), atfs-1(RNAi), mma-
1(RNAi) (diluted 1:5 with mock(RNAi) or atfs-1(RNAi))  
or spg-7(RNAi) (diluted 1:5 with mock(RNAi) or atfs-
1(RNAi)) plates and incubated at 20°C for 18 hours. The 
adults were then transferred onto freshly seeded RNAi 
plates and incubated for an additional three hours at 
20°C. After removing the adults, the embryos laid 
during these three hours were counted. 24 hours later, 
the number of unhatched embryos was counted to 
determine the embryonic lethality. The number of 
animals that reached adulthood by day 5 and the 
number of animals that underwent a midlarval arrest 
were also counted.  
 
Mammalian cell culture and transfection. SH-SY5Y 
cells were cultivated in DMEM:F12 supplemented with 
15% FBS (Sigma), 1% non essential amino acids and 
1% penicillin/streptomycin (Invitrogen); HEK293T 
cells were cultivated in DMEM supplemented with 10% 
FBS (Sigma) and 1% penicillin/streptomycin 
(Invitrogen); both cell lines were passaged twice a week 
and kept at 37°C with 5% CO2. For RNA interference, 
cells were transfected reversely with control stealth 
siRNA medium GC or stealth siRNA oligos targeting 
LRPPRC using Lipofectamine RNAiMax in OPTI-
MEM (Invitrogen). 24 hours after transfection, fresh 
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culture medium (25 mM glucose) was added. For the 
analysis of mitochondrial morphology, cells were kept 
in normal culture medium until harvested. For the 
analysis of UPRmt, the normal culture medium was 
replaced with medium containing only 5 mM glucose 
24 hours before analysis. 
 
Protein analysis. Rabbit polyclonal anti–HSP-6 
antibodies were generated using the antigenic peptide 
C472QEAKTAEEPKKEQN (cysteine plus HSP-6 C-
terminal sequence) by Thermo Fisher Scientific, as 
previously described [33] and used at 1:5000 for 
Western analysis.  Worm protein extracts were 
subjected to SDS/PAGE and Western. To detect HSP-
60, GFP and -Tubulin, we used a mouse monoclonal 
antibody developed by Nonet and co-workers and 
available at DHSB [20] (1:2000), rabbit polyclonal 
antibodies from Abcam ab290 (1:2000) and a mouse 
monoclonal antibody from Abcam ab7291 (1:2000), 
respectively. Images were quantified using the 
ChemiDoc XRS+ System (Bio-Rad). The data 
presented are ratios relative to the mock(RNAi). Only 
samples for which mma-1 knock-down was at least 20% 
were used for the statistically analysis. Statistical 
analysis was performed by using one sample t-test. 
Normality of the data was assessed by Shapiro-Wilk 
Normality test. 
 
SH-SY5Y and HEK293T cells were harvested with pre-
warmed 1x Laemmli-sample buffer and boiled for 10 
minutes at 95°C and then subjected to SDS/PAGE and 
Western. The following antibodies were used: mouse 
monoclonal anti- -Actin (Sigma AC-15, 1:5000), 
mouse monoclonal anti-LRP130 (sc-166178, 1:1000), 
goat polyclonal anti-HSP60 (sc-1052, 1:2000), rabbit 
polyclonal anti mortalin/mitochondrial HSP70 (sc-
13967, 1:1000), rabbit polyclonal anti-ClpP (sc-134496, 
1:1000), goat polyclonal anti-COXI (sc-48143, 1:500) 
and goat polyclonal anti-COXIV (sc-69359, 1:1000) 
(With the exception of the anti- -Actin, all the 
antibodies were provided from Santa Cruz 
Biotechnology).  
 
Analysis of mitochondrial morphology in SH-SY5Y 
cells. Mitochondrial morphology was analyzed as 
previously described with the following modifications 
[11]. Cells grown on glass coverslips were fixed with 
PBS 3.7% PFA at 20°C for 10 minutes and 
permeabilized with PBS 0.2% Triton X-100 for 10 
minutes at 20°C. The coverslips were blocked with PBS 
5% BSA for 1 hour at 4°C and incubated overnight at 
4°C in PBS 5% BSA with polyclonal anti-TOM20 
antibodies (1:2000, Santa Cruz Biotechnology). After 
three washes with PBS, the coverslips were incubated 
with an Alexa555 goat anti-rabbit antibody (1:2000, 

Molecular Probes) in PBS 5% BSA for 2 hours at 20°C. 
After three washes with PBS, three washes with PBS 
0.2% Tween and three washes with PBS, the glass 
coverslips were mounted on glass slides with MOWIOL 
4-88 containing DAPI (Sigma). At least 300 cells per 
coverslip were counted in a blinded manner. Results are 
based on three independent experiments.   
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SUPPLEMENTARY INFORMATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S1. Silencing of LRPPRC also induces UPRmt in HEK293T cells. UPRmt in HEK293T cells treated with
control or LRPPRC siRNA for 2, 3, 4 or 5 days and transferred for 24 hours into low glucose medium. Total protein
extracts were then analyzed by Western using anti LRPPRC, anti HSP70, anti HSP60, anti ClpP and anti Actin
antibodies. Quantifications were performed on data from three independent experiments (For all panels, average
values are shown and error bars indicate s.d.; * p 0.05, ** p 0.01 and *** p 0.001 by one sample t test).
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Figure S2. Silencing of LRPPRC induces mitochondrial hyperfusion in SH SY5Y cells.Mitochondrial
morphology of SH SY5Y cells treated with control or LRPPRC siRNA for 2, 3, 4 or 5 days. Representative
mitochondrial morphologies visualized using an anti Tom20 antibody are indicated. Quantifications are
based on data from three independent experiments. (n=300 cells per condition and experiment; average
values are shown and error bars indicate s.d.; * p 0.05, ** p 0.01 and *** p 0.001 by one way ANOVA).

www.impactaging.com 714 AGING, September 2015, Vol. 7 No.9

Chapter I

37



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4. atfs 1(RNAi) and haf 1(ok705) do not affect mma 1(RNAi) efficiency. (A) L4 larvae of SJ4100 (zcIs13
[Phsp 6GFP]) were inoculated onto mock(RNAi), mma 1(RNAi) or atfs 1+mma 1(RNAi) plates. 4 days later, animals of the
F1 generation were lysed in Laemmli buffer and analyzed by Western using anti MMA 1 and anti Tubulin antibodies.
Ratios of MMA 1/Tubulin relative to the mock(RNAi) treated animals are indicated (n=5). (B) L4 larvae of SJ4100 (zcIs13
[Phsp 6GFP]) or MD3550 (haf 1(ok705); zcIs13[Phsp 6GFP]) were inoculated onto mock(RNAi) or mma 1(RNAi) plates. 4 days
later, animals of the F1 generation were lysed in Laemmli buffer and analyzed by Western using anti MMA 1 and anti
Tubulin antibodies. Ratios of MMA 1/Tubulin relative to the mock(RNAi) treated animals are indicated. (n=5). (For all
panels, average values are shown and error bars indicate s.d.; * p 0.05, ** p 0.01 and *** p 0.001 by one sample t test).

Figure S3. Rabbit polyclonal anti HSP 6 antibodies recognize specifically C.
elegans HSP 6 protein. L4 larvae of N2 (wild type) were inoculated onto mock(RNAi)
or hsp 6(RNAi) plates. 4 days later, animals of the F1 generation were lysed in Laemmli
buffer and analyzed by Western using anti HSP 6 and anti Tubulin antibodies.
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Figure S5. ATFS 1 dependent UPRmt is not essential for viability in response to mma 1(RNAi).
(A) Wild type (+/+), fzo 1(tm1133) or afts 1(tm4525) L4 larvae were inoculated on mock(RNAi), mma
1(RNAi) or spg 7(RNAi) plates. After 18 hours, a three hours lay off was performed onto new RNAi plates.
The percentage of embryonic lethality, larval arrest as well as the percentage of animals developing into
adults (normal development) was quantified in all conditions. (B) Wild type L4 larvae were inoculated on
mock(RNAi), atfs 1(RNAi), mma 1(RNAi) (diluted 1:5 with mock(RNAi) or atfs 1(RNAi)) or spg 7(RNAi)
(diluted 1:5 with mock(RNAi) or atfs 1(RNAi)) plates. After 18 hours, a three hours lay off was performed
onto new RNAi plates. The percentage of embryonic lethality, larval arrest as well as the percentage of
animals developing into adults (normal development) was quantified in all conditions.
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Table S1: List of the C. elegans transgenic lines used in this study.
 

Strain Genotype Reference  
 
SJ4100 

 
zcIs13 V [Phsp-6GFP] 

 
[18] 

SJ4058 zcIs9 V [Phsp-60GFP] [18] 
SJ4005 zcIs4 V [Phsp-4GFP] [18] 
MD3550 haf-1(ok705) IV ; zcIs13 V [Phsp-6GFP] This study 
MD3011 bcIs78 I [Pmyo-3mitoGFP] [11] 
MD3572 bcIs78 I [Pmyo-3mitoGFP]; haf-1(ok705) IV  This study 
MD3573 bcIs78 I [Pmyo-3mitoGFP];atfs-1(tm4525) V This study 
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Abstract

Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the

underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results

in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induc-

tion of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide

RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of

the 299 genes identified, 143 encode negative regulators of autophagy, many of which have

previously not been implicated in this cellular quality control mechanism. We present evi-

dence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing

mitochondrial membrane potential rather than restoring mitochondrial morphology. Further-

more, we demonstrate that increased autophagic flux also suppresses UPRmt induction in

response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2,

which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochon-

drial fusion or fission leads to increased levels of certain types of triacylglycerols and that

this is at least partially reverted by the induction of autophagy. We propose that the break-

down of these triacylglycerols through autophagy leads to elevated metabolic activity,

thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellu-

lar homeostasis.

Author summary

Various quality control mechanisms within the cell ensure mitochondrial homeostasis.

Specifically, mitochondrial fission and fusion, the mitochondrial unfolded protein

response (UPRmt) and/or mitophagy are induced upon mitochondrial stress to maintain

or restore mitochondrial homeostasis. How these different quality control mechanisms

are coordinated and how they influence each other is currently not well understood.
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Interestingly, the disruption of mitochondrial dynamics has recently been shown to

induce UPRmt. We performed a genome-wide RNAi screen for suppressors of UPRmt

induced by a block in mitochondrial fusion and found approximately half of the candidate

genes identified to negatively regulate autophagy, a central quality control mechanism

that adjusts cellular metabolism under conditions of stress. Furthermore, we found that

induction of autophagy also suppresses UPRmt induced by a block in mitochondrial fis-

sion. In addition, we demonstrate that defects in mitochondrial dynamics lead to changes

in lipid metabolism, which can partially be reverted by the induction of autophagy. Taken

together, our results suggest a so far unknown functional connection between UPRmt and

autophagy in animals with defects in mitochondrial dynamics.

Introduction
Mitochondrial dynamics plays an important role in the maintenance of mitochondrial func-

tion and, hence, cellular homeostasis [1]. Mitochondrial fission and fusion are both mediated

by members of the family of dynamin-like guanosine triphosphatases (GTPases) [2]. In the

nematode Caenorhabditis elegans, mitochondrial fission is facilitated by the cytosolic dyna-

min-like GTPase DRP-1DRP1, which is recruited to mitochondria where it presumably forms

constricting spirals as shown for its Saccharomyces cerevisiae counterpart Drp1 [3,4]. Con-
versely, fusion of the outer and inner mitochondrial membranes is carried out by the mem-

brane-anchored dynamin-like GTPases FZO-1MFN [5] and EAT-3OPA1 [6], respectively. The

consequences with respect to mitochondrial function and cellular homeostasis of disrupting

mitochondrial dynamics are not yet fully understood; however, it has recently been demon-

strated that this activates a retrograde quality control signaling pathway referred to as the

‘mitochondrial Unfolded Protein Response’ (UPRmt) [7,8]. In C. elegans, UPRmt is activated

upon mitochondrial stress, which leads to a decrease in mitochondrial membrane potential

and the subsequent import into the nucleus of the ‘Activating Transcription Factor associated

with Stress 1’ (ATFS-1ATF4,5) [9,10]. ATFS-1ATF4,5 harbors both an N-terminal mitochondrial

targeting sequence and a C-terminal nuclear localization sequence and is normally imported

into mitochondria [11]. Upon mitochondrial stress, ATFS-1ATF4,5 is imported into the

nucleus, where it cooperates with the proteins UBL-5UBL5 and DVE-1SATB1 to promote the

transcription of genes that act to restore mitochondrial function and to adjust cellular metabo-

lism [9,10,12,13]. Among these genes are the mitochondrial chaperone genes hsp-6mtHSP70 and

hsp-60HSP60, the transcriptional upregulation of which is commonly used to monitor UPRmt

activation [14].

Whereas UPRmt is a quality control pathway that is activated upon mitochondrial stress,

macro-autophagy (from now on referred to as ‘autophagy’) is a more general cellular quality

control mechanism. Through autophagy, cytosolic constituents, long-lived proteins or dys-

functional organelles are degraded and recycled [15,16]. Upon the induction of autophagy, a

double-membrane structure called ‘phagophore’ forms, which enlarges and eventually engulfs

the cargo to form an ‘autophagosome’. The autophagosome then fuses with a lysosome to

form an ‘autolysosome’, in which the engulfed cargo is subsequently degraded by lysosomal

hydrolases [16–18]. A key regulator of autophagy in C. elegans is the kinase LET-363mTOR

[19]. When cellular nutrients are abundant, LET-363mTOR represses the ‘induction complex’,

which includes UNC-51ULK, a kinase that initiates autophagy [20–26].

Another vesicular process that targets cargo for degradation to the lysosome is endocytosis.

The ‘Endosomal Sorting Complex Required for Transport’ (ESCRT) plays a critical role in
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endocytosis [27,28]. The ESCRT is composed of five different subcomplexes (ESCRT-0, -I, -II,

-III and the AAA-ATPase VPS4) and was originally identified because of its role in the forma-

tion of multivesicular bodies (MVBs), which enables ubiquitinated membrane proteins to be

sorted into small intralumenal vesicles (ILVs) [29,30]. The ESCRT has since been shown to be

required for a number of other cellular processes, such as cytokinesis and virus budding

[27,31,32]. ESCRT activity has also been shown to affect autophagy. Studies in mammals and

Drosophila melanogaster demonstrated that depleting ESCRT components results in a block in

autophagy and that in these animals, the ESCRT is required for the fusion of endosomes with

lysosomal compartments and also autophagosomes [33–36]. Moreover, ESCRT components

have recently been shown to be involved in the closure of autophagosomes in mammals and

yeast [37,38]. However, in C. elegans, the depletion of ESCRT components results in the induc-

tion of autophagy, which suggests that in this species, ESCRT function antagonizes or sup-

presses autophagy [39,40].

Whereas a functional connection between the ESCRT and autophagy has been established

in yeast, nematodes, flies and mammals [33–40], functional connections between the ESCRT

and UPRmt or between autophagy and UPRmt [40] have not been described or are poorly

understood. In this study, we present evidence that in C. elegans, the ESCRT, autophagy and
UPRmt functionally interact. Specifically, we found that the induction of autophagy suppresses

UPRmt induced by a block in mitochondrial fusion or fission. Interestingly, lipid profiling

revealed alterations in the lipidome of mutants defective in mitochondrial dynamics, and we

present evidence that changes in the levels of certain types of triacylglycerols (TGs) in fzo-
1MFN mutants can be reverted by the induction of autophagy. We propose that through the

breakdown of these triacylglycerols, the induction of autophagy leads to elevated metabolic

activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial

and, hence, cellular homeostasis.

Results
In C. elegans, knock-down by RNA-mediated interference (RNAi) of genes encoding dyna-

min-like GTPases required for mitochondrial fusion (fzo-1MFN, eat-3OPA1) or mitochondrial

fission (drp-1DRP1) induces the ‘mitochondrial Unfolded Protein Response’ (UPRmt) [7,8].

Using a multi-copy transgene of the transcriptional reporter Phsp-6 mtHSP70gfp (zcIs13) [14], we
tested strong loss-of-function (lf) mutations of fzo-1MFN and drp-1DRP1 (fzo-1(tm1133), drp-1
(tm1108) (National BioResource Project)) and found that they induce UPRmt to different

degrees (S1A and S1C Fig). As a positive control, we used animals carrying a lf mutation of the

gene spg-7AFG3L2 (spg-7(ad2249)), which encodes a mitochondrial metalloprotease required

for mitochondrial function [41]. The zcIs13 transgene shows very low baseline expression in

wild-type animals and is widely used to monitor UPRmt in C. elegans [7,9–14,42–44]. In the

case of fzo-1(tm1133) animals, for example, its expression is induced more than 15-fold (S1C

Fig). Furthermore, RNAi knock-down of spg-7AFG3L2 or genes encoding subunits of the elec-
tron transport chain (ETC), or treatments with drugs targeting the latter (e.g. antimycin) lead

to strong induction of zcIs13 expression [14,43]. This makes the zcIs13 transgene suitable for
high throughput, large-scale screens.

However, considering that fzo-1(tm1133) causes an increase in the amount of endogenous

HSP-6mtHSP70 protein by only 1.44-fold (S1E Fig), the fold induction observed with the multi-

copy zcIs13 transgene may not reflect the physiological response with respect to UPRmt induc-

tion by the loss of fzo-1MFN. Furthermore, the zcIs13 transgene exhibits large variability in
expression between animals (inter-individual variability) (S1A Fig), which makes it difficult to

obtain consistent results, especially when knocking-down genes using RNA-mediated
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interference (RNAi). For this reason, we generated a single-copy transgene, bcSi9 (integrated at
a defined chromosomal location using MosSCI), of the transcriptional reporter Phsp-6 mtHSP70gfp.
As shown in S1B Fig, the bcSi9 transgene shows low baseline expression and, in the case of spg-7
(ad2249) and fzo-1(tm1133), an increase in expression of ~5-fold or ~4-fold, respectively (S1D

Fig). Furthermore, compared to fzo-1(tm1133) animals carrying the multi-copy transgene

zcIs13, fzo-1(tm1133) animals carrying the single-copy transgene bcSi9 exhibit less inter-individ-
ual variability (S1A and S1B Fig). Similarly, drp-1(tm1108) animals carrying bcSi9 show signifi-

cantly less inter-individual variability compared to drp-1(tm1108) animals carrying the multi-

copy transgene zcIs13 (S1A and S1B Fig). Importantly, for all genotypes tested, we found that

compared to the fold-induction observed with the multi-copy transgene zcIs13, the fold-induc-
tion observed with the single-copy transgene bcSi9 correlated better with the fold-induction
observed in the amount of endogenous HSP-6mtHSP70 protein (S1A–S1E Fig). Finally, to com-

pare inter-individual variability of the expression of the two Phsp-6 mtHSP70gfp transgenes zcIs13
and bcSi9 as well as the endogenous hsp-6mtHSP70 locus in a quantitative manner, we performed

single-worm RT-qPCR experiments in synchronized populations of 36 individual animals and

compared inter-individual variability in expression of zcIs13, bcSi9 or the endogenous hsp-
6mtHSP70 locus to those of loci with low (hsp-1HSPA1L), medium (ttr-45) or high (nlp-29) inter-
individual variability in expression, respectively (S1F Fig). While the expression of the endoge-

nous hsp-6mtHSP70 locus is not variable between individuals of a population, the expression of

the multi-copy transgene zcIs13 is highly variable in both a wild-type and fzo-1(tm1133) back-
ground (S1F Fig). Furthermore, the single-copy transgene bcSi9 exhibits some inter-individual

variability in expression, however, to a much lower degree than the transgene zcIs13. Therefore,
based on these results, we decided to use the multi-copy transgene zcIs13 for a genome-wide

RNAi screen for suppressors of fzo-1(tm1133)-induced UPRmt and the single-copy transgene

bcSi9 for subsequent analyses of candidates identified (see below).

Depletion of ESCRT components suppresses fzo-1(tm1133)-induced UPRmt

To identify genes that affect the induction of UPRmt in response to a block in mitochondrial

fusion, we performed a genome-wide RNAi screen using fzo-1(tm1133) animals carrying the

multi-copy Phsp-6 mtHSP70gfp transgene zcIs13 (S1A Fig). To that end, we used an RNAi feeding

library that covers approximately 87% of C. elegans protein coding genes [45] and analyzed

animals of the F1 generation. Among the 299 suppressors identified, three genes, vps-4VPS4,
vps-20CHMP6 and vps-37VPS37, encode components of the ‘Endosomal Sorting Complex

Required for Transport’ (ESCRT) [27–30]. We analyzed the suppression of fzo-1(tm1133)-
induced UPRmt using the single-copy Phsp-6 mtHSP70gfp transgene bcSi9 and found that knock-

down of vps-4VPS4 or vps-20CHMP6 by RNAi (referred to as ‘vps-4(RNAi)’ or ‘vps-20(RNAi)’)
causes suppression by 39% or 23% on average, respectively (Fig 1A and 1C). vps-37(RNAi)
does not result in a statistically significant suppression on average; however, some individual

animals show strong suppression (see Fig 1A; vps-37(RNAi); red arrowheads). As a positive
control, we knocked-down the function of atfs-1ATF4,5 by RNAi, which results in suppression

of fzo-1(tm1133)-induced UPRmt by 54% on average. (In a wild-type background, atfs-1
(RNAi), vps-4(RNAi) or vps-20(RNAi) suppresses baseline expression of the bcSi9 transgene by
8%, 14% or 14%, respectively (S2A Fig).) To confirm the suppression of fzo-1(tm1133)-
induced UPRmt upon ESCRT(RNAi), we used a multi-copy transgene (zcIs9) of a transcrip-
tional reporter of the gene hsp-60HSP60 (Phsp-60 HSP60gfp), which is also transcriptionally upre-
gulated in response to the induction of UPRmt [14]. Using the Phsp-60 HSP60gfp reporter, we
found that vps-37(RNAi), vps-20(RNAi) or vps-4(RNAi) suppresses by 34%, 41% or 33% on

average, respectively (Fig 1B and 1D).
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To validate that the reduced Phsp-6 mtHSP70gfp (bcSi9) and Phsp-60 HSP60gfp (zcIs9) expression
in fzo-1(tm1133) animals upon ESCRT(RNAi) is specific to the UPRmt response, we tested a

Fig 1. Depletion of ESCRT components and LET-363 suppresses fzo-1(tm1133)-induced UPRmt. (A) Fluorescence
images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control
(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi), vps-22(RNAi), hgrs-1(RNAi), vps-36(RNAi), vps-37(RNAi) or let-363
(RNAi) and the F1 generation was imaged. Red arrowheads indicate suppressed animals upon vps-37(RNAi). Scale bar:
200 μm. (B) Fluorescence images of L4 larvae expressing Phsp-60gfp (zcIs9) in wild type (+/+) or fzo-1(tm1133). L4
larvae were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi), vps-22(RNAi), hgrs-1(RNAi), vps-36
(RNAi), vps-37(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (C)Quantifications of
fluorescence images from panel A. After subtracting the mean fluorescence intensity of wild type (+/+) on control
(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of
fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least 3 independent experiments in
duplicates. ��P<0.01, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control
(RNAi). (D)Quantifications of fluorescence images from panel B. After subtracting the mean fluorescence intensity of
wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents
the quantification of fluorescence intensity of 10–20 L4 larvae. Values indicate means ± SD of 3 independent
experiments in duplicates. ns: not significant, �P<0.05, ��P<0.01, ����P<0.0001 using Kruskal-Wallis test with Dunn’s
multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g001
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transcriptional reporter, Pges-1 CES2gfp, that has a similar expression pattern as the two UPRmt

reporters. Depletion of ESCRT component VPS-4VPS4 or VPS-20CHMP6 does not result in sup-

pression of the Pges-1 CES2gfp reporter (Fig 2A and 2B), suggesting that ESCRT depletion does

not cause degradation of cytosolic GFP per se but specifically suppresses the expression of the

two UPRmt reporters.

Since vps-4VPS4, vps-20CHMP6 and vps-37VPS37 are part of different ESCRT subcomplexes

(vps-4VPS4—ATPase, vps-20CHMP6—ESCRT-III, vps-37VPS37—ESCRT-I) [27], we tested

whether depletion of components of the two remaining ESCRT subcomplexes, ESCRT-0 and

ESCRT-II, also suppresses fzo-1(tm1133)-induced UPRmt. Using the Phsp-6 mtHSP70gfp reporter
(bcSi9), we found that RNAi knock-down of hgrs-1HGS (ESCRT-0) suppresses by 23% on aver-

age (Fig 1A and 1C). In contrast, RNAi knock-down of two genes encoding components of

ESCRT-II, vps-22SNF8 and vps-36VPS36, fails to suppress. Similarly, using the Phsp-60 HSP60gfp
reporter (zcIs9), we found suppression by hgrs-1(RNAi) but not vps-22(RNAi) or vps-36(RNAi)
(Fig 1B and 1D). Taken together, our results demonstrate that the depletion of components of

ESCRT-0, -I, -III or VPS-4 ATPase can suppress fzo-1(tm1133)-induced UPRmt.

Depletion of ESCRT components does not rescue the fragmented
mitochondria phenotype in fzo-1(tm1133) animals but increases
mitochondrial membrane potential

The loss of fzo-1MFN function has a dramatic effect on steady-state mitochondrial morphology.

This is easily detectable in C. elegans body wall muscles using a reporter that drives the expres-

sion of mitochondrial-matrix targeted GFP protein (Pmyo-3 MYHgfpmt) [3,5,46]. In control
(RNAi) animals, the mitochondria in body wall muscle cells are predominantly tubular (Fig

2C). In contrast, in fzo-1(tm1133) animals treated with control(RNAi), the mitochondria are

predominantly fragmented (referred to as ‘fragmented mitochondria’ phenotype). To deter-

mine whether the depletion of components of ESCRT-I or -III, or the depletion of the ATPase

VPS-4VPS4 restores steady-state mitochondrial morphology, we analyzed mitochondrial mor-

phology in fzo-1(tm1133) animals, in which vps-4VPS4, vps-20CHMP6 or vps-37VPS37 had been

knocked-down by RNAi. We found that knock-down of these genes has no effect on the frag-

mented mitochondria phenotype in body wall muscle cells of fzo-1(tm1133) animals (Fig 2C).

Knock-down of vps-4VPS4, vps-20CHMP6 or vps-37VPS37 in fzo-1(tm1133) animals also has no

effect on mitochondrial morphology in hypodermal or intestinal cells (Fig 2E and S3B Fig).

(ESCRT depletion has no effect on steady-state mitochondrial morphology in body wall mus-

cle cells in a wild-type background (S3A Fig).)

Since we did not see a change in mitochondrial morphology in fzo-1(tm1133) animals upon

ESCRT(RNAi), we tested whether it affects mitochondrial membrane potential. Therefore, we

stained larvae with TMRE (Tetramethylrhodamine ethyl ester), a membrane potential depen-

dent dye that is commonly used in C. elegans to measure mitochondrial membrane potential

in hypodermal cells [10,14]. To measure the intensity of TMRE signal, mitochondria in the

fluorescent images were segmented using Fiji image software to generate a binary mask (S4

Fig). This mask, which includes all mitochondria of an image, was then used to measure

TMRE fluorescence intensity per mitochondrial area in the raw image. Compared to wild

type, TMRE fluorescence intensity per mitochondrial area was reduced by 63% in fzo-1
(tm1133) animals (Fig 2D). We found increased levels of TMRE fluorescence intensity per

mitochondrial area in fzo-1(tm1133) animals upon vps-4(RNAi) (19%) or vps-20(RNAi) (33%),

compared to control(RNAi) (Fig 2E and 2F). In contrast, ESCRT depletion in the wild-type

background causes a reduction in TMRE fluorescence intensity per mitochondrial area by

24% upon vps-4(RNAi) or 18% upon vps-20(RNAi) (Fig 2G and 2H). Mitochondrial TMRE

PLOS GENETICS Functional interactions between autophagy and mitochondrial stress

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008638 March 19, 2020 6 / 37

Chapter II

47



Fig 2. Induction of autophagy increases mitochondrial membrane potential and suppresses fzo-1(tm1133)-induced UPRmt.
(A) Fluorescence images of L4 larvae expressing Pges-1gfp in wild type (+/+). L4 larvae were subjected to control(RNAi), vps-4
(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (B)Quantifications
of fluorescence images from panel A. The values were normalized to control(RNAi) and each dot represents the quantification of
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fluorescence intensity is proportional to mitochondrial membrane potential [47]. Therefore,

ESCRT(RNAi) results in an increase in mitochondrial membrane potential in fzo-1(tm1133)
mutants. Hence, our data suggests that the suppression of fzo-1(tm1133)-induced UPRmt upon

ESCRT depletion is due to rescue of the decreased mitochondrial membrane potential and not

the fragmented mitochondria phenotype.

Depletion of ESCRT components increases autophagic flux in fzo-1
(tm1133) animals

Previous studies have shown that in C. elegans, the depletion of ESCRT components leads to

the induction of autophagy [39,40]. We confirmed this in wild-type animals (S2B Fig) and

tested whether ESCRT depletion also induces autophagy in fzo-1(tm1133) animals. First, we

determined the basal level of autophagy in fzo-1(tm1133) animals using three different assays

that utilize the reporters Plgg-1 GABARAPgfp::lgg-1 and Psqst-1 p62sqst-1::gfp, which are widely used
to monitor autophagy in C. elegans [40,48–52]. Specifically, we determined the number of

GFP::LGG-1GABARAP foci in hypodermal seam cells of animals of the fourth larval stage (L4

larvae) and found that the average number of GFP::LGG-1GABARAP foci increases from ~4 on

average in wild-type animals (+/+) to ~23 on average in fzo-1(tm1133) animals (Fig 3A and

3B). As a positive control, we used RNAi against the gene let-363mTOR, which induces autop-

hagy when knocked-down [19]. As expected, let-363(RNAi) animals show an increase in the

number of GFP::LGG-1GABARAP foci in hypodermal seam cells (~15 on average) (Fig 3A and

3B). To determine whether the increase in the number of GFP::LGG-1GABARAP foci is caused

by a block in autophagy, we analyzed the expression of the reporter Psqst-1 p62sqst-1::gfp. (The
accumulation of SQST-1p62::GFP is indicative of defective autophagic clearance [51].) Whereas

embryos homozygous for a lf mutation of unc-51ULK, e369, a gene required for autophagy [26],

show strong accumulation of SQST-1p62::GFP, we found that fzo-1(tm1133) embryos do not

accumulate SQST-1p62::GFP (Fig 3C). To further verify an increase in autophagic flux in fzo-1
(tm1133) animals, we used an immunoblotting assay based on the cleavage of the GFP::LGG-

1GABARAP fusion protein (in autolysosomes) to generate a ‘free GFP’ fragment, referred to as

‘cleaved GFP’ [50,53,54]. As shown in Fig 3D, compared to wild type, fzo-1(tm1133)mutants

exhibit a ~2.7-fold increase on average in the level of cleaved GFP. This confirms that autopha-

gic flux is increased in animals lacking fzo-1MFN.

To test whether depletion of ESCRT components can further increase autophagy in fzo-1
(tm1133) animals, we knocked-down vps-4VPS4, vps-20CHMP6, hgrs-1HGS or vps-37VPS37 in fzo-

fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in duplicates. ns: not
significant, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi). (C) Fluorescence
images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi), vps-20(RNAi), vps-37(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 10 μm. (D)
Fluorescence images and quantifications of L4 larvae stained with TMRE in wild type (+/+) or fzo-1(tm1133). L4 larvae were
subjected to control(RNAi) and the F1 generation was stained with TMRE overnight and imaged. Scale bar: 10 μm. Values
indicate means ± SD of 3 independent experiments in duplicates. ����P<0.0001 using unpaired two-tailed t-test with Welch’s
correction. (E) Fluorescence images of L4 larvae stained with TMRE in fzo-1(tm1133). L4 larvae were subjected to control(RNAi),
vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was stained with TMRE overnight and imaged.
Scale bar: 10 μm. (F)Quantifications of fluorescence images from panel E. The values were normalized to fzo-1(tm1133) on
control(RNAi) and each dot represents the quantification of fluorescence intensity per area from one L4 larvae. Values indicate
means ± SD of 3 independent experiments in duplicates. ns: not significant, �P<0.05, ��P<0.01, ���P<0.001 using Kruskal-
Wallis test with Dunn’s multiple comparison test to control(RNAi). (G) Fluorescence images of wild-type L4 larvae stained with
TMRE. L4 larvae were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1
generation was stained with TMRE overnight and imaged. Scale bar: 10 μm. (H)Quantifications of fluorescence images from
panel G. The values were normalized to wild type on control(RNAi) and each dot represents the quantification of fluorescence
intensity per area from one L4 larvae. Values indicate means ± SD of 3 independent experiments in duplicates. ��P<0.01,
����P<0.0001 using Kruskal-Wallis test with Dunn’s multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g002
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1(tm1133) animals and analyzed GFP::LGG-1GABARAP foci using the Plgg-1 GABARAPgfp::lgg-1
reporter. We found that RNAi knock-down of each of these four genes in fzo-1(tm1133) ani-
mals causes a dramatic increase in the accumulation of GFP::LGG-1GABARAP foci in

Fig 3. Autophagy is induced independently of ATFS-1ATF4,5 in fzo-1(tm1133) animals and further increased after ESCRT
depletion. (A) Plgg-1gfp::lgg-1 expression in hypodermal seam cells of wild type (+/+), fzo-1(tm1133) or fzo-1(tm1133); atfs-1
(tm4525) L4 larvae. For RNAi against let-363 and atfs-1, L4 larvae were subjected to the respective RNAi and the F1 generation was
imaged. Scale bar: 5 μm. (B)Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot represents the
average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one animal. n�12 for each genotype; values indicate
means ± SD; ns: not significant, ���P<0.001, ����P<0.0001 using Kruskal-Wallis test with Dunn’s multiple comparison to wild type
(+/+) or fzo-1(tm1133), respectively. (C)Nomarski and fluorescent images of the Psqst-1sqst-1::gfp translational reporter in embryos
of wild type (+/+) or fzo-1(tm1133). As a positive control for a block in autophagy, unc-51(e369) was used. Representative images of
>60 embryos are shown. Scale bar: 10 μm. (D)Western blot analysis of cleaved GFP levels in wild type (+/+) or fzo-1(tm1133) using
anti-GFP antibodies. Quantification of three independent experiments is shown. Values indicate means ± SD. (E) Plgg-1gfp::lgg-1
expression of fzo-1(tm1133) L4 larvae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi), vps-20(RNAi),
vps-22(RNAi), hgrs-1(RNAi), vps-36(RNAi) or vps-37(RNAi). Representative images of>80 animals from four independent
biological replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm. (F)Western blot analysis of
cleaved GFP levels in fzo-1(tm1133) upon control(RNAi), vps-4(RNAi) or vps-20(RNAi) using anti-GFP antibodies. Quantification of
four independent experiments is shown. Values indicate means ± SD.

https://doi.org/10.1371/journal.pgen.1008638.g003
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hypodermal seam cells as well as intestinal cells (Fig 3E). Furthermore, compared to control
(RNAi)-treated animals, we found increased levels of cleaved GFP in fzo-1(tm1133) animals

treated with vps-4(RNAi) (~5.5-fold) or vps-20(RNAi) (~5.9-fold) (Fig 3F). However, RNAi

against the ESCRT-II components vps-22SNF8 or vps-36VPS36 (which fail to suppress fzo-1
(tm1133)-induced UPRmt when knocked-down (Fig 1A–1D)) has no effect on the formation

of GFP::LGG-1GABARAP foci in hypodermal seam cells or intestinal cells (Fig 3E), probably due

to an inefficient knock-down. In summary, our findings demonstrate that the depletion of

components of ESCRT-0, -I, -III or the VPS-4 ATPase increases autophagic flux in fzo-1
(tm1133) animals.

Induction of autophagy suppresses fzo-1(tm1133)-induced UPRmt

To determine whether increasing autophagy through means other than knock-down of

ESCRT components also suppresses fzo-1(tm1133)-induced UPRmt, we knocked-down let-
363mTOR by RNAi and examined the expression of Phsp-6 mtHSP70gfp (bcSi9) and Phsp-60 HSP60gfp
(zcIs9) in fzo-1(tm1133) animals. We found that compared to controls, the expression of both

reporters is significantly suppressed upon let-363(RNAi) in fzo-1(tm1133) animals (Fig 1A–

1D). Specifically, on average, the expression of Phsp-6 mtHSP70gfp is suppressed by 40% and that

of Phsp-60 HSP60gfp by 45%, which is comparable to the level of suppression observed upon

RNAi knock-down of either atfs-1ATF4,5 or vps-4VPS4. As shown for the depletion of ESCRT

components, mitochondrial morphology upon let-363(RNAi) was found not to be altered in

fzo-1(tm1133) or wild-type animals (Fig 2C, 2E and 2G and S3A and S3B Fig).

To obtain further evidence that induction of autophagy leads to suppression of fzo-1
(tm1133)-induced UPRmt, we searched for additional genes with a regulatory role in autop-

hagy in our dataset of 299 suppressors. We found 17 additional genes that were previously

identified in a genome-wide RNAi screen for regulators of autophagy in C. elegans [40] (Fig
4A). Moreover, we used a database of autophagy-related genes and their orthologs (http://

www.tanpaku.org/autophagy/index.html) [55], results from two screens for regulators of

autophagy in mammals [56,57], three interaction databases (wormbase.org, genemania.org

and string-db.org) followed by literature searches and identified 13 additional genes in our

dataset that potentially induce autophagy upon knock-down (Fig 4A) [58–74]. Therefore,

including the three genes encoding components of the ESCRT (vps-4VPS4, vps-20CHMP6, vps-
37VPS37), 33 of the 299 suppressors have previously been shown to induce autophagy when

knocked-down.

Finally, we knocked-down all 299 suppressors in an otherwise wild-type background and

tested for an increase in autophagy. Using this approach, we found that 126 genes encode neg-

ative regulators of autophagy (16 of which were among the 33 genes identified through our lit-

erature search; indicated by § in Fig 4A), since they result in the accumulation of GFP::LGG-

1GABARAP foci in hypodermal seam cells and/or intestinal cells of larvae but not in the accumu-

lation of SQST-1p62::GFP in embryos when knocked-down (S1 Table). Adding the 17 genes

that we identified through literature searches, which were not found in this ‘autophagy’ screen

(Fig 4A), we, in total, found 143 out of 299 suppressors (~48%) of fzo-1(tm1133)-induced
UPRmt to negatively regulate autophagy.

To confirm that the additionally identified genes enhance autophagy also in the fzo-1
(tm1133) background, we knocked-down six of them (cogc-2COG2, cogc-4COG4, hars-1HARS,

rpt-3PSMC4, smgl-1NBAS and ins-7) and tested them for increased autophagic flux in fzo-1
(tm1133) animals. We found that the knock-down of each gene causes an increase in autopha-

gic flux in fzo-1(tm1133) animals, most prominently in the intestine (Fig 4B). We also deter-

mined the level of cleaved GFP in these animals and found that, compared to fzo-1(tm1133)
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Fig 4. Additional candidates identified by RNAi screen that suppress fzo-1(tm1133)- and drp-1(tm1108)-induced UPRmt

through activation of autophagy. (A) List of candidate genes identified in the primary screen with fzo-1(tm1133); Phsp-6gfp
(zcIs13) by RNAi. L4 larvae were subjected to the respective RNAi and the F1 generation was imaged. Candidate genes were
screened three times in technical duplicates with the same reporter in two different mutant backgrounds: drp-1(tm1108) and spg-
7(ad2249). Fluorescence intensity was scored and classified from very strong suppression to weak suppression (gradual violet
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animals on control(RNAi), the level is increased ranging from ~1.5-fold upon rpt-3(RNAi) to
~7.4-fold upon hars-1(RNAi) (Fig 4C). Using the single-copy Phsp-6 mtHSP70gfp transgene bcSi9,
we confirmed that the knock-down of cogc-2COG2, cogc-4COG4, hars-1HARS, rpt-3PSMC4, smgl-
1NBAS or ins-7 suppresses fzo-1(tm1133)-induced UPRmt (Fig 4D and 4E). Therefore, we pro-

pose that it is the increase in autophagic flux that suppresses fzo-1(tm1133)-induced UPRmt.

Since let-363mTOR as well as some of the additionally identified candidates (such as hars-
1HARS, rars-1RARS, tars-1TARS or iars-1IARS) have roles in translation [19], we tested the effects

of the depletion of let-363mTOR or hars-1HARS on Pges-1 GES2gfp expression in order to exclude

that their depletion simply attenuates synthesis of GFP protein. We found that let-363(RNAi)
or hars-1(RNAi) leads to suppression of Pges-1 GES2gfp expression by 39% or 25%, respectively

(Fig 2A and 2B). However, we found that depletion of let-363mTOR or hars-1HARS also has a

beneficial effect on mitochondrial membrane potential in fzo-1(tm1133)mutants since TMRE

fluorescence intensity per mitochondrial area is increased by 14% or 31%, respectively while

having the opposite effect in wild-type animals, in which it is decreased by 40% or 47%, respec-

tively (Fig 2E–2H). This suggests that the suppression of fzo-1(tm1133)-induced UPRmt upon

depletion of let-363mTOR or hars-1HARS is the result of a combination of an increase in mito-

chondrial membrane potential and the attenuation of cytosolic translation.

The induction of autophagy is not per se beneficial for organismal fitness

Since mitochondrial membrane potential is increased in fzo-1(tm1133) animals upon induc-

tion of autophagy, we tested whether this has a beneficial effect at the organismal level. Using

the ‘thrashing’ assay [75,76], we tested whether the motility of fzo-1(tm1133) animals is

improved. As previously shown [77], thrashing rates are decreased in fzo-1(tm1133)mutants

when compared to wild type (S5A Fig). We found that thrashing rates do not change upon

vps-4(RNAi) or vps-20(RNAi) in either fzo-1(tm1133) or wild-type animals (S5B and S5C Fig).

Therefore, increasing autophagic flux does not per se have beneficial effects on organismal fit-

ness. In contrast, we found that thrashing rates are significantly increased upon let-363(RNAi)
or hars-1(RNAi) in both fzo-1(tm1133) and wild-type animals (S5B and S5C Fig). Thus, the

induction of autophagy can lead to increased motility under certain circumstances, but this

effect may be covered upon depletion of ESCRT.

Depletion of ESCRT components in fzo-1(tm1133) animals with a block in
autophagy results in embryonic lethality

To test the hypothesis that increased autophagic flux is necessary for the suppression of fzo-1
(tm1133)-induced UPRmt in ESCRT-depleted animals, we generated a fzo-1(tm1133); unc-51
(e369) double mutant in the Phsp-6 mtHSP70gfp (bcSi9) reporter background and subjected it to

coloring) or no suppression (white). § indicates genes that, upon knock-down in our experiments, showed accumulation of GFP::
LGG-1 dots in hypodermal seam cells or intestinal cells. (B) Plgg-1gfp::lgg-1 expression of fzo-1(tm1133) L4 larvae in intestinal cells
upon control(RNAi), cogc-2(RNAi), cogc-4(RNAi), hars-1(RNAi), ins-7(RNAi), rpt-3(RNAi) or smgl-1(RNAi). Representative
images of>60 animals from four independent biological replicates are shown. Scale bar: 20 μm. (C)Western blot analysis of
cleaved GFP levels in fzo-1(tm1133) upon control(RNAi), smgl-1(RNAi), ins-7(RNAi), hars-1(RNAi), cogc-2(RNAi), cogc-4(RNAi)
or rpt-3(RNAi) using anti-GFP antibodies. Quantification of three independent experiments is shown. Values indicate
means ± SD. (D) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or fzo-1(tm1133). L4 larvae were
subjected to control(RNAi), atfs-1(RNAi), cogc-2(RNAi), cogc-4(RNAi), hars-1(RNAi), ins-7(RNAi), rpt-3(RNAi) or smgl-1(RNAi)
and the F1 generation was imaged. Scale bar: 200 μm. (E)Quantifications of fluorescence images from panel D. After subtracting
the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) on control
(RNAi). Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least
3 independent experiments in duplicates. ns: not significant, �P<0.05, ���P<0.001, ����P<0.0001 using one-way ANOVA with
Dunnett’s multiple comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g004
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RNAi against either vps-4VPS4 or vps-20CHMP6. However, we found that either RNAi treatment

results in progeny that undergoes embryonic arrest. To circumvent this problem, we subjected

fzo-1(tm1133)mutants to double-RNAi against unc-51ULK and ESCRT but failed to detect sup-

pression of UPRmt upon ESCRT(RNAi) diluted with control(RNAi) (S6A Fig). Next, we depleted

ESCRT components by RNAi starting from the second larval stage (L2) (rather than in the

parental generation and throughout development) and examined reporter expression once the

animals had reached the fourth larval stage (L4). Interestingly, we found that subjecting fzo-1
(tm1133) L2 larvae to vps-4(RNAi) or vps-20(RNAi) does not increase autophagic flux and fails
to suppress UPRmt, while atfs-1(RNAi) is able to suppress UPRmt under these conditions (S6B

and S6C Fig). We repeated this experiment in the background of an RNAi-sensitizing mutation,

rrf-3(pk1426), but again were unable to detect suppression of the Phsp-6 mtHSP70gfp (bcSi9)
reporter upon ESCRT(RNAi) while atfs-1(RNAi) suppressed (S6D Fig). Based on these results,

we conclude that ESCRT(RNAi) does not directly act on ATFS-1ATF4,5 to suppress UPRmt.

Instead, we propose that it affects UPRmt indirectly through the induction of autophagy.

Blocking mitophagy does not prevent suppression in fzo-1(tm1133)
animals of UPRmt by ESCRT depletion

Since we were unable to test whether blocking autophagy blocks the suppression of fzo-1
(tm1133)-induced UPRmt by depletion of ESCRT components, we tested the role of pdr-1Parkin-
and fndc-1FUNDC1,2-dependent mitophagy in this context [78,79]. First, we used fzo-1(tm1133);
pdr-1(lg103) double mutants, carrying the Phsp-6 mtHSP70gfp (bcSi9) reporter, to test whether pdr-
1Parkin-dependent mitophagy is required for ESCRT-dependent suppression of fzo-1(tm1133)-
induced UPRmt. We found that knock-down of vps-4VPS4, vps-20CHMP6 or hgrs-1HGS still sup-

presses fzo-1(tm1133)-induced UPRmt in the pdr-1(lg103) background (Fig 5A and 5B). Fur-

thermore, compared to the level of suppression in fzo-1(tm1133) animals alone, the level of

UPRmt suppression in fzo-1(tm1133); pdr-1(lg103) animals is similar upon vps-4(RNAi) or vps-
20(RNAi) and even higher upon hgrs-1(RNAi) (Figs 1A, 1C, 5A and 5B). Second, we tested

whether depletion of ESCRT components suppresses UPRmt in fzo-1(tm1133) fndc-1(rny14)
double mutants and found that it does so to a similar extent (Fig 5C and 5D). Therefore, pdr-
1Parkin- and fndc-1FUNDC1,2-dependent mitophagy are not required for the suppression of fzo-1
(tm1133)-induced UPRmt upon ESCRT depletion.

Blocking autophagy in the absence of mitochondrial stress induces UPRmt,
but neither blocking nor inducing UPRmt affects autophagy

Increasing autophagic flux suppresses fzo-1(tm1133)-induced UPRmt. To test whether decreas-

ing autophagic flux, conversely, induces UPRmt, we analyzed unc-51(e369) animals (in which

autophagy is blocked) and found that compared to wild-type animals, the Phsp-6 mtHSP70gfp
reporter is induced by 41% on average (Fig 5E and 5F). To determine whether the Phsp-6

mtHSP70gfp reporter is also induced under conditions where UPRmt is already activated, we ana-

lyzed fzo-1(tm1133); unc-51(e369) double mutant animals. We found that, in the fzo-1
(tm1133) background, the loss of unc-51ULK does not result in a significant increase in the

expression of Phsp-6 mtHSP70gfp (Fig 5E and 5F). Thus, blocking autophagy induces UPRmt

in the absence of mitochondrial stress but not under conditions where UPRmt is already

activated.

Next, we analyzed whether blocking or inducing UPRmt affects autophagy. Therefore, we

analyzed autophagy in animals homozygous for either the atfs-1ATF4,5 lf mutation tm4525 or
the atfs-1ATF4,5 gain-of-function (gf) mutation et15gf [11,80]. atfs-1(tm4525) has been shown

to suppress the expression of the Phsp-6 mtHSP70gfp and Phsp-60 HSP60gfp reporters upon spg-7
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Fig 5. Functional interactions betweenmitophagy, autophagy and UPRmt. (A) L4 larvae of fzo-1(tm1133); pdr-1(lg103) expressing
Phsp-6gfp (bcSi9) were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or hgrs-1(RNAi) and the F1 generation was
imaged. Scale bar: 200 μm. (B)Quantifications of fluorescence images from panel A. After subtracting the mean fluorescence intensity
of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133); pdr-1(lg103) on control(RNAi). Each dot represents
the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in
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(RNAi) and of the endogenous hsp-6mtHSP70 and hsp-60HSP60 loci upon cco-1(RNAi) [11,81].
Conversely, atfs-1(et15gf) has been shown to constitutively activate UPRmt [80]. We found that

compared to wild-type animals, hypodermal seam cells of atfs-1(tm4525) or atfs-1(et15gf) ani-
mals show no significant changes in the number of GFP::LGG-1GABARAP foci (Fig 5G and 5H).

In addition, atfs-1(tm4525) or atfs-1(et15gf) embryos do not accumulate SQST-1p62::GFP foci

(Fig 5I). Since it has previously been reported that mitochondrial stress induces autophagy in an

atfs-1ATF4,5-dependent manner [40], we also tested whether the loss of atfs-1ATF4,5 suppresses
autophagy in fzo-1(tm1133) animals. We found that the number of GFP::LGG-1GABARAP foci

remains unchanged both in fzo-1(tm1133) animals upon atfs-1(RNAi) as well as fzo-1(tm1133);
atfs-1(tm4525) double mutants (Fig 3A and 3B), demonstrating that the induction of autophagy

in fzo-1(tm1133)mutants is ATFS-1ATF4,5-independent. Finally, we tested whether increasing

UPRmt in fzo-1(tm1133)mutants by introducing atfs-1(et15gf) affects autophagic flux. However,

we found that fzo-1(tm1133); atfs-1(et15gf) double mutants are not viable. Therefore, blocking

or inducing UPRmt by manipulating ATFS-1ATF4,5 activity does not affect autophagic flux in

wild type and blocking UPRmt does not affect autophagy in fzo-1(tm1133) animals.

The induction of autophagy suppresses UPRmt induced by a block in
mitochondrial dynamics but not by the loss of spg-7AFG3L2

To determine whether the suppression of UPRmt by increased autophagic flux is specific to

fzo-1(tm1133)-induced UPRmt, we tested all 143 suppressors of fzo-1(tm1133)-induced UPRmt

with a role in autophagy for their ability to suppress drp-1(tm1108)- or spg-7(ad2249)-induced
UPRmt using the multi-copy Phsp-6 mtHSP70gfp transgene zcIs13. As shown in Fig 4A and S1

Table, we found that the knock-down of 138 of the genes (~97%) also suppresses drp-1
(tm1108)-induced UPRmt. In contrast, the knock-down of 90 of the genes (~63%) suppresses

spg-7(ad2249)-induced UPRmt. Among these 90 genes, 41 belong to the GO categories ‘Trans-

lation’ or ‘Ribosome Biogenesis’. Hence, their depletion may interfere with synthesis of GFP.

Interestingly, we found that knock-down of vps-4VPS4 but not vps-20CHMP6 or vps-37VPS37

also suppresses spg-7(ad2249)-induced UPRmt (Fig 4A). Therefore, we tested whether the

knock-down of vps-4VPS4 or vps-20CHMP6 leads to increased autophagic flux in spg-7(ad2249)
animals. We first analyzed the basal level of autophagy in spg-7(ad2249) animals using the Plgg-

1 GABARAPgfp::lgg-1 reporter and found that compared to wild type, the number of GFP::LGG-

1GABARAP foci is increased 2-fold (from ~4 on average in wild-type animals to ~8 on average in

spg-7(ad2249) animals) (S7A and S7B Fig). To determine whether this increase in autophago-

somes is due to a block in autophagy, we analyzed the accumulation of SQST-1p62::GFP using

duplicates. ��P<0.01, ���P<0.001, ����P<0.0001 using one-way ANOVAwith Dunnett’s multiple comparison test to control(RNAi).
(C) L4 larvae of fzo-1(tm1133) fndc-1(rny14) expressing Phsp-6gfp (bcSi9) were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi)
or vps-20(RNAi) and the F1 generation was imaged. Scale bar: 200 μm. (D)Quantifications of fluorescence images from panel C. After
subtracting the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) fndc-1
(rny-14) on control(RNAi). Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate
means ± SD of 3 independent experiments in duplicates. ���P<0.001, ����P<0.0001 using one-way ANOVA with Dunnett’s multiple
comparison test to control(RNAi). (E) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+), unc-51(e369),
fzo-1(tm1133) or fzo-1(tm1133); unc-51(e369). Scale bar: 200 μm. (F)Quantifications of fluorescence images from panel E. Each dot
represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of at least 4 independent
experiments in duplicates. ns: not significant, ����P<0.0001 using two-tailed t-test. (G) Plgg-1gfp::lgg-1 expression in hypodermal seam
cells of wild type (+/+), atfs-1(tm4525) or atfs-1(et15gf) L4 larvae. Scale bar: 5 μm. (H)Quantification of GFP::LGG-1 foci in
hypodermal seam cells from panel G. Each dot represents the average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one
animal. n�12 for each genotype; values indicate means ± SD; ns: not significant using one-way ANOVAwith Dunnett’s multiple
comparison test to wild type (+/+). (I)Nomarski and fluorescent images of the Psqst-1sqst-1::gfp translational reporter in embryos of
wild type (+/+), atfs-1(tm4525) or atfs-1(et15gf) animals. As a positive control for a block in autophagy, unc-51(e369) was used.
Representative images of>60 embryos are shown. Scale bar: 10 μm.

https://doi.org/10.1371/journal.pgen.1008638.g005
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the Psqst-1 p62sqst-1::gfp reporter. We did not observe SQST-1p62::GFP accumulation in spg-7
(ad2249) animals, thus indicating that autophagic flux is increased in spg-7(ad2249)mutants

(S7C Fig). Next, we tested whether vps-4(RNAi) or vps-20(RNAi) further induces autophagy in
the spg-7(ad2249) background and found that knock-down of vps-4VPS4 and also vps-20CHMP6

leads to an increase in the average number of GFP::LGG-1GABARAP foci in hypodermal seam

cells and intestinal cells (Fig 6A). Confirming an increase in autophagic flux, immunoblotting

of GFP::LGG-1GABARAP in spg-7(ad2249) animals revealed increased levels of cleaved GFP

upon vps-4(RNAi) or vps-20(RNAi) (~5.7-fold and ~3.7-fold, respectively; Fig 6B). Finally, we

tested whether the loss of let-363mTOR, which induces autophagy and suppresses fzo-1
(tm1133)-induced UPRmt (Fig 1A–1D), can suppress spg-7(ad2249)-induced UPRmt. Using

the single-copy Phsp-6 mtHSP70gfp transgene bcSi9, we found that RNAi knock-down of let-
363mTOR fails to suppress spg-7(ad2249)-induced UPRmt (Fig 6C and 6D). In summary, these

results indicate that UPRmt induced by the loss of spg-7AFG3L2 is not suppressed by increasing

autophagic flux. Based on these findings we propose that the induction of autophagy is suffi-

cient to suppress UPRmt induced by a block in mitochondrial dynamics but not by the loss of

spg-7AFG3L2.

Fig 6. Induction of autophagy is not sufficient to suppress spg-7(ad2249)-induced UPRmt. (A) Plgg-1gfp::lgg-1 expression
of spg-7(ad2249) L4 larvae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or vps-20(RNAi).
Representative images of>80 animals from three independent biological replicates are shown. Scale bar hypodermal seam
cells: 5 μm. Scale bar intestinal cells: 20 μm. (B)Western blot analysis of cleaved GFP levels in spg-7(ad2249) upon control
(RNAi), vps-4(RNAi) or vps-20(RNAi) using anti-GFP antibodies. Quantification of three independent experiments is
shown. Values indicate means ± SD. (C) Fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+) or
spg-7(ad2249). L4 larvae were subjected to control(RNAi), atfs-1(RNAi) or let-363(RNAi) and the F1 generation was
imaged. Scale bar: 200 μm. (D)Quantifications of fluorescence images from panel C. After subtracting the mean
fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to spg-7(ad2249) on control(RNAi).
Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 3
independent experiments in duplicates. ns: not significant, ��P<0.01 using Kruskal-Wallis test with Dunn’s multiple
comparison test to control(RNAi).

https://doi.org/10.1371/journal.pgen.1008638.g006
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Defects in mitochondrial dynamics lead to changes in the levels of certain
types of triacylglyerols, which can partially be reverted by induction of
autophagy

To elucidate how the induction of autophagy leads to suppression of UPRmt in fzo-1(tm1133)
and drp-1(tm1108) animals, we determined potential differences in metabolism in these

genetic backgrounds. Since mitochondria and autophagy are known to regulate specific

aspects of lipid metabolism, we performed non-targeted lipid profiling in fzo-1(tm1133), drp-1
(tm1108) and spg-7(ad2249)mutant backgrounds and compared them to wild type.

Of the 5284 lipid ‘features’ detected, the levels of 3819 are changed in at least one of the

three pairwise comparisons (fzo-1(tm1133) vs. wild type, drp-1(tm1108) vs. wild type, spg-7
(ad2249) vs. wild type) (S8A Fig). Among the 3819 lipid features that are changed, 1774 are

currently annotated as lipids. Interestingly, a third of the annotated lipids, whose levels were

changed, are triacylglycerols (TGs). TGs are storage lipids and make up a major part of lipid

droplets, which are broken down into fatty acids and subsequently oxidized in mitochondria

upon energy demand [82–84]. We initially determined the total amounts of TGs in the mutant

backgrounds and compared them to that of wild type. Whereas drp-1(tm1108)mutants show

an increase in the total amount of TGs, no changes are observed in fzo-1(tm1133)mutants and

a decrease is detected in spg-7(ad2249)mutants (S8B Fig). To determine whether the amounts

of TG species with a specific length of acyl chains and/or number of double bonds are altered,

we plotted all 659 detected TGs and subsequently marked TGs that are specifically up- (red) or

downregulated (blue) in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249) animals (S8C Fig and

S2 Table). Consistent with the observed decrease in the total amount of TGs, most of the indi-

vidual TG species are downregulated in spg-7(ad2249)mutants (S8B and S8C Fig). In the drp-
1(tm1108) background, TG species with altered levels initially showed no distinct pattern

regarding length of acyl chains or degree of desaturation (S8C Fig and S2 Table). However, in

the fzo-1(tm1133) background, these TG species can be separated into two clusters. Whereas

TGs with shorter acyl chains are downregulated in fzo-1(tm1133)mutants, ‘longer’ TGs with a

higher degree of unsaturation are increased (S8C Fig and S2 Table). Interestingly, when look-

ing at the overlap between fzo-1(tm1133) and drp-1(tm1108), we observed a similar trend

regarding changes in acyl length and desaturation for drp-1(tm1108) as well (S8D Fig and S2

Table).

Next, we tested whether the induction of autophagy can revert the specific changes in TG

pattern observed in fzo-1(tm1133)mutants. Therefore, we knocked-down vps-4VPS4 or cogc-
2COG2 to induce autophagy in fzo-1(tm1133) and wild-type animals and again, performed lipid

profiling. We used principal component analysis (PCA) in order to show how distinct or simi-

lar the lipid profiles upon vps-4(RNAi) or cogc-2(RNAi) are. Interestingly, knock-down of vps-
4VPS4 in either genotype was distinct from controls, which indicates major changes in the lipi-

dome due to an efficient RNAi knock-down (Fig 7A). Moreover, we found that RNAi against

cogc-2COG2 has only mild effects, since the samples cluster with controls in both genotypes.

This might be attributed to a weak knock-down and most probably a weak induction of

autophagy.

Subsequently, we specifically analyzed the TGs in fzo-1(tm1133)mutants on control(RNAi)
and, consistent with our previous results (S8C Fig (left panel) and S2 Table), detected a

decrease in the levels of TGs with shorter acyl chains while levels of TGs with longer chains

increase, compared to wild type on control(RNAi) (Fig 7B (left panel) and S2 Table). The levels

of TGs that are downregulated in the fzo-1(tm1133) background are either unchanged or fur-

ther decreased upon depletion of vps-4VPS4 and the concomitant induction of autophagy (Fig

7B (middle panel) and S2 Table). In contrast, the levels of TGs that are upregulated in fzo-1
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(tm1133) animals are reduced upon induction of autophagy by knock-down of vps-4VPS4,
although not always to the levels of wild type (Fig 7B (right panel) and S2 Table). Upon cogc-2
(RNAi), we detected only minor effects on the levels of TGs in fzo-1(tm1133) (S9A Fig and S2

Table), which is consistent with the relatively small changes in the lipid profile as assessed by

PCA (Fig 7A). However, the levels of most TGs that are decreased upon cogc-2(RNAi) are also
decreased upon depletion of vps-4VPS4 (S9B Fig), suggesting that the induction of autophagy

caused by the two different knock-downs leads to partially overlapping changes in the levels of

TGs. Taken together, we find that the levels of specific TGs are changed in a similar manner in

mutants with defects in mitochondrial dynamics. Moreover, we show that some of these

changes can be reverted by the induction of autophagy in fzo-1(tm1133) animals.

Discussion

Induction of autophagy increases mitochondrial membrane potential and
suppresses UPRmt in fzo-1(tm1133)mutants

We propose that the induction of autophagy partially restores membrane potential and thereby

suppresses fzo-1(tm1133)-induced UPRmt. Interestingly, a decrease in mitochondrial mem-

brane potential has recently been shown to be the signal for UPRmt induction [10]. Therefore,

some aspect of mitochondrial stress that leads to both decreased membrane potential and the

Fig 7. Induction of autophagy upon vps-4(RNAi) changes the levels of specific TGs in fzo-1(tm1133)mutants. (A) Principal
component analysis (PCA) scores plot of wild-type (+/+) and fzo-1(tm1133) animals subjected to control(RNAi), cogc-2(RNAi) or
vps-4(RNAi). Turquois squares indicate internal quality controls (QC). (B) Scatterplot indicating the distribution and changes in
the levels of TG species in fzo-1(tm1133)mutants in comparison to wild type (+/+). The x-axis labels the number of carbons (# of
C) and the y-axis the number of double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected
isomers for a specific sum composition. Grey dots represent all detected TGs species and blue and red dots indicate down- (blue)
or upregulation (red).

https://doi.org/10.1371/journal.pgen.1008638.g007
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induction of UPRmt in fzo-1(tm1133)mutants can be rescued by the induction of autophagy in

these animals. We were unable to verify our hypothesis since ESCRT-depleted fzo-1(tm1133);
unc-51(e369) double mutants arrest during embryogenesis. This is in agreement with a study

from Djeddi et al., which reported that induction of autophagy is a pro-survival mechanism in

ESCRT-depleted animals [39]. Moreover, our data suggests that clearance of defective and

depolarized mitochondria by pdr-1Parkin- or fndc-1FUNDC1,2-dependent mitophagy does not

play a role in the suppression of fzo-1(tm1133)-induced UPRmt. In addition, we propose that

the induction of autophagy may lead to increased organismal fitness, but that this effect is

masked by pleiotropic effects upon knock-down of certain genes such as the ESCRT genes.

Increased autophagic flux compensates for a block in mitochondrial
dynamics

We provide evidence that the induction of autophagy can also compensate for a block in mito-

chondrial fission and, hence, for defects in mitochondrial dynamics. In contrast, induction of

autophagy does not suppress spg-7(ad2249)-induced UPRmt. Among the genes that suppress

spg-7(ad2249)-induced UPRmt almost half have roles in translation or ribosome biogenesis,

the knock-down of which may impair GFP synthesis by compromising cytosolic translation.

Furthermore, we speculate that the knock-down of the remaining genes suppresses spg-7
(ad2249)-induced UPRmt through mechanisms other than the induction of autophagy. This

supports the notion that UPRmt induced by different types of mitochondrial stress are distinct

in their mechanisms of induction and also in their mechanisms of suppression. In line with

this, we found that different mitochondrial stresses have different impacts on the lipidome.

Although FZO-1 and DRP-1 play different roles in mitochondrial dynamics, they have similar

effects on the levels of many TGs when mutated. In contrast, the levels of these TGs are distinct

in spg-7(ad2249) animals. The role of mitochondria in the metabolism of TGs is diverse. First,

mitochondria are using fatty acids released from TGs upon lipolysis for energy production.

Second, lipid droplet associated mitochondria deliver building blocks and energy for the syn-

thesis of fatty acids and TGs. Fatty acids derived from this pathway typically show lower chain

length and a higher degree of saturation [85]. Since we see a decrease in TGs with shorter

chain length in fzo-1(tm1133)mutants, it is plausible that contact sites between lipid droplets

and mitochondria are affected. Consistent with this, Benador et al. found high levels of MFN2

in lipid droplet associated mitochondria in brown adipose tissue of mice [85]. Furthermore,

Rambold et al. reported that altered mitochondrial morphology in mouse embryonic fibro-

blasts lacking either Opa1 orMfn1 affects fatty acid transfer from lipid droplets to mitochon-

dria, thereby causing heterogeneous fatty acid distribution across the mitochondrial

population [86]. Therefore, we speculate that the loss of fzo-1MFN or drp-1DRP1 but not spg-
7AFG3L2 leads to alterations in contact sites between lipid droplets and mitochondria and that

these alterations lead to specific changes in metabolism.

Interestingly, we found that increasing autophagic flux in fzo-1(tm1133) animals reverts

some of the changes in the levels of TGs. Consistent with these results, autophagy has been

shown to have a role in the breakdown of TGs from lipid droplets, which ensures a constant

fatty acid supply to mitochondria for -oxidation [87], highlighting the importance of autop-

hagy in fatty acid metabolism. More recently, autophagy has also been shown to directly affect

the levels of enzymes involved in -oxidation by causing the degradation of the co-repressor of

PPAR , a master regulator of lipid metabolism [88]. Therefore, we propose that the induction

of autophagy in mutants with defects in mitochondrial dynamics results in elevated break-

down of specific TGs that are used to fuel mitochondrial metabolism, thereby leading to

increased mitochondrial membrane potential and suppression of UPRmt.
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Functional interactions between autophagy and UPRmt

Protection of mitochondrial and ultimately cellular homeostasis was previously proposed to be

dependent on the integration of different mitochondrial and cellular stress pathways but

experimental data so far was limited [89]. The first evidence that autophagy can affect UPRmt

was the finding by Haynes et al. that knock-down of rheb-1RHEB, a known positive regulator of

TOR [90], suppresses the Phsp-60 HSP60gfp reporter [13]. Two more recent studies reported con-

tradictory results with respect to the effect of blocking mitophagy on UPRmt induction [7,91].

We demonstrate that a block in autophagy in the absence of mitochondrial stress induces

UPRmt. Blocking autophagy results in major changes in metabolism [92,93] which may, to

some extent, be caused by decreased delivery of lipids into mitochondria. This could conse-

quently lead to the activation of UPRmt and thereby to a metabolic shift towards glycolysis

[94]. Thus, fzo-1(tm1133)mutants, in which UPRmt is already activated, are less dependent on

their mitochondria with regard to energy production and this might explain why blocking

autophagy in these animals does not further increase UPRmt. Interestingly, based on our

results, altering autophagy can influence UPRmt, but changes in UPRmt do not affect autop-

hagy. In contrast, Guo et al. reported that upon mitochondrial stress, upregulation of both

UPRmt and autophagy is dependent on ATFS-1ATF4,5 [40] and Nargund et al. showed that a
small subset of autophagy related genes are upregulated via ATFS-1ATF4,5 upon mitochondrial

stress (induced by spg-7(RNAi)) [11]. However, we show that import of ATFS-1ATF4,5 into the

nucleus under conditions where mitochondrial stress is absent, is not sufficient to induce

autophagy. Taken together, we found a previously undescribed functional connection between

autophagy and UPRmt. We propose that the two pathways do not interact directly but that the

induction of autophagy leads to improved mitochondrial function by affecting lipid metabo-

lism and ameliorating cellular homeostasis, thereby suppressing UPRmt in mutants with

defects in mitochondrial dynamics (Fig 8).

Genome-wide RNAi screen identifies a new autophagy network

In our dataset of 299 suppressors of fzo-1(tm1133)-induced UPRmt we found 143 genes that

negatively regulate autophagy. Interestingly, 94% of these candidates (135/143) have orthologs

in humans. We identified several components of the ubiquitin-proteasome system (UPS) (rpt-
3PSMC4, rpn-13ADRM1, ufd-1UFD1, rbx-1RBX1, cul-1CUL1) [73,95,96] and found evidence in the

literature that activation of autophagy compensates for the loss of the UPS [59,63]. Addition-

ally, we identified several genes that are involved in cell signaling, e.g. ruvb-1RUVBL1, a

Fig 8. Autophagy compensates for defects in mitochondrial dynamics. The disruption of mitochondrial dynamics
leads to altered mitochondrial morphology and to activation of UPRmt and autophagy. We propose that in animals
with compromised mitochondrial dynamics, the induction of autophagy fuels mitochondrial metabolism, thereby
leading to increased mitochondrial membrane potential (ψ) and improved cellular homeostasis, which consequently
results in suppression of UPRmt.

https://doi.org/10.1371/journal.pgen.1008638.g008
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component of the TOR pathway in C. elegans that induces autophagy when knocked-down

[71]. Among the genes with roles in cellular trafficking, we found imb-2TNPO1,2, a regulator of
the nuclear transport of DAF-16FOXO [70], which has been implicated in the regulation of

autophagy [74]. Approximately one third of the candidates identified (44/143) are genes that

regulate protein biosynthesis (S1 Table, GO categories ‘Ribosome Biogenesis’ and ‘Transla-

tion’), which was shown to be protective against mitochondrial stress when impaired [97].

Baker and colleagues showed that knock-down of protein kinases involved in translation, such

as let-363mTOR, specifically suppress Phsp-60 HSP60gfp (zcIs9) expression. Based on our results,

we propose that this effect could, to some extent, be due to the induction of autophagy. Taken

together, we identified a broad range of cellular components and processes that all impact

autophagy when deregulated, demonstrating the diverse and critical roles of autophagy in cel-

lular homeostasis.

Conclusions
A block in mitochondrial dynamics leads to decreased mitochondrial membrane potential and

the induction of UPRmt. Lipid profiling indicates that a block in mitochondrial dynamics also

causes an increase in the levels of certain types of TGs, which is reversed by induction of

autophagy. We propose that the breakdown of these TGs through an autophagy-dependent

process leads to elevated metabolic activity and that this causes an increase in mitochondrial

membrane potential and the suppression of UPRmt.

Methods

General C. elegansmethods and strains

C. elegans strains were cultured as previously described [98]. Bristol N2 was used as the wild-

type strain and the following alleles and transgenes were used: LGI: spg-7(ad2249) [41]; LGII:
fzo-1(tm1133) (National BioResource Project), rrf-3(pk1426) [99], fndc-1(rny14) [78]; LGIII:
pdr-1(lg103) [100]; LGIV: drp-1(tm1108) (National BioResource Project), bcSi9 (Phsp-6::gfp::
unc-54 3’UTR) (this study), frIs7 (nlp-29p::GFP + col-12p::DsRed) [101]; LGV: unc-51(e369)
[23], atfs-1(tm4525) (National BioResource Project), atfs-1(et15gf) [80]. Additionally, the fol-
lowing multi-copy integrated transgenes were used: adIs2122(lgg-1p::GFP::lgg-1 + rol-6
(su1006)) [102], bpIs151 (sqst-1p::sqst-1::GFP + unc-76(+)) [51], zcIs9 (Phsp-60::gfp::unc-54
3’UTR) [14], zcIs13 (Phsp-6::gfp::unc-54 3’UTR) [14], zcIs18 (Pges-1::gfp(cyt)) [103], bcIs79 (Plet-
858::gfpmt::let-858 3’UTR + rol-6(su1006)), bcIs78 (Pmyo-3::gfpmt::unc-54 3’UTR + rol-6(su1006))
[46]. The strains MOC92 bicIs10(hsp-1::tagRFP::unc-54 3’UTR) and MOC119 bicIs12(ttr-45p::
tagRFP::ttr-45 3’UTR) were generated in the Casanueva lab by gonadal microinjection of plas-

mids pMOC1 and pMOC2, respectively followed by genome integration via UV irradiation

using a Stratagene UV Crosslinker (Stratalinker) [104]. The irradiation dose was 35mJ/cm2

corresponding to Stratalinker power set up at 350. The single-copy integration allele bcSi9 was
generated using MosSCI [105] of the plasmid pBC1516. The strain EG8081 (unc-119(ed3) III;
oxTi177 IV) was used for targeted insertion on LGIV [106]. The strain MD2988 (Plet-858gfpmt)

was generated by gonadal microinjection of the plasmid pBC938 followed by genome integra-

tion via EMS mutagenesis.

Plasmid construction

The plasmid pBC1516 was constructed using Gibson assembly [107]. The vector pCFJ350 (a

gift from Erik Jorgensen; Addgene plasmid no. 34866) [108] was digested using AvrII. The

putative hsp-6 promoter (1695bp upstream of the start codon of hsp-6) + 30 bp of the hsp-6
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gene were PCR amplified from gDNA using overhang primers to pCFJ350 5’- acgtcaccggttcta-

gatacTCGAGTCCATACAAGCACTC -3’ and gfp::unc-54 3’UTR 5’- ctttactcatGGAAGACAA

GAATGATCGTG -3’ (lower case letters indicating overhangs). gfp::unc-54 3’UTR was PCR

amplified from pPD95.77 using overhang primers to Phsp-6 5’- cttgtcttccATGAGTAAAGGA

GAAGAACTTTTC -3’ and pCFJ350 5’- tagagggtaccagagctcacAAACAGTTATGTTTGGTA

TATTGG -3’ (lower case letters indicating overhangs).

The plasmid pBC938 was constructed using a classical cloning approach. Therefore, gfpmt

was amplified by PCR from pBC307 (Phsgfpmt) [109] using the following primers carrying a

NheI or KpnI restriction site, respectively:

mitogfpFKpnI: 5’- GGTACCATGGCACTCCTGCAATCAC -3’

mitogfpRNheI: 5’- GCTAGCCTATTTGTATAGTTCATCCATGC -3’

The amplified fragment was then digested with KpnI and NheI and subsequently ligated

into the NheI and KpnI digested backbone L3786 (Plet-858NLS-GFP) (L3786 was a gift from
Andrew Fire (Addgene plasmid # 1593; http://n2t.net/addgene:1593; RRID:Addgene_1593)).

The plasmids pMOC1 and pMOC2 were generated by Gibson cloning, using Gibson

Assembly Master Mix (New England Biolabs E2611) according to standard protocol using the

vector pTagRFP-C as backbone (Evrogen). For the plasmid pMOC1 (hsp-1p::tagRFP::unc-54
3’UTR)), the 1.3 kb intergenic region upstream hsp-1 was amplified and inserted at ScaI site,

using the following primers:

hsp-1p fwd: 5’- GCCTCTAGAGTTACTTCGGCTCTATTACTG -3’

hsp-1p rev: 5’- tatcgcgagtTTTTACTGTAAAAAATAATTTAAAAATCAAGAAATAG -3’

The 3’UTR of unc-54 was amplified and inserted at XhoI site using the primers:

unc54UTR RFP fwd: 5’- CTTAATTaaAGGACTCAGATCgtccaattactcttcaacatc -3’

unc54UTR RFP rev: 5’- CAGAATTCGAAGCTTGAGCttcaaaaaaatttatcagaag -3’

For the plasmid pMOC2 (ttr-45p::tagRFP::ttr45 3’UTR), the 1.85 kb intergenic region
upstream ttr-45 was amplified and inserted at XbaI site, using the following primers:

ttr-45p fwd: 5’- GCCTGCAGGCGCGCCTctgaaaaaaaatcatattacaaatcag -3’

ttr-45p rev: 5’- AGATATCGCGAGTACTtgaaattttaaattttgaattttagtc -3’

The 3’UTR of ttr-45, contained in the following primer (lower case) was inserted at the

XhoI site:

ttr-45UTR:

5’- TTaaAGGACTCAGATCaataattttgattttatgtataataaagactttatctcggGCTCAAGCTTCGAA

TT -3’

RNA-mediated interference

RNAi by feeding was performed using the Ahringer RNAi library [45]. sorb-1(RNAi) was used
as a negative control (referred to as ‘control(RNAi)’) in all RNAi experiments. For all experi-

ments, except for the screens in fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249), RNAi clones
were cultured overnight in 2 mL of LB carbenicillin (100 μg/mL) at 37˚C and 200 rpm. The

RNAi cultures were adjusted to 0.5 OD and 50 μL were used to seed 30 mm RNAi plates con-

taining 6 mM IPTG. The plates were incubated at 20˚C in the dark. 24 hours later, two L4 lar-

vae of all wild-type strains or 16 L4 larvae of all strains carrying the fzo-1(tm1133) allele were
inoculated onto the RNAi plates. L4 larvae of the F1 generation were collected after 4 days

(wild-type strains) or 6–7 days (fzo-1(tm1133)mutants). hars-1(RNAi) was diluted 1:5 with

sorb-1(RNAi) in all experiments. Larvae were imaged using M9 buffer with 150 mM sodium

azide.

For the screens with the multi-copy zcIs13 transgene in fzo-1(tm1133), drp-1(tm1108) and
spg-7(ad2249), RNAi clones were cultured overnight in 100 μL of LB carbenicillin (100 μg/mL)
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in a 96 well plate format at 37˚C and 200 rpm. 10 μL of the RNAi cultures was used to seed 24

well RNAi plates containing 0.25% Lactose (w/v). The plates were incubated at 20˚C in the

dark. 24 hours later, 3 L4 larvae of all strains carrying the fzo-1(tm1133) and spg-7(ad2249)
allele, and 2 L4 larvae of drp-1(tm1108) were inoculated onto the RNAi plates. The F1 genera-

tion was scored by eye for fluorescence intensity after 4–7 days.

Image acquisition, processing and analysis

For each RNAi condition, 10–20 animals were immobilized with M9 buffer containing 150

mM sodium azide on 2% agarose pads and imaged at 100x using a Leica GFP dissecting micro-

scope (M205 FA) and the software Leica Application Suite (3.2.0.9652).

For image analysis, we used a Fiji-implemented macro using the IJ1 Macro language to

automate the intensity measurement within defined areas of 2-dimensional images. An auto-

mated threshold using the Triangle method was applied to the fluorescence microscopy image,

in order to generate a binary mask (The Triangle method was selected among the 16 available

auto threshold methods of ImageJ as it provided the best results.). The mask was then inverted

and the Particle Analyzer of ImageJ was used to remove noise by setting a minimum size (10

pixels) for objects to be included in the mask. After manually removing any remaining

unwanted objects, the mask was applied to the corresponding fluorescent microscopy image

and mean fluorescent intensity was measured. The mean fluorescent intensity outside the

mask was defined as the background.

Mitochondrial morphology was assessed in a strain carrying bcIs78 and bcIs79 using a Zeiss
Axioskop 2 and MetaMorph software (Molecular Devices).

TMRE staining and quantification

TMRE staining was performed with the F1 generation of respective RNAi treatments. L2 lar-

vae were inoculated onto plates containing 0.1 μMTMRE (Thermo Life Sciences T669) and

imaged in L4 stage using a 63x objective on Zeiss Axioskop 2 and MetaMorph software

(Molecular Devices). Thereby TMRE is used in non-quenching mode and therefore suitable

for quantifications and direct correlations to mitochondrial membrane potential.

The image is first converted to an 8-bit image, after which the continuous background sig-

nal is removed through background subtraction using the “rolling ball” algorithm with a ball

radius of 15 pixels [110]. To remove remaining noise, two filters are applied. The first being a

minimum filter with a value of 1, therefore replacing each pixel in the image with the smallest

pixel value in a particular pixel’s neighborhood. This is followed by a mean filter with a radius

of 2, which replaces each pixel with the neighborhood mean. Next, the Tubeness plugin is run

with a sigma value of 1.0, which generates a score of how tube-like each point in the image is

by using the eigenvalues of the Hessian matrix to calculate the measure of “tubeness” [111].

The resulting 32-bit image is converted back to 8-bit and an automatic threshold (using the

IsoData algorithm) generates a binary mask. The final step involves the removal of any parti-

cles that are smaller than 10 pixels in size for they are assumed to be noise.

Raw image files are opened in parallel to their appendant binary masks (generated by the

segmentation macro) and a mask-based selection is created in the raw image. Within this

selection measurements are obtained in the raw image and collected for subsequent analysis.

Western blot analysis

Mixed-stage populations of worms were harvested, washed three times in M9 buffer, and the

pellets were lysed in 2x Laemmli buffer. For analysis of the additional candidates (Fig 4) 60–80

L4 stage animals were picked for western blotting. For analysis of endogenous HSP-6, 100 L4
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larvae were harvested per genotype. The protein extracts were separated by 10% SDS-PAGE

and transferred to a PVDF membrane (0.45 μm pore, Merck Millipore). To detect GFP and

Tubulin, we used primary anti-GFP (1:1000, Roche 11814460001) and primary anti- -Tubulin

(1:5000, Abcam ab7291) antibodies and secondary horseradish peroxidase-conjugated goat

anti-mouse antibodies (BioRad #1706516). To detect endogenous HSP-6, we used anti-HSP-6

(1:10,000) as described previously [42] and secondary horseradish peroxidase-conjugated goat

anti-rabbit antibodies (BioRad #1706515). Blots were developed using ECL (Amersham) or

ECL Prime (Amersham) according to manufacturer’s protocol and images were quantified

using the ChemiDoc XRS+ System (BioRad).

Analysis of autophagy and quantification of GFP::LGG-1 foci

L4 stage animals (except otherwise mentioned) were immobilized with M9 buffer containing

150 mM sodium azide on 2% agarose pads. Animals were imaged using a Leica TCS SP5 II

confocal microscope (Leica Application Suite LAS software) with a 63x objective. GFP fluores-

cence was detected by excitation at 488 nm and emission at 507–518 nm. GFP::LGG-1 foci

were counted in hypodermal seam cells on single images where the nucleus could clearly be

seen. The amount of GFP::LGG-1 foci was counted in 2–5 seam cells per animal and the aver-

age number of GFP::LGG-1 foci per hypodermal seam cell was plotted for graphical represen-

tation and statistical analysis. SQST-1::GFP was imaged using Zeiss Axioskop 2 and

MetaMorph software (Molecular Devices).

Analysis of thrashing rate

Body bends of L4 larvae were counted as previously described [75]. Briefly, the animals were

transferred from the RNAi plates onto an empty NGM plate to get rid of all bacteria and then

subsequently transferred into an empty petri dish filled with M9 buffer. After letting the L4 lar-

vae adjust for one minute, they were recorded using a Samsung Galaxy S8 attached to a Leica

MS5 stereomicroscope. The videos were played back at reduced speed using VLC media player

(v3.0.8) and the number of body bends was counted manually for 1 minute.

Statistics

For experiments where two groups were compared, datasets were first tested for normality

using Shapiro-Wilk normality test. If all samples of one dataset were found to be normally dis-

tributed, we conducted an unpaired two-tailed t-test. If samples were found to have non-equal

variance, we conducted an unpaired tow-tailed t-test with Welch’s correction. For experiments

where more than two groups were compared, datasets were first tested for normal distribution

using Shapiro-Wilk normality test and then tested for equal variance using Brown-Forsythe

test. If samples of one dataset were found to be normally distributed and to have equal vari-

ance, one-way ANOVA with Dunnett’s post hoc test was used to test for statistical significance

with multiple comparisons to controls. If the dataset was not found to have normal distribu-

tion and/or have equal variance, Kruskal-Wallis test with Dunn’s post hoc test for multiple

comparisons to controls was used.

Lipid profiling using UPLC-UHR-ToF-MS

RNAi in lipidomic experiments was performed using OP50(xu363), which is compatible for

dsRNA production and delivery [112]. The L4440 plasmids containing the coding sequence of

sorb-1, cogc-2 or vps-4 were purified from HT115 bacteria of the Ahringer library [45] using

Qiagen Plasmid Mini Kit (Cat. No. 12125) and subsequently transformed into chemically
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competent OP50(xu363). Single clones were picked, sequenced and glycerol stocks were made

for subsequent experiments. Bacterial clones were grown as described in section ‘RNA-medi-

ated interference’ and 1 mL bacterial culture (OD600 = 0.5) was seeded onto 92 mm RNAi

plates containing 1 mM IPTG. For sorb-1(RNAi) 120 L4 larvae, for vps-4(RNAi) 240 L4 larvae
and for cogc-2(RNAi) 200 L4 larvae were transferred onto RNAi plates. Worms were collected

in L4 stage after 6 days by washing the plates with MPEG. Worm pellets were subsequently

washed using M9 and shock-frozen using liquid nitrogen and kept at -80˚C until extraction.

Lipids were extracted using the BUMEmethod [113]. Briefly, worms were resuspended in

50 μL MeOH and transferred to custom made bead beating tubes. Samples were homogenized

at 8000 rpm in a Precellys Bead Beater for 3 times 10 seconds with 20 seconds breaks in

between. The additional Cryolys module was used with liquid nitrogen to prevent excessive

heating of samples during disruption. 150 μL butanol and 200 μL heptane-ethyl acetate (3:1)

was added to each sample sequentially which were then incubated for 1 h at 500 rpm / RT.

200 μL 1% acetic acid was added to each sample followed by centrifugation for 15 min at

13000 rpm / 4˚C. The upper organic phase was transferred to a fresh Eppendorf tube and the

lower aqueous phase was re-extracted by the addition of 200 μL heptane-ethyl acetate followed

by incubation and centrifugation as described above. The upper organic phase was transferred

to the already obtained organic phase. The lower phase was transferred to a new Eppendorf

tube and used for metabolomic analyses. Samples were evaporated to dryness and stored at

-20˚C. For lipidomics, samples were re-dissolved in 50 μL 65% isopropanol / 35% acetonitrile /

5% H2O, vortexed and 40 μL were transferred to an autosampler vial. The remaining 10 μL
were pooled to form a QC sample for the entire study. The precipitated proteins in the aqueous

phase were used for determination of protein content using a Bicinchoninic Acid Protein

Assay Kit (Sigma-Aldrich, Taufkirchen, Germany).

Lipids were analyzed as previously described [114]. Briefly, lipids were separated on a

Waters Acquity UPLC (Waters, Eschborn, Germany) using a Waters Cortecs C18 column

(150 mm x 2.1 mm ID, 1.6 μm particle size, Waters, Eschborn Germany) and a linear gradient

from 68% eluent A (40% H2O / 60% acetonitrile, 10 mM ammonium formate and 0.1% formic

acid) to 97% eluent B (10% acetonitrile / 90% isopropanol, 10 mM ammonium formate and

0.1% formic acid). Mass spectrometric detection was performed using a Bruker maXis

UHR-ToF-MS (Bruker Daltonic, Bremen, Germany) in positive ionization mode using data

dependent acquisition to obtain MS1 and MS2 information. Every ten samples, a pooled

QC was injected to check performance of the UPLC-UHR-ToF-MS system and used for

normalization.

Raw data was processed with Genedata Expressionist for MS 13.0 (Genedata AG, Basel,

Switzerland). Preprocessing steps included noise subtraction, m/z recalibration, chro-

matographic alignment and peak detection and grouping. Data was exported for Genedata

Expressionist for MS 13.0 Analyst statistical analysis software and as .xlxs for further investiga-

tion. Maximum peak intensities were used for statistical analysis and data was normalized on

the protein content of the sample and an intensity drift normalization based on QC samples

was used to normalize for the acquisition sequence.

Lipid features that were detected in all pooled QC samples and had a relative standard devi-

ation (RSD)< 30% were further investigated by statistical analysis. 5284 features passed this

filter and the different mutants were compared against the wild-type control using Welch test.

Lipids with a p-value< 0.05 were considered to be significantly changed.

Lipids were putatively annotated on the MS1 level using an in-house developed database for

C. elegans lipids and bulk composition from LipidMaps [115], when available. Matching of

MS2 spectra against an in-silico database of C. elegans lipids and LipidBlast was performed

using the masstrixR package [116] (https://github.com/michaelwitting/masstrixR) and only
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hits with a forward and reverse matching score> 0.75 were considered. Annotations of inter-

esting biological peaks were manually verified and corrected if necessary.

High throughput qRT-PCR on single worms using the Biomark system

cDNA from single worms was analyzed on the biomark system using Flex Six IFC. This nano-

fluidic chip allows the comparison of 12 target genes across 36 individual worms per genotype.

We monitored biological variability in gene expression of targets: endogenous hsp-6, hsp-60
and either bcSi9 single-copy or zcIs13multi-copy transgenes. In addition, we monitored vari-

ability in gene expression of three “gold standard” control genes: either non-variable (hsp-1),
medium variable (ttr-45) or highly variable (nlp-29). Ct values for all targets were normalized

to the average of three housekeeping genes (cdc-42, ire-1 and pmp-3).
Design of qRT-PCR primers. Primers sets were designed to quantify C. elegans post-

spliced transcripts. Primer sets were designed to span exon-exon junctions using NCBI Primer

Blast software and subsequently blasted against the C. elegans genome to test for off-target

complementarity. The list of qRT-PCR primers used with their PCR efficiency and coefficient

of determination (R2) is shown in S3 Table.

Quantification of primer efficiency and specificity. Primers were selected for high PCR

efficiency between 90 and 115%. To estimate primer efficiencies, a comprehensive titration of

cDNA obtained from 500 ng of Trizol-extracted RNA was prepared within the range of linear

amplification using a 1:2 series dilution. Each qRT-PCR reaction contained 1.5 μL of primer

mix forward and reverse at 1.6 μM each, 3.5 μL of nuclease free water, 6 μL of 2X Platinum1
SYBR1 Green qPCR Supermix-UDG (Thermo Fisher Scientific PN 11744–500) and 1 μL of

worm DNA lysate diluted or not. The qRT-PCR reactions were run on an iCycler system (Bio-

Rad). PCR efficiencies were calculated by plotting the results of the titration of cDNA (Ct val-

ues versus log dilution) within the range of linear amplification. The efficiency was defined by

the formula 100 x (10 (-1/slope)/2) with an optimal slope defined as -3.3 (1/3.3) = 2.

Worm synchronization. Worms were grown at 20˚C and bleach synchronized. 36 worms

per genotype were harvested at the L4.8/L4.9 stage based on vulval development [117], at

about 48h post L1 plating for WT and about 65h post L1 plating for fzo-1(tm1133).
Worm lysis for total RNA preparation of single worm RNA. During harvesting, syn-

chronized worms were individually picked into 10 μL lysis buffer (Power SYBR1 Green

Cells-to-CT™ kit, Thermo Fisher Scientific) in 8 strip PCR tubes. After harvesting the worms,

the 8 strip PCR tubes were freeze-thawed 10 times by transferring tubes from a liquid nitrogen

bath into a warm water bath (about 40ºC). Samples were vortexed during 20 minutes on a

thermoblock set up at 4ºC. The samples were then quickly spun down and 1 μL of stop solu-

tion (Power SYBR Green Cells-to-CT kit, Thermo Fisher scientific) was added in each tube.

The samples were then stored at -80ºC before further processing. Storage time was no more

than one week before proceeding to reverse transcription.

Reverse transcription. Reverse Transcription PCR (RT-PCR) was performed by adding

5 μL of lysis mix (lysis buffer and stop solution) to 1.25 μL of Reverse Transcription Master

Mix (Fluidigm PN 100–6297) into 96 well plates. We included one minus RT control per plate,

containing 5 μL of lysis mix and 1.25 μL of RNase free water. Reverse Transcription cycling

conditions were 25ºC for 5 min, 42ºC for 30 min and 85ºC for 5 min.

Pre-amplification. Pre-amplification was performed according to Fluidigm instruction

manual: for every nano-fluidic chip, a pooled primer mix was prepared by adding 1 μL of

primer stock (for every target gene to be tested on the chip) to water up to a final volume of

100 μL. Every primer stock contained both reverse and forward primers at a concentration of

50 μM each. A pre-amplification mix was prepared containing for each sample: 1 μL of
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PreAmpMaster mix (Fluidigm PN 100–5744), 0.5 μL of pooled primer mix and 2.25 μL of

nuclease free water. 3.75 μL of pre-amplification mix was then aliquoted in a 96 well-plate.

1.25 μL of cDNA was then added in each well. The samples were mixed by quick vortexing

and centrifuged. Pre amplification conditions were the following: 95ºC for 2 min, 10 cycles of

denaturation at 95ºC for 15 s followed by annealing/extension at 60ºC for 4 min.

Exo I treatment and sample dilution. To remove unincorporated primers, 2 μL of Exo-

nuclease I mix was added to each pre-amplification reaction. The Exonuclease I mix contained

0.2 μL of Exonuclease I reaction buffer (New England BioLabs), 0.4 μL Exonuclease I at 20

Units/μL (New England BioLabs), and 1.4 μL of nuclease free water. The samples were incu-

bated at 37ºC for 30 min followed by 15 min at 80ºC. The samples were finally diluted 1:5 by

adding 18 μL of DNA suspension buffer (10 mM Tris, 0.1 mM EDTA, pH = 8.0, TEKnova

PN-T0021).

Assay Mix preparation. For every pair of primers to be tested on the Fluidigm nano-flu-

idic chip, an assay mix was individually prepared on a 384 well PCR plate (for easier transfer to

the Fluidigm nano-fluidic chips), typically the day before the experiment. Each assay mix (for

36 samples) contained 6.25 μL of 2X Assay loading reagent (Fluidigm PN 100–5359), 5 μL of

DNA suspension buffer (10 mM Tris, 0.1 mM EDTA, pH = 8.0, TEKnova PN T0021), and

1.25 μL of primer stock (reverse and forward primers at a concentration of 50 μM each). Assay

mixes were vortexed during 30 s minimum on a thermoblock set up at 4 ºC and centrifuged

for 30 s minimum. 3 μL of each assay mix were loaded onto Flex Six Gene Expression IFC

chips (Fluidigm PN 100–6308).

Sample Mix preparation. The samples mixes were prepared at the day of the experiment.

1.8 μL of diluted PreAmp and Exo I treated samples were added to a sample mix containing

2 μL of 2X SsoFast EvaGreen Supermix with Low ROX (Bio-Rad, PN 172–5211) and 0.2 μL of

Flex Six Delta Gene Sample Reagent (Fluidigm PN 100–7673). 3 μL of each sample mix was

loaded onto Flex Six IFC chips.

Biomark Run and data clean-up. Assay and sample mixes of Flex Six IFCs were loaded

using a HX IFC controller (Fluidigm). The nano-fluidic chips were then run on a Biomark HD

using the FlexSix Fast PCR+melt protocols. After the run, the data from every well on the plate

was checked and cleaned up as following: samples for which all PCRs failed were eliminated.

Any well, in which the melting peak temperature of a particular pair of primers was not as

expected, was eliminated. It would happen occasionally, presumably when pairs of primers

form dimers when target gene concentrations are very low, or from interactions of target

primers with other primers in the pooled primer mix. Ct values were then normalized to the

average of housekeeping genes and relative mRNA expression levels were calculated using the

delta Ct method.

Determination of “Gold Standard” stable and variable transcripts. To validate our sin-

gle-worm high throughput qRT-PCR method to monitor inter-individual variability in gene

expression, we measured the coefficient of variation CV (CV = standard deviation/mean) for

fluorescent transcriptional reporters of a stable gene MOC92 bicIs10(hsp-1p::tagRFP::unc-54
3'UTR) and of two variable transgenes MOC119 bicls12(ttr-45p::tagRFP::ttr45 3’UTR)
(medium variable) and IG274 frIs7(nlp-29p::GFP; col-12p::DsRed) (highly variable). We veri-

fied that it matches the coefficient of variation calculated from normalized Ct values of endog-

enous transcripts hsp-1, ttr-45 and nlp-29measured in our high-throughput single worm

qPCR assay. Synchronized MOC92 and MOC119 transgenic worms were immobilized in M9

containing 3 mM Levamisole and imaged on a Nikon SMZ18 stereo epi-fluorescence micro-

scope, while synchronized IG274 transgenic animals were mounted in 3 mM levamisole on a

2% agarose pad and imaged on a Nikon Ti Eclipse inverted microscope, as the fluorescence

levels of the nlp-29 reporter in IG274 were too low to be imaged on the Nikon SMZ18. The
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fluorescence of each individual transgenic worm was quantified using Fiji software, by sub-

tracting the background measurement from fluorescence measurements. The coefficient of

variation was determined for synchronized population of day 2 animals (day 2 of adulthood:

74h post L1 plating at 20˚C) for nlp-29 and ttr-45 reporters, while it was determined in day 1

synchronized animals (50h post L1 plating at 20˚C) for hsp-1 reporter. The coefficient of varia-
tion is measured as follows:

• bicIs10(hsp-1p::tagRFP::unc-54 3'UTR): 0.09< CV<0.14 (3 biological replicates)

• bicls12(ttr-45p::tagRFP::ttr45 3’UTR): 0.31<CV<0.45 (3 biological replicates)

• frIs7(nlp-29p::GFP; col-12p::DsRed): CV = 1.0 (1 biological replicate)

We observed a good correlation between the coefficient of variation for hsp-1, ttr-45 and
nlp-29 transgenic reporters and the coefficient of variation for endogenous transcripts hsp-1,
ttr-45 and nlp-29measured by single worm qRT-PCR (S1F Fig).

Supporting information
S1 Fig. Comparison of expression levels and inter-individual variability of multi-copy

Phsp-6 mtHSP70gfp (zcIs13) and single-copy integrated Phsp-6 mtHSP70gfp (bcSi9) transgenes.
(A) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae expressing

Phsp-6gfp (zcIs13) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108). Scale bar:
200 μm. (B) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae

expressing Phsp-6gfp (bcSi9) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108).
Scale bar: 200 μm. (C)Quantifications of fluorescence images of panel A (Phsp-6gfp (zcIs13))
are shown. Each dot represents quantification of 15–20 L4 larvae. Values indicate means ± SD

of�5 independent measurements. (D)Quantifications of fluorescence images of panel B

(Phsp-6gfp (bcSi9)) are shown. Each dot represents quantification of 15–20 L4 larvae. Values

indicate means ± SD of�4 independent measurements. (E)Quantifications of western blot

analysis of endogenous HSP-6 levels in wild-type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1
(tm1108) using anti-HSP-6 antibodies. For each genotype, 100 L4 larvae were harvested per

experiment for western blot analysis. Values indicate means of relative HSP-6 expression

(HSP-6/TUB) ± SD, n = 2. (F) Inter-individual variability in gene expression of target genes in

bcSi9 and zcIs13 in both wild type (+/+) and fzo-1(tm1133). To estimate inter-individual vari-

ability in gene expression, the coefficient of variation was calculated from individual mRNA

levels obtained from normalized Ct values using the delta Ct method. Inter-individual variabil-

ity values were normalized such that variability values for nlp-29 in wild type = 1 (bcSi9 or
zcIs13). Number of individual worms: n = 35 (bcSi9), n = 32 (bcSi9; fzo-1(tm1133)), n = 31

(zcIs13), n = 31 (zcIs13; fzo-1(tm1133)).
(TIF)

S2 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 suppresses expression of bcSi9 and
induces autophagy in wild type (+/+). (A) L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi) or vps-20(RNAi) and the F1 generation was imaged. Each dot represents

the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of

5 independent experiments in duplicates. �P<0.05, ���P<0.001 using one-way ANOVA with

Dunnett’s multiple comparison test to control(RNAi). (B) Plgg-1gfp::lgg-1 expression of L4 lar-

vae in hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or vps-20
(RNAi). Representative images of>30 animals from two independent biological replicates are

shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm.

(TIF)
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S3 Fig. Knock-down of ESCRT components in body wall muscle cells of wild type and

intestinal cells in fzo-1(tm1133) does not change mitochondrial morphology. (A) Fluores-

cence images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+). L4 larvae were subjected to

control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 genera-
tion was imaged. Scale bar: 10 μm. (B) Fluorescence images of L4 larvae expressing Plet-

858gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), atfs-1
(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale

bar: 10 μm.

(TIF)

S4 Fig. Image segmentation and intensity measurement workflow. A raw 16-bit image (1) is

converted to 8-bit, followed by a background subtraction using the rolling ball algorithm (2).

This is followed by the successive application of a minimum (3) and average filter (4). The

ImageJ Tubeness plugin generates an image with object curvature scores (5), after which the

IsoData autothresholding is applied to generate the binary mask (6). Noise is removed by fil-

tering out particles below a certain size (7) and the final mask is used to define the area in

which intensity measurements are obtained (8). Scale bar: 5 μm.

(TIF)

S5 Fig. Thrashing assay in wild-type and fzo-1(tm1133) animals upon induction of autop-

hagy. Thrashing rate was analyzed by counting body bends of animals swimming for 1 minute

in M9 buffer in 3 independent experiments. Each dot represents one L4 larvae. (A) Thrashing

rates of wild-type (+/+) or fzo-1(tm1133) L4 larvae. ����P<0.0001 using unpaired two-tailed t-

test. n = 30. (B) Thrashing rates in wild-type animals upon induction of autophagy. L4 larvae

were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi)
and the F1 generation was analyzed. ns: not significant, ����P<0.0001 using Kruskal-Wallis

test with Dunn’s multiple comparison test to control(RNAi). n = 30. (C) Thrashing rates in fzo-
1(tm1133) animals upon induction of autophagy. L4 larvae were subjected to control(RNAi),
vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was ana-

lyzed. ns: not significant, ���P<0.001 using Kruskal-Wallis test with Dunn’s multiple compari-

son test to control(RNAi). n = 30.

(TIF)

S6 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 does not suppress fzo-1(tm1133)-induced
UPRmt when diluted with control(RNAi) or carried out in one generation from L2 to L4

larvae. (A)Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in
fzo-1(tm1133). Each ESCRT(RNAi) was diluted 1:1 with control(RNAi). After subtracting the
mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized

to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence

intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in

duplicates. ns: not significant, using one-way ANOVA with Dunnett’s multiple comparison

test to control(RNAi). (B)Quantifications of fluorescence images of L4 larvae expressing Phsp-

6gfp (bcSi9) in fzo-1(tm1133). L2 larvae were subjected to control(RNAi), atfs-1(RNAi), vps-4
(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. After subtracting the

mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized

to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence

intensity of 15–20 L4 larvae. Values indicate means ± SD of 4 independent experiments in

duplicates. ns: not significant, ��P<0.01 using Kruskal-Wallis test with Dunn’s multiple com-

parison test to control(RNAi). (C) Plgg-1gfp::lgg-1 expression of fzo-1(tm1133) L4 larvae in
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hypodermal seam cells and intestinal cells. L2 larvae were subjected to control(RNAi), vps-4
(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. Representative images

of>60 animals from two independent biological replicates are shown. Scale bar hypodermal

seam cells: 5 μm. Scale bar intestinal cells: 20 μm. (D)Quantifications of fluorescence images

of L4 larvae expressing Phsp-6gfp (bcSi9) in fzo-1(tm1133) rrf-3(pk1426). L2 larvae were sub-
jected to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals

were imaged in L4 stage. After subtracting the mean fluorescence intensity of wild type (+/+)

on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot
represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate

means ± SD of 4 independent experiments in duplicates. ns: not significant, ����P<0.0001

using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi).
(TIF)

S7 Fig. Autophagy is induced in spg-7(ad2249) animals. (A) Plgg-1gfp::lgg-1 expression in

hypodermal seam cells of wild type (+/+) or spg-7(ad2249) L4 larvae. Scale bar: 5 μm. (B)

Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot repre-

sents the average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one animal.

n�18 for each genotype; values indicate means ± SD; ��P<0.01 using unpaired two-tailed t-

test with Welch’s correction. (C)Nomarski and fluorescent images of the Psqst-1sqst-1::gfp
translational reporter in embryos of wild type (+/+) and spg-7(ad2249) animals. As a positive

control for a block in autophagy, unc-51(e369) was used. Representative images of>60

embryos are shown. Scale bar: 10 μm.

(TIF)

S8 Fig. Defects in mitochondrial homeostasis lead to major changes in lipid metabolism.

(A) Venn diagrams showing the overlap of lipids up- or downregulated in fzo-1(tm1133), drp-
1(tm1108) and spg-7(ad2249) in comparison to wild type (+/+). (B) Total amount of TGs in

wild type (+/+), fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) backgrounds. Means ± SD

are shown; ns: not significant, �P<0.05, ����P<0.0001 using Welch test. (C) Scatterplot indi-

cating the distribution and changes in the levels of TG species in the different mutants in com-

parison to wild type (+/+). (D)) Scatterplot indicating the overlap of the changes in the levels

of TG species of fzo-1(tm1133) and drp-1(tm1108)mutants in comparison to wild type (+/+).

(C) and (D) The x-axis labels the number of carbons (# of C) and the y-axis the number of

double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected

isomers for a specific sum composition. Grey dots represent all detected TGs species and blue

and red dots indicate down- (blue) or upregulation (red).

(TIF)

S9 Fig. Induction of autophagy upon cogc-2(RNAi) changes the levels of specific TGs in
fzo-1(tm1133)mutants. (A) Scatterplot indicating the distribution and changes in the level of

TG species in fzo-1(tm1133)mutants in comparison to wild type (+/+). The x-axis labels the

number of carbons (# of C) and the y-axis the number of double bonds (DB) in the acyl side-

chains. The size of a dot indicates the number of detected isomers for a specific sum composi-

tion. Grey dots represent all detected TGs species and blue and red dots indicate down- (blue)

or upregulation (red). (B) Venn diagram indicating the overlap of TG species downregulated

(left panel) or upregulated (right panel) in fzo-1(tm1133) and downregulated upon vps-4
(RNAi) or cogc-2(RNAi).
(TIF)

S1 Table. List of genes that suppress fzo-1(lf)-induced UPRmt and induce autophagy in

wild-type animals upon knock-down. Candidate genes were identified in the primary RNAi-
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screen using fzo-1(tm1133), subsequently knocked-down and tested for induction of autop-

hagy and re-screened for UPRmt suppression in two different mutant backgrounds: drp-1
(tm1108) and spg-7(ad2249).
(XLSX)

S2 Table. Numerical data of lipidomic experiments. Significantly up- or downregulated lip-

ids in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249)mutants (Sheet 1), significantly up- or

downregulated TGs in fzo-1(tm1133), drp-1(tm1108) or spg-7(ad2249)mutants (Sheet 2) and

significantly up- or downregulated TGs in fzo-1(tm1133) upon induction of autophagy by vps-
4(RNAi) or cogc-2(RNAi) (Sheet 3). MS1 annotations, P-values and fold change are indicated.

(XLSX)

S3 Table. List of qRT-PCR primers. Primers used for qRT-PCR including PCR efficiency and

coefficient of determination (R2).

(XLSX)
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S1 Fig. Comparison of expression levels and inter-individual variability of multi-copy Phsp-6 mtHSP70gfp (zcIs13) and single-copy 
integrated Phsp-6 mtHSP70gfp (bcSi9) transgenes. (A) Brightfield (upper panel) and fluorescence images (lower panel) of L4 larvae expressing 
Phsp-6gfp (zcIs13) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-1(tm1108). Scale bar: 200 μm. (B) Brightfield (upper panel) and 
fluorescence images (lower panel) of L4 larvae expressing Phsp-6gfp (bcSi9) in wild type (+/+), spg-7(ad2249), fzo-1(tm1133) or drp-
1(tm1108). Scale bar: 200 μm. (C) Quantifications of fluorescence images of panel A (Phsp-6gfp (zcIs13)) are shown. Each dot represents 
quantification of 15–20 L4 larvae. Values indicate means ± SD of ≥5 independent measurements. (D) Quantifications of fluorescence images 
of panel B (Phsp-6gfp (bcSi9)) are shown. Each dot represents quantification of 15–20 L4 larvae. Values indicate means ± SD of ≥4 independent 
measurements. (E) Quantifications of western blot analysis of endogenous HSP-6 levels in wild-type (+/+), spg-7(ad2249), fzo-1(tm1133) or 
drp-1(tm1108) using anti-HSP-6 antibodies. For each genotype, 100 L4 larvae were harvested per experiment for western blot analysis. Values 
indicate means of relative HSP-6 expression (HSP-6/TUB) ± SD, n = 2. (F) Inter-individual variability in gene expression of target genes in 
bcSi9 and zcIs13 in both wild type (+/+) and fzo-1(tm1133). To estimate inter-individual variability in gene expression, the coefficient of 
variation was calculated from individual mRNA levels obtained from normalized Ct values using the delta Ct method. Inter-individual 
variability values were normalized such that variability values for nlp-29 in wild type = 1 (bcSi9 or zcIs13). Number of individual worms: n = 
35 (bcSi9), n = 32 (bcSi9; fzo-1(tm1133)), n = 31 (zcIs13), n = 31 (zcIs13; fzo-1(tm1133)). 
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S2 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 suppresses expression of bcSi9 and induces autophagy in wild type (+/+). (A) L4 larvae 
were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the F1 generation was imaged. Each dot represents the 
quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 5 independent experiments in duplicates. *P<0.05, 
***P<0.001 using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi). (B) Plgg-1gfp::lgg-1 expression of L4 larvae in 
hypodermal seam cells and intestinal cells upon control(RNAi), vps-4(RNAi) or vps-20(RNAi). Representative images of >30 animals from 
two independent biological replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm. 

Chapter II

80



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S3 Fig. Knock-down of ESCRT components in body wall muscle cells of wild type and intestinal cells in fzo-1(tm1133) does not change 
mitochondrial morphology. (A) Fluorescence images of L4 larvae expressing Pmyo-3gfpmt in wild type (+/+). L4 larvae were subjected to 
control(RNAi), atfs-1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 10 μm. (B) 
Fluorescence images of L4 larvae expressing Plet-858gfpmt in wild type (+/+) or fzo-1(tm1133). L4 larvae were subjected to control(RNAi), atfs-
1(RNAi), vps-4(RNAi), vps-20(RNAi) or let-363(RNAi) and the F1 generation was imaged. Scale bar: 10 μm. 
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S4 Fig. Image segmentation and intensity measurement workflow. A raw 16-bit image (1) is converted to 8-bit, followed by a background 
subtraction using the rolling ball algorithm (2). This is followed by the successive application of a minimum (3) and average filter (4). The 
ImageJ Tubeness plugin generates an image with object curvature scores (5), after which the IsoData autothresholding is applied to generate 
the binary mask (6). Noise is removed by filtering out particles below a certain size (7) and the final mask is used to define the area in which 
intensity measurements are obtained (8). Scale bar: 5 μm. 
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S5 Fig. Thrashing assay in wild-type and fzo-1(tm1133) animals upon induction of autophagy. Thrashing rate was analyzed by counting 
body bends of animals swimming for 1 minute in M9 buffer in 3 independent experiments. Each dot represents one L4 larvae. (A) Thrashing 
rates of wild-type (+/+) or fzo-1(tm1133) L4 larvae. ****P<0.0001 using unpaired two-tailed t-test. n = 30. (B) Thrashing rates in wild-type 
animals upon induction of autophagy. L4 larvae were subjected to control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-
1(RNAi) and the F1 generation was analyzed. ns: not significant, ****P<0.0001 using Kruskal-Wallis test with Dunn’s multiple comparison 
test to control(RNAi). n = 30. (C) Thrashing rates in fzo-1(tm1133) animals upon induction of autophagy. L4 larvae were subjected to 
control(RNAi), vps-4(RNAi), vps-20(RNAi), let-363(RNAi) or hars-1(RNAi) and the F1 generation was analyzed. ns: not significant, 
***P<0.001 using Kruskal-Wallis test with Dunn’s multiple comparison test to control(RNAi). n = 30. 
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S6 Fig. RNAi against vps-4VPS4 and vps-20CHMP6 does not suppress fzo-1(tm1133)-induced UPRmt when diluted with control(RNAi) or 
carried out in one generation from L2 to L4 larvae. (A) Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in 
fzo-1(tm1133). Each ESCRT(RNAi) was diluted 1:1 with control(RNAi). After subtracting the mean fluorescence intensity of wild type (+/+) 
on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence 
intensity of 15–20 L4 larvae. Values indicate means ± SD of 3 independent experiments in duplicates. ns: not significant, using one-way 
ANOVA with Dunnett’s multiple comparison test to control(RNAi). (B) Quantifications of fluorescence images of L4 larvae expressing Phsp-

6gfp (bcSi9) in fzo-1(tm1133). L2 larvae were subjected to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals 
were imaged in L4 stage. After subtracting the mean fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized 
to fzo-1(tm1133) on control(RNAi). Each dot represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate 
means ± SD of 4 independent experiments in duplicates. ns: not significant, **P<0.01 using Kruskal-Wallis test with Dunn’s multiple 
comparison test to control(RNAi). (C) Plgg-1gfp::lgg-1 expression of fzo-1(tm1133) L4 larvae in hypodermal seam cells and intestinal cells. L2 
larvae were subjected to control(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. Representative images 
of >60 animals from two independent biological replicates are shown. Scale bar hypodermal seam cells: 5 μm. Scale bar intestinal cells: 20 μm. 
(D) Quantifications of fluorescence images of L4 larvae expressing Phsp-6gfp (bcSi9) in fzo-1(tm1133) rrf-3(pk1426). L2 larvae were subjected 
to control(RNAi), atfs-1(RNAi), vps-4(RNAi) or vps-20(RNAi) and the same animals were imaged in L4 stage. After subtracting the mean 
fluorescence intensity of wild type (+/+) on control(RNAi), the values were normalized to fzo-1(tm1133) on control(RNAi). Each dot 
represents the quantification of fluorescence intensity of 15–20 L4 larvae. Values indicate means ± SD of 4 independent experiments in 
duplicates. ns: not significant, ****P<0.0001 using one-way ANOVA with Dunnett’s multiple comparison test to control(RNAi). 
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S7 Fig. Autophagy is induced in spg-7(ad2249) animals. (A) Plgg-1gfp::lgg-1 expression in hypodermal seam cells of wild type (+/+) or spg-
7(ad2249) L4 larvae. Scale bar: 5 μm. (B) Quantification of GFP::LGG-1 foci in hypodermal seam cells from panel A. Each dot represents the 
average amount of GFP::LGG-1 foci counted from 2–5 seam cells in one animal. n≥18 for each genotype; values indicate means ± SD; 
**P<0.01 using unpaired two-tailed t-test with Welch’s correction. (C) Nomarski and fluorescent images of the Psqst-1sqst-1::gfp translational 
reporter in embryos of wild type (+/+) and spg-7(ad2249) animals. As a positive control for a block in autophagy, unc-51(e369) was used. 
Representative images of >60 embryos are shown. Scale bar: 10 μm. 
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S8 Fig. Defects in mitochondrial homeostasis lead to major changes in lipid metabolism. (A) Venn diagrams showing the overlap of 
lipids up- or downregulated in fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) in comparison to wild type (+/+). (B) Total amount of TGs 
in wild type (+/+), fzo-1(tm1133), drp-1(tm1108) and spg-7(ad2249) backgrounds. Means ± SD are shown; ns: not significant, *P<0.05, 
****P<0.0001 using Welch test. (C) Scatterplot indicating the distribution and changes in the levels of TG species in the different mutants in 
comparison to wild type (+/+). (D)) Scatterplot indicating the overlap of the changes in the levels of TG species of fzo-1(tm1133) and drp-
1(tm1108) mutants in comparison to wild type (+/+). (C) and (D) The x-axis labels the number of carbons (# of C) and the y-axis the number 
of double bonds (DB) in the acyl sidechains. The size of a dot indicates the number of detected isomers for a specific sum composition. Grey 
dots represent all detected TGs species and blue and red dots indicate down- (blue) or upregulation (red). 
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S9 Fig. Induction of autophagy upon cogc-2(RNAi) changes the levels of specific TGs in fzo-1(tm1133) mutants. (A) Scatterplot 
indicating the distribution and changes in the level of TG species in fzo-1(tm1133) mutants in comparison to wild type (+/+). The x-axis 
labels the number of carbons (# of C) and the y-axis the number of double bonds (DB) in the acyl sidechains. The size of a dot indicates the 
number of detected isomers for a specific sum composition. Grey dots represent all detected TGs species and blue and red dots indicate 
down- (blue) or upregulation (red). (B) Venn diagram indicating the overlap of TG species downregulated (left panel) or upregulated (right 
panel) in fzo-1(tm1133) and downregulated upon vps-4(RNAi) or cogc-2(RNAi). 
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S1 Table. List of genes that suppress fzo-1(lf)-induced UPRmt and induce autophagy in wild-type animals upon knock-down. Candidate 
genes were identified in the primary RNAi-screen using fzo-1(tm1133), subsequently knocked-down and tested for induction of autophagy 
and re-screened for UPRmt suppression in two different mutant backgrounds: drp-1(tm1108) and spg-7(ad2249). 
 

Category Sequence Gene name Human ortholog fzo-1(lf) drp-1(lf) spg-7(lf)  

Cell Architecture 

K07C5.1 arx-2 ACTR2        
D2024.6 cap-1 CAPZA1,2        
M106.5 cap-2 CAPZB        

C53A5.6 C53A5.6 IPP        
C17H12.1 dyci-1 DYNC1I1,2        

Cell Signaling 

W03H9.4 cacn-1 CACTIN        
H25P06.2 cdk-9 CDK9        
C24H11.7 gbf-1* GBF1        
T01G9.6 kin-10* CSNK2B        
C27H6.2 ruvb-1* RUVBL1        

Cellular Trafficking 

C06G3.10 cogc-2* COG2        
Y51H7C.6 cogc-4* COG4        
F23F1.5 F23F1.5 SNUPN        
F38A1.8 F38A1.8 SRPRA        

F32E10.4 ima-3 KPNA3,4        
C53D5.6 imb-3 IPO5, RANBP6        

Y59E9AL.7 nbet-1 BET1        
Y77E11A.13 npp-20 SEC13        
H15N14.2 nsf-1* NSF        

R186.3 R186.3 SRPRB        
F20G4.1 smgl-1* NBAS        
F55C5.8 srpa-68 SRP68        
T10H9.3 syx-18 STX18        

Y63D3A.5 tfg-1 TFG        
Y34D9A.10 vps-4* VPS4A,B        
Y65B4A.3 vps-20* CHMP6        

CD4.4 vps-37* VPS37B,C        
Y48G1A.5 xpo-2/imb-5 CSE1L        

Chromatin Structure 

ZK1251.1 htas-1 H2AFY, H2AFY2        
F26F12.7 let-418 CHD4        
F55A3.3 spt-16 SUPT16H        

Metabolism 

C33H5.18 cdgs-1 CDS2        
C06E4.6 C06E4.6 HSD17B14        
F25B4.6 hmgs-1 HMGCS1,2        

H37A05.1 lpin-1 LPIN1,2,3        
W09B6.1 pod-2 ACACB        
C47E12.4 pyp-1 PPA1,2        

PTM 
T17E9.2 nmt-1 NMT1,2        

W02A11.4 uba-2 UBA2        
 

Proteostasis 
 
 

T21B10.7 cct-2 CCT2        
C04A2.7 dnj-5 DNAJC14        
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Proteostasis 

C56C10.8 icd-1 BTF3,L4        
F21C3.5 pfd-6 PFDN6        
F54C9.2 stc-1 HSPA13        
F19B6.2 ufd-1* UFD1L        

RNA Processing 

B0511.6 B0511.6 DDX18        
C14A4.4 crn-3 EXOSC10        
C55B7.8 dbr-1 DBR1        
F42H10.7 ess-2 ESS2        
F59C6.4 exos-3 EXOSC3        
F10B5.8 F10B5.8 INTS11        
C17E4.5 pabp-2 PABPN1        

C06E1.10 rha-2 DHX37        
C47E12.7 rrp-1 RRP1B, RRP1        

Y116A8C.32 sfa-1 SF1        
T28D9.10 snr-3 SNRPD1        
Y49E10.15 snr-6 SNRPE        

K02F2.3  teg-4 SF3B3        
W04A4.5 W04A4.5 INTS4        

Transcription 

B0261.1 B0261.1 BDP1        
F10E9.4 F10E9.4 TWISTNB        
C48E7.2 let-611 POLR3C        

Y113G7B.18 mdt-17 MED17        
F28F8.5 mdt-28 MED28        
F58A4.9 rpac-19 POLR1D        
H43I07.2 rpac-40 POLR1C        
C42D4.8 rpc-1 POLR3A        
F09F7.3 rpc-2 POLR3B        

ZK856.10 rpc-25 POLR3H        
R119.6 taf-4 TAF4B, TAF4        
F30F8.8 taf-5 TAF5        

ZK1320.12 taf-8 TAF8        
K03B4.3 taf-10 TAF10        

Y50D7A.2 xpd-1 ERCC2        

Miscellaneous 

W07B3.2 gei-4 n.a.        
Y46G5A.6 phi-3 n.a.        
ZK637.8 unc-32 ATP6V0A1,4        

Uncharacterized 

C23G10.8 C23G10.8 n.a.        
K02E2.7 K02E2.7 n.a.        
K10G6.5 K10G6.5 n.a.        
K10H10.4 K10H10.4 n.a.        

Y82E9BR.13 pals-17 n.a.        

Ribosome Biogenesis 

E02H1.1 E02H1.1 DIMT1        
T01C3.7 fib-1 FBLL1        
K12H4.3 K12H4.3 BRIX1        

R13A5.12 lpd-7 PES1        
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T07A9.9 nog-1* GTPBP4        
R151.3 rpl-6 RPL6        

F53G12.10 rpl-7 RPL7        
Y24D9A.4 rpl-7A RPL7A        

JC8.3 rpl-12 RPL12        
C04F12.4 rpl-14 RPL14        

Y45F10D.12 rpl-18 RPL18        
E04A4.8 rpl-20 RPL18A        
C14B9.7 rpl-21 RPL21        
C27A2.2 rpl-22 RPL22        
B0336.10 rpl-23 RPL23        
F28C6.7 rpl-26 RPL26        
C53H9.1 rpl-27 RPL27        
W09C5.6 rpl-31 RPL31        
ZK652.4 rpl-35 RPL35        
B0393.1 rps-0 RPSA        

C23G10.3 rps-3 RPS3        
Y71A12B.1 rps-6 RPS6        
F40F11.1 rps-11 RPS11        
Y41D4B.5 rps-28 RPS28        
F10G7.1 tag-151 TSR1        

Translation 

F17C11.9 eef-1G EEF1G        
H06H21.3 eif-1.A EIF1AX,Y        
F11A3.2 eif-2Bδ EIF2B4        
D2085.3 eif-2Bε EIF2B5        

Y54E2A.11 eif-3.B EIF3B        
B0511.10 eif-3.E EIF3E        
H19N07.1 erfa-3 GSPT1,2        
F28H1.3 aars-2 AARS        
T08B2.9 fars-1 FARSA        
T10F2.1 gars-1 GARS        
T11G6.1 hars-1* HARS, HARS2        
R11A8.6 iars-1* IARS        
F22D6.3 nars-1 NARS        
Y41E3.4 qars-1 QARS        
F26F4.10 rars-1* RARS        
C47D12.6 tars-1* TARS, TARS2,2L        
Y80D3A.1 wars-1 WARS        
R08D7.4 R08D7.4 EEF2KMT, FAM86B1,2        
Y65B4A.6 Y65B4A.6 EIF4A3        

        
           

    from the strongest to no GFP suppression 
 
 
Candidate genes were screened for UPRmt suppression three times in technical duplicates with the same reporter (zcIs13) 
in two different mutant backgrounds: drp-1(tm1108) and spg-7(ad2249). Fluorescence intensity was scored and classified 

Ribosome Biogenesis 

* Genes that are already implemented in Fig 4A 
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from very strong suppression to weak suppression (gradual violet coloring) or no suppression (white).   
PTM: Post-translational modification. 
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S2 Table is a .xlsx file that contains all numerical data of the lipidomic experiments. To view 

please visit https://doi.org/10.1371/journal.pgen.1008638 
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S3 Table. List of qRT-PCR primers. Primers used for qRT-PCR including PCR efficiency and coefficient of determination (R2). 
 

Gene Sequence Forward Primer Sequence Reverse Primer PCR Efficiency (%) R² 

cdc-42 TCCACAGACCGACGTGTTTC AGGCACCCATTTTTCTCGGA 100.3 0.99 

gfp TGTTCCATGGCCAACACTTG CCTGTACATAACCTTCGGGCA 99.1 0.99 

hsp-1 CACTGTTTTCGATGCCAAACG TCCTTCGGCAGAGATGACCT 107.8 0.99 

hsp-6 GATTGGATAAGGACGCTGGAGA CCGTTGGTGGACTTGACCTC 101 0.99 

hsp-60 CCAAGGACGTCAAGTTCGGA TCACGTTTCTTCCTTTTGGGC 106 0.99 

ire-1 TACTTGCCACCACGGAGACC CGTTGCCATCGTCATCATTG 110.3 0.99 

nlp-29 AGGATATGGAAGAGGATATGGAGG CTCCGTACATTCCACGTCCA 114.8 0.99 

pmp-3 GTTCCCGTGTTCATCACTCAT ACACCGTCGAGAAGCTGTAGA 109.3 0.99 

ttr-45 CGACGGGCAAGGAATGTTCA CGGAGTCCTGGCTTCAACTT 114.2 0.99 
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4 Discussion 

Various stressors that impact mitochondria lead to activation of certain stress response 

pathways in order to maintain mitochondrial homeostasis. Among these are the UPRmt, 

autophagy/mitophagy and mitochondrial hyperfusion (reviewed in Friedman and Nunnari, 

2014; Pellegrino et al., 2013). The results presented in chapter I provide evidence that depletion 

of LRPPRC or MMA-1 not only leads to mitochondrial hyperfusion but also to the induction 

of UPRmt. The functional interactions between UPRmt and autophagy are the focus of chapter 

II, in which it is shown that the induction of autophagy suppresses UPRmt induced by a block 

in mitochondrial dynamics.  

 

4.1 Loss of LRPPRC function induces the mitochondrial unfolded protein 

response 

Mitochondrial hyperfusion is triggered upon starvation or inhibition of cytosolic protein 

synthesis and it has been proposed that this acts as a prosurvival mechanism because it ensures 

the ATP supply in the cell (Gomes et al., 2011; Rambold et al., 2011; Tondera et al., 2009). 

This is in line with a study showing that the loss of LRPPRC or mma-1 function, which results 

in impaired complex IV activity, is transiently compensated by mitochondrial hyperfusion since 

cellular ATP levels are maintained (Rolland et al., 2013). The impaired complex IV activity 

upon knock-down of LRPPRC or mma-1 is due to a decrease in mitochondria-encoded subunits 

of complex IV (Rolland et al., 2013; Ruzzenente et al., 2012; Sasarman et al., 2010). 

Consequently, loss of LRPPRC or mma-1 function also leads to an imbalance between 

mitochondria-encoded and nuclear-encoded complex IV subunits and our data shown in chapter 

I provide evidence that the UPRmt is activated under these conditions. Initially, the disruption 

in mitochondrial proteostasis was thought to be the signal for UPRmt activation, however, it has 

recently been demonstrated that, in C. elegans, it is rather the decrease in mitochondrial 

membrane potential that acts as the signal since it regulates mitochondrial import efficiency of 

ATFS-1 (Rolland et al., 2019). Thus, the loss of mma-1 function most likely decreases 

mitochondrial membrane potential and thereby activates the UPRmt, which is in accordance 

with the finding that the impairment of the mitochondrial respiratory chain generally induces 

UPRmt in C. elegans (Benedetti et al., 2006; Durieux et al., 2011; Yoneda et al., 2004). Because 

depletion of mma-1 leads to activation of UPRmt while ATP levels are maintained, this also 
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suggests that mitochondrial hyperfusion does not primarily locally increase mitochondrial 

membrane potential but rather increases the total surface area for OXHPOS to ensure 

maintenance of global ATP levels. Notably, a decrease in OXPHOS capacity and mitochondrial 

membrane potential has been confirmed in fibroblasts from patients suffering from French 

Canadian Leigh Syndrome (Burelle et al., 2015). However, UPRmt regulation in mammalian 

systems is more complex and also involves the ISR. Hence, it requires further research in order 

to unravel the exact role of mitochondrial membrane potential in ISR and UPRmt activation in 

mammals.  

We show that UPRmt is transiently activated upon depletion of LRPPRC until mitochondrial 

proteostasis is restored. Hence, UPRmt participates in restoring the imbalance between 

mitochondria- and nuclear-encoded subunits of complex IV. Since COX IV, a nuclear-encoded 

encoded protein of complex IV, is down-regulated in response to the loss of LRPPRC function, 

this suggests that not only proteases and chaperones act to restore this imbalance but that also 

the inhibition of general protein synthesis plays an important role in this regard. It would be 

interesting to test if COX IV downregulation is dependent on GCN2 and phosphorylation of 

eIF2α and, if so, whether this is also true upon mma-1 knock-down in C. elegans since this 

branch of UPRmt activation seems not to be conserved in nematodes (see 1.2.4).  

Remarkably, UPRmt and mitochondrial hyperfusion induced by the loss of LRPPRC are 

coordinated and follow similar kinetics. Nevertheless, these two responses are likely mediated 

by distinct genetic pathways because depletion of ATFS-1 or HAF-1 does not affect the 

mitochondrial hyperfusion phenotype in C. elegans. This is supported by the fact that mild 

depletion of MMA-1 solely leads to UPRmt while strong depletion of MMA-1 leads to both 

UPRmt and mitochondrial hyperfusion. Noteworthy, this also shows that, depending on the 

severity of a stress, different stress response pathways can be activated. Upon weak stress 

levels, UPRmt is sufficient to restore mitochondrial homeostasis. If the stress persists or when 

the stress level is high, UPRmt activation is not enough to cope with the stress, which 

additionally results in the stimulation of mitochondrial hyperfusion. Interestingly, the induction 

of UPRmt goes along with a metabolic shift towards glycolysis (reviewed in Lin and Haynes, 

2016). Hence, the UPRmt potentially compensates for decreased OXHPOS activity upon mild 

depletion of MMA-1 or LRPPRC. However, this compensation may fail when OXPHOS is 

more severely affected and this may then be counteracted by mitochondrial hyperfusion. In line 

with this, it has been shown that, under conditions where hyperfusion is present, increased 

glycolysis does not play a role in the compensation of ATP levels upon LRPPRC knock-down 
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since cells grown in low glucose medium still display stable amounts of ATP (Rolland et al., 

2013). Taken together, this indicates that mitochondrial hyperfusion may be more vital for 

cellular homeostasis as compared to UPRmt and this could explain why mitochondrial 

hyperfusion (Rolland et al., 2013) but not ATFS-1-dependent UPRmt is essential for viability in 

response to knock-down of mma-1. Nonetheless, it is worth mentioning that there still could be 

ATFS-1-independent UPRmt that plays an important role for organismal viability since more 

than 40% of genes upregulated upon spg-7(RNAi) were found to be still upregulated in an 

atfs-1(lf) background (Nargund et al., 2012).       

How the loss of LRPPRC or mma-1 function results in mitochondrial hyperfusion stills needs 

to be determined, however, it has been shown that the mitochondrial hyperfusion phenotype is 

likely the results of increased mitochondrial fusion rather than defective fission (Rolland et al., 

2013). Furthermore, it was speculated that complex IV may directly affect mitochondrial fusion 

since it has already been shown that mammalian OPA1 can interact with some subunits of 

complex IV (Agier et al., 2012; Rolland et al., 2013). Another idea could be that the AMPK 

signaling pathway is involved in mediating mitochondrial hyperfusion as it is the major energy 

sensing pathway and has been shown to be able to promote mitochondrial fusion (Kang et al., 

2016; Wu et al., 2020). 

Upon LRPPRC knock-down, both UPRmt and mitochondrial hyperfusion are transient 

responses and prolonged inactivation of LRPPRC has been shown to results in mitochondrial 

fragmentation (Rolland et al., 2013). This is in accordance with studies showing that defects in 

the mitochondrial respiratory chain complexes generally cause mitochondrial fragmentation 

(Guillery et al., 2008; Koopman et al., 2005; Liot et al., 2009; Moran et al., 2010). Hence, 

mitochondrial hyperfusion can only compensate for complex IV defects in short-term 

conditions. Moreover, fibroblasts of patients suffering from French Canadian Leigh Syndrome 

exhibit mitochondrial fragmentation as well as reduced OXPHOS capacity, which both most 

likely contributes to the pathophysiology of the disease (Burelle et al., 2015; Sasarman et al., 

2010). Noteworthy, it has also been shown that, despite the fragmented mitochondria 

phenotype, ATP levels remain constant in fibroblasts of patients suffering from French 

Canadian Leigh Syndrome and it has been proposed that this is due to mTOR-mediated re-

programming of metabolism (Burelle et al., 2015; Mukaneza et al., 2019). Whether UPRmt is 

induced in French Canadian Leigh Syndrome patient cells remains to be determined, however, 

since mitochondrial membrane potential is decreased in fibroblasts derived from patients, it 

could well be that the UPRmt is active. If not, this could indicate that UPRmt already failed and 
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this would suggest that the two stress response pathways cannot restore mitochondrial and 

cellular homeostasis upon severe and long-term impairment of complex IV activity.  

Interestingly, LRPPRC has also been implicated in the regulation of autophagy. More precisely, 

LRPPRC associates with Bcl-2 and Beclin-1 in a ternary complex and it has been shown that 

the binding of LRPPRC specifically increases Bcl-2 stability, which results in the enhanced 

sequestration of the autophagy inducer Beclin-1 and the suppression of basal levels of 

autophagy (Zou et al., 2013). Upon depletion of LRPPRC, Bcl-2 levels are decreased and 

Beclin-1 is released, thus leading to autophagy induction via the PI3K/Akt/mTOR signaling 

pathway (Zou et al., 2013). Similarly, LRPPRC was shown to suppress mitophagy through 

interaction with Parkin (Zou et al., 2014). The same study also showed that short-term exposure 

of cells with CCCP, a mitochondrial uncoupler, leads to activation of mitophagy/autophagy 

while long-term CCCP treatment finally impairs autophagic flux due to the depletion of ATG 

proteins (Zou et al., 2014). Hence, it would be interesting to test whether long-term depletion 

of LRPPRC potentially impairs autophagy. If so, this would indicate that autophagy induction 

upon knock-down of LRPPRC is also a transient response that potentially follows the same 

kinetics as mitochondrial hyperfusion and the activation of the UPRmt. Since the deregulation 

of mitophagy/autophagy has been implicated in neurodegenerative diseases (Hara et al., 2006; 

reviewed in Shefa et al., 2019), studies in cells derived from French Canadian Leigh Syndrome 

patients will help to unravel whether mitophagy/autophagy also plays a role in the pathogenesis 

of this neurodegenerative disease. This could in the long run help to develop new therapeutic 

approaches in order to alleviate the set of symptoms associated with the disease. Whether 

LRPPRC’s function in autophagy regulation is conserved and whether it involves the Bcl-2-

like protein CED-9 in C. elegans remains to be elucidated. Noteworthy, LRPPRC not only 

affects autophagy but also vice versa. Specifically, mTOR inhibition by rapamycin as well as 

long-term mitophagy stress by CCCP treatment results in decreased levels of LRPPRC 

(Mukaneza et al., 2019; Zou et al., 2014).  

 

4.2 Induction of autophagy suppresses fzo-1(tm1133)-induced UPRmt through 

increasing mitochondrial membrane potential  

The data presented in chapter II provide evidence that increased autophagic flux suppresses 

fzo-1(tm1133)-induced UPRmt. Increased autophagic flux has previously been shown to result 

in mitochondrial hyperfusion (Gomes et al., 2011; Morita et al., 2017; Rambold et al., 2011), 
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however, we did not detect a change in mitochondrial morphology in the case of fzo-1(tm1133) 

animals but instead observed that mitochondrial membrane potential is partially restored. 

Noteworthy, mitochondrial membrane potential was recently found to be the signal for UPRmt 

induction in C. elegans (Rolland et al., 2019), wherefore we propose that it is the increase in 

mitochondrial membrane potential that leads to suppression of fzo-1(tm1133)-induced UPRmt. 

Whether UPRmt is similarly regulated in other organisms remains to be determined, however, 

the loss of Mfn1 or Mfn2 in mammalian cells has been shown to result in decreased 

mitochondrial membrane potential, too (Bach et al., 2003; Pich et al., 2005). Moreover, recent 

evidence indicates that both the UPRmt as well as the ISR are activated in response to 

malfunctioning or depletion of Mfn2 (Chung et al., 2019; Kowaltowski et al., 2019; Rocha et 

al., 2017; Xin et al., 2019). Thus, it would be interesting to test whether the induction of 

autophagy is also able to suppress UPRmt induced by the loss of mitochondrial fusion in 

mammalian systems and, if so, whether this is also regulated through changes in mitochondrial 

membrane potential. Remarkably, increased autophagic flux has already been indicated to lead 

to increased mitochondrial membrane potential in yeast as well as in mammalian cells, 

suggesting that this functional connection may be conserved (Bonawitz et al., 2007; Lerner et 

al., 2013; Pan et al., 2011; Zhu et al., 2020). Surprisingly, we found that the induction of 

autophagy in wild-type animals results in decreased mitochondrial membrane potential and 

further research will be necessary to elucidate why autophagy induction in C. elegans affects 

mitochondrial membrane potential in opposite ways under different circumstances.  

Interestingly, autophagy induction upon knock-down of most if not all candidate genes is 

predominantly observed in the intestine. Since autophagy in fzo-1(tm1133) animals alone 

(without additional knock-down of genes) is largely present in hypodermal seam cells but not 

the intestine, this indicates that the induction of autophagy specifically in this tissue is crucial 

for suppression of UPRmt. Therefore, it would be worth testing whether the intestine-specific 

induction of autophagy is sufficient to suppress fzo-1(tm1133)-induced UPRmt. Conversely, 

intestine-specific knock-down of autophagy genes (e.g., lgg-1 or unc-51) could be used to test 

if this mitigates UPRmt suppression. Notably, it has previously been shown that intestinal 

autophagy is critical for increased health- and lifespan in C. elegans during dietary restriction 

(Gelino et al., 2016), however, whether this effect is also the consequence of improved 

mitochondrial homeostasis and elevated respiration capacity remains to be determined. We 

propose that the induction of autophagy can lead to increased motility; however, further analysis 

of knock-down of candidate genes should be performed in order to corroborate this statement. 

Moreover, this effect is probably masked upon depletion of ESCRT components due to 
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pleiotropic effects. Although the induction of autophagy in wild-type animals results in 

decreased membrane potential, we observed that motility is increased. Thus, a compensatory 

energy-providing pathway may be activated in these animals. 

The approach to ultimately confirm that autophagy induction is the cause for UPRmt suppression 

was unsuccessful since ESCRT depletion in fzo-1(tm1133) animals with a block in autophagy 

results in embryonic lethality, which is in accordance with a previous study showing that 

autophagy is a pro-survival mechanism in response to loss of ESCRT (Djeddi et al., 2012). 

Moreover, neither diluted ESCRT(RNAi) nor ESCRT(RNAi) during larval development suffices 

to suppress fzo-1(tm1133)-induced UPRmt, suggesting that efficient knock-down for a certain 

minimum period of time is necessary for autophagy induction and, hence, UPRmt suppression. 

Furthermore, our data indicate that UPRmt suppression is not due to pdr-1-dependent 

mitophagic degradation of defective and depolarized mitochondria. Additionally, we show that 

fndc-1 receptor-mediated mitophagy does not affect the suppression of fzo-1(tm1133)-induced 

UPRmt, which altogether suggests that autophagy rather than mitophagy is the underlying 

process that facilitates UPRmt suppression. Nevertheless, autophagy may also be able to degrade 

some defective mitochondria in an unspecific manner.  

 

4.3 Autophagy compensates for defects in mitochondrial dynamics  

Increased autophagic flux not only suppresses UPRmt induced by a block in mitochondrial 

fusion but also by a block in mitochondrial fission. Hence, autophagy compensates for defects 

in mitochondrial dynamics. Interestingly, compromised mitochondrial fission has been shown 

to impair mitophagy (Lee et al., 2011; Parone et al., 2008; Twig et al., 2008; Wu et al., 2016), 

again pointing towards autophagy and not the selective degradation of mitochondria being 

responsible for UPRmt suppression. Since spg-7(ad2249)-induced UPRmt is not suppressed by 

the induction of autophagy, this may not be a general effect. Almost half of the genes that 

suppress spg-7(ad2249)-induced UPRmt are assigned to the GO categories ‘Ribosome 

Biogenesis’ or ‘Translation’ and we speculate that at least some of them are false positive 

candidates since the knock-down of these genes likely interferes with GFP synthesis by 

compromising cytosolic translation. Furthermore, inactivation of the remaining genes may 

suppress spg-7(ad2249)-induced UPRmt by other means than the induction of autophagy. The 

fact that UPRmt induced by a block in mitochondrial dynamics but not by the loss of SPG-7 is 

suppressed by increased autophagic flux also indicates that different mitochondrial stressors 
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may activate UPRmt in a dissimilar manner. The reason for this could, for example, be that 

SPG-7 is an intramitochondrial protein while FZO-1 and DRP-1 are not. Hence, the loss of 

SPG-7 largely leads to defects within mitochondria whereas the loss of FZO-1 or DRP-1 

specifically affects mitochondrial morphology. Noteworthy, the two components of the 

mitochondrial m-AAA protease complex, SPG-7 and PPGN-1, have recently also been 

associated with mitochondrial dynamics. More precisely, they have been proposed to inhibit 

mitochondrial fusion through negatively regulating EAT-3 levels (Chaudhari and Kipreos, 

2017). However, spg-7 single mutants only display minor changes in mitochondrial 

morphology while more prominent changes are visible in spg-7; ppgn-1 double mutants 

(Chaudhari and Kipreos, 2017).  

Lipid profiling revealed that a block in mitochondrial fusion leads to changes in the levels of 

specific triacylglycerols (TGs). Interestingly, a block in mitochondrial fission results in similar 

changes albeit playing an opposing role with regard to mitochondrial morphology. The changes 

observed in response to the loss of SPG-7 are very distinct, indicating that different 

mitochondrial stressors can affect the lipidome in a diverse manner. TGs are the major 

component of lipid droplets and mitochondria associated with lipid droplets have been shown 

to play an important role in TG synthesis through delivering building blocks and energy 

(Benador et al., 2018). We therefore speculate that similar changes in the levels of specific TGs 

observed in fzo-1(tm1133) and drp-1(tm1108) are due to alterations in contact sites between 

lipid droplets and mitochondria. In line with this, mitochondrial fusion has previously been 

reported to be critical for the distribution of fatty acids across the mitochondrial network since 

the loss of OPA1 or Mfn1 greatly affects the transfer of fatty acids from lipid droplets to 

mitochondria in mouse embryonic fibroblasts (Rambold et al., 2015). Moreover, lipid droplet-

associated mitochondria were found to possess high levels of Mfn2 in brown adipose tissue of 

mice (Benador et al., 2018).  

Importantly, certain changes in the levels of specific TGs observed in fzo-1(tm1133) mutants 

are, to some extent, reverted by increased autophagic flux and our results indicate that 

autophagy facilitates the degradation of most TGs. This is in accordance with a study showing 

that autophagy mediates the breakdown of TGs from lipid droplets for fatty acid supply, which 

is also referred to as ‘lipophagy’ (Singh et al., 2009). Since mitochondria can use these free 

fatty acids released from TGs for energy production via β-oxidation, this suggests that increased 

autophagic flux in mutants with defects in mitochondrial dynamics leads to elevated metabolic 

activity, increased mitochondrial membrane potential and, thereby, consequently to attenuation 
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of UPRmt. Interestingly, autophagy has recently also been shown to cause degradation of 

NCoR1, a repressor of the major lipid metabolism regulator PPARα, in order to upregulate the 

expression of enzymes involved in β-oxidation (Saito et al., 2019). Unfortunately, it is to date 

not possible to specifically block lipophagy in C. elegans due to the lack of understanding of 

how lipid droplets are recognized and sequestered by autophagic membranes. Apart from 

lipophagy, cytosolic lipolysis is another process that is involved in the breakdown of TGs. In 

mammals, it is executed by the action of the cytoplasmic lipases ATGL, HSL and MGL 

(reviewed in Zechner, 2015). To underpin that it is specifically the degradation of TGs that 

suppresses UPRmt, it would be interesting to test whether the activation of cytosolic lipolysis in 

fzo-1(tm1133) or drp-1(tm1108) animals results in UPRmt suppression as well. Noteworthy, it 

has lately been shown that overexpression of ATGL-1, the nematode ortholog of ATGL, 

increases basal and maximum oxygen consumption rate, arguing for enhanced mitochondrial 

metabolic activity (Zaarur et al., 2019). However, recent evidence indicates that cytosolic 

lipolysis and lipophagy are not distinct lipolytic processes but rather functionally linked and 

coordinated through commonly shared proteins since, for example, ATGL has been shown to 

be required and sufficient for induction of both lipophagy and autophagy in mice (Martinez-

Lopez et al., 2016; Sathyanarayan et al., 2017). Another way to corroborate our model could be 

to look at lipid droplets. Specifically, it is worth assessing whether lipid droplets are enriched 

and/or enlarged in mutants with defects in mitochondrial dynamics. Yet, since the total amount 

of TGs is not altered in fzo-1(tm1133) animals and only slightly increased in drp-1(tm1108) 

mutants, this may not be the case. Nevertheless, it could be tested if increased autophagic flux 

in these animals may lead to reduction in the abundance and/or size of lipid droplets. In 

C. elegans, lipid droplets can, for example, be visualized using DGAT-2::GFP, PLIN1::GFP or 

ATGL-1::GFP (Liu et al., 2014b; reviewed in Mak, 2013). Because the knock-down of 

candidate genes especially increases autophagic flux in the intestine, the analysis of lipid 

droplets should be performed in this tissue. The fact that spg-7(ad2249) mutants display a 

reduced number of total TGs may imply that lipid droplets in these animals are less abundant 

and/or smaller. Moreover, this indicates that autophagy is potentially not able to access enough 

TGs from degradation of lipid droplets in order to properly fuel mitochondrial metabolism and, 

hence, suppress UPRmt. Thus, it could be tested if spg-7(ad2249)-induced UPRmt may be 

suppressed through increased autophagic flux when animals are fed a high fat diet.  

Future experiments will reveal whether the attenuation of UPRmt upon induction of autophagy 

is specific to a block in mitochondrial dynamics or whether further UPRmts can be suppressed 

Discussion

101



 
 

in a similar manner. Moreover, it remains to be determined whether autophagy may generally 

suppress all UPRmts that are associated with a certain threshold of total TGs.  

 

4.4 Functional interactions between UPRmt and autophagy 

The question of whether and how different stress response pathways influence each other has 

become the focus of recent attention in the field of cell biology. A first hint that the induction 

of autophagy may affect UPRmt in C. elegans was the discovery that the loss of rheb-1, a 

positive regulator of let-363 (Honjoh et al., 2008), suppresses the induction of Phsp-60gfp 

(Haynes et al., 2007). Moreover, the knock-down of let-363 itself has previously been reported 

to be able to suppress the expression of Phsp-60gfp in clk-1(qm30) mutants (Baker et al., 2012). 

Whether UPRmt is induced in response to compromised mitophagy remains controversial since 

one study showed that UPRmt is upregulated in animals lacking pdr-1 or pink-1 function 

(Cooper et al., 2017) whereas two other studies did not observe any effect on Phsp-6gfp 

expression (Kim and Sieburth, 2018; Rolland et al., 2019). Our data presented in chapter II 

provide evidence that blocking autophagy in the absence of mitochondrial stress leads to 

activation of UPRmt. This could be explained by the fact that the loss of autophagy is known to 

largely impact metabolism since it provides the cell, and especially mitochondria, with building 

blocks for energy production (reviewed in Kim and Lee, 2014; Rabinowitz and White, 2010). 

Because the activation of UPRmt is accompanied by a metabolic shift towards glycolysis 

(reviewed in Lin and Haynes, 2016), UPRmt may therefore compensate for decreased OXPHOS 

activity. Hence, mutants with a block in mitochondrial fusion, in which UPRmt is already active, 

are less dependent on mitochondrial energy production, which potentially explains why UPRmt 

is not further increased upon a block of autophagy in these animals. Further analysis in different 

mutants should be performed in order to substantiate this hypothesis.  

It has previously been shown that RNAi against spg-7 upregulates both UPRmt and autophagy 

(Guo et al., 2014), which we confirm in spg-7(ad2249) mutants and also observe in 

fzo-1(tm1133) animals. Interestingly, our results show that the induction of autophagy in 

animals with a block in mitochondrial fusion is not dependent on ATFS-1, which is in conflict 

with the study of Guo et al. since they propose that, upon mitochondrial stress, the upregulation 

of both UPRmt and autophagy is mediated via ATFS-1 (Guo et al., 2014). Moreover, it has been 

reported that ATFS-1 upregulates the expression of a small subset of autophagy related genes 

in response to spg-7(RNAi) (Nargund et al., 2012). Thus, some mitochondrial stresses may 
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activate both UPRmt and autophagy via ATFS-1 while others may activate autophagy in an 

ATFS-1-independent manner. However, we additionally show that atfs-1(et15gf) does not 

affect autophagy in an otherwise wild-type background, indicating that nuclear import of 

ATFS-1 in the absence of mitochondrial stress does not suffice to induce autophagy. Since 

fzo-1(tm1133); atfs-1(et15gf) double mutants are not viable, this suggests that an excessive 

level of UPRmt in animals suffering of mitochondrial stress is detrimental to organismal health. 

The reason for this could be that a minimum amount of ATFS-1 inside mitochondria is 

necessary to maintain cellular homeostasis, which may be due to ATFS-1’s role in limiting 

expression of mtDNA-encoded mRNAs in order to coordinate nuclear and mitochondrial 

genome-encoded OXPHOS components (Nargund et al., 2015).  

Taken together, altering autophagy can affect UPRmt, but changes in UPRmt do not influence 

autophagy in our experiments. Moreover, our results indicate that autophagy and UPRmt do not 

interact directly but rather influence each other via changes in lipid metabolism. It would be 

interesting to test if the induction of autophagy can also affect other organellar or cellular stress 

response pathways and, if so, if this is mediated by changes in metabolism as well. Another 

open question that remains to be answered is the role of mitophagy in C. elegans. Specifically, 

the recent understanding of how UPRmt is regulated via changes in mitochondrial membrane 

potential (Rolland et al., 2019) raises the question whether, upon reduction of mitochondrial 

membrane potential, UPRmt and mitophagy are activated in a simultaneous or sequential 

manner. One idea that has been postulated is that UPRmt is activated first while mitophagy is 

only triggered if mitochondrial stress persists for a certain period of time (Pellegrino et al., 

2013). However, whether this is true in C. elegans and whether this is regulated via distinct 

thresholds of mitochondrial membrane potential remains to be determined.  

 

4.5 Identification of an autophagy network 

We first hypothesized that increased autophagic flux may suppress UPRmt when we knocked-

down ESCRT components in fzo-1(tm1133) animals. Interestingly, ESCRT has been shown to 

be required for autophagy in mammalian cells whereas compromising ESCRT function in 

C. elegans induces autophagy (see 1.4). One possible explanation for this phenomenon could 

be that, in mammalian cells, most of the autophagosomes fuse with endosomes (thereby 

forming amphisomes) prior to fusion with lysosomes, whereas, in C. elegans, most of the 

autophagosomes may directly fuse with lysosomes. Future investigations should be performed 
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in order to unravel why exactly the loss of ESCRT affects autophagy in opposing ways in 

different organisms. Furthermore, ESCRT depletion in C. elegans may induce autophagy not 

necessarily due to the presence of enlarged endosomes (Djeddi et al., 2012) but impaired 

degradation of endosomal cargo may potentially mimic nutrient starvation and thereby induce 

autophagy.  

Including the ESCRT components, we, in total, identified 143 genes that induce autophagy 

when inactivated. Among these are several other genes that are involved in cellular trafficking, 

one of them being imb-2, a regulator of the nuclear transport of DAF-16 (Putker et al., 2013), 

whose mammalian homolog FOXO has previously been shown to be involved in the regulation 

of autophagy (Zhao et al., 2010). In addition, we found the DAF-16 target gene ins-7, which is 

one of around 40 insulin-like genes in C. elegans and an agonist of the insulin/IGF-1-like 

signaling (IIS) receptor daf-2 (Kawano et al., 2000; Meléndez et al., 2003; Murphy et al., 2003; 

Pierce et al., 2001; Zheng et al., 2014). Moreover, we identified several genes with a role in 

transcription, for example rpac-19 and rpac-40. Both encode for subunits of RNA polymerase 

I and the inhibition of RNA polymerase I transcription in mammalian cells has already been 

demonstrated to result in the induction of autophagy (Katagiri et al., 2015). Among the genes 

that are classified into the GO category ‘Cell Signaling’, we found ruvb-1, a component of the 

TOR pathway in C. elegans (Sheaffer et al., 2008). Furthermore, we identified a number of 

genes that encode for proteins that are involved in the ubiquitin-proteasome system (UPS), 

namely rpt-3, rpn-13, ufd-1, rbx-1 and cul-1 (Mouysset et al., 2006; Takahashi et al., 2002; 

Yang et al., 2013). In line with this observation, it has recently been shown that compromising 

proteasomal function leads to induction of autophagy (Demishtein et al., 2017; Keith et al., 

2016). Interestingly, it was also found that the inhibition of mTOR in mammalian cells not only 

activates autophagy but stimulates the ubiquitination and proteasomal degradation of long-lived 

proteins, however, this was shown to be independent of the autophagic machinery (Zhao et al., 

2015). More than 30% of all genes found to induce autophagy when inactivated belong to the 

GO category ‘Ribosome Biogenesis’ or ‘Translation’ and are involved in the global regulation 

of protein biosynthesis. Thus, impairing translation potentially mimics nutrient starvation and 

thereby activates autophagy. Interestingly, attenuation of translation has previously been shown 

to be beneficial for mitochondrial function during stress conditions and it has been proposed 

that this is due to the reduced protein load into mitochondria (Baker et al., 2012; Wang et al., 

2008). Based on our results, we propose that this effect may, at least to some extent, also be due 

to increased autophagic flux.  
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Taken together, we found a multitude of genes that are involved in many different cellular 

processes and that share one common feature, i.e., the induction of autophagy upon inactivation. 

Our work not only highlights the importance of autophagy in maintaining cellular homeostasis, 

it also reemphasizes the need for studies into this process in the context of animal health and 

disease. 

 

4.6 Conclusions 

Data presented in the first chapter provide evidence that the loss of LRPPRC function leads to 

an imbalance between mitochondria- and nuclear-encoded subunits of complex IV and triggers 

UPRmt. Moreover, this response is conserved since inactivation of the LRPPRC-like gene 

mma-1 in C. elegans leads to UPRmt activation, too. In addition, our results show that UPRmt 

and mitochondrial hyperfusion induced by depletion of LRPPRC are transient responses and 

follow similar kinetics. Whether UPRmt is also induced in cells derived from French Canadian 

Leigh Syndrome patients remains to be answered.  

Data presented in the second chapter show that the induction of autophagy suppresses UPRmt 

induced by a block in mitochondrial dynamics by increasing mitochondrial membrane 

potential. Interestingly, blocking mitochondrial fusion or fission leads to an increase in the 

levels of certain types of TGs, which is partially reverted by the induction of autophagy. Thus, 

we propose that the autophagy-dependent breakdown of these TGs is used to fuel mitochondrial 

metabolism, resulting in increased mitochondrial membrane potential and, hence, suppression 

of UPRmt. Future investigations will shed light on whether UPRmt induced by other means may 

also be suppressed in a similar manner. Furthermore, studies in mammalian cell culture may 

reveal if this mechanism of UPRmt suppression is evolutionary conserved. 
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