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Chapter

Simulationen der Entstehung und
Entwicklung von Strukturen im Kosmos

(Deutsche Zusammenfassung)

DalRdie Welt nicht der Inbegriff einer ewigen Vernuinftigkeit
ist, lalt sich endgultig dadurch beweisen, daf3 jenes Stiick
WEelt, welches wir kennen — ich meine unsre menschliche
Vernunft —, nicht allzu vernunftig ist. Und wenn sie nicht
allezeit und vollstandigweiseund rationell ist, sowird esdie
ubrige Welt auch nicht sein; hier gilt der SchluRaminori ad
maius, aparte ad totum, und zwar mit entscheidender Kraft.

Friedrich Nietzsche
Menschliches, Allzumenschliches, Bd. 2, 2.2

1.1. Einleitung

Im Verlaufe der zurickliegenden zwanzig Jahre hat sich die Kosmologie zu einer
eigenstandigen Wissenschaft entwickelt, die anderen naturwissenschaftlichen Disziplinen in
Bezug auf die Prazision von Beobachtungen und theoretischen Vorhersagen in nichts mehr
nachsteht. Die Menge an Wissen, diein diesem Zeitraum angehauft werden konnte, 183t einen
Vergleich mit der Entwicklung der Quantenmechanik und der nachfolgenden Revolution in
der Atomphysik durchaus zu.

Die Kosmologie hat hierbei mal3geblich von den gewaltigen technol ogischen Entwicklun-
gen profitiert. Der COBE-Satellit! zum Beispiel hat die Mikrowellenhintergrundstrahlung mit

LCOBE ist die Abkiirzung fur Cosmic Microwave Background Explorer.



einer bisdato unerreichten Prazision vermessen. Dabel zeigtesich, da’ diese Strahlung, diedie
Erde als Nachglilhen des Urknalls erreicht, ein Spektrum hat, das nahezu perfekt dem eines
Planck’schen Schwarzen Strahlers entspricht. Zudem mul es im frihen Universum Dichte—
Fluktuationen in der Materie von der GroRenordnung 10~° gegeben haben. Das Hubble-
Space-Teleskop (HST) und neue Teleskope auf der Erde haben es ermoglicht, Galaxien bei
einer Rotverschiebung von 5 zu finden, d.h. zu einer Zeit, alsdas Universum ein Sechstel seiner
heutigen Grof3e hatte. Gleichermallen zeigte sich inimmer deutlicherem Mal3e, dal3 ein grofier
Teil der Materieim Universum in einer Form vorliegt, die sich vollstandig von der unterschei-
det, wie man sie von der Erde kennt. Diese Dunkle Materie zeigt sich ausschliefdich durch
den Einfluf? ihrer Schwerkraft, indem sie z.B. das Licht von Galaxien, die sich hinter einem
Galaxienhaufen befinden, ablenkt und um diesen herum verzerrte Abbilder erzeugt. Diese
Listeist keineswegs vollstandig. Alle Theorien der Geburt des Universums und der nachfol-
genden Entstehung und Entwicklung von Galaxien und von grof3raumigen Strukturen miissen
ihr Rechnung tragen und Erklarungen und Modelle dafurr bieten.

Die neuen Beobachtungsdaten haben Theoretikern abverlangt, bestehende Theorien zu
Uberprifen und, wo notig, zu Uberarbeiten, insbesondere aber Vorhersagen von grof3erer
Prazision zu erarbeiten. Es stellte sich dabei heraus, dal3 die einfachsten Theorien mit den
Beobachtungen nicht zu vereinbaren waren. Allerdings zeigte sich gleichermal3en, dali’ die
notwendigen Korrekturen und Verfeinerungen der Modelle relativ einfach durchzufiihren
waren. Computersimulationen haben hierbei eine wichtige Rolle gespielt. Der gewaltige
Anstieg der Leistungsfahigkeit moderner Supercomputer ist hierbei nicht der alleinige Grund
fur diese Entwicklung. So konnte das Modell, demzufolge die Dunkle Materie ausschliefdlich
aus Neutrinos besteht, mit einer Simulation mit nur 1000 Teilchen ausgeschlossen werden
(Whiteet al. 1983). Nichtsdestotrotz waren und sind grof3e Simulationen nétig, um hinreichend
exakte Vorhersagen zu erzielen. Sehr grof3e Ausschnitte des Universums miissen mit einer ho-
hen Massenauflosung simuliert werden, um zukiinftige Tests von kosmologischen Modellen
zu ermoglichen.

Im folgenden Abschnitt werden die zunachst die grundiegenden Konzepte moderner
Kosmologie und das Cold Dark Matter—Modell motiviert. Abschnitt 1.2 befaldt sich
mit der Verteilung der Materie auf groRen Skalen. In Abschnitt 1.3 werden die Peku-
liargeschwindigkeiten der massereichsten Objekte im Universum (Galaxienhaufen) unter-
sucht. Galaxienhaufen stehen auch im Mittelpunkt in Abschnitt 1.4, der die Entstehung und
raumliche Verteilung von Galaxienhaufen in den bislang grofiten und umfangreichsten Com-
putersimul ationen des Universums beschreibt.

1.1.1. Moderne Kosmologie und das Cold Dark Matter—Modell

Zum Urknall als Modell fur die Entstehung des Universums gibt es mittlerweile keine ern-
stzunehmende Alternative mehr. Die Theorie, die die Dynamik des Gravitationsfeldesim Uni-
versum beschreibt, ist Einsteins Allgemeine Rel ativitatstheorie. Sie nimmt an, dal3 dasUniver-
sum auf grof3en Skalen gleichformig und homogen ist und dal3 es keinen bevorzugten Ort im



Universum gibt. Die Metrik hierfir ist die Friedmann—Robertson—Walker—Metrik

dr?
1—kr?

ds? = (cdt)? — a?(t) + 72(d9? + sin? ¥de?) | . (1.1)
Der sogenannte Expansionsfaktor a(¢) (Dimension: Lange) und die Krimmung & (dimen-
sionslos; nimmt die Werte 1, 0, und -1 an fur positive, keine und negative Krimmung
raumlicher Hyperflachen) sind hierbel mithilfe der Einstein’ schen Feldgleichungen zu bestim-
men. Unter der Annahme von Homogenitat und Isotropie lassen sich diese Gleichungen ver-
einfacht schreiben als

a’ + kc? 87G
_ 1.2
> 5 P (1.2)
2.. .2 k 2
LU snGp, (1.3)
a a

wobei G die Gravitationskonstanteist, und p und p sind der Druck und die Dichte des Fluids,
das sich im Universum befindet. Der Punkt bezeichnet Ableitung nach der Zeit. Esist tblich
in der Kosmologie, folgende Grof3en zu definieren:

Hy = (9> (14)
a/ t=tg
3H?
. = 15
p G (1.5
0= Q (1.6)
Pe

Diese sind die sog. Hubble-K onstante zur heutigen Zeit, H,, die kritische Dichte, p., und der
Dichteparameter, (2. Der Krimmungsterm & wird dann bestimmt durch

k=HXQ—1). (1.7)

Das Universum st nur auf sehr grof3en Skalen homogen. Das Wachstum von Inhomogenitaten
aus kleinen Fluktuationen 1813 sich in linearer Theorie berechnen. Betrachtet man ein Fluid der
Dichte p und Geschwindigkeit v mit p = 0, das sich in einem Schwerefeld mit dem Potential
® bewegt, so wird das Fluid beschrieben durch die Kontinuitatsgleichung und die Euler— und
Poissongleichungen:

op B

§+V-(pv) = 0, (1.8)

%Jr(v-V)v = VO, (1.9)
V20 = 4rGp. (1.10)

Mit der Annahme eines raumlich variierenden Dichtefeldes

p(x,t) = p(t) - (14 0(x,t)), (1.12)



und 6 < 1, ergibt sich nach Vernachlassigung aller nichtlinearen Terme
§42% —4rGps=0. (1.12)
a

Diese Gleichung beschreibt das lineare Wachstum von Strukturen im Universum, die ja, wie
durch den COBE-Satédlliten bestétigt, aus sehr kleinen anfanglichen Dichteschwankungen re-
sultiert sein miissen. Fur den einfachen Fall (2 = 1 z.B. ergibt sich die anwachsende L dsung
as?

6 o< D(t) ox t*3 x a. (1.13)

D(t) beschreibt hier explizit das Wachstum der Struktur. ¢ ist die Zeitvariable. Fur Q2 < 1 sind
die Losungen komplizierter, hier geréat der anwachsende Teil der Losung in Sattigung, und die
Struktur wachst im wesentlichen ab einem bestimmten Zeitpunkt an kaum weiter.

Wiebereits oben angedeutet, gibt esEvidenz, dal3ein grof3er Teil der Materieim Universum
in Formvon Dunkler Materievorliegt. Ebenso wurdeerwahnt, dal3 Neutrinos aus theoreti schen
Erwagungen nicht den Uberwiegenden Teil dieser Materie stellen konnen. Der Grund hierfir
ist, daf3 sich Neutrinos nach ihrer Entkopplung relativistisch bewegen — sie werden deswegen
auch Heil3e Dunkle Materie (engl. Hot Dark Matter, HDM) genannt — und so Fluktuationen
auf kleinen Skalen auswaschen. Die Struktur, wie sie im Universum beobachtet wird, hatte
sich nicht bilden konnen. Die Dunkle Materie muf3 also in einer Form vorliegen, die bel ihrer
Entkopplung nichtrel ativistisch war. Diese sogenannte Kalte Dunkle Materie (engl. Cold Dark
Matter, CDM) konnte bislang noch nicht direkt nachgewiesen werden. Esgibt aber Kandidaten
hierfur, Elementarteilchen, wie sie von verschiedenen Erweiterungen des Standardmodel |s der
Elementarteilchenphysik vorhergesagt werden. Als eine der Haupthypothesen dieser Arbeit
wird angenommen, dal? die Dunkle Materie ausschliefdlich aus CDM besteht.

Wie sind die Dichteschwankungen im Universum entstanden? Diese Frage wird von einer
Theoriebeantwortet, die urspringlich viel gewichtigeren Fragen zugewandt war: Warumistim
Universum der Dichteparameter €2 ~ 1? Warum finden sich im Universum nicht die riesige
Anzahl von magnetischen Monopolen, die eigentlich wahrend des Phaseniibergangsim frihen
Universum hatten entstanden sein mussen? Und wieso sind die Variationen in der kosmischen
Hintergrundstrahlung so klein, wenn doch die Bereiche, aus denen sie kommt, wahrend der
Rekombination kausal getrennt waren? Eine plausible Antwort hierauf gibt die Theorie der
Inflation, derzufolge sich das Universum wahrend einer sehr frihen und sehr kurzen Phase
nach dem Urknall exponentiell ausdehnte, so dal? Quantenfluktuationen auf kosmische Skalen
gedehnt wurden. Damit werden die gestellten Fragen geklart. Aber Inflation kann noch mehr:
Esist namlich moglich, ein Spektrum der Dichtefluktuationen anzugeben. Diesesist, weil von
Quantenfluktuationen herriihrend, Gaussisch. Wenn alle physikalischen Effekte berticksichtigt
werden, die das primordiale Spektrum noch @andern konnen, ergibt sich schliefdlich das lineare
CDM—Spektrum, fur das Bond & Efstathiou (1984) folgenden Fit angeben:

Ak
(14 [ak/T + (bk/T)3/2 + (ck/T)?])2/»

mita = 6.4h *Mpc, b = 3.0h ' Mpc, c = 1.7Th ' Mpc, and v = 1.13. Hierbei wurde
die Hubble—K onstante abgekiirzt durch Hy = 100 A~ ! km/sec. I ist ein Parameter, der die fur

P(k) = (1.14)

2Die zweite L dsung beschreibt den Zerfall der Dichteschwankungen und ist deswegen nicht von Interesse.



Modl [ @ A /T |

OCDM | 0.3 00 0.7 021
ACDM | 03 0.7 0.7 0.21
SCDM | 1.0 0.0 05 0.50
7CDM |10 00 05 021

Tabelle 1.1.: Die kosmologischen Modelle.

das jeweilige Modell charakteristische Skala des Spektrums beschreibt. Die Normierung des
Spektrums, A, kann nicht eindeutig ausinflationaren Szenarien vorhergesagt werden. In dieser
Arbeit wird sie so gesetzt, dal? in den Simulationen die im Universum beobachtete Anzahl
masserei cher Gal axienhaufen reproduziert wird. Dieswird uiblicherwel se ausgedriickt Uber o,
die mittlere quadratische Abweichung der Massenverteilung auf einer Skalavon 8 A~ Mpc.
Tabelle 1 gibt eine Ubersicht ilber die vier kosmologischen Modelle, diein dieser Arbeit be-
nutzt werden. Von diesen Modellen wurden zwel Gruppen gerechnet. Bei der ersten Gruppe
(Virgo—Simulationen) ist das simulierte Volumen fiir alle Modelle gleich grol3—ein Wirfel der
Kantenlange 240 = Mpc. In der zweiten Gruppe (GIF-Simulationen) hat jedes Modell die
gleiche Massenaufldsung, d.h. die Teilchen haben gleiche Massen (von 2 - 10%° M). Jeweils
256 Teilchen wurden simuliert. Die Simulationen wurden im Rahmen des britisch—-deutsch—
kanadischen Virgo Supercomputing Consortiums durchgefuhrt.

1.2. Die Verteilung der Materie auf grof3en Skalen

In den ersten grofRen Galaxienkatalogen, die in den achtziger Jahren erstellt wurden, zeich-
nete sich ab, dal3 die Verteilung der Gal axien keineswegs gleichformigist. Abgesehen von den
Galaxien, die sich in Gruppen oder Haufen befinden, sind praktisch alle Galaxien Teil eines
komplizierten Netzwerkes. Seitdem ist die Debatte, woraus dieses Netzwerk gebildet wird,
nicht mehr abgerissen. Sind die Galaxien bevorzugt in grofien zweidimensionalen flachen
Strukturen (engl. Sheets) angesiedelt, wie der erste CFA—Katalog mit der berihmten ” Grof3en
Mauer” zeigte (De Lapparant et a. 1986)? Oder liegen Galaxien bevorzugt in Filamenten,
d.h. sind sie aneinandergereit wie Perlen einer Kette, wie z.B. Haynes (1986) vorschlug? Die
ersten groferen Simulationen von CDM—Universen (z.B. Davis et al. 1985) zeigten qualita-
tiv eine Materieverteilung, die der Verteilung der Galaxien in den Katalogen sehr ahnlich war.
Allerdings ist die Auflosung solcher Simulationen bislang zu grob gewesen, um diese Fragen
genauer zu beantworten.

Die Simulationen, die im Rahmen dieser Arbeit durchgefihrt worden sind, haben es auf-
grund ihrer sehr hohen Auflosung ermoglicht, sich mit der Frage nach der Verteilung der
Materie auf grof3en Skalen zu beschaftigen. Abbildung A.4 zeigt einen Schnitt der Dicke
8.5Mpc/h durch die TCDM GIFSimulation zur heutigen Zeit. Direkt in der Mitte befindet
sich eine grof3e Region, die nur sehr wenig Materie enthdt. Solche Regionen, die mit ihrem
englischen Fachterm Voids genannt werden, zeichnen sich auch in Galaxienkatalogen ab. Um
die Void befindet sich ein komplexes Netzwerk, darunter ein sehr massereicher Galaxien-



haufen® direkt siidlich davon, sowie eine grofRe Anzahl von Objekten, von denen die meis-
ten sich entweder in Filamenten oder eventuell auch in Sheets befinden. Grof3e Objekte treten
zumeist gehauft auf, wahrend sich kleinere um sie gruppieren. Dieses Verhalten ist typisch
fur CDM—Universen. In diesen bilden sich zunachst kleine Objekte, die dann entweder durch
Akkretion von Materie oder durch Kollisionen und anschlief3ende Virialisierung grofiere Ob-
jekte bilden.

Dreidimensionale Darstellungen der Materieverteilung erlauben es, diese aus einem an-
deren Blickwinkel heraus zu untersuchen. Dazu wird die Materie auf ein Gitter verteilt,
gegléttet, und digjenige Materie, die sich in Zellen befindet, deren Uberdichte* groRer als ein
Schwellwert ist, wird betrachtet. Einige dieser Zellen sind Teil eines grof3eren Objekts. Ab-
bildung A.13 zeigt das grofte Objekt in der 7CDM GIF-Simulation bei einer Uberdichte von
3. Dieses Objekt beinhaltet etwa 30% der Gesamtmasse, fullt etwa 1% des Gesamtvolumens
aus und erstreckt sich periodisch Uber das gesamte Volumen — ein Effekt, der als Perkolation
bekannt ist. Wird der Schwellwert der Uberdichte erhdht, schrumpft das Objekt und zerbricht
schliefdlichinvielekleine Objekte. Dieses Verhaltenist typisch fir die CDM—Universen. Eine
quantitative Untersuchung des groften Objekts ergibt, dal3 esim wesentlichen aus Filamenten
zusammengesetzt ist —wie jain Abbildung A.13 auch deutlich zu sehenist.

Fiir sehr hohe Werte der Uberdichte, etwa 180, bilden die Zellen nur noch sparische oder
elliptische Objekte. Die massivsten dieser Objekte entsprechen den bereits erwahnten Gala-
xienhaufen. Eszeigt sich, dal sich diese Galaxienhaufen an bevorzugten Stellen innerhalb der
Verteilung der Materie bilden: An den Stellen, wo mehrere Filamente oder Sheets aufeinander
treffen. Die Materie, die den Galaxienhaufen bildet, stromt im zeitlichen Verlauf der Simula-
tion entlang der Filamente oder Sheetsin Richtung des Haufens. Damit stellen Galaxienhaufen
in einem gewissen Sinne bevorzugte Objekte innerhalb der groraumigen Struktur dar. Dies
gilt umso mehr, als sie sich, auf der kosmol ogischen Zeitskala betrachtet, erst sehr spat (etwa
bei Rotverschiebungen um 0.3 oder 0.1, je nach dem Wert von €2) bilden. So kann man z.B. er-
warten, dal3 man zwischen zwel benachbarten Haufen im Universum ein Filament aus Dunkler
Materie finden kann — fur den Fall, dal? sich das Universum wirklich durch ein CDM-Modell
beschreiben 1aft.

1.3. Pekuliargeschwindigkeiten von Galaxienhaufen

Galaxienhaufen sind nicht nur in Hinsicht auf ihre besondere Lage innerhal b der grofraumigen
Struktur von Interesse. Zunachst einmal sind sievor alem die massereichsten Objekte, diesich
im Universum bislang gebildet haben. Aufgrund ihrer groRen Masse muldte Materie aus einer
sehr grof3en Region im frihen Universum kollabieren. Das bedeutet nun, dal3 das Dichtefeld
im Universum zu dieser Zeit, wenn es auf einer Skala von etwa 10 Mpc/h geglattet wird, in
den Bereichen, wo Galaxienhaufen entstehen, deutliche Uberdichten haben muRte. Eines der
Hauptparadigmen von CDM-Szenarien besagt, dal? alle Objekte aus solchen Uberdichten Be-
reichen, im folgenden wie im Englischen Peaks genannt, entstanden sind und dal3 die Masse

3Die Simulationen enthalten nur Dunkle Materie und keine Galaxien. Ublicherweise werden die groften Ob-
jekte, die in ihnen gefunden werden, mit den grofiten Objekten im Universum, Galaxienhaufen, identifiziert.
4Die Uberdichte ergibt sich aus der Dichte, indem durch die mittlere Dichte geteilt und 1 subtrahiert wird.



eines Objekts im wesentlichen proportional zur Hohe eines solchen Peaks ist, wobel mit der
Hohe eines Peaks schlichtwegs seine Uberdichte mit Bezug auf die mittlere Dichte gemeint
ist. Dartiberhinaus solIte auch die Geschwindigkeit® eines Peaks, bestimmt tiber das geglattete
Geschwindigkeitsfeld, mit der des entsprechenden Galaxienhaufens Ubereinstimmen. Die
Virgo—Simulationen sind ideal, um diese Punkte zu untersuchen, weil sie einerseits eine re-
lativ grof3e Region des Universums enthalten und welil es andererseitsin ihnen eine gentigend
grof3e Anzahl von Galaxienhaufen gibt.

Die Geschwindigkeitsdispersion in CDM-Universen 1a3t sich analytisch berechnen, und
auch Angaben Uber die Geschwindigkeiten von Peaks sind moglich, weil das Spektrum der
Modelle, wie oben erwahnt, Gaussisch ist. Die theoretischen Vorhersagen sind hierbel

oo(R) = HyQ" o1 (R), (1.15)

wobei o; fur eine ganze Zahl j definiert wird als

o%(R) = # / P(k) W2(kR) k22 dk, (1.16)

J

fur das Integral Uber das gesamte Feld und

op(R) = 0y(R)\/1 — 03 /0302, (1.17)

fur Peaks. W (kR) ist eine Filterfunktion, in der die Gléattungsskala gesetzt wird. In den Sim-
ulationen werden Galaxienhaufen als die groften Masseansammlungen zur heutigen Zeit ge-
funden. Dieinihnen enthaltenen Teilchen werden dann zu dle friheren Zeitpunkte markiert.
Peaks werden Uber das gegléttete Dichtefeld in den Anfangsbedingungen der Simulationen
identifiziert. Die Glattungsskalawird hierbel derart gesetzt, dal? sie der minimalen Masse der
untersuchten Menge von Haufen entspricht.

Wie in Abbildung 1.1 zu sehen ist, kann der Uberwiegenden Mehrheit der Haufen
tatsachlich ein hoher Peak zugeordnet werden. Allerdings ist die Streuung in der Zuord-
nung recht betrachtlich. Werden die Geschwindigkeit der Haufen in den Anfangsbedin-
gungen, denen ein Peak zugeordnet werden kann, verglichen mit der Geschwindigkeit des
entsprechenden Peaks, zeigt sich eine exzellente Entsprechung. Gleichermal3en gut ist die
Ubereinstimmung der Geschwindigkeiten der Peaks mit der analytischen Vorhersage (Gl.
1.17). Die Geschwindigkeitsdispersion der Haufen zur heutigen Zeit, direkt gemessen aus
der Simulationen, ist jedoch deutlich groR3er als die der Haufen, wenn ihre Geschwindigkeiten
aus den Anfangsbedingungen auf die heutige Zeit hochskaliert werden. Insbesondere zeigen
Haufen, die einen benachbarten Haufen in einer maximalen Distanz von 10 A~'Mpc haben,
grofiere Abweichungen, wiein Abbildung 1.2 zu sehen ist.

Im wesentlichen entsprechen also Galaxienhaufen hohen Peaks mit gleichen
Geschwindigkeiten im frihen Universum, wobei massereicheren Haufen im allge-
meinen hoheren Peaks entsprechen. Allerdings fuhren nichtlineare Effekte dazu, dal
die Geschwindigkeitsdispersion zur heutigen Zeit deutlich (um 40%) Uber der Vorhersage der
linearen Theorie liegt.

5Im folgenden wird mit der Geschwindigkeit einer Objekts grundsitzlich seine Pekuliargeschwindigkeit be-
zeichnet, d.h. seine Geschwindigkeit in einem Bezugssystem, das sich mit der Hubble—Expansi on mitbewegt.
Desweiteren werden alle (Pekuliar—) Geschwindigkeiten auf ihre Werte zur heutigen Zeit hochgerechnet.
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Abbildung 1.1.: Die Massen der Galaxienhaufen in den vier Simulationen in Abhangigkeit
der Hohe der ihnen entsprechenden Peaks. Es gibt 351, 239, 84, und 83
Peaks ohne zugehorigen Haufen in der SCDM, 7CDM, ACDM, und OCDM—
Simulation. 85% und 75% der Haufenin den Modellenmit 2 = 1und 2 < 1
konnte ein Peak zugeordnet werden.

1.4. Simulationen des Hubble Volumens

Die idea e kosmol ogische Simulation wirde das gesamte beobachtbare Universum enthalten
mit einer sehr hohen Massenauflosung. Dies ware insbesondere fur das Studium sehr sel-
tener Objekte, wie z.B. Galaxienhaufen, von Interesse. Im Rahmen dieser Arbeit wurden zwel
Simulationen, die sog. Hubble—Simul ationen, durchgefiihrt, die diesem Ideal relativ nahe kom-
men. Beide Simulationen enthalten einen signifikanten Bruchteil des gesamten beobachtbaren
Universums und sind um mindestens eine GrofRenordnung grof3er als die nachste Generation
von sehr umfangrei chen Galaxienkatal ogen. Damit wurde es zum ersten Mal moglich, Eigen-
schaften von Galaxienhaufen zu untersuchen, die bislang jenseits der Moglichkeiten von Sim-
ulationen lagen.

Abbildung 1.3 zeigt die differentielle Anzahldichte von massereichen Galaxienhaufen bei
einer Rotverschiebung von z = 0.78. Die Anzahl der Beobachtungen solcher Haufen ist
derzeit stark im Steigen begriffen. Drei dieser Objekte, fur die es sehr genaue Messungen der
Massen mithilfe ihres Gravitationslinseneffekts gibt, sind in Abbildung 1.3 gezeigt. Wie deut-
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Abbildung 1.2.: Vergleich der Geschwindigkeiten der Gal axienhaufen zur heutigen Zeit (v,—g)
mit der auf die heutige Zeit hochskalierten Geschwindigkeit aus den Anfangs-
bedingungen (vscaeq). Galaxienhaufen, die einen benachbarten Haufen in
einer maximalen Distanz von 10 »~'Mpc haben, sind durch die Rauten ken-
ntlich gemacht.

lich zu sehen ist, ist die 7TCDM—Simulation nicht in der Lage, solch massereiche Objekte zu
bilden. Mit anderen Worten bildet sich Struktur in eéinem Universum mit 2 = 1 viel zu spét.
Das ACDM-Modéll bildet mehr masserei che Galaxienhaufen bei z = 0.78, alerdings befindet
sich ein beobachteter Haufen weit aul3erhalb der Verteilung. Derzeit sind die Bestimmungen
der Massen solcher Haufen noch immer strittig, so dal3 es zum heutigen Zeitpunkt nicht ange-
bracht erscheint, ein endguiltiges Urtell Uber das ACDM—-Modell zu fallen.

Abbildung 1.4 vergleicht die Massenfunktion der 7TCDM-Simulation mit der theoreti-
schen Vorhersage des Press-Schechter—Modells. Die Simulation [a3t sich in der Tat sehr gut
mit diesem Modell beschreiben. Die Abweichungen, die in der Abbildung zu sehen sind,
entsprechen denen, die bislang in kleineren Simulationen gefunden worden sind. Siesind in-
sofern kein Grund zur Sorge, as es a priori uberhaupt keinen Grund gibt, warum das Press—
Schechter—Modell die Massenfunktion uberhaupt so gut beschreiben soll.

Von grofRem Interesse ist es, die raumliche Verteilung von Galaxienhaufen zu unter-
suchen. Wie oben bereits angedeutet, sind diese keineswegs gleichformig verteilt, sondern
sie ballen sich selbst zu Gruppen zusammen. Die Kataloge von Haufen, die aus den Hubble—
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Abbildung 1.3.: Die differentielle Anzahldichte von Galaxienhaufen bel einer Rotver-
schienung von z = 0.78 in der 7TCDM (durchgezogene Lini€) und der ACDM
(gestrichelte Linie) Simulation. Die Massen sind innerhalb eines Radius von
0.5Mpc/h bestimmt worden. Die drel Mef3punkte geben drel beobachtete
Objekte im Universum wieder.
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Simulationen erstellt wurden, sind ideal, um dies zu untersuchen. Hierzu wird die Zwei—
Punkt—K orrelationsfunktion, £(r), benutzt. Fur jeden Haufen gibt sie an, wieviel wahrschein-
licher esist, bel einer Entfernung r einen zweiten zu finden, als wenn die Haufen poisson-
verteilt im Raume waren. Die Korrelationslange, ro, ist definiert Uber £(rg) = 1. Da Gaa
xienhaufen im Universum so selten sind, ist es aulerst schwer, einen Katalog zu erstellen,
der vollstandig ist. Ublicherweise sind Kataloge nur vollstandig ab z.B. einer bestimmten
Rontgenleuchtkraft der Haufen. Deswegen wird die Korrelationsfunktion gemessen al's Funk-
tion der Dichte, n., des Katalogs, der Uber d. = n_'/? ein mittlerer Abstand der Haufen
entspricht. Die Abhangigkeit der Korrelationslange von der Haufendichteist derzeit noch um-
stritten, und erst mit den Hubble-Simulationen stehen ausreichend grof3e simulierte Kataloge
zur Verfigung, um dies zu untersuchen.

Abbildung 1.5 zeigt die Korrelationslangen der Galaxienhaufen in der 7CDM (K astchen)
und der ACDM (Rauten) Simulation in Abhangigkeit der Dichten von Teilmengen der Kata-
loge. Ebenfalls gegeben sind fur die beiden Modelle (gestrichelte und strichpunktierte Linie)
die Vorhersagen desModellsvon Mo & White (1996). Diesesdriickt die Korrelationsfunktion
der Haufen aus Uber

£(r) = b*(R) pm(r), (1.18)

10
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Abbildung 1.4.: Die kumulative Massenfunktion in der TCDM-Simulation (Kreuze) fur drei
verschiedene Rotverschiebungen. Die Kurven geben die theoretische Vorher-
sage wieder.

mit 5 .

b(R)=1+ (R b (2.19)
Hierbei ist {pvi(r) die Korrelationsfunktion der Dunklen Materie, und b(R) ist ein sogenan-
nter Biasfaktor. Dieser bestimmt sich aus der Konstanten 6. = 1.69 und aus dem Moment
o?(R) (entsprechend j = 0 in Gleichung 1.16). R ist wie oben der Radius, der der minimalen
Haufenmasse entspricht. Ebenfalls abgebildet sind in Abbildung 1.5 ein linearer Zusammen-
hang zwischen der Korrelationsl ange und der Haufendichte (gestrichelte Linie) und das Ergeb-
nis der Analyse der Galaxienhaufen im APM—Katalog (Kreuze; Croft et al. 1997). Wie deut-
lich zu sehenist, ist das lineare Modell nicht vereinbar mit den Vorhersagen der Modelle und
der Messung. Die Theorie von Mo & White sagt zu grof3e K orrel ationslangen voraus, stimmt
qualitativ aber mit den Ergebnissen aus der Simulation Uberein. VVon den beiden Simulationen
stimmt wieder nur die ACDM-Simulation mit der Messung uberein.

Die Hubble-Simulationen haben sich also bereits im Rahmen dieser Arbeit als machtige
Werkzeuge erwiesen, um Modelle mit Beobachtungen zu vergleichen. Sie werden in der
Zukunft von vielen Arbeitsgruppen benutzt werden, z.B. um detaillierte ssmulierte Galax-
ienkataloge zu erstellen und Vorhersagen fur die nachsten grof3en beobachteten Galaxienka-
taloge zu erstellen.

11
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Abbildung 1.5.: Die Korrelationslange der Galaxienhaufen in Abhangigkeit des mittleren Ab-
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stands der Haufen (mithin als Funktion der Dichte der Haufen). Die Boxen
und Rauten sind die Ergebnisse aus der 7CDM und der ACDM—-Simulation.
Die gestrichelte Linie entspricht einer linearen Abhangigkeit der beiden
Grofsen. Die gepunktete und die Strich—Punkt—Linie zeigen die Vorhersage
des analytischen Modells von Mo & White (1996). Kreuze mit Fehlerbalken
sind Ergebnisse aus der Analyse der Haufen im APM—Katalog von Croft et al.
(1997).
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Chapter

| ntroduction

C' est unemaladie naturelleal’ hommedecroire
qu'il possedelavéritédirectement; et delavient
qu’il est toujoursdisposéanier cequi lui estin-
compréhensible.

Blaise Pascd

Over the last twenty years, cosmology has evolved from a rather speculative side branch
of astrophysics and philosophy into a high precision science of itsown. Thisis due to the fact
that, recently, an amount of knowledge has been gained which is so large compared with what
was known earlier that is probably not too much of an exaggeration to compare this process
with the development of quantum mechanics and its subsequent revolution of atomic physics
in the early decades of the 20th century.

Observationally, new technology in the form of satellites and telescopes and also new tech-
nigques in order to study objects have arisen which have revolutionized our understanding of
the Universe. For instance, the Cosmic Microwave Background Explorer (COBE) satellite has
measured the afterglow of the Big Bang with a precision undreamt of before. It showsthat the
Microwave Background (CMB) has a nearly perfect black body spectrum and that there must
have been fluctuations of the order of 10~ in temperature (and thusin density) in the very early
Universe. The Hubble Space Telescope (HST) has widened the view of not only cosmology,
but of the whole field of astrophysics. Combined with new ground based telescopes like for
the Keck, galaxies at aredshift of five, that is, at atime when the Universe had only a sixth of
itscurrent age and size, can now be found. The existence of Dark Matter in galaxy clusters can
be observed by means of gravitational lensing. Thisvery short list gives only afew highlights
of the new data which theories about the birth of the Universe and the subsequent formation
and evolution of galaxies and Large—Scale Structure have to explain.

Onthetheoretical side, the data gained with new observational instrumentsand techniques
allow high precision tests of existing theories. High precision predictionsfor some of the the-
ories have aso been developed. While the smplest theories have failed to be good models
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for the Universe, some of them are not very wrong. So theoreticians have to start fine tuning
their models — something unknown to the field before. Computer simulations have played a
major rolein this process. Thisis not only dueto the truly gigantic increase in computational
power over the last decades. For instance, the Hot Dark Matter model, which assumes that the
dominant (and unseen) mass component in the Universe consists of massive neutrinost, was
rejected on the basis of a simulation with only 1000 particles (White et a. 1983). The seminal
simulation work of Marc Davis, George Efstathiou, Carlos Frenk, and Simon White in 1985
(DEFW hereafter) with 323 Cold Dark Matter particles contains results which are still valid
today. However, larger ssimulations are still needed to increase the predictive power of the the-
ories. Larger regions of the Universe have to be simulated with a higher mass resol ution to test
cosmol ogical models further.

Thiswork is about some of these high precision simulations. In the remaining sections of
this Chapter, the basic theoretical foundationswill belaid. Section 2.1 briefly describes the set
of fundamental cosmol ogical equationsand variables used throughout thewholework. Section
2.2 givesan overview of the growth of perturbations. Finally, section 2.3 contains an introduc-
tion into the family of Cold Dark Matter models used in the simulations themselves.

Chapters 3 and 8 containsthe technical part of thiswork. They describe some details of the
computers, the codes used, and the simulations themsel ves.

In Chapter 4, the large-scale distribution of the mass in the simulations is studied. The
density field, smoothed on suitablelarge scales, isinvestigated as a function of the mass above
an overdensity threshold.

Chapter 5 contains a study of the most massive objectsin the ssmulations. These areiden-
tified similarly to how observers find galaxy clusters. The main point of the Chapter isto de-
termine if peculiar velocities of galaxy clusters can be predicted accurately. To this end, the
correspondance between peaks in the smoothed initial density field and clustersis studied.

In Chapter 6, the Hubble Volume Simulations are introduced. These represent the biggest
effort in computational cosmol ogy to date and will be the basisfor predictionsfor the next gen-
eration of very large galaxy surveys. Catalogs of galaxy clusters which each contain hundreds
of thousands of clustersare extracted and used to study the existence of massive objectsat high
redshifts and the mass function itself (section 6.3), and cluster correlation functions (section
6.4).

Chapter 7 links the themes of the earlier Chapters. It shows how the formation process of
galaxy clusters is linked to the mass distribution around the clusters, that is, to Large-Scale
Structure itself. Finally, Chapter 9 contains a summary of thisthesis.

LIn the context of astrophysics and cosmology, "massive” usually means afew eV.
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2.1. Basic Cosmology

Hiten wir uns, zu sagen, dal} es Gesetze in
der Natur gebe. Es gibt nur Notwendigkeiten:
da ist keiner, der befiehlt, keiner, der gehorcht,
keiner, der Ubertritt. Wennihr wif, da3eskeine
Zwecke gibt, sowifdt ihr auch, daf3 es keinen Zu-
fall gibt: denn nur in einer Welt von Zwecken
hat dasWort ” Zufall” einen Snn.

Friedrich Nietzsche,

Die Frohliche Wissenschaft, 111, 109

The Big Bang asthe origin of the Universe is now awell—established theory. Accordingto
this theory, at some time in the distant past, space and time originated from the expansion of
atiny region. In thissection, it is assumed that the result of this processis a Universe which
is smooth and homogeneous on very large scales. This implies that the Universe essentially
looksthe same at all spatial locations, thereisno preferred region in the Universe — something
called the " Copernican Principle’. The theory which describes the dynamics of the gravita-
tional field isEinstein’stheory of General Relativity. The spacetime metric for suchaUniverse
is the Friedmann—Robertson-Walker (FWR) metric?

dr?

1—kr?

ds? = (cdt)? — a?(t) + 72(d9? + sin? ¥de?) | . (2.1)

Here, a(t), the so—called expansion factor, and & are determined using Einstein’s equation. &
may takethreedifferent values, namely & = 1, 0, and —1 for positive, zero, and negative curva-
tures of spatial hypersurfaces, respectively. The time dependance of a impliesthat any proper
distance scale((t) is proportional to it

I(t) o< a(t) . (2.2

This implies that electromagnetic radiation will change its frequency as it travels across the
Universe. Asa > 0, an observer will receive spectrafrom distant objects which are reddened.
If the observed and emitted frequencies are named w, and w,,, respectively, then the redshift =

is be defined via .
w
Z¢ = =1 2.3
o alt) + 2z, (2.3

where ¢, denotesthe time of emission, and a(¢) has been normalized such that it is unity today,
i.e a(to) =1.
Asindicated above, a(t) and k£ can be computed from Einstein’s equations

GY = 8nGTy, (2.4)

2The following discussion can be found in most textbooks on cosmology, e.g. Padmanabhan 1993. Note, that
¢ =1 here.
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if the stress—tensor 1" for the source of the gravitational field isgiven. Matter isusually treated
asaperfect fluid which is specified by apressure p and adensity p. Using the FRW metric (2.1)
and the assumption of homogeneity and isotropy (which makes all non—diagonal elements of
T vanish) then yields two independent equations, viz.3

a’ +k G

_ 8@ 25
" 5 P (2.5)

2-- -2 k;

LY sy, (2.6)

a a

The overdot denotes differentiation with respect to time. a(t), p(t), and p(t) arefully specified
once the equation of state p = p(p) isgiven. Using the following three abbreviations

H, = (9> @2.7)
a/ t=ty
3H
= 2.
Pe e (2.8)
0 = 2 (2.9)
Pe
yields that at present epoch
k= H3(Q—1). (2.10)

H, iscalled the Hubble constant at present time, p. isthe critical density, and €2, isthe density
parameter. From equation (2.10) it is obviousthat these parameters determine the curvature of
theUniverse. 0y = 1 givesaflat Universe.
Combining equations (2.5) and (2.6) gives
a drG

Pl —T(P +3p) (2.11)

which impliesthat @ < 0 for ordinary kinds of matter, which have (p + 3p) > 0. a thusis
smaller in the past and will become zero at somefinitetimein the past (Big Bang). Integration
yields the age of the Universe:

to = gﬁof(Qo) ; (212

where f(Qy) = 1 for Qy = 1 and f(€) > 1 for Qy < 1. Furthermore, one can show that for
QO - 1
a o tl/? (2.13)
a o t23 (2.14)
for theradi ation—dominated and matter—dominated phases of the Universe, respectively*. Gen-

eraly, the equations are easy to solve analytically for 2, = 1 and need to be done numerically
otherwise.

3¢ = 1 has been set here.
4The Universeis called radiation (matter) dominated when the energy density of radiation (matter) dominates.
Then,p = p/3 (p ~ 0).
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A further concept hasto be introduced here. The sourceterm for Einstein’s equations (2.4)
can be any conserved stress—tensor. In particular, one can take

T} = A6}, (2.15)

where A isthe so—called Cosmological Constant postulated, and later abandoned, by Einstein.
He originally wanted to have a stable, i.e. non—expanding Universe, but quite obviously this
doesn’t work because small fluctuations around the ” stable” state would result in animmediate
collapse (or in an immediate expansion). A correspondsto an equation of statep = —p = —A.
By noting its contribution to the density in the Universe

B ITGA

No= —— 2.16

one can take this as the vacuum energy density. Crudely speaking, A doesn’t change the ex-
pansion of the Universe at early times. At later timesit starts to accelerate the expansion. The
age of the Universeisincreased relativeto aUniversewith €2, = 1. A non—vanishing A isem-
barrassing because there is no good physical explanation for its existence and no convincing
explanation why it should have the value favoured by some cosmologists (for further discus-
sion see section 2.3.5).

2.2. The Growth of Perturbations

In the preceding section, it was assumed that at early times the Universe was smooth and ho-
mogeneous on large scales. From the fact that e.g. galaxies exist today it is obviousthat it can
not be smooth and homogeneous on small scales. Deviations from homogeneity must have
existed in the early Universe from which all objects seen today must have formed. Objectsin
the gravitational instability scenario formed from the collapse of overdense regions. COBE
does indeed find such fluctuations on the Microwave Sky, they are small (67'/T =~ 10~°), but
nevertheless they must have been big enough to cause the collapse of structure.

Consider a pressureless fluid with density p and velocity v under the influence of a gravi-
tational field with potential ®°. The equations which describe thisfluid are

%+v.(pv) = 0, (continuity) (2.17)
88_‘t’+(v.v)v — —V®, (Euler) (2.18)

V2® = 4rGp. (Poisson) (2.19)

These equations can be cast into a cosmological context by using appropriate variables.
Theseareacomoving positionx = r/a, whichisfixed for an observer moving with the Hubble
expansion, and the corresponding peculiar velocity u = a dx/d¢, representing departures of
the matter motion from pure Hubble expansion.

5This section follows Efstathiou (1990a).
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Assume the density is spatially variable
plx,t) = p(t) - (14 6(x,1)). (2.20)

Then equations (2.17) to (2.19) can be transformed from the coordinate system r to x which
gives

)

5 FVutVeo(u) = 0, (2.21)
88—?+(u-V)u+2gu = -V&/a®, (2.22)
a

Vi®/a?> = 4nGps. (2.23)

Inthese equations, V and the overdot now denote differentiation w.r.t. x and time, respectively.
Perturbationsin the early Universe must have been small. One can thus combine equations
(2.21) to (2.23) and neglect all non-inear terms to get
§4+2% —arGps=0. (2.24)
a

For 2, = 1, equation (2.24) can be solved easily. In thiscase, a o t*/?, which gives

. 4. 9
—5—_"5=0. 2.2
5 56— 550 =0 (2.25)
Obvious solutions for equation (2.25) are
§ o D(t) x t*3 xa (growing mode) (2.26)
x a”3? (decaying mode) (2.27)

D(t) isthe so—called growth factor of fluctuations. For 2y < 1, the solution is more compli-
cated. It can be shown that at early timeswhen 2 ~ 1 the decaying and growing mode behave
asin the case where ), = 1. At late times, when 2 < 1, the growing mode starts to saturate
and structure ceases to grow.

Thegrowth of peculiar velocitiesisstudied in Chapter 5. After some algebra, the equations
above show that the peculiar velocity of every mass element grows as

v aD. (2.28)

According to Heath (1977), the growth factor for a general cosmology is given by
D=H X2 / " x84, (2.29)
0

where X = 1+ Qg(a™ — 1) + Ag(a® — 1). The subscript "0” now explicitly refers to the
values of the density parameter and the cosmological constant at the present time. A number
of accurate approximate forms are known for the relations between D and a. D can be re-

written as follows
. _dD dDda
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where da/dt can be substituted from the Friedmann equation. Lahav et a. (1991) give an ap-
proximation for dD/da:

f()_dDa Qa3 00
a) = ——=~ .
da D Qoa,f?’ + (1 — QO —Ao)a72—|—A0

(2.31)

For a = 1 this gives the standard factor f =~ QJ-° which appears when predicting the peculiar
velocities produced by agiven overdensity field. Carroll et a. (1992) used thisresult to derive
an approximation for D(a) itself,

D =~ ag(a), (2.32)
where - a)
7= @ — A+ (1 + ) (1+ 52 239
with
Qa) = o 2.34
(a/) = a+Qo(1—a)+A0(a3—a)’ ( )
Aa) = Aga® (2.35)

a+Q(l—a)+Ap(a®—a)’

Combining these equations, yields an explicit approximation for the growth of peculiar veloc-
ities:

vV X f(a)g(a)aQ\/Qoa*?’ +(1—Q0—Ag)a2+ Ay (2.36)

For the simple case where ), = 1 and Ay = 0, these formulae reduce to the exact results
D =axt??*andv x /a.

2.3. The Cold Dark Matter Model

2.3.1. Introduction

According to the standard theory in cosmology described above, the Universe was born in the
Big Bang, i.e. it was hot, dense, and homogeneous in the beginning, from whence it expanded
adiabatically according to the laws of General Relativity. However, this picture isincomplete,
for it does not explain why on small scales, say afew Megaparsecs (Mpc), matter is clumpy
and not distributed homogeneously. In addition, evidenceis growing that the amount of matter
which emits electromagnetic radiation and thus can be seen in the Universe, isfar lessthan the
amount of matter which must be there. The visible matter can only account for asmall fraction
of the total mass. Dark Matter shows up viaits gravitational influence on various scales.

Inthefollowing, various concepts are added to the standard model. Insection2.3.2, theidea
of Cold Dark Matter is motivated. Thisis the missing matter component. Inflation, as awell
studied mechanism to account for density fluctuations in the early Universe, is introduced in
section 2.3.3. section 2.3.4 discusses the amplitude of theinitial fluctuation spectrum. Finally,
section 2.3.5 describes four cosmological models which are based on the preceeding hypothe-
ses and which have been simulated using large N-body simulations (c.f. Chapter 3).
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2.3.2. Dark Matter
Why Dark Matter?

Evidence for the existence of matter which does not emit electromagnetic radiation at any
wavel ength and which only shows up viathe influence of itsgravity (Dark Matter) comesfrom
different scales:

Scales of galaxies (a few ten kpc): The rotation curves of spira galaxies, i.e. the rota-
tion speed asafunction of the distancefrom the galactic center, areflat at large distances,
contrary to the prediction of Kepler*slaw which would give a decreasing rotation speed
for the visible matter. However, if a spherically distributed Dark Matter component is
added, which is larger than the disk itself, a so—called halo, the observed rotation curve
for radii larger than afew kpc is dominated by the halo and can be flat.

Scales of galaxy clusters (a few Mpc): The relative amount of Dark Matter is greater
for galaxy clusters®. The total mass of a galaxy cluster can be found either by using the
galaxies as test particlesin the system' s potential and deducing the mass from their ve-
locities, by converting the X—ray emission of the hot intracl uster gasinto amassestimate,
or by means of gravitational lensing where the deflected light of background galaxiesis
usedtoinfer themassof thecluster. Thelatter method isfree of assumptions(whereasthe
former two assume virial equilibrium which is not necessarily true). However, it mea-
suresthe projected mass which could be contaminated by objectslying behind or in front
of clusters. The methods agree relatively well for alarge sample of clusters and if one
comparesthetotal masswith the mass of the baryons (whichisbelieved to mainly consist
of the galaxiesthemselves plusthe hot intracluster gas) one finds that the baryon fraction
isaround 10 to 20% (White et al. 1993a).

Very large scales (tens of Mpc): Theassumption that galaxies may be treated astest par-
ticlesallows areconstruction of the cosmic velocity field from which the potential of the
underlying mass distribution can be deduced. Using Poisson’s equation then gives the
density field which can be compared to the observed density field of the galaxies. From
thisprocedure, evidenceis mounting that not only isthevisible massjust asmall fraction
of the total mass, but that the total mass may be close to the critical amount required to
make the Universeflat, i.e. 2y = 1 (e.g. Dekel 1994).

These observations directly lead to the question:

What is the Dark Matter?

Thesimplest approach to solvethe Dark Matter problemisto assumethat the Dark Matter isthe
same type of matter as that which has already been seen, i.e. baryons. Objectswhich consist of
baryons but do emit littleif any light are well known: they include for instance brown dwarfs.

5The uusal way of expressing thisis to give the ratio of the mass of and the light emitted by an object, the so—
caled mass—to-light—ratio M/ L. Typical valuesare M /L =~ 30M, /L and M /L ~ 300M¢,/ L, for galax-
ies and galaxy clusters, respectively, where M, and L, denote the sun's mass and luminosity, respectively.

22



However, astrong upper and lower limit on the amount of baryonsin the Universe comesfrom
Primordia Nucleosynthesis. According to this theory,

0.009h 2% < Qy <0.02h 2 (2.37)

which isinferred from measured abundances of light elements (e.g. Copi et a. 1995). Hence,
unless a severe error in these computations and measurements shows up, the Dark Matter can
not consist of ordinary baryons unless €2 isvery small.

Almost all remaining Dark Matter candidates have onething in common: They are elemen-
tary particles. Usually they are classified according to their speed when galaxy—sized fluctu-
ations entered the horizon. Particles which were relativistic (non—relativistic) at that time are
named Hot (Cold) Dark Matter.

Hot Dark Matter isprobably the most straightforward solution for the Dark Matter problem,
simply because neutrinos with a non—vanishing mass would have been relativistic when they
decoupled from therest of the matter inthe Universe. In addition, neutrinosare known to exist.
However, their masses are unknown. The mass of a neutrino must not be larger than about
30eV — otherwise neutrinos would overclose the Universe. Although the neutrino masses are
not known, it isalready clear that neutrinos can not bethe dominating Dark Matter component’.
If 2, =~ 1 then the free streaming of the neutrinos would have destroyed any adiabatic density
fluctuation smaller than the size of superclusters (~ 10'° M) intheearly Universe (Bond et al.
1980). Asaconsequence, structure would have formed in a so—called top—down scenario, with
superclusters forming first and galaxies forming only at the present epoch. As high redshift
galaxies are have been observed, this model cannot explain the formation of structure in the
Universe. In addition, this model isincompatible with the fluctuations in the CMB.

Asaconsequence of theabove, Cold Dark Matter (CDM) remainsthebest Dark Matter can-
didate. Thereareno known (i.e. detected) elementary particleswhich could be CDM. However,
thelist of postulated CDM particlesislong. Most of these particles are either Weakly Interact-
ing Massive Particles(WIMPs). There aretwo reasonswhy one should not worry about thefact
that neither of these types of particles has been detected yet. First, the neutrino itself was pos-
tulated by Wolfgang Pauli long before it was detected — which shows that postul ating particles
on asolid physical ground is much more than science fiction. And second, particle physicists
themselves are thinking of elementary particles beyond the standard model of particle physics,
the masses of some of these particlesfit nicely into the cosmological mass estimates.

Whatever CDM actually consists of, theimportant point isthat, from the viewpoint of cos-
mology, there is a need for these particles, which are well motivated within amost all exten-
sions of the standard model of particle physics. Thus, one of the main hypotheses of thiswork
isthat Dark Matter consists entirely of CDM®,

"Thisholdsif the density fluctuationswere generated during inflation. Hot Dark Matter could work inthe context
of string cosmologies but this is beyond the scope of thiswork.

81t may be argued that there may be a small contribution of Hot Dark Matter if ), = 1. For details on the
so—called Mixed Dark Matter Models (or CHDM with the H standing for Hot) c.f. e.g. Primack (1997).
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2.3.3. Inflation as the Origin of Fluctuations
Introduction

Currently, there are two competing scenarios for the generation of density fluctuations needed
to trigger gravitational collapse. These are Inflation and Topological Defects. Due to its com-
plexity, the latter is neither aswell understood nor has it been investigated in as much detail as
the former. AsInflation is taken as the scenario which generates density fluctuations, Cosmic
Defects are not discussed here.

Inflation

Thefirst and very simple question is: Why would there be density fluctuations at all after the
Big Bang? Suppose one assumes that there must have been some fluctuations because thisis
the only way to explain why the Universeis not completely homogeneous on small scales but
contains galaxies, galaxy clusters, and voids. Then the next question that arisesis: If causality
holds, how can the temperature variation of the CMB be only about AT/T ~ 10> from re-

gionson the sky which were causally disconnected at recombination? And why isthe Universe
soclosetobeingflat, i.e. why isQ;,; ~ 1 (neglectingfor the moment the debate about itsactual

value)? In addition, after the phase transition in the very early Universe (symmetry breaking)

a huge number of topological defects such as monopol es should have been created; why isthe
density in these monopol es so low today? In addition, one may wonder what the details of the
density fluctuations are? How can they be described in a statistical sense, i.e. what does the
density fluctuation spectrum look like? Inflation provides answers to all these questionsin a
rather simple fashion which allows one to connect the measurements of the CMB with detailed
models.

In spontaneously broken gauge theories which are used to describe the state of the very
early Universe, the vacuum energy plays a very important role. It can be described as an cos-
mological constant. Theidea, first proposed by Guth (1981), isto let thisvacuum energy inflate
asingle causally connected region in a de Sitter—like cosmology to a gigantic scale.

Consider a very simple universe which could look like this: It isempty (i.e. p = 0), has
avanishing curvature (k¢ = 0), and a positive cosmologica constant (A > 0) —the de Sitter
cosmology. The solution of Friedmann's equation is then simply

a = agexp[Ht], (2.38)

where the Hubble parameter is constant H = \/TB Thus, this universe would expand expo-
nentially due to the effective pressure of space time itself which is described by A.

It can be shown that this period of inflation not only solvesthe flatness problem, in addition
Qi = 1 isnearly inevitable — some extra work is required to allow an open cosmol ogical
model with Q;,; < 1 (c.f. Turok & Hawking 1998). The monopole problem is also solved
because the enormous expansion of a small region reduces their number density drastically.

Inflation itself is controlled by the potential of ascalar field ¢ (inflaton field). Asmentioned
above, the vacuum energy of ¢ drivesinflation. Quantum fluctuationsin ¢ giveriseto the den-
sity fluctuation needed for the gravitational collapse scenario later on. The fluctuationsin ¢
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of different regions of the same size complete the phase transition to the Friedmann phase at
different times. Thistime spread At =~ §¢/¢ can be obtained from the equation of motion of
¢ (which is the free Klein—Gordon equation in an expanding universe) and it is directly con-
nected to the density fluctuations 6y = dp/p o HAt. Now the assumptions which have to
be made for the inflaton field (essentially inflation has to last long enough in order to achieve
its goals — the so—called slow roll approximation — so that the potential must not vary much)
yield 6 =constant. Thus, inflation predicts a constant curvature spectrum 6 =constant of
adiabatic fluctuations (known as Zel* dovich spectrum). In addition, the quantum fluctuations
in ¢ have random phases and therefore are Gaussian.

It should be noted again that newer variants of inflation manageto result in Q;,; < 1, too.
This may be important because it is not yet clear that €., = 1. So inflation not only solves
some nasty problems but predicts the spectrum of density fluctuations to be P(k) « k. One
of the disadvantagesit hasisthat it cannot uniquely predict the amplitude of the fluctuations.
There are many variants of inflation each having different choices of ¢. They vary in different
aspects and some of them produce results which are unlikely to be testable. However, they
al have the above features in common and all yield different amplitudes. This leads to the
guestion of how this amplitude can be determined from observations.

2.3.4. The Fluctuation Spectrum and the Amplitude of Mass Fluc-
tuations

In addition to the generation of the primordial spectrum of density fluctuations a second phys-
ical process must be taken into account. Small scale density pertubations (with A < \.,)
enter the horizon prior to the epoch of equivaence between matter and relativistic particles
(Aeq & 13/Q0h* Mpc is the comoving horizon scale at that epoch). They are damped and the
spectrum developsabend at thescale \.,. The processeswhich change the shape of the primor-
dia fluctuation spectrum are usually combined in the so—called transfer function 7'(k) which
relates the primordial spectrum to the actual spectrum through:

P(k) = T*(k)P,(k), (2.39)

where P, (k) now denotes the primordial spectrum and P (k) the actual one.
The parametric form for 7'(k) used in this work was introduced by Bond & Efstathiou
(1984). In their notation, the power spectrum is given by

Ak
(1 + [ak/T + (bk/T)3/2 + (ck/T)2|»)2/v’

wherea = 6.4h *Mpc, b = 3.0h " *Mpc, ¢ = 1.7h *Mpc, and v = 1.13. A istheyet
unknown normalization and I' gives the typical scale of the spectrum. ThisisT" = QA for al
pure CDM models (for aCDM model which deviates from this see section 2.3.5).

As discussed above, the amplitude A of the power spectrum cannot be predicted uniquely
from inflationary models. Thus, it has to be obtained from measurements. This can be done
in two different ways, either by using the CMB measurements of the COBE satellite (as ex-
plained in Efstathiou et a. (1992), see also Bunn et al. 1995), or by relating it to the rms linear

P(k) =

(2.40)
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fluctuations in the mass distribution on scales of 8 » ! Mpc, o3, defined by

2
o2 = (2;)3 [ P (kiRB jl(kR8)> &P, (2.41)
where Rg = 8 h~! Mpc, and 7, is aspherical Bessel function.

COBE has an angular resolution of about 7° which corresponds to scales much larger than
any scale of interest in current cosmological investigations and simulations. Hence, a model
which links these scales to much smaller onesis needed. This cannot be done unambiguously.
For example, theamount of gravitational wavesisstill uncertainininflationary scenarios. This
could change A dramatically. Obtaining values for A from the mass distribution on cluster
scales does not suffer from this problem. The basic ideabehind thisisrather smple: The mass
function, that isthe number of objectsof somemassasafunction of mass, isfalling very steeply
at itshigh mass end, i.e. high mass objectslikerich clusters of galaxies are very rare (compare
Chapter 6). Asthe mass function itself depends on the amplitude of fluctuations, the overall
amplitude A of the power spectrum can be fixed by matching the observed abundance of rich
clustersin computer smulations.

Values for oz can be obtained by using either the mass (White et al. 1993b) or the X—ay
temperature functions (Eke et al. 1996, Viana & Liddle 1996) of rich clusters. The different
studies carried out this way more or less agree that

og ~ 0.6 Q5% (2.42)

2.3.5. Cold Dark Matter Models
Die Welt ist unabhangig von meinem Willen.

Ludwig Wittgenstein
Tractatus |ogi co—philosophicus 6.373

In the following, the four models used in the VIRGO simulations will be introduced. In
addition, someof their featureswill bediscussed. A concluding section summarizesthe present
status quo of measurements of the density parameter (2. Despite several indications at this
time no decisive point can be made whether or not the density parameter is unity or smaller
than unity.

SCDM

In principle, the simplest cosmological model, named Standard CDM (SCDM), isano para-
meter model where all quantities are fixed either from the predictions of inflation or from mea-
surements. Thesearen = 1, Qy = 1, and h = 0.5°. h cannot be chosen to be larger because
otherwise the age of the Universe would be smaller than the age of the oldest stars. Thisis
still very uncertain, though. For arecent review of determinations of the Hubble Constant c.f.
Branch (1998). Asintroduced above, SCDM hasT' = Q3h = 0.5.

9The Hubble constant is usually expressed as Hy = 100 h km/sec/Mpc.
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Nowadays, it has become en vogue to state that the SCDM model does not work and that it
hasto be substituted by somevariant. But SCDM inmost casesiswrong only by afactor of two
or so—which israther small compared with the usual uncertaintiesin astrophysics/cosmology.

So what actually is wrong with SCDM? As already stated in section 2.3.4, the normaliza-
tions obtained by COBE and via clusters disagree strongly. The amount of small scale power
relative to large scale power istoo large. Thus, if normalized to COBE, SCDM predicts too
high an abundance of galaxy clusters. If normalized to give the correct abundance of clusters,
the correlation function is too steep (Davis et al. 1985, Jenkins et a. 1998) and COBE fluc-
tuations are underpredicted. Problems like this show up in many other topics (galaxy—galaxy
and cluster—cluster correlation functions (Bahcall & Cen 1992, Efstathiou et a. 1990), genus
statistics (Springel et al. 1997) to name just afew. For a detailed discussion of thistopic c.f.
Ostriker 1993). Probably the simplest way to understand why SCDM has these problemsisits
typical scale, specified by I' = 0.5. Onthebasisof galaxy clustering, Peacock & Dodds (1994)
found I' = 0.25. Thus, the power spectrum of SCDM has a peak which is at too large awave
number. From thisit is clear why the above normalization problems show up.

TCDM

Asindicated above, I' =~ 0.25 isneeded to match the clustering statistics of galaxiesand galaxy
clusters. For amodel with 0, = 1 this cannot be easily achieved without invoking additional
physics because the obvious solution, to lower the Hubble constant to » = 0.25, isin conflict
with observational limits(Bartlett et al. 1995). One possibility isto assumethat massive neutri-
noswhich existed in the early Universe have now decayed into other neutrinos. The r neutrino
is a candidate for such a particle, hence the name of the model. A decaying neutrino species
leads to an enhancement of the content of relativistic particles in the Universe. This changes
the power spectrum of density fluctuations. In any model without such a decay process, the
early Universeis radiation dominated, but matter startsto dominate later because the densities
of radiation and matter scale differently with a. Inthe 7CDM model this processis changed as
follows. In the early stages of the Universe the energy density of the massive neutrinosis the
same as that of a massless species. As the Universe expands, the massive neutrinos become
nonrelativistic, and their energy density starts to increase relative to their massless counter-
parts. This leads to an epoch in which the density of the Universe is dominated by massive
neutrinos. Later, they decay, and their rest energy is converted into energy for relativistic par-
ticles—thereafter the Universe startsto evolvelikea SCDM Universe, but with ahigher energy
density in relativistic particles which causes equipartition to occur later hence reducing I'.

The shape parameter I of the power spectrum can be expressed as follows (Bardeen et al.
1986):

Qrth >1/2

[ o Quoh x | —10
0 X<4.18-10—5

(2.43)
Q0 = pro/ periv, Where p,q isthe present energy density inrelativistic particles, and €2,,,o stands
for the matter that can clump at small scales. For SCDM (where ), = 4.18-10°, Q0 = Qo)
I' = 0.5 asintroduced above. An increase in the density of relativistic particles — as in the
case of the decaying neutrinos introduced above — lowers . So, in order to obtain the desired
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spectrum, the necessary density in relativistic particles hasto be achieved.
It can be shown that T is a function of the mass and the lifetime of the massive neutrinos
as follows

' = Qoh/[0.861 + 3.8 (m?, 7)*/3]"/? (2.44)

Thisfitting formulais given by White et al. (1995). m,, isthe mass of the neutrino in units of
10keV and 7 isitslifetimein years. Obviousy, the 7CDM model requires additional physics
beyond the Standard Model of High Energy Physics. For more details about scenarios with
decaying neutrinos and their cosmological implications c.f. Bharadwaj & Sethi (1998).

The parameters of the Virgo 7CDM moded are 2y = 1, h = 0.5, ' = 0.21.

ACDM

Evidence is mounting that 2, is actualy smaller than unity and that the Hubble constant is
larger than h = 0.5. The latter is still rather controversial. For the former, the situation is
somewhat clearer. See below for a discussion of the value of 2. Introducing a comological
constant is the only solution which allows a low density in matter and a flat Universe (e.g.
Ef stathiou 1990b).

The introduction of acosmological constant has immediate consequences which are often
taken as amotivation itself. The age of globular clusters is often taken as evidence for a Uni-
verse which is significantly older than a universe described by a model with €2 = 1 — despite
the large systematic errors in these measurements. |f one assumes aflat universe (or if one be-
lieves in a Universe which has an age of around 15 Gyrs and €);,, = 1) then a cosmological
constant would have dominated the expansion of the Universe from z < 0.6. Asalready in-
dicated above, the age of the universe is greater than the age of a matter dominated universe
with Q. = 1, to = 2/(3H,). Objects today have had more time to evolve in a Universe with
a cosmological constant. Structure starts to grow earlier in the past, and later the growth of
structure stops.

Estimates of the matter density on cluster scales usualy yield €2y ~ 0.3. If one assumes
that the universe isflat, that there is no additional matter in the Universe, and that the ages of
globular clustersare correct, thisleadsto thefollowing set of parametersfor the ACDM model:
Qp = 0.3, A\g = Qor — Q9 = 0.7, and h = 0.7. Obvioudly, thisgivesT" = 0.21, close to what
IS desired.

However, the model has some limitations which will be mentioned briefly. Several mea-
surements give rather strict limits on Ay. First of al, including a cosmological constant en-
hances the volume of the Universeitself. Hence, one gets an estimate of the number of lensed
objects. Comparing thiswith observationsoneisableto deducealimit of Ag < 0.6 at 95%c.l.
(for adetailed paper see Kochanek 1996 and references therein). Also, there isno explanation
for Ay on the basis of particle physics. The model requires an extreme fine tuning to achieve
the desired energy density of the vaccuum.

A second way of determining A, comes from measurements of spacetimeitself. Onetakes
so—called standard candles, whose behaviour is (assumed to be) well understood, and com-
pares local measurements of these objects with ones at high redshift. Supernovae of type la
areapromising candidate for this. This needs the observation of the lightcurves of a sufficient
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number of distant supernovae, that isthe brightness of the supernova as afunction of time, be-
ginning before they reach their maximum and extending well beyond this maximum. Onethen
computes the effects of space time and fits the parameters 2, and A, to amodel for the appa-
rant bightness—distance relation. Riess et a. (1998) reported on data for about 34 nearby and
16 high—redshift supernovae. They find that the data favours eternally expanding models with
Ao > 0 and acurrent acceleration, that is ¢y = % — Ay < 0. A Universe closed by ordinary
matter (2y = 1) isruled out at the 7o level. It may still be flat, though, with a contribution of
Ao.

OCDM

In terms of simple models, an open Universe model (OCDM, c.f. e.g. Ratra& Peebles1994) is
probably as simple asthe original SCDM. Using the parameters 2y = 0.3, A = 0,and h = 0.7
is consistent with most observational constraints (see below). Also, the shape of the power
spectrum is in the desired range, and there are no additional parameters which require extra
physics. As already mentioned, variants of inflationary scenaria can produce open Universes
(e.g. Turok & Hawking 1998). The open model has quiteasimilar behaviour to the model with
the cosmol ogical constant. Asinthe ACDM model, structure starts to grow earlier in the past,
and later the growth of structure stops.

The Value of €,

Determining the value of the density parameter has been one of the main goals of cosmology
for decades. Despite enormous effort, so far no decisive point can be made'®. In the follow-
ing, some of the arguments are presented. Obviously, either some of the measurements or the
model s themsel ves must be wrong — simply because €2, cannot be unity and smaller than unity
at the sametime. Only the results themselves and an outline of the argumentswill be given. A
thorough discussion of all the uncertaintiesinvolved is far outside the scope of thiswork (for
more details on thistopic c.f. Coles & Ellis 1997).

Dynamical mass of clusters: Assuming that the galaxiesin a cluster may be regarded as
test particles, the cluster mass can be measured (assuming viria equilibrium). Alterna-
tively, cluster masses can be determined by gravitational lensing effects. Then, the mass—
to-light ratio can be determined. Clusters are systemswhich formed from alarge region
in theinitial density field. Therefore, it is assumed that their properties are the same as
that of the Universe as awhole. Hence, converting the mass—to-ight ratio into a value
of Q0 should givethe global value of 2. For instance, Carlberg et al. (1996) get avaue
of 0y = 0.24 + 0.05 which istypical for studieslike this.

Baryon Fraction in clusters: This study also assumes that because of the way clusters
form measuring a property of the cluster gives the globa value. White et al. (1993a)
compared the massin baryons (in galaxies and in the hot intracluster gas) with the total

10This statement is phrased as conservatively as possible. In the field, strong opinions exist about the value of
. However, in most cases these opinions are based on one indication. There till is enough room for the
value of Qg to lie between about 0.1 and 1, though recent evidence seems to favour smaller values.
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dynamical mass in the Coma cluster. Following the argument that a cluster is atypical
system, the baryon fraction must not be larger than its global value —given by the nucle-
osynthesis constraint. Using thislogic, White et al. get the constraint
0.15h~1/2
Y S T 055
which is much less than unity for any likely value of h. Thisis generaly referred to as
the " baryon catastrophe” although it is only a catastrophe if one believesthat 2, = 1.

(2.45)

Strong arcs in clusters: Using galaxy clusters from the GIF simulations introduced in
Chapter 3, Bartelmann et al. (1998) investigated the number of strong arcs produced by
the four cosmological models. Crudely speaking, to produce strong arcs a cluster needs
ahigh concentration of massinits center and it hasto have formed by the redshift which
ismost efficient for the production of strong arcs (z ~ 0.3). Bartelmann et al. find that
only the open model can account for the total number of arcs produced on the whole
sky. In particular, the two high density models are two orders of magnitude |ess efficient
producers of strong arcs. The ACDM model isintermediate.

High redshift supernovae: Asaready mentioned in the section onthe ACDM model, the
constraints from this technique favour eternally expanding modelswith A, > 0 and a
current acceleration, that is ¢y = % — Ay < 0. A Universe closed by ordinary matter

(o = 1) isruled out at the 7o level (Riesset a. 1998).

Evolution of the cluster abundance: Due to the dependence on €2, in the dynamical
equations, low density Universes form massive galaxy clusters at earlier redshifts than
high density Universes. This point will be examined in detail in section 6.3.

Peculiar Velocities of Galaxy Clusters: This will be investigated in detail for the dif-
ferent models in Chapter 5. Observationally, the rms peculiar velocities of samples of
galaxy clusters are relatively low. Thisis (incorrectly) claimed to favour alow value of
o (e.g. Borgani at €. 1997).

Velocity—density reconstructions: Inthelinear theory, thevelocity field is curlfreeand
can therefore be expressed as the gradient of apotential. One can thus map the potential
from the observableradial peculiar field and so solvefor the density field. Thistechnique
called POTENT (c.f. Dekel 1994 for adetailed discussion) suggeststhat the Universe has
ahigh density.

From this short and incomplete list it is clear that to measure €2, predictions have to be made
which should be as precise as possible. Simulations can be used to do this— and in Chapters
5 and 6 the simulations presented in thiswork will be used to shed light on some of the points
mentioned above. However, the use of simulations of structure formation in a gravitational
instability scenario is not just restricted to measuring €2,. They can be used to achieve a better
understanding of whether and how linear theory works (c.f. Chapter 5), and they can be used
to investigate the distribution of mass as awhole. Before turning to this point in Chapter 4, in
the following Chapter, the simulation sets will be introduced. The technical background will
be given in Chapter 8.
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Chapter

The Simulation Sets

In thisChapter, thesimulation setswill beintroduced. 1naddition, image processing techniques
will be discussed. These techniques will then be combined to give pictorial impressions of the
different cosmologies.

Apart from the Hubble Volume Simulations, which will be introduced separately in Chap-
ter 6, two sets of simulations were run. They feature the models introduced in section 2.3.5.
All the simulations were run as part of the Virgo Supercomputing Consortium which is based
in Britain, Germany, and Canada and which consists of scientists from these countries. Its
(core) members are Frenk, Jenkins, and Pearce (Durham, UK), White, Colberg (Garching, D),
Thomas (Sussex, UK), Couchman (London, CAN), Efstathiou (Cambridge, UK), and Peacock
(Edinburgh, UK).

Thetwo simulation setswere primarily donefor different purposesalthough they have been
used for aplethoraof applicationssincethey werefinished. They will bereferred to astheVirgo
and the GIF ssimulationsfor reasons which will be clear in the following.

The code used to run these smulations will be discussed in Chapter 8, where a summary
of code development done during the course of thiswork will also be given.

3.1. The Virgo Simulations

Thefirst set of ssimulationswas run in late 1995 and early 1996. It made use of the 128 (256)
processor CRAY T3D at the computer center of the Max—Planck—Gesellschaft, the Rechen-
zentrum Garching, RZG (at the Edinburgh Parallel Computer Center, EPCC). It consists of
the four models introduced in section 1.3.5 following the evolution of 256° particlesin cubic
boxes of size 240 Mpc/h each. All four models were run with the same phases for the initial
density field. The gravitational softeningis30kpc/h. The parameters of the Virgo simulations
are summarized in Table 1.1. As can be seen, the high and low density models have differ-
ent mass resolutions. The simulations are all cluster normalized (c.f. section 1.3.4). Therms
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\Model ‘ Q A h r or [ mp ‘

SCDM | 1.0 00 05 050 051 240 221
7CDM | 1.0 00 05 021 051 240 221
ACDM |03 0.7 07 021 090 240 6.8
OCDM |03 00 0.7 021 085 240 6.8

Table 3.1.: The parameters of the Virgo simulations. The cosmological parameters are noted
as introduced in Chapter 2. [ denotes the size of the box in one dimension and is
given in Mpc/h. m, isthe mass of asingle particlein unitsof 10'° 4= M.

‘ Model ‘ Q A h r o3 [ mp‘

SCDM |10 00 05 050 060 85 10
7CDM |10 00 05 021 060 85 1.0
ACDM |03 0.7 07 021 090 141 14
OCDM |03 00 0.7 021 085 141 14

Table 3.2.: The parameters of the GIF simulations. The cosmological parameters are noted as
introduced in Chapter 2. [ denotesthe size of the box in one dimension and is given
in Mpc/h. m, isthe mass of asingle particlein unitsof 10'° 4=! M.

mass fluctuations in spheres of size 8Mpc/h originally were o = 0.6, 0.6, 0.9, and 0.85 for
SCDM, 7CDM, ACDM, and OCDM, respectively. However, with this normalization —which
adopts the Eke et a. (1996) and the White et al. (1993) normalizations for the low and high
density models, respectively — the abundances of massive clustersin the models do not agree.
The high ©, models produce three times more massive clusters than their low density counter-
parts. Thiswas found during the course of thiswork and by Thomas (private communication).
Itis(partly) reflected inthe numbersgivenin Thomaset al. (1997). Because of thisthe SCDM
and 7CDM models were rescaled such that the earlier outputs at = = 0.2 were taken to be
z = 0. Thisyieldsog = 0.51 and makes the abundances agree. When the code for the T3E
became available in 1997, the high density models were re—run in order to get the desired rms
mass fluctuations at z = 0. Thiswas also a good test of the new code. The new code exactly
reproduced the results of the old one.

Jenkins et al. (1998) contains an introduction to further technical details of these simula-
tions, pictures (see below), and a discussion of the power spectra, correlation functions, bulk
flows, and pairwise velocity statistics. The simulations were also used to study the internal
properties of galaxy clusters (Thomas et al. 1997) and to compute genus statistics (Springel et
al. 1998).
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3.2. The GIF simulations

The second set of simulationswas run with the same mass resol ution for each model. In each of
thesimulations, asingle particlehasamassof 2.0-10'° M. Again, each simulationfollowsthe
evolution of 256° particles. Hence, the sizes of the simulated volumes are different for the low
and high density models. Table 1.2 summarizes the parameters of the GIF models. Note, that
for the GIF models the original cluster normalization is used. The simulation set was run with
the same phases for theinitial density field, too. The gravitational softening isagain 30 kpc/h.
Thesimulationswereall started onthe CRAY T3D at the RZG and, oncethe clustering required
more memory, transferred to the bigger T3D at the EPCC.

These GIF simulations were originally run to be used as part of the GIF collaboration®
which consists of scientists from Germany and Israel. In order to be able to extract accurate
merger histories of objects which are used for so—called semi—analytical models, 50 output
dumpsbetween z = 20 and z = 0 were produced and stored. Thisamountsto around 50 GByte
if only the compressed data, which is used for the analysis, is summed up. Kauffmann et al.
(2998) containsthefirst implementation of the semi—analyticsinto the ACDM and 7CDM mod-
els. Thesimulationswere a so used to compute arc statistics (Bartelmann et al. 1998), and they
also appear in Jenkins et al. (1998).

3.3. Visualization Techniques

The usual visua representation of N—body simulationsin the pre-Virgo days had been the use
of simple particle (dot) plots. For low resolution simulations where only massive objects are
well resolved thisis probably the best way to show the structure. However, for high resolution
simulations like the Virgo and especially the GIF simulations, better representations had to be
found?. The adopted solution for this problem was the adaptive smoothing algorithm which
will be motivated and discussed in more detail in the following.

Note that all high resolution colour pictures can be found in the Appendix!

3.3.1. Adaptive Smoothing

Thefirst improvement to black and white dot plotsisto compute densitieson agrid and to code
theresult with colours. A typical slicethrough one of the Virgo simulationscould then look like
figure A.1. Thisshowsthe particlesin adlice of thickness 22.5Mpc/h through the whole Virgo
SCDM box. It containsabout 1.5 million particleswhich were assigned to agrid using anearest
grid point assignment (NGP, see e.g. Hockney & Eastwood 1981). For this picture, already,
a further improvement was implemented. The density contrast between the dark low density

1GIF stands for German Israeli Foundation which was the supposed funding organization. Ironically, the pro-
posal was turned down.

2Thisis interesting for works which appear on astro-ph, too. Dot plots with millions of particles lead to huge
postscript files. Few people seem to notice that the size of adot plot can usually be decreased quite massively
by simply converting the postscript plot into ahigh resolution GIF or JPEG picture. A postscript plot can have
severa dots at the same position (postscript has one command for each dot), a GIF can't. Converting it back
then leads to a postscript plot with at most one dot at any position.
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regions and the bright particle knotsis so large that the logarithm of the particle densities on
the mesh was used to set up the colour table.

Despitethe low resolution of thistest case, theresult of the efforts so far till leavesalot to
be desired. The particle knotsall ook quite nice, but the low density regions are dominated by
noise. Thisleadsnaturally to theideaof smoothing. Figure A.2 showsthe same slice smoothed
with a Gaussian filter with a kernel size of 2.5Mpc/h. This has removed the noise from the
voids, but on the other hand it has smeared out the knots completely. Obvioudly, a uniform
changein thekernel size would not solvethe problem —in order to resolve the knotsthe size of
the kernel should be very small which again leads to particle noisein the low density regions.

The ideal way to deal with a picture like the one in Fig. A.1 would be to leave the knots
as they are and smooth the regions of low density. Such a procedure, in a dightly different
context, iswell known in Smoothed Particle Hydrodynamics (SPH). There, the continousfluid
iIsmodelled by particles. Each particlerepresentssomeregionin space. Very crudely speaking,
the size of thisregion is determined by thelocal density at the particle position. Thisisexactly
what is needed for the smoothing. Particlesin high density regionsdo not need to be smoothed,
whereasfor particlesin low density regions a smoothing has to be found which depends on the
local density itself. That way, a non—global smoothing is achieved.

Technically, the problemissolved onthegrid. A different approach would beto find thelo-
cal densitiesfor the particles themsel ves (asin SPH) and then assign them to agrid using these
densities to define afilter radius. However, this procedure does not lead to pictures which are
different from the ones obtained with the method used here (Jenkins, private communication).
Starting from a configuration like the one shown in figure A.1, for each grid point a smoothing
length isfound asfollows. If the contents of the grid point exceeds NV particles, no smoothing
is applied. If it islower than N particles, the contents of the neighbouring eight mesh cells
are added using a weighting which takes into account that the ideal neighbouring region of the
mesh cell should be a sphere rather than a square. The procedure is stopped if IV particles are
now reached, and it is continued going further out otherwise. The number of particlesrequired,
N, isafree parameter. Numbers between N = 20 and N = 30 turn out to give very similar
and satisfactory results. Thus, a smoothing radius is computed for each mesh cell. In the sec-
ond stage of the algorithm, thisradius is used as the size of a Gaussian filter to redistribute the
mass in the cell onto the mesh. Mass conservation is ensured which will be important for the
discussion of the three-dimensional distribution of matter in the following Chapter.

Figure A.3 shows the result for the test case. As can be seen, the low density regions no
longer contain significant particle noise, the particle knots are clearly resolved, and a plethora
of filaments connecting the high density regions shows up.

This adaptive smoothing algorithm was coded on a three—dimensional mesh, too. 1t will be
used in the following Chapter for the investigation of the mass distribution. However, finding
a good three—dimensional representation of the mass distribution is very difficult for reasons
which will be become evident in Chapter 7. Two—dimensional representations of the massdis-
tributionin slicesyield probably the maximum amount of information at the sametime—which
iswhy the attention isfocused on such two—dimensional visual representationsin thefollowing
section, which concludes this Chapter.
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3.3.2. Cosmology with Pictures

In Chapter 2, the basic cosmological equations and notions, and our four cosmological models
were introduced. From the equations themselves, a couple of points became clear. Pictures
obtained with the adaptive smoothing can shed further light onto this.

Figure A.4 showsasdliceof thickness8.5 Mpc/h through the TCDM GIF simulation. A vari-
ety of structure elementscan be seen. Right inthe middleof the pictureavery large underdense
region, avoid, can be seen. Thevoidissurrounded by acomplicated network of massconglom-
erates. To the South there is ahuge galaxy cluster, accompanied by many smaller objects. The
South—Western boundary of the void is formed by a sheet — as will be shown in Chapter 7.
Clearly, regardless of their size the majority of objects are part of the network. Big objects
appear to be clustered, and they are surrounded by smaller ones. The bridges between them,
filaments and sheets, are mainly populated by small objects and a smooth component. This
network will beinvestigated in considerably more detail in the following Chapter. Such struc-
tures can be seen in galaxy surveys, too (see e.g. the Las Campanas Redshift Survey, Shectman
et a. 1996). There too, galaxiesline up in filaments and sheets which surround voids.

Figure A.5 shows dlices of thickness 22.5Mpc/h through the four Virgo modelsat z = 0.
For each picture, after the smoothing the mass density was divided by the mean, and then the
logarithm was taken. The same colour tables were used. The pictures look quite similar but
thereis abig difference between the low and high density models. In general, the voidsin the
low density modelsareemptier thanintheir high density counterparts. Thisletsthelow density
models appear darker. Notethat, in aregion of fixed size, high and low density models contain
different amounts of total mass. From the pictures, it can be seen that most of the additional
mass of the {2 = 1 modelsisin the voids. The two low density models, OCDM and ACDM,
are hardly distinguishable. The sameistrue for thetwo 2 = 1 models. 7TCDM appears to be
slightly smoother than SCDM. Recall that these two models differ by the relative amounts of
large and small—-scale power. SCDM has more small scale power which leadsto the appearance
of more small objectsthan in 7CDM.

Apart from SCDM, which isknown to be a poor fit to several observations (compare Chap-
ter 2, section 2.3.5), the models all have parameters which lie within the observational bounds.
Clearly, there are differences between the 7TCDM and the two low density models which have
to be explained. If it were possibleto identify locations of galaxiesin the Dark Matter distribu-
tions, pictures of the galaxy distributionswould haveto look identical. Thisleadsto the notion
of bias. It isbeyond the scope of thiswork to go into the details of biased galaxy formation. In
the following, only a very general and brief introduction is given which explains the problem
with the difference in appearance of the models.

The simplest Ansatz for the relationship between the distribution of the density field of the
Dark Matter, op\, and that of the galaxies, d,, would be to assume that "light traces mass’,
that is, galaxies are found in the bright spots®. Thus, galaxies and Dark Matter have the same
clustering properties. However, under this hypothesis the differences between the 7CDM and

30ccam’s Razor which is often used as an argument for 2 = 1 (because the equations of such a cosmology can
be solved so easily; seee.g. Dekel et a. 1997) herewould actually say that 2 < 1. Inmost low density models
currently under consideration, no bias or only avery small biasis needed. The assumption that light traces
mass is clearly much simpler than a complicated relationship between them.
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the OCDM and ACDM models do not appear. Clearly, in order to get the same galaxy distri-
bution for the high and low density models, the clustering properties of the Dark Matter and
the galaxies must be different in 7CDM. The simplest Ansatzisto assume alinear relationship
independent of scale

5DM - b (Sg ; (31)

where b is the so—called bias parameter. The rms fluctuation in the number counts of galaxies
on ascale of 8Mpc/h isog, ~ 1 (Davis & Peebles 1983). Hence, in order to reproduce the
observed clustering of the galaxies, ahigh density model hasto have apositive biaswhereas a
low density model isnot at all or only mildly biased.

As discussed in sections 2.3.3 and 2.3.5, the simulations are set up using Gaussian initial
conditions with the amplitudes required to yield the observed abundance of rich clusters. Fig-
ure A.6 shows dlices of thickness 1/10th of the box size through the four GIF modelsat z = 0
obtained in the same fashion as the dlices for the Virgo models. The GIF models look identi-
cal! Of course, they are not completely identical. Very small differencesin the concentrations
of the massive objects can be seen, and subtracting the pictures of, say, the SCDM and CDM
model from each other displays offsets in the positions of the overall structure.

On the other side, the pictures must look identical by construction of the models. Because
the models were cluster normalized and run with with the same phases, the same objects form
at about the same position in each of the models— which is why they look nearly identical at
z = 0. The sizes of the void regions are different for the low and high density models, but
because the mass evacuated into the clusters and walls, they look the same with the scaling
adopted in these pictures.

Clear differences between the models appear if dices at earlier redshifts are taken. Figure
A.7 shows the same dlice through the four modelsat z = 1. Here, the difference in the evo-
lution between high and low density universes shows up. OCDM and ACDM till look quite
similar. However, adifference between thetwo high 2, modelsbecomesvisible. Inthe 7CDM
model, matter is distributed over wider regionsin space than inthe SCDM model. In addition,
objects appear to be brighter and more massive in thelow 2, modelsthanin their high density
counterparts. Apparently, thisis due to the formation time of these objects which is at higher
redshifts. Chapter 6 will come back to this point when the appearance of massive galaxy clus-
tersat aredshift of z = 0.8 isinvestigated for the Hubble Volume Simulations.

Figure A.7 shows slices through the four models at = = 3. The differences between the
models are now even stronger. From these picturesit can seen that

1. low density models start to form structure earlier than models with €2, = 1. In particu-
lar, the open model starts first, followed by ACDM. As a consequence, there should be
relatively few massive objects at high redshifts in a high density Universe (see section
6.3).

2. the growth of structure saturates for low density modelsnear z = 1. That is, itishard to
distinguish between OCDM and ACDM in the |ate stages of their evolution, and thereis
very little difference between these models after about z = 1.

3. thedifference in the power spectra of the two high density models shows up as a differ-
ence in the clustering strength. SCDM has more power on small scales which makes it
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form more objects (dueto the way the simulationsare normalized, they al form the same
number of objects corresponding to rich clusters. Below that mass limit, SCDM forms
more objects). The 7CDM model forms structure latest among these four models.

In the next Chapter, the three—dimensional mass distribution in the GIF modelsat = = 0
isinvestigated. This addresses questions related to the ones discussed above, abeit from a
different angle. Is the mass distribution really as similar in the models as the pictures (Fig.
A.6) suggest?
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The Distribution of Mass

4.1. Introduction

Assoon asthefirst large catal ogs of galaxies were assembled it was realized that on scales of a
few megaparsecs and larger the distribution of galaxiesis not homogeneous. Maps of the dis-
tribution show a complicated network, and there have been nearly as many suggestions of what
can be seen asthere are galaxy catalogs. One of the most famousfeatures, the so—called ” Great
Wall”, dates back to the second CfA redshift survey: De Lapparent et al. (1986) argued that the
structures that can be seen are cuts through large sheets of galaxies, rather than filaments, be-
cause one would not expect to find many long parts of filaments in the slices which represent
the catalog. Other authors, however, have argued that galaxies preferentialy lie in filaments
(c.f. eg. Haynes 1986). The situation may be clearer for those regions where no or few galax-
ies can be found, the so—called voids (Kirshner et al. 1981). These voids are not completely
empty (Lindner et al. 1996).

One of the main assumptionsin Cosmology is that the Universe is homogeneous on large
scales (see Chapter 2). With current galaxy surveys, this scale of homogeneity has not been
reached, yet. It will require the forthcoming very large galaxy surveys like the Soan Digital
Ky Survey to get there.

Thefirst large N-body simulation of the Cold Dark Matter (CDM) model led to a qualita-
tive appearance of the distribution of matter which was similar to the one in galaxy catal ogs.
For instance, Davis et a. (1985) noted that ” structure appears very rapidly, and filaments, su-
perclusters of clumps, and large low—density regions’ developed in their simulations, which
had 323 particles. Since then, it has been possible to run larger and larger simulations, making
use of the latest generations of computers. During the last couple of years it finally became
possible to run simulations with a very large number of particles in large computational vol-
umes. The GIF simulationsintroduced in the preceding Chapter areideal for detailed studies of
Large—Scale Structure (LSS) because of their very high mass resolution in a sufficiently large
volume. Thus, it will be possible to discuss the spatial distribution of matter in the computa-



tional volumeindetail. Asastarting point, the connectedness of the matter will beinvestigated.
Thisisdone on an adaptively smoothed density grid rather than on the point distribution of the
particles. Overdensity is used in order to discriminate between over—dense and under—dense
regions. For each value of the overdensity used as threshold a set of volume cells filled with
matter is obtained. Each pair of cells which shares an adjacent face is treated as being part of
abigger object. Thus, aset of objectsis obtained for each overdensity threshold. What are the
properties of this set? Imagine areef. At low tide, the whole structure of the reef can be seen.
Asthe tide rises, more and more of the reef will be covered and eventually, at high tide, only
afew idands are still visible. How does the distribution of matter look like if it is treated in
asimilar fashion? How much mass is above the threshold? And how much volumeis occu-
pied by thismass? And what can be said about what LSS consists of ? These questions will be
addressed in the following.

4.2. The Distribution of Mass

4.2.1. Introduction

In order to investigate the distribution of massthe density field is obtained by binning the distri-
bution of particles on athree dimensional mesh of size 256° using a nearest gridpoint scheme.
The mesh cells themselves are smoothed adaptively as described in the preceding Chapter re-
quiring 30 neighbours. 1t will be checked later that the number of particles used does not affect
the results.

The smoothed density field is then transformed into a field which contains overdensities
by dividing by the mean density and subtracting 1. Different threshold values of the overden-
sity are used to define overdense and underdense regions. They are marked by replacing the
overdensitieswith 1 and O, respectively.

Unless avery large value for the threshold is taken some of the mesh cells will be part of
a bigger object. For instance, as the length of a mesh cell is smaller than the typical size of a
galaxy cluster, the cluster will consist of a set of cells. In order to find connected mesh cells
pairs haveto be found which have an adjacent face. Thiscan beachieved quitenicely. Treating
the centers of overdense mesh cells as particles, there is a set of particles where al pairs of
particleswith adistance of 1 (in units of the mesh) are members of the same group. A friends—
of—friends (FOF) group finder isrun to get all connected mesh cells. Such a group finder will
be used in various parts of thiswork. It worksasfollows. Imagineaset of particles. Theaimis
tofind al particleswhich are part of agroup. Thisisonly awell—-defined object if acriterionis
givenwhat agroup actually is. A FOF group finder treatstwo particles asfriends (and thus part
of agroup) if their separation is smaller than some given value. A third particle which may be
afriend of one of thetwo particles, then becomesafriend of the other one, too, etc. Sothe FOF
group finder finds all particle pairs whose separation is smaller than some given number and
then constructs the groups. The maximum separation required is an input parameter. Usually,
afraction of the mean inter—particle separation is taken. In Chapter 6, the " standard” value of
20% (which isusually noted as b = 0.2) istaken which more or lessyields virialized objects'.

1Thefact that this yields virialized objectsis, of course, empirical.



L owering the maximum separation yields smaller groups. That way, in Chapters 5 and 6 only
the densest knots of groupsare found. For the mass distribution considered here, the maximum
separation is well-defined. If the overdense mesh cells are considered to be small cubes, two
cubes which have an adjacent face are part of a bigger object. That is, two cubes are part of
an object if their centers have a separation of 1 in units of the mesh size. Using this, the group
finder isrun on the set of cube centers for each overdensity threshold.

Having stored the massin each cell the masses of the objects can be computed. Thevolume
isobtained by multiplying the number of cells per object with the volume of an individual mesh
cell.

4.2.2. Visual Impression

Asastarting point, avisual impression of what is obtained once this procedure is applied to the
smoothed density field isgiven. Fig. A.9 showsall objectsinthe 7CDM box at an overdensity
of 2. Itishard to see much from the picture. Itisclear that thereisahuge number of very small
objects. However, there appears to be one big object which extends all across the simulation
box, too. All the other models ook exactly the same if they are displayed in thisfashion. Itis
impossibleto tell the difference visually, which is the same situation already known from the
smoothed two—dimensional pictures seen in the preceding Chapter.

In Fig. A.10 only the biggest object is shown. It consists of avery complicated network of
filaments. The filaments themselves come in various sizes. Some of them appear to be thick,
othersarevery thin. Notethat the small lumpswhich appear isolated arein fact connected to the
single large object because periodic boundary conditions are used. The biggest object extends
all across the ssimulation volume, a phenomen known as percolation (which was introduced
in the cosmological context by Zel’dovich 1982). Fig. A.11 shows the biggest object from
different angles. A zoom of an eighth of the object in fig. A.10isshownin Fig. A.12. Clearly,
the structure is filament-ike.

Aswill be seen later, the visual impression from Fig.sA.9 and A.10is slightly misleading.
The biggest object contains about 90% of the total overdense mass and occupies about 80% of
the overdense volume. This amounts to about 50% of the total mass in the simulation box but
only to 2.5% of the total volume.

What happensto this object if the overdensity threshold isincreased? Fig. A.13 showsthe
biggest object inthe7CDM box at an overdensity of 3. Percolation still occurs, but some of the
thin bridges which can be seen in Fig. A.10 must have been broken so that the big object was
disassembled into smaller pieces of which the biggest is displayed here. This resulted in the
loss of quite alot of the complicated network. In a sense, the biggest object at this threshold
marks the backbone of the one seen before. In particular, the thick filaments which form a
pentagon with two large extensions stand out. The object now contains about 30% of the total
mass and about 1% of thetotal volume. Note that due to periodic boundaries the big chunk of
the object at the rightmost edge of the pictureisin fact connected to therest. Now, it iseasier
to get an idea of what kind of structure isformed by the biggest object.

If the overdensity threshold isincreased even further, the biggest object starts to break up
into much smaller pieces. Fig. A.14 shows the biggest object at an overdensity of four, and it
is not clear anymore whether it extends across the box or not. Eventually, when the threshold
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is increased even further, this object crumbles into many smaller pieces. The biggest one is
identical with the biggest cluster in the box. All big clusters are part of the network seen in
Fig. A.10.

So there are no sheets in the simulations? At least there are no sheets which have an over-
density of two or more. They may have smaller overdensities but the structure of the biggest
objects becomes so complicated at, say, an overdensity threshold of onethat it isimpossibleto
get agood visual impression of it. Thus, if sheetsdo exist in the simulationstheir mean density
must be very small.

In asense, the visua impression from the pictures shown above could be misleading be-
cause at the overdensities which can be displayed nicely only filaments appear and no sheets.
In the preceding Chapter, the four GIF models looked completely identical on adaptively
smoothed two—dimensional pictures. Could it be that this impression is misleading, too? In
the following section, percolation, and mass and volume fractions will beinvestigated in more
detail. If the mass distributions in the models really were identical, these quantities should
show the same behaviour.

4.2.3. Total Mass and Volume Fractions

Thetotal overdense massand its occupied volume obviously depend on the overdensity thresh-
old. Figure4.1 showsthefraction of the overdense massasafunction of the overdensity thresh-
old. Anisooverdensity contour of 0, i.e. mean density, encloses around 80 to 85% of the mass
for al themodels. Asthethresholdisincreased the massfractionsdecrease. Themodelswhich
all looked completely identical onthetwo dimensional pictures of the preceding Chapter, show
some differences. Thetwo low density models are nearly indistinguishable. However, the two
high density models differ significantly. 7CDM, which has the same shape parameter T, has
less mass abovethe threshold. SCDM has more mass aboveit. The difference between thetwo
high density modelswhich differ in their shape parameter but not in the overall normalization
of the power spectrumispretty impressive. SCDM hasmore small scale power and, thus, more
collapsed objects. This clearly shows up when compared with 7CDM. The difference to the
two low density modelsis smaller because these have a higher normalization than 7CDM.

For large thresholds (6 ~ 180), the order of the mass fractionsis unchanged. However, the
differences become very small in terms of the total overdense mass. SCDM has the highest
mass fraction (about 0.3%), ACDM and OCDM have about the same one (about 0.28%), and
7CDM has the smallest mass fraction (about 0.2%).

How does the overdense volume occupied by the mass behave in the four models? Fig. 4.2
shows the overdense volume as a function of the overdensity threshold for the four models.
Here, the change with an increase of the threshold ismuch moredramatic. At mean density, the
volume occupied by the overdense massisonly 12%to 14%. It then fallsrapidly to below 1%.
The 7CDM models stands out for low overdensity thresholds. Its overdense volume is about
10% (relative to the overdense volume) larger than for the other three models (for § < 4).

Thus, these volumefractionsreveal some of the differences between the four cosmol ogical
models which cannot be seen on the two dimensional representations of the preceding Chap-
ter, and must be due to the differences in their power spectra. The two low density models
are very nearly indistinguishable. 7CDM has less overdense mass in a larger region than the
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Figure 4.1.: Fraction of overdense mass as a function of the overdensity for the four models:
7CDM (solid), ACDM (dotted), OCDM (dashed), and SCDM (dot dashed).

other threemodels. These occupy about the samevolume. SCDM, which hasmore small-scale
power, has more overdense mass than the two low density models — probably a reflection that
it has formed more small haloes. Further insight can be gained if the properties of the largest
overdense object are investigated. These should reflect the explanations given above. In the
following section, the attention is thus focused on the largest overdense object.

4.2.4. Percolation

In this section, only the overdense mass is considered. As described above, the largest object
is constructed by means of the friends—of—friends group finder. Fig. 4.3 shows the fraction of
the overdense mass which is in the largest object as a function of the overdensity threshold.
The genera behaviour isthe samein al models. For low vaues of the overdensity (0 < 1.5),
most of the overdense massis part of one object. As the threshold is increased, the fraction
of overdense mass in the largest object decreases rapidly to reach only afew percent for § =
10. The overdensity at which the largest object breaks down varies for the models. 7CDM
stands out. Here, the largest object dominates for relatively high overdensity thresholds. For
instance, at 6 ~ 3.2 50% of the overdense massintheCDM modd isstill inthelargest objects
whereas for the other modelsthis number isdown to 10% or even less. Thethree other models
are very similar although small differences are visible between them. The largest object isthe
least pronounced in the SCDM model. This clearly reinforces the explanation of the model’s
behaviour in terms of the total overdense mass and volume discussed above. SCDM has more
power on small scales, that is it forms more small haloes. The three models with the same
shape parameter of the power spectrum should differ due to the different normalizations and
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Figure 4.2.: Fraction of the volume occupied by all objects above overdensity threshold as a
function of the overdensity for the four models: 7CDM (solid), ACDM (dotted),
OCDM (dashed), and SCDM (dot dashed).

their different formation histories. This point of view is supported by fig. 4.3 where the open
model is the closest to the SCDM model.

Clearly, at low overdensities (0 < 1.5) most of the overdense massis in one single object
which occupies most of the overdense volume. That is, the biggest object extends all across
the simulation volume — it percolates (Zel’ dovich 1982). Thiswas aready seen pictorialy in
the three dimensional representations shown in the pictures above. A dlightly different way to
show percolation and how it breaks down for different overdensitiesis by plotting the quan-
tity Xm?/Ym, where the summation is over al objects above the overdensity threshold, see
fig. 4.4. In this plot the abruptness of the percolation transition is very evident. For very low
overdensities, ¥m?/Ym approaches the total massin the volume.

Dividing the mass in the biggest object by the volume it occupies yields its density, which
isdisplayed in fig. 4.5 in units of the particle masses. Here, a well known behaviour shows
up. The objectsin the OCDM model have the largest density, 7CDM has the lowest one. The
density of an object depends on its formation time. OCDM forms objects the earliest which is
why its objects have the largest densities.

How much do these results depend on the particular circumstances of the chosen parame-
ters? In particular, what happens if parameters like the number of neighbours required for the
adaptive smoothingischanged? In order to investigatethis, acouple of systematic checkswere
done.

The first set of checks investigates the influence of the mass resolution of the simulation
itself. Taking the OCDM simulation as atest case, the above analysisis repeated with subsets
which contain 50%, 30%, and 13% of the particles in the smulation. This appears to have
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sum is over all objects) as a function of the overdensity for OCDM (solid line).
Symbols denote sets with 50% (diamonds), 30% (triangles),and 12.5% (boxes) of
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Figure 4.7.: Lefthand panel: Fraction of mass above overdensity threshold as afunction of the
overdensity for OCDM (solid line). Righthand panel: Fraction of the volume oc-
cupied by all objects above overdensity threshold as a function of the overdensity
for OCDM (solid line). The solid lines give the results if 30 neighbours are re-
quired for the adaptive smoothing. Symbols denote density fields obtained with
15 (triangles) and 60 (diamonds) neighbours.

no effect at al on the total overdense volume. Only for the most extreme downsampling is
the total overdense mass dightly increased (afew %). The lefthand panel of fig. 4.6 shows
the change in the fraction of overdense massin the largest obect. The change in the occupied
volume looks similar. The righthand panel of fig. 4.6 gives ¥m?/~m. Decreasing the number
of particles has a significant effect only for the sparsest sample. There, percolation stops at a
lower overdensity threshold. This must be clearly due to the destruction of some of the thin
bridges which can be seen in the visual representations of the largest object seen above. The
general result, however, remains unchanged.

As dready indicated above, the number of neighbours required for the adaptive smooth-
ing is arbitrary. In order to investigate the effect a change in this number has two test cases
were carried out. The number of neighbours was doubled and halved. Recall that the num-
ber of neighbours influences the size of the smoothing kernel. Fig. 4.7 shows the effect the
change in the required number of neighbours has on the total overdense mass (lefthand panel)
and its occupied volume (righthand panel). Decreasing the number of neighbours decreases
the occupied volume and increases the total overdense mass while increasing the number of
neighbours has the opposite effect. If more neighbours are required the region into which the
matter is smeared out becomes larger. In addition, more of massive objectsfalls below thresh-
old after smoothing. These two points account for the decrease in the overdense mass and the
increase in the occupied volume. The same argument can be inverted and then adapted to the
corresponding case.

Anincrease in the number of required neighbours should not effect the percolation proper-
tiesmuch. Recall that these properties depend mainly on the coherence of the mass, that ison
detecting the thin bridges. However, decreasing the number of neighbours destroys some of
the very thin bridges. Fig. 4.8 supportsthis point of view. It can be concluded that the number

51



0.8:
0.6:
0.4:
0.2:

0.0L

ym?/¥m

TR S e J 100

0 2 4 6 8 10 1 10 100 1000
6 o+1

Figure 4.8.: Lefthand panel: Fraction of the overdense massin the largest object as afunction
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ing. Symbolsdenote density fields obtained with 15 (triangles) and 60 (diamonds)
neighbours.

of neighbours chosen here is appropriate to guarantee that bridges stay intact.

4.2.5. Shape Diagnhostics
Introduction

For more than a decade now the topology and geometry of Large-Scale Structure (LSS) have
been atopic of interest. The basic underlying question was and still iswhether any of the cos-
mological models reproduces the observed coherent structure. If this were the case would it
then be possible to distinguish between different cosmologies and even to favour a particular
cosmology? Generally speaking, the idea was to invoke an alternative descrption to the two—
point correlation function which will be introduced in detail in Chapter 6 and to describe both
the connectedness of the structurein galaxy catal ogsand in simulationsand the geometry of the
structure. For instance, if structure in the Universe grew from a cosmic string scenario rather
than the Cold Dark Matter (CDM) scenario it could be expected that the distribution of mass
issignificantly different than what isfound in CDM simulations.

In 1986, Gott et al. introduced the genus statisticsin cosmology. The genus statistics gives
the number of topol ogical holes minusthe number of connected regions. So a sphere has genus
—1, adoughnut 0, etc. About a decade later, in the most recent study Springel et al. (1998)
showed that even the usage of the most sophisticated techniquesin combination with the Virgo
simulations and the IRAS 1.2-Jy Redshift Survey cannot decisively distinguish among the
model swhich have apower spectrum consistent with galaxy clustering, thatis7CDM, ACDM,
and OCDM (for earlier worksseereferencesin Springel et al.; essentially the sameanalysiswas
done for the Point Source Catalogue Redshift Survey in Canavezes et al. 1998 which lead to
the same conclusions). As pointed out by Springel et al. the genus statistics may be only really
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useful to test the random phase hypothesis, and 7CDM, ACDM, and OCDM all resemble the
observational data quite closely.

Various other methods have been proposed to describe the geometrical properties of LSS.
They assumethat LSS consists of either sheets, filaments, or clusters, or amix of them. Thus,
different functionals were developed with a supposed strong discriminative power amongst
these three structure elements (see e.g. Sahni et al. 1998 and references therein). However,
most of these methods suffer from the fact that they work nicely only for the simplest test cases.
It isniceto see that some functional indeed gives more or |ess the expected behaviour for, say,
acylinder, but three dimensional representations of LSS like the ones shown above look much
more complicated. Thiseffect usually lead to the problem that results obtained with these func-
tionals are very hard to interpret.

Minkowski functionals, introduced by Mecke et al. (1994) into cosmology, have a sound
mathematical background. It can be shown that the morphological properties of a compact
surface can be described by four functionals. The Minkowksi functionals are the volume V/,
the surface area S, the integrated mean curvature C' = 1 [(k1 + k2) dS, and thegenus G =
—1/47 [ k1Ko dS,wherex; = 1/R; andky = 1/ R, aretheprincipal curvatures of the surface.
Applications of the Minkowski functionals to galaxy or cluster catalogs have so far yielded
results quite similar to those ones obtained with the genus statistics alone (e.g. Kerscher et al.
1998).

Apart from the shape statistics with its inherent problems, the genus statistics and
Minkowski functionals have mainly suffered from the fact that existing galaxy catalogs and
simulations too sparsely sample the underlying density field. Thus, the possible signal was
dominated by noise. In addition, the discriminative power between cosmological modelsis
rather small. These methods are used here to study the adaptively smoothed density fields a-
ready investigated above. Sampling is not an issue.

Applications

First, the Minkowski functionals of the adaptively smoothed density field for all objects above
the overdensity threshold are computed?. The same is done for the largest object only. Asan
example, Fig. 4.9 shows the Minkowski functionals of the 7TCDM simulation. Shown are the
functionals of all objects (dotted line), of the largest object (solid line), and of the difference
of the two (dashed line). Note that the volume and the surface given here are in fact volume
and surface fractions (see Schmalzing & Buchert 1997 for the definitions of the functionals
used here). The volume (top left) agrees with what was aready seen above (fig. 4.2). All of
the functionals very nicely show how percolation breaks down for large overdensities. The
genusis particularly interesting. Recall that it gives the number of holes minus the number of
connected regions. Not surprisingly, the largest object has a huge number of holes for over-
densities o < 2. The dashed line gives the combined genus of all other objects. The genusis
an additive quantity. As can be seen from the figure, the combined genus of these objectsis
negative for these overdensities. The visual impression of fig. A.9 already showed that apart
from the largest object a plethora of small rather simple objects exists. The number of these

2The code used here was kindly provided by Schmalzing and is described in Schmalzing & Buchert (1997).
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ture C' (bottom left), and genus G (bottom right). Shown are largest object (solid
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Figure 4.10.: The quantities H; = V//S (dotted line), H, = S/C' (dashed line), and H; = C
(solid line) where V', S, and C' are Minkowski functionals of the biggest object
as showninfig. 4.9.

objects can be seen from the dashed line because each of such objects contributes —1 to the
total genus.

Apart from the connectedness and geometry of LSS, the sizes of typical objects are of par-
ticular interest. In principle, these should be measurable — at least on average. Assume the
only object is a perfect filament, i.e. a cylinder of length [ and radius » (where ! > r). The
cylinder’s volume and surfacethenare V' = 772l and S = 27rl, respectively. Dividing these
by each other gives V/S = r/2. Thus, if the volume and surface are know, the radius can
be computed. Sahni et al. (1997) used such considerations to propose the three functionals
H, = V/S, H, = S/C,and H; = C whereV, S, and C are the Minkowski functionals
discussed above. These three functionals all have dimensions of a length. For the simplest
cases, i.e. sheets, filaments, or spheres, the functionals H; represent the three major axes so
that H, <« H, ~ H;, H, ~ H, < H;,and H, ~ H, ~ H; for ashest, filament, and
sphere, respectively. Asseen in the pictoria representations of LSS, the biggest object is def-
initely not such a simple object. Filaments of various sizes and thicknesses tend to dominate.
Thus, by computing the functionals H;, averages will be obtained. These may nevertheless
yield some information about, say, an average thickness of the filaments — if filaments really
are dominant. In fig. 4.10, these three functionals of the biggest object as computed from the
Minkowski functionals shown in fig. 4.9 are plotted. For high overdensities, say 6 = 100,
which isoutside the plot range H, ~ H, ~ Hs. Thethree curves reinforce the visual impres-
sion that filaments clearly dominate for overdensities of about 6 < 4. At high overdensities,
the biggest object seemsto be more or less spherical. Thelatter point isnot surprising because
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at high overdensities, the biggest objects coincide with the most massive clusters which have
elliptical shapes (for adiscussion of such properties, see Thomaset a. 1998). The quantity H;
dropsdlightly from = 0tod = 1.5 and then remainsroughly constant. Using the conventions
for the normalizations of the Minkowski functionals (see Schmalzing & Buchert 1997) H; can
be transformed into absolute length scales — which amounts to dividing its value in fig. 4.10
by six. Asindicated above, for low overdensities, the biggest object appears to be filamentary.
In this case, the transformed length scale correspondsto /2. r would then be of the order of
around just 2.5 (2.0) mesh cellsfor § = 0 (6 = 1). Of course, thisis an average number. But
it shows that a much finer mesh would be necessary to infer more precise information about
typical length scales of the structure. With the techniques used here, that isathree-dimensional
mesh, thisis simply beyond the computational resources of the post—processing computers at
the RZG.

4.3. Conclusions

Large—Scale Structure in the high—resolution GIF simul ations has emerged as a very complex
network for overdensities of about § < 4 for the four cosmological models. For very low
overdensity thresholds, most of the overdense mass is contained in one single object which
extendsall acrossthe simulationvolume—it percolates. In addition, aplethoraof small isolated
objects is present, too. The overall overdense volume is only dlightly above the 10% level,
though. If the overdensity threshold is increased, the overdense volume shrinks rapidly, the
overdense mass decreases, albeit more gently, and the biggest object |oses more and more mass.
At overdensity thresholds of around § ~ 4, the biggest object contains only a few percent
of the overdense mass. There are differences between the cosmol ogical models which can be
explained in terms of their power spectra and their different dynamical history. These results
do not depend crucially on systematical effects.

Using Minkowski functionalsshedsjust alittlebit morelight onto the preceding. Thegenus
allowsestimatesof the number of small objects. It appearsasif the biggest object had an overal
filamentary (spherical) structure for low (high) overdensities®. However, with the fixed grid
used to obtain the adaptively smoothed density field, it is rather difficult to compute typical
length scales of the biggest object. For mean density, the typical diameter of afilament isonly
about 2.5 mesh cellsfor the 7CDM model. It then decreases to about 1.5 mesh cellsfor 6 ~ 5.
Clearly, amuch finer mesh is needed to get more precise results.
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30f course, for § ~ 100 and larger this can be seen from pictures, too.
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Chapter

Peculiar Velocities of Galaxy Clusters

5.1. Introduction

Clusters of galaxies are well—studied objects. Observationally, they can be found rather easily.
For example, they show up either as enhancements of the number density of galaxies on pho-
tographic plates or as strong enhancements in the X—ray flux on the sky. Though easy to find,
they arerare (V ~ 105 —10% h3 Mpc—3), and their properties are difficult to study. Consider
the mass of acluster. Until the advent of X—ray astronomy, the masses of galaxy clusterswere
estimated from the motions of their constituent gal axies using the assumption of virial equilib-
rium. In addition to the possibility that this assumption is not always satisfied, the inclusion of
galaxies in the foreground or background can lead to large errors.

X—ray astronomy, with satelliteslike Einstein and ROSAT, has made it possible to measure
the X—ray emission of the hot intracluster gas. As the X—ray emission is proportional to p?,
where p isthe density of the gas, the strongest contribution comes from the centers of clusters
— unless two clusters are merging. For the latter case, strong shocks show up which, crudely
speaking, appear at the collision front of the two colliding systems and which lead to a shock
heating of the gas. The assumption of hydrostatic equilibrium again alows an estimate of the
mass of a cluster once its X—ay temperature is given.

New telescopes, especially the Hubbl e Space Telescope, have madeit possibleto obtainim-
ages of galaxy clustersat very high resolution. On these images, some clusters show arcs, that
is distorted images of background objects. This effect demonstrates that clusters act as gravi-
tational lenses. The gravitational arcs can be used to measure the total mass or even the mass
distribution of acluster. The caveat hereisthat it is actually the projected massthat isis mea
sured. So if two objects happen to lie along the same line-of—sight, lensing alone measures
their combined mass. Independent measurements of lensing masses, galaxy velocity disper-
sions, and the X—ray temperature are desirable to provide consistency checks. However, the
measurements do not always agree and quite often the source of the discrepancy is not obvi-
ous. The uncertainties arising from these measurements have to be borne in mind in this and
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the following Chapter, where properties of galaxy clusters are investigated theoretically.

The measurement of the velocity of a cluster is aso affected by some of the uncertainties
mentioned above. In order to measure the vel ocity of acluster, its distance must be determined
independently from its redshift. Thisis because there are two contributions to a galaxy’s ob-
served redshift: the component associated with the expansion of the Universe, and the com-
ponent arising from the galaxy’s proper motion with respect to the local rest frame (peculiar
velocity). As distance indicators, the empirical Tully—Fisher and D,, — o relations are used
for spiral and elliptical galaxies, respectively. These relations relate the galaxy’s luminosity
toitskinematics. For spiral galaxies, the relation is an approximate consequence of their near
constant surface brightness. If centrifugal equilibrium is assumed,

5 M

rot X E ) (51)

v

where v, M, and R are the galaxy’s rotation velocity, its mass, and radius, respectively. If
auniversal mass-to-light ratio (M/ L) and a constant mean surface brightness I are assumed,
so that

L x IR?, (5.2)

one gets
L o vt (5.3)

rot *

This is the Tully—Fisher relation in the infrared band. For other wavelengths, the exponent
("slope”) changes dlightly (see Strauss & Willick 1996 for avery detailed review of this sub-
ject). However, the observed scatter around the Tully—Fisher relation isremarkably small. For
elliptical galaxies, similar arguments lead to the analogous D,, — o relation. Thus, if the ro-
tation velocity (velocity dispersion) of a spiral (elliptical) galaxy is measured, its luminosity,
and fromthis, itsdistance can beinferred asfollows. The conventional notation of astronomers
recasts eg. (5.3) as

M(n) = A— by, (5.4)

where M = const. — 2.5 log L isthe absolute magnitude, and
n = log[2 vyt] — 2.5, (5.5)

is a conventional measure of the rotation velocity (which is measured in km/sec). A and b
are called the zeropoint and the slope of the Tully—Fisher relation, respectively (for details see
Strauss & Willick 1996). The observed quantity is the apparent magnitude m which is related
to the absolute magnitude via

m=M+5logr, (5.6)

where r is the distance to the galaxy. The rotation velocities of spirals can be measured by
analysisof HI 21 cm—profiles or by measuring the blueshifting and redshifting of the Ho emis-
sion line at the parts of the galaxy that are rotating towards or away from the observer. Once
the distance to the galaxy is known, its peculiar velocity can be computed.

Theoretically, galaxy clusters are "nice”’ objects. They are massive; this mass must have
assembled from a very large region in the early Universe. Therefore, it may be reasonable
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to assume that e.g. the fraction of gasin clusters is the same as the global gas fraction. The
assumption of an inflationary CDM cosmogony — as is made here — has further consequences.
Depending on the actual value of the density parameter €2, the median formation redshift of
acluster isz =~ 0.3 or later. This meansthat in the hierarchy of objects, galaxy clusters form
last.

Themotionsof galaxy clustersare thought to result from gravitational forces acting over the
very large scales on which superclusters are assembled. The rms deviations from uniformity
on such scales appear to be small, and so may be adequately described by the linear theory of
fluctuation growth. For alinear density field of given power spectrum the rms peculiar vel ocity
is proportional to 03£2)-% where oy isthe rms mass fluctuation in a sphere of radius 8 h~* Mpc
as introduced in Chapter 2, section 2.3.4. There, it was mentioned that essentially the same
parameter combination can also be estimated from the abundance of galaxy clusters. A com-
parison of the two estimates could in principle provide a check on the shape of the assumed
power spectrum and on the assumption that the initial density field had Gaussian statistics. In
practice thisis difficult because of the uncertaintiesin relating observed cluster sasmplesto the
objects for which quantities are calculated in linear theory or measured from N-body simula-
tions.

The standard linear model wasintroduced by Bardeen et al. (1986). It assumesthat clusters
can beidentified with “sufficiently” high peaks of thelinear density field after convolutionwith
a “suitable” smoothing kernel. The peculiar velocity of a cluster is identified with the linear
peculiar velocity of the corresponding peak extrapolated to the present day. In this Chapter,
the limitations both of this model and of direct N—body simulations are studied by comparing
their predictions for clusters on a case by case basis.

5.2. Linear Theory Predictions for the Peculiar Veloci-
ties of Peaks

5.2.1. The Growth of Peculiar Velocities

Chapter 2 decribed the growth of peculiar velocities according to linear theory. The following
scaling was derived:

v f(a)g(a) aQ\/Q() a3+ (1—Qy—ANg)a2+Ap. (5.7)

Here, f ~ Q)% and g describes how much the growth factor D deviatesfromthe ), = 1 case,
where D = a and g = 1. For the simple Einstein-de Sitter case where )y = 1 and A = 0, this
formula reduces to the exact result v o« /a.

5.2.2. The Velocities of Peaks

The ideathat the statistical properties of nonlinear objects like galaxy clusters can be inferred
from the initial linear density field was developed in considerable detail in the monumental
paper of Bardeen et al. (1986). If theinitial fluctuations are assumed to be Gaussian, they are
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specified completely by their power spectrum, P (k). Similarly, any smoothed version of this
initial field is specified completely by itsown power spectrum, P(k)W?(kR), where W (kR) is
the Fourier transform of the spherical smoothing kernel and R isameasure of its characteristic
radius. In particular, Bardeen et al. showed how the abundance and rms peculiar velocity of
peaks of given height can be expressed in terms of integralsover P(k)W?(kR). Thedifficulty
in connecting this model with real clusters lies in the ambiguity in deciding what smoothing
kernel, characteristic scale, and peak height are appropriate. Typically the smoothing kernel is
taken to be a Gaussian or a Top—Hat, R is chosen so that the kernel contains amass similar to
the minimum mass of the cluster sample, and the peak height isassumed to be sufficiently high
for aspherical perturbation to collapse by z = 0.

The smoothed initial peculiar velocity field is isotropic and Gaussian with a three-
dimensional dispersion given by

o(R)=HO%0_(R), (5.8)

where, in the notation of Bardeen et al. (1986), o; is defined for any integer j by

1 .
oHR) = 5 / P(k) W2(kR) k22 dk. (5.9)
Thermspeculiar velocity at peaks of the smoothed density field differs systematically fromo ;
Bardeen et al. show that it is given by

op(R) = oy(R)\/1 — 0§/0%0?, . (5.10)

Note that this expression does not depend on the height of the peaks. As shown in Bardeen et
al. , the velocities of peaks are statistically independent of their height.

The parametric expression of the power spectrum used here was introduced in Chapter 2
(Bond & Efstathiou 1984),

Ak
PO D) = Tk T+ (k07 + (kY 61D

wherea = 6.4 h 1 Mpc, b =3.0h ' Mpc, c = 1.7 h~ Mpc, v = 1.13. T isthe shape parame-
ter.

In the following, linear density fields are smoothed either with a Top—Hat (Wry(z) =
3 (rsinx —cosx)/x3) or withaGaussian (Wg (z) = exp[—z?/2]). Itisunclear for either filter
how R should be chosen in order to optimize the correspondance between peaks and clusters.
Here, previous practice is followed in assuming that cluster samples contain all objects with
mass exceeding some threshold M., and then choosing R so that the filter contains M,;,.
Hence, M,.i, = 47pR*/3 inthe Top-Hat case and M, = (27)%/?pR? in the Gaussian case.
Cluster sampleswill beisolated at M,,;, = 3.5 x 10'*h~'M,, the value appropriate for Abell
clusters of richness one and greater (e.g. White et al. 1993). A detailed discussion of filtering
schemes can be found in Monaco (1998) and references therein.

Table 1.1 gives characteristicfilter radii R and valuesof o, and o, from equations (5.8) and
(5.10) for both smoothings and for the set of Virgo models which is considered in this Chap-
ter. The velocity dispersions are extrapolated to the linear values predicted a z = 0 using
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Top—Hat Gaussian Top—Hat Gaussian

full P(k) full P(k) smulated P(k) | simulated P(k)
M odel R oo o, | R o, o, oy 0Op A oy 0Op A
OCDM | 103 390 349 |66 366 315|351 300 0.94 | 321 258 0.96
ACDM | 103 413 370| 6.6 387 334 | 371 318 098|340 272 1.03
SCDM || 6.9 381 334 |44 349 290 | 375 325 0.58 | 342 278 0.60
7CDM || 6.9 509 464 |44 485 430 | 464 412 057|437 371 0.58

Table5.1.: For each of the models, the following quantities are given: the radius R (second
and fifth column) of thefilter used in eg. (5.9), the three—dimensional velocity dis-
persions o, and o, (third, fourth, sixth, and seventh column) obtained using eg.s
(5.8) and (5.10) with the given filter radii; the three-dimensional velocity disper-
sions o, and o, (eighth, ninth, eleventh, and twelvth column) obtained using eq.s
(5.8) and (5.10) with the given filter radii and the power spectra of the simulations
themselves; the rms linear overdensity A (tenth and thirteenth column) smoothed
with the given filter radii and extrapolated to = = 0. The radii are in Mpc/h, and
velocity dispersions are in km/sec.

eg. (5.7). The difference between o, and o,, has often been ignored in the literature when pre-
dicting the peculiar velocities of galaxy clusters (e.g. Croft & Efstathiou 1994; Bahcall & Oh
1996; Borgani et al. 1997); for the model sthe two differ by about 15%. With the choice of filter
radii adopted here, Gaussian smoothing predictsrms peculiar vel ocitiesabout 10% smaller than
Top—Hat smoothing. Thisisdueto the Fourier transformsof thefilters. A Gaussian transforms
into aGaussian in Fourier space. A Top—Hat transformsinto an oscillating function which lets
power from smaller scalesleak in.

5.3. The Simulation Set

For this Chapter, the set of Virgo ssmulationsis used (see Chapter 3). Recall that these smula-
tionsfollow the evolution of structure within a cubic region 240 ~~! Mpc on aside using 2563
equal massparticles. In all modelstheinitial fluctuation amplitude, and so the value of o5, was
set by requiring that the models reproduce the observed abundance of rich clusters. Note that
each Fourier component of theinitial fluctuation field had the same phasein each of these four
simulations. As aresult there isan almost perfect correspondance between the clustersin the
four models.

Because of their finite volume, these simulations contain no power at wavelengths longer
than 240 h=! Mpc. Furthermore, Fourier space is sampled quite coarsely on the largest scales
for which they do contain power, and so realisation to realisation fluctuations on these scales
can be significant. The size of the effects can be judged from Table 5.1 where the values of
o, and o, are listed obtained for each model when the theoretical power spectrum is replaced
in equations (5.8) and (5.10) by theinitial power spectrum of the model itself. These are sys-
tematically smaller than the valuesfound before. Thedifferenceisprimarily areflection of the
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loss of large-scale power.

Theory Simulations

Top—Hat Gaussian Top—Hat Gaussian
Model OPeak OPeak Nci Opeak OPeak  Olin  0z=0
OCDM 300 258 62 253 266 280 407
ACDM 318 272 69 296 323 300 439
SCDM 325 278 92 308 318 307 425
7CDM 412 371 70 392 399 398 535

Table 5.2.: For each of the models, the following quantities are given: the three—dimensional
velocity dispersions o,, (second, third column) obtained using eg.s (5.8) and (5.10)
with the power spectraof the simulationsthemselves (repeated from Table 5.1); the
number of clusters N (fourth column) foundinthesimulationsat z = 0; thethree—
dimensional velocity dispersionsof peaks (fifth and sixth column) intheinitial con-
ditionsof the simulationsusing the givenfilters; thethree-dimensional linear veloc-
ity dispersions of clusters extrapolated to z = 0; and the three-dimensional mea-
sured velocity dispersion of clustersat = = 0. Theradii are given in Mpc/h, the
velocity dispersionsin km/sec.

5.3.1. The Selection of Peaks

Peaks in the initial conditions of the simulations are identified by binning up the initial parti-
cle distribution on a 128% mesh using a cloud-in—cell (CIC) assignment (see e.g. Hockney &
Eastwood 1981) and then smoothing with a Gaussian or a Top—Hat with characteristic scale R
corresponding to M,,;, = 3.5 x 101*h~'M,,. A peak isthen taken to be any grid point at which
the smoothed density isgreater than that of its26 nearest neighbours. The dimensionlessheight
of apeak, v, isdefined by dividing its overdensity by the rms overdensity, A, which islisted
in Table 5.1. Again, within the matched set there is a close correspondance between the peaks
found in the four models. In addition, the peaks found with Gaussian smoothing correspond
closely to those found with Top—Hat smoothing. Fig. 5.1 showsasdlicethrough thedensity field
of the SCDM simulation which containsa v ~ 2.9 peak and its environment.

Particle peculiar velocitiesare binned up and smoothed in an identical way and the peculiar
velocity of apeak istaken to be the value at the corresponding grid point. In Table 5.2 therms
peculiar velocities of the peaks found in each model are listed. Again thisis scaled up to the
value expected at z = 0 according to linear theory. It differs dightly from the value predicted
by inserting the power spectrum of the simulation directly into equation (5.10) because there
are realisation to realisation fluctuations depending on the phases of the Fourier components.
Asit should, the rms peculiar velocity averaged over al grid points agrees very well with the
value found by putting the simulation power spectrum into equation (5.8).
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Figure 5.1.: A dlicethrough the smoothed density field. The height of each mesh pointisgiven
in units of the rms. The contour levels shown are 1.0, 2.1, and 2.8. Right in the
middle a peak with v ~ 2.9 shows up.

5.3.2. The Selection of Clusters

Clustersinthesimulationsareidentified inthe sasmeway asin Croft & Efstathiou(1994). High-
density regionsat » = 0 arelocated using afriends—of—friendsgroup finder withasmall linking
length (b=0.05), and their barycentres are considered as candidate cluster centres. Any candi-
date centre for which the mass within 1.5 »~! Mpc exceeds M,,;, is identified as a candidate
cluster. Thefinal cluster list is obtained by deleting the lower mass candidate in al pairs sepa-
rated by lessthan 1.5 A~ Mpc. Thisway of finding acluster mimicsvery roughly thealgorithm
Abell (1958) used to select clusters from photographic plates.

Fig. 5.6 showsthe particle positionsfor one of the clustersin the ACDM simulation at five
different redshifts. The way the cluster is built up is typical for these hierarchical CDM uni-
verses. Small objects form first and then merge. In this particular case, the cluster is formed
between aredshift of 2 = 1 and z = 0.3. Notethat at = = 0 some small substructureisvisible.

In Fig. A.15 a comparison between the evolution of a single cluster in the 7CDM and the
ACDM model is shown. The sizes of the regions are 21 x 21 x 8 h=3Mpc?® and 35 x 35 x
14 h—3 Mpc?, respectively. Asdiscussed in Chapter 2 and shown pictorially in Chapter 3, struc-
ture starts to form earlier in alow density model like ACDM. However, a z = 0 the same
objects have formed at the same locations—thisis due to the same phases of theinitial density
fluctuationsin all four models.

In the following, only clusters more massive than M,;, = 3.5 x 10'* A~ M, will be con-
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sidered. The number of clusters found in each simulation is listed in Table 5.2. As aready
noted, theindividual clustersin thedifferent ssmulationsof the matched set correspond closely.
Despite the normalisation to cluster abundance, it appears as though the SCDM model has sig-
nificantly more clustersthan the other models. Thisisareflection of its steeper power spectrum
together with the value of M., chosen. For M,,;, = 5.5 x 10** h~* M, —which isvery close
to the mass threshold usually taken to fix g — all the models have about 20 clusters.

The peculiar velocity of each cluster at z = 0 is defined to be the mean peculiar velocity
of al the particleswithinthe 1.5 h~ Mpc sphere. The peculiar velocity of the cluster at earlier
times is taken to be the mean peculiar velocity of these same particles. Consistent with this,
the position of the cluster at each time is defined to be the barycentre of this set of particles.
At z = 0 thisisvery close to, but not identical with the cluster centre as defined above. The
rms values of the initial (linear) and final (z = 0) peculiar velocities of the clustersin each of
the models are given in Table 5.2. The initial values have been scaled up to the linear values
predicted at z = 0. It isclear that these substantially underestimate the actual values, aresult
discussed in more detail below.

5.4. Comparison of the Peak Model with Simulations

5.4.1. The Cluster-Peak Connection

The extent to which dark haloes can be associated with peaks of the smoothed initial density
field is somewhat controversial. Frenk et a. (1988) concluded that, for appropriate choices of
filter scale and peak height, the correspondance is good, whereas Katz et al. (1993) claimed
that “there are many groups of high massthat are not associated with any peak”. The result of
correlating the peaksin theinitial conditions of the simulationswith the initial positions of the
clustersisillustrated in Fig. 5.2. A peak and a cluster are considered to be associated if their
separationislessthan4 h ! Mpc (comoving). The barycenters of 70% and 80% of the clusters
with masses exceeding 3.5 x 10'* h~! M, are associated with apeak with v > 1.5 for the low
and high 2 models, respectively.

Fig. 5.2 shows that there is, as expected, a correlation between the height of a peak and
the mass of the corresponding cluster. However, thereisabig scatter. There are many possible
explanationswhy not all clusters have an associated peak. The peak threshold is not the reason
— lowering the threshold does not decrease the number of "isolated” clusters. Merging peaks
and peaks which are disrupted have been discussed in the past. Thisisbeyond the scope of this
Chapter.

5.4.2. Linear Theory Velocities of Peaks and Clusters

Given the good correspondance between peaks of the smoothed linear density field and the
initial positions of clusters, it is natural to compare the smoothed peculiar velocity at a peak
with the mean initial peculiar velocity of its associated cluster!. In Fig. 5.3, such acomparison
isshown, again based on Top—Hat smoothing of both position and peculiar velocity fieldsusing

1Thisis done only for those clusters for which a peak actually could be associated.

66



o + ::+ + 3
é %ﬁi o i b T T
AN E =+ + E
i # i
i +
SCDM i TCDM
WA+ + S
+
+ + T
; + 41T+ + o+ ;
S + + + 4
ﬁtr %ﬁ 3
ACDM i OCDM
0k

HHHHHH - ++

0 2 4 6 8 10 1@ 2 4 6 8 10 12
mass [10"m,/h] mass [10"m,/h]

Figure 5.2.: The mass of the clustersin the simulations against the height of the corresponding
peaksin theinitial conditions, once these are smoothed with a Top—Hat with the
characteristic radius listed in Table 5.2. All clusters with mass greater than 3.5 x
10* A=t M, and al peaks with height greater than v = 1.5 are shown. There are
351, 239, 84, and 83 unmatched peaksin the SCDM, 7CDM, ACDM, and OCDM
model, respectively. They are plotted at amassof 0.5 x 10 A~! M. Unmatched
clustersareplotted at v = 0.5.

the characteristic radii listed in Table 5.1. All velocities are scaled up to the expected value at
z = 0 accordingto linear theory. The correlationisclearly very goodin all cases, andissimilar
if Gaussian rather than Top—Hat smoothing is used. The rms difference in peculiar velocity
between a cluster and its associated peak is 16%, 16%, 23%, and 17% of the corresponding o,
valuelisted in Table 5.2 for the OCDM, ACDM, SCDM and CDM simulations, respectively.
The somewhat larger percentage for the SCDM model is probably aconsequence of the greater
influence of small—scale power in this case.

5.4.3. The Growth of Cluster Peculiar Velocities

If cluster peculiar velocities grew according to linear theory the scaled initia velocities dis-
cussed in the last section and plotted in Fig. 5.3 would correspond to the actual velocities of
the clustersat z = 0. In Fig. 5.4 scatter diagrams are shown in which these two velocities are
plotted against each other. Itisevident that in fact the agreement isquite poor and that thereisa
systematictrend for thetrue cluster velocity to belarger than the extrapol ated linear value. This
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Figure 5.3.: Theinitial peculiar velocitiesof clustersin each of our four cosmogonies are com-
pared to thelinear peculiar velocities of their associated peaks. Thelinear peculiar
velocity field was smoothed with a Top—Hat in the same way as the density field
in order to obtain the peak peculiar velocities.

isreflected in the substantial difference between the rms values of these two quantities listed
in Table 5.2. It is presumably a consequence of nonlinear gravitational forces accelerating the
clusters.

Some confirmation of thisis provided by Fig. 5.5 where the peculiar velocity in units of its
initial value are plotted for five clustersfrom each of our cosmologies. At early timesthe pecu-
liar velocitiesall grow as expected from linear theory (indicated in the figures by adotted line)
but at later times the behaviour is more erratic and most clusters finish with larger velocities
than predicted.

Further evidencethat |ate—time nonlinear effects are responsiblefor thisdiscrepancy comes
from Fig. 5.4. In thisplot al clusters that have a neighbour within 104 'Mpc are indicated
with adiamond while more isolated clusters are indicated by a cross. It is evident that devia-
tionsfrom linear theory are substantially larger for the “ supercluster” objects than for the rest.
These objects also have systematically larger peculiar velocitiesat z = 0. Their rms peculiar
velocity isaround 20 to 30% larger than that of the sample as awhole.

For the 7CDM model, a second realization of the power spectrum wasrun. A cluster sam-
ple was extracted in the same fashion as described above. The rms peculiar velocity of the
clustersat = = 0iso,—¢ = 511km/sec. The extrapolated rms linear peculiar velocity is
0,—0 = 394km/sec. These numbers are very close to the values obtained for the first real-
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Figure 5.4.: The initial peculiar velocities of clustersin each of our four cosmogonies, scaled
up to z = 0 using linear theory, are compared to their actual peculiar velocities
at = = 0. Diamonds denote clusters which have a neighbour within 10 »~*Mpc
while crosses denote more isolated clusters.

ization. Although two simulations are not a good statistical sample, it can be concluded that
there is no realization dependence of the mis—match between the extrapolated linear and the
actual peculiar velocities of galaxy clusters.

It might be thought that this anomalous acceleration of clusters at late times was a conse-
quence of the relatively small radius, 1.5 h~! Mpc, used to define the clusters. Material could
perhaps be gected asymmetrically from this region during the merging events by which clus-
tersform. In order to check this, clusters have been redefined to be all the material contained
within aradius of 3 or 5 A~ Mpc. Then, the analysis for the same set of objects has been re-
peated as before. 1n most cases thisturned out to make very little difference to either theinitial
or the final velocities measured, and it did nothing to reduce the discrepancy between them.
The relevant nonlinear effects are acting on significantly larger scales. This procedure wasre-
peated going as far out as 25 h~! Mpc from the cluster center. At aradius of 10 = Mpc, the
difference between the rms peculiar velocity and the extrapolated rms linear peculiar velocity
isonly 10%. By aradius of 20 ~~! Mpc, the numbers have finally converged.

The discrepancy between the rms peculiar velocity of clusters and their extrapolated rms
linear peculiar velocity isindependent of any smoothing of the density field. With the choice
of smoothing filter, the linear peculiar velocities of our clusters match those of their associated
peaks aswell as the rms value predicted by linear theory when the simulated realization of the
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Figure 5.5.: The evolution with expansion factor « of theratio |7(a)|/|7,| for five clustersfrom
each of our four cosmogonies (solid lines) is compared with the evolution pre-
dicted by linear theory (dotted line). In some of the cases, merging leads to abrupt
changesin this ratio — the most impressive case can be seen for one of the SCDM
clusters.

power spectrum and the proper expression for the peculiar velocities (eg. 5.10) isused. Previ-
ouswork (e.g. Borgani et al. 1997) hastried to match N-body datawith linear theory by tuning
thefilter scale. The results obtained above undermine the physical basisfor such a procedure.
Thegoal of the paper by Borgani et a. isdifferent from the one of thisChapter. They try tocom-
paretheir simulation resultswith asample of observed clusters. Tuning thefilter scale doesnot
change the relative differences between the rms peculiar velocities of different cosmogonies.
However, it leadsto completely misleading results about theory itself. In particular, it destroys
the agreement between the different results obtained with linear theory described above.

5.5. Summary

The peculiar velocities predicted for galaxy clusters by theoriesin the Cold Dark Matter family
have been investigated. A widely used hypothesis identifies rich clusters with high peaks of
a smoothed version of the linear density fluctuation field. Their peculiar velocities are then
obtained by extrapolating the similarly smoothed linear peculiar velocities at the positions of
these peaks. This has been tested in this Chapter using the set of VIRGO simulations. Galaxy
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clusters are identified at = = 0 and then the particles they consist of are traced back to earlier
times. In theinitial density field, the barycenters of 70% and 80% of the clusters with masses
exceeding 3.5 x 10 h=! M, liewithin 4 h~* Mpc (comoving) of apeak withv > 1.5 for the
low and high Q2 models, respectively. Furthermore, the mean linear peculiar velocity of the
material which formsacluster at z = 0 agrees well with the value at that peak.

However, the late-time growth of peculiar velocities is systematically underestimated by
linear theory. At thetimeclustersareidentified, i.e. at = = 0, therms peculiar velocity is about
40% larger than predicted. Nonlinear effects are particularly important in superclusters; the
rms values for clusters which are members of superclusters are about 20% to 30% larger than
those for isolated clusters.
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Chapter

Galaxy Clusters in the Hubble Volume
Simulations

Tout ce monde visible n’est qu’un trait imper-
ceptible dans I’ample sein de la nature. Nulle
idée n’ en approche. Nous avons beau enfler nos
conceptions, au dela des espaces imaginables,
nous n’ enfantons que des atomes, au prix de la
réalité deschoses. C’ est une sphéere dont le cen-
tre est partout, la circonférence nulle part.

Blaise Pascal
Pensees, Sect. |1 72

6.1. The Hubble Volume Simulations

The expansion of the Universe sets atime scale (a/a) ! which corresponds to a length scale
called the Hubbl e radius:

H(t)

At present time, and for 2, = 1, thislength scale amountsto » = 3000 Mpc/h. It gives the
sale over which physical processes operate coherently and at which general relativistic effects
become important (see e.g. Padmanabhan 1993). The volume inside the sphere of radius r is
called the Hubble Volume. 1t amounts to the whole observable Universe because a galaxy at
the distance of the Hubbl e radius has recession velocity equal to the speed of light.

Theideal cosmological simulation would enclose aregion of the size of the whole observ-
able Universe with as high a mass resolution as possible. The reason for this is clear from
the two preceding Chapters. A high mass resolution is desirable in order to resolve Large-
Scale Structure properly. A large simulation volumeis needed in order to get as many massive

(6.1)

r =
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structures as possible. Generally speaking, a large region will enclose more rare objects than
asmaller region. In particular, fluctuations on scales of the GIF boxes or even the Virgo boxes
can only beinvestigated if the simulated volume itself is much larger than these scales. Isthe
Milky Way situated in aregion which is under—dense with respect to the whole Universe (see
e.g. Zehavi et al. 1998)? How likely isthe appearance of such aregion? Can Cold Dark Matter
models account for the observed pattern of periodicity in the very deep pencil beam surveys
(Broadhurst et al. 1991)? What is the mass of the most massive cluster which possibly can
be found in the Universe? In particular, does the very nice agreement between the theoretical
Press—-Schechter mass function and the output of N-body simulationsstill hold at the very high
end of the mass function? Questionslikethese obviously need avery large simulation volume.

As will be discussed in Chapter 8, the first version of the simulation code which can be
runon aCRAY T3EisP*M. Thiscodeis very inefficient if there are too many particlesinin-
dividual high density regions. An obvious way to overcome such a problem is to smulate a
large volume with only a moderately high mass resolution. The re—run of the high €, Virgo
models had shown that if the most massive clusters contain only a few thousand particles the
simulation can be carried out quite efficiently. In addition, MacFarland had estimated that if
512 processors of the T3E were used and the code was stripped of al parts which were redun-
dant (like e.g. storing the masses of particlesif they all have the same mass) then as many as
10242 particles could fit into the T3E (compare MacFarland et al. 1998). So the idea of sim-
ulating the entire observable Universe was born. The project, named ” The Hubble Volume®,
needed further work on the code which took about half ayear of intense work®. In December
1997, thefirst Hubble Volume Simul ation, a~CDM model with the same parametersasthe GIF
simulation but with 10° particles and a box size of 2Gpc/h (and thus a particle mass of about
2-10"2 M, /h), was started. During the first 24 hour run it produced about 140 GByte of data
and compl etely flooded the mass storage system of the RZG. After solving the problems with
the data, the run wasfinished in alittle bit more than 70 hours of CPU time on 512 processors—
it had generated about 600 GByte of raw data. The second run, a ACDM model, again with the
same parameters as the corresponding GIF model and with a box size of 3Gpc/h, was started
alittlelater.

Figure A.16 shows a thin dlice of thickness 20 Mpc/h through the 7CDM Hubble Volume
simulationat z = 0. On these scales, thefirst visual impressionreally isthat on large scalesthe
distribution of matter is homogeneous. On smaller scales, most of the features already seen in
Chapter 3 show up again. Thereisacomplicated network of filaments surrounding large voids.
The network seemsto show avery large coherence — the same can be seen for the voids. Some
of the regions which seem to be denser or less dense than the average appear to be larger than
the size of aregion corresponding to, say, the Virgo ssimulations. Clearly, the investigation of
thiswill be of major importance for future galaxy surveys.

Quite obvioudly, one of the main points of interest in the Hubble Volume Simulations is
the study of galaxy clusters. In the following sections, several pointswill be addressed. After

1Apart from Tom MacFarland who did the bulk of the programming, the following people contributed work
to the project: Adrian Jenkins (Initial Conditions Generator), Frazer Pearce (" stripping” the code from all
redundant parts), August Evrard (an additional subroutine for output of data), Andrzej Kudlicki (reducing the
light cone data), and myself (running and maintaining the simulation plus what's described in this Chapter
and Chapter 8).
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adescription of the actual selection of two different catal ogs of galaxy clusters(section 6.2), the
presence of massive clusters at high redshift and its implications for the cosmogonies will be
investigated (section 6.3). In addition, the mass function of the cluster catalogs will be briefly
compared with the analytical Press—Schechter theory. The final point of the Chapter will be
the clustering of galaxy clusters using the two—point correlation function (section 6.4).

6.2. Extracting Galaxy Clusters

Extracting galaxy clustersfrom the Hubble Volume Simulationsis not an easy task. Thisisdue
to two facts. Thefirst oneisthe sheer amount of data. Each output dump includes theindices,
positions, and velocities of the 10° particles, which, in total, yields about 27 GByte of data.
The second problem is related to the definition of agalaxy cluster in the simulationsitself. As
these simulations contain only Dark Matter, a simple count of galaxiesis, of course, impos-
sible, because there are no galaxies there. However, identifying the most massive objects in
the simulations critically depends on the scheme adopted for this purpose. Thiswill be studied
in more detail in the following. A strategy will be developed which finally yields catal ogs of
galaxy clustersfor the simulations at redshiftsof z = 0.78, z = 0.44, and z = 0. The scheme
chosen here deviates from the one used in Chapter 5. There, galaxy clusters were found by
locating high density regions and then placing spheres of size 1.5 Mpc/h around them. Here,
two schemes are taken which are closer to getting virialized objects.

As afirst step of the group finding, the particle distribution is assigned to a coarse? mesh
of size 5123. Thismesh isthen used to identify high density regions. If the contents of amesh
cell plus the one of its nearest neighbours exceeds 64 particles these mesh cells are marked
as regions from which all particles have to be extracted®. For these, only their positions are
stored. For the 7CDM run, this amounts to about 400m, 500m, and 600m particles for the
output redshiftsof z = 0.78, z = 0.44, and z = 0, respectively.

On thissubset of particles, astandard friends—of—friends (FOF) group finder with adimen-
sionlesslinking length of b = 0.2 timesthe mean inter—particleseparationisrun (thisisreferred
to as FOF, , in the following) using ten overlapping slices*. Finding objects in such away,
however, isproblematic. The FOF, , group finder has the tendency to connect smaller objects
if there is a bridge of particles between them. This may lead to the situation where a galaxy
cluster has two (or more) dense subclumps and is centered on aregion where the particle den-
sity islow. Not only do such " clusters’ not have anything in common with clustersin the real
Universe — these are usually found either by an enhancement of galaxies or of X—ray emis-
sion so that their centers are high density regions—in addition their masses and spatial extents
are misleading. For instance, at z = 0.78 the most massive object found with FOF, , in the
7CDM model hasamass of 1.14 x 10" My /h. A visual inspection shows that it consists
of at least three connected objects. The size of this object is about 6 Mpc/h. So it looks like

2Coarse here means that the size of an individual volume cell is much larger than a typical galaxy cluster at
z=0.

3 As periodic boundary conditionsare used and theloop runsover thewhol e mesh the choice of only therightmost
neighbouring cells does not miss any high density region but significantly speeds up the process.

40f course, the mean inter—particle separation is computed taking all particlesin the whole volume.
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a supercluster, that is a group of clusters. Of course, this does not mean that a galaxy cluster
in the ssmulation must never consist of more than one dense knot of particles. But it has to be
ensured that it is centered on a high density region and it must not consist of two objects which
are connected by athin bridge of particles.

In order to refine the group finding the FOF group finder is run again with adimensionless
linking length of b = 0.05 (thisis referred to as FOF o5 in the following) times the mean
inter—particle separation. This selects objects which are part of the FOF, , clusters. The way
the particles are extracted ensure that no objects are missed. Due to the algorithm of the FOF
group finder, all objectsfound with asmall linking length are always a subset of objectsfound
with alarger linking length. The FOF, o5 group finding yields only the densest particle knots,
that is candidates for the centers of clusters. Asthe final step, particles out to a viria radius
from each such proto—center are collected. The way thisis doneis essentialy the same as for
the Spherical Overdensity (SO) group finder (Lacey & Cole 1994). Theideaisto find objects
whose mean overdensity is 178 (97) for 2y = 1 (29 = 0.3,Ay = 0.7). The value of 178
(97) results from the expected overdensity of atop—hat perturbation at virialization (e.g. White
1996, Eke et al. 1996). Starting from the barycenter of the proto—cluster, the nearest particle
whichisnot yet amember of the cluster isadded and the mean overdensity iscomputed. If this
islarger than 178 (97) the processisrepeated. The way objects are found does not necessarily
construct spherical objects. The final step then isto check whether there are pairs of clusters
which are so closetogether that they actually bel ong to the same object —thismay indeed bethe
case for some clusters. The criterion of whether two clusters are only subclusters of a bigger
oneisarbitrary. The criterion adopted here is the following. For each cluster, its massand its
virial radiusare known. Two clusters are now taken as members of the same object if the center
of one of them lies within the virial radius of the center of the other one. The smaller one of
the pair isthen deleted from the list because alarge fraction of its massisaready contained in
the mass of the other cluster. This processisvery similar to how galaxy clusters are found in
surveys of the real Universe. The main difference, of course, isthat here it can be done using
full three—dimensional information which is not the case for observations.

Two catalogs of clusters are thus obtained for the models. They will be referred to as
FOF, , clustersand virial clustersfor the objects found with the FOF, , group finder and with
the FOF, 5 group finder plus subsequent identification of virial masses, respectively. For the
ACDM model, only the virial clusters are obtained. In the following section, both these cata-
logswill be compared to theoretical estimate of the massfunction. Thiswill leadto aqualitative
insight into the contamination of the FOF, , due to flukes of the group finder itself.

6.3. The Mass Function

6.3.1. Massive Objects at High Redshifts
Introduction

Clusters of galaxies are the largest virialized objects in the Universe. For decades now they
have been studied observationally aswell astheoretically in order to determine the cosmologi-
cal parameterswhich describethe Universe. The density parameter, 2, affects several proper-
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ties of galaxy clusters. For instance, if 2o = 1 clusters should form at considerably lower red-
shiftsthan for 2, < 1 (Richstone et al. 1992, Bartelmann et al. 1993), have more substructure,
and should be less centrally concentrated. Here, thefirst of these pointswill be studied. Asthe
formation time of clustersis strongly dependent on €2, the evolution of the cluster abundance
should be asensitive probeof it. However, the situationisstill very unclear as can be seen from
the plethoraof paperswhich appeared recently about thisvery point. From the evolution of the
cluster abundance, there is currently no consensus whether a high or alow €2 can be excluded
(Henry 1997, Carlberg et al. 1997, Bahcall et al. 1997, Blanchard & Bartlett 1997, Grosset a.
1997, Sadat et al. 1998, Eke et al. 1998 (ECFH hereafter)). Aswas stated in ECFH the wide
range in values for the density parameter "is presumably a suggestion that unaccounted—for
systematic errors are lurking beneath the surface in at least one of these analyses’. The mass
function itself will be investigated in the next subsection. In this subsection, the presence of
high redshift objects in the ssmulations is investigated. In particular, lensing mass estimates
for three observed galaxy clusters are used. Before turning to the simulations, these clusters
are briefly described in the following.

The Most Massive Clusters at high z in the Universe

Over thelast couple of years, the number of observed galaxy clusters at high redshift has been
increasing steadily. Massive clustersat high redshift poseamajor threat toan €2, = 1 universe.
For three clusters, MS1054-03, MS1137+66, and RXJ1716+67, redshifts (= ~ 0.8), mass
estimates, and X—ay temperatures have been obtained.

Luppino & Kaiser (1997) detected aweak lensing signal of the cluster M S 1054-03, which
isat z = 0.83. Assuming that the population of lensed Faint Blue Background Galaxies
(FBG's) isat z = 3, they derive amass within 0.5Mpc/h of (5.9 & 1.2) - 10** My /h. This
isalower limit because if the redshift of the FBG's is lowered, the mass of the cluster isin-
creased. Donahue et al. (1998) measured the X—ray temperature of this cluster and found it to
be 12.313-1 keV. They note that this temperature is consistent with the mass Luppino & Kaiser
give and with an estimate of the velocity dispersion of the cluster ((1360 +450) km/sec at 90%
confidence level; using spectra of 12 cluster members). However, M S1054-03 does not |ook
like a relaxed system. Its light distribution and its mass distribution are elongated. ROSAT
imaging shows “two or three clumps and an extended component, clearly indicating that this
cluster isnot regular.” King model fits are rejected by the data. Donahue et al. end the discus-
sion of the spatial structure by noting “We found that the cluster is at least bimodal at greater
than 99.9% confidence level.” Thisindicatesthat the properties of thiscluster have to be taken
with agrain of salt.

Clowe et al. (1998) detected awesak lensing signal for the other two clusters, MS1137+66
a z = 0.78 and RXJ1716+67 at = = 0.81. They found respective masses within a radius
of 0.5Mpc/h of (2.45 4 0.8) - 10'* M /h and (2.6 4 0.9) - 10'* M, /h assuming the back-
ground galaxiesliein asheet at z = 2. Whereas MS1137+66 has a compact mass and light
distribution, RXJ1716+67 looks like an ongoing merge.

These observations will be taken as a guideline in the following. The masses of the most
massive simulated objectswithin aradius of 0.5 Mpc/h will be measured. Thefact that lensing
was able to provide the masses of the three observed clusters allows atest of the CDM models.
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The Most Massive Clusters at high z in the Simulations

For this study, only the dumps at = = 0.78 are taken. The algorithm used in order to find the
most massive objects is changed as follows. Starting from the FOF, o5 objects, the particle
counts within spheres of size 0.5Mpc/h are obtained. This yields objects which are directly
comparable to the clusters described above without any assumption about virialization or the
like.

N [h* Mpc~]

14.8 15.0

Figure 6.1.: Thedifferential number density distribution of the masseswithin 0.5 Mpc/h for the
most massive objectsat z = 0.78 in the 7CDM (solid histogram) and the ACDM
(dashed histogram) simulation. The three crosses with the errorbars show the cor-
responding masses of the three clusters mentioned in the text.

Figure 6.1 shows the differential number density distribution of the masses within
0.5Mpc/h for the most massive objects in the 7CDM (solid line) and the ACDM (dashed
line) simulations. Also given, as crosses with errorbars, are the three clusters MS1054-03,
MS1137+66, and RXJ1716+67. The number densities are taken from Bahcall & Fan (1998;
Donahue et al. 1998 give similar numbers) and should be taken as indicative. Apparently, as
indicated already in Chapter 2 and pictorially shown in Chapter 3, there are substantially more
massive objectsin the low density model than in the high density one at this redshift. Thetwo
clustersMS1137+66 and RXJ1716+67 lie at the extreme high mass end of the 7CDM distrib-
ution and within the distribution of the ACDM model. Their number densities are too high for
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7CDM. The cluster MS1054-03 lies way outside the mass ranges covered by either model.

Conclusions about this can still not be made without discussing possible problems of the
modeling and the clusters themselves. The normalization, g = 0.6, chosen for the 7CDM
simulation is at the high end of what is generally considered to be agood normalization for an
2y = 1 universe (see Chapter 2). Adopting alower normalization amountsto ascalingintime.
E.qg., if the normalization is adopted which was taken in the simul ations discussed in Jenkins et
al. (1998), then the redshift of the output time considered hereisloweredto = = 0.5. Ashaoes
build up by accretion and merging, at a higher redshift the masses of the most massive clusters
would be smaller than what isfound for o5 = 0.6. Onewould then get adistribution of masses
which ends at alower massthan what isfound, making the distribution more incompatiblewith
the three high mass clusters. For the ACDM model, the case is not that clear. A higher value
of g may still be possible because of the scatter in the 2y — o5 relation. Thiswould then shift
the distribution to higher masses.

In addition, high density regions from avery large volume have been picked — it isacom-
plete sample. The galaxy clusters mentioned above are no complete sample. Any further clus-
ter with such a high mass as M S 1054-03 will aggravate the discrepancy between the masses
predicted by the 7CDM simulation and the observations. However, in principle projection ef-
fectsmay lead to the observation of high mass clustersif two clustershappento lie behind each
other or if afilament is observed in the direction of its longitudinal extent. Oke et al. (1998)
note that about 30% of all high redshift clusters are misidentified that way. However, for the
most massive cluster, MS1054-03, the lensing mass agrees with mass estimates from the X—
ray temperature and from the velocity dispersion of 12 cluster members. Obviously, at this
redshift the latter cannot be taken very serioudly. If it is assumed that the cluster isin fact two
clusters behind each other, the high lensing mass can be accounted for, but the X—ray temper-
ature still poses a problem. An ongoing merging could account for this — when two clusters
merge strong shocks in the colliding gas are formed. As noted above, given the appearance of
this cluster it should not be treated as a relaxed system.

Conclusions

From the above, it is a safe statement to say that €2, = 1 ceases to be aviable model for the
formation of structure in the Universe because the number densities of massive clustersat high
redshifts are much too small in such models. At this stage, it would be premature to judge the
ACDM model. The number densities of massive clusters are high enough. More mass mea-
surements of clustersat z ~ 0.8 are needed in order to see whether MS1054-03 is a typical
object or just happens to be a merging cluster viewed from an unfortunate angle. If, however,
more clusters like MS 1054-03 are found a big problem arises. With the normalization used
here ACDM cannot account for objects with such high masses at = = 0.8. In addition, at this
redshift an open model produces only dlightly more clusters and thus would have the same
problems. Very massive virialized clusters at redshifts of z ~ 0.8 may well topple the CDM
models discussed here —if these clustersreally exist.
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6.3.2. The Press—Schechter Mass Function

Thederivation of the mass function can be found in many textbooks. Here, the one from White
(1996) isfollowed. The most convenient way to describe the linear density field isto consider
its Fourier decomposition

6(x) = ok exp(ikx). (6.2

For a Gaussian random field, the different Fourier amplitudes d,. are independent random vari-
ables with random phases. The mean square density fluctuation in spheres of radius R at time
t isthen

AR, ) = (02 = [ IV (kKB)P?, (6:3)

where W (kR) is the Fourier transform of the window function used. In Linear Theory, A
scales like the growing mode of the linear fluctuations A o D(t) o a(t), and it can be sepa-
rated as A(R, t) = a(t)Ag(R).

Thefraction of pointsat which aGaussian random field exceeds some given valueisknown.
Thus at atime ¢, the fraction of points which are surrounded by a sphere of radius R within
which the mean density islarger than ¢, is given by

Rit)= [ do——t i 6.4

S N TG eXpl 2D(t)2A3] ' 64
Press& Schechter (1974) now assumed that thisexpression givesthefraction of particleswhich
are part of an object with mass exceeding M = 47 p (a(t)R)?/3. For §, they took the extrap-
olated linear overdensity at collapse of a spherical perturbation, 6, = 3/20(127)%3 ~ 1.69.
However, Press & Schechter had to multiply the mass fraction by afactor of 2 because as M
approaches zero F' approaches 1/2, that isonly half of the massin the Universeis predicted to
bein any object. The mass function thenis

25 0. dA, 5?
M,t)dM = —y| =L €20 op === _|dm .
n(M,t)d \[rMD(t)Ag dM eXpl opyeaz | M (65)

where p is the present mean mass density of the Universe. Bond et a. (1991) later found a
derivation which naturally led to the missing factor of 2 for sharp windows in k& space. The
cumul ative mass fraction in objects above some mass M is given by

Oc
P(> M,t) = erfc l\/ﬁD(t)AO] . (6.6)

Figures 6.2 and 6.3 show a comparison of the TCDM FOF, , and viria clusters with the
analytical cumulative mass function, respectively. The solid, dotted, and dashed lines were
obtained using eg. (6.6) at z = 0, z = 0.44, and z = 0.78, respectively. Theviria clustersin
general are better fit by theanalytical prediction. Both cluster sampleslieaboveit. At z = 0.44
and z = 0.78, the discrepancy isworse. The deviations of the FOF, , clusters are quite large.
As already discussed above, the FOF, , tendsto link groups artificially. Obvioudly, this shows
up here. Jenkins independently applied the same procedure with a different code to the simu-
lations. The groups hefound agree with the ones given here (Jenkins, private communication).
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Figure 6.2.: The cumulative mass function of the 7CDM FOF, , catalog (crosses with error-
bars) against the prediction of the Press-Schechter theory for the three redshifts
(solid, dotted, and dashed lines). The masses are given in unitsof M /h.

6.4. The Cluster Correlation Function

As discussed in the preceding Chapter, clusters form from the highest peaksin the initial den-
sity field of the early Universe. If one assumes that the small fluctuations from which large—
scale structure grows were a Gaussian random field then peaks/clusters themselves are clus-
tered (Kaiser 1984). A tool to describe the strength of the clustering is the two—point correla-
tion function which will be discussed in the next section.

6.4.1. Introduction

The two—point correlation function of galaxy clusters has been controversial for decades now.
Since the early work of Hauser & Peebles (1973) it has been known that rich galaxy clusters
aremore strongly clustered than galaxies. However, the amplitude of the two—point correlation
function and its dependence on cluster richness have been the subject of controversy.

The correlation function depends on cluster richness. Richer clusters are rarer, hence their
mean space density, n., issmaller. Usually thisis expressed using the mean intercluster sepa-
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Figure 6.3.: The cumulative mass function of the 7CDM virial mass catalog (crosses with er-
rorbars) against the prediction of the Press-Schechter theory for the three redshifts
(solid, dotted, and dashed lines). The masses are given in units of M /h.

ration d. = n_'/3. Bahcall (e.g. in Bahcall & Cen 1992, Bahcall & West 1992) has argued that
the correlation length, ro, defined via&(ry) = 1, scaleslinearly with d.,

ro = 0.4d,. (6.7)

This Ansatzis based on self—similar scaling. Early measurements of £(r) for the Abell cluster
sample (Abell 1958, Abell et al. 1989) seemed to confirm this scaling (e.g. Bahcall & Soneira
1983, Peacock & West 1992). However, it was aready pointed out by several works (e.g. Pea-
cock & West 1992, Efstathiou et al. 1992) that incompleteness of the Abell cluster catalog arti-
ficially enhances the clustering amplitude by producing significant line—of—sight correlations.
A means to investigate thisis to use (o, 7), where o and 7 are the pair separations perpen-
dicular and paralel to the line—of—sight, respectively. Peacock & West found a very strong
anisotropy signal for clusters of richness class R=0 in the Abell catalog whereas for R>1 the
effect was absent. Efstathiou et al. came to the same conclusion for the redshift survey of 351
Abell clusters from Postman et a. (1992) (see Efstathiou 1996 for a detailed review of these
iSsues).

Quitesurprisingly, both camps have used N-body simul ationsof CDM-type modelsto sup-
port their views. Bahcall & Cen (1992) found that their simulation agreed with their scaling
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proposed for clustersin thereal Universe. Using ensembles of simulations, Croft & Efstathiou
(1994) found that the amplitude of £(r) depended only weakly on cluster richness. They sug-
gested that Bahcall & Cen's conclusions were a consequence of having run a single smula-
tion with alow resolution N—body code. In addition, Croft & Efstathiou noted that the clus-
ter correlation function is insensitive to 2 and weakly dependent on the normalization of the
power spectrum, og, but depends strongly on its shape, parameterized viaI'. Recently, Eke
et al. (1996a) studied the systematics of the cluster correlation function in simulations, in par-
ticular the influence of the group finding algorithm. They ran several realizations of the same
cosmol ogy and compared severa cluster finding algorithms with each other. Their overall re-
sult supported the findings of Croft & Efstathiou (1992). However, the simulation work up
to the present date suffered significantly from the restrictions in the volumes so that so far no
conclusive answer could be reached about the rel ation between the mean intercluster separation
and the correlation length in CDM—type models.

Croft et al. (1997) analyzed the cluster catal og selected from the APM Galaxy Survey. The
APM clusters are comparable in richness and space density to 2 > 0 Abell clusters. They
found a weak richness dependence of £(r) which isinconsistent with the linear scaling pro-
posed by Bahcall.

Using a Press—Schechter type ansatz, Mo & White (1996) derived expressionsfor the clus-
tering of Dark Matter haloes. In particular, they showed that the two—point correlation function
of haloes of Lagrangian radius R isrelated to that of the Dark Matter, &py, by

£(r) = 0*(R) &pm(r) (6.8)

where &py () isthe two—point correlation function of the mass, and b( R) isabiasfactor which
will beintroduced in more detail below. Mo et al. (1996) tested thisansatz on a set of N—body
simulations and found that the analytical result agreed with their N-body output.

In the following two sections, the two—point correlation function and the Mo & White
model will be introduced. Then, they will be applied to the Hubble Volume cluster catalogs.

6.4.2. The Two—point Correlation Function

Given aset of points, the two—point correlation function is defined as follows. The probability
dP that apointisfound centered withinan arbitrarily placed volumeelement dV isproportional
to the size of the element

dP =ndV, (6.9)

where n is the number density of the points. The joint probability of finding points centered
within two volume elements dV; and dV5 separated by adistance r is proportional to the sizes
of the elements

dP = n*[1 + £(r/ro)]dV; dVs. (6.10)

Here, ro denotes a characteristic clustering length usually defined via é(r = r9) = 1. Ina
random Poisson process, £(r /1) = 0. Thus, the two—point correlation function describes how
much the set of points differs from a pure random Poisson process.
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The definition (6.10) is equivalent to the following definition. The two—point correlation
function isthe conditional probability of finding apoint in the element dV” at adistance r from
another point,

dP =n[l 4+ &(r/rp)]dV . (6.12)

That is, it givesthe excess probability of finding apair of points separated by adistance r com-
pared with arandom Poisson process. The code used hereto computethe two—point correlation
function counts the numbers of such pairs as afunction of separation and from that computes

&(r/ro).

6.4.3. The Mo & White Model

Starting from a Press—Schechter type ansatz, Mo & White (1996) devel op an analytical theory
to describethe spatial clustering of haloes. In particular, they find that the two—point correl ation
function of Dark Matter haloes of Lagrangian radius R isrelated to that of the mass, £pyy, by

&(r) = 0*(R) Epm(r) (6.12)
where
b(R) =1+ O 1 (6.13)
o2(R) . '

Here, 0. = 1.69 asintroduced above and o (R) is the rms mass fluctuation on the scale of the
halo (using a Top—Hat filter; compare the preceding Chapter). Note that asimilar relationship
isderived in Bardeen et a. (1986; BBK S hereafter) for peaks

— 2
Epp(T) = <0E28)> Epm(r) (6.14)
where v isthe mean peak height and R, hereisthe size of the Gaussian filter used to smooth the
density field. Thiswas used by Croft & Efstathiou (1994) to derive the scaling of ry with d..
As aready seen in the preceding Chapter there is a relationship between the peak height and
the mass of a cluster, albeit with abig scatter. In addition, it is not clear whether a Gaussian or
a Top Hat filter should be taken. Using two different schemesto fix v, the threshold height of
the peaks, and its corresponding smoothing radius R, Croft & Efstathiou find that the derived
scaling lies above the result of their N-body output. However, they seem to be too pessimistic
with regard to the power of eqg. (6.14). For instance, they did not try adifferent filter. They still
state, though that qualitatively, the observed trend of the amplitude with richnessis reproduced
by the BBK'S model.

Mo et al. (1996) test the analytical prediction on a set of N-body simulations and find very
good agreement. It has to be noted that their way of constructing cluster samplesis different
from the procedure used by all other authors mentioned here (including thiswork). Mo et a.
userangesin halo (cluster) masses rather than constructing cluster sasmples from agiven num-
ber density. They computethe biasfactor (eg. 6.13) by weighting over therange of halo masses
in each sample using the theoretical Press-Schechter mass function (Mo, private communica-
tion).
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6.5. Results from the Hubble Volume
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Figure 6.4.: The two—point correlation functions of the 7CDM model for the d. = 40 Mpc/h
(solid), d. = 70 Mpc/h (dotted), d. = 100 Mpc/h (dashed), and d. = 130 Mpc/h
(dot dashed) samples. The plotted 1o errorbars are derived from the number of
pairsin each bin.

Figure 6.4 shows the cluster correlation functions for the d. = 40 Mpc/h, d. = 70 Mpc/h,
d. = 100Mpc/h, and d. = 130 Mpc/h sample from the 7CDM simulation. 1o errors have
been computed from the numbers of pairs. As can be seen, the amplitude of the clustering in-
creases with the sparseness of the sample. Figure 6.5 gives the correlation functions for the
d. = 50 Mpc/h samples from the two simulations. Superimposed are the linear and nonlinear
mass correlation functions scaled with the appropriate biasing factor (for details of the mass
correlation function c.f. Jenkins et al. 1998). Note that the ACDM case is offset by one or-
der of magnitude for clarity. For the 7CDM model, the Mo & White prediction fits the results
from the simulation rather well. The amplitude of the ACDM case, though, is slightly over-
predicted. The shapes of the correlation functions, however, do agree well. This means that
while the amplitude of the correlation function increases for sparser samples the slope at the
zero crossing does not remain constant but increases, too. Quite obviously, afixed slopewould
lead to misleading results for the sparsest sample.

In order to compute the correlation length, in the vicinity of £(r) = 1, the correlation func-
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Figure 6.5.: The two—point correlation functions of the 7CDM (lower part) and the ACDM
model (upper part) for the d. = 50 Mpc/h samples. This figure compares the re-
sults from the simulations (dots with errorbars), and the linear (dashed line) and
nonlinear (solid line) Dark Matter correlation functions with the bias factors as
specified by eq. 6.12. For the ACDM model, all quantities were shifted upwards
by one order of magnitude. 1o errorbars are plotted, asinfig. 6.4.

tion isfitted with a power law of the following form

r\"
€0 = (=) (6.15)
To

where v and r are free parameters. Figure 6.6 gives the results of the fits for the correlation
lengths. The boxes and diamonds are for the 7CDM and ACDM simulation, respectively. The
dotted and dot—dashed line are the results for the Mo & White ansatz using eg. (6.12) and the
definition £(rp) = 1. Also given are the results of Croft et a.’s anaysis of the APM clusters
and the linear scaling, eg. (6.7), proposed by Bahcall. The linear scaling fails to reproduce the
rel ation between the cluster sampledensity and the correl ation length compl etely. Interestingly,
the analytical prediction by Mo & White (1996) lies above the ssmulation results. As already
mentioned above, a similar trend was noted by Croft & Efstathiou (1994) when they used the
model introduced in BBKS.

The APM clusters analyzed in Croft et al. (1997) follow the trend of the simulated clusters
but have dlightly larger amplitudes than the ACDM model. Probably only very large cluster
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Figure 6.6.: The correlation length as a function of the mean intercluster separation d. for the
7CDM (boxes with errorbars) and ACDM (diamonds with errorbars) simulation.
The prediction of theMo & White model are given as dotted and dot—dashed lines
for the respective simulations. The dashed lineis the linear relation proposed by
Bahcall. Alsogivenarethe APM datapointstaken from Croft et al. 1997 (crosses).

samples from the forthcoming 2dF and SDSS surveys will allow a determination of the cor-
relation function of clustersin the real Universe which will end the debate outlined above. If
Cold Dark Matter model s of the type discussed above do indeed describe the Universe, thenthe
correlation length of the richest clusters will not follow the linear scaling advocated by Bah-
call & Cen (1992) but will turn over and rise only gently as shown above. Clearly, of the two
cosmol ogical models discussed here, the ACDM one is more consistent with the APM data.

6.6. Summary

The study of galaxy clustersin the largest cosmol ogical N-body simulations done to—date has
yielded some interesting results. An investigation of massive clusters at redshiftsof z ~ 0.8
has shown that the model with 2, = 1 cannot produce enough massive clusters to account
for the objects which have already been observed. The ACDM simulation doesn’t have this
problem — if the most massive observed cluster which doesn’t seem to be arelaxed object is
assumed to be anomal ous. However, the case of this cluster means that this discussion has stil|
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to be taken with atablespoon of salt due to the uncertainties and statistics of the observational
samples.

The high mass end of the analytical Press—-Schechter mass function isfollowed very nicely
by the galaxy clusters extracted from the Hubble Volume Simulations. Thetwo different group
finding schemes, FOF, , and SO, show differences which are small and are understood from
earlier work.

The two—point correlation function of galaxy clusters can be studied in unprecedented de-
tail using the Hubble Volume Simulations. It was shown that the correlation function can be
described in terms of the correlation function of the mass times a bias factor as introduced in
thework by Mo & White (1996). However, a perfect match required slightly smaller biasval-
ues than they would predict. Fitting the correlation function around £(r) &~ 1 with a power
law yields the correlation length, ry. It was shown that the correlation length does increase
with the mean separation, d. of subsamples of the cluster catalogs. However, the relationship
between r, and d. isnot linear — as expected for afractal distribution—but it turns over gently.
The prediction by Mo & Whiteisin good gqualitative agreement with what was found from the
simulation but somewhat overpredicts . The correlation lengths found for the clusters ob-
tained from the APM catalog by Croft et a. (1997) are in good agreement with the ACDM
model but are too high for the 7CDM model.
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Linking Cluster Formation to Large Scale
Structure

Look for aproblemthat isinteresting and impor-
tant—never mind howitisclassified—andtackle
it.

Mancur L. Olson

7.1. Introduction

In the preceding Chapters, Large-Scale Structure (LSS) was viewed from different angles.
Two—dimensional picturesof slicesthrough thevarioussimulation setsshowed arather compli-
cated situation where objects which are themselves clustered are interconnected by a network
of filaments and sheets. From this viewpoint, which was used in Chapter 3, it was unclear
which structure element dominated. Filaments, sheets, clusters, and voids all showed up inthe
simulations. In Chapter 4 it became evident that as a consequence of gravity being a long—
range force any object defined in someway is part of abigger object when the criterion used to
find the object isrelaxed. There, the adaptively smoothed density field was investigated, and
the sizes and masses of objects as a function of an overdensity threshold were measured. It
was found that for thresholds close to the mean density, most of the masswasin one single ob-
ject which extended all across the simulation volume. For high thresholds, the mass above this
threshold was distributed in many small objects (small in terms of the size of the volume). For
a hypothetical arbitrarily fine mesh an overdensity threshold of 178 would yield all virialized
objects. The most massive objects, corresponding to rich clusters of galaxies which are inves-
tigated in Chapters 5 and 6 are of particular importance. Observationaly, it is not the density
field which is observed but galaxies and thus galaxy clusters. Galaxy clusters are tracers of the
underlying massdistribution. Asseenin Chapter 5, galaxy clusters correspond to high peaksin
the smoothed initial density field. It was aso seen that the peculiar vel ocities of galaxy clusters

95



deviate from the prediction of Linear Theory because of non-inear effects. Thus, thereisan
interesting interplay between galaxy clusters and LSS. On the one hand, galaxy clusters trace
LSS like the highest peaks of areef which mark the reef itself during high tide. On the other
hand, L SS has a strong influence on the properties of galaxy clusters. From this perspective, it
isnatural to investigate the formation process of galaxy clusters more closely. The main point
of interest here will be the infall pattern of the mass which falls onto a (proto-) cluster. Once
that isdone, the spatial distribution of the mass which surrounds galaxy clusterswill be inves-
tigated. That way, further insight into a still open question will be gained which is not only
related to simulations but especially to observations.

Currently, there is an ongoing debate about how best to describe LSS. Sheets or walls
(Geller & Huchra 1989, de Lapparant et al. 1986), filaments (Giovanelli et a. 1986), and mixes
of these to produce a cell-ike geometry (Joeveer & Einasto 1987) have all been suggested. In
an earlier work, Bond et al. (1995) have shown that this mix already shows up in the overden-
sity pattern of theinitial Gaussian density field —which isrelated to the cluster peak correspon-
dance mentioned above. So far, no consensus has been reached on which component of LSS
might be predominant. But this ambiguity has something to offer. Here, | attempt to investi-
gate LSS starting from objectswhich are well-defined. It iswidely believed that the formation
process of galaxy clustersislinked to LSS. Sotheideaisto havealook at how clustersbuild up
and then to gain insight into how thisis connected to the mass distribution outside the clusters.
Note that a priori no hypothesisis made of what LSS consists of. Rather, it isthe aim of this
Chapter to understand this very point.

7.2. The Formation of Clusters

7.2.1. The Simulations

The GIF simulations are well—suited for this work because of their high mass resolution. In
addition, there exist a large number of output times so that the formation process of galaxy
clusters, which occurs at redshifts lower than z = 1, can be investigated in detail. From the
four simulations, two are taken, namely the 7CDM and the OCDM simulation. As seen in
Chapter 4, the two other simulations are nearly indistinguishable from the OCDM simulation
with respect to the spatial distribution of the mass. And if the difference in the dynamics be-
tween high and low (2 modelsleadsto adifferencein theformation process, it will clearly show
up most strongly between the 7TCDM and the OCDM models. The output redshifts taken are
z=0.93,0.82,0.72,0.62,0.52,0.43, 0.35,0.27, 0.20, 0.13, 0.06, and 0.0.

7.2.2. The Selection of Clusters

The cluster selection taken here isidentical to the one used in Chapter 5 for the study of the
peculiar velocities of clusters. Spheres of radiusr, = 1.5h~! Mpc are put around dense
knots found with a friends—of—friends group finder with a dimensionless linking length of
b = 0.05 times the mean interparticle separation. Overlapping spheres are later merged.
From each model the ten most massive clusters are taken. These span a mass range from
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Figure 7.1.: Theinfall pattern of matter onto a cluster in the 7TCDM model viewed by a hypo-
thetical observer in the barycenter of the system. Shown are different time inter-
vas (@) z = 0.t0z = 0.13, (b) z = 0.13to z = 0.27, (C) z = 0.27 to z = 0.43,
and (d) z = 0.43 to z = 0.62.

2.7 x 10"h~" M, (35 x 10"h~' M) to 7.3 x 10" A~ My (8.4 x 10" h~" M) for
the 7CDM (OCDM) mode!.

7.2.3. Construction of the Formation History

After having found the clusters at z = 0 the particles in each of them are marked in alist,
and are then extracted from the whole set of particles at all redshifts. Two additional pieces of
information are derived for each particle: Thetimewhenit fallsinto the cluster and its position
at that time. Thisis done in the following manner. Given the selection criteria, acluster isa
spherical object with aradiusr, = 1.5 A~ Mpc (comoving) at any time. Let the current time
be z;. Going back to z;_;, some of the particles which will beinsider 4 at z; are till outside.
Hence, these particles will fall into the cluster between z; ; and z;. So for these particles z;
as well as their position at this time are saved. As the center of the cluster the barycenter at
z; 1 Of the biggest lump is taken.

7.2.4. Investigating the Formation of the Clusters

As described in Chapter 5, the formation of a cluster is usually modeled by the spherical col-
lapse of some high peak in the initial density field. However, previous studies, e.g. Tormen
et a. (1997), have already shown that the actual formation process in hierarchical modelsis
rather irregular. Instead of a steady accretion of matter, lumps fall onto a pre—existing object,
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atypical process well knownin CDM models.

A hypothetical observer was placed at the barycenter of each cluster. Thisobserver watches
the matter asit fallsinto the cluster. For spherical infall he would see matter coming in more
or lessrandomly from all directions. For each observer, maps of theinfall pattern are produced
by plotting the positions of the particles at infall using atwo—dimensional projection which is
known asthe Aitoff projection. Figure 7.1 showstypical examplesof such mapsfor aclusterin
the 7CDM simulation. From this some points can be addressed. First, it isobviousthat matter
is not falling in uniformly over the sky of the hypothetical observer as one would expect in
aspherical infall model. Rather infall occurs from distinct directions. Second, thereis atight
correlation between theinfall directionsat different times. The cluster formsby accretion from
afew preferred directions.

This process can be quantified by computing the autocorrelation function of the infalling

matter
41 NPP (19)

A(W)N(N -1)°
where Npp () denotes the number of particle pairs separated by an angle ¥ + §9, A(9) =
27 sin 9 019 is the size of the annulus, and N is the total number of particles in the sample.
Obvioudly, w(?) is the excess probability of finding a particle pair with separation ¢ + §¢ in
the simulations compared with spherical infall.

Figure 7.2 shows the autocorrel ation functions for the infalling matter of the cluster in fig.
7.1 and for random spherical infall. For small angles all the curves have apeak. Thisjust re-
flectsthe particle clumpsseeninfig. 7.1. The strength of the peaks directly reflects the amount
of matter in these clumps. For some of the curves, peaks also appear at larger angles. For ex-
ample, curve (b) has a second peak around 60°. This reflects the angle between the two most
massive objectsin fig. 7.1(b).

These curves can be directly compared with the correlations of matter between different
maps, as quantified by the crosscorrelation function

~ 47'(' NP1P2(19)
1 —
=T N N,

where Np, p, (1)) denotes the number of pairs of a particle from map 1 and one from map 2
separated by an angle ¢ + 0, where A(9) = 27 sin ¥ d¥J isthe size of the annulus again. NV,
and N, arethe total number of particlesin the maps 1 and 2, respectively.

Figure 7.3 shows cross correl ations between pairs of mapsfromfig. 7.1. Thesehavesimilar
scale but are generally weaker than the autocorrelations. This can be seen by comparing the
maps directly, too. The behaviour for this particular cluster is typical for both the auto— and
cross—correlationsin the infall patterns of all clustersin both the 7CDM and OCDM models.
Not a single case was found which deviates qualitatively from it.

From the above, it isapparent that correlations between theinfall patternsat different times
are strong. Can such correlations be expected? From previous studies, e.g. Tormen et al. 1997,
itisclear that clusters form by the accretion of haloes. This processis clearly reflected by the
discussion above. But why isthen theinfall pattern of matter between so many and so different
redshift intervals correlated? Obvioudly, there must be a connection between the infall pattern
and LSS itself. Thiswill be discussed in the next section.

l+w() = (7.1)

(7.2)
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Figure 7.2.: The autocorrel ation functions of the matter shown infig. 7.1 for the sametimein-
tervalsused inthefour panelsof fig. 7.1. Alsoshownisthe predictionfor spherical
infall (random).

7.2.5. Connecting Cluster Formation and Large Scale Structure

From the above it is obvious that during the formation of a cluster matter falls in from well—
defined directions. What isthe connection between these directionsand Large Scale Structure?
In order to investigate this issue the distribution of matter surrounding the clustersat z = 0 is
obtained as follows. Around the clusters onion-like shells of thickness 1.5 2~ Mpc are pt.
All particlesin ashell are extracted. The hypothetical observer at the cluster center drew maps
of these particles, i.e., LSS is viewed from the center of each cluster.

Figure 7.4 shows maps for shells surrounding the TCDM cluster analyzed in figures 7.1
to 7.3. Again, these maps are typical of those found for al the clusters. The maps show var-
ious points. First, there exist density enhancements in the distribution of the particles which
only marginally change their locations from map to map. Most of them are more or less circu-
lar. These must clearly be filaments extending outwards from the cluster. In addition, fig. 7.4
shows another interesting feature. There are enhancements which connect the filaments and
also extend outwards from map to map, but are less dense. Figure 7.5 showsthe LSS around a
different 7TCDM cluster where these connections between the filaments are very strong. There
is a U-shaped broad band in the right part of five of the six maps. This object is obviously a
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Figure 7.3.: The cross correl ation between pairs of mapsfromfig. 7.1. Also shownistheresult
expected for uncorrelated maps (dotted).

sheet. One hasto note that filaments can be found in all of the cluster maps. There are connec-
tions between them in al maps, too. However, impressive examples of sheets like the one in
figure 7.5 are rare. Second, when comparing the maps in figure 7.4 with theonein fig. 7.1 it
can be seen that the big clumpsfall in aong the filaments. Thisistrue not only for the lowest
redshift range but for the earlier ones, too. Even at aredshift of 0.6 infall onto clustersistightly
coupledto LSS at z = 0.

This connection can be quantified by means of the angular cross correlation functions be-
tween the combined infall maps of the cluster and the L SS maps, computed for each cluster in
each cosmology. Figure 7.6 shows cross correl ations between the infall patterns and surround-
ing LSS for the ten 7CDM and OCDM clusters. These are averaged over the redshift ranges
and radii shown in figures 7.1, 7.4, and 7.5. This mean cross correlation behavesin a similar
manner to the cross correlations between the different maps (Fig. 7.3). Thereisindeed awell
defined correlation between theinfall onto clustersand their surrounding LSS. This correlation
does not depend on (2.
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Figure 7.4.: The LSS around the cluster showninfig. 7.1 viewed by a hypothetical observer at
the barycenter of the cluster at z = 0. Shown are shellsat 1.5t03.0 (a), 3.0t0 4.5
(b), 4510 6.0 (c), 6.0to 7.5 (d), 7.5t0 9.0 (e), and 9.0 to 10.54 ! Mpc (f) from
the cluster center.
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Figure 7.5.: The LSS around another cluster from the 7CDM simulation shown using the same
representation asin fig. 7.4.
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Figure 7.6.: The combined cross correlation between the infall patterns of the clustersin the
7CDM and OCDM simulations and their surrounding L SS.
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Figure 7.7.: A different representation of fig. 7.4 where only the lumps (filaments) show up.
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Radius Fig. 7.4 Fig. 7.5

[Mpc/h Jall fi  fo| fan i [
15-30 |11% 5% 2% | 13% 9% 2%
30-45 [22% 3% 3% |24% 4% 4%
45—-6.0 | 52% 42% 2% | 28% 10% 3%
6.0-75 |45% 32% 1% | 34% 5% 4%
75-90 |32% 7% 4% |43% 17% 3%
90-105(39% 8% 5% |32% 6% 2%

Table 7.1.: Fractions of mass in the dark spots for the mapsin fig. 7.4 and 7.5. Given are the
total mass fractions (f.;) aswell as the mass fractions of the two biggest spots (f;
and f5) for the different radii.

7.2.6. Fraction of Mass in the Peaks

What is the amount of mass which can be seen in the various structures in the above maps? In
order to answer thisquestion the amount of massinsidethe dark spotshasto be computed. This
was done by using a standard friends—of—friends group finder on the sets of points on the unit
sphere from which the above maps were drawn. Aslinking parameter avalue of b = 0.2 times
the mean interparticle separation istaken. All objects with 20 or more particles are considered
as big groups.

Table 7.1 gives the fraction of mass inside such big dark spots for the figures 7.4 and 7.5
(fan). Also shown isthe fraction of mass in the two most massive spots in each map (f; and
f2). Typically, about athird of the massliesin filaments at the overdensity of ~20 picked out
by the choice of linking length. Note, that with this procedure sheets can not be " detected”.
Their density contrast is significantly lower than that of filaments— as can be seen from figures
7.4and 7.5.

Fig. 7.7 shows a representation of the maps in fig. 7.4 where only the particles in these
dark spots, i.e. the filaments, are plotted. Apparently filaments are clumpy structures rather
than homogeneous cylinders.

Performing asimilar analysis for the infall patterns onto clusters gives results which vary
more strongly between clusters and time intervals. E.g., for the cluster shown in fig. 7.1 the
fractions of massin the dark spots are 5%, 15%, 30%, and 51% for the maps (a) to (d), respec-
tively. This scatter between 5% and around 55% is quite typical for clustersin both the 7CDM
and the OCDM sample.

For the whole 7TCDM (OCDM) cluster sample the averaged mass fractions in the fila-
ments are 14% (14%) , 29% (35%), and 42% (46%) for shells beginning at radii 1.5, 3.0,
and 4.5h ! Mpc. These values stay constant at around 40% (48%) for larger radii. Thereisa
dlightly larger mass fraction in the filamentsin the low €2 model. This has aready been found
in Chapter 4 where the LSS was investigated by means of a percolation analysis.
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7.3. Summary

The study of the formation process of clusters and its connection with LSS has yielded several
conclusions. First, as already noted by many other studies, in CDM universes clustersform by
the accretion of collapsed haloes onto other pre—existing haloes. This occurs from preferred
directions. These directions do not change much with time. Second, there is a correlation
between the formation process of a cluster and its surrounding LSS. Qualitatively speaking,
matter fallsin mainly from filaments and sheets. Filaments show up as clear density enhance-
ments in the 2D projections used above. They extend outwards from the cluster center and
are connected by |ess dense sheets of matter. Because of their considerably lower density con-
trast these sheets are nearly impossible to find in 3D representations of N—body simulations
(compare Chapter 4). The above representation clearly shows that both filaments and sheets
do exist in ssimulations. Quantitatively speaking, the amount of massin the filamentsisaround
40% and 48% of the total mass for radii from 4.5 to 10.5% ' Mpc in the 7CDM and OCDM
model, respectively. At smaller radii, it isaround 30%. However, the massdistributionisdom-
inated by lumps inside the filaments. Third, the only difference which can be found between
the 7CDM and the OCDM model isin the amount of massin the filaments, it isslightly larger
for the OCDM model. This agrees with the results from Chapter 4 where the amount of mass
inside overdense regions for any overdensity threshold was always larger for the OCDM than
for the 7CDM model.

The formation process of each cluster is governed by its surrounding LSS. The internal
properties of the cluster may change during its formation, as shown by Tormen et al. (1997).
This processis not chaotic but it islinked to the LSS.
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The N-body Simulations

This Chapter gives an outline of the general technique used for the N-body simulations. In
section 8.1, AP*M isintroduced. Then, in section 8.2, a part of the development of aversion
which can be run on a Cray T3E parallel supercomputer.

8.1. APM

8.1.1. Basics

The aim of the computer code is to follow the movements of NV particles subject to their own
mutual gravity in a cosmological volume. Gravity is along—ange force, so for each particle
the acceleration due to the other N — 1 particles must be obtained to compute the resulting
velocity and the change in the position. The simplest way to do thisis to compute the forces
between all pairs. Thisis known as the Particle—Particle (PP) algorithm. Using the comoving
coordinates introduced in section 2.1, the equati on of motion of the i—th particleis
dVi a

dt + 2avZ T @ ]27&:1
Here, x; isthe position of the i—th particle, v = x isitsvelocity, m isits mass (Peebles 1980).
The overdot denotes differentiation with respect to time, GG isthe gravitational constant, and a
is the expansion parameter (compare eqg.s (2.22) and (2.23)).

The PP algorithm has a huge disadvantage. Asthe number of particles, IV, isincreased, the
number of operations needed for computing the forces grows as N2. A solution to this prob-
lemisto divide the force into a short—ange component, computed using the direct summation
above, and along—range component. One way to compute the latter isthe Particle-Mesh (PM)
algorithm. Here, the particles are assigned to amesh with an appropriate smoothing functionto
get adiscrete density distribution. Then, thelong—angeforces can be obtained using Poisson’s
equation by means of a Fast Fourier transform (FFT). The scheme works as follows:

(8.1)

—X]|3
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1. Particles are assigned to a grid with an appropriate smoothing function (kernel). This
produces a discrete density distribution.

2. Thedensity distributionis convolved with the Green’sfunction, G. Thisgetsa potential
at mesh points.

3. The potential is differenced to obtain forces at mesh points.
4. Theforces areinterpolated back onto the particles with the same kernel as above.

The FFT technique is particularly interesting for a cosmological simulation. As the Uni-
versein principleisinfinite, there will always be contributionsto the forces from scales which
are much bigger than the smulated volume. A standard way of dealing with thisisto assume
periodic boundary conditions. The FFT technique does this automatically. On small scales,
itsaccuracy islimited — the Nyquist theorem essentially states that all forces on scales smaller
than two mesh cells are inaccurate. On these scales, the forces must be obtained by the direct
summation of the PP algorithm.

Combining these two agorithms gives the Particle-Particle Particle-Mesh (P*M) ago-
rithm. For afairly uniform distribution it behaves like a PM algorithm. However, once the
particle distribution becomes clustered, the PP part starts to dominate. The aim of acosmol og-
ical simulation usually istwo—fold: It isdesirableto have alarge computational volumeand a
high mass resolution, that is many particles per object. Obviously, the latter is a problem for
P*M. For ahighly clustered distribution, the PP part consumes a huge amount of time, and the
code is slow. One way to overcome thisisto allow for mesh refinements of heavily clustered
regions. If applied to a P*M algorithm, thistechniqueis called Adaptive P°M (AP*M, Couch-
man 1991). It finds highly clustered regions and places arefined P*M region with afiner mesh
on it. This subregion then consists of a non—periodic PM part with a smaller mesh size and a
PP part which is set up in the samefashion ason thetop level, that ison the wholevolume. The
ideaisto shift PP work on thetop level to PM work on therefined level. Thisagorithm can be
iterated by placing another refined region into thefirst level of refinementsetc. If thetotal CPU
time per time step is measured for a simulation run with AP*M, it stays roughly constant (see
Pearce & Couchman 1997) whereas it increases linearly otherwise. The basic scheme works
asfollows:

1. Find those regions where the placement of arefinement would reduce the computational
work?.

2. ComputePM on all particlesand PP only on particleswhich are not in to berefined zones.

3. Doafurther P*M calculation on those regions found above such that only the short range
part of the forces of the standard P*M force (that is, the one from the base mesh) are
computed.

4. Accumulate the forces, update the particle data, and iterate.

LActually, the refinement placing isthetrickiest part of the AP>M code, and different schemesfor doing so exist.
However, the basic idea aways remains the same, regardless of how it is phrased.
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8.1.2. The code

The first simulations were run on a CRAY T3D with 128 processors at the Computer Center
of the Max—Planck—Gesellschaft in Garching. A parallelized version of AP*M was available.
The parallelization was done by Pearce & Couchman (1997) using CRAFT, which is a set of
compiler options, that is, the compiler itself determines the way particles are distributed over
the processors. All information is sent automatically between processors. This version of the
codeisreasonably fast onaT3D. However, dueto theway the parallelization is set up, oncethe
simulations became too heavily clustered (aswasthe casefor the GIF simulations, see Chapter
3.2), alarger T3D was necessary to finish the runs. The reason for thisis the limited amount
of memory (64 MB) each processor on the T3D owns. The runswere then finished onthe T3D
at the Edinburgh Parallel Computer Center.

The Max—Planck—Society had decided to acquire a CRAY T3E, which finaly arrived in
January 1997. For this computer, no simulation code was available which could be used be-
cause CRAY had not developed CRAFT for the T3E. Sotheoriginal serial version of AP*M had
to be taken and parallelized for the T3E. This was mainly done by MarFarland (for a descrip-
tion of theimplementation of the message passing concept shmemsee MacFarland et al. 1998).
Some of the work described here was devoted to parallelizing parts of the code. Thiswill be
described in detail in the following section. Details about CRAFT and shnmemcan be found
in the Cray MPP Fortran Reference Manual, SR-2504, 6.2.1 and in Application Programmer’s
Library Reference Manual, Vol. 2, SR-2165.

8.2. Code Development

The parallelization of AP*M wasdonein two stages. First, aparalel PPM wasdeveloped. This
code can be used for systemswhich are not too heavily clustered — otherwise the code becomes
very slow and inefficient. The second part is the implementation of the refinements—thisisa
future project and will probably require as much effort asthe PPM part itself. Two main tasks
were parallelized as part of the effort to get a shnmemversion of P*M: the particle update and
the parallel input of data.

Because the particle update scheme was changed in alater stage of the implementation of
shrmemit will be described only briefly. The particles are distributed on the processors us-
ing adomain decomposition. That means that each processor ”owns’ well—defined regionsin
space. Here, the distribution of particlesis split into separate regionsin the x—y plane, that is
into columns. Each processor owns a set of non—adjacent columns across the simulation vol-
ume. To compute the pairwise forces a processor has to store the particle data in the regions
surrounding its actual domain (ghost cells). Originally, the information of which particle be-
longsto which processor was stored by means of alinked list asfollows. For thewhole particle
set, aone-dimensional array isset up. Each particlehasan entry inthisarray. A processor only
knowstheindex of one particle. It can accessall other particlesviathelinked list. Assumethis
particle hastheindex i andthearray bel i st. Then,| i st (i) istheindex of the next par-
ticle,j . 1i st (j) containstheindex of the next particle, k and so on. Thelist isset up to be
circular so that the processor knows it has collected all particlesoncel i st (1) =i , wherel
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is the numberof the final particle which belongs to the processor.
Asthe simulation evolves, particles move. In particular, they can change the processor to
which they belong. The particle update consisted of the following parts:

1. Update the particle data using the computed forces.
2. Check whether a particle has moved so that it belongsto different processor.

3. Updatethe particlelist. Theway thiswasdonewasto set it asthefirst particle of the cor-
responding processor and changetheindicesof | i st accordingly. That meant changing
thelinked list such that thetwo involved processors could accessall particlesthey owned.

Of course, the actual coding was more complicated than described here. Most of the concepts
which are described abover were used for the parallel input of the datain modified form. As
the particle update was changed later (the linked list was removed in order to save space, the
particles are now being sorted) only thefull detailsof the parallel input are given in the follow-

ing.

8.2.1. Parallel I/O: Reading in from multiple files
Introduction

Input and output of data (I/0) is one of the bottlenecks of any parallel system unlessit is done
efficiently, that isin parallel. On the T3D, thisis not possible. Only PEO? can communicate
with the outer world which consists of another supercomputer (in Garching this was a CRAY
Y/ MP Vectorcomputer). This, and the fact that the data to be read or written consists of all the
relevant simulation data results in an enormous amount of time which is spent with /O only.
It amounts to about 30% to 40% of the whole time used on the T3D.

The situation changed with the advent of the T3E which allows paralel 1/0. As already
mentioned above, the simulation code was re—parallized by Tom MacFarland using the explicit
message passing scheme shmem The first version consisted of the P°M part which allowed
parallel output only. Input of the datahad to be donefrom onefile. From theaboveit isobvious
that this situation had to be changed in order to make more efficient use of the T3ES. Thus, set-
ting up aroutine which allows parallel input from multiplefiles was necessary. The following
describes how this was achieved.

The Data Structure

To understand the basic problem, the data structure itself must be described. The particle data
is distributed across a set of files. The number of these files can be set by specifying the num-
ber of 1/0 processors, because each one writesits own file. Thisis done in a straightforward

2PEn here stands for processor number n.

3In addition, having multiple output files but needing only one inpuit file presented additional problems: The
files had to be concatenated using scripts in order to have a restartable configuration. However, with particle
setsof 3-10°, particle positions, velocities, numbers, and masses add up tp roughly 900 MByte of data. It was
not at all obviousthat the operating system could handlefiles of this size correctly.
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fashion — from which some complications result. Each I/O processor writes its own particle
data and communicates with a fixed sub—set of the non-1/O processors. That is, it reads their
particle data and writes them into the samefile as its own data. The number of particles each
I/O processor writes is not constant. Thisis because the distribution of the particlesis gener-
ally not homogeneous (with the exception of the very early stages of the simulation, but even
there small fluctuations exist). Hence, each processor stores some number of particles which
is different from the number of particles divided by the number of processors. The code was
set up by Tom MacFarland such that it did (and still does) not store the number of particles
in each file. Only the total number of particles, plus the major parameters of the simulation,
iswritten to afile. PEO writes these parameters in front of the particle data as a header. The
routine which reads from multiple files must be able to deal with thisfact.
The basic structure of the routine should be:

e Only PEO hasto read the header information before reading in the particle data.

e All 1/O processors have to be able to read in datafor some arbitrary number of particles
without knowing this number in advance.

e The 1/O processors have to communicate with the non-1/O processors and send them
data they need.

On the T3E, each processor can in principle do 1/0. However, in the simulation code reading
and writing data is done only by a subset of all processors. This number of I/O processorsis
set by the user as a parameter before the code is compiled. One of the basic features of shmem
isthat it isan asynchronous message passing scheme. This means that one processor can send
data to another processor and the latter does not need to receive it at exactly the sametime, it
may do something else. Thus, sending the datafrom the I/O processorsto the non—1/O proces-
sors amounts to finding which processor gets which data. How thisisdoneis described below.

The Core of the Routine
A number of variables which contain essential information are defined?*:

| .DOI O Al ogi cal whichis. true. for I/O processorsand . f al se. otherwise.

MY_I O_PE: The number of the I/O processors. ThisisO for all non—/O processors and equiv-
alent to the processor number otherwise.

MORE 2 DO Al ogi cal usedinthemain|/Oloopinorder to show each processor whether
or not it has to continue running.

The basic structure of the routineis as follows:
1. The basic variables are defined.
2. Thefiles are opened and PEO reads the header information®.

4The names of the variables are chosen so that reading the following listings should be straightforward.
SActually, PEO skips the header information because the code reads the basic parameters earlier.
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3. Themain loop consistsof aDO WHI LE loop. An I/O processor reads data and sends it
to the non—/O processors, or copiesit into its own domain, unless the end of a datafile
is reached.

4. Non-l/O processors wait for particle data and, once this has arrived, they receive it.

5. If an I/O processor reaches the end of its data file it sends or copies the data and then
stops the whole process (by setting MORE_2 _DOto . f al se. ).

6. The non-l/O processors have to find out whether or not to expect more data. If al 1/0
processors have finished their work they must leave the main loop, too. Thisisthe only
tricky point so far. One way to do thisisto have the I/O processors send the number of
particles read to one processor and al the others to get this number and compare it with
the total number of particles. However, thiswould result in a bottleneck for one proces-
sor. The scheme hereis different. The number of particles on each processor is counted
and passed to al processors by means of a special routine called shmemf col | ect .
Each processor then simply sums up the numbers of particles (read and copied to the
processors). If this sum is equal to the total number of particles MORE_2_DOiis set to
. fal se. andtheloopisleft.

So the basic structure, without the communication, 1ooks like this®:

C
CI1/O procs open files
C

|F (1 _DO 10O THEN

file_stream=fopen(filenane,"rb")

END | F
C
C PEO ski ps the header information (HEADER SIZE BYTES i s
C the size of the header in bytes)
C

IF (1_DO 10 .and. (MY_IO PE.eq.0)) THEN
SEEK _SET VAL = GET_SEEK SET()
I _position = HEADER SI ZE BYTES
ilerr = FSEEK(file_streami _position, SEEK SET VAL)
ENDI F
C
C Ensure that all processors start to read at the sanme tine
C
CALL barrier()
C
C Read particle data
C

81n the listing, comments describe what is done in the subsequent lines.
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ONONONONP]

OO0 OO0 OO0 OO0

ONONONQ!

OO0

MORE_2 DO = . TRUE.
DO WH LE ( MORE_2_DO)

The 1/ 0O processors read the data. i _lines_to read is the

maxi mum si ze of data they can read. In this case, each
particle consists of 12 REAL*4 vari abl es.

|F (1 _DO 10O THEN
| ERR = fread(raw file_data(1,0),4*12,
& i lines_ to read, file_stream
IF (IERR .eq. i _lines_to read) THEN

The end of the file has not been reached yet.
Here, sone operations will follow (see bel ow).

ELSE
MORE_2_DO = . FALSE.

The end of the file has been reached.
Here, sone operations will follow (see bel ow).
END | F
END | F

Ensure that all processors start to comruni cate at the
same tine

CALL barrier()

Conmuni cati on here. See bel ow.

Check whether or not reading the data is finished:
Count the particles on each processor..

CALL count cells_quiet (N, N2l,N3l)
sndint(1) = N
CALL barrier()

and communicate the information to all processors.
npes is the total nunber of processors,

CALL shnmem fcollect(rcvint,sndint(1), 1,0, 0, npes, pSync)
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how many particl es(0: npes-1) = rcvint(1: npes)

C
C The processors conpute the sum and check whether they are
C done.
C

suml = sunm(how_many_parti cl es)

| F (suml .eq. Nmax) THEN

MORE_2_ DO = . FALSE.

END | F

C

C Synchroni ze the process so that no confusion ari ses when
C nore data is read. ..
C

CALL barrier()

Thebasic schemefor theparallel codeaboveisthat all processors executethe samecode. Their
processor number is used to deny them access to parts they are not allowed to execute. E.g.,
in the example above, the logical | _-DO.I Ois used to have the I/O processors access file op-
erations whereas all other processors do not enter these statements. Because this may result
in different execution times for the different parts of the code, and because most parts of the
code have to be executed by all processors at the same time, so—called barriers are set. These
barriers|et a processor wait until all other processors have arrived at it. Then, the whole set of
processors continues to execute the subsequent code.

Sending/Receiving Particle Data

As introduced above, the basic principle of which processor owns which particle data is the
following: Using a domain decomposition, each processor owns all the data of the particles
which arein someregionin space. Each particle belongsto aprocessor which holdsthe particle
data of theregionitisin.

Thus, each 1/0O processor hasto find out where the particlesit hasread are located and send
them (if necessary) to some other processor. Thisisdone asfollows: After each I/O processor
hasread somefixed number of particles, it callsasubroutinewhich sortsthe particlesaccording
to the number of the processor they belong to, and sets up alist with the destinations. Thislist
it then used for the particle communication. The particle communication isdone consecutively
for the set of 1/O processors. Recall that a domain decompositionisused. In principle, an 1/0
processor could read in datawhich belongsto any processor. Thisiswhy the schemeloopsover
the I/O processors. At any time, only the particle data read in by one of the I/O processorsis
subject to communication because all other 1/0 processors may be arecipients. The actual 1/0
processor, that is, the one whose number equals the current index of the loop, checks whether
it has to copy data from its read—in array into its data space. All other processors get a copy
of the actual 1/0 processors distribution table, check whether they have to get data, and if they
have to, they then get the data’. Note that each 1/0 processor owns its own distribution table

"The datatransfer is done by getting rather than sending because thisis more efficient in shmem
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because it has read adigoint set of particles.
Thus, the particle information is treated as follows:

1. Each 1/O processor callsthe subroutinesor t _di stri buti on_t abl e which setsup
the listsfor the particle exchange.

2. Each 1/0 processor copiesthe datait owns into the arrays where they belong.

3. The non-/O processors get their particle data from the 1/0 processors by means of the
listsetupby sort _di stribution_table.

The complete routinelooks like this (some of the above comments and the definitions of some
variables are omitted)®:

SUBRQUTI NE r eadpar (dat afil e)

C
C Definitions of sone variable are omtted
C
| NTEGER MY_I O_PE
| NTEGER fil e_stream
| NTEGER f open, fread, fseek
CHARACTER*7 str_pe
| NTEGER SEEK_SET VAL, GET_SEEK_SET
LOG CAL MORE_2_ DO
C
C Note the definitions of the arrays! The |ocations
C of the arrays are the sane on all processors! This is
C necessary for the communication schene!
C

PO NTER (p_file_data,file_data(12,0: FILE BLOCK LI NES-1))
REAL*4 fil e _data
REAL*4 raw file data(12,0: FI LE_ BLOCK_LI NES- 1)
PO NTER (p_renote fil e_data,

& renote_file_data(1l2,0: FI LE_ BLOCK LI NES-1))
REAL*4 renote fil e data
PO NTER (p_distribution_tabl e,

& di stribution_table(2,0:npes-1))
p_file_data=LOC(sndbuf)
p_renote file_data=LOC(rcvbuf)
p_distribution_tabl e=LOC(rcvint)
p_file_data=LOC(sndbuf)
p_io_send flag=LOC(sndint(1))

8The reader who is not interested in the details of the parallel code may skip this listing and proceed to the next
Chapter.
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| NTEGER di stribution_table
| NTEGER renpte_di stribution_table(2,0:npes-1)
I NTEGER NI, N2I , N3I , sunil

C
C Define the nanes of the input files
C
VWRI TE(str_pe,’ (i4)’)M_I O RANK
startpos_nme=SCAN(str_pe, 0123456789’ )
longfile = dirnanme(1l:Inblnk(dirnane))//’/datal’
& /ldatafile//"."]]
& str_pe(startpos _ne:LEN TRIMstr_pe))
C
Clnitialize scaling factors for file data
C
gr ow=REAL( L)
vscal e=gr ow
C
C Construct particle distribution function as
C function of PE nunber
C
MY_| O PE=(nype/io_proc_skip)*io_proc_skip
C
IF (1_DO 10O THEN
file_stream=fopen(longfile,"rb")
END | F
C
IF (1_DO 10 .and. (MY_IO PE.eq.0)) THEN
SEEK SET VAL=GET_SEEK SET()
I _positi on=HEADER SI ZE_BYTES
ierr=FSEEK(file_streami _position, SEEK SET VAL)
ENDI F
CALL barrier()
C
C Read particle data
C
MORE 2 DO = . TRUE
i _lines to read = FILE BLOCK LI NES
DO WH LE (MORE_2_DO
distribution table = 0
C

C Read the data. The data is properly scal ed and copi ed
Cinto the array file_data which has the sanme | ocation on
C each processor. After that, the distribution table is set
C up by calling the appropriate subroutine.
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|F (1 _DO 10O THEN
| ERR = fread(raw file_data(1,0),4*12,

& i _lines_to read,file_stream
IF (IERR .eq. i _lines_to read) THEN
DOi =0, i _lines_to read-1

file data(l,i)=raw file_data(1,i)

file data(2:4,i)=raw file_data(2:4,i)*growtl.
file data(5:7,i)=raw file_data(5:7,i)*vscal e
file data(8,i)=0.0

file data(9,i)=0.0

file_data(10,i)=0.

file data(1l1,i)=0.0

file data(l1l2,i)=raw file_data(8,i)

END DO
CALL sort _distribution_table(file_data,
& distribution_table, i _lines_to_read)
ELSE

i_end_lines = I ERR
MORE 2 DO = . FALSE.
DOi =0, i_end lines-1
file data(l,i)=raw file data(1,i)
file data(2:4,i)=raw file_data(2:4,i)*growtl.
file data(5:7,i)=raw file_data(5:7,i)*vscal e
file data(8,i)=0.0
file data(9,i)=0.0
file_data(10,i)=0.
file data(1l1,i)=0.0
file data(l1l2,i)=raw file_data(8,i)

END DO
CALL sort _distribution_table(file_data,
& distribution_table, i_end_|ines)
END | F
END | F

CALL barrier()

Communi cate the data: This is done by | oopi ng over
t he nunber of 1/0O processors (outer DO loop). Each 1/0
processor has to copy data it has to store from
its own read-in array into some internediate array
(I'F statenents). All other processors have to receive
data over the network (ELSE statenment). Note that only
one I/ O processor enters the IF statenment. The | oop
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C then ensures that the I/ O processors send their data

C consecutively.
C i _size specifies the nunber of particles a processor
C is supposed to get
C i _start gives the position of the first particle it
Cwll get in the read in-array
C Al'l processors except the current |1/O processor
C may have to receive data. In order to check this, they
C grab a copy of the distribution table fromthe current
Cl1/Oprocessor. If it has to get data this is comruni cated
C by neans of shnmem get 4.
C After the conmunicati on phase the particles are
Cinserted into the particle lists of each individua
C processor (using a separate subroutine called
Cinsert _particle).
C
DO i _current _io_rank=0,10 PROCS-1
IF ((I_DO_10O .and.
& (1 _current _io_rank.eq. My_I O RANK)) THEN
i _size=distribution_table(2, nype)
i _start=distribution_table(l, nype)
| F (i _size.gt.0) THEN
remote file data(:,0:i_size-1)=file_data(:
& i _start:i_start+i _size-1)
END | F
ELSE
i _renote _pe=i_current _io_rank*io _proc_skip
CALL shnem get(renpte_distribution_table(1,0),
& di stribution_table(1,0), 2*npes,
& I _renote_pe)
i _start=renote_distribution_table(1, nype)
i _size=renote_distribution_table(2, nype)
| F (i _size.gt.0) THEN
CALL shnmem get4(renote file_data(l,0),
& file data(l,i_start),
& 12*i _size,i _renote_pe)
END | F
ENDI F
DO i=0, i_size-1
CALL insert_particle(renote file data(l1,i))
END DO
CALL barrier()
END DO
C
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C

CALL count cells_quiet (N, N2l,N3l)

sndi nt (1) =N

CALL barrier()

CALL shnmem fcollect(rcvint,sndint(1), 1,0, 0,
npes, pSync)

how many particl es(0: npes-1)=rcvint(1: npes)

sunml = sum(how_many_parti cl es)

| F (suml .eq. Nmax) THEN

MORE_2 DO = . FALSE.
END | F
CALL barrier()
END DO

C Cose the files

C

| F(I _DO_ 10O THEN
CALL fclose(file_strean
END | F
RETURN
END
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Chapter

Summary

In thiswork, large N-body simulationswere used to investigate different aspects of of thefor-
mation and evolution of Large—Scale Structure (L SS). These aspects may be separated into two
main parts, namely the distribution of matter on very large scales, and theformation, evolution,
and properties of galaxy clusters.

On the largest scales, the distribution of mass forms a complicated network which qualita-
tively isvery similar to the pattern which can be seen in galaxy catalogs. There, galaxies are
found preferentially in clusters, filaments, and sheets around large region with no or amost no
galaxies. It isnot clear, whether the predominant component of LSS in galaxies is sheets or
filaments. In the simulations, the situation is similar if adaptively smoothed two—dimensional
representations of dlices through the distribution of the Dark Matter are shown (compare e.g.
fig. A.4). Around big voids, clusters, filaments, and sheets appear. Of course, in the simula-
tion the connectedness of structure is more pronounced. All the haloes are interconnected by
anetwork of Dark Matter of low density. Even in the voids, small hal oes can be found.

Three—dimensional representations of the adaptively smoothed density field reveal inter-
esting properties of LSS. In this work, an overdensity threshold was applied to the field and
the properties of mass above the threshold were investigated. For low overdensities (§ < 2)
most of the overdense mass can be found in a single object which extends all across the uni-
verse —an effect known as percolation. The occupied volume, however, is only afew percent.
Apart from the biggest object, a plethora of small spherical objects exists. If the threshold is
increased, the biggest object starts to crumble and eventually (6 ~ 4) breaks up into many
smaller objects, that is percolation ceases. There are small differences between the cosmolog-
ical models. The percolation thresholds and the mass and volume fractions differ for different
models. These differences can be understood in terms of the power spectra of the models and
their dynamical history. Visual representations give the impression that the biggest object is
avery complicated conglomerate of filaments (see e.g. fig. A.10). There has been an industry
trying to characterize LSS by inventing measures for its topology, geometry, and connected-
ness. In this work, the Minkowski functionals were computed for the density field. Further
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quantities were derived which give typical length scales. The amount of additional informa-
tion obtained, however, was rather poor. In particular, the size of the mesh used here was too
small. Some elementsof L SS appear to have sizes of only acouple mesh cellsor smaller. Basi-
cally, the Minkowski functionals confirm what visual impressions of the biggest object already
show. The derived quantities, like the ratio of the volume and the surface of the biggest object,
suggest that on average one dimension of this object is much larger than the other two dimen-
sions. The biggest object appears to consist of filaments and no sheets. For large overdensity
thresholds (6 = 180), the biggest object isidentical with the biggest cluster and isnearly spher-
ical.

Clusters of galaxies stand out in the LSS. They can be spotted easily in two—dimensional
representations and for high overdensities, they are by far the most massive objectsin the den-
sity field. It is natural to investigate LSS from the perspective of cluster formation. This was
donein thiswork by reconstructing the formation process of galaxy clusters and relating it to
the surrounding L SS. Clustersform by the accretion of matter. Inthe CDM universesdiscussed
here, this process has no resemblance with a spherical collapse. Rather, smaller objects merge
to form larger objects. If the cluster center is defined as the barycenter of the most massive
progenitor, objects fall into the cluster from a few preferred directions. These directions are
constant in time and correspond to the locations of filaments and sheets. Although sheets do
not appear in the investigation of the three—dimensional smoothed density field, afew of these
objects can be seen if LSS is viewed from the center of a massive cluster. The overdensity of
the sheetsislow. Thisfact may explain why they are only found this way.

There is another reason why clusters of galaxies are special objects. Their present day
masses are very big so matter had to be assembled from a large region of space in the early
Universe. Speaking in terms of the smoothed initial density field, clusters must have formed
from high peaks. Thiswas checked in thiswork and indeed the majority of clusters can be as-
sociated with ahigh peak. More massive clusterstend to correspond to higher peaks although
there is some scatter in thisrelation. The formation redshifts of clusters are small (thereisa
dependence on €2, here). That means that for instance the peculiar velocities should not devi-
ate much from the predictions of Linear Theory. In particular, the velocities of clusters should
correspond to the velocities of their associated peaks. It turned out that the latter isindeed the
case if the velocities or the peaks in the initial density are compared with the vel ocities of the
particlesin theinitial conditions which end up in the cluster at present time. In addition, the
velocities of the peaks agree very well with the predictions of Linear Theory if the actual real-
ization of the power spectrum used in the simulationsistaken. The choice of thefilter whichis
used in the smoothing does not change these results. However, the velocities of the clusters at
the present time are about 40% larger than the extrapolated linear velocities. If these deviations
areinvestigated on a cluster by cluster basisit turns out that for clusters which are themselves
part of superclusters, that is which have another cluster close by, the deviations are large.

Thelargest sample of simulated galaxy clusters ever was obtained from the Hubble Volume
Simulations which were done as part of thiswork. These simulations follow the evolution of
10° particles in regions which enclose significant fractions of the whole observable Universe.
These cluster sampleswere used to investigate a couple of pointswhich could not be addressed
that accurately before. Recently, observations of massive clusters at aredshift of z ~ 0.8 have
added a new aspect to the debate about the density parameter 2,. InaUniverse with Qy = 1
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clusters form so late that one could not expect to find massive clusters at z ~ 0.8. The simu-
lation dumps at z = 0.78 from the two Hubble Volume Simulations were used to |ook for the
most massive objects which had formed by that time. Despite the uncertaintiesin the observa-
tions of massive clustersat » ~ 0.8 and despite the small sample currently available, it can be
concluded that the 2, = 1 model fails to form such objects. The most massive clusters have
masses which aretoo small, and their number densitiesare far too low to be able to account for
the observations. The uncertaintiesin the observationsis reflected by the most massive cluster
which is far too massive even for the flat low 2, Hubble Volume Simulation. Clearly, for a
more detailed investigation, the observational sample has to grow.

As already indicated above, clusters themselves are clustered and not distributed homoge-
neously. A means to describe thisis the two—point correlation function £(r). Conventionaly,
the correlation function isinvestigated as a function of the abundance of clusterswhichisusu-
ally expressed via the mean separation of the sample, d.. This convention arose from the way
observationally complete samples are compiled. 1t waswell known that the correlation length,
ro, Which isdefined via&(ry) = 1, depends on the cluster abundance. Sparser cluster samples
are more strongly clustered than less sparse samples. Thus, the amplitude of £(r) islarger for
the sparse samples which is reflected in the increase in r,. However, the relation between d.
and r, has been controversia for decades now. A linear, that is fractal-like scaling was pro-
posed but new and large observational samples of clusters like the one from the APM galaxy
catalog do not support this scaling. The cluster samples from the Hubble Volume Simulations
show that r, does not increase linearly with d.. The correlation function is well described by
the anaytical theory developed by Mo & White which expresses £(r) of the clusters as £(r)
of the Dark Matter times a bias factor. Although the correlation lengths obtained by fitting the
Mo & White function are somewhat too large, the qualitative trend agrees very well. Again,
the flat low density model agrees better with the observational data.

Clearly, the work presented here shows how N-body simulations can be used to refine the-
oriesandto investigate them in more and more detail asthe simulation techni ques get more and
more sophisticated. However, in a sense the times of very big Dark Matter only simulations
have come to an end because with the Hubble Volume Simul ations the largest possible scales
have been reached. From now on, it will be necessary to add missing physics, that isbaryons, in
the simulationsto learn more about the formation and evolution of galaxies. Although analyti-
cal and phenomenological (or semi—analytical) models of galaxy formation have been refining
the knowledge of how galaxies form, the understanding of the processes contributing in some
way or another isstill initsinfancy. Clearly, in the future, N-body simulations which include
gas physicswill be needed to learn more about the physicsthat governs the formation of galax-
ies or clusters of galaxies. The computer will always be a laboratory for theoreticians to take
the physical recipes and see what they lead to.
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Appendix

Colour panels

The Simulation Sets

Figure A.1.: A dlice through the SCDM Virgo simulation. The particles are binned up on a
mesh. The colour scaleislogarithmic.



Figure A.2.: The same slice through the SCDM Virgo simulation smoothed with a Gaussian
(kernel size 2.5Mpc/h).

Figure A.3.: The same dlice through the SCDM Virgo simulation smoothed with the adaptive
smoothing technique.



Figure A.4.: A dlice of thickness 8.5Mpc/h through the 7CDM GIF simulation at 2z = 0.



Figure A.5.: Slice of thickness 1/10th of the box size through the four Virgo simulation at =z =
0: SCDM (top left), 7CDM (topright), ACDM (bottom left), and OCDM (bottom
right.




Figure A.6.: Slice of thickness 1/10th of the box size through thefour GIF ssmulationat z = 0:
SCDM (top left), 7CDM (top right), ACDM (bottom left), and OCDM (bottom
right.



Figure A.7.: Slice of thickness 1/10th of the box size through thefour GIF simulationat » = 1:
SCDM (top left), 7CDM (top right), ACDM (bottom left), and OCDM (bottom
right.
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Figure A.8.: Slice of thickness 1/10th of the box size through thefour GIF ssmulationat z = 3:
SCDM (top left), 7CDM (top right), ACDM (bottom left), and OCDM (bottom
right.
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The Distribution of Mass

Figure A.9.: Anisooverdensity contour view of the complete 7CDM box at an overdensity of
2. Shown are al objects above the threshold.
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Figure A.10.: An isooverdensity contour view of the complete 7TCDM box at an overdensity
of 2, shown isonly the biggest object. This object contains roughly 50% of the
mass and occupies around 2.5% of the total volume.



Figure A.11.: The same isooverdensity contour view of the biggest object as in figure A.10,
shown from different angles.



Figure A.12.: Anisooverdensity contour view of an eighth of the 7CDM box at an overdensity
of 2, shownisapart thelargest object. Theisolated piecesarejoined to the object
due to periodic boundaries.
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Figure A.13.: An isooverdensity contour view of the complete 7CDM box at an overdensity
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of 3, shown is again the largest object. It contains around 30% of the mass and
occupies around 1% of the volume. The isolated piece at theright edgeisin fact
joined to the object due to periodic boundaries.



Figure A.14.: The largest object in the 7CDM box at an isooverdensity contour of 4. Due to
periodic boundaries the small piece at the right edge is joined with the left side
of the object. It isnot clear whether thereisstill percolation. The fraction of the
mass in this object is now about 8% and it occupies less than 1% of the volume.
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Peculiar Velocities of Galaxy Clusters

Figure A.15.: The formation process of a cluster from the 7CDM (leftmost panel) and the
ACDM (rightmost panel) simulation at z = 2 (top), z = 1 (middle),and z = 0
(bottom). The colour tables are the same for the two cosmologies.
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The Hubble Volume Simulations

Figure A.16.: A thin dlice of thickness 20 Mpc/h through the 7CDM Hubble Volume simula-
tionat z = 0.
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