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Chapter 1

Simulationen der Entstehung und
Entwicklung von Strukturen im Kosmos
(Deutsche Zusammenfassung)

Daß die Welt nicht der Inbegriff einer ewigen Vernünftigkeit
ist, läßt sich endgültig dadurch beweisen, daß jenes Stück
Welt, welches wir kennen – ich meine unsre menschliche
Vernunft –, nicht allzu vernünftig ist. Und wenn sie nicht
allezeit und vollständig weise und rationell ist, so wird es die
übrige Welt auch nicht sein; hier gilt der Schluß a minori ad
maius, a parte ad totum, und zwar mit entscheidender Kraft.

Friedrich Nietzsche
Menschliches, Allzumenschliches, Bd. 2, 2.2

1.1. Einleitung

Im Verlaufe der zurückliegenden zwanzig Jahre hat sich die Kosmologie zu einer
eigenständigen Wissenschaft entwickelt, die anderen naturwissenschaftlichen Disziplinen in
Bezug auf die Präzision von Beobachtungen und theoretischen Vorhersagen in nichts mehr
nachsteht. Die Menge an Wissen, die in diesem Zeitraum angehäuft werden konnte, läßt einen
Vergleich mit der Entwicklung der Quantenmechanik und der nachfolgenden Revolution in
der Atomphysik durchaus zu.

Die Kosmologie hat hierbei maßgeblich von den gewaltigen technologischen Entwicklun-
gen profitiert. Der COBE–Satellit1 zum Beispiel hat die Mikrowellenhintergrundstrahlung mit

1COBE ist die Abkürzung für Cosmic Microwave Background Explorer.
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einer bis dato unerreichten Präzision vermessen. Dabei zeigte sich, daß diese Strahlung, die die
Erde als Nachglühen des Urknalls erreicht, ein Spektrum hat, das nahezu perfekt dem eines
Planck’schen Schwarzen Strahlers entspricht. Zudem muß es im frühen Universum Dichte–
Fluktuationen in der Materie von der Größenordnung 10�5 gegeben haben. Das Hubble–
Space–Teleskop (HST) und neue Teleskope auf der Erde haben es ermöglicht, Galaxien bei
einer Rotverschiebung von 5 zu finden, d.h. zu einer Zeit, als das Universum ein Sechstel seiner
heutigen Größe hatte. Gleichermaßen zeigte sich in immer deutlicherem Maße, daß ein großer
Teil der Materie im Universum in einer Form vorliegt, die sich vollständig von der unterschei-
det, wie man sie von der Erde kennt. Diese Dunkle Materie zeigt sich ausschließlich durch
den Einfluß ihrer Schwerkraft, indem sie z.B. das Licht von Galaxien, die sich hinter einem
Galaxienhaufen befinden, ablenkt und um diesen herum verzerrte Abbilder erzeugt. Diese
Liste ist keineswegs vollständig. Alle Theorien der Geburt des Universums und der nachfol-
genden Entstehung und Entwicklung von Galaxien und von großräumigen Strukturen müssen
ihr Rechnung tragen und Erklärungen und Modelle dafür bieten.

Die neuen Beobachtungsdaten haben Theoretikern abverlangt, bestehende Theorien zu
überprüfen und, wo nötig, zu überarbeiten, insbesondere aber Vorhersagen von größerer
Präzision zu erarbeiten. Es stellte sich dabei heraus, daß die einfachsten Theorien mit den
Beobachtungen nicht zu vereinbaren waren. Allerdings zeigte sich gleichermaßen, daß die
notwendigen Korrekturen und Verfeinerungen der Modelle relativ einfach durchzuführen
waren. Computersimulationen haben hierbei eine wichtige Rolle gespielt. Der gewaltige
Anstieg der Leistungsfähigkeit moderner Supercomputer ist hierbei nicht der alleinige Grund
für diese Entwicklung. So konnte das Modell, demzufolge die Dunkle Materie ausschließlich
aus Neutrinos besteht, mit einer Simulation mit nur 1000 Teilchen ausgeschlossen werden
(White et al. 1983). Nichtsdestotrotz waren und sind große Simulationen nötig, um hinreichend
exakte Vorhersagen zu erzielen. Sehr große Ausschnitte des Universums müssen mit einer ho-
hen Massenauflösung simuliert werden, um zukünftige Tests von kosmologischen Modellen
zu ermöglichen.

Im folgenden Abschnitt werden die zunächst die grundlegenden Konzepte moderner
Kosmologie und das Cold Dark Matter–Modell motiviert. Abschnitt 1.2 befaßt sich
mit der Verteilung der Materie auf großen Skalen. In Abschnitt 1.3 werden die Peku-
liargeschwindigkeiten der massereichsten Objekte im Universum (Galaxienhaufen) unter-
sucht. Galaxienhaufen stehen auch im Mittelpunkt in Abschnitt 1.4, der die Entstehung und
räumliche Verteilung von Galaxienhaufen in den bislang größten und umfangreichsten Com-
putersimulationen des Universums beschreibt.

1.1.1. Moderne Kosmologie und das Cold Dark Matter–Modell

Zum Urknall als Modell für die Entstehung des Universums gibt es mittlerweile keine ern-
stzunehmende Alternative mehr. Die Theorie, die die Dynamik des Gravitationsfeldes im Uni-
versum beschreibt, ist Einsteins Allgemeine Relativitätstheorie. Sie nimmt an, daß das Univer-
sum auf großen Skalen gleichförmig und homogen ist und daß es keinen bevorzugten Ort im
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Universum gibt. Die Metrik hierfür ist die Friedmann–Robertson–Walker–Metrik

ds2 = (cdt)2 � a2(t)

"
dr2

1� kr2
+ r2(d#2 + sin2 #d�2)

#
: (1.1)

Der sogenannte Expansionsfaktor a(t) (Dimension: Länge) und die Krümmung k (dimen-
sionslos; nimmt die Werte 1, 0, und -1 an für positive, keine und negative Krümmung
räumlicher Hyperflächen) sind hierbei mithilfe der Einstein’schen Feldgleichungen zu bestim-
men. Unter der Annahme von Homogenität und Isotropie lassen sich diese Gleichungen ver-
einfacht schreiben als

_a2 + kc2

a2
=

8�G

3
� ; (1.2)

2�a

a
+

_a2 + kc2

a2
= �8�Gp ; (1.3)

wobei G die Gravitationskonstante ist, und p und � sind der Druck und die Dichte des Fluids,
das sich im Universum befindet. Der Punkt bezeichnet Ableitung nach der Zeit. Es ist üblich
in der Kosmologie, folgende Größen zu definieren:

H0 �
�
_a

a

�
t=t0

(1.4)

�c � 3H2
0

8�G
(1.5)


 � �0

�c
(1.6)

Diese sind die sog. Hubble–Konstante zur heutigen Zeit, H0, die kritische Dichte, �c, und der
Dichteparameter, 
. Der Krümmungsterm k wird dann bestimmt durch

k = H2
0 (
� 1) : (1.7)

Das Universum ist nur auf sehr großen Skalen homogen. Das Wachstum von Inhomogenitäten
aus kleinen Fluktuationen läßt sich in linearer Theorie berechnen. Betrachtet man ein Fluid der
Dichte � und Geschwindigkeit v mit p = 0, das sich in einem Schwerefeld mit dem Potential
� bewegt, so wird das Fluid beschrieben durch die Kontinuitätsgleichung und die Euler– und
Poissongleichungen:

@�

@t
+r � (�v) = 0 ; (1.8)

@v

@t
+ (v � r)v = �r� ; (1.9)

r2� = 4� G� : (1.10)

Mit der Annahme eines räumlich variierenden Dichtefeldes

�(x; t) = ��(t) � (1 + �(x; t)) ; (1.11)
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und � � 1, ergibt sich nach Vernachlässigung aller nichtlinearen Terme

�� + 2
_a

a
_� � 4� G �� � = 0 : (1.12)

Diese Gleichung beschreibt das lineare Wachstum von Strukturen im Universum, die ja, wie
durch den COBE–Satelliten bestätigt, aus sehr kleinen anfänglichen Dichteschwankungen re-
sultiert sein müssen. Für den einfachen Fall 
 = 1 z.B. ergibt sich die anwachsende Lösung
als2

� / D(t) / t2=3 / a : (1.13)

D(t) beschreibt hier explizit das Wachstum der Struktur. t ist die Zeitvariable. Für 
 < 1 sind
die Lösungen komplizierter, hier gerät der anwachsende Teil der Lösung in Sättigung, und die
Struktur wächst im wesentlichen ab einem bestimmten Zeitpunkt an kaum weiter.

Wie bereits oben angedeutet, gibt es Evidenz, daß ein großer Teil der Materie im Universum
in Form von Dunkler Materie vorliegt. Ebenso wurde erwähnt, daß Neutrinos aus theoretischen
Erwägungen nicht den überwiegenden Teil dieser Materie stellen können. Der Grund hierfür
ist, daß sich Neutrinos nach ihrer Entkopplung relativistisch bewegen – sie werden deswegen
auch Heiße Dunkle Materie (engl. Hot Dark Matter, HDM) genannt – und so Fluktuationen
auf kleinen Skalen auswaschen. Die Struktur, wie sie im Universum beobachtet wird, hätte
sich nicht bilden können. Die Dunkle Materie muß also in einer Form vorliegen, die bei ihrer
Entkopplung nichtrelativistisch war. Diese sogenannte Kalte Dunkle Materie (engl. Cold Dark
Matter, CDM) konnte bislang noch nicht direkt nachgewiesen werden. Es gibt aber Kandidaten
hierfür, Elementarteilchen, wie sie von verschiedenen Erweiterungen des Standardmodells der
Elementarteilchenphysik vorhergesagt werden. Als eine der Haupthypothesen dieser Arbeit
wird angenommen, daß die Dunkle Materie ausschließlich aus CDM besteht.

Wie sind die Dichteschwankungen im Universum entstanden? Diese Frage wird von einer
Theorie beantwortet, die ursprünglich viel gewichtigeren Fragen zugewandt war: Warum ist im
Universum der Dichteparameter 
 � 1? Warum finden sich im Universum nicht die riesige
Anzahl von magnetischen Monopolen, die eigentlich während des Phasenübergangs im frühen
Universum hätten entstanden sein müssen? Und wieso sind die Variationen in der kosmischen
Hintergrundstrahlung so klein, wenn doch die Bereiche, aus denen sie kommt, während der
Rekombination kausal getrennt waren? Eine plausible Antwort hierauf gibt die Theorie der
Inflation, derzufolge sich das Universum während einer sehr frühen und sehr kurzen Phase
nach dem Urknall exponentiell ausdehnte, so daß Quantenfluktuationen auf kosmische Skalen
gedehnt wurden. Damit werden die gestellten Fragen geklärt. Aber Inflation kann noch mehr:
Es ist nämlich möglich, ein Spektrum der Dichtefluktuationen anzugeben. Dieses ist, weil von
Quantenfluktuationen herrührend, Gaussisch. Wenn alle physikalischen Effekte berücksichtigt
werden, die das primordiale Spektrum noch ändern können, ergibt sich schließlich das lineare
CDM–Spektrum, für das Bond & Efstathiou (1984) folgenden Fit angeben:

P (k) =
Ak

(1 + [ak=� + (bk=�)3=2 + (ck=�)2]�)2=�
; (1.14)

mit a = 6:4 h�1 Mpc, b = 3:0 h�1 Mpc, c = 1:7 h�1 Mpc, and � = 1:13. Hierbei wurde
die Hubble–Konstante abgekürzt durch H0 = 100 h�1 km/sec. � ist ein Parameter, der die für

2Die zweite Lösung beschreibt den Zerfall der Dichteschwankungen und ist deswegen nicht von Interesse.
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Modell 
 � h �

OCDM 0.3 0.0 0.7 0.21
�CDM 0.3 0.7 0.7 0.21
SCDM 1.0 0.0 0.5 0.50
�CDM 1.0 0.0 0.5 0.21

Tabelle 1.1.: Die kosmologischen Modelle.

das jeweilige Modell charakteristische Skala des Spektrums beschreibt. Die Normierung des
Spektrums,A, kann nicht eindeutig aus inflationären Szenarien vorhergesagt werden. In dieser
Arbeit wird sie so gesetzt, daß in den Simulationen die im Universum beobachtete Anzahl
massereicher Galaxienhaufen reproduziert wird. Dies wird üblicherweise ausgedrückt über �8,
die mittlere quadratische Abweichung der Massenverteilung auf einer Skala von 8 h�1 Mpc.
Tabelle 1 gibt eine Übersicht über die vier kosmologischen Modelle, die in dieser Arbeit be-
nutzt werden. Von diesen Modellen wurden zwei Gruppen gerechnet. Bei der ersten Gruppe
(Virgo–Simulationen) ist das simulierte Volumen für alle Modelle gleich groß – ein Würfel der
Kantenlänge 240h�1 Mpc. In der zweiten Gruppe (GIF–Simulationen) hat jedes Modell die
gleiche Massenauflösung, d.h. die Teilchen haben gleiche Massen (von 2 � 1010M�). Jeweils
2563 Teilchen wurden simuliert. Die Simulationen wurden im Rahmen des britisch–deutsch–
kanadischen Virgo Supercomputing Consortiums durchgeführt.

1.2. Die Verteilung der Materie auf großen Skalen

In den ersten großen Galaxienkatalogen, die in den achtziger Jahren erstellt wurden, zeich-
nete sich ab, daß die Verteilung der Galaxien keineswegs gleichförmig ist. Abgesehen von den
Galaxien, die sich in Gruppen oder Haufen befinden, sind praktisch alle Galaxien Teil eines
komplizierten Netzwerkes. Seitdem ist die Debatte, woraus dieses Netzwerk gebildet wird,
nicht mehr abgerissen. Sind die Galaxien bevorzugt in großen zweidimensionalen flachen
Strukturen (engl. Sheets) angesiedelt, wie der erste CfA–Katalog mit der berühmten ”Großen
Mauer” zeigte (De Lapparant et al. 1986)? Oder liegen Galaxien bevorzugt in Filamenten,
d.h. sind sie aneinandergereit wie Perlen einer Kette, wie z.B. Haynes (1986) vorschlug? Die
ersten größeren Simulationen von CDM–Universen (z.B. Davis et al. 1985) zeigten qualita-
tiv eine Materieverteilung, die der Verteilung der Galaxien in den Katalogen sehr ähnlich war.
Allerdings ist die Auflösung solcher Simulationen bislang zu grob gewesen, um diese Fragen
genauer zu beantworten.

Die Simulationen, die im Rahmen dieser Arbeit durchgeführt worden sind, haben es auf-
grund ihrer sehr hohen Auflösung ermöglicht, sich mit der Frage nach der Verteilung der
Materie auf großen Skalen zu beschäftigen. Abbildung A.4 zeigt einen Schnitt der Dicke
8.5 Mpc/h durch die �CDM GIF–Simulation zur heutigen Zeit. Direkt in der Mitte befindet
sich eine große Region, die nur sehr wenig Materie enthält. Solche Regionen, die mit ihrem
englischen Fachterm Voids genannt werden, zeichnen sich auch in Galaxienkatalogen ab. Um
die Void befindet sich ein komplexes Netzwerk, darunter ein sehr massereicher Galaxien-
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haufen3 direkt südlich davon, sowie eine große Anzahl von Objekten, von denen die meis-
ten sich entweder in Filamenten oder eventuell auch in Sheets befinden. Große Objekte treten
zumeist gehäuft auf, während sich kleinere um sie gruppieren. Dieses Verhalten ist typisch
für CDM–Universen. In diesen bilden sich zunächst kleine Objekte, die dann entweder durch
Akkretion von Materie oder durch Kollisionen und anschließende Virialisierung größere Ob-
jekte bilden.

Dreidimensionale Darstellungen der Materieverteilung erlauben es, diese aus einem an-
deren Blickwinkel heraus zu untersuchen. Dazu wird die Materie auf ein Gitter verteilt,
geglättet, und diejenige Materie, die sich in Zellen befindet, deren Überdichte4 größer als ein
Schwellwert ist, wird betrachtet. Einige dieser Zellen sind Teil eines größeren Objekts. Ab-
bildung A.13 zeigt das größte Objekt in der �CDM GIF–Simulation bei einer Überdichte von
3. Dieses Objekt beinhaltet etwa 30% der Gesamtmasse, füllt etwa 1% des Gesamtvolumens
aus und erstreckt sich periodisch über das gesamte Volumen – ein Effekt, der als Perkolation
bekannt ist. Wird der Schwellwert der Überdichte erhöht, schrumpft das Objekt und zerbricht
schließlich in viele kleine Objekte. Dieses Verhalten ist typisch für die CDM–Universen. Eine
quantitative Untersuchung des größten Objekts ergibt, daß es im wesentlichen aus Filamenten
zusammengesetzt ist – wie ja in Abbildung A.13 auch deutlich zu sehen ist.

Für sehr hohe Werte der Überdichte, etwa 180, bilden die Zellen nur noch spärische oder
elliptische Objekte. Die massivsten dieser Objekte entsprechen den bereits erwähnten Gala-
xienhaufen. Es zeigt sich, daß sich diese Galaxienhaufen an bevorzugten Stellen innerhalb der
Verteilung der Materie bilden: An den Stellen, wo mehrere Filamente oder Sheets aufeinander
treffen. Die Materie, die den Galaxienhaufen bildet, strömt im zeitlichen Verlauf der Simula-
tion entlang der Filamente oder Sheets in Richtung des Haufens. Damit stellen Galaxienhaufen
in einem gewissen Sinne bevorzugte Objekte innerhalb der großräumigen Struktur dar. Dies
gilt umso mehr, als sie sich, auf der kosmologischen Zeitskala betrachtet, erst sehr spät (etwa
bei Rotverschiebungen um 0.3 oder 0.1, je nach dem Wert von 
) bilden. So kann man z.B. er-
warten, daß man zwischen zwei benachbarten Haufen im Universum ein Filament aus Dunkler
Materie finden kann – für den Fall, daß sich das Universum wirklich durch ein CDM–Modell
beschreiben läßt.

1.3. Pekuliargeschwindigkeiten von Galaxienhaufen

Galaxienhaufen sind nicht nur in Hinsicht auf ihre besondere Lage innerhalb der großräumigen
Struktur von Interesse. Zunächst einmal sind sie vor allem die massereichsten Objekte, die sich
im Universum bislang gebildet haben. Aufgrund ihrer großen Masse mußte Materie aus einer
sehr großen Region im frühen Universum kollabieren. Das bedeutet nun, daß das Dichtefeld
im Universum zu dieser Zeit, wenn es auf einer Skala von etwa 10 Mpc/h geglättet wird, in
den Bereichen, wo Galaxienhaufen entstehen, deutliche Überdichten haben mußte. Eines der
Hauptparadigmen von CDM–Szenarien besagt, daß alle Objekte aus solchen überdichten Be-
reichen, im folgenden wie im Englischen Peaks genannt, entstanden sind und daß die Masse

3Die Simulationen enthalten nur Dunkle Materie und keine Galaxien. Üblicherweise werden die größten Ob-
jekte, die in ihnen gefunden werden, mit den größten Objekten im Universum, Galaxienhaufen, identifiziert.

4Die Überdichte ergibt sich aus der Dichte, indem durch die mittlere Dichte geteilt und 1 subtrahiert wird.
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eines Objekts im wesentlichen proportional zur Höhe eines solchen Peaks ist, wobei mit der
Höhe eines Peaks schlichtwegs seine Überdichte mit Bezug auf die mittlere Dichte gemeint
ist. Darüberhinaus sollte auch die Geschwindigkeit5 eines Peaks, bestimmt über das geglättete
Geschwindigkeitsfeld, mit der des entsprechenden Galaxienhaufens übereinstimmen. Die
Virgo–Simulationen sind ideal, um diese Punkte zu untersuchen, weil sie einerseits eine re-
lativ große Region des Universums enthalten und weil es andererseits in ihnen eine genügend
große Anzahl von Galaxienhaufen gibt.

Die Geschwindigkeitsdispersion in CDM–Universen läßt sich analytisch berechnen, und
auch Angaben über die Geschwindigkeiten von Peaks sind möglich, weil das Spektrum der
Modelle, wie oben erwähnt, Gaussisch ist. Die theoretischen Vorhersagen sind hierbei

�v(R) � H0

0:6 ��1(R) ; (1.15)

wobei �j für eine ganze Zahl j definiert wird als

�2j (R) =
1

2�2

Z
P (k)W 2(kR) k2j+2 dk ; (1.16)

für das Integral über das gesamte Feld und

�p(R) = �v(R)
q
1� �40=�

2
1�

2
�1 ; (1.17)

für Peaks. W (kR) ist eine Filterfunktion, in der die Glättungsskala gesetzt wird. In den Sim-
ulationen werden Galaxienhaufen als die größten Masseansammlungen zur heutigen Zeit ge-
funden. Die in ihnen enthaltenen Teilchen werden dann zu alle früheren Zeitpunkte markiert.
Peaks werden über das geglättete Dichtefeld in den Anfangsbedingungen der Simulationen
identifiziert. Die Glättungsskala wird hierbei derart gesetzt, daß sie der minimalen Masse der
untersuchten Menge von Haufen entspricht.

Wie in Abbildung 1.1 zu sehen ist, kann der überwiegenden Mehrheit der Haufen
tatsächlich ein hoher Peak zugeordnet werden. Allerdings ist die Streuung in der Zuord-
nung recht beträchtlich. Werden die Geschwindigkeit der Haufen in den Anfangsbedin-
gungen, denen ein Peak zugeordnet werden kann, verglichen mit der Geschwindigkeit des
entsprechenden Peaks, zeigt sich eine exzellente Entsprechung. Gleichermaßen gut ist die
Übereinstimmung der Geschwindigkeiten der Peaks mit der analytischen Vorhersage (Gl.
1.17). Die Geschwindigkeitsdispersion der Haufen zur heutigen Zeit, direkt gemessen aus
der Simulationen, ist jedoch deutlich größer als die der Haufen, wenn ihre Geschwindigkeiten
aus den Anfangsbedingungen auf die heutige Zeit hochskaliert werden. Insbesondere zeigen
Haufen, die einen benachbarten Haufen in einer maximalen Distanz von 10 h�1Mpc haben,
größere Abweichungen, wie in Abbildung 1.2 zu sehen ist.

Im wesentlichen entsprechen also Galaxienhaufen hohen Peaks mit gleichen
Geschwindigkeiten im frühen Universum, wobei massereicheren Haufen im allge-
meinen höheren Peaks entsprechen. Allerdings führen nichtlineare Effekte dazu, daß
die Geschwindigkeitsdispersion zur heutigen Zeit deutlich (um 40%) über der Vorhersage der
linearen Theorie liegt.

5Im folgenden wird mit der Geschwindigkeit einer Objekts grundsätzlich seine Pekuliargeschwindigkeit be-
zeichnet, d.h. seine Geschwindigkeit in einem Bezugssystem, das sich mit der Hubble–Expansion mitbewegt.
Desweiteren werden alle (Pekuliar–) Geschwindigkeiten auf ihre Werte zur heutigen Zeit hochgerechnet.
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Abbildung 1.1.: Die Massen der Galaxienhaufen in den vier Simulationen in Abhängigkeit
der Höhe der ihnen entsprechenden Peaks. Es gibt 351, 239, 84, und 83
Peaks ohne zugehörigen Haufen in der SCDM, �CDM, �CDM, und OCDM–
Simulation. 85% und 75% der Haufen in den Modellen mit 
 = 1 und 
 < 1

konnte ein Peak zugeordnet werden.

1.4. Simulationen des Hubble Volumens

Die ideale kosmologische Simulation würde das gesamte beobachtbare Universum enthalten
mit einer sehr hohen Massenauflösung. Dies wäre insbesondere für das Studium sehr sel-
tener Objekte, wie z.B. Galaxienhaufen, von Interesse. Im Rahmen dieser Arbeit wurden zwei
Simulationen, die sog. Hubble–Simulationen, durchgeführt, die diesem Ideal relativ nahe kom-
men. Beide Simulationen enthalten einen signifikanten Bruchteil des gesamten beobachtbaren
Universums und sind um mindestens eine Größenordnung größer als die nächste Generation
von sehr umfangreichen Galaxienkatalogen. Damit wurde es zum ersten Mal möglich, Eigen-
schaften von Galaxienhaufen zu untersuchen, die bislang jenseits der Möglichkeiten von Sim-
ulationen lagen.

Abbildung 1.3 zeigt die differentielle Anzahldichte von massereichen Galaxienhaufen bei
einer Rotverschiebung von z = 0:78. Die Anzahl der Beobachtungen solcher Haufen ist
derzeit stark im Steigen begriffen. Drei dieser Objekte, für die es sehr genaue Messungen der
Massen mithilfe ihres Gravitationslinseneffekts gibt, sind in Abbildung 1.3 gezeigt. Wie deut-
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Abbildung 1.2.: Vergleich der Geschwindigkeiten der Galaxienhaufen zur heutigen Zeit (vz=0)
mit der auf die heutige Zeit hochskalierten Geschwindigkeit aus den Anfangs-
bedingungen (vscaled). Galaxienhaufen, die einen benachbarten Haufen in
einer maximalen Distanz von 10 h�1Mpc haben, sind durch die Rauten ken-
ntlich gemacht.

lich zu sehen ist, ist die �CDM–Simulation nicht in der Lage, solch massereiche Objekte zu
bilden. Mit anderen Worten bildet sich Struktur in einem Universum mit 
 = 1 viel zu spät.
Das �CDM–Modell bildet mehr massereiche Galaxienhaufen bei z = 0:78, allerdings befindet
sich ein beobachteter Haufen weit außerhalb der Verteilung. Derzeit sind die Bestimmungen
der Massen solcher Haufen noch immer strittig, so daß es zum heutigen Zeitpunkt nicht ange-
bracht erscheint, ein endgültiges Urteil über das �CDM–Modell zu fällen.

Abbildung 1.4 vergleicht die Massenfunktion der �CDM–Simulation mit der theoreti-
schen Vorhersage des Press–Schechter–Modells. Die Simulation läßt sich in der Tat sehr gut
mit diesem Modell beschreiben. Die Abweichungen, die in der Abbildung zu sehen sind,
entsprechen denen, die bislang in kleineren Simulationen gefunden worden sind. Sie sind in-
sofern kein Grund zur Sorge, als es a priori überhaupt keinen Grund gibt, warum das Press–
Schechter–Modell die Massenfunktion überhaupt so gut beschreiben soll.

Von großem Interesse ist es, die räumliche Verteilung von Galaxienhaufen zu unter-
suchen. Wie oben bereits angedeutet, sind diese keineswegs gleichförmig verteilt, sondern
sie ballen sich selbst zu Gruppen zusammen. Die Kataloge von Haufen, die aus den Hubble–
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Abbildung 1.3.: Die differentielle Anzahldichte von Galaxienhaufen bei einer Rotver-
schienung von z = 0:78 in der �CDM (durchgezogene Linie) und der �CDM
(gestrichelte Linie) Simulation. Die Massen sind innerhalb eines Radius von
0.5 Mpc/h bestimmt worden. Die drei Meßpunkte geben drei beobachtete
Objekte im Universum wieder.

Simulationen erstellt wurden, sind ideal, um dies zu untersuchen. Hierzu wird die Zwei–
Punkt–Korrelationsfunktion, �(r), benutzt. Für jeden Haufen gibt sie an, wieviel wahrschein-
licher es ist, bei einer Entfernung r einen zweiten zu finden, als wenn die Haufen poisson-
verteilt im Raume wären. Die Korrelationslänge, r0, ist definiert über �(r0) = 1. Da Gala-
xienhaufen im Universum so selten sind, ist es äußerst schwer, einen Katalog zu erstellen,
der vollständig ist. Üblicherweise sind Kataloge nur vollständig ab z.B. einer bestimmten
Röntgenleuchtkraft der Haufen. Deswegen wird die Korrelationsfunktion gemessen als Funk-
tion der Dichte, nc, des Katalogs, der über dc = n�1=3c ein mittlerer Abstand der Haufen
entspricht. Die Abhängigkeit der Korrelationslänge von der Haufendichte ist derzeit noch um-
stritten, und erst mit den Hubble–Simulationen stehen ausreichend große simulierte Kataloge
zur Verfügung, um dies zu untersuchen.

Abbildung 1.5 zeigt die Korrelationslängen der Galaxienhaufen in der �CDM (Kästchen)
und der �CDM (Rauten) Simulation in Abhängigkeit der Dichten von Teilmengen der Kata-
loge. Ebenfalls gegeben sind für die beiden Modelle (gestrichelte und strichpunktierte Linie)
die Vorhersagen des Modells von Mo & White (1996). Dieses drückt die Korrelationsfunktion
der Haufen aus über

�(r) = b2(R) �DM(r) ; (1.18)
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Abbildung 1.4.: Die kumulative Massenfunktion in der �CDM–Simulation (Kreuze) für drei
verschiedene Rotverschiebungen. Die Kurven geben die theoretische Vorher-
sage wieder.

mit

b(R) = 1 +
�c

�2(R)
� 1

�c
: (1.19)

Hierbei ist �DM(r) die Korrelationsfunktion der Dunklen Materie, und b(R) ist ein sogenan-
nter Biasfaktor. Dieser bestimmt sich aus der Konstanten �c = 1:69 und aus dem Moment
�2(R) (entsprechend j = 0 in Gleichung 1.16). R ist wie oben der Radius, der der minimalen
Haufenmasse entspricht. Ebenfalls abgebildet sind in Abbildung 1.5 ein linearer Zusammen-
hang zwischen der Korrelationslänge und der Haufendichte (gestrichelte Linie) und das Ergeb-
nis der Analyse der Galaxienhaufen im APM–Katalog (Kreuze; Croft et al. 1997). Wie deut-
lich zu sehen ist, ist das lineare Modell nicht vereinbar mit den Vorhersagen der Modelle und
der Messung. Die Theorie von Mo & White sagt zu große Korrelationslängen voraus, stimmt
qualitativ aber mit den Ergebnissen aus der Simulation überein. Von den beiden Simulationen
stimmt wieder nur die �CDM–Simulation mit der Messung überein.

Die Hubble–Simulationen haben sich also bereits im Rahmen dieser Arbeit als mächtige
Werkzeuge erwiesen, um Modelle mit Beobachtungen zu vergleichen. Sie werden in der
Zukunft von vielen Arbeitsgruppen benutzt werden, z.B. um detaillierte simulierte Galax-
ienkataloge zu erstellen und Vorhersagen für die nächsten großen beobachteten Galaxienka-
taloge zu erstellen.
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Abbildung 1.5.: Die Korrelationslänge der Galaxienhaufen in Abhängigkeit des mittleren Ab-
stands der Haufen (mithin als Funktion der Dichte der Haufen). Die Boxen
und Rauten sind die Ergebnisse aus der �CDM und der �CDM–Simulation.
Die gestrichelte Linie entspricht einer linearen Abhängigkeit der beiden
Größen. Die gepunktete und die Strich–Punkt–Linie zeigen die Vorhersage
des analytischen Modells von Mo & White (1996). Kreuze mit Fehlerbalken
sind Ergebnisse aus der Analyse der Haufen im APM–Katalog von Croft et al.
(1997).
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Chapter 2

Introduction

C’est une maladie naturelle à l’homme de croire
qu’il possède la vérité directement; et de là vient
qu’il est toujours disposé à nier ce qui lui est in-
compréhensible.

Blaise Pascal

Over the last twenty years, cosmology has evolved from a rather speculative side branch
of astrophysics and philosophy into a high precision science of its own. This is due to the fact
that, recently, an amount of knowledge has been gained which is so large compared with what
was known earlier that is probably not too much of an exaggeration to compare this process
with the development of quantum mechanics and its subsequent revolution of atomic physics
in the early decades of the 20th century.

Observationally, new technology in the form of satellites and telescopes and also new tech-
niques in order to study objects have arisen which have revolutionized our understanding of
the Universe. For instance, the Cosmic Microwave Background Explorer (COBE) satellite has
measured the afterglow of the Big Bang with a precision undreamt of before. It shows that the
Microwave Background (CMB) has a nearly perfect black body spectrum and that there must
have been fluctuations of the order of 10�5 in temperature (and thus in density) in the very early
Universe. The Hubble Space Telescope (HST) has widened the view of not only cosmology,
but of the whole field of astrophysics. Combined with new ground based telescopes like for
the Keck, galaxies at a redshift of five, that is, at a time when the Universe had only a sixth of
its current age and size, can now be found. The existence of Dark Matter in galaxy clusters can
be observed by means of gravitational lensing. This very short list gives only a few highlights
of the new data which theories about the birth of the Universe and the subsequent formation
and evolution of galaxies and Large–Scale Structure have to explain.

On the theoretical side, the data gained with new observational instruments and techniques
allow high precision tests of existing theories. High precision predictions for some of the the-
ories have also been developed. While the simplest theories have failed to be good models
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for the Universe, some of them are not very wrong. So theoreticians have to start fine tuning
their models – something unknown to the field before. Computer simulations have played a
major rôle in this process. This is not only due to the truly gigantic increase in computational
power over the last decades. For instance, the Hot Dark Matter model, which assumes that the
dominant (and unseen) mass component in the Universe consists of massive neutrinos1, was
rejected on the basis of a simulation with only 1000 particles (White et al. 1983). The seminal
simulation work of Marc Davis, George Efstathiou, Carlos Frenk, and Simon White in 1985
(DEFW hereafter) with 323 Cold Dark Matter particles contains results which are still valid
today. However, larger simulations are still needed to increase the predictive power of the the-
ories. Larger regions of the Universe have to be simulated with a higher mass resolution to test
cosmological models further.

This work is about some of these high precision simulations. In the remaining sections of
this Chapter, the basic theoretical foundations will be laid. Section 2.1 briefly describes the set
of fundamental cosmological equations and variables used throughout the whole work. Section
2.2 gives an overview of the growth of perturbations. Finally, section 2.3 contains an introduc-
tion into the family of Cold Dark Matter models used in the simulations themselves.

Chapters 3 and 8 contains the technical part of this work. They describe some details of the
computers, the codes used, and the simulations themselves.

In Chapter 4, the large–scale distribution of the mass in the simulations is studied. The
density field, smoothed on suitable large scales, is investigated as a function of the mass above
an overdensity threshold.

Chapter 5 contains a study of the most massive objects in the simulations. These are iden-
tified similarly to how observers find galaxy clusters. The main point of the Chapter is to de-
termine if peculiar velocities of galaxy clusters can be predicted accurately. To this end, the
correspondance between peaks in the smoothed initial density field and clusters is studied.

In Chapter 6, the Hubble Volume Simulations are introduced. These represent the biggest
effort in computational cosmology to date and will be the basis for predictions for the next gen-
eration of very large galaxy surveys. Catalogs of galaxy clusters which each contain hundreds
of thousands of clusters are extracted and used to study the existence of massive objects at high
redshifts and the mass function itself (section 6.3), and cluster correlation functions (section
6.4).

Chapter 7 links the themes of the earlier Chapters. It shows how the formation process of
galaxy clusters is linked to the mass distribution around the clusters, that is, to Large–Scale
Structure itself. Finally, Chapter 9 contains a summary of this thesis.

1In the context of astrophysics and cosmology, ”massive” usually means a few eV.
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2.1. Basic Cosmology

Hüten wir uns, zu sagen, daß es Gesetze in
der Natur gebe. Es gibt nur Notwendigkeiten:
da ist keiner, der befiehlt, keiner, der gehorcht,
keiner, der übertritt. Wenn ihr wißt, daß es keine
Zwecke gibt, so wißt ihr auch, daß es keinen Zu-
fall gibt: denn nur in einer Welt von Zwecken
hat das Wort ”Zufall” einen Sinn.
Friedrich Nietzsche,
Die Fröhliche Wissenschaft, III, 109

The Big Bang as the origin of the Universe is now a well–established theory. According to
this theory, at some time in the distant past, space and time originated from the expansion of
a tiny region. In this section, it is assumed that the result of this process is a Universe which
is smooth and homogeneous on very large scales. This implies that the Universe essentially
looks the same at all spatial locations, there is no preferred region in the Universe – something
called the ”Copernican Principle”. The theory which describes the dynamics of the gravita-
tional field is Einstein’s theory of General Relativity. The spacetime metric for such a Universe
is the Friedmann–Robertson–Walker (FWR) metric2

ds2 = (cdt)2 � a2(t)

"
dr2

1� kr2
+ r2(d#2 + sin2 #d�2)

#
: (2.1)

Here, a(t), the so–called expansion factor, and k are determined using Einstein’s equation. k
may take three different values, namely k = 1, 0, and�1 for positive, zero, and negative curva-
tures of spatial hypersurfaces, respectively. The time dependance of a implies that any proper
distance scale l(t) is proportional to it

l(t) / a(t) : (2.2)

This implies that electromagnetic radiation will change its frequency as it travels across the
Universe. As _a > 0, an observer will receive spectra from distant objects which are reddened.
If the observed and emitted frequencies are named !0 and !e, respectively, then the redshift z
is be defined via

!e

!0
=

1

a(te)
� 1 + z ; (2.3)

where te denotes the time of emission, and a(t) has been normalized such that it is unity today,
i.e. a(t0) = 1.

As indicated above, a(t) and k can be computed from Einstein’s equations

G�
� = 8�GT �

� ; (2.4)

2The following discussion can be found in most textbooks on cosmology, e.g. Padmanabhan 1993. Note, that
c = 1 here.
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if the stress–tensor T for the source of the gravitational field is given. Matter is usually treated
as a perfect fluid which is specified by a pressure p and a density �. Using the FRW metric (2.1)
and the assumption of homogeneity and isotropy (which makes all non–diagonal elements of
T vanish) then yields two independent equations, viz.3

_a2 + k

a2
=

8�G

3
� ; (2.5)

2�a

a
+

_a2 + k

a2
= �8�Gp : (2.6)

The overdot denotes differentiation with respect to time. a(t); �(t); and p(t) are fully specified
once the equation of state p = p(�) is given. Using the following three abbreviations

H0 �
�
_a

a

�
t=t0

(2.7)

�c � 3H2
0

8�G
(2.8)


0 � �0

�c
(2.9)

yields that at present epoch
k = H2

0 (
0 � 1) : (2.10)

H0 is called the Hubble constant at present time, �c is the critical density, and 
0 is the density
parameter. From equation (2.10) it is obvious that these parameters determine the curvature of
the Universe. 
0 = 1 gives a flat Universe.

Combining equations (2.5) and (2.6) gives

�a

a
= �4�G

3
(� + 3p) ; (2.11)

which implies that �a < 0 for ordinary kinds of matter, which have (� + 3p) > 0. a thus is
smaller in the past and will become zero at some finite time in the past (Big Bang). Integration
yields the age of the Universe:

t0 =
2

3

1

H0

f(
0) ; (2.12)

where f(
0) = 1 for 
0 = 1 and f(
0) > 1 for 
0 < 1. Furthermore, one can show that for

0 = 1

a / t1=2 (2.13)

a / t2=3 (2.14)

for the radiation–dominated and matter–dominated phases of the Universe, respectively4. Gen-
erally, the equations are easy to solve analytically for 
0 = 1 and need to be done numerically
otherwise.

3c = 1 has been set here.
4The Universe is called radiation (matter) dominated when the energy density of radiation (matter) dominates.

Then, p = �=3 (p ' 0).
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A further concept has to be introduced here. The source term for Einstein’s equations (2.4)
can be any conserved stress–tensor. In particular, one can take

T i
k = ��ik ; (2.15)

where � is the so–called Cosmological Constant postulated, and later abandoned, by Einstein.
He originally wanted to have a stable, i.e. non–expanding Universe, but quite obviously this
doesn’t work because small fluctuations around the ”stable” state would result in an immediate
collapse (or in an immediate expansion). � corresponds to an equation of state p = �� = ��.
By noting its contribution to the density in the Universe

�0 =
8�G�

3H2
0

(2.16)

one can take this as the vacuum energy density. Crudely speaking, � doesn’t change the ex-
pansion of the Universe at early times. At later times it starts to accelerate the expansion. The
age of the Universe is increased relative to a Universe with 
0 = 1. A non–vanishing � is em-
barrassing because there is no good physical explanation for its existence and no convincing
explanation why it should have the value favoured by some cosmologists (for further discus-
sion see section 2.3.5).

2.2. The Growth of Perturbations

In the preceding section, it was assumed that at early times the Universe was smooth and ho-
mogeneous on large scales. From the fact that e.g. galaxies exist today it is obvious that it can
not be smooth and homogeneous on small scales. Deviations from homogeneity must have
existed in the early Universe from which all objects seen today must have formed. Objects in
the gravitational instability scenario formed from the collapse of overdense regions. COBE
does indeed find such fluctuations on the Microwave Sky, they are small (�T=T � 10�5), but
nevertheless they must have been big enough to cause the collapse of structure.

Consider a pressureless fluid with density � and velocity v under the influence of a gravi-
tational field with potential �5. The equations which describe this fluid are

@�

@t
+r � (�v) = 0 ; (continuity) (2.17)

@v

@t
+ (v � r)v = �r� ; (Euler) (2.18)

r2� = 4� G� : (Poisson) (2.19)

These equations can be cast into a cosmological context by using appropriate variables.
These are a comoving position x = r=a, which is fixed for an observer moving with the Hubble
expansion, and the corresponding peculiar velocity u = a dx=dt, representing departures of
the matter motion from pure Hubble expansion.

5This section follows Efstathiou (1990a).
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Assume the density is spatially variable

�(x; t) = ��(t) � (1 + �(x; t)) : (2.20)

Then equations (2.17) to (2.19) can be transformed from the coordinate system r to x which
gives

@�

@t
+r � u+r � (u�) = 0 ; (2.21)

@u

@t
+ (u � r)u+ 2

_a

a
u = �r�=a2 ; (2.22)

r2�=a2 = 4�G��� : (2.23)

In these equations,r and the overdot now denote differentiation w.r.t.x and time, respectively.
Perturbations in the early Universe must have been small. One can thus combine equations

(2.21) to (2.23) and neglect all non–linear terms to get

�� + 2
_a

a
_� � 4� G �� � = 0 : (2.24)

For 
0 = 1, equation (2.24) can be solved easily. In this case, a / t2=3, which gives

�� +
4

3t
_� � 2

3t2
� = 0 : (2.25)

Obvious solutions for equation (2.25) are

� / D(t) / t2=3 / a (growing mode) (2.26)

/ a�3=2 (decaying mode) (2.27)

D(t) is the so–called growth factor of fluctuations. For 
0 < 1, the solution is more compli-
cated. It can be shown that at early times when 
 � 1 the decaying and growing mode behave
as in the case where 
0 = 1. At late times, when 
 < 1, the growing mode starts to saturate
and structure ceases to grow.

The growth of peculiar velocities is studied in Chapter 5. After some algebra, the equations
above show that the peculiar velocity of every mass element grows as

v / a _D : (2.28)

According to Heath (1977), the growth factor for a general cosmology is given by

D = H�2
0 X1=2a�1

Z a

0
X�3=2d~a ; (2.29)

where X � 1 + 
0(a
�1 � 1) + �0(a

2 � 1). The subscript ”0” now explicitly refers to the
values of the density parameter and the cosmological constant at the present time. A number
of accurate approximate forms are known for the relations between D and a. _D can be re–
written as follows

_D � dD

dt
=

dD

da

da

dt
; (2.30)
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where da=dt can be substituted from the Friedmann equation. Lahav et al. (1991) give an ap-
proximation for dD=da:

f(a) � dD

da

a

D
�
 


0 a
�3


0a�3 + (1� 
0 � �0)a�2 + �0

!0:6

: (2.31)

For a = 1 this gives the standard factor f � 
0:6
0 which appears when predicting the peculiar

velocities produced by a given overdensity field. Carroll et al. (1992) used this result to derive
an approximation for D(a) itself,

D � ag(a) ; (2.32)

where

g(a) =
5

2


(a)


4=7(a)� �(a) +
�
1 + 
(a)

2

� �
1 + �(a)

70

� (2.33)

with


(a) � 
0

a+ 
0(1� a) + �0(a3 � a)
; (2.34)

�(a) � �0a
3

a+ 
0(1� a) + �0(a3 � a)
: (2.35)

Combining these equations, yields an explicit approximation for the growth of peculiar veloc-
ities:

v / f(a)g(a)a2
q

0a�3 + (1� 
0 � �0)a�2 + �0 : (2.36)

For the simple case where 
0 = 1 and �0 = 0, these formulae reduce to the exact results
D = a / t2=3 and v / p

a.

2.3. The Cold Dark Matter Model

2.3.1. Introduction

According to the standard theory in cosmology described above, the Universe was born in the
Big Bang, i.e. it was hot, dense, and homogeneous in the beginning, from whence it expanded
adiabatically according to the laws of General Relativity. However, this picture is incomplete,
for it does not explain why on small scales, say a few Megaparsecs (Mpc), matter is clumpy
and not distributed homogeneously. In addition, evidence is growing that the amount of matter
which emits electromagnetic radiation and thus can be seen in the Universe, is far less than the
amount of matter which must be there. The visible matter can only account for a small fraction
of the total mass: Dark Matter shows up via its gravitational influence on various scales.

In the following, various concepts are added to the standard model. In section 2.3.2, the idea
of Cold Dark Matter is motivated. This is the missing matter component. Inflation, as a well
studied mechanism to account for density fluctuations in the early Universe, is introduced in
section 2.3.3. section 2.3.4 discusses the amplitude of the initial fluctuation spectrum. Finally,
section 2.3.5 describes four cosmological models which are based on the preceeding hypothe-
ses and which have been simulated using large N–body simulations (c.f. Chapter 3).
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2.3.2. Dark Matter

Why Dark Matter?

Evidence for the existence of matter which does not emit electromagnetic radiation at any
wavelength and which only shows up via the influence of its gravity (Dark Matter) comes from
different scales:

Scales of galaxies (a few ten kpc): The rotation curves of spiral galaxies, i.e. the rota-
tion speed as a function of the distance from the galactic center, are flat at large distances,
contrary to the prediction of Kepler‘s law which would give a decreasing rotation speed
for the visible matter. However, if a spherically distributed Dark Matter component is
added, which is larger than the disk itself, a so–called halo, the observed rotation curve
for radii larger than a few kpc is dominated by the halo and can be flat.

Scales of galaxy clusters (a few Mpc): The relative amount of Dark Matter is greater
for galaxy clusters6. The total mass of a galaxy cluster can be found either by using the
galaxies as test particles in the system‘s potential and deducing the mass from their ve-
locities, by converting the X–ray emission of the hot intracluster gas into a mass estimate,
or by means of gravitational lensing where the deflected light of background galaxies is
used to infer the mass of the cluster. The latter method is free of assumptions (whereas the
former two assume virial equilibrium which is not necessarily true). However, it mea-
sures the projected mass which could be contaminated by objects lying behind or in front
of clusters. The methods agree relatively well for a large sample of clusters and if one
compares the total mass with the mass of the baryons (which is believed to mainly consist
of the galaxies themselves plus the hot intracluster gas) one finds that the baryon fraction
is around 10 to 20% (White et al. 1993a).

Very large scales (tens of Mpc): The assumption that galaxies may be treated as test par-
ticles allows a reconstruction of the cosmic velocity field from which the potential of the
underlying mass distribution can be deduced. Using Poisson’s equation then gives the
density field which can be compared to the observed density field of the galaxies. From
this procedure, evidence is mounting that not only is the visible mass just a small fraction
of the total mass, but that the total mass may be close to the critical amount required to
make the Universe flat, i.e. 
0 = 1 (e.g. Dekel 1994).

These observations directly lead to the question:

What is the Dark Matter?

The simplest approach to solve the Dark Matter problem is to assume that the Dark Matter is the
same type of matter as that which has already been seen, i.e. baryons. Objects which consist of
baryons but do emit little if any light are well known: they include for instance brown dwarfs.

6The uusal way of expressing this is to give the ratio of the mass of and the light emitted by an object, the so–
called mass–to–light–ratioM=L. Typical values areM=L � 30M�=L� andM=L � 300M�=L� for galax-
ies and galaxy clusters, respectively, where M� and L� denote the sun‘s mass and luminosity, respectively.
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However, a strong upper and lower limit on the amount of baryons in the Universe comes from
Primordial Nucleosynthesis. According to this theory,

0:009 h�2 � 
b � 0:02 h�2 (2.37)

which is inferred from measured abundances of light elements (e.g. Copi et al. 1995). Hence,
unless a severe error in these computations and measurements shows up, the Dark Matter can
not consist of ordinary baryons unless 
0 is very small.

Almost all remaining Dark Matter candidates have one thing in common: They are elemen-
tary particles. Usually they are classified according to their speed when galaxy–sized fluctu-
ations entered the horizon. Particles which were relativistic (non–relativistic) at that time are
named Hot (Cold) Dark Matter.

Hot Dark Matter is probably the most straightforward solution for the Dark Matter problem,
simply because neutrinos with a non–vanishing mass would have been relativistic when they
decoupled from the rest of the matter in the Universe. In addition, neutrinos are known to exist.
However, their masses are unknown. The mass of a neutrino must not be larger than about
30 eV – otherwise neutrinos would overclose the Universe. Although the neutrino masses are
not known, it is already clear that neutrinos can not be the dominating Dark Matter component7.
If 
� � 1 then the free streaming of the neutrinos would have destroyed any adiabatic density
fluctuation smaller than the size of superclusters (� 1015M�) in the early Universe (Bond et al.
1980). As a consequence, structure would have formed in a so–called top–down scenario, with
superclusters forming first and galaxies forming only at the present epoch. As high redshift
galaxies are have been observed, this model cannot explain the formation of structure in the
Universe. In addition, this model is incompatible with the fluctuations in the CMB.

As a consequence of the above, Cold Dark Matter (CDM) remains the best Dark Matter can-
didate. There are no known (i.e. detected) elementary particles which could be CDM. However,
the list of postulated CDM particles is long. Most of these particles are either Weakly Interact-
ing Massive Particles (WIMPs). There are two reasons why one should not worry about the fact
that neither of these types of particles has been detected yet. First, the neutrino itself was pos-
tulated by Wolfgang Pauli long before it was detected – which shows that postulating particles
on a solid physical ground is much more than science fiction. And second, particle physicists
themselves are thinking of elementary particles beyond the standard model of particle physics;
the masses of some of these particles fit nicely into the cosmological mass estimates.

Whatever CDM actually consists of, the important point is that, from the viewpoint of cos-
mology, there is a need for these particles, which are well motivated within almost all exten-
sions of the standard model of particle physics. Thus, one of the main hypotheses of this work
is that Dark Matter consists entirely of CDM8.

7This holds if the density fluctuations were generated during inflation. Hot Dark Matter could work in the context
of string cosmologies but this is beyond the scope of this work.

8It may be argued that there may be a small contribution of Hot Dark Matter if 
0 = 1. For details on the
so–called Mixed Dark Matter Models (or CHDM with the H standing for Hot) c.f. e.g. Primack (1997).
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2.3.3. Inflation as the Origin of Fluctuations

Introduction

Currently, there are two competing scenarios for the generation of density fluctuations needed
to trigger gravitational collapse. These are Inflation and Topological Defects. Due to its com-
plexity, the latter is neither as well understood nor has it been investigated in as much detail as
the former. As Inflation is taken as the scenario which generates density fluctuations, Cosmic
Defects are not discussed here.

Inflation

The first and very simple question is: Why would there be density fluctuations at all after the
Big Bang? Suppose one assumes that there must have been some fluctuations because this is
the only way to explain why the Universe is not completely homogeneous on small scales but
contains galaxies, galaxy clusters, and voids. Then the next question that arises is: If causality
holds, how can the temperature variation of the CMB be only about �T=T � 10�5 from re-
gions on the sky which were causally disconnected at recombination? And why is the Universe
so close to being flat, i.e. why is
tot � 1 (neglecting for the moment the debate about its actual
value)? In addition, after the phase transition in the very early Universe (symmetry breaking)
a huge number of topological defects such as monopoles should have been created; why is the
density in these monopoles so low today? In addition, one may wonder what the details of the
density fluctuations are? How can they be described in a statistical sense, i.e. what does the
density fluctuation spectrum look like? Inflation provides answers to all these questions in a
rather simple fashion which allows one to connect the measurements of the CMB with detailed
models.

In spontaneously broken gauge theories which are used to describe the state of the very
early Universe, the vacuum energy plays a very important role. It can be described as an cos-
mological constant. The idea, first proposed by Guth (1981), is to let this vacuum energy inflate
a single causally connected region in a de Sitter–like cosmology to a gigantic scale.

Consider a very simple universe which could look like this: It is empty (i.e. � = 0), has
a vanishing curvature (k = 0), and a positive cosmological constant (� > 0) – the de Sitter
cosmology. The solution of Friedmann‘s equation is then simply

a = a0 exp[Ht] ; (2.38)

where the Hubble parameter is constant H =
q
�=3. Thus, this universe would expand expo-

nentially due to the effective pressure of space time itself which is described by �.
It can be shown that this period of inflation not only solves the flatness problem, in addition


tot = 1 is nearly inevitable – some extra work is required to allow an open cosmological
model with 
tot < 1 (c.f. Turok & Hawking 1998). The monopole problem is also solved
because the enormous expansion of a small region reduces their number density drastically.

Inflation itself is controlled by the potential of a scalar field � (inflaton field). As mentioned
above, the vacuum energy of � drives inflation. Quantum fluctuations in � give rise to the den-
sity fluctuation needed for the gravitational collapse scenario later on. The fluctuations in �
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of different regions of the same size complete the phase transition to the Friedmann phase at
different times. This time spread �t � ��= _� can be obtained from the equation of motion of
� (which is the free Klein–Gordon equation in an expanding universe) and it is directly con-
nected to the density fluctuations �H = ��=� / H�t. Now the assumptions which have to
be made for the inflaton field (essentially inflation has to last long enough in order to achieve
its goals – the so–called slow roll approximation – so that the potential must not vary much)
yield �H =constant. Thus, inflation predicts a constant curvature spectrum �H =constant of
adiabatic fluctuations (known as Zel‘dovich spectrum). In addition, the quantum fluctuations
in � have random phases and therefore are Gaussian.

It should be noted again that newer variants of inflation manage to result in 
tot < 1, too.
This may be important because it is not yet clear that 
tot = 1. So inflation not only solves
some nasty problems but predicts the spectrum of density fluctuations to be P (k) / k. One
of the disadvantages it has is that it cannot uniquely predict the amplitude of the fluctuations.
There are many variants of inflation each having different choices of �. They vary in different
aspects and some of them produce results which are unlikely to be testable. However, they
all have the above features in common and all yield different amplitudes. This leads to the
question of how this amplitude can be determined from observations.

2.3.4. The Fluctuation Spectrum and the Amplitude of Mass Fluc-
tuations

In addition to the generation of the primordial spectrum of density fluctuations a second phys-
ical process must be taken into account. Small scale density pertubations (with � < �eq)
enter the horizon prior to the epoch of equivalence between matter and relativistic particles
(�eq � 13=
0h

2 Mpc is the comoving horizon scale at that epoch). They are damped and the
spectrum develops a bend at the scale �eq. The processes which change the shape of the primor-
dial fluctuation spectrum are usually combined in the so–called transfer function T (k) which
relates the primordial spectrum to the actual spectrum through:

P (k) = T 2(k)Pp(k) ; (2.39)

where Pp(k) now denotes the primordial spectrum and P (k) the actual one.
The parametric form for T (k) used in this work was introduced by Bond & Efstathiou

(1984). In their notation, the power spectrum is given by

P (k) =
Ak

(1 + [ak=� + (bk=�)3=2 + (ck=�)2]�)2=�
; (2.40)

where a = 6:4 h�1 Mpc, b = 3:0 h�1 Mpc, c = 1:7 h�1 Mpc, and � = 1:13. A is the yet
unknown normalization and � gives the typical scale of the spectrum. This is � = 
0h for all
pure CDM models (for a CDM model which deviates from this see section 2.3.5).

As discussed above, the amplitude A of the power spectrum cannot be predicted uniquely
from inflationary models. Thus, it has to be obtained from measurements. This can be done
in two different ways, either by using the CMB measurements of the COBE satellite (as ex-
plained in Efstathiou et al. (1992), see also Bunn et al. 1995), or by relating it to the rms linear
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fluctuations in the mass distribution on scales of 8 h�1 Mpc, �8, defined by

�28 �
1

(2�)3

Z
P (k;�)

�
3

kR8

j1(kR8)

�2
d3k ; (2.41)

where R8 = 8 h�1 Mpc, and j1 is a spherical Bessel function.
COBE has an angular resolution of about 7� which corresponds to scales much larger than

any scale of interest in current cosmological investigations and simulations. Hence, a model
which links these scales to much smaller ones is needed. This cannot be done unambiguously.
For example, the amount of gravitational waves is still uncertain in inflationary scenarios. This
could change A dramatically. Obtaining values for A from the mass distribution on cluster
scales does not suffer from this problem. The basic idea behind this is rather simple: The mass
function, that is the number of objects of some mass as a function of mass, is falling very steeply
at its high mass end, i.e. high mass objects like rich clusters of galaxies are very rare (compare
Chapter 6). As the mass function itself depends on the amplitude of fluctuations, the overall
amplitude A of the power spectrum can be fixed by matching the observed abundance of rich
clusters in computer simulations.

Values for �8 can be obtained by using either the mass (White et al. 1993b) or the X–ray
temperature functions (Eke et al. 1996, Viana & Liddle 1996) of rich clusters. The different
studies carried out this way more or less agree that

�8 � 0:6
�0:60 : (2.42)

2.3.5. Cold Dark Matter Models

Die Welt ist unabhängig von meinem Willen.

Ludwig Wittgenstein
Tractatus logico–philosophicus 6.373

In the following, the four models used in the VIRGO simulations will be introduced. In
addition, some of their features will be discussed. A concluding section summarizes the present
status quo of measurements of the density parameter 
0. Despite several indications at this
time no decisive point can be made whether or not the density parameter is unity or smaller
than unity.

SCDM

In principle, the simplest cosmological model, named Standard CDM (SCDM), is a no para-
meter model where all quantities are fixed either from the predictions of inflation or from mea-
surements. These are n = 1, 
0 = 1, and h = 0:59. h cannot be chosen to be larger because
otherwise the age of the Universe would be smaller than the age of the oldest stars. This is
still very uncertain, though. For a recent review of determinations of the Hubble Constant c.f.
Branch (1998). As introduced above, SCDM has � = 
0h = 0:5.

9The Hubble constant is usually expressed as H0 = 100hkm/sec/Mpc.
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Nowadays, it has become en vogue to state that the SCDM model does not work and that it
has to be substituted by some variant. But SCDM in most cases is wrong only by a factor of two
or so – which is rather small compared with the usual uncertainties in astrophysics/cosmology.

So what actually is wrong with SCDM? As already stated in section 2.3.4, the normaliza-
tions obtained by COBE and via clusters disagree strongly. The amount of small scale power
relative to large scale power is too large. Thus, if normalized to COBE, SCDM predicts too
high an abundance of galaxy clusters. If normalized to give the correct abundance of clusters,
the correlation function is too steep (Davis et al. 1985, Jenkins et al. 1998) and COBE fluc-
tuations are underpredicted. Problems like this show up in many other topics (galaxy–galaxy
and cluster–cluster correlation functions (Bahcall & Cen 1992, Efstathiou et al. 1990), genus
statistics (Springel et al. 1997) to name just a few. For a detailed discussion of this topic c.f.
Ostriker 1993). Probably the simplest way to understand why SCDM has these problems is its
typical scale, specified by � = 0:5. On the basis of galaxy clustering, Peacock & Dodds (1994)
found � � 0:25. Thus, the power spectrum of SCDM has a peak which is at too large a wave
number. From this it is clear why the above normalization problems show up.

�CDM

As indicated above, � � 0:25 is needed to match the clustering statistics of galaxies and galaxy
clusters. For a model with 
0 = 1 this cannot be easily achieved without invoking additional
physics because the obvious solution, to lower the Hubble constant to h = 0:25, is in conflict
with observational limits (Bartlett et al. 1995). One possibility is to assume that massive neutri-
nos which existed in the early Universe have now decayed into other neutrinos. The � neutrino
is a candidate for such a particle, hence the name of the model. A decaying neutrino species
leads to an enhancement of the content of relativistic particles in the Universe. This changes
the power spectrum of density fluctuations. In any model without such a decay process, the
early Universe is radiation dominated, but matter starts to dominate later because the densities
of radiation and matter scale differently with a. In the �CDM model this process is changed as
follows. In the early stages of the Universe the energy density of the massive neutrinos is the
same as that of a massless species. As the Universe expands, the massive neutrinos become
nonrelativistic, and their energy density starts to increase relative to their massless counter-
parts. This leads to an epoch in which the density of the Universe is dominated by massive
neutrinos. Later, they decay, and their rest energy is converted into energy for relativistic par-
ticles – thereafter the Universe starts to evolve like a SCDM Universe, but with a higher energy
density in relativistic particles which causes equipartition to occur later hence reducing �.

The shape parameter � of the power spectrum can be expressed as follows (Bardeen et al.
1986):

� ' 
m0h�
 


r0h
2

4:18 � 10�5
!�1=2

: (2.43)


r0 = �r0=�crit, where �r0 is the present energy density in relativistic particles, and 
m0 stands
for the matter that can clump at small scales. For SCDM (where 
r0 = 4:18 �10�5, 
m0 � 
0)
� = 0:5 as introduced above. An increase in the density of relativistic particles – as in the
case of the decaying neutrinos introduced above – lowers �. So, in order to obtain the desired
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spectrum, the necessary density in relativistic particles has to be achieved.
It can be shown that � is a function of the mass and the lifetime of the massive neutrinos

as follows
� = 
0h=[0:861 + 3:8 (m2

10 �)
2=3]1=2 (2.44)

This fitting formula is given by White et al. (1995). m10 is the mass of the neutrino in units of
10 keV and � is its lifetime in years. Obviously, the �CDM model requires additional physics
beyond the Standard Model of High Energy Physics. For more details about scenarios with
decaying neutrinos and their cosmological implications c.f. Bharadwaj & Sethi (1998).

The parameters of the Virgo �CDM model are 
0 = 1, h = 0:5, � = 0:21.

�CDM

Evidence is mounting that 
0 is actually smaller than unity and that the Hubble constant is
larger than h = 0:5. The latter is still rather controversial. For the former, the situation is
somewhat clearer. See below for a discussion of the value of 
0. Introducing a comological
constant is the only solution which allows a low density in matter and a flat Universe (e.g.
Efstathiou 1990b).

The introduction of a cosmological constant has immediate consequences which are often
taken as a motivation itself. The age of globular clusters is often taken as evidence for a Uni-
verse which is significantly older than a universe described by a model with 
0 = 1 – despite
the large systematic errors in these measurements. If one assumes a flat universe (or if one be-
lieves in a Universe which has an age of around 15 Gyrs and 
tot = 1) then a cosmological
constant would have dominated the expansion of the Universe from z � 0:6. As already in-
dicated above, the age of the universe is greater than the age of a matter dominated universe
with 
tot = 1, t0 = 2=(3H0). Objects today have had more time to evolve in a Universe with
a cosmological constant. Structure starts to grow earlier in the past, and later the growth of
structure stops.

Estimates of the matter density on cluster scales usually yield 
0 � 0:3. If one assumes
that the universe is flat, that there is no additional matter in the Universe, and that the ages of
globular clusters are correct, this leads to the following set of parameters for the �CDM model:

0 = 0:3, �0 = 
tot � 
0 = 0:7, and h = 0:7. Obviously, this gives � = 0:21, close to what
is desired.

However, the model has some limitations which will be mentioned briefly. Several mea-
surements give rather strict limits on �0. First of all, including a cosmological constant en-
hances the volume of the Universe itself. Hence, one gets an estimate of the number of lensed
objects. Comparing this with observations one is able to deduce a limit of �0 < 0:6 at 95 % c.l.
(for a detailed paper see Kochanek 1996 and references therein). Also, there is no explanation
for �0 on the basis of particle physics. The model requires an extreme fine tuning to achieve
the desired energy density of the vaccuum.

A second way of determining �0 comes from measurements of space time itself. One takes
so–called standard candles, whose behaviour is (assumed to be) well understood, and com-
pares local measurements of these objects with ones at high redshift. Supernovae of type Ia
are a promising candidate for this. This needs the observation of the lightcurves of a sufficient
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number of distant supernovae, that is the brightness of the supernova as a function of time, be-
ginning before they reach their maximum and extending well beyond this maximum. One then
computes the effects of space time and fits the parameters 
0 and �0 to a model for the appa-
rant bightness–distance relation. Riess et al. (1998) reported on data for about 34 nearby and
16 high–redshift supernovae. They find that the data favours eternally expanding models with
�0 > 0 and a current acceleration, that is q0 � 
0

2
� �0 < 0. A Universe closed by ordinary

matter (
0 = 1) is ruled out at the 7� level. It may still be flat, though, with a contribution of
�0.

OCDM

In terms of simple models, an open Universe model (OCDM, c.f. e.g. Ratra & Peebles 1994) is
probably as simple as the original SCDM. Using the parameters 
0 = 0:3, � = 0, and h = 0:7
is consistent with most observational constraints (see below). Also, the shape of the power
spectrum is in the desired range, and there are no additional parameters which require extra
physics. As already mentioned, variants of inflationary scenaria can produce open Universes
(e.g. Turok & Hawking 1998). The open model has quite a similar behaviour to the model with
the cosmological constant. As in the �CDM model, structure starts to grow earlier in the past,
and later the growth of structure stops.

The Value of 
0

Determining the value of the density parameter has been one of the main goals of cosmology
for decades. Despite enormous effort, so far no decisive point can be made10. In the follow-
ing, some of the arguments are presented. Obviously, either some of the measurements or the
models themselves must be wrong – simply because 
0 cannot be unity and smaller than unity
at the same time. Only the results themselves and an outline of the arguments will be given. A
thorough discussion of all the uncertainties involved is far outside the scope of this work (for
more details on this topic c.f. Coles & Ellis 1997).

Dynamical mass of clusters: Assuming that the galaxies in a cluster may be regarded as
test particles, the cluster mass can be measured (assuming virial equilibrium). Alterna-
tively, cluster masses can be determined by gravitational lensing effects. Then, the mass–
to–light ratio can be determined. Clusters are systems which formed from a large region
in the initial density field. Therefore, it is assumed that their properties are the same as
that of the Universe as a whole. Hence, converting the mass–to–light ratio into a value
of 
0 should give the global value of 
0. For instance, Carlberg et al. (1996) get a value
of 
0 = 0:24� 0:05 which is typical for studies like this.

Baryon Fraction in clusters: This study also assumes that because of the way clusters
form measuring a property of the cluster gives the global value. White et al. (1993a)
compared the mass in baryons (in galaxies and in the hot intracluster gas) with the total

10This statement is phrased as conservatively as possible. In the field, strong opinions exist about the value of

0. However, in most cases these opinions are based on one indication. There still is enough room for the
value of 
0 to lie between about 0.1 and 1, though recent evidence seems to favour smaller values.
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dynamical mass in the Coma cluster. Following the argument that a cluster is a typical
system, the baryon fraction must not be larger than its global value – given by the nucle-
osynthesis constraint. Using this logic, White et al. get the constraint


0 � 0:15 h�1=2

1 + 0:55 h3=2
; (2.45)

which is much less than unity for any likely value of h. This is generally referred to as
the ”baryon catastrophe” although it is only a catastrophe if one believes that 
0 = 1.

Strong arcs in clusters: Using galaxy clusters from the GIF simulations introduced in
Chapter 3, Bartelmann et al. (1998) investigated the number of strong arcs produced by
the four cosmological models. Crudely speaking, to produce strong arcs a cluster needs
a high concentration of mass in its center and it has to have formed by the redshift which
is most efficient for the production of strong arcs (z � 0:3). Bartelmann et al. find that
only the open model can account for the total number of arcs produced on the whole
sky. In particular, the two high density models are two orders of magnitude less efficient
producers of strong arcs. The �CDM model is intermediate.

High redshift supernovae: As already mentioned in the section on the �CDM model, the
constraints from this technique favour eternally expanding models with �0 > 0 and a
current acceleration, that is q0 � 
0

2
� �0 < 0. A Universe closed by ordinary matter

(
0 = 1) is ruled out at the 7� level (Riess et al. 1998).

Evolution of the cluster abundance: Due to the dependence on 
0 in the dynamical
equations, low density Universes form massive galaxy clusters at earlier redshifts than
high density Universes. This point will be examined in detail in section 6.3.

Peculiar Velocities of Galaxy Clusters: This will be investigated in detail for the dif-
ferent models in Chapter 5. Observationally, the rms peculiar velocities of samples of
galaxy clusters are relatively low. This is (incorrectly) claimed to favour a low value of

0 (e.g. Borgani at el. 1997).

Velocity–density reconstructions: In the linear theory, the velocity field is curl–free and
can therefore be expressed as the gradient of a potential. One can thus map the potential
from the observable radial peculiar field and so solve for the density field. This technique
called POTENT (c.f. Dekel 1994 for a detailed discussion) suggests that the Universe has
a high density.

From this short and incomplete list it is clear that to measure 
0, predictions have to be made
which should be as precise as possible. Simulations can be used to do this – and in Chapters
5 and 6 the simulations presented in this work will be used to shed light on some of the points
mentioned above. However, the use of simulations of structure formation in a gravitational
instability scenario is not just restricted to measuring 
0. They can be used to achieve a better
understanding of whether and how linear theory works (c.f. Chapter 5), and they can be used
to investigate the distribution of mass as a whole. Before turning to this point in Chapter 4, in
the following Chapter, the simulation sets will be introduced. The technical background will
be given in Chapter 8.
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Chapter 3

The Simulation Sets

In this Chapter, the simulation sets will be introduced. In addition, image processing techniques
will be discussed. These techniques will then be combined to give pictorial impressions of the
different cosmologies.

Apart from the Hubble Volume Simulations, which will be introduced separately in Chap-
ter 6, two sets of simulations were run. They feature the models introduced in section 2.3.5.
All the simulations were run as part of the Virgo Supercomputing Consortium which is based
in Britain, Germany, and Canada and which consists of scientists from these countries. Its
(core) members are Frenk, Jenkins, and Pearce (Durham, UK), White, Colberg (Garching, D),
Thomas (Sussex, UK), Couchman (London, CAN), Efstathiou (Cambridge, UK), and Peacock
(Edinburgh, UK).

The two simulation sets were primarily done for different purposes although they have been
used for a plethora of applications since they were finished. They will be referred to as the Virgo
and the GIF simulations for reasons which will be clear in the following.

The code used to run these simulations will be discussed in Chapter 8, where a summary
of code development done during the course of this work will also be given.

3.1. The Virgo Simulations

The first set of simulations was run in late 1995 and early 1996. It made use of the 128 (256)
processor CRAY T3D at the computer center of the Max–Planck–Gesellschaft, the Rechen-
zentrum Garching, RZG (at the Edinburgh Parallel Computer Center, EPCC). It consists of
the four models introduced in section 1.3.5 following the evolution of 2563 particles in cubic
boxes of size 240 Mpc/h each. All four models were run with the same phases for the initial
density field. The gravitational softening is 30 kpc/h. The parameters of the Virgo simulations
are summarized in Table 1.1. As can be seen, the high and low density models have differ-
ent mass resolutions. The simulations are all cluster normalized (c.f. section 1.3.4). The rms
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Model 
 � h � �8 l mp

SCDM 1.0 0.0 0.5 0.50 0.51 240 22.1
�CDM 1.0 0.0 0.5 0.21 0.51 240 22.1
�CDM 0.3 0.7 0.7 0.21 0.90 240 6.8
OCDM 0.3 0.0 0.7 0.21 0.85 240 6.8

Table 3.1.: The parameters of the Virgo simulations. The cosmological parameters are noted
as introduced in Chapter 2. l denotes the size of the box in one dimension and is
given in Mpc/h. mp is the mass of a single particle in units of 1010 h�1 M�.

Model 
 � h � �8 l mp

SCDM 1.0 0.0 0.5 0.50 0.60 85 1.0
�CDM 1.0 0.0 0.5 0.21 0.60 85 1.0
�CDM 0.3 0.7 0.7 0.21 0.90 141 1.4
OCDM 0.3 0.0 0.7 0.21 0.85 141 1.4

Table 3.2.: The parameters of the GIF simulations. The cosmological parameters are noted as
introduced in Chapter 2. l denotes the size of the box in one dimension and is given
in Mpc/h. mp is the mass of a single particle in units of 1010 h�1 M�.

mass fluctuations in spheres of size 8 Mpc/h originally were �8 = 0:6, 0:6, 0:9, and 0:85 for
SCDM, �CDM, �CDM, and OCDM, respectively. However, with this normalization – which
adopts the Eke et al. (1996) and the White et al. (1993) normalizations for the low and high
density models, respectively – the abundances of massive clusters in the models do not agree.
The high 
0 models produce three times more massive clusters than their low density counter-
parts. This was found during the course of this work and by Thomas (private communication).
It is (partly) reflected in the numbers given in Thomas et al. (1997). Because of this the SCDM
and �CDM models were rescaled such that the earlier outputs at z = 0:2 were taken to be
z = 0. This yields �8 = 0:51 and makes the abundances agree. When the code for the T3E
became available in 1997, the high density models were re–run in order to get the desired rms
mass fluctuations at z = 0. This was also a good test of the new code. The new code exactly
reproduced the results of the old one.

Jenkins et al. (1998) contains an introduction to further technical details of these simula-
tions, pictures (see below), and a discussion of the power spectra, correlation functions, bulk
flows, and pairwise velocity statistics. The simulations were also used to study the internal
properties of galaxy clusters (Thomas et al. 1997) and to compute genus statistics (Springel et
al. 1998).
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3.2. The GIF simulations

The second set of simulations was run with the same mass resolution for each model. In each of
the simulations, a single particle has a mass of 2:0�1010 M�. Again, each simulation follows the
evolution of 2563 particles. Hence, the sizes of the simulated volumes are different for the low
and high density models. Table 1.2 summarizes the parameters of the GIF models. Note, that
for the GIF models the original cluster normalization is used. The simulation set was run with
the same phases for the initial density field, too. The gravitational softening is again 30 kpc/h.
The simulations were all started on the CRAY T3D at the RZG and, once the clustering required
more memory, transferred to the bigger T3D at the EPCC.

These GIF simulations were originally run to be used as part of the GIF collaboration1

which consists of scientists from Germany and Israel. In order to be able to extract accurate
merger histories of objects which are used for so–called semi–analytical models, 50 output
dumps between z = 20 and z = 0were produced and stored. This amounts to around 50 GByte
if only the compressed data, which is used for the analysis, is summed up. Kauffmann et al.
(1998) contains the first implementation of the semi–analytics into the�CDM and �CDM mod-
els. The simulations were also used to compute arc statistics (Bartelmann et al. 1998), and they
also appear in Jenkins et al. (1998).

3.3. Visualization Techniques

The usual visual representation of N–body simulations in the pre–Virgo days had been the use
of simple particle (dot) plots. For low resolution simulations where only massive objects are
well resolved this is probably the best way to show the structure. However, for high resolution
simulations like the Virgo and especially the GIF simulations, better representations had to be
found2. The adopted solution for this problem was the adaptive smoothing algorithm which
will be motivated and discussed in more detail in the following.

Note that all high resolution colour pictures can be found in the Appendix!

3.3.1. Adaptive Smoothing

The first improvement to black and white dot plots is to compute densities on a grid and to code
the result with colours. A typical slice through one of the Virgo simulations could then look like
figure A.1. This shows the particles in a slice of thickness 22.5 Mpc/h through the whole Virgo
SCDM box. It contains about 1.5 million particles which were assigned to a grid using a nearest
grid point assignment (NGP, see e.g. Hockney & Eastwood 1981). For this picture, already,
a further improvement was implemented. The density contrast between the dark low density

1GIF stands for German Israeli Foundation which was the supposed funding organization. Ironically, the pro-
posal was turned down.

2This is interesting for works which appear on astro-ph, too. Dot plots with millions of particles lead to huge
postscript files. Few people seem to notice that the size of a dot plot can usually be decreased quite massively
by simply converting the postscript plot into a high resolution GIF or JPEG picture. A postscript plot can have
several dots at the same position (postscript has one command for each dot), a GIF can’t. Converting it back
then leads to a postscript plot with at most one dot at any position.
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regions and the bright particle knots is so large that the logarithm of the particle densities on
the mesh was used to set up the colour table.

Despite the low resolution of this test case, the result of the efforts so far still leaves a lot to
be desired. The particle knots all look quite nice, but the low density regions are dominated by
noise. This leads naturally to the idea of smoothing. Figure A.2 shows the same slice smoothed
with a Gaussian filter with a kernel size of 2.5 Mpc/h. This has removed the noise from the
voids, but on the other hand it has smeared out the knots completely. Obviously, a uniform
change in the kernel size would not solve the problem – in order to resolve the knots the size of
the kernel should be very small which again leads to particle noise in the low density regions.

The ideal way to deal with a picture like the one in Fig. A.1 would be to leave the knots
as they are and smooth the regions of low density. Such a procedure, in a slightly different
context, is well known in Smoothed Particle Hydrodynamics (SPH). There, the continous fluid
is modelled by particles. Each particle represents some region in space. Very crudely speaking,
the size of this region is determined by the local density at the particle position. This is exactly
what is needed for the smoothing. Particles in high density regions do not need to be smoothed,
whereas for particles in low density regions a smoothing has to be found which depends on the
local density itself. That way, a non–global smoothing is achieved.

Technically, the problem is solved on the grid. A different approach would be to find the lo-
cal densities for the particles themselves (as in SPH) and then assign them to a grid using these
densities to define a filter radius. However, this procedure does not lead to pictures which are
different from the ones obtained with the method used here (Jenkins, private communication).
Starting from a configuration like the one shown in figure A.1, for each grid point a smoothing
length is found as follows. If the contents of the grid point exceeds N particles, no smoothing
is applied. If it is lower than N particles, the contents of the neighbouring eight mesh cells
are added using a weighting which takes into account that the ideal neighbouring region of the
mesh cell should be a sphere rather than a square. The procedure is stopped if N particles are
now reached, and it is continued going further out otherwise. The number of particles required,
N , is a free parameter. Numbers between N = 20 and N = 30 turn out to give very similar
and satisfactory results. Thus, a smoothing radius is computed for each mesh cell. In the sec-
ond stage of the algorithm, this radius is used as the size of a Gaussian filter to redistribute the
mass in the cell onto the mesh. Mass conservation is ensured which will be important for the
discussion of the three–dimensional distribution of matter in the following Chapter.

Figure A.3 shows the result for the test case. As can be seen, the low density regions no
longer contain significant particle noise, the particle knots are clearly resolved, and a plethora
of filaments connecting the high density regions shows up.

This adaptive smoothing algorithm was coded on a three–dimensional mesh, too. It will be
used in the following Chapter for the investigation of the mass distribution. However, finding
a good three–dimensional representation of the mass distribution is very difficult for reasons
which will be become evident in Chapter 7. Two–dimensional representations of the mass dis-
tribution in slices yield probably the maximum amount of information at the same time – which
is why the attention is focused on such two–dimensional visual representations in the following
section, which concludes this Chapter.
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3.3.2. Cosmology with Pictures

In Chapter 2, the basic cosmological equations and notions, and our four cosmological models
were introduced. From the equations themselves, a couple of points became clear. Pictures
obtained with the adaptive smoothing can shed further light onto this.

Figure A.4 shows a slice of thickness 8.5 Mpc/h through the �CDM GIF simulation. A vari-
ety of structure elements can be seen. Right in the middle of the picture a very large underdense
region, a void, can be seen. The void is surrounded by a complicated network of mass conglom-
erates. To the South there is a huge galaxy cluster, accompanied by many smaller objects. The
South–Western boundary of the void is formed by a sheet – as will be shown in Chapter 7.
Clearly, regardless of their size the majority of objects are part of the network. Big objects
appear to be clustered, and they are surrounded by smaller ones. The bridges between them,
filaments and sheets, are mainly populated by small objects and a smooth component. This
network will be investigated in considerably more detail in the following Chapter. Such struc-
tures can be seen in galaxy surveys, too (see e.g. the Las Campanas Redshift Survey, Shectman
et al. 1996). There too, galaxies line up in filaments and sheets which surround voids.

Figure A.5 shows slices of thickness 22.5 Mpc/h through the four Virgo models at z = 0.
For each picture, after the smoothing the mass density was divided by the mean, and then the
logarithm was taken. The same colour tables were used. The pictures look quite similar but
there is a big difference between the low and high density models. In general, the voids in the
low density models are emptier than in their high density counterparts. This lets the low density
models appear darker. Note that, in a region of fixed size, high and low density models contain
different amounts of total mass. From the pictures, it can be seen that most of the additional
mass of the 
 = 1 models is in the voids. The two low density models, OCDM and �CDM,
are hardly distinguishable. The same is true for the two 
 = 1 models. �CDM appears to be
slightly smoother than SCDM. Recall that these two models differ by the relative amounts of
large and small–scale power. SCDM has more small scale power which leads to the appearance
of more small objects than in �CDM.

Apart from SCDM, which is known to be a poor fit to several observations (compare Chap-
ter 2, section 2.3.5), the models all have parameters which lie within the observational bounds.
Clearly, there are differences between the �CDM and the two low density models which have
to be explained. If it were possible to identify locations of galaxies in the Dark Matter distribu-
tions, pictures of the galaxy distributions would have to look identical. This leads to the notion
of bias. It is beyond the scope of this work to go into the details of biased galaxy formation. In
the following, only a very general and brief introduction is given which explains the problem
with the difference in appearance of the models.

The simplest Ansatz for the relationship between the distribution of the density field of the
Dark Matter, �DM, and that of the galaxies, �g, would be to assume that ”light traces mass“,
that is, galaxies are found in the bright spots3. Thus, galaxies and Dark Matter have the same
clustering properties. However, under this hypothesis the differences between the �CDM and

3Occam’s Razor which is often used as an argument for 
 = 1 (because the equations of such a cosmology can
be solved so easily; see e.g. Dekel et al. 1997) here would actually say that
 < 1. In most low density models
currently under consideration, no bias or only a very small bias is needed. The assumption that light traces
mass is clearly much simpler than a complicated relationship between them.
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the OCDM and �CDM models do not appear. Clearly, in order to get the same galaxy distri-
bution for the high and low density models, the clustering properties of the Dark Matter and
the galaxies must be different in �CDM. The simplest Ansatz is to assume a linear relationship
independent of scale

�DM = b �g ; (3.1)

where b is the so–called bias parameter. The rms fluctuation in the number counts of galaxies
on a scale of 8 Mpc/h is �8;g � 1 (Davis & Peebles 1983). Hence, in order to reproduce the
observed clustering of the galaxies, a high density model has to have a positive bias whereas a
low density model is not at all or only mildly biased.

As discussed in sections 2.3.3 and 2.3.5, the simulations are set up using Gaussian initial
conditions with the amplitudes required to yield the observed abundance of rich clusters. Fig-
ure A.6 shows slices of thickness 1/10th of the box size through the four GIF models at z = 0

obtained in the same fashion as the slices for the Virgo models. The GIF models look identi-
cal! Of course, they are not completely identical. Very small differences in the concentrations
of the massive objects can be seen, and subtracting the pictures of, say, the SCDM and �CDM
model from each other displays offsets in the positions of the overall structure.

On the other side, the pictures must look identical by construction of the models. Because
the models were cluster normalized and run with with the same phases, the same objects form
at about the same position in each of the models – which is why they look nearly identical at
z = 0. The sizes of the void regions are different for the low and high density models, but
because the mass evacuated into the clusters and walls, they look the same with the scaling
adopted in these pictures.

Clear differences between the models appear if slices at earlier redshifts are taken. Figure
A.7 shows the same slice through the four models at z = 1. Here, the difference in the evo-
lution between high and low density universes shows up. OCDM and �CDM still look quite
similar. However, a difference between the two high
0 models becomes visible. In the �CDM
model, matter is distributed over wider regions in space than in the SCDM model. In addition,
objects appear to be brighter and more massive in the low 
0 models than in their high density
counterparts. Apparently, this is due to the formation time of these objects which is at higher
redshifts. Chapter 6 will come back to this point when the appearance of massive galaxy clus-
ters at a redshift of z = 0:8 is investigated for the Hubble Volume Simulations.

Figure A.7 shows slices through the four models at z = 3. The differences between the
models are now even stronger. From these pictures it can seen that

1. low density models start to form structure earlier than models with 
0 = 1. In particu-
lar, the open model starts first, followed by �CDM. As a consequence, there should be
relatively few massive objects at high redshifts in a high density Universe (see section
6.3).

2. the growth of structure saturates for low density models near z = 1. That is, it is hard to
distinguish between OCDM and �CDM in the late stages of their evolution, and there is
very little difference between these models after about z = 1.

3. the difference in the power spectra of the two high density models shows up as a differ-
ence in the clustering strength. SCDM has more power on small scales which makes it
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form more objects (due to the way the simulations are normalized, they all form the same
number of objects corresponding to rich clusters. Below that mass limit, SCDM forms
more objects). The �CDM model forms structure latest among these four models.

In the next Chapter, the three–dimensional mass distribution in the GIF models at z = 0

is investigated. This addresses questions related to the ones discussed above, albeit from a
different angle. Is the mass distribution really as similar in the models as the pictures (Fig.
A.6) suggest?
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Chapter 4

The Distribution of Mass

4.1. Introduction

As soon as the first large catalogs of galaxies were assembled it was realized that on scales of a
few megaparsecs and larger the distribution of galaxies is not homogeneous. Maps of the dis-
tribution show a complicated network, and there have been nearly as many suggestions of what
can be seen as there are galaxy catalogs. One of the most famous features, the so–called ”Great
Wall”, dates back to the second CfA redshift survey: De Lapparent et al. (1986) argued that the
structures that can be seen are cuts through large sheets of galaxies, rather than filaments, be-
cause one would not expect to find many long parts of filaments in the slices which represent
the catalog. Other authors, however, have argued that galaxies preferentially lie in filaments
(c.f. e.g. Haynes 1986). The situation may be clearer for those regions where no or few galax-
ies can be found, the so–called voids (Kirshner et al. 1981). These voids are not completely
empty (Lindner et al. 1996).

One of the main assumptions in Cosmology is that the Universe is homogeneous on large
scales (see Chapter 2). With current galaxy surveys, this scale of homogeneity has not been
reached, yet. It will require the forthcoming very large galaxy surveys like the Sloan Digital
Sky Survey to get there.

The first large N–body simulation of the Cold Dark Matter (CDM) model led to a qualita-
tive appearance of the distribution of matter which was similar to the one in galaxy catalogs.
For instance, Davis et al. (1985) noted that ”structure appears very rapidly, and filaments, su-
perclusters of clumps, and large low–density regions” developed in their simulations, which
had 323 particles. Since then, it has been possible to run larger and larger simulations, making
use of the latest generations of computers. During the last couple of years it finally became
possible to run simulations with a very large number of particles in large computational vol-
umes. The GIF simulations introduced in the preceding Chapter are ideal for detailed studies of
Large–Scale Structure (LSS) because of their very high mass resolution in a sufficiently large
volume. Thus, it will be possible to discuss the spatial distribution of matter in the computa-
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tional volume in detail. As a starting point, the connectedness of the matter will be investigated.
This is done on an adaptively smoothed density grid rather than on the point distribution of the
particles. Overdensity is used in order to discriminate between over–dense and under–dense
regions: For each value of the overdensity used as threshold a set of volume cells filled with
matter is obtained. Each pair of cells which shares an adjacent face is treated as being part of
a bigger object. Thus, a set of objects is obtained for each overdensity threshold. What are the
properties of this set? Imagine a reef. At low tide, the whole structure of the reef can be seen.
As the tide rises, more and more of the reef will be covered and eventually, at high tide, only
a few islands are still visible. How does the distribution of matter look like if it is treated in
a similar fashion? How much mass is above the threshold? And how much volume is occu-
pied by this mass? And what can be said about what LSS consists of? These questions will be
addressed in the following.

4.2. The Distribution of Mass

4.2.1. Introduction

In order to investigate the distribution of mass the density field is obtained by binning the distri-
bution of particles on a three dimensional mesh of size 2563 using a nearest gridpoint scheme.
The mesh cells themselves are smoothed adaptively as described in the preceding Chapter re-
quiring 30 neighbours. It will be checked later that the number of particles used does not affect
the results.

The smoothed density field is then transformed into a field which contains overdensities
by dividing by the mean density and subtracting 1. Different threshold values of the overden-
sity are used to define overdense and underdense regions. They are marked by replacing the
overdensities with 1 and 0, respectively.

Unless a very large value for the threshold is taken some of the mesh cells will be part of
a bigger object. For instance, as the length of a mesh cell is smaller than the typical size of a
galaxy cluster, the cluster will consist of a set of cells. In order to find connected mesh cells
pairs have to be found which have an adjacent face. This can be achieved quite nicely. Treating
the centers of overdense mesh cells as particles, there is a set of particles where all pairs of
particles with a distance of 1 (in units of the mesh) are members of the same group. A friends–
of–friends (FOF) group finder is run to get all connected mesh cells. Such a group finder will
be used in various parts of this work. It works as follows. Imagine a set of particles. The aim is
to find all particles which are part of a group. This is only a well–defined object if a criterion is
given what a group actually is. A FOF group finder treats two particles as friends (and thus part
of a group) if their separation is smaller than some given value. A third particle which may be
a friend of one of the two particles, then becomes a friend of the other one, too, etc. So the FOF
group finder finds all particle pairs whose separation is smaller than some given number and
then constructs the groups. The maximum separation required is an input parameter. Usually,
a fraction of the mean inter–particle separation is taken. In Chapter 6, the ”standard” value of
20% (which is usually noted as b = 0:2) is taken which more or less yields virialized objects1.

1The fact that this yields virialized objects is, of course, empirical.
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Lowering the maximum separation yields smaller groups. That way, in Chapters 5 and 6 only
the densest knots of groups are found. For the mass distribution considered here, the maximum
separation is well–defined. If the overdense mesh cells are considered to be small cubes, two
cubes which have an adjacent face are part of a bigger object. That is, two cubes are part of
an object if their centers have a separation of 1 in units of the mesh size. Using this, the group
finder is run on the set of cube centers for each overdensity threshold.

Having stored the mass in each cell the masses of the objects can be computed. The volume
is obtained by multiplying the number of cells per object with the volume of an individual mesh
cell.

4.2.2. Visual Impression

As a starting point, a visual impression of what is obtained once this procedure is applied to the
smoothed density field is given. Fig. A.9 shows all objects in the �CDM box at an overdensity
of 2. It is hard to see much from the picture. It is clear that there is a huge number of very small
objects. However, there appears to be one big object which extends all across the simulation
box, too. All the other models look exactly the same if they are displayed in this fashion. It is
impossible to tell the difference visually, which is the same situation already known from the
smoothed two–dimensional pictures seen in the preceding Chapter.

In Fig. A.10 only the biggest object is shown. It consists of a very complicated network of
filaments. The filaments themselves come in various sizes. Some of them appear to be thick,
others are very thin. Note that the small lumps which appear isolated are in fact connected to the
single large object because periodic boundary conditions are used. The biggest object extends
all across the simulation volume, a phenomen known as percolation (which was introduced
in the cosmological context by Zel’dovich 1982). Fig. A.11 shows the biggest object from
different angles. A zoom of an eighth of the object in fig. A.10 is shown in Fig. A.12. Clearly,
the structure is filament–like.

As will be seen later, the visual impression from Fig.s A.9 and A.10 is slightly misleading.
The biggest object contains about 90% of the total overdense mass and occupies about 80% of
the overdense volume. This amounts to about 50% of the total mass in the simulation box but
only to 2.5% of the total volume.

What happens to this object if the overdensity threshold is increased? Fig. A.13 shows the
biggest object in the �CDM box at an overdensity of 3. Percolation still occurs, but some of the
thin bridges which can be seen in Fig. A.10 must have been broken so that the big object was
disassembled into smaller pieces of which the biggest is displayed here. This resulted in the
loss of quite a lot of the complicated network. In a sense, the biggest object at this threshold
marks the backbone of the one seen before. In particular, the thick filaments which form a
pentagon with two large extensions stand out. The object now contains about 30% of the total
mass and about 1% of the total volume. Note that due to periodic boundaries the big chunk of
the object at the rightmost edge of the picture is in fact connected to the rest. Now, it is easier
to get an idea of what kind of structure is formed by the biggest object.

If the overdensity threshold is increased even further, the biggest object starts to break up
into much smaller pieces. Fig. A.14 shows the biggest object at an overdensity of four, and it
is not clear anymore whether it extends across the box or not. Eventually, when the threshold
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is increased even further, this object crumbles into many smaller pieces. The biggest one is
identical with the biggest cluster in the box. All big clusters are part of the network seen in
Fig. A.10.

So there are no sheets in the simulations? At least there are no sheets which have an over-
density of two or more. They may have smaller overdensities but the structure of the biggest
objects becomes so complicated at, say, an overdensity threshold of one that it is impossible to
get a good visual impression of it. Thus, if sheets do exist in the simulations their mean density
must be very small.

In a sense, the visual impression from the pictures shown above could be misleading be-
cause at the overdensities which can be displayed nicely only filaments appear and no sheets.
In the preceding Chapter, the four GIF models looked completely identical on adaptively
smoothed two–dimensional pictures. Could it be that this impression is misleading, too? In
the following section, percolation, and mass and volume fractions will be investigated in more
detail. If the mass distributions in the models really were identical, these quantities should
show the same behaviour.

4.2.3. Total Mass and Volume Fractions

The total overdense mass and its occupied volume obviously depend on the overdensity thresh-
old. Figure 4.1 shows the fraction of the overdense mass as a function of the overdensity thresh-
old. An isooverdensity contour of 0, i.e. mean density, encloses around 80 to 85% of the mass
for all the models. As the threshold is increased the mass fractions decrease. The models which
all looked completely identical on the two dimensional pictures of the preceding Chapter, show
some differences. The two low density models are nearly indistinguishable. However, the two
high density models differ significantly. �CDM, which has the same shape parameter �, has
less mass above the threshold. SCDM has more mass above it. The difference between the two
high density models which differ in their shape parameter but not in the overall normalization
of the power spectrum is pretty impressive. SCDM has more small scale power and, thus, more
collapsed objects. This clearly shows up when compared with �CDM. The difference to the
two low density models is smaller because these have a higher normalization than �CDM.

For large thresholds (� � 180), the order of the mass fractions is unchanged. However, the
differences become very small in terms of the total overdense mass. SCDM has the highest
mass fraction (about 0.3%), �CDM and OCDM have about the same one (about 0.28%), and
�CDM has the smallest mass fraction (about 0.2%).

How does the overdense volume occupied by the mass behave in the four models? Fig. 4.2
shows the overdense volume as a function of the overdensity threshold for the four models.
Here, the change with an increase of the threshold is much more dramatic. At mean density, the
volume occupied by the overdense mass is only 12% to 14%. It then falls rapidly to below 1%.
The �CDM models stands out for low overdensity thresholds. Its overdense volume is about
10% (relative to the overdense volume) larger than for the other three models (for � < 4).

Thus, these volume fractions reveal some of the differences between the four cosmological
models which cannot be seen on the two dimensional representations of the preceding Chap-
ter, and must be due to the differences in their power spectra. The two low density models
are very nearly indistinguishable. �CDM has less overdense mass in a larger region than the
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Figure 4.1.: Fraction of overdense mass as a function of the overdensity for the four models:
�CDM (solid), �CDM (dotted), OCDM (dashed), and SCDM (dot dashed).

other three models. These occupy about the same volume. SCDM, which has more small–scale
power, has more overdense mass than the two low density models – probably a reflection that
it has formed more small haloes. Further insight can be gained if the properties of the largest
overdense object are investigated. These should reflect the explanations given above. In the
following section, the attention is thus focused on the largest overdense object.

4.2.4. Percolation

In this section, only the overdense mass is considered. As described above, the largest object
is constructed by means of the friends–of–friends group finder. Fig. 4.3 shows the fraction of
the overdense mass which is in the largest object as a function of the overdensity threshold.
The general behaviour is the same in all models. For low values of the overdensity (� < 1:5),
most of the overdense mass is part of one object. As the threshold is increased, the fraction
of overdense mass in the largest object decreases rapidly to reach only a few percent for � =

10. The overdensity at which the largest object breaks down varies for the models. �CDM
stands out. Here, the largest object dominates for relatively high overdensity thresholds. For
instance, at � � 3:2 50% of the overdense mass in the �CDM model is still in the largest objects
whereas for the other models this number is down to 10% or even less. The three other models
are very similar although small differences are visible between them. The largest object is the
least pronounced in the SCDM model. This clearly reinforces the explanation of the model’s
behaviour in terms of the total overdense mass and volume discussed above. SCDM has more
power on small scales, that is it forms more small haloes. The three models with the same
shape parameter of the power spectrum should differ due to the different normalizations and
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Figure 4.2.: Fraction of the volume occupied by all objects above overdensity threshold as a
function of the overdensity for the four models: �CDM (solid), �CDM (dotted),
OCDM (dashed), and SCDM (dot dashed).

their different formation histories. This point of view is supported by fig. 4.3 where the open
model is the closest to the SCDM model.

Clearly, at low overdensities (� < 1:5) most of the overdense mass is in one single object
which occupies most of the overdense volume. That is, the biggest object extends all across
the simulation volume – it percolates (Zel’dovich 1982). This was already seen pictorially in
the three dimensional representations shown in the pictures above. A slightly different way to
show percolation and how it breaks down for different overdensities is by plotting the quan-
tity �m2=�m, where the summation is over all objects above the overdensity threshold, see
fig. 4.4. In this plot the abruptness of the percolation transition is very evident. For very low
overdensities, �m2=�m approaches the total mass in the volume.

Dividing the mass in the biggest object by the volume it occupies yields its density, which
is displayed in fig. 4.5 in units of the particle masses. Here, a well known behaviour shows
up. The objects in the OCDM model have the largest density, �CDM has the lowest one. The
density of an object depends on its formation time. OCDM forms objects the earliest which is
why its objects have the largest densities.

How much do these results depend on the particular circumstances of the chosen parame-
ters? In particular, what happens if parameters like the number of neighbours required for the
adaptive smoothing is changed? In order to investigate this, a couple of systematic checks were
done.

The first set of checks investigates the influence of the mass resolution of the simulation
itself. Taking the OCDM simulation as a test case, the above analysis is repeated with subsets
which contain 50%, 30%, and 13% of the particles in the simulation. This appears to have
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Figure 4.3.: Fraction of the overdense mass in the largest object as a function of the overdensity
for the four models: �CDM (solid), �CDM (dotted), OCDM (dashed), and SCDM
(dot dashed).

Figure 4.4.: �m2=�m (where the sum is over all objects) as a function of the overdensity for
the four models: �CDM (solid), �CDM (dotted), OCDM (dashed), and SCDM
(dot dashed).
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Figure 4.5.: Density of the largest object (in units of the particle masses) as a function of
the overdensity for the four models: �CDM (solid), �CDM (dotted), OCDM
(dashed), and SCDM (dot dashed).

Figure 4.6.: Lefthand panel: Fraction of the overdense mass in the largest object as a function
of the overdensity for OCDM (solid line). Righthand panel: �m2=�m (where the
sum is over all objects) as a function of the overdensity for OCDM (solid line).
Symbols denote sets with 50% (diamonds), 30% (triangles),and 12.5% (boxes) of
all particles.
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Figure 4.7.: Lefthand panel: Fraction of mass above overdensity threshold as a function of the
overdensity for OCDM (solid line). Righthand panel: Fraction of the volume oc-
cupied by all objects above overdensity threshold as a function of the overdensity
for OCDM (solid line). The solid lines give the results if 30 neighbours are re-
quired for the adaptive smoothing. Symbols denote density fields obtained with
15 (triangles) and 60 (diamonds) neighbours.

no effect at all on the total overdense volume. Only for the most extreme downsampling is
the total overdense mass slightly increased (a few %). The lefthand panel of fig. 4.6 shows
the change in the fraction of overdense mass in the largest obect. The change in the occupied
volume looks similar. The righthand panel of fig. 4.6 gives �m2=�m. Decreasing the number
of particles has a significant effect only for the sparsest sample. There, percolation stops at a
lower overdensity threshold. This must be clearly due to the destruction of some of the thin
bridges which can be seen in the visual representations of the largest object seen above. The
general result, however, remains unchanged.

As already indicated above, the number of neighbours required for the adaptive smooth-
ing is arbitrary. In order to investigate the effect a change in this number has two test cases
were carried out. The number of neighbours was doubled and halved. Recall that the num-
ber of neighbours influences the size of the smoothing kernel. Fig. 4.7 shows the effect the
change in the required number of neighbours has on the total overdense mass (lefthand panel)
and its occupied volume (righthand panel). Decreasing the number of neighbours decreases
the occupied volume and increases the total overdense mass while increasing the number of
neighbours has the opposite effect. If more neighbours are required the region into which the
matter is smeared out becomes larger. In addition, more of massive objects falls below thresh-
old after smoothing. These two points account for the decrease in the overdense mass and the
increase in the occupied volume. The same argument can be inverted and then adapted to the
corresponding case.

An increase in the number of required neighbours should not effect the percolation proper-
ties much. Recall that these properties depend mainly on the coherence of the mass, that is on
detecting the thin bridges. However, decreasing the number of neighbours destroys some of
the very thin bridges. Fig. 4.8 supports this point of view. It can be concluded that the number
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Figure 4.8.: Lefthand panel: Fraction of the overdense mass in the largest object as a function
of the overdensity for OCDM (solid line). Righthand panel: �m2=�m (where the
sum is over all objects) as a function of the overdensity for OCDM (solid line).
The solid lines are obtained by requiring 30 neighbours for the adaptive smooth-
ing. Symbols denote density fields obtained with 15 (triangles) and 60 (diamonds)
neighbours.

of neighbours chosen here is appropriate to guarantee that bridges stay intact.

4.2.5. Shape Diagnostics

Introduction

For more than a decade now the topology and geometry of Large–Scale Structure (LSS) have
been a topic of interest. The basic underlying question was and still is whether any of the cos-
mological models reproduces the observed coherent structure. If this were the case would it
then be possible to distinguish between different cosmologies and even to favour a particular
cosmology? Generally speaking, the idea was to invoke an alternative descrption to the two–
point correlation function which will be introduced in detail in Chapter 6 and to describe both
the connectedness of the structure in galaxy catalogs and in simulations and the geometry of the
structure. For instance, if structure in the Universe grew from a cosmic string scenario rather
than the Cold Dark Matter (CDM) scenario it could be expected that the distribution of mass
is significantly different than what is found in CDM simulations.

In 1986, Gott et al. introduced the genus statistics in cosmology. The genus statistics gives
the number of topological holes minus the number of connected regions. So a sphere has genus
�1, a doughnut 0, etc. About a decade later, in the most recent study Springel et al. (1998)
showed that even the usage of the most sophisticated techniques in combination with the Virgo
simulations and the IRAS 1.2–Jy Redshift Survey cannot decisively distinguish among the
models which have a power spectrum consistent with galaxy clustering, that is �CDM, �CDM,
and OCDM (for earlier works see references in Springel et al.; essentially the same analysis was
done for the Point Source Catalogue Redshift Survey in Canavezes et al. 1998 which lead to
the same conclusions). As pointed out by Springel et al. the genus statistics may be only really
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useful to test the random phase hypothesis, and �CDM, �CDM, and OCDM all resemble the
observational data quite closely.

Various other methods have been proposed to describe the geometrical properties of LSS.
They assume that LSS consists of either sheets, filaments, or clusters, or a mix of them. Thus,
different functionals were developed with a supposed strong discriminative power amongst
these three structure elements (see e.g. Sahni et al. 1998 and references therein). However,
most of these methods suffer from the fact that they work nicely only for the simplest test cases.
It is nice to see that some functional indeed gives more or less the expected behaviour for, say,
a cylinder, but three dimensional representations of LSS like the ones shown above look much
more complicated. This effect usually lead to the problem that results obtained with these func-
tionals are very hard to interpret.

Minkowski functionals, introduced by Mecke et al. (1994) into cosmology, have a sound
mathematical background. It can be shown that the morphological properties of a compact
surface can be described by four functionals. The Minkowksi functionals are the volume V ,
the surface area S, the integrated mean curvature C = 1

2

R
(�1 + �2) dS, and the genus G =

�1=4� R �1�2 dS, where �1 = 1=R1 and �2 = 1=R2 are the principal curvatures of the surface.
Applications of the Minkowski functionals to galaxy or cluster catalogs have so far yielded
results quite similar to those ones obtained with the genus statistics alone (e.g. Kerscher et al.
1998).

Apart from the shape statistics with its inherent problems, the genus statistics and
Minkowski functionals have mainly suffered from the fact that existing galaxy catalogs and
simulations too sparsely sample the underlying density field. Thus, the possible signal was
dominated by noise. In addition, the discriminative power between cosmological models is
rather small. These methods are used here to study the adaptively smoothed density fields al-
ready investigated above. Sampling is not an issue.

Applications

First, the Minkowski functionals of the adaptively smoothed density field for all objects above
the overdensity threshold are computed2. The same is done for the largest object only. As an
example, Fig. 4.9 shows the Minkowski functionals of the �CDM simulation. Shown are the
functionals of all objects (dotted line), of the largest object (solid line), and of the difference
of the two (dashed line). Note that the volume and the surface given here are in fact volume
and surface fractions (see Schmalzing & Buchert 1997 for the definitions of the functionals
used here). The volume (top left) agrees with what was already seen above (fig. 4.2). All of
the functionals very nicely show how percolation breaks down for large overdensities. The
genus is particularly interesting. Recall that it gives the number of holes minus the number of
connected regions. Not surprisingly, the largest object has a huge number of holes for over-
densities � < 2. The dashed line gives the combined genus of all other objects. The genus is
an additive quantity. As can be seen from the figure, the combined genus of these objects is
negative for these overdensities. The visual impression of fig. A.9 already showed that apart
from the largest object a plethora of small rather simple objects exists. The number of these

2The code used here was kindly provided by Schmalzing and is described in Schmalzing & Buchert (1997).
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Figure 4.9.: The Minkowski functionals for the adaptively smoothed density field of the �CDM
simulation: Volume V (top left), surface area S (top right), integrated mean curva-
ture C (bottom left), and genus G (bottom right). Shown are largest object (solid
line), all objects (dotted line), and the difference between these two (dashed line).
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Figure 4.10.: The quantities H1 = V=S (dotted line), H2 = S=C (dashed line), and H3 = C

(solid line) where V , S, and C are Minkowski functionals of the biggest object
as shown in fig. 4.9.

objects can be seen from the dashed line because each of such objects contributes �1 to the
total genus.

Apart from the connectedness and geometry of LSS, the sizes of typical objects are of par-
ticular interest. In principle, these should be measurable – at least on average. Assume the
only object is a perfect filament, i.e. a cylinder of length l and radius r (where l � r). The
cylinder’s volume and surface then are V = �r2l and S = 2�rl, respectively. Dividing these
by each other gives V=S = r=2. Thus, if the volume and surface are know, the radius can
be computed. Sahni et al. (1997) used such considerations to propose the three functionals
H1 = V=S, H2 = S=C, and H3 = C where V , S, and C are the Minkowski functionals
discussed above. These three functionals all have dimensions of a length. For the simplest
cases, i.e. sheets, filaments, or spheres, the functionals Hi represent the three major axes so
that H1 � H2 ' H3, H1 ' H2 � H3, and H1 ' H2 ' H3 for a sheet, filament, and
sphere, respectively. As seen in the pictorial representations of LSS, the biggest object is def-
initely not such a simple object. Filaments of various sizes and thicknesses tend to dominate.
Thus, by computing the functionals Hi, averages will be obtained. These may nevertheless
yield some information about, say, an average thickness of the filaments – if filaments really
are dominant. In fig. 4.10, these three functionals of the biggest object as computed from the
Minkowski functionals shown in fig. 4.9 are plotted. For high overdensities, say � = 100,
which is outside the plot range H1 ' H2 ' H3. The three curves reinforce the visual impres-
sion that filaments clearly dominate for overdensities of about � < 4. At high overdensities,
the biggest object seems to be more or less spherical. The latter point is not surprising because

55



at high overdensities, the biggest objects coincide with the most massive clusters which have
elliptical shapes (for a discussion of such properties, see Thomas et al. 1998). The quantity H1

drops slightly from � = 0 to � = 1:5 and then remains roughly constant. Using the conventions
for the normalizations of the Minkowski functionals (see Schmalzing & Buchert 1997) H1 can
be transformed into absolute length scales – which amounts to dividing its value in fig. 4.10
by six. As indicated above, for low overdensities, the biggest object appears to be filamentary.
In this case, the transformed length scale corresponds to r=2. r would then be of the order of
around just 2.5 (2.0) mesh cells for � = 0 (� = 1). Of course, this is an average number. But
it shows that a much finer mesh would be necessary to infer more precise information about
typical length scales of the structure. With the techniques used here, that is a three-dimensional
mesh, this is simply beyond the computational resources of the post–processing computers at
the RZG.

4.3. Conclusions

Large–Scale Structure in the high–resolution GIF simulations has emerged as a very complex
network for overdensities of about � < 4 for the four cosmological models. For very low
overdensity thresholds, most of the overdense mass is contained in one single object which
extends all across the simulation volume – it percolates. In addition, a plethora of small isolated
objects is present, too. The overall overdense volume is only slightly above the 10% level,
though. If the overdensity threshold is increased, the overdense volume shrinks rapidly, the
overdense mass decreases, albeit more gently, and the biggest object loses more and more mass.
At overdensity thresholds of around � � 4, the biggest object contains only a few percent
of the overdense mass. There are differences between the cosmological models which can be
explained in terms of their power spectra and their different dynamical history. These results
do not depend crucially on systematical effects.

Using Minkowski functionals sheds just a little bit more light onto the preceding. The genus
allows estimates of the number of small objects. It appears as if the biggest object had an overall
filamentary (spherical) structure for low (high) overdensities3. However, with the fixed grid
used to obtain the adaptively smoothed density field, it is rather difficult to compute typical
length scales of the biggest object. For mean density, the typical diameter of a filament is only
about 2.5 mesh cells for the �CDM model. It then decreases to about 1.5 mesh cells for � � 5.
Clearly, a much finer mesh is needed to get more precise results.
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Chapter 5

Peculiar Velocities of Galaxy Clusters

5.1. Introduction

Clusters of galaxies are well–studied objects. Observationally, they can be found rather easily.
For example, they show up either as enhancements of the number density of galaxies on pho-
tographic plates or as strong enhancements in the X–ray flux on the sky. Though easy to find,
they are rare (N � 10�5�10�6 h3 Mpc�3), and their properties are difficult to study. Consider
the mass of a cluster. Until the advent of X–ray astronomy, the masses of galaxy clusters were
estimated from the motions of their constituent galaxies using the assumption of virial equilib-
rium. In addition to the possibility that this assumption is not always satisfied, the inclusion of
galaxies in the foreground or background can lead to large errors.

X–ray astronomy, with satellites like Einstein and ROSAT, has made it possible to measure
the X–ray emission of the hot intracluster gas. As the X–ray emission is proportional to �2,
where � is the density of the gas, the strongest contribution comes from the centers of clusters
– unless two clusters are merging. For the latter case, strong shocks show up which, crudely
speaking, appear at the collision front of the two colliding systems and which lead to a shock
heating of the gas. The assumption of hydrostatic equilibrium again allows an estimate of the
mass of a cluster once its X–ray temperature is given.

New telescopes, especially the Hubble Space Telescope, have made it possible to obtain im-
ages of galaxy clusters at very high resolution. On these images, some clusters show arcs, that
is distorted images of background objects. This effect demonstrates that clusters act as gravi-
tational lenses. The gravitational arcs can be used to measure the total mass or even the mass
distribution of a cluster. The caveat here is that it is actually the projected mass that is is mea-
sured. So if two objects happen to lie along the same line–of–sight, lensing alone measures
their combined mass. Independent measurements of lensing masses, galaxy velocity disper-
sions, and the X–ray temperature are desirable to provide consistency checks. However, the
measurements do not always agree and quite often the source of the discrepancy is not obvi-
ous. The uncertainties arising from these measurements have to be borne in mind in this and
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the following Chapter, where properties of galaxy clusters are investigated theoretically.
The measurement of the velocity of a cluster is also affected by some of the uncertainties

mentioned above. In order to measure the velocity of a cluster, its distance must be determined
independently from its redshift. This is because there are two contributions to a galaxy’s ob-
served redshift: the component associated with the expansion of the Universe, and the com-
ponent arising from the galaxy’s proper motion with respect to the local rest frame (peculiar
velocity). As distance indicators, the empirical Tully–Fisher and Dn � � relations are used
for spiral and elliptical galaxies, respectively. These relations relate the galaxy’s luminosity
to its kinematics. For spiral galaxies, the relation is an approximate consequence of their near
constant surface brightness. If centrifugal equilibrium is assumed,

v2rot /
M

R
; (5.1)

where vrot, M , and R are the galaxy’s rotation velocity, its mass, and radius, respectively. If
a universal mass–to–light ratio (M=L) and a constant mean surface brightness �I are assumed,
so that

L / �IR2 ; (5.2)

one gets
L / v4rot : (5.3)

This is the Tully–Fisher relation in the infrared band. For other wavelengths, the exponent
(”slope”) changes slightly (see Strauss & Willick 1996 for a very detailed review of this sub-
ject). However, the observed scatter around the Tully–Fisher relation is remarkably small. For
elliptical galaxies, similar arguments lead to the analogous Dn � � relation. Thus, if the ro-
tation velocity (velocity dispersion) of a spiral (elliptical) galaxy is measured, its luminosity,
and from this, its distance can be inferred as follows. The conventional notation of astronomers
recasts eq. (5.3) as

M(�) = A� b � ; (5.4)

where M = const.� 2:5 logL is the absolute magnitude, and

� � log[2 vrot]� 2:5 ; (5.5)

is a conventional measure of the rotation velocity (which is measured in km/sec). A and b

are called the zeropoint and the slope of the Tully–Fisher relation, respectively (for details see
Strauss & Willick 1996). The observed quantity is the apparent magnitudem which is related
to the absolute magnitude via

m = M + 5 log r ; (5.6)

where r is the distance to the galaxy. The rotation velocities of spirals can be measured by
analysis of HI 21 cm–profiles or by measuring the blueshifting and redshifting of the H� emis-
sion line at the parts of the galaxy that are rotating towards or away from the observer. Once
the distance to the galaxy is known, its peculiar velocity can be computed.

Theoretically, galaxy clusters are ”nice” objects. They are massive; this mass must have
assembled from a very large region in the early Universe. Therefore, it may be reasonable
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to assume that e.g. the fraction of gas in clusters is the same as the global gas fraction. The
assumption of an inflationary CDM cosmogony – as is made here – has further consequences.
Depending on the actual value of the density parameter 
0, the median formation redshift of
a cluster is z � 0:3 or later. This means that in the hierarchy of objects, galaxy clusters form
last.

The motions of galaxy clusters are thought to result from gravitational forces acting over the
very large scales on which superclusters are assembled. The rms deviations from uniformity
on such scales appear to be small, and so may be adequately described by the linear theory of
fluctuation growth. For a linear density field of given power spectrum the rms peculiar velocity
is proportional to �8
0:6

0 where �8 is the rms mass fluctuation in a sphere of radius 8 h�1 Mpc
as introduced in Chapter 2, section 2.3.4. There, it was mentioned that essentially the same
parameter combination can also be estimated from the abundance of galaxy clusters. A com-
parison of the two estimates could in principle provide a check on the shape of the assumed
power spectrum and on the assumption that the initial density field had Gaussian statistics. In
practice this is difficult because of the uncertainties in relating observed cluster samples to the
objects for which quantities are calculated in linear theory or measured from N-body simula-
tions.

The standard linear model was introduced by Bardeen et al. (1986). It assumes that clusters
can be identified with “sufficiently” high peaks of the linear density field after convolution with
a “suitable” smoothing kernel. The peculiar velocity of a cluster is identified with the linear
peculiar velocity of the corresponding peak extrapolated to the present day. In this Chapter,
the limitations both of this model and of direct N–body simulations are studied by comparing
their predictions for clusters on a case by case basis.

5.2. Linear Theory Predictions for the Peculiar Veloci-
ties of Peaks

5.2.1. The Growth of Peculiar Velocities

Chapter 2 decribed the growth of peculiar velocities according to linear theory. The following
scaling was derived:

v / f(a) g(a) a2
q

0 a�3 + (1� 
0 � �0) a�2 + �0 : (5.7)

Here, f � 
0:6
0 , and g describes how much the growth factor D deviates from the 
0 = 1 case,

where D = a and g = 1. For the simple Einstein-de Sitter case where 
0 = 1 and � = 0, this
formula reduces to the exact result v / p

a.

5.2.2. The Velocities of Peaks

The idea that the statistical properties of nonlinear objects like galaxy clusters can be inferred
from the initial linear density field was developed in considerable detail in the monumental
paper of Bardeen et al. (1986). If the initial fluctuations are assumed to be Gaussian, they are
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specified completely by their power spectrum, P (k). Similarly, any smoothed version of this
initial field is specified completely by its own power spectrum,P (k)W 2(kR), whereW (kR) is
the Fourier transform of the spherical smoothing kernel and R is a measure of its characteristic
radius. In particular, Bardeen et al. showed how the abundance and rms peculiar velocity of
peaks of given height can be expressed in terms of integrals over P (k)W 2(kR). The difficulty
in connecting this model with real clusters lies in the ambiguity in deciding what smoothing
kernel, characteristic scale, and peak height are appropriate. Typically the smoothing kernel is
taken to be a Gaussian or a Top–Hat, R is chosen so that the kernel contains a mass similar to
the minimum mass of the cluster sample, and the peak height is assumed to be sufficiently high
for a spherical perturbation to collapse by z = 0.

The smoothed initial peculiar velocity field is isotropic and Gaussian with a three-
dimensional dispersion given by

�v(R) � H 
0:6 ��1(R) ; (5.8)

where, in the notation of Bardeen et al. (1986), �j is defined for any integer j by

�2j (R) =
1

2�2

Z
P (k)W 2(kR) k2j+2 dk : (5.9)

The rms peculiar velocity at peaks of the smoothed density field differs systematically from �v;
Bardeen et al. show that it is given by

�p(R) = �v(R)
q
1� �40=�

2
1�

2
�1 : (5.10)

Note that this expression does not depend on the height of the peaks. As shown in Bardeen et
al. , the velocities of peaks are statistically independent of their height.

The parametric expression of the power spectrum used here was introduced in Chapter 2
(Bond & Efstathiou 1984),

P (k;�) =
Ak

f1 + [ak=� + (bk=�)3=2 + (ck=�)2]�g2=� ; (5.11)

where a = 6:4 h�1 Mpc, b = 3:0 h�1 Mpc, c = 1:7 h�1 Mpc, � = 1:13. � is the shape parame-
ter.

In the following, linear density fields are smoothed either with a Top–Hat (WTH(x) =

3 (x sinx�cos x)=x3) or with a Gaussian (WG(x) = exp[�x2=2]). It is unclear for either filter
how R should be chosen in order to optimize the correspondance between peaks and clusters.
Here, previous practice is followed in assuming that cluster samples contain all objects with
mass exceeding some threshold Mmin, and then choosing R so that the filter contains Mmin.
Hence, Mmin = 4���R3=3 in the Top–Hat case and Mmin = (2�)3=2��R3 in the Gaussian case.
Cluster samples will be isolated at Mmin = 3:5� 1014h�1M�, the value appropriate for Abell
clusters of richness one and greater (e.g. White et al. 1993). A detailed discussion of filtering
schemes can be found in Monaco (1998) and references therein.

Table 1.1 gives characteristic filter radiiR and values of �v and �p from equations (5.8) and
(5.10) for both smoothings and for the set of Virgo models which is considered in this Chap-
ter. The velocity dispersions are extrapolated to the linear values predicted at z = 0 using
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Top–Hat Gaussian Top–Hat Gaussian
full P (k) full P (k) simulated P (k) simulated P (k)

Model R �v �p R �v �p �v �p � �v �p �

OCDM 10.3 390 349 6.6 366 315 351 300 0.94 321 258 0.96
�CDM 10.3 413 370 6.6 387 334 371 318 0.98 340 272 1.03
SCDM 6.9 381 334 4.4 349 290 375 325 0.58 342 278 0.60
�CDM 6.9 509 464 4.4 485 430 464 412 0.57 437 371 0.58

Table 5.1.: For each of the models, the following quantities are given: the radius R (second
and fifth column) of the filter used in eq. (5.9), the three–dimensional velocity dis-
persions �v and �p (third, fourth, sixth, and seventh column) obtained using eq.s
(5.8) and (5.10) with the given filter radii; the three–dimensional velocity disper-
sions �v and �p (eighth, ninth, eleventh, and twelvth column) obtained using eq.s
(5.8) and (5.10) with the given filter radii and the power spectra of the simulations
themselves; the rms linear overdensity � (tenth and thirteenth column) smoothed
with the given filter radii and extrapolated to z = 0. The radii are in Mpc/h, and
velocity dispersions are in km/sec.

eq. (5.7). The difference between �v and �p has often been ignored in the literature when pre-
dicting the peculiar velocities of galaxy clusters (e.g. Croft & Efstathiou 1994; Bahcall & Oh
1996; Borgani et al. 1997); for the models the two differ by about 15%. With the choice of filter
radii adopted here, Gaussian smoothing predicts rms peculiar velocities about 10% smaller than
Top–Hat smoothing. This is due to the Fourier transforms of the filters. A Gaussian transforms
into a Gaussian in Fourier space. A Top–Hat transforms into an oscillating function which lets
power from smaller scales leak in.

5.3. The Simulation Set

For this Chapter, the set of Virgo simulations is used (see Chapter 3). Recall that these simula-
tions follow the evolution of structure within a cubic region 240 h�1 Mpc on a side using 2563

equal mass particles. In all models the initial fluctuation amplitude, and so the value of �8, was
set by requiring that the models reproduce the observed abundance of rich clusters. Note that
each Fourier component of the initial fluctuation field had the same phase in each of these four
simulations. As a result there is an almost perfect correspondance between the clusters in the
four models.

Because of their finite volume, these simulations contain no power at wavelengths longer
than 240 h�1 Mpc. Furthermore, Fourier space is sampled quite coarsely on the largest scales
for which they do contain power, and so realisation to realisation fluctuations on these scales
can be significant. The size of the effects can be judged from Table 5.1 where the values of
�v and �p are listed obtained for each model when the theoretical power spectrum is replaced
in equations (5.8) and (5.10) by the initial power spectrum of the model itself. These are sys-
tematically smaller than the values found before. The difference is primarily a reflection of the

63



loss of large-scale power.

Theory Simulations
Top–Hat Gaussian Top–Hat Gaussian

Model �Peak �Peak NCl �Peak �Peak �lin �z=0

OCDM 300 258 62 253 266 280 407
�CDM 318 272 69 296 323 300 439
SCDM 325 278 92 308 318 307 425
�CDM 412 371 70 392 399 398 535

Table 5.2.: For each of the models, the following quantities are given: the three–dimensional
velocity dispersions �p (second, third column) obtained using eq.s (5.8) and (5.10)
with the power spectra of the simulations themselves (repeated from Table 5.1); the
number of clustersNCl (fourth column) found in the simulations at z = 0; the three–
dimensional velocity dispersions of peaks (fifth and sixth column) in the initial con-
ditions of the simulations using the given filters; the three–dimensional linear veloc-
ity dispersions of clusters extrapolated to z = 0; and the three–dimensional mea-
sured velocity dispersion of clusters at z = 0. The radii are given in Mpc/h, the
velocity dispersions in km/sec.

5.3.1. The Selection of Peaks

Peaks in the initial conditions of the simulations are identified by binning up the initial parti-
cle distribution on a 1283 mesh using a cloud–in–cell (CIC) assignment (see e.g. Hockney &
Eastwood 1981) and then smoothing with a Gaussian or a Top–Hat with characteristic scale R
corresponding toMmin = 3:5�1014h�1M�. A peak is then taken to be any grid point at which
the smoothed density is greater than that of its 26 nearest neighbours. The dimensionless height
of a peak, �, is defined by dividing its overdensity by the rms overdensity, �, which is listed
in Table 5.1. Again, within the matched set there is a close correspondance between the peaks
found in the four models. In addition, the peaks found with Gaussian smoothing correspond
closely to those found with Top–Hat smoothing. Fig. 5.1 shows a slice through the density field
of the SCDM simulation which contains a � � 2:9 peak and its environment.

Particle peculiar velocities are binned up and smoothed in an identical way and the peculiar
velocity of a peak is taken to be the value at the corresponding grid point. In Table 5.2 the rms
peculiar velocities of the peaks found in each model are listed. Again this is scaled up to the
value expected at z = 0 according to linear theory. It differs slightly from the value predicted
by inserting the power spectrum of the simulation directly into equation (5.10) because there
are realisation to realisation fluctuations depending on the phases of the Fourier components.
As it should, the rms peculiar velocity averaged over all grid points agrees very well with the
value found by putting the simulation power spectrum into equation (5.8).
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Figure 5.1.: A slice through the smoothed density field. The height of each mesh point is given
in units of the rms. The contour levels shown are 1.0, 2.1, and 2.8. Right in the
middle a peak with � � 2:9 shows up.

5.3.2. The Selection of Clusters

Clusters in the simulations are identified in the same way as in Croft & Efstathiou (1994). High-
density regions at z = 0 are located using a friends–of–friends group finder with a small linking
length (b=0.05), and their barycentres are considered as candidate cluster centres. Any candi-
date centre for which the mass within 1:5 h�1 Mpc exceeds Mmin is identified as a candidate
cluster. The final cluster list is obtained by deleting the lower mass candidate in all pairs sepa-
rated by less than 1:5 h�1 Mpc. This way of finding a cluster mimics very roughly the algorithm
Abell (1958) used to select clusters from photographic plates.

Fig. 5.6 shows the particle positions for one of the clusters in the �CDM simulation at five
different redshifts. The way the cluster is built up is typical for these hierarchical CDM uni-
verses. Small objects form first and then merge. In this particular case, the cluster is formed
between a redshift of z = 1 and z = 0:3. Note that at z = 0 some small substructure is visible.

In Fig. A.15 a comparison between the evolution of a single cluster in the �CDM and the
�CDM model is shown. The sizes of the regions are 21 � 21 � 8 h�3 Mpc3 and 35 � 35 �
14 h�3 Mpc3, respectively. As discussed in Chapter 2 and shown pictorially in Chapter 3, struc-
ture starts to form earlier in a low density model like �CDM. However, at z = 0 the same
objects have formed at the same locations – this is due to the same phases of the initial density
fluctuations in all four models.

In the following, only clusters more massive than Mmin = 3:5� 1014 h�1 M� will be con-
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sidered. The number of clusters found in each simulation is listed in Table 5.2. As already
noted, the individual clusters in the different simulations of the matched set correspond closely.
Despite the normalisation to cluster abundance, it appears as though the SCDM model has sig-
nificantly more clusters than the other models. This is a reflection of its steeper power spectrum
together with the value of Mmin chosen. For Mmin = 5:5� 1014 h�1 M� – which is very close
to the mass threshold usually taken to fix �8 – all the models have about 20 clusters.

The peculiar velocity of each cluster at z = 0 is defined to be the mean peculiar velocity
of all the particles within the 1:5 h�1 Mpc sphere. The peculiar velocity of the cluster at earlier
times is taken to be the mean peculiar velocity of these same particles. Consistent with this,
the position of the cluster at each time is defined to be the barycentre of this set of particles.
At z = 0 this is very close to, but not identical with the cluster centre as defined above. The
rms values of the initial (linear) and final (z = 0) peculiar velocities of the clusters in each of
the models are given in Table 5.2. The initial values have been scaled up to the linear values
predicted at z = 0. It is clear that these substantially underestimate the actual values, a result
discussed in more detail below.

5.4. Comparison of the Peak Model with Simulations

5.4.1. The Cluster-Peak Connection

The extent to which dark haloes can be associated with peaks of the smoothed initial density
field is somewhat controversial. Frenk et al. (1988) concluded that, for appropriate choices of
filter scale and peak height, the correspondance is good, whereas Katz et al. (1993) claimed
that “there are many groups of high mass that are not associated with any peak”. The result of
correlating the peaks in the initial conditions of the simulations with the initial positions of the
clusters is illustrated in Fig. 5.2. A peak and a cluster are considered to be associated if their
separation is less than 4 h�1 Mpc (comoving). The barycenters of 70% and 80% of the clusters
with masses exceeding 3:5� 1014 h�1M� are associated with a peak with � > 1:5 for the low
and high 
 models, respectively.

Fig. 5.2 shows that there is, as expected, a correlation between the height of a peak and
the mass of the corresponding cluster. However, there is a big scatter. There are many possible
explanations why not all clusters have an associated peak. The peak threshold is not the reason
– lowering the threshold does not decrease the number of ”isolated” clusters. Merging peaks
and peaks which are disrupted have been discussed in the past. This is beyond the scope of this
Chapter.

5.4.2. Linear Theory Velocities of Peaks and Clusters

Given the good correspondance between peaks of the smoothed linear density field and the
initial positions of clusters, it is natural to compare the smoothed peculiar velocity at a peak
with the mean initial peculiar velocity of its associated cluster1. In Fig. 5.3, such a comparison
is shown, again based on Top–Hat smoothing of both position and peculiar velocity fields using

1This is done only for those clusters for which a peak actually could be associated.
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Figure 5.2.: The mass of the clusters in the simulations against the height of the corresponding
peaks in the initial conditions, once these are smoothed with a Top–Hat with the
characteristic radius listed in Table 5.2. All clusters with mass greater than 3:5�
1014 h�1M� and all peaks with height greater than � = 1:5 are shown. There are
351, 239, 84, and 83 unmatched peaks in the SCDM, �CDM, �CDM, and OCDM
model, respectively. They are plotted at a mass of 0:5�1014 h�1M�. Unmatched
clusters are plotted at � = 0:5.

the characteristic radii listed in Table 5.1. All velocities are scaled up to the expected value at
z = 0 according to linear theory. The correlation is clearly very good in all cases, and is similar
if Gaussian rather than Top–Hat smoothing is used. The rms difference in peculiar velocity
between a cluster and its associated peak is 16%, 16%, 23%, and 17% of the corresponding �p
value listed in Table 5.2 for the OCDM, �CDM, SCDM and �CDM simulations, respectively.
The somewhat larger percentage for the SCDM model is probably a consequence of the greater
influence of small–scale power in this case.

5.4.3. The Growth of Cluster Peculiar Velocities

If cluster peculiar velocities grew according to linear theory the scaled initial velocities dis-
cussed in the last section and plotted in Fig. 5.3 would correspond to the actual velocities of
the clusters at z = 0. In Fig. 5.4 scatter diagrams are shown in which these two velocities are
plotted against each other. It is evident that in fact the agreement is quite poor and that there is a
systematic trend for the true cluster velocity to be larger than the extrapolated linear value. This
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Figure 5.3.: The initial peculiar velocities of clusters in each of our four cosmogonies are com-
pared to the linear peculiar velocities of their associated peaks. The linear peculiar
velocity field was smoothed with a Top–Hat in the same way as the density field
in order to obtain the peak peculiar velocities.

is reflected in the substantial difference between the rms values of these two quantities listed
in Table 5.2. It is presumably a consequence of nonlinear gravitational forces accelerating the
clusters.

Some confirmation of this is provided by Fig. 5.5 where the peculiar velocity in units of its
initial value are plotted for five clusters from each of our cosmologies. At early times the pecu-
liar velocities all grow as expected from linear theory (indicated in the figures by a dotted line)
but at later times the behaviour is more erratic and most clusters finish with larger velocities
than predicted.

Further evidence that late–time nonlinear effects are responsible for this discrepancy comes
from Fig. 5.4. In this plot all clusters that have a neighbour within 10h�1Mpc are indicated
with a diamond while more isolated clusters are indicated by a cross. It is evident that devia-
tions from linear theory are substantially larger for the “supercluster” objects than for the rest.
These objects also have systematically larger peculiar velocities at z = 0. Their rms peculiar
velocity is around 20 to 30% larger than that of the sample as a whole.

For the �CDM model, a second realization of the power spectrum was run. A cluster sam-
ple was extracted in the same fashion as described above. The rms peculiar velocity of the
clusters at z = 0 is �z=0 = 511 km/sec. The extrapolated rms linear peculiar velocity is
�z=0 = 394 km/sec. These numbers are very close to the values obtained for the first real-
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Figure 5.4.: The initial peculiar velocities of clusters in each of our four cosmogonies, scaled
up to z = 0 using linear theory, are compared to their actual peculiar velocities
at z = 0. Diamonds denote clusters which have a neighbour within 10 h�1Mpc
while crosses denote more isolated clusters.

ization. Although two simulations are not a good statistical sample, it can be concluded that
there is no realization dependence of the mis–match between the extrapolated linear and the
actual peculiar velocities of galaxy clusters.

It might be thought that this anomalous acceleration of clusters at late times was a conse-
quence of the relatively small radius, 1:5 h�1 Mpc, used to define the clusters. Material could
perhaps be ejected asymmetrically from this region during the merging events by which clus-
ters form. In order to check this, clusters have been redefined to be all the material contained
within a radius of 3 or 5 h�1 Mpc. Then, the analysis for the same set of objects has been re-
peated as before. In most cases this turned out to make very little difference to either the initial
or the final velocities measured, and it did nothing to reduce the discrepancy between them.
The relevant nonlinear effects are acting on significantly larger scales. This procedure was re-
peated going as far out as 25 h�1 Mpc from the cluster center. At a radius of 10 h�1 Mpc, the
difference between the rms peculiar velocity and the extrapolated rms linear peculiar velocity
is only 10%. By a radius of 20 h�1 Mpc, the numbers have finally converged.

The discrepancy between the rms peculiar velocity of clusters and their extrapolated rms
linear peculiar velocity is independent of any smoothing of the density field. With the choice
of smoothing filter, the linear peculiar velocities of our clusters match those of their associated
peaks as well as the rms value predicted by linear theory when the simulated realization of the
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Figure 5.5.: The evolution with expansion factor a of the ratio j~v(a)j=j~v0j for five clusters from
each of our four cosmogonies (solid lines) is compared with the evolution pre-
dicted by linear theory (dotted line). In some of the cases, merging leads to abrupt
changes in this ratio – the most impressive case can be seen for one of the SCDM
clusters.

power spectrum and the proper expression for the peculiar velocities (eq. 5.10) is used. Previ-
ous work (e.g. Borgani et al. 1997) has tried to match N–body data with linear theory by tuning
the filter scale. The results obtained above undermine the physical basis for such a procedure.
The goal of the paper by Borgani et al. is different from the one of this Chapter. They try to com-
pare their simulation results with a sample of observed clusters. Tuning the filter scale does not
change the relative differences between the rms peculiar velocities of different cosmogonies.
However, it leads to completely misleading results about theory itself. In particular, it destroys
the agreement between the different results obtained with linear theory described above.

5.5. Summary

The peculiar velocities predicted for galaxy clusters by theories in the Cold Dark Matter family
have been investigated. A widely used hypothesis identifies rich clusters with high peaks of
a smoothed version of the linear density fluctuation field. Their peculiar velocities are then
obtained by extrapolating the similarly smoothed linear peculiar velocities at the positions of
these peaks. This has been tested in this Chapter using the set of VIRGO simulations. Galaxy
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clusters are identified at z = 0 and then the particles they consist of are traced back to earlier
times. In the initial density field, the barycenters of 70% and 80% of the clusters with masses
exceeding 3:5� 1014 h�1M� lie within 4 h�1 Mpc (comoving) of a peak with � > 1:5 for the
low and high 
 models, respectively. Furthermore, the mean linear peculiar velocity of the
material which forms a cluster at z = 0 agrees well with the value at that peak.

However, the late–time growth of peculiar velocities is systematically underestimated by
linear theory. At the time clusters are identified, i.e. at z = 0, the rms peculiar velocity is about
40% larger than predicted. Nonlinear effects are particularly important in superclusters; the
rms values for clusters which are members of superclusters are about 20% to 30% larger than
those for isolated clusters.
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Figure 5.6.: Formation of a cluster in the �CDM simulation. The x–y (leftmost panels), x–z
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the regions are in Mpc/h (comoving), the redshifts are 30, 3, 1, 0.3, and 0 (from
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Chapter 6

Galaxy Clusters in the Hubble Volume
Simulations

Tout ce monde visible n’est qu’un trait imper-
ceptible dans l’ample sein de la nature. Nulle
idée n’en approche. Nous avons beau enfler nos
conceptions, au delà des espaces imaginables,
nous n’enfantons que des atomes, au prix de la
réalité des choses. C’est une sphère dont le cen-
tre est partout, la circonférence nulle part.

Blaise Pascal
Pensées, Sect. II 72

6.1. The Hubble Volume Simulations

The expansion of the Universe sets a time scale ( _a=a)�1 which corresponds to a length scale
called the Hubble radius:

r =
c

H(t)
: (6.1)

At present time, and for 
0 = 1, this length scale amounts to r = 3000Mpc/h. It gives the
sale over which physical processes operate coherently and at which general relativistic effects
become important (see e.g. Padmanabhan 1993). The volume inside the sphere of radius r is
called the Hubble Volume. It amounts to the whole observable Universe because a galaxy at
the distance of the Hubble radius has recession velocity equal to the speed of light.

The ideal cosmological simulation would enclose a region of the size of the whole observ-
able Universe with as high a mass resolution as possible. The reason for this is clear from
the two preceding Chapters. A high mass resolution is desirable in order to resolve Large–
Scale Structure properly. A large simulation volume is needed in order to get as many massive
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structures as possible. Generally speaking, a large region will enclose more rare objects than
a smaller region. In particular, fluctuations on scales of the GIF boxes or even the Virgo boxes
can only be investigated if the simulated volume itself is much larger than these scales. Is the
Milky Way situated in a region which is under–dense with respect to the whole Universe (see
e.g. Zehavi et al. 1998)? How likely is the appearance of such a region? Can Cold Dark Matter
models account for the observed pattern of periodicity in the very deep pencil beam surveys
(Broadhurst et al. 1991)? What is the mass of the most massive cluster which possibly can
be found in the Universe? In particular, does the very nice agreement between the theoretical
Press–Schechter mass function and the output of N–body simulations still hold at the very high
end of the mass function? Questions like these obviously need a very large simulation volume.

As will be discussed in Chapter 8, the first version of the simulation code which can be
run on a CRAY T3E is P3M. This code is very inefficient if there are too many particles in in-
dividual high density regions. An obvious way to overcome such a problem is to simulate a
large volume with only a moderately high mass resolution. The re–run of the high 
0 Virgo
models had shown that if the most massive clusters contain only a few thousand particles the
simulation can be carried out quite efficiently. In addition, MacFarland had estimated that if
512 processors of the T3E were used and the code was stripped of all parts which were redun-
dant (like e.g. storing the masses of particles if they all have the same mass) then as many as
10243 particles could fit into the T3E (compare MacFarland et al. 1998). So the idea of sim-
ulating the entire observable Universe was born. The project, named ”The Hubble Volume“,
needed further work on the code which took about half a year of intense work1. In December
1997, the first Hubble Volume Simulation, a �CDM model with the same parameters as the GIF
simulation but with 109 particles and a box size of 2 Gpc/h (and thus a particle mass of about
2 � 1012 M�=h), was started. During the first 24 hour run it produced about 140 GByte of data
and completely flooded the mass storage system of the RZG. After solving the problems with
the data, the run was finished in a little bit more than 70 hours of CPU time on 512 processors –
it had generated about 600 GByte of raw data. The second run, a �CDM model, again with the
same parameters as the corresponding GIF model and with a box size of 3 Gpc/h, was started
a little later.

Figure A.16 shows a thin slice of thickness 20 Mpc/h through the �CDM Hubble Volume
simulation at z = 0. On these scales, the first visual impression really is that on large scales the
distribution of matter is homogeneous. On smaller scales, most of the features already seen in
Chapter 3 show up again. There is a complicated network of filaments surrounding large voids.
The network seems to show a very large coherence – the same can be seen for the voids. Some
of the regions which seem to be denser or less dense than the average appear to be larger than
the size of a region corresponding to, say, the Virgo simulations. Clearly, the investigation of
this will be of major importance for future galaxy surveys.

Quite obviously, one of the main points of interest in the Hubble Volume Simulations is
the study of galaxy clusters. In the following sections, several points will be addressed. After

1Apart from Tom MacFarland who did the bulk of the programming, the following people contributed work
to the project: Adrian Jenkins (Initial Conditions Generator), Frazer Pearce (”stripping“ the code from all
redundant parts), August Evrard (an additional subroutine for output of data), Andrzej Kudlicki (reducing the
light cone data), and myself (running and maintaining the simulation plus what’s described in this Chapter
and Chapter 8).
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a description of the actual selection of two different catalogs of galaxy clusters (section 6.2), the
presence of massive clusters at high redshift and its implications for the cosmogonies will be
investigated (section 6.3). In addition, the mass function of the cluster catalogs will be briefly
compared with the analytical Press–Schechter theory. The final point of the Chapter will be
the clustering of galaxy clusters using the two–point correlation function (section 6.4).

6.2. Extracting Galaxy Clusters

Extracting galaxy clusters from the Hubble Volume Simulations is not an easy task. This is due
to two facts. The first one is the sheer amount of data. Each output dump includes the indices,
positions, and velocities of the 109 particles, which, in total, yields about 27 GByte of data.
The second problem is related to the definition of a galaxy cluster in the simulations itself. As
these simulations contain only Dark Matter, a simple count of galaxies is, of course, impos-
sible, because there are no galaxies there. However, identifying the most massive objects in
the simulations critically depends on the scheme adopted for this purpose. This will be studied
in more detail in the following. A strategy will be developed which finally yields catalogs of
galaxy clusters for the simulations at redshifts of z = 0:78, z = 0:44, and z = 0. The scheme
chosen here deviates from the one used in Chapter 5. There, galaxy clusters were found by
locating high density regions and then placing spheres of size 1:5Mpc/h around them. Here,
two schemes are taken which are closer to getting virialized objects.

As a first step of the group finding, the particle distribution is assigned to a coarse2 mesh
of size 5123. This mesh is then used to identify high density regions. If the contents of a mesh
cell plus the one of its nearest neighbours exceeds 64 particles these mesh cells are marked
as regions from which all particles have to be extracted3. For these, only their positions are
stored. For the �CDM run, this amounts to about 400m, 500m, and 600m particles for the
output redshifts of z = 0:78, z = 0:44, and z = 0, respectively.

On this subset of particles, a standard friends–of–friends (FOF) group finder with a dimen-
sionless linking length of b = 0:2 times the mean inter–particle separation is run (this is referred
to as FOF0:2 in the following) using ten overlapping slices4. Finding objects in such a way,
however, is problematic. The FOF0:2 group finder has the tendency to connect smaller objects
if there is a bridge of particles between them. This may lead to the situation where a galaxy
cluster has two (or more) dense subclumps and is centered on a region where the particle den-
sity is low. Not only do such ”clusters” not have anything in common with clusters in the real
Universe – these are usually found either by an enhancement of galaxies or of X–ray emis-
sion so that their centers are high density regions – in addition their masses and spatial extents
are misleading. For instance, at z = 0:78 the most massive object found with FOF0:2 in the
�CDM model has a mass of 1:14 � 1015M�=h. A visual inspection shows that it consists
of at least three connected objects. The size of this object is about 6 Mpc/h. So it looks like

2Coarse here means that the size of an individual volume cell is much larger than a typical galaxy cluster at
z = 0.

3As periodic boundaryconditions are used and the loop runs over the whole mesh the choice of only the rightmost
neighbouring cells does not miss any high density region but significantly speeds up the process.

4Of course, the mean inter–particle separation is computed taking all particles in the whole volume.
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a supercluster, that is a group of clusters. Of course, this does not mean that a galaxy cluster
in the simulation must never consist of more than one dense knot of particles. But it has to be
ensured that it is centered on a high density region and it must not consist of two objects which
are connected by a thin bridge of particles.

In order to refine the group finding the FOF group finder is run again with a dimensionless
linking length of b = 0:05 (this is referred to as FOF0:05 in the following) times the mean
inter–particle separation. This selects objects which are part of the FOF0:2 clusters. The way
the particles are extracted ensure that no objects are missed. Due to the algorithm of the FOF
group finder, all objects found with a small linking length are always a subset of objects found
with a larger linking length. The FOF0:05 group finding yields only the densest particle knots,
that is candidates for the centers of clusters. As the final step, particles out to a virial radius
from each such proto–center are collected. The way this is done is essentially the same as for
the Spherical Overdensity (SO) group finder (Lacey & Cole 1994). The idea is to find objects
whose mean overdensity is 178 (97) for 
0 = 1 (
0 = 0:3;�0 = 0:7). The value of 178
(97) results from the expected overdensity of a top–hat perturbation at virialization (e.g. White
1996, Eke et al. 1996). Starting from the barycenter of the proto–cluster, the nearest particle
which is not yet a member of the cluster is added and the mean overdensity is computed. If this
is larger than 178 (97) the process is repeated. The way objects are found does not necessarily
construct spherical objects. The final step then is to check whether there are pairs of clusters
which are so close together that they actually belong to the same object – this may indeed be the
case for some clusters. The criterion of whether two clusters are only subclusters of a bigger
one is arbitrary. The criterion adopted here is the following. For each cluster, its mass and its
virial radius are known. Two clusters are now taken as members of the same object if the center
of one of them lies within the virial radius of the center of the other one. The smaller one of
the pair is then deleted from the list because a large fraction of its mass is already contained in
the mass of the other cluster. This process is very similar to how galaxy clusters are found in
surveys of the real Universe. The main difference, of course, is that here it can be done using
full three–dimensional information which is not the case for observations.

Two catalogs of clusters are thus obtained for the models. They will be referred to as
FOF0:2 clusters and virial clusters for the objects found with the FOF0:2 group finder and with
the FOF0:05 group finder plus subsequent identification of virial masses, respectively. For the
�CDM model, only the virial clusters are obtained. In the following section, both these cata-
logs will be compared to theoretical estimate of the mass function. This will lead to a qualitative
insight into the contamination of the FOF0:2 due to flukes of the group finder itself.

6.3. The Mass Function

6.3.1. Massive Objects at High Redshifts

Introduction

Clusters of galaxies are the largest virialized objects in the Universe. For decades now they
have been studied observationally as well as theoretically in order to determine the cosmologi-
cal parameters which describe the Universe. The density parameter, 
0, affects several proper-
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ties of galaxy clusters. For instance, if 
0 = 1 clusters should form at considerably lower red-
shifts than for 
0 < 1 (Richstone et al. 1992, Bartelmann et al. 1993), have more substructure,
and should be less centrally concentrated. Here, the first of these points will be studied. As the
formation time of clusters is strongly dependent on 
0, the evolution of the cluster abundance
should be a sensitive probe of it. However, the situation is still very unclear as can be seen from
the plethora of papers which appeared recently about this very point. From the evolution of the
cluster abundance, there is currently no consensus whether a high or a low 
 can be excluded
(Henry 1997, Carlberg et al. 1997, Bahcall et al. 1997, Blanchard & Bartlett 1997, Gross et al.
1997, Sadat et al. 1998, Eke et al. 1998 (ECFH hereafter)). As was stated in ECFH the wide
range in values for the density parameter ”is presumably a suggestion that unaccounted–for
systematic errors are lurking beneath the surface in at least one of these analyses”. The mass
function itself will be investigated in the next subsection. In this subsection, the presence of
high redshift objects in the simulations is investigated. In particular, lensing mass estimates
for three observed galaxy clusters are used. Before turning to the simulations, these clusters
are briefly described in the following.

The Most Massive Clusters at high z in the Universe

Over the last couple of years, the number of observed galaxy clusters at high redshift has been
increasing steadily. Massive clusters at high redshift pose a major threat to an 
0 = 1 universe.
For three clusters, MS 1054–03, MS 1137+66, and RXJ 1716+67, redshifts (z � 0:8), mass
estimates, and X–ray temperatures have been obtained.

Luppino & Kaiser (1997) detected a weak lensing signal of the cluster MS 1054–03, which
is at z = 0:83. Assuming that the population of lensed Faint Blue Background Galaxies
(FBG’s) is at z = 3, they derive a mass within 0.5 Mpc/h of (5:9 � 1:2) � 1014M�=h. This
is a lower limit because if the redshift of the FBG’s is lowered, the mass of the cluster is in-
creased. Donahue et al. (1998) measured the X–ray temperature of this cluster and found it to
be 12.3+3:1�2:2 keV. They note that this temperature is consistent with the mass Luppino & Kaiser
give and with an estimate of the velocity dispersion of the cluster ((1360�450) km/sec at 90%
confidence level; using spectra of 12 cluster members). However, MS 1054–03 does not look
like a relaxed system. Its light distribution and its mass distribution are elongated. ROSAT
imaging shows “two or three clumps and an extended component, clearly indicating that this
cluster is not regular.” King model fits are rejected by the data. Donahue et al. end the discus-
sion of the spatial structure by noting “We found that the cluster is at least bimodal at greater
than 99.9% confidence level.” This indicates that the properties of this cluster have to be taken
with a grain of salt.

Clowe et al. (1998) detected a weak lensing signal for the other two clusters, MS 1137+66
at z = 0:78 and RXJ 1716+67 at z = 0:81. They found respective masses within a radius
of 0.5 Mpc/h of (2:45 � 0:8) � 1014M�=h and (2:6 � 0:9) � 1014M�=h assuming the back-
ground galaxies lie in a sheet at z = 2. Whereas MS 1137+66 has a compact mass and light
distribution, RXJ 1716+67 looks like an ongoing merger.

These observations will be taken as a guideline in the following. The masses of the most
massive simulated objects within a radius of 0.5 Mpc/hwill be measured. The fact that lensing
was able to provide the masses of the three observed clusters allows a test of the CDM models.
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The Most Massive Clusters at high z in the Simulations

For this study, only the dumps at z = 0:78 are taken. The algorithm used in order to find the
most massive objects is changed as follows. Starting from the FOF0:05 objects, the particle
counts within spheres of size 0.5 Mpc/h are obtained. This yields objects which are directly
comparable to the clusters described above without any assumption about virialization or the
like.
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Figure 6.1.: The differential number density distribution of the masses within 0.5 Mpc/h for the
most massive objects at z = 0:78 in the �CDM (solid histogram) and the �CDM
(dashed histogram) simulation. The three crosses with the errorbars show the cor-
responding masses of the three clusters mentioned in the text.

Figure 6.1 shows the differential number density distribution of the masses within
0.5 Mpc/h for the most massive objects in the �CDM (solid line) and the �CDM (dashed
line) simulations. Also given, as crosses with errorbars, are the three clusters MS 1054–03,
MS 1137+66, and RXJ 1716+67. The number densities are taken from Bahcall & Fan (1998;
Donahue et al. 1998 give similar numbers) and should be taken as indicative. Apparently, as
indicated already in Chapter 2 and pictorially shown in Chapter 3, there are substantially more
massive objects in the low density model than in the high density one at this redshift. The two
clusters MS 1137+66 and RXJ 1716+67 lie at the extreme high mass end of the �CDM distrib-
ution and within the distribution of the �CDM model. Their number densities are too high for
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�CDM. The cluster MS 1054–03 lies way outside the mass ranges covered by either model.

Conclusions about this can still not be made without discussing possible problems of the
modeling and the clusters themselves. The normalization, �8 = 0:6, chosen for the �CDM
simulation is at the high end of what is generally considered to be a good normalization for an

0 = 1 universe (see Chapter 2). Adopting a lower normalization amounts to a scaling in time.
E.g., if the normalization is adopted which was taken in the simulations discussed in Jenkins et
al. (1998), then the redshift of the output time considered here is lowered to z = 0:5. As haloes
build up by accretion and merging, at a higher redshift the masses of the most massive clusters
would be smaller than what is found for �8 = 0:6. One would then get a distribution of masses
which ends at a lower mass than what is found, making the distribution more incompatible with
the three high mass clusters. For the �CDM model, the case is not that clear. A higher value
of �8 may still be possible because of the scatter in the 
0� �8 relation. This would then shift
the distribution to higher masses.

In addition, high density regions from a very large volume have been picked – it is a com-
plete sample. The galaxy clusters mentioned above are no complete sample. Any further clus-
ter with such a high mass as MS 1054–03 will aggravate the discrepancy between the masses
predicted by the �CDM simulation and the observations. However, in principle projection ef-
fects may lead to the observation of high mass clusters if two clusters happen to lie behind each
other or if a filament is observed in the direction of its longitudinal extent. Oke et al. (1998)
note that about 30% of all high redshift clusters are misidentified that way. However, for the
most massive cluster, MS 1054–03, the lensing mass agrees with mass estimates from the X–
ray temperature and from the velocity dispersion of 12 cluster members. Obviously, at this
redshift the latter cannot be taken very seriously. If it is assumed that the cluster is in fact two
clusters behind each other, the high lensing mass can be accounted for, but the X–ray temper-
ature still poses a problem. An ongoing merging could account for this – when two clusters
merge strong shocks in the colliding gas are formed. As noted above, given the appearance of
this cluster it should not be treated as a relaxed system.

Conclusions

From the above, it is a safe statement to say that 
0 = 1 ceases to be a viable model for the
formation of structure in the Universe because the number densities of massive clusters at high
redshifts are much too small in such models. At this stage, it would be premature to judge the
�CDM model. The number densities of massive clusters are high enough. More mass mea-
surements of clusters at z � 0:8 are needed in order to see whether MS 1054–03 is a typical
object or just happens to be a merging cluster viewed from an unfortunate angle. If, however,
more clusters like MS 1054–03 are found a big problem arises. With the normalization used
here �CDM cannot account for objects with such high masses at z = 0:8. In addition, at this
redshift an open model produces only slightly more clusters and thus would have the same
problems. Very massive virialized clusters at redshifts of z � 0:8 may well topple the CDM
models discussed here – if these clusters really exist.
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6.3.2. The Press–Schechter Mass Function

The derivation of the mass function can be found in many textbooks. Here, the one from White
(1996) is followed. The most convenient way to describe the linear density field is to consider
its Fourier decomposition

�(x) =
X
k

�k exp(ikx) : (6.2)

For a Gaussian random field, the different Fourier amplitudes �k are independent random vari-
ables with random phases. The mean square density fluctuation in spheres of radius R at time
t is then

�2(R; t) = h�2six =
Z

d3kj�kj2j ~W (kR)j2 ; (6.3)

where ~W (kR) is the Fourier transform of the window function used. In Linear Theory, �
scales like the growing mode of the linear fluctuations � / D(t) / a(t), and it can be sepa-
rated as �(R; t) = a(t)�0(R).

The fraction of points at which a Gaussian random field exceeds some given value is known.
Thus at a time t, the fraction of points which are surrounded by a sphere of radius R within
which the mean density is larger than �c is given by

f(R; t) =
Z 1
�c

d�
1p

2�D(t)�0

exp

"
� �2

2D(t)2�2
0

#
: (6.4)

Press & Schechter (1974) now assumed that this expression gives the fraction of particles which
are part of an object with mass exceeding M = 4 � �� (a(t)R)3=3. For �c they took the extrap-
olated linear overdensity at collapse of a spherical perturbation, �c = 3=20(12�)2=3 � 1:69.
However, Press & Schechter had to multiply the mass fraction by a factor of 2 because as M
approaches zero F approaches 1=2, that is only half of the mass in the Universe is predicted to
be in any object. The mass function then is

n(M; t) dM = �
s
2

�

��

M

�c

D(t)�2
0

d�0

dM
exp

"
� �2c
2D(t)2�2

0

#
dM ; (6.5)

where �� is the present mean mass density of the Universe. Bond et al. (1991) later found a
derivation which naturally led to the missing factor of 2 for sharp windows in k space. The
cumulative mass fraction in objects above some mass M is given by

P (> M; t) = erfc

"
�cp

2D(t)�0

#
: (6.6)

Figures 6.2 and 6.3 show a comparison of the �CDM FOF0:2 and virial clusters with the
analytical cumulative mass function, respectively. The solid, dotted, and dashed lines were
obtained using eq. (6.6) at z = 0, z = 0:44, and z = 0:78, respectively. The virial clusters in
general are better fit by the analytical prediction. Both cluster samples lie above it. At z = 0:44

and z = 0:78, the discrepancy is worse. The deviations of the FOF0:2 clusters are quite large.
As already discussed above, the FOF0:2 tends to link groups artificially. Obviously, this shows
up here. Jenkins independently applied the same procedure with a different code to the simu-
lations. The groups he found agree with the ones given here (Jenkins, private communication).
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Figure 6.2.: The cumulative mass function of the �CDM FOF0:2 catalog (crosses with error-
bars) against the prediction of the Press–Schechter theory for the three redshifts
(solid, dotted, and dashed lines). The masses are given in units of M�=h.

6.4. The Cluster Correlation Function

As discussed in the preceding Chapter, clusters form from the highest peaks in the initial den-
sity field of the early Universe. If one assumes that the small fluctuations from which large–
scale structure grows were a Gaussian random field then peaks/clusters themselves are clus-
tered (Kaiser 1984). A tool to describe the strength of the clustering is the two–point correla-
tion function which will be discussed in the next section.

6.4.1. Introduction

The two–point correlation function of galaxy clusters has been controversial for decades now.
Since the early work of Hauser & Peebles (1973) it has been known that rich galaxy clusters
are more strongly clustered than galaxies. However, the amplitude of the two–point correlation
function and its dependence on cluster richness have been the subject of controversy.

The correlation function depends on cluster richness. Richer clusters are rarer, hence their
mean space density, nc, is smaller. Usually this is expressed using the mean intercluster sepa-
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Figure 6.3.: The cumulative mass function of the �CDM virial mass catalog (crosses with er-
rorbars) against the prediction of the Press–Schechter theory for the three redshifts
(solid, dotted, and dashed lines). The masses are given in units of M�=h.

ration dc = n�1=3c . Bahcall (e.g. in Bahcall & Cen 1992, Bahcall & West 1992) has argued that
the correlation length, r0, defined via �(r0) = 1, scales linearly with dc,

r0 = 0:4 dc : (6.7)

This Ansatz is based on self–similar scaling. Early measurements of �(r) for the Abell cluster
sample (Abell 1958, Abell et al. 1989) seemed to confirm this scaling (e.g. Bahcall & Soneira
1983, Peacock & West 1992). However, it was already pointed out by several works (e.g. Pea-
cock & West 1992, Efstathiou et al. 1992) that incompleteness of the Abell cluster catalog arti-
ficially enhances the clustering amplitude by producing significant line–of–sight correlations.
A means to investigate this is to use �(�; �), where � and � are the pair separations perpen-
dicular and parallel to the line–of–sight, respectively. Peacock & West found a very strong
anisotropy signal for clusters of richness class R=0 in the Abell catalog whereas for R�1 the
effect was absent. Efstathiou et al. came to the same conclusion for the redshift survey of 351
Abell clusters from Postman et al. (1992) (see Efstathiou 1996 for a detailed review of these
issues).

Quite surprisingly, both camps have used N–body simulations of CDM–type models to sup-
port their views. Bahcall & Cen (1992) found that their simulation agreed with their scaling
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proposed for clusters in the real Universe. Using ensembles of simulations, Croft & Efstathiou
(1994) found that the amplitude of �(r) depended only weakly on cluster richness. They sug-
gested that Bahcall & Cen’s conclusions were a consequence of having run a single simula-
tion with a low resolution N–body code. In addition, Croft & Efstathiou noted that the clus-
ter correlation function is insensitive to 
 and weakly dependent on the normalization of the
power spectrum, �8, but depends strongly on its shape, parameterized via �. Recently, Eke
et al. (1996a) studied the systematics of the cluster correlation function in simulations, in par-
ticular the influence of the group finding algorithm. They ran several realizations of the same
cosmology and compared several cluster finding algorithms with each other. Their overall re-
sult supported the findings of Croft & Efstathiou (1992). However, the simulation work up
to the present date suffered significantly from the restrictions in the volumes so that so far no
conclusive answer could be reached about the relation between the mean intercluster separation
and the correlation length in CDM–type models.

Croft et al. (1997) analyzed the cluster catalog selected from the APM Galaxy Survey. The
APM clusters are comparable in richness and space density to R � 0 Abell clusters. They
found a weak richness dependence of �(r) which is inconsistent with the linear scaling pro-
posed by Bahcall.

Using a Press–Schechter type ansatz, Mo & White (1996) derived expressions for the clus-
tering of Dark Matter haloes. In particular, they showed that the two–point correlation function
of haloes of Lagrangian radius R is related to that of the Dark Matter, �DM, by

�(r) = b2(R) �DM(r) ; (6.8)

where �DM(r) is the two–point correlation function of the mass, and b(R) is a bias factor which
will be introduced in more detail below. Mo et al. (1996) tested this ansatz on a set of N–body
simulations and found that the analytical result agreed with their N–body output.

In the following two sections, the two–point correlation function and the Mo & White
model will be introduced. Then, they will be applied to the Hubble Volume cluster catalogs.

6.4.2. The Two–point Correlation Function

Given a set of points, the two–point correlation function is defined as follows. The probability
dP that a point is found centered within an arbitrarily placed volume element dV is proportional
to the size of the element

dP = n dV ; (6.9)

where n is the number density of the points. The joint probability of finding points centered
within two volume elements dV1 and dV2 separated by a distance r is proportional to the sizes
of the elements

dP = n2[1 + �(r=r0)]dV1 dV2 : (6.10)

Here, r0 denotes a characteristic clustering length usually defined via �(r = r0) = 1. In a
random Poisson process, �(r=r0) = 0. Thus, the two–point correlation function describes how
much the set of points differs from a pure random Poisson process.

85



The definition (6.10) is equivalent to the following definition. The two–point correlation
function is the conditional probability of finding a point in the element dV at a distance r from
another point,

dP = n[1 + �(r=r0)]dV : (6.11)

That is, it gives the excess probability of finding a pair of points separated by a distance r com-
pared with a random Poisson process. The code used here to compute the two–point correlation
function counts the numbers of such pairs as a function of separation and from that computes
�(r=r0).

6.4.3. The Mo & White Model

Starting from a Press–Schechter type ansatz, Mo & White (1996) develop an analytical theory
to describe the spatial clustering of haloes. In particular, they find that the two–point correlation
function of Dark Matter haloes of Lagrangian radius R is related to that of the mass, �DM, by

�(r) = b2(R) �DM(r) ; (6.12)

where

b(R) = 1 +
�c

�2(R)
� 1

�c
: (6.13)

Here, �c = 1:69 as introduced above and �(R) is the rms mass fluctuation on the scale of the
halo (using a Top–Hat filter; compare the preceding Chapter). Note that a similar relationship
is derived in Bardeen et al. (1986; BBKS hereafter) for peaks

�pp(r) =

 h��i
�(Rs)

!2

�DM(r) ; (6.14)

where �� is the mean peak height andRs here is the size of the Gaussian filter used to smooth the
density field. This was used by Croft & Efstathiou (1994) to derive the scaling of r0 with dc.
As already seen in the preceding Chapter there is a relationship between the peak height and
the mass of a cluster, albeit with a big scatter. In addition, it is not clear whether a Gaussian or
a Top Hat filter should be taken. Using two different schemes to fix �s, the threshold height of
the peaks, and its corresponding smoothing radius Rs, Croft & Efstathiou find that the derived
scaling lies above the result of their N–body output. However, they seem to be too pessimistic
with regard to the power of eq. (6.14). For instance, they did not try a different filter. They still
state, though that qualitatively, the observed trend of the amplitude with richness is reproduced
by the BBKS model.

Mo et al. (1996) test the analytical prediction on a set of N–body simulations and find very
good agreement. It has to be noted that their way of constructing cluster samples is different
from the procedure used by all other authors mentioned here (including this work). Mo et al.
use ranges in halo (cluster) masses rather than constructing cluster samples from a given num-
ber density. They compute the bias factor (eq. 6.13) by weighting over the range of halo masses
in each sample using the theoretical Press–Schechter mass function (Mo, private communica-
tion).
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6.5. Results from the Hubble Volume
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Figure 6.4.: The two–point correlation functions of the �CDM model for the dc = 40Mpc/h
(solid), dc = 70Mpc/h (dotted), dc = 100Mpc/h (dashed), and dc = 130Mpc/h
(dot dashed) samples. The plotted 1� errorbars are derived from the number of
pairs in each bin.

Figure 6.4 shows the cluster correlation functions for the dc = 40Mpc/h, dc = 70Mpc/h,
dc = 100Mpc/h, and dc = 130Mpc/h sample from the �CDM simulation. 1� errors have
been computed from the numbers of pairs. As can be seen, the amplitude of the clustering in-
creases with the sparseness of the sample. Figure 6.5 gives the correlation functions for the
dc = 50Mpc/h samples from the two simulations. Superimposed are the linear and nonlinear
mass correlation functions scaled with the appropriate biasing factor (for details of the mass
correlation function c.f. Jenkins et al. 1998). Note that the �CDM case is offset by one or-
der of magnitude for clarity. For the �CDM model, the Mo & White prediction fits the results
from the simulation rather well. The amplitude of the �CDM case, though, is slightly over-
predicted. The shapes of the correlation functions, however, do agree well. This means that
while the amplitude of the correlation function increases for sparser samples the slope at the
zero crossing does not remain constant but increases, too. Quite obviously, a fixed slope would
lead to misleading results for the sparsest sample.

In order to compute the correlation length, in the vicinity of �(r) = 1, the correlation func-
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Figure 6.5.: The two–point correlation functions of the �CDM (lower part) and the �CDM
model (upper part) for the dc = 50Mpc/h samples. This figure compares the re-
sults from the simulations (dots with errorbars), and the linear (dashed line) and
nonlinear (solid line) Dark Matter correlation functions with the bias factors as
specified by eq. 6.12. For the �CDM model, all quantities were shifted upwards
by one order of magnitude. 1� errorbars are plotted, as in fig. 6.4.

tion is fitted with a power law of the following form

�(r) =

�
r

r0

�

; (6.15)

where 
 and r0 are free parameters. Figure 6.6 gives the results of the fits for the correlation
lengths. The boxes and diamonds are for the �CDM and �CDM simulation, respectively. The
dotted and dot–dashed line are the results for the Mo & White ansatz using eq. (6.12) and the
definition �(r0) = 1. Also given are the results of Croft et al.’s analysis of the APM clusters
and the linear scaling, eq. (6.7), proposed by Bahcall. The linear scaling fails to reproduce the
relation between the cluster sample density and the correlation length completely. Interestingly,
the analytical prediction by Mo & White (1996) lies above the simulation results. As already
mentioned above, a similar trend was noted by Croft & Efstathiou (1994) when they used the
model introduced in BBKS.

The APM clusters analyzed in Croft et al. (1997) follow the trend of the simulated clusters
but have slightly larger amplitudes than the �CDM model. Probably only very large cluster
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Figure 6.6.: The correlation length as a function of the mean intercluster separation dc for the
�CDM (boxes with errorbars) and �CDM (diamonds with errorbars) simulation.
The prediction of the Mo & White model are given as dotted and dot–dashed lines
for the respective simulations. The dashed line is the linear relation proposed by
Bahcall. Also given are the APM data points taken from Croft et al. 1997 (crosses).

samples from the forthcoming 2dF and SDSS surveys will allow a determination of the cor-
relation function of clusters in the real Universe which will end the debate outlined above. If
Cold Dark Matter models of the type discussed above do indeed describe the Universe, then the
correlation length of the richest clusters will not follow the linear scaling advocated by Bah-
call & Cen (1992) but will turn over and rise only gently as shown above. Clearly, of the two
cosmological models discussed here, the �CDM one is more consistent with the APM data.

6.6. Summary

The study of galaxy clusters in the largest cosmological N–body simulations done to–date has
yielded some interesting results. An investigation of massive clusters at redshifts of z � 0:8

has shown that the model with 
0 = 1 cannot produce enough massive clusters to account
for the objects which have already been observed. The �CDM simulation doesn’t have this
problem – if the most massive observed cluster which doesn’t seem to be a relaxed object is
assumed to be anomalous. However, the case of this cluster means that this discussion has still
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to be taken with a tablespoon of salt due to the uncertainties and statistics of the observational
samples.

The high mass end of the analytical Press–Schechter mass function is followed very nicely
by the galaxy clusters extracted from the Hubble Volume Simulations. The two different group
finding schemes, FOF0:2 and SO, show differences which are small and are understood from
earlier work.

The two–point correlation function of galaxy clusters can be studied in unprecedented de-
tail using the Hubble Volume Simulations. It was shown that the correlation function can be
described in terms of the correlation function of the mass times a bias factor as introduced in
the work by Mo & White (1996). However, a perfect match required slightly smaller bias val-
ues than they would predict. Fitting the correlation function around �(r) � 1 with a power
law yields the correlation length, r0. It was shown that the correlation length does increase
with the mean separation, dc of subsamples of the cluster catalogs. However, the relationship
between r0 and dc is not linear – as expected for a fractal distribution – but it turns over gently.
The prediction by Mo & White is in good qualitative agreement with what was found from the
simulation but somewhat overpredicts r0. The correlation lengths found for the clusters ob-
tained from the APM catalog by Croft et al. (1997) are in good agreement with the �CDM
model but are too high for the �CDM model.
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Chapter 7

Linking Cluster Formation to Large Scale
Structure

Look for a problem that is interesting and impor-
tant – never mind how it is classified – and tackle
it.

Mancur L. Olson

7.1. Introduction

In the preceding Chapters, Large–Scale Structure (LSS) was viewed from different angles.
Two–dimensional pictures of slices through the various simulation sets showed a rather compli-
cated situation where objects which are themselves clustered are interconnected by a network
of filaments and sheets. From this viewpoint, which was used in Chapter 3, it was unclear
which structure element dominated. Filaments, sheets, clusters, and voids all showed up in the
simulations. In Chapter 4 it became evident that as a consequence of gravity being a long–
range force any object defined in some way is part of a bigger object when the criterion used to
find the object is relaxed. There, the adaptively smoothed density field was investigated, and
the sizes and masses of objects as a function of an overdensity threshold were measured. It
was found that for thresholds close to the mean density, most of the mass was in one single ob-
ject which extended all across the simulation volume. For high thresholds, the mass above this
threshold was distributed in many small objects (small in terms of the size of the volume). For
a hypothetical arbitrarily fine mesh an overdensity threshold of 178 would yield all virialized
objects. The most massive objects, corresponding to rich clusters of galaxies which are inves-
tigated in Chapters 5 and 6 are of particular importance. Observationally, it is not the density
field which is observed but galaxies and thus galaxy clusters. Galaxy clusters are tracers of the
underlying mass distribution. As seen in Chapter 5, galaxy clusters correspond to high peaks in
the smoothed initial density field. It was also seen that the peculiar velocities of galaxy clusters
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deviate from the prediction of Linear Theory because of non–linear effects. Thus, there is an
interesting interplay between galaxy clusters and LSS. On the one hand, galaxy clusters trace
LSS like the highest peaks of a reef which mark the reef itself during high tide. On the other
hand, LSS has a strong influence on the properties of galaxy clusters. From this perspective, it
is natural to investigate the formation process of galaxy clusters more closely. The main point
of interest here will be the infall pattern of the mass which falls onto a (proto–) cluster. Once
that is done, the spatial distribution of the mass which surrounds galaxy clusters will be inves-
tigated. That way, further insight into a still open question will be gained which is not only
related to simulations but especially to observations.

Currently, there is an ongoing debate about how best to describe LSS. Sheets or walls
(Geller & Huchra 1989, de Lapparant et al. 1986), filaments (Giovanelli et a. 1986), and mixes
of these to produce a cell–like geometry (Jôeveer & Einasto 1987) have all been suggested. In
an earlier work, Bond et al. (1995) have shown that this mix already shows up in the overden-
sity pattern of the initial Gaussian density field – which is related to the cluster peak correspon-
dance mentioned above. So far, no consensus has been reached on which component of LSS
might be predominant. But this ambiguity has something to offer. Here, I attempt to investi-
gate LSS starting from objects which are well–defined. It is widely believed that the formation
process of galaxy clusters is linked to LSS. So the idea is to have a look at how clusters build up
and then to gain insight into how this is connected to the mass distribution outside the clusters.
Note that a priori no hypothesis is made of what LSS consists of. Rather, it is the aim of this
Chapter to understand this very point.

7.2. The Formation of Clusters

7.2.1. The Simulations

The GIF simulations are well–suited for this work because of their high mass resolution. In
addition, there exist a large number of output times so that the formation process of galaxy
clusters, which occurs at redshifts lower than z = 1, can be investigated in detail. From the
four simulations, two are taken, namely the �CDM and the OCDM simulation. As seen in
Chapter 4, the two other simulations are nearly indistinguishable from the OCDM simulation
with respect to the spatial distribution of the mass. And if the difference in the dynamics be-
tween high and low
 models leads to a difference in the formation process, it will clearly show
up most strongly between the �CDM and the OCDM models. The output redshifts taken are
z = 0:93; 0:82; 0:72; 0:62; 0:52; 0:43; 0:35; 0:27; 0:20; 0:13; 0:06, and 0.0.

7.2.2. The Selection of Clusters

The cluster selection taken here is identical to the one used in Chapter 5 for the study of the
peculiar velocities of clusters. Spheres of radius rA = 1:5 h�1 Mpc are put around dense
knots found with a friends–of–friends group finder with a dimensionless linking length of
b = 0:05 times the mean interparticle separation. Overlapping spheres are later merged.
From each model the ten most massive clusters are taken. These span a mass range from
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Figure 7.1.: The infall pattern of matter onto a cluster in the �CDM model viewed by a hypo-
thetical observer in the barycenter of the system. Shown are different time inter-
vals: (a) z = 0: to z = 0:13, (b) z = 0:13 to z = 0:27, (c) z = 0:27 to z = 0:43,
and (d) z = 0:43 to z = 0:62.

2:7 � 1014 h�1M� (3:5 � 1014 h�1M�) to 7:3 � 1014 h�1M� (8:4 � 1014 h�1M�) for
the �CDM (OCDM) model.

7.2.3. Construction of the Formation History

After having found the clusters at z = 0 the particles in each of them are marked in a list,
and are then extracted from the whole set of particles at all redshifts. Two additional pieces of
information are derived for each particle: The time when it falls into the cluster and its position
at that time. This is done in the following manner. Given the selection criteria, a cluster is a
spherical object with a radius rA = 1:5 h�1 Mpc (comoving) at any time. Let the current time
be zi. Going back to zi�1, some of the particles which will be inside rA at zi are still outside.
Hence, these particles will fall into the cluster between zi�1 and zi. So for these particles zi�1
as well as their position at this time are saved. As the center of the cluster the barycenter at
zi�1 of the biggest lump is taken.

7.2.4. Investigating the Formation of the Clusters

As described in Chapter 5, the formation of a cluster is usually modeled by the spherical col-
lapse of some high peak in the initial density field. However, previous studies, e.g. Tormen
et al. (1997), have already shown that the actual formation process in hierarchical models is
rather irregular. Instead of a steady accretion of matter, lumps fall onto a pre–existing object,
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a typical process well known in CDM models.
A hypothetical observer was placed at the barycenter of each cluster. This observer watches

the matter as it falls into the cluster. For spherical infall he would see matter coming in more
or less randomly from all directions. For each observer, maps of the infall pattern are produced
by plotting the positions of the particles at infall using a two–dimensional projection which is
known as the Aitoff projection. Figure 7.1 shows typical examples of such maps for a cluster in
the �CDM simulation. From this some points can be addressed. First, it is obvious that matter
is not falling in uniformly over the sky of the hypothetical observer as one would expect in
a spherical infall model. Rather infall occurs from distinct directions. Second, there is a tight
correlation between the infall directions at different times. The cluster forms by accretion from
a few preferred directions.

This process can be quantified by computing the autocorrelation function of the infalling
matter

1 + !(#) =
4�

A(#)

NPP(#)

N(N � 1)
; (7.1)

where NPP(#) denotes the number of particle pairs separated by an angle # + �#, A(#) =

2� sin# �# is the size of the annulus, and N is the total number of particles in the sample.
Obviously, !(#) is the excess probability of finding a particle pair with separation # + �# in
the simulations compared with spherical infall.

Figure 7.2 shows the autocorrelation functions for the infalling matter of the cluster in fig.
7.1 and for random spherical infall. For small angles all the curves have a peak. This just re-
flects the particle clumps seen in fig. 7.1. The strength of the peaks directly reflects the amount
of matter in these clumps. For some of the curves, peaks also appear at larger angles. For ex-
ample, curve (b) has a second peak around 60�. This reflects the angle between the two most
massive objects in fig. 7.1(b).

These curves can be directly compared with the correlations of matter between different
maps, as quantified by the crosscorrelation function

1 + ~!(#) =
4�

A(#)

NP1P2
(#)

N1 �N2

; (7.2)

where NP1P2
(#) denotes the number of pairs of a particle from map 1 and one from map 2

separated by an angle # + �#, where A(#) = 2� sin# d# is the size of the annulus again. N1

and N2 are the total number of particles in the maps 1 and 2, respectively.
Figure 7.3 shows cross correlations between pairs of maps from fig. 7.1. These have similar

scale but are generally weaker than the autocorrelations. This can be seen by comparing the
maps directly, too. The behaviour for this particular cluster is typical for both the auto– and
cross–correlations in the infall patterns of all clusters in both the �CDM and OCDM models.
Not a single case was found which deviates qualitatively from it.

From the above, it is apparent that correlations between the infall patterns at different times
are strong. Can such correlations be expected? From previous studies, e.g. Tormen et al. 1997,
it is clear that clusters form by the accretion of haloes. This process is clearly reflected by the
discussion above. But why is then the infall pattern of matter between so many and so different
redshift intervals correlated? Obviously, there must be a connection between the infall pattern
and LSS itself. This will be discussed in the next section.
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Figure 7.2.: The autocorrelation functions of the matter shown in fig. 7.1 for the same time in-
tervals used in the four panels of fig. 7.1. Also shown is the prediction for spherical
infall (random).

7.2.5. Connecting Cluster Formation and Large Scale Structure

From the above it is obvious that during the formation of a cluster matter falls in from well–
defined directions. What is the connection between these directions and Large Scale Structure?
In order to investigate this issue the distribution of matter surrounding the clusters at z = 0 is
obtained as follows. Around the clusters onion–like shells of thickness 1:5 h�1 Mpc are put.
All particles in a shell are extracted. The hypothetical observer at the cluster center drew maps
of these particles, i.e., LSS is viewed from the center of each cluster.

Figure 7.4 shows maps for shells surrounding the �CDM cluster analyzed in figures 7.1
to 7.3. Again, these maps are typical of those found for all the clusters. The maps show var-
ious points. First, there exist density enhancements in the distribution of the particles which
only marginally change their locations from map to map. Most of them are more or less circu-
lar. These must clearly be filaments extending outwards from the cluster. In addition, fig. 7.4
shows another interesting feature. There are enhancements which connect the filaments and
also extend outwards from map to map, but are less dense. Figure 7.5 shows the LSS around a
different �CDM cluster where these connections between the filaments are very strong. There
is a U–shaped broad band in the right part of five of the six maps. This object is obviously a
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Figure 7.3.: The cross correlation between pairs of maps from fig. 7.1. Also shown is the result
expected for uncorrelated maps (dotted).

sheet. One has to note that filaments can be found in all of the cluster maps. There are connec-
tions between them in all maps, too. However, impressive examples of sheets like the one in
figure 7.5 are rare. Second, when comparing the maps in figure 7.4 with the one in fig. 7.1 it
can be seen that the big clumps fall in along the filaments. This is true not only for the lowest
redshift range but for the earlier ones, too. Even at a redshift of 0.6 infall onto clusters is tightly
coupled to LSS at z = 0.

This connection can be quantified by means of the angular cross correlation functions be-
tween the combined infall maps of the cluster and the LSS maps, computed for each cluster in
each cosmology. Figure 7.6 shows cross correlations between the infall patterns and surround-
ing LSS for the ten �CDM and OCDM clusters. These are averaged over the redshift ranges
and radii shown in figures 7.1, 7.4, and 7.5. This mean cross correlation behaves in a similar
manner to the cross correlations between the different maps (Fig. 7.3). There is indeed a well
defined correlation between the infall onto clusters and their surrounding LSS. This correlation
does not depend on 
.
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Figure 7.4.: The LSS around the cluster shown in fig. 7.1 viewed by a hypothetical observer at
the barycenter of the cluster at z = 0. Shown are shells at 1.5 to 3.0 (a), 3.0 to 4.5
(b), 4.5 to 6.0 (c), 6.0 to 7.5 (d), 7.5 to 9.0 (e), and 9.0 to 10.5 h�1 Mpc (f) from
the cluster center.
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Figure 7.5.: The LSS around another cluster from the �CDM simulation shown using the same
representation as in fig. 7.4.
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tCDM
OCDM
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Figure 7.6.: The combined cross correlation between the infall patterns of the clusters in the
�CDM and OCDM simulations and their surrounding LSS.
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Figure 7.7.: A different representation of fig. 7.4 where only the lumps (filaments) show up.
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Radius Fig. 7.4 Fig. 7.5
[Mpc/h] fall f1 f2 fall f1 f2

1.5 – 3.0 11% 5% 2% 13% 9% 2%
3.0 – 4.5 22% 3% 3% 24% 4% 4%
4.5 – 6.0 52% 42% 2% 28% 10% 3%
6.0 – 7.5 45% 32% 1% 34% 5% 4%
7.5 – 9.0 32% 7% 4% 43% 17% 3%
9.0 – 10.5 39% 8% 5% 32% 6% 2%

Table 7.1.: Fractions of mass in the dark spots for the maps in fig. 7.4 and 7.5. Given are the
total mass fractions (fall) as well as the mass fractions of the two biggest spots (f1
and f2) for the different radii.

7.2.6. Fraction of Mass in the Peaks

What is the amount of mass which can be seen in the various structures in the above maps? In
order to answer this question the amount of mass inside the dark spots has to be computed. This
was done by using a standard friends–of–friends group finder on the sets of points on the unit
sphere from which the above maps were drawn. As linking parameter a value of b = 0:2 times
the mean interparticle separation is taken. All objects with 20 or more particles are considered
as big groups.

Table 7.1 gives the fraction of mass inside such big dark spots for the figures 7.4 and 7.5
(fall). Also shown is the fraction of mass in the two most massive spots in each map (f1 and
f2). Typically, about a third of the mass lies in filaments at the overdensity of �20 picked out
by the choice of linking length. Note, that with this procedure sheets can not be ”detected”.
Their density contrast is significantly lower than that of filaments – as can be seen from figures
7.4 and 7.5.

Fig. 7.7 shows a representation of the maps in fig. 7.4 where only the particles in these
dark spots, i.e. the filaments, are plotted. Apparently filaments are clumpy structures rather
than homogeneous cylinders.

Performing a similar analysis for the infall patterns onto clusters gives results which vary
more strongly between clusters and time intervals. E.g., for the cluster shown in fig. 7.1 the
fractions of mass in the dark spots are 5%, 15%, 30%, and 51% for the maps (a) to (d), respec-
tively. This scatter between 5% and around 55% is quite typical for clusters in both the �CDM
and the OCDM sample.

For the whole �CDM (OCDM) cluster sample the averaged mass fractions in the fila-
ments are 14% (14%) , 29% (35%), and 42% (46%) for shells beginning at radii 1.5, 3.0,
and 4.5 h�1 Mpc. These values stay constant at around 40% (48%) for larger radii. There is a
slightly larger mass fraction in the filaments in the low 
 model. This has already been found
in Chapter 4 where the LSS was investigated by means of a percolation analysis.
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7.3. Summary

The study of the formation process of clusters and its connection with LSS has yielded several
conclusions. First, as already noted by many other studies, in CDM universes clusters form by
the accretion of collapsed haloes onto other pre–existing haloes. This occurs from preferred
directions. These directions do not change much with time. Second, there is a correlation
between the formation process of a cluster and its surrounding LSS. Qualitatively speaking,
matter falls in mainly from filaments and sheets. Filaments show up as clear density enhance-
ments in the 2D projections used above. They extend outwards from the cluster center and
are connected by less dense sheets of matter. Because of their considerably lower density con-
trast these sheets are nearly impossible to find in 3D representations of N–body simulations
(compare Chapter 4). The above representation clearly shows that both filaments and sheets
do exist in simulations. Quantitatively speaking, the amount of mass in the filaments is around
40% and 48% of the total mass for radii from 4.5 to 10.5h�1 Mpc in the �CDM and OCDM
model, respectively. At smaller radii, it is around 30%. However, the mass distribution is dom-
inated by lumps inside the filaments. Third, the only difference which can be found between
the �CDM and the OCDM model is in the amount of mass in the filaments, it is slightly larger
for the OCDM model. This agrees with the results from Chapter 4 where the amount of mass
inside overdense regions for any overdensity threshold was always larger for the OCDM than
for the �CDM model.

The formation process of each cluster is governed by its surrounding LSS. The internal
properties of the cluster may change during its formation, as shown by Tormen et al. (1997).
This process is not chaotic but it is linked to the LSS.
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Chapter 8

The N–body Simulations

This Chapter gives an outline of the general technique used for the N–body simulations. In
section 8.1, AP3M is introduced. Then, in section 8.2, a part of the development of a version
which can be run on a Cray T3E parallel supercomputer.

8.1. AP3M

8.1.1. Basics

The aim of the computer code is to follow the movements of N particles subject to their own
mutual gravity in a cosmological volume. Gravity is a long–range force, so for each particle
the acceleration due to the other N � 1 particles must be obtained to compute the resulting
velocity and the change in the position. The simplest way to do this is to compute the forces
between all pairs. This is known as the Particle–Particle (PP) algorithm. Using the comoving
coordinates introduced in section 2.1, the equation of motion of the i–th particle is

dvi

dt
+ 2

_a

a
vi = �G

a3

X
j 6=i

m
xi � xj

jxi � xjj3 : (8.1)

Here, xi is the position of the i–th particle, v = _x is its velocity, m is its mass (Peebles 1980).
The overdot denotes differentiation with respect to time, G is the gravitational constant, and a
is the expansion parameter (compare eq.s (2.22) and (2.23)).

The PP algorithm has a huge disadvantage. As the number of particles, N , is increased, the
number of operations needed for computing the forces grows as N2. A solution to this prob-
lem is to divide the force into a short–range component, computed using the direct summation
above, and a long–range component. One way to compute the latter is the Particle–Mesh (PM)
algorithm. Here, the particles are assigned to a mesh with an appropriate smoothing function to
get a discrete density distribution. Then, the long–range forces can be obtained using Poisson’s
equation by means of a Fast Fourier transform (FFT). The scheme works as follows:
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1. Particles are assigned to a grid with an appropriate smoothing function (kernel). This
produces a discrete density distribution.

2. The density distribution is convolved with the Green’s function, G. This gets a potential
at mesh points.

3. The potential is differenced to obtain forces at mesh points.

4. The forces are interpolated back onto the particles with the same kernel as above.

The FFT technique is particularly interesting for a cosmological simulation. As the Uni-
verse in principle is infinite, there will always be contributions to the forces from scales which
are much bigger than the simulated volume. A standard way of dealing with this is to assume
periodic boundary conditions. The FFT technique does this automatically. On small scales,
its accuracy is limited – the Nyquist theorem essentially states that all forces on scales smaller
than two mesh cells are inaccurate. On these scales, the forces must be obtained by the direct
summation of the PP algorithm.

Combining these two algorithms gives the Particle–Particle Particle–Mesh (P3M) algo-
rithm. For a fairly uniform distribution it behaves like a PM algorithm. However, once the
particle distribution becomes clustered, the PP part starts to dominate. The aim of a cosmolog-
ical simulation usually is two–fold: It is desirable to have a large computational volume and a
high mass resolution, that is many particles per object. Obviously, the latter is a problem for
P3M. For a highly clustered distribution, the PP part consumes a huge amount of time, and the
code is slow. One way to overcome this is to allow for mesh refinements of heavily clustered
regions. If applied to a P3M algorithm, this technique is called Adaptive P3M (AP3M, Couch-
man 1991). It finds highly clustered regions and places a refined P3M region with a finer mesh
on it. This subregion then consists of a non–periodic PM part with a smaller mesh size and a
PP part which is set up in the same fashion as on the top level, that is on the whole volume. The
idea is to shift PP work on the top level to PM work on the refined level. This algorithm can be
iterated by placing another refined region into the first level of refinements etc. If the total CPU
time per time step is measured for a simulation run with AP3M, it stays roughly constant (see
Pearce & Couchman 1997) whereas it increases linearly otherwise. The basic scheme works
as follows:

1. Find those regions where the placement of a refinement would reduce the computational
work1.

2. Compute PM on all particles and PP only on particles which are not in to be refined zones.

3. Do a further P3M calculation on those regions found above such that only the short range
part of the forces of the standard P3M force (that is, the one from the base mesh) are
computed.

4. Accumulate the forces, update the particle data, and iterate.

1Actually, the refinement placing is the trickiest part of the AP3M code, and different schemes for doing so exist.
However, the basic idea always remains the same, regardless of how it is phrased.
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8.1.2. The code

The first simulations were run on a CRAY T3D with 128 processors at the Computer Center
of the Max–Planck–Gesellschaft in Garching. A parallelized version of AP3M was available.
The parallelization was done by Pearce & Couchman (1997) using CRAFT, which is a set of
compiler options, that is, the compiler itself determines the way particles are distributed over
the processors. All information is sent automatically between processors. This version of the
code is reasonably fast on a T3D. However, due to the way the parallelization is set up, once the
simulations became too heavily clustered (as was the case for the GIF simulations, see Chapter
3.2), a larger T3D was necessary to finish the runs. The reason for this is the limited amount
of memory (64 MB) each processor on the T3D owns. The runs were then finished on the T3D
at the Edinburgh Parallel Computer Center.

The Max–Planck–Society had decided to acquire a CRAY T3E, which finally arrived in
January 1997. For this computer, no simulation code was available which could be used be-
cause CRAY had not developedCRAFT for the T3E. So the original serial version of AP3M had
to be taken and parallelized for the T3E. This was mainly done by MarFarland (for a descrip-
tion of the implementation of the message passing concept shmem see MacFarland et al. 1998).
Some of the work described here was devoted to parallelizing parts of the code. This will be
described in detail in the following section. Details about CRAFT and shmem can be found
in the Cray MPP Fortran Reference Manual, SR-2504, 6.2.1 and in Application Programmer’s
Library Reference Manual, Vol. 2, SR–2165.

8.2. Code Development

The parallelization of AP3M was done in two stages. First, a parallel P3M was developed. This
code can be used for systems which are not too heavily clustered – otherwise the code becomes
very slow and inefficient. The second part is the implementation of the refinements – this is a
future project and will probably require as much effort as the P3M part itself. Two main tasks
were parallelized as part of the effort to get a shmem version of P3M: the particle update and
the parallel input of data.

Because the particle update scheme was changed in a later stage of the implementation of
shmem it will be described only briefly. The particles are distributed on the processors us-
ing a domain decomposition. That means that each processor ”owns” well–defined regions in
space. Here, the distribution of particles is split into separate regions in the x–y plane, that is
into columns. Each processor owns a set of non–adjacent columns across the simulation vol-
ume. To compute the pairwise forces a processor has to store the particle data in the regions
surrounding its actual domain (ghost cells). Originally, the information of which particle be-
longs to which processor was stored by means of a linked list as follows. For the whole particle
set, a one–dimensional array is set up. Each particle has an entry in this array. A processor only
knows the index of one particle. It can access all other particles via the linked list. Assume this
particle has the index i and the array be list. Then, list(i) is the index of the next par-
ticle, j. list(j) contains the index of the next particle, k and so on. The list is set up to be
circular so that the processor knows it has collected all particles once list(l)=i, where l
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is the numberof the final particle which belongs to the processor.
As the simulation evolves, particles move. In particular, they can change the processor to

which they belong. The particle update consisted of the following parts:

1. Update the particle data using the computed forces.

2. Check whether a particle has moved so that it belongs to different processor.

3. Update the particle list. The way this was done was to set it as the first particle of the cor-
responding processor and change the indices of list accordingly. That meant changing
the linked list such that the two involved processors could access all particles they owned.

Of course, the actual coding was more complicated than described here. Most of the concepts
which are described abover were used for the parallel input of the data in modified form. As
the particle update was changed later (the linked list was removed in order to save space, the
particles are now being sorted) only the full details of the parallel input are given in the follow-
ing.

8.2.1. Parallel I/O: Reading in from multiple files

Introduction

Input and output of data (I/O) is one of the bottlenecks of any parallel system unless it is done
efficiently, that is in parallel. On the T3D, this is not possible. Only PE02 can communicate
with the outer world which consists of another supercomputer (in Garching this was a CRAY
Y/MP Vectorcomputer). This, and the fact that the data to be read or written consists of all the
relevant simulation data results in an enormous amount of time which is spent with I/O only.
It amounts to about 30% to 40% of the whole time used on the T3D.

The situation changed with the advent of the T3E which allows parallel I/O. As already
mentioned above, the simulation code was re–parallized by Tom MacFarland using the explicit
message passing scheme shmem. The first version consisted of the P3M part which allowed
parallel output only. Input of the data had to be done from one file. From the above it is obvious
that this situation had to be changed in order to make more efficient use of the T3E3. Thus, set-
ting up a routine which allows parallel input from multiple files was necessary. The following
describes how this was achieved.

The Data Structure

To understand the basic problem, the data structure itself must be described. The particle data
is distributed across a set of files. The number of these files can be set by specifying the num-
ber of I/O processors, because each one writes its own file. This is done in a straightforward

2PEn here stands for processor number n.
3In addition, having multiple output files but needing only one input file presented additional problems: The

files had to be concatenated using scripts in order to have a restartable configuration. However, with particle
sets of 3�106, particle positions, velocities, numbers, and masses add up tp roughly 900 MByte of data. It was
not at all obvious that the operating system could handle files of this size correctly.
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fashion – from which some complications result. Each I/O processor writes its own particle
data and communicates with a fixed sub–set of the non–I/O processors. That is, it reads their
particle data and writes them into the same file as its own data. The number of particles each
I/O processor writes is not constant. This is because the distribution of the particles is gener-
ally not homogeneous (with the exception of the very early stages of the simulation, but even
there small fluctuations exist). Hence, each processor stores some number of particles which
is different from the number of particles divided by the number of processors. The code was
set up by Tom MacFarland such that it did (and still does) not store the number of particles
in each file. Only the total number of particles, plus the major parameters of the simulation,
is written to a file. PE0 writes these parameters in front of the particle data as a header. The
routine which reads from multiple files must be able to deal with this fact.

The basic structure of the routine should be:

� Only PE0 has to read the header information before reading in the particle data.

� All I/O processors have to be able to read in data for some arbitrary number of particles
without knowing this number in advance.

� The I/O processors have to communicate with the non–I/O processors and send them
data they need.

On the T3E, each processor can in principle do I/O. However, in the simulation code reading
and writing data is done only by a subset of all processors. This number of I/O processors is
set by the user as a parameter before the code is compiled. One of the basic features of shmem
is that it is an asynchronous message passing scheme. This means that one processor can send
data to another processor and the latter does not need to receive it at exactly the same time, it
may do something else. Thus, sending the data from the I/O processors to the non–I/O proces-
sors amounts to finding which processor gets which data. How this is done is described below.

The Core of the Routine

A number of variables which contain essential information are defined4:

I DO IO: A logical which is .true. for I/O processors and .false. otherwise.

MY IO PE: The number of the I/O processors. This is 0 for all non–I/O processors and equiv-
alent to the processor number otherwise.

MORE 2 DO: A logical used in the main I/O loop in order to show each processor whether
or not it has to continue running.

The basic structure of the routine is as follows:

1. The basic variables are defined.

2. The files are opened and PE0 reads the header information5.

4The names of the variables are chosen so that reading the following listings should be straightforward.
5Actually, PE0 skips the header information because the code reads the basic parameters earlier.
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3. The main loop consists of a DO WHILE loop. An I/O processor reads data and sends it
to the non–I/O processors, or copies it into its own domain, unless the end of a data file
is reached.

4. Non–I/O processors wait for particle data and, once this has arrived, they receive it.

5. If an I/O processor reaches the end of its data file it sends or copies the data and then
stops the whole process (by setting MORE 2 DO to .false.).

6. The non–I/O processors have to find out whether or not to expect more data. If all I/O
processors have finished their work they must leave the main loop, too. This is the only
tricky point so far. One way to do this is to have the I/O processors send the number of
particles read to one processor and all the others to get this number and compare it with
the total number of particles. However, this would result in a bottleneck for one proces-
sor. The scheme here is different. The number of particles on each processor is counted
and passed to all processors by means of a special routine called shmem fcollect.
Each processor then simply sums up the numbers of particles (read and copied to the
processors). If this sum is equal to the total number of particles MORE 2 DO is set to
.false. and the loop is left.

So the basic structure, without the communication, looks like this6:

C
C I/O procs open files
C

IF (I_DO_IO) THEN
file_stream=fopen(filename,"rb")

END IF
C
C PE0 skips the header information (HEADER_SIZE_BYTES is
C the size of the header in bytes)
C

IF (I_DO_IO .and. (MY_IO_PE.eq.0)) THEN
SEEK_SET_VAL = GET_SEEK_SET()
i_position = HEADER_SIZE_BYTES
ierr = FSEEK(file_stream,i_position,SEEK_SET_VAL)

ENDIF
C
C Ensure that all processors start to read at the same time
C

CALL barrier()
C
C Read particle data
C

6In the listing, comments describe what is done in the subsequent lines.
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MORE_2_DO = .TRUE.
DO WHILE (MORE_2_DO)

C
C The I/O processors read the data. i_lines_to_read is the
C maximum size of data they can read. In this case, each
C particle consists of 12 REAL*4 variables.
C

IF (I_DO_IO) THEN
IERR = fread(raw_file_data(1,0),4*12,

& i_lines_to_read, file_stream)
IF (IERR .eq. i_lines_to_read) THEN

C
C The end of the file has not been reached yet.
C Here, some operations will follow (see below).
C

ELSE
MORE_2_DO = .FALSE.

C
C The end of the file has been reached.
C Here, some operations will follow (see below).
C

END IF
END IF

C
C Ensure that all processors start to communicate at the
C same time
C

CALL barrier()
C
C Communication here. See below.
C

C
C Check whether or not reading the data is finished:
C Count the particles on each processor...
C

CALL count_cells_quiet(Nl,N2l,N3l)
sndint(1) = Nl
CALL barrier()

C
C ... and communicate the information to all processors.
C npes is the total number of processors,
C

CALL shmem_fcollect(rcvint,sndint(1),1,0,0,npes,pSync)
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how_many_particles(0:npes-1) = rcvint(1:npes)
C
C The processors compute the sum and check whether they are
C done.
C

sum1 = sum(how_many_particles)
IF (sum1 .eq. Nmax) THEN
MORE_2_DO = .FALSE.

END IF
C
C Synchronize the process so that no confusion arises when
C more data is read...
C

CALL barrier()

The basic scheme for the parallel code above is that all processors execute the same code. Their
processor number is used to deny them access to parts they are not allowed to execute. E.g.,
in the example above, the logical I DO IO is used to have the I/O processors access file op-
erations whereas all other processors do not enter these statements. Because this may result
in different execution times for the different parts of the code, and because most parts of the
code have to be executed by all processors at the same time, so–called barriers are set. These
barriers let a processor wait until all other processors have arrived at it. Then, the whole set of
processors continues to execute the subsequent code.

Sending/Receiving Particle Data

As introduced above, the basic principle of which processor owns which particle data is the
following: Using a domain decomposition, each processor owns all the data of the particles
which are in some region in space. Each particle belongs to a processor which holds the particle
data of the region it is in.

Thus, each I/O processor has to find out where the particles it has read are located and send
them (if necessary) to some other processor. This is done as follows: After each I/O processor
has read some fixed number of particles, it calls a subroutine which sorts the particles according
to the number of the processor they belong to, and sets up a list with the destinations. This list
it then used for the particle communication. The particle communication is done consecutively
for the set of I/O processors. Recall that a domain decomposition is used. In principle, an I/O
processor could read in data which belongs to any processor. This is why the scheme loops over
the I/O processors. At any time, only the particle data read in by one of the I/O processors is
subject to communication because all other I/O processors may be a recipients. The actual I/O
processor, that is, the one whose number equals the current index of the loop, checks whether
it has to copy data from its read–in array into its data space. All other processors get a copy
of the actual I/O processors distribution table, check whether they have to get data, and if they
have to, they then get the data7. Note that each I/O processor owns its own distribution table

7The data transfer is done by getting rather than sending because this is more efficient in shmem.
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because it has read a disjoint set of particles.
Thus, the particle information is treated as follows:

1. Each I/O processor calls the subroutine sort distribution table which sets up
the lists for the particle exchange.

2. Each I/O processor copies the data it owns into the arrays where they belong.

3. The non–I/O processors get their particle data from the I/O processors by means of the
list set up by sort distribution table.

The complete routine looks like this (some of the above comments and the definitions of some
variables are omitted)8:

SUBROUTINE readpar(datafile)
C
C Definitions of some variable are omitted
C

INTEGER MY_IO_PE
INTEGER file_stream
INTEGER fopen, fread, fseek
CHARACTER*7 str_pe
INTEGER SEEK_SET_VAL, GET_SEEK_SET
LOGICAL MORE_2_DO

C
C Note the definitions of the arrays! The locations
C of the arrays are the same on all processors! This is
C necessary for the communication scheme!
C

POINTER (p_file_data,file_data(12,0:FILE_BLOCK_LINES-1))
REAL*4 file_data
REAL*4 raw_file_data(12,0:FILE_BLOCK_LINES-1)
POINTER (p_remote_file_data,
& remote_file_data(12,0:FILE_BLOCK_LINES-1))
REAL*4 remote_file_data
POINTER (p_distribution_table,
& distribution_table(2,0:npes-1))
p_file_data=LOC(sndbuf)
p_remote_file_data=LOC(rcvbuf)
p_distribution_table=LOC(rcvint)
p_file_data=LOC(sndbuf)
p_io_send_flag=LOC(sndint(1))

8The reader who is not interested in the details of the parallel code may skip this listing and proceed to the next
Chapter.
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INTEGER distribution_table
INTEGER remote_distribution_table(2,0:npes-1)
INTEGER Nl,N2l,N3l,sum1

C
C Define the names of the input files
C

WRITE(str_pe,’(i4)’)MY_IO_RANK
startpos_me=SCAN(str_pe,’0123456789’)
longfile = dirname(1:lnblnk(dirname))//’/data/’
& //datafile//"."//
& str_pe(startpos_me:LEN_TRIM(str_pe))

C
C Initialize scaling factors for file data
C

grow=REAL(L)
vscale=grow

C
C Construct particle distribution function as
C function of PE number
C

MY_IO_PE=(mype/io_proc_skip)*io_proc_skip
C

IF (I_DO_IO) THEN
file_stream=fopen(longfile,"rb")

END IF
C

IF (I_DO_IO .and. (MY_IO_PE.eq.0)) THEN
SEEK_SET_VAL=GET_SEEK_SET()
i_position=HEADER_SIZE_BYTES
ierr=FSEEK(file_stream,i_position,SEEK_SET_VAL)

ENDIF
CALL barrier()

C
C Read particle data
C

MORE_2_DO = .TRUE.
i_lines_to_read = FILE_BLOCK_LINES
DO WHILE (MORE_2_DO)

distribution_table = 0
C
C Read the data. The data is properly scaled and copied
C into the array file_data which has the same location on
C each processor. After that, the distribution table is set
C up by calling the appropriate subroutine.
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C
IF (I_DO_IO) THEN
IERR = fread(raw_file_data(1,0),4*12,

& i_lines_to_read,file_stream)
IF (IERR .eq. i_lines_to_read) THEN
DO i = 0, i_lines_to_read-1
file_data(1,i)=raw_file_data(1,i)
file_data(2:4,i)=raw_file_data(2:4,i)*grow+1.
file_data(5:7,i)=raw_file_data(5:7,i)*vscale
file_data(8,i)=0.0
file_data(9,i)=0.0
file_data(10,i)=0.
file_data(11,i)=0.0
file_data(12,i)=raw_file_data(8,i)

END DO
CALL sort_distribution_table(file_data,

& distribution_table, i_lines_to_read)
ELSE
i_end_lines = IERR
MORE_2_DO = .FALSE.
DO i = 0, i_end_lines-1
file_data(1,i)=raw_file_data(1,i)
file_data(2:4,i)=raw_file_data(2:4,i)*grow+1.
file_data(5:7,i)=raw_file_data(5:7,i)*vscale
file_data(8,i)=0.0
file_data(9,i)=0.0
file_data(10,i)=0.
file_data(11,i)=0.0
file_data(12,i)=raw_file_data(8,i)

END DO
CALL sort_distribution_table(file_data,

& distribution_table, i_end_lines)
END IF

END IF
C

CALL barrier()
C
C Communicate the data: This is done by looping over
C the number of I/O processors (outer DO loop). Each I/O
C processor has to copy data it has to store from
C its own read-in array into some intermediate array
C (IF statements). All other processors have to receive
C data over the network (ELSE statement). Note that only
C one I/O processor enters the IF statement. The loop

119



C then ensures that the I/O processors send their data
C consecutively.
C i_size specifies the number of particles a processor
C is supposed to get
C i_start gives the position of the first particle it
C will get in the read in-array
C All processors except the current I/O processor
C may have to receive data. In order to check this, they
C grab a copy of the distribution table from the current
C I/O processor. If it has to get data this is communicated
C by means of shmem_get4.
C After the communication phase the particles are
C inserted into the particle lists of each individual
C processor (using a separate subroutine called
C insert_particle).
C

DO i_current_io_rank=0,IO_PROCS-1
IF ((I_DO_IO) .and.

& (i_current_io_rank.eq.MY_IO_RANK)) THEN
i_size=distribution_table(2,mype)
i_start=distribution_table(1,mype)
IF (i_size.gt.0) THEN
remote_file_data(:,0:i_size-1)=file_data(:,

& i_start:i_start+i_size-1)
END IF

ELSE
i_remote_pe=i_current_io_rank*io_proc_skip
CALL shmem_get(remote_distribution_table(1,0),

& distribution_table(1,0),2*npes,
& i_remote_pe)

i_start=remote_distribution_table(1,mype)
i_size=remote_distribution_table(2,mype)
IF (i_size.gt.0) THEN
CALL shmem_get4(remote_file_data(1,0),

& file_data(1,i_start),
& 12*i_size,i_remote_pe)

END IF
ENDIF
DO i=0, i_size-1

CALL insert_particle(remote_file_data(1,i))
END DO
CALL barrier()

END DO
C
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CALL count_cells_quiet(Nl,N2l,N3l)
sndint(1)=Nl
CALL barrier()
CALL shmem_fcollect(rcvint,sndint(1),1,0,0,

& npes,pSync)
how_many_particles(0:npes-1)=rcvint(1:npes)
sum1 = sum(how_many_particles)
IF (sum1 .eq. Nmax) THEN
MORE_2_DO = .FALSE.

END IF
CALL barrier()

END DO
C
C Close the files
C

IF(I_DO_IO) THEN
CALL fclose(file_stream)

END IF
RETURN
END
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Chapter 9

Summary

In this work, large N–body simulations were used to investigate different aspects of of the for-
mation and evolution of Large–Scale Structure (LSS). These aspects may be separated into two
main parts, namely the distribution of matter on very large scales, and the formation, evolution,
and properties of galaxy clusters.

On the largest scales, the distribution of mass forms a complicated network which qualita-
tively is very similar to the pattern which can be seen in galaxy catalogs. There, galaxies are
found preferentially in clusters, filaments, and sheets around large region with no or almost no
galaxies. It is not clear, whether the predominant component of LSS in galaxies is sheets or
filaments. In the simulations, the situation is similar if adaptively smoothed two–dimensional
representations of slices through the distribution of the Dark Matter are shown (compare e.g.
fig. A.4). Around big voids, clusters, filaments, and sheets appear. Of course, in the simula-
tion the connectedness of structure is more pronounced. All the haloes are interconnected by
a network of Dark Matter of low density. Even in the voids, small haloes can be found.

Three–dimensional representations of the adaptively smoothed density field reveal inter-
esting properties of LSS. In this work, an overdensity threshold was applied to the field and
the properties of mass above the threshold were investigated. For low overdensities (� < 2)
most of the overdense mass can be found in a single object which extends all across the uni-
verse – an effect known as percolation. The occupied volume, however, is only a few percent.
Apart from the biggest object, a plethora of small spherical objects exists. If the threshold is
increased, the biggest object starts to crumble and eventually (� � 4) breaks up into many
smaller objects, that is percolation ceases. There are small differences between the cosmolog-
ical models. The percolation thresholds and the mass and volume fractions differ for different
models. These differences can be understood in terms of the power spectra of the models and
their dynamical history. Visual representations give the impression that the biggest object is
a very complicated conglomerate of filaments (see e.g. fig. A.10). There has been an industry
trying to characterize LSS by inventing measures for its topology, geometry, and connected-
ness. In this work, the Minkowski functionals were computed for the density field. Further
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quantities were derived which give typical length scales. The amount of additional informa-
tion obtained, however, was rather poor. In particular, the size of the mesh used here was too
small. Some elements of LSS appear to have sizes of only a couple mesh cells or smaller. Basi-
cally, the Minkowski functionals confirm what visual impressions of the biggest object already
show. The derived quantities, like the ratio of the volume and the surface of the biggest object,
suggest that on average one dimension of this object is much larger than the other two dimen-
sions. The biggest object appears to consist of filaments and no sheets. For large overdensity
thresholds (� = 180), the biggest object is identical with the biggest cluster and is nearly spher-
ical.

Clusters of galaxies stand out in the LSS. They can be spotted easily in two–dimensional
representations and for high overdensities, they are by far the most massive objects in the den-
sity field. It is natural to investigate LSS from the perspective of cluster formation. This was
done in this work by reconstructing the formation process of galaxy clusters and relating it to
the surrounding LSS. Clusters form by the accretion of matter. In the CDM universes discussed
here, this process has no resemblance with a spherical collapse. Rather, smaller objects merge
to form larger objects. If the cluster center is defined as the barycenter of the most massive
progenitor, objects fall into the cluster from a few preferred directions. These directions are
constant in time and correspond to the locations of filaments and sheets. Although sheets do
not appear in the investigation of the three–dimensional smoothed density field, a few of these
objects can be seen if LSS is viewed from the center of a massive cluster. The overdensity of
the sheets is low. This fact may explain why they are only found this way.

There is another reason why clusters of galaxies are special objects. Their present day
masses are very big so matter had to be assembled from a large region of space in the early
Universe. Speaking in terms of the smoothed initial density field, clusters must have formed
from high peaks. This was checked in this work and indeed the majority of clusters can be as-
sociated with a high peak. More massive clusters tend to correspond to higher peaks although
there is some scatter in this relation. The formation redshifts of clusters are small (there is a
dependence on 
0 here). That means that for instance the peculiar velocities should not devi-
ate much from the predictions of Linear Theory. In particular, the velocities of clusters should
correspond to the velocities of their associated peaks. It turned out that the latter is indeed the
case if the velocities or the peaks in the initial density are compared with the velocities of the
particles in the initial conditions which end up in the cluster at present time. In addition, the
velocities of the peaks agree very well with the predictions of Linear Theory if the actual real-
ization of the power spectrum used in the simulations is taken. The choice of the filter which is
used in the smoothing does not change these results. However, the velocities of the clusters at
the present time are about 40% larger than the extrapolated linear velocities. If these deviations
are investigated on a cluster by cluster basis it turns out that for clusters which are themselves
part of superclusters, that is which have another cluster close by, the deviations are large.

The largest sample of simulated galaxy clusters ever was obtained from the Hubble Volume
Simulations which were done as part of this work. These simulations follow the evolution of
109 particles in regions which enclose significant fractions of the whole observable Universe.
These cluster samples were used to investigate a couple of points which could not be addressed
that accurately before. Recently, observations of massive clusters at a redshift of z � 0:8 have
added a new aspect to the debate about the density parameter 
0. In a Universe with 
0 = 1
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clusters form so late that one could not expect to find massive clusters at z � 0:8. The simu-
lation dumps at z = 0:78 from the two Hubble Volume Simulations were used to look for the
most massive objects which had formed by that time. Despite the uncertainties in the observa-
tions of massive clusters at z � 0:8 and despite the small sample currently available, it can be
concluded that the 
0 = 1 model fails to form such objects. The most massive clusters have
masses which are too small, and their number densities are far too low to be able to account for
the observations. The uncertainties in the observations is reflected by the most massive cluster
which is far too massive even for the flat low 
0 Hubble Volume Simulation. Clearly, for a
more detailed investigation, the observational sample has to grow.

As already indicated above, clusters themselves are clustered and not distributed homoge-
neously. A means to describe this is the two–point correlation function �(r). Conventionally,
the correlation function is investigated as a function of the abundance of clusters which is usu-
ally expressed via the mean separation of the sample, dc. This convention arose from the way
observationally complete samples are compiled. It was well known that the correlation length,
r0, which is defined via �(r0) = 1, depends on the cluster abundance. Sparser cluster samples
are more strongly clustered than less sparse samples. Thus, the amplitude of �(r) is larger for
the sparse samples which is reflected in the increase in r0. However, the relation between dc
and r0 has been controversial for decades now. A linear, that is fractal–like scaling was pro-
posed but new and large observational samples of clusters like the one from the APM galaxy
catalog do not support this scaling. The cluster samples from the Hubble Volume Simulations
show that r0 does not increase linearly with dc. The correlation function is well described by
the analytical theory developed by Mo & White which expresses �(r) of the clusters as �(r)
of the Dark Matter times a bias factor. Although the correlation lengths obtained by fitting the
Mo & White function are somewhat too large, the qualitative trend agrees very well. Again,
the flat low density model agrees better with the observational data.

Clearly, the work presented here shows how N–body simulations can be used to refine the-
ories and to investigate them in more and more detail as the simulation techniques get more and
more sophisticated. However, in a sense the times of very big Dark Matter only simulations
have come to an end because with the Hubble Volume Simulations the largest possible scales
have been reached. From now on, it will be necessary to add missing physics, that is baryons, in
the simulations to learn more about the formation and evolution of galaxies. Although analyti-
cal and phenomenological (or semi–analytical) models of galaxy formation have been refining
the knowledge of how galaxies form, the understanding of the processes contributing in some
way or another is still in its infancy. Clearly, in the future, N–body simulations which include
gas physics will be needed to learn more about the physics that governs the formation of galax-
ies or clusters of galaxies. The computer will always be a laboratory for theoreticians to take
the physical recipes and see what they lead to.
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Appendix A

Colour panels

The Simulation Sets

Figure A.1.: A slice through the SCDM Virgo simulation. The particles are binned up on a
mesh. The colour scale is logarithmic.
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Figure A.2.: The same slice through the SCDM Virgo simulation smoothed with a Gaussian
(kernel size 2.5 Mpc/h).

Figure A.3.: The same slice through the SCDM Virgo simulation smoothed with the adaptive
smoothing technique.
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Figure A.4.: A slice of thickness 8.5 Mpc/h through the �CDM GIF simulation at z = 0.
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Figure A.5.: Slice of thickness 1/10th of the box size through the four Virgo simulation at z =

0: SCDM (top left), �CDM (top right), �CDM (bottom left), and OCDM (bottom
right.
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Figure A.6.: Slice of thickness 1/10th of the box size through the four GIF simulation at z = 0:
SCDM (top left), �CDM (top right), �CDM (bottom left), and OCDM (bottom
right.
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Figure A.7.: Slice of thickness 1/10th of the box size through the four GIF simulation at z = 1:
SCDM (top left), �CDM (top right), �CDM (bottom left), and OCDM (bottom
right.
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Figure A.8.: Slice of thickness 1/10th of the box size through the four GIF simulation at z = 3:
SCDM (top left), �CDM (top right), �CDM (bottom left), and OCDM (bottom
right.
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The Distribution of Mass

Figure A.9.: An isooverdensity contour view of the complete �CDM box at an overdensity of
2. Shown are all objects above the threshold.
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Figure A.10.: An isooverdensity contour view of the complete �CDM box at an overdensity
of 2, shown is only the biggest object. This object contains roughly 50% of the
mass and occupies around 2.5% of the total volume.
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Figure A.11.: The same isooverdensity contour view of the biggest object as in figure A.10,
shown from different angles.
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Figure A.12.: An isooverdensity contour view of an eighth of the �CDM box at an overdensity
of 2, shown is a part the largest object. The isolated pieces are joined to the object
due to periodic boundaries.
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Figure A.13.: An isooverdensity contour view of the complete �CDM box at an overdensity
of 3, shown is again the largest object. It contains around 30% of the mass and
occupies around 1% of the volume. The isolated piece at the right edge is in fact
joined to the object due to periodic boundaries.
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Figure A.14.: The largest object in the �CDM box at an isooverdensity contour of 4. Due to
periodic boundaries the small piece at the right edge is joined with the left side
of the object. It is not clear whether there is still percolation. The fraction of the
mass in this object is now about 8% and it occupies less than 1% of the volume.
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Peculiar Velocities of Galaxy Clusters

Figure A.15.: The formation process of a cluster from the �CDM (leftmost panel) and the
�CDM (rightmost panel) simulation at z = 2 (top), z = 1 (middle), and z = 0

(bottom). The colour tables are the same for the two cosmologies.
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The Hubble Volume Simulations

Figure A.16.: A thin slice of thickness 20 Mpc/h through the �CDM Hubble Volume simula-
tion at z = 0.
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