
 

 

 

Aus der Klinik für Anästhesiologie 

Klinik der Ludwig-Maximilians-Universität München 

Vorstand: Prof. Dr. med. B. Zwißler 

 

 

Posttranskriptionelle Regulation des Mucins MUC5AC durch microRNAs 

 

 

Dissertation 

Zum Erwerb des Doktorgrades der  

Medizin an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu  

München 

Vorgelegt von 

Julián Antón 

aus München 

2020 

  



Mit Genehmigung der Medizinischen Fakultät der Universität München 

 

Berichterstatter:    Prof. Dr. Dr. Simone Kreth 

 

Mitberichterstatter:   Prof. Dr. Alexander Dietrich 

     Priv. Doz. Dr. Katja Anslinger 

 

 

 

 

Dekan:    Prof. Dr. med. dent. Reinhard Hickel 

 

Tag der mündlichen Prüfung:  03.12.2020 

  



Eidesstaatliche Versicherung 

 

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Titel 

„Posttranskriptionelle Regulation des Mucins MUC5AC durch microRNAs“ selbstständig 

verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle 

Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche 

kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln 

nachgewiesen habe.  

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in 

ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht 

wurde. 

 

 

München, den 04.12.2020      Julián Antón 

           

  



Inhaltsverzeichnis 
 

1 Einleitung ............................................................................................................................ 1 

1.1 ARDS – Definition, Inzidenz, klinische Bedeutung ....................................................... 1 

1.2 ARDS - Pathogenese .................................................................................................... 2 

1.3 Mucine – Produktion und Regulation .......................................................................... 3 

1.4 MicroRNAs ................................................................................................................... 4 

1.5 Ziele der Arbeit ............................................................................................................ 5 

2 Materialien .......................................................................................................................... 7 

2.1.1 Geräte ................................................................................................................... 7 

2.1.2 Verbrauchsmaterialien ......................................................................................... 8 

2.1.3 Assays und Kits ..................................................................................................... 9 

2.1.4 Reagenzien ......................................................................................................... 10 

2.1.5 Selbsthergestellte Gele und Medien .................................................................. 12 

2.1.6 Primer ................................................................................................................. 13 

2.1.7 Software ............................................................................................................. 14 

3 Angewandte Methoden .................................................................................................... 15 

3.1 Zellkultur .................................................................................................................... 15 

3.2 Transfektion mittels Elektroporation ........................................................................ 15 

3.3 RNA-Isolation ............................................................................................................. 16 

3.4 cDNA-Synthese .......................................................................................................... 16 

3.5 Bestimmung der mRNA-Expression mittels Realtime-PCR ....................................... 17 

3.6 3‘RLM-RACE ............................................................................................................... 18 

3.7 Klonierung StrataClone Kit......................................................................................... 20 

3.7.1 Polymerase Kettenreaktion ................................................................................ 20 

3.7.2 Ligation in Topovektor ....................................................................................... 21 

3.7.3 Transformation ................................................................................................... 21 



3.8 Plasmidpräparation mit Mini- und Midiprep ............................................................ 21 

3.9 Restriktionsverdau und Integration in den Reportervektor psiCHECK2 ................... 22 

3.10 Gelelektrophorese und Auswertung ......................................................................... 22 

3.11 Wizard PCR Clean-up ................................................................................................. 23 

3.12 Luciferase-Assay ........................................................................................................ 23 

3.13 TaqMan ...................................................................................................................... 24 

3.14 Statistische und bioinformatische Analysen ............................................................. 25 

4 Ergebnisse ......................................................................................................................... 26 

4.1 Untersuchung der relativen Genexpression von MUC5AC nach Dicer-Knockdown . 26 

4.2 MUC5AC-Genstruktur ................................................................................................ 27 

4.2.1 Ausgangssituation .............................................................................................. 27 

4.2.2 Überprüfung einer Überlappung von MUC5AC und MUC5AC-like .................... 27 

4.2.3 Ermittlung der Länge der 3‘-UTR ........................................................................ 30 

4.2.4 Sequenzierung der 3‘-UTR .................................................................................. 30 

4.3 Bioinformatische Identifikation potentiell regulierender miRNAs............................ 31 

4.4 Untersuchung der relativen Genexpression nach Transfektion mit miRNA ............. 32 

4.5 Luciferase-Assays ....................................................................................................... 33 

4.6 Untersuchung der Expression der untersuchten miRNAs in A549-Zellen ................. 34 

5 Diskussion der Ergebnisse ................................................................................................. 35 

6 Zusammenfassung ............................................................................................................ 39 

7 Summary ........................................................................................................................... 40 

8 Literaturverzeichnis .......................................................................................................... 41 

9 Abkürzungsverzeichnis ...................................................................................................... 46 

10 Abbildungsverzeichnis ................................................................................................... 47 

11 Danksagung ................................................................................................................... 48 

 

 



1 
 

1 Einleitung 

1.1 ARDS – Definition, Inzidenz, klinische Bedeutung 

Das akute Lungenversagen (acute respiratory distress syndrome, in der Folge mit seiner in 

Klinik und Literatur gebräuchlichen Abkürzung ARDS bezeichnet) ist ein lebensbedrohliches 

Krankheitsbild und als schwerwiegende Komplikation unterschiedlicher Grunderkrankungen 

gefürchtet. 

Seit der Erstbeschreibung durch David Ashbough im Jahre 1967 [1], war die Definition des 

ARDS wiederholtem Wandel unterworfen. Die seit 2012 gültige, von der internationalen 

ARDS-Taskforce erarbeitete, sog. Berlin-Definition fordert für die Diagnose eines ARDS den 

Nachweis bilateraler pulmonaler Infiltrate, welche nicht vollständig durch Pleuraergüsse, 

Atelektasen oder Rundherde zu erklären sind, innerhalb einer Woche nach Auftreten von 

Risikofaktoren oder respiratorischer Symptome. Auch müssen Herzinsuffizienz und 

Hypervolämie als primäre ätiopathogenetische Faktoren ausgeschlossen sein. Als 

Risikofaktoren zur Entwicklung eines ARDS wurden Pneumonie, Aspiration, 

Inhalationstrauma, Lungenkontusion, pulmonale Vaskulitis, Beinahe-Ertrinken, nicht-

pulmonale Sepsis, Trauma, Pankreatitis, Verbrennungen, nicht-kardiogener Schock, 

Intoxikationen und Massentransfusion (transfusion associated acute lung injury, TRALI) 

determiniert. [2-5] 

Wie wiederholte epidemiologische Studien zeigen konnten, ist die Pneumonie, gefolgt von der 

Sepsis nicht-pulmonaler Genese, der häufigste Risikofaktor für die Entwicklung eines ARDS. 

[3, 5, 6] 

Entsprechend der zuvor allgemein anerkannten Definition (AECC-Definition)[7] bedient sich 

auch die Berlin-Definition des Horowitz-Quotienten (PaO2/FiO2) als Maß der Hypoxie zur 

Einteilung des Schweregrades des ARDS. Hiermit werden aktuell drei Schweregrade 

unterschieden. Ab einem Horowitz-Index kleiner 300mmHg bis 200mmHg wird von einem 

milden, von 200 bis 100mmHg von einem moderaten und kleiner 100mmHg von einem 

schweren ARDS gesprochen. Voraussetzung hierfür ist in allen Fällen jeweils eine maschinelle 

Beatmung, beim milden ARDS sowohl nicht-invasiv als auch invasiv mit einem CPAP bzw. PEEP 

von mindestens 5mmHg. Beim moderaten und schweren ARDS wird zur Applikation der 

Klassifikationskriterien stets eine invasive Beatmung mit einem PEEP ≥5mmHg gefordert. [2, 

3, 5] 
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Die Bezeichnung der Acute Lung Injury (ALI) für alle Patienten mit einem Horowitz-Index ≤ 

300mmHg welche noch in den AECC-Definitionen existent und dementsprechend auch in der 

zitierten Literatur noch wiederholt anzutreffen ist, gilt demnach in diesem Zusammenhang als 

veraltet und wird im Folgenden nicht mehr verwendet und durch den Oberbegriff des ARDS 

ersetzt.  

Zur Inzidenz in der Gesamtbevölkerung lässt sich bei großen regionalen Unterschieden der 

erhobenen Daten und einer Spanne der errechneten Inzidenzen von ca. 4 – 100/100.000 

Personenjahren keine zuverlässige Aussage treffen. Zudem sind die in den letzten Jahrzehnten 

publizierten Studienergebnisse bei wiederholt geänderter ARDS-Definition nur eingeschränkt 

vergleichbar. [3, 6, 8-15] 

In der internationalen, multizentrischen, prospektiven LUNG-SAFE-Studie, der bislang einzigen 

größeren Studie, im Rahmen derer die aktuelle Berlin-Definition als Grundlage der 

Datenauswertung verwendet wurde, wird die Inzidenz des ARDS unter allen intensivstationär 

aufgenommenen Patienten jedoch mit >10%, bei allen maschinell beatmeten sogar mit >23%, 

angegeben, was dieses Krankheitsbild zu einem der relevantesten in der Intensivmedizin 

macht. [6] 

Dennoch ist die Letalität trotz intensiver Forschungsbemühungen, in Abhängigkeit vom 

Schweregrad, nach wie vor hoch (mild: 35%, moderat: 40%, schwer: 46%). [6] Durch 

weiterentwickelte Beatmungskonzepte und supportive Maßnahmen konnte diese im 

Gegensatz zu den 80er-Jahren des letzten Jahrhunderts gesenkt werden. Bei weiterhin 

fehlendem pharmakologischem Therapieansatz wurde in den vergangenen Jahrzehnten 

jedoch keine signifikante Verbesserung mehr erzielt.[3, 5, 8, 14, 16-18] 

Zusätzlich zur hohen Krankenhausmortalität ist bei vielen der Betroffenen eine 

langanhaltende Minderung der Lebensqualität und der Erwerbsfähigkeit zu beobachten. [19-

25] 

1.2 ARDS - Pathogenese 

Ätiopathogenetisch wird dem ARDS eine Inflammationsreaktion zugrunde gelegt, im Rahmen 

derer es, nach Epithel- (z.B. im Rahmen einer Pneumonie) oder Endothelschädigung (z.B. im 

Rahmen einer systemischen Inflammationsreaktion bei Sepsis) zur Aktivierung und Migration 

vor allem polymorphkerniger neutrophiler Granulozyten in das Lungengewebe kommt. 

Infolge dessen, kommt es durch Zunahme der Permeabilität der alveolokapillären Membran, 
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zur Ausbildung eines interstitiellen und im Verlauf intraalveolären Lungenödems. Durch 

Surfactant-Mangel und das dem Ödem geschuldete gesteigerte Eigengewicht der Lunge 

kommt es zudem zum Alveolarkollaps und der Ausbildung von Atelektasen. [3, 26-31] 

Des Weiteren konnte die schädigende Wirkung einer Mucinhypersekretion im Rahmen eines 

ARDS experimentell nachgewiesen werden. [32] Physiologisch hat die bronchiale 

Schleimsekretion eine mechanische, chemische und immunologische Schutz- und 

Abwehrfunktion. Im aus Wasser (97%) und soliden Anteilen (3%), insbesondere Mucinen, 

Zellresten und Lipiden bestehenden Gel des Atemwegsmucus sammeln sich inhalierte Noxen 

und werden durch Hustenstoß und Zilienschlag aus dem Bronchialsystem befördert. [33] 

1.3 Mucine – Produktion und Regulation 

Mucine sind eine heterogene Gruppe großer Glykoproteine, welche sowohl als 

membrangebunden (z.B. MUC1, MUC3A/B, MUC4 und MUC11-18) als auch als sekretorisch 

(MUC2, MUC5AC/B-9) beim Menschen vorkommen. Den sekretorischen Mucinen kommt 

dabei eine tragende Rolle in Bezug auf Struktur und Funktionalität des Schleimes zu. Die im 

Atemwegssekret des Menschen dominanten, und damit hier relevanten, Mucine sind 

MUC5AC und MUC5B. [33]  

Durch Hypersektretion besagter Mucine, kommt es zur Erhöhung der Viskosität und damit zu 

einem erschwerten Abtransport. Dies ist bereits seit längerem als pathogenetischer 

Mechanismus chronischer Atemwegserkrankungen wie dem Asthma bronchiale, der 

chronisch-obstruktiven Lungenerkrankung und der zystischen Fibrose bekannt. [33, 34]  

Für die MUC5AC-Produktion sind verschiedene Regulationsmechanismen bekannt. So konnte 

eine Anregung der Produktion durch proinflammatorische Cytokine (IL-1ß, IL-17A) über den 

NF-κB Signalweg, Lipopolysaccharid (LPS) oder den Tumornekrosefaktor α (TNF- α) 

nachgewiesen werden. [35-38] 

In Bezug auf das ARDS konnte im Mausmodell eine deutliche Hypersekretion von MUC5AC 

durch mechanische Ventilation induziert werden, während die MUC5B-Produktion im 

Vergleich zu Negativkontrolle weitgehend konstant blieb. Neben der gesteigerten 

Mucusviskosität zeigte sich bei Wildtyp-Mäusen, im Gegensatz zur Versuchsreihe mit muc5ac 

-/--Mäusen eine deutlich ausgeprägtere Inflammationsreaktion mit vermehrter Rekrutierung 

polymorphkerniger Neutrophiler, was auch eine immunologisch abträgliche Rolle der 

Mucinhypersekretion nahelegt. [32, 39]  
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Eine spezifische Pharmakotherapie zur Reduktion der MUC5AC-Produktion konnte bisher, 

trotz erster in-vitro-Ansätze [40-47], nicht entwickelt werden. Daher soll in der vorliegenden 

Arbeit ein weiterer potentieller therapeutischer Ansatzpunkt untersucht werden: eine 

mögliche postranskriptionelle Regulation von MUC5AC durch microRNAs. 

1.4 MicroRNAs 

MicroRNAs (miRNAs) sind endogene, kurze, nicht-kodierende RNA-Moleküle mit einer Länge 

von 20-24 Nukleotiden, welche durch Bindung an komplementäre Basensequenzen im 3‘-

untranslatierten Bereich (3‘-UTR) spezifischer mRNAS in die posttranskriptionelle 

Genregulation eingreifen. [48] 

Seit der Erstbeschreibung der miRNAs 1993 im Fadenwurm Caenorhabditis elegans [49, 50] 

konnten mittlerweile auch im menschlichen Organismus über zweitausend miRNAs 

identifiziert werden, deren spezifische Funktionen jedoch teils noch unklar sind. Es wird 

jedoch geschätzt, dass mehr als 60% aller proteinkodierenden menschlichen Gene einer 

posttranskriptionellen Regulation durch miRNAs unterliegen, wobei eine einzelne miRNA an 

einer Vielzahl von Genen regulatorisch wirksam sein kann. [51] 

Die die miRNA-Moleküle codierenden Gene liegen heterogen im menschlichen Genom 

verteilt.  Etwa die Hälfte der derzeit bekannten miRNA-Gene liegen intragenisch, d.h. 

innerhalb anderer proteincodierender Gene, der Rest intergenisch, entfernt von bislang 

beschriebenen Genen.[52]   

Die Biogenese der miRNAs (siehe Abbildung 1) beginnt im Zellkern mit der Transkription einer 

primären miRNA (pri-miRNA) von 200 bis zu mehreren Tausend Nukleotiden (nt) Länge durch 

die RNA-Polymerase II. Durch weitere Prozessierung durch die dsRNA-spezifische Rnase III 

Drosha entstehen hieraus sogenannte Vorläufer-miRNAs (pre-miRNA), haarnadelförmig 

strukturierte Moleküle von 60-100nt Länge, welche GTP-abhängig durch Exportin-5 in das 

Zytoplasma transportiert werden. Dort entstehen durch Ausschnitt aus den pre-miRNAs durch 

eine weitere Rnase III, Dicer, die reifen, kurzen miRNAS in Form eines RNA-Doppelstranges. 

Der energetisch stabilere der beiden Stränge findet Eingang in den, neben der miRNA u.a. 

noch aus den Argonaut-Proteinen, Dicer, RNA-Helikasen und dem „trans-activation-

responsive RNA binding protein“ (TRBP) bestehenden, „RNA induced silencing complex“ 

(RISC). Dieser bindet, gesteuert durch die miRNA, an spezifische mRNAs. Die kovalente 

Bindung zwischen miRNA und mRNA erfolgt über die 6-8 nt lange, am 5‘-Ende der miRNA 
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lokalisierten „seed“-Region an die komplementäre Sequenz der mRNA. Eine vollständige 

Komplementarität ist hierbei nicht notwendig, ihr Grad hat jedoch Einfluss auf die weitere 

Regulation. So wird die mRNA bei vollständiger Komplementarität direkt abgebaut, bei 

unvollständiger wird ihre Translation gehemmt. [48, 51, 53-66] 

 

1.5 Ziele der Arbeit 

Zu Beginn der Experimente war nicht nur die Rolle der microRNAs in der Regulation von 

MUC5AC gänzlich unbekannt, auch die für die weiteren Untersuchungen entscheidende 

genaue Sequenz der 3‘-UTR war nicht bekannt. In den Gendatenbanken war keine einheitliche 

Sequenz zu MUC5AC angegeben, sodass das erste Ziel der Arbeit die Untersuchung der 

Genstruktur von MUC5AC und die Determinierung der Länge und Sequenz der 3‘-UTR war. 

Nach Erlangung dieser Kenntnis bestand das zweite Ziel in der Identifikation auf die MUC5AC-

Expression regulatorisch wirksamer miRNAs in vitro. 
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Abbildung 1: A: Schematische Darstellung der miRNA-Biosynthese. Transkription der miRNA-

Gene durch die Polymerase 2/3, Prozessierung durch den Drosha-Komplex und Transport in 

das Zytoplasma durch Exportin-5. Ausschnitt der reifen miRNAs aus der pre-miRNA durch die 

RNAse Dicer. B: Zielerkennung und Genregulation durch Integration in den RISC. [52] 
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2 Materialien 

Alle für die Erstellung der Dissertation verwendeten Materialien und deren Hersteller finden 

sich nachfolgend alphabetisch aufgelistet. Wenn möglich sind die Firmensitze in Deutschland 

angeben. 

2.1.1 Geräte 

Autoklav DE-45 Systec GmbH, Wettenberg 

Eluator™ Vacuum Elution Device Promega GmbH, Mannheim 

E-BOX VX2 Geldokumentationssystem PEQLAB Biotechnologie GmbH, Erlangen 

Feinwaage MP 300 Chyo Balance Corp.,Kyoto, Japan 

Inkubationsschrank CB 150 Binder GmbH, Tutttlingen 

Inkubationsschrank BD 115 (Mikrobiologie) Binder GmbH, Tutttlingen 

Kompaktthermoschüttler KS 15 Control mit 

Inkubationshaube TH 15 

Edmund Bühler GmbH, Hechingen 

 

Heizblock Thermostat 5320 Eppendorf AG, Hamburg 

Heizblock BT3 
Grant Instruments (Cambridge) Ltd, 

Shepreth, GB 

Light Cycler® 480 Roche Diagnostics GmbH, Mannheim 

Mikroskop Modell IB Exacta + Optech, San Prospero (MO), Italien 

Mikrozentrifuge Centrifuge 5415 R Eppendorf AG, Hamburg 

Mikrozentrifuge Centrifuge 5424 R Eppendorf AG, Hamburg 

Mikrozentrifuge Mikro 200 Andreas Hettich GmbH  Co. KG, Tuttlingen 

Milli-Q® Advantage A10 Ultrapure Water 

Purification System 

Millipore GmbH, Schwalbach am Taunus 

 

Multimode Microplate Reader Filter Max F3 
Molecular Devices (Germany) GmbH,         

Biberach an der Riss 

Neon™ Pipette Invitrogen GmbH, Darmstadt 

Neon™ Transfection System Invitrogen GmbH, Darmstadt 

Pipettierhilfe Pipetboy comfort Integra Bioscienences GmbH,Fernwald 

Pipetten Eppendorf Reference® Eppendorf AG, Hamburg 
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Power Pac Basic Electrophoresis Power 

Supply Unit 
Bio-Rad Laboratories GmbH, München 

RCT basic (Magnetrührer mit Heizung) IKA®-Werke GmbH  Co. KG, Staufen 

Standard Power Pack P25 Biometra GmbH, Göttingen 

Sterilwerkbank Hera Save Heraeus Holding GmbH, Hanau 

Sub-Cell® GT Elektrophorese System Bio-Rad Laboratories GmbH, München 

Spectrophotometer NanoDrop 2000 PEQLAB Biotechnologie GmbH, Erlangen 

Thermocycler Mastercycler® gradient Eppendorf AG, Hamburg 

Thermocycler Mastercycler® pro S Eppendorf AG, Hamburg 

Ultrazentrifuge TGA-50 Hemotec, Gelterkinden; CH 

Vakuumsaugpumpe BVC 21 Vacuubrand GmbH & Co. KG, Wertheim 

Vi-Cell™ XR Cell Viability Analyzer Beckman Coulter GmbH, Krefeld 

Vortexschüttler REAX 2000 

 

Heidolph Instruments GmbH & Co. KG, 

Schwabach 

Vortexschüttler VF2 IKA®-Werke GmbH  Co. KG, Staufen 

Wasserbad SWB 25 Haake-Technik, Vreden 

Wasserbad TW 20 JULABO GmbH, Seelbach  

Zentrifuge Multifuge 3S-R Heraeus Holding GmbH, Hanau 

Zentrifuge Varifuge 3.0R Heraeus Holding GmbH, Hanau 

Zentrifuge Megafuge 40R Heraeus Holding GmbH, Hanau 

2.1.2 Verbrauchsmaterialien 

CELLSTAR® 6 bzw. 12 Well Zellkultur 

Multiwell Platten 

Greiner Bio-One, GmbH, Frickenhausen 

 

CELLSTAR® Filter Top Zellkultur Flaschen 25 

T/ 75 T 

Greiner Bio-One, GmbH, Frickenhausen 

 

CELLSTAR® Tubes 50 ml Greiner Bio-One GmbH, Frickenhausen 

Handschuhe Latex, unsteril Sempermed, Wien, Österreich 

Handschute Latex frei, unsteril Sempermed, Wien, Österreich 

Light Cycler® 480 Multiwell Plates 96, Plates 

with sealing foil 

Roche Diagnostics GmbH, Mannheim 
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Petrischalen Sarstedt AG & Co., Nürnbrecht 

Pipettenspitzen, steril Eppendorf AG, Hamburg 

Pipettenspitzen, unsteril Sarstedt AG & Co., Nürnbrecht 

Pipettenspitzen mit Filter, steril Biozym Scientific GmbH, Hessisch Oldendorf 

Reagenzröhrchen 0,5 ml/ 1,5 ml, steril Eppendorf AG, Hamburg 

Reagenzröhrchen 2 ml, steril 

 
Biozym Scientific GmbH, Hessisch Oldendorf 

Reagenzröhrchen 1,5 ml, 2 ml, 5 ml, 13 ml 
Sarstedt AG & Co., Nürnbrecht 

 

Reagenzröhrchen 0,2 ml, autoklaviert Eppendorf AG, Hamburg 

Stripette® 5 ml/ 10 ml/ 25 ml, steril Corning New, York, Amerika 

Vi-Cell Reagent Pak Beckman Coulter GmbH, Krefeld 

2.1.3 Assays und Kits  

Dual Glo® Luciferase Assay System Promega GmbH, Mannheim 

mirVana™ miRNA Isolation Kit Life Technologies GmbH, Darmstadt 

Neon™ Transfection System 10 µl Kit Invitrogen GmbH, Darmstadt 

Neon™ Transfection System 100 µl Kit Invitrogen GmbH, Darmstadt 

Pierce® BCA Protein Assay Kit Fisher Scientific- Germany GmbH, Schwerte 

Pure Yield™ Plasmid Midiprep System Promega GmbH, Mannheim 

QIAprep® Spin Miniprep Kit Qiagen GmbH, Hilden 

QuickChange® Lightening Site-Directed 

Mutagenesis Kit 

Agilent Technologies, Waldbronn 

 

RNAqueous®-Phenol-free total RNA Isolation 

Kit 

Life Technologies GmbH, Darmstadt 

 

StrataClone Ultra Blunt PCR Cloning Kit Agilent Technologies, Waldbronn 

StataClone™ Solo Pack® Compentent Cells Agilent Technologies, Waldbronn 

SuperScript™ III Reverse Transcriptase Kit Invitrogen GmbH, Darmstadt 

TaqMan® MicroRNA Assay für  

hsa-miR 193a-3p 

 

Applied Biosystems Deutschland GmbH, 

Darmstadt 
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TaqMan® MicroRNA Assay für  

hsa-miR 92a-2-5p 

 

Applied Biosystems Deutschland GmbH, 

Darmstadt 

TaqMan® MicroRNA Assay für Kontrolle U47 
Applied Biosystems Deutschland GmbH, 

Darmstadt 

TaqMan® MicroRNA Reverse Transcription 

Kit 

Applied Biosystems Deutschland GmbH, 

Darmstadt 

TURBO DNA-free™ Kit Life Technologies GmbH, Darmstadt 

Wizard® SV and PCR Clean-Up System Promega GmbH, Mannheim 

2.1.4 Reagenzien 

6 x DNA Loading Dye Fisher Scientific- Germany GmbH, Schwerte 

Agar AppliChem GmbH, Darmstadt 

Agarose Serva Tablets (0,5 g/ Tablette) SERVA Electrophoresis GmbH, Heidelberg 

Cell Lysis Buffer ( 10x) 

 

Cell Signaling Technology, Inc., Danvers, 

Massachusetts, USA 

Desoxyribonukleosidtriphosphate (dNTPs) Roche Diagnostics, Mannheim 

DMEM (Dulbecco’s Modifieds Eale Medium) Lonza Cologne GmbH, Köln 

DNA Ladder 100 bp Promega GmbH, Mannheim 

DNA Ladder 1 kb Thermo Fisher sientific Inc., Waltham, USA 

Ethanol 100% für Molekularbiologie Merck KGaA, Darmstadt 

Ethanol vergällt 80% Apotheke Innenstadt, Universität München 

Ethidiumbromid SERVA Electrophoresis GmbH, Heidelberg 

Fetal Calf Serum (FCS) Biochrom AG, Berlin 

Glycerol (100 %) Sigma-Aldrich Chemie GmbH, Steinheim 

Hefeextrakt SERVABACTER® pulverförmig SERVA Electrophoresis GmbH, Heidelberg 

HEPES Sigma-Aldrich Chemie GmbH, Steinheim 

L-Glutamin 200 mM Biochrom AG, Berlin 

Fast Start Essential DNA Probesmaster  Roche Diagnostics GmbH, Mannheim 

Natriumchlorid Merck KGaA, Darmstadt 

New England Buffer 2 (10x) 

 

New England BioLabs GmbH, Frankfurt am 

Main 
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Oligo-dT Primer Qiagen GmbH, Hilden 

ON-TARGETplus Non-targeting Pool  Fisher Scientific– Germany GmbH, Schwerte 

ON-TARGETplus SMARTpool Human Dicer1-

siRNA 
Fisher Scientific– Germany GmbH, Schwerte 

Penicillin/Streptomycin Biochrom AG, Berlin 

peqGREEN non-toxic DANN and RNA dye PEQLAB Biotechnologie GmbH, Erlangen 

Phosphate Buffered Saline (PBS), pH 7,4 Apotheke Innenstadt, München 

Pre-miR™ miRNA Precursor Molecules  

hsa-miR-193a-3p 

Life Technologies GmbH, Darmstadt 

 

Pre-miR™ miRNA Precursor Molecules  

hsa-miR-92a-2-5p 

Life Technologies GmbH, Darmstadt 

 

Pre-miR™ miRNA Precursor Molecules  

Negative Control #1 

Life Technologies GmbH, Darmstadt 

 

psiCHECK™-2 Vektor Promega GmbH, Mannheim 

Random Hexamers Qiagen GmbH, Hilden 

Restriktionsenzym PmeI 

 

New England BioLabs GmbH, Frankfurt am 

Main 

Restriktionsenzym NotI 

 

New England BioLabs GmbH, Frankfurt am 

Main 

RNaseOut™ Recombinant Ribonuclease 

Inhibitor 

Invitrogen GmbH, Darmstadt 

 

RPMI-Medium Sigma-Aldrich Chemie GmbH, Steinheim 

T4 DNA Ligase Promega GmbH, Mannheim 

T4 DNA Ligase Puffer 10x Promega GmbH, Mannheim 

Taq Polymerase Jena Bioscience GmbH, Jena 

Taq Polymerase 10x Reaktionspuffer Jena Bioscience GmbH, Jena 

Tris-Borat-EDTA (TBE)-Puffer 5x, pH 8,3 Amresco Inc., Solon, USA 

Trypsin/EDTA Solution Biochrom AG, Berlin 

Trypton AppliChem GmbH, Darmstadt 

Vi-Cell Reagent Pak Beckman Coulter GmbH, Krefeld 
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2.1.5 Selbsthergestellte Gele und Medien 

Gele 

1%iges Agarose-Gel 

Agarose 1g 

TBE-Puffer 100ml 

Ethidiumbromid 7,5µl 

oder  

peqGREEN 2µl 

 

Medien 

A549-Medium 

RPMI-Medium 500 ml 

FCS (hitzeinaktiviert) 10% 

L-Glutamin 1 % 

Penicillin-Streptomycin 1 % 

HEPES 1 % 

 

LB-Medium (lysogeny broth) 
 

Trypton 5 g 

Natriumchlorid 5 g 

Hefeextrakt 2,5 g 

ddH2O 500 ml 

 

LB-Agar 

Trypton 5 g 

Natriumchlorid 5 g 

Hefeextrakt 2,5 g 

Agar 7,5 g 

ddH2O 500 ml 
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2.1.6 Primer  

Primer für Real-Time-PCR und Universal Probe Library (UPL) Set, Human von Roche 

Diagnostics GmbH, Mannheim 

Verwendete Real-Time-PCR-Primer und UPL-Sonden… 

UPL-Sonde Primerbezeichnung Sequenz 

#132 SDHA #132 forward 5‘-GAG GCA GGG TTT AAT ACA GCA-3‘ 

 SDHA #132 reverse 5‘-CCA GTT GTC CTC CTC CAT GT-3‘ 

#42 B2M #42 forward 5’-TTC TGG CCT GGA GGC TAT-3’ 

 B2M #42 reverse 5’-TCA GGA AAT TTG ACT TTC CAT-3’ 

#18 MUC5AC #18 forward 5’-GTC ATC CAG CTG ACC AAG G-3’ 

 MUC5AC #18 reverse 5’-GAC CCC AGA CTG GCT GAA G-3’ 

#47 DICER1 #47 forward 5’-AGC AAC ACA GAG ATC TCA AAC-3’ 

 DICER1 #47 reverse 5’-GCA AAG CAG GGC TTT TCA T-3’ 

PCR-Primer 

MUC5AC_1 for ATCAGGAACAGCTTCGAGGA 

MUC5AC_2 for CTAGTGGGAGAGCCATCAGC 

MUC5AC_3 rev CCTGGTGATCTCCTCAGGTC 

MUC5AC_UTR_A_for GTTTAAACACGACAGGAAGGATGAGTGC 

MUC5AC_UTR_A_rev GCGGCCGCTCCTGGTGCTTCTCACACTG 

MUC5AC_UTR_B_for GTTTAAACGGACAGTGTGCAGCATCAAC 

MUC5AC_UTR_B_rev GCGGCCGCTGAGGGCTGAGGTAGGAGTG 

MUC5AC_UTR_C_for GTTTAAACAGTCCAGGTCATGTTCTCCG 

MUC5AC_UTR_C_rev GCGGCCGCCTCTTGCTGGTGTTGGTGAC 

MUC5AC_Seq_for CTGGGAGTCCAGGTCATGTT 
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MUC5AC_Seq_rev CGTAGCAGTAGGAGGGGTTG 

MUC5AC_Seq_HuRefVer1_for GGACAAGATGCAGTGTGTGG 

MUC5AC_Seq_HuRefVer1_rev GGAGGTAGTTGGAGGAGTGG 

MUC5AC_UTR_B2 forward 5‘-GTTTAAACATGACCCTCTTCAGCACCAG-3‘ 

MUC5AC_UTR_B2 reverse  GCGGCCGCGCAACAGACTGGCCATGTAC 

MUC5AC_Seq_Ver2_for 5‘-TGCGAATCACCCAGGTCG-3‘ 

MUC5AC_Seq_Ver2_rev 5‘-CCTCTGTGTGGCTGCAGA-3 

Sequenzierungsprimer 

PsiCheck 2 5‘-ACC CTG GGT TCT TTT CCA AC-3‘ 

 

 

2.1.7 Software 

BLAST® http://blast.ncbi.nlm.nih.gov/Blast.cgi 

Light Cycler® 480 Relative 
Quantification Software 

Roche Diagnostics GmbH, Mannheim 

 

Microsoft® Office 2013 Microsoft Deutschland GmbH, Unterschleißheim 

NEBcutter Version 2.0 http://tools.neb.com/NEBcutter2/ 

Primer3 Input Version 0.4.0 http://frodo.wi.mit.edu/primer3/ 

PubMed http://www.ncbi.nlm.nih.gov/pubmed/ 

Graphpad PRISM GraphPad Software, La Jolla, California USA 

EndNote X7 Thomson Reuters Deutschland GmbH, Frankfurt am Main 
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3 Angewandte Methoden 

3.1 Zellkultur 

Für die Versuche wurden humane Lungenepithelzellen der A549-Reihe (ATCC CCL-185) 

verwendet. Die Zelllinie der A549-Zellen entstammt einem humanen Adenokarzinom der 

Lunge und wurde, aufgrund ihrer guten Kultivier- und Handhabbarkeit, als allgemein 

etablierte Standardzellreihe für Zellkultur und Transfektionsexperimente auch für diese Arbeit 

gewählt.   

Die Kultivierung erfolgte bei 37°C und 5% CO2 in einem speziellen Nährmedium (siehe 2.1.5) 

in 75T-Kulturflaschen der Firma Greiner Bio. 

Zur Weiterverarbeitung oder Subkultivierung der Zellen wurde das Nährmedium abgesaugt, 

Reste mit PBS-Lösung ausgewaschen, der adhärente Zellrasen anschließend mit 

Trypsin/EDTA-Lösung gelöst, abzentrifugiert und in Medium resuspendiert. 

Die Bestimmung der Zellzahl und –viabilität erfolgte durch eine Tryptanblaufärbung mit Hilfe 

des Vi-Cell XR Cell Viability Analyzers. Für das weitere Vorgehen wurde ausschließlich die Zahl 

der vitalen Zellen berücksichtigt. 

Jegliche Arbeit an geöffneten Zellkulturflaschen oder –platten erfolgte unter einer 

Sterilwerkbank. 

3.2 Transfektion mittels Elektroporation 

Die Transfektion mittels Elektroporation erfolgte am Neon Transfection System der Firma 

Invitrogen mit folgenden Spezifikationen: 

 

Zellen Spannung Pulsdauer Anzahl der Pulse Pipettenspitzen 

A549 1230V 30ms 2 100µl 

HEK 1100V 20ms 2 100µl 

 

Zunächst wurden die Zielzellen gezählt, zentrifugiert und das Pellet im Resuspensionspuffer R 

des Neon Kits gelöst. Nach Hinzugabe der zu transfizierenden Agenzien, miRNA, siRNA oder 

Reportervektor, erfolgte die Transfektion. 

Im Anschluss wurden die Zellen in Multiwellplatten für mindestens 24h inkubiert, Zeiten 

werden im Folgenden jeweils angegeben. 



16 
 

3.3 RNA-Isolation 

Die Isolation der Gesamt-RNA der verwendeten Zellen erfolgte mithilfe der Kits miRvana oder 

RNAqueous von Life Technologies gemäß den Angaben des Herstellers. 

Anschließend wurde die RNA mit 30µl nukleasefreiem Wasser eluiert und einer Aufbereitung 

mit DNAse unterzogen (Turbo DNA-free Kit, Life Technologies). 

Dazu wurden der RNA-Lösung 5,5µl 10x DNAse Puffer und 1µl Turbo DNAse zugegeben und 

der Ansatz 30min bei 37°C inkubiert. Darauf folgend wurden 5,5µl DNAse-Inactivation Reagent 

hinzugefügt und nach einer zweiminütigen Inkubation bei Raumtemperatur eine 

Zentrifugation mit 16000*g durchgeführt. Der Überstand wurde in ein steriles Gefäß überführt 

und gekühlt. 

Eine Messung des RNA-Gehalts der gewonnenen Lösung erfolgte spektralphotometrisch am 

NanoDrop 2000 bei 260nm Wellenlänge. 

3.4 cDNA-Synthese 

Aus den gewonnen RNA-Proben wurde zur anschließenden Verwendung in der Realtime-PCR 

cDNA synthetisiert. Dies erfolgte unter Verwendung des SuperScript III Reverse Transciptase-

Kits nach Angaben des Herstellers. 

RNA-Proben wurde eine konzentrationsabhängige Menge nukleasefreies H2O zugesetzt, um 

jeweils 10µl Lösungen mit identischen RNA-Mengen zu erhalten. 

Anschließend wurde folgender Versuchsansatz für 5min bei 65°C inkubiert: 

10µl RNA-Lösung 

1µl Random Hexamers 

1µl Oligo dTs 

1µl dNTPs 
 

Nach der Inkubation wurden zu jedem Ansatz folgende Reagenzien hinzugefügt: 

4µl First strand Buffer 

1 µl 0,1M DTT 

1 µl RNAse Out 

1 µl SuperScript RTase 
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Die reverse Transkription erfolgte im Thermocycler in einem dreistufigen Temperaturverlauf: 

5min 25°C 

45min 50°C 

15min 70°C 
 

Die cDNA wurde bis zur weiteren Verwendung bei max. 4°C gekühlt gelagert. 

 

3.5 Bestimmung der mRNA-Expression mittels Realtime-PCR 

Die Quantifizierung der mRNA-Expression erfolgte in Duplikaten am Lightcycler 480 unter 

Verwendung der Housekeeping-Gene SDHA und B2M durchgeführt. 

Dazu wurden pro Well 10ng cDNA mit 4,4µl nuklease-freiem Wasser versetzt und jeweils 

folgender Versuchsansatz beigemischt: 

 

0,2µl Primer forward 

0,2µl Primer reverse 

480µl ProbesMaster 

0,2µl  UPL-Sonde 
 

Die Amplifikation erfolgte unter folgenden Bedingungen: 

95°C 10min 

50 Zyklen:  

 95°C 10s 

 60°C 30s 

 72°C 60s 

40°C 30s 
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3.6 3‘RLM-RACE                                                                                          

Zur Amplifikation der 3‘-UTR wurde eine 3‘-RLM-RACE (RNA ligase mediated rapid 

amplification of cDNA-ends) durchgeführt. Diese erfolgte unter Verwendeung des FirstChoice 

RLM-RACE Kits in einem dreistufigen Prozess. 

 

Zunächst erfolgte die reverse Transkription der RNA-Probe zur cDNA-Synthese unter 

folgendem Versuchsansatz: 

10µl RNA-Probe (1µg) 

4µl dNTP-Mix 

2µl 3’RACE-Adapter 

2µl 10x RT Buffer 

1µl RNAse Inhibitor 

1µl M-MVL Reverse Transcriptase 

 
Dieser Ansatz wurde für 60min bei 42°C im Thermocycler inkubiert. 

Im Anschluss erfolgte eine Outer 3’RLM-RACE-PCR bei folgendem Versuchsansatz: 

1µl cDNA 

2.5µl Pfu Ultra 10x Buffer 

4µl dNTPs 

2µl 3’RACE Outer Primer 

2 µl MUC5AC for-Primer 

0.25µl Pfu II Ultra Polymerase 

13.25µl Nukleasefreises Wasser 
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Anschließend wurde eine Inner 3’RLM-RACE-PCR mit folgendem Ansatz durchgeführt: 

1µl Outer RACE-Produkt 

5µl Pfu Ultra 10x Buffer 

4µl dNTPs 

2µl 3’RACE Inner Primer 

2 µl MUC5AC for-Primer 

0.25µl Pfu II Ultra Polymerase 

35.75µl Nukleasefreises Wasser 
 

Sowohl Outer- als auch Inner-RACE-PCR erfolgten unter Verwendung des folgenden 

Programms im Thermocycler: 

94°C 3min 

40 Zyklen:  

 94°C 30s 

 Gradient (59-62°C) 30s 

 72°C 5min 

72°C 7min 
 

Das RACE-Produkt wurde im Agarose-Gel mittels Elektrophorese analysiert. 
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3.7 Klonierung StrataClone Kit 

Die Klonierung von DNA in kompetente E.coli Stämme erfolgte unter Verwendung des 

StrataClone Ultra Blunt PCR Cloning Kits, gemäß den Angaben des Herstellers, in 3 Schritten: 

3.7.1 Polymerase Kettenreaktion 

Zur Vervielfältigung des gewünschten DNA-Abschnitts wurde zunächst eine konventionelle 

PCR unter Verwendung der im Kit enthaltenen PfuUltra II HS DNA Polymerase mit folgendem 

Versuchsansatz durchgeführt: 

40,5 μl ddH2O  

5,0 μl        10× PfuUltra II Reaction Buffer 

0,5 μl dNTP mix (25 mM each dNTP) 

1,0 μl         Template DNA (100 ng/μl)   

1,0 μl         Primer #1 (10 μM) 

1,0 μl         Primer #2 (10 μM)  

1,0 μl PfuUltra II fusion HS DNA Polymerase  
 

Im Thermocycler wurden, sofern im Folgenden nicht explizit anders angeben, folgende 

Einstellungen vorgenommen: 

95°C 2min 

30 Zyklen:  

 95°C 20s 

 55°C 20s 

 72°C 60s 

72°C 3min 
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3.7.2 Ligation in Topovektor 

Das PCR-Produkt wurde zur Ligation in den Topoisomerase-Vektor pSCB-amp/kan 

(StrataClone Ultra Blunt PCR Cloning Kit, Stratagene) in folgendem Versuchsansatz 30min bei 

Raumtemperatur inkubiert:  

3µl StrataClone Blunt Cloning Buffer 

2µl PCR-Produkt (5-50ng DANN) 

1µl StrataClone Blunt Vector Mix amp/kann 
 

3.7.3 Transformation 

Die Plasmide wurden mittels Transformation in E.coli Bakterien aufgenommen. Dazu wurde 

der Ligationsansatz mit 50µl der StrataClone Competent Cell Suspension gemischt und 20min 

auf Eis inkubiert. Im Anschluss wurde der gesamte Ansatz für 45 Sekunden bei 42°C 

hitzegeschockt und erneut zwei Minuten auf Eis gekühlt. Nach Zugabe von vorgewärmtem LB-

Medium wurden die Zellen im Thermoschüttler für eine Stunde bei 37°C inkubiert um danach 

in Petrischalen mit ampicillinhaltigem LB-Agar bzw. in Flaschen mit ampicillinhaltigem 

Medium kultiviert und im Brutschrank inkubiert zu werden. 

Das Ampicillin im Nährboden in Kombination mit dem entsprechenden auf dem Plasmid 

enthaltenen Resistenzgen sicherte die Selektion der erfolgreich klonierten Zellen. 

3.8 Plasmidpräparation mit Mini- und Midiprep 

Zur Plasmidpräparation aus E.coli wurden je nach vorhandener Zellzahl und zu erwartender 

DNA-Menge entweder das QIA Miniprep-Kit (Qiagen) oder das PureYield Midiprep-System 

(Promega) verwendet. War das so gewonnene Produkt zur direkten Sequenzierung 

vorgesehen (vorwiegend während der Untersuchungen der Genstruktur von MUC5AC), so 

folgten eine Gelelektrophorese, eine Aufreinung (jeweils im Folgenden näher beschrieben) 

und ein Fremdversand zur Sequenzierung an MWG-Biotech (Ebersberg). Andernfalls folgte 

zunächst ein Restriktionsverdau.  
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3.9 Restriktionsverdau und Integration in den Reportervektor psiCHECK2 

In der vorliegenden Arbeit wurden Plasmide mittels folgenden Reaktionsansatzes und einer 

einstündigen Inkubation im Wasserbad bei 37°C verdaut:  

  

5 µL        10x NEBuffer 

0,5 µL     100x BSA 

1 µL        Restriktionsenzym 1 (10 U/µL) 

1 µL        Restriktionsenzym 2 (10 U/µL) 

1 µg       DNA 

x µL        Nuklease-freies Wasser (bis Endvolumen: 50 µl) 

  

Die 3‘-UTRs wurden unter Verwendung der Restriktionsenzyme PmeI und XhoI in den 

Reportervektor psiCHECK-2 (Promega) integriert.  

 

3.10 Gelelektrophorese und Auswertung 

Die Elektrophorese dient der Trennung von elektromobilen Molekülen verschiedener Größe. 

In dieser Arbeit wurde die Gelelektrophorese zur Auftrennung von DNA in einem Agarosegel 

verwendet.  

Zunächst wurde dazu ein PCR-Produkt zur Anfärbung mit 6x DNA Loading Dye versehen und 

in die Taschen des Gels gefüllt. Mittels einer Stromquelle (Power Pac Basic Electrophoresis 

Power Supply Unit, Bio-Rad Laboratories) wurde ein elektrisches Feld angelegt. 

Die Auswertung erfolgte abhängig von der angelegten Feldstärke und dichte des verwendeten 

Agarosegels nach variablen Laufzeiten in der E-Box VX2 von Peqlab. Das im Gel enthaltene 

Ethidiumbromid bzw. peqGreen-Reagenz diente dem Nukleinsäurenachweis unter UV-Licht 

durch Verstärkung der Fluoreszenz. Die Größenbestimmung der DNA-Fragmente erfolgte 

Anhand eines Komigrationsstandards (DNA ladder 100bp/1kbp). 
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3.11 Wizard PCR Clean-up 

Die Aufreinigung spezifischer DNA-Banden eines PCR-Produkts aus einem Agarosegel erfolgte 

mit dem Wizard PCR Clean-up Kit (Promega GmbH) nach Angaben des Herstellers. 

Ein ausgeschnittenes Gel-Fragment wurde bei 55-65°C gelöst, mit Hilfe des Kits in mehreren 

Waschvorgängen gereinigt und mit nukleasefreiem Wasser eluiert. Der DNA-Gehalt der 

gewonnenen Lösung wurde spektralphotometrisch bestimmt. 

 

3.12 Luciferase-Assay 

Zur Bestimmung der Reporteraktivität wurden HEK-293-Zellen verwendet. 1*105 Zellen 

wurden mit 1 µg Reporterplasmid und mit 50 nM der entsprechenden premiR-Moleküle (Pre-

miR miRNA Precursor Molecule, Applied Biosystems) co-transfiziert. Nach erfolgter 

Elektroporation mittels einer 10 µL-Transfektionsspitze wurden die Zellen 48h Stunden 

inkubiert. Zur Bestimmung der Aktivität der Reportergene Firefly- und Renilla-Luciferase 

wurde das Dual-Glo Luciferase Assay System (Promega) nach Angaben des Herstellers und das 

Luminometer MicroLumat Plus (Berthold Technologie) verwendet.  

Abbildung 2: Schematische Darstellung des psiCHECK-2 Reporterkonstrukts. Nach 

Integration der 3‘-UTR in den Vektor und Cotransfektion mit den betreffenden miRNAs 

wurde die Aktivitätsanderung der hRluc (Renilla-Luciferase) relativ zur konstitutiv 

exprimierten hluc+ (Firefly-Luciferase) bestimmt. 
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3.13 TaqMan 

Zur Quantifizierung der miRNA-Expression in der verwendeten Zellreihe wurde ein TaqMan 

Micro-RNA Assay nach Angaben des Herstellers durchgeführt. 

Hierzu erfolgte zunächst eine Isolation der gesamt RNA aus unbehandelten A549-Zellen. Diese 

wurde mit folgendem Versuchsansatz unter Verwendung des TaqMan-MicroRNA Reverse 

Transcription Kits revers transkibiert: 

5 µl Gesamt RNA (1-10 ng) bzw. Referenz-RNA 

0,15 µl 100 mM dNTPs 

1 µl MultiScribe™ Reverse Transcriptase (50 U/µL) 

1,5 µl 10 x Reverse Transcription Buffer 

0,19 µl RNase Inhibitor (20 U/µL) 

4,16 µl Nukleasefreies H2O 

3 µl 5 x RT Primer 

Die reverse Transkription erfolgte im Thermocycler unter folgenden Einstellungen: 

16°C 30min 

42°C 30min 

85°C 5min  

Mit dem hieraus gewonnen Produkt erfolgte eine qPCR unter Verwendung des TaqMan 

MicroRNA Assays für die miRNAs 193-3p und 92a-2-5p, sowie eine Referenzkontrolle U47, 

mit folgendem Versuchsansatz: 

1,33 µl cDNA-Produkt der reversen Transkription 

1 µl TaqMan® MicroRNA Assay (20x) 

10 µl LightCycler® 480 Probes Master 

7,67 µl  Nukleasefreies H2O 

Die Untersuchung erfolgte im Lightcycler 480 mit folgenden Reaktionsbedingungen:  

95°C 10min 

40 Zyklen:  

 95°C 15s 

 60°C 60s 
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3.14 Statistische und bioinformatische Analysen 

Die statistische Auswertung der Ergebnisse erfolgte unter Verwendung der Software 

Graphpad PRISM (GraphPad Software). Die statistische Signifikanz mittels T-Test ermittelt. 

Alle durchgeführten Versuche wurden mindestens in Triplikaten angelegt und die Ergebnisse 

als Mittelwert ± Standardabweichung (SD) oder als Mittelwert ± Standardfehler (SEM) 

angegeben und graphisch dargestellt. 

Die potenziellen miRNA-Bindestellen wurden unter Verwendung der arbeitsgruppeneigenen 

miRNA-Datenbank in silico identifiziert. 

 



26 
 

4 Ergebnisse 

4.1 Untersuchung der relativen Genexpression von MUC5AC nach Dicer-Knockdown 

In der vorliegenden Arbeit sollte die posttranskriptionelle Regulation von MUC5AC durch 

miRNAs näher untersucht werden. 

Zunächst wurde hierfür ein siRNA-vermittelter Knockdown gegen das Dicer-Protein in A549 

Zellen durchgeführt. Das Dicer-Protein ist essentiell für die Synthese von miRNAs, daher 

können Knockdown-Versuche angewendet werden um die These der miRNA-abhängigen 

Regulation zu erhärten. Nach 48-stündiger Inkubation, anschließender RNA-Isolation und 

cDNA-Synthese zeigte sich in der qPCR eine wie erwartet supprimierte Dicer-Expression (0,42 

± 0,05, im Vergleich zur Negativkontrolle), was den erfolgreichen Knockdown belegt (siehe 

Abbildung 3). Zusätzlich konnte eine signifikante Steigerung der MUC5AC-Expression im 

Vergleich zur Negativkontrolle (1,34 ± 0,07) verzeichnet werden. Dieses Resultat zeigt, dass 

MUC5AC einer Dicer-abhänigen Regulation durch miRNAs unterliegt. 

Im Folgenden sollten nun potentiell in der 3‘-UTR von MUC5AC bindende miRNAs identifiziert 

und auf ihr regulatorisches Potential untersucht werden. 

 

Abbildung 3: Relative mRNA-Expression von MUC5AC und Dicer in A549-Zellen. RNA wurde 

nach Transfektion mit siRNA gegen Dicer aus A549-Zellen isoliert. Die relative Genexpression 

im Vergleich zur Negativkontrolle wurde mittels qPCR untersucht und abgebildet. Mittelwert 

± SD, n = 3. MUC5AC: P <0,05, Dicer: P<0,01. 
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4.2 MUC5AC-Genstruktur 

4.2.1 Ausgangssituation 

Zur Identifikation potentiell regulatorisch wirksamer miRNAs war die Kenntnis der Sequenz 

der 3’-UTR der mRNA von MUC5AC unerlässlich. Zu Beginn der Experimente existierte jedoch 

keine eindeutige Darstellung in den Gen-Datenbanken. Vielmehr gab es zwei verschiedene 

Angaben zu Sequenz und Länge der mRNA, einmal ca. 2500 (GRCh37) und einmal ca. 6000 

(HuRef) Nukleotide lang, die sich in ihrem Beginn jedoch stark ähnelten. Zu diesen Sequenzen 

fand sich jeweils keine Angabe einer 3’-UTR, allerdings beherbergten bei Datenbanken je eine, 

sich nur minimal von der jeweils anderen unterscheidenden, Sequenz namens MUC5AC-like, 

inklusive identischer 3’-UTRs, je ca. 650 Basenpaare lang. (siehe Abbildung 4) 

 

Abbildung 4: Schematische Darstellung der unterschiedlichen mRNA-Sequenzen für MUC5AC 

in den Gen-Datenbanken Anfang 2013. (a: GRCh37, b: HuRef), X: unbekannter Genabschnitt 

zwischen MUC5AC und MUC5AC-like 

4.2.2 Überprüfung einer Überlappung von MUC5AC und MUC5AC-like 

Da die Sequenzen des Downstream-Endes MUC5AC in der HuRef-Darstellung und des Beginns 

von MUC5AC-like große Ähnlichkeit aufwiesen, postulierten wir eine Überlappung der beiden 

Genabschnitte. Nach Entwurf entsprechender Primerpaare (siehe Abbildung 5) erfolgte die 

Amplifikation des fraglichen DNA-Abschnittes mittels konventioneller PCR. 

Hierbei war im Versuchsansatz mit den Primern MUC5AC_1 for + MUC5AC_3 rev ein PCR-

Produkt mit einer Länge um 3-4 kbp zu erwarten, dessen Amplifikation jedoch nicht gelang. 

X 

X 
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Im Versuchsansatz mit dem Primerpaar MUC5AC_2 for + MUC5AC_3 rev hingegen gelang die 

Amplifikation mehrerer Produkte (siehe Abbildung 6). Die Länge der in silico vermuteten 

Überlappung betrug etwa 300 bp, die entsprechend des Primerdesigns erwartete Länge des 

PCR-Produktes etwa 500 bp, entsprechend der Bande 4 aus Abbildung 6. Auch gelang nur mit 

dem Produkt der Bande 4 eine Klonierung und Sequenzierung, womit sich der Verdacht einer 

Überlappung zwischen MUC5AC und MUC5AC-like bestätigte, sodass von nun an von der in  

Abbildung 7 schematisch dargestellten Struktur, eines aus den vorbeschriebenen Sequenzen 

von MUC5AC und MUC5AC-like zusammengesetzten, langen MUC5AC-Gens ausgegangen 

wurde.  

Abbildung 5: Schematische Darstellung der Sequenzierungsprimer, deren Design zur 

Verifizierung der Annahme eines möglichen Overlaps zwischen MUC5AC und MUC5AC-like 

dienen sollte. (mRNA-Sequenzen der a: GRCh37- und b: HuRef-Datenbank) 
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Abbildung 7: Schematische Darstellung der angenommenen MUC5AC-Struktur nach 

Sequenzierung des intergenetischen Abschnittes zwischen MUC5AC und MUC5AC-like. Da 

die postulierte Overlap-Region zwischen den beiden Genen der Datenbanken nachgewiesen 

werden konnte, wurde von nun an von einem einzigen Gen ausgegangen und und nicht länger 

zwischen MUC5AC und MUC5AC-like unterschieden.  

 

Abbildung 6: Gelelektrophorese nach PCR der intergenetischen Region zwischen MUC5AC 

und MUC5AC-like. Während in Versuchsansatz a) (siehe Abbildungen 5) keine Banden sichtbar 

sind, finden sich in Versuchsansatz b) 4 Banden unterschiedlicher Größe.  

1000 bp 

500 bp 



30 
 

4.2.3 Ermittlung der Länge der 3‘-UTR 

Weiterhin unklar war jedoch die Länge der 3’-UTR, da sich die Darstellungen von MUC5AC-like 

in den verschiedenen Darstellungen der Datenbanken zwar weitgehend entsprachen, jedoch 

in der Zwischenzeit eine weitere Version von MUC5AC Eingang in die Gendatenbanken fand 

(CHM1_1.1). Diese entsprach der HuRef-Darstellung weitgehend, enthielt jedoch einen 

zusätzlichen, ca. 200 bp langen Gen-Abschnitt, der seinerseits ein früheres Stoppcodon 

enthielt und somit zu einer deutlich längeren 3‘-UTR geführt hätte. 

Dieser Abschnitt wurde mittels eines neuen Primerpaars ebenfalls durch PCR amplifiziert, 

kloniert und sequenziert. 

Durch den Nachweis der Existenz des fraglichen Genabschnittes, entsprach fortan die 2118 nt 

lange 3’-UTR der Arbeitshypothese. (siehe Abbildung 8) 

 

 

4.2.4 Sequenzierung der 3‘-UTR 

Zur Determinierung potentieller miRNA-Bindestellen war nun die Sequenzierung der 

vollständigen 3‘-UTR notwendig. Zur Amplifikation wurde zunächst das Verfahren der 3-RACE-

PCR angewendet, im Rahmen dessen der poly(A)-Schwanz der mRNA durch Verwendung eines 

Abbildung 6: Schematische Darstellung der ermittelten MUC5AC-Struktur: Es wurde von nun 

an auf mRNA-Ebene, nach Spleißen, von einem 7812 Basenpaaren langem Gen ausgegangen. 

Die Länge der 3‘-UTR wurde, nach erfolgreicher Sequenzierung des früheren (upstream) Stop-

Codons, mit 2118 Basenpaaren bestimmt. 
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oligo(DT)-Primers als Startpunkt für die PCR dient und somit die gesamte UTR in den 

Amplikationsprozess eingeschlossen wird. Auch wird mit dieser Methode die Sicherheit 

gewonnen, dass es sich tatsächlich um das 3‘-Ende der mRNA handelt und nicht eine 

unvollständige Sequenz vorliegt. 

Aufgrund der großen Länge (2118 nt) gelang es nicht die gesamte 3’-UTR am Stück zu 

sequenzieren, sodass stattdessen eine 3’-RACE-PCR am Ende der 3’-UTR, sowie mehrere, 

überlappende PCRs über den Rest vorgenommen wurden. 

 

4.3 Bioinformatische Identifikation potentiell regulierender miRNAs  

Mit der nun bekannten Sequenz der 3‘-UTR wurden bioinformatisch potentielle 

Bindungsstellen regulierender miRNAs detektiert. Als vielversprechendste Kandidaten 

wurden die miRNA 193a-3p mit Bindestellen ab den Positionen 723, 1749 und 2080 der 2118 

Nukleotiden langen UTR (also sowohl in Abschnitt A als auch in B/C der Abbildung 6) und die 

miRNA 92a-2-5p mit Bindestellen ab den Positionen 42, 57, 87, 117 und 1153 (Ausschließlich 

im Abschnitt A nach Abbildung 6) bestimmt. 

Abbildung 7: Schematische Darstellung der Primer zur Amplifikation und ggf. Sequenzierung 

der 3‘UTR. Die Primerpaare A und B wurden zur Amplifikation sowie Klonierung der 3‘UTR in 

Psi-Check2-Vektoren verwendet. Primerpaar C entspricht den für die 3‘-RACE-PCR 

verwendeten  Primern. Primerpaar D wurde zur Sequenzierung der Region um das bis dahin 

fragliche Stop-Codon verwendet. 
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4.4 Untersuchung der relativen Genexpression nach Transfektion mit miRNA 

Zur Überprüfung einer Beteiligung der in silico ermittelten miRNAs an der Regulation von 

MUC5AC wurden zunächst Transfektionsexperimente durchgeführt. 

A549-Zellen wurden mit PremiR-193a-3p- bzw. 92a-2-5p-Molekülen mit entsprechenden 

Negativkontrollen transfiziert und für 48h inkubiert. 

In der qPCR zeigte sich eine Reduktion der MUC5AC-Expression im Vergleich zur 

Negativkontrolle auf 0,33 ± 0,03% nach Transfektion mit der miR 193a-3p und auf 0,69 ± 0,07 

nach Transfektion mit der miR 92a-2-5p. Dies zeigte eine direkte oder inderekte Regulierung 

von MUC5AC durch beide der verwendeten miRNAs.  

Abbildung 8: Relative MUC5AC-mRNA-Expression nach miRNA-Transfektion. 

A549-Zellen wurden mit den angegebenen premiR-Molekülen bzw. einer 

Negativkontrolle transfiziert und die relative MUC5AC-Expression nach 48h 

Inkubationszeit mittels qPCR untersucht. Die Ergebnisse wurden relativ zur 

Negativkontrolle dargestellt. Mittelwert ± SD. n = 5; miR 193a-3p: P < 0,0001, 

miR 92a-2-5p: P < 0,05 
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4.5 Luciferase-Assays 

Zum Nachweis einer direkten miRNA-Wirkung am 3‘-UTR von MUC5AC wurden Luciferase-

Reporter-Assays verwendet. Aufgrund der großen Länge der UTR wurde diese in zwei 

Abschnitten in Reporterplasmide kloniert. (Abschnitt A+B, siehe Abbildung 9) 

Verwendet wurde der psiCHECK-2-Reportervektor von Promega. Er enthält zwei synthetische 

Luciferase-Reportergene, die Renilla reniformis-Luciferase (Rluc) sowie die Photinus pyralis 

(Firefly)-Luciferase (hluc+). Dabei ist nur die Expression der Rluc durch die Bindung einer 

miRNA an den klonierten 3‘-UTR reguliert, die hluc+ wird davon unabhängig exprimiert und 

dient als interne Kontrolle, auf welche die Rluc-Expressionsveränderungen bezogen werden. 

Es wurden jeweils A549-Zellen mit den psiCHECK-3’UTR-Reporterkonstrukten und miR 193a-

3p oder miR 92a-2-5p co-transfiziert. Bei UTR-Abschnitt A (vorderer Abschnitt) zeigte sich bei 

Transfektion mit miR 193a-3p eine Reduktion der Luciferase-Aktivität auf 0,85 ± 0,03, bei 

Transfektion mit miR 92-2-5p auf 0,77 ± 0,04. Bei Abschnitt B gelang mit der miR 193a-3p kein 

Nachweis signifikanter Expressionsveränderungen, die miR 92-2-5p hat in diesem Abschnitt 

keine potentiellen Bindungsstellen und wurde daher nicht getestet.  

Abbildung 9: Lucierase-Aktivität nach Co-Transfektion der jeweiligen miRNA bzw. 

Negativkontrolle mit dem in den psiCheck2-Reportervektor klonierten 3‘-UTR-Abschnitt. (A: 

vorderer (upstream) Abschnitt des UTR, B: Hinterer (downstream) Abschnitt des UTR). Die 

Aktivitätsveränderungen werden auf die konstitutiv exprimierte hluc+ normiert. Mittelwert ± 

SD. A: n = 6; miR 193a-3p: P < 0,01, miR 92a-2-5p: P < 0,01. B: n =3 P > 0,05. 
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4.6 Untersuchung der Expression der untersuchten miRNAs in A549-Zellen 

Zur Untersuchung der physiologischen Bedeutung der ermittelnten Regulation von MUC5AC 

durch miR 193a-3p und 92-2-5p wurde ein TaqMan-Assay in unbehandelten A549-Zellen 

durchgeführt. 

Dabei zeigte sich eine Expression der miR 193a-3p in der untersuchten Zellreihe. Für miR 92-

2-5p konnte hingegen keine Expression nachgewiesen werden. 
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5 Diskussion der Ergebnisse 

Das akute Lungenversagen (ARDS) ist ein in der Intensivmedizin häufiges, lebensbedrohliches 

und nach aktuellen Studien deutlich unterdiagnostiziertes Krankheitsbild. Abseits optimierter 

Beatmungs- und Lagerungsstrategien konnte bislang trotz umfassender Bemühungen keine 

spezifische pharmakologische Therapie etabliert werden.[3, 5, 6, 8, 14] 

Im Mausmodell konnte eine im Rahmen des ARDS schädliche Wirkung einer 

Mucushypersekretion nachgewiesen werden. Das für die Expression des in den menschlichen 

Atemwegen dominanten Mucins verantwortliche Gen, für das auch eine deutliche 

Hyperexpression in akuten Inflammationsreaktionen nachgewiesen werden konnte, ist 

MUC5AC.[32, 34, 39] In der vorliegenden Arbeit sollte nun eine mögliche posttranskriptionelle 

Regulation durch miRNAs als potentieller Ansatzpunkt für eine weitere Therapieentwicklung 

untersucht werden. 

MiRNAs sind kleine, nicht-codierende RNA-Moleküle, die durch Bindung an die 3‘-

untranslatierte Region (3‘-UTR) spezifischer mRNA-Stränge in die Genregulation eingreifen. 

Zunächst erfolgte ein Knockdown-Versuch gegen die für die miRNA-Biogenese unerlässliche 

RNAse Dicer. [48] In den so behandelten Zellen konnte eine relative Überexpression von 

MUC5AC in der qPCR festgestellt werden.  

Da eine direkte Regulation durch miRNAs in einer Hemmung des Zielgens durch Degradation 

oder Unterdrückung der Ziel-mRNA besteht, konnten diese Ergebnisse als klares Indiz für eine 

miRNA-Regulation von MUC5AC herangezogen werden. 

Zur Detektion potentiell regulierender miRNAs war es jedoch zunächst notwendig Kenntnis 

von der genauen Basensequenz der 3‘-UTR von MUC5AC zu erlangen, um potentielle 

Angriffspunkte ermitteln zu können.[53] 

Da jedoch zu Beginn der Versuchsplanung keine vollständige Gensequenz von MUC5AC in den 

Gendatenbanken vorlag, sondern sich hier nur bruchstückhafte Einträge über mehrere 

vermutete Gene, MUC5AC und MUC5AC-like, finden ließen, waren zunächst ausgedehnte 

Versuchsreihen zur Ermittlung der Genstruktur notwendig, um eine Grundlage für die 

Identifikation potentiell regulierender miRNAs zu schaffen. 

Da MUC5AC, als codierendes Gen eines Makromoleküls selbst eine große Länge besitzt, war 

eine Amplifikation des Gens mit Sequenzierung, aufgrund der schieren Ausdehnung des 

Produktes, nicht möglich. Daher wurden die, sich in den verschiedenen Datenbanken 

entsprechenden und allenfalls in der Länge unterscheidenen, bekannten Bruchstücke von 
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MUC5AC und MUC5AC-like als Basis verwendet um durch Sequenzierung fehlender und 

kritischer Regionen Rückschlüsse auf die Gesamtgenstruktur ziehen zu können. 

Zunächst fiel eine große Ähnlichkeit der Basenfolgen am Downstream-Ende von MUC5AC und 

dem Upstream-Ende von MUC5AC-like auf. Mittels einer konventionellen PCR konnte eine 

Überlappung und damit ein nahtloser Übergang von MUC5AC und MUC5AC-like 

nachgewiesen werden. Damit war nun klar, dass die 3‘-UTR von MUC5AC am 3‘-Ende des 

bisher als MUC5AC-like benannten Genes zu finden sein musste.  

Eine kritische Unklarheit bestand nach Klärung der Lage der UTR jedoch noch in Bezug auf 

deren Länge. Da in den beiden unterschiedlichen vorbekannten Versionen von MUC5AC nur 

in einer von beiden Versionen ein Genabschnitt vorlag, der in der Folge zu einer, im Gegensatz 

zur anderen Version, Verschiebung des Leserasters und einem deutlich früheren Stop-Codon 

geführt hätte. Da dieser Genabschnitt nur eine Länge von etwa 200bp aufwies gelang die 

Amplifikation mittels PCR. Nach anschließender Sequenzierung war seine Existenz im Gen 

MUC5AC nachgewiesen, sodass nun von der langen UTR-Version von etwa 2000nt Länge 

ausgegangen werden konnte. Aufgrund dieser für eine 3‘-UTR ungewöhnlichen Ausdehnung 

gelang auch hier eine Gesamtamplifikation mittels 3‘-RLM-RACE nicht. Stattdessen wurde die 

3‘-UTR unter Verwendung mehrerer Primerpaare mit konventionellen PCRs und einer 

verkürzten 3‘-RLM-RACE über ihre gesamte Länge sequenziert. 

In der so ermittelten Sequenz konnten nun bioinformatisch potentielle miRNA-Zielregionen 

detektiert werden. Die miRNAs mit den meisten errechneten Bindestellen in dieser 3‘-UTR 

waren die miR 193-3p und die miR 92a-2-5p. 

Mit diesen miRNAs erfolgten nun Transfektionsexperimente zur Detektion der relativen 

mRNA-Expression von MUC5AC nach Exposition gegenüber den benannten miRNAs. Für beide 

miRNAs zeigte sich in der qPCR eine signifikante Suppression der MUC5AC-mRNA, womit eine 

Regulation durch diese beiden miRNAs nachgewiesen war. 

Mit der bloßen Transfektion der miRNA konnte jedoch noch nicht zwischen einer direkten und 

inderekten Regulation unterschieden werden. Denkbar wäre hier auch ein Eingriff in andere 

Signalwege gewesen, da MUC5AC bekanntermaßen durch viele proinflammatorische 

Faktoren beeinflusst wird.[35-38] 

Zum Nachweis einer Regulation an der 3‘-UTR wurden daher Versuche mittels Luciferase-

Reporter-Assays angeschlossen. Hierzu musste die 3‘-UTR in den psiCHECK2-Vektor integriert 

werden. Dieser enthält neben einem Resistenzgen gegen Ampicillin zur Selektion der 
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erfolgreich klonierten Zellen zwei Luciferase-Gene, eines davon konstitutiv exprimiert, das 

andere in Abhängigkeit von der integrierten UTR. 

Die Integration der UTR bereitete aufgrund ihrer großen Länge (2118 bp) erneut 

Schwierigkeiten, sodass eine Aufteilung auf zwei Konstrukte, eines mit der vorderen, eines mit 

der hinteren Hälfte der UTR notwendig wurde. Auch hier zeigte sich bei Cotransfektion des 

UTR-Reporterkontruktes mit den fraglichen miRNAs jeweils eine signifikante Suppression der 

Luciferase-Aktivität, was als Nachweis einer direkten miRNA-Regulation durch die miRNAs 

193-3p und 92a-2-5p an der 3‘-UTR von MUC5AC gewertet werden konnte. 

Bemerkenswerterweise war, als nächträglicher Beleg für die Richtigkeit der langen UTR-

Variante, eine signifikante Aktivitätsänderung bei Co-Transfektion mit dem vorderen UTR-

Abschnitt zu messen. 

Zur Überprüfung der biologischen Relevanz in der A549-Zellreihe wurde die miRNA-Expression 

der beiden fraglichen miRNAs mittels Taq-Man-Assay untersucht, wobei nur für die miRNA 

193-3p eine Expression in unbehandelten A549-Zellen nachgewiesen werden konnte.  

Die Zusammenschau der Ergebnisse macht eine posttranskritionelle Regulation von MUC5AC 

durch die miRNA 193-3p in A549-Zellen sehr wahrscheinlich. 

Die vorliegende Arbeit kann damit als Grundlage für weiterführende Untersuchungen 

verwendet werden, insbesondere sind noch zellfunktionelle Untersuchungen nach miR-

Transfektion notwendig. Da Versuche mit den Karzinomzellen der A549-Reihe nur eine 

eingeschränkte Aussagekraft bezüglich der Relevanz in vivo haben, sind dahingehend weitere 

Versuchsreihen mit primären humanen Epithelzellen und natürlich in vivo notwendig. 

Es sind mittlerweile zahlreiche weitere miRNAs identifiziert worden, die eine Rolle 

insbesondere in der Regulation der Inflammationsreaktion und auch der Expression von 

MUC5AC, jedoch indirekt durch Eingriff in die immunologischen Signalkaskaden,  im Rahmen 

des ARDS spielen könnten.[52, 67-70] In der vorliegenden Arbeit konnte nun jedoch erstmalig 

eine direkte miRNA-Regulation von MUC5AC in vitro nachgewiesen werden, was eine Basis 

für die Entwicklung miRNA-basierter Therapiestrategien  für das ARDS bildet. Derzeit steckt 

diese Entwicklung noch in den Anfängen, erste Versuche mit miRNA-Imitatoren oder –

Inhibitoren fanden jedoch bereits Eingang in klinische Studien. Es zeichnet sich ab, dass die 

höchsten noch zu überwindenden Hürden bis zur Implementierung miRNA-basierter 

Therapiekonzepte die Entwicklung von Möglichkeiten zur zellspezifischen Aufnahme der 
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miRNAs und die Reduktion unerwünschter Wirkungen sowie der toxischen Nebenwirkungen 

der Transportmoleküle sein werden.[52, 71-79] 

Ist der Weg zur miRNA-basierten Therapie einmal geebnet, könnte diese eine der 

vielversprechendsten Perspektiven für die moderne Medizin bieten. Auch in diesem Falle 

könnte eine erfolgreiche, lungenspezifische Verstärkung der Wirkung der miRNA 193-3p 

künftig zu einer Senkung der Mortalität eines der häufigsten und bedrohlichsten 

Krankheitsbilder der Intensivmedizin beitragen. 
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6 Zusammenfassung 

Das akute Lungenversagen (ARDS) ist ein in der Intensivmedizin häufiges, lebensbedrohliches 

und nach wie vor mit hoher Morbidität und Mortalität assoziiertes Krankheitsbild. Eine 

spezifische Pharmakotherapie zur Behandlung des ARDS konnte bislang trotz umfassender 

Bemühungen nicht entwickelt werden. 

Die Hypersekretion von Mucinen, insbesondere des in den menschlichen Atemwegen 

dominanten Mucins MUC5AC, ist nach neuesten Erkenntnissen in diesem Rahmen ein 

prognoseverschlechternder Faktor, dessen Regulationsmechanismen jedoch weitgehend 

unklar sind. In der vorliegenden Arbeit sollte daher eine mögliche posttranskriptionelle 

Regulation des Mucins MUC5AC durch miRNAs untersucht werden.  

MiRNAs, kleine nicht-codierende RNA-Moleküle sind an der Genregulation beteiligt. Durch 

Bindung an spezifische komplementäre Bindestellen in der 3‘-untranslatierten Region (3‘-UTR) 

der mRNA kommt es durch Degradation oder Translationshemmung zu einer Suppression des 

betreffenden Gens. 

Zur Identifikation potentiell MUC5AC regulierender microRNAs war es daher notwendig 

Kenntnis von der Basensequenz der 3‘-UTR zu erlangen, die initial, wie der Großteil der 

Genstruktur, unbekannt war. Zunächst waren den Gendatenbanken Sequenzen für zwei 

benachtbarte, unterschiedliche Gene, MUC5AC und MUC5AC-like zu entnehmen. Diese 

vorbestehende Hypothese zweier separater Gene konnte im Rahmen dieser Arbeit in 

umfassenden Untersuchungen, unter Verwendung multipler PCRs, 3’RLM-RACE-PCRs und 

RNA-Sequenzierungen, widerlegt werden. Stattdessen wurde ein neues Genstrukturmodell 

von MUC5AC, inklusive einer etwa 2000nt langen 3‘-UTR, etabliert. 

Anhand der ermittelten Sequenz konnten bioinformatisch potentiell an der Regulation von 

MUC5AC beteiligte miRs, 193-3p und 92a-2-5p, identifiziert werden. 

In den folgenden Untersuchungen mittels Realtime-PCR und Luciferase-Assays konnte für 

beide untersuchten microRNas eine Suppression von MUC5AC beobachtet werden. Allerdings 

zeigte sich in der Quantifizierung der miRNA-Expression mittels TaqMan-Assay in A549-Zellen 

lediglich eine Expression der miRNA 193-3p. 

Zusammenfassend zeigen die Ergebnisse eine direkte Regulation von MUC5AC durch die 

miRNA 193-3p in Lungenepithelzellen. Obwohl weitere Studien bezüglich der Relevanz in vivo 

notwendig sind, könnten diese Erkenntnisse eine Grundlage für künftige pharmakologische 

Strategien zur Senkung der Mucinsekretion im Rahmen des ARDS darstellen.  
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7 Summary 

The acute respiratory distress syndrome (ARDS) is a life threatening condition, associated with 

high morbidity and mortality. In spite of extensive research towards specific pharmacological 

therapies of ARDS, none could be developed to date. 

Recent studies suggest, that an increased secretion of airway mucins, specifically of MUC5AC, 

the predominant mucin in human airways, plays a detrimental role during ARDS. Today it is 

still unclear by which mechanisms this secretion is regulated. 

The goal of this study was to investigate wheter MUC5AC is regulated on a posttranscriptional 

level by miRNAs. 

MiRNAs, small non-coding RNA molecules engage in gene regulation by binding to 

complementary sites in the 3’-untranslated region (3’-UTR) of mRNAs and thus 

downregulating gene expression by either mRNA cleavage or translational repression. 

In order to identify miRNAs with regulatory potential to MUC5AC, it was crucial to obtain the 

3’-UTR’s base sequence that initially, as most of the gene’s structure, was still unknown.  

At that point, gene databases offered sequences for two different genes in the MUC5AC-

region, MUC5AC and MUC5AC-like. Through extensive analysis, using a variety of methods, 

including PCR, 3’RLM-RACE-PCR and RNA sequencing, the preexisting hypothesis of two 

separate genes could be disproven and a new model of MUC5AC, including an about 2000nt 

long 3’-UTR, was established. 

On the base of this sequence the microRNAs 193-3p and 92a-2-5p were bioinformatically 

identified as potential regulators of MUC5AC. Using realtime-PCR and luciferase-reporter-

assays, a suppression of MUC5AC could consistently be observed for both tested microRNAs. 

However, only one of them, the miRNA 193-3p, is expressed in lung epithelial cells as found in 

the examination of microRNA expression levels via Taqman-assay. 

Collectively these findings implicate that the miRNA 193-3p directly downregulates MUC5AC 

expression in A549 cells. Although further studies are necessary, to evaluate the relevance in 

vivo, these studies offer a new approach for future pharmaceutical strategies attenuating the 

mucin secretion in the treatment of ARDS. 
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9 Abkürzungsverzeichnis 

3‘-UTR 3‘-untranslatierte Region 

AECC Amerikanisch-europäische Konsensuskonferenz 

ARDS Acute respiratory distress syndrome 

Bp Basenpaar 

CPAP Continuous positive airway pressure 

E. coli Escherichia coli 

FiO2 Inspiratorische Sauerstofffraktion 

Fluc/hluc+ Firefly-Luciferase 

miRNA microRNA 

mRNA Messenger-RNA 

Nt Nukleotid 

P Irrtumswahrscheinlichkeit 

PaO2 Sauerstoffpartialdruck 

PCR Polymerase-Kettenreaktion 

PEEP Positiver endexpiratorischer Druck 

RLM-RACE RNA Ligase Mediated Rapid Amplification of cDNA Ends 

Rluc Renilla-Luciferase 

TRALI Transfusionsassoziierte akute Lungeninsuffizienz 
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