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1.1 Organophosphorus compounds 

 

Organophosphorus compounds are organic molecules, which contain at least one phosphorus atom. 

They are widely used in many fields of life, such as in catalysis,
[1]

 as complex ligands,
[2]

 in medicine,
[3]

 

as pesticides
[4]

 and as flame retardants.
[5]

 Furthermore they are good candidates for functional 

materials for new applications, like luminescent devices.
[6]

 

As it is not the intention to give an overview on organophosphorus compounds to the full extent 

here, this chapter will only describe the most important aspects of the chemistry of 

chlorophosphines, primary phosphines and tertiary phosphines. These three classes of 

organophosphorus compounds are of particular importance for this work. 

The organophosphorus compounds developed within this thesis will be investigated focusing on 

their coordination behaviour towards d
10

 metals and possible luminescent properties. 

 

1.1.1 Chlorophosphines 

 

Compounds with P–Cl bonds (PCl3, RPCl2, R2PCl) are still a current field of research, as they are very 

reactive compounds and often used as starting materials to form P–C, P–N and P–O bonds.
[7]

 

Phosphorus trichloride (trichlorophosphine, PCl3) is an industrially very important chemical, which is 

used as the starting material for the synthesis of the majority of organophosphorus compounds.
[8]

 It 

is usually synthesised on a large scale by reaction of elemental phosphorus with chlorine in a volume 

of 700000 tonnes per year.
[8-9]

 

Dichlorophosphines RPCl2 can be synthesised in many different ways, such as chlorination of primary 

phosphines or aminophosphines.
[10]

 The most common synthesis of dichlorophosphines is the 

reaction of organometallic reagents (with Li, Mg, Zn, etc.) with phosphorus trichloride.
[7e, 11]

 In 

particular organozinc reagents are becoming increasingly important for the synthesis of 

chlorophosphines, due to their high selectivity and tolerance of different functional groups.
[12]

 

However, the development of straightforward and general protocols for formation of P–C bonds 

remains still a challenge in organophosphorus chemistry. 

Dichlorophosphines are important starting materials for the synthesis of a variety of 

organophosphorus compounds (Scheme 1). They can be used to synthesise primary phosphines
[10d, 

13]
 as well as tertiary phosphines

[7a-e]
 or aminophosphines.

[7f-j]
 It is also possible to form P–P bonds to 

yield diphosphenes
[11a, 14]

 or cyclophosphines.
[10c, 15]

 Other products, which can be obtained starting 

from dichlorophosphines, include phosphonic
[7k-n]

 and phosphinic acids.
[7o, 7p]

 They are also valuable 

starting materials for the synthesis of phosphaalkynes.
[16]
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Scheme 1: Overview of some organophosphorus compounds that can be synthesised starting from dichlorophosphines 

RPCl2. 

 

Similar to the dichlorophosphines monochlorophosphines can be synthesised by chlorination of 

secondary phosphines
[10b, 17]

 or aminophosphines.
[18]

 Another way to produce monochloro-

phosphines is the reaction of organometallic reagents (usually with Li or Mg) with PCl3
[19]

 or – to 

obtain chlorophosphines with different organic substituents – with dichlorophosphines.
[7a, 20]

 

The chemistry of monochlorophosphines R2PCl is very similar to that of dichlorophosphines. They 

have been used as starting materials to replace the P–Cl bond with a P–C,
[21]

 P–H,
[22]

 P–N,
[23]

 P–P
[24]

 

or P–O bond (Scheme 2).
[25]

 

 

 
Scheme 2: Overview of some organophosphorus compounds, which can be synthesised starting from chlorophosphines 

R2PCl. 

 

1.1.2 Primary phosphines 

 

Organophosphorus compounds of the type RPH2, in which R is an alkyl or aryl group, are called 

primary phosphines.  

Primary phosphines are usually synthesised by reduction of the corresponding phosphonic acid, 

phosphonate, dichlorophosphine or other suitable phosphorus derivatives (Scheme 3).
[26]
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Scheme 3: Synthetic strategies to obtain primary phosphines. 

 

Most primary phosphines are difficult to handle due to their high toxicity and high reactivity. Many 

primary phosphines react violently upon contact to air and often can ignite spontaneously.
[27]

 

In the research group of L. Higham some studies about the air stability of primary phosphines have 

been accomplished.
[27a, 27d, 28]

 They found that primary phosphines become air stable, if the organic 

substituent provides steric hindrance. In addition the organic substituent should contain conjugated 

π-system and/or heteroatoms, which move the localisation of the HOMO away from the phosphorus 

atom. It is also important that the SOMO energy of the corresponding radical cation should be 

higher than −10 eV.
[27a]

 

The high reactivity of the primary phosphines makes them a good starting material to introduce a 

wide variety of functional groups to the phosphorus, such as alkyl or aryl groups or halogens 

(Scheme 4).
[28-29]

 

 

 
Scheme 4: Selected reactions using primary phosphines as starting material. 

 

1.1.3 Tertiary phosphines 

 

Organophosphorus compounds of the type R3P, with R being alkyl or aryl groups, are called tertiary 

phosphines. 

There are many different ways to synthesise tertiary phosphines, such as reaction of metal 

phosphides with alkyl or aryl halides, reaction of chlorophosphines with organometallic reagents or 

trimethylsilyl compounds, Michael additions or reduction of phosphine oxides (Scheme 5).
[7e, 30]
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Scheme 5: Synthetic strategies to obtain tertiary phosphines. 

 

Most tertiary phosphines are easily oxidised to the corresponding phosphine oxides.
[30c]

 The 

reactivity of phosphines is strongly determined by the lone pair on the phosphorus atom, meaning 

that phosphines usually react as nucleophiles.
[30c]

 

In organic chemistry tertiary phosphines are often used as reagents or as catalysts.
[31]

 Due to their 

high oxophilicity phosphines are good reducing agents, which are used in reactions, such as 

Staudinger,
[32]

 Wittig,
[33]

 Mitsunobu
[34]

 and Appel reactions.
[35]

 Phosphine catalysts have applications 

in Morita-Baylis-Hillman reactions,
[36]

 cycloaddition reactions,
[37]

and other nucleophilic additions.
[38]

 

The use of chiral phosphines also allows catalysis of asymmetric reactions.
[38a, 39]

 

The free electron pair also allows the coordination to metal centres, which makes the phosphines 

good ligands for complexes.
[30a, 30c]

 

Such phosphine complexes have been utilised as catalysts for reactions like hydrogenations,
[40]

 

hydrosilylations,
[41]

 carbonylations
[42]

 and cross-coupling reactions.
[43]

 

Also a lot of research has been done on phosphine complexes with luminescent properties during 

the last decades. These complexes have potential applications e.g. as chemical sensors, for biological 

labelling, for photoredox catalysis and as emitter materials in organic light emitting diodes 

(OLEDs).
[44]

 The research for materials for OLEDs focuses mainly on complexes of the coinage metals, 

especially copper(I).
[45]

 

This thesis will focus on complexes with luminescent properties for possible applications in OLEDs. 

Therefore in the following paragraphs some information on luminescence and OLEDs is delivered. 

1.2 Luminescence 

 

Luminescence is an emission of photons from an electronically excited species. Depending on the 

mode of excitation there are different types of luminescence, such as radioluminescence (emission 

of light due to ionising radiation), thermoluminescence (emission of light due to heating), 

chemiluminescence (emission of light due to chemical reaction), bioluminescence (emission of light 

due to a biochemical process), electroluminescence (emission of light due to electric current passing 

through a substance) and photoluminescence (emission of light due to the absorption of light).
[46]

 

It is possible to distinguish between fluorescence, phosphorescence and delayed fluorescence, 

depending on the relaxation mode of the molecule.
[46]

 

Upon absorption of a photon a molecule is excited from the ground state S0 to an excited state S1 or 

S2 respectively (Figure 1).
[46]
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Figure 1: Jablonski diagram. 

 

After the molecule has been excited it can return to the ground state on different pathways. 

Fluorescence is the emission of a photon from a molecule during the spin-allowed relaxation from 

the first singlet excited state (S1) to the ground state (S0). It is also possible that the molecule loses 

the energy on competing pathways without light emission (e.g. internal conversion (IC), intersystem 

crossing (ISC), intramolecular charge transfer, conformational change).
[46]

 

If the spin-orbit coupling (SOC) of a molecule is large enough, it can make the spin-forbidden 

transition from S1 to T1 possible. This is often the case in the presence of heavy atoms. From the T1 

state the molecule can relax to S0 either without radiation or with emission of light 

(phosphorescence).
[46]

 

In case of a small energy difference between S1 and T1 reverse ISC from T1 back to S1 might also 

occur, if the lifetime of T1 is long enough. Afterwards the molecule relaxes from S1 to S0 by emission 

of light, leading to delayed fluorescence. Delayed fluorescence can be obtained by triplet-triplet 

annihilation or by thermal activation (thermally activated delayed fluorescence (TADF)).
[46]

 

 

1.3 Organic Light Emitting Diodes (OLEDs) 

 

Organic Light Emitting Diodes (OLEDs) are electroluminescent devices, which are considered as 

possible replacements for lighting technologies, such as light bulbs, energy-saving lamps and 

fluorescent tubes.
[47]

 

One of the main applications for OLEDs are semi-transparent or bendable displays. This is due to 

several advantages of these materials like high contrast, bright colours, wide viewing angle, thin 

emissive layers, low energy consumption and fast response speed.
[47-48]

 

OLEDs are typically set up in a multilayer design, which is placed on a glass substrate. The generation 

of light is based on the formation of excitons by combination of hole and electron in the emission 

layer. The “hole” is a positive charge that moves from the anode into the direction of the cathode 

from molecule to molecule by movement of electrons to the anode. From the anode (usually 

consisting of a composite of In2O3 and SnO2 “indium tin oxide” (ITO)) the holes move through the 

hole transport layer (HTL) to the emission layer (EML). On the opposite side electrons are injected 

from a metal cathode through a thin electron injection and protection layer and the electron 

transport layer (ETL) into the EML (Figure 2).
[49]

 



7 

 

 

 
Figure 2: Basic set-up of an OLED. The layers are not drawn to scale.

[49]
 

 

Due to spin statistics 25% of the excitons formed are in the singlet state, while the remaining 75% 

are in the triplet state. This means the relaxation mechanism of the emitter material is of significant 

importance for the performance of an OLED.
[47]

 

The first examples of OLEDs used purely fluorescent emitters, of which only the excitons in the 

singlet state can generate light, while the triplet excitons cannot be harvested. Therefore these 

devices have only low performance, but in some devices fluorescent materials are still in use, 

especially to obtain blue emission, because no satisfying alternatives have been found to date.
[47]

 

In contrast to the fluorescent emitters, it is theoretically possible to reach an internal quantum 

efficiency of 100% by using phosphorescent emitters. As phosphorescent emitters mostly complexes 

with heavy metals are under investigation, due to their high SOC, which makes fast ISC possible. Also 

the spin-forbidden transition from T1 to S0 becomes more allowed. In this mechanism all excitons 

from the singlet and the triplet state are collected via the triplet state. Therefore this is called the 

triplet harvesting effect. Currently, although quite expensive, phosphorescent emitters based on 

platinum and iridium are the most efficient materials.
[47]

 

The third type of emitters, which is of interest for OLEDs, is TADF emitters. As described above (see 

1.2) in the case of delayed fluorescence the emission is caused by the transition from S1 to S0, which 

is why this process is called singlet harvesting. This leads to a possible internal quantum efficiency of 

100%, like for phosphorescent emitters. TADF emitters at the moment are mostly based on Cu(I) 

complexes or on purely organic molecules.
[47]

 

 

1.4 Previous work on picolylphosphine based luminescent compounds 

 

First investigations on bis(picolyl)phosphines indicate a versatile and interesting coordination 

behaviour.
[12a]

 This is due to the picolyl substituent at phosphorus. Additional nitrogen atoms in the 

pyridine ring cause a variable coordination capability and the methylene group between phosphorus 



8 

 

and the pyridine ring gives the ligand flexibility and adaptability upon coordination. On the other 

hand in complexes the ligand is rigid and held by the metal atom. According to first investigations by 

C. Hettstedt this special coordination situation is expressed in special and unexpected properties of 

the complexes.
[12a]

 For instance zinc complexes showed blue luminescence under irradiation with UV 

light in the solid state.
[12a]

 This finding is especially interesting given the high demand of stable and 

inexpensive blue emitter materials. 

 

1.5 Aims of the project 

 

The scope of this project was the synthesis of a series of new bis- and tris(picolyl)phosphine based 

compounds and to investigate their coordination behaviour towards zinc and copper(I). 

Structural investigations on the hydrochlorides of some mono(picolyl)phosphine based compounds 

shall be performed to gain insight into the interactions between the molecules in the solid state. 

The materials which are currently in use for the production of OLEDs are based on very expensive 

elements, such as iridium and platinum. This means that cheaper materials are of interest for the 

lighting industry. Some of the most promising materials are complexes of zinc and copper(I). 

Therefore zinc chloride and copper(I) halide complexes of bis- and tris(picolyl)phosphine based 

ligands shall be synthesised and tested for potential applications as emitter materials. 

Further the influence of a fluorescent moiety in one of the organic substituents on the coordination 

behaviour and the luminescent properties is investigated. Therefore P,N ligands with a substituent 

containing the Bodipy moiety are synthesised and corresponding complexes with manganese, zinc 

and copper(I) are prepared and  investigated. 
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2.1 Introduction 
 

Due to the presence of both a soft phosphorus and a hard nitrogen coordination site in P,N ligands, 

they are multidentate, hemilabile ligands, which have a very versatile coordination behaviour.[1] 

The combination of tertiary phosphines with pyridine moieties has been investigated in numerous 

studies.[2] Phosphines with picolyl (Pic), lutidinyl (Lut) and collidinyl (Col) substituents contain a 

methylene group between the phosphorus atom and the pyridine ring (Figure 1), which gives the 

molecule greater flexibility and allows coordination of both the phosphorus and the nitrogen to the 

same metal atom forming a five-membered chelate ring.[1a, 1b, 2b] 

As usual for P,N ligands picolylphosphine based ligands can coordinate to metal atoms either via 

only one of the coordination sites (phosphorus or nitrogen) or with both the phosphorus and the 

nitrogen atom.[3] In most cases picolylphosphine related compounds act as multidentate ligands,[4] 

but often the coordination of the nitrogen atom to the metal is weaker than the coordination of the 

phosphorus atom.[5] 

 

 
Figure 1: Examples for picolylphosphine based compounds synthesised in this thesis. 

 

In the literature various examples of mono(picolyl)phosphine based compounds and corresponding 

metal complexes are described.[2a, 2c, 6] 

In contrast only a small number of bis(picolyl)phosphine based compounds and their complexes has 

been reported to date. The most extensively studied bis(picolyl)phosphine is PhPPic2, which was first 

synthesised in 1983 by E. Lindner et al.
[3, 7] The only known examples of other bis(picolyl)phosphine 

related compounds have been reported during the last years by the research group of K. 

Karaghiosoff.[1c, 8] 

In the case of tris(picolyl)phosphine based compounds, PPic3 and complexes thereof are the only 

compounds referenced in the literature.[1c, 9] 

Complexes of picolylphosphine based compounds can be used as catalysts for reactions like 

hydrogenations,[10] dehydrogenations,[11] aminations,[2a] carbonylations,[12] oligomerisations[7e, 13] and 

Atom Transfer Radical Polymerisation.[14] 

Also first examples of complexes of picolylphosphine related ligands with luminescent properties 

have been reported.[8b, 15] 
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2.2 Results and discussion 
 

2.2.1 Synthesis 

 

2.2.1.1 Silyl compounds 

 

The silyl compounds 2-1–2-3 have been synthesised according to the procedure of C. Hettstedt.[1c] 

The corresponding methyl pyridine derivatives were deprotonated at the 2-methyl group with n-

butyl lithium at −78°C and the lithiated compounds were reacted with an excess of TMSCl to obtain 

2-1–2-3 (Scheme 1). 

 

 
Scheme 1: Synthesis of silyl compounds 2-1–2-3. 

 

The reaction mixture was then allowed to warm up to RT overnight and the solvent was removed in 

vacuo. After extraction with pentane and removal of the precipitated lithium chloride the solvent 

was removed in vacuo. The desired compounds were obtained as colourless liquids in good yields 

after vacuum distillation. 2-1–2-3 are soluble in THF, pentane and chloroform and sensitive towards 

hydrolysis. 

 

2-((Trimethylsilyl)methyl)benzoxazole 2-4 could be synthesised only in very poor yields by using the 

same synthetic procedure. Therefore it was synthesised according to the synthesis described by S. 

Pailloux et al. to synthesise 2-[(phosphinoyl)methyl]benzoxazole ligands.[16] 2-Methylbenzoxazole 

was deprotonated at the methyl group with freshly prepared LDA at −78°C. Afterwards the lithiated 

compound was allowed to react with an excess of TMSCl instead of a chlorophosphine to obtain 2-4 

(Scheme 2).  

 

 
Scheme 2: Synthesis of 2-((trimethylsilyl)methyl)benzoxazole 2-4. 

 

The reaction mixture was allowed to warm up to RT overnight and the solvent was removed in 

vacuo. After extraction with pentane and removal of the precipitated lithium chloride the solvent 

was removed in vacuo. The desired compound was obtained as a colourless liquid in 22% yield after 

vacuum distillation. 2-4 is soluble in THF, pentane and chloroform and sensitive towards hydrolysis. 
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2.2.1.2 Chlorophosphines 

 

The dichlorophosphines 2-5–2-7 have been synthesised according to literature procedures (Scheme 

3). 

isoPropyldichlorophosphine 2-5 was synthesised starting from the Turbo-Grignard reagent as 

described by W. Samstag and J. W. Engels, except that THF was used as solvent instead of Et2O.[17] 

After transmetalation to zinc, the organometallic reagent was allowed to react with 

trichlorophosphine. This synthetic procedure was chosen, because the zinc reagent is more selective 

than the Grignard reagent and therefore leads to higher yields of the desired dichlorophosphine. 

tertButyldichlorophosphine 2-6 was produced according to the synthesis of Y. Liu et al., although the 

reaction was done in Et2O instead of THF.[18] After Grignard reaction of tertbutyl chloride, 

tertbutylmagnesium chloride was allowed to react with PCl3. 

The synthesis of triisopropylphenyldichlorophosphine 2-7 was based on the procedure of M. I. Arz et 

al. starting from triisopropylphenylbromide.[19] After reaction with magnesium in THF, the Grignard 

reagent was transmetalated to zinc. Then the zinc reagent was allowed to react with PCl3. 

 

 
Scheme 3: Synthesis of the dichlorophosphines 2-5–2-7. 

 

After the reactions were completed the salts, which were formed during the reaction, were removed 

by filtration. 2-5 and 2-6 were purified by distillation, while 2-7 did not need further purification. 2-6 

and 2-7 were dried under vacuum. In the case of 2-7 a mixture of the dichlorophosphine with the 

corresponding bromochlorophosphine and dibromophosphine was obtained due to the presence of 

bromine in the reaction mixture. 
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Reactions of one or two equivalents of 2-3 with PCl3 were supposed to yield dichlorophosphine 2-8 

and chlorophosphine 2-9 respectively (Scheme 4). Therefore the silyl compound was added slowly to 

a solution of PCl3 in THF at −78°C and the reaction mixture was allowed to warm up to room 

temperature overnight. 

 

 
Scheme 4: Reactions of 2-3 with PCl3. 

 

Both reactions resulted in an orange-brown solution with a yellow precipitate. The precipitate was 

separated by filtration and dissolved in DCM. The reaction solutions and the precipitated solids were 

analysed by 31P NMR spectroscopy. 

The 31P NMR spectra of the reaction mixtures showed various signals between −50 ppm and 

220 ppm (Figure 2). 

 

 
Figure 2: 31P NMR spectra of the reaction mixtures of the reactions of 2-3 with PCl3 in ratios of 1:1 (left) and 2:1 (right) in 
THF. 

 

In the 31P NMR spectrum of the reaction mixture of the reaction in a 1:1 ratio a signal at 218.9 ppm 

can be observed, which can be assigned to unreacted PCl3. The signal at 182.4 ppm probably is 

caused by the desired dichlorophosphine 2-8. These two signals cannot be seen in the 31P NMR 

spectrum of the reaction mixture of the reaction in the ratio of 2:1. Due to the larger amount of 2-3 

all of the PCl3 has reacted and also the intermediately formed dichlorophosphine 2-8 was consumed 

in the reaction to form chlorophosphine 2-9. The spectra of both reactions show a signal at 

102.0/102.7 ppm, which indicates that 2-9 was formed. In the reaction with 2 equivalents of 2-3 also 
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a small amount of the corresponding tertiary phosphine 2-25 is formed, which causes a signal at 

−16.1 ppm in the 31P NMR spectrum. 

None of the products from the reaction mixtures could be isolated. 

 

The 31P NMR spectra of the precipitates of both reactions look quite different (Figure 3).  

 

 
Figure 3: 31P NMR spectra of the precipitates from the reactions of 2-3 with PCl3 in ratios of 1:1 (left) and 2:1 (right) in 
DCM. 

 

The 31P NMR spectrum of the precipitate of the reaction in the ratio 1:1 shows a large signal at 

100.2 ppm, which can be assigned to chlorophosphine 2-9. This was confirmed by 1H and 13C NMR 

and mass spectroscopy. The other signals represent minor impurities, which could not be identified. 

The 31P NMR spectrum of the precipitate of the reaction in the ratio 2:1 shows a signal at −50.4 ppm 

and various other signals between 0 ppm and 50 ppm. None of these signals could be assigned to 

the desired products of the reaction and therefore the mixture was not further investigated. 

 

Compound 2-8 could not be isolated, instead the reaction in the ratio 1:1 yielded in approx. 35% of 

2-9. From the reaction in the ratio 2:1 no products could be isolated. 

 

2.2.1.3 Picolylphosphine based compounds 

 

To synthesise 2-10–2-12, the corresponding silyl compounds were reacted with Ph2PCl in THF in a 1:1 

ratio, according to the synthetic route by C. Hettstedt et al. (Scheme 5).[1c] 

 

Ph2P
N R

R'

Ph2PCl +
THF

0 °C -> RTN

R'

R
TMS

R,R' = H,H

Me,H

Me,Me

2-10

2-11

2-12  
Scheme 5: Synthesis of picolylphosphine based compounds 2-10–2-12. 
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After removing the solvent in vacuo compounds 2-11 and 2-12 were obtained as viscous colourless 
oils at room temperature, while compound 2-10 is a colourless solid. The yields were 79–86%. 
Compounds 2-10–2-12 are soluble in pentane, THF, DCM and chloroform. All three compounds are 
sensitive towards oxidation and are slowly hydrolysed.  
 

2.2.1.4 Bis(picolyl)phosphine based compounds 

 

To synthesise 2-13–2-21, the corresponding silyl compounds were reacted with PhPCl2, iPrPCl2, 

tBuPCl2 or TIPPPCl2 in THF in a 2:1 ratio, according to the synthetic route by C. Hettstedt et al. 

(Scheme 6).[1c] 

 

 
Scheme 6: Synthesis of bis(picolyl)phosphine based compounds 2-13–2-21. 

 
After removing the solvent in vacuo, the phosphines 2-13–2-17 were extracted with Et2O or, in case 
of 2-15, pentane. After removal of the solvent in vacuo compounds 2-13–2-17 were obtained in 
good yields of 72–91%. Compound 2-13 was a yellow solid, 2-14 a viscous yellow liquid, 2-15 a 
viscous amber coloured liquid and 2-16 and 2-17 were amber coloured liquids at room temperature. 
2-13–2-17 are soluble in Et2O, THF, DCM and chloroform. All compounds are sensitive towards 
oxidation and are slowly hydrolysed. 
Compounds 2-20 and 2-21 could not be isolated pure. 
 
The reactions to obtain 2-18 and 2-19 did not yield in the desired products. The 31P NMR spectra of 
the reaction mixtures after warming up to room temperature showed that most of the 
dichlorophosphine (201.4/201.1 ppm) did not react (Figure 5). Only little conversion to the 
corresponding chlorophosphines 2-22 (127.4 ppm) and 2-23 (127.1 ppm) could be observed (Figure 
4). 
 

 
Figure 4: Chlorophosphines 2-22 and 2-23, formed during the reactions to obtain 2-18 and 2-19. 
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Figure 5: 31P NMR spectra of the reaction mixtures to synthesise 2-18 (left) and 2-19 (right) in THF after warming up to 
room temperature. 

 

The reaction mixtures were heated to reflux for 22 h to speed up the reaction. The 31P NMR spectra 

of the reaction mixtures after refluxing showed that the reaction that occurs even at higher 

temperatures is the substitution of only one of the chlorine atoms bound to the phosphorus with a 

Lut or Col substituent (Figure 6). In the reaction mixtures there is still starting material present, but 

the conversion of 2-6 to 2-22 and 2-23 respectively could be increased to 64–74%. 

 

 
Figure 6: 31P NMR spectra of the reaction mixtures to synthesise 2-18 (left) and 2-19 (right) in THF after refluxing. 

 

Probably due to the steric hindrance of the tertbutyl group the desired products 2-18 and 2-19 

respectively were not formed in these reactions. Possibly the reactivity could be increased by using 

the lithiated 2-methyl pyridine derivatives in the reaction with 2-6. This could also lead to the 

desired compounds 2-18 and 2-19. 

 

2.2.1.5 Tris(picolyl)phosphine based compounds 

 

To synthesise 2-24 and 2-25, the corresponding silyl compounds were allowed to react with PCl3 in 

THF at −78°C in a 3:1 ratio, according to the synthetic route by C. Hettstedt et al. (Scheme 7).[1c] 
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Scheme 7: Synthesis of tris(picolyl)phosphine based compounds 2-24 and 2-25. 

 

After removal of the solvent in vacuo phosphine 2-24 was extracted with pentane and 2-25 was 

extracted with Et2O and pentane. The solvent was removed in vacuo and the products were 

obtained as very viscous yellow (2-24) or amber coloured (2-25) liquids in good yields of 68–84%. 2-

24 and 2-25 are soluble in pentane, Et2O, THF, DCM and chloroform. Both compounds are sensitive 

towards oxidation and are slowly hydrolysed. 

 

2.2.1.6 Tris(benzoxazol-2-ylmethyl)phosphine 

 

The synthesis of tris(benzoxazol-2-ylmethyl)phosphine 2-26 has been carried out according to the 

procedure of C. Hettstedt.[1c] PCl3 was dissolved in THF and reacted with an excess of 2-4 at −78°C 

(Scheme 8). 

 

 
Scheme 8: Synthesis of Tris(benzoxazol-2-ylmethyl)phosphine 2-26. 

 

The reaction mixture was allowed to warm up to RT overnight and the solvent was removed in 

vacuo. The product was isolated in good yield (67%) as yellow solid. Phosphine 2-26 is soluble in THF 

and chloroform and very sensitive towards oxidation. 
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2.2.2 NMR data 

 

2.2.2.1 2-((Trimethylsilyl)methyl)benzoxazole 

 

The 1H, 13C and 31P NMR chemical shifts of 2-((trimethylsilyl)methyl)benzoxazole 2-4 are listed in 

Table 1. 

 

 
Figure 7: Numbering of carbon atoms in compound 2-4 for 1H and 13C NMR spectroscopic data assignments. 

 
Table 1:

 1H, 13C and 31P NMR data of phosphines 2-5–2-7 in CDCl3. 
Chemical shifts δ are in ppm, coupling constants J in Hz. 

δSi 4.0  δC
  

   C1 20.0 

δH   C2 167.2 

H1 2.42  C3 151.0 

H4 7.60  C4 119.0 

H5/6 7.23  C5/6 123.7/123.9 

H7 7.42  C7 109.9 

H9 0.14  C8 142.2 

   C9 −1.3 

 

The assignment of the signals is based on 2D NMR spectra and comparison with literature values of 

benzofuran, 1H-indole and methylbenzoxazole.[20] 

The chemical shift of the 29Si NMR signal of 2-4 is 4.0 ppm, which is in the typical range of aliphatic 

trimethylsilyl groups (+10 to −20 ppm).[21] 

The 1H NMR signal at 0.14 ppm is caused by the protons of the trimethylsilyl group (H9) and the 

signal at 2.42 ppm can be assigned to the methylene group (H1). Both signals appear as singlets, 

because the4
J coupling is not resolved. Comparisons with the NMR data with benzofuran and 1H-

indole allow assigning the multiplets at 7.60 ppm (H4) and 7.42 ppm (H7). The chemical shifts of the 

signals caused by H5 and H6 are almost identical, which leads to an overlap of the signals. 

The1H13C HMQC spectrum allows assigning of the 13C NMR signals at 119.0 ppm (C4) and 109.9 ppm 

(C7). The 1H NMR signal at 7.23 ppm correlates with the 13C NMR signals at 123.7 ppm and 

123.9 ppm, but further assignment is not possible. 

The 13C NMR chemical shifts are almost identical to those of methylbenzoxazole, except C1 and 

C2.[20b] Both signals are shifted 3.7 ppm and 6.3 ppm, respectively, towards lower field by 

substitution of one proton by the trimethylsilyl group. Also in the literature the signals of C5 and C6 

cannot be differed from each other, because of their very similar chemical shifts.[20b] 

 

2.2.2.2 Picolylphosphine based compounds 

 

The 1H, 13C and 31P NMR chemical shifts of the picolylphosphine based compounds 2-10–2-12 are 

listed in Table 2. 
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Figure 8: Numbering of carbon atoms in compounds 2-10–2-12 for 1H and 13C NMR spectroscopic data assignments. 

 
Table 2: 1H, 13C and 31P NMR data of phosphines 2-10–2-12 in CDCl3. Chemical shifts δ are in ppm, coupling constants J in Hz. 

 2-10 2-11 2-12   2-10 2-11 2-12 

δP −9.4 −10.2 −9.7  δC    
3
JPH10 7.5 7.4 7.4  C1 39.0 38.8 38.7 

     C2 158.3 157.3 157.0 

δH     C3 123.8 120.6 121.7 

H1 3.64 3.61 3.56  C4 136.2 136.3 147.3 

H3 6.98 6.74 6.58  C5 121.1 120.6 121.6 

H4 7.45 7.32 –  C6 149.5 158.0 157.7 

H5 7.04 6.89 6.73  C7 – 24.6 24.4 

H6 8.50 – –  C8 – – 20.8 

H7 – 2.49 2.45  C9 138.3 138.4 138.5 

H8 – – 2.15  C10 133.0 133.1 133.1 

H10 7.45 7.45 7.45  C11 128.5 128.4 128.4 

H11 7.32 7.32 7.31  C12 128.8 128.7 128.7 

H12 7.32 7.32 7.31  1
JPC1 16.2 16.5 16.2 

3
JH3H4 7.8 7.7 –  2

JPC2 8.1 7.8 8.0 
4
JH3H5

 2.2 –  –  3
JPC3 6.2 4.2 3.0 

5
JH3H6

 1.0 –  –  4
JPC4 1.1 1.2 – 

3
JH4H5 7.5 7.6 –  5

JPC5 2.3 – 1.6 
4
JH4H6

 1.9 –  –  4
JPC6 1.1 1.2 1.1 

3
JH5H6 4.9 –  –  1

JPC9 15.0 15.0 14.8 
6
JPH5

 1.1 –  –  2
JPC10 18.9 18.8 18.8 

     3
JPC11 6.5 6.6 6.7 

 

In the 31P NMR spectra the chemical shifts of the signals of compounds 2-10–2-12 are in the range of 

−9.4 ppm to −10.2 ppm, which is typical for tertiary phosphines.[22] In the 1H coupled 31P NMR 

spectra the coupling of the ortho phenyl protons with the phosphorus causes quintets with coupling 

constants of 7.4 Hz to 7.5 Hz. The coupling with the methylene protons H1 is very small and cannot 

be resolved. 

In the 1H NMR spectra of compounds 2-10–2-12 the signals of the phenyl protons H10–H12 appear 

as two multiplets with chemical shifts of 7.31–7.32 ppm and 7.45 ppm. The signals of the pyridine 

protons are shifted towards higher field by the introduction of additional methyl groups at the 

pyridine ring. 

The 1H NMR signal of H5 of compound 2-10 resolves a long range coupling with the phosphorus 

atom over six bonds. 

In the 13C NMR spectra the chemical shifts of the signals of the phenyl carbon atoms C9–C12 are 

almost identical for compounds 2-10–2-12. The signals of C1 and C2 are slightly shifted towards 

higher field from 2-10 to 2-12. Introduction of the methyl groups at C4 and C6 respectively leads to a 
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shift of approx. 10 ppm of the corresponding signals towards lower field. The signals of the other 

carbon atoms vary by a maximum of 3.2 ppm from 2-10 to 2-12. 

Remarkably the 2
JPC coupling constants to C10 (18.8–18.9 Hz) are slightly larger than the 1

JPC coupling 

constants (14.8–16.5 Hz) with C9.  

 

2.2.2.3 Bis(picolyl)phosphine based compounds 

 

The 1H, 13C and 31P NMR chemical shifts of the bis(picolyl)phosphine based compounds 2-13–2-17 

are listed in Table 3. 

 

 
Figure 9: Numbering of carbon atoms in compounds 2-13–2-17 for 1H and 13C NMR spectroscopic data assignments. 

 
Table 3: 1H, 13C and 31P NMR data of phosphines 2-13–2-17 in CDCl3. Chemical shifts δ are in ppm, coupling constants J in Hz. 

 2-13 2-14 2-15 2-16 2-17  2-13 2-14 2-15 2-16 2-17 

δP −13.1 −13.1 −13.1 0.7 1.4 δC      
3
JPH10 7.4 7.3 7.5 13.3 13.3 C1 37.8 37.6 37.5 34.4 34.4 

      C2 158.2 157.4 157.1 158.6 158.3 

δH      C3 123.8 120.6 121.6 120.6 121.6 

H1a 3.40 3.34 3.28 3.03 2.97 C4 136.2 136.2 147.2 136.3 147.3 

H1b 3.32 3.24 3.21 2.99 2.97 C5 121.0 120.3 121.4 120.1 121.3 

H3 7.00 6.79 6.58 7.00 6.79 C6 149.2 157.7 157.3 157.7 157.3 

H4 7.44 7.29 – 7.37 – C7 – 24.5 24.2 24.6 24.3 

H5 7.00 6.83 6.66 6.86 6.68 C8 – – 20.7 – 20.9 

H6 8.44 – – – – C9 136.8 137.1 137.4 25.0 25.3 

H7 – 2.43 2.38 2.45 2.41 C10 132.8 132.8 132.8 19.2 19.2 

H8 – – 2.10 – 2.17 C11 128.4 128.1 128.0 – – 

H9 – – – 1.67 1.68 C12 129.2 129.0 128.9 – – 

H10 7.44 7.42 7.43 1.05 1.06 1
JPC1 18.8 18.7 18.3 21.1 20.6 

H11 7.28 7.29 7.25 – – 2
JPC2 5.8 5.8 5.9 5.7 6.2 

H12 7.28 7.26 7.25 – – 3
JPC3

 5.4 5.7 6.0 6.0 6.4 
2
JH1aH1b 13.4 13.3 13.3 13.6 – 4

JPC4
 – 1.0 – – 0.8 

3
JH3H4

 – 7.7 – 7.7 – 5
JPC5

 2.1 2.1 2.1 1.8 1.7 
4
JH3H5

 – 0.5 – – – 4
JPC6

 – 1.0 0.8 – 0.6 
5
JH3H6

 1.0 – – – – 1
JPC9 18.2 18.4 18.2 13.8 13.6 

3
JH4H5

 – 7.6 – 7.6 – 2
JPC10 20.0 19.8 19.7 13.5 13.1 

4
JH4H6

 1.9 – – – – 3
JPC11 7.0 7.0 6.9 – – 

3
JH5H6

 4.9 – – – – 4
JPC12 – 0.7 – – – 

3
JH9H10

 – – – 7.1 7.0       
2
JPH9

 – – – 2.0 1.7       
2
JPH1a

 1.7 1.7 1.2 – –       
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In the 31P NMR spectra the chemical shifts of the signals of compounds 2-13–2-15 are −13.1 ppm, 

while the 31P NMR signals of 2-16 and 2-17 appear at chemical shifts of 0.7 ppm and 1.4 ppm 

respectively. In the 1H coupled 31P NMR spectra the coupling of the ortho phenyl protons of 2-13–2-

15 with the phosphorus causes triplets with coupling constants of 7.3 Hz to 7.5 Hz. The 3
JPH10 

coupling constants of compounds 2-16 and 2-17 are 13.3 Hz. The coupling with the methylene 

protons H1 in compounds 2-13–2-17 cannot be resolved. 

In the 1H NMR spectra of compounds 2-13–2-15 the signals of the phenyl protons H10–H12 appear 

as two multiplets with chemical shifts of 7.25–7.29 ppm and 7.42–7.44 ppm.  

The signals of the protons of the isopropyl groups of 2-16 and 2-17 appear at 1.05–1-06 ppm (H10) 

and 1.67–1.68 ppm (H9) respectively. 

As for the picolylphosphine based compounds 2-10–2-12 for the bis(picolyl)phosphine based 

compounds 2-13–2-15 and 2-16–2-17 respectively, the signals of the protons of the organic moieties 

are shifted towards higher field by the introduction of additional methyl groups at the pyridine ring. 

In the case of phosphines 2-13–2-15 the protons at the methylene group H1 are diastereotopic and 

therefore cause two signals with 2
JHH of 13.3–13.4 Hz. The signals of H1a resolve a small 2

JPH coupling 

constant of 1.2 – 1.7 Hz, while no 2
JPH coupling can be observed for H1b. In the 1H NMR spectra of 2-

16 and 2-17 the signals of H1a and H1b move closer towards each other. The signals of H1a and H1b 

of 2-16 resolve a 2
JHH coupling constant of 13.6 Hz, but no 2

JPH coupling. In the 1H NMR spectrum of 

2-17 the signal of H1 is a singlet (Figure 10). 

 

 
Figure 10: 

1H NMR signals of H1 of 2-15 (left), 2-16 (middle) and 2-17 (right). 

 

In the 13C NMR spectra the chemical shifts of the signals of the phenyl carbon atoms C9–C12 are 

almost identical for compounds 2-13–2-15 and similar to those of 2-10–2-12. Upon introduction of 

additional methyl groups at the pyridine rings the same trends as in the NMR data of the 2-10–2-12 

can be observed for the 2-13–2-15 and 2-16–2-17 respectively. Especially the chemical shifts of the 
13C NMR signals of C3–C8 are almost identical for 2-14 and 2-16 and 2-15 and 2-17 respectively. 

Replacement of the phenyl group with an isopropyl group leads to a slight low field shift of the 

signals of C1 and a slight high field shift of the signals of C2. The chemical shifts of the other 13C NMR 

signals are not affected. 

As for 2-10–2-12 the 2
JPC coupling constants with C10 are larger than the 1

JPC coupling constants with 

C9 for compounds 2-13–2-15. These coupling constants of 2-13–2-15 are slightly larger than of 2-10–

2-12. The 1
JPC1coupling constants are also increased, whilst the 2

JPC2 coupling constants are slightly 

decreased from 2-10–2-12 to 2-13–2-15. The 1
JPC1 coupling constants are increased by 2.3–2.4 Hz 

upon replacement of the phenyl group with an isopropyl group. 
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2.2.2.4 Tris(picolyl)phosphine based compounds 

 

The 1H, 13C and 31P NMR chemical shifts of the tris(picolyl)phosphine based compounds 2-24–2-25 

are listed in Table 4. 

 

 
Figure 11: Numbering of carbon atoms in compounds 2-24 and 2-25 for 1H and 13C NMR spectroscopic data assignments. 

 
Table 4: 1H, 13C and 31P NMR data of phosphines 2-24 and 2-25 in CDCl3. 

Chemical shifts δ are in ppm, coupling constants J in Hz. 

 2-24 2-25   2-24 2-25 

δP −12.2 −12.2  δC   

    C1 35.8 36.3 

δH    C2 157.8 157.8 

H1 3.00 3.00  C3 120.7 121.8 

H3 6.83 6.71  C4 136.2 147.3 

H4 7.35 –  C5 120.2 121.4 

H5 7.01 6.84  C6 157.6 157.5 

H7 2.43 2.43  C7 24.5 24.4 

H8 – 2.19  C8 – 20.9 
3
JH3H4 7.7 –  1

JPC1 21.2 20.5 
3
JH4H5 7.7 –  2

JPC2 4.9 5.2 
2
JPH1

 1.6 0.8  3
JPC3 5.0 5.5 

    4
JPC4 0.7 – 

    5
JPC5 1.9 1.8 

    4
JPC6 0.8 0.7 

 

In the 31P NMR spectra the signals of compounds 2-24 and 2-25 are at a chemical shift of −12.2 ppm. 

The coupling with the methylene protons H1 cannot be resolved in the 1H coupled 31P NMR spectra. 

In the 1H and 13C NMR spectra of compounds 2-24 and 2-25 the same trends as for the pairs 2-11/12 

and 2-14/15 can be observed. 

In the rows 2-11/14/24 and 2-12/15/25 the 1H NMR signals of H1 are shifted towards higher field, 

while the signals of H3 and H5 are shifted towards lower field. 

The 13C NMR signals of C5 are shifted towards higher field in the same rows. 

Upon introduction of more Lut/Col substituents at the phosphorus 1
JPC1 is increased, while 2

JPC2 

decreases. 

 

2.2.2.5 Tris(benzoxazol-2-ylmethyl)phosphine 

 

The 1H, 13C and 31P NMR chemical shifts of 2-26 are listed in Table 5. 
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Figure 12: Numbering of carbon atoms in compound 2-26 for 1H and 13C NMR spectroscopic data assignments. 

 
Table 5: 1H, 13C and 31P NMR data of phosphine 2-26 in CDCl3. 

Chemical shifts δ are in ppm, coupling constants J in Hz. 

δP −24.9  δC  
2
JPH1 3.9  C1 25.7 

   C2 162.7 

δH   C3 150.9 

H1 3.50  C4 119.7 

H4 7.60  C5/6 124.3/124.8 

H5/6 7.29  C7 110.4 

H7 7.40  C8 141.4 

   1
JPC1 22.2 

   2
JPC2 5.5 

   4
JPC3 0.8 

 

The 31P NMR signal of 2-26 appears at −24.9 ppm, which is in the typical range of tertiary 

phosphines.[22] In the 1H coupled 31P NMR spectrum a splitting of the signal into a septet with a 

coupling constant of 3.9 Hz due to coupling with the methylene protons can be observed. 

Correspondingly the signal of H1 in the 1H NMR spectrum appears at a chemical shift of 3.50 ppm as 

a doublet with a coupling constant of 3.9 Hz. Compared to the corresponding 1H NMR signal of 2-4 

the signal of H1 is shifted approx. 1 ppm towards lower field, due to the higher electronegativity of 

the phosphorus compared to silicon. 

As for 2-4 the 1H and 13C NMR signals have been assigned according to the 2D NMR spectra and 

comparisons with literature values of similar compounds. 

The 1H and 13C NMR chemical shifts of the aromatic atoms 3–8 are almost identical to those of 2-4. 

The 13C NMR signal of C1 is shifted towards lower field, while the signal of C2 is shifted towards 

higher field compared to 2-4. 

 

2.2.3 Photophysical data of 2-26 

 

Compound 2-26 shows blue emission in the solid state (Figure 13). In Figure 14 the fluorescence 

emission spectrum of 2-26 is shown. The emission maximum is at 496 nm. 

 



 

Figure 13: Luminescence of 2-26 under UV light.

 

Figure 14: Fluorescence emission spectrum of phosphin

 

Time-correlated Single Photon Counting (TCSPC) is a method

relaxation times of luminescent compounds. From the relaxation times it is possible to draw 

conclusions on the processes involved in the r

In the TCSPC measurement the time until a single photon is emitted after excitation of a sample is 

determined. After fitting the data from a multitude of measuring points with an exponential function 

the relaxation times are obtained from the fit parameters.

In the solid state interactions between the molecules, such as diffusion effects or radiationless 

deactivation via vibrations, occur in competition to the luminescence. Therefore it is necessary to 

use a biexponential function to fit the data, which leads to two relaxation times 

observed relaxation mechanism is described by 

 

From TCSPC measurements the relaxation times of 

in the solid state could be determined (Figure 1

which is typical for fluorescence (0.01

which is typical for purely organic emitters.
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under UV light. 

Fluorescence emission spectrum of phosphine 2-26 in the solid state. 

on Counting (TCSPC) is a method which is used to determine the 

relaxation times of luminescent compounds. From the relaxation times it is possible to draw 

conclusions on the processes involved in the relaxation of a compound. 

In the TCSPC measurement the time until a single photon is emitted after excitation of a sample is 

. After fitting the data from a multitude of measuring points with an exponential function 

ed from the fit parameters. 

In the solid state interactions between the molecules, such as diffusion effects or radiationless 

vibrations, occur in competition to the luminescence. Therefore it is necessary to 

o fit the data, which leads to two relaxation times 

observed relaxation mechanism is described by τ1, while τ2 describes the competing processes.

From TCSPC measurements the relaxation times of 2-26 of τ1 = 1.115±0.015 ns and 

in the solid state could be determined (Figure 15). These relaxation times are in the time range, 

which is typical for fluorescence (0.01–10 ns)[23] and indicate that 2-26 probably is a singlet emitter, 

organic emitters. 

 

which is used to determine the 

relaxation times of luminescent compounds. From the relaxation times it is possible to draw 

In the TCSPC measurement the time until a single photon is emitted after excitation of a sample is 

. After fitting the data from a multitude of measuring points with an exponential function 

In the solid state interactions between the molecules, such as diffusion effects or radiationless 

vibrations, occur in competition to the luminescence. Therefore it is necessary to 

o fit the data, which leads to two relaxation times τ1 and τ2. The 

describes the competing processes. 

ns and τ2 = 3.54±0.04 ns 

are in the time range, 

probably is a singlet emitter, 



 

Figure 15: Results of the TCSPC measurements of 

 

2.2.4 Crystal structure of tris(benzoxazol

 

By slow diffusion of MeCN in a solution of

analysis were obtained. 

The structure showed, that the phosphine had b

because of oxygen, that entered the flask during crystallization. The p

in THF and chloroform. 

2-27 crystallises in the triclinic

asymmetric unit comprises one molecule of the phosphine oxide and one molecule of MeCN

asymmetric unit of 2-27 is shown in 

 

Figure 16: Molecular structure of 2-27

been omitted for clarity. Selected bond lengths [
O1: 1.480(2), C1–P1–C9: 106.1(1), C1–
C17–P1–O1: 112.8(1). 
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Results of the TCSPC measurements of 2-26. 

ris(benzoxazol-2-ylmethyl)phosphine oxide

By slow diffusion of MeCN in a solution of 2-26 in THF colourless crystals suitable for 

The structure showed, that the phosphine had been oxidised during the crystallization, probably 

because of oxygen, that entered the flask during crystallization. The phosphine 

ic space group P−1 with two formula units in the unit cell

asymmetric unit comprises one molecule of the phosphine oxide and one molecule of MeCN

is shown in Figure 16.  

7. Thermal ellipsoids are drawn at 50% probability level. The solvent molecule has 
been omitted for clarity. Selected bond lengths [Å] and angles [°]: P1–C1: 1.806(2), P1–C9: 1-810(3)

–P1–C17: 105.2(1), C1–P1–O1: 113.6(1), C9–P1–C17: 106.2(1)

 

oxide 2-27 

suitable for X-ray diffraction 

een oxidised during the crystallization, probably 

e oxide 2-27 is soluble 

formula units in the unit cell. The 

asymmetric unit comprises one molecule of the phosphine oxide and one molecule of MeCN. The 

 
Thermal ellipsoids are drawn at 50% probability level. The solvent molecule has 

810(3), P1–C17: 1.815(2), P1–
106.2(1), C9–P1–O1: 112.4(1), 
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The P–O bond length of 1.480(2) Å is comparable to the P–O bond length of 1.488(4) Å in 

tribenzylphosphine oxide described in the literature.[24] The P–C bond lengths are between 

1.806(2) Å and 1.815(2) Å, which is slightly shorter than the literature value of the P–C bonds of 

tribenzylphosphine oxide (1.823(3) Å).[24] 

The C–P–O angles of compound 2-27 are between 112.4(1) ° and 113.6(1) °, which is slightly larger 

than the ideal tetrahedral angle of 109.5 °. The C–P–C angles are between 105.2(1) ° and 106.2(1) ° 

and slightly smaller than the tetrahedral angle.  

The phosphine oxide molecules are parallel stacked along the a axis (Figure 17). The distance 

between the molecules is 4.890(1) Å, meaning that there are probably no attractive π-π interactions, 

despite the parallel arrangement. 

 

     
Figure 17: Crystal structure of 2-27. View along the a axis (left) and stacking of the molecules along the a axis (right, 
thermal ellipsoids are drawn at 50% probability level, H atoms and solvent molecules have been omitted for clarity). 

 

2.3 Summary 
 

The phosphines 2-8–2-26 have been synthesised by reaction of one of the silyl compounds 2-1–2-4 

with a P–Cl compound according to the procedure of C. Hettstedt.[1c] 2-10–2-17 and 2-24–2-26 could 

be completely characterised by NMR spectroscopy. The eleven new phosphines can be used as 

multidentate P,N ligands and 2-26 contains even seven atoms which are able to coordinate to 

metals: one phosphorus atom, three nitrogen atoms and three oxygen atoms. 

 

Remarkably 2-26 shows blue fluorescence under UV light. The fact that the compound does not 

contain any metals indicates that it is most likely a pure singlet emitter, which is confirmed by the 

short relaxation times measured in the TCSPC. 

The phosphines could not be crystallised and therefore no crystal structures could be obtained. But 

during the experiments to crystallise 2-26, crystals of the corresponding phosphine oxide 2-27 were 

isolated and the structure could be determined (Figure 18). 
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Figure 18: Molecular structure (left) and crystal structure (right) of 2-27. 

 

Reaction of PCl3 with one equivalent of 2-3 yielded approx. 35% of 2-9 instead of 2-8 as expected. 

The reaction of PCl3 with two equivalents of 2-3 was expected to yield 2-9, but no product could be 

isolated from this reaction. It was not possible to isolate 2-8 from one of these reactions. 

 

The reactions to obtain the bis(picolyl)phosphine related compounds 2-20 and 2-21 led to the 

desired products, but the compounds could not be obtained pure. 

In contrast to the reactions to synthesise the bis(picolyl)phosphine based compounds 2-13–2-17, 2-

20 and 2-21 the reactions towards 2-18 and 2-19 did not yield the expected products. These 

reactions stopped after substitution of one of the chlorine atoms bound to the phosphorus with a 

Lut/Col group at the chlorophosphines 2-22 and 2-23 respectively. Also these two reactions were 

much slower than the other reactions and needed heating to reflux to get significant amounts of 

product. This is probably due to the steric demand of the tertbutyl group at the phosphorus. Likely 

the reaction could be sped up by using the more reactive lithiated methyl pyridine derivatives 

instead of the silyl compounds. It might also be possible to get to the tertiary phosphines with this 

reaction. 

 

2.4 Experimental 
 

2.4.1 General 

 

2.4.1.1 Schlenk technique 

 

All reactions, unless mentioned otherwise, were performed under inert gas using Schlenk line 

techniques. As inert gas argon from Messer Griesheim with a purity of 5.0 in 50 L steel bottles was 

used. Glass equipment was stored in an oven with a temperature of 110°C before use. The glass 

equipment was greased with high vacuum quality grease (Glisseal®) from Borer or Korasilon-Paste 

(medium) from Kurt Obermeier GmbH & Co. KG. Before starting a reaction the setup was heated 

under vacuum (10−3 mbar) and purged with argon three times. 
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2.4.1.2 Preparation of NMR samples under Schlenk conditions 

 

For preparation of NMR samples of air or moisture sensitive substances a special sample holder was 

used. This consists of an approx. 7 cm long glass tube with a Schlenk tap in the upper third. The 

upper end can be sealed with a stopper and the lower end can be sealed with a QuickFit®, in which a 

perforated silicone septum is inserted. A NMR tube can be pushed through the hole in the septum 

from above until the setup can be sealed and through the tap the apparatus can be evacuated, 

heated and purged with inert gas. The sample is filled in under inert gas counter flow with a 1 mL 

syringe. Afterwards the NMR tube is pushed up until the lid can be put on under inert gas counter 

flow. 

 

2.4.1.3 Solvents 

 

THF, pentane, Et2O and toluene were dried over sodium/benzophenone and sodium respectively. 

DCM was dried over calcium hydride and MeCN was dried over phosphorus pentoxide. All solvents 

were distilled prior to use. 

 

2.4.1.4 Chemicals 

 

All starting materials were purchased from Merk, Fluka/Aldrich/Riedl-De-Hähn, Acros Organics, 

ABCR and TCI and used as received or were present in the research group Klapötke/Karaghiosoff. 

nBuLi and the “Turbo-Grignard” reagent were donated by Albemarle (Rockwood Lithium GmbH). 

 

2.4.1.5 NMR spectroscopy 

 

NMR spectra were recorded with a JEOL 400 Eclipse instrument, a Bruker AV400 instrument or a 

Bruker AV400TR instrument. Chemical shifts were referenced to Me4Si (1H, 13C, 29Si) and 85 % H3PO4 

(31P) as external standards. All spectra were measured at 25°C, if not mentioned otherwise. The 

assignment of the signals in the 1H and 13C NMR spectra is based on 2D (1H,1H COSY45, 1H,13C HMQC 

and 1H,13C HMBC) experiments. For the 2D NMR spectra sinebell window function and zero filling in 

both directions was applied resulting in a 4k × 4k matrix. 

 

2.4.1.6 Mass spectrometry 

 

Mass spectrometric data were obtained with a JEOL MStation JMS 700 spectrometer using the FAB 

mode or a MAT 95 or a MAT 90 spectrometer using the direct ESI mode. 

 

2.4.1.7 Elemental analysis 

 

Elemental analysis was performed either on an Elementar Vario El analysator or an Elementar Vario 

micro cube for C, H and N. 
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2.4.1.8 Single crystal X-ray diffraction 

 

For data collection an Xcalibur3 diffractometer equipped with a Spellman generator (voltage 50 kV, 

current 40 mA) and a Kappa CCD detector with an X-ray radiation wavelength of 0.71073 Å was used 

or a D8 Venture system equipped with  a Bruker D8 Venture TXS rotating-anode X-ray tube (Mo Kα, λ 

= 0.71073 Å) and a multilayer mirror optics monochromator. Air sensitive crystals were taken out of 

the vessel under inert gas and immediately put in a drop of perfluorinated oil (KEL-F®) on an object 

holder. 

 

2.4.1.9 Data collection from the diffractometer and solving of the crystal structures 

 

Data collection from the Xcalibur3 diffractometer was performed with the CrysAlis CCD software[25] 

and the data reduction with the CrysAlis RED software. [26] For the Bruker D8 software provided by 

Bruker was used for data collection,[27] data reduction[28] and cell refinement.[29] The structures were 

solved with SHELXS-97,[30] refined with SHELXL-2014[31] and finally checked using PLATON.[32]  The 

absorptions were corrected using the SCALE3 ABSPACK multiscan method.[33] Finally cif-files were 

checked with the online available checkCIF service of the International Union of Crystallography.[34] 

Representations of molecular and crystal structures were generated with DIAMOND.  

 

2.4.1.10 PL spectroscopy and TCSPC measurements 

 

PL spectra and TCSPC measurements were recorded by Dr. Andreas Jakowetz from the research 

group of Prof. Bein on a FluoTime 300 spectrometer of PicoQuant. The sample was excited with a 

378 nm laser (LDH-P-C-375, PicoQuant). The light was p-polarised, pulse length was approx. 100 ps 

and the pulse intensity was 2 µJcm−2. The emitted light was collected with a 2‘‘ lens and scattered 

light was filtered with a 400 nm interference filter (FELH0400, Thorlabs) and polarised under the 

magic angle (54.7 °). Subsequently the light was spectrally separated with a monochromator 

(Omni-λ 300, Zolix) and detected with a sensitive photomultiplier (PMA 192, PicoQuant). TCSPC 

histograms were recorded with a TimeHarp 260 P (PicoQuant). Data were fitted with the 

PicoQuant FluoFit 4.6.6.0 software using the biexponential function ���� =  ∑ �	

�

�
��

��
�
	�� . 

 

2.4.2 Syntheses 

 

2.4.2.1 2-((Trimethylsilyl)methyl)pyridine 2-1 

 

 
 

2-Methylpyridine (10.0 mL, 100 mmol, 1 eq) was dissolved in 100 mL dry THF and cooled to −78°C. 
nBuLi (78.2 mL, 1.45 M in hexane, 100 mmol, 1 eq) was added dropwise and the deep red solution 
was stirred for 1 h at −78°C. TMSCl (15 mL, 118 mmol, 1.2 eq) was added dropwise and the solution 
returned to colourless, while it was allowed to warm up to RT overnight. The solvent was removed in 

vacuo and the crude product was extracted with 100 mL of pentane. The white precipitate was 
filtered off and the solvent was removed in vacuo. 
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After vacuum distillation (10−3 mbar, 31°C, oil bath 43°C) the product was obtained as colourless 
liquid (12.3 g, 74.4 mmol, 74%). 
1
H NMR (400 MHz, CDCl3) δ = 8.39 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.44 (td, J = 7.6, 1.9 Hz, 1H), 6.91 

(m, 2H), 2.31 (s, 2H), −0.02 (s, 9H). 
13

C NMR (101 MHz, CDCl3) δ = 161.4, 149.1, 135.8, 122.2, 119.2, 30.4, −1.6. 
29

Si NMR (79 MHz, CDCl3) δ = 2.3. 

The NMR chemical shifts correspond with the literature values.[1c, 35] 

 

2.4.2.2 2-Methyl-6-((trimethylsilyl)methyl)pyridine 2-2 

 

 
 

2,6-Dimethylpyridine (11.7 mL, 100 mmol, 1 eq) was dissolved in 100 mL dry THF and cooled to 
−78°C. nBuLi (78.1 mL, 1.28 M in hexane, 100 mmol, 1 eq) was added dropwise and the deep red 
solution was stirred for 1 h at −78°C. TMSCl (15 mL, 118 mmol, 1.2 eq) was added dropwise and the 
solution returned to colourless, while it was allowed to warm up to RT overnight. The solvent was 
removed in vacuo and the crude product was extracted with 100 mL of pentane. The white 
precipitate was filtered off and the solvent was removed in vacuo.  
After vacuum distillation (10−3 mbar, 27°C, oil bath 41°C) the product was obtained as colourless 
liquid (17.3 g, 96.5 mmol, 97%). 
1
H NMR (400 MHz, CDCl3) δ = 7.34 (t, 3

JHH = 7.7 Hz, 1H), 6.79 (dd, 3
JHH = 7.6 Hz, 4

JHH = 0.5 Hz, 1H), 6.72 

(d, 3JHH = 7.8 Hz, 1H), 2.45 (s, 3H), 2.29 (s, 2H), −0.02 (s, 9H). 
13

C NMR (101 MHz, CDCl3) δ = 160.6, 157.5, 136.1, 119.0, 118.6, 30.3, 24.7, −1.6. 
29

Si NMR (80 MHz, CDCl3) δ = 2.1. 

The 1H and 13C NMR chemical shifts correspond with the literature values.[35a] 

 

2.4.2.3 2,4-Dimethyl-6-((trimethylsilyl)methyl)pyridine 2-3 

 

 
 

2,4,6-Trimethylpyridine (13.2 mL, 100 mmol, 1 eq) was dissolved in 120 mL dry THF and cooled to  

−78°C. nBuLi (1.6 M in hexane, 62.6 mL, 100 mmol, 1 eq) was added dropwise and the orange 

solution was stirred for 1 h at −78°C. TMSCl (14.8 mL, 116 mmol, 1.2 eq) was added dropwise and 

the solution changed back to colourless while it was allowed to warm up to RT overnight. The 

solvent was removed in vacuo and the crude product was extracted with 120 mL of dry pentane. The 

white precipitate was removed by filtration and the solvent was removed in vacuo. 

After vacuum distillation (10−3 mbar, 37°C, oil bath 45–50°C) the product was obtained as colourless 

liquid (13.6 g, 71 mmol, 71%). 
1
H NMR (400 MHz, CDCl3) δ = 6.65 (s, 1H), 6.56 (s, 1H), 2.42 (s, 3H), 2.25 (s, 2H), 2.21 (s, 3H), −0.01 (s, 

9H). 
13

C NMR (101 MHz, CDCl3) δ = 160.4, 157.2, 147.0, 120.0, 119.8, 29.9, 24.4, 20.9, −1.6. 
29

Si NMR (79 MHz, CDCl3) δ = 1.9. 

EA: Found: C, 68.5; H, 9.9; N, 7.9%. Calc. for C11H19NSi: C, 68.3; H, 9.9; N, 7.2.  
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m/z (FAB
+
) [%]: 194.1348 (100). 

The 1H and 13C NMR chemical shifts correspond with the literature values.[35a] 

 

2.4.2.4 2-((Trimethylsilyl)methyl)benzoxazole 2-4 

 

 
 

Diisopropyl amine (0.70 mL, 5.0 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled to −78°C. 

nBuLi (1.4 M in hexane,3.45 ml, 5.0 mmol, 1 eq) was added dropwise and the yellow solution was 

stirred for  10 min at −78°C. 2-Methylbenzoxazole (0.59 mL, 5.0 mmol, 1 eq) was dissolved in 10 mL 

dry THF and cooled to −78°C. The LDA solution was added dropwise and the yellow-orange solution 

was stirred for  15 min. TMSCl (0.75 mL, 5.9 mmol, 1.2 eq) was added dropwise and the pale yellow 

solution was allowed to warm up to RT overnight. The solvent was removed in vacuo and the crude 

product was extracted with 5 mL of dry pentane. The white precipitate was filtered off and the 

solvent was removed in vacuo. 

After vacuum distillation (2∙10−3 mbar, 40°C, 95°C oil bath) the product was obtained as colourless 

liquid (0.21 g, 1.0 mmol, 20%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 29
Si NMR (80 MHz) see Table 1.  

EA: Found: C, 62.2; H, 7.3; N, 6.55.Calc. for C11H15NOSi: C, 64.3; H, 7.4; N, 6.8%.  

 

2.4.2.5 isoPropyldichlorophosphine 2-5 

 

 
 

Zinc chloride (1 M in THF, 60 mL, 60 mmol, 1.2 eq) was added dropwise to i-PrMgCl∙LiCl (1.1 M in THF, 

46 mL, 50 mmol, 1 eq) at −78°C and stirred for 45 min at −78°C. Afterwards the grey suspension was 

added dropwise to a solution of PCl3 (5.3 mL, 60 mmol, 1.2 eq) in 60 mL of dry THF at −78°C and the 

reaction mixture was allowed to warm up to RT overnight. The white precipitate was filtered off and 

the solvent was removed by distillation. The crude product was extracted with 60 mL of dry pentane 

and the white precipitate was removed by filtration. After distillation the product was obtained as a 

colourless liquid (2.65 g, 18.3 mmol, 37% in THF/pentane). 
1
H NMR (400 MHz, CDCl3) δ = 2.24 (dhept, 2

JPH = 16.8 Hz, 3
JHH = 7.0 Hz, 1H), 1.27 (dd, 3

JPH= 15.7 Hz, 
3
JHH = 7.0 Hz, 6H). 

13
C NMR (101 MHz, CDCl3) δ = 38.7 (d, 1JPC = 43.1 Hz), 15.9 (d, 2JPC = 16.9 Hz). 

31
P NMR (162 MHz, CDCl3) δ = 199.9 (dhept, 2JPH = 30.4 Hz, 3JPH = 16.1 Hz). 

The 31P NMR chemical shift corresponds with the literature value.[17] 
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2.4.2.6 tertButyldichlorophosphine 2-6 

 

 
 

Magnesium (3.1 g 127 mmol, 1.3 eq) was suspended in 100 mL of dry diethyl ether. Five drops of 

1,2-Dibromo ethane were added and the mixture was refluxed using a hot air gun for approx. 

10 min. tertButyl chloride (11 mL , 100 mmol, 1 eq) was added slowly during the next 2 h and the 

reaction mixture was heated to reflux with a hot air gun for 30 min. After another 30 min the grey 

suspension of tertbutylmagnesium chloride was added dropwise to a solution of PCl3 (8.8 mL, 

100 mmol, 1 eq) in 100 mL of dry diethyl ether at −78°C. The grey suspension turned colourless, 

while it was allowed to warm up to RT overnight. The white precipitate was filtered off and the 

solvent was removed by distillation. The crude product was extracted with 40 mL of dry diethyl ether 

and after distillation (160°C) the product was dried in vacuo. The product was obtained as colourless 

solid (3.7 g, 23.5 mmol, 24%). 
1
H NMR (400 MHz, CDCl3) δ = 1.23 (d, 3JPH = 15.0 Hz, 9H).  

13
C NMR (101 MHz, CDCl3) δ = 38.9 (d, 1JPC = 45.1 Hz), 23.8 (d, 2JPC= 21.1 Hz).  

31
P NMR (162 MHz, CDCl3) δ = 200.3. 

The NMR chemical shifts correspond with the literature values.[18, 36] 

 

2.4.2.7 Triisopropylphenyldichlorophosphine 2-7 

 

 
 

Magnesium (3.3 g, 135 mmol, 2.3 eq) was suspended in 100 mL of dry THF. Five drops of 1,2-

dibromo ethane were added and the mixture was stirred for 1 h. 2-Bromo-1,3,5-triisopropylbenzene 

(15 mL, 59 mmol, 1 eq) was added dropwise, while the solution was kept refluxing with a hot air gun. 

After complete addition of the 2-bromo-1,3,5-triisopropylbenzene the dark grey solution was 

refluxed for five more minutes. Zinc chloride (101 mL, 1 M in THF, 101 mmol, 1.7 eq) was added 

dropwise at 0°C. After warming up to RT the mixture was stirred for 1 h. The grey suspension was 

added dropwise to a solution of PCl3 (8.8 mL, 100 mmol, 1 eq) in 100 mL of dry THF. After the 

reaction mixture was allowed to warm up to RT overnight the white precipitate was filtered off. The 

solvent was removed in vacuo and the product was obtained as pale yellow solid (13.8 g, 41.9 mmol, 

71%). The product was obtained as a mixture of TIPPPCl2 (78%), TIPPPClBr (11%) and TIPPPBr2 (11%). 
31

P NMR (162 MHz, CDCl3) δ = 166.17 (TIPPPCl2), 166.14 (TIPPPClBr), 166.12 (TIPPPBr2). 
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2.4.2.8 Attempted synthesis of dichloro(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-8 

 

 
 

PCl3 (0.44 mL, 5.0 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled down to −78°C. 2-3 (0.97 g, 

5.0 mmol, 1 eq) was added dropwise and the solution was allowed to warm up to room temperature 

overnight. The reaction mixture turned orange and a yellow precipitate was formed. The precipitate 

was filtered off and dried under vacuum. 

 

The main compound of the precipitate was identified as bis(4,6-dimethylpyridin-2-

ylmethyl)chlorophosphine 2-9. 

 

 
 

1
H NMR (400 MHz, CDCl3) δ = 7.37 (s, 2H), 7.21 (s, 2H), 4.14 (d, 2

JPH = 8.8 Hz, 4H), 2.71 (s, 6H), 2.45 (s, 

6H). 
13

C NMR (101 MHz, CDCl3) δ = 158.6, 152.9, 149.8 (d, 2
JPC = 8.8 Hz), 126.1 (d, 5

JPC = 1.3 Hz), 125.6 (d, 
3
JPC = 5.2 Hz), 37.2 (d, 1JPC = 41.7 Hz), 22.1, 19.2. 

31
P NMR (162 MHz, CDCl3) δ = 98.8. 

m/z (FAB
+
) [%]: 271.1342 (43). 

 

2.4.2.9 Attempted synthesis of bis(4,6-dimethylpyridin-2-ylmethyl)chlorophosphine 2-9 

 

 
 

PCl3 (0.44 mL, 5.0 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled down to −78°C. 2-3 (1.93 g, 

10.0 mmol, 2 eq) was added dropwise and the solution was allowed to warm up to room 

temperature overnight. The reaction mixture turned orange-brown and a yellow precipitate was 

formed. The precipitate was filtered off and dried under vacuum. 
31P NMR spectra of the solution and the precipitate showed several signals. The 31P NMR spectrum 

of the solution showed a signal at 102.7 ppm, which is probably caused by 2-9, but the product could 

not be isolated (see 2.2.1.2). The signals in the 31P NMR spectrum of the precipitate could not be 

assigned (see 2.2.1.2). 
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2.4.2.10 Diphenyl(pyridin-2-ylmethyl)phosphine 2-10 

 

 
 

Diphenylchlorophosphine (1.79 mL, 10.0 mmol, 1 eq) was dissolved in anhydrous THF (10 mL) and 

cooled to 0°C. 2-1 (1.65 g, 10.0 mmol, 1 eq) was added dropwise and the reaction mixture was left to 

warm to room temperature overnight. The solvent was removed in vacuo and the product was 

obtained as colourless solid (2.39 g, 8.62 mmol, 86%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 2. 

EA: Found: C, 76.5; H, 5.8; N, 4.9. Calc. for C18H16NP: C, 78.0; H, 5.8; N, 5.05%. 

m/z (ESI) [%]: 278.10962 (17), 200.06264 (3), 98.03546 (1). 

The NMR chemical shifts correspond with the literature values.[37] 

 

2.4.2.11 Diphenyl(6-methylpyridin-2-ylmethyl)phosphine 2-11 

 

 
 

Diphenylchlorophosphine (1.79 mL, 10.0 mmol, 1 eq) was dissolved in anhydrous THF (10 mL) and 

cooled to 0°C. 2-2 (1.79 g, 10.0 mmol, 1 eq) was added dropwise and the reaction mixture was left to 

warm to room temperature overnight. The solvent was removed in vacuo and the product was 

obtained as colourless liquid (2.29 g, 7.86 mmol, 79%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 2. 

EA: Found: C, 77.3; H, 6.4; N, 5.1. Calc. for C19H18NP: C, 78.3; H, 6.2; N, 4.8%. 

m/z (ESI) [%]: 292.12490 (23), 214.07808 (3). 

 

2.4.2.12 Diphenyl(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-12 

 

 
 

Diphenylchlorophosphine (1.79 mL, 10.0 mmol, 1 eq) was dissolved in anhydrous THF (10 mL) and 

cooled to 0°C. 2-3 (1.93 g, 10.0 mmol, 1 eq) was added dropwise and the reaction mixture was left to 

warm to room temperature overnight. The solvent was removed in vacuo and the product was 

obtained as colourless liquid (2.59 g, 8.49 mmol, 85%). 
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1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 2. 

EA: Found: C, 78.6; H, 6.5; N, 4.4. Calc. for C20H20NP: C, 78.7; H, 6.6; N, 4.6%. 

m/z (ESI) [%]: 306.14091 (27), 228.09399 (3). 

 

2.4.2.13 Phenyl-bis(pyridin-2-ylmethyl)phosphine 2-13 

 

 
 

Phenyldichlorophosphine (2.30 mL, 16.9 mmol, 1 eq) was dissolved in 40 mL dry THF and cooled to 

0°C. 2-1 (5.59 g, 33.8 mmol, 2 eq) was added dropwise and the solution turned yellow-orange, while 

it was allowed to warm up to RT overnight. The solvent was removed in vacuo and the crude product 

was extracted with 20 mL of dry Et2O. The precipitate was filtered off and the solvent was removed 

in vacuo. 

The product was obtained as yellow solid (4.37 g, 15.0 mmol, 89%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 3. 

The 1H and 13C NMR chemical shifts correspond with the literature values.[7e, 7g] 

 

2.4.2.14 Phenyl-bis(6-methylpyridin-2-ylmethyl)phosphine 2-14 

 

 
 

Phenyldichlorophosphine (0.68 mL, 5 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled to 0°C. 

2-2 (1.8 g, 10 mmol, 2 eq) was added dropwise and the solution turned yellow-orange, while it was 

allowed to warm up to RT overnight. The solvent was removed in vacuo and the crude product was 

extracted with 10 mL dry Et2O. The precipitate was filtered off and the solvent was removed in 

vacuo. 

The product was obtained as very viscous yellow liquid (1.29 g, 4.0 mmol, 80%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 3. 

EA: Found: C, 74.5; H, 6.7; N, 8.2. Calc. for C20H21N2P: C, 75.0; H, 6.6; N, 8.7%. 

m/z (FAB
+
) [%]: 321.1505 (100). 
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2.4.2.15 Phenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-15 

 

 
 

Phenyldichlorophosphine (0.68 mL, 5 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled to 0°C. 

2-3 (2.0 g, 10.3 mmol, 2.1 eq) was added dropwise and the solution turned yellow-orange, while it 

was allowed to warm up to RT overnight. The solvent was removed in vacuo and the crude product 

was extracted with 10 mL of dry Et2O. 

The precipitate was filtered off and the solvent was removed in vacuo. The crude product was 

extracted with 10 mL of dry pentane. The precipitate was filtered off and the solvent was removed in 

vacuo. The product was obtained as very viscous amber coloured liquid (1.27 g, 3.64 mmol, 72%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 3. 

EA: Found: C, 74.7; H, 7.3; N, 8.4. Calc. for C22H25N2P: C, 75.8; H, 7.2; N, 8.0%. 

m/z (ESI) [%]: 349.18359 (51), 228.09406 (19). 

 

2.4.2.16 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine 2-16 

 

 
 

2-5 (4.1 g, 28.2 mmol, 1 eq) was dissolved in 60 mL dry THF and cooled to 0°C.2-2 (10.0 g, 

55.8 mmol, 2 eq) was added dropwise and the solution turned yellow, while it was allowed to warm 

up to RT overnight. The solvent was removed in vacuo and the crude product was ectracted with 

40 mL Et2O. The precipitate was filtered off and the solvent was removed in vacuo. The crude 

product was ectracted with 60 mL Et2O. The precipitate was filtered off and the solvent was 

removed in vacuo.  

The product was obtained as amber coloured liquid (6.7 g, 23.2 mmol, 83%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 3. 

EA: Found: C, 68.4; H, 8.0; N, 10.05. Calc. for C17H23N2P: C, 71.3; H, 8.1; N, 9.8%. 

m/z(FAB
+
) [%]: 287.1637 (100). 

 

2.4.2.17 isoPropyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-17 

 

 
 

2-5 (2.65 g, 18.3 mmol, 1 eq) was dissolved in 20 mL dry THF and cooled to 0°C. 2-3 (7.1 g, 

36.6 mmol, 2 eq) was added dropwise and the solution turned yellow-orange, while it was allowed 

to warm up to RT overnight. The solvent was removed in vacuo and the crude product was extracted 

with 20 mL dry Et2O. The precipitate was filtered off and the solvent was removed in vacuo. The 

product was obtained as amber coloured liquid (5.22 g, 16.6 mmol, 91%). 
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1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 3. 

EA: Found: C, 71.3; H, 8.6; N, 8.65. Calc. for C19H27N2P: C, 72.6; H, 8.7; N, 8.9%. 

m/z (FAB
+
) [%]: 315.1967 (100). 

 

2.4.2.18 Attempted synthesis of tertbutyl-bis(6-methylpyridin-2-ylmethyl)phosphine 2-18 

 

 
 

A solution of 2-6 (1 M in THF, 12.0 mL, 12.0 mmol, 1 eq) was cooled down to 0°C and  2-2 (4.22 g, 

24.0 mmol, 2 eq) was added dropwise. The reaction mixture was allowed to warm up to room 

temperature overnight in which the solution turned yellow. The reaction mixture was heated to 

reflux for 22 h, in which the solution turned orange. 

 

From the 31P NMR spectrum of the reaction mixture the main product was identified as tertbutyl-(6-

methylpyridin-2-ylmethyl)-chlorophosphine. 

 

 
 
31

P NMR (162 MHz, THF) δ = 126.5. 

 

2.4.2.19 Attempted synthesis of tertbutyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-19 

 

 
 

A solution of 2-6 (1 M in THF, 12.0 mL, 12.0 mmol, 1 eq) was cooled down to 0°C and 2-3 (4.54 g, 

23.5 mmol, 2 eq) was added dropwise. The reaction mixture was allowed to warm up to room 

temperature overnight in which the solution turned reddish. The reaction mixture was heated to 

reflux for 22 h, in which the solution turned red-brown. 

 

From the 31P NMR spectrum of the reaction mixture the main product was identified as tertbutyl-

(4,6-dimethylpyridin-2-ylmethyl)-chlorophosphine. 

 

 
 
31

P NMR (162 MHz, THF) δ = 126.2. 
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2.4.2.20 Triisopropylphenyl-bis(6-methylpyridin-2-ylmethyl)phosphine 2-20 

 

 
 

A solution of 2-7 (0.5 M in THF, 10.0 mL, 5.0 mmol, 1 eq) was cooled down to 0°C and  2-2 (1.8 g, 

10.0 mmol, 2 eq) was added dropwise. The reaction mixture was allowed to warm up to room 

temperature overnight in which the solution turned yellow. The solvent was removed in vacuo. A 

very viscous yellow liquid was obtained. The product could not be isolated pure. 
31

P NMR (162 MHz, CDCl3) δ = −21.8. 

 

2.4.2.21 Triisopropylphenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-21 

 

 
 

A solution of 2-7 (0.5 M in THF, 10.0 mL, 5.0 mmol, 1 eq) was cooled down to 0°C and 2-3 (1.94 g, 

10.0 mmol, 2 eq) was added dropwise. The reaction mixture was allowed to warm up to room 

temperature overnight in which the solution turned yellow. The solvent was removed in vacuo and 

the crude product was extracted with 10 mL of pentane. The precipitate was filtered off and the 

product was extracted with MeCN (3×5 mL). The solvent was removed in vacuo. A very viscous 

yellow liquid was obtained. The product could not be isolated pure. 
31

P NMR (162 MHz, CDCl3) δ = −22.7. 

 

2.4.2.22 Tris(6-methylpyridin-2-ylmethyl)phosphine 2-24 
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PCl3 (0.87 mL, 10 mmol, 1 eq) was dissolved in 10 mL dry THF and cooled to −78°C. 2-2 (5.4 g, 

30 mmol, 3 eq) was added dropwise and the solution turned amber coloured, while it was allowed 

to warm up to RT overnight. The solvent was removed in vacuo and the crude product was extracted 

with 10 mL dry pentane. The precipitate was filtered off and the solvent was removed in vacuo. The 

product was obtained as very viscous yellow liquid (1.46 g, 4.2 mmol, 84%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 4. 

m/z (FAB
+
) [%]: 350.1768 (100). 

 

2.4.2.23 Tris(4,6-dimethylpyridin-2-ylmethyl)phosphine 2-25 

 

 
 

PCl3 (0.44 mL, 5.0 mmol, 1 eq) was dissolved in 15 mL dry THF and cooled to −78°C. 2-3 (2.9 g, 

15 mmol, 3 eq) was added dropwise and the solution turned yellow-orange, while it was allowed to 

warm up to RT overnight. The solvent was removed in vacuo and the crude product was extracted 

with 10 mL dry Et2O. The precipitate was filtered off and the solvent was removed in vacuo. The 

crude product was extracted with 10 mL of dry pentane. The precipitate was filtered off and the 

solvent was removed in vacuo.  

The product was obtained as very viscous amber coloured liquid (1.34 g,3.4 mmol, 68%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 4. 

EA: Found: C, 72.1; H, 7.7; N, 10.3. Calc. for C24H30N3P: C, 73.6; H, 7.7; N, 10.7%. 

m/z (ESI) [%]: 392.22525 (7), 271.13598 (5). 

 

2.4.2.24 Tris(benzoxazol-2-ylmethyl)phosphine 2-26 

 

 
 

PCl3 (0.18 mL, 2.0 mmol, 1 eq) was dissolved in 5 mL dry THF and cooled down to −78°C. 2-4 (1.33 g, 

6.5 mmol, 3.3 eq) was added dropwise and the solution was allowed to warm up to room 

temperature overnight. The solvent was removed in vacuo and the product was obtained as yellow 

solid (0.48 g, 1.35 mmol, 67%). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 5.  
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2.4.3 Crystallographic data 

 
Table 6: Crystallographic data of 2-27. 

Identification code mx398 

Empirical formula C26H21N4O4P 

Formula weight [g∙mol−1] 484.44 

Temperature [K] 143(2) 

Crystal size [mm3] 0.08 × 0.14 × 0.38 

Colour, shape Colourless rod 

Crystal system Triclinic 

Space group P−1 

a [Å] 4.8902(3) 

b [Å] 13.5057(8) 

c [Å] 19.4914(9) 

α [°] 109.652(5) 

β [°] 90.931(5) 

γ [°] 100.161(5) 

V [Å3] 1189.35(12) 

Z 2 

ρcalc [g∙cm−3] 1.353 

Radiation [Å] MoKα = 0.71073 

μ [cm−1] 0.156 

F(000) 504 

Index ranges −6 ≤h≤6 

−15 ≤k≤ 16 

−24 ≤l≤ 23 

Θ range [°] 4.195 ≤Θ≤ 26.371 

Reflections collected 8884 

Independent reflections 4801 

Observed reflections 3483 

Data/restraints/parameters 4801/0/334 

Rint 0.0375 

R1, wR2 [I>2σ(I)] 0.0467, 0.0947 

R1, wR2 [all data] 0.0689, 0.1093 

GooF 1.021 

δpmax, δpmin [e∙nm−3] 0.361, −0.303 
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3.1 Introduction 
 

Hemilabile P,N ligands, which include both a soft phosphorus and a hard nitrogen centre, exhibit 

very interesting complexing attributes, as the properties of both atoms can be individually fine-

tuned.[1] A lot of research has been done on these ligands and complexes with various transition 

metals, such as Fe, Pt, Rh, Pd, Ni, Cu and many others are known for bifunctional ligands of this 

type.[2] Complexes of P,N ligands are commonly used as catalysts for a series of different reactions 

like e.g. hydrogenations, alkylations, aminations, hydrogen isotope exchange reactions, 

polycondensations and oligomerisations.[1a, 1d, 3] Due to their fluorescent properties some of these 

complexes also are of interest for the lighting industry, in areas such as OLEDs and sensors.[4] 

The bifunctionality of such ligands means that there are both hard and soft centres within the 

molecule, ultimately meaning that in theory, it is possible to be selective about which atom will 

coordinate, depending on the hard/soft properties of the metal which is binding.[5] 

In many complexes though P,N ligands act as chelating ligands and coordinate via both the 

phosphorus and the nitrogen atom .[5b] 

The steric effects of the phenyl rings, which regularly feature in such ligands on the phosphorus 

atom, can strongly influence the coordination geometry in metal complexes.[5a] Furthermore, due to 

the free rotation which is present around the P–C bond which leads to the pyridine ring, the N can 

take up a favourable position allowing coordination with a metal.[6] 

Diphenyl(pyridin-2-ylmethyl)phosphine (Ph2PPic) 2-10 (Figure 1) is a well-known example for such 

P,N ligands. It was first synthesised in 1968 and structures of complexes with Fe, Ir, Ni and multiple 

other transition metals are known.[7] By contrast, the extremely similar phosphine ligand, 

Diphenyl(6-methylpyridin-2-ylmethyl)phosphine (Ph2PLut) 2-11 (Figure 1), has not been extensively 

researched.  Although the ligand was synthesised for the first time in 1969, only a limited number of 

publications mention it.[8] Moreover, Diphenyl(4,6-dimethylpyridin-2-ylmethyl)phosphine (Ph2PCol) 

2-12 (Figure 1) has not been referenced to date. 

 

 
Figure 1: P,N ligands Diphenyl(pyridin-2-ylmethyl)phosphine (Ph2PPic) 2-10, Diphenyl(6-methylpyridin-2-
ylmethyl)phosphine (Ph2PLut) 2-11 and Diphenyl(4,6-dimethylpyridin-2-ylmethyl)phosphine (Ph2PCol) 2-12. 

 

Since all 3 molecules only differ slightly by one or two methyl groups, it could be argued that the 

properties of these compounds are very similar to each other, and the phosphines could possibly be 

applied in fluorescence research or in homogenous catalysis. 

Phosphine 2-10 is described as a viscous oil at room temperature.[9] Ionic compounds often are much 

easier to crystallise than neutral compounds. As it proofed to be difficult to crystallise the free 

ligands, it might be much easier to crystallise the hydrochloride salts than the pure phosphines. 

Since the crystal structures of the hydrochlorides can be determined, this might help to understand 

some key aspects of the molecules, such as geometry and orientation of the aryl rings. 
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3.2 Results and discussion 
 

3.2.1 Synthesis 

 

To synthesise 2-10–2-12, the corresponding silyl compounds were allowed to react with Ph2PCl in a 

1:1 ratio, according to the synthetic routes adopted by Braunstein et al.
[10] and Hettstedt et al.[1b] The 

reaction was performed in THF allowing the solution to warm up from 0°C to RT (Scheme 1). 
 

 
Scheme 1: Synthetic route towards phosphines 2-10–2-12. 

 

Compounds 2-10–2-12 are soluble in pentane, THF, DCM and chloroform. All three compounds are 

sensitive towards oxidation and are slowly hydrolysed. Compounds 2-11 and 2-12 are viscous 

colourless oils at room temperature, while compound 2-10 in contrast to the findings in the 

literature is a colourless solid. 

Instead of using diphenylchlorophosphine, as with preceding experiments, PCl3 was used to 

synthesise (pyridin-2-ylmethyl)dichlorophosphine (PicPCl2) 3-4 (Scheme 2). 

 

Scheme 2: Synthetic route towards dichlorophosphine 3-4. 

 

The reaction was performed by adding 2-((trimethylsilyl)methyl)pyridine to PCl3 in a 1:1 ratio, in THF 

allowing the solution to warm up from −78°C to RT. From the 31P NMR spectrum of the reaction 

solution can be determined that 60% of the phosphorus in solution has formed the desired product 

(δ = 183.6 ppm (t, 2
JPH = 13.1 Hz)). 20% of the phosphorus was unreacted PCl3 and small amounts of 

Pic2PCl (6%, δ = 87.9 ppm) and Pic3P (1%, δ = −7.3 ppm) have been formed. Also some unidentified 

phosphorus containing impurities were present in the mixture. 

The formation of dichlorophosphine 3-4 has been observed before, but it could not be isolated due 

to a dismutation reaction that occurs when the compound is dried under vacuum (Scheme 3). [1b, 11] 
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Scheme 3: Dismutation reaction of 3-4 under vacuum. 
 

The hydrochlorides 3-1–3-3 were synthesised by addition of a solution of HCl in Et2O to a solution of 

the corresponding phosphines (Scheme 4).  

N
P

R

R'

3-1 (73%)
3-2 (82%)
3-3 (85%)

R = H
Me
Me

R' = H
H
Me

N
P

R

R'

2-10-2-12

HCl

H
Cl

THF

 

Scheme 4: Synthesis of hydrochlorides 3-1–3-3. 

 

Compounds 3-1–3-3 are insoluble in pentane and moderately soluble in THF. Compounds 3-2 and 3-

3 show high solubility in DCM and chloroform, but compound 3-1 is only moderately soluble in these 

two solvents. All three compounds are colourless solids at room temperature and sensitive towards 

oxidation in air and are slowly hydrolysed. Upon hydrolysis after a few days the P–CAlk bond is 

cleaved and in contact with oxygen the corresponding 2-pyridyl carboxylic acid is formed.  

Compounds 3-1–3-3 can easily be deprotonated to regenerate the corresponding phosphines with 

triethylamine. Therefore it is possible to purify compounds 2-10–2-12 via the corresponding 

hydrochlorides. 

By addition of HCl to compound 7 the corresponding hydrochloride 3-5 (Scheme 5) was formed. 

 

Scheme 5: Synthesis of hydrochloride compound 3-5. 

 

This compound is a pale yellow solid, which is stable under vacuum. The hydrochloride is not soluble 

in pentane and has a low solubility in THF, acetonitrile, DCM and chloroform. Due to the low 

solubility it was not possible to purify the substance. From the 31P NMR spectrum can be determined 

that 73% of the phosphorus in the mixture has formed the desired product (δ = 169.5 ppm). The 

mixture probably also contains the hydrochloride of Pic2PCl (18%, δ = 98.6 ppm) and 9% of another 
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unidentified impurity. In the 1H NMR spectrum a broad signal at 17.85 ppm is probably caused by the 

proton at the pyridine nitrogen and a signal at 4.45 ppm by the methylene group. The pyridine 

protons cause four signals at 8.75, 8.62, 8.40 and 7.84 ppm, which cannot further be assigned. The 

solubility of compound 3-5 was too low to obtain 13C NMR data. 

 

3.2.2 NMR data 

 

The 1H, 13C and 31P NMR chemical shifts of compounds 2-10–2-12 and 3-1–3-3 are listed in Tables 1 

and 2. 

 

Figure 2: Numbering of carbon atoms in compounds 2-10–2-12 and 3-1–3-3 for 1H and 13C NMR spectroscopic data 
assignments. 

 
Table 1: 

1H NMR data of phosphines 2-10–2-12 and 3-1–3-3 in CDCl3. Chemical shifts δ are in ppm, coupling constants J in 
Hz. 

δH 2-10 2-11 2-12 3-1 3-2 3-3 

H2 7.45 7.45 7.45 7.54 7.56  7.55 

H3 7.32 7.32 7.31 7.37 7.36 7.35 

H4 7.32 7.32 7.31 7.37 7.36 7.35 

H5 3.64 3.61 3.56 4.16 4.23 4.14 

H7 6.98 6.74 6.58 7.46 7.13 6.88 

H8 7.45 7.32 – 8.09 7.89 – 

H9 7.04 6.89 6.73 7.59 7.30 7.07 

H10 8.50 – – 8.49 – – 

H11 – 2.49 2.45 – 2.86 2.79 

H12 – – 2.15 – – 2.35 

H13 – – – 18.25 17.65 17.22 
3
JH7H8 7.8 7.7 – 8.0 8.0 – 

4
JH7H9

 2.2 –  – –  – – 
5
JH7H10

 1.0 –  – –  – – 
3
JH8H9 7.5 7.6 – 6.6 7.8 – 

4
JH8H10

 1.9 –  – –  – – 
3
JH9H10 4.9 –  – 5.2 – – 

6
JPH9

 1.1 –  – –  – – 
 

In the 1H NMR spectra of compounds 2-10–2-12 and 3-1–3-3 the signals of the phenyl protons (H2–

H4) appear as two multiplets with chemical shifts between 7.31–7.37 ppm and 7.45–7.56 ppm. 
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Protonation of the pyridine nitrogen leads to a shift of almost all signals towards lower field. For the 

signals of the phenyl protons H2–H4 only a minor shift of 0.04–0.11 ppm is observed. The 1H NMR 

signals of the protons at the picolyl based substituent are shifted much more, except the signal of 

H10 of compound 2-10 and 3-1 respectively, which is not shifted. For the signals of H7, H8, H9 and 

H11 the low field shift of the signals is smaller, the more methyl substituents are attached to the 

pyridine ring. The 1H NMR signal of H9 of compound 2-10 resolves a long range coupling with the 

phosphorus atom over six bonds. 
 

Table 2: 
13C and 31P NMR data of phosphines 2-10–2-12 and 3-1–3-3 in CDCl3. Chemical shifts δ are in ppm, coupling 

constants J in Hz. 

 2-10 2-11 2-12 3-1 3-2 3-3 

δP −9.4 −10.2 −9.7 −3.1 −3.0 −3.8 
3
JPH2 7.5 7.4 7.4 – – – 

       

δC       

C1 138.3 138.4 138.5 135.0 135.3 135.5 

C2 133.0 133.1 133.1 133.2 133.3 133.3 

C3 128.5 128.4 128.4 129.1 129.0 128.9 

C4 128.8 128.7 128.7 129.9 129.8 129.7 

C5 39.0 38.8 38.7 33.6 33.2 32.8 

C6 158.3 157.3 157.0 155.1 155.0 153.8 

C7 123.8 120.6 121.7 127.2 124.2 124.8 

C8 136.2 136.3 147.3 144.5 143.8 157.1 

C9 121.1 120.6 121.6 123.9 124.4 125.0 

C10 149.5 158.0 157.7 140.6 154.1 153.0 

C11 – 24.6 24.4 – 19.6 19.3 

C12 – – 20.8 – – 22.1 
1
JPC1 15.0 15.0 14.8 14.6 14.9 14.3 

2
JPC2 18.9 18.8 18.8 19.9 19.8 19.5 

3
JPC3 6.5 6.6 6.7 6.5 6.8 6.2 

1
JPC5 16.2 16.5 16.2 22.7 22.4 21.5 

2
JPC6 8.1 7.8 8.0 9.7 9.3 9.2 

3
JPC7 6.2 4.2 3.0 7.4 7.5 7.4 

4
JPC8 1.1 1.2 – – – – 

5
JPC9 2.3 – 1.6 – – – 

4
JPC10 1.1 1.2 1.1 – – – 

 

In the 31P NMR spectra the chemical shifts of the signals of compounds 2-10–2-12 and 3-1–3-3 are in 

the range of −3.0 to −10.2 ppm, which is typical for tertiary phosphines. Protonation at the pyridine 

nitrogen leads to a minor shift towards lower field of 6.5–7.2 ppm. In the 1H coupled 31P NMR 

spectra of the non-protonated compounds 2-10–2-12 the coupling of the ortho phenyl protons with 

the phosphorus causes quintets with coupling constants of 7.4 to 7.5 Hz. The coupling with the 

methylene protons H5 is very small and cannot be resolved. Because of slight broadening of the 

signals due to the protonation no coupling can be observed in the 1H coupled 31P NMR spectra of 

compounds 3-1–3-3. 

In the 13C NMR spectra the chemical shifts of the signals of C2–C4 are almost identical for 

compounds 1–3 and the corresponding protonated compounds 3-1–3-3 and are shifted towards 

lower field for at most 1.1 ppm. The signals of C1 are shifted towards higher field for 3.0–3.3 ppm. 
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The coupling constants of the signals of C1 are slightly decreased and those of the signals of C2 are 

increased by 0.7 to 1.0 Hz. 

As observed for the signals of the 1H NMR spectra the impact of the protonation on the chemical 

shifts of the NMR signals is larger for the atoms of the picolyl based moiety than of the phenyl 

groups. The signals of the carbon atoms in ortho position to the nitrogen C5, C6, C10 and C11 are 

shifted towards higher field, while the signals of C7, C8, C9 and C12 are shifted towards lower field. 

The coupling constant observed for C5 is increased by 5.9 to 6.5 Hz. 

 

3.2.3 Crystal structures 

 

Single crystals of 3-1, 3-3 and 3-5 suitable for single crystal X-ray analysis were obtained by slow 

solvent evaporation from solutions in THF. Single crystals of 3-2 were obtained by slow diffusion of 

diethyl ether into a solution in dichloromethane. 

Compound 3-1 crystallises in the triclinic space group P−1 and contains two crystallographically 

independent units of the hydrochloride (Figure 3). 

 

 
Figure 3: Molecular structure of hydrochloride 3-1. Thermal ellipsoids are drawn at 50% probability level. Selected bond 
lengths [Å] and angles [˚]: P1–C1: 1.835(2), P1–C7: 1.828(2), P1–C13: 1.870(2), P2–C19: 1.826(2), P2–C25: 1.835(2), P2–C31: 
1.865(2), N1–H1: 0.92(2), N2–H2A: 0.83(2), H1···Cl1i: 2.12(2), H2A···Cl2vi: 2.20(1), N1···Cl1i: 3.002(2), N2···Cl2vi: 2.994(2), 
C1–P1–C7: 103.5(1), C1–P1–C13: 97.0(1), C7–P1–C13: 102.7(1), C19–P2–C25: 103.0(1), C19–P2–C31: 103.6 (1), C25–P2–
C31: 98.4(1), sum of angles around P1: 303.2, sum of angles around P2: 305.0,  N1–H1–Cl1i: 159.7(7),  N2–H2A–Cl2vi: 
160.2(7). i: −x, 1−y, 1−z, vi: x, −1+y, 1+z. 

 

Compound 3-2 crystallises in the orthorhombic space group Pbca. The molecular structure is shown 

in Figure 4. 
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Figure 4: Molecular structure of hydrochloride 3-2. Thermal ellipsoids are drawn at 50% probability level. Selected bond 
lengths [Å] and angles [˚]: C1–P1: 1.868(2), P1–C8: 1.826(2), P1–C14: 1.841(2), N1–H1: 0.96(3), H1···Cl1: 2.02(2), N1···Cl1: 
2.975(2), C1–P1–C8: 104.0(1), C1–P1–C14: 98.7(1), C8–P1–C14: 102.2(1),  sum of angles around P1: 304.9, N1–H1–Cl1: 
167(2). 

 

Compound 3-3 crystallises in the triclinic space group P−1. The molecular structure is shown in 

Figure 5. 

 

 
Figure 5: Molecular structure of hydrochloride 3-3. Thermal ellipsoids are drawn at 50% probability level. Selected bond 
lengths [Å] and angles [˚]: P1–C1: 1.864(2), P1–C9: 1.831(2), P1–C15: 1.835(2), N1–H1: 0.78(2), H1···Cl1: 2.25(2), N1···Cl1: 
3.023(2), C1–P1–C9: 102.2(1), C1–P1–C15: 98.7(1), C9–P1–C15: 103.4(1),  sum of angles around P1: 304.3, N1–H1–Cl1: 
171(1). 

 

The P–CAlk bonds (1.870(2)–1.864(2) Å) are notably longer than the P–CAr (1.826(2)–1.841(2) Å) 

bonds for compounds 3-1–3-3. The distances between the phosphorus and the aromatic carbon 

atoms are quite similar to the bond lengths found in triphenylphosphine, whereby the P–C distances 

are 1.822(5) to 1.831(5) Å.[12] Comparing the P–CAlk distances to those found in tribenzylphosphine 

1.855(2) Å to 1.858(2) Å the P–CAlk distances found in the structures of 3-1–3-3 are slightly longer.[13] 

For compounds 3-1–3-3 the C–P–C angles are between 97.0(1) ° and 104.0(1) ° and are in a similar 

range as the angles of literature known phosphines.[12-13] The corresponding angles in the structure 

of tribenzylphosphine are 97.7(1)–99.5(1) ° and 102.1(2)–103.6(2) ° for triphenylphosphine.[12-13] 

The sums of the angles around the phosphorus atoms in compounds 3-1–3-3 are 303.2–305.0 °, 

which means that the molecules deviate significantly from planarity and lean more towards a 

pyramidal shape. 
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An area where the bond lengths differ quite much in the molecular structures are the N–H (0.78(2)–

0.96(3) Å) and H···Cl distances (2.02(2)–2.25(2) Å). In general, the shorter the N–H distances, the 

longer are the H···Cl distances. 

Therefore, although the N–H and H···Cl distances of 3-1–3-3 vary over 0.18 Å (N–H) and 0.23 Å 

(H···Cl), the N···Cl distances are similar for all three compounds (2.975(2)–3.023(2) Å). 

For pyridine based hydrochlorides N–H distances of 0.85–0.93 Å and H···Cl distances of 2.08–2.24 Å 

are usual.[14] An exception is pyridinium hydrochloride, which has a very long N–H distance of 1.14 Å 

and a short H···Cl distance of 1.92 Å.[15] The N–H and H···Cl distances of compounds 3-1 and 3-2 are 

comparable to those found in the literature, whilst the N–H distance (0.78(2) Å) in compound 3-3 is 

very short with a long H···Cl distance (2.25 (2) Å) respectively. 

An area where compound 3-1 differs to compounds 3-2 and 3-3 is the N–H···Cl angle. The N–H···Cl 

angles of 3-1 (159.7(7) ° and 160.2(7) °) are slightly more bent than those of compounds 3-2 and 3-3 

(3-2: 167(2) °; 3-3: 171(1) °). 

From the crystal structure of 3-1 (Figure 6) can be seen, that the chloride ion forms a hydrogen bond 

with the hydrogen atom in ortho position to the nitrogen atom. In compounds 3-2 and 3-3 this 

hydrogen atom is replaced by a methyl group, which influences the hydrogen bonding of the 

chloride and thus the N–H···Cl angle. 

 

 
Figure 6: Hydrogen bonding in the crystal structure of 3-1. Thermal ellipsoids are drawn at 50% probability level. H atoms 
not interacting with the shown Cl atoms have been omitted for clarity. Selected bond lengths [Å]: H1i···Cl1: 2.12(2), 
H8i···Cl1: 2.91 (1), H13Bi···Cl1: 2.85(1), H13Aiv···Cl1: 2.72(1), H29iii···Cl1: 2.85(1), H35v···Cl1: 2.71(2), H36ii···Cl1: 2.54(2), 
H2Aii···Cl2: 2.20(1), H5iv···Cl2: 2.85(2), H17ii···Cl2: 2.75(2), H18i···Cl2: 2.64(2), H31Aiii···Cl2: 2.75(1). i: −x, 1−y, 1−z, ii: x, 1+y, 
−1+z, iii: 1−x, 1−y, 1−z, iv: x, y, −1+z, v: 1−x, −y, 1−z. 

 

The crystal structures of all three hydrochlorides are strongly determined by hydrogen bonding of 

different H atoms to the chloride ions. The strongest hydrogen bond is the N–H···Cl interaction, but 

in all crystal structures several C–H···Cl hydrogen bonds can be observed. According to Aakeröy et al. 

for the discussion of the crystal structures presented in this work C–H···Cl hydrogen bonds are 

considered present, if the H···Cl distance is shorter than 3.0 Å and the C–H···Cl angle is larger than 

90 °.[16] 

In the crystal structure of 3-1 Cl1 forms hydrogen bonds with seven hydrogen atoms, while Cl2 

interacts with only five H atoms. The strongest C–H···Cl interactions are between the Cl atoms and 

the H atoms in ortho position to the N atoms with H···Cl distances of 2.54(2) Å and 2.64(2) Å. The C–
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H···Cl angles are 165(1) ° and 163.3(9) ° respectively. Through these hydrogen bonds the two 

molecules form dimers. 

The dimers form hydrogen-bonded chains in the crystal along the b axis through weak interactions 

of the Cl atoms with H atoms of the methylene groups, the H atoms in meta position at the phenyl 

rings and the H atoms in meta position to the N atoms of the pyridine rings (Figure 7). The H···Cl 

distances are between 2.71(2) Å and 2.91(1) Å and the C–H···Cl angles are 135.8(5)–157(1) °. 

 

 
Figure 7: Crystal structure of 3-1. View along the a axis (left) and b axis (right). 

 

The chloride ion of compound 3-2 forms one strong hydrogen bond with the H atom at the pyridine 

nitrogen and six weak hydrogen bonds to carbon bonded H atoms (Figure 8). 

 

 
Figure 8: Hydrogen bonding in the crystal structure of 3-2. Thermal ellipsoids are drawn at 50% probability level. H atoms 
not interacting with the shown Cl atom have been omitted for clarity. Selected bond lengths [Å]: H1···Cl1: 2.02(2), 
H1A···Cl1: 2.83(1), H4i···Cl1: 2.85(1), H5iii···Cl1: 2.69(1), H7Bii···Cl1: 2.76(1), H12iv···Cl1: 2.70(1), H13···Cl1: 2.85(1). i: 0.5−x, 
0.5+y, z, ii: 1−x, 1−y, 1−z, iii: 0.5+x, 0.5−y, 1−z, iv: 1.5−x, 0.5+y, z. 

 

The H···Cl distances of the C–H···Cl hydrogen bonds are between 2.69(1) Å and 2.85(1) Å and the C–

H···Cl angles are 137.5(1)–174.8(1) °. 
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Through these weak hydrogen bonding interactions a three-dimensional network is formed in the 

crystal structure (Figure 9). 

 

 
Figure 9: Crystal structure of 3-2. View along the a axis (left) and b axis (right). 

 

The chloride ion of compound 3-3 forms hydrogen bonds with the H atom at the pyridine nitrogen 

and five carbon bonded H atoms (Figure 10). 

 

 
Figure 10: Hydrogen bonding in the crystal structure of 3-3. Thermal ellipsoids are drawn at 50% probability level. H atoms 
not interacting with the shown Cl atom have been omitted for clarity. Selected bond lengths [Å]: H1···Cl1: 2.25(2), 
H1A···Cl1: 2.96(1), H1Bi···Cl1: 2.88(1), H8Bii···Cl1: 2.89(2), H14i···Cl1: 2.86(2), H18iii···Cl1: 2.93(1). i: 1−x, 1−y, 1−z, ii: −1+x, y, 
z, iii: −x, 1−y, 1−z. 

 

The H···Cl distances of the C–H···Cl hydrogen bonds are between 2.86(1) Å and 2.96(1) Å and the C–

H···Cl angles are 135.9(6)–173(1) °. 

Through these weak hydrogen bonding interactions a three-dimensional network is formed in the 

crystal structure (Figure 11). 
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Figure 11: Crystal structure of 3-3. View along the a axis (left) and c axis (right). 

 

Compound 3-5 crystallises in the triclinic space group P−1. The molecular structure is shown in 

Figure 12. 

 

 
Figure 12: Molecular structure of 3-5. Thermal ellipsoids are drawn at 50 % probability level. Selected bond lengths [Å] and 
angles [˚]: P1–C1: 1.837(2), P1–Cl2: 2.043(1), P1–Cl3: 2.055(1), N1–H1: 0.78(2), H1···Cl1: 2.26(2), N1···Cl1: 3.015(2), C1–P1–
Cl2: 100.3(1), C1–P1–Cl3: 100.6(1), Cl2–P1–Cl3: 100.9(1), sum of angles around P1: 301.8, N1–H1–Cl1: 166(1). 

 

The lengths of the P–Cl bonds differ slightly (2.043(1) Å and 2.055(1) Å and fit well to P–Cl distances 

found in the structures of other dichlorophosphines (2.053(1)–2.087(1) Å).[17] 

The N–H, H···Cl and N···Cl distances in the structure of 3-5 are very similar to those found for 

compound 3-3. 

The geometry at the phosphorus atom features a quite pyramidal shape, with the angles summing 

up to 301.8 °. The three angles are all in the same range between 100.3(1) ° and 100.9(1) °. The N–

H···Cl angle (166(1) °) deviates slightly from 180 °. 
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Figure 13: Hydrogen bonding in the crystal structure of 3-5. Thermal ellipsoids are drawn at 50% probability level. H atoms 
not interacting with the shown Cl1 atom have been omitted for clarity. Selected bond lengths [Å]: H1···Cl1: 2.26(2), 
H1Aii···Cl1: 2.88(1), H1Bi···Cl1: 2.75(1), H3i···Cl1: 2.94(1), H6iii···Cl1: 2.76(2). i: −1+x, y, z, ii: 1−x, −y, 2−z, iii: −x, 1−y, 2−z. 

 

As observed in the crystal structure of compound 3-1 the molecules form hydrogen bonded dimers 

with each chloride anion interacting with the ortho pyridine hydrogen atom of the opposite 

molecule (Figure 13). Through another three C–H···Cl hydrogen bonds these dimers form layers in 

the crystal along the ab plane. In these layers two of the pyridine rings are stacked above each other, 

with the attached CH2PCl2 moieties pointing away to opposite directions (Figure 14). 

This arrangement is favoured probably because of π–π stacking interactions between the pyridine 

rings in a slipped conformation. The distance between the centres of the rings is 3.638(1) Å with an 

angle of 0.0(1) ° of the planes through the rings to each other. The distance is within the range in 

which non-covalent interactions between π-systems in a face-to-face conformation can be found 

(3.3–3.8 Å).[18] 

In the π–π stacking the pyridine rings are arranged antiparallel. This conformation is favoured 

probably due to the dipole moment of the pyridine rings. 

 

 
Figure 14: Crystal structure of 3-5. View along the a axis (left) and b axis (right). 
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3.2.4 DFT calculations 

 

Both chemical properties and reactivity are known to depend on the nature and energy of the 

frontier orbitals present in a molecule.[19] Specifically, for compounds 2-10–2-12, examination of 

these orbitals can give insight into the chemical differences between the phosphorus and nitrogen 

present in the ligands (both of which have potential to act as nucleophiles and bases). It will also 

allow investigation of the influence the methyl groups, present in 2-11 and 2-12 have on the 

electronic properties of the ligands. 

Geometry optimisation of compounds 2-10–2-12 and the all carbon analogue 

benzyldiphenylphosphine (BnPPh2, Figure 16) was carried out using density functional calculations, 

with the B3LYP functional and 6-31G* basis set.[20] Optimisation was considered complete when 

there was an absence of negative frequencies in the vibrational spectra. From this, the nature and 

energy of the HOMO, LUMO, and several other molecular orbitals for compounds 2-10–2-12 and 

BnPPh2 were identified. The percentage contributions of atoms or groups to molecular orbitals were 

calculated using the approach outlined by La Porta et. al. and were confirmed using the Chemissian 

package.[21] 

The first thing that is clear from these calculations is that there is very little variation in both the 

composition and energy of the frontier orbitals present in compounds 2-10–2-12 (Figure 15). They 

are also very close in energy to BnPPh2 (HOMO and LUMO energies of −5.85 eV and −0.47 eV 

respectively) suggesting that the presence of nitrogen has little to no effect on the HOMO/LUMO 

energy. 

The HOMO is localised on the PPh2 unit present in 2-10–2-12 (88–90% of the orbital localised on 

PPh2), with very little incorporation of the pyridine ring. This is comparable to that observed in 

BnPPh2 (Figure 16) but differs from the distribution of, previously reported, PPh3 in which the HOMO 

is spread across all three rings.[22] This may suggest that the presence of the saturated methylene 

spacer prevents delocalisation of the phosphorus lone pair into the pyridine ring. 

 

 

Figure 15: Frontier orbitals and their respective energies for compounds 2-10–2-12. The orbitals and energies were 
generated using the Spartan 14 software package using Density Functional Theory, B3LYP functional, and 6-31G* basis set. 
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The presence of the methyl groups in 2-11 and 2-12 has very little effect on the distribution or 

energy of the HOMO. This is likely because the N-heterocycle, on which the methyl groups are 

added, is not incorporated into the HOMO. 

There is more variation in the nature of the LUMO across the series (Figure 15). The LUMOs all 

contain significant contribution from one phenyl ring and the phosphorus atom (50–72% localised on 

PPh). However, they vary in the level of incorporation of the pyridine ring, with 33% of the LUMO 

localised on the N-heterocycle for 2-11, compared to 13% for 2-10 and 6% for 2-12. The LUMOs of 

compounds 2-10–2-12 also differ significantly from the LUMO of BnPPh2 (Figure 16), in which the 

LUMO spreads across the PPh2 unit. 

 

 
Figure 16: Molecular orbital diagrams for the HOMO and LUMO of Ph2PBn and their respective energies. 

 

It is apparent that the HOMOs of compounds 2-10–2-12 do not contain significant contribution from 

the nitrogen lone pair. This means that information about the reactivity of this lone pair, which is 

important when considering protonation or metal coordination, cannot be obtained by examining 

the HOMO. Therefore, it follows that there is another molecular orbital responsible for reaction at 

nitrogen. 

The idea of expanding the set of frontier orbitals beyond simply the HOMO and LUMO is not 

uncommon for compounds containing more than one reactive site. In these systems additional 

molecular orbitals can be used to gain insight into the reactivity present at additional reactive sites. 

Previously these orbitals have been referred to as frontier effective-for-reaction molecular orbitals 

(FERMOs),[23] but in this work the term HOMON will be used for the highest occupied molecular 

orbital that can be used to describe the reactivity of the nitrogen lone pair. 

The molecular orbital that controls reaction at nitrogen should be localised on nitrogen, at least to 

some degree, and have the appropriate shape for reaction. Analysis of the next highest occupied 

molecular orbitals in 2-10–2-12 (i.e. HOMO−1 to HOMO−5) reveals that the HOMO−3 for 2-10 and 

HOMO−2 for 2-11 and 2-12 contain nitrogen character of 43, 56, and 58% for compounds 2-10, 2-11, 

and 2-12 respectively. Furthermore, they contain significant nitrogen p-character which is typical of 

the nitrogen lone pair (Figure 17). This suggests that these molecular orbitals are much more 

suitable for describing reactions at nitrogen in these systems (HOMON). 

Analysis of the energies of these orbitals shows a small rise in the energy of the HOMON as the 

methyl groups are added, which is expected as these groups are electron-donating. Furthermore, 

this rise in energy may be the reason the HOMON moves from HOMO−3 in 2-10 to HOMO−2 in 2-11 

and 2-12. 
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Figure 17: Molecular orbital diagrams showing HOMO−3 for compound 2-10 and HOMO−2 for compound 2-11. These 
orbitals contain significant contribution from nitrogen. 

 

By expanding the range of frontier orbitals to include the HOMO, LUMO and HOMON (either 

HOMO−2 or HOMO−3) we have a better picture of the electronics of our systems and the influence 

of incorporation of methyl groups. The HOMO is 0.85–0.95 eV higher in energy than the HOMON for 

compounds 2-10–2-12. This is consistent with the lower electronegativity of phosphorus compared 

to nitrogen, which results in a higher energy lone pair. Additionally, this energy difference can also 

be used to describe the difference in hardness between the sites.[23] The absolute hardness (η) of a 

compound/site is given by: 

 

� =  
����� − �
���

2
 

 

Harder compounds have larger HOMO–LUMO gaps and, therefore, higher values of η.[23a] For 

compounds 2-10–2-12, the average values are ηP = 2.63(±0.01) eV and ηN = 3.09(±0.02) eV, where ηP 

and ηN represent the absolute hardness of P and N respectively. This is consistent with nitrogen 

being the harder site and may explain why, for example, it is the N-heterocycle that is protonated in 

the reactions with HCl (H+ is a hard cation) rather than the phosphorus. 

A full computational study in the protonation of 2-10–2-12 would be required to determine whether 

protonation occurs directly at the nitrogen atom, and therefore implying the use of the HOMON, or if 

compounds 3-1–3-3 are a result of initial protonation at the phosphorus atom followed by 

rearrangement. However, given that the molecular orbital analysis supports the formation of a N-

protonated species, which is what was observed experimentally, a full mechanistic study is beyond 

the scope of this work. 

3.3 Summary 
 

Through synthesis of the corresponding hydrochlorides of four picolylphosphine derivatives it has 

been possible to learn and understand about the unknown structures and geometries of the 

phosphines. 

Compounds 2-10–2-12 and 3-1–3-3 have been fully characterised by 1H, 13C and 31P NMR 

spectroscopy. 

The higher conformational stability given by the hydrochloride enhances the ability of the molecule 

to crystallise, allowing the structure to be measured and ultimately providing interesting information 

as to the details of the molecular make-up. The crystal structures of the hydrochlorides 3-1–3-3 and 

3-5 are strongly determined by the hydrogen bonds formed by the chloride anions. 

Theoretical investigations of phosphines 2-10–2-12 have shown that the HOMO strongly influences 

the reactivity at the phosphorus atom, while the reactivity of the nitrogen atom is determined by 

molecular orbitals of lower energy (HOMO−3 and HOMO−2 respectively). 
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3.4 Experimental 
 

For general information about methods and analytical instruments used see 2.4.1 

 

3.4.1 DFT calculations 

 

Optimised geometries of the compounds were calculated at the DFT level of theory, with the B3LYP 

functional and 6−31G* basis set, using the Spartan 14 program.[24] Optimisation was considered 

complete when there was an absence of negativity frequencies in the vibrational spectrum. All 

molecular orbitals were visualised using the Spartan 14 program.[24] Orbital compositions were 

calculated using the formula given below, where ∑ ɸ�
�  is the sum of the squares of the eigenvalues 

associated with the atomic orbitals of X and ∑ ɸ���
�  is the sum of the squares of the eigenvalues of all 

atomic orbitals contributing to that molecular orbital, and were confirmed using the Chemissian 

software package.[21a, 25] 

 

% �ℎ������� �� � =  
∑ ɸ�

�

∑ ɸ���
�

 × 100 

 

3.4.2 Syntheses 

 

For syntheses and analytical data of 2-10–2-12 see 2.4.2. 

 

3.4.2.1 2-((Diphenylphosphino)methyl)pyridine-1-ium chloride 3-1. 

 

 
 

Compound 2-10 (2.8 g, 10 mmol, 1 eq) was dissolved in THF (10 mL) and HCl (37% in H2O, 0.83 mL, 

10 mmol, 1 eq) was added. The reaction mixture was stirred for 1 h at room temperature. The 

product formed a precipitate, which was separated by filtration and dried under vacuum. The 

product was obtained as colourless solid (2.3 g, 7.3 mmol, 73%). 
1
H NMR data are listed in Table 1, 13

C and 31
P NMR data in Table 2. 

EA: Found: C, 66.9; H, 5.7; N, 4.1. Calc. for C18H17ClNP: C, 68.9; H, 5.5%; N, 4.5%. 

m/z (ESI) [%]: 278.10944 (23), 200.06254 (2), 150.12783 (13), 98.03541 (1). 
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3.4.2.2 2-((Diphenylphosphino)methyl)-6-methylpyridine-1-ium chloride 3-2.  

 

 
 

Compound 3-2 was synthesised in the same manner as 3-1 using 2-11 (1.1 g, 3.6 mmol, 1 eq) and HCl 

(37% in H2O, 0.30 mL, 3.6 mmol, 1 eq). The product was obtained as colourless solid (2.7 g, 

8.2 mmol, 82%). 
1
H NMR data are listed in Table 1, 13

C and 31
P NMR data in Table 2. 

EA: Found: C, 68.15; H, 5.8; N, 4.1. Calc. for C19H19NPCl: C, 69.6; H, 5.8; N, 4.3%. 

m/z (ESI) [%]: 292.12484 (100), 214.07804 (9), 130.15908 (1). 

 

3.4.2.3 2-((Diphenylphosphino)methyl)-4,6-dimethylpyridine-1-ium chloride 3-3.  

 

 
 

Compound 3-3 was synthesised in the same manner as 3-1 using 2-12 (3.1 g, 10 mmol, 1 eq) and HCl 

(37% in H2O, 0.83 mL, 10 mmol, 1 eq). The product was obtained as colourless solid (2.9 g, 8.5 mmol, 

85%). 
1
H NMR data are listed in Table 1, 13

C and 31
P NMR data in Table 2. 

EA: Found: C, 70.2; H, 6.3; N, 4.1. Calc. for C20H21NPCl: C, 70.3; H, 6.2; N, 4.1%. 

m/z (ESI) [%]: 306.14078 (11), 152..07071 (1). 

 

3.4.2.4 (Pyridin-2-ylmethyl)dichlorophosphine 3-4.  

 

 
 

PCl3 (0.87 mL, 10 mmol, 1 eq) was dissolved in anhydrous THF (10 mL) and cooled to −78°C. 2-

((Trimethylsilyl)methyl)pyridine (1.7 g, 10 mmol, 1 eq) was added dropwise and the reaction mixture 

was left to warm to room temperature overnight. 
31

P NMR (109 MHz, THF): δ = 183.6 (2
JPH = 13.1 Hz). 

 

 

 



65 
 

3.4.2.5 2-((Dichloro-phosphino)methyl)-pyridin-1-ium chloride 3-5.  

 

 
 

To the solution of compound 3-4 HCl (2.0 M in Et2O, 5.0 mL, 10 mmol, 1 eq) was added and stirred 

for 1 h at room temperature. The product formed a precipitate, which was separated by filtration 

and dried under vacuum. The resulting pale yellow solid (0.84 g) contained the product 3-5 in a 

purity of 73%. 
31

P NMR (162 MHz, CDCl3): δ = 169.5. 

 

3.4.3 Molecular Orbital Contributions 

 
Table 3: Percentage contributions of both phosphorus and nitrogen to the 6 highest occupied molecular orbitals of 
compounds 2-10–2-12 and Ph2PBn. The percentage contributions were calculated using the approaches outlined by La 
Porta et al. and were confirmed using the Chemissian software package.[21a, 25] The numbers highlighted show the 
respective orbitals P/N contribute most to in each compound. 

 
Ph2PPic Ph2PLut Ph2PCol Ph2PBn 

 
%P %N %P %N %P %N %P %N 

HOMO 49% 0% 49% 1% 49% 1% 49% N/A 

HOMO−1 8% 6% 7% 0% 7% 0% 10% N/A 

HOMO−2 2% 19% 1% 56% 1% 58% 1% N/A 

HOMO−3 1% 43% 2% 0% 2% 0% 2% N/A 

HOMO−4 4% 0% 1% 2% 2% 6% 1% N/A 

HOMO−5 2% 7% 4% 2% 3% 2% 4% N/A 
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3.4.4 Crystallographic data 

 
Table 4: Crystallographic data of 3-1–3-3 and 3-5. 

 3-1 3-2 3-3 3-5 

Identification code mx006 wv538 lx573 mx049 

Empirical formula C18H17ClNP C19H19ClNP C20H21ClNP C6H7Cl3NP 

Formula weight [g·mol−1] 313.74 327.77 341.80 230.45 

Temperature [K] 173(2) 143(2) 173(2) 173(2) 

Crystal size [mm3] 0.20× 0.25× 

0.35 

0.02× 0.02× 

0.08 

0.10× 0.15× 

0.20 

0.10× 0.15× 

0.20 

Colour, shape Colourless 

block 

Colourless rod Colourless 

block 

Colourless 

block 

Crystal system Triclinic Orthorhombic Triclinic Triclinic 

Space group P−1 Pbca P−1 P−1 

a [Å] 11.3434(5) 11.2194(3) 8.3366(7) 7.0252(4) 

b [Å] 12.8823(5) 8.0120(2) 10.4295(8) 8.2249(6) 

c [Å] 12.9619(5) 38.1816(10) 11.1284(10) 9.5689(6) 

α [°] 62.779(4) 90 102.643(7) 72.668(6) 

β [°] 81.518(3) 90 105.496(8) 77.134(5) 

γ [°] 85.686(3) 90 96.248(7) 65.783(6) 

V [Å3] 1665.85(13) 3432.14(15) 895.28(14) 478.14(6) 

Z 4 8 2 2 

ρcalc [g·cm−3] 1.251 1.269 1.268 1.601 

Radiation [Å] MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

μ [cm−1] 0.318 0.312 0.302 1.061 

F(000) 656 1376 360 232 

Index ranges −16 ≤h≤ 16 

−18≤k≤ 18 

−18≤l≤18 

−13≤h≤13 

−9≤k≤9 

−47≤l≤47 

−11≤h≤11 

−14≤k≤ 14 

−14 ≤l≤15 

−10≤h≤10 

−11≤k≤ 11 

−13≤l≤13 

Θ range [°] 4.203≤Θ≤ 

30.508 

3.170≤Θ≤ 

26.018 

4.414≤Θ≤ 

30.505 

4.118≤Θ≤ 

30.507 

Reflections collected 33930 30280 9372 9371 

Independent reflections 10123 3327 5419 2890 

Observed reflections 7178 2750 3680 2264 

Data/restraints/parameters 10123/0/411 3327/0/204 5419/0/226 2890/0/105 

Rint 0.0360 0.0536 0.0363 0.0297 

R1, wR2 [I>2σ(I)] 0.0446, 0.1032 0.0389, 0.0864 0.0518, 0.1103 0.0377, 0.0892 

R1, wR2 [all data] 0.0710, 0.1204 0.0506, 0.0920 0.0880, 0.1320 0.0535, 0.0987 

GooF 1.029 1.055 1.031 1.024 

δpmax, δpmin [e·nm−3] 0.623, −0.230 0.892, −0.216 0.640, −0.292 0.462, −0.319 

 

  



67 
 

3.5 References 
 

[1] a) M. P. Carroll, P. J. Guiry, Chem. Soc. Rev. 2014, 43, 819-833; b) C. Hettstedt, M. Unglert, R. 
J. Mayer, A. Frank, K. Karaghiosoff, Eur. J. Inorg. Chem. 2016, 2016, 1405-1414; c) V. 
Vasilenko, T. Roth, C. K. Blasius, S. N. Intorp, H. Wadepohl, L. H. Gade, Beilstein J. Org. Chem. 

2016, 12, 846-853; d) B. V. Rokade, P. J. Guiry, ACS Catal. 2017, 8, 624-643. 
[2] a) D. Benito-Garagorri, W. Lackner-Warton, C. M. Standfest-Hauser, K. Mereiter, K. Kirchner, 

Inorg. Chim. Acta 2010, 363, 3674-3679; b) M. Melník, P. Mikuš, J. Organomet. Chem. 2017, 
828, 30-37; c) K. Wajda-Hermanowicz, A. Kochel, R. Wróbel, J. Organomet. Chem. 2018, 860, 
30-48; d) C. Braun, M. Nieger, S. Bräse, Chem. Eur. J. 2017, 23, 16452-16455; e) B. Choubey, 
P. S. Prasad, J. T. Mague, M. S. Balakrishna, Eur. J. Inorg. Chem. 2018, 2018, 1707-1714; f) M. 
K. Rong, F. Holtrop, J. C. Slootweg, K. Lammertsma, Coord. Chem. Rev. 2019, 382, 57-68. 

[3] a) S. F. Zhu, Q. L. Zhou, Acc. Chem. Res. 2017, 50, 988-1001; b) F. Speiser, P. Braunstein, L. 
Saussine, Acc. Chem. Res. 2005, 38, 784-793; c) S.-Y. Liu, L.-Y. Xu, C.-Y. Liu, Z.-G. Ren, D. J. 
Young, J.-P. Lang, Tetrahedron 2017, 73, 2374-2381; d) S. Hameury, C. Gourlaouen, M. 
Sommer, Polym. Chem. 2018, 9, 3398-3405; e) M. Valero, D. Becker, K. Jess, R. Weck, J. 
Atzrodt, T. Bannenberg, V. Derdau, M. Tamm, Chem. Eur. J. 2019, 25, 6517-6522; f) W. I. Lai, 
M. P. Leung, P. Y. Choy, F. Y. Kwong, Synthesis 2019, 51, 2678-2686. 

[4] a) D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger, S. Brase, Inorg. Chem. 2013, 52, 13509-
13520; b) B. Carlson, B. E. Eichinger, W. Kaminsky, G. D. Phelan, J. Phys. Chem. C 2008, 112, 
7858-7865; c) Q. M. Zhu, L. Song, W. X. Chai, H. Y. Shen, Q. H. Wei, L. S. Qin, Acta Crystallogr. 

C Struct. Chem. 2018, 74, 62-68. 
[5] a) E. Essoun, R. Wang, M. A. S. Aquino, Inorg. Chim. Acta 2017, 454, 97-106; b) I. Angurell, E. 

Puig, O. Rossell, M. Seco, P. Gómez-Sal, A. Martín, J. Organomet. Chem. 2012, 716, 120-128. 
[6] F. Hung-Low, K. K. Klausmeyer, Inorg. Chim. Acta 2008, 361, 1298-1310. 
[7] a) E. Uhlig, M. Schaefer, Z. Anorg. Allg. Chem. 1968, 359, 67-77; b) A. Murso, D. Stalke, 

Dalton Trans. 2004, 2563-2569; c) C. Dubs, T. Yamamoto, A. Inagaki, M. Akita, Chem. 

Commun. 2006, 1962-1964; d) J. T. Mague, S. W. Hawbaker, J. Chem. Crystallogr. 1997, 27, 
603-608. 

[8] a) W. V. Dahlhoff, T. R. Dick, S. M. Nelson, J. Chem. Soc. A 1969, 2919-2923; b) C.-H. Lin, V. N. 
Nesterov, M. G. Richmond, J. Organomet. Chem. 2013, 744, 24-34. 

[9] W. J. Knebel, R. J. Angelici, Inorg. Chim. Acta 1973, 7, 713-716. 
[10] A. Kermagoret, P. Braunstein, Organometallics 2008, 27, 88-99. 
[11] C. Hettstedt, PhD thesis, Ludwig-Maximilians-Universität München, 2015. 
[12] J. J. Daly, J. Chem. Soc. 1964, 3799-3810. 
[13] W. Levason, D. Pugh, G. Reid, Acta Crystallogr. C 2013, 69, 560-564. 
[14] a) S. Ma, M. Chen, F.-F. Fan, A.-Q. Jia, Q.-F. Zhang, J. Chem. Crystallogr. 2018, 48, 64-71; b) N. 

Lu, R. J. Wei, K. Y. Lin, M. Alagesan, Y. S. Wen, L. K. Liu, Acta Crystallogr. C Struct. Chem. 

2017, 73, 343-349; c) S. M. Fellows, T. J. Prior, Acta Crystallogr. E Crystallogr. Commun. 2016, 
72, 436-439; d) Effendy, P. C. Junk, C. J. Kepert, L. M. Louis, T. C. Morien, B. W. Skelton, A. H. 
White, Z. anorg. allg. Chem. 2006, 632, 1312-1325; e) M. Mastalir, M. Schroffenegger, B. 
Stoger, M. Weil, K. Kirchner, Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 331-333; f) 
G. M. de Lima, J. L. Wardell, R. A. Howie, S. M. S. V. Wardell, J. Chem. Crystallogr. 2012, 43, 
36-43. 

[15] D. Mootz, J. Hocken, Z. Naturforsch., B: Chem. Sci. 1989, 44, 1239-1246. 
[16] C. B. Aakeröy, T. A. Evans, K. R. Seddon, I. Palinko, New J. Chem. 1999, 23, 145-152. 
[17] a) H. Klöcker, M. Layh, A. Hepp, W. Uhl, Dalton Trans. 2016, 45, 2031-2043; b) A. Orthaber, 

F. Belaj, J. H. Albering, R. Pietschnig, Eur. J. Inorg. Chem. 2010, 2010, 34-37; c) S. Greenberg, 
D. W. Stephan, Inorg. Chem. 2009, 48, 8623-8631; d) D. Vidovic, Z. Lu, G. Reeske, J. A. 
Moore, A. H. Cowley, Chem. Commun. 2006, 3501-3503; e) V. Plack, J. R. Goerlich, A. Fischer, 
H. Thoennessen, P. G. Jones, R. Schmutzler, Z. Anorg. Allg. Chem. 1995, 621, 1080-1092. 



68 
 

[18] C. Janiak, Dalton Trans. 2000, 3885-3896. 
[19] K. Fukui, Angew. Chem. Int. Ed. 1982, 21, 801-809. 
[20] Y. Zhang, L. Y. Chen, W. X. Yin, J. Yin, S. B. Zhang, C. L. Liu, Dalton Trans. 2011, 40, 4830-4833. 
[21] a) F. A. La Porta, R. T. Santiago, T. C. Ramalho, M. P. Freitas, E. F. F. Da Cunha, Int. J. 

Quantum Chem. 2010, 110, 2015-2023; b) S. Lindsay, S. K. Lo, O. R. Maguire, E. Bill, M. R. 
Probert, S. Sproules, C. R. Hess, Inorg. Chem. 2013, 52, 898-909. 

[22] B. Stewart, A. Harriman, L. J. Higham, Organometallics 2011, 30, 5338-5343. 
[23] a) R. R. Da Silva, T. C. Ramalho, J. M. Santos, J. D. Figueroa-Villar, J. Phys. Chem. A 2006, 110, 

1031-1040; b) R. R. da Silva, J. M. Santos, T. C. Ramalho, J. D. Figueroa-Villar, J. Braz. Chem. 

Soc. 2006, 17, 223-226. 
[24] Spartan 14v112, 2013, Wavefunction Inc., Irvine, https://www.wavefun.com/spartan. 
[25] https://www.chemissian.com/. 
 



 

 
 

Chapter 4 

Zinc complexes 
 

 

 

 

 

 

 
 

 

 

 

 



70 
 

4.1 Introduction 
 

4.1.1 Coordination chemistry of zinc 

 

The normal oxidation state of the zinc ion is +2.[1] Due to the d10 configuration of Zn(II) it has no 

ligand field stabilisation energy, which means that the geometry and coordination number can be 

adapted to best fulfil the requirements of the coordinating ligands.[2] 

For example in zinc dialkyls the zinc atom is often coordinated only by two carbon atoms.[1a, 3] With 

other ligands containing e.g. nitrogen, oxygen or halide atoms the coordination number usually 

varies between four and six (Figure 1).[1a, 2a, 3-4] The corresponding polyhedrons can easily be 

distorted from the ideal geometry.[4b] 

 

 

 
Figure 1: Typical coordination geometries found in zinc complexes. 

 

There are not many examples of zinc complexes with phosphine ligands and in the literature known 

complexes often additional O- or N-donors are present.[5]
 

 

4.1.2 Luminescent properties of Zn complexes 

 

Luminescent zinc complexes are of special interest for the development of blue or white emitting 

OLEDs. 

Usually the emission of zinc complexes is based on fluorescence and only a small number of 

compounds, which exhibit phosphorescence or TADF, are known.[6] 

In d10 metal complexes there are no d–d transitions possible. Therefore the fluorescence is usually 

caused by ligand centred excited states or LLCT.[6b] 

The main function of the metal atom often is to stabilise the ligand and its geometry. This means 

that the wavelength and intensity of the emission and the stability of the complex can strongly be 

influenced by modification of the ligand.[6b] 
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4.2 Results and discussion 
 

4.2.1 Synthesis 

 

The zinc complexes have been synthesised by adding solutions of the corresponding phosphines to a 

solution of zinc chloride in THF (Scheme 1). 
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Scheme 1: Synthesis of the zinc chloride complexes. 

 

The reaction to prepare 4-1 formed a colourless precipitate, which was isolated by filtration and 

dried under vacuum. The complex is soluble in DCM and chloroform, but insoluble in MeCN, Et2O 

and pentane. 

Compounds 4-2–4-7 were obtained as pale yellow solids after removal of the solvent in vacuo in 

moderate to good yields of 47–71%. All complexes are soluble in polar solvents like MeCN, THF, 

DCM and chloroform, but insoluble in non-polar solvents like Et2O and pentane. All compounds are 

sensitive towards air and moisture.  

 

4.2.2 NMR data 

 

The 1H, 13C and 31P NMR chemical shifts of complexes 4-1–4-7 are listed in Tables 1 and 2. 

 
Figure 2: Numbering of carbon atoms of the ligands in compounds 4-1 and 4-7 for 1H and 13C NMR spectroscopic data 
assignments. 
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Table 1: 1H, 13C and 31P NMR data of the ligands in complexes 4-1–4-5 in CDCl3. Chemical shifts δ in ppm, coupling constants J in Hz. 

 4-1 4-2 4-3 4-4 4-5  4-1 4-2 4-3 4-4 4-5 

δP −9.1 −24.1 −23.3 −11.8 −10.9 δC      
3
JPH10 5.8 – – 17.7 17.4 C1 32.3 33.1 33.0 29.0 28.8 

      C2 156.8 153.3 152.9 153.8 153.4 

δH      C3 126.4 122.5 123.8 122.7 123.2 

H1a 3.42 3.81 3.78 3.56 3.35 C4 140.2 138.8 150.9 139.2 150.3 

H1b 3.30 3.62 3.60 3.42 3.25 C5 122.9 123.1 124.0 123.2 123.6 

H3 6.88 7.07 6.96 7.20 6.90 C6 149.5 159.0 158.3 159.0 158.3 

H4 7.71 7.51 – 7.56 – C7 – 24.6 24.3 24.5 24.2 

H5 7.42 7.02 6.83 7.04 6.78 C8 – – 21.0 – 20.8 

H6 9.08 – – – – C9 132.7 125.6 125.8 23.1 23.0 

H7 – 2.64 2.62 2.67 2.55 C10 132.0 133.6 133.7 18.3 18.2 

H8 – – 2.24 – 2.20 C11 128.9 129.3 131.1 – – 

H9 – – – 2.37 2.27 C12 130.3 132.1 132.1 – – 

H10 6.98 7.75 7.84 1.26 1.23 1
JPC1 27.3 16.2 15.4 14.2 13.7 

H11 7.27 7.39 7.44 – – 2
JPC2 – 1.5 – 2.0 2.0 

H12 7.36 7.45 7.48 – – 3
JPC3 2.7 4.6 4.6 4.3 4.3 

2
JH1aH1b

 13.7 15.3 15.0 15.5 15.3 5
JPC5

 0.7 2.8 2.9 2.5 2.5 
3
JH3H4

 9.1 7.8 – 7.7 – 1
JPC9

 18.1 33.0 31.9 16.8 16.3 
3
JH4H5

 6.6 7.7 – 7.7 – 2
JPC10

 20.5 13.9 14.0 3.9 3.9 
3
JH5H6

 5.6 – – – – 3
JPC11 7.0 10.5 10.4 – – 

4
JH4H6

 1.8 – – – – 4
JPC12 – 2.4 2.3 – – 

5
JH3H6

 0.8 – – – –       
3
JH9H10

 – – – 7.1 7.1       
2
JPH9

 – – – 1.8 1.1       
2
JPH1a

 3.6 9.0 10.0 9.5 9.7       
2
JPH1b

 4.5 6.6 6.0 6.5 6.0       

 

 
Table 2: 1H, 13C and 31P NMR data of the ligands in complexes 4-6–4-7 in CDCl3. 

Chemical shifts δ in ppm, coupling constants J in Hz. 

 4-6 4-7   4-6 4-7 

δP −23.8 −20.9  δC   

    C1 30.7 30.7 

δH    C2 153.6 153.2 

H1 3.48 3.42  C3 122.1 123.3 

H3 7.13 6.98  C4 138.3 150.2 

H4 7.53 –  C5 122.6 123.5 

H5 7.01 6.83  C6 158.8 158.0 

H7 2.57 2.53  C7 24.5 24.2 

H8 – 2.25  C8 – 21.0 
3
JH3H4 7.7 –  1

JPC1 14.7 12.6 
3
JH4H5 7.7 –  2

JPC2 2.4 2.2 
2
JPH1

 7.7 7.5  3
JPC3 4.7 3.6 

    5
JPC5 2.4 2.6 
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The 31P NMR signals of 4-2–4-7 are shifted 8.7–12.5 ppm towards higher field compared to the 

signals of the free ligands. This coordination induced shift (CIS) Δδ is slightly larger for the signals of 

the complexes with the ligands without the 4-methyl group at the pyridine rings than the 

corresponding complexes with these methyl groups. In contrast the 31P NMR signal of 4-1 is shifted 

only 3.4 ppm towards lower field compared to the signal of the free ligand 2-13. This indicates that 

the coordination of the ligand to zinc in complex 4-1 might be different from the coordination in the 

other complexes. The crystal structure of 4-1 (see 4.2.4) shows that in this complex the zinc is 

coordinated by only the nitrogen atoms of the ligands. It is likely that the additional 6-methyl groups 

to the ligands makes N,N coordination sterically much more difficult and therefore in the other 

complexes P,N coordination might be found. 

The 3
JPH10 coupling constants resolved in the proton coupled 31P NMR spectra of 4-4 and 4-5 are 

increased by 4.4 Hz and 4.1 Hz respectively compared to those of the free ligands. In contrast the 
3
JPH10 coupling constant of 4-1 is decreased by 1.6 Hz compared to that of 2-13. In the proton 

coupled 31P NMR spectra of 4-2 and 4-3 no 3JPH10 coupling is resolved. 

 

Low temperature 31P NMR measurements of 4-5 at −80°C showed four signals instead of only one 

signal as the 31P NMR spectrum taken at room temperature (Figure 3). After return to room 

temperature the same spectrum as before cooling is obtained. This indicates that at room 

temperature there are four different species in the solution, which are in a rapid equilibrium and 

therefore cause only one signal in the NMR spectrum. 

 

 
Figure 3: 31P NMR spectra of 4-5 in CD2Cl2 at room temperature (left) and −80°C (right). 

 

The chemical shift of the signal of the free ligand at −80°C is 1.1 ppm. The signal at 0.9 ppm in the 

NMR spectrum of the complex at −80°C might be caused by free ligand, which is present in the 

solution in an amount of approx. 25%. The signal at a chemical shift of −10.7 ppm (62%) is probably 

caused by the complex. Also two more species containing the ligand are present in the solution in 

minor amounts of 6–7% causing signals at −1.5 ppm and 0.3 ppm. One of these species might be a 

complex with N,N coordination or only one of the nitrogen atoms coordinating to the zinc (Figure 4). 

Also the formation of dimers as shown in Figure 4 might be possible. 
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Figure 4: Possible structures of species, which might be present in the solution of 4-5. 

 

On the contrary in the 31P NMR spectrum of 4-1 at −80°C only one signal can be observed (Figure 5). 

This means that there is no equilibrium in solutions of 4-1, but only one species is present. 

 

 
Figure 5: 31P NMR spectra of 4-1 in CD2Cl2 at room temperature (left) and −80°C (right). 

 

Probably due to the equilibrium in solution it is much more difficult to crystallise the Zn complexes 

of the ligands with the lutidinyl or collidinyl substituents. 

 

For the following discussion of the 1H and 13C NMR it should be considered, that the chemical shifts 

and coupling constants of 4-5 and probably 4-2–4-4 as well as 4-6 and 4-7 are only average values 

due to the equilibrium in the solution. 

 

All signals in the 1H NMR spectra of 4-2–4-7 are shifted 0.10–0.70 ppm towards lower field in 

comparison to the signals found for the free ligands, except the signals for H5 of 4-6 and 4-7, which 
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show no CIS. The 1H NMR signals for H3, H10 and H11 of compound 4-1 are shifted towards higher 

field (H3: 0.12 ppm, H10: 0.46 ppm, H11: 0.01 ppm) with respect to the corresponding signals of 2-

13, while the signals of H4, H5, H6 and H12 are shifted towards lower field (H4: 0.27 ppm, H5: 

0.42 ppm, H6: 0.64 ppm, H12: 0.08 ppm). The signals for H1 of 4-6 and 4-7 are also shifted 0.42–0-

48 ppm towards lower field. 

The signals for the diastereotopic protons H1a and H1b of 4-1–4-5 are moved further apart from 

each other compared to the signals of the free ligands. While in the spectra of 2-16 and 2-17 the 

signals of H1a and H1b showed significant overlap, the corresponding signals in the spectra of 4-4 

and 4-5 are clearly separated. The signals of H1 of compounds 4-2–4-5 are shifted 0.28–0.53 ppm 

towards lower field compared to those of the free ligands. On the contrary the signal of H1a of 4-1 is 

shifted only 0.02 ppm towards lower field, while the signal of H1b is shifted 0.02 ppm towards higher 

field. 

In comparison to the free ligand 2-13 the 2
JH1aH1b coupling constant of 4-1 is slightly increased by 

0.3 Hz. Also the 2
JPH1 coupling constants of 4-1 are increased by 1.9 Hz and 4.5 Hz compared to 2-13. 

In the case of 4-2–4-4 the 2
JH1aH1b coupling constants are increased 1.7–2.0 Hz and the 2

JPH1 coupling 

constants are increased 6.0–9.7 Hz compared to those of the corresponding ligands. 

 

Comparison of the 13C NMR spectra of 4-1–4-7 with the spectra of the free ligands shows the largest 

effect of the complexation on the signals of C1, C2 and C9 (Δδ: C1: 4.5–5.6 ppm, C2: 1.4–4.9 ppm, 

C9: 1.9–11.6 ppm). The other signals have CIS of a maximum of 4.0 ppm compared to the signals of 

the ligands. The signals of C1, C2, C8 and C9 are shifted towards higher field, while the signals of C3–

6, C11 and C12 are shifted towards lower field compared to the signals of the ligand. The signals of 

C7 are shifted 0.1 ppm towards lower field for 4-2 and 4-3 and 0.1–0.2 ppm towards higher field for 

4-4, 4-5 and 4-7 and the signals of C10 are shifted 0.8–0.9 ppm towards lower field for 4-2 and 4-3, 

while they are shifted 0.8–1.0 ppm towards higher field for 4-1, 4-4 and 4-5. For the signal of C2 of 

compound 4-1 the shift is only 1.6 ppm, but for 4-2–4-7 the shift is between 4.1 ppm and 5.0 ppm. 

Also the signal of C9 for compound 4-1 is shifted only 4.1 ppm towards higher field, while the 

corresponding signals of 4-2 and 4-3 are shifted 11.5 ppm. These differences also indicate that the 

coordination in 4-1 might be different from the coordination found in 4-2 and 4-3. 

The coupling constants JPC of the signals of C1–C4, C6 and C10 are decreased by 0.6–9.6 Hz for 

compounds 4-2–4-7, while the coupling constants of the signals of C5, C9, C11 and C12 are increased 

by 0.7–14.6 Hz compared to the coupling constants found for the signals of the free ligands. 

Especially the coupling constants of the signals of C9 of 4-2 and 4-3 are significantly increased by 

14.6 Hz and 13.7 Hz respectively. This strong influence on the signal of C9 might result from 

coordination of the neighbouring phosphorus atom to the zinc. On the contrary the coupling 

constant of the signal of C1 for compound 4-1 is increased 8.5 Hz compared to 1
JPC1 of 2-13. The 

coupling constants of the signals of the phenyl carbon atoms of 4-1 are comparable to those found 

for the signals of 2-13.  

 

The 1H and 13C NMR spectra of 4-1 at −80 °C are very similar to those at room temperature. In the 1H 

and 13C NMR spectra of 4-5 at −80 °C the signals of the species present in the solution can be seen, 

but assignment of the signals is not possible. 

 

4.2.3 Photophysical data 

 

None of the complexes shows luminescence in solution, but in the solid state the complexes show 

blue luminescence under UV light (Figure 6). 



 

 

Figure 6: Luminescence of 4-1 (left) and 

 

The emission maximum of 4-1 in the solid state is at 486

 

Figure 7: Fluorescence emission spectrum of 

 

From TCSPC measurements the relaxations times of 

(Figure 8). From a biexponential fit of the results the relaxation times of 

8.93±0.12 ns were determined. These relaxation times

fluorescence (0.01–10 ns).[7] This

luminescent zinc complexes. 

 

 

Figure 8: Results of the TCSPC measurements of 
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and 4-5 (right) under UV light. 

in the solid state is at 486 nm (Figure 7). 

Fluorescence emission spectrum of 4-1 in the solid state. 

From TCSPC measurements the relaxations times of 4-1 in the solid state could be determined 

xponential fit of the results the relaxation times of τ1 = 2.23

ns were determined. These relaxation times are in the time range, which is typical for 

This indicates that 4-1 probably is a singlet emitter

Results of the TCSPC measurements of 4-1. 

 

 

in the solid state could be determined 

= 2.23±0.04 ns and τ2 = 

are in the time range, which is typical for 

probably is a singlet emitter, like most 
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4.2.4 Crystal structure of 4-1 

 

Crystals of 4-1 suitable for single crystal X-ray diffraction have been obtained from a solution in 

chloroform. The complex crystallises in the triclinic space group P−1 with two formula units in the 

unit cell. The asymmetric unit comprises two molecules of the complex. The asymmetric unit is 

depicted in Figure 9. 

The zinc atoms are coordinated distorted tetrahedrally by two nitrogen atoms of one ligand and two 

chloride anions.  

 

 
Figure 9: Asymmetric unit of 4-1. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å] and 
angles [°]: Zn1–Cl1: 2.230(1), Zn1–Cl2: 2.235(1), Zn1–N1: 2.057(2), Zn1–N2: 2.046(2), Zn2–Cl3: 2.229(1), Zn2–Cl4: 2.243(1), 
Zn2–N3: 2.057(3), Zn2–N4: 2.060(2), P1–C1: 1.852(3), P1–C7: 1.873(2), P1–C13: 1.823(4), P2–C19: 1.847(2), P2–C25: 
1.871(3), P2–C31: 1.825(3), Cl1–Zn1–Cl2: 116.8(1), Cl1–Zn1–N1: 105.6(1), Cl1–Zn1–N2: 106.9(1), Cl2–Zn1–N1: 105.9(1), 
Cl2–Zn1–N2: 105.3(1), N1–Zn1–N2: 116.9(1), Cl3–Zn2–Cl4: 115.8(1), Cl3–Zn2–N3: 104.8(1), Cl3–Zn2–N4: 110.1(1), Cl4–
Zn2–N3: 104.1(1), Cl4–Zn2–N4: 105.4(1), N3–Zn2–N4: 117.0(1), C1–P1–C7: 100.8(1), C1–P1–C13: 102.1(1), C7–P1–C13: 
102.5(1), C19–P2–C25: 101.5(1), C19–P2–C31: 102.7(1), C25–P2–C31: 102.4(1). 

 

The only examples of zinc chloride complexes of bis(picolyl)phosphines in the literature are the 

complexes synthesised by C. Hettstedt.[8] In these complexes the zinc atom is coordinated in the 

same way by the nitrogen atoms of the picolyl substituents. 

This coordination type can also be found in zinc chloride complexes of bis(picolyl)amines,[9] 

bis(picolyl)selane[10] and a bis(picolyl)-pyridinyl-butyne ligand (Figure 10).[11] 
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Figure 10: Literature known zinc chloride complexes of bis(picolyl)amines, bis(picolyl)selane and a bis(picolyl)-pyridinyl-
butyne ligand. 

 

The Zn–N distances are between 2.046(2) and 2.060(2) Å, which is only slightly shorter than the 

mean Zn–N distance of four-coordinate zinc atoms with pyridine ligands (2.064 Å)[12] and 

corresponds with the Zn–N distances of the zinc chloride complexes of bis(picolyl)phosphines and 

tris(picolyl)phosphine (2.041(2)–2.084(5) Å).[8] 

The Zn–Cl distances are in the range from 2.229(1) to 2.243(1) Å. This is slightly shorter than the 

mean Zn–Cl distance of four-coordinate zinc atoms (2.253 Å),[12] but concurs with the literature 

values of the complexes of C. Hettstedt (2.204(2)–2.254(1) Å).[8] 

The P–CAlk bond lengths of 4-1 are between 1.847(2) Å and 1.873(2) Å. This is slightly longer than the 

mean P–CAlk bonds in complexes of triethylphosphine, tri-n-propylphosphine, 

methyldiphenylphosphine and dimethyl(phenyl)phosphine (1.825–1.832 Å),[12] but the P–CAlk bond 

lengths found in the complexes of C. Hettstedt (1.850(6)–1.893(1) Å) are in the same range as those 

of 4-1.[8] 

The P–CAr bond lengths of 4-1 are 1.823(4) Å and 1.824(3) Å, which is comparable to the mean P–CAr 

bond lengths in complexes of triphenylphosphine, methyldiphenylphosphine and 

dimethyl(phenyl)phosphine (1.823–1.828 Å)[12] and the P–CAr bond length of the o-

methoxyphenylbis(picolyl)phosphine zinc chloride complex (1.830(2) Å) and the p-methoxyphenyl-

bis(picolyl)phosphine zinc chloride complex (1.820(1) Å).[8] 

 

The angles around the Zn atoms vary from 104.8(1) ° to 117.0(1) °. The N–Zn–N angles (116.9(1) ° 

and 117.0(1) °) and Cl–Zn–Cl angles (115.8(1) ° and 116.8(1) °) are larger than the N–Zn–Cl angles 

(104.8(1)–110.1(1) °). The N–Zn–N and Cl–Zn–Cl angles are all larger than the ideal tetrahedral angle 

of 109.5 °, while the N–Zn–Cl angles are, with one exception of 110.1(1) °, slightly smaller than the 

ideal tetrahedral angle. Comparison of the angles with the literature values of ZnCl2 complexes of 

tris(picolyl)phosphine, o-methoxyphenylbis(picolyl)phosphine and p-methoxyphenyl-

bis(picolyl)phosphine shows similarity of the angles.[8] 

The C–P–C angles of 4-1 range from 100.8(1) ° to 102.7(1) °, which is comparable to the literature 

values found in zinc chloride complexes of bis(picolyl)phosphines and tris(picolyl)phosphine 

(95.8(7)–104.0(4) °).[8] The sums of the angles around the phosphorus atoms are 305.4 ° and 306.5 ° 

respectively, meaning that the conformation around the phosphorus atoms is pyramidal. 

 

Figure 11 shows the crystal structure of 4-1 along the c axis. The pyridine rings containing N2 and N4 

are arranged parallel to each other. The distance between the centres of the rings is 3.784(1) Å and 

the angle of the rings to each other is 2.2(1) °. This suggests, that the crystal structure is stabilised by 

weak attractive π-π interactions. 

 



 

Figure 11: Crystal structure of 4-1. View along the 

 

4.2.5 DFT calculations 

 

From the frontier orbitals of a molecule a lot of information about the chemical properties and the 

reactivity of a molecule can be obtained.

information about the chemical stability of a molecule.

Geometry optimisation has been performed with the Gaussian 16 package with the B3LYP functional 

and 6-31G+(d,p) basis set.[14] 

energies of the highest occupied and the lowest unoccupie

The HOMO−1, HOMO, LUMO and LUMO+1 are depicted in Figure 1

The HOMO is centred at the chlorine atoms, while the contributions of the metal atom and the

phosphine ligand are rather small.

ligand, but also contributions of the chlorine atoms are present

The LUMO is centred at one of the pyridine rings

other pyridine ring. Both orbitals also have small contributi

phenyl ring is only weakly involved

The energy gap between HOMO

 

Figure 12: HOMO−1, HOMO, LUMO and 
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. View along the c axis. Thermal ellipsoids are drawn at 50% probability level.

From the frontier orbitals of a molecule a lot of information about the chemical properties and the 

reactivity of a molecule can be obtained.[13] The energy gap between the HOMO and the LUMO gives 

information about the chemical stability of a molecule.[13b] 

been performed with the Gaussian 16 package with the B3LYP functional 

For the optimum geometry of complex 4-1 the distribution and 

energies of the highest occupied and the lowest unoccupied molecular orbitals were determined.

−1, HOMO, LUMO and LUMO+1 are depicted in Figure 12. 

centred at the chlorine atoms, while the contributions of the metal atom and the

ligand are rather small. The main part of the HOMO−1 is localised at

, but also contributions of the chlorine atoms are present. 

red at one of the pyridine rings of the ligand, while the LUMO+1 is cent

Both orbitals also have small contributions of the phosphorus atom, but the 

only weakly involved in the composition of these orbitals. 

HOMO and LUMO of 4.92 eV (252.0 nm) is rather large.

 
and LUMO+1 of 4-1. 

 
axis. Thermal ellipsoids are drawn at 50% probability level. 

From the frontier orbitals of a molecule a lot of information about the chemical properties and the 

The energy gap between the HOMO and the LUMO gives 

been performed with the Gaussian 16 package with the B3LYP functional 

the distribution and 

d molecular orbitals were determined. 

centred at the chlorine atoms, while the contributions of the metal atom and the 

is localised at the phosphine 

LUMO+1 is centred at the 

ons of the phosphorus atom, but the 

nm) is rather large. 
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The UV/Vis spectrum of 4-1 was calculated with the TD-DFT method at the B3LYP/6-31G+(d,p) level 

of theory.[14] The calculated absorption spectrum shows a maximum at 291 nm (Figure 13). The most 

prominent contribution to the absorption comes from a singlet transition at 291.4 nm from 

HOMO−1 and HOMO to the LUMO. With respect to the distribution of the orbitals involved in this 

transition it is obvious that the luminescence of complex 4-1 is based on LC and LLCT states. 

 

 
Figure 13: Calculated absorption spectrum of 4-1. 

 

4.3 Summary 
 

Seven new zinc chloride complexes of bis- and tris(picolyl)phosphine based ligands have been 

synthesised and characterised. 

The 31P NMR chemical shifts of solutions of the complexes indicated that in complex 4-1 the ligand 

possibly might coordinate to the metal in a different way than in complexes 4-2–4-5. This needs to 

be confirmed by X-ray crystallography. 

Low temperature 31P NMR measurements at −80°C revealed that in the case of 4-1 only one species 

is present in the solution, while in the case of 4-5 a rapid equilibrium of four species in the solution 

causes one averaged signal at room temperature. Probably due to the presence of this equilibrium 

the zinc complexes of lutidinyl or collidinyl substituted phosphines are more difficult to crystallise 

and no crystal structures of these compounds could be determined. 

All seven complexes emit blue luminescence under UV-light. The short relaxation times determined 

in TSCPC measurements of 4-1 indicate that the observed emission is caused by singlet state 

transitions. 

The crystal structure of complex 4-1 could be determined by X-ray crystallography. From the 

molecular structure it is obvious that the zinc is coordinated only by the nitrogen atoms of the ligand 

and does not interact with the phosphorus. In the molecular structure π-π-stacking interactions 

between the pyridine rings can be observed. 

DFT calculations revealed that the HOMO is centred mostly at the chlorine atoms, while the LUMO is 

centred at the pyridine moiety of the phosphine ligand. Excitation leads to a charge transfer from 

the chloride ions to the ligand. 
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4.4 Experimental 
 

For general information about methods and analytical instruments used see 2.4.1. 

Compounds 4-2–4-7 were obtained from the reaction mixtures after removal of the solvent without 

further purification. NMR data indicated that a mixture of several species might have been obtained. 

Therefore no yields and data from elemental analysis are listed for these compounds. 

 

4.4.1 DFT calculations 

 

Geometry optimisation, vibrational calculations and calculations of molecular orbitals have been 

performed with the Gaussian 16 package with the B3LYP functional and the 6-31G+(d,p) basis set 

starting from the molecular geometries determined from the crystal structures.[14] Optimisations 

have been considered complete when no negative frequencies were present in the vibrational 

spectrum. UV/Vis spectra of the optimised structures were calculated with the TD-DFT method at 

the B3LYP/6-31G+(d,p) level of theory.[14] 

 

4.4.2 Syntheses 

 

4.4.2.1 Phenyl-bis(pyridin-2-ylmethyl)phosphine zinc chloride complex 4-1 

 

A solution of 2-13 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise to a solution ofZnCl2 

(1.0 mL, 1 M in Et2O, 1.0 mmol, 1 eq), which led to a colourless precipitate. The suspension was 

stirred overnight. The solid was filtered off and dried in vacuo. The product was obtained as 

colourless solid (90 mg, 0.21 mmol, 21%).  
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 
31

P NMR (162 MHz) see Table 1. 

m/z (ESI) [%]: 293.12027 (74), 200.06235 (51). 

 

4.4.2.2 Phenyl-bis(6-methylpyridin-2-ylmethyl)phosphine zinc chloride complex 4-2 

 

A solution of 2-14 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise to a solution of  

ZnCl2 (1.0 mL, 1 M in THF, 1.0 mmol, 1 eq), which led to a clouding of the solution. The reaction 

solution was stirred overnight before the solvent was removed in vacuo. The product was obtained 

as colourless solid (265 mg). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 1.  

m/z (FAB
+
) [%]: 419.0430 (100). 

m/z (FAB
−
) [%]: 35.0 (1). 

 

4.4.2.3 Phenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine zinc chloride complex 

4-3 

 

A solution of 2-15 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise to a solution of  

ZnCl2 (1.0 mL, 1 M in THF, 1.0 mmol, 1 eq), which led to a clouding of the solution. The reaction 
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solution was stirred overnight and the product precipitated after addition of dry Et2O. The colourless 

solid was filtered off and dried in vacuo. The product was obtained as colourless solid (226 mg). 
1
HNMR (400 MHz), 13

CNMR (101 MHz) and 31
PNMR (162 MHz) see Table 1. 

m/z (FAB
+
) [%]:447.0719 (100). 

m/z (FAB
−
)[%]: 35.0 (1). 

 

4.4.2.4 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine zinc chloride complex 

4-4 

 

A solution of 2-16 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise to a solution of ZnCl2 

(1.0 mL, 1 M in THF, 1.0 mmol, 1 eq). The reaction solution was stirred overnight and the solvent was 

removed in vacuo. The product was obtained as pale yellow solid (302 mg). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 1. 

 

4.4.2.5 isoPropyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine zinc chloride 

complex 4-5 

 

A solution of 2-17 (2.2 mL, 0.5 M in MeCN, 1.1 mmol, 1 eq) was added dropwise to a solution of  

ZnCl2 (1.1 mL, 1 M in THF, 1.0 mmol, 1 eq), which led to a clouding of the solution. The reaction 

solution was stirred overnight and the solvent was removed in vacuo. The product was obtained as 

colourless solid (237 mg). 
1
HNMR (400 MHz), 13

CNMR (101 MHz) and 31
PNMR (162 MHz) see Table 1.  

m/z (FAB
+
) [%]:413.0910 (100). 

m/z (FAB
−
) [%]: 35 (1). 

 

4.4.2.6 Tris(6-methylpyridin-2-ylmethyl)phosphine zinc chloride complex 4-6 

 

A solution of 2-24 (1.5 mL, 0.5 M in MeCN, 0.75 mmol, 1 eq) was added dropwise to a solution of  

ZnCl2 (0.5 mL, 1.5 M in THF, 0.75 mmol, 1 eq). The reaction solution was stirred overnight and the 

solvent was removed in vacuo. The product was obtained as colourless solid (289 mg). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 2. 

 

4.4.2.7 Tris(4,6-dimethylpyridin-2-ylmethyl)phosphine zinc chloride complex 4-7 

 

A solution of 2-25 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise to a solution of  

ZnCl2 (1.0 mL, 1 M in THF, 1.0 mmol, 1 eq), which led to a clouding of the solution. The reaction 

solution was stirred overnight and the solvent was removed in vacuo. The product was obtained as 

colourless solid (277 mg). 
1
H NMR (400 MHz), 13

C NMR (101 MHz) and 31
P NMR (162 MHz) see Table 2.  

m/z (FAB
+
) [%]: 490.1134 (12). 

m/z (FAB
−
) [%]: 35 (1). 
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4.4.3 Crystallographic data 

 
Table 3: Crystallographic data of compound 4-1. 

Identification code mx399 

Empirical formula C18H17Cl2N2PZn 

Formula weight [g·mol−1] 428.57 

Temperature [K] 143(2) 

Crystal size [mm3] 0.20× 0.33× 0.39 

Colour, shape Colourless block 

Crystal system Triclinic 

Space group P−1 

a [Å] 11.9745(4) 

b [Å] 14.0085(6) 

c [Å] 15.0123(6) 

α [°] 62.197(4) 

β [°] 89.218(3) 

γ [°] 73.498(4) 

V [Å3] 2114.71(16) 

Z 4 

ρcalc [g·cm−3] 1.346 

Radiation [Å] MoKα = 0.71073 

μ [cm−1] 1.491 

F(000) 872 

Index ranges −15≤h≤15 

−18≤k≤18 

−11≤l≤19 

Θ range [°] 4.372≤Θ≤ 27.481 

Reflections collected 18629 

Independent reflections 9647 

Observed reflections 7521 

Data/restraints/parameters 9647/0/433 

Rint 0.0277 

R1, wR2 [I>2σ(I)] 0.0429, 0.1108 

R1, wR2 [all data] 0.0610, 0.1221 

GooF 1.050 

δpmax, δpmin [e·nm−3] 0.750, −0.433 
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Chapter 5 

Copper(I) complexes 
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5.1 Introduction 

5.1.1 Copper(I) complexes 

 

Copper(I) has a very manifold and interesting coordination behaviour. The usual coordination modes 

of copper(I) are tetrahedral, trigonal planar and linear.[1] In the literature many copper halide 

complexes with various structural motifs are described. Numerous examples exist of monomeric, 

square/rhomboid dimeric, cubane tetrameric, “stair step” oligomeric and zigzag polymeric 

complexes (Figure 1).[1-2] 
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Figure 1: Typical coordination modes and structures of copper(I) complexes. 

 

The most common ligand to metal stoichiometries are 1:1, 1:2 and 1:4. Fewer examples are known 

of complexes with other ligand to metal ratios.[2a] 

In many copper(I) clusters Cu···Cu distances that are shorter than the sum of the van der Waals radii 

(2.8 Å) can be found.[3] In 2012 S. Dinda and A. G. Samuelson published a study about Cu···Cu 

interactions, which concluded in the statement, that Cu···Cu interactions are comparable to weak 

hydrogen bonds.[4] 

 

5.1.2 Luminescent properties of Cu(I) complexes 

 

In the literature a large number of copper(I) complexes is described, which exhibit luminescent 

properties.[5] The colours of the luminescence cover the entire spectrum of visible light from red to 

blue.[6] 

A lot of the investigations that can be found in the literature have been made on copper(I) halide 

complexes. Although the research is mostly focused on di- and tetranuclear complexes of the types 

Cu2X2L4 and Cu4X4L4,
[5e, 6] also mononuclear complexes and coordination polymers with luminescent 

properties have been referenced.[5b, 7] 

The emission of copper(I) complexes is often caused by metal-to-ligand charge transfer processes 

(MLCT) or ligand centred (LC) π-π* transitions.[8] Additionally in clusters a d–p transition from the 

halides to the copper atoms (XMCT) is possible, which is called the cluster-centred (CC) state.[8] Some 

complexes also exhibit TADF.[8] 

The wavelength of the emission maximum can be fine-tuned by the choice of the halide and by the 

reduction potential of the ligand.[6] 
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Another factor, which can strongly influence the emissive behaviour of copper(I) complexes is the 

Cu···Cu distance, as the nature of the luminactive excited state depends on this distance.[9] E.g. the 

solid state luminescence of complexes of the type Cu4I4L4 (L = N-donor cyclic amine) is stronger, if 

the Cu···Cu distance is shorter.[9] 

5.2 Results and discussion 

5.2.1 Synthesis 

 

The Cu(I) complexes have been synthesised by addition of a solution of the corresponding phosphine 

to the corresponding copper(I) salt in acetonitrile (Scheme 1–3). CuCl is soluble in MeCN, but CuBr, 

CuI and CuSCN are poorly soluble in MeCN and therefore a suspension of these salts was used. 

 

 
Scheme 1: Synthesis of copper(I) complexes 5-1 to 5-6 of 2-14 and 2-15. 

 

Scheme 2: Synthesis of copper(I) complexes 5-7 to 5-13 of 2-16 and 2-17. 
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Scheme 3: Synthesis of copper(I) complexes 5-14 to 5-19 of 2-24 and 2-25. 

 

In the beginning reactions were performed with a ligand/metal ratio of 1:1. After the first crystal 

structures (5-4 and 5-14, see 5.2.3.1 and 5.2.3.5) had been obtained it was obvious that the bis- and 

tris(picolyl)phosphine based ligands react in a ligand/metal ratio of 1:2 or 1:3 with the copper(I) 

salts. Therefore the ratio was adjusted correspondingly for further reactions. 

The complexes formed colourless precipitates, which were separated from the solution by filtration 

and dried in vacuo. 

The complexes are insoluble in unpolar solvents like Et2O, pentane and toluene and also almost 

insoluble in DCM and chloroform. The solubility in acetonitrile is very poor, but can be increased 

upon heating to obtain solutions for crystallisation. 

Due to the low solubility it was not possible to obtain NMR spectra of the complexes. The 31P NMR 

spectra of the reaction mixtures of the reactions in a 1:1 ratio showed broad signals shifted slightly 

towards higher field compared to the signals in the spectra of the pure ligands. These signals are 

probably caused by free ligand remaining unreacted in the solution. 

High resolution mass spectra of the copper halide complexes all show peaks with masses that 

correspond to LH+, LCu+ and LCu2X
+. Also for all complexes a peak for was found, which corresponds 

to a ligand fragment in which a P–C bond was cleaved and one of the picolyl based substituents was 

eliminated. In case of 5-7, 5-11, 5-12, 5-16, 5-17 and 5-19 small peaks were observed with masses of 

LCu3X2
+. 

 

To obtain the copper(I) halide complexes of phosphine 2-13 a solution of 2-13 in MeCN was added to 

suspensions of the copper salts in MeCN (Scheme 4). 
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Scheme 4: Synthesis of copper(I) complexes 5-20 to 5-22 of the phosphine oxide of 2-13. 

 

In the 31P NMR spectra of the resulting solutions signals in the range of phosphine oxides were 

observed. This indicates that probably oxygen was present during the reaction and the phosphine 

oxide complexes 5-20 to 5-22 were obtained. In case of 5-20 and 5-21 this was confirmed by X-ray 

crystallography (see 2.3.6). 

 

5.2.2 Photophysical data 

 

Some of the synthesised complexes show green or green-blue luminescence in the solid state. The 

most intense luminescence was observed for complexes 5-1 and 5-2 (Figure 2). Complexes 5-8, 5-14, 

5-18 and 5-19 also showed weak luminescence under UV light. 

 

 
Figure 2: Luminescence of 5-1 (left), 5-2 (middle) and 5-14 (right) under UV light. 

 

In solution no luminescence for any of the complexes could be observed, either because the 

luminescence is quenched or the solubility of the complexes is too low. 

 

The emission spectrum of 5-14 shows a maximum at a wavelength of 481 nm (Figure 3). 

 



Figure 3: Fluorescence emission spectrum of 

 

From TCSPC measurements the relaxations times of 

(Figure 4). From a biexponential fit of the results the relaxation times of 

0.184±0.002 μs were determined. 

and 100 ns, while the lifetime of T

times of 5-14 indicate that probably triplet states are involved in the relaxation mechanism of the 

complex. To differ between phosphorescence and TADF temperature

measurements would be necessary.

 

Figure 4: Results of the TCSPC measurements of 

 

The phosphine oxide complexes 

(Figure 5). 
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Fluorescence emission spectrum of 5-14 in the solid state. 

From TCSPC measurements the relaxations times of 5-14 in the solid state could be determined 

(Figure 4). From a biexponential fit of the results the relaxation times of τ1 = 0.057

were determined. The lifetime of S1, which leads to fluorescence is between 0.1

hile the lifetime of T1 (phosphorescence) ranges from 1 µs to 1

indicate that probably triplet states are involved in the relaxation mechanism of the 

complex. To differ between phosphorescence and TADF temperature 

measurements would be necessary. 

Results of the TCSPC measurements of 5-14. 

The phosphine oxide complexes 5-20–5-22 also show luminescence under UV light in the solid state 

 

in the solid state could be determined 

0.057±0.003 μs and τ2 = 

, which leads to fluorescence is between 0.1 ns 

µs to 1 s.[10] The relaxation 

indicate that probably triplet states are involved in the relaxation mechanism of the 

 dependent TCSPC 

 

also show luminescence under UV light in the solid state 



Figure 5: Luminescence of 5-20 (left), 5-

 

From the emission spectra it is evident that the colour of the emission is influenced by the choice of 

the halide. The emission maximum is blue

bromide (5-21, 512 nm) and iodide (

 

Figure 6: Fluorescence emission spectra of 

 

TCSPC measurements of 5-20 (

6.45±0.06 μs) and 5-22 (τ1 = 2.05

which triplet states are involved.

 

5.2.3 Crystal structures 

5.2.3.1 Crystal structure of 5-4 

 

Single crystals of 5-4 suitable for 

a solution in MeCN. 

The complex crystallises in the monoclinic space group 

The asymmetric unit comprises one half of the dimeric structure

of 1:1 was used for the reaction in the complex a ligand to metal ratio of 

The dimeric molecular structure of 

7). In the structure Cu1 is coordinated in a distorted tetrahedral conformation by P1, N1, Cl1 and the 

symmetry generated Cl1i. The Cu1 and Cl1 atoms form 

The Cu2 atom is coordinated trig
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-21 (middle) and 5-22 (right) under UV light. 

From the emission spectra it is evident that the colour of the emission is influenced by the choice of 

the halide. The emission maximum is blue-shifted upon changing from chloride (

nm) and iodide (5-22, 487 nm) (Figure 6). 

Fluorescence emission spectra of 5-20 (blue), 5-21 (red) and 5-22 (green) in the solid state.

(τ1 = 2.06±0.06 μs, τ2 = 8.04±0.04 μs), 5-21 (τ1 

= 2.05±0.18 μs, τ2 = 7.71±0.06 μs) suggest a relaxation mechanism, in 

which triplet states are involved. 

 

for X-ray crystallography could be obtained by slow diffusion of Et

The complex crystallises in the monoclinic space group P21/c with four formula units in the unit cell. 

The asymmetric unit comprises one half of the dimeric structure (Figure 7). Although a stoichiometry 

of 1:1 was used for the reaction in the complex a ligand to metal ratio of 1:2 was observ

The dimeric molecular structure of 5-4 consists of two ligand molecules and four CuCl 

coordinated in a distorted tetrahedral conformation by P1, N1, Cl1 and the 

. The Cu1 and Cl1 atoms form the typical four-membered Cu

The Cu2 atom is coordinated trigonal planar by N2, Cl1 and Cl2. 

 

From the emission spectra it is evident that the colour of the emission is influenced by the choice of 

shifted upon changing from chloride (5-20, 536 nm) to 

 
(green) in the solid state. 

 = 1.56±0.04 μs, τ2 = 

) suggest a relaxation mechanism, in 

crystallography could be obtained by slow diffusion of Et2O in 

with four formula units in the unit cell. 

Although a stoichiometry 

was observed. 

consists of two ligand molecules and four CuCl units (Figure 

coordinated in a distorted tetrahedral conformation by P1, N1, Cl1 and the 

membered Cu2Cl2 rhomboid. 
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Figure 7: Asymmetric unit (left) and dimeric molecular structure (right) of complex 5-4. Thermal ellipsoids are drawn at 
50% probability level. Selected bond lengths [Å] and angles [°]: Cu1–P1: 2.202(1), Cu1–N1: 2.174(3), Cu1–Cl1: 2.351(1), 
Cu1–Cl1i: 2.382(1), Cu2–N2: 1.938(3), Cu2–Cl1: 2.705(1), Cu2–Cl2: 2.116(1), P1–C1: 1.832(3), P1–C9: 1.847(3), P1–C17: 
1.816(3), Cu1···Cu1i: 3.127(1), P1–Cu1–N1: 86.1(1), P1–Cu1–Cl1: 127.4(1), P1–Cu1–Cl1i: 121.8(1), N1–Cu1–Cl1: 112.6(1), 
N1–Cu1–Cl1i: 111.4(1), Cl1–Cu1–Cl1i: 97.3(1), N2–Cu2–Cl1: 96.7(1), N2–Cu2–Cl2: 152.6(1), Cl1–Cu2–Cl2: 109.4(1), C1–P1–
C9: 101.1(2), C1–P1–C17: 103.9(2), C9–P1–C17: 100.3(2). i: 2−x, 1−y, 1−z. 

 

The Cu1–P1 distance of 2.202(1) Å is comparable to the Cu–P distances of literature known  

bis(picolyl)phosphine copper(I) complexes with PN2X (2.199(6) Å and 2.202(2) Å) or PNX2 

coordination (2.227(10) Å).[11] Similar Cu–P distances have been found for various copper chloride 

complexes with Cu2Cl2 rings in which the copper atoms are additionally coordinated by PPh3 and the 

nitrogen atom of a pyridine derivative (2.189(2)–2.2038(14) Å).[5c] 

The Cu1–N1 distance of 2.174(3) Å is significantly longer than the Cu–N distances found in the 

(PPh3)2(py)2Cu2Cl2 complexes mentioned above (2.0473(14)–2.082(6) Å).[5c] In contrast to these 

(PPh3)2(py)2Cu2Cl2 complexes in 5-4 the phosphorus is connected to the pyridine ring via the 

methylene bridge. Due to this structure of the ligand a shorter Cu–N distance is probably not 

possible in 5-4. The Cu–N distances of the picolyl nitrogen atoms of the bis(picolyl)phosphine 

copper(I) complexes of C. Hettstedt (2.236(2) Å and 2.230(1) Å) are even longer than the Cu1–N1 

distance of 5-4.[11] 

The Cu1–Cl1 distance (2.351(1) Å)and the Cu1–Cl1i distance (2.382(1) Å)are slightly different, which 

is typical for the structural motif of the Cu2X2 ring.[5c] The Cu1–Cl distances found in the structure of 

5-4 are in the same range as the literature values for comparable complexes (2.3604(9)–

2.4400(6) Å).[5c] 

The distance between the copper atoms in the four-membered ring Cu1 and Cu1i of 3.127(1) Å is in 

the same range as the literature values of complexes with Cu2Cl2 rhomboids, in which the other 

ligands at the copper are PPh3 and a N-heteroaromatic compound (2.8329(4)–3.2299(3) Å).[5c] This 

distance is significantly longer than the sum of the van der Waals radii, which means that there are 

no interactions between the copper atoms. 

The Cu2–N2 distance of 1.938(3) Å is much shorter than the distance between Cu1 and N1. In other 

complexes with three coordinate copper(I) atoms coordinated by two halide atoms and a nitrogen 

atom of a pyridine derivative the Cu–N distances are between 1.9553(16) Å and 1.993(5) Å,[12] which 

is only slightly longer than the Cu2–N2 distance of 5-4. 

The Cu2–Cl distances are very different. The Cu2–Cl2 distance of 2.116(1) Å is quite short, while the 

Cu2–Cl1 distance is very long (2.705(1) Å). The Cu2–Cl2 distance is comparable to the mean Cu–Cl 

distance of three-coordinate copper(I) atoms with terminal chlorine atoms (2.179 Å).[13] 

The P–CAlk bond lengths are 1.832(3) Å and 1.847(3) Å, which is shorter than the mean bond length 

of P–Csp3 bonds (1.855 Å).[13] The length of the P1–C1 bond (1.832(3) Å) is comparable to the mean 
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P–CAlk bonds in complexes of triethylphosphine, tri-n-propylphosphine, methyldiphenylphosphine 

and dimethyl(phenyl)phosphine (1.825–1.832 Å).[13] The P–CAr bond of 5-4 (1.816(3) Å) is much 

shorter than the mean P–CAr bond length (1.836 Å).[13] In complexes of triphenylphosphine, 

methyldiphenylphosphine and dimethyl(phenyl)phosphine the mean P–CAr bond lengths are 1.823–

1.828 Å,[13] which is slightly longer than the P–CAr bond of 5-4. 

 

The angles around Cu1 vary in the range from 86.1(1) ° to 127.4(1) ° around the ideal tetrahedral 

angle of 109.5 °. The Cl1–Cu1–Cl1i angle is 97.3(1) °, which is slightly smaller than the literature 

values of 97.74(2) ° and 100.98(5) ° found in other complexes with Cu2Cl2 rhomboids.[14] The P1–

Cu1–N1 angle of 86.1(1) ° is approx. 2 ° larger than the same angle observed in the 

bis(picolyl)phosphine complexes (84.1(5) ° and 84.2(2) °).[11] 

The angles around Cu2 vary over a wide range from 96.7(1) ° to 152.6(1) °, but they sum up to 

358.7 °, which means that the conformation around Cu2 is almost perfectly planar. 

The C–P–C angles around P1 vary in a small range from 100.3(1) ° to 103.9(1) °, which is slightly 

smaller than the tetrahedral angle. This implies that the conformation around the phosphorus is 

distorted tetrahedral. 

 

In the crystal the dimers are arranged in layers in an AB pattern along the b and c axis (Figure 8).  

 

 
Figure 8: Crystal structure of 5-4. View along the a axis (left) and c axis (right). 

 

 

5.2.3.2 Crystal structures of 5-7 and 5-11 

 

Single crystals of 5-7 suitable for X-ray crystallography could be obtained by slow diffusion of Et2O in 

a solution in MeCN (5-7a). From a later reaction to resynthesise complex 5-7 single crystals suitable 

for X-ray crystallography were obtained from a solution in MeCN. These crystals turned out to be of 

a structural isomer of 5-7 (5-7b). 

The complex 5-7a crystallises in the monoclinic space group P21/c with four formula units in the unit 

cell. 

The molecular structure of 5-7a consists of one ligand molecule and three CuCl units (Figure 9). In 

the structure Cu1 is coordinated trigonal planar by N1, Cl1 and Cl2. Cu2 is coordinated in a distorted 

tetrahedral conformation by P1, N2, Cl1 and Cl3, while Cu3 is coordinated linear by Cl2 and Cl3. The 
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copper and chlorine atoms form a six-membered ring (Figure 9). A search in the database of the 

CCDC on July 1st 2020 gave no other results for copper(I) halide complexes with six-membered Cu3X3 

rings, in which the copper atoms were coordinated tetrahedrally, trigonal planar and linear. 

 

 
Figure 9: Asymmetric unit of 5-7a. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å] and 
angles [°]: Cu1–N1: 1.979(4), Cu1–Cl1: 2.342(1), Cu1–Cl2: 2.305(1), Cu2–P1: 2.220(1), Cu2–N2: 2.062(3), Cu2–Cl1: 2.321(1), 
Cu2–Cl3: 2.577(1), Cu3–Cl2: 2.134(1), Cu3–Cl3: 2.126(1), P1–C1: 1.853(4), P1–C8: 1.834(4), P1–C15: 1.843(4), Cu1···Cu2: 
2.652(1), Cu1···Cu3: 2.727(1), Cu2···Cu3: 2.590(1), P1···Cu1: 3.023(1), P1···Cu3: 3.543(1), N1–Cu1–Cl1: 116.8(1), N1–Cu1–
Cl2: 133.5(1), Cl1–Cu1–Cl2: 108.5(1), P1–Cu2–N2: 88.5(1), P1–Cu2–Cl1: 129.3(1), P1–Cu2–Cl3: 112.9(1), N2–Cu2–Cl1: 
117.2(1), N2–Cu2–Cl3: 109.5(1), Cl1–Cu2–Cl3: 99.2(1), Cl2–Cu3–Cl3: 179.5(1), C1–P1–C8: 102.4(2), C1–P1–C15: 100.9(2), 
C8–P1–C15: 104.6(2). 

 

The tetrahedral coordination situation around Cu2 is often found in copper(I) complexes and the Cu–

P (2.220(1) Å), Cu–N (2.062(3) Å) and Cu–Cl1 (2.321(1) Å) distances are in the typical ranges for these 

types of distances (mean atom distances: Cu–P: 2.252 Å (triphenylphosphine), Cu–N: 2.024 Å 

(pyridine), Cu–Cl: 2.364 Å (μ2-Cl)).[13] The Cu2–Cl3 distance of 2.577(1) Å is much longer than the 

mean Cu–Cl distance of four-coordinate Cu(I) atoms to μ2-Cl atoms.[13] 

The Cu1–N1 distance (1.979(4) Å) is shorter than the Cu2–N2 distance, but within the range found in 

the literature for this type of coordination (1.9553(16) Å–1.993(5) Å).[12] The Cu1–Cl distances 

(2.342(1) Å and 2.342(1) Å) are longer than the mean Cu–Cl distance for three-coordinate copper(I) 

atoms (2.275 Å),[13] but in the same range as the Cu–Cl distances of the N-(2-

pyridylmethyl)acetamide CuCl complex (2.2246(4) Å and 2.3997(4) Å).[12a] 

The Cu–Cl distances at Cu3 (2.134(2) Å and 2.126(2) Å) are comparable to those found for the CuCl2
− 

ion (2.036(5)–2.171(5) Å).[15] 

The distances between P1 and Cu1 (3.023(1) Å) or Cu3 (3.543(1) Å) are much longer than the P1–Cu2 

distance and too long for any bonding interactions. 

The Cu–Cu distances are in the range of 2.590(1)–2.727(1) Å, which is shorter than the sum of the 

van der Waals radii. This means that weak Cu···Cu interactions can be found in the Cu3Cl3 cluster of 

5-7a. 

The P–C bond lengths are between 1.835(4) Å and 1.853(5) Å, which is in the typical range of P–CAlk 

bond lengths in complexes of  tertiary phosphines (mean bond lengths: 1.825–1.863 Å).[13] 

 

The angles around Cu2 vary in the range of −21 ° to +20 ° around the ideal tetrahedral angle of 

109.5 °. The P1–Cu2–N2 (88.5(1) °) and the Cl1–Cu2–Cl3 (99.2(1) °) angle are smaller than the ideal 



95 

tetrahedral angle, while the P1–Cu2–Cl (112.9(1) ° and 129.3(1) °) and the N2–Cu2–Cl (109.5(1) ° and 

117.2(1) °) angles are larger than 109.5 °. 

The angles around Cu1 vary over a range from 108.5(1) ° to 133.5(1) ° and sum up to 358.8 °, which 

indicates that the conformation around Cu1 is almost perfectly planar. 

The Cl2–Cu3–Cl3 angle of 179.5(1) ° implies an almost perfect linear conformation of Cu3, which 

resembles the conformation of the copper in the CuCl2
− ion. 

The C–P–C angles around P1 vary in a small range from 100.9(2) ° to 104.6(2) ° and are all smaller 

than the tetrahedral angle, which indicates a distorted tetrahedral conformation around the 

phosphorus atom. 

 

In the crystal the molecules are arranged in layers in an AB pattern along the b and c axis (Figure 10). 

 

 
Figure 10: Crystal structure of 5-7a. View along the a axis (left) and b axis (right). 

 

The view along the b axis shows, that two of the molecules at a time are arranged with the pyridine 

rings containing N2 side by side. The distance between the centres of the pyridine rings is 3.638(1) Å, 

which is within the range of attractive π-π interactions of 3.3–3.8 Å (Figure 11).[16] The pyridine rings 

are arranged antiparallel to each other. 

 



96 

 
Figure 11: π-π interactions in the crystal of 5-7a. 

 

Crystals of 5-7b and 5-11 suitable for single crystal X-ray analysis were obtained from solutions in 

MeCN. Compound 5-7b crystallises in the orthorhombic space group Pba2 with two ligand molecules 

and six CuCl units in the asymmetric unit, while 5-11 crystallises in the orthorhombic space group 

Pna21 and the asymmetric unit comprises only one molecule of the ligand and three units of CuCl. 

The structures of 5-7b and 5-11 are isostructural. All copper atoms are coordinated trigonal planar 

by each two chlorine atoms and one nitrogen or phosphorus atom of the ligand (Figure 12). 

 

 
Figure 12: Asymmetric unit of 5-7b (left) and 5-11 (right). Thermal ellipsoids are drawn at 50% probability level. Selected 
bond lengths [Å] and angles [°] of 5-7b: Cu1–N1: 1.990(5), Cu1–Cl1: 2.265(2), Cu1–Cl2: 2.256(2), Cu2–P1: 2.205(2), Cu2–Cl2: 
2.288(2), Cu2–Cl3: 2.309(2), Cu3–N2: 1.969(5), Cu3–Cl3: 2.236(2), Cu3–Cl4: 2.286(1), Cu4–N3: 1.978(5), Cu4–Cl5: 2.323(2), 
Cu4–Cl7: 2.223(2), Cu5–P2: 2.202(2), Cu5–Cl5: 2.269(2), Cu5–Cl6: 2.336(2), Cu6–N4: 1.960(5), Cu6–Cl6: 2.201(2), Cu6–Cl7i: 
2.362(2), Cu1···Cu2: 2.694(1), Cu2···Cu3: 2.850(1), Cu4···Cu5: 2.710(1), Cu5···Cu6: 2.721(1), P1–C1: 1.847(6), P1–C8: 
1.847(6), P1–C15: 1.850(6), P2–C18: 1.852(6), P2–C25: 1.850(6), P2–C32: 1.846(6), N1–Cu1–Cl1: 123.6(2), N1–Cu1–Cl2: 
119.7(2), Cl1–Cu1–Cl2: 116.6(1), P1–Cu2–Cl2: 133.9(1), P1–Cu2–Cl3: 126.8(1), Cl2–Cu2–Cl3: 98.9(1), N2–Cu3–Cl3: 130.5(2), 
N2–Cu3–Cl4: 117.0(2), Cl3–Cu3–Cl4: 112.5(1), N3–Cu4–Cl5: 114.7(2), N3–Cu4–Cl7: 130.4(2), Cl5–Cu4–Cl7: 114.9(1), P2–
Cu5–Cl5: 136.0(1), P2–Cu5–Cl6: 124.0(1), Cl5–Cu5–Cl6: 99.3(1), N4–Cu6–Cl6: 143.8(2), N4–Cu6–Cl7i: 109.9(2), Cl6–Cu6–
Cl7i: 106.2(1), Cu1–Cl1–Cu1ii: 103.0(1), Cu1–Cl2–Cu2: 72.7(1), Cu2–Cl3–Cu3: 77.7(1), Cu3–Cl4–Cu3iii: 120.9(1), Cu4–Cl5–
Cu5: 72.3(1), Cu5–Cl6–Cu6: 73.6(1), Cu4–Cl7–Cu6iv*: 113.7(1), C1–P1–C8: 103.3(3), C1–P1–C15: 99.9(3), C8–P1–C15: 
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103.7(3), C18–P2–C25: 103.3(3), C18–P2–C32: 101.4(3), C25–P2–C32: 102.3(3). i: −0.5+x,0.5−y,z, ii: 1−x,1−y,z, iii: −x,1−y,z, 
iv: 0.5+x,0.5−y,z. Selected bond lengths [Å] and angles [°] of 5-11: Cu1–N1: 1.990(3), Cu1–Cl1: 2.341(1), Cu1–Cl3i: 2.219(1), 
Cu2–P1: 2.197(1), Cu2–Cl1: 2.257(1), Cu2–Cl2: 2.343(1), Cu3–N2: 1.965(3), Cu3–Cl2: 2.215(1), Cu3–Cl3: 2.345(1), Cu1···Cu2: 
2.706(1), Cu2···Cu3: 2.682(1), P1–C1: 1.854(4), P1–C9: 1.850(4), P1–C17: 1.852(4), N1–Cu1–Cl1: 105.7(1), N1–Cu1–Cl3i: 
131.3(1), Cl1–Cu1–Cl3i: 123.0(1), P1–Cu2–Cl1: 133.1(1), P1–Cu2–Cl2: 125.6(1), Cl1–Cu2–Cl2: 101.0(1), N2–Cu3–Cl2: 
138.1(1), N2–Cu3–Cl3: 109.6(1), Cl2–Cu3–Cl3: 112.2(1), Cu1–Cl1–Cu2: 72.1(1), Cu2–Cl2–Cu3: 72.1(1), Cu3–Cl3–Cu1ii: 
113.0(1), C1–P1–C9: 103.0(2), C1–P1–C17: 101.1(2), C9–P1–C17: 102.7(2). i: 0.5+x,1.5−y,z, ii: −0.5+x,1.5−y,z. 

 

In the structures the Cu–P distances range from 2.197(1) Å to 2.205(2) Å, which is slightly shorter 

than the Cu–P distance of 5-7a. A comparison of these distances with literature known structures, in 

which copper atoms are coordinated trigonal planar by the phosphorus atom of a tertiary phosphine 

and two chlorine atoms shows that the Cu–P distances of 5-7b and 5-11 are within the range found 

in such complexes (2.149(3)–2.211(2) Å).[17] 

The Cu–N distances of complexes 5-7b and 5-11 (1.960(5)–1.990(5) Å) are comparable to the Cu1–

N1 distance (1.979(4) Å) found in the structure of 5-7a, meaning that the distances are in the typical 

range of Cu–N distances of complexes with NCuX2 coordination (1.9553(16) Å–1.993(5) Å).[12] 

The Cu–Cl distances cover a wide range from 2.201(2) Å to 2.362(2) Å around the mean Cu–Cl 

distance of three-coordinate copper atoms to μ2-chlorine atoms (2.275 Å).[13] 

The short Cu···Cu distances of 2.682(1)–2.850(1) Å indicate the presence of weak Cu···Cu 

interactions, although the distance between Cu2 and Cu3 (2.850(1) Å) in the structure of 5-7b is 

slightly longer than the sum of the van der Waals radii (2.8 Å). 

The P–C bond lengths (1.846(6)–1.854(4) Å) found for 5-7b and 5-11 are in the same range as those 

of 5-7a, which is typical for P–CAlk bonds of tertiary phosphine complexes (mean bond lengths: 

1.825–1.863 Å).[13] 

 

The sums of the angles around the copper atoms of 5-7b and 5-11 are between 359.3 ° and 360.0 °, 

meaning that all copper atoms are coordinated almost perfectly trigonal planar. The N–Cu–Cl angles 

vary strongly from 105.7(1) ° to 143.8(2) °, while the P–Cu–Cl angles cover a smaller range between 

124.0(1) ° and 136.0(1) °. The Cl–Cu–Cl angles at the copper atoms coordinated by phosphorus (Cu2 

and Cu5; 98.9(1)–101.0(1) °) are smaller than those at the other copper atoms (106.2(1)–123.0(1) °). 

The Cu–Cl–Cu angles at the chlorine atoms between the ligand units (Cl1, Cl4 and Cl7 in the structure 

of 5-7b and Cl3 in the structure of 5-11; 103.0(1)–120.9(1) °) are significantly larger than the Cu–Cl–

Cu angles at the other chlorine atoms (72.1(1)–77.7(1) °). The small Cu–Cl–Cu angles of 72.1(1) ° to 

77.7(1) ° correspond to the short Cu···Cu distances. 

The C–P–C angles of 99.9(3) ° to 103.7(3) ° are smaller than the ideal tetrahedral angle. This implies 

that the conformation around the phosphorus atoms is distorted tetrahedral, as usual for tertiary 

phosphine complexes. 

 

The structures of 5-7b and 5-11 are polymeric. In the crystal structure the copper and chlorine atoms 

form (CuCl)n chains, which are coordinated by the ligand molecules alternating on both sides of the 

chain (Figure 13). 
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Figure 13: CuCl-chains in the crystal structures of 5-7b (top) and 5-11 (bottom). 

 

These chains are aligned along the a axis; along the b axis the chains are stacked above each other 

(Figure 14). 

 

 
Figure 14: Crystal structures of 5-7b (top) and 5-11 (bottom). View along the a axis (left) and the c axis (right). 
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Figure 15 shows the asymmetric units of 5-7a and 5-7b. In the direct comparison of the structural 

isomers of 5-7 several differences can be seen. In the case of 5-7a a monomeric structure is 

observed, which is stabilised by π-π interactions. In contrast the structure of 5-7b is polymeric. 

Also the coordination of the ligand to the copper atoms is different in these two isomers. While all 

copper atoms in 5-7b are coordinated trigonal planar by two chlorine atoms and either phosphorus 

or a nitrogen atom of the ligand, the three copper atoms in 5-7a are coordinated in three different 

structural motifs (distorted tetrahedral, trigonal planar and linear). 

 

 
Figure 15: Asymmetric unit of 5-7a (left) and 5-7b (right). Thermal ellipsoids are drawn at 50% probability level. 

 

5.2.3.3 Crystal structures of 5-9 and 5-13 

 

Single crystals of 5-9 suitable for X-ray crystallography could be obtained after leaving a solution in 

MeCN for three days. Crystals of 5-13 suitable for X-ray crystallography were obtained by slow 

diffusion of Et2O into a solution in MeCN. 

Complex 5-9 crystallises in the monoclinic space group Cc with four formula units in the unit cell, 

while complex 5-13 crystallises in the orthorhombic space group Pbca with eight formula units in the 

unit cell. As found for the CuCl complexes 5-7b and 5-11 the structures of the CuI complexes 5-9 and 

5-13 with the same ligands are isostructural. 

The asymmetric unit of 5-9 comprises two ligand molecules and six CuI units, while the asymmetric 

unit of 5-13 comprises only one ligand molecule and three units of CuI (Figure 16). These findings 

also are analogous to those of the CuCl complexes. In each of the structures of 5-9 and 5-13 three 

copper atoms and three iodine atoms form six-membered rings. Two of the copper atoms in each 

ring (Cu1, Cu2 and Cu4, Cu5) are coordinated distorted tetrahedrally by each one nitrogen atom of 

the ligands, two iodine atoms and a bridging phosphorus atom. The other copper atoms (Cu3 and 

Cu6) are coordinated trigonal planar by three iodine atoms. One of these copper–iodine interactions 

connects the copper atoms with an iodine atom of the neighbouring six-membered ring (I1 and I4). 
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Figure 16: Asymmetric unit of 5-9 (left) and 5-13 (right). Thermal ellipsoids are drawn at 50% probability level. Selected 
bond lengths [Å] and angles [°] of 5-9: Cu1–P1: 2.630(2), Cu1–N2: 2.026(5), Cu1–I1: 2.668(1), Cu1–I2: 2.576(1), Cu2–P1: 
2.290(2), Cu2–N1: 2.057(5), Cu2–I1: 2.649(1), Cu2–I3: 2.634(1), Cu3–I2: 2.523(1), Cu3–I3: 2.521(1), Cu3–I4: 2.589(1), Cu4–
P2: 2.285(2), Cu4–N4: 2.057(5), Cu4–I4: 2.647(1), Cu4–I5: 2.642(1), Cu5–P2: 2.641(2), Cu5–N3: 2.033(5), Cu5–I4: 2.684(1), 
Cu5–I6: 2.569(1), Cu6i–I1: 2.586(1), Cu6–I5: 2.518(1), Cu6–I6: 2.526(1), Cu1···Cu2: 2.545(1), Cu1···Cu3: 3.782(1), Cu2···Cu3: 
3.802(1), Cu4···Cu5: 2.539(1), Cu4···Cu6: 3.782(1), Cu5···Cu6: 3.766(1) P1···Cu3: 4.427(2), P2···Cu6: 4.448(2), P1–C1: 
1.840(6), P1–C8: 1.859(6), P1–C15: 1.849(6), P2–C18: 1.844(6), P2–C25: 1.860(6), P2–C32: 1.844(6), P1–Cu1–N2: 86.0(2), 
P1–Cu1–I1: 109.7(1), P1–Cu1–I2: 110.0(1), N2–Cu1–I1: 115.5(1), N2–Cu1–I2: 118.0(1), I1–Cu1–I2: 113.9(1), P1–Cu2–N1: 
88.9(2), P1–Cu2–I1: 122.4(1), P1–Cu2–I3: 115.1(1), N1–Cu2–I1: 111.2(1), N1–Cu2–I3: 115.6(1), I1–Cu2–I3: 103.8(1), I2–
Cu3–I3: 124.1(1), I2–Cu3–I4: 120.0(1), I3–Cu3–I4: 115.1(1), P2–Cu4–N4: 89.1(2), P2–Cu4–I4: 122.7(1), P2–Cu4–I5: 115.4(1), 
N4–Cu4–I4: 110.4(1), N4–Cu4–I5: 114.1(1), I4–Cu4–I5: 104.8(1), P2–Cu5–N3: 86.1(2), P2–Cu5–I4: 108.9(1), P2–Cu5–I6: 
111.6(1), N3–Cu5–I4: 114.1(1), N3–Cu5–I6: 119.0(1), I4–Cu5–I6: 113.6(1), I1ii–Cu6–I5: 115.7(1), I1ii–Cu6–I6: 118.5(1), I5–
Cu6–I6: 124.9(1), Cu1–P1–Cu2: 61.9(1), Cu4–P2–Cu5: 61.6(1), C1–P1–C8: 98.9(3), C1–P1–C15: 102.2(3), C8–P1–C15: 
98.4(3), C18–P2–C25: 98.9(3), C18–P2–C32: 102.3(3), C25–P2–C32: 98.6(3). i: x,y,1+z, ii: x,y,−1+z. Selected bond lengths [Å] 
and angles [°] of 5-13: Cu1–P1: 2.347(1), Cu1–N1: 2.030(2), Cu1–I1: 2.680(1), Cu1–I2: 2.622(1), Cu2–P1: 2.442(1), Cu2–N2: 
2.035(2), Cu2–I1: 2.705(1), Cu2–I3: 2.589(1), Cu3i–I1: 2.569(1), Cu3–I2: 2.525(1), Cu3–I3: 2.521(1), Cu1···Cu2: 2.481(1), 
Cu1···Cu3: 3.888(1), Cu2···Cu3: 3.829(1), P1···Cu3: 4.621(1), P1–C1: 1.836(2), P1–C9: 1.855(2), P1–C17: 1.850(2), P1–Cu1–
N1: 89.0(1), P1–Cu1–I1: 118.3(1), P1–Cu1–I2: 116.4(1), N1–Cu1–I1: 111.3(1), N1–Cu1–I2: 117.6(1), I1–Cu1–I2: 104.5(1), P1–
Cu2–N2: 88.9(1), P1–Cu2–I1: 114.0(1), P1–Cu2–I3: 117.6(1), N2–Cu2–I1: 115.8(1), N2–Cu2–I3: 113.0(1), I1–Cu2–I3: 
107.2(1), I1ii–Cu3–I2: 119.9(1), I1ii–Cu3–I3: 118.6(1), I2–Cu3–I3: 120.5(1), Cu1–P1–Cu2: 62.4(1), C1–P1–C9: 97.5(1), C1–P1–
C17: 102.9(1), C9–P1–C17: 97.6(1). i: 1−x,−0.5+y,1.5−z, ii: 1−x,0.5+y,1.5−z. 

 

There is only a small number of copper(I) complexes with bridging phosphine ligands described in 

the literature.[18] F. Leca et al. reported the first examples in 2005 with a ligand based on 2,5-bis(2-

pyridyl)phosphole (Figure 17).[19] 

 

 
Figure 17: First examples of Cu(I) complexes with bridging phosphine ligands.[19] 
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As found for the complexes described in the literature[18] the coordination of the phosphorus to the 

copper atoms is asymmetric in complexes 5-9 and 5-13. The Cu–P distances in complex 5-9 cover a 

quite wide range from 2.285(2) Å to 2.641(2) Å, while the Cu–P distances of 5-13 are much closer to 

each other (2.347(1) Å and 2.442(1) Å). All Cu–P distances are in the same range as the Cu–P 

distances of copper(I) complexes of bridging phosphines discussed in the literature (2.230(3)–

2.728(3) Å).[18] 

The Cu–N distances of complexes 5-9 and 5-13 (2.026(5)–2.057(5) Å) are slightly longer than the 

mean atom distance found in complexes with pyridine nitrogen atoms coordinating to four-

coordinate copper atoms (2.024 Å).[13] 

The Cu–I distances range from 2.518(1) Å to 2.705(1) Å. This corresponds with the mean Cu–I 

distance in complexes with μ2-iodine atoms (2.647 Å).[13] The Cu–I distances at the four-coordinate 

copper atoms (2.569(1)–2.705(1) Å) are longer than those at the three-coordinate copper atoms 

(2.518(1)–2.589(1) Å). This is also found in the literature, although the mean atom distances (four-

coordinate: 2.830 Å, three-coordinate: 2.661 Å) are longer than the distances found in complexes 5-

9 and 5-13.[13] The Cu–I distances of the μ3-iodine atoms (2.589(1)–2.705(1) Å) are always longer 

than those of the μ2-iodine atoms (2.518(1)–2.642(1) Å) coordinating to the same copper atom. This 

corresponds to the literature, which reports a mean Cu–μ2-I distance of 2.647 Å and a mean Cu–μ3-I 

distance of 2.690 Å.[13] 

The Cu···Cu distances between the pairs Cu1/Cu2 and Cu4/Cu5 (2.481(1)–2.545(1) Å) are quite short, 

but still in the same range as those reported for other copper complexes of bridging phosphines 

(2.4882(12)–2.9501(6) Å).[18] The short Cu···Cu distances of 5-9 and 5-13 are much shorter than the 

sum of the van der Waals radii, which indicates that there are weak Cu···Cu interactions between 

these copper atoms. The other Cu···Cu distances are much longer (3.766(1)–3.888(1) Å) and clearly 

no interactions can be found between the copper atoms. 

The bond lengths of the P–C bonds (1.836(2)–1.860(6) Å) concur with the mean P–CAlk bonds of 

tertiary phosphine complexes(1.825–1.863 Å).[13] 

 

The angles around the tetrahedrally coordinated copper atoms range from 86.0(2) ° to 122.7(1) °. 

The P–Cu–N angles (86.0(2)–89.1(2) °) are significantly smaller than the ideal tetrahedral angle 

(109.5 °), but comparable to those of complexes 5-4 and 5-7a. All N–Cu–I angles (110.4(1)–119.0(1) ° 

and the P–Cu–I angles (108.9(1)–122.7(1) °) with one exception of 108.9(1) ° are larger than the 

tetrahedral angle. The I–Cu–I angles (103.8(1)–113.9(1) °) vary around the tetrahedral angle. 
The I–Cu–I angles around the trigonal coordinated copper atoms vary in a small range (115.1(1)–

124.9(1) °) around 120 °. The sums of the angles around the copper atoms are 359.0–359.2 °, which 

means that the copper atoms are coordinated almost perfectly planar. 

Corresponding to the short Cu···Cu distances the Cu–P–Cu angles (61.6(1)–62.4(1) °) are slightly 

smaller than those found in the literature (63.2(1)–71.83(3) °).[18] 

 

Through the Cu6–I1 and Cu3–I4 interactions the six-membered rings form chains in the crystal. The 

ligands are coordinating to the chains alternating on both sides (Figure 18). 
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Figure 18: Chain of Cu3I3 rings in the crystal structure of 5-9 (top) and 5-13 (bottom). 

 

In the crystal structure the chains are arranged in layers along the a axis (5-9) and the c axis (5-13) 

respectively (Figure 19). 
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Figure 19: View along the b axis (left) and c axis (right) of the crystal structure of 5-9 (top) and view along the a axis (left) 
and b axis (right) of the crystal structure of 5-13 (bottom) 

 

5.2.3.4 Crystal structure of 5-10 

 

Single crystals of 5-10 suitable for X-ray crystallography could be obtained by slow diffusion of MeCN 

in a solution in 4-picoline. 

The complex crystallises in the orthorhombic space group Pbca with eight formula units in the unit 

cell. Remarkably in the structure of 5-10 no 4-picoline can be found, although it is a good ligand for 

Cu(I). 

The asymmetric unit of 5-10 comprises one ligand molecule and three units of CuSCN (Figure 20). In 

the structure two of the copper atoms are coordinated distorted tetrahedrally by each one nitrogen 

atom of the ligand, two SCN− anions – one SCN anion, which coordinates to Cu1 via N5 and to Cu2 

via S1 respectively and to another copper atom via the other coordination site and one bridging 

SCN− anion, which coordinates to Cu1 and Cu2 atoms via S3 and another copper atom via N5 – and 

the bridging phosphorus atom of the ligand. The third copper atom (Cu3) is coordinated trigonal 

planar by three SCN− anions. 

A search in the database of the CCDC on July 1st 2020 gave no other results for CuSCN complexes 

with the same structural motif. 
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Figure 20: Asymmetric unit of 5-10. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å] and 
angles [°]: Cu1–P1: 2.262(1), Cu1–N2: 2.057(3), Cu1–N5: 1.957(3), Cu1–S3: 2.361(1), Cu2–P1: 2.679(1), Cu2–N1: 2.022(3), 
Cu2–S1: 2.280(1), Cu2–S3: 2.364(1), Cu3–N3: 1.929(4), Cu3–N4: 1.903(3), Cu3–S2: 2.260(1), Cu1···Cu2: 2.523(1), P1–C1: 
1.846(4), P1–C8: 1.826(4), P1–C15: 1.848(4), P1–Cu1–N2: 87.4(1), P1–Cu1–N5: 117.6(1), P1–Cu1–S3: 121.7(1), N2–Cu1–N5: 
117.7(1), N2–Cu1–S3: 113.9(1), S3–Cu1–N5: 99.9(1), P1–Cu2–N1: 83.5(1), P1–Cu2–S1: 111.1(1), P1–Cu2–S3: 106.2(1), N1–
Cu2–S1: 118.9(1), N1–Cu2–S3: 120.2(1), S1–Cu2–S3: 112.0(1), Cu1–P1–Cu2: 60.7(1), Cu1–S3–Cu2: 64.6(1), N3–Cu3–N4: 
121.1(1), N3–Cu3–S2: 115.0(1), N4–Cu3–S2: 123.8(1), sum of angles around Cu3: 359.9, C1–P1–C8: 99.8(2), C1–P1–C15: 
100.7(2), C8–P1–C15: 105.2(2). i: −0.5+x,0.5−y,1−z, ii: −0.5+x,y,0.5−z. 

 

The Cu1–P1 distance (2.262(1) Å) in the structure of 5-10 is much shorter than the Cu2–P1 distance 

(2.679(1) Å). These distances are similar to the Cu–P distances found for 5-9 and thus within the 

range of Cu–P distances found in other copper(I) complexes of bridging phosphines discussed in the 

literature (2.230(3)–2.728(3) Å).[18] 

The Cu–Npy distances (2.022(3) Å and 2.057(3) Å) are comparable to the mean atom distance found 

in complexes with four-coordinate copper atoms coordinated by pyridine nitrogen atoms 

(2.024 Å).[13] 

The Cu1–N5 distance of 1.957(3) Å is slightly shorter than the Cu–N distances of other CuSCN 

complexes described in the literature (1.992(1)–2.0132(9) Å).[20] 

The distance between Cu2 and S1 (2.280(1) Å) is significantly shorter than the Cu–S distances of 

known copper thiocyanate complexes (2.3494(4)–2.4488(8) Å).[20] 

The Cu–S3 distances of 2.361(1) Å and 2.364(1) Å are very close to each other and within the range 

found for copper complexes with bridging thiocyanate sulphur atoms (2.307(2)–2.868(3) Å).[21] 

The Cu–N distances at Cu3 (1.903(3) Å and 1.929(4) Å) are comparable to the Cu–N distances found 

for other complexes with N2CuS coordination (1.868(2)–2.156(1) Å).[22] The Cu3–S2 distance of 

2.260(1) Å concurs with the Cu–S distances of known complexes (2.1581(8)–2.3949(7) Å).[22] 

The short Cu1···Cu2 distance (2.523(1) Å) clearly indicates the presence of weak Cu···Cu interactions 

between these copper atoms. 

The P–C bond lengths are 1.826(4)–1.848(4) Å, which is within the range of the mean P–CAlk bond 

lengths found in tertiary phosphine complexes (1.825–1.863 Å).[13] 

 

The angles around Cu1 and Cu2 range from 83.5(1) ° to 121.7(1) °. The P–Cu–Npy angles (83.5(1) ° 

and 87.4(1) °) are significantly smaller than the ideal tetrahedral angle as found in the structures of 

the copper halide complexes of 2-16 and 2-17 discussed above (see 2.3.2 and 2.3.3). All other angles 

except from P1–Cu2–S3 (106.2(1) °) and S3–Cu1–N5 (99.9(1) °) are larger than the tetrahedral angle. 

The angles around Cu3 are all very close to 120 ° (115.0(1)–123.8(1) °) and sum up to 359.9 °. This 

means that the coordination around Cu3 is almost perfectly planar. 
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The Cu–P–Cu angle is 60.7(1) ° and the Cu–S3–Cu angle 64.6(1) °. Both angles are quite small 

corresponding to the short distance between Cu1 and Cu2. 

 

In the crystal the complex forms a polymeric network (Figure 21). The Cu3 atoms and the SCN− 

anions containing S2 and N4 form chains, which are connected to Cu2 through the third anion 

coordinating to Cu3. 

 

 
Figure 21: Crystal structure of 5-10. Thermal ellipsoids are drawn at 50% probability level. 

 

While the copper atoms are coordinated tetrahedrally in the crystal structure of CuSCN,[23] the 

copper atoms are coordinated trigonal planar in the CuSCN chains of 5-10. This means that the 

coordination situation in the part of the complex differs from the structure of pure CuSCN, although 

no interaction with the ligands can be observed. 

 

5.2.3.5 Crystal structures of 5-14, 5-17 and 5-18 

 

Single crystals of 5-14 and 5-18 suitable for X-ray crystallography could be obtained from solutions in 

MeCN. Single crystals of 5-17 were obtained by slow diffusion of Et2O in a solution in MeCN. 

Complex 5-14 crystallises in the monoclinic space group C2/c with eight formula units in the unit cell, 

complex 5-17 in the monoclinic space group P21/n with four formula units in the unit cell and 

complex 5-18 in the triclinic space group P−1 with two formula units in the unit cell. 

The asymmetric units of 5-14, 5-17 and 5-18 comprise one ligand molecule and three units of CuCl or 

CuBr respectively (Figures 22 and 23). In the asymmetric unit of 5-17 an additional solvent molecule 

is included (Figure 22). In the structures of 5-14 and 5-18 each copper atom is coordinated distorted 

tetrahedrally by each one nitrogen atom of the ligand, two halide atoms and the phosphorus atom 

of the ligand. In these two structures the phosphorus atom is centred above the triangle formed by 

the three copper atoms. In contrast the phosphorus atom in the structure of complex 5-17 is much 
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closer to Cu1 than to the other copper atoms. This means that in this structure Cu1 is coordinated 

distorted tetrahedrally by the phosphorus atom, one of the nitrogen atoms of the ligand and two 

chlorine atoms, while the other two copper atoms are coordinated trigonal by each one of the 

remaining nitrogen atoms of the ligand and two chlorine atoms. 

 

 

 
Figure 22: Asymmetric units of 5-14 (left) and 5-17 (right). Thermal ellipsoids are drawn at 50% probability level. Selected 
bond lengths [Å] and angles [°] of 5-14: Cu1–P1: 2.418(1), Cu1–N2: 2.031(2), Cu1–Cl1: 2.357(1), Cu1–Cl3: 2.323(1), Cu2–P1: 
2.511(1), Cu2–N3: 2.018(2), Cu2–Cl1: 2.344(1), Cu2–Cl2: 2.334(1), Cu3–P1: 2.593(1), Cu3–N1: 2.015(2), Cu3–Cl2: 2.286(1), 
Cu3–Cl3: 2.356(1), Cu1···Cu2: 2.573(1), Cu1···Cu3: 2.572(1), Cu2···Cu3: 2.613(1), P1–C1: 1.844(3), P1–C8: 1.845(3), P1–C15: 
1.841(3), P1–Cu1–N2: 86.0(1), P1–Cu1–Cl1: 109.8(1), P1–Cu1–Cl3: 113.7(1), N2–Cu1–Cl1: 118.5(1), N2–Cu1–Cl3: 114.8(1), 
Cl1–Cu1–Cl3: 111.5(1), P1–Cu2–N3: 84.2(1), P1–Cu2–Cl1: 107.1(1), P1–Cu2–Cl2: 109.5(1), N3–Cu2–Cl1: 117.2(1), N3–Cu2–
Cl2: 118.9(1), Cl1–Cu2–Cl2: 114.5(1), P1–Cu3–N1: 83.0(1), P1–Cu3–Cl2: 108.3(1), P1–Cu3–Cl3: 106.7(1), N1–Cu3–Cl2: 
121.0(1), N1–Cu3–Cl3: 116.8(1), Cl2–Cu3–Cl3: 114.6(1), Cu1–Cu2–Cu3: 59.5(1), Cu1–Cu3–Cu2: 59.5(1), Cu2–Cu1–Cu3: 
61.0(1), P1–Cu1–Cu2: 60.3(1), P1–Cu1–Cu3: 62.5(1), P1–Cu2–Cu1: 56.8(1), P1–Cu2–Cu3: 60.8(1), P1–Cu3–Cu1: 55.8(1), P1–
Cu3–Cu2: 57.7(1), Cu1–P1–Cu2: 62.9(1), Cu1–P1–Cu3: 61.7(1), Cu2–P1–Cu3: 61.6(1), C1–P1–C8: 99.6(1), C1–P1–C15: 
100.6(1), C8–P1–C15: 100.4(1). Selected bond lengths [Å] and angles [°] of 5-17: Cu1–P1: 2.245(1), Cu1–N1: 2.067(2), Cu1–
Cl1: 2.337(1), Cu1–Cl2: 2.416(1), Cu2–N2: 1.989(2), Cu2–Cl1: 2.372(1), Cu2–Cl3: 2.239(1), Cu3–N3: 1.995(2), Cu3–Cl2: 
2.246(1), Cu3–Cl3: 2.397(1), Cu1···Cu2: 2.616(1), Cu1···Cu3: 2.593(1), Cu2···Cu3: 2.918(1), P1···Cu2: 2.947(1), P1···Cu3: 
2.819(1), P1–C1: 1.848(2), P1–C9: 1.844(2), P1–C17: 1.843(2), P1–Cu1–N1: 88.3(1), P1–Cu1–Cl1: 126.0(1), P1–Cu1–Cl2: 
111.9(1), N1–Cu1–Cl1: 112.9(1), N1–Cu1–Cl2: 110.4(1), Cl1–Cu1–Cl2: 106.0(1), N2–Cu2–Cl1: 111.5(1), N2–Cu2–Cl3: 
135.8(1), Cl1–Cu2–Cl3: 110.8(1), N3–Cu3–Cl2: 128.8(1), N3–Cu3–Cl3: 107.6(1), Cl2–Cu3–Cl3: 120.9(1), sum of angles 
around Cu2: 358.1, sum of angles around Cu3: 357.3, Cu1–Cu2–Cu3: 55.6(1), Cu1–Cu3–Cu2: 56.3(1), Cu2–Cu1–Cu3: 
68.1(1), P1–Cu1–Cu2: 74.2(1), P1–Cu1–Cu3: 70.9(1), C1–P1–C9: 101.6(1), C1–P1–C17: 100.8(1), C9–P1–C17: 100.9(1). 
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Figure 23: Asymmetric unit of 5-18. Thermal ellipsoids are drawn at 50% probability level. Selected bond lengths [Å] and 
angles [°]: Cu1–P1: 2.645(1), Cu1–N1: 2.013(2), Cu1–Br1: 2.472(1), Cu1–Br3: 2.414(1), Cu2–P1: 2.406(1), Cu2–N2: 2.025(2), 
Cu2–Br1: 2.448(1), Cu2–Br2: 2.512(1), Cu3–P1: 2.501(1), Cu3–N3: 2.020(2), Cu3–Br2: 2.443(1), Cu3–Br3: 2.452(1), 
Cu1···Cu2: 2.535(1), Cu1···Cu3: 2.670(1), Cu2···Cu3: 2.515(1), P1–C1: 1.846(2), P1–C9: 1.853(2), P1–C17: 1.843(2), P1–Cu1–
N1: 81.6(1), P1–Cu1–Br1: 110.8(1), P1–Cu1–Br3: 104.1(1), N1–Cu1–Br1: 120.1(1), N1–Cu1–Br3: 117.9(1), Br1–Cu1–Br3: 
115.0(1), P1–Cu2–N2: 85.8(1), P1–Cu2–Br1: 120.5(1), P1–Cu2–Br2: 112.6(1), N2–Cu2–Br1: 117.5(1), N2–Cu2–Br2: 117.6(1), 
Br1–Cu2–Br2: 103.2(1), P1–Cu3–N3: 85.2(1), P1–Cu3–Br2: 111.7(1), P1–Cu3–Br3: 107.4(1), N3–Cu3–Br2: 116.5(1), N3–
Cu3–Br3: 112.9(1), Br2–Cu3–Br3: 118.0(1), Cu1–Cu2–Cu3: 63.8(1), Cu1–Cu3–Cu2: 58.4(1), Cu2–Cu1–Cu3: 57.7(1), P1–Cu1–
Cu2: 55.3(1), P1–Cu1–Cu3: 56.1(1), P1–Cu2–Cu1: 64.7(1), P1–Cu2–Cu3: 61.0(1), P1–Cu3–Cu1: 61.4(1), P1–Cu3–Cu2: 
57.3(1), Cu1–P1–Cu2: 60.0(1), Cu1–P1–Cu3: 62.4(1), Cu2–P1–Cu3: 61.6(1), C1–P1–C9: 100.7(1), C1–P1–C17: 100.5(1), C9–
P1–C17: 99.4(1). 

 

The Cu–P distances of 5-14 are between 2.418(1) Å and 2.593(1) Å, while the Cu–P distances of 5-18 

cover a wider range from 2.406(1) Å to 2.645(1) Å. In both cases the Cu–P distances are longer than 

the mean distance found for literature known copper complexes with triphenylphosphine 

(2.252 Å),[13] but within the range of Cu–P distances found in copper complexes with bridging 

phosphines (2.230(3)–2.728(3) Å).[18] The Cu1–P1 distance (2.245(1) Å) in the structure of 5-17 is 

comparable to the mean atom distance of triphenylphosphine copper complexes (2.252 Å),[13] while 

the other two Cu–P distances (2.819(1) Å and 2.947(1) Å) are significantly longer and probably the 

phosphorus does not interact with these two copper atoms. This means that in complexes 5-14 and 

5-18 a coordination of the phosphorus atom to all three copper atoms is present, while in complex 

5-17 the phosphorus coordinates to only one of the copper atoms. 

The Cu–N distances of complexes 5-14 and 5-18 (2.013(2)–2.031(2) Å) are similar to the mean 

distance between pyridine nitrogen atoms and four-coordinate copper atoms (2.024 Å).[13] The Cu1–

N1 distance of 5-17 (2.067(2) Å) is slightly longer than the Cu–N distances of 5-14 and 5-18. The Cu2–

N2 (1.989(2) Å) and Cu3–N3 (1.995(2) Å) distances of complex 5-17 are comparable to the Cu–N 

distances of complexes with NCuX2 coordination (1.9553(16) Å–1.993(5) Å).[12] 

The Cu–Cl distances in complex 5-14 (2.286(1)–2.357(1) Å) are slightly shorter than the mean 

distance between four-coordinate copper(I) atoms and  μ2-chlorine atoms (2.364 Å).[13] The Cu1–Cl1 

distance in complex 5-17 (2.337(1) Å) is slightly shorter than the mean Cu–Cl distance for this type of 

interaction (2.364 Å),[13] while the distance between Cu1 and Cl2 (2.416(1) Å) is longer. The Cu–Cl 

distances at Cu2 and Cu3 vary from 2.239(1) Å to 2.397(1) Å around the mean distance between 

three-coordinate copper(I) atoms and μ2-chlorine atoms (2.275 Å).[13] 

The Cu–Br distances in complex 5-18 (2.414(1)–2.512(1) Å) correspond with the mean Cu–Br 

distance between copper(I) and μ2-bromine atoms (2.483 Å).[13] 
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All Cu···Cu distances are between 2.515(1) Å and 2.670(1) Å, except for the distance between Cu2 

and Cu3 in complex 5-17 (2.918(1) Å). These short Cu···Cu distances might indicate the presence of 

weak Cu···Cu interactions in the clusters. 

The P–C bond lengths of all three complexes are 1.841(3)–1.853(2) Å, which is in the typical range of 

mean P–CAlk bond lengths in tertiary phosphine complexes (1.825–1.863 Å).[13] 

 

The angles around the copper atoms of complexes 5-14 and 5-18 vary over a wide range from 

81.6(1) ° to 121.0(1) ° around the tetrahedral angle. As observed for the bis(picolyl)phosphine based 

complexes (see 5.2.3.1–5.2.3.4) the P–Cu–N angles are small (81.6(1)–86.0(1) °). The P–Cu–X angles 

vary around the tetrahedral angle in which the range covered in complex 5-18 is larger than for 

complex 5-14 (5-14: 106.7(1)–113.7(1) °, 5-18: 104.1(1)–120.5(1) °). All N–Cu–X angles of complexes 

5-14 and 5-18 are larger than the tetrahedral angle (5-14: 114.8(1)–121.0(1) °, 5-18: 112.9(1)–

120.1(1) °). All Cl–Cu–Cl angles (111.5(1)–114.6(1) °) of 5-14 are larger than the tetrahedral angle, 

but in complex 5-18 the Br1–Cu2–Br2 angle (103.2(1) °) is smaller than the tetrahedral angle, while 

the other two Br–Cu–Br angles (115.0(1) ° and 118.0(1) °) are larger. 

The angles around Cu1 of complex 5-17 range from 88.3(1) ° to 126.0(1) °. As for complexes 5-14 and 

5-18 the P–Cu–N angle (88.3(1) °) is quite small. The P–Cu–Cl (111.9(1) ° and 126.0(1) °) and N–Cu–Cl 

(110.4(1) ° and 112.9(1) °) angles are larger than the tetrahedral angle, while the Cl–Cu–Cl angle 

(106.0(1) °) is smaller. The angles around Cu2 and Cu3 vary from 107.6(1) ° to 135.8(1) ° and sum up 

to 358.1 ° (Cu2) and 357.3 ° (Cu3) respectively. This means the coordination at these two copper 

atoms is very close to planar. 

In complexes 5-14 and 5-18 the three copper atoms and the phosphorus atom form slightly distorted 

tetrahedrons. The angles within these tetrahedrons vary over a slightly wider range in complex 5-

18 (55.3(1)–64.7(1) °) than in complex 5-14 (55.8(1)–62.9(1) °). 

The C–P–C angles in complexes 5-14, 5-17 and 5-18 vary in a small range from 99.4(1) ° to 101.6(1) °. 

 

In the crystal structures of 5-14, 5-17 and 5-18 the molecules are arranged in layers in an AB pattern 

(Figure 24). 
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Figure 24: Crystal structures of 5-14 (top left, view along the b axis), 5-17 (top right, view along the a axis) and 5-18 
(bottom, view along the a axis). 

 

The crystal structures of the CuCl and CuBr complexes 5-17 and 5-18 of ligand 2-25 are quite similar, 

but slightly different. In the structure of 5-18 no solvent molecules are included, while one molecule 

of MeCN is present in the structure of 5-17. In both complexes the three copper atoms form six-

membered rings with the three halide atoms and are coordinated by each one of the nitrogen atoms 

of the ligand. But the Cu–P distances indicate that in complex 5-17 phosphorus is coordinated to 

only one of the copper atoms, while in complex 5-18 interactions of the phosphorus atom with all 

three copper atoms might be present. 

 

5.2.3.6 Crystal structures of 5-20 and 5-21  

 

Attempts to crystallise the CuCl and CuBr complexes of 2-13 failed, but from solutions in MeCN 

crystal suitable for X-ray crystallography were obtained. These crystals appeared to be of the 

corresponding complexes 5-20 (CuCl) and 5-21 (CuBr) of the phosphine oxide of 2-13. Probably the 

phosphine ligand was oxidised due to the presence of oxygen during crystallisation. 

Both complexes crystallise in the triclinic space group P−1 with one formula unit in the unit cell. The 

asymmetric unit contains one molecule of the solvent MeCN (Figure 25, left). Despite the reaction 

was performed in a metal to ligand ratio of 3:1, in the phosphine oxide complexes a ratio of 1:1 is 

found. The complexes are isostructural and display the typical structure motif of the rhomboid dimer 

(Figure 25, right). The copper atoms in both structures are coordinated distorted tetrahedrally by the 

two nitrogen atoms of the ligand and two halide atoms. The oxygen atoms do not participate in the 

coordination to copper. 

 



110 

 
Figure 25: Asymmetric unit (left) and dimeric molecular structure (right) of 5-20 (top) and 5-21 (bottom). Thermal ellipsoids 
are drawn at 50% probability level. Solvent molecules are omitted for clarity in the pictures of the dimeric structures. 
Selected bond lengths [Å] and angles [°] of 5-20: Cu1–N1: 2.019(2), Cu1–N2: 2.005(2), Cu1–Cl1: 2.380(1), Cu1–Cl1i: 
2.533(1), Cu1···Cu1i: 3.147(1), P1–C1: 1.821(2), P1–C7: 1.809(2), P1–C13: 1.806(2), P1–O1: 1.489(2), N1–Cu1–N2: 130.0(1), 
N1–Cu1–Cl1: 104.3(1), N1–Cu1–Cl1i: 97.4(1), N2–Cu1–Cl1: 115.3(1), N2–Cu1–Cl1i: 103.8(1), Cl1–Cu1–Cl1i: 100.4(1), C1–P1–
C7: 107.8(1), C1–P1–C13: 104.5(1), C1–P1–O1: 113.2(1), C7–P1–C13: 110.4(1), C7–P1–O1: 109.6(1), C13–P1–O1: 111.1(1). i: 
2−x,1−y,1−z. Selected bond lengths [Å] and angles [°] of 5-21: Cu1–N1: 2.009(2), Cu1–N2: 2.019(2), Cu1–Br1: 2.496(1), Cu1–
Br1i: 2.647(1), Cu1···Cu1i: 3.198(1), P1–C1: 1.814(2), P1–C7: 1.819(2), P1–C13: 1.802(2), P1–O1: 1.489(1), N1–Cu1–N2: 
129.6(1), N1–Cu1–Br1: 114.5(1), N1–Cu1–Br1i: 102.3(1), N2–Cu1–Br1: 103.5(1), N2–Cu1–Br1i: 99.8(1), Br1–Cu1–Br1i: 
103.2(1), C1–P1–C7: 107.5(1), C1–P1–C13: 110.0(1), C1–P1–O1: 110.2(1), C7–P1–C13: 104.6(1), C7–P1–O1: 112.9(1), C13–
P1–O1: 111.5(1). i: 1−x,1−y,−z. 

 

The Cu–N distances of complexes 5-20 and 5-21 (2.005(2)–2.019(2) Å) are in the same range as the 

Cu–N distances found in various complexes with Cu2X2 rhomboids with additional pyridine derived 

ligands coordinating to the copper atoms (2.00(2)–2.104(5) Å).[5c] 

The Cu1–Cl1 distance (2.380(1) Å) and the Cu1–Cl1i distance (2.533(1) Å) in 5-20 differ strongly from 

each other, but both distances are within the range found in the literature for other (py)4Cu2Cl2 

complexes (2.357(1)–2.675(6) Å.[5c] The Cu–Br distances of 5-21 (2.496(1) Å and 2.647(1) Å) also are 

very diverse, but within the range covered by known complexes of the type (py)4Cu2Br2 (2.493(3)–

2.680(3) Å).[5c] 

The distances between the copper atoms in the four-membered rings Cu1 and Cu1i (3.147(1) Å (5-

20) and 3.198(1) Å (5-21)) are comparable to the literature values of other (py)4Cu2X2 complexes 

(2.609(1)–3.418(2) Å, X = Cl, Br, I).[5c] The distances are significantly longer than the sum of the van 

der Waals radii, which indicates that there are no interactions between the copper atoms. 

The P–CAlk bond lengths of 5-20 and 5-21 are between 1.809(2) Å and 1.821(2) Å, which is close to 

the mean bond length of P–Csp3 bonds in phosphine oxides (1.813 Å).[13] The lengths of the P1–C13 
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bonds (1.806(2) Å and 1.802(2) Å) are comparable to the mean P–CAr bond length of phosphine 

oxides (1.801 Å).[13] 

The P–O bond lengths of 5-20 and 5-21 (1.489(2) Å and 1.489(1) Å) correspond with the mean P–O 

bond length of phosphine oxides (1.489 Å).[13] 

 

The angles around the copper atoms of 5-20 and 5-21 vary in the range from 97.4(1) ° to 130.0(1) ° 

around the ideal tetrahedral angle of 109.5 °. The N–Cu–N angles (130.0(1) ° and 129.6(1) °) are 

larger than the tetrahedral angle, while the X–Cu–X angles (100.4(1) ° and 103.2(1) °) are smaller. 

The N–Cu–X angles vary around the tetrahedral angle in a range from 97.4(1) ° to 115.3(1) °. 

The angles around the phosphorus atoms of 5-20 and 5-21 range from 104.5(1) ° to 113.2(1) °, which 

is close to the tetrahedral angle. All C–P–O angles (109.6(1)–113.2(1) °) are slightly larger than the 

tetrahedral angle, while the C–P–C angles (104.5(1)–110.4(1) ° vary around the tetrahedral angle. 

 

In the crystal the dimers are arranged in layers in an AB pattern (Figure 26, left). 

 

 
Figure 26: Crystal structure of 5-20 (top) and 5-21 (bottom). View along the a axis (left) and b axis (right). 

 

5.2.3.7 Formation and crystal structures of hydrolysis products Col2PO2
−
 Cu(II)Cl 5-23 and 

PhLutPO2
−
 6-methylpicolinate Cu(II) 5-24 

 

From attempts to crystallise 5-17 by slow diffusion of pentane in a solution in MeCN blue single 

crystals suitable for X-ray crystallography were obtained. From the crystal structure it was evident 

that the complex was hydrolysed and oxidised by moisture and air, which entered into the vessel 

with time. Obviously one of the P–C bonds was cleaved and the phosphine was oxidised to the 

phosphinate Col2PO2
−. Also Cu(I) was oxidised to Cu(II) (Scheme 5). 
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Scheme 5: Hydrolysis and oxidation of 5-17 yielding 5-23. 

 

The hydrolysis product 5-23 was the copper(II) complex of the corresponding phosphinate Col2PO2
− 

of ligand 2-25 and one chloride anion. The complex crystallises in the monoclinic space group P21/n 

with two formula units in the unit cell. The complex forms a dimeric structure in which the copper 

atoms are coordinated distorted trigonal bipyramidal by one nitrogen atom and one oxygen atom of 

each phosphinate ligand and one chlorine atom (Figure 27). In the trigonal bipyramid the nitrogen 

atoms are at the axial positions, while the oxygen and chlorine atoms occupy the equatorial 

positions. The Cu1 and O2 atoms of the dimer form a four-membered ring. 

 

 
Figure 27: Asymmetric unit (left) and dimeric molecular structure (right) of 5-23. Thermal ellipsoids are drawn at 50% 
probability level. Selected bond lengths [Å] and angles [°]: Cu1–N1: 2.046(3), Cu1–N2i: 2.067(3), Cu1–O2: 2.268(2), Cu1–
O2i: 2.012(2), Cu1–Cl1: 2.260(1), Cu1···Cu1i: 3.351(1), P1–C1: 1.802(4), P1–C9: 1.816(3), P1–O1: 1.488(3), P1–O2: 1.534(2), 
N1–Cu1–N2i: 174.6(1), N1–Cu1–O2: 88.7(1), N1–Cu1–O2i: 88.8(1), N1–Cu1–Cl1: 88.4(1), N2i–Cu1–O2: 96.4(1), N2i–Cu1–
O2i: 90.6(1), N2i–Cu1–Cl1: 90.3(1), O2–Cu1–O2i: 77.1(1), O2–Cu1–Cl1: 123.2(1), O2i–Cu1–Cl1: 159.5(1), C1–P1–C9: 
108.4(2), C1–P1–O1: 110.2(2), C1–P1–O2: 105.0(2), C9–P1–O1: 110.2(2), C9–P1–O2: 104.8(2), O1–P1–O2: 117.8(1). i: 
1−x,−y,1−z. 
 

The Cu–N distances of 5-23 (2.046(3) Å and 2.067(3) Å) are much shorter than the mean distance 

between pyridine nitrogen atoms and five-coordinate copper atoms (2.113 Å).[13] The Cu–Npy 

distances of copper(II) complexes with N2(μ2-O)2CuCl coordination described in the literature vary 

over a wide range from 1.9294(16) Å to 2.270(9) Å.[24] The Cu–N distances of 5-23 are within the 

shorter part this range. 

The Cu–O distances (2.012(2) Å and 2.268(2) Å) are longer than the mean atom distance of copper(II) 

and μ2-oxygen atoms of dialkylphosphinates (1.919 Å),[13] but comparable to the shorter Cu–O 

distances of known complexes with N2(μ2-O)2CuCl coordination (1.912(2)–2.750(4) Å).[24a, 24b, 25] 

The Cu–Cl distance of 5-23 is comparable to the short (<2.4 Å) mean atom distance between five-

coordinate copper(II) atoms and terminal chlorine atoms (2.269 Å).[13] For the N2(μ2-O)2CuCl 
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complexes reported in the literature Cu–Cl distances of 2.2063(6)–2.6020 Å have been found.[24a-c, 25c, 

26] 

The Cu···Cu distance (3.351(1) Å) is slightly longer than those of comparable N2(μ2-O)2CuCl 

complexes (2.9512(8)–3.333(1) Å).[24b, 25a, 25b, 26b, 27] 

The P–C bond lengths (1.802(4) Å and 1.816(3) Å) are comparable to the P–C bond lengths found in 

copper complexes of other phosphinates (1.776(3)–1.833(20) Å).[28] 

The P–O bond lengths (1.488(3) Å and 1.534(2) Å) are in the same range as those of literature known 

phosphinate copper complexes (1.467(16)–1.533(14) Å).[28] 

 

The N–Cu–N angle (174.6(1) °) is slightly bent, but close to linear. The N–Cu–O angles (88.7(1)–

96.4(1) °) and the N–Cu–Cl angles (88.4(1) ° and 90.3(1) °) are close to 90 °, which means that the 

nitrogen atoms are orthogonal to the oxygen and chlorine atoms. 

The O–Cu–O angle (77.1(1) °) and the O–Cu–Cl angles (123.2(1) ° and 159.5(1) °) sum up to 359.8 °, 

meaning these three atoms are arranged in an almost perfectly planar conformation around the 

copper atom. Although the equatorial atoms at the copper atom are arranged planar the angles are 

very different. The O–Cu–O angle is much smaller than the O–Cu–Cl angles and the O2i–Cu–Cl angle 

(159.5(1) °) is much larger than the O2–Cu–Cl angle (123.2(1) °). 

The angles around the phosphorus atom range from 104.8(2) ° to 117.8(1) °. The C–P–C angle 

(108.4(2) °) is slightly smaller than the ideal tetrahedral angle, while the O–P–O angle (117.8(1) °) is 

significantly larger than the tetrahedral angle of 109.5 °. The C–P–O angles (104.8(2)–110.2(2) °) vary 

in a small range around the tetrahedral angle. 

 

In the crystal the dimers are arranged in layers in an AB pattern (Figure 28). 

 

 
Figure 28: Crystal structure of 5-23. View along the a axis (left) and b axis (right). 

 

From a NMR sample of 5-1 in MeCN blue single crystals suitable for X-ray crystallography formed 

after several weeks. The crystal structure revealed, that the compound was hydrolysed and oxidised 

by moisture and air, which entered the NMR tube with time. 

The P–C bond of one of the lutidinyl substituents was cleaved and the phosphine was oxidised to the 

corresponding phosphinate PhLutPO2
−. Also Cu(I) was oxidised to Cu(II) as observed for 5-23 

(Scheme 6). While the disposition of the cleaved collidinyl substituent in the formation of 5-23 is 

unclear, in the case of 5-24 the cleaved lutidinyl substituent is oxidised to 6-methylpicolinate and 

coordinates to copper. 
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Scheme 6: Hydrolysis and oxidation of 5-1 yielding 5-24. 

 

The hydrolysis product 5-24 was the copper(II) complex of the corresponding phosphinate PhLutPO2
− 

of ligand 2-14 and 6-methylpicolinate. The complex crystallises in the monoclinic space group P21/c 

with two formula units in the unit cell. The complex forms a dimeric structure in which the copper 

atoms are coordinated distorted trigonal bipyramidal by one of the oxygen atoms of each 

phosphinate ligand, one nitrogen atom of one of the phosphinate ligands and an oxygen atom and 

the nitrogen atom of one of the 6-methylpicolinate anions (Figure 29). The axial positions are 

occupied by O1 and N2, while N1, O2 and O4 are at the equatorial positions. The Cu1, O1, O4 and P1 

atoms of the dimer form an eight-membered ring. 

 

 
Figure 29: Asymmetric unit (left) and dimeric molecular structure (right) of 5-24. Thermal ellipsoids are drawn at 50% 
probability level. Selected bond lengths [Å] and angles [°]: Cu1–N1: 2.050(2), Cu1–N2: 2.010(2), Cu1–O1: 1.946(2), Cu1–O2: 
1.975(2), Cu1–O4: 2.135(2), P1–C1: 1.809(3), P1–C7: 1.829(3), P1–O1: 1.515(2), P1–O4i: 1.490(2), N1–Cu1–N2: 99.4(1), N1–
Cu1–O1: 86.3(1), N1–Cu1–O2: 137.5(1), N1–Cu1–O4: 116.4(1), N2–Cu1–O1: 174.1(1), N2–Cu1–O2: 83.0(1), N2–Cu1–O4: 
83.3(1), O1–Cu1–O2: 91.8(1), O1–Cu1–O4: 95.5(1), O2–Cu1–O4: 106.1(1), C1–P1–C7: 107.2(1), C1–P1–O1: 108.3(1), C1–
P1–O4i: 108.0(1), C7–P1–O1: 106.0(1), C7–P1–O4i: 109.6(1), O1–P1–O4i: 117.4(1). i: 1−x,−y,2−z. 

 

The Cu–N distances of 2.050(2) Å and 2.010(2) Å are shorter than the mean atom distance of five-

coordinate copper atoms to pyridine nitrogen atoms (2.113 Å).[13] In the literature several copper 

complexes with N2CuO3 coordination and (Cu–O–P–O)2 eight-membered rings are described. In 

these complexes the Cu–N distances mostly vary between 1.95(1) Å and 2.0757(18) Å,[29] with one 
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exception, in which a very long Cu–N distance of 2.273(3) Å was found.[30] The Cu–N distances of 5-

24 correspond with the literature values of complexes with similar coordination. 

The Cu–O4 distance (2.135(2) Å) is significantly longer than the other Cu–O distances of 5-24 

(1.946(2) Å and 1.975(2) Å). The same was observed for most of the complexes described in the 

literature.[29-31] The Cu–O distances of 5-24 are within the range covered by the known complexes 

(1.8340(13)–2.472(6) Å).[29-31] 

The P–C bond lengths (1.809(3) Å and 1.829(3) Å) correspond with the bond lengths of P–C bonds of 

copper complexes of other phosphinates (1.776(3)–1.833(20) Å).[28] 

The P–O bond lengths (1.490(2) Å and 1.515(2) Å) are comparable to those of known phosphinate 

copper complexes (1.467(16)–1.533(14) Å).[28] 

 

The N2–Cu1–O1 angle of 174.1(1) ° is almost linear. The Nax–Cu–Oeq angles (83.0(1) ° and 83.3(1) °) 

and the Oax–Cu–Neq angle (86.3(1) °) are smaller than 90 °, while the Nax–Cu–Neq angle (99.4(1) °) and 

the Oax–Cu–Oeq angles (91.8(1) ° and 95.5(1) °) are larger than 90 °. 

The Oeq–Cu–Oeq angle (106.1(1) °) and the Oeq–Cu–Neq angles (116.4(1) ° and 137.5(1) °) sum up to 

360.0 °, which proofs that the atoms in the equatorial positions around the copper atom are in 

plane. 

The angles around P1 vary between 106.0(1) ° and 117.4(1) °. The C–P–C angle (107.2(1) °) is slightly 

smaller than the ideal tetrahedral angle (109.5 °), while the O–P–O angle (117.4(1) °) is larger than 

the tetrahedral angle. The C–P–O angles (106.0(1)–109.6(1) °) vary around the tetrahedral angle. 

 

In the crystal the dimers are arranged in layers in an AB pattern (Figure 30, left). 

 

 
Figure 30: Crystal structure of 5-24. View along the a axis (left) and b axis (right). 

 

In the crystal structures of both hydrolysis products no noteworthy interactions between the dimers 

can be observed. This indicates that the dimers probably are very compact and stable. 

 

5.2.4 DFT calculations 

 

DFT calculations of complexes 5-7a, 5-14, 5-17 and 5-18 have been performed with the Gaussian 16 

package with the B3LYP functional and 6-31G+(d,p) basis set.[32] After the optimum geometry of the 

complexes were determined the distribution and energies of the highest occupied and the lowest 

unoccupied molecular orbitals were calculated (Figures 31–34). 

 



Figure 31: Frontier orbitals of 5-7a. 

 

Figure 32: Frontier orbitals of 5-14. 

 

Figure 33: Frontier orbitals of 5-17. 

 

Figure 34: Frontier orbitals and LUMO+2

 

The HOMOs are mostly centred 

while the LUMOs are centred at the

LUMO is centred at only one of the pyridine rings (Figure 
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and LUMO+2 of 5-18. 

are mostly centred at the Cu3X3 clusters with contributions of the phosphorus atom

at the pyridine rings of the ligands (Figures 31–34

LUMO is centred at only one of the pyridine rings (Figure 31), but for the tris(picolyl)phosphine

 

 

 

 

s with contributions of the phosphorus atom, 

34). In case of 5-7a the 

), but for the tris(picolyl)phosphine 
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based  copper complexes two of the pyridine rings are involved in the shape of the LUMOs (Figures 

32–34). 

The energy gaps between HOMO and LUMO of 5-7a, 5-14, 5-17 and 5-18 are in the range from 

3.28 eV (378 nm) to 3.51 eV (353 nm). 

 

The UV/Vis spectra of 5-7a, 5-14, 5-17 and 5-18 were calculated with the TD-DFT method at the 

B3LYP/6-31G+(d,p) level of theory (Figure 35).[32] 

 

 
Figure 35: Calculated UV/Vis spectra of 5-7a (top left), 5-14 (top right), 5-17 (bottom left) and 5-18 (bottom right). 

 

The maxima of the calculated absorption spectra are between 429.0 nm (5-7a) and 464.4 nm (5-14) 

(5-17: 451.8 nm, 5-18: 440.2 nm). The main contribution to the absorption is caused by transitions at 

431.0 nm (5-7a), 454.6 nm (5-14), 444.3 nm (5-17) and 429.9 nm (5-18). In the cases of the copper(I) 

chloride complexes 5-7a, 5-14 and 5-17 these absorptions are dominated by a transition from the 

HOMO to the LUMO, which means that the excitation of these complexes is a MLCT. For the 

copper(I) bromide complex 5-18 the main contribution to the absorption is caused by a transition 

from the HOMO to the LUMO+2. As LUMO+2 is centred at one of the pyridine rings (Figure 32) of the 

ligand in 5-18 this means that for 5-18 the excitation also is a MLCT. 

 

5.3 Summary 
 

The copper(I) chloride, bromide and iodide complexes of four bis(picolyl)phosphine based ligans and 

two tris(picolyl)phosphine based ligands have been synthesised, as well as the copper(I) thiocyanate 

complex of 2-16. From attempts to synthesise the copper(I) halide complexes of 2-13 the complexes 

of the corresponding phosphine oxide were obtained. 

The crystal structures of nine complexes could be determined by X-ray crystallography. The crystal 

structures revealed that the phenylbis(picolyl)phosphine related ligands react in a ligand to metal 

ratio of 1:2 with the copper(I) salts used, while the isopropylbis(picolyl)phosphine based compounds 

and the tris(picolyl)phosphine based compounds react in a ligand to metal ratio of 1:3 with the 

copper(I) salts. In the crystal structures of the phosphine oxide complexes 5-20 and 5-21 a ligand to 

metal ratio of 1:1 was observed. 
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The structures of the complexes showed a great variety in how the bis- and tris(picolyl)phosphine 

related ligands coordinate to the copper atoms (Figure 36). In the case of 5-7 it was even possible to 

isolate two structural isomers. 

The most frequently observed structural motif found in the copper(I) halide complexes of the bis-

and tris(picolyl)phosphine based ligands was the six-membered ring of Cu3X3, but also other 

structural motifs could be found, such as the infinite CuCl-chains in complexes 5-7b and 5-11. In 

many of the complexes described above copper atoms in different coordination modes and with 

different coordination numbers were present. The structure of 5-7a even contains three completely 

different coordinated copper atoms in one molecule. In all structures except from 5-7a and 5-11 at 

least one of the copper atoms is coordinated by both the phosphorus atom and one of the nitrogen 

atoms of the ligand, while the other nitrogen atoms coordinate other copper atoms. 

In some of the complexes the phosphorus acts as a bridging ligand, which coordinates to two or in 

case of 5-14 and 5-18 even three copper atoms. 

While the complexation of the bis- and tris(picolyl)phosphine based ligands to the copper(I) salts led 

to rather unusual structures, the crystal structures of the phosphine oxide complexes 5-20 and 5-21 

revealed the typical Cu2X2 rhomboid structure with N,N coordination to the copper atoms. 

 

 
Figure 36: Coordination modes of copper(I) found in complexes 5-4, 5-7, 5-9, 5-10, 5-11, 5-13, 5-14, 5-17,5-18, 5-20 and 5-

21. 

 

Complexes 5-1 and 5-2 and the phosphine oxide complexes 5-20, 5-21 and 5-22 showed intense 

green to blue-green luminescence under UV light, while complexes 5-8, 5-14, 5-18 and 5-19 showed 

only weak luminescence. The emission maximum is blue-shifted upon change from chloride to 

bromide and iodide. 

DFT calculations of 5-7a, 5-14, 5-17 and 5-18 indicated that MLCT is the excitation mechanism of the 

complexes. 



119 

Through crystal structures of the hydrolysis products of 5-1 and 5-17 (5-23 and 5-24) it was possible 

to find out that hydrolysis of the complexes leads to cleavage of one of the P–C bonds of the ligands 

and one of the picolyl based substituents is eliminated. In the presence of oxygen the fragments are 

oxidised to a phosphinate and a carboxylic acid. 

 

5.4 Experimental 
 

For general information about methods and analytical instruments used see 2.4.1. For details about 

the DFT calculations see 4.4.1. 

Due to the low solubility of the copper(I) complexes the compounds could not be purified. Therefore 

no yields and no analytics like melting points, NMR or IR data are reported. Listed data from 

elemental analysis were obtained from single crystals. The compounds were identified via HRMS of 

precipitates obtained from reactions. 

 

5.4.1 Phenyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) chloride complex 

5-1 

 

CuCl (236 mg, 2.4 mmol, 2 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-14 (2.4 mL, 

0.5 M in MeCN, 1.2 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. The 

precipitate was filtered off and dried in vacuo. A pale yellow solid was obtained (375 mg). 

m/z (ESI) [%]: 482.97102 (16), 383.07427 (100), 321.15250 (2), 214.07851 (2). 

m/z (FAB
+
) [%]: 383.0755 (100). 

m/z(FAB
−
) [%]: 35 (2). 

 

5.4.2 Phenyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) bromide complex 

5-2 

 

CuBr (359 mg, 2.5 mmol, 2 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-14 (2.5 mL, 0.5 M in MeCN, 1.3 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(477 mg). 

m/z (ESI) [%]: 526.92072 (40), 383.07399 (100), 321.15257 (4), 214.07854 (2). 

 

5.4.3 Phenyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) iodide complex 5-

3 

 

CuI (556 mg, 2.9 mmol, 2 eq) was suspended in 5 mL dry MeCN. To the colourless suspension 2-14 

(2.9 mL, 0.5 M in MeCN, 1.5 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The solid was filtered off and dried in vacuo. A colourless solid was obtained (682 mg). 

m/z (ESI) [%]: 572.90784 (7), 383.07340 (100), 321.15176 (15), 214.07821 (2). 
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5.4.4 Phenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) chloride 

complex 5-4 

 

Reaction 1: CuCl (99 mg, 1.0 mmol, 1 eq) was dissolved in 2 mL dry MeCN. To the yellow solution 2-

15 (1.0 mL, 1 M in THF, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The precipitate was filtered off and dried in vacuo. A yellow-green solid was obtained (119 mg). 

 

Reaction 2: CuCl (250 mg, 2.5 mmol, 2 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-

15 (2.5 mL, 0.5 M in MeCN, 1.3 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The precipitate was filtered off and dried in vacuo. A pale yellow solid was obtained 

(120 mg). 

m/z (ESI) [%]: 511.00248 (33), 411.10557 (100), 349.08393 (2), 228.09426 (1). 

m/z(FAB
+
) [%]: 411.1029 (100). 

m/z(FAB
−
) [%]: 35 (4). 

 

5.4.5 Phenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) bromide 

complex 5-5 

 

CuBr (316 mg, 2.2 mmol, 2 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-15 (2.2 mL, 0.5 M in MeCN, 1.1 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(175 mg). 

m/z (ESI) [%]: 554.95239 (100), 411.10550 (100), 349.18426 (3), 228.09434 (1). 

 

5.4.6 Phenyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) iodide 

complex 5-6 

 

CuI (524 mg, 2.8 mmol, 2 eq) was suspended in 5 mL dry MeCN. To the colourless suspension 2-15 

(2.8 mL, 0.5 M in MeCN, 1.4 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The solid was filtered off and dried in vacuo. A colourless solid was obtained (536 mg).  

m/z (ESI) [%]: 600.93941 (19), 411.10495 (65), 349.18325 (9), 228.09391 (1). 

m/z(FAB
+
) [%]: 411.1036 (100). 

m/z(FAB
−
) [%]: 127 (15). 

 

5.4.7 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) chloride 

complex 5-7 

 

Reaction 1: CuCl (115 mg, 1.2 mmol, 3 eq) was dissolved in 3 mL dry MeCN. 2-16 (0.77 mL, 0.5 M in 

MeCN, 0.39 mmol, 1 eq) was added dropwise to the yellow solution and after stirring for 30 min the 

solvent was removed in vacuo. A greenish solid was obtained (167 mg).  

 

Reaction 2: CuCl (386 mg, 3.9 mmol, 3 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-

16 (2.6 mL, 0.5 M in MeCN, 1.3 mmol, 1 eq) was added dropwise and after stirring for 10 min the 

reaction was left overnight. From the solution crystals of 5-7b formed. The remaining solution was 
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removed and the crystals were dried under vacuum. The product was obtained as yellowish crystals 

(156 mg, 0.27 mmol, 21%). 

EA: Found: C, 34.3; H, 3.75; N, 4.7.Calc. for C17H23Cu3Cl3N2P: C, 35.0; H, 4.0; N, 4.8%. 

m/z (ESI) [%]: 546.88631 (2), 448.98622 (100), 349.08953 (96), 287.16796 (2), 180.09403 (1). 

 

5.4.8 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) bromide 

complex 5-8 

 

CuBr (443 mg, 3.1 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-16 (2.1 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(134 mg). 

m/z (ESI) [%]: 492.93589 (27), 349.08960 (100), 287.16802 (4), 180.09408 (1). 

 

5.4.9 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) iodide complex 

5-9 

 

Reaction 1: CuI (196 mg, 1.0 mmol, 3 eq) was suspended in 3 mL dry MeCN. 2-16 (0.69 mL, 0.5 M in 

MeCN, 0.34 mmol, 1 eq) was added dropwise to the colourless suspension and after stirring for 

5 min the solution was left standing until the product had crystallised. The remaining solution was 

removed and the product was dried in vacuo. The product was obtained as colourless crystals 

(110 mg, 0.13 mmol, 38%).  

 

Reaction 2: CuI (577 mg, 3.0 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the colourless 

suspension 2-16 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was 

stirred overnight. The solid was filtered off and dried in vacuo. A colourless solid was obtained 

(536 mg). 

EA: Found: C, 24.1; H, 2.9; N, 3.25. Calc. for C17H23N2PCu3I3: C, 23.8; H, 2.7; N, 3.3%.  

m/z (ESI) [%]: 538.92397 (9), 349.08949 (100), 287.16744 (4), 180.09376 (0.1). 

 

5.4.10 isoPropyl-bis(6-methylpyridin-2-ylmethyl)phosphine copper(I) thiocyanate 

complex 5-10 

 

CuSCN (159 mg, 1.31 mmol, 3 eq) was suspended in 3 mL dry MeCN. 2-16 (0.87 mL, 0.5 M in MeCN, 

0.44 mmol, 1 eq) was added dropwise to the colourless suspension and the reaction was stirred 

overnight. The solvent was removed in vacuo and a colourless solid was obtained (195 mg). 

 

5.4.11 isoPropyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) chloride 

complex 5-11 

 

Reaction 1: CuCl (121 mg, 1.2 mmol, 1 eq) was dissolved in 2.4 mL dry MeCN. 2-17 (2.4 mL, 0.5 M in 

MeCN, 1.2 mmol, 1 eq) was added dropwise to the yellow solution and stirred overnight. The 

precipitate was filtered off and dried in vacuo. A yellow-green solid was obtained (314 mg). 
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Reaction 2: CuCl (308 mg, 3.1 mmol, 3 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-

17 (2.1 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and after stirring for 10 min the 

reaction was left overnight. From the solution crystals of 5-11 formed. The remaining solution was 

removed and the crystals were dried under vacuum. The product was obtained as yellowish crystals 

(120 mg, 0.22 mmol, 17%).  

m/z (ESI) [%]: 574.91732 (1), 475.01963 (64), 377.12070 (100), 315.19924 (5), 194.10968 (2). 

m/z(FAB
+
) [%]: 377.1195 (100). 

m/z(FAB
−
) [%]: 35 (3). 

 

5.4.12 isoPropyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) bromide 

complex 5-12 

 

CuBr (420 mg, 2.9 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-17 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(89 mg).  

m/z (ESI) [%]: 662.81719 (1), 520.96736 (31), 377.12109 (100), 315.19952 (4), 194.10982 (1). 

m/z(FAB
+
) [%]: 377.1188 (100). 

m/z(FAB−) [%]: 79 (6). 

 

5.4.13 isoPropyl-bis(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) iodide 

complex 5-13 

 

CuI (579 mg, 3.0 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the colourless suspension 2-17 

(2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The solid was filtered off and dried in vacuo. A colourless solid was obtained (454 mg).  

m/z (ESI) [%]: 566.95512 (23), 377.12032 (100), 315.19863, (30), 194.10939 (3). 

m/z (FAB
+
) [%]: 377.1228 (100). 

m/z (FAB
−
) [%]: 127 (16). 

 

5.4.14 Tris(6-methylpyridin-2-ylmethyl)phosphine copper(I) chloride complex 5-14 

 

CuCl (306 mg, 3.1 mmol, 3 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-24 (2.1 mL, 

0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. The 

precipitate was filtered off and dried in vacuo. A pale yellow solid was obtained (391 mg). 

m/z (ESI) [%]: 509.99885 (1), 412.10000 (47), 350.17828 (11), 243.10466 (10). 

 

5.4.15 Tris(6-methylpyridin-2-ylmethyl)phosphine copper(I) bromide complex 5-15 

 

CuBr (424 mg, 3.0 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-24 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(504 mg). 

m/z (ESI) [%]: 555.94622 (4), 412.10005 (8), 350.17821 (7), 243.10460 (8). 
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5.4.16 Tris(6-methylpyridin-2-ylmethyl)phosphine copper(I) iodide complex 5-16 

 

CuI (610 mg, 3.2 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the colourless suspension 2-24 

(2.1 mL, 0.5 M in MeCN, 1.1 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The solid was filtered off and dried in vacuo. A colourless solid was obtained (643 mg). 

m/z (ESI) [%]: 793.76717 (2), 601.93454 (11), 412.10006 (51), 350.17825 (43), 243.10462 (50). 

 

5.4.17 Tris(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) chloride complex 5-

17 

 

CuCl (238 mg, 2.4 mmol, 3 eq) was dissolved in 5 mL dry MeCN. To the yellow solution 2-25 (1.6 mL, 

0.5 M in MeCN, 0.8 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. The 

precipitate was filtered off and dried in vacuo. A greenish solid was obtained (254 mg). 

EA: Found: C, 37.5; H, 3.9; N: 5.4. Calc. for C24H30Cu3Cl3N3P · CDCl3: C, 37.1; H, 4.0; N, 5.2%. 

m/z (ESI) [%]: 649.94505 (1), 554.04364 (15), 454.14673 (100), 392.22523 (21), 271.13596 (9). 

 

5.4.18 Tris(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) bromide complex 

5-18 

 

CuBr (420 mg, 2.9 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the pale blue-green suspension 

2-25 (2.0 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred 

overnight. The solid was filtered off and dried in vacuo. A pale blue-green solid was obtained 

(466 mg). 

m/z (ESI) [%]: 597.99323 (18), 454.14680 (92), 392.22501 (100), 271.13589 (19). 

 

5.4.19 Tris(4,6-dimethylpyridin-2-ylmethyl)phosphine copper(I) iodide complex 5-

19 

 

CuI (554 mg, 2.9 mmol, 3 eq) was suspended in 5 mL dry MeCN. To the colourless suspension 2-25 

(1.9 mL, 0.5 M in MeCN, 1.0 mmol, 1 eq) was added dropwise and the reaction was stirred overnight. 

The solid was filtered off and dried in vacuo. A colourless solid was obtained (611 mg). 

m/z (ESI) [%]: 835.81315 (1), 643.98158 (1), 454.14711 (10), 392.22524 (14), 271.13597 (10). 

 

5.4.20 Phenyl-bis(pyridin-2-ylmethyl)phosphine oxide copper(I) chloride complex 5-

20 

 

CuCl (158 mg, 1.6 mmol, 3 eq) was dissolved in 3 mL dry MeCN. 2-13 (1.1 mL, 0.5 M in MeCN, 

0.53 mmol, 1 eq) was added dropwise to the yellow solution and stirred overnight. The precipitate 

was filtered off and dried in vacuo. A greenish solid was obtained (96 mg). 
31

P NMR (162 MHz, CDCl3) δ = 36.1 ppm. 
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5.4.21 Phenyl-bis(pyridin-2-ylmethyl)phosphine oxide copper(I) bromide complex 

5-21 

 

CuBr (230 mg, 1.6 mmol, 3 eq) was suspended in 3 mL dry MeCN. 2-13 (1.1 mL, 0.5 M in MeCN, 

0.53 mmol, 1 eq) was added dropwise to the pale blue-green suspension and stirred overnight. The 

solid was filtered off and the solvent was removed in vacuo. A yellow solid was obtained (134 mg). 
31

P NMR (162 MHz, CDCl3) δ = 35.1 ppm. 

 

5.4.22 Phenyl-bis(pyridin-2-ylmethyl)phosphine oxide copper(I) iodide complex 5-

22 

 

CuI (305 mg, 1.6 mmol, 3 eq) was suspended in 3 mL dry MeCN. 2-13 (1.1 mL, 0.5 M in MeCN, 

0.53 mmol, 1 eq) was added dropwise to the colourless suspension and stirred overnight. The solid 

was filtered off and the solvent was removed in vacuo. A light yellow solid was obtained (116 mg). 
31

P NMR (162 MHz, CDCl3) δ = 31.1 ppm. 
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5.4.23 Crystallographic data 

 
Table 1: Crystallographic data of 5-4, 5-7 and 5-9. 

 5-4 5-7a 5-7b 5-9 

Identification code kx322 mx256 ox353 mx238 

Empirical formula C22H25Cl2Cu2N2

P 

C17H23Cl3Cu3N2P C17H23Cl3Cu3N2P C34H46Cu6I6N4P2 

Formula weight [g·mol−1] 546.39 583.31 583.31 1715.33 

Temperature [K] 173(2) 143(2) 123(3) 143(2) 

Crystal size [mm3] 0.10× 0.15× 

0.20 

0.05× 0.15× 

0.35 

0.05× 0.40× 

0.40 

0.02× 0.10× 

0.10 

Colour, shape Colourless 

block 

Colourless 

block 

Yellow platelet Colourless 

block 

Crystal system Monoclinic Monoclinic Orthorhombic Monoclinic 

Space group P21/c P21/c Pba2 Cc 

a [Å] 11.0090(5) 14.1998(6) 16.6410(6) 20.8746(5) 

b [Å] 13.0530(5) 7.9080(3) 27.9440(11) 15.9960(3) 

c [Å] 16.4000(5) 21.9024(11) 9.0090(4) 14.4722(3) 

α [°] 90 90 90 90 

β [°] 99.381(4) 105.979(5) 90 110.189(3) 

γ [°] 90 90 90 90 

V [Å3] 2325.17(16) 2364.44(19) 4189.3(3) 4535.50(19) 

Z 4 4 8 4 

ρcalc [g·cm−3] 1.561 1.639 1.850 2.512 

Radiation [Å] MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

μ [cm−1] 2.139 3.085 3.482 6.948 

F(000) 1112 1168 2336 3200 

Index ranges −13≤h≤13 

−16≤k≤14 

−20≤l≤20 

−17≤h≤16 

−9≤k≤9 

−23≤l≤27 

−22≤h≤22 

−37≤k≤33 

−11≤l≤12 

−29≤h≤29 

−22≤k≤22 

−20≤l≤20 

Θ range [°] 4.165≤Θ≤ 

26.371 

4.253≤Θ≤ 

26.368 

2.448≤Θ≤ 

28.281 

4.106≤Θ≤ 

30.508 

Reflections collected 17187 16828 38917 43406 

Independent reflections 4728 4733 10111 13773 

Observed reflections 3450 3781 8444 12343 

Data/restraints/parameters 4728/0/266 4733/0/240 10111/1/479 13773/2/477 

Rint 0.0487 0.0352 0.0581 0.0307 

R1, wR2 [I>2σ(I)] 0.0448, 0.0986 0.0443, 0.1128 0.0408, 0.0813 0.0280, 0.0612 

R1, wR2 [all data] 0.0702, 0.1146 0.0601, 0.1238 0.0556, 0.0887 0.0338, 0.0642 

GooF 1.058 1.049 1.046 1.021 

δpmax, δpmin [e·nm−3] 1.180, −0.414 1.908, −0.558 0.744, −0.576 2.756, −0.586 
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Table 2: Crystallographic data of 5-10, 5-11, 5-13 and 5-14. 

 5-10 5-11 5-13 5-14 

Identification code mx177 ox385 xv538 mx131 

Empirical formula C20H23Cu3N5PS3 C19H27Cl3Cu3N2P C19H27Cu3I3N2P C21H24Cl3Cu3N3P 

Formula weight [g·mol−1] 651.20 611.36 885.71 646.37 

Temperature [K] 173(2) 128(2) 104(2) 173(2) 

Crystal size [mm3] 0.06× 0.17× 

0.25 

0.05× 0.40× 

0.45 

0.02× 0.07× 

0.08 

0.03× 0.15× 

0.25 

Colour, shape Colourless 

block 

Yellow platelet Colourless 

platelet 

Colourless 

block 

Crystal system Orthorhombic Orthorhombic Orthorhombic Monoclinic 

Space group Pbca Pna21 Pbca C2/c 

a [Å] 10.8645(2) 16.1620(3) 16.2479(5) 32.5615(13) 

b [Å] 20.0628(6) 13.3450(3) 14.4034(4) 7.6042(2) 

c [Å] 23.8267(6) 10.6630(2) 20.7144(6) 19.6563(7) 

α [°] 90 90 90 90 

β [°] 90 90 90 102.019(3) 

γ [°] 90 90 90 90 

V [Å3] 5193.6(2) 2299.82(8) 4847.7(2) 4760.3(3) 

Z 8 4 8 8 

ρcalc [g·cm−3] 1.666 1.766 2.427 1.804 

Radiation [Å] MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

μ [cm−1] 2.755 3.176 6.504 3.075 

F(000) 2624 1232 3328 2592 

Index ranges −14≤h≤13 

−26≤k≤26 

−30≤l≤26 

−21≤h≤21 

−17≤k≤ 17 

−14≤l≤14 

−21≤h≤21 

−19≤k≤19 

−27≤l≤27 

−43≤h≤40 

−10≤k≤9 

−25≤l≤26 

Θ range [°] 4.152≤Θ≤ 

27.484 

2.520≤Θ≤ 

28.274 

2.130≤Θ≤ 

28.278 

4.106≤Θ≤ 

28.282 

Reflections collected 44639 21446 77609 21380 

Independent reflections 5927 5554 5965 5872 

Observed reflections 3760 5252 5377 4636 

Data/restraints/parameters 5927/0/298 5554/1/259 5965/0/268 5872/0/295 

Rint 0.0944 0.0296 0.0370 0.0395 

R1, wR2 [I>2σ(I)] 0.0417, 0.0755 0.0235, 0.0591 0.0163, 0.0357 0.0342, 0.0700 

R1, wR2 [all data] 0.0852, 0.0900 0.0268, 0.0615 0.0210, 0.0388 0.0496, 0.0773 

GooF 1.015 1.054 1.125 1.046 

δpmax, δpmin [e·nm−3] 0.375, −0.364 0.508, −0.348 0.422, −0.806 0.439, −0.554 
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Table 3: Crystallographic data of 5-17, 5-18, 5-20 and 5-21. 

 5-17·MeCN 5-18 5-20 · 2MeCN 5-21 · 2MeCN 

Identification code xv308 xv537 mx405 mx400 

Empirical formula C26H33Cl3Cu3N4P C24H30Br3Cu3N3

P 

C40H40Cl2Cu2N6

O2P2 

C40H40Br2Cu2N6

O2P2 

Formula weight [g·mol−1] 729.50 821.83 896.70 985.62 

Temperature [K] 106(2) 104(2) 138(2) 298(2) 

Crystal size [mm3] 0.02× 0.03× 

0.07 

0.02× 0.05× 

0.10 

0.11× 0.19× 

0.22 

0.24× 0.29× 

0.33 

Colour, shape Colourless rod Colourless 

platelet 

Pale yellow 

block 

Colourless 

block 

Crystal system Monoclinic Triclinic Triclinic Triclinic 

Space group P21/n P−1 P−1 P−1 

a [Å] 11.7494(5) 8.1750(2) 9.7327(6) 9.8162(2) 

b [Å] 17.6960(8) 10.0440(3) 10.0126(6) 10.0591(3) 

c [Å] 14.3167(7) 17.6380(4) 11.5320(9) 11.5530(3) 

α [°] 90 103.0550(8) 110.922(7) 109.434(2) 

β [°] 107.4184(15) 95.1230(9) 100.657(6) 101.523(2) 

γ [°] 90 96.6230(9) 102.972(5) 102.891(2) 

V [Å3] 2840.2(4) 1391.41(6) 978.56(12) 1001.00(5) 

Z 4 2 1 1 

ρcalc [g·cm−3] 1.706 1.962 1.522 1.635 

Radiation [Å] MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

MoKα = 

0.71073 

μ [cm−1] 2.589 6.656 1.349 3.182 

F(000) 1480 804 460 496 

Index ranges −15≤h≤15 

−23≤k≤23 

−19≤l≤19 

−11≤h≤11 

−14≤k≤14 

−25≤l≤25 

−12≤h≤13 

−14≤k≤13 

−16≤l≤15 

−14≤h≤14 

−14≤k≤14 

−16≤l≤16 

Θ range [°] 2.933≤Θ≤ 28.30 3.053≤Θ≤ 30.56 4.178≤Θ≤ 

30.507 

4.160≤Θ≤ 

30.508 

Reflections collected 52593 27130 10322 19609 

Independent reflections 7048 8470 5939 6079 

Observed reflections 6018 6811 4512 5171 

Data/restraints/parameters 7048/0/341 8470/0/313 5939/0/260 6079/0/260 

Rint 0.0424 0.0351 0.0325 0.0314 

R1, wR2 [I>2σ(I)] 0.0250, 0.0534 0.0282, 0.0530 0.0408, 0.0795 0.0309, 0.0751 

R1, wR2 [all data] 0.0346, 0.0581 0.0430, 0.0571 0.0618, 0.0898 0.0397, 0.0801 

GooF 1.057 1.041 1.021 1.039 

δpmax, δpmin [e·nm−3] 0.520, −0.679 0.522, −0.647 0.446, −0.507 0.767, −0.685 
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Table 4: Crystallogrphic data of 5-23 and 5-24. 

 5-23 5-24 

Identification code mx403 mx289 

Empirical formula C32H40Cl2Cu2N4O4P2 C40H39Cu2N4O8P2 

Formula weight [g·mol−1] 804.60 891.76 

Temperature [K] 143(2) 143(2) 

Crystal size [mm3] 0.03× 0.09× 0.38 0.02× 0.08× 0.10 

Colour, shape Blue needle Pale blue block 

Crystal system Monoclinic Monoclinic 

Space group P21/n P21/c 

a [Å] 10.2044(6) 10.8407(6) 

b [Å] 12.3572(6) 7.8134(4) 

c [Å] 13.0525(7) 22.5525(12) 

α [°] 90 90 

β [°] 91.661(5) 98.684(6) 

γ [°] 90 90 

V [Å3] 1645.20(15) 1888.36(18) 

Z 2 2 

ρcalc [g·cm−3] 1.624 1.568 

Radiation [Å] MoKα = 0.71073 MoKα = 0.71073 

μ [cm−1] 1.597 1.271 

F(000) 828 916 

Index ranges −13≤h≤11 

−16≤k≤16 

−15≤l≤17 

−13≤h≤14 

−10≤k≤10 

−29≤l≤30 

Θ range [°] 4.323≤Θ≤ 28.278 4.462≤Θ≤ 28.280 

Reflections collected 13715 17021 

Independent reflections 4056 4668 

Observed reflections 2707 3323 

Data/restraints/parameters 4056/0/217 4668/0/268 

Rint 0.0712 0.0617 

R1, wR2 [I>2σ(I)] 0.0460, 0.0863 0.0432, 0.0813 

R1, wR2 [all data] 0.0863, 0.1029 0.0742, 0.0919 

GooF 1.023 1.023 

δpmax, δpmin [e·nm−3] 0.521, −0.421 0.548, −0.406 
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6.1 Introduction 

6.1.1 Bodipy 

 

Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes are some of the most versatile 

fluorophores available (Figure 1).[1] This is due to a number of desirable properties of these 

compounds, including (i) a strong UV absorption profile, (ii) a sharp fluorescence emission peak, (iii) 

high quantum yields, (iv) negligible triplet state formation, (v) high thermal and photochemical 

stability, (vi) chemical robustness and (vii) good solubility.[2] 

 

 
Figure 1: Bodipy: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. 

 

Bodipy dyes were first discovered by A. Treibs and F. Kreuzer in 1968[3] and since then they have 

been investigated for different applications, such as biomolecular labels, drug delivery agents, cation 

sensors, fluorescent switches, laser dyes, electroluminescent films and sensitizers for solar cells.[2] 

The properties of Bodipy dyes can strongly be influenced by minor changes to the structure of 

Bodipy.[4] 

Symmetrical Bodipy derivatives are usually synthesised by a condensation reaction, starting from a 

pyrrole compound and an electrophilic carbonyl derivative. Subsequently the compound is oxidised 

and finally the structure is closed by addition of boron trifluoride diethyl etherate (Scheme 1).[1] 

 

 
Scheme 1: General synthesis of symmetrical Bodipy derivatives. 

 

Commonly additional substituents are attached to C8, which is also called the meso position. Using 

the synthetic route described above it is very easy to introduce aryl or alkyl substituents at the meso 

position. Modifications at this position have very little effect on the absorption and emission 

wavelengths.[4-5] On the contrary substitution at the positions 1 and 7 has a large effect on the 

quantum yield, because this prevents free rotation of the meso substituent.[5] 
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The fluorine atoms at boron can be substituted with aryl or alkyl groups by use of organolithium or 

Grignard reagents.[1] 

 

6.1.2 Metal complexes of Bodipy derivatives 

 

In the literature many Bodipy derivatives are described, which have substituents with additional 

heteroatoms that are able to coordinate metals. 

A possible application of complexes of Bodipy derivatives is in catalysis. Complex B1 (Figure 2) can be 

used as a redox switchable catalyst for hydroborations of alkenes.[6] Another example of a 

catalytically active complex based on Bodipy is compound B2 (Figure 3), which can be applied for 

Sonogashira C–C cross-coupling reactions.[7] 

 

 
Figure 2: Complexes B1 and B2 used as catalysts.[6-7]

 

 

Due to their fluorescent properties complexes of Bodipy derivatives also are of interest for 

applications in bioimaging.[8] A number of complexes also shows cytotoxic properties, which makes 

them of interest not only for cell imaging, but also as potential anti-cancer agents.[8a, 9] 

In many cases the coordination of the substituents has a strong influence on the fluorescence 

properties of the Bodipy moiety. Therefore some Bodipy derivatives can be used as fluorescent 

sensors for the detection of metal ions, such as Yb,[10] Zn,[11] Cu,[12] Hg,[12-13] and Ag.[14] The antimony 

complex B3 (Figure 3) can bind anions, such as fluoride, cyanide and azide, in organic solvents and 

the binding is accompanied by a change of fluorescence.[15] This makes the complex suitable for 

application as an anion sensor.[15] Other complexes can be used to detect small molecules, such as 

CO (B4)[16] or ethylene (B5) (Figure 3).[17] The mechanism of the detection of these molecules is 

based on the fact that the complexes show weak or no fluorescence due to heavy atom quenching. 

After reaction with the molecule to detect the ligand is no longer coordinated to the metal and 

therefore the fluorescence significantly increases.[16-17] 
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Figure 3: Complexes B3, B4 and B5 used as sensors for anions or small molecules.[15-17] 

 

Also it is possible in some cases to monitor ligand exchange reactions via fluorescence changes upon 

changes of electron density at the metal centre.[18] 

 

As the fluorescence of the Bodipy moiety is influenced by the coordination situation of the attached 

complex, this raises the question, which luminescent properties a compound containing both the 

Bodipy moiety and a luminescent complex would have. 

 

6.2 Results and discussion 

6.2.1 Synthesis of primary phosphine 6-5 

 

The air-stable primary phosphine 2,8-diethyl-1,3,5,5,7,9-hexamethyl-10-(4-phosphanylphenyl)-5H-

4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-5 was first synthesised in the research group of 

L. Higham.[19] By substitution of the hydrogen atoms at phosphorus a variety of organic moieties can 

be introduced to the molecule. 

6-5 was used as a precursor for the synthesis of the desired ligands 6-6 and 6-9. The synthesis was 

carried out in four steps according to the procedures described by L. H. Davies et al., starting from 4-

bromobenzaldehyde and 2,4-dimethyl-3-ethylpyrrole.[20] 

The first step was the condensation of 4-bromobenzaldehyde with 2,4-dimethyl-3-ethylpyrrole, 

followed by oxidation of the product with 2,3-Dicyano-5,6-dichloroparabenzoquinone (DDQ). 

Afterwards BF3·Et2O was added to form the Bodipy moiety of 10-(4-bromophenyl)-2,8-diethyl-5,5-

difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-1 (Scheme 2). 
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Scheme 2: Synthesis of 10-(4-bromophenyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-
f][1,3,2]diazaborinine 6-1. 

 

In the next two steps the fluorine substituents on the boron were replaced with methyl groups and 

the bromine on the phenyl ring was substituted with a diethoxy phosphonate group to obtain diethyl 

(4-(2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-

yl)phenyl)phosphonate 6-4. The methylation was carried out by a Grignard reaction with methyl 

magnesium bromide and for the phosphonylation a palladium catalysed cross coupling reaction with 

diethyl phosphite was used. These two steps can be performed in both orders: first the methylation 

and afterwards the phosphonylation or vice versa round (Scheme 3). Both sequences have been 

described by L. H. Davies et al. and they have found, that higher yields can be obtained when 

compound 6-1 is phosphonylated first and diethyl (4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-

5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)phenyl)phosphonate 6-3 methylated 

afterwards.[20] Both reaction pathways were tested and the previous results were confirmed. 

 

 
Scheme 3: Synthesis of diethyl (4-(2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-
10-yl)phenyl)phosphonate 6-4. i: MeLi, THF, RT. ii: HP(O)OEt2, Pd(OAc)2, DPPB, DMSO, 90°C. 
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Finally the phosphonate was reduced with LiAlH4 to obtain the primary phosphine 6-5. Therefore 

lithium aluminium hydride was activated with TMSCl and subsequently a solution of 6-4 in THF was 

added at −78°C (Scheme 4). 

 

 
Scheme 4: Synthesis of 2,8-diethyl-1,3,5,5,7,9-hexamethyl-10-(4-phosphanylphenyl)-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-
f][1,3,2]diazaborinine 6-5. 

 

Primary phosphine 6-5 was obtained as an orange solid with an overall yield of 18%. 

 

6.2.2 Synthesis of the P,N ligands 

 

10-(4-(bis(2-(pyridin-2-yl)ethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-6 was synthesised via hydrophosphination of 2-

vinylpyridine with 6-5. This reaction has been performed in the research group of L. Higham before 

applying different methods. Experiments were performed as a radical reaction with 1,1’-

azobis(cyclohexane-carbonitrile) (ABCN) and with a Pt catalyst, but both reaction pathways afforded 

only moderate yields and needed reaction times of several days.[21] 

 

First the reaction was performed according to the procedure described before in the research group 

of L. Higham.[21] Primary phosphine 6-5 was allowed to react with 2-vinyl pyridine in a radical 

reaction, using ABCN as radical starter. After three days the 31P NMR showed that no starting 

material was present in the reaction mixture. The solvent was removed and the crude product was 

purified by column chromatography. From this reaction the desired product was obtained in a low 

yield of 28%. 

 

Therefore an iron catalyst for this reaction was tested. The reaction was performed according to the 

procedure described by K. Gallagher et al. who used the catalyst (Fe(salen))2O for similar reactions 

(Scheme 5).[22] 
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Scheme 5: Synthesis of 10-(4-(bis(2-(pyridin-2-yl)ethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-
dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-6. 

 

The reaction was first tested in THF at 40°C, but no conversion of the starting material was observed 

in the 31P NMR spectrum of the reaction solution. Increase of the reaction temperature to 60°C led 

to a slow reaction, but after four days only 9% of the used primary phosphine had reacted to the 

intermediate secondary phosphine, in which one of the hydrogen atoms is replaced by the (CH2)2py 

group. Therefore the solvent was changed to toluene and the reaction was heated to 110°C. 

The progress of the reaction was monitored with 31P NMR spectroscopy. After one day the NMR 

spectrum showed a large signal at −124 ppm, which is caused by unreacted starting material 6-5 and 

a small signal at −51 ppm, which can be assigned to the corresponding secondary phosphine (Figure 

4). After a reaction time of four days the 31P NMR spectrum showed, that no 6-5 was left in the 

reaction mixture, but a mixture of the secondary phosphine and the desired product 6-6 was 

present. After an overall reaction time of eleven days the 31P NMR spectrum of the reaction mixture 

showed complete conversion of the primary phosphine and the intermediate secondary phosphine 

to 6-6. 

 

 
Figure 4: 31P NMR spectra of the reaction to form 6-6 with iron catalyst (Fe(salen))2O in toluene. 

 

After removal of the solvent under vacuum and column chromatography the product was obtained 

in 66% yield. Ligand 6-6 is air-sensitive and easily oxidised to the corresponding phosphine oxide 6-7 

(Figure 5). 
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Figure 5: Oxide of ligand 6-6 (4-(2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-
10-yl)phenyl)bis(2-(pyridin-2-yl)ethyl)phosphine oxide 6-7. 

 

10-(4-(bis(pyridin-2-ylmethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-9 was synthesised from 6-5 in a two-step reaction. First 

the primary phosphine was allowed to react with PCl5 in toluene to obtain the corresponding 

dichlorophosphine 6-8 according to the procedure described by J. Wallis.[23] After the solvent was 

removed in vacuo THF was added and 6-8 was allowed to react with two equivalents of 2-1 as 

described by C. Hettstedt to afford ligand 6-9 (Scheme 6).[24] 

 

 
Scheme 6: Synthesis of 10-(4-(bis(pyridin-2-ylmethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ4,5λ4-
dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-9. 

 

After removal of the solvent under vacuum the product was purified by column chromatography on 

silica gel. This procedure afforded the desired product in good yields of 69% to 87%. 

 

6.2.3 Transition metal complexes 

6.2.3.1 Manganese complexes 

 

To form the manganese complexes 6-10 and 6-11 the corresponding P,N ligands were allowed to 

react with MnBr(CO)5 for 2 h at 110°C in toluene (Scheme 7) according to a procedure developed in 

the research group of L. Higham.[25] 
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Scheme 7: Synthetic route towards complexes 6-10 and 6-11. 

 

Previous experiments in the research group of L. Higham to synthesise a P,N coordinated 

manganese complex of 6-6 have shown, that in the resulting complex two molecules of CO 

coordinating to the manganese atom are replaced with the phosphorus atoms of two molecules of 

6-6 to form 6-10.[25a] Therefore the reaction of 6-6 with MnBr(CO)5 was performed in a metal to 

ligand ratio of 1:2. 

The product that was obtained from this reaction was analysed by NMR and IR spectroscopy. The 

chemical shift of the signal in the 31P NMR spectrum is 34.2 ppm, which corresponds with the signal 

of the phosphine oxide of the ligand 6-7. Due to the presence of the paramagnetic manganese the 
1H NMR spectrum showed only a few broad signals, which could not be assigned. 

Single crystals suitable for X-ray structure analysis were obtained. Although the crystals were of very 

poor quality their identity was determined as the phosphine oxide 6-7. 

 

As no previous results of the coordination behaviour of 6-9 to MnBr(CO)5 were available these two 

compounds were allowed to react in a 1:1 ratio. Due to the shorter spacer between the phosphorus 

atom and the pyridine ring in 6-9 compared to 6-6 in complex 6-11 P,N coordination of the ligand to 

the manganese might also be possible. To find out in which way the metal is coordinated by 6-9 it 

would be necessary to determine the crystal structure. Unfortunately no single crystals suitable for 

X-ray crystallography of 6-11 could be obtained. 

In the 31P NMR spectrum of the product a signal at 72.0 ppm was observed, which indicates that 

most probably phosphorus is coordinating to manganese. The 1H NMR spectrum again showed only 

broad signals, which could not be assigned. 

In the IR spectrum absorption bands at 1930.5 cm−1 and 2027.6 cm−1 confirm the presence of a 

coordinated CO molecule in the sample. 

 

6.2.3.2 Zinc complexes 

 

To form the zinc bromide complexes 6-12 and 6-13 the corresponding P,N ligands were allowed to 

react with ZnBr2 in DCM at room temperature (Scheme 8). 

 



141 
 

 
Scheme 8: Synthetic route towards complexes 6-12 and 6-13. 

 

The 31P NMR signals of 6-12 and 6-13 are shifted 3.6 ppm and 0.1 ppm respectively towards lower 

field compared to the signal of the free ligand. 

Ligand 6-9 has a very similar structure to 2-13. The only difference is the Bodipy moiety in 

para position at the phenyl ring that is present in 6-9. Therefore similar coordination behaviour as of 

2-13 might be expected for 6-9. Upon coordination of 2-13 to zinc chloride a low field shift of the 31P 

NMR signal compared to the signal of the free ligand of 3.4 ppm was observed (see 4.2.2), which is 

very similar to the shift of the signal found for 6-13. This indicates that in complex 6-13 the zinc is 

probably coordinated by the nitrogen atoms of the pyridine rings, without any interaction with the 

phosphorus atom. This was confirmed by single crystal X-ray diffraction (see 6.2.5.1). 

As the effect of the reaction of 6-6 with zinc bromide on the chemical shift of the 31P NMR signal is 

very small, it can be assumed that in compound 6-12 also no coordination of phosphorus to zinc is 

present. 

 

6.2.3.3 Copper complexes 

 

To form the copper chloride complexes 6-14 and 6-15 the corresponding P,N ligands were allowed to 

react with CuCl in DCM at room temperature (Scheme 9). 

 

 

 
Scheme 9: Synthetic route towards complexes 6-14 and 6-15. 

 

From both reactions dark red solids were obtained. In solution both compounds showed green 

luminescence, but had lower quantum yields than the pure phosphine ligands. 

In the 31P NMR spectrum of the product of the reaction to produce 6-14 a large signal at 41.0 ppm 

could be observed, which indicates oxidation of the ligand. 

From a NMR sample of the product of the reaction to form 6-15 single crystals suitable for X-ray 

diffraction were obtained. The crystals were of very poor quality, but it was possible to identify the 

compound as the oxide of the phosphine ligand 6-9. The 31P NMR spectrum of this NMR sample 

showed a large, broad signal at −10.8 ppm and a small signal at 34.6 ppm. The large signal is 
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probably caused either by non-oxidised ligand that did not react with the copper chloride or by 

complex 6-15, while the small signal is caused by the phosphine oxide. 

No crystals suitable for X-ray single crystal structure analysis of the desired complexes 6-14 and 6-15 

could be obtained. 

 

To form the copper hexafluorophosphate complexes 6-16 and 6-17 the corresponding P,N ligands 

were allowed to react with Cu(MeCN)4PF6 in DCM at room temperature (Scheme 10). 

 

 
Scheme 10: Synthetic route towards complex 6-17. 

 

The31P NMR spectrum of the product of the reaction to obtain 6-16 showed a septet at −144.5 ppm, 

which is caused by the hexafluorophosphate anion and a broad signal at 40.5 ppm, which can be 

assigned to phosphine oxide 6-7. This means that again during the reaction the ligand was oxidised. 

The 31P NMR spectrum of the product of the reaction to synthesise 6-17 showed the signal of the 

anion, two signals at 36.9 ppm and 39.5 ppm that might be caused by the oxidised ligand and its 

copper complex and a signal at −16.6 ppm that is probably caused by the desired complex 6-17. 

No statements about the coordination behaviour of 6-6 towards Cu(I) can be made. However, X-ray 

diffraction on single crystals of 6-17 showed the coordination depicted in Scheme 10 (see 6.2.5.2). a 

similar coordination of the ligand might be assumed in 6-16. 

 

6.2.4 Photophysical data 

 

Due to the Bodipy moiety the literature known compounds 6-1–6-5 show green fluorescence under 

UV light.[20, 26] 

The Bodipy based ligands 6-6 and 6-9 and all synthesised complexes of these two ligands also show 

green fluorescence under UV light in solution. In the solid state no luminescence could be observed 

for these compounds. In Table 1 the photophysical data of compounds 6-5–6-7, 6-9, 6-13 and 6-17 

are listed. 

 
Table 1: Maximum absorption and fluorescence emission wavelengths and fluorescence quantum yields of compounds 6-

5–6-7, 6-9, 6-13 and 6-17 in THF at room temperature. 

Compound λabs λem ΦF 

6-5 512.5 527.5 0.28 
6-6 513[25] 527[25] 0.35[25] 

6-7 513 529 0.29 
6-9 513 528.5 0.33 

6-13 513 530.5 0.30 
6-17 513.5 529 0.20 



 

 

The absorption maxima of all compounds are at 512.5

fluorescent materials. The emission maxima are also in the range of 

between 527 nm and 530.5 nm. 

The quantum yields of the P,N ligands 

primary phosphine 6-5 (0.28). Phosphine oxide 

to the quantum yield of 6-5. 

Complexation of ligand 6-9 decre

(0.30) is only slightly lower than the quantum yield of 

significantly lower. 

 

The absorption and emission spectra

 

Figure 6: Absorption (top) and fluorescence emission
RT. 

 

6.2.5 Crystal structures 

6.2.5.1 Crystal structure of 6-13

 

Single crystals of 6-13 suitable for 

solution in DCM. 
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The absorption maxima of all compounds are at 512.5–513.5 nm, which is typical for 

fluorescent materials. The emission maxima are also in the range of Bodipy caused luminescence 

 

The quantum yields of the P,N ligands 6-6 (0.35) and 6-9 (0.33) are slightly higher than that of 

(0.28). Phosphine oxide 6-7 (0.29) has a quantum yield, which

decreases the quantum yields. The quantum yield of zinc complex 

only slightly lower than the quantum yield of 6-9, while the quantum yield of 

bsorption and emission spectra of 6-9, 6-13 and 6-17 are shown in Figure 6

and fluorescence emission (bottom) spectra of 6-9 (blue), 6-13 (green)

3 

suitable for X-ray crystallography were obtained by slow diffusion of Et

nm, which is typical for Bodipy based 

caused luminescence 

(0.33) are slightly higher than that of 

, which is comparable 

of zinc complex 6-13 

he quantum yield of 6-17 (0.20) is 

6. 

 
(green) and 6-17 (red) in THF at 

crystallography were obtained by slow diffusion of Et2O in a 
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The complex crystallises in the triclinic space group P−1 with four formula units in the unit cell. The 

asymmetric unit comprises two molecules of 6-13 and three molecules of DCM. The molecular 

structure is shown in Figure 7. 

The zinc atoms are coordinated tetrahedrally by the nitrogen atoms of the two picolyl groups of the 

ligand and two bromide anions. The bromine atoms Br3 and Br4 at Zn2 are disordered. 

 

 
Figure 7: Asymmetric unit of 6-13. Thermal ellipsoids are drawn at 50% probability level. H atoms and solvent molecules 
have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Zn1–N3: 2.064(4), Zn1–N4: 2.054(4), Zn1–Br1: 
2.390(1), Zn1–Br2: 2.351(1), Zn2–N7: 2.081(5), Zn2–N8: 2.065(5), Zn2–Br3A: 2.417(3), Zn2–Br3B: 2.281(7), Zn2–Br4A: 
2.347(3), Zn2–Br4B: 2.390(4), P1–C22: 1.835(5), P1–C25: 1.856(5), P1–C31: 1.864(5), P2–C60: 1.837(5), P2–C63: 1.859(6), 
P2–C69: 1.871(7), Br1–Zn1–Br2: 119.1(1), Br1–Zn1–N3: 101.9(1), Br1–Zn1–N4: 105.0(1), Br2–Zn1–N3: 105.6(1), Br2–Zn1–
N4: 107.9(1), N3–Zn1–N4: 117.9(2), Br3A–Zn2–Br4A: 114.8(1), Br3A–Zn2–Br4B: 127.6(1), Br3A–Zn2–N7: 98.4(2), Br3A–
Zn2–N8: 110.2(2), Br3B–Zn2–Br4A: 109.8(2), Br3B–Zn2–Br4B: 122.7(2), Br3B–Zn2–N7: 101.0(2), Br3B–Zn2–N8: 112.5(3), 
Br4A–Zn2–N7: 111.5(1), Br4A–Zn2–N8: 106.8(2), Br4B–Zn2–N7: 97.7(2), Br4B–Zn2–N8: 107.1(2), N7–Zn2–N8: 115.1(2), 
C22–P1–C25: 102.3(2), C22–P1–C31: 102.7(2), C25–P1–C31: 102.4(2), C60–P2–C63: 102.3(2), C60–P2–C69: 101.5(3), C63–
P2–C69: 102.0(3). 

 

There are no zinc bromide complexes of bis(picolyl)phosphines described in the literature, but the 

coordination of 6-9 to zinc is the same as found in 4-1 (see 4.2.4) and the bis(picolyl)phosphine zinc 

chloride complexes of C. Hettstedt.[27] 

The Zn–N distances of 2.054(4)–2.082(1) Å are close to the average Zn–N distance of 2.064 Å of 

pyridine ligands in complexes with four-coordinate zinc atoms.[28] The Zn–N distances of 6-13 are 

also in the same range as those of the known bis(picolyl)phosphine zinc chloride complexes.[27] 

The average Zn–Br distance in complexes with four-coordinate zinc atoms is 2.386 Å.[28] The Zn1–Br2 

distance (2.351(1) Å) and the average Zn2–Br distances (2.369 Å for Br3 and 2.349 Å for Br4) are 

slightly shorter than this value, while the Zn1–Br1 distance (2.390(1) Å) is slightly longer. This means 

that the Zn–Br distances found in the structure of 6-13 are in a range, which is typical for the 

involved atoms. 

The P–CAr distances (1.835(5) Å and 1.837(5) Å) are slightly longer than those found in the structure 

of triphenylphosphine (1.822(5)–1.831(5) Å),[29] and the P–CAlk distances (1.856(5)–1.871(7) Å) are 

slightly longer than those of tribenzylphosphine (1.855(2)–1.858(2) Å).[30] 
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The angles around Zn1 range from 101.9(1) ° to 119.1(1) °. The N–Zn1–N angle (117.9(2) °) and Br–

Zn1–Br angle (119.1(1) °) are larger than the ideal tetrahedral angle of 109.5 °, while the N–Zn1–Br 

angles 101.9(1)–107.9(1) °) are smaller. This is in analogy to the angles around zinc found in complex 

4-1.  

The C–P–C angles range from 101.5(3) ° to 102.7(2) °, which is slightly smaller than the ideal 

tetrahedral angle of 109.5 °. The angles sum up to 307.4 ° and 305.8 ° respectively, meaning that the 

conformation around the phosphorus atoms is rather pyramidal than planar. 

 

In the crystal the complex forms layers along the c axis in an ABCD pattern (Figure 8). 

 

 

 
Figure 8: Crystal structure of 6-13. View along the b axis. 

 

6.2.5.2 Crystal structure of 6-17 

 

Single crystals of 6-17 suitable for X-ray crystallography were obtained by slow diffusion of Et2O in a 

solution in DCM. 

The complex crystallises in the orthorhombic space group P212121 with four formula units in the unit 

cell. The asymmetric unit comprises one molecule of 6-17 and two molecules of Et2O. The molecular 

structure is shown in Figure 9. 

The complex forms an asymmetric dimer, in which each copper atom is coordinated by one of the 

pyridine nitrogen atoms of each ligand. Additionally Cu1 is coordinated by both phosphorus atoms, 

while Cu2 is only coordinated by P2. Therefore the coordination of Cu1 is distorted tetrahedral and 

the coordination of Cu2 is trigonal planar. The same coordination as in 6-17 can be found in the 

literature known copper hexafluorophosphate complex of 2-13.[31] 
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Figure 9: Molecular structure of 6-17. Thermal ellipsoids are drawn at 50% probability level. H atoms, PF6

− anions and 
solvent molecules have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Cu1–P1: 2.245(1), Cu1–P2: 
2.355(1), Cu1–N3: 2.116(3), Cu1–N7: 2.009(3), Cu2–P1: 3.282(1), Cu2–P2: 2.309(1), Cu2–N4: 1.993(3), Cu2–N8: 2.018(3), 
Cu1···Cu2: 2.464(1), P1–C22: 1.815(3); P1–C25: 1.834(3), P1–C31: 1.844(3), P2–C60: 1.817(3), P2–C63: 1.849(3), P2–C69: 
1.852(3), P1–Cu1–P2: 130.0(1), P1–Cu1–N3: 85.7(1), P1–Cu1–N7: 121.2(1), P2–Cu1–N3: 127.6(1), P2–Cu1–N7: 84.8(1), N3–
Cu1–N7:110.1(1), P2–Cu2–N4: 159.0(1), P2–Cu2–N8: 85.5(1), N4–Cu2–N8: 114.9(1), Cu1–P2–Cu2: 63.8(1), C22–P1–C25: 
107.8(2), C22–P1–C31: 102.5(2), C25–P1–C31: 102.5(2), C60–P2–C63: 106.1(2), C60–P2–C69: 100.1(2), C63–P2–C69: 
98.2(2). 

 

In the literature only a small number of copper(I) complexes with bridging phosphine ligands are 

described. [31-32] The first examples were reported in 2005 by F. Leca et al. with a ligand based on 2,5-

bis(2-pyridyl)phosphole.[33] 

The Cu–P distances of P2 (2.355(1) Å (Cu1) and 2.309(1) Å (Cu2)) are slightly different, but closer to 

each other than the corresponding distances in the complex of 2-13 (2.497(2) Å and 2.235(2) Å 

respectively).[31] The Cu1–P1 distance (2.245(1) Å) is slightly shorter than the corresponding distance 

in the literature known complex (2.254(2) Å).[31] The distance between Cu2 and P1 (3.282(1) Å) is 

significantly longer than the other Cu–P distances and too long to assume bonding interactions 

between these two atoms. 

The Cu–N distances involving the nitrogen atoms of the ligand containing P2 (N7 and N8) are very 

similar (2.009(3) Å and 2.018(3) Å respectively), while the other two Cu–N distances (1.993(3) Å and 

2.116(3) Å) are quite different. The same can be observed for the complex of 2-13.[31] 

The Cu···Cu distance found in the structure of 6-17 (2.464(1) Å) is slightly shorter than that of the 

literature known complex,[31] meaning that it is one of the shortest, if not the shortest, Cu···Cu 

distances in complexes with bridging phosphine ligands. 
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The P–C distances in 6-17 are in the range of 1.815(3)–1.853(4) Å, whereby the P–CAr bonds 

(1.815(3) Å and 1.817(4) Å) are slightly shorter than in triphenylphosphine[29] and the P–CAlk bonds 

(1.834(3)–1.853(4) Å) are slightly shorter than those of tribenzylphosphine.[30] 

The angles around Cu1 (N/P–Cu1–N/P) vary over a wide range from 84.8(1) ° to 130.0(1) °. Only the 

angle N3–Cu1–N7 of 110.1(1) ° is quite close to the ideal tetrahedral angle of 109.5 °. A similar 

distribution of the corresponding angles was observed in the copper hexafluorophosphate complex 

of 2-13.[31] 

The N/P–Cu2–N angles (85.5(1)–159.0(1) °) sum up to 359.4 °, which confirms that Cu2 is 

coordinated trigonal planar by P2, N4 and N8. Usually in a trigonal planar configuration all three 

angles should be 120 °, but only the angle N4–Cu2–N8 (114.9(1) °) is close to 120 °. The angle P2–

Cu2–N8 (85.5(1) °) is much smaller, because the pyridine ring containing N8 is bonded to P2 via the 

methylene group. These findings are analogous to those described in the literature.[31] 

The Cu–P–Cu angle (63.8(1) °) is slightly larger, but comparable to the angle found in the literature 

known complex (63.2(1) °).[31] 

All C–P–C angles are smaller than the ideal tetrahedral angle and range from 98.2(2) ° to 107.8(2) °. 

  

In the crystal the molecules are arranged in layers along the c axis in an ABAB pattern (Figure 10). 

 

 
Figure 10: Crystal structure of 6-17. View along the a axis. 
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6.3 Summary 

 

Two P,N ligands (known compound 6-6 and new compound 6-9) with the fluorescent Bodipy moiety 

in one of the substituents bonded to phosphorus have been synthesised successfully. The only 

difference between ligands 6-6 and 6-9 is the length of the carbon chains between the phosphorus 

atom and the pyridine rings, which is shorter by one carbon atom in ligand 6-9. 

For the synthesis of 6-6 a new synthetic procedure was tested, which led to higher yields, but 

needed longer reaction times. Ligand 6-9 could be synthesised in good yield by replacing the 

hydrogen atoms at the phosphorus atom in primary phosphine 6-5 with chlorine and subsequent 

reaction of dichlorophosphine 6-8 with 2-1 in analogy to the synthesis of the bis(picolyl)phosphine 

related compounds described in Chapter 2. 

The P,N ligands were allowed to react with salts of manganese, zinc and copper(I) to obtain the 

corresponding complexes. Ligand 6-6 is very sensitive towards oxidation and was easily oxidised to 

give phosphine oxide 6-7 by even small amounts of oxygen. 

The ligands as well as the complexes showed green fluorescence under UV light in solution. The 

absorption and emission spectra of the ligands 6-6 and 6-9, phosphine oxide 6-7 and the complexes 

6-13 and 6-17 all correspond with the spectra that are typical for Bodipy based fluorescent dyes. The 

highest fluorescence quantum yields of 0.35 and 0.33 respectively were measured for the free 

ligands. Upon coordination of 6-9 to metals a decrease of the quantum yields was observed. 

Of complexes 6-13 and 6-17 crystals suitable for single crystal X-ray diffraction could be obtained. 

From the crystal structures it is obvious that the Bodipy moiety in para position at the phenyl ring 

does not have great influence on the coordination behaviour of the bis(picolyl)phosphine to zinc and 

copper(I). In the structure of complex 6-13 the zinc bromide is coordinated by the ligand in the same 

way as the zinc chloride in the structure of 4-1 (see 4.2.4) and the same coordination of 6-9 to the 

copper atoms in complex 6-17 was found in the copper(I) complex of 2-13 described in the 

literature.[31] 

 

6.4 Experimental 

6.4.1 General 

6.4.1.1 Schlenk technique 

 

All air- and/or moisture sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. 

 

6.4.1.2 Solvents 

 

THF and toluene were dried over sodium/benzophenone and sodium respectively, dichloromethane 

was dried over calcium hydride; all solvents were distilled prior to use. Dimethyl sulfoxide and 

pentane were purchased in an anhydrous state. 
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6.4.1.3 Chemicals 

 

All starting materials were purchased from Aldrich, Acros Organics, Alfa Aesar or Strem and used as 

received. 

Flash chromatography was performed on silica gel from Fluorochem (40–63 μ, 60 Å). Thin-layer 

chromatography was carried out on Fisher aluminium-based plates with silica gel and fluorescent 

indicator (254 nm). 

 

6.4.1.4 NMR 
 

1H, 13C, 31P, 19F and 11B NMR spectra were recorded on a Bruker 300 MHz, Bruker 400 MHz or Bruker 

500 MHz spectrometer at room temperature (21°C); 1H and 13C shifts are reported relative to 

tetramethylsilane, 31P relative to 80% H3PO4, 
11B relative to BF3·Et2O and 19F relative to CFCl3. 

 

6.4.1.5 IR spectroscopy 

 

Infrared spectra were recorded on a Varian 800 FT-IR spectrometer. 

 

6.4.1.6 X-ray diffraction of single crystals 

 

X-ray crystal structures were determined by Dr. Paul Waddell. For 6-13 a Xcalibur Atlas Gemini Ultra 

diffractometer equipped with a fine-focus sealed X-ray tube (λCuKα = 1.54184 Å), an Oxford 

Cryosystems CryostreamPlus open-flow N2 cooling device and an Atlas CCD plate detector was used. 

For 6-17 a Fluid Film Devices synchrotron with an Undulator, I19, DLS, RAL (λ = 0.6889 Å) and a 

photon counting pixel array detector was used. 

 

6.4.1.7 Data collection from the diffractometer and crystal structure solution 

 
Cell refinement, data collection and data reduction were performed with the CrysAlisPro 

1.171.38.42b software.[34] Intensities were corrected for absorption using the CrysAlisPro 

1.171.38.42b software.[34] Analytical numeric absorption correction was performed using a 

multifaceted crystal model based on expressions. Empirical absorption correction used spherical 

harmonics, implemented in SCALE3 ABSPACK scaling algorithm.[35] Using Olex2,[36] the structures 

were solved with the ShelXT[37] structure solution program using Direct Methods and refined with 

the XL refinement package using Least Squares minimisation.[38] 

 

6.4.1.8 Absorption and Emission Spectroscopy 

 
Absorption spectra were recorded with a Hitachi Model U-3310 spectrophotometer while 
fluorescence studies were recorded with a Hitachi F-4500 fluorescence spectrophotometer. Solvents 
used for spectroscopic experiments were of spectrophotometric grade. Absorption and emission 
spectra were recorded for all compounds in dry degassed tetrahydrofuran solution at room 
temperature. Fluorescence quantum yields were measured with respect to 4,4-difluoro-8-phenyl-
1,3,5,7- tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (ΦF = 0.76, λabs = 524 nm, λem = 
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537 nm, ε = 86,000 M−1 cm−1, THF). Dyes were excited at 485 nm and excitation and emission slits 
were both set to 5 nm.  
 

6.4.1.9 Quantum Yield Method 

 
The fluorescence quantum yield (ΦF) can be defined as the ratio of emitted photons relative to the 
number of absorbed photons.[39] All quantum yields were determined in solution at room 
temperature. An appropriate reference compound to determine the fluorescence quantum yield 
was selected, which absorbs and emits over ranges comparable to those of the studied samples. The 
excitation wavelength, slit widths and the emission range were kept constant for the reference and 
the sample. Optically dilute solutions were prepared to possess the same absorbance at the 
excitation wavelength (A < 0.09 at the excitation wavelength, with an error limit of ±0.005 between 
the reference and sample). The following formulae were used to correct the relative emission areas 
for minor differences in absorbance: 
 

� = log ����	
 

 �� + �	 = �� = 1 
 

����� = ������  

 
A is the absorbance, I0 is the intensity of incident light, IT is the intensity of the transmitted light, Ia is the 
intensity of absorbed light and QYREL is the relative quantum yield.[40] 

 

The quantum yield of the sample was determined using the following equation: 

 

���� = � �������
���������  ����� 

 
Superscript Sl and Ref denote sample and reference respectively.[40] 

 

6.4.2 Syntheses 

6.4.2.1 10-(4-Bromophenyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinine 6-1 
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4-Bromobenzaldehyde (10.0 g, 54.0 mmol, 1 eq) and 3-ethyl-2,4-dimethyl-1H-pyrrole (14.6 mL, 

108 mmol, 2 eq) were dissolved in DCM (600 mL). TFA (10 drops) was added and the remaining red 

solution was stirred overnight in the dark. DDQ (12.3 g, 54.0 mmol, 1 eq) was added and the mixture 

was stirred for 2.5 h. After addition of N,N-diethylpropan-2-amine (56.4 mL, 324 mmol, 6 eq) the 

mixture turned yellow-brown. Addition of trifluoroboron etherate (53.3 mL, 432 mmol, 8 eq) yielded 

a purple solution. The reaction mixture was stirred overnight in the dark. 500 mL of water were 

added, the organic fraction was separated and the aqueous layer was extracted with DCM (2 x 

100 mL). The combined organic fractions were dried over magnesium sulphate and the solvent was 

removed. The product was purified by column chromatography (silica; toluene). After removal of the 

solvent the product was obtained as a dark purple solid (11.3 g, 24.6 mmol, 46%). 
1
H NMR (300 MHz, CDCl3) δ = 7.63 (d, 3

JHH = 8.3 Hz, 2H), 7.18 (d, 3
JHH = 8.4 Hz, 2H), 2.53 (s, 6H), 2.30 

(q, 3JHH = 7.6 Hz, 4H), 1.31 (s, 6H), 0.98 (t, 3JHH = 7.5 Hz, 6H). 
11

B NMR (96 MHz, CDCl3) δ = 0.8 (t, 1JBF = 33.0 Hz). 
13

C NMR (75 MHz, CDCl3) δ = 154.3, 138.6, 138.3, 134.9, 133.2, 132.5, 130.7, 130.3, 123.2, 17.2, 14.8, 

12.7, 12.1. 
19

F NMR (282 MHz, CDCl3) δ = −145.8 (q (equal intensity), 1JFB = 33.2 Hz). 

 

6.4.2.2 10-(4-Bromophenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinine 6-2 

 

 
 

6-1 (3.7 g, 8.0 mmol, 1 eq) was dissolved in THF (150 mL) and a solution of methyl magnesium 

bromide (3.0 M in Et2O, 5.6 mL, 16.7 mmol, 2.1 eq) was added. The dark orange reaction mixture was 

stirred overnight. The remaining methyl magnesium bromide was quenched with MeOH and the 

solvent was removed under vacuum. The crude product was purified by column chromatography 

(silica; petrol ether). After removal of the solvent the product was obtained as an orange solid (2.1 g, 

4.6 mmol, 58%). 
1
H NMR (300 MHz, CDCl3) δ = 7.61 (d, 3

JHH = 8.4 Hz, 2H), 7.21 (d, 3
JHH = 8.4 Hz, 2H), 2.45 (s, 6H), 2.32 

(q, 3JHH = 7.5 Hz, 4H), 1.30 (s, 6H), 0.99 (t, 3JHH = 7.6 Hz, 6H), 0.27 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −1.0. 
13

C NMR (75 MHz, CDCl3) δ = 151.1, 139.0, 136.4, 133.7, 132.8, 132.1, 130.8, 129.0, 122.6, 17.6, 14.8, 

14.5, 12.3. Broad signal of Me–B at 10.4 ppm is not visible in the noise of the spectrum. 
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6.4.2.3 Diethyl (4-(2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-10-yl)phenyl)phosphonate 6-3 

 

 

 
 

6-1 (3.9 g, 8.4 mmol, 1 eq), DPPB (358 mg, 0.84 mmol, 0.1 eq) and Pd(OAc)2 (188 mg, 0.84 mmol, 

0.1 eq) were dissolved in DMSO (150 mL). DIPEA (4.4 mL, 25.2 mmol, 3 eq) and diethyl phosphite 

(1.2 mL, 9.2 mmol, 1.1 eq) were added and the reaction mixture was stirred at 90°C for 3 d. After 

cooling the reaction mixture down to room temperature 350 mL of DCM were added. The organic 

layer was washed with water (5 × 200 mL), dried over magnesium sulphate and the solvent was 

removed. The product was purified by column chromatography (silica; EtOAc/petrol ether, 3:1). 

After removal of the solvent the product was obtained as a dark purple solid (3.3 g, 6.4 mmol, 76%). 
1
H NMR (300 MHz, CDCl3) δ = 7.94 (dd, 3

JHP = 13.1 Hz, 3
JHH = 8.4 Hz, 2H), 7.43 (dd, 3

JHH  = 8.4 Hz, 4
JHP =  

3.9 Hz, 2H), 4.16 (m, 4H), 2.53 (s, 6H), 2.29 (q, 3
JHH = 7.5 Hz, 4H), 1.35 (td, 3

JHH = 7.1 Hz, 4
JHP = 0.5 Hz, 

4H), 1.25 (s, 6H), 0.98 (t, 3JHH = 7.5 Hz, 6H). 
11

B NMR (96 MHz, CDCl3) δ = 0.8 (t, 1JBF = 33.0 Hz). 
13

C NMR(75 MHz, CDCl3) δ = 154.5, 140.3 (d, 2
JPC = 3.2 Hz), 138.1, 133.3, 132.6, 132.4, 130.5, 128.8 

(d, 1JPC = 15.2 Hz), 128.3, 62.5 (d, 2JPC = 5.5 Hz), 17.2, 16.5 (d, 3JPC = 6.2 Hz), 14.7, 12.7, 11.9. 
19

F NMR (282 MHz, CDCl3) δ = −145.8 (q (equal intensity), 1JFB = 33.0 Hz). 
31

P NMR (121 MHz, CDCl3) δ = 17.6. 

 

6.4.2.4 Diethyl (4-(2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-10-yl)phenyl)phosphonate 6-4 

 

 
 

Method A: 6-2 (2.1 g, 4.6 mmol, 1 eq), DPPB (196 mg, 0.46 mmol, 0.1 eq) and Pd(OAc)2 (103 mg, 

0.46 mmol, 0.1 eq) were dissolved in DMSO (100 mL). DIPEA (2.4 mL, 13.8 mmol, 3 eq) and diethyl 

phosphite (0.71 mL, 5.5 mmol, 1.2 eq) were added and the reaction mixture was stirred at 90°C for 

2 d. After cooling the reaction mixture down to RT 150 mL of DCM were added. The organic layer 

was washed with water (5 × 100 mL), dried over magnesium sulphate and the solvent was removed. 
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The product was purified by column chromatography (silica; EtOAc/petrol ether, 3:1). After removal 

of the solvent the product was obtained as an orange solid (1.9 g, 3.8 mmol, 83%). 

 

Method B: 6-3 (3.3 g, 6.4 mmol, 1 eq) was dissolved in THF (100 mL) and a solution of methyl 

magnesium bromide (3.0 M in Et2O, 4.5 mL, 13.4 mmol, 2.1 eq) was added. The dark orange reaction 

mixture was stirred overnight. The remaining methyl magnesium bromide was quenched with MeOH 

and the solvent was removed under vacuum. The crude product was purified by column 

chromatography (silica; EtOAc/petrol ether, 3:1). After removal of the solvent the product was 

obtained as an orange solid (2.3 g, 4.5 mmol, 70%). 
1
H NMR (300 MHz, CDCl3) δ = 7.92 (dd, 3

JHP = 13.1 Hz, 3
JHH =  8.2 Hz, 2H), 7.47 (dd, 3

JHH =  8.2 Hz, 3
JHP =  

3.9 Hz, 2H), 4.16 (m, 4H), 2.46 (s, 6H), 2.31 (q, 3
JHH = 7.5 Hz, 4H), 1.35 (td, 3

JHH = 7.1 Hz, 4
JHP 0.5 Hz, 

6H), 1.22 (s, 6H), 0.98 (t, 3JHH = 7.5 Hz, 6H), 0.28 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −0.5. 
13

C NMR(75 MHz, CDCl3) δ = 151.2, 138.9, 133.6, 132.9, 132.3 (d, 1
JCP = 10.2 Hz), 129.4, 129.2, 128.7, 

62.4, 17.6, 16.5 (d, 3
JCP = 6.1 Hz), 14.8, 14.5, 12.0. Signals at 141.5 ppm and 10.2 ppm are not visible 

in the noise of the spectrum. 
31

P NMR (121 MHz, CDCl3) δ = 18.1. 

 

6.4.2.5 2,8-Diethyl-1,3,5,5,7,9-hexamethyl-10-(4-phosphanylphenyl)-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinine 6-5 

 
 

LiAlH4 (202 mg, 5.3 mmol, 2 eq) was suspended in THF (10 mL) and cooled down to −78°C. TMSCl 

(0.67 mL, 5.3 mmol, 2 eq) was added and the reaction mixture was warmed up to RT. The 

suspension was cooled down to −78°C and a solution of 6-4 (1.4 g, 2.7 mmol, 1 eq) in THF (110 mL) 

was added. The reaction mixture was allowed to warm to RT and stirred overnight. The reaction was 

quenched with water and the solvent was removed under vacuum. The remaining solid was 

dissolved in Et2O (150 mL) and washed with water (250 mL). The aqueous layer was extracted with 

Et2O (4 × 150 mL). The combined organic fractions were dried over magnesium sulphate and the 

solvent was removed. The crude product was purified by column chromatography (silica; 

chloroform/petrol ether, 1:4). After removal of the solvent the product was obtained as an orange 

solid (0.81 g, 2.0 mmol, 75%). 
1
H NMR (300 MHz, CDCl3) δ = 7.59 (m, 2H), 7.23 (m, 2H), 4.10 (d, 1

JHP = 202.6 Hz, 2H), 2.45 (s, 6H), 

2.31 (q, 3JHH = 7.6 Hz, 4H), 1.27 (s, 6H), 0.98 (t, 3JHH = 7.6 Hz, 6H), 0.27 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −1.0. 
13

C NMR (75 MHz, CDCl3) δ = 150.9, 137.4, 135.2, 135.0, 133.9, 132.6, 129.1, 129.0 (d, 2
JPC = 6.1 Hz), 

128.8, 17.6, 14.8, 14.5, 12.1. Broad signal of Me–B at 10.4 ppm is not visible in the noise of the 

spectrum. 
31

P NMR (1H coupled) (121 MHz, CDCl3) δ = −122.3 (tt, 1JPH = 202.7 Hz, 3JPH = 7.0 Hz). 

IR (neat) ṽ = 2958 (m), 2926(w), 2290 (w), 1546(s), 1532 (s), 1471 (m), 1450 (m), 1385 (m), 1371 (m), 

1359 (m), 1314 (s), 1300 (m), 1289 (m), 1262 (w), 1167 (s), 1143 (s), 1110 (m), 1070 (m), 1024 (m), 
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978 (s), 942 (s), 907 (s), 823 (w), 785 (s), 722 (m), 690 (w), 669 (m), 609 (w), 559 (w), 518 (s), 506 (m), 

468 (w) cm−1. 

 

6.4.2.6 10-(4-(Bis(2-(pyridin-2-yl)ethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-

4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-6 

 

 
 

 

Method A: 6-5 (100 mg, 0.25 mmol, 1 eq) was dissolved in toluene (10 mL). 2-vinylpyridine (0.11 mL, 

0.99 mmol, 4 eq) and ABCN (18 mg, 0.07 mmol, 0.3 eq) were added and the reaction mixture was 

stirred at 80°C for 3 d. The solvent was removed under vacuum and the crude product was purified 

by column chromatography (silica; EtOAc (MeOH 3–10%)). After removal of the solvent the product 

was obtained as an orange red solid (43 mg, 0.07 mmol, 28%). 

 

Method B: 6-5 (100 mg, 0.25 mmol, 1 eq) and (Fe(salen))2O (2 mg, 0.003 mmol, 0.01 eq) were 

dissolved in toluene (10 mL). 2-vinylpyridine (0.11 mL, 1.0 mmol, 4 eq) was added and the reaction 

mixture was stirred at 110°C for 11 d. The solvent was removed under vacuum and the crude 

product was purified by column chromatography (silica; EtOAc (MeOH 7.5%)). After removal of the 

solvent the product was obtained as an orange red solid (100 mg, 0.16 mmol, 66%). 
1
H NMR (300 MHz, CDCl3) δ = 8.54 (ddd, 3

JHH = 4.9 Hz, 4
JHH = 1.9 Hz, 5

JHH = 0.9 Hz, 2H), 7.69 (t,3
JHH = 

7.7 Hz, 2H), 7.58 (td, 3
JHH = 7.7 Hz, 4

JHH = 1.9 Hz, 2H), 7.35 (dd,3
JHH = 8.2 Hz, 4

JPH = 0.7 Hz, 2H), 7.11 (m, 

4H), 2.86 (m, 4H), 2.45 (s, 6H), 2.28 (m, 8H), 1.27 (s, 6H), 0.98 (t, 3JHH = 7.5 Hz, 6H), 0.28 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −1.0. 
31

P NMR (1H coupled) (121 MHz, CDCl3) δ = −23.1 (p, 2JPH = 8.0 Hz). 

 

6.4.2.7 (4-(2,8-Diethyl-1,3,5,5,7,9-hexamethyl-5H-4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinin-10-yl)phenyl)bis(2-(pyridin-2-yl)ethyl)phosphine oxide 6-7 
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1
H NMR (300 MHz, CDCl3) δ = 8.52 (ddd, 3

JHH = 4.9 Hz,4
JHH = 1.9 Hz,5

JHH= 1.0 Hz, 2H), 7.92 (dd, 3
JPH = 

10.7 Hz,3
JHH = 8.0 Hz, 2H), 7.59 (td, 3

JHH = 7.7 Hz,4
JHH = 1.9 Hz, 2H), 7.51 (dd, 3

JHH = 8.2 Hz,4
JPH = 2.5 Hz, 

2H), 7.15 (m, 2H), 7.11 (m, 2H),3.18 (m, 2H), 2.95 (m, 2H), 2.55 (m, 4H), 2.45 (s, 6H), 2.29 (q, 3
JHH = 

7.5 Hz, 4H), 1.20 (s, 6H), 0.97 (t, 3JHH = 7.5 Hz, 6H), 0.28 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −0.3. 
31

P NMR (121 MHz, CDCl3) δ = 40.4. 

IR (neat) ṽ =  2962 (w), 2926 (w), 2867 (w), 1655 (w), 1590 (w), 1545 (m), 1472 (w), 1435 (m), 1360 

(w), 1322 (m), 1260 (m), 1172 (s), 1145 (s), 1110 (s), 1020 (s), 981 (m), 945 (s), 910 (w), 855 (w), 786 

(s), 747 (s), 728 (s), 672 (m), 644 (m), 630 (m), 605 (m), 535 (m), 517 (m), 457 (m), 402 (s) cm−1. 

 

6.4.2.8 10-(4-(Bis(pyridin-2-ylmethyl)phosphanyl)phenyl)-2,8-diethyl-1,3,5,5,7,9-hexamethyl-5H-

4λ
4
,5λ

4
-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine 6-9 

 

P

N
B
N

N N

 
 

6-5 (100 mg, 0.25 mmol, 1 eq) and PCl5 (113 mg, 0.55 mmol, 2.2 eq) were dissolved in toluene (3 mL) 

and stirred at ambient temperature for 1 h. The solvent was removed under vacuum and the 

remaining solid was dissolved in THF (3 mL). 2-1 (0.10 mL, 0.54 mmol, 2.2 eq) was added and the 

reaction mixture was stirred overnight. The solvent was removed under vacuum and the crude 

product was purified by column chromatography (silica; EtOAc (MeOH 8%)). After removal of the 

solvent the product was obtained as an orange red solid (126 mg, 0.21 mmol, 87%). 
1
H NMR (300 MHz, CDCl3) δ = 8.48 (ddd, 3

JHH = 4.9 Hz, 4
JHH = 1.9 Hz, 5

JHH = 1.0 Hz, 2H), 7.48 (m, 4H), 

7.23 (m, 2H), 7.04 (m, 4H), 3.50 (dd, 2
JHH = 13.2 Hz,2

JPH = 3.0 Hz, 2H), 3.39 (d, 2
JHH = 13.2 Hz, 2H), 2.45 

(s, 6H), 2.31 (q, 3JHH = 7.5 Hz, 4H), 1.19 (s, 6H), 0.99 (t, 3JHH = 7.5 Hz, 6H), 0.27 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −0.8. 
13

C NMR (75 MHz, CDCl3) δ = 158.1 (d, JPC = 5.0 Hz), 150.8, 149.5 (d, JPC = 0.8 Hz), 139.9, 138.4 (d, JPC = 

0.7 Hz), 136.7 (d, JPC = 19.6 Hz), 136.2 (d, JPC = 0.5 Hz), 133.7, 133.5 (d, JPC = 20.5 Hz), 132.6, 129.0, 

128.8 (d, JPC = 7.3 Hz), 123.8 (d, JPC = 4.9 Hz), 121.1 (d, JPC = 2.0 Hz), 37.8 (d, 1
JPC = 19.0 Hz), 17.6, 14.9, 

14.5, 12.1. 
31

P NMR (121 MHz, CDCl3) δ = −13.8. 

IR (neat) ṽ =  2970 (w), 1589 (w), 1538 (s), 1469 (m), 1455 (m), 1430 (m), 1387 (m), 1361 (m), 1320 

(s), 1299 (m), 1290 (m), 1258 (w), 1172 (s), 1146 (s), 1112 (m), 1065 (m), 1038 (m), 979 (s), 944 (s), 

908 (m), 864 (w), 828 (w), 801 (s), 790 (s), 781 (s), 745 (s), 701 (w), 672 (m), 626 (w), 593 (m), 558 

(w), 517 (m), 498 (m), 471 (w), 436 (w), 405 (m) cm−1. 
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6.4.2.9 Reaction of 6-6 with MnBr(CO)5 6-10 

 

MnBr(CO)5 (14 mg, 0.05 mmol, 1 eq) and 6-6 (62 mg, 0.1 mmol, 2 eq) were dissolved in anhydrous 

toluene (5 mL) and stirred at 110°C for 2 h. The solvent was removed under vacuum and the crude 

product was dissolved in chloroform. After filtration through celite a dark red solid was obtained by 

slow diffusion of pentane (61 mg). 
31P NMR and IR data indicated that the product was the oxide of the ligand 6-7. 

 

6.4.2.10 Reaction of 6-9 with MnBr(CO)5 6-11 

 

MnBr(CO)5 (59 mg, 0.21 mmol, 1 eq) and 6-9 (126 mg, 0.21 mmol, 1 eq) were dissolved in anhydrous 

toluene (7 mL) and stirred at 110°C for 2 h. The solvent was removed under vacuum and the crude 

product was dissolved in DCM. After filtration through celite the product a dark red solid was 

obtained by slow diffusion of pentane (95 mg). 
11

B NMR (96 MHz, CDCl3) δ= −1.6. 
31

P NMR (202 MHz, CDCl3) δ =72.0. 

IR (neat) ṽ =  2981 (m), 2028 (w), 1931 (w), 1548 (m), 1435 (m), 1386 (m), 1360 (m), 1319 (m), 1260 

(m), 1171 (s), 1145 (s), 1111 (m), 980 (m), 945 (s), 910 (w), 799 (s), 672 (m), 639 (m), 492 (m) cm−1. 

 

6.4.2.11 Reaction of 6-6 with ZnBr2 6-12 

 

ZnBr2 (23 mg, 0.10 mmol, 1 eq) and 6-6 (62 mg, 0.10 mmol, 1 eq) were dissolved in anhydrous DCM 

(3 mL) and stirred at room temperature overnight. The solvent was removed under vacuum and a 

dark red solid was obtained (48 mg). 
1
H NMR (300 MHz, CDCl3) δ = 8.84 (d, 3

JHH = 4.4 Hz, 2H), 8.03 (dd, 3
JPH = 10.6 Hz,3

JHH = 8.1 Hz, 2H), 

7.75 (t, 3
JHH = 7.8 Hz, 2H), 7.47 (dd, 3

JHH = 8.2 Hz,4
JPH 1.9 Hz, 2H), 7.32 (t, 3

JHH = 6.1 Hz, 4H), 3.23 (m, 

4H), 2.61 (s, 2H), 2.48 (s, 2H),2.44 (s, 6H), 2.28 (q, 3
JHH = 7.6 Hz, 4H),1.17 (s, 6H), 0.96 (t, 3

JHH = 7.5 Hz, 

6H), 0.27 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −0.9. 
31

P NMR (121 MHz, CDCl3) δ = −23.1. 

 

6.4.2.12 Reaction of 6-9 with ZnBr2 6-13 

 

ZnBr2 (30 mg, 0.13 mmol, 1 eq) and 6-9 (77 mg, 0.13 mmol, 1 eq) were dissolved in anhydrous DCM 

(3 mL) and stirred at room temperature overnight. The solvent was removed under vacuum and a 

dark red solid was obtained (52 mg). 
1
H NMR (300 MHz, CDCl3) δ =9.24 (d, 3

JHH = 4.5 Hz, 2H), 7.50 (t, 3
JHH = 6.3 Hz, 2H), 7.43 (dd, 3

JHH = 

7.7 Hz,4
JPH = 3.0 Hz, 2H), 7.28 (m, 4H), 7.10 (t, 3JHH = 7.6 Hz, 2H),3.46 (br, 4H), 2.46 (s, 6H), 2.33 (q, 3JHH 

= 7.7 Hz, 4H), 1.25 (s, 6H), 1.01 (t, 3JHH= 7.8 Hz, 6H), 0.27 (s, 6H). 
11

B NMR (96 MHz, CDCl3) δ = −0.8. 
31

P NMR (121 MHz, CDCl3) δ = −10.2. 

IR (neat) ṽ = 2961 (w), 2925 (w), 2867 (w), 1606 (w), 1549 (s), 1439 (m), 1360 (m), 1318 (s), 1172 (s), 

1145 (s),  1112 (m), 1022 (m), 981 (s), 944 (s), 909 (m), 800 (s), 672 (m), 646 (m), 516 (m), 422 

(m) cm−1. 
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6.4.2.13 Reaction of 6-6 with CuCl 6-14 

 

CuCl (13 mg, 0.14 mmol, 1 eq) and 6-6 (83 mg, 0.14 mmol, 1 eq) were dissolved in anhydrous DCM 

(3 mL) and stirred at ambient temperature for 3 h. The solvent was removed under vacuum and a 

dark red solid was obtained (59 mg). 

IR (neat) ṽ = 2970 (m), 2924 (w), 1549 (m), 1435 (w), 1386 (m), 1361 (w), 1320 (m), 1261 (m), 1172 

(s), 1145 (s), 1097 (s), 1020 (s), 980 (m), 801 (s), 673 (w), 516 (m) cm−1. 

 

6.4.2.14 Reaction of 6-9 with CuCl 6-15 

 

CuCl (11 mg, 0.11 mmol, 1 eq) and 6-9 (63 mg, 0.11 mmol, 1 eq) were dissolved in anhydrous DCM 

(3 mL) and stirred at ambient temperature for 2 h. The solvent was removed under vacuum and a 

dark red solid was obtained (55 mg). 
31

P NMR (121 MHz, DCM) δ = −10.8. 

IR (neat) ṽ = 2963 (w), 2925 (w), 1597 (w), 1548 (m), 1471 (m), 1435 (m), 1387 (m), 1360 (m), 1320 

(m), 1260 (m), 1172 (s), 1146 (s), 1111 (s), 1019 (s), 981 (s), 910 (m), 797 (s), 750 (m), 703 (m), 672 

(m), 596 (w), 557 (w), 516 (m), 491 (m) cm−1. 

 

6.4.2.15 Reaction of 6-6 with Cu(MeCN)4PF6 6-16 

 

Cu(MeCN)4PF6 (29 mg, 0.08 mmol, 1 eq) and 6-6 (47 mg, 0.08 mmol, 1 eq) were dissolved in 

anhydrous DCM (3 mL) and stirred at ambient temperature for 3 h. The solvent was removed under 

vacuum and a dark red solid was obtained (45 mg). 

IR (neat) ṽ = 2962 (w), 2923 (w), 2853 (w), 1549 (m), 1440 (w), 1404 (w), 1360 (w), 1320 (m), 1260 

(s), 1172 (m), 1144 (m), 1093 (s), 1017 (s), 982 (m), 946 (m), 911 (w), 835 (s), 798 (s), 734 (m), 702 

(m), 673 (m), 557 (s), 517 (m), 478 (m), 439 (m) cm−1. 

 

6.4.2.16 Reaction of 6-9 with Cu(MeCN)4PF6 6-17 

 

Cu(MeCN)4PF6 (40 mg, 0.11 mmol, 1 eq) and 6-9 (63 mg, 0.11 mmol, 1 eq) were dissolved in 

anhydrous DCM (3 mL) and stirred at ambient temperature for 2 h. The solvent was removed under 

vacuum and a dark red solid was obtained (57 mg). 
11

B NMR (96 MHz, CDCl3) δ= 0.4. 
31

P NMR (202 MHz, CDCl3) δ = −16.6, −145.0 (hept, 1JPF = 707.4 Hz). 

IR (neat) ṽ = 2981 (w), 1550 (w), 1387 (w), 1320 (w), 1173 (m), 1145 (m), 946 (m), 839 (s), 798 (m), 

557 (m) cm−1. 
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6.4.3 Crystallographic data 

 
Table 2: Crystallographic data of 6-13 and 6-17. 

 6-13· 0.75DCM 6-17· 2Et2O 

Identification code ljh180019 ljh180013 
Empirical formula C37.75H45.5BBr2Cl1.5N4PZn C82H108B2Cu2F12N8O2P4 
Formula weight [g·mol−1] 875.42 1738.34 
Temperature [K] 150.0(2) 100.0(2) 
Crystal size [mm3] 0.02× 0.11× 0.15 0.03× 0.06× 0.18 
Colour, shape Orange plate Red plate 
Crystal system Triclinic Orthorhombic 
Space group P−1 P212121 
a [Å] 8.7567(3) 12.6351(4) 
b [Å] 11.5823(4) 16.3845(5) 
c [Å] 38.9805(13) 41.97940(10) 
α [°] 92.578(3) 90 
β [°] 90.424(3) 90 
γ [°] 95.971(3) 90 
V [Å3] 3927.8(2) 8690.6(4) 
Z 4 4 
ρcalc [g·cm−3] 1.480 1.329 
Radiation [Å] CuKα = 1.54184 Synchrotron = 0.6889 
μ [cm−1] 4.816 0.635 
F(000) 1782 3632 
Index ranges −10≤h≤10 

−13≤k≤13 
−46≤l≤45 

−16≤h≤16 
−21≤k≤21 
−54≤l≤54 

Θ range [°] 3.841≤Θ≤ 66.968 1.293≤Θ≤ 26.571 
Reflections collected 51259 123841 
Independent reflections 13866 19930 
Observed reflections 8900 18371 
Data/restraints/parameters 13866/934/944 19930/1357/1130 
Rint 0.1049 0.0573 
R1, wR2 [I>2σ(I)] 0.0552, 0.1133 0.0412, 0.1195 
R1, wR2 [all data] 0.0956, 0.1314 0.0441, 0.1216 
GooF 1.007 1.054 
δpmax, δpmin [e·nm−3] 0.620, −0.526 0.797, −0.319 
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This thesis describes the synthesis of novel mono-, bis- and tris(picolyl)phosphine based compounds. 

The new polydentate phosphines contain one or more pyridine rings and the methylene group 

between phosphorus and the pyridine rings provides additional flexibility and makes them 

interesting ligands for transition metals. First structural information on the conformation of the 

substituents at phosphorus is provided by the crystal structures of mono(picolyl)phosphine related 

compounds. The versatile coordination properties of the new phosphines towards Zn(II) and Cu(I) 

were investigated by the synthesis and structural characterisation of a series of complexes. The 

complexes displayed fascinating structures and interesting luminescent properties in the solid state. 

The influence of the ligands and an additional fluorescent moiety in the ligand on the luminescent 

properties of the complexes was investigated. 

 

Picolylphosphine based phosphines – novel polydentate ligands 

 

Starting from a chlorophosphine compound by reaction with silyl compounds of picoline, lutidine or 

collidine the corresponding mono-, bis- and tris(picolyl)phosphine based compounds could easily be 

synthesised according to the Braunstein route (Scheme 1). Reactions of PhPCl2, iPrPCl2 and TIPPPCl2 

with the silyl compounds yielded the corresponding bis(picolyl)phosphine based compounds, while 

the reaction of tBuPCl2 with the silyl compounds stopped after the substitution of one of the 

chlorine atoms with a Lut or Col substituent. 

Using the same synthetic strategy tris((2-methylen)benzoxazol)phosphine could also be produced 

and the crystal structure of the corresponding phosphine oxide was determined. 

These phosphines are of interest as hemilabile, multidentate ligands with one phosphorus atom and 

one, two or three nitrogen atoms respectively to coordinate to transition metals. In the case of 

tris((2-methylen)benzoxazol)phosphine also three oxygen atoms are present, which are able to 

coordinate. 

 

 
Scheme 1: Synthesis  of picolylphosphine based ligands in this thesis. 

 

Picolylphosphine based hydrochlorides – A convenient source of the phosphines 

 

The hydrochlorides of three mono(picolyl)phosphine based compounds were formed by protonation 

with HCl. The crystal structures of the obtained hydrochlorides were determined and it was found 

that the most important factor in these structures is the hydrogen bonding including the chloride 

ions. The hydrochlorides can easily be deprotonated to recover the phosphines (Scheme 2). 

 



163 

 

 
Scheme 2: Protonation and deprotonation reaction of mono(picolyl)phosphine based compounds and the corresponding 

hydrochlorides (left). Hydrogen bonding in the crystal structure of 3-1 (right). Thermal ellipsoids are drawn at 50 % 

probability level. H atoms not interacting with the shown Cl atoms have been omitted for clarity. i: −x, 1−y, 1−z, ii: x, 1+y, 

−1+z, iii: 1−x, 1−y, 1−z, iv: x, y, −1+z, v: 1−x, −y, 1−z. 

 

Also PicPCl2, which tends to dismutation, was stabilised by protonation at nitrogen and could be 

isolated and structurally characterised for the first time as the corresponding hydrochloride (Figure 

1). 

 

  
Figure 1: Molecular (left) and crystal structure (right, view along the b axis) of 3-5. Thermal ellipsoids are drawn at 50% 

probability level. 

 

Novel zinc complexes with blue luminescence 

 

The zinc chloride complexes of five bis- and two tris(picolyl)phosphine based ligands have been 

synthesised. Single crystal X-ray analysis revealed that in the complex of phenylbis(picolyl)phosphine 

the zinc atom is coordinated by the two nitrogen atoms (Figure 2), while the 
31

P NMR data indicate 

that in the other complexes the coordination situation is more difficult. 

The synthesised zinc chloride complexes showed blue luminescence under UV light (Figure 2). 

Although the relaxation times indicate that these compounds are singlet emitters, they might be of 

interest for application in OLEDs, due to their facile synthesis and low costs compared to the 

currently used emitters. 

 



 

Figure 2: Emission spectrum and luminescence under UV light

Thermal ellipsoids are drawn at 50% probability level.

 

Unexpected Cu(I) complexes with fascinating 

 

Eighteen copper(I) halide complexes and one copper(I) thiocyanate complex of bis

tris(picolyl)phosphine based ligands

crystallography revealed ligand to metal ratios of 1:2 for t

complexes and 1:3 for the 

complexes. In the crystal structures a great variety of coordination modes of the ligands to

copper atoms was observed (Fig

 

Figure 3: Dimeric molecular structure of 

Thermal ellipsoids are drawn at 50% probability level.

 

Particularly interesting is the CuSCN complex 

crystal. This structure contains parts with copper atoms, which interact with the ligand, and CuSCN 

chains, which do not show any interactions with the ligand (
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and luminescence under UV light of 4-1 in the solid state (left). Asymmetric unit of 

drawn at 50% probability level. 

Unexpected Cu(I) complexes with fascinating structures 

Eighteen copper(I) halide complexes and one copper(I) thiocyanate complex of bis

olyl)phosphine based ligands have been synthesised. Structural characterisations by X

crystallography revealed ligand to metal ratios of 1:2 for the phenylbis(picolyl)phosphine

complexes and 1:3 for the isopropylbis(picolyl)phosphine and tris(picolyl)phosphine

complexes. In the crystal structures a great variety of coordination modes of the ligands to

(Figure 3). 

of 5-4 (left),molecular structure of 5-18 (middle) and asymmetric unit of

Thermal ellipsoids are drawn at 50% probability level.  

CuSCN complex 5-10 of 2-16, which forms a polymeric structure in the 

crystal. This structure contains parts with copper atoms, which interact with the ligand, and CuSCN 

any interactions with the ligand (Figure 4). 

 
Asymmetric unit of 4-1 (right). 

Eighteen copper(I) halide complexes and one copper(I) thiocyanate complex of bis- and 

have been synthesised. Structural characterisations by X-ray 

he phenylbis(picolyl)phosphine related 

propylbis(picolyl)phosphine and tris(picolyl)phosphine based 

complexes. In the crystal structures a great variety of coordination modes of the ligands to the 

 
(middle) and asymmetric unit of 5-13 (right). 

, which forms a polymeric structure in the 

crystal. This structure contains parts with copper atoms, which interact with the ligand, and CuSCN 
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Figure 4: Asymmetric unit (left) and crystal structure of 5-10 (right). Thermal ellipsoids are drawn at 50% probability level. 

 

Some of the copper(I) complexes showed green to blue-green luminescence under UV light and the 

relaxation times indicated that the luminescence of the complexes might be based on a TADF 

mechanism (Figure 5). The most promising candidates for potential application as emitters are the 

copper(I) halide complexes 5-1, 5-2 and 5-20–5-22. 

 

 
Figure 5: Luminescence of Cu(I) complexes under UV light. From left to right: 5-1, 5-2, 5-20, 5-21. 

 

Flexible P,N ligands meet Bodipy 

 

Two tridentate P,N ligands 6-6 and 6-9 with substituents containing the fluorescent Bodipy moiety in 

the third substituent at the phosphorus atom have been synthesised (Figure 6).  

 

 
Figure 6: Tridentate ligands 6-6 and 6-9 with fluorescent moiety synthesis in this thesis. 

 

The effect of the complexation with transition metals on the fluorescent properties of the ligand was 

investigated. The absorption and emission spectra of the complexes were very similar to those of the 
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free ligands, but a decrease of the fluorescence quantum yield was observed after complexation. 

The single crystal X-ray structures of complexes 6-13 and 6-17 could be determined (Figure 7). The 

coordination behaviour of ligand 6-9 is not influenced by the Bodipy moiety attached to the phenyl 

ring, but the same coordination towards zinc and copper(I) as found for complexes of PhPPic2 2-13 

was observed in 6-13 and 6-17. 

 

 
Figure 7: Asymmetric unit of 6-13 (left) and molecular structure of 6-17 (right). Thermal ellipsoids are drawn at 50% 

probability level. H atoms, PF6
−
 anions of 6-17 and solvent molecules have been omitted for clarity. 
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List of compounds 
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