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Summary 

Bulk and single cell RNA sequencing have revolutionized biomedical research and empower            

researchers to quantify the global gene expression of populations and single cells to further              

understand the development, manifestation and the treatment of diseases like cancer. Acute            

myeloid leukemia (AML), a cancer of the myeloid line of blood cells, could benefit from               

these technologies as relapse and mortality rates remain high despite the extensive research             

conducted over several decades. This is partly because AML is a heterogeneous disease,             

differing substantially between patients and hence requiring more fine-grained classifications          

and specialised treatment strategies, for example by incorporating expression profiles. In           

addition, single cell RNA sequencing (scRNA-seq) can resolve genetic and epigenetic           

subclonal structures within a patient to improve understanding and treatment of AML.            

However, improving and adapting RNA-seq technologies is still often necessary to efficiently            

and reliably obtain expression profiles, especially from small or suboptimally processed           

samples. To this end, we developed a bulk RNA-seq protocol, which copes with the major               

challenges of limited sample quantities, different sample types, throughput and costs and            

subsequently applied this method to further understand the subclonal structures in AML. 

We were able to characterize a plastic cell state of AML cells that is defined by increased                 

stemness and dormancy and could influence treatment outcome and relapse. For this, we             

isolated non-dividing AML cells based on a proliferation-sensitive dye from patient derived            

xenograft (PDX) models of two AML patients. We found that these cells have low levels of                

cell cycle genes confirming dormancy, and additionally had similar expression patterns to            

previously described dormant minimal residual disease (MRD) cells in lymphoblastic          

leukemia (ALL). This included high expression levels of cell adhesion molecules, potentially            
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reflecting the persistence of dormant AML and ALL cells in the hematopoietic niche. Lastly,              

we could show that resting and cycling AML cells can transition between these two states,               

indicating that dormancy might be a general property of AML cells and not depend on               

particular genetic subclones. 

In a second project, we optimized a single cell RNA-seq technology. We used a systematic               

approach to evaluate experimental conditions of SCRB-seq, a powerful and efficient           

scRNA-seq method. Focussing on reverse transcription, arguably the most important and           

inefficient reaction, , we used a standardized human RNA (UHRR) and systematically tested             

nine different RT enzymes, several reaction enhancers and primer compositions to increase            

sensitivity. We found that Maxima H- showed the highest sensitivity and that molecular             

crowding using poylethylene glycol (PEG) could increase the efficiency of the reaction            

significantly. Together with several smaller changes in the workflow, primer design and PCR             

conditions, we developed mcSCRB-seq (molecular crowding SCRB-seq). We verified the          

2.5x increase in sensitivity using mES cells in a side by side test between SCRB-seq and                

mcSCRB-seq, and further found mcSCRB-seq to be amongst the most sensitive methods            

using artificial RNA spike in molecules (ERCCS). 

Lastly, since method comparisons between studies suffer from missing accuracy due to batch             

effects and external factors, we participated in a complex scRNA-seq benchmark study            

aiming to provide a fair comparison between methods concerning sensitivity, accuracy and            

applicability for building expression atlases. In contrast to before, we found that in this              

particular setting, mcSCRB-seq did not perform well and ídentified fields for further            

improvement. 

In conclusion, my work described in this thesis not only contributes towards a deeper              

understanding of the emergence and progression of AML but also towards the development             
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of experimental bulk and single-cell RNA sequencing methods, improving their widespread           

application to biomedical problems such as leukemia. 
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Introduction 

Gene expression levels define cellular phenotypes 

The function of each cell is realized by a multilevel system with biopolymers as the key                

players. This hierarchically organized system is the central dogma of molecular biology            

(Figure 1). DNA is the essential molecule that contains all genetic information (Avery et al.,               

1944), which can subsequently be transcribed into transient messenger RNA (mRNA) and            

further translated into proteins, which are responsible for the molecular phenotype and hence             

the function of the cell (Crick, 1958). Although each cell of a multicellular organism contains               

the same genetic information, the variety of functional and phenotypic specifications require            

a defined system to regulate the cells’ identity. Several mechanisms are responsible to             

manage the information transfer between the biomolecules (Edfors et al., 2016; Vogel and             

Marcotte, 2012). On the DNA level, DNA methylation (Jones, 2012) and chromatin            

modifications (Voss and Hager, 2014) determine epigenetically, i.e. across cell divisions, the            

packing of chromatin. This in turn regulates whether transcription factors can access and bind              

DNA sequences and in turn modify the level of gene expression (Ong and Corces, 2011;               

Vaquerizas et al., 2009). The regulatory effect of these systems arises from either silencing,              

and therefore switching off transcription, or via the activation of a gene by enhancing the               

responsible transcription machinery. Although expression level modification is mainly         

achieved at the level of DNA to RNA transcription, diverse mechanisms also regulate RNA              

and protein levels after transcription and translation, respectively. For example, on the RNA             

level, microRNAs (miRNAs) can inhibit the translation to proteins (Rana, 2007).           

Furthermore, post-transcriptional and post-translational modifications are responsible for fine         
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tuning the system (Knorre et al., 2009; Zhao et al., 2017). Overall these mechanisms provide               

an agile and complex system to regulate the quantitative relationship between genetic            

information and cellular function (Vogel and Marcotte, 2012). Hence, understanding these           

biological processes is of high significance, especially in order to understand malfunctions            

leading to disease developments such as cancer (Vaquerizas et al., 2009). 

Figure 1: The central dogma of molecular biology 
DNA is the essential molecule containing all genetic information. Transcription into transient pre-messenger             
RNA (pre-mRNA), and further maturation to mature mRNA via splicing, polyadenylation and 5’capping, is              
necessary to provide the molecular basis for translation into proteins, which subsequently are responsible for               
the cells function. 
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Quantification of gene expression 

The high power and potential of gene expression analysis to understand important biological             

processes led to the development of suitable quantification methods in the 1970s. However,             

quantifying gene expression levels was initially limited to individual transcripts. For           

example, RNA molecules could be separated by gel electrophoresis, transferred to a paper             

membrane and detected via radioactively labelled probes in so-called Northern Blots (Alwine            

et al., 1977). Other studies already used DNA synthesis from RNA molecules (cDNA)             

coupled with a semiquantitative dot hybridization to estimate relative expression abundance           

(Sim et al., 1979). Further improvements in the 1980s included in-situ fluorescence probes             

(“fluorescence in-situ hybridization”, FISH) (Pachmann, 1987) and RT-qPCR        

(Becker-André and Hahlbrock, 1989; Weis et al., 1992). The first methods which were able              

to obtain expression profiles from many or even all transcripts emerged in the 1990s. Among               

these, “serial analysis of gene expression“ (SAGE) (Velculescu et al., 1995) and microarrays             

(Schena et al., 1995) provided quantitative global expression data. While SAGE relies on             

enzymatic digestion of cDNA and Sanger sequencing, microarrays depend on the           

hybridization of fluorescently labeled cDNA to custom immobilized oligonucleotide probes,          

complementary to cDNA sequences. Due to their low costs, good quality and simple usage,              

microarrays became the most popular method for global expression quantification within the            

2000s and still remain in use today (Lowe et al., 2017). Although microarrays underwent              

several advances over the years, including oligo synthesis (Miller and Tang, 2009) and             

fluorescence detection (Pozhitkov et al., 2007) the a priori knowledge of cDNA sequences             

necessary to design the oligonucleotide probes remained a major drawback and limits its use              

for de novo applications and species with poorly resolved transcriptomes. In addition, a high              
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background noise due to mishybridization of transcripts to probes is often observed in             

microarrays (Okoniewski and Miller, 2006). 

Next generation sequencing (NGS) 

Since the emergence of Next Generation Sequencing (NGS) in 2005, sequencing costs and             

throughput have improved drastically compared to the traditional Sanger sequencing          

approach (Kircher and Kelso, 2010; Sanger et al., 1977). Although several methods were             

introduced to the market over the years (Clarke et al., 2009; Drmanac et al., 2010; Margulies                

et al., 2005; Valouev et al., 2008), Illumina’s variant of sequencing by synthesis             

outperformed all others and currently constitutes the majority of the sequencing market            

worldwide (Utterback, 2020). In short, DNA libraries for Illumina sequencing are tagged            

with immobilization adapters, which enable the fragments to bind to a flowcell that features              

complimentary immobilized oligonucleotides on its surface (Fedurco et al., 2006). Then, the            

fragments are amplified in a “bridge amplification” reaction to form clusters consisting of             

thousands of copied molecules in close proximity. The sequence information of each of these              

clusters is then read via a sequencing by synthesis reaction in which fluorescently labelled              

nucleotides are integrated. These labelled nucleotides contain an additional cleavable 3` chain            

terminator ensuring that only one base is incorporated at a time. After incorporation, the              

fluorophores are illuminated via lasers and the signals are imaged. Finally, the 3` terminator              

and fluorescence labels are chemically cleaved and the next incorporation cycle is performed.             

In general, the libraries can be sequenced on both the forward and reverse strand with a                

read-length up to 600 bases (300 bases paired-end) (Kircher and Kelso, 2010; Kircher et al.,               

2009) . 
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RNA-sequencing revolutionized transcriptomics 

With the introduction of NGS a new set of methods called RNA-sequencing (RNA-seq)             

overcame the limitations of previous expression quantification assays. First used by several            

groups in 2006 and 2007 and further refined and named in 2008, RNA-sequencing relies on               

the combination of high throughput sequencing of cDNA libraries and corresponding           

computational tools to analyze and quantify gene expression of an RNA sample both, in a               

quantitative and qualitative manner (Bainbridge et al., 2006; Cheung et al., 2006; Emrich et              

al., 2007; Marioni et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 2008; Weber et al.,                 

2007; Wilhelm et al., 2008). Although comprising its own challenges, RNA-seq provides            

several key advantages over previous methods like Microarrays or RT-qPCRs. First, it is not              

confined by necessary a priori knowledge of sequences and can therefore be used to also               

study non-model organisms and find de novo transcripts (Vera et al., 2008). In addition,              

RNA-seq is not only capable of quantifying the expression of genes but also revealing              

isoform and allelic information of transcripts from the same gene as well as finding mutations               

such as single nucleotide polymorphism/variants (SNP/SNV), indels and even fusion genes           

due to its single base resolution. Furthermore, its accuracy, theoretical unlimited           

quantification range and reproducibility over technical and biological replicates outperforms          

other methods with an additional decrease in costs and necessary input amounts (Cloonan et              

al., 2008; Marioni et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 2008). With               

constant improvements to both the construction of libraries from RNA as well as high              

throughput DNA sequencing, RNA-seq became the dominant transcriptomic method by 2015           

(Lowe et al., 2017). Although the rapid evolution in the methodology generated numerous             

different RNA-seq protocols over the years a general workflow can be attributed to most of               

them (Levin et al., 2010) (Figure 2). 
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The first step requires the isolation of RNA from samples, which can be done in several ways                 

(Kałużna et al., 2016; Shu et al., 2014). However, as mRNA only makes up about 5% of the                  

total RNA (Warner, 1999) , all protocols either actively deplete rRNAs, which contribute to              

80%, or enrich for mRNA by selecting polyadenylated RNAs (Choy et al., 2015). In the next                

step, RNA must be converted to cDNA via a reverse transcription reaction. Afterwards, the              

resulting cDNA has to be fragmented into smaller molecules in order to be able to generate                

clusters on a flowcell. This step is crucial as most mRNA transcripts from eukaryotic              

organisms exceed the maximum recommended fragment length of ~1 kb for Illumina            

sequencing (Lowe et al., 2017; Wang et al., 2009). It should be noted that this fragmentation                

process can also be performed prior reverse transcription on the RNA level mostly via RNA               

hydrolysis (Mortazavi et al., 2008). On the cDNA level, fragmentation is mostly achieved via              

sonication (Head et al., 2014) or enzymatic reactions (Adey et al., 2010; Picelli et al., 2014).                

In the final step, fragmented cDNA libraries are constructed via a PCR, ensuring correct              

Figure 2: General experimental workflow of RNA-seq 
RNA sequencing firstly requires the extraction of RNA of any biological samples. After reverse transcription,              
cDNA is fragmented and barcoded with multiplexing sequences and sequencing adapters. Finally,           
high-throughput sequencing is used to obtain the encoded information of the library. 
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sequencing adapter addition, sufficient library concentration and possible sample barcode          

addition (van Dijk et al., 2014; Kircher et al., 2012; Meyer and Kircher, 2010). 

Due to the large amount of sequencing data derived from typical RNA-seq experiments,             

interpreting the results of these experiments requires a combination of bioinformatic and            

statistical tools and pipelines (Lowe et al., 2017). In general, sequencers convert the image              

data to more suitable file formats, which include base callings and adjusted quality scores              

(Kircher et al., 2009). Since most sequencing runs are performed with several samples per              

run, a demultiplexing step, separating the different samples into independent files via their             

corresponding barcode sequences, is necessary (Renaud et al., 2015). Due to the relatively             

high error rate of NGS it is important to perform a QC step on the raw sequencing files to                   

ensure that only reads with high base call quality are used for further analysis (Andrews,               

2010) . A major computational challenge is the following alignment of the cDNA reads to               

the reference genome. Although there are several tools available for mapping short            

sequencing reads, RNA-seq reads require special tools which can deal with splice junctions             

and mapping of intron skipping reads towards the genome (Baruzzo et al., 2017; Dobin et al.,                

2013; Engström et al., 2013; Hayer et al., 2015). Similar to the first quality control, the                

mapping quality should be analyzed to ensure only well mapped reads are used (Wang et al.,                

2012). After this primary data processing, higher level analysis requires statistical models for             

normalization (Hrdlickova et al., 2017), dimension reduction clustering (Kobak and Berens,           

2019; Yeung and Ruzzo, 2001), differential gene expression (Love et al., 2014; Ritchie et al.,               

2015) and gene set enrichment analysis (Tarca et al., 2013). However, these examples show              

only a small subset of the numerous computational analyses that are possible with the              

complex information provided by RNA-seq (Wang et al., 2009). 
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Single cell RNA-sequencing develops rapidly 

Despite the increased efficiency of RNA-seq compared to other methods, it still requires             

relatively large amounts of input material, typically the RNA of thousands of cells. This              

limitation becomes increasingly significant when identifying and characterizing new         

subpopulations and rare cell types, understanding cell to cell heterogeneity or uncovering            

developmental processes (Kolodziejczyk et al., 2015; Tang et al., 2009; Wagner et al., 2016;              

Ziegenhain et al., 2018). However, over the last decade, continuous improvements in whole             

transcriptome amplification have made it possible to perform RNA-seq at the level of single              

cells (Kurimoto, 2006; Kurimoto et al., 2007; Tang et al., 2009). This resulted in numerous               

different single cell RNA-sequencing (scRNA-seq) protocols (Kolodziejczyk et al., 2015;          

Ziegenhain et al., 2017) and transformed our understanding of biology. Similar to the             

numerous conventional RNA-seq methods, almost all scRNA-seq protocols follow a similar           

experimental workflow overcoming the two major challenges not previously present, the           

isolation of single cells and amplification of the very small amounts of RNA. Most common               

scRNA-seq protocols either use fluorescence-activated cell sorting (FACS) (Bagnoli et al.,           

2018; Jaitin et al., 2014; Picelli et al., 2013; Soumillon et al., 2014), capturing cells in                

microfluidic chips (Hashimshony et al., 2016; Wu et al., 2014) or encapsulation of single              

cells in microdroplets (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017) (Figure                

3). While the later two approaches are capable of capturing hundreds of thousands of cells               

and therefore are more suited to perform large scale experiments, FACS isolation into             

microwell plates offers more flexibility in study design and sample type. Therefore the             

corresponding cell isolation technique can already make a protocol more or less suited for a               

specific research question (Ziegenhain et al., 2018). In addition, all approaches require a             
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solution of single cells, which depending on the sample, can already be challenging and              

introduce biases (van den Brink et al., 2017).  

Figure 3: Isolation of single cells 
Illustration of typical single-cell    
isolation techniques. scRNA-seq   
requires the capture of    
non-damaged, living cells. Hence,    
each method comes with its own      
advantages and challenges   
regarding the incorporation of    
stainings, throughput and   
influence on the cells healthiness     
and arguably the transcriptome. 

After obtaining single cells, scRNA-seq approaches follow a similar workflow as bulk            

RNA-seq methods (Figure 4). First, cDNA is generated via reverse transcription and is             

afterwards amplified either via PCR or in vitro transcription. Since both reactions are highly              

impacted by the small starting amounts it is of crucial importance that both reactions are as                

sensitive and unbiased as possible. For example, conversion efficiencies of mRNA to cDNA             

are estimated to be between 10%-49% (Bagnoli et al., 2018; Grün et al., 2014; Islam et al.,                 

2014). This subsequently impacts the following amplification steps as more cycles are            

required to obtain the necessary cDNA yields introducing noise and biases (Parekh et al.,              

2016; Ziegenhain et al., 2017). Although, being commonly used reactions in molecular            

Sample
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biology, the sensitivity, efficacy and accuracy of both reactions depend on a complex             

combination of several factors including but not limited to, enzyme properties, buffer            

composition, primer sequences and reaction volume (Bagnoli et al., 2018; Hashimshony et            

al., 2016; Kalle et al., 2014; Picelli et al., 2013). Hence, optimizing these reactions requires               

substantial work, time and cost efforts (Bagnoli et al., 2018; Hagemann-Jensen et al., 2020).              

Therefore, some methods replace this typical pattern of reverse transcription and PCR            

amplification with linear amplifications using in vitro transcription. Although being          

supposedly less biased than PCR, this setup requires a second reverse transcription step             

(Hashimshony et al., 2016; Jaitin et al., 2014). In addition, PCR introduced biases and noise               

can be efficiently removed by integrating a molecular barcode or unique molecular identifier             

(UMI) already at the stage of cDNA conversion, enabling the removal of PCR duplicates              

computationally (Kivioja et al., 2012; Parekh et al., 2016). However, UMI integration is             

either performed at the 5` or 3` end of fragments, which precludes obtaining reads over the                

full gene body as one of the ends is enriched. Although all published scRNA-seq protocols               

require at least one reverse transcription step, several approaches are also possible in this              

reaction. Most methods use mRNA targeting oligo-dt primers in combination with reverse            

transcriptases derived from the moloney murine leukemia virus (MMLV), which are capable            

of performing template switching at the end of the RNA molecule and thereby introducing a               

second universal PCR handle using a template switching oligo (Zajac et al., 2013).             

Interestingly, the exact mechanism of this function was poorly understood until very recently             

(Wulf et al., 2019). 

Finally, amplified cDNA needs to be converted to sequenceable libraries containing flowcell            

binding adaptors and sample barcodes. While most protocols use Illumina`s transposon based            
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tagmentation approach, improvements in enzymatic fragmentation followed by adaptor         

ligation are becoming more popular (Zheng et al., 2017).  

Figure 4: Common scRNA-seq workflows 
After successful cell isolation, mRNA is reverse transcribed and 2nd strand synthesis is performed. The               
resulting cDNA is amplified separately (A) or pooled (B) either via PCR (A,B) or in vitro transcription (C).                  
Final library construction involves fragmentation/tagmentation and adapter integration. 

With over 50 different protocols published, scRNA-seq remains a fast evolving method. The             

continuous evolution in both molecular methods as well as the corresponding tools for             

analysis, tackle not only the major challenges described above but also the computational,             

statistical and biological limitations recent methods still need to overcome. This includes            

dealing with stochastic dropout events in gene detection (zero inflation), big data handling,             

sample preparation and isolation and costs (Ziegenhain et al., 2018). It becomes even more              

challenging with single cell RNA-seq being more and more applied ubiquitously across            

numerous fields of biology, facing new specific challenges and applications. 
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Acute Myeloid Leukemia 

Pathophysiology of AML 

Acute myeloid leukemia (AML) is the most common type of acute leukemias, accounting for              

one third of cases within adult patients and roughly one percent of all new cancer incidences.                

In general, AML is caused by an abnormal proliferation and differentiation of a clonal              

population of hematopoietic stem cells. Hence, the healthy maturation process of myeloid            

cells is disturbed, leading to a decrease in erythrocytes (Anemia) and platelets            

(Thrombocytopenia) and an increase in leukocytes (Leukocytosis), whereas the latter are           

non-functional myeloblasts. Without any treatment, patients typically die within several          

months, mostly due to secondary infections or bleeding caused by the impaired immune             

system (Albrecht, 2014; De Kouchkovsky and Abdul-Hay, 2016). Despite the extensive           

advances in cancer diagnostics and treatment over the last decades, prognosis for AML             

patients remains poor with 50-80% of patients dying after an initial successful treatment             

(Kantarjian, 2016). Especially elderly patients, which represent the majority of cases, show a             

very low survival rate, which is partially caused by a higher risk of treatment related               

mortality (TRM) (Meyers et al., 2013; Shah et al., 2013). 

The underlying cause of the emergence of such transformations of a healthy hematopoietic             

stem cell relies on the acquisition of several mutations. These mutations permit a clone to               

overgrow other healthy HSCs and subsequently to fulfill other hallmarks of cancer.            

(Hanahan and Weinberg, 2000, 2011). In contrast to other cancers however, AML displays a              

very heterogeneous mutational pattern across patients and in most cases also lacks major             

chromosomal rearrangements and aberrations (Cancer Genome Atlas Research Network et          

al., 2013). 
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The heterogeneity of AML benefits from subclassifications 

Due to the heterogeneity across patients, specific mutation patterns can only be observed in a               

small subset of patients. Therefore, linking them to their individual effect on prognosis and              

treatment success is highly restricted due to the low statistical power. (De Kouchkovsky and              

Abdul-Hay, 2016). However, a framework for classifying AML related mutations has been            

established in animal models. This two hit model of leukemogenesis relies on the             

simultaneous presence of mutations which lead to the activation of pro-proliferative pathways            

(class I, e.g. FLT3, K/NRAS, TP53) and an impairment of the normal hematopoietic             

differentiation (class II, e.g. NPM1 or CEBPA) (Gilliland and Griffin, 2002). In addition, a              

third class of mutations in epigenetic regulators, such as DNMT3A, TET2 and IDH-1/2 could              

be identified affecting cellular differentiation and proliferation. (Cancer Genome Atlas          

Research Network et al., 2013).  

Nevertheless, the classification of AML related mutations into these three classes cannot            

explain the substantial variance in treatment success or relapse rates between patients.            

Another major entity contributing to this is the fraction of cells that acquired specific              

mutations within each tumour population, measured by variant allele frequencies (VAF).           

Mutations with a high variant allele frequency probably emerged very early on, possibly in              

the founder cell of the tumour, whereas mutations which can only be found in a subset of the                  

tumour are more likely to have developed later on. Although a low variant allele frequency of                

a specific mutation might be initially interpreted as less important for the tumour             

development it can play an essential role in relapse formation and hence for prognosis              

(Döhner et al., 2017).  

For example, it was shown that class II mutations are often not retained in the relapse and are                  

therefore assumed to be unstable. On the other hand, DNMT3A and NPM1 mutations showed              
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high stabilities in general (Cocciardi et al., 2019). The loss or gain of mutations between the                

initial cancer population and the corresponding relapse can be explained by two different             

models. Either the primary clone is not completely eradicated by therapy and remains in              

small numbers in the patient, or an already resistant subclone is selected for during treatment               

due to its fitness advantage. During the second outgrowth, further mutations can lead to a               

treatment resistant relapse or complement a resistance clone with further aggressiveness           

(Ding et al., 2012) (Figure 5). 

Figure 5: Schematic presentation of tumorigenesis and relapse formation in AML. 
Colouring of cells represent cell types: green, healthy hematopoietic stem cell; red/purple, leukemic cells.              
Shadings represent  various subclones of transformed leukemic cells. 

Hence, in order to provide an optimal outcome for each patient, the combined forces of               

French, American and British haematologists proposed the FAB (French American British)           

System in 1976, classifying patients into different categories and treatment strategies. Based            

on morphologic and cytochemical characteristics of peripheral blood and bone-marrow films           

it describes eight AML subtypes (M0 through M7) (Bennett et al., 1976). This system              

remained the fundamental classification scheme until 2001, when a better understanding of            

molecular and disease biology caused the World Health Organization (WHO) to incorporate            

genetic, immunophenotypic, biological as well as clinical features to a new classification            
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scheme (World Health Organization, 2001)(Walter et al., 2013), (World Health Organization,           

2001). Revised versions of this classification in 2008 and 2016 led to the definition of six                

different major disease entities, which are now generally adapted by clinicians (Arber et al.,              

2016; Vardiman et al., 2009).  

To further guide the treatment of patients, AML cases can be arranged into 3 major risk                

groups with favourable, intermediate and adverse prognosis based on cytogenetic aberrations           

and gene mutations as described in the revised version of the diagnosis and management              

recommendations of the European AML network in 2017 (ELN2017) (Döhner et al., 2017).             

Not surprisingly, the effect of a mutation in a specific gene must always be considered in its                 

mutational environment (De Kouchkovsky and Abdul-Hay, 2016)(Gale et al., 2008)(De          

Kouchkovsky and Abdul-Hay, 2016). Nevertheless, a mutation in TP53 (class I) remains the             

single worst genetic prognostic factor (Grossmann et al., 2012). 

As heterogeneous as the disease itself, the possible treatments are numerous (Figure 6). Most              

patients undergo at least one round of induction therapy comprising 7 days of continuous              

infusion of cytarabine, a chemotherapy medication mainly used to treat leukemias, followed            

by 3 days of anthracycline, a common chemotherapeutic regimen (Wiernik et al., 1992).             

Consolidation therapy after achieving remission mostly involves either continuing         

chemotherapy with lower doses of cytarabine or allogeneic hematopoietic stem cell           

transplantation (allo-HSCT). Due to the high general toxicity and high risk of TRM of this               

treatment, especially with elderly patients, newly designed targeted therapies such as FLT3            

inhibitors hold great promise for higher specificity and therefore lower toxicity in AML             

patients (Bcop et al., 2020; Estey, 2014; Ravandi et al., 2013; Röllig et al., 2015;               

Swaminathan et al., 2017; Wang et al., 2016). However, these specific therapies can only be               

effective for a subset of patients and do not present a general treatment scheme. 
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Figure 6: Schematic outline of possible treatments in AML 
The treatment of AML is not standardized and requires the integration of clinical and molecular information                
in addition to constant monitoring and reevaluation by the physicians. The possible treatments include              
classical chemotherapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) and targeted          
therapies as well as yet not established treatments via inclusions into clinical studies. 

Overall, the underlying biological and genetic heterogeneity requires future developments,          

not only in drug specificity and efficacy but also in a deeper understanding of the molecular                

processes involved in disease progression, relapse formation and treatment resistance.          

Refined diagnostic tools and better prognostic stratifications could lead to a step by step              

improvement to successfully treat AML patients (Herold et al., 2018). 
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Quantification of gene expression in AML 

In the last 5 years multiple studies have shown the great potential of RNA expression analysis                

in helping to understand clinical and molecular features of AML and thereby unlock at least               

some of the hidden secrets.  

As mentioned above, one of the major challenges of AML is the low rate of achieving                

complete remission (Walter et al., 2015a). Up to 50% of older and 20-30% of younger adult                

patients are refractory to induction therapy (Döhner et al., 2010). This treatment failure can              

be explained by a resistant disease (primary refractory AML). Earlier attempts to predict             

treatment response based on clinical but also genetic variables performed poorly (Krug et al.,              

2010; Walter et al., 2015a, 2015b). However, in 2018 a group of AML researchers from               

Munich provided a better estimator for treatment response by including RNA expression data             

(Herold et al., 2018). 

Combining the cytogenetically defined MRC risk group assignment (Grimwade et al., 2010)            

as well as the expression values of 29 genes, the newly defined PS29MRC (predictive score               

29 MRC) outperformed previous models, especially for patients above the age of 60. In              

addition, a high-risk patient group with a median survival of only eight months could be               

identified. This high risk group comprises about 20% of all intensively cared AML patients              

within the validation cohort of the study. Surprisingly, when comparing the ELN2017            

classification of these patients, 14% were assigned an intermediate and 86% an adverse risk.              

This finding does not only illustrate potential improvements of the current risk classification             

in use, but also raises the question whether standard induction therapy is the right choice for                

this group of patients. Furthermore, the gene expression markers incorporated in the            

PS29MRC score itself could help to understand the poor success of therapy. For example, the               

two most powerful marker genes within PS29MRC, CYP2E1 and MIR155HG (hosting           
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miR-155), have both been already described in relation to induction treatment. CYP2E1            

expression is a strong predictor of treatment response and is known to be involved in               

cytarabine metabolism (Iacobucci et al., 2013). On the other hand, high miR-155 expression             

was highly correlated with a refractory phenotype and is known to be upregulated in high risk                

CN-AML cases (Marcucci et al., 2013). 

More recently, high throughput RNA sequencing in combination with Chromatin          

Immunoprecipitation-sequencing (ChiP-seq) revealed that changes in gene regulatory        

element (GRE) activity in relapsed AML patients can be linked to an expression signature              

enabling to predict relapse in these patients (Wiggers et al., 2019). However, in contrast to               

the PS29MRC score, it was found that prediction capabilities of different genes differ             

drastically between subgroups of patients. Using a weighted gene coexpression network           

analysis (WGCNA) 12 clusters of genes that share a similar expression across the cohorts              

sample could be identified. Six of these clusters were comprised of five or more relapse               

predictive genes. While most clusters showed no distinctive preference for FAB classified            

subcategories of patients, some indeed were highly predictive for only one specific FAB             

classification. This highlights that although RNA-expression can be a useful tool to predict             

relapse risk already at diagnosis, an overall pattern across all AML patients is not likely,               

further highlighting the need for a finer classification scheme of the disease heterogeneity             

(Wiggers et al., 2019). 

In addition to the informative expression of genes, full length RNA-seq is capable of              

detecting differential isoform expression and alternative splicing (Wang et al., 2009). The            

effect of specific alternative splicing events is known to have a possible impact on treatment               

resistance (Sveen et al., 2016). For example, it has been shown that alternative splicing via               

skipping exon 12 leads to an inactive deoxycytidine kinase (dCK) protein which is             
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commonly found in patients with restinant AML (Veuger et al., 2000). Low expression or              

inactive splice forms enabled AML cells to cope with Cytarabine treatment, in vitro (Veuger              

et al., 2002). Recent studies have shown that aberrant splicing affects a major portion of               

expressed genes in AML samples and might play a key role in initial treatment resistance and                

relapse formation (Adamia et al., 2014; Li et al., 2014; Zhou and Chng, 2017).  

A major advantage of RNA-seq is the possibility to perform expression quantification at the              

level of single cells. The field of single cell RNA sequencing (scRNA-seq) has been rapidly               

evolving over the last decade with numerous protocols published (Ziegenhain et al., 2017). 

Although comprising its own set of difficulties and challenges scRNA-seq holds the great             

promise to be able to finally understand the underlying heterogeneity of AML (Bagnoli et al.,               

2019; Ziegenhain et al., 2018). In addition to the interpatient heterogeneity, even within one              

specific AML subgroup, cancerous cells are known to show a variety of cell states. In a                

simplified manner, AML cell states can be seen as a mirror of the healthy hematopoietic cell                

hierarchy. Interestingly, it has been shown that some leukemic cells harbour a stem cell like               

phenotype, being quiescent and rare and are hypothesized to be able to retain the tumour               

(Pollyea and Jordan, 2017). Using high throughput scRNA-seq of healthy and AML bone             

marrow aspirations, in combination with short read (Illumina) and long read (Nanopore)            

sequencing of targeted RNA genotyping amplicons, it was shown that leukemic cells can be              

projected to cell types of healthy hematopoiesis. When comparing the ratios of these             

malignant cell types across 35 patients to clinical characteristics like morphology and surface             

phenotypes, the assignments were in good concordance. Interestingly, using a subset of genes             

differentiating between these leukemic cell types in the single cell data, publicly available             

bulk RNA-seq data of The Cancer Genome Atlas (TCGA) could be clustered into 7 distinct               

clusters, which showed a high correlation with their underlying genetic mutations.           
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Furthermore, primitive AML cells were found to up regulate genes involved in stress             

response, proliferation and self renewal, when compared to their healthy counterparts.           

However, gene signatures which could identify early stage hematopoietic cells (HSCs and            

GMPs) were coexpressed in primitive AML cells and patients with a high HSC like              

expression pattern showed a decreased survival (van Galen et al., 2019).  

A similar but more efficient approach in combining single cell expression analysis with             

single cell RNA genotyping was recently established by using only commercially available 3`             

and 5` high throughput scRNA-sequencing kits, showing great promise for further research            

(Petti et al., 2019). 

Although these studies have shown the potential of RNA expression analysis to further             

understand the disease and to improve prognosis accuracy, its broader application in AML             

research and diagnostic routine is often unfeasible. The complex interactions in which the             

disease evolves requires advanced model systems and large sample sizes. However, the            

biological samples needed to investigate AML are rare and very limited. Patient samples are              

especially hard to obtain as they are used for diagnostic procedures and require painful and               

risky bone marrow aspiration from the patient. While there are several leukemic cell line              

models, which can be cultured in a relatively easy manner, they fail to model outside               

influences via the immune system, different treatments or the formation of possible niches             

that play an important role for the underlying disease pathways. A possible system proposed              

to overcome this limitation are Patient Derived Xenograft (PDX) models, in which human             

leukemic cells derived from biopsy samples are cultured within immunodeficient mice (Vick            

et al., 2015). These models provide a much better environment, as niche interactions within              

the bone marrow of the mouse can be exploited by the AML cells and the effect of possible                  

treatments can be investigated in a living organism. However, due to the missing intact              
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immune system as well as the murine environment , the transfer of observations in PDX               

models to human patients is difficult. In addition, they are very expensive and require              

substantial work to be propagated and thereby limiting sample availability.  

Overall, bulk and single cell RNA-seq help to further understand the transformation of             

healthy hematopoietic stem cells, the progression and evolution of the cancerous cell            

population as well as the underlying causes of treatment resistance and relapse formation.             

However, special adaptations of these powerful methods are required to cope with the general              

restrictions in AML research. 
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Main Text: 

Resistance against chemotherapy remains a major obstacle in treating patients with 

acute myeloid leukemia (AML).(1) Novel therapeutic concepts are especially desired 

to target and eliminate resistant AML stem cells. Here we show that AML stem cells 

harbor plasticity, a changing pattern of biological behaviour, by demonstrating that 

AML stem cells reversibly switch from a low-cycling, chemotherapy resistant state 

into an actively proliferating state associated with response to standard 

chemotherapy.  

We used patient-derived xenograft (PDX) cells from patients with high risk or 

relapsed AML that were lentivirally transduced for marker expression. We stained 

these cells with the proliferation-sensitive dye Carboxyfluorescein succinimidyl ester 

(CFSE), and re-transplanted them into next-recipient mice. A rare subpopulation of 

AML cells displayed reduced proliferation in vivo, associated with resistance against 

standard chemotherapy. The proportion of AML cells with stem cell potential was 

identical in both, the high and low proliferative sub-fractions. In re-transplantation 

experiments, proliferation behavior proved reversible, and AML stem cells were able 

to switch between a high and low proliferation state. Our data indicate that AML stem 

cells display functional plasticity in vivo, which might be exploited for therapeutic 

purposes, to prevent AML relapse and ultimately improve the prognosis of patients 

with AML. 

AML patients are at risk to suffer disease relapse associated with dismal prognosis. 

The rare subpopulation of AML stem cells (or LIC for leukemia initiating cells) might 

be responsible for relapse by combining self-renewal capacity with dormancy and 

resistance against standard chemotherapy.(2) AML LIC features, i.e. growth 

phenotype have long been considered mainly constant and persistent (2-5); in 

contrast, recent data suggest unsteady features under therapeutic pressure (6, 7), 

while data without experimental treatment pressure remain elusive. Putative 

functional plasticity of AML LIC is of major clinical importance as it might enable 

novel therapeutic options. 

We previously reported functional plasticity in acute lymphoblastic leukemia (ALL), 

where we showed in vivo that long-term dormant, treatment-resistant ALL cells were 

able to convert into highly proliferative, treatment-sensitive cells and vice versa (8). 
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Nevertheless, AML and ALL differ widely regarding stem cell biology and a defined 

stem cell hierarchy - characteristic for AML - was never proven in ALL. Based on 

diverse stem cell characteristics, we considered functional plasticity of LIC 

conceivable in ALL, but hypothesized its absence in AML.  

To test our hypothesis, we studied cells from ten patients with high-risk or relapsed 

AML of different karyotypes, genotypes and clinical histories (Table S1). As a clinic-

close model system, primary cells were transplanted into immunocompromised mice, 

and AML patient-derived xenograft (PDX) models were established.(9) PDX models 

were selected to allow for serial transplantation; as this ability is restricted to highly 

aggressive disease, our study is biased towards high risk AML. AML PDX models 

were genetically engineered to express luciferase for bioluminescence in vivo

imaging and mCherry for cell enrichment by flow cytometry. Marker expression 

remained stable over serial re-transplantation and allowed enrichment of minute 

numbers of PDX AML cells from murine bone marrow (Figure 1A, detailed in 

supplemental methods). As controls, three samples (AML-356, AML-358 and AML-

538) were studied without prior genetic engineering.

AML PDX samples showed more than three-fold differences in doubling times in vivo,

resulting in variable time to overt disease in mice (Figure S1AB). When PDX cells

were re-isolated from murine bone marrow, mCherry expression enabled unbiased

enrichment of AML PDX cells, independent of other, putatively subpopulation-

restricted, surface markers on AML cells (Figure 1B).(8, 10) Re-isolation of PDX cells

revealed that homing was heterogeneous between samples, as 0.01 to 1% of PDX

cells could be re-isolated from mice early after transplantation (Figure S1C). The

frequency of LIC, as determined in limiting dilution transplantation assays, varied by

a factor of 10 between samples (Figure S1D, Table S2). Thus, our AML PDX cohort

of aggressive samples displayed major functional inter-sample heterogeneity in vivo,

reflecting the known phenotypic heterogeneity of AML.(11)

To track in vivo proliferation of AML cells from individual samples, PDX cells were 

stained with CFSE, a dye that is not metabolized in eukaryotic cells, but decreases 

upon cell divisions, indicating proliferation.(12) CFSE records a cell’s proliferative 

history rather than providing a snapshot of the cell´s proliferative state at a given 
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moment. CFSE content was measured by flow cytometry at different time points 

following injection into groups of mice.  

In accordance with an increase in leukemic burden and numbers of re-isolated cells 

(Figures 1CD and S2A), most AML PDX cells entirely lost CFSE within days of in 

vivo growth, indicating high proliferative activity in the majority of cells (Figures 1EF 

and S2A). However, a minor subpopulation of cells retained CFSE over several 

weeks, indicating a low-cycling, putatively dormant phenotype (Figures 1EF and 

S2A). We called these cells label-retaining cells (LRC) according to literature (8). 

LRC were found in 9/10 samples tested (Figures 1EF and S2AB). Only a single 

sample originating from child with fatal AML relapse had entirely lost the LRC 

population between day 7 to 15 (Figure S2C), again highlighting the known 

heterogeneity of AML.(11) Cell cycle analysis confirmed that LRC divide less as 

compared to non-LRC (Figure S3A). Together, our data reveal, in the majority of 

cases, heterogeneity of in vivo growth behavior within individual AML PDX samples, 

including a subpopulation of low-cycling LRC. Hence, our results add an important 

level of phenotypic heterogeneity to AML on top of the known heterogeneity of e.g. 

immunophenotypes, or gene expression profiles. As a large range of AML subtypes 

were studied (Table S1), the novel characteristic is not limited to a specific 

cytogenetic or genetic subgroup. 

To further characterize attributes of LRC, gene expression analysis of 24 LRC and 

non-LRC samples isolated from AML-393 and AML-491 was performed.(13) Among 

the top down regulated gene sets in LRC were cell cycle regulators, confirming the 

reduced proliferative state of these cells (Figure S3BC); among the top upregulated 

gene sets were cell adhesion molecules (Figure S3C). Notably, LRC of AML-393 

were more similar to LRC of AML-491 than to their own non-LRCs (Figure 1G), 

despite the substantial differences in the mutational profile of AML-393 and AML-491 

(Table S1). Even more striking, gene-set enrichment analysis identified a high 

overlap of significantly deregulated genes between AML LRC and our previously 

defined LRC signature in ALL (8) (Figure 1H and S3C), suggesting comparable 

biologic processes activated in LRC of both, AML and ALL. 

Given the long-known link between dormancy and chemo-resistance(14), we 

compared drug response between low-cycling LRC and high-cycling non-LRC. 
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Groups of mice engrafted with CFSE-labeled cells were treated with a 

chemotherapeutic regimen mimicking “7+3” induction therapy(1), consisting of 

cytarabine and liposomal daunorubicin (DaunoXome) (Figure 2A). In vivo treatment 

diminished tumor burden as monitored by in vivo imaging (Figure 2B), resulting in a 

decrease of total isolated PDX cells by at least one order of magnitude (Figure 2C). 

Interestingly, while non-LRC were strongly reduced by treatment, even to 

undetectable levels in some mice (Figures 2DE), low-cycling LRC revealed 

decreased sensitivity towards systemic treatment in all samples tested. As net effect, 

the relative proportion of LRC was significantly enriched among cells surviving after 

treatment in 3 of 4 samples (Figures 2DF). Thus, low-cycling LRC show increased 

resistance against conventional chemotherapy in vivo compared to high-cycling non-

LRC.  

We next asked whether LRC and non-LRC differ in their ability to form tumors and 

performed re-transplantation experiments. Low numbers of sorted LRC and non-LRC 

were re-injected into secondary recipient mice in limiting dilutions close to sample-

specific LIC frequency (Figures 3A and S4A). Interestingly, both, LRC and non-LRC 

gave rise to leukemia upon re-transplantation, indicating both subpopulations 

contained LIC (Figures 3B and S4B). As leukemia development was highly similar in 

mice transplanted with either LRC or non-LRC, low-cycling LRC must have converted 

into an actively proliferative state. Furthermore, we found similar LIC frequencies in 

LRC and non-LRC (Figure 3C, S4C and Table S3), and no difference in CD34+CD38-

cells between the two groups (Figure S5), strengthening previous findings.(15) 

Notably, CD34+CD38- cells were barely detectable in the aggressive AML-393 

sample, despite high LIC frequency (Figure S5, Table S2). These data indicate that 

LIC reside not only in the low-cycling LRC, but also in the high-cycling non-LRC 

compartment, indicating heterogeneity in proliferation dynamics within the AML LIC 

pool.  

As low-cycling cells were able to convert to active proliferation, we asked whether the 

switch could also occur vice versa. To test whether LRC could be replenished from 

non-LRC, we re-transplanted high cell numbers of non-LRC restained with CFSE 

(Figure 3D and S4D). Upon secondary transplantation, non-LRC gave rise to a clear 

LRC fraction, comparable to the one from bulk cells at first transplantation, even at 

late time points (Figures 3EF and S4EF), indicating that high-cycling cells converted 

to a low-cycling phenotype.  
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These experiments revealed major functional plasticity of AML LIC phenotypes, and 

the ability to change their proliferation rate upon changes in external stimuli, such as 

re-transplantation.  

Taken together, our data shows that low proliferation or dormancy characterizes a 

temporary, reversible cell state rather than a defined subpopulation of cells. AML 

contains a rare fraction of low-cycling, chemo-resistant LIC which are functionally 

plastic; AML LIC might temporarily adopt a low-cycling LRC phenotype or switch to a 

rapidly proliferating non-LRC phenotype, triggered by external stimuli such as re-

transplantation. Even the highly aggressive AML samples used in this study harbor 

the potential to adopt a proliferative phenotype associated with response to standard 

chemotherapy.  

Unexpectedly, we detected similar functional plasticity in AML as previously observed 

in ALL (8). This was accompanied by similar changes in gene expression profiles, 

although both diseases differ substantially regarding their stem cell biology as ALL 

never revealed a stem cell hierarchy as proven in AML. In contrast to ALL, AML 

plasticity comes as a major surprise, as we show here that high-cycling cells harbor 

the potential to convert into low-cycling cells, while both populations retain stem cell 

capacities. In our experiments, neither functionally nor immunophenotypically defined 

LIC were enriched in the LRC fraction, suggesting that dormancy and stemness are 

not consistently linked in AML, but that dormancy characterizes a temporary cell 

state rather than a defined subpopulation of cells. In addition to the known constant, 

presumably deterministic factors defining stemness, AML stem cells appear to be 

regulated by additional, transient and putatively stochastic factors.(16)  

Our data indicates that stemness and resistance to anti-leukemic therapy is not 

strictly linked in AML. This opens exciting therapeutic potential to prevent relapse and 

strongly support the concept that recruiting AML LIC from their low-cycling phenotype 

into proliferation might sensitize them towards, e.g., conventional chemotherapy.(3, 

4, 7) Taking advantage of the discovered heterogeneity and reversibility of the low- 

and high-cycling phenotypes implicates the need to identify factors responsible for 

AML plasticity, in addition to known microenvironment-derived regulators such as G-

CSF.(2) The detected similarity in transcriptome signature between LRC of AML and 
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ALL might aid identifying factors that regulate these processes in both diseases. As 

attractive therapeutic concept, inhibition of the reversible low-cycling state might 

enable overcoming treatment resistance, remove AML LIC, prevent relapse, and 

ultimately increase patients’ prognosis. 
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Figure Legends 

Figure 1 AML PDX cells contain a rare subpopulation of low-cycling cells  

A Experimental procedure; primary patients’ AML cells were transplanted into 

NSG mice, resulting PDX cells were genetically engineered, sorted, and 

amplified. At advanced disease stage, mCherry+ AML PDX cells were isolated, 

stained with CFSE, and re-transplanted. At different time points, AML cells 

were re-isolated from mouse bone marrow, enriched, and CFSE content 

measured by flow cytometry, to detect CFSE-positive, low-cycling label-

retaining cells (LRC), and CFSE-negative, proliferating non-LRC (nLRC). 

NSG: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ; EF1α: elongation factor 1-alpha 

promoter; Luc: enhanced firefly luciferase. 

B Gating strategy; bone marrow cells depleted of murine cells by MACS were 

gated on (i) leukocytes, (ii) DAPI- mCherry+ AML PDX cells, and (iii) separated 

into LRC and non-LRC according to their CFSE content. Maximum CFSE MFI 

was measured at day two after cell injection or in vitro cultivation, and divided 

by factor two to model cell divisions (dotted lines); upon less than three 

divisions, cells were considered as low-cycling LRC, upon more than seven 

divisions as proliferating non-LRC; days indicate time after cell injection. 

C,D Growth of AML-393 cells monitored by in vivo imaging (C) or by quantifying 

PDX cells re-isolated from mouse bone marrow using flow cytometry (n=21) 

(D); each square represents data from one mouse.  

E,F A rare subpopulation of AML PDX cells retains CFSE upon prolonged in vivo

growth. AML-393 cells from different time points in D were analyzed by flow 

cytometry for CFSE using the gating strategy described in B; representative 

dot plots (E) and percentage of LRC cells among all isolated PDX cells are 

shown (F); each square represents data of one mouse. 

G,H Gene expression analysis of LRC and non-LRC. LRC and non-LRC were 

isolated from mice carrying AML-393 (n=4) or AML-491 (n=4) ten or fourteen 

days after cell injection, respectively and subjected to RNA sequencing. 

Technical replicates were analyzed in 6 of 8 samples, resulting in a total of 24 

samples analyzed.   
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G Heatmap of top differentially regulated genes (false discovery rate [FDR] 

≤0.05) between LRC (green) and nLRC (black) of AML-393 and AML-491. 

H LRC of AML-393 and AML-491 show significant overlap with the previously 

published LRC signature of acute lymphoblastic leukemia (ALL).   

See supplemental Figure S1 and S2 for additional data. 
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Figure 2 Low-cycling AML PDX cells are treatment resistant in vivo 

A Experimental procedure; groups of mice were injected with CFSE labeled 

AML-PDX cells and treated with PBS (ctrl.) or a combination of 20 mg/kg 

DaunoXome® (DNX) on day 7 and 150 mg/kg cytarabine (Ara-C) on days 7 to 

9; PDX cells were re-isolated from murine bone marrow on day 10 and 

analyzed as described in Figure 1B.

B Tumor load was monitored by in vivo imaging in AML-393.  

C Total number of isolated PDX cells is shown of control and treated mice as 

mean+/-SD of AML-393 (n=8), AML-491 (n=6), AML-372 (n=10) and AML-388 

(n=7) (C); each dot/square represents one mouse.  

D, Representative dot plots (AML-393)  

E, F Absolute number (E) and percentage (F) of non-LRC and LRC among all 

isolated PDX cells are shown from the same mice as in C; Log2 fold reduction 

for each subpopulation is displayed. 

* p<0.05
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Figure 3 AML PDX cells display reversible growth behavior, independently 
from stemness potential 

A Experimental procedure; AML-393 cells were isolated from advanced disease 

donor mice (n=5 in three independent experiments), labeled with CFSE, and 

re-transplanted into first recipient mice. Ten days after injection, cells were re-

isolated and sorted into LRC and non-LRC (nLRC) using the gates as 

described in Figure 1B and re-injected into secondary recipient mice. 

B Secondary recipient mice receiving either 300 LRC or 300 non-LRC (n=5) 

were monitored by in vivo imaging. 

C LRC and non-LRC were re-injected into secondary recipient mice (n=38) in 

limiting dilutions at numbers indicated in Table S3. Positive engraftment of 

PDX cells was determined by in vivo imaging and/or flow cytometry. LIC 

frequency was calculated using the ELDA software and is depicted +/- 95% 

confidence interval. No statistically significant difference between LIC 

frequency of LRC and non-LRC was found according to chi-square test 

(p=0.0638).  

D Experimental procedure; from first recipient mice (n=2 in 2 independent 

experiments) harboring CFSE stained cells, non-LRC were isolated at day 21, 

re-stained with CFSE and 3.6*106 cells were injected into secondary recipients 

(n=8); cells were re-isolated 10, 14 and 20 days later, and LRC were 

quantified using gates as described in Figure 1B. The experiment is 

technically unfeasible for LRC as the high number of cells needed cannot be 

generated.  

E, F Representative dot plots (E) and quantification (F) of the percentage of LRC 

among all PDX cells isolated from secondary recipients is displayed (dark 

green squares). LRC of first recipient mice as determined in Figure 1E are 

shown for comparison (light green dots). 

See supplemental Figures S4 and Table S3 for additional data. 
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Supplemental Methods 

Patients’ acute myeloid leukemia (AML) cells 

Bone marrow (BM) or peripheral blood (PB) samples from adult AML patients were 

obtained from the Department of Internal Medicine III, Ludwig-Maximilians-

Universität, Munich, Germany, during the years 2012 and 2014. Specimens were 

collected for diagnostic purposes before start of treatment. Written informed consent 

was obtained from all patients. The study was performed in accordance with the 

ethical standards of the responsible committee on human experimentation (written 

approval by the Research Ethics Boards of the medical faculty of Ludwig-

Maximilians-Universität, Munich, number 068-08 and 222-10) and with the Helsinki 

Declaration of 1975, as revised in 2000. AML-538 was kindly provided by Claudia 

Baldus and Lorenz Bastian (Charité Universitätsmedizin Berlin, Germany). Pediatric 

AML PDX samples were a gift from Maya C. André and Martin Ebinger (University 

Children’s Hospital Tuebingen, Germany), and were described previously.(1) Genetic 

profiling of AML PDX and primary AML samples was performed by Maja Rothenberg-

Thurley and Klaus H. Metzeler, as described previously.(2) 

The patient derived xenograft (PDX) mouse model of patients’ AML 

Xenotransplantation and establishing AML PDX cells in NSG mice (NOD-scid-

gamma, The Jackson Laboratory, Bar Harbour, ME, USA) was performed as 

described previously.(3) In the study presented here, only AML PDX cells were 

applied that re-engrafted in NSG mice over several passages, and lead to a BM 

chimerism above 90% hCD33+ hCD45+ cells within 16 weeks after transplantation. 

These requirements precluded the use of primary patient cells, slow engrafters, low 

engrafters, or samples without the capacity to re-engraft; therefore, the PDX cohort 

used in this study is enriched for highly aggressive samples. All animal trials were 
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performed in accordance with the current ethical standards of the official committee 

on animal experimentation (written approval by Regierung von Oberbayern, 

tierversuche@reg-ob.bayern.de; 55.2-1-54-2531-95-10, ROB-55.2Vet-2532.Vet_02-

15-193, ROB-55.2Vet-2532.Vet_02-16-7 and ROB-55.2Vet-2532.Vet_03-16-56).

Accuracy of sample identity was verified by repetitive finger printing using PCR of 

mitochondrial DNA.(4) 

Lentiviral transduction of AML PDX cells and enrichment of transgenic cells  

In vitro culture, lentiviral constructs, transduction, and sorting of transgenic PDX cells 

were performed as described previously.(3) In the study presented here, cells were 

transduced with a construct expressing enhanced firefly luciferase and mCherry in 

equimolar amounts (pCDH-EF1a-eFFly-mCherry, available via Addgene #104833). 

Initial lentiviral transduction efficiencies were between 1% and 44% (AML-346 30%, 

AML-372 1%, AML-388 2%, AML-393 12%, AML-491 11%, AML-579 1%, AML-661 

44%). PDX cells were sorted using a FACSAria III (BD Biosciences, Heidelberg, 

Germany) to reach a purity of more than 95% of mCherry+ cells. As control, three 

AML PDX samples without transgenic expression of firefly luciferase and mCherry 

were applied (AML-356, AML-358, AML-538). 

Bioluminescence in vivo imaging (BLI) 

BLI and quantification of tumor burden was performed as described previously.(3, 5)  

Labeling of PDX cells with carboxyfluorescein succinimidyl ester (CFSE) 

Labeling of PDX cells with CFSE was performed as described previously.(5) In brief, 

AML PDX cells were isolated from mice with advanced disease stage, indicated by a 

BM chimersim of more than 90% mCherry+ PDX cells. Cells were labeled with CFSE 

ex vivo (Life Technologies, Carlsbad, CA, USA) according to manufacturer’s 
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instructions, washed in PBS, and injected into next recipient mice (107 CFSE+ PDX 

cells per mouse). The procedure resulted in CFSE positivity of well above 98% of 

PDX cells, as validated by flow cytometry. As AML PDX cells are heterogeneous in 

size, loss of CFSE appears as continuum in flow cytometry, devoid of the distinct 

peaks known from normal leukocytes. 

Enriching and quantifying PDX and label-retaining cells (LRC) from mouse BM 

To purify AML PDX cells from mouse BM, bones from hip, femura, tibiae, sternum 

and spine were crushed with a mortar and pistil, cells were washed once in PBS, and 

filtered through a cell strainer (EASYSTRAINER 70 µM, Greiner bio-one, 

Frickenhausen, Germany). Murine cells were depleted using magnetic beads 

according to manufacturer’s instructions (Mouse Cell Depletion Kit, Miltenyi Biotech, 

Bergisch Gladbach, Germany), with the exception that only 100  µl MicroBeads and 

two columns were used for one mouse BM suspension. As second step, AML PDX 

cells were analyzed or sorted by flow cytometry by gating on (i) leukocytes in 

FSC/SSC, and (ii) DAPI- living cells and transgenic mCherry+ AML PDX cells using a 

BD LSRFortessa or FACSAriaIII, respectively (BD Biosciences, Heidelberg, 

Germany) as shown in Figure 1B. Sorting of LRC and non-LRC was performed with 

the precision setting “purity” at the FACSAria. To determine the fraction of low-cycling 

AML PDX cells, LRC were discriminated from non-LRC using CFSE staining as 

shown in Figure 1B. To quantify LRC, CFSE mean fluorescence intensity (MFI) of 

CFSE labelled PDX cells either incubated for two to three days ex vivo or isolated 

from a mouse two to three days after injection was measured, which defined the 

starting condition (‘‘0 divisions’’). Day two or three CFSE MFI was divided by factor 

two to calculate putative CFSE bisections mimicking cell divisions. Cells with a high 

CFSE signal below three bisections of the maximum CFSE MFI were defined as 
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LRC. Seven CFSE MFI bisections or more were defined as entire loss of the CFSE 

signal characterizing non-LRC. At late time points, due to high cell numbers and 

time-dependent issues, after murine cell depletion often 1/10 of cells were analyzed 

by flow cytometry. Absolute cell numbers were calculated thereof.  

Cell cycle analysis 

AML PDX cells were isolated from a first donor mouse, labeled with CFSE and 107 

cells were transplanted into first recipients. Sixteen days after injection, AML PDX 

cells were re-isolated as described above. After Mouse Cell Depletion Kit, cells were 

stained with Vibrant DyeCycle Violet (Invitrogen, Eugene, OR, USA) according to 

manufacturer’s instructions. Cells were analyzed by flow cytometry for cell cycle 

distribution within the LRC and non-LRC compartment. 

RNA sequencing and data analysis 

Library Preparation of RNA-Seq: 1,000 and 2,000 cells of each individual sample 

were sorted and lysed in RLT Plus (Qiagen) supplemented with 1% 2-

Mercaptoethanol (Sigma Aldrich) and stored at -80°C until processing. A modified 

SCRB-seq protocol (6, 7) was used for library preparation. Briefly, proteins in the 

lysate were digested by Proteinase K (Ambion), RNA was cleaned up using SPRI 

beads (GE, 22% PEG). In order to remove isolated DNA, samples were treated with 

DNase I for 15 min at RT. cDNA was generated by oligo-dT primers containing well 

specific (sample specific) barcodes and unique molecular identifiers (UMIs). 

Unincorporated barcode primers were digested using Exonuclease I (Thermo 

Fisher). cDNA was pre-amplified using KAPA HiFi HotStart polymerase (Roche) and 

pooled before Nextera libraries were constructed from 0.8 ng of pre-amplified 

cleaned up cDNA using Nextera XT Kit (Illumina). 3’ ends were enriched with a 

custom P5 primer (P5NEXTPT5, IDT) and libraries were size selected using 2% E- 
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Gel Agarose EX Gels (Life Technologies), cut out in the range of 300–800 bp, and 

extracted using the Monarch DNA Gel Extraction Kit (New England Biolabs) 

according to manufacturer’s recommendations. 

Sequencing: Libraries were paired-end sequenced on a rapid flow cell (1.5 lanes, 

~208*106 reads in total) of an Illumina HiSeq 1500 instrument. Sixteen bases were 

sequenced within the first read to obtain cellular and molecular barcodes, and 50 

bases were sequenced in the second read into the cDNA fragment. An additional 

eight bases were sequenced to obtain the i7 barcode. 

Data processing and differential gene expression and pathway analysis: All raw fastq 

data was demultiplexed using deML (8) and further processed with zUMIs (9). 

Mapping was performed using STAR 2.6.0a (10) against the concatenated human 

(hg38) and mouse genome (mm10). Gene annotations were obtained from Ensembl 

(GRCh38.84/GRCm38.75). Samples were identified via the cellular barcode, with 

initial phred score filtering allowing one base below 20. UMI phred filtering allowed 

one bases below phred 20. Differential gene expression of LRC and nLRC was 

calculated using the DESeq2 package following recommended workflows.(11) 

Pathway analysis using the MSigDB Collection “hallmark of cancer“ and “KEGG“ 

(v7.0) was conducted using default setting.(12, 13) Sequencing data are available at 

the NCBI Gene Expression Omnibus (GEO accession number: GSE141627). 

In vivo treatment trials  

AML PDX cells were injected into groups of mice (107 CFSE+ PDX cells per mouse). 

Seven days after cell injection, mice were treated with a combination of Cytarabine 

(150 mg/kg dissolved in PBS, i.p.) on days seven, eight, and nine, and one dose of 

DaunoXome (20 mg/kg i.v.) on day seven (see scheme in Figure 2A). Body weight 

was measured daily. Tumor burden was monitored on days seven and ten by BLI. At 
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day ten, mice were sacrificed, BM was collected, and AML PDX cells were isolated 

and analyzed for CFSE label retention as described above.  

Analysis of plasticity of LRC and non-LRC 

AML PDX cells were isolated from a first donor mouse, labeled with CFSE and 

transplanted into first recipient mice as described above. Ten (AML-393) or 15 (AML-

491) days after injection, AML PDX cells were re-isolated and purely sorted into LRC

and non-LRC fractions as described above (see also scheme in Figures 3 and S4). 

Limiting dilutions of sorted cells were re-injected into secondary recipient mice 

(between 30 and 3000 cells per mouse, see Table S3). Tumor outgrowth was 

analyzed by BLI and compared between the groups. Engraftment was determined by 

positive bioluminescence in vivo imaging signal, analysis of hCD33+/hCD45+ cells in 

peripheral blood (PB), and/or analysis of hCD33+/hCD45+ cells in BM by FACS 

staining. If no AML PDX cells were detectable within 150 days after injection via BLI, 

in PB or in BM, mice were counted as non-engrafters. LIC frequencies were 

determined according to Poisson statistics, using the ELDA software application 

(http://bioinf.wehi.edu.au/software/elda/).(14) 

To determine if highly proliferative cells convert into low-cycling cells, non-LRC from 

a primary recipient mouse were isolated at day 20 (AML-393) or 21 (AML-491), 

sorted, re-labeled with CFSE, and re-injected into secondary recipient mice (3.6*106 

CFSE+ AML-393 non-LRC, n=8, or 1.9*106 CFSE+ AML-491 non-LRC, n=5). Cells 

were re-isolated at different time points after injection, distribution of LRC and non-

LRC was analyzed, and compared to the distribution within first recipient mice.  

For this analysis, many cells are needed for the re-injection into secondary recipient 

mice. The minute numbers of LRC that can be re-isolated after ten days from first 

recipient mice cannot be enriched from secondary recipient mice after re-
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transplantation; therefore, it is technically unfeasible to perform this analysis with the 

LRC fraction of cells.  

Analysis of CD34 and CD38 immunophenotype 

AML PDX cells were isolated from a first donor mouse, labeled with CFSE and 107 

cells were transplanted into first recipients. Ten (AML-393) or 14 (AML-491) days 

after injection, AML PDX cells were re-isolated as described above. After Mouse Cell 

Depletion Kit, 19/20 of cells were stained with 10 µl PC7-conjugated CD34 

monoclonal antibody 581 (Beckman Coulter,Marseille, France) and 10 µl APC-

conjugated CD38 monoclonal antibody HIT2 (BioLegend, San Diego, CA, USA). In 

the remaining 1/20 of cells, antibody-reactivity was controlled using 5 µl isotype-

matched control-antibodies. For detection of CD34+/CD38- cells within the LRC and 

non-LRC compartment, cells were analyzed by flow cytometry.  

Statistics 

Statistical analyses were calculated using GraphPad Prism 7 software. To compare 

groups after drug treatment, we first checked normality in the control and treatment 

group of each sample using the Shapiro-Wilk normality test. If normality assumption 

was rejected, the Mann Whitney U test was applied. Otherwise, variance 

homogeneity was tested using the F test, and based on these results, we applied the 

students or welchs t-test as appropriate. Due to the explorative nature and the limited 

statistical power based on small sample size, we decided not to correct for multiple 

testing with respect to tumor samples. ELDA software was used to test differences in 

LIC frequency by chi-square test (http://bioinf.wehi.edu.au/software/elda/).(14) 
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Table S1. Clinical characteristics of AML patients 

Sample disease  
stage* 

age1 
[years] sex cytogenetics mutations2 

AML-346 R1 1 f int. del(5q)(13q) CKIT 

AML-356 R1 5 m ND ND 

AML-358 R2 9 m ND FLT3-TKD 

AML-372 R1 42 m complex, 
incl. -17 

KRAS, TP53 

AML-388 ID 57 m KMT2A-AF6 KRAS, CEBPZ 

AML-393 R1 47 f KMT2A-AF10 BCOR, KRAS 

AML-491 R1 53 f del(7)(q2?1) DNMT3A, BCOR, NRAS, KRAS, 
ETV6, PTPN11, RUNX1
 
 

AML-538 R1 68 f CN DNMT3A, IDH1 

AML-579 R1 51 m CN NPM1, FLT3-ITD, DNMT3A, IDH1 

AML-661 R2 55 f del(7)(q2?1) DNMT3A, BCOR, NRAS, ETV6, 
PTPN11, RUNX1, EZH2
 
 

1when the primary AML sample was obtained; 2mutations detected by targeted re-
sequencing in PDX cells; ID = initial diagnosis; R1 = 1st relapse; R2 = 2nd relapse; int 
= interstitial;  del = deletion; CN = cytogenetically normal; f = female; m = male; ND = 
not determined 
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Table S2: LIC frequencies of different AML PDX samples (Related to Figure S1D)  

*Cells from different AML samples were transplanted into recipient mice in limiting dilutions at
numbers indicated; bioluminescence in vivo imaging, blood measurement or bone marrow FACS
staining was performed to determine engraftment; LIC frequency was calculated using the ELDA
software; 95% confidence interval (CI).

Sample # of cells* # of mice 
injected / engrafted 

LIC frequency 
(95% CI) 

AML-372 

100,000 3 / 3 

1/5,125 
(1/1,926 - 1/13,640) 

30,000 3 / 3 
10,000 3 / 3 
3,000 3 / 1 
1,000 3 / 0 

AML-388 

72,000 1 / 1 

1/3,665 
(1/939 - 1/14,300) 

24,000 1 / 1 
21.870 1 / 1 
7,290 1 / 1 
2,430 2 / 1 
710 1 / 0 
270 2 / 0 
90 1 / 0 
30 2 / 0 

AML-346 

100,000 4 / 4 

1/2,337 
(1/898 - 1/6,093) 

20,000 3 / 3 
10,000 4 / 4 
2,000 3 / 2 
1,000 4 / 1 
100 4 / 0 

AML-491 

10,000 3 / 3 

1/1,799 
(1/945 - 1/3,426) 

5,400 2 / 2 
2,000 2 / 1 
1,800 2 / 0 
1,200 6 / 6 
1,000 2 / 1 
600 5 / 0 
200 3 / 0 
100 4 / 0 

AML-393 

20,000 3 / 3 

1/507 
(1/194-1/1,325) 

2,000 3 / 3 
666 3 / 1 
200 3 / 2 
66 3 / 1 

AML-579 

72,900 1 / 1 

1/351 
(1/77.6-1/1,590) 

24,300 2 / 2 
7,100 1 / 1 
2,700 2 / 2 
900 1 / 1 
300 2 / 1 

AML-661 

8,100 1 / 1 

1/546 
(1/230 - 1/1,403) 

2,700  1 / 1 
900 1 / 3 
300 1 / 3 
100 2 / 4 
33 2 / 4 
11 0 / 3 
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Sample group # of cells # of mice 
injected / engrafted 

LIC frequency 
(95% CI) 

AML-393  

non-
LRC 

3,000 1 / 1 

1/352 
(1/157 - 1/788) 

1,480 2 / 1 
1,400 1 / 1 
1,000 2 / 2 
330 2 / 2 
300 2 / 2 
200 2 / 1 
100 3 / 1 
30 3 / 1 

LRC 1,500 1 / 1 

1/132 
(1/59 - 1/294) 

1,480 2 / 2 
1,400 1 / 1 
1,000 1 / 1 
900 2 / 2 
330 2 / 1 
300 3 / 3 
200 2 / 2 
100 2 / 2 
30 3 / 0 

AML-491 

non-
LRC 

2,000 1 / 1 
1/1,080 

(1/336 - 1/3,474) 
1,200 2 / 2 
950 1 / 0 
600 1 / 0 

LRC 2,000 1 / 1 
1/1,021 

(1/324 - 1/3,225) 
1,200 2 / 2 
600 2 / 0 
200 1 / 0 

Table S3: LIC frequencies of LRC and nLRC (Related to Figure 3B and S4B)  

*LRC and non-LRC from first recipient mice were sorted and were transplanted into secondary recipient
mice in limiting dilutions at numbers indicated; bioluminescence in vivo imaging, blood measurement or
bone marrow FACS staining was performed to determine engraftment; LIC frequency was calculated
using the ELDA software; 95% confidence interval (CI).
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Figure S1  AML PDX cells display heterogeneity regarding in vivo proliferation, 
 homing and LIC frequency (related to Figure 1). 

A In vivo doubling times were calculated out of growth curves measured as in Figures 
 1D and S2. 

B Passaging times from injection until overt leukemia, 5x105 to 5x106 AML PDX cells 
 were injected per mouse; mean +/- SD of at least 4 and up to 100 mice per sample 
 is depicted. dpi=days post injection.  

C Number of AML PDX cells homing to the BM was determined 2 or 3 days 
 following injection of 107 cells; mean +/- SD of at least 3 mice is shown. 

D Bulk cells from different AML samples were transplanted into recipient mice in 
 limiting dilutions at numbers indicated in Table S2. LIC frequency was calculated 
 using the ELDA software and mean +/- 95%CI is depicted.  
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Figure S2  AML PDX cells contain a rare subpopulation of lowly-cycling cells 
 (related to Figure 1, additional samples).  

Experiments were performed and depicted identically as in Figure 1. In brief, 107 CFSE 
labeled AML PDX cells were injected into groups of mice; cells were isolated at different 
time points and analyzed by flow cytometry for CFSE content. FACS plots for 
representative mice are shown. Total number of isolated PDX cells and percentage of 
LRC cells among all isolated PDX cells are shown in (A). Total number of mice studied 
was (A) 30 for AML-491, 18 for AML-372, (B) 5 for AML-388, 3 for AML-538, 8 for 
AML-579, 3 for AML-356, 3 for AML-358, 8 for AML-661 and (C) 10 for AML-346.  
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Figure S3  AML LRC are low cycling and resemble LRC from acute 
 lymphoblastic leukemia (related to Figure 1).  

A  Cell cycle analysis: 107 CFSE labeled AML-491 PDX cells were injected into two
mice; cells were isolated at day 16, stained with Vibrant DyeCycle Violet and 

 analyzed for CFSE content and cell cycle distribution by flow cytometry.  
B  Gene set enrichment analysis (GSEA): Comparison of LRC versus non-LRC by 

 GSEA (hallmarks of cancer) demonstrate down regulation of the cell cycle activity 
 pathways E2F target genes and G2M Checkpoint, indicating reduced proliferation.  

C  Significantly enriched KEGG pathways (nominal p-value ≤0.01) comparing LRC and 
nLRC of AML-393 and AML-491; KEGG pathways with concordant enrichment in 
both AML (new data here) and ALL (Ebinger et al, 2016) are marked in green. 
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Experiments were performed and data depicted identically as in Figure 3; 

A  Experimental procedure; AML-491 PDX cells were isolated from advanced disease 
 donor mice (n=2 in two independent experiments), labeled with CFSE, and re-
 transplanted into first recipient mice. Fifteen days after injection, cells were re-
 isolated and sorted into LRC and non-LRC (nLRC) using the gates as described in 
 Figure 1B  and re-injected into secondary recipient mice.  

B  Secondary recipient mice receiving either 1200 LRC or 1200 non-LRC (n=4) were 
 monitored by in vivo imaging. 

C  LRC and non-LRC were re-injected into secondary recipient mice (n=11) in limiting 
 dilutions at numbers as indicated in Table S3. Positive engraftment of PDX cells was 
 determined by in vivo imaging and/or flow cytometry. LIC frequency was calculated 
 using the ELDA software and is depicted +/- 95% confidence interval. No statistically 
 significant difference between LIC frequency of LRC and non-LRC was found 
 according to chi-square test (p=0.95). 

D  Experimental procedure; from first recipient mice (n=2 in 2 independent 
 experiments) harboring CFSE stained cells, non-LRC were isolated at day 21, re- 
 stained with CFSE and 1.9*106 cells injected into secondary recipients; (n=5); 
 Cells were re-isolated 14, 15 and 21 days later and LRC were quantified using gates 
 as described in Figure 1B. The experiment is technically unfeasible for LRC as the 
 high number of cells needed cannot be generated. 

E,F Representative dot plots (E) and quantification (F) of the percentage of LRC among 
all PDX cells isolated from secondary recipients is displayed (green squares). LRC 
of first recipient mice as determined in Figure S2A are shown for comparison (dots 
in light green). 

See supplemental Table S3 for additional data. 

Figure S4  AML PDX cells display reversible growth behavior, independently 
 from stemness potential (related to Figure 3, additional sample  
 AML-491).  
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Figure S5  Low-cycling cells are not enriched in immature cells.  

AML-393 and AML-491 PDX cells were isolated from full-blown donor mice, labeled with 
CFSE, and 107 cells were re-transplanted into first recipient mice. Ten (AML-393; n=4) 
or fourteen (AML-491; n=6) days after injection, cells were re-isolated, stained with 
CD34 and CD38 antibodies and percentage of CD34 and CD38 positive cells within the 
LRC and non-LRC compartment were analyzed by flow cytometry.  

A  representative dot plots  

B  percentage of CD34-positive and CD38-negative cells within the LRC and non-LRC 
 compartment is depicted as mean+/-SD. Each dot/square represents one mouse; 
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Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method to

characterize cellular identities and processes. Consequently, improving its sensitivity, flex-

ibility, and cost-efficiency can advance many research questions. Among the flexible plate-

based methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive and

efficient. Here, we systematically evaluate experimental conditions of this protocol and find

that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA

synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even

cDNA amplification that requires less sequencing of libraries. We combined these and other

improvements to develop a scRNA-seq library protocol we call molecular crowding SCRB-seq

(mcSCRB-seq), which we show to be one of the most sensitive, efficient, and flexible scRNA-

seq methods to date.
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Whole transcriptome single-cell RNA sequencing
(scRNA-seq) is a transformative tool with wide
applicability to biological and biomedical questions1,2.

Recently, many scRNA-seq protocols have been developed to
overcome the challenge of isolating, reverse transcribing, and
amplifying the small amounts of mRNA in single cells to generate
high-throughput sequencing libraries3,4. However, as there is no
optimal, one-size-fits all protocol, various inherent strengths and
trade-offs exist5–7. Among flexible, plate-based methods, single-
cell RNA barcoding and sequencing (SCRB-seq)8 is one of the
most powerful and cost-efficient6, as it combines good sensitivity,
the use of unique molecular identifiers (UMIs) to remove
amplification bias and early cell barcodes to reduce costs. Here,
we systematically optimize the sensitivity and efficiency of SCRB-
seq and generate molecular crowding SCRB-seq (mcSCRB-seq),
one of the most powerful and cost-efficient plate-based methods
to date (Fig. 1a).

Results
Systematic optimization of SCRB-seq. We started to test
improvements to SCRB-seq by optimizing the cDNA yield and
quality generated from universal human reference RNA (UHRR)9

in a standardized SCRB-seq assay (see Supplementary Fig. 1a and
Methods). By including the barcoded oligo-dT primers in the
lysis buffer, we increased cDNA yield by 10% and avoid a time-
consuming pipetting step during the critical phase of the protocol
(Supplementary Fig. 1b). Next, we compared the performance of
nine Moloney murine leukemia virus (MMLV) reverse tran-
scriptase (RT) enzymes that have the necessary template-
switching properties. Especially at input amounts below 100 pg,

Maxima H- (Thermo Fisher) performed best closely followed by
SmartScribe (Clontech) (Supplementary Fig. 1c). In order to
reduce the costs of the reaction, we showed that cDNA yield and
quality is not measurably affected when we reduced the enzyme
(Maxima H-) by 20%, reduced the oligo-dT primer by 80%, or
used the cheaper unblocked template-switching oligo (Supple-
mentary Fig. 2). Next, we evaluated the effect of MgCl2, betaine
and trehalose, as these led to the increased sensitivity of the
Smart-seq2 protocol10. Since both Smart-seq2 and SCRB-seq
generate cDNA by oligo-dT priming, template switching, and
PCR amplification, we were surprised that these additives
decreased cDNA yield for SCRB-seq (Supplementary Fig. 3a).
Apparently, the interactions between enzymes and buffer condi-
tions are complex and optimizations cannot be easily transferred
from one protocol to another.

Molecular crowding significantly increases sensitivity. An
additive that has not yet been explored for scRNA-seq protocols
is polyethylene glycol (PEG 8000). It makes ligation reactions
more efficient11 and is thought to increase enzymatic reaction
rates by mimicking (macro)molecular crowding, i.e., by reducing
the effective reaction volume12. As small reaction volumes can
increase the sensitivity of scRNA-seq protocols5,13, we tested
whether PEG 8000 can also increase the cDNA yield of SCRB-seq.
Indeed, we observed that PEG 8000 increased cDNA yield in a
concentration-dependent manner up to tenfold (Supplementary
Fig. 3b). However, at higher PEG concentrations, unspecific DNA
fragments accumulated in reactions without RNA (Supplemen-
tary Fig. 3d) and therefore we chose 7.5% PEG 8000 as an optimal
concentration balancing yield and specificity (Supplementary
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Fig. 3c). With the addition of PEG 8000, yield increased sub-
stantially, making it possible to detect RNA inputs under 1 pg
(Fig. 1b).
To test whether these increases in cDNA yield indeed

correspond to increases in sensitivity, we generated and
sequenced 32 RNA-seq libraries from 10 pg of total RNA
(UHRR) using eight replicates for each of the following four
SCRB-seq protocol variants (Supplementary Tables 1, 2): the
original SCRB-seq protocol8 (“Soumillon”; with Maxima H- as
RT and Advantage2 as PCR enzyme), the slightly adapted
protocol benchmarked in Ziegenhain et al.6 (“Ziegenhain”; with
Maxima H- and KAPA), the same protocol with SmartScribe as
the RT enzyme (“SmartScribe”) and our optimized protocol
(“molecular crowding”; with Maxima H-, KAPA, 7.5% PEG, 80%
less oligo-dT, and 20% less Maxima H-). As expected, the
molecular crowding protocol yielded the most cDNA, while
variant “Soumillon” yielded the least, confirming our systematic
optimization (Supplementary Fig. 4a). After sequencing, we
processed data using zUMIs14 and downsampled each of the 32
libraries to one million reads per sample, which has been
suggested to correspond to reasonable saturation for single-cell
RNA-seq experiments5,6. Of the 32 libraries, 31 passed quality
control with a median of 71% of the reads mapping to exons
(range: 50–77%), 12% to introns (9–15%), 13% to intergenic
regions (10–31%), and 4% (3–7%) to no region in the human
genome (Supplementary Fig. 4b). Of note, we observe that a
higher proportion of reads are mapping to intergenic regions for
the “molecular crowding” condition (Supplementary Fig. 4b). As
UHRR is provided as DNAse-digested RNA, these reads are likely
derived from endogenous transcripts, but why their proportion is
increased in the molecular crowding protocol is unclear. In any
case, we assessed the sensitivity of the protocols by the number of
detected genes per cell (>=1 exonic read), representing a
conservative estimate for the molecular crowding protocol with
its higher fraction of intergenic reads (Fig. 1c). This sensitivity
measure correlates fairly well with cDNA yield (Supplementary
Fig. 4a). Hence, it shows that Maxima H- is indeed more sensitive
than SmartScribe (5542 detected genes per sample in “Ziegen-
hain” vs. 3805 in “SmartScribe”, p= 3 × 10–5, Welch two sample
t-test) and that the molecular crowding protocol is the most
sensitive one (7898 vs. 5542 detected genes, p= 7 × 10–7, Welch
two sample t-test). In summary, we can show that our optimized
SCRB-seq protocol, in particular due to the addition of PEG 8000,
increases the sensitivity compared to previous protocol variants at
reduced costs.

Terra retains more complexity during cDNA amplification.
Next, we aimed to increase the efficiency of this protocol by
optimizing the cDNA amplification step. Depending on the
number of cycles, reaction conditions, and polymerases, sub-
stantial noise and bias is introduced when the small amounts of
cDNA molecules are amplified by PCR15,16. While UMIs allow
for the correction of these effects computationally, scRNA-seq
methods that have less amplification bias require fewer reads to
obtain the same number of UMIs and hence are more
efficient6,17. As a first step, we evaluated 12 polymerases for
cDNA yield and found KAPA, SeqAmp, and Terra to perform
best (Supplementary Fig. 5a). We disregarded SeqAmp because of
a decreased median length of the amplified cDNA molecules
(Supplementary Fig. 5b) as well as the higher cost of the enzyme
and continued to compare the amplification bias of KAPA and
Terra polymerases. To this end, we sorted 64 single mouse
embryonic stem cells (mESCs) and generated cDNA using our
optimized molecular crowding protocol. Two pools of cDNA
from 32 cells were amplified with KAPA or Terra polymerase (18

cycles) and used to generate libraries. After sequencing and
downsampling each transcriptome to one million raw reads14, we
found that amplification using Terra yielded twice as much
library complexity (UMIs) than when using KAPA (Supple-
mentary Fig. 5c). This is in agreement with a recent study that
optimized the scRNA-seq protocol Quartz-seq2, which also found
Terra to retain a higher library complexity17. In addition to
choosing Terra for cDNA amplification, we also reduced the
number of cycles from 19 in the original SCRB-seq protocol to 14,
as fewer cycles are expected to decrease amplification bias fur-
ther15 and 14 cycles still generated sufficient amounts of cDNA
(~1.6–2.4 ng/μl) from mouse ESCs to prepare libraries with
Nextera XT (~0.8 ng needed). Depending on the investigated
cells, which may have a lower or higher RNA content than ESCs,
the cycle number might need to be adapted to generate enough
cDNA while avoiding overcycling.
With the final improved version of the molecular crowding

protocol (mcSCRB-seq), we tested to what extent cross-
contamination occurs. For example, chimeric PCR products
may occur following the pooling of cDNA18 and we assessed
whether this might potentially be influenced by PEG that is
present during cDNA synthesis before pooling. To this end, we
sorted 96 cells of a mixture of mESCs and human-induced
pluripotent stem cells, synthesized cDNA according to the
mcSCRB-seq protocol with and without the addition of PEG
and generated libraries for each of the two conditions. After
mapping the sequenced reads to the joint human and mouse
reference genomes, each barcode/well could be clearly classified
into human or mouse cells, indicating that no doublets were
sorted into wells, as may be expected for a fluorescence-activated
cell sorting (FACS)-based cell isolation (Supplementary Fig. 6a).
Importantly, the median number of reads mapping best to the
wrong species is less than 2000 per cell (<0.4% of all reads or
<1.5% of uniquely mapped reads). This is not influenced by the
addition of PEG, as may be expected, since PEG is only present
during cDNA generation (Supplementary Fig. 6b; two-sided t-
test, p value= 0.81). In summary, we developed an optimized
protocol, mcSCRB-seq, that has higher sensitivity, a less biased
amplification and little crosstalk of reads across cells.

mcSCRB-seq increases sensitivity 2.5-fold more than SCRB-
seq. To directly compare the entire mcSCRB-seq protocol to the
previously benchmarked SCRB-seq protocol used in Ziegenhain
et al.6 (Supplementary Table 2), we sorted for each method 48
and 96 single mESCs from one culture into plates, and added
ERCC spike-ins19. Following sequencing, we filtered cells to
discard doublets/dividing cells, broken cells, and failed libraries
(see Methods). The remaining 249 high-quality libraries all show
a similar mapping distribution with ~50% of reads falling into
exonic regions (Supplementary Fig. 7). When plotting the num-
ber of detected endogenous mRNAs (UMIs) against sequencing
depth, mcSCRB-seq clearly outperforms SCRB-seq and detects
2.5 times as many UMIs per cell at depths above 200,000 reads
(Fig. 2a and Supplementary Fig. 8a). At two million reads,
mcSCRB-seq detected a median of 102,282 UMIs per cell and a
median of 34,760 ERCC molecules, representing 48.9% of all
spiked in ERCC molecules (Supplementary Fig. 8b). Assuming
that the efficiency of detecting ERCC molecules is representative
of the efficiency to detect endogenous mRNAs, the median
content per mESC is 227,467 molecules (Supplementary Fig. 8c
and 8d), which is very similar to previous estimates using mESCs
and STRT-seq, a 5′ tagged UMI-based scRNA-seq protocol20. As
expected, the higher number of UMIs in mcSCRB-seq also results
in a higher number of detected genes. For instance, at 500,000
reads, mcSCRB-seq detected 50,969 UMIs that corresponded to
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5866 different genes, 1000 more than SCRB-seq (Supplementary
Fig. 9). Congruent with the above comparison of Terra and
KAPA polymerase, mcSCRB-seq showed a less noisy and less-
biased amplification (Supplementary Fig. 10). Furthermore,
expression levels differed much less between the two batches of
mcSCRB-seq libraries, indicating that it could be more robust
than SCRB-seq (Supplementary Fig. 11a). In contrast to findings
for other protocols21, neither mcSCRB-seq nor SCRB-seq showed
GC content or transcript length-dependent expression levels
(Supplementary Fig. 11b, c).

Decisively, we find by using power simulations6,22 that
mcSCRB-seq requires approximately half as many cells as
SCRB-seq to detect differentially expressed genes between two
groups of cells (Fig. 2b and Supplementary Fig. 11d). Hence, the
higher sensitivity and lower noise of mcSCRB-seq compared to
SCRB-seq, as measured in parallelly processed cells, indeed
matters for quantifying gene expression levels and can be
quantified as a doubling of cost-efficiency. Furthermore, we have

reduced the reagent costs from about 1.70 € per cell for SCRB-
seq6 to less than 0.54 € for mcSCRB-seq (Supplementary Fig. 12a
and Supplementary Table 3). Together, this makes mcSCRB-seq
sixfold more cost-efficient than SCRB-seq. Moreover, owing to an
optimized workflow, we could reduce the library preparation time
to one working day with minimal hands-on time (Supplementary
Fig. 12b and Supplementary Table 4). As SCRB-seq was already
one of the most cost-efficient protocols in our recent bench-
marking study6, this likely makes mcSCRB-seq the most cost-
efficient plate-based method available.

Benchmarking by ERCCs. The widespread use of ERCC spike-
ins also allows us to estimate and compare the absolute sensitivity
across many scRNA-seq protocols using published data5. As in
Svensson et al.5, we used a binomial logistic regression to estimate
the number of ERCC transcripts that are needed on average to
reach a 50% detection probability (Supplementary Fig. 13a).
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mcSCRB-seq reached this threshold with 2.2 molecules, when
ERCCs are sequenced to saturation (Supplementary Fig. 13b).
When comparing this to a total of 26 estimates for 20 different
protocols obtained from two major protocol comparisons5,6 as
well as additional relevant protocols17,23, mcSCRB-seq has the
highest sensitivity among all protocols compared to date (Fig. 2c).
It should be noted that the data show large amounts of variation
within protocols, even for well-established, sensitive methods like
Smart-seq2. This is the case, especially in Svensson et al.5, because
the data were generated from many varying cell types sequenced
in numerous labs. Similarly, mcSCRB-seq sensitivity estimates
could be variable across labs and conditions. Nevertheless, the
average ERCC detection efficiency is the most representative
measure to compare sensitivities across many protocols.

mcSCRB-seq detects biological differences in complex tissues.
Finally, we applied mcSCRB-seq to peripheral blood mono-
nuclear cells (PBMCs), a complex cell population with low
mRNA amounts, to test whether it is efficient in recapitulating
biological differences. We obtained PBMCs from one healthy
donor, FACS-sorted cells in four 96-well plates and prepared
libraries using mcSCRB-seq with a more stringent lysis condition
(see Methods; Fig. 3a). We sequenced ~203 million reads for the
resulting pool, of which ~189 million passed filtering criteria in
the zUMIs pipeline (see Methods). Next, we filtered low-quality
cells (<50,000 raw reads or mapping rates <75%; Supplementary
Fig. 14a), leaving 349 high-quality cells for further analysis
(Supplementary Fig. 14b). Using the Seurat package24, we clus-
tered the expression data and obtained five clusters that could be
easily attributed to expected cell types: B cells, Monocytes, NK
cells, and T cells (Fig. 3b). Rare cell types, such as dendritic cells
or megakaryocytes that are known to occur in PBMCs at fre-
quencies of ~0.5–1%, could not be detected, as expected from the
low power to cluster 2–3 cells. For the detected cell types, known
marker gene expression fits closely to previously described
results23 (Fig. 3c, d). Overall, we show that mcSCRB-seq is a
powerful tool to highlight biological differences, already when a
low number of cells are sequenced.

Discussion
In this work, we developed mcSCRB-seq, a scRNA-seq protocol
utilizing molecular crowding. Based on benchmarking data gen-
erated from mouse ES cells, we show that mcSCRB-seq con-
siderably increases sensitivity and decreases amplification bias
due to the addition of PEG 8000 and the use of Terra polymerase,
respectively. Furthermore, it shows no indication of bias for GC
content and transcript lengths, and has low levels of crosstalk
between cell barcodes, which has been seen especially in droplet-
based RNA-seq approaches23,25. Compared to the previous
SCRB-seq protocol, mcSCRB-seq increases the power to quantify
gene expression twofold. Additionally, optimized reagents and
workflows reduce costs by a factor of three. Qualitatively, we
validate our protocol by sequencing PBMCs, a complex mixture
of different cell types. We show that mcSCRB-seq can identify the
different subpopulations and marker gene expression correctly
and distinctively detect the major cell types present in the
population.
In this context, we found that it was necessary to use different

lysis conditions for the PBMCs than for mESCs. In our experi-
ence, some cell types may require a more stringent lysis buffer to
stabilize mRNA, which might be a result of internal RNAses and/
or lower RNA content. Therefore, we also provide an alternative
lysis strategy for mcSCRB-seq to deal with more difficult cell
types or samples.

Taken together, mcSCRB-seq is—to the best of our knowledge
—not only the most sensitive protocol when benchmarked using
ERCCs, it is also the most cost-efficient and flexible plate-based
protocol currently available, and could be a valuable methodo-
logical addition to many laboratories, in particular as it requires
no specialized equipment and reagents.

Methods
cDNA yield assay. For all optimization experiments, universal human reference
RNA (UHRR; Agilent) was utilized to exclude biological variability. Unless
otherwise noted, 1 ng of UHRR was used as input per replicate. Additionally,
Proteinase K digestion and desiccation were not necessary prior to reverse tran-
scription. In order to accommodate all the reagents, the total volume for reverse
transcription was increased to 10 μl. All concentrations were kept the same, with
the exception that we added the same total amount of reverse transcriptase (25 U),
thus lowering the concentration from 12.5 to 2.5 U/μl. After reverse transcription,
no pooling was performed, rather preamplification was done per replicate. For each
sample, we measured the cDNA concentration using the Quant-iT PicoGreen
dsDNA Assay Kit (Thermo Fisher).

Comparison of reverse transcriptases. Nine reverse transcriptases, Maxima H-
(Thermo Fisher), SMARTScribe (Clontech), Revert Aid (Thermo Fisher), Enz-
Script (Biozym), ProtoScript II (New England Biolabs), Superscript II (Thermo
Fisher), GoScript (Promega), Revert UP II (Biozym), and M-MLV Point Mutant
(Promega), were compared to determine which enzyme yielded the most cDNA.
Several dilutions ranging from 1 to 1000 pg of universal human reference RNA
(UHRR; Agilent) were used as input for the RT reactions.

RT reactions contained final concentrations of 1 ×M-MuLV reaction buffer
(NEB), 1 mM dNTPs (Thermo Fisher), 1 μM E3V6NEXT barcoded oligo-dT
primer (IDT), and 1 μM E5V6NEXT template-switching oligo (IDT). For reverse
transcriptases with unknown buffer conditions, the provided proprietary buffers
were used. Reverse transcriptases were added for a final amount of 25 U per
reaction.

All reactions were amplified using 25 PCR cycles to be able to detect low inputs.

Comparison of template-switching oligos (TSO). Unblocked (IDT) and blocked
(Eurogentec) template-switching oligonucleotides were compared to determine
yield when reverse transcribing 10 pg UHRR and primer-dimer formation without
UHRR input. Reaction conditions for RT and PCR were as described above.

Effect of reaction enhancers. In order to improve the efficiency of the RT, we
tested the addition of reaction enhancers, including MgCl2, betaine, trehalose, and
polyethylene glycol (PEG 8000). The final reaction volume of 10 μl was maintained
by adjusting the volume of H2O.

For this, we added increasing concentrations of MgCl2 (3, 6, 9, and 12 mM;
Sigma-Aldrich) in the RT buffer in the presence or absence of 1M betaine (Sigma-
Aldrich). Furthermore, the addition of 1 M betaine and 0.6 M trehalose (Sigma-
Aldrich) was compared to the standard RT protocol. Lastly, increasing
concentrations of PEG 8000 (0, 3, 6, 9, 12, and 15% W/V) were also tested.

Comparison of PCR DNA polymerases. The following 12 DNA polymerases were
evaluated in preamplification: KAPA HiFi HotStart (KAPA Biosystems), SeqAmp
(Clontech), Terra direct (Clontech), Platinum SuperFi (Thermo Fisher), Precisor
(Biocat), Advantage2 (Clontech), AccuPrime Taq (Invitrogen), Phusion Flash
(Thermo Fisher), AccuStart (QuantaBio), PicoMaxx (Agilent), FideliTaq (Affy-
metrix), and Q5 (New England Biolabs). For each enzyme, at least three replicates
of 1 ng UHRR were reverse transcribed using the optimized molecular crowding
reverse transcription in 10 μl reactions. Optimal concentrations for dNTPs, reac-
tion buffer, stabilizers, and enzyme were determined using the manufacturer’s
recommendations. For all amplification reactions, we used the original SCRB-seq
PCR cycling conditions8.

Cell culture of mouse embryonic stem cells. J126 and JM827 mouse embryonic
stem cells (mESCs) were provided by the Leonhardt lab (LMU Munich) and ori-
ginally provided by Kerry Tucker (Ruprecht-Karls-University,Heidelberg) and by
the European Mouse Mutant Cell repository (JM8A3; www.eummcr.org), respec-
tively. They were used for the comparison of KAPA vs. Terra PCR amplification
(Supplementary Fig. 5c) and the comparison of SCRB-seq and mcSCRB-seq,
respectively. Both were cultured under feeder-free conditions on gelatine-coated
dishes in high-glucose Dulbecco’s modified Eagle’s medium (Thermo Fisher)
supplemented with 15% fetal bovine serum (FBS, Thermo Fisher), 100 U/ml
penicillin, 100 μg/ml streptomycin (Thermo Fisher), 2 mM L-glutamine (Thermo
Fisher), 1 ×MEM non-essential amino acids (NEAA, Thermo Fisher), 0.1 mM β-
mercaptoethanol (Thermo Fisher), 1000 U/ml recombinant mouse LIF (Merck
Millipore) and 2i (1 μM PD032591 and 3 μM CHIR99021 (Sigma-Aldrich)).
mESCs were routinely passaged using 0.25% trypsin (Thermo Fisher).
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mESC cultures were confirmed to be free of mycoplasma contamination by a
PCR-based test28.

Cell culture of human-induced pluripotent stem cells. Human-induced plur-
ipotent stem cells were generated using standard techniques from renal epi-
thelial cells obtained from a healthy donor with written informed consent in
accordance with the ethical standards of the responsible committee on human
experimentation (216–08, Ethikkommission LMU München) and with the

current (2013) version of the Declaration of Helsinki. hiPSCs were cultured
under feeder-free conditions on Geltrex (Thermo Fisher)-coated dishes in
StemFit medium (Ajinomoto) supplemented with 100 ng/ml recombinant
human basic FGF (Peprotech) and 100 U/ml penicillin, 100 μg/ml streptomycin
(Thermo Fisher). Cells were routinely passaged using 0.5 mM EDTA. Whenever
cells were dissociated into single cells using 0.5 × TrypLE Select (Thermo
Fisher), the culture medium was supplemented with 10 μM Rho-associated
kinase (ROCK) inhibitor Y27632 (BIOZOL) to prevent apoptosis.
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hiPSC cultures were confirmed to be free of mycoplasma contamination by a PCR-
based test28.

SCRB-seq cDNA synthesis. Cells were dissociated using trypsin and resuspended
in 100 μl of RNAprotect Cell Reagent (Qiagen) per 100,000 cells. Directly prior to
FACS sorting, the cell suspension was diluted with PBS (Gibco). Single cells were
sorted into 96-well DNA LoBind plates (Eppendorf) containing lysis buffer using a
Sony SH800 sorter (Sony Biotechnology; 100 μm chip) in “Single Cell (3 Drops)”
purity. Lysis buffer consisted of a 1:500 dilution of Phusion HF buffer (New
England Biolabs). After sorting, plates were spun down and frozen at −80 °C.
Libraries were prepared as previously described6,8. Briefly, proteins were digested
with Proteinase K (Ambion) followed by desiccation to inactivate Proteinase K and
reduce the reaction volume. RNA was then reverse transcribed in a 2 μl reaction at
42 °C for 90 min. Unincorporated barcode primers were digested using Exonu-
clease I (Thermo Fisher). cDNA was pooled using the Clean & Concentrator-5 kit
(Zymo Research) and PCR amplified with the KAPA HiFi HotStart polymerase
(KAPA Biosystems) in 50 μl reaction volumes.

mcSCRB-seq cDNA synthesis. A full step-by-step protocol for mcSCRB-seq has
been deposited in the protocols.io repository29. Briefly, cells were dissociated using
trypsin and resuspended in PBS. Single cells (“3 drops” purity mode) were sorted
into 96-well DNA LoBind plates (Eppendorf) containing 5 μl lysis buffer using a
Sony SH800 sorter (Sony Biotechnology; 100 μm chip). Lysis buffer consisted of a
1:500 dilution of Phusion HF buffer (New England Biolabs), 1.25 μg/μl Proteinase
K (Clontech), and 0.4 μM barcoded oligo-dT primer (E3V6NEXT, IDT). After
sorting, plates were immediately spun down and frozen at −80 °C. For libraries
containing ERCCs, 0.1 μl of 1:80,000 dilution of ERCC spike-in Mix 1 was used.

Before library preparation, proteins were digested by incubation at 50 °C for
10 min. Proteinase K was then heat inactivated for 10 min at 80 °C. Next, 5 μl
reverse transcription master mix consisting of 20 units Maxima H- enzyme
(Thermo Fisher), 2 ×Maxima H- Buffer (Thermo Fisher), 2 mM each dNTPs
(Thermo Fisher), 4 μM template-switching oligo (IDT), and 15% PEG 8000
(Sigma-Aldrich) was dispensed per well. cDNA synthesis and template switching
was performed for 90 min at 42 °C. Barcoded cDNA was then pooled in 2 ml DNA
LoBind tubes (Eppendorf) and cleaned up using SPRI beads. Purified cDNA was
eluted in 17 μl and residual primers digested with Exonuclease I (Thermo Fisher)
for 20 min at 37 °C. After heat inactivation for 10 min at 80 °C, 30 μl PCR master
mix consisting of 1.25 U Terra direct polymerase (Clontech) 1.66 × Terra direct
buffer and 0.33 μM SINGV6 primer (IDT) was added. PCR was cycled as given:
3 min at 98 °C for initial denaturation followed by 15 cycles of 15 s at 98 °C, 30 s at
65 °C, 4 min at 68 °C. Final elongation was performed for 10 min at 72 °C.

Library preparation. Following preamplification, all samples were purified using
SPRI beads at a ratio of 1:0.8 with a final elution in 10 μl of H2O (Invitrogen). The
cDNA was then quantified using the Quant-iT PicoGreen dsDNA Assay Kit
(Thermo Fisher). Size distributions were checked on high-sensitivity DNA chips
(Agilent Bioanalyzer). Samples passing the quantity and quality controls were used
to construct Nextera XT libraries from 0.8 ng of preamplified cDNA.

During library PCR, 3′ ends were enriched with a custom P5 primer
(P5NEXTPT5, IDT). Libraries were pooled and size-selected using 2% E-Gel
Agarose EX Gels (Life Technologies), cut out in the range of 300–800 bp, and
extracted using the MinElute Kit (Qiagen) according to manufacturer’s
recommendations.

Sequencing. Libraries were paired-end sequenced on high output flow cells of an
Illumina HiSeq 1500 instrument. Sixteen bases were sequenced with the first read
to obtain cellular and molecular barcodes and 50 bases were sequenced in the
second read into the cDNA fragment. When several libraries were multiplexed on
sequencing lanes, an additional 8 base i7 barcode read was done.

Primary data processing. All raw fastq data were processed using zUMIs together
with STAR to efficiently generate expression profiles for barcoded UMI data14,30.
For UHRR experiments, we mapped to the human reference genome (hg38) while
mouse cells were mapped to the mouse genome (mm10) concatenated with the
ERCC reference. Gene annotations were obtained from Ensembl (GRCh38.84 or
GRCm38.75). Downsampling to fixed numbers of raw sequencing reads per cell
were performed using the “-d” option in zUMIs.

Filtering of scRNA-seq libraries. After initial data processing, we filtered cells by
excluding doublets and identifying failed libraries. For doublet identification, we
plotted distributions of total numbers of detected UMIs per cell, where doublets
were readily identifiable as multiples of the major peak.

In order to discard broken cells and failed libraries, spearman rank correlations
of expression values were constructed in an all-to-all matrix. We then plotted the
distribution of “nearest-neighbor” correlations, i.e., the highest observed
correlation value per cell. Here, low-quality libraries had visibly lower correlations
than average cells.

Species-mixing experiment. Mouse ES cells (JM8) and human iPS cells were
mixed and sorted into a 96-well plate containing lysis buffer as described for
mcSCRB-seq using a Sony SH800 sorter (Sony Biotechnology; 100 μm chip). cDNA
was synthesized according to the mcSCRB-seq protocol (see above), but without
addition of PEG 8000 for half of the plate. Wells containing or lacking PEG were
pooled and amplified separately. Sequencing and primary data analysis was per-
formed as described above with the following changes: cDNA reads were mapped
against a combined reference genome (hg38 and mm10) and only reads with
unique alignments were considered for expression profiling.

Complex tissue analysis. PBMCs were obtained from a healthy male donor with
written informed consent in accordance with the ethical standards of the
responsible committee on human experimentation (216–08, Ethikkommission
LMUMünchen) and with the current (2013) version of the Declaration of Helsinki.
Cells were sorted into 96-well plates containing 5 μl lysis buffer using a Sony
SH800 sorter (Sony Biotechnology; 100 μm chip). Lysis buffer consisted of 5 M
Guanidine hydrochloride (Sigma-Aldrich), 1% 2-mercaptoethanol (Sigma-Aldrich)
and a 1:500 dilution of Phusion HF buffer (New England Biolabs). Before library
preparation, each well was cleaned up using SPRI beads and resuspended in a mix
of 5 μl reverse transcription master mix (see above) and 4 μl ddH2O. After the
addition of 1 μl 2 μM barcoded oligo-dT primer (E3V6NEXT, IDT), cDNA was
synthesized according to the mcSCRB-seq protocol (see above). Pooling was per-
formed by adding SPRI bead buffer. Sequencing and primary data analysis was
performed as described above using the human reference genome (hg38). We
retained only high-quality cells with at least 50,000 reads and a mapping rate above
75%. Furthermore, we discarded potential doublets that contained more than
40,000 UMIs and 5000 genes. Next, we used Seurat24 to perform normalization
(LogNormalize) and scaling. We selected the most variable genes using the
“FindVariableGenes” command (1108 genes). Next, we performed dimensionality
reduction with PCA and selected components with significant variance using the
“JackStraw” algorithm. Statistically significant components were used for shared
nearest-neighbor clustering (FindClusters) and tSNE visualization (RunTSNE).
Log-normalized expression values were used to plot marker genes.

Estimation of cellular mRNA content. For the estimation of cellular mRNA
content in mESCs, we utilized the known total amount of ERCC spike-in molecules
added per cell. First, we calculated a detection efficiency as the fraction of detected
ERCC molecules by dividing UMI counts to total spiked ERCC molecule counts.
Next, dividing the total number of detected cellular UMI counts by the detection
efficiency yields the number of estimated total mRNA molecules per cell.

ERCC analysis. In order to estimate sensitivity from ERCC spike-in data, we
modeled the probability of detection in relation to the number of spiked molecules.
An ERCC transcript was considered detected from 1 UMI. For each cell, we fitted a
binomial logistic regression model to the detection of ERCC genes given their input
molecule numbers. Using the MASS R-package, we determined the molecule
number necessary for 50% detection probability.

For public data from Svensson et al.5, we used their published molecular
abundances calculated using the same logistic regression model obtained from
Supplementary Table 2 (https://www.nature.com/nmeth/journal/v14/n4/extref/
nmeth.4220-S3.csv). For Quartz-seq217, we obtained expression values for ERCCs
from Gene Expression Omnibus (GEO; GSE99866), sample GSM2656466; for
Chromium23 we obtained expression tables from the 10 × Genomics webpage
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/ercc)
and for SCRB-seq, Smart-seq2, CEL-seq2/C1, MARS-seq and Smart-seq/C16, we
obtained count tables from GEO (GSE75790). For these methods, we calculated
molecular detection limits given their published ERCC dilution factors.

Power simulations. For power simulation studies, we used the powsimR pack-
age22. Parameter estimation of the negative binomial distribution was done using
scran normalized counts at 500,000 raw reads per cell31. Next, we simulated two-
group comparisons with 10% differentially expressed genes. Log2 fold-changes
were drawn from a normal distribution with a mean of 0 and a standard deviation
of 1.5. In each of the 25 simulation iterations, we draw equal sample sizes of 24, 48,
96, 192 and 384 cells per group and test for differential expression using ROTS32

and scran normalization31.

Batch effect analysis. In order to detect genes differing between batches of one
scRNA-seq protocol, data were normalized using scran31. Next, we tested for
differentially expressed genes using limma-voom33,34. Genes were labeled as sig-
nificantly differentially expressed between batches with Benjamini–Hochberg
adjusted p values <0.01.

Code availability. Analysis code to reproduce major analyses can be found at
https://github.com/cziegenhain/Bagnoli_2017.

Data availability. RNA-seq data generated here are available at GEO under
accession GSE103568.
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Further data including cDNA yield of optimization experiments is available on
GitHub (https://github.com/cziegenhain/Bagnoli_2017). A detailed step-by-step
protocol for mcSCRB-seq has been submitted to the protocols.io repository
(mcSCRB-seq protocol 2018). All other data available from the authors upon
reasonable request.
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Supplementary Figure 1 

Supplementary Figure 1: Schematic overview and optimization of reverse 
transcription

a) Low amounts (1-1000pg) of universal human reference RNA (UHRR) were used in
optimization experiments. We assessed components affecting reverse transcription and
PCR amplification with respect to cDNA yield and cDNA quality and verified effects on gene
and transcript sensitivity by sequencing scRNA-seq libraries to develop the mcSCRB-seq
protocol.
b) cDNA yield (ng) after reverse transcription with oligo-dT primers already in the lysis buffer
(“in Lysis”) or separately added before reverse transcription (“in RT”). Each dot represents a
replicate and each box represents the median and first and third quartiles. The condition
selected for the final mcSCRB-seq protocol is highlighted in blue.  
c) cDNA yield (ng) dependent on varying UHRR input using 9 different RT enzymes. Each
dot represents a replicate. Lines were fitted using local regression. The condition selected
for the final mcSCRB-seq protocol is highlighted in blue.
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Supplementary Figure 2 

Supplementary Figure 2: Optimization of reverse transcription conditions. 
Shown are relative cDNA yields after reverse transcription and PCR amplification of UHRR 
using: 
a) varying amounts of reverse transcriptase enzyme (15-25 units, Maxima H-; 1 ng UHRR
input per replicate)
b) varying amounts of oligo-dT primer (E3V6; 1 ng UHRR input per replicate)
c) blocked or unblocked Template switching oligo (TSO, E5V6; 10 pg UHRR per replicate)  
d) relative primer dimer yield using blocked or unblocked Template switching oligo (TSO,
E5V6) estimated using no-input controls (see Methods).
All values are relative to the median of the condition used in the original SCRB-seq
protocol1, which is indicated by a dashed horizontal line. Each dot represents a replicate and
each box represents the median and first and third quartiles method. Numbers above boxes
indicate p-values (Welch Two Sample t-test).
Optimized conditions selected for the mcSCRB-seq protocol are marked in blue.
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Supplementary Figure 3 

Supplementary Figure 3: Reverse transcription yield is increased by molecular 
crowding.  
cDNA yield as well as representative length distributions (Bioanalyzer traces, bottom) using 
various additives in the reverse transcription and template switching reaction. 
Each dot represents a replicate, lines represent the median and boxes the first and third 
quartile. Stars above boxes indicate p-values < 0.05 (Welch Two Sample t-test) 
a) Influence of MgCl2 and Trehalose on cDNA synthesis (1 ng UHRR input per replicate; 21
PCR cycles).  
b) Concentration-dependent influence of PEG 8000 on cDNA yield (100 pg UHRR input per
replicate; 23 PCR cycles).
c) Effect of 7.5%  PEG 8000 (100 pg UHRR input per replicate; 23 PCR cycles).
d) Concentration-dependent generation of unspecific reverse transcription products (0 pg
UHRR input per replicate; 23 PCR cycles). 
The conditions selected for the final mcSCRB-seq protocol are highlighted in blue.  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Figure 3.4: Comparison of Reverse Transcription Enhancers
(A) The addition of MgCl2 (12 mM) and betaine (1 M) significantly decreased
the cDNA yield (p-value = 0.0001, Wilcoxon test). The cDNA distribution
was also greatly impacted as evident by the Bioanalyzer plots. The addition
of trehalose (0.6 M) and betaine (1 M) also significantly decreased the cDNA
yield (p-value = 0.02, Wilcoxon test). The cDNA distribution, however, was
not greatly impacted. (B) Concentration curve of 0-15% PEG used as an RT
enhancer. As PEG was increased, cDNA yield increased. However, high concen-
trations of PEG increased unspecific products, as evident in the Bioanalyzer plots.
(C) Comparison of 0% PEG and 7.5% PEG with 16 replicates, showing that
7.5% PEG significantly increases cDNA yield, while producing cDNA fragments
of ideal lengths (p-value = 9.1 x10≠5, Wilcoxon test).

was examined, however, unspecific products were found at higher concentrations

of PEG. Therefore, a concentration of 7.5% was chosen as the cDNA yield was still

increased and specificity was retained (Figure 3.3 B and Figure 6.2). When 7.5%

PEG as an RT enhancer was further tested, cDNA yield was significantly increased

(p-value = 9.1 x10≠5, Wilcoxon test) (Figure 3.4 C).

3.6 KAPA and SeqAmp Improve cDNA Yield in

Pre-amplification

Pre-amplification is a necessary step in scRNA-seq, as there is a very low amount of

RNA in the input material. Although essential, amplification can cause biases and

noise (Parekh et al., 2017). By optimizing pre-amplification, the total cycle number

can be reduced, which would alleviate some bias.
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Supplementary Figure 4 

Supplementary Figure 4: Sequencing of UHRR samples. 
10 pg of UHRR where used as input for eight replicates for each of the four protocol variants 
(Supplementary Table 1). 
a) cDNA yield (ng) after PCR amplification per method. Each dot represents a replicate and
each box represents the median and first and third quartiles per method.
b) Libraries were generated and sequenced from the above cDNA, downsampled to one
million reads per library and mapped. Shown are the percentage of sequencing reads that
cannot be mapped to the human genome (red), mapped to ambiguous genes (brown),
mapped to intergenic regions (orange), inside introns (teal) or inside exons (blue).
Note the higher fraction of reads mapping to intergenic regions, especially in the molecular
crowding condition. As UHRR is provided as DNAse-digested RNA, these reads are likely
derived from endogenous transcripts, although it is unclear why these are proportionally
more detected than annotated transcripts only in the molecular crowding protocol. This is
also not generally observed for molecular crowding conditions, as SCRB-seq and mcSCRB-
seq protocols have the same fraction (~25%) of intergenic reads mapped when single
mouse ES cells are used (Supplementary Figure 7c).  

Soum
illon

et al., 2014
Ziegenhain
et al., 2017

Sm
artScribe

m
olecular

crow
ding

0 25 50 75 100
% of reads

Unmapped    Intergenic    Ambiguity    Intronic    Exonic    

# detected UMIs

# detected genes

cDNA yield (ng)

Soumillon
et al., 2014

Ziegenhain
et al., 2017

SmartScribe molecular
crowding

0

20

40

60

3000

4000

5000

6000

7000

8000

100000

150000

200000

Soum
illon

et al., 2014
Ziegenhain
et al., 2017

Sm
artScribe

m
olecular

crow
ding

0 0.25 0.5 0.75 1

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Dropout Probability

A

B

C

D
# detected UMIs

# detected genes

cDNA yield (ng)

Soumillon
et al., 2014

Ziegenhain
et al., 2017

SmartScribe molecular
crowding

0

20

40

60

3000

4000

5000

6000

7000

8000

100000

150000

200000

Soum
illon

et al., 2014
Ziegenhain
et al., 2017

Sm
artScribe

m
olecular

crow
ding

0 0.25 0.5 0.75 1

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Dropout Probability

A

B

C

D

a

b

82



Supplementary Figure 5 

Supplementary Figure 5: Optimization of PCR amplification. 
a) Relative cDNA yield after reverse transcription of 1 ng UHRR and amplification using
different polymerase enzymes or ready mixes. All values are relative to the median of KAPA
HiFi which is indicated by a dashed vertical line, as this was used in the SCRB-seq protocol
variant of Ziegenhain et al.2. Solid vertical lines indicate the median for each polymerase.
b) Top: Representative length quantification of cDNA libraries amplified with KAPA HiFi
(green) or SeqAmp (purple) as quantified by capillary gel electrophoresis (Agilent
Bioanalyzer). Solid vertical lines depict the ranked mean length for each library within the
region marked with dashed vertical lines. Bottom: Depiction of time length model (spline fit)
used to analyze capillary gel electrophoresis via the ladder. Each dot represents a ladder
peak with known length (bp) and measurement time (sec).
c) Relative amount of detected UMIs in single mESCs (J1) downsampled to 1 million reads
using KAPA-HiFi or Terra for cDNA amplification. For both conditions, molecular crowding
conditions (7.5% PEG 8000) were used during reverse transcription. Each dot represents a
cell and horizontal lines indicate the median per polymerase.
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Supplementary Figure 6 

Supplementary Figure 6: Species mixing experiment for mcSCRB-seq 
Human induced pluripotent stem cells and Mouse embryonic stem cells were mixed and 
sorted in a 96-well plate. cDNA was synthesized using the mcSCRB-seq protocol in absence 
and presence of PEG.  
a) For each cell barcode, uniquely aligning reads to human or mouse gene features are
shown in a dot plot. No doublets were observed, as expected from single-cell purity FACS
sorting.
b) Each cell barcode was classified to be a human or mouse cell. Shown are the number of
reads aligning to the wrong species for each of the cell barcodes. There is no significant
difference between the protocols with and without PEG (two-sided t-test, p-value=0.81).  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Supplementary Figure 7 
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Supplementary Figure 7: Libraries from single mESCs generated with mcSCRB-seq 
and SCRB-seq protocols. 
a) Scatter plots showing FACS data with forward (FS(c) and backward (BS(c) scatter 
intensities of one vial of mESCs (JM8) resuspended in PBS (mcSCRB-seq) or resuspended 
in RNAProtect Cell Reagent (SCRB-seq). Each dot represents an event. Coloured dots 
represent events that were sorted for scRNA-seq libraries in the four plates as depicted in b. 
b) UMI counts for each cell by method (SCRB-seq/ mcSCRB-seq) and replicate (48 cells/ 96 
cells) are shown in their respective position in 96-well plates. Point sizes indicate the number 
of detected UMIs. Colouring indicates whether a cell passed (green) or failed (red) the 
Quality Control (QC) as described (see Methods).  
c) Percentage of reads that cannot be mapped to the human genome (red), are mapped 
ambiguously (brown), are mapped to intergenic regions (orange), inside introns (teal) or 
inside exons (blue). Each box represents the median and first and third quartiles of cells that 
passed QC for each method. 
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Supplementary Figure 8 

Supplementary Figure 8: Sensitivity of SCRB-seq and mcSCRB-seq protocols. 
a) Relative increase in the median of detected UMIs dependent on raw sequencing depth
(reads) using mcSCRB-seq compared to SCRB-seq. Each symbol represents the median
over all cells at the given sequencing depth. The size of symbols depicts the number of cells
(SCRB-seq + mcSCRB-seq) that were considered to calculate the median. The 95%
confidence interval of a local regression model is depicted by the shaded area.
b) For each mcSCRB-seq cell that could be downsampled to 2 million reads, the number of
UMIs from endogenous genes is plotted on the x axis (median at 102,282 UMIs per cell) and
the fraction of UMI- ERCCs from the total amount of spiked-in ERCCs (70,000) is plotted on
the y-axis (median 0.49). These values where used to calculate the histogram shown in
c) where for each cell the number of endogenous UMIs is divided by the fraction of ERCCs
that were detected in that cell. Using the median of this distribution (dotted line) was set at
100% for the graph in
d) in which the percentage of cellular mRNAs is plotted for each cell at different sequencing
depths.  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Supplementary Figure 9 

Supplementary Figure 9: Sensitivity of SCRB-seq and mcSCRB-seq protocols by 
genes. 
a) Number of detected genes per cell and method (SCRB-seq/mcSCRB-seq) at a
sequencing depth of 500,000 reads per cell (downsampled). Each dot represents a cell and
each box represents the median and first and third quartiles.
b) Number of detected genes per cell and method (SCRB-seq/mcSCRB-seq) dependent on
sequencing depth (reads). Each box represents the median and first and third quartiles per
sequencing depth and method. Sequencing depths and genes are plotted on a logarithmic
axis (base 10).
c) Number of detected genes at a sequencing depth of 500,000 reads per cell
(downsampled) dependent on the number of cells considered.
d) Gene detection reproducibility is displayed as the fraction of cells detecting a given gene.
Dashed line and label indicate the median of the distribution.
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Supplementary Figure 11: Batch effects, biases and power analysis of SCRB-seq and 
mcSCRB-seq protocols 
a) Volcano plots show differentially expressed genes between plates for each method.
Points in red depict significantly differentially expressed genes (limma-voom; FDR < 0.01).

Red labels show the number of differentially expressed genes between batches.
b) Average detected gene-wise expression levels (log normalized UMI) dependent on GC
content of each transcript. Transcripts are grouped in 7 bins of GC content. Each dot
represents an outlier and each box represents the median and first and third quartiles.
c) Average detected gene-wise expression levels (log normalized UMI) dependent on
transcript length. Transcripts lengths are grouped in 7 bins and number of genes in each bin
are indicated. Each dot represents an outlier and each box represents the median and first
and third quartiles.
d) Power simulations were performed using the powsimR package3 from empirical
parameters estimated at 500,000 raw reads per cell. For SCRB-seq and mcSCRB-seq, we
simulated n-cell two-group differential gene expression experiments with 10% differentially
expressed genes. Shown is the false discovery rate (“FDR”) for sample sizes
n = 24, n = 48, n = 96, n = 192 and n = 384 per group. The corresponding true positive rate
is shown in Figure 2b. Boxplots represent the median and first and third quartiles of 25
simulations. Dashed lines indicate the desired nominal level.

91



Supplementary Figure 12 

Supplementary Figure 12: Costs and preparation time of mcSCRB-seq 
a) Library preparation costs (Eurocents) per cell. Colors indicate the consumable type based
on list prices (see Supplementary Table 3). Costs also apply if four 96-well plates are pooled
for PCR amplification and Nextera
b) Library preparation time for one 96-well plate of mcSCRB-seq libraries was measured for
bench times (“Hands-on”) and incubation times (“Hands-off”). Colors indicate the library
preparation step. The total time was 7.5 hours. (see Supplementary Table 4)
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Supplementary Figure 13 

Supplementary Figure 13 : Comparison of mcSCRB-seq to other scRNA-seq data 
based on ERRCC spike-in detection probability 
a) Shown is the detection (0 or 1) of the 92 ERCC transcripts in an average cell processed
with mcSCRB-seq at 2 million reads coverage. Points and solid line represent the ERCC
genes with their logistic regression model. Dashed lines and label indicate the number of
ERCC molecules required for a detection probability of 50%.
b) Number of ERCC molecules required for 50% detection probability dependent on the
sequencing depth (reads) for mcSCRB-seq. Each each box represents the median, first and
third quartiles of cells per sequencing depth with dots marking outliers. A non-linear
asymptotic fit is depicted as a solid black line.
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Supplementary Figure 14 

Supplementary Figure 14: Quality control of PBMC data 
a) Scatter plot shows each of the 384 sequenced PBMC cells with the number of sequenced 
reads and the % of those reads mapped to the human genome. Dashed lines indicate 
quality filtering cut-offs chosen. Colors indicate QC passed cells (blue) or discarded cells 
(grey).  
b) Cell-wise detected genes (>=1 UMI) and detected UMIs are shown for all cells that 
passed quality control (n=349). 
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Supplementary Table 1 

Supplementary Table 1: Overview of used enzymes and enhancers in UHRR based 
experiments. 

protocol variant Soumillon Ziegenhain SmartScribe molecular 
crowding

Reverse 
transcriptase

Maxima H- Maxima H- SmartScribe Maxima H-

Buffer enhancer none none none 7.5% PEG

PCR polymerase Advantage2 KAPA HiFi KAPA HiFi KAPA HiFi
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Supplementary Table 2 

Supplementary Table 2: Overview of the key differences between SCRB-seq as used in 
Ziegenhain et al.2 and mcSCRB-seq (this work).  

SCRB-seq mcSCRB-seq

Lysis Phusion HF Phusion HF + Proteinase 
K + oligo-dT primers

Cell suspension RNAprotect PBS

Proteinase K Ambion Clontech

oligo-dT concentration 1 µM 0.2 µM

reverse transcription 
volume

2 µl 10 µl

RT amount 25 U 20 U

RT enhancer none 7.5% PEG

TSO modification 5’-blocking none

TSO concentration 1 µM 2 µM

Pooling Zymo Clean & 
Concentrator

magnetic beads

PCR polymerase KAPA HiFi Terra direct

PCR cycles 18-21 13-15

Protocol speed 2 days 1 day

Cost per cell 1-2 € 0.4-0.6 €
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Supplementary Table 3 

Supplementary Table 3. Detailed overview of costs for mcSCRB-seq. 

consumable price/unit # 384 plates price/384 plate

Barcode oligo-dT 24.000,00 € 5000 4,80 €

TSO E5V6unblocked 453,40 € 50 9,07 €

Maxima RT 554,00 € 5 110,80 €

Exonuclease I 327,00 € 1000 0,33 €

Clontech Terra 551,00 € 800 0,69 €

Nextera XT 3.002,00 € 96 31,27 €

dNTPs 1.236,00 € 125 9,89 €

Beads 20,00 € 10 2,00 €

Picogreen 542,00 € 400 1,36 €

PCR Seal 500,00 € 1000 0,50 €

PCR Plate/96 140,00 € 0 0,00 €

PCR Plate/384 195,00 € 25 7,80 €

Tips/96 36,50 € 0 0,00 €

Robotic tips/384 290,00 € 10 29,00 €

Total 207,50 €

Total/cell 0,54 €
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Supplementary Table 4 

Supplementary Table 4. Detailed overview of hands-on and hands-off time necessary to 
create a sequenceable mcSCRB-seq library from one single cell plate. 

Task
Hands-on 
(min)

Hands-off 
(min)

suggested 
start time Stopping point? Note

Prepare workplace 10 09:00

Proteinase K digest 10 10 09:10

Meanwhile 
prepare RT 
Master-Mix

Dispense RT Mix 5 09:30

RT 90 09:35

Pool + Clean-up 35 10 11:05 <72h @ 4°C

ExoI 30 11:50

PCR set-up 5,00 12:20

PCR 100 12:25

PCR clean-up 20,00 14:05

1 week @ 4°C or 
long-term @ -20 
°C

Quantify cDNA 5,00 14:25

Nextera: Transposition + 
PCR set-up 20 10 14:30

Nextera XT PCR 40 15:00

PCR clean-up 15,00 15:40

1 week @ 4 °C or 
long-term @ -20 
°C

Gel-excision & clean-up 25 10 15:55

1 week @ 4 °C or 
long-term @ -20 
°C

16:30

total time 150 300
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Single-cell genomics provides an unprecedented view of the 
cellular makeup of complex and dynamic systems. Single-cell 
transcriptomic approaches in particular have led the techno-

logical advances that allow unbiased charting of cell phenotypes1. 
The latest improvements in scRNA-seq allow these technologies 
to scale to thousands of cells per experiment, providing compre-
hensive profiling of tissue composition2,3. This has led to the iden-
tification of new cell types4–6 and the fine-grained description of 
cell plasticity in dynamic systems, such as development7,8. Recent 
large-scale efforts, such as the Human Cell Atlas (HCA) project9, are 
attempting to produce cellular maps of entire cell lineages, organs 
and organisms10,11 by conducting phenotyping at the single-cell 
level. The HCA project aims to advance our understanding of tis-
sue function and to serve as a reference for defining variation in 

human health and disease. In addition to methods that capture the 
spatial organization of tissues12,13, the main approach being used is 
scRNA-seq analysis of dissociated cells. Therefore, tissues are disag-
gregated and individual cells captured either by cell sorting or using 
microfluidic systems1. In sequential processing steps, cells are lysed, 
the RNA is reverse transcribed to complementary DNA, amplified 
and processed to sequencing-ready libraries.

Continuous technological development has improved the scale, 
accuracy and sensitivity of scRNA-seq methods, and now allows us 
to create tailored experimental designs by selecting from a plethora 
of different scRNA-seq protocols. However, there are marked differ-
ences across these methods, and it is not clear which protocols are best 
for different applications. For large-scale consortium projects, expe-
rience has shown that neglecting benchmarking, standardization  

Benchmarking single-cell RNA-sequencing 
protocols for cell atlas projects
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Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in 
a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs 
and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, 
and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to 
systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a 
multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous 
reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed 
in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration 
into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as 
the Human Cell Atlas.
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and quality control at the start can lead to major problems later on 
in the analysis of the results14. Thus, success depends critically on 
implementing a high common standard. A comprehensive compar-
ison of available scRNA-seq protocols will benefit both large- and 
small-scale applications of scRNA-seq.

The available scRNA-seq protocols vary in the efficiency of RNA-
molecule capture, which results in differences in sequencing library 
complexity and the sensitivity of the method to identify transcripts 
and genes15–17. There has been no systematic testing of how their 
performance varies between cell types, and how this affects the 
resolution of cell phenotyping in complex samples. In the present 
study, we extend previous efforts to compare the molecule-capture 
efficiency of scRNA-seq protocols15,16 by systematically evaluating 
the capability of these techniques to describe tissue complexity and 
their suitability for creating a cell atlas. We performed a multicenter 
benchmarking study to compare scRNA-seq protocols using a uni-
fied reference sample resource. Our reference sample contained: (1) 
a high degree of cell-type heterogeneity with various frequencies, 
(2) closely related subpopulations with subtle differences in gene
expression, (3) a defined cell composition with trackable markers
and (4) cells from different species. By analyzing human periph-
eral blood and mouse colon tissue, we have covered a broad range
of cell types and states from cells in suspension and solid tissues,
to represent common scenarios in cell atlas projects. We have also
added spike-in cell lines to allow us to assess batch effects, and have
combined different species to pool samples into a single reference.
We performed a comprehensive comparative analysis of 13 different 
scRNA-seq protocols, representing the most commonly used meth-
ods. We applied a wide range of different quality control metrics
to evaluate datasets from different perspectives, and to test their
suitability for producing a reproducible, integrative and predictive
reference cell atlas.

We observed striking differences among protocols in converting 
RNA molecules into sequencing libraries. Varying library complexi-
ties affected the protocol’s power to quantify gene expression lev-
els and to identify cell-type markers, a trend consistently observed 
across cell and tissue types. This critically impacted on the resolution 
of tissue profiles and the predictive value of the datasets. Protocols 
further differed in their capacity to be integrated into reference tis-
sue atlases and, thus, their suitability for consortium-driven projects 
with flexible production designs.

Results
Reference sample and experimental design. We benchmarked 
current scRNA-seq protocols to inform the methodological selec-
tion process of cell atlas projects. Ideally, methods should: (1) be 
accurate and free of technical biases, (2) be applicable across dis-
tinct cell properties, (3) fully disclose tissue heterogeneity, including 
subtle differences in cell states, (4) produce reproducible expression 
profiles, (5) comprehensively detect population markers, (6) be 
integratable with other methods and (7) have predictive value with 
cells mapping confidently to a reference atlas.

For a systematic comparison of protocols, we designed a refer-
ence sample containing human peripheral blood mononuclear cells 
(PBMCs) and mouse colon, which are tissue types with highly het-
erogeneous cell populations, as determined by previous single-cell 
sequencing studies18,19. In addition to the well-defined cell types, 
the tissues contain cells in transition states (for example, colon 
transit-amplifying (TA) or enterocyte progenitor cells) that show 
transcriptional differences during their differentiation trajectory20. 
The reference sample also included a wide range of cell sizes (for 
example, B cells: ~7 μm; HEK293 cells: ~15 μm) and RNA content, 
which are key parameters that affect performance in cell capture 
and library preparation. Interrogation of tissues from different spe-
cies allowed us to pool a large variety of cell types in a single refer-
ence sample to maximize complexity while minimizing variability  

introduced during sample preparation. In addition to the intra-tis-
sue complexity, the fluorescence-labeled, spiked-in cell lines allowed 
us to monitor cell-type composition during sample processing, and 
to identify batch effects and biases introduced during cell capture 
and library preparation.

Specifically, the reference sample contained (estimated percent-
age viable cells): PBMCs (60%, human), colon cells (30%, mouse), 
HEK293T cells (6%, red fluorescent protein (RFP)-labeled human 
cell line), NIH3T3 cells (3%, green fluorescent protein (GFP)-
labeled mouse cells) and MDCK cells (1%, TurboFP650-labeled dog 
cells) (Fig. 1). To reduce variability due to technical effects during 
library preparation, the reference sample was prepared in a single 
batch, distributed into aliquots of 250,000 cells and cryopreserved. 
We have previously shown that cryopreservation is suitable for sin-
gle-cell transcriptomic studies of these tissue types21. For cell cap-
ture and library preparation, the thawed samples underwent FACS 
to remove damaged cells and physical doublets (see the next section 
for detailed analysis of cell viability sorting).

A reference dataset for benchmarking experimental and com-
putational protocols. To obtain sufficient sensitivity to capture 
low-frequency cell types and subtle differences in the cell state, we 
profiled ~3,000 cells with each scRNA-seq protocol. In total, we pro-
duced datasets for five microtiter plate-based methods and seven 
microfluidic systems, including cell-capture technologies based on 
droplets (four), nanowells (one) and integrated fluidic circuits, to 
capture small (one) and medium (one)-sized cells (Fig. 1 and see 
Supplementary Table 1). We also included experiments to produce 
single-nucleus RNA-sequencing (snRNA-seq) libraries (one), and 
an experimental variant that profiled >50,000 cells to produce a 
reference of our complex sample. The unified sample resource and 
standardized sample preparation (see Methods) were designed 
largely to eliminate sampling effects and allow the systematic com-
parison of scRNA-seq protocol performance.

To compare the different protocols, and to create a resource for 
the benchmarking and development of computational tools (for 
example, batch effect correction, data integration and annotation), 
all datasets were processed in a uniform manner. Therefore, we 
designed a streamlined, primary data-processing pipeline tailored to 
the peculiarities of the reference sample (see Methods). Briefly, raw 
sequencing reads were mapped to a joint human, mouse and canine 
reference genome, and separately to their respective references to 
produce gene count matrices for subsequent analysis (accession no. 
GSE133549). Overall, we detected human, mouse and canine cell 
numbers consistent with the composition design of the reference 
sample (Fig. 1). However, some protocols varied markedly from 
the expected frequencies in human (34–95%), mouse (4–66%) and 
canine (0–9%) cells. Although the reference sample was prepared 
in a standardized way, we cannot entirely exclude the introduction 
of composition variability during sample handling. Thus, the sub-
sequent evaluation of protocol performance was performed on cell 
types and states common to all protocols.

Notably, we observed a higher fraction of mouse colon cells in 
unsorted (Chromium) and the snRNA-seq datasets (Chromium 
(sn)). This probably results from damaging the more fragile colon 
cells during sample preparation, resulting in proportionally fewer 
colon cells when selecting for cell viability. To test whether this 
composition bias in scRNA-seq can be avoided by skipping via-
bility selection, we generated matched datasets either selecting or 
not selecting for intact cells. After quality control the detection of 
mouse colon cells increased proportionally without viability selec-
tion (51% versus 19%), with good-quality cells showing compa-
rable library complexity in both libraries (for example, numbers of 
detected genes; see Supplementary Figs. 1 and 2). However, con-
siderably more cells were removed during quality filtering (44% 
versus 15%), and this is a source of unwanted sequencing costs that 
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must be taken into account, especially for tissues with high cell 
damage. Consequently, replacing viability staining with thorough 
in silico quality filtering in cell atlas experiments might better con-
serve the composition of the original tissue, but result in higher 
sequencing costs.

The canine cells, spiked-in at a low concentration, were detected 
by all protocols (1–9%) except gmcSCRB-seq. Furthermore, the dif-
ferent methods showed notable differences in mapping statistics 
between different genomic locations (Fig. 1). As expected, due to 
the presence of unprocessed RNA in the nucleus, the snRNA-seq 
experiment detected the highest proportion of introns, although 
scRNA-seq protocols also showed high frequencies of intronic and 
intergenic mappings. The increased detection of unprocessed tran-
scripts in CEL-seq2 may be due to a freezing step (−80 °C) after cell 
isolation and subsequent denaturation at high temperatures (95 °C), 
which could favor the accessibility of nuclear and chromatin-bound 
RNA molecules.

Molecule-capture efficiency and library complexity. We produced 
reference datasets by analyzing 30,807 human and 19,749 mouse 
cells (Chromium v.2; Fig. 2a–c). The higher cell number allowed 
us to annotate the major cell types in our reference sample, and to 
extract population-specific markers (see Supplementary Table 2).  

It was noteworthy that the reference samples solely provided the 
basis to assign cell identities and gene marker sets, and were not 
used to quantify the method’s performance. This strategy ensured 
that the choice of technology for deriving the reference does not 
influence downstream analyses. Cell clustering and reference-
based cell annotation showed high agreement (average 83%; see 
Supplementary Table 3), and only cells with consistent annotations 
were used subsequently for comparative analysis at the cell-type 
level. The PBMCs (human) and colon cells (mouse) represented 
two largely different scenarios. Although the differentiated PBMCs 
clearly separated into subpopulations (for example, T/B cells, 
monocytes; Fig. 2b, and see Supplementary Figs. 3a and 4a–d), 
colon cells were ordered as a continuum of cell states that differ-
entiate from intestinal stem cells into the main functional units of 
the colon (that is, absorptive enterocytes and secretory cells; Fig. 2c, 
and see Supplementary Figs. 3b and 5a–d). Notably, the subpopula-
tion structure of our references was largely consistent with that of 
published datasets for human PBMCs18 and mouse colon cells22 (see 
Supplementary Figs. 6 and 7). After identifying major subpopula-
tions and their respective markers in our reference sample, we clus-
tered the cells of each sc/snRNA-seq protocol and annotated cell 
types using matchSCore2 (see Methods). This algorithm allows a 
gene marker-based projection of single cells (cell by cell) on to a 
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reference sample and, thus, the identification of cell types in our 
datasets (see Supplementary Figs. 8 and 9).

To compare the efficiency of messenger RNA capture between 
protocols, we down-sampled the sequencing reads per cell to a com-
mon depth and stepwise-reduced fractions. Stochasticity introduced 
during down-sampling did not affect the reproducibility of the 
results (see Supplementary Fig. 10). Library complexity was deter-
mined separately for largely homogeneous cell types with markedly 
different cell properties and function, namely human HEK293T 
cells, monocytes and B cells (Fig. 2d,e), and mouse colon secretory 
and TA cells (see Supplementary Fig. 11a,b). We observed large dif-
ferences in the number of detected genes and molecules across the 
protocols, with consistent trends across cell types and gene quan-
tification strategies (see Supplementary Fig. 11c,d). Notably, some 
protocols, such as Smart-seq2 and Chromium v.2, performed better 
with higher RNA quantities (HEK293T cells) compared with lower 
starting amounts (monocytes and B cells), suggesting an input-sen-
sitive optimum. Considering the different assay versions and appli-
cation types of the Chromium system, a dedicated analysis showed 

increased detection of molecules and genes from nuclei to intact 
cells and toward the latest protocol versions (see Supplementary  
Fig. 12). Consistent with the variable library complexity, the proto-
cols presented large differences in dropout probabilities (Fig. 2f), 
with Quartz-seq2, Chromium v.2 and CEL-seq2 showing consis-
tently lower probability. Note that, despite the considerable differ-
ences between protocols, we observed a generally high technical 
reproducibility within the methods (see Supplementary Fig. 13).

Technical effects and information content. We further assessed the 
magnitude of technical biases, and the protocol’s ability to describe 
cell populations. To quantify the technical variation within and 
across protocols, we selected highly variable genes (HVGs) across 
all datasets, and plotted the variation in the main principal compo-
nents (PCs; Fig. 3a). Using the down-sampled data for HEK293T 
cells, monocytes and B cells, we observed strong protocol-specific 
profiles, with the main source of variability being the number of 
genes detected per cell (Fig. 3b). Data from snRNA-seq did not 
show notable outliers, indicating conserved representation of the 
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transcriptome between the cytoplasm and the nucleus. To quantify 
the protocol-related variance, we identified the PCs that correlated 
with the protocol’s covariates in a linear model23. Indeed, the vari-
ance in the data was mainly explained by the protocols (HEK293T 
cells = 37.3%, monocytes = 52.8% and B cells = 36.2%), a value that 
was reduced in HEK293T cells and monocytes when considering 
snRNA-seq as a specific covariate (HEK293T cells = 9.7%, mono-
cytes = 22.2% and B cells = 48.3%; see Methods). The technical 
effects were also visible when using t-distributed stochastic neigh-
bor embedding (tSNE) as a nonlinear, dimensionality reduction 
method (see Supplementary Fig. 14). By contrast, the methods 
largely mixed when the analysis was restricted to cell-type-specific 
marker genes, suggesting a conserved cell identity profile across 
techniques (see Supplementary Fig. 15).

Next, we quantified the similarities in information content of 
the protocols. Again, we used the down-sampled datasets and com-
monly expressed genes and calculated the correlation between 
methods in average transcript counts across multiple cells, thus 
compensating for the sparseness of single-cell transcriptome data. 

For the three human cell types, we observed a broad spectrum of 
correlation across technologies, with generally lower correlation for 
smaller cell types (Fig. 3c). Although the transcriptome represen-
tation was generally conserved (Fig. 3a), the snRNA-seq protocol 
resulted in a notable outlier when correlating the expression levels of 
common genes across protocols, possibly driven by decreased cor-
relation of immature transcripts. Restricting the correlation analy-
sis to population-specific marker genes, we observed less variation 
between protocols (Pearson’s r = 0.5–0.7), which underlines that the 
expression of these markers is largely conserved across the methods 
(see Supplementary Fig. 16).

To further test the suitability of protocols for describing cell 
types, we determined their sensitivity to detect population-specific 
expression signatures, and found that they had remarkably variable 
power to detect marker genes. Specifically, population markers were 
detected with different accuracies (see Supplementary Figs. 17 and 
18), and the detection level varied substantially (Fig. 3d,e and see 
Supplementary Table 4). Quartz-seq2 and Smart-seq2 showed high 
expression levels for all cell-type signatures, indicating that they 
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have higher power for cell-type identification. As marker genes are 
particularly important for data interpretation (for example, annota-
tion), low marker detection levels could severely limit the interpre-
tation of poorly explored tissues, or when trying to identify subtle 
differences across subpopulations. SnRNA-seq showed generally 
lower marker detection levels. However, gene markers were selected 
from intact cell experiments, which could lead to an underestima-
tion of the performance of snRNA-seq to identify cell-type-specific 
signatures in this analysis approach.

The protocols also detected vastly different total numbers of 
genes when accumulating transcript information over multiple 
cells, with strong positive outliers observed for the smaller cell types  
(Fig. 3f). In particular, CEL-seq2 and Quartz-seq2 identified many 
more genes than other methods. Intriguingly, CEL-seq2 outper-
formed all other methods by detecting many weakly expressed 
genes; genes detected specifically by CEL-seq2 had significantly 
lower expression than the common genes detected by Quartz-seq2 
(P < 2.2 × 10−16). The greater sensitivity to weakly expressed genes 
makes this protocol particularly suitable for describing cell popula-
tions in detail, an important prerequisite for creating a comprehen-
sive cell atlas and functional interpretation.

Surprisingly, considering the increased library complexity of 
scRNA-seq compared with snRNA-seq, the latter protocol iden-
tified a similar number of genes when combining information  
across multiple cells and suggesting overall similar transcriptome 
complexity of the two compartments (see Supplementary Fig. 12).  
ScRNA-seq detected additional genes enriched in biological pro-
cesses such as organelle function, including many mitochondrial 
genes that were largely absent in the snRNA-seq datasets (see 
Supplementary Table 5).

To further illustrate the power of the different protocols to chart 
the heterogeneity of complex samples, we clustered and plotted 
down-sampled datasets in two-dimensional space (Fig. 4a) and 
then calculated the cluster accuracy and average silhouette width 
(ASW24, Fig. 4b), a commonly used measure for assessing the quality 
of data partitioning into communities. Consistent with the assump-
tion that library complexity and sensitive marker detection provide 
greater power to describe complexity, methods that performed well 
for these two attributes showed better separation of subpopulations, 
and greater ASW and cluster accuracy. This is illustrated in the 
monocytes, for which accurate clustering protocols separated the 
major subpopulations (CD14+ and FCGR3A+), whereas methods 
with low ASW did not distinguish between them. Similarly, several 
methods were able to distinguish between CD8+ and natural killer 
(NK) cells, whereas others were not.

Joint analysis across datasets. A common scenario for cell atlas 
projects is that data are produced at different sites using different 
scRNA-seq protocols. However, the final atlas is created from a 
combination of datasets, which requires that the technologies used 
be compatible. To assess how suitable it is to combine the results 
from our protocols into a joint analysis, we used down-sampled 
human and mouse datasets to produce a joint quantification matrix 
for all techniques25. Importantly, single cells grouped themselves by 
cell type, suggesting that cell phenotypes are the main driver of het-
erogeneity in the joint datasets (Fig. 5a–d, and see Supplementary 
Figs. 19a,b and 20). Indeed, the combined data showed a clear sepa-
ration of cell states (for example, T cell and enterocyte subpopula-
tions) and rarer cell types, such as dendritic cells. However, within 
these populations, differences between the protocols pointed to the 
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presence of technical effects that could not be entirely removed with 
down-sampling to equal read depth and different merging tools 
(Fig. 5e,f, and see Supplementary Figs. 19c,d, 21a,b and 22a,b). To 
formally assess the capacity of the methods to be combined, we cal-
culated the degree to which technologies mix in the merged datasets 
(Fig. 5g,h, and see Supplementary Figs. 21c,d and 22c,d). The suit-
ability of protocols to be combined (mixability) was directly corre-
lated with their power to discriminate between cell types (clustering 
accuracy). Thus, well-performing protocols result in high-reso-
lution cellular maps and are suitable for consortium-driven proj-
ects that include different data sources. When integrating further 
down-sampled datasets, we observed a drop in mixing ability (see 
Supplementary Fig. 19e). Consequently, quality standard guidelines 
for consortia might define minimum coverage thresholds to ensure 
the subsequent option of data integration. A separate analysis of the 
single-nucleus and single-cell Chromium datasets resulted in well-
integrated profiles, further supporting the potential to integrate cell 
atlases from cells and nuclei (see Supplementary Figs. 23 and 24).

Cell atlas datasets will serve as a reference for annotating cell 
types and states in future experiments. Therefore, we assessed cells’ 
ability to be projected on to our reference sample (Fig. 2b,c). We 
used the population signature model defined by matchSCore2 
and evaluated the protocols based on their cell-by-cell mapping 
probability, which reflects the confidence of cell annotation (see 
Supplementary Fig. 25a–c). Although there were some differences 

in the projection probabilities of the protocols, and a potential bias 
due to the selection of the reference protocol, a confident annota-
tion was observed for most cells with inDrop and ddSEQ reporting 
the highest probabilities. Notably, high probability scores were also 
observed in further down-sampled datasets (see Supplementary 
Fig. 25b). This has practical consequences, because data derived 
from less well-performing methods (from a cell atlas perspec-
tive), or from poorly sequenced experiments, could be identifiable  
and thus suitable for specific analysis types, such as tissue composi-
tion profiling.

Discussion
Systematic benchmarking of available technologies is a crucial pre-
requisite for large-scale projects. In the present study, we evaluated 
scRNA-seq protocols for their power to produce a cellular map of 
complex tissues. Our reference sample simulated common scenarios 
in cell atlas projects, including differentiated cell types and dynamic 
cell states. We defined the strengths and weaknesses of key features 
that are relevant for cell atlas studies, such as comprehensiveness, 
integratability and predictive value. The methods revealed a broad 
spectrum of performance, which should be considered when defin-
ing guidelines and standards for international consortia (Fig. 6).

We expect that our results will guide informed decision-mak-
ing processes for designing sc/snRNA-seq studies. There are sev-
eral features to consider when selecting protocols to produce a 
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reproducible, integrative and predictive reference cell atlas. At a 
given sequencing depth, the number and complexity of detected 
RNA molecules define the power to describe cell phenotypes and 
infer their function. There are also additional essential features 
for cell atlas projects and their interpretation, such as population 
marker identification. Improved versions of plate-based methods, 
including Quartz-seq2, CEL-seq2 and Smart-seq2, generate such 
high-resolution transcriptome profiles. Also, microfluidic systems 
showed excellent performance in our comparison, particularly the 
Chromium system. Although the scale of plate-based experiments 
is limited by the lower throughput of their individual processing 
units, microfluidic systems, especially droplet-based methods, can 
be easily applied to thousands of cells simultaneously. Protocol 
modification scales up throughput even further, and allows more 
cost-effective experiments26–29. Generally, late multiplexing meth-
ods, such as Smart-seq2, are more costly, but costs can be reduced 
by miniaturization30 and use of noncommercial enzymes31. Custom 
droplet-based protocols have lower costs than their commercialized 
counterparts, but the optimized chemistry in commercial systems 
resulted in improved performance in this comparison. Nevertheless, 
existing platforms are undergoing continued development in both 
the private (see Supplementary Fig. 12) and the academic sectors, so 
updated protocol versions promise to improve performance further. 
For consortium-driven projects, it is important to consider the inte-
gratability of data. We have shown that several protocols, including 
those with reduced library complexity and snRNA-seq, were readily 
integratable with other methods.

The use of PBMCs is ideal for multicenter benchmarking efforts; 
blood cells are easy to isolate and show a high recovery rate after 
freezing. We also included mouse colon, a solid tissue requiring dis-
sociation before scRNA-seq. Tissue digestion and cryopreservation 
of colon cells present additional challenges (for example, increased 
rate of damaged cells), which we addressed by focusing on commonly  

detected cell types. Although we observed differences in the fre-
quencies of cells from mice and humans, the composition of cell 
subtypes within tissues was conserved, reassuring the consistent 
capture of major cell types across all methods. Accordingly, subse-
quent analyses could be stratified by cell type, avoiding the need for a 
ground truth in sample composition. Furthermore, viability sorting 
with minimal mechanical forces (low speed and wide nozzle size) 
was applied to remove damaged cells and benchmark protocols with 
high-quality samples. This work standardized sample processing to 
limit technical variance in the library preparation steps, a crucial 
requisite for the multicenter benchmarking design. Nevertheless, 
on-site differences introduced during sample thawing or viability 
sorting could not be entirely excluded. However, our analysis also 
showed that viable cells selected by sorting or through thorough 
data quality control generate highly similar library complexity, sug-
gesting that potential differences in sample processing have minor 
impacts on the data quality and supporting the robustness of our 
results. Processing time presents another variable related to sample 
and data quality. Although cells are directly sorted into their respec-
tive reaction volumes for plate-based methods, processing times can 
vary across microfluidic systems. However, this was considered to 
be an inherent feature of the library preparation workflow of the 
protocols that contributes to the overall performance.

Across sample origins and cell types, all tested features pointed 
to consistent protocol performance. In addition to the differences 
in protocol performance, it was the cells’ RNA content and com-
plexity that dominated the molecule and gene detection rates, which 
we have seen through the stratified analysis of vastly different cell 
types. As such, we expect the conclusions to be valid beyond the 
human and mouse tissues tested in the present study.

Several additional steps are crucial for the success of single-cell 
projects, especially sample preparation. Optimization of sample 
procurement and tissue-processing conditions is of crucial impor-
tance to avoid composition biases and gene expression artifacts32–35 
that could limit the value of a cell atlas. Therefore, dedicated stud-
ies are required to define optimal conditions for tissue and organ 
preparation in healthy and disease contexts.

From a technical perspective, multiple steps of a protocol are 
critical for generating complex sequencing libraries. All sc/snRNA-
seq methods require multi-step, whole-transcriptome amplifica-
tion, including reverse transcription, conversion to amplifiable 
cDNA and amplification1. Theoretically, the multiplicative reaction 
efficiency of respective steps determines a method’s power to detect 
RNA molecules, and in this sense Quartz-Seq2 was particularly effi-
cient. We specifically tested for potential advantages of the Quartz-
seq2 column-based over bead-based purification, but did not detect 
differences in cDNA yield (see Supplementary Fig. 26). However, 
we observed that bead concentration critically affected the yield of 
amplified cDNA. Moreover, performance was more stable for puri-
fication with columns compared with beads, which should be taken 
into account when implementing existing or developing new sc/
snRNA-seq methods.

A further essential step toward complex libraries is the con-
version of first-strand cDNA to amplifiable cDNA. Three main 
strategies are used for this conversion: (1) template switching, (2) 
RNaseH/DNA polymerase I-mediated, second-strand synthesis for 
in vitro transcription and (3) poly(A) tagging1. Improvement of the 
three strategies led to better quantitative performance of scRNA-
seq36–39. For Quartz-Seq2 (ref. 37), improved poly(A) tagging was 
most important to increase the amplified cDNA yield compared 
with Quartz-Seq40, and probably explains the excellent result in this 
benchmarking exercise. However, optimization of the cDNA con-
version still has the potential to improve scRNA-seq methods.

Within the cDNA amplification step, increased PCR cycle num-
bers lead to PCR biases within the sequencing libraries. Early pool-
ing increases the number of cDNA molecules in the amplification  
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step and reduces PCR bias. This especially favors early pooling 
methods at low sequencing depth (as performed in the present 
study), as previously shown for bulk RNA-seq41. Similarly, in vitro 
transcription linearly amplifies cDNA with fewer biases than PCR-
based methods, and partly explains the good performance of CEL-
seq2. Furthermore, early multiplexing of different cell numbers 
leads to different PCR cycle requirements (Quartz-Seq2 with 768 
cells and 10 cycles versus gmcSCRB-seq with 96 cells and 19 cycles, 
using the same DNA polymerase for amplification). The number of 
cells per amplification pool depends on the amount of amplifiable 
cDNA, implying that the good performance of Quartz-Seq2 was 
mainly due to efficient conversion of amplifiable cDNA from RNA 
with poly(A) tagging.

It is equally important to benchmark computational pipelines for 
data analysis and interpretation23,42–44. We envision the datasets pro-
vided by our study serving as a valuable resource for the single-cell 
community to develop and evaluate new strategies for an informa-
tive and interpretable cell atlas. Moreover, the multicenter bench-
marking framework presented in the present study can readily be 
transferred to other organs where common tissue/cell types are 
analyzed using different scRNA-seq protocols (for example, brain 
atlas projects).
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Methods
Ethical statement. The present study was approved by the Parc de Salut MAR 
Research Ethics Committee (reference no. 2017/7585/I) to H.H. We adhered to 
ethical and legal protection guidelines for human participants, including  
informed consent.

Reference sample. Cell lines. NIH3T3-GFP, MDCK-TurboFP650 and HEK293-
RFP cells were cultured at 37 °C in an atmosphere of 5% (v:v) carbon dioxide in 
Dulbecco’s modified Eagle’s medium, supplemented with 10% (w:v) fetal bovine 
serum (FBC), 100 U penicillin, and 100 μg l−1 of streptomycin (Invitrogen). On 
the reference sample preparation day, the culture medium was removed and the 
cells were washed with 1× phosphate-buffered saline (PBS). Afterwards, cells 
were trypsinized (trypsin 100×), pelleted at 800g for 5 min, washed in 1× PBS, 
resuspended in PBS + ethylenediaminetetraacetic acid (EDTA) (2 mM) and  
stored on ice.

Mouse colon tissue. The colons from 11 mice (7 LGR5/GFP and 4 wild-type) 
were dissected and removed. For single-cell separation the colons were treated 
separately. The colon was sliced, opened and washed twice in cold 1× Hank’s 
balanced salt solution (HBSS). It was then placed on a Petri dish on ice and minced 
with razor blades until disintegration. The minced tissue was transferred to a 15-ml 
tube containing 5 ml of 1× HBSS and 83 μl of collagenase IV (final concentration 
166 U ml−1). The solution was incubated for 15 min at 37 °C (vortexed for 10 s every 
5 min). To inactivate the collagenase IV, 1 ml of FBS was added and it was vortexed 
for 10 s. The solution was filtered through a 70-μm nylon mesh (changed when 
clogged). Finally, all samples were combined, and the cells pelleted for 5 min at 
400g and 4 °C. The supernatant was removed and the cells resuspended in 20 ml of 
1× HBSS and stored on ice.

Isolation of PBMCs. Whole blood was obtained from four donors (two female, 
two male). The extracted blood was collected in heparin tubes (GP Supplies) 
and processed immediately. For each donor, PBMCs were isolated according to 
the manufacturer’s instructions for Ficoll extraction (pluriSelect). Briefly, blood 
from two heparin tubes (approximately 8 ml) was combined, diluted in 1× PBS 
and carefully added to a 50-ml tube containing 15 ml of Ficoll. The tubes were 
centrifuged for 30 min at 500g (minimum acceleration and deceleration). The 
interphase was carefully collected and diluted with 1× PBS + 2 mM EDTA. After a 
second centrifugation, the supernatant was discarded and the pellet resuspended in 
2 ml of 1× PBS + 2 mM EDTA and stored on ice.

Preparation of the reference sample. Cell counting was performed using an 
automated cell counter (TC20 Automated Cell Counter, Bio-Rad Laboratories). 
The reference sample was calculated to include human PBMCs (60%), mouse 
colon cells (30%), and HEK293T (6%, RFP-labeled human cell line), NIH3T3 
(3%, GFP-labeled mouse cells) and MDCK (1%, TurboFP650-labeled dog cells) 
cells. To adjust for cell integrity loss during sample processing, we measured 
the viability during cell counting and accounted for an expected viability loss 
after cryopreservation (10% for cell lines and PBMCs; 50% for colon cells21). 
All single-cell solutions were combined in the proportions mentioned above 
and diluted to 250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of 
cell suspension was aliquoted into cryotubes and gently mixed with a freezing 
solution (final concentration 10% dimethylsulfoxide; 10% heat-inactivated FBS). 
Cells were then frozen by gradually decreasing the temperature (1 °C min−1) to 
−80 °C (cryopreserved), and stored in liquid nitrogen. MARS-Seq and Smart-Seq2 
experiments were performed to validate sample quality and composition before 
distributing aliquots to the partners.

Sample processing. Samples were stored at −80 °C on arrival. Before processing, 
samples were de-frozen in a water bath (37 °C) with continuous agitation until the 
material was almost thawed. The entire volume was transferred to a 15-ml Falcon 
tube using a 1,000-μl tip (wide-bored or cut tip) without mixing by pipetting; 
1,000 μl of prewarmed (37 °C) Hibernate-A was added drop-wise while gently 
swirling the sample. The sample was then rested for 1 min. An additional 2,000 μl 
of prewarmed (37 °C) Hibernate-A was added drop-wise while gently swirling the 
sample. The sample was again rested for 1 min. Another 2,000 μl of prewarmed 
(37 °C) Hibernate-A was added drop-wise while gently swirling the sample and the 
sample was rested for 1 min. Then, 3,000 μl of prewarmed (37 °C) Hibernate-A was 
added drop-wise and the Falcon tube inverted six times. The sample was rested for 
1 min. An additional 5,000 μl of prewarmed (37 °C) Hibernate-A was added drop-
wise and the Falcon tube inverted six times. The sample was rested for 1 min. It was 
then centrifuged at 400g for 5 min at 4 °C (pellet clearly visible). The supernatant 
was removed until 500 μl remained in the tube. The pellet was resuspended by 
gentle pipetting. Then 3,500 μl of 1× PBS + 2 mM EDTA was added and the sample 
stored on ice until processing. Before FACS isolation, cells were filtered through 
a nylon mesh and 3 μl DAPI was added before gentle mixing. During FACS 
isolation, DAPI-positive cells were excluded to remove dead and damaged cells. 
Furthermore, the exclusion of GFP-positive cells simulated the removal of a cell 
type from a complex sample. Supplementary Fig. 27 shows representative FACS 
plots and gating strategies.

ScRNA-seq library preparation. For a detailed sample processing description, see 
Supplementary Notes.

Data analysis. For primary data preprocessing, clustering, sample deconvolution 
and annotation, and reference datasets, see Supplementary Notes.

MatchSCore2. To systematically assign cell identities to unannotated cells coming 
from different protocols, we used matchSCore2, a mathematical framework 
for classifying cell types based on reference data (https://github.com/elimereu/
matchSCore2). The reference data consist of a matrix of gene expression 
counts in individual cells, the identity of which is known. The main steps of the 
matchSCore2 annotation are the following:

 (1) Normalization of the reference data. Gene expression counts are 
log(normalized) for each cell using the natural logarithm of 1 + counts per 
10,000. Genes are then scaled and centered using the ScaleData function in 
the Seurat package.

 (2) Definition of signatures and their relative scores. For each of the cell types 
in the reference data, positive markers were computed using Wilcoxon’s 
rank-sum test. The top 100 ranked markers in each cell type were used as 
the signature for that type. To each cell, we assigned a vector x = (x1, .., xn) of 
signature scores, where n is the number of cell types in the reference data. The 
ith signature score for the kth cell is computed as follows:

Scorek ¼
X

j in J
zj k

where J is the set of genes in signature i, and zjk represents the z-score of gene 
j in the kth cell.

 (3) Training of the probabilistic model on the reference data.

We proposed a supervised multinomial logistic regression model, which uses 
enrichment of the signature of each reference cell type in each cell to assign identity 
to that cell. In other words, for each cell k and signature i, we calculate the ith 
cell-type signature score xi in the kth cell as described in point 2. The distribution 
of the signature scores is preserved, independent of which protocol is used (see 
Supplementary Figs. 28 and 29). More specifically, we defined the variables x1, 
…, xn, where xi is the vector in which the scores for signature i of all cells are 
contained. Then we used xi as the predictor of a multinomial logistic regression.

The model assumes that the number of cells from each type in the training 
reference data T1, T2, …,Tn are random variables and that the variable T = (T1, T2, 
…,Tn) follows a multinomial distribution M(N, π = (π1, …, πn)), where πi is the 
proportion of the ith cell type and N is the total number of cells.

To test the performance of the model, training and test sets were created by 
subsampling the reference into two datasets, maintaining the original proportions 
of cell types in both sets. The model was trained by using the multinom function 
from the nnet R package (decay = 1 × 10−4, maxit = 500). To improve the 
convergence of the model function, xi variables were scaled to the interval [0,1].

Cell classification. For each cell, model predictions consisted of a set of probability 
values per identity class, and the highest probability was used to annotate the cell if 
it was >0.5; otherwise the cell remained unclassified.

Model accuracy. To evaluate the fitted model using our reference datasets, we 
assessed the prediction accuracy in the test set, which was around 0.9 for human 
and 0.85 for mouse reference. We further assessed matchSCore2 classifications 
in datasets from other sequencing methods by looking at the agreement between 
clusters and classification. Notably, the resulting average agreement was 80% 
(range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), whereas the rate for 
unclassified cells was <2%.

Down-sampling. To decide on a common down-sampling threshold for 
sequencing depth per cell, we inspected the distribution of the total number of 
reads per cell for each technique, and chose the lowest first quartile (fixed to 
20,000 reads per cell). We then performed stepwise down-sampling (25%, 50% 
and 75%) using the zUMIs down-sampling function. We omitted cells that did 
not achieve the required minimum depth (see Supplementary Table 6). Notably, 
stochasticity introduced during down-sampling did not affect the results of the 
present study, as exemplified by the consistent numbers of detected molecules 
across different down-sampling iterations (see Supplementary Fig. 10).

Estimation of dropout probabilities. We investigated the impact of dropout 
events in HEK293T cells, monocytes and B cells extracted for each technique 
on down-sampled data (20,000 reads per cell). For datasets with >50 cells from 
the selected populations, we randomly sampled 50 cells to eliminate the effect of 
differing cell number. The dropout probability was computed using the SCDE R 
package45. SCDE models the measurements of each cell as a mixture of a negative 
binomial process to account for the correlation between amplification and 
detection of a transcript and its abundance, and a Poisson process to account for 
the background signal. We then used estimated individual error models for each 
cell as a function of expression magnitude to compute dropout probabilities using 
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SCDE’s scde.failure.probability function. Next, we calculated the average estimated 
dropout probability for each cell type and technique. To integrate dropout 
measures into the final benchmarking score, we calculated the area under the curve 
of the expression prior and failure probabilities (see Fig. 2f and also Supplementary 
Table 7). We expected that protocols resulting in fewer dropouts would have 
smaller areas under the curve.

Quantification of variance introduced by batches. To quantify the amount of 
variance that is introduced by batches (protocols, processing units or experiments), 
we used the top 20 PCs and the s.d. of each PC, previously calculated on HVGs. 
Next, using the pcRegression function of kBET R package23, we regressed the 
batch covariate (protocols/processing units/experiments as categories defined 
in the kBET model) and each PC to obtain the coefficient of determination as 
an approximation of the variance explained by batches, and the proportions of 
explained variance in each PC. We either reported the percentage of the variance 
that correlates significantly with the batch in the first 20 PCs, or R-squared 
measures of the model for each PC.

Cumulative number of genes. The cumulative number of detected genes in the 
down-sampled data was calculated separately for each cell type. For cell types 
with >50 cells annotated, we randomly selected 50 cells and calculated the average 
number of detected genes per cell after 50 permutations over n sampled cells, 
where n is an increasing sequence of integers from 1 to 50.

GO enrichment analysis. To compare functional gene sets between single-cell and 
single-nucleus datasets, we performed Gene Ontology (GO) enrichment analysis 
on the set of protocol-specific genes using simpleGO (https://github.com/iaconogi/
simpleGO). For each cell type (HEK293T cells, monocytes and B cells), we selected 
two gene sets extracted from the cumulated genes and using the maximum number of 
detected cells common to all three Chromium versions: (1) genes that were uniquely 
detected in the intersection of Chromium (v.2) and (v.3), but not in Chromium (sn), 
and (2) genes that were uniquely identified with Chromium (sn). For each of the gene 
sets, we identified the union over cell types before applying simpleGO.

Correlation analysis. Pearson’s correlations across protocols were computed 
independently for B cells, monocytes and HEK293T cells. For each cell type, cells 
were down-sampled to the maximum common number of cells across all protocols. 
Gene counts of commonly expressed genes (from datasets down-sampled to 20,000 
reads) were averaged across cells before computing their Pearson’s correlations. 
The corplot library was then used to plot the resulting correlations. Protocols were 
ordered by agglomerative hierarchical clustering.

Silhouette scores. To measure the strength of the clusters, we calculated the 
ASW24. The down-sampled data (20,000 reads per cell) were clustered by Seurat46, 
using graph-based clustering with the first eight PCs and a resolution of 0.6. We 
then computed an ASW for the clusters using a Euclidean distance matrix (based 
on PCs 1–8). We reported the ASW for each technique separately.

Dataset merging. Dataset integration across protocols is challenging and we 
applied different tools to assess the integratability of the sc/snRNA-seq methods, 
while conserving biological variability. To integrate datasets, we used Seurat46, 
harmony47 and scMerge25, evaluated the results separately and averaged the 
integration capacity of the protocols into a joint score. We combined down-
sampled count matrices using the sce_cbind function in scMerge, which includes 
the union of genes from different batches. Although both harmony and Seurat 
integration apply similar preprocessing steps (log(normalization), scaling and 
HVG identification), as implemented in the Seurat tool, scMerge uses a set of genes 
with stable expression levels across different cell types, and then creates pseudo-
replicates across datasets, allowing the estimation and correction for undesired 
sources of variability. However, for all three alignment methods, Seurat was applied 
to perform clustering and Uniform Manifold Approximation and Projection 
(UMAP) after the protocol correction, to minimize the variability related to the 
downstream analysis. The clustering accuracy metric was used together with 
the mixability score to quantify the success of the integration. Omitting the cell 
integration step before visualizing the datasets together in a single tSNE/UMAP 
resulted in a protocol-specific distribution with cell types scattered to multiple 
clusters (see Supplementary Fig. 30).

Clustering accuracy. To determine the clusterability of methods to identify cell 
types, we measured the probability of cells being clustered with cells of the same 
type. Let Ck, k∈{1,…,N} represent the cluster of cells corresponding to a unique 
cell type (based on the highest agreement between clusters and cell types), and Tj, 
j∈{1,…,S} represent the set of different cell types, where C⊆T. For each cell type Tj, 
we compute the proportion pjk of Tj cells that cluster in their correct cluster Ck. We 
define the cell-type separation accuracy as the average of these proportions.

Mixability. To account for the level of mixing of each technology, we used kBet23 
to quantify batch effects by measuring the rejection rate of Pearson’s χ2 test for 
random neighborhoods. To make a fair comparison, kBet was applied to the 

common cell types separately by subsampling batches to the minimum number of 
cells in each cell type. Due to the reduced number of cells, the option heuristic was 
set to ‘False’, and the testSize was increased to ensure a minimum number of cells.

Mixability was calculated by averaging cell-type-specific rejection rates.

Benchmarking score. To create an overall benchmarking score against which 
to compare technologies, we considered six key metrics: gene detection, overall 
level of expression in transcriptional signatures, cluster accuracy, classification 
probability, cluster accuracy after integration and mixability. Each metric was 
scaled to the interval [0,1], then, to equalize the weight of each metric score, 
the harmonic mean across these metrics was calculated to obtain the final 
benchmarking scores. Gene detection, overall expression in cell-type signatures 
and classification probabilities were computed separately for B cells, HEK293T 
cells and monocytes, and then aggregated by the arithmetic mean across cell 
types. Notably, the choice of protocol to create the reference dataset (Chromium) 
for initial cell annotation had no impact on the outcome of the present study (see 
Supplementary Fig. 31).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw sequencing data and processed gene expression files are freely available 
through the Gene Expression Omnibus (accession no. GSE133549).

Code availability
All code for the analysis is provided as supplementary material. All code is also 
available under https://github.com/ati-lz/HCA_Benchmarking and https://github.
com/elimereu/matchSCore2.
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Supplementary Notes 

 

Single-cell RNA sequencing library preparation 

 

Quartz-Seq21 

We isolated single-cells into 1 μL of lysis buffer (0.1111 μM respective RT primers, 0.12 mM 

dNTP mix, 0.3% NP-40, 1 unit/μL RNasin plus) in each well of 384-well PCR plates from cell 

suspension using a MoFlo Astrios EQ (Beckman Coulter) cell sorter. The event-rate in flow 

cytometry was approximately 200 events per second. The cell sorter was equipped with a 100-μm 

nozzle and a custom-made splash-guard (Supplementary Fig. 32). In total, we analyzed 3,072 

wells corresponding to eight 384-well PCR plates. Sequence library preparation of Quartz-Seq2 was 

performed as described previously1 with the following modifications. For lysis buffer, we used 768 

kinds of RT primers corresponding to v3.2A and v3.2B (Supplementary Table 8). We prepared 

two sets of the 384-well PCR plate with lysis buffer containing no ERCC spike-in RNA. We added 

1 μl of RT premix (2X Thermopol buffer, 1.25 units/μL SuperScript III, 0.1375 units/μL RNasin 

plus) to 1 μl of lysis buffer for each well. After cell barcoding, we collected cDNA solution into one 

well reservoir from two sets of 384-well plates, which corresponded to 768 wells. For cDNA 

purification and concentration, we used four Zymo-Spin-I Columns (Zymo Research) for cDNA 

solution from two 384-well PCR plates. In the PCR step, we amplified the cDNA for 10 cycles 

under the following conditions: 98 °C for 10 s, 65 °C for 15 s, and 68 °C 5 min.  In an additional 

purification step for amplified cDNA, we added 26 μl (0.65X) of resuspended AMPure XP Beads to 

the cDNA solution. We obtained amplified cDNA of 32.6 ± 6.8 ng (n = 4) from the 768 wells. We 

sequenced the Quartz-Seq2 sequence library with a NextSeq 500/550 High Output Kit v2 (75 

cycles). Sequence specification was as follows (Read1, 23 cycles; Index1, 6 cycles; Read2, 63 

cycles). The BCL files obtained were converted to FASTQ files using bcl2fastq2 (v2.17.1.14) with 
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demultiplexing pool barcodes. Each FASTQ file was split into single FASTQ files for each cell 

barcode using a custom script (https://github.com/rikenbit/demultiplexer_quartz-seq2, DOI: 

10.5281/zenodo.2585429). 

Quartz-Seq2 splash-guard design. a. For Quartz-Seq2, MoFlo Astrios EQ (Beckman Coulter) cell sorter was 
equipped with a custom-made splash-guard (red arrowhead). Splash-guard prevents droplet sorting into 
unexpected well-position. b. Specification of custom-made stainless-steel splash-guard. c. Splash-guard was 
attached to the embedded magnet-bar of the SortRescue tray. d. Photograph of splash-guard after single-cell 
sorting. Prevention of droplet sorting into unexpected well-position resulted in the spots of dried droplets on 
the splash-guard (purple line). 

inDrop System (1CellBio)2 

Cells were isolated using an Aria3Fusion (BD Bioscience) cell sorter with a 100µm nozzle and a 

flow rate of 6-7. The sort rate was 40-50 events per second. In 30 min 80.000-90.000 cells were 

sorted. The landing buffer was PBS with 1% BSA, 0.6U/µl Ambion RNase, 0.3U/µl SuperaseIN. A 

total landing buffer volume of 670µl was used. The workflow was carried out using the inDrop 

instrument and the inDrop single cell RNA-seq kit (Cat. No. 20196, 1CellBio) according to the 

manufacturer’s protocols. Microfluidic chips were prepared by silanization, and barcode labeled 

hydrogel microspheres (BHMs) were prepared shortly before cell capture, according to protocol 

(version v2.0., 1CellBio website). Droplet-making oil, single-cell suspension (200 cells/µL), and 

freshly prepared RT/lysis buffer were loaded onto the chip for droplet generation, according to the 
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inDrop protocol for single-cell encapsulation and reverse transcription (version 2.1., 1CellBio 

website). An emulsion corresponding to ~4000 droplets was collected in a cooled tube and 

irradiated with UV light to release the photo-cleavable barcoding oligos from the BHMs. cDNA 

synthesis proceeded within the droplets, and the emulsion was subsequently split into equal 

volumes in such a way as to not exceed ~2000 droplets per reaction tube. The 1CellBio run took 20-

30 min (including time to adjust the speed for each fluid and to stabilize the flow). The collection of 

emulsion for library preparation took 5 min of the total time. After de-emulsification, cDNA 

contained in the aqueous phase was stored at -80°C. The RT product was further processed 

according to the InDrop library preparation protocol (version 1.2. 1CellBio website). The cDNA 

was fragmented by ExoI/HinfI and purified by AMPure XP beads. Second strand synthesis was 

conducted using NEB second-strand synthesis module (Cat. no. E6111S, NEB). In vitro-

transcription was conducted using HiScribe T7 High Yield RNA Synthesis kit (cat. no. E2040S, 

NEB). Amplified RNA was then fragmented, and the fragments used in a second reverse 

transcription reaction with random hexamers to convert the sample back into DNA and to add a 

read primer-binding site to each molecule. Hybrid molecules of RNA and DNA were cleaned up 

using AMPure beads and amplified by PCR. Final libraries were sequenced using HiSeq4000 and 

NextSeq (Illumina). Sequence specification was as follows (Read1, 36 cycles; Index1, 6 cycles; 

Read2, 50 cycles). 

ICELL8 SMARTer Single-Cell System (Takara Bio)3 

Cells were isolated using an Aria3Fusion (BD Bioscience) cell sorter with a 100µm nozzle and a 

flow rate of 6-7. The sort rate was 40-50 events per second. In 30 min 80.000-90.000 cells were 

sorted. The landing buffer was PBS with 1% BSA, 0.6U/µl Ambion RNase, 0.3U/µl SuperaseIN. A 

total landing buffer volume of 670µl was used. 

Hoechst 33342 and propidium iodide co-stained single-cell suspension (20 cells/µL) was distributed 

in eight wells of a 384-well source plate (Cat. No. 640018, Takara) and dispensed into a barcoded 
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SMARTer ICELL8 3’ DE Chip with 5184 nano-wells (Cat. No. 640143, Takara) using an ICELL8 

MultiSample NanoDispenser (MSND, Takara). 4 chips were used to target ~3000 single cells. 

Nanowells were imaged using the ICELL8 Imaging Station (Takara). Loading of the ICell8 nano-

well chip was determined by the pre-defined ICell8 program, which took about 20 min. Subsequent 

chip imaging took 30-40 min. After imaging, the chip was sealed, placed in a pre-cooled freezing 

chamber, and stored at −80 °C. CellSelect software was used to identify each nanowell that 

contained a single cell. These nanowells were then selected for subsequent targeted deposition of a 

50 nL/nanowell RT-PCR reaction solution from the SMARTer ICELL8 3’ DE Reagent Kit (Cat. 

No. 640167, Takara) using the MSND. After RT and amplification in a Chip Cycler, barcoded 

cDNA products from nanowells were pooled together using the SMARTer ICELL8 Collection Kit 

(Cat. No. 640048, Takara). cDNA was concentrated using the Zymo DNA Clean & Concentrator 

kit (Cat. No. D4013, Zymo Research), and purified using AMPure XP beads. cDNA was then used 

to construct Nextera XT (Illumina) DNA libraries, followed by 0.6X AMPure XP bead purification.  

Compared to the original 1CellBio protocol the following changes have been made: Step 1 to 26: 

Surfaces were cleaned with RNase AWAY® decontamination reagent. All tubes and reagents were 

kept RNase-free. Steps 3./4: Post-RT material volume was measured with a pipette while 

transferring it into the Costar Spin X tube filters resting on ice. Accordingly, the exact amount of 

Digestion Mix was calculated and prepared. Step 4: DNA Lobind tubes were used instead of Costar 

Spin X tubes. After steps 6 and 7: Tubes were vortexed and centrifuged briefly, respectively. Step 

8: Agencourt® RNAClean™ XP beads from Beckman Coulter were used. Step 8b: The exact 

volume of digestion mix/post-RT-material was measured with a pipette to calculate the exact 

volume of beads needed. Step 8c: The incubation time was 10 min. Step 8i: The eluent was 

Nuclease-free water. Step 8j: Eluate was transferred into Axygen® 0.2 mL Maxymum Recovery® 

Thin Wall PCR Tubes. From this point onwards, all steps were performed in these tubes. Step 11: 

Incubation time was 15 hours. Step 12: Agencourt® RNAClean™ XP beads from Beckman Coulter 

were used. Step 29: During this purification the bead pellet was dried until it showed cracks 
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(approximately 2 min) before elution. Step 30: qPCR was performed with triplicates. AccuStart II 

PCR Tough Mix from QuantBio was used instead of 2x Kapa HiFi Hot Start PCR Mix. Step 32: 

For the library amplification PCR 1.5-2 cycles more than the Ct value from the diagnostic PCR 

were used. Step 33: A 50µl-reaction was set up with 10.5 µl water; 9.5 µl eluate; 25µl PCR Mix; 

and 5µl PE1/PE2 primer mix. AccuStart II PCR Tough Mix by QuantBio was used instead of 2x 

Kapa HiFi Hot Start PCR Mix. Step: 36: 50µl Elution buffer was added. Step 37: 70µl Ampure 

beads were added. The library was eluted in 40µl Elution buffer. The bead pellet was not dried 

excessively; it was still glossy. After step 37: A second bead purification was performed; 28µl 

beads were added to the 40µl eluate and processed as usual. The library was eluted in 20 µl Elution 

buffer. 

Library quantification and size distribution was done using Qubit, KAPA Library Quantification 

and Agilent TapeStation. Final libraries were sequenced using HiSeq4000 and NextSeq500 

(Illumina). Sequence specification was as follows (Read1, 26 cycles; Index1, 8 cycles; Read2, 100 

cycles). 

Drop-Seq (Dolomite)4 

Cells were sorted using a BD Aria Fusion and a 100um nozzle (100 events per second). Single-cell 

RNA Drop-Seq experiments were performed using the scRNA system with P-Pumps and a scRNA-

chip (100µm channel width) from Dolomite Bio (Royston, UK). Encapsulation was conducted 

according to the manufacturer’s instructions, and library construction was completed according to 

the published DropSeq protocol4. Briefly, polyT-barcoded beads (MACOSKO-2011-10; 

ChemGenes) were loaded at a concentration of 600/µl, and cells at a concentration of 450/µl. The 

pumps were operated at a flowrate of 30 µl/min for beads and cell suspension (PBS+2mM EDTA), 

and at 200 µl/min for oil (QX200™ Droplet Generation Oil for EvaGreen; BioRad). After 

encapsulation, cell lysis, and hybridization of RNA to the beads, droplets were broken using PFO 

(Sigma-Aldrich) and aliquots of a maximum of 90000 beads were collected. Reverse transcription 
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was performed in a 200µl volume with Maxima H Minus Reverse Transcriptase (Thermo Fisher 

Scientific) and 2.5 µM TSO-primer (AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG; 

Qiagen) at room temperature for 30 min, followed by 90 min at 42°C. After exonuclease treatment 

(ExoI; New England Biolabs) at 37°C for 45 min in 200 µl, to digest the unbound primer, cDNA 

was amplified by PCR using HiFi HotStart mix (Kapa Biosystems) and amplification primer 

(AAGCAGTGGTATCAACGCAGAGT; Qiagen) in batches of 4000 beads in a volume of 50 µl 

(95°C - 3min; 4 cycles: 98°C - 20s, 65°C - 45s, 72°C - 3min; 9 cycles: 98°C - 20s, 67°C - 20s, 72°C 

- 3min; 72°C - 5min). Libraries were generated using the Nextera XT library Kit (Illumina) in five 

pooled PCR samples with 600 pg of cDNA and a custom P5-primer 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTTGGTATCAA

CGCAGAGT*A*C; Qiagen). Final library QC was conducted using the BioAnalyzer High 

Sensitivity DNA Chip (Agilent Technologies). For sequencing on an Illumina HiSeq2500 V4, we 

used a custom read 1 primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC; 

Qiagen). Sequence specification was as follows (Read1, 75 cycles; Index1, 8 cycles; Index2, 8 

cycles; Read2, 75 cycles). 

 

Chromium V2 (10X Genomics): Single-cell RNA sequencing5 

Two cell preparations were conducted on two different days: one to prepare 2 libraries for 

sequencing at high read depth, and one to prepare 8 libraries at low read depth. To prepare the 

libraries for high read depth, one frozen vial of a Human Cell Atlas reference sample was thawed 

and prepared as described. At the end of this protocol, the cells were resuspended in PBS with 

2 mM EDTA. Since cells showed clumping and low viability, they were centrifuged 3 times at 150 

g for 10 min at room temperature, and resuspended in 50% PBS, 2mM EDTA and 50% Iscove’s 

Modified Dulbecco Medium (IMDM, ATCC) supplemented with 10% FBS and filtered through a 

40µm FlowMi cell strainer (Sigma-Aldrich) to remove cell aggregates and large cell debris. At the 

final count before loading, the cell suspension demonstrated a viability of 60%. To prepare the 
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libraries for low read depth, two frozen vials of a the reference sample were thawed and prepared as 

described in an updated version of the HCA Benchmark protocol. At the end of this protocol, the 

cells were resuspended in IMDM, 10% FBS and 1mM EDTA, and filtered through a 40-µm 

FlowMi cell strainer to remove cell aggregates and large cell debris. At the final count before 

loading, the cell suspension demonstrated a viability of 65%. The cells were not processed using 

FACS isolation, but run directly on the 10x Chromium system (10x Genomics, Pleasanton, CA, 

USA). 

Cells were mixed with single-cell master mix, and the resulting cell suspensions were loaded on a 

10x Chromium system to generate 2 libraries at 5,000 cells each and 5 libraries at 10,000 cells each. 

The single-cell libraries were generated using 10x Chromium Single Cell gene expression V2 

reagent kits according to the manufacturer’s instructions (Chromium single cell 3’ reagents kits v2 

user guide). Single cell 3’ RNA-seq libraries were quantified using an Agilent Bioanalyzer with a 

high sensitivity chip (Agilent), and a Kapa DNA quantification kit for Illumina platforms (Kapa 

Biosystems). The libraries were pooled according to the target cell number loaded. Sequencing 

libraries were loaded at 200 pM on an Illumina NovaSeq6000 with Novaseq S2 Reagent Kit (100 

cycles) using the following read lengths: 26 bp Read1, 8 bp I7 Index and 91 bp Read2. The 2 

libraries of 5,000 cells and the 8 libraries of 10,000 cells were sequenced at 250,000 and 25,000 

reads per cell, respectively. 

Chromium V2 (10X Genomics): Single-nucleus RNA sequencing  

We isolated nuclei from the cell suspension using a protocol provided by 10x Genomics (Isolation 

of Nuclei for Single Cell RNA Sequencing - Demonstrated Protocol - Sample Prep - Single Cell 

Gene Expression - Official 10x Genomics Support). We counted the nuclei using a Countess II 

(Thermo Fisher Scientific). We made an aliquot containing ~11,000 nuclei in a volume of 33.8 µL 

in RB buffer (1x PBS, 1% BSA, and 0.2U/µl RNaseIn (TaKaRa)) as sample A, and stained the rest 

of the nuclei suspension with Vybrant DyeCycle Violet Stain (Thermo Fisher Scientific) at a 
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concentration of 10 µM. We used a MoFlo Astrios EQ cell sorter (Beckman Coulter) and set 

fluorescence activated cell sorting (FACS) gating on forward scatter plot, side scatter plot and on 

fluorescent channels to pick Violet-positive (for nuclei), while excluding debris and doublets. We 

used a 100 µm nozzle to sort 20,000 nuclei at a rate of 340 events per second into 20 μl RB buffer 

resulting in a final volume of about 70 µl. After sorting, we measured the volume of B with a 

pipette, spun it at 500 g for 5 min at 4ºC, and then carefully removed part of the supernatant to leave 

~40µl. We resuspended B by gentle pipetting 40 times.  

Immediately after nuclei isolation, we loaded sample A into one channel of a Chromium Single Cell 

3' Chip (10x Genomics, PN-120236), and then processed it through the Chromium Controller to 

generate GEMs (Gel Beads in Emulsion). We then loaded 33.8 µL of B 25 minutes later after 

sorting and centrifugation, as described above, into one channel of a second chip, and processed it 

in the same way as the first chip. We prepared RNA-Seq libraries for both samples in parallel with 

the Chromium Single Cell 3' Library & Gel Bead Kit V2 (10x Genomics, PN-120237), according to 

the manufacturer's protocol. We pooled the 2 samples based on molar concentrations and sequenced 

them on a NextSeq500 instrument (Illumina) with 26 bases for Read 1, 57 bases for Read 2, and 8 

bases for Index Read 1. 

Smart-seq26 

Cells were sorted using a BD Aria III and a 100um nozzle (100 events per second). Smart-seq2 

libraries were prepared at half the volume, as described previously6, with minor modifications. In 

brief, 2 µl of lysis buffer containing 0.1 % Triton X-100 (Sigma-Aldrich), 1 U/µl RNase inhibitor 

(Takara), 2.5 mM dNTPs (Thermo Fisher) and 2 µM oligo-dT primer (5′–

AAGCAGTGGTATCAACGCAGAGTACT30VN-3′; IDT) were dispensed into each well of a 384-

well plate (4titude). Lysis plates were stored at -20°C until cell sorting, after which single-cell 

lysates were kept at -80 °C. Before reverse transcription, cell lysates were denatured at 72 °C for 3 

min and immediately placed on ice. The RT reaction was performed in a 5 µl total volume, with 
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final reagent concentrations of 1x Superscript first-strand buffer (Thermo Fisher), 5 mM DTT 

(Thermo Fisher), 1 M Betaine (Sigma-Aldrich), 9 mM MgCl2 (Sigma-Aldrich), 1 U/µl RNase 

inhibitor (Takara), 1 µM LNA template-switching oligo (5′-

AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′; Exiqon), and 10 U/µl Superscript II RT 

enzyme. Next, pre-amplification PCR was performed for 22 cycles at final concentrations of 1x 

KAPA HiFi HotStart ReadyMix (Roche) and 0.08 µM ISPCR primer (5′-

AAGCAGTGGTATCAACGCAGAGT-3′; IDT) in a total reaction volume of 11 µl. The cDNA 

was cleaned up by adding 10 µl of SPRI beads (bead stock composition: 19.5 % PEG, 1 M NaCl, 1 

mM EDTA, 0.01 % IGEPAL CA-630), washing twice with 20 µl 80 % ethanol, and eluting in 10 µl 

H2O. The cDNA concentration was measured for all wells using Picogreen dsDNA assay (Thermo 

Fisher), and diluted to 200 pg/µl using a Mantis liquid handler (Formulatrix). Next, 1 µl of cDNA 

was used as input for the Nextera XT library preparation kit (Illumina) at 1/5 volume, according to 

the manufacturer’s instructions. During the 12 cycles library PCR, custom i7 and i5 indexing 

primers (IDT) were added at 0.5 µM each. Finally, 5 µl of library per well were pooled, cleaned and 

concentrated using SPRI beads (19.5 % PEG; see above). Final libraries were sequenced using 

HiSeq2500 V4 (Illumina). Sequence specification was as follows (Read1, 75 cycles; Index1, 8 

cycles; Index2, 8 cycles; Read2, 75 cycles). 

CEL-Seq27,8 

Single-cell RNA sequencing was performed using a modified version of the mCEL-Seq2 protocol, 

an automated and miniaturized version of CEL-Seq2, on a Mosquito nanoliter-scale liquid-handling 

robot (TTP LabTech). A detailed step-by-step protocol is available8. Briefly, cells were sorted using 

a BD Aria Fusion and a 100um nozzle (100 events per second) into 384-well plates (Bio-Rad) 

containing 240 nl of lysis buffer containing polyT primers and 1.2 μl of mineral oil (Sigma-

Aldrich). Sorted plates were centrifuged at 2200 x g for several minutes at 4°C, snap-frozen in 

liquid nitrogen and stored at −80°C until processing. On the day of processing, sorted plates were 
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thawed on ice and heat lysed at 95ºC for 3 min prior to cDNA synthesis. 160nl of reverse 

transcription reaction mix and 2.2 μl of second strand reaction mix were used to convert RNA into 

cDNA. cDNA from 96-cells were pooled together before clean up and in vitro transcription, 

generating 4 libraries from one 384-well plate. 11 PCR cycles were used for library amplification. 

During all purification steps, including the library cleanup, we used 0.8 μl of AMPure/RNAClean 

XP beads (Beckman Coulter) per 1 μl of sample. Sixteen libraries with 96 cells each (one of the 

libraries contained 30,000 RNA molecules from ERCC spike-in mix per cell) were sequenced on an 

Illumina HiSeq3000 sequencing system (pair-end multiplexing run). Sequence specification was as 

follows (Read1, 30 cycles; Read2, 75 cycles). 

MARS-Seq9 

To construct single-cell libraries from poly(A)-tailed RNA, we used massively parallel single-cell 

RNA sequencing (MARS-Seq). Briefly, single cells were FACS-isolated with a BD Aria III and a 

100um nozzle (100 events per second) into 384-well plates containing lysis buffer (0.2% Triton X-

100 (Sigma-Aldrich); RNase inhibitor (Invitrogen)) and reverse-transcription (RT) primers. Single-

cell lysates were denatured and immediately placed on ice. The RT reaction mix, containing 

SuperScript III reverse transcriptase (Invitrogen), was added to each sample. After RT, the cDNA 

was pooled using an automated pipeline (epMotion, Eppendorf). Unbound primers were eliminated 

by incubating the cDNA with exonuclease I (NEB). A second stage of pooling was performed 

through cleanup with SPRI magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were 

converted into double-stranded DNA using the Second Strand Synthesis enzyme (NEB), followed 

by clean-up and linear amplification by T7 in vitro transcription overnight. The DNA template was 

then removed by Turbo DNase I (Ambion), and the RNA purified using SPRI beads. Amplified 

RNA was chemically fragmented using Zn2+ (Ambion), and then purified using SPRI beads. The 

fragmented RNA was ligated with ligation primers containing a pool barcode and partial Illumina 

Read1 sequencing adapter using T4 RNA ligase I (NEB). The ligated products were reverse-
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transcribed using the Affinity Script RT enzyme (Agilent Technologies) and a primer 

complementary to the ligated adapter, partial Read1. The cDNA was purified using SPRI beads. 

Libraries were completed by a PCR step using the KAPA Hifi Hotstart ReadyMix (Kapa 

Biosystems) and a forward primer containing the Illumina P5-Read1 sequence, and a reverse primer 

containing the P7-Read2 sequence. The final library was purified using SPRI beads to remove 

excess primers. Library concentration and molecular size were determined with a High Sensitivity 

DNA Chip (Agilent Technologies). Multiplexed pools were run on Illumina HiSeq2500 Rapid flow 

cells (Illumina). Sequence specification was as follows (Read1, 52 cycles; Index1, 7 cycles; Read2, 

15 cycles). 

C1 High-Throughput (HT-IFC)10 

Cells were sorted into 15-ml tubes containing 7 ml of PBS with 5% FBS, using a Sony SH800 Cell 

Sorter. Cells were concentrated by centrifugation at 350 x g for 5 minutes at 4ºC (recovery 81%). 

The supernatant was removed, and cells were counted and diluted to 900 cells/ul for the Fluidigm 

C1 HT Small-Cell Integrated Fluidic Circuits (IFCs), and 450 cells/ul for the Fluidigm C1 HT 

Medium-Cell IFCs. A total of eight small-cell and seven medium-cell IFCs were used to generate 

cDNA on the Fluidigm C1 System. cDNA generation and the subsequent preparation of sequencing 

libraries were performed according to the recommended Fluidigm C1 HT protocols. Enrichment 

Primers from the Fluidigm reagent kit were replaced with NEBNext i5xx primers from NEBNext 

Multiplex Oligos for Illumina (Dual Index Primers Set 1 & 2) (New England BioLabs), to enable 

library pooling. Libraries from fifteen IFCs were pooled and sequenced on the NovaSeq6000 

system (Illumina) in two runs on the S2 flow cell. Sequence specification was as follows (Read1, 26 

cycles; Index1, 8 cycles; Read2, 85 cycles). 
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ddSEQ (Bio-Rad) 

Flow cytometry analysis and cell sorting were performed on the S3e Cell Sorter using ProSort 

Software (Bio-Rad Laboratories, #12007058) for acquisition and sorting. 41,749 viable cells were 

sorted with a 100 um nozzle at 231 events per second into 1x PBS with + 0.1% BSA and kept at 

4°C until scRNA-Seq (approx. 1 h). Cell concentration of sorted cells was determined using the 

TC20 Automated Cell Counter (Bio-Rad Laboratories, #1450102) and adjusted to a final 

concentration of 2,500 cells/ul. Cells were then prepared for single-cell sequencing using the 

Illumina Bio-Rad SureCell WTA 3’ Library Prep Kit for the ddSEQ (Illumuina, #20014280). Cells 

were loaded onto ddSEQ cartridges and processed in the ddSEQ Single-Cell Isolator (Bio-Rad 

Laboratories, #12004336) to isolate and barcode single cells in droplets. First-strand cDNA 

synthesis occurred in droplets, which were then disrupted for second strand cDNA synthesis in 

bulk. Libraries were prepared according to manufacturer’s instructions and then sequenced on the 

NextSeq500 system (Illumina). 

gmcSCRB-seq11 

Cells were sorted and processed using the alternative lysis (Guanidine Hydrochloride) condition 

(gmcSCRB-seq) as described suitable for PBMCs in Bagnoli et al (2018). Briefly, single cells (“3 

drops” purity mode) were sorted (Sample pressure: 5, 2-20 events per second) into 96-well DNA 

LoBind plates (Eppendorf) containing 5 µl lysis buffer using a Sony SH800 sorter (Sony 

Biotechnology #LE-SH800SZGCPL; Chip series: LE-C32, 100 µm). Lysis buffer consisted of 5 M 

guanidine hydrochloride (Sigma-Aldrich), 1% 2-mercaptoethanol (Sigma-Aldrich) and a 1:500 

dilution of Phusion HF buffer (New England Biolabs). Samples were processed in six batches, with 

one batch of two plates and five batches of six plates. SPRI Beads (GE Healthcare) were prepared 

and diluted 50-fold (final concentration 1 mg/mL) in bead-binding buffer (22% PEG8000 (w/v), 

1M NaCl, 10mM Tris-HCl pH 8.0, 1 mM EDTA, 0.01% IGEPAL, 0.05% Sodium Azide ). Each 

well was cleaned up using a ratio of 2:1 of 1 µg/µL beads (10 µL beads and 5 µL lysate) and 
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resuspended in 4 µl H2O (Invitrogen) and a mix of 5 µl reverse transcription master mix, consisting 

of 20 units Maxima H- enzyme (Thermo Fisher), 2 × Maxima H- Buffer (Thermo Fisher), 2 mM 

each dNTPs (Thermo Fisher), 4 µM template-switching oligo (IDT), and 15% PEG 8000 (Sigma-

Aldrich). For libraries containing ERCCs, 30,000 molecules of ERCC spike-in Mix 1 (Ambion) 

was used and the H2O (Invitrogen) was adjusted accordingly. After the addition of 1 µl 2 µM 

barcoded oligo-dT primer (E3V6NEXT, IDT), cDNA synthesis and template switching was 

performed for 90 min at 42 °C. Barcoded cDNA and remaining beads were then pooled in 2 ml 

DNA LoBind tubes (Eppendorf) and an equal volume of bead-binding buffer was added. Purified 

cDNA was eluted in 17 µl and residual primers digested with Exonuclease I (Thermo Fisher) for 

20 min at 37 °C. After heat inactivation for 10 min at 80 °C, 30 µl PCR master mix consisting of 

1.25 U Terra direct polymerase (Clontech) 1.66 × Terra direct buffer and 0.33 µM SINGV6 primer 

(IDT) was added. PCR was cycled as given: 3 min at 98 °C for initial denaturation followed by 19 

cycles of 15 s at 98 °C, 30 s at 65 °C, 4 min at 68 °C. Final elongation was performed for 10 min at 

72 °C. Batch 4 was erroneously denatured for 10 min due to a cycler error, but left in as we consider 

such errors as possible batch variation errors. 

Following pre-amplification, all samples were purified using SPRI beads at a ratio of 1:0.8 of 1 

µg/µL beads (40 µL beads and 50 µL sample) with a final elution in 10 µl of H2O (Invitrogen). The 

cDNA was then quantified using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher). Size 

distributions were checked using high-sensitivity DNA Fragment Analyzer kits (AATI) and high-

sensitivity DNA Bioanalyzer kits (Agilent). As the samples had large primer peaks, they were 

purified a second time using SPRI beads at a ratio of 1:0.8 and then pre-amplified for an additional 

3 cycles, as above. The cDNA was then purified and reanalyzed as above. Samples passing the 

quantity and quality controls were used to construct Nextera XT libraries from 0.8 ng of pre-

amplified cDNA. During library PCR, 3′ ends were enriched with a custom P5 primer 

(P5NEXTPT5, IDT). Libraries were pooled and size-selected using 2% E-Gel Agarose EX Gels 

(Life Technologies), cut out in the range of 300–800 bp, and extracted using the MinElute Kit 
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(Qiagen) according to manufacturer’s recommendations. Libraries were sequenced on high output 

flow cells of an Illumina HiSeq 1500 instrument. Sequence specification was as follows (Read1, 16 

cycles; Index1, 8 cycles; Read2, 50 cycles). 16 bases were sequenced with the first read to obtain 

cellular and molecular barcodes and 50 bases were sequenced in the second read into the cDNA 

fragment. An additional 8 base i7 barcode read was done to allow multiplexing. 
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Data analysis 

 

Primary data preprocessing 

FASTQ files for each technique were collected and processed in a unified manner. We developed a 

snakemake12 workflow that streamlines all steps, including read filtering and mapping, 

quantification, downsampling and species deconvolution, and provides a Single Cell Experiment 

Object13 output with detailed metadata. We used zUMIs14, a single-cell processing tool compatible 

with all major scRNA-Seq protocols for filtering, mapping and quantification, ensuring comparable 

primary data processing between all methods. First, we discarded low-quality reads (barcodes and 

UMI sequences with more than 1 base below the Phred quality threshold of 20) and removed 

barcodes with less than 100 reads.  

For techniques with known barcodes, we provided zUMIs with these barcode sequences, and used 

the automatic barcode detection function to detect the sequenced cells for other techniques. Next, 

cDNA reads were mapped to the human GRCh38, mouse GRCm38, and a human-mouse-dog 

mixed (for species level doublet detection) reference genomes using STAR15. Reads were then 

assigned to exonic and intronic features using featureCounts16 and counted using the default 

parameters of zUMIs for human-only, mouse-only and mixed bam-files, separately. The output 

expression matrix of reads mapping to both exonic and intronic regions was selected for the 

downstream analysis. Of note, we included intronic counts in the expression quantification to 

improve gene detection and to enable a comparison with the snRNA-seq derived dataset. To 

deconvolute species, detect doublets and low quality cells, the mixed-species mapped data was 

used. Cells for which >70% of the reads mapped to only one species were assigned to the 

corresponding species. The remaining cells (those for which <70% of the reads mapped to only one 

species) were removed from the downstream analysis. Finally, for each technique, a human and 

mouse Single Cell Experiment object was created by combining the expression matrix and the 

metadata. 
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For subsequent data analysis, we discarded cells with <10,000 total number of reads as well as the 

cells having <65% of the reads mapped to their reference genome. Cells in the 95th percentile of the 

number of genes/cell and those having <25% mitochondrial gene content were included in the 

downstream analyses. Genes that were expressed in less than five cells were removed.  

For the comparative viability analysis, we used EmptyDrops17to determine the inflection point on 

the ranked barcodes vs number of detected UMIs for each library separately. We assigned all 

barcodes before the inflection point as cells and the remaining as empty drops. 

 

Clustering 

Filtering, normalization, selection of highly variable genes (HVG), and clustering of cells were 

performed using the Seurat18 package (version 2.3.4). We normalized the gene expression 

measurements for each cell by the total expression, multiplied by a scale factor (10e4), and log-

transformed the result. We used 10e4 (instead of 10e6 more commonly used in bulk RNA-seq) due 

to the reduced number of transcripts present in single-cell data. To avoid spurious correlations, the 

library sizes were regressed out, and the genes were scaled and centered. The scaled Z-score values 

were then used as normalized gene measurement input for clustering and for visualizing differences 

in expression between cell clusters. We selected HVGs by evaluating the relationship between gene 

dispersion (y.cutoff = 0.5) and the log mean expression. The clustering procedure projects cells 

onto a reduced dimensional space, and then groups them into subpopulations by computing a 

shared-nearest-neighbour (SNN) based on the Euclidean distance (finding highly interconnected 

communities). The algorithm is a variant of the Louvain method, which uses a resolution parameter 

to determine the number of clusters. 

In this step, the dimension of the subspace was set to the number of significant principal 

components (PC) based on the distribution of the PC standard deviations and by inspecting the 

ElbowPlot graph. For downsampled data, the number of PCs was set to 8 after inspecting all 

ElbowPlot separately. The number of clusters was aligned to the expected biological variability, and 
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cluster identities were assigned using previously described gene markers5,19. T-SNE and UMAP 

were used to visualize the clustering distribution of cells. Cluster-specific markers were then 

identified using the Wilcoxon rank-sum test.  

Trajectory analysis and pseudo-ordering of cells was performed using the Monocle20 package 

(version 2.8.0) with the previously identified HVGs. Monocle works with the raw data and allows 

to specify the family distribution of gene measurements, which was set to a negative binomial, as 

defined in the family function from the VGAM package. As for the clustering, the expression space 

was reduced before ordering cells using the DDRTree algorithm. To validate cell populations, and 

for cell type identification and annotation, we used pseudotime ordering of single cells derived from 

the mouse colon.  

 

Sample deconvolution and annotation 

To identify and annotate cell types and states, we analyzed the individual single-cell experiments 

separately, taking advantage of the original sequencing depth. Gene expression counts were log-

normalized to identify HVGs, as input to compute cell-to-cell distances and graph-based clustering 

(see Clustering). Cell clusters were visualized in two-dimensional space using t-SNE and UMAP, 

and then annotated by examining previously described cell population marker genes5,19 

(Supplementary Fig. 8 and 9). All methods were able to recapitulate most cell types in both human 

and mouse samples, although in different proportions and resolutions.  

In human samples, the T-cell marker CD3 was used to differentiate T-cells from other populations. 

While the CD4 T-cells cluster was clearly identifiable (with non-overlapping expression of 

markers), CD8 T-cells and Natural Killer (NK) were often intermixed. Monocytes were the second 

most abundant cell type, including subpopulations of CD14 and FCGR3A monocytes. High levels 

of CD79A and CD79B allowed the clear identification of B-cells. HEK293T cells generally fell into 

the same cluster, separate from blood subpopulations. They were clearly identifiable by the high 

number of detected genes (up to six-fold higher than PBMC populations). However, there was a 
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correlation between the expression profiles of immune cells, leading in some instances to mixtures 

of PBMCs and HEK293T cells. 

With few exceptions (Chromium), significantly fewer cells mapped to the mouse genome (half that 

of human cells, on average), leading to poorer clustering performance. However, the expected 

subpopulation composition of the colon was maintained overall. A small set of putative intestinal 

stem cells (Lgr5 and Smoc2 expression) were close (in transcriptional space) to rapidly proliferating 

transit amplifying (TA) cells (showing high ribosomal genes). Secretory cells (e.g. Muc2, Tff3, 

Agr2) resulted in a well-defined cluster. Enterocytes were more heterogeneous and ordered along 

their grade of lineage commitment. Notably, in some experiments two distinct clusters of 

enterocytes were identified, as well as a very small group of enterocyte progenitors. In addition to 

colon cells, fibroblasts and immune-cells were detected in all samples. 

 

Reference datasets 

To compare the efficiency of scRNA-seq protocols in describing the structure of a mixed 

population, we produced a reference dataset with 30,807 human and 19,749 mouse cells. Cells were 

clustered and annotated as described above. Due to the high number of cells, major cell types were 

clustered and clearly identifiable using population marker genes (Supplementary Fig. 4a-b)5,19. 

However, to improve cell-to-cell annotations, we combined clustering with additional analyses. To 

annotate human blood cells, we used matchSCore2 (see Methods) using an annotated set of 2700 

PBMCs5 as reference (Supplementary Fig. 4c-d). We used cluster-specific markers of annotated 

populations as input to create a multinomial logistic model according to the matchSCore2 

algorithm. For each unknown cell, we assigned probability values for any possible cell identity, and 

the most likely identity was used for the classification (where this probability was >0.5; otherwise 

the cell was considered unclassified). Cell identities inferred by matchSCore2 were highly 

consistent with clusters, with agreement ranging from 96% for CD4 T-cells to 100% for B-cells. 

Cell-by-cell prediction helped to identify smaller cell subsets, such as FCGR3A monocytes, 
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dendritic cells and megakaryocytes. For all clusters, 17% of the cells remained unclassified 

(Supplementary Fig. 4c). Half of these were previously annotated as HEK293T cells, which split 

into three different clusters because they varied in number of genes (Supplementary Fig. 4d). Cells 

with fewer genes (cluster HEK293T cell2 and partially HEK293T cell3) were classified as CD4+ T-

cells, although these did not show expression of any of the key blood markers. For the purposes of 

subsequent analysis, we removed the unclear cluster, representing 1% of the total number of cells, 

as well as the unclassified cells (except cells in HEK293T clusters). To further validate annotations, 

we assigned a score to each cell, corresponding to the overall expression of cell type signatures 

from the list of the top 100 computational markers (Supplementary Fig. 4d). Transcriptional 

signatures revealed a set of cells from the HEK293T cell1 and HEK293T cell2 clusters showing 

high scores (>0.5, range 0-1) for multiple signatures. We considered these as potential doublets, and 

removed them. The remaining cells were then used to compute an unbiased set of cell-type specific 

markers. 

In the case of the mouse reference sample, we used clustering to dissect the colon subpopulation 

structure (excluding immune cells and fibroblasts). The largest cluster was formed by immature 

enterocytes (Supplementary Fig. 5a-b). Other clusters included similar proportions of mature 

enterocytes, secretory cells, transit-amplifying cells and other undifferentiated cells. To refine 

annotations of immature cells, we ordered cells by intermediate states and projected them along a 

trajectory (see Clustering). The trajectory analysis (Supplementary Fig. 5c-d) revealed 9 different 

states, ranging from intestinal stem cells and transit-amplifying cells (expressing high levels of 

Lgr5, Smoc2, Top2a) to enterocytes (Slc26a3, Saa1). Based on the pseudo-ordering and expression 

levels of previously described markers, states were merged into four major groups (Supplementary 

Fig. 5d). For annotation, we labeled these four groups as Intestinal Stem cells (ISC), Transit 

Amplifying cells (TA), Enterocyte progenitors (Epr), and Enterocyte (E). We combined this finer-

grained annotation with the remaining cell types, and then computed population-specific gene 

markers for training the reference model.  
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Supplementary Figure legends 

Supplementary Fig. 1. The effect of viability sorting on data quality (human cells). 
a,b. Quality control displaying the number of detected genes and the relative proportion of reads mapped to 
mitochondrial transcripts (a; indicating cell damage) or total number of mapped reads (b). Cells with a 
mitochondrial proportion >25% and <1,778 (log10=3.25) sequencing reads were considered low-quality cells. 
c. T-SNE visualizations of unsupervised clustering in human samples with (left, 4,941 cells) or without (right,
4,094 cells) viability selection. Each dataset was analyzed separately and cells are colored by cell types inferred
by matchSCore2. Cells that did not reach a probability score of 0.5 for any cell type were considered
unclassified. d. Cell type composition of samples with or without viability selection with annotations from the
reference dataset.

Supplementary Fig. 2. The effect of viability sorting on data quality (mouse cells).  
a,b. Quality control displaying the number of detected genes and the relative proportion of reads mapped to 
mitochondrial transcripts (a; indicating cell damage) or total number of mapped reads (b). Cells with a 
mitochondrial proportion >25% and <1,778 (log10=3.25) sequencing reads were considered low-quality cells. 
c. Relationship between the number of mapped reads and detected genes for high-quality cells color-coded by
cell type. d. T-SNE visualizations of unsupervised clustering in mouse samples with (left, 1,159 cells) or
without (right, 4,245 cells) viability selection. Each dataset is analyzed separately and cells are colored by cell
types inferred by matchSCore2. d. Cell type composition of samples with or without viability selection with
annotations from the reference dataset.

Supplementary Fig. 3. Gene expression levels of selected marker genes. 
UMAP visualization of normalized expression levels for selected marker genes of the most common PBMC 
(a, 30,807 cells) and colon (b, 19,749 cells) populations. Maps are shown for CD4+ T-cell markers IL7R and 
CD4 (expressed also in monocytes), the CD8+ T-cell marker CD8A, the B-cell marker CD79A, NK cell 
markers GNLY and NKG7, and monocyte-specific markers LYZ, CD14 and FCGR3A. In (b) maps are shown 
for markers of Intestinal Stem cell and proliferation (Smoc2, Miki67 and Top2a), secretory markers (Muc2, 
Agr2 and Tff3), enteroendocrine cell markers (Chga and Chgb), and enterocyte markers (Slc26a3, Car1 and 
Fabp2). 

Supplementary Fig. 4. Identifying PBMC cell types using unsupervised clustering and classification.  
a. UMAP visualization of 38,195 human PBMC and HEK293T human cells colored according to their
assignment to clusters. Cluster labels are defined by examining the expression levels of known markers. b.
Heatmap indicating the relative expression and gene detection rates for most common PBMC marker genes.
c.UMAP visualization of 38,195 PBMC and HEK293T cells color coded by cell classification inferred by
matchSCore2. 17% of cells were unclassified and were removed from the analysis. d. UMAP visualization of
38,195 PBMC and HEK293T cells showing the number of genes per cell, and scores for transcriptional
signatures obtained by computing cell-type-specific markers (lightgray: low-score, blue: high score).

Supplementary Fig. 5. Identifying colon cell types by unsupervised clustering and trajectory analysis.  
a. UMAP visualization of 17,558 mouse colon cells. Cells are colored by their assignment to clusters.
Annotations are defined by examining the expression of known markers and differentially expressed genes
(DEG). b. Heatmap of top DEG per cluster. Key markers of common colon cell populations are shown. c.
Trajectory and pseudotime analysis of 8,716 immature enterocytes (IE) showing the transition from intestinal
stem cells (ISC) to enterocytes. Trajectories with the relative expression of known markers are shown (yellow:
low, gray: mid, blue: high). d. (Top) Ordered 17,558 colon cells are grouped into four different states according
to their differentiation stage: intestinal stem cell (ISC), transit amplifying (TA), enterocyte progenitor (Epr),
Enterocytes (E). (Bottom) UMAP visualization of IE cells colored according to the four resulting states.

Supplementary Fig. 6. Comparison of PBMC human reference with PBMC data from Zheng et al., 
(Nature Communications 2017).  
a. UMAP visualization of 2,700 PBMCs from the Zheng et al. Chromium PBMC-3k dataset (left) and our
human reference dataset (right). The colors indicate the cell types based on the annotation of the PBMC-3k
dataset. Cell labels are transferred from the PBMC-3k data using the matchSCore2 classification. b. Jaccard
Indexes (JI) of cell type-specific markers from the two datasets (30,807 vs 2,700). For each annotated cluster,
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the top 100 ranked markers were considered. c. Cell type composition of our human reference clusters with 
annotations form the PBMC-3k dataset. 
  
Supplementary Fig. 7. Comparison of our mouse colon reference with the Tabula Muris (TM) colon 
dataset (Nature 2019).  
a. UMAP visualization of 3,938 colon cells from the Smart-seq2 TM dataset (left) and our mouse reference 
dataset (right). Colors indicate the cell type based on the annotation provided by the TM Consortium. Cell 
labels of the mouse reference are transferred from the TM using the matchSCore2 classification. b. Jaccard 
Indexes (JI) of cell type-specific markers from the two datasets (19,749 vs 3,938). For each annotated cluster, 
the top 100 ranked markers were considered. c. Cell type composition of our mouse reference clusters with 
annotations from the TM dataset. 
  
Supplementary Fig. 8. Clustering analysis of 13 sc/snRNA-seq methods.  
T-SNE visualizations of unsupervised clustering in human samples from 13 different methods. Each dataset is 
analyzed separately by taking advantage of its original sequencing depth. Cells are colored by cell type inferred 
by matchSCore2. Cells that did not reach a probability score of 0.5 for any cell type were considered 
unclassified. 
  
Supplementary Fig. 9. Clustering analysis of 11 sc/snRNA-seq methods.  
T-SNE visualizations of the unsupervised clustering in mouse samples from 11 different methods. Each dataset 
is analyzed separately by taking advantage of its original depth. Cells are colored according to cell type inferred 
by matchSCore2. Cells that did not reach a probability score of 0.5 for any cell types were considered 
unclassified. 
 
Supplementary Fig. 10. Downsampling iterations.  
Number of detected molecules per cell type (HEK293T, monocytes and B cells) with 5 downsampling 
iterations and at different downsampling thresholds (5K, 10K, 15K, 20K, 50K). 
 
Supplementary Fig. 11. Performance comparison of 13 scRNA sequencing methods. 
a. Boxplots comparing the number of detected genes across protocols on downsampled data (20K), in mouse 
secretory and transit amplifying cells. Cell identities were defined by cell projection onto the reference. b. 
Number of genes detected at step-wise downsampled sequencing depths. Points represent the average number 
of genes detected for all cells of the corresponding cell type at the corresponding sequencing depth. c,d. 
Boxplots comparing the number of detected genes from countification of reads mapping to only exonic regions 
(c) and UMI (d, from exonic and intronic counts) across protocols on downsampled data (20K) of human 
HEK293T cells, monocytes and B-cells. All the boxplots display the minimum, 1st, 2nd, 3rd quantiles and 
maximum values.   
 
Supplementary Fig. 12. Performance across Chromium versions and application types (sc/snRNA-seq). 
a,b. Boxplots comparing the number of molecules (a) and genes (b), in downsampled (10K) HEK293T cells, 
monocytes and B-cells. The results are displayed for gene quantification including (open boxes) or excluding 
(filled boxes) intronically mapping reads. c. Cumulative gene counts per protocol as the average of 50 
randomly sampled HEK293T cells, monocytes and B-cells on downsampled data (10K). d. Overlap of detected 
genes using cumulative gene counts from the maximum of consistently detected cells numbers (HEK293T: 
46, Monocytes: 50, B-cells: 13) on downsampled (10K) data from different cells types. All the boxplots display 
the minimum, 1st, 2nd, 3rd quantiles and maximum values. 
 
Supplementary Fig. 13. Technical reproducibility within sc/snRNA-seq protocols. a,b. Boxplots 
comparing the number of genes detected across processing units (e.g. plates, droplet lanes and IFCs), in 
downsampled (20K) HEK293T (a) and B-cells (b). Each protocol was stratified into processing units and only 
replicates with >5 cells were included. All the boxplots display the minimum, 1st, 2nd, 3rd quantiles and 
maximum values.  c,d. Pearson correlation plots across replicates using the expression of all genes and cells 
per replicate for HEK293T (c) and B-cells (d). Protocols are ordered by Ward agglomerative hierarchical 
clustering. e. R-squared measures of the PC regression model using KBET to quantify variation in the total 
human dataset introduced by processing units (Online Methods). 
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Supplementary Fig. 14. T-SNE representation of human cell types using highly variable genes. 
a,b. T-SNE representation (calculated on first 8 principle components) on downsampled data (20K) using 
highly variable genes across protocols, separated by HEK293T cells, monocytes and B-cells and color coded 
by protocols (a) or the number of detected genes per cell (b).  

  
Supplementary Fig. 15. PCA representation of human cell types using cell type markers. 
a,b. PCA analysis on downsampled data (20K) for HEK293T cells, monocytes and B-cells separately using 
the corresponding cell type’s reference markers and color coded by protocols (a) or number of detected genes 
per cell (b).  
  
Supplementary Fig. 16. Gene expression correlations across 13 sc/snRNA-seq methods.  
Pearson correlation plots between protocols using gene expression of cell-type-specific signatures for 
HEK293T cells (a), monocytes (b) and B-cells (c). For a fair comparison, cells were downsampled to the same 
number for each method (B cells=32, Monocytes = 57, HEK293T= 55). Cells are ordered by agglomerative 
hierarchical clustering.  
  
Supplementary Fig. 17. Comparison of cell type-specific markers across protocols.  
a. Jaccard Indexes (JI) of B-cells, monocytes and HEK293T cell markers comparison across protocols. For 
each protocol, the top 100 ranked markers were considered for the JI computation. b. Evaluation of human 
marker accuracy. Protocols are compared in their ability to identify cell type-specific markers (as defined from 
the human reference). Jaccard Indexes are shown per cell type for each protocol (left) and their averages are 
displayed in relation with the clustering accuracy (right). c. Evaluation of mouse marker accuracy. Protocols 
are compared in their ability to identify cell type-specific markers (as defined from the mouse reference).  
  
Supplementary Fig. 18. Marker overlap across protocols.  
Overlap percentages of B-cells, monocytes and HEK293T markers across protocols considering the top 100 
ranked markers.  
  
Supplementary Fig. 19. Data integration using Seurat.  
a,b. UMAP visualization of clusters after the integration of technologies for 18,034 human (a) and 7,902 
mouse (b) cells. Cluster annotations are assigned on the basis of the most frequent cell type. c,d. Barplots 
showing normalized and method-corrected (integrated) expression scores in cell type specific signatures for 
CD4+ and CD8+ T-cells (c) and enterocytes 1, enterocytes 2 and intestinal stem cells (d). Bars are colored by 
method. e. Evaluation of dataset mixability after integration. Protocols are compared in their ability to mix 
with other technologies within same cell types. Barplots correspond to the mixability scores and colors are 
indicating the level of sequencing depths (10K and 20K), highlighting the drop of integratability at lower 
depth. 
  
Supplementary Fig. 20. Integration of human sc/snRNA-seq datasets (original sequencing reads).  
a,b. UMAP visualization of cells after Seurat integrations for 20,237 human sc/snRNA-seq datasets without 
downsampling. Cells are colored by cell type (a) and protocol (b).  
  
Supplementary Fig. 21. Integration of human sc/snRNA-seq.  
a,b. UMAP visualization of 18,034 cells after harmony (a) and scMerge (b) integrations for human sc/snRNA-
seq datasets (downsampled to 20K). Cells are colored by cell type (left) and protocol (right). c,d. Evaluation 
of protocol integratability in harmony (c) and scMerge (d). Protocols are compared according to their ability 
to group cell types into clusters (after integration) and mix with other technologies within the same clusters. 
Points are colored by sc/snRNA-seq protocol.  
 
Supplementary Fig. 22. Integration of mouse sc/snRNA-seq downsampled datasets.  
a,b. UMAP visualization of 7,902 cells after harmony (a) and scMerge (b) integrations for mouse sc/snRNA-
seq datasets (downsampled to 20K). Cells are colored by cell type (left) and protocol (right). c,d. Evaluation 
of protocol integratability in harmony (c) and scMerge (d). Protocols are compared according to their ability 
to group cell types into clusters (after integration) and mix with other technologies within the same clusters. 
Points are colored by sc/snRNA-seq protocol.  
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Supplementary Fig. 23. Integration of human Chromium (V2) sc/snRNA-seq datasets. 
a,b. UMAP visualization of cells after data integration with scMerge, Seurat and harmony for human 
Chromium scRNA-seq (1,599 cells) and snRNA-seq (856 cells) datasets (downsampled to 20K). Cells are 
colored by cell type (a) and protocol (b). c. Evaluation of protocol integratability based on the clustering 
accuracy after merging (separately for the three integration tools). The boxplots display the minimum, 1st, 
2nd, 3rd quantiles and maximum clustering accuracies obtained for the different cell types. For all three 
alignment methods, Seurat was applied to perform clustering and UMAP after the protocol correction, in order 
to minimize the variability related to the downstream analysis. Results were consistent across tools with 
Chromium (single-cell) showing the highest clustering accuracy and Chromium (single-nuclei) displaying 
higher variability. While B-cells, monocytes and T-cells were robustly clustered, NK cells were grouped with 
CD8+ T-cells in Chromium scRNA-seq. CD14+ monocytes, CD8+ T-cells and HEK293T cells were poorly 
clustered in Chromium snRNA-seq. 

Supplementary Fig. 24. Integration of mouse Chromium (V2) sc/snRNA-seq datasets. 
a,b. UMAP visualization of 7,902 cells after data integration with scMerge, Seurat and harmony for mouse 
Chromium scRNA-seq and snRNA-seq datasets (downsampling to 20K). Cells are colored by cell type (a) and 
protocol (b). c. Evaluation of protocol integratability based on the clustering accuracy after merging for the 
three integration tools. Boxplots displaying the minimum, 1st, 2nd, 3rd quantiles and maximum clustering 
accuracies obtained for the different cell types. For all three alignment methods, Seurat was applied to perform 
clustering and UMAP after the protocol correction, in order to minimize the variability related to the 
downstream analysis. After integration, the clustering accuracy was largely conserved. Of note, transit 
amplifying cells were divided into two main cluster pointing to a heterogeneity between the protocols and 
potentially due to the decreased frequency of highly abundant ribosomal genes when sampling from the 
nucleus. 

Supplementary Fig. 25. Comparison of mappability scores across technologies. 
Boxplots displaying minimum, 1st, 2nd, 3rd quantiles and maximum probabilities values (scores) obtained by 
matchSCore2 in classifying most common cell types in human (a,b) and mouse (c) samples. B-cells, HEK293T 
cells and CD14+ monocytes are shown with data downsampled to 20K (a) and 10K (b) sequencing reads. 

Supplementary Fig. 26. Comparing column and bead purification in Quartz-seq2. 
a. Sequential processing steps from poly-A tailed RNA to sequencing-ready libraries common to most
sc/snRNA-seq protocols. b. Experimental design to systematically compare the yield of amplified cDNA using
column or bead cDNA purifications, at different bead concentrations. c. Relative amount of amplified cDNA
using different concentrations of beads. d. Comparing the yield of amplified cDNA using column and bead
purification.

Supplementary Fig. 27. FACS sample processing strategy.  
Representative FACS plot (BD Aria III) displaying sample composition and viability statistics for the HCA 
reference sample. 

Supplementary Fig. 28. Human reference signature scores for plate-based protocols.  
Boxplots comparing the distribution of B cell, monocyte and HEK293T signature scores across the different 
human cell types. For each cell, a score is computed by combining z-scores of genes in each signatures. 

Supplementary Fig. 29. Human reference signature scores for microfluidic-based protocols.  
Boxplots comparing the distribution of B cell, monocyte and HEK293T signature scores across the different 
human cell types. For each cell, a score is computed by combining z-scores of genes in each signatures. 

Supplementary Fig. 30. Merging of human and mouse sc/snRNA-seq datasets.  
a,b. T-SNE (left) and UMAP (right) visualization of 18,034 cells after the datasets were combined and 
normalized by library size. Cells are colored by cell type (a) and protocol (b), showing a strong protocol-
specific distribution. 
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Supplementary Fig. 31. Protocol performance with Chromium or inDrops as reference dataset.  
a. Mappability comparison assigning the human Chromium or inDrop datasets as reference. High similarity in 
the ranking of mappability for B-cells, monocytes and HEK293T cells. b. Similar overall performance despite 
the reduced dataset size of the inDrop reference. c. Comparison of the protocol ranking to detect cell type-
specific marker expression levels (using Chromium or inDrop as reference datasets). Scaled values of the 
averaged expression levels (data downsampled to 20K) between B-cells, monocytes and HEK293T cells are 
displayed. 
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Discussion 

AML research profits from optimized bulk RNA-seq       

methods 

Acute myeloid leukemia is a very heterogeneous disease and understanding the underlying            

forces resulting in the transformation of healthy hematopoietic stem cells, the progression and             

evolution of the cancerous cell population as well as the underlying causes of treatment              

resistance and relapse formation, remains a challenging task. The incorporation of expression            

analysis to understand the molecular pathways involved in these biological processes holds            

great promises but suffers from several technological complications.  

We therefore set out to create a bulk RNA-sequencing protocol, which based on the advances               

made by single cell methods, overcomes these restrictions. We used the established            

scRNA-seq method SCRB-seq (Single cell RNA and barcoding sequencing) (Soumillon et           

al., 2014) as the basis and enhanced cell lysis and RNA-extraction prior to reverse              

transcription to fit the requirements. In short, cells of any source are lysed in a lysis buffer                 

containing RLT plus buffer supplemented with 1% 2-mercaptoethanol. Afterwards, a          

proteinase K digestion ensures that the following RNA extraction using solid phase reversible             

immobilisation (SPRI) beads is not inhibited by excess protein (DeAngelis et al., 1995). After              

binding nucleic acids to the beads, genomic DNA is digested by DNAseI and the purified               

RNA can be reverse transcribed as described in the initial protocol.  

Compared to existing methods this advanced bulk RNA-seq protocol is able to tackle the              

three major methodological challenges in combining AML and RNA-seq and simplifies the            

integration of RNA-seq to AML research. First, one crucial benefit is that it does not require                
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pre-isolated RNA as input, but can be applied to several types of samples including cell               

lysates from sorted cells or crude lysates from frozen cell stocks. The isolation of RNA from                

samples is mostly performed using commercially available kits utilizing silica membrane           

columns. While these are suited to extract large amounts of high quality RNA from cells,               

they are time consuming and cost intensive. Second, due to utilizing early barcoding it is               

possible to integrate thousands of samples which is furthermore facilitated by the low costs of               

around 3 € per sample (excluding sequencing). This allows one to incorporate more samples              

into each experiment in order to increase the power to identify differential expression             

between groups and additionally makes the method highly suited to investigate large patient             

cohorts. Lastly, the demand for large amounts of input material for previous methods restricts              

their usage to characterize rare subtypes, yielding only a few hundred cells per biological              

replicate (Alpern et al., 2019). Being capable of generating high quality RNA-seq data from              

as little as 200 cells per sample, is a strong benefit of our approach, as due to the subclonal                   

structure of AML, the further analysis of these subclones could promote a deeper             

understanding in treatment resistance and relapse emergence. However, the integration of           

those features also comes with some caveats. For example, due to the integration of UMIs the                

method enriches for the 3’ end of transcripts. Hence, the identification of transcript isoforms              

and mutations as well as allelic expression within samples based on the sequencing data is               

strongly limited. Both of these could be beneficial to understand the molecular pathways             

involved in leukemia (Batcha et al., 2019; Li et al., 2014; Petti et al., 2019).  

In combination, the key advantages provide a solid ground for future applications, such as              

refinements of risk stratifications, characterization of rare subpopulations and treatment          

response. For example, we could successfully apply our method to investigate the            

transcriptomic phenotype of rare dormant AML cells in PDX. We could confirm a reduced              
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proliferation rate in AML cells which retained carboxyfluorescein succinimidyl ester (CFSE)           

staining (Label Retaining Cells, LRC), a dye which is not metabolized by the cell but               

decreases over time by cell divisions and can be measured via flow cytometry. Interestingly,              

label retaining cells of patients with a very different genetic background showed a very              

similar expression profile and were more similar to each other than to their matching              

non-LRC counterparts, indicating a highly conserved function of this subpopulation of cells.            

In addition, we found striking similarities between LRC in AML and the previous defined              

LRC in ALL including upregulation of cell adhesion molecules indicating localization in the             

hematopoietic niche. Interestingly, while both LRC and non-LRC cells were able to form             

tumors upon retransplantation and thereby demonstrating LIC capability in both, LRC           

showed increased resistance against conventional “7+3” induction chemotherapy in vivo .          

Furthermore, retransplantation experiments also showed that the label retaining feature can be            

reversed and vice versa suggesting it to be a temporary cell state rather than a defined                

subpopulation. 

In conclusion, we could identify a flexible cell state in AML, characterized by dormancy and               

stemness which could play a major role in relapse formation. Understanding the underlying             

factors which drive these cell states could therefore help to further increase patients’             

prognosis. In addition, due to the low number of LRC cells which can be isolated per sample,                 

we could show the usability and need for low input bulk RNA-seq methods in AML research. 

Furthermore, we could successfully apply this method to various sample types, including but             

not limited to AML relevant projects (Ebinger et al., 2016, 2020; Garz et al., 2017; Redondo                

Monte et al., 2020). 
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Improving the technical performance of scRNA-seq      

methods remains challenging 

Molecular crowding increases sensitivity during reverse transcription 

Single cell RNA sequencing (scRNA-seq) has become a wide spread tool to analyze global              

expression levels of single cells in various biological and medical fields (Wagner et al.,              

2016; Ziegenhain et al., 2018). Being a relatively new tool, scRNA-seq remains an emerging              

technology with it’s own unique challenges and limitations. Over the last years, numerous             

modifications have been published focusing on increasing throughput and sensitivity and           

decreasing noise and costs (Ziegenhain et al., 2017, 2018). Based on a previous benchmark of               

several scRNA-sequencing methods (Ziegenhain et al., 2017) we therefore set out to            

systematically improve SCRB-seq, an efficient plate based 3` enrichment method.  

Reverse transcription is considered to be the major limiting reaction step determining the             

sensitivity. Strikingly, it is estimated that only 10-49% of mRNA molecules present in a cell               

are reverse transcribed (Bagnoli et al., 2018; Grün et al., 2014; Islam et al., 2014).               

Unsurprisingly, we found that different MMLV derived RT enzymes showed a high variance             

in performance concerning sensitivity, with Maxima H- being the most sensitive. In addition             

to the enzyme, certain reaction enhancers have been shown to boost the efficiency of RT               

reactions. Interestingly, we could not replicate the positive effect of enhancers like Betaine,             

MgCl2 or trehalose, which had been previously reported to enhance RT efficiency in             

Smart-seq2 (Picelli et al., 2013). However, we found that the molecular crowding agent             

PEG8000 (polyethylene glycol 8000) increases cDNA yield and sensitivity. It is generally            

thought that molecular crowding agents increase enzymatic reaction rates by reducing the            
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effective reaction volume and thereby mimicking (macro)molecular crowding (Rivas and          

Minton, 2016). Indeed, reducing reaction volumes has been previously reported to increase            

the sensitivity of scRNA-seq protocols (Hashimshony et al., 2016; Svensson et al., 2017).             

However, very small reaction volumes also come with technical challenges and often require             

special equipment and are therefore less versatile than molecular crowding. In conclusion, the             

systematic evaluation of the reverse transcription reaction suggested that the underlying           

interactions between the enzyme, buffer composition, reaction volume and additives are very            

complex and not well understood. Accordingly, optimizations cannot easily be transferred           

from method to method, even though they might follow the same reaction principles. 

Moreover, we saw an additional increase in sensitivity concerning the number of detected             

UMIs and genes when using Terra direct polymerase during cDNA amplification. Due to the              

very low starting material, scRNA-seq protocols require a considerable amount of           

amplification to acquire a sufficient amount of material for sequencing. Hence, polymerase            

biases such as preferential amplification, e.g. due to GC content or initial abundance, can lead               

to major problems. Although UMIs can generally remove such amplification biases           

computationally, it nevertheless can influence the sensitivity of a protocol as sequencing            

duplicated reads (having the same UMI) decreases detection efficiency at a given sequencing             

depth. 

Together with other minor changes, including but not limited to enhanced pooling strategies             

and lysis conditions, we established molecular crowding SCRB-seq (mcSCRB-seq) (Bagnoli          

et al., 2018). In order to verify the relative increase in sensitivity of mcSCRB-seq compared               

to SCRB-seq we generated a side by side comparison using mouse embryonic stem cells              

(mESCs). Indeed, we saw a 2.5x increase in detected UMIs, and therefore detected unique              

RNA molecules. To further quantify the sensitivity in a more quantitative manner we used              
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ERCC spike in molecules to first calculate the capture sensitivity and second to compare              

mcSCRB-seq to other published scRNA-seq protocols (Baker et al., 2005; Jiang et al., 2011).              

At a sequencing depth of two million reads mcSCRB was able to detect 48.9% of spiked-in                

ERCC molecules. As proposed by others (Svensson et al., 2017), we used binomial logistic              

regression to model the detection of ERCC transcripts in relation to their initial abundance.              

This enabled us to compare mcSCRB-seq to various other scRNA-seq protocols by            

integrating our newly generated data with a previous published benchmarkings and methods            

(Sasagawa et al., 2017; Svensson et al., 2017; Zheng et al., 2017; Ziegenhain et al., 2017).                

Utilizing this comparison approach we could show that mcSCRB-seq is one of the most              

sensitive methods, requiring only 2 RNA molecules present to achieve a 50% detection             

efficiency.  

Although ERCC spike ins are often the only possibility to compare the sensitivity of several               

methods efficiently, there are several factors which could possibly lead to incorrect            

conclusions from such analysis. First of all, to calculate absolute abundances of RNA             

molecules and detection efficiencies it must be assumed that ERCC molecules are equally             

likely to be converted to cDNA as endogenous mRNA molecules. Several design attributes of              

these spike ins could contribute to rule this assumption invalid. ERCC molecules, for             

example, do not contain 5`cap structures. However, recent studies have shown that these             

structures lead to the efficient stalling of the RT enzyme at the 5’end leading to increased                

template switching efficiencies (Wulf et al., 2019). Moreover, other physical properties such            

as length (250-2000 nucleotides), GC content (5-51%) and the short polyA-tails do not             

perfectly model endogenous mRNA transcripts (Grün et al., 2014; Stegle et al., 2015;             

Svensson et al., 2017). Lastly, we also saw that other, non protocol derived, factors could               

contribute to the capture efficiencies. This was evident as several Smart-seq2 and CEL-seq2             
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datasets showed very different capture efficiencies, depending on the study. In addition,            

particularly the Smart-seq2 dataset used in Svensson et al. showed a very high cell to cell                

variation spanning over a 1000 fold range, subdivided in three distinct populations. Both of              

these observations could possibly show that capture efficiency could be highly driven by             

batch to batch variation but also by distinct external factors which differ from lab to lab or                 

experiment to experiment. 

All in all, we could highly improve SCRB-seq to be one of the most sensitive methods, while                 

still retaining its advantages concerning costs (initial and running) and scalability over other             

highly sensitive methods, such as CEL-seq2 and Smart-seq2. In addition, the advantageous            

effect of molecular crowding during reverse transcription was also recently proven to            

enhance Smart-seq3 as well as Seq-Well (Hagemann-Jensen et al., 2020; Hughes et al.,             

2019). 
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Systematic comparison of mcSCRB-seq shows potential for 

additional improvements 

As mentioned above, the systematic comparison of methods using ERCC spike in molecules 

can suffer from bias. Hence, we took part in a benchmarking study for the HCA (Human Cell 

Atlas) Consortium driven to overcome such limitations (Mereu et al., 2020). In contrast to 

previous studies, and to prevent user related errors or influences, all participating scRNA-seq 

methods were performed within their corresponding development lab or if not possible, in 

groups with expertise in using these. In order to validate the performance of each method 

accordingly, each group was supplied with aliquots of a frozen cell suspension prepared in 

one batch. The complex composition of this reference sample ensured that several key factors 

that are particularly important in creating expression atlases can be addressed. For example, 

both highly different as well as closely related cell types (PBMCs) were included, and all cell 

types are well characterised with distinct expression markers. In addition, the sample 

included a wide range of cell sizes, as expected in heterogeneous tissues. Last but not least, 

different species were included in order to estimate cross contamination between cells. 

We generated and sequenced mcSCRB-seq libraries from 3008 single cells of this reference 

sample which were further analysed and compared by the responsible center lab. 

Interestingly, we found that using the same lysis buffer as previously used for mESCs, lead to 

degraded cDNA, implying RNA degradation during single cell isolation, possibly via 

endogenous RNase enzymes of the cells. We therefore decided to use a more stringent lysis 

condition, which we previously used for PBMCs (Bagnoli et al., 2018) as well as AML and 

ALL cells (Bagnoli et al., 2019). However, since the stringent lysis condition requires an 
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additional clean up step before reverse transcription, which is not present in the original              

mcSCRB-seq protocol, we named this method gmcSCRB-seq (Guanidine mcSCRB-seq). 

Surprisingly, when comparing the sensitivity of the participating methods by the number of             

detected genes using exonic and intronic mapping reads, gmcSCRB-seq performed poorly           

across all cell types. For example, methods, which showed a similar sensitivity using ERCC              

spike ins as described above, detected around 2.5x more genes at the same sequencing depth               

of 25,000 reads per cell. Furthermore, while the major sensitivity trends were consistent             

across the different cell types, some methods performed disproportionately better with cells            

having a high RNA content. Hence, different methods might be more or less suitable for               

different cell types. 

It should be noted that a high variability between the methods could be seen when comparing                

mapping feature distribution. For example, gmcSCRB-seq, Quartz-seq2 and Smart-seq2         

showed a very high exonic mapping fraction, while CEL-seq2, MARS-seq and C1HT showed             

a higher intronic and intergenic fraction. To what extent intronic and intergenic mapping             

reads should be addressed as further viable information, for example by using intronic reads              

to predict future cell fate decisions (La Manno et al., 2018), is still under discussion (Parekh                

et al., 2018). Especially intergenic mapping reads could hint towards off target binding of              

primers on gDNA, which subsequently would dilute the expression signal.  

Moreover, the initial complexity of the reference sample could not be retained in             

gmcSCRB-seq. For example, canine cells, which were present at 1% could be detected in all               

methods (1-9%) except for gmcSCRB-seq. In addition, it was found that mouse colon cells              

were more present when fluorescence activated cell sorting with viability staining was not             

performed, suggesting a higher sensitivity of these cells towards the sample preparation.            

These observations clearly expose that sample processing as well as single cell isolation             
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strategies can have a big impact on the performance of each method and should be taken into                 

account. This further demonstrated that using ERCC spike ins to assess the performance             

cannot be fully representative. 

To further estimate the accuracy of the methods, marker gene expression and cluster accuracy              

was taken into account. In addition to the low sensitivity performance, gmcSCRB-seq            

performed poorly for marker gene detection as well as clustering. Interestingly, marker            

expression and clusterability did not always correlate. For example, while the ICELL8            

SMARTer Single-Cell System performed better than gmcSCRB-seq and MARS-seq         

concerning marker expression, clusterability of the latter two was better. While a low             

sensitivity can subsequently cause missing clusterability, several other reasons which are           

partially difficult or even impossible to prove are within the realm of possibilities. For              

example, within methods utilizing early barcoding and pooled amplifications, leftover          

barcoded primers from the RT can introduce noise during amplification (Macosko et al.,             

2015). In addition, chimeric PCR fragments are common in multi template PCRs and are              

known to be a major source for cross contamination (Dixit, 2016; Kalle et al., 2014). 

Taken together, the combined data of this extensive benchmark not only provides guidance             

for researchers and consortia to select an appropriate method but in addition demonstrates             

key factors for further improvements of methods and reveals missing interpretability of single             

cell expression data.  

For gmcSCRB-seq and mcSCRB-seq in particular, the benchmarking data in combination           

with the previous development data, pinpoint to several possible enhancements to further            

optimize the methods, such as cell isolation, cell lysis and possible cross contamination. 
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Conclusion and Outlook 

Whole transcriptome analysis is currently undergoing a transition phase between a niche            

method requiring expertise and large budgets towards a commonly used tool to investigate             

biomedical processes, especially in cancer. Both, single cell and bulk RNA-seq can possibly             

contribute to further understanding the cause, development and resistance in AML and even             

promise to be powerful diagnostic tools. However, especially single cell RNA-seq is still a              

rapidly evolving technique and methods still need to be optimized  

In this work, I developed method improvements for single-cell and bulk RNA sequencing and              

applied it to a relevant biomedical question investigating acute myeloid leukemia. Modifying            

a previous scRNA-seq protocol towards small input bulk RNA-sequencing, enabled us and            

our collaborators to further understand a rare subgroup of AML cells and refine the              

knowledge of the cancer stem cell theory and its role in relapse. Additionally, we set the basis                 

for large scale RNA-seq experiments using large patient cohorts unrestricted to sample            

quantities and qualities. 

Furthermore, we have contributed methodological optimizations to the field of scRNA-seq           

tackling low sensitivity, high costs and complicated workflows. For example, the concept of             

molecular crowding to enhance reverse transcription has been applied several times by now.             

However, further improvements and research is still required to be able to fully unleash and               

utilize the potential and the power of scRNA-sequencing, especially for cancer research and             

diagnostics.  
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miRNA micro RNA 
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SAGE serial analysis of gene expression 
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SNV single nucleotide variant 
TRM treatment related mortality 
UMI unique molecular identifier 
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