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Abstract 
 

Post-translational modifications (PTMs) are vital control mechanisms which govern all major 

aspects of cellular life, including cell division and protein degradation. They play a key role in 

increasing functional diversity of the proteome by regulating activity, localization, and interaction 

of proteins with other cellular molecules. Aberrant PTMs are associated with a variety of human 

diseases, including cancer and neurodegeneration. To better understand the biological function 

of PTMs in health and disease, it is crucial to identify the various modifications of proteins. Mass 

spectrometry (MS)-based proteomics is the method of choice to quantitatively study PTMs on a 

global scale as well as in a targeted manner. Major advances in enrichment strategies, 

acquisition methods, instrument performance, and computational analysis tools now enable the 

in depth analysis of PTMs and transformed the cell signaling field. However, studying PTMs by 

MS remains challenging mostly due to the complexity of workflows, relatively low sensitivity and 

data incompleteness in single run analyses. In this thesis, I aimed to develop quantitative 

methods that allow the analysis of phospho and ubiquitin modified proteomes with very high 

accuracy and sensitivity. Furthermore, I applied these methods to study various challenging 

biological and pathophysiological processes including erythropoiesis and neurodegeneration. 

  

Firstly, we developed a highly sensitive workflow for large-scale quantitative phosphoproteomics 

based on the EasyPhos platform [1]. We simplified the previously published workflow 

substantially and, in parallel, made it more streamlined, scalable, and applicable for higher 

sensitivity phosphoproteomics. Our optimized protocol requires only a few hundreds of 

micrograms protein material and takes about a day. It enables the analysis of phosphoproteomes 

at a depth of tens of thousands of quantified phosphorylation sites. Encouraged by the high 

sensitivity and reproducibility of our protocol, we applied it to study human erythropoiesis, so far 

poorly understood globally with regards to phosphorylation. We combined fluorescence-activated 

cell sorting (FACS)-based cell enrichment with our EasyPhos protocol and the latest proteomics 

methods. We quantified and dynamically tracked 7,400 proteins and 27,000 phosphorylation 

sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. 

Our system-wide analysis shed unprecedented light on the stage-specific dynamic 

developmental regulation of human erythropoiesis at the protein and post-translational levels. 

  

In addition to large-scale strategies for the analysis of protein phosphorylation, we also developed 

an ultra-sensitive MS-based targeted assay to accurately quantify known site-specific 

phosphorylations. I used this assay to uncover potential therapeutic targets of the LRRK2 kinase 

and to demonstrate their relevance as biological markers for Parkinson’s disease (PD) in the 

clinics. Previously, we had identified several Rab GTPases  (Rab8A, Rab10, and Rab12) as 

physiological targets of the Parkinson’s disease kinase LRRK2 [2]. Interestingly, the LRRK2 

phosphorylation site on Rab proteins is highly conserved in ~50 Rab proteins. Our systematic 
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proteomics analysis using this targeted assay extended the list of Rab protein family members 

phosphorylated by LRRK2 at the endogenous level. To monitor LRRK2 activity accurately and 

assess LRRK2 inhibitor efficacy in clinical samples, we modified the assay to determine the 

phosphorylation occupancy, which represents the percentage of phosphorylated proteins. 

Indeed, our sensitive and highly accurate MS-based assay successfully measured the 

stoichiometry of phosphorylated Rab proteins in neutrophil cells collected from PD patients and 

healthy controls. We showed that pathogenic mutation carriers had more than two-fold increased 

pRab10 levels compared to healthy subjects, confirming the relevance of pRab10 as treatment 

efficacy and stratification marker. It received much attention through the Michael J. Fox 

foundation network, dedicated to combat PD, and will now be used by the PD community at large. 

  

In the second part of the thesis, I present my work on different aspects of ubiquitin signaling, 

including the identification of ubiquitinated proteins and of the ubiquitin chain architecture. To 

improve the identification and quantification of ubiquitination sites we set out to investigate the 

power of a new state-of-the-art MS acquisition method, so called data-independent acquisition 

(DIA). This approach increased the reproducibility, quantitative accuracy, and depth of 

ubiquitinome analysis in single runs compared to the conventional data-dependent acquisition 

method. The application of our DIA-based workflow to the circadian rhythm for the first time 

revealed hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within 

individual membrane protein receptors and transporters. Secondly, we studied modification by 

UBL3, which is a novel ubiquitin-like molecule. We used a comprehensive MS-based proteomic 

analysis to better understand its physiological function and identified proteins that interact with 

this unusual modification in human cells. In further collaboration with the Schulman group, we 

established a fast and robust DIA workflow to identify the components and targets of the highly 

conserved Gid E3 ligase complex - a novel family of multisubunit E3s - that play an essential role 

in glucose-induced degradation (Gid) of Fbp1 under different metabolic conditions. Lastly, we 

developed a targeted MS strategy to quantify the distribution of different ubiquitin chain linkage 

types to investigate the potential roles of the acceptor lysine architecture on ubiquitylation. 

 

Towards the end of my PhD journey early this year, the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) emerged and quickly spread, becoming a major global health crisis 

of our time. This sudden global emergence of SARS-CoV-2 urgently required an in-depth 

understanding of molecular functions of viral proteins and their mechanisms of host manipulation. 

To contribute to this endeavor, together with the group of Andreas Pichlmair from the Technical 

University Munich, we applied a host of diverse sensitive and quantitative proteomics strategies. 

Thereby we characterized how SARS-CoV-2 and the related coronavirus SARS-CoV manipulate 

the host proteome and phospho- and ubiquitin-signaling in a systems-wide manner. Our findings 

are of great utility for the scientific community and will provide an important basis for further 

translational research.  
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1. Introduction 

 

1.1. Mass spectrometry (MS)-based proteomics 

 

Complete human genome sequences have revealed the existence of over 20,000 protein-coding 

genes [3]. However, the number of genes alone does not correlate with the complexity of an 

organism. The human proteome in particular is diversified by protein variations via alternative 

splicing (isoforms, multiple protein products from a single gene), and post-translational 

modifications (PTMs) such as phosphorylation. These modifications together yield millions of 

different possible ‘proteoforms’, adding orders of magnitude of complexity to the human proteome 

[4]. 

 

During the 1990s, changes in mass spectrometry (MS) instrumentation and techniques 

revolutionized protein analysis. Especially in the last decades, MS-based methods have gained 

comparable popularity  as next-generation sequencing in genomics and transcriptomics [5]. MS-

based strategies have developed to explore complete proteomes of unicellular and higher 

organisms. Draft maps of the human proteome were generated by proteomic profiling of human 

tissues and primary cells using high-resolution mass spectrometry [6, 7]. These studies provided 

spectral evidence for the expression of proteins encoded by over 17,000 genes, accounting for  

up to 84% of the annotated protein-coding genes in the human genome [6], although reanalysis 

of the data revised this number down to about 12,000 genes [8]. 

  

MS technology determines the mass/charge (m/z) ratios of ions. Depending on the charge state 

of a measured ion, the m/z ratio is converted into its molecular mass with a standard unit of 

Dalton (Da). In MS-based proteomics, peptides must first be ionized in their intact form; however, 

ionization had been unachievable for labile biomolecules. This obstacle was overcome with the 

development of two soft ionization techniques (electrospray ionization (ESI) and matrix-assisted 

laser desorption ionization (MALDI)) in the late1980’s [9, 10]. John Fenn received the Nobel Prize 

in Chemistry in 2002 for the discovery of ESI. In this technique, analytes (peptides) are directly 

ionized from a liquid phase using a high voltage via rapid solvent evaporation. A very high 

potential (kilovolt) is applied at the end of the capillary column, generating a spray of charged 

droplets. Upon solvent evaporation, the charge density increases, resulting in charged ions that 

are transferred into the vacuum of the mass spectrometer. ESI was a milestone for the field of 

MS-based proteomics and has become very popular since it can directly be coupled to a liquid 

chromatography (LC) system, which is ideally suited to the analysis of complex protein and 

peptide mixtures.  

 

In principle, there are two MS-based proteomic strategies top-down and bottom-up proteomics 

dealing with proteins and peptides, respectively.  In the analysis of intact proteins from complex 
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biological systems, top-down proteomics is typically combined with an up-front purification step 

[11]. This approach in theory allows for almost complete coverage of protein sequence and is 

used to characterize protein isoforms and complexes, unusual PTM conformations, and 

especially therapeutic antibodies. However, it remains experimentally and computationally 

challenging due to poor ionization properties, intricate charge patterns, and MS/MS spectra of 

high molecular mass organic molecules. In contrast, bottom-up (shotgun) proteomics refers to 

the proteolytic digestion of proteins before analysis by MS [12]. The term implies that information 

on proteins is reconstructed from measured and identified peptide fragments. This approach is 

by far the most widely used for in-depth and tissue-specific large-scale proteome analysis. Unlike 

the top-down approach, sophisticated instrumentation and expertise to interpret complex MS/MS 

spectra are not needed. However, the main limitation of this approach is that the limited coverage 

of the protein sequence is usually obtained since only a small and variable proteome fraction can 

be recovered. This may cause the loss of significant amount of information about PTMs and 

alternative splice variants.  

 

1.1.1. Bottom-up or ‘shotgun’ MS-based proteomics workflow 

 

A typical bottom-up MS-based proteomics workflow has three main steps: (i) sample preparation, 

(ii) LC-MS/MS analysis, and (iii) data analysis (Figure 1). Sample preparation includes the 

extraction of proteins from biological material and the digestion of intact proteins into peptides. 

Peptides are first separated by reversed-phase high-performance liquid chromatography (HPLC) 

based on their hydrophobicity, typically using C18 modified silica. As the peptides elute from the 

chromatographic column, they are ionized via ESI and analyzed by mass spectrometry. Proteins 

are identified from the generated peptide mass spectra that provide information about the 

abundance, amino acid sequence and PTMs when combined with database searching.  
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Figure 1. Top-down vs. bottom-up proteomics workflows (adapted from https://www.creative-

proteomics.com/blog/). 

 

1.1.1.1. Sample preparation methods 

 

Sample preparation is a crucial step in shotgun proteomics. To identify thousands of proteins 

from a complex lysate, we need robust sample preparation methods. These include protein 

extraction, reduction of disulfide bonds, and selective alkylation of cysteines without non-specific 

modification of other amino acids, reproducible proteolysis (digestion), and clean-up for complete 

removal of contaminants including detergents, lipids, and salts before LC-MS/MS analysis. 

Sample preparation protocols need to be adapted to sample type and amount. Yet, regardless 

of the protocol used, the quality of MS analysis and reliability and accuracy of results are highly 

dependent on consistent sample preparation. Any variability associated with this step should be 

further addressed by the community for this technology to reach its full potential in research and 

clinical settings.  

 

All protocols first require the lysis of the biological material and efficient extraction of proteins. 

Depending on the sample type, mechanical breakdown, such as sonication, bead-milling, or 

heating that increases lysis efficiency can be performed. Next, the cysteines of the extracted 

proteins are reduced and alkylated to disrupt disulfide bridges and prevent reforming of these 

reduced disulfide bridges. Reducing agents such as tris(2-carboxyethyl)phosphine (TCEP) and 

dithiothreitol (DTT) and alkylating agents such as iodoacetamide (IAA) and chloroacetamide 

(CAA) are typically used in proteomics. For proteolytic digestion of proteins, trypsin is the enzyme 

of choice. It has high cleavage specificity for the C-terminus of lysines and arginine. It sometimes 

generates peptides that are not of ideal length (less than seven or longer than 25 amino acids) 

https://www.creative-proteomics.com/blog/
https://www.creative-proteomics.com/blog/
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for effective and informative MS analysis. In that case, other enzymes such as chymotrypsin, 

AspN, Lys-N, Lys-C, Arg-C, or  Glu-C can be employed to increase overall protein sequence 

coverage [13].  

 

Protein analysis by SDS polyacrylamide gel electrophoresis is a routine method in biology 

research. The development of sample preparation workflows utilizing SDS polyacrylamide gel 

electrophoresis have accelerated MS-based proteomics in its early days [14, 15]. In such 

methods, proteins present in the gel are directly degraded by trypsin. They also allow 

fractionation of the proteome through the excision of the entire 1D gel in several pieces. However, 

in-gel digestion limits throughput, reproducibility and unbiased protein analysis. In-solution 

digestion largely overcomes these problems. Chaotropic agents, such as urea, are widely 

employed as they can be directly used for extraction and digestion of proteins in one buffer. 

However, MS-compatible detergents such as sodium deoxycholate (SDC) perform better 

compared to urea and they were shown to enhance trypsin activity many-fold at low concentration 

(<1%). They can be removed by acidification. Another protocol that uses SDS for complete 

protein solubilization is the ‘Filter-Aided Sample  Preparation’  [16]. In FASP, SDS can be washed 

away through multiple washing steps with urea because it repurposes spin-filter matrices for the 

removal of detergents and chaotropic agents, protein digestion, and the isolation of peptide 

fractions. 

 

The development of a tip-based peptide micro purification system named Stop and Go Extraction 

tips (StageTips), which consists of a tiny disk of membrane-embedded separation material, was 

a cornerstone in the field [17]. It allowed convenient sample handling and a universal sample 

preparation system for proteomics. It is commonly used for multidimensional fractionation as well 

as desalting, filtration, and concentration before mass spectrometry analysis. Moreover, 

StageTip protocols employing slightly milder detergents than SDS, such as sodium deoxycholate 

(SDC), allowed to perform the whole sample preparation steps in the tips (iST, ‘in-StageTip’) [18]. 

This protocol addressed some of these challenges for effective, high-throughput, and 

reproducible workflows as it considerably reduced sample preparation time, contamination, and 

loss. Further developments in fast and high-throughput sample preparation methods [19], such 

as MSTern [20], MS3  [21] and PAC (protein aggregation capture) [22] also addressed several 

problems of long and laborious classical sample preparation methods, enabling in-depth 

characterization of proteins and revealing the complexity of the human proteome with 

identification of over a thousand of distinct proteins. 

 

Peptide fractionation before LC-MS/MS analysis can obtain deeper proteome coverage, 

especially in complex biological samples. Separation helps to decrease sample complexity in 

each MS run and increase the total amount of material injected onto the analytical column and 

overall detectability of low abundant peptides. There are several different fractionation principles, 
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including high pH reversed-phase fractionation or strong cation exchange (SCX) into proteomics 

workflows.  Some of these techniques will be discussed in detail in the ‘phosphorylation’ section. 

We should here at least mention that off-line high pH reversed-phase fractionation methods are 

particularly popular in the field as they provide orthogonal separation when combined with the 

low pH separation of the online LC-MS analysis, yielding overall better peptide identifications 

[23]. Our group has developed a ‘loss-less nano-spider’ fractionator, which automatically 

concatenates the collected fractions via a rotating valve [24]. This fractionator enabled the 

quantification of around 12,000 proteins from very low-μg starting peptide material. 

 

1.1.1.2. Liquid chromatography-mass spectrometry (LC-MS) 

 

The LC-MS technique is a dual-selectivity and powerful analytical tool. The LC part separates 

compounds by their physicochemical properties related to the liquid phase whereas MS 

measures each component of a complex mixture, specifically their mass-to-charge ratio. The 

peptide mixtures are subjected to LC separation based on the different hydrophobic interactions 

with a stationary phase, which is typically octadecyl carbon chain (C18)-bonded silica. In reverse-

phase chromatography, the sample is separated based on the molecule’s polarity preference to 

either the polar mobile phase or the non-polar stationary phase. A linear increase in the 

percentage of organic solvent such as acetonitrile in the aqueous buffers provides elution of 

peptides from a reversed-phase column. The addition of formic acid to the solutions provides a 

source of protons, hence improving the ionization efficiency. As peptides elute from the 

chromatographic column, they are ionized via ESI, and the resultant charged ions are then 

transported via an ion transfer tube into the vacuum part of the mass spectrometry. Long columns 

(around 40-50cm) packed with small sized particles require high pressure but are commonly 

used since they provide better chromatographic resolution and a lower number of co-eluting 

peptides. 

 

Mass spectrometers can include many types of mass analyzers depending on the method which 

is chosen to separate and measure ions [25]. Single mass analyzers such as quadrupole and 

time-of-flight (TOF) were commonly used for measuring peptide species. Ion trap MS systems 

temporarily accumulate ions of a selected range before separating them by mass. The 

quadrupole mass analyzer contains four parallel cylindrical metal rods (electrodes) inside a 

vacuum chamber. These four rods are positioned equidistant from the center axis [25]. Currents 

are applied to the quadrupole so that ions with specific m/z can pass through and reach the 

detector. The quantity of ions that reach the detector is converted to a signal. This type of 

analyzer has high reproducibility and sensitivity but poor resolution and speed. TOF analyzers 

separate ions with different m/z by measuring the time taken for the ions to travel through a field-

free region [25]. Although these analyzers have the highest scanning speed, until recently they 

suffered from low mass resolution.  
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Over the last decade, new developments such as Orbitrap devices (a type of ion trap mass 

analyzer) have enabled LC-MS instruments to rapidly acquire a full range of spectral information 

with high resolving power. They provide high selectivity and the capability for accurate mass 

measurement. Currently, they are the most commonly used mass analyzer in proteomics. They 

consist of a central spindle and two outer electrodes that trap ions in an orbital motion around 

the spindle [25]. The frequencies of oscillation of ions along the length of the spindle are 

proportional to the square root of their masses and converted to a mass spectrum using the 

Fourier transform (FT). Coupling  FT  to a  phased spectrum deconvolution method  (ΦSDM)  

has been shown to double the mass resolution without increasing the cycle times; however, it 

requires extremely high computational power [26]. 

 

1.1.1.3. Tandem MS and fragmentation techniques 

 

Mass alone is not sufficient for complete characterization of a peptide. Therefore, MS instruments 

first record the m/z values of the precursor ions (intact peptides), which is referred to as MS1 and 

then do tandem MS (MS/MS, MS2), meaning to conduct multiple rounds of mass spectrometry. 

Selected ions (precursor ions) are broken down into fragments (product ions) in a collision cell 

and the masses of the resulting fragment ions are analyzed to reveal the chemical structure of 

the precursor ion (Figure 2). This is necessary to improve the specificity of the mass spectrometer 

for peptide identification. In tandem mode, the TopN most abundant peptides from each MS1 

scan (full scan) are typically isolated to be fragmented. Therefore, this approach is somewhat 

biased toward the analysis of the most abundant, higher intensity peptides. Cycle times can be 

determined by the number of peaks to be fragmented (N) and the transient times for MS1 and 

MS2 scans in the case of Orbitrap analysis. There are various methods for fragmenting peptides 

in tandem MS, including collision-induced dissociation (CID), higher-energy collisional 

dissociation (HCD), and electron-transfer dissociation (ETD) [27]. Each generates different ion 

series required for peptide sequence identification and unambiguous PTM site assignment.   

 

In CID, fragmentation of precursor ions happens through collisions with an inert gas such as 

helium, leading to peptide bond dissociation and generation of N-terminal b- and C-terminal y-

type ions [27]. It is mostly biased for the more effective fragmentation of small and low-charge 

state peptides and profoundly affected by the distribution of positive charges along the peptide 

backbone. HCD is a CID technique but characterized by higher activation energy compared to 

CID and specific to the Orbitrap mass spectrometers [27]. HCD, in conjunction with the Orbitrap 

mass analyzer, displays superior resolution and mass accuracy, producing very high-quality 

spectra. In HCD, ions traverse the C-trap to enter the HCD cell where fragmentation takes place. 

After fragmentation, the product ions are returned to the C-trap and then injected into the Orbitrap 

mass analyzer. For tryptic peptides, this technique predominantly results in y-type fragment ions 

and requires more ions to accumulate to generate a signal in the Orbitrap compared to CID in an 

ion trap. As a result of this, spectral acquisition time is longer compared to CID. ETD induces 
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fragmentation of cations by transferring electrons to them [27]. Although it displays lower 

fragmentation efficiency compared to CID or HCD, it is better at fragmenting longer, multi-

charged peptides, or even intact proteins. It creates mostly c- and z-type ions. It has also been 

employed to detect labile PTMs, which are challenging to characterize using CID because these 

PTMs break off first, which loses positional information. 

 

 

Figure 2. Protein identification by tandem mass spectrometry (adapted from 

https://www.creative-proteomics.com/blog/) 

 

1.1.1.4. Acquisition methods 

 

Shotgun proteomics typically uses a data-dependent selection of precursor ions to generate 

fragment ion scans (data-dependent acquisition (DDA)), which is the TopN method described in 

the previous section. In DDA mode, the mass spectrometer selects the most intense peptide 

ions, and then they are fragmented and analyzed. To prevent the re-fragmentation of peptides, 

precursors with the same mass are excluded from resequencing for about the time taken for a 

typical peptide to elute from the LC column. The resultant spectra contain information about the 

m/z values, retention times, and ion abundances for detected fragment ions. Although this 

method has been very successfully used for a long time, the semi-stochastic nature of DDA 

impedes reproducible quantification of peptides across multiple samples.  

 

To overcome this challenge, the MaxQuant software developed in our group has a ‘match 

between runs’ feature, which boosts the number of identifications. If a peptide is present in 

several samples, but not identified via MS/MS in all of them, ‘match between runs’ allows the 

transfer of this MS/MS information from one sample to others. For this approach, samples must 

be analyzed using the same chromatographic method (gradient) because it uses the retention 

time and the masses to match the identifications from one run to another and the false discovery 

rate (FDR) of match between runs can be difficult to determine. Moreover, our group has 

developed a method named ‘BoxCar,’ which helps to increase the depth of proteomes [28]. The 

limited capacity of the C-trap (about a million ions), which allows the analysis of only 1% of 

generated ions at the MS1 level, can be used more efficiently by dividing the mass range into a 

number of sequentially filled segments. This approach allocates longer injection times for low 

abundant ions, thereby maximizing the usage of incoming ions and increasing the dynamic range 

https://www.creative-proteomics.com/blog/
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at the MS1 level. Consequently, fewer missing values are observed using BoxCar when matching 

identifications from a library at the MS1 level. 

 

In the bottom-up proteomics, targeted proteomics and data-independent acquisition (DIA) 

methods are the main alternatives to DDA. Like DDA, DIA is also discovery-oriented but 

compared to DDA it can generate more complete data sets. In contrast to the semi-stochastic, 

intensity-based precursor picking of DDA, DIA generates comprehensive fragment-ion maps [29, 

30]. In each cycle, the instrument isolates a mass window of precursor ions (for example 25 m/z 

units wide) and measures fragments of all precursors found within that window. It cycles through 

mass windows across the entire mass range to generate MS2 scans that cover all detected 

precursors. The most well-known method that generates DIA data is called SWATH (Sequential 

Windowed Acquisition of All Theoretical Fragment ions) [30]. As the same precursor isolation 

window is fragmented again at each cycle during the entire analysis, a time-resolved record of 

the fragment ions of all the precursors is obtained through the entire mass range. This type of 

data is composed of highly multiplexed fragment ion maps that display a higher grade of 

complexity. For this reason, the analysis of such data requires sophisticated deconvolution 

algorithms for peptide identification, which generally rely on information from pre-existing high-

quality spectral libraries. DIA has been also recently propelled by the advances in scan speed 

and resolution of new mass spectrometers. It now allows us to analyze all co-eluting peptide ions 

simultaneously, enabling more accurate and precise quantification with less missing values 

across samples and higher identification rates over a higher dynamic range. 

 

Targeted methods are used for acquiring a predefined set of precursor or fragment transitions 

with high reproducibility and specificity. There are two main types of targeted acquisition 

methods: the ones that collect information at peptide ion level such as selected ion monitoring 

(SIM) or fragment ion level such as single or multiple/parallel reaction monitoring SRM, MRM, 

and PRM [31] (Figure 3).  Briefly, SIM uses a mass analyzer in filtering mode to monitor the signal 

of a selected precursor ion of interest. SRM is traditionally mostly performed on triple quadrupole 

instruments (QQQ) as it requires double filtering to sequentially monitor several fragment ions 

from specific selected precursors. In contrast, PRM can be performed on a quadrupole-Orbitrap 

mass spectrometer and can therefore be acquired with high resolution and high-throughput 

capabilities. In this method, precursors are isolated using a mass analyzer, and all fragments are 

simultaneously analyzed with a second mass analyzer. It can sequentially monitor several 

peptides within each cycle. Furthermore, parallel monitoring eliminates the need for a prior 

selection of target peptide transitions. Thus, it requires much less effort than the SRM assay to 

develop while being much more specific. 
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Figure 3. Targeted proteomics strategies (adapted from https://www.creative-

proteomics.com/blog/) 

 

1.1.1.5. Protein identification 

 

The ultimate goal in shotgun proteomics is to identify proteins, which relies on the extraction of 

information from MS2 spectra. The spectra generated by MS2 contain fragment ions forming N-

terminal (b-ions) or C-terminal (y-ions) sequence ladders, and the relationship between the 

relative abundance (intensity) and m/z value of each fragment ion of a peptide. The spectral data 

is first converted into a format readable by downstream software. Next, spectra identification is 

performed in various ways, including matching into in-silico generated peptide sequences or to 

previously established spectral information such as a spectral library. When using the sequence 

database search, the experimentally obtained fragment ion spectra are matched to the theoretical 

ion spectra for a given organism by search engines such as Mascot or Andromeda [32, 33]. In 

the second method is that sample type-specific spectral libraries can be generated and utilized 

to fit experimentally observed spectra to it. Another technique for spectrum identification is ‘de 

novo sequencing’. This method is mainly used when there is no or limited database information 

available. 

 

Furthermore, spectral identification through search engines requires statistical validation of 

peptide-spectrum matches (PSM) before reporting. For each spectral matching event, scores 

that represent the resemblance between two spectra are calculated. The scores are then 

statistically evaluated by calculating probabilities to control for false-positive hits. The most 

common approach for the false discovery rate (FDR) estimation for MS/MS spectra is the Target-

Decoy searching [34]. In this method, the spectra are matched to a database that includes each 

peptide in the true and reverse amino acid orders. The resultant numbers of hits to the reversed 

database can be used to define the FDR, which is usually set to less than 1% in global proteomics 

studies. Furthermore, some peptide sequences are not unique to a specific protein; for instance, 

they can be matched to several protein isoforms. In such cases, they are usually assigned to the 

protein for which the most unique peptides (razor peptides) are identified. 

https://www.creative-proteomics.com/blog/
https://www.creative-proteomics.com/blog/


Protein quantification 

 
 

    
10 

1.1.1.6. Protein quantification 

 

Protein identification is the first step in gaining insight into a biological system. To detect global 

changes when studying biological systems, it is crucial to determine differential protein 

expression or abundance accurately. Quantitative proteomics methods provide a reliable and 

dynamic analysis of differential expressed proteins in a cell or tissue responding to extrinsic or 

intrinsic changes. They can be divided into ‘relative’ or ‘absolute’ quantification strategies. In the 

absolute fashion, expression of proteins such as concentrations or copy numbers are determined 

using spiked-in references. In contrast, in the relative fashion, protein levels are compared 

amongst different conditions. The relative quantification methods can be categorized into label-

based and label-free quantification.  

 

Label-based quantification involves metabolic and chemical labeling methods (Figure 4). SILAC 

(Stable Isotope Labeling by Amino Acids in Cell Culture) is the most popular in-vivo metabolic 

labeling method and relies on the metabolic incorporation of a given ‘light” or “heavy” form of the 

amino acid into the proteins. Leucine, arginine or lysine are the amino acids which are commonly 

used. Cells are usually cultured in medium highly enriched for stable isotopes for more than five 

passages to ensure complete incorporation. Stable isotopes incorporation does not affect the 

physical behavior of labeled peptide in terms of elution profiles. After labeling is complete, 

differentially labeled samples are mixed and analyzed together. Due to the mass difference, the 

samples can be distinguished at the MS1 level. Relative quantification is performed based on the 

differences in the precursor areas of differentially labeled peptides in mass spectrometry. 

Although the most accurate and robust, the main disadvantages of this method are that it is 

limited mainly to cell line samples, and it requires some time and effort. To overcome these 

problems, the classical SILAC  approach has been extended to methods such as spiking in entire 

labeled proteomes (mix of cell lines (super-SILAC) [35] and SILAC-labeled protein epitope 

signature tags (PrESTs) [36]. In addition to the use of SILAC for relative quantification, stable 

isotope-labeled protein standards (PSAQ) [37] or peptides (AQUA peptides) have been also used 

as internal standards for absolute standards. Yet, these approaches remain mainly limited to a 

moderate number of proteins or peptides. However, the SILAC-PrEST method developed in our 

group successfully quantified over 40 proteins in HeLa cells over a wide abundance range. This 

method uses a known quantity of recombinant heavy-labeled standards covering unique 

sequences of the protein of interest that are fused with a purification and solubility tag. There are 

also other methods for absolute quantification, including the ‘proteomic ruler’ approach, which 

allows the copy numbers estimation per cell on a global scale by utilizing the fixed relationship 

between histones and DNA [38]. 

 

Chemical labeling methods are more applicable and suitable for various sample types, including 

tissues and body fluids, than metabolic labeling since it introduces isotopes in vitro. They are 

mostly performed at the peptide level. One of the early examples is called iTRAQ which utilizes 
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a multiplexed isobaric chemical tagging reagent [39, 40].  A more popular example for this 

technique is TMT, tandem mass tags (>10 channels) [41]. Both tags consist of a reporter group 

for quantification, a balance group so that peptides share the same precursor mass and a peptide 

reactive group. This reactive group is amine-reactive allowing the attachment of the tag to the N-

terminal amine groups of lysine residues of the amino terminus of peptides, labeling all peptides 

in the sample. These approaches enable multiplexing opportunities, reducing measurement time 

without increasing spectral complexity. MS2 spectra of isobaric tagged peptides have two types 

of product ion peaks: the reporter ion that correlates with the abundance in each channel and the 

peptide fragment ion that allows identification. The disadvantage of TMT is that it suffers from 

‘ratio compression’ due to the relatively low resolution of quadrupole isolation of precursors. The 

actual ratio between channels is underestimated due to reporter ions from co-isolated and co-

fragmented [42]. To overcome this challenge, mass spectrometers that are capable of MS3 are 

used to fragment the tag-containing fragments further. However, this comes at the expense of 

sequencing speed and proteome coverage. Our group has developed an alternative method to 

TMT, which is called EASI-tag, to allow accurate quantification without the ratio compression 

problem [43]. In this technique, reporter ions are precursor specific and the tag fragments at 

lower collision energies than the peptide backbone, so the reporters stay attached to the 

precursors, eliminating interference from other precursors. 

 

Label-free quantification (LFQ) is the most straightforward and most economical approach as it 

eliminates the need for additional chemical reagents and procedures. Quantitative values can be 

obtained in two ways. The first approach - known as spectral counting - correlates the number of 

identified MS/MS spectra from the same protein with its abundance. The second and more recent 

approach is through the extraction of the area underneath the extrapolated curve of the precursor 

ion peaks in MS1 scans. The LFQ approach suffers from reduced reproducibility compared to 

label-based quantification because sample preparation and measurements are performed for 

each sample separately. Nevertheless, when combining high-resolution instrument 

measurements with a sophisticated algorithm called MaxLFQ very accurate quantification can be 

achieved. 
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Figure 4. Label-based quantification methods (adapted from [44]) 

 

1.1.2. In-depth cellular and bio-fluid proteomes and biomarker 

discovery 

 

Quantitative proteomics holds significant promise for understanding fundamental biologic 

processes and mechanisms and for discovering diagnostic and prognostic protein markers. The 

community desires to determine the complete proteomes of various tissues and samples to better 

understand the complexity of protein-driven mechanisms in the human body. Significant 

advancements at all levels of today’s MS technology, encompassing sample preparation to 

measurement and subsequent bioinformatics analysis, have enabled the characterization of 

nearly complete proteomes from cells, tissues, model organisms, and even from very challenging 

matrices such as biofluids [45, 46]. Thousands of proteins and tens of thousands of modified 

peptides can be routinely quantified. System-wide proteomic studies explore critical regulatory 

mechanisms at a large scale and create a link between genomic information, biological function 

and disease. ‘Organellar proteomics’ can also be employed to monitor subcellular localization on 

a system-wide scale [47]. Global interactome studies have likewise become very popular with 

the development of high resolution instruments, and a recent human interactome studies 

uncovered interaction partners of thousands of human proteins [48, 49]. 

 

Advanced proteomics tools now also provide tremendous opportunities for biomarker-related 

clinical applications, and there is an enormous interest in profiling body fluids for biomarker 
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discovery. Biomarkers would be beneficial to define a normal or abnormal condition or disease 

and monitor a treatment. Numerous studies on human biofluid proteomes that mainly focused on 

cancers, metabolic and brain diseases have been performed often reporting hundreds of 

proteins. Recent technological advancements in acquisition methods and software developments 

enabled in-depth characterization of body fluids such as stool, urine, CSF and plasma, presenting 

mass spectrometry (MS)-based proteomics as compelling technology for biomarker discovery. 

Moreover, our group has proposed a “rectangular” biofluid proteome profiling strategy instead of 

previous “triangular strategies”. The latter involves the discovery of a single or few biomarker 

candidates in a small cohort, followed by validation typically by immunoassays in a larger cohort. 

In the “rectangular” strategy, both discovery and validation of biomarkers are performed at 

maximum possible depth in medium to large size cohorts. Using this strategy in conjunction with 

the latest MS technologies, our group has published several studies in which proteomes of bodily 

fluids such as CSF and plasma were profiled to identify biomarkers for various conditions and 

diseases [50-54].  

 

Clinical proteomics is still a relatively new field but is rapidly growing also due to the development 

of sensitive and specific methods and clear standards that consistently define and report 

biomarkers [55, 56]. In particular, issues associated with the collection and storage of the 

samples are of critical importance in this field [55]. Pre-analytical variation caused by inconsistent 

sample processing and contaminations during sample collection has a substantial impact on the 

reported results and may cause the reporting of incorrect biomarkers. For instance, levels of 

certain proteins, including a-synuclein, are much higher in blood than in CSF, suggesting that 

blood contamination in CSF might affect the reliable quantification of those biomarkers. Standard 

procedures have to be established and applied when collecting biofluids to ensure that the 

observed changes are not caused by artifacts related to sample handling and processing. 

 

1.2. Post-translational modifications (PTMs) and their role in signaling 

 

Cells need to respond to external and internal cues in a short time; thus they have a multi-level 

regulation system capable of sensing, interpreting, and storing the information. Post-translational 

regulation of proteins via reversible and irreversible modifications is especially crucial for cells to 

rapidly respond to stimulation and environmental alterations. These modifications can affect 

structure, stability, and function of proteins and increase the functional diversity of the proteome. 

Thus far, over 200 PTMs have been discovered regulating proteomes of various organisms. 

PTMs are very diverse and can be divided into four groups (Figure 5): (i) the modification of the 

chemical structure of amino acid side chains, (ii) the addition of complex molecules to specific 

amino acids, (iii) the covalent linkage of polypeptides or small proteins and (iv) the cleavage of 

the peptide bond (proteolysis). In this thesis, I will primarily focus on two types of PTMs, 

phosphorylation and ubiquitination.  
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Figure 5. Diversity of post-translational modifications (adapted from [57]) 

 

1.2.1. Phosphorylation 

 
Phosphorylation is one of the most common and best-studied PTM. It defines the covalent 

addition of phosphoric acid to the target protein and occurs through the transfer of the γ-

phosphate group from adenosine 5’-triphosphate (ATP) to the hydroxyl group of specific amino 

acids. It is mainly attached to serine, threonine, or tyrosine residues, representing approximately 

90%, 9.9%, and 0.1% of protein phosphorylation, respectively. Tyrosine phosphorylation is thus 

relatively rare and is typically mediated by receptors harboring a tyrosine kinase domain. Less 

stable phosphorylations may also occur naturally on aspartic acid and histidine residues [58, 59]. 

The addition of a phosphate group in general modifies the protein from a more hydrophobic 

apolar state to a more hydrophilic polar state. This can lead to the activation or inhibition of the 

protein and can induce conformational changes also upon interaction with other molecules.  

 

Phosphorylation is a reversible reaction with a constant balance between phosphorylation and 

dephosphorylation events mediated by kinases and phosphatase (protein + ATP ⇄ 

phosphoprotein + ADP) (Figure 6).  The addition of the phosphate group is catalyzed by the 

enzymatic activities of protein kinases, whereas another type of enzymes, phosphatases, are 

responsible for its removal [60]. This highly dynamic process is at the heart of signaling pathways, 

serving as a signal in a plethora of cellular pathways and mechanisms, including the cell cycle 

and cancer [61]. More than 30% of all encoded proteins are phosphorylated at any given time 

[62]. Over 250,000 phosphorylation sites have been identified and curated so far in one of the 

well-known and widely used databases (http://www.phosphosite.org).  
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Figure 6. Phosphorylation is a reversible PTM that regulates protein function. Kinases mediate 

phosphorylation at serine, threonine and tyrosine side chains and phosphatases remove the 

phosphate group (adapted from https://www.thermofisher.com/de/de/home/life-science/protein-

biology-learning-center) 

 

1.2.1.1. Protein phosphorylation–mediated cellular signaling 

 

Cells can sense and respond to extracellular changes through cell surface proteins. Upon binding 

of a ligand to a cell-surface receptor, the receptor gets activated, and this sets off a series of 

signaling events. The chains of molecules known as intracellular signal transduction pathways 

transfer information from the surface to the interior of the cell. For instance, the receptor can bind 

another molecule within the cell, which in turn activates its target. Non-protein molecules like 

phospholipids can also play essential roles in signaling.  

 

Most signal transduction systems in the cell are regulated by protein phosphorylation, which acts 

as a switch altering protein activity. This serves a variety of functions, including increase in 

catalysis, providing recognition by interacting protein, conformational changes, and formation of 

protein complexes or alteration of the cellular protein localization. It can also inactivate the protein 

or cause its degradation. These features make protein phosphorylation a critical regulatory 

mechanism of the most crucial cellular processes, including proliferation, apoptosis, 

differentiation, and development.  

 

Phospho-signaling pathways are dynamically regulated within seconds at multiple levels of 

positive and negative feedback. One kinase can target hundreds of potential substrates, enabling 

signal diffusion across many network nodes. Depending on the type and the intensity of the 

stimulus, signals can be transient or prolonged. Each stimulation leads to a unique signaling 

network typically inducing a unique biological response. The complexity of signaling networks 

has recently been more acknowledged based on results of system-wide studies using MS-based 

proteomics. 

 

https://www.thermofisher.com/de/de/home/life-science/protein-biology-learning-center
https://www.thermofisher.com/de/de/home/life-science/protein-biology-learning-center
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To better explain phosphorylation–mediated cellular signaling concepts, I use one of the most 

studied signaling pathways called the epidermal growth factor (EGF) pathway as an example 

(Figure 7). This pathway acts through a series of kinases to produce various cellular responses. 

EGF binds to the receptor (EGFR) and induces its activation by dimerization. The activated 

receptor recruits various adaptor proteins such as GBR2 that bind to the phosphotyrosine residue 

in the cytoplasmic part of the receptor. GBR2 recruits SOS to the membrane. Next, SOS activates 

GDP/GTP exchange, which then recruits Raf to the membrane. Active Raf phosphorylates and 

activates MEK, which phosphorylates and activates the ERKs. ERKs act on a variety of target 

molecules, including transcriptional regulators like c-Myc that induces growth and proliferation. 

These three kinases, Raf, MEK, and the ERKs, together make up a kinase signaling pathway 

called the mitogen-activated protein kinase (MAPK) cascade. They are found in many organisms, 

from humans to yeast. The overactive forms of the proteins in this pathway, such as the growth 

factor receptor, Raf and c-Myc have been associated with cancer as they play a central role in 

promoting cell proliferation. GRB2 can also recruit another major mediator of EGFR signaling, 

PI3Ks. They convert phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-

trisphosphate (PIP3). PIP3 recruits PDK1 which phosphorylates AKT. This pathway, also known 

as PI3K-Akt pathway, plays a role in prosurvival signaling. 

 

                               

 

Figure 7. Epidermal growth factor receptor (EGFR) and its downstream signaling proteins 

(adapted from [63]) 

 

 

https://www.sinobiological.com/category/pi3k-gamma-pik3cg
https://www.sinobiological.com/category/pdk1
https://www.sinobiological.com/category/akt1


Phosphoregulators: kinases and phosphatases 

 
 

    
17 

1.2.1.2. Phosphoregulators: kinases and phosphatases 

 

Kinases and phosphatases are central players of the intracellular signaling cascade in which a 

signal is passed on to downstream proteins by sequential activation and deactivation of proteins 

via phosphorylation/dephosphorylation events. Therefore, these enzymes are also crucial for the 

transduction of the signal by controlling its amplitude. Over 500 kinases are found in the human 

genome, encompassing 1.7% of the total genome [62]. Kinase activity is controlled in three ways: 

(i) kinase phosphorylation/autophosphorylation, (ii) binding with activator or inhibitor proteins, or 

(iii) through localization in relation to their substrate [64].  

 

The conserved protein kinase core has two domains: the N- and C-terminal core [65]. Between 

these two domains, there is an active-site cleft with the ATP binding site. The activation of the 

kinase through activation loop phosphorylation or an allosteric mechanism induces a deep cleft 

where the transfer of the phosphoryl group occurs [65]. Non-catalytic domains of kinases help 

with the attachment of substrates and allow the recruitment of other signaling components. 

 

Most kinases are serine and threonine (STKs) kinases that phosphorylate the OH group on these 

amino acids. Some kinase can only act on tyrosine (TKs), and there are also kinases targeting 

three amino acids (dual-specificity kinases; DSKs) [66]. Protein kinases subfamilies include: AGC 

(Protein Kinase A, G, and C families (PKA, PKC, PKG)), CaMK (Calmodulin/Calcium regulated 

kinases), CK1 (Casein Kinase 1), CMGC (CDK, MAPK, GSK3, and CLK), TK (Tyrosine Kinase), 

TKL (Tyrosine Kinase-Like), RGC (Receptor Guanylate Cyclases), PKL (Protein Kinase-Like) 

and STE [67]. Many kinase families are highly conserved in yeast to human. 

 

Protein phosphatases act opposite of kinases by removing the phosphate group from proteins. 

They do not have a common structure, and unlike kinases, their activity is associated with 

different protein folds and catalytic mechanisms and they typically gain their specificity only as 

members of multi-protein complexes [60]. Over 200 protein phosphatases have been identified 

so far and classified into several families, including the phosphoprotein phosphatase (PPP) 

family, the metallo-dependent protein phosphatase (PPM) family and the protein-tyrosine 

phosphatase (PTP) family [60]. Although PPP and PMP families mostly act on phosphoserine 

and phosphothreonine, they can also dephosphorylate phosphotyrosine. PTPs can also 

dephosphorylate non-protein targets, such as mRNA and phosphoinositides [68].  

 

Mutations in genes encoding for kinases and phosphatases have often lead to decreased cell 

viability, disrupted cellular signaling pathways and contribute to several human diseases 

including cancer, autoinflammatory diseases, diabetes, and neurodegenerative diseases [69]. 

Thus, having a better understanding of impaired phospho-signaling pathways associated with 

diseases would greatly help with the identification of potential drug targets [69]. 
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1.2.1.3. Quantifying phospho-signaling by MS: phosphoproteomics 

 

Many different analytical strategies have been developed and employed to quantify activated 

signaling networks. Classical biochemical techniques such as phospho-specific antibodies are 

typically low throughput. For a systems-wide understanding of cellular signaling networks, 

identification and quantification of a sufficient number of specific phosphorylation sites and their 

coordinated and temporal response to a perturbation are necessary. Moreover, multiple 

phosphorylation sites often occur on a single protein and their abundance range spans orders of 

magnitude, with varying stoichiometry [61]. All this makes detection and quantification of all sites 

affected by a given stimulus extremely challenging.  

 

Mass spectrometry has transformed the field of cellular phospho-signaling and become the 

method of choice for studying multiple phosphorylation events simultaneously 

(‘phosphoproteomics’) [61, 62]. Global strategies aiming to detect and quantify thousands of 

phosphorylation sites can identify altered phospho-signaling networks. Recent developments in 

the MS field have also enabled increasingly sophisticated phosphoproteomics studies. However, 

detection and quantitation of protein phosphorylation remain analytically challenging in many 

aspects [70]. For instance, phosphorylation is a dynamic and transient process. Its short life 

together with its low abundance makes accurate and precise quantification difficult, especially in 

heterogeneous mixtures. Most quantification methods, including chemical and metabolic labeling 

strategies, have also been utilized for quantitative phosphoproteomic. Label-free strategies have 

also gained acceptance and popularity in signaling research as they have the advantage of being 

very adaptable [71]. 

 

Other issues that complicate phosphopeptide identification are the potential suppression of their 

ionization by their non-phosphorylated counterparts [70] and the labile character of the 

phosphoester bond. In collusion induced dissociation (CID) type of fragmentation, the 

phosphoester bond tends to break first, leading to a neutral loss of phosphoric acid, creating a -

98 Da (H3PO4) mass shift [72]. In contrast, the high-energy collision dissociation (beam-type 

CID, HCD), in which an electrical potential is applied to accelerate peptide ions towards the inert 

gas, substantially reduces the presence of the neutral loss precursor [73]. Compared to CID and 

HCD, electron transfer dissociation (ETD) is more suitable for the analysis of peptides with labile 

modifications as these modifications can be preserved. However, this technique results in a low 

number of total identification due to its slower scan rate and lower efficiency [73]. Methods 

combining ETD and HCD fragmentation techniques for complementary ion production (c/z ions) 

have also been developed to provide data-rich MS/MS spectra, which yield higher 

phosphoproteome coverage and more confident site localization [74]. 
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Developments of more sensitive and fast mass spectrometers along with improved data analysis 

software have increased the number of phosphorylation sites identified by DDA. It has become 

very common to report and quantify tens of thousands of phosphorylation sites, especially when 

coupled to a prior fractionation step [75, 76]. However, as mentioned before, DDA and MS in 

general, have some bias toward the accurate and precise analysis of the more abundant, higher 

intensity peptides. Since phosphorylated peptides are less abundant than their non-

phosphorylated counterparts, it remains challenging to accurately detect and quantify low 

abundant phosphopeptides with DDA. Moreover, the semi stochastic nature of DDA, favoring the 

most intense peaks, results in poor reproducibility even among replicates. This is particularly a 

problem for phosphopeptides due to their low abundance. Most phosphorylation events typically 

present in a cell are not induced by any given stimulation. These unspecific phosphorylations 

can interfere with the identification of stimulus-specific phosphorylation events as most of the 

instrument analysis time is spent on these uninformative ones. DIA, propelled by the advances 

in scan speed and resolution of new mass spectrometer generations, is becoming a compelling 

alternative to DDA. The superior performance of DIA for sensitive and reproducible MS 

measurements has recently also been demonstrated for global protein phosphorylation analysis. 

Notably, a recent study quantified > 20,000 phosphopeptides in 15 min single-run LC-MS 

analysis per condition without the need for spectral libraries [46].  

 

Targeted MS methodologies appear to be a promising way to detect and accurately quantify low 

abundant phosphorylated species as they promise ultra-high specificity and sensitivity. Such 

methods rely on non-data dependent but targeted MS acquisition techniques and usually work 

with a small number of proteins. Therefore, a priori knowledge of the phosphorylated proteins 

and signaling network is required. The most common MS-based targeted approaches used for 

phosphoproteomics are selected/multiple reaction monitoring (SRM, MRM) and parallel reaction 

monitoring (PRM). These methods rely on tandem mass spectrometry and offer high specificity 

along with sensitivity as they monitor fragment ions. However, sensitivity is inherently lower 

compared to single-stage mass spectrometry analysis, such as selected ion monitoring (SIM), 

as they distribute the precursor ion signal across multiple fragments. These methods have 

frequently been applied to quantify cellular signaling networks, protein complexes [61] and 

protein phosphorylation stoichiometry, as well as kinome abundance and phosphorylation states 

[77]. They can also determine the absolute amount of a given peptide or phosphorylation site in 

a sample using SIL peptide standards spiked in known quantities into the samples.  

 

1.2.1.4. Phosphoproteomics workflows and enrichment techniques 

 

In a typical phosphoproteomics experiment, proteins are proteolytically digested, mostly using 

trypsin, and the complex mixture of digested peptides can be either analyzed directly or 

fractionated before MS analysis of each fraction. Regardless of the preferred fractionation 
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method, phosphopeptide enrichment is required before LC-MS/MS analysis. The common 

methods for the enrichment of phosphopeptides, such as IMAC and MOAC, are typically 

combined with prior fractionation to increase the number of identified phosphopeptides (Figure 

8). There are several factors that drive the need for pre-fractionation and enrichment. First, 

proteolysis of proteins generates many peptides, of which only a small fraction will carry 

phosphorylations. Second, the phosphopeptides are usually present at substoichiometric levels, 

meaning they are less abundant than their nonphosphorylated counterparts. Each fraction 

enriched for phosphopeptides is analyzed separately. This increases the chance to observe low 

abundant phosphopeptide ions and to reach the depth required to cover key signaling 

components. Third, as mentioned above, phosphorylated peptides may have lower ionization 

potentials than their nonphosphorylated counterparts when measured in positive ion mode. 

  

Common pre-fractionation methods in phosphoproteomics studies are chromatography 

techniques that provide separation based on charge (SCX and SAX) isoelectric point (IEF), 

polarity (HILIC) and hydrophobicity (ERLIC) [78]. While more peptides can be identified by 

fractionation since the complexity in each fraction decreases, the total time required for the 

analysis increases proportionally with the number of fractions. It also comes at the expense of 

throughput, robustness, and reproducibility, and often requires specialized equipment and large 

sample amounts. 

 

One of the earliest enrichment techniques is affinity-based chromatography. Positively charged 

metal ions, such as Fe (III), immobilized with a solid phase are presented for interaction with 

negatively charged phosphate groups (immobilized metal affinity chromatography (IMAC)). The 

use of metal oxides such as titania or zirconia has emerged as the alternative ways for 

phosphopeptide enrichment (metal oxide affinity chromatography (MOAC)) [79-81]. However, 

the latter method may suffer from nonspecific binding. The addition of an organic acid, such as 

2,3-Dihydroxybenzoic acid (DHB) and glycolic acid into the enrichment buffer helps to increase 

phosphopeptide specificity [82]. In both chromatography techniques, binding and washing 

conditions are performed in a very low pH environment. This overcomes the competition between 

carboxyl acid and phosphoryl groups in binding to the material since carboxylic acid groups are 

also negatively charged at moderate pH. Finally, elution is performed at a more basic pH [78]. 

 

Both materials are typically used to enrich phosphopeptides rather than full length 

phosphorylated proteins. They both are especially suited for the enrichment of serine, threonine 

and tyrosine phosphorylations as these residues are stable under acidic pH conditions. 

Furthermore, IMAC is well known for its affinity for multiple phosphorylated peptides, whereas 

MOAC, especially titanium dioxide (TiO2), preferentially detects singly phosphorylated ones. 

Although they are thought to be complementary, a recent study showed that they bind the same 

phosphopeptides but differ in binding capacity and elution efficiency [83]. 
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Ion exchange, especially strong cation exchange chromatography, can be also employed for both 

the separation of peptides and the enrichment of phosphopeptides. Separation is provided by 

charge interactions between the analyte and the stationary phase [95]. The stationary phase 

containing negatively charged strong acidic groups, such as sulfonic acid derivatives, which have 

affinity for positively charged groups. Tryptic peptides at a low pH typically have a +2 or +3 net 

charge due to positively charged terminal amino groups and basic amino acid residues (lysine, 

histidine, and arginine) contributing to the net charge of peptides. However, the presence of a 

negatively charged phosphate group (H2PO4-) decreases the net charge. As peptides elute from 

the column along increasing salt concentrations in SCX, peptides with higher charge state have 

a stronger interaction with the stationary phase. Therefore, phosphorylated peptides with a net 

charge of less than +1 elute earlier compare to nonphosphorylated peptides. The first fractions 

will therefore be more enriched for phosphopeptides. Given the complexity of the proteolytic 

digest of the proteome, phosphopeptide enrichment by SCX chromatography is not very specific. 

Still, it has been frequently used as a complementary technique to affinity-based 

phosphoenrichment. 

 

More targeted approaches requiring a prior knowledge of cellular signaling networks to be 

analyzed also exist. For instance, there are strategies utilizing phosphorylation motif antibodies 

and naturally occurring phospho-binding domains such as SH2 domains, which recognize and 

bind to the tyrosine phosphorylation site to study signaling networks. Perhaps the most common 

targeted approach is tyrosine phosphorylation analysis after phosphotyrosine peptide 

immunoprecipitation. This technique has been coupled with different labeling approaches to 

quantify the temporal response to growth factor stimulation [84, 85] and the effects of oncogenic 

kinases on cellular signaling networks [86, 87]. 

                       

Figure 8. Strategies   for   phospho-specific   enrichment   and   pre-fractionation techniques 
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1.2.2. Parkinson’ disease and phosphorylation 

 

1.2.2.1. Parkinson’ disease 

 

Parkinson’s disease (PD) is the second common neurologic disorders after Alzheimer’s disease. 

It is mainly caused by the premature death of dopaminergic neurons in the substantia nigra pars 

compacta (SNc) brain region and characterized by cytoplasmic -synuclein (SNCA)-containing 

protein aggregates (Lewy bodies). It mainly affects the motor system, resulting in muscle 

stiffness, resting tremor, and slowness of movement, which are critical features for the diagnosis. 

Many PD patients also suffer from postural instability and other non-motor symptoms. 

 

PD is diagnosed in up to 10 million people worldwide (http://www.pdf.org/) and its prevalence is 

known to increase with age. Less than 5% of PD cases have an onset before the age of 40, about 

one percent of the population above 60 and up to 5 percent above 85 are diagnosed with PD 

[88]. The majority of PD cases are idiopathic; the cause of the disease remains unknown. 

However, about 10% have been linked to a genetic cause. Several genes are known to segregate 

with familial forms of PD, such as LRRK2, GBA, PARK8, or SNCA. The individuals with 

monogenic forms of the disorder -caused by a single mutation in a dominantly or recessively 

inherited gene- or carrying genetic risk factors have a higher risk of developing the disease (2 to 

5%) [88]. Defined genetic causes collectively account for around 30% of the familial and up to 

5% of the sporadic cases [89]. Recently, a meta-analysis of genome-wide association studies 

(GWAS) of PD identified about 40 genetic susceptibility loci associated with late-onset PD [90, 

91]. A few of them have been identified as causal, yet the underlying mechanisms remain mostly 

elusive for the majority of them [91].  

 

PD is also a progressive disease. Patients typically experience increased severity of symptoms 

when growing older, which is associated with increased treatment costs. The most effective PD 

medication is currently levodopa (L-dopa), a central nervous system agent, which is inexpensive 

and effective. Levodopa-based treatment does not cure the disease; it mainly influences 

apparent progression and alleviates symptoms. The patients are usually diagnosed after the 

disease manifests and severe motor impairment is evident, however, by this time irreversible 

brain damage has already occurred. This highlights the urgent need for disease-modifying 

therapeutics. Unfortunately, there is no specific and sensitive tests to detect PD early to aid the 

development of new therapeutic strategies.  

 

1.2.2.2. LRRK2 kinase in PD and its cellular targets  

 

Leucine-rich repeat kinase 2 (LRRK2/Park8 loci) was identified in 2004 and it is one of the key 

genes that are linked to PD pathogenesis. Mutations in the LRRK2 gene are the most common 

http://www.pdf.org/
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cause of autosomal dominant PD, representing around 2% of total Parkinson's cases 

(https://www.michaeljfox.org/). Ubiquitously expressed LRRK2 is a large and multi-functional and 

multi-domain protein. It has four distinct domains that are implicated in protein-protein interaction 

(ARM, ANK, LRR, and WD40), two domains involved in GTPase function (Roc and COR), and 

the kinase domain. Pathogenic LRRK2 mutations are frequently found in both the GTPase 

(R1441C/G/H, Y1699C) and kinase (G2019S, I2020T) domains, suggesting a link between the 

enzymatic activity of LRRK2 and PD pathogenesis [92] (Figure 9). The most common mutation 

is the SG substitution of serine 2019 (G2019S), which accounts for 4% of familial and 1% of 

sporadic PD cases worldwide [93]. This mutation resides in the activation loop of the kinase 

domain and increases its activity of about 3-fold. Strikingly, mutations in LRRK2 are also found 

in non-familial forms of PD, and the pathology of sporadic and LRRK2-linked PD is almost 

indistinguishable. This suggests that a shared LRRK2-driven molecular pathway is driving 

pathogenesis. Thus far, LRRK2 has been associated with various cellular processes, including 

mitochondrial disease, vesicular trafficking, and autophagy. Several studies reported pathogenic 

LRRK2 driven functional alterations in the same pathways as well as in lysosomal degradation 

and immune responses [93] (Figure 9).  

 

Although some potential LRRK2 substrates, including ezrin/radixin/moesin proteins, have been 

described in the last decades [94-96], true and reproducible physiological targets of LRRK2 had 

proven elusive for a long time. Martin Steger from our group previously identified several Rab 

GTPases  (Rab8A, Rab10, and Rab12) as physiological targets of LRRK2 [2] (Figure 9). The 

phosphorylated Thr/Ser residue on Rab proteins is highly conserved in ~50 Rab proteins and lies 

within their effector-binding switch-II motif. The Rab GTPase family is involved in the regulation 

of intracellular membrane trafficking pathways. They cycle between cytosol, where they are 

bound to a protein called GDI (GDP Dissociation Inhibitor) and membrane compartments where 

they are found in GTP-bound active form and recruit specific effector proteins [97]. They play 

important roles in the formation of transport vesicles, docking and fusion of those vesicles with 

target membranes and binding of motor proteins for vesicle transport [97]. Our group showed 

further that the PD-associated mutant LRRK2 (in the hyperactive form) deactivates Rab proteins 

by phosphorylation, which leads to reduced affinities for GDIs and results in their accumulation 

at the cell membrane. 
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Figure 9. Parkinson-associated mutations that activate LRRK2 kinase activity a subgroup of RAB 

GTPases phosphorylated by LRRK2 and that regulate various cellular processes. 

 

1.2.2.3. LRRK2 inhibitors and clinical trials 

 

Pathogenic mutations in LRRK2 are found in both sporadic and familial PD patients and increase 

its kinase activity. LRRK2-associated PD cases, whether familial or not, share similar 

pathophysiological processes. As LRRK2 associated PD closely resembles idiopathic PD (iPD) 

LRRK2-targeted therapies may be useful for the treatment of a large group of patients. Together, 

these make LRRK2 a promising target for the treatment of PD. More than 100 compounds 

targeting LRRK2 kinase activity have been reported in the last decade, evidencing the massive 

interest in therapy of LRRK2-dependent PD [98]. Some inhibitors, including MLi-2, are in active 

preclinical development [99]. Recently, Denali Therapeutics has undertaken pre-clinical research 

with selective LRRK2 inhibitors, known as DNL201 and DNL151. Safety and target engagement 

of DNL201 have already been assessed, and it has passed the phase I in a study of healthy 

volunteers [93].  

 

Insufficient measures of drug target engagement are one of the largest challenges in clinical 

trials. There is a great need to monitor LRRK2 kinase activity and reliably quantify these 

biomarkers in biofluids and human-derived cells. Such tools would be highly valuable to (i) assess 

target engagement and monitor compliance of LRRK2 kinase inhibitors and treatment efficacy, 
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(ii) detect non-manifesting carriers early to prevent disease onset, and (iii) stratify idiopathic PD 

patients who could benefit from LRRK2 based therapies.  

 

To assess LRRK2 activity, phosphorylations at Ser910, Ser935, Ser955, and Ser973 had been 

the only option as they are highly responsive to inhibition of LRRK2 activity although the upstream 

kinase remains unknown [100-103]. However, these phosphorylations do not correlate with 

intrinsic cellular LRRK2 kinase activity as many knock-in pathogenic mutations were shown not 

to affect them, and S935, in particular, is still phosphorylated in kinase-inactive LRRK2 [104, 

105]. Another conserved LRRK2 fingerprint is the autophosphorylation at the Ser1292, which 

correlates well with LRRK2 kinase activity [106, 107]. However, pS1292 has been mostly 

detected in models and systems where LRRK2 was overexpressed or enriched because it has 

very low occupancy in tissue [106, 108, 109]. There is also no sensitive phospho-specific 

antibody available to reliably detect and quantify this phosphorylation. Furthermore, the 

quantification of this site by an MS-based assay is difficult as the proteolytic sites around Ser1292 

phosphorylation are either too close or too far to produce a peptide that can be detected by MS. 

Additionally, miscleaved tryptic peptides covering this site are produced with low and variable 

yield thereby complicating absolute quantification. 

 

Among the substrates of LRRK2, Rab phosphorylations have emerged as promising readouts to 

monitor LRRK2 activity as all pathogenic mutations in LRRK2 increase Rab phosphorylation in 

vivo [110-112]. In this thesis, one of our aims was to quantitatively assess LRRK2-mediated low 

levels of Rab phosphorylation by a sensitive and robust mass spectrometry (MS)-based assay 

in bodily fluids and/or PD patient-derived cells or tissues.  

 

1.2.2.4. Biomarkers of Parkinson’s disease 

 

Modern medical science is driven by the idea that inter-individual biological variances can 

determine the differences in disease presentation and response to treatment [113]. Investigation 

of diseased tissues or body fluids of individuals might reveal inter-individual differences, provide 

biological markers diagnosing diseases in early stages and predict disease progression. In 

particular, early diagnosis of PD, before substantial neurodegeneration occurs, could be key to 

slow progression of the disease and prevent dopamine loss. Effective disease-modifying therapy 

needs to be initiated before or with the disease onset. However, there are currently no reliable 

and sensitive biomarkers to detect PD early. Such biological markers could assist in early and 

differential diagnosis (diagnostic biomarkers) of the disease and in tracking its progression 

(prognostic biomarkers), and monitoring whether and how patients respond to a therapy 

(predictive and treatment response biomarkers). 
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Although there is still no PD-specific biological marker available, several potential candidates 

have been reported in the past several decades [114]. Among them, α-Synuclein has attracted 

substantial attention and has become one of the most investigated potential molecular 

biomarkers of PD [115]. Human α-syn - encoded by the SNCA gene - is expressed in the brain 

and found in an aggregated form (Lewy bodies) in the brain tissue of PD patients, which is a PD 

hallmark [116]. A mutation in the SNCA gene causes one of the monogenetic forms of PD. It has 

been suggested that α-syn can be secreted into the extracellular space of the brain and therefore 

it should be detectable in biofluids [117]. Indeed, some biomarker studies have reported changes 

in the levels of α-syn in CSF and plasma of PD patients compared to control individuals [118-

120]. When secreted at high concentrations, extracellular α-syn can potentially damage healthy 

functioning neurons and spread the PD pathology by propagating in a prion-like fashion [121].  

 

Apolipoproteins are also involved in the development of many neurodegenerative disorders, and 

they could potentially be used as PD biomarkers [122]. Especially, two of them - apolipoprotein 

A1 (ApoA1), the main constituent of high-density lipoprotein (HDL) particles, and apolipoprotein 

E (ApoE), responsible for lipid transportation in the brain- have been suggested as PD 

biomarkers. Lower levels of apoA1 have been reported in the CSF of PD patients [123, 124], 

potentially meaning that less efficient lipid transport leads to reduced brain cholesterol 

homeostasis [125]. Moreover, orexin, a neuropeptide hormone expressed by a small number of 

neurons in the hypothalamus, was found to be lower in PD patients compared to no-PD subjects 

and thereby correlate with the severity of disease. As this hormone regulates many physiological 

functions, including the sleep-wake cycle [126], low levels of orexin could explain excessive 

daytime sleepiness from which PD patients frequently suffer in the late stages [127].                                   

                                            

The development of useful biomarkers generally depends on the availability and the quality of 

collections of diseased tissues or body fluids of individuals. Tissues like the brain are usually not 

easily accessible as they can only be collected after surgery or autopsy. Arguably, the analysis 

of cerebrospinal fluid (CSF) would be the ideal strategy for PD as it primarily manifests in the 

central nervous system and has no barrier to the brain fluid. However, CSF is highly challenging 

to obtain since it requires invasive techniques for sample collection. In contrast, other body fluids 

are easily accessible in living patient; especially urine has the advantage that it can be obtained 

in non-invasively. It also contains proteins from distal organs (potentially also from the brain). 

However, it remained to be investigated if and to what extent PD and other neurodegenerative 

disorders affect the urinary proteome. We have developed a pipeline combining the streamlined 

and highly reproducible MStern workflow [20] with our state-of-the-art DIA proteomics workflow 

for urinary proteome profiling in PD, as discussed later in this thesis. 
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1.2.3. Ubiquitin and ubiquitin-like modifications  

 

The ubiquitin fold is a versatile module that comprises a structurally conserved protein family that 

regulates a plethora of processes in eukaryotic cells [128]. The high interspecies sequence 

conservation indicated that their biological function is also highly conserved. Unlike small 

chemical modifications of amino acids, which regulate protein function, such as phosphorylation, 

ubiquitin (Ub) itself is a small protein that is coded by four genes in the human genome. It has 

remarkable conservation in eukaryotic organisms, differing at only three out of 76 positions 

between yeast and human. Most ubiquitin-like modifiers (Ubl) such as Nedd8 and Sumo are also 

found in almost all eukaryotes. These proteins act as signals and share a common conjugation 

mechanism. They are attached to another protein through an isopeptide bond between the 

modifier’s terminal glycine and an amine group of the target protein, provided by either a lysine 

residue within sequence or by the N-terminus [128]. Furthermore, there are type II ubiquitin-like 

domains which also show significant sequence similarity to ubiquitin [128]. However, unlike 

ubiquitin that requires C-terminal chemistry, they lack the terminal diglycine signature, hence 

cannot be conjugated.  

 

1.2.3.1. Overview of the ubiquitin system 

 

The attachment of ubiquitin to a substrate protein is called ubiquitination. This process involves 

three main steps performed by different sets of enzymes: (i) activation by ubiquitin-activating 

enzymes (E1s), (ii) conjugation by ubiquitin-conjugating enzymes (E2s) and (iii) ligation by 

ubiquitin ligases (E3s). So far, two E1s, a limited number of E2s (~30), and hundreds of E3s have 

been identified in humans [129] (Figure 10). This three-step hierarchical mechanism occurs in all 

ubiquitination reactions, independent of the fate of the substrate.  

 

The highly conserved activation of the C-terminus of the ubiquitin (Ub) protein is an ATP-

dependent two-step process in eukaryotes. The formation of Ub-adenylate intermediate is 

followed by the reaction of this intermediate with an E1 cysteine residue to form an E1~Ub thiol 

ester. A fully loaded E1 carries two molecules of activated ubiquitin, one as an adenylate and the 

other as a thiol ester, which is transferred to a cysteine residue of the next enzyme in the cascade, 

the E2. E3 ligases mediate the final step, which is the transfer of Ub to the substrate. Depending 

on the E3 type, this can either occur by direct transfer of ubiquitin or after thioester formation of 

the ubiquitin with the E3. Subsequently, an isopeptide bond is formed between the lysine ε-amino 

group of the substrate and the C-terminal carboxyl group of Ub. In mammalian cells, 

ubiquitination ligation to the N-terminal amino group and non-canonical residues such as serine, 

threonine, or cysteine forming peptide, ester, or thioester linkages, have also been described. 
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The principles outlined above are well established. However, most of the time, the substrate, the 

ubiquitin, and the ubiquitin loaded E2 must all be present together at the reaction center. This 

indicates that the E3 ligases must play an important role in coordinating the alignments of multiple 

proteins involved in the reaction. Strikingly, the human genome encodes for about 500-600 

ubiquitin ligases, which is comparable to the over 500 predicted kinases. They are highly 

important to control the efficiency of the ubiquitination reaction and to confer substrate specificity. 

Given that each ubiquitin ligase targets several substrates, dissection of the diverse mechanisms 

underlying substrate recognition by E3s would help to better understand how ubiquitination drives 

various cellular functions. In general, E3 ligases contain different domains and can be 

mechanistically divided into three main classes: RING (Really Interesting New Gene)/U-box, 

HECT (Homologous to E6AP C-terminus) and RBR (RING-Between-RING) type ligases [130]. 

The RING and U box types constitute the largest E3 subfamilies. They interact noncovalently 

with ubiquitin-loaded E2 ligases and transfer ubiquitin from the E2 to the substrate in a single 

step [130]. In contrast, the HECT-type and RBR type E3s require a catalytic cysteine residue and 

form a thioester-linked ubiquitin intermediate before passing ubiquitin on to a target protein via 

the transthioesterification reaction [130].  

 

Ubiquitination is a reversible event, and its removal is mediated by several specialized families 

of proteases, the deubiquitinases (DUBs) [131]. More than 100 deubiquitinating enzymes 

hydrolyzing peptide bonds play crucial roles in recycling ubiquitin from proteasome substrates 

and in stabilizing proteins by counteracting their poly-ubiquitination.   

 

Ubiquitin can be linked to substrates as a monomer, or in the form of isopeptide-linked polymers 

called polyubiquitin chains. Eight distinctive linkages can be formed either through Met1 (linear 

Ub chain) or seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48- and Lys63). The 

polymerization state is important as its structure can influence the substrate’s fate. Ubiquitin can 

also be modified by other modifications, including phosphorylation, acetylation and ubiquitin-like 

modifies such as sumoylation [132]. This complexity was previously has called the ‘ubiquitin 

code’ [133], describing that various ubiquitin modifications create a plethora of ubiquitin chain 

topologies, which can affect the fate of a substrate protein in multiple ways.  
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Figure 10.  Summary of the ubiquitin system (adapted from [134]) 

 

1.2.3.2. Cellular ubiquitin-signaling 

 

The importance of this protein-based modification first emerged 40 years ago when its well-

known role to mark proteins for degradation and functionally distinct signals in proteasomal and 

lysosomal proteolysis was discovered [135]. Ubiquitination affects proteins in many ways and is 

also known to have non-proteolytic roles such as changing cellular localization of targets, 

modulating their activities, and altering protein-protein interactions. Large-scale proteomics 

studies have identified thousands of proteins targeted for ubiquitination [136-139], indicating that 

most proteins experience ubiquitination at some point in their cellular lifetime. 

 

The mono-ubiquitination plays an important role in many other cellular processes such as protein 

and membrane trafficking, protein kinase activation, DNA damage repair, and DNA replication 

[140]. With the discovery of different linkage types and linkage-specific enzymes, researchers 

became very interested in studying ubiquitin chain signaling to identify distinct roles of various 

linkage types. As mentioned above, besides the heterotypic chains branched from eight possible 

linkage points, Ubiquitin can harbor Ubl modifications or acetylation on Lys residues and eleven 

potential phosphorylation sites, generating a complex code of a nearly unlimited number of 

potential combinations [132]. 

 

Poly-ubiquitin chains, in particular the most abundant K48-linked chain, serve as recognition 

signals for the 26S proteasome and initiate proteolysis of the substrate, which is the primary 

regulator system for protein abundance in cells [141]. In contrast, the second most abundant 

chain type linked via K63 has various non-degradative roles, such as endosomal sorting [141]. 
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K33 linkages are  implicated in post-Golgi protein trafficking [142]. Although the cellular function 

of K6-linked ubiquitin chains remains unclear, several studies have connected it to mitophagy 

and mitochondrial quality control. The anaphase-promoting complex (APC/C), together with the 

E2 enzyme UBE2C forms K11 linkage, which is a powerful signal for proteasomal degradation 

that regulates mitotic exit [143]. K27 chain plays a role in innate immunity and DNA damage 

response which is triggered by the ATM pathway [144]. The K27-linked polyubiquitination of 

histone 2A (H2A) proteins represents the major chain type on chromatin upon DNA damage 

[145]. While K29-linked chains are known to inhibit the Wnt signaling pathway, linear ubiquitin 

chains (M1-linked) play pivotal roles in inflammatory and immune responses by regulating the 

activation of NF-κB [144]. Moreover, ubiquitin phosphorylation is involved in mitochondrial quality 

control through mitophagy, which is an important mechanism linked to neurological disorders 

such as Parkinson’s disease. The phosphorylation of Ser65 on ubiquitin by PINK1 is required for 

activation of the ubiquitin ligase Parkin. This activation is essential for the recruitment of 

autophagy receptors and promotes the formation of K6-, K11-, K48- and K63-linked chains on 

MOM proteins by Parkin (reviewed in [144]). Although we still lack a clear and complete picture 

of the biochemical mechanisms carried out by eukaryotic ubiquitin-like modifiers, many studies 

have also elucidated their essential functions. For instance, sumoylation regulates 

nucleocytoplasmic transport and cell cycle progression [146] while ISGylation plays an important 

and specific role in interferon-mediated responses to viral infection [147]. Finally, dysregulation 

of the components of the ubiquitin system contributes to many diseases, such as cancer, 

neurodegenerative diseases, cardiovascular diseases, immunological disorders, and 

inflammatory diseases [5]. Unsurprisingly, the biotechnology and pharmaceutical industries has 

started to search for modes of regulations and potential chemical inhibition of the ubiquitin 

system.  

 

1.2.3.3. Quantifying ubiquitin-signaling by MS-based proteomics 

 

Ubiquitination is one of the most challenging PTMs to study due to its size, low abundance, and 

dynamic regulation. Furthermore, the large number of proteins that constitute the ubiquitin 

system and the enormous number of ubiquitin substrates require sophisticated approaches to 

study different aspects of ubiquitin signaling, including substrates and chain architecture (types, 

length, quantity, PTMs, etc.). Mass spectrometry has become a very powerful tool in quantifying 

ubiquitin-signaling in cells and tissues, and recent advancements in MS techniques and 

biochemical methods have greatly improved our understanding of the physiological significance 

of the ubiquitin system.   

 

The pioneering method to identify ubiquitin targets used transient or ectopic expression of N-

terminal epitope-tagged ubiquitin variants, such as 6xHIS-Ub and STREP-Ubi [136, 148]. These 

variants can still be conjugated to the substrate proteins and the conjugates are then enriched 

by affinity purification. Another strategy employed biotinylation under a very stringent denaturing 
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condition to identify ubiquitinated substrates [149]. Besides the identification of target proteins, 

MS also allows the precise mapping of ubiquitinated sites on targeted proteins (Figure 11). The 

most common method takes advantage of an immunoprecipitation approach, in which 

monoclonal antibodies specifically enrich for peptides derived from the ubiquitinated region of 

proteins [137, 138, 150]. The C-terminus of the mature ubiquitin has the amino acid sequence 

KESTLHLVLRLRGG, in which the last glycine (Gly, G) is conjugated to lysine residues on target 

proteins. After proteolytic processing using trypsin the conjugated ubiquitin is released. This 

leaves two Gly residues on the modified lysine residues, generating a new type of peptide. These 

peptides are termed “ubiquitin remnant-containing peptides”. The di-glycine (di-Gly) adduct 

creates a 114.04 Da monoisotopic mass difference. Therefore, detection of this unique mass 

difference on lysine residues by MS allows the identification of both the ubiquitination site as well 

the ubiquitinated protein. The commercialization of di-Gly antibodies has significantly accelerated 

MS-based ubiquitinome analysis and enabled a variety of quantitative and systems-wide studies 

[151-155]. However, there are two major limitations of this approach. The first one is its inability 

to recognize linear ubiquitin signature peptides and the second on is that two ubiquitin-like 

modifiers, NEDD8 and ISG15, can also generate an identical di-Gly remnant on modified lysines 

when cleaved by trypsin. Therefore, it is impossible to distinguish them among all di-Gly based 

modifications detected by mass spectrometry. Although these ubiquitin-like modifications only 

account for a very small percentage of di-Gly modified peptides (<6%), the “ubiquitin remnant-

containing peptides” do not represent the pure population of ubiquitinated peptides [156]. A 

recently described antibody targeting a longer remnant generated by the LysC digestion can 

exclude ubiquitin-like modifications and allow detection of N-terminal ubiquitination [139, 157].  

 

To assess ubiquitin linkage-type, chain size and architecture, several methods have been 

developed in the last decade. Monoclonal antibodies that can recognize all ubiquitinated proteins 

or chains are important reagents in this field [158] and they have also been utilized in proteomics 

studies [143, 159]. However, these antibodies often exhibit high cross-reactivity. Ubiquitin traps, 

such as tandem ubiquitin-binding entities (TUBEs) [160], differing in number and types of UBD 

(ubiquitin-binding domain), linker length and type of epitope tag have also been engineered for 

affinity purification of ubiquitinated proteins. These tools have the advantage of protecting 

ubiquitinated proteins from DUBs during purification, and purified proteins can be further 

analyzed by western blotting or mass spectrometry. However, neither these tools nor antibodies 

can selectively recognize atypical linkages.  

 

Recently, screening for non-antibody protein scaffolds resulted in the linkage specific ubiquitin 

affinity reagents for the detection of K6 and K33-linked polyubiquitin chains [161]. Although these 

linkage specific reagents are very useful, they cannot distinguish complex topology of ubiquitin 

branches. The ubiquitin chain enrichment middle-down MS (UbiChEM-MS) method allowed the 

characterization of branched conjugates by combining chain enrichment using linkage specific 
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UBDs, minimal trypsin digestion and middle-down MS [162]. Furthermore, the recently published 

Ub-clipping approach uses an engineered viral protease that removes ubiquitin but keeps the 

branching information on the modified lysine [163]. The remaining ubiquitin and substrate 

polypeptides are kept intact. This method enables quantification of multiple diGly-modified 

branch points and can also determine co-existing PTMs on ubiquitin modification. There are also 

several antibodies suitable for Western blotting that detect small chemical modifications such as 

Ser65 phosphorylation and Lys48 acetylation.  

 

Quantitative proteomic methods, including SILAC and TMT labeling, can be coupled with the 

enrichment strategies to analyze relative changes in ubiquitination and identify perturbation-

relevant regulatory sites in complex signaling networks. Absolute quantification was also adopted 

to quantify the abundance of ubiquitin chain linkage peptides (Ub-AQUA) by employing special 

labeled ubiquitin peptide standards [164]. An alternative approach called Ub-PSAQ has the 

advantage to account for experimental loss of protein by using ubiquitin protein standards. 

Several studies that developed or utilized the tools described above have been published in the 

last decades. They improved our understanding of the complex nature of ubiquitination-

dependent regulation, the ubiquitin system and signaling.  

 

 

 

Figure 11. Methods for mapping ubiquitination sites in proteins (adapted from [129] 
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2. Aims of the thesis 

 

In this thesis, I developed and applied different MS-based quantitative proteomics methodologies 

with high accuracy and sensitivity to investigate the system-level dynamics of post-translational 

modifications, which diversify and extend protein function beyond what is directly dictated by 

gene transcripts. I primarily focused on phospho- and ubiquitin-signaling networks.  

 

In the first part of my thesis, we aimed to develop a streamlined and scalable sample preparation 

method for high sensitivity phosphoproteomics. We reasoned that such a protocol would 

substantially minimize sample loss and variability, thereby allowing high reproducibility and in-

depth coverage of small input material. Our single-run, label-free workflow, which was built on 

the EasyPhos platform could quantify over tens of thousands of phosphorylation sites and is now 

routinely and successfully used in our laboratory. Next, we applied our protocol to obtain high 

coverage and accurate proteome and phosphoproteome data from in vitro reconstituted CD34+ 

HSPCs undergoing different stages of erythropoiesis. In this study, our major goal was to gain a 

system-wide understanding of how post-transcriptional and translational mechanisms are driving 

terminal maturation. This project was carried out in collaboration with the group of Mitchell J. 

Weiss at the St. Jude Children’s Research Hospital and of Brenda Schulman at the Max-Planck 

Institute of Biochemistry. 

 

Furthermore, we developed sensitive and accurate targeted MS-based phosphoproteomics 

methods. Due to the low stoichiometry of endogenous phosphorylated peptides, accurate 

measurements of phosphorylation levels upon kinase inhibitor treatment in clinical studies are 

challenging. We applied our targeted assay to detect PD kinase LRRK2 targets by systematically 

analyzing Rab protein family members that harbor the conserved LRRK2 phosphorylation site. 

Moreover, we modified the assay to robustly detect and quantify occupancies of phosphorylated 

Rab protein in PD patient cells. This assay is now a robust, highly sensitive and specific tool to 

monitor LRRK2 activity and assess LRRK2 inhibitor efficacy in clinical studies. With the assay in 

hand, we demonstrated that compared to healthy controls, the pathogenic mutation carriers have 

more than two-fold increased pRab10 levels. Our results establish pRab10 as a treatment 

efficacy- and stratification marker. These projects were conducted in an exceptionally fruitful 

collaboration with the Alessi Lab from the University of Dundee, Suzanne Pfeffer from Stanford 

University and funded by the Michael J Fox Foundation. 

 

In the second part of my thesis, I embarked on the mass spectrometry-based analysis of the 

ubiquitinome by studying different aspects of ubiquitin signaling. In a team effort with a PhD 

student from our group, Fynn Hansen, we developed a sensitive and reproducible workflow for 

the study of the ubiquitin-modified proteome. Firstly, we aimed to investigate the power of Data 

Independent Analysis (DIA), which substantially improved data completeness and sensitivity in 
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single run of ubiquitinome analysis compared to the DDA method. To demonstrate the 

capabilities of our workflow, we also applied it to the well-studied TNF-signaling pathway and 

performed global ubiquitinome analysis of circadian rhythm. I also identified proteins modified by 

UBL3 -a novel ubiquitin-like molecule- in human cells. Furthermore, we aimed to establish a fast 

DIA workflow for yeast proteome profiling in a collaboration with the group of Brenda Schulman, 

where we subsequently used this workflow to find components and targets of the Gid E3 ligase 

complex under different metabolic conditions in yeast. Lastly, together with Brenda Shulman’s 

group we investigated how the location of the ubiquitin lysine mutation determines the distribution 

of di-ubiquitin linkage types. For this goal, we established a targeted MS strategy to quantify the 

levels of Ub chain linkage types. 

 

Since the beginning of the COVID-19 pandemic many research groups focus on the investigation 

of SARS-CoV2 and its mechanism of action to develop useful therapies. However, there were 

only a few  systems-wide  studies  of  the  cellular  correlates  of  viral  infection  at  the  proteomic  

level and they did not use the latest MS technology. Therefore, in the last months of my PhD 

study, my main objective was to use my extensive experience in MS-based proteomics to study 

host signaling processes affected by the SARS-CoV-2 at the levels of phosphorylation and 

ubiquitination. Together with the Pichlmair group at the TUM, we succeeded in obtaining a large 

picture of the infection process in lung cells at the molecular level. 
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3. Publications  

 

3.1. Phosphorylation 

 

3.1.1. High-throughput and high-sensitivity phosphoproteomics with 

the EasyPhos platform  

 

Sean J Humphrey1,2*, Ozge Karayel3, David E James1,2,4, Matthias Mann3,5* 

1 School of Life and Environmental Sciences, The University of Sydney, Australia 2 The Charles Perkins Centre, University 

of Sydney, Australia 3 Max Planck Institute of Biochemistry, Martinsried, Germany 4 Sydney Medical School, The 

University of Sydney, Australia 5 NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 

Denmark * Corresponding authors  

 

Published in Nature Protocols (2018) 

 

Advances in enrichment strategies, instrument performance, and computational analysis tools 

have enabled global studies of dynamic protein phosphorylation. However, conventional 

phosphoproteomics generally entails complex workflows that require specialized equipment and 

relatively high amounts of sample lysate (~10 mg). Typically, urea-based protein digestion is 

followed by peptide desalting and lyophilization. These steps have the potential to cause sample 

loss. To reach depths required to cover key signaling components, many phosphoproteomic 

workflows also comprise fractionation methods, resulting in numerous LC-MS/MS measurements 

per biological sample to be analyzed. Finally, phosphpeptides are enriched using IMAC or TiO2 

materials. The streamlined phosphopeptide enrichment protocol called EasyPhos was published 

by Sean J. Humphrey in 2015 to address key challenges in this sample preparation process. This 

protocol enabled the study of global phosphoproteome dynamics with minimal sample amounts 

and reduced measurement times [1]. Although the protocol was being routinely and successfully 

applied in our laboratory and allowed the analysis of phosphoproteomes at a depth of >10,000 

quantified phosphorylation sites, we still aimed for further improvements on the EasyPhos 

protocol.  

 

In this project, our objective was to make the upstream (lysis) steps of EasyPhos protocol more 

streamlined and scalable, and to obtain even higher sensitivity in phosphoproteomics. We 

eliminated protein precipitation and peptide clean-up and performed all steps in 96-well plates. 

Our protocol significantly minimized opportunities for sample loss and variability, thereby allowing 

high reproducibility and small input size (≤ 200 μg of protein starting material). The entire protocol 

only takes about one day, whereas MS measurements require less than an hour per sample. We 

published the updated protocol in detail in Nature Protocols in 2018, where it has been cited 50 

times so far. 
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3.1.2. Integrative proteomics reveals principles of dynamic phospho-

signaling networks in human erythropoiesis  

 

Ozge Karayel1,a, Peng Xu2,a, Isabell Bludau1, Senthil Velan Bhoopalan2, Yu Yao2, Ana Rita 

Freitas Colaco3, Alberto Santos3, Brenda A. Schulman4,b, Arno F. Alpi4,b, Mitchell J. Weiss2,b, 

Matthias Mann1,3,b 

1 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany 2 
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Under revision in Molecular Systems Biology (2020) 

 

Human erythropoiesis is a finely controlled multistep developmental process that results in a 

vastly remodeled proteome to form mature erythrocytes equipped with highly specialized 

functions. Over the years, focused studies have provided crucial functional insights in 

erythropoiesis; however, a system-wide understanding of how post-transcriptional and 

translational mechanisms are driving terminal maturation is still lacking. It was crucial to obtain 

high coverage proteome and phosphoproteome data to understand mechanisms underlying 

regulation in human erythropoiesis.  

 

In collaboration with the group of Mitchell J. Weiss at St. Jude Children’s Research Hospital and 

the Schulman group at our Max-Planck Institute of Biochemistry, we established a pipeline 

combining fluorescence activated cell sorting (FACS)-based cell enrichment procedures with our 

state-of-the-art proteomics and phosphoproteomics workflows. Applying the EasyPhos protocol, 

we dynamically monitored 7,400 proteins and 27,000 phosphorylation sites of five distinct 

maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. This resulted in a 

system-wide view of the functional dynamic regulation of erythropoiesis through proteome 

remodeling. Interestingly and unexpectedly, we found numerous orchestrated changes in solute 

carriers which provided new state-specific markers. This is the first phosphoproteome study to 

demonstrate direct evidence for intricate stage-specific regulation of this process by post-

translational modification. Proteomics, in conjunction with a kinome-targeting CRISPR-Cas9 

screen, we defined the ‘erythropoietic kinome’ and revealed its critical regulations, including a 

requirement for PIM1 kinase functions, in erythroid maturation. Tracking multiple signaling 

cascades along maturation stages allowed us to dissect the sequential attenuation of c-Kit and 

EPOR/JAK2 signaling pinpointing downregulation of Ras/MAPK signaling, which promotes 

terminal maturation. After initial suggestion by Brenda Schulman and Arno Alpi, I conceived this 

study and organized this multi-group collaboration from initial stages to final publication in 

Molecular Systems Biology.  
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3.1.3. Systematic proteomic analysis of LRRK2-mediated Rab GTPase 

phosphorylation establishes a connection to ciliogenesis 
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Published in Elife (2017) 

 

Using MS-based proteomics, our group, together with Dario Alessi’s group from the University of 

Dundee, discovered three Rab GTPases as the first true in vivo substrate of the Parkinson’s 

disease (PD) kinase LRRK2. This study was published  in eLife in 2016 [105]. To follow up on 

our findings, we systematically analyzed which of the Rab protein family members are targeted 

by LRRK2 by proteomics and other techniques. In a HEK293 cell overexpression system, we 

showed the phosphorylation of the equivalent residues to Thr72 and Thr73 on Rab8A and Rab10, 

respectively, in isoforms of Rab3 (3A, 3B, 3C & 3D), Rab5 (5A, 5B, 5C), Rab8B, Rab7L1 (both 

on Thr72 and Ser72) as well as Rab35 and Rab43 by LRRK2. Our results establish that LRRK2 

phosphorylates at least 14 Rab proteins.   

 

Next, we aimed to investigate which of these 14 Rab proteins are phosphorylated by LRRK2 

endogenously. To this end, we developed a high sensitivity MS method which uses isotope-

labeled (SIL) peptides equivalent to the endogenous Rab phosphopeptides of interest to guide 

targeted quantification. We recorded both light and SIL counterpart phosphopeptides in a 

multiplexed selected ion monitoring (mxSIM) scan mode on a quadrupole Orbitrap analyzer. This 

method allowed very sensitive quantification of low abundant endogenous Rab phosphorylation 

and showed that six out of 14 Rab proteins clearly were kinase substrates in an endogenous 

context. These findings were well accepted in the community and have now been independently 

verified by several groups. 
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3.1.4. Accurate MS-based Rab10 phosphorylation stoichiometry 

determination for LRRK2 activity in Parkinson's disease  
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* Corresponding authors  

 

Accepted (in press) in Molecular & Cellular Proteomics (2020) 

 

The pathogenic gain of function mutations in the kinase LRRK2 is the predominant genetic cause 

of Parkinson’s disease (PD). They increase its activity, resulting in augmented Rab10-Thr73 

phosphorylation, and conversely, LRRK2 inhibition decreases pRab10 levels. Monitoring of the 

levels of Rab10-Thr73 phosphorylation could thus be used to track PD pathogenesis or onset 

and assess LRRK2 inhibitor efficacy in cells and various tissues. This is a crucial or even 

desperate need as clinical trials cannot proceed without such knowledge. In this study, we 

developed a high accuracy and sensitivity targeted mass spectrometry (MS)-based assay for 

determining Rab10-Thr73 phosphorylation stoichiometry in human samples. Our assay uses 

synthetic stable isotope-labeled (SIL) analogues for both phosphorylated and non-

phosphorylated counterpart tryptic peptides to derive the percentage of Rab10 phosphorylation. 

It employs multiplexed selected ion monitoring (mxSIM) scans in which the endogenous peptides 

are separately admitted into an Orbitrap analyzer with the appropriate injection times that result 

in a rough equality between them for analysis. This measurement mode precisely and accurately 

quantified attomole amounts of the endogenous peptides. Using our assay, I measured Rab10-

Thr73 phosphorylation stoichiometry in neutrophils of LRRK2 mutation carriers before and after 

LRRK2 inhibition. Compared to healthy controls, the pathogenic mutation carriers displayed 

about two fold increased pRab10 levels, from 1.8 ± 0.3% to 3.36 ± 0.4%. Our generic MS-based 

assay established the significance of pRab10 as a treatment efficacy and stratification marker. 

To our knowledge, this is the first time that phosphorylation stoichiometry is measured accurately 

in patient-derived cells and used as a surrogate parameter to monitor the activity of a pathogenic 

mutant enzyme. The use of our assay in clinical trials is already on the way.  
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3.2. Ubiquitin or Ubiquitin-like modification 

 

3.2.1. Data-independent acquisition method for ubiquitinome analysis 

reveals regulation of circadian biology 
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Protein ubiquitination is a highly versatile post-translational modification regulating a plethora of 

complex cellular processes. Dysregulation of components of the ubiquitin system contributes to 

a variety of diseases, including cancer and neurodegeneration. To better understand the 

biological function of ubiquitination and ubiquitin-related mechanisms in health and disease, it is 

crucial to identify the targets of the ubiquitin machinery and to quantify the ubiquitination events. 

MS-based proteomics has become the gold standard for the analysis PTM-specific proteomes. 

However, the large-scale study of the ubiquitinome remains challenging mostly due to 

technological reasons. Data independent acquisition (DIA), especially on the Orbitrap mass 

spectrometers, holds great promise in increasing the reproducibility and depth of proteome 

analysis. Therefore, in this study, we investigated the power of DIA to improve data completeness 

and sensitivity in a single run analysis format. Compared to the DDA method, our optimized DIA 

method substantially increased the number diGly peptides quantified in single run MS 

measurements (~35,000) while also dramatically improving quantitative accuracy and 

reproducibility. Application of our workflow to the well-studied TNF signaling pathway retrieved 

the sites described over the years in a single experiment and even identified novel and 

biologically meaningful ones. We then analyzed the rhythmic ubiquitinome in a circadian model. 

Bioinformatics analysis of cycling sites unexpectedly discovered a high proportion of rhythmically 

modified membrane proteins associated with transporter functions opening up an entirely novel 

area for chronobiologists to investigate. We believe that our DIA-based diGly workflow will be of 

interest to the community to elucidate the complexity of protein ubiquitination in cell signaling and 

disease states. 
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3.2.2. UBL3 modification influences protein sorting to small 

extracellular vesicles 
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The family of ubiquitin-like proteins (UBLs), including SUMO, NEED8, and ISG15, are structurally 

similar to ubiquitin and processed by the same enzymatic steps. They also act as post-

translational modifiers that influence diverse biological processes. One of the highly evolutionally 

conserved UBLs, the UBL3/MUB protein, has been identified in Arabidopsis thaliana; however, 

its role as a PTM factor remains poorly understood. Our collaboration partners from Fujita Health 

University characterized ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) and 

its role in mammalian cells. Unlike other ubiquitin-like molecules, UBL3 modifies target proteins 

by disulfide bonding through cysteine residues at its C-terminus. To better understand the 

physiological function of UBL3 modification, I performed a comprehensive MS-based proteomics 

analysis and identified the proteins that interact with UBL3 in a manner dependent on the two C-

terminal cysteine residues. We demonstrated that UBL3 modification primarily influences the 

sorting of proteins to the small extracellular vesicles. 
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Proteome remodeling has proven to be a vital cellular mechanism in response to stress and 

changes in environmental conditions. Therefore, understanding how the proteome changes at a 

global level in response to environmental cues is crucial to uncover the underlying molecular 

mechanisms that facilitate cellular adaptation. The yeast Saccharomyces cerevisiae is a powerful 

model system for systems-wide investigation of changes to the proteome in response to a variety 

of stresses and growth conditions. Indeed, large-scale proteomics screens were pioneered in the 

yeast model and the proteomics community has achieved nearly comprehensive coverage for 

this organism. Owing to advances in the mass spectrometry technology and new acquisition 

modes, such as data-independent acquisition (DIA), we anticipate that it would now be possible 

to obtain high yeast proteome coverage by a straightforward rapid single run approach. In this 

study, we describe a systems biology approach employing plate-based sample preparation and 

rapid, single-run data independent mass spectrometry analysis (DIA). Our approach enables 

quantitative profiling of hundreds of largely covered yeast proteomes in only a few days. To 

evaluate its capability, we comprehensively and quantitatively analyzed yeast stress response. 

Furthermore, using our generic and robust methodology and an assay for protein degradation, 

we identified and validated novel substrates of the GID E3 ligase, which is a major regulator of 

cellular metabolism during the switch from gluconeogenic to glycolytic conditions. 
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One of the major roles of the ubiquitin system is to respond to environmental changes. A very 

good example for this is the response to carbon catabolite repression which induces 

gluconeogenesis in the budding yeast Saccharomyces cerevisiae as described a long time ago 

[165].  The highly conserved Gid E3 ligase complex plays an essential role in glucose-induced 

degradation (Gid) of Fbp1 –a gluconeogenesis enzyme- in yeast [166-169]. In this study, 

researchers from the Schulman group aimed to decipher the structure and molecular 

mechanisms of the GID complex. Their findings revealed mechanisms of stress anticipation and 

that the Gid is regulated through assembly with interchangeable substrate receptors induced by 

distinct environmental perturbations. 

 

To assist their study, I performed quantitative proteomic analysis of tagged Gid8 

immunoprecipitates to identify the components of the Gid E3 ligase complex. We found that Gid7 

has substantially lower abundance relative to other Gid subunits, and Gid7 deletion did not 

appreciably affect GID assembly. Additionally, we mapped lysine sites that are ubiquitylated in 

vitro by mass spectrometry of Mdh2, a well-known substrate of the complex. Ensuing structural 

models showed that the identified sites were required respectively for Mdh2 to engage Gid4 

simultaneously and to approach the Gid2 RING activated Ubc8~Ub intermediate.  
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Ubiquitin proteins can potentially be conjugated through one of their eight amino groups (seven 

lysines and the N-terminus), giving rise to a plethora of chain topologies. These different chains 

can be recognized by downstream readers of the ubiquitin code that determines the fates of 

modified proteins. Therefore, it is important to uncover features underlying the generation of 

specific chain linkages. Structural studies have shown how different ubiquitin chains vary in 

compactness and rigidity depending upon the amine through which they are linked [170].  In the 

course of chain formation, the lysines in previously attached ubiquitin serve as acceptors for the 

next ubiquitin molecule forming poly-Ub chains, however little is known about the role of the 

acceptor Lys in UB chain formation. Researchers from the Schulman group aimed at 

investigating the potential roles of acceptor lysine architecture on ubiquitylation. We contributed 

to this study by establishing a targeted MS strategy to quantify the distribution of Ub chain linkage 

types. We showed that the location of the ubiquitin lysine mutation determines the distribution of 

di-ubiquitin linkage types.   
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At the end of 2019, several cases of severe pneumonia were reported in Wuhan in eastern China, 

and early in January 2020, next-generation sequencing revealed a novel coronavirus, later 

named SARS-CoV-2, as the cause for this disease. High infectivity of SARS-CoV-2 resulted in 

rapid global spreading. Thus, the coronavirus pandemic, also known as the COVID-19 pandemic, 

arguably became the most serious global health crisis of our time.  

 

The sudden emergence of SARS-CoV-2 urgently requires an in-depth understanding of the viral 

infection process at the molecular level. In collaboration with the group of Andreas Pichlmair at 

the TUM, using state-of-the-art mass spectrometry techniques, we characterized the impact of 

viral infection on protein abundance, ubiquitination and phosphorylation in a time-resolved 

manner. Building on my previous experience and technological developments, I led the efforts 

on PTM analysis of virus infection on the Max Planck side of the collaboration. The information 

we have gained about the dynamic modulation of multiple host signaling pathways upon virus 

entry into host cells enabled us to identify unique and common molecular mechanisms of SARS 

coronaviruses. We hope that our resource data will provide an important basis for further 

translational research and likely lead to new approaches for the search for antiviral compounds.  
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4. Discussion and Outlook 

 

In this thesis, I have demonstrated that improvements in the sensitivity, throughput and 

performance of MS-driven signaling approaches can greatly accelerate systems biology as well 

as clinical research, revealing rich and complex insights into cellular networks in health and 

diseases. Looking forward, the sensitive and quantitative proteomics strategies developed in this 

thesis can be to other biological scenarios and particular in diseases, where sensitive PTM-

specific proteomics profiling of primary tissues and individual patient samples may aid precision 

medicine in the future. 

 

Our optimized EasyPhos platform addresses important issues of in-depth quantitative 

phosphoproteomics as it requires minimal sample amounts and measurement time without 

compromising depth of analysis. It makes large-scale and high-throughput signaling studies 

feasible for samples with low amounts such are typically available from primary cells. Our 

unbiased system-wide study of erythropoiesis demonstrated the breadth and depth of coverage 

that can now be achieved by MS-based proteomics and our EasyPhos technology. Here, the 

analysis of phosphorylation-based signaling in purified and differentiated erythroid precursors at 

distinct maturation stages generated data that can be mined for hypothesis generating problems 

related to erythroid biology. It would be also interesting to investigate other post translational 

protein modifications such as ubiquitination in the same system especially as we already 

observed distinct regulation of members and targets of the ubiquitin machinery.  

 

Quantitative completeness is an important aspect of large scale PTM proteomics and represents 

a particular analytical challenge in data dependent analysis (DDA)-based workflows. Recently, 

the Olsen group showed that converting from a DDA to a DIA workflow dramatically increases 

the number of phosphorylation sites that can consistently and significantly be quantified in a 

single run analysis [171]. However, DIA suffers from lower throughput compared to single run 

TMT-based workflows. The latest advances in nanoflow liquid chromatography, such as the new 

LC system called Evosep, allow rapid, robust and deep DIA-based proteome and 

phosphoproteome profiling [172]. It significantly reduces the overhead time between sample pick 

up and start of MS measurement by using pre-formed gradients that already contain the sample. 

In our COVD19 study, we generated proteome and phosphoproteome time-course data on 

infected using the Evosep system and DIA-based label-free quantification. Using these state-of-

the-art mass spectrometry and LC techniques, we characterized the impact of viral infection on 

protein abundance, ubiquitination and phosphorylation in a time-resolved manner by quantifying 

around 7,500 proteins, 5,000 ubiquitination and 12,000 phosphorylation events.  

 

Given the central importance of ubiquitination, we also investigated the power of DIA for 

improving data completeness and sensitivity in large scale ubiquitinome analysis. Our sensitive 
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and robust DIA-based workflow was capable of identifying around 35,000 diGly peptides in single 

run measurements with unprecedented quantitative accuracy. Importantly, the workflow requires 

no offline fractionation, making it easy to implement and could be also applied to quantify other 

PTMs relying on antibody-based enrichment such as lysine acetylation and tyrosine 

phosphorylation. One disadvantage of our workflow is that its sensitivity is currently limited by 

the antibody-based enrichment, which requires 0.5-1 mg of protein material. To enable the 

analysis of systems such as human primary cell culture models where protein material is limited, 

we need further increase in sensitivity. This could be provided by either scaling down the need 

for high input amount, e.g. improving antibodies, or eliminating the steps that cause sample loss. 

For instance, omitting a peptide-clean-up step like in our EasyPhos protocol would further 

improve throughput and reproducibility of ubiquitinome analysis, making the entire workflow more 

streamlined. Furthermore, DIA-based ubiquitinome analysis would also likely benefit from the 

Evosep LC system, but this remains to be investigated in future studies.  

 

One bottleneck for DIA analysis is that its performance with a project-specific spectral library is 

superior in terms of the coverage and quantification to library-free DIA which is much easier to 

implement [171, 173]. There are considerable efforts currently being invested into producing 

prediction tools for MS/MS spectra and retention time to make library-free approaches feasible. 

DIA analysis without need for specific libraries will surely simplify DIA workflows for PTMs and 

make them more amenable for the proteomics community [174].  

 

In our quest towards precision medicine, we also showed that PTM-specific proteomics can 

provide valuable insights into cellular network function in pathophysiological contexts. In a 

breakthrough for the field, using genetic mouse models, specific inhibitors and EasyPhos 

workflow, Martin Steger from our group has identified and verified a subset of Rab GTPases as 

bona fide substrates of Parkinson’s disease kinase LRRK2. Among those, Rab10 appears to be 

a key physiological kinase substrate as we later showed that and all known pathogenic forms of 

LRRK2 enhance this phosphorylation and conversely inhibition of LRRK2 by small molecule 

inhibitors decrease it. In this thesis, I further aimed to establish the relevance of pRab10 as a PD 

marker by a targeted phosphoproteomics approach. This led to an accurate and highly-sensitive 

targeted MS-assay for determining the Rab10 phosphorylation stoichiometry and how it changes 

in Parkinson’s disease. Using stable-isotope labeled spike-in peptides and a differential filling 

strategy for an Orbitrap analyzer, our assay enabled the quantification down to 50 attomoles, 

much beyond what is detectable by typical immunoassays and in a much more specific way. We 

were able to capture very small (around 1-2%) but significant phosphorylation differences 

between healthy controls, idiopathic PD patients and PD patients with defined genetic cause. We 

showed that pRab10 stoichiometry when measured precisely using targeted MS-based 

phosphoproteomics method can serve as a robust target engagement and patient stratification 

marker in clinical studies. In this study, we used neutrophils to demonstrate the potential of our 
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assay as we found that these cells contain relatively high levels of both LRRK2 and Rab10. It 

would be interesting to investigate whether pRab10 can be detected in other tissues such as 

brain or bodily fluids such as cerebrospinal fluid (CSF). We focused on two different mutation 

carriers with PD: LRRK2 G2019S and VPS35 D620N and analyzed a small cohort. We believe 

that analysis of larger cohorts and inclusion of patient samples with higher LRRK2 activity, such 

as the R1441G/C mutations, should further establish pRab10 as a PD marker.  

 

Furthermore, our targeted mass spectrometric assay for accurate and sensitive measurement of 

phosphorylation levels is completely generic and not restricted to PD. It could be applied to 

measure phosphosite occupancies of prominent oncogenic factors to study how their levels 

influence tumorigenesis. The only limitation of our assay is its limited throughput due to gel-based 

enrichment of the target protein, especially when applied to very large cohorts. Our group recently 

developed a ‘global targeting approach’, bridging the approaches of shotgun and targeted 

proteomics (MaxQuant.Live platform). In this strategy, tens of thousands of precursor ions can 

be isolated in targeted manner in real-time, followed by fragmentation in single LC-MS run. It 

significantly improves sensitivity using elution time prediction algorithm based on the 

endogenous background population. We envision that the MaxQuant.Live global targeting 

approach will allow routine targeting of several disease-associated ions in a single MS run and 

eliminate up-front enrichment step as it significantly improves sensitivity on the MS side. This 

platform can be readily extended to PTM-specific peptides to measure them globally with very 

high reproducibility and accuracy. In summary, developments described in my thesis have 

contributed to a future in which we can elucidate and follow PTM-based processes in cellular 

biology and pathophysiology in unprecedented scale and detail, an important basis of system 

biology and precision medicine.  
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Urinary proteome profiling for stratifying patients with familial Parkinson’s 

disease 
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Parkinson’s disease (PD) is a prevalent neurologic disorder which is diagnosed in up to 10 million 

people worldwide. However, there are currently no treatment strategies and therapeutics that 

alter the course of the disease. Their development would greatly benefit from specific, sensitive, 

and non-invasive clinical assays and biomarkers to detect PD early and monitor disease 

progression and treatment efficacy. Together with Sebastian Virreira Winter and in addition to 

my other studies, I developed a scalable and sensitive proteomics workflow for urinary proteome 

profiling by combining high-throughput sample preparation with state-of-the-art MS-based 

proteomics. Using this workflow and minimal sample volumes, we quantified more than 2,000 

proteins in each of more than 200 urine samples s from two independent cohorts. The urinary 

proteome was significantly different between PD patients and healthy controls as well as between 

LRRK2 G2019S carriers and non-carriers in both cohorts. We observed high overlap of proteins 

exhibiting significantly perturbed levels in the two independent cohorts. This study demonstrates 

that valuable information can be inferred from the urinary proteome for neurodegenerative 

diseases. Strikingly, our data revealed strong lysosomal dysregulation in individuals with the 

LRRK2 G2019S mutation and urinary proteome profiles. Using machine-learning techniques, this 

alone can remarkably well classify pathogenic LRRK2 carriers from controls and non-manifesting 

carriers from those who develop the disease. 
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