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Zusammenfassung

Ein Hauptergebnis dieser Dissertation ist die Entwicklung von Metric Gaussian Varia-
tional Inference (MGVI), einer Methode zur approximativen Inferenz in extrem hohen
Dimensionen und für komplexe probabilistische Modelle. Dazu ist zunächst eine hin-
reichend flexible Approximation erforderlich, um die tatsächliche Posterior-Verteilung
genau genug zu erfassen. Desweiteren skaliert die Anzahl der dafür benötigten Param-
eter unvorteilhaft mit der Anzahl der Modellparameter. Um beispielsweise die Korre-
lation zwischen allen Modellparametern explizit auszudrücken, ist ihre quadratische
Anzahl von Korrelationskoeffizienten erforderlich. Bei Szenarien mit Millionen von
Modellparametern ist dies nicht machbar.

MGVI überwindet diese Einschränkung durch das Ersetzen der explizite Kovari-
anz mit einer impliziten Approximation, die nicht gespeichert werden muss und auf
die über Stichproben zugegriffen wird. Dieses Verfahren skaliert linear mit der Prob-
lemgröße und erlaubt es, die vollen Korrelationen auch bei extrem großen Problemen
zu berücksichtigen. Aus diesem Grund ist es auch auf wesentlich komplexere Setups
anwendbar.

MGVI ermöglichte eine Reihe von ehrgeizigen Signalrekonstruktionen, von mir und
anderen, welche vorgestellt werden sollen. Dabei handelt es sich um eine zeit- und fre-
quenzaufgelöste Rekonstruktion des Schattens um das Schwarze Loch M87∗ mit Daten
der Event-Horizon-Telescope Kollaboration, eine dreidimensionale tomographische
Rekonstruktion von interstellarem Staub innerhalb von 300pc um die Sonne mit
Daten des Gaia Satelliten, medizinische Bildgebungsalgorithmen für Computertomo-
graphie, einer Faraday-Rotationskarte des gesamten Himmels mithilfe der Kombina-
tion mehrerer Datenquellen und schließlich gleichzeitiger Kalibration und Bildgebung
mit einem Radiointerferometer.

Das zweite Hauptergebnis dieser Arbeit ist ein Ansatz zur Kombination mehrerer,
trainierter neuronaler Netze um Schlüsse in komplexen Fragestellungen zu ziehen.
Deep learning erlaubt es, abstrakte Konzepte zu erfassen, indem man sie aus großen
Mengen von Trainingsdaten extrahiert, anstatt sie mathematisch explizit zu for-
mulieren. Hier wird ein generatives neuronales Netz als Prior-Verteilung verwendet,
während gleichzeitig bestimmte Eigenschaften über Klassifikations- und Regression-
snetze gefordert werden. Die Schlussfolgerung wird dann in Bezug auf die latenten
Variablen des Generators durchgeführt, was mit Hilfe von MGVI oder anderen Ver-
fahren erfolgt. Dies ermöglicht es, neue Fragen flexibel durch Bayes’sches Schließen
zu beantworten, ohne dass ein neuronales Netz neu trainiert werden muss. Dieser
neuartige Ansatz des Bayes’schen Schliessens mit neuronalen Netzen kann auch mit
konventionellen Messdaten kombiniert werden.





Abstract

One main result of this dissertation is the development of Metric Gaussian Variational
Inference (MGVI), a method to perform approximate inference in extremely high di-
mensions and for complex probabilistic models. The problem with high-dimensional
and complex models is twofold. Fist, to capture the true posterior distribution ac-
curately, a sufficiently rich approximation for it is required. Second, the number of
parameters to express this richness scales dramatically with the number of model
parameters. For example, explicitly expressing the correlation between all model pa-
rameters requires their squared number of correlation coefficients. In settings with
millions of model parameter, this is unfeasible.

MGVI overcomes this limitation by replacing the explicit covariance with an im-
plicit approximation, which does not have to be stored and is accessed via samples.
This procedure scales linearly with the problem size and allows to account for the
full correlations in even extremely large problems. This makes it also applicable to
significantly more complex setups.

MGVI enabled a series of ambitious signal reconstructions by me and others, which
will be showcased. This involves a time- and frequency-resolved reconstruction of the
shadow around the black hole M87∗ using data provided by the Event Horizon Tele-
scope Collaboration, a three-dimensional tomographic reconstruction of interstellar
dust within 300pc around the sun from Gaia starlight-absorption and parallax data,
novel medical imaging methods for computed tomography, an all-sky Faraday rota-
tion map, combining distinct data sources, and simultaneous calibration and imaging
with a radio-interferometer.

The second main result is an an approach to use several, independently trained and
deep neural networks to reason on complex tasks. Deep learning allows to capture
abstract concepts by extracting them from large amounts of training data, which
alleviates the necessity of an explicit mathematical formulation. Here a generative
neural network is used as a prior distribution and certain properties are imposed via
classification and regression networks. The inference is then performed in terms of the
latent variables of the generator, which is done using MGVI and other methods. This
allows to flexibly answer novel questions without having to re-train any neural network
and to come up with novel answers through Bayesian reasoning. This novel approach
of Bayesian reasoning with neural networks can also be combined with conventional
measurement data.





1 Introduction

The success of modern physics is based on the concept that there is no authority be-
yond the empirical reality and every physical theory is challenged by the experiment.
Strictly following this principle has led to a precise and deep understanding of nature
on most scales and environments. To further our understanding, ever more complex
and sensitive experiments are conducted, demanding a careful and detailed description
of all involved quantities. Higher resolutions in space, time, and energy require more
storage and computations. The measurements themselves are noisy, incomplete, or
even sparse. Possibly weak signals are buried in other, dominant contributions. Infor-
mation of multiple datasets and sources needs to be combined to recover the quantity
of interest.

All these complications bring traditional data analysis approaches to their limits.
A strictly probabilistic formulation of the problem within the Bayesian framework
provides a path to describe such problems in all their aspects. Prior knowledge is
combined with a detailed description of the entire experimental setup. From this
a solution to the problem can be obtained by following Bayes theorem, including
uncertainties and correlations on all quantities. In practice, this is typically not
feasible analytically and approximate solutions either fail to capture the complexity
of the result or already severely struggle with moderately sized problems due to their
computational scaling behaviour.

This dissertation introduces Metric Gaussian Variational Inference (MGVI) as a
method to approximately solve large-scale and complex Bayesian inference problems.
MGVI approximates the true posterior with a Gaussian distribution. Here the issue
usually is that the number of parameters, required to specify the correlation structure
fully, scales quadratically with the number of model parameters. To avoid this issue,
often a diagonal covariance is assumed for larger problems. This is a severe simpli-
fication, which is ignorant to any correlations within the true posterior distribution.
MGVI does not require to explicitly parametrize the covariance. Instead it uses an
expression based on the inverse Fisher information metric evaluated at the mean as
an approximation. This quantity is typically only a lower bound the true uncertainty,
but it contains correlations between all parameters. We can represent this quantity
as an implicit operator, which circumvents the quadratic scaling. It is represented in
terms of a series of sparse operations, which allows us to apply the metric to vectors,
using efficient computer routines for linear algebra. This allows us to draw samples
from our approximate distribution, which are vital for the approximation. MGVI
performs a series of consecutive approximations to the posterior, iterating between
updating the covariance for a given mean and updating the mean given a covariance.
This procedure scales linearly in computational time and memory with respect to
the model parameters, while still taking correlations between all parameters into ac-
count. MGVI allows to holistically approach extremely large and complex problems,
exceeding millions of parameters.



2 1. Introduction

I will showcase five distinct applications of MGVI within different parts of astro-
physics and medical imaging. These are only partially based on my work, but it illus-
trates the wide applicability of the method. MGVI allowed to approach the problems
in unprecedented scale and/or complexity. The first example demonstrates a space-
time- and frequency-resolved reconstruction around the supermassive black hole M87∗

using the data provided by the Event Horizon Collaboration. In the second example
a three-dimensional reconstruction of the interstellar dust from starlight absorption
data and accurate parallaxes, as provided by the Gaia satellite, with exceptional spa-
tial resolution is shown. Following a similar measurement principle, example three is
about medical imaging using CT data and an elaborate model that is aware of dis-
tinct segments with their own correlation structure. We continue with an improved
Faraday rotation map of our galaxy, which fuses data of distinct sources to better
constrain the overall morphology, using knowledge on the underlying physics and ac-
counting for possible systematics. In the last example we discuss the simultaneous
imaging and calibration of a radio-interferometer.

The second main result of this thesis is an approach to perform reasoning on sys-
tems that are far too complex to fully comprehend as human, evading a rigorous
mathematical description in terms of first principles. The recent advancements in
deep learning allow to capture abstract concepts within trained neural networks to
solve certain problems. For them it is enough to have enormous amounts of examples
as training data available to master their envisioned task. So far, those networks
are not capable to perform tasks outside their initial scope and come up with novel
concepts and relations. I managed to combine several independently trained neural
networks to solve certain problems by performing Bayesian reasoning, which hopefully
is a step towards more flexible and intelligent machines in the future as well as other
open questions, such as continuous learning, uncertainty quantification, or reasoning
in general. This work was partially enabled by the capability of MGVI to efficiently
perform approximate inference in high-dimensional settings.

To achieve this, two popular kinds of trained neural networks were used. Classifi-
cation and regression networks by now are omnipresent in technological applications,
as they can efficiently check for certain traits in the input. Deep generative networks
can generate realistic examples according to a distribution underlying the training set.
This requires an implicit understanding on the topic at hand, including high-order
correlations and non-linear features. The generative model transforms a random input
vector, following a simple source distribution, into the system sample. The classifica-
tion networks can then check whether a certain property is present in this generated
sample. Bayesian reasoning allows now to invert this relation to generate samples,
following certain, predefined properties. Several constraints can be demanded simul-
taneously, only requiring networks trained on the individual sub-tasks. Instead of
laboriously re-training a conditional generative network, this approach allows to flex-
ibly assemble an analogous Bayesian inference problem from a library of prepared
networks.

Developing MGVI was not the original goal of this thesis. It emerged from working
on several large-scale and complex Bayesian inference problems. A number of con-
ceptual and numerical steps were necessary to come up with this method. To sketch
this journey and to document the progress during the research for this thesis, I want
to include two of my earlier papers. These are not the main result of this work, but
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provide valuable insight towards MGVI. The first one discusses the problem of sep-
arating a number of auto-correlated components from several noisy and incomplete
measurements. This problem is omnipresent in astrophysics, as we can only observe
the entire Universe at once and isolating individual processes is vital to explore the
underlying physics. Improving such techniques was the original goal of my thesis.
In hindsight we would formulate the algorithm and model differently, but the main
ideas of performing a variational inference using samples from the approximation, as
well as how the problem is stated remains the same. Now we would use a standard-
ized model together with MGVI to solve for all quantities simultaneously and taking
cross-correlations into account.

A discussion of the conceptual and numerical advantages of standardized models is
given in the second additional paper. The standardization is a coordinate transforma-
tion of a hierarchical, probabilistic model of continuous distributions to new model
parameters that are a-priori independent and follow a simple distribution. All the
complexity is then stored in the potentially non-linear coordinate transformations. In
this form, a large variety of models have conceptually the same structure, which is
the reason for the wide applicability of MGVI.

I also worked on a number of other projects, resulting in further papers, which
are publicly available but not published or no longer are pursued to be published in
a peer-reviewed journal. These papers are omitted from this thesis for the sake of
brevity. They either became obsolete before publication due to further developments
or resulted in a dead end, not meriting to further pursue publication. For completeness
I want to mention them at this point.

I implemented the ideas discussed in Enßlin and Knollmüller [36] to explore ways
to improve the numerical performance of the simultaneous reconstruction of a auto-
correlated signal and its correlation. In Knollmüller et al. [77] we explored the
same problem in more general settings, including different likelihoods and arbitrary,
monotonous modifications to the signals. The starblade algorithm [78, 79] approaches
the problem of separating an auto-correlated component from a point-like component
in an astrophysical context. Here, no noise is assumed and it was meant as an inter-
mediate step in larger reconstructions to speed up the overall convergence. One issue
in scenarios with good data and complex models often is that the prior is weak com-
pared to the likelihood. Therefore in reconstructions, the main goal of the algorithm
is to first satisfy the likelihood, irrespective on how plausible the separation into the
individual components is. Sorting this out is slow and laborious, as the components
always have to satisfy the likelihood. The idea behind starblade was to keep the
likelihood constant and only optimize with respect to the prior only on the resulting
the sub-manifold, and later continue with the full problem. This approach might be
interesting to further pursue in the future, but currently it does not generalize well
to other problems.

I also contributed to the python package NIFTy [10, 11, 128]. It allows to build
large-scale and complex inference algorithms and provides an implementation of MGVI
to solve them efficiently. Most of the examples in this thesis are implemented with
the help of NIFTy.

Here, I want to briefly outline the structure of this thesis. After a general introduc-
tion to the topic of this theses in the first chapter, I give a brief brief introduction of
the key concepts of probability theory and Bayesian inference in the second chapter.



4 1. Introduction

The third chapter outlines conceptually the ultimate challenge of reconstructing the
Universe simultaneously in space, time, and frequency, using all available information
from all instruments and how this can be broken down by a modular imaging frame-
work. The methods presented in this work could be a crucial step towards such a
framework.The fourth chapter contains the paper for MGVI as the first main result
of this thesis. In the fifth chapter I showcase several examples from astrophysics and
medical imaging from me and others that utilize MGVI. The sixth chapter is about
Bayesian reasoning with several independently trained, deep neural networks to ap-
proach novel problems, the second main result of this thesis. Chapter seven and eight
contain important steps towards MGVI, where the first discusses how to separate and
reconstruct auto-correlated components from several noisy and incomplete measure-
ments and the second elaborates on the numerical and conceptual advantages of a
standardized probabilistic model. I conclude in chapter nine.



2 Probabilistic Reasoning

This introduction follows loosely the first chapter of the script of the lecture on Model-
Based Data Analysis Parameter Inference and Model Testing [25], as well as the book
Probability Theory, the Logic of Science [63].

2.1 What is Probability?

Everywhere around us, we experience uncertainty and randomness. Is this a funda-
mental feature of nature or does it emerge from our ignorance about it? For example,
the toss of a coin can be fully described as a classical mechanical system. Given the
initial conditions, the behaviour of the system can be (in principle) precisely predicted
for all times. There is absolutely no randomness involved. Nevertheless, the coin toss
is the primary example of a random system. In practice we do not precisely know the
initial conditions of a system, but we still want to describe it. Probabilities allow us
to do this. A defining feature of the system is that the coin always lands on one of two
sides. We can assign a certain probability for either of the outcomes. This is a highly
simplified model of the physical system of the coin toss, but captures its essence. The
price of this simplification is uncertainty. It expresses our lack of knowledge on the
system, or equivalently, our state of belief.

In the same way, we cannot know what the weather will be after a certain amount
of time. There is no intrinsic randomness associated with the temporal evolution
of the atmosphere, following the Navier-Stokes equations. The randomness emerges
from our incomplete knowledge of the entire system at any given point in time. The
chaotic nature leads to exponentially diverging trajectories and the system is unstable
under infinitesimal perturbation. These perturbations grow with time, as does our
uncertainty about the actual weather.

Embracing the ignorance on a system has lead to one of the most successful theories
in physics, namely statistical mechanics. It allows to derive the precise properties of
macroscopic systems without having to deal with the overwhelming complexity of the
microstates.

Finally, quantum mechanics seems to exhibit true randomness. According to the
Born rule, the probability of finding a system in a certain state, when measured, is
proportional to the amplitude of the wave equation. But can we understand this
in a similar fashion to the previous cases? The Schrödinger equation itself is fully
deterministic. Evolving the wave function of the entire Universe will therefore not
yield anything unexpected. What is different in the case of quantum mechanics is a
fundamental limit on how much we can know about the Universe due to the Heisenberg
uncertainty principle. The problem is that the observer himself is part of this Universe.
From his subjective perspective from the inside, he cannot know the full picture and
his best guess is the probabilistic description, originating from the lack of information.
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Because of our limited perspective regarding the world around us, understanding
probability is a necessity to understanding nature.

2.2 Probability Theory

There are two main paths towards probability theory. The first one is from a measure
theoretical perspective by formulating the rules of probability as axioms by Kol-
mogorov [81] and the second one is the extension of Aristotelian logic towards un-
certainty following Cox Theorem [30]. We will not show equivalence between both
approaches, but briefly state the underlying assumptions.

2.2.1 The Laws of Probability

The following laws correspond to the Kolmogorov axioms [81]. Let E be a set of
elementary events Ei and F a σ-algebra on E. Let (E,F , P ) be a measure space
with E ∈ F and probability measure P .

First axiom The probability of every event A ∈ F is non-negative and real.

P (A) ∈ R and P (A) ≥ 0 (2.1)

Second axiom The probability of the full set E is one.

P (E) = 1 (2.2)

Third axiom For disjunct sets A,B ∈ F , AB = ∅, the probability of the joint sets
equals the sum of the individual probabilities.

P (A,B) = P (A) + P (B) (2.3)

Cox’s Theorem [30]

The laws of probabilities, as stated above, can also be derived from the set of the
following three assumptions, according to Cox’s Theorem. The argumentation is
based on plausibilities, which are more general than probabilities, but choosing a
certain configuration in the end recovers the usual probabilities. The propositions in
the stated form are taken from Arnborg and Sjödin [9].

Divisibility and comparability The plausibility of a statement is a real number and
is dependent on information we have related to the statement.

Common sense Plausibilities should vary sensibly with the assessment of plausibil-
ities in the model.

Consistency If the plausibility of a statement can be derived in two ways, the results
must be equal.

Note that the common sense assumption includes Aristotelian logic in the limiting
case of certainty
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2.2.2 Properties of Probabilities

From the laws of probability, a number of useful properties can be directly derived.
We will make use of these throughout this thesis and want to state them here briefly.

The Conditional Probability of A given B is defined as follows:

P (A|B) ≡ P (A,B)

P (B)
(2.4)

The Product Rule immediately follows from the definition of the conditional prob-
ability:

P (A,B) = P (A|B)P (B) (2.5)

It states that the joint distribution over two events is the product of the conditional
probability of the first event given the second, multiplied by the unconditional prob-
ability of the second.

Independence of two events A and B is defined via a factorization of the joint
distribution into unconditional probabilities.

P (A,B) = P (A)P (B) (2.6)

The Sum Rule states how the joint probability depends on the unconditioned prob-
abilities and the probability of their junction.

P (A,B) = P (A) + P (B)− P (AB) (2.7)

Marginalization describes how the unconditional probability of one quantity can be
obtained by a probability-weighted sum of the conditional probabilities. This allows
us to remove dependence on certain quantities.

P (A) =
∑
i

P (A|Bi)P (Bi) (2.8)

Bayes Theorem describes how to relate knowledge on one quantity to another one
through inverting the conditional relation. It immediately follows from the product
rule and reads:

P (B|A) =
P (A|B)P (B)

P (A)
. (2.9)

It is the center piece of probabilistic reasoning and will be the foundation of any further
considerations. It states how to combine prior knowledge P (B) on the quantity of
interest, B with knowledge on A via the likelihood P (A|B) and the evidence P (A)
to obtain the posterior probability P (B|A) as an updated state of knowledge on the
system B.
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Probability Density So far we considered probability distributions P (A) over sets of
elementary event, which corresponds to discrete scenarios. We can extend this towards
continuous quantities by introducing probability densities. An event A corresponds
then to the continuous random variable a falling into intervals associated to A. The
probability P (A) is then given by the integral of the probability density over the
intervals.

P (A) =

∫
IA

da P(a) (2.10)

The above relations straightforwardly extend towards probability densities by replac-
ing sums with integrals and taking differential volumes into account.

Expectation Values of quantities under probability distributions allow to investi-
gate the behaviour of the system at hand. These are probability-weighted averages
of functions that depend on the random variables.

〈f(Ei)〉P (Ei)
≡
∑
Ei∈E

f(Ei)P (Ei). (2.11)

In the continuous case this becomes

〈f(x)〉P(x) ≡
∫
x∈X

dx f(x) P(x). (2.12)

Here, X is the domain on which the density is defined.
Commonly used expectation values are the mean x̄, in which case the function

f(x) = x is the identity, and the variance f(x) = (x − x̄)2. These are the first
and second moment of the probability distribution and allow to express the mean
expectation of the random variable, as well as the typical variation around the mean.

2.3 Bayesian Reasoning

This probabilistic framework allows us to confront our theories with hard, real-world
data. From this, we can infer properties of the system at hand and reason about its
inner workings. The approach is always the same. We have a model that captures
our expectations of the system in general, implemented within the prior distribution
P(x). Here, x summarizes all our model parameters. The relation between data y
and the state of our system, as encoded in x is expressed in a likelihood P(y|x), which
contains all details of the measurement. The product of these two distribution has
to be normalized by the evidence P(d) to obtain the posterior distribution P(x|y),
which expresses our updated state of knowledge.

2.3.1 The Coin Toss

We want to demonstrate this approach by applying it to the simple toy model of
throwing a coin multiple times. From the series of binary outcomes, either heads or
tails, we want to learn the underlying probability µ of either result.
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Likelihood

For a single trial the likelihood of a certain result y ∈ 0, 1 in this binary setting is
given by the Bernoulli distribution:

P(y|µ) = µy(1− µ)1−y (2.13)

We assume one fixed rate that does not change from one throw to the next and the
results are independent from each other. This means we do not have to care about the
order of the results. The only relevant quantity is how many k of the N trials show
heads. The likelihood of m, our data, is then given by the Binomial distribution.

P(k|µ) =

(
N

k

)
µk(1− µ)N−k (2.14)

This is the first ingredient for this problem, relating the observation on k to the
underlying rate µ. The next step is to formulate our prior knowledge P(µ) on the
rate. At this point we have many options and the freedom to implement anything we
know about the rate. One property we have to respect is that the rate is bounded
within the unit interval. We will discuss three different scenarios, but before this we
briefly consider the last missing piece for the inference, the evidence P(k). Given a
prior model P(µ), the evidence is obtained via marginalization:

P(k) =

∫
dµ P(k|µ)P(µ) (2.15)

Finally, the posterior distribution encodes to what degree certain rates are compatible
with our prior assumptions and the observed data.

P(µ|k) =
P(k|µ)P(µ)

P(k)
(2.16)

Absolute Certainty

We start with discussing the limiting case of absolute certainty. For whatever reason
we precisely know the rate µ∗, say, we are dealing with a fair coin (or at least we belief
to know this). In this case, we can express the prior in terms of a delta distribution
P(µ) = δ(µ − µ∗), which vanishes for all values except µ = µ∗, is normalized, and
becomes infinity if the argument vanishes. In this case, we obtain the posterior:

P(µ|k) =
P(k|µ)δ(µ− µ∗)∫
dµ P(k|µ)δ(µ− µ∗)

(2.17)

=
P(k|µ)δ(µ− µ∗)
P(k|µ∗)

=

{
0 if µ 6= µ∗

∞ if µ = µ∗
(2.18)

= δ(µ− µ∗) (2.19)

= P(µ) (2.20)

This tells us that in the case we are absolutely convinced about something, there
is no observation that can change our mind. We do not gain any new information
from measurements. This shows that certainty is the end of reason and we should be
careful about the things we think to know for certain.
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Uniform Prior

In this second and more realistic case, we do not want to express preference for any
rate. A priori, this corresponds to equal probability for any rate, represented by the
uniform distribution P(µ) = 1 over the unit interval. This leads to:

P(µ|k) =
P(k|µ)1∫ 1

0
dµ P(k|µ)1

(2.21)

This requires to solve the following integral in the denominator, which is given by the
Beta function B(α, β):

P(k) =

∫ 1

0

dµ

(
N

k

)
µk(1− µ)N−k (2.22)

≡
(
N

k

)
B(k + 1, N − k + 1) (2.23)

This gives us the posterior distribution:

P(µ|k) =
µk(1− µ)N−k

B(k + 1, N − k + 1)
(2.24)

This is a Beta distribution, which is bound between zero and one. The general form
of the Beta distribution is given by

B(µ|α, β) =
µα(1− µ)β

B(α, β)
. (2.25)

Interesting properties are its mean and standard deviation, which allows us to sum-
marize what rate to expect and how certain we are about it. These quantities are
given by:

〈µ〉P(µ|k) = µ̄ =
k + 1

N + 2
(2.26)〈

(µ− µ̄)2
〉
P(µ|k)

=
(k + 1)(N − k + 1)

(N + 2)2(N + 3)
(2.27)

Interesting is the limiting behaviour towards infinitely many tosses. In this case,
the additive constants become irrelevant and the rate approaches the fraction of the
number of a certain outcome to the number of total trials. The variance vanishes, as
the denominator grows faster than the numerator. In this limit we approach a delta
distribution, the case we discussed before. Being certain about something is analogous
to having seen an infinite amount of trials before. It is therefore not surprising at all
that any further tosses do not have any effect.

Another interesting feature of this system is that the uniform prior in the beginning
actually is also a Beta distribution with a certain choice of its parameters, i.e. α =
β = 1. The posterior distribution belongs therefore to the same class of distributions
as the prior, making it a so-called conjugate prior. For various likelihood distributions,
such a prior is available. These make calculating the posterior distribution especially
simple, as only the parameters have to be updated according to some rule. This
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allows, for example, to perform continual learning, in which the full information is
not immediately availble, but arrives continuously. The intermediate posterior can be
used as prior in the next step, allowing predictions the entire time.

Such a conjugate prior, however, is somewhat limiting in terms of knowledge that
can be expressed.

Dependence on Further Quantities

So far, we only considered a single rate parameter and the only available information
were the outcomes of the tosses. In real-world applications, we tend to collect vast
amount of additional information that may or may not impact the result of our
experiment. For example, we could have multiple persons throwing the coin, different
temperatures, different sides facing top before the throw, launching velocities, angular
velocities, et cetera. Let us summarize these additional informations in a vector x
for every toss. All these quantities somehow impact the outcome of the toss. We
want to learn how. For this, we have to build a model. The likelihood itself is still
a binary process with an underlying rate. But this rate is now a function of the
additional available information µ = f(x). However, we do not precisely know this
function. Instead, we select a parametric family of functions fθ(x) and try to learn
the parametrization θ. The outcome of f has to be within zero and one, which can
be achieved by applying a sigmoid function σ in a last step. A simple example is
logistic regression, where each entry in xi gets its own coefficient θi and everything
is added up µ = σ(xT θ). Possible extensions are to also consider the interactions
between quantities by introducing additional parameters for products in xixj. Also,
a more sophisticated model, which captures a notion of the underlying physics, can
be used. A popular approach nowadays are neural networks that consist of a series
of local non-linear functions and linear transformations. These are extremely flexible
and allow, given enough data, to learn everything. The inference is then performed
in terms of the parameters of the function.

P(θ|y) =
P(y|θ)P(θ)

P(y)
(2.28)

This implicitly also depends on x, but this can be regarded as part of the model.
The problem with this inference task is the normalization of the posterior, i.e. the
evidence.

P(y) =

∫
dθ P(y|θ)P(θ) (2.29)

Up to special cases, this integral is usually intractable and numerical integration is
only feasible for low-dimensional problems. One way around this is to only approx-
imately solve for the posterior distribution. Popular approaches are point estimates
by finding the most likely parameter configuration, approximating the posterior dis-
tribution with a simpler one, or sampling techniques that draw samples from the true
posterior distribution. The first one is relatively fast to obtain, but tends to perform
poorly in complex models. The sampling techniques do converge towards the true
posterior, but they tend to be computationally extremely expensive. This thesis will
present a method how to approximate the posterior with another distribution using
variational inference.
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2.3.2 Variational Inference

Here, we want to briefly outline the key concept of variational inference. Consider
our true posterior distribution P(θ|y) and another probability distribution Qη(θ)
parametrized in terms of variational parameters η. A way to measure the similar-
ity between two distributions is to compare their information content, or overlap.
This quantity is given by the Kullback-Leibler divergence (KL) [86].

DKL(Qη(θ)||P(θ|y)) ≡
∫
dθ Qη(θ) ln

Qη(θ)
P(θ|y)

(2.30)

= 〈lnQη(θ)〉Qη(θ) − 〈ln P(θ|y)〉Qη(θ) (2.31)

Note that this quantity is asymmetric in terms of its arguments. The order stated
above corresponds to the variational KL. Exchanging the posterior and the approxi-
mation corresponds to moment matching, but requires to calculate expectations under
the posterior. If we could do this, there would not be a need to approximate. We
are therefore considering the variational KL, which only requires expectation values
under the approximation. This is only a local approximation of the posterior and
tends to under-estimate uncertainties. Mathematically, it is the expectation value of
the logarithmic ratio of both distributions over the variational distribution.

Minimizing the KL-divergence with respect to the variational parameters η provides
then an approximation to the true posterior.

∂DKL

∂η
!

= 0 (2.32)

The KL-divergence still contains the true posterior distribution, including the evi-
dence. However, to achieve the goal above, this term is not required. Using Bayes
theorem, we can expand the KL-divergence.

DKL(Qη(θ)||P(θ|y)) = 〈lnQη(θ)〉Qη − 〈ln P(y|θ)〉Qη − 〈ln P(θ)〉Qη + 〈ln P(y)〉Qη
(2.33)

= 〈lnQη(θ)〉Qη − 〈ln P(y|θ)〉Qη − 〈ln P(θ)〉Qη + ln P(y) (2.34)

The last term is constant in θ and therefore also in η. We can simply drop this
term and optimize the remaining terms of the divergence. This makes it possible to
approximate the posterior distribution without the necessity of having the evidence
available.

The choice of Qη(θ) highly impacts how well the true posterior distribution can be
captured. This is always a trade-off between accuracy and available resources. In prin-
ciple, it is possible to perfectly recover the true posterior, e.g. by using renormalizing
flows [112], but this involves an enormous amount of variational parameters. Espe-
cially in the case of high-dimensional inference problems, computational feasibility is
paramount and one reverts to mean-field approximation, which assume independence
between all parameters. This is a severe simplification and obtained uncertainties
might be unreliable. In one of the next sections of this thesis we will discuss a par-
ticular choice of the approximate distribution that captures correlations between all
model parameters, while scaling linearly with the problem size. Taking these cor-
relations into account allows to approach problems with millions of parameters and
complex relations, as we will demonstrate throughout the remaining thesis.



3 A Picture of The Universe

The Universe around us contains a large variety of rich phenomena. We not only
see how it looks today, but also its origins in the furthest distances, as well as its
evolution. From the perspective of Earth, everything appears projected onto the
celestial sphere. An ever growing fleet of telescopes, on Earth and on satellites, has
revealed the physical origins of many of those phenomena. By now, almost every part
of the electromagnetic spectrum is covered by some instrument and novel insights
require the fusion of data from multiple sources. The emerging field of multi-messenger
astronomy utilizes information complementary to the electromagnetic spectrum in
form of gravitational waves and neutrinos to study the processes at their violent
origin. The Bayesian framework provide a path how to combine all this information
consistently.

All these telescopes are linked through looking at the same physical object, the
Universe. They might observe it at different locations, frequencies, or times, but
they all probe a part of some consistent physical reality. At least in principle, it has
to be possible to combine the information from all the different instruments into one
coherent picture of the Universe. Lets imagine for a moment that would be possible to
do. This imagined complete Universe picture would require at least five dimensions
(three spatial, one temporal, and one spectral) and incredible resolution in every
direction due to the highly sensitive instruments. Despite its size and complexity, it
would only be a picture of the Universe and not a full description of the Universe itself.
In the same sense that the picture of a landscape only shows us what we see and not
the highly complex geological and biological processes that lead to its emergence. The
picture, however, might show us clues about the underlying processes and principles
that shaped our Universe and we can study it to further our understanding of the
world.

For all practical purposes, this holistic approach of reconstructing a picture of the
entire Universe from all available data of all telescopes is far too ambitious to be
solved at once. Enormous datasets, complex measurements, high resolutions in five
dimensions, high-dimensional posterior inference, et cetera, will provide challenges for
generations of scientists to come.

Instead of trying to solve the entire problem at once, we want to build a modular sys-
tem, consisting of building blocks that can be assembled to solve certain sub-problems.
For example to perform imaging for individual instruments, separating astrophysical
components, analysing the spectra or temporal evolution of sources, etc. To solve
these individual tasks, certain computational blocks for the description of instru-
ments and astrophysical components are required. Adding them successfully to the
framework allows to gradually grow the over-all capabilities. For example, being able
to perform a temporal and a spectral analysis of a source enables a spectral-temporal
analysis that might reveal interesting aspects of its dynamics that otherwise would
have been missed in spatial-only and temporal-only analyses. Having descriptions of
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two instrument from the individual reconstructions allows us to fuse their data into
one single, improved reconstruction.

Such a system needs to have three ingredients. First of all, a probabilistic descrip-
tion of every measurement process involved would be needed. This would contain
models of the used instruments in a computer, digital twins of the real devices. If
exposed to a simulated sky, such digital twins will provide virtual data, which the
instrument could have produced in case this sky would have been reality.

The second ingredient would be a probabilistic description of plausible sky config-
urations. The sky meaning the sky on any subset of the three spatial, the temporal
and spectral dimension.

This description can implement typical properties of an astrophysical sky, for ex-
ample the positivity of flux. We have to be careful not be too confident about the
properties we impose on the sky, as this might blind us for novel and unexpected
features. Here, our strategy is to start with a phenomenological description in the
beginning and then refine the model to include more and more knowledge on physics,
for example the spectral shape of certain emission processes as a function of underly-
ing physical quantities, such as temperatures, densities, compositions of the emission
regions.

The first two ingredients would specify the probabilistic inference problem. The
last ingredient would be a way to solve it. The inference problem is possibly high-
dimensional and involves complex models with non-trivial interactions between the
different parts. This thesis tries to provide such a third ingredient by proposing a
probabilistic inference method that is well scaling with the large number of degrees of
freedom the envisaged imaging problems involve. The method proposed in the next
chapter tries to approach such tasks by approximating the posterior distribution with
a special Gaussian.

The problem of recovering signals from noisy and incomplete data is not unique to
astrophysics. Similar challenges are posed in other fields that rely on imaging and sig-
nal reconstruction. Examples are medical-, geo-, or bio-imaging applications. These
require their domain-specific modules, but are conceptually inter-operable with the
rest of the framework. We demonstrate the reconstruction of Computed Tomography
data in Sec. 5.3.

In the following, I want to illustrate a number of such building blocks that can be
re-used throughout many different imaging tasks in astrophysics.

3.1 Astrophysical Signals

Typically, our telescopes probe a certain part of the electromagnetic spectrum and
therefore sense some kind of photon-emitting density in space, time, and frequency.
This emissivity contains the imprint of many physical processes taking place in our
Universe. The first step is to develop a simple, phenomenological description of this
density. We always have two ways to improve the fidelity of the reconstructed picture.
Either we collect more data, or we use more sophisticated models of the signals. A
simplistic model, such as developed in the following, already allows us to combine
multiple instruments and thereby increase the amount of and scientific yield from the
available data. Another advantage of phenomenological models is that they are based
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on generic concepts that re-appear throughout the spatial, spectral, and temporal
domain, for example correlations and positivity. More physical models require deeper
insights into the concrete scenario and they have a higher risk to miss unexpected fea-
tures. Including such physical refinements would be the second step, which in return
would allow us to develop an even deeper understanding than the phenomenologi-
cal approach will offer. With such a physics based data interpretation we would no
longer only image the emissivity itself, but start to learn about the underlying physi-
cal quantities directly from raw data. For example, if we assume a thermal spectrum,
we can assign temperatures that translate to emissivity. If this is the only complexity
we would allow for, we were blind to any non-thermal effects. A conceptually sim-
pler, phenomenological model that only relies on spectral correlation can reproduce
the thermal spectrum, as well as additional features. This, however, does not tell us
directly a temperature and requires an additional interpretation step to obtain such
from it.

We can coarsely classify the appearance of the phenomena and objects in the Uni-
verse in two categories: Point-like sources and extended structures. Point-like sources
are everything that is bright enough to be visible to us, but too far away to be spa-
tially resolved, for example distant stars, Active Galactic Nuclei (AGN) [106], pulsars
[94], etc. Extended structures can be spatially resolved, either due to our proximity
or their large scale. In this class, we have for example various components in our
galactic environment [5], the distribution of galaxies in the cosmic web [20], or the
cosmic microwave background as a remnant of the Big Bang [127].

Point sources are often the dominant category throughout the electromagnetic spec-
trum and several of them show interesting structures in the temporal direction. How-
ever, those appear to us as simple objects in the spatial domain, as they are only seen
as bright spots at a certain location, following a characteristic brightness distribution
that originates from their location in the Universe. In contrast to that, the extended
structures are far more intricate due to the complex, hierarchical structure formation
processes from the largest scales to our galactic neighbourhood. One fundamental
feature of such extended emission structure is their spatial correlation. Knowing
the emission at one location contains information about the emission in its vicinity.
This correlation can be described in terms of characteristic length-scales. Another
phenomenological observation is the exponential brightness variation on linear spatial
scales. Mathematically, one can use non-linear Gaussian processes to implement these
features [37]. Many objects exhibit structures that go far beyond simple descriptions
via only two-point correlations. Examples are galaxies with spiral arms and jets, fila-
mentary structures in gas and dust, characteristic shapes of supernova remnants, etc.
More elaborate models can capture such higher-order correlations, but quickly become
complex and not practical for large reconstructions. One way around this might be
presented in Chapter 6, where I present a way to utilize deep learning techniques to
represent complex systems. Especially interesting is also to include differential equa-
tions into the model to re-create parts of the formation of their structures [62]. One
huge issue is the superposition of all these objects and phenomena on the celestial
sphere.

So far, we talked about some characteristic spatial features of the constituents of
our Universe. It appears in a completely different light when we consider the spectral
direction. In every direction, we observe the superposition of all emission and absorp-
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tion processes along the line of sight. An overview of important emission processes
throughout the electromagnetic spectrum can be found in Rybicki and Lightman [120].
In analogy to the spatial direction, we can again coarsely characterize the individual
emission processes in two categories. First, continuous spectra that are smooth and
exhibit correlation along the spectral direction. Examples of such are thermal spec-
tra, synchrotron emission of a population of relativistic electrons in radio, or Inverse
Compton scattering processes in X- and γ-ray. Often, these follow power-laws with
cut-offs related to the environment. The second category are line-emissions that orig-
inate from quantum-mechanical transitions in atoms and molecules and are narrowly
concentrated at a certain photon energy. These are the fingerprints of the chemical
composition of an objects, tracing relative abundances of elements or molecules. In
the laboratory we can precisely measure the properties of those transitions. Shifts of
these lines in the spectrum provides insight in the relative motion to us due to the
Doppler effect. The 21cm hydrogen-line, a hyperfine transition, is important to trace
the rotation of distant galaxies and it could possibly illuminate the time between cos-
mic recombination and reionization in the young Universe [107]. Phenomenologically,
an arbitrary mixture of such emission processes will consist of a smooth contribution,
as well as these characteristic lines. In fact, we can use the same building-blocks as
for the spatial direction, this time only in 1D, to model such mixtures. In contrast to
the spatial morphology of sources, we do have a good understanding on many of these
processes as we can re-create them here on Earth and precisely measure their proper-
ties. This knowledge about spectral characteristics of the physical emission processes
allows us to disentangle the observed astrophysical spectra into their constituents for
a better physical understanding. Especially in the spatio-spectral imaging scenario,
we can use this knowledge to separate the sky into its different astrophysical con-
stituents. This allows to isolate these constituents and to study their properties in
isolation.

Absorption also takes place in this spectral dimension and it shares many similarities
to emission, i.e. there are processes with continuous absorption coefficients, as well
as line-absorption, also due to atoms and molecules. In contrast to the emission,
absorption requires an illumination from another source to become evident. Stacking
multiple sources and absorbers along a line of sight might yield complex spectra. The
phenomenological model can capture such, but their interpretation is up to further
analysis.

The final direction to be discussed is the temporal domain. Many processes take
place on timescales far longer than the observational period, or even the human lifes-
pan. To us, these events appear to be static. This is due to the enormous spatial
scales and comparably low speeds. Our Galaxy spans about 100000ly in diameter and
most objects move significantly below the speed of light. Fast temporal variations in
brightness therefore require processes confined to small volumes, compared to typical
speeds in the system. This is the case for a number of point-sources. For example,
AGNs are driven by the accretion of matter onto a supermassive black hole in the
center of galaxies. These objects only extend up to several light-days, but in the jet,
matter approaches the speed of light. This allows us to observe variations on the scale
of days or below. Similarly, pulsars are rapidly spinning neutron stars that emit beams
of radiation along its magnetic poles, providing a highly periodic signal. This appears
to us as a rapidly varying point source, as the neuron stars themselves only exhibit
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diameters up to tens of kilometers. Flares of various kinds might show complex tem-
poral evolutions or quasi-periodic oscillations related to the physical processes and
environments. A continuous evolution exhibits temporal correlations, which allows
us to describe this process again in terms of its characteristic correlation lengths.
Periodicity is also a form of strong temporal correlation associated to characteristic
frequencies. In the Fourier spectrum of this signal, these are characterized in terms of
sharp features at certain locations, analogous to point-sources in the spatial domain
or spectral lines in the spectral domain.

In the emerging field of multi-messenger astronomy, photons are complemented
the with additional carriers of information, e.g. neutrinos [28] or gravitational waves
[2, 3]. They do not appear in the electromagnetic spectrum and they span their own
additional direction. Combining all these messengers can no longer be done only in
terms of a picture, but require physical models that associate those with one another.

3.2 Astrophysical Data

Astrophysical instruments come in many forms and sizes, coping with the technical
challenges to observe certain ranges of the electromagnetic spectrum, or other mes-
sengers. On an abstract level, they all probe the sky emissivity in a certain range
in time, direction, and energy. Mathematically, the instrument performs operations
to the sky, i.e. various transformations and selections, which in the end relates the
sky to the data. For example, a lens distorts light passing through. This process
follows the rules of linear optics. As light from the sky travels towards the detectors
in the telescopes, several such operations might occur. We will therefore describe the
instruments as a series of operations in the order they affect the travelling light. We
want to give a brief overview of common measurement principles and their challenges.

Modern optical telescopes collect light over large areas through advanced mirror
systems, measure the intensity in photosensitive semiconductors, and store the data
digitally. Adaptive optics allows to correct for atmospheric distortions and enables
large telescopes on the surface of Earth [114]. Similar principles can be applied to
the UV and infrared spectrum, but for these wavelengths the atmosphere becomes
intransparent. Mounting these telescopes on satellites circumvents this issue, but
makes them significantly more expensive. This is also necessary for even higher wave-
lengths in the X- and γ-ray range. Measuring these ionizing radiations relies usually
on detecting individual photons and following their trajectory through the detector,
from which incoming directions and energies can be derived. The the highest-energy
γ-rays can be measured by observing Earths atmosphere for particle showers. Simi-
larly, neutrino telescopes observe large volumes of water or ice for interaction to later
on reconstruct the event.

The previous techniques relied on the particle nature of photons, but for lower
energies and larger wavelengths the wave properties become more important. Inter-
ferometry is a highly sensitive technology that makes use of the phase information,
not only the amplitude of the electromagnetic field. Consider two antennas that
record the electromagnetic field. We can super-impose the feeds with a certain phase
that corresponds to a location in the sky. Everything from that direction interferes
constructively and many other directions cancel out each other. Mathematically, the
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antenna pair probes one location in the Fourier-transformed sky brightness. The far-
ther they are apart (and the shorter the wavelength), the higher their resolution is.
Large antenna arrays allow many combinations between pairs of antennas, filling in
the Fourier plane and thereby providing more information on the sky. As Earth re-
volves around itself, the position of an array relative to the source changes, filling in
even more of the missing information. For a exhaustive discussion see Richard Thomp-
son et al. [113]. Interferometry is mainly used for the radio spectrum, but technical
advancements allow its application also in the visible range, starting to yield extraor-
dinary results and could provide unimaginable spatial resolutions in the future [4].
Sec. 5.1 and Sec. 5.5 showcase applications using radio-interferometers.

In some cases, we can measure distances to objects, which allows us to learn some-
thing about the three dimensional structure of our surroundings. Examples are par-
allaxes to nearby objects, various standard candles, or redshift. This data can then
be used to reconstruct three-dimensional spatial maps of either the sources them-
selves, or quantities along the lines of sight through absorption processes. In Sec. 5.2
a three-dimensional reconstruction of dust using starlight absorptions and parallaxes
is shown.

One challenge throughout all measurement principles and instruments is calibra-
tion. For any kind of analysis, we have to relate the observed data to the processes on
the sky, but we do not have perfect knowledge on the internal state of the instrument.
This can be due to defects in some of its components. If they are static, we have
a chance to learn them and correct for them in the observation. Many properties,
however, change with time or have to be newly determined for every observation. Ex-
amples are thermal contractions, telescope pointings, Space- and/or Earth-weather,
degradations, etc. Calibration is the process of determining all these effects. Con-
ceptually, this is just another inference problem. Given a model of the instrument,
we want to learn its internal state from noisy and potentially incomplete data. Simi-
larly to our sky-models, these quantities may vary in spatial directions, for example
defects in the optics, temporal directions, e.g. through the atmosphere, or energy
directions (some dispersion). The associated technical processes are often extremely
complex and usually not highly relevant on their own. Here, phenomenological mod-
els are often sufficient for calibration. We can make use of the same building blocks
as for the sky model to characterize them, for example time-continuous variations,
temporarily localized interference, constant backgrounds, etc. Often for this, it is
helpful to observe a known source as calibrator and adjust the respective calibration
parameters, but this requires valuable observation time. To reduce this liability, sev-
eral methods for self-calibration have been proposed. These try to simultaneously
perform the imaging and calibration. In the Bayesian framework, this simply requires
to extend the sky model by an additional instrument model, which introduces all the
calibration parameters to the overall inference problem. This is analogous to adding
additional sky component. The image, together with the calibration solution are then
provided in terms of the posterior distribution of the overall problem. An example
with radio-interferometry data is shown in Sec. 5.5.

This becomes especially interesting when we start to combine multiple instruments.
In combination, they provide more information on the sky, which, in turn, allows to
obtain a better calibration for either instrument, further enhancing the reconstructed
sky image. This follows the Big Data paradigm that more data is not just more data,
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but better data. Combining more and more instruments in this fashion allows us to
tap into the full potential of already available data.

3.3 A Universial Bayesian Imaging Kit

How do we build a system that can do all these things? The dry answer is modularity
and pre-defined interfaces. This allows to build a large library of modules, as well
as a straightforward path to extend the framework. Every telescope of a certain
class will follow a common model. For example, most space-based telescopes have
some pointing, exposure, sensitivity, points-spread, etc. All of those correspond to
certain mathematical operations, our fundamental building blocks. Composing them
in a certain way implements this instrument, a higher-level building-block. Other
telescopes might have different operations or orders. Implementing a new instrument
therefore requires the arrangement of existing building blocks, or the creation of new
ones. The latter can be added to the pool of already existing modules to extend
the framework. The same holds for the sky models, where the phenomenological
part strongly relies on correlation modules or localized features of some kind. Every
building block requires the tedious implementation of all technicalities and underlying
concepts, but afterwards they are available to all other methods.

This is the underlying idea of the Universal Bayesian Imaging Kit (UBIK). It allows
to build complex and tailor-made models from pre-built modules to approach signal
reconstruction and imaging challenges in space, time, and energy, in astrophysics and
elsewhere. At least in principle, it allows the joint analysis of all available data with
the high-fidelity and state-of-the-art Bayesian inference methods. The first building
blocks are available and several of the mentioned combinations of instruments and
signal dimensions have been successfully demonstrated and a collection of them will
be presented in Chapter 6, which make use of the inference engine as presented in the
next chapter.

So far, only a handful of digital instrument or instrument type twins are available,
as well as signal models. For the future, it is intended to extend this significantly in
every direction to increase the overall capabilities of UBIK. With increasing complex-
ity and dimensionality of the models, we encounter new problems. The parallelization
and data-handling becomes an issue that also has to be addressed. Full parallelization
on diverse computing infrastructures, including novel GPGPU and tensor capabilities,
requires to split problems along multiple axes. With the complexity, also the number
of hyper-parameters increases and setting them becomes harder due to unintuitive in-
teractions. In the end, we have to solve high-dimensional and non-linear optimization
problems, which are hard on their own. Our envisioned signal-dimensions with space,
time, and energy in high resolution becomes an issue due to the curse of dimension-
ality. Along certain axes, but also in large parts of an image, not much is happening.
Examples are static large-scale features, or small objects embedded in nothingness.
We only need resolution at locations where something interesting is happening. This
requires the development of sparse and adaptive signal representations, potentially on
non-equidistant grids.

These are just a few challenges that need to be addressed in going forward with
UBIK. All of them are independent features and can be broken down into sub-
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problems, which are relevant problems on their own. Solving them one after another
allows to approach larger and more complex inference problem, allowing us to get
ever closer to the original vision of reconstructing a picture of the Universe.



4 Metric Gaussian Variational
Inference

This chapter is used as a publication currently submitted to the Journal of Machine
Learning Research [76]. My contribution includes the development, implementation
and testing of the idea and all examples. I also wrote the contents. Torsten Enßlin was
involved in all discussions and provided valuable feedback on the entire manuscript.
All authors read, commented, and approved the final manuscript.

4.1 Abstract

Solving Bayesian inference problems approximately with variational approaches can
provide fast and accurate results. Capturing correlation within the approximation
requires an explicit parametrization. This intrinsically limits this approach to either
moderately dimensional problems, or requiring the strongly simplifying mean-field
approach. We propose Metric Gaussian Variational Inference (MGVI) as a method
that goes beyond mean-field. Here correlations between all model parameters are
taken into account, while still scaling linearly in computational time and memory.
With this method we achieve higher accuracy and in many cases a significant speedup
compared to traditional methods. MGVI is an iterative method that performs a series
of Gaussian approximations to the posterior. We alternate between approximating
the covariance with the inverse Fisher information metric evaluated at an intermediate
mean estimate and optimizing the KL-divergence for the given covariance with respect
to the mean. This procedure is iterated until the uncertainty estimate is self-consistent
with the mean parameter. We achieve linear scaling by avoiding to store the covariance
explicitly at any time. Instead we draw samples from the approximating distribution
relying on an implicit representation and numerical schemes to approximately solve
linear equations. Those samples are used to approximate the KL-divergence and
its gradient. The usage of natural gradient descent allows for rapid convergence.
Formulating the Bayesian model in standardized coordinates makes MGVI applicable
to any inference problem with continuous parameters. We demonstrate the high
accuracy of MGVI by comparing it to HMC and its fast convergence relative to other
established methods in a number of examples. We investigate real-data applications,
as well as synthetic examples of varying size and complexity and up to a million model
parameters.

4.2 Introduction

Performing Bayesian inference in large and complex models is challenging. Analytic
posteriors are not available for non-conjugate models and only approximate solutions
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are possible. Depending on the requirements and resources, a large variety of ap-
proaches is available. MCMC sampling techniques recover the true posterior exactly
in the limit of infinite samples, but are computationally expensive. An efficient vari-
ant is Hamiltonian Monte Carlo (HMC) [34], which explores the posterior distribution
following the Hamilton equations. The choice of the parameter coordinate system is
also relevant, as it is a way to decouple the different quantities. To increase sampling
efficiency, Betancourt and Girolami [15] proposes to choose a standardized coordinate
system, in which the deep hierarchical structure of the problem is resolved and flat-
tened down. Here the reparametrization trick [69] is applied to the model parameters
directly.

A completely different approach to solve the inference problem is calculating the
Maximum Posterior estimate (MAP). To obtain it, one only has to maximize the pos-
terior probability, which is far easier than sampling the entire posterior density. This
makes the MAP approach still applicable in extremely high parameter dimensions.
The problem with it is that it does not provide any uncertainty quantification on its
own. It is also sensitive to any multi-modal feature or degenerate direction in the
posterior distribution. This results in over-fitting the data realization or delivering
implausible parameter configurations. One way to fix the shortcoming of the missing
uncertainty later on is the Laplace approximation (for details see Bishop [16]). Here
the true posterior is approximated with a Gaussian distribution centered around the
MAP estimate. The inverse Hessian of the potential landscape is adapted as covari-
ance estimate. Sometimes also the Fisher information metric is used making it a
Fisher-Laplace approximation [53, 66]. This requires, however, that MAP provides a
reasonable result in the first place, which in complex models often is not the case.

It is therefore better to take the uncertainty already into account when approxi-
mating the posterior distribution. A way to do this is Variational Inference. For a
comprehensive review on this topic see Blei et al. [18]. Here a family of paramet-
ric probability distributions is selected and the variational parameters are optimized
by minimizing the Kullback-Leibler (KL) divergence [86] between the approximate
distribution and the true posterior distribution. The KL-divergence measures the av-
erage information discrepancy between the two distributions. For large problems, the
mean-field approximation is commonly used, which scales linearly with the problem
size [22, 80]. The approximate distribution factorizes over all individual parameters,
ignoring any posterior correlation. Often Gaussian distributions are chosen as the
parametric family, which provide an uncertainty associated to the mean position,
making it Gaussian Variational Inference [89, 102]. By explicitly parametrizing the
covariance, it allows to express correlations between model parameters. Here the
problem is the quadratic scaling of the variational parameters with the dimension of
the posterior distribution, limiting full-covariance Gaussian variational inference only
to moderately sized problems.

In special cases an exact covariance can be parametrized in terms of a quantity
that only scales linearly with the model parameters [102]. The associated optimiza-
tion problem is harder than in the explicit parametrization, but efficient solvers are
investigated [67]. We want to approach problems with a more general structure, where
the linear scaling is not necessarily available.

The choice of the coordinate systems of the parameters also matter when approx-
imating the posterior distribution. Combining the previously mentioned standard-
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ization with Gaussian Variational Inference, one obtains Automatic Differentiation
Variational Inference (ADVI) [85]. The standardization extends one common vari-
ational approach to any posterior over continuous model parameters, making it ex-
tremely flexible. For high dimensional posteriors, however, one is again restricted to
the mean-field approach. To avoid the heavy computational load associated with a
full-covariance approach, Linear Response (LR-)ADVI has been proposed [49] to first
perform mean-field ADVI, and then to construct an uncertainty estimate around the
obtained mean utilizing the inverse Hessian of the KL-divergence as an uncertainty es-
timate instead of the obtained mean-field variance. This covariance estimate measures
the sensitivity of the approximation with respect to small variations in the variational
parameters, containing cross-correlation between all quantities. It follows the logic
of the Laplace approximation by first obtaining a comparably inexpensive estimate,
and then fixing certain shortcomings later on. Here again one relies on a simpler
method to find a good-enough solution. The uncertainty is then not self-consistent
with the mean estimate. A problem of this covariance estimate is again the scaling
behavior. The sparsity of the matrix depends on the number of global parameters,
which are collectively informed by multiple likelihoods. This is a problem for e.g.
Gaussian process regression, where one data point informs all latent parameters in
the standardized formulation.

Here we want to propose Metric Gaussian Variational Inference (MGVI) to perform
approximate Bayesian inference to extremely high-dimensional and complex posterior
distributions. Instead of trying to fix the correlations between all parameters in the
end, we take them into account during the optimization to obtain self-consistent mean
and uncertainty estimates. We make use of standardized model parameters, as they
permit a uniform treatment of many problems and thereby effectively widen the ap-
plicability of the method. MGVI does not directly optimize the KL-divergence for
a parametric family, instead it performs a number of subsequent Gaussian approx-
imations to the posterior distribution. It iterates between updating the covariance
with a term based on the inverse Fisher information metric evaluated at the mean
estimate and updating the mean estimate by minimizing the KL-divergence for this
given covariance. This procedure is iterated until the mean estimate is consistent
with the uncertainty estimate. The covariance estimate is equivalent to the one used
for the Fisher-Laplace approximation, as the inverse Hessian of the posterior informa-
tion is not a valid covariance at every location due to violated positive definiteness.
In comparison to the Hessian of the KL-divergence used as covariance estimate in
LR-ADVI, our covariance estimate will also be sparse in terms of global parameters,
enabling for example large-scale Gaussian process regressions as part of the model.
We achieve linear scaling with the posterior dimension by completely avoiding ex-
plicitly constructing the covariance at any time. Instead we draw samples from the
approximate Gaussian distribution using implicit operators and numerical solutions
to large sets of linear equations. All correlations are then stored implicitly within the
sample realizations, which are then used to estimate the KL-divergence and its gradi-
ent. For minimizing the KL-divergence we rely on efficient Natural Gradient descent
[7, 97]. In order to apply MGVI, a number of conditions have to be fulfilled by the
underlying model. First, all parameters have to be continuous, and not discrete. Sec-
ond, the Fisher information metric of the likelihood requires an accessible eigenbasis,
which is e.g. the case for independently sampled data. Third, the true posterior has
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to be sufficiently Gaussian, and fourth, the standardizing transformation is locally
well-approximated by a linear function and higher order terms can be neglected.

In the numerical experiments we apply MGVI to a wide range of different Bayesian
inference problems. We validate the method by comparing results to HMC sampling
in a synthetic Poisson log-normal Gaussian process regression and a hierarchical logis-
tic regression problem with US presidential election polling data. We demonstrate the
scaling of MGVI by approximating a posterior with more than a million parameters
in a binary Gaussian process classification problem with simultaneous kernel learning.
In this example we also explore the impact of meta-parameter choices for the method.
We also apply MGVI to a non-negative matrix factorization problem with a Gamma-
Poisson model on the Frey face data set. Throughout the experiments, MGVI has the
highest accuracy in most of the used metrics and is always closest to the HMC esti-
mates. It behaves similarly to full-covariance ADVI, as it captures cross-correlation
between all parameters, but is in many cases roughly one order of magnitude faster
than even mean-field ADVI, as MGVI relies on natural gradient descent and has only
half the number of variational parameters.

4.3 Variational Inference

4.3.1 Bayesian Inference

Bayesian inference in general describes how the knowledge on one quantity of a system
affects the knowledge on some other quantity of interest, following Bayes theorem:

P(θ|d) =
P(d|θ)P(θ)

P(d)
. (4.1)

The posterior distribution P(θ|d) of the unknown quantity θ given some known data
d is equal to the likelihood P(d|θ) of observing the data given a certain configuration
of θ multiplied by the prior distribution P(θ). This whole expression is normalized
by the evidence P(d).

Prior knowledge on the system is encoded in the prior distribution. The likelihood
describes how the observed data is related to the parameters of the model. The main
difficulty arises in the calculation of the evidence to obtain a properly normalized
posterior distribution.

Often this normalization is analytically intractable, especially in non-conjugate
models, which are more flexible to encode knowledge on the system. In such cases
one has to approximate the true posterior distribution, for example via Maximum
Posterior (MAP), variational inference, or MCMC based sampling techniques.

Instead of working with probability distributions, it is equivalent to discuss the
problem in terms of information H, defined as the negative logarithm of a probability
distribution P , i.e. H(. . . ) ≡ −ln (P(. . . )). Bayes theorem in this perspective reads:

H(θ|d) ≡ −ln (P(θ|d)) (4.2)

= H(d|θ) +H(θ)−H(d) (4.3)

=̂H(d|θ) +H(θ) . (4.4)
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In terms of information, the normalization is an additive constant, independent of the
quantity of interest. Leaving these terms out is indicated here by the =̂ sign.

4.3.2 Kullback-Leibler Divergence

Variational inference allows to approximate posterior distributions to complex prob-
lems within reasonable timescales [18]. One chooses a parametric family of distri-
butions Qη(θ) with the variational parameters η and minimizes the average infor-
mation discrepancy between the true posterior and the approximation, measured by
the Kullback-Leibler divergence [86], with respect to these parameters. The KL-
divergence is defined as:

DKL(Qη(θ)||P(θ|d)) =

∫
dθ Qη(θ) ln

Qη(θ)
P(θ|d)

(4.5)

≡ 〈H(θ|d)〉Qη(θ) − 〈Hη(θ)〉Qη(θ) (4.6)

=̂ 〈H(d, θ)〉Qη(θ) − 〈Hη(θ)〉Qη(θ) . (4.7)

The first term is the cross-entropy between the distributions and the second is the
Shannon-entropy of the approximation, where Hη(θ) is the negative logarithm of the
approximating distribution. Expectation values are expressed by 〈. . . 〉P(... ), noting
the respective distribution as index. In order to minimize the KL-divergence, the
normalization of the posterior is irrelevant, as it does not depend on the variational
parameters and can be dropped. The expression in the last line is equivalent to the
negative Evidence Lower Bound (ELBO) [16]. The parameter solution of minimal
KL-divergence provides the variational approximation of the original problem.

For complex models or approximations we cannot calculate the expectation values
analytically, but the KL-divergence can be estimated via samples from the approxima-
tion. Together with the reparametrization trick [69], the gradients on the variational
parameters can be estimated as well. This way we can minimize the KL-divergence
in a stochastic optimization procedure even in high dimensions and analytically in-
tractable expectation values.

When approximating the true posterior with another distribution, certain aspects
will be lost. Whether a variational approximation is useful or not depends on the
problem-specific requirements and available resources. We want to approach problems
with an enormous amount of model parameters and reasonable complexity, in which
more accurate methods are unfeasible and variational inference can still provides
answers.

4.4 Gaussian Variational Inference

Gaussian Variational Inference [102] describes variational inference with parametrized
Gaussians as the approximating family. The Gaussian distribution exhibits a number
of convenient properties, while still providing uncertainty and correlation between
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parameters. In this case the approximate distribution is

Qη(θ) = G(θ|θ̄,Θ) (4.8)

=
1

|2πΘ| 12
e−

1
2

(θ−θ̄)†Θ−1(θ−θ̄) , (4.9)

with variational parameters η = (θ̄,Θ) and corresponding KL-divergence

DKL

(
G(θ|θ̄,Θ)||P(θ|d)

)
=̂
〈
H(d, θ)

〉
G(θ|θ̄,Θ)

−
〈
Hθ̄,Θ(θ)

〉
G(θ|θ̄,Θ)

. (4.10)

In order to perform the variational inference of the parameters, the expression above is
minimized with respect to the variational mean θ̄ and covariance Θ parameters. The
second term in this equation is the Shannon entropy of the approximate Gaussian
with the analytic form 〈

Hθ̄,Θ(θ)
〉
G(θ|θ̄,Θ)

=̂
1

2
ln |2πeΘ| . (4.11)

Here | . . . | expresses a determinant and e is Eulers’ number. Note that this expression
is independent of the variational mean parameter θ̄. To efficiently optimize the KL-
divergence we require gradient information with respect to the variational parameters.
Derivatives with respect to the mean and covariance are simply the expected gradient
and curvature over the Gaussian distribution, respectively [102].

∂

∂θ̄
DKL =

〈
∂

∂θ
H(d, θ)

〉
G(θ|θ̄,Θ)

, and (4.12)

∂

∂Θ
DKL =

1

2

〈
∂2

∂θ∂θ†
H(d, θ)

〉
G(θ|θ̄,Θ)

− 1

2
Θ−1 . (4.13)

For the mean parameter only the cross-entropy term is relevant and if we were to
optimize only with respect to this parameter, we avoid the necessity of calculating
determinants of possibly large matrices. Setting the derivative with respect to the
covariance to zero, we obtain the following implicit relation:

Θ−1 =

〈
∂2

∂θ∂θ†
H(d, θ)

〉
G(θ|θ̄,Θ)

(4.14)

=

〈
∂H(d, θ)

∂θ

∂H(d, θ)

∂θ†

〉
G(θ|θ̄,Θ)

−
〈

1

P(d, θ)

∂2P(d, θ)

∂θ∂θ†

〉
G(θ|θ̄,Θ)

. (4.15)

This relation serves as starting point for Metric Gaussian Variational Inference. We
will set up an iterative fixed-point scheme where we start with some initial mean
value θ̄, and adapt an implicit solution for the covariance, similarly to the expression
above. For this Gaussian distribution we can then optimize the KL-divergence only
with respect to the mean parameter, keeping the covariance fixed. Once it is opti-
mized, we update the covariance to the implicit solution for the new mean parameter.
This procedure is then iterated until convergence. Unfortunately the right side of the
above equation is not necessarily compatible with a covariance, as in general it is not
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strictly positive definite. The first term, containing the outer product of first deriva-
tives certainly is. Problematic is the second term, which involves second derivatives
of the probability distribution. It might contain negative eigenvalues, harming the
overall positive definiteness of the covariance of the Gaussian in this approximation.
For this reasons we cannot use this expression. It is also a dense matrix for global
parameters, which are collectively informed by common likelihoods. We will instead
use a similar expression as covariance based on the inverse Fisher information metric
as approximation, which overcomes these limitations.

Often the covariance is parametrized explicitly in terms of another matrix A via Θ =
AA† to ensure positive definiteness. The problem with an explicit parametrization
of the variational covariance is the quadratic scaling in the model parameters. It
allows only for moderately sized problems. To overcome this limitation, usually a
diagonal covariance is assumed, which is a mean-field approach. A diagonal covariance
approximation cannot capture correlations between posterior parameters, severely
limiting the expressiveness of the result.

We cannot calculate the KL-divergence for arbitrary problems analytically, but it
is always possible to approximate the expectation value through sample averages.
Therefore, we optimize a stochastic estimate of the KL-divergence with the corre-
sponding stochastic gradient.

〈H(d, θ)〉G(θ|θ̄,Θ) ≈
1

N

N∑
i=1

H(d, θi∗) =
1

N

N∑
i=1

H(d, θ̄ + ∆θi∗) (4.16)

θi∗ ∼ G(θ|θ̄,Θ)) or ∆θi∗ ∼ G(θ|0,Θ) . (4.17)

We indicate sample realizations with the lower ∗-index, and note ∆ for zero-centered
Gaussian samples. Splitting the sample in a mean contribution and Gaussian residual
θi∗ = θ̄ + ∆θi∗ allows us to adapt the samples to an updated mean, which is the
reparametrization trick in its simplest form [69]. In the end we will be following
an implicit optimization scheme, as briefly discussed above. For this it is therefore
sufficient to obtain residual samples ∆θi∗ to learn only the mean θ̄ of the approximate
Gaussian for a given covariance.

4.5 Standardization

Deep hierarchical Bayesian models are used to describe sophisticated models and com-
plex dependencies and they strongly vary throughout different applications. To re-
move large parts of the problem-specific complexity from the variational inference, we
prefer to work in standardized parameter coordinates, following Automatic Differen-
tiation Variational Inference (ADVI) [85]. In hierarchical models, certain parameters
might be restricted to only a certain parameter range. Performing the variational
approximation with a Gaussian in these original coordinates might not be possible
due to the infinite support of the Gaussian distribution. In the standard coordinates
all parameters follow a priori a standard Gaussian distribution, removing this compli-
cation. This transformation opens the door to apply the here proposed algorithm to
any problem with continuous parameters. It might not be necessary to standardize
problems with infinite support on all parameters, and there the method should also
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work in the original coordinates. We do not want to treat this special case separately
and choose the more unified standard parametrization. In the hierarchical formula-
tion the interdependence between the different quantities might be strong, resulting
in a numerically stiff problem. The hierarchical structure is resolved by applying the
reparametrization trick [69] to the model parameters, leading to a flat model. In the
context of HMC sampling, these standard coordinates are also used to explore the
posterior more efficiently [15]. These numerical and conceptual advantages also apply
to variational inference, especially if the true distribution is well approximated with
a Gaussian [75].

Conceptually one takes a likelihood P(d|θ) together with a hierarchical prior P(θ) =
P(θ1|θ2 . . . θN) . . .P(θN−1|θN)P(θN) and performs coordinate transformation to uni-
form parameters using the multivariate distributional transform F−1

P(θ)(. . . ) [119]. This
uses the inverse conditional cumulative density functions, following the logic of inverse
transform sampling [32].

u ∼ U(u) (4.18)

θ = F−1
P(θ)(u) (4.19)

⇒ θ ∼ P(θ) . (4.20)

We draw samples from the prior distribution by drawing samples u from the uniform
distribution U(u), and processing them through F−1

P(θ)(. . . ). The sample u has finite
support on the unit interval and performing a Gaussian approximation in these co-
ordinates is not sensible. A second transformation to standard Gaussian coordinates
enables this. The transformation is given by the cumulative density function of the
Gaussian FG(ξ|0,1).

ξ ∼ G(ξ|0, 1) (4.21)

u = FG(ξ|0,1)(ξ) (4.22)

⇒ u ∼ U(u) . (4.23)

The resulting ξ parameters are a priori independent and the entire complexity is
encoded in the composition of the two transformations θ = F−1

P(θ) ◦ FG(ξ,1)(ξ) ≡ f(ξ).
The probability distribution and its information in these coordinates are

P(d, ξ) = P (d|f(ξ))G(ξ|0, 1) (4.24)

H(d, ξ) =̂H (d|f(ξ)) +
1

2
ξ†1ξ . (4.25)

For the rest of the paper we will indicate standardized parameters with ξ, whereas
general parameters are θ. The Gaussian approximation in standard coordinates is
denoted as G(ξ|ξ̄,Ξ). This standardization allows us to obtain an uncertainty esti-
mate of a certain structure, which enables us to draw samples from the approximate
distribution.

4.5.1 Gaussian Variational Inference in Standard Coordinates

It is often stated that in the case of Gaussian prior distributions for all N parame-
ters, Gaussian variational inference only requires N + M variational parameters to
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express the full mean and covariance [102], with M being the number of indepen-
dent likelihood contributions. With standardization we can express any continuous
probability distribution in terms of a standard Gaussian prior and a corresponding
transformation. We want to emphasize that this statement does not hold for arbitrary
transformations. To be precise, it only holds for a linear mixture of latent variables,
followed by a point-wise non-linear function. Consider M independent likelihoods
with data di, parameters θi and their relation to the latent Gaussian parameters
θi = fi(ξ). According to Eq. 4.15, the covariance must satisfy the following relation:

Ξ−1 =1 +

〈
M∑
i=1

∂H(di|θi)
∂ξ

∂H(di|θi)
∂ξ†

〉
G(ξ|ξ̄,Θ)

−

〈
M∑
i=1

1

P(di|θi)
∂2H(di|θi)
∂ξ∂ξ†

〉
G(ξ|ξ̄,Θ)

(4.26)

=1 +

〈
M∑
i=1

∂fi(ξ)

∂ξ

∂H(di|θi)
∂θi

∂H(di|θi)
∂θ†i

∂fi(ξ)
†

∂ξ†

〉
G(ξ|ξ̄,Θ)

−

〈
M∑
i=1

1

P(di|θi)
∂H(di|θi)

∂θi

∂2fi(ξ)

∂ξ∂ξ†

〉
G(ξ|ξ̄,Θ)

−

〈
M∑
i=1

1

P(di|θi)
∂fi(ξ)

∂ξ

∂2H(di|θi)
∂θi∂θ

†
i

∂fi(ξ)

∂ξ†

〉
G(ξ|ξ̄,Θ)

. (4.27)

It is proposed to parametrize this covariance in the following form:

Ξ−1 = 1 +R†ΛR . (4.28)

with Λ being a diagonal matrix of dimension M , containing the variational parameters
for the covariance. This, however, is only be exact if the standardization has the
following form:

θ = f(ξ) = g(Rξ) . (4.29)

Here R is an arbitrary, matrix and g an arbitrary, point-wise, non-linear function.
The first and second derivatives of this function with respect to the parameters reads:

∂f

∂ξ
=
∂g(Rξ)

∂ξ
= g′(Rξ)R (4.30)

∂2f

∂ξ∂(ξ)†
=
∂2g(Rξ)

∂ξ∂ξ†
= R†g′′(Rξ)R . (4.31)

The parameter-dependent parts g′(Rξ) and g′′(Rξ) are diagonal matrices of dimension
M , and the matrix R maps from the N -dimensional parameter space to the M -
dimensional space.

We insert these derivatives into the expectation values in Eq. 4.27 and pull out the
linear R terms out of the integrals, resulting in an expression of the form

Ξ−1 = 1 +R† 〈X1(ξ)−X2(ξ)−X2(ξ)〉G(ξ|ξ̄,Ξ) R . (4.32)
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Such a term can be exactly approximated by a parametrization of the form Eq. 4.28,
as X1, X2 and X3 are diagonal matrices depending on the parameter.

For more general standardization functions f(ξ), containing a number of consecutive
linear and and point-wise non-linear transformations, this is not possible, as only the
outermost matrix can be pulled out of the expectation value. So in the general, non-
linear case, the number of required variational parameters to express the covariance
fully does scale quadratically with the number of model parameters.

4.6 Approximating the Covariance

We want to explore the properties of extremely high dimensional posterior distri-
butions through an efficient approximation. The associated volume in such high
dimensional spaces is enormous and in it the posterior might exhibit a rich structure.
Capturing the posterior structure within the approximation requires a global perspec-
tive on it, involving large numbers of parameters to be learned. Already capturing
correlations between all model parameters explicitly requires a memory that scales
quadratically with the posterior dimension.

In order to avoid such unfavorable scaling, we have to explore the posterior only
from a more local perspective, where we only rely on quantities scaling linearly with
dimensions. One example for such an approach is the MAP approach. It, however,
is susceptible to implausible results, and to getting stuck in local minima and at im-
probable parameter configurations of elongated valleys along degenerate directions in
complex models. The reason for this is that MAP can be regarded as an approxi-
mation to the posterior with a delta distribution, which is highly sensitive to local
structures in the information landscape.

To avoid this, we have to account for uncertainty all along the way. We want to do
this by using a Gaussian distribution to approximate the posterior, which, in addition
to a location, also has a scale. This scale is extremely helpful in maneuvering through
the landscape outlined by the posterior, as the Gaussian simply cannot fit into all
the small local features and degenerate directions a delta distribution is sensitive to.
Only structures of the posterior comparable to its own size or larger couple to the
Gaussian.

For this, we have to extract an estimate of the posterior uncertainty from a local
perspective. The first thing that comes to mind is the Laplace approximation, which
uses the inverse Hessian at the location of the MAP solution as a covariance. It
explores locally the curvature of the negative log-posterior and associates strongly
curved directions with low uncertainty and vice versa. This Laplace approximation
is widely used to extract uncertainties from point estimates, but it fundamentally
requires the MAP approach to provide reasonable results in the first place.

For our purpose, we cannot use the inverse Hessian as it is not necessarily a valid
covariance outside a mode. A covariance matrix exhibits strictly positive eigenvalues,
but the Hessian measures curvature, which has vanishing or negative eigenvalues in
plateaus and concave directions, respectively, which both are often encountered in
high dimensional and complex models. This is the same reason we cannot use the
expression given in Eq. 4.15, the implicit solution to the covariance in Gaussian varia-
tional inference. Here one could drop the problematic term, which for approximately



4.6 Approximating the Covariance 31

Gaussian posteriors will be small anyway and use

Θ−1 ≈
〈
∂H(d, θ)

∂θ

∂H(d, θ)

∂θ†

〉
G(θ|θ̄,Θ)

. (4.33)

This is precisely the term used in LR-ADVI [49] to approximate the covariance around
the mean-field ADVI mean estimate. It is certainly positive definite and somewhat
close to the true covariance, but we cannot efficiently represent it in high dimensions
without severe limitations on the used models. It is a dense matrix for global parame-
ters, which are collectively informed by the same data points. One example where the
overall problem does not factorize into independent sub-problems is Gaussian process
regression in the standardized coordinates. We have therefore no access to its eigen-
basis without storing and decomposing the dense (sub-)matrices explicitly, something
we cannot afford in large problems. We need access to the eigenbasis to generate
samples from the approximation, used for estimating the KL-divergence and its gra-
dient. This term itself is an Gaussian expectation value and can be approximated via
samples. However, such a sub-sampled matrix is only invertible if the samples consti-
tute a full basis, requiring at least as many samples as parameter dimensions. This,
again, is equivalent to storing an entire matrix directly, and therefore not practical.
A covariance of this form, however, will serve as the inspiration for the approximation
we will be using.

4.6.1 Fisher Information Metric as Covariance

To approach truly large inference problems we require three fundamental properties
from the covariance approximation. First, it has to be strictly positive definite, a
defining feature of any covariance. Second, it has to resemble the true covariance as
closely as possible, at least in limiting cases. Third, the structure of the approximation
allows to draw samples from the approximate Gaussian, without the necessity of ever
constructing the explicit covariance. All these properties are fulfilled by the covariance
proposed in this section based on the inverse Fisher information metric I−1. Inside
the mode it is considered to be inferior to the Laplace approximation [66], but it is a
valid covariance outside. Nevertheless, sometimes it is used to describe the uncertainty
around the MAP location [53]. It measures the sensitivity of the posterior with respect
to small parameter variations and it consists out of two parts I = Id + Iθ. First, the
Fisher information metric of the likelihood:

Id(θ) ≡
〈
∂H(d|θ)
∂θ

∂H(d|θ)
∂θ†

〉
P(d|θ)

. (4.34)

In a frequentist setting, the inverse of this metric gives the Cramér-Rao bound [31,

109], a lower bound to the uncertainty of an estimator θ̂:

Id(θ)
−1 ≤

〈(
θ − θ̂

)(
θ − θ̂

)†〉
P(d|θ)

. (4.35)

The ≤ indicates that the right minus the left side of the equation exhibits a positive
semi-definite matrix.
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The second part is the information metric of the prior distribution, given by:

Iθ =

〈
∂H(θ)

∂θ

∂H(θ)

∂θ†

〉
P(θ)

. (4.36)

This quantity is a lower bound to the prior variance of an estimator (see Schützenberger
[122] for vanishing likelihood), i.e.:

I−1
θ ≤

〈(
θ − θ̂

)(
θ − θ̂

)†〉
P(θ)

. (4.37)

We now have two bounds on the variance of the estimator, originating from infor-
mation provided by prior and likelihood. To get to the posterior, we have to add
up those two information sources. In the spirit of Gaussian error propagation, we
constrain the posterior uncertainty by adding up the corresponding Fisher metrics.
So the posterior covariance, compared to the prior one, will be at least reduced by the
inverse Fisher metric of the likelihood. We cannot evaluate the resulting term at the
location of the ground truth θ, as it is not available. We instead assume the estimator
θ̂ to be sufficiently close to provide a good approximation, which assumes sufficient
local Gaussianity in the posterior, an assumption we will rely on later anyway. In this
case, the inverse sum of the two metrics, evaluated at the estimator, should tend to
be a lower bound to the true posterior variance. This is not a precise inequality and
how it behaves in certain conditions will have to be explored in the future or case by
case. We expect it to hold for not too extreme models, and otherwise at least to be
sufficiently close. Thus, we state

I(θ̂) ≡ Id(θ̂) + Iθ and (4.38)

I(θ̂)−1 /

〈(
θ − θ̂

)(
θ − θ̂

)†〉
P(θ|d)

. (4.39)

By construction, the inverse Fisher information metric has only positive eigenvalues
and we do not necessarily have to be in a mode, making it valid to use as covari-
ance at every location, compared to the inverse Hessian with its potentially negative
eigenvalues.

From now on, we identify the estimator with the estimate θ̂, and interpret the
variance of an estimator as uncertainty around the estimate. The inverse Fisher
metric is then a lower bound to this uncertainty. Those two quantities constitute a
Gaussian distribution G(θ|θ̄, I(θ̂)−1) with mean θ̄ ← θ̂.

Here it is important to distinguish between the estimate θ̂ and the mean of the
Gaussian θ̄, which only initially coincide. In an iterative scheme we will use the loca-
tion of the estimate θ̂ to estimate the local uncertainty. While keeping this quantity
fixed, we optimize for the mean parameter θ̄ via variational inference, such that the
resulting Gaussian better matches the true posterior distribution. At this location we
update the parameter estimate θ̂ ← θ̄. This way, we resolve the explicit dependence of
the uncertainty estimate on the mean parameter and alleviate the necessity of calcu-
lating the Shannon entropy terms in the KL-divergence, containing the determinant
of the possibly large covariance.
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The surrounding landscape of this new estimate will have changed, compared to
the previous location, and so will the inverse of the local metric. We set this as new
covariance and repeat the procedure. Once the location and uncertainty are self-
consistent with the posterior, we have converged to our final approximation. Instead
of minimizing the KL-divergence within the family of a parametric distribution, we
iteratively solve the locally Gaussian approximation problem, to narrow in towards the
posterior mode. This bares a similarity to second order optimization, where always
the locally quadratic problem is solved to iteratively find optima.

4.6.2 Standardized Metric

The information metric as an abstract mathematical object is invariant under coordi-
nate transformation. In the previously discussed standard coordinates, the metric has
an especially simple structure. A priori we deal with independent, standard Gaus-
sian parameters ξ ∼ G(ξ|0, 1), without any hierarchical structure. Here the prior
information metric is simply the covariance of the Gaussian, the identity operator:

Iξ = 1 . (4.40)

The standard parameters are related to the original parametrization of the system
via the possibly complex nonlinear transformation θ = f(ξ). The likelihood metric
in the standard coordinates therefore is simply the push-forward from the likelihood
metric in the original parametrization.

Id(ξ) =

〈
∂H(d|ξ)
∂ξ

∂H(d|ξ)
∂ξ†

〉
P(d|ξ)

(4.41)

=

(
∂f(ξ)

∂ξ

)†〈
∂H(d|θ)
∂θ

∂H(d|θ)
∂θ†

〉
P(d|θ)

∂f(ξ)

∂ξ
(4.42)

= J(ξ)†Id(f(ξ))J(ξ) . (4.43)

Here J(ξ) = ∂f(ξ)
∂ξ

is the Jacobian of the transformation with respect to the new
coordinates.

The Cramér-Rao bound in the standardized coordinates acquires additional curva-
ture terms X [14]: 〈(

ξ − ξ̂
)(

ξ − ξ̂
)†〉

P(d|ξ)
≥ Id(ξ)

−1 +X . (4.44)

We will neglect those additional X terms, restricting ourselves to only parameter mod-
els with a sufficiently linear standardization transformation, at least locally. There-
fore, we do not expect the method to perform well in the case of models with extreme
X terms, which should be hard in general. Extensions of MGVI that treat this term
better are left for future research.

For the uncertainty approximation we evaluate this expression at the current pa-
rameter estimate. The overall metric in standardized coordinates will therefore always
have the following structure:
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I(ξ̂) ≡ Id(ξ̂) + Iξ (4.45)

= J(ξ̂)†Id(f(ξ̂))J(ξ̂) + 1 . (4.46)

(4.47)

It only consists of three parts. First, the prior metric, which is the identity operator
in the space of standard parameters. Second, the Fisher information metric of the
likelihood, which is available for a large number of commonly used likelihoods. And
third, the Jacobian of the standardization transformation. This transformation has to
be implemented anyway, as it is equivalent to the model implementation. Its Jacobian
can then be obtained by auto-differentiation, or consistently applying the chain rule.
As long as the likelihood metric in the original coordinates does not require it, none of
these quantities have to be stored in the form of a dense matrix. For the common case
of independent data points, the likelihood factorizes and thus allowing for an implicit
metric. We will elaborate on the concept of implicit operators in the dedicated Section
4.7. Nevertheless, using the inverse of the metric as approximate covariance is a non-
diagonal approximation that captures correlations between all involved parameters.

4.6.3 Validity of the Covariance Approximation

The validity of the covariance approximation will depend on the properties of the
system at hand. Here we will discuss three limiting cases in which the inverse Fisher
metric is an accurate representation of the true uncertainty. The first scenario is
asymptotic normality of the posterior distribution under the Bayesian Central Limit
Theorem [48]. For a large amount of independently drawn data, the prior information
will become irrelevant, according to the Bernstein-von Mises Theorem [134]. The
posterior will approach the Gaussian distribution:

P(ξ|d) ≈ G
(
ξ|ξ̂, Id(ξ̂)−1

)
. (4.48)

Here ξ̂ is a Bayesian estimator of ξ. The resulting covariance is equivalent to the
term given in Eq. 4.43. Our covariance approximation contains additional to this
term also the prior metric. In this highly informed setup, the likelihood will be by far
the most dominant term, and the additive 1 prior metric becomes irrelevant, obeying
the Bernstein-von Mises Theorem. So, in the Bayesian central limit, our approximate
covariance coincides with the true posterior uncertainty. In this scenario, however,
a MAP estimate, which essentially is the Maximum Likelihood estimate, will also
provide reasonable results. Nevertheless, this behavior in the regime of large amounts
of data is reassuring.

The opposite case is a vanishing likelihood. If data is scarce, we do not gain much
information compared to the prior distribution. In truly large inference problems we
easily encounter situations where we have to constrain millions of parameters with
only thousands of data points. If we want to approach such problems, it is vital to be
accurate in this limit, and the key to this is the standardized parametrization. In the
trivial case of no likelihood at all, the posterior is equivalent to the standardized
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Gaussian prior and the likelihood contribution to the metric vanishes. Here our
approximate covariance will again be equivalent to the true uncertainty.

The inverse Fisher information metric is therefore a good approximation for large,
as well as small amounts of data. The remaining question is, how well our approxi-
mation interpolates between those two limiting scenarios. So, the prior uncertainty
is exact and we combine it with a lower bound of the uncertainty originating from
the likelihood by adding the Fisher information metrics. In the limiting case of a
Gaussian likelihood and linear standardization we actually obtain the true posterior
covariance and our approximation will be also exact. In general cases the fidelity
of the uncertainty estimate will depend on how well the inverse likelihood metric
describes the uncertainty originating from the data. This is essentially a statement
on how tight the Cramér-Rao bound is to the true uncertainty. In the worst case
scenario, the inverse likelihood metric vanishes, and our approximation approaches a
delta distribution, ultimately resulting in a MAP estimate. If it does not vanish, our
approximation will be a better representation of the posterior.

The Cramér-Rao bound can be attained if, and only if, the likelihood is a member
of the exponential family [136], which includes a large number of commonly used
likelihoods. In such cases, we expect the inverse Fisher metric to well represent the
uncertainty and our approximation to be valid. Also in cases where the likelihood is
close to a member of the exponential family, the covariance should be reasonable.

In the context of high-dimensional and complex problems, several of these scenarios
might be realized within the same model. Certain data might constrain a number of
parameters extremely well, whereas other are only weakly informed. The former
parameters might be in the regime of the central limit, the later could still be prior-
dominated, and others will fall in between. As long as the model is not too extreme,
our proposed covariance can capture the uncertainty and correlations in all these
regimes simultaneously.

4.7 Implicit Operators

The information metric as a matrix has a dimension of the number of parameters
squared. Storing it explicitly on a computer is already unfeasible for relatively small
problems. In imaging for example, millions of pixel parameters are not uncommon
and we will demonstrate MGVI for such an example at the end. The metric is built
out of a collection of linear transformations, projections, and diagonal operators that
all can be expressed efficiently by sparse matrices represented by computer routines.
The metric itself is therefore expressible as an implicit operator, described by the
composition of these simple operators. By construction, the metric is linear and
positive definite, and therefore invertible. The inverse of the metric correlates all
parameters with each other, usually resulting in a dense matrix expression, which
will serve as approximate posterior covariance. This object is of interest during the
inference, as well as for posterior analysis. As mentioned before, we cannot afford
to store the posterior covariance at any moment explicitly. We have to extract all
relevant information on correlations from the implicit metric only. This requires to
apply the metric, as well as its inverse to vectors.

The implicit representation allows us to apply the metric I = Θ−1 to some vector
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x efficiently.

b = Θ−1x . (4.49)

More problematic is the application of the covariance Θ, the inverse metric, to some
vector b.

x = Θb . (4.50)

This matrix inversion can be done by solving Eq. 4.49 numerically for x, equivalent
to solving a set of linear equations. The metric is certainly positive definite and her-
mitian, allowing the use of the Conjugate Gradient algorithm [126] for this inversion.
This algorithm makes extensive use of the positive definiteness of the problem, leading
to rapid convergence, compared to more general solvers. The resulting vector x then
approximately satisfies Eq. 4.50.

4.7.1 Drawing Samples from the Approximation

The numerical inversion is the key to drawing samples from a Gaussian distribution
with only an accessible precision matrix. We need those samples to estimate the KL-
divergence and in the end they can be used to propagate uncertainty to any quantity of
interest, based on the posterior. Those samples can be drawn by following the scheme
outlined in Papandreou and Yuille [105], as our approximate covariance conveniently
follows the structure of a conditional Gaussian distribution. This procedure scales
linearly in time and memory with the dimensionality of the posterior. The main idea
is to draw a sample from a Gaussian distribution with the inverse covariance, and then
obtain a sample from the actual Gaussian by applying the covariance via numerical
inversion.

In general, we can draw samples from a zero-centered Gaussian by drawing indepen-
dent, white noise η∗ in the eigenbasis of the covariance Θ = QΛQ† with eigenvectors
Q and eigenvalues on the diagonal of Λ, weighting it with the square-root of the
eigenvalues, and transforming it into the original space:

∆θ∗ = Q
√

Λη∗ , therefore (4.51)

∆θ∗ ∼ G(θ|0,Θ) . (4.52)

Unfortunately, we do not have direct access to Θ, as it is only implicitly given trough
its inverse Θ−1, but we can draw samples according to ∆φ∗ ∼ G(φ|0,Θ−1), via
∆φ∗ = Q

√
Λ−1η. Numerically, we can approximately apply Θ to this sample from

the Gaussian with inverse covariance, which yields

∆θ∗ ≡ Θ∆φ∗ (4.53)

= QΛQ†Q
√

Λ−1η∗ (4.54)

= Q
√

Λη∗ . (4.55)

Therefore, ∆θ∗ is then a sample from G(θ|0,Θ). Note that Q is unitary, therefore
its adjoint is the inverse, Q†Q = 1. A set of such samples {∆θ∗}N serves now as a
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representation of the intractable, dense covariance.

Θ = 〈θθ†〉G(θ|0,Θ) ≈
1

N

N∑
i=1

∆θi∗∆θ
i†
∗ . (4.56)

In the standardized parametrization, the approximate covariance always has the
identical structure:

Ξ(ξ̂) =
(
J(ξ̂)†Id(f(ξ̂))J(ξ̂) + 1

)−1

. (4.57)

To draw samples according to the covariance Ξ, we start by drawing from the con-
stituents of Ξ−1:

n∗ ∼ G
(
n|0, Id

(
f(ξ̂)

))
(4.58)

η∗ ∼ G(η|0, 1) (4.59)

∆φ∗ = J(ξ̂)†n∗ + η∗ . (4.60)

This requires the likelihood Fisher metric to be accessible in the eigenbasis, which is
the case for example with independently sampled data points. Now ∆φ∗ ∼ G(φ|0,Ξ(ξ̂)−1)
is distributed according to the inverse covariance. Using Eq. 4.53, we numerically ap-
ply the covariance itself to this sample via conjugate gradient, following Eq. 4.49.

∆ξ∗ = Ξ(ξ̂)∆φ∗ , and therefore (4.61)

∆ξ∗ ∼ G(ξ|0,Ξ(ξ̂)) . (4.62)

These samples are drawn from a zero-mean Gaussian with the correct covariance. Our
overall approximation will not be zero-centered, but this corresponds only to a shift
by the mean vector ξ̄.

ξ̄ + ∆ξ∗ ∼ G(ξ|ξ̄,Ξ(ξ̂)) . (4.63)

This is essentially the reparametrization trick [69], which allows us to stochastically
approximate the KL-divergence, while still providing gradients to the variational pa-
rameters, in our case only ξ̄.

Using this procedure, we can draw a set of independent samples from the approx-
imate posterior distribution, which allows us to statistically estimate the Kullback-
Leibler divergence. Drawing these samples can be relatively costly, as every sample
requires the numerical inversion of the inverse covariance, but drawing several samples
is completely independent from each other and it can be done in parallel. Overall we
might want to use as little samples as possible to reduce the numerical effort.

Another important point is how accurately the numerical inversion is performed.
Of course, a higher accuracy results in better samples, but also requires more compu-
tations. The effect of un-converged samples depends mainly of the starting position
of the conjugate gradient. Roughly speaking, the conjugate gradient method updates
first the most informative directions. These correspond to the smallest eigenvalues of
the covariance.

Starting at a sample from the standard Gaussian prior, after n iterations of the
conjugate gradient at least the n most informative directions are updated towards the
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posterior uncertainty, whereas the remaining directions still have the prior variance.
Overall, un-converged samples will have the correct variance for the best informed
directions and the remaining directions over-estimate the actual variance, encoded in
the approximate covariance. This behavior safeguards us from a number of pitfalls
that can be observed in MAP estimators by underestimating, or ignoring uncertainty
variance. We will explore the impact of this accuracy on the method in one of the
numerical examples in the end.

4.7.2 Antithetic Sampling

We will perform a stochastic estimate the KL-divergence and its gradient. This es-
timate is subject to sampling noise, which is reduced by increasing the number of
samples. This increase will significantly impact the performance of the method. An
additional way to reduce the variance of the estimates is antithetic sampling [84]. Here
anti-correlated samples are used to obtain better estimates. Because we use a Gaus-
sian approximation to the posterior, generating an additional, totally anti-correlated
sample is trivial, as ξ̄ − ∆ξi∗ is an equally valid sample as ξ̄ + ∆ξi∗. Consider some
monotonic function g(ξ). The antithetic estimator ĝ(a) of the function value is the
average over the anti-correlated samples.

ĝ(a) =
1

N

N/2∑
i=1

(
gi− + gi+

)
, and (4.64)

Var
(
ĝ(a)
)

=
Var (g(ξ))

N

(
1 + %g+,g−

)
. (4.65)

Here we indicate g(ξ̄±∆ξi∗) = gi± and %g+,g− is the correlation between the antithetic
pairs. The smaller this correlation is, the better the estimate will be. For the parame-
ter mean, i.e. g(ξ) = ξ, this variance will completely vanish. For non-linear functions
and transformations, the anti-correlation in the samples could be reduced. In the
worst case, the pairs are fully correlated, and we fall back to the N/2 independent
samples in terms of the resulting variance, only wasting computations. However, only
artificially constructed systems seem to be capable of showing such behavior.

Empirically we found that adding antithetic samples is extremely helpful in stabiliz-
ing the algorithm by counterbalancing extreme fluctuations in certain parameters. We
will show in the numerical examples that even as little as one single pair of antithetic
samples can be sufficient to obtain reasonable results, at least in the early stages of
the procedure. This speeds up the overall convergence of the method, reducing the
time to draw samples, as well as reducing the overall number of required samples due
to lower variance of the estimates.

4.8 Metric Gaussian Variational Inference

At this point we want to summarize the key concepts of Metric Gaussian Variational
Inference. MGVI performs a series of approximations of a complex posterior with
Gaussian distributions. The covariance of the approximating Gaussian is extracted
from the local properties of the true posterior, describing the vicinity around the
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current mean estimate and it consists of the inverse Fisher information metric of
likelihood and prior. Given this covariance, the approximate distribution is shifted to
better represent the true posterior by minimizing the KL-divergence between truth
and approximation with respect to the mean parameter. Given this covariance, the
posterior is now optimally approximated by the Gaussian. However, at this new
location, the vicinity around the mean might have changed, and we possibly represent
the uncertainty better by again adapting the local properties of the true posterior. We
iterate this procedure until the mean estimate is self-consistent with the uncertainty
estimate.

MGVI cannot capture multi-modal structure in the posterior, as a Gaussian dis-
tribution is used to describe it. It also breaks down for severely non-linear models
where second order terms of the transformation cannot be neglected. In the limits
of small amounts of data, Gaussian posteriors, and the Bayesian central limit, MGVI
will provide excellent results. In large-scale problems, certain parameters might be
constrained extremely well, whereas others are almost uninformed by the data. Here
MGVI can capture both limits simultaneously.

The standardization procedure of the hierarchical model might be optional for mod-
els with parameters of infinite support, but more complex models often contain pa-
rameters restricted to certain ranges. In this case the posterior cannot be approxi-
mated with a Gaussian. Standardization allows to approach these problems as well,
as outlined for ADVI [85]. Here we will not treat the special case where MGVI is
used in hierarchical coordinates, and we will only discuss the more unified, and struc-
turally simpler case in standard coordinates. This results in non-Gaussian solutions
for the original parametrization, as the approximation transforms according to the
standardization transformation to the original parameters.

In this parametrization the information of the joint distribution of data and stan-
dardized parameters ξ with standardization transformation f always reads

H(d, ξ) = H(d|f(ξ)) +
1

2
ξ†1ξ , (4.66)

as outlined in Eq. 4.25. We want to variationally approximate the posterior corre-
sponding to this model with a Gaussian distribution of the form (Eq. 4.8)

P̃(ξ|ξ̄,Ξ) = G(ξ|ξ̄,Ξ) . (4.67)

For an initial parameter estimate ξ̂, we construct the initial mean value ξ̄ = ξ̂ and
the uncertainty estimate from the local Fisher information metric:

Ξ = Ξ(ξ̂) =
(
J(ξ̂)†Id(f(ξ̂))J(ξ̂) + 1

)−1

. (4.68)

Here Id(f(ξ̂)) is the Fisher metric of the likelihood and J(ξ̂) the Jacobian of the

standardizing transformation evaluated at the latent parameter estimate ξ̂ and 1 the
prior metric, the identity operator in standard coordinates. This is a non-diagonal
full-rank, positive definite matrix that correlates all parameters with another. We
cannot store it explicitly at any time, but its inverse, the precision matrix can be well
represented by a collection of sparse, implicit operations. In order to work with the
covariance, we do have to rely on numerical operator inversion, as outlined in Sec. 4.7.



40 4. Metric Gaussian Variational Inference

Given this covariance, we want to match the Gaussian distribution as closely as pos-
sible to the true posterior distribution by minimizing the KL-divergence with respect
to ξ̄, while keeping the covariance fixed:

DKL

(
G(ξ|ξ̄,Ξ(ξ̂))||P(ξ|d)

)
=̂ 〈H(d, ξ)〉G(ξ|ξ̄,Ξ(ξ̂)) (4.69)

≈ 1

N

N∑
i=1

H(d, ξ̄ + ∆ξi∗), with (4.70)

ξ∗ ∼ G(ξ|0,Ξ(ξ̂)) . (4.71)

When minimizing only with respect to the mean of a Gaussian, the Shannon en-
tropy term is irrelevant for the KL-divergence, which therefore simplifies to the cross-
entropy. We approximate the expectation value with a set of samples drawn from
our approximation following the implicit sampling scheme described in Sec. 4.7.1. To
minimize the stochastic estimate of the KL-divergence with respect to ξ̄, we calculate
the gradient, as well using these samples:

∂DKL

∂ξ̄
=

〈
∂H(d, ξ)

∂ξ

〉
G(ξ|ξ̄,Ξ(ξ̂))

(4.72)

≈ 1

N

N∑
i=1

∂H
∂ξ

(
d, ξ̄ + ∆ξi∗

)
. (4.73)

To efficiently optimize the stochastic estimate of the KL-divergence, we rely on
a (relaxed) natural gradient descent [6, 97]. We do have the Fisher information
metric of the problem available anyway, so we use it to weight the gradient with the
local inverse metric, followed by a line-search along this direction to account for non-
quadratic features in the landscape. We repeat this procedure until the KL-divergence
is minimized. The Fisher information metric of this stochastic estimate of the loss
function is the average of the individual metrics evaluated at the sample location.
As the samples collectively move through the landscapes, coupled by the mean, we
re-evaluate the averaged metric at intermediate steps towards the minimum.

〈
Ξ−1

〉
(ξ̄) ≡ 1

N

N∑
i=1

Ξ−1(ξ̄ + ∆ξi∗) . (4.74)

The sum of implicit operators is still an implicit operator, and we can approximately
apply the inverse of it to the gradient. The result is roughly the natural gradient,
which we use as descent direction:

∆ξ̄ =
〈
Ξ−1

〉−1 ∂DKL

∂ξ̄
. (4.75)

Now that we optimized the KL-divergence for the fixed covariance, we obtained a
new parameter estimate in form of the mean of the variational Gaussian. We con-
tinue to repeat this procedure until the mean is self-consistent with the uncertainty
estimate and it no longer changes. In Al. 1 we present a sketch of the MGVI algorithm.
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Algorithm 1: Metric Gaussian Variational Inference

Input: Data d, Likelihood P(d|θ), Fisher metric Id(θ), Standardization
θ = f(ξ)

Initialize global iteration counter i = 0
Initialize ξ̂(0) = 0 or small perturbation
while ξ̂ not converged do

Construct covariance approximation Ξ(ξ̂(i)) (Eq. 4.57)
for N samples do

Draw sample n∗ ∼ G(n|0, Id(f(ξ̂(i)))) (Eq. 4.58)
Draw sample η∗ ∼ G(η|0, 1) (Eq. 4.59)

Calculate ∆φ∗ = J(ξ̂(i))†n∗ + η∗ (Eq. 4.60)

Solve ∆ξ∗ = Ξ(ξ̂(i))∆φ∗ implicitly via numerical inversion (Eq. 4.61)

Store ∆ξ∗ (and −∆ξ∗) in the set of samples {∆ξ∗}(i)
N

end

Set ξ̄(0) ← ξ̂(i)

Initialize local iteration counter j = 0
while DKL not minimized do

Estimate
∂D(i)

KL

∂ξ̄
(ξ̄(j)) with samples {∆ξ∗}(i)

N (Eq. 4.73)

Construct Fisher information metric
〈
Ξ(i)−1

〉
(ξ̄(j)) (Eq. 4.74)

Solve for natural gradient ∆
(j)

ξ̄
=
〈
Ξ(i)−1

〉−1 ∂D(i)
KL

∂ξ̄
implicitly (Eq. 4.50)

Find step-length η via line search of D(i)
KL

(
ξ̄(j) − η∆

(j)

ξ̄

)
(Eq. 4.70)

Update ξ̄(j+1) ← ξ̄(j) − η∆
(j)

ξ̄

Increment local iteration counter j
end

Update ξ̂(i+1) ← ξ̄(j)

Increment global iteration counter i
end

return ξ̂ ← ξ̂(i)

return {∆ξ∗}N ← {∆ξ∗}(i−1)
N
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Initializing the parameter estimate with zero can be problematic due to vanishing
gradients and numerical artifacts, which is resolved by using Gaussian noise with small
variance instead. The convergence of ξ̂ can be determined by observing the changes
between iterations. Because we use samples to determine all relevant quantities for
the optimization, we are always subject to sampling errors. The more samples we
use, the more accurate our solutions will be, so we can only convergence within the
intrinsic sampling noise, given a number of samples. For more samples, we can achieve
deeper convergence, and in practice we will increase the number samples throughout
the algorithm.

Other meta-parameters of the algorithm are the accuracy of the numerical inversion
to draw samples, i.e. the number of performed conjugate gradient steps, and how well
we optimize the KL-divergence for a given parameter estimate. We will illustrate
and discuss the impact of certain choices in the second numerical example. To use
antithetical sampling for better stochastic estimates, one simply also includes −∆ξ∗
to the set of samples {∆ξ∗}(i)

N .
In Al. 1 we use an approximate Relaxed Newton scheme to optimize the KL-

divergence in the inner while-loop, but in principle any optimization scheme could
be used. Especially the Newton-CG algorithm also performs well. In any case,
we recommend to make use of the Fisher information for the optimization, as we
have all ingredients available anyway and it can provide enormous speed-ups in high-
dimensional problems.

In the end, MGVI provides a parameter estimate ξ̂ and a set of samples {∆ξ∗}N ,
which together are samples from the approximate Gaussian distribution. This pa-
rameter estimate is self-consistent with the uncertainty estimate provided by the used
approximation. The samples can then be used to propagate the uncertainty to any
quantity of interest.

4.9 Numerical Examples

We will demonstrate MGVI in several examples, showcasing a diverse spectrum of
applications, of both, synthetic- and real-data applications. We compare our approach
to MAP estimates, HMC, mean-, and full-covariance ADVI.

In the first example we discuss the problem of inferring the rate of a Poisson distribu-
tion described as a log-Gaussian process. This process exhibits a squared exponential
kernel of known amplitude and width.

The second example demonstrates the well behaved scaling of MGVI with the prob-
lem size, as well as its viability in the context of complex models with conceptually
distinct parameters. Here we discuss the problem of binary Gaussian process classi-
fication in two dimensions with non-parametric kernel estimation. The data consists
of binary values with associated location. The likelihood is the Bernoulli distribution
and its rate is linked through a sigmoid function to a Gaussian process with unknown
kernel. The size of the posterior exceeds one million model parameters. The compu-
tation and storage of a dense covariance as used by ADVI with a full covariance is
computationally unfeasible as it would require to maintain 1012 entries. This problem
size and complexity prohibits validation with the other methods and we compare the
result of MGVI only to mean-field ADVI, as well as the underlying truth. Addition-
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ally, we showcase and discuss the impact of several important meta-parameter choices
on a smaller scale version of this problem.

The third example solves a non-negative matrix factorization problem on the Frey
Face data-set assuming a Gamma-Poisson model.

In the last example we explore a hierarchical logistic regression problem involving
polling data of the 1988 US presidential election with several regressors. We use
a simplified model to again validate MGVI against HMC, as well as all the other
methods, and a more complex model to discuss the convergence behavior of MGVI.

For an even larger numerical example with real data we refer to Leike and Enßlin
[91], where a three dimensional dust map in our galactic vicinity is reconstructed in a
resolution of 2563 voxels from dust absorption measures and star locations obtained
by the Gaia satellite. This problem involved a truncated Gaussian likelihood with log-
normal prior and unknown kernel, analogous to the model used in the second example.
The reconstruction was conducted using the here described MGVI procedure.

MGVI is further used by Arras et al. [12] to jointly calibrate a radio interferometer
data set and perform its imaging. This allows to use the stationarity of the sci-
ence target to obtain better calibration solutions, which in turn lead to better image
reconstructions.

Another application of MGVI with multiple components and data fusion in spherical
geometries is outlined in Hutschenreuter and Enßlin [58], where the Galactic Faraday
depth sky is reconstructed from a rotation measure catalogue and free-free emission
data.

Finally, Frank et al. [44] formulate locality and causality priors to learn the dynam-
ics of a field from noisy and incomplete observation. Again, the inference of this field
together with its dynamics is done via MGVI.

Performance metrics: Comparing different methods against each other is not straight-
forward. The preference of one method over another depends on many different fac-
tors, e.g. required accuracy, uncertainty quantification, or available resources. Any
performance metric will only tell something about a certain aspect of the methods
and we do not have a universal scale available to strictly determine the superiority of
one method over another.

Ideally we want to validate against the true posterior distribution, but usually we do
not have it available. MCMC methods allow to draw samples from the true posterior
distribution, requiring large computational resources. Where it is feasible, we will use
HMC as a reference, comparing the other methods against, but this restricts us to
relatively small inference problems.

To explore the high-dimensional settings, for which MGVI was developed, we have
to use a different approach. In real-world applications we do not know the true
parameters underlying the data, but in a simulation we do. Performing the inference
on such simulated data sets, we can always use the ground truth as reference scale
and explore how well a method performs.

A simple metric in such a setting is the root mean squared error (RMS) of the
reconstruction. For some scalar estimator x̂, for example the model evaluated at the
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mean, it reads:

RMS =

√
1

N

∑
i

(
x

(i)
true − x̂(i)

)2

. (4.76)

In many applications the goal is to get as closely as possible to some underlying truth,
and therefore a lower RMS error should correspond to a better result.

Another quality criterion of a method is the capability to accurately estimate its
uncertainty associated with the prediction. Large deviations to the ground truth are
acceptable in cases a large variance is expected. For this we weight the absolute resid-
ual with the predicted standard deviation, corresponding to the average significance
of the residual in terms of standard deviations:

AS =
1

N

∑
i

1

σ̂(i)
|x(i)

true − x̂(i)| . (4.77)

In the case of a Gaussian posterior this quantity should be close to 1, expressing
how significant on average the ground truth is, given in units of standard deviations.
The posterior distributions we investigate will not be Gaussian, especially due to
the non-linear transformations involved, but it should still provide an insight into the
behavior of methods relative to each other, as long as the posterior resembles remotely
a Gaussian and the non-linearity is not too extreme.

In large real-data applications sampling is unfeasible and the ground truth is un-
known. In such cases we split the total data in a small sub-set d′ for cross-validation
of the approximation by evaluating how likely these reference data appear and use
only the remaining data d for the inference. For this, we can calculate the predictive
likelihood:

P(d′|d) =

∫
dθ P(d′|θ)Qη(θ) ≈

1

N

∑
θi

P(d′|θi) . (4.78)

Here θi are samples drawn from the approximate distribution Qη(θ) fitted to the
posterior given the remaining data d. It measures how predictive the obtained dis-
tribution is for the reference data. Generally a large value tells us that we can well
extrapolate towards unobserved regions, which usually is desired. Nevertheless, this
performance metric punishes uncertainty in a prediction. To see this, consider the
maximum likelihood solution on the reference data. It is a point estimate and max-
imizes, by definition, the predictive likelihood. Now consider an uncertainty around
this point, for example in form of a Laplace distribution. Every sample drawn from
this presumably better approximation will have a lower predictive likelihood, and will
therefore appear worse in this metric. We will encounter such a scenario in our exam-
ples and to make the comparison more fair, we will also state the predictive likelihood
evaluated only at the latent mean parameter, corresponding to a best guess.

4.9.1 Poisson Log-Normal

Setup

In this example we discuss the inference of the rate λ of a Poisson likelihood providing
count data d, where the logarithmic rate is modeled as a Gaussian process with
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squared exponential kernel of known amplitude and width. The count data for our
experiment is displayed in Fig. 4.1. The Poisson likelihood reads:

P(d|λ) =
∏
i

P(di|λi) , with (4.79)

P(di|λi) =
λdii e

−λi

di!
. (4.80)

Its Fisher information metric with respect to this rate parameter is:

Id(λ) = λ̃−1 . (4.81)

This is a diagonal matrix, indicated by the tilde, in the data space with the inverse
of the rate λ on its diagonal. A tilde over a vector raises it to diagonal matrix,
i.e. ãij = δijai. The rate is expressed in terms of the exponential of a Gaussian
process λ = Res with prior distribution P(s) = G(s|0, S) and some linear response
operator R. Assuming a stationary, or homogeneous and isotropic kernel, the kernel
can be expressed in terms of a spectral density in the harmonic domain, i.e. S =
F−1P̃pF where F indicates the Fourier transformation, P† is the projection of the
one-dimensional spectral density onto the Fourier space of the signal coordinates,
also one-dimensional in this example, but in general multi-dimensional. Here p(k) =√

2πσ2l e−2πl2k2 represents the squared exponential, or Gaussian, correlation kernel in
Fourier space (in one dimension). The parameter l is a characteristic length-scale, σ2 a
variance parameter and k is the harmonic coordinate. This defines the mathematical
setup of this first example.

The next step is to standardize. As the prior is already Gaussian, we simply have to

identify S = AA† with A = F−1P̃p
1
2 and rewrite s = Aξ. With this reparametrization

we express the information of the problem for a given spectrum as

H(d, ξ) =̂ − d†lnReAξ + 1†ReAξ +
1

2
ξ†1ξ . (4.82)

The 1† indicates a scalar product with the one vector, corresponding to the integration
over the space. The overall standardization reads

λ = f(ξ) (4.83)

= ReAξ . (4.84)

This function allows us to build the local approximation to the covariance. Here the
parameter dependence is still relatively simple and the Jacobian can be calculated by
hand.

Ξ−1 = J(ξ̂)†f̃(ξ̂)−1J(ξ̂) + 1 (4.85)

= A†ẽAξ̂
†
R†

1̃

ReAξ̂
RẽAξ̂A+ 1 . (4.86)

We see that the metric is composed out of a collection of operators that can be simply
implemented and combined.
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Figure 4.1: A Poisson realization drawn according to a log-normal process with
squared exponential kernel on linear scale.

Now, we approximate the posterior probability implied by the model as described
by Eq. 4.82 using MGVI. We start the optimization with one single pair of antithetic
samples. Initially we perform three natural gradient steps and use 25 conjugate
gradient iterations to draw the sample. After twenty global iterations we start to
increase the number of samples and natural gradient steps by one until the thirtieth
iteration and steadily increase the sampling accuracy by a total factor of four. Initially
we do not want to waste computations for unnecessary accuracy and this purely
heuristic scheme is derived from the meta-parameter discussion of the next example.

The problem, as well as MGVI, mean-field (mf-) and full-covariance (fc-) ADVI
[85], HMC [34], and the Laplace approximation are implemented within Python using
the NIFTy51 package [10, 124, 128].

The posterior samples obtained from HMC will serve as the reference in the val-
idation of our approach. We run five HMC chains in the standard coordinates and
obtain a minimal effective sample size of ESSmin = 108 and average ESSmean = 220.
The average Gelman-Rubin test statistic for the five chains is R̂mean = 1.016 with
maximum R̂max = 1.052.

For ADVI we perform both, a fully parametrized covariance, as well as a mean-field
approximation, estimating only a diagonal covariance. Using the full covariance limits
the possible problem size and we will stick to 128 parameters to describe the Gaussian
process, as well as 128 equidistant data points. For the optimization procedure we
follow the stochastic gradient descent scheme proposed by Kucukelbir et al. [85].

The data is is drawn according to the model and the realization is shown in Fig. 4.1.
We monitor the performance and convergence by withholding 10% of the data points
and calculating the predictive likelihood of the intermediate result.

1NIFTy documentation: http://ift.pages.mpcdf.de/NIFTy/
NIFTy code: https://gitlab.mpcdf.mpg.de/ift/NIFTy

http://ift.pages.mpcdf.de/NIFTy/
https://gitlab.mpcdf.mpg.de/ift/NIFTy
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Figure 4.2: Reconstructed rates and posterior samples provided by MGVI in compar-
ison to those from various other methods.
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Results

All methods recover the underlying rate quite well. The obtained rates λ = ReAξ

are shown in Fig. 4.2 for MGVI and all the other methods. The uncertainty of the
different estimates are indicated by a set of posterior samples drawn around their
corresponding mean rates for all methods. Visually, all methods, except mean-field
ADVI, provide similar results. The later severely underestimates the true posterior
variance in areas of large uncertainty and overestimates it in regions well-determined
by the data.

We also note that overall the relative uncertainty is higher in regions of low counts
and smaller in regions of high counts. This is expected from a Poisson likelihood, as
its variance σ2

d is equal to its rate λ and therefore the relative uncertainty increases
with decreasing rate, σd/λ = 1/

√
λ.

The two-point correlation matrix of the rate constructed from samples is shown
in Fig 4.3. Here again, all correlations do look similar, except mean-field ADVI.
The correlation is diagonal dominant and spatially structured. Strong short-range
correlations are wrapped by a band of anti-correlation, decaying towards zero for large
distances of the points. The periodic boundary condition of this setup is showing up
in the top right and bottom left corners. This pattern originates from the squared
exponential kernel and is modified by the data. High-signal regions appear here to be
more narrow, and the correlation is farther extending in low-rate regions. Here the
mf-ADVI correlation structure is agnostic to spatial structure, compromising between
high-data and uninformed regions due to the limited expressibility of a mean-field
approximation.

We provide a snapshot of all methods against HMC in Fig. 4.3, scattering the values
for two locations against each other in three distinct scenarios. This provides a visual
impression on how well correlations, as well as the marginal probabilities, are captured
by the approximations. MGVI, fc-ADVI and the Laplace approximation match closely
to the HMC samples, but mf-ADVI strongly underestimates the variance and, as
observed in the correlation matrix, does not express much of the posterior covariance
structure.

To validate this impression we plot the mean and standard deviation of the log-
rate at every location obtained by HMC against the four other methods, as shown in
Fig. 4.5. Towards large mean rates, all methods agree quite well, as they are well de-
termined by the data. For small rates, the methods differ slightly, but systematically.
Here the Laplace approximation, as well as mf-ADVI tends to overestimate the rate,
whereas fc-ADVI and MGVI underestimate it, but in that agree well. Thus, it seems
that MGVI behaves similarly to fc-ADVI here.

The standard deviations are structurally more interesting. MGVI and the Laplace
approximation agree well with the HMC results and fc-ADVI appears slightly shifted
towards overestimated variances, which might be a remnant of insufficient conver-
gence within the assigned computational budget. Finally, mf-ADVI is agnostic to
parameter-specific uncertainty and only on average correct, over- and underestimat-
ing the standard deviation roughly the same amount of time, as already seen in the
correlation matrix and the scatter plots.

Collapsing these plots down to the RMS error relative to HMC gives Tab. 4.1. Here
MGVI is the best method in terms of reproducing the mean, as well as the standard de-
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Table 4.1: The RMS errors of mean and standard deviation of the pixel-wise log-rate
with respect to HMC

RMS HMC against MGVI fc-ADVI mf-ADVI Laplace
mean 0.041 0.076 0.16 0.17

standard deviation 0.023 0.080 0.42 0.032

Figure 4.3: The sampled correlation structures for the different methods.

viation obtained via HMC. Regarding the mean, fc-ADVI gives a similar, but slightly
worse result, but mf-ADVI and the Laplace approximation exhibit significantly larger
errors. Surprisingly, the latter exhibits one of the best standard deviations, better
than fc-ADVI, which still might improve for even longer optimization. The deviations
for mf-ADVI are, as expected, just off, dramatically.

Overall, MGVI seems to be slightly better, but on par in terms of accuracy with the
other methods in this example. Its true strength only becomes evident by considering
the required computational time to obtain these results, as well as the in principle
linear scaling behavior in terms of memory and computations. In the following we
will discuss the temporal evolution of several quantities during the optimization for
MGVI and both ADVI variants.

Convergence behavior

The first quantity we monitor during the optimization is the predictive likelihood on
unobserved data. For this purpose we withheld 10% of the data points to track how
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Figure 4.4: Scatter-plots of the logarithmic posterior rates at two close-by locations
in a low-count region. The posterior samples from MGVI are compared to
those of all other methods that provide posterior samples. The true rates
are indicated as well.
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Figure 4.5: The parameter means and standard deviations of the Poisson log-normal
problem from the different methods plotted against the HMC results.

well those are explained by the current state of some method. In this example we do
have access to the underlying true rate, which allows us to monitor the RMS error
to this ground truth, as well as how well the remaining residual is captured by the
predicted uncertainty in terms of significance, which, for a Gaussian would be one
sigma. For the definition of these quantities see Sec. 4.9. All results are shown in
Fig. 4.6. For the predictive likelihood, by far the fastest method is a MAP estimate.
Using second order natural gradient descent, this method converges within less than
0.06 seconds. MGVI is significantly slower, but also rapidly converges in terms of the
predictive likelihood. After only 0.1 seconds and drawing new samples twice it no
longer changes significantly for the remaining time. After roughly 2 second, the next
method to converge is mf-ADVI. Ten times longer is required by HMC, which takes
roughly 20 seconds to complete its burn-in. This is consistent with the one order
of magnitude speedup reported in Kucukelbir et al. [85]. By far the slowest method
is fc-ADVI, requiring roughly 1000 seconds (or 16.6 minutes) to achieve comparable
predictivity. In this example MGVI is slower, but comparable to a MAP estimate,
more than one order of magnitude faster than mf-ADVI, two orders of magnitude
faster than HMC and four orders of magnitude than fc-ADVI, which on this problem
scale is barely feasible.

The RMS error to the true rate can be used as another indicator how fast the
methods converges. In the case of MGVI, not much happens after the first global
iteration, requiring 0.1 seconds. The RMS error of both ADVI methods steadily drop
down to the final level, mf-ADVI being initially faster, but fc-ADVI catches up before
final convergence.

Interesting is the behavior of the average significance, characterizing how well the
deviations from the true rate are explained by a Gaussian approximation using the
samples provided by the methods. It also allow us to evaluate how well the covariance
of each method has converged. For MGVI this seems to be the case after 10 seconds.
This coincides with the increase of samples used to estimate the KL-divergence. With
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Figure 4.6: The performance metrics for the Poisson log-normal problem for all meth-
ods. The curves are smoothed by a moving average after the first ten
points and equidistantly sampled on a logarithmic scale.
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more samples the uncertainties are probed better and the average significance of
the residuals are spot on the one sigma level, hinting at a quite Gaussian posterior.
Although mf-ADVI converges quickly in terms of the predictive likelihood, here we
observe drifts within the first 100 seconds. This is even more extreme in the case
of fc-ADVI, which only drifts gradually and probably did not fully converge, still
slightly overestimating the variance. This is consistent with the shift relative to the
HMC standard deviations.

Overall, MGVI is fast because it has intrinsically fewer parameters and (quasi-)
second order optimization can be used. Also the observation that means of Gaussian
approximations converge fast and a covariances slowly might also contribute to the
rapid convergence behavior of MGVI. Only the mean has to be optimized for a given
covariance, and once it converged a new, plausible covariance is adapted, without
having to laboriously optimize for it.

4.9.2 Binary Gaussian Process Classification with Non-Parametric
Kernel

In the second example we apply MGVI to a much higher dimensional problem and
more complex context, making it unfeasible for a fully parametrized covariance. Bi-
nary Gaussian process classification is used to attribute regions to certain classes and
identify boundaries between them. A comprehensive overview can be found in Kuss
and Rasmussen [88] and Nickisch and Rasmussen [101]. In addition to the typical
formulation, we also infer the underlying kernel non-parametrically. With this ex-
tension a Laplace approximation will not provide reasonable results as parameters
are degenerate. In this example we compare MGVI to mf-ADVI, which is still ca-
pable of coping with such extremely high dimensional problems. We consider binary
data in two spatial dimensions, measured only at certain locations. The likelihood
is a Bernoulli distribution and its rate parameter is described by a sigmoid function
applied to an underlying Gaussian process. The kernel of this process is unknown
and will be modeled non-parametrically as well. We assume a stationary, isotropic
kernel and model it by two spectral components. The first component follows a power
law that is modified by the second component, a log-Gaussian process with a smooth
kernel. Overall the spectral density is parametrized by two power-law parameters, an
amplitude and the spectral index, and the Gaussian process parameters for the com-
ponent modifying this power-law. This model is inspired by systems with underlying
processes favoring certain length-scales and is well-suited for imaging applications.

Setup

The likelihood in this example is the Bernoulli distribution that reads

P(d|µ) =
∏
i

P(di|µi) , with (4.87)

P(di|µi) = µdi (1− µi)1−di . (4.88)
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for some rate parameter on the unit interval µ ∈ (0, 1) and binary outcome d ∈ {0, 1}.
The Fisher information metric for this likelihood is

Id(µ) = ˜µ(1− µ)
−1

. (4.89)

The rate µ is linked to a Gaussian process s ∼ G(s|0, S) by a sigmoid function and a
linear response:

µ = Rσ(s) (4.90)

= R
1

2
(1 + tanh (s)) . (4.91)

The kernel S of this process is assumed to be stationary and isotropic and can be
expressed as S = F−1P̃pF with spectral density p. This quantity itself is to be
learned and it is modeled according to

p(k) = ea lnk+b+τk . (4.92)

The first two terms in the exponent model a power-law kernel, which is linear on
double-logarithmic scale, with power a and amplitude b, both of which get a Gaussian
prior with assumed mean (ā and b̄) and variance (σa and σb). The last term in the
exponent follows an integrated Wiener process on logarithmic spatial scale, ergo a
differentiable function, according to the known kernel T = AA†. The integrated
Wiener process follows a power-law kernel with power four. We treat it analogously
to the other correlation kernel S. This prior is standardized by performing a Fourier
transformation on logarithmic coordinates and multiplication with the square root of
the power-law spectrum. The graphical structure of this described model is shown in
Fig. 4.7.

σaā σbb̄ T

a b τ

s

d

Figure 4.7: The graphical structure of the binary Gaussian process classification with
non-parametric kernel.

Reparametrizing the model parameters yields the following relation to the original
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rate µ:

µ = f(ξ) (4.93)

= Rσ

(
F−1

(
˜Pe(ā+σaξa) lnk+b̄+σbξb+A ξτ

)
ξs

)
. (4.94)

This reparametrized model has therefore a highly non-linear likelihood in terms of
its parameters, where ξ = (ξs, ξa, ξb, ξτ )

†. This expression has to be read from the
right to the left, which is the direction of the generative model. A series of linear and
point-wise non-linear operations are performed on the latent model parameters to
generate µ. F and P are again the Fourier transformation and the isotropic projection
of a 1D spectrum to a 2D Fourier space. Here again, the tilde indicate that the
quantity below is raised to a diagonal operator. Obtaining this function is tedious
but straightforward and can be done automatically, given the hierarchical structure
of the model. We spare the reader the expressions of the Jacobian of the function
with respect to its parameters J(ξ) = ∂f(ξ)

∂ξ
as this should be implemented using auto-

differentiation, which NIFTy5 [10] provides to us. Structurally, the problem is now
identical to the previous one with information and approximate covariance:

H(d, ξ) =̂ − d†lnf(ξ)− (1− d)†ln (1− f(ξ)) +
1

2
ξ†1ξ (4.95)

Ξ(ξ̂) =

(
J(ξ̂)†

˜(
f(ξ̂)(1− f(ξ̂)

)−1

J(ξ̂) + 1

)−1

. (4.96)

Regarding the numerical setup, we consider 219 binary data points on a two dimen-
sional plane organized in a checkerboard. We use 1024× 1024 parameters to describe
the Gaussian process underlying this rate. The spectral density is parametrized by
additional two parameters for the power-law and 64 for the non-parametric part ξτ ,
resulting in overall more than a million parameters, which is completely out of reach
for explicit covariance parametrization. For simplicity periodic boundaries were as-
sumed. Due to the large parameter dimension, we initially choose to use 100 conjugate
gradient iterations, and increase it towards 400 at the end. Otherwise we use the setup
from the previous example.

Results

The synthetic data, the true underlying rate, the mf-ADVI, as well as MGVI results
are shown in Fig. 4.8. The data is only sampled at certain locations and due to
the binary output appears noisy. It exhibits spatial characteristics, predominately
showing one class over the other in certain regions. The true rate, from which the
data was drawn, shows rich features on all scales. The largest of them can also be
seen in the data directly, but small-scale features are washed out due to the Bernoulli
noise. The MAP solution to this problem (not shown) does not provide a plausible
posterior estimate and completely over-fits the data.

The mean rate recovered by MGVI matches up to a certain scale exceptionally well
to the true rate. Even in unobserved areas the structures are recovered correctly to
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some extent (as can be seen e.g. in the top right and bottom left corners). Small scales
cannot be recovered as the data does not contain much information on them. This is
also reflected in the standard deviation at each location. The highest uncertainty is,
as expected, in the not observed areas, reproducing the checkerboard pattern. The
standard deviation is also modulated by the rate itself. The more a certain region is
attributed to one class, the lower its uncertainty. The uncertainty is especially high
at the boundaries between the classes.

Also mf-ADVI recovers the underlying rate quite well, with maybe slightly less
sharp features, but certainly comparable to the MGVI result. The main difference
lies in the uncertainty estimate, which completely lacks the spatial features attributed
to the incomplete checkerboard sampling of the data. Nevertheless, it shows the error
associated with the nonlinear error propagation from the Gaussian process to the
rate. This is similar to the behavior observed in the previous example. Compared to
the standard deviation from MGVI, the uncertainty seems to be larger in areas with
observed data and significantly smaller in unobserved regions.

The recovered spectral density is shown in Fig. 4.9. At the largest scales, and
therefore the smallest modes, the true correlation structure is correctly recovered
within the error by MGVI, indicated by a set of samples. Even most large-scale
spectral features are identified correctly by the algorithm. At a some point towards
smaller scales the uncertainty increases significantly. This is also the point where
the recovered spectrum diverges from the true one. This might indicate incomplete
convergence, however, those highly uncertain parameters are the last ones to converge
anyway and are affected the most by the stochastic estimation of the KL-divergence.
Even on those scales the trues spectrum is not completely out of the error bound
and seems consistent with the recovered spectrum. The mean spectrum obtained by
mf-ADVI is similar to MGVI, but is slightly shifted down for the most part, but the
error estimates are again not spatially modulated, not reflecting the deviations from
the truth.

Regarding the result, MGVI seems to be better at describing the true posterior
distribution with slightly more accurate means but superior uncertainties. Also im-
portant is how fast MGVI achieved this result, compared to mf-ADVI. For this we
track again, as in the previous example, the predictive likelihood of all the unobserved
data, filling in the checkerboard. Additionally we track the RMS error of the mean
to the ground truth, as well as the average significance of the residual.

The convergence behavior of MGVI and mf-ADVI are also shown in Fig. 4.9 as
well. Here MGVI shows the first accurate results after roughly 200 seconds in terms
of RMS error and predictive likelihood. Shortly after this, the predictive likelihood
of the mean and samples significantly diverge. This coincides with the increase from
a single pair of antithetic samples to a gradually larger number, shown by the steep
drop in the average significance. We suspect that the system found a self-consistent
solution with that single sample and it got strongly disturbed by the presence of
more samples. Finally the system recovers and converges to a similar predictivity
and consistent error. In this example, mf-ADVI is significantly slower to achieve
comparable predictivity and RMS error by roughly one order of magnitude, but those
levels are achieved.
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Figure 4.8: The data and true rate, as well as the mf-ADVI and MGVI means and
standard deviations. Note that the small-scale noise in the data can lead
to a color blend that does not seem to be part of the used color scheme.
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Figure 4.9: Recovered spectral density (top left), and the performance metrics for
the binary Gaussian process classification problem, comparing MGVI to
mf-ADVI.
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Discussion of meta parameters

MGVI requires a number of meta parameters that will affect the performance and
accuracy of the method and we cannot provide a universally applicable recipe on how
to set them. Here we want to showcase how the choice of a parameter tends to impact
the method, but only in an isolated case. We also restrict ourselves to a discussion
on individual parameters, not their interactions, as the possible combinations are
overwhelming. To illustrate their impact we use the identical setup as in the last
example, just a factor of 64 smaller with 128× 128 Gaussian process parameters and
half that data points. We again track the predictive likelihood, RMS error to the
ground truth, and average significance of the residual for different meta parameter
settings. Here we discuss the sampling accuracy, the number of natural gradient steps
for a set of samples, the number of overall samples and the effect of using antithetic
samples. We only vary one parameter per example, keeping all other parameters
at some reasonable value. The default sampling accuracy are 30 conjugate gradient
steps, for a set of samples we make 10 natural gradient steps and use 10 independent
samples without antithetic counterparts. The results are shown in Fig. 4.10.

The first meta parameter is the sampling accuracy, describing how many conjugate
gradient steps are used to draw an approximate sample according to the covariance.
Here one starts with a prior sample and every conjugate gradient iteration removes
variance along the eigendirections corresponding to the consecutive largest eigenvalues
of the metric. How many steps are required will strongly depend on the problem at
hand and especially on the eigenspectrum of the metric. If it drops fast, only a few
iterations are sufficient, otherwise more are required. The predictive likelihood, as well
as the RMS error in the top row of Fig. 4.10 show that too few iterations will affect
the result, but increasing the number rapidly converges towards a common plateau.
Already 9 iterations seem to be sufficient in this example. Extremely interesting is the
average significance in this case. Regardless of the sampling accuracy, the result will
have a consistent error estimate, absorbing insufficient convergence into uncertainties
and avoiding a misleading result.

The next meta parameter is the number of natural gradient steps for a given set
of samples. This number essentially controls how well an intermediate approximation
converges before new samples are drawn at the obtained location. Newly drawn
samples will usually not match the true posterior as well as the old samples, for which
the KL was optimized, as they probe other directions and it takes some optimization
steps to catch up, during which the problem itself is not yet further optimized. Taking
too few steps will not lead to good results, as only the sampling stochasticity is chased.
This can be observed in the plots. Overall, a deeper convergence for an intermediate
approximation reduces the variance of the results and converges better overall. One
danger is the over-fitting of the sample realization, not collecting the progress in
the mean parameter. This can mainly occur for a small number of samples, as the
variances are not probed well.

The number of samples to estimate the KL divergence critically impacts the perfor-
mance of MGVI. In terms of required computations, everything scales linearly with
the number of used samples, so using as few as possible is desired. A single sample
is certainly insufficient, as it does not define a variance and the result will be a MAP
estimate shifted by the sampled residual, if the KL is fully optimized. The behavior
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of MGVI for different sample numbers are shown in the third row of Fig. 4.10. Clearly
two and four samples are not enough to converge towards a reasonable solution. For
more than eight samples it converges and it seems that more samples allow for deeper
convergence and reduced stochastic behavior. It is worth noting that stochasticity is
sometimes an advantage, as one can escape local minima, making it more reliable to
finding good solutions.

Finally, the last row shows the impact of using antithetic pairs of samples, using
not only mean plus the residual as sample, but also minus the residual. This way the
mean of the samples and the mean parameter always coincide, stabilizing the gradient
estimate significantly, while requiring to draw only half the number of samples. This
way MGVI already converges towards reasonable results using only one single sample
together with its antithetic counterpart, as shown in the plots. It is still relatively
noisy, but compared to using two independent samples, as shown in the row above,
far more robust. More samples again reduce the stochasticity even further.

Overall, a higher accuracy, more samples, or more steps are always favorable for
higher accuracy of the approximation, but they come at the price of computational
effort, so the hard task is to counterbalance those two contradicting goals. Especially
towards the beginning of the procedure, high precision might not be needed, as the
landscape changes rapidly anyway, but towards the end, as everything starts to settle
down and converge, it might be worth to invest into higher accuracy. In our experience
we find it useful to gradually tune up the parameters, especially the number of samples
to be fast and inaccurate in the beginning and then converge by adding samples, but
how to optimally steer MGVI in general is unclear.

4.9.3 Non-Negative Matrix Factorization

In Non-Negative Matrix Factorization models, the data is described as a positive
mixture of positive components, or factors. The goal is to find a lower-dimensional
description of the data, which can be used to predict unobserved values. The data d
should be described by a data matrix D, which is the product of a mixture matrix M
and a component matrix C, which are to be learned:

D = MC. (4.97)

We choose a Gamma-Poisson model, assuming a Poisson likelihood and Gamma-priors
on all entries of the matrices, enforcing positivity on all quantities. The problem is
standardized by reparametrization defined by the inverse CDF of the Gamma distri-
bution and CDF of the standard Gaussian. Both functions do not have an analytic
expression, but can be approximated numerically.

M = F−1
Gamma(M |αM ,βM ) ◦ FG(ξM ,1)(ξM) ≡ fM(ξM) (4.98)

C = F−1
Gamma(C|αC ,βC) ◦ FG(ξC ,1)(ξC) ≡ fC(ξC) . (4.99)

These equations are to be read element-wise for every matrix entry. The standardized
problem information then reads

H(d, ξ) = d†ln (fM(ξM)fC(ξC)) + 1† (fM(ξM)fC(ξC)) +
1

2
ξ†1ξ . (4.100)
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Figure 4.10: The results of the meta-parameter exploration. The different perfor-
mance metrics are shown from left to right, the different meta-parameters
from top to bottom.
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Here ξ is the concatenation of ξC and ξM . As in the first example, we have again
a Poisson likelihood and its metric is given by Eq. 4.81. We apply this model to
the Frey face data set, consisting of 1965 images of a sequence of facial expressions
in a resolution of 28x20 pixels, assuming ten components. All parameters of the
Gamma distribution are chosen to be 1, and we randomly mask 10% of pixels to
calculate the predictivity of different methods per elapsed time. In addition to that,
the bottom part of one frame is fully covered by the mask, and we will show how
well it is recovered. Overall the model has 25160 free parameters to be learned and
we compare the performance of MGVI to mean-field ADVI. In this example we do
have relatively good data, so it is not as relevant to frequently refresh the samples to
explore the uncertainty and we can afford to optimize deeper in each global iteration to
achieve overall faster convergence. Therefore we initially perform 10 natural gradient
steps together with one pair of antithetic samples, compared to the three steps in the
previous example, but otherwise we also increase the number of samples starting after
twenty iterations. The initial sampling accuracy are 50 iterations, increasing it to 200
towards the end.

The predictive likelihoods during the optimization for both methods, the results on
the half masked frame, as well as the recovered components are shown in Fig. 4.11.
The predictivity of the MGVI samples and mean converge rapidly towards the same
value, indicating low uncertainty. After 40 seconds MGVI seems relatively converged
as the slope strongly decreases. The predictivity of the mf-ADVI mean achieves
comparable levels to MGVI after 200 seconds, but the predictive likelihood of the
samples is significantly lower. As the discrepancy between predictivity of the mean
and the samples are a proxy to the variance of the distribution, it seem that mf-
ADVI severely struggles to compress towards the posterior mode, crippling down the
overall convergence. MGVI does not have this problem, as the covariance adapts
to the environment of the mean, and it can therefore contract towards the posterior
mode far more rapidly. Regarding the half masked frame, the mean for both methods
matches very closely. Interesting is the pixel-wise standard deviation, shown below the
mean. For MGVI it is clearly structured and aligns with regions of facial variability,
for example around the mouth and the eyebrows. The variance is especially high in
the masked region, whereas mf-ADVI shows less pronounced features, and even lower
variance within the masked half.

4.9.4 Hierarchical Logistic Regression

In this example we discuss two hierarchical logistic regression problems involving
polling data from the US 1988 presidential election, using the models discussed in
Gelman and Hill [45] and we will follow the analysis of Kucukelbir et al. [85]. The
data set involves 13544 points on age, gender, ethnicity, education, region, state, and
polling behavior. We consider two logistic regression models of different complexity to
predict the polling behavior. The smaller model contains only information on state,
gender and ethnicity, allowing full posterior sampling with HMC as reference. The
larger model utilizes the full data set and it allows us insight into the convergence
behavior of MGVI.

The likelihood is given by a Bernoulli distribution, as stated in Eq. 4.87 and corre-
sponding metric is given in Eq. 4.89. The data is the polling result and it is modeled
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(a) Predictive likelihood of MGVI compared
to mf-ADVI in seconds. Dashed lines are
the predictivity of the mean, solid lines of
the samples.

(b) ground
truth.

(c) MGVI
mean.

(d) ADVI
mean.

(e) masked
data.

(f) MGVI
uncertainty.

(g) ADVI
uncertainty.

(h) MGVI components. (i) ADVI components.

Figure 4.11: The predictivity of both methods (top left), means and standard devia-
tions for a certain frame together with ground truth and data (top right),
and recovered components (bottom).
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by a rate µ, depending via a logit link on regression coefficients and the design matrix
containing X.

µ = σ(X†β) . (4.101)

Here σ is again a sigmoid function.

A Simple Model

For the simple model the rate is described by only a subset of all categories

µ = σ (β0 + xgenderβgender + xethnicityβethnicity + βstate[xstate]) , (4.102)

with binary data on gender and ethnicity, and multi-class labels on the state. Ad-
ditionally we set a standard Gaussian prior on β0, βethnicity and βgender. To make it
a hierarchical problem, all βstate coefficients follow also independent Gaussian priors,
but with a priori unknown standard deviation σstate, shared among them. We give it
a uniform prior on the unit interval. Compared to the model described in Gelman
and Hill [45], we choose more restrictive priors for convergence reasons, especially for
HMC, but also MGVI. We will elaborate on this later when discussing the full model.

For our analysis we compare MGVI, fc- and mf-ADVI, a Laplace approximation,
as well as HMC. Our initial sampling accuracy are only 25 conjugate gradient steps
due to the relatively low number of problem parameters, and we increase it to 100
towards the end and otherwise we use the setup from the first two examples. Regard-
ing convergence, we ran MGVI and the ADVI methods for a total of 1000 seconds
each, although all, except fc-ADVI, converged within seconds, as did the MAP es-
timate. After a burn-in and parameter tuning phase we sampled with five chains
for several hours, ending with mean Gelman-Rubin test statistic R̂mean = 1.002 over
all parameters and maximum R̂max = 1.009. The smallest effective sample size was
ESSmin = 500, which is the number of samples we use for our analysis. Fig. 4.12 shows
scatter plots of different model parameters against each other, comparing HMC to the
other methods. MGVI (blue) performs remarkably well, as it is almost indistinguish-
able from HMC in all cases, matching in mean, variance, and correlation. As expected,
fc-ADVI (cyan) also captures the true posterior distribution quite well, but only at
extremely high computational cost. As in the previous examples, mf-ADVI (green)
does not capture any correlations, but also tends to under-estimate the uncertainty.
The recovered mean clearly differs form the sampled posterior mean, and for the more
nonlinear σstate parameter, a systematic shift is observed. The Laplace approximation
works decently for some parameters, for others only the variance is off, and for other
directions straightforwardly fails, as it can be observed to happen most severely in
the last panel.

Fig. 4.13 shows the means and standard deviations of all model parameters and
methods against the HMC results. Again, in both plots MGVI seems to be superior
to mf-ADVI, as well as the Laplace approximation, which is also supported by the
RMS errors, as shown in Tab. 4.2. Here MGVI has significantly smaller mean errors
compared to all other methods. Compared to fc-ADVI, the error is only a third, and
to mf-ADVI one seventh. In the standard deviations the difference is not as severe,
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Figure 4.12: Scatter plots for certain parameter combinations for all the different
methods in comparison to HMC in the logistic regression example. The
parameter pairs vary from left to right, the methods from top to bottom.
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Figure 4.13: Mean (left) and standard deviation estimates (right) for all parameters
and methods plotted against the HMC estimates.

Table 4.2: The RMS error of parameter means and standard deviations relative to
HMC.

RMS HMC against MGVI fc-ADVI mf-ADVI Laplace
mean 0.0047 0.015 0.035 0.13

standard deviation 0.0051 0.0067 0.014 0.14

but also there MGVI is the closest to HMC. In the means, the Laplace approximation
is only completely off once, namely for the hierarchical σstate parameter. For the
standard deviations, Laplace is rarely correct, most uncertainties appear far too large.
Several points are outside the plot, with deviations up to 0.9. Overall, MGVI seems
to be the best among the tested methods for this problem in terms of accuracy.

The Full Model

The full model, as described in detail in [45], additionally takes further regressors
into account, such as the multi-class variables of age, education and region, as well
as combinations of categories, and previous election results. In addition, now the
coefficients of all categories follow a Gaussian prior with a priori unknown standard
deviation. As in the simple problem, a uniform, hierarchical prior with some upper
limit is imposed on those. In the original model the interval [0, 100] is proposed,
corresponding to largely uninformative prior distributions. From a Bayesian inference
perspective, the posterior is extremely far away from the prior distribution, containing
much more information. This is a problem for every method starting somewhat close
to the prior distribution. For HMC it is hard to find the posterior mode to explore,
making sampling in such scenarios inefficient and laborious. MGVI also experiences
something similar, which can be seen in Fig. 4.14. In this case it is significantly slower
in the beginning, compared to mf-ADVI. Everywhere, except close to the posterior
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Figure 4.14: The predictive likelihood of MGVI and mf-ADVI in the large logistic
regression example.

mode, the metric demands a large variance of the Gaussian and the stochastic nature
of the optimization may result in a new location still far away from the posterior mode
with practically unchanged metric. Therefore, only by chance the mode is found, and
once it is, MGVI will quickly contract its variance and converges. For MGVI we found
that in this case the stochasticity introduced by only a single pair of antithetic samples
in combination with deep convergence for this given sample yields best results. This
way we can escape local minima and flat energy landscapes. The initial position
of mf-ADVI is close to a delta distribution and will therefore initially mimic the
behavior of a MAP estimate, which is much better suited for such a scenario with
unconstraining priors and strong likelihood. The mean converges relatively fast, but
the sample average of the predictive likelihood is slow, as seen in the other examples
as well.

To overcome the limitations of MGVI in problems with weak priors and strong
likelihoods, one could come up with heuristic schemes to artificially reduce the sample
variance in the beginning, also imitating MAP, or possibly even starting with mf-ADVI
and later on switching to MGVI, keeping the mean estimate.

4.10 Conclusion

We proposed Metric Gaussian Variational Inference (MGVI) as a general method to
perform approximate Bayesian inference for high-dimensional and complex posterior
distributions. MGVI scales linearly in terms of memory and computations with the
problem size, making it applicable in scenarios with millions of parameters. MGVI
iterates between approximating the covariance with the inverse Fisher information
metric at the current mean estimate and optimizing the KL-divergence to the true
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posterior for the current covariance estimate to update the mean. Drawing samples
from the approximate distribution via implicit sampling avoids storing the covariance
explicitly at any point in time, leading to the linear scaling. The samples are used
for an stochastic estimate of the KL-divergence and its gradient. The variance of
these estimates can be reduced via antithetic sampling and the optimization is per-
formed via natural gradient descent. The algorithm has converged once the mean
estimate is self-consistent with the covariance. The result is a set of samples from
the approximate posterior distribution that implicitly represent correlations between
all parameters, going beyond a mean-field approximation while circumnavigating the
quadratic scaling of an explicit covariance.

In our numerical experiments we demonstrate the accuracy of MGVI by comparing
it to HMC samples, outperforming the Laplace approximation, mean-field, and even
full-covariance ADVI. In addition to this, in most examples MGVI is significantly
faster than the ADVI methods, as well as HMC. Applying MGVI in a diverse set of
different contexts illustrates the versatility of the method. In the logistic regression
example we have shown that MGVI is intrinsically different to an Laplace approxi-
mation, as it finds better solutions in complex models, mimicking the behavior of full-
covariance ADVI. MGVI is also suited for large-scale image reconstruction problems
with millions of parameters and complex models and it provides accurate uncertainty
quantification, which can be used to propagate errors to any derived science result.

For the future it is left to explore the limits of MGVI, both, numerically and the-
oretically. For the problem dimensionality we do not see any conceptual limitation,
except the linear scaling. More problematic is model complexity, and especially de-
generate parameter directions. Those lead to numerical stiffness, and therefore slow
convergence. Solving certain sub-problems individually, or using tempering methods
might result in overall faster convergence. Better justified heuristics for the meta-
parameter choices will have to be developed. It is also unclear how to deal with truly
large data sets, i.e. too large to work with at once, as the Fisher information metric
requires it. How sub-sampling the likelihood and mini-batching the data affects MGVI
is to be explored. On the theoretical side, the properties of the proposed covariance
approximation and the convergence behavior of the method have to be explored more
rigorously.

Finally, we hope that MGVI will open the door to even larger and more complex
Bayesian inference problems in the future.
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5 Applications of MGVI

5.1 The Variable Shadow of M87∗ [13]

The Event Horizon Telescope (EHT) Collaboration published the first image of the
immediate vicinity of a black hole [38, 39, 40, 41, 42, 43], revealing its shadow sur-
rounded by accreting plasma. This image was reconstructed from Very Long Baseline
Interferometry (VLBI) Radio data. To achieve the required resolution, the signal
from multiple radio telescopes was correlated, effectively building an interferometer
the size of Earth. The target was the super-massive black hole M87∗ in the center of
the nearby M87 galaxy. Due to its enormous size, this target exhibits a comparable
angular extension the black hole in the center of the Milky Way, Sagittarius A∗, but
as it is roughly a thousand times larger, is far less variable. It only varies on the
time-scales of days, instead of minutes, which allows to integrate more data into one
image.

The main challenge for better reconstructions is the variability. The temporal
evolution of the source has to be resolved, especially in the case of the strongly
varying Sagittarius A∗, for which no reconstruction or data has been published yet.
Introducing an additional time direction dramatically increases the number of required
parameters, as an additional dimension is introduced. Also, the data becomes strongly
diluted, reducing the available information for every pixel.

As we have shown in Arras et al. [13], the key to overcome the severe data-sparsity in
spatial and temporal directions are correlations together with a rigorous probabilistic
treatment of the reconstruction problem to account for uncertainty. To demonstrate
the capabilities of the method, we obtained the first time-resolved reconstruction of
the immediate vicinity of a black hole, using the data of M87∗, provided by the EHT
collaboration. The reconstruction spans the entire observational cycle of seven days,
containing four 8-hour observations.

The following part will briefly discuss the approach the results from this publication.
All the details can be found in the paper. I contributed to the team effort through
work on the implementation and the testing of the likelihood and the reconstruction
algorithm.

A radio-interferometer in general consists of multiple antennas. The measured
radio-waves are correlated with each other according to a certain time-delay, which
determines the pointing of the telescope. These correlations correspond to a point-
measurement of the Fourier-transformed sky-brightness. Imaging is then required to
turn the sparsely-probed information on the Fourier plane back into a full image of
the sky. VLBI utilizes the same measurement principles, but the antennas belong to
a large variety of different instruments, placed thousands of kilometers apart. This
makes the calibration, in contrast to conventional radio-interferometers, a lot more
challenging. All antenna-based effects can be removed by combining several ampli-
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Figure 5.1: The first row shows the reconstructed mean and relative error, averaged
over the entire observational period of 7 days. The first panel of the bot-
tom row is a saturated plot of the time averaged posterior mean, revealing
the emission zones outside the ring. The overplotted contour lines show
flux at 0.009, 0.023, 0.051, 0.188, 0.282, 0.376 Jy/µas2. The last panel on
the bottom row shows the result of the EHT-imaging pipeline in compar-
ison, also saturated and with overplotted contour lines. This figure and
caption text is taken from Arras et al. [13].
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Figure 5.2: Visualisation of the posterior mean. All figures are constrained to half the
reconstructed field of view. The first row shows time frames of the image
cube, one for each day. The second row visualises the absolute difference
between adjacent days. Blue and red visualises increasing and decreasing
flux over time, respectively. The third row visualises the relative difference
in flux over time. The overplotted contour lines show the flux at 0.009,
0.023, 0.051, 0.188, 0.282, 0.376 Jy/µas2 of our posterior mean. This figure
and caption text is taken from Arras et al. [13].

tudes and phases in a certain way to form closure quantities [17, 115], which are then
used to perform the imaging. The problem with these is, that also the information of
absolute positions and total flux is lost.

These closure quantities are the basis of the image reconstruction. In order to
recover the original signal from this highly incomplete and noisy measurement, it
is unavoidable to impose certain assumptions. One fundamental assumption is the
positivity of the emitting density. In case of the black hole shadow, we expect an
extended emission structure, which exhibits spatial correlation. We also assume a
strong correlation in the temporal direction due to the physical size of the object in
the order of light days. We also expect exponential brightness variations on linear
spatial scales. All these assumptions can be implemented using a log-normal model
together with a Gaussian process correlation structure. This correlation is described
as an outer product of a spatial and a temporal correlation structure. A priori, we
assume independence between those two directions.

The correlation structure reflects assumptions on physical processes. We are not
absolutely sure what to expect in the immediate vicinity of a black hole, or at least
we want to allow for multiple scenarios. We therefore do not impose the spatial and
temporal correlation structure directly, but also learn it from the data. For this,
we assume a priori statistical homogeneity and isotropy in the spatial and temporal
direction separately. This way, the correlation structure is diagonal in the Fourier
domain, according to the Wiener-Khinchin theorem [68, 135], and can be expressed
in terms of power-spectra. These are also modelled in terms of a log-normal model
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with an integrated Wiener process prior on double-logarithmic scale.
This prior model, together with the closure likelihoods for phase and amplitudes,

constitutes a Bayesian inference problem, which we approximately solve using MGVI.
We set a spatial resolution of 1µas2 and a field of view of 256×256µas2. The temporal
resolution are 6 hours over 7 days. In addition to this, we have two highly-correlated
frequency channels and double the time period to circumvent the periodic boundary
conditions of the Fast Fourier Transformation. In total, this results in 7.3 million
model parameters, which are constrained by roughly 1000 data points. In scenarios
with such extreme data sparsity, it is mandatory to properly propagate uncertainties
and to take correlations into account. MGVI enables such reconstructions.

With this, we obtain the first time- and frequency-resolved reconstruction of a
black hole shadow. The time-averaged result is shown in Fig. 5.1, together with
the uncertainty and a reconstruction from the EHT-imaging pipeline. We clearly
recover a circular structure with a crescent-like brightness distribution. The bottom
is brighter, whereas the top part fainter, which is probably due to relativistic beaming.
The overall result is higher resolved, but fully consistent with previous reconstructions,
as published by the EHT collaboration [41]. In addition to the circular structure, we
recover a significant emission region directed towards the bottom right corner.

The temporal evolution throughout the observational period is illustrated in Fig.
5.2. Here, the day-averaged images together with their absolute and relative changes
are shown. We clearly observe variability on the time-scale of days. On a large scale,
we observe a dimming on the left side and an increase in brightness on the right.
Certain spots on the ring become brighter or dimmer, most notably on the bottom
and slightly to its left. The structure outside the ring gets fainter the entire time.

Overall we introduced a method to perform time-resolved reconstructions of ex-
tended sources from VLBI data and demonstrated it’s applicability to real-world
problems by obtaining the first time- and frequency-resolved reconstruction of a black
hole shadow. This method was enabled by the capability of MGVI to efficiently solve
such high-dimensional problems. In the future, this method could possibly be used
to approach sources with much stronger variability, for example Sagittarius A∗.

5.2 Resolving Nearby Dust Clouds [92]

Determining the tree-dimensional structure around us in the Universe is challeng-
ing. Due to the enormous distances, most things appear projected onto the celestial
sphere. One way to obtain distance information on nearby objects are parallaxes.
Changing angles towards the source during the revolvement of Earth around the Sun
can be used for triangulation. Larger distances require higher precision because of
smaller angles. The Gaia satellite [108] obtained extremely accurate parallaxes for
hundreds of millions of stars in our Galaxy, providing an astonishing insight in the
three-dimensional structure of our galactic environment. One of its constituents is
interstellar dust. It absorbs starlight, preferentially higher frequencies, and thereby
effectively reddens the light spectrum. This therefore traces the amount of dust along
the line of sight between Earth and the star. Combining this absorption with the
distances from parallaxes provides information of the three dimensional distribution
of dust. Estimates for both are provided by Gaia [23].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Column density comparison of this current reconstruction (Leike et al.
[92], left column) and that of Green et al. [51] (right column). The rows
show integrated dust extinction for sightlines parallel to the z- x- and y-
axis respectively. Note that for Green et al. [51] we show the integrated
extinction only if more than 50% of the projected voxels exist in the
reconstruction. This figure and caption text is taken from Leike et al.
[92].
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Leike and Enßlin [91] used these data to reconstruct a three-dimensional map of
the dust within a 600pc cube centered around the Sun in unprecedented resolution
with more than 17 million voxels. In a improved reconstruction, Leike et al. [92] used
a more accurate likelihood together with better extinction estimates obtained from
cross-matching. In addition to that, the volume was split into octants around the sun
and reconstructed independently. This allowed for an overall increase in volume to
800pc×800pc×600pc and to a voxel-resolution of 2pc. Each of the octant contains 50
million parameters, resulting in a total of 400 million parameters in the reconstruction.

I was not directly involved in this work, but the used tomographic algorithm is
based on MGVI, which enabled reconstructions on such a large scale.

Such tomographic reconstructions are challenging for a number of reasons. They
need to entangle many interrelated unknowns. All line of sights in the volume start at
a star with known distance and end in the center. The most information is therefore
available towards the center, where the density of lines is highest and it drops off to-
wards the edges of the reconstructed volume. The main issue with three-dimensional
reconstructions is the enormous number of required parameters to achieve high res-
olutions. A Gaussian likelihood was constructed from the extinction estimates. The
prior for the dust density follows a log-normal distribution with a Gaussian pro-
cess kernel. This way, positivity is enforced, spatial correlations are encoded and
exponential density-variations on linear spatial scales are allowed. The correlation
structure depends strongly on the physical processes shaping the morphology of the
dust. Instead of imposing a certain correlation, it was also recovered directly from
the data. For this, statistical homogeneity and isotropy of the logarithmic density
was assumed, allowing the correlation to be expressed in terms of a power-spectrum.
It was assumed to follow a log-normal distribution with an integrated Wiener process
kernel on logarithmic Fourier modes. This model is analogous to the one used for
the black hole reconstruction, except that only one single correlation structure for all
spatial directions is used.

The results, together with the result from a similar method are shown in Fig.
5.3. It shows the projection of the dust density along the three spatial axes. The
reconstruction clearly shows the local bubble, an absence of dust in the immediate
vicinity of Earth, as well as fine filaments throughout the volume. Compared to
the other methods, the spatial resolution is significantly higher. As MGVI is used
to obtain the result, cross-correlations between all parameters have been taken into
account and uncertainties on all quantities are available, allowing to propagate errors
to any quantity of interest. In the future, it is envisioned to significantly increase the
reconstructed volume, as well as the spatial resolution.

5.3 Computed Tomography with Segment-Aware
Priors

The fundamental problem of astrophysical and medical imaging is the same. The
goal is to reconstruct some underlying truth from noisy and incomplete data. In one
case the target is some phenomenon in our Universe, in the other the constituents
of some patients body. Medical imaging has become an integral part of modern di-
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agnostics and medical research. Especially three-dimensional reconstructions provide
deep insights into the causes for certain problems and several techniques are com-
monly used, for example Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), and Positron Emission Tomography (PET). All these techniques are strongly
related to astrophysical approaches. A CT relies on line of sight absorption if X-ray
emission, fundamentally identical to the dust reconstruction in the previous example.
Reconstructing MRI data poses the same problem as an radio-interferometric data,
as the Fourier-plane is sparsely probed. For PET scans the decay numbers and lo-
cations of radio-nuclides are recorded, analogously to X- and Gamma-ray telescopes.
All of these methods produce large amounts of data, probing the three-dimensional
structure of the patient.

One goal for the development of reconstruction algorithms is to reduce the number
required data. This has two advantages. First, it reduces the required time in the
extremely expensive instruments, providing a larger number of patients access to such
advanced technology. Second, CT and PET rely on sources for ionizing radiation
to penetrate the patients body. This constitutes a health risk and minimizing the
exposure is paramount. To achieve this, it is required to use the available data to
its fullest extent and the Bayesian framework provides the path to this goal. Using
prior knowledge on the constituents of the human body can significantly reduce the
amount of required data. Using a probabilistic approach, uncertainties associated to
the final reconstruction are provided. Quantifying uncertainty is essential to derive
reliable conclusions from the images, on which important decisions on the treatments
of patients are based. The work presented in the following is part of the master
thesis of Philipp Haim, who developed a probabilistic model to capture many relevant
aspects of a human body and used it to reconstruct images from X-ray CT-data. I
co-supervised this project and was involved in discussions.

The human body is segmented into several distinct component with certain prop-
erties, for example different kinds of tissues and bones. They exhibit characteristic
densities, morphology, and are usually auto-correlated. Within the body, every lo-
cation can only be inhabited by one single component, due to spatial restrictions.
Fundamentally, physical densities are measured, which are strictly positive.

For every component, two Gaussian random fields with a-priori unknown correla-
tion structures were used. One expresses the morphology, capturing the characteristic
density and lengths-scales. The other indicates how much the component is present
at a certain location. Because these indicator fields sum up to one over all compo-
nents, they exclude each other. One of the components is corresponds to an X-ray
transparent material, i.e. air, with density zero to describe the environment around
the patient. The number of expected components has to be specified beforehand,
but their location and morphology is automatically identified and determined by the
reconstruction algorithm. A graphical representation of this model is shown in Fig.
5.5. To recover the correlation structures of all involved fields, the same model as in
the other examples was used.

The associated inference problem is highly non-linear and requires several fields the
size of the final reconstructed image. MGVI was capable of dealing with the scale and
complexity, providing reasonable reconstructions of the image itself, but also for the
individual components. Results for the reconstruction of a two-dimensional slice from
a X-ray CT-scan of a chest is shown in Fig. 5.4. Here, three components for the body
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Figure 5.4: The reconstructed image (top left) and its point-wise standard-deviation
(top right). The bottom row shows the identified segments. The figures
were provided by Philipp Haim.
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Figure 5.5: The graphical structure of the segment-aware prior model used for the
reconstruction of the CT data. Every component Ci consists of an indi-
cator field Ii and morphology field Mi. All these fields have their own,
a-priori unknown, correlation structure τi. One component is X-ray trans-
parent, omitting a dedicated morphology field. This figure was provided
by Philipp Haim.

and one for air were assumed. The overall reconstruction provides a high-resolution
image of the patients interior. The three identified components clearly correspond
to characteristic constituents of the interior. The first segment shows lung-tissue,
which is morphologically distinct to everything else, exhibiting low average density
and filamentary structure. The second segment corresponds to bones, showing high
characteristic density and larger scale correlations. The final segment contains the
combination of several other types of tissue, which share common densities and length-
scales. The pixel-wise uncertainty of the full image indicates higher values at the
boundary between the distinct segments.

In the future, it is envisioned to extend the reconstruction to three-dimensional re-
constructions, utilizing the additional correlations. To additionally reduce the amount
of required data, better descriptions of the measurement, including energy-dependent
characteristics of the radiation and its absorption, and accounting for count-statistics
are pursued.

5.4 The Galactic Faraday Depth Sky Revisited [58]

The polarization of the radiation received from the Universe provides a valuable in-
sight into the magnetic structure of the sources. One example are high-energy free
electrons spiralling in magnetic fields, emitting synchrotron radiation in radio fre-
quencies. One issue with the measurement of polarized sources is Faraday rotation.
Magnetic fields along the propagation direction of the wave rotate the polarization
angle. In our Galaxy, the interstellar medium is filled with magnetized plasma, dis-
torting the polarization in a characteristic manner. The amount of rotation is directly
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Figure 5.6: The recovered Faraday rotation map using the described method. This
figure is taken from Hutschenreuter and Enßlin [58].

dependent on the amount of magnetic fields and the number of thermal electrons along
the line of sight, as well as the squared wavelength. Longer wave-lengths are stronger
affected and the characteristic wavelength dependence can be used to measure the line
of sight integrated combination of thermal electron density and line of sight magnetic
field component.

To study polarized, astrophysical sources it is vital to account for the Faraday
rotation in our Galaxy. Extra-galactic, polarized point-sources, e.g. pulsars, can be
used to estimate the Faraday rotation occurring at individual locations on the sphere.
These measurements are highly incomplete with respect to the full sky and have a
galactic and extra-galactic Faraday contribution. The extra-galactic component is
spatially uncorrelated, but has unknown magnitude for every source. The galactic
Faraday rotation does exhibit spatial correlation, as it follows the distribution of
magnetic fields and thermal electrons around us. These electrons are also emitting
free-free radiation in the microwave regime, as observed by the Planck satellite. This
emission is Bremstrahlung due to the Coulomb interaction between the electrons
and ions. Hutschenreuter and Enßlin [58] used rotation measures from extra-galactic
point-sources together the free-free emission maps provided by the Planck satellite to
obtain improved maps of the Galactic Faraday rotation. I was not directly involved in
this work, but it beautifully showcases how MGVI can be used to approach large-scale
and complex inference problems with multiple distinct data sets in a holistic manner.
Several quantities are inferred simultaneously to model the interesting physics, as
well as to account for numerous systematics. The Faraday map is the product of an
amplitude component and magnetic field component. The amplitude contains the
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Figure 5.7: The graphical structure of the Faraday model. The figure is taken from
Hutschenreuter and Enßlin [58]. Here, ε represents the electron density,
which enters both maps, the free-free, as well as the Faraday map. γ, ψ,
and δ represent systematic effects and χ determines the direction of the
magnetic field. All combined make up the Faraday map φ. The free-free
map EMff is only modelled in terms of ε. The noise covariances nff and
nφ are dependent on th parameters ηff and ηφ and are associated to the
free-free data dff and rotation measures dφ. All quantities in the top row
correspond to the model parameters. The middle row are the derived
quantities and the bottom row contains the data.

electron density, which also imprints into the free-free map. Three additional fields
are used to model certain systematic deviations between between the Faraday map
and the free-free map. Spatial correlations for all these quantities are assumed, which
are a priori unknown. The same approach as in the previous examples is used to learn
them simultaneously from the data. In addition to this, the noise covariance on the
input data is unreliable, due to either Faraday rotation occurring in the host galaxy
of the sources, or component separation artefacts in the free-free map. To account
for this, the noise covariance on both data sets is also modelled in terms of additional
parameters for each data point. Here, the inverse gamma distribution is used as a
prior on the entries of the diagonal noise covariance. This allows for potentially high
uncertainty associated with individual data-points, accounting for systematic errors.
Overall, the model contains five fields on the sphere, corresponding to magnetic field
strengths and directions, electron densities and systematics. All these have unknown
correlation structures. In addition to this, a noise covariance for all data points is
reconstructed. The graphical structure of the probabilistic model is shown in Fig.
5.7. MGVI is then used to solve for all quantities simultaneously.

The recovered Faraday map using this method is shown in Fig. 5.6. It provides
a significant improvement in regions that are only sparsely sampled by the original
Faraday data. This map generally agrees with previous maps, but overall resolves
smaller structures. Especially, the disk region in the center is improved. An additional
result of this reconstruction is a modified free-free emission map (not shown), which
only contains contributions that are consistent with the rotation measures, removing
certain artefacts.

In the future, it is straightforward to extend this model to contain additional data
sets or use models with further physical knowledge.
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5.5 Unified Radio Interferometric Calibration and
Imaging with Joint Uncertainty Quantification [12]

To conclude this chapter, I want to mention one last application of MGVI. Radio-
interferometers are extremely sensitive devices that allow to probe the non-thermal
Universe. Modern interferometers allow to measure with ever more accuracy and
resolution. All these instruments require careful calibration to unfold their full poten-
tial. One important problem is the time-variable screen between the antennas and the
source due to atmospheric or ionospheric effects. It affects the amplitudes and phases
of the received electromagnetic waves, which leads to apparent shifts and changes
of brightness of the source. Therefore, a calibrator source with known location and
brightness is usually also observed. During the measurement, the telescope switches
between the science target and the calibrator in regular intervals. For the analysis,
the calibrator data is used to find solutions for the amplitude and phase calibrations,
which are then used for the imaging of the science target.

Instead of splitting this procedure into two separate tasks, Arras et al. [12] si-
multaneously performs the antenna-based calibration and imaging. To model diffuse
emission, a log-normal model with a Gaussian process prior and a priori unknown
correlation structure is assumed, analogously to the other examples. To make use of
the temporal correlation of the calibration solutions, a Gaussian process model for
the phases and a log-normal model with Gaussian process prior for the amplitudes in
the temporal direction was assumed.

By combining the calibration and the imaging, the advantages are manifold First,
the science target itself is typically static on timescales of the measurement. This helps
to further constrain the calibration solutions in between calibrator observations. Bet-
ter calibrations in turn lead to better images, possibly reducing the required time
devoted for calibration, or obtain improved results. MGVI implicitly also takes the
cross-correlation between all quantities into account, which allows to propagate cal-
ibration uncertainty into the final result. A reconstructed image of the supernova
remnant SN1006 observed with the VLA telescope together with its uncertainty and
exemplary phase and amplitude calibrations are shown in Fig. 5.8.
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Figure 5.8: The results for a simultaneous calibration and reconstruction of SN1006.
The figures are taken from Arras et al. [12]. The top left shows the ob-
tained image, top right contains the corresponding relative uncertainty.
The bottom shows the temporal evolution of the amplitude (left) and
phase (right) calibration throughout the observation.





6 Bayesian Reasoning with
Deep-Learned Knowledge

This chapter is used as a publication currently submitted to the Conference on Neural
Information Processing Systems (NeurIPS) [73]. My contribution includes the devel-
opment, implementation and testing of the idea and all examples. I also wrote the
contents. Torsten Enßlin was involved in all discussions and provided valuable feed-
back on the entire manuscript. All authors read, commented, and approved the final
manuscript.

6.1 Abstract

We use independently trained neural networks to represent abstract concepts and com-
bine them through Bayesian reasoning to approach tasks outside their initial scope.
Prior knowledge is provided by deep generative models and classification or regression
networks are used to express knowledge on complex features of the system. The task
at hand is then formulated as a Bayesian inference problem, which we approximately
solve through variational or sampling techniques. We demonstrate how this leads to
an alternative way to obtain conditional generative models. By imposing multiple
constraints at once, we formulate riddles and solve them through reasoning. We also
demonstrate how additional information on features can be combined with conven-
tional noisy measurements to reconstruct high-resolution images of human faces.

6.2 Introduction

Reasoning is the act of combining knowledge from multiple sources to come up with
the solution to a problem. If the available information is incomplete and uncertain,
the knowledge is represented in terms of probabilities. Bayesian inference provides
the framework to approach this task, as it is the generalization of Aristotelian logic
into the realm of uncertainty [30].

The questions that can be answered this way are limited in one’s capability to
formulate the problem mathematically. Elaborate models require a deep understand-
ing of a system, but allow deep insights in its inner workings. Nevertheless, many
interesting systems are far too complex and their features too abstract to directly
write down a mathematical model. Here deep learning provide a way to capture the
complexity by training neural networks on examples. The trained network is then a
surrogate model of the concept it was trained on.

In this paper we want to use several networks trained on different tasks to jointly
answer novel questions on complex systems by performing Bayesian reasoning. We
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achieve this by using deep generative models, as obtained from Variational Auto-
Encoders (VAEs) [69] or Generative Adversarial Nets (GANs) [50], as prior distribu-
tions to describe these systems. Deep classification or regression networks allow us to
express knowledge on abstract properties, which we can use to constrain them further.
The answer to a question is then given by the posterior distribution over the latent
variables of the generator subject to the posed constraint. We will approximate this
posterior distribution either variationally [16], or explore it using Hamiltonian Monte
Carlo [34].

This allows us to rely on already trained networks and flexibly use them in different
contexts. We do not have to train an entirely new network for every task and only
have to appropriately arrange available building blocks.

Our approach could be used to develop a wide range of novel methods. In this
place we can only provide a proof of concept of the fundamental idea and illuminate
certain facets. We do not yet understand all aspects and implications, rendering our
algorithmic choices ad-hoc. In our examples we first discuss a generator subject to one
constraint, second, how to combine multiple constraints to solve a non-trivial riddle
through reasoning, and third, how to combine the approach with conventional mea-
surement data in a large-scale inference problem using current network architectures.

6.3 Related Work

Deep generative models as description of complex systems are especially helpful in
various imaging related problems, such as de-noising, in-painting or super-resolution
by recovering the latent variables of the generator [21, 93]. Even untrained generators
can provide good models for such tasks [132]. The mentioned methods rely on point-
estimates. Using the deep generative models in a Bayesian context, the posterior
distribution allows to account for complex uncertainty structures [19, 139]. In essence
we follow these works and extend them by adding constraints on abstract system
features, which are expressed through trained classification or regression networks.

Many of the tasks above are also directly approached by deep learning through
end-to-end solutions, for example super-resolution [33]. Similarly, our approach pro-
vides an alternative path towards conditional generative models. Usually these are
obtained by providing labels or more general constraints [98, 111, 133, 140] during
a training phase. We instead use unconstrained generators and flexibly add further
constraints through independently trained networks in a modular fashion, allowing
to combine information from multiple sources. Similar methods also manipulate the
latent variables of unconstrained generators to change samples into a desired direction
[141]. Also more implicit information in form of the preference of one sample over the
other can guide the generation [55]. Our posterior distribution is in principle also a
manipulation of the latent variable distribution, such that the constraints are fulfilled.

Interestingly we can regard our approach as a form of continual variational learning
[100]. When approximating our posterior variationally, we conceptually add an addi-
tional set of layers to the original generator, which then satisfy the posed constraint.
Repeating this for multiple constraints, we can partially train generators through
abstract knowledge on the subject, instead of data only.
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6.4 Deep-Learned Knowledge

6.4.1 Deep Generative Priors

Knowledge on any system can be encoded within a probability distribution x ∼ P(x).
An equivalent representation of this knowledge is a generative model x = G(ξ). These
transform latent variables with simple distributions ξ ∼ P(ξ) to system realizations x.
Deep generative models, such as GANs and VAEs, allow to represent complex systems
that evade an explicit mathematical formulation. They acquire their understanding
through large amounts of examples within a training set.

Conceptually, the use of generative models corresponds to the reparametrization
trick [69] applied to the model parameters. The Bayesian inference problem in terms
of the thereby introduced latent model variables is

P(ξ|y) =
P (y|G(ξ))P(ξ)

P(y)
. (6.1)

This way, we have a generative Bayesian model with a simple distribution as prior.
This equation tells us how any kind of new information through y restricts the la-
tent parameters ξ. Without loss of generality we will be using a standard Gaussian
distribution over the latent variable P(ξ) = N (ξ|0, 1), as this provides a convenient
parametrization for inference [15, 85]. If the original generator was not trained on
Gaussian latent samples, we can convert them to such through an additional trans-
formation.

6.4.2 Constraints through Neural Networks

Knowledge on a system x is often represented in terms of a constraint y = F (x)
involving some feature extracting function F . In our case the functions F will be
neural networks trained to extract certain features. Given a desired feature value y as
data, a candidate system x is judged for its adherence to the feature via a likelihood
probability, i.e. P(y|F (x)). For continuous quantities a convenient choice is the
Gaussian distribution

P(y|F (x)) = N (y|F (x), N) . (6.2)

Here F (x) serves as the mean of the Gaussian and N is the covariance. The more
certain we are about the estimate, the narrower we can center the distribution around
the mean.

In the case of discrete categories, the function F might provide classification prob-
abilities pi(x) for the feature of x being in class i. A more appropriate choice for a
likelihood could then be the categorical distribution

P(y|F (x)) = C(y|F (x)) = py(x) . (6.3)

This distribution describes the outcome of one draw. It does not directly encode how
much we trust the estimate of the network. A simple way to introduce this is to raise
this distribution to a certain power α.

P(y|F (x)) ∝ Cα(y|F (x)) = pαy (x) . (6.4)
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Positive integer values for α are equivalent to multiple consecutive draws with the
corresponding outcome, resembling the multinomial distribution. This has roughly
the same effect as the narrower variance of the Gaussian in the continuous case and
we will use this parameter to encode our certainty in a categorical feature.

6.5 Bayesian Reasoning with Deep-Learned Knowledge

We now use a deep generative model x = G(ξ), which encodes our prior knowledge
on the system and feed its output into the classification or regression network F (x) to
check whether the abstract property is fulfilled. This concatenation F ◦G(ξ) relates
the latent variable to the data in the likelihood. The prior itself is the source distri-
bution of the latent variables ξ. Bayes theorem allows us to combine the associated
probability distributions to obtain the posterior distribution over latent variables that
are compatible with the constraint,

P(ξ|y) =
P (y|F ◦G (ξ))N (ξ|0, 1)

P(y)
. (6.5)

This poses a non-conjugate Bayesian inference problem in terms of the latent variables
of the generator. Arbitrarily many constraints, either abstract through networks or
conventional measurements, can be considered by including additional likelihoods.

6.5.1 Approximate Inference

Due to the nonlinear structure in F and G, the evidence P(y) will not be available
analytically, so we have to rely on approximations to the posterior distribution. The
associated approximation problem might be challenging due to the high dimensional-
ity of the posterior and its hardly comprehensible shape due to the posed constraints.
Choosing the right method for an application will highly depend on the requirements,
but this does not change how the problem is approached. In general, we want to
capture the true posterior distribution as closely as possible. Sampling techniques,
such as Hamiltonian Monte Carlo (HMC) [34] allow us to draw samples from this true
posterior, but require large amounts of computational resources. This method allows
us to verify the fundamental validity of our approach and we will use it in one of our
smaller examples.

Variational inference [18] can be much faster than HMC and does not only provides
samples, but an entire probability distribution. This distribution can be used as a
prior in a future problem to perform continual learning. The true posterior P(ξ|y)
is approximated with another distribution Qϕ(ξ) within a parametrized family by
minimizing their Kullback-Leibler divergence [86] with respect to the variational pa-
rameters ϕ, which is equivalent to maximizing the Evidence Lower Bound (ELBO)
[16]. The reparametrization trick [69] allows to express the approximation in terms of
a deterministic function ξ = Hϕ(ζ) and a transformed random variable ζ that follows
a simple source distribution. We stochastically estimate the ELBO and its gradient
through samples from the approximation [56]. The deterministic reparametrization is
a generative model for latent variables ξ that are compatible with the posed constraint.
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Figure 6.1: The posterior mean (leftmost columns) and samples (other columns) ob-
tained from HMC (left) and a Gaussian mean-field approximation (right).

Therefore, the concatenation of the unconstrained generator with this reparametriza-
tion, i.e. G ◦Hϕ(ζ), gives a conditional generator with the same mathematical struc-
ture as the original one. Thus, the variational inference provides an additional set of
network layers on top of the original input layer, which are responsible to satisfy the
additional constraints.

The accuracy of variational inference depends on the capability of the approximate
distribution to capture the true posterior. Flexible approaches, such as Normalizing
Flows [112] allow in principle for arbitrary accuracy, but at high computational costs.
For this reason, here we will only consider simple Gaussian approximations, which
are significantly faster. To avoid an explicit parametrization of the full covariance,
we will use a mean-field approach [102]. Interestingly, due to the standard Gaussian
prior, this is equivalent to Automatic Differentiation Variational Inference [85]. As
additional method we will be using Metric Gaussian Variational Inference (MGVI) for
larger problems [76], which also captures correlations between all quantities implicitly.

6.6 Demonstrations

6.6.1 Conditional Generators

In the first example [72] we want to illustrate how our approach provides an alternative
way to obtain a conditional generative model. As likelihood we use the categorical
distribution, containing the trained classification network F (x) attached to the output
of the generator x = G(ξ). The prior over latent variables ξ is the source distribution
of the generator, i.e. the standard Gaussian. The posterior is then proportional to
the product of prior and likelihood with a certain choice for α to control its strength.

P(ξ|y) ∝ Cα(y|F ◦G(ξ))N (ξ|0, 1) (6.6)

Here we constrain a generator of hand-written digits to a certain label. As genera-
tive model we use a Wasserstein-GAN [8, 52] with three hidden layers, convolutional
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architecture, and 128 latent variables trained on the MNIST dataset [90]. The digit
classification is performed by a deep three-layer convolutional neural network [83]
trained on cross-entropy and achieving 98% test accuracy. We strongly enforce the
constraint by setting α = 100. All networks are implemented in tensorflow [1] and
the inference problem is solved in NIFTy [10]. In the next two examples we used a
single core of an Intel Xeon CPU E5-2650 with 2.3GHz. We did not fully optimize
for run-time.

In this example we explore the true posterior distribution via HMC sampling. For
every digit we use eight chains to draw 80, 000 samples in total, after disregarding an
initial burn-in and tuning phase. We are aiming for an acceptance rate of 0.6 and
adapt a diagonal mass matrix. For every sample we perform 10 leapfrog integration
steps and all chains are initialized at a prior sample. One chain requires 36 minutes.
To ensure convergence, we calculate the Gelman-Rubin test statistic R̂ for all latent
variables [46]. Throughout all digits, the largest value we encounter is R̂ = 1.03 for
the constraint that the digit is a zero. For all other cases, the largest value is about
another order of magnitude closer to unity. The mean value over all variables and
cases is R̂ = 1.001, which indicates well-converged chains. The smallest effective
sample size, which accounts for auto-correlation is Neff = 4169 for one parameter of
the digit four and on average Neff = 5474. This small difference indicates that we
explore almost all directions equally well. This could be due to the Gaussian prior and
only a small amount of additional information provided by the likelihood, making it a
well-conditioned posterior landscape. We judge the quality of the samples by checking
whether they satisfy the posed constraint according to the classifier. Surprisingly, in
all cases, except for the digit 4, all samples are classified correctly. For this exception
still 98% of the samples fulfill the posed constraint. For these results we used every
tenth sample, i.e. 8000 for each digit.

We also perform a variational mean-field approximation with a Gaussian. For this
we follow the same procedure as described in the next example, optimizing for 600
seconds, starting with 10 samples and increase them every 120s by another 10. For
our analysis we use 300 samples from the resulting distribution. Compared to the
HMC samples, we have slightly more errors with an average accuracy of 99% and
only the digits zero, one, and five are exclusively classified correctly. The mean for
every digit, as well as representative samples for both methods are shown in Fig. 6.1.
As HMC explores the full posterior, we obtain morphologically diverse samples. These
also expose the shortcomings of the original generator. The variational approximation
provides more distinguished, but highly uniform samples, which is to be expected due
to under-estimation of true variance by the mean-field approach.

6.6.2 Solving Riddles

Here we want to solve a riddle by enforcing multiple constraints simultaneously. We
know a priori that we are looking for three single-digit numbers. We want them
to fulfill the five constraints outlined in Tab. 6.1. The only viable solution is the
combination 134. In the model the three digits are generated through three instances
of the same generator used in the previous example, i.e. x = G(ξ), resulting in a total
of 384 latent variables in ξ. For each of the five constraints we assemble a function
Fi(x) that checks whether it is fulfilled or not. For the constraints I,IV and V those
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Table 6.1: The riddle discussed in Sec. 6.6.2.

There are three numbers:

I. The first number is odd.
II. The second is two larger than the first.
III. The first plus the second equal the third.
IV. The third number is not a seven.
V. It also contains no closed circle.

correspond to three independently trained convolutional neural networks applied to
the respective digit. For the fourth constraint we re-use the digit classification network
from the previous example. The other two constraints use the same architecture, but
are trained on the respective task. The remaining constraints II and III involve
multiple numbers simultaneously. Both require again the classification probabilities
of the digits to calculate how likely they are satisfied. For every digit this is a 10
dimensional vector. The mathematical logics are directly implemented into the model,
represented by a 2-tensor A and a 3-tensor B with ones at locations corresponding to
valid expressions and zeros elsewhere. Contracting these tensors with the classification
probabilities provides the overall probability the constraint is fulfilled or not. This
way we included explicit domain knowledge into the reasoning system. The graphical
structure of the inference problem is outlined in Fig. 6.2.
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Figure 6.2: The graphical structure of the riddle solver. Here pi indicates the classi-
fication probability given the respective network. (o for odd, c for circle
and 1,2,3 for the digits)

The solution is given in terms of the posterior distribution, which is proportional
to the product of all likelihood terms and the prior.

P(ξ|yI , . . . , yV ) ∝
∏

i∈I...V

Cα (yi|Fi(G(ξ)))×N (ξ|0, 1) (6.7)

Here we perform a Gaussian mean-field approximation using variational inference.
The challenge in this case is the multi-modality of the posterior distribution. There
are many combinations of numbers that partially fulfill the constraints and therefore
constitute a mode in the posterior. An annealing [116] strategy partially mitigates
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Figure 6.3: Left: Two examples for provided solutions for the riddle. The left one
shows a correct solution, whereas the other one is only almost correct.
The top rows show the ensemble means. Right: The ELBO and various
other metrics of the riddle during the optimization. Vertical lines indicate
the increases in α.

this issue. Initially we choose a small α to allow the optimization to explore the
posterior landscape and later on increase it to learn the structure of the resulting
mode.

Regarding the optimization scheme, we had issues with the convergence of common
momentum-based stochastic optimizers. We found that non-stochastic optimizers
work reasonably well in combination with good estimates of the gradients. Antithetic
sampling [84] allows to reduce the stochasticity of the estimates on gradient and
loss. Every sample drawn from the approximation is accompanied by a totally anti-
correlated partner, obtained by mirroring the sample at the center of the Gaussian.
We then employ a line-search along the gradient direction to update the variational
parameters. Five sample pairs are used to estimate the ELBO, its gradient and the
other quantities. The overall run-time is 2400 seconds. We choose α ∈ {0.5, 1, 3, 10}
and increase it after every 600 seconds. To illustrate the behavior quantitatively we
repeat the approximation for 100 different random seeds.

In the end, 88% of the runs end up with the correct solution. To track the progress
during the optimization we follow the evolution of five quantities. First, the ELBO
for the final α = 10 as the overall optimization goal. Second, the average conditional
categorical likelihood over samples and constraints as a score to quantify how well
the conditions are met. Third, our accuracy in terms of the average conditional
categorical likelihood that the samples show the correct solution. These quantities
are between zero and one. The fourth and fifth show cumulatively the fraction of
runs that were able to achieve any or exclusively correct samples up to that time.
All these quantities, averaged over the hundred runs, are shown in the right panel
of Fig. 6.3. The ELBO increases in three steps, plateauing before the increases in
α. There seems to be no large difference for the posterior whether α is 3 or 10. In
the first quarter the constraints are only weakly enforced and the approximation can
explore the posterior distribution. For most runs the first occurrence of a correct
sample falls in this section and afterwards this line flattens. The capability to explore
is in contradiction to well approximate the local mode, so only in a small number of
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Figure 6.4: Setup and results (left panel) for the face reconstruction problem with
ground truth (top left), masked and corrupted data (top right), the mean
reconstructed image (bottom left), the pixel-wise standard deviation (bot-
tom right), and samples (right panel).

cases exclusively correct samples are achieved in this phase. At the end, the score
is significantly above the accuracy, so although all constraints are quite satisfied, the
solution itself is not necessarily correct.

How this is possible can be seen in the two examples shown in the left panel of
Fig. 6.3. Here samples and their mean from two different runs are shown. The first
one correctly identifies the solution, whereas the second one ends up in an almost
correct mode. In this, all constraints are satisfied, except that the last digit has no
closed circle. Qualitatively all runs that do not show the correct solution end up in
this mode. Note that the last digit tends to avoid closing the circle to comply with all
constraints. This is possible because two distinct networks are used to check for the
constraints and these samples correspond to a fringe case in which both are satisfied.
To avoid this behavior, additional information can be added to the likelihood. In
fact, our third constraint, i.e. the last digit not being a seven, is mathematically not
necessary. Its purpose is to remove a similar local minimum to make it easier to find
the correct solution. Based on this, a heuristic could be developed to iteratively add
insights on wrong solutions to the problem to come up with the correct answer.

6.6.3 Reconstructing Faces

In the last example we reconstruct the image of a face from degraded, noisy, and
incomplete data, making use of the additional information of age and gender. We
compare it to a reconstruction using only the image data. As generative model of face
images x = G(ξ), the stylegan network trained on the Flickr-Faces-HQ data set is used
[65]. It generates photo-realistic images of faces in a resolution of 1024× 1024 pixels
from 512 latent parameters. The generative model contains 23 million trained weights.
Age and gender estimates are obtained via two networks, Fa(x) and Fg(x), with the
same ResNet-50 architecture [54], trained on the IMDB-WIKI dataset [117, 118]. Each
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of them contains 10 million weights. A ground truth is drawn from the generator
and degraded in several ways. The three color channels are added up to generate
a gray-scale image. Then, the resolution is reduced to 64 × 64 pixels via coarse-
graining, followed by masking the left part. These steps are summarized in the linear
degradation operator FI(x). Finally, Gaussian white noise with unit variance is added,
providing image data yI and noise covariance NI = 1. We obtain age and gender
estimates of the ground truth by applying the corresponding classifier. To account
for different input and output shapes, a re-scaling from 1024×1024 to 224×224 pixels
links both types of networks.

All likelihood terms contain the generator applied to the respective operator or
network. The data from the degraded image enters via a Gaussian likelihood. For
the age prediction we calculate the weighted average provided by the classification
probabilities, resulting in a continuous estimate. On this we also impose a Gaussian
likelihood, centered around the true age ya and assuming a standard deviation of
one year, i.e. Na = 1. The gender is enforced via a categorical likelihood with data
yg in favor of the respective category and we use an α = 10. The posterior is then
proportional to

P(ξ|yI , ya, yg) ∝ N (yI |FI(G(ξ)), NI)N (ya|Fa(G(ξ)), Na) Cα(yg|Fg(G(ξ)))N (ξ|0, 1) .
(6.8)

According to the networks, the ground truth is 33 years old and female. The poste-
rior distribution is approximated using MGVI [76] instead of the previous mean-field
approach to achieve faster convergence. We perform 15 iterations with five pairs of
antithetic samples and 30 natural gradient steps. In the last iteration we increase to
20 samples to use in further analysis. MGVI is an iterative procedure, not directly
optimizing an ELBO. We determine convergence through vanishing changes between
iterations. The used hardware in this example is a Intel Xeon CPU E5-2680 with
2.4GHz together with a NVIDIA GeForce GTX 1080ti. The run time for the full
problem is about 20 hours.

The setup and mean result with variance are shown in the Fig. 6.4, together with
a set of representative samples. The mean of sample images bares striking similarity
to the ground truth, including facial expression, overall position, and the outdoor
setting in the background. The pixel-wise standard deviation shows high certainty
in the central parts of the face, whereas smaller-scale features such as hairstyle and
background-details are washed out. The samples appear homogeneous in style, age,
and gender. In comparison to that, samples for using only the image data are shown in
the left panel of Fig. 6.5. These illustrate the remaining information in the degraded
image. It seems there is an outdoor setting and that the most likely female person
smiles. The age seems not well-constrained, as the visual spread is far larger than
that of the previous samples. This is plausible, as age is mostly associated to small-
scale features, which are removed through the degradation. Including the additional
information of age and gender allows to reduce the variance in these directions.

In the right panel of Fig. 6.5 the evolution of the perceived age, as well as the
RMS error of the image to the ground truth during the optimization is shown. We
use here iterations instead of time, as evaluating the age and gender networks is
comparably slow. Without the additional information, the mean age is roughly correct
throughout the optimization, but the variance is large. Given an age, the samples
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Figure 6.5: Face samples only informed by the image data without age and gender (left
panel). Age estimates and RMS of the samples during the optimization
for both cases (right panel).

are strongly concentrated around it. The RMS error to the ground truth decreases
in both cases similarly, but this is unsurprising, as image data is available to both.
Standard deviations are large due to the high noise level.

6.7 Conclusion

We demonstrated how to impose non-trivial constraints represented by deep neural
networks to complex systems described through deep generative models. This pro-
vides an alternative path for conditional generators. Combining several constraints,
we can build a collection of neural networks that jointly solve tasks through reasoning,
quantifying their uncertainty. The approach is applicable to state-of-the-art architec-
tures and high-dimensional posterior distributions. Knowledge on high-level concepts
can be included to support reconstructions with conventional measurement data.

One could envision large-scale reasoning systems that can flexibly answer a large
variety of complex questions by assembling appropriate modules from a library of
trained networks. Such systems can also incorporate newly arriving information and
support continual learning. The optimal configuration, architectures, and inference
schemes for the reasoning need to be identified by future research.

Furthermore, our approach poses the question whether reasoning in human/natural
intelligence works via similar processes, the on the fly connection of generative and
discriminative networks. As backwards deductions are computational expensive, re-
peatedly occurring inference tasks are better written into forward models. This en-
tirely depends on knowledge that is already stored within networks and does not
require further external input. Does this happen when we dream?



94 6. Bayesian Reasoning with Deep-Learned Knowledge

Broader Impact

The approach presented in this paper addresses the fundamental problem of com-
bining complex information from different sources to come up with novel insights
through reasoning. This might have consequences we not yet envision. The approach
presented could allow to build systems that flexibly derive conclusions for changing
tasks. Therefore, it could be a step towards more generic artificial intelligence, with
all the benefits and dangers this implies.

Besides the possibility of intentionally malicious use, unintended biases enter through
the trained networks and will influence the reasoning. Also the reasoning itself can
be wrong due to insufficient exploration of the posterior distribution.

The intrinsic duality of this technology requires more than the usual caution from
all sides.
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7.1 Abstract

We present a new method for the separation of superimposed, independent, auto-
correlated components from noisy multi-channel measurement. The presented method
simultaneously reconstructs and separates the components, taking all channels into
account and thereby increases the effective signal-to-noise ratio considerably, allow-
ing separations even in the high noise regime. Characteristics of the measurement
instruments can be included, allowing for application in complex measurement situa-
tions. Independent posterior samples can be provided, permitting error estimates on
all desired quantities. Using the concept of information field theory, the algorithm is
not restricted to any dimensionality of the underlying space or discretization scheme
thereof.

7.2 Introduction

The separation of independent sources in multi-channel measurements is a funda-
mental challenge in a large variety of different contexts in the fields of science and
technology. Large interest in such methods comes from bio-medicine, namely neural-
science to investigate brain activities [96], but also in the analysis of financial time
series [71] or for the separation of astrophysical components in our universe [27], to
name a few.

Mainly two distinct approaches to component separation exist, namely Principle
Component Analysis (PCA) and Independent Component Analysis (ICA).

PCA performs a linear transformation of the data to obtain mutually uncorrelated,
orthogonal directions, which one calls the principle components. For different principle
components s1 and s2 their covariance vanishes if averaged over the data set:

〈s1s2〉 − 〈s1〉〈s2〉 = 0 (7.1)

PCA is very useful in situations the data can be described by orthogonal processes.
However, this does not imply independence, therefore higher order correlations may
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not vanish [60]. The number of principle components one obtains depends on the
dimension of the involved data spaces. Some of these components are due to processes
generating the data, others might just be due to noise. Drawing a line between
those classes of components requires careful consideration of the context the data was
obtained in.

ICA speaks of independent components s1 and s2 if and only if their probability
distributions factorize

P(s1, s2) = P(s1)P(s2) (7.2)

ICA Algorithms try to estimate independent components by maximizing some mea-
sure of independence. Several such measures are used, such as kurtosis, negentropy,
or mutual information, to name a view. These all rely on the non-Gaussian statistics
of the components. A mixture of Gaussian components is still Gaussian and does
not have the non-orthogonal, relevant directions used in traditional ICA. Therefore,
it us often assumed that non-Gaussianity is a prerequisite of ICA. However, the ex-
ploitation of auto-correlations in a temporal or spatial domain breaks this Gaussian
symmetry and allows identification of the components [131].

An example for a PCA method which can be used in a rather similar setting to the
one discussed in this work is the multivariate singular spectrum analysis (MSSA)[47].
It can also be used in noisy multi-channel measurement situations, taking auto-
correlations into account. This is done by extending the original channel measure-
ments with a number of time-delayed versions of the vectors. Then one calculates the
correlation matrix of all possible channels and time delays. Diagonalizing this matrix
leads to the orthogonal principle components, incorporating temporal correlations via
the time delays. The most relevant principle components can then be used to describe
main features of the data, allowing to analyze dynamical properties of the underlying
system.

We, however, want to identify the truly independent components in the data, as
characterized by Eq. 7.2. For this goal a PCA method based on the weaker criteria
of Eq. 7.1 is a suboptimal approach.

On the side of Independent Component Analysis we have a large variety of widely
used algorithms, the more popular ones include FastICA [95] and JADE [26], which
rely on the above mentioned independence measures in noise free environments. The
often inherent temporal or spatial correlation of the individual components is also not
used. An algorithm which uses them is AMUSE [131] which exploits time structure
in a noise-free scenario.

A problem for ICA methods is often the presence of measurement noise. The
noise prohibits a unique recovery of the individual components and demands for a
probabilistic describtion of the problem. Several approaches have been made to solve
this problem by using maximum likelihood methods [59] or Gaussian mixtures [99].
In essence this method will follow a similar path.

The general advice in the literature so far, however, is to first de-noise the mea-
surement and then to treat the results as noiseless, processing then with suitbale ICA
methods [61]. This approach severely suffers in the high noise regime as it is limited
to the signal-to-noise ratio of the individual measurements.

The method we want to present combines the concept of auto-correlation with noisy
measurements and thereby overcomes this restriction by reconstructing and separat-
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ing the components simultaneously, combining the information across all measured
channels and thereby vastly increases the effective signal-to-noise ratio while taking
spatial or temporal correlations of the individual components into account. Using
this method we can improve the result by adding additional channels and satisfying
results are obtained even in high noise environments.

We achieve this by following the Bayesian framework to consistently include auto-
correlations to a posterior estimate on the components. The posterior, however, is
not accessible analytically and the maximum posterior estimate is insufficient for this
problem. We will therefore present an approximation to the true posterior which is
capable of capturing its essential features. We will use the Kullback-Leibler divergence
to optimally estimate the model parameters in an information theoretical context.

Furthermore we will formulate the components as physical fields without the re-
quirement of specifying any discretization. This allows us to use the language of
information field theory (IFT) [37] to develop an abstract algorithm free of any limi-
tations to be used in a specific grid or on a specific number of dimension.

IFT is information theory for fields, generalizing the concept of probability distri-
butions of functions over continuous spaces. In this framework we can formulate a
prior distribution encoding the auto-correlation of the components.

Fist we describe the generic problem of noisy independent component analysis.
In the next section we formulate auto-correlations in continuous spaces and how to
include them in our model. Ways how to approximate the model in a feasible fashion
are discussed in Sec. 7.5. In order to infer all parameters we have to draw samples
from the approximate posterior. We describe a procedure how to obtain such samples.
After briefly stating the full algorithm, we discuss its convergence and demonstrate its
performance on two numerical examples showcasing different measurement situations.

7.3 Noisy ICA

The noisy ICA [29] describes the situation of multiple measurements of the same com-
ponents in different mixtures in the presence of noise. Each individual measurement
i at some position or time x results in data di,x which has a noise contribution ni,x, as
well as a linear combination Mij of all components sj,x which also have some spatial
or temporal structure. The data equation for this is process is given by

di,x = Mijsj,x + ni,x . (7.3)

Here we use the summation convention over multiple indices. The mixture Mij acts
on all positions equally and therefore does not depend on a position index. We can
simplify the notation of the equation above by simply dropping the position index,
interpreting those quantities as vectors. What remains are the measurement and
component indices.

di = Mijsj + ni (7.4)

We can go even further by introducing the multi-measurement vector d as a vector
of vectors, containing the individual measurements, and noise n, as well as the multi-
component vector s, consisting of all components. Then one can use the usual matrix
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multiplication with the mixture M to end up with the index-free formulation of this
equation as

d = Ms+ n . (7.5)

We want to modify this expression in two ways. The first one is to describe the
components not as vectors, but as fields. On the one hand true components usually
should resemble some physical reality, which is not limited to any discretization and
therefore best described by a continuous field, therefore

sj,x → sj(x) . (7.6)

On the other hand our data d can never be a continuous field with infinite resolution,
as this would correspond to an infinite amount of information. It is therefore necessary
to introduce a description of the measurement process, where some kind of instrument
probes the physical reality in form of the mixed continuous components. In general
this instrument is a linear operator with a continuous physical domain and discrete
target, the data space. Including this response operator R, the data equation becomes

di,X =

∫
dx Ri(X, x)Mijsj(x) + ni,X . (7.7)

The capital letter X represents the discrete positions of the data, whereas x is the
continuous position. We can again drop all indices and state the equation above in
operator notation

d = RMs+ n . (7.8)

We have now decoupled the domains of the data from the components. We can also
not represent components with an infinite resolution, once we want to do numerical
calculations we have to somehow specify a discretization, but introducing the response
operator allows us to choose representations completely independent from the data
and the measurement process. The response operator also allows us to consider any
linear measurements, using different instruments for the individual channels. One can
easily include masking operations, convolutions, transformations or any other linear
instrument specific characteristics in a consistent way.

We will now derive the likelihood of this data model. The noise n will be assumed
to be Gaussian with known covariance N and vanishing mean in the data domain.
We describe it as

P(n) = G(n,N) =
1

|2πN | 12
e−

1
2
n†N−1n . (7.9)

The expression n† is the complex conjugated, transposed noise vector. This leads
to a scalar in the exponent via matrix multiplication. Using this data equation, we
can derive the likelihood of the data d, given components s, mixture M and noise
realization n. This is a delta distribution as the data is fully determined by the given
quantities.

P(d|s,M, n) = δ(d− (RMs+ n)) (7.10)
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However, the realization of the noise is not of interest and we will marginalize it out
using the Gaussian noise model given in Eq. 7.9.

P(d|s,M) =

∫
Dn δ(d− (RMs+ n))G(n,N) (7.11)

= G(d−RMs,N) (7.12)

Taking the negative logarithm provides us with the information Hamiltonian1 of the
likelihood, also called negative log-likelihood.

H(d|s,M) ≡ − ln [P(d|s,M)]

=
1

2
(d−RMs)†N−1(d−RMs)

+
1

2
ln|2πN | (7.17)

7.4 Auto-Correlation

The components we want to separate exhibit auto-correlation and we want to exploit
this essential property. A component si(x) has some value at each location in its
continuous domain. We define the scalar product for two fields as j†s ≡

∫
dxj∗(x)s(x),

where j∗(x) expresses the complex conjugate of the field j at position x. We can
express the two-point auto-correlation as

Si(x, x
′) ≡ 〈si(x)s∗i (x

′)〉P(si) , (7.18)

which is a linear operator encoding the internal correlation of the component si.
Assuming statistical homogeneity, the correlation between two locations Si(x, x

′) only
depends on their position relative to each other.

Si(x, x
′) = Si(x− x′) (7.19)

Furthermore, we can now apply the Wiener-Khinchin theorem [68] and identify the
eigenbasis of the correlation with the associated harmonic domain, which for flat

1The information Hamiltonian emerges from the analogy (or equivalence) of information theory to
statistical physics:

P(s|d) =
P(s, d)

P(d)
≡ e−H(s,d)

Z(d)
, with information Hamiltonian (7.13)

H(s, d) =− lnP(s, d)and partition function (7.14)

Z(d) =

∫
Ds e−H(s,d) (7.15)

H(s, d) therefore contains all available information on the signal s and is often a more practical
object perform do calculations with than the equivalent probability distributions, as information
Hamiltonians are additive:

H(s, d) = H(d|s) +H(s) (7.16)
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spaces corresponds to the Fourier basis. This is convenient for the implementation of
the algorithm because it allows us to apply the correlation operator in Fourier space,
where it is just a diagonal operation and efficient implementations for the Fourier
transformation of the components are available as well. This approach stays feasible
even for high resolutions of the components, as the representation of the covariance
scales roughly linearly in Fourier space, but quadratically in position space.

For components with correlations in more than one dimension, it might also be
advantageous to assume statistical isotropy. With this, the correlation only depends
on the absolute value of the distance between two points. We can then express the
correlation structure by a one-dimensional power spectrum.

In this paper we assume the correlation structure of a component to be known. In
principle it could also be inferred from the data with critical filtering [103]. The idea
of critical filtering is to parametrize the power spectrum and additionally infer its
parameters. This allows us to separate auto-correlated components without knowing
the correlation structure beforehand. Critical filtering has been successfully applied
in multiple applications [24, 64, 125] and can be included straightforwardly in this
model. In order to keep the model simple we choose not to discuss this case in detail
here.

We use the known correlation structure Si to construct a prior distribution of
the components si, informing the algorithm about the auto-correlation. The least
informative prior with this property will be a Gaussian prior with vanishing mean
and covariance Si

P(si) = G(si, Si) . (7.20)

Conceptually this is a Gaussian distribution over the continuous field si. In any
numerical application we have to represent the field in a discretized way and this
distribution becomes a regular multivariate Gaussian distribution again. Assuming
independence of the individual components, the prior distributions factorize and we
write

P(s) =
∏
i

G(si, Si) (7.21)

≡ G(s, S) . (7.22)

The product of Gaussian distributions can be written in the compact form of a com-
bined Gaussian over the multi-component vector s with block-diagonal correlation
structure expressing the independence of the different components of each other, i.e.
〈si(x)sj(x

′)〉P(s) = 0 for i 6= j. The prior independence actually implements the
underlying assumption of any ICA method as stated in Eq. 7.2.

It is worth emphasizing that this way of formulating the correlation structure allows
us to apply the resulting algorithm regardless of the dimension. At the end we will
demonstrate one dimensional cases for illustration purposes, but without any changes
the algorithm generalizes to two, three and n-dimensional situations. Even correla-
tions on curved spaces such as on a sphere can be considered by replacing the Fourier
basis with the corresponding harmonic basis.

The information Hamiltonian of this prior distribution is given by

H(s) =
1

2
s†S−1s+

1

2
ln|2πS| . (7.23)
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We now constructed a likelihood from our data model and a prior distribution over
the components, encoding their auto-correlation. Using Bayes theorem we can derive
the posterior distribution over the components s and their mixture M via

P(s,M |d) =
P(d|s,M)P(s,M)

P(d)
. (7.24)

We did not discuss any prior distribution over the mixture M as we do not want to
restrict it in any way. Any problem-specific insights about the mixture should be
expressed right here. The prior distributions can in our case be written as

P(s,M) ∝ P(s) = G(s, S) (7.25)

and thereby implicitly assuming a flat and independent priors on the entries of M .
The evaluation of P(d) is not feasible as it involves the integration over both, the
mixture and signal of the joint probability distribution. Therefore we have to think
of approximative approaches. First we state the posterior information Hamiltonian
H(s,M |d) = −ln(P(s,M |d)) without any component or mixture independent terms.

H(s,M |d) =
1

2
s†M †R†N−1RMs− s†M †R†N−1d

+
1

2
s†S−1s+ const(d). (7.26)

7.5 Approximating the Posterior

A typical approach to a problem like this is to take the most likely posterior value as
an estimate of the parameters. This is achieved by minimizing the information Hamil-
tonian above. It can be interpreted as an approximation of the posterior distribution
with delta distributions peaked at the most informative position in the sense of mini-
mal Kullback-Leibler (KL) divergence [86] between true and approximated posterior.
For this the latter can be written as

P̃MAP(s,M |d) = δ(s− sMAP)δ(M −MMAP) . (7.27)

This approximation turned out to be insufficient for a meaningful separation of the
components as we will illustrate in Sect. 7.9. Iterating the minimization with respect
to the components and the mixture we do not obtain satisfying results. The maximum
posterior estimate is known to over-fit noise features. This has severe consequences
in this component separation as it relies on iterative minimization of the Hamiltonian
with respect to one of the parameters. In each step we over-fit which affects the con-
secutive minimization. In this way we accumulate errors in the parameters, leading to
unrecognizable, strongly correlated components. During the minimization the MAP
algorithm approaches reasonable component separations but it does not converge to
those and continues to accumulate errors, converging somewhere else. This behavior
can be seen in Figure 7.1, showing the deviation of current estimates to the true
components for the MAP case, as well as the algorithm discussed in the following.

Our strategy to solve this problem is to choose a richer model to approximate the
posterior distribution which is capable to capture uncertainty features and reduce
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over-fitting. Instead of using a delta-distribution to describe the posterior compo-
nents, we choose a variational approach using a Gaussian distribution whose parame-
ters have to be estimated. For the posterior mixture we stay with the initial descrip-
tion of the point estimate as this turns out to be sufficient for many applications. We
therefore approximate the true posterior with a distribution of the form

P̃(s,M |d) = G(s−m,D)δ(M −M∗) . (7.28)

In this approximation we describe our posterior knowledge about the mixture M with
the point-estimate M∗ and about the components s by a Gaussian distribution with
mean m and covariance D . We will use m as the estimate of our posterior components
and the covariance D describes the uncertainty structure of this estimate. Compared
to the prior covariance S, the posterior covariance does not have to be diagonal in
the harmonic domain, as the likelihood typically breaks the homogeneity.

The main problem of this approximation is the point-estimate of the posterior mix-
ture M . With this we assume perfect knowledge about the mixture with absolute
certainty. This is certainly not justified due to the probabilistic nature of the prob-
lem, but this is true for every point-estimate in any context. This approximation also
affects the posterior covariance of the components D which will contain the mixture.
As we assume no uncertainty in it, we will not consider any errors in the mixture
and therefore underestimate the true uncertainty of the components. In the low noise
regime this effect is negligible, it will become larger for low signal-to-noise ratio, as we
will see in the numerical examples. This model, however, seems to perform reason-
ably well in relatively high noise regimes, but one has to take the error estimates with
caution and keep in mind that those will be underestimated. One could easily think
of a more complex model performing even better and more accurate in the high noise
case. For example also approximating the mixture with a Gaussian distribution or
using one large Gaussian distribution, also accounting for cross-correlations between
components and the mixture. Those models come with the cost of dramatically in-
creased analytical and numerical complexity. As no analytic form of the posterior
is available, the best solution possible can be obtained from sampling the posterior,
which can can become computationally extremely expensive, as the dimensionality of
the problem scales with the resolution of the components. We choose the approxi-
mation given in Eq. 7.28 as it should capture the relevant quantities while being as
simple as possible.

In order to estimate the parameters of the distribution in Eq. 7.28, we have to
minimize its KL divergence to the initial posterior. The divergence is defined as

KL
[
P̃(s,M |d)||P(s,M |d)

]
≡ (7.29)

≡
∫
DsDM P̃(s,M |d) ln

[
P(s,M |d)

P̃(s,M |d)

]
(7.30)

= 〈H(s,M∗|d)〉G(s−m,D)

− 〈ln [G(s−m,D)]〉G(s−m,D) . (7.31)

The integration over the mixture just replaces every M by M∗. In order to keep
the expressions shorter we will drop from now on the star and will use in all further
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Figure 7.1: The mean deviation of the current estimates from the true components
during the minimization for all three example scenarios compared to the
estimated uncertainty of the final result.

calculations just the symbol M . We now have to calculate Gaussian expectation
values of the total information Hamiltonian. We can perform this calculation with
the cyclical property of the trace operation and the identity

〈ss†〉G(s−m,D) = mm† +D . (7.32)

The second expectation value in the KL-divergence corresponds to the entropy of the
Gaussian distribution. The analytic expression then reads

KL =
1

2
m†M †R†N−1RMm+

1

2
Tr
[
M †R†N−1RMD

]
−m†M †R†N−1d

+
1

2
m†S−1m+

1

2
Tr
[
S−1D

]
+ Tr [1 + ln(2πD)] . (7.33)

We have to minimize this expression with respect to all parameters of our approximate
distribution, namely m, D and M .

We will start with the posterior component mean m. Comparing the terms of the
Hamiltonian in Eq. 7.26 containing s with the ones in the KL containing m we find
their analogous structure. Given some mixture M the minimum will be identical. We
can solve for the posterior mean by setting the derivative of the KL-divergence with
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respect to it to zero:

δKL

δm†
!

= 0 (7.34)

= −M †R†N−1d

+M †R†N−1RMm+ S−1m (7.35)

⇒ m =
(
M †R†N−1RM + S−1

)−1
M †R†N−1d (7.36)

The structure of the solution looks familiar. In fact it is the Wiener filter solution
[135] for a known mixture. We can also solve for the posterior covariance:

δKL

δD
!

= 0 (7.37)

⇒ D =
(
M †R†N−1RM + S−1

)−1
(7.38)

This also turns out to be the Wiener covariance for known mixture. We can then
define the information source j and write the approximate posterior mean in terms
of the Wiener filter formula:

j ≡M †R†N−1d (7.39)

m =Dj (7.40)

If we know the mixture M a Gaussian with mean m and covariance D would be the
exact posterior of the components given the data.

Now we also have to calculate the derivative of the KL-divergence with respect to
the entries of the mixture matrix Mij while keeping m and D fixed. In this calculation
the trace term

1

2
Tr
[
M †R†N−1RMD

]
(7.41)

in the divergence does not vanish as it contains the mixture M and will gives rise to
the required uncertainty corrections, regularizing the mixture and therefore making
the algorithm converge. Unfortunately this term is numerically challenging. The trace
of an operator can be extracted via operator probing [57, 123]. This involves multiple
numerical operator inversions using conjugate gradient method which is computation-
ally expensive.

We will choose another approach which avoids the trace expressions by taking them
implicitly into account. For this purpose we still have to solve multiple linear systems,
but we found the new approach to be numerically more stable and more general as it
can also be applied in cases we do not have explicit expressions.

In order to obtain the analytic expression of the KL-divergence we calculated the
expectation value of the information Hamiltonian with respect to the approximate
posterior Gaussian distribution which gave rise to the trace terms in the first place.
To avoid them we will consider the KL-divergence before performing the averaging
over the approximating Gaussian and keep it that way during the derivation of the
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gradient. To estimate the resulting expressions we approximate the averaging by
replacing it with an average over samples drawn from the distribution G(s −m,D).
All relevant terms in the KL-divergence concerning M read:

KLM =
1

2
〈s†M †R†N−1RMs〉G(s−m,D)

−〈d†N−1RMs〉G(s−m,D) (7.42)

For the minimization with respect to the mixture M we assume the posterior mean
m and covariance D to be fixed, so we can calculate the derivative of the expression
above with respect to the mixture ignoring the expectation value:

δKLM(s,M |d)

δMij

= 〈s†M †R†N−1R1ijs〉G(s−m,D)

−〈d†N−1R1ijs〉G(s−m,D) (7.43)

The operator 1ij with (1ij)i′j′ = δii′δjj′ singles out the position of the entry ij. It is of
the same shape as the mixture matrix with all entries zero, except for the one at the
position ij. Comparing this term to the derivative of the information Hamiltonian

δH(s,M |d)

δMij

= s†M †R†N−1R1ijs

− d†N−1R1ijs (7.44)

which is used in the maximum posterior approximation, the main difference to our
method becomes apparent. In the maximum posterior approach only a point esti-
mate for the components s is used. Our approach replaces the minimization of the
Hamiltonian with the minimization of the mean Hamiltonian under the approximated
Gaussian, taking the uncertainty structure of the components into account.

Setting the our mixture gradient to zero allows us to solve for the mixture in a
Wiener-filter-like fashion

M =
〈
s†1†R†N−1R1s

〉−1 〈
d†N−1R1s

〉
(7.45)

The first part serves as a Wiener covariance and the second term corresponds to an
information source for M .

At some point we have to evaluate all those expectation values numerically to
minimize the divergence with respect to the mixture M .

The terms we want to calculate are expectation values of the Gaussian distribution
G(s − m,D), but they will introduce impractical trace terms. Instead we want to
approximate it with a set of L samples {s∗} distributed according to G(s − m,D)
using the sampling distribution.

G(s−m,D) ≈ 1

L

L∑
l=0

δ(s− s∗l ) (7.46)

Using this distribution, the expectation values are replaced with the average over the
set of samples. In the next section we will discuss how to obtain those samples from
the distribution.
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7.6 Approximate Posterior Sampling

Drawing samples from the approximate posterior distribution for the components is
challenging, as we do not have direct access to its eigenbasis in which the correlation
structure is diagonal. If we had, we could draw independent Gaussian samples with
mean zero and variance one in each dimension, weight them with the square root
of the eigenvalue to adjust to the correct variance and apply the transformation to
position space given by the eigenvectors. At this point the sample has the correct
correlation structure and has only be adjusted to the correct mean by adding it.

The main task is therefore to get samples with the correct correlation structure. In
the case of our approximate posterior

P̃(s|d) = G(s−m,D), (7.47)

we have to find residuals (s−m) which satisfy

〈(s−m)(s−m)†〉G(s−m,D) = D . (7.48)

Obviously we do not have access to the true components s. What we do have is a
prior belief about them. Its correlation is diagonal in the Fourier domain for each
component and we can easily generate a samples from it using the description above.

s′ x G(s, S) (7.49)

Those components s′ have nothing to do with the true components, except their
correlation structure. We now want to find an m′ which satisfies

〈(s′ −m′)(s′ −m′)†〉G(s′−m′,D) = D . (7.50)

The posterior covariance is a Wiener Filter covariance described by

D−1 = M †R†N−1RM + S−1 (7.51)

with given mixture M , instrument response R, noise covariance N and prior signal
covariance S. We can reconstruct the quantity m′ from the data we would have ob-
tained if s′ were the real components. We therefore have to simulate the measurement
process of the arbitrary sample s′ using our linear data equation

d′ = RMs′ + n′ . (7.52)

We can draw an noise realization n′ from the prior noise distribution G(n,N) which
is diagonal in data space. On this mock data we simply perform a Wiener Filter
reconstruction

m′ = Dj′ , with (7.53)

j′ ≡ M †R†N−1d′ . (7.54)

This is the numerical costly part of the sampling procedure as it involves a conjugate
gradient to solve the system.
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However, once we obtained the reconstruction m′ of the mock signal s′ we can
calculate the residual, which follows exactly the correlation structure encoded in D.
The components s′ are now a sample drawn from the distribution G(s′−m′, D). What
we actually want is a sample s∗ from G(s∗ −m,D), originating from our true data.
The residuals of both distributions have the same statistical properties, thus we can
therefore set them equal and solve for s∗.

s′ −m′ !
= s∗ −m (7.55)

s∗ = s′ −m′ +m (7.56)

Those components s∗ now exactly behave according to G(s∗ − m,D) with mean m
and covariance D. We can use samples drawn by this procedure to calculate the
expectation values we need in the minimization process for the mixture.

Furthermore, we can use the samples to easily estimate arbitrary posterior proper-
ties, such as the uncertainty of our component estimate.

Let us briefly summarize this approach for approximate posterior sampling. We
start with a sample s′ drawn independently from the component prior, use those
to set up a mock observation, which provides us with mock data d′. We Wiener
filter this data to get the posterior mean m′. The only thing we are interested in
from this calculations is the residual s′ − m′, as it allows us to construct a sample
s∗ from the mean m of the distribution we are actually interested in. The more
samples we draw this way the better the sampling distribution approximates the true
distribution. However, we want to use as few samples as possible as their calculation
is computationally expensive, not only during the sampling procedure, but also their
usage in all further calculations, such as gradient estimations. During the alternating
minimization with respect to the mean components m and the mixture M , we have to
permanently recalculate the samples as the mean and mixture is constantly changing.
We found that it is practical to start with few samples and to increase their number
during the inference. Note that the KL divergence is not fully calculated and also only
estimated through the samples, therefore this estimate inherits stochastic variations.

7.7 The Algorithm

Now we have all the tools to set up an iterative scheme to minimize the KL divergence
in order to infer the parameters of our approximation.

In order to use this algorithm we need knowledge on the characteristic noise behav-
ior encoded in the correlation structure N , as well as on the statistical properties of
the individual components described by the prior covariance S. In addition we have
to specify the number of components we want to infer.

We will start with a random guess for the mixture M and use it to estimate our
initial mean components m and covariance D under the assumption the initial guess
of the mixture is correct using the Wiener Filter.

D−1 = M †R†N−1RM + S−1 (7.57)

j = M †R†N−1d (7.58)

m = Dj (7.59)
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We have now the first estimate of the approximate posterior distribution G(s −
m,D). In order to estimate a new mixture we can draw a set of independent samples
{s∗} from this distribution using the procedure described in the previous section.

{s∗}x G(s−m,D) (7.60)

We use those to replace the Gaussian expectation values with averages over the sam-
pling distribution, which allows us to solve for a new estimate for the mixture, using
the Wiener-Filter-like formula:

M =
〈
s†1†R†N−1R1s

〉−1

{s∗}

〈
d†N−1R1s

〉
{s∗} (7.61)

Now we have to take care of the multiplicative degeneracy between between the
components and their mixture vector. We therefore normalize each column of the
mixture to an L2-norm of ||M †

j || = 1, multiplying each component mean accordingly
by the normalization factor to keep the product Mm unchanged.

If the power-spectrum of the components are unknown, we perform here a critical
filter step [103], which we choose not to discuss at this point.

This way we obtain a new estimate for the mixture, which allows us to estimate
new component means and covariances, which allows us to draw new samples, which
we can use for a new mixture, and so on, until the algorithm converges. We will
discuss its converges in the next section.

However, after the algorithm has converged we can use the samples to calculate any
posterior quantity of interest involving the components and estimate its uncertainty.
One example would be the spatial uncertainty of the component reconstruction by
evaluating

Dxx =
〈
(sx −mx)

2
〉
{s∗} . (7.62)

7.8 On its Convergence

Each estimate of a new parameter on its own will reduce the remaining KL divergence
between our approximated posterior and the true posterior, at least stochastically.
The stochasticity is due to the noise introduced by the sampling and can be reduced
by using more samples, for the price of high computational cost. Let us briefly discuss
the symmetries, structure and minima of the Kullback-Leibler divergence as it is
stated in Eq. 7.33. We start with two likelihood contributions

KL =̂
1

2
m†M †R†N−1RMm−m†M †R†N−1d. (7.63)

Here, we have a unique minimum for the mixed components Mm due to the quadratic
structure in the case R†N−1R is a full rank operator, otherwise its null space is
unconstrained.

In addition to this, individual mixtures M and component means m, the terms
above exhibit two symmetries, as we can multiply the mixtures for each components
with arbitrary factors while dividing the corresponding components by according fac-
tors. This introduces a submanifold of minimal energy.
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Finally, we can just interchange the components while also swapping the entries of
the mixing matrix. Depending on the number of components, we get additional c!
times as many minima, with c being the number of components.

The only other terms concerning the mixture and components are their other like-
lihood contribution and the component prior term

KL =̂
1

2
Tr
[
M †R†N−1RMD

]
+

1

2
m†S−1m , (7.64)

which are both quadratic terms in m and M , respectively, with positive sign and
therefore do not introduce additional minima, but eliminate some degeneracy. First
of all, these terms constrain the null space degeneracy to one single point. The
multiplicative degeneracy between M and m is also broken as both quadratic terms
regularize like L2 norms. What remains is the degeneracy of the multiplication of M
and m with −1 for each component, allowing for 2c possibilities. Thus, instead of
entire submanifolds of optimal solutions we end up with a total of 2cc! minima of the
KL divergence with respect to M and m.

In the case that the prior covariances for the individual components in S are not
identical, the interchange symmetry is broken and all those minima do not have the
same divergence anymore. Therefore, using a gradient descent method we do not
necessarily end up in a global minimum. This can be solved by discrete optimization
steps, trying all possible permutations of the mixture and components and picking
the one with smallest KL divergence.

This problem also vanishes if one also infers the prior correlation structure as the
prior then adapts to the chosen permutation, leading to a global minimum for sure.

We have seen that in the case of the same prior correlation structures for all compo-
nents all minima of the divergence are global minima and we therefore will converge
to an optimal solution irrespective of the starting position.

The speed of convergence, however, is hard to estimate as we rely on the iteration of
consecutive minimizations of our parameters. Each individual minimization converges
rather quickly, depending on the condition numbers of the matrices involved, as we
invert them by the conjugate gradient method. The total convergence rate should
depend on the correlation between the component means m and mixtures M in the
KL divergence. The less they are correlated, the faster the individual parameters
should reach a minimum. Strong correlations, however, do not allow for large steps,
therefore being slower.

Practically the computational effort highly depends on the choice of various quan-
tities. The algorithm is divided into two distinct minimizations for the mean com-
ponents m and mixture M of different dimensionality, which is the main source of
computational cost. The dimensionality of the component part scales linearly with
the number of components and their resolution, at least in the one-dimensional case.
For higher dimensional components the resolution scales accordingly. The costly part
in this minimization is the numerical inversion of an implicit operator in order to
solve a Wiener Filter problem. The minimization with respect to the mixture is
rather cheap, having the dimension of number of components times number of data
channels. Drawing one posterior samples, however requires a Wiener Filter of the
complexity of the first part. We therefore want to keep the number of samples as low
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Figure 7.2: The correlation structure of both components in Fourier space in double
logarithmic representation.

as possible, at least at the beginning of the inference. We can increase the number of
samples towards the end, reducing the statistical sampling noise.

The entire algorithm consists of a large number of consecutive minimizations. The
accuracy to which each of them is performed greatly effects the overall performance.
We want to avoid unnecessary accuracy wherever possible, as all parameters are chang-
ing constantly and for the mixture the KL divergence is only a statistical estimate
with uncertainties itself. Therefore we would waste computation if we aim for high
accuracy initially. Towards the end, as the number of samples increases, one might
also increase the accuracy. How to optimally steer this is rather difficult and currently
requires case by case optimization.

7.9 Numerical Examples

We implemented the algorithm as outlined above in Python using the package NIFTy
(Numerical Information Field Theory) [124], allowing a coordinate free implementa-
tion. For our two numerical examples we will use synthetic data generated according
to the model. The first one will describe a rather simple case with moderate, but
present noise.

In the second example we will challenge the algorithm with a more realistic mea-
surement. We will model randomly failing measurement sensors by masking areas
of the data set. In addition each sensor will exhibit a individual noise covariance of
significantly increased strength. For the comparison we will use the same component
realizations and mixture as used before.

In our examples, we measure five different mixtures of two independent compo-
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(a) Data of the first scenario in five channels
from noisy measurements of two linearly
mixed components.

(b) Measurements with failing sensors and
varying noise levels in scenario two.
Note the changed scales.

(c) Correct, reconstructed and maximum
posterior components with error esti-
mate in scenario one of the data shown
in Fig. 7.3a

(d) Reconstruction of the independent com-
ponents using the noisy data set of sce-
nario two shown in Fig. 7.3b with error
estimates.

(e) Correct, reconstructed and maximum
posterior mixtures in scenario one.

(f) Correct, reconstructed and maximum
posterior mixtures in scenario one.

Figure 7.3: The setups and results for a high- and low-noise scenario.
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nents. Each channel consists of 1024 data points probing equally spaced locations of
the unit interval over which our periodic components live. In the first example the
measurements are corrupted by noticeable noise of zero mean and diagonal covari-
ance of σ2

n = 0.1. The response operator R in this case is just the identity operator
Rxy = δ(x− y) . The data are illustrated in Figure 7.3a. Both components are gener-
ated by drawing a realization from the prior distribution P(s) with power spectrum

Pc(k) =
1

4k2 + 1
. (7.65)

This describes the spatial correlation by a falling power law in Fourier space2 which is
typical for many physical processes.This function is shown in Figure 7.2. By choosing
the same power spectrum for both components we can ignore the problem of mul-
timodality of the probability distributions as all minima are equally global minima.
The values of the mixture entries are drawn independently from a Gaussian distribu-
tion with vanishing mean and unit variance. Afterwards the entries corresponding to
one component are normalized to fix the multiplicative degeneracy between mixture
and component.

The number of samples s∗ used to estimate the mixture was initially one per it-
eration and was increased to 25 at the end of the reconstruction. We iterated the
algorithm 300 times, after which the reconstruction converged. The results of the
analysis are shown in Figure 7.3c and 7.3e. The reconstructions are corrected for the
degeneracy of the signs and are compared with the true corresponding components
and mixtures while keeping the product Mm constant. We can clearly recover the
morphological structure of the distinct components with high accuracy. The one sigma
uncertainty contours estimated as

√
Dxx quantify the estimated error reasonably well.

The structure of the mixture is recovered, only small deviations from the true mixture
are present. We can even recover relatively small structures of the components as the
algorithm uses the combined information of all channels simultaneously, increasing
the effective signal-to-noise ratio, leading to higher resolutions. Denoising each in-
dividual channel first and then applying a noise free ICA method cannot reach that
resolution as it is limited to the signal to noise ratio of the individual channels.

We also show the result of maximizing the posterior with respect to s and M for
this scenario. The initial components are not recovered and the suggested solutions
are highly anti-correlated. This demonstrates the necessity of the uncertainty correc-
tions emerging from the presented model, represented by Eq. 7.41 and the averages
in Eq. 7.42.

In the second example we used the same setup as before with the same two com-
ponents and five data channels. We only modified our measurement instrument to
resemble typical properties of true sensors. We randomly masked 22% of the total
area by sequences of 64 measurement points each. Additionally we assign each sensor
an individual noise covariance. The noise level will be significantly higher in this case,
ranging from a factor of two up to 25 times the variance compared to the previous
example. The data are shown in Figure 7.3b. By eye it is hard to identify any com-
ponents, only hints of correlated structures can be recognized. We can encode the

2We use here the numerical Fourier convention of f(k) =
∫ 1

0
dx f(x) e2πikx.
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failing sensors in the instrument response operator R as masks and the varying noise
in the noise operator N and run exactly the same algorithm as before. The result
can be seen in Figure 7.3d and 7.3f, again with corrected signs and compared to the
true corresponding components. The morphological structure is recovered despite the
significantly more hostile conditions. The overall uncertainty is consequently higher
than before and therefore small scales are not as well resolved. Due to the masking
we observe modulations in the uncertainty structure. In some parts the uncertainty
does not fully cover the deviations from the true components. As we do not take the
uncertainty structure of the mixture into account we have probably underestimated
the error. In the mixture we also observe larger deviations from the correct mixture,
but in general we recover it well.

The convergence behavior for all three examples can be seen in Figure 7.1. It
shows the mean deviation of the current estimate mt of the components from the true
components s in each iteration step t, corrected for the degeneracy. We calculated it
according to

εt =

√
(mt − s)†(mt − s)

l
, (7.66)

where l is the number of sites, given by the resolution of the components. We would
expect this quantity not to become smaller than the expected deviations originating
from the error estimate of the final result, which therefore sets the lower limit. It is
shown as the two horizontal lines for the high and low noise case. During the inference
the mean deviation declines towards this limit for both cases, but does not reach it.

This indicates that the error estimate of the result underestimates the error slightly,
a finding that is not surprising as we do not take uncertainties of the mixture into
account. The higher the noise level the more this effect becomes relevant, whereas in
the low noise case it is almost negligible. We can also observe the statistical nature of
the minimization due to the sampling in the noisy trajectory. Compared to that the
maximum posterior minimization follows a smooth line. In this plot we can also nicely
see the divergence of using just maximum posterior. It starts approaching the true
components, roughly at the same speed as the KL-approach in the same situation,
but then slows down and starts to accumulate errors and clearly diverges, while the
other method continues converging.

7.10 Summary

We derived a new method which allows for the separation of independent components
from noisy measurements exploiting their auto-correlation. This was done by first de-
scribing the measurement process as a linear mixture of component fields which are ob-
served by some linear measurement instruments under additive, Gaussian noise. From
this model we derived the likelihood. Assuming homogeneity of the auto-correlation
of the components we could express their correlation structure as a diagonal oper-
ator in the Fourier basis. From this assumption we derived the least informative
prior distribution over the components in form of a Gaussian distribution. No prior
assumptions about the mixture entries were made, but such could be added easily.
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Using the model likelihood and the component prior, we derived an expression for the
posterior probability distribution by applying Bayes theorem.

As this expression was not accessible analytically we approximated it by the prod-
uct of a Gaussian distribution for the components and a delta distribution for the
mixture entries. In order to infer the parameters of the approximation we proposed
a scheme to minimize the Kullback-Leibler divergence of this distribution to the true
posterior. It involved iterative Wiener filtering of the components and the mixture.
For estimating the mixture we considered uncertainty corrections originating from the
Gaussian approximation for the component maps. These turned out to be essential for
obtaining accurate estimates of the mixture matrices. A joint MAP estimate of fields
and mixtures tends to provide incorrect results. In order to evaluate the corrections
we outlined an approach how to draw independent samples from the approximate
Gaussian posterior distribution.

In two numerical examples we demonstrated the applicability of the derived algo-
rithm. The first case involved moderate noise and recovered the true components and
mixtures with high accuracy. The estimated error of the components was reliable.
The second example models randomly failing sensors and a significantly higher, vary-
ing noise level applied to the same components. The morphology of the mixture and
components was recovered here as well, the error was slightly underestimated due to
the involved point estimate of the mixture. Overall the algorithm delivered satisfying
results and can also be applied in complex measurement situations in the high noise
regime.
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8.1 Abstract

The inference of deep hierarchical models is problematic due to strong dependencies
between the hierarchies. We investigate a specific transformation of the model pa-
rameters based on the multivariate distributional transform. This transformation is a
special form of the reparametrization trick, flattens the hierarchy and leads to a stan-
dard Gaussian prior on all resulting parameters. The transformation also transfers all
the prior information into the structure of the likelihood, hereby decoupling the trans-
formed parameters a priori from each other. A variational Gaussian approximation
in this standardized space will be excellent in situations of relatively uninformative
data. Additionally, the curvature of the log-posterior is well-conditioned in directions
that are weakly constrained by the data, allowing for fast inference in such a scenario.
In an example we perform the transformation explicitly for Gaussian process regres-
sion with a priori unknown correlation structure. Deep models are inferred rapidly
in highly and slowly in poorly informed situations. The flat model show exactly the
opposite performance pattern. A synthesis of both, the deep and the flat perspective,
provides their combined advantages and overcomes the individual limitations, leading
to a faster inference.

8.2 Introduction

Hierarchical Bayesian models make it possible to express the complex relations in real
systems by combining a priori domain knowledge with data. The prior knowledge
is updated by the observed data to obtain information about the system at hand.
Such models can exhibit deep hierarchies, relating a large number of conceptually
distinct parameters in non-trivial fashions. The inference of the posterior parameters
can be extremely problematic, especially for large and complex models due to strong
dependencies between the quantities and the resulting numerical stiffness. A way to
overcome such limitations is to perform coordinate transformations of the parameters
to less interdependent ones. In the context of Hamiltonian Monte Carlo (HMC) tech-
niques it was proposed to perform a linear coordinate transformation [87] to decouple
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the parameters, which in the discussed case leads to a white, standard Gaussian prior
for the new parameters. This way the numerical performance was increased. Another,
more general transformation scheme was proposed by Betancourt and Girolami [15]
to flatten the deep hierarchical structure, to decouple the parameters by introduc-
ing auxiliary parameters or performing a reparametrization of existing ones. The
same kind of transformation is also known as reparametrization trick [69] to learn
the parameters of an approximate distribution. It is used in Automatic Differenti-
ation Variational Inference [85] to transform the original model into a standardized
space, where a variational approximation is conducted. In this paper we discuss this
transformation for general hierarchical Bayesian models and numerical implications
of performing variational approximations in these transformed parameters in terms
of fidelity and convergence.

We derive this standardizing transformation in two steps. First we transform the
original parameters of the deep hierarchy model to independent, uniformly distributed
parameters, using the multivariate distributional transform [119]. This step already
removes the deep hierarchy and introduces a uniform prior. The uniform prior is
problematic for many inference schemes as it limits the parameter space to the unit
interval but does not provide further gradient information for the parameters. Thus,
in a second step we then transform the uniform parameters to a Gaussian parameters
with unit variance and vanishing mean. The overall transformation is then a non-
linear, deterministic machinery which relates uniform, white Gaussian parameters to
the original parameters of the deep model. The prior information of the deep model
is stored in the structure of the transformation itself. The Gaussian prior allows
us to make quantitative statements about the conditioning of the curvature of the
log-posterior in different scenarios, which largely determines the difficulty numerical
inference schemes face. The transformation leads to an optimal conditioning in pa-
rameter directions that are only poorly constrained by the data. Directions that are
highly constrained by the data result in bad conditioning in this transformed space.
Although the transformation discussed does not change the statistical model, infer-
ence schemes that involve approximations do depend on the choice of the coordinate
system.

As an illustrating numerical example we discuss a Gaussian process regression with
also unknown correlation structure. To infer the correlation structure as well sta-
tistical homogeneity and isotropy is assumed. The correlation structure can then be
expressed in terms of a one-dimensional power spectrum that fully specifies it and has
to be inferred together with the signal. To be specific about the statistical process
generating the signal we assume the signal to be the result of a zero mean Gaussian
process with a kernel as implied by the unknown power spectrum. The log-power
spectrum is assumed to be generated by a Gaussian process as well, this time with
a known smoothness enforcing kernel. In this scenario we can conduct the identical
approximation in both coordinate systems, allowing us to investigate the effect of
the transformation on the numerics. We compare the convergence behavior of this
deep and highly coupled model with the transformed, flat model in situations with
different amounts of data. Here we find that the deep model performs well in highly
informed cases and struggles in low information scenarios. The flat model behaves
the other way round. Alternating between the two perspectives in a numerical scheme
overcomes their individual limitations and provides an overall increased performance.
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8.2.1 Related works

Inverse transform sampling [32] is used to generate random variables according to
an arbitrary distribution from uniform samples. This is done via the inverse of the
cumulative density function (CDF), or quantile function. Its multivariate generaliza-
tion is the multivariate distributional transform [119], which encodes all the internal
hierarchical dependencies of the model. We will use it to reparametrize the original
model to obtain the flat formulation.

The reparametrization trick allows to infer parameters of complex approximate
posterior distributions via variational inference. The problem is to take gradients with
respect to the parameters of the approximation as the Kullback-Leibler divergence is
only estimated statistically via samples from the approximation [121]. Reparametriz-
ing the coordinates of the problem in a certain way allows to separate the randomness
of drawing samples from a deterministic modification by the parameters. This can,
for example, be achieved analogously to the inverse transform sampling by using the
inverse CDF. The advantage of the reparametrization of the distribution is, that now
gradients can be calculated with respect to the parameters of the distribution, which
only appear in the deterministic part. It is introduced in the Auto Encoding Vari-
ational Bayes (AEVB) algorithm [69] to make the parameters of the approximate
distribution part of the network architecture. Samples to approximate the variational
bound can then be drawn from some simple distribution, allowing the inference of all
parameters.

Automatic Differentiation Variational Inference (ADVI) performs a transforma-
tion of the problem to a set of standardized, real-space parameters where then a vari-
ational approximation is conducted [85]. We construct this transformation in terms
of the multivariate distributional transform and investigate theoretical and numerical
properties of performing approximations in this transformed space.

Normalizing flows are used for non-parametric density estimation [129, 130]. To
apply those one tries to find a set of transformations of the parameters of a simple
distribution, such that the transformed distribution matches the target distribution
as closely as possible. Here it is important to keep track of the functional determi-
nants introduced by the transformation, in order to keep the resulting distribution
normalized. The learned transformation stores all the complexity of the approximate
posterior in a deterministic way, whereas the randomness originates from a simple dis-
tribution. Similarly, the transformation captures the complex structure of the deep
model and relates it back to a simple prior distribution. Instead of learning a suitable
transformation, the standardizing transformation makes use of the structure of the
hierarchical model. A method that makes use of both, the reparametrization trick,
as well as normalizing flow is the variational inference with normalizing flows [112].
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8.3 Basics and notation

8.3.1 Bayesian inference

In Bayesian inference the prior knowledge P(θ), expressed as a probability density
function (PDF) of some quantity θ should be updated after we obtained data d. This
data is related to the quantity of interest by a likelihood P(d|θ) of observing the data,
given θ. The updated knowledge is the posterior density P(θ|d) and is calculated
according to Bayes theorem:

P(θ|d) =
P(d|θ)P(θ)

P(d)
(8.1)

In order to do so, one has to normalize the joint density P(d, θ) = P(d|θ)P(θ) with
respect to θ, which is done by division with the evidence P(d).

An alternative way how to describe probabilities is in terms of their information.
Information is the negative logarithm of the distribution, H(.) = −lnP(.). Compared
to the distributions, which are multiplicative, information is additive. This makes it
a more convenient quantity to deal with and they will be adapted later in this work.
Bayes theorem in terms of information reads:

H(θ|d) = −ln(P(θ|d)) (8.2)

= H(d|θ) +H(θ)−H(d) (8.3)

The task of Bayesian inference usually comes down to dealing with the normalization
term H(d). In many cases it is not accessible analytically and sampling techniques or
approximate inference has to be applied that avoid the calculation of this term. Those
only require all terms depending explicitly on the parameters. In order to shorten
the notation we will absorb all terms of constant information, therefore parameter
independent, into one single information term H0 and introduce the symbol =̂ that
indicates equality up to parameter independent, constant terms.

H(θ|d) =H0 +H(d|θ) +H(θ) (8.4)

=̂H(d|θ) +H(θ) (8.5)

8.3.2 Variational Inference

Variational inference [18] is a powerful tool to approximate an intractable posterior

P(θ|d) distribution with simpler distribution P̃(θ|ϕ) parametrized by a set of param-
eters ϕ. This is done by minimizing the variational Kullback-Leibler divergence (KL)
[86] that is defined as:

DKL

(
P̃(θ|ϕ)||P(θ|d)

)
≡
∫
Dθ P̃(θ|ϕ) ln

[
P(θ|d)

P̃(θ|ϕ)

]
(8.6)

=̂ 〈H(d, θ)〉P̃(θ|ϕ) − 〈Ĥ(θ|ϕ)〉P̃(θ|ϕ) (8.7)

In the second line parameter independent terms are dropped, as they are irrelevant for
the minimization. This includes the normalization constant of the posterior, which
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typically is the origin of the intractability of the posterior distribution. This term
is also equivalent to the negative evidence lower bound (ELBO) [16]. In order to
perform the optimization, we do not have to be able to compute the expectation
value explicitly, it is sufficient to be capable of drawing samples from the approximate
distribution [121].

We will focus on two kinds of variational approximations, point-like, as well as Gaus-
sian approximations. It can be argued whether fitting delta distributions P̃(θ|ϕ) =
δ(θ− θ∗) are truly a variational method, however minimizing the variational KL and
maximizing the posterior distribution results in the same procedure. A point estimate
on certain parameters might be justified, especially if they are strongly constrained
by the problem and they can be inferred significantly faster compared to more sophis-
ticated approaches.

In cases the uncertainty should not be neglected, a variational Gaussian approxi-
mation is a powerful tool to infer posterior quantities, as well as their correlations and
uncertainties. Gaussian distributions make it simple to sample from them, and deriva-
tives with respect to their parameters can also be calculated easily, as the following
expressions hold [102]:

dDKL

dθ̄
=

〈
dH(d, θ)

dθ

〉
G(θ−θ̄,Θ)

(8.8)

Θ−1 =

〈
d2H(d, θ)

dθdθ†

〉
G(θ−θ̄,Θ)

(8.9)

We will make use of these properties in the example.

8.3.3 Transforming Probability Densities

Probability densities are differential quantities and to turn them into probabilities
they have to be equipped with the differential of their arguments, which are often not
stated explicitly, and be integrated over. Keeping track of the differential is relevant
for coordinate transformations, as one has to take the differential volume change into
account in form of the Jacobian determinant. Assume some transformation θ′ = f(θ)
of θ to a new set of parameters θ′. The probability distribution P(θ) then transforms
as follows:

θ′ = f(θ) (8.10)

P(θ)dθ =

∣∣∣∣df−1(θ′)

dθ′

∣∣∣∣P(θ′)dθ′ (8.11)

= P ′(θ′)dθ′ . (8.12)

The vertical lines | . | indicate the absolute value of the determinant of the matrix
expression inside. The new distribution P ′(θ′) is the combination of the functional de-
terminant of the transformation and the old distribution of the transformed argument.
This way the new distribution is properly normalized.
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8.4 Multivariate Distributional Transform and
Standard Gaussian Priors

We want to focus on the transformation that transforms a continuous distribution to
a uniform distribution on the unit interval. This is achieved by the quantile function,
also known as the inverse cumulative density function (CDF). From the uniformly
distributed variables we can then transform to white, standard Gaussian coordinates
with the CDF of this Gaussian. In the one dimensional case, the quantile transfor-
mation reads:

θ1 = F−1
P(θ1)(u1) ,where (8.13)

FP(θ1)(θ1) ≡
∫ θ1

−∞
dθ′1P(θ′1) . (8.14)

The first equation is equivalent to inverse transform sampling [32] and the second
equation defines the CDF. The derivative of the CDF with respect to its argument is
therefore again the original PDF.

In general the prior P(θ) with θ = (θ1 . . . , θn)T can be expressed in terms of its
hierarchical structure

P(θ) = P(θn|θ1 . . . θn−1) . . .P(θ2|θ1)P(θ1). (8.15)

From this separation we can build up iteratively the the transformation to the hier-
archical parameters θ from a set of uniformly distributed parameters u.

θ1 = F−1
P(θ1)(u1) (8.16)

θ2 = F−1
P(θ2|θ1)(u2) (8.17)

...

θn = F−1
P(θn|θ1,θ2...,θn−1)(un) (8.18)

This is the multivariate distributional transform [119] for ui being drawn from the
uniform distribution U(ui) within the interval [0, 1]. From this parametrization we
can then change to the white, standard Gaussian distribution in a second step. G(ξ, 1)
with uniform, diagonal covariance and vanishing mean. In order to be able to find
this transformation in practice, it is necessary that one has explicit access to the
hierarchical structure of the model and that CDF’s either are available or can be
approximated efficiently. This limits its applicability to some extent, but even deep
hierarchical models are typically constructed by combining simple distributions and
transformations.

We will now perform the above stated coordinate transformation to the uniformly
distributed parameters within the joint PDF P(d, θ) of the data and parameters for
a given likelihood P(d|θ) and prior distribution P(θ) via P(d, θ) = P(d|θ)P(θ).
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P(d|θ)P(θ)dθ = P(d|θ) [P(θ1) . . .P(θn|θ1 . . . θn−1)]

∣∣∣∣dθdu
∣∣∣∣ du (8.19)

= P(d|θ)
[
d

dθ1

FP(θ1)(θ1) . . .
d

dθn
FP(θn|θ1...θn−1)(θn)

] ∣∣∣∣dθdu
∣∣∣∣ du (8.20)

= P
(
d|F−1

P(θ)(u)
)[ d

dθ1

FP(θ1)

(
F−1
P(θ1)(u1)

)
. . .

d

dθn
FP(θn|θ1...θn−1)

(
F−1
P(θn|θ1...θn−1)(un)

)] ∣∣∣∣dθdu
∣∣∣∣ du (8.21)

= P
(
d|F−1

P(θ)(u)
)[du1

dθ1

. . .
dun
dθn

] ∣∣∣∣dθdu
∣∣∣∣ du (8.22)

= P
(
d|F−1

P(θ)(u)
) ∣∣∣∣dudθ

∣∣∣∣ ∣∣∣∣dθdu
∣∣∣∣ du (8.23)

= P
(
d|F−1

P(θ)(u)
)
du (8.24)

Here, we first expanded the prior probability into a hierarchical structure and substi-
tuted to an integral over the uniform parameters. We then expressed those individual
prior probabilities in terms of derivatives of the CDF. Inserting the transformations
for each parameter we obtained identity operations by construction. What remained
is the product of the derivatives of the new parameters with respect to the old ones
that exactly canceled the Jacobian determinant of the transformation. The uniform
prior is implicitly present in the last expression, as the parameters u are only defined
on the unit interval, where the uniform distribution takes a value of one.

For numerical purposes this coordinate space is inconvenient to perform inference
due to the compact support of the uniform distribution. To avoid this, we will trans-
form from these uniform parameters into a set of independent Gaussian parameters
of unit variance and zero mean. This coordinate transformation is again done via the
CDF. It takes the following form:

u =FG(ξ,1)(ξ) (8.25)

=
1

2
+

1

2
erf

(
ξ√
2

)
, (8.26)

where the error function is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt , (8.27)

and we adopt the convention that scalar functions are applied to vectors component-
wise. Performing the transformation explicitly yields

P
(
d|F−1

P(θ)(u)
)
du = P

(
d|F−1

P(θ)(u)
) du
dξ
dξ (8.28)

= P
(
d|F−1

P(θ) ◦ FG(ξ,1)(ξ)
)[ d

dξ
FG(ξ,1)(ξ)

]
dξ (8.29)

= P
(
d|F−1

P(θ) ◦ FG(ξ,1)(ξ)
)
G(ξ, 1)dξ . (8.30)
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The overall standardizing transformation CP(θ)(ξ) of the deep hierarchical parameters
θ to the white, standard Gaussian parameters ξ is therefore the composition, indicated
by ◦, of the two individual transformations.

θ =F−1
P(θ) ◦ FG(ξ,1)(ξ) (8.31)

≡ CP(θ)(ξ) (8.32)

Finally, we can rewrite the original probability in terms of the new parameters.

P(d|θ)P(θ)dθ =P
(
d|CP(θ)(ξ)

)
G(ξ, 1)dξ (8.33)

Explicit examples for a simple hierarchical model and multivariate Gaussian prior
distributions are given in Appendices 8.8 and 8.8, reproducing the reparametrization
trick.

8.5 Approximations of the Transformed Distributions

Approximating posterior distributions allows to infer posterior quantities even for
large models within reasonable computational effort. In general it matters in which
coordinate system the approximation is conducted. We will discuss the impact of this
transformation on two popular approximations in the standardized parameters. The
first one will be the maximum posterior (MAP) estimate that is obtained by mini-
mizing the information of the posterior with respect to the parameters. The second
approach is to perform a variational approximation with a Gaussian distribution in
the standardized coordinates.

8.5.1 Maximum Posterior

A maximum posterior approximation is cheap to compute and can provide meaningful
results, if the parameters are constrained reasonably well and uncertainties are small.
Conceptually, the true posterior distribution is approximated by a delta distribution
at a location that has to be inferred. Minimizing the KL divergence in this case
is identical to minimizing the information H(θ|d) with respect to the parameters
θ. Performing the approximation in the standardized coordinate system will not
necessarily maximize the posterior in the original parametrization. We can discuss
the two limiting cases of uninformative likelihood and extremely constraining data.

In the case of an uninformative likelihood, maximizing the posterior will be close
to maximizing the white, standard Gaussian information. The result will be a delta
distribution peaked close to the the origin. This location splits the probability mass in
any direction in half. Transforming this distribution back into the original coordinates
this location corresponds to the median of the prior distribution rather than the (or
a) mode that would be the result of MAP in the original space. Especially for heavily
skewed or multi-modal prior distributions the results differ substantially.

In the limiting case of highly informative data the true posterior distribution will be
narrowly peaked around the true parameter value. In this situation the essential fea-
tures of the posterior can be captured by an approximation with a delta distribution,
neglecting uncertainty. The true posterior then also transforms almost like a delta
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distribution, which will also be narrowly peaked around the transformed maximum.
In the highly informed case it therefore does not matter much in which coordinates
the approximation is conducted.

Any situation in between the extreme cases will exhibit characteristics of both. In
general, performing a MAP approximation in the standard coordinates will push to-
wards median prior configurations, unless the data tells otherwise. This is different to
the approximation in original coordinates, which favors maximum prior configurations
in the absence of additional information. Towards more conclusive data it becomes
irrelevant in which coordinates the posterior is maximized.

8.5.2 Variational Gaussian

A natural choice to approximate the true posterior in the transformed coordinates is
the Gaussian distribution. This is demonstrated for ADVI [85]. The transformed prior
distribution is just a standard Gaussian. If the data updates the prior only slightly,
the true posterior will still be close to a Gaussian distribution, which is captured well
by the approximation. The strength of variational inference is to take the uncertainty
of the problem into account and thereby prevents over-fitting to some extent. This
is especially important if the uncertainty is high, which is the case for uninformative
data. This is exactly the situation where the variational Gaussian approximation in
the standardized space captures the true uncertainty of the actual posterior the best.

A variational Gaussian approximation will also approximate the true posterior well
if the likelihood in the transformed coordinates is close to a Gaussian distribution
in the parameters, as combining a Gaussian likelihood and prior results in another
Gaussian.

For well constrained parameters this approximation will behave similarly to the
MAP approximation, as discussed before. If the likelihood introduces multi-modality
into the posterior, the Gaussian approximation will choose one mode and approximate
the true posterior locally. In these situations one might consider more flexible distribu-
tions to approximate the posterior, for example a Gaussian mixture, as demonstrated
in Kucukelbir et al. [85].

Overall, the variational Gaussian approximation of the true posterior in the stan-
dardized space will be excellent if the data modifies the posterior only slightly.

8.6 Optimization and Conditioning

In order to perform the approximate inference, we do have to optimize a target func-
tional numerically. This problem might be a non-convex optimization and we are not
guaranteed to find a global optimum. Here we will discuss the convergence properties
of local optimization procedures of the MAP and variational Gaussian approximation
in the standardized coordinates. To perform the optimization we do only have access
to local information in terms of derivatives of the loss function at the current position
in parameter space. Here the negative gradient shows in the direction of the steepest
descent and the curvature informs about how the terrain is changing along the dif-
ferent directions. This information is used in a number of Newton and quasi-Newton
algorithms to minimize the target functional. The numerical difficulty is encoded in
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the condition number of the curvature, the ratio of the absolutes of its largest and
smallest eigenvalue. The larger the spread of the eigenvalues, the harder the problem
is to solve numerically. For non-convex problems the curvature might exhibit negative
eigenvalues, especially far from a minimum. In this case a Newton optimization breaks
down, as the step will be performed in the wrong direction. A way to overcome this is
to approximate the true curvature with a quadratic approximation to the curvature
with the Gauss-Newton method that is always positive definite. For our discussion
we will consider only convex curvature. Otherwise the same argumentation holds for
an approximate Gauss-Newton curvature.

Conditioning of general models: The general curvature of the information for a
deep hierarchical model reads:

C =
d2

dθdθ†
H(d|θ) +

d2

dθdθ†
H(θ) (8.34)

The conditioning of this curvature will entirely depend on the concrete model, but
a number of general properties influence the conditioning strongly. Large absolute
entries in the curvature matrix will contribute to a bad conditioning, wherever they
occur. The second derivative with respect to two parameters will be large if the
relevant terms themselves are highly informative, as well as if the interaction of the
parameters within these terms is strong. Highly informative and strongly coupled
terms will therefore contribute to bad conditioning. Not only individual, large entries
are problematic, but also a large number of relatively small entries associated with
one individual parameter. This case is discussed in Betancourt and Girolami [15] and
illustrated there in form of a high dimensional funnel.

Preconditioning: A common technique to reduce the condition number of a linear
problem is preconditioning [126]. The idea is to have an approximation of the original
problem that has an easily accessible inverse. This approximation is pulled out of the
initial matrix, taking already care of the largest and smallest eigenvalues. It remains
to solve a better conditioned problem. For example, we want to have the inverse of a
matrix that consists of a simple, invertible, and dominant contribution B plus a small
modification A. The condition number is therefore dominated by the matrix B. A
way to precondition this problem is to pull B out of it:

(A+B)−1 = B−1(AB−1 + 1)−1 (8.35)

Now it remains to numerically invert (AB−1 + 1)−1 instead of the initial problem.
Here the smallest eigenvalue is bounded by 1 and the largest eigenvalue relates to the
largest eigenvalue of AB−1 (plus one), which is smaller than the product of the largest
eigenvalues of A and B−1. As A is only a small modification, its largest eigenvalue
will also be small, and therefore pulling out the dominant contribution B leads to a
better conditioned problem.

Curvature of MAP and Variational Gaussian: The curvature of the MAP approxi-
mation, which is used in the Laplace approximation to obtain an uncertainty estimate,
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is the second derivative of the information. It reads in the standardized coordinates:

CH =
d2

dξdξ†
H(d|ξ) + 1 (8.36)

For a variational Gaussian approximation we can pull derivatives with respect to the
mean inside the expectation value and take the derivative with respect to the original
parameters [102]:

CDKL
=

〈
d2

dξdξ†
H(d|ξ) + 1

〉
G(ξ−mξ,Dξ)

(8.37)

The curvature for the mean of the Gaussian approximation is the mean of the in-
formation curvature over the approximate distribution. This structure allows us to
investigate the overall conditioning of the curvature in terms of the largest and small-
est eigenvalues introduced by the likelihood. The structure of both curvatures above
correspond to the one of the preconditioned problem in the previous paragraph and
we can discuss them in the same way.

Conditioning: The above considerations allow us to make statements on the condi-
tioning of the problem, as the condition number is given by

κ =
λmax + 1

λmin + 1
. (8.38)

Here λmax and λmin are the largest and smallest eigenvalues of the likelihood infor-
mation curvature. The magnitude of the eigenvalues relates to the uncertainty in the
corresponding eigendirections of the posterior. This property is used for the Laplace
approximation. Large eigenvalues indicate low posterior variance, and therefore well
constrained parameter directions, and vice versa. Certain directions might not be
constrained by the data at all and the posterior uncertainty is the prior one, which is
indicated by λmin = 0. Because of this, the smallest eigenvalue of the full curvature
cannot become smaller than 1.

The overall conditioning of the problem therefore mainly depends on λmax. The
larger it is, the worse the overall conditioning. The inference of the model will therefore
be faster for less informative data. If the smallest eigenvalue λmin is significantly above
one, the data constrains all parameters well and the prior will not have much influence
on the conditioning.

The bad conditioning for highly informative data can be explained by the struc-
ture of this likelihood. All parameters are directly involved into explaining the data.
Within the likelihood the parameters are to some extent degenerate, as several might
explain the same features. The prior breaks this degeneracy, favoring certain parame-
ter configurations above others. If the likelihood is now extremely strong, the influence
of the prior almost vanishes. The first goal of the algorithm will be to minimize the
likelihood, irrespective of the prior plausibility. To restore this plausibility, the op-
timization has to also minimize the prior contributions. This is now only possible
by following a trajectory that keeps the likelihood almost constant. This quasi-hard-
constraint introduces narrow, high-dimensional valleys into the information function
the optimization has to navigate through.
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For well constrained parameters we might prefer a MAP approximation. As previ-
ously discussed, the resulting estimate should not depend significantly on the coordi-
nates chosen. A way to circumvent the bad conditioning in the highly informed case
might be to perform the optimization in the original parameter space with the deep
hierarchy.

8.7 Numerical Example

To illustrate the above considerations we present a numerical example. We will explore
the inference of a linear Gaussian process s with unknown kernel operator S from
incomplete data with additive, Gaussian noise n . This is an important problem,
as Gaussian processes [82] are widely used to model continuous functions or auto-
correlated quantities [110]. They are also well-suited for image reconstruction, for
example in an astrophysical context [37, 64, 70, 104, 125]. The auto-correlation of
the process is the result of the properties of the observed system, which might not be
known a priori, so it also has to be learned from the data. Parametric [137], as well
as non-parametric [138] models have been proposed to infer the correlation structure.
The latter work assumes a mixture of Gaussian profiles, which, in principle, can
represent any viable spectral density for a sufficiently large number of basis functions.
Alternatively the spectrum itself can also be described using a Gaussian process for
the logarithmic spectrum, ensuring positive definiteness [35]. This log-normal prior
on the spectral density can, for example, enforce spectral smoothness [103]. We will
base our discussion on this latter description, but the results should hold for any
parametrization of the correlation function.

8.7.1 Gaussian Process with Spectral Smoothness

Gaussian processes are defined over continues spaces, and therefore the involved quan-
tities will be functions and linear operators instead of vectors and matrices. We will
additionally consider the presence of a general, linear response function R, which can,
for example, select out individual locations where we measure the signal, resulting
in our data-points. This operator is necessary to relate the continuous signal s to
discrete-valued data. The data is generated according to

d = Rs+ n. (8.39)

This results in a Gaussian likelihood with information of the form:

H(d|s) =
1

2
(d−Rs)†N−1(d−Rs) +

1

2
ln|2πN | (8.40)

The information of a Gaussian process prior reads:

H(s|S) =
1

2
s†S−1s+

1

2
ln|2πS| (8.41)

The kernel S(x, x′) should be homogeneous, or stationary, and it therefore only de-
pends on the relative distance of two points S(x − x′) that allows us to express the
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correlation as a diagonal operator in the harmonic basis. The additional assump-
tion of isotropy allows for one dimensional kernel functions that only depend on the
relative distance S(|x − x′|). The correlation structure is then a diagonal operator
in the harmonic basis and fully characterized by its spectral density, according to
the Wiener-Khintchin theorem [68, 135]. The isotropy assumption implies that the
spectral density only depends on the absolute values of the coordinates in the har-
monic space. This can be expressed via an isotropy operator P, that distributes a
one dimensional power spectrum into the diagonal of the covariance operator in the
harmonic space. The relation between the correlation structure in position space S
and a one dimensional power spectrum p therefore reads:

S = F†(̂Pp)F (8.42)

The hat over (̂Pp) indicates the transformation into a diagonal operator and the
harmonic transformation is expressed in terms of F. For flat geometries this is the
Fourier transformation. In order to enforce the positive definiteness of the correlation
structure, p has to be strictly positive, but its values can vary strongly. In many
cases one can assume a smooth power spectrum. A suitable choice of a prior to
implement these characteristics is a log-normal Gaussian process prior LN (p, T ).
The kernel T implements the degree of desired smoothness. As this contains the
hard constraint of positivity, we will instead reparametrize the power spectrum in
terms of the logarithmic power spectrum p = eτ , which transforms the hyper-prior to
the Gaussian Process prior G(τ, T ). The total information is obtained by adding up
all likelihood, prior, and hyper-prior terms. Disregarding all parameter independent
terms, it is:

H(d, s, τ) =̂
1

2
(d−Rs)†N−1(d−Rs)

+
1

2
s†F†(̂Pe−τ )Fs+

1

2
Tr (Pτ) +

1

2
τ †T−1τ (8.43)

We will now apply the standardizing transformation to flatten the hierarchy of the
Bayesian model. Due to the assumed statistical homogeneity of the signal, we have
access to the eigenbasis of the prior correlation structure. Here F is the Fourier trans-
formation, which allows us to take the square root of the eigenvalues to standardize
the s parameter as outlined in Appendix 8.8 .

s = F
(̂

Pe
1
2
τ
)
ξ (8.44)

Performing this substitution introduces the dependency on τ into the likelihood and
removes the prior terms depending on τ .

The same procedure can be applied to standardize τ as well, which is also described
by a Gaussian process. In order to do so we have to express the smoothness kernel T
in terms of its eigenbasis and eigenvalues. Smoothness should be a lack of curvature
of τ on a logarithmic scale. We can therefore describe the inverse kernel as T−1 =
1
σ2 ∆†∆. The ∆ operator implements the Laplace operator on a logarithmic coordinate
system and σ the expected deviations from a smooth spectrum. The larger it is,
the more curvature is accepted and vice versa. The Laplace operator is diagonal in
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the associated harmonic domain and the diagonal elements contained the squared
harmonic coordinate l of this logarithmic space.

∆ = V†l2V (8.45)

This V operator is the harmonic transformation in the space of the one dimensional
logarithmic power spectrum in logarithmic coordinates. We can now express τ in
terms of the standard parameters ζ:

τ = V
σ

l2
ζ (8.46)

With both transformation in place, the transformed information of the full problem
reads:

H(d, ξ, ζ) =̂
1

2

(
d−RF

̂(
Pe

1
2

V σ
l2
ζ
)
ξ

)†
N−1

(
d−RF

̂(
Pe

1
2

V σ
l2
ζ
)
ξ

)
+

1

2
ξ†1ξ +

1

2
ζ†1ζ (8.47)

Now the entire prior knowledge, such as the concepts of homogeneity, isotropy, spec-
tral and spatial smoothness, and positivity, are absorbed into the likelihood. This
now implements the problem of the inference of a Gaussian process with unknown
correlation structure in form of a characteristic and generative sequence of linear and
nonlinear operations between a priori white parameters. The steps to perform the
transformation were technical, but straight forward.

Inference

So far we only formulated the identical problem in two equivalent ways, a deep hier-
archical model and a flat hierarchical model with a standard Gaussian white prior,
but we still have to perform the inference. In this case the performed coordinate
transformations were fully linear. This way we can perform the same approximation
in both coordinates systems and the resulting distributions will be transformed ver-
sions of each other. We will minimize the variational KL divergence between the true
posterior distribution and an approximate distribution. The approximation will be
a product of a Gaussian for the signal and a point-estimate for the power spectrum.
This illustrates a variational Gaussian approximation, as well as point estimates.

The approximate distribution reads:

P(s, τ |m,D, τ ∗) = P̃(s, τ) ≡ G(s−m,D)δ(τ − τ ∗) (8.48)

The task is to adjust the parameters m, D and τ ∗ such that the KL divergence between
this distribution and the true posterior is minimized. Up to parameter independent,
constant terms the KL divergence reads:

DKL

(
P(s, τ |d)||P̃(s, τ)

)
=̂〈H(s, τ |d)〉P̃(s,τ) − 〈H̃(s, τ)〉P̃(s,τ) (8.49)

=̂
1

2

〈
(d−Rs)†N−1(d−Rs) +

1

2
s†F† ̂(Pe−τ∗)Fs

〉
G(s−m,D)

+
1

2
Tr (Pτ ∗) +

1

2
τ ∗†T−1τ ∗ − Tr ln [2πeD] (8.50)



8.7 Numerical Example 129

The last term corresponds to the entropy of the Gaussian distribution and the delta
distribution is already integrated out. Because the information is fully quadratic in
s, we can directly solve for the posterior covariance, as well as the mean for a given
τ ∗ [102]:

D =
(
R†N−1R + F† ̂(Pe−τ∗)F

)−1

(8.51)

j = R†N−1d (8.52)

m = Dj . (8.53)

P(s|d, τ ∗) = G(s−m,D) is the Wiener filter solution for a given correlation structure
τ ∗ and it minimizes the KL divergence without the need of a dedicated optimization.
The minimization with respect to τ ∗ requires the evaluation of the KL divergence
and its gradient with respect to these parameters. In order to estimate the Gaussian
expectation value we will draw samples from the Gaussian distribution for the current
value of τ ∗ and perform the optimization on a stochastic estimate of the KL divergence
[121].

The inference procedure now iterates between estimating m and D for a given τ ∗

and minimizing a stochastic estimate of the KL-divergence with respect to τ ∗ for the
current parameters of m and D.

Analogous terms can be calculated for the standardized coordinates and the infer-
ence procedure will be identical.

Implementation and results

Setup: In the concrete example we will consider a two dimensional Gaussian process
drawn from the prior distribution. We generate data by measuring the process at
random locations and we additionally add white Gaussian noise. We will present
three times the identical setup, varying only the amount of data points. We choose a
resolution of 128× 128 pixel. The first scenario will consist of a measurements of all
locations, in the second scenario we randomly sample 10%, or roughly 1600 locations,
and in the last case we only take 0.5%, or 83 data points.

The problem is implemented in python using the NIFTy package [124, 128]. We
start the optimization of both models with equivalent initial states. All hyper-
parameters of the involved minimizers are the same as well.

Using the true underlying kernel, we can compute the posterior mean mwf of this
simpler problem by evaluating the Wiener filter for the correct spectrum. This better
informed estimator will serve as our reference point and we compare both methods in
terms of the root mean squared errors (RMS), which are defined as:

ε =
√

(m−mwf)†(m−mwf) (8.54)

By monitoring this quantity we can discuss the convergence behavior of the different
methods in the different scenarios.

We do not track the KL divergence as measure for convergence, as it would require
the calculation of the entropy term Tr ln[2πeD]. The posterior covariance D has
1282×1282 entries and the eigenbasis is not explicitly available. Evaluating the matrix
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logarithm scales with the third order in the dimension, requiring 1286 computations
in every step, making this term numerically not accessible. In order to perform the
inference itself it is sufficient to have the operator implicitly available.

The overall convergence of the algorithm is determined by the convergence of the
power spectrum parameters, as we immediately have the mean and variance of the
Gaussian given this spectrum. In order to discuss the convergence behavior it is im-
portant to identify which parts of the power spectrum are prior dominated and which
are strongly constrained by the likelihood. In order to do so we have to explore how
the data contains information on the correlations of different scales. Our knowledge
on the true process realization is limited in two ways, namely white Gaussian noise
and incomplete coverage.

This noise affects all scales equally, and the relevant quantity to look at is the signal-
to-noise ratio. Scales with high power will not be affected much, and are therefore
well constrained by the data. If the signal power drops significantly below the noise
power, the prior information will be the dominant term.

The random sampling behaves differently. If we randomly select a small number of
positions to measure, their average distance is large and we are mainly informed about
the largest scales. We are informed about the small scales by having data points close
to each other. The more data points we obtain, the more likely it becomes for them
to lie close to another one, providing information on the small scale fluctuations.

In our case both effects will be superimposed, but the sparse sampling of data will
be the main contribution. With it we will stir between prior and likelihood dominance.

The results can be seen in Fig. 8.1. The three columns correspond to the three
different cases. The first row shows the actual data, the second row the posterior
mean for the correct kernel. The third row illustrates the RMS error of the current
estimate after each algorithmic update during the minimization. The last row shows
the progression of the spectra during the inference.

Observations:

1. The flat hierarchy model converges faster in all cases in terms of RMS error.

2. In recovering the true spectrum, both models have complementary strengths
and weaknesses. The deep hierarchy is superior in the data dominated case and
the flat hierarchy in the prior dominated case.

3. Alternating both methods improves convergence with respect to each and the
recovery of the true spectrum.

Convergence: The convergence results can be seen in the third row in Fig 8.1. The
flat hierarchy model converges faster in all three cases in terms of the RMS error. In
the full data case both methods converge to the identical error, but the flat hierarchy
requires one order of magnitude less iterations. In the scattered data cases, the deep
model is faster at the beginning, but after a certain amount of steps, the flat model
outpaces the other one significantly. In the sparse data case, the deep hierarchy
seemingly stops converging after an initial drop off, whereas the flat model reaches a
significantly lower error. This illustrates the advantages of the approximation in the
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Figure 8.1: The setup and results in the three cases. The column corresponds to the
data set with full coverage, the second one to the scattered data set, and
the last one to the sparse data set. The first row shows the data in these
cases, the second row depicts the Wiener filter reconstruction given the
correct correlation structure. The third row illustrates the RMS error of
the current reconstruction to the Wiener Filter solution for both coordi-
nates and the last row shows the progression during the optimization.
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standardized space for relatively uninformative data. In the scattered data case, the
convergence behavior is similar, with slight advantage for the flat model. The problem
in this case is that the large scales are well constrained by the data, whereas the small
scales should still be prior dominated. Because the deep hierarchy converges fast for
well constrained parameters and struggles for the less constrained parameters, the
over-all convergence is bottle-necked by the most uninformative parameters. The flat
model shows exactly the opposite behavior in the different regimes, and is therefore
bottle-necked by the most informed parameters. These behaviors become especially
apparent in the convergence of the power spectra.

Spectra: We will now discuss the evolution of the power spectra during the mini-
mization. These are depicted in the last row of Fig. 8.1. Both methods start with
spectra at the same horizontal line. From this location the spectra move into the
direction of the true correlation structure. We can track fast movement by a low den-
sity of lines and slow movement by a high density. Convergence can be identified by
small fluctuations around a common spectrum. We also observe the evolution to slow
down and almost stopping at some point. This behavior appears as a color gradient
in the figure, which progressively gets filled stronger.

The deep hierarchy model is extremely fast in picking up scales, which are well
constrained by the data. This can be seen by the density of green lines at the largest
scales. In the full data case it immediately jumps close to the true spectrum. For
sparser data this is a bit delayed, but still fast. This slowing down cannot only be
observed between the cases, but also within the different scales in one setting. The
smaller scales are less constraint by the data and for those there are a large number
of intermediate lines. In the scattered data case this behavior can be seen very well.
There the small scales just slowly drop down from the initial position towards the
correct spectrum, bottle-necking the convergence.

In the sparse data case, this slow down behavior is even more dominant. Everything
except the largest scales did not move away significantly from the initial position and
the minimization is incapable to provide a result within a reasonable amount of time.

The overall behavior can be explained by the deep hierarchical structure of the
model. We use the current correlation structure to estimate the mean of the process.
For parameters the data is good, this current prior correlation structure does not
affect its estimate strongly and if data are sparse, the posterior remains close to the
prior estimate. This updated process is then used to adjust the correlation structure
within the prior distribution. Therefore well constraint scales are immediately set to
reasonable values, whereas the weakly constraint modes are already consistent with
the current estimate of the power spectrum. The algorithm gets caught in a loop of
self-fulfilling prophecies, which cripples down any progress on scales with little data.

The flat hierarchy model behaves to some extent in an opposite manner. It is fast to
recover scales which are weakly constraint by the data, but struggles for well informed
scales. The more data it is available, the slower the spectrum approaches the true
solution. In situations where the deep hierarchy has problems, this flat model recovers
the spectra reasonably. Especially in the sparse data case it is capable on capturing
the basic features of the true spectrum. Besides the clearly identified secondary bump,
it also estimates the slope of the true spectrum correctly. Spectral features on even
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smaller scales could not be identified due to the lack of information. Here the correct
spectrum is smoothly interpolated, as we would expect for a Gaussian process in
weakly informed scenarios. The flat model is excellent in combining small amounts
of data with prior knowledge. Interestingly, its incapability of recovering the correct
spectrum in the high data density case does not reflect in the reduction of the RMS
error, where the flat model consistently out-competes its competitor.

This behavior can be explained by a multiplicative degeneracy within the likelihood.
We re-parametrized the original signal in terms of an amplitude and an excitation:

s = Aξ (8.55)

This allows to multiply one quantity with some factor, if the other one is divided by it
accordingly. In the algorithm we first update the excitation ξ for a given amplitude.
In the case of a strong likelihood, the white prior on ξ is almost irrelevant and the
excitation will pick up any access power, which is not explained by the initial guess
of the amplitude. In the consecutive update of the amplitude itself, this power is
hidden inside the excitation and the amplitude cannot pick it up. The likelihood is
immediately satisfied and the problem remains in the separation between excitation
and amplitude, which is only governed by the priors. The high values in the excitation
are incompatible with the prior, which wants to push them down, but it has to act
against the extremely strong likelihood. This way, the prior will only slightly push
down the values, which releases some power to be picked up by the amplitude. The
stronger the likelihood, the slower this process will be and the push from the excitation
prior becomes weaker, the progression of the power spectrum will slow down.

Alternating coordinates: Both parametrizations have severe limitations, which is
best depicted in the spectra for the scattered data. On large scales, the flat model
struggles with internal degeneracy, whereas for small scales the deep model is fighting
with self-fulfilling prophecies. Both methods do also have their advantages. The deep
model is excellent in the high density data regime, whereas the flat hierarchy allows
to recover features even in low information environments.

In this case we can alternate between the coordinates without altering the approxi-
mation, due to the linearity of the transformation. In general this is not possible, but
as discussed in Sec. 8.5.1 delta approximations for well constrained parameters can
also be optimized in transformed coordinates.

Alternating between both methods might allow to overcome the limitations of either
one, leading to overall faster convergence and more reasonable spectra. We will restrict
our investigation to the scattered data case, where the limitations of both methods
were most apparent. The results can be seen in Fig. 8.2. In terms of convergence,
alternating the procedures allows to exceed the performance of both methods on their
own. The alternating method follows the initial drop of the deep hierarchy model and
for the rest it behaves as the flat model, providing the overall lowest error. This can
also be seen in the progression of the spectra. The large scales behave like the deep
model, rapidly jumping to the correct value, but also match the flat model behavior
on the smallest scales.

Overall, the variational approximation in the standardized coordinates demon-
strates its numerical superiority in the case of a weak likelihood, or more general,
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Figure 8.2: The results for alternating between the two parametrizations during the
inference. Left is the progression of the power spectra and right the RMS
error to the Wiener filter.

in directions the likelihood is relatively uninformative. The overall convergence is
limited by the best informed directions, but the other directions converge fast nev-
ertheless. The deep hierarchical parametrization shows the opposite behavior and
a MAP estimate for well constrained parameters allows us to alternate between the
parametrization, allowing for overall faster convergence.

8.8 Conclusion

We showed how the multivariate distributional transform can be used to transform
a general Bayesian model over continuous quantities into a standardized coordinate
system in which the prior becomes a standard Gaussian distribution. We discussed
the behavior of popular approximations in these new coordinates. A maximum poste-
rior approximation in this space will be oriented towards median prior configurations
in the original space, instead of the maximum. For a strong likelihood, the result-
ing distributions will be transformed versions of each other. A variational Gaussian
approximation in the standardized coordinates will be excellent in cases of a weak
likelihood, as the shape of the posterior will only be slightly modified compared to
the prior, and therefore a Gaussian approximation can capture the true posterior well.
This is also the case if the likelihood, containing the standardizing transformation, is
still close to a Gaussian.

The simple structure of the model in the standardized coordinates allowed us to
investigate the numerical behavior of optimization schemes in terms of the condition-
ing of the curvature. Its smallest eigenvalue is larger or equal one, and the overall
conditioning mainly depends on the largest eigenvalue of the likelihood. This eigen-
value is large if the data contains large amounts of information on certain parameter
directions, and small otherwise. This makes the inference of the approximation pa-
rameters easier for small amounts, or uninformative data. This makes a Gaussian
approximation in the standardized coordinates, as proposed for ADVI [85] a fast and
accurate inference procedure especially in cases of sparse data.
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We explored numerically the inference of a Gaussian process with unknown correla-
tion structure, which was described by a smooth log-Gaussian process, this time with
known, smoothness enforcing kernel. The linearity of the standardizing transforma-
tion allowed us to perform the identical approximation in the original, as well as the
standardized coordinates. The approximation was a variational Gaussian with full co-
variance for the Gaussian process, and a point estimate for the power spectrum. We
found, as expected, that the flat hierarchical model was superior for less informed pa-
rameters, whereas the deep hierarchy outperformed for well-constrained parameters.
Both scenarios occur also within the same inference problem, and the convergence
speed of either approximation is bottle-necked by its sub-optimal directions. We
solved this problem by alternating the optimization between the two coordinate sys-
tems, which harnessed the strength of both and lead to an overall faster convergence.
We proposed that parameters well constrained by the data should be approximated
by delta distributions, which allows their inference in either coordinates. This should
improve the inference speed of large, hierarchical Bayesian models.
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Appendix A: A Simple Transformation Example

We perform this transformation explicitly to a one dimensional example with a hier-
archical Bayesian model with two parameters. We consider some likelihood P(d|α)
that depends on a parameter α. The prior distribution on this is a Gaussian with the
standard deviation σ and a known mean µ as hyper-parameters. The hyper-prior on
this will be an exponential distribution depending on a known constant λ. A similar
example is discussed in Betancourt and Girolami [15].

P(α|σ) = G(α− µ, σ2) α, µ ∈ R (8.56)

P(σ) = λe−λσ σ, λ ∈ R+ (8.57)

To calculate the transformations onto white priors we require the CDF of a white
Gaussian, which is stated in Eq. 8.26, as well as the inverse CDF’s of the prior
distributions:

F−1
P(α|σ)(u) = µ+

√
2σ erf−1 (2u− 1) (8.58)

F−1
P(σ) = − 1

λ
ln(1− u) (8.59)

We can then express our encoding of the prior structure in the likelihood as

α = CP(α|σ)(ξ1) = F−1
P(α|σ) ◦ FG(ξ,1)(ξ1) (8.60)

= µ+
√

2σ erf−1

(
2

(
1

2
+

1

2
erf

(
ξ1√

2

))
− 1

)
(8.61)

= µ+ σξ1. (8.62)
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This is just a simple re-scaling and shifting of the white Gaussian ξ parameter within
the likelihood. This is exactly the example given for the reparametrization trick [69]
and the proposed transformation for hierarchical HMC [15].

Analogously we perform the transformation for the second parameter σ:

σ = CP(σ)(ξ2) (8.63)

= − 1

λ
ln

(
1

2
− 1

2
erf

(
ξ2√

2

))
(8.64)

With this we can substitute σ in the likelihood to obtain full white prior distributions.
We can relate back to the original parameter of the likelihood via

α = µ− 1

λ
ln

(
1

2
− 1

2
erf

(
ξ2√

2

))
ξ1 (8.65)

and the posterior can be written as

P(ξ1, ξ2|d) =
P(d|ξ1, ξ2)P(ξ1)P(ξ2)

P(d)
(8.66)

instead of

P(α, σ|d) =
P(d|α)P(α|σ)P(σ)

P(d)
. (8.67)

A graphical representation of the of the conditional dependence of the variables within
the two models, the initial and the one re-parametrized to have white Gaussian ran-
dom variables, is depicted in Fig. 8.3. With this transformation we flattened down
the hierarchy of the original, deep Bayesian model. Both models contain the identical
information. This is now encoded in the nonlinear structure of the parameters within
the likelihood. One could continue adding higher levels of prior hierarchies to the
problem, but flattening them as well is straight forward, as long as the CDF’s are
available. As it is pointed out in Betancourt and Girolami [15], the parameters are
now independent, conditioned on the data.

σ

α

d

ξ1ξ2

d

⇐⇒

Figure 8.3: The graphical structure of the original model with a deep hierarchy and
the flattened structure of the transformed model.
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Appendix B: Transforming Multivariate Gaussians

Multivariate Gaussian distributions and their generalizations to infinite dimensions,
Gaussian processes [82, 110] are an important class of distributions, especially to
express prior knowledge. They take the following form:

P(s) = G(s, S) =
1

|2πS| 12
e−

1
2
s†S−1s (8.68)

Here we do not have to perform the transformation explicitly, as we can find the white,
standard Gaussian parametrization through a set of linear transformations. First, we
have to express the correlation structure in terms of its eigenbasis.

S = F†S̃F (8.69)

Here the unitary transformation F is built from the normalized eigenvectors and the
diagonal matrix S̃ consists of the corresponding eigenvalues. The inverse in this basis
can be calculated easily by inverting each individual eigenvalue and it reads

S−1 = F†S̃−1F. (8.70)

With this we can rewrite the exponent of the Gaussian distribution as

1

2
s†S−1S =

1

2
s†F†S̃−1Fs ≡ 1

2
s̃†S̃−1s̃. (8.71)

The eigenvalues of S encode the variance of the process along their corresponding
eigendirections and it is the squared standard deviation. We can split up this diagonal
covariance into two amplitude matrices by taking the matrix square root:

1

2
s̃†
√
S̃−1

†√
S̃−1s̃ =

1

2
s̃†
√
S̃−1

†
1
√
S̃−1s̃ (8.72)

Finally, we can introduce the new variable ξ =
√
S̃−1s̃ and the exponential of this

Gaussian distribution becomes

1

2
s†S−1s =

1

2
ξ†1ξ (8.73)

with the full transformation

s = F
√
S̃ξ ≡ Aξ . (8.74)

This is therefore analogous to the one dimensional case as given in Eq. 8.62. We
weight white, random excitations ξ in the eigenbasis of the correlation structure with
the corresponding amplitudes contained within A in terms of the standard deviation
and transform it back to the space we are interested in. The original correlation
structure is expressed in terms of it as S = AA†.





9 Conclusion

This dissertation has led to the development of Metric Gaussian Variational Inference,
which allows to approximately solve probabilistic inference problems of enormous scale
and complexity. It has so far enabled to solve a number of previously unfeasible prob-
lems, providing outstanding scientific results. MGVI performs a series of variational
approximations to the posterior distribution of a probabilistic inference problem with
a Gaussian distribution. Instead of explicitly parametrizing its full covariance, an
implicitly represented expression based on the inverse Fisher information metric is
used. Correlations between all model parameters are stored within a set of samples,
drawn from the approximation. MGVI alternates between updating the mean of the
Gaussian approximation by minimizing the Kullback-Leibler divergence and updating
the samples due to changes in the local metric. This procedure scales linearly in time
and memory, despite implicitly accounting for a quadratically scaling correlation.

I have outlined a number of applications in which MGVI was used to answer scien-
tifically relevant questions, involving large-scale reconstructions and complex signal
models. It allowed to recover a time-resolved reconstruction of the immediate vicinity
of the super-massive black hole M87∗, despite extremely scarce VLBI data. It was
used to obtain a three-dimensional map of interstellar dust, involving tens of million
of model parameters together with starlight absorption data and parallaxes. Follow-
ing the same measurement principle, MGVI also allowed to recover a two-dimensional
slice of a patients chest from X-ray CT data, using a segment-aware prior model. Com-
bining two distinct data-sets allowed to produce an improved Faraday rotation map,
using an empirical model together with physical insight. In one last example, MGVI
helped to simultaneously perform the calibration and imaging of radio-interferometric
data, benefiting both procedures to achieve improved results.

This thesis also proposes a way how to include trained, deep neural networks into
the Bayesian framework to perform reasoning. This alleviates the necessity of mathe-
matically formulating a model directly, and instead the relevant features are picked up
by the network from a large training set. With this, complex questions can be asked
by assembling the trained networks, and MGVI allows to rapidly find approximate
answers through reasoning to come up with novel ideas. Using this approach allows
to combine the strengths of deep learning and Bayesian reasoning to come up with
novel ways to approach inference for complex problems. This might be an important
step to achieve more intelligent and flexible artificial systems.

MGVI is still new, but has already partly sparked all these results. In the near
future, this list will be extended by further examples. The reoccurring theme with
all of them is the increase in complexity. More and more aspects of a problem are
included and simultaneously solved, as illustrated by the joint calibration and imaging
radio-interferometric data.

Every sub-problem addresses a certain aspect of the entire inference problem, which
are often reoccurring throughout several tasks. One example is the modelling of dif-
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fuse emission on the sky, which was widely used throughout the examples. The
descriptions of such sub-problems serve as building blocks for complex and highly
specialized inference algorithms, tailored towards a specific problem. This approach
highly benefits from a large library of suitable models available and this has to be one
goal of future developments. This library, together with MGVI as underlying infer-
ence machinery could constitute a powerful reconstruction framework, the Universal
Bayesian Imaging Kit. Here, MGVI allows for significantly larger and more complex
inference problems, compared to other approaches. The limitations of MGVI, as well
as a deeper mathematical understanding will have to be explored in future research.

By allowing to approach large and complex problems in a holistic and flexible way,
MGVI is perfectly suited to face the challenges of ever larger and more sensitive
experiments.

I want to conclude with a word of caution. The technologies developed in this
thesis enable novel ways to extract relevant information from data. As demonstrated
in the examples, this can have major benefits to many fields. However, as a physicist,
it is my obligation to also consider all consequences of my research. The approaches
discussed in this thesis can also be used maliciously to intrude the personal freedoms
of unsuspecting targets, potentially within large-scale surveillance systems. Even if
the intended use is legitimate, unintended biases can enter through the deep-learned
modules and potentially manifest themselves in the conclusions of such systems. Using
these technologies therefore demands careful ethical considerations and not to blindly
trust the provided results. These always have to be criticised in terms of potential
bias.
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