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I. Abbreviations 

 

2DG 2-deoxy-D-glucose 

AML Acute myeloid leukemia 

BCOR BCL-6 corepressor 

CBF Core Binding Factor  

CLP Common lymphoid progenitor 

CMP Common myeloid progenitor 

CR Complete response/remission 

GMP Granulocyte-monocyte progenitor 

HDAC Histone deacetylase 

HSC Hematopoietic stem cell 

KO Knockout 

MEP Megakaryocyte-erythrocyte progenitor 

MPP Multi-potent progenitor. 

MYND  Myeloid-Nervy-DEAF-1  

NCOR1 Nuclear receptor corepressor 1 

NHR Nervy homology regions  

NLS Nuclear localization sequence 

NMTS Nuclear matrix targeting signal  

OS Overall survival  

PDX Patient derived xenograft 

PKA RIIα Type 2 cyclic AMP-dependent protein kinase  

POK POZ/BTB and Krüppel 

POZ/BTB Poxvirus and zinc finger/BR-C, ttk and bab 

RHD Runt homology domain  

SMRT Silencing mediator of retinoid and thyroid receptors 
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II. Table and Figures 

 

Table 1: European Leukemia Network 2017 stratification of AML by genetics 

 

Figure 1: Mutations in patients with CBF AML  

Figure 2: Schematic representation of the proteins RUNX1, RUNX1T1 and their fusion  

Figure 3: Translocation t(8;21)  disrupts the normal function of the core binding factor 

complex. 

Figure 4: ZBTB7A interacts with transcriptional corepressors and it is expressed across a 

variety of tissues 

Figure 5: ZBTB7A regulates hematopoietic differentiation 

Figure 6: ZBTB7A mutations in AML with t(8;21) 

Figure 7: Schematic representation of the objectives of this thesis.   
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1. Introduction 

1.1. Acute myeloid leukemia  

Acute myeloid leukemia (AML) is a hematological malignancy characterized by the presence 

of abnormal blasts in the bone marrow and often also in the peripheral blood. These blasts 

are immature hematopoietic cells with a block of differentiation and an uncontrolled 

proliferation. A patient is diagnosed with AML when his or her bone marrow contains >20% 

myeloid blasts, as determined by microscopical examination of a biopsy. According to the 

World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia, 

patients that present with <20% blasts are diagnosed with AML if they are positive for one of 

the recurrent fusion genes: PML-RARA, RUNX1-RUNX1T1 or CBFB-MYH11, representing 

disease defining lesions (1). The incidence of AML is 3.1 per 100.000 persons per year in 

Germany (2). 

The current scheme for AML therapy consists of an induction therapy, aiming to achieve a 

complete remission (CR) of the disease, that is to say, it aims to eradicate all signs and 

symptoms of the disease (i.e. <5% blasts in the bone marrow and normal blood cell counts). 

The most commonly used induction therapy is known as the 3+7 regime. It consists of 3 days 

of anthracycline infusion, a DNA intercalating agent, combined with 7 days of cytarabine, a 

cytosine analog (3). This treatment leads to a CR in 70-80% of patients under 60 years of age 

(4). To prevent relapse, the induction is followed by a consolidation therapy which can consist 

of conventional chemotherapy as well as of allogeneic stem cell transplantation. The choice 

between these therapies depends on the assessment of individual risk factors and availability 

(5). Despite consolidation therapy, half of the patients will eventually relapse with a therapy-

refractory disease. The overall survival (OS) after 5 years is around 25%, but this value varies 

highly depending on the type of AML, age of the patient and comorbidities, amongst others 

(6). The European Leukemia Network (ELN) classifies AML in three risk categories depending 

on the genetic characteristics of the leukemia cells (Table 1). Of note, Core Binding Factor 

(CBF) AML, characterized by the presence of either RUNX1-RUNX1T1 or CBFB-MYH11 fusion 

genes, is classified into the favorable risk category. 
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Table 1: European Leukemia Network 2017 stratification of AML by genetics 

ELN risk category Genetic characteristics 

Favorable 
RUNX1-RUNX1T1 fusion 

CBFB-MYH11 fusion 

Biallelic CEBPA mutation 

NPM1 mutation without FLT3-ITD or low FLT3-ITD 

Intermediate 
NPM1 mutation with high FLT3-ITD 

Wild-type NPM1 without FLT3-ITD or low FLT3-ITD 

MLLT3-KMT2A fusion 

Other abnormalities without classification 

Adverse 
DEK-NUP214 fusion 

KMT2A rearranged 

BCR-ABL1 fusion 

GATA2,EVI1 rearranged 

Complex karyotype 

Monosomal karyotype 

−5 or del(5q); −7; −17/abn(17p) 

Wild-type NPM1 with high FLT3-ITD 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

 

Low indicates allelic frequency lower than 0.5; high indicates allelic frequency equal or higher than 0.5; 

del: deletion, abn: abnormality; complex refers to three or more unrelated chromosomal aberrations 

without presence of a recurring translocation; monosomal refers to one monosomy (except for loss of 

Y or X) in association with at least another additional monosomy or structural abnormality (except for 

t(8;21), t(16;16) and inv(16)). Adapted from Dohner et al., 2017 (7). 
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1.2. Core Binding Factor AML 

CBF AML accounts for 12-15% of adult and 25% of pediatric cases of myeloid leukemia (8, 9). 

CBF AML has an overall better prognosis than other types of AML with the vast majority (87%) 

of patients achieving CR after induction therapy (10). Despite having better prognosis, the ten-

year OS is still at 44%, with elderly patients performing particularly poorly (11).  

Molecularly, this leukemia is characterized by chromosomal aberrations affecting genes 

encoding subunits of the CBF - a heterodimeric protein complex that acts as a key transcription 

factor for normal hematopoiesis (12, 13). The heterodimers are formed by an alpha and a beta 

unit. The genes encoding the alpha unit are RUNX1, RUNX2 and RUNX3 and their protein 

products have DNA-binding properties. The beta unit is encoded by CBFB which does not bind 

DNA but protects the alpha units from degradation (13). Cytogenetically, CBF AML is 

characterized by the presence of translocation t(8;21)(q22;q22), inversion inv(16)(p13q22) or 

translocation t(16;16)(p13;q22). These genomic rearrangements lead to the fusion genes 

RUNX1-RUNX1T1 (also known as AML1-ETO, AML1-MTG8 and RUNX1-ETO) and CBFB-MYH11, 

respectively.  

The main oncogenic mechanism for RUNX1-RUNX1T1 and CBFB-MYH11 seems to rely on the 

disruption of CBF-dependent transcription (14, 15). Still, mouse models demonstrated that 

these fusion genes lead to a block of myeloid differentiation, but are not enough to cause 

leukemia (16, 17). The current understanding is that additional genetic and/or epigenetic 

lesions are needed for CBF AML to arise. The most common mutations occurring in 

combination with RUNX1-RUNX1T1 and CBFB-MYH11 are depicted in Figure 1, with obvious 

differences in the mutation distribution between the two aberrations. Concurrent mutations 

are not the only difference between t(8;21) and inv(16)/t(16;16) leukemia. On a 

cytomorphological level CBFB-MYH11 leukemia is classified as M4 (myelomonocytic with 

abnormal eosinophils) according to the French-American-British classification, while RUNX1-

RUNX1T1 leukemia is considered M2, (myeloblastic, with granulocytic maturation) (18). Other 

characteristics such as prognostic factors, outcome and concurrent chromosomal aberrations 

also vary between the two CBF subgroups (10, 19, 20). 
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Figure 1: Mutations in patients with CBF AML. Mutational data from 130 AML patients with RUNX1-

RUNX1T1 and 162 patients with CBFB-MYH11 obtained via targeted amplicon sequencing. FLT3 

represents both point mutations and internal tandem duplications. Adapted from Opatz et al., 2020 

(21). 

 

1.3. RUNX1-RUNX1T1  

As introduced above, translocation t(8;21) results in the formation of the fusion gene RUNX1-

RUNX1T1. The N-terminal part of the fusion gene is derived from the transcription factor 

RUNX1, a gene from the RUNX transcription factor family, which plays key roles in the 

regulation of linage fate decisions (22). RUNX1 is involved in other recurrent chromosomal 

translocations, such as t(3;21) and t(12;21) (23, 24). In addition, somatic mutations are 

frequently found in this gene in patients with AML, myelodysplastic syndrome and secondary 
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AML (25-27). Moreover, germline point mutations in RUNX1 are associated with 

thrombocytopenia and increased risk of AML (28-30). Mouse models demonstrate that RUNX1 

plays a key role in embryonic hematopoiesis, where it is essential for the development of 

hematopoietic stem cells (HSC) (31, 32). On the other hand, the role of RUNX1 in adult 

hematopoiesis is not as clear. Conditional RUNX1 knockout (KO) mice show defects on platelet 

maturation and lymphocytic differentiation but not in HSC establishment (33-35). Structurally, 

RUNX1 contains a runt homology domain (RHD) which has DNA binding characteristics and 

can interact with CBFB (36), a transactivation domain, a nuclear matrix attachment signal (37), 

and two transcription inhibition domains (38) (Figure 2a). The breakpoint in RUNX1 underlying 

translocation t(8;21) localizes to the intronic region between exon 5 and 6, colocalizing with 

DNase I and topoisomerase II cleavage hypersensitive sites (39). As a consequence, it brings 

the N-terminal part of RUNX1 into the RUNX1-RUNX1T1 fusion protein, which contains its RHD 

domain (Figure 2c). 

The C-terminal part of the fusion gene stems from RUNX1T1, a transcriptional repressor from 

the ETO family. Gene disruption in a mouse model showed that RUNX1T1 plays an essential 

role in the development of the gastrointestinal track (40). What is more, gene expression 

studies and functional validation in mutant mice revealed that RUNX1T1 plays a key role in 

pancreas development (41). On a structural level, RUNX1T1 contains four Nervy Homology 

Regions (NHR) with distinct functions, directing protein-protein interactions but not DNA 

binding (Figure 2b). The breakpoint in RUNX1T1 related to translocation t(8;21) localizes to 

the intronic region between exon 1 and 2, bringing the four NHR domains into the fusion 

(Figure 2c). NHR1 mediates the interaction with the histone acetyltransferase p300 (42). NHR2 

allows for dimerization with other transcription factors from the ETO family (43). Furthermore, 

NHR2 is essential for homo-tetramer formation, which is critical for RUNX1-RUNX1T1 

oncogenicity (44, 45). NHR3 mediates the interaction with the regulatory subunit of type 2 

cyclic AMP-dependent protein kinase (PKA RIIα) (46). Mutation of key amino acid residues for 

this interaction showed that NH3-PKA RIIα interaction does not seem to be critical for RUNX1-

RUNX1T1 oncogenicity (47). Finally, NHR4, sometimes referred as myeloid-Nervy-DEAF-1 

(MYND), meditates the interaction with the co-repressors nuclear receptor corepressor/ 

silencing mediator of retinoid and thyroid receptors (N-COR/SMRT) (48). On the other hand, 
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NHR4 mediates the interaction with the splicing co-factor SON, which may mediate anti-

proliferative signals (49). 

 

 

Figure 2: Schematic representation of the proteins RUNX1, RUNX1T1 and their fusion. A RUNX1. B 

RUNX1T1. C RUNX1-RUNX1T1 full-length fusion. D RUNX1-RUNX1T1 alternatively spliced isoform 9a. E 

RUNX1-RUNX1T1 truncated version. RHD: runt homology domain; NLS: Nuclear localization sequence; 

NMTS: nuclear matrix targeting signal; NHR: Nerve homology region. Illustrated using IBS 1.0.3 

software. Adapted from Yan et al., 2004; Yan et al., 2006; Lam et al., 2012 and El-Gebali et al., 2019 

(50-53). 

 

In the fusion, the RHD domain allows RUNX1-RUNX1T1 to bind RUNX1 targets genes, while 

the NHR domains allow for dimerization and protein-protein interaction, recruiting co-

repressors such as histone deacetylases (HDACs) and N-COR/SMRT (Figure 3). 

Overexpression of RUNX1-RUNX1T1 in mouse HSC causes stem cell expansion and aberrant 

granulocytic differentiation (54), while overexpression in embryonic zebrafish reprograms 

erythroid cells into the granulocytic linage (55). The full-length fusion gene can only induce 

leukemia in mouse models with a concurrent alteration (ie. FLT3 internal tandem duplication, 
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WT-1 overexpression…) (56, 57). A shorter alternatively spliced version of the fusion protein, 

known as RUNX1-RUNX1T19a, was also identified in patients with t(8;21) (51). Interestingly, 

RUNX1-RUNX1T19a lacks NHR3 and NHR4 (Figure 2d). This shorter fusion gene has an 

increased leukemia induction potential compared to the full-length fusion. Nevertheless, 

disease progression can be accelerated by the introduction of further mutations (i.e. NrasG12D 

or p53-/-) (58). Further work using a truncated version of RUNX1-RUNX1T1 lacking NHR3 and 

NHR4 (Figure 2e) demonstrated that NHR1 is not critical for leukemogenesis, while NHR2 

seems to play a key function (59). Taking these data into account, the question arises which 

domains of RUNX1-RUNX1T1 are critical for the development of t(8;21) AML and to which 

extent they can be substituted by other functional domains.  

 

Figure 3: Translocation t(8;21) disrupts the normal function of the core binding factor complex. A 

RUNX1 binds DNA while CBFB recruits histone acetylases and other co-activators, allowing for 

transcription and normal myelopoiesis. B In the context of translocation t(8;21), RUNX1 binds DNA 

while RUNX1T1 recruits co-repressors such as histone deacetylases (HDACs) and nuclear receptor 

corepressor / silencing mediator of retinoid and thyroid receptors (N-COR/SMRT), leading to a block 

of myeloid differentiation. Adapted from Solh et al., 2014 (9). 
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1.4. ZBTB7A 

ZBTB7A (also known as LRF, FBI-1, Pokemon and OCZF) is a transcription factor and member 

of the Poxvirus and Zinc finger/BR-C, ttk and bab (POZ/BTB) and Krüppel (POK) family located 

on chromosome 19p13.3 (60). This gene family is characterized by an N-terminal POZ/BTB 

domain that permits protein-protein interaction, dimerization with other POK proteins and 

recruitment of a co-repressor complex (61). Additionally, they present N-terminal Krüpel type 

zinc-finger domains for DNA interaction and possibly protein-protein interactions. The POK 

gene family has up to 43 members (62) that have key roles in developmental processes and 

cellular differentiation (63), several of them being linked to cancer (64-66).  

ZBTB7A is capable of recruiting both the BCL-6 corepressor (BCOR) and the nuclear receptor 

corepressor 1 (NCOR1) (Figure 4a). It can bind multiple promoters throughout the genome 

where it regulates the accessibility of other transcription factors (67). Due to these 

characteristics, ZBTB7A has multiple and sometimes conflicting roles depending on the 

epigenetic and cellular context. ZBTB7A is not only expressed across a variety of tissues but 

also during different stages of development (Figure 4b) (68). 

 



 

 
 11  
 

Figure 4: ZBTB7A interacts with transcriptional corepressors and it is expressed across a variety of 

tissues. A ZBTB7A protein interaction partners from String Database v11.0. Only interactions with a 

confidence score higher than 0.7 were considered. Blue lines represent interactions between ZBTB7A 

and a partner. Red lines represent inhibition by ZBTB7A. Grey lines represent interactions independent 

of ZBTB7A. BCOR: BCL-6 corepressor, NCOR: Nuclear receptor corepressor 1, TP53: Tumor Protein P53. 

B ZBTB7A expression across different human tissues. Score indicates protein levels based on 

immunohistochemistry staining and validated with either an independent antibody or RNA-

Sequencing. Colors indicate type of tissue. Data from the Human Protein Atlas available at 

https://www.proteinatlas.org/ENSG00000178951-ZBTB7A/tissue, version 19.1 (68).  

 

1.4.1. ZBTB7A and linage commitment 

ZBTB7A is implicated in different developmental processes and linage commitment decisions 

(reviewed in Lunardi et al., 2013) (69). The role of ZBTB7A in hematopoietic linage fate 

decisions was mostly determined using ZBTB7A complete KO mice as well as mice with a 

ZBTB7A hematopoietic tissue specific conditional KO (ZBTB7AFlox/Flox;Mx1-Cre). ZBTB7A null 

mouse embryos die at day 16.5 postcoitum due to severe anemia, demonstrating the need of 

functional ZBTB7A for normal erythropoiesis (70, 71) (Figure 5). Interestingly, these embryos 

presented a deficiency of mature myeloid cells as well as a reduction in number of 

granulocytic-monocytic progenitors in fetal liver, suggesting a role of ZBTB7A in the 

development of myeloid cells. ZBTB7A hematopoietic conditional KO mice are viable although 

this model showed that ZBTB7A is important to maintain a stemness phenotype of immature 

HSC (72). Mice with a hematopoietic tissue specific ZBTB7A KO also showed a reduction of 

myeloid progenitors in the bone marrow, further supporting the idea that ZBTB7A is involved 

in the granulocytic-monocytic differentiation pathway (72). The most dramatic effect though 

was observed in the lymphoid linage, where ZBTB7A inactivation leads to an accumulation of 

CD4+CD8+ T cells in detriment of B cells due to NOTCH deregulation (70). What is more, 

ZBTB7A was also necessary for CD4+ T cell differentiation (73). Finally, ZBTB7A promoted 

follicular B cell differentiation in detriment of marginal zone B cells (74). 

  

https://www.proteinatlas.org/ENSG00000178951-ZBTB7A/tissue
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ZBTB7A also plays a key role during osteoclast formation (75), another cell type with a 

hematopoietic origin. Specifically, ZBTB7A blocks differentiation in early-stage osteoclasts, 

while being essential for the normal function of differentiated osteoclasts (76).  

Outside the hematopoietic system, ZBTB7A has been described to regulate oligodendrocyte 

lineage commitment, adipogenesis and neuron re-myelination (77-79). 

 

 

Figure 5: ZBTB7A regulates hematopoietic differentiation. Red arrows depict a role of ZBTB7A in 

differentiation while red blunt arrows depict an inhibitory effect of ZBTB7A in differentiation. CLP: 

common lymphoid progenitor, CMP: common myeloid progenitor, GMP: granulocyte-monocyte 

progenitor, HSC: hematopoietic stem cell, MEP: megakaryocyte-erythrocyte progenitor, MPP: multi-

potent progenitor. Created with BioRender. Adapted from Lunardi et al., 2013 and Lee et al., 2013 (69, 

72). 
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1.4.2. ZBTB7A and cancer 

ZBTB7A has been described to act both as an oncogene and as a tumor suppressor depending 

on the cellular context. These discrepancies may arise due to the fact that ZBTB7A can block 

or promote differentiation depending on the tissue where it is expressed. Besides, ZBTB7A 

participates in other cellular processes such as cell cycle regulation, growth, apoptosis and 

invasion, amongst others, which adds a new layer of complexity to determine its role as an 

oncogene or tumor suppressor (80).   

 

Role as an oncogene 

ZBTB7A can act as an oncogene in a variety of ways. It is overexpressed in approximately 30% 

of diffuse large B-cell lymphoma cases where it directly represses the expression of the tumor 

suppressor ARF (65). Another example of ZBTB7A overexpression is the presence of ZBTB7A 

gene amplification in 27.7% of cases of non-small cell lung carcinoma (81). Overexpression 

also occurs in hepatocellular carcinoma where knockdown of ZBTB7A inhibits cell growth 

through suppression of AKT (82). This mechanism is also relevant in glioma where ZBTB7A 

knockdown not only reduces proliferation, but also invasion capacity through inactivation of 

the AKT pathway (83, 84). A role in cell migration and invasion was also described in ovarian 

cancer, where ZBTB7A promotes the expression of the membrane type 1 matrix 

metalloproteinase (85). In addition, ZBTB7A also plays a role in breast cancer, where it controls 

the expression of the estrogen receptor alpha and drives proliferation (86, 87). Further studies 

using cancer cell lines also implicated ZBTB7A in sarcoma, renal carcinoma, liver cancer and 

bladder cancer (88-91). 

 

Role as a tumor suppressor  

The role of ZBTB7A as a tumor suppressor is equally heterogeneous as its role as an oncogene. 

Loss of ZBTB7A in PTEN negative prostate cancer leads to tumor invasion due to de-repression 

of Sox9 expression (92). Moreover, it can repress cell migration and promote apoptosis in 

gastric cancer (93). Additionally, loss of 19p13.3 is related to ZBTB7A down-regulation and 
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increased metastasis in melanoma due to increased MCAM expression (94). Surprisingly, 

ZBTB7A also takes the role of a tumor suppressor by maintaining the genome integrity in a 

transcription-independent manner, being directly involved in the non-homologous end joining 

pathway, in charge of repairing DNA double-strand breaks (95). 

Mutation is another process by which ZBTB7A can be inactivated: 4.2% of colorectal 

adenocarcinomas show mutations in this gene, as well as 2.1% of esophageal adenocarcinoma 

cases and lower proportions of other solid tumors (96). Liu and colleagues described that 

ZBTB7A directly represses the transcription of genes involved in the glycolytic pathway such 

as the glucose transporter SLC2A3, the phosphofructokinase PFKP and the pyruvate kinase 

PKM (96). This repression takes places independently from other well-known glycolysis control 

pathways such as MYC and HIF1 (97). Furthermore, downregulation of ZBTB7A correlates with 

overexpression of the lactate membrane transporter SLC16A3 (98). In this context, ZBTB7A 

mutation leads to an increased aerobic glycolysis (known as Warburg Effect) and an increased 

proliferation of colon cancer cell lines in vitro and in vivo (97).  

Previously, our group and others reported mutations in ZBTB7A in 9.4-23% of AML patients 

with translocation t(8;21) as well as in 1.8-4.5% of patients with inv(16) (Figure 6) (21, 99-102), 

both genomic rearrangements defining CBF AML. These mutations showed a loss-of-function 

phenotype in luciferase reporter assays, DNA binding capacity and proliferation assays (99). 

Interestingly, no mutations have been described in other AML subtypes. Nevertheless, our 

group showed that ZBTB7A expression is a prognostic factor in cytogenetically normal (CN) 

AML patients. Patients with a high ZBTB7A expression lived longer than patients with a low 

expression (99). This data suggests that the role of ZBTB7A as a tumor suppressor is not limited 

to AML t(8;21)  but may also be important in other AML subtypes. Overall, the roles of both 

ZBTB7A and RUNX1-RUNX1T1, as well as their interplay in the development of AML are not 

fully understood. 
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Figure 6: ZBTB7A mutations in AML with t(8;21). ZBTB7A protein and domains representation using 

the annotation NP_056982.1. Red indicates truncating mutations. Black indicates in-frame insertions 

and missense mutations. BTB: BR-C ttk and bab, Zf: zinc finger, NLS: nuclear localization sequence. 

Compiled from Hartmann et al., 2016; Lavallee et al., 2016; Faber et al., 2016 and Kawashima et al., 

2019 (99-102) and first published in Redondo Monte et al., 2020 (103). Illustrated using IBS 1.0.3 

software. 
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2. Objectives 

The process by which RUNX1-RUNX1T1 and other mutations lead to the development of AML 

is still poorly understood. Although patients with t(8;21) have a rather favorable prognosis, 

they are still treated with very toxic and aggressive chemotherapy regimens and about half of 

them will eventually relapse  (7). In this context, patients could benefit from targeted 

therapies that focus on exploiting vulnerabilities present in this leukemia. 

The publications presented in this thesis aimed to study the development of AML t(8;21), with 

a focus on alterations affecting transcription factors. Understanding the molecular 

mechanisms by which the RUNX1-RUNX1T1 fusion gene and mutations in the transcription 

factor ZBTB7A lead to the development of leukemia is the first step towards the identification 

of specific targetable vulnerabilities (Figure 7). 

The specific aims of this study were: 

- To study the functional role of the domains of RUNX1-RUNX1T1  

- To evaluate the effect of ZBTB7A mutations in myeloid leukemia 

- To clarify the role of ZBTB7A in normal hematopoiesis 

- To investigate the specific interplay between ZBTB7A mutations and t(8;21) and the 

resulting therapeutic implications. 

 

 

Figure 7: Schematic representation of the objectives of this thesis. RUNX1-RUNX1T1 needs additional 

mutations to cause core binding factor (CBF) leukemia. Understanding the mechanism by which 

leukemia arises, enables us to target specific vulnerabilities present in the malignant cells.   
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3. Summary and Contribution 

 

Publication I 

Chen-Wichmann L, Shvartsman M, Preiss C, Hockings C, Windisch R, Redondo Monte E, 

Leubolt G, Spiekermann K, Lausen J, Brendel C, Grez M, Greif PA and Wichmann C. 

Compatibility of RUNX1/ETO Fusion Protein Modules Driving CD34+ Human Progenitor Cell 

Expansion. Oncogene, 38 (2), 261-272 (2019) 

Previous work demonstrated that the domains NHR3 and NHR4 of RUNX1-RUNX1T1 are not 

essential for its leukemic effect (50). In addition, the homo-oligomerization proprieties of 

NHR2 were hinted to be crucial for the oncogenicity of the fusion gene (104). In this 

publication, we studied the RUNX1-RUNX1T1 domains, with focus on their capacity to induce 

human stem cell expansion. Finally, we evaluated if the domains can be substituted by 

homologous sequences and retain their functions. 

Working with human hematopoietic stem and progenitor cells from healthy donors, we could 

demonstrate that substitution of the tetramer domain NHR2 for the structurally related BCR 

domain in a truncated form of the protein (lacking NHR3 and NHR4) retains stability and 

localization, but not stem cell expansion potential. Moreover, using HEK 293T cells and a 

luciferase reporter assay, we could show that the truncated, NHR2 substituted protein loses 

its transcriptional repression ability. Re-introduction of the NHR4 repressor domain restored 

repression ability and thus expansion of progenitor cells, highlighting the importance of a 

functional repressor domain for RUNX1-RUNX1T1-directed cell transformation. Using an 

inducible system for modular protein assembly, we could also show that NHR4 is crucial for 

the initial expansion of CD34+ progenitor cells in the NHR2 substituted truncated protein. 

Interestingly, repression and cell expansion could be restored solely by the introduction of the 

repression domain 3 of the co-repressor NCOR. Therefore, we concluded that the NHR2 

domain can only be substituted in RUNX1-RUNX1T1 fusions containing a functional repression 

domain. This demonstrates that NHR4 is important due to its repression activity and that the 

RUNX1T1-NCOR axis could represent an important target as a therapy for AML with t(8;21). 

The need for a tetramerization domain and a repressor domain also suggest a mechanistic 

explanation for recurrent RUNX1 fusions with other members of the ETO family, which contain 

both mentioned domains (105). 

In this study, I performed the luciferase reporter assay (Figure 4f) and participated in the 

assessment of stem cell outgrowth through flow cytometry of fluorochromes (Figures 2f, 3bd, 

5b, 6e). Finally, I assisted in the manuscript preparation and proofreading. 
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Publication II 

Redondo Monte E, Wilding A, Leubolt L, Kerbs P, Bagnoli JW, Hartmann L, Hiddemann W, 

Chen-Wichmann L, Krebs S, Blum H, Cusan M, Vick B, Jeremias I, Enard W, Theurich S, 

Wichmann C and Greif PA. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of 

human hematopoietic stem and progenitor cells. Oncogene 39, 3195–3205 (2020).  

Previous work from our group and others demonstrated that the transcription factor ZBTB7A 

is frequently and specifically mutated in AML t(8;21), which harbors the RUNX1-RUNX1T1 

fusion gene  (21, 99-102). In this study, we investigated the function of ZBTB7A in myeloid 

differentiation as well as the relationship between ZBTB7A mutations and the fusion gene 

RUNX1-RUNX1T1.  

Working with myeloid cell lines, we demonstrated that ZBTB7A promotes granulopoiesis and 

erythropoiesis, while blocking monocytic differentiation. On the other hand, using 

hematopoietic stem and progenitor cells, we corroborated the previously described role of 

ZBTB7A in stem cell maintenance (72). We also showed that ZBTB7A loss increases the 

expression of glycolytic genes such as SLC2A1, SLC2A3, ENO2, PGM2 and PGM3. This results 

in an increased glycolysis and therefore sensitizes to glycolysis inhibition by 2-deoxy-D-glucose 

(2DG). Furthermore, we demonstrated that 2DG can inhibit the growth of AML patient derived 

xenografts (PDX) in vitro. What is more, ZBTB7A KO led to an increased oxygen consumption, 

hinting towards a role of ZBTB7A in metabolism regulation beyond glycolysis. Finally, in human 

stem and progenitor cells, we observed that ectopic ZBTB7A expression prevents the 

expansion of progenitors directed by the fusion gene RUNX1-RUNX1T1. On the other hand, 

ZBTB7A mutations enable the outgrowth of progenitors. Moreover, we could explain the 

ZBTB7A-mediated block of expansion by the fact that ZBTB7A overexpression stops cell cycle 

progression and proliferation, in line with a phenotype of decreased glycolysis. Taken 

together, our results suggest that patients with translocation t(8;21) and additional ZBTB7A 

mutation might benefit from treatment with glycolytic inhibitors as a potential strategy to 

restore ZBTB7A function.  

In this study, I established the KO and overexpression cell lines and stem cell models. Using 

these models, I performed all the functional assays such as cell differentiation, metabolic flow 

assays, growth inhibition, stem cell clonal expansion and cell cycle analysis, amongst others. I 

analyzed the data, performed statistics and prepared the figures (except for the RNA-

sequencing data). Finally, I wrote the manuscript.  
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4. Conclusion and outlook 

Although the translocation between chromosomes 8 and 21 was discovered as early as 1973 

(106), the resulting mechanism of leukemogenesis is not fully understood. Exome sequencing 

of patient cohorts (21, 101) as well as extensive work using mouse and zebra fish models (54, 

55, 107) have demonstrated that the RUNX1-RUNX1T1 fusion requires additional genetic 

lesions for leukemogenesis. RUNX1-RUNX1T1 comprises different domains related to protein 

and DNA interaction. The presence in some patients of a shorter isoform lacking NHR3 and 

NHR4 and in vitro and in vivo studies showed that these domains are not crucial for the 

oncogenic function of the fusion protein (51, 59). We could show that NHR2 can be substituted 

by a tetramerization domain in the presence of a repressor domain and that NHR4 can be 

replaced with an NCOR repressor domain and still promote stem cell expansion. However, 

transcriptome studies should be performed in the modularly substituted proteins in order to 

clarify if the oncogenic mechanism remains the same. Our results highlight the need for a 

tetramerization domain, which is present in other ETO proteins (105), providing an 

explanation why RUNX1 is often fused with different members of this protein family.  

ZBTB7A is involved in several cancers (80) and is specifically mutated in AML t(8;21) (21, 99-

102). Here, we could demonstrate that ZBTB7A acts as a tumor suppressor in the context of 

myeloid leukemia. Although we could show that ZBTB7A loss-of-function mutations affect 

both metabolism and cell differentiation, these two processes are interconnected and depend 

on each other (108). Therefore, further mechanistic studies need to be conducted in order to 

fully understand the role of ZBTB7A at the interphase of metabolism and lineage fate 

decisions. 

Finally, not all patients with AML t(8;21) have detectable ZBTB7A mutations (21, 99-102). 

Further mechanisms may affect the metabolism in this this type of leukemia, which is 

especially dependent on glycolysis for its survival (109). Further studies need to be pursued to 

completely elucidate the biology of RUNX1-RUNX1T1 rearranged AML, as well as its 

propensity to present ZBTB7A mutations. In particular, a mouse model combining RUNX1-

RUNX1T1 or the spliced isoform 9a with genetic inactivation of ZBTB7A (e.g. knockdown or 

knockout) would be of particular interest. Understanding the biology of the disease is the first 
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step for the development of novel therapies for AML. Glycolysis inhibitors seem to provide an 

interesting treatment option for AML with t(8;21) that could complement chemotherapy 

regimens without increasing toxicity.  
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Abstract
Chromosomal translocations represent frequent events in leukemia. In t(8;21)+ acute myeloid leukemia, RUNX1 is fused to
nearly the entire ETO protein, which contains four conserved nervy homology regions, NHR1-4. Furthermore RUNX1/ETO
interacts with ETO-homologous proteins via NHR2, thereby multiplying NHR domain contacts. As shown recently,
RUNX1/ETO retains oncogenic activity upon either deletion of the NHR3+ 4 N-CoR/SMRT interaction domain or
substitution of the NHR2 tetramer domain. Thus, we aimed to clarify the specificities of the NHR domains. A C-terminally
NHR3+ 4 truncated RUNX1/ETO containing a heterologous, structurally highly related non-NHR2 tetramer interface
translocated into the nucleus and bound to RUNX1 consensus motifs. However, it failed to interact with ETO-homologues,
repress RUNX1 targets, and transform progenitors. Surprisingly, transforming capacity was fully restored by C-terminal
fusion with ETO’s NHR4 zinc-finger or the repressor domain 3 of N-CoR, while other repression domains failed. With an
inducible protein assembly system, we further demonstrated that NHR4 domain activity is critically required early in the
establishment of progenitor cultures expressing the NHR2 exchanged truncated RUNX1/ETO. Together, we can show that
NHR2 and NHR4 domains can be replaced by heterologous protein domains conferring tetramerization and repressor
functions, thus showing that the NHR2 and NHR4 domain structures do not have irreplaceable functions concerning
RUNX1/ETO activity for the establishment of human CD34+ cell expansion. We could resemble the function of RUNX1/
ETO through modular recomposition with protein domains from RUNX1, ETO, BCR and N-CoR without any NHR2 and
NHR4 sequences. As most transcriptional repressor proteins do not comprise tetramerization domains, our results provide a
possible explanation as to the reason that RUNX1 is recurrently found translocated to ETO family members, which all
contain tetramer together with transcriptional repressor moieties.

Introduction

In t(8;21) acute myeloid leukemia, RUNX1 is fused to
nearly the entire ETO gene resulting in the fusion protein
RUNX1/ETO (RE). Albeit less frequently, RUNX1 has also
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been found to fuse to the genes MTGR1 and ETO2, which
results in comparable translocation products [1, 2]. It is
generally believed that the ETO family members ETO,
ETO2 and MTGR1 act as transcriptional repressor proteins
via multiple binding to corepressors, such as nuclear
receptor corepressor (N-CoR), silencing-mediator for reti-
noid/thyroid hormone receptor (SMRT), mSin3a, and var-
ious members of the histone deacetylase (HDAC) family
[3–5]. These interactions are conferred by ETO’s four
evolutionarily conserved nervy homology regions (NHR),
which are all retained in the different RUNX1 fusion pro-
teins. NHR-mediated interactions further include the E-
protein HEB [6, 7] and the apoptosis-related protein SON
[8]. A recent report has also shown binding of p300/CBP
followed by acetylation of the fusion protein RUNX1/ETO
[9]. Furthermore, ETO family members are able to form
mixed complexes via the NHR2 domain, thereby multi-
plying the NHR domain contacts of the RUNX1/ETO
fusion protein [10, 11]. Moreover, the NHR2 domain
mediates homo-tetramer formation through hydrophobic
and ionic/polar interactions critical for its leukemogenic
potential [12, 13]. Interestingly, replacement of the NHR2
domain with a self-oligomerization FKBP domain has been
shown to fully maintain the transforming capacity of full-
length RE [14].

We have previously shown that truncated RUNX1/ETO
(REtr) strongly cooperates with activated c-KIT to trans-
form human CD34+ hematopoietic stem and progenitor
cells (HSPCs) similarly to full-length RUNX1/ETO, thus
rendering this cellular model highly attractive for studies
involving the molecular determinants of RE-induced
oncogenesis [15]. It has been recently demonstrated that
the C-terminal NHR3+ 4-lacking splice variant of RUNX1/
ETO, RUNX1/ETO9a, triggers CD34+ cell expansion
similar to full-length RE. However, compared to full-length
RE, RUNX1/ETO9a expanded cells express higher onco-
gene amounts [16]. Interestingly, these short RUNX1/ETO
forms, truncated RUNX1/ETO and RUNX1/ETO9a, were
shown to rapidly induce leukemia in a mouse bone marrow
transplantation model [17, 18]. As truncated forms of RE
have diminished N-CoR and SMRT interaction activity and
a less potent transcriptional repressor function compared
with full-length RE [16, 19], reduced repressive function
may trigger RUNX1/ETO leukemia in this particular mouse
model. These observations challenge the general under-
standing regarding the contribution of transcriptional
repression in RUNX1/ETO leukemogenic function.

On the basis of previous studies, it remains uncertain
whether the NHR2 and NHR4 domains have a specific
function or can be replaced or deleted to retain RE onco-
genic function. In this study, we investigated the relevance
and specificity of NHR2 and NHR4/MYND domain activity
for RE-triggered human CD34+ progenitor cell

transformation. Our data reveal that the NHR2 domain can
be replaced by a non-ETO homologous tetramer interface.
However, the resulting fusion protein then fully depends on
a functional repressor domain to induce CD34+ cell
expansion.

Results

NHR2 and amino acids 1–72 of BCR are highly
structurally related homotetrameric interfaces

A recent study has shown that the C-terminal truncated
RUNX1/ETO variant, RUNX1/ETO9a, holds equal CD34+
cell expansion capacity in ex vivo cultures compared with
the full-length protein [16]. To clarify the function of the C-
terminal ETO sequences, we generated a truncated RE
version by replacing the NHR2 interface with a structurally
similar non-ETO tetramer domain to circumvent interaction
with the ETO-homologous proteins ETO, ETO2 and
MTGR1. A PISA (Protein Interfaces, Surfaces and
Assemblies; EMBL; [20]) database query for structurally
related tetramer domains of 55–75 amino acids in length
and an accessible surface area ranging between 13,000 and
15,000 Å revealed 14 candidate domains of human origin
(Fig. 1a). We selected the BCR tetramer domain because of
its high structural similarity and comparable biochemical
properties (Fig. 1b) without involvement in transcription
and cellular localization processes. Furthermore, ETO- and
BCR-interacting proteins do not show overlap (Supple-
mentary Figure 1). Despite the low amino acid sequence
homology, both tetrameric structures are composed of four
similar alpha helices (Fig. 1c) forming antiparallel dimers.
Two dimers then yield a tetramer in a sandwich-like fashion
with high quarterny structure similarity (Fig. 1d; [12, 21]).

Substitution of the NHR2 interface via the
structurally related BCR tetramer domain retains
nuclear translocation and DNA-binding of truncated
RUNX1/ETO but loses CD34+ ex vivo expansion
capacity

The BCR tetramer interface was cloned, separated by a
glycine–serine linker, to the C-terminus of the truncated RE
to replace the NHR2 tetramer domain (Fig. 2a). As pre-
dicted, the chimeric RE-BCRtr had the same molecular
weight as REtr (~70 kDa) (Fig. 2b). The chimeric protein
translocated equally to the nucleus and bound to RUNX1
DNA-binding motifs (Fig. 2c–e; Supplementary Figure 2).
Binding to PU.1 and RUNX3 tandem RUNX1 motifs was
established preferentially in the oligomeric state, as pre-
viously shown [15, 22]. Deletion of the tetramer domain or
substitution of amino acid L148 within the RHD domain,
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the DNA-binding region of RUNX1, resulted in complete
loss of DNA-binding (Fig. 2d). Both REtr and RE-BCRtr
bound with similar strength and outperformed DNA binding
of wild-type RUNX1 (Fig. 2e). Further substitution of sin-
gle base pairs within the RUNX1-binding motifs of a
double-stranded RUNX3 DNA sequence abolished DNA
binding, thus indicating the specificity of the chimeric RE-
BCRtr fusion protein to RUNX1-binding motifs. We
observed binding to endogenous BCR (Supplementary
Figure 1A), nevertheless expression of RE-BCRtr did not
induce apoptosis as analyzed in stably expressing U937
cells (Supplementary Figure 3). However, retroviral
expression of chimeric RE-BCRtr in human primary CD34
+ progenitor cells from healthy donors entirely failed to
induce CD34+ cell expansion in long-term ex vivo cul-
tures. The cells were depleted from the cultures and
underwent terminal monocytic differentiation (Fig. 2f, g),
while REtr-expressing cells grew out and continued to

express the CD34+ antigen as previously described [15,
16]. Similar results were obtained in murine primary
hematopoietic progenitor cells (Supplementary Figure 4).
Self-oligomerization induced by FKBP (F36M) [14] or by
an AP20187 inducible oligomerization domain [23] con-
taining truncated RE also triggered DNA binding, although
CD34+ progenitor cell expansion remained defective
(Supplementary Figure 5).

C-terminal fusion of the functional NHR4/MYND
zinc-finger domain rescued RE-BCRtr capacity to
expand human CD34+ progenitor cells

Surprisingly, substitution of NHR2 with the BCR tetramer
domain within the full-length RUNX1/ETO (RE-BCR)
completely preserved the functional capacity to expand
CD34+ human progenitor cells ex vivo (Fig. 3a–c). We
observed similar positive selection rates of eGFP+ cells in

Fig. 1 Identification of the structurally related BCR tetramer domain. a
PISA query results of tetramer domains of human origin with 55–75
amino acids in length and an accessible surface area ranging between
13,000 and 15,000 Å. b Structural and biochemical characteristics of
NHR2 and BCR tetramer domains. c NHR2 and BCR amino acid

Needleman-Wunsch sequence alignment and alpha-helical structure
overlay (RCSB PDB Protein Comparison Tool). d Quaternary struc-
ture presentation of NHR2 and BCR tetrameric composition using
PyMOL software
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RE- and RE-BCR-expressing CD34+ cells during 55 days
of ex vivo culture. Restoration of NHR2 tetramer domain-
dependent functions was further validated in several mye-
loid cell line assays, thus demonstrating that RE and RE-
BCR exert comparable effects on myeloid differentiation

block, growth arrest and apoptosis induction (Supplemen-
tary Figure 6). Furthermore, RE-BCR deletion constructs
revealed that the intact NHR4/MYND domain was the
critical driver that rescued the chimeric RE-BCRtr construct
function in human CD34+ progenitors, as only constructs
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encompassing a functional NHR4 zinc-finger domain
induced expansion. By contrast, cells transduced with
constructs lacking NHR4 did not expand due to differ-
entiation (Fig. 3d, e). Introducing a single amino acid
substitution within the NHR4 zinc-finger chelating amino
acids (H695A) abolished CD34+ cell expansion capacity,
thus indicating that only a properly folded NHR4 zinc-
finger moiety can rescue the expansion defect of the chi-
meric RE-BCRtr (Fig. 3d). Compared to RE-BCRtr, the
sole fusion of the NHR4 domain and adjacent C-terminal
amino acids (647cT) protected RE-BCRtr-647cT-
expressing cells from differentiation (Fig. 3f, g) and con-
ferred colony-forming capacity in long-term cultures (Fig.
3h). Expression levels of both, functional and non-
functional fusion genes, did not show significant differ-
ences (Supplementary Figure 7).

The BCR tetramer interface prevents binding of
truncated RUNX1/ETO to ETO-homologous proteins
and transcriptional repression of RUNX1 target
genes

ETO-homologous proteins are generally involved in tran-
scriptional repression. Therefore, we analyzed the binding
properties of HA-tagged RE-BCRtr to co-expressed ETO2
and ETO. As expected, only the NHR2 domain containing
REtr was able to co-immunoprecipitate with ETO2 and
ETO (Fig. 4a, b). Immunoprecipitation of flag-tagged
NHR2, but not flag-tagged BCR, co-purified with the
ETO-homologue ETO2 (Fig. 4c). Of note, we detected
wild-type ETO protein expression in human CD34+ cells
expanded by REtr, thus indicating possible heterologous
protein complex formation of RUNX1/ETOtr and wild-type
ETO in primary CD34+ progenitor cells. We also detected
MTGR1 expression in c-KIT(N822K) co-expressing CD34
+ ex vivo cultures (Fig. 4d, e).

To compare the transcriptional properties of the chimeric
RE-BCR constructs and truncated REtr, we examined the
repressor activity of the recently identified RE target miR-
144 via luciferase assay [24]. All constructs containing the
NHR2 or NHR4 domain significantly repressed luciferase
gene expression from a promoter sequence containing
RUNX1 binding sites. Nonetheless, the RE-BCRtr con-
struct failed to do so (Fig. 4f). Notably, the suppressor
function of full-length RE was superior to that of the shorter
REtr and RE-BCRtr-647cT forms. The repression levels of
REtr and RE-BCRtr-647cT together were equivalent to
those of full-length RE. Similar results were obtained when
analyzing PSGL-1 cell surface expression on KG-1 cells
(Fig. 4g). PSGL-1 has been recently shown to be epigen-
etically repressed by RUNX1/ETO [25]. Compared to
empty vector-transduced cells, only REtr and RE-BCRtr-
647cT were able to reduce PSGL-1 expression in trans-
duced myeloid leukemia KG-1 cells, while RE-BCRtr-
expressing cells slightly upregulated PSGL-1 expression.
Altogether, the truncated form of RUNX1/ETO containing
the BCR tetramer domain failed to recruit ETO-homologous
proteins and did not repress the transcription of RUNX1
target genes.

The NHR4 zinc-finger domain of RE-BCR can be
replaced by the repression domain 3 of N-CoR/SMRT
to recapitulate the CD34+ expansion capacity of
RUNX1/ETO

We next aimed to determine whether the NHR4 domain has
a unique function or could be replaced by heterologous
repressor domains. Therefore, we cloned various well-
defined repressor domains to the C-terminus of truncated
RE-BCRtr (Fig. 5a). The repressor domains included the
mSIN3A-interacting domain of MAD1, the HDAC2 bind-
ing domain of YY1, the zinc-finger repression domain of
GFI-1 and the repression domain 3 of N-CoR/SMRT. Of
note, only the repression domain 3 of N-CoR (RD3), which
has been described as the portion of the transcriptional co-
repressor N-CoR/SMRT that interacts with NHR4, was
able to rescue the CD34+ expansion defect of RE-BCRtr
(Fig. 5b). During ex vivo culture, RE-BCRtr-RD3-
expressing cells were selected and continued to express
the CD34 antigen (Fig. 5c). After selection of transduced
cells, RE-BCRtr-RD3-expressing cells morphologically
showed differentiated and blast-like cells (Fig. 5d). These
cells were also able to generate colony-forming units at
around day 50 of ex vivo culture (Fig. 5e). These findings
indicate that the NHR4 domain does not have a unique
function and can be replaced by the N-CoR repression
domain 3.

Fig. 2 Functional analysis of truncated RUNX1/ETO tetramer domain
switch constructs in human CD34+ progenitor cells. a Diagram of
chimeric truncated RUNX1/ETO fusion proteins. b Western blot
showing expression of truncated RUNX1/ETO forms, REtr and RE-
BCRtr, upon transfection of 293T cells. c Cellular fractionation of
REtr and RE-BCRtr transfected 293T cells analyzed via western blot.
d ABCD-assay of flag-tagged RUNX1/ETO binding to RUNX3 and
PU.1 promoter-derived RUNX1-binding motifs. e Quantitative ana-
lysis of DNA-binding capacity. f Time course of eGFP+ cells in
human CD34+ ex vivo cell cultures expressing the indicated RUNX1/
ETO variants. g FACS analysis of CD34 surface marker expression
and cytospins of REtr and RE-BCRtr expressing cells at day 48 of
ex vivo culture. I, input; PU1, PU1 promoter oligonucleotide; R3,
RUNX3 promoter oligonucleotide; b, beads; mut, mutated RUNX3
promoter oligonucleotide. Empty, empty vector. Statistical sig-
nificance determined by unpaired two-tailed t test unless otherwise
stated in the text. n= 3. Bar diagrams show mean ± SD. ***P < 0.001.
n.s. not significant
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NHR4/MYND zinc-finger domain activity is required
during the early stages of ex vivo culture for the

efficient expansion of colony-forming CD34+
progenitors

To define the temporal requirements of NHR4 domain
activity for ex vivo expansion, we established a small
molecule inducible heterodimerization system [26] to

induce complex formation, including the chimeric inert RE-
BCRtr and the NHR4/MYND zinc-finger moiety plus a few
C-terminal ETO sequences (647cT). We thus cloned one
heterodimerization domain (DmrA, FKBP fragment) to the
C-terminus of RE-BCRtr and the second heterodimerization
domain (DmrC, FRB(T2098L)-domain of mTOR) to the N-
terminus of NHR4 (647cT), separated by an internal ribo-
somal entry site (IRES) element into the retroviral MSCV

Fig. 3 Functional analysis of full-length RUNX1/ETO, RUNX1/ETO-
BCR and deletion variants in human CD34+ progenitor cells. a
Diagram of chimeric RUNX1/ETO fusion proteins. b Time course of
eGFP+ cells expressing full-length RUNX1/ETO variants. c
CD34 surface marker expression of RUNX1/ETO and RUNX1/ETO-
BCR selected cells at day 55 of ex vivo culture. d Time course of
eGFP+ cells expressing RUNX1/ETO-BCR deletion forms measured
by flow cytometry. e CD34 and CD11b surface marker expression of

transduced cells at day 55 of ex vivo culture. One out of three
experiments showing similar results. f FSC/SSC and SSC/CD34
overlay of hCD34+ cells expressing RE-BCRtr vs. RE-BCRtr-647cT
at day 53 measured by flow cytometry. g Cytospins of hCD34+ cells
expressing RE-BCRtr vs. RE-BCRtr-647cT at day 53. h CFU assays
of RE-BCRtr vs. RE-BCRtr-647cT transduced CD34+ cells. Empty,
empty vector. ***P < 0.001
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backbone. The NHR4 domain was further equipped with a
C-terminal eGFP tag (Fig. 6a). Protein association can be
irreversibly induced by the rapamycin analog AP21967
(AP). Appropriate expression of the two independent con-
structs was verified via western blot analysis (Fig. 6b).
Upon AP treatment of transfected 293T cells, we observed a
shift of the eGFP-tagged NHR4 protein into the nucleus,
thus suggesting complex formation with RE-BCRtr (Fig.
6c). To verify protein-protein interaction, we performed
immunoprecipitation assays of transfected 293T cellular
lysates. We observed interaction of RE-BCRtr and the
NHR4-eGFP protein only upon AP treatment, thus indi-
cating efficient AP-induced protein assembly (Fig. 6d).
When tested in primary CD34+ progenitors, eGFP-positive
selection was observed solely in AP-treated cells. The
outgrowth resulted in undifferentiated cells, with the
remaining CD34+ cells able to form CFUs even after
82 days ex vivo culture (Fig. 6e, f; Supplementary Fig. 8).
Without AP, the cells underwent differentiation as assessed
by FACS analysis. These observations confirm the RE-
BCRtr and RE-BCRtr-647cT results (Fig. 3). As AP21967
does not enhance growth of untransduced human CD34+
cells as well as growth of RUNX1/ETO-expressing cells
lacking the heterodimerizer domains DmrA and DmrC, we
can exclude impact of AP21967 on the observed outgrowth
of progenitor cells (Supplementary Fig. 8C). Via application

of the heterodimerization small molecule at different time
points after transduction of the ex vivo cultures, we found
that only treatment of early cultures resulted in sufficient
CFU-inducing progenitor cells. Application at day 5 or later
was associated with drastically reduced colony formation at
around day 60, thus indicating that NHR4 zinc-finger
activity is required in early CD34+ progenitor cells to
maintain colony-forming capacity in ex vivo cultures (Fig.
6g, h; Supplementary Fig. 9).

Discussion

Recent reports have shown that C-terminal-deleted
RUNX1/ETO variants, RUNX1/ETO9a and truncated
RUNX1/ETO lacking NHR3+ 4 moieties, equally trans-
form human CD3+ progenitor cells compared with full-
length RE [15, 16].

In this study, we exchanged the NHR2 tetramer domain
within the truncated RUNX1/ETO protein. We found that
the structurally related tetramer interface of BCR retained
protein stability and nuclear localization. It compensated for
oligomerization-dependent DNA-binding, but lacked the
ability to recruit ETO-homologous proteins and confer
transcriptional repressor activity. This resulted in a tran-
scriptional repression defective fusion protein unable to

Fig. 4 The BCR-containing truncated RUNX1/ETO fails to interact
with ETO-homologous proteins and does not repress RUNX1 target
genes. a Immunoprecipitation experiments of HA-tagged RUNX1/
ETO constructs and ETO2 in co-transfected 293T cells. b IP experi-
ments of HA-tagged RUNX1/ETO constructs and ETO in co-
transfected 293T cells. c IP experiments of flag-tagged NHR2 and
flag-BCR tetramer domains with ETO2 in co-transfected 293T cells. d,

e Detection of wild-type ETO and wild-type MTGR1 in REtr- and
REtr+ c-KIT(N822K)-expanded CD34+ progenitor cells via western
blot. f Luciferase assays with a RUNX1-dependent miR-144 luciferase
construct in 293T cells 24 h after transfection (RE= 100%). g PSGL-1
cell surface expression of retrovirally transduced KG-1 cells. Empty,
empty vector
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expand human CD34+ progenitor cells. However, the
NHR4 repressor domain is preserved in the
NHR2 substituted full-length RE-BCR protein, thus grant-
ing its capacity to repress transcription and transform
human CD34+ progenitors, despite the heterologous tetra-
mer domain (Fig. 7). These results indicate that minimal
repressor activity is critically required for CD34+ ex vivo
expansion of human CD34+ progenitor cells. It can be
speculated that the strong repressor effect of full-length RE,

which does not hinder CD34+ cell expansion, might
compromise murine progenitor cells to generate AML in
bone marrow transplanted mice. Additionally, our results
rule out critical contribution of the NHR3 domain, as
deletion of the domain does not weaken RUNX1/ETO
oncogenic activity in CD3+ cells. Furthermore, upon
H695A mutation within the NHR4 zinc-finger, destroying
its structure and thereby preventing N-CoR/SMRT inter-
action [8, 27], the chimeric RE-BCR construct failed to

Fig. 5 The NHR4 zinc-finger domain can be replaced by the repression
domain 3 of N-CoR to recapitulate the CD34+ expansion capacity of
RUNX1/ETO. a List of repressor domains cloned to the C-terminus of
RE-BCRtr. b Time course of eGFP+ RE-BCRtr-X-transduced CD34
+ cells over time. c CD34 surface marker expression of transduced

cells at day 39 of ex vivo culture. One out of three experiments
showing similar results. d Cytospins of hCD34+ cells expressing RE-
BCRtr-RD3 at day 53. e CFU assays of RE-BCRtr vs. RE-BCRtr-
RD3-transduced CD34+ cells
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expand CD34+ cells. By contrast, the amino acid sub-
stitution C663S within NHR4 did not affect the oncogenic
activity of RE-BCR (data not shown). Interestingly, this

mutation has been shown to preserve N-CoR/SMRT inter-
action with RUNX1/ETO [8]. Accordingly, N-CoR/SMRT
might be an essential RE transmitter, which is lost in the

Fig. 6 NHR4 domain function is required for the ex vivo expansion of
RUNX1/ETO-expressing CD34+ cells. a MSCV-based bicistronic
retroviral vector construct (iDim) for simultaneous expression of a
DrmA domain fused to the C-terminus of RUNX1/ETO-BCRtr and
NHR4 domain sequences with an N-terminal DrmC domain, separated
by an IRES element. b Validation of protein expression in transfected
293T cells. Proteins ran at predicted sizes. c Induced nuclear locali-
zation of the eGFP-tagged NHR4-DrmC protein upon AP21967 (AP)
treatment. d Examination of heterodimerization in +/− AP-treated

lysates of iDim-transfected 293T cells via immunoprecipitation. e
Percentage of eGFP+ iDim-transduced CD34+ cells +/− AP treat-
ment over time. f SSC/FSC profile and cell surface marker expression
of expanded CD34+ progenitor cells at day 82 of ex vivo culture. g
Experimental timeline of AP triggered heterdimerization in transduced
human CD34+ cells. h CFU assays of iDim transduced CD34+ cells
treated with AP at different time points during ex vivo expansion. The
data show representative results obtained from three experiments. IP
immunoprecipitation
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chimeric truncated RUNX1/ETO-BCRtr protein but pre-
served within the truncated RUNX1/ETO protein compris-
ing the NHR2 domain. The latter fusion protein is able to
recruit N-CoR/SMRT directly via N-terminal regions of the
NHR2 domain or indirectly via NHR2-mediated contacts to
ETO-homologous proteins (Fig. 4). In fact, significant
expression levels of different ETO-homologous proteins are
evident in hematopoietic progenitor cells. However,
expression of ETO homologues decreased during differ-
entiation [28, 29]. A previous study has shown the pre-
served function of full-length RE with a self-oligomerizing
FKBP moiety [14]. We also tested this FKBP domain, as a
self-oligomerizing FKBP mutant as well as an AP21967-
inducible variant. Both domains were cloned to replace the
NHR2 domain within the truncated RE protein, but both
failed to confer CD34+ cell expansion capacity, thus con-
firming the results obtained with chimeric RE-BCRtr. These
data clearly show that the NHR2 tetramer domain can be
substituted only within the full-length RE protein contain-
ing a functional NHR4 domain with repressor activity. Of
note, we rescued the chimeric RE-BCRtr protein by cou-
pling it to the repression domain 3 of N-CoR/SMRT. This
domain directly recruits histone deacetylases and is able to
bind to ETO [5, 30]. Additionally, from the here investi-
gated repressor proteins, only N-CoR was mentioned to
interact with HEB/E2A arguing for a potential critical role
of E-proteins in functional RUNX1/ETO complexes (Sup-
plementary Fig. 10). Our data cannot exclude that untested
repressor domains can substitute for NHR4/RD3, but pro-
vide evidence that the ETO/NHR4 - N-CoR axis represents
a worthwhile targeting structure within RUNX1/ETO.
Overall, these findings indicate that the ETO portion of RE
comprises tetramer formation and transcriptional repression
activity, which can both be restored by heterologous protein

domains. However, we cannot rule out differences in
RUNX1 transcriptomes between the respective RUNX1/
ETO construct expressing primary cells. To our knowledge,
most transcriptional repressor proteins do not comprise
tetramer domains, thus providing potential insight into the
reason for which RUNX1 is recurrently found translocated
to ETO family members such as ETO, MTGR1 and ETO2,
which all provide the NHR2 tetramer moiety together with
the NHR4/MYND domain. Our results also show that the
NHR2 domain is replaceable, although repressor domain
function must be retained for efficient transcriptional
repression and CD34+ cell expansion in ex vivo cultures.

Materials and methods

Cloning of MSCV vectors

All RUNX1/ETO deletions and domain-switch variants
were cloned into the expression plasmid MSCV-REtr-
IRES-eGFP, which includes an HA-tag for immunodetec-
tion [17]. DrmA and DrmC heterodimerization domain
sequences were obtained from Clontech and cloned in
frame to obtain the bicistronic iDim construct. All con-
structs were verified via sequence analysis.

Cell culture and retroviral transduction

293T, KG-1, K562 and U937 cells were cultured as pre-
viously described [13]. Bone marrow-derived CD34+ cells
(LONZA, Walkersville, MD, USA) were cultured in
Iscove’s modified Dulbecco’s medium (Life Technologies,
Karlsruhe, Germany) supplemented with 20% FCS, 20 ng/
mL Flt-3L, 20 ng/mL GM-CSF, 20 ng/mL SCF, 20 ng/mL

Fig. 7 Schematic model of RUNX1/ETO fusion protein compositions.
Full-length and truncated RUNX1/ETO protein complexes, but not
RUNX1/ETO-BCRtr, contain an intact NHR4 moiety and induce
CD34+ cell expansion. Rescue of RE-BCRtr was observed upon C-

terminal linking of the functional NHR4 domain of ETO or the
repression domain 3 of N-CoR (RD3). Minimal transcriptional
repression capacity was required for efficient CD34+ progenitor cell
expansion properties
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TPO, 20 ng/mL IL-6, 10 ng/mL IL-3 (all cytokines were
obtained from Peprotech, Hamburg, Germany), 100 U/mL
penicillin/streptomycin and 2 mM L-glutamine. Retroviral
transduction and long-term cultivation were performed as
previously described [31]. Bone marrow-derived human
CD34+ cells (Lonza) were retrovirally transduced on ret-
ronectin coated 24-wells. 12 h after transduction, the cells
were removed from retronectin and kept at high density
(5 × 10E5 cells/ml) in tissue-coated wells. Thereafter the
cells were divided every 1–2 days. Growing cultures were
inspected daily and carefully pipetted up and down. Around
day 28 RUNX1/ETO-expressing cells started growing out
as measured by increase of eGFP+ expressing cells through
FACS analysis.

FACS analysis, cell cycle and apoptosis assays

For the analysis of cell surface markers, we used FITC-, PE-
, PE-Cy7 or APC-conjugated anti-human CD11b, CD14
and CD34 antibodies as well as mouse monoclonal IgG1 or
mouse IgG1 isotype control antibodies (all obtained from
BD Pharmingen, Heidelberg, Germany). For cell cycle
analysis, cells were incubated for 15 min with 2 μM
DRAQ5 (Alexis Biochemicals, San Diego, CA, USA) at 37
°C followed by FACS analysis. AnnexinV-staining for
detection of apoptotic cells was performed according to the
manufacturer’s instructions (BD Pharmingen).

Western blotting, immunoprecipitation, ABCD-assay
and luciferase assay

The following antibodies were used to detect cellular pro-
teins after SDS-PAGE: α-HA (HA.11; PRB-101P, Cov-
ance, Princeton, NJ, USA), α-Actin (I-19; sc-1616-R, Santa
Cruz, CA, USA), α-eGFP (clone 7.1/13.1; 11814460001,
Roche Life Science), α-Flag (M2; F1804, Sigma), α-ETO
(C-20; sc-9737, Santa Cruz), α-ETO2/CBFA2T3 (ab33072;
Abcam), α-MTGR1 (B-7; sc-390114, Santa Cruz), α-
LaminB1 (ab65986, Abcam) and α-BCR (#3902, Cell
Signaling). To observe protein expression in different cell
compartments, 293T cells were fractionated with the
Nuclear Complex Co-IP Kit (54001, Active Motif, CA,
USA). The cytoplasmic and nuclear fractions were then
loaded on SDS gels. Immunoprecipitation with magnetic-
labeled monoclonal anti-HA antibodies (Cell Signaling,
Leiden, Netherlands) and anti-GFP VHH coupled magnetic
microparticles (ChromoTek, Martinsried, Germany) was
performed as described by the manufacturers. Forty-eight
hours post-transfection, the 293T cells were lysed and
incubated with the appropriate concentration of labeled
magnetic beads. After extensive washing, the beads were
magnetically collected, boiled and separated via SDS-
PAGE for western blot analysis. ABCD-assay with PU.1-

and RUNX1- double-stranded oligos was performed as
previously described [13]. Luciferase assays were per-
formed as previously described [24]. Directly after seeding
of 293T cells onto 96-well plates, the cells were transiently
co-transfected with RUNX1/ETO-expression constructs,
luciferase-reporter plasmids and renilla-reporter plasmids. A
CMV-empty plasmid was co-transfected as a transfection
control. At 24 h post-transfection, luciferase and renilla
activity were measured using a GloMax Discover system
(Promega) according to the manufacturer’s instructions.
ABCD-assays with PU.1- and RUNX1-double-stranded
oligos was performed as previously described [13].
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Abstract
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic
collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here,
we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate
that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid
differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A
increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-D-glucose. We observed that
ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells,
whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to
a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may
facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic
inhibitors.

Introduction

Recently, we and others found the transcription factor
ZBTB7A mutated in acute myeloid leukemia (AML) with
translocation t(8;21), at frequencies ranging from 9.4 to 23%
[1–6]. Hotspot mutations result either in loss (A175fs) or
alteration (R402) of the C-terminal zinc finger domain, which
is critical for DNA-binding of ZBTB7A [1]. The specific
association of ZBTB7A alterations with the t(8;21) subgroup
of AML patients points toward a unique mechanism of
leukemogenesis. While the RUNX1–RUNX1T1 fusion gene,
which results from the t(8;21) translocation, has been studied
extensively, it remains unclear how it may provide a fertile
ground for the acquisition of genetic lesions in ZBTB7A.

This oncogenic collaboration may arise from a com-
plementary action on perturbed hematopoietic development
(i.e., block of specific arms of the myeloid lineage).
Expression of full length RUNX1–RUNX1T1 in a murine
model does not cause leukemia [7, 8], but causes a partial
block of myeloid differentiation with suppression of ery-
thropoiesis and accumulation of immature granulocytes [9].
Interestingly, Zbtb7a has been described as a key regulator
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of hematopoietic differentiation with an essential role in
erythropoiesis [10], lineage choice of B vs T lymphopoiesis
[11] and long-term stem cell maintenance [12]. The invol-
vement of ZBTB7A in myeloid differentiation has so far not
been completely clarified, although Zbtb7a null mouse
studies showed a deficiency of mature myeloid cells in fetal
liver [12]. This suggests that ZBTB7A mutation could lead to
a block of terminal myeloid differentiation, collaborating with
RUNX1–RUNX1T1 to produce a complete differentiation
block.

Another way in which ZBTB7A mutation may collabo-
rate with RUNX1–RUNX1T1 is related to growth regulation
and metabolism. While expression of RUNX1–RUNX1T1
in stem cells causes increased proliferation [13], expression
in myeloid cell lines results in growth arrest. This growth
arrest is related to downregulation of MYC [14] and PKM2
[15]—a master regulator of glycolysis and a key enzyme of
the glycolytic pathway, respectively. Moreover, AML
t(8;21) has been described to depend on glycolytic meta-
bolism for its survival [16]. In turn, ZBTB7A can directly
repress the transcription of several genes implicated in gly-
colysis (SLC2A3, PFKP, and PKM) in an MYC-independent
manner, and ZBTB7A knockdown in a colon cancer cell line
resulted in increased glycolysis and proliferation [17].
ZBTB7A function in glycolysis regulation has so far not
been studied extensively in the hematopoietic system, but
the observed upregulation of glycolytic genes upon
ZBTB7A mutation in our patient cohort [1] may counteract
the growth arrest caused by RUNX1–RUNX1T1 in AML
t(8;21).

Considering that ZBTB7A plays a critical role both in
regulation of differentiation and cellular growth, alteration in
either of the two functions may contribute to RUNX1-
RUNX1T1-dependent leukemogenesis. In the present study,
we investigate the effect of ZBTB7A mutation on cellular
differentiation, glycolysis regulation, and RUNX1–RUNX1T1
directed cell expansion.

Results

ZBTB7A promotes granulopoiesis while blocking
monocytic differentiation

Since ZBTB7A is a key regulator of hematopoietic linage
fate decisions, we set out to compare the effect of ZBTB7A
wild type (WT) and mutants in the context of myeloid
differentiation. The cell line HL60 is a well-established
model for granulocytic and monocytic differentiation
[18, 19]. Therefore, we generated HL60 cells stably
expressing ZBTB7A WT or mutants. Granulocytic differ-
entiation induced by all-trans retinoic acid (ATRA) was
increased by ZBTB7A WT, while this effect was

significantly reduced for the mutants, with R402C showing
residual activity (Fig. 1a, Supplementary Fig. 1a). In con-
trast, monocytic differentiation induced by phorbol 12-
myristate 13-acetate (PMA) was reduced by ZBTB7A WT
but not by the mutants (Fig. 1b, Supplementary Fig. 1b). In
order to validate this effect, we generated an HL60
ZBTB7A knockout cell line. Interestingly, these cells pre-
sented a 5.5-fold increase in CD14 even without induction
of differentiation (Fig. 1c, Supplementary Fig. 1c). Ectopic
expression of ZBTB7A WT in the knockout cells restored
CD14 to the native levels, while expression of the mutants
had no effect (Fig. 1c, Supplementary Fig. 1d). With regard
to potential therapeutic applications, we tested the PMA
sensitivity of HL60 cells and found a significantly lower
IC50 in absence of ZBTB7A (mean (pM): 256.6 in KO vs
619 in control; p value= 0.0002) (Supplementary Fig. 1e).
We also observed that ZBTB7A WT expression lead to a
loss of transduced cells in HL60 without cell sorting (Fig.
1d).

Since ZBTB7A was previously described to promote
erythroid differentiation [10], we generated a K562
ZBTB7A knockout cell line (Fig. 1e). K562 cells can be
used as a model for erythroid differentiation [20]. As
expected, ZBTB7A knockout K562 cells presented a lower
erythroid differentiation (13.89 ± 2.8% reduction, p value=
0.0238) when compared with control cells (Fig. 1f, Sup-
plementary Fig. 1f). This impaired differentiation could be
rescued by ectopic expression of ZBTB7A WT but not by
the mutants (Fig. 1f, Supplementary Fig. 1g). These find-
ings confirm the observation that R402C and A175fs result
in loss of the regulatory function of ZBTB7A in myeloid
differentiation.

ZBTB7A blocks the differentiation of hematopoietic
stem and progenitor cells (HSPCs)

Considering that ZBTB7A was described to have a context-
dependent effect on cell differentiation (i.e., block or pro-
motion of differentiation) [21], we assessed the effect of
ZBTB7A mutations on the HSPC compartment. To this
aim, we generated human CD34+ cells stably expressing
ZBTB7A WT or mutants. Upon differentiation, we
observed a significant reduction of mature erythrocytes
(CD71+ CD235a+) in WT expressing cells, consistent with
previous reports [12]. In contrast, ZBTB7A mutant
expressing cells differentiated to a similar extent as the
control cells (Fig. 2a, b). When cells were differentiated to
granulocytes and monocytes, we observed that WT trans-
duced cells presented a reduction of CD15+ cells (corre-
sponding to decreased granulopoiesis). Again, cells
expressing the mutants did not exhibit this differentiation
block (Fig. 2c, d). A schematic representation of the effects
of ZBTB7A in differentiation is shown in Fig. 2e.
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Loss of ZBTB7A sensitizes to glycolysis inhibition

In order to study the effects of ZBTB7A on metabolism
described in other tissues [17], we analyzed transcriptomes
by RNA-Seq in K562 ZBTB7A knockout and control

clones (GSE140472). Differential expression analysis
revealed 1089 genes deregulated between the two settings
(adjusted p value < 0.05 and log-fold-change > 0.5) (Sup-
plementary Fig. 2a). Gene set enrichment analysis revealed
NOTCH3 transcriptional regulation as well as nutrient
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transport by solute carrier (SLC) proteins as the top sig-
nificantly affected gene ontologies (Fig. 3a).

As ZBTB7A was previously described to be a negative
regulator of glycolysis genes in colon cancer [17], we
focused on the expression of genes implicated in glycolysis.
This revealed an upregulation of the glucose transporters 1
(SLC2A1) and 3 (SLC2A3) in the knockout cells (Fig. 3b).
Interestingly, two glycolytic enzymes not previously
reported to be ZBTB7A targets were also found to be
upregulated in KO cells: phosphoglycerate mutase isoforms
2 and 3 (PGM2 and PGM3) responsible of converting 3-
phosphoglycerate into 2-phosphoglycerate, and Enolase 2
(ENO2) responsible for converting 2-phospho-D-glycerate
into phosphoenolpyruvate (Fig. 3b) (all comparisons p <
0.05). Other previously reported genes, such as PKM or
PKFP, were not significantly deregulated in this setting
(Supplementary Fig. 2b, c). The upregulated genes were
confirmed as ZBTB7A targets (Supplementary Fig. 3) using
publicly available ZBTB7A K562 ChIP-Seq data
(ENCSR000BME, ENCODE database).

Based on these data, we selected two KO clones to test
the functional impact of ZBTB7A loss on cellular meta-
bolism. In metabolic flux analyses, ZBTB7A KO cells
presented a slightly increased non-glycolytic acidification
(Supplementary Fig. 4a, b). ZBTB7A KO cells did not
show a statistically significant increase of glycolysis
upon glucose administration (Fig. 3c, Supplementary Fig.
4c), but they presented a higher glycolytic capacity after
inhibition of mitochondrial energy production compared
with control (Fig. 3c–e). Interestingly, the increased
energy demands of ZBTB7A KO cells could be com-
pensated by the upregulation of mitochondrial respiration
under glucose deprivation (Supplementary Fig. 4e). In
addition, we observed that knockout cells were more
sensitive to glycolysis inhibition with 2-deoxy-D-glucose
(2DG) compared with control cells (mean IC50 (mM):
8.03 in KO#1 and 5.05 in KO#2 vs 10.34 in control; p
values= 0.124 and 0.0005, respectively) (Fig. 3f). This
effect was also confirmed by long-term treatment, where
control cells were hardly affected by glycolysis inhibi-
tion, while knockout cells grew significantly slower
(Supplementary Fig. 4d). The differences observed
between the two KO clones tested may arise due to off-
target effects of the Cas9 treatment or due to the fact that
these lines were generated from single cells, amplifying
any preexisting differences in the cell of origin. However,
both clones show the same trends, namely, increased
glycolysis after mitochondrial shutdown and increased
sensitivity to glycolysis inhibition. In addition, we eval-
uated ex vivo sensitivity to 2DG in six different AML
patient-derived xenografts (PDX) models where we could
observe variable degrees of sensitivity (Supplementary
Fig. 5).

ZBTB7A prevents RUNX1-RUNX1T1-dependent
clonal expansion

Since ZBTB7A mutations are associated with AML t(8;21),
we assessed the interplay between ZBTB7A and the
RUNX1–RUNX1T1 fusion. To this aim, we used the
truncated version of RUNX1–RUNX1T1 (hereafter referred
to as RUNX1–RUNX1T1tr) that causes clonal expansion of
hCD34+ cells [13]. A scheme of the experimental setting is
provided in Fig. 4a. As expected, single positive cells
expressing RUNX1–RUNX1T1tr expanded, while single
positive cells expressing ZBTB7A WT or mutants did not
(representative experiment in Fig. 4b, replicates of this
experiment in Supplementary Fig. 6). Interestingly, cells
expressing both RUNX1–RUNX1T1tr and ZBTB7A WT
did not clonally expand and were quickly outcompeted by
RUNX1–RUNX1T1tr single positive cells. The clonal
expansion was enabled by the ZBTB7A mutations R402C
and A175fs. Upon coexpression of these mutants, double
positive cells expanded and no significant disadvantage
over the RUNX1–RUNX1T1tr single positive cells was
observed.

ZBTB7A causes cell cycle arrest

In order to elucidate if the prevention of RUNX1-
RUNX1T1tr-dependent clonal expansion by ZBTB7A
arises either from downregulation of glycolysis, enhanced
differentiation, or a combination of both effects, we
expanded hCD34+ cells using RUNX1–RUNX1T1tr for
60 days and then transduced them with ZBTB7A WT and
R402C. Cell-cycle analysis revealed that ZBTB7A WT
expressing cells show a significant G0/G1 arrest in detri-
ment of the S phase (Fig. 4c). In addition, we generated
Kasumi-1 cells stably expressing ZBTB7A WT or mutants.
We have previously shown that forced expression of
ZBTB7A WT in Kasumi-1 causes a growth disadvantage
[1]. Cell-cycle analysis revealed that ZBTB7A WT over-
expressing cells show G0/G1 arrest in detriment of the S
phase when compared with mutants and control (Fig. 4d).
When glycolysis was inhibited by 2DG treatment, control
cells showed a block of cell-cycle progression, reminiscent
of the effect caused by ZBTB7A WT overexpression
(Fig. 4d). At the same time, differentiation marker analysis
(CD11b, CD14, and CD15) did not show any significant
difference between the conditions tested (Supplementary
Fig. 7).

Discussion

ZBTB7A mutations in the context of AML have not yet been
extensively characterized. In the present study, we
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demonstrated that ZBTB7A mutations have a loss-of-
function phenotype with regard to differentiation and cell-
cycle regulation (Figs. 1a, b, 2 and 4c, d). Moreover,
ZBTB7A KO effects were only rescued by ectopic
expression of the WT form but not by the mutants (Fig. 1c,
f). We could though observe a slight residual activity of the
point mutant R402C (Fig. 1a), as already described in other
readouts [1]. Despite a previous report in the context of
colon cancer suggesting that ZBTB7A zinc finger mutations
act in a dominant negative manner [22], we could not find
any evidence for this effect in our models, even when the
expression of the R402C mutant was slightly higher than
the control (Fig. 1e). The fact that the mutation A175fs
results in an unstable truncated protein (Fig. 1e) also argues
for a loss-of-function mechanism. In addition, we showed
that the previously reported antiproliferative effect of
ZBTB7A [1] is not exclusive to the t(8;21) background, as
shown by loss of ZBTB7A WT expressing HL60 cells (Fig.
1d). This result is consistent with the assumption that
ZBTB7A acts as a tumor suppressor and with our obser-
vation that higher ZBTB7A expression levels correlate with
longer survival in cytogenetically normal AML patients [1].
Our results also corroborate a previously described role of
ZBTB7A in erythroid differentiation (Figs. 1f, 2a, b)
[10, 12] and suggest that ZBTB7A can block myeloid dif-
ferentiation of HSPC (Fig. 2c, d).

The most puzzling fact about ZBTB7A mutations in
AML is their exclusive presence in the context of core
binding factor leukemia, mainly in t(8;21) AML [1–6],
which suggests a specific collaboration between
RUNX1–RUNX1T1 and loss of ZBTB7A function. Of
note, it was previously reported that RUNX1–RUNX1T1
causes a block of the monocytic and erythrocytic linages in
favor of granulocytic differentiation in mouse and zebrafish
[9, 23]. In addition, an accumulation of neutrophils in the
bone marrow of mice was observed [24]. All these models
failed to present any leukemic disease. Interestingly, our
HL60 model indicates that ZBTB7A has a role in directing
cells into the granulocytic compartment while blocking
monocytic differentiation (Fig. 1a–c). A loss of ZBTB7A
function may therefore increase the block of myeloid dif-
ferentiation initiated by t(8;21) (Fig. 2e). These results are
in contrast to other reports based on cell lines stating that
RUNX1–RUNX1T1 is sufficient to completely block
granulocytic differentiation [25], however, such effect likely
depends on the cellular context. Furthermore, AML t(8;21)
was described to depend on glycolysis for its survival,
specifically depending on PFKP and SLC2A3 [16], both
direct targets of ZBTB7A [17]. This is further supported by
the fact that the t(8;21) translocation positive Kasumi-1 cell
line is highly sensitive to glycolysis inhibition [26]. In this
study, we show that loss of ZBTB7A increases the
expression of SLC glucose transporter genes as well as

ENO2, PGM2, and PGM3 (Fig. 3b), increasing glycolysis
(Fig. 3c) and sensitizing to glycolysis inhibition (Fig. 3f).
Interestingly, inhibition of mitochondrial respiration
demasked a profoundly increased glycolytic reserve in
ZBTB7A KO cells (Fig. 3e). This observation may
encourage further studies regarding a possible advantage for
ZBTB7A mutant cells in hypoxic environments. In vitro
treatment of PDX cells revealed different degrees of sen-
sitivity to 2DG (Supplementary Fig. 5), suggesting that
response might be variable between patients and may
depend on the genetic context. We also observed inter-
ference in RUNX1-RUNX1T1tr-dependent outgrowth of
hCD34+ cells by forced ZBTB7A expression (Fig. 4b,
Supplementary Fig. 6). Expression of ZBTB7A WT in a
t(8;21) rearranged background does not cause increased
differentiation in comparison to mutants (Supplementary
Fig. 7), however, it leads to a cell cycle arrest (Fig. 4c, d).
This effect resembles the cell cycle arrest due to the inhi-
bition of glycolysis through 2DG treatment (Fig. 4d). These
observations indicate that ZBTB7A expression in t(8;21)
leukemia may lead to a decreased glycolysis rate and cell
cycle arrest, thus impairing leukemia development. While
the translocation t(8;21) in AML was the first recurrent
cytogenetic abnormality ever described in any cancer [27], a
specific treatment for this entity is not yet available. This is
in contrast to other leukemia-associated rearrangements,
such as PML-RARA or BCR-ABL1, that are pharmacologi-
cally actionable [28, 29]. In the present study, we show that
ZBTB7A can counteract RUNX1-RUNX1T1-dependent
progenitor cell expansion through repression of glycolysis,
opening up avenues for a targeted treatment of AML t(8;21)
with metabolic inhibitors.

In summary, we have shown that ZBTB7A mutations
contribute to a terminal block of myeloid differentiation as
well as to deregulation of glycolysis. Further studies are
required to elucidate the complex interplay between tumor
metabolism and perturbed differentiation in myeloid
malignancies.

Methods

Plasmids and cell culture

All cell lines were acquired from DSMZ (Braunschweig,
Germany). HL60 and K562 were cultured in RPMI-1640
medium (Life Technologies, Darmstadt, Germany) with
10% fetal bovine serum (FBS) (Biochrom, Berlin, Ger-
many) and 1% PenStrep (PAN-Biotech, Aidenbach, Ger-
many). Kasumi-1 cells were cultured with RPMI-1640
medium, 1% PenStrep and 20% FBS.

Human bone marrow CD34+ cells, containing HSPCs,
were purchased from Lonza (Cologne, Germany) and
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cultured using IMDM (GE Healthcare Life Sciences,
Pasching, Austria) complemented with 20% FBS 2% glu-
tamine, 100 U PenStrep, 20 ng/ml FLT3-l, 20 ng/ml GM-
CSF, hIL-3 10 ng/ml, hIL-6 20 ng/ml, hSCF 20 ng/ml,
hTPO 20 ng/ml all from Peprotech (Hamburg, Germany).

PDX were described before [30]. Briefly, cells were
isolated from NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice
bone marrow and then cultured in StemPro-34 SFM Med-
ium (StemCell Technologies, Grenoble, France) supple-
mented with 1% PenStrep, 1% L-Glutamine, 2% FBS and
10 ng/ml SCF, TPO and IL-3.

The pMSCV-IRES-GFP ZBTB7A WT, R402C, and
A175fs were described before [1]. The pMSCV-RUNX1-
RUNX1T1tr-IRES-tdTomato was described before [31].
pSpCas9(BB)-2A-GFP (px458) is available from Addgene
(Plasmid #48138) and gRNA sequences targeting ZBTB7A
(GACTCGAGGTACTCCTTGGCG or GCCGCCGCT
GCCAGCTTCCCG) were cloned as described before [32].

CRISPR/Cas9 knockout

K562 and HL60 cells were electroporated with px458
containing a gRNA targeting ZBTB7A or an empty vector
using Lonza 2b electroporation system following the man-
ufacturer’s recommendation. Single cells were sorted for
GFP into a 96-well plate. Single cells were expanded and
ZBTB7A status was assessed by Western blot and Sanger
sequencing, respectively.

Differentiation assays

Cells were transduced and sorted for GFP. Granulocytic dif-
ferentiation of HL60 cells was induced with 2 µM ATRA
treatment (Sigma-Aldrich, Taufkirchen, Germany) for 72 h
followed by flow cytometry measurement of CD11b surface
expression using a mouse PE-Cy7 anti-human CD11b anti-
body (clone: ICRF44, BD Biosciencies, Temse, Belgium).
Monocytic differentiation of HL60 cells was induced with
0.5 nM PMA (Abcam, Cambridge, UK) treatment for 48 h
followed by flow cytometry measurement of CD14 surface
expression using a mouse PE-Cy7 anti-human CD14 anti-
body (clone: M5E2, BD Biosciencies). Erythroid differentia-
tion of K562 was assessed by flow cytometry measurement of
glycophorin A (CD235a) surface expression using a mouse
PE anti-human glycophorin A antibody (clone: GA-R2, BD
Biosciencies) without induction of differentiation.

A total of 5000 Human CD34+ bone marrow cells were
seeded either in StemSpan SFEM with StemSpan Erythroid
Expansion Supplement or HemaTox Myeloid Kit (StemCell
Technologies) in a 96-well plate. Cells were incubated for
7 days and differentiation was assessed by flow cytometry.
Erythroid differentiation potential was assessed as stated
before and with an additional mouse APC anti-human

CD71 antibody (clone: M-A712, BD Biosciencies). Granu-
locytic differentiation was assessed by a mouse APC anti-
human CD15 antibody (clone: SSEA-1, Biolegend, London,
UK) and monocytic differentiation as stated above.

Metabolic flux analysis

In all, 8 × 104 cells were plated with Seahorse XF RPMI
medium, pH 7.4 in a XF96 cell culture microplate (both
Agilent, Waghauesel-Wiesental, Germany) coated with Cell
Tak (Corning, Berlin, Germany) according to the manu-
facturer’s instructions. Oxygen consumption rate (OCR)
and extracellular acidification rate (ECAR) were measured
at 37 °C using a Seahorse XFe96 Analyzer (Agilent). Three
measurements of OCR and ECAR were taken before and
after each sequential injection of glucose at a final con-
centration of 1 mM, rotenone/antimycin A (Rot/AA) at a
final concentration of 0.5 µM and 2DG at a final con-
centration of 50 mM (all Agilent).

Drug sensitivity assays

In all, 104 cells were plated in a 96-well plate with
increasing concentrations of 2DG or PMA in technical
triplicates. Cells were incubated for 72 h and then viability
was assessed using CellTiter-Blue Cell Viability Assay
(Promega, Mannheim, Germany) following the recom-
mended protocol.

Human CD34+ cells competitive growth

Human CD34+ bone marrow cells were double transduced
with constructs harboring ZBTB7A WT, R402C, or A175fs
(marked with GFP) together with RUNX1–RUNX1T1tr
(marked with tomato). Expansion of single and double
fluorescent marker-positive cells was then followed by flow
cytometry over 60 days after transduction as described
before [31].

Cell-cycle analysis

Kasumi-1 and hCD34 cells were transduced and 4 × 105

cells harvested and resuspended in 500 µl PBS. DRAQ5
(Thermo Fisher Scientific, Darmstadt, Germany) was added
at a final concentration of 5 µM and incubated for 15 min.
Cells were then analyzed by flow cytometry gating for GFP-
positive cells and single events.

Statistical analysis

P values were calculated using two-tailed Student’s t test
for single comparison and analysis of variance followed
by Dunnett’s multiple comparisons test for multiple
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comparisons in GraphPad Prism 7.03 (GraphPad Soft-
ware, Inc., San Diego, CA, USA). Similarity of variance
was evaluated using the Brown–Forsythe test. Graphs
show mean and standard deviation of the mean of three
independent experiments unless stated otherwise. Asterisk
indicates significant differences (p value < 0.05). Sample
exclusion was not carried out. FACS results were analyzed
with FlowJo v10 (FlowJo LLC, Ashland, OR, USA).

Data availability

The RNA-Seq data from K562 ZBTB7A knockout cells
supporting the findings of this study is available in the Gene
Expression Omnibus repository, GEO accession:
GSE140472.
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Supplementary Methods

Retroviral transduction

Cell lines and primary human CD34+ bone marrow cells were transduced as follows: Wells in a 24-well-

non-tissue-culture plate were coated with 400μL of Retronectin (50 μg/ml) (Takara, Saint Germain en

Laye, France) overnight. The wells were blocked using 500µl of 2% bovine serum albumin (Sigma-

Aldrich, Taufkirchen, Germany) in PBS (PAN-Biotech, Aidenbach, Germany) at room temperature (RT) for

30min. The blocking solution was then aspirated and the wells washed two times with PBS. 400µL of

retrovirus containing medium were then added to each well and the plate centrifuged at 3500 r.p.m for 1h

at 4°C. The virus loading was then repeated for 3 additional times. The supernatant was discarded and

500µL of media containing between 5*104 and a 106 cells added to each well. The plate was incubated

for 8h at 37°C and 5% CO2.

Western blot

Cell lysates were run on a 10% SDS-PAGE gel and transferred to a PVDF membrane. Membranes were

then blocked for 20 minutes at room temperature with 5% dried nonfat milk. Anti-Pokemon (ZBTB7A)

antibody (clone: 13E9; eBioscience, Frankfurt am Main, Germany) (1:2000 dilution) and secondary anti-

Armenian hamster IgG-HRP (clone: sc-2443; Santa Cruz Biotechnology, Dallas, TX, USA) (1:5000

dilution) were used to asses ZBTB7A protein levels. Mouse anti-GAPDH (clone: sc-32233; Santa Cruz

Biotechnology) (1:10000 dilution) and mouse-IgGκ BP-HRP (sc-516102; Santa Cruz Biotechnology)

(1:10000 dilution) were used as a loading control.

Cell proliferation assay

Cells were seeded at a concentration between 5x104 and 105 cells per ml in a t-25 flask in technical 

triplicates. Cell number was measured every 24 or 48h using Vi-CELL XR cell counter and cell viability 

analyzer (Beckman Coulter, Munich, Germany).



Supplementary Methods

RNA-seq

104 cells of each individual sample were lysed in RLT Plus (Qiagen, Hilden, Germany) supplemented

with 1% 2-Mercapoethanol (Sigma-Aldrich) and stored at -80°C until processing. A modified SCRB-seq

protocol (1) was used for library preparation. Briefly, proteins in the lysate were digested by Proteinase K

(Thermo Fisher Scientific, Darmstadt, Germany), RNA was cleaned up using SPRI beads (GE,

22%PEG). In order to remove isolated DNA, samples were treated with DNase I for 15 minutes at RT.

cDNA was generated by oligo-dT primers containing well specific (sample specific) barcodes and unique

molecular identifiers (UMIs). Unincorporated barcode primers were digested using Exonuclease I

(Thermo Fisher Scientific). cDNA was pre-amplified using KAPA HiFi HotStart polymerase (Roche,

Basel, Switzerland) and pooled before Nextera libraries were constructed from 0.8 ng of preamplified

cleaned up cDNA using Nextera XT Kit (Illumina, Eindhoven, Netherlands). 3’ ends were enriched with a

custom P5 primer (P5NEXTPT5, IDT) and libraries were size selected using a 2% E-Gel Agarose EX

Gels (Life Technologies , Darmstadt, Germany), cut out in the range of 300–800 bp, and extracted using

the MinElute Kit (Qiagen) according to manufacturer’s recommendations.

All raw FASTQ data were processed with zUMIs (2) and mapped to the humanpeq genome (hg38) using

the software STAR (3). Gene annotations were obtained from Ensembl (GRCh38.84). Differential

expression was assessed using the Limma package (4). Gene set enrichment analysis, was performed

using the GSEA software (5). Reactome Pathway was used as the gene set database for the GSEA

analysis (6) only pathways with a false discovery rate smaller than 0.05 were considered.
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Supplementary Figure 1. ZBTB7A regulates linage commitment in HL60 and K562 (a) CD11b membrane

expression in HL60 after ATRA treatment. (b) CD14 membrane expression in HL60 after PMA treatment. (c) and

(d) CD14 membrane expression in HL60 without any treatment. (e) HL60 viability after PMA treatment. (f) and (g)

CD235a membrane expression in K562 without any treatment.
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Supplementary Figure 2. ZBTB7A regulates the expression of glycolytic genes in K562 (a) Volcano plot

representing deregulated gene expression in ZBTB7A KO vs control. (b) Heat map of gene expression from a

selected group of genes related to glycolysis. (c) PKM, HK1, PFKM and PFKP normalized expression measured

by RNA-Seq.
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Supplementary Figure 3. ZBTB7A binding of target genes. ZBTB7A ChIP-Seq (ENCSR000BME) including

enhancer and promoters form GeneHancer representing the fold change over control pool for ENO2 (a), SLC2A1

(b), SLC2A3 (c) PGM2, (d) PGM3.
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Supplementary Figure 4. ZBTB7A regulates glycolysis in K562 (a) Representation of the parameters

calculated from the ECAR. (b) Non-glycolytic acidification. (c) Glycolysis. (d) Cell counts over a period of ten

days under 2DG treatment [2mM]. (e) Oxygen consumption in the same set of experiments over a period of

80min. Mean ± s.d. are given for three independent experiments. *p-value<0.05 compared to control cells.
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a b

c

Supplementary Figure 5. 2DG inhibits the growth of patient derived xenograft cells in vitro. (a) Sensitivity

for AML-573 (WT1, DNMT3A, IDH2 mutated and FLT3 ITD). (b) AML-579 (DNMT3A, IDH1, NPM1 mutated and

FLT3 ITD). (c) AML-491 (DNMT3A, RUNX1, ETV6, PTPN11, BCOR, KRAS, NRAS mutated). (d) AML-393 (MLL-

AF10 rearranged, BCOR and KRAS mutated) (e) AML-346 (interstitial 5q deletion / interstitial 13q deletion) (f)

AML-640 (IDH1 and NPM1 mutated, FLT3-ITD t(11;15)(p1?1;q?22).
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Supplementary Figure 6. ZBTB7A prevents RUNX1-RUNX1T1tr dependent clonal expansion of

hCD34+ cells. (a-c) Three independent experiments, the read out assessed was expansion or non-

expansion of GFP-tomato double positive cells. (d) Summary of three independent experiments at final

day of readout.
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a

Supplementary Figure 7. Kasumi-1 cells do not differentiate upon ZBTB7A expression. (a)

Representative flow cytometry plot showing the CD11b surface expression after transduction. (b)

Representative plot showing CD14 expression. (c) Representative plot showing CD15 expression.
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