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G. Štukelj

“What then is time? If no one asks me, I know; if I want to explain

it to a questioner, I do not know”

– Augustine of Hippo
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Summary

Two closely related analogies have proven to be central to theorizing in neu-

roscience and cognitive sciences, broadly construed. More precisely, reasoning

about different neural mechanisms and functions they perform is very often un-

derlined by a comparison between brains and computers, or brains and electrical

circuits. This hasn’t been done only to the effect of designing experiments by

guiding the way neural tissues are manipulated and probed for data, but has

had a profound effect on how we talk about and interpret brain activity and

related behavior. The history of science is filled with fruitful, yet inaccurate

analogies. Thus, an appropriate question to ask is whether some such assump-

tions borrowed from the engineering sciences need to be revised. This issue has

been raised in particular in relation to the notion of neural noise.

A common denominator of the different definitions of neural noise has

been its lack of functional importance. Neural noise, much like “noise” in com-

puters and electrical circuits is by definition something that does not carry

information. Moreover, as a rule of thumb noise is not only seen as something

that doesn’t contribute to the functioning of the system but even pulls in the

other direction, acting as a disturbance, hindering the performance. This view

is paradigmatic to engineering sciences, but has been questioned repeatedly in

the last decade by both experimentalists and theoreticians in neuroscience and

broader biological sciences. Indeed, the growing body of evidence suggests that

much of what has historically been described and dismissed as (neural) noise in

fact plays an important role in functioning of neurobiological systems.

This thesis aims at complementing these efforts of doing justice to the

role of noise as a physical quantity worthy of investigation. This is done by

demonstrating the central role the notion of noise plays in explanations and

arguments commonly found in neuroscience and related fields (such as neu-
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rophilosophy and philosophy of neuroscience). With respect to the overarching

topic of the thesis, the first manuscript discusses the notion of noise as a unify-

ing concept between three behavioral domains (motor control, perception, and

economic choice) which warranted the fruitful exchange of mathematical models

and experimental designs between the initially separated research fields. More-

over, I argue that neural noise is an important factor that needs to be taken

into account when discussing evolutionary forces that shaped decision making

capacities in humans and other animals. However, much of the psychological

literature has ignored its role and has rather emphasized the environment as

the predominating, if not sole source of uncertainty. The second manuscript

deals with a specific philosophical argument resting on the premise that brains

compute with continuous signals. This premise is first rejected solely on em-

pirical grounds. Importantly, I also argue against its conceptual fruitfulness.

One of the main reasons for the latter being that the premise seems to fail to

account for the way the notions of neural noise and miscomputation are used

in neuroscientific explanations. The last manuscript presents a case study of

neuromorphic electronics. In discussing of what makes the engineered analogs

of brains computers, I argue that the methodological reason for the oversight of

the importance of neural noise lies at least partially in assuming that comput-

ers can be exhaustively explained solely in terms of input-output relations. The

current research on neuromorphic electronics is also interesting in that it is an

active engineering field characterized by the lack of what was stereotypified as

“engineering attitude towards noise”.

Collectively, the three manuscripts offer a much broader take on the

topics closely related to the notion of computation, ranging from the different

types of computers and their differences, all the way to the computational com-

plexity. The upshot of the thesis is that clarifying the notion of (neural) noise

is of conceptual significance for many of these related debates.
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1 Introduction

In the past decade neural noise has re-emerged as a topic of interest in the neu-

roscientific literature. This thesis includes three manuscripts (Chapters 2–4) all

of which are explicitly and rather straightforwardly linked under the broader

topic of “(neural) computation”. Nonetheless, the notion of noise has made its

way into each one of them and plays a notable role in their respective narratives.

Admittedly, one could construe my arguments concerning noise as just straight-

forward refinements/iterations of current debates. However, I argue that these

refinements, however straightforward, lead to novel insights.

1.1 General introduction & motivation

Neuroscience is a relatively young scientific field. Nonetheless, exploring its

“short” history is a very rewarding endeavor for philosophers and historians

of science, and the neuroscientists themselves alike. A historic perspective is

characteristic of a good deal of the research presented herein. Knowing how

the use of a certain concept has changed in time and through adoptions across

different research programs, is often crucial in attempting to answer more con-

ceptual questions pertaining to scientific practice. Conversely, to make sense of

such conceptual questions it is often sufficient, if not necessary, to look at the

“current best scientific theories” and the respective empirical data.

Given the specific topic of scientific practice and current best theories

in neuroscience and related fields, the corresponding labels of philosophy of neu-

roscience, and neurophilosophy, respectively, seem to describe well the different

(philosophical) inquiries reported in the following chapters. Assuming a histori-

cal perspective is one of the common approaches in philosophy of (neuro)science

and it is also from where I’m drawing the initial motivation.
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As it is common in science, neuroscientists often describe or reason

about their object of study using analogies. Loosely speaking this thesis is

about multiple such analogies common to the neuroscientific literature, how

they’ve been used throughout the development of the field, and of their present

relevance. Some of these are mentioned only once, while others are discussed at

length at various occasions.

There is one analogy that is clearly prevalent – namely an analogy

between brains and computers. This should hardly come as a surprise. It seems

that at least superficially, brains are properly described as if they’re computing.

Explicating the meaning behind the ubiquitous phrase “brains compute ...” has

become the bread and butter of many philosophers and other theoreticians.

This question falls under the broader research program of the philoso-

phy of physical computation. One of the central goals of this branch of philoso-

phy is to delineate the group of physical objects that compute from those that

don’t. Therefore the first question usually comes bundled together with a sec-

ond one – are brains actually computing? In other words, are brains computers

and if so what kind of computers are they?

The most obvious strategy to answer both of the questions at once

is to compare brains to a physical system that is known to compute. Indeed,

brains have been compared to computing machines from the early onset of the

technology (McCulloch and Pitts, 1943; Turing, 1992; von Neumann, 1951).

Traditionally and independent from this debate, two different kinds of comput-

ers have been considered – digital and analog. Whereas some have proposed

that neural systems constitute a third kind of computer (Piccinini and Bahar,

2013), others have argued that brains fall under one of the already established

categories (Neumann, 1958; Beebe, 2018; Maley, 2011; Shagrir, 2010).

Computers are just one kind of electronic device, and the analogy

2
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between brains and computers can be seen as a refinement of a broader and much

less controversial analogy between neurological networks and electrical circuits.

The latter has only recently gained attention from philosophers interested in

the history of ideas in neuroscience (Chirimuuta, 2017), leaving many topics

undiscussed. The literature pool becomes larger when considering the somewhat

broader topic of “the engineering paradigm”, that is, the adoption of various

engineering concepts and methods in other sciences. In particular, the debate on

the scientific practices in the field of synthetic biology has covered a lot of ground

by discussing the adoption of engineering concepts such as reliability, simplicity,

robustness, and noise in the scientific discourse (Boon, 2017; Knuuttila and

Loettgers, 2014, 2013).

All of the mentioned topics are addressed at various places through-

out the following chapters. Nonetheless, the chapters follow each other in a

sequence more closely related to the analogy between brains and computers.

The first manuscript, Chapter 2, investigates to what extent does the origi-

nal decision-theoretic characterization of heuristics in GOFAI still influence the

conceptualization and understanding of (human) decision-making in modern re-

search. I argue that many of the assumptions found in the present-day literature

need to be revised, due to their being apparently derived from an analogy be-

tween brains and digital computers (or rather stored-program computers, see

discussion in Chapter 4). Basing my arguments on both behavioral and neuro-

scientific data, I conclude that there’s a principal difference between the latter

two kinds of a (computing) physical system.

In the manuscript that follows, Chapter 3, I pick up the discussion

from this general conclusion and focus on a specific proposal regarding the

characterization of brains as computational systems. Specifically, I look at an

argument due to Maley (2011) from which he concludes that brains are analog

computers. While I agree with Maley’s broader conclusions, I argue against both

3
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the empirical plausibility of the argument’s premises as well as the fruitfulness

of the proposed framework that could follow from Maley’s conclusion, had the

premises been accepted.

In the third manuscript, Chapter 4, I consider a different account of

analog computers that I derive through a “rational reconstruction” of the early

scientific and engineering endeavor behind the conception of neuromorphic elec-

tronics (NE). These devices provide an interesting and presumably less con-

troversial token of computing physical systems that can be used for reasoning

about, and comparing different (philosophical) accounts of (physical) analog

computation. The closing discussion of the last chapter conveniently returns

to the topics discussed in the introductory sections on (neural) noise and thus

properly concludes the chapter and the dissertation itself.

While the principal questions differ between the individual chapters

and some of the conclusions I’ve argued for are only loosely related, a signifi-

cant part of the argumentative work in each chapter is carried by considerations

of neural noise. It is thus the notion of noise that will serve as the main narra-

tive thread for the rest of the discussion. The next section lays the groundwork

by introducing the concept of (neural) noise and some of the related concep-

tual questions, followed by the discussion of how the notion of noise applies

specifically to individual chapters.
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1.2 Varieties of noise

In neuroscience, noise is usually considered as a source of variability of a signal

that is not a consequence of deterministic properties of the system producing it

(Faisal et al., 2008, p. 292). If signal is understood as a quantity carrying infor-

mation, then noise might be said to be its “meaningless” component. However,

it would seem that identifying something as a signal is context-dependent and

would require some kind of an intentional attitude. Surely this is something

that we wouldn’t readily ascribe to a neuron (e.g., when considering neuron

to neuron communication). A similar worry might arise around a discussion of

“noise management” in nervous systems, particularly, strategies involving “prior

knowledge”:

By using prior knowledge about the expected structure, sensory pro-

cessing can compensate for noise. This is manifest in the notion that

a neuron’s receptive field tells us what message the neuron is con-

veying. [...] Thus, the structures of receptive fields embody prior

knowledge about the expected inputs and thereby allow neurons to

attenuate the impact of noise. (Faisal et al., 2008, p. 298)

Arguably this issue is omitted if we simply speak of noise as “random

fluctuations” (McDonnell and Ward, 2011, p. 415) or explicitly reject a factual

distinction between signals and noise by conceptualizing the latter as a type of

signal, “the value of which at any given time is drawn randomly from some

distribution” (Ermentrout et al., 2008, p. 428). I’ll further discuss this topic

later in this section and in Chapter 4. As already demonstrated by this small

literature sample, the term “noise” carries many meanings and connotations,

and is thus met with various scientific or epistemological attitudes.

Taking cue from the aforementioned literature on synthetic biology,
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and especially from Varieties of noise: Analogical reasoning in synthetic biology

by Knuuttila and Loettgers (2014), there are several general observations regard-

ing the conception of noise that can be expected to hold true for neuroscience

as well. In an attempt to systematize the observations and for the purposes

of the future discussion I’ll consider four dichotomies applying to the adoption

of the concept of noise in neuroscience. Framing this a bit more generally, the

dichotomies could be extrapolated to different categories, combinations of which

constitute different types of analogical reasoning involving the notion of noise.1

The distinctions will be made between negative and positive, applicative and

descriptive, mechanistic and functional, and factual and conceptual analogies.

Stereotypically, analogical reasoning starts with an observation of one

or more similar properties of two given objects, followed by an assertion of

another similarity that has not yet been observed. Conceptualization of noise as

a disruptive and detrimental component, and thus as a quantity that needs to be

minimized, is one such positive analogy between neural circuits and engineered

electrical circuits:

On the one hand, one can pursue the positive analogy between ar-

tificial and biological systems by treating the fluctuations as a dis-

turbance and trying to find ways of making the system more ro-

bust by changing its architecture. This approach is chosen by the

engineering-oriented branch of synthetic biology, which uses differ-

ent strategies to isolate and eliminate the various sources of noise.

1 I am purposely omitting a discussion of the existing philosophical literature on analogical

reasoning as such for a very simple reason (although see Chapter 4). The literature is

too broad and even a short review would be well beyond the scope of this thesis. The list

of dichotomies could be thus seen as a mere narrative tool for introducing the ways the

concept of noise is used in neuroscience relevant to the specific examples discussed in the

next chapters.

6
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(Knuuttila and Loettgers, 2014, p. 86)

This brings us to the first dichotomy, namely between “positive” and

“negative” analogies. Whereas noise has been conventionally viewed as a dis-

turbance or a disruptive force that is limiting the extent of control, there is a

growing literature demonstrating its various benefits for a properly functioning

biological system.

The basic science approach, by contrast, has chosen the opposite

direction, drawing a further negative analogy to artificial control

systems. Recognizing noise as an intrinsic part of biological systems,

the researchers in this field have started to study the sources and

impact of noise on biological systems. As a result of these studies,

noise has also been assigned a functional role; it supports the various

functions of biological systems. (Knuuttila and Loettgers, 2014, p.

86)

Notably, Knuuttila and Loettgers (2014) consider the division between

the use of positive and negative analogies between biological and artificial sys-

tems to be more or less aligned with the separation between adopting either an

“engineering-oriented”2 or a “basic science” approach to the research topic.

This [application-oriented] branch of synthetic biology does not aim

to mimic biological systems but to engineer novel systems with spe-

cific functions, which need not be brought about in the same ways

2 The term “engineering approach” might be a bit of a misnomer, as noise is not always con-

ceptualized as a disturbance by engineers. For example, “process noise” in the Kalmann

filter simply describes the innate variability of the state, independent of external pertur-

bations.
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as in naturally evolved systems. Because of this goal, and also due

to the close ties with engineering, noise is predominantly regarded

as a disturbance within this branch, to the extent that it reduces

control over the designed biological systems. Much effort has there-

fore been invested in strategies to avoid or reduce noise. (Knuuttila

and Loettgers, 2014, p. 81–2)

As discussed later in Chapter 4, some engineering projects related to

neuroscience actually maintain a relationship of a positive analogy with their

“target” biological systems by means of “forcing” a negative analogy with re-

spect to other engineering paradigms. In addition to a dichotomy between neg-

ative and positive analogies, one might thus find it useful to also talk separately

about “applicative” and “descriptive” uses of an analogy.

The discrepancy between engineered electrical artifacts and biologi-

cally evolved neural networks has also been discussed in neuroscientific litera-

ture in relation to conceptualizing noise in terms of an information carrying or,

at the very least, signal enhancing quantity. The term “stochastic resonance”

was initially coined to describe a very specific phenomena, but with time it

became a kind of a catchall phrase for a myriad of observed benefits of noise.

Importantly, McDonnell and Ward (2011) argued that a more detailed concep-

tual framework is needed for a proper grounding of the emerging field of neural

noise research. More specifically, their proposed term “stochastic facilitation” is

meant to generalize the notion of stochastic resonance while also breaking away

from the historical and conceptual baggage carried by its predecessor. One

of the conceptual reasons they offer in favor of adopting the new terminology

is particularly illustrative of another important distinction regarding analogies

involving a notion of (neural) noise:

Notwithstanding the above semantic issues, stochastic resonance

8
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stands apart from other identified constructive roles for noise in that

all existing definitions require identification of an input signal and an

output signal. This immediately associates the concept with notions

of information processing and computation, as in engineered signal

processing systems. Consequently, stochastic resonance is often de-

scribed as paradoxical or counter-intuitive, because in engineered

electronic systems noise is naturally seen to be only detrimental

to quality. However, in a biological context, the effect is hardly

counter-intuitive when thought of as the benefits of randomness, as

with other constructive roles of noise in which inputs and outputs

need not be readily identifiable. (McDonnell and Ward, 2011, p.

417)

The distinction between framing the benefits of noise in either

information-theoretic or physiological terms is reminiscent of the broader philo-

sophical debate on the nature of explanations in computational neuroscience.

While some authors have stressed the importance of “efficient coding” hypothe-

ses or other computational frameworks (Chirimuuta, 2014; Eliasmith, 2010),

others have claimed that proper explanations necessarily involve an identifica-

tion of a mechanism bringing about the explained phenomena (Kaplan, 2011;

Kaplan and Craver, 2011). While the debate is beyond the scope of this in-

troduction, I will borrow some of the terminology when drawing a distinction

between functional and mechanistic analogies involving neural noise.

It is likely that observations of stochastic facilitation in the brain

can be explained in terms of the randomness arising from stochastic

biological noise enabling the operation of a mechanism that imple-

ments a computational task. Clearly, there could be a diverse range

of neural mechanisms in which this dependence of ‘algorithm imple-

9
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mentation’ on noise could occur. (McDonnell and Ward, 2011, p.

419)

It is important to be precise about what this dichotomy actually de-

lineates. For example, Faisal et al. (2008) discuss how the inevitable fact of

noise has strongly shaped the way information is processed in neural systems.

They list various examples of noise management strategies for mediating and

sometimes also exploiting its effects (structures embodying “prior knowledge”,

weighted averaging, population coding, stochastic resonance, randomized state

exploration, etc.). Notably, Faisal and colleagues also demonstrate how some

physiological observations could be well explained by appealing to the presence

of neural noise:

In axons of less than 0.3µm diameter, the input resistance is large

enough that spontaneous opening of single Na+ channels at the rest-

ing potential can produce ‘Na+ sparks’ that can trigger APs in the

absence of any other inputs. These ‘rogue’ APs become exponen-

tially more frequent as axon diameter decreases, rendering axons be-

low 0.08 − 0.10µm diameter useless for communication. This lower

limit matches the smallest diameters of axons across species. Anal-

ogously, noise sets the lower limit for the diameter of excitable cell

bodies to ∼ 3µm.

Notwithstanding the fact that this is a claim about an “implementa-

tion” detail, the analogy leading such reasoning would not fall into the mechanis-

tic category. Note that the purported explanation of the observed physiological

fact relies on a positive, descriptive, and functional analogy between electrical

information-processing systems and brains. We expect the diameters of axons

or cell bodies to be within a certain range, insofar as we expect them to perform

10
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a certain function. This kind of reasoning contrasts well with another example

discussed by Knuuttila and Loettgers (2014), namely some of the arguments

found in the seminal research on circadian clocks. Following a mechanistic

analogy with engineered systems, biologists and neuroscientists have reasoned

that the mechanisms behind the observed oscillatory behavior must be due to a

underlying mechanisms including a negative feedback loop (Bechtel and Abra-

hamsen, 2010; Bechtel, 2012). More generally, recognizing that neural circuits

need to operate stably under continuous changes and do so in absence of a cen-

tral regulatory “unit” has lead to the conjecturing and later establishing the

existence of different homeostatic mechanisms.

There can be no central, global control mechanism monitoring and

adjusting the properties of each individual cell in a coordinated man-

ner. Instead, global control is observed as an emergent feature of

the nervous system, arising from the combined effects of a hier-

archy of regulatory mechanisms operating on the level of cellular

networks, individual cells, subcellular domains and, ultimately, in-

dividual genes and proteins. (O’Leary and Wyllie, 2011, p. 4812)

There’s one important caveat to the discussion examples I used above

to motivate the dichotomy between analogies used to describe a function and

analogies used to describe a mechanism. Prefacing it with an important ob-

servation made by McDonnell and Ward (2011) regarding the centrality of the

“input-output modeling methodology” (Shagrir, 2018) is rather misleading, in-

sofar as it doesn’t only underlie the functional, but also the mechanistic ap-

proach to system description and explanation.3 While some proponents of the

3 Nonetheless, the distinctions are not completely disassociated. While functional or compu-

tational descriptions are trivially and necessarily entrenched in thinking in terms of inputs

and outputs, mechanistic descriptions/explanations need not be.

11
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mechanistic explanations have argued for a distinction between computing and

information-processing mechanisms (Piccinini and Scarantino, 2010), the identi-

fication of I/O relationships is still an integral part of mechanistic explanations

(Bechtel, 2012). In fact, “endogenous activity” of neural systems that is hard

to describe in terms of I/O processing is often indiscriminately categorized as

noise. As discussed by McDonnell and Ward (2011), this activity is then “sur-

prisingly” or “paradoxically” observed to be of significant importance for the

functioning of the system.

While variability in the signal recorded is noted, it is generally

treated as noise that renders it difficult to extract what is regarded

as the signal that reflects the response to the stimulus. In fact, such

noise often reflects the endogenous activity of the system. Far from

being in a constant state, the mechanism varies over time and this

has consequences for the activity that might be evoked by what are

usually taken as the inputs to the mechanism. (Bechtel, 2012, p.

236)

There is one more dichotomy to consider. Most of the time when an

analogy with electrical systems enters a debate in biology or neuroscience, it is

used for factual considerations. In this case, the argument is that some things

do (or do not)4 perform a similar function or employ a similar mechanism as

some other things. Where “things” denotes mind-independent, factual objects.

On the other hand, much of the different analogies I make use of in the sub-

sequent chapters of this thesis, pertain to mind-dependent objects or loosely

speaking, “concepts”. While the difference between positive and negative con-

ceptual analogies is trivial, one would be hard-pressed to try and describe how

4 This phrasing is related to combinations with descriptive category, phrasing of an applica-

tive analogy could be expressed with a change in modality from “do” to “should”.
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the difference between functional and mechanistic analogies applies. Finally, the

applicative-descriptive dichotomy seems to line-up with the distinction between

observing or asserting how a certain concept is or should be used.

Analogy (noise)

Inference

negative

positive

Paradigm

Applicative

Descriptive

Abstraction

Mechanistic

Functional

Subject

Factual

Conceptual

Figure 1: Classification of analogical reasoning in (biological) sciences.

A graphical summary of the four dichotomies discussed in this section

can be found in Figure 1. Equipped with these labels, I’ll continue by describing

how I used both the notion and the fact of neuronal noise to argue about different

conceptual questions regarding neuroscience and related fields in the subsequent

chapters. It is these and other arguments, and reasoning patterns discussed

herein that make the construct of neural noise conceptually significant.
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1.3 Conceptual significance of neural noise

Making use of the discussion in (Knuuttila and Loettgers, 2014) once more,

it is worth pointing out that the authors considered two separate cases of a

negative analogy with the engineering sciences. More specifically, the bifurcation

of synthetic biology into two distinct approaches is said to have happened with

the one dubbed as the “basic-science approach” breaking with the engineering

design patterns based on noise attenuation and modularity.

The assumption of modularity is discussed at length in Chapter 2

and Chapter 4. In the former I argue that the analysis of heuristics, cogni-

tive decision-making strategies initially conceived as non-exhaustive tree search

algorithms, is based on the faulty assumptions of the underlying mechanisms

being both modular and sequential. As discussed by Bechtel (2012), such think-

ing is characteristic of mechanistic explanations and has a lot to do with I/O

modeling methodology (see Section 1.2).

Central to mechanistic explanation as it has been pursued in biology

is the assumption that the behavior of mechanisms is to be under-

stood in terms of the operations performed by their parts and that

therefore it is essential to decompose mechanisms into their parts

and operations. (Bechtel, 2012, p. 234)

[R]esearch usually begins by positing the simplest arrangement in

which multiple parts are organized to generate the phenomenon –

a sequential arrangement in which the product of one operation is

provided as an input to the next operation, which transforms it and

passes it to yet another operation, as in an assembly line. (Bechtel,

2012, p. 235)
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This fits well the historical narrative I adopt in Chapter 2. The positive

mechanistic analogy between neural circuits underlying decision-making and

digital computers, or more precisely von Neumann architecture, is what has

been driving the functional analogy between computer algorithms and human

behavior. Given that computers are irreducibly I/O systems it is reasonable

to expect that it is due to this analogy that in the heuristics literature the

endogenous activity5 of neural circuits in question hasn’t been only pushed

aside as “meaningless noise”, but rather ignored altogether.

The field of decision neuroscience consists of three research programs,

traditionally thought to be distinct and independent: cognitive, perceptual, and

motor decision-making. These terms describe behavior in value (or preference)

based choice, perceptual classification, and motor-control tasks, respectively.

Similarly, the heuristics literature includes many accounts of purported heuris-

tics used for perception and some research has been done on motor control

heuristics as well.

A conceptual commonality between heuristics research and decision

neuroscience, as well as among the different fields within the latter, is that all

three behavioral domains (economic choice, perception, and motor control) have

been described in terms of probabilistic decision-making. A crucial difference

lies in the heuristic literature identifying the environment as the sole source

of the uncertainty, whereas the decision neuroscience literature has strongly

emphasized the role of neural noise.

Thus explanations invoking the notion of neural noise are abundant in

decision neuroscience literature. Specifically, by appealing to the fact of neural

noise and a positive analogy with noise attenuating electrical circuits, neurosci-

5 That is, the activity that cannot be described in terms of I/O, see (Bechtel, 2012) and the

discussion above.
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entists first conceived functional similarity between economic choice, perception,

and motor control, which has later led to a discovery of a canonical computa-

tion, namely normalization.6 The overemphasis of the environmental factors

and a complete lack of consideration of the neural noise, especially in the later

stages of a decision-making process (after all the information has already been

gathered) has had a significant impact on the discussion and characterization

of different decision-making strategies.

The discussion of a negative analogy between brains and digital com-

puters continues in both Chapter 3 and Chapter 4. In the former I also consider

another example of the concept of neural noise playing a central role in a neu-

roscientific explanation. The chapter is organized around analyzing a specific

argument put forward by Maley (2011) aimed at showing that brains are not

digital, but rather analog computers. More specifically, I consider various short-

comings of a premise stating that brains compute with continuous variables.

The link between neural noise and discrete computation has already

been discussed by Eliasmith (2000), who argued that due to neural noise brains

compute with discrete variables and should be thus considered as digital com-

puters. I build upon a contraposition of Eliasmith’s conditional – if brains are

not discrete computers, then there is no neural noise. This then serves as a

basis of a modus tollens argument against Maley (2011), insofar as he fails to

provide an alternative conceptual tool with which we’d be able to make sense of

common neuroscientific explanations involving notions of computational iden-

tity and miscomputation.

The notion of an analog computer is also discussed in Chapter 4 in

6 Normalization has been first proposed as a computation performed by the visual system.

It was later “discovered” that it is a canonical computation, in the sense that it can be

found in different brain areas underlying distinct behavioral domains.
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which I consider an applicative negative analogy between brains and von Neu-

mann architecture that resulted in the conception of neuromorphic electronics

research. I try to explicate the idea that neuromorphic computers are ana-

log computers, which leads me to revisit some topics from Chapter 2, namely

non-modularity and computational primitives. The research through a design

of neuromorphic electronics has had a significant impact on our understanding

of brains, and continues to do so with illuminating the different ways noise is

utilized in neural computation.
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2 On the simplicity of simple heuristics

Recent7 evidence suggests that the take-the-best heuristic (TTB) – flagship

of “fast and frugal heuristics” research program (FFH) – might in fact not

be as frugal as tallying, which is considered to be a more complex strategy.

Characterizing a simple decision strategy has always seemed straightforward,

and the debate around the simplicity of the TTB is mostly concerned with a

proper specification of the heuristic. I argue that the predominate conceptions of

“simplicity” and “frugality” need to be revised. To this end, a number of recent

behavioral and neuroscientific results are discussed. The example of TTB serves

as an entry point to a foundational debate on bounded agency. I argue that

the FFH needs to question some of its legacy from the classical AI research.

For example, the assumption that the bottleneck of decision-making process is

information processing due to its serial nature. These commitments are hard

to reconcile with the modern neuroscientific view of a human decision-maker.

In addition, I discuss an overlooked source of uncertainty, namely neural noise,

and compare a generic heuristic model to a similar neural algorithm.

7 This chapter is an only slightly modified version of the manuscript that was accepted for

publication in Adaptive Behavior, see (Štukelj, 2019).
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CHAPTER 2

unification

non-modularity

robustness

uncertainty

simplicity

Figure 2: Graphical summary of Chapter 2.

2.1 Introduction

Bounded agency denotes judgment and reasoning under constrained resources.

In order to quantify agent’s problem-solving capacity we need to measure costs

imposed on her as she performs a specific strategy. Depending on the chosen

measure, one might give a different answer on how an agent will go about

balancing the costs with the related prospect of her reaching a set goal. One

particularly popular way is to define a set of “elementary information processes”

(EIPs) (Simon and Newell, 1971) and then associate each EIP with a specific

cost. Assuming that a strategy can be decomposed into a sequence of EIPs,
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its complexity can be then measured as a weighted sum of the costs of its

constituents (Bettman et al., 1990). One of the most simple strategies according

to this approach is the lexiographic rule.

Lexicographic rule or “take the best” (TTB) is one of the “fast and

frugal” heuristics, a set of simple decision strategies proposed to explain hu-

man decision-making and judgment (Gigerenzer and Gaissmaier, 2011). TTB

is characterized by ignoring all of the information beyond what is necessary

to distinguish between alternative choices (see fig. 1). It searches sequentially

through an ordered sequence of choice attributes until a single tuple of attribute

values is found, such that one choice is preferred over the others. This appar-

ent frugality has convinced many economists, psychologists, and philosophers

to consider TTB to be one of the least effortful strategies.

Figure 3: Take-the-best heuristic.
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Simulating the use of heuristics with an artificial cognitive system,

bounded by neurophysiological constraints similar to those of humans, suggested

that TTB is more costly than it was previously thought (Fechner et al., 2018).

The surprise came with an alternative and presumably more complex heuristic,

tallying (see fig. 2), sometimes leading to faster and less effortful decisions.

Whereas TTB often ignores some if not most of the cues, tallying counts them

all, ignoring only the weights.8 Since TTB also ignores weights insofar it only

looks for a cue that discriminates between choice options, the number of cues

examined by TTB will be at most equal to the number of cues examined by

tallying. Considering the additional counter functionality, it seems that tallying

consists of strictly more EIPs than TTB.

8 Differences in cue weights could be important for strategy selection and an ecologically

rational agent chooses the strategy fitting to the environment and her goals. However, this

topic is beyond the scope and interests of this paper.
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Figure 4: The tallying heuristic.

Observing under which experimental conditions the results were repli-

cated in human behavior, researchers argued that the in silico and in vivo ob-

servations all go to show that this is due to the information having to be ordered

before TTB can be applied.9 Authors suggest that when the information is pre-

9 I’ve included this assumption in the computational scheme of the TTB with a cue queue

node indicating an ordered data structure. Similarly, using a cue set indicates random

(unordered) accessing of information in tallying. Any other pair of an ordered and an

unordered data structures would do as well.
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sented randomly, ordering processes impose additional costs by further taxing

an agent’s working memory capacity (WMC). However, no strong conclusions

can be drawn due to the fact that humans can often use appropriate robust cue

orders without explicitly computing them (Katsikopoulos et al., 2010). These

may come intuitively from the perceived casual structure of the environment,

pattern recognition based on prior experience, by imitating other agents, or

simply picking up on the natural frequencies of a cue and the target occurring

together.

Moreover, there’s another notion of simplicity invoked in the litera-

ture on heuristics (Gigerenzer and Brighton, 2009; Brighton, 2019; Mousavi and

Gigerenzer, 2017). It was argued that heuristics draw their value from being

appropriate tools to deal with “unspecifiable sets of outcomes, or unknown prob-

abilities associated with them” (Mousavi and Gigerenzer, 2017), as opposed to

situations in which probabilities and outcomes are known. In the first sense

heuristics are viewed as simple algorithms, because they’re built out of a small

number of EIPs. In the second sense heuristics are simple because they ig-

nore information in order to minimize preferential or inferential choice variance.

Simplicity1 is a target feature, as a cognizer strives towards a low consumption

of computational resources (e.g. WMC). Simplicity2 is an enabling feature, as

it guards against overfitting in an epistemically unfriendly environment. Re-

spectively, fast and frugal heuristics are claimed to be decision algorithms that

1) minimize computational effort and, 2) are robust tools for dealing with un-

quantifiable sources of uncertainty.

These two notions are logically independent.10 And the results in

(Fechner et al., 2018) don’t challenge any. The authors rather argue that, under

certain circumstances, tallying might be more simple than TTB insofar it would

10 A robust algorithm can be either costly or simple, and vice versa.
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require less computation to be performed. I argue that complementary to this

conclusion at least part of the overlooked costs associated with the TTB are due

to the requirement to ignore some information, challenging the view of simple

heuristics minimizing computational effort. I start by reviewing direct and

indirect behavioral evidence in section 2.2 suggesting that ignoring information

is cognitively taxing.

The review of behavioral evidence and the latter sections overall are

intertwined with a historical discussion of seminal research on bounded agency.

The notion of robustness through simplicity is a foundational contribution of the

ecological rationality research program. However, the idea of effort minimiza-

tion through algorithmic simplicity is a tenet of its predecessor, information

processing psychology program led by Herbert Simon and Allen Newell. Im-

portantly, it had a strong influence on Simon’s original conception of bounded

rationality. When considering Simon and Newell’s work, it becomes clear that

the bounded rationality concept cannot be divorced from their research on clas-

sical AI. Thus many issues debated herein can be traced back to some legacy

assumptions based on an analogy between human brains and digital computers.

The central assumption being that neural architecture consists of separate pro-

cessing and mnemonic modules, and is thus subject to computing bottlenecks

that result in information being processed serially. It is under this assumption

that certain heuristics are deemed simpler in terms of reduced computation.

Beside direct evidence of cognitive costs of ignoring information, sec-

tion 2.2 revolves around two important observations. Namely, that there are

strong contextual effects suggesting evidence is processed in parallel rather than

sequentially, and a lack of consistent decoupling of information search and infor-

mation processing, in theoretical discussions as well as in experimental designs.

Both motifs appear in latter sections and prove to be crucial for a proper synthe-

sis of various areas of research related to decision-making. The article continues
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with section 2.3 in which I discuss the literature on perceptuo-motor decision-

making. While the detailed argument for the relevance of this research is given

in the beginning of the section, it should suffice to say that both heuristics and

decision neuroscience literature suggest that the same principles underly the two

decision-making domains.

The section on perceptuo-motor decision-making was written with two

goals in mind. First, to reinforce the argument made earlier by offering new

evidence about non-seriality and a clear division between search and process-

ing of information. Second, it leads to a discussion of an overlooked source of

unquantifiable uncertainty, namely neural noise. The motivation for reviewing

literature on perceptuo-motor decision-making is thus in part practical, as it

overlaps greatly with the decision neuroscience literature. It bridges the dis-

cussion between two separate notions of simplicity, and segues into section 2.4

where the discussion is moved from behavioral to neural models. The motivation

to do so is not lacking, as one would be hard-pressed trying to argue that neu-

ral mechanisms can be completely abstracted from when trying to understand

biological limits of human decision-making.

Ecological rationality is a response to the problem of understanding

how biologically constrained organisms function under the uncer-

tainty of the natural world (Todd and Brighton, 2015).

The overarching argument of this paper rests on a premise that a

bounded rational agent is bounded qua a neurobiological system. It follows that

proper understanding of the relevant neural architecture is crucial to veridical

characterization of notions of bounded and hence also ecological rationality. In

fact, a great deal of effort was dedicated to finding neural basis of some fast

and frugal decision rules in the ecological rationality literature (Gigerenzer and

Gaissmaier, 2011; Khader et al., 2016). There is also historical motivation.
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Validating the theory based on the research on perception and underlying neu-

rophysiology has already been envisioned in Simon and Newell’s sketch of the

research strategy Simon and Newell (1971):

8. Search for new tasks (e.g., perceptual and language tasks) that

might provide additional arenas for testing the theories and drawing

out their implications.

9. Begin to search for the neurophysiological counterparts of the

elementary information processes that are postulated in the theories.

Taking cue from Simon and Newell I do just that. I argue that in lieu

of sequential machines, we’d do better to think about neural architecture that is

characterized by parallelism, recurrency, mutual inhibition, and non-modularity.

This leads the discussion of a neural mechanism that was first discovered in the

perceptual domain, but has recently been implied in cognitive decision making

as well. Examining an algorithm based on this particular neural mechanism

we can see many motifs discussed in decision neuroscience and bounded ra-

tionality literature coming together. Curiously enough, the neural algorithm

at least superficially exhibits the same computational properties as a generic

heuristic model. It seems to operate sequentially and to systematically ignore

parts of information. Based on the established difference between search and

computation, and the particular properties of neural computations, I argue that

human decision-making is likely led by the constraints of robustness, but not

computation-minimization.

2.2 Discerning search from computation

As noted by (Fechner et al., 2018) complexity analysis based on EIPs presup-

poses that cognitive processes are serial. If steps are performed in series, each
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new step adds to the overall computing time. Inversely, less steps result in a

faster execution. The heuristic schema presented earlier assume that cues are

evaluated one-at-a-time. Evaluating a single cue amounts to going through the

loop once. For a given set of cues, the TTB will require the same amount of

loops as tallying only in the worst case scenario, when none or only the last cue

discriminates between the options.11 Since on average TTB will halt after a

smaller number of loops it is believed to be a faster and a more frugal strategy.

Sequential evaluation of different chunks or sources of information

(cues) remains an explicit feature of a prominent class of “non-compensatory”

heuristics (Gigerenzer and Gaissmaier, 2011). Speaking broadly for memory-

based decisions, such models assume that choice attributes are selectively and

sequentially retrieved from memory. Accordingly, the strategy that requires

less information will result in a smaller number of retrievals. Two such closely

related strategies are the recognition (RH) and fluency heuristics (FH), which

prompt an agent to choose an option that is remembered faster or with more

ease, respectively.

A recent neuro-imaging study provided contrary evidence (Khader

et al., 2016). When an agent is presented with an option set, all of the associated

memories, or rather their respective neural representations, are automatically

activated. Only after such mass retrieval can she pick out memorized values of

target attributes. However, it takes additional cognitive control and attentional

focus to boost the activation of memory representations related to a specific

attribute.12 Ignoring retrieved content doesn’t necessarily cut cognitive costs;

even more so, it is likely to increase them! On its own, this is already a very

11 To simplify, I assume as it is common to, that if no discriminating cue is given, an option

is chosen randomly.

12 Note that, due to metabolic efficiency, this boost is probably achieved by inhibition of

attributes corresponding to the information that strategy requires to be ignored.

28



2.2 Discerning search from computation G. Štukelj

telling result, since the RH and FH are just two special cases of TTB, all three

sharing the same computational schema.

The idea of seriality is a legacy of symbolic AI, or more precisely Si-

mon’s and Newell’s conviction to a strong analogy between humans and digital

computers, the “two most significant classes of [physical] symbol systems” (Si-

mon and Newell, 1971). Classical AI research was in great part motivated by

the promising insights of reasoning about the structure of software capable of

replicating human behavior.

This was done for solving well structured problems, like chess, that

are amenable to description in a rigid, formal language. To solve a well defined

problem, rules need to be remembered and held in memory as they’re applied

one after another, until a solution is found. This requires sustained attention

and explicit, deliberative application of the solving strategy. As such, it provides

a textbook example of a task that requires intense reliance on working memory,

one of the most scarce cognitive resources.

The fact of limited resources allows us, for most purposes, to view

a symbol system as though it were a serial, one-process-at-a-time

device (Newell and Simon, 1976).

However, reasons for emphasizing WMC limitations and assuming that

information processing is the decision process bottleneck go beyond just obser-

vational design. Asserting that something is a physical symbol system is to assert

something about its architecture (Newell and Simon, 1976). Core architectural

principle of a digital computer is modularity. Both size of a system memory,

and the bandwidth between it and the processing unit remain the main tie-ups

of computer processing speed to this day. This is often referred to as a “von

Neumman bottleneck”. Both assumptions are to at least some degree present
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in the modern literature as well.

Adaptive toolbox: the cognitive heuristics, their building blocks

(e.g., rules for search, stopping, decision), and the core capacities

(e.g., recognition memory) they exploit (Gigerenzer and Gaissmaier,

2011)

While lately it is more often than not argued that ignoring information

is primarily done to increase accuracy, it is still retained that being “frugal”,

that is, forgoing some computations, makes an algorithm faster by decreasing the

cognitive effort needed for its execution. “[A] heuristic is a strategy that ignores

some information and minimizes computation” (Gigerenzer and Sturm, 2011).

Information processing remains construed as an effortful process constrained

by a WMC. That is why it is commonly assumed that humans only process a

small amount of information and systematically ignore the rest (Gigerenzer and

Gaissmaier, 2011; Hertwig and Pachur, 2015; Hertwig and Engel, 2016).

Heuristics: strategies that ignore information to make decisions

faster, more frugally, and/or more accurately than more complex

methods (Gigerenzer and Gaissmaier, 2011)

Literature on fast and frugal heuristics often conflates information

search with computation. For example, (Todd and Brighton, 2015) define heuris-

tic both as an “information-processing mechanism” and as something that is

“guiding search for crucial information”. In fact, this follows readily from the

assumption that, amongst others, the “building blocks” of a heuristic include

rules for both search and decision. This amphibious nature of heuristics is

strongly reminiscent of Simon and Newell’s conceptualization of computation

in terms of search in a tree data structure. In fact, in cognitive science heuris-

tics ofter assume their original role of guided tree-search algorithms (Gigerenzer
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et al., 2012; Fu, 2016). The difference between search and calculation points at

an ambiguity of what it means to be frugal by ignoring information. An agent

can either forgo searching new information, or omit computing with it, even

though she already acquired it.

Some of the most pertinent objections to heuristic models have been

raised by comparing them with an alternative model based on parallel processing

in a recurrent winner-takes-all network of nodes representing both cues and

behavioral outputs (Glöckner et al., 2014). To that end a number of behavioral

protocols were developed to test divergent predictions about response times,

confidence reports, eye movements, and other behavioral variables (Glöckner

et al., 2014; Söllner et al., 2014; Glöckner and Betsch, 2012).

A common theme to all the arguments is a distinction between in-

formation search (acquisition) and information processing. Both decisions and

confidence are influenced by irrelevant, yet valid information when it is freely

perceived. It seems that humans (adaptively) ignore free information only when

the act of perception is within their power. That is, sometimes they do not ac-

quire additional information, even when it would come without a cost, yet they

always evaluate all of the available cues. It was observed that removing a low-

validity cue in a non-compensatory environment13 can result in a longer reaction

time, despite there being even less information to be processed.

In summary, abundant behavioral evidence suggests that humans don’t

ignore perceived or otherwise attained information. It was argued forcefully that

deliberate control, and thus WMC, has mostly to do with the attaining of the

13 A non-compensatory environment is characterized by great discrepancies between cues’

predictive powers, for example, due to high correlation between the cues. Knowing the

most predictive cue thus eliminates the need for knowing the others. It is a type of

environment in which TTB is particularly successful, and arguably a prescriptive strategy

of choice.
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information, but not computing with it. Secondly, if cues would be processed

one-by-one, we would expect the evaluation to be invariant with respect to the

changes of the broader body of information. To the contrary, strong contextual

effects indicate that different chunks of information are not evaluated separately.

Taken together, we can see why suppressing parts of information amounts to

active, and hence effortful, intervention into an arguably “holistic” process.

A growing body of behavioral evidence suggests that the decision-

making bottleneck occurs at the stage of information acquisition. For example,

when humans are learning a causal structure of an experiment, they often don’t

form correct hypotheses, but if the hypotheses are given, they have no trouble

computing with the respective probabilities (Bonawitz and Griffiths L., 2010).

Additional working memory load only affects memory processes when new infor-

mation is being encoded, but not during retrieval of already learned information

(Sprenger et al., 2011). I find this all well aligned, with the motor experiments

performed by (Acerbi et al., 2014) that “suggested that suboptimality in dealing

with complex statistical features [...] may be due to a problem of acquiring the

priors rather than computing with them”. The relevance of such experiments is

discussed in the next section.

2.3 Heuristics for perception and motor-control

If heuristics are build upon evolved capacities, and are thus partially shared

across species (Gigerenzer and Sturm, 2011), it would seem likely that some of

these “building blocks” were also used for heuristics for other domains of human

agency. Indeed, simple strategies like “gaze heuristic” have been proposed for

solving perceptuo-motor tasks as well (Gigerenzer and Gaissmaier, 2011; Raab,

2017). How would an EIP analysis apply to these?

From a purely conceptual point, it is instructive to look at the early
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discussion of what constitutes a complex motor act (Schieber, 1990). Intuitively,

hand synergies, like grasping an object or forming a fist, are composed of atomic

movements, like moving a single digit. Analogous to heuristic models research,

listing the latter would give us a register of “elementary motor processes”. The

complexity of a composite movement could then be estimated from the com-

plexity of its constituents. Yet, for most of the digits, neural circuits implicated

in individuated movements encompass circuits for composed movements that

involve a given digit and recruit even additional neurons.

That is, moving a digit triggers movements of other digits as well. And

this goes beyond a mere mechanical coupling of tendons. In order to move a

single digit, movements of several others need to be suppressed by activating

additional inhibitory neurons. That is why such intuitively elementary motor

processes cost more both in terms of neuronal metabolic consumption and, until

a movement is sufficiently rehearsed, effortful cognitive control.

The analogy between individuating digit movements and selecting spe-

cific decision option attributes is self-inviting, but it is probably nothing more

than an analogy. Nonetheless, it is a foretoken of how misleading our intuitions

can be when it comes to computations in neurobiological systems. And as we’ll

see, looking at a perceptuo-motor system provides well understood examples of

generic neuronal computations, some of which we can also expect to underlie

higher cognitive functions. To be clear, I’m certainly not the first to point at

a similarity between perception, cognition, and motor control in the context of

heuristics.

Just like there are perceptual illusions, it was reasoned that there have

to be “cognitive illusions” as well. This symmetry argument didn’t inform the

theory as much as the experimental design (Kahneman, 2003). That is why it

is often criticized for seeming intention to provoke non-representative reasoning
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patterns. More importantly, a number of insights in neuroscience came from

describing perception, and motor control as a decision problem. A perceiving,

or moving agent is said to be deciding between categorizations of a perceptual

stimulus, or between different movement trajectories, respectively. Different

categorizations (movements) can be associated with differently valued outcomes,

thus giving rise to a non-trivial decision problem (Hanks and Summerfield, 2017;

Wu et al., 2015).

At first it seemed that perception and motor control don’t have much in

common with cognitive decisions. Near optimal performance in the perceptual

and motor decision tasks was often contrasted to seemingly irrational behavior

in classical economic paradigms (Summerfield and Tsetsos, 2015). However, a

great deal of recent literature argues that there is more between the percep-

tual and the economic decision making than just normative and nominative

commonalities. This is mostly due to the development of shared decision mod-

els and mechanistic explanations, and experimental evidence implying overlap-

ping brain regions and similar physiological signatures (Hanks and Summerfield,

2017; Philiastides et al., 2010; Polańıa et al., 2014a). With more and more inter-

est in comparing perception and economic choice, researchers developed proto-

cols that use the identical stimuli, or even the same stimulus property (Polańıa

et al., 2014a; Dutilh and Rieskamp, 2016).

The limits of human decision-making have been primarily explained

with the putatively high cognitive costs of information processing. With the

implication that a bounded rational agent inevitably ignores some information

due to a processing overhead, and possibly bettering her decisions in the process.

A notable amount of evidence was gathered against this behavioral prediction,

both in economic and perceptuo-motor decision literature. In classical cued

decision-making under uncertainty humans ignore information sources when ex-

ploring a problem space, but do not ignore freely given information (Glöckner
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and Betsch, 2012). It was suggested that cognitive limitations, such as WMC,

have mostly to do with acquiring information, but not manipulating it (Glöckner

et al., 2014).

Similar observations have been reported in perceptuo-motor tasks as

well. Experiments suggest that all of the available information is utilized, result-

ing in strong contextual effects, and that executive processes are predominately

involved with exploration and not computation. This would explain why rising

task difficulty in a motor study doesn’t result in use of simplifying heuristics,

as subjects continue to perform exhaustive computations (Snider et al., 2015).

Complex processing strategies provide much better explanations of observed

behavior in perceptual decision tasks as well (Shen and Ma, 2016).

Moreover, it was shown that differences in domain-specific performance

in the equivalent decision tasks are an artifact of the different performance mea-

sures (Jarvstad et al., 2013). There are two common ways to assess rational-

ity of an agent’s behavior. If performance is measured by comparing agent’s

gains with those of a hypothetical “optimal” agent, as it is usually done in the

perceptuo-motor decision literature, the differences appear to be rather small.

For example, in (Jarvstad et al., 2013) the expected monetary outcome for the

average participant is approximately 92% of the expected gain of an ideal agent.

This almost optimal performance was observed for both perceptuo-motor and

cognitive decision-making.

However, if one looks at the adherence to certain rationality axioms,

as it is usually done in the economics literature, then the most likely conclu-

sion is that humans seldom behave rationally. But this does not hold only for

economic choice. When performed in a volatile environment, the presumably

irrational context dependence was observed in both perceptual and motor de-

cisions (Neyedli and Welsh, 2014; Summerfield and Tsetsos, 2015). A bias was
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also introduced with an asymmetric reward or cost structure (Hagura et al.,

2017; Wu et al., 2015). Evidence speaks against inherently “better” perfor-

mance in motor and perceptual tasks as opposed to classical decision-making.

Even more so, domain invariant risk seeking behavior observed in children points

to a possibly linked development of capacities for economical and visuomotor

decision-making (Dekker and Nardini, 2016).

I want to draw attention to another, and a rather marginal observation

in (Jarvstad et al., 2013); the difference in gains was driven almost exclusively

by low-cost errors. That is, a suboptimal choice was more likely to occur when

the difference between the values of alternative choices were smaller. This can

be explained at a high level description. If the difference is pint-sized the loss

incurred by a suboptimal choice might be too small to be worth the effort of a

precise-enough computation. The observation is closely related to the observa-

tion mentioned above, where the size of an information set doesn’t matter as

much as how well does the information discriminate between the alternatives

(Glöckner and Betsch, 2012).14

There’s also a lower level explanation. Taking into the account neural

noise corrupting internal representations, it comes as no surprise that the closer

the representations, the more likely it is that the comparison will be swayed

by it. It turns out, that contextual dependence in economic choice is well ex-

plained by normalization, a class of ubiquitous neural coding mechanisms first

proposed to explain phenomena observed in a primary visual cortex (Carandini

and Heeger, 2012). According to the Barlow’s efficient coding hypothesis such

mechanisms evolved from optimizing information processing under neurophysi-

ological constraints (Carandini and Heeger, 2012; Louie et al., 2015).

14 It is not clear whether the related model captures the link between discriminability and

likelihood of an error, or if it just predicts longer reaction times.
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Barlow’s efficient coding hypothesis proposed that sensory systems

exploit widespread statistical regularities in the distribution of the

sensory environment [...] regularity-induced redundancies in the

incoming information stream are removed by sensory systems, in-

creasing the independence of neural responses to different stimuli

(thus maximizing information and increasing efficiency) (Louie et al.,

2015).

We speak of cognitive, perceptual, and motor decisions separately to

label the task relative to the main source of uncertainty. A question arises

naturally if there is something common to how we process the probabilistic

information from these different sources. Turns out there is! Neural correlates

of probabilistic weights of risky prospects are represented in medial prefrontal

cortex (mPFC), both when learned as a movement variance in a motor lottery, or

given explicitly in a classical economic task Wu et al. (2011). Thus, it shouldn’t

be surprising to learn that the probabilities are represented in the same way,

that is, as linear transforms of logarithmic probability odds, regardless whether

subjects are performing a cognitive, perceptual, or a motor task (Zhang and

Maloney, 2012a).

Secondly, an additional source of uncertainty was recognized in deci-

sion neuroscience literature, beside the nondeterminacy of the task environment,

namely the fluctuations in neuronal signaling. Like perception and motor con-

trol, cognition is realized on the basis of neural computation. This is important,

because uncertainty arises both due to a task-induced risk, and noise present

in neural circuits. However, we’re dealing with two different beasts here; while

the former is often a “known unknown”, the latter is always an “unknown un-

known”. By virtue of being realized in a neural circuit, any decision mechanism

is bound to deal with a noise-induced ambiguity.
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2.4 Neurons, circuits, and uncertainty

Some probabilities are external and relate to an uncertain structure of the en-

vironment. They can be either learned through experience, or communicated

according to simple conventions. It was noted above that perceptual and mo-

tor decision-making come with additional stochasticity through variability in

perceptual stimuli and motor execution.

There’s an additional source of uncertainty that pertains to the cog-

nitive decision-making as well. A certain amount of irreducible stochasticity is

due to noise in neural representations of value. A brain doesn’t compute with

respective probabilities, but the mechanisms for value computation have evolved

around mitigating such noise. The normalization models are conceptually ap-

pealing because they provide an account of how such computations could be

robust and respect metabolic efficiency at the same time.

An action potential is the basic unit of neural signaling. It is a rapid

change in electric potential, propagating along the neuronal membrane and pos-

sibly carries over to another cell. That happens only if at some point alongside

neuron’s membrane voltage between neuron’s inside and outside gets sufficiently

high to trigger it. After such an event occurs, it takes some time for neuron’s

membrane to reach its initial potential.15 This has to happen before a new

action potential can take place. If the voltage between two sides of a neuron’s

membrane doesn’t get sufficiently low, a new rise in voltage cannot occur.

The time it takes a membrane to become excitable again limits the

number of times a neuron can fire in a given period. This physiological constant

provides an upper bound on neuron’s signaling capacity. Consequently, the

15 In fact the membrane’s voltage potential needs to get even lower, i.e. the membrane needs

to get “hyperpolarized”.
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absolute number of spikes cannot adequately represent wide-ranging quantities.

Normalization is a simple way to extend the dynamic range of a neural signal.

Since it was first proposed to explain a phenomena in a visual system (Carandini

and Heeger, 2012), I’ll use a retinal neuron as an example.

Sensitivity of a neuron responding to the light intensity in a certain

small area of an animal’s visual field is adjusted according to the activity of

selected neurons responding to the close surroundings of the area. The greater

light intensity is reported by these neurons, the more intense light will be needed

to elicit the same response from the “normalized” neuron. Generally speaking,

neuron’s activity is normalized with respect to the summed activity of a broader

neuronal pool. This allows the same neuron to signal small changes in light

intensity across a wide wavelength spectrum. In contrast, a neuron that would

invariantly map a specific wavelength to a specific response, could only exhibit

a much more coarse-grained sensitivity.

We can easily convince ourselves that similar mechanisms come into

play during a decision process if there are to be neurons dedicated to repre-

senting value. Throughout their histories decision-makers encounter options of

varying worth, ranging from few cents to millions and above. If value were to be

represented on an absolute scale, differences below certain magnitudes would be

inevitably obscured due to physiological constraints of neural coding. Empiri-

cal evidence for involvement of such mechanisms in a decision process further

relates sensory processing with economic choice. It also showcases the adaptive-

ness of neural decision-making machinery and provides a low-level mechanical

explanation of contextual dependence of economic choice (Louie et al., 2015).

A simplified example is provided that nicely relates the previous dis-

cussion of discriminability with a claim that, as a rule, humans don’t ignore

attained information. Assume a primitive neurobiological system is choosing
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between items of differing worth. In its simple neural circuit, there is a value-

neuron for each item representing the corresponding value. All value-neurons

project to a choice-neuron, but also to each other. This allows them to normal-

ize their response before they signal it to a choice neuron. Assume further, a

choice-neuron communicates over channels corrupted by noise sampled from a

distribution with zero mean and non-null variance. That is why value-neurons

sometimes over- or under-sell the item they represent.

Presence of noise explains why a probability of the system choosing

a less valuable option is higher, the harder it is to discriminate between op-

tions. Imagine that the system, when choosing between two options, consis-

tently choses one option over the other. Offering it a third alternative would

bring the normalized values of the first two items closer together and this could

be enough for a break-down of the choice consistency.

Normalization was suggested (Tsetsos et al., 2016) as a plausible build-

ing block of a more elaborate neural algorithm called “selective integration”

(SIA), which is built upon a concept of a sequential sampling model (SSM). A

generic SSM assumes that information about choice values is sequentially sam-

pled, from environment or memory, and then accumulated with previous samples

until a decision threshold is reached. Values are sampled interchangeably with

respect to a different option attribute. There could either be multiple value

representations for each item, or a single quantity, representing the difference

between accumulated across-attribute values of competing choices.

SIA simply states, that at each time values are sampled, a comparison

occurs (e.g., by a normalization mechanism) and the value of a local loser is

discarded. That is, if two sample inputs are compared, such that I1 > I2,

then at latter stages the system will integrate partial values I1 and α · I2, with

0 ≤ α ≤ 1. Since the value information is carried only by the magnitude of
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the respective accumulated quantity, this can be seen as effectively ignoring

some information. At first it would seem that this is much in accordance to the

assumptions behind heuristic models.

A canonical argument states that such violations of decision theory

[...] disclose fundamental limitations in human processing capacity

and of the executive system (Tsetsos et al., 2016).

However, psychophysical experiments showed that this selective inte-

grating is not due to processing limitations of human decision-makers as the

bottleneck assumption would predict (Tsetsos et al., 2016). Simulations show

that SIA actually increases the accuracy under the condition of late noise, that

is, noise that is added to sampled values at the time of integrating them in the

overall accumulated value.

These findings suggest that violations of rational choice theory reflect

adaptive computations that have evolved in response to irreducible

noise during neural information processing (Tsetsos et al., 2016).

It is interesting to contrast SIA with a generic heuristic. Selective in-

tegration predicts that information is sampled sequentially and that some of it

is eventually ignored. Both of these seem to support the conception of bounded

agency currently in place. However, information is not ignored because of com-

putational intractability or environmental ambiguity, but to guard against noise

in neural circuits. Secondly, information is ignored only after it is processed;

no computation is forgone like in a heuristic model. What remains to be shown

is that sequential sampling, doesn’t imply sequential processing, invoking again

the distinction between information acquisition and processing.

Sequential sampling models are linear simplifications of the pooled mu-
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tual inhibition model (Bogacz et al., 2006). Details aside, the two distinctive

features of such a circuit model are recurrent connections and mutual inhibition

(Hunt and Hayden, 2017). Feedback connectivity is considered as the most likely

architecture to implement normalization, especially because of abundant recur-

rent connections in cortical areas (Louie et al., 2014). If comparison of choices is

indeed implemented as a competition via mutual inhibition (as predicted by the

computational models), modulating the ratio between GABA and glutamate,

the two neurotransmitters most commonly used by neurons for inhibition and

excitation, should affect the decision process. Indeed, this was observed when

the ratio was disturbed in ventro-medial prefrontal cortex (vmPFC), an area

commonly implicated in value-based decisions (Strait et al., 2014; Wu et al.,

2011).

[V]alue-guided choice is governed by a competition by mutual inhi-

bition that is mediated by a balance between GABAergic inhibition

and glutamatergic excitation in the vmPFC (Jocham et al., 2012).

Increasing the ratio in favor of excitatory glutamate, subjects became

worse at discriminating between choices with similar values. In other words,

they became more susceptible to noise. This is the exact result (Hämmerer

et al., 2016) first predicted with a detailed simulation of pyramidal neurons,

and then showed experimentally with a transcranial direct current stimulation

(tDCS) of vmPFC. Applying tDCS excites neurons, acting against the force of

inhibitory signals. This indiscriminately increases baseline firing rates of neu-

rons, making them more susceptible to background noise. Of course, mutual

inhibition alone cannot explain this effect, because applying tDCS also excites

the inhibitory neurons, thus the two effects should more or less cancel out. How-

ever, the effects are not symmetrical because of the strong recurrent connections

of pyramidal neurons that amplifies the excitatory signal beyond the increment
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in an accompanying inhibitory signal. This experimental evidence thus speaks in

favor of architectural assumptions of strong recurrent connections and ubiquity

of competition through mutual inhibition.

Appealing to recurrency, we can now see why sequential input doesn’t

imply sequential processing. Neurons in recurrent networks not only receive in-

put from other network units, but also receive their own previous output. This

allows such networks “to show sustained memory for inputs long after they have

been removed, allowing temporally extended computations to be performed on

sequential inputs” (Hunt and Hayden, 2017). Neurons can “remember” their

output by receiving it at a later time as an input from a recurrent pathway.

Hence, neurons act both as mnemonic and processing units. This would mean

that there is no dedicated architectural segment that would correspond to a

processing bottleneck. Because mnemonic and processing units are not imple-

mented separately, there is no need to shuffle data between the two, effectively

doing away with a possible neural analog of a von Neumann bottleneck.

The key insight [...] was that neuron-like units that performed bio-

physically plausible computations and were connected in simple ways

could perform astonishingly rich computations. Such systems do

not have dedicated memory and processing subsystems, unlike other

computing architectures (Hunt and Hayden, 2017).

Collocation of memory and processing is also a distinct feature of the

so-called memristive systems. That is, nonlinear dynamic systems that can

be described as a generalization of a “memory resistor”, or “memristor” for

short. One such memristive system, curiously enough, was proven to be the

Hodgkin-Huxley model of a neuron (Chua and Kang, 1976). It was only many

years later that a memristor’s physical existence was demonstrated (Strukov

43



2.5 Conclusion G. Štukelj

et al., 2008). Nowadays, many neuromorphic electronics16, that is, electronic

circuits and devices whose architecture relies heavily on the known principles of

neurobiological organization, utilize memristors to build non von Neumann like

computers (Schuman et al., 2017).

However, the inevitable comparisons of this [von Neumann] archi-

tecture to the human brain highlight significant differences in the

organizational structure, power requirements, and processing capa-

bilities between the two. (Schuman et al., 2017)

Simple neural mechanisms have evolved on the basis of architectural

principles that allow high, yet metabolically efficient processing capacity. The

distinction between digital computers and neural systems is based on the differ-

ences in basic computational units and their organization. Importantly, these

differences lead to different processing limitations. Ignoring information by for-

going computation would be beneficial if executed on a sequential and modular

machine. Neural architecture is more likely organized around principles of high

parallelism, recurrent connectivity, and mutual inhibition (Hunt and Hayden,

2017). These suggests computations based on pooling, competition through

mutual inhibition, and normalization. These in turn provide a good low-level

explanation of observed contextual effects and cognitive costs of ignoring ac-

quired information, and suggest evolution towards robust decision-making under

circumstances of unquantifiable uncertainty.

2.5 Conclusion

The widely accepted view in the heuristics literature states that humans tend to

make decisions following simple algorithms, the so-called heuristics. Algorithms

16 See Chapter 4 for further discussion of NE.
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are described as simple if they ignore part of the available information. There

are two purported benefits of doing so. Namely, minimizing the amount of

computation, and achieving robustness in face of unquantifiable uncertainty. I

argued that the latter is a novel theoretical contribution of the FFH research

program, while the former is a legacy of Simon and Newell’s work on classical

AI. In line with the notion of ecological rationality its proponents maintain that

the two facets of simplicity relate to two types of constraints imposed on an

agent, inherent and environmental. In their view, minimizing computation is

a consequence of limited cognitive resources, whereas robust algorithms are an

answer to epistemically unfriendly environments.

Relying on results from both psychological and neuroscientific liter-

ature I argued that this view of bounded agency needs to be revised. In a

nutshell, it seems that there is little reason to believe that simple heuristics

that ignore information minimize resource consumption, as they’re related to

additional cognitive effort and neural activity. While the neuroscientific liter-

ature corroborates the claim of evolved trait of robustness, it emphasizes the

neural noise rather than environmental ambiguity as the source of irreducible

uncertainty. Moreover, there seems to be some parallels between the idea of eco-

logical rationality from the heuristics literature, and Barlow’s efficient coding

hypothesis.

This gives further support to the intuition that decision processes have

evolved to exploit the statistical regularities of the environment. More impor-

tantly, it could also suggest that decision algorithms are such that the amount

of information is boundedly optimized relative to the metabolic cost needed to

encode it. This relates closely to the question of how costly is it exactly to

ignore already acquired information. Is ignoring a cue less costly than ignor-

ing a more predictive cue? If so, what if the more predictive cue is strongly

correlated with a third cue, whereas the less predictive cue is not? How does
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the causal knowledge of the environment affect these results? What happens

when it is the combinations of multiple cue values that are truly predictive of

the environmental state? What if a cue is introduced with a certain predictive

strength, but then the strength changes?

Ignoring a cue that is highly correlated with another one is discarding

a lesser amount of information as when ignoring that same cue in the absence of

the other. That’s why I would expect that ignoring a less predictive cue is more

costly, as soon as there are two or more cues that are strongly predictive on

their own, as this entails their correlation. Moreover, it would seem that these

effects would be stronger in environments in which cue relationships would be

determined by an “expected” causal structure of the environment and weaker

when they would contradict it.

I’ve also argued that the current measure of simplicity based on

algorithmic complexity analysis assumes wrong computational architecture.

Namely, the heuristics are analyzed as if they were run on a sequential machine

similar to a digital computer, in line with core assumptions of the classical AI

research. I believe that the use of ACT-R (R. Anderson, 2007; Fechner et al.,

2018) and similar cognitive architectures to evaluate the costs of using a heuris-

tic is a step in the right direction. However, it’s been long since the rule-based

models had their own corner on the market. The alternatives include network

(Glöckner et al., 2014) and circuit models Genewein and Braun (2016). For

such models circuit complexity analysis would probably be more suitable (We-

gener, 1987). Particular attention should be given to work on the complexity of

neural networks (Parberry, 1994). To the best of my knowledge, this is the only

rigorous attempt at understanding of how does complexity of neural networks

compare to complexity of conventional computers.
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3 On analog neural computation

I this chapter I discuss a recent account of analog neural computation and

its underlying theory of analog and digital representations. I raise several

concerns regarding the empirical validity of a premise used to argue that

neural computation is analog. Furthermore, I present some conceptual tensions

between this account and typical computational explanations found in neuro-

science. I trace these issues back to the underlying definitions of representations.

CHAPTER 3

analog

computation

neural

representations

miscomputation

discreteness

computational

identity

Figure 5: Graphical summary of Chapter 3.

47



3.1 Introduction G. Štukelj

3.1 Introduction

In a recent issue of Minds and Machines, Maley (2018a) argues that we should

ground computationalism about brains in analog computation, which he defines

as “the manipulation of analog representations”. The argument goes as follows:

(M1) Analog computation is manipulation of analog representations.

(M2) Analog representations can be continuous or discrete.

(M3) Digital representations are discrete.

(M4) Brains compute with continuous signals.

∴ Brains are analog computers.17

∴ Brains manipulate analog representations.

Premise (M4) is an empirical statement and will be the focus of the

next section. I will examine in more detail the reasons given for its acceptance

and argue against its empirical validity as well as conceptual fruitfulness. The

two central concerns are that Maley’s approach is not able to recover a notion

of miscomputation18 and postulates too strong of a notion of computational

identity19. More specifically, Maley’s position rules out the existence of neural

17 There is a hidden premise that there are only two types of computation – namely digital

and analog. In fact, Maley advertises the approach as an alternative to postulating a third

type of computation (neither analog nor digital) that would include neural computation

(see Piccinini and Bahar, 2013).

18 If a computer is computing a function f for an input i and the output o 6= f(i), then one

might want to say that the computation has failed. In other words, a “miscomputation”

has occurred. See also (Piccinini, 2015, p. 12-14)

19 The notion of computational identity is tied directly with the notion of miscomputation.

Imagine a computer that successfully computes f for a given input at some time, but for
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noise without offering a new conceptual device that could fill its role in typical

neuroscientific explanations.

The reasoning is slowly laid out in more detail throughout the chapter.

However, to assist the reader I will shortly discuss the crux of the argument

here. We should begin by asking ourselves what does it mean for a computer

to be continuous (in a sense that excludes digital computers). It should be

noted that ordinary digital computers can perform some precise computations

with continuous (and even transcendental) numbers. Insisting that brains are

continuous computers and digital computers are discrete, must thus be meant in

a sense that the variables denoting brains’ computational states are continuous.

I spend a significant portion of the text arguing that physical states of

brains are not continuous, that is, that there are only countably many possible

physical brain states. This in itself would invalidate the premise of continuous

computational states – cardinality of the set of computational states cannot

be greater than the cardinality of the set of the underlying physical states.20

However, one does not even need to go that far. The point is that not all

fluctuations matter – even if the physical quantity is changing continuously, not

all of its changes carry information.

This is where the noise comes in or so I argue later in the text. If we

agree that there are random fluctuations (noise) that can be present but do not

some reason miscomputes when given equal input at a later time. This two events are

two attempts, one successful and the other failed, of the computer performing the same

or “identical” computation.

20 I agree that it is often more practical to talk about brains as continuous systems, but this

is not enough for a categorical difference between brains and digital computers. Moreover,

it hardly even holds as a “practical difference”, given that digital computers are also being

increasingly more often described using analysis/calculus rather than discrete math – e.g.,

when we talk about parasitic capacitances, quantum tunnelling, etc.
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affect the computational state, then we cannot say that there are uncountably

many computational states. That is, if the state is determined by a certain value

of the membrane potential ± ε, then as long as ε > 0, the respective variable

describing the computational state is discretized.

The point about miscomputation is that sometimes we want to say

that the same computation was performed in different ways (some successful,

some failed). However, if we insist that every infinitesimal change constitutes

a different computation, then every computation will be mapped to an exact

physical state.21 And we’d also be forced to agree that every computation is

successful if performed.22 On the contrary, I’d like to say that performing the

same movement multiple times amounts to performing the same computation

multiple times and that the variation in the outcome is the result of the noise

on top of that computation. In this sense a notion of noise is integral to neuro-

scientific explanations involving miscomputation, and a theory postulating that

brains compute with continuous signals will likely fail to make sense of its use.

Premises (M2) and (M3) follow from the definitions of analog and dig-

ital representations given in (Maley, 2011). These, together with the premise

(M1) will be the focus of the third section. There I will first go through the

definitions of the two types of representation in more detail. I will then argue

on examples that the definitions are ill-founded and are in particular not appli-

cable to a wide class of neuronal representations. Most importantly, by further

explicating Maley’s definitions of representations, I will show how the issues

with miscomputation and computational identity are more general and might

have something to do with defining a type of computation as a manipulation of

the respective type of representations, as exemplified by (M1). Finally, Maley

21 Or an exact sequence of states, or rather an evolution of a physical quantity in time.

22 Unless one would somehow argue that the same physical evolution can constitute both

successful and unsuccessful computation.
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(2011, 2018a) offers a handful of useful notions related to a notion of representa-

tion that lead me to explore interesting connections to other open questions in

philosophy of computation and neuroscience, and their intersection. An outlook

for future research is given in the conclusion.

3.2 On continuous neural computation

My concerns regarding (M4) can be stated very generally, namely that neuronal

processes operate on discrete intervals and with finite amounts of resources.23

The communication and computation in neural systems are realized by changes

in electro-chemical gradients, by means of ionic current, neurotransmitters, and

protein modulation which effects the electrical properties of neurons or acts

upon the system in some more general way.

One need not even argue that the neural computation ought to be

described as finite. The premise (M4) is already falsified if the computation

turns out to be discrete. With that in mind, I’d like to point out the charge

quantization principle which simply states that charge is quantized and therefore

any amount of charge will be countable. This holds even more so for the case of

neural systems, since the charge is carried by an ionic current. The amount of

ions is surely a discrete quantity, and most likely finite as well. This holds for

the neurotransmitters, G-proteins and other cascading chemical components

that play a role in neural computation. All these physical quantities surely

come in abundance and their role in neural function, broadly construed, is well

established (see Bear, 2016).

Moreover, neural computation is not free. It requires energy, for ex-

ample in form of ATP (adenosine triphospate) consumed by ion pumps – neural

23 See also (Piccinini and Bahar, 2013).
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mechanisms that are vital for repeatedly establishing an electro-chemical gra-

dient between the outside and inside of a neural membrane that is crucial for

propagation of any kind of electrical signal. Given that there will be only a

finite number of these pumps working under specific energy, space, and time

constraints, it is hard to see how electro-chemical gradients could change con-

tinuously.

Even then, the mere presence of a continuously graded quantity by

itself is not necessarily computationally relevant. This is related to the fact

that changes of a neuron’s physiological state, at least on the relevant time-

scales, take time. That is, they’re not instantaneous.24 Hence a neuron can

only assume a finite number of states in a finite amount of time, even if acted

upon by a non-discrete quantity. This should be kept in mind when assessing

the reasons given in support of (M4):

[T]here are several ways in which the continuity of a phenomenon

related to neural spiking plays an important role in neural signaling.

First, unlike digital computers, there is no discrete ‘clock’ that de-

termines when a physical change in a circuit element should count

as a change in signal. Second, unlike digital computers, the rate

at which physical changes in a circuit element occur–which itself is

a continuous quantity–can have effects on downstream elements in

the system. And third, unlike digital computers, the precise shape

of the voltage waveform of a circuit element going from ‘off’ to ‘on’

can have differential effects on other elements in the system. (Maley,

2018a, p. 85)

24 For example, it takes time for an ion pump to open or close, and a neurotransmitter

molecule or an ionized particle to travel a certain distance (including “quantum jumps”

Minev et al. (2019)).
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Three claims can be identified in the above passage, and I will go

through them one by one. For each premise I will present empirical results that

undermine the validity of inferring (M4). Moreover, I will present conceptual

arguments against characterizations of both neural and digital computations as

implied by the premises (M4.1-3):

(M4.1) “[T]here is no discrete ‘clock’ that determines when a physical

change in a circuit element should count as a change in signal.”

(Maley, 2018a)

(M4.2) Temporal and rate neural codes use continuous variables.

(M4.3) Continuous variation of membrane voltage waveforms is com-

putationally relevant.

At least superficially, the well-researched notion of neural oscillations

seems to be at odds with (M4.1). On the other hand, a direct comparison would

be a bit underhanded. A clock in a conventional digital computer has a much

more determinate effect on the efficacy of a signal than neural oscillations do in

brains. That is, in a computer a signal either arrives at an appropriate time and

is dealt with, or it doesn’t and is simply ignored. The same could not be said

for the brain. Nonetheless, one could argue that this is a difference in degree

and not in kind and moreover, that both mechanisms seem to be in place to per-

form the same function – synchronization. Similar to conventional computers,

periodic changes in membrane voltage potential following a frequency shared

among multiple neurons allow temporal coordination between larger groups of

neurons.25

The oscillation-related fluctuation of the membrane potentials in

25 Other type of oscillation occurs when an assembly of neurons fire periodically and in

synchrony.
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the participating neurons continuously and predictably biases the

open-time probability of a multitude of voltage-gated channels. This

design is an energy-efficient solution for periodically elevating the

membrane potential close to threshold, providing discrete windows

of opportunities for the neuron to respond. If the input is not ap-

propriately timed, however, it is ignored altogether or the response

is delayed. (Buzsáki and Draguhn, 2004, p. 1928)

Neural oscillations have been commonly researched in the hippocam-

pus. Focusing on the latter, there are particularly telling results that speak

against (M4). In particular it would appear that only finitely-grained time

differences are computationally relevant for neural computation. This follows

from another similarity between functional importance of computer clocks and

somewhat incidental effects of physiological limitations.26 There are reasons to

believe the “discrete windows of opportunities” in the hippocampus are deter-

mined by a physiological constant of about 10–30ms (Harris et al., 2003) that

matches:

1. the membrane time constant of pyramidal neurons (Spruston and John-

ston, 1992);

2. the period of the hippocampal gamma oscillation (Chrobak and Buzsáki,

1998; Csicsvari et al., 2003);

3. and the time scales of molecular mechanisms underlying long-term poten-

tiation and depression27 (Magee and Johnston, 1997).

26 That is, “another similarity” that speaks in favor of the “difference in degree, but not in

kind” argument.

27 LTP and LTD are two related molecular mechanisms underlying learning through modu-

lation of synapse strength also known as “spike timing-dependent plasticity” (STDP). Put
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In short, neural oscillations are ubiquitous brain phenomena, not lim-

ited to the hippocampus (Wang, 2010; Feurra et al., 2011; Polańıa et al., 2014b)

and the related research suggests that the “clocking mechanisms” in brains are

likely to reflect some physiological limits and are thus not arbitrary.28 Moreover,

these “biological reasons” are analogous to why clocks are used in digital com-

puters. Due to physical properties of computing mechanisms the signal has to

be kept constant for a certain period of time, and there has to be a certain time

difference between two different signals in order to achieve stable computation

(e.g., by avoiding race conditions).

It is important to note that using a clock is only one possible solution.

There’s nothing to digital computers that would make the presence of a clocking

mechanism necessary. Research on asynchronous digital computers is an active

field, and as old as its synchronous counterpart (Nowick and Singh, 2015). The

absence of a “discrete clock” is not enough to conclude that a computing mech-

anism under inspection is not a digital computer. Moving forward to (M4.2)

I consider two possibilities of how continuous variables might figure in neural

simply, if a presynaptic neuron fires shortly before a postsynaptic neuron, the strength of

the synapse increases, but if it fires shortly after, the synaptic strength decreases (Bear,

2016, p. 874-9). The “coincidence detection” usually involves binding of glutamate to

NMDA channels and the strength of modulation is proportional to the amount of Ca2+

ions entering the cell through the channel. Glutamate binds to NMDA receptors for many

tens of milliseconds, likely surpassing the amount of time the channel is actually open.

Thus the difference in arrival of two spikes before the depolarization of the postsynaptic

membrane, will only count if they occur sufficiently long apart and early enough for there

to be difference in related durations of glutamate being bound while the membrane is

depolarized. More generally, different arrival times will only have different effects if spikes

arrive far enough apart for there to be a sufficient difference in the amount of Ca2+ passed

through the channel. Thus the lower bound of temporal precision corresponds to the time

it takes for a minimal effective amount of Ca2+ to pass through a NMDA channel.

28 This will prove relevant when discussing (M4.2).
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computation via temporal and rate codings.

Two separate, well-known phenomena illustrate the importance of

continuity, rather than discreteness, in neural signaling. The first,

called temporal coding, occurs when the time between individual

occurrences of APs has some functional significance. The second,

called rate coding, occurs when the overall number of APs within

a given duration–the frequency of APs–has some functional signifi-

cance (Maley, 2018a, p. 83).

Given any time interval a number of spikes that occur will always be an

integer – a spike either occurs or it doesn’t. Moreover, as discussed above, the

rate interval is likely bounded by certain physiological constants. Thus variation

in the length of the interval which could be the source of variation in the rate

code is unlikely to really provide a continuous spectrum. That’s why the lack

of evidence of continuously varying rate code comes hardly as a surprise.

The idea behind the notion of temporal coding is that neural code re-

sides in temporal differences between different spikes. That is, that information

is encoded in the amount of time that passes between arrival of two given spikes,

rather than (or in addition to) encoding it with the number of spikes received

within a certain time interval, i.e., rate code. Assuming that time is continuous,

then so should be spike timing differences. An additional argument is wanting,

namely that the temporal coding is absolute. However, it seems that tempo-

ral coding is more likely to be relative or based on the order, rather than on

“precise timing” of the spikes’ arrivals (Stiefel et al., 2012; Butts et al., 2007).

In other words, temporal coding has more likely to do with discrete combina-

tions, rather than continuously precise temporal differences. Moreover, the term

“precise spike timing” in neuroscientific literature discussing temporal coding is

used in a rather peculiar way. Namely, “precise” usualy denotes temporal reso-
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lution on a millisecond scale (Panzeri et al., 2010).29 Finally, it is reasonable to

expect that the “coincidence” detection mechanisms operate on a millisecond

scale (possibly lower, but definitely finite, see footnote 27). Therefore, smaller,

let alone “infinitesimal”, timing differences are unlikely to be relevant.30 This

point is worth reiterating in order to avoid possible confusion. I do not argue

that inter-spike intervals or time in general are not continuous, rather I claim

that the relevant time differences are discrete insofar as neurons are not sensitive

to infinitesimal temporal changes.

There are also more conceptual reasons to reject (M4.2). It should

be noted that any kind of code will need to be decoded sometime along the

downstream signaling path. In order for an alleged continuity in neural repre-

sentations to play a role in neural computations, the decoding process needs to

preserve the continuous nature of the represented variable. Put simply, conti-

29 To the best of my knowledge, the smallest time resolution reported is on the scale of

microseconds (see Bale et al., 2015).

30 To illustrate the point, consider polychrony as an example model of how neural temporal

code could be used to encode information. The term describes “time-locked but not

synchronous” (Izhikevich, 2006, p. 245) propagation of spiking activity through a neural

network. Overlapping subsets of neurons are organized into “polychronous groups” (PG)

which produce a “regularly repeating chain of activity” (Eguchi et al., 2018, p. 546). The

idea is that the number of PG greatly exceeds the number of neurons (or even synapses),

yielding greater representational capacity. Importantly, the formation of groups occurs

under constraints imposed by differences in axonal conduction delays of different neurons

projecting to the same target. It was proposed that STDP “can select matching conduction

delays and spontaneously organize neurons into such groups” (Izhikevich, 2006, p. 249).

Due to the nature of mechanisms behind STDP the time differences between delays under

a certain bound simply won’t be recognized by the system and are thus not relevant

(see footnote 27). Unsurprisingly, the authors report millisecond temporal precision in

a network with an order of magnitude lower scale of axonal delays. Finally, it is worth

noting that discussed time-differences are still referred to as “precise”, despite the apparent

coarse-grained millisecond precision (Izhikevich, 2006; Eguchi et al., 2018).
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nuity needs to be found in the temporal and/or spatial dendritic summation

at a “decoding” neuron. For this reason (M4.2) stands and falls with (M4.3)

which states that the continuous variations in a neural membrane potential are

computationally relevant.

There are two ways to argue against (M4.3) – either by denying that

neural membrane potentials vary continuously, or by rejecting the idea that all

variations play a role in neural computation. An argument of the first type can

be made for a large population of neurons that communicate through chemical

synapses:

[Excitatory postsynaptic potentials] at a given synapse are quan-

tized ; they are multiples of an indivisible unit, the quantum, which

reflects the number of transmitter molecules in a single synaptic

vesicle and the number of postsynaptic receptors available at the

synapse. (Bear, 2016, p. 133)

While Maley (2018a) does not explicitly claim that chemical neural

communication constitutes continuous computing, an argument is lacking as to

why (M4) should qualify generally for brains as a whole. Perhaps we should

entertain a more modest claim, that part of a neural computation is based

on manipulation of continuous variables. Namely, computation realized by the

so-called “non-spiking neurons” and electrical synapses.

Not all inter-neural communication is based on action potentials.

Some rely on direct electrical signaling across synapses via what

are called gap junctions. This signaling is not all-or-nothing, but

continuous. (Maley, 2018a, p. 80)

While this is arguably possible, albeit very unlikely, I’ll argue that any
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account of neural computation that characterizes it as continuous computation,

is theoretically unfruitful and leads to strange commitments.31 Let’s assume for

the sake of the argument, that membrane voltage waveforms do in fact vary con-

tinuously. From (M4) it follows that infinitesimal changes are computationally

relevant.32 Thus a following argument can be made:

(B1) Precise membrane voltage waveform is computationally rele-

vant.

(B2) Membrane voltage is strongly dependent on the ratio between

inside and outside concentrations of K+.

(B3) Eating a banana increases blood-levels of K+.

∴ Banana intake is always computationally relevant for motor

control.

One might argue that dietary choices would be less likely to impact

computations confined to brains, due to the brain-blood barrier, and potassium

spatial buffering and other astrocytic mechanisms for regulation of the potas-

sium gradient. However, a similar argument could be constructed by replacing

(B2) with:

(B2∗) Membrane voltage is strongly dependent on body tempera-

ture.33

31 On that note it is important to emphasize that an argument applies more generally to

any kind of representational medium, without limiting the argument to neural membrane

voltage waveforms.

32 Arguably, voltage levels in digital computers also vary continuously. What makes them

discrete is the fact that only a countable number of states are computationally relevant.

33 See Goldman-Hodgkin-Katz voltage equation and Nernst equation.
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All that’s left is to just fill in for (B3∗) something that influences body

temperature and a similarly counter-intuitive conclusion will follow. Before dis-

cussing what exactly makes such conclusions problematic, let’s have a look at a

related consequence of adopting (B1) which is directly implied by (M4). Con-

sider a widely adopted idealization that neurons are well described as Gaussian

channels, to which Maley (2018b) seems to subscribe as well:

R(t) = N(t) + Z ; Z ∝ exp

(
−x2

2σ2

)

It simply states that an output of a neuron at certain time will be equal

to the neuron’s “actual response” plus some noise sampled from a zero-mean

normal distribution. The noise distribution is irrelevant past its ubiquitousness

in neuroscientific literature. However, even adopting a weaker notion of noise

without assuming any distribution will still turn out to be meaningless, if one

is to accept (B1). If the precise shape of the neuronal membrane voltage is

computationally relevant, it is hard to make sense of what neuronal noise would

be. Conversely, if we accept that some intervals proportional to noise (rather

than point-values) are mapped to computational states, (M4) must be rejected.

In other words, any degree of robustness to noise will lead to binning, that is,

discretization of the related computational variable.34

34 A purported counterexample to this argument are the neuronal instances of different fre-

quency filters. Removing a component of a continuous signal corresponding to a certain

frequency band will not necessary result in a discrete quantity. However, this counter-

argument assumes that the output of the filter is itself noiseless or deterministic. Exis-

tence of any such neural filters is dubious. By saying that such a quantity is inevitably

discretized I simply mean that for each possible output of the filter µ, the amount of the

input quantity could be either increased or decreased, say by ε, such that the µ would not

change. In this sense the measurement is discretized to the intervals of length 2ε.
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Sure enough, one might just bite the bullet and dismiss the notion

of noise altogether. Since I granted the possibility of continuously changing

physical states of a neural membrane, this becomes a dilemma about the def-

inition of neural computation, rather than an empirical question. I take the

general consensus to be that definitions should be judged by their usefulness.

The main reason why a definition of neural computation based on (M4) doesn’t

meet my expectations has to do with an apparent inability to compensate for

the conceptual convenience of postulating a noise component.

For one, I would like to keep the notion of noise because it allows us to

properly explain miscomputation. A template explanation would be: “Neural

circuit failed to compute a correct value, because there was too much noise.”

A good example of such explanations can be found in decision neuroscience.

If a noise component is assumed, it allows explaining contextually dependent

decision-making – and the so-called “preference reversals” – as a result of nor-

malization, a “canonical neural computation” (Louie et al., 2013).

If a computational variable is truly continuous, then an infinitesimal

change will already be computationally relevant and will result in a different

computation. Accordingly, any computation is either performed precisely, or

it is not performed. I struggle to see we could make sense of the notion of

miscomputation under this understanding of neural computation. It seems that

an intended computation, if performed, will never miscompute. It remains to

be seen how one could characterize miscomputation when following (M4) for

the cost of discarding the notion of noise. Relatedly, it would seem that the

notion of computational identity becomes too strong. Allowing the possibility

of miscomputation, an identical computation must be recognized in at least two

exact neuronal states. That is, one exact state that performs a computation

sucessfully, and at least one other that performs a computation unsucessfully.
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To illustrate, consider a perceptuo-motor system that is attempting to

realize a certain trajectory of a controlled plant, e.g., a hand-reaching movement.

The variance in neural activity behind system’s multiple attempts to do so, could

be characterized as motor noise. This is valuable, because in a failed attempt

it is meaningful to say that the system tried to perform the same computation

as during a successful attempt, but mis-computed.

3.3 Analog and digital representations

The account of analog neural computation given in Maley (2018a) defines ana-

log and digital computations as manipulations of respective representations.

The latter form a dichotomy that is described in Maley (2011). The result-

ing dichotomy is advertised as a useful alternative to the accounts that place

the difference between digital and analog computation in the difference between

continuous and discrete computation. After presenting the definitions, I will de-

scribe some general problems in addition to the empirical inadequacy of using

the definitions in explanations involving neural computation. Interestingly, the

problems of miscomputation and computational identity turn out to be more

general and not confined to the considerations of applying the theory to neural

computation. Analog representations are defined as follows:

A representation R of a number Q is analog if and only if:

1. there is some property P of R (the representational medium)

such that the quantity or amount of P determines Q;

2. and as Q increases (or decreases) by an amount d, P increases

(or decreases) as a linear function of Q+ d (or Q− d) (Maley,

2011, p. 123).

As already noted by (Maley, 2011), the linearity might be too strong
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and could be replaced with monotonicity. I will assume this weaker require-

ment, since it seems necessary to accommodate examples of neural activity

representing a quantity on a logarithmic scale (Gold and Shadlen, 2001; Zhang

and Maloney, 2012b). Importantly, this definition allows discrete analog repre-

sentations. In contrast to analog, a digital representation is defined as a tuple

of:

1. a series of digits, each of which is a numeral in a specific place

within the series; and

2. a base, which determines the value of each digit as a function

of its place, as well as the number of possible numerals that can

be used for each digit (Maley, 2011, p. 124-5).

A simple example should go a long way at illustrating the intended

difference. Say a change in temperature is represented by a change in the size of

a heap of pebbles. Every time a temperature drops by a kelvin, we take away a

pebble, and every time it increases by a kelvin we add one. Representing is done

by a quantity. Imagine now that the temperature is represented by a string of

0’s and 1’s. Adding a digit doesn’t necessary change the represented magnitude.

In fact, adding or removing either of the two digits, ceteris paribus, can result

in a representation of a smaller, higher, or equal magnitude. Similarly, one can

think about the length of the string - knowing only that the string is longer,

shorter, or of unchanged length, leaves us completely ignorant to the changes in

representation. Representing is done by a quality.

A digital representation is built out of elements of a specific set of struc-

tured quantities, where the structure allows us to distinguish between different

members of the set, i.e. symbols – in this case interpreted as digits, organized

as described in (Maley, 2011). Analog representation is not structured in this

sense. That does not mean that whatever is used for a digital or an analog
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representation doesn’t possess a quantity or qualities, respectively. Symbols are

physical patterns, structured, rather than shapeless quantities, but quantities

nonetheless. We can think of a myriad of ways we could organize our little

heap of pebbles into strings of symbols representing a binary number, just by

adding a bit of a structure. The converse is also true. A set of symbols could

be used to form an analog representation. In that case, the structure of a string

of symbols would play no role – only the amount of symbols would be relevant

for the representation.35

This becomes particularly obvious when one considers a unary number

system – in Maley’s terms, a digital representation using number 1 as the base.

In fact, unary numeral systems have been implied in certain neural systems, like

song-production pathways in bird brains (Hahnloser et al., 2002; Fiete et al.,

2004). But a unary digital representation is indistinguishable from an analog

representation using the number of digits as a representing quantity. Should we

say that in such cases, manipulating the representation constitutes both analog

and digital computation? Such an outcome seems undesirable.

On a more favorable reading, the unary number system is not really

a problem for Maley’s classification. There are are two strategies one might

adopt: 1) strengthen the definitions to obtain a more strict dichotomy (e.g. by

requiring that the base is an integer36 equal to 2 or greater); 2) accept fuzzy

boundaries between the two notions and limit the problematic claims to the

35 Consider an example of strings representing hexadecimal numbers. The two strings “0x00f”

and “0x0000f” would be interpreted as representing the same value when used as digital

representations, but possibly different values when only treating them as quantities, that

is, as analog representations. Similarly, “0x00f” and “0x0f0” would be different digital,

but equal analog representations.

36 I assumed only an integer can serve as a base, given that in Maley’s definition, base

determines the number of possible symbols.
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“non-degenerate” cases.

The second solution is not desirable and leaves us empty-handed. Ma-

ley (2011) advertises the definitions as particularly valuable for use in cognitive

science. However, we’ve seen that a significant part of neural systems would fall

under the class of “degenerate” cases. Wouldn’t this defeat the very purpose of

providing a definition of analog representation that could be used to talk about

neural computation?

The first solution is unprincipled. While, for example, a binary system

might be favorable over a unary representation in most applications, such choices

reflect convenience (for example, when there is a need to represent negative

numbers), and not a difference in kind. A separate argument is needed why the

number 1 shouldn’t be considered as a base number. Otherwise, we’re running

the risk of the definition arbitrarily excluding objects that intuitively qualify for

the label.

This brings me to my second complaint about Maley’s definitions of

digital and analog representations. Restricting digital representation to place-

value notation exclude cases of devices that intuitively should qualify as digital

computers. Following Maley’s definitions, digital computers encompass only de-

vices performing numerical computation, excluding the cases of theorem prov-

ing, SAT checking, computer algebra, etc. I’ll return to these examples below,

when discussing computation with continuous variables.

Turning to the definition of analog representation, it is hard to see

how it applies to neural representations. Maley needs to argue that the latter

must not be representations of their own kind. Otherwise, neural activity would

constitute a distinct kind of computation, as proposed by Piccinini and Bahar

(2013). As things stand, this proves to be very hard for a very simple reason.

A great number of neurons act as band-pass or band-stop filters (Hutcheon and
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Yarom, 2000), essentially responding non-monotonically. The role of monotonic-

ity was not made explicit by Maley (2011, 2018a), however, it is clear that the

argument fails as long as one stands by the requirement.

There are two other important characteristics of representations as

defined by Maley (2011) – representational format and representational resolu-

tion. A quantity used to represent is a “representational medium” (RM) and

can be either continuous or discrete, depending on whether its physical states

are countable or not. Hence, specifying a RM answers the question of what is

representing. The “representational format” (RF) describes what is represented

and it too, can be either continuous or discrete.

For example, if I have several tons of sand for representing a number

between 0 and 1, it might be most expedient to consider the repre-

sentational format to be continuous, ranging over all real numbers

between 0 and 1 (i.e. Q ∈ R, 0 ≤ Q ≤ 1). On the other hand, if

I’m representing that same range of numbers with only a few hun-

dred grains of sand (decreasing the available “resolution”), it might

be better to consider the format to be discrete [...] Thus, the rep-

resentational format may be continuous (in the case of using real

numbers) or discrete (in the case of using hundredths), although the

representational medium (grains of sand) is discrete (Maley, 2011,

p. 118).

As evident from Maley’s example, RF and RM are independent. It’s

almost trivial to state that a continuous medium can be used to represent a

discrete format, but the case of a discrete medium being used for a continuous

format is very telling. The question is whether digital computers can compute

with continuous variables and the answer is a simple yes. While floating point

arithmetics performed by an ordinary desktop computer shouldn’t be controver-
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sial for Maley, two more examples will help drive the point home. First are the

computable transcendental numbers already discussed by Turing (1936). Even

more interesting is the case of symbolic computation, that is, computation using

sign-value notation.

Digital computers often use sign-value notation to represent certain

(mathematical) objects, for example, π. A sequence of digits with a determined

sign-value representing π corresponds to an exact (transcendental) number that

denotes a ratio of a circle’s circumference u to its radius r, as expressed by

the formula u = 2πr. Using such signs, instead of place-valued approximations,

digital computers can perform exact computations with continuous variables for

example to evaluate sin(π/4) =
√

2/2, where the result itself is again expressed

using a sign-valued representation. What does this tell us about (M4)? It seems

that it has to be a statement about RM, since digital and analog computation

are indistinguishable when only RF is known. More precisely, since physical

states of a digital computer are (arguably) continuously graded as well, (M4)

states that uncountably many physical states are actually used for computation

– an unlikely state of affairs.

The last issue I’d like to discuss is related to the asymmetry between

RF and RM. That is, the issue of the “resolution” of a representation. Resolution

is effectively determined by the ratio of different representational states to the

different states of what is being represented. For example, when representing

8 different digits, two pebbles will have a lower resolution than three pebbles.

And three pebbles used digitally (used with a certain structure), will have a

higher resolution than three pebbles used analogically.37

37 This should hardly come as a surprise, given that analog representations are basically

digital representations with base 1. Hence, as soon as there are n > 1 different RM states

available, one can use the RM for a digital representation with base k, such that 1 < k ≤ n,

with a guaranteed equal or higher resolution.
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Imagine that you are given a contraption running an analog compu-

tation in the sense of (M1). The function being computed is such that the

resolution of the representation (weight of pebbles) can make a difference with

respect to the outcome of the computation. For example, depending on the RM

used – either big pebbles that weigh 2g, or small pebbles weighing 1g – one might

get different outputs for an identical input. Since, ceteris paribus, different reso-

lution implies different representation, it follows that the same computation can

be performed using different representations. Now, given that analog represen-

tation can be seen as just a digital representation with a minimal resolution –

this leads us to conclude that a difference in the type of representation does not

entail a difference in the type of computation. This brings us back full circle to

a more general discussion about miscomputation and computational identity.

These intuitions become clearer, and hopefully less controversial, when

considering an example with a digital computer. Assume I’m using an 8 bit un-

signed integer representation and try to add 0xff and 0x01. Because of the

overflow I will end up with a wrong number, 0x00. However, using the same

RF(!) only with a greater resolution, say 12 bits, I will get the correct value,

0x100. Intuitively, the same computation was performed in both cases. Fur-

thermore, a miscomputation occurred when the 8-bit representation was used

and its occurrence is properly explained by the resolution of the representation

being too low.

Arguably, a similar situation arises when using analog-to-digital (ADC)

or digital-to-analog converters (DAC). In either case we have a type of repre-

sentation that is a product of a computation of another type. For example, a

digital computer coupled with a DAC will result in an analog representation

that was computed digitally. The converting processes are especially relevant

for the topic of neural computation, as some authors have argued that neurons

perform both types of conversion (Sarpeshkar, 1998). These considerations lend

68



3.4 Conclusion G. Štukelj

themselves naturally to a view that neural computation shouldn’t be defined

over what is representing or how it represents, but rather over what is being

represented (Egan, 2010).

Nonetheless, one might argue that this is an unrelated issue. After

all, I am talking about types of computation, and not types of computers. The

(M1) could be changed accordingly:

(M1∗) Analog computers manipulate analog representations.

While a fair point in itself, the issues I’ve outlined above appear to

haunt many practical applications of the theory. For example, when arguing

whether brains are either analog or digital computers. The problems with proper

specification of a type of computation point to a possible underdeterminacy of

leveraging observed computation to infer the type of the computer performing it.

Hence, if I am not able to distinguish between analog and digital computation

(especially in the “degenerate cases” that are ubiquitous in neuroscience), I

won’t be able to determine the type of computer based solely on the observations

of performed computations.

3.4 Conclusion

The arguments presented in this chapter might be considered somewhat “trivi-

alizing” in a sense that nothing interesting about computers really seems to be

continuous. Indeed, if we are looking for a principled or “categorical” and in fact,

even a “practical” difference in which to ground a distinction between brains and

conventional digital computers, and perhaps even more broadly analog and dig-

ital computers, the difference between continuous and discrete physical systems

won’t get us far.
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Despite my broad disagreement I find Maley’s contribution very valu-

able. Due to the many interesting and expressive concepts discussed in (Maley,

2011, 2018a), Maley’s framework can serve as a good test piece for comparing

intuitions regarding computation and neuroscientific explanations. Such con-

frontations can often turn out to be very fruitful by allowing us to articulate

specific questions which haven’t been yet properly addressed in the literature.

It would be interesting to see whether the indeterminacy of type of

computers relates to the issue of individuation of computation (Dewhurst, 2016)

or how do DAC/ADC figure into the debate on the distinction between analog

and digital computers. Perhaps even more importantly, the notions of represen-

tational format and resolution should be explicated further and independently

of particular definitions of types of representations. Lastly, the role of neuronal

noise and its empirically demonstrated benefits await serious philosophical treat-

ment, pointing at a potentially rich interplay between philosophy of computation

and neuroscience.
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4 From neural analogs to analog computers

There is no clear agreement amongst the different proponents of brains-as-

analog-computers view as to what qualifies brains as analog computers. Indeed,

there is even no clear agreement on what computers qualify as analog. This

chapter is an attempt at contributing to the debate by considering a “double-

inverse” of the question – why do analogs of brains qualify as computers?

CHAPTER 4

neuromorphic

electronics

analog

computers

computational

primitives

computer

architecture

brain

analogs

Figure 6: Graphical summary of Chapter 4.
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4.1 Introduction

There has been an ongoing debate amongst those agreeing that brains are some

kind of computers. The main difference in opinions comes down to what kind

of computers does one take brains to be. I’m particularly interested in accounts

describing brains as analog computers. However, even these come in a variety

of flavors, as there’s little agreement on what qualifies a computer as “analog”.

The debate can be roughly divided into two camps. Curiously enough, both

ideas can be seen as von Neumann’s legacy.

analog-as-continuous analog-as-analogous

von Neumann (1948) von Neumann (1948)

von Neumann (1958) Lewis (1971)

Eliasmith (2000) Maley (2011)

Katz (2008) Shagrir (2010)

... ...

Figure 7: Two accounts of analog computers.

The “analog-as-continuous” view is self-explanatory – according to it a

physical system is an analog computer, if it’s a computer and it computes with a

continuous variable. This leaves us with the “analog-as-analogous”. I’ll use von

Neumann’s discussion of “analogy machines” as an entry point. According to

von Neumann, an analogy machine is built by following an “analogy principle”

which is just an instance of the design pattern by which numbers are represented

by physical quantities:

A computing machine may be based on the principle that numbers

are represented by certain physical quantities. [...] Operations like
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addition, multiplication, and integration may then be performed by

finding various natural processes which act on these quantities in

the desired way. (von Neumann, 1951, 293)

While this characterization in no sense implies continuous variables

(Lewis, 1971; Maley, 2011), von Neumann nonetheless assumes that analog ma-

chines operate in the domain of reals (see (Beebe, 2018) for further discussion).

For now, I’d just like to observe that such systems can be either “found” in na-

ture or engineered, but in both cases they’re physical objects.38 This is where

another notion of analog computers comes into play. Beebe (2018), following

Ulmann (2013), talks about analog computation as “computing with models”.

The basic idea is that computation is somehow done by “modeling” the problem

through a construction of a physical analog.39 While I am interested in analog

computers that are “simulating” a certain physical system, I think Beebe (2018)

tells only a part of the story. I intend to extend this account to develop a more

domain-specific notion of analog computers, as to how it applies to engineered

brain analogs.

It is important to note that by using the verb “to simulate” I do not

commit to any particular philosophical concept. While I readily agree that

both analog simulations and analog computations make use of the same physical

devices, I will argue that analog simulation in a narrow sense constitutes only

one out of four different types of analog computers. Whereby “type” of an

38 The question is whether observing such a system out in the wild necessarily leads to a

conclusion that it is computing (see (Piccinini, 2017)). I will only discuss engineered

systems with an intended use, thus I find such concerns rather toothless, as answering

them is trivial – if something is being used as a computer, then it’s a computer.

39 This is in contrast with Shagrir (2010) who defines analog representations (rather than the

computer itself) as models of environment. Accordingly, an analog computer is a computer

manipulating analog representations (cf. Maley (2011)).
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analog device is determined by its respective use and its user’s epistemological

attitude. Rather, I use the word as a placeholder for some kind of semantic

theory of analog computation.

Moreover, I am not explicitly interested in brains and I will not be ad-

dressing the question of whether brains are (analog) computers directly. Rather,

I’ll talk about particular practice of building physical analogs in neuroscience

by focusing on a well-defined group of engineered brain-inspired artifacts also

known as “neuromorphic” electronics (Mead, 1990; Douglas et al., 1995; Schu-

man et al., 2017). These devices are built with intention to mimic brains and

are often called brain-inspired computers. My goal is thus simple – pursue a less

controversial, yet closely related topic by asking how are neuromorphic devices

used as analog computers?

4.2 From analogs to analog computers

I’ll start by analyzing the seminal programmatic text from Carver Mead, the

pioneer of neuromorphic electronics. The purpose of this section is to demon-

strate fruitfulness of analyzing neuromorphic electronics following a definition

of analog computers conforming to the analog-as-analogous view. Particularly,

von Neumann’s analogy principle seems like a good first fit:

[W]e should be able to build entire systems based on the organi-

zation principles used by the nervous system. I will refer to these

systems generically as neuromorphic systems. We start by letting

the device physics define our elementary operations. These func-

tions provide a rich set of computational primitives, each a direct

result of fundamental physical principles. [...] [T]he real trick is to

invent the representation that takes advantage of the inherent capa-

bilities of the medium, such as the abilities to generate exponentials,
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to do integration with respect to time, and to implement zero-cost

addition using Kirchoff’s law. (Mead, 1990, p. 1631)

The main idea is that analogs, and thus analog computers, exhibit

similar physical behavior as the physical systems of which they’re analogs of.

This is in contrast with previous accounts defining analog computers at the level

of representation. For example, Shagrir (2010) defines a computational device as

analog if it preserves a certain functional relationship between representations

and represented objects:

Another way to put it is to say that the representation function is a

sort of isomorphism with respect to the functional relation f . Let f

be the functional relation between the representing states x and y,

namely f(x) = y. Let i be the representation function, which maps

a representing state to a represented feature. To say that a system

computes in the analog sense is to state that functional relations

between i(x) and i(y) is also f . (Shagrir, 2010, p. 272)

As later discussed by Shagrir (2010), relationships between x and y,

and i(x) and i(y) need not be described by the same mappings. Rather, some

kind of formal similarity would suffice. While it is unclear what kind of mor-

phism is implied between f and g, given that f(x) = y and (g ◦ i)(y) = i(y), it

seems likely that the condition will be trivially satisfied for an arbitrary compu-

tational device, when g will correspond to one of device’s elementary operations,

or when we can represent (some of) the “representing states” on the same de-

vice.40 It think this shows the requirement to be too permissive. Whether this

is a legitimate worry or not, Shagrir’s proposal doesn’t make the cut already

40 Think of an addition of binary numbers on a digital computer.
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due to a much simpler reason. The analogy between neuromorphic systems and

biological neural systems lies in their similar physical behavior:

The significance of neuromorphic systems is that they offer a method

of exploring neural computation in a medium whose physical be-

havior is analogous to that of biological nervous systems and that

operates in real time irrespective of size. (Douglas et al., 1995, p.

255)

The efficiency of neuromorphic analogue VLSI (aVLSI) rests in the

power of analogy, the isomorphism between physical processes oc-

curring in different media. (Douglas et al., 1995, p. 258)

A similar worry possibly applies to (Beebe, 2018) as well, insofar as

only a functional or representational relationships are considered in his account

of “model-based computers”.41

A model-based computer is a device which may have a malleable

internal structure, and which can represent aspects of the class of

problems it is used to solve. The representations should be sufficient

to form a model of the target problem class. Under proper use, the

organs in the device can be interpreted by the model to function in

a manner that we take to solve the target problems. This may or

may not be consistent with our understanding of the target problem

class. (Beebe, 2018)

What is meant by the “model of the target problem class” or “internal

41 Considering Beebe’s four-way distinction between computers and simulations, which are

either analog or model-based, it would seem that only analog simulations require analogous

physical behavior.
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structure” of a computer? Perhaps, these terms will become clearer if we also

look at the notion of an analog computer presented in (Ulmann, 2013), which

Beebe (2018) intends to capture as a special case of a “model-based computer”:

An analog computer on the other hand is based on a completely

different paradigm: Its internal structure is not fixed — in fact, a

problem is solved on such a machine by changing its structure in a

suitable way to generate a model, a so-called analog of the problem.

This analog is then used to analyze or simulate the problem to be

solved. Thus the structure of an analog computer that has been set

up to tackle a specific problem represents the problem itself while

a stored-program digital computer keeps its structure and only its

controlling program changes. (Ulmann, 2013, p. 2, as cited in Beebe

(2018))

I’ll consider two possible understandings of what such model is meant

to be, relating to the difference of how the term is used in control theory and

(philosophy of) science. A “model” might be just an (approximate) mapping,

a mathematical description, of how inputs to the “modelled” system relate to

its outputs. In control-theoretic terms, a model corresponds to the transfer

function describing the system block in the control diagram. This engineering

notion of a model is far weaker than its scientific or philosophical counterpart of

a model as a representation (of either “a selected part of the world” Frigg and

Hartmann (2018) or a scientific theory). In particular, it is weaker insofar as

no epistemic function is assumed to be performed by a control-theoretic model.

That is, a system under control might be treated as a complete black box.

There’s no need for an understanding or a theory (broadly construed) of how or

why the mapping holds (at least approximately). On the other hand, scientific

(or philosophical) understanding of a “model” as an epistemic tool entails a
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model is a some-kind of intentional object used to reason about whatever it is

a model of. Importantly, both interpretations entail that there’s a specific role

to be fulfilled by the model. Namely, to facilitate reasoning about the target

system or to solve a computational problem related to it (for example, compute

its behavior or a stable state for given initial state variables).42

Thus there’s a particular reason for why both of these accounts fail

at adequately describing the scientific and engineering endeavor behind the de-

sign and usage of neuromorphic electronics. Neither Ulmann (2013) nor Beebe

(2018) distinguish between the target of analogy and the target of computa-

tion.43 Although I agree that these two often coincide. That is, an analog device

is commonly built following an analogy with a certain physical system in order

to reason about that very same system, or to solve a (computational) problem

related to it. However, it seems that building a “brain-style analog computers”

doesn’t necessarily serve a purpose of reasoning about brains or solving a related

problem. In fact, one of Mead’s primary motivations for building neuromorphic

computers was energy efficiency:

For many problems [...] biological solutions are many orders of mag-

nitude more effective than those we have been able to implement

using digital methods. (Mead, 1990, p. 1636)

For this reason alone it is worth divorcing the notion of the “target of

42 Where the latter is presumably less committing in terms of the required richness of repre-

sentations and the epistemic attitude.

43 Although to be fair, Ulmann (2017) does distinguish between “direct” and “indirect”

analogies: “In short, a direct analogy has its roots basically in the same physical principles

as the corresponding problem [...] If the physical principles underlying the problem and

analog computer differ, this is called an indirect analog computer.” (Ulmann, 2017, p. 2).

Nonetheless, Ulmann only focuses on the “indirect analog computers” for the remainder

of the book.
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computation” from the notion of the “target of analogy”.44 I choose to remain

agnostic about whether an analog device must represent the physical system

of which it is the analog of, regardless of the application. It does seem to me

however, that whether the representation “is there” or not is often irrelevant.

Importantly this is not to be confused with the claim that there are no repre-

sentations involved in using neuromorphic devices.45 For example, one need not

talk about representation of biological retina when considering the functioning

and application of its silicon counterpart.

In the next two sections I will first develop a notion of “physical anal-

ogy” that could be potentially used to characterize the relationship between the

brains and neuromorphic devices. I will then propose a categorization of four

different “targets of application” related to the use of neuromorphic devices,

with the idea that they might apply more generally to a broader class of analog

computers.

4.3 Physical analogies

Let P be a physical process46 such that it can be described by a set of dif-

ferential equations D. That is, P is treated as a set of tuples pi that con-

tain values of independent variables such that the equations in D are si-

multaneously satisfied. Furthermore, a set of measures Θ = {θi | θi :

P 7→ R} is defined for the physical quantities whose behavior is described

by these equations. The measures are then used to define the syntac-

44 Perhaps it is even more accurate to talk about “target application” instead of “target of

computation”.

45 It is worth noting that Mead (1990) talks about representations of information, but not

about representations of the targets of the analogy.

46 I am using the terms “process” and “system” interchangeably.
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tic function g from physical states of P to a set of computational states,

g : P 7→ C. This function is a composite of possibly multiple measures and

some “pragma” function f , so that g = f ◦ Θn, n ≥ 1.47

I will start by only assuming a weak constraint for what it means to

be an analog. Let Da stand for a set of differential equations that describes

a physical process that is an analog of a system described by D.48 Then an

isomorphism must exist between D and Da.49 This is intended to capture the

necessary condition of “sufficiently” similar physical processes occurring both

in the target system and its analog. However, an isomorphism between sets

of differential equations, that is, mathematical descriptions of physical behav-

ior of a target system and its analog proves to be too weak of a requirement

still. Strictly speaking there’s no principled distinction between the behavior of

ordinary digital or (early) neuromorphic electronics.

In addition to providing gain, an individual transistor computes a

complex nonlinear function of its control and channel voltages. That

function is not directly comparable to the function that synapses

evaluate using their presynaptic and posynaptic potentials, but a few

transistors can be connected strategically to compute remarkably

competent synaptic functions.50 (Mead, 1990, p. 1631)

In fact, all of the early and much of the modern neuromorphic elec-

47 Function f is just abstracting away from the specifics of how the computation is defined

with measures. In other words, f is just a placeholder for a theory, or rather protocol, of

how certain physical systems are used for computing.

48 As a general notational remark, when discussing pairs of variables introduced in the above

paragraphs, the ones with an “a” in the subscript relate to a process that is an analog of

a system related to the variables without a subscript.

49 Cf. Dardashti et al. (2015) on the notion of “nomic isomorphism”.

50 [Note that also for building logic gates one needs multiple transistors. – G.Š.]
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tronics are built using the same electrical components as those that make up

an ordinary digital computer. Yet, one probably wouldn’t want to categorize

just any electrical device as neuromorphic. The issue was already discussed by

Neumann (1958) when trying to justify why neurons should be treated as “all-

or-none”, that is switching, devices (“organs”) with only two relevant states (in

comparison to how transistors or vacuum tubes are used in digital computers).

None of these is an exclusively all-or-none organ (there is little in

our technological or physiological experience to indicate that abso-

lute all-or-none organs exist); this, however, is irrelevant. By an

all-or-none organ we should rather mean one which fulfills the fol-

lowing two conditions. First, it functions in the all-or-none manner

under certain suitable operating conditions. Second, these operat-

ing conditions are the ones under which it is normally used; they

represent the functionally normal state of affairs within the large

organism, of which it forms a part. Thus the important fact is not

whether an organ has necessarily and under all conditions the all-or-

none character-this is probably never the case-but rather whether in

its proper context it functions primarily, and appears to be intended

to function primarily, as an all-or-none organ. (Neumann, 1958, p.

296)

Trying to make von Neumann’s appeal to “common sense” more

specific, the idea is to look only at those dynamics that matter for compu-

tation/application. Thus one might want to assume some relationship holds

between the measurements related to the two physical systems, Θ and Θa

in addition to an isomorphism between the descriptions of their behavior.

But perhaps we should first ask what kind of measurements are we talking

about? For one, “reading” the amount of charge off of on an electrical node
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is a measurement. As is being sensitive to the time differences between two

different events of charge being dropped on a node.51 One might recognize

that the relevant measurements are such that they have an effect on the overall

physical behavior of the device in question. That is, the relevant measurements

are not external to the functioning of the device and should thus be already

described by D.

Figure 8: A simple NMOS implementation of a NOR circuit.

For example, in order to constrain a measure to the set {HIGH, LOW},

51 Importantly, such “measurements” do not imply any intentional states.
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pull-down or pull-up resistors5253 are commonly used in digital electronics. The

argument is that a proper description of a physical system would take into

account the effects of these resistors. Thus the isomorphism between D and Da

already implies an isomorphism between Θ and Θa. Lastly, one could just bite

the bullet and agree that transistors used in digital electronics are “potential”

neuromorphic devices. The main point being that they could in principle be

used to build physical analogs of neural systems, but they’re not. This leads

naturally to the next question – what are (neuromorphic) analogs used for?

4.4 Targets of computation

Neuromorphic computers and analog computers in general are built in order

to compute certain functions. This is a commonly (and arguably the only)

discussed use case in the philosophical literature (see Beebe, 2018; Shagrir, 2010,

and the references therein). While there’s not much more to be said about using

analogs for computing, I’ll take the opportunity to illustrate a more general

point. If we want to use something, we must be able to control it. For example,

in case of a computing device, I want to be able to specify the input, so that

52 The unnamed resistor in Fig. 8 is a simple example of a pull-up resistor. When neither of

the NMOS transistors (representing inputs A and B) is active, the resistor provides a path

to output, thus “pulling-up” the output to a high voltage. When one of the transistors is

active, the output of the circuit is grounded, that is, in the “low” state. Thus, the output

is expected to be only in one of the two states.

53 Strictly speaking, the pull-down/up resistors or other similar techniques do not restrict

the output to a fixed physical state. The voltage is still fluctuating and moreover, it does

not change instantaneously, but The “HIGH” and “LOW” are computational states – the

role of the resistors is to bring the physical states in a certain (stable) dynamical region of

the components behavior – within certain time, thus the measures should probably also be

described as functions of time (but exhaustively likely as difference rather than differential

equations, as discussed in the previous chapter)
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the function is computed for a specific value I’m interested in.54

However, since the conception of neuromorphic devices computation

has been only one of the motivations behind this engineering endeavor. Often,

a neuromorphic computer is built to compute something that can be computed

with a sufficient and perhaps even better resolution on a conventional (digital)

computer and under other reasonable constraints. Moreover, a neuromorphic

device can be used to compute something other than what the target system

computes or even what it could be used to compute in principle.55 The purpose

of the analogy-guided design is thus not to emulate target’s computational ca-

pacities but rather other (physical) properties. At least historically, the most

common such property is energy efficiency.

The unavoidable conclusion, which I reached about ten years ago, is

that we have something fundamental to learn from the brain about

a new and much more effective form of computation. (Mead, 1990,

p. 1630)

In all fairness, efficiency concerns have to do with the efficiency of

computation. Thus, it is not clear how analogs (or specifically, neuromorphic

devices) used for “computing” could be distinguished categorically from the

ones used for “computing efficiently”. The most probable answer is that there

is no such clear-cut distinction. Looking at some of the commonly cited ben-

efits of neuromorphic devices over conventional digital computers (Schuman

et al., 2017), one could argue that there’s a difference between “performing a

computation more efficiently” (real-time performance, parallelism, speed, fault

54 In this sense, one might argue that the fact that an analog of a certain system is a computer

does not imply that the target system is a computer itself. The common reason being

simply that it cannot be used as a computer, insofar the control over it is lacking.

55 This is what Beebe (2018) and Ulmann (2013) miss in their analysis.
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tolerance) and “performing cheaper computation” (scalability, low power, less

silicon area). However, these two are hardly ever considered separately, but are

usually cast in terms of trade-offs.56 In fact, we might be even talking about

the same device. That is, the distinction is likely to be contextual and based on

the difference in the epistemic attitudes of their users.

Building devices that compute the same or a similar function as a

target neural circuit, by emulating its physical behavior has proven instrumental

both in identifying general computing strategies and the mechanisms performing

the computation. Mechanism discovery is arguably the most important aspect

of using neuromorphic devices for explanations in neuroscience.57

The structure executing this level-normalization operation performs

many other functions as well, such as computing the contrast ra-

tio and enhancing edges in the image. Thus, the mechanisms re-

sponsible for keeping the system operating over an enormous range

of image intensity have important consequences with regard to the

representation of data. (Mead, 1990, p. 1632)

By designing neuromorphic systems, we enlarge our vocabulary of

computational primitives that provide a basis for understanding

computation in nervous systems. (Douglas et al., 1995, p. 279)

Once a plausible mechanism is identified, further inference can lead

to more functional descriptions of what computation is being performed. The

inferred abstractions or algorithms are valuable because they might suggest a

56 For example, in order to increase the speed of the computation more silicon area and

probably also more power will be needed.

57 In fact, some authors (Craver, 2009; Kaplan, 2011) have argued that all explanations in

neuroscience are mechanistic, although see (Chirimuuta, 2018, 2014).
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way to adapt the solving strategy to either solve similar, but distinct problems or

to design a different mechanism implementing the same functionality (Ullman,

2019).

The center-surround computation sometimes is referred to as a

Laplacian filter, which has been used widely in computer vision sys-

tems. This computation, which can be approximated by a difference

in Gaussians, has been used to help computers localize objects; this

kind of enhancement is effective because discontinuities in intensity

frequently correspond to object edges. Both of these mathematical

forms express, in an analytically tractable way, the computation that

occurs as a natural result of an efficient physical implementation of

local normalization of the signal level. (Mead, 1990, p. 1632)

The biological relevance of the chip is that it expresses the stereo-

fusion problem as just one instance of a general class of constrain-

satisfaction problems in sensory perception and shows how this class

of problems can be [sic] computed with neuron-like elements. (Dou-

glas et al., 1995, p. 277)

Non-neuromorphic physical analogs have been largely discussed in re-

gard to one other type of scientific practice. Namely, use of analog simulation

in physics (Dardashti et al., 2015, 2019; Thébault, 2019). While Beebe (2018)

considers analog simulation as a special case of analog computation, the wording

in Ulmann (2013) could imply the opposite, namely that analog computers are

a special case of analog simulations. For the purposes of this here discussion, it

is sufficient to think of (analog) simulation as an epistemological practice that

performs a function similar to that of an experiment – that is, gathering data

to either verify or formulate a hypothesis.
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This chip highlights an interesting methodological point–because

neuromorphic models are constrained by what can be implemented

in a physical medium, they can provide insight into biological de-

sign.(Douglas et al., 1995, p. 264)58

Admittedly, when it comes to neuromorphic engineering, the difference

between analog simulation and mechanism (or algorithm) discovery becomes

blurred. While the latter are intended to inform the design of devices that have

application beyond “knowledge production”, the former is most often geared

towards confirmation of a scientific theory (Utagawa et al., 2011; Douglas et al.,

1995) or verification of methodology (Jonas and Kording, 2017). It seems rea-

sonable to expect that the same research activity will be often in service of both

pursuits. The more important distinction is that between “analog simulation”

or “analogue emulation”59 on one side, and digital simulation on the other.

The difference between digital simulation and emulation60 is that a

58 The quote continues “The response of the basilar membrane scales–that is, the spatial

pattern of the response is invariant with frequency except for a displacement along the

membrane. There are two physical models that give rise to scaling. In the first–constant

mass scaling–the mass of the membrane and the density of the fluid are constant, but

their stiffness changes exponentially along its length. In the second model–increasing mass

scaling–all three change exponentially along the length of the membrane. Although the

behavior of these two models is indistinguishable, their implications for physical implemen-

tation are radically different. The constant mass model requires that membrane stiffness

change by a factor of about one million. Such a range of variation can be simulated on a

digital computer, but it cannot be implemented easily in a physical device. This suggests

that the increasing mass model, in which the range of variation can be absorbed by three

parameters rather than one, should be adopted.”

59 I hold it that the notion of “analog simulation” as used in herein and by Dardashti et al.

(2015), Beebe (2018), and Ulmann (2013) is synonymous with the notion of “analogue

emulation” that is more often used in the NE literature.

60 For the sake of simplicity, I will refer to digital simulation only as “simulation” and to
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simulation does not necessarily conform to the same environmental constraints

as the emulated system. To make this intuition a bit more precise, think for

example, of a physical system P that is subject to a certain physical law L,

such that its behavior is described by a set of equations D. Let S and E be a

simulation of the P and a system emulating it, respectively.

Assume now that a transition from two states, pi to pk can only occur

by the system P assuming a set of intermediate states. For any such member of

this set pj , such that it can be both simulated and emulated by the S and E , let

sj and ej be the states that simulate and emulate pj , respectively. A simulation

might be set up such that the transition occurs directly from the representation

of the states pi to pk, that is from si to sk, however, an emulation of the system

will always follow the same transition of the states pi, ..., pj , ..., pk, namely by

the system E assuming the sequence of states ei, ..., ej , ..., ek. While the behavior

of P, E , and S can be all described by D, invocation of the physical law L is

sufficient to properly explain the behavior of E , but no such constraint holds for

S.

The specialized but efficient nature of neuromorphic systems causes

analogue emulation to play a different role in the investigation of bi-

ological systems than does digital simulation. Analogue emulation is

particularly useful for relating the physical properties of the system

to its computational function because both levels of abstraction are

combined in the same system. In many cases, these neuromorphic

analogues make direct use of device physics to emulate the compu-

tational processes of neurons so that the base level of the analysis is

inherent in the machine itself. Because the computation is cast as

a physical process, it is relatively easy to move from emulation to

analog emulation/simulation as “emulation” in the present paragraph.
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physiological prediction. (Douglas et al., 1995, p. 278-9)

Consider the below summary of the 5 different use cases of physical

analogs discussed in this section. If a physical system A is built following an

analogy principle, so that it acts as a physical analog of another system P, and

P can be described as computing a function f , then I might use A to:

(A0) control the A as to (approximately) measure f for a specified “input”

f (i), or

(A1) learn about a general class of “computing strategies” for a given

class of problems, or

(A2) identify particular mechanisms of P responsible for “implementing”

f , or

(A3) replace B with A to reimplement f more “efficiently”61, or

(A4) gather data about A that can be used to reason about a hypothesis

regarding P.

The idea at its simplest is that only by properly emulating P, rather

than merely simulating it, can A be used for identification of mechanisms (A2)

and hypothesis formulation or testing (A4). In order to make this distinction

more tangible it is worth comparing neuromorphic computers to conventional

digital computers, given that the two are presumably used to emulate and sim-

ulate the brain, respectively. Thus, the next section considers a number of

ways neuromorphic computers diverge from their digital counterparts in order

to remain more faithful to the structure and dynamics of neural circuits.

61 Where B is just another physical system that can be used to compute f and efficiency

doesn’t need to relate to computation.
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4.5 Computing with noise & time

A great deal of the discussion in this section could certainty be cast in more

broader terms of analog and digital computers and differences between the two.

Indeed, the working hypothesis since the beginning of the chapter states that

neuromorphic electronics fall under the category of analog-as-analogous com-

puters. Nonetheless, the first principal distinction is domain specific insofar the

brain inspired design of computers has been regularly described as an alterna-

tive to a von Neumann architecture (Walter et al., 2015; Schuman et al., 2017;

Boybat et al., 2017; Gkoupidenis et al., 2017).

Neuromorphic computing has emerged in recent years as a comple-

mentary architecture to von Neumann systems. (Schuman et al.,

2017, p. 1)

Clearly, “to be an alternative” is not meant in the same sense as, for

example, when discussing a choice between von Neumann and Harvard archi-

tecture. Indeed, in this case both of the latter would be lumped together under

the label “von Neumann architecture” which became a common designate for

sequential and modular design.

It is now well recognized that electronic circuits based on tradi-

tional von Neumann architerctures are not well-adapted to capture

the real world information processing capability of biological nervous

systems. The main reason of this limitation is the so-called von Neu-

mann bottleneck, due to the physical separation of computational

and memory units. (Gkoupidenis et al., 2017, p. 2)

[I]t seems paradox that simulating a tiny fraction of the human brain

is only possible at a multiple of its power consumption. This can
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be at least partly explained by the completely different paradigms

underlying standard Von Neumann CPUs on the one hand and neu-

ral networks on the other. While the former implement a sequential

model of computation which is based on a centralized local stor-

age, information processing in the latter is massively parallel and

distributed. (Walter et al., 2015, p. 153)

The bottleneck could in principle be overcome by simply moving the

memory to the same chip as the CPU62, presumably also in combination with

using new memory technologies and under revised standards (for example, spec-

ifying lower retention times) (Wong and Salahuddin, 2015). However, one might

also want to rethink the strong separation between processing and memory alto-

gether. As a rule of thumb, a conventional computer uses memory for two main

types of data – the input and output of the computer, and the set of instructions

that determine the exact program that is being executed.63

In principle, there are ways of working around both these needs. In-

terestingly enough, they have to do in part with the assumption of sequential

processing. If all the data is processed in parallel, there’s no more need to

hold the-yet-unprocessed data chunks in memory waiting for its turn (Ulmann,

2017). Moreover, by embedding the program within the computer structure,

rather than delegating control to the memory64 stored instructions, the need

for program memory is circumvented as well.65 By mimicking biological neural

62 Or vice versa, by adding some low-overhead processing capacity to the memory, as sug-

gested by the processing-in-memory (PIM) approach (Zhang et al., 2013).

63 The latter basically being a physical instance of the stored-program concept invented by

Turing in his seminal paper (Turing, 1936). See Pelaez (1999) for a more in-depth historical

perspective.

64 Cf. the discussion by Neumann (1958) on the difference between “memory-stored” and

“plugin” control.

91



4.5 Computing with noise & time G. Štukelj

networks, neuromorphic electronics implement “distributed memory” or some-

how otherwise emergent mnemonic capacity by making use of strong recurrent

connectivity (Hunt and Hayden, 2017), electro-chemical global coupling (Gk-

oupidenis et al., 2017), or a winner-takes-all protocol for physically emulated

synaptic competition (Manning et al., 2018).

Time- or rather timing-dependent computation is a good illustration

of this point. Conventional digital computers commonly implement all sorts of

clocking and timing functionalities. However, a sensitivity of a program to, for

example, a difference in the timing between occurrences of two separate events

is a matter of logic, presumably some branching instructions. A conventional

digital computer will stay the same after executing the program, whereas com-

putationally relevant timing differences will have an effect on neurons (e.g., due

to a LTP or LTD, see Footnote 27). That is to say that a physical and compu-

tational state of such a computer can be divorced66, whereas the same couldn’t

be said for a biological or emulated neural network. Referring back to Section

4.3 it seems sensible to speculate that physical analogs differ from conventional

digital or more precisely, stored-program computers, in that the set of measure-

ments Θ used to describe the latter is invariant, whereas with the former it is

subject to change.

As the name of the section would suggest another difference between

the program-stored and analog-as-analogous computers has something to do

65 Importantly though, the value of program-stored computers lies exactly in this structure

invariance. Much like a universal Turing machine is able to emulate any other Turing

machine, stored-program computers are general purpose. While this is not to claim that

analog-as-analogous computers serve a single-purpose computation, it would certainly seem

that they’re less adapt at performing different computation without being restructured at

an expense of likely significantly greater amount of resources.

66 Indeed, this seems to be a necessary condition for having a general-purpose or repro-

grammable computer.
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with noise. While not as strongly represented in the literature as the analog-

as-continuous and analog-as-analogous accounts, there’s also a third character-

ization of analog computers67, namely, as “approximate” – noisy or imprecise

– procedures (Haugeland, 1981; Katz, 2008). Perhaps not too surprisingly, the

original thoughts on the matter can also be attributed to von Neumann (1951).

[T]he critical question with every analogy procedure is this: How

large are the uncontrollable fluctuations of the mechanism that con-

stitute the “noise,” compared to the significant “signals” that express

the numbers on which the machine operates? The usefulness of any

analogy principle depends on how low it can keep the relative size

of the uncontrollable fluctuations-the “noise level.” (von Neumann,

1951, p. 293)

However, in accordance to the discussion in Section 4.3 about there

hardly being a qualitative difference between the physical descriptions of digital

or analog computers, one might wonder if the same considerations would apply

to the presence of noise. As also discussed by von Neumann (1951), there’s

also error in digital procedures – for example, it is commonplace to talk about

“machine epsilon”, that is, the upper bound on the rounding error in floating

point arithmetic.68

The important difference between the noise level of a digital machine,

67 Strictly speaking, Haugeland (1981) and Katz (2008) talk about the difference between

analog and digital representations or “procedures”. In light of the discussion in Chapter

3, the leap to a classification of computers or devices is hardly controversial; even more so

when considering that the references are here for the purpose of the narrative rather than

an argument.

68 For example, an error is almost inevitable when performing a division of two different

numbers and with the denominator not being a power of the base in which the numbers

are represented.
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as described above, and of an analogy machine is not qualitative at

all; it is quantitative. (von Neumann, 1951, p. 295)

Another commonality between the two engineering approaches would

seem to be that in both cases noise is perceived as a quantity that needs to

be minimized. As per the classification schema in Section 1.2 it is apparent

that, at least at the years of its inception and early development, the field of

neuromorphic engineering remained entrenched in the “engineering paradigm”,

by following a positive (applicative) analogy with the conventional electrical

circuits.

Biological systems appear to make good use of noise in diverse pro-

cesses [...] This contrasts with engineering where noise is usually

considered as a disturbance. (Knuuttila and Loettgers, 2013, p.

164)

Noise is a form of redundancy because it does not supply additional

information about the world, so bandwidth is wasted by transmitting

it. (Douglas et al., 1995, p. 262)

What makes neuromorphic engineering a particularly interesting case

study for philosophers and historians of science is that with the rising recog-

nition of the importance of noise in neural circuits (see 1.2), the engineering

filed has undergone a similar paradigm shift. For example, novel neuromorphic

circuits have exploited noise for pulse density modulation (Utagawa et al., 2007,

2011), synchronization between isolated circuits (Utagawa et al., 2008), stochas-

tic resonance (Gonzalez-Carabarin et al., 2014), and coincidence detection (Oya

et al., 2006).

Finally, the term “architecture” is usually an abbreviation of “instruc-
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tion set architecture”. However, it would hardly seem sensible to talk about “in-

structions” when it comes to neuromorphic computers. Related to that, talking

about the difference in design might be a bit of a misnomer insofar as state-

of-the-art neuromorphic electronics are concerned, just like brains and other

biological systems are not “designed”, but rather evolved (Zhu et al., 2019).

Considering the noise in terms of random fluctuations and perturbations that

are constitutive to the development of biological systems (Chirimuuta, 2017),

we might speculate that a lot of such “beneficial noise” is in fact mischarac-

terized endogenous activity (Bechtel, 2012). Conceptually this should serve as

another example against characterizing analogical relationships (e.g., between

brains and neuromorphic computers) exclusively in terms of I/O, or functions

broadly conceived.

4.6 Conclusion

In this chapter I focused on a rather under-explored question in philosophy

of computation. The idea is to provide a rational reconstruction of scientific

and engineering practices falling under the broader category of “neuromorphic

computing”. I see this as a valuable contribution to the ongoing debate about

computationalism about brains and conception of “analog computers”. Impor-

tantly, the value of the contribution is not derived antagonistically by replacing

other existing theories. In fact, I tried to be as agnostic as possible, to rather

provide a kind of template that has yet to be filled out to fully specify a philo-

sophical account. As far as the applicability of the discussed theory of analog

computers to questions concerning computationalism about brains, I find it

suitable to quote from Beebe (2018):

Under this framework, we would answer ‘yes’ to the question of

whether the brain is a model-based computer, and also ‘yes’ to the
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question of whether brain processes are computational. However,

this may be a bit premature since we have noticed that computation

is dependent on a user–and what would be using this model-based

computer? (Beebe, 2018)

The only difference being that I’d be more willing to conclude that

brains are not analog computers in the sense outlined here. This unveils a

broader characteristic of the framework. If system A is a physical analog of a

system P, and system A is used as an (analog) computer in a certain sense, it

doesn’t not follow that P is also an analog computer. It would be interesting

to see whether an argument could be made as to whether this kind of sym-

metry or asymmetry should be a required desiderata for a definition of analog

computation.

In complement to the various shortcomings of the distinction between

continuous and discrete physical systems discussed in the previous chapter, the

analysis of neuromorphic computers offers a positive reason for grounding the

definition of analog computers in a theory of (physical) analogies. Secondly, it

would appear that the current analog-as-analogous literature is entrenched in

thinking in terms of I/O properties. The literature on neuromorphic electronics

offers a handful of examples that suggest a more broader understanding of what

makes up an analog computer. Importantly, many of these examples come from

a clever use of brain analogs’ non-deterministic behavior akin to neural noise.
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5 Conclusion

Random fluctuations in neural activity, commonly described as neural noise

have been repeatedly dismissed as meaningless and even deemed detrimental

to the performance of the neural system. Recent advances in neuroscientific

research suggest the opposite. There are good reasons to believe that at least

a part of the noise plays a central role in the functioning of the neurobiological

systems. On the factual level this goes beyond “classical” stochastic resonance

and might in fact often have to do with processes that are not easily described in

reference to signals and information, or even more generally in terms of inputs

and outputs. It was speculated that this methodological incompatibility is the

reason for the historical treatment of noise as a redundant physical quantity and

assuming that evolutionary forces push towards its minimization.

This thesis considered the flip side of the coin, emphasizing concep-

tual rather than factual roles played by neural noise. Starting with the first

manuscript we need to take a step back. Neural activity described as noise is

sometimes just that – noise, a redundant quantity detrimental to the perfor-

mance of the system in question. As such it is ubiquitous in neural circuits un-

derlying numerous behavioral domains like motor control, perception, and value

or preference based choices. Importantly, understanding that this noise can be

conceptualized as a source of uncertainty led researchers to describe the three

aforementioned behavioral domains using a decision-theoretic framework. Con-

sequently, a number of mathematical models and even experimental paradigms

have been shared between the research domains, and established normative

claims based on a more faithful comparison and methodological alignment.

Related to this “factual” presence of noise, it was argued before that

brains inevitably compute with discrete values. This argument is reiterated

in the second manuscript. If a variable is noisy and this noise is accounted
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for, then the system will not discriminate between a number of precise values

(in fact uncountably many), effectively using a discretized variable. Moreover,

special attention was given to the fact that presence of noise is a recurrent ex-

planandum of neural miscomputation. Tying the two together amounts to a

novel practical argument for why brains shouldn’t be conceptualized as con-

tinuous computers, if they were to be conceptualized as computers in the first

place. By modus tollens, asserting that brains compute with continuous vari-

ables amounts to denying that brains compute with noisy variables. Therefore,

asserting that brains compute with continuous variables fails to accommodate

a common neuroscientific practice. In as much a conceptualization of neural

computation should aim at explicating existing scientific practices and current

best theories, the failure to do so serves as a strong reason for rejecting the said

conceptual framework.

The third manuscript rounds out the discussion that was started in

the general introduction. Neuromorphic devices are presented as an example

of physical systems that are deemed (analog) computers on the basis of their

non I/O properties. Furthermore, I argued that these devices also make up

for an interesting case study in the philosophical discussion of noise and its

role in (biological) sciences as a “non-paradigmatic” engineering practice, given

that the noise has been increasingly more often considered as a design feature,

rather than a nuisance. The upshot being that design is, perhaps inevitably,

only concerned with I/O relations, but there is value in recognizing some of the

noise as an invaluable endogenous activity.
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Hämmerer, D., Bonaiuto, J., Klein-Flügge, M., Bikson, M., and Bestmann, S.

(2016). Selective alteration of human value decisions with medial frontal tDCS

is predicted by changes in attractor dynamics. Scientific Reports, 6(1):25160.

Hanks, T. D. and Summerfield, C. (2017). Perceptual decision making in ro-

dents, monkeys, and humans. Neuron, 93(1):15–31.

Harris, D. K., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003).
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Jarvstad, A., Hahn, U., Rushton, S. K., and Warren, P. A. (2013). Perceptuo-

motor, cognitive, and description-based decision-making seem equally good.

Proceedings of the National Academy of Sciences, 110(40):16271–16276.

Jocham, G., Hunt, L. T., Near, J., and Behrens, T. E. J. (2012). A mechanism

for value-guided choice based on the excitation-inhibition balance in prefrontal

cortex. Nature Neuroscience, 15(7):960–961.

Jonas, E. and Kording, K. (2017). Could a neuroscientist understand a micro-

processor? PLOS Computational Biology, 13:e1005268.

Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral

economics. American Economic Review, 93:1449–1475.

Kaplan, D. (2011). Explanation and description in computational neuroscience.

Synthese, 183:339–373.

Kaplan, D. M. and Craver, C. F. (2011). The explanatory force of dynamical and

mathematical models in neuroscience: A mechanistic perspective. Philosophy

of Science, 78(4):601–627.

Katsikopoulos, K., J Schooler, L., and Hertwig, R. (2010). The robust beauty

of ordinary information. Psychological review, 117:1259–66.

Katz, M. (2008). Analog and digital representation. Minds and Machines,

18(3):403–408.

Khader, P. H., Pachur, T., Weber, L. A. E., and Jost, K. (2016). Neural

signatures of controlled and automatic retrieval processes in memory-based

decision-making. Journal of Cognitive Neuroscience, 28(1):69–83.

Knuuttila, T. and Loettgers, A. (2013). Basic science through engineering?

synthetic modeling and the idea of biology-inspired engineering. Studies in

107



Bibliography G. Štukelj
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The author of the thesis, Gašper Štukelj, is the first and sole author of the

manuscript.
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