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Zusammenfassung

Das Ziel der ultraschnellen Wissenschaft ist es, die Elektronendynamik in den Atomen
und Molekülen im Attosekundenbereich zu verstehen. Die Verwendung eines intensiven
Laserpulses zur Messung der Attosekunden-Bewegung ist eine ideale Wahl. Es stehen
verschiedene experimentelle Messungen zur Verfügung, um die Bewegungen von Partikeln
in Materialien zu initiieren, zu steuern und zu beobachten. Die schwierige theoretische
Arbeit folgt jedoch danach. Es sind verschiedene qualitative Erklärungen verfügbar, quan-
titative Ergebnisse für komplexe Systeme sind jedoch schwer zu erhalten. In dieser Arbeit
konzentrieren wir uns auf die numerischen Berechnungen zur Photoionisierung eines He-
liumatoms und eines Heliumhydridions und präsentieren theoretische Beschreibungen der
Elektronendynamik im Attosekundenbereich.

Eine genaue Beschreibung des Attosekundenprozesses von Elektronen, die einem inten-
siven Laserfeld ausgesetzt sind, erfordert die Lösung der zeitabhängigen Schrödinger- Gle-
ichung (TDSE). Das Photoelektronenspektrum ist eines der am leichtesten beobachtbaren
Phänomene in Attosekundenversuchen, deren Berechnung mit Standardmethoden jedoch
unter einer schlechten Skalierung zur Beschreibung des mit der Zeit expandierenden Sim-
ulationsraums leidet. Mit der zeitabhängigen Oberflächen- Flux-Methode (tSurff) kann
man das Photoelektronenspektrum in einem begrenzten Raum mit hoher numerischer Ef-
fizienz erhalten. Die Erweiterungen von tSurff umfassen die Photoionisierung von Polyelek-
tronensystemen mit der Methode der hybriden antisymmetrisierten gekoppelten Kanäle
(haCC) und die Doppelionisierung des Heliumatoms. Die numerischen Methoden zur
Lösung von TDSE werden demonstriert und bestehen aus der Diskretisierung, die den
Winkelteil durch sphärische Ober- und Unterwellen und radiale Funktionen durch die
Finite-Element-Methode (FEM) oder die Finite-Element-Discrete-Variable-Darstellung (FE-
DVR) darstellt. Die durch die oben genannten Diskretisierungsstrategien dargestellte
Elektronen-Elektronen- Wechselwirkungsformel wird vorgestellt. Ebenso werden der ef-
fiziente Absorber mit Infinite Rage Exterior Complex Scaling (irECS) und Mixed Gauge
vorgestellt. Wir zeigen auch die numerischen Methoden zum zeitlichen Fortschreiten der
Wellenfunktion sowie deren Parallelisierungsstrategie und -leistung. Bevor die Hauptergeb-
nisse vorgestellt werden, wird die numerischen Verhaltensweisen der Diskretisierungspa-
rameter in Simulationen der Doppelionisation eines Heliumatoms beschrieben, das einem
400-nm-Laserpuls ausgesetzt ist.

Wir berechnen die statischen Feldionisationsraten von HeH+ nach der haCC-Methode
zusammen mit einem Konvergenztest für Diskretisierungsparameter. Die Ergebnisse können
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als Inputs für CTMC-Berechnungen verwendet werden, bei denen eine ineinander ver-
schlungene Bewegung des Elektronenkerns beobachtet wird. Das Einzelionisations- Pho-
toelektronenspektrum eines Heliumatoms wird bei verschiedenen Flat-Top-Impulsen mit
Intensitäten von 1 × 1013 − 1 × 1015 W/cm2 und Wellenlängen von 300 − 400 nm berechnet,
die durch Freeman-Resonanz verstärkt werden, wenn eine angeregte Eigenenergie Ex und
die Gleichung E0 −E0 + Ex + Up = nω erfüllen, wobei Up die ponderomotorische Energie
ist. Die AC Stark-Verschiebung der Eigenenergien E0, Ex mit Intensität werden durch
Floquet-Analyse weiter bestätigt. Wir sehen, dass die Eigenenergie E 0 unveränderlich ist
und die angeregten Eigenenergien Ex vor allem für 3p-Orbitale sich um U p nach oben ver-
schieben. Die Populationsanalyse zeigt, dass die benachbarten 3s- and 3d- der 3p-Orbitale
die höchsten Populationen aufweisen, wenn die Freeman- Resonanzbedingungen der Gle-
ichtung −E0 + Ex + Up = nω erfüllt werden. Dann werden die Resonanzkriterien durch
den Gaußschen Hüllkurvenpuls und verschiedene andere Intensitäten und Wellenlängen
verifiziert.

Die doppelte Photoelektronenemission von He-Atomen durch intensive Laserpulse mit
einer Wellenlänge von 394,5 nm wird für Intensitäten von 3,5 − 9,2 × 1014W /cm2 berech-
net. Gemeinsame Impulsverteilungen bestätigen die Eigenschaften klassischer Flugbahn-
berechnungen. Der ausgeprägte Übergang von einer Back-to-Back- zu einer Side-by-Side-
Emission mit zunehmender Intensität, die He2+/He+ -Verhältnisse und eine Modulation
der gemeinsamen Energiespektren stimmen gut mit einem kürzlich durchgeführten Ex-
periment überein [Henrichs et al., PRA 98, 43405 (2018)], wenn man eine Zunahme der
experimentellen Intensitäten um den Faktor ∼ 2 annimmt. Wir stellen fest, dass Freeman-
Resonanzen die Back-to-Back-Emission verbessern, wir identifizieren die Signatur der Elek-
tronenabstoßung in gemeinsamen Winkelverteilungen und wir interpretieren die Modula-
tion gemeinsamer Energiespektren als Signatur mehrerer Rekollisionen.



Abstract

The goal of ultrafast science is to understand the electron dynamics in the atoms and
molecules in attosecond timescale. Using an intense laser pulse for measuring attosecond
motion is an ideal choice. Various experimental measurements are available to initiate,
control and observe the motions of particles in materials. But the theoretical work follows
painfully, where various qualitative explanations are available but quantitative results for
complex systems are hard to obtain. In this thesis, we focus on the numerical calculations
on photoionization of a Helium atom and Helium Hydride ion, and present theoretical
descriptions of the electron dynamics in attosecond timescale.

A precise description of the attosecond process of electrons that are exposed to an in-
tense laser field requires solving the time-dependent Schrödinger equation (TDSE). The
photoelectron spectrum is one of the most easily accessible observables in attosecond ex-
periments, whose computation with standard methods, however, suffers from poor scaling
for describing the simulation space which expands with time. With the time dependent
surface flux (tSurff) method, one may obtain the photoelectron spectrum in a limited space
with high numerical efficiency. The extensions of tSurff include photoionization of polyelec-
tron systems with hybrid anti-symmetrized coupled channels (haCC) method and double
ionization of Helium atom. The numerical methods for solving TDSE are demonstrated,
consisting the discretization that represents angular part by spherical harmonics and radial
functions by finite element method (FEM) or finite element discrete variable representation
(FE-DVR). The electron-electron interaction formula represented by the above-mentioned
discretization strategies is introduced. The efficient absorber by infinite-range exterior
complex scaling (irECS) and mixed gauge is also presented. We also demonstrate the
numerical methods for advancing the wavefunction with time as well as its parallelization
strategy and performance. Before presenting the main results, the numerical behaviors of
the discretization parameters in simulations of the double ionization of a Helium atom that
is exposed to a 400 nm laser pulse.

We compute the static field ionization rates of HeH+ by haCC method, together with
a convergence test on discretization parameters. The results can be used as the inputs for
CTMC computations, where intertwined electron nuclear motion is observed. The single
ionization photoelectron spectrum of a Helium atom is computed at various flat-top shape
pulses with intensities 1 × 1013 − 1 × 1015 W/cm2 and wavelengths 300 − 400 nm, which are
enhanced by Freeman resonance when an exited eigenenergy Ex and ground eigenenergy
E0 satisfy −E0 + Ex + Up = nω, with Up being the ponderomotive energy. The AC Stark
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shift of eigenenergies E0,Ex with intensity are further confirmed by Floquet analysis; we
find the ground energy E0 is invariant and the excited eigenenergies Ex, especially for 3p
orbitals, up-shift by Up. The population analysis shows the adjacent 3s and 3d of 3p orbitals
have the highest populations when the Freeman resonance conditions −E0 +Ex + Up = nω
are satisfied. Then resonance criteria is verified by the Gaussian-like envelope pulse and
various other intensities and wavelengths.

Double photoelectron emission from He atoms by intense laser pulses with a wave
length of 394.5 nm is computed for intensities 3.5 − 9.2 × 1014 W/cm2. Joint momentum
distributions confirm the characteristics seen in classical trajectory calculations. The pro-
nounced transition from back-to-back to side-by-side emission with increasing intensity,
the He2+/He+ ratios, and a modulation of joint energy spectra agree well with a recent
experiment [Henrichs et al., PRA 98, 43405 (2018)], if one admits an increase of experi-
mental intensities by a factor ∼ 2. We find that Freeman resonances enhance back-to-back
emission, we identify the signature of electron repulsion in joint angular distributions, and
we interpret the modulation of joint energy spectra as a signature of multiple recollsions.
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Chapter 1

Introduction

1.1 Motivation and background

Attosecond physics

The motion of electrons in atoms, molecules, and solids is measured on the time scale of
attoseconds (1 as = 10−18 s) [1]. The motion of electrons is fundamental to all chemical
reactions, and its time scale is minuscule compared to that of vibrational dynamics in
molecules of tens to hundreds of femtosecond (1 fs = 10−15 s) [2] and of rotational dynamics
of molecules in picosecond (ps) time scale (1 ps = 10−12 s).

Typical candicates for measuring the electron dynamics are electrons, ions and light.
Due to the repulsion among the charged particles, it is difficult to form very short duration
pulses with electrons and ions. Thus, for many applications of femtosecond and attosecond
time domain, the light probes are preferred choices. The first measurement of an attosecond
trace by laser pulse was reported in Ref. [3]. With the development of strong laser fields
with precisely controlled sub-cycle temporal evolution [4–6], the attosecond metrology,
such as the attosecond streaking, is widely used not only for characterization of the key
attosecond tools-ultrashort laser pulses, but also for probing electron dynamics with these
tools on the attosecond-to-femtosecond time scale [7–9]. Apart from probing electron
dynamics, the strong-field laser can also serve as a ”pump” for ionizing the electrons, and
the motion of electrons in time can be measured from the high-order harmonic emission [10–
12] and electron diffraction [13] or isolated XUV pulses [14–18]. This newly emerging field is
termed as ”attosecond physics”, the science of collective and individual motions of electrons
in atomic, molecular, and high-density mesoscopic systems in an intense laser pulse.

Experimental progress

The developments in attosecond physics depend on the development of techniques to con-
trol laser pulses. With the generation and control of ultra-short pulses, advanced tech-
niques such as the so-called light-wave electronics were developed to steer electrons inside
and around atoms in attosecond resolution [19]. Ref. [4] reported few-cycle laser pulses
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with a stable carrier envelope phase at a wavelength of 750 nm. In 2004, the first com-
pletely characterized light wave was reported [6] and two years later, the production of
characterized short wavelength single pulse with a width of 1.6 fs [20] and long wavelength
few-cycle phase-stable pulses at 21 µm [21] was published. Recently, isolated short soft
X-ray with extreme peak power exceeding 100 GW was reported in Ref. [22].

Various well-known techniques have been developed to liberate, measure, or control
the dynamics of electron wave packets, such as Attoclock [23–25], laser-induced electron
diffraction (LIED) [13, 26], attosecond streak camera [27, 28], and transient absorption
spectroscopy (TAS) [15, 29–31]. This thesis focuses on the electron dynamics of two-
electron systems He and HeH+ in a strong laser field, where the ionization and interaction
of the two electrons is an important topic, and also opens an interest among experimental
scientists where some recent breakthroughs are given in the following. Direct time-domain
observation of the interaction of two electrons during liberation was possible because of
the attosecond measurements [32]. Due to the two-electron correlation, photon-energy-
dependent emission timing of electrons, released from the helium ground state by an
extreme-ultraviolet photon was observed with attosecond streak camera [33]. The dou-
ble emission spectrum can be measured by coincidence detection methods. The cold target
recoil ion momentum spectroscopy (COLTRIMS) is a coincidence detection method that
can detect with a single measurement the momenta of the ionized particles, including the
ions and electrons [34–37]. The electron repulsion in multi-photon double ionization of ar-
gon, when exposed to a 780 nm pulse, was observed by COLTRIMS [38]. The two-electron
momentum distributions, sequential and non-sequential double ionization, of argon were
also investigated by another coincidence detection reaction microscope (REMI) in the few-
cycle [39, 40] and single-cycle [40–43] regime. For double emission of Helium, apart from
the ratios He2+

/He+ reported in Ref. [44] for a 780-nm laser pulse and a 400-nm pulse used
in Ref. [45], the correlated behavior of the two electrons in a 400 nm pulse was measured
by COLTRIMS as reported by Ref. [46].

Theory lags behind

A clear conception of related theory is prerequisite to explain the experimental observables
and to stimulate the development of technologies and systems. Good examples include the
interpretation of diffraction images of diatomic molecules captured by the LIED [47] that
can explain the interference effects with the high harmonic spectroscopy technique [48].
Some simple models such as the perturbation theory, ADK model, and above-threshold
ionization (ATI) that facilitates qualitative analysis of the observed phenomena will be
detailed later. However, a thorough understanding of the underlying mechanism requires
accurate and quantitative analysis. A quantitative study of such ultrafast processes at
the atomic scale requires solving the Schrödinger equation that has been used for single
electron ionization by many groups to simulate the motion of two or more electrons; the
equation consumes tremendous computational resources.
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A. Computational resources

Thanks to the development of high-performance computers over the past ten years, numer-
ical simulations of double ionization is possible. For example, an accurate prediction on the
double-electron few-photons ionization of a Helium atom with photon energy ranging from
40-54 eV was reported in 2008 [49]. Although research on low dimensional simulations and
full dimensional calculations at short wavelengths (∼ 10 nm) has been reported, reports
on quantum simulations on full dimensions at large wavelengths (λ ≥ 400 nm) are very
scarce [50–52] because of the poor scaling property of the equation. The calculation for a
single optical cycle of 780 nm laser consumed computational resources of more than 4000
cores [53]. The tSurff method shown in chapter 2 facilitates the method that needs moder-
ate consumption of computational resources for large-scale and full-dimensional quantum
simulation for double ionization in a 780 nm pulse, where the convergence was hard to
achieve, as reported by our group [54].

B. Classical and quantum models

The length scale of the electron dynamics is below a few nanometers, which is in the quan-
tum regime. Although experimental observables can be extracted from wave-functions by
solving the time-dependent Schrödinger equation (TDSE), this does not facilitate an intu-
itive description of the motions because of the uncertainty principle. However, an intuitive
description is possible when using classical trajectory methods, wherein the movement of
the wave packet is represented by the weighted average of various independent classical
trajectories simulated by solving Newton’s equation. Moreover, the classical simulations do
not scale drastically with laser parameters and dimensions as they do for quantum meth-
ods. The classical trajectory simulations can also include the quantum effects by using
data from quantum chemistry computations [55], which, however, are limited to describing
the bound states of the molecules and fails to describe the free particles (unbound states).
Thus, it fails to describe quantum properties such as multi-photon ionizations and precisely
measuring static field ionization rates in HeH+. The consistency of the quantum and clas-
sical methods are not fully investigated, especially in the double-emission problem where
the comparisons between the classical description and quantum calculations are scarce.

C. Explaining the experiment

By approximations that neglect the minor effects, quantum computation by solving the
Schrödinger equation simulates the electron dynamics in atoms and molecules in a sim-
plified condition. Comparing the computational results with the experimental observables
provides a better understanding of the physics and proves to be an exceptional way for
scrutinizing the theoretical models. Adjusting theoretical computations to the experimen-
tal conditions requires extra treatment of computed results which is based on a thorough
understanding of the parameters used in the experiment, such as the pulse shape, and
intensity distribution. The comparison of the experiments and theoretical calculations in
double ionization at 400 nm calculation was not fully investigated.
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1.2 Scope of the thesis

In this thesis, the content is divided into the following pieces:

Efficient numerical method

We will illustrate the methods for the computations in chapter 2 and chapter 3. Chapter 2
introduces the efficient time-dependent surface flux (tSurff) method that reduces the com-
putational cost. First, the tSurff method for producing the single emission photoelectron
spectra is introduced. Then, we will demonstrate its extensions including the hybrid ant-
symmetrized coupled channels (haCC) method to efficiently deal with the single ionization
of small molecules and double ionization method of He that is available for simulation of
wavelength ≥ 400 nm with the commonly used computational hardware. The numerical
strategies implemented in our code to solve the TDSE are demonstrated in chapter 3. In
chapter 4, the effect of the discretization parameters on the numerical performance of the
code is illustrated by the convergence study of double ionization on observables including
the energy spectra, correlation ratios, and the joint angular distribution (JAD) spectra
with a 400-nm laser pulse.

Single emission spectra

This part of the content is illustrated in chapter 5, consisting of the static field ionization
by haCC in Sec. 5.1, Freeman resonance enhanced single ionization spectra in Sec. 5.2, and
details for fitting the experimental data in Sec. 5.3.

We present the calculation of the static field ionization rates by our haCC method for
HeH+ as well as the convergence test of the parameters. The static field ionization rates
serve as the weights for different trajectories of the classical calculations.

The single ionization photoelectron spectra of a Helium model with laser pulses of λ
near 400 nm are calculated. The AC Stark shift of the excited eigenenergies of a Helium
model with intensity is investigated using Floquet states by means of plotting the stable
eigenenergies, recursive tracing of eigenstates by overlap of wavefunctions, and inverse
iteration method for scanning the evolution of selected eigenenergies. The single ionization
photoelectron spectrum is enhanced when a Floquet eigenenergy of an excited state 3p
equals that of the ground state because of the AC Stark shift process, where the populations
of the adjacent excited states of 3p are also enhanced. The resonance criteria is also
presented based on the AC Stark shift of eigenenergies in the pulse.

Electron double-emission spectra for Helium atoms in intense 400 nm laser
pulses

We perform double ionization calculations of He atoms with few-cycle pulses at 400 nm
with intensities 3.5 − 9.2 × 1014 W/cm2. The goal is to mainly compare our theoretical cal-
culations with experiments [Henrichs et al., PRA 98, 43405 (2018)]. We find a pronounced
transition from back-to-back to side-by-side with increasing intensity, He2+/He+ ratios, and
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a modulation of joint energy spectra that all agree well with the experiment, if one ad-
mits an increase of experimental intensities by a factor ∼ 2. For single ionization spectra,
the overall shape and cutoff supports our calculations. We find that Freeman resonances
enhance anti-correlated emission. We identify the signature of electron repulsion in joint
angular distributions and interpret the modulation of joint energy spectra as a signature
of multiple recollsions.

1.3 Framework of Theory

The content of this thesis, as summarized above, is focused on simulating the motion of
electrons in a strong laser field. The total wavefunction of an electron exposed to an
intense laser field can be represented by a superposition of the ground and excited states.
The electron may also get ionized by absorbing a sufficient number of photons and depart
from the core under the acceleration of the external field. After the external field reverses
its direction, the ionized electron slows down and returns to the parent ion, leading to
complicated scatterings. The above-mentioned motion of the electrons is in the quantum
regime and can be described by the time-dependent Schrödinger equation.

1.3.1 Time-dependent Schrödinger equation

In this thesis, the time-dependent Schrödinger equation (TDSE) can be simplified by the
following approximations.

• Low-energy approximation: As the motion of the electrons is driven by the intense
laser pulse, whose intensity may reach 1×1018 W/cm2 with wavelength 780 nm [56] in
experiments, the ionized electron carries high kinetic energy whose motion may enter
the relativistic regime. The thesis focuses on the laser with λ ≥ 10 nm and intensities
I ≤ 1015 W/cm2. The energy of particles is always ≤ keV where the maximum energy
of particles could be obtained from Sec. 1.3.7. The electron with kinetic energy ≤

keV travels ≤ 6% of speed of light and contributes ≤ 1% corrections to masses due to
relativistic effect. Thus, we omit the relativistic effects and all negligible magnetic
effects. The related spin effects such as spin-orbit coupling or Lamb shift are also
neglected as the magnetic effect are magnitudes lower than the electric field. Also,
the interaction of charges can also be described classically by the effective potential
V (r)∝ r−1 rather than the quantization of electromagnetic fields.

• High intensity limit: The bound electron absorbs a few photons and get ionized in
the external laser field. The liberated charges in the laser field return to the parent
ion and release photons, which could be observed in the experimental accessible high
harmonic generation. The electron dynamics in atoms and molecules are in the
quantum regime, implying that apart from the electron itself, the quantization of
the external laser field may also be compulsory in principle. Luckily, the intensities

used here are I ∼ 1014 W/cm2, indicating n ≈
Iα2

0λ

hc/λ ∼ 1015 photons around the atom,
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where α0 = 0.052917 nm is the Bohr radius, c = 299792458 m/s is the speed of light
in vacuum, and h = 6.626× 10−34 m2kg/s is the Planck’s constant. Thus, the creation
and annihilation operators can be treated as commutable a†a ∣n⟩ = n ∣n⟩ ≈ (n+1) ∣n⟩ =
aa† ∣n⟩, meaning the quantum effects of the laser field are negligible, and the external
field can be treated as classical.

• Focal averaging. The electric field E⃗(r⃗, t) can be factored into a product of envelope
E⃗0(r⃗, t) and phase exp(i(ωt − k⃗ ⋅ r⃗)), where the former represents the distribution of
the intensity, ω is the frequency and k⃗ represents the momentum. The distribution
of the pulse in space and time should also be taken into consideration in principle.
However, in experiments, the induced laser is focused on the target atoms with a
focal radius in the magnitudes of micrometers, implying the variation of the inten-
sity is magnitudes smaller than the charges of the atoms and the envelope can be
automatically simplified to E⃗0(r⃗, t) ≈ E⃗0(t).

• Dipole approximation. The phase can also be written as

exp(i(ωt − k⃗ ⋅ r⃗)) ≈ exp(iωt), (1.1)

when k⃗ ⋅ r⃗ ≪ 1, λ ≥ 10 nm, compared to ∣r⃗∣ of few atomic units, which is called dipole
approximation. Thereby, the magnetic field is neglected automatically, consistent
with our previous statements. Thus, we have

E⃗(r⃗, t) ≈ E⃗0(t) exp(iωt). (1.2)

• The motions of the nucleus can be neglected as the nucleus is much heavier than the
electron, where the ratio of the mass is mnucleus

melectron
≈ 1836 for the lightest nucleus of a

Hydrogen atom.

With the approximations above, our task is simplified to solving the non-relativistic
TDSE in a strong classical electric field for the wavefunction ψ(t) as

iBtψ(t) =H(t)ψ(t), (1.3)

described by an Ne-electron Hamiltonian

H(t) =
Ne

∑
j

(−
∆j

2
+ V (r⃗j) + V

I
j ) +∑

j<k

1

∣r⃗j − r⃗k∣
(1.4)

with V being the the external field. The Coulomb potential V (r⃗j) satisfies V (r⃗j)∝ r−1
j for

singles atoms, and the interaction with the electric field for the jth electron (V I
j ) is

V I
L,j = r⃗j ⋅

⃗E(t) (1.5)

represented by length gauge or
V I
V,j = i ⃗A(t) ⋅ ▽⃗j (1.6)
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represented by velocity gauge, where i is the imaginary number and ⃗A(t) = − ∫
t

−∞
⃗E(τ)dτ

is the vector potential. For the velocity gauge, ∣ ⃗A(t)∣2/2 is removed from the Hamiltonian,
because it is independent of r⃗ and do not change the wave function. Atomic units h̵ =

e2 = me = 4πε0 ≡ 1 are used throughout this thesis if not specified otherwise, whose values
represented by the International System of Units (SI) can be found in Sec. A.1.

The general procedure to solve ψ(t) is to firstly compute the field free ground state
ψ0 = ψ(t0) of corresponding Hamiltonian H0 = H(t0) that satisfies H0ψ0 = E0ψ0 where E0

is the ground state energy. Then the wavefunction at t can be obtained by advancing ψ0

from t0 to t by

ψ(t) = U(t, t0)ψ0 (1.7)

with the propagation operator U(t, t0) written as

U(t, t0) = T exp(−i∫
t

t0
H(τ)dτ) (1.8)

where T is the time ordering operator. A detailed description of time propagation can be
found in Sec. 3.5.

The photoelectron spectra in the experiment P (k⃗1, k⃗2, ...,C) with photoelectron mo-
menta k⃗1, k⃗2... and residual ionic configuration C can be calculated by projecting the final
ansatz to the scattering states χk⃗1,k⃗2,...,C

with respective outgoing boundary condition:

P (k⃗1, k⃗2, ...,C) = ⟨χk⃗1,k⃗2,...,C
∣limt→∞ψ(t)⟩ . (1.9)

A generalized and analytic solution of TDSE in Eq. (1.4) as well as its spectral analysis
by Eq. (1.9) is hard to obtain; the numerical solutions are only feasible for specific examples
by current computational power, whose details can be found in chapter 3. However, ana-
lytical solutions are accessible for describing the electron dynamics when the wavelength
and the intensity of a laser pulse reach the limits (extremely low frequency and high in-
tensity, extremely high frequency and low intensity, for example), where some well-known
theoretical models that provide analytic solutions will be presented below.

1.3.2 Perturbation theory

When the incident pulse field is in an ultra violet (UV) regime (λ ≤ 20 nm) and below ex-
cessive high intensity (I ≤ 1015 W/cm2), the wave packet of the electron mainly occupies the
ground state and the perturbation theory applies. Advancing the wavefunction with time
can be approximated by the field free Hamiltonian H0 and perturbative corrections with
the interaction term HL = r⃗ ⋅ ⃗E(t). The propagation operator U(t, t0) of the length gauge
Hamiltonian in Eq. (1.4) can be written in nth order perturbation approximation where
the formula is truncated after nth-order corrected term. The second order perturbation of
U(t, t0) can be expanded by Dyson series [57] as

U(t, t0) = U0(t, t0) +U1(t, t0) +U2(t, t0) +O(H3
L) (1.10)
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holds the zero order term as U0(t, t0) = e−i(t−t0)H0 ,the first order term

U1(t, t0) = −i∫
t

t0
U0(t, t

′)HL(t
′)U0(t

′, t0), (1.11)

the second-order term as

U2(t, t0) = (−i)2
∫

t

t0
dt′∫

t′

t0
dt′′U0(t, t

′)HL(t, t
′)U0(t

′, t′′)HL(t
′, t′′)U0(t

′′, t0), (1.12)

and the higher order residualsO(H3
L). With only keeping the first-order term, the spectrum

is

⟨χk ∣lim
t→∞

U(t, t0)∣ψ0⟩ ≈ ⟨χk ∣lim
t→∞∫

t

t0
dt′U0(t, t

′)HL(t
′)U0(t

′, t0)∣ψ0⟩

= ⟨χk ∣r⃗ ⋅ ê1∣ψ0⟩∫

+∞

−∞
dt′E(t′)e−i(E0−Ek)t′

(1.13)

where E⃗(t) = E(t)ê1 is the electric field with ê1 denoting the polarization direction. With
the Gaussian-shape pulse that well approximates the experimental pulse envelope, where

E(t) = E0e
− t

2

α e−iωt, the spectrum is proportional to

∫ dt′E(t′)e−i(E0−Ek)t′ =∫ dt′ exp(−
t′2

α
− iωt′ − i(E0 −Ek)t

′)

=∫ dt′ exp(−
1

α
(t′ +

iα

2
(ω +E0 −Ek))

2) exp(−α
(ω +E0 −Ek)2

4
)

=E0e
−α(E0−Ek+ω)2/4√απ,

(1.14)

where E0 and Ek are energies of the ground state ψ0 and scattering state χk. When
the width α of the Gaussian pulse approaches infinity, the spectrum is proportional to
δ(E0 −Ek + ω). In other words, in the first-order approximation, the spectrum is a peak
with a width 1/α and a height proportional to E2

0 at the position Ek = E0 + ω. Similarly,
the second perturbation term locates at position Ek = E0 + 2ω [58, 59]. In general, the nth
order term consists of n transition dipole moments, and up shifts the energy level by nω,
where Ek = E0 + nω is obtained [60]. The analytic solution for a higher order term (n > 1)
is unavailable, and high-order perturbation terms may also diverge. If a nth peak is first
above the ionization threshold, this process is known as the multi photon ionization (MPI)
process, with the higher peaks (n + 1, n + 2,⋯) named above threshold ionization (ATI)
peaks [61].

The perturbation theory applies when the laser field is at high-frequency limit. On
the contrary, when the laser pulse is at low-frequency limit, the ADK formula is a good
approximation.
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1.3.3 ADK formula

The ADK formula reported by Ammosov, Delone, and Krainov [62] shows the photoion-
ization yield is

Γ = (
3En∗3

πZ3
)

1/2 Z2

2n∗2
(

2e

n∗
)

2n∗ 1

2πn∗
(2l + 1)(l + ∣m∣)!

2∣m∣(∣m∣)!(l − ∣m∣)!
(

2Z3

En∗3
)

2n∗−∣m∣−1

exp(−
2Z3

3n∗3E
)

(1.15)
for a constant electric field E is the electric field strength, Z is the charge of the atomic
residue, n∗ = Z(2E)1/2, E is the energy of the considered state of the electron in the
atom, l,m are the orbital quantum number and its projection. This formula well applies
to the ionization process using a pulse at its low-frequency limit. It can be deduced that
when exposed to a constant field E , the probability that the electron penetrates the barrier
remains, which process is called tunneling ionization. And the ionization rate decays
exponentially with the power of ionization energy.

ADK model is a quasi-static limit of PPT model, which includes the long range Coulomb
potential that the ADK model neglects [63]. The ADK model is extended to MO-ADK
when the asymptotic behavior, the symmetric property of wavefunction and empirical
correction by an extension to a barrier-suppression regime are considered [64]. Being a
single-electron model, (MO-) ADK does not include the exchange effect in angle dependent
molecules [65, 66] and multi-electron effects of transition metal atoms [67].

1.3.4 The Keldysh parameter

The Keldysh parameter [68] is a ratio of two time parameters for describing the competing
effect of tunneling to multi-photon ionization. One is the classical time of flight of the
tunneling ionization through the barrier which is built by the external electric field and the
Coulomb potential τT . The other is the period of the laser field oscillation τL describing how
often the electric field changes its direction. The Keldysh parameter is defined as γ = 2 τTτL .
With very strong fields and low frequencies (ω → 0) where γ ≪ 1, the formula for ionization
rate coincides with that for the tunneling ionization, which condition is named as tunneling
regime. On the opposite limit of not very strong fields and high frequencies where γ ≫ 1,
the ionization rate could be described by absorbing many photons simultaneously. Thus,
this condition is called multi-photon regime.

The Keldysh parameter may also be rewritten in the form of energies as following.
As the tunneling time in Keldysh parameter is defined by the mean free time an electron
passing thorough a barrier of width l =

Ip
eE , where Ip is the ionization potential and E is the

electric field intensity, the Keldysh parameter can also be written as the ratio of Ip and
the ponderomotive energy Up (see below) as

γ =

√
Ip

2Up
. (1.16)

The tunneling delay time is controversial where both instant tunneling [69] and long
tunneling delay time around hundreds of attoseconds [70] with the same laser pulse were
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reported and the Keldysh parameter is always represented by Eq. (1.16). Usually, the
experimental parameters are selected around γ ≈ 1 where both the tunneling ionization and
the multi-photon ionization exist. In this thesis, a pulse with λ ≈ 400 nm, I ≈ 5×1014 W/cm2

is applied in He atom whose single ionization potential is Ip = 0.903 a.u. The Keldysh
parameter is 1.28 where tunneling and multi-photon ionizations co-exist.

1.3.5 Strong Field Approximation

It may need considerable work to solve TDSE for describing electron dynamics in the
potential combined by the Coulomb interactions from charges and the interaction from
the laser field. With strong field approximation (SFA) [68] the Coulomb interaction is
neglected and the motion of the electron is solely driven by the laser field, the solutions
of TDSE are easy to obtain. SFA applies when the force an electron experiences from
the ion is tiny compared to that from the external field. The particles that are far from
the parent ion and exposed to the high intensity, large wavelength laser field are well
described by SFA. The corresponding ansatz can be represented by the well known Volkov
solutions (see Eq. (2.23)), which serve as the asymptotic scattering states for computation
of the photoelectron spectra, and will be detailed in the introductions of tSurff methods in
Sec. 2.2.

1.3.6 Three Step Model

Although the electrons can not be treated as classical particles and their motions are not
definable due to the uncertainty principle, the photoionization, high harmonic generation
(HHG) can be approximated by the trajectories of particles in the tunneling ionization
regime γ ≪ 1 with the intuitive three step model [72, 73]. As can be seen in Fig. 1.1, the
electron is firstly driven outside the parent system in the intense laser field by tunneling
ionization (step 1). Then it is accelerated in the external field (step 2). When the applied
electric force reverses, e1 slows down. As the reversed driven force aggravates, e1 stops and
is back scattered to the parent ion (step 3), leading to complicated recollision processes.
The returned particle may combine with the ion and stay on a bound (ground or excited)
state and release photons, which is a principle mechanism for high harmonic generation
(HHG) [74] (another is Bremsstrahlung [75]). The returned particle may knock out a
second electron with itself scattered away, which process exits in non-sequential double
ionization, or remain on a bound state after knocking the other electron.

More sophisticated models were reported for refining the three step model. For example,
Ref. [76] uses a semi-analytic version of SFA for the first step, Ref. [77] employs a classical
ensemble model for the second step. For the third step, Ref. [78] introduces the the
electron impact cross sections and Ref. [79] uses a full quantum-mechanical recollision
model. Apart from the realistic full dimensional simulations, low dimensional models were
also reported [80, 81].
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Figure 1.1: The illustration of the three-step model. The yellow curve depcits the external
electric field. Firstly an electron e1 (a) gets ionized in the external electric field (b) and
leaves parent system. When (c) the external field reverses its direction and increases its
strength, the liberated electron slows down and is drifted back, and (d) re-collides to the
parent system where the possible recombination (emitting radiation) or further ionization
of the system can happen. The figure is from Ref. [71].

1.3.7 Typical parameters

Typical energies are obtained from classical description of electrons in the laser field, which
can also be observed in the photoelectron spectra from quantum simulations, examples can
be found in the single electron spectrum in Ref. [82]. Suppose the electron is exposed to
the laser field with frequency ω, peak electric field E0 and peak vector potential A0 =

E0

ω .

The average energy a free motion electron in the external field is Up =
A2

0

4 , and the maximal
energy an electron asymptotically is 2Up. The maximum instant kinetic energy before the
re-collision is 3.17Up for satisfying the re-collision condition. And the kinetic energy of an
electron after one elastic re-collision reaches up to 10Up. The 2Up and 10Up cutoff could
be observed in single ionization photoelectron spectra, see Ref. [82]. The derivations of the
above parameters can be found in Sec. A.2.

And the excursion amplitude of a free electron in the laser field is rq =
E0

ω2 , which is also
named as quiver radius.
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Chapter 2

The computational methods

Photoelectron spectrum is one of the most accessible observables from the experiment,
which reflects the dynamics of the electrons in an oscillating external electric field. Ob-
taining photoelectron spectra requires solving the time-dependent Schrödinger equation
using numerical techniques, which leads to tremendous computational consumption (see
below). In this chapter, we present the tSurff method to effectively reduce computational
effort as well as its extensions for modeling the single ionization of a few-electron system
and double ionization. We focus on the linearly polarized pulse along z direction with the
vector potential of electric field being

A⃗(t) = A0(t) sin(ωt + φCEP )ẑ, (2.1)

where ω is the photon energy, φCEP is the phase, and A0(t) represents the shape of the
laser pulse.

2.1 Poor scaling problem

2.1.1 Single ionization

Suppose the Hamiltonian of the Schrödinger equation i B

Bt
ψ(r⃗, t) = Hψ(r⃗, t) in velocity

gauge is

H = −
∆

2
− iA⃗(t) ⋅ ▽⃗ + V (r⃗), (2.2)

and the field-free scattering states are χk⃗ with outgoing momenta k⃗ that satisfy Hχk⃗ =
k2

2 χk⃗
and ⟨χk⃗′ ∣χk⃗⟩ = δ(k⃗

′ − k⃗). The photoelectron spectrum is given by

P (k⃗) = ∣⟨χk⃗∣ limt→∞
ψ(r⃗, t)⟩∣

2
, (2.3)

which requires the propagation of the wavefunction from its initial state before the incom-
ing of the pulse to some time after the end of the pulse, and its subsequent projection to
the scattering states. The ionization and acceleration of particles in the external electric
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field transform the ground state into bound and unbound states, of which the latter keeps
spreading and renders nonzero overlap with the scattering states. Calculation of Eq. (2.3)
necessitates a complete description of the outspreading wavefunction. For numerical com-
putations, a general estimation of the scaling goes as follows. Suppose we have a n cycle
pulse with intensity I, wavelength λ, and the time of one cycle is τ = λ/c. Then, the
maximum momentum of the electron can be approximated by

pmax =
√

2Emax ≈
√

2 ⋅ 10Up ∝ λ
√
I (2.4)

where we use the conclusion in Sec. 1.3.7 of the maximum energy 10Up. The maximum
spreading of wavefunction in phase space by the product of momentum and distance is

Vr ∼ rmax ⋅ pmax ∼ nτ ⋅ pmax ⋅ pmax ∝ nλ3I. (2.5)

As the plane wave can be expanded by spherical harmonics Y m
l (θ, φ) and spherical

Bessel functions jl(x)

eik⃗⋅r⃗ = 4π
∞
∑
l=0

l

∑
m=−l

iljl(kr)Y
m
l (Ωr)Y

m∗
l (Ωk), (2.6)

where l,m are always referred to as azimuthal quantum number and magnetic quantum
number, in numerical discretization we set 0 ≤ l ≤ Lmax and −Mmax ≤ m ≤ Mmax and
Ωk/r = (θk/r, φk/r) represent the angles for momentum or position vectors. The expansion
exponentially decays beyond a certain value controlled by l quantum number. In other
words, the Lmax is controlled by the free motion property, including the maximum momen-
tum kmax and the maximum length rmax. With large kmax and rmax, we have the nearly
linear dependence on density as follows:

Lmax ∝ kmaxrmax ∝ λ3I, (2.7)

similar to Eq. (2.5), where kmax ∝
√
Iλ from Eq. (2.4) and rmax ∼ rq ∝

√
Iλ2 is used to

include the potential electrons returning to the core that deviates from the free motion.
In linear polarization, there exists m ≡ 0 for symmetry. But for any arbitrary pulses, the
similar scaling property

Mmax ∝ λ3I (2.8)

exits. Thus, the total scaling is the product of the three

Vr ⋅ Vθ ⋅ Vφ ⋅ nτ ∝ n2λ10I3. (2.9)

This indicates the total computational resource scales with 10th order of the wavelength
and 3rd order of the intensity. The unfavorable scaling property makes the computation
with long cycle infrared (IR) pulse at high intensity a challenging task.
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2.1.2 Double ionization

The Hamiltonian of double ionization encompasses the tensor product of ionic Hamiltonian
and unity operator 1, as well as the electron-electron (E-E) interaction term

H(t) =Hion(r⃗1, t)⊗ 1 + 1⊗Hion(r⃗2, t) +
1

∣r⃗1 − r⃗2∣
, (2.10)

with the ionic Hamiltonian being

Hion(r⃗, t) = −
∆

2
− iA⃗(t) ⋅ ▽⃗ + V (r⃗), (2.11)

where V (r⃗) = −2
r for the Helium atom. We denote the double ionized wavefunction as

ψ(r⃗1, r⃗2, t). The photoelectron spectra of the two liberated particles are

P (k⃗1, k⃗1) = ∣⟪χk⃗1,k⃗2
∣ lim
t→∞

ψ(r⃗1, r⃗2, t)⟫∣
2
, (2.12)

where χk⃗1,k⃗2
are the coupled two-electron scattering solutions that satisfyHχk⃗1,k⃗2

=
k2

1+k2
2

2 χk⃗1,k⃗2
,

double brackets ⟪⋯⟫ denote the overlap by integration over r⃗1, r⃗2 coordinates of the two-
particle wavefunction. The single ionization photoelectron spectrum by double ionization
is

P I(k⃗) = ∣⟪χI
k⃗
∣ lim
t→∞

ψ(r⃗1, r⃗2, t)⟫∣
2
, (2.13)

and χI
k⃗

are the scattering solutions, with one electron occupying the ionic channel I that

satisfy HχI
k⃗
= k2

2 χ
I
k⃗

. Similar to single ionization, the multi-channel out-spreading wave-

function ψ(r⃗1, r⃗2, t) at the end of the pulse needs to be computed, with a complexity highly
dependent on the laser parameters. The radial parts of the two coordinates r1, r2 are com-
puted independently; thus, the phase space scales as V DI

r ∝ n2λ6I2. As we only focus on
the linear polarization for double emissions in this thesis, with constraints on angular mo-
menta (see Sec. 3.1.3), the scaling of angular space is identical to that of single ionization.
Consequently, the simulated phase space expands as

V DI
r ⋅ V DI

φ ⋅ V DI
θ ⋅ nτ ∝ n3λ13I4, (2.14)

implying that the computation scales with the 13th order of the wavelength, 3rd order of
the pulse duration, and 4th order of the intensity. A scaling property inferior to single
ionization makes the double ionization calculation at a large wavelength very scarce.

Another inconvenience in calculating double ionization photoelectron spectra is ex-
tracting the double emission scattering amplitudes, which represent the total scattering
solutions by the asymptotic momenta of the two particles. The most widely used strategy
is to propagate the wavefunction long enough after the pulse and extract the wave packets
in the asymptotic region where the various channels disentangle [54]. This requires an even
larger simulation box than what is given above, and one may find examples from literature
as listed below.
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2.1.3 Discussion

As the photoelectron spectrum is not well defined in the presence of the field, one can only
obtain the spectrum by collecting all the electrons after the end of the laser pulse. When
one tries to precisely describe the out-spreading wavefunction in the whole phase space,
including the parts far from the nucleus, the simulation box expands until the end of the
time propagation, implying that large amounts of data are stored to describe the whole
phase space in the memory and manipulate huge matrices, leading to high computational
consumption.

The poor scaling problem is a challenge, especially for the 6D double ionization by
laser pulses with large wavelength where the space is the tensor product of two 3D spaces.
The double-ionization simulation was performed by various research groups, and many of
them created a large simulation box with an extreme ultraviolet (XUV) pulse. In Ref. [49],
a time-dependent close-coupling scheme (TDCC) [83] together with FE-DVR ([84, 85])
method are applied for two-electron ionization in a XUV pulse, and the wavefunction prop-
agates for 21 fs after the pulse to project the ansatz into the energy-normalized coulomb
waves for accuracy with the convergent radial size up to 800a.u. The same method was
applied by other groups to study ionization with a few photons [86–88] as well as the ef-
fects of an assisting IR streaking field [89]. Different discretization methods were applied.
B-splines in the radial part for approximating the wavefunction and projection of wavefunc-
tion into products of uncorrelated numerical single-particle continuum states for spectrum
analysis were reported in Ref. [90]; computation was applied in a XUV pulse, and the box
size increased to 250a.u. Ref. [51] reported finite difference methods, where doubly ionized
wave packets were extracted from wavefunctions using masks. The method was also ap-
plied to a calculation with 390 nm pulse for various DI pathways with an extension of the
box size to 1200a.u. [52]. The box size reached 130a.u. for simulating double emission at
XUV pulse by surface integral with asymptotic form of wavefunction and Coulomb func-
tions [91]. Despite some of the calculations on double ionization using different methods
by other groups [51, 73, 92], the 6D, fully quantum calculations for wavelengths larger than
400 nm are scarce.

The time-dependent surface flux (tSurff) method computes the spectra only with in-
formation about a specific surface and largely increases the computational efficiency. In
the following contents, the details of tSurff method are presented, and its scaling property
is compared with Eq. (2.9).

2.2 Single electron tSurff

2.2.1 Methods

We suppress the Coulomb attraction that decays with r−1 from the nuclei by multiplying
a function fα,β(r) as

V (r⃗)↦ fα,β(∣r⃗∣)V (r⃗) (2.15)
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where fα,β(r) satisfies

fα,β(r) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 r < α
2

(α−β)3 (r − β)2(r − 3α−β
2 ) α ≤ r < β

0 r ≥ β

(2.16)

to ensure the continuity of values and derivatives at r = α, r = β. The truncation with
[α,β] parameters are always checked carefully for convergence. We always choose β = Rc,
which is the tSurff radius and will be explained later. The Hamiltonian is

H(t) =HV (t), ∣r⃗∣ > Rc, ∀t. (2.17)

where

HV (t) = −
∆

2
− iA⃗(t) ⋅ ▽⃗ (2.18)

when there is external electric field and

HV (t) = −
1

2
∆ (2.19)

after the pulse is over. As the bound states remain localized and the continuous wave keeps
moving after the pulse, at time T , which is long enough after the pulse, the wavefunction
can be decomposed into bound and continuous spectra content by a box with the predefined
radius Rc, wherein the bound state remains inside and the continuous wave outside

ψ(r⃗, T ) = ψb(r⃗, T ) + ψs(r⃗, T ) (2.20)

with the
ψb(r⃗, T ) ≈ 0, ∣r⃗∣ ≥ Rc (2.21)

being the bound part and
ψs(r⃗, T ) ≈ 0, ∣r⃗∣ ≤ Rc (2.22)

being the scattering part. The approximation sign applies here because the exponential
tail of the bound states extends to infinite distances beyond Rc, and there exists the low-
momentum contribution of ψ(r⃗, T ) that remains in the simulation box at T . With the
approximation, only ψs(r⃗, t) contributes to the photoelectron spectrum P (k⃗).

The scattering solution of the TDSE with desired asymptotics is the delta normalized
Volkov solution

χk⃗(r⃗, t) = (2π)−3/2e−iΦ(k⃗,t)eik⃗⋅r⃗ (2.23)

where

Φ(k⃗, t) = ∫
t

−∞
dt′
k⃗2

2
+ k⃗ ⋅ A⃗(t) (2.24)

is called the Volkov phase. To compute the overlap, a step function with Rc is defined as

Θ(Rc) = {
0, ∣r⃗∣ < Rc

1, ∣r⃗∣ ≥ Rc.
(2.25)
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Thus, the scattering amplitudes b(k⃗, T ) that contributes to the photoelectron spectrum

P (k⃗) = ∣b(k⃗, T )∣2 (2.26)

can be approximated by projection of unbound parts ψs(r⃗, T ) on the scattering solutions
χk⃗(r⃗, t) at T as

b(k⃗, T ) =⟨χk⃗(T ) ∣Θ(Rc)∣ψ(T )⟩ = ∫

T

−∞

d(⟨χk⃗(t) ∣Θ(Rc)∣ψ(t)⟩)

dt
dt

=∫

T

−∞
⟨
dχk⃗(t)

dt
∣Θ(Rc)∣ψ(t)⟩ + ⟨χk⃗(t) ∣Θ(Rc)∣

dψ(t)

dt
⟩dt

=∫

T

−∞
i⟨χk⃗(t) ∣HV (t)Θ(Rc)∣ψ(t)⟩ − i⟨χk⃗(t) ∣Θ(Rc)HV (Rc)∣ψ(t)⟩dt

=i∫
T

−∞
dt⟨χk⃗(t) ∣[HV (t),Θ(Rc)]∣ψ(t)⟩,

(2.27)

where the assumption Eq. (2.17) is used and

F (k⃗, t) = ⟨χk⃗(t) ∣[HV (t),Θ(Rc)]∣ψ(t)⟩ (2.28)

is called the flux. The commutator operator [HV (t),Θ(Rc)] on a spherical coordinate can
be written as

[HV (t),Θ(Rc)] (r, φ, η) = −
1

2

1

r2
Brr

2δ(r −Rc) −
1

2
δ(r −Rc)Br − iAzηδ(r −Rc), (2.29)

where η = cos θ ∈ [−1,1] if not specified otherwise in this thesis. The Volkov solution in
Eq. (2.23) with the expansion of plane wave from Eq. (3.5) is

χk⃗(r⃗, t) =
eiΦ(k⃗,t)
√
π/2
∑
l,m

iljl(kr)Y
m
l (Ωr)Y

m∗
l (Ωk). (2.30)

With the Volkov solution in Eq. (2.30), the matrix element of the commutator operator is

⟨χk⃗(t) ∣[HV (t),Θ(Rc)]∣ψ(t)⟩ =
eiΦ(k⃗,t)
√
π/2

R2
c∑
l,m

(−i)lY m
l (Ωk)(Jlm − iAzKlm), (2.31)

where

Jlm ∶=
1

2
j′l(kRc)Rlm(Rc, t) −

1

2
jl(kRc)R

′
lm(Rc, t) (2.32)

is the flux from lm partial wave,

Klm ∶= ∑
s=±1

⟨Y m
l (Ωr)∣ cos θr∣Y

m
l+s(Ωr)⟩jl(kRc)Rl+s,m(Rc, t) (2.33)

is the correction term for the dipole field and Rlm(r, t) is the radial function, see Eq. (3.30)
in Sec. 3.1.1. Here, we only keep Az term as we will mainly focus on the linear polarization
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along z-direction in this thesis. The jl(x) is the spherical Bessel function. Detailed deriva-
tion of Eq. (2.31) can be found in the supplementary information in Sec. A.5.1. The matrix
element of the commutator operator calculation only requires the values and derivatives of
the wavefunction on the boundary Rc, rather than the values in full space. Moreover, one
only needs an accurate approximation of wavefunction inside Rc, no matter how broadly
the wavefunction spreads in space. This method largely reduces the computational cost
for matrix operation and memory usage of coefficients for describing the wavefunction.
With this method, one needs to store the time-dependent Surface f lux information for
the spectrum. This is where the name tSurff comes from. The method was originally
reported in Ref. [93], and has been successfully applied to single-electron systems such as
Hydrogen atom [94] and single ionization of Helium model [95].

2.2.2 Scaling property

The tSurff method calculation only requires the surface values and derivatives of the wave-
function at Rc, instead of its information on the whole phase space. One only needs the
simulation box size R0 large enough that the absorber beyond R0 does not affect the mo-
tions of electrons in the box, which can be approximated by rq =

E
ω2 , see Sec. 1.3.7, where

E,ω are the peak electric field and frequency. The single emission spectrum of a hydrogen
atom in a 1600 nm laser pulse [82] also shows the converged simulation box size satisfies
R0 ∼ rq and R0 ≥ rq. The scaling property of tSurff method differs from the above in

R0 ∼ rq =
E

ω2
∝

√
Iλ2, (2.34)

which contributes to scaling in radial part as

Vr ∼ rq ⋅ pmax ∼
√
Iλ2 ⋅ pmax ∝ λ3

√
I. (2.35)

Similarly, the scaling on phase space θ and φ are given by

Vθ ∝ λ3I, Vφ ∝ λ3I. (2.36)

The total scaling from the product of the three is

Vr ⋅ Vθ ⋅ Vφ ⋅ nτ ∝ nλ10I3, (2.37)

with only n removed from the above Eq. (2.9). However, a careful examination shows
tSurff of a 3D computation optimizes the scaling to a factor (10n)3 for a long wavelength
single ionization calculation [82] as is on rmax

rmax

R0

=
nτ

√
2 ⋅ 10Up

R0

=
n2π
ω

√

10 E2

4ω2

4
3
E
ω2

≈ 10n, (2.38)

where the quiver radius is independent of the pulse length n and R0 ≈
4
3rq is the optimal

choice from our convergence study.
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2.2.3 Discussion

In this section, we add a short discussion of the radius R0 and Rc. The tSurff radius Rc

is chosen to distinguish the bound and unbound contributions of a specific electron. The
solution of Hamiltonian beyond Rc can be written in the asymptotic form; for example,
Volkov solutions, where the Coulomb interaction from the nucleus and electrons are trun-
cated. R0 defines the simulation box for precisely approximating the movement of electrons
beyond which the emission is absorbed. In our tRecX code (see Sec. 3.6 or Ref. [96]), the
absorber is constructed by the infinite-range complex scaling method (see Sec. 3.3), which
starts at R0 and R0 is also named complex scaling radius. The recollision of the free elec-
tron with the ion would be suppressed if the electron is reverted from r > R0, suggesting
the electron dynamics must be kept before absorption. The problem can be solved by
choosing R0 above the quiver radius, the electrons beyond which hardly come back close
to the parent ion for recollision. The particle, which is far from the nucleus r ≥ Rc within
its huge quiver radius, can be approximated by Volkov solutions but needs to stay in the
simulation box for convergence. Thus, R0 ≥ Rc is required. To reduce the error introduced
by the truncation of Coulomb potentials, we set β = Rc = R0, where β is the truncation
radius from Eq. (2.16).

The tSurff method has the following limitations. First, the long tail of the Coulomb
potential is truncated at Rc, requiring scrutiny of R0 and Rc parameters by convergence
study. Second, the photoelectron spectrum is computed by fluxes passing through Rc. To
include low-energy particles, the wavefunction needs to be propagated long enough after
the pulse ends. It is worth to mention that with the iSurff method, the standard spectra
analysis is made after the pulse is off [97]. Third, the highly excited Rydberg states reaching
Rc that do not decrease with the increasing Rc also lead to artifacts in the photoelectron
spectra. The artifacts can be reduced by the time average of the scattering amplitudes in
the time propagation (see Ref. [54]).

The tSurff method has two successful extensions: for single ionization on small molecules
(the haCC) and for double ionization on two-electron systems.

2.3 haCC-hybrid anti-symmetrized Coupled Channels

2.3.1 Fuse strong field methods and electronic structure

Solving the high-dimensional TDSE of the few-electron structures of molecules and atoms
is a complex problem. Efforts have previously been made to analyze electron dynamics [98].
The key strategy in the methods was to discretize the wave packet with a subspace the full
Hilbert space, which is sufficient for describing the electronic structure [99].

Here, we give a short summary of the well-known approaches. Time-dependent Hartree-
Fock (TDHF) theory [100] creates an ansatz of all electrons with a single Slater determi-
nant for all the (time-dependent) single-particle orbitals, and correlation is not included.
The Hartree-Fock (HF) equation is solved by the self-consistent field (SCF) method [101];
thus, the names ”SCF” and ”HF” are used interchangeably in many quantum chemistry
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methods. As an extension to TDHF, the multi-configuration time-dependent Hartree-Fock
(MCTDHF) approach [100, 102] forms a complete basis, as apposed to single-particle or-
bital in TDHF, where the coefficients and orbitals are all time-dependent. MCTDHF gives
a compact description of the wavefunction but has unfavorable scaling with the number of
electrons. The variants of the MCTDHF approach include the complete active space self-
consistent field method (TD-CASSCF) [103] and time-dependent restricted-active-space
self-consistent field method (TD-RASSCF) [104, 105] for specific problems. The time-
dependent configuration interaction (TDCI) method introduces the time-independent ”oc-
cupied” and ”virtual” orbitals (excited states) as the field-free Hartree-Fock orbitals, and
only the coefficients vary with time. The wavefunction of TDCI is a linear combination
of Hartree-Fock determinants, each representing a configuration of ”occupied” and ”vir-
tual” orbitals. When the ”virtual” orbitals only contain the single excitations, the TDCI
is simplified to time-dependent interaction singles (TD-CIS) [106, 107]. The coupled chan-
nels formalism [108, 109] discretizes the ansatz into various neutral-bound and single-ionic
states, whose size is free from the number of electrons, making it easily applicable to large
systems. The R-matrix method is similar to coupled channel formalism except that it
divides the physical space into two regions, treating the inner region exact but the outer
region with approximations.

The correlated bound electron states and their relative transitions can be precisely de-
scribed using existing quantum chemistry packages (QCP), but the simulation of correlated
states in the electronic continuum is quite challenging. First, the local orbitals in QCP fail
to describe the oscillating electronic wavefunction for large distances, and the orbitals for
describing unbound states must have some asymptotic behaviors [110]. Second, calculat-
ing the bound states and continuous wave requires different algorithms—the eigenenergy
of the former is unknown and degeneracy only exists for selected subsets, whereas the
eigenenergy of the latter is always given and infinite degeneracy exists in a continuous
wave [110]. Recently, Martin et al. [110] developed the XCHEM code to solve ionization
of polyelectron molecules and atoms with close-coupling scattering methods implemented
using a hybrid Gaussian B-spline basis that interfaces with the existing quantum chemistry
package MOLPRO, which was successfully applied to describe the photoionization of He,
N2, Ne and O2 [110–114]. Douguet et al. reported the simulation of the photoionization
of He in the perturbative regime by complex Kohn variational method[115].

In this section, we present our hybrid anti-symmetrized coupled channels (haCC)
method for simulating the photoionization of the polyelectron atoms and molecules, which
successfully combines the tSurff method for dealing with ionization process and traditional
quantum chemistry calculations. The haCC method unitizes both the approaches for pre-
cise ab initio calculations by creating anti-symmetrized coupled channels from the two
methods. Rather than using Gaussian B-splines basis for approximating the continuous
wave as in XCHEM code [110], we implement FE-DVR for numerical discretization in
haCC, as it better describes the re-scattering process. We have successfully applied haCC
for the simulations in photoionization of He, Be, H2, Ar, Ne, O2, CO2 and N2 [66, 109,
116, 117].
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2.3.2 Multi-electron discretization

The haCC method solves the single ionization photoelectron spectra of the N electron
system with the field-free Hamiltonian

Ĥ0 =∑
i

[−
∆i

2
+ V (r⃗) −∑

p

Zp

∣r⃗i − R⃗p∣
] +∑

i<j

1

∣r⃗i − r⃗j ∣
, (2.39)

where Zp is the charge of the pth nucleus, and the dipole interaction term is DL = ∑j
⃗E(t)⋅r⃗j

for length gauge and DL = ∑j i ⃗A(t) ⋅ ▽⃗j. We discretize the N-particle wavefunction using
channel wavefunctions formed by the anti-symmetrized product of the one-electron base
and the ionic states, to which we add the neutral ground state wavefunction. The formula
is given below

∣Ψ(t)⟩ ≈∑
I

∣I⟩CI(t) +∑
N

∣N ⟩CN (t), ∣I⟩ = A∣i⟩∣I⟩ (2.40)

where ∣i⟩ is an one-electron basis, ∣I⟩ and ∣N ⟩ are the ionic and neutral ground states
that are obtained by COLUMBUS code with multi-reference configuration interaction
singles doubles (MR-CISI) method [118], A[. . .] is the anti-symmetrization operator and
CI,i(t),CN (t) are the expansion coefficients. The first part ∑I,iA∣i⟩∣I⟩CI(t) is the coupling
term of the ionized and the unionized particles where the anti-symmetrization is satisfied for
Pauli’s exclusion principle. The second term ∑N ∣N ⟩CN (t) represents the ground state of
the system. The hybrid one-electron basis is a combination of the atom-centered Gaussian
and finite-element methods (see Sec. 3.1.2). The inter-channel electron-electron exchanges
are all included. We include the explicit neutral ground state N , to increase the compu-
tational efficiency because of a strong correlation of the ground state. The description of
correlation behavior needs more active orbitals only for the ground state. Introducing it
explicitly reduces the number of active orbitals and increases numerical efficiency.

The orbitals of wavefunction of Eq. (2.40) are independent of time; time dependency is
in the coefficients. The propagation of the time-dependent coefficients can be constructed
by multiplying the ”bra” vector of N and I on the left, resulting in two ordinary differential
equations below

i
dCI(t)

dt
⟨I ∣I⟩ + i

dCN (t)

dt
⟨I ∣N ⟩ = ⟨I ∣Ĥ ∣I⟩CI(t) + ⟨I ∣Ĥ ∣N ⟩CN (t) (2.41)

i
dCI(t)

dt
⟨N ∣I⟩ + i

dCN (t)

dt
⟨N ∣N ⟩ = ⟨N ∣Ĥ ∣I⟩CI(t) + ⟨N ∣Ĥ ∣N ⟩CN (t). (2.42)

The propagation of coefficients is explicitly performed with the 4th order Runge-Kutta
method with an adaptive step size. This standard way of solving the TDSE is further
illustrated in chapter 3. More details on the haCC method can be found in Ref. [109].

Anti-symmetrization effectively enlarges the accessible space. Apart from the tSurff
method for the spectrum, other methods such as the infinite-range exterior complex scaling
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are applied for the numerical calculations, as shown in Sec. 3.3. We also apply the mixed-
gauge method for numerical efficiency and computational resource. The transformation
from the length gauge to the mixed gauge is

ψmixed(r⃗, t) = e
i ⃗A(t)⋅ r⃗

r
(r−Rg)Θ(Rg)ψL(r⃗, t). (2.43)

where Rg is the gauge radius and is always chosen Rg = Rc = R0. With the above transfor-
mation, the wavefunction at rg remains continuous at all times [119]. Details of the mixed
gauge can be found in Sec. 3.4.

2.3.3 Representation of states and orbitals

The haCC wavefunction from Eq. (2.40) has a similar form to that of ansatz created by
quantum chemistry in that they are both linearly expanded, and their states are represented
by products of single-particle orbitals, which are pure Hartree-Fock orbitals for CI and a
mixture of a free-electron orbital and Hartree-Fock orbitals for haCC. These following
contents about the wavefunctions and matrix elements are mainly taken from the previous
works of our group from Ref. [117]. Suppose the single-electron Hartree-Fock orbitals of
the ”n” electrons are Φ1,Φ2, ...,Φn, the ionic and neutral state wavefunctions of the system
can be represented by

∣I⟩ = ∑
p1,⋯,pn−1

dp1,⋯,pn−1 ∣A[Φp1⋯Φpn−1]⟩ (2.44)

∣N ⟩ = ∑
p1,⋯,pn

dp1,⋯,pn ∣A[Φp1⋯Φpn]⟩ (2.45)

where dp1,...,pn−1 and dp1,...,pn are the coefficients and the indexes satisfy 1 ≤ (i, pi) ≤ n,
which also applies to the formulas below. The corresponding multi-particle reduced density
matrices of two ionic states I, J are

ρIJk1,⋯,kp,l1,⋯,lp = ⟨I ∣a†
k1
⋯a†

kp
al1⋯alp ∣J⟩ (2.46)

and the generalized Dyson coefficients of an ionic state and a neutral state can be repre-
sented by

ηNJk1,⋯,kp,l1,⋯lp−1
= ⟨N ∣a†

k1
⋯a†

kp
al1⋯alp−1 ∣J⟩, (2.47)

where a†
ki
,1 ≤ (i, ki) ≤ n and alj ,1 ≤ (j, lj) ≤ n are creation and annihilation operators on

kith and ljth orbitals. The overlap of the states are

⟨N ∣N ⟩ = 1 (2.48)

⟨N ∣I, i⟩ = ηN Ik ⟨Φk∣i⟩ (2.49)

⟨I, i∣J, j⟩ =⟨i∣j⟩⟨I ∣J⟩ − ⟨i∣Φl⟩ρ
IJ
kl ⟨Φk∣j⟩

=⟨i∣j⟩δIJ − ⟨i∣Φl⟩ρ
IJ
kl ⟨Φk∣j⟩

(2.50)
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2.3.4 Matrix elements

Any exchange-symmetric single-particle operator can be written as

T̂ = ˆt(1) + ˆt(2) +⋯ ˆt(n) =
n

∑
i

ˆt(i). (2.51)

The matrix elements for a single-particle operator, represented by two neutral channels are

⟨N ∣t̂∣N ⟩ = ρNNkl ⟨Φk ∣t̂∣Φl⟩, (2.52)

for a neutral channel and an ionic channel are

⟨N ∣T̂ ∣I, i⟩ = ηN Ik ⟨Φk∣t̂∣i⟩ + η
N I
klm⟨Φk∣t̂∣Φm⟩⟨Φl∣i⟩, (2.53)

and for two ionic channels are

⟨I, i∣T̂ ∣J, j⟩ = ⟨i∣j⟩⟨I ∣t̂∣J⟩ + ⟨i∣t̂∣j⟩⟨I ∣J⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

direct

+−⟨i∣t̂∣Φl⟩ρ
IJ
kl ⟨Φk∣j⟩ − ⟨i∣Φl⟩ρ

IJ
kl ⟨Φk∣t̂∣j⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exchange

− ⟨i∣Φc⟩⟨Φa∣j⟩⟨Φb∣t̂∣Φd⟩ρ
IJ
abcd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-orthogonality ⟨Φk ∣i⟩≠0

.
(2.54)

The two-particle operators

V̂ =
n

∑
i<j
v̂ij (2.55)

have matrix elements

⟨N ∣V̂ ∣N ⟩ =
1

2
ρNNabcd⟨ΦaΦb ∣v̂∣ΦcΦd⟩ (2.56)

for two neutral channels,

⟨N ∣V̂ ∣I, i⟩ = ηN Iklm⟨ΦkΦl∣v̂∣Φmi⟩ +
1

2
ηN Iabcde⟨ΦaΦb∣v̂∣ΦdΦe⟩⟨Φc∣i⟩ (2.57)

for one neutral and ionic channel,

⟨I, i∣V̂ (2)∣J, j⟩ =
1

2
ρIJkl ⟨ΦaΦb∣v̂∣ΦcΦd⟩⟨i∣j⟩ + ρ

IJ
kl ⟨Φki∣v̂∣Φlj⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
direct term

−ρIJkl ⟨Φki∣v̂∣jΦl⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

standard exchange term

−ρIJabcd⟨Φai∣v̂∣ΦcΦd⟩⟨Φb∣j⟩ − ρ
IJ
abcd⟨ΦaΦb∣v̂∣Φcj⟩⟨i∣Φd⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
extra terms due to non-orthogonality

−
1

2
ρIJabcdef ⟨ΦaΦb∣v̂∣ΦdΦe⟩⟨i∣Φf ⟩⟨Φc∣j⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
extra terms due to non-orthogonality

.

(2.58)

and two ionic channels.
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The overlap matrix of two ionic states in Eq. (2.50) is different from that of the standard
finite elements, which may be banded and allows efficient numerical application for its
inverse. However, the inverse overlap can still be efficiently computed with the Woodbury
formula and using a low-rank update [120]

S−1 = (S0 −UΛU †)−1 = S−1
0 − S−1

0 U(U †S−1
0 U −Λ−1)−1S−1

0 . (2.59)

The overlap matrix of a two-channel example can be re-written in the form

S =
⎛
⎜
⎝

s0 0 0
0 s0 0
0 0 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S0

−
⎛
⎜
⎝

u 0 0
0 u 0
0 0 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U

⎛
⎜
⎝

ρ11 ρ12 ηN1

ρ21 ρ22 ηN2

[ηN1]T [ηN2]T 0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Λ

U † (2.60)

which satisfies the Woodbury formula, where

(s0)ij ∶= ⟨i∣j⟩, uik ∶= ⟨i∣Φk⟩. (2.61)

S0 is banded for FEM and diagonal for FEM-DVR (see Sec. 3.1.2) and its inverse can be
easily computed. The size of Λ is (nInhf + 1)× (nInhf + 1), much smaller than (nIna + 1)×
(nIna + 1) of S, where nI is the number of ionic states, nhf is the number of Hartree-Fock
orbitals and na is the number of active electron basis functions.

Another hurdle to overcome for the inverse of overlap matrix is singularity. Because we
do not add orthogonal constraints to the active orbitals with respect to the Hatree-Fock
orbitals, the near-linearity property of various ∣i⟩ with respect to the Hartree-Fock states
Ψk may render the anti-symmetrized haCC basis linearly dependent. This introduces near-
zero eigenvalues of the overlap matrix, which makes its inversion numerically challenging.
For numerical efficiency, the inverse operation of the overlap matrix is only applied on
the subset spanned by non-singular eigenvectors, written as a pseudo-inverse S̃−1 that
satisfies S̃−1SQ = Q, which could also be written with the Woodbury formula, where Q is
a projector for removing the near singular eigenvectors. For the original reference of the
above methods, refer to Ref. [66, 109].

2.3.5 Static field ionization

The ionization process under a laser field at its low-frequency limit is well modeled by quasi-
static approximation, which means that ground-state depletion in the three-step model can
be described by the static field ionization rates [116]. The interpretation of high harmonic
spectroscopy (HHS) [121] and laser-induced electron diffraction (LIED) [122] depends on
correct static field ionization rates from single-electron models.

For dealing with static field ionization problems, many analytic formulas with semi-
classical approximations, such as WKB approximation [123] and saddle point approxima-
tion, have been proposed. One of the popular formulas is the ADK formula [62] (also
detailed in Sec. 1.3.3), with its extension MO-ADK [64] formula, which considers the
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asymptotic behavior and symmetric property of a wavefunction as well as its empirical
correction by extension to a barrier suppression regime [124]. Being a simple analytic for-
mula, the ADK formula has many disadvantages. First, it fails to describe the transition
region where the effects of the Coulomb force and external field are comparable. Moreover,
compared to the numerical calculations [125, 126] of Helium, the ADK formula overesti-
mates ionization rates even in situations where one can give exact solutions [127]. Second,
it fails to describe the ionization beyond single-electron models. Single-electron models
such as MO-ADK fail due to the neglect of exchange effects in angle-dependent ionization
of CO2 [65, 66]. The neglect of the multi-electron effects of ADK might be responsible
for its failure in describing the ionization of transition metal atoms [67]. For a detailed
description of the background, readers are re-directed to Ref. [116].

In this section, we show the static field ionization described by the haCC method and
infinite-range complex scaling method, which successfully produce the ionization rates for
N2, CO [116] and the angle-dependent ionization of CO2 [66]. The content of the method
is mainly from previous work in our lab published in Ref. [116].

The static field ionization Hamiltonian for an N-particle system is

H =
N

∑
n=1

[Tn + Vn + r⃗n ⋅ E⃗] + VE−E, (2.62)

where Tn is the single-particle kinetic energy, Vn is the nuclear potential on the nth particle,
r⃗n ⋅ E⃗ is the electric potential energy on the nth coordinate, and VE−E is the electron-
electron repulsion term. To avoid confusion of the notation for the active electron basis
∣i⟩ and imaginary number i, we use n to denote the active electron basis of the liberated
electron.

An ideal way to solve the decay rates is by transforming the Hamiltonian to non-
hermitian via infinite-range exterior complex scaling method, which transforms the radial
axis to

r ↦ rθ = {
r r ≤ R0

R0 + eiθ(r −R0) r > R0
(2.63)

where θ is the scaling angle, and R0 is the complex scaling radius, beyond which the
electron is absorbed; for details refer to Sec. 3.3. As this thesis mainly focuses on single
ionization, the ansatz for the static field ionization calculation can be created using the
haCC method.

We choose a large enough Rc that the bound molecular orbitals represented by CI
functions are negligible beyond Rc (∣r⃗n∣ > Rc). The Hartree potential is smoothly truncated,
which starts at a < Rc and ends at Rc.

With the above-mentioned approximations, we divide the space for simulation into the
unscaled region with ∣r⃗n∣ ≤ R0, n = 1, . . . ,N and N single-scaled region with Sn ∶ ∣r⃗n∣ >
R0, ∣r⃗m∣ ≤ R0,m = 1, . . . ,N,m ≠ n. The Hamiltonian in the unscaled region is unchanged,
as shown in Eq. (2.62), and that for the single-scaled region Sn is

Hn =H
(n̆)
ion − e−2iθ∆

2
+ [R0 + e

iθ(rn −R0)]r̂n ⋅ E⃗, (2.64)
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with a liberated electron n in the complex scaled region r⃗n > R0 and the others in bound
states r⃗ ≤ R0. The H

(n̆)
ion denotes the Hamiltonian of the other bound electrons.

A physical property of the eigenvalue is that it is independent of the types (Spherical,
Cartesian and Cylindrical et.al), and scaling of the coordinates. This means that physically
useful eigenvalues are independent of θ and the finite intervals (see Sec. 3.3 and Ref. [128])
with which one can distinguish true resonance states from accidental eigenvalues introduced
by the finite discretization and complex scaling angles. The eigenvalues of the complex
scaled Hamiltonian are complex values; their real parts represent energy and imaginary
parts represent (twice) the decay width.

With the calculations performed on the different complex scaling angles (θ), we obtain

the eigenvalue of the resonant state as Ef = rf − i
Γf
2 , and the Schrödinger equation is

iBtψn(t) = Efψn(t), (2.65)

where the subscript f refers to the ”static field.” The time-evolution of the field-ionization
state is

ψn(t) = e
−iEf tψn(t0) = e

−irf te−
Γf
2
tψn(t0) (2.66)

with its norm decaying as

∣ψn(t)∣
2 = ⟨ψn(t)∣ψn(t)⟩ = e

−Γf t∣ψn(t0)∣
2, (2.67)

where Γf is the ionization rate.

2.3.6 Combination with Classical Trajectory Monte Carlo

Although experimental observables can be extracted from wavefunctions by solving the
time-dependent Schrödinger equation (TDSE), an intuitive description of the motions is
hard to obtain because of the uncertainty principle; however, it is possible with classi-
cal trajectory methods wherein the movement of the wave packet is represented by the
weighted average of various independent classical trajectories simulated by solving New-
ton’s equation [129]. With classical models, one can simulate the movement of electrons
in a large system with a low computational resource, where the problem does not scale
dramatically with laser parameters and dimensions. One of the famous classical trajectory
Monte Carlo (CTMC) methods was reported in Ref. [55].

The CTMC method first runs a large number of semi-classical simulations with random
initial values and then analyzes the statistic behavior of the results to obtain an averaged
description of the particles. The external electric field strongly varies with time and con-
siderably affects the ionization probability of the particles. We assume the particle ionizes
at time t0 with the phase φ0 = t0ω and include the ionization rate as the weight for the
averaged probability under consideration as

pproc =
∑φ0

pproc
φ0

Γ(φ0)

∑φ0
Γ(φ0)

, (2.68)
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where Γ(φ0) is the ionization rate at phase φ0. pproc and pproc
φ0

describes the probabilities
of the overall process and a single phase, respectively [55]. To include the quantum effects
in the simulations, CTMC takes advantage of quantum chemistry methods for ionization
rates [55, 130]. However, quantum chemistry computation is limited to describing the
bound states of the molecules and fails in the free particles (unbound states). As shown
above, haCC efficiently provides the static field ionization rates of a few-electron molecules,
which serve as the valuable initial values for CTMC calculations.

2.4 Two electron tSurff

Many groups have solved the TDSE with two electrons at the XUV zone, as reported
by various works [49, 89, 90, 131–134] because the computation favors small wavelength
due to the scaling property in Eq. (2.14) and the perturbative method may apply [135,
136]. The famous two-photon ionization of XUV region was simulated by using the R-
matrix Floquet theory [137, 138] and solving TDSE for the correlated behavior of two
particles [87, 88]. The difficulties to overcome in a double-ionization simulation include
the representation of the double continuum and scaling problem, as shown above [54]. Our
two-electron calculation with tSurff in a 400 nm laser pulse only requires a radial extension
to 40 a.u., which is much lower than those in the literature (see Sec. 2.1.3). In this section,
we demonstrate the methods for extending tSurff to double-ionization simulations.

The Hamiltonian of the two-electron interacting system can be written as

H(t) =Hion(t)⊗ 1 + 1⊗Hion(t) + VE-E, (2.69)

which includes the tensor product of the ionic Hamiltonian

Hion(t) = −
∆

2
− iA⃗(t) ⋅ ▽⃗ + V (r⃗), (2.70)

and the unity operator 1 as well as the electron-electron interaction

VE-E =
1

∣r⃗1 − r⃗2∣
, (2.71)

where we have V (r⃗) = − 2
∣r⃗∣ for Helium. The Coulomb attraction from the nuclei for the two

particles as well as the repulsion of electrons are suppressed beyond a radial extension by
multiplying a function fα,β(r), which is also used in Sec. 2.2 as

V (r⃗)↦ fα,β(∣r⃗∣)V (r⃗)

1

∣r⃗1 − r⃗2∣
↦
fα,β(∣r⃗1∣)fα,β(∣r⃗2∣)

∣r⃗1 − r⃗2∣
.

(2.72)

In tSurff for double ionization, we also choose 0 < α ≤ Rc, β = Rc. This approximation is not
specific to tSurff, as many asymptotic analysis show that the total scattering solution can
be written as the product of two single scattering solutions, implying that the interaction
of the two particles is neglected in the asymptotic region.
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2.4.1 Double ionization photoelectron spectra

In our method, the two-electron scattering solution at T after time propagation can be
written as χk⃗1,k⃗2

(r⃗1, r⃗2, T ) ≈ χk⃗1
(r⃗1, T )χk⃗2

(r⃗2, T ) where χk⃗1/2
(r⃗1/2) can be Coulomb waves

or even plane waves [54]. In this thesis, subscript ”1/2” indicates ”1 or 2” while ”1,2”
means ”1 and 2” (used in the following chapters). The approximation is applied mainly
because the Coulomb potentials are truncated beyond Rc. To avoid any built-in errors in
the asymptotic range, spectra analysis is performed in the simplified model, and, again,
Volkov solutions apply for χ ⃗k1/2

( ⃗r1/2, T ) [139]. Alternatively, the two-electron Coulomb

potentials can also be represented by their center of mass and relative positions using a
coordinate transformation r⃗′1 = r⃗1 + r⃗2 and r⃗′2 = r⃗1 − r⃗2 [140]. When they are far from the
core, the Coulomb attraction from the nucleus can be neglected. However, the extraction
of surface values is difficult, and this method has not yet been applied [139]. With the
approximation of the full scattering solution, the scattering amplitude is

b(k⃗1, k⃗2, T ) = ⟪χk⃗1
(r⃗1, T )⊗ χk⃗2

(r⃗1, T ) ∣Θ1(Rc)Θ2(Rc)∣ψ(r⃗1, r⃗2, T )⟫, (2.73)

with photoelectron energy spectra P (k⃗1, k⃗2) = ∣b(k⃗1, k⃗2, T )∣2 similar to Eq. (2.26), where
Θ1/2(Rc) are step functions on ⃗r1/2 as

Θ1/2(Rc) = {
0 , ∣ ⃗r1/2∣ < Rc

1 , ∣ ⃗r1/2∣ ≥ Rc.
(2.74)

The whole radial space is split into four regions by tSurff radius, as shown in Fig. 2.1:
bound region supp(ψB(t)) = B ∶ [0,Rc)⊗ [0,Rc), the single ionized region supp(ψS(t)) =
S ∶ [Rc,∞)⊗ [0,Rc), supp(ψS̄(t)) = S̄ ∶ [0,Rc)⊗ [Rc,∞) and the double emission region
supp(ψD(t)) = D ∶ [Rc,∞) ⊗ [Rc,∞), where the Hamiltonian in region B is unchanged
and the rest Hamiltonians are

HS(t) =HV (t)⊗ 1 + 1⊗Hion(t) V (r⃗1) = 0, VE-E(r⃗1, r⃗2) = 0 (2.75)

and

H S̄(t) =Hion(t)⊗ 1 + 1⊗HV (t) V (r⃗2) = 0, VE-E(r⃗1, r⃗2) = 0 (2.76)

for the single ionization region and

HD(t) =HV (t)⊗ 1 + 1⊗HV (t) V (r⃗1) = 0, V (r⃗2) = 0, VE-E(r⃗1, r⃗2) = 0 (2.77)

for double ionization region, followed by the constraints of potentials in Eq. (2.69). The
Coulomb repulsion of the two electrons only exists in region B. Only region D contributes
the emission to the double ionization spectrum. As the Hamiltonian in D can be factored
into the tensor product form in Eq.( 2.77), the scattering solutions on D can be automat-
ically factored into the tensor product of single scattering solutions of HV (t), which is the
single-particle Volkov solution.
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Figure 2.1: The regions of double ionization time propagation. The B stands for bound
region, S stands for single ionization region, and D stands for the double emission region.
Rc is the tSurff radius and r1 = ∣r⃗1∣, r2 = ∣r⃗2. The figure is taken from Ref. [139]

Derivation

The two-particle unbound states in the D region for computing b(k⃗1, k⃗2, T ) in Eq. (2.73) are
contributed by ψDS (T ) from S subregion and ψD

S̄
(T ) from S̄ subregion. As derived above

using the single ionization tSurff, the projection of the unbound states to the scattering
states can be computed by the time integration of fluxes, for double ionization problem
here, scattering amplitudes can be computed by time integrating the flux F (k⃗1, k⃗2, t) from
S and flux F̄ (k⃗1, k⃗2, t) from S̄ subregions as

b(k⃗1, k⃗2, T ) =⟨χk⃗1
(r⃗1, T ) ∣Θ1(Rc)∣ψ

D
S̄
(T )⟩ + ⟨χk⃗2

(r⃗1, T ) ∣Θ2(Rc)∣ψ
D
S (T )⟩

= i∫
T

−∞
[F (k⃗1, k⃗2, t) + F̄ (k⃗1, k⃗2, t)]dt,

(2.78)

According to the exchange asymmetry, F (k⃗1, k⃗2, t) = F̄ (k⃗2, k⃗1, t) is satisfied and can be used
to check for numerical consistency in the calculation. The contribution from F (k⃗1, k⃗2, t)
can be calculated by

F (k⃗1, k⃗2, t) = ⟨χk⃗1
(r⃗1, t)Θ1(Rc)∣⊗ ⟨χk⃗2

(r⃗2, t)∣[HV (t),Θ2(Rc)]∣ψ
S(r⃗1, r⃗2, t)⟫, (2.79)

with ψS(r⃗1, r⃗2, t) being the wavefunction in S region. As the overlap of single-particle
Volkov solutions slightly violates the orthogonal property ⟨χk⃗∣ΘRc ∣χk⃗′⟩ = Sk⃗k⃗′ ≠ δ(k⃗ − k⃗

′)
because the integration starts from non-zero radial values; however, the property that
integration is non-zero and goes to infinity only at k⃗ = k⃗′ is still satisfied. To create an
identity operator with Volkov states for derivation, we assume S−1

k⃗′k⃗′′
exists and

∫ dk⃗′Sk⃗k⃗′S
−1
k⃗′k⃗′′

= δ(k⃗ − k⃗′′), (2.80)
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can be obtained. Thus, we may expand the ansatz in the S region with the single-particle
scattering solution and the single ionization channels as

ψS(r⃗1, r⃗2, t) = ∫ dk⃗′1∫ dk⃗′′1ϕk⃗′1
(r⃗2, t)χk⃗′′1

(r⃗1, t)S
−1
k⃗′′1 k⃗

′

1

, (2.81)

and take it into Eq. (2.79). The contribution can be written as

F (k⃗1, k⃗2, t) =∫ dk⃗′1∫ dk⃗′′1 ⟨χk⃗1
(r⃗1, t)∣Θ1(Rc)∣

⊗ ⟨χk⃗2
(r⃗2, t)∣[HV (r⃗2, t),Θ2(Rc)]∣ϕk⃗′1

(r⃗2, t)χk⃗′′1
(r⃗1, t)S

−1
k⃗′′1 k⃗

′

1

⟩

=∫ dk⃗′1∫ dk⃗′′1 ⟨χk⃗1
(r⃗1, t)∣Θ1(Rc)∣χk⃗′′1

(r⃗1, t)⟩S
−1
k⃗′′1 k⃗

′

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S
k⃗1
⃗k′′
1
S−1
⃗k′′
1
⃗k′
1

,∫ dk⃗′′1Sk⃗1
⃗k′′
1
S−1
⃗k′′
1
⃗k′
1

=δ(k⃗1−k⃗′1)

⟨χk⃗2
(r⃗2, t)∣[HV (r⃗2, t),Θ2(Rc)]ϕk⃗′1

(t)⟩

=⟨χk⃗2
(r⃗2, t)∣[HV (r⃗2, t),Θ2(Rc)]∣ϕk⃗1

(r⃗2, t)⟩,

(2.82)

where the single emission channel ∣ϕk⃗1
(r⃗2, t)⟩ satisfies

iBt∣ϕk⃗1
(r⃗2, t)⟩ =iBt⟨χk⃗1

(r⃗1, t)∣ψ
S(r⃗1, r⃗2, t)⟫

=⟨−iBtχk⃗1
(r⃗1, t)∣ψ

S(r⃗1, r⃗2, t)⟫ + ⟨χk⃗1
(r⃗1, t)∣iBtψ

S(r⃗1, r⃗2, t)⟫

=⟨−HV (r⃗1, t)χk⃗1
(r⃗1, t)∣ψ

S(r⃗1, r⃗2, t)⟫

+⟨χk⃗1
(r⃗1, t)∣[1⊗Hion(r⃗2, t) +HV (r⃗1, t)⊗ 1]∣ψ

S(r⃗1, r⃗2, t)⟫

=Hion(r⃗2, t)∣ϕk⃗1
(r⃗2, t)⟩ − ⟨χk⃗1

(r⃗1, t)∣[HV (r⃗1, t),Θ1(Rc)]∣ψ(r⃗1, r⃗2, t)⟫,

(2.83)

and we write the coordinate into the Hamiltonian as HV (t) = HV (r⃗1/2, t) for clarity. The

formula F̄ (k⃗1, k⃗2, t) can be derived in the identical way by changing r⃗1 → r⃗2, k⃗1 → k⃗2.

Summary

To sum up, the solution is the projection of a single-electron wavefunction of the ionic
Hamiltonian on the Volkov solution with the formula

F (k⃗1, k⃗2, t) = ⟨χk⃗2
(r⃗2, t) ∣[HV (r⃗2, t),Θ2(Rc)]∣ϕk⃗1

(r⃗2, t)⟩ (2.84)

and
F̄ (k⃗1, k⃗2, t) = ⟨χk⃗1

(r⃗1, t) ∣[HV (r⃗1, t),Θ1(Rc)]∣ϕk⃗2
(r⃗1, t)⟩. (2.85)

The single-electron wavefunction ϕ ⃗k1/2
represents the correlated single emission, which is

correlated with the momenta of the other particle as

iBtϕk⃗1
(r⃗2, t) =Hionϕk⃗1

(r⃗2, t) −Ck⃗1
(r⃗2, t) (2.86)

and
iBtϕk⃗2

(r⃗1, t) =Hionϕk⃗2
(r⃗1, t) −Ck⃗2

(r⃗1, t). (2.87)
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The sources are the overlaps of the two-electron wavefunction on the Volkov solutions,
shown by

Ck⃗1
(r⃗2, t) = ∫ dr⃗1χk⃗1

(r⃗1, t)[HV (r⃗1),Θ1(Rc)]ψ(k⃗1, k⃗2, t) (2.88)

and
Ck⃗2

(r⃗1, t) = ∫ dr⃗2χk⃗2
(r⃗2, t)[HV (r⃗2),Θ2(Rc)]ψ(k⃗1, k⃗2, t), (2.89)

with the initial states 0 shown as

ϕk⃗1
(r⃗2, t = −∞) = 0, ϕk⃗2

(r⃗1, t = −∞) = 0. (2.90)

It should be noted that the advancement of the single-particle wavefunction ϕk⃗1
(r⃗2, t) is

dependent on the momentum k⃗1 of the other electron, indicating that each momentum k⃗1

differently contributes to the propagation of the other, and coupling is contributed by the
source term Ck⃗1

(r⃗2, t) of the inhomogeneous TDSE in Eq. (2.86).
For evaluating Eq. (2.88) or (2.89), one needs the surface values and derivatives on

∣r⃗1∣ = Rc (∣r⃗2∣ = Rc) with coefficients values on coordinate r⃗2(r⃗1), which are provided by
solving of a 6D TDSE on region B and the corresponding derivation could be found on
Sec. A.5.1. Beyond the region B, the electrons are absorbed by the complex scaling, see
Sec. 3.3. Thus, the computation of the photoelectron spectrum includes sequential time-
propagating calculations for regions B → S(S̄)→D.

2.4.2 Non-interacting system

In the non-interacting system of double emission, the E-E interaction term is neglected,
the motions of the two particles are independent. The wavefunction of two non-interacting
particles is written as the tensor product of two single-particle ansatz as

ψ(r⃗1, r⃗2, t) = ψ1(r⃗1, t)⊗ ψ2(r⃗2, t) (2.91)

whose Hamiltonian is created by simply removing the E-E interaction term from Eq. (2.69).
The scattering amplitude Eq. (2.73) of the two electrons

b(k⃗1, k⃗2, T ) =⟪χk⃗1
(r⃗1, T )⊗ χk⃗2

(r⃗2, T ) ∣Θ1(Rc)Θ2(Rc)∣ψ1(r⃗1, t)⊗ ψ2(r⃗2, t)⟫

=⟨χk⃗1
(r⃗1, T ) ∣Θ1(Rc)∣ψ1(r⃗1, t)⟩⟨χk⃗2

(r⃗2, T ) ∣Θ2(Rc)∣ψ2(r⃗2, t)⟩

=b1(k⃗1, T )b2(k⃗2, T )

(2.92)

is the product of scattering amplitude of electron 1 b1(k⃗1, T ) and electron 2 b2(k⃗2, T ).

2.4.3 Single ionization photoelectron spectra

For completeness, we show the computational details here for single emission spectra. The
asymptotic solution of single emission wave function can be written as

χI
k⃗1
(r⃗1, r⃗2, t) = χk⃗1

(r⃗1)⊗ ϕ
I(r⃗2, t), (2.93)
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with the corresponding TDSE constructed by Hamiltonian HS(t) (see Eq. (2.75)) written
as

iBtχ
I
k⃗1
(r⃗1, r⃗2, t) =H

S(t)χI
k⃗1
(r⃗1, r⃗2, t), (2.94)

where the ionic channel satisfies

iBtϕ
I(r⃗2, t) =Hion(t)ϕ

I(r⃗2, t), (2.95)

and normalization constraint ∥ϕI(r⃗2, t)∥
2
= 1. We only consider the ionic channels that

remain in the box as
ϕI(r⃗2, t) ≈ 0, r2 > Rc. (2.96)

Similar to the single electron tSurff, here ≈ means we neglect the long, exponential tails as
well as their interaction with pulse that contributes to tiny ionization signals [139]. With
this approximation, the DI yields at all times computed from subregions S, S̄ to D are
neglected. Rather than the standard time propagation that starts before the laser pulse,
we obtain the ionic channels by backward propagation from the final condition at t = T
with desired final state.

The single emission scattering amplitude from DI simulation is calculated by the pro-
jection of the wavefunction ψS on χI

k⃗1
at the end of the propagation T as

bI(k⃗1, T ) ≈ ⟨χI
k⃗1
(r⃗1, r⃗2, T )∣Θ1(Rc)(1 −Θ2(Rc))∣ψ

S(T )⟩

= i∫
T

−∞
⟨ϕI(r⃗2, t)(1 −Θ2(Rc))∣⟨χk⃗1

(r⃗1, t)∣[HV ,Θ1(Rc)]∣ψ
S(r⃗1, r⃗2, t)⟫dt

= i∫
T

−∞
⟨ϕI(r⃗2, t)∣Ck⃗1

(r⃗2, t)⟩

(2.97)

with the photoelectron spectra

P I(k⃗1, T ) = 2∣bI(k⃗1, T )∣2, (2.98)

by taking both contributions from S and S̄. Thus computation of the single emission
spectrum only requires the sources in the sub region time propagation (see Eq. (2.88)
and (2.89)), and the wavefunction of ionic channels, which is from the back propagation of
a single particle Hamiltonian, as indicated above.

In this method, the ionic solution is independent of momenta k⃗1 and only needs to be
calculated once; however, it must be confined in [0,Rc] in the back propagation. Other-
wise it would lead to exponential divergence in the presence of an absorber [54], or extra
reflections are introduced.

2.4.4 Computational remarks and performance

Photoionization spectra calculation by solving the TDSE in a strong electric field includes
four major steps, namely set up, time propagation, surface flux integration, and post-
processing, which are detailed below:
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1. Set-up process: Create the simulation box as well as the absorber and sets the initial
values for the time propagation.

2. Time propagation (1): Calculate the 6D field-free ground ansatz of Hamiltonian of
region B in Eq. (2.69) and evolve ψ(r⃗1, r⃗2, t) to T , whose surface values are written
to disk at each time step.

3. Time propagation (2): Create the desired momenta grid k⃗1, k⃗2, evolve the 3D wave-
function ϕk⃗1

(r⃗2, t) and (or) ϕk⃗2
(r⃗1, t) in a single ionization region S and (or) S̄ by

Eq. (2.86) and (or) (2.87) with initial value given in Eq. (2.90). The sources of each
time step are calculated by Eq. (2.88) and (or) (2.89) from previously stored surface
values of ψ(r⃗1, r⃗2, t). Afterwards, the corresponding surface values of ϕk⃗1

(r⃗2, t) and
(or) ϕk⃗2

(r⃗1, t) are written to disk.

4. Surface flux integration: Calculate fluxes F (k⃗1, k⃗2, t) and (or) F̄ (k⃗1, k⃗2, t) by Eq. (2.82)
from surface values of ϕk⃗1

(r⃗2, t) and (or) ϕk⃗2
(r⃗1, t). Then, integrate the flux f(k⃗1, k⃗2, T ) =

i ∫
T

−∞F (k⃗1, k⃗2, t)dt and (or) f̄(k⃗1, k⃗2, T ) = i ∫
T

−∞ F̄ (k⃗1, k⃗2, t)dt and combine both into

the scattering amplitude b(k⃗1, k⃗2, T ) = f(k⃗1, k⃗2, T ) + f̄(k⃗1, k⃗2, T ). If only one source
of flux is integrated, the exchange asymmetric property f(k⃗1, k⃗2, T ) = f̄(k⃗2, k⃗1, T ) is
applied for calculating scattering amplitudes.

5. Post-processing: Obtain the energy photoelectron spectra by P (k⃗1, k⃗2) = ∣b(k⃗1, k⃗2, T )∣2.

The final scattering amplitude is symmetric as

b(k⃗1, k⃗2, T ) =f(k⃗1, k⃗2, T ) + f̄(k⃗1, k⃗2, T )

=f̄(k⃗2, k⃗1, T ) + f(k⃗2, k⃗1, T ) = b(k⃗2, k⃗1, T )
(2.99)

is theoretically satisfied. The old version of our tRecX code (see Sec. 3.6 or Ref. [96]) by Dr.
Zielinski calculates b(k⃗1, k⃗2, T ) integrated from flux in one subregion. In the new version,
an extra option is available where b(k⃗1, k⃗2, T ) is integrated by flux from both subregions.
A symmetric check of the photoelectron energy spectra for two particles E1/2

σ(E1,E2) = ∫ dθ1∫ dθ2∫ dφ1∫ dφ2P (k⃗1, k⃗2)k1k2,
k2

1/2

2
= E1/2 (2.100)

calculated by flux from both subregions helps avoid systematic errors in the calculation.
We introduce the error err(E1,E2) with the formula

err(E1,E2) =
2∣σ(E1,E2) − σ(E2,E1)∣

σ(E1,E2) + σ(E2,E1)
(2.101)

for measuring the symmetric property of the DI spectrum, and the tiny error given in
Fig. 2.2 shows that the exchange asymmetry is well preserved.

A big advantage of the two-electron tSurff method is that the 6D wavefunction ψ(r⃗1, r⃗2, t)
only needs to be precisely approximated in region B, where the radial extension is mainly
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(a) (b)

Figure 2.2: The (a) energy spectrum σ(E1,E2) and (b) its error err(E1,E2). The laser is
a FWHM=9 opt.cyc., 394.5 nm at 5.7 × 1014 W/cm2 and flat-top pulse.

controlled by the quiver radius rq, instead of propagating the wavefunction to the asymp-
totic region, which requires a huge radius, as described in the single-electron tSurff. The
single-electron tSurff method scales the phase space by 10n3 for large wavelength calcula-
tion. Thus, the double ionization tSurff scales the phase space by ≈ (10n)6 for the bound
region calculation (time propagation in region B). Although computation on region S and
S̄ may take moderate time if one needs a fine k1/2 grid, it scales the single emission problem
by λ7I2 rather than the λ13I4 of the DI calculation. Moreover, the simulations of different
k grids are uncorrelated and can be perfectly parallelized.

The two-electron tSurff, however, has its own limitations. The numerical error mainly
comes from our approximation of the total scattering solution by the product of two single-
particle scattering solutions as χk⃗1,k⃗2

(r⃗1, r⃗2) ≈ χk⃗1
(r⃗1)χk⃗2

(r⃗2), suggesting the two electrons
disentangle at ∣r⃗∣ ≥ Rc, which does not happen until the radial extension ∣r⃗∣ > 100 a.u.
according to Ref. [91], whereas the essence of tSurff method is to compute the smallest
possible radial extension. The observable ”post-collision” interactions, such as the repulsion
between electrons far from the nucleus, cannot be described well. In our convergence test,
which is presented in the following chapters, the performance of convergence in the double-
electron calculation strongly varies with the target observable. The converged energy
photoelectron spectra as well as the overall back-to-back emission and side-by-side emission
properties are relatively easy to obtain. However, the joint angular distribution (JAD) at
selected energy points is hard to converge, and we can only give an overall shape of the JAD
for the comparison with the experiments. A possible solution is to include the electron-
electron repulsion beyond tSurff radius, which is yet not available [139].
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2.5 Generalized formula for TDSE

The TDSE for the above discussion can be abstracted to

iBtΨ(t) =H(t)Ψ(t) +Cs(t) (2.102)

where Ψ(t) is a generalized wavefunction (wavefunction of any dimensions or scattering
amplitudes), Cs(t) is a generalized source, H(t) is a specific Hamiltonian depending on
the type of ionization processes, as follows

1. Single ionization, time propagation: Ψ(t) ∶= ψ(r⃗, t), Cs(t) = 0, H(t) ≠ 0

2. Single ionization, spectrum integration: Ψ(t) ∶= b(k⃗, t), H(t) = 0, Cs(t) =∶ −F (k⃗, t)

3. The haCC method, time propagation: Ψ(t) ∶= ∑I ∣I⟩CI(t), H(t) ≠ 0, Cs(t) ∶=

H(t)∑N ∣N ⟩CN (t)

4. Double ionization, time propagation in B region: Ψ(t) ∶= ψ(r⃗1, r⃗2, t), H(t) ≠ 0,
Cs(t) = 0

5. Double ionization, time propagation in S region: Ψ(t) ∶= ϕk⃗1
(r⃗2, t), H(t) ≠ 0, Cs(t) ∶=

−Ck⃗1
(r⃗2, t)

6. Double ionization, time propagation in S̄ region: Ψ(t) ∶= ϕk⃗2
(r⃗1, t), H(t) ≠ 0, Cs(t) ∶=

−Ck⃗2
(r⃗1, t)

7. Double ionization, spectrum integration in D region: Ψ(t) ∶= b(k⃗1, k⃗2, t), H(t) = 0,
Cs(t) ∶= −F (k⃗1, k⃗2, t) − F̄ (k⃗1, k⃗2, t).

(2.103)

The formula in Eq. (2.102) provides a unified framework for implementing the tSurff
method and its extensions in the form of code for a simple and clean design.



Chapter 3

Numerical Methods and
Discretization

We have presented the existing analytic models for describing the attosecond dynamics
of electrons when exposed to a short, intense laser in Sec. 1.3. The intuitive analytic
models offer qualitative explanations of various phenomenons in experiments, however,
fail to produce a quantitative explanation with the required precision. A universal and
quantitative description of the electron dynamics in the pulse field can only be achieved
by solving TDSE for theoretical investigations.

The TDSE is a time-dependent differential equation whose solution can be obtained
from ”method of lines” [141] for numerical simulations: expand the TDSE by discrete
coefficients and solve an ordinary differential equation (ODE). The method can be detailed
as the following:

1. Find a set of suitable basis functions to approximate the wavefunction with a finite
number of coefficients. Theoretically, infinitely many basis functions are needed for
an exact expansion of the wavefunction. In numerical simulations, a basis set by Ncoef

rather than infinitely many basis functions {fn} with corresponding time-dependent
coefficients cn(t) is included to give an approximation of the ansatz depending on
the required precision as

∣ψ(t)⟩ =
∞
∑
n=1

∣fn⟩cn(t) ≈
Ncoef

∑
n=1

∣fn⟩cn(t). (3.1)

Choosing {fn} can be a difficult task which requires a clear understanding of the
form of the solutions. The subspace span ({fn}n≤Ncoef

) ⊂ H should not only cover
all the necessary excited states to give an acceptable precision but also be as small
as possible to reduce the computational resources [82]. One may also use a time-
dependent basis [142], but it is not considered here.

2. Rewrite the differential equation in space spanned by basis functions. Occasionally
this converts the ”strong form” into a ”weak form”, which relaxes the continuity



38 3. Numerical Methods and Discretization

and differentiability requirements on the potential solutions to the equation, whose
influences will be discussed later. The overlap of the basis are calculated on both
sides of the TDSE as

⟨fm∣iBt∣ψ(t)⟩ = ⟨fm∣H(t)∣ψ(t)⟩. (3.2)

With a finite number of basis functions, one has

Bt

Ncoef

∑
n=1

⟨fm∣fn⟩
=∶Smn

cn(t) = −i
Ncoef

∑
n=1

⟨fm∣H(t)∣fn⟩
=∶Hmn

cn(t)

Btc⃗(t) = −iŜ−1Ĥ(t)c⃗(t)

(3.3)

which is an ordinary differential equation depending on time, and is contributed by
overlap matrix Ŝ and Hamiltonian matrix Ĥ.

3. Solve the ordinary differential equation. The ODE converted from TDSE is solved
by advancing the initial wavefunction given by the ground eigenstate of the field-free
Hamiltonian. The time propagation is numerically approximated by the explicit 4th
order Runge-Kutta method, as detailed in Sec. 3.5.

It is efficient to program the above standard routines including choosing suitable basis
functions in step 1, constructing matrices in step 2, and matrix-vector multiplications in
step 3 into code, mainly represented by abstract classes in object-oriented programming
for further implementations. Matrix-vector multiplications in step 3 is the major computa-
tional task and consumes the most of computational time and memory. A judicious choice
of basis functions in step 1 helps a smooth construction of computational efficient matrices
in step 2, reducing the computational resources in step 3.

This chapter focuses on the computational strategies for numerically solving the TDSE
with the arrangement of contents based on the above three steps, where the basis function
(step 1) and corresponding matrix construction (step 2) are usually put together and
collectively referred to as discretization strategy.

We will firstly present the general formula for discretizing the wavefunction into angular
and radial parts. The numerical discretization of radial functions in the inner region (r ≤
R0) of the simulation box differs from that of the outer region (r ≥ R0). The finite element
method (FEM) as well as finite element discrete variable representation (FE-DVR) method
will be illustrated for approximating the radial functions of the inner region. Then we will
demonstrate the constraints of the angular momenta basis sets of two particles for solving
a 6D TDSE. With the mentioned basis functions, the data structure of the corresponding
coefficients in programming will also be illustrated. Thereafter, computational strategies
for electron-electron interactions will be introduced which include multipole expansion, and
implementation by FEM and FE-DVR on radial coordinates. For numerical discretization
in the outer region (r ≤ R0), we will present the infinite-range exterior complex scaling
method (irECS) as the absorber, as well as the mixed gauge method for describing the
ansatz in the outer and inner region with different gauges.

For the time propagation in step 3, we will demonstrate the 4th order Runge-Kutta
methods with adaptive step size and the high energy projection treatment where the high
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energy eigenstates of the wavefunction are removed for numerical efficiency. At last, we
will present the tRecX code which implements the listed numerical recipes, as well as its
parallelization strategy and scaling performance.

3.1 Discretization

We focus on the discretization strategy of the wavefunction in this section, which includes
the FEM, FE-DVR methods for radial functions, and angular representations of one and
two-particle wavefunctions.

3.1.1 General Form

The discussion begins with a representation of the few-electron wavefunctions with the
simplest system, using the hydrogen atom as an example. The field-free ground state
wavefunction describing the near-nucleus electron is spherically symmetric and is repre-
sented by a product of spherical harmonics for the angular part and the exponentially
decaying function for the radial part [98]. When the electron is exposed in a laser field, the
spherical symmetry of the wavefunction is broken. However, the new wavefunction formed
by the combination of ground and excited states is still suitable for representation by the
spherical harmonics [82], with the formula

ψ(r, θ, φ, t) = ψ(r,Ω, t) ≈
Mmax

∑
m=−Mmax

Lmax

∑
l=∣m∣

Y m
l (Ω)Rlm(r, t), (3.4)

where Ω = (θ, φ) is the angle, Lmax and Mmax are the maximum quantum numbers, and
Y m
l (Ω) are the spherical harmonics. We chose the spherical harmonics to represent the

angular parts for the following reasons. First, the ansatz of few-electron molecules is atom-
centered and the spherical harmonics ideally suited for representing the bound states of
hydrogenic atoms. Second, with the linearly polarized pulses along the z direction, the
cylindrical symmetry can be easily satisfied by m ≡ 0. Furthermore, local representations
already suffice for the dipole operator by connecting the neighbor functions with l ± 1 and
m ± 1. We integrate the time-dependent property of the coefficients (shown in Eq. (3.3))
in the radial part, which puts a difference among various methods.

Lmax and Mmax in Eq. (3.4) control the accuracy for approximating the angular mo-
menta of the wavefunction. Their minimum requirements that vary with the gauges can
be predicted by the free particles in the field, because velocity gauge absorbs part of the
quiver motion into the momentum part [i▽⃗ − A⃗(t)] and is numerically more efficient than
the length gauge; a detailed description can be found in Sec. 3.3 and Sec. 3.4. The free
motion of the velocity gauge is given by the Volkov solution χk⃗(r⃗, t) shown in Eq. (2.23),
which involves a plane-wave factor. The expansion of the plane wave shows a strong radial
dependence via spherical Bessel functions jl and angles of r⃗ and k⃗: Ωr and Ωk as

eik⃗⋅r⃗ = 4π
∞
∑
l=0

l

∑
m=−l

iljl(kr)Y
m
l (Ωr)Y

m∗
l (Ωk), (3.5)
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We find that the scaling of Lmax and Mmax satisfies ∼ λ3I, where λ is the wavelength and
I is the intensity.

Multiple other possible basis functions can be applied, depending on the system of inter-
est. The spherical harmonics are suitable for describing the single-centered wavefunction.
For other multiple-centered systems, for example H2+, the prolate spheroidal coordinates
have better numerical efficiency [143].

3.1.2 FE-DVR of radial part

We demonstrate the FE and FE-DVR techniques for representing the radial function in
this subsection. Apart from FE-DVR and FE, the radial functions can also be expanded
by B-splines [90, 111] and finite difference methods [51, 144].

Finite element

The finite element method (FEM) subdivides a large space into smaller parts called finite
elements (FE). It is widely applied to solve engineering and mathematical problems, includ-
ing structural analysis, fluid dynamics, heat transfer, and electrodynamics. We subdivide
the radial axis into several intervals, each independently represented except for boundary
conditions, by a set of polynomials called basis functions, collectively referred to as a basis
set. We approximate the radial function Rlm(r, t) in Eq. (3.4) with different types of basis
sets for r < R0 and r ≥ R0.

The inner region [0,R0] is split into N intervals with N + 1 equidistant points at rn
(0 ≤ n ≤ N , where r0 = 0, rN = R0) with [rn−1, rn] (r ≥ 1) being the nth interval, simulated

by Pn basis functions f
(n)
p (r). We approximate the radial on separate intervals, and rn is

shared by the nth and (n+1)th intervals. Rlm(r−n, t) = Rlm(r+n, t) should be fulfilled to ensure

the continuity of the wavefunction. Assume rRlm(r, t) = ∑n,p c
n,p
m,l(t)f

(n)
p (r), constraints on

all the coefficients cn,pm,l(t) represented by ∑p c
n,p
m,l(t)f

(n)
p (rn) = ∑p c

n−1,p
m,l (t)f

(n−1)
p (rn) need to

be implemented. To reduce the number of continuity constraints, the polynomials satisfy

f
(n)
p (rn−1) = f

(n)
p (rn) ≡ 0, p = 0,1,⋯, Pn − 1

f
(n)
0 (rn−1) = f

(n)
Pn−1(rn) ≡ 1, n > 1

(3.6)

for boundary conditions and

f
(1)
p (0) = 0, f

(1)
P1−1(r1) = 1, (3.7)

where the basis functions at 0 < p < Pn−1 are denoted by ascending order polynomials and
f
(n)
0 (r), f

(n)
Pn−1(r) can be represented by linear functions in the old version of our code. For

the intervals with n > 1, the local overlap matrix elements are

S
(n)
pq = ⟨f

(n)
p ∣f

(n)
q ⟩ = δpq, (p, q) ≠ (0, Pn − 1), (Pn − 1,0)

S
(n)
0,Pn−1 = S

∗(n)
Pn−1,0 ≠ 0,

(3.8)
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being diagonal, except two non-zero off-diagonal elements with suitable transformations,
if we let suitable basis functions f

(n)
0 , f

(n)
Pn−1 be linear and others be modified Legendre

polynomials that are orthogonal with f
(n)
0 . Considering the orthogonality of spherical

harmonics and assuming every finite element does not overlap, the overall overlap matrix
with the FEM basis set above is narrow-banded and near diagonal.

It is known that the radial function in single-centered systems satisfies the asymptotic
behavior Rlm(r, t)∝ rl when r → 0. In the old version of our code that does not implement
DVR method, we approximated the first interval near the core by implementing a tailored
discretization, with the basis functions multiplied by rl as

f
(n),l
k (r)∶= rlf

(n)
k (r) (3.9)

to automatically include the asymptotic behavior, which reduces the polynomial order
of the first interval by l, thereby increasing computational efficiency. This operation is
expected to remove the number of unphysical and large eigenvalues of the Hamiltonian.
The tailored discretization is not implemented in the FE-DVR (shown below) where we
only remove one polynomial in the first interval.

The outer region [R0,∞) is approximated by the product of the shifted and scaled
Laguerre polynomials and a decaying part

fN+1
p (r) = [Lp(2α(r −R0)) − 1]e−α(r−R0), (3.10)

where α is the decay factor and N + 1 means the outer region is the N + 1th interval. For
details, refer to Sec. 3.3.3.

As shown in Eq. (3.8), the overlap matrix of each interval is diagonal except for the
two off-diagonal elements. The disadvantage of FEM is that the inverse of the overlap
matrix can be complicated and hard to parallelize; for more details, refer to Ref. [54]. The
problem can be avoided by FE-DVR, wherein a diagonal overlap matrix is available.

Discrete variable representation

Similar to the FEM, the finite-element discrete variable representation (FE-DVR) method
splits the whole radial axis into several simple and small elements; however, it approxi-
mates each element by a few Lagrange polynomials, contributing to a full overlap matrix,
which may be diagonal at specific conditions and will be shown later. Compared to the
FEM basis with an increasing order in the old tRecX code, as stated above, discrete
variable representation (DVR) basis possesses an identical polynomial order. The La-

grange polynomials are created based on Pn−1 discrete points r
(n)
p , r

(n)
q denoted by subindex

p, q ∶ r
(n)
0 < r

(n)
1 < ⋯ < r

(n)
p < ⋯ < r

(n)
Pn−1

by

f
(n)
p (r) =

Pn−1

∏
q=0,p≠q

r − r
(n)
q

r
(n)
p − r

(n)
q

1[rn−1,rn] p, q ∈ {0,1⋯, Pn − 1} (3.11)

whose values at qth point automatically satisfying

f
(n)
p (r

(m)
q ) = δmnδpq, (3.12)
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where [rn−1, rn], n ∈ [1,N] is the nth interval range with left boundary rn−1 and right bound-
ary rn, similar to what is used in FEM and 1[rn−1,rn] returns 1 for r ∈ [rn−1, rn] otherwise

0. To create orthogonal basis functions, the arbitrary discrete points {r
(n)
0 , r

(n)
1 ,⋯, r

(n)
Pn−1}

are chosen to be quadrature points. Assume the quadrature points of interval [−1,1]
are {x0, x1,⋯, xPn−1} with weights {ω0, ω1,⋯, ωPn−1}, the quadrature points on interval
[rn−1, rn], n ∈ [1,N] are given by

r
(n)
p =

rn − rn−1

2
xp +

rn + rn−1

2
(3.13)

with corresponding weights

ω
(n)
p =

rn − rn−1

2
ωp. (3.14)

Thus, the integration satisfies

⟨f
(n)
p ∣f

(m)
q ⟩ = ∫ f

(n)
p (x)f

(m)
q (x)dx = δmn

Pn−1

∑
k=0

f
(n)
p (r

(n)
k )f

(n)
q (r

(n)
k )ω

(n)
k = ωpδmnδpq. (3.15)

With a reduction in the number of continuity operations, we chose the Gauss-Lobatto
quadratures, where the two end points are included as r

(n)
0 = rn−1, r

(n)
Pn−1 = rn. The boundary

value condition similar to FEM polynomials in Eq. (3.6)

f
(n)
Pn−1(rn) = f

(n+1)
0 (rn) = 1

f
(n)
p (rn−1) = f

(n)
p (rn) = 0, p = 1,⋯, Pn − 2

(3.16)

is automatically satisfied. The DVR method implemented in Ref. [145] solves the TDSE,
where the derivatives and values are only needed on different DVR grids, even if the
philosophy is different, which we never did while programming the code. However, for
completeness, we have presented the related results here. The derivatives of the basis
function given in Ref. [145] for the quadrature points are

Bf
(n)
p

Br
∣
r=r(n)q

=
1

r
(n)
p − r

(n)
q

∏
k≠q,k≠p

r
(n)
q − r

(n)
k

r
(n)
p − r

(n)
k

, p ≠ q. (3.17)

With the Lobatto quadrature and based on the approximate integration

∫

rn

rn−1

f
(n)
p (r)dr ≈

Pn−1

∑
k=0

ω
(n)
k f

(n)
p (rk), (3.18)

we have

∫

rn

rn−1

f
(n)
p Brf

(n)
q + f

(n)
q Brf

(n)
p dr =f

(n)
p (r

(n)
Pn−1)f

(n)
q (r

(n)
Pn−1) − f

(n)
p (r

(n)
0 )f

(n)
q (r

(n)
0 )

≈
Pn−1

∑
k=0

ω
(n)
k [f

(n)
p (r

(n)
k )Brf

(n)
q (r

(n)
k ) + f

(n)
q (r

(n)
k )Brf

(n)
p (r

(n)
k )] .

(3.19)
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Eq. (3.19) is useful when p = q and we get

Bf
(n)
p

Br
∣
r=r(n)q

=
1

2ω
(n)
p

(δp,Pn−1 − δp,0). (3.20)

To a sum up, the relative derivatives at the quadrature points are

Bf
(n)
p

Br
∣
r=r(n)q

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

r
(n)
p −r(n)q

∏k≠q,k≠p
r
(n)
q −r(n)

k

r
(n)
p −r(n)

k

, p ≠ q

1

2ω
(n)
p

(δp,Pn−1 − δp,0), p = q.
(3.21)

At boundary r = rn, f
(n−1)
Pn−1−1(rn) = f

(n)
0 (rn) = 1 but derivative from the left

Bf
(n−1)
Pn−1−1

Br
∣r=rn =

1

2ω
(n−1)
Pn−1−1

(3.22)

does not equal to that from the right

Bf
(n)
0

Br
∣r=rn = −

1

2ω
(n)
P0

. (3.23)

According to the previous work in our lab and as mentioned in Ref. [128], the derivative
does not need to be continuous to solve the TDSE.

As the tSurff radius Rc does not fall on a quadrature point where derivatives are needed,
it cannot be obtained by Eq. (3.21). Directly computing multiple products is expensive

and scales as ∼ P 2
n . For numerical efficiency, we introduce a new function g

(n)
p,k (r) that goes

as

g
(n)
p,k (r) =

k

∏
q=0,q≠p

r − r
(n)
q

r
(n)
p − r

(n)
q

1[rn−1,rn] p = 0,1,⋯, Pn − 1, (3.24)

and satisfies g
(n)
p,Pn−1(r) = f

(n)
p (r), g

(n)
0,0 (r) = 1 by definition. A recursive formula

g
(n)
p,k (r) =

r − r
(n)
k

r
(n)
p − r

(n)
k

g
(n)
p,k−1(r), p ≠ k

Brg
(n)
p,k =

g
(n)
p,k−1(r) + Brg

(n)
p,k−1(r − r

(n)
k )

r
(n)
p − r

(n)
k

, p ≠ k

g
(n)
p,p (r) = g

(n)
p,p−1(r), Brg

(n)
p,p = Brg

(n)
p,p−1

(3.25)

is applied, where the computation of values and derivatives scales as ∼ Pn.
With the finite element representation, the wavefunction represented by FEM and FE-

DVR can be re-written as

ψ(r, θ, φ, t) ≈
Mmax

∑
m=−Mmax

Lmax

∑
l=∣m∣

Y m
l (Ω)

N

∑
n=1

Pn−1

∑
p=0

χ
(n)
p (r)cm,ln,p(t)

1

r
, (3.26)
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with cm,ln,p(t) being the elements of coefficients vector ⃗c(t) introduced in Eq. (3.3), where

χ
(n)
p (r) is a modified basis set from f

(n)
p (r) for better numerical behaviors such as orthog-

onality and continuity, as shown below.

Continuity

As stated above, the matrices are created locally in each element with the FEM and FE-
DVR methods, implying that TDSE is solved locally. The operations for continuity of
the wavefunction connect the individual elements, making the solution global. Here, as
an example, we present two methods to ensure the continuity of FE-DVR methods. Both
methods introduce a modified basis set χ

(n)
p (r), as shown below.

The first is to include a ”bridge” function to form a new basis set as

χ
(n)
p =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f
(n)
p /

√

ω
(n)
p , r ∈ [rn−1, rn] if 0 < p < Pn − 1

(f
(n)
Pn−1 + f

(n+1)
0 )/

√

(ω
(n)
Pn−1 + ω

(n+1)
0 ), r ∈ [rn−1, rn+1] if p = Pn−1

(3.27)

with the first basis function crossing two intervals. With the new basis, the overlap matrix
Ŝ is identity with

Ŝmnpq = ⟨χ
(m)
p ∣χ

(n)
q ⟩ = δmnδpq (3.28)

and the local operators V̂ are diagonal by

V̂ mn
pq = ⟨χ

(m)
p ∣V̂ ∣χ

(n)
q ⟩ = δmnδpqV (r

(n)
p ) (3.29)

The radial function Rml(r, t) (in Eq. (3.4)) spanned in new basis is

Rml(r, t) =
N

∑
n=1

Pn−1

∑
p=0

χ
(n)
p (r)cm,ln,p(t)

1

r
, (3.30)

where the each coefficient depends on only one discrete value

cm,ln,p(t)(t) = r
(n)
p Rlm(r

(n)
p , t)[

√

ω
(n)
p + δp,0(

√

ω
(n)
Pn

+

√

ω
(n+1)
0

2
−

√

ω
(n)
p )]. (3.31)

The second method involves keeping every interval independent by choosing a new basis

χ
(n)
p (r) =

⎧⎪⎪
⎨
⎪⎪⎩

f
(n)
p /

√

ω
(n)
p if r ∈ (rn−1, rn)

f
(n)
p if p = 0, Pn − 1

, (3.32)

by which the overlap matrix on each interval is diagonal with elements

Ŝmnpq = ⟨χ
(m)
p ∣χ

(m)
q ⟩ = δpqδmn [1 + (δp,0 + δp,Pn−1)(ω

(n)
p − 1)] (3.33)

as well as the local operator matrices Vr with matrix elements being

V̂ mn
pq = ⟨χ

(m)
p ∣V̂ ∣χ

(n)
q ⟩ = δpqδmnV (r

(n)
p ) [1 + (δp,0 + δp,Pn−1)(ω

(n)
p − 1)] . (3.34)
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Each coefficient in radial function Rml(r, t) (in Eq. (3.4) with the basis shown in Eq. (3.30))
can be written as

cm,ln,p(t) = r
(n)
p Rml(r

(n)
p , t) [

√

ω
(n)
p − (δp,0 + δp,Pn−1)(

√

ω
(n)
p − 1)] , (3.35)

described by the discrete variables of the radial functions; each property is also satisfied
by the first method above (see Eq. (3.31)), explaining the reason for the name ”discrete
variable representation.” The boundary values are the coefficients values. For continuity,
the coefficients at the boundaries are averaged by

cm,ln,Pn−1
(t) = cm,ln+1,0(t) =

cm,ln,Pn−1
(t) + cm,ln+1,0(t)

2
. (3.36)

Both the methods create the matrix element of the derivative operator as

D̂er
mn

pq = ⟨χ
(m)
p ∣

d

dr
∣χ

(n)
q ⟩ = δmn∑

k

ω
(n)
k χ

(m)
p (r

(m)
k )

dχ
(n)
q

dr
∣
r=r(n)

k

, (3.37)

which is a set of non-diagonal blocks. Thus, the matrix elements for the second derivative
operator are also non-diagonal.

When the wavefunction is discretized by FEM, the two above-mentioned methods also
apply to ensure the continuity, and creating the new basis only requires forcing the weights
in Eq. (3.27) and (3.32) to be 1. Apparently, the local overlap and potential operators are
not diagonal, same as the FE-DVR method.

In the first method, continuity is automatically satisfied by the bridge basis function,
and operations for continuity are not needed for time propagation. The disadvantage is
that the introduction of the bridge function requires extra treatment and complicates the
creation of operators, such as the electron-electron-interaction (E-E) operator. Despite
additional operations for continuity with minor computational cost, the second method
keeps a relatively simpler design. Currently, we use the second method in our code.

3.1.3 Constraints of two-particle basis set

The entangled ansatz, while considering the repulsion of the two particles, cannot be
factored into the tensor product of two single-particle states but can still be represented by
the combined two single-particle basis sets as

ψ(r⃗1, r⃗2, t) =ψ(r1,Ω1, r2,Ω2, t)

= ∑
m1,l1

Y m1

l1
(Ω1) ∑

m2,l2

Y m2

l2
(Ω2)Rm1,m2,l1,l2(r1, r2, t), (3.38)

where Ω1/2 = (θ1/2, φ1/2) are angles of electron 1/2, and we include the correlation of the two
particles in the radial function Rm1,m2,l1,l2(r1, r2, t). The angular momenta are represented
by the coupled spherical harmonics in literature [146] as

YLMl1,l2(Ω1,Ω2) ∶=
M

∑
m1,m2

⟨l1m1l2m2∣l1l2LM⟩Y m1

l1
(Ω1)Y

m2

l2
(Ω2) (3.39)
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(a) (b)

Figure 3.1: (a) The l1,l2 constraint illustration. The l1,2 are confined in the armchair shape
which is defined by the diagonal part Ld and arm-width part La apart from Lmax. (b) The
maximum populated yields of angular momentum l1, l2 during the propagation calculated
by ρmax

l1,l2
= maxt,m1,m2(∥ρl1,l2(t)∥

2
), where ∥⋯∥ means the integration over r⃗1, r⃗2 coordinates,

and ρl1,l2(t) = ∫ ∫ dΩ1dΩ2Y
m1

l1
(Ω1)Y

m2

l2
(Ω2)ψ(t). The exemplary pulse has λ = 394.5 nm,

3.7 × 1014 W/cm2 with ”flat-top” trapezoidal envelope whose definition can be found in
Sec. A.4.

with ⟨l1m1l2m2∣l1l2LM⟩ being the Clebsch-Gordan coefficients for representing the coupled
state by the tensor product of individual spherical harmonics basis. Whereas this formula
is not applied in our code and the Lmax is the total angular momentum in our code and
is different from L in the above equation. Theoretically, introducing the total angular
momentum quantum number L,M enables an easy truncation of angular space. However,
truncation of M = m1 + m2 is negligible in the z-direction, linearly polarized pulse, as
M = 0 is automatically satisfied for symmetry. The m1 −m2 coupling for the Coulomb
potential is weak and mostly from the initial state. If there are hard collisions between
the electrons in laser dynamics, M number might increase while m1 −m2 is still conserved.
Further, the truncation of L is only available for short wavelengths where the movement of
particles is contributed by the absorption of only a few photons. In the perturbative regime
(high-frequency limit), the simple square l1, l2 grid constrained by Lmax,1/2 already suffices,
as the populated angular momentum l1 is independent of l2. For larger wavelengths, the
constraint of l1, l2 grid forms an armchair-like shape, as shown in Fig. 3.1 from our previous
study by analyzing the population of partial waves at the borders of grids [54]. The shape
is constrained by two parameters, including the armchair width La and the diagonal Ld
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with formula

l1 + l2 ≤ Ld, l1,2 ∈ (La, Ld −La)

l1 ≤ La, l2 ∈ [Ld −La, Lmax]

l2 ≤ La, l1 ∈ [Ld −La, Lmax].

(3.40)

With the constraints mentioned above, the Eq. (3.38) can be re-written as

ψ(r⃗1, r⃗2, t) =
Mmax

∑
m=−Mmax

Lmax

∑
l1=∣m∣

g(La,Ld,l1)
∑
l2=∣m∣

Y m
l1

(Ω1)Y
−m
l2

(Ω2)Rm,−m,l1,l2(r1, r2, t), (3.41)

where g(La, Ld, l1) = max(l2) is depicted by Eq. (3.40) and we use m1+m2 = 0 for cylindrical
symmetry in z-direction, linear polarization.

The radial function Rm1,m2,l1,l2(r1, r2, t) in Eq. (3.38) represented by the optimized basis
functions χ in Eq. (3.32) or Eq. (3.27) for continuity goes as

Rm1,m2,l1,l2,(r1, r2, t) =
N1

∑
n1=1

Pn1−1

∑
p1=0

N2

∑
n2=1

Pn2−1

∑
p2=0

χ
(n1)
p1 (r1)χ

(n2)
p2 (r2)c

m1,m2,l1,l2
n1,n2,p1,p2

(t)
1

r1r2

, (3.42)

where cm1,m2,l1,l2
n1,n2,p1,p2 (t) is the time-dependent coefficient, N1/2 and Pn1/2

are the number of

intervals and polynomials order of radial axis r1/2. χ
(n1/2)
p1/2

(r1/2) are the p1/2th basis functions
on n1/2th interval of radial axis r1/2, where we use p1/2 to represent the basis function order
for two correlated particles, compared to previous p, q for sub-indices of matrix; for example,
in Eq. (3.33). Each coefficient is represented by the value of the radial function at one r1, r2

grid, similar to the single-particle situation in Eq. (3.31) as

cm1,m2,l1,l2
n1,n2,p1,p2

(t) =r
(n1)
p1 r

(n2)
p2 Rm1,m2,l1,l2(r

(n1)
p1 , r

(n2)
p2 , t)

× [1 − (δp1,0 + δp1,Pn1−1)(

√

ω
(n1)
p1 − 1)] [1 − (δp2,0 + δp2,Pn1−1)(

√

ω
(n2)
p2 − 1)] ,

(3.43)

with FE-DVR basis in Eq. (3.32), where ω
(n1/2)
p1/2

is the p1/2th quadrature weight on n1/2th
interval of radial axis r1/2.

Exchange asymmetry of ansatz

As the two electrons are indistinguishable and the ground symmetric state gives the lowest
energy, the particles are in a singlet state without laser field. With the Hamiltonian that
respects symmetry, the exchange asymmetry of the wavefunction

ψ(r⃗1, r⃗2, t) = ψ(r⃗2, r⃗1, t) (3.44)

represented by coefficients as

cm2,m1,l2,l1
n2,n1,p2,p1

(t) = cm1,m2,l1,l2
n1,n2,p1,p2

(t) (3.45)
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is satisfied in theory for double ionization computation, which is also listed in Ref. [49],
because we neglect the relativistic effect and magnetic field; see Sec. 1.3.1 where spin is
conserved. Application of exchange asymmetry reduces the total number of coefficients by
nearly a factor of two, except the diagonal elements. However, this does not dramatically
increase the performance, and it destroys the locality of the operators in memory. The
exchange asymmetry is not enforced in tRecX, but we always start from an exchange
symmetric state for Helium to ensure an exchange symmetric result.

3.1.4 Recursive indexing code design

The recursive indexing code design is an implementation of the ”composite pattern” [147] or
partitioning design pattern that allows treating the individual objects and the compositions
uniformly by ”composing” the objects into tree structures to represent the part-whole
hierarchies. By definition of the tree structure, every local structure resembles the total
structure, and the whole structure can be reached from any node. The method provides
the consistency required to represent the individual part as well as the overall structure.
Moreover, it is easy to translate the mathematical representation of the wavefunctions and
basis into code.

Here, we will show the composite pattern for representing a 3D single-particle wavefunc-
tion in Eq. (3.2), whose coefficient vector c⃗(t) consists of elements cm,l,n,p(t) (see Eq. (3.26))
marked by a sequence of discretization parameters m, l, n, p with constraints l ≥ ∣m∣. The
hierarchy structure of the coefficient can be represented by a tree structure, as shown in
Fig. 3.2a, where the position of a node in the tree represents a typical discretization pa-
rameter, namely the depth of the type of parameter or queue number for the value of a
discretization parameter among its siblings. Notably, here we only present one possible
hierarchy m, l, n, p, where one may also choose l,m,n, p and n, l,m, p on different occasions,
with suitable coordinate constraints.

The single emission hierarchy above can be extended to present the double-emission
6D wavefunction coefficient cm1,m2,l1,l2

n1,n2,p1,p2 (t) (see Eq. (3.42) and (3.38)), as shown in Fig. 3.2b.
The angular momentum constraints, including l1/2 ≥ ∣m1/2∣, m1 +m2 = 0 and the armchair-
shape constraint for l1, l2 should also be included on lower level nodes which is not displayed
the figure as small Lmax and Mmax are used due to the limited space for displaying the fig-
ure. The modified sequence of quantum numbers m1,m2, l1, l2, n1, n2 can also be described
using the tree structure with suitable constraints, similar to its use for single-particle rep-
resentation.

3.2 Electron-electron interaction

Electron-electron (E-E) interaction, representing the entanglement of two particles, is the
only term that could not be factored into a tensor product of two single-particle operators,
see Eq. (2.69). Without E-E interaction, the total wavefunction can be written as a tensor
product of two single-particle wavefunctions.
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(a)

(b)

Figure 3.2: (a) The schematic illustration of the tree structure of a discretization for a
single-particle hierarchy with parameters Mmax = 1 ∶ m = 0,±1 and Lmax = 1 ∶ l = 0,1
with angular constraint l ≥ ∣m∣, N = 2 ∶ n = 0,1,2 represents the intervals, and F0, F1, F2

are corresponding floors, representing the basis functions on [0, R0

2 ], [R0

2 ,R0] and [R0,∞),
respectively. (b) The schematic illustration of the tree structure of a discretization for
two particle wavefunction with parameters Mmax = 0, Lmax = 1 and only 1 interval in
the simulation box. In the figure, N1/2 represent the index of interval on r1/2 axis with
N1/2 = 0 ∶ Ω0 = [0,R0),N1/2 = 1 ∶ Ω1 = [R0,∞). F0, F1, F2, F3 are the floors, representing
basis functions on the corresponding intervals as: Ω0 ⊗Ω0,Ω0 ⊗Ω1,Ω1 ⊗Ω0,Ω1 ⊗Ω1.
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3.2.1 Multipole expansion

The E-E interaction can be written in the multipole expansion form, which splits the E-E

interaction into angular and radial functions Rn1n2

m1l1m2l2
, R
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′
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′
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′
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∶=V̂ (λ)

(3.46)

where n1, n2, n′1, n
′
2 are the interval indexes, l1, l2,m1,m2 are the angular quantum numbers,

as stated before, and ψ
(n′1n′2)
m′

1m
′

2l
′

1l
′

2
, ψ

(n1n2)
m1,m2,l1,l2

are fragments of wavefunctions with specific

quantum numbers. With the orthogonality of the spherical harmonics, the matrix elements
are non-zero only when µ =m1−m′

1 and µ =m′
2−m2. This thesis focuses on the z−direction,

linear polarization where the constraint m1 +m2 = 0,m′
1 +m

′
2 = 0 is always satisfied. Thus,

the two constraints are simplified to δµ,m1−m′

1
. The angular contribution of all azimuthal

quantum numbers is summed over all available quantum numbers λ, whose limit satisfies
λmax = 2Lmax, which in practice is often not needed and λmax = 8 is already sufficient, even
when Lmax exceeds 20.

The main computational task is in the radial part V̂ , which can be written in a tensor
product form as

V̂ (λ) = (T̂ (n1) ⊗ T̂ (n1))
T
D̂(λ) (T̂ (n1) ⊗ T̂ (n2)) (3.47)

to reduce the computational cost [82]. The details are in the next section.

3.2.2 Radial matrix diagonalization

With the FEM, radial part matrix element is

V̂ λ,n1n2

p′1p
′

2p1p2
= ∫ dr1∫ dr2f

(n1)
p′1

(r1)f
(n2)
p′2

(r2)f
(n1)
p1 (r1)f

(n2)
p2 (r2)

min(r1, r2)
λ

max(r1, r2)
λ+1

(3.48)

where we still use f
(n)
p1/2

(r1/2) to represent the basis set rather than χ
(n)
p1/2

(r1/2) (see Eq. (3.26),
for numerical efficiency) by convenience. Since we do not consider the bridge function for

continuity where χ
(n)
p1/2

(r1/2) and f
(n)
p1/2

(r1/2) only differ by a constant, multiplicative factor,
the derivations given here for the E-E interaction do not change. The meaning of relevant
discretization parameter is given in Sec. 3.1.3.

Coupled basis and DVR

If we group the basis functions represented by sub-indexes (p′1p
′
2, p1p2) of Eq. (3.48) into to

coupled basis functions F
(n1/2)
P1/2

= f
(n1/2)
p1/2

f
(n1/2)
p′

1/2
with sub-indexes P1 = (p′1p1) and P2 = (p′2p2)
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where P1 ≤ N2
p and P2 ≤ N2

p , the radial part is written as a N2
p ×N

2
p matrix

V̂ λ,n1n2

p′1p
′

2p1p2
= Ŵ

(λ)
P1,P2

. (3.49)

Note that the maximum polynomial order for coupled basis functions is 2(Np − 1) and for
matrix elements is 4(Np − 1). A set of R ∶= 2Np − 1 Gaussian quadrature points that give
the exact integration value for up to 2R − 1 = 4Np − 3 > 4(Np − 1) order polynomials helps
simplify the integration, and the coupled basis functions are evaluated on R grid points as

F
(n1/2)
P1/2

(r1/2,q) ∶= f
(n1/2)
p′

1/2
(r1/2,q)f

(n1/2)
p1/2

(r1/2,q),1 ≤ q ≤ R (3.50)

where r1/2,q represents the qth quadrature points on r1 or r2. Assuming that there ex-

ist Gaussian quadrature grids {q
(n1/2)
i/j }i,j=1,⋯R with quadrature weights ω

(n1/2)
i/j on interval

[r1/2,n1/2−1, r1/2,n1/2
], matrix Ŵ

(λ)
P1,P2

can be reduced to a R ×R matrix D̂
(λ)
ij by

D̂
(λ)
ij = ∑

P1,P2

F
(n1)
P1

(q
(n1)
i )Ŵ

(λ)
P1,P2

F
(n2)
P2

(q
(n2)
j ), (3.51)

where r1/2,n1/2−1, r1/2,n1/2
are the boundaries of n1/2th interval on r1/2 axis, and i/j means

i or j. The coupled basis are thus described by discrete variable representation (DVR).
For the FEM, the information on the quadrature grids are obtained by a matrix which
factors into a tensor product form of the two separate particles as T̂ (n1)⊗ T̂ (n2) because the
transformation of the polynomials to the grids can be separately performed. The separate
transformation R ×Np matrix on each particle has its matrix element

T̂
(n1)
i,p1

=

√

ω
(n1)
i f

(n1)
p1 (q

(n1)
i ), T̂

(n2)
j,p2

=

√

ω
(n2)
j f

(n2)
p2 (q

(n2)
j ), (3.52)

where the square root of weight is introduced for convenience, same as Eq. (3.32).

Vectorization and Hadamard product

As the matrix transformation of tensor product satisfies

(BT ⊗A)vec(X) = vec(AXB), (3.53)

where A,B,X are matrices and vec(X) is the vectorization X by combining all its columns
by order into a vector [148]. The coefficients C representing the ansatz by a tensor prod-
uct basis can also be written in matrix form, denoted by Mat(C). The operation of a
transformation matrix on the coefficients is given as

(T̂ (n1) ⊗ T̂ (n2))C = vec(T̂ (n2),τMat(C)T̂ (n1)), (3.54)

wherein operation count is RNp(Np+R) ∼ N3
p , rather than RNpRNp ∼ N4

p , and the columns

of matrix Mat(C) are fragments of the long coefficients vector C and T̂ (n2),τ is the transpose
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of matrix T̂ (n1). With the integration of quadrature grids, the radial part is the product
of two transformation matrix with size R2 ×N2

p and R ×R matrix D̂
(λ)
i,j shown below

V̂
(λ,n1n2)
p′1p

′

2,p1p2
= (T̂

(n1)
i,p′1

⊗ T̂
(n2)
j,p′2

)
T
D̂

(λ)
i,j ○ (T̂

(n1)
i,p1

⊗ T̂
(n2)
j,p2

) , (3.55)

where D̂
(λ)
i,j ○ (T̂

(n1)
i,p1

⊗ T̂
(n2)
j,p2

) means the Hadamard product ○ (also known as element-wise

or Schur product) of the vectorized D̂
(λ)
i,j with the values on the grids on the right [148].

Then, the new evaluations on the grids are transformed back to the coefficients.

D̂
(λ)
ij matrix elements

The D̂
(λ)
ij matrix is calculated during the setup process. During its setup, the integration

with min(r1,r2)λ
max(r1,r2)λ+1 cannot be computed like

min(ri,rj)λ
max(ri,rj)λ+1 with quadrature points, as the Gaus-

sian quadrature expands the derivative discontinuity of min(r1,r2)λ
max(r1,r2)λ+1 in a polynomial basis

and gives poor numerical accuracy.
The tRecX code (see Sec. 3.6) uses the method reported in Ref. [84] to calculate D̂

(λ)
ij

based on the discrete values on the grids (DVR method). As the integration of the matrix
element covers the whole unscaled radial range, for notational brevity, we write the new
basis functions (Lagrange polynomials) created by NR,N = N1 = N2 grid points of radial

axes r1, r2 as gi(r), gj(r) i, j ∈ [0,NR) and gi(qk) =
δi,k√
ωi

, a method similar to re-labeling

the DVR points on all intervals into a general index as i = (n1, p1) and j = (n2, p2). The
generic matrix element V̂ λ,n1n2

p′1p
′

2p1p2
on the whole radial, except the complex scaled region, has

the form

V̂ λ
ijkl = ∫
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0
dr1∫
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0
dr2

rλ<
rλ+1
>

gi(r1)gk(r1)gj(r2)gl(r2) = ∫

R0

0
dr1∫

R0

0
dr2

rλ<
rλ+1
>

G1(r1)G2(r2),

(3.56)
where r< = min(r1, r2), r> = max(r1, r2) and G1(r) = gi(r)gk(r),G2(r) = gj(r)gl(r)

are the product of the basis functions similar to Eq. (3.50). A new function

y(r) = r∫
R0

0
G1(r

′)
rλ<
rλ+1
>

dr′ = ∫
r

0
G1(t)(

t

r
)λdt + ∫

R0

r
G1(t)(

r

t
)λ+1dt (3.57)

that satisfies the Poisson equation

d2y

dr2
−
λ(λ + 1)

r2
y = −

2λ + 1

r
G1(r) (3.58)

is introduced. Thus, we can solve the integration of rλ
<

rλ+1
>

by solving y(r), which can be well

described by the quadrature points. Eq. (3.57) has boundary conditions at 0 and R0 goes
as

y(0) = 0

y(R0) =
1

Rλ
0
∫

R0

0
G1(t)t

λdt =
1

Rλ
0

δi,kr
λ
i .

(3.59)
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The two boundary conditions can not be satisfied at the same time by the Lagrange
polynomials of DVR method. However, from Ref. [84], the right boundary condition can
be satisfied by adding an extra part to the solution. The solution satisfying the left
boundary condition can be written as

y(0)(r) =∑
m

Cmg(r). (3.60)

Take Eq. (3.60) into Eq. (3.58), multiply gn(r) on the left and integrate and we have

∑
m

T λn,mCm = (2λ + 1)∫
R0

0
gn(r)

1

r
G1(r)dr = (2λ + 1)

δn,iδi,k
rn

√
ωn
, (3.61)

where the kinetic term is

T λn,m = −∫

R0

0
gn(r)(

d2

dr2
−
l(l + 1)

r2
)gm(r)dr, (3.62)

and the coefficients are

Ci = (2λ + 1)
[T λm,i]

−1δi,k

ri
√
ωi

. (3.63)

Then, the solution becomes

y(r) = y(0)(r) +
rλ+1

R2λ+1
0
∫
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′)r′λdr′ = (2λ + 1)∑
m
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−1 δi,k
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+
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(3.64)
with the matrix element

⟨gjgl∣
rλ<
rλ+1
>

∣gigk⟩ = δi,kδj,l(
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rirj
√
ωjωk
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rλi r
λ
k

R2λ+1
0

). (3.65)

The matrix is diagonal by the indices corresponding to the grids on the FE-DVR unscaled
region, and the computational expensive part is the inverse of the kinetic matrix [T λi,j]

−1,
which only needs to be calculated once in the setup process. It has R4 values but only R2

non-zero ones that correspond to R ×R matrix D̂
(λ)
ij

D̂
(λ)
ij =

2λ + 1

rirj
√
ωiωj

[T λi,j]
−1 +

rλi r
λ
j

R2λ+1
0

. (3.66)

With FE-DVR, where i, j are split byN1,N2 intervals with indexes n1, n2, we have rewritten
D̂

(λ)
ij as

D̂
(λ,n1,n2)
ij =

2λ + 1

r
(n1)
i r

(n2)
j

√

ω
(n1)
i ω

(n2)
j

[T
(λ,n1,n2)
i,j ]−1 +

(r
(n1)
i )λ(r

(n2)
j )λ

R2λ+1
0

, (3.67)

where i, j are indexes on intervals n1, n2. In practice, we find the integration by quadrature
grids does not need to be exact and that R = Np is enough for the required accuracy.
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Further, for the FE-DVR method, the transformation matrix in Eq. (3.52) is not needed
and

V̂
(λ,n1,n2)
p′1p

′

2,p1p2
= δp1,p′1

δp2,p′2
D̂

(λ,n1,n2)
p1,p2 . (3.68)

Its operation on the coefficient is the Hadamard product of R×R size matrix D̂
(λ,n1,n2)
p1,p2 , or

matrix-vector multiplication by full matrix with size R2 ×R2, including all the zero value
elements.

E-E interaction in haCC

Apart from double emission calculations, the electron-electron interaction also exists in
haCC calculations. Rather than two liberated particles, haCC calculates the Coulomb
interaction of an ionized particle and bound electrons represented by Hartree-Fock orbitals.
For computing E-E integrals, the kth Hartree-Fock orbitals Φk(r⃗) are evaluated on single
center quadrature points r0, r1, ..., rQ

Φk(r⃗) = ∑
qklkmk

c
(k)
qklkmk

Ylkmk(θ, φ). (3.69)

For more details on haCC, refer to Sec. 2.3. With the free particle ansatz evaluated at the
same quadrature points, the E-E interaction can be calculated based on the DVR values
above.

The advantage of the above-mentioned method is that one can approximate the E-E
term in the diagonal form after accurately computing the integrals once. The method can
be generally applied to most two-dimensional multiplication potentials, even with the non-
analytical potential, and it gives exact results with product polynomial basis functions.
One can use this method to directly compute the potential that is convergent in the Taylor
series.

3.3 Infinite-Range Exterior Complex Scaling

With the tSurff methods, one can solve the TDSE in a reduced space range. As the
number of coefficients for approximating the radial function largely depends on R0, one
needs the smallest possible inner region (r ≤ R0) to precisely approximate the wavefunction.
The outer region (r ≥ R0) has an absorber to avoid any reflections to the inner region of
interest. As the reflections at the boundaries of the outer region affect the wavefunction
near the nucleus and amplify quickly, especially when the space of interest is not large, the
criteria of the absorber are stringent.

Infinite-range exterior complex scaling (irECS) is an ideal choice [149]. First, complex
scaling is an analytical continuation method that is easy to implement. Second, the irECS
preserves the dynamics of the particles in both scaled and unscaled regions, allowing the
re-entry of electrons to the unscaled region, and it also keeps the small tails of the re-
scattering wave packets, which moderately extend outside, undisturbed. This even allows
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us to choose a region smaller than the quiver radius. The corresponding numerical evidence
is given in Ref. [150]. Third, irECS promotes the suppression of reflection in comparison
with the conventional masking function technique [151]. Moreover, the resonant states in
the complex plane do not move with the complex angle. This allows to find the resonance
energies, see Ref. [128] and Fig. 5.7 of Sec. 5.2.4.

3.3.1 Definition

Exterior complex scaling rotates the real axis r to a complex plane after a complex scaling
radius R0 by

r ↦ rθ = {
r r ≤ R0

R0 + eiθ(r −R0) r ≥ R0
(3.70)

where θ > 0 is the complex scaling angle. Plane waves serve as the asymptotic solutions of
the wavefunction that are far from the nucleus when the Coulomb interaction is negligible.
The irECS maps the asymptotic solution onto a decaying plane wave with the decaying
factor k sin θ, see Eq. (3.71), where k is the momentum, suggesting that wave packets are
”absorbed” at r ≥ R0.

eikr r≥R0
↦ eikR0eik cos θ(r−R0)e−k sin θ(r−R0) r→∞→ 0 (3.71)

3.3.2 Operators

The operator
UR
λ ∶ L2(R+)↦ L2(R+), (3.72)

denotes the operation of the irECS, which scales the analytical wavefunction ψ as

ψ ↦ UR
λ ψ ≡ ψλ, (3.73)

with the scaled analytical wavefunction ψλ being

ψλ(r) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ψ(r) r ≤ R0

eλ/2ψ(eλ(r −R0) +R0) r ≥ R0,
(3.74)

where λ = iθ.
The scaled operators are defined as Oθ

∶= UθOU
†
θ where U θ ∶= UR0

iθ . The Coulomb
operator with r is scaled as

V θ(r) = (UθV U
†
θ)(r) = V (eiθ(r −R0) +R0) ∶= V (rθ). (3.75)

We would like to point out that the transformation matrix U is not unitary for complex
λ, and, even worse, the transformed operator is ill-defined if the domain is not defined.
Thus, the corresponding spectrum is changed by irECS. However, the complex scaled
Hamiltonian is well-defined when λ = −iθ with θ > 0 in a specific range on domains, where
∆ is defined (D(∆)).
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With the following formulas, which may work as the computational recipes, the deriva-
tive operator is scaled to

(B
(θ)
r ψ)(r) =(UθBrU

†
θψ)(r)

=UθBr[e
−iθ/2ψ(e−iθ(r −R0) +R0)]

=Uθe
−iθ/2e−iθψ′[e−iθ(r −R0) +R0]

=e−iθ(Brψ)(r)

(3.76)

where a multiplier by a rotational factor e−iθ is added. The Laplacian operator is a product
of two derivative operators and can be scaled as

∆(θ) = e−2iθ∆. (3.77)

Thus, the scaled Hamiltonian of single particle ionization (see Eq. (2.2)) in the velocity
gauge is

H
(θ)
V = −e−2iθ∆

2
− ie−iθA⃗(t) ⋅ ▽⃗ + V (r⃗θ) (3.78)

and in the length gauge is

H
(θ)
L = −e−2iθ∆

2
+ [R0 + e

iθ(r −R0)]r̂ ⋅ E⃗(t) + V (r⃗θ). (3.79)

We usually truncate the Coulomb interaction beyond Rc ≤ R0 to keep the most of Coulomb
long tails. The main contribution of the eigenvalue is the kinetic energy term, which is
scaled by e−2iθ. With the irECS, the continuous spectrum is rotated by 2θ while the discrete
part remains unchanged. The resonant eigenenergies do not move in the complex plane
when the complex angle changes, which is a property that can be used when searching
for resonant states. We also find that for the dipole interaction term with an oscillating
electric field, the length gauge E⃗ ⋅ r⃗ fails but the velocity gauge iA⃗ ⋅ ▽⃗ does not [150].
Thus, Eq. (3.78) is always applied for calculating photoelectron spectrum, and Eq. (3.79)
is always used for static field ionization calculation in the tRecX code.

3.3.3 Implementation of irECS

The irECS is implemented in the radial functions in the tRecX code. The basis functions
on the whole radial range are scaled by

f
(θ)
p (r) =

⎧⎪⎪
⎨
⎪⎪⎩

fp(r) r ≤ R0

eiθ/2fp(r) r ≥ R0,
(3.80)

and we temporarily remove the (n) in f
(n)
p for notational brevity. The scaling of matrix

elements depends on the operator type, which is defined as

⟨f
(θ)
p ∣Oθ

∣f
(θ)
q ⟩θ ∶= ∫

∞

R0

drf
(θ)
p (r)(Oθf

(θ)
q )(r), (3.81)
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analogous to the unscaled operator in which we assume fi are purely real. For the overlap
S and potential V operators, the scaled basis function applies an extra multiplier eiθ to
the matrix elements as

⟨f
(θ)
p ∣f

(θ)
q ⟩θ = S

(θ)
pq = ∫

∞

R0

dr(eiθ/2fp)(r)(e
iθ/2f

(θ)
q )(r)dr = eiθSpq (3.82)

and

⟨f
(θ)
p ∣V (θ)∣f

(θ)
q ⟩θ = V

(θ)
pq = eiθ

∫

∞

R0

drfp(r)V (rθ)fq(r). (3.83)

Further, the kinetic operator applies a multiplier e−iθ to the matrix elements, see Eq. (3.84),

⟨Bθrf
(θ)
p ∣Bθrf

(θ)
q ⟩θ = ∆

(θ)
pq = eiθ

∫

∞

R0

dr(e−iθBrfp)(r)(e
−iθBrfq)(r) = e

−iθ∆pq, (3.84)

where rθ = eiθ(r −R0) +R0 is the scaled axis.
The irECS method has a scaled region that extends to r ∈ [R0,+∞). With FEM in

the old version of tRecX, the basis functions f
(N+1)
p (r) are composed by the product of an

exponentially decaying factor and Laguerre polynomials Lp(r) [150] as

f
(N+1)
p (r) = [Lp(2α(r −R0)) − 1] exp(−α(r −R0)), (3.85)

where

Lp(r) =
1

p!
exp(r)Bpr(exp(−r)rp), (3.86)

α = 2θ > 0 is the decay factor and N depicts the N + 1th interval, compared to N intervals
(n = 1,⋯,N) in the unscaled region. We would like to mention that the shift −1 to
the scaled Laguerre polynomials is introduced to force the values of basis functions at the
left boundary R0 is 0 to approximate the near zero wavefunction at the boundary of the
simulation box. With FE-DVR method in the new version, the basis functions are

f
(N+1),DVR
p (r) = LDVR

p (r) exp(−α(r −R0)) (3.87)

where L
(N),DVR
p (r) for DVR are Lagrange polynomials created from Gaussian Radau quadra-

tures points for Laguerre polynomials, where the left point is fixed. It has been proven
in our group’s previous work [144] that irECS implemented by FE-DVR also allows for
perfect absorption. For both FE-DVR and FEM, θ ∈ [0.2,0.4] often results in the best
numerical performance.

3.4 Gauges

3.4.1 Gauge transformation

The word ”gauge” in mathematical physics refers to any specific mathematical formalism
used to regulate redundant degrees of freedom in the Lagrangian [82]. In the quantum



58 3. Numerical Methods and Discretization

mechanical problems of this thesis, the time- and space-dependent unitary gauge transfor-
mation both applies to the wavefunction and operators, and the transformed wavefunction
does not need to be the solution for the untransformed one. The gauge transformation
operator with the form

Ug = e
ig(r⃗,t) (3.88)

maps a wavefunction ψ to ψg :
ψ ↦ ψg ∶= Ugψ, (3.89)

any operator O to Og :
O ↦ Og ∶= UgOU

†
g , (3.90)

and maps the time derivative operator as

Bt ↦= Bt − iBtg(r⃗, t). (3.91)

An implementation of the transformation in our calculations is the length-to-velocity
gauge transformation with

Ug = UL→V = e−iA⃗(t)⋅r⃗− i
2 ∫

t
−∞

dτA⃗2(τ) (3.92)

and its inverse
U−1
g = UL→V = eiA⃗(t)⋅r⃗+ i

2 ∫
t
−∞

dτA⃗2(τ). (3.93)

The wavefunction in the length gauge ψL can be represented by that in the velocity gauge
ψV with gauge transformation

ψL = U
−1
g ψV = eiA⃗(t)⋅r⃗+ i

2 ∫
t
−∞

dτA⃗2(τ)ψV . (3.94)

With the ansatz ψL(r⃗, t) in the TDSE of the length gauge

iBtψL(r⃗, t) = [−
∆

2
+ E⃗(t) ⋅ r⃗ + V (r⃗)]ψL(r⃗, t) (3.95)

replaced by Eq. (3.94), we have the TDSE of the velocity gauge

iBtψV (r⃗, t) = [−
∆

2
− iA⃗(t) ⋅ ▽⃗ + V (r⃗)]ψV (r⃗) (3.96)

where the formula A⃗(t) ∶= − ∫
t

−∞ dτE⃗(τ) is used.

3.4.2 Mixed gauge

The length gauge representation well describes bound states, such as the motions of bare
atom eigenstates. It is also possible to perform computations with length gauge in the per-
turbative regime or describe low-energy photoionization peaks near the threshold. How-
ever, with length gauge, the description of properties at high momentum, such as the
recollision plateau, requires a shorter range modulation of radial parts and more radial
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coefficients [152]. With the length gauge, the pulse field accelerates the particle by A⃗(t)
to a significant momentum that requires a finer resolution on the radial discretization,
especially when A⃗(t) is comparable or above the momenta of electrons in the field-free
system. However, with the velocity gauge representation, canonical momentum is con-
served. Compared to the length gauge, the velocity gauge representation requires fewer
radial coefficients and is numerically more efficient. Moreover, irECS can only be applied
to systems with velocity gauge asymptotics, according to numerical study in Ref. [150].
Thus, the velocity gauge is applied by default in tRecX code unless specified differently.

An exception is the inner region (r ≤ R0) of haCC calculation with a restricted multi-
electron basis, as mentioned above, where all particles but one are in the near-nucleus region
and can only be described with a length gauge [119]. High-momentum particles, better
described by a velocity gauge, are free electrons in the remote area from the nucleus. Thus,
free electrons and particles at a moderate distance from the nucleus must be described
separately. A ”mixed gauge” representation of the ansatz by the transformation

UL→M ∶= {
1 r ≤ R0

e−iA⃗(t)⋅r⃗ r−R0
r e−

i
2 ∫

t
∞
dτA⃗2(τ) r ≥ R0

} (3.97)

is applied. Based on previous research in Ref. [119, 152], the mixed gauge representation is
numerically efficient with moderate implementation work. A combination of the two gauges
in the same computation couples the free electron motion and bound orbitals, thus, clear
the air for the coupled channels computation for the polyelectron systems in laser-matter
interactions.

3.5 Time propagation

The TDSE can be transformed into the ordinary differential equation in Eq. (3.3) with
suitable discretization methods, which can be solved by the 4th order Runge-Kutta method
in tRecX code. Apart from the 4th order Runge-Kutta method, there are other propagators
reported in the literature, such as the real-space product algorithm [153] used in Ref. [53],
the short iterative Lanczos method [154] used in Ref. [49], and the Crank-Nicolson method
used in Ref. [80, 91, 155–160].

3.5.1 Initial state

Before the incoming of the pulse, electrons stay in a field-free state, which, for the single
ionization propagation and B region time propagation of a double emission, is a ground
state of the system ψ0 with corresponding ground energy E0 satisfying

E0 = ⟨ψ0∣H0∣ψ0⟩ = min∥ψ∥=1⟨ψ∣H0∣ψ⟩ (3.98)

where H0 is the field-free Hamiltonian of Eq. (3.3). For the single-particle time propagation
in the S(S̄) region of double ionization stated in Eq. (2.86) and Eq. (2.87), where another
particle is ionized, the initial state is a zero vector, as no particles are ionized before the
incoming pulse field.
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3.5.2 4th order Runge-Kutta

By introducing f(ψ, t) = −iŜ−1Ĥ(t)ψ, Eq. (3.3) turns into

Btψ = f(ψ, t). (3.99)

The propagation of ψ from ψn(ψ at tn) to ψn+1 (ψ at tn+1 = tn + h, n = 0,1,2,⋯) can be
approximated by

ψn+1 ≐ ψn +
1

6
(k1 + 2k2 + 2k3 + k4), (3.100)

if the arbitrary time step h is small, where

k1 = hf(ψn, tn)

k2 = hf(ψn +
1

2
k1, tn +

h

2
)

k3 = hf(ψn +
1

2
k2, tn +

h

2
)

k4 = hf(ψn + k2, tn + h)

. (3.101)

This implies that the advancement of the coefficient vector with time can be approximated
by a linear combination of vectors, with each obtained by matrix-vector multiplications
from the present wavefunction, and numerically simulated on computers and parallelized.
Computational accuracy can be ensured by a relatively short time step h. In tRecX code,
an adaptive time step is utilized to balance the accuracy and efficiency of the computation.

3.5.3 Adaptive time step control

The longest possible time step for reducing computational time is preferred on the pre-
requisite that the evolution of the wave packet is accurately described in the oscillating
external electric field. The evolution of wave packets is driven by the external field and is
highly dependent on the external vector potential. An adaptive time step control is help-
ful to obtain better convergence properties for computations with long-wave-length laser
pulse. Step doubling is implemented in tRecX [161] to compare results from two individual
time propagations, with one directly obtained by propagating ψn → ψn+1, and the other by
two half steps ψn → ψ′

n+1/2 → ψ′n+1 (ψ′
n+1/2 = ψ

′(tn + 1/2h)). The error represented by the
l∞−norm of the coefficients vector as

ε(ψn+1, ψ
′
n+1) ∶= max

i=1⋯Ncoef

∣C ′
n+1,i −Cn+1,i∣ (3.102)

is applied for controlling the accuracy of the propagation, where Cn+1,i and C ′
n+1,i are

the corresponding vector elements of coefficients (see Sec. 3.3). If the error exceeds the
maximally admissible error ε0, the step is discarded. The time step h is adjusted based on
the error ε to ensure the accuracy with formula

h→ h(
sε0
ε

)
1
5 , (3.103)
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where 1
5 is from 1

1+N , N is the consistency order (4 for 4th order Runge-Kutta method),
s = 1.5 is the safety factor in order not to discard too many steps.

The adaptive time step ensures the accuracy of time propagation but introduces a
factor 1.5 to the propagation time by applying two extra propagations with half the step
size. In a 400 nm pulse calculation with cutoff energy 100 a.u. (see the next subsection),
we find that the rejected low-accuracy propagation steps are scarce and a fixed step size
computation already suffices.

3.5.4 High energy projection

In FE-DVR, the basis function does not behave well near 0; one reason is that rl is not
included to describe the asymptotic behavior at r → 0 of wavefunction as it is in FEM.
This creates a very high contribution from 1

r2 term of kinetic energy. Thus, the wavefunc-
tion near the nucleus corresponds to the high-energy electrons, which should be removed
during wavefunction evolution for numerical efficiency. On the other hand, the maximum
energy of an electron in the laser field we consider is 10Up (see Sec. 1.3.7), and high-energy
contributions beyond this level do not change the physics but lead to extra computational
consumption. Removing the high-energy eigenvectors speeds up the calculation without
changing the physics. We find that the large energy eigenvalues in our calculations are
contributed by the kinetic energies if the intensity is not too large. Considering that the
eigenstate of the kinetic operator does not change with time and the two-particle kinetic
operator can be decomposed into a tensor product of two single-particle kinetic operators,
for a single-ionization time propagation, the whole Hamiltonian can be approximated by
field-free high-energy eigenvectors before time propagation; and for a double emission com-
putation, they can be approximated by a tensor product from two single-particle, field-free
high-energy eigenvectors, see below for details. This implies that the projector operator
can be constructed during the set-up, before the time propagation, largely reducing the
computational resources.

The normalized field-free eigenstates below cutoff energy Ecut are denoted as ∣E(i)⟩ (or
ϕi(r⃗)) with eigenenergies Ei that satisfy

Ĥ0∣E
(i)⟩ = Ei∣E

(i)⟩ Ei ≥ Ecut. (3.104)

If represented by real basis functions, as in tRecX code, the eigenvectors are mutually
orthogonal after complex scaling with the c-product formula

⟨E(i)∗∣E(j)⟩ = ∫ dr⃗ϕ(j)(r⃗)ϕ(i)(r⃗) = δij Ei,j ≥ Ecut, (3.105)

which satisfies both unscaled and complex scaled eigenstates, and the complex conjugate
operation goes before the complex scaling, implying that we do NOT take the complex
conjugate of the terms in the wavefunction which become complex only due to the rotating
of the coordinate into the complex plane [162, 163]. One can remove the partial ansatz
whose projection on the high eigenstates is non-zero by

Q̂ = 1̂ −∑
i

P̂i = 1̂ −∑
i

∣E(i)⟩⟨E(i)∗∣, (3.106)
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where 1̂ is an identity operator. Computing various eigenvalues directly consumes ac-
ceptable and moderate resources for single ionization in most cases, but it requires huge
computational resources for a 6D TDSE. Instead of calculating the eigenvalue problem for
the two particles, we use the tensor product of a unit vector ∣ ⃗ei/j⟩ and the eigenstate of an
individual particle of the ionic Hamiltonian for constructing the projector

Q̂ = 1̂ −∑
i,j

(∣E(i)⟩⊗ ∣e⃗j⟩ + ∣e⃗i⟩⊗ ∣E(j)⟩)(⟨e⃗i∣⊗ ⟨E(j)∗∣ + ⟨E(i)∗∣⊗ ⟨e⃗j ∣). (3.107)

That is, we perform high-energy projection for two individual particles separately. With
the projection, an operator is added to modify the ordinary differential equation Eq. (3.3)
to

Btc⃗ = −iQ̂Ŝ−1Ĥc⃗. (3.108)

3.6 The tRecX code

The tRecX code [96], short for time-dependent Recursive indeXing, is a general numerical
PDE solver package that transforms PDE into ODEs by representing the solution with dis-
cretized basis functions, whose corresponding coefficients are stored in a recursive indexing
data structure, as is demonstrated in Sec. 3.1.4. Numerically, the tRecX code implements
FE-DVR for radial discretization and E-E interaction for computational efficiency. The
main features of tRecX code are the tSurff method, irECS absorber, and mixed gauge,
enabling the simulation of the ionization of few-electron molecules and double-emission
problems by solving TDSE [54, 66, 109, 116, 117, 130, 139] and the simulation of surface
plasmas by solving Maxwell equations [164, 165].

Apart from the representation of the wavefunction by the recursive indexing code de-
sign, efficient numerical packages are employed for computation. The code integrates
EIGEN library [166] to do the matrix-vector multiplication, which is the best for small
matrices (100 × 100). The general integrals of the code are calculated by ALGLIB [167].
The ARPACK package [168] is applied for the eigenvalue problem by Arnoldi iteration [169]
method. The openMPI [170] interfaces are utilized for parallelization.

3.6.1 Recursive structure implementation

In the code, a core template named ”Tree” is designed to represent the recursive data
structure, and its implementation includes a tree-structured ”Index” class and ”Coeffi-
cients” class. The Index class represents the hierarchy of coordinates, wherein each node
of the tree points to the corresponding basis function. The Coefficients class represents the
coefficients vector ⃗c(t) at a given time step t as is presented in Fig. 3.2.

3.6.2 Parallelization

The parallelization technique has been used for many years, especially in the field of super-
computing. Normally, the computer executes programs serially, and computational tasks
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are executed sequentially. The parallelization is to make the code suitable for parallel
computation where many calculations or executions are simultaneously carried out. The
parallel computation splits the computational task into many similar sub-tasks, which can
be simultaneously processed in different CPUs and their results combined afterwards. This
method considerably reduces the computational time. For most of the computations, the
CPU (also referred to as core) approaches its limit; thus parallelization is the predominant
requirement for improving computational performance.

In practice, part of the data is passed through different sub-tasks among all the CPUs,
a process called ”communication.” With a suitable parallelization strategy, computational
consumption can be scaled by increasing the number of sub-tasks. In the following contents,
a process refers to a sub-task or the thread unless specified differently. The total scaling
performance of the tRecX code is influenced by two of the following factors

• Maximum single running time of all the sub-tasks. This factor can be optimized by
load balancing or appropriately allocating the total computational task across all the
CPUs to avoid any waiting time at the nodes; this requires considering the working
condition of each CPU, i.e, the slower the CPU with less computational task, and vice
versa. Usually, the working conditions of all cores are similar, and the computational
task is equally distributed over all cores.

• Communication between each sub-task. The frequency and size of transferred data
during a communication should be reduced, as communication of data through the
network is much slower than its computation in a CPU.

We perform simulations using tRecX code on the servers of Leibniz Supercomputing Center
(LRZ), where each computational node contains 16 or 24 cores (or CPUs).

This section focuses on the parallelization strategy and performance of the three com-
putational steps in the 6D double ionization calculation: (1) time propagation in the B
region, (2) time propagation in the S and S̄ regions, and (3) spectrum integration (D
region) and plot.

3.6.3 Time propagation in B region

Time propagation with the formula iBtψ = Hψ refers to advancing the full-dimensional
wavefunction in the external field without any sources, and its Hamiltonian H corresponds
to Eq. (2.2) for single-ionization and Eq. (6.1) (B region time propagation) for double-
ionization problems; the main time-consuming calculations are wavefunction operations,
as stated in Sec. 3.5, which, by numerical approximations in tRecX, are matrix-vector
multiplications.

Parallelization of matrix-vector multiplications

The parallelization strategy involves distributing the data of the coefficients vector and
operator matrix over different processes to scale the number of float operations in the
matrix-vector multiplications.
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(a) (b)

(c) (d)

Figure 3.3: Computational details in tRecX code including (a) a general illustration of the
allocations of sub matrices over processes for parallelizing matrix-vector multiplications,
the illustrations of time propagation in (b) B regions, (c) S and S̄ regions, as well as (d)
time integration and creation of photoelectron spectra.
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(a) (b)

Figure 3.4: The illustration of ”ParallelCross” for evolution of a single-particle wavefunc-
tion with discretized parameters Mmax = 0, Lmax = 1 (a) N = 1 (unscaled radial intervals)
or (b) N = 2. The definitions of the parameters can be found in Sec. 3.1. Vectors with
(Mmax+1)(Lmax+1)(N +1) (4 for (a) and 6 for (b)) sub-vectors on the right of each figure
represent the ”Coefficients”. Matrices with 4×4 (a) and (b) 6×6 blocks on the left of each
figure for matrices represent the time propagators, where each row or column is labeled by
a m, l, n with 0 ≤m ≤Mmax, ∣m∣ ≤ l ≤ Lmax and 1 ≤ n ≤ N +1. The unpainted blocks are zero
matrices and will not be used. The painted blocks with the same number are put in the
same ”ParallelCross” object and the same CPU. Each ”ParallelCross” contains a column
and a row if it has more than one block. The red rectangle groups the blocks in a row or
a column. Only two CPUs are applied for the illustration. The blocks or sub-vectors that
are grouped by dashed red squares are in CPU 1 and the others are in CPU 2.
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We illustrate such a standard strategy with computations running on three processes,
as shown in Fig. 3.3a. The coefficients vector C is split into three sub-vectors named local
coefficients Ci, i = 0,1,2 as well as coefficients after operation C ′

i , i = 0,1,2. The matrix
M is split into nine blocks named local operators as Mij, i, j ∈ {0,1,2} and distributed
over three processes. We define the process rank for a specified local coefficient Ci,C ′

i as
PC,i, PC′,i and local operator Mij as PM,i,j. For simplicity, let i here be the process rank:
PC,i = i = PC′,i, which is marked in red (0), yellow (1), and green (2), respectively. A sub-
vector on rank i of the coefficients after operation labeled by C ′

i (PC′,i = i) is calculated by
summing the local matrix-vector multiplications as C ′

i = ∑
2
j=0MijCj. Apart from the main

computational cost MijCj, there exists two possible communication events, depending on
the location of Mij and Cj compared to the process rank:

• A - Block Mij is not in the same process as Cj (PC,j = j ≠ PM,i,j), Cj is sent to the
process PM,i,j that holds Mij.

• B - After the multiplication, MijCj will be added to C ′
i . Mij is not in the same

process as C ′
i (PC′,i = i ≠ PM,i,j), we send MijCj to i.

In Fig. 3.3a, the blocks of the matrix are assigned different colors depending on their
process rank and coefficients vector. From the sub-index of the blocks, neither A nor
B exists in M00C0,M22C2, being the fastest computations (case 1). Only B exists in
M01C1,M02C2,M21C1,M20C0, and only A exists inM12C2, introducing slower computations
(case 2). A and B co-exist inM10C0,M11C1, indicating that these two operations are slowest
(case 3).

The tRecX code generates the operator based on the discretized parameters with the
recursive indexing structure, and only the non-zero sub-blocks are generated and used (see
the painted blocks of Fig. 3.4a and 3.4b). Thus, the complete structure of the matrix is
not needed, which saves time for construction, reduces memory consumption, and increases
numerical efficiency of matrix-vector multiplications for sparse matrices.

In tRecX code, these blocks are distributed using a heuristic algorithm to minimize
communication and balance the load on the CPUs. The strategy is illustrated by the
example in Fig. 3.4. Each block is created from two ”Index”es (see Sec. 3.6.1) with dis-
cretized parameters m, l, n that also define its positions. A set of blocks with the same
row or column are saved in a ”ParallelCross” object; each ”ParallelCross” has a column
and a row of blocks (if it has more than one block, see the blocks labeled ”2” in Fig. 3.4a
and blocks labeled ”2” and ”6” in Fig. 3.4b). The blocks of a ”ParallelCross” are in the
same CPU, and are as equally distributed as possible in the row and column to balance
the ”send” (for the columns, labeled ”B” above) and ”receive” (for the rows, labeled ”A”
above) communications. The identity of a ”ParallelCross” is defined by the column ”In-
dex” of the block where the row and column crosses (see diagonal block ”2” of Fig. 3.4a
and diagonal blocks ”2” and ”6” of Fig. 3.4b). The CPU that holds this block also holds
the local fragments of a vector, see the areas on the right of each sub-figure labeled by
solid and dashed red rectangles in Fig. 3.4. Thus, case 3 (shown above in the standard
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case) is avoided as much as possible to reduce the communications here. There is no com-
munication for computations described in Fig. 3.4a and the communication only exists
in two non-diagonal blocks labeled ”3” and ”4” for computations described in Fig. 3.4b.
Before assigning a ”ParallelCross” to a CPU, a ”load” value is introduced by the sum of
computational consumptions of its blocks. The load of a CPU is calculated by the sum of
”load”s of its ”ParallelCross”es. These loads of each CPU are balanced to optimize the
computational performance.

Operations in time propagation

The main operations in time propagation, as illustrated in Fig. 3.3b, are repeatedly carried
out over each time step. The computer performs matrix-vector multiplication, as is shown
in the right side of Eq. (3.3) (step 1, C ′ =MC), after which boundary coefficients elements
of each neighboring radial interval are averaged to ensure the continuity of the wavefunction
(see Eq. (3.36) of Sec. 3.1.2) (Step 2, Continue). Then, all the coefficients are sent to the
primary process (Step 3, Collect), and, finally, the surface values of the wavefunction are
converted and written to disk (Step 4, Surface & Write) required by computation of S,S̄
regions (see Sec. 2.4.1), or for photoelectron spectrum (see Sec. 2.2). Of the four steps, only
Step 4 does not require communication between the processes. Moderate communication
is needed for the matrix-vector multiplications in Step 1 as well as Step 2, wherein two
neighboring intervals are in different processes. Apparently, collecting all the vector data
of other processes requires the communication of relatively large data, which is unfavorable
for scaling computational time.

Scaling performance

As can be seen in Fig. 3.5a, the computational time is scaled to 1/5−1/6 of the single runs
at maximum by parallelization. The primary computational consumption is in the time
propagation. The communication is positively related to the number of processes, which,
however, is tiny compared to the total computational time. A calculation with over 16
CPUs indicates a computation with multi-nodes which is unfavorable for the total scaling
performance, see Fig. 3.5.

3.6.4 Time propagation in S and S̄ regions

Strategy

The time evolution in S and S̄ is a single-particle time propagation with sources subtracted
to the time derivative of the wavefunction (formula shown in Eq. (2.86) and Eq. (2.87)),
which are computed from surface values produced in calculations for B region. By recur-
sive indexing representation of tRecX code, ansatz ϕk⃗1

(r⃗2, t),∀k⃗1 is presented by a tree-
structured class ”Coefficients” with a level named ”kRn1” containing all the information of
k⃗1 grids. Normally, advancing ϕk⃗1

(r⃗2, t) is performed in one process for all k⃗1s sequentially.
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(a) (b)

(c) (d)

Figure 3.5: The parallelization performance of time propagation in (a) region B , (b)
subregion S, (c) subregion S̄ and (d) photoelectron spectrum creation in D region. The
label ”total” means total running time, ”prop” indicates the propagation time and ”MPI”
indicates the time for communication between processes. A 20-nm, 3 × 1015 W/cm2,
FWHM=5 opt.cyc. pulse is applied. The unscaled radial axis is split into four inter-
vals with polynomials order 15, and Mmax = 0 and Lmax = 3. log2(Nprocess) = 5 indi-
cates 2 nodes. We use Nk = 128 energy grid points for the computation that satisfies

k2
1/2,i − k

2
1/2,i−1

= k2
1/2,i+1

− k2
1/2,i, 1 ≤ i ≤ Nk − 2 and

k2
1/2,Nk−1

2 = Emax = 11.4 a.u..
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As is mentioned previously in Sec. 2.4.4, the advancement of the single-particle wavefunc-
tion ϕk⃗1

(r⃗2, t) in subregion S, which is dependent on k⃗1 of the other particle could be

perfectly parallelized with respect to k⃗1. For parallelization, the total wavefunction is dis-
tributed over several processes, with each local coefficient representing a subgroup of k1

grids. A similar procedure is applied for the propagation of ϕk⃗2
(r⃗1, t).

For an ansatz with Nk momentum grid points k1/2,0 < k1/2,1 < ⋯ < k1/2,Nk−1 to be
calculated on Np processes, we split the global wavefunction into Np local wavefunctions,

with ith CPU evaluating momenta k1/2,j, j ∈ [
Nk(i−1)
Np

, NkiNp
) (Nk mod Np = 0 is required).

There are two types of k1/2 grids in tRecX, namely: the momentum grid with k1/2,i −
k1/2,i−1 = k1/2,i+1 − k1/2,i, 1 ≤ i ≤ Nk − 2 and the energy grid k2

1/2,i − k
2
1/2,i−1

= k2
1/2,i+1

−

k2
1/2,i, 1 ≤ i ≤ Nk − 2. Here the k1/2 means ”k1” or ”k2”. For preserving the recursive

structure of the wavefunction by only keeping one tree-structured coefficients, a new level
called ”subRn1(2)” is added to the top of the tree structure (see Sec. 3.1.4), with its

ith child coefficients carrying grids k1/2,j, j ∈ [
Nk(i−1)
Np

, NkiNp
). This strategy perfectly scales

the computation on momenta grids but does not reduce the recursion depth or scale the
matrix-vector multiplications. Thus, the scaling performance is positively related to the
relative cost of computations on the momenta grid level, such as generating sources for
k-grids using surface information and multiplications of the Volkov phase.

Operations in time propagation

Fig. 3.3c shows the numerical procedure for time propagation in tRecX. The surface values
and derivatives are converted to sources that will be subtracted from the time derivative
of the wavefunction (Ck⃗1

(r⃗2, t) for Eq. (2.86) or Ck⃗2
(r⃗1, t) for Eq. (2.87)) (step 1, Source),

and then the code performs separate matrix-vector multiplications for each process (step
2, C ′ =MC). The surface values and derivatives of each local coefficient (sub-vector) are
separately calculated for each process in Step 3 (Surface), which are then collected and
sent to the main process (Step 4, Collect) and written to the disk (step 5, write). Data
communication only occurs in Step 4 and does not slow down the scaling much, as the
surface data size is tiny compared to the wavefunction.

Scaling performance

A few time-propagations in S and S̄ are computed with the surface values produced in
B region time propagation in Sec. 3.6.3, shown in Fig. 3.5b and 3.5c. Scaling perfor-
mance barely increases with over 8 CPUs because of the limited k-grids; computational
consumption of k-grid generation does not dominate the total calculation.

3.6.5 Photoelectron spectrum creation

Photoelectron spectrum creation is a set of post-processing operations that includes the
following:
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1. Computing scattering amplitudes from time integrating the flux, which for single
ionization is only contributed by one channel shown in Eq. (2.31) and for double
ionizion is contributed by two channels F (k⃗1, k⃗2, t) and F̄ (k⃗1, k⃗2, t) (Eq. (2.84) and
Eq. (2.85)) from computations in S and S̄. The formulas for integration are given in
Eq. (2.27) and Eq. (2.78) in chapter 2.

2. Creation of plots for a spectrum such as the energy spectrum or the joint angular
spectrum from scattering amplitudes.

The integration of scattering amplitudes is the most time-consuming step in photoelectron
spectrum creation, especially for long pulses. The flux for each k-grid is independently
integrated, similar to the time propagation of ϕk⃗1

(r⃗2), indicating that the parallelization
strategy for time propagation in S and S̄ regions also applies. For the double ionization
in Eq. (2.78), the integration of fluxes F (k⃗1, k⃗2, t) and F̄ (k⃗1, k⃗2, t) is split into different
processes by the k-grid sub-index, where the conversion from surface values to fluxes (Step
1, Convert) and integration (Step 2, Integral) are carried out independently. Then, all
the scattering amplitudes are sent to the main process (Step 3, Collect). Finally, the plot
from the scattering amplitudes is generated (Step 4, Plot). Communication only occurs
in Step 3, and the time is negligible for our specific test here in Fig. 3.5d and Fig. 3.6,
where Nk = 128 energy grid points with k2

1/2,Nk−1
/2 = 11.4 a.u. are used in Fig. 3.5d and

Nk = 128 momentum grid points with k2
1/2,Nk−1

/2 = 2 a.u. are used in Fig. 3.6, but the
communicational times are all below 5 s. The four steps are illustrated in Fig. 3.3d.

Scaling performance

Two individual computations with different inputs are tested for the scaling performance.
The first starts from the surface values from the computations in Sec. 3.6.4 with relevant
computational times plotted in Fig. 3.5d, which shows the integration time decreases with
the increasing process number but the total time increases. The reason is that the set-up
times for the Index and Coefficients objects are comparable to the integration time. A
larger process number requires generating more local coefficients and a longer set-up time.
The other is performed with a more substantial basis with longer pulses in Fig. 3.6. The
central computational time is in the integration step, which becomes 6 times faster with
16 CPUs and scales the entire computation similarly.
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Figure 3.6: The parallelization of photoelectron spectrum creation in double ionization of
Helium with parameters Lmax = 20, La = 3, Ld = 21, Mmax = 1 with constraint m1 +m2 = 0,
R0 = 37.5 a.u. and Nk = 80. The external field is a 6 fs, cos8 shape, 400-nm linearly polarized
pulse along z direction. We use Nk = 128 momentum grids.
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Chapter 4

Convergence study

As is stated in previous chapters, tRecX code implements the tSurff method and irECS as
well as efficient numerical discretization techniques for solving the TDSE. The Coulomb
attraction from the nucleus, the electron electron interaction and Hartree potential are
truncated beyond the tSurff radius. In this chapter, we present the photoelectron spectra
produced by tRecX code and discuss how they are influenced by parameters for numerical
discretization and computational methods. The performance of tRecX code which is de-
pendent on the these parameters is illustrated by a convergence study of double ionization
of Helium in a 400 nm pulse. The convergence study is important especially for the double
emission photoelectron spectra, see Sec. 2.1.2, where the long range electron electron inter-
action is truncated by the arbitrary tSurff radius Rc. For a single ionization convergence
study, refer to the convergence study of hydrogen atom in Dr. Zielinski’s thesis [82].

4.1 Convergence test of DI

Our computation of double emission spectra was motivated by an interesting work as the
following. Katsoulis et al. (2018) reported the slingshot mechanism of two electrons for
the double ionization of helium with classical trajectory Monte Carlo (CTMC) simula-
tion, which strongly favors ”back-to-back” (B2B) emission [171], but relevant quantum
investigations have not yet been reported. The tRecX code developed in our laboratory
implements the tSurff and irECS methods that can solve the two-electron ionization prob-
lem for a large wavelength ≥ 400 nm by solving TDSE. Our previous paper reported the full
quantum-mechanical calculation for the double emission problem at IR wavelength [54],
but the convergence was difficult to obtain.

The convergence of double emission behavior strongly varies with the investigated ob-
servables, as pointed out in Sec. 2.4.4. To compare our results with the CTMC simulations,
we consider the convergence study based on observables that include the photoelectron en-
ergy spectra, and correlation ratio by the ”back-to-back” (B2B) emission with respect to
”side-by-side” (SBS) emission properties of the two particles integrated over all the en-
ergy range. Our simulation was performed with a FWHM = 2 fs, 5 × 1014 W/cm2, 400-nm
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and Gaussian-like cos8 envelope pulse that is used in Ref. [171], whose formula can be de-
scribed by Eq. (A.24) with n = 2; the pulse shape can be found in Fig. A.1 in the appendix.
For completeness, we also present the convergence behavior of joint angular distributions
(JAD) of the selected energy points. Finally, we present the calculated correlated behavior
of the two particles with typical pulses.

4.1.1 Definition of Formulas

The two-electron tSurff introduced in Sec. 2.4.1 can be applied for computing the double-
emission spectra of He.

Photoelectron spectra

The photoelectron energy spectrum is given as

σE(E1,E2) =∫

2π

0
dφ1∫

2π

0
dφ2∫

π

0
dθ1 sin θ1∫

π

0
dθ2 sin θ2

∣b(
√

2E1,
√

2E2, θ1, θ2, φ1, φ2, T )∣2
√
E1

√
E2,

(4.1)

where b(k1, k2, θ1, θ2, φ1, φ2, T ) is the scattering amplitude from Eq. (2.73). We also define
two types of spectrum for describing the correlated behavior of the two particles:

ση(θ1, θ2) = ∫

∞

0
∫

∞

0
k2

1k
2
2dk1dk2∫

2π

0
dφ1∫

2π

0
dφ2∣b(k1, k2, θ1, θ2, φ1, φ2, T )∣2, θ1,2 ∈ [0, π)

(4.2)
represented by the angle θ1/2 for the two particles and evaluated along the z coordinates

σz(kz,1, kz,2) = ∫
+∞

∣kz,1∣
∫

+∞

∣kz,2∣
k1k2dk1dk2∫

2π

0
dφ1∫

2π

0
dφ2∣b(k1, k2,arccos

kz,1
k1

,arccos
kz,2
k2

, φ1, φ2, T )∣2,

(4.3)
whose derivation can be found in Sec. A.6. The total yield of emission integration is
calculated by

YE = ∫

∞

0
∫

∞

0
σE(E1,E2)dE1dE2, (4.4)

for energy spectra and

Yη = ∫
π

0
∫

π

0
ση(θ1, θ2) sin θ1 sin θ2dθ1dθ2 (4.5)

for spectra with θ1/2 coordinates, and

Yz = ∫
∞

−∞
∫

∞

−∞
σkz(kz,1, kz,2)dkz,1dkz,2 (4.6)

for spectra with z1/2 coordinates. Theoretically YE = Yη = Yz. Convergence behavior is
obtained by measuring the error of spectra at two independent calculations

εE = maxE1,E2 (2
∣σE(E1,E2) − σ′E(E1,E2))∣

∣σE(E1,E2) + σ′E(E1,E2))∣
) (4.7)



4.1 Convergence test of DI 75

for subsequent calculations σE and σ′E as we increase the parameters, as well as

εη = maxθ1,θ2 (2
∣ση(θ1, θ2) − σ′η(θ1, θ2))∣

∣ση(θ1, θ2) + σ′η(θ1, θ2))∣
) (4.8)

for subsequent calculations ση and σ′η as we increase the parameters. A disadvantage of
this measurement is that the error can be very small if the two subsequent parameters
are very close, even if it is not converged. To avoid these arbitrary small errors in the
convergence tests of this section, intervals between all subsequent parameters are similar
and small intervals are avoided.

Correlation ratio

The correlation ratio is introduced to describe how ”back-to-back” (B2B) emission com-
pares with ”side-by-side” (SBS) emission, defined by the ratio of B2B to SBS yield. From
the above two representations of the photoelectron spectra in Eq. (4.2) and (4.3), one may
obtain the correlation ratio by using the formula

Γη =
∫
π/2

0 sin θ1dθ1 ∫
π

π/2 sin θ2dθ2ση(θ1, θ2) + ∫
π

π/2 sin θ1dθ1 ∫
π/2

0 sin θ2dθ2ση(θ1, θ2)

∫
π/2

0 sin θ1dθ1 ∫
π/2

0 sin θ2dθ2ση(θ1, θ2) + ∫
π

π/2 sin θ1dθ1 ∫
π

π/2 sin θ2dθ2ση(θ1, θ2)
(4.9)

for representation in θ1/2 coordinates or

Γz =
∫
+∞

0 ∫
0

−∞ σ(kz,1, kz,2)dkz,1dkz,2 + ∫
0

−∞ ∫
+∞

0 σ(kz,1, kz,2)dkz,1dkz,2

∫
+∞

0 ∫
+∞

0 σ(kz,1, kz,2)dkz,1dkz,2 + ∫
0

−∞ ∫
0

−∞ σ(kz,1, kz,2)dkz,1dkz,2
. (4.10)

for representation in kz,1/2 coordinates, where θ1,2 ∈ ([0, π/2]⊗[0, π/2])∪([π/2, π]⊗[π/2, π]),
z1,2 ∈ ([0,+∞)⊗[0,+∞))∪((−∞,0]⊗(−∞,0]) are called the SBS regime and θ1,2 ∈ ([0, π/2]⊗
[π/2, π]) ∪ ([π/2, π] ⊗ [0, π/2]), z1,2 ∈ ([0,+∞) ⊗ (−∞,0]) ∪ ((−∞,0] ⊗ [0,+∞)) are called
the B2B regime. θ1,2, z1,2 means particle ”1” and ”2” while θ1/2, z1/2 means particle ”1”
or ”2”. Theoretically, the two ratios have an identical physical property, i.e., Γη > 1 (or
Γz > 1) is B2B dominated and Γη < 1 (or Γz < 1) is SBS dominated. In practice, the
numerical calculation approximates the phase space with finite grid points, leading to
different quantities with the two representations, as presented in the next section.

4.1.2 Overview of the convergence study

The quiver radius of the 400-nm, 5×1014 W/cm2 pulse is 9.2 a.u., unlike the single emission
wherein the convergent box size can be approximated with the huge quiver radius from
the previous section, R0 for a convergent double emission simulation not only depends on
electrodynamics in the pulse but also the truncation of the Coulombic attraction from the
nucleus and electron-electron interactions, which are non-negligible near the small quiver
radius of 9.2 a.u. Further, approximating the asymptotic solution with the product of two
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single-scattering solutions is only available beyond a larger simulation range where the
wave packets disentangle, making the regulation of the box size a complex task. To reduce
the error introduced by the Coulomb truncation, we set β = Rc = R0 as default. In the
following convergence study, we use Rc to represent the simulation box size.

The default parameters for the calculations are the polynomial order (18), cutoff energy
Ecut (100 a.u., see high energy projection in Sec. 3.5.4) and number of k grids Nk (80). The
numerical discretization parameters that are considered for convergence studies mainly
focus on simulation box size and angular momenta, whose definitions can be found in
Sec. 3.1.3.

η and z representation

Fig. 4.1 shows how the yields (YE, Yη, Yz) and the correlation ratio vary with the number of
k grids (Nk). The yields integrated from photoelectron spectra by the three representations
are theoretically equivalent. However, the values are distinctive due to numerical errors of
different representations. YE and Yη are identical with an error of approximately 10% and
both alter below 10% with k grid number increasing from 80 to 120, while Yz decreases
to 26% with an error reaching 82%, compared to YE. The correlation ratios (Γη and Γz)
are computed by divisions of the yields integrated from different quadrants, and their
accuracies are expected to be similar to the total yield integrated from all quadrants. We
found Γη is invariant of Nk, but Γz decreases from 1.14 to 1.08. As σE are computed directly
from the scattering amplitude by Eq. 2.12 with the least approximations and numerical
errors, YE serves as the most precise value. The similarity of Yη with YE indicates ση is
numerically more reliable than σz. The near-invariant ratio Γη and Yη with Nk implies
Nk = 80 is sufficient for our simulation.

The numerical error may arise from the plotting function in the code, which represents
the scattering amplitudes by discrete variables on a finite number, equidistant kz or η grids
with identical weights. The error becomes non-negligible with small discretized grids and
aggravates with operations on the plotted data sets. In this section, Γ refers to Γη if not
specified.

As the yields from YE (integrated from σE(E1,E2)) and Yη (integrated from ση(θ1, θ2))
calculations are close in our numerical calculations, and the overall B2B to SBS behavior
that can be obtained by integrating ση(θ1, θ2) over relevant quadrants is our main concern,
we chose the ratio Γ (Γη) and εη as the criteria for the convergence study on angular and
radial discretization parameters.

Angular discretization convergence

As mentioned in Sec. 3.1.3, the angular part of the 6D wavefunction is represented by spher-
ical harmonics Y m1

l1
(θ1, φ1), Y

m2

l2
(θ2, φ2) with quantum numbers l1, l2 ∈ [0, Lmax],m1,m2 ∈

[−Mmax,Mmax]. For a linear polarization pulse in our calculation, m1 +m2 = 0 is satis-
fied for symmetric property, and the values of l1, l2 can be constrained into an ”armchair”
shape that is determined by the ”arm-width” La and ”diagonal” Ld parameters as shown
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Figure 4.1: Convergence of total double-ionization yield and ratios with Nk k grid points.
Yields and ratios are computed through different methods. The yield of Yη is very close
to YE and its ratio Γη does not change. But ratio Γkz is modified substantially and Ykz
approaching YE with the increased Nk. The ratio Γkz is also approaching Γη. The Ld = 9,
La = 3, Mmax = 0 and Rc = 21 a.u.

in Fig. 3.1. We mainly examine Lmax,Mmax, La, Ld parameters for convergence of angular
discretization. The constraints on angular momentum are correlated with radial discretiza-
tion, theoretically illustrated in Sec. 2.1.1 and the corresponding numerical evidence will
be given later.

We ensure that Mmax = 1 produces convergent results with equivalent Γ and εη < 9% as
compared to Mmax = 2. Further, Lmax = 19 calculation produces data with the same Γ and
εη < 2% as Lmax = 29. Fig. 4.2 shows La = 3 already produces the convergent ση(θ1, θ2) and
Γ ratios when Ld ≤ 18, where ση shifts below 3% and Γ shifts below 1%. Fig. 4.3 shows
Mmax=1, Ld = 21 and La = 3 gives convergent results for Rc = 37.5 a.u., where εη < 10% and
Γ shifts from 1.41 to 1.43 when Ld alters from 18 to 21.

Simulation box size

As radial extension and angular discretization are correlated, a systematic study is demon-
strated in Fig. 4.4, which includes the analysis of Ld with Rc = 37.5 a.u. and of Rc with
Ld = 21. In the figure for the Rc convergence test, although Γ stabilizes until Rc = 45 a.u.,
Rc = 37.5 a.u. already provides a correlation ratio with an error around 1%, which is negli-
gible for the analysis of correlated behavior in this thesis. We also find that YE and Yη are
similar and yet different from Yz and that Γη is more accurate and stable with the simula-
tion box. Fig. 4.5 displays the convergence of ση with Rc where the angular discretization
is converged; we find that ση also converges at Rc = 37.5 a.u., with an error of 10% for
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Figure 4.2: The convergence study of εη and Γη with La. In the figure, the black curve
represents Γη and the red represents εη. The default parameters are Mmax=0, Lmax = 19
and Rc = 21 a.u. The La = 3 gives convergent results with different Ld. One can neglect the
increasing error of the latter two figures, as the values are very small.

Figure 4.3: The convergence study εη and Γη with Ld. The Ld = 21 starts to give convergent
results. The figure plots the variations in Γη (in black) and εη (in red) with diagonal
constraints Ld when La = 3,Rc = 21 a.u., Lmax = 19 (represented by solid line and circles),
La = 4,Rc = 21 a.u., Lmax = 19 (dashed line and up triangles) ,La = 5,Rc = 21 a.u., Lmax =

19 (solid line and down triangles) and La = 3,Rc = 38 a.u., Lmax = 29 (dashed line and
diamonds). The default parameters are Mmax = 0, and we omitted the difference of Lmax

in the labels because Lmax = 19 is sufficient for the convergence.
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Figure 4.4: Convergence of total double-ionization yield and correlation ratios with box-
size (left) and angular momentum expansion (right). At box size 45 the ratio stabilizes at
1.08. Yields and ratios are calculated through different methods. The discrepancy between
Ykz and Yη is due to the limited k grid number, so is the discrepancy in the ratios. The
other parameters are Mmax = 1, Lmax = 29, La = 3. For the convergence test of Rc with
Ld = 21. And for the convergence test of Ld with Rc = 37.5 a.u.

Rc = 37.5 a.u. and Rc = 40 a.u..
After the convergence test above, convergent parameters for calculation with Lmax =

19, Ld = 21,Mmax = 1,Rc = R0 = 37.5 a.u. are obtained for correlated behavior calculations.
We would like to point out that σE also converges with these parameters when we did not
place the relevant data here.

Convergence study on JAD

Before the analysis of the convergence behavior of JAD, we would like to show a cheap
calculation with a 20-nm, 4.5 × 1014 W/cm2 pulse, as shown in Fig. 4.6, and select the
spot around the peak in the energy spectrum. Emission of particle 2 is 0 around the

Figure 4.5: The convergence study of εη and Γη with Rc. Γη starts to converge at Rc =

37.5 a.u. and stabilizes at Rc = 40 a.u. In the figure, the black curve represents Γη and the
red represents εJAD. The Mmax=1, Lmax = 29, La = 3 and Ld = 21.
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Figure 4.6: The (left) energy spectra σ(E1,E2) and (right) JAD spectra JAD(θ2) =

σ(
√

2E1, θ1,0,
√

2E2, θ2, φ2) with angles of θ1 = 1
6π,

1
4π averaged in E1,E2 ∈ [0.5,1.5] ⊗

[0.5,1.5]a.u. to cover the peak in the energy spectra. φ2 = 0 for θ2 ∈ [0, π] and φ2 = π for
2π − θ2 ∈ [0, π]. The blue line represents the emission angle θ1 and orange dots represent
the relative probability of particle 2 emitted at various θ2s, whose ticks are labeled in the
figure (”0.12” and ”0.13”). The other parameters are M = 1. Lmax = 2. The laser field
applied is 20-nm, 4.5 × 1014 W/cm2, FWHM=4 and flat-top type pulse.

direction, particle 1 is ionized and reaches its maximum at θ2 = π in the polarization
direction, implying a clear signature of electron repulsion. Fig. 4.7 shows the importance
of averaging over energies by plotting JADs selected at different energy points, and an
active turbulence of the JAD plots with similar energy points is observed. To smoothen
the turbulence, JAD points are averaged over a specific energy range of 0.03 a.u. around
the points of interest in this thesis.

With the convergent parameters for the overall B2B and SBS scattering calculation, a
convergence study on JAD behavior of two particles can be performed at selected energy
points. As can be seen in Fig. 4.8, convergence of JAD plot is obtained with Mmax = 1
in both the shape and size at small box size, which is, however, not for the box size
Rc = 37.5 a.u. from previous section. In Fig. 4.9, we find a relatively stable shape of
JAD plots, but with an oscillating size. This means that the interaction between two
particles at selected energy points is a long-range effect. A potential solution for this is
to apply Eikonal-Volkov approximation [172], which includes the interaction beyond tSurff
radius but is currently not available in tRecX code; therefore, we leave this up to future
researchers. The computation with a larger box size also requires finer angular description,
as angular and radial discretization are correlated, leading to enormous computational
resources.

4.1.3 Results

After the systematic convergence study, the convergent parameters are applied for the
computation of the correlation ratio:Lmax=19, Mmax=1, Rc=37.5 a.u., Ld=21, La=3 and
the polynomial order is 18. As shown by the blue line-cross in Fig. 4.10, the overall corre-
lation ratio shifts from 0.9 to 1.04, depending on the phase of the pulse φCEP , suggesting
a near-equal contribution from B2B and SBS. The significant dependence on the phase,
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Figure 4.7: The JAD spectra JAD(θ2) = σ(
√

2E1, θ1,0,
√

2E2, θ2, φ2) with angles of θ1 =
1
6π,

1
4π at (E1,E2) = (0.22 ± 0.02,0.22 ± 0.02)a.u.φ2 = 0 for θ2 ∈ [0, π] and φ2 = π for

2π − θ2 ∈ [0, π]. The blue line represents the emission angle θ1 and orange dots represent
the relative probability of Particle 2 emitted at various θ2s, whose ticks are labeled in the
figure. The laser field applied is a 394.5-nm, 3.5 × 1014 W/cm2, FWHM = 5 and flat-top
type pulse. Rc = 37.5 a.u., Lmax = 20, Ldiag = 21, Larmwidth = 3.

Figure 4.8: The convergence study of JAD(θ2) = σ(
√

2E1, θ1,0,
√

2E2, θ2, φ2) at θ1 = 1
6π

with M = 1,3,5. φ2 = 0 for θ2 ∈ [0, π] and φ2 = π for 2π−θ2 ∈ [0, π]. The blue line represents
the emission angle θ1 and orange dots represent the relative probability of particle 2 emitted
at various θ2s, whose ticks labeled in the figure. The default discretization parameters are
Lmax = 15, Ldiag = 15, Larmwidth = 3 and Rc = 20 a.u. The laser field applied is a 394.5-nm,
3.5 × 1014 W/cm2, FWHM=5 opt.cyc. and flat-top type pulse. The JAD is calculated at
energy point E1 = E2 = 5.6 eV and E1 = E2 = 8.8 eV with a smooth range 0.8 eV.
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Figure 4.9: The convergence study of JAD(θ2) = σ(
√

2E1, θ1,0,
√

2E2, θ2, φ2) at θ1 = 1
6π

with box size Rc = 20,30,40,50,60 a.u. φ2 = 0 for θ2 ∈ [0, π] and φ2 = π for 2π − θ2 ∈

[0, π]. The blue line represents the emission angle θ1 and orange dots represent the relative
probability of particle 2 emitted at various θ2s, whose ticks are labeled in the figure. The
other parameters are M = 1, Lmax = 15, Ldiag = 15, Larmwidth = 3. The laser field applied is
a 394.5-nm, 3.5 × 1014 W/cm2, FWHM=5 opt.cyc. and flat-top type pulse. The JAD is
calculated at energy point E1 = E2 = 5.6 eV and E1 = E2 = 8.8 eV with a smooth range 0.8
eV.

however, disappears for a longer 6-fs pulse (see the green line-down triangles), which is
also observed in a flat-top pulse with a constant intensity. The spectra obtained by the
summation of those from calculations and a set of φCEP s with formula

σ(θ1, θ2)total = ∑
φCEP

σ(θ1, θ2)φCEP , (4.11)

where the corresponding correlation ratio is 0.96 for I1 = 5×1014 W/cm2, indicates that B2B
scattering is slightly overweight. Compared to I1 = 5 × 1014 W/cm2, I2 = 3 × 1014 W/cm2

in Fig. 4.10 produces more anti-correlation. For completeness, the kz/2 spectra at I1 =

5×1014 W/cm2 and I2 = 3×1014 W/cm2 are also presented with FWHM=2 fs. We find that
our calculation at I2 = 3 × 1014 W/cm2 produces similar results to those in Ref. [171].
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Figure 4.10: Γ calculations at φCEP = 0,45,90,135,180○ with the following pulses: 400
nm, cos8 shape pulse (blue line-cross) FWHM=2 fs, I1 = 5 × 1014 W/cm2; (orange line-
dot) FWHM=2 fs, I2 = 3 × 1014 W/cm2; (green line-down-triangle), FWHM=6 fs, I2 =

3 × 1014 W/cm2 (red line-diamond); as well as the 394.5-nm, FWHM=9 opt. cyc. flat-top
pulse with intensity I1 = 5 × 1014 W/cm2.

Figure 4.11: Joint momentum distributions at FWHM 2fs and intensity averaged over
carrier-envelope phase. Center: classical trajectory calculation at 5 × 1014 W/cm2, repro-
duced from Ref. [171], Fig.1(a). Left: TDSE result for 5 × 1014 W/cm2, right: TDSE for
3 × 1014 W/cm2. Densities are normalized to to a maximal value of 1.
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Chapter 5

Single Ionization

5.1 Static field ionization by haCC for frustrated dou-

ble ionization of HeH+

5.1.1 Background

Frustrated double ionization (FDI) takes place in a multi-electron system. It is a two-
electron ionization process where one particle is liberated while the other is captured in a
Rydberg state of the parent system at the end of the pulse, resulting in a single ionization
spectrum [173]. FDI is a critical process for the non-linear response of a strong field of
small molecules. It is reported to be a candidate for the inversion of N2 in the free air
lasing [174], where the population of excited ionic states grows increasingly. A number of
experiments on FDI were performed on molecules such as H2 [175], N2 [176] and D+

3 [177].
FDI accounts for a 10% share of all the ionization events [175, 177, 178].

Thus, FDI draws attention among the researchers in both experiments and theoretical
calculations. A simple, few electron molecule acting as a candidate for theoretical calcu-
lations on the FDI process is required. An ideal candidate for simulating the FDI process
has the fewest possible electrons to reduce the computational cost and is better to be an
influential molecule in science. The helium hydride ion (HeH+) is such a critical molecule
as it is one of the first compounds in the early universe, along with He+2 , and draws the
interest of researchers [179, 180]. For theoretical calculations, it is the simplest heteronu-
clear molecule ion and isoelectronic with H2. In this chapter, we present the calculations
for the static field ionization rates of HeH+ by haCC, which serves as a necessary input for
the classical trajectory Monte Carlo calculations (see Sec. 2.3.6) for investigating the FDI
process.

5.1.2 Methods

The hybrid anti-symmetrized coupled channels (haCC) method, introduced in Sec. 2.3, is
applied to analyze the ionization process of HeH+. The ground states of HeH+ (∣N ⟩) and
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HeH2+ (∣I⟩) are firstly computed by quantum chemistry packages and are then input into
the haCC code. The details are listed below.

Within haCC, we calculate HeH+ electronic ground state energy of -2.9756 a.u. at an
internuclear distance of 1.46 (a.u.), which coincides with value given in the literature [180].
The results are presented in atomic units, whose relation to SI units can be found in
Sec. A.1.

In haCC calculation, we split the total ansatz into coupled channels as

∣ψ(t)⟩ ≈∑
I,i

A∣i⟩∣I⟩CI,i(t) +∑
N

∣N ⟩CN (t) (5.1)

where A is the anti-symmetrized operator and ∣i⟩ is the single unrestricted basis from
tRecX calculation. The ionic wavefunctions ∣I⟩ and ground state wavefunction ∣N ⟩ are
in practice obtained from multireference configuration interaction singles doubles (MR-
CISD) method [181] of quantum chemistry, computed by the COLUMBUS code [118].
Numerically dunning basis sets such as cc-pVDZ, cc-pVQZ, and cc-pVTZ are employed to
approximate these two electronic wavefunctions.

The active electron basis ∣i⟩ in the field written as

∣i⟩ = ψi(r, θ, φ, t) =
Mmax

∑
m=−Mmax

Lmax

∑
l=∣m∣

Y m
l (θ, φ)Rml(r)Cml(t) (5.2)

is simulated by the numerical discretization methods in the tRecX code (see Sec. 3.1.4).
We use Mmax and Lmax to constrain the angular part, see Sec. 3.1.1. For the radial part
(Rml(r)), discretization parameters Pn and N are the order of polynomials and number of
intervals in the inner region (r ≤ R0), respectively, first introduced in Sec. 3.1.2. PN+1 and
α are the order of polynomials and decay factor for the outer region (r ≥ R0), respectively,
see Sec. 3.3.

The wavefunction of the fully effective electron ∣i⟩ is then formulated into a coupled
ansatz with the wavefunctions from COLUMBUS; a total of five orbitals are used, the ionic
basis ∣I⟩ of which creates a sophisticated time-dependent effective potential for the active
electron. The resulting set of coupled ordinary differential equations can be solved with
our tRecX code. For the details of the coupled ansatz from COLUMBUS calculation and
the discretized single particle, refer to Sec. 2.3.

Static field ionization

The static field ionization rate Γf with various field strengths are calculated by haCC. A
detailed description of the method can be found in Sec. 2.3.5 and Ref. [116]. Field-strength-
(E(φ0)) and angle-dependent Γf act as weights for the total probability of different tra-
jectories from CTMC simulations, where φ0 = t0ω and t0 are the ionization times for e1,
see Sec. 2.3.6. Thus, the overall probability of a certain trajectory can be achieved by the
ionization rate weighted average using Eq. (2.68).
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Convergence study of haCC calculation

As stated above, the ionization rates obtained from the haCC calculation serve as the
inputs for the CTMC calculations. Here, we only present the convergence study of haCC
calculations for HeH+, as the ionization rates for H+

2 can be achieved by the classical
method [55].

The internuclear distance of HeH+ is fixed as 1.46 a.u. for all our calculations – a value
taken from Ref. [179], which is reported to be the most reliable calculation [180] – by a
variation calculation of the energy; in other words, a value that gives the lowest ground
eigenenergy. The largest field strength 0.3 a.u. along z-axis (Angle = 0) is chosen for
the convergence study to ensure convergence of all the other smaller values. We consider
the calculations as converged when the ionization rate changes less than 0.1% under the
increase of the specific test parameters.

The convergence study on angular quantum numbers is depicted in Fig. 5.1a and 5.1b,
and one can see that the ionization rate changes by less than 0.1% with Lmax ≥ 8 and
Mmax ≥ 6. The numerical behavior of the radial discretization parameters are illustrated in
Fig. 5.1c and 5.1d. The convergence has been reached for the number of intervals N ≥ 4.
The ionization rate decreases when 12 ≤ Pn ≤ 16, 1 ≤ n ≤ N and slowly goes up after
Pn ≥ 16. Finally, the value shifts less than 0.1% after Pn ≥ 24. A detailed description of
the discretization parameters can be found in chapter 3. After the convergence study, we
chose the parameters shown in Table 5.1 for haCC calculation.

Pn PN+1 Lmax Mmax N α basis set

24 24 8 6 4 1 Aug-cc-pvtz

Table 5.1: The convergent parameters achieved with field strength = 0.3 a.u. and angle
= 0○ except for Mmax (tested at angle = 90○). The basis set ”Aug-cc-pvtz” stands for
augmented versions (Aug) of correlation-consistent (cc) polarized valence-only basis sets
(pv) with triple zeta (tz). PN+1 is the polynomials order when r ≥ R0.

5.1.3 Results of static field ionization by haCC

The static field ionization rates calculated by haCC help produce the weighted performance
of the various trajectories by CTMC simulations on the FDI processes of HeH+. That is,
CTMC calculation runs a large amount of simulations with the random distributions of the
ionized particles and trajectories. The static field ionization rate provides the percentage
of each trajectory, which depends on the instantaneous field strength when it starts to get
ionized (in phase φ0) and the angle of the liberated particle (see Sec. 2.3.6).

As can be seen in Fig. 5.2, the field-strength-sensitive ionization rate increases from
10−14 to 10−5 with the increasing field strength (from 0.1 a.u. to 0.24 a.u.). Note that the
atomic coordinates are (0, 0, 0) (a.u.) of He2+ and (0, 0, 1.46) (a.u.) of H+ in Cartesian
coordinates. Thus, for each field strength, which corresponds to a certain t0, the ionization
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(a) (b)

(c) (d)

Figure 5.1: Convergence study for (a) Lmax, (b) Mmax, (c) number of intervals N , and (d)
polynomials order Pn in unscaled region. The initial parameters for convergence test are
Pn = 20, polynomials order in scaled region PN+1 = 24, Lmax = 8, Mmax = 8, N = 7, and
decay factor α = 1. A detailed description of the discretization parameters can be found in
Chapter 3.

(a) (b)

Figure 5.2: The static field ionization rate of (a) the lower field strength 0.10, 0.12, 0.14,
and 0.16 a.u. and (b) the higher field strength 0.18, 0.20, 0.22, and 0.24 a.u. The numbers
are represented in log10 scale and for more ionization rates with other intensities (refer to
Table B.1 in Sec. B).
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rate is higher when electron 1 tunnel-ionizes from H+ side rather than He2+ side. For
the maximum field strength we consider, i.e., 0.2 a.u., the ionization rate is roughly three
times higher when electron 1 tunnel-ionizes from H+ (8.52 × 10−6) rather than from He2+

side (2.54× 10−6). The full quantum-mechanical calculation by haCC provides the reliable
static field ionization rates as the foundation of CTMC calculation of HeH+.

5.1.4 Conclusion

The static field ionization rates of HeH+ are calculated by haCC with precise parameters
from the convergence study. The ionization rate dramatically increases with a linearly
increasing external field. With the ionization rates from haCC as inputs, one can use the
CTMC method to calculate the electron dynamics of the FDI processes of HeH+, where
we find intertwined electron-nuclear interactions.

5.2 Freeman resonance enhanced spectra of helium

5.2.1 Background and motivation

Freeman resonance [182, 183] is a well-known mechanism in the photoionization spectrum
that enhances the signal, and it is highly related to the Stark effect. The Stark effect is
the shifting and splitting of spectral lines of atoms and molecules exposed to an external
electric field. It consists of the DC Stark effect and AC Stark effect. The DC Stark effect
describes the shifting and splitting of spectrum lines of atoms or molecules in a constant
electric field, and the AC Stark effect shows the spectrum line of excited state up-shifts in
an oscillating laser field while the ground eigenenergy remains stable (see Sec. 5.2.4). The
Freeman resonance is triggered when the eigenenergy difference of a shifted excited state
and the ground state is Nω as

−E0 +Ex +Up(I) = Nω,E0 = Ip(1), (5.3)

where ω is photon energy of the pulse, E0 and Ex are the ground and excited eigenen-
ergies, and the shifted value of ponderomotive energy Up(I) for our specific case is used.
The schematic illustration of AC Stark effect and Freeman resonance is shown in Fig. 5.3.
A set of mixed states influence the detected spectra with Freeman resonance. In this sec-
tion, we investigate Freeman resonance and its influence on single ionization photoelectron
spectra of Helium as well as the underlying mechanism. We first present the laser field and
methods, followed by the enhanced single ionization spectrum of He and the investigation
of AC Stark shift using Floquet analysis to discover the potential excited states respon-
sible for the enhancement. Subsequently, the underlying mechanism is discussed with a
population analysis of the excited states. Finally, a collection of pulses that enhance the
photoionization spectrum are given.
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Figure 5.3: Freeman resonance criteria and AC Stark shift in a laser field. I = Ires at
(b) satisfies the Freeman resonance condition. Eg and E∗ are the ground and excited
eigenenergies. The solid lines show how the eigenenergies move with intensity.

5.2.2 Method and laser field

Laser field parameters

The dipole field of a laser pulse with peak intensity I = E2
0 (atomic units) and linear

polarization in z-direction is defined as Ez(t) = BtAz(t) with

Az(t) =
E0

ω
a(t) sin(ωt + φCEP ). (5.4)

Two pulse envelopes a(t) are used. First, a “flat-top” trapezoidal function with a linear
rise and descent over a single optical cycle (τ=1 opt.cyc. = 2π/ω) and n opt.cyc. constant
amplitude in between, whose formula is

a(t) = fn
2
τ,(n

2
+1)τ(−t)fn

2
τ,(n

2
+1)τ(t), −(1 +

n

2
)τ ≤ t ≤ (1 +

n

2
)τ, (5.5)

where fα,β(t) is the truncation function firstly defined in Eq. (2.16) of tSurff methods. The
pulse is illustrated in Fig. 5.4a. The general formula of the pulse is defined in Sec. A.4. A
flat-top pulse with full width half maximum (FWHM) n = 5 opt.cyc. is used for SI spec-
trum calculation unless specified differently. Although the envelope introduces artificial
structures due the sidebands in its spectral decomposition [90], the flat-top shape pulse
has advantages in the following two aspects. First, the flat-top pulse shape is a perfect
choice for investigating the Stark shift (see below) and Freeman resonance with the help
of the strictly time-periodic vector potential A(t). Second, the photoionization of a long,
Gaussian shape pulse which is close to experimental condition can be approximated by the
flat-top pulse. Although the intensity of a Gaussian shape pulse evolves with time, the
photoionization around the peak intensity (t = 0) dominates the whole photoionization pro-
cess; the intensity varies slowly and can be treated as constant if the pulse is long enough.
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(a) (b)

Figure 5.4: The vector potential Az(t) of (a) a flat-top envelope, 351-nm, 3 × 1014 W/cm2

and FWHM=5 opt.cyc. pulse, and (b) a Gaussian envelope, 370-nm, 2.3×1014 W/cm2 and
FWHM=20 opt.cyc. pulse.

cos8 envelope illustrated in Fig. 5.4b has been widely used in many calculations for its good
approximation to the Gaussian envelope (see Sec. A.4.2). After the investigations with the
flat-top pulse, calculations with n opt.cyc. cos8 shape pulses by formula

a(t) = cos8(
πt

4nτ
), −2nτ ≤ t ≤ 2nτ (5.6)

will be presented to verify that mechanism exists in real pulses. This strategy will also be
used in Sec. 6.4.4.

The atomic units (h̵ = e2 = me = 4πε0 = 1) are used in this section. For detailed
information, refer to the appendix in Sec. A.1. In this section, we focus on the single
ionization spectrum with the Hamiltonian

iBtψ(r⃗, t) = [−
∆

2
− iA⃗(t) ⋅ ▽⃗ −

1 + exp(−2.135r)

r
]ψ(r⃗, t), (5.7)

where −
1+exp(−2.135r)

r is the effective Coulomb term of the single ionization. The ground
state energy is -0.9029 a.u. by our calculation, in good agreement with the experimental
data Ip(1) = −0.903 a.u.

Floquet states: Hamiltonian periodic in time

In solid state physics, the Hamiltonian is periodic in space, and the corresponding electronic
eigenstates are Bloch states. Similarly, Floquet states are the eigenstates of the time-
periodic Hamiltonian, which are essential to attosecond physics when a system is exposed
an laser pulse with a considerable pulse duration. In this section, an introduction to the
Floquet theory and derivation of the matrix elements is given.

When the Hamiltonian H(t) is strictly periodic in time with a cycle T : H(t+T ) =H(t),
a complete set of solutions of TDSE can be written in the form of Floquet states

ψE,n = e
−iE⋅tvE,n(t), n = −∞,⋯,−1,0,1,⋯,∞ (5.8)
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where vE,n(t) is periodic with cycle T and E ∈ [0,2π]/T . With the above equation taken
into the TDSE iBtψE,n =H(t)ψE,n, one has

i
d

dt
vE,n(t) = (H(t) −E)vE,n(t). (5.9)

As vE,n is periodic in time with cycle T , it can be expanded in Fourier series as

vE(r⃗, t) =∑
m

eimωtφm(r⃗), ω =
2π

T
. (5.10)

We take the expansion into Eq. (5.9), multiply both sides with e−inωt and then average
both sides on t ∈ [0, T ]. After some algebraic calculations, one has

∑
n

Eδmnφn(r⃗) =∑
n

[Hm,n +mδmnω]φn(r⃗), (5.11)

where the element

Hm,n =
1

T ∫
T

0
dtH(t)ei(m−n)ωt (5.12)

is independent of time. m,n are re-indexed to ⋯,−2,−1,0,1,2,⋯. Then the time-dependent
Schrödinger equation is transformed into a linear algebra problem as
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To simplify the notation, we define Hm,n =∶Hm−n.
In this thesis, we only consider the ionization with a linearly polarized pulse along z-

direction. We focus on single-frequency laser pulses here, where the time-dependent part
of our Hamiltonian is proportional to cos(ωt) or sin(ωt). Thus, only the matrix element
with a sub-index that satisfies ∣m−n∣ = 0,1 is nonzero. Then, the Hamiltonian of Eq. (5.13)
can be re-written as a band matrix
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. (5.14)

In order to give the correct Floquet eigenenergies in velocity gauge, ∣ ⃗A(t)∣2/2 term that
is always neglected for simplicity (see Sec. 1.3.1) is included back in Hamiltonian. This
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operation does not change the eigenstate as the vector potential is independent of r⃗. With
the Hamiltonian in velocity gauge

H(t) = −
∆

2
+ V (r⃗) − iA⃗0 sin(ωt) ⋅ ▽⃗ + ∣A⃗0 sin(ωt)∣2/2, (5.15)

and length gauge

H(t) = −
∆

2
+ V (r⃗) + E⃗0 cos(ωt) ⋅ r⃗, (5.16)

we have

H0 =
1

T ∫
T

0
−

∆

2
+ V (r⃗) + ∣A⃗0 sin(ωt)∣2/2dt = −

∆

2
+ V (r⃗) +Up, (5.17)

H1 = −H−1 = −i
1

T ∫
T

0
eiωtA⃗0 sin(ωt)dt ⋅ ▽⃗ =

A⃗0

2
⋅ ▽⃗ (5.18)

for velocity gauge and

H0 =
1

T ∫
T

0
−

∆

2
+ V (r⃗)dt = −

∆

2
+ V (r⃗), (5.19)

H1 =H−1 =
1

T ∫
T

0
eiωtE⃗0 cos(ωt)dt ⋅ r⃗ =

E⃗0

2
⋅ r⃗ (5.20)

for length gauge, where ω is photon energy, A0 is the maximum vector potential, Up =
A2

0

4

is the ponderomotive energy and E⃗0 is the maximum electric field. For velocity gauge, as
▽⃗ is anti-symmetric, the blocks appear with opposite sign to either side of the diagonal,
and the total matrix is symmetric.

5.2.3 Enhanced SI Spectrum

The photoelectron spectra w.r.t photon numbers Nphoton are

σ(Nphoton) = ∫ dφ∫ sin θdθ∣b(k, θ, φ, T )∣2k, k =
√

2(Nphotonω +Up + Ip(1)), (5.21)

where b(k, θ, φ, T ) are the scattering amplitudes from tSurff computations.
Resonances appear with ground and 3p excited state (shown later) at wavelength

λ = 369 nm, intensity I = 3 × 1014 W/cm2, and wavelength λ = 378 nm, intensity I =

2.3 × 1014 W/cm2. In the photoionization spectrum, each peak position corresponds to
the number of absorbed photons, and its height represents the probability of an electron
absorbing these photons (Nphotonω), which is favorable for low photon energy. But the
peaks from the 369-nm and 378-nm calculations are the highest among those from their
neighbored wavelengths at I = 3 × 1014 W/cm2 and I = 2.3 × 1014 W/cm2, respectively. In
other words, the spectra are enhanced, as shown in Fig. 5.5.
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(a) (b)

Figure 5.5: Enhanced spectrum at intensity (a) I = 2.3×1014 W/cm2 and (b) 3×1014 W/cm2.

The x values Nphoton =
k2

2
+Up−Ip(1)

ω are the photon numbers. The y values are photoelectron
spectra by Eq. (5.21). The pulses with flat-top envelope with 1 opt.cyc. cutoff and FWHM
5 opt.cyc. are used.

5.2.4 AC Stark shift by States Evolution

To investigate the underlying mechanism of the enhanced spectrum, verify the AC Stark
shift, and find the excited state for the enhancement, one needs to know how the excited
and ground states evolve with intensity, especially their eigenenergies. The evolution of
Floquet eigenenergies of helium in a periodic external field with intensities are analyzed
below by solving Eq. (5.14).

The schematic illustration of Floquet eigenenergies is shown in Fig. 5.6. Without the
external field, the distribution of Floquet eigenenergies is composed by compact equidistant
intervals with length ω, with each holding the eigenvalues of a field-free helium atom
that are shifted leftwards or rightwards by Nω. With the non-zero external electric field,
each interval value moves right (increase) by a field-strength-dependent Up. If a unit of
eigenenergy moves to the position of the ground state eigenenergy of another block, the
corresponding excited state is the one that satisfies the Freeman resonance condition.

Stable Floquet eigenenergies

Before presenting the results, we would like to show the our alternative notations for the
eigenstates. We use ”1s”, ”2p”, ”3s”, ”3p”, and ”3d” to denote the ground state of E0

(eigenenergy -0.903 a.u.) and excited states E1,l=1, E2,l=0, E2,l=1 and E2,l=2, respectively.
To investigate the evolution of these eigenvalues, the Floquet eigenenergies are scanned

through a set of intensities. The matrix of Eq. (5.14) is approximated by a block matrix
where the default block number is 19 with the diagonal blocks H−11,−11 − 11ω,H−10,−10 −

10ω,⋯,H0,0,H1,1 + ω,⋯,H6,6 + 6ω,H7,7 + 7ω. As we are interested in the stable resonance
states that contribute to the enhancement, the arbitrary and unstable eigenenergies need
to be removed. This can be done by data analysis of results from various calculations
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Figure 5.6: The Floquet states (lower blue circles) without and (upper orange circles) with
the external field. The length of the three intervals are ω. The yellow circles and arrows
represent an excited eigenenergy (left yellow circle) upshifts in the external field to the
ground eigenenergy (right yellow circle) of the right hand side block.

with different complex scaling angles, as the eigenenergies of the stable states are invariant
with the complex scaling angles. As shown in Fig. 5.7, various unstable states exist far
from the real axis. The values in common for both the two irECS angles are the Floquet
eigenenergies of our interest, which are plotted with increasing intensities below. As
shown in Fig. 5.8, the ground energy eigenvalue is approximately invariant of the increasing
intensity in our calculation (The small variances can be found in the next subsection,
which do not show much in our intensities). But the eigenenergy of 3p state up-shifts
by an intensity-dependent Up, showing a linear relationship with the intensity. When the
intensity dependent, up-shifting energy eigenvalue of 3p state equals that of a ground state
energy with a shift by Nω, the Freeman resonance criteria in Eq. (5.3) is satisfied. At
λ = 369 nm, I = 3.0×1014 W/cm2 and λ = 378 nm, I = 2.3×1014 W/cm2, Freeman resonance
is enhanced by the analysis of energy eigenvalues, where the photoionization spectra are
also enhanced.

Tracing Floquet eigenenergies

The above behaviors of the eigenenergies are verified by tracing the corresponding Floquet
eigenstates. If the overlap of n1th eigenstate ψI1,n1 at intensity I1 ≠ 0 and the n0th ground
eigenstate ψI0,n0 is larger than a given criteria Ovr as ∣⟨ψI1,n1 ∣ψI0,n0⟩∣ ≥ Ovr, one may
conclude that ψI1,n1 is evolved from ψI0,n0 with the increasing intensity. If no such ⟨ψI1,n1

is obtained, the step size is reduced until the overlap can follow.

In practice, calculating all the eigenvectors and eigenvalues consumes a large amount
of memory, and the tracing dies after a few recursive steps. To solve this problem, the
eigenvalues and eigenvectors of each intensity are saved on disk and read back if needed.
Thus, we can quickly restart the searching from the point where it crashed.

Another method to avoid such a huge computational task is inverse iteration (also
known as the inverse power method), which solves the eigenvalue problem when the ap-
proximated eigenvalue is already known. To compute the eigenvalue near E′

x of the Hamil-
tonian H, we perform the iteration from a desired eigenvalue E′

x and a vector ψ0 using the
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(a)

(b)

Figure 5.7: (a) Floquet states with λ = 394.5 nm,I = 9 × 1014 W/cm2 at complex scaling
angle 0.5 and 0.3. (b) Illustration of eigenstates from two different irECS angles depicted
by red crosses and blue circles. The solid blue and red lines are the exact continuous spectra
with twice the irECS angles 2θ1/2. The overlap of blue circles and red crosses depict the
resonance states.
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(a)

(b)

Figure 5.8: The evolution of Floquet states with respect to intensity based on calculations
on wavelengths (a) 378 nm (maximum intensity I = 2.3 × 1014 W/cm2) and (b) 369 nm
(maximum intensity I = 3.0 × 1014 W/cm2). One may find E2,l=1 −E0 = nω (n is integer) is
satisfied at the maximum intensity of each sub-plot. The blocks of the eigenenergies are
shifted by mω (m is integer). In the plots, the labels ”1s”, ”2p”, ”3s”, ”3p”, and ”3d”
orbital depict E0, E1,l=1, E2,l=0, E2,l=1 and E2,l=2, respectively, which are all highlighted by
blue circles.
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formula

ψk+1 =
(H −E′

xI)
−1ψk

Ck
, (5.22)

where Ck are some constants chosen

Ck = ∣∣(H −E′
xI)

−1ψk∣∣. (5.23)

In every iterative step, ψk is multiplied by (H − E′
xI)

−1. Similar to the power method,
by iteratively calculating Hψ,Hψ2,Hψ3⋯, the result converges to an eigenvector that
corresponds to the dominant eigenvalue. In the inverse power method, ψk converges at the
eigenvector that corresponds to the dominant eigenvalue of (H −E′

xI)
−1. The eigenvalues

of this matrix are (λ0 − E′
x)

−1, (λ1 − E′
x)

−1, (λ2 − E′
x)

−1⋯, where λk are the eigenvalues of
H. The largest number of these corresponds to the smallest of λk. And as we have

(H −E′
xI)

−1ψ = (λ −E′
x)

−1ψ⇔Hψ = λψ, (5.24)

(H − E′
xI)

−1 and H have the same eigenvectors, ψk converges to the eigenvector of H
corresponding to the approximated eigenenergy E′

x. The method converges fast if we
choose a suitable E′

x and converges slowly for an incorrect E′
x.

With the inverse iteration method, one gets the eigenenergy Ex at intensity I with
eigenenergy E′

x at intensity I ′ as the approximation eigenenergy, when I ′ closely approaches
I from the left. Choosing a relatively small intensity interval, we can trace the field free
eigenstates evolution with the increasing intensity. In Fig. 5.9, we plot the eigenenergy of
Floquet states E3s(E2,l=0) and E3p(E2,l=1) at different intensities. The ground eigenenergy
E0 does not move with the increasing intensity, but the eigenenergy of excited p state
linearly up-shifts with intensity, and the shifted value is Up. The evolution of s(l = 0)
eigenenergy deviates the linearity within an error at maximum 0.3×1014 W/cm2, especially
in high intensity region. The behavior of eigenenergy E3p shows the particle acquires
ponderomotive energy, like a free electron in the pulse, and feels little interaction from the
nucleus. According to the one-level analysis model from Delone et.al. [184], the shifted
energy by AC Stark effect is linear with

√
I and I in high-intensity region (n6E2

0 ≫ ω,
n is energy level). The high-intensity region depicted by the dotted red line in Fig. 5.9
are fit with the green curve, where we find the fitting matches E3s well with maximum
error below 5%. As the one-level model only applies if the state does not mix with other
principle quantum numbers, the good fitting of E3s shows orbital 3s does not mix with other
states well like 3p, which is consistent with the higher population of 3p in the population
analysis below (in Fig. 5.14). Thus, a particle in the 3p orbital behaves like a free electron,
fully couples with the external field, and mixes with other states, but the 3s orbital does
not. The cross from the eigenenergies of excited states and the ground state indicates
enhancements of 2.3 × 1014 W/cm2 for 378 nm and 3 × 1014 W/cm2 for 369 nm, which is
consistent with the photoelectron spectrum and the analysis of populations (shown later).

Gauges

The consistency of the eigenenergies calculated with different gauges also needs to be
checked. A detailed structure of traces of the eigenenergies of E0 can be found in Fig. 5.10a.
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(a) (b)

Figure 5.9: The scanning of eigenenergies of Floquet states E1s(E0,l=0), E3s(E2,l=0) and
E3p(E2,l=1) with different intensities at (a) λ = 369 nm and (b) λ = 378 nm. The dash-
doted lines of near the solid lines with the same color show theoretical lines Ex +Up or E0.
The green lines (coincide with and can be hardly distinguished from the red line-dots) with
label Efit

3s are fittings of E3s with formula E(I) = a + b
√
I + cI when I ≥ 1 × 1014 W/cm2.

It is found that for both gauges E0 drops linearly with intensities before the intensity
approaches 4 × 1014 W/cm2. After that, the trend continues for the length gauge, but the
curve goes up with intensity for the velocity gauge, introducing an error for predicted
resonance intensity at around 0.1 × 1014 W/cm2 for I = 6 × 1014 W/cm2. A calculation
with more blocks of the Floquet matrix shows that the curve of E0 from the velocity
gauge converges with that of the length gauge. The eigenenergies for excited states are
also checked for convergence. The reason for the ground eigenenergy slightly reducing
is explained in Ref. [184]; the shift of the ground eigenenergy is similar to the static
polarization of an atom, which is negative, because the frequency of the photon is small
compared to the ground energy.

The results of state searching confirmed the linear relationship between Floquet eigenen-
ergy and intensity, consistent with Fig. 5.8. Therefore, we can confirm that the excited
states with the expected resonance evolve from 3p states.

5.2.5 Population of excited states

To investigate the mechanism of the enhanced photoionization spectra, the population of
the excited states are investigated as they are paramount to the spectrum. In this section,
we scan the populations of the excited states with wavelengths at fixed intensities and
consider the peaks of the populations as indicators of the resonance. For the analysis of
population, we switch to solving the time-dependent Schrödinger equation. After spectral
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(a)

Figure 5.10: Floquet energy eigenvalues E0 scanning with intensity calculated from velocity
gauge (blue and red) and length gauge (green). There are 17 blocks for the blue and green
curves, with the diagonal blocks H−11,−11 − 11ω,H−10,−10 − 10ω,⋯,H0,0,H1,1 + ω,⋯,H4,4 +

4ω,H5,5+5ω, and 19 blocks for the red curve with diagonal blocks H−11,−11−11ω,H−10,−10−

10ω,⋯,H0,0,H1,1 + ω,⋯,H6,6 + 6ω,H7,7 + 7ω.

decomposition with

ψ(r⃗, t) =
N

∑
i=0

Ci(t)ϕi(r⃗),Ci(t) = ⟨ϕi(r⃗)∣ψ(r⃗, t)⟩, (5.25)

the norm square of the coefficient

Pi(t) = ⟨ψ(r⃗, t)∣ϕi(r⃗)⟩⟨ϕi(r⃗)∣ψ(r⃗, t)⟩ (5.26)

serves as the population value, where ϕi(r⃗) represents the eigenstate of the field free Hamil-
tonian. We take t = T (T = tend (see previous chapters), where the population values are
calculated at the end of the pulse unless specified differently. Then, we have the wavelength
scan of population values for I = 3 × 1014 W/cm2 and I = 2.3 × 1014 W/cm2 in Fig. 5.11. As
can be seen in the figures, populations of s and d states (l = 0 and l = 2) are enhanced
at λ = 378 nm for I = 2.3 × 1014 W/cm2 and λ = 369 nm for I = 3 × 1014 W/cm2. Note
that at conditions λ = 378 nm, I = 2.3 × 1014 W/cm2 and λ = 369 nm, I = 3 × 1014 W/cm2,
the spectra are also enhanced (see Fig. 5.5). When the Freeman resonance condition is
satisfied, there exists a strong states mixing. As the eigenenergies of 3p (-0.54 a.u.) and 3d
(-0.53 a.u.) are close, there remains possibility that the 3s and 3d orbitals are involved in
the states mixing. This also gives an indication of Freeman resonance.

5.2.6 Application to general cases

As shown in Fig. 5.12a, the crossing (labeled with circles) of a ground-state eigenenergy
(E0 + Nω) and an excited-state eigenenergy (E2 +Mω) satisfies Eq. (5.3) and enhances
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(a) (b)

Figure 5.11: The populations of E2, l=0,l=2 (depicted by 3s and 3d) are enhanced at (a) 378
nm, I = 2.3 × 1014 W/cm2, and at (b) 369 nm, I = 3 × 1014 W/cm2. The pulses with the 1
opt.cyc. cut-off, flat-top envelope and FWHM=5 opt.cyc. are used.

Freeman resonance. By solving the following equation

EI=0
0 +mω ≈ EI=I0

0 +mω

=EI=I0
2 + nω ≈ EI=0

2 +Up + nω
, (5.27)

the Freeman resonance conditions for various wavelength-intensity pairs can be obtained,
and their values are plotted in Fig. 5.12. The performance of the enhancement is presented
in Fig. 5.13, with laser parameters selected from Fig. 5.12, and the spectra suggest that
despite the weaker enhancement at lower intensities, the solvers do produce enhanced
spectra, where at constant intensity, the photoelectron spectra with respect to the absorbed
number of photons produced at the wavelength λ that satisfy the resonance condition is
higher than those produced from λ±10 nm.

As is mentioned in Sec. 5.2.2, flat-top envelop introduces artificial effects and the cos8

envelop approximates the real pulse shape well. To examine the extension of the Freeman
resonance to pulses with experimental envelopes, spectra are calculated at 20 opt.cyc.
pulses with cos2 or cos8 envelop in Fig. 5.14. The SI spectra are also enhanced when the
resonance criteria is satisfied, indicating Freeman resonance enhancement is an universal
mechanism.

5.2.7 Conclusion

The AC Stark shift of the eigenenergies of excited states are calculated using the Floquet
states in the single ionization of Helium. It is observed that the excited eigenenergies of
3p orbitals in the pulse can be well described by Ex + Up and 3s eigenenergy also shifts
linearly but with an acceptable error to Ex +Up. When the eigenenergy of an excited state
differs from that of the ground state by −E0+E2,l=1+Up = Nω, the SI spectrum is enhanced
by Freeman resonance, and the populations of the exited states reach the maximum. The
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(a) (b)

Figure 5.12: (a) The evolution of E0 and E2 eigenstates of λ = 378 nm and λ = 369 nm.
The cross of the dashed tilt and horizontal lines depicted by the circles are corresponding
resonance conditions. (b) The (λ, I) values that satisfy the Freeman resonance conditions
solved from Eq. (5.27).

enhanced excited l = 1 state with p orbital fully couples with the external field. The
population of its neighbored l = 0,2 states with 3s and 3d orbitals increases when the atom
is exposed to the external laser field, and survives for a long time after the laser pulse.
The SI spectrum is not only enhanced when the system is exposed to a flat-top envelope
pulse but also when it’s exposed to long, Gaussian-like envelope pulses.

5.3 Experimental photoionization spectrum fitting

5.3.1 Background

Understanding relevant experimental details and methods paves the way for better inter-
pretations. This subsection mainly demonstrates the experimental details for measuring
intensity and smooth range as well as their influences on the observables. We produce
the SI and DI photoionization spectra using theoretical calculations to fit those from the
experimental data at I = 3.5 × 1014 W/cm2, I = 4.6 × 1014 W/cm2 and I = 5.7 × 1014 W/cm2

from Ref. [46]. The main result is given in the next chapter.

5.3.2 Laser field

For the comparison with experimental data, a 394.5-nm and cos8 pulse that’s linear-
polarized along the z-direction is used for the single ionization spectrum calculations of
a Helium atom. The calculated spectra are the sources for fitting the experimental data.
The Hamiltonian of the single ionization process is shown in Eq. (5.7).

The following numerical treatments and approximations are applied for the fitting.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: SI spectra by (a) λ = 340 nm, I = 5.60×1014 W/cm2, (b) λ = 369 nm, I = 5.65×
1014 W/cm2, (c) λ = 398 nm, I = 1.12× 1014 W/cm2, (d) λ = 369 nm, I = 3.03× 1013 W/cm2,
(e) λ = 310 nm, I = 9.61 × 1013 W/cm2 and (f) λ = 369 nm, I = 3 × 1014 W/cm2 labeled in

Fig. 5.12b.The x values Nphoton =
k2

2
+Up−Ip(1)

ω are the photon numbers. The y values are the
photoelectron spectra from Eq. (5.21).
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(a) (b)

Figure 5.14: The spectra with (a) cos2( t
2T ) and (b) cos8( t

2T ) envelopes for various wave-
lengths. FWHM is 20 opt. cyc., and intensity is 2.3×1014 W/cm2. 378 nm, 2.3×1014 W/cm2;
this condition satisfies the Freeman resonance criteria. The definition of the pulse shape

can be found in the appendix in Sec. A.4.The x values Nphoton =
k2

2
+Up−Ip(1)

ω are the photon
numbers. The y values are photoelectron spectra obtained by Eq. (5.21).

5.3.3 Experimental details

Data smoothing

Theoretically, the smoothing σ(E, I) of the yield in the SI spectrum σ(E) with the smooth
range Es is given by

σ(E, I) =
∫
E+Es
E−Es σ(E

′, I)dE′

2Es
, (5.28)

where Es is the smooth range. Usually, E0 does not change the overall shape of the
spectrum. Data smoothing is always required for comparing theoretical calculations with
experimental results, which helps dampen artificial signals with numerical approximations
as well as highlight the physical properties.

Intensity

The experimental laser pulse beam pulse beam travels in the e⃗z direction with peak intensity
I0, which satisfies the standard Gaussian distribution by formula

I(r, z) = I0
I0

1 + ( z
ρ0
)2

exp(−
2r2

ω2
0(1 + ( z

ρ0
)2)

), (5.29)

where ω0 is the focal radius and ρ0 is the Rayleigh length. The parameters of laser in
Ref. [46] are ω0 = 2µm, ρ0 = 30µm, (ω0

ρ0
)2 ≪ 1; thus, the distribution can be approximated

by a Gaussian distribution as

I(r, z) ≈ I0 exp(−
2r2

ω2
0

), (5.30)
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Figure 5.15: The illustration of the Gaussian distribution of the intensity. The intensity
distribution satisfies I(r, z) = I0 exp(−2 r2

ω2
0
), where I0 = 4 × 1014 W/cm2 and ω = 2µm.

whose shape is schematically illustrated in Fig. 5.15.

Thus, the measured photoionization spectrum in these experiments is a weighted av-
erage of those from a distribution of intensities in the pulse beam and is calculated using
the focal volume average:

σ(E) =
∫

0

I0
σ(E, I)S(I)dI

∫
0

I0
S(I)dI

(5.31)

where S(I) is the weight of the intensity on xy plane. According to Eq. (5.30), the volume
element is

S(I)dI ∝ 2πrdr = −
πω0
√

2I
dI. (5.32)

The directly computed SI photoionization spectrum at 5.7 × 1014 W/cm2 and the focal
volume averaged computation from a Gaussian distribution laser field with peak intensity
5.7×1014 W/cm2 are illustrated in Fig. 5.16. As shown in the above-mentioned figure, with
the focal volume average operation, spectra at the high-energy regime (E > 30eV where it
differs most between 5.7 × 1014 W/cm2 and 5.3 × 1014 W/cm2) are weakened and shifted to
those from the lower intensity calculation, but they are still higher than 5.3× 1014 W/cm2.
One may conclude that the error from focal volume averaging to predict the intensity by
SI photoelectron spectra comparison is within 0.4 × 1014 W/cm2, which is below the error
from counting the wrong photon number, as shown below.

Due to experimental limitations, a direct observation of the intensity is not possible.
The values are derived from the peak positions in the SI or DI (double ionization) energy
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Figure 5.16: The SI spectra at 5.7 × 1014 W/cm2 (green line) with focal volume averaging
operation compared with those without averaging operation at (red line) 5.7× 1014 W/cm2

and (cyan line) 5.3 × 1014 W/cm2. The blue line is from experiments by Ref. [46] at 3.5 ×
1014 W/cm2. Here FWHM=7 opt.cyc. and the pulse shape is cos8. The smooth range is 2
eV.

photoionization spectra with formula

E
(1)
n = nΩ − I

(1)
p −Up (5.33)

for SI photoionization spectra and

E
(2)
n = nΩ − I

(2)
p − 2Up, (5.34)

for DI photoionization spectra, respectively, where Ω is frequency, I
(1)
p and I

(2)
p are the

ionization potentials for single and double ionization, Up = E2
0 /(4Ω2) is the ponderomotive

energy, and n is the number of absorbed photons. It should be noted that for the pulse
parameters used here, Up reaches up to several photon energies and the error for predicting
the intensities approximates δn × 2.1 × 1014 W/cm2, where δn is the error of the photon
numbers. The extraction of intensity from the spectra only needs to be performed once, as
the size of the focus can be adjusted with high accuracy. If I0 is the first intensity derived
from the peak positions using either of the two equations above, the other intensities can
be calculated by

Ii = I0
S0

Si
, (5.35)

where Ii is the intensity of interest and S0, Si are the areas of the focus. S0

Si
can be easily

and precisely controlled in the experiments. This is called the ”spot size measurement”
and is applied in Ref. [46] and [45]. According to Ref. [46], using peaks of joint energy
spectra from DI calculations (Eq. (6.12)) results in more accurate values than that with
SI positions (Eq. (6.11)).
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5.3.4 Conclusion

This section introduces the methods for fitting the experimental data, including the smooth
range, distribution of intensity, and the method for deriving the intensities in experiments.
We have found that the focal volume averaging method moves the photoionization spec-
trum to a lower intensity with an error of approximately 0.4 × 1014 W/cm2, which is small
compared to the wrong photon number situation.
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Chapter 6

Double ionization at 400nm

This section mainly taken from my paper Ref [185].

6.1 Introduction

Double-ionization of noble gas atoms has been and still is being investigated for studying
the effects of elementary correlation and for gauging computational methods. Notably the
measurement of enhanced double-ionization by strong laser pulses [44] has triggered a large
number of theoretical studies and consensus has emerged that “recollision”, where the first
emitted electron collides with the still-bound one, is the primary mechanism of double
ionization. Variants of this basic mechanism have been used to explain in increasing detail
spectra using short, intense pulses that were obtained by cold target recoil ion momentum
spectroscopy (COLTRIMS) [34].

The assignment of the observed spectral features to specific mechanisms remains a
challenge for theory. The Helium atom is, in principle, accessible to a complete numerical
solution of its time-dependent Schrödinger equation (TDSE) and the computation of fully
differential spectra, even if the parameter range where this can be achieved remains narrow.
However, an accurate time-dependent wave function by itself does not provide physical
insight or intuitive mechanisms. For that, the use of classical and semi-classical models is
of interest. Such models have been very successful in strong field physics [55, 130, 171].

The recollision model for non-sequential double ionization (NSDI) consists of three
steps: (1) electron e1 leaves the atom, typically by tunnel ionization; (2) e1 picks up energy
in the laser field; (3) it returns to the vicinity of the nucleus and the second electron e2

is detached by collision. The scenarios for the interaction in step (3) are often phrased
in terms of classical mechanics. Energetic recollsions predominantly occur near nodes of
the field. The energy of e1, the energy imparted to e2, and e2’s ultimate detachment time
are the main parameters to distinguish various classical mechanisms. At large energy, e1

can knock out e2 in an e − 2e collision and the two leave nearly at the same time. When
the energy imparted to e2 is below the ionization threshold, the simultaneous presence
of the laser field can still allow detachment by suppressing the potential barrier. The
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mechanisms where the release occurs within a narrow time-window of the recollision we
call “double-ionization upon recollision” (DUR), which subsumes direct knock-out and
release by suppression of the binding barrier as well as tunneling [186–188]. If e1 looses
much of its energy in the process, the field will accelerate both electrons into the same
direction, which we denote as side-by-side (SBS) emission. At non-equal energy sharing e1

continues its path, while e2 is emitted into the opposite direction, which we call back-to-
back (B2B) emission. When studying the momenta, one has to also include scattering of
the electrons by the nucleus. Such a process is the ”slingshot-NSDI” [171], which leads to
B2B emission of the two electrons, even when both electrons have comparably low momenta
upon recollision.

When an actual excited state is formed with a decay time that is not locked to the
recollision event, one speaks of “recollision induced excitation with subsequent ionization”
(RESI) [76, 77], which allows both, SBS and B2B emission. A similar pattern, where,
however, SBS emission favored, is the formation of a quasi-bound state of both electrons
which can survive for at least one-quarter cycle and gets ionized with the electrons moving
into the same direction (“double delayed ejection”, [73]).

In this paper we present ab initio quantum mechanical calculations of double-ionization
of the He atom by short and intense laser pulses at a carrier wavelength of 394.5 nm and
relate these to recent measurements and some of the mechanisms listed above. Depen-
dence of SBS and B2B emission on pulse intensity and pulse duration is used as the main
observable.

We present joint energy and momentum distributions at various intensities and pulse
durations and find generally good agreement with measurement. Our simulations also
show enhanced B2B emission at non-equal energy sharing, as predicted by the classical
models. B2B emission is further enhanced by Freeman resonances, a genuinely quan-
tum phenomenon. Finally, we will point to another manifestation of quantum mechanics,
namely the modulation by 2h̵ω of the joint energy distribution along lines of constant sum
energy — the “checkerboard pattern” of Ref. [46]. In classical language this translates
into repeated electron collisions. We also present calculations with ultrashort pulses (2
fs FWHM, parameters of Ref. [171]), that generally support the slingshot mechanism of
Ref. [171], although the match is found at lower than predicted intensity.

6.2 Methods and laser parameters

6.2.1 Two-electron calculations

The Hamiltonian of the He-atom with infinite nuclear mass is (using atomic units h̵ = e2 =

me = 4πε0 = 1)

H(r⃗1, r⃗2, t) =HI(r⃗1, t) +HI(r⃗2, t) +
1

∣r⃗1 − r⃗2∣
, (6.1)

with the ionic Hamiltonian

HI(r⃗, t) = −
∆

2
− iA⃗(t) ⋅ ▽⃗ −

2

r
. (6.2)
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Interaction with the laser is described in dipole approximation and velocity gauge, where
A⃗ is defined below.

For numerically solving the TDSE and for computing spectra we use the time-dependent
recursive indexing (tRecX) code [96]. tRecX implements the time-dependent surface flux
(tSurff) method [93, 139] (see also Refs. [54, 94, 95, 109, 119, 189, 190]), infinite range
exterior complex scaling (irECS) [84, 150], and FE-DVR methods [145]. In brief, the full
two-electron calculation is restricted to within a surface radius ∣r⃗1∣, ∣r⃗2∣ ≤ Rs with irECS
absorption beyond Rs. tSurff is based on the idea that beyond Rs all interactions can be
neglected and spectra are reconstructed from the time-evolution of values and derivatives
on a four-dimensional hypersurface ∣r⃗1∣ = ∣r⃗2∣ = Rs. Expansions into single-particle angular
momenta and FE-DVR radial functions are used. The most critical convergence parameter
is Rs and, to a lesser degree, the number of angular momenta. All convergence parameters
were varied systematically to ensure sufficient accuracy. In the majority of calculations an-
gular momentum quantum numbers li = 0, . . . ,19 and ∣mi∣ ≤ 1 were used for each electron.
The convergence with Rs was studied using values up to 80 arb. units For the bulk of
calculations we found Rs = 40 to suffice, except for joint angular distributions, where full
convergence requires simultaneous increase of angular and radial discretization to unrea-
sonable sizes. With that we obtain a He ground state energy of −2.902 with ∣mi∣ ≤ 1 and
the three decimal digits exact value of −2.903 with ∣mi∣ ≤ 2. In the FE-DVR an 18 point
Lobatto quadrature rule for was used with an average grid spacing of 0.6 arb. units. up to
Rs, followed by a 15 point rule for exponentially damped polynomials with complex scaling
for absorption. We ensured that for a given Rs the discretization error is negligible on the
accuracy level discussed here. Except for the replacement of the exact FE-basis with the
computationally more efficient FE-DVR grid, mathematical and numerical background of
tRecX as well as procedures employed to assess convergence are described in full detail in
Ref. [54].

Alternative to extracting single emission spectra from the full two-electron calculation,
we also used a single-active-electron model with the Hamiltonian

HM(t) = −
∆

2
− iA⃗(t) ⋅ ▽⃗ −

1 + e−2.135r

r
, (6.3)

where the screening factor is chosen as -2.135 to obtain the ionization potential Ip = 0.903
arb. units. This simple model largely reproduces results from the full calculation, see
below.

6.2.2 Differential spectra

Starting from the fully differential momentum spectrum σ(p⃗1, p⃗2) we compute various
partially differential spectra.

The co-planar joint angular distributions (JADs) at given energy sharing η = (E1,E2),
Ei = p2

i /2me are defined by choosing the first electron at θ1 and taking into account cylin-
drical symmetry, i.e.

JAD(θ2) = σ(p1, θ1,0, p2, θ2, ϕ2) (6.4)
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with ϕ2 = 0 for θ2 ∈ [0, π] and ϕ2 = π for 2π − θ2 ∈ [0, π]. For experimentally realistic JADs
we average over a small energy region ±0.3 eV, which is comparable to the spectral width
of the pulses used here.

Joint distributions of momentum in polarization- (z-) direction and joint energy distri-
butions are defined as

σ(p1z, p2z) = ∫ dp1xdp2xdp1ydp1yσ(p⃗1, p⃗2) (6.5)

σ(E1,E2) = p1p2∫ dΩ1dΩ2σ(p⃗1, p⃗2), (6.6)

where dΩi is the integration over the solid angle of p⃗i. B2B emission is the the part of
σ(pz1, pz2) with opposite signs of the pzi, and SBS with equal signs.

For studying correlation in double electron emission we introduce the correlation ratio
Γ of B2B to SBS emission

Γ ∶= Y−/Y+, (6.7)

Y± =∬
∞

0
dpz1dpz2[σ(pz1,±pz2) + σ(−pz1,∓pz2)], (6.8)

where larger Γ indicates more B2B emission. We would like to mention that, numerically,
values of Γ here is from Eq. 4.9, see Sec. 4.1.2 and Eq. 6.7 here is for an easy interpretation.

We will further study the correlation at individual energy sharing points η = (E1,E2)

using the ratio Γη where the integration for Y± is restricted to a small region surrounding
piz =

√
2meEi, i = 1,2.

6.2.3 Laser pulses

The dipole field of a laser pulse with peak intensity I = E2
0 (atomic units) and linear

polarization in z-direction is defined as Ez(t) = BtAz(t) with

Az(t) =
E0

ω
a(t) sin(ωt + ϕCEP ). (6.9)

The wave-length was chosen as exactly λ = 394.5 nm to match the experimental wave
length used in Ref. [46], with the corresponding photon energy of h̵ω ≈ 3.14 eV. For the pulse
envelope a(t) we used two different shapes: a “flat top” trapezoidal function with a linear
rise and descent over a single optical cycle (1 opt.cyc. = 2π/ω) and constant amplitude in
between. This somewhat unrealistic pulse shape is chosen to better isolate the intensity
dependent effects of Freeman resonances. For examining the robustness and experimental
observability of effects we chose a(t) = [cos(t/T )]8 as a more realistic envelope. Pulse
durations are specified by the FWHM w.r.t. intensity. The carrier-envelope phase ϕCEP ,
in general, affects all non-linear processes. Highly differential observables such as the JADs
show CEP-dependence for pulses as long as 14 optical cycles. However, yields and energy
spectra vary only weakly with ϕCEP , reaching observable level only for single- or two-cycle
pulses. We compare our results to an experiment with long pulses of FWHM > 7 Opt.Cyc,
for which we demonstrate the absence of relevant CEP-dependence in selected cases. Unless
indicated otherwise, calculations are for ϕCEP = 0.
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6.2.4 Ponderomotive shifts and Freeman resonances

The ac-Stark shifts of ground and excited states differ, leading to intensity-dependent
resonance conditions known as Freeman resonances [183]. In good approximation, the
shift of excited states energies relative to the ground state is equal to the ponderomotive
potential Up = E2

0 /(4ω
2), leading to the n-photon Freeman resonance condition

−E(g) +E(x) +Up = nω, (6.10)

where E(g) and E(x) are field-free ground and excited state energies of the He-atom. The
validity of this formula for the present purposes was verified by Floquet calculations with
the single-electron Hamiltonian Eq. (6.3).

Similarly, photo-electron peaks are shifted to lower energies by Up as the ponderomotive
potential of the continuum electron is not converted into kinetic energy due to the rapid
passage of the pulse. The n-photon peaks in single- and double-emission appear at energies

Sn = nω − I
(s)
p −Up (6.11)

and
Dn = nω − I

(d)
p − 2Up, (6.12)

respectively, where I
(s)
p and I

(d)
p are the ionization potentials for single and double ion-

ization. Note that for the pulse parameters used here, Up reaches up to several photon
energies.

6.3 Single electron emission

In the He atom, single-ionization at longer wave length is little affected by multi-electron
effects. At 800 nm this had been observed for photoemission with linear [54] as well as
elliptical polarization [119]. We find the same to hold at the present shorter wavelength.
The difference in total yields obtained from model and full two-electron calculation is about
20%. After normalization, the shapes of the spectra agree within a few % in the energy
range up to 100 eV. As the single ionization calculation can easily be pushed to complete
convergence this also supports the correctness of the full calculation.

In Fig 6.1 we compare the spectral shapes at two sets of intensities, 3.5,4.6,5.7 × 1014

and 5.7,7.4,9.2 × 1014 W/cm2, respectively, to three measured spectra from Ref. [46]. We
verified that on the level of the comparison the exact pulse duration does not matter. The
two sets of intensities are chosen w.r.t. the lowest intensity of 3.5×1014 W/cm2 of Ref. [46]:
the difference of ponderomotive shifts at 3.5 and 5.7 × 1014 W/cm2 is approximately one
photon energy. Photo-electron peaks at the two intensities are located at the same energies,
just differing by one photon number. Choosing these two sets of intensities separated by
a ponderomotive shift of h̵ω is motivated by the procedure for determining intensities in
Ref. [46], where at 3.5 × 1014 W/cm2 shape and peak positions of single-electron spectra
were used to infer the on-target intensity. For such a procedure, given the incertainty of
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Figure 6.1: Single-electron energy spectra. Solid lines: experiment [46], dashed: TDSE,
dotted: TDSE at intensities 5.7, 7.4 and 9.2 × 1014 W/cm2. Curves were smoothed over
4 photo-electron peaks, normalized, and offset artificially for visibility. The TDSE was
solved for a cos8-pulse with duration 20 fs FWHM. The computed spectra are smoothed
over 12 eV for easier comparison with experimental data.
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the shapes, peak-positions remain ambiguous w.r.t. to ponderomotive shift. Both triplets
of intensities will be used in further comparison with experimental data.

Somewhat surprisingly, for this rather simple observable the agreement is not satis-
factory for either set of intensities. Strikingly, at 3.5 and 4.6 × 1014 W/cm2 the predicted
pronounced cutoff is not found in the experimental data. The calculations at the higher
set of intensities bear more similarity to the experimental data but agreement at the high
photo-electron energies remains off by nearly an order of magnitude.

The difficulty in using single-electron spectra for intensity calibration is that the pho-
toionization threshold shifts with intensity by one or several photon energies (h̵ω = 3.14
eV) and channel closure occurs. For example, at intensity 4.6× 1014 W/cm2 the 10-photon
transition falls right onto the ionization threshold and at higher intensity a minimum of 11
photons is needed for ionization. If the signal is averaged over individual photo-electron
peaks, the low-energy photo-electron spectrum appears to change shape rather erratically.
If individual photoelectron peaks were resolved one should be able to reliably gauge the
intensity with an ambiguity of multiples of h̵ω. For resolving that ambiguity one needs
additional information: the checkerboard pattern observed in double emission (sec. 6.4.3)
allows distinguishing even and odd photon counts, reducing ambiguity to multiples of two
photon energies, 2h̵ω = 6.3 eV.

The ambiguous comparison of the single-electron spectra precludes the use of these
spectra for gauging the experimental intensity. The double emission calculations below
suggest that the actual experimental intensities were higher than quoted in [46].

6.4 Double electron emission

6.4.1 Joint momentum distributions

In Fig. 6.2 we show the joint momentum distributions obtained at our two intensity sets
and the corresponding data digitized from Ref. [46]. At the lower intensities from 3.5 to
5.7 × 1014 W/cm2 “back-to-back”(B2B) emission into the quadrants with opposite sign of
the pz-momentum is more prominent. This changes markedly at 9.3 × 1014 W/cm2, where
the “side-by-side” (SBS) emission dominates. The same transition appears in experiment,
although at a nominal intensity near 5 × 1014 W/cm2.

We note that the transition to dominantly SBS emission occurs at the intensities in
the simulation where the energy of the recolliding electron approaches the threshold for
excitation of He+, cf. Ref. [45], see also Sec. 6.4.4. An inelastic collision at that threshold
leaves both electrons at comparatively low momentum and unbounded or loosely bound,
respectively. From such a state, acceleration by the laser into similar directions is favored.

6.4.2 Ratio of He2+to He+ yields

The question of experimental intensities also arises, when we consider the ratio He2+/He+

of the yields of total double to single ionization. Fig. 6.3 compares our simulations with the
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Figure 6.2: First row: computed spectrum with a 394.5-nm, cos8 pulse. Second row:
measured spectra from Ref. [46] at nominally the same intensities as first row. Third row:
computed spectra at a higher set of intensities. Computed data were smoothed for better
visibility.
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Figure 6.3: Ratios He2+/He+ for λ = 390 nm from present calculation and literature values.
Dotted blue line: 7 opt.cyc. FWHM, dots: (lower) 5 and (upper) 9 opt.cyc. FWHM.

experimental results from references [45] and [46]. In Ref. [45] intensities were calibrated
using spot size measurements and Xe ionizaiton yields, with a reported uncertainty of
approximately 25%. Our results suggest that the peak intensities in both experiments
should be scaled to higher values, with about a factor two for Ref. [46]. The discrepancy
to Ref. [45] was discussed in Ref. [46] considering in particular the shorter pulse duration
used in[46]. For the bulk of our simulations we use short pulses of ∼ 9 fs (7 opt.cyc.
FWHM), even shorter than in Ref. [46]. As recollision occurs within one or at most two
optical cycles, pulse-duration effects are expected to be small and mostly due to the wider
spectrum of shorter pulses. Crosschecks at intensity 5.7 × 1014 W/cm2 show variations of
∼ 20% as we change pulse duration from 5 to 9 opt.cyc., see Fig. 6.3.

Fig. 6.3 also includes results from the ab initio calculation [191], which are close to our
results at most intensities. In Ref. [191] yields are accumulated outside a finite radius,
which is in spirit comparable to the present tSurff calculation, but it differs by the use
of flat-top pulses and by the actual extraction method, which plausibly accounts for the
observed differences.
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6.4.3 The checkerboard pattern

An interesting observation reported in Ref. [46] is the appearance of a “checkerboard”
pattern in the energy distributions. In Fig. 6.4 we show joint energy spectra at two different
intensities and line-outs of the spectrum along the 40 and 48-photon peaks according to
Eq. (6.12) for B2B and SBS events separately. The line-outs highlight the modulation of
the yield at energy differences ∣E1 − E2∣ = 2nh̵ω. In the line-out for the higher intensity
of 5.7 × 1014 W/cm2 and 48 photons, modulation becomes weaker in the SBS events, but
remains pronounced in B2B. These observations are consistent with Ref. [46], where the
pattern was only observed in B2B and became washed out with intensity, although at
nominally lower intensities.

In absence of interaction a trivial checkerboard pattern would appear in the emission
of two electrons whenever there are photon-peaks in the emission of the individual elec-
trons. This cannot be the primary cause for the pattern observed here, as independent
(“sequential”) emission of the electrons is several orders of magnitude less intense than the
recollision induced double emission. In general, periodicity of emission modulates energy
patterns at multiples of the photon energy, which is interpreted as photon counts and en-
ergy conservation, Eq. (6.12). In double emission this leads to distinct photon peaks in
total energy, when contributions from subsequent optical cycles add constructively. The
checkerboard pattern shows that the energy difference favors multiples of twice the photon
energy, E1 −E2 = 2nh̵ω. This is the signature of a process that occurs repeatedly at 1/2 of
the optical period. As it appears in the two electrons’ relative energy, it suggests repeated
exchanges of energy between at a time separation of 1/2 optical period. With recollision as
main mechanism for double ionization at the given parameters, we interprete the modula-
tion as a signature of multiple collisions of the electrons during the ionization process. Such
multiple recollisions were suggested for double-ionization [186–188], being more dominant
at lower energies and favoring B2B emission. The energy modulation shown in Fig. 6.4
supports these classical predictions. The fact that the pattern appears in experiment in
B2B but non in SBS emission [46] also fits the picture. The checkerboard pattern is not
qualitatively affected by the exact of φCEP = 0, see Fig. 6.4.

6.4.4 Correlation and Freeman resonances

Fig. 6.5 shows the correlation ratio Γ, Eq. (6.7), and the total double-ionization yields for
intensities from 2.5 to 7 × 1014 W/cm2. In both curves we see peaks when lowest excited
energies E(x) shift into Freeman resonance, Eq. 6.10. The curves are calculated with a
9 opt.cyc. ∼ 12 fs flat top pulse. A few additional points were calculated with a pulse
duration of 15 opt.cyc.: Γ is further enhanced and while it drops slightly off-resonance, as
to be expected.

An overview of the dependence of Γη on the photo-electron energies for 4 different in-
tensities is shown in Fig. 6.6. We see that in general points of non-equal energy sharing are
more B2B, Γη > 1. This TDSE result supports the prediction of preferred B2B emission at
non-equal energy sharing [187, 188] based on the analysis of classical trajectories. The clas-



6.4 Double electron emission 119

Figure 6.4: Modulation of two-electron emission by the photon-energy. Left column:
σ(E1,E2) for intensities 3.5 and 5.7 × 1014 W/cm2 for a flat-top pulse with FWHM=14
opt.cyc.. Right column: line-outs at 40 (upper, black in each figure) and 48 (lower,

magenta in each figure) absorbed photons. Solid line is for B2B, dashed is SBS, vertical
dashed lines indicate two-photon spacing, the σ(E1,E2) are normalized to maximum = 1.
The lower right panel also includes the modulation for φCEP = π/2 (dashed dotted blue
line), which nearly coincides with the result for φCEP = 0 (solid magenta line).
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Figure 6.5: Correlation ratio Γ and total DI yield as a function of laser intensity. Dotted
blue line: Γ for 9 opt.cyc., dots: 15 opt.cyc., squared red line: DI yield. The dashed lines
labeled by nl,N indicate the N -photon Freeman resonance positions with the nl state. A
flat-top pulse was used.
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Figure 6.6: Joint energy distributions for four different intensities. Circles indicate more
SBS emission, Γη < 1, stars indicate more B2B, Γη > 1 at η = (E1,E2) and the size of the
symbols indicates pronouncement of the effect. (a) and (d) without Freeman resonance,
(b) and (c) on resonance, see also Fig. 6.5. The black lines labeled by N indicate N -photon
energy peaks in E1 +E2.
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Figure 6.7: Correlation ratio Γ as a function of laser intensity with a cos8 pulse, FWHM=7
opt.cyc. pulse with λ at 394.5 nm and 400 nm. The dashed lines labeled by nl,N indicate

the N -photon Freeman resonance positions with the given excited state at the respective
wave length.

sical simulations were interpreted by taking into account the modification of the classical
potential by the simultaneous action of the re-approaching electron and the laser field. In
more quantum mechanical language this is excitation simultaneous with tunneling and/or
over barrier ionization. The mechanisms are distinguished from the conventional idea of
RESI (resonant excitation with subsequent ionization) in that excitation and ionization
happen within the time-frame of a given recollision. In contrast, in RESI the two single
ionizations would ultimately occur without narrow correlation in time and leave emission
directions largely independent.

A more precise mapping of the mechanisms onto quantum mechanics is difficult: both,
the presence of a rather strong field and the brevity of the interaction deprives individual
states of their identity. Wavefunctions can, with great success, be associated with trajecto-
ries at larger distances from the nucleus, but the mapping breaks down as one approaches to
within the range of the electrons’ de-Broglie wave lengths. Still, the behavior of B2B emis-
sion corroborates the essence of Refs. [187, 188]: the contribution from “double-emission
upon recollsion” (DUR) is important, in addition to a possible RESI background.

Fig. 6.5 was computed with flat-top pulses for better exposure of the mechanism, but
Freeman peaks in B2B emission also appear with the more realistic cos8 pulse envelope, as
shown in Fig. 6.7.

Freeman resonances do not appear in classical simulation, as they depend on the quan-
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Figure 6.8: JADs from Ref. [46] (leftmost) and present simulations at energies E1 = E2 = 5.5
eV (upper row) and = 8.8 eV (lower row). Direction of the first electron (blue lines) is fixed
at θ1 = π/6 relative to the polarization axis. Intensities and pulse shapes are indicated
above the respective columns. The distributions are averaged over ±4○ and normalized to
maximal emission 1. A flat-top pulse (last column) does significantly, but not qualitatively
change the JAD.

tization of excitation energies. Resonance implies in particular that there is a well-defined
photon energy and that the process spans several optical periods. In such a mechanism,
standard multi-photon type excitation is followed double-ionization from the excited state.
The fact that Freeman resonances enhance B2B emission indicates that that mechanism is
of DUR-type.

6.4.5 Joint angular distributions

JADs strongly depend on the total energy, the energy sharing between the two electrons,
and on the laser parameters. Fig. 6.8 reproduces two JADs from Ref. [46] together with
our results. For illustration we have chosen two points with equal energy sharing E1 = E2

at 5.5 and 8.8 eV, respectively. Experiment and simulation agree in showing clear angular
anti-correlation. Near intensity 3.5×1014 W/cm2, the JAD bends into the lower half plane,
away from the first emitted electron. At the higher intensity of 5.7 × 1014 W/cm2 anti-
correlation is less pronounced and shapes are more similar to the experimental ones. Apart
from that general qualitative behavior, the spectra vary significantly with the exact pulse
shape and intensity. Because of the high sensitivity to intensities, e.g. comparing 3.5 and
3.7 × 1014 W/cm2, a more detailed comparison of computed JADs with experiment is not
possible at this point.

By studying the convergence with increasing Rs we see that the bulk of correlation
effects originates at distances ≲ 30au from the nucleus. Fig.6.9 shows the convergence of
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the correlation ratio Γ and the maximal relative error of the energy-integrated angular
distributions

εJAD = max
θ1,θ2

∣σ(θ1, θ2) − σn(θ1, θ2)∣

σ(θ1, θ2)
, (6.13)

where σn refers to results obtained with the next smaller box size. While Γ is converged
for the purpose of the present argument, convergence of the JADs remains delicate, but
qualitatively correct results may be expected at interaction ranges Rs ≳ 40.

6.4.6 Double-emission by short pulses

We also investigated double emission by extremely short pulses of 2 fs FWHM with the
purpose of identifying a signature of the ”slingshot” mechanism for B2B emission which
was proposed in [171]. In that mechanism, the first electron reverts momentum in a close
encounter (”slingshot”), while the second electron is emitted with some delay that results
in B2B emission. Ref. [171] reports pronounced B2B emission at the pulse duration of 2
fs and intensity 5 × 1014 W/cm2 as a signature of the mechanism. Fig. 6.10 compares that
classical finding with our TDSE simulations. The result for 5× 1014 W/cm2 favors unequal
energy sharing, which is characteristic of a DUR process. In contrast, the 3 × 1014 W/cm2

result bears great similarity with the classical simulation with more weight on equal energy
sharing.

While our finding does not rule out the slingshot mechanism at 5 × 1014 W/cm2, it
indicates important double ionization through alternative pathways with unequal energy
sharing. Note that we use the exact same pulse as in Ref. [171].

The slingshot mechanism may be dominating at the lower intensity. However, attempts
to trace the classical motion of the two electrons studying time-dependent spatial correla-
tions in the quantum wave function failed due to the general difficulty of such a mapping.
In addition, we remark that the very large band width of the 2 fs pulse admits lower order
multi-photon ionization, which erodes the quasi-static tunneling picture employed for ini-
tial ionization in the classical model. Also, by their very construction, classical calculations
do not account for effects of the quantum mechanical structure of the atom, as for example,
the Freeman resonances discussed above.

6.5 Conclusions

The ab initio quantum mechanical calculations of single- and double-emission confirm the
generally important role of DUR-type double-ionization, where the second ionization is
simultaneous with the recollision, if we accept the enhancement of B2B emission as a
signature of the process. This is supported also by the relatively stronger B2B emission at
spectral points with large differences between electron energies. Further differentiation of
the classical mechanisms is hampered by the fact that Freeman resonances add a genuine
quantum aspect to the discussion and that the individual classical mechanisms involve
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concepts such as classification of individual trajectories or exact release times, for which
at present no quantum correspondence exists.

Comparing with recent experimental results on double emission spectra [46], we find
good qualitative agreement, if we allow for an increase of experimental intensities by a
factor ∼ 2. Such an adjustment is suggested by three different and largely independent
observables: the He2+/He+ ratio, the dependence of B2B emission on intensity, and the
intensity where the checkerboard pattern in joint-energy distributions fades.

Unfortunately, the ambiguity of intensity could not be resolved using the single-electron
spectra published in [46]: this observable can be computed easily and with great reliability,
but we were unable to establish convincing agreement at any set of intensities. Again higher
than the experimental intensities appear to be favored.

We have not considered volume averaging over intensities when comparing to the ex-
perimental results. One reason is that the experimental arrangement of Ref. [46] managed
to strongly reduce the effect by collimating the atomic beam, which makes contributions
from half of the peak intensity appear unlikely. Also, averaging effects would exacer-
bate the disagreement with experiment, as even higher peak-intensities would be needed
achieve a given yield. In general, considering the near-exponential drop of yields at our
lower intensities, e.g. in Fig. 6.3, we expect only minor effects from volume averaging,
mostly by Stark-induced broadening and displacement of the peaks. Such effects should
be re-examined when comparing to experimental data exhibiting sufficient detail.

For JADs we can clearly identify the effect of electron repulsion, analogous to what was
reported in [46]. Comparison with experiment beyond that general level is made difficult
by the sensitivity of the JADs to intensity, carrier-envelope phase, pulse-duration, and
exact pulse shape. On the computational side, for reliable convergence of JADs one needs
to take into account the interaction between electrons over large spatial regions, which
inflates tSurff computations to large scale.

Finally we offer a simple explanation for the checkerboard pattern noted in [46], which
also appeared in earlier simulations at 800 nm [54]: the modulation at energy-differences of
2h̵ω means that the underlying process involves periodic re-encounters of the two electrons
at one-half of the optical period, i.e. multiple recollisions.
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Figure 6.9: Convergence of Γ and JADs with the radius Rs of the interaction region.
Calculations at 5 × 1014 W/cm2 and FWHM of 2 fs. εJAD is the maximal relative error of
the JADs, Eq. (6.13).

Figure 6.10: Joint momentum distributions in pz-direction at FWHM 2fs and intensity aver-
aged over carrier-envelope phase. Center: classical trajectory calculation at 5×1014 W/cm2,
reproduced from Ref. [171], Fig.1(a). Left: TDSE result for 5 × 1014 W/cm2, right: TDSE
for 3 × 1014 W/cm2. Densities are normalized to a maximal value of 1.
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Conclusion and outlook

7.1 Methods

With the tSurff method, one can simulate the electron dynamics in an intense laser field by
solving the TDSE with a limited radial extension. The tSurff method not only is available
for computing photoelectron spectra of single-electron system, but also is extended to the
double ionization of a Helium atom and single ionization of polyelectron molecules. Our
new tRecX code numerically implements FE-DVR for radial discretization which creates
a diagonal overlap matrix that speeds up the computation. The armchair constraints
on angular momenta for two-electron basis functions, irECS for the absorber and 4th
order Runge-Kutta for time propagation are also introduced. A general procedure for
parallelization of the time propagation of any dimensions is presented, and the computation
for double-emission photoelectron spectrum with 128 momentum grid points is scaled at
maximum by a factor of 6.

Convergence behavior of double-emission photoelectron spectra highly depends on the
type of observables; we can get a convergent correlation ratio from the overall B2B to SBS
emissions, but the quantitative convergent JAD spectra at different electron energies are
yet not possible.

7.2 Single ionization

The static field ionization of helium hydride ion by haCC shows the expected exponential
increase of the ionization rate with the linearly increasing field strength, and ionization
from helium side is favorable.

We also do computations on single ionization of helium atoms. First, the single-
ionization photoelectron spectra of a helium atom exposed to flat-top envelope laser pulses
are computed. The photoelectron spectra are enhanced at certain intensity-and-wavelength
pairs. Second, the AC Stark shift of the eigenenergies are investigated by Floquet anal-
ysis. The stable eigenenergies with intensities are obtained by irECS and plotted for an
overview. Evolution of the target excited eigenenergies are computed using inverse itera-
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tion method. The above-mentioned analysis shows that the excited eigenenergies up-shift
Up and the ground eigenenergy is invariant with the intensity of the laser. The eigenener-
gies of s orbitals slightly violate this behavior. The resonance condition is satisfied when
the eigenenergy difference of an excited state E3p (E2, l=1) and the ground state E1s (E0)
is NΩ. The population analysis shows the adjacent orbitals 3s and 3d have the largest
population after time-propagation when the resoannce condition is satisfied. Finally, the
resonance criteria E3p −E1s + Up = NΩ is ensured by spectra calculation with many other
wavelengths and intensities, as well as different pulse shapes.

7.3 Double ionization

We did computations on double ionization of helium atom using a 400 nm laser pulse. The
DUR-type double emission is confirmed by the single and double ionization computation
by solving TDSE, if we accept that the enhancement of B2B emission at spectra points
where large differences between electron energies is a signature of DUR. Qualitative good
agreement with the experimental results of double emission spectra [46] is obtained if the
intensities from their experimental observations are increased by a factor ∼ 2. This adjust-
ment is supported by three different largely independent observables: the He++/He+ ratio,
the dependence of B2B emission on intensity, and the intensity where the checkerboard
pattern in joint-energy distributions fades. However, the ambiguity of intensity could not
be resolved using the single-electron spectra in Ref. [46]. We can clearly identify the effect
of electron repulsion by computed JADs, analogous to what was reported in Ref. [46].

We find that the given pulse parameters Freeman resonances affect the double emission
in general and that they disproportionally enhance B2B emission. Taking B2B emission as
an indicator for a DUR mechanism, this suggests that DI through a Freeman resonance is
primarily DUR. A simple explanation of checkerboard pattern noted in Ref. [46] is given:
the modulation at energy-differences of 2h̵ω indicates periodic re-encounters with two elec-
trons at one-half of the optical period, i.e. multiple recollisions. The is consistent with
DUR if multiple contributions to double-ionization originate only from close approaches.

7.4 Outlook

The effort in theory by numerical simulations paves way for understanding attosecond
process, offering supplementary information to the experimental observation, bringing us
a step closer to the underlying physics. With the development of the computers and new
computational methods, the simulation of the behaviors of electrons in molecules or even
solids are available, and the gap between the theory and experiments are filled.
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Methods

A.1 Atomic Units

The atomic units are critical for the notational brevity in quantum mechanics. By forcing
h̵ = e2 =me = 4πε0 ≡ 1, the units of the physical variables are

Unit Definition Numerical Value

Length α0 =
(4πε0)h̵2

mee2
0.052917 nm

Velocity v0 =
e2

(4πε0)h̵c c/137.035

Time τ0 =
α0

v0
24.188 × 10−18s

Energy Eh = 2Ry = e2

(4πε0)α0
27.211 eV

Field Strength ε0 =
Eh
eα0

5.1422 × 1011V /m

Intensity I0 =
ε20ε0c

2 3.50944 × 1016 W/cm2

Table A.1: Relevant physical variables for describing electron dynamics in the laser field
represented by atomic units. Vacuum permittivity and speed of light are denoted by ε0
and c, respectively.

A.2 Typical energies

This section demonstrates three typical energies of electrons in a classical model. Suppose
the external field is a continuous wave (cw) field with E(t) = E0 cosωt and vector potential
A0 =

E0

ω . The vector potential A(t) and the electric field E(t) satisfies

A(t) = −∫
t

−∞
E(t′)dt′ (A.1)

where A(−∞) = A(∞) = 0. The integration of the electric field is

A(t) −A(t0) = ∫
t1

t0
E(t′)dt′. (A.2)



130 A. Methods

Thus, the momenta satisfies

v(t) − v(−∞) = ∫

t

−∞
E(t′)dt′ = A(t). (A.3)

ponderomotive energy Up

The ponderomotive energy represents the averaged energy a particle acquires from the ex-
ternal field. The maximum acceleration of an particle from times when ε(t) = 0 contributes
the maximum momenta

pmax ∶=
ε0
ω
= A0, (A.4)

and the maximum energy is

p2
max

2
=
ε2

0

2ω2
0

=
A2

0

2
= 2Up, (A.5)

with

Up =
A2

0

4
. (A.6)

the recollision energy

The re-collision condition

0 = z(t0) − z(t1) = ∫
t1

t0
v(t)dt = ∫

t1

t0
dt∫

t

t0
E(t′)dt′ (A.7)

with the initial state 9z(t0) = 0, we have the re-collision condition

A(t0)(t1 − t0) = ∫
t1

t0
A(t)dt, (A.8)

where Eq. (A.2) is used. Thus, the re-collision energy is

9z2

2
=

∣A(t1) −A(t0)∣2

2
. (A.9)

With the constraint by Eq. (A.8), A(t1) and A(t0) can not get the maximum A0 at the
same time. With the numerical calculation, the maximum recollision energy exists with
ωt0 ≈ −0.45 × 2π and ωt1 ≈ 0.2 × 2π, and the maximum re-collision energy is 3.17Up.

the 10Up cutoff

Assuming the particle ionizes at t0 with initial momenta 0 and re-collides at t1, where the
re-collision condition Eq. (A.8) is satisfied. The acceleration from t0 to t1 is

p(t0, t1) = A(t1) −A(t0) (A.10)
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and the acceleration from t1 to ∞ is

p(t1,∞) = A(∞) −A(t1) = −A(t1). (A.11)

If the particle does not scatter with the system at t1, the final momenta is simply

pfinal = p(t0, t1) + p(t1,∞) = −A(t0). (A.12)

And if the particle elastically scatters at t1 to the opposite direction, we have the final
momenta

pfinal = −p(t0, t1) + p(t1,∞) = −2A(t1) +A(t0). (A.13)

With the constraint in Eq. (A.8), the numerical solution for the maximum energy gives

Emax =
p2

final

2
≈ 10Up, (A.14)

which serves as a cutoff energy in many spectra.

A.3 Polynomials

A.3.1 Associated Legendre functions

The associated Legendre polynomials in this thesis are written as

Pm
l (x) = (−1)m(1 − x2)m/2 d

m

dxm
(Pl(x)), (A.15)

which satisfies

P −m
l (x) = (−1)m

(l −m)!

(l +m)!
Pm
l (x). (A.16)

The associated Legendre polynomials that are also used in literatures Pl,m can be written
as

Plm(x) = (−1)mPm
l (x). (A.17)

Pl(x) are Legendre polynomials.

A.3.2 Spherical harmonics

In this thesis, the spherical harmonics are written as

Y m
l (θ, φ) =

¿
Á
ÁÀ2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (A.18)

where Pm
l (cos θ)eimφ are associated Legendre polynomials, and orthogonality is satisfied

∫ dφ∫ dθ sin θY m
l (θ, φ)Y m′∗

l′ (θ, φ) = δl,l′δm,m′ . (A.19)

The complex conjugate form of spherical harmonics satisfy

Y m∗
l (θ, φ) = (−1)mY −m

l (θ, φ), (A.20)

where Eq. (A.17) is used.
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A.4 Pulse envelope

A.4.1 Formula

The laser pulse has no direct current component and we can write the electric in the vector
potential form as

⃗A(t) = −∫
t

−∞
dτε(τ), (A.21)

where
A(−∞) = A(∞) = 0 (A.22)

is satisfied.
In the linear, z direction polarized case, the vector potential can be written as

⃗A(t) = A0(t) sin(ωt + φCEP )ẑ, (A.23)

where ω is the photon energy, φCEP is the phase and A0(t) represents the shape of the
envelope.

The frequently used envelopes in this thesis are Gaussian like envelope cos8

A
(cos8)
0 (t) = Amax cos8(

ωt

8n
) = Amax cos8(

πt

4nτ
), −2nτ ≤ t ≤ 2nτ (A.24)

with smooth ramp-up and ramp-down and flat-top envelope with constant intensity for n
optical cycles

A
(flat-top)
0 (t) = Amaxfn

2
τ,(n

2
+nr)τ(−t)fn2 τ,(

n
2
+nr)τ(t), −(nr +

n

2
)τ ≤ t ≤ (nr +

n

2
)τ, (A.25)

and nr optical cycle cycle ramp-up and ramp-down, where τ is the optical period, Amax is
the maximum vector potential solved from peak intensity, and fn

2
τ,(n

2
+nr)τ is the truncation

function defined in Sec. 2.2. The full widths at half maximum (FWHM) are 0.744nτ
for cos8 envelope with t ∈ [−0.372nτ,0.372nτ] and (n + nr)τ for flat-top envelope with
t ∈ [−nr+n2 τ, nr+n2 τ]. In this thesis, we use n to represent the FWHM of cos8 pulse for
simplicity of inputs and set n = 1 with one optical cycle ramp-up and ramp-down for
flat-top pulse.

For completeness, we also listed the commonly used envelope cos2 pulse

A
(cos2)
0 (t) = Amax cos2(

ωt

2n
), −

n

2
τ ≤ t ≤

n

2
τ (A.26)

with the same FWHM nτ as cos8 for t ∈ [−nτ4 ,
nτ
4 ] with larger spectra width than cos8 and

ideal Gaussian pulse

A
(Gaussian)
0 (t) = Amax exp(−2 ln 2(

t

τ0

)2), −∞ ≤ t ≤∞, (A.27)

where τ0 is the FWHM of the pulse.
Although Gaussian pulse envelope well approximates the pulses in experiments, it is

difficult to be applied in numerical calculations as it is hard to determine the start of the
time propagation. Usually we use cos8 pulse shape for an approximation to Gaussian pulse
shape which well approximates the Gaussian envelope even for short pulses, see Fig. A.1.
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(a) φ = 0○ (b) φ = 45○

(c) φ = 90○ (d) φ = 135○

Figure A.1: The cos8 envelope and Gaussian envelope comparison at different φs.

A.4.2 Comparison

In this section, we will use a short pulse for the comparison of cos8 and Gaussian type pulses,
where one may easily find the difference. In Ref. [171], a 2 fs long, 400 nm, 5×1014 W/cm2

Gaussian envelope with formula

E = E0 exp(−2 ln 2(t/τ0)
2) cos(ωt + φ). (A.28)

is used for calculation. The cos8 type cap is used to approximate the Gaussian type pulse
for simplicity with the electric field

E = E0 cos8(πt/(4nτ)) cos(ωt + φ) (A.29)

where the E0 is the maximum electric field, τ0 is the pulse duration and where τ is the opti-
cal period and n = 2 for maximum numerical performance. The cos8 envelope approximates
the Gaussian envelope well, see in Fig. A.1.
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A.5 tSurff

A.5.1 Commutator expectation for 3D

With the wavefunction representation in spherical coordinate,

⟨χk⃗(t)∣ [HV (t),Θ(Rc)] ∣ψ(t)⟩e
−iΦ(k⃗,t)

√
π

2

1

R2
c

=∑
l,m

(−i)lY m
l (Ωk)⟨Y

m
l (Ωr)jl(kr)∣ [HV (t),Θ(Rc)] ∣ ∑

l′,m′

Cl′,m′Y m′

l′ (Ωr)Rl′,m′(r)⟩

= ∑
l,m,l′,m′

(−i)lY m
l (Ωk)[

1

R2
c

⟨Y m
l (Ωr)∣Y

m′

l′ (Ωr)⟩

⟨jl(kr)∣ −
1

2

1

r2
Brr

2δ(r −Rc) −
1

2
δ(r −Rc)Br∣Rl′,m′(r)⟩

−(iAx⟨Y
m
l ∣

√
1 − η2 cosφ∣Y m′

l′ ⟩ + iAz⟨Y
m
l ∣η∣Y m′

l′ ⟩)jl(kRc)Rl′,m′(Rc)]Cl′.m′(t)

=∑
l,m

(−i)lY m
l (Ωk)[−

1

2
(−Brjl(kr)∣Rccl,m(t) + jl(kRc)dl,m))

−iAxjl(kRc)⟨Y
m
l ∣

√
1 − η2 cosφ ∑

sl=±1,sm=±1

∣Y m+sm
l+sl ⟩Cl+sl,m+sm(t)

−iAzjl(kRc)⟨Y
m
l ∣η ∑

sl=±1

∣Y m
l+sl⟩Cl+sl,m(t)]

(A.30)

where cl,m ∶= Rl,m(Rc)Cl,m(t) and dl,m ∶= BrRl,m(Rc)Cl,m(t) are used for notational brevity.
And we let Ay = 0, assuming the laser propagate in y direction. For the linear polarization,
Eq. (A.30) transforms to

⟨χk⃗(t)∣ [HV (t),Θ(Rc)] ∣ψ(t)⟩e
−iΦ(k⃗,t)

√
π

2

1

R2
c

=∑
l,m

(−i)lY m
l (Ωk)[

1

2
j′l(kRc)cl,m(t) −

1

2
jl(kRc)dl,m

−iAz ∑
s=±1

jl(kRc)⟨Y
m
l ∣η∣Y m

l+s⟩Cl+s,m(t)].

(A.31)

With some algegra operation, we have

⟨χk⃗(t) ∣[HV (t),Θ(Rc)]∣ψ(t)⟩ =
eiΦ(k⃗,t)
√
π/2

R2
c∑
l,m

(−i)lY m
l (Ωk)(Jlm − iAzKlm), (A.32)

where

Jlm ∶=
1

2
j′l(kRc)Rlm(Rc, t) −

1

2
jl(kRc)R

′
lm(Rc, t) (A.33)

and
Klm ∶= ∑

s=±1

⟨Y m
l (θ, φ)∣ cos θ∣Y m

l+s(θ, φ)⟩jl(kRc)Rl+s,m(Rc, t) (A.34)

.
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A.6 Double ionization pz spectra

In our code, the pz spectrum is computed from σ(k⃗1, k⃗2) from the square norm of the
scattering amplitudes. The pz spectra are used in chapter 4 and chapter 6. The code
produces the norm square of scattering amplitudes for SI σ(k, θ, φ) = ∣b(k, θ, φ)∣2 and DI
spectra σ(k1, k2, θ1, θ2, φ1, φ2) = ∣b(k1, k2, θ1, θ2, φ1, φ2)∣

2, where k, k1, k2 are the momenta
and b(k, θ, φ), b(k1, k2, θ1, θ2, φ1, φ2) are the scattering amplitudes. In this section we will
show the method to produce the σZ,DI(p1z, p2z) in this thesis. Before showing the formula
for σZ,DI(p1z, p2z) of the double ionization, we firstly show the transformation from the SI
σ(k, θ, φ) to the single σZ,SI(pz). Firstly we do the integration of the spectra as

∫

+∞

−∞
dpzσ

Z,SI(pz)

=∫

2π

0
dφ∫

+∞

0
dkk2

∫

π

0
dθ sin θσ(k, θ, φ)

=∫

2π

0
dφ∫

+∞

0
dk∫

π

0
d(−k cos θ)kσ(k, θ, φ)

=∫

2π

0
dφ∫

+∞

0
dk∫

+k

−k
dpzkσ(k,arccos

pz
k
,φ)

=∫

+∞

−∞
dpz ∫

2π

0
dφ∫

+∞

∣pz ∣
dkkσ(k,arccos

pz
k
,φ),

(A.35)

Thus, we have

σZ,SI(pz) = ∫
2π

0
dφ∫

+∞

∣pz ∣
dkkσ(k,arccos

pz
k
,φ). (A.36)

It is easy to get that

σZ,DI(p1z, p2z) = ∫

2π

0
dφ1∫

2π

0
dφ2∫

+∞

∣p1z ∣
dk1∫

+∞

∣p2z ∣
dk2k1k2σ(k1, k2,arccos

p1z

k1

,arccos
p2z

k2

, φ1, φ2).

(A.37)
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Appendix B

Static field ionization rates of HeH+

The static filed ionization rates of HeH+ by haCC calculations are shown in table B.1.
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