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Summary 

Single cell genomics is revolutionizing biology and medicine by enabling a novel cell type specific 

viewpoint on organs and the specific cellular changes in disease. The structure of the lung, 

fabricated by at least 40 different unique cell types with specific functions, is uniquely designed to 

accomplish delivery of oxygen and removal of carbon dioxide from the circulation. Idiopathic 

pulmonary fibrosis destroys the structure of the lungs by progressive accumulation of scar tissue, 

produced by stromal cells, and ultimately leads to respiratory failure.. 

The aim of this thesis was to dissect molecular and cellular heterogeneities across different forms 

of pulmonary fibrosis, on the level of single cells in human patient lungs, as well as body fluids, 

such as bronchoalveolar lavage and plasma. I also investigated the poorly characterized diversity 

of stromal cell identities in mouse and human lungs and characterized their activation states in the 

bleomycin lung injury model and human lung fibrosis. 

Single cell transcriptomics of large fibrosis patient cohorts allowed us to assess cell state changes 

in human fibrosis at cellular resolution. Mass spectrometry driven proteomics enabled us to study 

bronchoalveolar lavage and plasma protein compositions in patients from several independent 

ILD cohorts. Ultimately, a multi-modal analysis strategy was used to integrate the cell state 

descriptions on single cell level with the lavage and plasma proteomes and associated clinical 

meta-data. This revealed that fluid proteome signatures were predictive of specific cell state 

changes in the lung, that were associated with diagnosis, lung function, smoking and injury status. 

Many of the predictive proteins in body fluids were derived from activated fibroblasts of the fibrotic 

lung. 

 

 



 

 

 

 

 

 

 

 

The second part of the  thesis highlights the previously uncharacterized diversity  of fibroblasts 

and other stromal cells in the lung. Using single cell transcriptomics I identified the unique 

transcriptional signatures of six distinct stromal cell identities. Using multiplexed single molecule 

fluorescence in situ hybridization, I located these six cell types by expression of sets of specific 

marker genes to their stereotypic locations in the tissue context. We distinguish adventitial, 

peribronchiolar, alveolar lipofibroblasts, a novel Hhip+ fibroblast type localized around bronchi and 

sparsely within alveoli, from pericytes and smooth muscle cells. 

High resolution time-series single cell analysis of the bleomycin mouse model of lung fibrosis 

revealed differentiation trajectories and distinct activation states for all those stromal cell types. In 

contrast to a model in which various stromal cells such as alveolar fibroblasts and pericytes may 

converge on the same myofibroblast state, my work shows that all six stromal cell identities adopt 

very specific and unique activated states during injury repair. These results provide a molecular 

framework to physically isolate distinct stromal cell types in both their ground state and activated 

states and study their individual effect on alveolar stem cells in future work. 

 

 

 

 



 

 

 

Zusammenfassung 

Die Analyse der Genexpression von einzelnen Zellen revolutioniert die Biologie und Medizin, 

indem sie eine neue zelltypspezifische Sichtweise auf Organe und die spezifischen zellulären 

Veränderungen bei Krankheiten ermöglicht. Die Struktur der Lunge, die aus mindestens 40 

verschiedenen, einzigartigen Zelltypen mit spezifischen Funktionen besteht, ist so konzipiert, dass 

sie die Zufuhr von Sauerstoff und den Abfluss von Kohlendioxid aus dem Blutkreislauf ermöglicht. 

In der idiopathischen Lungenfibrose wird die Struktur der Lunge durch die von Stromazellen 

erzeugte, fortschreitende Anhäufung von Narbengewebe zerstört, was schließlich zum 

Atemversagen führt.  

Das Ziel dieser Arbeit war es, molekulare und zelluläre Unterschiede über verschiedene Formen 

der Lungenfibrose hinweg zu analysieren. Dies geschah auf Ebene einzelner Zellen in der Lunge 

von Patienten sowie in deren Körperflüssigkeiten wie etwa der bronchoalveolären Lavage und des 

Blutplasmas. Ich untersuchte darüber hinaus die bislang schlecht charakterisierte Vielfalt der 

Stromazellen in der Lunge von Mäusen und Menschen und charakterisierte dabei ihre 

Aktivierungszustände im Bleomycin Mausmodel sowie in der menschlichen Lungenfibrose. 

Die Analyse der Einzelzell-Transkriptome einer großen Kohorte von Patienten ermöglichte es, die 

krankheitsbedingten Zustandsänderungen  in der Fibrose mit einer zellulären Auflösung zu 

beurteilen. Durch den Einsatz von  Massenspektrometrie konnten außerdem Proteome der 

bronchoalveolären Lavage und die Zusammensetzung von Plasmaproteinen bei Patienten aus 

mehreren unabhängigen ILD-Kohorten untersucht werden. Mithilfe einer bioinformatischen 

Analysestrategie konnte die Beschreibungen des Zellzustandes auf Einzelzellebene mit den 

Lavage- und Plasmaproteomen, sowie den zugehörigen klinischen Daten der Patienten, korreliert 

werden. Dadurch wurde gezeigt, dass die Proteomsignaturen prädiktiv für spezifische 

Zellzustandsänderungen in der Lunge sind, die mit der Diagnose, der Lungenfunktion und dem 

Raucher- und Krankheitsstatus der Patienten in Verbindung stehen. Viele der prädiktiven Proteine 

in den Körperflüssigkeiten stammten dabei von aktivierten Fibroblasten aus fibrotischem 

Lungengewebe. 



 

 

 

 

 

 

Der zweite Teil der Arbeit beleuchtet die bisher nicht charakterisierte Diversität von Fibroblasten 

und anderen Stromazellen in der Lunge. Mit Hilfe von Einzelzell-Transkriptomik identifizierte ich 

die individuellen transkriptionellen Signaturen von sechs verschiedenen Stromazelltypen. Mittels 

Fluoreszenz-in-situ-Hybridisierung lokalisierte ich diese sechs Zelltypen durch ihre spezifischen 

Markergene in ihren jeweiligen Nischen im histologischen Gewebekontext. Wir identifizierten 

neben Perizyten und glatten Muskelzellen auch adventitielle, peribronchioläre und alveoläre 

Lipofibroblasten, sowie einen neuartigen Hhip+-Fibroblastentyp, der um die Bronchien herum und 

spärlich in den Alveolen lokalisiert ist.  

Eine zeitlich hochauflösende Untersuchung des Bleomycin-Mausmodells der Lungenfibrose auf 

Einzelzellebene ergab für all diese Stromazelltypen unterschiedliche Differenzierungsverläufe und 

Aktivierungszustände. Im Gegensatz zu einem Modell, in dem verschiedene Stromazellen, wie 

Alveolarfibroblasten und Perizyten auf denselben Myofibroblastenzustand konvergieren können, 

zeigt meine Arbeit, dass alle sechs Stromazelltypen während des Regenerationsprozesses sehr 

spezifische und einzigartige Aktivierungszustände annehmen. Diese Ergebnisse bieten eine 

Grundlage, um verschiedene Stromazelltypen sowohl in ihrem Grundzustand als auch in ihren 

aktivierten Zuständen physikalisch zu isolieren, um ihre individuelle Wirkung auf alveoläre 

Stammzellen in zukünftigen Arbeiten zu untersuchen. 
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1 Introduction 

In times of increasing environmental awareness, due to the effects of human-made pollution on 

nature becoming more and more obvious, the lung, as the biggest interface to our surroundings, 

needs special attention. The lung is constantly subject to harmful exposure and therefore the 

internal organ most vulnerable to inhaled substances, particles or infectious organisms in ambient 

air. Globally, over three billion people are exposed to toxic air or tobacco smoke, making 

respiratory diseases an immense economical and health burden and the third leading cause of 

death worldwide (Collaborators 2016). 

1.1 Lung structure and composition 

For the recognition and awareness of abnormal structures upon diseases, it is essential to have 

an understanding of normal lung anatomy. The lung is the only respiratory organ found in 

mammals and is uniquely designed to accomplish its function of facilitating the delivery of oxygen 

and the removal of carbon dioxide from the circulation. Residing in the chest cavity, the lungs are 

a paired but asymmetrical organ that can be divided into structural units. Anatomically, the left and 

the right lung split up in lobes that consist of pulmonary segments in which the airway tree 

branching, starting with the trachea, reaches from the main bronchus into several subdivisions of 

bronchioles. Distal to this tracheobronchial tree, the active gas exchange happens in the alveoli, 

which comprise the alveolar sacs that derive from the alveolar ducts, branching off the respiratory 

bronchioles. The bronchi together with the pulmonary arteries are surrounded by connective tissue 

in bronchovascular bundles. Smooth muscle, basement membrane and connective tissue provide 

the basic structure of the airways (Fig. 1) (Tomashefski J.F. 2008). 

On a cellular level, both airway and alveolar regions contain their own cell populations with distinct 

cell frequencies and cellular functions. The bronchial tree is covered with a continuous layer of 

epithelial cells that play a crucial role in maintaining the air flow, and are central to the defense of 

the lung against inhaled exposures and in regeneration processes. 

1.1.1 Airway cells of the lung 

The epithelium in the airways consist of the six major cell types, that are ciliated cells, secretory, 

goblet and clara cells, club cells, basal cells, and few rare cell types such as the neuroendocrine 

cells (Fig. 1) (Crystal et al. 2008). Located below the surface epithelial cell layer, basal cells serve 

as progenitor cells from which goblet, ciliated, and secretory cells differentiate (Whitsett 2018). 
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Club and goblet cells main functions are the secretion of among others peroxidases, lactoferrin, 

albumin, lysozyme, and mucus, with the latter being constituted from over 20 mucins genes (Stripp 

2008, Corfield 2015). 

On top of the epithelium lays the airway fluid which, in cooperation with the cilia of ciliated cells, 

catches foreign particles and organisms that want to enter the airways and pushes those intruders 

out of the airways (Ng et al. 2004). Underneath lays the basement membrane, which is an 

approximately 7 µm thin layer of ECM that provides support but also signaling for and to the 

epithelium. Its major molecular constituents are collagens, fibronectin, complexes of laminins and 

nidogens, and proteoglycans (Laitinen et al. 1994). The described epithelial cell populations vary 

in their relative frequencies, as the airways branch from the level of the large airway down the tree 

to the respiratory bronchioles. Thereby, the number of cartilage cells decreases and more clara 

secretory cells emerge, while at the same time the cartilage disappears from the airway walls. 

1.1.1 Alveolar compartment 

Where bronchiolar epithelial cells are no longer present, the airway tree ends in the distal part of 

lung and leads into the alveolar sacs; structures from which multiple alveoli branch off in all 

directions. There are about 300 million alveoli in a 70 kg man, with an alveolar surface for gas 

exchange of about 143 m² , but at the same time these compartments only have diameters of 150 

to 500 µm (average 250 µm) (Crapo RO 1998). The cell populations in the alveolar region can be 

categorized in compartments such as the epithelium, mesenchyme, endothelium, and immune 

cells. 

Alveolar epithelial cells are constituted by alveolar type I (AT-1) and type II (AT-2) cells. AT-1 cells 

are thinly shaped and span the alveolar wall. Due to their flat shape, they provide a huge surface 

area, covering over 90% of the alveolar surface and facilitate the gas exchange due to their direct 

contact with the endothelium (Sirianni et al. 2003). In contrast, the AT-2 cell is a cuboidal cell and 

possesses several lamellar inclusion bodies containing lipids, which are needed for the production 

of surfactant. Besides secreting surfactant, AT-2 cells also serve as stem cells, being able to 

repopulate AT-1 cells or alternatively producing more AT-2 cells after injury by clonal expansion 

(Evans et al. 1975, Barkauskas et al. 2013). Together with stem cells from the club cell lineage, 

AT-2 cells were recently shown to be able to undergo transcriptional convergence into a newly 

discovered Krt8 expressing intermediate cell state. This cell state has important functions in the 

injury state and serves as progenitor that later can differentiate into AT-1 cells (Strunz et al. 2019). 
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Figure 1. The heterogeneous microenvironment of the lung. The schematic shows anatomic regions of a normal 
healthy lung, divided in proximal and distal airways and the cell types they encompass. The proximal airways are hereby 
composed of a variety of epithelial cells, with special focus on mucus producing cells as well as ciliated cells for immune 
defense. The distal airways and the alveoli is where the gas exchange is happening, facilitated by the thin AT-1 cells 
and vascular capillaries. All of that structure is supported by extracellular matrix (ECM) produced by fibroblasts. Figure 

taken from (Altorki et al. 2019). 
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Together with the AT-1 cell, the endothelial cell cytoplasm is spread thinly on both sides of the 

basal membrane, forming a barrier between air and blood with a thickness of around 0.6 µm. The 

pulmonary endothelium around the alveoli is the largest and most dense vascular bed in the 

human body. At first glance, it represents a tight barrier between the circulating blood and the 

vascular wall. However, due to its unique structure of endothelial cells that are connected with 

each other by loose junctions, the endothelium allows for passage of fluids and macromolecules 

into the interstitium (Renkin 1992). In larger veins or arteries, smooth muscle cells (SMCs) enclose 

the vessels, however, in the fine capillary structures of the alveolus, pericytes are the supporting 

cell type (He et al. 2018). 

Although not the focus of this thesis, it should be noted that immune cells of both the lymphoid 

lineage such as natural killer (NK) cells or T- and B- cells, as well as from myeloid lineage such 

as basophils, monocytes or macrophages are present in the lung and fulfill important functions in 

the innate and adaptive immunological defense. Especially the macrophages should be 

mentioned, that can be classified into interstitial or alveolar macrophages. Depending on their 

location they can interact with lymphocytes and actively participate in antigen presentation in the 

interstitium or remove trapped particles or pathogens via the mucosal clearance (Benoit et al. 

2008, Balhara et al. 2012). 

 

Figure 2. The alveolar niche in the lung. The 
figure shows a schematic of the alveolar niche 
in the lung, made out of real composite images 
of histologic electron microcopy serial 
sections. It illustrates nicely how the AT-1 cell 
(green) and the endothelial cells (yellow) are 
thin and span the alveolar lumen (AL) and the 
capillary lumen (CL), only interrupted by the 
stem cell like AT-2 cell.  The fibroblast (red) sits 
in the middle of all of this and links the 
endothelium to the epithelium by contacts 
through basal lamina (stippling) holes of both 
endothelial cells and AT-2. In the same 
manner, AT-2 cells are in contact with the 
fibroblast. Figure taken from (Sirianni et al. 

2003). 
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In the adult lung, the alveolar niche, as most distal part in the airway tree, is where it all comes 

together (Fig. 2). Epithelial cell populations receive multiple signals from the surrounding 

mesenchymal cells, which modulate the homeostasis, the ability to differentiate and proliferate, as 

well as injury repair (Fig. 2) (as outlined in 1.2.1 Wound repair). But also endothelial cells interact 

with fibroblasts, that support capillary structures by remodeling the local ECM components and 

supplying various growth factors (Hughes 2008, Costa-Almeida et al. 2015). The mesenchymal 

stromal cells in the lung are comprised of smooth muscle cells, the already mentioned endothelial 

cells and several populations of fibroblasts that are poorly characterized (Zepp et al. 2017). 

Pulmonary fibroblasts are mesenchymal cells of the interstitium. Their plasticity and heterogeneity 

have complicated their study so far, nevertheless they are of great interest due to their various 

functions and implications in fibrotic diseases.  

On the one hand, in homeostasis, fibroblasts are involved with the epithelium in several ways. 

Lipofibroblasts assist AT-2 cells in their production of surfactant, composed of approximately 90% 

lipids and 10% proteins, that is crucial for lowering surface tension and as innate immune defense 

(Griffin et al. 1993, Haagsman et al. 2001, Torday et al. 2016).  Another important component is 

ECM that is produced by fibroblasts, which acts as a reservoir for growth factors and provides 

mechanical stimuli, which are then translated into biochemical signals through integrins via 

mechanotransduction (Hsu et al. 2011, Hsu et al. 2012). Signaling also happens via other critical 

pathways. For example, fibroblast growth factor (FGF), produced by fibroblasts, was shown to 

break the quiescence of club stem cells which induces proliferation and initiates epithelial repair 

(Volckaert et al. 2014). Fibroblasts, reacting to signaling through the Wnt-pathway were also found 

in the proximity of AT-2 cells, enhancing their expansion (Zepp et al. 2017). Sonic hedgehog 

(SHH) is another crucial signaling pathway, for actively maintaining the quiescence of the 

epithelium during homeostasis and gets activated during injury (Peng et al. 2015). 

On the other hand, fibroblasts express receptors for pro-fibrotic molecules such as, platelet-

derived growth factor (PDGF) and transforming growth factor-beta (TGF-β), which are known 

drivers of pathological fibroblast accumulation and persistence (Barron et al. 2016). Upon an 

activation stimulus, pulmonary fibroblasts can migrate and differentiate into active myofibroblasts. 

These cells are characterized as highly contractile fibroblasts that express large amounts of alpha 

smooth muscle actin (alpha-SMA) (Selman et al. 2016). 
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1.2 Pulmonary fibrosis 

1.2.1 Wound repair 

The ability to respond to injury and to repair tissue is a fundamental property of all multicellular 

organisms. The lungs are constantly exposed to various injuries but show an astonishing ability to 

resolve and repair these challenges with finely tuned biological machinery. In all organs, the 

normal, physiological response to injury occurs in overlapping but distinct stages: coagulation, 

inflammation, new tissue formation, and remodeling (Gurtner et al. 2008) (Fig. 3).  

At first, circulating platelets are activated by released inflammatory mediators to trigger the 

formation of a plug in the process of coagulation to prevent ongoing blood and fluid losses, 

infection, and to remove dead and dying tissue. Hemostasis is afterwards achieved by a 

provisional fibrin matrix, which becomes the scaffold for infiltrating cells. In the second step, 

platelet aggregation and secretion of chemokines, leads to recruitment and migration of 

neutrophils, lymphocytes and macrophages to the site of injury, to fight possible infections and 

remove cell debris. The inflammatory cells also secrete a variety of cytokines such as TGF-β1, 

Platelet-PDGF, tumor necrosis factor alpha (TNF-α) and interleukin six and 13 (IL-6 and IL-13), 

that increase the inflammatory response and spark the activation, migration and proliferation of 

fibroblasts to myofibroblasts. The origin of myofibroblasts is not completely understood yet, and 

will be addressed in the second part of this thesis. However, besides the classical α-smooth 

muscle actin–expressing myofibroblasts, multiple mesenchymal cell populations and fibroblasts 

Figure 3. Wound repair and tissue remodeling in the lung. The scheme depicts the four stages of physiological lung 
wound healing. First, epithelial damage activates platelets and leads to secretion of inflammatory mediators. 
Inflammatory cells get recruited to the site of injury to eliminate invading pathogens and secrete pro-fibrotic factors such 
as TGF-b1. Activated fibroblasts and myofibroblasts secrete ECM proteins to build an intermediate repair matrix, that 
facilitates contraction of the wound and migration to the site of injury. The origin of these myofibroblasts is however 
heavily disputed. If a dysregulation of this process happens, and excessive amounts of ECM are deposited which leads 
to destruction of functional tissue, the process is regarded as fibrotic tissue remodeling. Figure taken from (Wynn 2011). 
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subtypes seem to transform into activated-states to secrete distinct ECM components that form 

new tissue. In a process called fibrinogenesis, several activated fibroblast populations assemble 

a provisional repair matrix, which acts as scaffold and regulator for developmental programs.  

Morphogens enable the communication between mesenchymal and epithelial cells which is crucial 

to mediating re-epithelialization and reconstitution of the tissue. Finally, all of the processes 

activated after injury wind down and cease. Most of the recruited cells undergo apoptosis or exit 

from the wound, the provisional ECM is degraded and remodeled to rebuild the parenchymal 

tissue architecture (Gurtner et al. 2008, Kisseleva et al. 2008, Hecker et al. 2011, Hochreiter-

Hufford et al. 2013, Wynn et al. 2016) 

However, if this process becomes dysregulated, it can lead to the development of a permanent 

fibrotic “scar,” which is characterized by the excess accumulation of ECM components (e.g., 

hyaluronic acid, fibronectin, proteoglycans, and interstitial collagens) at the site of tissue injury. 

Consequently, fibrinogenesis is often defined as an out of control wound healing response. 

1.2.2 Interstitial lung disease (ILD) 

Interstitial lung diseases (ILD) or diffuse parenchymal lung disease (DPLD) are a heterogeneous 

group of over 200 clinically defined parenchymal pulmonary disorders. They are characterized by 

persisting inflammation and gradual scarring of tissue in the alveolar region that ultimately leads 

to pulmonary fibrosis, destruction of the lung parenchyma and respiratory failure that results in 

lung fibrosis. In consequence, patients exhibit impaired gas exchange capacity, phases of 

exacerbations, and sometimes heart failure owed to chronic lung disease (Thomeer et al. 2001, 

Neurohr et al. 2015). Only 35-40% of patients are diagnosed with a known aetiology (e.g. 

autoimmune ILDs, hypersensitivity pneumonitis, drug or radiation induced ILD), while most ILDs 

have an unknown aetiology (e.g. idiopathic interstitial pneumonias (IIP), sarcoidosis or connective 

tissue diseases related ILD (CTD-ILD)) (Thomeer et al. 2001). CTD-ILDs encompass various 

systemic immune disease, where autoantibodies lead to inflammation and organ damage (Wells 

et al. 2014). IIPs can be further grouped into the ‘rare IIPs’ (less than 1%) and ‘major IIPs’, 

including chronic fibrosing IIPs like idiopathic pulmonary fibrosis (IPF; approx. 50%) and idiopathic 

non-specific interstitial pneumonia (NSIP; approx. 25%), smoking related IIPs like respiratory 

bronchiolitis ILD (RB-ILD; approx. 10%) and acute/subacute IIPs like cryptogenic organizing 

pneumonia (COP; approx. 5%) (Travis et al. 2013, Neurohr et al. 2015). Furthermore, 10-14% of 

patients remain unclassifiable IIP, due to nonspecific clinical findings but also because the patients 

are unwilling or, due to their condition, unable to undergo further testing, such as lung biopsy 

(Ryerson et al. 2013, Hyldgaard et al. 2014, Jo et al. 2017, Guler et al. 2018). Accurate and early 

diagnosis of these ILD can be challenging, but is crucial for optimal treatment of patients.  
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An estimate of one hundred million deaths worldwide in the 20th century is supposed to be caused 

by tobacco (Laniado-Laborín 2009). Smoking is a major risk factor and involved in six of the eight 

leading causes of deaths, including respiratory, cardiovascular and several malignant as well as. 

Smoking might also be critically entangled in the genesis of ILD entities. Indeed, some ILD are 

directly smoking-related, such as RB-ILD and desquamative interstitial pneumonia (DIP). On a 

histologic spectrum both present with an accumulation of macrophage, and can only be 

distinguished either on  the extent and distribution of macrophage influx, or in general by a lower 

amount of fibrosis (Travis et al. 2013).  

 

 

As highly diverse as the classification of disorders, are the clinical courses ILD patients 

experience, ranging from slow to rapid progressive (King et al., 2011). Progressive can be defined 

as a relative decline of >= 10% in forced vital capacity (FVC), a relative decline of >= 15% in 

diffusing capacity of the lung for carbon monoxide (DLCO), or worsening symptoms within a 24-

month period (Cottin et al. 2018). Disease progression is often accelerated by acute exacerbations 

(AE), which occur with currently unpredictable probability and are associated with a high mortality 

(Collard et al., 2007; Collard et al., 2016). 

 

Figure 4. Interstitial lung diseases (ILD) are a heterogeneous group. Types of ILD that are 
likely to present with a progressive-fibrosing phenotype (indicated in bold). IIPs: idiopathic 
interstitial pneumonias. #: stage IV sarcoidosis only; ¶: not an established clinical diagnosis; +: 

e.g. asbestosis, silicosis. Figure taken from (Cottin et al. 2018)). 
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1.2.3 Idiopathic pulmonary fibrosis (IPF) 

Idiopathic pulmonary fibrosis (IPF) is the most studied and most prevalent common ILD. It is a 

specific form of chronic, progressive fibrosing interstitial pneumonia, which is associated with the 

poor prognosis of mortality 3 to 5 years after diagnosis being at 50% (Fig. 5) (Schwartz et al. 1994, 

King et al. 2001, Selman et al. 2002). As per multinational clinical definition IPF is of unknown 

cause, occurring primarily in older adults, limited to the lungs and requires the exclusion of other 

forms of ILD. Patients present with progressive worsening of dyspnea and lung function, 

histopathologically visible as lung scarring and a radiological pattern known as usual interstitial 

pneumonia (UIP). IPF is generally associated with older people, with most patients being between 

50-70 years old at the time of diagnosis and it often affects men more than women, with the 

majority of patients having a smoking history (Annesi-Maesano et al. 2013, Patterson et al. 2017). 

Smoking is discussed as one of the risk factors for IPF but the questions of cause or consequence 

remains (Baumgartner et al. 1997). IPF is self-sustaining and causes progressive worsening in 

lung function, respiratory symptoms and thereby quality of life, making it a currently incurable 

disease with limited understanding of its molecular pathophysiology, and lung transplantation as 

only definitive therapy (Raghu et al. 2011). 

 

 

Figure 5. Clinical phenotypes of 
IPF. Most patients follow a relatively 
slow clinical and functional decline 
(slowly progressive) after diagnosis. 
Some patients however present with 
acute exacerbations that could initiate 
the terminal phase of their disease. A 
few patients have a rapidly 
progressive clinical course, partially 
due to comorbidities. Heavy smokers 
might develop emphysema on top, 
with shorter survival compared with 
patients with IPF alone. Figure taken 
from (Raghu et al. 2011) 

 

Currently, the only approved treatments to slow disease progression in patients with IPF are 

Nintedanib and Pirfenidon, both antifibrotic therapies. One-year treatment of IPF patients with 

Pirfenidon slows down the decline in FVC and reduces the risk of death, disease progression and 

respiratory-related hospitalization in general (Noble et al. 2011, King et al. 2014, Noble et al. 2016, 

Ley et al. 2017, Nathan et al. 2017). While proven to act anti-inflammatory, antioxidant and 

antifibrotic, the exact molecular mode of action is not well known. Nintenadnib on the other hand, 

is a triple receptor tyrosine kinase inhibitor, targeting the platelet-derived growth factor (PDGF), 
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vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF) receptor. It 

also has shown significant reduction on lung function decline and time to the first exacerbation. 

(Richeldi et al. 2011, Richeldi et al. 2014). 

So far, treatment options are limited, which contributes to the low survival of patients. However, 

while IPF is the main reason for death, the cause of death in 30–40% of these patients is related 

to comorbidities, such as cardiovascular and thromboembolic disorders, gastro-oesophageal 

reflux disease (GORD), depression, sleep disorders, pulmonary hypertension, emphysema, 

diabetes and lung cancer. This association might be explained in parts by the elderly population, 

which is mainly affected by IPF, yet, a lot of the comorbidities have a negative impact on the 

prognosis of the disease (Collard et al. 2012, Kreuter et al. 2015, Kreuter et al. 2016, King et al. 

2017). 

However, as the term “idiopathic” implicates, the etiology of the disease has not been fully 

understood yet. A better understanding of IPF pathogenesis is needed to help to arise new 

opportunities for novel therapeutics and for the discovery of new biomarkers enabling early 

diagnosis of IPF patients. Importantly, over 16 novel therapies, exploring multiple biological 

pathways are currently in clinical phase II or phase III trials, validating both the complexity of the 

disease and the continuous effort to combat it (Somogyi et al. 2019). 

 

1.2.4 Pathogenesis of idiopathic pulmonary fibrosis (IPF) 

As described above, wound healing is a critical biological process, following injury, by replacing 

damaged or dead cells with connective tissue, resulting in the formation of a scar. Therefore scars 

are part of the normal physiology with useful functions by preventing blood loss at the site of injury, 

creating a barrier to prevent pathogen invasion, and providing a provisional matrix for subsequent 

re-epithelialization (Hecker et al. 2011). However, due to a dysregulated or aberrant repair 

mechanism, in pulmonary fibrosis, regeneration is insufficient or incomplete, leading to permanent 

scarring and remodeling of the lung interstitium, which destroys the original tissue architecture 

and function (Wynn 2011, Wuyts et al. 2013, Rockey et al. 2015). Fibrosis typically results from 

conditions persisting for several weeks, months or years in which tissue destruction and repair 

occur simultaneously leading to excessive connective tissue deposits. In the lung, the most recent 

understanding of the pathomechanisms of IPF is, that repetitive injury to epithelial cells in a 

genetically predisposed, elderly person could induce pro-fibrotic reprogramming on an epigenetic 

level, sustained epithelial cell senescence, dysregulated amplified production of fibrotic mediators 

and constant activation of fibroblasts.  All these factors combined will result in uncontrolled wound 

repair that eventually will end in IPF (Martinez et al. 2017). 
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Despite having an unknown aetiology, several risk factors are known to play a role in the 

pathogenesis of IPF, including genetic variants, environmental exposures, chronic viral infections, 

smoking, or and certain comorbidities. Persistent inflammation is often involved in fibrotic diseases 

in different organs (Thannickal et al. 2004, Wynn 2011). In IPF, however, the role of inflammation 

is controversial, as fibrotic remodeling is happening without a remarkable inflammatory response. 

This is in agreement with clinical observations that anti-inflammatory therapies exhibit low 

efficiency and might even be harmful (Thannickal et al. 2004, Rafii et al. 2013). With age being 

the strongest risk factor for IPF, lung ageing or ageing of the cells in lung could be accelerated for 

IPF development. And indeed, AT-2 cells, that play an important role in regeneration of epithelial 

cells show almost all hallmarks of ageing cells in IFP lungs, including genomic instability, cellular 

senescence and altered intercellular communication (Selman et al. 2014, Lehmann et al. 2017). 

IPF remains a complex disorder resulting from interplay between multiple of these risk factors and 

with the relative contribution of each factor being depended on the individual patient (Selman et 

al. 2014). The complexity of IPF is also characterized by a wealth of interactions between epithelial 

and in particular mesenchymal cells, which are the main cell types involved in the continuous 

fibrotic remodeling, and the surrounding ECM (Wynn 2011).  

 

Figure 6.  A pathogenic model of idiopathic pulmonary fibrosis. The interplay of the three factors, genetic susceptibility, 
especially changes to health of epithelial cells, environmental factors, such as smoking, and ageing associated cell changes 
lead to an epigenetic reprogramming that promotes dysregulated epithelial activation and ultimately may result in IPF. 
Repetitive micro injuries might induce or even accelerated the process. Dysfunctional wound healing will then trigger fibrotic 
tissue remodeling of the lung as described above. Figure taken from (Martinez et al. 2017) 
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1.2.5 The role of fibroblasts in fibrosis 

It is widely accepted that mesenchymal cells especially fibroblasts have an essential role in wound 

healing by establishing tissue tension and building up a provisional repair matrix. In pulmonary 

fibrotic disease, however, these activated fibroblasts or myofibroblasts migrate to the site of injury, 

proliferate in numbers and accumulate in fibrogenic patches where they secrete excessive 

amounts of ECM proteins, such as elastin, fibronectin and collagens (Thannickal et al. 2004). 

Myofibroblasts are elongated spindle-like shaped highly contractile cells, thereby sharing features 

with fibroblasts and SMCs, and can be identified by large stress fibers in the fibrotic foci (Jordana 

et al. 1994). These foci are regions of highly proliferative myofibroblast and ECM proteins, 

especially αSMA, with its gene Acta2, that can be seen in CT analysis of the patients in the areas 

of honeycombing (Fernandez et al. 2012). 

Fibroblasts have to get activated and proliferate upon injury, however, the origin and source of 

myofibroblasts remains elusive. Different studies have proposed multiple possible origins, partially 

contradicting each other. One hypothesis proposes that myofibroblasts stem from resident 

fibroblasts with expression of high affinity type-2 TGF-β receptor (Hoyles et al. 2011). Another 

theory is that they might stem from bone-marrow derived circulating fibrocytes that migrate to the 

site of injury and differentiate into myofibroblasts (Phillips et al. 2004). Also often proposed are 

pericytes as the origin for myofibroblasts due to similar gene expression between these cell types 

(Hung et al. 2013). Some studies hypothesized that myofibroblast might evolve from epithelial 

cells, undergoing epithelial-to-mesenchymal transition (EMT) (Kim et al. 2006). However, this has 

been very clearly countered by a lineage tracing experiment of AT-2 cells and airway basal cells 

that after differentiation did not end up as mesenchymal cells, and was never proven again (Rock 

et al. 2011).  

Myofibroblasts isolated from IPF tissue were shown to exhibit a pathological phenotype of 

uncontrolled proliferation, migration and they also seem get more resistant to programmed cell 

death (Maher et al. 2010). The changes in the ECM composition that myofibroblasts induce in IPF, 

as well as altered external stimuli such as growth factors induce a feedback loop for myofibroblasts 

(Hinz et al. 2001). With the production of an aberrant ECM with excessive amounts of αSMA 

positive stress-fibers, normal lung tissue is replaced, hindering the gas exchange. In addition, 

myofibroblasts were suggested to provoke epithelial apoptosis and obstruct cell regeneration by 

an imbalance in the epithelial-mesenchymal cross-talk, mediated by TGF-β, IL-6 or TNF-α 

signaling (Moodley et al. 2003, Frankel et al. 2006, Zhang et al. 2017). Precise mechanism and 

pathways are however still unknown and require further investigation into the receptor-ligand 

interactions between epithelium and mesenchyme.  
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1.2.6 Bleomycin injury: an in vivo fibrosis model in mice 

The airway tree is complex and cell populations differ both by airway branching generation but 

also by species. Despite the known differences between animal models and humans, most of the 

current knowledge in basic lung research is driven mostly by studies of the mouse airways and 

lung (Crystal et al. 2008). Several in vivo animal models are used to conduct research on the 

pathomechanism of ILD, as access to human material is usually restricted or ethically 

reprehensible. The most common model to mimic human fibrosis features but also tissue repair 

and remodeling, is the bleomycin-induced lung injury.  

Bleomycin is an antibiotic glycopeptide originally isolated and obtained from Streptomyces 

verticillus in 1966 (Meadors et al. 2006). Due to its anti-neoplastic properties, bleomycin has 

originally been used as a drug against skin tumors and squamous cell carcinomas, with higher 

doses, however, leading to pulmonary toxicity and development of ILD (Pedersen-Bjergaard et al. 

1991, Saxman et al. 1997, Sleijfer 2001, O'Sullivan et al. 2003). 

Bleomycin exerts its anti-neoplastic effects by inducing single- or double-strand DNA breaks via a 

complex of bleomycin, oxygen, and iron, and by working as endonuclease, though inhibition of 

DNA replication and DNA polymerase activity (Sikic 1986, Chandler 1990). The high toxicity which 

is used to combat cancer cells in the skin, but causes lesions in the lung is due to a lack of the 

bleomycin hydrolase in human and certain rodents that enzymatically could deactivate bleomycin. 

Histologic hallmarks of the bleomycin lung include alveolitis, alveolar and interstitial fibrosis, and 

dysplasia of the alveolar cells, with the distribution of fibrotic lesions to be found in both subpleural 

and periseptal areas (Comrie et al. 2015). Together with other observations such as clusters of 

mesenchymal cells, collagen deposition and damaged basement membrane, these hallmarks 

illustrate that bleomycin lung injury is able to reproduce many typical features of the human IPF 

disease (Moeller et al. 2008, Mouratis et al. 2011). 

However, it should be noted that the model has limitations, with some pathological features not 

being mimicked, missing or are attributed to other ILD. The progressive and irreversible nature of 

fibrosis, rendering it incurable in human, is not present in the bleomycin model that shows 

resolution of fibrosis after day 56. Additionally, the inflammatory response which occurs early after 

bleomycin administration is more similar to acute lung injury than fibrosis. Despite these 

disadvantages, the bleomycin model remains a vital tool for investigation of fibrosis, if the correct 

time points are chosen; and even the limitation of occurring resolution can be turned around, by 

embracing the possibility to study rare regenerative processes. 

Administration of bleomycin to mice can be achieved by different routes of intratracheal instillation, 

intratracheal micro sprayer aerosolization, intranasal application by face mask aerosolization, or 

oropharyngeal aspiration (Bivas-Benita et al. 2005, Egger et al. 2013, Bale et al. 2016, Barbayianni 
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et al. 2018). A recent study comparing delivery routes, reported that oropharyngeal aspiration 

outperformed intratracheal delivery methods, with a greater ease of handling reduced animal 

burden and the reduction of experimental animal numbers (Barbayianni et al. 2018). 

Bleomycin can be administered in a single dose or multiple doses, respectively. While repetitive 

administration mimics more the human disease by developing permanent fibrosis, a single 

experiment can take up to four month and needs substantial mouse numbers. Single dose 

administration of bleomycin leads to transient pulmonary fibrosis, and thus represents a more 

acute model that allows also the study of successful tissue restoration (Degryse et al. 2011, 

Schiller et al. 2015, Cao et al. 2016). In the bleomycin model, certain time points after 

administration have been established to capture the main aspects of injury and repair. At day 

three, first signs of inflammation and acute damage in the lung epithelium can be observed. Day 

seven is characterized by severe inflammatory reactions and early sings of fibrosis. Day 14 is the 

classical time point to observe active fibrogenesis with the deposition of ECM proteins. The climax 

of fibrosis is studied at day 21 when the provisional matrix is fully assembled for subsequent repair 

and re-epithelialization. Afterwards, from day 28 to day 56, tissue remodeling takes place and the 

lung parenchyma is almost completely regenerated. While these time points serve to present the 

critical phases of tissue repair, a higher temporal resolution study of the processes involved, with 

daily sampling as presented in the second part of this thesis, can be crucial to discover novel 

aspects and better interpret known observations (Strunz et al. 2019). 

 

1.3 Biomarkers 

ILDs in general with the multitude of unknown aetiologies and IPF in particular, are complex 

disorders with multiple pathogenetic pathways, different disease profiles and diverse responses 

to treatment. Most of the clinical disease classifications are not necessarily reflecting cellular and 

molecular pathophysiology. This can lead to the effect that patients with the same diagnosis might 

be highly heterogeneous, while patients with different diagnosis but similar histopathology might 

share important diagnostic and therapeutic aspects. Personalized medicine is aimed at 

distinguishing such disease subsets taking into account individual lifestyle, environmental 

exposures, genetic profiles and molecular pathways. The most important step in this concept is 

the identification of biomarkers that can be used to perform clinical classification diagnosis, 

prognosis, risk and treatment stratification based on biomarker signatures (Kokosi et al. 2018). 

Such signatures have the clear advantage, to be more robust and reliable compared to single 

protein or gene markers, but require next generation methodology such as MS-based proteomics 

or single cell sequencing to be identified. 
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1.3.1 General concept of biomarkers 

As announced by the US National Institutes of Health (NIH), a biomarker is a defined characteristic 

that can be quantified as an indicator of a normal biological process, pathogenic process, or a 

response to an exposure or intervention (Biomarker Definition Group, 2001). 

Biomarkers play an important role for the decision making in the clinics. On the report of a survey 

at the Institute of Laboratory Medicine at the Klinikum Großhadern, 77% of all clinical decisions 

are based on laboratory tests, with most of these (42%) measuring the enzymatic activities or 

concentrations of proteins  (Fig. 7a) (Geyer et al. 2017).  

A vast majority of those assays, based on immune- or enzymatic reactions, target single proteins, 

due to limitations in multiplexing, antigen-antibody recognition or even detection of clinically 

important protein variants. Therefore, mass-spectrometry (MS) based methods offer an attractive 

alternative to the classical assays, by being able to discover multi-protein panels with high 

sensitivity. The last years have seen dramatic improvements in all areas of MS-based proteomic 

workflows, enabling broad application of quantitative proteomics in biological but also clinical 

research. 

1.3.2 Clinical proteomics based on mass spectrometry 

The proteome is the best direct molecular representation of a phenotype, be it a cell-line, a mouse 

or individual patients with a specific disease. Individual proteins are already applied as indicators 

of diseases in clinical practice and most drugs influence proteins. Clinical proteomics could be 

used in multiple ways to contribute on biomarkers: protein signatures for diagnosis, correlating 

protein patterns for disease sub-classification, predicting disease progression and finding new 

targets for treatment strategies (Geyer et al. 2017). Tissues are generally only available from 

Figure 7. Statistics of clinical tests. (a) Proportion of clinical decisions that are made based on laboratory testing. 
(b) Proportion of clinical tests that are based on different molecule types. Adapted from (Geyer et al. 2017)  

a b 
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patients where surgery is a necessary treatment step. In most cases, they have to be obtained 

after the patients die, which is giving a bias to the group. In contrast, body fluids such as blood 

plasma or BALF are accessible by minimally invasive procedures (Geyer et al. 2019). In addition, 

this gives the advantage that the disease progression can be monitored longitudinal over time, 

allowing for personalized projection (Geyer et al. 2016). A classical MS workflow starts with the 

sample preparation where first the proteins have to be extracted from cells or enriched by 

precipitation from a liquid like BALF, before they are digested into peptides by trypsin and other 

enzymes. Next, the peptides are separated, based on their hydrophobicity on a high performance 

liquid chromatography (HPLC) to allow for a sequential acquisition of the ionized peptides. The 

fact that an ion behavior in the vacuum is strictly dependent on its mass over charge ratio (m/z) 

can be used for identification and quantification. As peptides are combinations of amino acids with 

distinct masses, it is possible to determine their sequences and the proteins they belonged to, 

reaching a depth of up to 10 000 proteins (Kulak et al. 2017). 

Figure 8. Shotgun proteomics workflow. (A) In the sample preparation, proteins are extracted and enzymatically 
digested to peptides. (B) Peptides are separated by a high-performance liquid chromatography (HPLC) system and 
ionized by electrospray for mass spectrometry analysis. (C) Bioinformatics spectra interpretation uses the 
information from the full and MS2 spectra for data searching. Figure taken from (Hein 2013 
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1.3.1 Singe cell RNA sequencing  

While MS-based proteomic analysis is powerful and sensitive on a protein level, it is still a “bulk” 

method that captures the composition of the whole piece of tissue that is lysed. Although same 

cell types within an organ can fulfill equal functions, the transcriptomic state of each individual cell 

may mirror solely the activity of only few active genes in that cell (Huang 2009). Therefore it is not 

possible to assign changes in protein expression to certain cell types or cell states, a disadvantage 

that may be hindering more specific treatment or interference options and cell type specific 

biomarker signatures in disease. 

However, after the Human Protein Atlas, the science community is now aiming to generate the 

Human Cell Atlas as a cell-based reference of the human body, to solve these issues (Uhlen et 

al. 2015, Regev et al. 2017). This is possible with the rise of single cell genomics which is 

revolutionizing biology and medicine. The profiling of single cells with a high resolution allows to 

capture subtle gene expression changes that guide biological processes, define cell fate 

decisions, cell-to-cell variability and the distinct transcriptomic signals of individual cells 

(Vaquerizas et al. 2009). Over 40 different unique cell types with specific functions have been 

described in the lung (Franks et al. 2008) 

One of the first successful single cell techniques to be developed was the Drop-seq method, which 

uses microfluidics to encapsulate single cells together with unique primers as barcodes on beads 

into aqueous droplets. The smart barcoding approach in Drop-seq allows the massively parallel, 

analysis of mRNA transcripts from thousands of individual cells simultaneously, while the cell of 

origin for each transcript can always be traced back (Macosko et al. 2015). 

Figure 9. The principle of Drop-Seq. Cells are encapsulate together with microbeads that capture mRNA transcripts 
after cell lysis. Captured transcripts are transferred into cDNA, removed from the beads and amplified for sequencing. 
Libraries are sequences in a paired-end run to capture both the cell and gene identity. Single-cell Transcriptomes 

Attached to MicroParticles (STAMPS). Figure taken from (Macosko et al. 2015). 
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2 Objectives 

2.1 First chapter 

Single cell genomics is conquering the world of biology and medicine by enabling a novel cell type 

specific viewpoint on organs and pathological changes. Technological advances now allow the 

profiling of genomes, transcriptomes and epigenomes at high resolution down to single cells. In 

the lung over 40 different unique cell types with specific functions have been described and even 

new ones are found (Franks et al. 2008). Also data from lung disease such as IPF is being 

published, enabling a novel cell type specific viewpoint on pathological changes in disease. While 

powerful, single cell mRNA sequencing relies on a piece of lung tissue, which involves invasive 

procedures such as lung biopsy, resulting in most of the samples stemming of deceased or 

transplanted patients. Additionally, mRNA expression does not necessarily reflect expression of 

proteins that are the final biomolecules performing critical processes within cells in the organism. 

New approaches are needed to dissect these heterogeneities on a molecular level to provide more 

personalized patient monitoring and care. MS-based proteomics on the other hand, enables 

analysis of body fluids, such as (BALF) or blood plasma, that be monitored longitudinal over time 

and allowing for personalized projection. The present study aimed to extend current knowledge of 

ILD on a transcriptional and protein level. The specific aims of this first chapter were as follows: 

 

1. Integrating an atlas of human fibrotic lung diseases on a single cell level 

Human single cell data had already been collected but was lacking analysis. With the 

publication of other human lung scRNAseq data (Travaglini et al. 2019) providing 

convincing marker genes, the first aim of this thesis was to annotate the Munich data into 

cell type specific clusters. Taking into account diseases specific cell states, an atlas of the 

human fibrotic lung should be generated. With scRNAseq data on human fibrosis already 

published by other groups, but often lacking relevance due to low patient numbers, the 

ultimate aim was to integrate the Munich atlas with two other published datasets (Reyfman 

et al. 2018, Habermann et al. 2019), to generate the largest human lung fibrosis atlas on 

a single cell level, providing the statistical power for subsequent analysis. 
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2. Identifying protein biomarker signatures for disease diagnosis, progression, lung function 

and health status  

MS-based proteomics is becoming more and more sensitive, enabling reliable peptide 

identification from low amounts of input material (Aebersold et al. 2016). With body fluids 

of patients available in the form of BALF and blood plasma, the second aim was to use 

specialized MS-based workflows to identify protein signatures in three different cohorts 

from two centers. These biomarker panels should represent disease progression, reflect 

the patient on a lung function trajectory or in general be of help for diagnosis or accurate 

determination of the health status. 

 

 

3. Deconvolution of predictive biomarker signatures into specific cell types/states 

The last part of the thesis aimed at combining the results of the two before mentioned 

objectives. The highly significant cell type and state annotations as well as differential gene 

expression (DGE) between healthy and diseased, from the scRNAseq data, should be 

used to deconvolute the bulk protein data. In a first step, identified protein biomarker 

signatures should be assigned to changes of specific cell types in the lung. Second, the 

clinical data available to both the scRNAseq and MS cohorts could be used to predict 

clinical parameters such as lung function based on protein and gene expression profiles. 

 

2.2 Second chapter 

The lung is an architecturally complex organ comprising a heterogeneity of various epithelial and 

mesenchymal cell lineages. On the one hand, new discoveries have expanded and reinforced the 

conclusion that mesenchymal fibroblast are crucial for forming and maintaining vascular networks, 

sensing damage, recruiting inflammatory cells and remodel the ECM. In fibrosis, the pathologic 

response, where the normal tissue is replaced with ECM, activated and a-smooth muscle 

expressing (Acta2/αSMA) fibroblast, the so called myofibroblasts are main source of ECM, which 

renders the lung into a hard block, hindering gas exchange. On the other hand, no more is known 

about the critical myofibroblast, where they come from and also the remaining mesenchymal cell 

populations are poorly defined, with markers discriminating them being urgently needed and 

cellular locations that could infer function and identify, hard to define. The bleomycin mouse model 

of fibrosis and regeneration is not a perfect comparison to the human situation but recapitulates 

the myofibroblast induction and ECM production very well, while on top giving the chance to 

investigate regeneration after injury as well; an aspect not occurring in the human disease. 
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Additionally, the bleomycin mouse model gives the unique opportunity to monitor development of 

fibrosis longitudinally over time, allowing for cell state projections. While single cell sequencing, 

where the RNA expression of each cell is captured, is the perfect tool for such analysis, the tissue 

is dissociated, which undesirably loses the spatial context of where each cell came from. Therefore 

combining scRNA-seq methods with spatial coordinate mapping methods, can be used to 

circumvent the problem of lost spatial cellular organization and used to define mesenchymal 

heterogeneity in the lung. The specific aims of this chapter were as follows: 

 

1. Fibroblast heterogeneity in the healthy adult wild-type mouse lung on single cell level 

The mesenchymal niche in the lung is surrounded by epithelial progenitors for which it 

provides signaling to modulate proliferations and differentiation, providing homeostasis. 

While the specialized epithelial cells are intensively studied, the heterogonous 

mesenchyme is poorly defined. Using scRNAseq, the first aim was to define and 

characterize the mesenchymal subtypes in the adult mouse lung on single cell level. 

 

 

2. In situ spatial mRNA mapping of fibroblast subtypes in the mouse lung 

Spatial location of cells in the tissue can infer function but cannot be studied if markers to 

discriminate cellular subsets are missing. Having annotated and defined the fibroblast 

subtypes by scRNAseq and distinct gene expression profiles, the second aim was to use 

these marker genes to perform “single cell resolution in situ hybridization on tissues” 

(SCRINSHOT) to spatially localize the subtypes in mouse lung and learn about their 

potential roles.  

 

3. Daily sampling of bleomycin injury to study activated fibroblast states 

The immense interest in fibroblast in the lung stems from the unsolved mystery behind the 

origin of the harmful myofibroblasts. With the healthy state of the fibroblast subtypes in the 

mouse extensively characterized, the third aim was to identify longitudinal changes of 

cellular states in the bleomycin model of lung fibrosis. Additionally, all subtypes in the injury 

state, especially myofibroblasts, should be characterized with a marker signature that goes 

beyond the so far known expression of Acta2 to allow for future experiments on role and 

function. 
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3 Material and Methods 

3.1 Methods human lung project 

3.1.1 Lung samples 

Human samples of the Munich cohorts (tissue, BAL fluid and plasma) were obtained from the 

BioArchive of the Comprehensive Pneumology Center Munich (CPC-M). All patients gave written 

informed consent and the study was approved by the local ethics committee of the Ludwig-

Maximilians University of Munich, Germany (EK 333-10 and 382-10). Plasma samples of the 

Hannover cohort were obtained as part of a cooperation of the German Centers for Lung Research 

(DZL). Patients gave written informed consent to the DZL broad-consent form and the study was 

approved by the local ethics committee of the Medizinische Hochschule Hannover (2923-2015). 

Lung tissues used as healthy controls for single cell analysis were tumor free, uninvolved lung 

tissue freshly obtained during tumor resections performed at the lung specialist clinic “Asklepios 

Fachkliniken Munich-Gauting”. ILD lung tissue for single cell analysis was freshly obtained after 

lung transplantation at the University Hospital Munich. BAL fluid samples of the BAL fluid cohort 

and matched plasma samples were collected at the lung specialist clinic and included mainly first 

ILD evaluations. Plasma samples from an independent ILD cohort were obtained from the 

university hospital of the Ludwigs Maximilian University Munich from patients seen in the ILD 

outpatient clinic during routine visits or in the inpatient unit during evaluation for lung 

transplantation (Mayr et al. 2020).  

The diagnosis of IPF was made in accordance with the current guidelines (Raghu et al. 2015). All 

ILD diagnosis was made according to international guidelines and established criteria. Non-ILD 

patients of the BAL fluid cohort included patients who underwent BAL due to evaluation of asthma, 

COPD, lung cancer, hemoptysis or chronic cough (Mayr et al. 2020). 

For transport from the surgeon to the laboratory, lung tissue samples for single cell analysis were 

stored in ice-cold DMEM-F12 media and packed in thermo stable boxes. Tissue was processed 

with a maximum delay of 2 h after surgery. On delivery to the lab, tissue samples were assessed 

visually for qualification for the study (Mayr et al. 2020). 
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3.1.2 Lung tissue processing 

Lung tissue was processed in a routinely way that has been established in the lab, was already 

used multiple times and is already described in various publications (Angelidis et al. 2019, Strunz 

et al. 2019, Vieira Braga et al. 2019, Mayr et al. 2020). Briefly, the tissue was manually 

homogenized into smaller pieces and washed. The tissue pieces were then transferred into 

enzyme mix consisting of dispase, collagenase, elastase, and DNase for mild enzymatic digestion. 

Released cells were washed, red blood cell lysis performed, and the remaining cells counted and 

assess for single-cell separation and viability. Around 300,000 cells were then loaded into the 

dropseq chip. 

3.1.3 Single cell sequencing of human tissue using Dropseq 

Drop-seq experiments were also routinely performed in the lab, as it has been described 

previously in multiple publications (Angelidis et al. 2019, Strunz et al. 2019, Vieira Braga et al. 

2019, Mayr et al. 2020). Briefly, using a microfluidic device, single cells from the lung cell 

suspension were co-encapsulated in droplets with barcoded beads. Droplet emulsions were 

collected, the hybridized mRNA transcripts reverse transcribed and amplified by PCR. PCR 

products were pooled and purified twice and an estimated 1,000 cells was tagmented to the same 

fragment size. Single-cell libraries were sequenced in a paired-end run on the Illumina HiSeq4000 

(Mayr et al. 2020). 

3.1.4 Processing of single cell data from Munich 

For the single cell data of human patients form the Munich cohort, the Dropseq computational 

pipeline was used (version 2.0) as previously described, but with some specific alterations 

(Macosko et al. 2015, Angelidis et al. 2019, Strunz et al. 2019, Mayr et al. 2020). Briefly, STAR 

(version 2.5.2a) was used for mapping (Dobin et al. 2013). Reads were aligned to the hg19 

reference genome, to be consistent with all samples that have been collected over several years 

(GSE63269). For filtering, barcodes with less than 200 detected genes were excluded. For further 

filtering, the top barcodes based on UMI count per cell were selected, guided by the number of 

estimated cells per sample. As a certain degree of ambient RNA bias was observed, SoupX was 

applied to lessen this effect (Young et al. 2020). The pCut parameter was set to 0.3 within each 

sample and count matrices were merged together. This merged expression table was then pre-

processed further. A high proportion (> 10%) of transcript counts derived from mitochondria-
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encoded genes may indicate low cell quality of dying or physically damaged cells. Therefore, cells 

that were above this threshold were removed from the analysis. Accordingly, cells with a high 

number of UMI counts may represent doublets, and therefore only cells with less than 4000 UMIs 

were kept in the experiment. Genes were only considered if they were expressed in at least 3 cells 

in the data set (Dobin et al. 2013) (Mayr et al. 2020). 

3.1.5 Analysis of single cell data from Munich 

The downstream analysis of the Munich single cell data was performed, in the same manner as 

previously reported from the lab, but with specific alterations to this project, using the Scanpy 

Package (Wolf et al. 2018), a python package for the exploration of single-cell RNA-seq data 

(Strunz et al. 2019, Mayr et al. 2020). Following the common procedure, the expression matrices 

were normalized using scran’s (Lun et al. 2016) normalization based on size factors which are 

calculated and used to scale the counts in each cell. Next log transformation was used via 

scanpy’s function pp.log1p(). Highly variable genes were selected as follows. First the function 

pp.highly_variable_genes() was executed for each sample separately, returning the top 4,000 

variable genes per sample. Next, a gene was only considered as variable if it was labelled as such 

in at least 2 samples, resulting in a total of 15,096 genes which were further used for the principal 

component analysis. In an additional step to mitigate the effects of unwanted sources of cell-to-

cell variation, the number of UMI counts, percentage of mitochondrial DNA and the calculated cell 

cycle score was regressed out, using the function pp.regress_out() (Mayr et al. 2020). 

For visualizing the whole Munich data set, the UMAP was generated using 50 components as 

input for scanpy’s tl.umap() with number of neighbors set to 10 and min_dist parameter to 0.4. To 

better align the data of the different patients and to account for possible batch effects,  the python 

package bbknn() (batch balanced k nearest neighbours) (Polanski et al. 2020)  was used with the 

same number of components and neighbors. Louvain clustering was calculated with a resolution 

of 6. The whole lung parenchymal dataset was split into subsets for COL1A2+ mesenchymal cells, 

EPCAM+ epithelial cells, CLDN5+ endothelial cells and PTPRC+ leukocytes. New UMAP 

embeddings of these subsets were calculated until clear separation of cluster identities was 

achieved that allowed for identification of cell states by exploring the highest expressed markers 

per cluster explored via tl.rank_genes_groups() and manual assessment of known marker gene 

expression (Mayr et al. 2020). 

 

 

3.1.6 Integration of Chicago, Nashville and Munich single cell data 
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To improve statistical power, to ensure generalization across cohorts and to achieve a more 

balanced ratio of diseased and healthy patients, our Munich single-cell RNA-seq data set was 

combined with the filtered count matrices from the Chicago cohort (Reyfman et al. 2018) and the 

Nashville cohort (Habermann et al. 2019) (Mayr et al. 2020). 

Before combining these, the count matrices from Chicago and Nashville were processed 

separately. The normalization using scran and the log transformation of the two external datasets 

was performed as described for the Munich cohort. The effect of cell cycle, the percentage of 

mitochondrial reads and the number of UMI counts was regressed out cohort-wise as well (Mayr 

et al. 2020). 

For a first lighter batch correction we defined the list of variable genes in a way to decrease cohort 

specific effect as follows. For both the Nashville and the Chicago data we considered a gene as 

highly variable if it is labelled highly variable in at least three patients of the respective data set. 

Next, the preprocessed count matrices from the three data sets were merged and genes retained 

their highly variable status if they were highly variable in at least two of the three cohorts, resulting 

in 3,854 variable genes (Mayr et al. 2020). 

The concatenated object was scaled with scanpy’s pp.scale() function and the principal 

components were calculated using the defined variable genes. As a second batch correction the 

neighborhood graph was calculated using the bbknn package, defining the individual patients as 

batch key, number of neighbors within batch as 5 and number of components as 40. As described 

for the Munich cohort, the whole combined object was subsetted and new embeddings were 

calculated in order to identify cell states (Mayr et al. 2020). 

3.1.7 Differential expression analysis 

To identify genes associated with ILD status in a cell-type specific manner we applied the following 

procedure. The R statistical software was used for the analysis. Since the outcome of interest (ILD 

status) varies at the donor (n = 61) as opposed to the cell level (n = 233,638) the analysis was 

framed as a likelihood of detection problem across all donors. For each donor and cell-type 

combination calculated the likelihood of detection for each gene was calculated as the average 

number of cells with more than one count. As the likelihood of detection represents a probability 

and is bounded between 0 and 1, values were square-root transformed. Next, multiple linear 

regression was used to model the probabilities of detection. The square-root transformed 

detection probability was used as the dependent variable and the ILD status, age or smoking 

status, as the explanatory variable accounting for the total number of UMI counts, total number of 

cells and study indicator as covariates. The resulting t and p-values for the coefficient describing 

the ILD status were used in downstream analysis (Mayr et al. 2020). 
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3.1.1 Cell type signature enrichment analysis 

To infer cell type frequency changes from bulk transcriptomics or proteomics data, signature 

enrichment analysis was applied. Cell type signatures were defined as sets of genes with 

significant cell type specific expression. Next, the enrichment of each signature was statistically 

evaluated in a ranked list of fold changes or correlation coefficients using the Kolmogorov-Smirnov 

test. The signed p-value score represents the -log10 p-value of the Kolmogorov-Smirnov test 

signed by the effect size. Negative and positive values represent depletion and enrichment of the 

given signature in the ranked list, respectively (Mayr et al. 2020). 

3.1.2 Random forest prediction 

To integrate scRNAseq with BALF data we used a random forest as implemented in the R package 

randomForest. First, BALF expression data was quantile normalized and scaled. Next, only 

features with an absolute correlation coefficient greater than 0.2 with lung function and present in 

the scRNAseq data were used to train a random forest to predict lung function. Then, in-silico bulk 

scRNAseq was calculated by taking the mean expression count of each gene across all cells for 

all samples. Finally, the in silico bulk data was quantile normalized and scaled before feeding it 

into the trained model to predict lung function (Mayr et al. 2020).    

3.1.3 Clinical parameters 

For all patients included in the final analysis clinical information were collected at the time of BAL 

fluid procedure or when plasma was taken, respectively. Clinical parameters included 

demographics (age, gender, smoking status, pack years, smoking abstinence, lung function 

[forced vital capacity (FVC) (% pred.), FVC (l), FVC (post broncholysis), expiratory reserve volume 

(ERV), forced expiratory volume in 1 second (FEV1) (l), FEV1/FVC (%), inspiratory capacity (IC) 

(l), total lung capacity (TLC) (l), TLC from baseline, residual volume (RV), RV (%TLC), diffusing 

capacity of the lung for carbon monoxide (DLCO) (VA) (mmol/min/kPa/l), DLCO (SB) (% pred.), 

DLCO (SB) (Hb corrected, % pred.), DLCO (SB) (mmol/min/kPa), mean expiratory flow (MEF) 25, 

MEF50, intrathoracic gas volumen (ITGV)], laboratory values [cholinesterase, alkaline 

phosphatase, C-reactive protein, alanine-aminotransferase (ALT), aspartate-aminotransferase 

(AST), gamma-glutamyltransferase (GGT), LDH] (Mayr et al. 2020). 
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3.1.4 BAL procedure  

BALF was collected from 141 patients undergoing bronchoscopy from January 2013 until March 

2016 at the Lungenfachklinik Gauting in Munich, Germany. Most of the patients underwent 

bronchoscopy due to ILD evaluation. BAL was performed with standard technique. In brief, 100 to 

200 ml of sterile saline (0.9% NaCl) was instilled into the right middle lobe or the lingula in 20-ml 

injections which were each immediately aspirated. Cells of the BAL were analyzed by cytospin 

analysis. The remaining cell-free BAL fluid was immediately stored at -80°C and transferred to the 

BioArchive of the CPC-M. For mass spectrometry, only the cell-free BAL fluids were analyzed. Of 

the 141 patients only 124 passed quality control and were included in the analysis (95 ILD and 29 

non-ILD) (Mayr et al. 2020). 

3.1.5 Mass spectrometry 

3.1.5.1 BAL fluid proteomes 

The BAL fluid depleted from cells was subjected to mass spectrometry analysis, which was 

performed in collaboration with the group Mathias Mann for the use of the MS machines. The 

protocol is established and has been routinely performed by the PhD student before, as reported 

in several publications (Schiller et al. 2017, Kammerl et al. 2019, Mayr et al. 2020, Petzold et al. 

2020). Proteins in BALF were precipitated from 300µl BAL fluid using 80% ice cold acetone, 

followed by reduction and alkylation of proteins and overnight digestion into peptides using Trypsin 

and LysC proteases (1:100) as previously described (Schiller et al. 2015). Briefly, resulting 

peptides were purified using stage-tips. Approximately 2 μg of peptides were separated in four 

hour gradients on columns using, reverse-phase chromatography coupled to a Q-Exactive Mass 

Spectrometer. MS data were acquired with a shotgun proteomics method (top10 method). The 

resulting mass spectra and raw files were processed using the MaxQuant software (Cox et al. 

2008), which enabled label free protein quantification across different samples (Tyanova et al. 

2016) (Mayr et al. 2020).  

 

 

3.1.5.2 Plasma proteomes 

Plasma samples were prepared with the Plasma Proteome Profiling Pipeline, automated on an 

Agilent Bravo liquid handling platform and performed in collaboration with the group of Mathias 
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Mann (Geyer et al. 2016, Geyer et al. 2017, Geyer et al. 2019, Mayr et al. 2020). Briefly, plasma 

samples were diluted and mixed with PreOmics lysis buffer for reduction, alkylation and protein 

denaturation, followed by digestion with Trypsin and LysC. Resulting peptides were loaded on 

StageTip plugs, followed by consecutive purification steps. Plasma peptides were measured using 

LC-MS instrumentation consisting of an EASY-nLC 1200 ultra-high pressure system, online 

coupled to a Q Exactive HF Orbitrap. For each LC-MS/MS analysis about 0.5 µg peptides were 

injected. MS data was acquired with data independent acquisition. MS raw files were analyzed by 

Spectronaut software (version 12.0.20491.10.21239 (Bruderer et al. 2015, Geyer et al. 2016)) and 

were searched against the human Uniprot FASTA database (Mayr et al. 2020). 

To compare BAL fluid and plasma proteomes, patients were grouped into DLCO low (DLCO< 50% 

pred.) and DLCO high (DLCO ≥ 50% pred.), respectively (Mayr et al. 2020). 

3.1.6 Mass spectrometry bioinformatics and statistical analyses 

Mass spectrometry raw files were processed using the MaxQuant software (Cox et al. 2008, Cox 

et al. 2011) (version 1.5.3.34). As previously described (Schiller et al. 2015, Schiller et al. 2017, 

Mayr et al. 2020), peak lists were searched against the human Uniprot FASTA database 

(November 2016), and a common contaminants database (247 entries) by the Andromeda search 

engine (Cox et al. 2011). Protein expression was corrected for age in the following manner. Age 

was regressed out from the protein expression data using the R function aov(). The residuals from 

this model were used in subsequent analysis. All other statistical and bioinformatics operations 

(such as normalization, data integration, annotation enrichment analysis, correlation analysis, 

hierarchical clustering, principal component analysis, Pearson correlation analysis, t-test statistics, 

ANOVA tests, or Fisher’s exact test and multiple-hypothesis testing corrections), were run with 

the Perseus software package (version 1.5.3.0 and 1.6.1.1.) (Tyanova et al. 2016) (Mayr et al. 

2020). 

 

 

 

3.2 Methods for the mouse lung mesenchyme project 

3.2.1 Animal handling and bleomycin administration 
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The mice used for experiments in this study were old pathogen-free female C57BL/6J purchased 

from Charles River, Germany. They were maintained at the appropriate biosafety level at constant 

temperature and humidity, with a 12 hour light cycle and allowed food and water ad libitum at the 

animal husbandry of the Helmholtz Zentrum München, Germany. All experimental procedures 

were conducted in accordance with the regulations of the Bavarian government and the guidelines 

of the European Union and are registered and approved under the registry ROB-55.2-

2532.Vet_02-16-208.  

For instillation, mice with 10 to 14 weeks of age were first sedated by intraperitoneal injection of 

medetomidin 500 μg/kg body weight, midazolam 5 mg/kg body weight, and fentanyl 50 μg/kg body 

weight in sterile sodium chloride solution at a maximal volume of 100 μl via a 27 gauge cannula. 

Oropharyngeal administration was achieved by pulling out the tongue and closing the nostrils to 

induce deep breathing through the oral cavity before application to the oropharynx. Mice were 

antagonized, directly after treatment by subcutaneous injection of atipamezol 2.5 mg/kg body 

weight, flumazenil 500 μg/kg bodyweight, and naloxon at 1.2 mg/kg body weight, dissolved in 

sterile sodium chloride solution at a maximal volume of 100 μl via a 27 gauge cannula (Strunz et 

al. 2019). 

Control mice were administered with 80 μl of phosphate-buffered saline (PBS), while lung injury 

was induced by single-dose administration of bleomycin hydrochloride (Sigma Aldrich, Germany), 

dissolved in sterile PBS and given at 2U/kg bodyweight. Mice were randomly sacrificed at 

designated time points (21, 28, 35, 56) or even daily (days 1-14) after instillation, for a high 

resolution time-resolved investigation of bleomycin induced changes after lung injury. Treated 

animals were continuously under strict observation and mice were sacrificed in case of signs of 

phenotypic changes, such as abnormal behavior, weight loss or fur appearance caused by the 

administration (Strunz et al. 2019).  

3.2.2 Generation of single cell suspension from whole lung 

Mice were sacrificed by cervical dislocation of the spinal cord from the brain and dissected as fast 

as possible to prevent clogging of blood. The thorax was opened and heart and lung were perfused 

with up to 25 ml of PBS through the right ventricle of the heart. Mice were intubated through a cut 

in the trachea to fit a needle which allowed for filling of whole lung with either, 4% 

paraformaldehyde (PFA) for formalin-fixed paraffin embedded (FFPE) tissue blocks or enzyme 

mix for experiments, requiring a single cell suspension. Lungs, filled with enzyme mix, to allow for 

distribution of the enzyme down to the alveoli, were taken out with the heart en block and the lung 

tissue was minced to pieces around 1 mm³. For mild enzymatic digestion, the tissue was 

transferred to 50 ml falcons in up to 4 ml of enzymatic mix, containing dispase (50 caseinolytic 

U/ml), collagenase (2 mg/ml), elastase (1 mg/ml), and DNase (30 μg/ml) (Angelidis et al. 2019, 
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Strunz et al. 2019) for 15 to 25 min at 37°C in a thermomixer, shaking at 700 rpm. Enzyme activity 

was stopped by adding 10 ml of PBS supplemented with 10% fetal calf serum (FCS). Single cells 

were harvested by straining digested tissue trough a 40 micron mesh and centrifugation at 300 x 

g for 5 min at 4°C. In case of a rather bloody suspension, red blood cell (RBC) lysis was performed 

by incubating the cells for 30 sec in RBC lysis buffer (Thermo Fisher) at room temperature (RT), 

which was stopped again with 10 ml of PBS supplemented with 10% FCS. Cell pellets were 

resuspended in PBS supplement with 1% FCS, singularized by thorough mixing through pipetting, 

and ultimately counted in a counting chamber (Strunz et al. 2019). 

3.2.3 Magnetic-activated cell sorting (MACS) 

Magnetic activated cell sorting (MACS) provides an easy and fast way to enrich or deplete specific 

cells out of a complex tissue sample. Like the more famous brother fluorescent activated cell 

sorting (FACS), it relies on specific antibody binding to cell-surface receptors. Antibodies can be 

directly coupled to magnetic microbeads, or contain a fluorescent dye that in a secondary 

incubation step then interacts with microbeads against the color. Once coupled to a microbead, 

cells are retained in a column while non-bound cells are washed out. Both positive and negative 

selection of distinct cell populations is possible: either the cells of interest are first retained and 

later eluted from the column, or undesired cells are retained in the column and the washed out 

cells are used for further experiments. 

For the presented work, to enrich for the mesenchymal cell population, for which no common 

marker is known, negative selection was used. Single cell suspensions were first stained with 

antibodies, coupled to a fluorescent dye, against undesired cell populations, for 30 min at 4°C in 

the dark: CD326+  (Biolegend, 118212), CD31 (Invitrogen, 17-0311-82), CD45+ (Biolegend, 

103112), Lyve1 (Invitrogen, 50-0443-82), Ter119 (Biolegend, 116218), and CD326+ cells 

(Biolegend, 118212).  

3.2.4 Processing of WT and bleomycin mouse single cell data  

For both the single cell data of the WT mice and the bleomycin time course data, the Dropseq 

computational pipeline was used (version 2.0) as previously described (Macosko et al. 2015). 

Briefly, STAR (version 2.5.2a) was used for mapping (Dobin et al. 2013). Reads were aligned to 

the mm10 reference genome (GSE63269). For barcode filtering, we excluded barcodes with less 

than 200 detected genes. For further filtering we kept the top barcodes based on UMI count per 

cell, guided by the number of estimated cells per sample. As we observed a certain degree of 

ambient RNA bias, we applied SoupX (Young et al. 2020) to lessen this effect. The pCut parameter 

was set to 0.3 within each sample before merging the count matrices together. The merged 
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expression table was then pre-processed further. A high proportion (> 10%) of transcript counts 

derived from mitochondria-encoded genes may indicate low cell quality, and we removed these 

unqualified cells from downstream analysis. Cells with a high number of UMI counts may represent 

doublets, thus only cells with less than 4000 UMIs were used in downstream analysis. Genes were 

only considered if they were expressed in at least 6 mice in the bleomycin time course data set 

(Dobin et al. 2013). 

3.2.5 Analysis of mouse the WT and bleomycin single cell data  

The downstream analysis of the mouse single cell data was performed using the Scanpy Package 

(Wolf et al. 2018). The expression matrices were normalized using scran’s (Lun et al. 2016) 

normalization based on size factors which are calculated and used to scale the counts in each 

cell. Next log transformation was used via scanpy’s function pp.log1p(). Highly variable genes 

were selected with the function pp.highly_variable_genes(.) A in the bleomycin timecourse gene 

was only considered as variable if it was labelled as such in at least 6 samples (which equals three 

consecutive time points with two mice each), resulting in a total of 10,475 genes which were further 

used for the principal component analysis. The majority of the cells were mesenchymal cells, 

although epithelial and immune cells were also captured. Further data filtering was achieved by 

clustering so that clusters expressing non-mesenchymal markers Col1a2 and Vim could be 

excluded from the data set. The filtered object was scaled and the neighborhood graph 

constructed. With the batch-balanced k nearest neighbor tool (BBKNN) (Polanski et al. 2020), the 

different PCR cycles used in the experiment were accounted for by setting the 

neighbors_within_batch=5 and n_pcs=40. Two dimensional visualization and clustering was 

carried out with the Scanpy functions tl.louvain() at resolution of 3 and tl.umap(). After manual 

curation of the markers, the clusters were combined, according to cell types, leading to 6 final 

meta cell types. 

3.2.5.1 Cell-cell communication analysis  

For the analysis of cell-cell communication networks, a list of annotated receptor-ligand pairs was 

downloaded (Ramilowski et al. 2015). The receptor-ligand information was integrated with the 

bleomycin timecourse cell type marker genes, followed by the generation of cell-cell 

communication networks. This is facilitated by the creation of edges between two cell types if both 

share a receptor-ligand pair as marker genes. The cell type interaction plots were generated based 

on the number of receptor ligand pairs between the cell types. Receptor-ligand expression plots 

were based on the expression of receptor and ligand genes, respectively.  

3.2.5.1 MatchScore comparision 
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To better compare cell types across datasets in a quantitative way, matchSCore, a Jaccard index 

based scoring system was used, to quantify clustering and marker accuracy in a combined score 

(Mereu et al. 2018). Thereby cluster identities were integrated across the human and mouse 

datasets by filtering the respective cell type marker tables with a cut-off for the fold-change at 2 

and for the adj-p-pval at 0.0001. 

3.2.6 SCRINSHOT staining 

Single cell resolution in situ hybridization on tissues (SCRINSHOT), for highly multiplexed in situ 

mapping of gene expression, was performed as recently published (Sountoulidis et al. 2020). 

Multiplexed in situ hybridization was performed on 10µm fresh frozen OCT embedded lung slices. 

Cells in frozen sections were permeabilized with 0.1 M HCl in DEPC water at room temperature 

for 3 minutes and dehydrated in an ethanol series. An incubation chamber was mounted and 

nonspecific mRNA binding was blocked by adding oligo-dT fragments.  Three to five gene-specific 

hybridization probes (padlock probes) were added for 5min at 55°C and for 90 min at 45°C. 

Ligation of the circular padlock probes was ensured by incubation with SplitR enzyme at room 

temperature overnight. Rolling circle amplification (RCA) of the padlock circle at 30°C overnight 

followed by a degradation step for non-specific products with uracil-N-glycosylase (UNG) for 45 

minutes at 37°C, provided an amplified number of binding sites for labeled detection probes. One 

specific labeled probe per padlock probe, with probes for the same gene sharing one color, were 

hybridized to their binding sites for 60 min at room temperature in the dark. After washing, the 

tissue was hydrated, the incubation chamber removed and the slide was mounted with a coverslip 

for microscopy. Per hybridization cycle, three genes and DAPI could be visualized. After 

successful imaging, the coverslip and mounting media were removed, the tissue dehydrated 

again, and the procedure repeated from the UNG step onwards with different label probes. 

3.2.7 SCRINSHOT data analysis 

3.2.7.1 Processing of images  

Microscope images of each hybridization cycle and region of the mouse lobe were processed in 

ZEN image processing software. An orthogonal projection was made to compress the image z-

stacks. Image tiles were stitched with DAPI as a reference, enhanced and subsetted to obtain 

separate image files for each lobe region and hybridization. Hybridization images for a particular 

region were aligned using the images of DAPI stained nuclei and cropped to size in FIJI. Nuclei 

were individually drawn around using the freehand drawing tool in FIJI. An image with the nuclei 

shapes filled in was used for further processing. Using MATLAB, images were split into four tiles 

for the following steps in Cell Profiler. Nuclei shapes were enlarged by 2µm and fluorescent signal 
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(from labelled/stained mRNA (punctae)) was detected from each channel per cell shape and 

converted into individual pixels. The number of punctae per gene/channel per cell was measured 

in FIJI and analysed as a single-cell matrix in Perseus. (. The number of punctae per gene/channel 

per cell was measured in FIJI and converted to a data matrix. The matrix was analysed analogous 

to single-cell mRNA sequencing data and was used for further visualization and quantification of 

cell types.) 

3.2.7.2 ROI and cell filtering 

 Cells with lower than one visualized mRNA for one gene counted were filtered out. Cells with 

many punctae for many genes (minimum of 4 genes with greater than 5 punctae) were also filtered 

out due to the high likelihood of these being due to debris/dirt. The matrix was exported to Excel 

for further processing. The signal counts were totaled up for each cell type by using the 2 

designated marker gene. If a cell was had 3 or more punctae in total, with at least 1 or more for 

each gene, it was counted as positive for that cell type. If a cell was positive for both cell types, 

the signal/cell was checked manually. ROIs positive for more than one cell type tended to be to 

debris/dirt. Positive ROIs with no signal were also manually removed. Remaining positive ROIs 

were transferred to compressed zip folders so they could be shown in FIJI. ROIs/cells were then 

colored based on cell type to show the locations of the cell type. For a more accurate picture, and 

for a smaller area such as part of the airway or vessel, the ROI of cells clearly positive for mRNA 

signals of a certain cell type were noted. The different cell types were then colored in FIJI.  

3.2.7.3 Counting and quantification 

Total numbers of specific cell types visualized by SCRINSHOT were manually counted by 

searching for SCRINSHOT signals using the image processing software ZEN. Six different imaged 

regions of the WT mouse lobe were used for quantification: Area 1 (destroyed region excluded), 

Area 4, Area 5, Area 7, Area 8, Area 12. AT2 cells were counted based on high Sftpc expression 

localized around a DAPI stained nucleus. Pericytes, Hhip cells, lipofibroblasts, matrix fibroblasts, 

and smooth muscle cells were counted if three or more fluorescent mRNA dots from two of the 

following respective ‘marker genes’ were localized at or closely around a DAPI stained nucleus; 

Gucy1a3 and Postn for pericytes, Hhip and Aspn for Hhip cells, Tcf21 and Npnt for lipofibroblasts, 

Serpinf1 and Clec3b for matrix fibroblasts, Acta2 and Myh11 for smooth muscle cells (with at least 

1 dot visible each from both marker genes). Cell counts were normalized using the mean total 

area size of all regions measured, with blank spaces of airways or vessels removed. 

The frequency of AT2 cells observed in close proximity to a mesenchymal subtype cells were also 

manually counted using the image processing software ZEN. An AT2 cell was designated as 

interacting with a cell type, if observed in very close proximity to one of the mesenchymal cell 

types. Spatial locations of cells were classified as being near an airway or vessel if positioned 

approximately 45µm away from the tissue structure. If a cell within the tissue was located further 
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than 45µm from a vessel or airway, it was classified as being in the alveolar space. Statistical 

analysis was carried out using GraphPad Prism 5.  
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4 Results 

4.1 Integrated single cell analysis of human lung fibrosis 
resolves cellular origins of predictive protein signatures in 
body fluids 

The work presented in this chapter has been drafted into a manuscript that was submitted to a 

scientific journal. By the time of submission of this thesis, the paper has not yet been peer-

reviewed. However, a preprint version of the manuscript has already been published on medRxiv, 

a free online archive and distribution service for complete but unpublished manuscripts (preprints) 

in the medical, clinical, and related health sciences. MedRxiv is a spin-off of the more known 

bioRxiv, for life science in general, both being operated by Cold Spring Harbor Laboratory, as a 

not-for-profit research and educational institution. The manuscript file is accessible through the 

medRxiv website (https://www.medrxiv.org) or directly via the digital object identifier doi: 

(https://doi.org/10.1101/2020.01.21.20018358). In this thesis, the citation for this preprint will be: 

(Mayr et al. 2020). 

The PhD student, as first author of this manuscript, was involved in all parts of this study, 

performed most of the practical work, executed programming code, drafted all the figure panels 

and was part in conceiving the manuscript. Credit goes to Dr. Simon Lukas, for providing the R 

code for deconvolution of protein data and DGE of the integrated data-set, Dr. Gabriela Leuschner 

for organization of the clinical and patient data, Meshal Ansari for support in single cell analysis, 

Dr. Philipp Geyer for assistance in MS measurements of plasma samples and Dr. Maximilian 

Strunz, Ilias Angelidis and Pawandeep Singh for collecting human single cell samples. 

4.1.1 Introduction 

Fibrotic diseases are one of the major health burdens of our time (Cox et al. 2011). In the lung, 

pulmonary fibrosis is represented by the very heterogeneous group of ILD, ultimately leading to 

respiratory failure due to destruction of the lung parenchyma, as introduced in Chapter 1.2. The 

heterogeneity of this group is given by several risk factors (Baumgartner et al. 1997, Fischer et al. 

2012, Selman et al. 2016, Schiller et al. 2017, Allen et al. 2019, Sheng et al. 2019) but most 

importantly also by varying disease progression, diagnosis and the occurrence of acute 

exacerbations in the patients. New approaches are needed to dissect these heterogeneities on a 

molecular level to provide more personalized patient monitoring and care. With the surge of 

innovation in the field of single cell genomics, a novel cell type specific viewpoint on pathological 

https://www.medrxiv.org/
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changes in disease becomes feasible (Mayr et al. 2020). Projects like the Human Cell Atlas focus 

at building comprehensive maps of all cells in the human body to understand fundamental 

biological processes with the aim of to improve monitoring, diagnosis and treatment of diseases 

(Schiller et al. 2019). Part of this initiative is the human Lung Cell Atlas that has been successfully 

launched with a first draft of cellular compositions of the human and mouse lung, as well as recent 

single cell studies profiling cellular and molecular changes associated with pulmonary fibrosis 

(Han et al. 2018, Reyfman et al. 2018, Adams et al. 2019, Angelidis et al. 2019, Habermann et al. 

2019, Morse et al. 2019, Travaglini et al. 2019, Vieira Braga et al. 2019).  

While powerful, single cell mRNA sequencing relies on a piece of lung tissue, which involves 

invasive procedures such as lung biopsy, resulting in most of the samples stemming of deceased 

or transplanted patients. Additionally, mRNA expression does not necessarily reflect expression 

of proteins that are the final biomolecules performing critical processes within cells in the organism 

(Angelidis et al. 2019). Proteomic analysis of body fluids, such as BALF or blood plasma, can be 

monitored longitudinal over time allowing for personalized projection of disease trajectories among 

the highly variable ILD patients (Neighbors et al. 2018, Maher et al. 2019). First proteomic changes 

and in end stage ILD patient lung tissue and BALF have already been analyzed and protein 

signatures have been identified (Foster et al. 2015, Prasse et al. 2019). 

However, it is unclear which cellular and molecular processes in the lung correspond to these 

biomarker signatures, since they only represent a tissue or fluid average, which does not resolve 

cellular composition and disease specific cell states. But combining proteomics and single cell 

sequencing together with novel computational methods, can address this problem: signatures 

found in bronchoalveolar lavage and plasma, both of which are accessible for longitudinal 

monitoring of patients, can be used to predict pathological cell state changes in the lung (Mayr et 

al. 2020).  

The following sections and the graphical abstract (Fig. 10) will summarize the results of the herein 

conducted investigations. Using single cell data from ILD patients from Munich, cell state changes 

inhuman fibrosis were derived at cellular resolution. To assess reproducibility across patient 

cohorts, and to establish a robust differential gene expression analysis for all major cell types in 

the lung, by increasing the number of patients, the data was integrated with two independent single 

cell datasets. Using mass spectrometry driven proteomics, bronchoalveolar lavage and plasma 

proteome compositions in patients from several independent large-scale ILD cohorts were 

quantified. A bioinformatics analysis strategy enabled the integration of the cell state descriptions 

on single cell level with these lavage and plasma proteomes, transcriptomic tissue bulk 

measurements and associated clinical meta-data. The analysis dissected lung fibrosis at the 

single cell level and the statistical power allowed the definition of robust differential gene 

expression profiles across multiple studies for ILD. This approach revealed that fluid proteome 
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signatures were predictive of specific cell state changes in the lung. Additionally, by using machine 

learning, several protein biomarker signatures that were associated with diagnosis, lung function, 

and smoking and injury status were discovered (Mayr et al. 2020). 

4.1.1 An integrated single cell atlas of human lung fibrosis 

Transcriptional changes in lung fibrosis were studied using the Drop-seq platform for single cell 

sequencing (Macosko et al. 2015). Whole lung parenchyma was obtained from 11 non-fibrotic 

donors and three end stage lung fibrosis patients from the CPC-M bioArchive in Munich. Approx. 

5000 cells per sample were sequenced, which finally, after filtering and quality control, resulted in 

a data set containing 41,888 cells (Fig. 11a). Single cell transcriptomes were subjected to data 

dimensionality reduction using the Uniform Manifold Approximation and Projection (UMAP) 

method (Becht et al. 2018). UMAPs were displayed with a color code for the health condition, 

either control or lung fibrosis (Fig.12a), or for individual patients (Fig. 12b) and assessment of 

overlaying of these groups proved both good accordance.  

Figure 10. Graphical abstract for the project “Integrated single cell analysis of human lung fibrosis resolves 
cellular origins of predictive protein signatures in body fluids”. Figure and legend taken from (Mayr et al. 2020). 
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Figure 11. Single cell analysis of human lung parenchyma in health and disease reveals 45 distinct cell type 
identities and their marker genes. (a, b) Dimension reduced single cell transcriptomic data is visualized through Uniform 
Manifold Approximation and Projection (UMAP). The color code illustrates the disease status (a) and cell type identity (b). 
Figure and legend taken from (Mayr et al. 2020). 

a b 

Figure 12.  Clustering analysis and cell type annotation reveals 45 distinct cell type identities in human lung 
parenchyma. (a) UMAP embedding colored by Louvain clusters demonstrates separation of cells into major lineages. (b) 
UMAP embedding displays identified cell types, colored by individual patients. Figure and legend taken from (Mayr et al. 
2020). 

a b 
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Unsupervised clustering of the data revealed 37 cell clusters (Fig. 12a). From this whole dataset, 

subsets based on the major lung cell lineages were generated and newly embedded in UMAPs, 

Figure 13. Clustering analysis and cell type annotation reveals 45 distinct cell type identities in human lung 
parenchyma. (a, d, g, j) The whole lung parenchymal dataset was split into subsets for (a) COL1A2+ mesenchymal 
cells, EPCAM+ epithelial cells (d), CLDN5+ endothelial cells (g) and CD45+ (gene name PTPRC) leukocytes (j). (b, e, 
h, k) New UMAP embeddings of the subsets demonstrate separation of cluster identities that allows for identification of 
cell states. (c, f, I, l) Cells colored in disease groups show origin of identified cell states. Figure and legend taken from 
(Mayr et al. 2020). 

a b c 
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to increase the resolution for individual cell types (Fig. 13). These subsets were COL1A2+ stromal 

cells (Fig 13a-c), EPCAM+ epithelial cells (Fig 13e-f), CLDN5+ endothelial cells (Fig 13g-i), and 

CD45+ leukocytes and myeloid cells (Fig 13j-l). The subsets were again quality controlled and 

samples, contributing less than 20 cells were excluded from the analysis. These major lung cell 

lineage subsets were used to derive cluster identities by manual annotation of these clusters with 

known canonical marker genes and signatures from published single cell RNA sequencing studies 

(Adams et al. 2019, Habermann et al. 2019, Travaglini et al. 2019). And indeed, with a total of 45, 

more lung cell type identities could be revealed from the sub-clustering (Fig. 11b). Notably, already 

by observation of the sub clusters colored-coded for the health-state (Fig. 13c, f, i, l) it became 

obvious, that some were mainly present in fibrosis and thus termed as “activated- “ cell types. All 

lung cell type identities were characterized by unique marker gene expression profiles, providing 

a useful tool for future cell type based analysis (Fig. 14).  

Figure 14. Distinct cell type identities are defined by specific marker genes. (a-d) The heatmaps show the relative 
gene expression levels for the indicated marker genes for the indicated stromal (a), epithelial (b), endothelial (c), and 
leukocyte (d) cell types. Figure and legend taken from (Mayr et al. 2020). 

a b c 

d 
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To increase statistical power and validate our results, we integrated our dataset with two large 

publicly available single cell RNA-seq datasets. The Chicago cohort from Reyfman and colleagues 

contains 9 ILD patients and 8 controls; the Nashville cohort from Habermann and colleagues 

provides 20 ILD patients and 10 controls. By bioinformatics integration of the three cohorts, 

Munich, Chicago and Nashville, we generated a data manifold that, after filtering and quality 

control, represents gene expression profiles of 233.638 single cells from 63 human individuals 

(ILD n=32, controls n=31) (Fig 15).   

Figure 15. Multi-cohort single cell data integration. Dimension reduced single cell transcriptomic data is visualized 
through multiple UMAPs. The color code illustrates the patient cohort (a) disease status (b) and cell type identity. Figure 
and legend taken from (Mayr et al. 2020). 

a 

b c 



4.1  Integrated single cell analysis of human lung fibrosis resolves cellular origins of predictive 
protein signatures in body fluids 

54 
 

For validation of the degree of reproducibility with respect to technical quality across all three 

cohorts, the UMAP visualization was again assessed by the degree of overlay of the color-code 

according to cohorts (Fig. 15a.) and found as agreeing very well, considering that the Chicago and 

Nashville cohorts were sampled with a different single cell method. As described above for the 

Munich cohort, the object was sub-clustered to allow for cell type identification, this time using the 

already present classification of cells from the Munich cohort for easier assignment (Fig. 15c).  

With the massive increase in statistical power of 63 patients by integrating all three cohorts, not 

only the marker signatures of cell state identities became much more distinct and unique. 

Importantly, the comparison of 31 end stage fibrosis with 32 control patients allowed for a, so far 

unseen, powerful differential gene expression (DGE) analysis for gene expression changes 

between fibrosis and controls, stratified by cell type. Gene expression changes in disease were 

more similar within the major lung cell compartments: goblet, ciliated, club and basal cells 

clustered together with alveolar epithelial cells, in which AT-1, AT-2 and differentiation 

intermediates were combined into “meta-cell-types” for better visualization, as were mesenchymal 

and leukocyte lineages. Accordingly, all subtypes of endothelial cells, marked by the “_EC” ending, 

showed a similar correlation among each other, as well as the lymphocytes and myeloid cells (Fig. 

16a). In the top regulated genes for alveolar epithelium, fibroblasts and macrophages, cell types 

which all play an important role in fibrosis, known biomarkers and cell type specific genes were 

present, proving the efficient functioning of the DGE algorithm (Fig. 16b). Comparison of important 

maker genes, such as KRT17 for basal cells in the alveolar epithelium (Fig. 16c), DIO2 for 

myofibroblast (Fig. 16d) or SPP1 for macrophages (Fig. 16e), showed very good agreement 

between the three independent patient cohorts, with diseases patients acting alike and opposite 

to the control samples. Of note, these genes were chosen as representation as they are commonly 

known to be upregulated in diseases; however genes downregulated in ILD patients appeared 

correctly in the data as well, e.g. as seen in the heatmap in Fig. 16e. 

The DGE between end stage lung fibrosis and donor patients, per cell type, provides a great 

resource to disentangle, or in other words, perform deconvolution on bulk data. Thereby 

proteomics or bulk mRNA sequencing data, which are more common than single cell data and 

exist for larger cohorts, can gain more value by assigning bulk changes of protein or gene 

signatures to specific cell types.  
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Figure 16.  Transcriptional changes in >40 cell types and altered cell type frequencies in disease 
progression. (a) Differential gene expression between endstage lung disease patients and controls across cohorts 
was compared for the indicated cell identities. The color code illustrates similarities of gene expression changes 
calculated by Pearson correlation of the t-value coefficient, which represents differences in likelihood of detection 
for any gene between health and disease. (b) The heatmap illustrates the top 79 genes differentially expressed in 
the indicated cell identities. (c-e) The box plots illustrate differences in mRNA detection for the indicated genes 
between tissues from control donors and fibrosis patients in (c) alveolar epithelial cells, (d) fibroblasts and (e) 
macrophages. Figure and legend taken from (Mayr et al. 2020). 
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To make use of the hidden power of bulk RNA-seq data archived in public databases, the single 

cell DGE data was used to determine possible cell type frequency changes in such datasets. A 

recent study used quantitative microCT imaging and tissue histology on biopsies to stratify lung 

tissue of IPF patients into controls, IPF with no fibrosis (IPF1), IPF with moderate fibrosis (IPF2) 

and IPF with advanced fibrosis (IPF3) (McDonough et al. 2019). With the different stages being 

marked by increasing extent of fibrotic remodeling (lower alveolar surface density and higher 

collagen content), the RNA-seq profiles of these staged patient samples can presumably be 

interpreted to depict disease progression within patients. The enrichment of the DGE cell state 

signatures across the three stages of IPF progression were calculated and surprisingly significant 

changes of many cell types were already found in early stage IPF1 (Fig. 17a). This included the 

myofibroblast signature that was clearly upregulated early in progression, or AT-1 cells being 

downregulated as expected (Englert et al. 2008). Other cell signatures, such as the plasma cells, 

showed a gradual increase from IPF1 to IPF3, while for instance the increase in ciliated cell 

frequency was observed only from IPF stage 2 onwards (Fig. 17b). Interestingly, immune cells 

such as T-cells (NKT, CD8+ and CD4+) or alveolar macrophages (AM) showed an early 

involvement, followed by a gradual downregulation (Fig. 17a). 

  

Figure 17. Deconvolution of bulk mRNA data 
into cell types. (a) The heatmap shows changes 
of the DGE cell type signatures in published bulk 
RNA-seq data (GEO GSE124685) across 
different histopathological stages that represent 
increasing extent of fibrosis from stage 1-3, as 
determined by quantitative micro-CT imaging and 
tissue histology (McDonough et al. 2019). (b) The 
heatmaps show z-scores for the individual marker 
genes of the indicated cell types across IPF 
stages and controls. Figure and legend taken 
from (Mayr et al. 2020). 

a 

b 
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4.1.2 Human lung bronchoalveolar lavage fluid (BALF) proteomes 
reflect changes in disease activity 

With the cell state changes from the single cell analysis at hand, the question arose, whether they 

might be reflected in the proteomic composition of the luminal epithelial lining fluid (ELF), which is 

accessible for sampling during bronchoscopic examination of patients. Besides the higher clinical 

relevance that BALF analysis could bring compared to single cell analysis, the comparison with 

the protein level is of interest, since changes on a transcriptional level are not necessarily 

correlating with protein abundance, which holds true especially for secreted proteins (Angelidis et 

al. 2019). State of the art MS was used for an in depth study of ELF proteins, sampled from cell 

free BALF of a large ILD and non-ILD patient cohort (Fig 18a). BALF proteomes were measured 

form eight groups of patients that were diagnosed with different from of ILD (Fig. 18b), including 

patients with idiopathic pulmonary fibrosis (IPF, n=16), hypersensitivity pneumonitis (HP/EAA, 

n=8), cryptogenic organizing pneumonia (COP, n=11), idiopathic non-specific interstitial 

pneumonia (NSIP, n=10), smoking associated respiratory bronchiolitis ILD (RB-ILD, n=3), 

sarcoidosis (n=22), unclassifiable ILDs (other ILDs, n=25), and non-ILD controls (non-ILD, n=29) 

(see Table 1 for clinical features of the ILD cohort). Of note, the majority of lavage fluids from 

patients in this cohort was collected during evaluation of initial diagnosis of ILD, and thus rather 

represents early disease states. 

Figure 18. Human lung bronchoalveolar lavage 
fluid proteomes. (a) Proteomics workflow from 
sample preparation to analysis. (b) The boxplots 
show the number of proteins quantified (y-axis) 
across various diagnosis groups (x-axis), for which 
number of patients is given. The mean and 10-90 
percentiles are shown. Figure and legend taken from 

(Mayr et al. 2020). 

a b 
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BALF in general is difficult to analyze by MS, due its high dynamic range of protein copy numbers 

present, that not only stem from the lung. The composition of the ELF of the airways and the 

respiratory unit is determined by a combination of truly secreted proteins, plasma and tissue 

 All        

(n=124) 

IPF      

(n=16) 

ILD     

(n=25) 

HP       

(n=8) 

NSIP     

(n=10) 

RB-ILD 

(n=3) 

Sarcoidosi

s (n=22) 

COP (n=11) Non-ILD 

Age, years 60.3±14.5 68.0±8.3 68.0±8.3 61.3±16.1 63.5±8.6 42.7±11.0 47.3±15.0 67.0±9.9 60.8±14.4 

Female gender, n (%) 55 (44.4) 4 (25.0) 13 (52) 3 (37.5) 7 (70) 1 (33.3) 6 (27.3) 7 (63.6) 14 (48.3) 

History of smoking 
73 (65.8) 

n= 111 

12 (85.7) 

n=14 

15 (75.0) 

n=20 

3 (50.0) 

n=6 

5 (10.0) 

n=10 

3 (100) 

n=3 

11 (52.4) 

n=21 

6 (66.7) 

n=9 

18 (64.3) 

n=28 

Pack years 22.3±23.1 40.5±24.9 17.5±15.8 20.0±28.3 35.7±32.2 25.0±8.7 6.8±10.2 27.0±20.2 22.2±24.6 

Lung function          

     FVC [l] (n=112) 2.9±1.0 2.5±0.7 2.7±0.9 2.7±0.8 2.3±0.5 3.1±0.4 3.8±1.2 2.5±0.6 3.1±1.0 

     FVC [%soll] (n=112) 80.0±19.8 71.5±17.1 75.8±16.6 77.9±21.6 79.5±20.6 71.4±4.5 88.1±19.3 80.9±22.0 83.9±22.4 

     FEV1 [l] (n=112) 2.3±0.9 2.1±0.7 2.1±0.7 2.2±0.7 1.9±0.4 2.4±0.8 3.1±1.0 2.0±0.6 2.4±1.0 

     FEV1 %/ FVC    

(Tiffeneau %) (n=112) 

81.9±11.9 86.7±8.6 81.3±8.4 82.9±12.4 88.5±14.5 75.0±15.8 84.3±7.7 80.1±17.3 77.0±13.1 

     TLC [l] (n=110) 5.2±1.4 4.5±1.1 5.0±1.6 5.2±0.6 4.1±0.9 4.9±0.4 5.8±1.5 4.8±1.0 5.9±1.4 

     RV [l] (n=111) 2.3±0.9 1.9±0.6 2.3±1.0 2.4±0.4 1.8±0.7 1.8±0.1 2.0±0.6 2.3±0.4 2.8±1.0 

     DLCo (SB) [% Soll] 

(n=94) 

58.3±21.8 42.6±20.9 51.6±16.8 52.9±13.7 46.8±9.1 48.6±0.4 73.5±22.5 61.2±23.9 67.4±21.8 

Laboratory findings          

     LDH U/l (n=83) 249.1±87.3 266.1±93.3 241.1±84 242.9±90.2 340.4±100.3 190.5±30.4 212.7±60.5 270.7±102.9 234.8±73.1 

     CRP [mg/l] (n=85) 16.6±27.4 7.3±6.1 21.3±37.2 3.0±1.4 8.8±8.4 3.4±0.6 10.0±20.0 39.8±33.6 20.1±30.1 

BAL cytospin (n=36)          

     BAL alveolar   

makrophages [%] 

66.9±23.0 71.9±24.5 66.1±20.6 38.6±19.7 84.3±13.1 92.8±2.9 60.4±27.5 49.3±27.2 72.8±13.5 

     BAL lymphocytes [%] 24.4±19.7 20.8±24.3 32.3±16.3 55.0±15.8 8.4±8.1 3.0±1.1 30.8±14.4 28.2±25.4 16.1±11.5 

     BAL neutrophiles [%] 8.2±15.4 2.2±1.3 3.6±3.1 3.0±0.3 7.7±6.6 3.5 9.2±16.0 30.3±43.3 8.7±8.1 

     BAL eosinophiles [%] 2.6±3.4 4.3±3.6 2.9±4.9 3.3±4.2 1.8±1.9 1.9±0.1 0.5±0.5 2.5±2.6 2.2±3.9 

     CD4/CD8 quotient 2.6±2.9 2.3±3.1 2.4±3.2 3.9±4.7 0.7±0.9 1.4±0.8 5.0±5.1 1.5±1.2 3.3±2.4 

Table 1. Clinical characteristics of bronchoalveolar lavage fluid study cohort. 

Abbreviations: idiopathic pulmonary fibrosis (IPF), interstitial lung disease (ILD), hypersensitivity pneumonitis (HP), non-specific 
idiopathic pneumonitis (NSIP), respiratory bronchiolitis interstitial lung disease (RB-ILD), cryptogenic organizing pneumonia 
(COP), bronchoalveolar lavage (BAL). Table and legend taken from (Mayr et al. 2020). 
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leakage proteins, leaking into the damaged alveolar space from the blood and plasma, 

proteolytically shredded receptors, and intracellular proteins released from dying cells. Depending 

on the integrity of the epithelial barrier and the degree of cell death, the relative proportion of these 

protein sources can change. Therefore, some quality criteria, such as at least 500 proteins 

detected per sample and one protein had to be identified in at least 20 patients, were installed, 

resulting in a cohort of 124 patients, consisting of 95 ILDs and 29 non-ILDs. A median of 835 

proteins per individual patient were quantified, leading to a total of 1513 unique proteins that were 

detected in at least 20 patients (Fig. 18b), which represents a very good depth.  

To better define the proteins that are true constituents of the ELF, rather than the mentioned tissue 

leakage proteins, a quantitative comparison of BALF content and total tissue proteomes from 11 

end-stage ILD tissue biopsies was done (Schiller et al. 2017). Proteins detected in both tissue and 

fluid proteomes, were scored as either a `tissue leakage´ protein or true `epithelial lining fluid´ 

protein based on their enrichments in the respective compartment by a t-test statistic score (Fig 

19a). 110 proteins with significant enrichment in the BALF proteome were identified, indicating 

that these proteins are released into the airspace lumen in a directed manner. Upon category 

enrichment, indeed, proteins specific for secretory epithelial cells such as club and AT-2 cells had 

a significantly higher ELF enrichment score as proteins specific to non-secretory tissue resident 

AT-1 cells. Similarly, we found that proteins with the Uniprot keywords `secreted´ had a higher 

score than `transmembrane´ proteins and `cytoplasmic´ proteins (Fig. 19b). To identify proteins, 

with high heterogeneity between patients, the coefficient of variation (CV) was calculated, resulting 

in 285 proteins with a high coefficient above noise (Fig. 19c). A Fisher´s exact test was performed 

on those top 285 proteins, to test for enriched protein categories across patients. They were 

significantly enriched for gene annotations such as `secreted´, `plasma lipoprotein´, 

`antimicrobial´, `nucleosome´, `intermediate filament´ and `extracellular matrix´, indicating that 

these categories are regulated across patient groups (Fig. 19d).  

Interestingly, principal component analysis of patients, did not reflect overall clinical diagnosis, but 

revealed heterogeneous patient clusters that were either significantly enriched in `complement´, 

`coagulation proteins´ and `plasma lipid transport´ proteins, or showed higher levels of 

`antimicrobial´ proteins and `histones´. Thus, these clusters were pointing towards the 

involvement of an inflammatory response driven by neutrophil extracellular traps (NETs) in these 

patients (Fig. 19d, e) and might therefore rather reflect molecular and cellular alterations that are 

a consequence of disease progression or acute illness.  
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Figure 19. Heterogeneity of the epithelial lining fluid proteome in the interstitial lung disease patient cohort. 
(a) Comparison of BAL fluid proteome (n=128) and ILD lung tissue proteome (n=11) allows the separation of true 
constituents of the epithelial lining fluid from tissue leakage proteins and identifies 199 proteins with significant 
enrichment in the BAL-fluid proteome. The color code shows the relative enrichment of proteins in fluid versus tissue 
(ELF score). (b) The box plot shows distributions of ELF enrichment scores for the indicated gene categories. (c) 
Identification of 285 proteins with highest coefficient of variation and heterogeneity between patients enriched in 
human BAL-fluid. (d, e) Principal component analysis reveals groups of patients with similar enrichment for the 
indicated gene categories, irrespective of the indicated clinical diagnosis. Figure and legend taken from (Mayr et al. 

2020). 
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Correlation analysis of the protein expression profiles revealed, that in fact, many proteins were 

co-expressed across patients, revealing co-regulated protein modules that were enriched for 

distinct signatures. The co-regulated protein modules can be either derived from the same cell 

type and reflect changes in relative cell type frequencies, or be the consequence of a common 

transcriptional program of cells to their environment (Fig. 20). Module A was enriched for 

transmembrane receptors and contained many macrophage specific proteins such as the 

Scavenger receptor cysteine-rich type 1 protein M130 (CD163) and the Complement C1q 

subcomponent subunit C (C1QC). Module B showed a positive correlation with module A and was 

composed of proteins involved in wound healing, such as the ECM proteins Tenascin-C (TNC), 

Fibronectin (FN1), Collagen type 6 (COL6) and Periostin (POSTN), as well as lipid transport, 

complement and coagulation proteins such as Apolipoprotein B-100 (APOB) and Complement 

component C7 (C7). Module C was significantly enriched for Keratin family proteins and contained 

the basal cell markers Keratin-5 (KRT5) and Keratin-14 (KRT14). Module D was enriched for 

cytoplasmic and cytoskeletal components, as well as focal adhesion and lysosomal proteins such 

as Talin-1 (TLN1) and Cathepsin Z (CTSZ). Module F was enriched for oxidoreductases and 

contained the Aldo-keto reductase family 1 member B10 (AKR1B10). Finally, module G was 

enriched in proteins involved in antimicrobial defense and neutrophil chemotaxis, including 

granulocyte specific proteins such as S100-A8, S100-A9, Cathelicidin antimicrobial peptide 

(CAMP) and Myeloperoxidase (MPO) (Fig. 20). 

 

  

Figure 20. Co-regulated protein modules in the epithelial lining fluid proteome of the interstitial lung disease 
patient cohort. The correlogram shows the Pearson correlation of the 285 proteins with highest CV across individual 
patients. Enriched gene categories and examples of co-regulated proteins are shown. Figure and legend taken from 

(Mayr et al. 2020). 
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Unsupervised analysis of the BALF proteome data revealed molecular signatures that did not 

correspond to clinical diagnosis. However, the clinical cohort of BALF samples, was characterized 

by clinical parameters consisting of 33 individual clinical measurements per patient, including 

various lung function parameters and plasma lactate dehydrogenase (LDH), that were available 

for analysis. To identify associations of the identified distinct protein signatures with these clinical 

parameters, Pearson correlation analysis with subsequent hierarchical clustering was performed 

(Fig. 21e). Many clinical parameters were significantly correlated with each other (Fig. 22a). This 

is exemplified by the expected decline of the diffusing capacity of the lung for carbon monoxide 

(DLCO) with age observed in our cohort, illustrating the high quality of clinical data used for this 

biomarker study (Fig. 22b). In sarcoidosis, it has been reported, that DLCO and CD4/CD8 ratio 

decrease with disease severity (from sarcoidosis stage I to III) (Capelli et al. 2002). Interestingly, 

in this cohort, a significant positive correlation of CD4/CD8 cell count ratio in BAL of ILD with DLCO 

was observed (Fig. 22c). The 33 clinical parameters were then employed to identify biomarkers 

by Pearson correlation analysis to all 1513 proteins that were quantified in BALF in at least 20 

patients.  

Thereby biomarker signatures were identified, revealing highly significant correlations of distinct 

sets of proteins with lung function parameters, including DLCO (Fig. 21a), or plasma levels for 

lactate dehydrogenase (pLDH) (Fig. 21b). Of note, top outliers remained significant even after 

accounting for patient age (Fig. 23b-e). For instance, the cartilage acidic protein 1 (CRTAC1) 

showed a very robust negative correlation (Fig. 21c), while the ECM protein Fibulin-1 (FBLN1) 

was positively correlated to pLDH (Fig. 21d). In total, 72 proteins with significant correlation (<10% 

FDR) with at least one clinical parameter were identified. Hierarchical clustering of these proteins 

identified two main clusters of proteins, mainly driven by correlations with lung function but also 

demographics, laboratory values and cytospin results (Fig. 21e). Proteins of the first cluster 

included A2M, the chemokine CCL18 and the ECM protein FBLN1, and showed a strong negative 

correlation to lung function parameters such as DLCO, and a positive correlation to age and 

plasma LDH. The second cluster, including proteins like the intercellular adhesion molecule 1 

(ICAM1), tetranectin (CLEC3B) and the cartilage acidic protein 1 (CRTAC1) showed the opposite 

pattern.   
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Figure 21. Human lung bronchoalveolar lavage fluid proteome changes correlate with clinical parameters.  
(a, b) The volcano plot shows Pearson correlation values (x-axis) and the –log10 p-value (y-axis) for BALF protein 
abundance and (a) DLCO and (b) plasma LDH (pLDH) values, respectively. (c, d) The scatter plots show (c) the negative 
correlation of CRTAC1 abundance in BALF (MS-intensity) with plasma LDH levels, and (d) the positive correlation of 
FBLN1 abundance in BALF (MS-intensity) with plasma LDH levels. (e)  The Pearson correlation values for 72 
significantly regulated proteins (<10% FDR) with indicated clinical parameters were grouped by hierarchical clustering 
into protein negatively and positively correlated with lung function (red and blue font respectively for negative and positive 
associations). Figure and legend taken from (Mayr et al. 2020). 
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Figure 22. Correlation patterns between 33 clinical parameters in the ILD BALF patient cohort. (a) 
Pairwise Pearson correlation values of 33 clinical parameters were grouped by hierarchical cluster 
analysis. (b) DLCO shows negative correlation with age in the study cohort (p<0.0001). (c) Positive 

correlation of CD4/CD8 ratio in BAL fluids with DLCO. Figure and legend taken from (Mayr et al. 2020). 
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Most proteins that we found increased in BALF of patients with high pLDH, were also associated 

with lower lung function (Fig. 23a). LDH in blood plasma is routinely measured in the clinics. With 

LDH being released during tissue damage and transpired to the blood, its levels in blood plasma 

are clinically used as a marker of common ongoing injuries and diseases such as heart failure. 

One hypothesis coming up was that BALF proteins with correlation to pLDH in human patients 

diagnosed with ILD, represent much likely a lung injury signature.  

To test this, a comparison of the human pLDH signature with BALF proteomes from mice after 

bleomycin treatment, representing acute lung injury, was performed (Schiller et al. 2015). And 

indeed, similar outlier proteins across species were revealed, including the injury marker 

Tenascin-C (TNC), mostly produced by myofibroblasts in the lung and other ECM proteins that 

occur predominantly upon injury, such as Fibulin-1 (FBLN1), Collagen alpha-3(VI) chain 

(COL6A3) and Periostin (POSTN) (Fig. 23f). Using 1D annotation enrichment analysis on the 

compared orthologous mouse and human proteins, the similarity became even more striking. 

Categories such as `Fibrolysis´, `Collagen´ and `Extracellularmatrix´ as well as `Acutephase´ and 

`Immunity´, which are associated with an upregulation upon injury, showed analogous positive 

enrichments (Fig. 23g). The comparison confirmed the hypothesis, that the pLDH correlation 

revealed protein changes in human patient BALF proteomes that are similar with the ones that 

can be observed upon a defined acute lung injury in the bleomycin mouse model. 

The analysis of BALF proteomes from 124 patients and the correlated protein expression with an 

extensive set of clinical parameters represents a comprehensive characterization of human 

pulmonary epithelial lining fluid composition. The identified co-regulated protein modules that were 

associated with patients lung function and current injury status, provide interesting protein 

signatures of which some of could be used to monitor acute or subclinical exacerbations of ILD 

patients.   
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Figure 23. BALF proteins correlating with plasma LDH represent a human lung injury signature.  (a)  The bar 
graph shows the Pearson correlation values of the indicated proteins for DLCO [%] (blue) and plasma LDH [U/L] (red). 
(c) The scatter plot shows significant correlation of alpha 2 macroglobulin (A2M) abundance (MS-intensity) in BALF with 
patient age. (d, e) Original (d) and age-corrected (e) correlation of A2M in BAL fluids with age. (f) The scatter plot shows 
the Pearson correlation of individual proteins from the human BAL fluid proteome with plasma LDH (x-axis) and the fold 
changes (y-axis) of the orthologous proteins in mouse lung after bleomycin injury. (g) The annotation enrichment score 
shows a common upregulation of gene categories like acute phase, ECM, complement and innate immunity in the BAL 

fluids of bleomycin mice and human ILD with high plasma LDH. Figure and legend taken from (Mayr et al. 2020). 
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4.1.3 Correspondence of fluid proteins with transcriptional changes 
in specific cell types 

Having the analysis of bulk BALF proteomes from 124 patients and the correlations of protein 

expression with 33 clinical parameters at hand, that were associated with patients lung function 

and current injury status, the next step was to make again use of the single cell DGE data between 

healthy and ILD. The aim was to explain quantitative changes in BALF protein signatures with the 

cell state changes analyzed by single cell RNA-seq. Therefore the diagnosis specific protein 

biomarker signatures in the BALF proteomes were deconvoluted and evaluated for the relative 

contribution of cell types. This was done by testing the mean intensity z-scores of protein 

expression across different clinical diagnosis groups, for an enrichment of transcriptional 

signatures that are cell type specific (Fig. 24a).  

Markers of several pro-fibrotic cell types including the fibroblast subsets of pericytes, plasma cells 

and mesothelial cells, were strongly increased in protein measurements of COP, NSIP, HP/EAA, 

and IPF compared to non-ILD controls, confirming the power of BALF proteomics to correctly 

score fibrogenic remodeling in the patients. Also plasma cells showed a higher correlation with a 

fibrotic diagnosis, confirming data that show increased MZB1-positive plasma cells in ILD (Schiller 

et al. 2017) (Fig. 24a). Interestingly, RB-ILD and Sarcoidosis samples behaved more similar to 

non-ILD controls for this fibroblast signature, which is consistent with their distinct histopathology 

that does not involve strong interstitial fibrosis. While RB-ILD protein analysis featured very strong 

enrichment for proteins specific to airway basal, ciliated and goblet cells, the same airway protein 

signature was depleted in patients with COP, NSIP and HP/EAA but not IPF (Fig. 24a).   

Similar to this analysis the correlations of the 33 clinical parameters were tested for 

correspondence with specific cell types. Also here strong associations of cell type signatures with 

the Pearson correlation of most clinical parameters with protein measurements were found (Fig. 

24b). For instance, the myofibroblast specific proteins quantified in patient BALF tended to be 

negatively correlated with lung function (DLCO), in agreement with the expectation that 

myofibroblast mostly occur during injury (Fig. 24c). Similarly, the number of alveolar macrophages 

in BAL-cytospins tended to be negatively correlated with proteins (mostly antibodies) secreted by 

plasma cells into the ELF (Fig. 24d). Also the positive correlation of Critical Response Protein 

(CRP) value, an indicator for inflammation in the body, with monocytes and lymphocytes, proofed 

the quality of the analysis. Thus, deconvolution with cell type signatures could successfully reveal 

diagnosis and disease state specific biomarker fingerprints in protein measurements. 
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Figure 24. Protein signatures in BALF predict changes in cell types. (a) The heatmap shows relative contribution of 
cell types to the diagnosis specific protein biomarker signatures in epithelial lining fluid (ELF). (b) The heatmap shows 
relative contribution of cell types to the association of protein biomarker signatures in ELF with the indicated clinical 
parameters. (c, d) Empirical cumulative density plots show the distribution of correlation coefficients for (c) myofibroblast 
markers (red points) with DLCO and (d) Plasma cell markers (red points) with % alveolar macrophages in BAL and the 
background proteins (black line). Figure and legend taken from (Mayr et al. 2020). 
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While so far only the proteome data was tested with the single cell DGE, the next was to apply 

information from the BALF proteomics and the clinical data onto the single cell patients. To test if 

such a transfer of information from the proteomics modality into the scRNAseq data modality is 

possible, artificial intelligence and machine learning were applied. A random forest was trained on 

the protein quantification data to predict lung function (DLCO) using a set of proteins (Fig. 25a). 

These proteins had to fulfil the criteria of showing a high correlation with lung function (DLCO) and 

having their corresponding transcript detected in the scRNAseq data. The scRNAseq data was 

transformed into an in-silico bulk data, since instead of the single cell information the whole 

transcriptome per patient was needed for this analysis. Next, the trained model was applied to this 

bulk scRNAseq data and the mRNA expression mapped to proteins (Fig. 25b).  This model then 

correctly predicted the direction of lung function changes in the three single cell RNA-seq cohorts, 

with endstage lung fibrosis patients being predicted, to have a significantly (in two out of three 

cohorts) lower lung function (Fig. 25b). Looking at the most important protein features, driving the 

random forest model, indeed, the most of them appeared to be regulated in a cell type specific 

manner at the mRNA level (Fig. 25c). 

Figure 25. Protein signatures in BALF predict lung function decline and the corresponding cellular changes. 
(a) The Pearson correlation of protein features in ELF was used to train a random forest algorithm. Training data was 
used on transcriptional signatures in single cell RNA-seq data to correctly predict reduced lung function in endstage 
lung fibrosis compared to control donors. (b) Box plots show predicted lung function changes (DLCO %) in the three 
single cell RNA-seq cohorts.  (c) Top protein features in the random forest training data are shown with their relative 
gene expression changes in the different indicated cell types, illustrating cell type specific changes in lung fibrosis for 
these BALF biomarkers. Figure and legend taken from (Mayr et al. 2020). 
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4.1.4 Smoking induces highly persistent cell state changes in the 
lung 

Part of the 33 clinical parameters of the BALF cohort, was not only the information if the patients 

were smokers or not, but also if they had previously been smoking, as well as the pack years 

index for all smokers; used for COPD risk prediction and calculated by multiplying the number of 

cigarettes per day with the number of years they were smoking. Clinical characteristics of patients 

included in the smoking analysis are shown in Table 2. Given the critical impact of smoking on 

lung health, being the major risk factor for six of the eight leading causes of deaths in the world, 

including respiratory and cardiovascular diseases, stroke and several malignant diseases, the 

analysis of smoking induced changes was the next aim. 

A robust smoking protein signature was identified in the BALF proteomes of the ILD cohort. To 

look at changes that stem from active smoking, a t-test between active smokers (n = 19) and never 

smokers (n = 36) identified 422 significantly regulated proteins (FDR<10%) (Fig. 26a). The most 

significantly regulated proteins included AKR1B10 and the ubiquitin carboxyl-terminal hydrolase 

isozyme L1 (UCHL1), both of which have been shown to be elevated in epithelium of `healthy´ 

smokers (non-ILD smoker) (Carolan et al. 2006, Wang et al. 2010). Comparing active smokers 

with ex-smokers (n = 49) identified 137 significantly regulated proteins (FDR<10%) (Fig. 26b). 

Hereby, only some of the top outliers were similar to the one from the comparison of active against 

never smokers. Interestingly, the test between ex-smokers against never smokers showed 36 

significantly altered proteins (FDR<10%) (Fig. 26c). This indicates that while, some of the 

alterations induced by smoking are acute and vanish over time, there are persisting changes even 

after smoking cessation. Indeed, the fold changes between active/never and ex/never smokers 

were significantly correlated (Pearson r = 0.4785, -log10 p-value = 14.6536) (Fig. 27a). However, 

while surprisingly many changes in smokers persisted after cessation even over decades, a 

number of oxidoreductases, such as AKR1B10, were highly specific markers of active smoking; 

AKR1B10 showed significantly higher MS-values in active smokers than in never smokers or ex-

smokers (Fig. 27a-c). The chemokine CCL18, on the other hand, previously reported as 

downregulated in alveolar macrophages (Kollert et al. 2009), continued to show lower MS-values 

also after smoking cessation, suggesting that alveolar macrophages permanently change their 

phenotype upon smoking (Fig. 27d, e). The scavenger receptor CD163 was also downregulated 

in both active and ex-smokers compared to never smokers (Fig. 24f). The decline in CCL18 and 

CD163 was permanent and independent of time after cessation (Fig. 27e and 27g, respectively). 

Contrary to never smokers, the intensity distribution of CD163 was bimodal in smokers (Fig. 27h), 

indicating that only a subset of patients is affected in this manner by smoke exposure and 

suggesting involvement of additional factors. 
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  characteristics 
active smokers 

n=19 

Ex smokers 

n=49 

Never smokers 

n=36 

p-value 

Age 46.9±14.5 65.9±10.9 58.8±13.6 <0.0001 1,2,3 

Pack years 30.3±21.4 30.3±23.9 0 <0.0001 2,3 

FVC (%) 76.8±21.9 81.1±20.7 79.6±18.0 0.76 

DLCO (%) 59.9±21.8 53.6±21.3 63.5±21.3 0.16 

Table 2. Clinical parameters of smoking cohort. (1) p-value active vs ex smokers <0.05; (2) 
p-value active vs never smokers <0.05; (3) p-value ex vs never smokers <0.05; Table and 
legend taken from (Mayr et al. 2020). 

Figure 26. Smoking induces changes in BALF 
proteomes. (a-c) The volcano plots show 
significantly regulated proteins in BALF between (a) 
active smokers (n=19) and never-smokers (n=36), 
(b) active smokers and ex-smokers (n=49), and (c) 
ex-smokers and never-smokers. Figure and legend 
taken from (Mayr et al. 2020). 
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Figure 27. Smoking, active and former, induces specific and reliable transient and persistent changes reflected 
in BALF proteomes. (a) The scatter plot compares the fold changes between active smokers vs. never-smokers (x-
axis) and ex-smokers vs. never-smokers (y-axis). (b) AKR1B10 is significantly higher and more often detected in BAL 
fluid of active smokers in comparison to ex- (p<0.0001) and never smokers (p<0.0001). (c) Analysis of AKR1B10 and 
years of smoking abstinence show a reversible expression pattern of AKR1B10 after smoking cessation. (d) CCL18 is 
detected significantly more often in never vs ex-smokers (p=0.0417) and with significantly higher intensity in never vs 
active smokers. (e) The reduced levels of CCL18 do not go back to baseline after smoking cessation. (f) While CD163 
was detected in almost all patients irrespectively of the smoking status, ex- and active smokers showed significantly 
lower protein levels in comparison to never smokers. (g) CD163 levels are changed in smokers and do not recover 
after smoking cessation. (h) The histograms show the distribution of MS-intensity values for CD163 in ELF across 
patients in never smokers (left panel) and smokers (ex- and active smokers – right panel). Figure and legend taken 

from (Mayr et al. 2020). 
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With the analysis of bulk BALF proteomes from smoking patients and the correlations of protein 

expression with the smoking status at hand, the next step was to make again use of the single cell 

DGE data. The relative contribution of cell types to the protein biomarker signatures in BALF with 

patient smoking status was tested by using deconvolution (Fig. 28a). Proteins derived from airway 

epithelial cells, especially ciliated, basal and goblet cells were strongly enriched in BALF of 

smokers compared to non-smokers. Interestingly, the increase of proteins from basal and goblet 

was reversible, while increased abundance of proteins derived from ciliated cells was persistent 

(Fig. 28a). Thus, the scRNAseq data allowed the assignment of the persisting and reversible 

effects that could be observed in the BALF protein data, to three distinct cell types in the lung. 

Interestingly, especially fibroblasts showed little contribution to the specific smoking signatures. 

Of note, the top proteins regulated with smoking status in BALF, which were also driving the 

deconvolution, were also regulated on transcriptional level in the three single cell RNA-seq cohorts 

in at least one cell type (Fig. 28b). 

  

Figure 28.  Smoking changes reflected in BALF proteomes can be assigned to certain cell types. (a) The heatmap 
shows relative contribution of cell types to the specific protein biomarker signatures in epithelial lining fluid (ELF) of 
active, former and never smokers. (b) Top protein features in the smoking correlation data are shown with their relative 

gene expression changes in the different indicated cell types. Figure and legend taken from (Mayr et al. 2020). 
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4.1.5 Biomarkers of lung health in plasma proteomes 

As introduced earlier, body fluids in general, but most importantly blood, are used in the clinics on 

a regular basis to detect disease specific biomarkers and infer diagnosis or treatment.  Having 

analyzed BAL fluid extensively the next goal was to extend the analysis to the blood, more specific 

the plasma proteome. Using an established high throughput plasma MS-based proteomics 

workflow (Geyer et al. 2017, Geyer et al. 2019, Niu et al. 2019) (Fig. 29a), plasma proteomes from 

two independent cohorts of ILD patients were generated (Munich, n=30 and Hannover, n=81; 

healthy age matched controls, n=30; see Table 3 for clinical characteristics; due to ethics no 

information about the healthy individuals was available). Due to the specialization of the hospital 

in Hannover, the cohort included more patients with better lung function on average, with samples 

taken mainly at time of initial diagnosis. On the other hand, the cohort from the Munich hospital 

specialized on transplantation, contained patients closer to end stage disease. Thus, by default, 

no perfect match of these two cohorts was expected, but given the large numbers of patients, a 

validation cohort was much appreciated. Correlating the MS-intensities with FVC %, a shared 

panel of proteins in both cohorts was identified, that were either positively or negatively associated 

with the lung function outcome (Fig. 29b).  

The secreted protein cartilage acidic protein 1 (CRTAC1) showed the most significant positive 

correlation with lung function, with higher levels being measured in the plasma of patients with 

better lung function in both cohorts. CRTAC1 was also positively correlated with lung function in 

the BALF proteome analysis (Fig. 29c, Fig. 21c), and was robustly detected by mass spectrometry 

in >80% of the plasma samples (Fig. 29d). Interestingly, CRTAC1 correlated negatively with 

pLDH, which correlated with a lung injury signature. Re-analysis of published bulk transcriptomes 

confirmed a highly significant downregulation of CRTAC1 mRNA in the lung of ILD patients 

compared to healthy controls and COPD patients (Fig. 29e).  

 

 

 

 

 

 

Table 3. Comparison of plasma proteome cohort Munich 3 and cohort 
Hannover. Table and legend taken from (Mayr et al. 2020). 

 

 
All         

n=111 

Cohort Munich 3 

n=30 

Cohort Hannover  

n=81 

Age, years 64.8±11.7 62.4±7.3 65.7±12.9 

FVC [%soll] 65.7±19.2 55.4±16.9 69.3±18.7 

DLCo (SB) [% Soll] 46.6±21.4 27.5±17.2 53.8±18.3 

LDH U/l  172.5±96.4 286.4±113.5 130.3±37.9 
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Figure 29. Multi-cohort plasma proteome analysis 
identifies the novel peripheral biomarker of lung 
health CRTAC1. (a) A high throughput experimental 
workflow for plasma proteomics32. (b) The indicated 
proteins were selected based on their common direction of 
correlation with patient lung function in two independent 
patient cohorts with distinct clinical characteristics. (c) The 
bar graph shows Pearson correlation coefficients of the 
indicated proteins with the lung function parameter forced 
vital capacity (FVC %) in the bronchoalveolar lavage fluid 
proteome cohort (BALF Munich), and two plasma 
proteome cohorts (plasma Munich, plasma Hannover). (d) 
All proteins quantified in plasma ranked by their 
abundance measured by mass spectrometry (MS-
intensity). (e) Relative gene expression levels of CRTAC1 
in GSE47460. Dots represent average expression in 
tissue of individual patients. The line represents the mean. 
CRTAC1 is significantly downregulated in ILD but not 
COPD patients (One-way ANOVA). Figure and legend 

taken from (Mayr et al. 2020). 
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Figure 30. CRTAC1 – a novel marker for health of AT-2 
cells in the lung. (a) Relative expression level of CRTAC1 
across human organs. (b) UMAP embedded visualization 
of single cells colored by gene expression for CRTAC1, 
which is specifically expressed in alveolar type-2 (AT2), 
Club and lymphatic endothelial (Lymp_EC) cells. (c) The 
box plots illustrate differences in mRNA detection for 
CRTAC1 in alveolar epithelial cells from control donors 
and fibrosis patients in the three indicated patient cohorts. 
(d) The heatmap shows the predicted relative contribution 
of lung cell types to the association of protein biomarker 
signatures in plasma with lung function (forced vital 
capacity - FVC). Patients were split in two groups, one with 
a mild decline in lung function [FVC 60-100%] and one with 
severe loss of lung function [FVC 20-60%] and compared 
to healthy age matched controls. Figure and legend taken 
from (Mayr et al. 2020). 
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Total tissue RNA-seq analysis of CRTAC1 (Human Protein Atlas, (Uhlen et al. 2015)) showed the 

strongest expression in lung compared to all other organs (Fig. 30a). To identify the so far 

uncharacterized cellular source of CRTAC1 protein expression, the single cell data revealed 

specific expression in lung lymphathic endothelium, airway club cells, and most prominently in 

alveolar type-2 epithelial cells (Fig. 30b). Expression of CRTAC1 in alveolar epithelial cells was 

consistently downregulated in ILD samples compared to controls in all three patient cohorts 

analyzed by single cell RNA-seq (Fig. 30c). Therefore, CRTAC1 was found as a particular robust 

example for a marker that reports lung health, which can be monitored with mass spectrometry 

workflows from easy accessible patient blood. 

Finally, the relative contribution of cell types to the protein biomarker signatures found in plasma, 

which correlated with lung function, was analyzed (Fig. 30d). Therefore, the patients were divided 

into two groups representing mild (FVC 60-100%) and severe disease (FVC 20-60%) based on 

lung function (FVC %) and compared these two groups with healthy controls (no FVC % data 

available). Interestingly, a gradual increase of proteins potentially derived from lung fibroblast 

subsets, plasma cells and plasmacytoid dendritic cells (pDC) was observed, which is in agreement 

with the scRNAseq and BALF data, highlighting the pivotal role of fibroblast in fibrotic diseases. 

Similarly a gradual reduction of proteins potentially derived from lung endothelial cells, alveolar 

macrophages, AT-2 cells, and mDC2 was found, demonstrating that lung damage can be seen in 

blood plasma (Fig. 30d). 
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4.1.6 Discussion 

With the rise of single cell genomics and its fast evolution, making cell atlases for almost every 

organ available to everyone, the field is now moving on, towards the mechanistic characterization 

of pathogenesis and disease progression. Therefore, larger cohorts can help the concept, that 

variance between individuals within patient cohorts can help to model the diseases on a cellular 

level. Patients at different stages of a disease progression trajectory will have their cells and 

tissues in different characteristic states. Body fluids of those patients potentially contain a 

composite representation of these disease stages with specific differences in the form of proteins 

and possibly cell free DNA. To be able to make predictions about cell and tissue level changes in 

the patient, and help with diagnosis, these composite signatures need to be deconvoluted. 

Ultimately, training of machine learning algorithms with large datasets of matched single cell 

genomic and fluid proteomic or sequencing readouts will enable new automated tools for clinical 

decision making (Walsh et al. 2019) and drug monitoring (Maher et al. 2019) thereby and 

strengthen personal medicine approaches (Mayr et al. 2020). 

Along those lines, the presented work describes the integration of multiple lung fibrosis scRNAseq 

datasets, gaining statistical power, to resolve cellular origins of predictive protein signatures in 

body fluids of large ILD patient cohorts, gained from mass spectrometry-based proteomics.  

As introduced earlier, injuries to alveolar epithelial cells (AEC) paired with an aberrant repair 

response, cause pathological interactions of AEC with fibroblasts and subsequent accumulation 

of scar tissue, leading to pulmonary fibrosis in ILD patients. In this study, correlation of ELF protein 

abundances with levels of LDH in patient plasma identified a human lung injury signature that 

could be verified in the bleomycin mouse model of acute lung injury. The protein injury signature 

contained known biomarkers of IPF, such as MMP7 and CCL18, which correlated with lung 

function decline (Mayr et al. 2020). The injury signature furthermore featured regulated proteins, 

derived from various cell types: fibroblast subsets, plasma cells and mesothelial cells were 

increased, whereas proteins derived from several other cell types including alveolar macrophages, 

airway and alveolar epithelial and endothelial cells showed reduced levels (Mayr et al. 2020). 

Thereby, the aim using the human lung IPF cell atlas to deconvolute the bulk protein data was 

successfully reached. 

CRTAC1 was the most robustly detected protein across all modalities, with its function in the lung 

unknown. CRTAC1 levels in plasma and BALF correlated not only with lung function but also 

pLDH, inferring an injury status, and the highest expression in the human body could be traced 

back to the AT-2 cells in the lung (Mayr et al. 2020). Interestingly, others have shown that in 

isolated human AT-2 cells, the levels of CRTAC1 were increased upon differentiation with 

glucocorticoids (Ballard et al. 2010), which are essential for alveolar maturation in lung 
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development (Gerber 2015). The function remains obscure but with the downregulation of 

CRTAC1 in AT-2 celsl of ILD patients, the data might hint at uncharacterized changes in 

glucocorticoid signaling upon injury in these cells (Mayr et al. 2020). 

ILD patients experience highly diverse clinical courses, with progression often accelerated due to 

acute exacerbations (AE), associated with a high mortality (Collard et al. 2016). As introduced 

earlier, efforts have been made to find predictive biomarkers for AE and disease outcome (Collard 

et al. 2010, Neighbors et al. 2018). For instance elevated serum levels of AT-2 derived surfactant 

protein A (SP-A) and D (SP-D) are associated with an increased risk of mortality in IPF (Greene 

et al. 2002, Kinder et al. 2009). Nevertheless, such biomarkers are currently not clinically 

established and often it is unclear which cellular changes they represent, hindering more precise 

treatment. While early detection of AE is currently of major interest, there are also patients who 

present with clinical worsening without meeting the criteria for AE. A daily home spirometry study 

resulted in highly diverse lung function trajectories in IPF (Russell et al. 2016), suggesting that 

lung function diversity could also reflect different stages after epithelial lung injury, that could be 

monitored with BALF. Thereby, phases of decreased lung function (potentially being a phase of 

subclinical injury/exacerbation) would be followed by phases of slightly increased lung function 

(potentially being a phase of successful tissue repair). Therefore, the human lung injury signature 

discovered in this study can help in the design of follow up studies, to evaluate the use of the 

signature in monitoring acute or subclinical exacerbations of ILD patients (Mayr et al. 2020).  

Unexpectedly, and not defined as an aim beforehand, this study presents a surprisingly large set 

of changes between ex-smokers and never smokers. Notably, some of those changes can still be 

found even after decades of smoking cessation, suggesting permanent epigenetic alterations. 

Indeed, in genome-wide DNA methylation studies, signatures of smoking induced changes have 

been shown to persist over many years (Joehanes et al. 2016). Deconvolution of BALF proteomes 

with cell type signatures, showed a strong increase in contributions from airway club and goblet 

cells as well as ciliated cells in active smokers, which was most prominent in smoking associated 

RB-ILD patients. Interestingly, the increase in club and goblet cell derived proteins, which could 

stem from smoking induced goblet cell hyperplasia (Duclos et al. 2019), was fully reversible upon 

smoking cessation. The number of proteins derived from ciliated cells remained upregulated in 

ex-smokers, though. This indicates a permanent shift in airway epithelial cell composition in ex-

smokers. Top hits in the differential gene expression analysis, between smokers and non-smokers 

in the three single cell cohorts, also showed a bias towards airway epithelial cells.  However, as 

expected also alveolar macrophages (AM) were severely affected. For instance, a negative 

correlation of AM derived CCL18 with lung function was observed accompanied by an irreversible 

downregulation of the protein in BALF, once the patient ever smoked. CCL18 has been reported 

to be elevated in the serum and BALF in patients with interstitial lung disease (Prasse et al. 2007). 

A pooled post-hoc analysis of the CAPACITY and ASCEND studies identified CCL-18 as the most 
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robust blood marker for disease progression in IPF (Neighbors et al. 2018). Given the new data 

in this study, that CCL18 levels are permanently reduced in ex-smokers, and with the majority of 

IPF patients having a smoking history, it will be necessary to re-evaluate previous reports on 

association of CCL18 with IPF progression, with respect to the smoking status (Mayr et al. 2020). 

Also the predefined aim of using the scRNAseq and MS data for clinical predictions was reached. 

The machine learning analysis shows, that correspondence of fluid proteomes and single cell 

transcriptomes can be used to correctly predict the direction of lung function changes across 

modalities. Therefore, further development of this concept will reach the stage where it can 

contribute to future clinical decision making. The presented work has several limitations that 

prohibit the full completion of this task, though. With the cross-modal analysis having been done 

on non-matched patient cohorts, it is currently difficult to assess the specificity of fluid proteome 

signatures for tissue level cell state changes, and to go beyond associative signatures. Thus, 

carefully designed longitudinal multi-modal analysis of animal models and patient cohorts will be 

required to train machine learning algorithms, in particular causal inference models, for future 

applications in predictive personalized medicine (Mayr et al. 2020).  

Regarding the aims of this study it should be noted that the integration of multiple single cell data 

sets was an important step. Previously published single cell datasets on fibrosis, also already 

comparing health and disease, like the Chicago or Nashville cohort alone, consisted of a small 

number of samples. Taking into account the heterogeneity of patients and diseases trajectories, 

this could have an impact on conclusion drawn out of the analysis. Not only was the statistical 

power missing, both in sample as well in cell number to perform significant analysis, but also cell 

type annotations are different, with no regulations in place, for defining names for cell states. In 

the worst case scenario this can lead to different names for the same cell type, rendering 

comparison between studies useless. The successful integration of datasets in this study therefore 

provides a valuable too l for the community. As for limitations of the study, small differences that 

can still be observed between cohorts, most likely stem from different single cell sampling 

techniques. This includes not only differences in microfluidic platforms to capture the mRNA from 

single cells, where the Chicago and Nashville cells were sample with the Chromium platform from 

10x Genomics, while Drop-seq was used in Munich. Also alternating compositions of enzyme 

mixes used for tissue digestion to release cells and create single cell suspensions can account for 

differences. This can be the reason for varying cell type frequencies between the studies, as seen 

in Fig 13. 

 

The aim of the proteomic analysis of BALF and plasma was also reached, demonstrating however 

the still existing limitations in the sensitivity of MS measurement. While the BALF data provided 

significant insights in the smoking changes, the proteome at the sensitivity of the analysis did not 
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reflect overall clinical diagnosis. Rather it might have reflected molecular and cellular alterations 

that are a consequence of disease progression or acute illness. The MS analysis of two plasma 

cohorts from Munich and Hannover showed only a weak correlation between cohorts. This can be 

attributed to the difference in sample source, with the Munich blood sampled in plasma tubes, 

while in Hannover serum was extracted. However, finding lung specific proteins in blood plasma, 

that correlate was clinical data sampled because of lung injury, is an important milestone, when 

keeping in mind that blood is the foremost body fluid that is circulating in the whole human body 

and could pick up changes in every organ. 
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4.2 Mesenchymal heterogeneity in the lung  

The work presented in this chapter summarizes the findings in this project up to the completion of 

the thesis. The project is still ongoing to delineate the heterogeneity of stromal cell subtypes and 

their specific localization first at the healthy baseline, as well as their changes and roles in injury 

and repair in the bleomycin mouse model of lung fibrosis and how this compares to the human 

disease. 

The PhD student, was involved in all parts of this study, performed most of the practical work, 

executed programming code and drafted all the figure panels. Credit goes to Paulina Ogar, for 

help in setting up the SCRINSHOT technique and analyzing the in situ localization data as part of 

her master thesis under supervision of the PhD candidate, Meshal Ansari for support in single cell 

analysis, Dr. Maximilian Strunz and Ilias Angelidis for help with mouse work and with collecting 

the mouse single cell samples and to Dr. Andreas Liotons for introduction to the SCRINSHOT 

technique as part of a lab exchange for two weeks in Stockholm. 

4.2.1 Introduction 

Epithelial cells receive multiple signals from the surrounding mesenchymal niche, which controls 

homeostasis and activation of stem cells upon injury. Along the airway tree and the respiratory 

unit numerous specialized epithelial cell types are surrounded by a poorly defined heterogeneous 

mesenchyme. The mesenchyme in the lung consist of several distinct cell lineages with major 

functions in the respiratory system, including poorly defined populations of different fibroblast 

subtypes, stromal cells such as pericytes, endothelial cells, mesothelial cells, airway smooth 

muscle cells (ASMCs) and vascular smooth muscle cells (VSMCs). Some of these cell lineages 

are defined by common and known markers, such as platelet endothelial cell adhesion 

molecule/CD31 (PECAM1) for endothelial cells, platelet-derived growth factor receptor-β 

(PDGFRB) for pericytes, α-2-smooth muscle actin (ACTA2) in pan-smooth muscle cells or 

mesothelin (MSLN) in mesothelial cells (Danopoulos et al. 2020). However, markers to identify 

each cell type are missing or nonspecific for the majority.  This is especially the case for fibroblasts 

in general, and also for VSMCs in comparison to ASMCs, where there are no definitive markers 

allowing to distinguish between them (Danopoulos et al. 2020). Thus, defining cellular identity, 

and delineating which specific markers characterize these specific subpopulations, have been 

significant hurdles in understanding the role and function of certain mesenchymal cells in the lung 

(Sucre et al. 2020). Along with the unknown function, also the identification and nomenclature of 

subpopulations of mesenchymal cells is poorly defined yet and has been based largely on the 

phenotype or location of these cells, if known e.g. for lipofibroblasts and myofibroblasts (Sucre et 

al. 2020). 
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scRNA-seq again comes to the rescue to answer these fundamental questions of cellular identity 

and heterogeneity, and to generate new hypotheses about lung homeostasis and disease 

pathogenesis. Use of scRNA-seq allows not only for the analysis of mesenchymal subtypes at 

single cell resolution, but also within the context of transcriptomic differences between them. 

Along with the rise of scRNA-seq techniques, novel advancements in spatially resolved 

transcriptomics have developed at a similarly fast pace. These technologies are centered on 

providing omics data from specimens while keeping positional information (Crosetto et al. 2015). 

Among those, spatially resolving methods are available that evolved from single-molecule 

fluorescence in situ hybridization (smFISH) which has already been widely used to detect single 

RNA molecules(Femino et al. 1998). Newer iterations allow multiplexing of several colors and up 

to 3000 cells and 80 genes at once (Lee et al. 2015, Nagendran et al. 2018, Sountoulidis et al. 

2020). Therefore, not only newly found marker gene signatures can be validated in a histological 

context in the tissue in situ, but the location of a cell can also give an indication for its function, 

which is currently  an urgent need in the mesenchymal compartment (Stuart et al. 2019). 

While the crosstalk of epithelium and mesenchyme is important during hemostasis, it becomes 

even more critical during injury and during repair. As introduced earlier, factors such as Tgfβ-1 or 

sonic hedgehog (Shh) signaling, coming from the mesenchyme, are essential to promote AT-2 

cell self-renewal and differentiation into AT-1 cells, with errors during this process or repeated 

injury leading to fibrosis (Barkauskas et al. 2013, Peng et al. 2015). Different epithelial –

mesenchymal interactions are likely to occur during this process, however identity and precise 

location of these different niches are unknown. Consensus is achieved, though, over the critical 

role of myofibroblast during fibrotic injury in human, as well as, nicely reproduced in mouse model 

of bleomycin lung injury. Activated fibroblasts and myofibroblasts are regarded as the key cell 

types that lead to an increased deposition of extracellular matrix and fibroblastic foci in lungs of 

patients with idiopathic pulmonary fibrosis. The origin of myofibroblasts however remains elusive, 

with multiple sources suggested in different studies over the years (Phillips et al. 2004, Kim et al. 

2006, Hoyles et al. 2011, Rock et al. 2011).  

The following sections will summarize the results of the herein conducted investigations. Single 

cell transcriptomics on whole lung cell suspensions of healthy adult wild-type mice was performed. 

The cells were therefore first negatively depleted for epithelial and endothelial as well as 

leukocytes, to use an unbiased approach for classification of mesenchymal cell subtypes. 

Massively parallel scRNA-seq of mesenchymal cells identified 6 distinct cell types, including 

mesothelial cells, smooth muscle cells, and 5 distinct stromal cell types with features of fibroblast 

phenotypes. Multiplexed in situ FISH, using the SCRINSHOT technique, enabled the definition of 

distinct locations and interaction partners of these subtypes, indicating and corresponding with 

their diverse function. Having identified mesenchymal heterogeneity at base-line, an 18 time point 
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scRNAseq experiment with over 30 mice was performed using the bleomycin mouse model of 

lung fibrosis and regeneration. The analysis dissected mesenchymal cell types during injury at 

single cell level and identified activated states with a changed mRNA expression profile for all 

mesenchymal subtypes upon injury. Importantly, the scRNA-seq data revealed a clear progenitor 

of myofibroblasts among the cell types and allowed to define myofibroblasts by an extensive gene 

signature. The comprehensive analysis of the mouse lung mesenchymal compartment at baseline 

and in lung injury was finally compared to the situation in the human that was introduced in the 

first chapter, to identify common and species specific changes. 

4.2.1 Fibroblast heterogeneity in the adult wild-type mouse lung 

Cell type diversity in the mesenchymal compartment of the mouse lung was studied using the 

Drop-seq platform for single cell sequencing (Macosko et al. 2015). Whole lung parenchyma cell 

suspension was obtained from two adult (p70) wild-type C57BL/6 mice. Negative selection was 

performed using MACS based on the indicated marker proteins, to remove endothelial (Pecam1), 

epithelial (Epcam), hematopoietic (Cd45), lymphatic (Lyve1) and erythrocyte (Ter119) cell 

populations. Approximately 2500 cells per sample were sequenced, which finally, after filtering 

(mesothelial cells were taken out of the data to focus on fibroblasts) and quality control, resulted 

in a data set containing 1267 cells (Fig. 31a). The single cell dataset was then reduced in the data 

dimensionality, using the UMAP method (Becht et al. 2018). The UMAP was displayed with a color 

code for the two replicates, and assessment of overlaying of the cells, and all clusters consisting 

of both replicates, both proved good accordance (Fig. 31d). All cells correctly displayed expression 

of mesenchymal markers Vimentin (Vim) and Collagen 1 alpha chain 2 (Col1a2), marking them 

as mesenchymal cells (Fig. 31c). Unsupervised clustering and Partition-based graph abstraction 

(PAGA) of the data revealed 6 cell clusters and their connectivity (Fig. 31f). Next the cell state 

identities were derived by manual annotation of the clusters with known canonical marker genes 

and signatures from published single cell RNA sequencing studies (Angelidis et al. 2019, Strunz 

et al. 2019). 

And indeed, with lipofibroblasts, peribronchiolar fibroblasts, adventitial fibroblasts, pericytes and 

smooth muscle cells (SMCs) and the new cell type Hhip+ fibroblasts, six mesenchymal cell types 

could be revealed (Fig. 31b,f). Notably, already by observation of the location of the clusters as 

nodes in the PAGA map, and their intensity of connectivity, it became obvious, that some were 

more similar to each other than others, such as the SMCs and pericytes, both showing high alpha 

smooth muscle expression  (Acta2) (Fig. 31e). Interestingly, Hhip-cells, defined by their 

characteristic expression of the hedgehog interacting gene (Hhip), of which the function is 

unknown seem to connect the lipofibroblasts with the more Acta2 expressing cells.  
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a b 

Figure 31. Single cell analysis of mouse lung mesenchymal compartment reveals 6 distinct cell type identities. 
(a) scRNAseq experimental design. (b-e) Dimension reduced single cell transcriptomic data is visualized through 
Uniform Manifold Approximation and Projection (UMAP). The color code illustrates the cell types (a), replicates (d), or 
marker genes (c,e). (f) Partition-based graph abstraction (PAGA) of the data shows 6 cell clusters as nodes and their 
connectivity/commonness as thickness of the edges. 

c d 
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Figure 32. Marker genes and GO term 
enrichment characterize fibroblast subtypes in 
the mouse lung. (a) Top20 genes of the cell type 
differential gene expression (DGE) are shown, 
together with the most distinct terms of the GO 
enrichment analysis. (b) The heat-map displays five 
specific markers genes that are nearly exclusively 
expressed for the indicated cell type and their 
normalized expression values. 
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Platelet-derived growth factor receptor A and B (Pdgfra and Pdgfrb) expression among the cells, 

both often used as generic marker for fibroblasts together with Col1a1, was rather distinct and 

more pronounced in certain cell types, demonstrating nicely the need for better sub type markers 

(Fig. 31e). All fibroblast cell type identities were characterized by unique marker gene expression 

profiles, after performing differential gene expression (DGE) between and against all clusters. 

While the heatmap provides five genes per cell type and proves their specific expression, the 

dendrogram shows the Top20 genes of the DGE, providing a useful tool for future cell type based 

analysis (Fig. 32a,b). Additionally, gene ontology (GO) enrichment analysis (Consortium 2019, Mi 

et al. 2019) was performed on the fibroblast subsets. SMCs were rightfully characterized by the 

terms “muscle contraction” and “wound healing”, while pericytes were marked by “blood 

circulation” and “vasculature development”. Lipofibroblast contained more general terms such as 

“tissue development” or “cell adhesion”, while the Hhip+ cells, so far uncharacterized seemed to 

have the best of both worlds with “muscle structure development” and “collagen containing ECM”. 

Interestingly, adventitial fibroblasts were marked by terms like “blood vessel morphogenesis” or 

“vasculature development”, emphasizing their function as cells, providing structure and ECM 

around the vessels. Terms such as “ECM organization” and “collagen metabolic process”, hinting 

at clear matrix protein production, were mainly found in the peribronchiolar fibroblasts (Fig 32a). 

Fibroblasts are known to be the major source of extracellular matrix and structural components in 

the tissue. Therefore, the fibroblast cell types were analyzed for their specific protein expression 

that can be attributed to the “Matrisome” in the mouse lung, as the ensemble of ECM proteins and 

associated factors, as defined by MS-based proteomics (Naba et al. 2012) (Fig. 33).  While Hhip+ 

cells show nearly no distinct Matrisome protein expression, pericytes and SMCs share a few. 

Lipofibroblasts, with 25 proteins, express the second most specific proteins, which is in 

concordance with their appearance as cluster with the second most cells of all fibroblast types in 

the mesenchyme of mouse lungs. Far the most distinct Matrisome proteins are expressed by the 

peribronchiolar and adventitial fibroblasts, that were since put together into one group termed 

“Matrix fibroblasts” for further analysis. Over 70 specific ECM proteins, together with the GO term 

of “ECM organization” suggest a major role in structural integrity for the matrix fibroblast, be it 

around the vessels or in the alveolar space.  

In summary, an in-depth analysis of the mesenchymal compartment in the adult and healthy 

mouse lung was generated on a single cell level. UMAP clustering revealed six fibroblast 

subtypes, among them a new cell type of Hhip+ cells. Differential gene expression identified 

specific marker genes, especially for adventitial and peribrochiolar fibroblasts and GO term 

enrichment analysis characterized each cell type. Comparison of Matrisome proteins, revealed 

nearly exclusive expression of ECM protein by each fibroblast subtype, indicating their specialized 

individual role and function. 
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Figure 33. Fibroblasts subtypes in the mouse lung are characterized by specific expression of Matrisome 
proteins. The top200 proteins per cluster, out of the differential gene expression between cell types, were used to 
extract gene names. Genes were filtered for an entry in the “Matrisome” list. Matrisome protein gene names were 
applied to a Venn diagram analysis. [Matrix fibroblasts is a merged cell type annotation with clusters of alveolar 
and adventitial fibroblasts combined]  

Pericytes 



4.2  Mesenchymal heterogeneity in the lung 
 

89 
 

4.2.2 Spatial mapping of mouse lung fibroblast subtypes 

While scRNA-seq enables transcriptome analysis of individual cells and the identification of new 

cellular states, these methods fail to capture the spatial organization in the organ due to tissue 

dissociation. Cell types may display similar gene expression patterns, but be located in different 

spatial positions or the location of a cell can simply give an indication to its function. Therefore the 

combination of scRNA-seq methods and new spatial coordinate mapping methods are a valuable 

match (Stuart et al. 2019).  

To localize fibroblasts in the tissue context, a recently published method for sensitive multiplexed 

RNA mapping, called SCRINSHOT (Single Cell Resolution IN Situ Hybridization On Tissues) was 

adopted (Sountoulidis et al. 2020). In brief, direct hybridization of gene specific padlock probes on 

mRNA is followed by circularization and rolling circle amplification (RCA) on the hybridized padlock 

probes. Sequential detection of RCA-products using sequence specific fluorophore-labeled 

oligonucleotides, enables the visualization of up to thousand cells in frozen tissue sections in 

multiple areas per section (Fig. 34a,b). Automated image analysis allows to transfer the fluoresce 

info into pixel data, allowing for easy quantification and analysis of the data (Fig. 34c) (Sountoulidis 

et al. 2020).  

For analysis of fibroblast subtypes in the adult wild type mouse lung as baseline, SCRINSHSOT 

was performed on 13 regions of a right mouse lobe, spanning all areas of interest, from distal to 

proximal and including vessels and airways (Fig. 34b). Padlock probes, 54 in total and 3 per gene 

with 18 genes selected, were designed against well-known marker genes of lung cell types, such 

as Sftpc for AT-2 cells or Scgb1a1 for secretory airway cells, and markers of fibroblast sub-

populations. Those makers, two per subpopulation, were taken from the DGE of the scRNAseq 

data of wild type mouse, focusing on high specificity for one subtype, as well as on a certain level 

of expression, to allow for sensitive detection by SCINRSHOT (Fig 35, scRNAseq feature plots). 

The genes used as markers to detect the other different cell types, were Postn and Gucy1a3 for 

pericytes, Hhip and Aspn for Hhip-cells, Tcf21 and Npnt for lipofibroblasts, Serpinf1 and Clec3b 

for general matrixfibroblasts and Acta2 and Myh11 for smooth muscle cells (Fig. 35). While AT-2 

cells were easily visible due to the high expression and therefore good detection of Sftpc by the 

SCRINSHOT technique, the number of fluorescent dots was lower for fibroblast marker genes. 

Therefore, a threshold was set and a cell was only determined to belong to one subpopulation, if 

both of the marker genes were expressed, with three dots in total to be observed in one cell (Fig. 

35, zoomed inlets). The cells were hereby defined by DAPI in all iterations of SCRINSHOT 

multiplexing rounds, with the circumference of the DAPI-marked nucleus enlarged for the analysis 

by the software to fit the size of a cell. 
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Figure 34. SCRINSHOT, a multiplexed snensitive RNA mapping approach. (a) SCRINSHOT workflow: Mouse 
lung lobes cryo-sections were used for hybridization of padlock probe to mRNA. After ligation, rolling circle 
amplification (RCA) of the hybridized padlock ensures multiplication of fluorescent probes binding sites. RCA products 
are visualized by hybridization of 3’-fluorophore-labelled detection oligos. (b) All 12 areas on one mouse lung lobe that 
were imaged by SCRINSHOT. (c) Example picture of how the raw signal looks like when imaged and after 
transformation into pixel data that can then be analyzed in an automated way. 
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Figure 35. Marker genes for SCRINSHOT probe selection. scRNA-seq feature plots show expression of marker genes 
in the wild tpye adult mouse scRNA data. Two marker genes per fibroblast subtype were chosen, based on specific 
expression in one cluster and high expression in that cluster. inSitu mRNA hybridiztaion pictures how SCRINSHOT raw 
image data of the selected marker genes. Zoom-in inlets show hybridiztaion dots in cell shape. DAPI nucleus singla in 
grey. 



4.2  Mesenchymal heterogeneity in the lung 

92 
 

For Area 1, all fibroblast subtypes could be observed in the image raw data. Processing and 

filtering the pixel data resulted in a single cell matrix table, with marker gene expression per cell 

in the whole image area. Curating those cells with the threshold for cell type specific expression 

allowed to map back the identified cell types onto the tissue. Thereby already first observations 

could be made: matrix fibroblasts were rather rare, and seemed to localize more at regions close 

to vessels and airways. SMCs marker expressions were observed mostly near airways and also 

vessels, as expected by their known contractile function. Marker genes denoting lipofibroblasts 

and pericytes were observed quite frequently in cells in the tissue, all throughout the alveolar 

space, with pericytes being more in numbers. Additionally, upon initial observation, rare Hhip-cells 

seemed distributed throughout the tissue, not revealing their unknown function (Figure 36). 

  

Figure 36. Fibroblast subtypes 
spatial distribution in the tissue. 
Detected SCRINSHOT signal was 
filtered, curated and assigned to 
whole cells and cell types. Those 
were then mapped back into a 
representative region to visualize 
fibroblast subtype frequencies and 
distribution in the tissue context. 
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For a more quantitative way of analyzing the images, with Area 1, Area 4, Area 5, Area 7, Area 8 

and Area 12, six of the regions of the lobe that were imaged, were processed and analyzed. 

Thereby, a total of 2245 cells from the above cell types were identified over the regions, with 1269 

AT-2 cells, 508 pericytes, 70 Hhip-cells, 206 lipofibroblasts, 41 matrix fibroblasts and 151 smooth 

muscle cells detected (Figure 37a). The total numbers of cell types quantified per area were 

additionally normalized according to the mean area size, as the imaged regions of the lung lobe 

section were of differing sizes, and contained different stereotypical tissue structures such as 

airways or vessels, as well as blank space with no cells. In general, after accounting for the area 

size difference, there was a similar distribution across the areas, within cell types (Fig. 37a). As 

expected, the most abundant cell type was AT-2 cells. The most abundant mesenchymal cell 

subtype was pericytes, followed by lipofibroblasts, smooth muscle cells, Hhip- cells, and matrix 

fibroblasts, the rarest mesenchymal cell subtype observed. Pericytes abundance is known to be 

high in the lung, with pericytes being closely related to vascular smooth muscle cells and covering 

the vasculature within the capillary basement membrane (Armulik et al. 2011). Of note, these 

numbers differ from those observed in the scRNAseq data. While relative frequencies and tissue 

extraction can play a role for the scRNA-seq data, tissue accessibility, marker gene expression as 

well as sensitivity of the SCRINSHOT method can influence the imaging data, giving neither 

method the edge for a perfect quantification. 

Signaling between epithelial and mesenchymal cells in the alveolar niches plays a critical role in 

tissue homeostasis. To elucidate the interactions that distinct mesenchymal cell types may have 

with the epithelium, the frequency of the mesenchymal cell types in close proximity to AT-2 cells 

was quantified. If a mesenchymal cell type was observed to be near to an AT-2 cell, identified by 

Sftpc signal, as shown in Fig. 37b, the AT-2 cell was counted as having an  interaction partner. In 

general, the percentage of a mesenchymal cell type with AT-2 partners was fairly consistent within 

the areas chosen. Pericytes were the cell type found most commonly in close proximity to an AT-

2 cell, with an average of 55% of AT-2 cells being partnered. Following this, AT-2 cells were 

observed to be paired with lipofibroblasts 33% of the time. Across the areas, the average 

percentage of AT-2 cells paired with a Hhip-cell cell was 7%, pairing with a SMC was 3% and the 

lowest interaction percentage of AT-2 cells was with matrix fibroblasts at 0.6% (Fig. 37c). 

Lipofibroblasts, as adipocyte-like cells, are known to assist AT-2 cells in surfactant production by 

transfer of lipids between them, providing a reasonable explanation for the overserved high 

interaction rate (Schultz et al. 2002). For pericytes, the reason might simply be their high 

abundance, with consistently being found as the most prevalent stromal cell type across all areas, 

increasing the chance of interactions.  
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Figure 37. Fibroblast subtype prevalence and interaction with epithelium in the tissue shown by 
SCRINSHOT. (a) Total number of cells quantified by area. (b) The number of AT-2 cells that were observed in close 
proximity to fibroblasts, was analyzed by the frequency of interacting fibroblast subtype. (c) The frequency of the 
fibroblast cell types in close proximity to AT-2 cells was quantified and normalized to all AT-2 cells found. Analysis 
was performed across all six areas. 
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The spatial distributions of the mesenchymal cell types were further analyzed, by assessing the 

cell type occurrence compared to the total number of cells sampled in specific tissue regions, such 

as near airways, near vessels or in the alveolar space. This cell type density was determined by 

the percentage of the cell type, of all DAPI positive nuclei counted in the respective region, across 

all six areas. Apart from the visual conception, this quantitative analysis gave a good impression 

of the specific spatial heterogeneity all fibroblast subtypes (Fig. 38). 

This analysis showed that pericytes had a significantly higher cell density in both the alveolar 

space and near vessels, at 3.65% compared to the airway regions, where the pericytes comprised 

of 1.45% of the total cells. The cell density of lipofibroblasts was significantly higher in the alveolar 

space at 1.62% compared to around airways at 0.31%. The average cell density for this cell type 

in the vessel regions was 1.11%, but not significantly different to either the alveolar space or 

airway region values. Hhip-cells were significantly more prevalent in the airway regions at 1.38%, 

in comparison to 0.4% in the alveolar space, and 0.1% by the vessels. The cell density of smooth 

muscle cells was significantly higher by the airways than in the alveolar space or near the vessels. 

Smooth muscle cells comprised 4.2% of total cells in the airway compared to 1.69% in vessel 

regions and 0.3% in the alveolar space. Lastly, matrixfibroblasts were 0.89% of the cells in the 

airways, 0.81% of the cells by the vessel and 0.03% of the cells in the alveolar space, though the 

differences here in density were not significant (Fig. 38).  

The analysis split the cell types in certain groups. Pericytes and lipofibroblasts were the most 

prevalent fibroblasts in the alveolar space, with pericytes also being present around vessels. In 

contrast, matrixfibroblasts were never found in the alveolar space but were equally distributed 

around airways and vessels. Of note, in the scRNA-seq data, the matrixfibroblasts could be split 

up in in so called adventitial fibroblast, referring to a possible function in covering vessels, as 

inferred by the GO term enrichment analysis, and the peribronchiolar fibroblasts, alluding to a 

possible function around airways. While the markers, Serpinf1 and Clec3b admittedly could not 

distinguish between those two subsets (Fig. 35), the SCRINSHOT analysis strongly confirms the 

scRNA-seq data, by indicating no alveolar localization of matrixfibroblasts. As expected, SMCs 

were found mostly around vessels and airways. Interestingly, Hhip-cells were almost never found 

around vessels, but significantly more around airways (Fig. 38). Referring again back to the 

scRNA-seq data, Hhip-cells in the UMAP space were placed in close proximity to SMCs and 

pericytes, suggest similar function.  Potentially, the SCRINSHOT localization could thus indicate 

newly discovered cell type of Hhip-cells as the long missed airway smooth muscle cells (ASMCs), 

but further analysis is required. 
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Figure 38. Cell density of fibroblast subtypes. The cell density of mesenchymal subtype cells out of total cell 
numbers as counted by DAPI-positive nuclei, in the different microscopic tissue regions: airway, vessel, alveolar 
space.  Airways (n=4), vessels (n=3), alveolar space (n=6). Unpaired t-test: Smooth muscle cells airway vs smooth 
muscle cells alveolar ***p=0.0001. Smooth muscle cell airway vs smooth muscle cell vessel *p=0.0421. Hhip cell 
airway vs. Hhip cell vessel *p=0.0126, Hhip cell alveolar vs. Hhip cell airway *p=0.0426; lipofibroblast airway vs. 
lipofibroblast alveolar *p=0.0127; pericyte airway vs. pericyte alveolar *p=0.0115, pericyte vessel vs. pericyte airway 
**p=0.0035 
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To illustrate these findings in the tissue context, the detected matrixfibroblasts and cells smooth 

muscle were manually matched back in to the representative Area 1, where both a big vessel, 

determined by the absence of Scgb1a1 airways cells, and a large airway stretch, determined by 

the presence of Scgb1a1 airway cells could be shown (Fig. 39). This schematic nicely summarizes 

the analysis by showing the exclusive localization of matrixfibroblasts round vessels and airways, 

referring to adventitial and peribronchiolar fibroblasts, respectively. 

In summary, SCRINSHOT was able to provide a comprehensive overview of fibroblast subtype 

localization, prevalent and epithelial interaction frequencies in tissue in the healthy wild type 

mouse lung. Thereby, indications from the scRNAseq data such as role and localization of the 

matrixfibroblasts-constituents, adventitial and peribronchiolar fibroblasts were confirmed. A first 

hint at the role of Hhip-cells was provided by an exclusive localization around airways.  

Figure 39. Spatial map of manually assigned cell types, as detected by SCRINSHOT signals. Spatial distribution 
of matrix fibroblasts (orange), smooth muscle cells (pink), AT2 cells (cyan) and secretory club cells (green) near an 
airway region and near a vessel region. 
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4.2.3 Longitudinal changes in fibroblast subtypes in bleomycin time 
course 

The hallmark feature of IPF is the accumulation of activated myofibroblasts that excessively 

deposit ECM proteins, compromising lung architecture and function and hindering gas exchange. 

Despite immense interest in fibroblasts in the lung, the origin of the harmful myofibroblasts but 

also the role of other fibroblast subtypes during injury remains unsolved. While it is impossible to 

study longitudinal behavior in the human lung, the fibroblast features of IPF are nicely reproduced 

in the mouse model of bleomycin lung injury. 

A change in the mesenchymal compartment of the mouse lung over time during fibrotic injury was 

studied using again the Drop-seq platform for single cell sequencing (Macosko et al. 2015). 

Fibrotic lung injury was induced by oropharyngeal instillation of adult (p84) wild-type C57BL/6 mice 

with a single dose 2U/kg bleomycin (Barbayianni et al. 2018). Whole lung parenchyma cell 

suspensions were obtained from two mice every day from day 2 to day 14 after bleomycin 

induction. Additional time points with two mice were taken at day 21, day 28, day 36 and day 54 

after bleomycin injury. While the high resolution daily sampling details the early changes upon 

acute lung injury, the later days represent repair and recovery of the lung, a characteristic of the 

bleomycin model that differs from the human disease (Schiller et al. 2015). Negative selection was 

performed using MACS, based on the indicated marker proteins, to remove endothelial (Pecam1), 

epithelial (Epcam), hematopoietic (Cd45), lymphatic (Lyve1) and erythrocyte (Ter119) cell 

populations. Of note, the epithelial cells from this time course experiment were used in the 

manuscript “Longitudinal single cell transcriptomics reveals Krt8+ alveolar epithelial progenitors in 

lung regeneration” (Strunz et al. 2019). 

In total, over 60.000 mesenchymal cells from over 30 mice at 18 time points were sequenced. 

After filtering and quality control, the high resolution mesenchymal dataset contained 23.232 cells 

(Fig. 40a). The single cell data was then reduced in the data dimensionality, using the UMAP 

method (Becht et al. 2018) and unsupervised clustering provided clusters with cells of the same 

likelihood (Fig. 40c). The cell state identities were derived by manual annotation of the clusters 

with cell type specific marker genes, gained from the mouse experiment of healthy adult mice in 

the previous chapter (Fig. 40). Indeed, the same six fibroblast subtypes as in the healthy state 

were found, with the myofibroblast in addition and displayed in an UMAP colored by cell type 

(Fig. 40b). Several clusters per cell type in matrixfibroblasts, lipofibroblasts and myofibroblasts, 

however, were already hinting at more heterogeneity within cell types (Fig. 40c). 
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Partition-based graph abstraction (PAGA) of the data gave a first glance at the relationship of the 

cell types, by revealing the connectivity between the fibroblast subtypes, which could infer 

potential cell trajectories (Fig. 40f).  Interestingly, judging from the UMAP and PAGA plot, the cell 

types presented themselves rather distinct. Pericytes, SMCs and Hhip-cells were more similar to 

each other and had not connection to the remaining cell types, which is in agreement with the 

healthy scRNAseq data. Lipofibroblasts and Matrixfibroblasts posed the two largest cell clusters, 

with matrixfibroblasts not splitting up in adventitial and alveolar fibroblast. Both major cell types 

seem connected, with the biggest connectivity between clusters within the representative cell 

types, though.  

Importantly, myofibroblasts were only connected to lipofibroblasts (Fig. 40c,d). The connection 

occurred over one “transition” cluster that was attributed to the lipofibroblasts due to great overlap 

of gene expression profiles. This transition cluster was also only connected to other lipofibroblast 

clusters, hinting at lipofibroblasts as the major source of injury induced myofibroblasts in the 

mouse (Fig. 40d).  

Figure 40. ongitudinal high resolution single cell analysis of mouse lung mesenchymal compartment from a 
bleomycin injury time course. (a) scRNAseq experimental design. Mesenchymal cells were sampled from up to 2 
mice per day from day 2 to day 14 and days 21, 28, 35 and 56 after bleomycin incution. (b-e) Dimension reduced single 
cell transcriptomic data is visualized through Uniform Manifold Approximation and Projection (UMAP). The color code 
illustrates the cell types (b) and louvain clusters (c). (d) Partition-based graph abstraction (PAGA) of the data shows 6 
main cell clusters with Louvain clusters as nodes and their commonness as thickness of the edges. 
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Figure 41. A high-resolution longitudinal data set was generated by 
subjecting sorted cells from the mesenchymal compartment to scRNAseq 
from the 18 indicated time points. UMAP embedding displays cells colored by 
cell type identity (a) and time point (c). (b) The scaled lines represent smoothed 
relative frequencies of fibroblast subtypes over the time course. Confidence 
interval derived from the smoothing fit is shown. 
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As a next step, the high resolution time component of the data was analyzed. A UMAP was color 

coded for the different time points of the experiment (Fig. 41a). To understand how the fibroblast 

lineages change over time, relative cell frequency over time was assessed (Fig. 41b). 

Myofibroblast showed a gradual increase starting from day 2 until day 11, when they reach their 

highest numbers, before diminishing again gradually, with no more myofibroblast observed at day 

54. The question remained which fibroblast cell type might give rise to the myofibroblasts. Hhip-

cells and pericytes stayed at almost constant levels throughout the time course, indicating no 

differentiation. Matrixfibroblasts, Lipofibroblasts and SMCs on the other hand demonstrated an 

inverse behavior to the myofibroblasts, with numbers gradually decreasing until day 11 and rising 

again. Hereby, SMCs and lipofibroblasts reached the same levels as initially, but matrixfibroblasts 

remained lower in numbers at day 54 (Fig. 41b). While it offers a way to see the development over 

time, relative frequency is based on the total cell number present at that time point. This can lead 

to effects as observed here, that when one cell type rises in numbers others must decrease. Cell 

numbers can also vary due to differences in tissue extraction efficiency at different days, with the 

tissue becoming more stiff and hard to access while fibrosis develops. 

Looking back at the UMAP with color code for time points, interestingly, black and blue colors, 

marking cells from day 0 and the late regenerative time points of day 21, 28, 36 and 54, 

respectively, were showing nice overlap among them, in all cell types. This highlights the 

regenerative feature of the bleomycin model (Fig. 41a). More so, with the time points in between 

showing a shifted location in the UMAP again for all cell types, it seems as all fibroblast subtypes 

get activated upon injury and show a different gene expression profile. To account for this 

remarkable transcriptional heterogeneity during the time course, the cluster of the cells from time 

points day 2 to day 14 were classified as “activated-states”, while the remaining day 0 and later 

regenerative time points were named “ground-state” for future analysis (Fig. 41c).  

To further analyze fibroblast subtype gene expression kinetics over time, splines were computed. 

They fit smooth curves between known expression values, by computing polynomial regression 

between those values (Perperoglou et al. 2019). Accounting for a possible differentiation from 

lipofibroblasts to myofibroblasts, the two cell types were combined for this analysis. The result is 

large data matrix, showing changes over time for every gene in each cell type. From this table, 

the most significant genes were picked to illustrate how different the expression changes were in 

each cell type (Fig. 42). The mesenchyme marker and highly abundant ECM protein Col1a2 had 

an increasing expression until day 11 that goes back to baseline until day 54 in all fibroblast 

subtypes. On the other hand, the marker for intermediate repair ECM Tnc, went only up in the 

combined fraction of lipofibroblasts and myofibroblasts, as well as Hhip-cells. Cxcl13 and Grem1 

are two other examples, with Cxcl13 going up early only in Matrixfibroblats, while Grem1 

expression peaked late in lipofibroblasts and myofibroblast (Fig. 42).  
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This data nicely demonstrated that all of the stromal lineages are contributing to fibrogenic 

remodeling, in different, and each subtype in their own way. Moreover, heterogeneity of 

mesenchymal subtypes that could be observed in the healthy state seemed to be conserved 

during tissue repair. Not multiple fibroblast types, but only a distinct fraction of the lipofibroblasts 

appeared to be the source of myofibroblasts, while the remaining part differentiated to their own 

individual activated state during injury. 

With multiple activated states being present in the injury scenario, the question arose, how cell 

interactions and communication between the mesenchymal subtypes and the epithelium in the 

alveolar niche might change during disease progression. Using the scRNAseq data from the 

epithelium of the same mice (Strunz et al. 2019), a cell communication network was established 

by pairing receptor and ligand expressions in cell types to receptor-ligand interactions between 

cell types (Fig. 43).   

Figure 42. Gene expression kinetics over time. Several genes from the spline table were picked to illustrate distinct 
expression profile changes of all fibroblast subunits over time such. Average expression ranges from 0 to 1. Time 
ranges from day 0 to day 14 daily and including the days 21, 28, 36, and 54 as late time points. 
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Figure 43. Receptor ligand interactions between epithelium and mesenchyme during injury. (a) The cell-cell 
communication network displays the number of receptor-ligand pairs between the mesenchymal subtypes in their 
ground as well as acitvaed staten and epithelial cell types. (b) The bar graphs show the average log2 fold change of the 
respective receptor-ligand pairs. The first named gene is always the receptor, the second one the ligand. Cell-types 
expressing the ligand orthe receptor are specified. Black bars show activated-states, white bars show ground-sate of 
the respective mesenchymal subtype. 
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To visualize the changes upon injury, the interactions were calculated separately for ground-state 

and activated states (Fig 43a).  In the ground-state most interactions were found between 

lipofibroblasts and AT-1 cells as well as goblet cells. Also Matrixfibroblasts interacted with AT-2 

cells. Contrary, Hhip-cells showed very little to no interactions at all (Fig. 43a,b). This changed 

dramatically during injury in the activated-states. Notably, Hhip-cells now had a lot of interactions 

with AT-1 cells that were not present before. Also between Myofibroblasts (mostly only present in 

the activated-state) and AT-1 and AT-2 cells many interaction pairs were found and also pericytes 

in the activated state seemed to be able to interact more. The bar plots demonstrate, that there 

was a dramatic change in the number of receptor-ligand pairs, between the ground- and activated-

states. But at the same time, also expression of already present receptor and ligand genes 

increased or decreased upon injury. Interestingly, as demonstrated for the healthy cell states 

before, the receptor and ligand genes expressed by different subtypes were mostly specific and 

distinct to one cell type, highlighting the important role of the heterogeneity of fibroblast also during 

injury. 

In summary, the high-resolution temporal scRNAseq data on mesenchymal cell types during 

bleomycin lung injury in mice provided important insights. The data demonstrated that multiple 

stromal lineages are contributing to fibrogenic remodeling, each subtype in their own way. All 

subtypes become activated after injury, with changed gene expression profiles that manifest in 

altered cell communication with differential expression of receptor-ligand pairs. Moreover, 

heterogeneity of mesenchymal subtypes that could be observed in the healthy state seems to be 

conserved during tissue repair. Importantly, not multiple fibroblast types converge together, but 

only the lipofibroblasts appeared to be the source of myofibroblasts. However, this finding still 

needs further validation. 

4.2.4 Comparison of mesenchymal cell states in mouse and human 
lung injury on a single cell level 

The mouse scRNA-seq experiments over the bleomycin time course provided information about 

the activation of fibroblasts upon injury, with multiple activated states being present apart from the 

pathogenic myofibroblasts. To gain translational insights from the analysis, the mouse data was 

compared with the human scRNA-seq data of healthy donor and ILD patients from the first 

chapter. 

Sub-clustering and calculating a new UMAP embedding of human COL1A2 expressing 

mesenchymal cells revealed 11 distinct cell states (Fig. 44a). Those were annotated based on 

known marker genes, published datasets and comparison with the mouse data (Fig. 45).  
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Figure 44. Clustering analysis and cell type annotation of stromal subtypes in human lung 
parenchyma. (a) COL1A2+ mesenchymal cells, from the whole human dataset, were embedded 
in a new UMAP to allow for separation of cluster identities and identification of cell states. (b) Cells 
colored in disease groups show origin of identified cell states. Figure and legend taken from (Mayr 

et al. 2020). 
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They were called cell states, since some of the cell types e.g. the pericytes, could be split up in 

two clusters of which one was only present in diseased ILD patients, and was therefore termed 

“activated” pericytes (Fig. 44a). 

In general the resulting UMAP looked similar to the mouse data. SMCs and pericytes were located 

away from the fibroblasts populations. Different from the mouse data, the human mesothelial cells 

were still present. The fibroblasts split up into three main groups, the Myofibroblasts, the 

Lipofibroblasts and a population that was called Matrixfibroblasts in the mouse, consisting now of 

four different subtypes. Due to the expression of cytokines and chemokines such as CXCL12, two 

of the sub-clusters were termed “inflammatory” fibroblasts 1 and 2. Additionally, they were only 

present in ILD patients, hinting at a potential role in diseases. Two adventitial fibroblast populations 

could be defined, that were similar but differed in the expression of the ECM proteins secreted 

frizzled-related protein (SFRP1 and 2), containing a cysteine-rich domain homologous to the 

putative Wnt-binding site. 

Interestingly, located closest to the Myofibroblasts were again the Lipofibroblasts, with only a 

transitional cluster, containing cells with marker genes from both populations, separating them 

(Fig 44a). While no direct proof, the data in human seems to suggest the same principle as the 

mouse fibrosis data, that lipofibroblasts might be the only predecessor of myofibroblasts in human 

ILD.  

Figure 45. Marker genes for human COL1A2 
expressing mesenchymal cell types. Each identified 
cell state was characterized by a whole signature of 
distinct marker genes, of which the two most distinct 
genes per cell state are shown in the heatmap. Figure 
and legend taken from (Mayr et al. 2020). 
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While clustering single cells into a UMAP provides a good overview for that sample, data-driven 

results often exceed prior knowledge about tissue composition and novel cell clusters are not 

straightforward to characterize. Additionally, data interpretation between datasets is extremely 

challenging. Therefore, to better compare mouse and human data in a more quantitative way, 

matchSCore, a Jaccard index based scoring system was used, to quantify clustering and marker 

accuracy in a combined score and to integrate cluster identities across different data sets (Mereu 

et al. 2018).  

First, the human ILD mesenchymal sub types were compared to the healthy mouse baseline data, 

based on the distinct marker signatures of the different clusters (Fig. 46). Both SMCs and the two 

pericytes cell states in human, correlated best with their equivalents identified in mouse. Of note, 

lipofibroblasts showed a good overlap between mouse and human, defying some discussion in 

the field that lipofibroblasts do not exist in human. Interestingly, human myofibroblast, of course 

not present in the healthy mouse, also correlated best with the mouse lipofibroblasts, giving further 

indication that those might be the source for myofibroblasts both in human and mouse. The 

discrimination between adventitial and peribronchiolar, that was clearly visible in mouse, could not 

be disentangled in human. All four human cell states of inflammatory and adventitial fibroblasts 

showed similar correspondence with the mouse peribronchiolar or adventitial fibroblasts. Thereby, 

the overlap with the peribronchiolar fibroblast was higher (Fig. 46). Surprisingly, the newly 

identified mouse cell type of Hhip-cells did not correspond at all with any human mesenchymal 

cell type, leading to more questions about their function in the mouse.  

Next, the human ILD mesenchymal sub types were compared to the cell types found in the mouse 

data of bleomycin induced fibrosis, to analyze how similar the disease specific transcriptional 

alternations might correspond between species (Fig. 47). Interestingly, apart from SMCs, all all 

activated states in mouse, corresponding to the time points day 2 until day 14 in the bleomycin 

time course, showed a higher overlap to the human equivalent cell states than the ground state. 

Surprisingly, human and mouse myofibroblast showed nearly no similarities. Instead, the Hhpi-

cell activated state in the mouse correlated best with human myofibroblast signatures, followed by 

matrixfibroblasts. The Hhip-cells groundstate however, seemed again not to be present in human. 

Since the mouse timecourse data did not allow to distinguish between adventitial and 

peribronchiolar fibroblast, they were summed up in the matrixfibroblasts, to which now the human 

adventitial and inflammatory fibroblast corresponded best (Fig. 47). 

In summary, the comparison of human and mouse mesenchymal cell types demonstrated that 

although the human mesenchyme seems to split up in more subtypes, cell types and their marker 

genes are similar. Quantitative analysis revealed, that activated cell states upon bleomycin 

induced fibrosis in mice, are more similar to the human subtypes than the ground state and 

revealed the activated Hhip-cells as most similar cell type to human myofibroblasts. 
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Figure 46. Comparison of human and mouse mesenchymal subsets. matchSCore 
comparison values were calculated, showing the overlap between marker gene signatures 
with a defined logfoldchange and adjusted p value cut off, from the human and healthy 
mouse scRNAseq data.  
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Figure 47. Comparison of human and mouse mesenchymal subsets. matchSCore comparison values were 
calculated, showing the overlap between marker gene signatures with a defined logfoldchange and adjusted p 
value cut off, from the human and bleomycin induced fibrosis mouse timecourse scRNAseq data. 
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4.2.5 Discussion 

The field of single cell genomics is moving on to characterize pathogenesis and disease 

progression, after having defined the baseline for nearly every organ with a cell atlas. Monitoring 

human lung fibrosis progression is difficult due to the need of invasive surgery of already suffering 

patients, to get a piece of tissue to suspend for scRNA-seq. Therefore, studies in the mouse lung 

are indispensable for defining disease progression trajectories and characteristic cell states that 

can then be translated back and integrated into human data to infer potential treatment options. 

While atlases give the impression of dissecting the whole organ comprehensively, sub-

compartments are often overlooked in the surge to cover the whole organ. In both mouse and 

human, the mesenchymal compartment is such a poorly defined example. The first chapter of this 

study demonstrated on human single data in fibrosis, that only sub clustering into compartments 

allows for accurate definition of cell types and states. The aim of this second chapter of this thesis 

was to better define the baseline as well as the disease progression during fibrosis of the 

mesenchymal compartment in the mouse lung on a single cell level, with special focus on 

fibroblasts. 

Using MACS depletion, mesenchymal cells from healthy adult mouse lungs were enriched from 

whole lung single cell suspensions and sequenced, revealing 6 distinct stromal cell types, 

including Lipofibroblasts, Peribronchiolar and adventitial fibroblasts, SMCs, Pericytes and the new 

cell type of Hhip-cells. Although, only two mice were used, the cell types clusters were robust, 

consisted of cells from both mice and could be defined with marker signatures. While other studies, 

in the early days of scRNAseq had already looked at the mesenchyme, none was able to dissect 

the cellular composition in that resolution. Additionally, most other studies so far, used a lineage 

label to enrich for mesenchymal cells, potentially inferring a pronounced bias, based on a limited 

number of markers, thereby masking variability within a subpopulation of cells that express the 

selected marker genes (Peng et al. 2015, El Agha et al. 2017, Lee et al. 2017, Zepp et al. 2017). 

This approach might therefore give a biased view on organ complexity (Kester et al. 2018). In 

contrast, the presented study used an unbiased approach with cells from the whole lung and only 

enriching the mesenchymal populations by negative depletion of other well-known lineages, which 

could still be found as contaminants in the data before filtering. For the aim of identifying cell types, 

this approach seemed more appropriate and worked convincingly well, as demonstrated. 

Defining cellular identity and delineating which specific markers characterize these specific 

subpopulations have been significant hurdles in understanding the role and function of certain 

mesenchymal cells in the lung (Sucre et al. 2020). In this study, especially the GO term enrichment 

was of great help to overcome some of these obstacles. While not obvious from the marker list, 

the GO enrichment identified a subset of genes that marked the whole cluster of adventitial 

fibroblasts as to be involved in “blood vessel morphogenesis”, helping dramatically in 
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distinguishing it from the closely related subset next to them (Mi et al. 2019). It remains to be 

proven and requires further experiments to rightfully address those neighboring cells as 

peribronchiolar cells. 

Novel advancements in spatially resolved transcriptomics that have developed at a similarly fast 

pace as scRNAseq methods, can help to verify such hypotheses. In this study the recently 

published SCRINSHOT method was employed to identify cell type specific locations in the 

histological tissue context for each of the mesenchymal subtypes (Sountoulidis et al. 2020). The 

marker genes used, were chosen before the scRNAseq dataset was fully analyzed and could 

therefore not distinguish between adventitial and peribronchiolar fibroblasts. However, density 

analysis revealed that those cells (termed Matrixfibroblasts in the SCRINSHOT analysis) were 

significantly enriched around airways and vessels compared to the alveolar space, giving further 

evidence that the initial classification holds true. This nicely demonstrates the power of mRNA 

localization techniques, by showing that the location of a cell can give an indication to its function 

(Stuart et al. 2019). 

Proliferation and repair of different epithelial cells in the lung is dependent on specific cell 

interaction partners from the mesenchyme. To elucidate the interactions that distinct 

mesenchymal cell types may have with the epithelium, the frequency of the mesenchymal cell 

types in close proximity to AT-2 cells was quantified. Lipofibroblasts, as adipocyte-like cells, are 

known to assist AT-2 cells in surfactant production by transfer of lipids between them, and were 

also shown to support their congenic growth in vitro, providing a reasonable explanation for the 

overserved high interaction rate (Schultz et al. 2002). Pericytes were the cell type consistently 

identified the most across all areas. Surprisingly, they were significantly enriched around vessels 

but also in the alveolar space, compared to airway regions. Pericytes, being highly abundant in 

the lung, share the basement membrane with endothelial cells. They are therefore structurally in 

close contact with epithelial cells that facilitate the gas exchange with the blood, potentially 

explaining their high interaction rate with epithelial type 2 cells (Armulik et al. 2005). A limitation of 

the study in this context was the lack of marker genes that could identify vessels, as it was the 

case for Scgb1a1 for airways. While major vessels could be identified by their structure and lack 

of the airway markers, smaller vessels amid the alveolar space were potentially not recognized, 

giving one possible explanation for the high localization of pericytes in the alveolar space. 

Former studies also looked at mesenchymal cell types, their interactions and signaling. Peng and 

colleagues could trace back sonic hedgehog (Ssh) signaling to club and AT-2 cells in the adult 

lung, but Gli1, downstream transcriptional effector and target of hedgehog, was demonstrated to 

be expressed in Col1a1, Vim, Pdgfra and Pdgfrb positive mesenchymal cells, specifically located 

mostly adjacent to proximal airway and pulmonary arteries, but belonging to smooth muscle cells. 

They were able to show that the epithelium actively maintains quiescence of the mesenchyme 
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through hedgehog (Hh) signaling, which in a feedback loop also regulates epithelial quiescence. 

During injury and repair, hedgehog activation is inversely correlated to the proliferation of 

mesenchymal cells (Peng et al. 2015). 

Lee and colleagues found four mesenchymal cell populations with a total of 182 cells, by sorting 

lineage labeled Lgr5 and Lgr6 cells. Thereby, they identified Lgr6-expressing cells to surround 

bronchiolar epithelia and in the alveolar space, whereas Lgr5-expressing cells were largely 

alveolar (Lee et al. 2017). Lgr6 cells, a subtype of airway smooth muscle cells (ASMCs) contribute 

to quiescence and with Gli1, express the same Ssh target that Peng and colleagues identified, 

suggesting it is the same cell type. Lgr5 cells on the other hand, promoted alveolar differentiation 

by activation of the Wnt pathway but were found to be different from Pdgfra expressing cells, which 

were already known to promote AT-2 cell renewal (Barkauskas et al. 2013, Lee et al. 2017).   

The Hhip-cells, are a newly discovered mesenchymal subtype in this study that was found in both 

the baseline and time course experiment, characterized by the distinct expression of hedgehog 

interacting protein (Hhip) as well as Asporin (Aspn). While neither the marker gene list nor the GO 

term enrichment indicated any specific function, SCRINSHOT showed a specific location to mostly 

airways, followed by the alveolar region. Interestingly, by comparing with the literature, the Hhip-

cells were the only cells in this study that expressed both Lgr5 and Lgr6 at similar levels. While 

the locations were fitting with observations from Lee and colleagues, the two populations could 

not be resolved in the dataset of this study (Lee et al. 2017). However, the embedding close to 

the SMCs and pericytes could suggest the role of ASMCs, at least for part of the Hhip-cells cell 

population, while the AT-2 supporting Lgr5 cells remain elusive. 

Zepp and colleagues have found two mesenchymal subtypes, characterized by the expression of 

Axin2, of which one also supports alveolar self-renewal (Zepp et al. 2017). Axin2 is a gene in the 

Wnt pathway and its expression reports responsiveness of the expressing cell to this critical 

signaling for maintaining homeostasis (Clevers et al. 2014, Frank et al. 2016). The cell type that 

also supports alveolar differentiation expresses Pdgfra in addition to Axin2, was found as primarily 

interaction partner of At-2cells, stimulated organoid growth in vitro and was thus termed 

Mesenchymal alveolar niche cells (MANCs) (Zepp et al. 2017). Based on the data of this study, 

the MANCSs corresponded best with the lipofibroblasts, that were the primarily Pdgfra expressing 

cells and showed the second most interactions with AT-2 cells, confirming nicely the data. The 

other cell type Zepp and colleagues have found was missing Pdgfra expression and had lower 

levels of Axin2, indicating lower Wnt responsiveness. At day 21 after bleomycin lung injury those 

Axin2 positive cells had been contributing to over 40% of myofibroblasts, leading to their name as 

Axin2+ myofibrogenic progenitors (AMP) (Zepp et al. 2017).  

Comparing these findings to the datasets in this study leads to the aims that wanted to be 

addressed with the high-resolution bleomycin time course. Activated fibroblasts and 
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myofibroblasts are regarded as the key cell types that lead to an increased deposition of 

extracellular matrix and fibroblastic foci in lungs of patients with idiopathic pulmonary fibrosis. The 

origin of myofibroblasts however remains elusive, with multiple sources suggested in different 

studies over the years (Phillips et al. 2004, Kim et al. 2006, Hoyles et al. 2011, Rock et al. 2011). 

Based on the marker panels in the publications that defined the AMP lineage, it became obvious 

that Zepp and colleagues had identified pericytes, which are commonly known to express Pdgfrb, 

Notch3 and Gucy1a3 (Zepp et al. 2017). Of note, they did not distinguish between SMCs and 

AMPs, giving a possible explanation for the mix of marker genes. Their data on the origin of 

myofibroblasts with the approach of lineage tracing several cell types, was well done and could 

help the cause. However, the selection of day 21 past bleomycin injury to assess the number 

Acta2 expressing myofibroblasts was poorly chosen, since myofibroblast numbers are already 

decreasing again at that time point (Zepp et al. 2017).  

Xie and colleagues also worked on deconvolution of fibroblast heterogeneity in mouse pulmonary 

fibrosis, using the bleomycin model at day 0 and day 21 (Xie et al. 2018). While they found up to 

five similar populations as in this study there were also major differences and points of critics. 

They identified a substantial myofibroblast population already at day 0, which in fact corresponded 

to the Hhip-cells in this study; SMCs were missing at all. Their lipofibroblasts contained a 

“macrophage-signature” which clearly reflected contamination during their mesenchyme 

enrichment. Interestingly however, their model of cell state trajectories based on SOM machine 

learning reported a directed hierarchical relation of lipofibroblasts with myofibroblasts ((Xie et al. 

2018). 

The data in this thesis suggest that myofibroblast numbers were highest at day 11 and decreased 

to only half of the maximum at day 21. Additionally, based on the UMAP embedding, PAGA 

connectivity and gene expression kinetics, this study proposes lipofibroblasts as the only source 

of myofibroblasts in the bleomycin model. Further experiments, such as lineage tracing of the 

lipofibroblasts and also data analysis approaches such as RNA velocity and pseudo time analysis, 

to assess differentiation trajectories of the lipofibroblasts based on their expression of spliced and 

unspliced mRNA are needed to support this hypothesis. It is important to stress, that the data in 

this study showed that the distinct subtypes did not converge to one canonical activated fibroblasts 

/ myofibroblast cell state. Instead, all mesenchymal subtypes got activated during injury and 

contribute to fibrogenic remodeling in different ways. While the receptor-ligand analysis already 

suggested interesting interaction pairs, more analysis is needed to assess which molecular 

pathways are involved in both the activation upon injury as well as during dedifferentiation when 

the damage is cleared.  

5 Conclusions and future directions 
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In conclusion, the presented worked described in two chapters how an integrated single cell 

analysis of human lung fibrosis can resolve cellular origins of predictive protein signatures in body 

fluids and contributed to a better understanding of mesenchymal heterogeneity in health and in 

temporally resolved fibrotic lung injury in mice. 

In the first chapter, an ILD patient cohort form Munich analyzed by scRNAseq was integrated with 

similar public available datasets to establish a robust differential gene expression analysis for all 

major cell types in the lung, with high statistical power due to increased number of patients (Mayr 

et al. 2020). Such larger cohorts can help the concept, that inter-individual variance within patient 

cohorts can help to better model the diseases, with various patients at different stages of a disease 

progression trajectory possessing cells of different characteristic states (Mayr et al. 2020). Body 

fluids of those patients potentially contain a composite representation of these disease stages. 

Therefore, bronchoalveolar lavage (BALF) and plasma proteomes in patients from several 

independent ILD cohorts were quantified, using mass spectrometry driven proteomics (Mayr et al. 

2020). A bioinformatics analysis strategy enabled the integration of the cell state descriptions on 

single cell level with these lavage and plasma proteomes and associated clinical meta-data to 

reveal that fluid proteome signatures were predictive of specific cell state changes in the lung 

(Mayr et al. 2020). While one of the first positive examples in the field this study shows how, 

training of machine learning algorithms with large datasets of matched single cell genomic and 

fluid proteomic or sequencing readouts can enable new automated tools. These can be used for 

clinical decision making (Walsh et al. 2019) and drug monitoring (Maher et al. 2019) and 

strengthen personalized medicine approaches. However, certain weakness still need to be 

assessed, such as the fact that single cell and proteomics data were not derived from the same 

patients but stem from various sources with their own variabilities and from different types of ILDs, 

which are also highly diverse (Mayr et al. 2020).  

For the situation in human, be it for the healthy base line or in chronic lung disease, researchers 

team up for current endeavors for the Human Cell Atlas (Regev et al. 2017)and the Human Lung 

Cell Atlas in particular (Schiller et al. 2019). This project will lay basis to understand lung 

development, lung homeostasis, and lung regeneration. Thereby, guidelines and more accepted 

nomenclatures will be provided that are of immense value for the community. However, such 

efforts are only feasible by the generation of longitudinal data derived from many individuals and 

by highly functional data integration methods (Stuart et al. 2019). Combining experimental models 

of pulmonary fibrosis with longitudinal sequencing and novel computational approaches (Strunz 

et al. 2019, Mayr et al. 2020) as used in this presented work, complex dynamic processes can be 

identified, even across samples and species empowering predictions for future translational work. 

In the second chapter, single cell transcriptomics on mesenchyme enriched cell suspensions of 

healthy adult wild-type mice was performed. This unbiased approach for classification of 
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mesenchymal cell subtypes is new in a field that relied on lineage tracing of potential cell type 

markers in the past. In total, 7 distinct cell types were identified, including mesothelial cells, smooth 

muscle cells, and 5 distinct stromal cell types with features of fibroblast phenotypes. Multiplexed 

in situ FISH, using the SCRINSHOT technique, enabled the definition of distinct locations and 

interaction partners of these subtypes in the tissue context (Sountoulidis et al. 2020). Thereby, 

VSMCs and ASMCs, could be identified, allowing to distinguish between them (Danopoulos et al. 

2020). Therefore this study contains the most comprehensive analysis of mesenchymal subtypes 

in the mouse lung so far and provides marker signatures for all cell types, some of which have 

been missing or were nonspecific so far.  A temporal high resolution experiment using the 

bleomycin mouse model of lung fibrosis and regeneration, dissected mesenchymal cell types 

during injury at single cell level and identified activated states with a changed mRNA expression 

profile for all mesenchymal subtypes upon injury. Although this work is still ongoing, the scRNA-

seq data suggest Lipofibroblasts as the only progenitor of myofibroblasts. Thereby, this work adds 

to the field where activated fibroblasts and myofibroblasts are regarded as the key cell types in 

fibrosis, with the origin of myofibroblasts however being elusive and multiple sources critically 

discussed in over the years (Phillips et al. 2004, Kim et al. 2006, Hoyles et al. 2011, Rock et al. 

2011).  

All in all, the comparison with literature and similar projects of other groups as discussed, 

demonstrates that there is still an urgent need for a better understanding of the mesenchymal 

subtypes in the lung. While the interest is high, and progress is made with the rise of new 

technologies such as scRNAseq or spatial methods, one of the major obstacles remains the 

nomenclature of cell types (Sucre et al. 2020). As this study tried to point, several of groups have 

found similar cell types which only become obvious with a deeper understanding of the matter, 

detailed knowledge about marker genes and experience in pitfalls in e.g. variations in cell 

extraction protocols painting different UMAPs of cell types. The presented work on the 

heterogeneity of fibroblasts will continue in this direction and will try to provide an integration of 

cell types identified by other groups, as to provide a comprehensive overview of mesenchymal 

subtypes, their location, and putative function in health and fibrotic lung diseases in the mouse for 

the field. 

On an experimental level, the work on the mouse mesenchyme could benefit from further 

validation using more conventional biological assays. Isolating the distinct subtypes by FACS and 

growing in them separately in organoids with epithelial cells will give further information about their 

function in the alveolar niche to provide signals that maintain epithelial homeostasis (Barkauskas 

et al. 2017). Performing the same experiment with activated disease states will help to understand 

better the mesenchymal and epithelial interactions in fibrosis. Ultimately, combining the gained 

scRNAseq data with classical lineage tracing experiments on lipofibroblasts markers in fibrosis 

will validate the hypothesis that they give rise to myofibroblasts. 



4.2  Mesenchymal heterogeneity in the lung 

116 
 

Overall, the herein presented data added new aspects of lung fibrosis to the research field by 

eliciting how protein signatures in body fluids can be assigned to various cell types that respond 

to lung injury. The powerful combination of single cell RNA sequencing and novel computational 

analysis methods, plus the characterization of the heterogeneity in the mesenchyme that is heavily 

involved in fibrotic processes, will aid the ongoing research efforts to better understand the 

molecular events involved in lung tissue fibrosis and regeneration. 
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