
 
Aus dem Institut für Kardiovaskuläre Physiologie und Pathophysiologie der Ludwig-Maximilians-

Universität München 
 

 
 

 

 

Dissertation 

zum Erwerb des Doctor of Philosophy (Ph.D.) 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 
 
 
 

Localization and functional characterization of  
renal dendritic cell subsets during steady state  

and after acute kidney injury 
 

 
vorgelegt von: 

 

Stephan Rambichler 

aus: 
 

Traunstein 
 
 

Jahr: 
 

2020



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

First supervisor:   Prof. Barbara Schraml-Schotta 

Second supervisor: Prof. Gunnar Schotta 

 

   

 

 

 

 
 

 
Dean:  Prof. Dr. med. dent. Reinhard Hickel 
 

 
Datum der Verteidigung: 

 

 
_____________________ 

 

11.11.2020



Abstract 

Dendritic cells (DCs) are important antigen-presenting cells, which can activate T cells 

after encounter of pathogens or tissue-damage and thereby bridge the innate and 

adaptive immune system. DCs can be split in two main subsets conventional DC1 (cDC1) 

and cDC2, each with their own unique role in the immune system. Interestingly, studies 

identified four major populations with DC origin in the kidney. In addition to cDC1 and 

cDC2 the kidney also contains F4/80hi cells and CD11bhi cells with a DC origin. 

Phenotypically, F4/80hi cells resemble macrophages from other tissues and CD11bhi cells 

are very similar to cDC2. Phenotypic overlap between DCs with other mononuclear 

phagocytes lead to conflicting data regarding the role of DCs in kidney injury. In this study 

we set out to better define the identity and function of renal DC subsets, in particular of 

F4/80hi cells and CD11bhi cells, using dendritic cell fate mapping, multicolour flow 

cytometry, confocal microscopy and RNA sequencing. We showed that CD11bhi cells are 

closely related to cDC2 both in their localization but also their gene expression profile. 

Among differentially expressed genes between these cells we identified pattern-

recognition receptors such as TLR7 and TLR8, which also correspond functional 

differences between cDC2 and CD11bhi cells that were not known so far. We showed that 

F4/80hi cells closely resemble splenic macrophages on a transcriptional level despite their 

DC origin. In addition, we demonstrated that F4/80hi produce chemokines such as CXCL2, 

CCL17 and CCL2 after cisplatin-induced AKI and may thereby orchestrate the influx of 

monocytes, neutrophils and T-cells after kidney damage. Furthermore, we showed that 

F4/80hi cells display major transcriptional changes after kidney injury, which causes 

downregulation of genes related to antigen-presentation and may be triggered by 

signalling through Prostaglandin E2 receptors. Using Clec9a
Cre

Rosa
DTR depletion models 

we showed that cells with a DC origin may affect disease severity after cisplatin-induced 

kidney injury as evident by increased influx inflammatory cells and elevated serum 

markers for kidney damage. Interestingly, depletion of cDC1 using XCR1
Venus-DTR mice 

seemed to not affect the severity of cisplatin-induced AKI suggesting a minor role of cDC1 

in early phases of AKI. Taken together, we were able to show that the kidney contains 

four phenotypically and functionally distinct dendritic cell subsets. We found that depletion 

of DCs prior to kidney injury exacerbates acute kidney injury, although cDC1 only play a 

minor role. Lastly, we showed that upon kidney injury F4/80hi cells undergo a phenotypic 

and transcriptional switch, possibly mediated by Prostaglandin E2, which could hint at 

important functions of this subset in cisplatin-induced acute kidney injury. 
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1. Introduction 

1.1. Dendritic cell subsets and their functions 

Dendritic cells (DCs) were discovered as a novel cell type in mouse lymphoid organs 

by Steinman and Cohn in 1973 (Steinman & Cohn, 1973). Even though the function 

of DCs was debated early on, they were later found to be the proposed ‘accessory 

cells’ for the induction of T cell responses (Steinman & Witmer, 1978; Nussenzweig, 

Steinman, Gutchinov, & Cohn, 1980). DCs are potent antigen-presenting cells, which 

are characterized by their ability to activate T cell responses, which allows DCs to 

bridge the innate and adaptive immune system (Nussenzweig et al., 1980; 

Nussenzweig et al., 1981; Steinman & Witmer, 1978). Later it was discovered that 

CD11c+MHCII+ DCs are a heterogeneous population consisting of two types of so 

called conventional DCs, CD8α+ cDC1 and CD11b+ cDC2. In addition, type I interferon 

producing plasmacytoid DCs (pDCs) can be found (Figure 1) (Asselin-Paturel et al., 

2001; Schraml & Reis e Sousa, 2015; Vremec et al., 1992).  

 

pDC cDC1 cDC2

CD11clow

MHCIIlow

B220+

Ly6C+

Phenotypic 
markers

Functions

CD11c+

MHCII+

CD103+

CD205+

XCR1+

CD11c+

MHCII+

CD11b+

Clec4a4+

CD172a+

Anti viral 
response

Defense 
against 

intracellular 
pathogens

Defense 
against 

extracellular 
pathogens

DC 
subset

 

Figure 1. Commonly associated phenotypic markers and functional properties of DC 

subsets. pDCs, cDC1 and cDC2 can be distinguished by different phenotypic markers such 

as B220, CD103 and CD11b. It is necessary to distinguish between different DC subsets 

because each subset can possess unique functions which would be missed overwise. 
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After their discovery, characterization of DC subsets especially in non-lymphoid tissue 

was complicated because a lot of surface markers, which were used to identify these 

cells in lymphoid tissue were not expressed in the non-lymphoid environment (del Rio, 

Rodriguez-Barbosa, Kremmer, & Förster, 2007). In non-lymphoid tissue cDC1 were 

discovered to express CD103 and/or XCR1 (del Rio et al., 2007; Dorner et al., 2009). 

A hallmark function of this subset is their ability to cross-present antigens on MHCI to 

activate CD8α+ T cells, which is an important mechanism for fighting intracellular 

pathogens (Haan, Lehar, & Bevan, 2000; Hildner et al., 2008). Activated cDC1 can 

produce high amounts of IL12 and thereby drive differentiation of naïve CD4+ T cells 

into Th1 cells (Reis e Sousa et al., 1997). Development of cDC1 is dependent on 

different transcription factors such as IRF8, Id2 and BATF3 (Aliberti et al., 2003; 

Hacker et al., 2003; Hildner et al., 2008). The second cDC subset cDC2 can be 

characterized by the expression of CD11b, CD172α or Clec4a4 in most tissues 

(Crowley, Inaba, Witmer-Pack, & Steinman, 1989; Dudziak et al., 2007; Merad, Sathe, 

Helft, Miller, & Mortha, 2013; Metlay et al., 1990). Studies showed that cDC2s are itself 

a heterogeneous population containing Notch2-dependent ESAMhi and Notch2-

independent ESAMlow subsets (Lewis et al., 2011). Apart from Notch2 also IRF4, IRF2, 

RelB and RBP-J were shown to be important transcription factors controlling cDC2 

development (Caton, Smith-Raska, & Reizis, 2007; Ichikawa et al., 2004; Lewis et al., 

2011; Suzuki et al., 2004; Wu et al., 1998). cDC2 are very efficient activators of CD4+ 

T cells and were shown to drive differentiation of Th17 cells and Th2 cells (Dudziak et 

al., 2007; Persson et al., 2013; Schlitzer et al., 2013; Tussiwand et al., 2015). 

Additionally, it was demonstrated that cDC2 are necessary for induction of T follicular 

helper cells (Briseño et al., 2018; Shin et al., 2016). Plasmacytoid DCs are a 

completely separate subset with lower expression of CD11c and MHCII (Asselin-

Paturel et al., 2001). They express other markers such as B220, Ly6C and SiglecH 

and can produce high amounts of interferon-α upon viral infection (Asselin-Paturel et 

al., 2001; Siegal et al., 1999). pDC development seems mainly regulated by the 

transcription factor E2-2 (Cisse et al., 2008). Characterization of DCs is complicated 

by their phenotypic and functional overlap with macrophages, monocytes and 

monocyte-derived cells, especially during inflammation (Mildner & Jung, 2014). 

Considering the limitations of phenotypic characterization of macrophages, DCs and 

monocytes it was suggested to define these cells by their ontogeny (Guilliams et al., 

2014).  
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1.2. Ontogenetic differences define DCs, monocytes and macrophages 

Most DCs are short-lived cells, which need constant replenishment from precursors in 

the bone marrow (Merad et al., 2013; Mildner & Jung, 2014). Due to an overlap of 

functional features and phenotypic characteristics DCs were grouped together with 

monocytes and macrophages in a so-called mononuclear phagocyte system, which 

was thought to derive from common progenitors in the bone marrow (van Furth, 1981). 

However, recent studies established DCs, monocytes and macrophages as 

ontogenetically and functionally distinct lineages with different developmental 

requirements (Guilliams et al., 2014; Schraml & Reis e Sousa, 2015). At the stage of 

the multipotent progenitor, cell development branches into common lymphoid 

progenitors, which can give rise to B cells, T cells and NK cells, or common myeloid 

progenitors (CMPs) ,which can ultimately give rise to monocytes, macrophages and 

DCs (Akashi, Traver, Miyamoto, & Weissman, 2000; Auffray et al., 2009; Kondo, 

Weissman, & Akashi, 1997). CMPs can further give rise to monocyte and DC 

committed precursors (MDPs), which can then differentiate to common monocyte 

progenitors (cMoPs), a precursor for monocytes and macrophages, or DC-lineage-

committed common dendritic cell precursors (CDPs) (Auffray et al., 2009; Fogg et al., 

2006; Hettinger et al., 2013; Onai et al., 2007). CDPs can give rise to pDCs and pre-

DCs, which leave the bone marrow, seed different tissues and ultimately differentiate 

into the conventional DC subsets mentioned before (Figure 2) (K. Liu et al., 2009; Naik 

et al., 2006). Recent studies suggest that there is heterogeneity among pre-DCs and 

that there are subpopulations, which are pre-committed to specific cDC subsets before 

leaving the bone marrow (Grajales-Reyes et al., 2015; Schlitzer et al., 2015; See et 

al., 2017).  

DC development largely depends on the growth factor receptor FLT3 and its ligand 

FLT3L (McKenna et al., 2000). Administration of FLT3L leads to an expansion of DCs 

in the tissue and studies utilizing Flt3-/- and Flt3l-/- mice showed a dramatic decrease 

of DCs (Maraskovsky et al., 1996; McKenna et al., 2000; Waskow et al., 2008). 

Moreover, FLT3 is expressed on CDPs and addition of FLT3L to BM cultures in vitro 

leads to the development of mature cDCs (Brasel, De Smedt, Smith, & Maliszewski, 

2000; Kingston et al., 2009; Naik et al., 2005). Interestingly, monocytes and 
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macrophages are not affected by a loss of FLT3 signaling, making FLT3L-dependency 

a characteristic feature of DCs (Waskow et al., 2008). 

MDP

CDP cMoP

Yolk sac

pre-DC Monocytes

Monocyte-derived cells

pre-DC Monocytes

Macrophages

Bone marrow

Blood

Tissue

Dendritic cells

Self

renewal

 

Figure 2. Simplified developmental tree of mononuclear phagocytes. Development of 

DCs and monocytes splits into two independent ontogenetic trees at the stage of the MDP, 

which gives rise to DC progenitor CDP and monocyte progenitor cMoP. Macrophages can 

develop independent of the bone marrow from yolk sac progenitors, are long-lived and can 

possess the ability to self renew. 

 

In contrast to DCs and monocytes, which arise from definitive hematopoiesis, 

development of macrophages already begins in a first wave at embryonic day 7.25 

(E7.25) from progenitors in the yolk sac (Ginhoux et al., 2010). Erythro-myeloid 

progenitors (EMPs) develop in the yolk sac in a second wave after E8.25 and are the 

major source of tissue-resident macrophages in various organs at this time point 

(Gomez-Perdiguero et al., 2015). From E10.5 onwards definitive hematopoiesis is 

established when hematopoietic stem cells (HSCs) develop in the aorto-gonad-

mesonephros and migrate to the liver (Bertrand et al., 2010; Kissa & Herbomel, 2010). 

Definitive hematopoiesis later shifts to the bone marrow (Bertrand et al., 2010). 

Macrophages are usually long-lived cells, which have the ability to renew, therefore in 
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some tissues yolk sac-derived macrophages even persist in adulthood (Hashimoto et 

al., 2013; Schulz et al., 2012). With increased age the pool of yolk sac-derived 

macrophages gets diluted by monocytes which can also give rise to tissue resident 

macrophages (Gentek, Molawi, & Sieweke, 2014). Macrophages and monocytes are 

regulated through CSF-1 and IL-34, which bind to CSF-1R (CD115) (Cecchini et al., 

1994; Y. Wang et al., 2012). Disruption of signaling through CSF-1R leads to an 

absence of monocytes and macrophages, but not DCs, across different tissues (Dai 

et al., 2002; Erblich, Zhu, Etgen, Dobrenis, & Pollard, 2011).  

The origin of mononuclear phagocytes, even though complex, can be an important 

tool in understanding the function of these cells in different tissues. Moreover, mouse 

models were created, which utilized the different ontogeny of DCs, macrophages and 

monocytes to their advantage and thereby enabled a better characterization of these 

cells independent of phenotypic markers (Poltorak & Schraml, 2015). 

 

1.3. Genetically modified mouse models can be used to target specific 

mononuclear phagocyte subsets 

Many studies, which analyzed the phenotype, function and ontogeny of mononuclear 

phagocytes were only possible with the use of genetically modified mouse models. 

Systemic knockout of certain genes such as Ccr2-/-, Flt3l-/- or Batf3-/- allowed to study 

developmental requirements or to achieve a cell depletion (Poltorak & Schraml, 2015). 

Another approach to study mononuclear phagocytes was with transgenic mice in 

which the expression of fluorescent reporters or diphtheria toxin receptor (DTR) 

(Poltorak & Schraml, 2015). Mice are not sensitive to diphtheria toxin (DT) and thereby 

cells expressing a human DTR can be conditionally depleted via injection of DT without 

major side effects (Saito et al., 2001). In addition, the rise of the Cre-LoxP system 

made studying mononuclear phagocyte function more efficient because mice with a 

CRE recombinase inserted in specific loci could be crossed to mice with either 

fluorescent reporters or DTR inserted in the Rosa26 locus controlled by a promoter 

flanked with lox-stop-lox sites (Poltorak & Schraml, 2015; Vorhagen et al., 2015). Mice 

expressing DTR and green fluorescent protein (GFP) under the control of the CD11c 

promoter were used early on to study the function of DCs (Jung et al., 2002). However, 

since CD11c is also expressed by other cell types, such as macrophages or non-

myeloid cells, conclusions from this model cannot be attributed specifically to DCs 
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(Probst et al., 2005; van Blijswijk, Schraml, & Reis e Sousa, 2013).  A better alternative 

to CD11c as the driving promoter is the use of ZBTB46. ZBTB46 is expressed in the 

DC lineage and in endothelial cells but not in other myeloid populations at steady state, 

making Zbtb46GFP  and Zbtb46DTR mice viable tools to study DC function (Meredith et 

al., 2012; Satpathy et al., 2012). However, because of ZBTB46 expression in 

endothelial cells DT injection in Zbtb46DTR mice is lethal, making bone marrow 

chimeras a necessity for DC depletion experiments (Meredith et al., 2012). It also 

needs to be considered that activated monocytes upregulate expression of ZBTB46, 

which will lead to labelling in non-DCs during injury or disease (Satpathy et al., 2012). 

In addition, cDC1 specific Xcr1Venus-DTR and Clec9aDTR mice, cDC2 specific Clec4a4DTR 

mice and other models allow to address the function of DC-subsets via subset-specific 

depletion through DT injection (Muzaki et al., 2016; Piva et al., 2012; Yamazaki et al., 

2013). Monocytes and macrophages were routinely targeted using Cx3cr1Cre or 

LyzMCre mouse models, however, same as with CD11c the expression of Cx3cr1 and 

LyzM is not specific enough for these cell types to allow precise conclusions (Clausen, 

Burkhardt, Reith, Renkawitz, & Förster, 1999; Z. Liu et al., 2019; Yona et al., 2013). 

Even though some models have limitations, they nevertheless provide a powerful tool 

to unravel the role of the DC lineages or specific DC subsets during health and disease 

in various organs. Especially depletion models targeting subsets such as XCR1Venus-

DTR for cDC1 have the potential to shine light into subset-specific roles of DC subsets. 

The use of CRE recombinase expression also allowed to discern ontogenetic 

relationships or follow the fate of differentiated cells across tissues by choosing genes, 

which are only active in progenitor cells but not their progeny, or by utilizing tamoxifen-

inducible CRE expression (Metzger, Clifford, Chiba, & Chambon, 1995; Poltorak & 

Schraml, 2015). DC development was addressed using the gene Clec9a, which was 

found to be specifically expressed in the DC-lineage by cDC1, DC progenitors in the 

bone marrow and by pDCs (Caminschi et al., 2008; Poulin et al., 2012; Sancho et al., 

2008; Schraml et al., 2013). As such, the use of Clec9aCreRosaYFP mice allowed to 

trace DC progenitors and their progeny across lymphoid and non-lymphoid tissue 

(Schraml et al., 2013). For cells which do not express Clec9a the labelling in 

Clec9aCreRosaYFP is therefore a true indicator of DC origin. Crossing Clec9aCre to 

RosaDTR mice also allows DC-lineage specific cell depletion (Salvermoser et al., 2018; 

van Blijswijk et al., 2015). Additionally, a recent study by Liu et al. identified Ms4a3 as 

a suitable model to identify monocyte-derived cells across tissues (Z. Liu et al., 2019). 
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Ms4a3 is expressed by GMPs and neutrophils and thereby allows the assessment of 

monocyte-contribution to myeloid cell populations without unspecific labelling in DC 

subsets (Z. Liu et al., 2019). Taken together, the wealth of established and new fate-

mapping and depletion models can be utilized to further explore the functions of 

macrophages, monocytes and DC subsets especially during disease. However, 

because many models are not subset specific it may be necessary to use a 

combination of different models to reach precise conclusions. 

 

1.4. The kidney contains a diverse mononuclear phagocyte network 

Using different reporter lines, phenotyping via flow cytometry and single cell RNA 

sequencing it was shown that the murine kidney contains at least six different 

populations of mononuclear phagocytes at steady state (Guilliams et al., 2016; 

Kawakami et al., 2013; Schraml et al., 2013; Zimmerman et al., 2019). Five of these 

populations express classic DC markers, i.e. expression of CD11c and MHCII 

(Kawakami et al., 2013).  Same as in other non-lymphoid organs the kidney contains 

CD103+XCR1+CD24+ cDC1 and CD11b+ cDC2, both of which express high levels of 

CD11c and MHCII (Ginhoux et al., 2009; Schraml et al., 2013; Zimmerman et al., 

2019). Additionally, a small population of B220+Ly6C+ pDCs can be found (Deng et 

al., 2020; Zimmerman et al., 2019). However, the vast majority among CD11c+MHCII+ 

cells express CD64 and F4/80, markers which were used in other tissues to define 

monocyte-derived cells or macrophages (Austyn & Gordon, 1981; Langlet et al., 2012; 

Tamoutounour et al., 2012). These CD64+ cells were shown to include 

F4/80hiCD11blow as well as CD11bhiF4/80low cells (Kawakami et al., 2013; Schraml et 

al., 2013). CD11bhiF4/80low cells are phenotypically similar to cDC2 except for their 

expression of CD64 (Guilliams et al., 2016). In addition, they show classic DC features 

as their development depends on FLT3L same as for other cDCs and CDPs can give 

rise to this population in transfer experiments (Schraml et al., 2013). Although 

CD11bhiF4/80low cells are labelled in Clec9aCreRosaYFP mice, the amount of labelled 

cells is lower compared to cDC2, indicating additional heterogeneity in 

CD11bhiF4/80low cells (Salei et al., 2020; Schraml et al., 2013). Whether 

CD11bhiF4/80low cells and cDC2 differ in their transcriptional profile or their function 

has not been addressed yet. F4/80hiCD11blow cells resemble macrophages both in 

their expression of markers such as F4/80 and CD64, but also based on their 
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transcriptomic signature (Cao et al., 2015). However, the origin of these cells is 

complex. In early life F4/80hiCD11blow cells are derived from yolk sac progenitors or 

EMPs and were shown to be important for nephron formation (Hoeffel et al., 2015; 

Munro et al., 2019; Salei et al., 2020; Schulz et al., 2012). However, starting from 

around two weeks after birth F4/80hiCD11blow cells deriving from DC progenitors in the 

bone marrow start to appear as shown with the Clec9aCreRosaYFP model or from 

monocytes as demonstrated by the Ms4a3 monocyte tracing model (Salei et al., 2020; 

Liu et al., 2019). In contrast to yolk sac-derived F4/80hiCD11blow cells, the bone 

marrow-derived cells express MHCII, which could hint at a different functional role 

more related to recognition of pathogens and antigen presentation (Lever et al., 2019; 

Salei et al., 2020). Interestingly, despite their possible DC origin, F4/80hiCD11blow cells 

are long-lived and do not depend on FLT3L for their development (Guilliams et al., 

2016; Puranik et al., 2018; Schraml et al., 2013; Stamatiades et al., 2016). Current 

evidence suggests that the pool of F4/80hiCD11blow cells might consist of cells with 

different origin, but whether the origin of F4/80hiCD11blow cells has an impact on their 

function and whether all F4/80hiCD11blow cells share the same developmental 

requirements needs to be addressed in future studies. 

 

1.5. Function and localization of DCs in the steady state kidney 

Early localization studies in the kidney found that mononuclear phagocytes form a 

dense interstitial network across the whole kidney (Hume & Gordon, 1983; Soos et al., 

2006). Localization of immune cells is important for efficient immune responses as 

shown in other organs (Germain et al., 2008). Therefore, the localization of DC subsets 

in the kidney could have important consequences for their functions during injury or 

disease. Most of the myeloid cells in the kidney are F4/80hiCD11blow cells found in the 

renal medulla, however, there is also a substantial number of F4/80hi cells in the renal 

cortex (Hume & Gordon, 1983). Precise localization of DC subsets and monocyte-

derived cells is difficult because of substantial phenotypic overlap in these populations 

(Figure 3) and the limited number of markers which can be used in fluorescent 

microscopy due to spectral overlap (Kawakami et al., 2013). New approaches utilizing 

imaging mass cytometry showed that both cDC1, cDC2 and monocytes seem to be 

mostly localized in the renal cortex close to major vessels and in close contact to T 

cells and B cells (Brähler et al., 2017). Same as in other organs, a major role of cDCs 
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is in the kidney is to monitor their surroundings and to induce T cell activation upon 

contact with an antigen (Yatim, Gosto, Humar, Williams, & Oberbarnscheidt, 2016). In 

addition, a recent study by Lu et al. demonstrated that cDCs are involved in mediating 

hypertension through activation of T-cells after chronic Angiotensin II infusion (X. Lu 

et al., 2019). 
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Figure 3. Phenotypic characteristics of mononuclear phagocyte subsets in the kidney. 

Renal mononuclear phagocytes share the expression of many markers such as CD11c and 

MHCII. To distinguish these populations many additional markers, such as B220, CD24, 

CD11b, CD64, F4/80 and Ly6C, must be taken in consideration to ensure a proper 

identification of cells 

 

F4/80hiCD11blow cells are not only localized in the interstitium, but also directly at the 

Bowman’s capsule forming a ring around glomeruli (Hume & Gordon, 1983). In line 

with this, F4/80hiCD11blow cells were shown to process particles directly at the 

glomeruli through trans-endothelial processes and thereby mediate inflammatory 

responses (Stamatiades et al., 2016). F4/80hiCD11blow cells are found in high numbers 

in the renal medulla, an observation that may be caused by a salt gradient in the kidney 

with highest salt concentrations in this area (Berry et al., 2017). Consequently, 

F4/80hiCD11blow cells were shown to be crucial for protection against uropathogenic 

Escherichia coli which enter the renal medulla through the ureter (Berry et al., 2017). 

Moreover, it was shown that yolk sac derived macrophages play an important role 

during kidney organogenesis by promoting endothelial cell growth and through 

clearance of apoptotic cells (Munro et al., 2019).  
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1.6. The specific role of DCs in AKI is unclear 

Two commonly used experimental acute kidney injury (AKI) models used on mice are 

ischemia reperfusion injury (IRI)-induced AKI and cisplatin-induced AKI (Rogers, 

Ferenbach, Isenberg, Thomson, & Hughes, 2014). Cisplatin is a common platinum-

containing chemotherapeutic drug used against a variety of different cancers (Dasari 

& Tchounwou, 2014). Once taken up by a cell cisplatin binds to DNA and blocks cell 

division causing cell death (Dasari & Tchounwou, 2014). A common side-effect of 

cisplatin treatment is nephrotoxicity caused by cisplatin-uptake through organic cation 

transporter OCT2 and copper transporter Ctr1 in renal proximal tubular epithelial cells 

(Ciarimboli et al., 2010; Ozkok & Edelstein, 2014; Volarevic et al., 2019). Cisplatin-

induced AKI causes an increase of CX3CL1 production in endothelial cells and 

upregulation of CXCL2 and CXCL1 leading to an influx of neutrophils and inflammatory 

monocytes (Chan et al., 2014; L. H. Lu et al., 2008; Tadagavadi & Reeves, 2010b). 

To induce ischemia-reperfusion injury blood flow to the kidney is blocked for a certain 

amount of time, which causes ischemia,  hypoxia and leads to inflammation and organ 

damage (Malek & Nematbakhsh, 2015; Marschner, Schäfer, Holderied, & Anders, 

2016). Additional murine AKI models which are used are unilateral ureteral obstruction 

and rhabdomyolysis-induced AKI caused by severe muscle damage (Bao, Yuan, 

Chen, & Lin, 2018). Kidney damage after AKI can be identified by the accumulation of 

waste products like blood urea nitrogen (BUN) and serum creatinine in the blood or 

through measurement of the glomerular filtration rate (GFR) (Holditch, Brown, 

Lombardi, Nguyen, & Edelstein, 2019).  

Kidney injury models in combination with mouse models to deplete macrophages, DCs 

or DC subsets can be powerful tools to study the functions of these cells during AKI. 

However, because of considerable phenotypic overlap between DCs, macrophages 

and inflammatory monocytes entering the kidney upon injury (Figure 3) (Weisheit, 

Engel, & Kurts, 2015). As an alternative, clodronate liposomes can be used to deplete 

macrophages and DCs without the need of a specific mouse model (Ferenbach et al., 

2012; Van Rooijen & Sanders, 1994). Once taken up by phagocytes via endocytosis, 

clodronate liposomes lead to apoptosis and cell death in these cells (Moreno, 2018). 

A downside of this method is that not only macrophages and DCs but also monocytes 

are affected by this method (Ferenbach et al., 2012). The use of different depletion 
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models, each with their own limitations, caused conflicting results about the function 

of DCs during AKI. 

Ablation of phagocytes using clodronate liposomes before induction of cisplatin-

induced AKI did not change the disease severity, however it can improve disease 

outcome after 24h IRI induction (Ferenbach et al., 2012; L. H. Lu et al., 2008). In 

contrast to this finding, depletion of CD11c+ cells using CD11cDTR/GFP mice which 

targets the same cells as depletion via clodronate liposomes showed an exacerbation 

of cisplatin-induced AKI (Tadagavadi & Reeves, 2010b). A potential protective effect 

of CD11c+ cells during cisplatin-induced AKI may be explained by their production of 

IL10, however which of the CD11c+ subsets in the kidney produce this cytokine is not 

clear (Tadagavadi & Reeves, 2010a). A study by Tadagavadi et al. further 

demonstrated that the protective effect of CD11c+ cells is independent of neutrophils 

despite the observation of higher neutrophil infiltration after cisplatin-induced AKI in 

mice with depletion of CD11c+ cells (Tadagavadi, Gao, Wang, Gonzalez, & Reeves, 

2015). Interestingly, depletion of phagocytes 24h after IRI surgery showed persistence 

of kidney damage and unresolved renal inflammation compared to controls, 

demonstrating a role of renal mononuclear phagocytes in the recovery after kidney 

injury (M.-G. Kim et al., 2010).  

Renal toxicity of cisplatin is also caused by TNFα-production in different cell types 

including parenchymal cells but also macrophages, however experiments with 

chimeric mice suggest that TNFα produced in macrophages and DCs is negligible 

during AKI (Ramesh & Reeves, 2002; Zhang, Ramesh, Norbury, & Reeves, 2007). 

Contrary to this, Dong et al. showed that depletion of phagocytes before IRI using 

clodronate liposomes decreased TNFα-production both in myeloid and non-myeloid 

cells, revealing F4/80+ cells not parenchymal cells as the major source of TNFα in the 

early phases of kidney injury (Dong et al., 2007).  

Apart from cytokine-production, DCs were shown to activate the adaptive immune 

response by taking up antigens in the kidney after IRI and trafficking to the renal lymph 

node resulting in activation of CD4+ T-cells (Dong et al., 2005). Whether activation of 

CD4+ T-cells or induction of regulatory T-cells by DCs during AKI plays a role in 

disease progression needs to be addressed in future studies. 

Overall, the specific functions of renal mononuclear phagocyte subsets are largely 

unknown since most studies are based on models with a combined effect on most 

renal DC and macrophage populations. Some progress was seen in other kidney 
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disease models, e.g. it was shown that depletion of cDC1 during glomerular nephritis 

substantially increased neutrophil infiltration and lead to a worse disease progression 

(Brähler et al., 2017). Modern techniques such as (single-cell) RNA sequencing and 

kidney disease studies employing more DC subtype specific mouse models such as 

Clec9aCreRosaDTR or XCR1Venus-DTR may help to understand the precise function of 

these populations during kidney disease. 

 

1.7. Research objectives 

Flow cytometric analyses of the kidney identified a novel CD11bhi subset in the kidney, 

however the function of this subset was not addressed yet. Moreover, the ontogeny of 

F4/80hiCD11blow cells in the kidney is highly debated since they show characteristics 

of both cDCs and macrophages. Therefore, this study aimed to analyse the 

transcriptional identity of renal DC subsets both in steady state and after acute kidney 

injury to identify signs of ontogenetic relationships and to get clues about potential 

functional properties. In addition, multicolour confocal microscopy in combination with 

Histo-Cytometry for data analysis was employed to address the localization of DC 

subsets across renal cortex and medulla. Specific localization of different subsets 

could give insights into functional properties of these cells during steady state and 

disease. 

Most studies analysing the function of mononuclear phagocytes during acute kidney 

injury are not addressing specific subsets but rather DCs, macrophages and 

monocytes combined. Therefore, this study aimed to use more specific depletion of 

DCs or DC subsets to improve knowledge about the function of these cells during 

cisplatin-induced acute kidney injury and IRI. 
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2. Materials and methods 

2.1. Animal husbandry 

Clec9aCre (Schraml et al., 2013), Rosa26YFP (Srinivas et al., 2001), Rosa26Tomato 

(Madisen et al., 2010), Rosa26DTR (Buch et al., 2005), XCR1Venus-DTR (Yamazaki et al., 

2013) and C57BL/6J mice were bred at the Biomedical Center of the Ludwig-

Maximillian’s University in specific pathogen-free conditions with a 12 hour light/dark 

cycle. Adult mice where used at the age of 8-12 weeks. All animal procedures were 

performed according to institutional and national guidelines for animal welfare and 

approved by the Government of Upper Bavaria (Regierung von Oberbayern).  

 

2.2. Genotyping  

Ear snips for genotyping were taken by animal caretakers in the animal facility and 

transferred to 300 µl quick lysis buffer containing 10 mM Tris, 150 mM NaCl, 5 mM 

EDTA, 0.05 % NP-40 and 0.2 mg/ml Proteinase K. The samples were digested in a 

thermoshaker (Eppendorf) at 56 °C and 300 rpm for 3 hours and inactivated at 90 °C 

and 300 rpm for 10 min. Leftover mouse material was pelleted by centrifugation at 

13000 g for 5min. 1 µL of the solution was used for genotyping.  

 

Table 1. List of used oligonucleotides 

Primer Sequence 5’ – 3’ PCR 

Rosa1 AAA GTC GCT CTG AGT TGT TAT DTR/YFP 

Rosa3 GGA GCG GGA GAA ATG GAT ATG DTR/YFP 

iDTR-R BBO 0164 AAT AGG AAC TTC GTC GAG C DTR 

oIMR4982 AAG ACC GCG AAG AGT TTG TC YFP 

BS49 AAA AGT TCC ACT TTC TGG ATG ATG A Cre 

BS47 GGC TCT CTC CCC AGC ATC CAC A Cre 

A65 TCA CTT ACT CCT CCA TGC TGA CG Cre 

AKM 258 CTA TCT TAA GAT TTC TCA GGG CCA 

GTC TAC 

XCR1 

AKM 259 CAG GAC AAT GGT AGA GAT GGT GGA 

AAA G 

XCR1 

AKM 260 CTG CAG CCA GAA AGA GCT TCA G XCR1 
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WT FOR AAG GGA GCT GCA GTG GAG TA tdTomato 

WT REV CCG AAA ATC TGT GGG AAG TC tdTomato 

Mut FOR CTG TTC CTG TAC GGC ATG G tdTomato 

Mut REV GGC ATT AAA GCA GCG TAT CC tdTomato 

 

 

Table 2. Used PCR protocols for genotyping 

Locus Primers Annealing 

temperatur 

Extension 

time 

Expected 

bands 

Clec9a-Cre BS49, BS47, A65 60°C 40s WT: 407 bp 

Mut: 597 bp 

XCR1-Venus-

DTR 

AKM 258, AKM 259, 

AKM 260 

62 30s WT: 450 bp 

Mut: 450 bp 

Rosa26-DTR Rosa1, Rosa3, 

iDTR-R BBO 0164 

61 60s WT: 600 bp 

Mut: 845 bp 

Rosa26-YFP Rosa1, Rosa3, 

oIMR4982 

60 60s WT: 320 bp 

Mut: 600 bp 

Rosa26-Tomato WT FOR, WT REV, 

Mut FOR, Mut REV 

61 30s WT: 297 bp 

Mut: 196 bp 

 

2.3. Cell isolation for flow cytometry 

2.3.1. Spleen and lymph nodes 

Spleens and lymph nodes were isolated from mice, transferred to 1 ml RPMI with 200 

U/ml collagenase IV and 0.2 mg DNAse I and then cut into small pieces.  Organs were 

digested for 30 min in a heated shaker at 37 °C and 120 rpm. Digested organs were 

passed through a 70µm strainer and washed with FACS Buffer. Red blood cell lysis 

was performed with 2 ml Red Blood Cell Lysing Buffer Hybri-Max (Sigma Aldrich) for 

2 min at room temperature. Cells were washed once and then resuspended in FACS 

buffer (PBS containing 1 % FCS (Sigma-Aldrich), 2.5 mM EDTA (Invitrogen) and 

0,02% sodium azide) for further analysis. 
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2.3.2. Kidney 

Kidneys were perfused with ice-cold PBS before isolation, transferred to 2 ml RPMI 

with 200U/ml collagenase IV and 0.2 mg DNAse I and then cut into small pieces. 

Digested kidneys were passed through a 70 µm strainer, washed once with FACS 

Buffer and resuspended in 4ml 70 % Percoll for enrichment. The resuspended cells 

were overlaid with additional 37 % Percoll and 30 % Percoll layer to create a gradient 

and centrifuged at 2000rpm for 30min at room temperature without brakes. Enriched 

leukocytes were collected at the interface of the 70 % and 37 % layers and washed 

once with FACS buffer. Isotonic Percoll was prepared by adding 1 part of 10x PBS to 

9 parts of Percoll (Sigma-Aldrich). Percoll dilutions were prepared according to Table 

3. FACS buffer without sodium azide was used for RNA sequencing.  

 

Table 3. Preparation of Percoll dilutions 

Percoll dilution 

% 

Amount isotonic 

Percoll 

Additive 

70 28 ml 12 ml Hank's balanced salt solution 

(HBSS, Sigma-Aldrich) 

37 14,8 ml 25.2 ml PBS 

30 6 ml 14 ml HBSS 

 

2.4. Flow cytometry 

Before staining, cells were incubated with 50 μl Fc-block containing purified anti-mouse 

CD16/32 in FACS Buffer for 10min at 4 C. Antibodies for surface antigens for were 

combined in a master mix in FACS buffer and added to the samples for a final staining 

volume of 100 μl at 4 °C for 20 min. Stained cells were washed twice in FACS buffer 

to remove unbound antibodies and then resuspended for flow cytometric analysis. 

Dead cells were identified using 4’,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) 

or Fixable Viability Dye eFluor™ 780 (Thermo Fisher Scientific). For staining of 

intranuclear antigens the Foxp3 transcription factor staining set (Thermo Fisher 

Scientific) was used according to the manufacturer’s instructions. Flow cytometry was 

performed on a LSR Fortessa (BD Biosciences) and data were analyzed using FlowJo 

software (FlowJo LLC). For cell sorting an Aria III Fusion (BD Biosciences) sorter was 
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used. CountBright™ Absolute Counting Beads (Thermo Fisher Scientific) were used 

for cell quantification. 

 

2.5. Cisplatin-induced acute kidney injury 

Acute kidney injury was induced in adult female Clec9acre/creRosaYFP mice by i.p. 

injection of 15 mg/kg body weight cisplatin. Control mice were injected with an equal 

amount of NaCl. Organs and blood were collected 72h after injection of cisplatin or 

when the mice reached a high disease score. Blood serum was used for creatinine 

and blood urea nitrogen (BUN) measurements using a Cobas Integra 400 plus 

analyser (Roche). Serum BUN was identified with a cobas c pack UREAL (Roche) and 

creatinine levels were measured using a cobas c pack CREP2 (Roche). Kidneys and 

spleen were isolated and analyzed as described above. 

 

2.6. Unilateral ischemia reperfusion injury 

Unilateral ischemia reperfusion injury was performed in collaboration with the group of 

Prof. HJ Anders as previously described (Marschner et al., 2016). 10-week-old male 

Clec9acre/creRosaYFP mice were anesthetized prior to surgery using a mixture 

containing medetomidine, midazolam and fentanyl and online rectal temperature 

recording was installed for each mouse. Anesthetized mice were placed on a heating 

plate to maintain body temperature between 36.5-38.5 °C and a flank incision was 

performed and the renal hilum of the left kidney was clamped for 25 min using a micro 

aneurysm clamp (Medicon, Germany). Body temperature was monitored with a rectal 

probe. After clamping, successful ischemia was indicated by a pale color of the kidney, 

which changed back to its original color. Both the peritoneal and cutaneous layer were 

stitched with absorbable sutures (Ethicon) to close the wound. Mice were 

supplemented with 200 µl saline to maintain fluid balance. 72 h after surgery kidneys 

and spleen were isolated and analyzed as described above. 

 

2.7. Diphtheria Toxin mediated cell depletion 

DCs were depleted in 10-12-week-old XCR1Venus-DTR or Clec9aCreRosaDTR mice by i.p. 

injection of 25 ng/kg diphtheria toxin. Control mice without DTR were injected with the 

same concentration of DT to exclude DT-mediated side-effects. 24 h after injection the 
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mice were either analyzed or subsequently injected with cisplatin to induce acute 

kidney injury. 

 

2.8. RNA isolation and library construction 

DCs for RNAseq were directly sorted in Extraction Buffer using an Aria III Fusion (BD 

Biosciences). PicoPure™ RNA Isolation Kit (Thermo Fisher Scientific) was used to 

extract total mRNA from sorted cells according to manufacturer’s instructions. RNA 

quantity and quality were analyzed using a 2100 Bioanalyzer (Agilent) and only 

samples with a RNA Integrity Number (RIN) > 8 were considered for further steps. 

cDNA synthesis of isolated mRNA was performed with the ultra-low input RNA 

SMART-seq v4 kit (Clontech) according to the manufacturer’s instructions. Purified 

cDNA was transferred to 6x16 mm microTUBEs (Covaris) and sheared by sonication 

with a Covaris S220. Sheared cDNA was cleaned using ethanol precipitation and 

successful sonication was confirmed using DNA High Sensitivity chips on a 2100 

Bioanalyzer. Libraries for RNA sequencing were created with the MicroPlex Library 

Preparation kit v2 (Diagenode) and a maximum of 10 ng sheared cDNA. Next, libraries 

were amplified for 4 cycles and DNA amount was quantified by Qubit 2 DNA 

quantification (Thermo Fisher Scientific). Additional cycles were added until a DNA 

amount of 5 ng/µl was reached.  AMPure XP beads (Beckman Coulter) were used to 

clean amplified libraries according to the SMART-seq v4 kit (Clontech) protocol. 

Quality and amount of the finished libraries were analyzed by using a 2100 

Bioanalyzer (Agilent). Sequencing of finished libraries was performed at LAFUGA 

(Gene Center LMU) on an Illumina HiSeq1500 sequencer. 50 base pair (bp) single 

read sequencing in combination with a sequencing depth of 20 million reads was 

chosen to reach an adequate sequencing depth. 

 

2.9. RNA sequencing analysis 

Sequenced cDNA libraries were demultiplexed and reads were mapped to the mouse 

genome (mm10) using STAR (Dobin et al., 2013). Normalized gene expression was 

calculated in transcripts per kilobase million (TPM) with RSEM (B. Li & Dewey, 2011). 

RNA-seq analysis was performed in R (Version 3.4.3) with R-Studio (R-Studio Inc, 

Version 1.1.414). The DESeq2 R-package (Version 1.18.1) was used for differential 

gene expression analysis and principal component analysis (PCA). Genes with 
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average gene counts lower than 1 were discarded and Apeglm (A. Zhu, Ibrahim, & 

Love, 2018) as used for log2 fold change shrinkage. iCre and Gapdh DNA sequences 

were loaded in R using Biostrings (Version 2.50.1) and manual alignment was 

performed with Shortread (Version 1.40.0). pheatmap (Version 1.0.10) was used to 

make heatmaps and graphs were plotted with the ggplot2 package (Version 2.2.1). 

Sequencing data have been deposited in the Gene Expression Omnibus under 

accession numbers GSE131751 and GSE135921. 

 

2.10. Immunofluorescence microscopy 

Organs were fixed overnight at 4 °C in 1% paraformaldehyde according to (Bajénoff, 

Glaichenhaus, & Germain, 2008) and then transferred to 30% sucrose at 4 °C. Once 

the organs were equilibrated with sucrose they were transferred to Tissue-Tek O.C.T. 

(Sakura) and frozen on dry ice. 10-12 µm thick sections were cut on a Leica CM3050S 

cryostat at -20 °C. After thawing the sections were dried and then rehydrated in PBS 

and permeabilized with PBS + 0.2 % Triton-X (Sigma-Aldrich) or Acetone (Sigma-

Aldrich). For staining the sections were circled with a PAP Pen (Kisker Biotech GmbH) 

and blocked for at least 1 hour at room temperature (RT) in a dark humidified chamber 

with blocking buffer containing 10 % goat serum in PBS. During the blocking step 

antibodies were diluted in blocking buffer and sections were subsequently stained for 

two hours at RT in the dark with the staining solution. After staining the sections were 

washed with PBS twice and mounted with ProLong™ Diamond Antifade Mountant 

(Thermo Fisher Scientific), cured in a dark chamber at RT for 24 hours and stored at 

4°C until imaging. Microscopy was performed at the Core Facility Bioimaging of the 

Biomedical Center with an upright Leica SP8X WLL microscope, equipped with 405nm 

laser, WLL2 laser (470 - 670nm) and acusto-optical beam splitter. Images were 

acquired with a 20x0.75 objective, image voxel size was 180nm in x/y direction and 

0.5-1.3µm in z direction. The following detector settings were used for acquisition: 

AF647 (excitation 646nm; emission 656-718nm), AF594 (excitation 592nm; emission 

605-640nm), tdTomato/AF555 (excitation 553nm; emission 563-591nm), AF488 

(excitation 500nm; emission 510-542nm) and DAPI/BV421 (excitation 405nm; 

emission 415-470nm). Channels were recorded sequentially to avoid bleed-through. 

BV421, AF488, AF555, AF594, AF647 and tdTomato were recorded with hybrid photo 

detectors, DAPI with a conventional photomultiplier tube. Tile-scans were merged in 
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LAS X (Leica) and deconvolved using Huygens Professional (Scientific Volume 

Imaging). After deconvolution z-stacks were imported in Fiji (Schindelin et al., 2012) 

to adjust brightness/contrast, create maximum projections and to add scale bars.  

For quantification of MHCII+/MHCIIneg F4/80hi cells in tissue sections 300 x 300µm 

cutouts were randomly chosen from renal cortex and medulla out of deconvoluted tile-

scans. F4/80neg cells were excluded using a mask created with the Interactive 

Watershed plugin on a thresholded F4/80 channel. Cells with high expression of 

CD11b were not counted. 

 

2.11. Histo-Cytometry 

Histo-Cytometry was adapted from Gerner et al. (Gerner, Kastenmuller, Ifrim, Kabat, 

& Germain, 2012) and Li et al. (W. Li, Germain, & Gerner, 2017). Deconvoluted tile-

scans were opened in Fiji and a maximum projection was performed. The images were 

split in their channels and each channel was thresholded with the Auto Threshold 

Plugin and Default settings. The thresholded channels of an image were recombined 

and transformed to RGB to allow a mask creation on combined signal. Small noise 

was removed with the Despeckle plugin and the image was blurred with a Gaussian 

Blur filter and a 2-pixel radius. The Interactive Watershed plugin (Version 1.2.1) was 

used to perform the segmentation and to import the selections of all segmented cells 

from the LabelMap to the ROIManager. The selections were applied to the original 

deconvoluted tile-scan and mean fluorescent intensity for every channel as well as 

area, position and shape descriptors were exported for each segmented cell. Finally, 

results were combined to a comma separated value files and opened in Flowjo 

software to create flow cytometry standard files for analysis (Workflow see Figure 4). 
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Figure 4. Schematic of the Histo-Cytometry workflow. (1) Staining of 12 µm tissue sections 

(2) Confocal imaging of 2 µm z-stack (3) Deconvolution and maximum projection of each 

channel (4) Thresholding and channel combination (5) Cell segmentation (6) Export of 

fluorescent intensities, location and shape descriptors (7) Analysis in flow cytometry software. 

(Modified from Salei et al. (Salei et al., 2020)) 

 

2.12. Statistical Analysis 

Statistical significance was calculated using two-tailed t test in Prism 7 software 

(GraphPad). One-way ANOVA was used for multiple comparisons. A p-value < 0.05 

was considered significant. 

 

2.13. Table of antibodies 

 

Table 4. List of used antibodies 

Antigen Clone Conjugates Company 

CD3 17A2 AF594 Biolegend 

CD3ε 145-2C11 PE-Cy5, BV421, 

purified 

Biolegend 

CD4    

CD8    
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CD11b M1/70 BV421, APC-Cy7, 

AF647, purified 

Biolegend 

CD11b ICRF44 BUV737 BD Biosciences 

CD11c N418 PerCP-Cy5.5, BV421, 

BV785 

Biolegend 

CD16/CD32 2.4G2 purified BD Biosciences 

CD19 6D5 BV650, APC Biolegend 

CD24 M1/69 BUV395 BD Biosciences 

CD24 M1/69 BV605 Biolegend 

CD31 MEC13.3 AF488, AF594, AF647 Biolegend 

CD45.2 104 PE-Cy7, PB, AF700, 

FITC 

Biolegend 

CD45R/B220 RA3-6B2 PE, AF647 Biolegend 

CD64 X54-5/7.1 APC, PE, PE-Cy7 Biolegend 

CD64 27 purified Sino Biological 

CD90.1 OX-7 AF700, PE-Cy7 Biolegend 

CD103    

CD127 SB/199 BUV737 BD Biosciences 

F4/80 BM8 BV785, AF647, AF594 Biolegend 

I-A/I-E 

(MHCII) 

M5/114.15.2 BV510, AF488, 

AF647, AF594, AF700, 

BV421 

Biolegend 

Ly6C  HK1.4 BV605, PerCP-Cy5.5 Biolegend 

Ly6G 1A8 PerCP-Cy5.5, PB Biolegend 

XCR1 ZET BV650, BV421 Biolegend 

Cleaved 

caspase-3 

D3E9 purified Cell Signaling 

Technologies 

Foxp3 150D AF647 Biolegend 

Gata3  

16E10A23 

PE Biolegend 

Rort Q31-378 BV421 Biolegend 
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Rabbit IgG goat polyclonal AF555 ThermoFisher 

Rabbit IgG goat polyclonal AF488 Jackson 

ImmunoResearch 

Hamster IgG goat polyclonal Cy3 Jackson 

ImmunoResearch 

 

 

2.14. Analysis software 

 

Table 5. List of used software 

Software Version Company 

Flowjo 10.5.3 Becton Dickinson 

GraphPad PRISM 7.0c GraphPad Software 

Fiji 2.0.0-rc-69/1.52p - 

LAS X 3.4.1.17670 Leica 

Huygens Professional 17.10.0p2.64b Scientific Volume Imaging 

R Studio 1.1.414 R Studio Inc 

Imaris 8.2.0 Bitplane 
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3.  Results 

 

3.1. Application of Histo-Cytometry to improve microscopic analysis of 

DC subsets in the kidney 

3.1.1. The adult kidney contains four distinct subsets of mononuclear 

phagocytes with DC origin 

To confirm that the Clec9aCreRosaYFP model is indeed only labelling DCs in the kidney 

and not other myeloid or lymphoid cells an in depth phenotypic analysis by flow 

cytometry was performed (Figure 5).  

 

A

B

 

Figure 5: Gating strategy to identify DCs and YFP labelling in the kidney. (A) Renal 

leukocytes isolated from kidneys of Clec9a
Cre

Rosa
YFP

 mice were analysed by flow cytometry. 

CD45.2+Live cells were divided in MHCII+ and MHCIIneg cells. The majority of cells in the 

MHCII+ gate is CD64+. CD64-CD11c+ gate contains XCR1+ cDC1 and CD11b+ cDC2. In the 

CD64+ gate two populations can be identified, F4/80hiCD11blow and CD11bhiF4/80low cells. (B) 

YFP labelling percentage in leukocyte populations in the kidney of Clec9a
Cre

Rosa
YFP mice. 

Each dot represents one mouse. Horizontal bars indicate mean, error bars indicate SD. ** p-

value < 0.01,*** p-value < 0.001, **** p-value < 0.0001 (Modified from Salei et al. (Salei et al., 

2020)) 
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Renal leukocytes were identified as live cells expressing CD45 and further segregated 

in MHCII+ and MHCIIneg cells. Next, Ly6C+ cells contaminating the MHCII+ gate were 

removed and the remaining cells analysed for their CD11c and CD64 expression. The 

remaining MHCII+ cells can be split in a prominent CD64+ population as well as CD11c-

CD64- B cells and CD11c+CD64- cells. CD11c+ cells can be further divided in the two 

main cDC subsets XCR1+/CD24+ cDC1 and CD11b+ cDC2. Within the CD64+ cells 

two populations can be identified, F4/80hiCD11blow cells (Referred to as F4/80hi cells 

from here on out) and CD11bhiF4/80low cells (Referred to as CD11bhi cells from here 

on out). The MHCIIneg cells were subdivided in a CD11b+ and CD11b- fraction, wherein 

the latter contained CD3+ T cells. The CD11b+ cells were further subdivided in Ly6Chi 

monocytes, Ly6Cint cells, Ly6C- cells and Ly6G+ neutrophils. To identify cells with CDP 

origin in the aforementioned populations the percentage of YFP-expressing cells was 

determined.  

 

 

Figure 6. Unsupervised clustering using tSNE analysis of renal leukocytes verifies 

specific labelling of renal DCs in Clec9a
Cre

Rosa
YFP model. Representative tSNE of kidney 

leukocytes from Clec9a
Cre

Rosa
YFP mice. Cells were clustered independently of their YFP 

labelling and manually gated populations were overlaid on the tSNE plot in the indicated 

colors. Blue-to-red gradient indicates increasing intensity of marker expression. (Modified from 

Salei et al. (Salei et al., 2020)) 
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As expected, cDC1 were almost completely labelled as they express Clec9a in their 

differentiated state (Caminschi et al., 2008). For other cells the amount of YFP 

labelling is a true indicator of CDP origin, except for pDCs which also express low 

levels of Clec9a (Schraml et al., 2013). As previously described (Schraml et al., 2013), 

apart from cDC1 three more populations showed a significant contribution from DC 

progenitors, namely cDC2 (labelling 83.13.6%), CD11bhi (50.2±5.0%) and F4/80hi 

(62.3±11.0%) cells. Other cell types did not show YFP labelling. To confirm that we 

did not exclude any populations with a DC origin using the previously described gating 

strategy we employed t-Distributed Stochastic Neighbour Embedding (tSNE) as an 

unsupervised method to cluster cells during flow cytometric analysis (Figure 6). 

 

3.1.2. Setup of Histo-Cytometry in lymph nodes to localize T cells and B cells 

An important role of mononuclear phagocytes in the kidney during development and 

disease was shown by many studies (Munro & Hughes, 2017; Munro et al., 2019; 

Rogers et al., 2014; Weisheit et al., 2015), however there is only little known about the 

localization of macrophages and DC subsets in the kidney. After having confirmed the 

specificity of the Clec9aCreRosaYFP model for tracing CDP-derived cells in the kidney 

we wanted to study the precise localization of renal DC subsets in the kidney using 

this model. We hypothesized that analysis of the localization of renal DC subsets in 

steady state tissue or after acute kidney injury would allow us to correlate specific DC 

subsets to potentially protective or damaging functions. 

To identify the localization of DC subsets in the kidney we aimed to employ confocal 

microscopy with a multiplex immunofluorescence in combination with a method called 

Histo-Cytometry (Gerner et al., 2012; W. Li et al., 2017). This method utilises multiple 

cell surface markers to segment cells in the tissue. Size, shape descriptors, x/y-

position and mean channel intensity of each segmented cell are subsequently 

exported for analysis in flow cytometry software. In this way, DC subsets can be 

identified by gating on the expression of DC specific markers and localization of these 

cells can be retraced to the microscopy image.  

To establish the Histo-Cytometry workflow in our hands we stained sections of murine 

lymph nodes with DAPI, CD3 and B220 (Figure 7). 
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CD3-BV421 B220-AF647 DAPI B220-AF647 DAPI

A B

 

Figure 7. Microscopic image of murine lymph node stained for B220, CD3 and DAPI. (A) 

Immunofluorescence image of WT murine inguinal lymph node section stained to reveal T 

cells (CD3, Cyan), B cells (B220, AF647) and nuclei (DAPI, gray); scale bar 100 µm. (B) 

Magnification of area in B cell zone. Selections of nuclei based on segmentation performed in 

imaris are overlayed as filled gray circles; scale bar 50 µm. 

 

The goal was to use these markers for identification of B220+ B cells and CD3+ T cells. 

Segmentation was performed with Imaris software on the DAPI signal using the 

surface creation tool as described by Gerner et al. (Gerner et al., 2012) (Figure 7B). 

Mean channel fluorescence was exported for each exported nucleus and exported for 

analysis in FlowJo (Figure 8). 
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Figure 8. Histo-Cytometry in the lymph node. (A) Flow cytometric analysis of exported 

mean fluorescent values exported from microscopic image using segmentation in Imaris. 
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T cells are identified as CD3+B220-, B cells as B220+CD3-. (B) Dot plot showing the X/Y-

position of cells gated in (A).  

 

Since the membrane staining of B220/CD3 was partly overlapping with DAPI this 

allowed segmentation of round cells as for example B cells and T cells. CD3 and B220 

are mutually exclusive markers, however, as soon as cells with different marker 

expression were in close contact, we saw an overlap of membrane signal, which 

caused B220+CD3+ cells. In addition, since this approach has limitations when trying 

to identify cells with dendritic cell shape because most of the membrane staining in 

the dendrites will not overlap with the nuclear DAPI staining, we resorted to a different 

segmentation approach based on membrane staining rather than DAPI as described 

in Li et al. (W. Li et al., 2017). Moreover, we decided to test this approach in kidneys 

of Clec9aCre/+RosaTomato reporter mice with the reasoning that it would be our tissue of 

interest later on and that DCs in the kidney are usually not in close contact with other 

immune cells and we thereby expected an easier segmentation. 

 

3.1.3. Establishing Histo-Cytometry workflow in sections of early life kidney to 

identify DCs 

For establishing a different Histo-Cytometry workflow we chose kidney sections from 

2-week-old Clec9aCre/+RosaTomato mice because at this timepoint the amount of 

fluorescently labelled F4/80hi cells is relatively low (Salei et al., 2020). Therefore, we 

expected only few Tomato+ cells in close contact to each other, which would help in 

identifying single cells. Kidney section were stained with DAPI to identify nuclei, F4/80 

and MHCII (Figure 9). 

 

DAPI F4/80 MHCII Tomato Tomato

Tomato channel only Watershed segmentationA B C

  

Figure 9. Cell segmentation on immunofluorescence image of PND15 kidney based on 

Tomato expression. (A) Kidney section from Clec9a
Cre/+

Rosa
Tomato kidney isolated at PND15 



 37 

stained for nuclei (DAPI, gray), F4/80 (blue), MHCII (green) and Tomato (red). (B) Isolated 

Tomato channel from (A). (C) Tomato channel after segmentation using a watershed 

algorithm. Each individual cell was randomly assigned a color. 

 

We segmented cells based on their expression of Tomato using the SCF watershed 

plugin in Fiji. With this method, we saw that the algorithm reliably called all Tomato 

expressing cells (Figure 9). In addition, cells in relatively close proximity still seemed 

to be segmented (Figure 9). Next, we wanted to test whether we could improve the 

number of cells, which we segmented by using F4/80 as the base for the algorithm. 

From our phenotypic analysis with flow cytometry we knew that the kidney contains 

cells with high expression of F4/80 (F4/80hi) and cells with low expression of F4/80 

(CD11bhi DCs or monocytes).  

 

F4/80

F4/80 channel only Watershed segmentationA B

 

Figure 10. Watershed segmentation excludes cells with low F4/80 expression. (A) 

Isolated F4/80 channel from Figure 9A. Magnification illustrates cells with low F4/80 

expression (White arrows). (B) F4/80 channel after segmentation using a watershed algorithm. 

Each individual cell was randomly assigned a color. Magnification illustrates cells with low 

F4/80 expression (White arrows).  

 

 After running the algorithm, we noticed that even though many cells were correctly 

identified, cells with low expression of F4/80 were more likely to be excluded since the 

algorithm needs a bright and clear signal for good segmentation results (Figure 10). 

To circumvent this problem, we decided to combine the signal of multiple channels to 

one ‘masking channel’ (Figure 11). 
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F4/80 channel only Combined channelTomato channel onlyA B C

 

Figure 11. Combination of channels for efficient masking of cells. (A) F4/80 channel after 

segmentation using a watershed algorithm from Figure 10B. (B) Tomato channel after 

segmentation using a watershed algorithm from Figure 9C. (C) Results of watershed 

segmentation on a ‘masking channel’ consisting of F4/80 and Tomato channels. Each 

individual cell was randomly assigned a color.  

 

The reasoning behind this approach was that with the combination of more markers 

we would be able to identify more cells, e.g. through combination of Tomato and F4/80 

signals we would ultimately be able to also identify Tomato-F4/80+ cells and vice versa. 

We noticed that segmentation of cells was still very good, even with many more cells 

being called based on the combined signal (Figure 11). The combination of these two 

markers also helped with the segmentation of cells with low F4/80 signal because 

many of them were overlapping with Tomato signal and thus segmented with the 

algorithm. We concluded that combination of a cytoplasmatic marker like Tomato in 

our case with one or more cell surface markers like F4/80, MHCII etc. would give us a 

good enough coverage on DCs in the kidney so that we would be able to identify our 

cells of interest. Of course, successful segmentation was supported by a lower 

percentage of dendritic cells in kidneys isolated from young mice compared to adult 

tissue. 

Therefore, we next turned to kidney sections from adult Clec9aCre/+RosaTomato mice, in 

which DCs are more frequent. In adult Clec9aCre/+RosaTomato mice DCs are highly 

labelled with the Tomato reporter, which we expected to lead to a very good coverage 

after the segmentation algorithm. We stained these sections with antibodies against 

MHCII, CD64, CD11b and F4/80 (Figure 12). Visualization as overlays and analysis 

of such images gets very complex because of a limited amount of distinguishable 

colors, but with the use of Histo-Cytometry we hoped to solve these problems (Figure 

12). 
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MHCII CD64 Tomato CD11b F4/80  

Figure 12. Multicolor immunofluorescence staining of adult kidney section. Section of 

adult kidney isolated from a Clec9a
Cre/+

Rosa
Tomato mouse. Multicolor staining against MHCII 

(blue), CD64 (green), Tomato (red), CD11b (magenta) and F4/80 (yellow) to identify multiple 

renal DC subsets. 

 

From our flow cytometry data, we knew that with these markers in combination with 

Tomato we should be able to identify all 4 of the DC subsets in the tissue (Figure 13). 

Gating on all MHCII+ cells we were able to find CD64+ and CD64- cells same as in flow 

cytometric data (Figure 13). The CD64+ cells we split F4/80hi (blue) and 

CD11bhiF4/80low (magenta). CD64- cells we split in CD11b+ cDC2 (cyan) and CD11b- 

cells, which should mostly be cDC1 (orange) (Figure 13). 
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Figure 13. Histo-Cytometry of adult kidney sections compared to flow cytometric data. 

(A) Representative gating strategy for Histo-Cytometry data obtained from murine adult kidney 
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sections of Clec9a
Cre/+

Rosa
Tomato mice. Single cells were identified based on area of the 

selection. The majority of cells was MHCII+ as expected based on a combined masking 

channel of MHCII, F4/80, CD64, CD11b and Tomato. MHCII+ cells were split in CD64- and 

CD64+ cells. The latter population contained F4/80hi (Blue) and CD11bhi (Magenta) cells. 

CD64+ were split into CD11b+ cDC2 (Cyan) and CD11b- cDC1 (Orange). (B) X/Y-position of 

cDC2 and CD11bhi cells in the section. Cortex and medulla are indicated as gates on the dot 

plot. (C) Flow cytometric data for comparison to Histo-Cytometry analysis. Live 

CD45.2+MHCII+ cells were split into CD64- and CD64+ cells. The latter population contained 

F4/80hi and CD11bhi cells. CD64- cells were split into CD24+ cDC1 and CD11b+ cDC2 (D) X-

/Y-position of previously gated F4/80hi (Blue), CD11bhi (Magenta), cDC2 (Cyan) and cDC1 

(Orange) populations in the tissue as assessed by Histo-Cytometry. 

 

As mentioned previously, another advantage of using Histo-Cytometry is that the X/Y-

position of cells gets preserved during the analysis. We therefore checked where the 

four DC subsets actually localize in our case. In line with previously published reports, 

we saw that F4/80hi cells mostly localized in the renal medulla whereas cDC1, cDC2 

and CD11bhi cells were mostly found in the renal cortex (Figure 13) (Berry et al., 2017; 

Brähler et al., 2017). Despite the phenotypic differences we showed for cDC2 and 

CD11bhi cells, these subsets did not localize in an obviously different manner. What 

was noticeable however was that cDC1 were almost exclusively found in the cortex, 

whereas cDC2 and CD11bhi cells seemingly clustered at the interface between cortex 

and medulla. 

3.1.4. Localization of DC subsets in the kidney at different developmental time 

points 

It was recently recognized that there are dynamic changes in the renal mononuclear 

phagocyte compartment of mice during development (Lever et al., 2019). In the early 

days the kidney harbours a prominent population of MHCIInegF4/80hi cells, which is 

later replaced by phenotypically similar MHCII+F4/80hi cells, possibly with a DC origin. 

Seeing that the Histo-Cytometry approach with a combination of multiple markers 

worked well at post-natal day 14 (PND14) we decided to analyse the localization of 

DCs during development. We sought out investigate the localization of F4/80hi cells in 

young mice and during development. For this we isolated kidneys from 

Clec9aCre/+RosaTomato mice at PND2, PND14 and PND28 days after birth and after 3 

months as an adult timepoint. Next, we stained sections from these tissues with 
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MHCII, F4/80 and CD11b to identify our cells of interest and subjected them to the 

Histo-Cytometry workflow (Figure 14). In our Histo-Cytometry data we nicely saw that 

at PND2 and PND14 we still had a prominent population of MHCIInegF4/80hi cells 

(Figure 14). These cells were confined to the renal medulla, same as MHCII+F4/80hi 

cells in adult mice. At PND14 we also saw an influx of MHCII+F4/80hi cells, however it 

seemed that at this point these cells where not exclusively found in the medulla but 

also in the cortex. At PND28 we saw an increase of MHCII+F4/80hi cells in the medulla 

and MHCIInegF4/80hi cells were basically absent from the tissue. Only at the adult 

timepoint did we notice this accumulation of CD11bhi cells at the corticomedullary 

junction (Figure 14). 
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Figure 14. Histo-Cytometry of kidney sections at different developmental timepoints. 

Representative histo-cytometric analysis of kidney sections from Clec9a
Cre/+

Rosa
Tomato mice 

isolated PND2, PND14, PND28 and at 3 months of age. Sections were stained for MHCII, 

F4/80, CD11b and Tomato. Renal medulla is depicted as a gate on the X/Y-position dot plots. 

 

To confirm our observation that MHCII+ and MHCIInegF4/80hi cells seemed to show a 

difference in localization we isolated additional kidneys from Clec9aCreRosaTomato mice 

at PND14 and stained sections with MHCII, CD11b, F4/80 and CD64. We performed 

Histo-Cytometry on these sections and quantified the localization of these cells in the 

renal cortex or medulla (Figure 15). 
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Figure 15. Histo-Cytometry of kidney sections at PND14. (A) Representative section of 

PND14 Clec9a
Cre

Rosa
Tomato kidney section stained against MHCII (green), CD64 (blue), 

CD11b (cyan) and F4/80 (red) to identify MHCIInegF4/80hi cells and MHCII+F4/80hi cells. (B) 

Representative histo-cytometric analysis of microscopic images of PND14 kidney overlaying 

the X/Y-position of MHCIInegF4/80hi cells (blue) and MHCII+F4/80hi cells (red) in the kidney. 

Renal cortex and medulla are depicted as gates on the dot plot. Each dot represents one 

mouse. Horizontal bars indicate mean, error bars indicate SD. **** p-value < 0.0001 (Modified 

from Salei et al. (Salei et al., 2020)) 

 

Confirming our previous findings, we again saw a preferential localization of the 

MHCIInegF4/80hi cells in the renal medulla. The MHCII+F4/80hi cells however seemed 

to be evenly spread across the cortex and medulla. Only with time the MHCII+F4/80hi 

cells become the dominating subset in the kidney and are mostly found in the medulla. 

 

3.2. The kidney contains four transcriptionally unique DC subsets 

3.2.1. Establishment of library preparation with low RNA input 

Next, we decided to utilize transcriptomic profiling by mRNA sequencing (RNAseq) to 

further characterize DC subsets in the kidney and to understand why F4/80hi cells 

derive from DC progenitors but also possess a macrophage phenotype. However, 

because the number of CD11bhi cells, cDC2 and cDC1, which can be isolated from 

the kidneys of one mouse was very limited (~1000-2000 cells), we first needed to verify 

the library preparation protocol for low inputs. For this we sort purified CD24+CD205+ 

cDC1 from the spleen (Figure 16) and isolated RNA as described as described before.  
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Figure 16. Sorting strategy for splenic cDCs and library preparation test with cDC1. (A) 

Sorting strategy for purification of splenic DC populations and macrophages from 

Clec9a
Cre

Rosa
YFP mice. Red pulp macrophages were identified as 

Autofluorescence+F4/80+YFP+ cells. DCs were identified as 

AutofluorescencenegCD11c+MHCII+ cells and then split into CD24+ cDC1 and CD11b+ cDC2. 

Only CD205+YFP+ cDC1 and YFP+ cDC2 were sorted. (B) Dot plot of TPM values after 

sequencing of CD205+YFP+ cDC1 libraries prepared from different starting amounts of RNA 

(2 ng and 0.5 ng). 

 

From the purified RNA of this sample we used 0.5 ng and 2 ng as input for the library 

preparation as described above.  

We sequenced the finished libraries as 50 bp single-read with a depth of 20 million 

reads per sample. We took normalized gene expression from both samples and 

plotted them against each other (Figure 16). Since most of the genes were falling on 

a 45° axis, which indicates equal gene expression values, we concluded that there is 

no qualitative difference between the two RNA input amounts in this protocol. 

 

3.2.2. Sorting strategy to isolate splenic and renal DC subsets 

To analyse the transcriptomic profile of DC subsets in the kidney we sort purified 

cDC1, cDC2, F4/80hi cells and CD11bhi cells from the kidney to perform RNAseq 

(Example of gating strategy and sort purity for F4/80hi cells see Figure 17).  
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Figure 17. Sort purity of renal YFP+ and YFP- F4/80hi cells as well as CD11bhi cells. (A) 

Example of sorting strategy and purity check for renal F4/80hi cells isolated from 

Clec9a
Cre

Rosa
YFP mice. F4/80hi cells were identified as MHCII+CD64+F4/80hiCD11blow and 

then sorted as YFP+ or YFP- for RNA sequencing. (B) Example of sorting strategy and purity 

check for renal CD11bhi cells. CD11bhi cells were identified as MHCII+CD64+CD11bhiF4/80low 

and then sorted as YFP+ or YFP- for RNA sequencing (Modified from Salei et al., 2020) 
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In addition, we sorted YFP+ cDC1, YFP+ cDC2 and YFP- red pulp macrophages from 

the spleen as control populations for DCs and macrophages. We did this to be able to 

show, which DC subsets from the kidney have transcriptomic similarities to other DCs 

or macrophages. Because the labelling in cDC2, CD11bhi cells and F4/80hi cells is not 

complete we sorted both YFP+ and YFP- fractions of these cells. By comparing the 

transcriptome of YFP+ and YFP- cells from the same subset we wanted to address 

whether there is any evidence for different gene expression profiles caused by a 

different ontogenetic background. 

 

3.2.3. Characterization of transcriptional profiles of renal DC subsets 

3.2.3.1. Principal component analysis of DC subsets from the spleen and 

kidney 

Sequencing of the finished libraries was performed by the Laboratory for Functional 

Genome Analysis (LAFUGA, Gene Center LMU). Finished runs were demultiplexed 

and aligned to the mm10 mouse genome using the STAR aligner as mentioned before. 

We used principal component analysis (PCA) of the top 5000 most variable genes 

across all sequenced samples to get a first glance at which population cluster together. 

We saw two major trends which organized the PCA, principal component 1 (PC1) 

segregated different DC subsets and macrophages from another and PC2 showed 

differences between related subsets/cell types which were isolated from different 

organs (Figure 18). As expected, renal cDC1 and cDC2 clustered close to their 

respective counterparts isolated from the spleen, which indicates a core DC signature 

and subset specific expression of genes which is conserved across organs. F4/80hi 

cells clustered close to red pulp macrophages, further confirming that F4/80hi cells 

from the kidney do not only resemble macrophages based on phenotypic markers but 

also based on their transcriptomic signature. Notably, YFP+ and YFP- F4/80hi cells do 

not show any obvious transcriptomic differences despite the fact that they may be 

derived from different progenitors. CD11bhi cells localized between F4/80hi cells and 

renal cDC2 indicating that they are indeed a unique subset in the kidney distinct from 

both cDC2 and F4/80hi cells. Same as for F4/80hi cells also CD11bhi cells did not show 

a big difference between YFP+ and YFP- fractions. 
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Figure 18. PCA of renal and splenic DC populations as well as red pulp macrophages 

at steady state. PCA based on top 500 genes with highest variance across sequenced 

samples. Each dot represents one biological replicate. Each dot represents one mouse. 

(Modified from Salei et al., 2020) 

 

To confirm previous results by Schraml et al., 2013 that CD11bhi cells and F4/80hi cells 

are not YFP labelled because of Clec9a expression in their differentiated state we 

manually aligned the samples isolated from the kidney to the iCre sequence (GenBank 

ID: AY056050.1) (Figure 19) (Schraml et al., 2013). 
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Figure 19. Manual alignment of sequencing reads to identify Cre expression. RNA 

sequencing reads of renal DC populations were manually aligned to Cre, Yfp and CD64 

sequences using Shortread and Biostrings packages in R-Studio. Each dot represents one 

mouse. Horizontal bars indicate mean, error bars indicate SD. (Modified from Salei et al., 

2020) 
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Our results clearly showed that we were not able to detect any Cre reads in our 

RNAseq data, strengthening the specificity of the Clec9aCre model and confirming 

previous qPCR results from Schraml et al. (Schraml et al., 2013). To confirm the 

validity of our approach we also performed manual alignment of other markers such 

as CD64 and YFP. F4/80hi cells showed high expression of CD64 as expected and we 

detected low CD64 levels in CD11bhi cells but not cDC1 or cDC2. In addition, all 

samples which were sorted as YFP+ also showed YFP mRNA, thereby confirming our 

manual alignment approach. 

Pairwise comparison of YFP+ and YFP- F4/80hi cells or YFP+ and YFP- CD11bhi cells 

with a log2foldchange > 4 and an adjusted p-value < 0.05 yielded almost no 

differentially expressed genes (Figure 20).  

 

A B

 

Figure 20. Comparison of normalized gene expression values between YFP+ and YFP- 

populations. (A) log2TPM values of YFP+F4/80hi cells plotted against YFP-F4/80hi cells. (B) 

log2TPM values of YFP+CD11bhi cells plotted against YFP-CD11bhi cells. (Modified from Salei 

et al., 2020) 

 

We therefore concluded that YFP labelling could not be used to reveal ontogenetic 

differences in these two populations on a transcriptomic level and focused on YFP+ 

cells for further analyses. 

 

3.2.3.2. K-means clustering of renal DC subsets 

We performed pairwise comparisons between renal cDC1, cDC2, CD11bhi cells and 

F4/80hi cells to get an initial idea about transcriptional differences between these 

populations and to maybe identify defining markers for each subset. K-means 

clustering on the results of these comparisons yielded 15 clusters with distinct gene 

expression patterns across the four populations (Figure 21). 
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Figure 21. Clustering analysis between renal DC populations. K-means clustering of 

differentially expressed genes between renal DC subsets with a log2foldchange > 4 and an 

adjusted p-value < 0.05. (Modified from Salei et al., 2020) 

 

Clusters XI, XV, XIII contained genes higher expressed in F4/80hi cells although 

clusters XIII and XV also seemed to be characteristic for CD11bhi cells. Clusters XII 

and XV also contained genes, which were used to identify these populations, namely 

Fcgr1 (CD64), Emr1 (F4/80) and Itgam (CD11b). Moreover, these clusters contained 

many more genes commonly associated to macrophages, such as C5ar1, C3r1, 

Fcgr4, Mafb, Tmem119, C1qa, Apoe, Cx3cr1 (Cronk et al., 2018; Zimmerman et al., 

2019). Clusters IV and II contained genes expressed in cDC1, cDC2 and CD11bhi cells 

but not in F4/80hi cells including known markers of conventional DCs such as Flt3, 

Ccr7, Zbtb46 or Amica1 (Miller et al., 2012).  

 

3.2.3.3. F4/80hi cells have a transcriptional profile similar to macrophages 

Considering that renal F4/80hi cells showed expression of many genes associated to 

macrophages we analysed the expression of genes from clusters XI, XV and XIII and 

compared them to red pulp macrophages sorted from the spleen (Figure 22).  



 49 

 

−5

k

06Rik

k
−5

0

5

10

log2TPM

Emr1
Pilrb1
Siglece
Sirpa
Clec4a3
Ptplad2
Fcgr1
Lpl
Klra2
Cyp4f18
Wls
Cd79b
Slc15a3
Tlr1
Sdc4
Smox
Gpr160
Cxcl2
Fgr
Sh2d1b1
Ms4a6d
Clec4a2
Pou2f2
Cd300ld
Rtp4
Blnk
Apobec1
Fcgr4
Axl
Camk1
Fyb
Tgfbr2
Rab3il1
Pla2g15
Dok3
Pparg
Pld3
Lair1
Timp2
Itgb5
Slc11a1
Apoe
C1qc
C1qa
1810011H11Rik
Pilrb2
Pilr a
Clec4n
Clec4a1
Mrc1
Mafb
C3ar1
Mmp12
Cx3cr1
Cd300lh
Myo1e
B3gnt8
Tspan32
Zeb2os
Oas2
Bend6
Mtus1
Oasl2
Ccr5
Pfkfb4
Gp49a
Tgfbr1
Cd63
Fxyd2
Zmynd15
St3gal6
Lifr
Man1a
Fmnl3
Pros1
Sepn1
Oas1g
G530011O06Rik
Pydc3
Arap3
Rnf180
Gpr31b
Igfbp7
Hes1
Slc12a7
P2ry12
Mir7115
Cd33
Dab2
Ccl9
Itgam
Ch25h
Creb5
Plxdc2
Clec5a
Hoxd8
Slc12a3
Kng2
Defb1
Calb1
Tmem52b
Tmem213
Atp1b1
Ppp1r1a
1700011H14Rik
Wfdc15b
Umod
Pvalb
Egf
Sostdc1
Kcnj1
Slco2b1
Itga9
Csf3r
Mmp13
Lilra5
Cdk18
Tmem119
C5ar1
Pf4
Ccl12
Trem2
Srpk3
Car15
Gas6
Aoah
Pdlim4
Slc7a8
Abcc3
Matn2
Pla2g7
Ms4a7
Tmem37
Ptgs1
Rnase4
Ets1
Rasgr p1
Dram1
Gbp7
Abcc5
Rac3
Rhoc
Hpgds
Pira6
Sh3bp5
Cd4
Igfbp4
Trim47

−5

 

Figure 22. Expression of genes from cluster XI, XIII and XV. Expression of genes from 

F4/80hi specific clusters XI, XIII and XV in renal DC subsets and splenic red pulp 

macrophages. Gene expression depicted as log2TPM values. 

 

As visualized by the blue-to-red gradient most genes from clusters which are highly 

expressed by renal F4/80hi cells were also expressed in splenic red pulp 

macrophages. This further confirmed that F4/80hi cells resemble macrophages on a 

transcriptional level. Interestingly, CD11bhi cells showed intermediate expression of 

many of the shown genes indicating that it has a mixed transcriptomic signature, 

harbouring characteristic genes of both macrophages and DCs. Many studies tried to 

assign a core-signature of genes to conventional DCs or to macrophages (Cronk et 

al., 2018; Gautier et al., 2012; Miller et al., 2012; Scott et al., 2018). While these 

signatures are not perfect, we thought it could give us a hint whether there is any 

ontogenetic evidence of a DC origin for F4/80hi cells. We chose a core-macrophage 

signature from Gautier et al. and a core-cDC signature from Miller et al. and analysed 

the expression of those genes in our renal DC populations (Figure 23) (Gautier et al., 

2012; Miller et al., 2012). 
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Figure 23. Core-macrophage and core-DC signature expression on renal DC subsets. 

(A) Expression of genes from a core-macrophage signature described in Gautier et al. on renal 

DC subsets (Gautier et al., 2012).  (B) Expression of genes from a core-cDC signature 

described in Miller et al. on renal DC subsets (Miller et al., 2012).  

 

Expression of genes from the core-macrophage signature was clearly enriched in 

F4/80hi cells, strengthening the observation that this population is very much related 

to macrophages from other tissue based on its transcriptional profile (Figure 23B). 

CD11bhi cells and to a lesser extent cDC2 also expressed genes from this list. In line 

with this observation, F4/80hi cells expressed core-cDC genes to a lesser compared 

to CD11bhi cells, cDC2 and cDC1 (Figure 23B). This both shows the macrophage-like 

transcriptional profile of F4/80hi cells and it also demonstrates that CD11bhi are also 

related to the DC lineage on a transcriptional level. 
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3.2.3.4. CD11bhi cells are a unique DC subset with transcriptional 

characteristics of both macrophages and DCs 

To analyse transcriptional differences between CD11bhi cells and cDC2 or F4/80hi cells 

we performed pairwise comparison using DESeq2. As cutoffs for differentially 

expressed genes we chose a log2foldchange > 4 and an adjusted p-value < 0.05. 

 

A B

 

Figure 24. Pairwise comparison of CD11bhi cells to cDC2 and F4/80hi cells. (A) Pairwise 

comparison of renal cDC2 with CD11bhi cells. Genes with a log2foldchange > 4 and an 

adjusted p-value < 0.05 are depicted as red dots. (B) Pairwise comparison of renal F4/80hi 

cells with CD11bhi cells. Genes with a log2foldchange > 4 and an adjusted p-value < 0.05 are 

depicted as red dots. (Modified from Salei et al., 2020) 

 

The comparison between cDC2 and CD11bhi cells only identified 38 differentially 

expressed genes (Figure 24). Lowering the cutoff to log2foldchange > 3 increased the 

number to 95 differentially expressed genes (Figure 25). Among differentially genes 

we found potential targets for studies addressing functional differences between these 

two populations, e.g. toll-like receptors (Tlr) 7 and Tlr8. Some genes higher expressed 

in CD11bhi cells compared to cDC2 included genes, which are commonly associated 

with macrophages such as Mafb, C1qb or C3ar1 (Figure 24). This shows a 

transcriptional overlap between CD11bhi cells and macrophages, an observation, 

which was also visible in the core-signature analysis (Figure 23). In line with this, a 

heatmap containing genes differentially expressed between cDC2 and CD11bhi cells 
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with a log2foldchange > 3 illustrates that many genes higher expressed in CD11bhi 

cells are also expressed in F4/80hi cells (Figure 25). 

Whereas the differences between cDC2 and CD11bhi cells are few as expected, we 

identified 362 differentially expressed genes with a log2foldchange > 4 between 

CD11bhi cells and F4/80hi cells. Interestingly, in this comparison the CD11bhi cells 

showcased their close relationship to cDC2s and the DC lineage. Many of the genes 

higher expressed in CD11bhi cells like Zbtb46, Flt3, Amica1 or Bcl11a are commonly 

associated with cDCs (Figure 24B) (Miller et al., 2012). As expected, F4/80hi cells were 

enriched with genes usually attributed to macrophages such as Tmem119, Maf, Apoe 

or C5ar1 (Figure 24B) (Gautier et al., 2012). 
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Figure 25. Heatmap of genes differentially expressed between cDC2 and CD11bhi cells. 

Heatmap depicting differentially expressed genes between renal cDC2 and CD11bhi cells with 

a log2foldchange > 3 and an adjusted p-value < 0.05. Gene expression is shown as log2TPM 

values. 

 

Intrigued by our findings that Tlr7 and Tlr8 were differentially expressed between 

CD11bhi cells and cDC2 we looked at other potential targets for functional studies. 

This analysis revealed that also other pathogen-recognition receptors such as 
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Dectin1, TLR2 and TLR4 are differentially expressed between renal DC subsets 

(Figure 26). This provides a valuable tool for future studies and was already used to 

confirm functional differences between cDC2 and CD11bhi cells in response to TLR 

ligands (Salei et al., 2020). 

 

 

Figure 26. Differentially expressed pattern recognition receptors between renal DC 

subsets. TPM expression values of pattern-recognition receptors Dectin1, TLR2, TLR4, TLR7 

and TLR8 in renal cDC1 (orange), cDC2 (cyan), CD11bhi cells (magenta) and F4/80hi cells 

(blue). Each dot represents one mouse. Horizontal bars indicate mean, error bars indicate SD. 

*** p-value < 0.001, **** p-value < 0.0001 (Modified from Salei et al., 2020) 

 

Overall the transcriptional analysis of renal DC subsets clearly showed that CD11bhi 

cells are a unique DC subset with characteristics of both macrophages and DCs. 

These analyses further demonstrated that F4/80hi cells – despite their DC origin – 

strongly resemble macrophages from other tissues. 

 

3.3. F4/80hi cells downregulate MHCII upon cisplatin-induced AKI and 

may orchestrate leukocyte infiltration through production of chemokines 

3.3.1. Disease induction after cisplatin-induced acute kidney injury 

Having established that Clec9aCre faithfully traces DC subsets in steady state we 

wanted to analyse the dynamics and function of DCs after kidney injury. From multiple 

kidney injury models established in the field we chose to use cisplatin-induced acute 

kidney injury because it is a fast model with established doses of cisplatin for reliable 

results. In this model a high dose of cisplatin is injected i.p. and leads to kidney 

damage through cisplatin-uptake in proximal tubular epithelial cells (Ozkok & 
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Edelstein, 2014). We again used Clec9aCreRosaYFP mice to be able to identify cells 

with DC origin after disease induction. Mice were sacrificed 72 h after cisplatin 

injection and spleen, kidneys and blood were collected. Kidney damage was assessed 

by the concentration of blood urea nitrogen (BUN) and creatinine in the blood serum. 

Cisplatin injection lead to a significant increase of BUN and creatinine levels in the 

serum compared to control mice injected with NaCl indicating a stable induction of 

kidney injury (Figure 27).  

 

 

Figure 27. Serum levels of BUN and creatinine. BUN and Creatinine levels of 

Clec9a
Cre

Rosa
YFP mice with cisplatin-induced AKI and Clec9a

Cre
Rosa

YFP mice injected with 

NaCl. Each dot represents one mouse. Horizontal bars indicate mean, error bars indicate SD. 

(Modified from Salei et al., 2020) 

 

3.3.2. YFP labelling remains restricted to DCs after cisplatin-induced acute 

kidney injury 

Using flow cytometry, we were able to identify the same populations as in IRI (Gating 

strategy see Figure 28). We again noticed a downregulation of MHCII, which lead to 

the appearance of MHCIInegF4/80hi cells. Same as in IRI we saw a large influx of 

inflammatory cells, with Ly6G+ neutrophils being the major infiltrating populations 

(Figure 29). The MHCII+ gate contained the four populations with DC origin as defined 

at steady state. Notably, we saw a decrease of cDC1 and cDC2 after cisplatin-induced 

AKI, a dynamic, which we could not observe in IRI (Figure 29). We found a slight 

decrease in F4/80hi cells, which was accompanied by a decrease in MHCIInegF4/80hi 

cells, however the increase of MHCIInegF4/80hi cells was not as pronounced as we 

saw in IRI. 
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Figure 28. Gating strategy to identify renal leukocyte populations after cisplatin-

induced AKI. Flow cytometric analysis of renal leukocyte populations isolated from 

Clec9a
Cre

Rosa
YFP mice after cisplatin-induced kidney injury. Live CD45.2+ cells were split into 

MHCII+ and MHCIIneg cells. Ly6C+ inflammatory cells and CD19+ B cells were excluded from 

the MHCII+ populations. Remaining MHCII+ cells were split into CD64+ and CD64-. CD64+ cells 

contained F4/80hi cells and CD11bhi cells. CD24+ cDC1 and CD11b+ cDC2 were identified in 

CD64- cells. MHCIIneg cells contained Ly6G+ neutrophils. Remaining Ly6G- cells were split into 

MHCIHnegF4/80hi cells, CD11b+F4/80+ cells and CD11bnegF4/80neg cells. The latter contained 

CD3+ T cells. CD11b+F4/80+ cells contained Ly6Chi monocytes as well as Ly6CintCD11b+ and 

Ly6CnegCD11b+ cells (Modified from Salei et al., 2020) 
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Figure 29. Quantification of renal leukocyte populations after cisplatin-induced AKI. 

Number of renal leukocyte populations per kidney isolated after cisplatin-induced AKI (black) 
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or control NaCl injection (white) in Clec9a
Cre

Rosa
YFP mice. Each dot represents one mouse. 

Horizontal bars indicate mean, error bars indicate SD. *** p-value < 0.001 

 

When we looked at YFP labelling the renal leukocyte populations we found that the 

four DC populations we found at steady state were still labelled with YFP after 

cisplatin-induced AKI. The remaining cDC1 were almost completely labelled as 

expected (955%). But also cDC2 (835%), CD11bhi cells (683%) and F4/80hi cells 

(6210%) were highly labelled in the Clec9aCre model after kidney injury (Figure 30). 

Notably, the labelling percentage of cDC2, CD11bhi cells and F4/80hi cells was 

comparable to steady state conditions, indicating that in the cisplatin-induced AKI 

model there is substantially less influence of inflammatory cells on the dynamics of DC 

populations. Apart from the before mentioned populations only MHCIInegF4/80hi cells 

were highly labelled with YFP, suggesting a DC origin, all other tested cell types were 

not labelled above background levels. 

 

 

Figure 30. YFP labelling in renal leukocytes after cisplatin-induced AKI. YFP labelling 

percentage in the indicated populations after cisplatin-induced AKI in Clec9a
Cre

Rosa
YFP mice. 

Each dot represents one mouse. Horizontal bars indicate mean, error bars indicate SD. 

(Modified from Salei et al., 2020) 

 

Same as with the IRI model, we wanted to confirm for the cisplatin-induced AKI model 

that we were not excluding YFP labelled populations based on the gating strategy we 

chose. Therefore, we performed tSNE analysis on the flow cytometry data and overlaid 

our manually gated populations on the resulting plot (Figure 31). This analysis clearly 
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demonstrated that YFP labelling could only be observed in four DC populations and 

MHCIInegF4/80hi cells. 

 

Figure 31. tSNE analysis of renal leukocytes after cisplatin-induced AKI. Representative 

tSNE analysis of renal leukocytes isolated from kidney of Clec9a
Cre

Rosa
YFP mice with cisplatin-

induced AKI. Left plot shows manually gated populations (see Figure 28) overlaid on tSNE 

plot in the indicated colors. Right plots shows YFP expression among renal leukocytes. 

(Modified from Salei et al., 2020) 

 

3.3.3. F4/80hi cells downregulate MHCII on a protein level after cisplatin-

induced kidney injury 

For analysing the changes in MHCII signal on F4/80hi cells we employed a different 

gating strategy. Starting from CD45.2+ live cells we excluded Ly6C+ cells and identified 

F4/80hi cells as F4/80hiCD64+ cells independent of MHCII expression. We then 

compared the MHCII expression on these cells between the control group (Blue) and 

the group with cisplatin injection (Red) (Figure 32). Same as in IRI this analysis shows 

a clear downregulation of MHCII on F4/80hiCD64+ cells, which leads to the appearance 

of MHCIInegF4/80hi cells in our standard gating strategy. 
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Figure 32. F4/80hi cells downregulate MHCII after cisplatin-induced AKI. Flow cytometric 

analysis of kidneys isolated from control-injected Clec9a
Cre

Rosa
YFP mice (top row) or 

Clec9a
Cre

Rosa
YFP mice with cisplatin-induced AKI (bottom row). F4/80hi cells were identified 

independent of MHCII expression among live CD45.2+ cells as Ly6C-F4/80hiCD11blow. The 

third column of dot plots shows MHCII expression on F4/80hi cells in sham-operated or injured 

kidney. An overlay of these two plots shows F4/80hi cells from IRI kidney as red dots and from 

sham-operated kidney in blue dots. (Modified from Salei et al., 2020) 

 

3.3.4. Ischemia reperfusion injury leads to influx of inflammatory cells and to a 

downregulation of MHCII on F4/80hi cells 

To confirm our observation that F4/80hi cells downregulate MHCII after kidney injury 

we decided to utilize the unilateral ischemia reperfusion injury model. It is another well-

established kidney injury model and similar to cisplatin-induced AKI it was shown that 

DCs or macrophages play important roles in this model (Rogers et al., 2014). IRI was 

performed with Clec9aCreRosaYFP mice in collaboration with Prof. Anders (LMU) as 

described above. For each mouse the artery of one kidney was clamped for 25 

minutes, the second kidney was not operated. We isolated kidneys 72h after IRI and 

analysed population dynamics and labelling using flow cytometry (Gating strategy see 

Figure 33).  
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Figure 33. Gating strategy to identify renal myeloid and lymphoid cell populations after 

IRI. Flow cytometric analysis of renal leukocyte populations after IRI-induced kidney injury in 

Clec9a
Cre

Rosa
YFP mice. Live CD45.2+ cells were split into MHCII+ and MHCIIneg cells. Ly6C+ 

inflammatory cells and CD19+ B cells were excluded from the MHCII+ populations. Remaining 

MHCII+ cells were split into CD64+ and CD64-. CD64+ cells contained F4/80hi cells and CD11bhi 

cells. CD24+ cDC1 and CD11b+ cDC2 were identified in CD64- cells. MHCIIneg cells were split 

into CD11bneg, CD11b+Ly6C+ and CD11b+Ly6Cneg populations. CD3+ T cells were identified 

among the CD11bneg cells. CD11b+Ly6Cneg cells contained MHCIInegF4/80hi cells and CD11b+ 

cells with intermediate expression of F4/80. Ly6Chi monocytes and Ly6G+ neutrophils were 

identified in the CD11b+Ly6C+ population. (Modified from Salei et al., 2020) 

 

We noticed a striking influx of inflammatory CD11b+ cells in the ischemic kidney, 

mostly comprised of Ly6G+ neutrophils and Ly6Chi monocytes (Figure 34). We further 

noticed a decrease of F4/80hi cells in the damaged kidneys compared to the control 

organs (Figure 34). This decrease of F4/80hi cells was accompanied by an increase 

of MHCIInegF4/80hi cells as described by Lever et al. (Lever et al., 2019) (Figure 34).  
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Figure 34. Frequency of mononuclear phagocyte populations in the kidney after IRI. 

Number of renal leukocyte populations per kidney isolated after IRI-induced AKI (black) or 

from sham operated Clec9a
Cre

Rosa
YFP mice (white). Each dot represents one mouse. 

Horizontal bars indicate mean, error bars indicate SD. **** p-value < 0.0001 

 

Interestingly, when we gated on F4/80hi cells independent of MHCII based on the 

expression of CD11b and F4/80 we had two observations. On the one hand some 

cells showed a complete loss of MHCII signal on F4/80hi cells in the ischemic kidney 

compared to control (Figure 35). On the other hand, a part of the F4/80hi population in 

ischemic kidney had intermediate expression levels of MHCII indicating a gradual loss 

of MHCII expression on F4/80hi cells (Figure 35). Both of these observations lead to 

the increase of MHCIInegF4/80hi cells. 
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Figure 35. Loss of MHCII expression on F4/80hi cells after IRI. Flow cytometric analysis of 

kidney from Clec9a
Cre

Rosa
YFP mice with IRI-induced kidney damage (bottom row) and sham-

operated control (top row). F4/80hi cells were identified independent of MHCII expression 

among live CD45.2+ cells as Ly6C-F4/80hiCD11blow. The third column of dot plots shows MHCII 

expression on F4/80hi cells in sham-operated or injured kidney. An overlay of these two plots 

shows F4/80hi cells from IRI kidney as red dots and from sham-operated kidney in blue dots. 

 

3.3.5. YFP labelling remains restricted to DCs after ischemia-reperfusion-

induced acute kidney injury 

Since Clec9aCreRosaYFP mice were used for IRI we were also able to analyse, which 

cells are of DC origin in the injured kidney based on their YFP labelling. We noticed 

that the DC subsets in the kidney were mostly unaffected in IRI. cDC1 were almost 

completely labelled (981%) as expected because of their Clec9a expression. cDC2 

(633%), CD11bhi cells (437%) and F4/80hi cells (575%) were still highly labelled, 

although to a lower extent compared to steady state conditions (Figure 5, Figure 36). 

MHCIInegF4/80hi cells were also YFP labelled (3310%) but to a significantly lower 

extent compared to MHCII+F4/80hi cells from the same organ, indicating another 

source for MHCIInegF4/80hi cells apart from loss of MHCII expression in F4/80hi cells 

(Figure 36).  
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Figure 36. YFP labelling in renal leukocyte populations. (A) YFP labelling percentage in 

the indicated populations after IRI-induced acute kidney injury in Clec9a
Cre

Rosa
YFP mice. (B) 

Comparison of YFP labelling percentage in F4/80hi cells from sham-operated (black) or IRI 

kidneys (blue) as well as MHCIInegF4/80hi cells isolated from kidneys with IRI (red). Each dot 

represents one mouse. Horizontal bars indicate mean, error bars indicate SD. (Modified from 

Salei et al., 2020) 

 

Other cell types did not show YFP labelling and the Clec9aCreRosaYFP model stayed 

faithful to DCs (Figure 36). To exclude that we missed YFP labelled populations with 

our gating strategy we performed tSNE analysis on the flow cytometry data and 

overlayed the manually gated populations on the tSNE plot (Figure 37). This analysis 

further confirmed that YFP labelling was only present in our manually gated DC 

populations but not in any other cells. 
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Figure 37. tSNE analysis of renal leukocytes after IRI. Representative tSNE analysis of 

renal leukocytes isolated from kidneys of Clec9a
Cre

Rosa
YFP mice with IRI-induced kidney 

damage (bottom) or sham-operated control (top). Left plots show manually gated populations 

(see Figure 33) overlaid on tSNE plot in the indicated colors. Right plots show YFP expression 

among renal leukocytes. (Modified from Salei et al., 2020) 

 

3.3.6. Localization of DCs in the injured kidney 

The loss of MHCII expression on F4/80hi cells intrigued us and we wanted to know 

whether this might be caused by the localization of these cells. Since in our flow 

cytometric analysis we isolated cells from whole kidneys we were not able to 

determine whether MHCIInegF4/80hi cells are localized in the renal medulla or cortex. 

Therefore, we froze kidneys from mice with cisplatin-induced AKI and stained tissue 

sections with antibodies against MHCII, CD64, F4/80, CD11b and cleaved Caspase 3 

(CC3). With CD64, F4/80 and CD11b we were able to find F4/80hi cells and determine 

their MHCII expression. CC3 is a marker for apoptotic cells and was previously used 

to assess kidney damage (S. Chen et al., 2019). As expected, most of the kidney 

damage marked by CC3 was found in the renal cortex as expected because of 

cisplatin uptake in proximal tubular cells (Ozkok & Edelstein, 2014). Kidney sections 

of NaCl injected mice did not show any CC3 signal (Figure 38). Notably, cells seemed 

to cluster around the areas with strong CC3 staining (as seen in dotted circles on 

image Figure 38).  
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Figure 38. Analysis of CC3 staining after cisplatin-induced AKI. Confocal tile-scans of 

Clec9a
Cre

Rosa
YFP kidneys isolated after NaCl injection (A) or after cisplatin induced-AKI (B). 

Section was stained for MHCII (green), F4/80 (red), CD11b (cyan) and CC3 (blue). (B) Dotted 

areas indicate regions with accumulation of CC3, F4/80 and CD11b signal.  

 

We next wanted to analyse the localization of F4/80hi cells and MHCIInegF4/80hi cells 

in kidney sections after cisplatin-induced AKI. Because of the close interaction of cells 

at the damaged areas in the renal cortex after cisplatin injection we found that cell 

segmentation by Histo-Cytometry not to be feasible. Therefore, we made multiple 

random cutouts from the cortex and medulla and manually identified F4/80hi cells and 

MHCIInegF4/80hi cells as cells with high expression of CD64 and F4/80 and low 

expression of CD11b (Figure 39). To our surprise we were able to find MHCIInegF4/80hi 

cells both in the cortex and the medulla, even though CC3 signal seemed to be mostly 

restricted to the cortex. This indicates that the downregulation of MHCII on F4/80hi 

cells is not triggered by direct contact to tissue injury in the cortex but rather through 

a compartment-independent tissue-wide effect. 
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Figure 39. Quantification of MHCII+ and MHCIInegF4/80hi cells in the kidney. (A) 

Representative cutouts from microscopic images of Clec9a
Cre

Rosa
YFP kidneys with cisplatin-

induced kidney damage. Section was stained for MHCII (green), CD11b (magenta), F4/80 

(red) and CC3 (cyan). (B) Manual quantification of MHCIInegF4/80hi cells and MHCII+F4/80hi 

cells in cortical and medullary cutouts similar to (A). Each dot represents the average of one 

biologic replicate. Horizontal bars indicate mean, error bars indicate SD. *** p-value < 0.001 

(Modified from Salei et al., 2020) 

 

3.3.7. F4/80hi cells downregulate MHCII on a transcriptional level after 

cisplatin-induced acute kidney injury 

In order to identify possible mechanisms behind the downregulation of MHCII in renal 

F4/80hi cells after cisplatin induced acute kidney injury, we performed transcriptional 

analysis from sorted F4/80hi cells and MHCIInegF4/80hi cells 72h after cisplatin-induced 

AKI. F4/80hi cells from NaCl-injected mice were sorted as control at the same 

timepoint. For sorting of cells we used a more strict gating strategy, excluding F4/80hi 

cells with intermediate expression of MHCII (Example of gating strategy and sort purity 

see Figure 40). 
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Figure 40. Gating strategy and sort purity for transcriptional analysis of F4/80hi cells. 

Example of sorting strategy and purity check for renal MHCIInegF4/80hi and MHCII+F4/80hi cells 

after cisplatin-induced AKI in Clec9a
Cre

Rosa
YFP mice. MHCII+F4/80hi cells were identified as 

MHCII+CD64+F4/80hiCD11blow and MHCIInegF4/80hi cells as MHCIInegF4/80hiCD11blow. 

(Modified from Salei et al., 2020) 

 

We again performed a performed principal component analysis to quickly get an idea 

about differences between the populations. PC1 separated the control populations 

from the cells sorted after kidney injury (Figure 41). A potential transcriptional 

difference between F4/80hi cells and MHCIInegF4/80hi cells sorted after cisplatin-

induced AKI was highlighted by their segregation on PC2 (Figure 41). We performed 

pairwise comparison between F4/80hi cells and MHCIInegF4/80hi cells after cisplatin-

induced AKI to identify genes which could potentially hint at a different role of these 

cells during kidney injury. Based on the PCA we only expected minimal differences 

between F4/80hi cells and MHCIInegF4/80hi cells, which is why we chose a 

log2foldchange > 1 with an adjusted p-value < 0.05 to identify differentially expressed 

genes between these two populations. This analysis identified 56 genes, which were 

higher expressed in F4/80hi cells and only 10 genes, which were higher expressed in 

MHCIInegF4/80hi cells (Figure 42A). 
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Figure 41. PCA of F4/80hi cells during steady state and after cisplatin-induced AKI. PCA 

based on top 5000 genes with highest variance across sequenced samples. Each dot 

represents one biological replicate. (Modified from Salei et al., 2020) 

 

As expected, most of the genes which were higher expressed in F4/80hi cells 

compared to MHCIInegF4/80hi cells were related to the expression of MHCII, such as 

H2-Ab1, Cd74 and Ciita (Figure 42A). Since this analysis did not reveal many genes, 

we decided to compare F4/80hi cells from control-injected mice with F4/80hi cells after 

AKI independent of their MHCII expression. We identified 635 genes upregulated in 

F4/80hi cells after AKI with a log2foldchange > 1 and an adjusted p-value < 0.05. 

Moreover, in this comparison we found 691, which were higher expressed in F4/80hi 

cells from control mice compared to AKI (Figure 42B). Notably, we still found many 

MHCII-related genes differentially expressed, with a higher expression in F4/80hi cells 

sorted from control-treated mice. This suggested that MHCII is already downregulated 

on a transcriptional level in F4/80hi cells after cisplatin injection, even though it is still 

present on protein level.  
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Figure 42. Pairwise comparisons of F4/80hi cells after cisplatin-AKI. (A) Pairwise 

comparison of renal MHCII+F4/80hi cells with MHCIInegF4/80hi cells after cisplatin-induced AKI. 

Genes with a log2foldchange > 1 and an adjusted p-value < 0.05 are depicted as red. 

Differentially expressed genes of interest are labelled as blue dots. (B) Pairwise comparison 

of renal F4/80hi cells from control-treated mice with F4/80hi cells after cisplatin-induced AKI 

independent of MHCII expression. Genes with a log2foldchange > 1 and an adjusted p-value 

< 0.05 are depicted as red dots. Differentially expressed genes of interest are labelled as blue 

dots. (Modified from Salei et al., 2020) 

 

The transcriptional downregulation of MHCII after cisplatin-induced AKI in F4/80hi cells 

intrigued us, since it could indicate a functional switch in these cells in response to 

kidney damage. In search for a mechanism behind the downregulation of the antigen-

presentation machinery we noticed that the major activator of MHCII transcription Ciita 

was downregulated during AKI. Additional activators of MHCII expression, such as 

Irf1, Stat1 or Ep300, were also downregulated in F4/80hi cells isolated from mice with 

AKI (Figure 43A) (Boss & Jensen, 2003). Coincidentally, we identified prostaglandin 

E2 receptor 2 (Ptger2) among the genes which were upregulated in F4/80hi cells after 

AKI (Figure 42B). It was shown that Prostaglandin E2 (PGE2) levels in the kidney are 

elevated upon cisplatin induced acute kidney injury where it is produced by renal 

tubular cells through induction of Ptges and Ptgs2 (Jia et al., 2011). Binding of PGE2 

to EP2 or EP4 causes an increase of cellular cAMP levels (Aronoff, Canetti, & Peters-

Golden, 2004) which can inhibit the function of Ciita, the main activator of MHCII 

expression (Ivashkiv, Ayres, & Glimcher, 1994; G. Li, Harton, Zhu, & Ting, 2001). 



 70 

A B

Ccl20
Xcl1
Cxcl16
Ccl2
Ccl7
Ccl11
Ccl8
Ccl1
Ccl5
Ccl3
Ccl4
Cxcl14
Ccl28
Ccl19
Cxcl5
Cxcl3
Cxcl1
Cxcl2
Cxcl9
Cxcl10
Cxcl11
Cxcl13
Ccl26
Ccl24
Cxcl12
Cxcl17
Ccl25
Ccl22
Cx3cl1
Ccl17

condition

−5

n

t

−5

0

5

10

log2TPM

 

Figure 43. Selected differentially expressed genes and expression of cytokines in 

F4/80hi cells after cisplatin-induced AKI. (A) Heatmap depicting expression of selected 

genes connected to activation of MHCII expression (top box) or inhibition of MHCII expression 

(bottom box). (B) Heatmap depicting expression of various genes enconding known 

chemkines. Gene expression depicted as log2TPM value. (Modified from Salei et al., 2020) 

 

Additionally, other known factors which can lead to falling MHCII levels such as Cebpb, 

Cebpd or Mapk1/3 were also upregulated after cisplatin-induced AKI (Figure 43A, 

Figure 42B). Cepdb and Cebpd are activated upon increased cAMP levels in the cell, 

caused for example by binding of PGE2 to its surface receptors EP2 and EP4, and 

were shown to directly inhibit expression of Ciita by binding to its promoter region 

(Côté, Pasvanis, Bounou, & Dumais, 2009; Pennini et al., 2007). This further indicated 

that, indeed, MHCII is downregulated on a transcriptional level in F4/80hi cells after 

cisplatin-induced AKI, possibly regulated through prostaglandin E2 signalling. In 

addition to MHCII downregulation we found many chemokines which were 

differentially regulated after kidney injury, e.g. Ccl2, Cxcl9, Ccl7, Cxcl2 and Ccl17 

(Figure 42, Figure 43B, Figure 44).  



 71 

 

N
aC

l

C
is

pla
tin

0

500

1000

1500

Ccl7

T
P

M

0.0049

N
aC

l

C
is

pla
tin

0

500

1000

1500

Ccl2

T
P

M

0.0027

N
aC

l

C
is

pla
tin

0

20

40

60

80

100

T
P

M

Ccl17

0.0401

N
aC

l

C
is

pla
tin

0

500

1000

1500

2000

2500

Cxcl2

T
P

M

0.0079

N
aC

l

C
is

pla
tin

0

50

100

150

Cxcl14

T
P

M

****

 

Figure 44. Upregulated expression of cytokines in F4/80hi cells after cisplatin-induced 

AKI. TPM expression values of differentially expressed cytokines upregulated in F4/80hi cells 

after cisplatin-induced AKI compared to controls. Each dot represents one mouse. Horizontal 

bars indicate mean, error bars indicate SD. **** p-value < 0.0001 

 

Most of these chemokines were higher expressed after induction of kidney damage. 

This suggests that F4/80hi cells have an important role in recruiting and positioning 

inflammatory cells during disease. 

 

3.4. Depletion of cDCs using Clec9aCreRosaDTR exacerbates cisplatin-

induced acute kidney injury 

 

To identify the specific role of dendritic cells during cisplatin-induced AKI we decided 

to use cell depletion mouse models. Many studies aiming to address the function of 

DCs in the kidney relied on the use of either depletion of mononuclear phagocytes 

using clodronate liposomes or DT induced depletion with mouse lines such as 

CD11cDTR (Rogers et al., 2014). As previously mentioned, these models affect a 

variety of cells in addition to DCs. Therefore, we aimed to repeat cisplatin-induced AKI 

utilizing Clec9aCreRosaDTR mice which allows depletion of DCs with high specificity 

(Schraml et al., 2013). RosaDTR mice without expression of CRE were used as 

controls. We injected 10-12-week-old male mice with 15 mg/kg cisplatin to induce AKI 

as mentioned above. Unfortunately, mice with a systemic depletion of DCs showed an 

even increased weight loss forcing an early termination of this experiment 48 h after 

cisplatin injection (Figure 45B).  
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Figure 45. Disease severity and weight loss 48 h after cisplatin-induced AKI in 

Clec9a
Cre

Rosa
DTR mice. (A) BUN and creatinine levels in blood serum isolated from DT 

treated Rosa
DTR or Clec9a

Cre
Rosa

DTR mice 48h after cisplatin-induced AKI. Each dot 

represents one mouse. Horizontal bars indicate mean, error bars indicate SD. (B) Average 

weight loss in Rosa
DTR or Clec9a

Cre
Rosa

DTR mice. Dots represent mean weight loss at each 

time point, error bars indicate SD.  

 

Phenotypic analysis of myeloid and lymphoid cell population was performed via flow 

cytometry. Blood serum was collected to measure BUN and Creatinine for an 

assessment of kidney damage. We did not see a significant elevation of BUN or 

creatinine levels in Clec9aCreRosaDTR mice, indicating that there was no difference in 

disease severity (Figure 45A).  
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Figure 46. Quantification of lymphoid populations in the kidney after AKI in 

Clec9a
Cre

Rosa
DTR mice. Number of renal leukocyte populations per kidney (A) isolated after 

cisplatin-induced AKI in Clec9a
Cre

Rosa
DTR mice (black) or Rosa

DTR control mice (white) and 
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the population frequency among live cells (B). Each dot represents one mouse. Horizontal 

bars indicate mean, error bars indicate SD. **** p-value < 0.0001 

 

As expected, injection of DT in Clec9aCreRosaDTR lead to a decrease of all cells with 

DC origin visible both in cell counts per kidney and more obvious in the frequency of 

these populations among leukocytes (Figure 46). Interestingly, cell counts indicated a 

higher number of MHCIInegF4/80hi cells, monocytes and T cells in kidneys from 

Clec9aCreRosaDTR mice despite no difference in disease severity (Figure 46). 

To sum up, we could identify that depletion of DCs in Clec9aCreRosaDTR mice leads to 

a more severe disease progression with higher neutrophil counts, rapid weight loss 

and seemingly elevated levels of serum BUN and creatinine.  

 

3.5. cDC1 are dispensable for cisplatin-induced acute kidney injury 

3.5.1. Severity of acute kidney injury unchanged after depletion of XCR1+ 

cDC1 

To start deciphering specific roles of DC subsets during kidney injury we chose to 

utilize XCR1Venus-DTR mice and subjected them to cisplatin-induced AKI. These mice 

can be used to deplete cDC1 through injection of DT because XCR1 is specifically 

expressed in this population. We injected DT 24 h before induction of AKI and 

sacrificed mice 72 h after cisplatin injection. We harvested blood serum, kidneys and 

spleen for analysis. Serum Creatinine and BUN levels were used to assess kidney 

damage severity. We could not detect a significant difference in disease severity 

between control mice and mice with cDC1 depletion (Figure 47A). We also could not 

detect a difference in weight loss which could be another indicator of a more severe 

disease progression (Figure 47B). 
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Figure 47. Serum creatinine and BUN levels 72h after AKI in XCR1
Venus-DTR mice. (A) BUN 

and creatinine levels in blood serum isolated from DT treated WT or XCR1
Venus-DTR mice 72h 

after cisplatin-induced AKI. Each dot represents one mouse. Horizontal bars indicate mean, 

error bars indicate SD. (B) Average weight loss in WT or XCR1
Venus-DTR mice. Dots represent 

average weight loss at each time point, error bars indicate SD.  

 

3.5.2. cDC1 numbers are still decreased in the spleen 96h after depletion 

Since we did not perform repeated injections of DT, we wanted to make sure that 

cDC1 were still decreased 96 h after depletion. We analysed DCs in the spleen for 

CD3-Ly6G-MHCII+CD11c+CD24+XCR1+ cDC1 in XCR1Venus-DTR mice and DT-injected 

controls (Figure 48A and B). As expected, cDC1 were still clearly decreased in 

XCR1Venus-DTR mice compared to controls 96 h after depletion with DT (Figure 48B). 

Therefore, one-time depletion of cDC1 24 h before AKI induction is working model to 

study the role of these cells in early phases of kidney disease. 
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Figure 48. cDC1 are decreased in kidney and spleen 96h after DT injection in XCR1
Venus-

DTR mice. Representative analysis of MHCII+CD11c+CD24+XCR1+ cDC1 in splenocytes 

isolated from DT treated WT (A) or XCR1
Venus-DTR (B) mice 72 h after cisplatin-induced AKI. 
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3.5.3. Mice with cDC1 depletion show a decreased infiltration of neutrophils 

It was described that cDC1 have important functions during glomerular nephritis, e.g. 

dampening the influx of proinflammatory neutrophils (Brähler et al., 2017). Therefore, 

we wanted to analyse whether a comparable trend could be found in cisplatin-induced 

AKI. We profiled renal leukocyte populations using flow cytometry and found that, 

apart from cDC1, most populations were unchanged between control mice and 

XCR1Venus-DTR mice (Figure 49). However, we found that XCR1Venus-DTR mice had a 

less severe infiltration of neutrophils compared to controls (Figure 49). 

This result was striking to us since a decreased neutrophil infiltration upon cDC1 

depletion is completely opposite to what was detected in glomerular nephritis models 

(Brähler et al., 2017). Another function of cDC1 in kidney disease can be the induction 

of IL10-producing regulatory T cells (Tregs) during glomerular nephritis. Therefore, we 

wanted to see whether a depletion of cDC1 in cisplatin-induced AKI lead to differences 

in lymphoid populations. We devised another panel to identify CD4+/CD8+ T cells, 

CD4+Foxp3+ Tregs, CD127+ innate lymphoid cells (ILCs) and the Gata3+ subset of 

ILCs (Gating strategy Figure 50). 
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Figure 49. Myeloid populations in the kidney after AKI in XCR1
Venus-DTR mice. Number of 

renal myeloid populations per kidney isolated after cisplatin-induced AKI (black) or from 



 77 

control mice (white). Each dot represents one mouse. Horizontal bars indicate mean, error 

bars indicate SD. **** p-value < 0.0001 
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Figure 50. Gating strategy to identify T cell subsets and ILCs in the kidney. 

Representative flow cytometric analysis to identify T cells and ILCs in the kidney of 

XCR1
Venus-DTR mice. CD19+ and CD11b+ cells were excluded from live CD45.2+ cells to remove 

unwanted cells. Remaining cells were split into CD3+ and CD3- cells. The latter contained 

CD127+CD90.2+ ILCs which harboured a prominent Gata3+ ILC2 population. CD3+ T cells 

were split into the CD8+ and CD4+ subsets. CD4+ T cells were analysed for Foxp3+ Tregs. 

 

 When we compared quantifications of these populations, we did not notice any 

changes between control mice and XCR1Venus-DTR mice in cell counts (Figure 51) (data 

not shown). We did notice a slight increase of CD4+ T cells and ILCs in terms of 

frequency among live cells (Figure 52). Whether this difference has a consequence in 

later stages of cisplatin-induced AKI is not clear, but it did not influence the severity in 

early stages. 
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Figure 51. Quantification of lymphoid populations in the kidney after AKI in 

XCR1
Venus-DTR mice. Number of renal lymphoid populations per kidney isolated after cisplatin-

induced AKI in XCR1
Venus-DTR (black) or WT mice (white). Each dot represents one mouse. 

Horizontal bars indicate mean, error bars indicate SD. 
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Figure 52. Frequency of lymphoid cells in the kidney after AKI in XCR1
Venus-DTR mice. 

Frequency of renal lymphoid populations among live cells isolated after cisplatin-induced AKI 
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in XCR1
Venus-DTR (black) or WT mice (white). Each dot represents one mouse. Horizontal bars 

indicate mean, error bars indicate SD. *p-value < 0.05, ** p-value < 0.01 

 

All in all, we conclude that cDC1 play a minor role in cisplatin-induced AKI. While we 

did notice less infiltration of neutrophils which is usually a sign of lower kidney 

inflammation, we could not detect any differences in disease severity. 
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4. Discussion 

4.1. Histo-Cytometry can be used to identify multiple DC subsets in the 

steady-state kidney 

In this study we aimed to establish an image analysis technique called Histo-

Cytometry. This method was first described by Gerner et al. in 2012 and is a powerful 

technique that allows identification of cells based on fluorescent values from a 

microscopic image all the while preserving positional information (Gerner et al., 2012; 

W. Li et al., 2017). We used a combination of techniques described by Gerner et al. 

and Li et al. to establish a working version of this method for DC subsets in the kidney 

(Gerner et al., 2012; W. Li et al., 2017). We found that segmentation of cells is the 

most crucial step with many variables to consider. Segmentation of cells based on 

nuclear signal is not feasible for renal DC subsets because of their dendritic 

morphology in the tissue leading to only minor overlap of membranous signal with the 

nucleus. Therefore, we employed a segmentation strategy using membrane signals 

combined with a cytoplasmatic fluorescent reporter. A combination of multiple 

channels for the masking allowed a much higher efficiency for segmentation because 

less cells with irregular or weak membrane signals were excluded. However, it has to 

be considered that many cells were still not identified or were only partially identified 

and split into multiple selections. In addition, this approach worked best when cells 

were more or less evenly spread across the tissue with minor overlap. Cells with close 

neighbours tended to be combined to one big selection which led to exclusion based 

on size properties in the following analyses. For our approach we performed all 

downstream analysis on a 2D maximum projection from a thin z-stack. While this 

helped us with segmentation it should also be considered that many cells are lost 

using this approach because of their morphology. This approach allows for accurate 

cell identification but may miss some cells. Ideally segmentation should be performed 

in 3D from a thick z-stack, because otherwise cells which are only partially in the 

imaged plane will be excluded because of small size. 

Renal F4/80hi cells are MHCII- in early life and mostly located in the medulla, but with 

age F4/80hiMHCII+ enter the kidney and form a continuous network across the whole 

kidney (Berry et al., 2017; Lever et al., 2019; Salei et al., 2020). However, localization 

of MHCII+ and MHCII- F4/80hi cells and DC subsets has not been addressed in detail. 

As a proof of concept for Histo-Cytometry we confirmed previous results that showed 
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F4/80hi cells across the kidney with a high concentration in the medulla in adult kidney 

(Brähler et al., 2017; Hume & Gordon, 1983). To examine developmental changes in 

the localization of renal mononuclear phagocyte populations we isolated kidneys at 

PND2, PND14, PND28 and from adult mice. We isolated these kidneys from 

Clec9aCre/+RosaTomato mice to also be able to identify cells with a DC origin. We used 

RosaTomato mice for microscopic analyses because of the brightness and stability of 

Tomato in microscopic analyses (Shaner, Steinbach, & Tsien, 2005). However, it 

needs to be considered that labelling is much higher in RosaTomato mice compared to 

RosaYFP mice caused by more efficient removal of the shorter loxP-stop-loxP cassette 

(Glaser, Anastassiadis, & Stewart, 2005).  We therefore used mice heterozygous for 

Cre in the Clec9a locus then working with RosaTomato mice to achieve comparable 

labelling in DCs then compared to the homozygous Clec9aCre/CreRosaYFP mice we 

used for flow cytometric analyses. With Histo-Cytometry we confirmed that F4/80hi 

cells are mostly MHCIIneg in the first two weeks of life (Lever et al., 2019; Salei et al., 

2020). Between PND2 and PND14 MHCII+F4/80hi cells arise and quickly become the 

dominant population in the kidney at PND28. We showed that MHCIInegF4/80hi cells 

are always confined to the renal medulla. Interestingly, MHCII+F4/80hi cells can be 

found in equal numbers in the cortex and medulla at PND14. This could indicate that 

these cells enter the kidney preferentially in the cortex and then move to the medulla. 

Of course, it is also possible that F4/80hi cells in the kidney upregulate MHCII based 

on signals present in the tissue microenvironment. To address this question, one could 

think about using mouse models with inducible CRE expression such as Cx3cr1ERT2-

Cre crossed to a fluorescent reporter and follow the MHCII expression of labelled 

F4/80hi cells during early life. 

 

4.2. Macrophages, monocytes or DCs – CD11bhi cells and F4/80hi cells 

in the kidney 

We showed that Cleca9CreRosaYFP mice faithfully label DC populations but not other 

cell types in the kidney both in steady state and after AKI. Our bulk RNA sequencing 

data did not identify expression of CRE in F4/80hi or CD11bhi cells indicating that these 

cells do in fact have a DC origin (Schraml et al., 2013). However, these cells are still 

labelled to a significantly lower extent to cDC2. Studies using a novel monocyte fate-

mapping mouse utilizing the expression of Ms4a3 specific to the monocytes-lineage 
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showed that in adult mice at least a part of the F4/80hi population is made up from cells 

with a monocyte-origin (Z. Liu et al., 2019). This would argue that F4/80hi cells are a 

heterogeneous population with at least two ontogenetic sources. Other studies 

performing RNA sequencing identified low levels of Clec9a expression in F4/80hi cells, 

however whether this expression is enough to create functional protein is not clear yet 

(Lever et al., 2019). Since F4/80hi cells were shown to be long-lived and considering 

their slow accumulation of YFP labelling in Clec9aCreRosaYFP mice, it is possible that 

these cells are in fact macrophages and just acquire labelling with time due to baseline 

expression of Clec9a (Salei et al., 2020). Apart from YFP labelling in Clec9aCreRosaYFP 

mice, another DC-like characteristic of F4/80hi cells their ability to activate CD4+ T cells 

in vitro (Schraml et al., 2013). Although it has to be mentioned that other studies 

claimed that F4/80hi cells do in fact only possess very low potential to induce CD4+ T 

cell proliferation (Cao et al., 2016). Additional characteristics of these cells i.e. being 

long-lived, dependency on CSF1R signalling, expression of F4/80 and CD64 etc. 

would rather indicate that these cells are not DCs but macrophages. However, it was 

also shown that the tissue microenvironment can have a strong influence on 

phenotypic and transcriptional characteristics of immune cells (Lavin et al., 2014). 

Considering the special situation of the kidney with high salt concentrations in the 

tissue it is possible that F4/80hi cells are a unique DC which adapted to the kidney 

environment by upregulation of macrophage markers and genes (Chessa et al., 2016). 

We showed that F4/80hi cells possess a transcriptomic profile similar to other 

macrophages which is both demonstrated by their close relationship to red pulp 

macrophages in PCA but also by their expression of many genes out of a list of core-

macrophage genes. F4/80hi cells also clearly lacked expression of DC specific genes 

out of the core-DC signature compared to other cDCs. On the other hand, CD11bhi 

cells and cDC2 also expressed genes from the core-macrophage signature. This 

illustrates the major flaw using core-signatures because gene expression in 

macrophages and DCs is strongly influenced by the tissue microenvironment and 

therefore a tissue-wide signature is often not specific enough (Lavin et al., 2014). All 

in all, despite their labelling in Clec9aCre fate-mapping mice, these cells possess both 

the phenotype and transcriptomic signature of macrophages.  

We used Histo-Cytometry to identify cDC1, cDC2, CD11bhi cells and F4/80hi cells with 

a combination of CD11b, Tomato, CD64 and MHCII. All three subsets mentioned 

before localized in the cortex. Unfortunately, we were not able to identify differences 
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between CD11bhi cells and cDC2, both populations were mostly located between the 

cortex and medulla and therefore differential localization cannot explain phenotypic 

differences between these populations. However, while their localization may be the 

same, using bulk RNA sequencing we showed that CD11bhi cells and cDC2 differ in 

their transcriptional profile. We showed that CD11bhi cells possess transcriptional 

characteristics of both macrophages and DCs. We identified differential expression of 

pattern-recognition receptors such as TLR7, TLR8 between these two populations 

which could hint at different functions during disease. Some targets were addressed 

in Salei et al. and there seems to be thickening evidence that cDC2 and CD11bhi cells 

are indeed also functionally distinct cell types (Salei et al., 2020). In contrast, a study 

published by Zimmerman et al. performed single cell RNA sequencing of the renal 

myeloid cell compartment from mouse, rat, swine and human samples (Zimmerman 

et al., 2019). They identified cDC2 but were not able to find CD11bhi cells. We 

performed our own analysis on this dataset but were also not able to distinguish these 

two populations (data not shown). However, a downside of single cell RNA sequencing 

is that the sequencing depth per cell is much lower compared to bulk RNA sequencing 

(Bacher & Kendziorski, 2016). Because of this the number of genes detected may not 

be enough to distinguish populations that are as similar to each other as cDC2 and 

CD11bhi cells (Bacher & Kendziorski, 2016). Since CD11bhi cells and cDC2 are only a 

small percentage of renal mononuclear phagocytes, it is also possible the number of 

sequenced cells by Zimmerman et al. was not high enough to distinguish between 

these closely related subsets. 

All in all, we think that CD11bhi cells should be considered a unique DC subset in the 

kidney rather than a type of cDC2 with expression of CD64 (Guilliams et al., 2016). 

We were not able to find traces of an ontogenetic relationship between F4/80hi cells 

and other cDC subsets. With current evidence F4/80hi cells seem to be a 

heterogeneous population with contributions from the monocyte-lineage as well as the 

DC lineage. Zimmerman et al. identified two populations of F4/80hi cells. Whether 

these two populations correspond to F4/80hi cells from medulla and cortex or to F4/80hi 

cells from different ontogenetic sources is not clear.  
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4.3. F4/80hi cells downregulate MHCII after acute kidney injury and may 

orchestrate recruitment of inflammatory cells to damaged areas 

Recent studies showed that F4/80hi cells downregulate MHCII upon IRI-induced 

kidney injury (Lever et al., 2019). This phenotypic switch was accompanied with 

transcriptional changes indicating a more developmental function of these cells after 

injury (Lever et al., 2019). Since IRI - and to some extent cisplatin-induced AKI - is 

also accompanied with a massive influx of inflammatory cells we aimed to address 

how DCs contribute to the early phase of IRI and whether MHCIInegF4/80hi cells are in 

fact F4/80hi cells downregulating MHCII or rather inflammatory cells taking up this 

phenotype (L. Li et al., 2008). For this we used the Clec9aCreRosaYFP model which 

labels all cells with a DC origin and subjected it to IRI or cisplatin-induced AKI. We 

showed that the Clec9aCreRosaYFP stayed faithful to DC populations even during 

severe kidney injury, infiltrating cells were not labelled with YFP. We observed a clear 

difference in the dynamics of F4/80hi cells between IRI and cisplatin-induced AKI. 

While F4/80hi cells showed a gradual downregulation of MHCII in cisplatin-induced 

AKI after 72h, there was already a clear population devoid of MHCII expression 

present after the same time in the IRI model same as seen in the study by Lever et al. 

(Lever et al., 2019). Interestingly, F4/80hi cells and MHCIInegF4/80hi cells were labelled 

with YFP to almost the same extent in cisplatin-induced AKI further indicating a 

downregulation of MHCII. On the contrary, after IRI the MHCIInegF4/80hi population 

seemed to be more heterogeneous and presented with lower frequency of YFP 

labelling compared to MHCII+F4/80hi cells. This argues that in cisplatin-induced AKI 

the MHCIInegF4/80hi population are in fact MHCII+F4/80hi cells downregulating MHCII 

while in IRI there is substantial contribution of infiltrating cells to this population.  

To address a mechanism which could lead to downregulation of MHCII on renal 

F4/80hi cells we sorted MHCIInegF4/80hi cells and MHCII+F4/80hi cells 72h after 

cisplatin-induced AKI. We showed that MHCIInegF4/80hi cells and F4/80hi cells are 

transcriptionally almost identical and the few differentially expressed genes between 

the two populations were mostly related to the antigen-presentation machinery. We 

found many more differentially expressed genes between F4/80hi cells from control 

mice and F4/80hi cells from mice with AKI. For this comparison we did not distinguish 

between MHCII+ and MHCIInegF4/80hi cells. We showed that upon kidney injury many 

chemokines are differentially expressed which could indicate a role for F4/80hi cells to 
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coordinate recruitment of inflammatory cells to specific sites in the injured tissue. In 

line with this observation we identified clusters of F4/80hi cells around damaged areas 

in the renal cortex while non-damaged areas were almost devoid of myeloid cells. 

F4/80hi cells are potentially recruited to damaged areas and are then able to guide 

inflammatory cells to the tissue via expression of specific cytokines. Among the 

upregulated cytokines we identified CCL17, CCL2, CCL7, CXCL2 and CXCL14. 

CCL17 was shown to be produced in a variety of lymphoid and non-lymphoid organs. 

It is important for recruitment of activated T cells (Alferink et al., 2003). CXCL14 binds 

to CXCR4 and is able to attract NK cells and immature DCsto the tissue in humans, 

but the function in mice less clear (Hara & Tanegashima, 2012). Studies in mice 

showed that CXCL14 is important for the uptake of CpG through TLR9 (Tanegashima 

et al., 2017). CCL2 and CCL7 are important cytokines for the recruitment of monocytes 

to the injured kidney (J. Gonzalez et al., 2013; Kashyap et al., 2018). Last but not 

least, CXCL2 is an important chemoattractant for neutrophils which was shown to be 

induced in cisplatin-induced AKI (Chan et al., 2014). All together F4/80hi cells are able 

to attract or guide many different kinds of inflammatory cells to damaged areas in the 

kidney. This could indicate an important role of F4/80hi cells in coordinating the 

immune response after acute kidney injury. Considering the fact that F4/80hi cells 

were found close to damaged areas after cisplatin-induced AKI, another explanation 

of this observation could be that F4/80hi cells are rather masking the damaged area 

from other immune cells and are thereby keeping the inflammatory response under 

control akin to what has been shown by Uderhardt et al. (Uderhardt, Martins, Tsang, 

Lämmermann, & Germain, 2019). 

Among differentially expressed genes between F4/80hi cells from healthy and injured 

kidneys we identified many genes associated to the regulation of MHCII expression. 

We showed that both positive regulators such as Irf1, Stat1 but also negative 

regulators of MHCII expression such as Ptger2 and Cebpb were differentially 

expressed in F4/80hi cells after cisplatin-induced AKI. Previous studies identified a role 

of PGE2 signalling on the expression of MHCII mediated by the inhibition of Ciita 

function through rising cellular cAMP levels (Aronoff et al., 2004; Ivashkiv et al., 1994; 

G. Li et al., 2001). Intriguingly, another study also confirmed that PGE2 expression is 

induced upon AKI, making PGE2 signalling a likely initiator of MHCII downregulation 

on F4/80hi cells upon kidney injury (Jia et al., 2011). However, this remains a theory 

for now as this study did not perform any assays to confirm this hypothesis. A possible 
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option to address the relevancy hypothesis could be a conditional knockout of PGE2 

signalling in DCs or other cell types and subjecting these mice to AKI. 

To sum up, this study confirmed previous results which showed downregulation of 

MHCII on renal F4/80hi cells upon IRI. These findings were also observed in cisplatin-

induced AKI, however in contrast to IRI MHCIInegF4/80hi cells in cisplatin-induced AKI 

seem to be a much more homogeneous population and not diluted by inflammatory 

cells. This observation offers many possibilities for future studies to discern a 

mechanism and the functional consequences of MHCII downregulation on renal 

F4/80hi cells. Moreover, this study provided bulk RNA sequencing data of F4/80hi cells 

isolated from healthy and injured kidneys which could provide a valuable tool for future 

functional studies. 

 

4.4. Specific depletion of DCs with Clec9aCreRosaDTR may increase 

disease severity after cisplatin-induced AKI 

In contrast to XCR1Venus-DTR mice we saw a clear effect on cisplatin-induced AKI after 

depletion of all cells with a DC origin using Clec9aCreRosaDTR mice as expected. We 

demonstrated that 96 h after DT injection all four DC populations were still clearly 

reduced compared to RosaDTR control mice. We noticed that DC depleted mice 

exhibited a higher weight loss compared to control mice and because of this the 

experiment had to be stopped after 48 h according to experimental regulations. DC 

depleted mice also showed a trend to higher disease induction compared to RosaDTR 

mice based on BUN, Creatinine and neutrophil infiltration, but results need to be 

confirmed with a higher number of biological replicates. We also noticed a higher 

number of monocytes after DC depletion. It should be considered that depletion of 

DCs for example with CD11cDTR or other models lead to monocytosis and neutrophilia 

in different organs (Salvermoser et al., 2018; van Blijswijk et al., 2013). It is therefore 

possible that higher monocytes and neutrophil numbers in Clec9aCreRosaDTR mice are 

not correlating with disease induction but are rather lasting effects of DT mediated DC 

depletion. In general, our observations are in line with what was published by 

Tadagavadi et al. based on depletion using CD11cDTR (Tadagavadi & Reeves, 2010b). 

It should be mentioned that we used a lower dose of cisplatin compared to other 

studies because disease induction with higher doses of cisplatin was too severe in our 

hands (data not shown). This could explain why BUN and Creatinine levels are lower 
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compared to Tadagavadi et al. (Tadagavadi & Reeves, 2010b). Moreover, we used 

mice homozygous for Cre which causes a complete knockout of Clec9a expression. 

Clec9a and its protein DNGR1 were shown to play a dampening role during Candida 

infection (Del Fresno et al., 2018). Although it is unlikely that DNGR1 plays a role in 

our model of cisplatin-induced AKI, we cannot exclude effects of a DNGR1 knockout 

on cisplatin-induced AKI based on our experimental setup.  

 

4.5. cDC1 are dispensable in cisplatin-induced AKI 

To date the precise role of DC subsets remains ill-defined during acute kidney injury 

because of substantial phenotypic overlap between renal mononuclear phagocytes 

and a lack of subset specific studies. Therefore, this work aimed to utilize 

XCR1Venus-DTR mice and Clec9aCreRosaDTR mice in combination with cisplatin-induced 

AKI to decipher the role of the DC lineage and cDC1 in particular during kidney 

disease. We showed that depletion of cDC1 was still visible 96 h after DT depletion 

but did not have an influence on disease severity or weight loss. Analysis of myeloid 

populations only showed a decrease in infiltrating neutrophils in XCR1Venus-DTR mice. 

This could indicate less severe kidney damage since induction of kidney damage is 

usually followed by infiltration of neutrophils in cisplatin-induced AKI (Tadagavadi & 

Reeves, 2010b). cDC1 were implicated to have a protective role during glomerular 

nephritis through induction of IL10-producing Tregs and regulation of CXCL2 

production by cDC2s (Brähler et al., 2017; Evers et al., 2016). On the other hand, 

induction of CD8+ T cells by CD103+ cDC1 during Adriamycin-induced kidney injury 

leads to an exacerbation of the disease (Cao et al., 2016). Additionally, the study was 

based on a Batf3-/- model to deplete cDC1. BATF3 is an important regulator in CD4+ 

T cells and Batf3-/- mice were shown to have increased amounts of Tregs (W. Lee, 

Kim, Hwang, & Lee, 2017). Tregs were shown to be dampen kidney injury in a variety 

of diseases including cisplatin-induced AKI, IRI and glomerular nephritis (Alikhan, 

Huynh, Kitching, & Ooi, 2018; do Valle Duraes et al., 2020; H. Lee et al., 2010). We 

did not identify altered numbers of CD4+Foxp3+ in XCR1Venus-DTR mice compared to 

WT controls 72 h after cisplatin-induce AKI and we also did not see changes of disease 

severity upon cDC1 depletion. We did find an increase of CD127+ ILCs among live 

cells and recent studies showed that expansion of ILC2s via injection of a combination 

of IL2 and IL33 protected from cisplatin-induced AKI (Stremska et al., 2017). Whether 
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cDC1 play a role in maintaining ILC populations in the kidney is currently unknown. It 

will be important for future studies to compare ILC numbers to non-cisplatin-injected 

control since it is possible that these populations are just decreased to a greater extent 

in WT mice due to a higher induction of kidney damage. Overall it seems that cDC1 

do not play a role in cisplatin-induced AKI. Considering the ability of cDC1 to maintain 

Tregs it will be important to look at the consequences of cDC1 depletion on the 

recovery phase after kidney injury. To achieve this, cisplatin could be injected 

repeatedly at lower doses to induce non-lethal AKI or studies could be performed in 

established lower models studying the recovery process after kidney damage such as 

unilateral IRI (Rogers et al., 2014; Sharp & Siskind, 2017). 

 

4.6. Outlook 

Future studies should improve on the Histo-Cytometry workflow to make this method 

more reliable in tissue where cells of interest are in close contact with each other. 

Possible approaches could be to use segmentation algorithms in 3D space, which 

could help segmenting cells which would overwise overlap in a 2D image. 

Furthermore, inclusion of additional markers should improve segmentation overall and 

would also allow mask creation on additional markers. Since the amount of markers 

in traditional imaging techniques are usually limited by spectral overlap, novel imaging 

techniques circumvent this problem by sequential immunostaining for different 

markers with intermittent washing steps to remove bound antibodies (Bolognesi et al., 

2017).  

In light of our transcriptional analysis on F4/80hi cells after cisplatin-induced AKI, 

further studies should be performed to verify the role of F4/80hi cells and PGE2 during 

kidney injury. In vitro cultures of F4/80hi cells could address the role of PGE2 directly 

on these cells. Additionally, use of Ptger4floxPtger2KO mice crossed to a DC specific 

CRE mouse line such as Clec9aCre could be used to elucidate the role of PGE2 

signalling in DCs during kidney injury (Kennedy et al., 1999; Schneider et al., 2004).  

Lastly, the CDP origin of F4/80hi cells needs to be confirmed to strengthen the 

observation that F4/80hi cells are indeed DCs. To achieve this CDPs could be 

transferred to mice after depletion of F4/80hi cells in Clec9aCreRosaDTR mice to ensure 

niche-availability. 
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