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Abstract

Gravity and the orientation of the body in space are vital features
to monitor the surrounding environment. An intact and functioning
vestibular system is an important prerequisite for orientation in space
[59].The vestibular labyrinth in the inner ear consists of the semicir-
cular canals, the otolith organs and receptors [127]. These receptors
transmit vestibular information through the vestibulocochlear nerve
to the cerebellum and to nuclei in the brainstem, from where infor-
mation is further processed [60].
The main components of the membranous labyrinth of the inner ear
is identified as the three semi-circular ducts (horizontal, anterior and
posterior), two otolith organs (saccule and utricle), and the cochlea
[127].
When the vestibular system is damaged by illness or injury, vestibular
symptoms typically ensue. These include dizziness and balance and
are often accompanied by problems with hearing or vision [61].
Menière's disease is clinically characterized by episodic vertigo, low
frequency fluctuating sensorineural hearing loss, tinnitus, and a sensa-
tion of fullness on the affected side. Gait problems, postural instabil-
ity, and drop attacks may accompany [62]. Endolymphatic hydrops
is assumed to be the morphological hallmark feature of Menière's

Disease [5], which could be detected by contrast-enhanced high reso-
lution MR imaging [56] [67] [80] [81] [85] [99] [5].

The study was divided into three different phases:
In the first phase, a reliable methodology for achieving a co-registered
dataset was proposed which used a nonlinear deformable registration,
landmark-based registration, using bsplines. This was a part of pre-
processing of the dataset and is the prerequisite for any clinical image
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processing study.
The second phase aimed to extract the bony structure of the human
left and right inner ears within the MRI scans. In order to achieve
this aim, a novel idea for generating a probabilistic atlas for the bony
labyrinth of the human inner ear was presented and published in [1].
This atlas was validated based on three different datasets and demon-
strated a high agreement in regard to the performance scores. The
bony structure was segmented in a reliable atlas based segmentation
[1]. The establishment of this probabilistic atlas enabled us to develop
a methodology for a semi-automatic segmentation based on the atlas
to further investigate the concentration of different fluids inside the
membranous labyrinth [1].
Methodologically, twenty-four individuals with vestibular migraine
without endolymphatic hydrops were included in the study (12 fe-
males, aged 20 - 76 years, mean age: 51.5± 3.9 years) [1]. Additional
datasets for the verification and validation phase were also included
in the current study [1]. These additional datasets or unseen subjects
’data were used as testing sets with different characteristics compared
to the training set in order to verify the applicability of the atlas for
not only the atlas dataset subjects but other subjects diagnosed with
or without hydrops.
Using CISS images generated on a 3T magnetic resonance (MR) scan-
ner, both inner ears were cropped and registered to the initial tem-
plate’s common reference from [18].
Subsequently, 96 models were extracted from two manual segmenta-
tions of each subject’s cochlea and vestibule and a probabilistic labeled
atlas was created by a label based approach. Ultimately, the 3D inner
ear atlas consisting of internal auditory meatus, cochlea, vestibule and
semicircular canals for both right and left ears was obtained using a
label based approach for atlas generation.
The evaluation of the atlas performance was conducted using Dice
scores in three different scenarios for the variation of study popula-
tion, number of fiducial markers and smoothing Gaussian kernel and
the optimum value was identified for the algorithm. Since the atlas-
based segmentation extracts the bony labyrinth of the human inner
ear, the fluid classification within the extracted masks or volumes of
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interest was straight forward. Two testing datasets were used to val-
idate the performance of the atlas based segmentation.
The results showed the variation of volumes of the inner ear compo-
nents. The Dice score was found to be 89% for the right side and 86%
for the left side [1] using the optimum values for smoothing kernel: 5
voxels, number of subjects: 24 and number of control points: 5 [1].
The Dice scores showed an overestimation in certain subjects which
could be remedied by a better manual segmentation of the boundaries
[1]. The RMSE (root mean square error) of the control points posi-
tion on a training set and two different testing sets was 3.8% ± 0.2
on average for the whole sample [1]. The generated atlas showed the
variation of the inner ear shape and size across individuals in the total
sample.
This study for the first time proposed a three-dimensional atlas for the
human inner ear. The generated atlas was applied in a semi-automatic
atlas-based segmentation to obtain a mask of the CISS sequence [1].
The mask is an important achievement to monitor ELH in therapeu-
tic trials in Menière's disease using contrast enhanced MR sequences.

In the third phase of the study, a multiparametric approach for
image segmentation was applied based on i) an atlas-based approach
for the CISS sequence, ii) supervised learning with active contours for
the FLAIR sequence and iii) a subtraction technique with nonlinear
interpolation for the FLAIR sequence. This resulted in the classifica-
tion of ELS and PLS within the inner ear.
In summary, a statistical quantitative analysis of imaging data was es-
tablished to be used in combination with qualitative symptom-based
information for monitoring and grading endolymphatic hydrops. This
is expected to become an essential toolbox for imaging-based studies
of vestibular syndromes and also for monitoring the success of treat-
ment strategies.



Zusammenfassung

Schwerkraft und Orientierung des Körpers im jeweiligen Raum sind
essentielle Voraussetzungen für die Beobachtung der Umgebung. Das
Vestibularsystem sorgt für diese Funktionalität [59].
Die Hauptstruktur des Vestibularsystems befindet sich im Innenohr
in einem System, das als Vestibularlabyrinth bezeichnet wird. Das
vestibuläre Labyrinth im Innenohr besteht aus den halbkreisförmigen
Kanälen, den Otolithenorganen und den Rezeptoren [127]. Diese
Rezeptoren übertragen vestibuläre Informationen über den Nervus
vestibulocochlearis in das Kleinhirn und in die Kerne im Hirnstamm
[60]. Die vestibulären Kerne leiten die erhaltenen Informationen an
vorbestimmte Ziele weiter [60].
Das membranöse Labyrinth des Innenohrs besteht aus den drei hal-
bkreisförmigen Kanälen (horizontal, anterior und posterior), zwei Otol-
ithenorganen (Sacculus und Utriculus) und der Cochlea [59]. Eine
Schädigung des Vestibularsystem führt in der Regel zu Schwindel und
Gleichgewichtsstörungen. Auch Hör oder Sehstörungen sind häufig
[61].
Morbus Menière ist durch episodischen Schwindel, niederfrequenten,
fluktuierenden sensorineuralen Hörverlust, Tinnitus und ein Völlegefü-
hl des betroffenen Ohres gekennzeichnet. Gangprobleme, Haltungsin-
stabilität und Sturzattacken können auftreten [62]. Es wird angenom-
men, dass ein endolymphatischer Hydrops die zugrunde liegende Patho-
physiologie des Morbus Menière ist [5]. Ein endolymphatischer Hy-
drops kann mit einer kontrastmittelverstärkten hochauflösenden MRT
visualisiert werden [56] [67] [80] [81] [85] [99] [5].
Die dieser Dissertation zugrundeliegende Studie wurde in drei Phasen
unterteilt: In der ersten Phase wurde eine zuverlässige Methode etabli-
ert, um einen koregistrierten Datensatz zu erhalten. Diese Meth-



xviii

ode basiert auf einer nonlinearen deformierbaren Registrierung, der
Landmark-basierte Registrierung, die bsplines verwendet. Dies war
ein Teil der Präprozessierung des Datensatzes und ist eine wichtige
Voraussetzung jeder klinischen Bildverarbeitungsstudie.
In der zweiten Phase der Studie wurden die knöchernen Strukturen
des linken und rechten Innenohrs aus MRT-Aufnahmen extrahiert.
Um dieses Ziel zu erreichen, wurde eine neue Methode zur Erstellung
eines probabilistischen Atlas für das knöcherne Labyrinth des men-
schlichen Innenohrs vorgestellt und veröffentlicht [1]. Dieser Atlas
wurde anhand von drei verschiedenen Datensätzen validiert und zeigt
eine hohe Übereinstimmung. Die knöchernen Strukturen wurden mit
einer atlasbasierten Segmentierung segmentiert [1]. Die Erstellung
dieses probabilistischen Atlases war in unserer Studie eine wichtige
Voraussetzung für die Entwicklung einer halbautomatischen Segmen-
tierungsmethodik, um die Anteile der unterschiedlichen Flüssigkeiten
im membranösen Labyrinth zu quantifizieren [1].
Der ursprüngliche Datensatz bestand aus den hochauflösenden In-
nenohr MRTs von 24 Personen mit vestibulärer Migräne ohne Zeichen
eines endolymphatischen Hydrops (12 Frauen; Durchschnittsalter 51.5
± 3.9 Jahre, Altersspanne 20 bis 76 Jahre) [1]. Dieser Datensatz
wurde in der Verifizierungs und Validierungsphase durch weitere Date-
nsätze ergänzt [1]. Diese zusätzlichen Datensätze oder Daten unsicht-
barer Probanden wurden als Testsätze mit anderen Merkmalen als die
Trainingssätze verwendet, um die Anwendbarkeit des Atlas nicht nur
für die Probanden des Atlas-Datensatzes, sondern auch für andere mit
oder ohne Hydrops diagnostizierte Probanden zu überprüfen.
Es wurden CISS-Sequenzen verwendet, die in einem 3T-Magnetresona-
nz-Tomographen (MRT) akquiriert wurden. Diese wurden zugeschnit-
ten, um jeweils das rechte bzw. linke Innenohr abzubilden und an-
schließend auf das urpsrüngliche Template registriert [18].
Anschließend wurden 96 Modelle aus zweimaligen manuellen Seg-
mentierungen der Cochlea und des Vestibulums jedes Probanden ex-
trahiert. Zudem wurde durch einen label-basierten Ansatz ein prob-
abilistisch gekennzeichneter Atlas gemäß der Methode des ”best se-
lected set of models” erstellt. Mit Hilfe von einem label-basierten
Ansatz zur Atlaserstellung beinhaltete der 3D-Innenohratlas schließlich
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den Meatus acusticus internus, die Cochlea, das Vestibulum und der
halbkreisförmige Kanal für das rechte und linke Ohr.
Die Performance des Atlas wurde mittels Dice Scores in drei ver-
schiedenen Szenarien evaluiert und der optimale Wert für den Algo-
rithmus identifiziert. Diese drei Szenarien waren eine Variation der
Studienpopulation, der Anzahl der Kontrollpunkte und die Glättung
des Gaussian Kerns.
Um die Performance der atlasbasierten Segmentierung zu validieren,
wurden zwei Testdatensätze verwendet [1]. Da die atlasbasierte Seg-
mentierung das knöcherne Labyrinth des menschlichen Innenohrs ex-
trahiert, ist die Klassifizierung der FlÜssigkeiten innerhalb der ex-
trahierten Maske oder des Volumens danach vergleichsweise unkom-
pliziert.
Die Ergebnisse zeigten eine Variation des Volumens der Innenohrkom-
ponenten [1]. Der Dice Score war 89% für das rechte Innenohr und
86% für das linke Innenohr. Dabei kamen die optimalen Werte für das
Glätten des Kerns zur Anwendung: 5 Voxel und 5 Kontrollpunkte bei
einer Anzahl an Probanden von 24. Der Dice Score zeigte bei einigen
Probanden eine Überschätzung, welche durch eine bessere manuelle
Segmentierung in den Grenzbereichen behoben werden konnte [1].
Der RMSE (root mean square error) der Kontrollpunktpositionen bei
einem Trainingsdatensatz und zwei unterschiedlichen Testdatensätzen
lag bei 3.8%± 0.2% für alle Probanden [1]. Der erzeugte Atlas zeigte
die Variation der Innenohrform und größe zwischen Individuen in der
Gesamtpopulation [1].
Unsere Studie hat erstmals einen dreidimensionalen Atlas des men-
schlichen Innenohrs für eine semiautomatische, atlasbasierte Segmen-
tierung etabliert [1]. Durch diese semiautomatische, stlasbasierte Seg-
mentierung konnte eine Maske in der CISS Sequenz generiert werden.
Diese Maske erleichtert die Quantifizierung con Endolymphe und Peri-
lymphe in der Diagnostik und Verlaufsbeobachtung von Patienten mit
Morbus Menière.
In der dritten Phase der Arbeit wurde ein multiparametrischer Ansatz
zur Bildsegmentierung entwickelt, der auf mehreren MRT-Sequenzen
beruhte. Dieser Ansatz basierte auf: i) einem atlas-basierten Ansatz
für die CISS-Sequenz, ii) einem Supervised Learning Ansatz mit ak-
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tiven Konturen für die FLAIR-Sequenz und iii) einer Subtraktion-
stechnik mit nonlinearer Interpolation für die Kombination aus FLAIR-
Sequenz und CISS-Sequenz.

Diese Methodik erlaubte die Klassifizierung von ELS und PLS im
Innenohr. Die statistisch-quantitative Analyse in Kombination mit
qualitativen symptombasierten Informationen ist eine wichtige Grund-
lage zur Diagnostik eines endolymphatischen Hydrops, aber auch zur
Verlaufskontrolle im Rahmen klinischer Studien.



Chapter 1

Introduction

In this chapter, the underlying idea of this dissertation as well as the
various methodological approaches are introduced. Image processing
is a vital tool for many clinical application. This study focuses on the
segmentation of the components of the inner ear and specifically on
the evaluation of the endolymphatic space with the overarching aim
of facilitating the diagnosis of endolymphatic hydrops.

1.1 Endolymphatic Hydrops

Endolymphatic hydrops (ELH) is considered to be a disorder of the
vestibular system [3] [49] leading to several inner ear disorders such
as vertigo, hearing loss and tinnitus which included about 0.2-0.5 %
of the general population [62] [68] [58] [3] [10].

Figure 1.1 demonstrates the physiological structure of the inner ear,
while figure 1.2 displays the components of the endolypmphatic fluid
in green and the perilymphatic fluid in blue.

In ELH the endolymphatic space becomes augmented and the mem-
branes can become bloated [66] by the additional endolymph concen-
tration [66]. The comparison between a normal healthy inner ear in
one hand, and in the other hand, the inner ear of a patient diagnosed
with Menière's disease [66] is shown in figure 1.3.
Endolymphatic fluid takes plays an important part in the balance and
the sensory cells of the hearing system in the inner ear [129]. Sound
waves entering the ear is are forwarded to the inner ear via the tym-
panic membrane and middle ear ossicles and it generates fluid waves
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Figure 1.1: The vestibular System and anatomy of the inner ear [61].

in the inner ear [128]. The movement which is caused by these fluid
waves in the endolymphatic fluid, stimulates the receptor cells and
leads to the translation of the mechanical waves to electrical impulses
[130].
Orientation of the head in the the three-dimensional space entails the
angular acceleration of the endolymphatic fluid in the three semicir-
cular canals of both inner ears, which stimulates the sensory hair cells
called as vestibular receptors of the endolymph [130]. Again, there
is a translation of mechanical waves to electrical impulses and these
electrical impulses are transmitted to the brain [65].
Endolymphatic hydrops causes an increased hydraulic pressure within
the inner ear endolymphatic system and this surplus endolymph pres-
sure can impact both hearing and balance [66]. Endolymphatic hy-
drops is a hallmark finding inMenière's disease [67]. Even though the
exact pahthophysiologic processes are incompletely understood, char-
acteristic symptoms of Menière's disease include episodes of vertigo,
hearing loss, tinnitus, and the feeling of aural fullness [68].
Endolymphatic hydrops has been recognized as the underlying patho-
physiology and a primary histopathological finding of Menière's dis-
ease [4]. Several studies demonstrated endolymphatic hydrops in pa-
tients with Menière's disease in the in-vivo setting using contrast
enhanced high resolution MRI and correlated severity of clinical symp-
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toms with the degree of endoymphatic hydrops [5].

Figure 1.2: Cross-section of a single cochlear turn, structure of organ of Corti. The scala media, filled
with endolymph and surrounded by the reticular lamina is shown in green. The scala vestibule, filled with
perilymph, is shown in blue [63].

Figure 1.3: Comparison of a visualization of the inner ear of a normal healthy ear (left) and a subject
with Menière's disease (right) [64] [66]

1.2 Computer Aided Methods for Inner Ear Segmentation

Newer contrast-enhanced, high spatial resolution MRI methods have
enabled the in vivo diagnosis of endolymphatic hydrops[6]-[15].
Critical elements influencing image quality are contrast-to-noise ra-
tio and spatial resolution of magnetic resonance images [138]. Using
higher field strengths and a high number of coil elements facilitates
acquiring images with a high spatial resolution and adequate signal-
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to-noise ratios within acceptable scan times [138].
Endolymphatic hydrops is visualized with contrast-enhanced tech-
niques after the administration of Gadolinium-based contrast agents
(GBCA) [6]-[15]. Using these methods, perilymphatic fluid demon-
strates a contrast enhancement and hyperintense signal, while en-
dolymphatic fluid is hypointense and does not enhance.
Among the MR sequences usually acquired to diagnose endolymphatic
hydrops are three-dimensional Inversion Recovery (3D-IR) sequences,
three-dimensional Constructive Interface in Steady State (3D-CISS)
sequences, as well as Fluid Attenuated Inversion Recovery (FLAIR)
sequences [7] [9] [137] [8] [75] [134] [135], all of which are applied in a
contrast-enhanced technique. These methods are usually performed
on a 3 Tesla MRI scanner with a high number of coil channels [138].
Figure 1.4 shows an image acquired 24 hours after transtympanic in-
jection of a GBCA; in this instance, a regular head coil and a surface
loop coil were used in combination [138]. In recent years, intravenous
administrations of GBCA are usually employed with a delayed image
acquisition 4 hours after administration.

1.3 Atlas-Based Segmentation

Among automatic segmentation algorithms, atlas-based approaches
have been of particular importance since they label a desired single
anatomy or several anatomies from the images generated by different
modalities of the medical imaging methods [16].
An atlas is interpreted as the combined information of an intensity-
based image and its segmented-labeled image. These images are called
templates and atlas labels respectively [17].
After the alignment procedure of the atlas template to the target im-
age, the propagation of atlas labels are to the target image is resulted
[17].
The principal step in every atlas creation approach is to provide a co-
registered set of data which is also a basic challenge in medical image
processing. Probabilistic atlases are known as a strategy in research
aiming to produce anatomical templates that represent quantitative
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Figure 1.4: Three Tesla MR imaging with a hybrid of a 16 channel head coil and an ear surface coil (loop
7 cm) after intra-tympanic administration of Gd-DOTA [138] in a patient with left ear Menière's disease.
A: T1-weighted Spin Echo, B: 3D real IR. C: An additional loop coil was utilized. N8: 8th cranial Nerve;
SM: Scala Media; ST: Scala Tympani; SV: Scalavestibuli; VEL: Vestibular Endolymph; VPL: Vestibular
Perilymph. Scale bar = 5 mm [138].

local information structural variations. As more subjects are added
to the data-set for an atlas creation, it becomes more delineative than
conventional atlases without miscellaneous information.
Figure 1.5 demonstrates a simple workflow for general atlas-based
segmentation for human bones [55]. Different approaches to create
probabilistic atlases are divided into three basic categories where the
major difference is focused on the modeling method of the statistical
distribution as outlined below.

1.3.1 Density-Based or Average-Intensity Approach

A density-based approach averages signal intensities of multiple MRI
scans [44], [47]. For a brain atlas, MRI scans are transformable to
each other using a linear or affine registration [44], [47]. Then, the
intensities are normalized and averaged based on voxels which leads
to generating a probability map [44], [47]. The probability maps rep-
resent the chances of finding the region of interest at a certain location
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Figure 1.5: A simple pipeline for atlas-based segmentation for human bones. The registration uses a
deformable transformation approach of bone atlas to the human bone [55].

in the atlas for a subject that has been aligned to the atlas space [44],
[47].

1.3.2 Label-Based Approach

In a label-based approach, a large amount of data is manually seg-
mented into different labels after initially aligning the subjects’ data
into a common reference [47], [43], [45], [44]. The quality of the man-
ual segmentations has a pronounced impact on the generated atlas.
Therefore, this step is of crucial importance in this approach. The seg-
mentation produces a labeled image for the structure which defines
the atlas. A probability map using this prior knowledge is produced
for each particularized structure. This procedure is performed by us-
ing each voxel’s position in three-dimensional space and characterizing
the proportion of subjects assigned a selective anatomic label at this
position [47], [43], [45], [44]. This is also known as a SPAM approach,
an acronym for Statistical-Probabilistic Anatomy Maps. Some la-
bel based approaches apply an alignment and registration phase and
produce an atlas by constructing a mean image, which should be as
unbiased as possible with respect to the image dataset,. Subsequently,
mean segmentations are computed from the individual segmentations
[47], [43], [45], [44].
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1.3.3 Deformation-Based Approaches

Using a nonlinear deformable registration method, a deformable trans-
formation map provides information regarding the 3-dimensional pat-
terns of anatomic differences between two subjects during the registra-
tion process [44]. This local discrepancy expression is applied further
to obtain the severity of structural divergence compared the normal
range, which is considered abnormality [44].
In order to include more comprehensive information in an atlas, it
is always recommended to include more data subjects in the atlas
generating set, since one single sample may not be appropriate rep-
resentative of the whole data-set population; moreover, this approach
may not contain sufficient information on variability, and therefore
may not be able to judge whether a deformed structure is an admis-
sible shape [44], [42]. One alternative to obtain model anatomical
changeableness is the application of a probabilistic atlas [44], while
the atlas appears as the spatial distribution of probability of belong-
ing one pixel to a specific item [42].
Construction of a probabilistic atlas of a human anatomical organ
provides information on how the structure of its mentioned anatomy
varies in large populations [44]. This atlas contains data from all sub-
jects used for its production and could assist the algorithms to identify
clinically relevant structural and pattern recognition in entire popu-
lations [44], [48]. Atlases of human neuroanatomy play an important
role in the visualization, detection and segmentation of various struc-
tures [47] [44].

1.4 A Review of Current Approaches

There are several previous studies on quantifying the fluid spaces of
the inner ear, including the endolymphatic and perilymphatic spaces,
in the literature. Several of these studies only presented visualization
techniques, while some more recent publications focused on structural
and characteristic analysis of the human inner ear.
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Initial approaches have usually been hampered by a limited amount
of data, limited image quality and limited postprocessing techniques.
Recent advanced in image acquisition methodology ( including higher
spatial resolution and inner ear enhancement techniques) have enabled
the application of novel postprocessing techniques, including methods
of artificial intelligence.

1.4.1 Data Visualization and Detection

As outlined in chapter 1, recent advances in sequence technology, con-
trast enhancement techniques and spatial resolution have led to the
in-vivo visualization of the endolymphatic and perilymphatic spaces
of the human inner ear [6]-[15] [135] [136] [53] [80] [81].
Using various contrast-enhanced MRI methods, the perilymphatic
space could be visualized as a hyperintense, contrast-enhancing vol-
ume, while the endolymphatic fluid is seen as a non-enhancing hy-
pointense volume [76] [13] [52] [14]. An enlargement of the endolym-
phatic fluid space has been shown to correspond to a subject’s recorded
clinical pathology [58] [67] [77].
Several MR sequences have been described in the literature to visu-
alize and differentiate the fluid spaces of the inner ear. These include
3D- and 2D real Inversion Recovery (IR) sequences, 3D-Constructive
Interference in Steady State (CISS) sequences and Fluid Attenuated
Inversion Recovery (FLAIR) sequences (figure 2.1 and 2.2) after in-
tratympanic or delayed intravenous administration of Gadolinium-
based contrast agents [7] [9]. MR imaging had been performed at field
strengths of 1.5T and 3T [8] [7], but an acquisition has the advantage
of achieving a higher spatial resolution when using comparable scan
times.
The 3D constructive interference in steady state (3D CISS) sequence
is a heavily T2-weighted, fully refocused gradient echo MR sequence
[134]. Being heavily T2-weighted this sequence is well suited for
imaging of structures containing fluid or surrounded by fluid [135].
CISS sequences are used to achieve a reference image of labyrinthine
fluid-space anatomy. These sequences help to generate total fluid
volume images [1] by visualizing the entire fluid within the whole
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bony structures within the inner ear. 3D and 2D real Inversion Re-
covery (IR) sequences, 3D-Constructive Interference in Steady State
(CISS) sequences and Fluid Attenuated Inversion Recovery (FLAIR)
sequences on the other hand allow the differentiation of endolymphatic
and perilymphatic spaces in dedicated contrast-enhanced protocols.
The idea of grading and segmentation of endolymphatic hydrops [10]
was triggered by this volume-based contrast-enhanced visualization
which provides statistical and shape-based information for further in-
vestigation in patients with Menière's disease and other inner ear
syndromes.

Figure 1.6: Hydrops-positive cochlea in two dimensional FLAIR sequence (left) and CISS sequence (right).
2D-FLAIR visualizes dilated scala media of basal turn with the white arrows, ELH is visualized by low
or no signal intensity region and the perilymphatic space is captured by high signal intensity regions the
contrast enhancement [11].

Figure 1.7: Hydrops-negative cochlea in two dimensional FLAIR sequence (left) and CISS sequence
(right). 2D-FLAIR images visualizes low signal intensity region in cochlear basal turns with white arrows
[11].

Among several methods presented to distinguish the endolymphatic
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area and to highlight the difference of endolymphatic volumes in var-
ious parts of inner ear [6], some approaches entice more attention [6],
[9], [10], [12].
The study conducted by [13] applies a subtraction technique (see fig-
ure 1.8) showing the perilymph signal as white, the endolymph as
black, and the surrounding bone as a medium gray [6], [13], [14].
The other method presented by [7] compared the ratio of the en-
dolymphatic space to the total summation of the endolymphatic and
perilymphatic space [15].

Figure 1.8: High spatial resolution 3D-FLAIR MR imaging of a normal cochlea without endolymph
hydrops. From left: Maximum intensity projection (MIP) image visualizing the hyperintense perilymph.
T2 image visualizing the total lymph space. Subtracted image showing hypointense endolymph surrounded
by hyperintense perilymph [56].

Several methods have been presented to distinguish the endolym-
phatic space and to highlight the difference of endolymphatic volumes
in various parts of inner ear [6], [9], [10], [12]. The study conducted
by [13] applied a subtraction technique. Figure 2.3 shows the peri-
lymph signal as hyperintense, the endolymph signal as hypointense
[6], [13], [14]. The method presented by [7] compared the ratio of the
endolymphatic space to the sum of the endolymphatic and perilym-
phatic spaces [15].

1.4.2 Data Representation and Segmentation

In addition to the data visualization technologies presented in sec-
tion 1.4.1, there are several main approaches to differentiate struc-
tures within an image in the image processing field. Several of these
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have demonstrated a higher performance and accuracy. A review of
relevant publications in this field demonstrates three major method-
ologies, as outlined below.

Method 1

Generally, a three dimensional volume reconstruction can be per-
formed from the two dimensional space by a slice by slice manual
annotation, which is available in several image processing software
[136]. Previously, the method described in [9] by Homann et al. ap-
plies the method proposed in [132] by Nawanawa et al. in which
the authors succeeded to visualize the endolymphatic, perilymphatic
space and bony structures after contrast agent injection [132]. The
authors produced a subtraction MR cisternography from heavily T2-
weighted 3D FLAIR images [132]. As shown in figure 2.4.d the per-
ilymph demonstrates a hyperintense signal, while the endolymph is
hypointense. Short and long arrows in figure 2.4 indicate enlarged
cochlear endolymph and vestibular endolymph respectively [132].

Figure 1.9: One sample of the MRI data of a patient diagnosed with bilateral Menière's disease. A:
T2-weighted CISS sequence of the right side inner ear. B: positive endolymph image acquired by a T2-
weighted 3D IR sequence. C: positive perilymph image obtained by T2-weighted three dimensional FLAIR
sequence. D: HYDROPS image obtained by the subtraction of the positive endolymph from the positive
perilymph images [132] [7] [75] [76].
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Method 2

A study by Gürkov et al. in [10] introduced an intelligent thresholding-
based segmentation in order to extract the lymph spaces of the inner
ear. As the threshold is manually outlined in this method, however,
the entire workflow cannot be automated. Moreover, the correlation
between the intensity distribution of the surrounding area and the en-
dolymphatic space in the FLAIR sequence limited the extendability
of this method to other sequences.

Figure 1.10: The workflow of the EL/PL segmentation and the volumetric evaluation of the ELH [10].

In this study sixteen patients diagnosed with definite unilateral
Menière's disease were involved [10]. They combined CISS, T2-
SPACE and IR sequences [10]. This study for the first time intro-
duced a machine learning application for inner ear data [10]. The
authors applied an automated local thresholding method for volume
extraction and for the 3D reconstruction of the endolymphatic space
[10]. The summarized workflow is shown in figure 2.5.

Method 3

A study published by Shanshan Zhu, Wanrong Gao, et al. [136] ap-
plied initially placed level-set contours to reconstruct a three dimen-
sional image of the inner ear based on statistical shape models using
T2-weighted MR sequences.
Figure 2.6 demonstrates a cropped region of interest which visualizes
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the extraction of the total bony structure of the inner ear [136]. In
their study, the authors used the level-sets to refine the initial man-
ual segmentation of the inner ear. The resulting segmentations were
visualized by the volume rendering toolbox in 3D Slicer and finally
validated according to their corresponding gold standard.
In this method, an initial manual labeling is required as a prerequisite.
Furthermore, the level-sets are only defined for the bony structure.
Other structures are not supported in this method.

Figure 1.11: The workflow of the 3D automatic MRI level set segmentation of inner ear based on statistical
shape models [136].

Even though the reviewed literature showed a high agreement in
regard to the experts decision and accuracy, several aspects warrant
further improvement:

• Time and effort needed for the assessments

• Generalization to the other sequences or modalities without ma-
nipulating the entire workflow

• Extracting target spaces in addition to bony structures

• Automation and user-independence

The studies underlying this dissertation therefore aimed to establish
a new mechanism addressing the limitations in the literature.
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1.5 Aim of The Dissertation

The previous publication in 2015 by [10] initiated the underlying idea
for the current study. In the 2015 publication, a smart thresholding
method was applied for automated local thresholding segmentation of
the endolymphatic space withing the inner ear. Yet, the thresholding
values change for each subject. The overarching aim of this disserta-
tion was to create an atlas-based approach to inner ear segmentation
and specifically to the segmentation of endolymphatic and perilym-
phatic spaces.
The research project underlying this dissertation was divided into
several separate phases. In the first phase of this study, we aimed to
establish a general method for analyzing any subject’s data by gener-
ating a three dimensional probabilistic atlas for the human inner ear;
this part is now already published as a peer-reviewed original arti-
cle [1]. In this part of the dissertation, a dataset of control subjects
without endolymphatic hydrops were included to produce a three-
dimensional probabilistic atlas of the human inner ear.
The proposed pipeline was verified using the binary manual segmen-
tation of the corresponding region. The atlas was applied on the MR
images of different training and testing datasets for accuracy and per-
formance measurement. The atlas-based segmentation was performed
to extract the bony labyrinth of the inner ear. The segmented volume
was applied as a mask on the other co-registered contrast-enhanced
modalities of inner ear images.
In the second phase of the study, we aimed to establish a novel se-
quential multi-modal segmentation pipeline as an application of the
previously published human inner ear atlas [1] as well as to extract
the perilymphatic and endolymphatic spaces within the inner ear.
Due to the lack of a ground truth for the validation of the second
phase, ten randomly selected subjects (five control subjects without
endolymphatic hydrops and five patients diagnosed with endolym-
phatic hydrops ) were chosen and labeled by experts in consensus.
The corresponding labels were used as the reference standard for the
validation of the segmentation outcome.



Chapter 2

Method

In the following chapter, the workflow of the study is presented. The
main methodology is divided into two subsections:
In the first section of the method chapter, data collection, pre-processing
and registration, atlas generation, atlas-based segmentation, and atlas
validation are covered. The target of the first part was to produce a
three dimensional atlas and an updated template of the human inner
ear with the supported dataset.
In the second section, an application of the generated atlas is shown
and a sequential multi-modal segmentation approach for the fluid ex-
traction inside the inner ear is proposed. Covered topics in the second
part are as following: dataset, pre-processing, segmentation and vali-
dation methodology. This section was developed towards developing
EL/PL atlas for the human inner ear for the future clinical applica-
tion.

2.1 Human Inner Ear Probabilistic Atlas Production

The application of in-vivo, non-invasive MR imaging using intra-
venous contrast agent to visualize perilymphatic and endolymphatic
fluid inside the human inner ear also allows of the indirect delineation
of the bony labyrinth [1]. The contrast of the enhanced perilymphatic
fluid to the non-enhanced endolymphatic fuid is the basis of diagnosis
potential endolymphatic hydrops on imaging.
As summarized in section 1.4 currently published approaches suc-
ceeded to visualize, detect and quantify the endolymphatic and peri-
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lymphatic spaces, but lacked user-interaction dependency, processing
time, generalization and normalization.
Our study [1] aimed to establish the first probabilistic atlas of the
inner ears bony labyrinth and to develop a workflow to extract the
total endo- and perilymphatic space from different MR sequences.
This workflow is considered as the initial and main step in order to
obtain an automated, normalized and reproducible volumetric assess-
ment of the endo- and perilymphatic spaces inside the bony structure
of the human inner ear.

2.1.1 Requirement and Datasets

Three datasets were included and pre-processed to be used in two
phases

• Phase 1: Building the probabilistic atlas

• Phase 2: Testing and Validation

Overall, 34 subjects were included in this study. This dataset was di-
vided into three different purpose-based subsets: For the first phase,
a source training dataset of MRI examination of 24 right-handed pa-
tients with vestibular migraine without endolymphatic hydrops and
without measurable vestibular deficits (12 females; mean age 51.5±3.9
years) [1] were included to produce the probabilistic atlas (training
set: D1). Since this dataset built the atlas originally, it was used
to compute the accuracy of the atlas on the training dataset in the
validation section.
In the second phase, two different testing datasets (testing set 1: D2,
testing set 2: D3) were examined in order to verify the generalization
of the atlas for unseen subjects with or without endolymphatic hy-
drops. Testing set 1 (D2), contained 5 patients (3 female; mean age
48.8±5.01 years) with the same characteristics as the training set [1].
Moreover, testing set 2 (D3) included five patients (one female; mean
age 46 ± 5.2 years) with unilateral Menière's disease and endolym-
phatic hydrops [1]. A summary of the included datasets is provided in
table 2.1. Clinical features of the included datasets are summarized
in the caption of table 2.2.3.
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Dataset: Source set Testing set I Testing set II

Classification: VM without ELH VM without ELH MM, definite unilateral ELH

min, max of age 20,76 44,61 32,60

mean std. dev of age 51.5 ±3.9 48.8 ±5.01 46 ±5.2

female gender/total 12/24 3/5 1/5

Table 2.1: Dataset information for set i: source set or training set with 24 right-handed vestibular
migraine subjects without endolymphatic hydrops included to produce the probabilistic atlas,
set ii: testing set I a randomly selected set of 5 unseen vestibular migraine subjects without
endolymphatic hydrops for both right and left sides , set iii: testing set II a randomly selected
set of 5 unseen subjects with Menière's disease (MD) with unilateral ELH and corresponding
peripheral auditory and vestibular deficits [1].

In order to acquire the raw data, MR imaging was performed in
a full-body 3 Tesla MR scanner (Magnetom Skyra, Siemens Health-
ineers, Erlangen, Germany [1]) which has a 20-channel head coil [1].
The scanning started with the time shift of four hours after the in-
travenous injection [1] (0.1 ml/kg body weight [1]) of Gadobutrol
(Gadovist, Bayer, Leverkusen, Germany) [69].

Figure 2.1: Heavily T2weighted CISS sequence for one subject from the atlas dataset which is the training
set: D1

.

In this study, a high resolution, strongly T2-weighted, three di-
mensional CISS sequence of the temporal bones was selected amongst
different scanned sequences in order to characterize the entire bony
structure. In the figure. 2.1 an example of an image acquired with a
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CISS sequence is provided. The fluid-filled inner ear’s structure are
markedly hyperintense and demonstrate a high contrast to the sur-
rounding structures.
This sequence was applied to assess the bony labyrinth as the total
inner ear fluid space using the parameters published in [1].

2.1.2 Pre-processing

After acquiring the raw datasets for the three separate subsets, pre-
processing had to be performed for all data. The various acquired se-
quences have a different space alignment due to the different sequence
parameters and potential motion-related misalignment. Before align-
ing the data, the region of interest, i.e. the inner ear structures, were
cropped and extracted from the “full head scan”, i.e. from the acquisi-
tion slices that covered the entire head in an axial plane. A volume of
interest around the inner ear area in the CISS raw data was extracted
and cropped with a three dimensional bounding box measuring 3 x 3 x
4 (cm). In figure 3.2 the VOI extraction is shown for one sample sub-
ject of our atlas production dataset [1]. In order to align the cropped

Figure 2.2: Cropping a region of interest inside the full-head CISS sequence for one sample subject of
the atlas production dataset which is the training set: D1 using a square bounding box

.

VOIs, a source image was needed and all subjects’ data were fused to
achieve the source image resolution and space coordination. Initially,
a template was constructed by three subjects CISS data according
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to the method described in [18]. The built template was considered
as a reference and source image in the registration procedure. The
cropped VOI of the initial template’s left and right side is shown in
figure. 3.3 The inner ear’s structure, especially the size and shape of
the cochlea is markedly subject-dependent [19] compared to the brain
[20], therefore, using a linear or affine registration did not provide a
well-aligned registration. We compared different registration methods
on 6 randomly selected subjects and performed a two step verification
to choose the appropriate registration method for our atlas dataset.

Figure 2.3: Cropped VOI of the initial template built with three subjects’ data

.

Accuracy = (
TruePositive

TruePositive+ TrueNegative
)× 100 (2.1)

2.1.3 Nonlinear Deformable Transformation using B-splines

As mentioned, a nonlinear deformable registration method which per-
forms a reproducible pipeline is selected for the pre-processing of the
cropped volume of interest.
Taking different methods for deformable registration into account, [21]
[22] [23], the bspline deformable registration using the plastimatch
package was selected [24] [25] in slicer4.5. [26].
The deformation in the nonlinear registration method, requires plac-
ing enough fiducial markers in the three dimensional space. In this
study, the initial experiments were conducted by placing 5 landmarks
as control points.
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Subsequently, it is necessary to choose the appropriate stage options
in 3D slicer4.5 [26] as follows:

• Parameter 1: Resampling Rate: The resampling rate is offering
multi-resolution alignment by cascading phases of different sub-
sampling ratios.

• Parameter 2: Grid Spacing : In order to be able to control the
size of the B-spline grid, this parameter is chosen. The larger
grid spacing parameter corresponds to a smoother and uniformed
alignment, whereas a smaller grid spacing parameter subjects to
a finer registration.

• Parameter 3: Regularization: This parameter regularizes the prob-
lem by penalizing smoothness of the velocity field.

• Parameter 4: Landmark Penalty : In order to maximize the en-
ergy both on smoothness and deformation a landmark penalty is
included.

• Parameter 5: Maximum Number of Iterations

A grid of bspline control points is built which controls the deformation
of an input image. In order to compute the registration error of the
moving subject versus the target image, an error measure is included.
In this method, an optimization based on the quasi-Newton is applied
in order to achieve the optimal alignment of the images by moving the
landmarks positions and maximizing the energy on smoothness and
deformation [26]. Eventually, the registered data and transformation
file are exported and stored for further use in the pipeline (atlas pro-
duction, atlas-based segmentation and performance measurement). In
our study, the optimal stage options for Plastimatch considered dur-
ing the pre-processing were detected. In this study, These options
were set to: parameter 1: 1, 1, 1; parameter 2: 100; parameter 3 :
0.005; parameter 4: 10; parameter 5: 50 [1]. The detail of potential
effects of non-optimal values are discussed in section 3.

Control Points

Manually placed landmarks was placed in all volumes, serving as con-
trol points during affine and deformable registration for additional
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stability and accuracy. Amount of these landmarks were considered
to be 15 initially. The effect of changing the number of the markers
will impact the atlas performance intensively and this influence is dis-
cussed in 3.
Landmarks placement must satisfy two main features as showing dis-
tributed placements across all segmented structures in the three di-
mensional space, and assuring a space location that can be simply
and purely detected by considering all dataset. An example of the
landmarks placement distribution is presented in figure 2.4.

Figure 2.4: Distribution of 15 control points in the three dimensional space for one sample subject CISS
sequence

Subsequently the data registration and pre-processing is finalized
and the aforementioned nonlinear method is applied on all subjects’
data. Figure. 2.5 demonstrates a registered data undergoing this
workflow

Figure 2.5: Registered data example which underwent the cropping, resampling and resizing to the
template space and registering using a deformable nonlinear transformation with bsplines

2.1.4 Atlas Production

Several atlas generation algorithms were discussed and compared in
detail in chapter 1.3. In this study, the label based approach was
chosen for our inner ear atlas production. As explained in 1.3.2, we
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averaged different constructed models and evaluations by experts to
assure the highest performance of the label-based approach for atlas
production.
In the following section the labeled model construction is described
which performed an essential role in the label-based atlas production
approach in our study.

Labeled Model Construction

Aiming to increase the authenticity of the final produced atlas and
achieve a higher performance measure, manual segmentations were
performed twice on each subject’s preprocessed data.
Applying a Gaussian filter in order to smooth each segmentation to
create a smoothed model is a necessary step in the pre-processing of
the dataset. The direct outcome of smoothing the binary models is
that the binary intensities of the edges are distributed in neighboring
voxels depending on the Gaussian kernel of the filter. The Gaussian
filter is usually applied for noise reduction [38]. We defined the Gaus-
sian smoothing filter with three different kernels (σ) 3, 5 and 7 voxels
in the following Gaussian filtering equation 2.1.4.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 [38] (2.2)

The inner ear labeled models with their corresponding data were
submitted to the label-based approach for producing the probabilistic
atlas for the left and right ear separately. In addition, the entire
workflow was applied on the internal auditory meatus in order to
separate it from the inner ear bony structure in the segmentation step.
We compared the performance of the atlas using different Gaussian
kernels in order to achieve the optimized value for the performance.

2.1.5 Atlas-Based Segmentation

After the inner ear probabilistic atlas for both the left and the right
ear was built successfully, we proposed an atlas-based segmentation
using our atlas as an application [1]. To obtain an initial segmenta-
tion for labyrinthine structures of the right and left side inner ears
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of individual subjects, a thresholding based on signal intensity in-
side the volume of interest extracting the inner ear structures from
the surrounding background was applied. These automatic threshold
outlines were inspected in a slice-by-slice fashion and corrected by a
trained technician [1]. The segmentations were subsequently evalu-
ated by a neurologist with expertise in neuroimaging [1]. The final
segmentation was further divided into two separated regions corre-
sponding to

• the cochlea with three semicircular canals

• the internal auditory meatus

This regional separation was performed to create two separate atlases
for the atlas-based segmentation.
In order to assign different labels to each voxel in the images of the
dataset for segmentation [17] [29], we performed a image-based fusion
of the template image to a objective image, which is non-linear and
has the back-transformation parameters in the pre-processing step of
the atlas building phase. As discussed in section 2.1.4, our three-
dimensional probabilistic atlas defines two separate regions for each
side in order to distinguish the internal auditory meatus from the
cochlea, vestibule and semicircular canals [1]. In figure 2.6 an abstract
of the entire pipeline is shown presenting the pre-processing, atlas
production and performance analysis.

2.1.6 Performance Analysis

The validation of our 3D atlas of two separate regions in the human
inner ear was divided into two parts. In the first part, we validated
the registration approach applied on the voxels-of-interest of the sub-
jects’ data to the target image (initial template) [18]. This registration
included a set of linear affine registration and nonlinear deformable
transformation with bsplines. In the second part a performance anal-
ysis of the probabilistic atlas was performed. It was necessary to
evaluate different aspects for the validation of atlas as several impact
factors influence the performance of the atlas. The effect of these im-
pact factors is studied in detail and the optimum values of the impact
factors are determined based on the yielded performance scores.
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Figure 2.6: Flowchart of the steps used to produce the probabilistic atlas of the inner ears bony labyrinths.
A: Data pre-processing and alignment of the subjects CISS data to the template. During this step, the
inner ear region of all subjects were cropped from the CISS MR image, resampled, and registered to
a previously published initial reference template [18]. B: Atlas generation. In this step, the manually
segmented label maps of each structure in the inner ear were averaged and normalized to produced a
probabilistic map for every voxel. C: Validation and Performance measurement. The accuracy of the
atlas-based segmentation as well as the effect of several factors on the performance score is analyzed and
evaluated in this step [1].

Registration Validation

In order to assure the reversibility of the transformation applied on
the ROIs of the subjects’ data, we proposed a validation methodol-
ogy to ascertain that the original data was received absolutely. We
therefore applied the reverse-transformation of the registration which
was applied to align the data to the template. In the image space
we can summarize this to: T.X = Y ⇒ T−1.Y = X, in which T
is the transformation matrix, X is the moving image and Y is the
objective image. This equation demonstrates that applying the back-
transformation on a registered image must yield to the original image
space. In our study. In our study, the same concept is expanded on
a set of transformations to assure the reproducibility of the original
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space for the atlas-based segmentation. In order to achieve a mea-
sure for this validation, two different scores are considered. Sum of
absolute difference between the voxel values in the back-transformed
model and original model (SAD) is used to calculate the scientific
score. Expert’s binary grade which reflects the visualization overlap-
ping and corresponds to 0 value for a wrong alignment or 1 value
for the correct alignment (EBG) is used to present the clinical score.
The multiplication of these two numbers as SAD.EBG if the final val-
idation score for the reversibility of the data registration. Since this
validation is only applied on the inner ear binary models, we gener-
alized it to the whole VOI of the CISS data. In 3, the average SAD
and EBG scores will be discussed in detail.

Figure 2.7: Validation of the reversibility of the registration transformation using two different scores
as sum of absolute difference (SAD) and expert’s binary grade (EBG) on one sample subject’s inner ear
model created by manual slice-by-slice segmentation.

Atlas-Based Segmentation Validation

The atlas-based segmentation validation, evaluates the performance
of our proposed atlas in respect to the accurate extraction of the inner
ear’s bony structure compared to the manually segmented correspond-
ing expert’s volume. It essentially assesses not only the segmentation
accuracy but the atlas performance.
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Three different datasets were described in section 2.1.1 and in table
2.1. The first dataset was used for the atlas building process as the
training dataset and two more dataset were used for the performance
analysis as testing sets for unseen subjects. We evaluated the atlas
performance on the training dataset and testing datasets. In this
study, we used two different score for the atlas-based segmentation
validation.

• Dice Overlap Score:
The performance of the probabilistic atlas is evaluated by the
comparison of the atlas based segmentation to a semi-manual
gold-standard segmentations. A dice score [54] is defined as the
main validation metric of the spatial overlap index and is cal-
culated for the right and left inner ear structures separately. It
represents the overlap and accuracy of the segmentation results.
Before the dice score was calculated, the produced atlas has been
thresholded by the value of 0.5 as the level of probability [1].
The calculation of the dice score is obtained by the equation:
2 × |X ∩ Y |/|X| + |Y | for the voxel values in the segmentations
where X is the atlas-based segmentation and Y is the gold stan-
dard ground truth as manual segmentations of the experts [1].

• Root Mean Square Error:
Placed control points during the bspline transformation on the
source image and the corresponding landmarks on the atlas-based
segmented volume are employed to compute the root mean square
difference for the precision evaluation. The computation is per-
formed on three datasets including training and two testing datasets
[1].

2.2 Endolymph and Perilymph Extraction with Sequential
Multi-modal Segmentation

As described above, endolymphatic hydrops is visualized by the en-
hancement of the perilymphatic space after the administration of a
Gadolinium-based contrast agent [9] [5] [13]. Fluid-attenuated inversion-
recovery (FLAIR) sequences with a variable flip angle echo train are
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very well suited to visualize the contrast between the enhanced peri-
lymphatic space and the non-enhanced endolymphatic space [52].
Three-dimensional constructive interference in steady state (3D CISS)
sequences are heavily T2-weighted fully refocused gradient echo MR
sequences [51] [73] [138]. CISS sequences are used to achieve a ref-
erence images of labyrinthine fluid-space anatomy and to generate a
total fluid volume images by visualizing a fully hyperintese region cor-
responsing to the fluid-filled structures of the bony labyrinth [52] [53].
Several studies have focused on the detection and grading of endolym-
phatic hydrops in patients with symptoms of Menière's disease [5] [9]
[12] [10] [11] [56], thus providing semi-quantitative information besides
qualitative data on symptoms [39]. Although these approaches pro-
vide quantitative information in addition to visualization, they are
suboptimal in regard to time efficieny and precision, as they apply
manual methods and apply thresholding methods. Moreover, each
method is limited to one sequence only.
As described above, we published a probabilistic atlas of the bony
structure of the human inner ear based on a label-based approach
[1]. In that study, we succeeded to extract the bony labyrinth from
the CISS sequence in the magnetic resonance image [1]. The aim of
this part of the study underlying the dissertation was to present the
development of a fast and reliable method for segmentation of the
endolymphatic space for future atlas of the endolymphatic system.
A three phase multimodal image segmentation pipeline was used in
order to establish an approach for classification between the endolym-
phatic space and the perilymphatic space. The validation was per-
formed based on a thresholding method as a ground truth performed
by a clinical expert. The performance analysis shows a high agreement
between the ground truth and the multimodal segmentation for the
endolymphatic space, yet the perilymphatic space segmentation did
not include a ground truth for the purpose of validation. Therefore
the perilymphatic space was extracted using a linear subtraction of
the endolymphatic space from the total lymphatic space in the bony
labyrinth.
A reliable semi-automatic segmentation of the endolymphatic space
could play a vital role in the detection and grading of vestibular syn-
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dromes and would be a requirement for endolymphatic space atlas
generation in future clinical studies. For this purpose, we compared
the advantages and disadvantages of potential methods for endolym-
phatic space and perilymphatic space segmentation, summarized in
table 3.2 in section 3. We eventually chose a combination of the first
and sixth method in a concept of a sequential multi-modal segmenta-
tion approach.

In figure 2.8, one sample subject’s data were segmented using method
2 and method 6 mentioned in table 3.2. The PL extraction region
is visualized using ITK-snap three dimensional visualisation toolbox.
Our previously published three dimensional atlas [1] was an atlas-
based segmentation phase was applied on top of the level sets with
active contour in order to automate the VOI extraction prior to fluid
classification.

Figure 2.8: Visualization and comparison of the results of perilymphatic space segmentation for one
sample subject’s data using region growing segmentation (right side green color) and level sets with active
contours (left side red color)

.

2.2.1 Dataset

In this study a dataset of twenty ears from ten subjects, was included:
Five patients with bilateral endolymphatic hydrops and five control
subject without endolymphatic hydrops, (5 females, 20-70 years old,
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mean age: 42.5± 6.2 years). MR imaging data were acquired using 3
Tesla MR scanner which had the same details as explained in 2.1.1.
In this section, different sequences were used based on different pur-
poses: A 3D-FLAIR sequence to visualize endolymph from perilymph
and bone separately, and a CISS sequence to lay out the total fluid
space of the inner ear [1]. Image acquisition was performed in a same
method as in 2.1.1 [1].
Experts in head and neck radiology and neurology performed the eval-
uation of the contrast-enhanced MRI and grading of the ELS [78] [1].
These experts were blinded to the clinical data of the subjective pa-
tients who were included in the study [1].

2.2.2 Pre-processing and Registration

By virtue of running a multimodal approach for image segmentation,
we required an aligned registered dataset which assures all modalities
are in the same space and coordination. Initially, an affine registra-
tion with resampling and resizing was performed on the FLAIR data
of each subject in order to match the CISS modality space.
Additionally, a volume of interest was extracted by cropping a three
dimensional box from the CISS and FLAIR sequences and a super-
sampling by the value of two was applied on each CISS and FLAIR
VOI. The VOI cropping matches the requirement in [1]. The same
registration method, linear affine and nonlinear deformable registra-
tion using bsplines, described in section 2.1.3 was applied on the right
and left side ears of CISS VOIs in order to achieve a fully aligned
dataset to the template (source image). The template in this section
is considered the updated template after the probabilistic atlas pro-
duction algorithm since it includes more comprehensive information
compared to our initial template [18].
After obtaining the suitable transformation for the CISS VOIs, the
same parameters were applied on the FLAIR VOIs to transfer them
to the atlas space. The pre-processing pipeline is shown in figure 2.9.
The entire pre-processing of the dataset was obtained using a free
and open source software for image analysis and scientific visualiza-
tion, 3Dslicer [25] [26]. For the modification of the size and resolution
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of the cropped VOI, ImageJ Fiji [102] was used in order to align the
resolution of the reference image.

Figure 2.9: Pre-processing of the dataset’s CISS and FLAIR sequences for the EL/PL extraction using
a sequential multi-modal segmentation

.

2.2.3 Application of Machine Learning For Separating Different Lym-
phatic Spaces Within The Human Inner Ear

Succeeding to provide a fully aligned multi-modal dataset of left and
right inner ears in the pre-processing section, the multimodal image
segmentation is described in the following section, which is divided
into three separate steps. These steps are illustrated in figure 2.10.
This method is a combination of an atlas-based segmentation and a
supervised learning approach. Since the pipeline is a step-by-step sys-
tematized sequential procedure, the segmentation approach is called a
sequential multi-modal structure for image segmentation. The three
major steps of this structure were as following:

• i: The CISS data provides a high resolution of the bony structure
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Figure 2.10: The workflow of sequential multi-modal segmentation for EL/PL extraction within the
human inner ear: 1) Atlas-based segmentation [2] of a CISS sequence for the total lymphatic space
segmentation, 2) Supervised learning using levelsets with active contours for a FLAIR image for PLS
segmentation and 3) subtraction technique with a nonlinear interpolation method for ELS segmentation
[56].

of the human inner ears. In the first step an atlas-based segmen-
tation was applied on the CISS VOIs of all 20 inner ears using
the published atlas [1] from our previous study. In the first step,
the total lymphatic space in the preprocessed CISS sequence was
extracted as visualized in figure 2.11. This volume is called TLS:
total lymphatic space. The transformation parameters were ap-
plied on the atlas through the registration in the pre-processing
(compare figure 2.9) to extract the TLS from the CISS data and
map the corresponding regions in the target image.

• ii: The FLAIR sequence plays an important role in the fluid
segmentation since it visualizes the endolymphatic fluid as a a
markedly hypointense space compared to the adjacent hyperin-
tense, contrast-enhancing perilymphatic space. In the second
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step, a supervised learning using levelsets with active contours
was applied on the FLAIR VOIs and the extracted bony structure
on CISS. In this study ITKsnap [139] multimodal segmentation
toolbox is used as: random forest with 30 trees and 25 tree depth
for the training. The segmentation in i plays a mask role in order
to extract the whole TLS within the FLAIR data. The result is
the binary segmentation of the perilymphatic space as one class
and surrounding structure within the inner ear as a second class
which is shown in figure 2.12.

• iii: In order to extract the ELS in the third step, a subtraction
technique is used, in which the ELS is the result of subtracting
TLS segmentation in i from PLS segmentation in ii [140]. The
ELS segmentation of one sample subject is visualized in figure
2.13. In this study a nonlinear interpolation for the subtraction
of the volumes is considered for higher performance score. The
ELS result is shown in figure 2.10 as a blue label color and the
PLS result as a yellow label color.

Figure 2.11: Total lymphatic space segmentation of the CISS VOI using atlas-based segmentation with
our previously published atlas [1] and its 3D visualization

.

Consequently, all extracted ELS and PLS from left and right sides
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Figure 2.12: Perilymphatic space segmentation of the FLAIR VOI using levelsets with active contours
[139] in ITK snap and its 3D visualization

.

Figure 2.13: Endolymphatic space segmentation of the inner ear using a subtraction technique with
nonlinear interpolation (middle) and postprocessing (right)

.

were collected for subjects with endolymphatic hydrops and for sub-
jects without endolymphatic hydrops in our former dataset for per-
formance analysis and qualitative evaluations.

2.2.4 Performance Analysis

In order to validate the results acquired with the methodology de-
scribed in section 2.2.3, a performance analysis was carried out. Each
segmentation step required a separate validation since these produce
different structures.
For the first step of the performance analysis, a dice score [54] was
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calculated to verify the atlas-based segmentation performance com-
pared to the manual gold standard (GS1). This validation score was
used previously in section 2.1.6.
For the second step, the ground truth was obtained by an interactive
expert based thresholding segmentation (GS2). Finally, as the third
step performance analysis, for ELS segmentation verification, the ref-
erence standard is created by the linear subtraction of GS1 and GS2,
which will define the indirect endolymphatic space reference standard
(GS3).
The performance score was separately calculated for the right and
left sides. In addition, the dice score calculation is separated for two
different subsets of the entire dataset in order to present an implicit
comparison of the ELS and PLS of the healthy controls and patients
with endolymphatic hydrops.



Chapter 3

Results

In this chapter, the final results of the produced probabilistic atlas, in-
ner ear bony structure segmentation, total lymphatic space, endolym-
phatic space and perilymphatic space extraction are demonstrated
and an example based tutorial is illustrated as a hands-on practice.
In addition, quantitative measurements of the performance evaluation
are described.

3.1 Method Requirements

Table 3.1, demonstrates that a deformable registration method pro-
vided high accuracy and matched well with the experts’ observation
scores. The accuracy score in section 3.3 is obtained by comparing the
transformed manual segmentation of each subjects inner ear’s bony
structure and the manual segmentation of the template’s bony struc-
ture.

Method Average expert’s observation score Average accuracy score
Linear 0% 0.09%
Affine 20%± 2% 32%± 5%

Deformable 96%± 1% 97%± 1%

Table 3.1: The registration performance for six randomly selected subjects from the training
dataset by applying three different registration method on each of six subjects manual segmenta-
tion of the bony structure of the inner ear and the corresponding volume in the initial template
[18]

In figure 3.1, the effect of increasing the kernel size from 3 to 5
and 7 voxels for one sample subject’s manual segmentation inner ear
model is shown and higher kernel size leads to a smoother model. This
model is extracted from the pre-processed CISS data.
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Figure 3.1: Increasing the Gaussian kernel from 3 (left) to 5 (middle) and 7 (right) by applying a Gaussian
smoothing filter on one subject’s inner ear model

The performance of different methods, atlas-based segmentation,
region growing segmentation, thresholding-based segmentation, su-
pervised learning, unsupervised learning and level-sets with active
contours together with atlas-based segmentation, is summarized in
table 3.2. The results showed a high performance score for our pre-
sented methodology in this study.

Method Advantages Disadvantages

1- Atlas based Segmentation on FLAIR Easy and automatic and fast Not accurate on FLAIR

2- Region Growing Segmentation Easy to perform Not accurate (mixed
intensities) and slow

3- Thresholding Based Segmentation Easy to perform Not accurate

4- Supervised Learning Accurate on FLAIR Needs training set

5- Unsupervised Learning Challenging, no training
output needed, fast, stable

User dependent

6- Level set with active contour and atlas Unsupervised, probabilistic
model on borders, accurate,
multi class result

User dependent

Table 3.2: Comparison between different potential methods for EL/PL segmentation in the human
inner ear

3.2 The Three Dimensional Probabilistic Atlas of The Hu-
man Inner Ear

A three-dimensional probabilistic atlas representation is demonstrated
,as well as a three-slice-view, for the semi circular canals, cochlea and
vestibule, in addition , for the internal auditory meatus in figure 4.1.
Using different labels, anatomies of the inner ear, cochlea, vestibule
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and semicircular canals were separated. These distinct models lead
to an apportioned quantification of the lymphatic space in separated
segments of the human inner ear. With assistance of image visual-
ization software [139] [141] and [142], multiple two dimensional and
three dimensional views of our human inner ear atlas are provided in
figures 4.3 and 4.2 respectively.

Figure 3.2: Three dimensional visualization of the human inner ear probabilistic atlas for the bony
labyrinth and extracted structures. The atlas components are distinguishable (cochlea in red; otolith
organs in blue; semicircular canals in green) [1]

.

Figure 3.3: Three-dimensional visualization of produced atlas for right (right side) and left (left side) ear
for cochlea and vestibule obtained by ImageVis3D-3.1.0. [141]

.
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Figure 3.4: Two-dimensional visualization of produced atlas for right (right side) and left (left ear) ear for
cochlea and vestibule (first raw) and internal auditory meatus (second raw) in 3-scene view axial, coronal
and sagittal view slice [93,-100,-97]. Last row shows the overlapping slice for the first and second raw.
This atlas was previously published in [1]

.

3.3 Proof of Valid Back Transformation for Deformable Reg-
istration with Plastimatch

In order to trust the back-transformation parameter during the reg-
istration workflow, we successfully proposed a methodology based on
the manual models which verifies that applying the inverse transfor-
mation parameters on the registered model must yield to the original
model. In figure 4.4, the effect of the deformable transformation on
the CISS sequence VOI is shown for one sample subject. The VOI is
resized and resampled according to the template space.
The SAD score is the sum of absolute differences between each voxel
value and EBG which is the expert’s binary grade, i.e. either 0 or 1.
The product of EBG and SAD as the validation score of the back-
transformation or inverse transformation of the registered models is
presented for all subjects in table 3.3. Inner ears achieving lower than
95% of this score were considered as outliers and were eliminated be-
fore any processing.
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Figure 3.5: The axial view for the one slice result of deformable registration of one sample subject CISS
sequence VOI using bspline deformable registration (left side) [26] and three dimensional view of the
corresponding deformation effect on the binary inner ear model (right side)

3.4 Atlas Performance in Atlas-Based Segmentation using
Dice Score and RMSE of Control Points

In order to assess the accuracy of our obtained segmentation results,
the dice score measurements in table 3.4 and the landmark registration
error, as quantified by RMSE (see table 3.5), was calculated between
the placed markers on the original data and the obtained landmarks
on the segmented volumes. The standard deviation of RMSE and the
mean values of it are calculated and shown in table 3.5. According to
the reported values of the RMSE, the similarity of the left versus right
side ears represents up to one voxel inequality. Moreover, the resulted
statistics of testing dataset proves a precise match ( the average of 3
voxels for testing set I and 5 voxels for testing set II ). We used the two
different testing sets I and II to support the advantage of our produced
atlas for unseen subjects detected with the same pathology as the
training set, and subjects with endolymphatic hydrops diagnosed with
different pathology.

3.5 Main Impact Factors of Atlas Performance

In this part, we analyzed how the variation of registration parame-
ters influences the performance of the overall atlas registration and
segmentation. Increasing the population of the atlas dataset as well
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as increasing the number of control points from 5 to 10 and 15 had
a proportional relationship to the mean Dice score up to 3%. This
advancement was the result of a more accurate registration since the
absolute difference between the template and target image was im-
proved from 7% to 2% for the left side and from 5% to 2% for the
right side. Alteration the Gaussian filtering kernel size which was ap-
plied on the manually segmented models had an extreme effect on the
performance of the atlas. In order to outline this effect, 10% increment
in the mean value of the Dice score in the atlas-based segmentation
was caused by two voxel reduction of the Gaussian kernel. We varried
the kernel size starting from 3 voxels to 10 voxels (see figure 3.6).
We used these analyses to find and set optimum values for the afore-
mentioned parameters in the atlas construction pipeline. The mean
value of the Dice score was 89% for the right side and 86% for the
left side using the following parameters: number of the subjects in
dataset = 24; Gaussian smoothing kernel = 5voxels; number of the
control points = 5.

Figure 3.6: Three major impact factors determining effectiveness on the mean Dice score measure for right
and left sided inner ears using atlas-based segmentation with the training set. Population and number
of landmarks have a proportional relationship with the performance measure while the second Gaussian
kernel has an inverse relationship

.

3.6 Inner Ear Lymphatic Fluid Extraction Validation

The segmentation results are presented in a qualitative matter in the
visualization section and quantitative aspect in the performance anal-
ysis.
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3.6.1 Segmentation Visualization

The atlas based segmentation of one sample subject is illustrated
in figure 4.6 using three dimensional rendering software ImageVis3D
https://imagevis3d.software.informer.com/download/ and ITK
Snap three-dimensional viewer toolbox http://www.itksnap.org [141]
[139]. The ELS and PLS fluids are visualized in figure 4.8 and the
original scans are shown after a histogram normalization was applied
on those sequences.
Five patients with bilateral endolymphatic hydrops and five control
subjects without endolymphatic hydrops (5 females; age range 20-70
years, mean age: 42.5 ± 6.2 years) underwent a high resolution MRI
of the inner ears four hours after the intravenous administration of a
Gadolinium-based contrast agent.. The step-wise segmentation con-
sisted of three phases and was applied on the CISS and FLAIR images
as shown in figure 4.8. After the three step multimodal segmentation
was applied on CISS and FLAIR data, the binary results were thresh-
olded to 0.5 for performance analysis. The dice score was applied on
3 different scenarios and for both right and left inner ears.

Figure 3.7: One sample subject segmentation result visualization in the two and three dimensional
space. The inner ear including cochlea, vestibule and circular canals (in blue color) is separated from the
vestibulocochlear nerve and internal auditory meatus (in red color) using our two separated probabilistic
atlases during the atlas-based segmentation [1].

In figure 3.7, a segmentation process for one sample subject was

https://imagevis3d.software.informer.com/download/
http://www.itksnap.org
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performed on a FLAIR sequence using random forest, and levelsets
with active contours before the atlas-based segmentation; the extrac-
tion of the inner ear contrast enhanced ROI in the FLAIR sequence
was successfully achieved.

Figure 3.8: Segmentation result of one sample subject; visualization on one axial slice in the two di-
mensional space. The extraction of the total inner ear lymphatic space and internal auditory meatus was
performed before the atlas-based segmentation in order to verify the application of random forest method
using levelsets with active contours in ITKsnap [139].

3.6.2 Performance Analysis

The segmentation results are presented in a qualitative matter in the
visualization section, while the quantitative aspects are provided in
the performance analysis section. The analysis is divided into three
different tables according to the reference standard applied and each
segmentation was evaluated accordingly. Performance analysis for the
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Figure 3.9: Two and three dimensional visualization of the endolymph (EL) and perilymph (PL) seg-
mentation [56]

Figure 3.10: Comparison between endolymph
(EL) in yellow color, perilymph (PL) in blue
color and total lymphatic space (TL) in white
color segmentation in a healthy control subject
right versus left side [56]

Figure 3.11: Comparison between endolymph
(EL) fluid in blue color and perilymph (PL)
fluid in yellow color segmentation of the same
slice in a normal inner ear (HC) versus in an in-
ner ear with endolymphatic hydrops (ELH) [56]

sequential multimodal segmentation approach for TLS, PLS and ELS
in the human inner ear are summarized in tables 3.6, 3.7 and 3.8.
Tables 3.6 to 3.8 present the validation scores and statistical param-
eters based on the segmentation obtained in this study. The values
aligns to the atlas-based segmentation results from [1] in our previ-
ous study. Furthermore, the dice score values show a high overlap
between the thresholding-based segmentation performed by experts,
compared to the multimodal image segmentation in this study. Ulti-
mately, the endolymphatic space was successfully extracted according
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to the accuracy measures in table 3.8 for our datasets. Control sub-
jects without endolymphatic hydrops showed 9% higher agreement for
the ELS segmentation compared to the patients with endolymphatic
hydrops. The dice score for segmentation of the PLS was 20% lower
than the dice score for the ELS segmentation (compare Table 3.7).
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Subject EBG SAD (R) SAD(L)

1 1 0.014 0.031

2 1 0.011 0.022

3 1 0.22 0.13

4 1 0.0073 0.18

5 1 0.17 0.01

6 1 0.06 0.06

7 1 0.005 0.17

8 1 0.008 0.007

9 1 0.008 0.2

10 1 0.007 0.003

11 1 0.27 0.007

12 1 0.01 0.2

13 1 0.01 0.006

14 1 0.009 0.022

15 1 0.0034 0.0042

16 1 0.02 0.006

17 1 0.03 0.03

18 1 0.003 0.0008

19 1 0.1 0.098

20 1 0.01 0.01

21 1 0.001 0.003

22 1 0.006 0.11

23 1 0.02 0.2

24 1 0.056 0.039

Table 3.3: Validation of the fusion process using sum of absolute difference (SAD) score and
experts binary grade (EBG) for both right and left ears using the atlas production dataset or
training set with 24 subjects.
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Property Dice Score(Right) Dice Score(Left)

Max 92% 90%

Min 64% 67%

Std.Dev. ±3% ±5.7%

Mean 89% 86%

Table 3.4: Dice score measure for automatic atlas-based segmentation results considering manual
segmentation as a ground truth and the total volume of peripheral vestibular systems organs
(PVSO) vestibule, cochlea and semi-circular canals. The standard deviation and mean values of
the whole population for both sides are also presented [1].

Datasets: SOURCE SET TESTING SET I TESTING SET II

Sides: Right – Left Right – Left Right – Left

Mean of error: 5.79 – 6.93 17.55 – 18.06 19.59 – 21.55

RMSE: 2.56 – 2.63 4.19 – 4.25 4.42 – 4.64

RMSE
Emax−Emin : 0.024 – 0.026 0.061 – 0.064 0.083 – 0.085

Std. Error of Mean: 1.83 – 1.78 2.43 – 2.38 2.557 – 2.274

Table 3.5: Accuracy evaluation using the error of landmark positions between atlas-based segmen-
tation and manual segmentation. Source dataset is the training dataset or included subjects’ data
to build the atlas 2.1[1].

Property Healthy control subjects (HCS) Patients with endolymphatic hydrops (PELH)

Right – Left Right – Left

MeanDS ±Stddev. 89.9 ±0.3−−85.1± 0.7 86 ±1.3−−84± 2.4

MinDS 66 – 60 67 – 63

MaxDS 91 – 90 90 – 86

Table 3.6: Quantitative scores for the step 1 of sequential multi-modal segmentation pipeline using
atlas [1]-based segmentation and the manual gold standard ground truth from expert (GS1). As
expected from the dice overlap score values, according to the validation process in [1], it shows an
agreement between both sides as well as the reported values in [1].
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Property Healthy control subjects (HCS) Patients with endolymphatic hydrops (PELH)

Right – Left Right – Left

MeanDS ±Stddev. 91.8 ±0.1−−92± 0.3 86 ±0.3−−84± 1

MinDS 88 – 88 67 – 63

MaxDS 94 – 93 89 – 87

Table 3.7: Quantitative scores for the step 2 of sequential multi-modal segmentation pipeline
using the supervised learning with level-sets and active contours using the FLAIR sequence and
the extracted bony structure from the step 1 in CISS sequence as a multimodal image segmentation
problem. The resulted segmentation shows the perilymphatic space. The ground truth is defined
as GS2, which is the linear subtraction of GS1 and GS3 [13]

Property Healthy control subjects (HCS) Patients with endolymphatic hydrops (PELH)

Right – Left Right – Left

MeanDS ±Stddev. 79 ±0.1−−79± 0.3 70 ±3.5−−66± 4.6

MinDS 79 – 75 45 – 38

MaxDS 80 – 89 81 – 86

Table 3.8: Quantitative scores for the step 3 of sequential mul-timodal segmentation pipeline us-
ing the subtraction techniques with nonlinear interpolation to obtain the PLS from the FLAIR
sequence. The gold standard GS3 is defined as an interactive experts thresholding-based segmen-
tation with a variant thresholding value depending on each individual subject data
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Discussion

In the studies underlying this dissertation, a probabilistic atlas for the
labyrinth of the human inner ear was produces [1]. The atlas was gen-
erated using a set of volumetric data from CISS sequences collected
from 24 subjects with vestibular migraine without endolymphatic hy-
drops. Several impact factors were detected during registration which
influenced the accuracy of the registration, and therefore the perfor-
mance of the final produced atlas [1] and in this study we attempted
to investigate amongst the impact factors and optimized our atlas
accordingly [1]. In our work, we found it necessary to note the im-
portance of the control points placements and consider the optimal
number of landmarks in distributed spots in the spatial space [1].
Recent projects proposed either manual or semi-automatic segmenta-
tion approaches for the inner ear in order to achieve a volume-based
assessment [6],[10],[9]. Those mentioned methodologies, however, suf-
fer from lengthy user interaction that hinder usage in larger group
studies or in a clinical routine setting. In addition, they can concen-
trate on one single objective. Here, our proposed atlas-based segmen-
tation could potentially be time-saving and less user-dependent. In
addition, the atlas is applicable as a mask extractor for the inner ear
on different co-registered sequences rather than the CISS sequence
alone for further assessment.
Although many studies present an atlas production pipeline for differ-
ent anatomies and organs of human or animals [32],[33],[34],[43],[45],
choosing the best registration and probabilistic map construction met-
hod has always been a challenge. We aimed to solve the problem of
inner ear segmentation by generating a probabilistic atlas [32] and
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proposing an objective and reproducible segmentation method based
on deformable registration provided by the 3D-slicer software [25],[26].
There was a strong harmony between the segmentation used by our
atlas, and the standard models during the performance evaluation
stage [1].

4.1 Challenges and Limitations

We reported a proportional correlation between the amount of land-
marks and the mean value of the Dice score. This correlation was held
regarding to the amount of dataset used to produce the atlas. Our
experiments indicate that including more subjects as a source during
template building in-creased the realism and utility of the resulting
template and atlas: including the total number of subjects in the
dataset which is 24 instead of a randomly selected set of 5 subjects,
impacted the mean Dice score up to 50% for the right side and 60%
for the left side. Three different Gaussian smoothing kernels [38] were
applied to the label models, and with an optimum value of the kernel
set to 5 voxels, the evaluation showed an improvement of segmenta-
tion up to 50%. We established a successful integration of the atlas
information into the standard segmentation and the mean Dice score
of 89% for the right side and 86% for the left side.
There are several limitations that need to be considered when inter-
preting the results of these studies. First, the sample size is limited in
the various groups, especially for the segmentations of the endolym-
phatic and peripylmphatic spaces. Future studies with larger sam-
ple sizes with varying degrees of endolymphatic hydrops are needed
to further corroborate our results. In addition, further optimization
techniques could be considered, including a deep learning algorithm
instead of a random forest for training.
Our algorithm showed overestimation of the structure due to assigning
probabilistic values near boundaries. This effect can be rectified by en-
hancing the registration accuracy using more control points. The at-
las production was performed using subjects with vestibular migraine
without signs of endolymphatic hydrops. The fact that the models
for atlas generation are directly built manually in an advanced phase,
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a higher performance score could potentially be obtained by a more
accurate expert segmentation. An averaging of two or three different
ground truth may help the final validation measurement scores.

4.2 Application and Conclusion

The main result of the studies underlying this dissertation, the prob-
abilistic atlas, can be applied as a basis for the analysis of various
modalities of inner ear data. The probabilistic label assignment has
straightforward applications since it is of great interest to investi-
gate endolymph and perilymph spaces in different disorders, includ-
ing Menière's disease [5],[9],[10],[11]. Due to the similar intensity
distribution of the vestibulocochlear nerves to the lymphatic spaces
in the contrast enhanced images of the inner ear, presenting location
as a feature, which is achieved by our atlas, simplifies the lymphatic
spaces segmentation in future experiments. The produced atlases for
the left and right inner ears resulted in a 4.7% discrepancy. Individual
inner ears demonstrate a 3−8% difference between two sides which is
congruent with our atlas. A multimodal stepwise segmentation algo-
rithm for the endolymphatic and perilymphatic spaces was achieved
furthering our previous publication in [2] [1]. This method will be a
vital step toward the creation of an atlas of the endolymphatic and
perilymphatic spaces. The segmentation method was validated in
each step according to the corresponding reference standard.
In this study, to the best of our knowledge, we present the first MRI-
derived 3D atlas of the labyrinth in the human inner ear, along with a
semi-automatic atlas-based segmentation approach that was validated
on prospective subjects with different pathologies. Our atlas provides
in-vivo, computer-aided volumetric quantification of total lymphatic
space. This study which proposed a novel methodology is considered
to be an appropriate solution to detect ELH in curative and medical
trials in Menière's disease.
In future studies, the atlas-based generated mask should be applied to
T2-weighted FLAIR images [52],[13],[14]. The volumetric assessment
of the fluid components inside the inner ear labyrinth will present a
measurement tool to grade the endolymphatic hydrops.
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Abbreviations

CISS constructive interference in steady-state

ELH endolymphatic hydrops

ELS endolymphatic space

FLAIR fluid attenuated inversion recovery

MRI magnetic resonance imaging

L left

LH left-handed

MRI magnetic resonance imaging

MD Menière’s disease

MRI magnetic resonance imaging

R right

RH right-handed

TNOV total number of voxels

TV total volume

VM vestibular migraine

IR inversion recovery

GBCA Gadolinium based contrast agent
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SD standard deviation

DS Dice score

MIP maximum intensity projection
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Schließlich möchte ich meinem Freund für alle mentalen Unterstützungen
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