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1. Abbreviations  
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RXR retinoid X receptor 

SERD selective estrogen receptor down-regulator 

SERM selective estrogen receptor modulator 

SHR steroid hormone receptor 

SLNB sentinel lymph node biopsy 

TAM tamoxifen 

TGZ troglitazone 

THR thyroid hormone receptor 

TNBC triple-negative breast cancer 

TRE thyroid hormone response element 

TZD thiazolidinedione 
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4. Introduction 

4.1  Breast cancer 

4.1.1 Epidemiology 

Breast cancer (BC) is the most common female malignancy and the main cause of cancer-related 

death worldwide [1]. In 2018, 2.1 million newly diagnosed cases and 0.6 million related deaths have 

been recorded, respectively accounting for 24.2% of total new cancer cases and 15.0% of all deaths 

in women [2]. It is noteworthy that although the mortality rates are decreasing in developed 

countries due to the advances in cancer screening and adjuvant therapy, the incidence rates of BC 

are increasing in most countries whereas death rates are much higher in less developed regions [3, 

4]. Therefore, addressing the global BC issue is a huge challenge and it is necessary to develop early 

detections and novel treatments for BC. 

4.1.2 Local management: surgery and radiotherapy 

The complexity and heterogeneity of BC require a comprehensive and multidisciplinary approach 

adapted to each patient. The primary local and regional BC treatment remains surgical intervention, 

with a constant evolution from the Halsted radical mastectomy [5] from the 19th century to the Fisher 

modified radical mastectomy currently [6, 7]. Breast-conserving surgery followed by radiotherapy 

is established for most early BC cases because of developments in surgical techniques and 

neoadjuvant systematic therapies [8]. Some researchers demonstrated that the overall survival (OS), 

disease-free survival (DFS) and relapse-free survival (RFS) are equivalent to those of mastectomy 

[7, 9]. Reconstruction is a selection for women electing mastectomy with a relatively small breast 

in setting of huge tumor, extensive calcifications, or multicentric disease [10].  

In addition to tumor size, axillary lymph node status acted as a prognostic factor in early BC 

and provides guidance for personalized treatment. Sentinel lymph node biopsy (SLNB) replaced the 

traditional axillary lymph node dissection (ALND) in node-negative BC patients, preventing them 

from lymphedema, shoulder dysfunction and other complications [8, 10, 11]. ACOSOG Z0011 trial 

proved that no survival difference was found between ALND and SLNB [12]. After 10 year follow-
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up, early-stage BC patients with 1 or 2 SLN metastases treated by SLNB alone had noninferior 

outcome in OS compared with those treated with ALND [13]. 

Radiotherapy was recommended as a critical adjuvant treatment for women after breast-

conserving surgery or mastectomy with high-risk clinical or pathologic factors (e.g. positive lymph 

nodes, large tumor size or lymphovascular invasion), beneficial for reducing local recurrence [14, 

15]. In addition, the main complications of radiotherapy comprise cutaneous, pulmonary and cardiac 

toxicity and radiation techniques development (e.g. intensity modulated radiation therapy) and 

facilities implementation (e.g. deep inspiration breath hold technique) would contribute to lower 

rates of adverse events [16]. 

4.1.3 ER, PR and endocrine therapy 

Excessive exposure to estrogen, acting through estrogen receptors, plays an important role in the 

development of BC by stimulating cell proliferation and initiating mutations during DNA 

replication [17]. The majority of BC (approximately 70%) express ERα (mostly named ER), 

progesterone receptor (PR) or both [18, 19] and assessment of ER and PR (together termed as 

hormone receptor – HR) status has become the standard of care for BC patients. Patients with HR 

positive BC exhibit lower recurrence and better outcome compared with the HR negative group and 

HR was identified as an independent predictor in BC [20, 21]. Besides, the expression of PR is 

primarily regulated by ERα at the transcriptional level [22]. Loss of PR expression is correlated to 

a worse outcome in luminal cancers [23]. 

ER and PR belong to the steroid hormone receptor (SHR), a subfamily of nuclear receptor 

superfamily [22, 24, 25]. Guideline recommendations of immunohistochemical testing suggested 1% 

or more nuclear ER or PR staining as positive [1] and endocrine sensitivity was determined by the 

intensity of ER and PR positivity [8]. Gene expression profiling identified a molecular subtype in 

BC, “luminal-like”, divided to A and B. Luminal B cancers were characterized as higher expression 

of proliferation genes (Ki-67) compared with luminal A [23, 26].  

Endocrine therapy represents an important strategy in the management of early and advanced 

hormone positive BC [27], including commonly ovarian suppression, selective estrogen receptor 

modulators (SERMs) and down-regulators (SERDs) and aromatase inhibitors (AIs), which was 
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given consecutively after surgery or chemotherapy [8, 28]. For premenopausal ER-positive BC 

patients with sufficient risk factors for recurrence, ovarian suppression was recommended to 

combine with adjuvant endocrine therapy [29]. Tamoxifen (TAM), a SERM, acts as a competitive 

inhibition of estrogen binding to ER and consequently suppresses estrogen-dependent gene 

transcription, cell proliferation and tumor growth [30]. Whereas, fulvestrant, a SERD, binds to ER 

and makes it accelerated degradation, leading to reduction of cellular ERα levels[31]. AIs (e.g. 

anastrozole, exemestane and letrozole), usually applied in postmenopausal women by reducing the 

production of estrogen by blocking the aromatase enzyme activity (also known as CYP19A1 [32]), 

decrease the recurrence rates and mortality rates compared with TAM [33, 34]. ATLAS trial 

demonstrated prolongation of TAM treatment for ER-positive BC from 5 years to 10 years produces 

a further reduction in recurrence and mortality [35].  

4.1.4 HER and anti-HER therapy 

13-15% of BCs overexpress the HER2 tyrosine kinase receptor, divided to two subgroups: luminal 

B-like and non-luminal, which have a highest death rate compared with other subgroups [1]. Human 

EGFR (also called ErbB or HER) family comprises four transmembrane receptor tyrosine kinases: 

HER1 or EGFR, HER2, HER3 and HER4. When active, formation of homo- and heterodimers could 

activate downstream pathways: PI3K/AKT, Ras/Raf/MEK/ERK and PLCγ pathway [36]. Among 

them, HER2, overexpressed in 25%-30% of BC, correlates with poor prognosis and an important 

therapeutic target [37]. Trastuzumab, a humanized monoclonal antibody targeting HER2, became a 

successfully clinical biological drug, together or sequential with chemotherapy, as adjuvant or 

neoadjuvant treatment, which significantly increased OS and DFS in women with HER2-positive 

breast cancer [38]. Although no ligand is known for HER2, it appears to cooperate with other ErbB 

receptors (HER3/HER4) in neoplastic progression. Moreover, HER3 serves as an indispensable 

partner of HER2 dimerization and an essential function of proliferation on HER2-positive BC. Thus, 

drugs targeting HER3 may enhance the efficacy of dual HER2-targeted approaches [39]. The 

function of HER4 in BC is controversial, resulting in good or bad outcomes. It works not only in 

cell cycle arrest, differentiation, apoptosis but also in cell proliferation [40]. Besides, upregulation 

of nuclear HER4 led to worse trastuzumab response and poorer survival in HER2-positive BC, 

whereas cytoplasmic HER4 seems related to longer OS [40, 41]. Overexpression of EGFR is 
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frequently observed in triple-negative BC (TNBC) and inflammatory BC (an aggressive subtype), 

causing worse prognosis [42, 43]. However, EGFR-targeted therapies, monoclonal antibodies and 

tyrosine kinase inhibitors, had no significant results in clinical trials of BC [44]. Nevertheless, anti-

HER therapy or combined with other targeted drugs may be a promising strategy against BC. 

4.1.5 TNBC and other potential targets 

TNBC represents approximately 15%-20% of all BC, characterized as lack of ER, PR and HER2 

expression. This term is more aggressive with higher relapse rates and poorer overall outcome than 

other types of BC, distinctly related to large size, high grade and lymph node involvement [1, 45, 

46]. Six subtypes were identified by gene expression profile analysis, including basal like 1 and 2, 

immunomodulatory, mesenchymal, mesenchymal stem–like, and luminal androgen receptor [1, 47, 

48]. TNBC patients usually have a better pathologic complete response rates (pCR) after 

neoadjuvant chemotherapy and those who achieve pCR have a long-term survival [49]. Current 

treatments for TNBC are limited to cytotoxic chemotherapy, due to the lack of effective targets. 

BRCA1/2 mutations are more likely to cause hereditary breast and ovarian cancers and account 

for around 20% of patients with TNBC, which pattern is susceptible to DNA-damaging agents, 

platinum compound and poly (ADP ribose) polymerase inhibitors [50]. p53 is another mutant gene 

considerably associated with TNBC and agents (e.g. PRIMA-1 and APR-246) restoring its wild-

type properties maybe new treatments for BC [51]. Dysfunction of PI3K-AKT-mTOR signaling 

pathway, such as PIK3Ca mutation and loss of PTEN, gives rise to progress in breast tumorigenesis 

[52]. In addition, PIK3Ca mutation is frequently observed in luminal androgen receptor subtype cell 

lines and make it sensitive to PI3K/mTOR inhibition [53]. Thus, combination of anti-androgen and 

other target therapies may optimize current strategies in TNBC. More and more attentions are 

diverted to individual and personalized therapy from standardized system based on TNM stages. 

Precision treatment of BC is defined by analysis of immunohistochemical markers and gene 

expression, guiding treatment plans and response assessments.



Introduction 

11 

4.1.6 Chemotherapy and resistances 

Apart from endocrine therapy, anti-HER2 and more recent targeted therapy, chemotherapy was 

regarded as a conventional and effective adjuvant systemic regime, which indications depend on 

tumor grade, lymph node involvement or cell proliferation status (widely estimated by Ki-67 index 

[54]). Moreover, multiparameter gene expression assays were presented for risk assessment and 

prediction of chemotherapy benefit in patients with luminal-like disease, such as Oncotype DX and 

MammaPrint [8, 55]. The routine agents of current cytotoxic therapy are anthracylines and/or 

taxanes given in combination or in sequence, for both early and advanced stage BC [55]. Of note, 

dose-dense chemotherapy leads to a better prognosis [56]. Besides, the purpose of chemotherapy in 

metastatic BC is to maintain quality of life, relieve symptoms and prolong life [8].  

Drug resistance of BC limiting the chemotherapy efficacy, brings a great challenge to survival 

of patients, which mechanisms underlying chemoresistance were defined. Higher expressions of 

twist gene and multidrug resistance 1 gene suggested as a prediction for response to chemotherapy 

in BC [57, 58]. ATP-binding cassette transporters remove chemotherapeutic drugs from cells and 

result in chemoresistance [59]. Regulation of the behavior of tumor cells by cytokines and survival 

of cancer stem cells promoted chemoresistance [60]. In addition, other mechanisms include DNA 

damage repair [61], tumor microenvironment [62] and microRNAs [63].  

Mutations of ER gene and lack of ER and PR expression are identified as causes of endocrine 

resistance in BC [64]. Cyclin-dependent kinases (CDKs) play crucial roles in regulation of cell cycle 

by synergizing with cyclin. CDK4/6 inhibitors contribute to overcome endocrine resistance BCs 

combined with anti-estrogen or anti-HER2 therapy [65]. The PI3K/AKT pathway and ER signaling 

crosstalk is correlated with effectiveness of anti-estrogen drugs [66, 67]. Otherwise, epidermal 

growth factor receptor (EGFR, ErbB) family, STAT family and NF-κB family are potential targets 

for combination with endocrine therapeutic strategies in ER-positive BC [68-70]. Furthermore, 

inhibitors of CDK4/6, PI3K and mTOR have been applied in clinical trials with benefits for 

advanced HR-positive, HER2-negative BC. Ribociclib (CDK4/6 inhibitor) plus endocrine therapy 

improved progression-free survival (PFS) and palbociclib, combined with fulvestrant, could 

increase OS but the difference was not significant [71-73]. PI3K inhibitors, buparlisib and alpelisib, 
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combined with fulvestrant, resulted in a longer PFS in endocrine-resistant and PI3CA-mutated 

patients, respectively [74, 75]. Everolimus (mTOR inhibitor) plus an AI, improved PFS in patients 

with nonsteroidal AIs [76]. 

Therefore, understanding resistance mechanisms and exploring novel approaches are beneficial 

to overcoming chemoresistance, and resistance to all targeted therapies. 

4.2 Nuclear receptor 

4.2.1 An overview 

The human nuclear receptor (NR) superfamily contains 48 members, some of which are DNA-

binding transcription factors activated by endogenous and exogenous ligands and some of which 

are so-called “orphan receptors”, because the ligands have not been identified [77]. NRs play a 

crucial role in a range of physiological process, such as metabolism, homeostasis and immune 

response. Dysfunction of NR signaling pathway lead to numerous diseases including obesity, 

diabetes and cancer [78, 79]. All NR proteins have a common modular, highly conserved structure 

with four major domains (Figure 1) [25]. The C-terminal ligand-binding domain (LBD), containing 

ligand-induced activation function (termed AF-2), involves in transcriptional activity by regulation 

of ligand binding and coregulator recruitment. The most conserved DNA-binding domain (DBD) 

located in the central C region of NR protein with two zinc finger motifs. LBD and DBD could 

mediate the dimerization of NRs in some cases. LBD and DBD are linked by a short hinge region 

responsible for nuclear localization signal (NLS). In contrast to AF-2, AF-1 is positioned in the 

poorly identified N-terminal A/B region, interacting with coregulators through a ligand-independent 

way [80, 81]. Thus, NRs could activate or repress target gene transcription functions by ligand 

dependent and independent regulations. 
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Figure 1: The structure of nuclear receptor. 

 

 NRs have been classified as into four subtypes due to the classical genomic mechanisms [79, 

82]. Type I NRs include Steroid Hormone Receptors (SHRs), such as ER, PR, androgen receptor, 

glucocorticoid receptor and mineralocorticoid receptor. They disassociate from heat shock proteins 

(HSPs) and form homodimers after ligand activation in the cytoplasm. Then dimers translocate to 

the nucleus and bind to specific sequences of DNA known as hormone response elements (HREs), 

which subsequently regulate the transcription of target genes by recruiting coactivators [83, 84]. 

Type II NRs, such as thyroid hormone receptors (THR) and peroxisome proliferator activated 

receptors (PPAR), are retained in the nucleus binding as heterodimers with retinoid X receptors 

(RXR) to specific DNA response elements regardless of ligand activation by changes in dissociation 

of corepressors and recruitment of coactivators [85]. Type III NRs, such as vitamin D receptor, 

function similarly to type I NRs but bind to direct repeat instead of inverted repeat HREs. Type IV 

NRs instead bind as a monomer to half-site HREs. Alternate mechanism of NR cross-talk has been 

recognized as “nongenomic” actions independently of transcriptional regulation [86, 87]. The 

genomic process generally requires a prolonged series of actions (at least 30 to 60 minutes to 

modulate the transcription processes), whereas nongenomic type elicits rapid cellular effects within 

seconds or minutes and is not repressed by inhibitors of transcription or translation [88-91]. The 

rapid nongenomic actions of NRs initiate by binding to membrane receptors or interacting with 

molecules, such as G proteins, ion channels, protein kinases, Src tyrosine kinase, PI3K and MAPK. 

One example is the presence of SHRs or THRs at the mitochondrial or plasma membranes, leading 

to the rapid nongenomic signaling processes [92-94]. Thus, subcellular localization of NRs may 

play different roles in genomic and nongenomic actions, which should be considered in the 

development of NR-related diseases. 
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In BC, ER and PR, two members of NR superfamily, are of particular importance in 

tumorigenesis and prognosis, which give rise to more precise routine diagnosis for molecular 

subtype in all patients. Drugs targeting ER, such as TAM [30], fulvestrant [95], and more recently 

developed AIs [33] achieve a great success in current BC treatment strategies. However, it is still a 

tremendous challenge to make relevant therapies for advanced or metastatic cases and TNBC 

disease. More study of NR-related signaling pathway may provide novel therapeutic targets for BC. 

4.2.2 PPARγ 

PPARs are ligand-dependent transcription factors, which consist of three major subtypes, 

commonly designated as PPARα, PPARβ/δ and PPARγ encoded by separate genes [96, 97]. PPARs 

play critical roles in lipid homeostasis, glucose metabolism, inflammatory response and cancer 

development [98, 99]. The human PPARγ gene is located in chromosome 3p25 [100]. PPARγ is the 

most extensively described isoform of PPARs, which influences inflammation, cell proliferation, 

differentiation, apoptosis and tumor angiogenesis [101]. Positive immunoreactivity of PPARγ was 

strong in the nucleus of normal and benign breast tissues, however, a decreased or no staining was 

shown in malignant tissues [102-104]. High levels of PPARγ predominantly in either nucleus or 

cytoplasm were correlated with a longer survival and favorable clinical characteristics, such as 

smaller size, lower grade, earlier stage and ER positivity [102-106]. Besides, in a study previously 

published in our laboratory, cytoplasmic PPARγ showed stronger expression in BRCA1-mutant BC 

than sporadic cases with no relation to prognosis [107]. In a clinical study with a PPARγ ligand, 

HER2-positive BC patients with diabetics had a long-term survival after metformin and 

thiazolidinedione (TZD) therapy [108], indicating activation of PPARγ may play a positive role in 

repression of BC. However, patients with metastatic BC had no benefits from treatments with 

troglitazone (TGZ) [109] or rosiglitazone (BRL) [110].  

 The function of PPARγ in tumorigenesis seems contradictory. The oncogenic role of PPARγ 

has been reported in several studies, including BC [111-114]. Enhanced PPARγ signaling induced 

tumor incidence and mortality in transgenic mice with a ligand-independent PPARγ mutant [113]. 

Besides, T0070907, a selective PPARγ antagonist, and the dominant-negative PPARγ mutant, Δ462, 

significantly reduces cellular proliferation, migration and invasion in breast cancer cell lines [114].
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On the other hand, PPARγ acts primarily as a tumor suppressor in most cancers, especially BCs. 

BRL suppressed proliferation in MCF-7 cells line with a PPARγ-dependent manner by 

downregulating PI3K/AKT pathway, which was reversed by ERα antagonist, indicating that ERα 

negatively mediated PPARγ signaling through binding to PPRE. PPARγ activation also induces 

overexpression of PTEN tumor suppressor gene [115]. ERα and PPARγ could compete for BRL, 

mediating each other’s transactivation [116]. In mouse tumor model, PPARγ activation inhibited 

BC progression by upregulating protein tyrosine phosphatase receptor F, a downstream target of 

PPARγ [117]. Moreover, BRL promoted apoptosis by activating Fas/FasL pathways in human BC 

cell lines [118] and induce cell differentiation [119]. The biotinylated form of 15d‑PGJ2 

(b‑15d‑PGJ2) had obvious anti-proliferative and pro-apoptotic effects on MCF-7 and MDA-MB-

231 cell lines compared with 15d‑PGJ2, which was attenuated by PPARγ silencing with a decrease 

of apoptotic markers, PARP‑1 and caspase‑7 [120]. HER2 overexpression in BC cells was 

accompanied with a high level of PPARγ protein, inhibiting PPARγ transcription activation and 

PPARγ ligand-induced cell growth [121]. In addition, PPARγ downregulated CXCR4 expression, 

which played a pivotal role in mediating the development of BC invasion and metastasis. The 

mechanism seemed to be reversed by GW9662, a PPARγ antagonist, and decreased levels of 

phosphorylated FAK, AKT and ERK1/2 in CXCR4 downstream signaling [122]. TGZ inhibited 

TPA induced NF-κB and AP-1 activation and MMP-9 expression, the critical enzyme for invasion 

and metastasis, through a PPARγ-dependent mechanism [123]. 

 Besides the genomic effects of the NR, many other nongenomic effects have been described, 

not only for ER [124], with membrane or cytoplasmic expression. Nuclear export of PPARγ is 

initiated via MAPK/ERK/MEK1/2 signaling, which restrains PPARγ transactivate nuclear target 

genes and thereby inhibits its genomic function [125, 126]. uPA mediated PON 1 expression in 

hepatocytes by regulating subcellular compartmentalization of PPARγ and induced PPARγ nuclear 

export in a MEK-dependent manner [127]. Fatty acids, acting as PPARγ agonists, had antineoplastic 

effects in BC cells with inhibition of ERK1/2 phosphorylation and nuclear translocation of PPARγ 

[128-130]. In another study, nuclear immunoactivity of PPARγ was observed in MCF-7 cell line or 

ER-positive tissues, whereas MDA-MB-231 cells, or ER-negative tissues, showed a cytoplasmic 

localization strongly related with S-phase kinase protein (Skp2) expression, which is related to 
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malignancy in certain tumors. Down-regulated Skp2 could reverse tetradecanoyl phorbol acetate-

induced nuclear export of PPARγ in MEK1-dependent pathway [131]. These findings suggest that 

nuclear translocation of PPARγ may play an important role in antitumor effects and suggest that the 

study of the intracellular distribution of PPARγ may give new insights to identify novel therapy for 

BC. 

4.2.3 THR 

As many other NR, TH modulate numerous physiological activities, including development, 

differentiation, growth and metabolism, again by two distinct pathways, genomic and nongenomic. 

The classical genomic mechanisms are mediated mostly by T3-THR complex binding to TH 

response elements (TREs). Two isoforms, THRα and THRβ, are encoded by THRA and THRB genes 

which located on chromosome 17 and 3 [132-134]. The nongenomic actions of TH are related to 

plasma membrane, mitochondria or cytoplasm locations with receptors homologous or 

nonhomologous to THRs, such as integrin αvβ3 [132, 135]. The TH status and thyroid disorders 

have a strong correlation with the development of BC. High levels of T3 was observed in BC 

patients compared to benign breast tumor, positively related to aggressive BC characters, such as 

larger tumor, lymph node metastases and negative ER and PR expression [136, 137]. In addition, 

BC patients were inclined to thyroid enlargement and a meta-analysis study showed that BC or 

thyroid cancer predisposed an individual to developing the other [138, 139]. These findings 

indicated a significant association between TH signaling and BC. 

 Several previous studies reported that either THRα or THRβ expression decreased in BC 

compared with normal breast tissues, indicating downregulation of THR during breast 

carcinogenesis [140-143]. Loss of nuclear THRα expression was correlated with larger and higher 

grade tumor [143] and nuclear THRα2 was an independent prognostic factor in improved OS [144, 

145]. Other studies figured THRβ functioned as a tumor suppressor in BCs. Low THRβ levels 

predicted poor outcomes and enhanced resistance to chemotherapy by cAMP-PKA signaling 

pathway [146]. In BRCA1-mutated BC, THRβ were overexpressed compared with sporadic cases 

but had a positive prognostic result whereas THRα reduced survival [147]. THRβ inhibited tumor  

growth by activating apoptosis and decreasing proliferation via JAK-STAT-cyclin D pathways in
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the xenograft mouse model [148]. The suppression of oncogenic RUNX2 activity was dependent 

on THRβ, not THRα, in triple negative MDA-MB-231 cell line [149]. Moreover, mutation of THRβ 

promoted the development of BC via aberrant activation of STAT5 [150], which was consistent 

with the result of another study regarding THRβ1 gene mutation in tumorigenesis of Chinese BC 

population [151]. In addition to other preclinical researches, THRβ1 could inhibit cell proliferation, 

invasiveness and metastasis formation in BC cell lines [152, 153].  

Studies of the protein expression and subcellular localization about THRβ were limited. 

Shuttling of THR between the nucleus and cytoplasm was induced by TH, indicating that THR 

mislocalization may contribute to the development of some types of cancer [133, 154, 155]. One 

study reported that THRβ1 expression was predominantly in cytoplasm in BC, and positively 

associated with ER-positive tumors, small tumors, lymph node negative status and longer survival 

[156]. In another previous study, THRβ was described as expressed in nuclei of benign and 

carcinoma in situ tissues, and in the cytoplasm of normal breast and infiltrative BC cells [157]. 

Besides, overlapping genomic and nongenomic actions of TH are observed between integrins and 

THR [93]. TH binding to αvβ3 induced nuclear translocation of THRβ1 through MAPK/MEK/ERK 

pathway [158]. In addition, this complex also regulates expression of the THRβ1, ERα, and 

cyclooxygenase-2 (COX-2) genes and modulates post-translational modifications of THRβ1 [159, 

160]. Therefore, exploring nongenomic action of THRs and its subcellular localization is essential 

in BC development. The cross-talk between genomic and nongenomic actions of THR may provide 

new targets for BC treatment. 

4.3 Cyclooxygenase 

Targeting prostaglandins (PGs) pathway potentially plays a positive role in prevention and treatment 

of cancers. Biosynthesis of PGs, some belonging to PPARγ ligands, from arachidonic acid (AA) is 

catalyzed by a key enzyme, Cox, which has two isoforms, Cox-1 and Cox-2 [161, 162]. Cox-1 is 

constitutively expressed in many normal cells, whereas Cox-2 is generally considered induced by 

inflammatory cytokines and growth factors, resulting in carcinogenesis of many tissues [163, 164]. 

A meta-analysis study revealed that increased expression of Cox-2 in BC ranged from 27.9% to 

81.4%, significantly correlated with poor OS and adverse features, such as large tumor size and 
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lymph node invasion [165]. Prostaglandin E2 (PGE2), production via Cox-2, induced CYP19 

expression and aromatase activity, leading to the development of ER-positive BCs [166, 167]. In 

addition, Cox-2 inhibitors decreased incidence and progression of BC through improving apoptosis 

and repressing proliferation and angiogenesis [168]. Combination of specific Cox-2 inhibitor and 

PPARγ agonist resulted in growth inhibition in a mouse model of mammary adenocarcinoma [169]. 

Compared with Cox-2, less attention was taken to Cox-1 in tumors, although both selective and 

nonselective Cox inhibitors prevent mammary tumors [170]. Fewer studies demonstrated the tumor 

suppression of selective Cox-1 inhibitors in BC, such as SC-560, catechin and FR122047. More 

interestingly, combination of Cox-1 and Cox-2 inhibitors had an addictive effect on tumor 

repression in BC cell lines [171-173]. Besides, Corticotropin-releasing factor, a hypothalamic 

neuropeptide, promoted cell motility and invasiveness through production of PGs via Cox-1 not 

Cox-2 in BC cell line [174]. Another study elucidated that the antitumor property of nonsteroidal 

anti-inflammatory drugs by cell differentiation was not dependent on Cox-2 pathway, indicating 

that potential role of Cox-1 in the activation of PPARγ [175]. In summary, the literature strongly 

suggests that both Cox-1 and Cox-2 participate in PGs and PPARγ signaling pathways involved in 

breast tumorigenesis. 

4.4 Aims of the studies 

4.4.1 Subcellular expression of PPARγ and correlation with Cox-1 in 

primary BC tumors 

The role of PPARγ, the most extensively described isoform of PPARs, was controversially 

described as a tumor promoter or suppressor in different cancers. PGs, as PPARγ ligands, are 

produced from the conversion of AA by Cox-1 and Cox-2. The aim of this study was to analyze the 

relevance of combined expression of PPARγ and Cox (especially Cox-1) in BC and correlation of 

the data with several clinicobiological parameters including patient survival. In the Publication I of 

this thesis, we analyzed by immunohistochemistry the subcellular expression of PPARγ and of the 

two Cox proteins in a well characterized 308 primary BC specimens in relation to survival, to 

determine if either one could, independently or in relation to the others, be linked to BC progression.
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4.4.2 Expression and subcellular localization of THRβ1 in primary BC 

tumors 

THRβ1, also belonging to NR superfamily, appears to act as a tumor suppressor in many malignant 

neoplasms. While THRβ1 clearly appears to be a key player in BC carcinogenesis, the importance 

of its subcellular localization remains to be elucidated. The purpose of this study was designed to 

explore the different roles of nuclear-cytoplasmic compartmentalization of THRβ1 in BC tissues. 

Therefore, we investigated the nuclear and cytoplasmic expression of THRβ1 by 

immunohistochemistry in the same cohort with 274 primary BC tumors and analyzed the correlation 

of the results with clinicopathological parameters and clinical outcome. All data were published in 

Publication II of this thesis. 
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5. Publication I 
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6. Publication II 
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7. Summary 

Dysfunction of NR signaling pathway lead to numerous diseases including cancers. NRs regulate 

cellular processes by classical genomic or nongenomic mechanism. In BC, ER and PR, two 

members of NR superfamily, are of particular importance in tumorigenesis and prognosis and drugs 

targeting these two receptors achieve great success. However, it is still a tremendous challenge to 

make relevant therapies for advanced or metastatic cases and TNBC disease. More study of NR-

related signaling pathway may provide novel therapeutic targets for BC. Therefore, we investigated 

subcellular expression of another two NRs, PPARγ and THRβ1, in the same cohort of BC tissues 

and analyzed correlation with several clinicopathological characteristics and patient survival. 

Publication I: Cytoplasmic PPARγ is a marker of poor prognosis in patients with 

Cox-1 negative primary breast cancers 

The aim of this study was to investigate the subcellular expression of PPARγ and related Cox-1 and 

Cox-2 in a cohort of 308 BC tissues and correlate them to survival. Immunohistochemistry was 

performed for PPARγ, Cox-1 and Cox-2 nuclear and cytoplasmic expression, clearly exhibiting that 

PPARγ was expressed in most BC samples with predominantly cytoplasmic location, Cox-1 and 

Cox-2 being only cytoplasmic. Cytoplasmic PPARγ had a positive correlation with Cox-1, Cox-2, 

and other high-risk markers of BC (HER2, CD133, and N-cadherin), whereas inversely with nuclear 

PPARγ and ER expression. Kaplan Meier analysis demonstrated that cytoplasmic PPARγ was a 

significant unfavorable predictor of overall survival in the whole cohort, as well as in the subgroup 

of patients with no Cox-1 expression where it appeared as an independent marker of poor prognosis. 

In addition, to examine the relationship between PPARγ and Cox-1, we identified that Cox-1 was 

associated with good prognosis only in patients with high cytoplasmic PPARγ expression. In 

conclusion, our results suggest that the relative expression of cytoplasmic PPARγ and Cox-1 may 

be essential in BC physiopathology and that both could be defined as potential targets for BC 

personalized therapeutic strategies. 

Publication II: Cytoplasmic and nuclear forms of thyroid hormone receptor β1 

are inversely associated with survival in primary breast cancer 
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This study aimed then to assess the subcellular distribution and prognostic roles of THRβ1 in the 

same cohort (with 274 primary BC). Nuclear THRβ1 was detected in 60.46% of all samples by 

immunohistochemistry, with frequent cytoplasmic location too. In addition, nuclear and 

cytoplasmic THRβ1 were positively associated with each other and both had a strong correlation 

with high-risk markers of BC, as performed in Publication I. Overall survival performed by Kaplan 

Meier analysis demonstrated that high level of cytoplasmic THRβ1 was strongly correlated with 

long-term survival, whereas nuclear THRβ1 had an inverse statistically significant correlation with 

long-term survival. Cox regression model showed that nuclear THRβ1 served as an independent 

marker for unfavorable prognosis, whereas cytoplasmic THRβ1 served as an independent marker 

for favorable one. In conclusion, these data indicate that the subcellular expression of THRβ1 may 

determine specific effects on BC physiopathology. Finally, nuclear THRβ1 expression is another 

negative predictive biomarker which may play a role for BC personalized therapeutic strategies. 

 In conclusion, cytoplasmic PPARγ and nuclear THRβ1 are both regarded as negative survival 

markers to identify high-risk BC subgroups. The cross-talk between genomic and nongenomic 

actions of NRs may play different roles in BC development. Thus, the further study of the 

intracellular distribution of NRs may give new insights to identify novel therapy for BC.  
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8. Zusammenfassung 

Eine Funktionsstörung des Kernrezeptor- (NR) Signalwegs führt zu zahlreichen Krankheiten, 

einschließlich Brustkrebs (BC). NRs regulieren zelluläre Prozesse durch klassische genomische 

oder nichtgenomische Mechanismen. In BC sind Estrogenrezeptoren (ER) und 

Progesteronrezeptoren (PR), zwei Mitglieder der NR-Superfamilie, von besonderer Bedeutung für 

die Tumorentstehung und –prognose. Deshalb sind Arzneimittel, die auf diese beiden Rezeptoren 

abzielen, bei Hormonrezeptor-positiven Patienten erfolgreiche Behandlungsoptionen. Es ist jedoch 

immer noch eine enorme Herausforderung, relevante Therapien für fortgeschrittene oder 

metastatische Fälle und Hormonrezeptor negative und HER2-negative (TNBC)-Erkrankungen zu 

entwickeln. Weitere Untersuchungen des NR-bezogenen Signalwegs könnten neue therapeutische 

Ziele für diese Patientinnen liefern. Daher untersuchten wir die subzelluläre Expression von zwei 

weiteren NRs, PPARγ und THRβ1, in derselben Kohorte von BC-Geweben und analysierten die 

Korrelation mit mehreren klinisch-pathologischen Merkmalen und dem Überleben des Patienten. 

Veröffentlichung I: Zytoplasmatisches PPARγ ist ein Marker für eine schlechte 

Prognose bei Patienten mit Cox-1-negativem primären Brustkrebs 

In einer gut charakterisierten Kohorte von 308 primären BC-Gewebeschnitten wurden die 

zytoplasmatische und nukleare Expression von PPARγ, Cox-1 und Cox-2 mittels 

Immunhistochemie untersucht. Korrelationen mit klinisch-pathologischen- und weiteren 

Merkmalen sowie das Überleben der Patientinnen wurden mit Hilfe statistischer Methoden und 

letzteres unter Verwendung der Kaplan-Meier-Analyse erhoben. PPARγ wurde in fast 58% der 

Proben mit einer vorherrschenden zytoplasmatischen Lokalisation exprimiert. Cox-1 und Cox-2 

waren ausschließlich zytoplasmatisch. Zytoplasmatisches PPARγ war invers mit der nuklearen 

PPARγ- und ER-Expression korreliert, jedoch positiv mit Cox-1, Cox-2 und anderen 

Hochrisikomarkern von BC, z.B. HER2, CD133 und N-Cadherin. Die Gesamtüberlebensanalyse 

zeigte, dass zytoplasmatisches PPARγ in der gesamten Kohorte eine starke Korrelation mit einer 

schlechten Überlebensrate aufwies und in der Untergruppe der Patienten ohne Cox-1-Expression, 

bei denen die zytoplasmatische PPARγ-Expression als unabhängiger Marker für eine schlechte 

Prognose auftrat, noch stärker war. Zur Unterstützung dieses Zusammenhanges zwischen PPARγ 
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und Cox-1 stellten wir fest, dass Cox-1 nur dann zu einem Marker für eine gute Prognose wurde, 

wenn zytoplasmatisches PPARγ mit einem hohen Score exprimiert wurde. Insgesamt lassen diese 

Daten darauf schließen, dass die relative Expression von zytoplasmatischem PPARγ und Cox-1 eine 

wichtige Rolle bei der Onkogenese spielt und als potenzieller Prognosemarker zur Identifizierung 

spezifischer hochriskanter BC-Untergruppen definiert werden könnte. 

Veröffentlichung II: Zytoplasmatische und nukleäre Formen des 

Schilddrüsenhormonrezeptors β1 sind invers mit dem Überleben bei primärem 

Brustkrebs assoziiert 

In einer gut charakterisierten Kohorte von 274 primären BC-Gewebeschnitten wurde THRβ1 

hauptsächlich im Zellkern der Tumorzellen exprimiert, obwohl auch häufig eine zytoplasmatische 

Färbung beobachtet wurde. Sowohl das nukleäre als auch das zytoplasmatische THRβ1 wurden mit 

Hochrisiko-BC-Markern wie HER2, Ki67, CD133 und N-Cadherin korreliert. Die 

Gesamtüberlebensanalyse zeigte, dass das zytoplasmatische THRβ1 mit einem günstigen Überleben 

korrelierte, wohingegen das nukleare THRβ1 eine statistisch signifikante Korrelation mit einer 

schlechten Überlebensrate aufwies. Interessanterweise erwiesen sich in unserer Kohorte, dass 

nukleäres und zytoplasmatisches THRβ1 als unabhängige Marker für schlechte bzw. gute 

Prognosen angesehen werden können. Insgesamt deuten diese Daten darauf hin, dass die 

subzelluläre Expression von THRβ1 eine wichtige Rolle bei der Onkogenese spielen könnte. 

Darüber hinaus ist die Expression von nukleärem THRβ1 ein negativer Marker, der zur 

Identifizierung von BC-Untergruppen mit hohem Risiko beitragen kann. 

 Zusammenfassend werden sowohl zytoplasmatisches PPARγ; als auch nukleäres THRβ1 als 

negative Überlebensmarker angesehen, um BC-Untergruppen mit hohem Risiko zu identifizieren. 

Der Zusammenhang von genomischen und nichtgenomischen Wirkungen von NRs kann bei der 

BC-Entwicklung eine wesentliche Rolle spielen. Daher könnte die weitere Untersuchung der 

intrazellulären Verteilung von NRs neue Erkenntnisse liefern, um eine neuartige Therapien für BC 

zu identifizieren. 
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