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Abstract

The identification and characterization of proteins in a biological systems can be achieved
with current mass spectrometry-based proteomics. A major challenge is the bioinformatics
analysis and interpretation of the huge data sets generated. This thesis argues that crucial
tasks can be significantly improved via context-based methods, i.e. algorithms exploiting
statistical context information or related measurements.

Modern biology is to a large extent facilitated by highly parallelized technologies that are
able to capture certain classes of molecules on a system-wide scale. These technologies rely
heavily on computational methods both for the processing of measured signals as well as
for their biological interpretation. Among the main classes of molecules are proteins, which
determine most of the state and function of biological systems. The current method of choice
for the system-wide investigation of proteins is based on complex mass spectrometry (MS)
instrumentation coupled to liquid chromatography. Modern MS proteomics already allows
comprehensive and quantitative proteome measurements within minutes. Thus, large clini-
cal cohorts can be measured and even proteomic profiling applications in clinical diagnostics
and personalized medicine are emerging. The wealth of proteomics data generated and the
different technological setups pose considerable computational challenges to ensure robust
and sensitive utilization of the data. In particular, the key challenges in computational pro-
teomics addressed in this thesis are (i) the identification of peptides from raw signals, (ii)
the quantification and (iii) identification of differential proteins and isoforms from peptide
signals and (iv) the generation of biological hypotheses from the quantified signal measure-
ments and derived statistical features from multiple experiments. A key idea in all methods
introduced in this thesis is to utilize contextual information, either by screening many simi-
lar data types ((i), (iv)) or generating signal-to-noise contexts from replicate measurements
((ii), (iii)).
In the project on peptide identification (i), we focus on the approach of spectral library
searching in the context of novel “Data-Independent-Acquisition” (DIA) proteomics. One of
the working hypotheses for DIA algorithms is that the intensity patterns (spectra) leading to
identifications of the same peptide are very similar to each other. We perform a systematic
evaluation of these similarities over different repositories and find significant differences. We
cluster peptide spectra and propose “Multiple Characteristic Intensity Patterns” (MCIP) to
represent each peptide. This approach strongly increases the sensitivity.
For differential quantification (ii), we introduce the concept of “Mass Spectrometry analy-
sis using Empirical and Replicate based statistics” (MS-EmpiRe). We introduce empirical
signal-to-noise distributions generated from replicate measurements, giving a tailored con-
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text for each peptide. Our approach is purely based on peptide fold change information,
which strongly reduces the noise. We achieve more than 100% sensitivity increases in bench-
marking datasets with strict control of the specificity. In state-of-the-art experimental data
sets we see more than 1000 additional proteins in a single comparison and confirm that the
detected regulated proteins are also convincing upon detailed inspection of the peptide sig-
nals.
To detect differential splicing in proteomics data (iii), we introduce the concept of
quantification-based splicing detection to MS proteomics. We show that expanding the con-
cepts of MS-EmpiRe to “fold changes of fold change” setups enables us to find differential
abundance changes of protein splice isoforms (MS-EmpiReS). We extensively benchmark
MS-EmpiReS and demonstrate its application on a clinical study on colon cancer (≈100
patients), where we substantially increase the detected differentially spliced variants in can-
cer as compared to state-of-the-art approaches. Moreover, we identify functionally relevant
differential splice events on the protein level.
In an experimental collaboration with the Basan Lab at Harvard University we address the
biological question (iv), how the proteomic state influences the starvation kinetics of E. coli
bacteria. We identify from physiological measurements, which regulatory responses are of
interest and introduce an approach to combine proteomics data from over 100 MS proteomics
measurements from three different experimental repositories. We find that envelope proteins
and in particular membrane anchors play a crucial role in the starvation of E. coli, a finding
of interest for the broad microbiology community that we validated experimentally.



Zusammenfassung

Die Identifikation und Charakterisierung von Proteinen in einem biologischen System kann
mit moderner Massenspektrometrie-basierter Proteomik auf systemweiter Skala durchge-
führt werden. Eine Herausforderung hierbei ist die bioinformatische Analyse und Inter-
pretation der entstehenden umfangreichen Datensätze. Die vorliegende Dissertation zeigt,
dass entscheidende Analyseschritte durch kontextbasierte Methoden, d.h. Algorithmen, die
statistische Kontextinformation oder verwandte Messungen nutzen, deutlich verbessert wer-
den können.

Moderne biologische Forschung wird zu einem substantiellen Teil von hochgradig paral-
lelisierten Technologien ermöglicht, die in der Lage sind, bestimmte Klassen von Molekülen
auf einer systemweiten Skala zu erfassen. Diese Technologien sind sowohl für die Verar-
beitung der gemessenen Signale, als auch für deren biologische Interpretation stark auf com-
putergestützte Methoden angewiesen. Eine der wichtigsten Molekülklassen sind die Pro-
teine, die Zustand und Funktion biologischer Systeme weitgehend bestimmen. Die derzeit
führende Methode für die systemweite Untersuchung von Proteinen nutzt komplexe Massen-
spektrometrie (MS) -basierte Instrumente, die mit Flüssigchromatographie gekoppelt sind.
Moderne MS Proteomik Technologie ermöglicht derzeit bereits umfassende und quantita-
tive Messungen eines Proteoms innerhalb von Minuten. So können große klinische Kohorten
vermessen werden und auch Anwendungen in der personalisierten Medizin und Diagnos-
tik werden hierdurch möglich. Die Fülle der erzeugten Proteomikdaten aus teilweise sehr
unterschiedlichen technologischen Konfigurationen stellt eine erhebliche rechnerische Her-
ausforderung dar. Die sinnvolle und verlässliche Interpretation dieser Daten ist Aufgabe
der computergestützten Proteomik und die vorliegende Arbeit behandelt essentielle Heraus-
forderungen dieses Forschungsfeldes. Untersucht wird in dieser Arbeit: (i) die Identifizierung
von Peptiden aus Rohsignalen, (ii) die Quantifizierung und (iii) die Identifizierung von differ-
entiellen Proteinen und Isoformen aus Peptidsignalen und (iv) die Generierung biologischer
Hypothesen aus den quantifizierten Signalmessungen. Eine zentrale Idee bei allen vorgestell-
ten Methoden ist die Nutzung von Kontextinformationen, entweder durch Screening vieler
ähnlicher Datentypen ((i), (iv)) oder durch Generierung von Signal-Rausch-Kontexten aus
Replikatmessungen ((ii), (iii)).
In dem Projekt zur Peptid Identifizierung (i) konzentrieren wir uns auf die Suche mit
Spektral-Bibliotheken im Kontext eines neuen Proteomik-Verfahrens, das als
”Data-Independent-Acquisition” (DIA) bezeichnet wird. Eine der Arbeitshypothesen für
DIA-Algorithmen ist, dass die Intensitätsmuster (Spektren), die zur Identifizierung dessel-
ben Peptids führen, einander sehr ähnlich sind. Wir führen eine systematische Auswertung
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solcher Ähnlichkeiten über verschiedene spektrale Datenbanken hinweg durch und finden
teilweise signifikante Unterschiede. Wir clustern die Spektren und schlagen vor, jedes Pep-
tid durch multiple ”Characteristic Intensity Patterns” (MCIP) zu repräsentieren. Dieser
Ansatz führt zu einer deutlichen Erhöhung der Sensitivität, mit der Peptide identifiziert
werden.
Für die differentielle Quantifizierung (ii) führen wir das Konzept der ”Massenspektrometrie-
Analyse unter Verwendung empirischer und replikatbasierter Statistik” (MS-EmpiRe) ein.
Wir generieren empirische Signal-zu-Rausch-Verteilungen aus Replikatmessungen, die einen
maßgeschneiderten quantitativen Kontext für jedes Peptid liefern. Unser Ansatz wertet auss-
chliesslich Abundanzänderungen zwischen Peptiden gleicher Sequenz aus, was zu einer deut-
lichen Verringerung des Rauschens führt. Wir erreichen mehr als 100% Sensitivitätssteigerun-
gen in benchmarking Datensätzen mit guter Kontrolle der Spezifität. In einzelnen modernen
experimentellen Datensätzen sehen wir mehr als 1000 zusätzliche Proteine. Wir validieren
diese zusätzlich gefundenen Proteine durch detaillierte Visualisierung der zugrunde liegenden
Peptidsignale. Zur Erkennung von differentiellem Spleißen in Proteomikdaten (iii) führen
wir das Konzept der quantitativen Spleißerkennung in die MS-Proteomik ein. Wir zeigen,
dass die Erweiterung der Konzepte von MS-EmpiRe auf ”doppelt-differentielle” Setups es er-
möglicht, statistisch signifikante Spleißereignisse in Proteomik-Datensätzen (MS-EmpiReS)
zu finden. Wir führen umfangreiche Benchmarkings von MS-EmpiReS durch und wenden
unsere Pipeline auf eine klinische Studie zu Dickdarmkrebs (ca. 100 Patienten) an, wo wir
funktionell relevante, differentielle Spleißereignisse auf Proteinebene identifizieren.
In einer experimentellen Kollaboration mit dem Labor von Prof. Markus Basan an der Har-
vard University befassen wir uns mit der biologischen Frage (iv) wie der Proteomzustand die
Kinetik hungernder E. coli Bakterien beeinflusst. Wir identifizieren charakteristische regu-
latorische Muster aus physiologischen Messungen und testen anschließend in über 100 MS-
Proteomik Messungen aus drei verschiedenen experimentellen Datenbanken, welche Proteine
diesem Muster folgen. Dadurch konnte Hüllproteinen und insbesondere Membran-Ankern
eine entscheidende Rolle beim Hungern von E. coli zugeordnet werden. Wir zeigen mehrere
biologische Experimente, die diesen Befund validieren.



Chapter 1

Introduction

”It is by avoiding the rapid decay into the inert state of ’equilibrium’ that an organism appears so
enigmatic; so much so, that from the earliest times of human thought some special non-physical or
supernatural force [..] was claimed to be operative in the organism, and in some quarters is still
claimed.” [1]

Erwin Schrödinger - ’What is life?’

Standard biology textbooks define living organisms as having the properties of evolution-
ary adaptation, internal homoeostasis, compartmentalization and organization, metabolism,
growth, response to stimuli and reproduction [2]. On the cellular level, the latter six of these
seven ’enigmatic’ properties, as physicist Erwin Schrödinger put it, are directly mediated
by proteins. It is hence no overstatement to claim that the foundations of life are built of
proteins.
Consequently, studying and characterizing proteins is essential for a wide variety of questions
in many areas of biology. Over the past three decades, technologies have emerged that allow
identification and (relative) quantification of thousands of proteins (proteomics) in biologi-
cal samples. The leading approach for this characterization is based on mass spectrometry
(MS). The field has seen a transformation from very basic ’proof of principle’ research to the
current state, where instruments are commercially available and accessible in laboratories
and core facilities around the world. In accordance with these developments, computational
and data processing aspects take up an ever increasing fraction of proteomics research. The
innovations in technology lead to an unprecedented wealth of available data and computa-
tional challenges range from basic identifications of peptides to concrete interpretation of
biological processes.
In this thesis, I address computational challenges along this whole range. The following
introduction aims at defining core principles of MS proteomics and corresponding computa-
tional problems. It will also give a brief overview on how contextual information is used in
this thesis to improve the state-of-the-art in computational proteomics research.
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1.1 Bottom-up mass spectrometry-based proteomics
Mass spectrometry-based proteomics experiments consist of three main steps: a) Sample
preparation, b) Chromatographic separation and ionization and c) Mass spectrometry mea-
surement. Sample preparation (Figure 1.1a) starts with lysing intact cells and subsequently
isolating the proteins in the sample. Often, the proteins are digested via proteases such as
Trypsin, which preferably cleaves proteins C-terminal of the amino acids Arginine and Lysine
[3]. This results in smaller peptides, which, compared to intact proteins, are much easier to
handle chemically and in the mass spectrometer. To achieve higher coverage, proteins can be
pre-fractionated, for example by gel electrophoresis, strong cation exchange chromatography,
peptide isoelectric focusing and sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE) [4, 5]. Each fraction can then be measured in an individual measurement.
The digestion step defines the technique of bottom-up proteomics [6], a term stemming from
the fact that proteins have to be reconstructed from the smaller peptides. The opposing
technique is top-down proteomics [7], where intact proteins are directly submitted to the
mass spectrometer, retaining valuable information about the intact protein. However, due
to the benefits of protease digestion for sample handling, sensitivity and throughput, the vast
majority of biological studies is carried out using bottom up proteomics. In the standard
setup, peptides are submitted to liquid chromatography (LC) after digestion (Figure 1.1b).
In principle, pressurized liquid drags the peptides through a column coated with hydrophobic
material. The higher the hydrophobicity of the peptide, the stronger it aligns at the coat-
ing. The increased contact increases the retention time a peptide needs to cross the column,
which is often adjusted to range between 3h and 30min [8]. The LC step hence prevents
the whole sample to be submitted to the MS at once (thereby reducing data complexity)
and provides valuable retention time information. As usually there are (at least) hundreds
of thousands of peptide species in the column [9, 10] a large number of different peptide
species reaches the end of the column at any given moment. Peptides that reach the end of
the column are channeled through a needle and ionized, using electrospray ionization [11].
In principle, a (usually negative) voltage is applied at the entry of the mass spectrometer.
This results in positively charged droplets that form in a cascade-like process, as positive
charges in the liquid align on the droplet surface, which energetically favors an increase in
surface by the formation of smaller droplets up to the single ion. For many peptide species,
a substantial fraction of its molecules is ionized this way and becomes ’visible’ to the mass
spectrometer.
An example mass spectrometry setup is depicted in 1.1c, which contains two mass analyzers
and a collision cell. Mass analyzers are electrostatic or electrodynamic components that are
able to determine the mass over charge (m/z) values of charged particles. Popular types
of analyzers are the linear ion trap (LIT), orbitrap (OT), quadrupol (Q) and time of flight
(TOF) [6]. The OT is an electrostatic analyzer, where ions rotate around a central axis. The
rotation frequency and knowledge about the applied electric field allows to determine m/z.
For the TOF analyzer, accelerated ions are sent on an elliptical trajectory before landing
on a detection plate. This allows to determine the ’time of flight’ and consequently m/z.
The LIT is a coupled electrodynamic and electrostatic analyzer, where ions can be trapped
axially by electric potentials and radially by radio frequency fields. The quadrupol analyzer
employs oscillating electric fields. Collision cells usually consist of LITs filled with a colli-
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Figure 1.1: Basic steps of proteomics data acquisition. a) For sample preparation, the
biological sample is lysed, proteins are extracted and digested into peptides. b) The peptides
are then submitted to liquid chromatography where they are separated by hydrophobicity.
Peptides that reach the end of the column are ionized by electrospray ionization. c) Ionized
peptides are submitted to an MS setup. In a first step the mass and intensities of the intact
peptide ions are determined by a mass analyzer. Selected peptide ions are then fragmented
and the fragment ions are again measured by a mass analyzer. Image adapted from [12].
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sional gas such as helium. The ions are accelarated, collide with neutral gas and fragment [6].
Importantly, the mass analyzers are able to extract ion intensities that scale linearly with
ion counts within the dynamic range. This allows to precisely determine relative changes.
However, as it is not guaranteed that all molecules get ionized and detected, it is generally
not possible to determine exact molecule numbers from intensity values [13]. Additionally,
masses can be derived from the m/z values with various computational approaches [14]. In
the first mass analyzer in Figure 1.1c, the m/z values and corresponding intensities of all
peptide ions are acquired, resulting in an MS spectrum [4]. Peptide ions within a selected
m/z range are then submitted to the collision chamber and fragmented at their amide bonds.
Depicted in Figure 1.1 is a standard data dependent acquisition (DDA) setup. The DDA
process aims at selecting only one peptide ion for fragmentation. This results in pre- and
suffix fragment ions of the original peptide sequence. The fragment ions are then submitted
to a second mass analyzer and m/z values and intensities are determined. The resulting
spectrum is often called MS/MS spectrum [4]. The pre- and suffix fragment ions can be
used to identify the peptide sequence [4]. A more recent method of data acquisition, termed
data-independent acquisition (DIA) [15] acquires MS/MS scans at fixed time intervals over
broader mass ranges. Often an MS/MS spectrum is generated by a mixture of different pep-
tides. This results in more complex spectra, but generally retains more information about
the sample due to the consistent scanning.

1.2 Essential steps in MS proteomics data analysis
The data acquisition steps described in the previous section constitute the basic structure
of MS proteomics data. In principle, the data acquired in an MS proteomics run is a col-
lection of MS and MS/MS spectra and their respective acquisition times. From this data,
the measured peptides and proteins have to be derived and quantified. In Figure 1.2, four
essential steps of proteomics data analysis are displayed: peptide identification, peptide
quantification, protein identification and downstream analyses. Figure 1.2a depicts peptide
identification from a DDA MS/MS spectrum with a sequence database and a spectral library.
For sequence-based identification, a database of possible peptides is derived from a database
of protein sequences. Comparing the mass of the intact precursor ion with the sequence
database allows to narrow down the number of candidate peptides. The m/z values of the
fragment ions (i.e. the pre- and suffix ions of the precursor) in the MS/MS spectrum are
then compared with the expected m/z values of all candidate peptides and a score is calcu-
lated. For sequence database searching, a wide variety of computational tools exist. Popular
examples are SEQUEST [17], Mascot [18], Andromeda [19], MSGF+ [20], X!Tandem [21],
MyriMatch [22], OMMSA [23], MSFragger [24] and pFind [25]. An alternative approach
to sequence based searching is spectral library searching [26], where the MS/MS spectrum
is scored against previously measured and identified spectra. In this approach, a central
focus is on the intensity information of the fragment ions. Popular tools for spectral library
searching are SpectraST [27], BiblioSpec [28] and X! Hunter [29]. In the context of DIA
data analysis, spectral library searching has recently gained renewed importance and will be
examined in more detail in chapter 2 of this thesis.
To quantify the measured peptides, several approaches exist. The key idea is always to
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Figure 1.2: Essential steps in computational proteomics. a) Peptide identification. Peptide
spectra can be identified by either comparing the sequence derived from a spectrum with a
database or by comparing against previously identified spectra. b) Quantification. Intensity
values for a peptide ion can be derived differently, depending on the quantification tech-
nique. Signals often have to be integrated over time. When comparing a protein between
biological conditions, often many intensities exist for each condition. A statistical assessment
is necessary to distinguish between systematic changes and noise. c) Protein identification.
Smaller peptides have to be mapped to the protein sequence. Mechanisms such as alternative
splicing can impede a unique mapping of peptides to a distinct protein. Optimal protein
matches have to be derived computationally. d) Downstream analyses such as visualizations,
enrichment analyses or combined scorings are needed to extract biological information from
the quantified protein values. Image inspired by [16].
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extract intensity values that represent the abundance of the peptide ions as accurately as
possible. On the left in Figure 1.2b, we see the chromatographic profile of an intact peptide
ion in the MS spectrum. This profile comes from the fact that peptides of the same sequence
are distributed slightly over the LC column and reach the end of the column at different
times. The profile hence reflects the distribution of the peptide in the LC column and ex-
tracting the area under the profile curve is a good approximation for the intensity of the
peptide ion. This type of quantification is used for DDA-based label-free quantification (LFQ)
[30] and for stable isotope-based labeling, such as Stable Isotope Labeling by Amino acids in
Cell culture (SILAC) [31]. For LFQ, the intensities of the same peptide from different runs
are compared. For SILAC, metabolically labelled heavy isotope peptides can be measured
in the same run as native peptides. Their intensities can then be compared within the same
run. In addition to the precursor quantification approaches, there are also approaches to
extract peptide intensities from the MS/MS spectra. One method is based on isobaric labels
such as tandem mass tags (TMTs) [32] or Isobaric tags for relative and absolute quantitation
(iTRAQ) [33]. For isobaric labelling, peptides from different conditions are labelled with
different isobaric labels and pooled together. On the MS level, the conditions cannot be
distinguished as the labels are isobaric. After fragmentation however, different reporter ions
detach from each label and can be quantified. For DIA data, MS/MS spectra are acquired
repeatedly at a fixed frequency. This allows to extract chromatographic intensity profiles of
the fragment ions of a peptide. The computational challenges associated with quantification
range from the correct extraction of the intensity profiles to proper normalization and to
the appropriate statistical evaluation of quantitative differences [30, 34]. Chapter 3 of this
thesis will focus on the latter point.
A further computational challenge in MS proteomics is protein identification. For protein
identification (Figure 1.2c), the identified peptide sequences are mapped back to the protein
sequences available in the database. If a peptide maps uniquely to a protein, then the map-
ping is trivial. If a peptide maps to different proteins the mapping becomes more difficult
and appropriate computational solutions have to be found. In particular alternative splicing,
where multiple proteins with overlapping common parts are produced for a single gene, can
lead to ambiguities in the peptide mapping. Such ambiguities are often addressed by ap-
plying the principle of parsimony and choosing the smallest set of proteins that explains all
available peptides [35, 36]. A recent approach also applies more sophisticated bayesian mod-
eling [37]. In chapter 4 of this thesis, we propose a new approach to test abundance changes
between common and exclusive peptides in order to detect alternative splicing. This way,
we not only use sequence information, but also quantitative information to identify splicing.
This allows for a more in-depth examination of the regulatory aspects of alternative splicing
and distinction between possible protein candidates.
The previous three points aim at providing well definied and quantified proteins. It should
be noted that also several larger computational frameworks exist that aim at providing a
comprehensive toolset for MS proteomics analyses. Popular and freely accessible pipelines
are OpenMS [38] (DDA & DIA), MaxQuant [39] (DDA) and Skyline [40] (DIA and targeted
data acquisition). After identification and quantification of proteins, an important compu-
tational aspect is also the downstream analysis that aims at the evaluation and biological
interpretation of the data. These analyses usually differ for each biological problem and often
tailored solutions are required. The bioinformatics tasks range from clusterings to statistical
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evaluations and data visualization. In chapter 5 of this thesis, we focus on such a biological
analysis in the context of Escherichia coli starvation.
It should be noted that I have introduced the core elements and steps of MS proteomics
with the help of representative examples. The introduction should convey enough knowledge
and intuition to apprehend the contents of this thesis. However, every step along the MS
proteomics pipeline can be seen as a research field in itself and the interested reader is
referred to the specialized literature for more details [41, 42, 43, 6].

1.3 Finding contexts
The topics of this thesis range along the computational steps displayed in Figure 1.2. In all
projects, we utilize context information to facilitate computational improvements or biolog-
ical insights.
In the spectral library project presented in chapter 2, the context is generated by collecting
data from different spectral repositories. For each peptide, we then have spectra coming
from many different MS proteomics runs. When creating a spectral library, we try to re-
tain the relevant information of this experimental context using a clustering-based approach.
This allows us to substantially increase the sensitivity and applicability of spectral library
searching. For the differential quantification project introduced in chapter 3, we generate
empirical statistical contexts, which estimate the quantitative variation inherent in the data.
We use replicate measurements to generate empirical noise distributions and design these
distributions in a way that allows to immediately put each quantitative feature (i.e. peptide)
into a statistical context. This approach yields high statistical power for the detection of
regulated proteins and performs favourably compared to state-of-the-art approaches. For
the differential alternative splicing project introduced in chapter 4, we extend the statistical
contexts of chapter 3 to ’double differential’ setups. Double differential means that not the
change of one object between conditions is evaluated, but the difference in the changes of
two objects. To create the distributions, we again rely on replicate measurements, but asses
the differences between pairwise changes. This approach allows us to quantitatively detect
differential alternative splicing in proteomics data. For the E. coli proteomics project intro-
duced in chapter 5, we rely on both, experimental and statistical context information. By
obtaining all relevant datasets available for our biological problem, we create an experimental
context. Consequently, we have a multitude of biological conditions for each protein. Our
aim is then to calculate a representative value which reflects the overall response of a protein
over the experimental context. To calculate the representative value we use our differential
quantification tool. We hence extend the context-based differential changes to context-based
multi-experiment changes. This allows us to obtain new insights into the molecular details
of E. coli starvation.
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Chapter 2

Detecting peptides in MS proteomics
data

Motivation

As discussed in the introduction, a standard MS proteomics data file is basically a collection
of mass spectra over time. These spectra largely depict the masses and intensities of peptide
ions and their fragments. One of the first and most basic steps in the evaluation of MS
proteomics data is therefore the assignment of mass spectra to their corresponding peptides
(peptide identification). For standard proteomics setups, the so called database searching has
established itself as the method of choice [16]. An alternative, sensitive method for identi-
fying peptides is spectral library searching [26]. Spectral library searching suffers from the
drawback that it performs best when the spectral library is custom made, meaning that the
spectral library is generated under very similar experimental conditions as the newly mea-
sured query run [44]. This limits the applicability and has resulted in considerably smaller
distribution of spectral library searching as compared to database searching. Spectral library
searching, which was originally developed in the early 2000’s is currently experiencing a re-
naissance in the context of new data-independent acquisition (DIA) proteomics approaches.
DIA approaches benefit strongly from (and were initially completely dependent on) spectral
library searching [34]. In the light of these developments, improving spectral library search-
ing becomes increasingly important. This is the motivation for the following chapter, where
we present a computational contribution to spectral library searching. We perform a system-
atic investigation of the experimental context a spectrum has been acquired in. We generate
these experimental contexts from publicly available spectral repositories that contain large
numbers of identified mass spectra. We propose a clustering-based adaptation to current
spectral library searching by using Multiple Characteristic Intensity Patterns (MCIPs). We
see that the MCIP approach in conjunction with spectral repositories mitigates the necessity
for custom made spectral libraries and shows increased performance on DIA data.
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2.1 Abstract
Spectral libraries play a central role in the analysis of data-independent-acquisition (DIA)
proteomics experiments. A main assumption in current spectral library tools is that a single
characteristic intensity pattern (CIP) suffices to describe the fragmentation of a peptide in
a particular charge state (peptide charge pair). However, we find that this is often not the
case. We carry out a systematic evaluation of spectral variability over public repositories and
in-house data sets. We show that spectral variability is widespread and partly occurs under
fixed experimental conditions. Using clustering of preprocessed spectra, we derive a limited
number of multiple characteristic intensity patterns (MCIPs) for each peptide charge pair,
which allow almost complete coverage of our heterogeneous data set without affecting the
false discovery rate. We show that a MCIP library derived from public repositories performs
in most cases similar to a ”custom-made” spectral library, which has been acquired under
identical experimental conditions as the query spectra. We apply the MCIP approach to
a DIA data set and observe a significant increase in peptide recognition. We propose the
MCIP approach as an easy-to-implement addition to current spectral library search engines
and as a new way to utilize the data stored in spectral repositories.

2.2 Introduction
Data-dependent acquisition (DDA) approaches are still the standard of proteomics data
acquisition. In DDA, selected precursor ions are isolated in a small mass window and sub-
sequently submitted for fragmentation and MS measurement [4, 46] giving MS2 spectra.
The most widely applied DDA approach is also called shotgun proteomics, whereby in each
duty cycle fragmentation spectra of the N most intense precursor ions are acquired (Top
N). The corresponding MS2 data are commonly analyzed by scoring the mass to charge
(m/ z) values of the most intense fragment peaks against a theoretical prediction of m/z
values of fragment ions derived from sequence databases [17, 18, 21]. The theoretical m/z
values of fragment ions are discriminative as, in most cases, each peak in the MS2 frag-
mentation spectrum stems from the same precursor ion. Additionally, the m/z value of
the submitted precursor ion is known, which narrows down the number of possible matches
in the sequence database. Peptide precursors not selected for fragmentation are excluded
from the result since sequence confirmation is missing [47]. As precursor ion selection can
be described as semirandom [48], DDA approaches are also problematic for quantification,
as a peptide measured in a first sample might not be identified in a second sample, even
though it is abundant. Selected reaction monitoring (SRM, alternatively multiple reaction
monitoring (MRM) or parallel reaction monitoring (PRM)) approaches [49, 50] address the
problem of reproducibility by a fixed preselection of peptide precursor ions. This approach
allows very sensitive and accurate quantitation of a small number of proteins in each LC-MS
run; however, the overall coverage of the proteome is low due to the preselection. Higher
coverage can only be achieved by measuring the sample with multiple precursor lists. Data-
independent acquisition (DIA) approaches try to overcome these limitations by omitting the
preselection of precursor ions [51, 52, 53]. To reduce spectral complexity, many applica-
tions scan MS/MS spectra of medium-sized isolation windows (5-50m/z) over a wide m/z
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range [54, 15, 34, 55, 56, 57]. In general, the possibilities for spectral searches via sequence
databases are challenging for DIA data [58, 59] due to the ambiguity of m/z values in com-
plex peptide mixtures. Thus, many commonly used approaches rely on spectral libraries,
also considering fragment ion intensities [15, 34]. These libraries are obtained from DDA
proteomics experiments by generating a characteristic intensity pattern (CIP) of m/z and
ion intensity pairs (m,i) from confidently identified MS2 spectra for each peptide in a distinct
charge state (peptide charge pair) [27, 28, 29, 60]. A library pattern must be constructed such
that it is sufficiently specific (implying few false positives) while maintaining high sensitivity
(few false negatives). A library of CIPs is then compared to the measured fragmentation
spectrum using a similarity measure. Most current approaches for the construction of library
patterns employ the scoring measure dot product [61, 62, 63, 64] or the related spectral con-
trast angle [65, 66, 67] as scoring measure. To our knowledge, all tools try to approximate
one unique CIP from the available measured fragmentation spectra. Prior to their use in
DIA approaches, spectral libraries have been employed to speed up and increase confidence
in peptide recognition [27] and therefore, large spectral repositories [68, 69, 70, 71] have been
compiled. In current DIA applications like OpenSWATH [34] chromatography-based scores
such as retention time are used to find MS2 fragmentation spectra, which are then matched
with a library CIP. Hence, having an accurate spectral library and a highly reproducible
and calibrated LC system are key factors determining the quality of a DIA experiment. In
the context of these developments, improved spectral libraries gain renewed importance. In
this study, we present a systematic analysis of fragmentation spectra identified with high
confidence by generating and evaluating a model spectral library. We integrate data from
the databases ProteomeTools [72] (further referred to as Kuster Set), Pan Human Library
[73] (further referred to as Aebersold Set), as well as from our own lab (further referred
to as Imhof Set). The Kuster Set contains 8 different combinations of fragmentation type,
fragmentation energy, and readout, all acquired on an Orbitrap Fusion Lumos mass spec-
trometer. The Aebersold Set had fixed fragmentation settings and was acquired on an AB
SCIEX TripleTOF 5600+ system from different human tissues and cell lines. The Imhof
Set had fixed fragmentation settings and was acquired on an AB SCIEX TripleTOF 6600
from different organisms and cell lines (see also Table 2.1 for an overview). We only use
peptides, which have been measured and identified at least 20 times across several experi-
ments, yielding ≥ 20 replicate fragmentation spectra for each peptide charge pair. Hence,
for each peptide, we obtain an empirical estimate how similar the fragmentation behaviors
of the individual spectra are (i.e., it can be derived whether certain ways of fragmentation
happen more often than others).
We first demonstrate that a surprisingly large fraction of MS2 spectra corresponding to the
same peptide charge pair is strongly heterogeneous across experimental conditions. This
heterogeneity represents a large drawback of using public repositories for spectral library
searching, which are mostly obtained under different experimental conditions than the query
spectra they are used on. A common practice in many proteomics laboratories is hence the
generation of custom-made spectral libraries, especially in the context of DIA experiments
[74]. This means it is necessary to generate a spectral library from DDA runs of the desired
sample under as similar experimental conditions as possible. One obvious problem is the
experimental and computational effort that has to go into creating a custom- made library.
Additionally, the set of peptides contained in a custom-made library is usually orders of
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magnitude smaller than the peptides available in online repositories. On the basis of our
findings, we propose the multiple characteristic intensity pattern (MCIP) approach, which is
similar to the SpectraST approach by Lam et al. [60] but differs with respect to the following
points: (i) SpectraST uses semiraw (.mzXML) fragmentation spectra for the generation of
spectral libraries, without further preprocessing [60]. We conduct our library generation on
MaxQuant [39] preprocessed peptide identifications without modifications and consider only
b- and y-ions (with molecular losses). (ii) As we use preprocessed spectra, we can either
apply a ranking prior to the clustering or use an unranked approach. In both cases, we ap-
ply a systematic clustering until all spectra are contained in a cluster and retain all clusters
involved. (iii) We determine one CIP from each cluster. This can yield more than one CIP
per peptide charge pair. We compare a spectral library generated with the MCIP approach
from a repository with a custom-made spectral library and show comparable performance
for most data sets. An overview over the major steps taken in this study is given in Figure
2.1. The MCIP method outperforms the current single CIP approach employed in spectral
library searching. We suggest this easy to implement “one-size-fits-all” method as a new way
to utilize the data available in spectral archives.

Table 2.1: Overview over the data sets used in this study and the corresponding experimental
parameters

2.3 Experimental section

2.3.1 Proteome analysis using a Q-ToF MS
An Ultimate 3000 HPLC system (Thermo Fisher Scientific) was used. Tryptic peptides were
desalted on a trapping column (5 x 0.3 mm inner diameter; packed with C18 PepMap100,
5µm particle size, 100 1Å pore diameter, Thermo-Fisher Scientific) to perform nanoreversed
phase separation. 0.1% formic acid (FA) was initially used. The flow of the loading pump
was set to 25 µL/min and washing was performed for 10 min under isocratic conditions. An
analytical column (150 x 0.075 mm inner diameter; packed with C18RP Reposil-Pur AQ,
2.4 µm particle size, 100 pore diameter, Dr. Maisch) was used for separation with a linear
gradient from 4% to 40% B in 170 min and a gradient flow of 270 nL/min. To separate the
sample, the solvent A 0.1% FA in water and B 80% acetonitrile (ACN), 0.1% FA in water
were used. Using a nano-ESI source, the 6600 TOF mass spectrometer was directly coupled
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Figure 2.1: MCIP analysis workflow. Preprocessed peptide spectra are collected from many
data sets and MS runs. Similarities of the spectra are compared over different public reposito-
ries and in-house data sets. Multiple characteristic intensity patterns (MCIPs) are generated
from the spectra. Search performance (sensitivity, accuracy, etc.) is evaluated in different
cross-validation settings, also considering the different experimental contexts.

to the HPLC (both AB Sciex). DDA settings were chosen with 225ms survey scan and mass
range 300 to 1800 m/z. Up to 40 MS/MS scans were allowed (100-1800 m/z). Exclusion time
of fragmented precursors was set to range between 10 and 50 s, depending on the experiment
(see Supplemental Table 2). Rolling collision energy setting was enabled, which performs
fragmentation at optimized collision energy for the peptide charge pairs. Precursor charge
states from +2 to +5 were specifically detected. SWATH runs were generated with the same
HPLC settings and 40 mass windows (Supplemental Table 2).

2.3.2 Data analysis of data-dependent LC-MS/MS experiments
The Aebersold Set and the Imhof Set were analyzed with MaxQuant (version 1.5.1.2 and
higher) using the Andromeda search engine [19] with a FASTA protein database specific
to the sample (see Supplemental Table 1). The following settings were used: fixed modifi-
cation carbamido- methylation of cysteine, variable modifications oxidation of methionine,
and acetylation at the protein N-terminus ; for precursors ∆mass = 30 ppm in the first
search and in the second search 6 ppm, for fragment ions the ∆mass = 60 ppm, enzyme
trypsin with specific cleavage and max two missed cleavages. The minimum peptide se-
quence length was set to 7 and for modified peptides the minimum required scored was set
to 40. For modified peptides the score was set to 40. The false discovery rate (FDR) for a
peptide spectrum match was set to 1%. MaxQuant preprocessing included mass centroid-
ing of peaks and corresponding intensity adaption, de-isotoping, and detection of cofrag-
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mented peptides [39]. The results were returned as msms.txt files containing the relevant
spectral information of fragment ion intensities, retention times, fragment masses, as well
as charge and modification states of the identified peptide. The MS proteomics data of
the Imhof Set, including MaxQuant results, ”have been deposited to the ProteomeXchange
Consortium (http : //proteomecentral.proteomexchange.org) via the PRIDE partner repos-
itory” [75], with the data set identifiers PXD005060, PXD005063, PXD005100, PXD005111,
PXD006245, and PXD006691. For the Kuster Set, the MaxQuant files were directly down-
loaded from the PRIDE repository PXD004732. The raw data for the Aebersold Set was
downloaded from the PRIDE repository PXD000953. More details on the data sets used are
displayed in Supplemental Table 1.

2.3.3 Library generation settings for the in-house data set
For the Imhof Set, the spectral library was generated from DDA data only, with the explicit
runs marked in Supplemental Table 1. For the instrument, the standard configurations as
recommended by Sciex were applied to all setups with the vast majority of parameters fixed
between all runs. Different settings were only applied to the parameters “Exclude for” (range
10s-50s), “Mass tolerance” (15 ppm-50 ppm), “Switch After” (30 spectra -40 spectra), and
“With intensity greater than” (100–150). Rolling collision energy was set in all cases. The
specific parameters for each input sample are listed in Supplemental Table 2.

2.3.4 Selection of processed fragmentation spectra
Peptides were separated by charge into peptide charge pairs because differences in the charge
state significantly alter the fragmentation pattern (see Supplemental Figure S1). Only pep-
tide charge pairs, which had at least 20 replicate spectra (see Supplemental Figure S2), were
included to enable the statistical analysis of repeated fragmentation of chemically identical
peptides. In our main analysis, we restricted our MCIP approach to only b- and y-ions
in charge states up to 2+ with different molecular losses (examples: b3, y4-NH3, y6(2+),
b5(2+)-H2O). Modified peptides were excluded.

2.3.5 Import of raw fragmentation spectra
To quantify the impact of using all peaks without filtering, an additional analysis with
raw spectra was carried out. To assess the influence of the preprocessing method, two
different methods of preprocessing the data were applied. In the first approach, the raw
spectra were imported from the MaxQuant “.apl” files contained in the “andromeda” folder
in the MaxQuant output folder. We parsed these files and extracted a list of m/z values
with corresponding intensities, without b- and y-ion annotation for each spectrum. The
spectra were assigned to their respective MaxQuant identification via the spectrum index.
In the second approach, the raw “.wiff” files were processed into the “.mzXML” format with
the MSConvert tool [76] without any additional filters (yielding profile data), parsed, and
assigned to the respective MaxQuant identification via the spectrum index. The influence of
raw spectral scoring can be seen in Supplemental Figure S3 with an overall lower performance
compared to the MaxQuant approach.
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2.3.6 Assessment of the similarity of fragmentation spectra
The similarity among spectra of the same peptide charge pair (replicate spectra) can be used
as a measure to characterize the fragmentation behavior of peptide charge pairs. As spectra
are vectors of (m/z, intensity) pairs, they can differ in the m/z values (different peaks) or
their intensities or both. To assess similarity between replicate spectra, all replicate spectra
(at least 20, see previous section) available for a peptide charge pair were compared pairwise
to each other. Each fragmentation spectrum was represented as a normalized replicate
fragmentation vector (NRFV) I = (i1, i2, ..., in), with i, j denoting the intensities in the
pattern and the index j of the vector implicitly denoting the different fragmentation ions
(m/z values). To get vectors of equal length, each fragmentation ion with intensity > 0
in any of the replicate spectra was included in every vector. Imputed 0 values were used
if a corresponding ion was not observed. For raw spectra (Supplemental Figure S3) best
bipartite matching was used. Only vectors with at least four nonzero values (n > 4) were
used. Each vector was normalized to length |I| = 1 (unit vector). After determining which
intensities were included in the NRFVs, the spectral similarities between all NRFVs of a
peptide charge pair were assessed in a pairwise fashion. For each pair of vectors X and Y of
NRFVs, the dot score was calculated using the dot product similarity measure DP defined
as

DP (X,Y ) =
n∑

k=1

xkyk (2.1)

with xk and yk denoting the kth element of X and Y, respectively. A pair of fragmentation
spectra was called similar if the dot score of their two corresponding NRFVs was larger than
a predefined similarity threshold (see below).

2.3.7 Choosing a global similarity threshold
A global similarity threshold of dot score 0.6 was adapted from the SpectraST search engine
[60] and was subsequently tested using the sampling approach discussed below. This was done
to check whether this threshold would give overall discriminative results. Each spectrum in
the data set was represented as a NRFV and assigned 1000 differently shuffled decoy vectors.
Each NRFV was then dot scored against each decoy vector, which resulted in a distribution
of 1000 shuffled dot scores for each NRFV. From each distribution of shuffled dot scores,
a local discriminative dot score was extracted, such that less than 5% of the shuffled dot
scores were above this threshold (in other words, the 95% quantile was extracted). Thus,
the use of this dot score would result in 5% acceptance of decoy spectra for a particular
NRFV. All locally discriminative dot scores were collected. From the distribution of locally
discriminative dot scores, again the 95% quantile was extracted (see Supplemental Figure
S4). This 95% quantile was 0.62 in this study, which agreed well with the global similarity
threshold of 0.6. The approach of extracting two quantiles was taken because the distribution
of shuffled dot scores varied distinctly for different spectra. Hence, taking only one quantile
of the distribution of all shuffled dot scores of all spectra combined would result in some
spectra (the spectra with generally large shuffled dot scores) being ambiguous. Still, a dot
score cutoff of 0.6 might be comparably low considering current high-resolution data.
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2.3.8 Centroid clustering and CIPs
A central goal of this study is to find a minimal set of characteristic intensity patterns (CIPs),
able to characterize all observed fragmentation spectra of a peptide charge pair. In order to
derive these, a centroid clustering approach was employed to determine clusters of similar
NRFVs. For each NRFV, the neighborhood (all fragmentation spectra with a similarity
score greater than the chosen similarity threshold) was determined. The medoid NRFV,
corresponding to the spectrum with the best signal-to-noise ratio (defined via the average
intensity of the second to sixth highest peak divided through the median of the remaining
peaks), was defined as a CIP, analogous to the SpectraST approach [60]. Additionally, also
NRFVs with the largest number of neighbors were defined as CIPs. If not all NRFVs were
neighbors to this CIP, it becomes a cluster with all its neighbors and the procedure was
repeated on the remaining NRFVs. A visualization of the MCIP clustering procedure is
given in Figure 2.2. Depending on the number of CIPs resulting from this procedure, each
peptide charge pair was assigned either a single CIP (all spectra of a peptide charge pair
assembled in a single cluster) or multiple CIPs (MCIPs). The CIPs were referred to by size of
their respective cluster: CIP1 corresponds to the largest cluster and CIPi to the ith largest
cluster.

2.3.9 Spectral coverage
The spectral coverage was introduced as a measure for the sensitivity of the approach. A
spectral library was constructed with the entries for each peptide charge pair consisting
either of a single CIP of the largest cluster or of MCIPs {CIP1, ..., CIPn} of the n largest
clusters. The single CIP or each element of the MCIPs {CIP1, ..., CIPn} was then compared
to all NRFVs of the peptide charge pair using the dot score. If the dot score was above the
similarity threshold for any of the CIPs, the respective spectrum was marked as covered.
The spectral coverage denotes the fraction of replicate spectra covered.

2.3.10 Comparison to custom-made spectral libraries
To compare the performance of a custom-made library with a MCIP library, we implemented
a test set and three training sets. For each experimental setup S, we selected all peptide
charge pairs with at least 10 spectra in setup S (and at least 10 spectra in other setups). Five
spectra belonging to S were randomly assigned to the test set. The remaining spectra of S
were assigned to the first training set, termed the custom training set. All spectra that did
not belong to S were assigned to the MCIP training set. The union of custom training set and
MCIP training set was termed MCIP custom training set. Hence, the custom training set
corresponded to the scenario of a custom-made spectral library, the MCIP set corresponded
to the scenario of having a heterogeneous spectral repository and the custom MCIP set
corresponded to the scenario of integrating a repository library with a MCIP library. Only
the main CIP was determined from the custom training set, and MCIPs (and also one CIP
as a control) were determined from the MCIP training sets. The dot scores of the respective
CIPs/MCIPs with the test set were computed.
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Figure 2.2: Example of the MCIP method applied to a set of input spectra using the maxi-
mum neighbor approach. Each point represents a fragmentation spectrum, and the distance
of the points to each other represents the spectrum similarity. Large circles represent the
similarity thresholds. Numbers on the points indicate the number of neighbors below the
similarity threshold. Spectrum with the maximum number of neighbors (i.e., the medoid) is
chosen as CIP1. All neighbors are assigned to CIP1, spectra outside the similarity threshold
are clustered again, and CIP2 is found. Clustering is repeated until all spectra are assigned
to a CIP.

2.3.11 Comparison with SpectraST
A comparison of the spectral coverage with the popular SpectraST search engine [60] was
carried out. For this, input files in “.pep.XML” format suitable for SpecraST were created
from the MaxQuant spectrum identifications. Hence, for each training set belonging to a
specific training and test set combination, a set of “.pep.XML” files was generated that
contained only the spectra of the specific training set. SpectraST library spectra were then
generated from these “.pep.XML” files. This ensures that the comparison between the MCIP
approach and the SpectraST approach is carried out with exactly the same underlying data.
To generate the SpectraST library spectra, .pep.XML output files were submitted to Spec-
traST in library create mode using the default configurations. The resulting raw library was
processed to a consensus library using the corresponding SpectraST option. The consensus
library mode was chosen because it has been shown to give the highest number of positive
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identifications [27]. The consensus library was then quality filtered using the highest quality
level (option -cL5) in SpectraST. The raw spectra from the Kuster Set were converted into
“.mzXML” format with the tool MSConvert [76], and the “.mzXML” files were subsequently
searched with SpectraST.

2.3.12 Benchmarking via cross validation
To conduct performance testing, a cross-validation approach was used. The replicate spectra
of each peptide charge pair were split into two fractions. The first fraction consisted of 20%
of the spectra, and each spectrum was assigned a decoy spectrum P decoy which contained
m/z-shuffled intensities of the original spectrum. Shuffling was carried out using unbiased
random permutations of the m/z values. As only identified m/z values were used, no further
constraint was applied to the permutation. By shuffling the spectra, the total intensity and
the m/z values were preserved while the spectrum was changed completely. A 1:1 mixed test
set containing original and decoy spectra was then generated. The second fraction consisted
of the remaining 80% of spectra. On this fraction, CIP(s) were created as described in the
previous sections. The CIP(s) were then similarity scored against the test set using the
dot score. A similarity score below the similarity threshold for an original spectrum Porig

was marked as false negative, a score above the threshold with a decoy spectrum Pdecoy was
marked as a false positive. The m/z-shuffling approach is similar to the method employed
by Lam et al. [77], where counting of decoy matches is used library wide to estimate the
FDR. Each set of replicate spectra was individually checked via 5-fold cross validation in this
study. This allowed estimating the relative fractions of false positives and false negatives per
peptide charge pair, rather than library wide.

2.3.13 Processing of targeted LC-MS/MS runs for CE and isola-
tion window study

The targeted data acquisition setup mentioned in the discussion and supplemental Figures
S13/S14, was not accessible to standard DDA processing via MaxQuant. The “.wiff” files
were converted to “.mzXML” using MSConvert [74], and the “.mzXML” files were then
processed using an in-house scoring method, termed ReScore. ReScore is a re-implementation
of the scoring described in the publication of the MaxQuant search engine Andromeda [19].
The scorings are exactly re-implemented as described in the publication. However, as not all
in-depth details of the processing were accessible, the absolute values are different. The scores
were compared to Andromeda using DDA runs that were carried out along with the targeted
LC-MS/MS runs on the same standardized HeLa Pierce lysate (PXD006691). The scores
show strong correlation with the Andromeda scoring, and the vast majority of Andromeda
scores is higher than the corresponding ReScore (Supplemental Figure S5). Hence, a certain
ReScore cutoff can be used as a reliable cutoff for the Andromeda score.

2.3.14 Benchmarking spectral library performance on DIA data
To assess the spectral library performance on DIA data, a combination of the OpenSwath
DIA search engine [34] and the corresponding spectral search engine SpectraST was used. A
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SWATH datafile acquired in the scope of a benchmarking study of Navarro et al. [78] was
downloaded from the PRIDE repository PXD002952 (file id I150211) and processed into the
mzXML format with MSConvert. Additionally, the corresponding OpenSwath identifications
were directly downloaded from the PRIDE repository (1% protein-level FDR and 1% peptide-
level FDR). Spectral libraries were generated with SpectraST and with the MCIP method
as described in the section above. Precursor tolerance for SpectraST was adapted to the
SWATH window width. Noncanonical peaks were excluded (-s_UAS 0.0), and only the most
intense peaks (-s_LNP 10) were chosen, as recommended by Schubert et al. [74] For the
MCIP method, fragment ions were identified at 15 ppm accuracy, including molecular losses.
Dot scores were extracted scoring the highest intensity spectrum in the OpenSwath peak
group against the library spectrum. As SWATH data has different noise levels than DDA
data, decoy distributions were generated for SpectraST as well as the MCIP approach. The
decoy distributions were obtained by taking the dot scores of the library spectra with SWATH
spectra that were 40 min away from the peak group retention time or in a differing m/z
range. This ensures that the library spectra are scored against mass spectra not containing
the library peptide. More than 100 samplings were carried out per peptide. To compare the
significance of peptide hits with respect to the noise levels, an empirical p value (how often
a dot score was higher equal to or higher to the library dot score) was calculated for each
peptide for the MCIP and for the SpectraST approach. The resulting p-value distribution
was corrected for multiple testing via the Benjamini-Hochberg method [79].

2.4 Results

2.4.1 Spectral variability is widespread over experimental condi-
tions

We considered the data sets listed in Table 2.1 containing a total of 10 different experimental
settings. We chose a subset of experiments for the Kuster Set with large peptide overlap
with either the Aebersold or the Imhof Set, resulting in a heterogeneous set of experimental
conditions (see Supplemental Figure S6). To obtain a more detailed understanding of spectral
variability, we sorted all replicate spectra corresponding to their respective experimental
condition. We then combined all possible pairs of experimental conditions, resulting in 45
pairs (one example pair: Orbitrap Fusion Lumos in HCD mode at CE 25 vs Sciex Q-ToF
5600+ using CID and optimized rolling collision energy). We assessed the dot scores between
the experimental conditions in a pairwise manner. The median values of the resulting dot
score distributions are displayed in Supplemental Figure S7 and show a clear clustering
after experimental settings. To visualize dissimilar clustering, we plotted the lower 10%
quantiles of the pairwise dot score distribution in Figure 2.3a. We observe a large spread
in the distributions of dot scores with visible dependence on the experimental settings. The
calculated dot scores are most stable for Orbitrap data generated by HCD fragmentation with
collision energies (CEs) from 20 to 30. The Kuster CID@CE35 setup with low-resolution
ion trap readout differs most from the remaining setups. The Q-ToF data sets cluster
together with the highest CE Orbitrap dataset. We see relatively low dot scores within
identical experimental settings (diagonal of the heatmap) for the Q-ToF data sets and for
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high collision energies as well as for low-resolution readout in the Kuster Sets. This underlines
that even under fixed experimental conditions fragmentation can vary. Some examples are
shown in Supplemental Figure S8, and more interpretation of this phenomenon is given in
the Discussion. To investigate the influence of CE on spectral similarity, we considered the
distributions of pairwise dot scores between the Orbitrap set at CE 20 and the Orbitrap sets
at higher CE (Figure 2.3b, left). We see a clear influence of the CE difference on the pairwise
distributions. We extracted the 10% quantile and the median from these distributions and
plotted them against the CE difference (Figure 2.3b, right). We see almost no influence of
small CE changes. For CE changes between 5 and 8 we see a clear drop in similarity and
between 10 and 15 an even stronger drop, which indicates complex processes underlying
peptide fragmentation. Ion trap readout generally shifts the dot scores toward lower values
(see Supplemental Figure S9). To elucidate the drastic effects of the observed variability on
peptide identification, we carried out a clustering on the 45 combinations of experimental
conditions (Figure 2.3c). Each combination in the heatmap shows the fraction of peptides
that have only one cluster. This corresponds to no spectra clustering outside the main cluster
and hence no spectra being missed in a spectral library search. We see that depending on
the experimental combination, as little as 35% of peptides fulfill this condition, with most
combinations ranging from 60% to 90%. From these observations we conclude two main
points: (i) The machine setup can play a crucial role for spectral recognitions and (ii) even
fixed experimental settings can lead to spectra being missed.
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Figure 2.3: (continued)
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Figure 2.3: Spectral similarity between experimental conditions. (a) Ten percent quantiles of
the distributions of dot scores between the different experimental conditions. (b) Distribution
of pairwise dot scores for the Orbitrap HCD conditions with the collision energy (CE) 20
setting (left). Median and 10% quantile are drawn in as dashed lines and plotted against
the CE difference (right). Two clear drops in similarity are visible. (c) Fraction of peptides
with no missing spectra after a spectral library search, determined between the different
experimental conditions. Depending on the condition pair, the fraction can go down to
around 35%.

2.4.2 Usage of MCIPs yields almost complete spectral coverage
To achieve a global impression of the performance, we assessed the spectral coverage (see
Expermental Section) for all peptide charge pairs. The spectra were compared either with
one CIP (in accordance with the current library approaches) or with MCIPs. Figure 2.4a
shows a striking improvement upon successive integration of more and more CIPs (red up
to orange line) until near-complete coverage is reached. The largest gain is visible upon
integration of the second CIP (blue line), which corresponds to the second largest cluster.
This improvement clearly shows that significantly higher peptide recognition is possible by
simply including two representative spectra for a peptide charge pair instead of just one.



24 2. Detecting peptides in MS proteomics data

2.4.3 MCIP library performs comparable to and enhances custom-
made libraries

Custom-made spectral libraries can be seen as the gold standard for creating a high-performing
spectral library [80]. These libraries, however, come with drawbacks compared to spectral
repositories, mainly due to the effort in creating the library or the limited number of pep-
tides in the library. To evaluate the performance of our libraries, we generated a set of test
spectra for each experimental condition. For each set of test spectra, we generated spectral
libraries from three different sets of training spectra: (1) The custom set only contained
spectra measured under the same experimental condition as the test set. (2) The MCIP set
contained spectra measured under all available conditions except the condition of the test set.
(3) The MCIP custom set contained spectra measured under all available conditions. The
MCIP set was chosen in this way to recreate the scenario of having a repository library (the
MCIP set) and own data measured under a different experimental setting (the test set). We
then determined either a single CIP or MCIPs from the different sets of training spectra and
compared them with the test spectra (see also methods section). This allowed us to directly
assess the effect of extending the current single CIP approach to an MCIP approach. We first
examined the fraction of missed spectra, which denotes spectra that would not be detected in
a spectral library search, when using a (rather low) similarity threshold of 0.6 (Figure 2.4b).
Using MCIPs always performs better than the current single CIP approach. As a general
trend, we see that differently clustering spectra are more common in experimental setups
where either the spectral resolution is low (ion trap) or fragmentation energy settings are
high. The most challenging setup Kuster CID@CE35 with ion trap readout leads to around
one-third of spectra being missed when using a single CIP approach. Integrating multiple
CIPs reduces the missed fraction by a factor of 2. Using a custom library further reduces
the missed rate to around 5%. Using the MCIP custom training set yields an overall missed
rate of 3%. For the other experimental conditions, the MCIP approach gives a similar per-
formance as the custom library approach. In around one-half of the cases the custom library
approach is slightly better; in the other half the MCIP approach performs slightly better.
The MCIP approach in combination with the custom approach always increases accuracy.
The results described also hold for maximum neighbor clustering (see Supplemental Figure
S10) and are stable for different training sets. An example of a spectrum being detected by
a CIP outside the main cluster is given in Figure 2.4c. To give an intuitive visualization
of the similarities between the spectra, the fragment ion intensities are connected via lines.
We see that CIP1, which was acquired at HCD@CE23, has a significantly less prominent
b6-ion, which significantly alters the shape of the fragmentation profiles for the higher energy
CID@CE35 and HCD@CE28 spectra. The annotated raw spectra corresponding to Figure
2.4c are displayed in Supplemental Figure S11.
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Figure 2.4: (caption on next page)
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Figure 2.4: Comparison of the MCIP approach with current approaches. (a) Spectral cov-
erage of the whole data set for different numbers of characteristic intensity patterns (CIPs)
integrated in the spectral library. Number of peptide charge pairs (y axis) is displayed, for
which the spectral coverage is larger than or equal to the value denoted on the x axis. The
single CIP approach (red line) leaves a large fraction of spectra uncovered. Integrating one
more CIP (blue line) into the library gives a strong increase in coverage with successively
smaller increases upon integration of more CIPs until almost complete coverage is reached
for up to 5 CIPs per peptide charge pair. (b) Fraction of spectra with dot score < 0.6 to
the CIP/MCIPs (missed spectra). Each group of histograms displays one experimental con-
dition the method is tested on. Different clustering approaches are indicated in the legend:
M1 equals the MCIP approach with a single CIP (state-of-the-art approach). M5 equals the
MCIP approach with a maximum of 5 CIPs included. C equals the custom library approach,
and M+C 5 equals the MCIP approach with custom spectra included. (c) Example of a
query spectrum dissimilar to CIP1 (dot score 0.28) but similar to CIP2 (dot score 0.96).
Raw spectra are displayed in Supplemental Figure S11. (d) Missed spectra of MCIP and
SpectraST using identical training and test sets. Number of spectra missed is significantly
lower for the MCIP approach for both the noncustom (left) and the custom (right) approach.

2.4.4 Direct comparison with SpectraST shows significantly in-
creased sensitivity

To further assess the performance of our MCIP approach, we carried out a comparison
with the SpectraST [60] spectral search engine, which is among the most popular in the
field [26]. We again determined the fraction of missed spectra at a similarity threshold of
0.6. We generated the SpectraST library on the identical spectra as our own library (see also
Expermental Section). We see that the MCIP approach outperforms the single CIP approach
of SpectraST in terms of sensitivity in the custom setup as well as in the noncustom setup
(Figure 2.4d).

2.4.5 MCIPs increase sensitivity without affecting specificity
As has been shown in the previous sections, MCIPs are able to cover all replicate spectra for
many peptide charge pairs and thereby improve sensitivity in spectral searches. However,
this might come at the cost of reduced specificity (i.e., increase in false positives). Here
we investigate, whether using MCIPs affects the number of false positives and the overall
accuracy. We tested this by first generating CIPs on 80% of the replicate spectra and then
scoring these CIPs against a mixture of the remaining replicate spectra and shuffled decoy
spectra. This allowed distinguishing true positives (match of CIP with replicate spectrum)
from false positives (match of CIP with decoy spectrum). The procedure is described in
more detail in the Expermental Section. Figure 2.5a) shows that the overall accuracy for
MCIPs (blue line) increases significantly in comparison to a single CIP (red line). For >99%
of peptide charge pairs, the minimum accuracy increases by around 10% when integrating all
CIPs available for each peptide charge pair in the spectral library (blue line). In Figure 2.5b,
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Figure 2.5: Assessment of accuracy using permuted decoy spectra, as described in the Ex-
perimental Section, cumulative plot. (a) Comparison of the overall identification accuracy
between the single characteristic intensity pattern (CIP) approach (red line) and multiple
CIPs (MCIPs) (blue line). Significant improvement upon integration of MCIPs is visible.
(b) Effect of MCIP integration on false negatives: false negatives rate is strongly decreased
as now also the differently fragmenting ions are integrated. (c) Effect of MCIP integration
on the false positives rate, which is only marginally increased upon integration of MCIPs.

we see (as expected from the spectral coverage results) a strong decrease in false negatives
upon integration of MCIPs. At the same time, we see that the false positive rate displayed in
Figure 2.5c is very mildly affected. The results of integrating all MCIPs instead of 5 MCIPs
are virtually identical.

2.4.6 Analysis of a same-sample DDA and SWATH data Set
One of the current applications of spectral libraries is the analysis of SWATH data [34]. In
this setup, CIPs are matched with more complex MS2 spectra. Larger spectral libraries can
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increase performance [81] but also show more stringent cutoffs after multiple testing correc-
tion [82]. As described in the Expermental Section, we used a data set where the same sample
had been identified using DDA and SWATH. We then utilized this setup to derive a spectral
library of peptides, which was expected to be in the SWATH data set. We then searched
the library patterns against the DDA run as well as the SWATH run with the fraction of
nonidentified spectra (“errors”) plotted against the similarity threshold (Figure 2.6a). For
the DDA run, the results are analogous to the results already presented, with a significant
improvement of identification upon integration of MCIPs (red and blue line, respectively).
For the SWATH run, we observe lower baseline identification with approximately 20% of the
patterns not being identified at all, likely due to the higher noise in the SWATH patterns.
Nevertheless, also for the SWATH data set we observe very similar effects when comparing
the single CIP approach (green) with the MCIP approach (magenta) with an ≈30% increase
in identification accuracy at reasonable similarity scores (e.g., 29% for a dot score of 0.6).

2.4.7 Comparing the MCIP approach and SpectraST on a SWATH
data set

As described in the Expermental Section, we carried out a comparison of the MCIP approach
and SpectraST on a public SWATH benchmarking data set of Navarro et al. [78]. The
instrument setup TripleTOF 6600 with 64 variable windows was chosen as it showed the
highest performance in the study of Navarro et al. The SWATH peak groups were identified
with OpenSwath [34] at peptide and protein level FDR of 1%. A spectral library was
created on identical input data for the MCIP approach and for SpectraST. Both libraries
were scored against the SWATH data set, and the dot scores with the identified peak groups
were extracted. As is visible in Figure 2.6b, all dot scores are lower as compared to the
less noisy DDA data. The dot scores generated with the MCIP approach show a clear
shift toward higher dot scores. As we saw that the overall dot score distributions were
different on SWATH data, we again generated sets of decoy distributions, as described in
the Expermiental Section. We see that the decoy distributions of SpectraST and the MCIP
approach are both shifted toward very low values, with lower values for the MCIP approach
(see Supplemental Figure S12). Using the decoy distributions, we estimated the significance
of peptide hits as described in the Expermental Section. In Figure 2.6c we see that the
combination of higher dot scores and lower noise levels in the MCIP approach strongly
increases the number of significant hits compared to SpectraST.

2.5 Discussion
In our study we introduced a simple and efficient strategy to deal with the heterogeneity of
peptide fragmentation. We see that instrument settings can have a huge influence on the
peptide fragmentation behaviour, especially for high-energy and low- resolution spectra. We
have shown that exclusion of dissimilar peptide spectra is overcautious and results in the
negligence of many potential hits. We observe that even under fixed experimental condi-
tions spectra can vary from each other. This effect is strongly enhanced by low-resolution
readout. Additionally, very high collision energy changes also have an effect on differing pep-
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Figure 2.6: Application of the MCIP approach on SWATH data. (a) Repeated analysis of
the same sample with DDA and SWATH. For reasonable similarity thresholds, a significant
decrease in unidentified peptides can be seen to SWATH data when integrating MCIPs
(violet line) in comparison to a single CIP (green line). Analogous behaviour is seen for
the DDA approach, with a significantly smaller number of missed peptides in both cases
(blue line MCIPs, red line single CIP). (b) Dot score distributions when scoring a publicly
available SWATH data set with the MCIP approach and with SpectraST. Shift toward higher
dot scores using the MCIP approach is visible. (c) Ad-hoc significance estimation using an
empirical estimate for the background noise. Higher significance levels are observed for the
MCIP approach compared to SpectraST.

tide fragmentation. Unfortunately, it is beyond the scope of our study to fully explain the
differences in peptide fragmentation under fixed conditions. However, we carried out some
initial screens using targeted LC-MS/MS runs where we varied the applied collision energy
within the same run. This was done to test whether a wrong charge state assignment from
the machine could account for the effects. Our results show that dot scores are robust over
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a range from −3 to +3 V in most of the cases, which covers differences in collision energy
settings caused by wrong precursor charge state assignment (Supplemental Figure S13). We
complemented these runs with experiments on the same lysate, where we tried to investigate
the influence of the background matrix (co-eluting peptides/ions in the same isolation win-
dow). For this purpose, the precursor isolation width was varied between 1 and 5 Da. For
broader isolation windows, we observed a systematic enrichment in differently fragmenting
spectra (Supplemental Figure S13) and an increase in spectral dissimilarity within the same
experimental run (Supplemental Figure S14). For low abundant peptides, it has already
been shown that ion interferences with the background matrix can alter the fragmentation
spectrum [83], which we also see in corresponding analyses in Supplemental Figures S14 and
S15. Recent studies also show this effect with SWATH-MS data [84]. As a low- resolution
readout should also strongly increase the effect of interferences, we speculate that the back-
ground matrix might be responsible for the observed differences in the fragment spectra.
Our reductionist approach of relying on MaxQuant preprocessed spectra comes at the cost
of possibly neglecting important spectral information. The dot score values determined from
this approach will be different from the dot score values derived from raw spectra, as the
representative vectors are shorter and vector length influences the outcome. Nevertheless,
heuristic measures to shorten the vector are applied in common library generation tools
[27, 29] and have been shown to only mildly affect the overall sensitivity. Additionally, we
explicitly tested for accuracy, which is displayed in Figure 2.5 of this study. It should be
noted that MaxQuant spectra do not carry fragment ion annotations for fragment ions in
charge states larger than 2. To check whether this affected the outcome of the scoring, we
repeated our measurements only on peptides in charge state 2 (which should hence not pro-
duce fragment ions with charge larger than 2) with no qualitative differences in the outcome.
As the examined databases mostly contained unmodified peptides, we carried out our inves-
tigation only on unmodified peptides. To get an impression of the influence of modifications
on the fragmentation behavior we repeated parts of our analysis on a subset of modified
peptide charge pairs (Supplemental Figure S16). In this analysis we compared spectra with
the same modification against each other. We see no clear differences from the unmodified
peptide charge pairs and would hence expect no systematic influence of modifications on the
overall fragmentation behavior. On the basis of our findings, we conclude that even though
considerable efforts are being undertaken to extend the amount of available experimental se-
tups in spectral repositories (as, for example, in the scope of the ProteomeTools [72] project),
this might only be part of the solution. Due to the large variety of machine setups available,
a public library is unlikely to be a perfect fit for the desired setup (including instrument
model, fragmentation mode, collision energy settings, fragment ion readout). Additionally,
when a well-fitting spectral library is found, the user has to constrain to the parameters of
the library, which comes at the cost of flexibility in tuning the machine setup. However,
even when this is fulfilled, the user is not able to utilize the full amount of spectral data
available online, as only the peptides available in the specified setup can be used. As we
have shown, using MCIPs frees the user of these constraints and hence improves the usabil-
ity of spectral resources. With the advent of quantitative DIA methods like SWATH, the
phenomenon of MCIPs becomes important in the context of quantification. If MCIPs are
not taken into account, in a significant fraction of cases, fold changes might be miscalculated
because peptides that are actually there will be missed because the fragmentation spectrum
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is different. The increase in spectral recognition of our SWATH data set upon integration
of MCIPs (Figure 2.6) is a first indication that SWATH benefits from our approach.
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Chapter 3

Detecting regulated proteins in
MS-proteomics data

Motivation

In chapter 2, we have introduced a new computational approach to identify peptides in MS
proteomics data. However, simply identifying peptides (and subsequently deriving proteins)
in a sample is often not sufficiently instructive, as coverage of the proteome is in general not
complete [10, 9]. Hence, if a protein is not detected, this is certainly no proof of absence.
While in some cases it can already be biologically interesting to detect certain proteins (for
example splice isoforms [85]), biological insight is more often generated from studying the
regulation of the proteome: when a biological system is perturbed or its boundary conditions
change, this often manifests in a proteomic response, meaning that some proteins increase
or decrease their abundance [43]. Studying these responding proteins often allows inference
of underlying biological processes or the regulation of the biological system. Many current
proteomics experiments are hence quantitative and provide peptide abundance estimates
that allow to detect such changes. As high noise levels and systematic biases are inherent
in quantitative MS proteomics data, the protein change cannot simply be ’read off’ of the
abundance estimates [13]. Rather, detecting changing proteins from these abundance esti-
mates is a computational and statistical challenge, which is commonly termed differential
quantification. One priority is to reduce the noise in the data, another priority is to accu-
rately estimate the noise and to maximize the statistical power.
In the following chapter, we present a novel approach to differential quantification. A main
difference between our method and other state-of-the-art methods is that we put a strong
focus on precisely estimating the noise inherent in the measurements. This allows us to im-
mediately embed every sub-measurement into a ’noise context’ which allows us to estimate
the statistical significance. We present an approach to retain these sub-estimates through-
out the whole analysis pipeline, which increases the statistical power. Our computational
approach substantially increases the performance as compared to other state-of-the-art ap-
proaches, giving more than 100% sensitivity increases on a benchmarking dataset and more
than 1000 additional significant proteins in biological datasets.
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3.1 Abstract
Mass spectrometry based proteomics is the method of choice for quantifying genome-wide
differential changes of protein expression in a wide range of biological and biomedical ap-
plications. Protein expression changes need to be reliably derived from a large number of
measured peptide intensities and their corresponding peptide fold changes. These peptide
fold changes vary considerably for a given protein.
Numerous instrumental setups aim to reduce this variability, while current computational
methods only implicitly account for this problem. We introduce a new method, MS-EmpiRe,
which explicitly accounts for the noise underlying peptide fold changes. We derive dataset-
specific, intensity-dependent empirical error fold change distributions, which are used for in-
dividual weighing of peptide fold changes to detect differentially expressed proteins (DEPs).
In a recently published proteome-wide benchmarking dataset, MS-EmpiRe doubles the num-
ber of correctly identified DEPs at an estimated FDR cutoff in comparison to state-of-the-art
tools. We additionally confirm the superior performance of MS-EmpiRe on simulated data.
MS-EmpiRe requires only peptide intensities mapped to proteins and, thus, can be applied
to any common quantitative proteomics setup. We apply our method to diverse MS datasets
and observe consistent increases in sensitivity with more than 1,000 additional significant
proteins in deep datasets, including a clinical study over multiple patients. At the same time,
we observe that even the proteins classified as most insignificant by other methods but signif-
icant by MS-EmpiRe show very clear regulation on the peptide intensity level. MS-EmpiRe
provides rapid processing (< 2min for 6 LC-MS/MS runs (3h gradients)) and is publicly
available under github.com/zimmerlab/MS-EmpiRe with a manual including examples.
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3.2 Introduction
A major fraction of current Mass Spectrometry (MS) based proteomics experiments is quan-
titative in nature and aims at the detection and quantification of differentially expressed
proteins (DEPs) between biological conditions [86]. As MS measurements are subject to
substantial noise, researchers have to rely on statistical tests which detect changing proteins
at a given false discovery rate (FDR). The de-facto value of a quantitative proteomics ex-
periment could hence be defined by the overall sensitivity (i.e. the fraction of all changing
proteins, which is actually detected by a statistical test) at a reasonable FDR. Huge in-
strumental efforts are being undertaken to increase the overall sensitivity [87, 88, 15, 80, 8]
nevertheless, protein quantification remains a challenging task. In general, protein level
intensities have to be inferred from peptide level intensities. This is complicated by the
fact, that two peptides of the same protein - even though they are equally abundant in the
sample - can be orders of magnitude different from each other in their measured intensities,
for example due to differing ionization efficiencies [89] of the peptides. Additionally, ions
with similar mass can interfere with the quantified peptides and distort the signal [86]. As
many more low intensity than high intensity signals are present in a sample, interference of
low intensity signals is common. A further challenge is due to missing values in the data.
This denotes peptides that are only identified in some of the samples and missing in the
other samples. Several setups are available for quantitative proteomics. In label free quan-
tification (LFQ), each sample is measured in an individual liquid chromatography tandem
mass spectrometry (LS-MS/MS) run and the peptide intensities are compared between the
runs. In the most widely used setup, peptide intensities are derived from the full (MS1)
scans [90]. The sets of peptides identified in each run are often not identical and, therefore,
lead to missing values. This problem can be addressed by matching the MS1 peaks in the
neighboring runs, but this solves the problem only to a limited extent.
A quantification approach that is less computationally challenging is chemical labeling via
tandem mass tags (TMT) [91]. For TMT, up to 11 samples are isobarically labeled on the
peptide level and mixed before submission to LC-MS/MS. The labels have reporter ions
of distinct masses, which are detected in the fragmentation spectrum. Depending on the
machine type, the fragmentation spectrum for reporter ion quantification can be a “classi-
cal“ MS2 spectrum, or an intensity reduced MS3 spectrum, which is generated by further
fragmentation of MS2 fragments [88].
In general, the challenges of protein inference, differing ionization, noisy peptide data and
missing values are expressed to a certain degree in all quantitative MS setups and computa-
tional approaches have to deal with them appropriately.
A common approach for differential expression analysis is to derive protein level fold changes
from the peptide fold changes and to apply statistical tests such as the t-test to assign a
significance to it. This approach is for example implemented in the Perseus pipeline [92].
Peptide level models have been proposed [93, 94] and have recently been shown to offer
superior performance compared to protein level approaches [95, 96, 97]. A recent implemen-
tation is given in the MSqRob package [96]. The majority of peptide level models are based
on linear regression, which can be problematic for data with strong distortion, outliers, or
small peptide numbers. We propose an orthogonal approach, consisting of the direct assess-
ment of peptide level noise, which we term Mass Spectrometry analysis using Empirical
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and Replicate based statistics (MS-EmpiRe). We introduce empirically generated, intensity
dependent error fold change distributions and utilize this for between-sample normalization
and to derive differential expression probabilities for each peptide. We then show that these
probabilities can be combined to the protein level via a modified Stouffer’s method [98].
The data for MS-EmpiRe can be measured with a variety of quantitative proteomics setups,
as we need only peptide intensities grouped to proteins as input. We test the performance
of the method on a recently published proteome wide benchmarking dataset of O’Connel,
Gygi and coworkers [99], containing LFQ as well as TMT-MS3 data. With MS-EmpiRe we
observe up to 121% more sensitivity in comparison to the approach reported in O’Connell
et al. We additionally compare our approach with the peptide level tool MSqRob and see
similar performance increases. On simulated differential expression changes, we see similar
performance results as on the benchmarking set and demonstrate MS-EmpiRe’s superior
classification abilities.
MS-EmpiRe is available as a R package on GitHub (github.com/zimmerlab/MS-EmpiRe).
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3.3 Methods

3.3.1 MS-EmpiRe compared to state-of-the-art approaches
We compare our method with two current methods, MaxLFQ with Perseus [90, 92] and
MSqRob [95, 96], which have different strategies of solving the challenges associated with
MS based protein quantification (Tab. 3.1). For the comparison, we focus on the principle
issues of differential quantification: Normalization between different experimental samples,
the estimation of the protein fold change, the statistical test applied, derivation of the corre-
sponding test statistic (which represents the protein level change), estimation of the variance
parameter(s) of the statistical test and outlier correction. In MaxLFQ, normalization is car-
ried out by minimizing the sum of peptide level fold changes with run specific normalization
factors. The sum is taken over all runs, also between conditions, with the underlying as-
sumption that most of the proteins do not change. Several statistical tests can be applied
to MaxLFQ data, where the t-test shows best performance [90]. The test statistic used in
the t-test is the difference between the mean protein level LFQ intensities per condition.
The LFQ intensities are pseudo-intensities derived from the median of the peptide level fold
changes. The variance of the t-test is derived from the variance of the LFQ intensities be-
tween replicates. Outliers are implicitly taken care of by taking the median of the peptide
level fold changes as a reference for the LFQ intensity.
The MSqRob method relies on a linear model, similar to the limma method for microarray
data [100]. The linear model describes each peptide intensity as a composition of 4 different
effects: The effect of the technical replicate, the effect of the biological replicate, the effect of
the peptide specific ionization and the effect of protein level regulation. The normalization
step is hence included in the linear model estimation. MSqRob uses the t-test and the test
statistic is derived from the protein level regulation effect. Ridge regression and an empirical
Bayes approach are used to stabilize the intensity estimates and the protein level variance,
respectively. To reduce the effects of outliers, M-Estimation with Huber weights is used,
which shrinks the effect of high-residual observations [96].
MS-EmpiRe carries out normalization based on peptide level fold change distributions.
Between-replicate fold changes are used, which ensures that the fold change distribution
should be centered around zero. The statistical test applied is a slightly modified version of
Stouffer’s method. This way, individual peptide level probabilities for regulation can con-
tribute to the test statistic. The peptide level probabilities are derived from the peptide fold
changes in the context of empirical, dataset-specific and intensity dependent background
distributions. The variance estimation is hence carried out via these distributions. This
allows a refined weighing of the influence of peptide noise on a given fold change. Outlier de-
tection is carried out by explicitly modeling the influence of outlier signals and downscaling
of outlier peptides, as described in more detail below.

3.3.2 Normalization
Mass spectrometry data suffer from sample specific effects, i.e. systematic perturbations
which affect whole samples. For instance, the total amount of protein which is processed
per run has a significant effect on the signal measured per peptide. Therefore, raw signals
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MS-EmpiRe MaxLFQ MSqRob
Normalization Median/Mode of peptide fold

change distributions (only replicate
samples)

Minimization of peptide fold
changes (all samples)

Estimation of sample specific con-
tribution via linear model

Protein fold change esti-
mation

Maximum likelihood estimation
from peptide fold change distribu-
tion

Fold change of MaxLFQ protein in-
tensities

Estimation of condition specific
contributions via linear model

Statistical test Modified Stouffer’s method t-test Moderated t-test
Test statistic Sum of Z-transformed, background

normalized peptide fold changes
Difference of MaxLFQ protein in-
tensities

Estimation of condition specific
contributions via linear model

Variance estimation Empirical and Replicate based pep-
tide distributions

Protein-level sample variance Empirical Bayes Estimation

Outlier detection Signal scoring based on outlier dis-
tribution, downscaling of outlier
peptides

Median of peptide fold changes M-Estimation with Huber weights

Table 3.1: The two state-of-the-art differential quantification methods MaxLFQ (with t-test)
and MSqRob compared against MS-EmpiRe.

originating from two different samples are rarely comparable. To correct for sample specific
effects, all signals of a sample are typically multiplied by a scaling factor. In the context
of RNA sequencing data, which are subject to sample specific effects as well, procedures to
detect appropriate scaling factors are introduced e.g. by DESeq and edgeR [101, 102, 103].
While DESeq finds scaling factors by comparison of every sample to a virtual sample, edgeR
computes all pairwise scaling factors. Both methods use the median of many gene level fold
changes as an estimate for the scaling factor. MaxLFQ [90] is a normalization procedure
for mass spectrometry data. Instead of relying on the median, MaxLFQ solves a system of
linear equations to identify scaling factors such that the change of peptide signals between
any two samples (and fractions) is minimized.

All previously mentioned normalization procedures rely on the assumption that most
of the signals do not change between any two samples, even when samples from different
experimental conditions are compared. We use the same assumption, but only for samples
from the same experimental condition (i.e. replicate samples, which should indeed measure
the same peptide values) and use a different factor to normalize between conditions.

Normalization within a condition in MS-EmpiRe is done by single linkage clustering as
described in Fig. 3.1. Each cluster contains either one or multiple samples. We start with as
many clusters as we have replicates and successively merge the two most similar clusters until
we end up with one cluster that contains all samples. Similarity between any two clusters
is defined as follows: For two clusters, we compute a fold change distribution. We build
every possible sample pair between the two clusters and compute the fold change for every
peptide which was detected in both samples of a pair. The variance of this distribution is
used to determine the similarity between clusters while the median is used as an estimate for
a systematic signal shift. To merge two clusters c1 and c2 we scale all signals of samples in c2
by the median. This step yields a new cluster that contains all samples from c1 and c2 and
in which all samples are shifted onto each other. Single linkage clustering is applied to each
condition separately.Samples from two different conditions are then shifted in a similar way,
the difference is the selection of the shift parameter. Since we can no longer assume that
peptides do not change, except for experimental noise, we propose to use the most probable
fold change from the distribution instead of the median. This choice is similar to the idea of
centralization proposed by Zien et al. [104]. Instead of enforcing a minimal change between
all peptides, this shift only targets the majority of peptides and is still in accordance with
the assumption that most proteins do not change. The shift parameter can also be defined
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Figure 3.1: Single linkage clustering for signal normalization. 1) We start with one cluster
containing two samples (green) and three clusters of size one. We identify the two nearest
clusters (grey and blue) and merged them to one new cluster by shifting the signals of the
grey sample according to the median log2 fold change to the blue sample. 2) We merge the
green and blue cluster. Since they both consist of multiple samples, we determine the shift
parameter by computing signal fold changes between any possible inter-cluster sample pair.
3) The last cluster merge step 4) The algorithm results in one cluster containing all samples.
5) The two final clusters of different conditions are merged (blue and red). The resulting
distribution of all inter-cluster fold changes is shown below.

by the user using prior knowledge for certain subsets of proteins for example. After the
normalization, signals for the same peptide between any two samples are comparable.

3.3.3 Empirical error distributions
Our goal is to detect DEPs between different conditions. However, only peptide level mea-
surements are available from current standard MS experiments and protein level changes
have to be inferred. We argue that each peptide level change should be assessed in context
of the noise associated with the measurement. MS-EmpiRe is therefore centered around
replicate based empirical error distributions (Fig. 3.2.1 and 3.2.2). The empirical error dis-
tribution is fully based on the data and derived as follows: We compute the log2 fold change
of every peptide signal between any two replicate pairs in each condition. As the log2 fold
change between replicate samples should be zero, each deviation from zero can be seen as
an error. This results in one large collection of errors, approximately C × N(N−1)

2
× P for

C conditions with N replicates each and P detected peptides. Since we observed that the
variance of peptide measurements depends on signal strength (Fig. 3.3e) we decided to split
the complete distribution into intensity dependent sub-distributions. Each of the resulting
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sub-distributions contains just a subset of all peptide fold changes. For the construction
we sort the peptides ascending to their mean signal strength. We slide a window over the
sorted list of peptides to determine the relevant subset for each distribution. The window
size and how far it is shifted in each step are parameters that can be controlled by the user.
Adjusting it can increase the resolution of the sub-distributions at the cost of computational
time. The default window size is 10% of the total number of peptide measurements with
a maximum of 1200. The size of the shift is set to 1

8
of the actual window size. Note that

each peptide may appear in multiple sub distributions if the shift is smaller than the window
size. To assign each peptide to only one sub-distribution, we save the mean signal of the first
and last element of each distribution. We then calculate the distance of the mean signal to
the start and end of each distribution for every peptide. Each peptide is then assigned to a
distribution such that the minimum of those two distances is maximized, i.e.

max
sub

(min(|substart − s|, |subend − s|)) (3.1)

After this step we have a collection of empirical error distributions that describe the observed
measurement errors in relation to signals. Any observed peptide fold change can now be put
into context of the background noise. This allows us to determine the probability of the
peptide fold change under the corresponding empirical error distribution. We denote this
probability as the empirical p-value (see also Supplemental Figs. 1&2).

3.3.4 Merging scores over replicates
We can now determine the empirical p-value for every peptide between any two samples.
What we rather want, however, is the same information for whole proteins between two
conditions including replicate data. This means we have to express the empirical p-value in
terms of a score that we can combine over replicates as well as peptides. Furthermore the
score should be able to distinguish between negative and positive fold changes. This way we
can identify groups of peptides that consistently show the same direction of change between
multiple replicate pairs. One score fulfilling these criteria is the Z-value, i.e. a score that
follows a standard normal distribution. We can transform an observed fold change into the
corresponding Z-value as follows:

Zfc = ϕ−1(pemp) (3.2)

where ϕ−1 is the inverse of the cumulative distribution function of the standard normal
distribution and pemp is the empirical p-value. This is analogous to Stouffer’s method [98]
for combined probability tests.

This means we can transform any empirical error distribution to a standard normal
distribution (Fig. 3.2.4). In the following sections we will show how those Z-values can be
transformed to joint probabilities over replicate data as well as multiple peptides.

To distinguish between background noise and signals, usually not only 2 samples, but N
vs M replicate measurements from two different conditions are compared. Those yield up to
N ×M scores per peptide which are merged to make a protein-level statement between the
two conditions. Under the null hypothesis of no change, each of the N×M Z-values follows a
standard normal distribution. Under this assumption, we can simply compute the sum of the
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N ×M standard normally distributed Z-values which follows a normal distribution as well.
Looking at the sum is reasonable for the following reasons: It should become extreme only
if we have multiple measurements that consistently deviate in the same direction. Too few
too weak deviations are canceled out by the non deviating measurements. The same is true
for strong deviations in different directions. The mean of the resulting normal distribution is
zero as it is the sum over the individual means. In general, the variance of a random variable
that is the sum over multiple random variables is the sum over the full covariance matrix of
the variables, i.e.

var

(
N×M∑
i=0

Xi

)
=

N×M∑
i=0

N×M∑
j=0

cov (Xi, Xj) (3.3)

The means and variances are known for each of the variables since they follow a standard
normal distribution. We are also able to compute the covariances for dependent variables.
This is necessary because some of the possible sample comparisons are not independent,
in particular any two sample pairs that share either the first or second sample. It can be
shown that the covariance of two Z-value random variables that share one of the samples is
0.5 (Supplemental Material, Section 1 and Supplemental Fig. 3). For each peptide, we can
now assess the unexpectedness under the previously derived background distribution over
all sample pairs.

3.3.5 Correcting for outlier measurements
One problem about the sum described in the previous section, is that it is susceptible to single
outlier measurements. A single extreme Z-value can be sufficient to make the resulting sum
significant. This is because of the null hypothesis that each of the sample pair comparisons
must not be differential. We therefore introduce a correction to estimate the probability, that
a single outlier shifts the distribution towards higher values (Fig.3.2.5). For this correction,
we estimate the Z-value of the peptide when it is not regulated (Znormed) and substract it
from the original Z-value (Zorig). Znormed is estimated as follows: We compute all possible
fold changes of the peptide between two conditions (replicate 1 vs. replicate 1, replicate 1
vs. replicate 2, etc.). This results in a (very small) fold change distribution. Analogous to
section 3.3.2, we use the median of this distribution as a scaling factor and shift all signals
of the second condition by the median. This minimizes the difference of signals between the
two conditions and simulates a non-regulated peptide. We again compute the summed Z-
value for those shifted peptides, i.e Znormed. If the peptide measurements were differentially
regulated previous to the shift, Znormed would be less extreme than Zorig. If the shift does
not change the signal, Zorig and Znormed are more or less the same. We can hence introduce
a new value Zcorrected = Zorig − Znormed, which denotes the difference between a regulated
and a non-regulated shift. We now want to use the distribution of Zcorrected to estimate,
how unlikely an observed Zcorrected value is. The higher abs(Zcorrected) is, the more extreme
the original measurement was. However there exists no closed form for the distribution of
Zcorrected. We therefore sample such a distribution by simulating a set of non-differential
measurements. For each simulated measurement, we compute Zcorrected. Similar to Eq. 3.2,
we look up the cumulative probability of a measured Zcorrected in the simulated distribution
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Figure 3.2: Schematic of the MS-EmpiRe workflow. 1) All identified peptides from a pro-
teomics run are sorted by their mean intensities. 2) The peptides are the split into subgroups
based on their intensity. For each subgroup, the error fold changes of the individual peptides
are calculated. An error fold change simply denotes the log2 fold change of a peptide between
two replicate conditions. All error fold changes within a subgroup form an empirical error
distribution. Distributions corresponding to lower intensity peptides show a larger variance
than for high intensity peptides. 3) When a protein is tested for differential expression, each
peptide gets assigned an empirical error distribution. Peptides of similar intensities can get
the same distribution assigned. 4) For each peptide fold change, the probability that this fold
change happened by chance (e.g. the p-value) is assessed from the empirical distribution.
This means that the same fold change will get a much lower p-value when the distribution
is wide as compared to when it is narrow. To make this value manageable, the p-value is
then transformed to a Z-value, by transferring the mass of the empirical probability distri-
bution to a standard normal distribution. 5) The Z-values for each peptide are corrected for
outliers. For this, the probability is estimated that a high Z-value on the peptide level has
happened by chance due to individual outliers. 6) The corrected Z-values can directly be
summed to the protein level, and the corresponding protein-level p-value can be obtained as
well as the FDR after multiple testing correction.
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of Zcorrected and transform its empirical p-value to a Z-value. Whether this correction is
needed may depend on the data. The null distribution of the corrected score is a standard
normal distribution.

3.3.6 Correcting for outlier peptides
The previous section shows how to correct for outlier measurements of single intensities.
Peptides that show a much more extreme change over many samples than the remaining
peptides of the same protein have to be accounted for separately. To detect outlier peptides,
we compute fold changes for every peptide and sample pair of the same protein. If the
median of a single peptide is more extreme than the 25%/75% quantile of the whole protein
distribution and protein and peptide are shifted in the same direction, it is marked as an
outlier. To compute Znormed for an outlier peptide, we shift the signals by the 25%/75%
quantile of the protein distribution instead of the median of the peptide distribution. This
modified shift results in a less extreme Zcorrected for the peptide.

3.3.7 Combining the peptide scores
What we have so far is a Z-value that expresses how likely it is for a peptide fold changes
over all possible replicate comparisons to occur by chance. Each of those Z-values follows a
standard normal distribution.

Similar to the first step of merging the peptide scores over all replicate pairs, we can join
those scores for all peptides from the same protein (Fig. 3.2.6). In contrast to measurements
for the same peptide from different sample pairs, peptide measurements can be regarded as
independent measurements for the same protein. This means that under the null hypothesis
that every peptide score is a standard normal distributed variable, the sum of such peptide
scores is distributed

P∑
i=0

Zi ∼ N (0, P ) (3.4)

with P being the number of different peptides mapped to a certain protein. Using this sum
of peptide scores we can now express the probability of a protein under the null hypothesis
of no change while taking into account all replicate measurements. To correct for multiple
testing we finally apply the Benjamini-Hochberg false discovery adjustment.

3.3.8 Re-processing of the proteome wide benchmarking dataset
We downloaded the raw data of the study of O’Connell et al. [99] from the PRIDE reposi-
tory PXD007683 and processed the TMT as well as the LFQ dataset with MaxQuant [39]
version 1.6.0.16 with standard settings and the respective quantification set (11 plex TMT-
MS3 and LFQ). The LFQ data consisted of 11 single-shot runs and for the TMT data 10
runs corresponding to 10 fractions were available. The mapping of the raw files is available
in Supplemental Tab. 1. Each set contained three conditions: 10% yeast spike-in, 5% yeast
spike-in, 3.3% yeast spike-in. For 10% yeast spike-in, three replicates were measured, for
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5% and 3.3%, four replicates were measured. The datasets were searched against a com-
bined yeast (7,904 entries) and human (20,317 entries) database downloaded from Uniprot
(04/2018, reviewed). Specific digestion was set for trypsin with two missed cleavages al-
lowed. Carbamidomethylation of Cysteine was set as a fixed modification and Oxidation
of Methionine and N-terminus Acetlyation were set as variable modifications. 20ppm mass
tolerance were set for precursor ions und 0.5m/z were set for fragment ions. Results were
filtered to 1% FDR at the peptide-spectrum-match (PSM) and protein level. For the LFQ
data, the “match between runs” option was set (default configuration). We compared the
number of identified proteins with the results reported from O’Connell et al. and observed
only slight differences, possibly due to different databases and MaxQuant versions (-2% for
TMT and -1% for LFQ for our protein). Hence the numbers are a bit different but should not
influence the overall outcome. We found around 400 proteins after filtering in the MaxLFQ
with Perseus setup, which agrees well with O’Connell et al. As we used MaxQuant instead of
SEQUEST [17] for the TMT analysis, we had a noticeably lower identification rate (around
100 proteins less compared to the SEQUEST results presented in the main text of O’Connell
et al.). This is similar to the MaxQuant results for TMT reported in the supplement of
O’Connell et al.

3.3.9 Processing of the different proteomics studies
We tested and compared MS-EmpiRe on three different proteomics studies of Sharma et
al. [105], Ramond et al. [106] and Ping et al. [107]. We downloaded the MaxQuant
processed data of Sharma et al. and Ramond et al. directly from the corresponding PRIDE
repositories. For the Ping et al. data, we downloaded the raw files from the PRIDE repository
and processed the TMT data analogous to the method described above.

3.3.10 Filtering of the benchmarking dataset
Between the different tools, we noticed large differences in the number of proteins that are
actually submitted to statistical testing. MaxLFQ with Perseus showed the most conservative
filtering, while MSqRob was most permissive. The decision whether or not to accept proteins
with only a single quantified peptide value had the most impact on the filtering. With only
one peptide per protein, a misidentified peptide can immediately lead to a false classification.
As in MS-EmpiRe a peptide needs to be consistently quantified over multiple replicates to
gain significance, the probability for such an event decreases and we hence decided to use
a less conservative filtering of only one peptide per protein. We also compared the one-
peptide with the two-peptide approach and observed no significant effects on the FDR (see
Supplemental Fig. 5). This underlines the fact that MS-EmpiRe is designed appropriately to
deal with sparse peptide evidence caused by many missing values. For filtering of MS-EmpiRe
the following peptides/proteins were excluded: reverse peptides and contaminants, peptides
mapping to yeast as well as to human and proteins quantified in only one replicate. As yeast
and human are on very distant branches of the evolutionary tree there are many changes
in the protein (and thus peptide) sequences even for homologous proteins. By excluding
peptides mapping to yeast as well as to human proteins, we ensured a clear mapping of
every peptide to either yeast or human, without having to exclude many peptides. This
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way less than 0.5% of all peptides are excluded from the analysis, even though a large
fraction of yeast proteins is homologous (LFQ: peptides used: 58,805 reverse/contaminants:
328 (0.56%) organism-unique: 58,240 (99.04%) organism-ambiguous: 237 (0.40%), TMT:
peptides used: 61,267 reverse/contaminants: 312 (0.51%) organism-unique: 60,707 (99.09%)
organism-ambiguous: 248 (0.40%)).

3.3.11 In silico benchmarking
The HeLa background proteins from the study of O’Connell et al. were normalized via
MS-EmpiRe and each sample was considered a replicate measurment. This resulted in 11
quasi-replicate runs, out of which 6 were randomly chosen. The 6 replicate measurements
were split into two sets with 3 replicates each. One of the sets was chosen for in silico
expression changes. For the selected set, a subset of the proteome was chosen and was
artificially r̈egulated.̈ For each protein in the subset, an expression change factor was drawn
from a distribution. The peptide level changes for the protein change were then sampled
around this factor. The changed and the unchanged subset were then compared as two
separate experiments with MS-EmpiRe. As in the benchmark it was known which proteins
were regulated and the differential quantification performance (sensitivity, specificity etc.)
could be assessed.
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3.4 Results and Discussion

3.4.1 Fold change based normalization reveals structure of the
benchmarking dataset

We used the benchmarking dataset from the study of O’Connell et al. [99], where yeast is
spiked into human cell lysate at different concentrations (10%, 5% and 3.3%) (Fig. 3.3a).
Hence, when comparing the abundance of yeast proteins e.g. in the 10% sample with the 5%
sample, one expects a fold change of 2 for each yeast protein. The two other combinations
5% vs. 3.3% and 10% vs. 3.3% give a fold change of 1.5 and 3, respectively. When
applying a differential quantification algorithm, the changing proteins are known (e.g. the
yeast proteins) and, thus, measures like specificity and sensitivity can be assessed. The
samples were measured twice, once using a TMT-MS3 approach and once using label free
quantification (LFQ). To visualize the normalization procedure employed by MS-EmpiRe,
we used the LFQ dataset. Between every sample pair, we calculated the log2 fold change for
each individual peptide. This resulted in a distribution of fold changes for each sample pair,
which was either a between replicate, or a between sample distribution. For the between
replicate distribution we would only expect deviations from zero due to measurement errors
or biological variation. Therefore, we call this distribution the empirical error distribution.
For the between sample distribution, we would only expect systematic deviations from zero
for the regulated proteins. In Fig. 3.3b, the between sample distributions are displayed
before normalization. For clarity, human proteins (which should not change at all) and yeast
proteins (which have systematic changes applied to them) are displayed separately. We can
already see some trends in the distributions, which underlines the fact that the fold change
based view is an intuitive measure for quantitative datasets. When applying subsequent
between-replicate and between-sample normalization, as described in the methods section,
we obtain the visibly clustered distributions displayed in Fig. 3.3c. The human peptides
(around 90% of peptides) are not shifted and distributed around 0. The yeast proteins are
aligned around the shift that was experimentally applied to them (i.e. the log2 transformation
of 1.5, 2 or 3). If too much or too little yeast had been applied to one of the samples, this
would reflect in a stronger deviation in a subset of the replicate distributions. This is not the
case in our dataset and we see – with slight deviations- an alignment around the desired value
(dashed lines). In a real life example, we would not expect systematic changes around one
fold change in one direction, but larger spread deviations in both directions. The example,
however, visualizes that a fold change based approach on quantitative data sets is an effective
procedure to normalize datasets without altering the structure of the underlying data. In
general, the distributions reveal a ubiquitous problem in MS based proteomics data. The
data is so noisy, that a lot of the measured yeast peptides do not even show regulation. This
is most striking for the 1.5 set, where around one quarter of the peptides show no regulation,
or even regulation into the wrong direction. Hence there is no way to classify these peptides
correctly by themselves. Since usually, multiple replicates and peptides exist for a protein,
the quantification of a protein can be seen as multiple drawings from such a distribution.
This underlines that peptide fold changes should always be analyzed in the context of the
dataset specific noise.
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Figure 3.3: Experimental setup and fold change based metrics. a) Benchmarking setup for
quantitative assessment of fold changes taken from O’Connell et al. [99]. Different amounts
of yeast lysate are spiked into human cell lysate. The three groups contain 10%, 5% and 3.3%
yeast lysate, respectively. b) Peptide level fold change distribution between all conditions,
before normalization. c) The distribution after fold change based normalization. e) Intensity
dependent peptide fold changes between two replicates of the LFQ data (error fold changes),
displayed as smoothed density scatter plot. f) Error fold changes for 10 intensity regions
displayed as box plots. Each box contains the same number of data points. The quantiles
correspond to the fractions 0.05, 0.15, 0.50, 0.85, 0.95.

3.4.2 Assessment of empirical error distributions underlines the
importance of context dependent fold changes

As already described in the methods section, one of the key features of the MS-EmpiRe algo-
rithm is the quantitative assessment (and subsequent utilization) of fold change consistency.
For this we make use of the fact that the log fold change between replicate measurements
should be 0, which allows us to derive empirical error distributions containing the fold
changes of peptides between replicate measurements. These distributions have already been
discussed in the previous section and the human peptides displayed in Fig. 3.3c are a good
example. However, when looking at the empirical error distributions over a whole dataset,
as in the previous section, we neglect the well-known fact that low-intensity peptides are
subject to significantly more variation than high intensity peptides. An intuitive way to vi-
sualize this is by plotting the error fold changes against the mean intensities of the peptides,
as displayed in Fig. 3.3d. In this density scatter plot, we see that the majority of peptides
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is actually of low intensity and in the low intensity region a large spread of the fold changes
is visible. Furthermore, we see global dependence of the error fold changes on the intensity
and high intensity peptides are much less prone to deviate strongly from zero. Nevertheless,
outliers exist for all intensities, which underlines the need for a more quantitative assess-
ment. This is depicted in Fig. 3.3e, where empirical error distributions are given for distinct
intensity bins. The original fold change distribution is split into 10 boxes and each box
contains equal amounts of data points. We see that the lowest intensity box is particularly
noisy, with around 40% of the data above a fold change of 1.5 (log2 fold change of around
0.6). Hence, if a low intensity peptide has a 50% intensity increase from one condition to
the other, the likelihood that it is an actually irrelevant change is at around 40%. When we
consider the highest intensity box, this value drops from 40% to around 5%. Identical fold
changes hence have a very different meaning, depending on the context. The MS-EmpiRe
approach transforms an observed fold change in the context of its corresponding empirical
error distribution and, therefore, quantitatively accounts for this phenomenon. Especially,
as every datasets carries its own noise, and e.g. TMT-MS3 data shows significantly reduced
noise (see Supplemental Fig. 4) the empirical assessment for each dataset is crucial.

3.4.3 MS-EmpiRe shows up to 121% sensitivity increase in an ex-
perimental benchmarking set

The key question addressed in the setup of O’Connell et al. [99] is, how many proteins can be
detected as differentially expressed in a proteome wide benchmarking setup. Analogous to
their paper, we assessed how many of the experimentally shifted yeast proteins we were able
to detect via MaxLFQ coupled to the Perseus pipeline. We then compared this approach
with our MS-EmpiRe approach and the more recent tool MSqRob. Perseus was executed
analogous to the settings given in O’Connell et al. (reverse and contaminant filtering, at least
two replicate measurements per protein and two sided homeoscedatic t-test with Benjamini-
Hochberg correction) and MSqRob was executed with default settings. An FDR of 5%
was set for all approaches. In Fig. 3.4a and 3.4b, we show the results of the benchmark
for the more challenging LFQ setup. The number of peptides available for testing differs
markedly, depending on how conservative the corresponding tool is in filtering peptides for
quantification (see also methods section). MS-EmpiRe clearly outperforms MaxLFQ+t-
test in terms of sensitivity, with up to 120% more DEP detections in the fold change 1.5
setup. When comparing MS-EmpiRe with MSqRob, it seems that MSqRob is slightly more
sensitive. However, for MSqRob the observed FDR (i.e. the number of human proteins
detected) is between 9% to 15% instead of the required 5% for MSqRob. MaxLFQ+t-test
and MS-EmpiRe also violate the FDR in the fold change 2 setup, but only by 1 and 2
percentage points, respectively. To make the sensitivity analysis more comparable, we show
an “FDR corrected“ bar for MSqRob, where we set the FDR cutoff of MSqRob to a more
stringent value (see methods section), such that the actual FDR is also at around 5%. In this
setup MS-EmpiRe outperforms MSqRob in terms of sensitivity in all cases and detects more
than twice the number of proteins of MSqRob in the most challenging fold change 1.5 setup.
As MS-EmpiRe and MaxLFQ+t-test both violated the FDR for the fold change 2 dataset,
we looked at the corresponding data in more detail. We saw that many of the misclassified
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human proteins in the dataset were particularly tough cases, where many peptides over many
replicate conditions show consistent up- or down regulation (see Supplemental table 2). Of
course, cases like this are included in the FDR estimation. However, the condition seems to
have more cases of consistent protein up-regulation than expected. We considered “tuning“
the FDR estimator to be more conservative, but took into account that the FDR violation
was only mild and that neither the other benchmarking conditions, nor the simulations
showed further FDR violations. As slight regulation or systematic distortions might always
occur under experimental settings, we decided to leave the model unchanged. The setup
shown in Fig. 3.4a contains the input sets after the individual filtering applied by each
method. This corresponds to a real-life application of the methods, but also reduces the
comparability of the classification capabilities. We hence compared each method on the
same set of peptides, which consisted of the intersection of all input peptides. This led to a
significant decrease in the number of proteins detected. Interestingly, the drastic reduction
of input peptides strongly increased the number of detected proteins for MSqRob for the 1.5
set. This implies, that MSqRob is prone to give an over-optimistic scoring to proteins with
sparse peptide evidence and hence more stringent filtering might be appropriate. In the fold
change 1.5 set, MSqRob also does not violate the FDR constraint. In the two other sets,
the peptide filtering does not seem to suffice to control the FDR and also for MS-EmpiRe
the fold change 2 set still violates the FDR slightly. Nevertheless, MS-EmpiRe is the most
sensitive method over all sets. When comparing the methods on the less challenging TMT
data set in Fig. 3.4c, we see overall high sensitivity, which is also discussed in O’Connell et
al. Also here, we see a substantial increase in sensitivity of around 20% compared to the
t-test, when considering the 1.5 fold change set.

3.4.4 MS-EmpiRe identifies up to 1,200 additional significant pro-
teins in quantitative MS datasets

To test the performance of MS-EmpiRe in different experimental settings, we applied our
method to public MS datasets from three different studies. The first study by Sharma et al.
[105] was a deep (≈12,000 proteins) LFQ proteomics study of neuronal cell development. For
the second dataset, we chose the LFQ study of Ramond et al. [106] that was also tested in
the MSqRob study [95]. The data is from a single knockout experiment in Franciscella plants
(≈1,000 proteins). The last dataset by Ping et al. [107] was a deep (≈10,000 proteins) TMT-
MS3 study of Alzheimer’s disease (AD), Parkinson’s disease (PD) and co-morbid (ADPD)
patients. We applied MS-EmpiRe, MaxLFQ+t-test and MSqRob to the LFQ datasets and
MS-EmpiRe as well as the t-test to the TMT dataset. For the Sharma et al. and the Ping
et al. datasets, many conditions had been measured and we randomly picked subsets for
further investigation. For the Sharma et al. dataset, we chose three stages of in vitro neuron
development and for the Ping et al. dataset, we chose control vs. disease in the anterior
cingulate gyrus.
The numbers of differentially called proteins (DCPs) identified by each method and study
are displayed in Fig. 3.5a. We see that the number of DCPs differs strongly between the
studies, ranging from thousands of DCPs in the study of Sharma et al. to only tens of DCPs
in the study of Ramond et al. We see that MS-EmpiRe is the most sensitive method in all
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Figure 3.4: Assessment of the differential detection performance on the benchmarking setup
of O’Connell et al. a) Number of proteins detected in the LFQ data by the MaxLFQ+t-
test setup, MSqRob and MS-EmpiRe. The light shades show the numbers of yeast proteins
accessible for testing in the setups, which differ for every method. As MSqRob shows high
FDR rates (bottom plot), an FDR-corrected bar is introduced for MSqRob. MaxLFQ+t-
test shows low sensitivity at good error rate control similar to MSqRob. MaxLFQ+t-test is
very conservative for the fold change 1.5 setup, with no false positives (no bar visible). MS-
EmpiRe increases the detection substantially in all cases with good error rate control. This
is most pronounced in the most challenging fold change 1.5 setup. b) Number of proteins
detected when using an intersected input set. Due to this conservative approach the num-
bers and differences are lower in general, nevertheless MS-EmpiRe is the best performing
method. c) Comparison of MaxLFQ+t-test and MS-EmpiRe on a TMT dataset. MSqRob
was excluded as it currently does not support TMT data. The overall performance is better
due to higher depth from sample fractionation, lower noise and fewer missing values. Quan-
tification on the protein level hence already works well, still MS-Empire shows a significant
sensitivity increase of around 19% for fold change 1.5.

cases. Especially in the deep datasets, we found a highly increased number of DCPs. In
the Sharma et al. dataset, up to 1,200 additional DCPs are identified by MS-EmpiRe. In
the clinical data of Ping et al., up to 1,000 additional DCPs can be identified when using
MS-EmpiRe.
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3.4.5 Set-based comparison reveals strong differences between sig-
nificant proteins for each method

In the previous section, we have shown that the absolute numbers of DCPs are quite different
for the individual methods. To check how consistent the results of the methods are, we
analysed the overlaps of the sets of DCPs. To assess these overlaps, we restricted on a
set of proteins, where regulation should be very clear: we considered all proteins, where
the log2 fold change estimate was larger than 1 and the FDR was below 0.05 in at least
one method. In Fig. 3.5b we see the intersection sets of the individual methods for the
Sharma et al. data, comparing days in vitro (DIV) 5 with 15. The set of proteins detected
by all methods is the largest, but still consists of only 30% of all DCPs. MS-EmpiRe has
large overlaps with MSqRob and with MaxLFQ+t-test, while the exclusive overlap between
MaxLFQ+t-test and MSqRob is very small. This provides further confidence in many hits
of MS-EmpiRe and indicates that MS-EmpiRe is able to close the gap between MaxLFQ+t-
test and MSqRob. The remaining sets are hits detected by only one method. Here, MS-
EmpiRe has the largest set. The one-method sets have to be treated with special care (high
chance for false positives) and they will be investigated in more detail the next section. The
intersection sets for the other studies and conditions are displayed in Supplemental Fig. 6.
For most other conditions, the detection rate of MaxLFQ+t-test/TMT+t-test is very low
and hence the overlap between all three methods is also very small. There is again a large
overlap between MSqRob and MS-EmpiRe and large one-method sets. For the Ramond et
al. datasets, seven of the eight proteins passing the threshold are in the combined set of all
three methods. This indicates, that MS-EmpiRe is not over-sensitive in datasets with little
regulation happening (few DEPs).

3.4.6 A detail view on the quantitative data validates the proteins
called by MS-EmpiRe

In contrast to benchmarking datasets, for r̈eal-lifeq̈uantitative MS-datasets, a ground truth
is not available. We cannot easily decide, whether a DCP is a DEP (i.e. actually regulated).
What is possible, however, is to visualize all the quantitative data available for a protein to
allow manual inspection in detail. As the quantitative MS data is on the peptide level, we
visualize the peptide intensities using peptide fold change plots. For this, we assess the fold
changes between all replicates of a peptide in condition1 and in condition2 and represent
them as a box plot. The fold change plot for a given protein has as many boxes as peptides
measured and each box contains as many fold changes as there are replicate pairs between
the conditions. In Fig. 3.5c we show for each method the protein with largest FDR differ-
ence to the two other methods. This means the selected protein has a significant (small)
FDR in one method while both other methods assign it a very insignificant (high) FDR.
For MS-EmpiRe, we see highly consistent fold changes in one direction, indeed indicating
a DEP. In contrast to the proteins detected by MaxLFQ+t-test and MSqRob, a distinct
change of the protein is visible, adding further confidence into the MS-EmpiRe results.
For a comprehensive check, we provide visualizations of all proteins detected in the inter-
section datasets on the website https://www.bio.ifi.lmu.de/files/gruber/empire/, allowing
in detail inspection of the DCPs. For the clinical dataset of Ping et al., we see that the
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DCPs show small fold changes in general but very consistent regulation on the peptide level
(Fig. 3.5d). This indicates that the precise quantification of TMT-MS3 together with the
MS-EmpiRe approach is a powerful combination for the detection of biomarkers or clinically
relevant proteins.
On the web pages we also provide further plots on the datasets: comparative volcano plots,
comparative FC-scatter plots and plots of the peptide intensities as well as the MaxLFQ
intensities for each protein.
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Figure 3.5: Application of MS-EmpiRe, MaxLFQ+t-test and MSqRob to three different
quantitative LC-MS/MS datasets. a) Number of DCPs detected in the three different
datasets by the three different methods. Each bar represents the number of proteins
found in the set determined by the dots below. MS-EmpiRe is the most sensitive ap-
proach. b) Overlaps of protein hits on a subset of very clear hits for DIV5 vs. DIV15.
MS-EmpiRe shows large overlaps with MaxLFQ+t-test and MSqRob, while the overlap be-
tween MaxLFQ+t-test and MSqRob is small. c) Investigation of the proteins called by
only one method. Peptide fold change plots for the proteins with the largest FDR differ-
ence to the other two methods. A consistent shift of the boxes above or below log2 fold
change 0 (black dashed line) indicates regulation. Left (MS-EmpiRe): protein D37ZPP3-2
(FDRemp < 0.01, FDRmsqr = 0.45, FDRmlfq = 0.83). Almost all peptides imply clear
up regulation. Middle (MSqRob): protein Q8C878 (FDRemp = 0.95, FDRmsqr < 0.01,
FDRmlfq = 0.83). We see varying up- and downregulation. Right (MaxLFQ+t-test): pro-
tein Q9JJL8 (FDRemp = 0.74, FDRmsqr = 0.61, FDRmlfq < 0.01). We see varying up- and
downregulation. d) MaxQuant protein intensities vs. fold change plot for protein P04424
in the clinical dataset (FDRemp < 0.01, FDRttest = 0.99). MS-EmpiRe is able to clearly
resolve the small but systemtatic fold changes. Many more validation plots for all methods
tested can be found under https://www.bio.ifi.lmu.de/files/gruber/empire/.
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3.4.7 In silico benchmarking shows high sensitivity and conserva-
tive FDR estimation

The importance of experimental benchmarking setups for quantitative proteomics cannot
be overstated. Without reference standards, it is impossible to estimate the performance
of experimental and computational methods. Unfortunately, performing an experimental
benchmarking is cumbersome as it requires very precise mixing and sample handling. Addi-
tionally, only constant fold changes can be applied to a given setup, which does not reflect
an actual regulative scenario. To complement the experimental benchmarking, we generated
an in silico benchmarking set, as described in the methods section. In short, we used the
human background proteins measured in O’Connell et al. as replicate measurements and
we divided six replicate measurements into two groups. We then applied in silico intensity
changes on the protein and peptide level to one of the groups and compared the two groups
in a differential quantification context. As we know which proteins are ”artificially regu-
lated”, we can assess measures like sensitivity and specificity analogous to the experimental
benchmarking setup discussed in the previous sections. We simulated two setups: one sim-
ilar to the one in O’Connell et al., where we always applied the same fold change (with
some noise) to a sub-fraction of the proteome, including a 10% fraction. Additionally, we
simulated a more realistic scenario, where the in silico expression changes were not always
the same, but were drawn from a distribution. We designed the distribution to be bimodal
such that up- and down regulation was possible. The results for sensitivity and precision (i.e.
specificity) for LFQ data are depicted in Fig. 3.6. The boxes result from changing different
fractions of the proteome (individual simulations where 5%, 10%, … ,40% of the proteome
are changed). Surprisingly, we noticed that the fraction of proteome changing significantly
influences the sensitivity of the applied statistical test, especially for the MaxLFQ+t-test
setup. For example, when 30% of the proteome is changing with a fold change of 1.5, this is
better detected by a statistical test as when only 5% of the proteome is changing with a fold
change of 1.5. The reason for this is apparently a loss of significance after multiple testing
correction. As multiple testing correction can be seen as a shifting of the p values into the
direction of a uniform distribution, stronger deviations from the uniform distribution (e.g.
many regulated proteins) are less strongly affected. In Supplemental Fig. 7 we see, that
the protein level scoring underlying the t-test does not allow a very distinct discrimination
between regulated and non-regulated proteins as compared to MS-EmpiRe, which explains
the losses in sensitivity with MaxLFQ+t-test. The clearer distinction between regulated
and non-regulated proteins by the peptide level tools is also reflected in the fact, that the
peptide level tools MS-EmpiRe and MSqRob show less dependence on the proteome fraction
in terms of sensitivity. In general, the results of the in silico simulations in Fig. 3.6 show
a similar picture as compared to the experimental benchmarking setup. MS-EmpiRe and
MaxLFQ+t-test show conservative error estimation, which however comes at the cost of
drastically reduced sensitivity for MaxLFQ+t-test. MS-EmpiRe is the most sensitive tool
and MSqRob detects only slightly less proteins. However, MSqRob shows problems in terms
of error rate control, especially for setups with strong fold changes. This might be due to
an over-optimistic error estimation of MSqRob due to the many clear classification cases.
Comparing the fixed setup with the setup where we generate dynamic noise, we see that
the overall identification rate decreases, whereas the general trends for all three methods
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Figure 3.6: In silico benchmarking of MS-EmpiRe, MaxLFQ+t-test and MSqRob. The
x tics represent the median fold change by which the data is shifted. The boxes contain
the sensitivity/specificity results, when different fractions of the proteome are changed. In
particular each box contains eight values corresponding to 5% up to 40% of the proteome
changing in 5% steps. Sensitivity and specificity for different fold changes upon constant
(left) as well as dynamic (right) proteome changes are shown. A clear dependency on the
fraction of the proteome changing is visible. As in the benchmarking set, MaxLFQ+t-test
shows low sensitivity with good error rate control, MSqRob shows high sensitivity but often
violates the error estimation and MS-EmpiRe shows high sensitivity with good error rate
control.

are very similar. Error rate estimation does not decrease and hence all methods show the
desired response towards high noise in the data.
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3.5 Conclusion
Current Mass Spectrometry proteomics publications often report the number of quantified
proteins for a given proteomics setup. This number however, can be misleading, as the
number of quantified proteins does not necessarily reflect the number of proteins that can
actually be detected in a differential quantification experiment [99]. This is especially the
case for more noise-prone proteomics setups, such as LFQ. Given the popularity of such
setups, increasing the depth of a proteomics experiment at the level of differential detection
becomes an ever more important issue. Considering recent studies [95, 96], it is likely that
the future development of differential quantification will increasingly use peptide level in-
formation. Peptide level tools like MSqRob show significantly improved sensitivity, though
we have shown in this study that FDR control is still difficult in a proteome-wide setup.
The popular MaxLFQ+t-test pipeline also implements the most conservative approach in
the experimental benchmarking setup. With MS-EmpiRe, we introduce a new peptide level
tool that shows high sensitivity at accurate error rate estimation. While FDR estimation for
MS-EmpiRe is almost as accurate as for MaxLFQ+t-test in the experimental setup, it even
outperforms MaxLFQ+t-test in the in silico simulation. We have shown that MS-EmpiRe
gives up to two fold increase in sensitivity for small fold changes (1.5 fold change), which
can be highly relevant for biological applications. Even though a fold change of only 1.5 is
challenging for a proteomics setup, such a change may already reflect a drastic alteration in
a biological system. The key to the sensitivity of MS-EmpiRe is the direct modeling of errors
on the peptide fold change level. This gives an immediate statistical weight to individual
peptide fold changes, which are then transferred to the protein level via basic statistics and
without additional optimizations or parameters. This simple approach relies on the only
assumption of consistency between replicates. Therefore, our method heavily relies on good
replicate measurements. Even though MS-EmpiRe is able to work with only two replicate
measurements per condition, ideally three or more replicate samples should be available,
to obtain accurate error estimates. For MS proteomics data, where robust workflows exist
and the creation of replicate measurements is a standard, we believe that this requirement
matches well with current experimental practices. From our perspective, the consistency of
replicates is a minimalistic and reasonable assumption that can be made for proper process-
ing of proteomics data. A possible deviation from replicate consistency might occur, when
uncontrolled factors in an biological experiment change between replicates. In our setup,
this might lead to an underestimation of DEPs. However, replicate-inconsistent setups are
highly critical and should be handled with care. Based on our analysis, we conclude that MS-
EmpiRe is currently the most sensitive tool for differential protein detection. MS-EmpiRe
requires as inputs only peptide intensities and protein identifications and, thus, applicable
to virtually any modern proteomics measurement. MS-EmpiRe is an easy-to-use option for
proteomics researchers and helps to improve the quality and biological insight gained from
MS proteomics studies.
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3.6 Data availability
All proteomics datasets used in this study are publicly available through the ProteomeX-
change Consortium (http://www.proteomexchange.org/) via the corresponding PRIDE part-
ner repositories: O’Connell et al. [99]: PXD007683. Sharma et al. [105]:PXD001250. Ra-
mond et al. [106]:PXD001584. Ping et al. [107]: PXD007160. All relevant quantititative
protein and peptide intensity tables are available via:

https://www.bio.ifi.lmu.de/software/msempire/index.html.



Chapter 4

Detecting differential alternative
splicing in MS proteomics data

Motivation

In chapter 3, we have introduced a novel method for differential quantification, i.e. the
detection of regulated proteins between conditions. Differential quantification is one of the
most important concepts in quantitative proteomics, mainly because it gives an overview over
which genes respond to a given biological perturbation. Such a gene-level overview can be
very instructive, however it does not represent the full complexity of the proteomic response.
In reality, a single gene can often produce a wide variety of proteins, so called proteoforms
[108], which vary in their sequence as well as their chemical modifications. MS proteomics
currently has very limited capabilities in detecting proteoforms, because proteins are digested
into smaller peptides and the information about the full (modified) protein sequence is lost
and the sequence coverage is still comparably low [10, 9]. For these reasons, the complexity
of the proteome is largely unexplored. On the sequence level, the main source of diversity
is given by the mechanism of alternative splicing. Alternative splicing occurs in eukaryotes,
where the coding parts of a gene are distributed over multiple exons. During transcription,
the exons can be spliced together in different ways, potentially resulting in alternative protein
products [109]. On the transcript level, the phenomenon of splicing is ubiquitous and widely
detected in RNA-sequencing data. On the protein level, however, there is much less evidence
for splicing and the impact of alternative splicing on the proteome is subject to controversial
debate [110, 111]. The main reason for this debate are the technological limitations of
MS proteomics listed above, which prevent a comprehensive study of splicing. There are,
however, also limitations on the computational side: For example, there is a multitude of
computational methods to detect the regulation of splicing based on quantitative information
(differential alternative splicing) in transcriptomics data [112]. For proteomics data, however,
there are currently no comparable methods available to quantitatively detect differential
alternative splicing. In the following chapter, we want to fill this gap by introducing such a
method. We extend the idea of creating background contexts from replicate measurements in
MS-EmpiRe to so called ’double differential’ setups (i.e. changes of changes). This allow us
to asses the changes between different gene regions and therefore the quantitative detection
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of differential alternative splicing. We benchmark our method on several datasets and show
that we can obtain relevant splice events in a proteomic colon cancer cohort. Studying the
regulation of splicing can facilitate insights on biological responses based on splicing and
therefore also make a contribution to the underlying question of proteome complexity.
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4.1 Abstract
The regulation of alternative splicing is a complex process and can result in alternative
isoforms or the same isoform(s) at different abundance in different conditions. Differential
alternative splicing between conditions, especially on the protein level, helps to estimate
the impact of splicing. In mass spectrometry-based proteomics data, distinguishing isoform-
specific peptides are rarely measured and detection and quantification of isoforms is diffi-
cult. We introduce MS-EmpiReS, the first quantification-based computational approach for
differential alternative splicing detection in proteomics data. Our approach detects both,
isoforms-specific peptides and systematic abundance fold changes between different regions
of a gene. We apply MS-EmpiReS to differential proteomics measurements between normal
and diseased tissues from a larger clinical colon cancer cohort. MS-EmpiReS could exploit a
100-fold increase in the number of testable peptides and, thereby, detected a large number of
cancer-relevant alternative splicing candidates, indicating a potential use of proteomic splice
signatures in disease contexts.

4.2 Introduction
The exon-based gene structure of eukaryotic organisms enables the production of multiple
proteins from a single gene via alternative splicing (AS). The impact of AS on the proteome
is subject to controversial debate [111, 110, 113, 114, 85, 115]. In particular, it often re-
mains unclear whether and to what extent the alternative transcript observed in very deep
sequencing data will actually result in relevant amounts of alternative protein products. Al-
ternative splicing on the protein level is usually detected in mass spectrometry (MS) data by
utilizing the sequence information of identified peptides. For example, junction peptides can
be identified which could span over a spliced-out exon. If an additional peptide within the
exon is identified, this is a clear indication of splicing. Also intron retentions and alternative
start sites could be identified via the respective peptides. Such sequence-based approaches
[113, 85, 116] are the most basic form of AS detection, usually aiming at the assessment
of the general prevalence of splicing, for example in the human proteome. Detection of AS
could mean several things: (i) Detecting different isoforms in different samples to validate
that these isoforms are actually translated to proteins, (ii) finding different isoforms between
conditions establishing major differences, or (iii) finding different isoforms in one condition
maybe with a shift in the relative abundance of these isoforms between conditions. Conse-
quently, the latter case is the most difficult to identify, but would include the other cases as
well. In order to cover all three cases and to obtain detailed insights into the regulation of
splicing, it is necessary not only to assess, whether a protein is expressed or not but also to
detect quantitative differences in the expression of the isoforms. The ambiguity of peptides
mapping to a multitude of protein isoforms is well known and often addressed by apply-
ing principles of parsimony, but also more quantitative approaches have been introduced
[117, 118].
The basic question we address is, whether splicing patterns change between conditions. In
Figure 4.1A, we display different cases of splicing regulation, which can include switching of
isoforms between conditions, expression of an additional isoform in one condition as well as
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Figure 4.1: MS-EmpiReS workflow. A) Exemplary alternative splicing event (exon skipping)
and its effect on the protein products and different forms of splicing regulation. Differential
isoform usage, which is only detectable via quantitative differences of abundances, includes
the other two cases, which could speculatively be predicted via detection alone. B) Principal
idea of quantitative splicing detection for differential isoform usage. The yellow isoform
doubles in condition 2. After digestion, the peptides (small squares) either map to only iso1
(marked blue) or both iso1+2 (marked red). The fold changes of the red peptides (3/2)
are different to the fold changes of the blue peptides (1). This difference can be detected.
The fold change for the yellow isoform, which has no exclusive region and, thus, no unique
peptides in our example, is 2. C) Peptide level comparison between red and blue regions,
with an example of two red and two blue peptides with two replicate samples each. Low noise
peptide fold changes between conditions are assessed as a first step. Red and blue peptides
are then compared in a pairwise manner and ”fold changes of fold changes” (FCFCs) are
assessed. D) The FCFCs are used to query an empirical error distribution of FCFCs derived
from replicate measurements, where no systematic change is expected. The observed FCFCs
can be expressed as Z-values (with direction of the change) and combined (summed) for
the respective isoforms to obtain estimates for the change of isoform changes between the
conditions.
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differential abundance changes between two expressed isoforms in both conditions. In the
following, we will refer to the latter two events as Differential Alternative Splicing (DAS).
Due to the relatively low sensitivity of MS proteomics setups, it is in general not possible to
distinguish between not expressed and not detected, which would be necessary to identify
isoform switching. Additionally, absolute quantification of molecule copy numbers would
be required, which is not feasible in a precise manner in MS proteomics [13]. Therefore,
we rely on relative quantification, which enables precise fold change estimations (0.1-2 fold
errors) via so called “local” peptide fold changes [119, 120]. In this study, we utilize the
fact that peptide fold changes can be calculated in a substantial fraction of DAS events.
This complements current studies on splicing regulation, which employ different types of
sequence-based approaches [85, 121, 122, 123] and often rely on transcriptomic DAS detec-
tion [124, 125, 126, 127, 128]. We introduce a new computational method based on our
recently published differential quantification method for ”Mass Spectrometry analysis using
Empirical and Replicate bases statistics” (MS-EmpiRe) [120]. MS-EmpiRe utilizes empirical
between-replicate distributions to assign probabilities to individual peptide fold changes. In
our new extended algorithm we present a framework to compare peptide fold changes against
each other in the context of splicing (MS-EmpiReS). This enables us to score whether pep-
tides mapping to one region of the protein have significantly different fold changes than
peptides mapping to another region. In combination with isoform mappings from the En-
sembl [129] database we assemble these regional local fold changes to fold change differences
between isoforms and thereby identify candidates for all types of DAS. The basic principle is
displayed in Figure 4.1B with an example of two expressed isoforms in two conditions (case
(iii)). Isoform 1 doubles from condition 1 to condition 2, while isoform 2 does not change
between the conditions. After enzymatic digestion, the peptides either map only to isoform
2 (blue), or map to both isoform 1 and isoform 2 (red). It should be noted that in general
peptides mapping only to isoform 1 or peptides mapping to an additional isoform also exist.
These scenarios can always be reduced to a similar case as displayed here (see methods) and
are hence omitted in the Figure for clarity. The fold changes of the red peptides should cen-
ter around 3/2, because there are two copies in condition 1 and three copies in condition 2.
The fold changes of the blue peptides should center around 1, because there is no change in
isoform 2 between conditions. With MS-EmpiReS, we statistically evaluate the fold change
differences between such groups of peptides, as described below. We additionally comple-
ment this quantification-based approach with a sequence based approach to utilize the full
information available in the dataset. The MS-EmpiReS approach hence differs from current
approaches due to the quantification-based identification. Current evaluations of protein-
level DAS are based on detecting sequence-based splicing in MS proteomics measurements.
Detected events are subsequently quantified, which leads to a drastic loss in sensitivity.
The bioinformatics pipeline of MS-EmpiReS is visualized in more detail in Figure 4.1C with
the example case of two peptides in each group and two replicate measurements for each
peptide. The fold changes between conditions are determined for every peptide and all pep-
tide pairs between the two groups are formed. For every peptide pair, four against four
peptide fold changes are compared and the fold changes are divided, resulting in 16 ”fold
changes of fold changes” blue/red (FCFCs), which are log2 transformed. The absolute value
of the FCFC indicates how dissimilar the change between conditions is. Positive or nega-
tive FCFCs reflect that the blue group changes stronger than the red group or vice-a-versa,
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respectively. The FCFCs are compared to an empirical error distribution, describing the
FCFCs of non-changing peptide pairs (see methods for more details). From the empirical
error distribution and a given FCFC, a normally distributed Z-value can be derived. The
Z-values can be combined using a modified Stouffer [130] approach to calculate an overall
score, which tests the null hypothesis: no difference in the change of the two peptide groups
[120]. We denote the multiple testing corrected score as padj. Dependencies of the variables
have to be taken into account at several points of the calculation (see methods).
Peptides are mapped to protein isoforms based on the Ensembl genome annotation. In order
to detect quantitative differences between isoforms, the FCFCs of peptide pairs are used,
where the peptides stem from different isoforms. The Ensembl annotation contains the cur-
rent state of the art of known isoforms comprising all relevant splice events (exon skippings,
alternative donor/acceptor sites, intron retentions, etc.). As some genes have a large number
of annotated isoforms but not all of them are expressed as proteins in the condition under
study, equivalence classes are determined which group peptides unique to a specific (set of)
isoforms (see methods). Thereby, FCFCs are compared for peptide pairs relevant for the
isoforms of interest. Again, FCFCs are accumulated over all these peptide pairs in order to
estimate the significance of DAS.
MS-EmpiReS is available as a java package under
https://www.bio.ifi.lmu.de/software/msempire_s/index.html and provides DAS detection
from standard quantitative proteomics measurements including on-demand visualizations.
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4.3 Results

4.3.1 Benchmarking
We benchmarked MS-EmpiReS in several ways, always using negative controls. We use dif-
ferential proteomics datasets with proteins changing between two conditions, but no splicing
of the proteins. For each protein, we randomly distributed the corresponding peptides into
two groups, representing two virtual isoforms (i.e. “red” and “blue” peptides) and tested
them against each other with MS-EmpiReS. Each group had to contain at least two peptides.
In the case that MS-EmpiReS classified a comparison as significant, this indicated a false pos-
itive hit. These (realistic) benchmark sets account only for false positives, as this is the most
important factor to control. For the first benchmark, we simulated proteins with randomly
sampled intensities, representing non-spliced proteins (see methods for details). As there is
no systematic shift in the data, the p-values from the tests should be uniformly distributed,
if model and implementation are adequate. We confirmed this to be the case, also when
one isoform has few peptides/replicates and the other isoform has many peptides/replicates
(Figure 4.2A). We then tested several experimental datasets (Figure 4.2B). First, we tested
MS-EmpiReS on technical datasets for both label free quantification (LFQ) and Tandem
Mass Tag (TMT) data. In the technical datasets, 6 replicate measurements of human cell
lysate were split into two groups and tested against each other, to simulate a differential
setup. We see that testing thousands of proteins as described above does not give a single
significant hit (having < 1% padj in MS-EmpiReS, see methods) (Figure 4.2B, left). This
indicates that MS-EmpiReS handles the technical variation and biases within a proteomics
setup well without giving false positives. For the last and most challenging benchmark, we
compared quantitative E. coli proteomics datasets (3 conditions for TMT and 27 conditions
for LFQ data, see methods for details). E. coli are chosen because as prokaryotes they have
no splicing mechanism and because they show extensive proteome remodelling between con-
ditions (differential regulation for ≈30% of the proteome on average), thereby introducing
both technical and biological biases, thus, a very challenging benchmark. After testing, we
indeed observed 0.4% false positive hits. Inspection of these false positive hits showed that
some peptides have very systematic and replicate-consistent shifts (Supplemental Figure 1),
possible due to post-translational modifications, which can affect the fold change [131]. As
with our model, we explicitly test for systematic shifts between groups of peptides, rare
combinations of such peptide shifts can lead to very strong significance scores. However, as
the rate of such events was low at 0.4% we deemed our model sufficient for confident splicing
identification.

4.3.2 Analysis of a clinical dataset
We applied MS-EmpiReS to a clinical proteomics cohort of about 100 colon cancer patients,
measured by the Clinical Proteome tumour Analysis Consortium (CPTAC) with TMTs [132].
In the study, two samples have been extracted from each patient, one with cancerous tissue
and one with healthy adjacent tissue (see methods for details). We first performed sequence-
based splicing detection with MS-EmpiReS. For this, we searched for peptide sequences that
have conflicting genomic coordinates and hence cannot exist on the same protein due to
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Figure 4.2: Benchmarking and application to a clinical proteomics dataset. A) For bench-
marking, simulated peptides of non-spliced proteins are randomly assigned into two groups
and tested against each other. Simulating peptides by drawing random intensities gives
perfectly uniform p-values as required, even for drastically different peptide and replicate
numbers. B) Negative controls on several experimental (LFQ and TMT) datasets using tech-
nical replicates and the non-splicing organism E. coli (every hit is hence a false positive).
MS-EmpiReS is applied to random subsets of peptides and significant hits (adjusted p-value
(padj) < 0.01) are displayed in violet. A very small fraction of significant changes of peptides
between conditions is detected by MS-EmpiReS, possibly due to chemical modifications or
systematic biases. C) Application of MS-EmpiReS on the CPTAC colon cancer data set
(≈ 100 patients). The results of isoform changes can be displayed as a volcano plot with
absolute, non logged, FCFCs. Genes containing isoform pairs with padj<1% and FCFC>1.5
are classified as DAS (green). The yellow color indicates genes for which distinct junction
peptides for two different isoforms exist and both isoforms were sufficiently quantified. Still,
a large number of these yellow genes is in the insignificant area of the volcano plot. This
means that for some genes different isoforms exist which show no clear change between can-
cerous and healthy tissue. Counts corresponding to the volcano plot are displayed on the
right. The number of testable proteins and peptides (grey) is increased by 1-2 orders of
magnitude, respectively. The number of DAS genes identified with MS-EmpiReS is more
than six fold the number of DAS genes detected via junction peptides alone. On the right,
the cumulative distribution of p-values of genes with junction peptides is displayed. We
see that more than 40% of genes with junction peptides have insignificant p-values >0.01.
(Caption continued on next page.))
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Figure 4.2: (continued) D) Overview over sequence-based splicing. We see that the majority
of genes with splicing evidence is actually not accessible for quantitative assessment (differ-
ential isoform usage). Only 23 of 164 genes with junction peptides can be classified as DAS.
This underlines the strong difference between AS and DAS, with DAS having condition-
specific regulation. E) The number of genes with detected junction peptides is strongly
enriched within the DAS genes quantitatively classified by MS-EmpiReS. D) Top scoring
GO ”biological process” (BP), ”molecular function” (MF) and ”cellular component” (CC)
are the same for both approaches.

Gene Name Splicegene Lau et al. Literat. Cancer Splicing
ACTN1 actinin alpha 1 y y
ACTN4 actinin alpha 4 y y
CALD1 caldesmon 1 y y
CAPZB capping actin protein of muscle Z-line subunit beta n y
CFL1 cofilin 1 n y
CHID1 chitinase domain containing 1 y n

COL6A3 collagen type VI alpha 3 chain y y
EPB41L2 erythrocyte membrane protein band 4.1 like 2 y y
H2AFY macroH2A.1 histone y y

LRRFIP1 LRR binding FLII interacting protein 1 y y
MAP3K20 mitogen-activated protein kinase kinase kinase 20 n y
PDLIM5 PDZ and LIM domain 5 y y
PDLIM7 PDZ and LIM domain 7 y y
PKM pyruvate kinase M1/2 y y
RPS7 ribosomal protein S7 n y

SPTAN1 spectrin alpha, non-erythrocytic 1 y y
TNC tenascin C y y
TPM1 tropomyosin 1 y y
TPM2 tropomyosin 2 y y
TPM4 tropomyosin 4 n y

Table 4.1: 20 of the top ranked DAS genes in the CPTAC data set. The ”Splicegene Lau
et al.” column indicates whether the gene is listed as alternatively spliced in the recently
published database on protein splicing by Lau et al. The ”Literature Cancer Splicing” column
indicates whether there are explicit mentions of the gene as being alternatively spliced in
the context of cancer. Bold genes are shown in detail in Figure 4.3.

splicing. At least one of the peptides had to be a junction peptide spanning an exon junc-
tion (see methods for details). We identified 164 genes with such splice peptides. We then
filtered out peptides with less than 5 measured replicates (patients) in any of the conditions
(cancer and normal), reducing the number of testable peptides from ≈166.000 to ≈138.000.
We subsequently applied the new quantification-based approach of MS-EmpiReS. Results
of MS-EmpiReS on the dataset are displayed as a volcano plot with FCFCs on the x-axis
(Figure 4.2C). Each protein with at least two peptides in at least two equivalence classes
is accessible to DAS testing, which resulted in around 3200 testable genes in the CPTAC
dataset. Compared to the sequence-based approach, around 50 times the number of genes are
available for testing. This results in a six-fold increase in the number of significant genes and
enables a first quantitative proteome-wide screening for DAS. With MS-EmpiReS we aim to
distinguish regulated from non-regulated splice events, which is not possible via the purely
sequence-based approach. To investigate the differences between these two approaches, we
examine the genes that are detected as spliced using the sequence-based approach. We see
that around 40% of these genes have no significant p-value even before multiple testing cor-
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Figure 4.3: Visualization of DAS events for three top scoring genes with important regulatory
functions. Two transcript representatives of the equivalence classes (isoforms) are displayed
in yellow and blue with quantified peptides aligned below (see Figure 1). The box plots
summarize peptide fold changes between cancer and normal for each equivalence class (blue
and yellow isoforms), and shared (red). The boxplots on the right show the respective fold
changes per peptide. We observe both, clear and significant differences between the two
isoforms (ECs) and a plausible (mixture) change for the isoforms in between. The number
of patients quantified in both equivalence classes is indicated in the bottom left corner.
The examples underline that MS-EmpiReS is able to detect and quantify splice events for
functionally relevant proteins, enabling a direct description and interpretation of quantitative
splicing changes in cancer vs. normal tissue of patients.
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rection (Figure 4.2C) and visualization reveals many cases which appear to be non-regulated
(Supplemental Figure 2). This underlines that the approach of detecting isoform-specific
peptides without additional quantitative assessment is not sufficient to obtain comprehen-
sive information about the regulation of splicing. We see that a major hurdle for quantitative
evaluation is consistent quantification: less than half of the genes with splice peptides are
not properly quantified (Figure 4.2D), either because there are not enough replicate mea-
surements or because there are not enough other peptide ions to ensure proper quantification
(see Supplemental Table 1). This reveals a large potential for increases in sensitivity, for
example with more targeted data acquisition approaches [133, 134]. To check, whether our
quantitative approach (DAS genes marked green in Figure 4.2C) is consistent with the junc-
tion peptide approach with additional quantification (genes marked yellow/green in Figure
4.2C), we performed two further checks: We first assessed the enrichment of genes with junc-
tion peptides within the DAS genes (Figure 4.2E), which was very strong. This indicates
that our quantification-based approach is a suitable way to detect actual splice events. We
also performed GO enrichment of the DAS genes and the DAS genes with additional junction
peptides. The top scoring results for “GO biological process”, “GO molecular function” and
“GO cellular component” are the same for both approaches (Figure 4.2F).
Twenty of the top ranked DAS genes are listed in Table 4.1 (see Supplemental Table 3 for
the full list). We performed two additional checks on this list of genes. The first check was
to look up each gene in a recently published database on splicing in the human proteome,
which was generated using large scale profiling of MS proteomics data of human tissues with
a junction peptide-based approach [85]. For each gene, we indicated whether it was detected
as alternatively spliced in the database. For the second check, we searched the literature for
explicit mentions of the gene as being alternatively spliced in a cancer context and indicated
if we found such mentions (see Supplemental Table 4 for references). We could validate all
genes in at least one of these checks. Detailed visualizations of DAS events are given in Fig-
ure 4.3 (see Supplemental MS-EmpiReS output files for all visualizations). The first example
is Tropomyosin 1, a gene that regulates muscle contraction in association with the Troponin
complex. It is known to be a tumour suppressor gene with splice events impacting colony
formation and regulatory activity [135]. We see downregulation of both equivalence classes,
with strong downregulation of the equivalence class including the CRA_a isoform and mild
downregulation of the CRA_m isoform equivalence class. Even though the regulation goes
into the same direction, MS-EmpiReS clearly resolves the splice event ( padj < 10−15), po-
tentially indicating a higher relevance of CRA_a to the suppression of colon cancer. The
second example is the gene MAP3K20, also known as ZAK kinase, which is a MAPKKK
family signal transduction molecule and activates cancer-related signaling pathways such as
NF-κB, Wnt/β-catenin, and AP1. The two equivalence classes map to the ZAK long form
(ZAK-LF) and the ZAK short form (ZAK-SF) which differ strongly from each other. The
ZAK-LF has been shown to induce tumour growth in immunodeficient mice [136]. In ac-
cordance with this finding, we see a switching event in the colon cancer patients, with the
tumour associated isoform being upregulated and the ZAK-SF being downregulated, indicat-
ing a splicing induced signalling switch on the protein level. As we have peptides mapping
to equivalence class 1, equivalence class 2 and shared peptides between both classes, we can
roughly estimate the ratios between the isoforms as shown in the Supplemental Text. This
estimation indicates that the ZAK-SF is almost two orders of magnitude more abundant
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than the cancer up-regulated ZAK-LF, potentially indicating a higher impact of the ZAK-
LF on the phenotype
The third example is the pyruvate kinase M 1/2 gene, which mediates the last step of gly-
colysis, namely the dephosphorylation of phosphoenolpyruvate to pyruvate. It is hence an
essential metabolic gene and has been widely studied in the context of cancer [137]. For
example, it has been shown that switching of the PKM2 isoform to PKM1 reverses the War-
burg effect in cancer cells [138]. In concordance with this finding, we see a slight upregulation
of the PKM2 associated peptides but also a stronger downregulation of the PKM1 associated
peptides in the patient data.
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4.4 Discussion & Conclusion
In this study we have introduced a novel bioinformatics framework to detect Differential
Alternative Splicing (DAS) in MS proteomics data based on quantitative information. Our
framework is able to detect splicing induced differences in the relative abundance of two
isoforms between conditions via FCFCs. We thereby extend the current sequence-based ap-
proach to splicing detection in proteomics data. To our knowledge, a quantitative approach
for this purpose has until now not been available for proteomics data. This approach covers
all types of splicing and adds additional evidence by considering many more of the measured
peptides. As proteins represent the functional players in the cell, we believe that study-
ing regulation of splicing on the protein level is crucial for obtaining further insights into
the biological implications of alternative splicing, making MS-EmpiReS a valuable compu-
tational tool for the splicing community. To maximize flexibility, we specifically designed
MS-EmpiReS to be a proteomics and not a proteogenomics tool (i.e. dependent on additional
transcriptomics data). In principle, MS-EmpiReS can analyze any quantitative proteomics
experiment where two or more conditions are compared and at least two replicates are
measured in each condition. The only input needed is quantified peptides and a condition
mapping. By screening the complete Ensembl annotation, we get a comprehensive picture of
possible splice events. We currently provide analysis possibilities for human and mouse data,
but in principle, other organisms can be easily added. MS-EmpiReS only detects a splice
event if there are at least two non-overlapping peptides quantified for each isoform, the pep-
tides on each isoforms have similar fold changes and therefore a statistically significant shift
between the isoforms has been detected. This reduces the chance for false positives, as we
have shown on the conservative E. coli benchmarking dataset. Nevertheless, false positives
are possible and we encourage manual inspection of the splice events via the visualizations
provided by MS-EmpiReS. We applied our method to a larger CPTAC dataset containing
data from ≈100 patients. This clinical proteomics dataset carries a high level of noise and
also of biological variation. Nevertheless, we were able to recover clear proteomic splice
events of important regulator genes, which we validate by the sequence-based approach,
independent databases and literature knowledge. MS-EmpiReS identifies and displays the
respective evidence from peptide to isoform level and, thereby, supports the interpretation
of cancer-related splicing events and isoform abundances. In summary, MS-EmpiReS thus
is a useful and easy to use addition to standard computational proteomics pipelines.MS-
EmpiRe is a conservatively benchmarked, widely applicable tool that can reliably identify
all types of Differential Alternative Splicing also in disease relevant candidates in challenging
personalized medicine contexts.
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4.5 Methods
4.5.1 Simulating non spliced proteins
In the first step of the simulation, differential peptides, i.e. peptides quantified in two
conditions were simulated. For each simulated peptide, r1 and r2 intensity values were drawn
from a log normal distribution, with r1 and r2 being the numbers of replicate measurements
in each condition. A log normal distribution was deemed adequate as it is generally used
as an approximation to describe protein/peptide abundances [13]. Two groups of peptides
were tested against each other for each simulated protein, meaning that for each simulated
protein, g1 + g2 peptides were drawn, with g1 and g2 the numbers of peptides in each group.
3,000 proteins were simulated for each test, with the parameters r1, r2, g1, g2 specified in
Figure 4.2A.

4.5.2 Benchmarking on the technical datasets
The technical dataset was downloaded as specified in the data availability section. The data
was acquired in the context of a study on differential quantification [139], where human cell
lysate with differing amounts of yeast spike in were measured with LFQ and TMT-MS3.
This dataset had been used in the MS-EmpiRe study [120], where it had been processed as
follows: The data was searched and quantified with the MaxQuant [14] software v. 1.6.0.16.
Standard settings and additional LFQ or TMT quantification were set. The database used
was combined from yeast (7,904 entries) and human (20,317 entries), which were individually
downloaded from Uniprot [140] (April 2018, reviewed) was used. For the DAS benchmark,
the human proteins were selected and for each quantification method, 6 replicate runs were
compared as 3 vs. 3 replicates.

4.5.3 Benchmarking on the E. coli datasets
The E. coli datasets were downloaded from their respective PRIDE repositories (see data
availability section). For the LFQ dataset [141], the .raw files were downloaded and searched
with MaxQuant v. 1.5.7.4 against the reviewed Uniprot E. coli K-12 database (03/2019),
using standard settings with additional “Label Free Quantification” and “Match between
runs” set. For the TMT dataset (acquired via an SPS-MS3 workflow), MaxQuant search
files were directly downloaded. As we collected the data from different studies, the details
of the preprocessings (for example the MaxQuant versions) differed slightly. Our model is
however not dependent on such preprocessings and should not be affected by this. Peptide
intensities were extracted from the “peptides.txt” files for both TMT and LFQ data. Only
peptides with unique mapping to a protein were considered. The conditions were compared
in a pairwise manner resulting in 352 condition pairs for the LFQ data (see Supplemental
Table 3) and 3 condition pairs for the TMT data. For each condition pair, we iterated
through all proteins. For each protein, peptides were randomly distributed in two groups of
equal size. The groups were then tested against each other for DAS, resulting in one p-value
for each protein in the condition pair. Multiple testing correction was carried out using the
Benjamini-Hochberg [142] procedure on the p-values for each condition pair and proteins
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were classified as significant with an padj<1% and an FCFC>1.5. Additional consistency
constraints were applied as described below.

4.5.4 Preprocessing the CPTAC data set
MSGF+ [143] search files and MASIC [144] selected ion chromatograms (SICs) were down-
loaded from the CPTAC data portal (see data availability section). Peptides were filtered to
a MSGF+ q- value <0.005, a MASIC InterferenceScore >0.9 and a PeakSignalToNoiseRa-
tio>35. In the case of multiple identifications of the same peptide, the identification with the
strongest signal was chosen. Fractions of the same TMT multiplex were merged and two nor-
malization steps were performed. In a first step, TMT channels of the same multiplex were
normalized to correct for differing sample amounts in the channels, using the MS-EmpiRe
within-replicate normalization. In a second step, the TMT-10 131 channels with a technical
spike-in were used for peptide specific normalization between TMT multiplexes. For each
peptide, fold changes between the reference channels were obtained and one normalization
factor per multiplex was estimated using Levenberg-Marquardt optimization. The dataset
was acquired with MS2 level quantification, thereby possibly giving rise to the phenomenon
of ratio compression [145] (i.e. underestimation of absolute fold change strength) due to co-
fragmenting precursor ions. However, several factors mitigated this problem: From the data
acquisition side, small isolation windows (0.7 Da) were used, which reduced the probability
of co-fragmentation. Additionally, the data was highly fractionated (96 fractions of which
12 were chosen per multiplex) and the ≈200 patient samples were distributed on a total of
22 multiplexes. This should reduce the chance that the same peptide measured in multiple
multiplexes has the same type of co-isolation. Rather, co-isolation would result in additional
noise between replicates, which can be accurately modeled. On the computational side, we
used conservative interference score cutoffs and most importantly, our model is able to handle
inconsistent fold changes, as shown in the E. coli benchmark. As displayed in Supplemental
Figure 3, our normalization results in low noise levels and separation between healthy and
disease samples already on the peptide intensity level, indicating good quantification.

4.5.5 Data normalization
Data were normalized similar to MS-EmpiRe [120], which uses the concept of centralization
[146]. Briefly, samples were shifted by a constant factor to cancel out systematic biases,
e.g. due to differing sample amounts. The factors were derived from peptide fold change
distributions using the median for replicate normalization and the mode for normalization
between conditions.

4.5.6 Mapping peptides to isoforms
Peptides were mapped to genes and protein isoforms using the Ensembl homo sapiens
GrCh37.75 genome annotation. Peptides mapping to more than one gene were eliminated
from the analysis. In order to detect sequence-based splicing, conflicting peptide pairs were
searched, meaning pairs of peptides that cannot exist on the same isoform. One peptide
was required to span an exon junction and the other peptide was required to be conflicting
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with this junction, meaning that it starts or ends inside the junction. For the quantitative
approach of MS-EmpiReS, an equivalence class was obtained for each peptide. Similar to the
BANDITS [147] package for transcriptomic DAS detection, we define an equivalence class
as the set of all isoforms a peptide maps on. This means that peptides mapping to the same
equivalence class should have equal abundances and be independent of DAS (under the as-
sumption that the annotation is comprehensive). Peptides mapping to different equivalence
classes could potentially stem from different isoforms or different mixtures of isoforms and
can show abundance changes after DAS. Grouping peptides by equivalence classes hence en-
ables very “clean” testing for DAS. In the case that conflicting splice peptides were detected
for a gene, we grouped the remaining peptides differently and distributed all remaining pep-
tides of the gene around the splice peptides. For this, we iterated through all other peptides
of the gene and tested for each peptide if its equivalence class overlaps (i.e. has shared
isoforms) with one splice peptide and does not overlap with the other splice peptide. If this
criterion was fulfilled, we grouped it to the respective splice peptide. An equivalence class
was included in the further analysis if there were at least two distinct peptide sequences
quantified, or if a conflicting splice peptide was quantified in another equivalence class. To
reduce the influence of technical noise in the latter case, we also required at least two peptide
ions to be quantified (not necessarily with differing sequences). In total, of ≈138000 quanti-
fied peptides, ≈64000 mapped to different equivalence classes, ≈47000 of which passed the
filtering criteria. For gene-level testing, as displayed in Figure 4.2, the most significant pair
of equivalence classes was chosen for each gene and multiple testing correction was carried
out subsequently via the Benjamini-Hochberg [142] procedure, the corrected score is denoted
as padj.

4.5.7 Calculation of FCFCs
After isoform mapping, the equivalence classes were tested pairwise against each other. For
this, all peptide pairs between two equivalence classes were obtained. For a peptide pair p1
and p2 the FCFCs were calculated. To define the FCFC, we first define the peptide intensity
I(c, r, p), which is dependent on condition c, replicate r and peptide p. A peptide fold change
is subsequently defined as

FC(p, c1, r1, c2, r2) = log2((I(p, c2, r2)/I(p, c1, r1)) (4.1)

with conditions c1,c2 and respective replicates r1,r2. The FCFC is then defined as

FCFC(p1, c1, r1, p2, c2, r2) = FC(p2, c1, r1, c2, r2)− FC(p1, c1, r1, c2, r2) (4.2)

with peptides p1 and p2. We see that the only factor changing between first and second term
is the peptide. In this definition, peptides p1 and p2 are only compared between identical
replicates.

4.5.8 Generation of empirical FCFC error distributions
To put FCFCs into a statistical context, we generated empirical FCFC error distributions
from replicate measurements. As a first step, we generated empirical FC error distributions,
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analogous to MS-EmpiRe [120]. For this, log2 FCs between peptides of equal sequence
and charge were obtained between replicate measurements, generating an empirical error
distribution of FCs. As replicate measurements carry the sum of biological and technical
variation, this empirical FC error distribution should exactly reflect this variation and hence
be a good estimate of the noise underlying the experiment. Analogous to MS-EmpiRe,
we also separated the empirical FC error distribution into sub distributions depending on
the intensities of the peptides measured. As a general trend, peptides with lower intensity
are subject to higher variation than peptides with higher intensity and it thus makes sense
to have multiple empirical FC error distributions, covering different intensity ranges. To
increase runtime and memory efficiency, we binned the empirical FC error distribution into
log2 FC intervals of 0.01. To generate the empirical FCFC error distributions, we took two
empirical FC error distributions and created the difference distribution, as described in [148].
Technically this is simply achieved by comparing all possible pairs of bins. For each pair of
bins, we calculated the log2 FCFC by subtracting the log2 FCs of the pair and obtained the
corresponding frequency by multiplying the frequencies of the pair. Empirical FCFC error
distributions were generated for all necessary pairs of intensity ranges.

4.5.9 Combination of FCFCs
A pair of equivalence classes with n and m peptides generates n ·m peptide pairs and each
peptide pair generates a maximum of r1 · r2 FCFCs, with r1 and r2 being the respective
number of replicates in each condition. Our aim is to obtain the overall null probability for
DAS of the equivalence class pair from this (possibly very large) set of FCFCs. Analogous
to the MS-EmpiRe paper [120], we transform the FCFCs into normally distributed random
variables using a modified Stouffer approach and combine these variables by summation. We
see that many of the FCFC(p1, c1, r1, p2, c2, r2) are dependent on each other. For example,
the pair FCFC(p1, c1, 1, p2, c2, 2) and FCFC(p1, c1, 1, p2, c2, 3) has a shared replicate. When
we consider the FCFCs to be random variables, which we combine, these dependencies affect
the variance of the combined distribution and have to be taken into account. A main goal
is hence to appropriately estimate the variance of the combined random variables, which
can be achieved via summation over the full covariance matrix. The basic concepts for this
estimation have been introduced in the MS-EmpiRe paper [120] and a generalized package,
which has been used in this work, is described in detail by Berchtold et al. [148].

4.5.10 GO enrichment
GO enrichment was based on the Gene Ontology .obo database, using the “is_a” relation.
Enrichment was calculated via overrepresentation analysis using a Hypergeometric test. For
the the CPTAC data the Ensembl gene mapping was used and the sets indicated in Figure
4.2C were enriched (see Supplemental Table 5).

4.5.11 Data availability
The E. coli proteomics data and the technical benchmarking data ”was downloaded from
http://proteomecentral.proteomexchange.org via the corresponding PRIDE partner reposi-
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tories” [75] (LFQ E. coli: PXD000498, TMT E. coli: PXD008339, technical benchmarking:
PXD007683). ”The colon cancer data used in this publication were generated by the Clinical
Proteomic tumour Analysis Consortium” (NCI/NIH) [149]. The “PSM” data and relevant
mappings were downloaded via
https://cptac-data-portal.georgetown.edu/cptac/s/S045. The CPTAC input file for MS-
EmpiReS used in this analysis is provided as Supplemental Table 6. The MS-EmpiReS
outputs are provided as Supplemental File 1.



Chapter 5

Detecting relevant proteins for E. coli
carbon starvation in MS proteomics
data

Motivation

The previous chapters introduced tools and algorithms to be used by data analysts. Proper
computational tools are essential, they do not guarantee, however, that proteomics tech-
nology can be fully utilized for its designated purpose: facilitating insights into specific
biological questions. A major hurdle for this is the knowledge gap that often prevails be-
tween researchers designing and performing biological experiments and researchers analyzing
biological data. The arguably best approach to overcome this problem is close interdisci-
plinary collaboration, bridging the gap with regular and detailed exchange of knowledge.
Ideally, there is a solid foundation on both sides, facilitating clear communication. Coming
from a biophysics background and having personally worked on a specific biological question,
namely the quantitative characterization of Escherichia coli (E. coli) population dynamics,
I was in a unique position to carry out such a collaboration. My previous work led to basic
insights and a phenomenological description of E. coli starvation [150].
The following chapter describes a continuation of this previous work: we utilize the bacterial
death rate that we described in [150] as a quantitative phenotype to define regulatory con-
straints that proteins have to fulfil in order to be important for starvation survival. We then
utilize the data stored in different proteomics repositories to define a regulatory context for
each protein. We introduce an adapted Stouffer [130] approach that allows us to globally
rank proteins coming from very different repositories and conditions. This allowed us to
uncover an essential role of the cell envelope for carbon starvation. To our knowledge, this
finding is novel and the connection is not known to the experts in the field.
The project was carried out in collaboration with the Systems Biology lab of Prof. Markus
Basan at Harvard Medical School. During this collaboration, I visited the Basan lab to
analyze data and develop computational approaches in direct exchange with the biological
expert, Dr. Severin Schink. Being directly in the lab enabled short turnaround times from
experiment to data analysis and vice versa.
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Publication
The contents of this chapter have not been published yet. A manuscript that will strongly
overlap with the chapter below is in preparation.

Author contributions
The project was jointly initiated by Severin Schink and me. I proposed and designed the
bioinformatics and proteomics analysis parts of the study and contributed to the design and
execution of the growth-to-death tradeoff experiments, which facilitated the data analysis.
Severin Schink headed design and execution of the biological experiments, with contributions
from Markus Basan. I implemented the data analysis pipeline and performed bioinformatics
analyses. Severin Schink gave input and feedback on the data analyses. Markus Basan su-
pervised biological experiments and evaluations. Ralf Zimmer supervised the computational
analyses. The manuscript was jointly written by Severin Schink and me, with me focussing
on the computational aspects and Severin Schink focussing on the biological aspects. Ralf
Zimmer and Markus Basan gave comments.
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5.1 Abstract
Bacteria like Escherichia coli can reorganize their physiology to survive long periods of
nutrient-limitation. What part of this reorganization causes the improved survival is a
difficult question, because the change in physiology includes a global reorganization of the
proteome, structure and organization of the cell that overshadows any subtle changes. In this
work, we aim to identify survival-relevant reorganization. We find that a fundamental trade-
off between fast growth and long survival is set by the proteome allocation of the bacteria.
We utilize this trade-off by statistically scoring several orthogonal proteome perturbations
measured with mass spectrometry-based proteomics, resulting in a comprehensive ranking
of over 2.000 E. coli proteins. Our combined ranking allows us to narrow down the set of
proteins that correlate with starvation survival. We find a significant fraction of survival
genes to be located in the periplasm and outer membrane. We confirm that the envelope of
E. coli is indeed a weak spot during starvation using antibiotics and genetic perturbations
and verify that improving the mechanical stability of the outer membrane leads to better
survival. Our results uncover a new protective feature of the cell envelope that goes well
beyond the interpretation of the outer membrane and envelope solely being a barrier that
prevents abiotic substances to reach the cytoplasm.

5.2 Introduction
Nutrient limitation is a defining part of the life cycle of microorganisms. In the absence
of external nutrients, the only energy sources for heterotrophic organisms is either internal
storage [151, 152, 153] or nutrients retrieved by recycling dead biomass [154, 155, 156]. This
finite energy source can be temporarily used to maintain the cell, but will eventually deplete,
exposing the cells to a slow deterioration process. The survival kinetics during starvation, i.e.
how many cells will be still alive after a certain time, is determined by the consumption rate
of these nutrients, called the maintenance rate [155]. While the concept of a maintenance
rate is well-established since mid-last century [157], several fundamental questions remain
unclear decades later. What kind of maintenance is the cell doing, what determines how much
maintenance a cell needs, and why are cells dying when this maintenance cannot be met? The
question of maintenance is particularly puzzling, because sporulating organisms can minimize
the number of active processes - without losing their reproductive ability. The maintenance
rate of non-sporulating bacteria is similarly not an engraved biophysical constant. Instead, E.
coli, for example, can change its maintenance rate and death rate depending on environmental
conditions during the growth phase [158]. In this work, we are using the adaptation of E. coli
in different growth environments to identify which changes of the cellular composition cause
changes in the survival kinetics. We use six different types of growth environments to show
a global trade-off between proteome composition and starvation survival. By statistically
scoring changes in abundance of individual proteins, measured using mass spectrometry-
based proteomics, we narrow down the set of proteins that correlate with improved survival
across all six conditions. From the abundance correlations, we identify several candidate
processes, including the cell envelope. Using genetic and systemic perturbations, we show
that tampering with the mechanical stability of the cell envelope leads to faster death.



80 5. Detecting relevant proteins for E. coli carbon starvation

This includes the peptidoglycan layer, the outer membrane and the anchoring proteins that
connects both. Strengthening the cell envelope, by increasing its stiffness, on the other hand,
leads to longer survival, indicating that E. coli’s maintenance is required to prevent pressure
induced cell envelope failure.

5.3 Results

5.3.1 A trade-off between growth rate and death rate across six
different growth perturbations

To study whether death rate depends on the proteome composition, we culture E. coli K-12
in different growth conditions that are known to affect the proteome composition and bring
them into identical starvation conditions by washing and resuspending them into carbon free
medium, see methods for details. As a reference condition, we use wild-type E. coli grown
in minimal medium supplemented with glucose, which yields moderately fast growth at a
rate of 0.98/h and death rate of 0.57/d, see Fig. B.1. In addition, we study six different
perturbations, listed and shown in Fig. 5.1.

As first perturbation, we omit the washing step and let E. coli adapt on acetate excreted
during fermentive growth [159]. After one day in this stationary phase we wash the culture
to remove all nutrients remaining from growth. The result is a slower death rate (white
symbol placed at growth rate 0, Fig. 5.1). As a second perturbation, we limit carbon uptake
during growth, either by growing the culture on different carbon substrates (blue triangles),
by downregulation of a carbon transporter (blue circles) or by growth in a carbon limited
chemostat (blue squares). Individual points are different strengths of the respective pertur-
bations. In all three cases of catabolic limitation, E. coli grows slower and subsequently dies
slower. Thirdly, we downregulated glutamate synthesis (green circles), thereby inducing an
anabolic limitation [160, 161]. As a result, E. coli grew slower and died slower, similar to
catabolic limitation, but with a less pronounced effect. Growing E. coli in rich medium, ei-
ther medium supplemented with glucose and casamino acids (red square) or lysogenic broth
(LB, red circle), resulted in faster growth and faster death. These four growth perturbations,
stationary phase, catabolic limitation, anabolic limitation and rich medium, follow a common
linear trend of death rate increasing with growth rate. To test if the growth-death relation
is due to proteome constraints, we perform a second set of perturbations that targets specif-
ically the proteome allocation. The addition of sublethal doses of chloramphenicol (yellow
symbols) leads to an increased expression of ribosomal proteins, which reduces the expres-
sion of the remaining proteome [162, 160]. This ribosomal limitation leads to slower growth
and faster death, see Fig. 1. Expressing an irrelevant protein (LacZ, grey symbols) leads
to a downregulation of virtually all other proteins, Fig. B.2, and results in slower growth
and faster death, similar to ribosomal limitation. These two ‘proteome stress’ perturbations
follow a trend orthogonal to ‘nutrient quality’, see Fig. 1, thereby breaking correlation be-
tween growth rate and death rate. The fact that the proteome composition has a strong
effect on death rates points to the existence of a ‘survival sector’ within the proteome, a set
of proteins that determines the how long E. coli can survive during starvation. Next, we will
identify this sector and interpret the function of processes and pathways within it.



5.3 Results 81

0.25

0.5

1

2

0 0.5 1 1.5 2 2.5

D
e

a
th

 r
a

te
 (

1
/d

)

Growth rate (1/h)

nutrie
nt q

uality

CARLS
Change of death rate

in               perturbations

stress
proteom

e

Anabolic limitation (A)
Glutamate synthesis titration

Catabolic limitation (C)
Glycerol limited chemostat

Different carbon substrates

Rich media (L)
Lysogenic broth (LB)

MM + glu. + cas. amino acids

Stationary phase (S)
Adaptation on fermentive waste 
products (incl. acetate)

n
u

tr
ie

n
t 
q

u
a

lit
y

Ribosome limitation (R)
Chloramphenicol (2 to 10 µM)

Protein overexpression
Overexpression of LacZ
from high copy plasmid (titrated)

p
ro

te
o

m
e

s
tr

e
s
s

Reference condition
Glucose minmal medium

CARLS perturbations

Figure 5.1: Physiological relation between growth and death. Bacteria were grown under
different growth perturbations, together abbreviated CARLS (Catabolic limitation (C), An-
abolic limitation (A), Ribosome limitation (R), Rich media (L), Stationary Phase (S) and
Protein Overexpression (OE)) and transferred to a common starvation condition by washing
and resuspension in carbon free minimal medium. The color indicates the type of perturba-
tion and each point represents a different strength of perturbation. Growth and death curves
for the individual conditions are displayed in Fig. B.1. Clear orthogonal responses are visible
for the perturbations affecting the nutrient quality (C, A, L, S – positive correlation) and
proteome stress (R, OE – negative correlation). Data of the glycerol limited chemostat and
different carbon sources are taken from [158].

5.3.2 A protective survival sector in the proteome
The survival sector could either be protective or harmful. However, we see an increase in
death rate upon downregulation of virtually all proteins. This downregulation is achieved
by the over-expression of an irrelevant protein (LacZ), Fig. B.2. The grey points in Fig. 5.1
show the increase in death rate after LacZ overexpression. We conclude that the ‘survival
sector’ must play a protective role. This means that the abundance of proteins within the
‘survival sector’ should correlate with increased survival across all growth perturbations in
Fig. 5.1. We use this as our guiding strategy to identify the ‘survival sector’, and search the
proteins whose abundance correlates with survival across all perturbations of Fig. 5.1.
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Figure 5.2: Data analysis pipeline. For each CARLS condition we evaluate (1) if survival
gets better or worse and (2) which proteins significantly increase or decrease their expression,
relative to the glucose minimal medium reference condition (left). Each perturbation includes
multiple MS runs corresponding to different perturbation strengths, totaling 126 MS runs
across all five CARLS perturbations. The correlation of individual proteins with survival
across different MS-runs is merged into a Z-value for each perturbation (center). These five
Z-values per proteins are merged into a single ‘Combination of Z-values’ score (abbr. ‘CZ-
score’) that measures correlation of protein abundance with survival across all experiments
(right).
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5.3.3 Proteomics analysis pipeline
A data analysis pipeline, outlined in Fig. 5.2, identifies the relevant proteins by correlating
changes of protein abundance with changes of death rates. We focused on the perturbations
catabolic limitation (C), anabolic limitation (A), ribosome limitation (R) and rich medium
(L) and stationary phase (S), which we abbreviate ‘CARLS’. We collected a total of 126
LC-MS/MS runs from three different repositories: Schmidt et al. [163], Hui et al. [160] and
Houser et al. [164], see methods for details. Analyzing this large and heterogeneous dataset
is a considerable challenge, because the three different data sets were measured in different
labs with different machines and differing quantification techniques. First, we analyzed each
perturbation individually (e.g. different carbon sources for C) and scored each protein de-
pending on how well changes of the survival correlated with changes of protein abundance
(left of Fig. 5.2). Next, we merged the scores of all conditions within a single perturbation
into a Z-value that quantifies both the strength and the direction of the correlation (middle
of Fig. 5.2). Finally, all Z-values were merged into a single score called ‘Combination of
Z-values’ (CZ-score, see methods for details), that allowed us to combine scores across data
sets and growth perturbations (right of Fig. 5.2). This pipeline drastically reduces data
complexity from 126 MS data sets, down to a single CZ-score for each protein. Individual
Z-values and merged CZ-scores for each protein are listed in Table S1. Z-value distributions
from different data sets, e.g. from stationary phase measured by Houser et al. and Schmidt
et al., or catabolic limitation by Schmidt et al. and Hui et al. show strong correlation,
despite both proteomics setups and culture conditions varying, validating that our approach
can extract consistent information (Fig. 5.3). While our phenomenological analysis of per-
turbations in Fig. 1 only showed two orthogonal changes in death rate, pair-wise comparison
of the proteome change in the CARLS perturbations reveals that the proteome responses
in the five perturbations are substantially different, Fig. 5.4A, with major parts of the pro-
teome correlating and anti-correlating in each comparison. Thus, no two conditions lead to
the same proteome remodeling and each condition is providing distinct information to our
analysis.

5.3.4 Proteomics analysis shows significant enrichment for stress
protection and cell envelope

We used the single protein CZ-scores to test for significant enrichment of gene ontology (GO)
processes and cellular compartments using a Kolmogorov-Smirnov test. Figure 5.4B shows all
redundancy-reduced GO biological processes and GO cellular components with FDR<0.01.
‘Cell envelope’, and ‘oxidative damage’, ‘response to stress’ and ‘catabolic process’ show
strong enrichment, and a positive correlation with survival. These pathways will now be
tested for their causal contribution to the growth/death relationships. The full list of GO
processes and cellular components is shown in Table S2.
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Figure 5.3: Comparison of MS proteomics data from different sources. (A) Comparison
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both measured after one day in stationary phase after growth on glucose. On left: Z-
value distributions of individual experiments are shown on left and top of correlogram.
Matrix inside the correlogram depicts frequency distribution of individual proteins that are
measured in both data sets and which have the respective Z-values. On right: Proteins
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and bottom right are counted as ‘uncorrelated’. Cut-off for significance is chosen at Z =
1.28, corresponding to a p-value of 0.1. Proteins with at least one Z-value less than 1.28 are
counted as uncorrelated. (B) Analysis of correlograms and quantification in pie charts of
three data sets of different catabolic limitation analog to panel A. ‘Carbon substrates’ and
‘chemostat’ taken from Schmidt et al., ‘Transporter titration’ taken from Hui et al. Different
types of catabolic limitation show high correlation between data sets. (C) Data sets from
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5.3.5 Stress response, oxidative damage and catabolism are not
limiting survival

To test whether the ‘stress response’ causally determines the survival kinetics, we pre-stressed
bacteria with 50 mM NaCl, pH6 or 40ºC and measure the effect on the survival kinetics.
For each of three pre-stress conditions, we find substantial upregulation of proteins, see Fig.
5.5A-C, including those from the respective response (‘response to osmotic stress’, ‘response
to acidic pH’ & ‘response to heat’), as well as the general ‘response to stress’. Despite
this upregulation of the cellular stress response, we observed no significant change of death
rate for either pre-stress condition, see Fig. 5.5D. Thus, the stress response is not limiting
starvation survival. In [155, 158] we have investigated the impact of catabolism on carbon
starvation and found it not to be limiting. Oxidative damage by reactive oxygen species
(ROS) can be a major threat to bacteria and have been previously proposed as survival
limiting in starvation [165]. ROS are formed as a natural byproduct of oxygen metabolism
in aerobic conditions. To test if ROS are survival limiting, we starved E. coli in anaerobic
conditions, after growth in either aerobic or anaerobic conditions. If ROS were limiting,
the culture will survive better compared to an aerobic control. In contrast, in anaerobic
conditions, irrespective of the previous condition, death rate even accelerated, Fig. B.3,
presumably due to the lack of oxidative respiration for biomass recycling.

5.3.6 Survival is sensitive to perturbations of the cell envelope
The ‘cell envelope’ includes the periplasm and outer membrane, sketched in Fig. 5.6A. It
provides mechanical stability, imports nutrients and is a selective chemical barrier [166] that
keeps abiotic chemicals out. It consists of three distinct regions, the peptidoglycan layer (cell
wall), the outer membrane and a space in-between (periplasm). Outer membrane and cell
wall are physically linked by anchors proteins (blue). Nutrients and ions are imported via
porins (red) and transporters (yellow) across the outer and inner membranes, respectively.
Numerous other proteins (grey) are responsible for correct synthesis and maintenance of pep-
tidoglycan, outer membrane (’OM’) and outer membrane proteins (’OMP’). The abundance
of proteins in the cell envelope depends on growth state of the cell, see methods for quan-
tification details. In slow growth, about 26% of the protein mass is associated with the cell
envelope, compared to 13% in rich medium (LB), see Fig. 5.6B. The biggest share of protein
mass is due to Lpp (up to 8.5%) and OmpA (up to 3.3%), two proteins that anchor the outer
membrane to the cell wall. These two anchors show a strong dependence on growth rate,
increasing their abundance from 5.1% on LB to 11.8% in stationary phase. Smaller shares
of the protein mass are associated with outer membrane porins (3.8% to 4.7%), mostly due
to the high abundance of OmpF and OmpC, and with a large number of proteins associated
with nutrient and ion uptake (2.0% to 1.0%). Proteins responsible for correct assembly and
maintenance of the cell envelope (grey shadings) make up less than 1% of the protein mass
of E. coli.

To test if the survival kinetics are sensitive to perturbations of the cell envelope, we tested
key knock-outs of non-essential cell envelope proteins, see Fig. 5.6C. We found key genes
throughout the envelope that are essential for survival, including two of the most abundant
proteins of E. coli, the membrane anchoring proteins (Lpp, OmpA). Porins (OmpF, OmpC
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Figure 5.5: Effect of pre-stressing on proteome and survival kinetics. (A-C) On left side of
each panel, volcano plots of individual proteins, showing the probability of being a response
versus the logarithm of the fold change. Proteins with fold change higher than 2 and false
discovery rate smaller than 0.05, are colored in red. On the right side of the panel, for
each pre-stress (40ºC, pH 6 and 50 mM NaCl), the corresponding stress response and the
general ‘response to stress’ are tested for significant upregulation using Kolmogorov-Smirnov
tests. In each pre-stress, both the specific and the general stress response are significantly
upregulated, FDR < 0.05. (D) After stressing during growth, bacteria are transferred to pre-
warmed, carbon-free minimal medium without stress. Death rates of neither pre-stressing
condition lead to a significant change in death rate.

and double-KO OmpF & OmpC) and transporters also take up a substantial fraction of the
proteome, Fig. 5.6B, but show no increase of death rate, Fig. 5.6C, indicating that nutrient
uptake is not limited by these proteins.
Several of the less abundant proteins show a high increase of death rate upon knock-out,
too. Outer membrane protein (OMP) chaperones (skp) and OMP assembly factors (bamE),
regulators of peptidoglycan hydrolases (prc & nlpI – regulators of MepS, yraP & nlpD –
regulators of AmiC), regulators of cell envelope homeostasis (cpxA - kinase of the cpx regulon,
rseA – anti-sigma factor of RpoE) and outer membrane lipid asymmetry maintenance (mlaA,
mlaC). Many of these genes have in common that they lead to a destabilization of the
envelope. This implies that the overall integrity of the envelope is important for survival.
In line with this result, we find that the antibiotic polymixin B, which targets the envelope
via the outer membrane drastically reduces the number of viable cells, while the antibiotic
tetracycline, which targets translation does not show any effect, see Fig. 5.6D.
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Figure 5.6: Cell envelope integrity is essential for survival. (A) Cartoon of the cell envelope,
consisting of the peptidoglycan layer (cell wall), the outer membrane, and the space in-
between. Proteins of high abundance are colored: Anchors (blue), outer membrane porins
(red) and nutrient and ion uptake (yellow). Other proteins for assembly and maintenance
of the cell envelope are colored in shades of grey. Note the lipid asymmetry in the outer
membrane with highly negatively charged Lipid A, shielded by Mg2+ ions, on the outer
leaflet, and phospholipids on the inner leaflet. (B) Cell envelope proteome composition in
three different growth conditions. Size of the pie is proportional to the total abundance of
cell envelope proteins, defined as fraction of the total protein mass. Outer membrane anchors
OmpA and Lpp (blue) show a strong increase with decreasing growth rate from 5.1% to 11.8%
of the total protein mass. Porins (red), proteins required for nutrient or ion uptake (yellow)
have considerable abundance, but show no consistent increase with decreasing growth rate.
(C) Death rates of knock-outs of key cell envelope genes. Knock-outs of outer membrane
anchors (blue) show an increase of death rate. Outer membrane porins (red) do not increase
death rate, indicating that nutrient uptake is not limited by porins. Several knock-outs of cell
envelope assembly and maintenance lead to strongly increased death rates. (D) Death rates
decrease with increasing concentration of Mg2+ in the medium. Regular minimal medium
used in this work contains 0.41 mM Mg2+, see methods for details. Bacteria require high
concentrations of divalent ions to shield negatively charged Lipid A [167, 168].
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5.3.7 Survival is limited by the mechanical stability of the cell
envelope

To distinguish whether mechanical stability is ’essential, but not limiting’ or ’essential and
limiting’ survival, we aimed to increase the stability of the cell envelope. The stiffness of the
outer membrane depends on the concentration of divalent Mg2+, which plays a crucial role
in shielding the highly negatively charged Lipid A, see inset on top right of Fig. 5.6A. We
found that increasing the Mg2+ to 1 mM decreases the death rate by a factor of two, Fig.
5.6E. Treating the culture with 50 mM EDTA, a chelating agent of divalent ions, death rate
increased by a factor of two, see Fig. 5.6E. These results show that the mechanical stability
of E. coli is ’essential and limiting’ survival.

5.3.8 Time-lapse microscopy reveals cell envelope failures in star-
vation

We hypothesize that the mechanical stability of the envelope is needed to protect E. coli
from internal turgor pressure. Such turgor pressure is actively regulated by bacteria, which
pump ions across the inner membrane. This active transport requires dissipation of energy,
which is a scarce resource in starvation. To investigate ion dysregulation and its connection
of cell death on single cell level, we monitored starving E. coli stained with a membrane
potential reporter DiBAC4(3) in an inert glass chamber on a time-lapse microscope. During
starvation, bacteria are in plasmolysis, with cytoplasm contracted and detached from the
outer membrane, see Fig. 5.7 (starvation). We find that bacteria spontaneously lose their
membrane potential, followed by an expansion of the cytoplasm . In some cells a bleb formsx
while on others it does not. In all cases, we observe a slow bleeding of cytoplasm, reported by
a cytoplasmic fluorescent protein (mKate), indicating mechanical failure of the cell envelope.

5.4 Discussion and Conclusion
In this chapter we have presented an investigation on relevant proteins for E. coli carbon
starvation. We have found that differing physiological perturbations during growth have
differing impact on the death rate of E. coli bacteria. We then searched for proteins in
MS proteomics data that were regulated into the opposite direction as the death rate under
the perturbations. We developed the CZ score to evaluate how well a protein responded
into the direction of interest over all measured perturbations. The underlying assumption
was, that there is an overall ’survival sector’ in the proteome and increased expression of
this sector results in better starvation survival. It should be highlighted that this is not
necessarily the case. The increased survival could be the ’by-product’ of each individual
perturbation and due to differing and complex proteome configurations. In previous studies,
it has however been shown that specific regulatory sectors do exist in the E. coli proteome,
with clearly defined functions, such as Catabolism or Anabolism [162, 160]. Moreover, we
see strongly enriched proteome sectors in the CZ score. Subsequent to the data analyses,
we perform physiological analyses. This reveals that most of the enriched sectors are not
limiting for starvation. For example, high levels of oxidative damage are deadly for cells
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Figure 5.7: Timelapse microscopy of starving E. coli indicates pressure-related death event.
After loss of polarization, we see expansion of the cytoplasm, in some cases followed by bleb
formation. The green DiBAC4(3) dye quantifies depolarization of the membrane, while the
purple mKate is a fluorescent cytoplasmic protein.

in general and decrease starvation survival, while anaerobic (i.e. ’non-oxidative’) starvation
of bacteria does not decrease the death rate. A strongly enriched proteome sector that
survives the physiological tests is the cell envelope. We see that a substantial fraction of
the proteome is allocated into this sector and that weakening the envelope increases death
rate, while stabilising the envelope increases survival. Additionally, we observe membrane
rupture events during starvation. These combined results indicate that we discovered an
essential role of the cell envelope for starvation survival, using a combined data-driven and
physiological approach.
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5.5 Methods
5.5.1 Proteomics data processing
The MS proteomics data was downloaded from the corresponding PRIDE partner repositories
(Schmidt et al.: PXD000498, Hui et al.: PXD001467, Houser et al.: PXD002140). For the
Schmidt and Houser datasets, the .raw files were downloaded, for the Hui dataset, peptide-
intensity mappings were downloaded. The Schmidt and Hui datasets were searched with
MaxQuant [39] v. 1.5.7.4 using standard settings and ’Label Free Quantification’ (LFQ) and
’Match between runs’ enabled. The Schmidt and the Houser datasets were searched against
the reviewed Uniprot E. coli K-12 database (03/2019).

5.5.2 Differential expression analysis of proteomics data
All datasets were processed with the MS-EmpiRe [169] algorithm for differential quantifi-
cation, which assigned fold changes and significance scores to each protein in a condition
pair. Each condition contained three replicates. For the Schmidt and Houser datasets, the
MaxQuant ’peptides.txt’ and ’proteinGroups.txt’ files were used input. The Hui dataset was
pre-processed as follows: As in the experimental setup of Hui et al. the data was quantified
relative to a 15N-labelled spike-in, a direct assessment of LFQ values was not optimal. Sim-
ilar to the approach of Geiger et al. [53], we first assessed the fold changes of each peptide
relative to its heavy labeled spike-in. To preserve the intensity information, we re-scaled
each spike-in fold change by the median intensity of the spike-in peptide over all conditions.
This resulted in pseudo-intensities, which we further processed in a ’LFQ-like’ manner using
MS-EmpiRe. Our dataset consisted of the perturbations ’Transporter Titration’, ’Ribosome
Limitation’ and ’Anabolic Limitation’ in the Hui set, ’Carbon Substrates’, ’Chemostat’, ’Rich
Media’, ’Stationary Phase’, ’Osmotic Shock’, ’Heat Stress’ and ’PH Stress’ in the Schmidt
set and ’Stationary Phase’ in the Houser set. Each dataset had a glucose reference condition
and the ’Stationary Phase’, ’Osmotic Shock’, ’Heat Stress’ and ’PH Stress’ perturbations
were compared to the corresponding glucose reference using differential expression analysis
with MS-EmpiRe.

5.5.3 Scoring the direction of the proteomic response
As displayed in Fig. 5.1 and discussed in the main text, each growth condition has a
corresponding death rate. Additionally, when one condition has a lower death rate than
the other, we expect the lower death rate to be caused by increased expression of proteins.
In our ranking, we hence wanted to identify proteins that show increased expression for
decreased death rate. Each condition consisted of several sub-conditions (e.g. different
levels of transporter titration in the C data set). The sub-conditions were sorted from lower
to higher death rate. They were then compared in an increasing manner (e.g. C1 vs C2, C2
vs C3, C1 vs C3). This way, positive log2 fold changes always correlate with better survival.
For a given protein, we are mainly interested whether it consistently follows the direction
of the response. The response is consistent when the fold change of every comparison is
positive. For the evaluation, we hence focussed on the sign and the significance of each
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comparison. To implement this, we used signed Z-values to calculate a final score for the
overall response.

5.5.4 Z-value based ranking of the proteome perturbations
In the MS-EmpiRe algorithm, peptide fold changes are assessed in the context of empirical
background distributions which estimate the noise of a peptide fold change. As discussed
in the MS-EmpiRe paper [169], it is helpful to transform such fold changes into standard
normally distributed Z-values, via an adaptation of the Stouffer [130] method. The Z-values
carry the information about the direction of the change, the background distribution and
the strength of the change (i.e. direction and significance). To combine the proteomics
responses, we obtained the Z-value for each protein from MS-EmpiRe. Multiple Z-values for
a given condition can simply be summed. The summed Z-values can then be transformed
again to standard normal by estimating the variance of the summed distribution, see section
3.3.4 of this thesis for more details.

5.5.5 Combination of the ranked proteome perturbations
In a first iteration, we applied the procedure described above to all perturbations to assess
the overall N(0, 1) Z-value of each perturbation (i.e. for the ’C,A,R,L,S’). This resulted in
a list of scored proteins in each perturbation, where a high Z-value means that the protein
correlates well with starvation survival. Proteins with scores in less than three perturbations
were excluded from the analysis. Depending on the number of samples and the quality of
the data, the distributions of the scored perturbations can span different ranges. As we
are interested in proteins that score generally well over all perturbations, we re-scaled the
individual distributions of scored perturbations with the factor rs = 3.09/Zmax , such that
the maximum absolute Z-value was 3.09 (corresponds to a p-value of 0.001). Re-scaling was
only applied to lower significance (i.e. if rs<1). This prevented that a single perturbation
dominated the overall score as follows: If a perturbation consists of many samples with strong
changes between them, the Z-values become more extreme than if a perturbation consists
of few samples with more subtle changes. The final score was then determined by again
assessing normalized N(0,1) Z-Values via equations 1 and 2. Using linear combinations, we
ensured, that the overall contributions of C,A,R,L,S perturbtaions had equal weight. Due to
the rescaling before, the final score should not directly be transformed back into an overall
p-value, but is a useful measure for an overall ranking. The overall score is robust against
missing values, as perturbations that are not available also do not contribute to the variance
v of the summed distribution ϕ̃ = N(0,

√
v). Due to this effect, fewer perturbations that are

very clear can also result in a high score.

5.5.6 Absolute quantification of proteins
For absolute quantification, we used protein synthesis rates derived by Li et al. [170] from
ribosomal sequencing data of a MG1655 glucose reference condition. Synthesis rates were
used as proxies for copy numbers and multiplied by the respective molecular weight to
obtain mass estimates. Further conditions were compared relatively to the reference with
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MS-EmpiRe and the mass estimates were scaled by the respective fold changes. To determine
the mass fraction of a gene set, the genes of the set were summed and divided by summed
mass of all genes.

5.5.7 GO enrichment analyses
The Gene Ontology (GO) was downloaded from http://geneontology.org (03/2019) together
with the E. coli ’ecocyc.gaf’ annotation. The relations ’is_a’ and ’part_of’ were used for the
construction of the gene sets. The analysis was carried out using the Kolmogorov-Smirnov
test with signed scores. Multiple testing correction was carried out via the Benjamini-
Hochberg procedure [79].
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Chapter 6

Conclusion and Outlook

The topics of this thesis cover essential aspects of MS proteomics data analysis. They have
to be understood in their respective technological and computational context. The MCIP
approach introduced in chapter 2, for example, covers the topic of peptide identification.
We show that we can increase the number of identified peptides in an MS proteomics run
with our approach. However, despite all current efforts, a large fraction (usually around
50%) of spectra acquired in an MS proteomics run are currently unidentified. Major rea-
sons for missed identifications are chemical modifications of the peptide, uncharacteristically
digested peptides, sequence mutations and chimeric spectra (i.e. spectra stemming from
multiple precursors) [25]. Modified peptides and uncharacteristically digested peptides can
be increasingly identified with ’open’ searching approaches, where a wide variety of chem-
ical modifications and sequences is screened for each peptide spectrum [25, 24]. Sequence
mutations can be addressed by either integrating genomics data in the search [171] or by
de-novo peptide identification approaches. Chimeric spectra can be deconvoluted for in-
creased identification, which is especially important for DIA spectra [58, 59]. In the field
of spectral library searching, remarkably accurate predictions of fragmentation spectra from
deep neural networks have been shown [172, 173, 174, 175]. Novel proteomics instruments
increasingly measure the ion mobility of peptide ions, which adds an additional independent
dimension that can be utilized for peptide identification [176]. Despite these possibilities,
the so called ’dark proteome’ still makes up a substantial fraction of proteomics data. A
recent combination of latent space embedding and open spectral library searching of a large
scale proteomics repository shows that more than 30% of spectra still cannot be assigned to
a peptide sequence [177]. Increases in sensitivity are likely necessary to further elucidate the
dark proteome. The MCIP approach introduced in this thesis is one effort in this direction
and can be seen as one of many steps in the collective effort to reach comprehensive peptide
identification.

The MS-EmpiRe model introduced in chapter 3 improves the statistical detection of reg-
ulated proteins in quantitative proteomics data. We show substantial increases in the de-
tection of regulated proteins (i.e. the sensitivity). Such sensitivity increases are however
limited. Ultimately, the statistics are constrained by the precision of the measurements.
Apart from the overall number of detected proteins, two main factors limit accurate quan-
tification in proteomics data: missing values and technical noise. In our analysis, sensitivity



96 6. Conclusion and Outlook

depends strongly on these factors and consequently, many developments in MS proteomics
technology aim at reducing the missing values and technical noise. Superior properties in
both of these aspects are the main reason for the success of DIA methods. For DDA data,
recent computational approaches show a strong decrease in the number of missing values
by integrated matching of chromatographic features in neighbouring proteomics runs [178].
Novel data acquisition approaches provide an improved basis for this by increased detection
of features [179]. Isobaric labelling approaches have also seen futher developments in both
the chemical design of the compounds that allow higher precision [180] and higher multi-
plexing [181] and the data acquisition strategies that allow for higher coverage and higher
accuracy [182]. A future challenge for differential quantification will also be the appropriate
handling of clinical proteomics data. Data acquisition methods are getting increasingly fast
and increasingly automated. A key point will be scalability of computational methods and
their ability to appropriately handle datasets with thousands of patient samples.

As discussed in chapter 4, the detection of alternative splicing events in proteomics data
is highly challenging. Recent approaches, including the approach presented in this thesis,
focus on the improvement of computational methods for increased detection of alternative
splicing. In our approach, we add a statistical framework to evaluate differential alternative
splicing to the proteomics pipeline. Improving quantification as described in the section
above is hence a key factor for improving the study of splicing regulation on the protein
level. Also increasing the number of quantified peptides, for example with novel data acqui-
sition approaches, is highly important. The emerging field of Proteogenomics deals with the
integration of proteomics data with other data types such as genomics, transcriptomics or
translatomics data. Such context-based approaches could benefit from novel more targeted
data acquisition strategies [183]. Peptides of interest can be determined from the context
of the other data and then be targeted in the MS run. One technology that is theoretically
predestined for the detection of alternative splicing events is top-down proteomics [7], where
the intact protein is measured by the MS and no further mapping to isoforms is necessary. A
key challenge is to achieve the necessary throughput, sensitivity and cost efficiency compared
to bottom up proteomics.

In chapter 5 we have presented a collaborative study to better understand carbon starvation
of E. coli. On the computational side, the challenge was to find an appropriate quantita-
tive description of the complex experimental setup. In principle, quite a few frameworks
for downstream processing and analysis of omics data exist [184, 185, 186, 187, 188, 189].
However, for more complicated setups it is still challenging to always find an appropriate
solution. In regard to the biological aspects of our study, it should be noted that for our
analysis, we study the regulation of proteins to understand the response of the overall sys-
tem, which implies a significant reduction in complexity. For the analysis of the systemic
response, we have correlated groups of genes with underlying and annotated biological pro-
cesses. As opposed to this reductionist approach is the integrative approach, pursued by a
subbranch of systems biology, where complete regulatory models of the system are approx-
imated. Currently these models are limited by data quality. Even if data acquisition were
perfect and all molecular components of the systems could be tracked with highest spatial
and time resolution, it is unclear to which extent such models could predict the behaviour
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of a biological system. An important point in our study is that we validate our analyses by
performing additional physiological and imaging experiments. This feedback between theory
and experiment is imperative in modern biology and will only become more important in
the future.

In conclusion, this thesis underlines the importance of computational methods in MS pro-
teomics. We have demonstrated substantial improvements along several steps in the com-
putational proteomics pipeline and have shown an interesting application of biological data
analysis. MS proteomics has already greatly contributed to biology and it will be exciting
to see, how far it will further develop in the future. Current studies [190, 191, 192, 193, 171]
show the great promise for MS proteomics in data-driven fields such as personalized medicine,
which will offer great challenges and great opportunities for computational proteomics.
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Appendix A

Supplement - Detecting differential
alternative splicing in MS proteomics
data

Note: Supplemental Tables and other outputs of substantial size have been deposited online
and are accessible under: https://www.bio.ifi.lmu.de/files/ammar/DISSERTATION/index.html

A.1 Supplemental figures
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Figure A.1: Examples of E. coli proteins with inconsistent peptides. We see strong and
systematic differences in the fold changes of the individual peptides. These systematic shifts
could be due to post-translational modifications or systematic biases in the data. Peptides
were randomly assigned into the red and blue groups and tested with MS-EmpiReS.
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Figure A.2: Examples of spliced genes with no visible regulation. The genes have splice
conflicts on the sequence level, however the ratios of both isoforms (red and blue) show no
substantial change relative to each other between conditions.
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Figure A.3: Pairwise comparison of all samples in the CPTAC dataset after normalization.
The color in the heat map indicates the standard deviation of the peptide fold change
distribution between the samples. Many of the cancer and healthy samples cluster together
already. Cancer samples are indicated with a black bar, linker channel measurements are
indicated in grey.
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A.2 Supplemental text
In the case that we have three particular groups of sufficiently quantified peptides, we can
estimate the ratios between the equivalence classes: One group has to map to equivalence
class 1, one group has to map to equivalence class 2 and one group has to map to both
equivalence classes. To show this, we write the copy numbers of peptides in equivalence
class 1 as A1, A2, with the indices 1, 2 denoting the conditions 1 and 2. Analogous, we write
B1, B2 for equivalence class 2. With this notation, we can write one equation for each group
of peptides:

I)
A2

A1

= fA, (A.1)

II)
B2

B1

= fB, (A.2)

III)
A2 +B2

A1 +B1

= fA+B, (A.3)

with fA, fB, fA+B being the respective fold changes between conditions that we can estimate
from the proteomics measurements. Re-aligning the equations gives

I) − A1fA + A2 = 0, (A.4)
II) −B1fB +B2 = 0, (A.5)

III) − A1fA+B + A2 −B1fA+B +B2 = 0. (A.6)

Calculating III) -I) - II) and re-aligning gives

A1

B1

=
fA+B − fB
fA − fA+B

, (A.7)

which is an estimate of the ratio between equivalence classes 1 and 2 in condition 1. It should
be noted that this calculation does not model the noise which is a substantial factor in the
data and represents a very idealized picture. The results of the calcuation should be seen as
a rough estimation of the order of magnitude of the isoform ratio.
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Appendix B

Supplement - Detecting relevant
proteins for E. coli carbon starvation
in MS proteomics data

Note: Supplemental Tables and other outputs of substantial size have been deposited online
and are accessible under: https://www.bio.ifi.lmu.de/files/ammar/DISSERTATION/index.html

B.1 Experimental protocols
B.1.1 Strains
All strains used in this study are derived from wild type E. coli K-12 strain NCM3722
[194]. Strains NQ381 and NQ399 used for ‘catabolic limitation’ are reported in You et al.
[161], NQ393, used for ‘anabolic limitation’ was reported in Hui et al. All knockouts were
transferred from the Keio collection [195] to NCM3722 via P1 transduction to yield strain.

B.1.2 Culture medium
The culture medium N-C- minimal medium [196], contains 1g K2SO4, 17.7 g K2HPO4, 4.7
g KH2PO4, 0.1 g MgSO4 7H2O and 2.5 g NaCl per liter. The medium was supplemented
with 20 mM NH4Cl, as nitrogen source, and varying carbon sources. The ‘reference glucose
condition’ contained 0.2% glucose. All chemicals were purchased from Sigma Aldrich, St.
Louis, Mo, USA.

B.1.3 Culture conditions
Prior to each experiment, bacteria were streaked out from -80ºC glycerol stock on an LB
agar plate supplemented with antibiotics if necessary. Bacteria were cultured in three steps.
First, a seed culture was grown in lysogenic broth (LB) from a single colony. Second, the
seed culture was diluted in N-C- - minimal medium supplemented with 20 mM NH4Cl and a
carbon source and grown overnight for at least 5 doublings to exponential phase. The next
morning, the overnight culture was diluted into fresh, pre-warmed N-C– minimal medium
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supplemented with 20 mM NH4Cl and a carbon source and grown for another 5 to 10 dou-
blings. At an optical density of 0.5 or below, the culture was washed by centrifugation (3
min at 3000 g) and resuspension into fresh, carbon-free, pre-warmed N-C- minimal medium
supplemented with 20 mM NH4Cl. This washing step removes excreted fermentative byprod-
ucts such as Acetate. For growth conditions known to fully respire carbon, e.g. wild-type
NCM3722 grown on glycerol [159], this washing step was omitted. For small culture volumes
(5 to 7 ml), 20 mm x 150 mm glass test tubes (Fisher Scientific, Hampton, NH, USA) with
disposable, polypropylene Kim-Kap closures (Kimble Chase, Vineland, NJ, USA) were used.
For larger volumes, baffled Erlenmeyer flasks (Chemglass, Vineland, NJ, USA) were used.

B.1.4 Viability measurements
For viability measurements, cultures were diluted in untreated, sterile 96 well plates (Cell-
treat, Pepperell, MA, USA) in three to four steps using a multichannel pipette (Sartorius,
Göttingen, Germany) to a target cell density of about 4000 CFU/ml. 100 µl of the diluted cul-
ture was spread on LB agar plates supplemented with 25 �g/ml of 2,3,5-triphenyltetrazolium
chloride to stain colonies bright red using Rattler Plating Beads (Zymo Research, Irvine,
CA, USA), and incubated for 12 to 24 hours. Images of agar plates were taken with a Canon
EOS Rebel T3i (Tokyo, Japan) mounted over an LED light box ‘Lightpad A920’ (Artograph,
Delano, MN, USA), and analyzed using a custom script in Cell Profiler (ref). Colony forming
units per volume (CFU/ml) were calculated by multiplying the number of colonies per agar
plate by the dilution factor.

B.1.5 Stress conditioning
For pre-stressing, wild-type E. coli NCM3722 was grown in glucose minimal medium, either
in a water bath at 40ºC (‘heat stress’), in medium supplemented with 50 mM NaCl (‘osmotic
stress’) or in N-C- medium adjusted to pH 6 using KOH (‘pH stress’). At an optical density
OD600 of about 0.5, cultures were washed and transferred to pre-warmed, carbon-free N-C-
supplemented with 20 mM NH4Cl, and the decay of viability was recorded for about 10
days.

B.1.6 Anaerobic culturing
For anaerobic growth and starvation, cultures were grown in 0.05% glucose minimal medium
in an vinyl anaerobic chamber (COY Lab Products, Grass Lake, Mi, USA), in Erlenmeyer
flasks (Chemglass, Vineland, NJ, USA) on a magnetic stirrer (IKA RO10, Staufen, Ger-
many), and not washed after the end of growth. For aerobic growth and anaerobic star-
vation, cultures were grown in 0.05% glucose minimal medium in an air incubator. At an
optical density of about 0.5, cultures were centrifuged, supernatants were discarded, and
pellets were introduced to the anaerobic chamber. In the anaerobic chamber, pellets were
resuspended in pre-warmed, carbon-free minimal medium. All media were degassed prior to
being introduced to the anaerobic chamber, and left with open lid to be equilibrated for one
week.
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B.1.7 Time-lapse microscopy
Microscopy was performed on a widefield inverted Nikon Ti2 fluorescence microscope (Nikon,
Tokyo, Japan) equipped with incubation chamber (Okolab, Pozzuoli, Italy) kept at 37ºC,
Hamamatsu Flash 4.0 sCMOS camera (Hamamatsu Photonics, Hamamatsu City, Japan),
Lumencor Spectra-X light engine (Lumencor, Beaverton, Or, USA) and a 100x, 1.4 NA phase
objective (Nikon, Tokyo, Japan). Culture chambers were built by assembling two cover slides
(name) with adhesive Secure Seal of 120 µm thickness (Grace Bio-Lab, Sigma-Aldrich, St.
Louis, Mo, USA). The result is a flat, hollow chamber with inert glass on top and bottom.
A starved culture, diluted to OD 0.075 was loaded through laser-cut holes in the top cover
slide and spun down for 3 minutes at 2200 g in a Centrifuge 5430 (Eppendorf, Hamburg,
Germany), and holes were sealed. To detect depolarization, the dye DiBAC4(3) was used,
which exhibits increased flourescence when it binds to intracellular proteins and membrane.
Increased depolarization leads to increased influx and higher flourescence.

B.2 Supplemental figures
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Figure B.1: (Caption next page.)
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Figure B.1: (Previous page.) Example growth and death curves of growth perturbations
shown in Fig. 1. All cultures were grown until OD 0.5 or less, (left panels), followed by
resuspension into fresh, pre-warmed, carbon-free medium (right panels). Data points before
-6 h, below OD 0.05, after 7 days or below viability of 0.01 are not shown. Generally, all
data points between OD 0.05 and OD 0.5 were used to fit growth rates, and all data points
between 109 CFU/ml and 107 CFU/ml were used to measure death rates. (A) Growth on
glucose minimal medium. (B) A culture grown on glucose and washed during growth dies
exponentially (black – reference condition). If the culture adapted one day in stationary
phase on excreted acetate, before being washed and resuspended in carbon-free medium, the
death rate will decrease (white symbols – stationary phase). (C) Change of nutrient quality.
Comparison of growth in catabolic limitation via titration of LacY (blue), anabolic limitation
via titration of glutamate synthesis (green) and LB, a rich medium, (red) with the reference
condition (black). (D) Death rate of cultures grown on different nutrient qualities show that
growth limitation leads to slower death (blue and green), while rich medium leads to faster
death (red). Note that on LB, the decay of viability appears to be non-exponential. In this
case we fit only the initial part of the decay. (E) Proteome stress. Comparison of growth
when cultures are either limited by ribosome inhibiting 3 µM Chloramphenicol (yellow) or
by expression of large quantities of a LacZ, an irrelevant protein (grey). (F) Proteome stress
leads to very fast death compared to the reference condition. Neither Chloramphenicol, nor
the inducer of LacZ expression are present during starvation. A summary of all growth and
death rates is shown in Table S1.
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Figure B.2: Investigation of proteomic influence on starvation survival. Cumulative distri-
bution of fold changes for LacZ overexpression relative to a glucose reference for different
strengths of perturbation by chlortetracicline (cTc) induciton [197] (2.5ng/ml - 12.5ng/ml).
The grey line corresponds to the uninduced strain relative to the reference and can be seen
as an estimation of the margin of error. Upon perturbation, we see a systematic down reg-
ulation, proportional to the inducer strength, without any visible up regulation. For the
highest perturbation, more than 80% of the proteome has a negative fold change and no
positive fold change is visible above the estimated error.
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