
Aus der Klinik für Allgemeine, Unfall- und Wiederherstellungschirurgie 

Klinikum der Ludwig-Maximilians-Universität München 

Vorstand: Prof. Dr. Wolfgang Böcker 

 

 

 

 

 

 

Unravelling the roles of tenomodulin at the nexus of early 

tendon healing and intervertebral disc homeostasis 

 

 

 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Humanbiologie 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 

 

 

 

 

 

 

vorgelegt von 

Dasheng Lin  

 

 

aus Fujian, China 

 

 

May 

2020 

 



Mit Genehmigung der Medizinischen Fakultät 

der Universität München 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter: Prof. Dr. Denitsa Docheva 

 

 

 

                                                                      

 

 

 

Mitberichterstatter: Prof. Dr. Susanne Mayer  

------------------------------------------------------------- Priv. Doz. Dr. Andreas Ficklscherer  

Priv. Doz. Dr. Thomas R. Niethammer 

 

Mitbetreuung durch den 

promovierten Mitarbeiter: 

        

       Prof. Matthias Schieker  

 

 
 

  

Dekan: Prof. Dr. med. dent. Reinhard Hickel 

 

Tag der mündlichen Prüfung: 

 

12. Nov 2020 



Dean’s Office Medical Faculty

Faculty of Medicine

Affidavit

Lin, Dasheng

Surname, first name

I hereby declare, that the submitted thesis entitled

Unravelling the roles of tenomodulin at the nexus of early tendon healing and interverte-

bral disc homeostasis

is my own work. I have only used the sources indicated and have not made unauthorised use of services

of a third party. Where the work of others has been quoted or reproduced, the source is always given.

I further declare that the submitted thesis or parts thereof have not been presented as part of an

examination degree to any other university.

Place, Date Signature doctoral candidate

Affidavit Human Biology Date: 07.05.2020

Munich, 08.05.2020 Dasheng Lin



i 
 

 

Table of contents 

Table of contents............................................................................................................................................. i 

Abbreviations................................................................................................................................................. ii 

Publication list .............................................................................................................................................. iv 

1. Introduction................................................................................................................................................ 1 

1.1 Tenomodulin: gene, protein and known functions .............................................................................. 1 

1.2 Insights from tendon biology to tendon healing .................................................................................. 4 

1.3 Insights into the pathogenesis of intervertebral disc degeneration ...................................................... 8 

1.4 Aims of the thesis .............................................................................................................................. 12 

1.4.1 Study I ............................................................................................................................................. 12 

1.4.2 Study II............................................................................................................................................ 12 

1.5 Own contributions.............................................................................................................................. 13 

1.5.1 Publication I .................................................................................................................................... 13 

1.5.2 Publication II................................................................................................................................... 13 

2. Summary .................................................................................................................................................. 14 

3. Zusammenfassung ................................................................................................................................... 16 

4. Publication I ............................................................................................................................................. 18 

5. Publication II ........................................................................................................................................... 31 

6. References................................................................................................................................................ 47 

Acknowledgements...................................................................................................................................... 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Abbreviations 

Acan aggrecan 

ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs 

ADSCs adipose-derived stem cells 

AF annulus fibrosus 

AFM atomic force microscopy 

BDNF brain-derived neurotrophic factor 

Bgn biglycan 

BMSCs bone marrow stem cells 

CEPs cartilaginous endplates 

Chm1 chondromodulin I 

Col collagen 

COMP cartilage oligomeric matrix protein 

CTGF connective tissue growth factor 

ECM extracellular matrix 

EGF epidermal growth factor 

Egr 1 early growth response 1 

ESCs embryonic stem cells 

FGF fibroblast growth factor 

Fn fibronectin 

GDF-5 growth/differentiation factor-5 

HIF-1α hypoxia-inducible factor-1α 

IFN-γ interferon-γ 

IGF-1 insulin-like growth factor-1 

ILs interleukins 

iPSCs induced pluripotent stem cells 

IVD intervertebral disc 

Lpl lipoprotein lipase 

Mkx mohawk 

MMPs matrix metalloproteinases 

MSC mesenchymal stem cell 

NO nitric oxide 

NP nucleus pulposus 

PDGF platelet-derived growth factor 

Pparγ  peroxisome proliferator-activated receptor gamma 



iii 
 

qRT-PCR quantitative real-time PCR 

Scx scleraxis 

SNP single nucleotide polymorphism 

TGF-β transforming growth factor beta 

Tnc tenascin C 

TNF tumor necrosis factor 

Tnmd tenomodulin 

TSPC tendon stem/progenitor cell 

VEGF vascular endothelial growth factor 

WT wild type 

β-NGF β-nerve growth factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Publication list 

Publication I 

Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar 

formation during early tendon healing 

Dasheng Lin, Paolo Alberton, Manuel Delgado Caceres, Elias Volkmer, Matthias Schieker and Denitsa 

Docheva  

Cell Death Dis. 2017;8(10):e3116. doi: 10.1038/cddis.2017.510. 

 

Publication II 

Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration 

Dasheng Lin, Paolo Alberton, Manuel Delgado Caceres, Carina Prein, Hauke Clausen-Schaumann, Jian 

Dong, Attila Aszodi, Chisa Shukunami, James C Iatridis and Denitsa Docheva  

Aging Cell. 2020;19(3):e13091. doi: 10.1111/acel.13091. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Tenomodulin+is+essential+for+prevention+of+adipocyte+accumulation+and+fibrovascular+scar+formation+during+early+tendon+healing


1 
 

1. Introduction 

1.1 Tenomodulin: gene, protein and known functions 

Tenomodulin (Tnmd) was independently identified by both Brandau et al. (2001) and Shukunami et al. 

(2001), and was found to be highly homologous to chondromodulin I (Chm1), a cartilage-derived growth 

regulator and angiogenesis inhibitor (Hiraki et al., 1991). Tnmd represents a member of a novel type II 

transmembrane glycoprotein family, and has C- and N-terminal extracellular and cytoplasmic domains, 

respectively. Extracellular Tnmd regions consist of a C-terminal cysteine-rich proteolytically cleaved anti-

angiogenic domain and a BRICHOS domain that is thought to serve an intramolecular chaperone function 

(Brandau et al., 2001; Shukunami et al., 2001). Tnmd, located on the X chromosome, encodes a 1.4 kb 

transcript that is in turn predicted to encode a 317 amino acid protein (Brandau et al., 2001) (Figure 1).  

 

Figure 1. Human tenomodulin (TNMD) organization and the mRNA and protein levels. Grey is used to 

designate transmembrane, BRICHOS, and the antiangiogenic regions, with an arrow being used to mark the functional 

RXXR cleavage site. Exons are indicated by black boxes, with the lines between these boxes corresponding to introns. 

Abbreviation: UTR, untranslated region. This figure is adapted and modified from Tolppanen et al. (2010). 

 

Tnmd lacks the furin cleavage site present within the Chm1 precursor, but it contains a protease 

recognition sequence at positions 233-236 (Shukunami et al., 2005). Near this putative cleavage site is an 

extracellular domain BRICHOS, which is composed of a conserved 100 amino acid sequence that was 

first associated with proteins linked to dementia, respiratory distress, and cancer (Sánchez-Pulido et al., 

2002). However, its function in Tnmd and Chm1 is not clear. Northern blotting studies of newborn murine 

tissues revealed the highest Tnmd expression levels in skeletal muscle, diaphragm, and eyes, although a 

weak signal was observed in most screened tissues (Brandau et al., 2001; Shukunami et al., 2001). Tnmd 

expression in muscular tissue is exclusive to ligaments and tendons, as demonstrated through in situ 

hybridization studies (Docheva et al., 2005). It is important to note that the homologous gene, Chm1, is 

predominantly expressed in cartilage tissue, but both Tnmd and Chm1 have an overlapping expression in 

the eye (Docheva et al., 2005; Hiraki et al., 1991). These expression patterns suggest that Tnmd and 

Chm1 may not have compensatory roles in their primary expression sites. 

During development and in traumatic or inflammatory contexts, a balanced control of angiogenesis is 
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necessary in cartilage and tendons in order for these tissues to maintain their hypovascularity. Therefore, 

it has been proposed that the primary function of Tnmd and Chm1 may be to control blood vessel 

ingrowth. However, developmental studies of Chm1- and Tnmd- deficient mice have revealed no 

profound abnormalities in cartilage or tendon vascularisation, respectively (Docheva et al., 2005). Despite 

the lack of developmental phenotypes, it is important to further examine and challenge these knockout 

models by subjecting the mice to different disease-like conditions that allow the study of gene function 

during tissue healing or disease pathogenesis. For example, using a mouse tumor model, Oshima et al. 

(2004) found the Tnmd C-terminal domain to suppress the formation of vascular tubes in vitro and to 

suppress the in vivo growth of tumors. 

The signalling pathway in which Tnmd participates is still unknown, mostly because of its novel 

protein domain structure and also because its potential binding partners have not been identified. Two 

studies by Brent et al. (2005) and Shukunami et al. (2006) revealed that there is overlap between the 

expression domains of Tnmd and scleraxis (Scx), the main transcription factor known to be indispensible  

for tendon formation. Furthermore, over-expression of Scx in cultured chicken tenocytes activated the up-

regulation of Tnmd (Shukunami et al., 2006), while in Scx-knockout mice, Tnmd expression is markedly 

diminished (Murchison et al., 2007; Shukunami et al., 2018). Mohawk (Mkx) is another transcription 

factor that is expressed almost exclusively within ligaments and tendons. When mice do not express Mkx, 

they exhibit reduction in Tnmd but not Scx expression, highlighting the role of Mkx as the Tnmd 

regulator (Ito et al., 2010; Liu et al., 2010). Taken together, the above studies suggest that Scx and Mkx 

are upstream of Tnmd. However, the protein-protein interactions in which Tnmd may be involved remain 

elusive. 

Despite its unknown molecular pathway, Tnmd has been widely utilized as a marker gene for tendon 

lineage (Delgado et al., 2018; Dex et al., 2016; Jo et al., 2019; Li et al., 2019). Tnmd expression analysis, 

mainly at the mRNA level, has been used to confirm the presence of tendon-derived cells or to 

demonstrate the tenogenic differentiation of uncommitted cells. Tnmd loss has recently been shown not to 

affect Tnmd-knockout-derived tendon stem/progenitor cell (TSPC) multipotency, instead resulting in 

impairment of the ability of these cells to self-renew while increasing their susceptibility to entering a 

state senescence (Alberton et al., 2015). Additionally, Tnmd overexpression in murine mesenchymal stem 

cell (MSC) improves their commitment to tenogenic differentiation, while inhibiting osteogenesis, 

chondrogenesis, and adipogenesis (Jiang et al., 2017). Therefore, Tnmd is currently considered as the 

most specific differentiation marker of ligaments and tendons. 

Tnmd expression is largely detected in the ligaments, tendons, and eyes, all of which are hypovascular 

tissues. Tenocyte proliferation is impaired in mice in which Tnmd expression is disrupted, resulting in 

pathologic collagen fiber thickening, decreased tenocyte density, and significantly inferior running 

performance (Dex et al., 2017; Docheva et al., 2005). Tnmd is also universally expressed in a concentric 
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pattern in the normal chordae tendineae cordis, and the local absence of Tnmd, angiogenesis, and 

activation of matrix metalloproteinases (MMPs) are linked with chordae tendineae cordis rupture (Kimura 

et al., 2008). In humans, relatively high TNMD mRNA expression can also be detected in the 

intervertebral disc (IVD), as well as in the tongue, brain regions including the globus pallidus and the 

temporal lobe, and in the cardiac myocytes (Minogue et al., 2010; Su et al., 2002). A recent study found 

high levels of TNMD expression within the adipose tissues of humans, where it acts as a protective factor 

that drives the proliferation of preadipocytes, adipogenesis, and responsiveness to insulin (Senol-Cosar et 

al., 2016). 

Finally, single nucleotide polymorphism (SNP) studies have demonstrated associations between 

TNMD and diseases such as obesity (Ruiz-Ojeda et al., 2019; Saiki et al., 2009; Tolppanen et al., 2008), 

type 2 diabetes (Tolppanen et al., 2007), metabolic syndrome (González-Muniesa et al., 2013; Tolppanen 

et al., 2008), age-related macular degeneration (Tolppanen et al., 2009), apoliprotein E levels, and 

Alzheimer’s disease (Tolppanen et al., 2011). At present, these links remain vague, since the studies have 

only correlated the presence of TNMD gene SNPs to the existence or severity of the diseases, and it 

remains unclear if changes in Tnmd expression or function are involved. Thus, further studies are required 

to determine whether Tnmd is important for the development of these conditions. 

There is increasing evidence to suggest that Tnmd may have diverse roles in various tissues and 

pathological conditions. Hence, identifying the specific functions of Tnmd will be helpful not only to the 

field of tendon biology, but also to other research and clinical fields. Therefore, further analysis of Tnmd-

knockout mice in combination with different experimental models of pathological conditions is required. 

This will be a straightforward approach to determine if Tnmd exerts positive or negative effects on the 

progression of certain diseases. 
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1.2 Insights from tendon biology to tendon healing 

Tendons are composed of dense connective tissue and help transmit force from muscles to bones 

during mechanical loading. Structurally speaking, ligaments are similar to tendons, but they instead 

function by stabilizing joints, linking bones together, and typically have lower tensile strength than 

tendons (Nourissat et al., 2015). The core portion of the tendon which is responsible for load-bearing 

consists of collagen-rich fascicles that are highly aligned and that exhibit tendon-specific cell 

interspersion. Type I collagen is the primary component of the tendon extracellular matrix (ECM), with 

elastin, type III collagen, glycoproteins, and proteoglycans also contributing to this structural network. 

Tendon fibroblasts, or tenocytes, are the main cells within tendons, wherein they drive ECM synthesis, 

organization, and maintenance. Tendon tissue degeneration, which can be induced by mechanical overuse, 

neo-vascularization and/or tendon cell and tissue aging, is a leading cause of tendon rupture (Schneider et 

al., 2018; Steinmann et al., 2020). Once a tendon is ruptured, this typically resulting in the formation of a 

scar-like disordered collagen fiber section of tissue that fails to develop normal structural, mechanical, or 

functional properties (Lee et al., 2015). Due to societal aging and a rise in overuse activities or extreme 

sports by young people, tendon diseases are among the most prevalent orthopedic problems and they 

present major clinical challenges. However, as there is insufficient data pertaining the mechanisms 

governing tendon development, mechano-transduction, pathogenesis, or healing at present, developing 

therapeutic interventions to remediate tendon diseases remains challenging  (Ackerman et al., 2019; 

Andarawis-Puri et al., 2015). 

Following tendon injury, healing is slow relative to muscle and bone healing processes, with tendon 

tissue repair taking longer than 1 year in humans (No et al., 2019). Precisely how tendon healing remains 

to be fully studied, as there have not been sufficient in-depth analyses of the histopathological changes, 

biomechanics, and biochemical processes associated with such healing. Following surgical tendon repair, 

a short inflammatory phase typically first occurs, followed by a proliferative phase and a remodeling 

phase (Docheva et al., 2015; Schneider et al., 2018). These phases overlap, and are associated with 

specific cellular activities and cytokine secretion profiles that vary in a time- and space-dependent manner. 

Inflammatory cytokines are generally prevalent early during these responses, whereas anti-inflammatory 

cytokines and other factors associated with tissue healing are expressed at higher levels at later time points  

(Leong et al., 2020). During the inflammatory phase, which lasts approximately 1 week, there are 

increases in vascular permeability leading to an increase in the infiltration of inflammatory cells into the 

site of damage (Figure 2A). These cells release growth factors and cytokines, including connective tissue 

growth factor (CTGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like 

growth factor-1 (IGF-1), interleukins (ILs), platelet-derived growth factor (PDGF), transforming growth 

factor beta (TGF-β),  tumor necrosis factor (TNF), and vascular endothelial growth factor (VEGF), which 

result in the proliferation and recruitment of macrophages and  tendon cells (Chazaud et al., 2014; Evrova 
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et al., 2017; Manning et al., 2014) (Figure 2A). Tendon injuries are also associated with the upregulation 

of a range of genes that encode various collagens (Col1a1, Col1a2, Col3a1, Col12a1 and Col14a1) and 

other tendon-associated genes such as Scx, Mkx, Tnmd, early growth response 1 (Egr1), and tenascin C 

(Tnc). The secondary proliferative phase extends for a few weeks, and is characterized by macrophage-

mediated production of growth factors and chemokines (Docheva et al., 2015; Schneider et al., 2018). 

This leads tendon fibroblasts to be recruited from the synovial sheath and the epitenon while also 

recruiting proximal tenocytes to the injured site, wherein they produce type III collagen, fibronectin (Fn) 

and other constituents of the ECM to generate a disorganized ECM. Initial type III collagen production is 

eventually replaced by stronger type I collagen production. This proliferative phase is typically associated 

with high amounts of water absorption and cellularity. Following a 6-8 weeks period, a remodeling phase 

then initiates and lasts for 6-12 or more months depending on patient age and overall condition (Docheva 

et al., 2015; Schneider et al., 2018) (Figure 2B). The remodeling phase in turn consists of both 

consolidation and maturation stages, with the former being 10 weeks long and being characterized by 

changes in the tissue from a more cellular to a more fibrous state. During this period, tenocytes remain 

highly active, and collagen fiber alignment with stress directionality begins to occur. This in turn 

facilitates improvements in tendon strength and stiffness, with type III collagen synthesis being exchanged 

for type I collagen production. Tendon fibroblasts undergo myofibroblastic transformation, leading to 

granulation tissue contraction into a permanent scar. The maturation stage, in turn, can extend for 1-2 

years, and during this period the tendon tissue switches from a fibrous to a more scar-like state, with 

concomitant reductions in tendon vascularity and in tenocyte metabolic activity (Schneider et al., 2018). 
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Figure 2. A simplified schematic of the tendon healing. (A) Early healing phase characterized with the entry of 

extrinsic cells to the site of injury (macrophages, mesenchymal stem cells, etc.) and (B) Late healing phase characterized 

with maturation of intrinsic cells and matrix. 

 

Two related mechanisms have been proposed to mediate tendon healing, with the mechanism being 

engaged being dependent upon the types of cells involved therein. Tendon cells mediate intrinsic healing, 

whereas cells that migrate to the tendon from surrounding tissues mediate extrinsic healing. Due to the 

relatively small number and limited reparative abilities of resident tendon cells, the tendon has very little 

intrinsic regenerative capacity (Glenn et al., 2019). Both intrinsic and extrinsic mechanisms are thought to 

govern tendon healing, with injury- and site-specific factors determining which process predominates in a 

given patient (Lomas et al., 2015). Extrinsic healing can result in the deposition of significant quantities 

of disordered collagen, leading to large quantities of scar tissue and adhesion formation (Stauber et al., 

2019). As mentioned above, scar tissue reduces the mechanical properties of tendons, leaving them more 

susceptible to subsequent rupture (Lomas et al., 2015).  

Experimental strategies for improving tendon healing primarily consist of growth factor and cytokine 

application, either alone or as a combination therapy (Disser et al., 2019; Docheva et al., 2015; Schneider 

et al., 2018), stem cells in native or genetically modified form (Bi et al., 2007; Chong et al., 2007; Deng 

et al., 2014; Harvey et al., 2019; Okamoto et al., 2010); and biomaterials, alone or cell-loaded (Liu et al., 

2006; No et al., 2019; Wang et al., 2008; Wang et al., 2018), at the site of tendon injury. Targeted 

blockade of inflammatory mechanisms after tendon repair can reduce scar formation but can also lead to 

marked impairment of the tendon’s mechanical properties (Abraham et al., 2019; Ackerman et al., 2019). 

Additionally, poor vascularity may prevent adequate tissue repair, but hypervascularity can also have a 

detrimental effect on tendon healing (Leong et al., 2020). To accelerate healing, inflammatory and 

angiogenic responses must, therefore, be balanced and followed by quick regression to prevent functional 

compromise (Titan et al., 2019). Several studies have sought to understand how cytokines and growth 

factors impact tendon biology and healing, with some of these studies having evaluated the impact of 

these factors on stem cells (Schneider et al., 2018). However, the majority of these factors that are 

produced in the context of tendon healing are associated with angiogenic and inflammatory processes, and 

as such it can be challenging to determine the pathways involved in the proteinogenic effect. Based on the 

results of genetic loss-of-function studies, only a few factors, including Egr1, growth/differentiation 

factor-5 (Gdf-5), and Smad3, have been shown to be essential for full tendon-healing responses (Chhabra 

et al., 2003; Delgado et al., 2018; Guerquin et al., 2013; Katzel et al., 2011). 

Despite promising research, studies thus far have failed to facilitate the complete restoration of normal 

tendon functionality after rupture, or have been hampered by poor cell source availability (Kraus et al., 

2014; Nourissat et al., 2015). Indeed, few functional tenocytes are generally available, while muscle cells 

and dermal fibroblasts generally exhibit uncertain specificity. Tendon aging is associated with a loss of 
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division in tendon cells, preventing full tendon healing following injury (Kohler et al., 2013). However, 

even in adults a subset of tendon cells are capable of undergoing division, and this activity may be vital 

for healing responses (Grinstein et al., 2019). Adult bone marrow stem cells (BMSCs), adipose-derived 

stem cells (ADSCs), TSPCs, and embryonic stem cells (ESCs) can differentiate into tendon-like cells. 

However, their corresponding abilities in vivo are not fully understood. Reprogrammed/engineered cells, 

such as induced pluripotent stem cells (iPSCs) have been linked to many concerns pertaining to efficacy 

and safety following the respective use of polymeric and viral vectors, and when they differentiate 

towards specific cell lineages, developmental stage mismatch processes may occur (Gaspar et al., 2015; 

No et al., 2019). 

Effective approaches to expediting tendon healing have yet to be developed, as we do not currently 

understand tendon biology as well as we understand that of other components of the musculoskeletal 

system. Moreover, the molecular mechanisms controlling tendon cell migration, proliferation, and fate in 

the context of such tendon repair remain to be fully elucidated  (Dex et al., 2016; Nourissat et al., 2015). 

Therefore, it is very important to dissect the cellular and molecular processes of tendon healing after 

surgical repair, in order to develop therapies that promote timely and complete repair of injured tendons. 
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1.3 Insights into the pathogenesis of IVD degeneration 

IVD degeneration is a primary driver of chronic low back pain (Nguyen et al., 2015). IVD 

degeneration is a complex and multifactorial process. It is mainly caused by aging, genetic predisposition, 

abnormal biomechanical loading, and environmental components (Pye et al., 2007; Risbud et al., 2014; 

Sakai et al., 2015; Silagi et al., 2019; Williams et al., 2011). Numerous factors are believed to be capable 

of initiating the dysregulation of the anabolic/catabolic balance and a decline in the cell density of the 

nucleus pulposus (NP). Despite low back pain being a major medical and socioeconomic burden in 

modern society, the initiation and progression of IVD degeneration is not well understood. Therefore, it is 

important to understand the molecular basis of the pathogenesis of IVD degeneration translate this into the 

development of clinical treatments. 

There are three primary compartments that compose the avascular IVD: an outer fibrocartilaginous 

annulus fibrosus (AF), an inner proteoglycan-rich NP, and cartilaginous endplates (CEPs) present at 

junctions with vertebral bodies. NP cells lack access to any significant blood supply, and thus adapt to the 

metabolic constraints of growing in a nutrient-poor, hypoxic, acidic setting. If their normal homeostatic 

capabilities are disrupted, however, this can lead to the onset of a pathological condition, during IVD 

degeneration. The initiating event that induces IVD degeneration is believed to arise from complex 

interactions between predisposing genetic factors and lifestyle or environmental factors including illness, 

obesity, poor posture, or poor nutrition. When normal metabolic activity is disrupted, imbalanced 

catabolism and anabolism can often occur along with inflammation, leading to a destructive feedback 

cycle wherein the breakdown of the matrix can lead to the generation of other inflammatory mediators, in 

turn driving MMPs upregulation and expression of a disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTS), leading to further matrix breakdown (Patil et al., 2019).  

IVD serves as the main intervertebral junction, and possesses fibrocartilaginous properties that enable 

it to resist mechanical stress. Gelatinous NP tissue redistribution is one key regulator of this process. 

Resident NP cells serve as key regulators of metabolic activity within NP tissues, wherein they produce 

proteoglycans and type II collagen that lead these tissues their gelatinous properties. Increased apoptotic 

death of NP cells as a result of metabolic disease can result in ECM metabolism disorders that accompany 

IVD degeneration (Kadow et al., 2015; Song et al., 2018). The loss of proteoglycan in the NP is 

accompanied by increased fibrosis, and the transition of cells from a vacuolated notochordal phenotype to 

one that resembles hypertrophic chondrocytes (Gorth et al., 2019). Cumulatively, NP cells switching from 

producing anabolic to catabolic factors is a hallmark of IVD degeneration (Tessier et al., 2019). 

Characteristically, the loss of the disc matrix proteoglycan aggrecan (Acan) leads to a reduction in 

compressive force resistance, with this being one well-characterized hallmark of degenerative disc disease 

(Patil et al., 2019). There is also evidence of increases in matrix fragments production by the proteolytic 

actions of MMPs and ADAMTS. 
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The health and integrity of the AF are pivotal to IVD health. A longitudinal analysis of the 

relationships between AF tears and IVD degeneration in adults determined that annular tears are likely to 

arise early during disc disease, whereupon the result in accelerated degeneration of the NP (Sharma et al., 

2009). Disorganized concentric lamellae and fissures have the potential to arise in the AF, leading to an 

overall structural weakening that increases the susceptibility of the NP to bulging, herniation, or rupturing, 

that results in back or leg pain as a result of the irritation of compression of adjacent nerve roots. Vascular 

ingrowth is considered pathological, since normal IVDs are primarily avascular structures (Freemont et al., 

1997). Moreover, neovascularization of degenerated IVD occurs most frequently in the AF tissue, 

underscoring the importance of studying the interaction between resident AF cells and invading vascular 

cells (Pohl et al., 2016). When AF fissures initiate in the outer AF prior to progressing inwards, this leads 

to the induction of a reparative response such that AF innervation, growth factor secretion, and  

vascularized granulation tissue development are all evident upon observation. In a healthy AF, neuronal 

fibers are only detectable in the outermost lamellae, whereas annular damage can lead to de novo 

innervation as undamaged NP cells generally suppress the outgrowth of neurites, while degenerative NP 

cells and infiltrating immune cells release neurogenic proteins including β-nerve growth factor (β-NGF) 

and brain-derived neurotrophic factor (BDNF) to stimulate innervation (Risbud et al., 2014). Remarkably, 

nerve ingrowth is frequently accompanied by vascularization. Inflammation can further enhance 

innervation-related nociceptive triggers. Therefore, vascular, nerve ingrowth, and inflammatory mediator 

secretion are essential components of direct IVD pain (Figure 3). Nevertheless, the pathomechanism of 

this process remains unclear. 

 

Figure 3. A series of events occur during IVD degeneration that are proposed to cause low back pain.  AF, 

annulus fibrosus; BDNF, brain-derived neurotrophic factor; FGF, fibroblast growth factor; IL, interleukin; IVD, 

intervertebral disc; NO, nitric oxide; NP, nucleus pulposus; TGF-β1, transforming growth factor beta 1; TNF-α, tumor 

necrosis factor alpha; β-NGF, β-nerve growth factor. This figure is adapted and modified from Kadow et al. (2015). 
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Under healthy conditions, the CEP acts as a physical barrier to the NP, facilitating the distribution of 

intradiscal pressure while preventing NP tissue protrusion into the adjacent vertebral centrum. In disease 

contexts, the resulting damage can lead to focal weakening in the CEP, increasing its susceptibility to 

failure. Calcification of CEPs has been observed, with chondrocyte hypertrophy, the occlusion of marrow 

spaces, and sclerosis, thus altering the energy supply/demand balance and reducing the rate of nutrient and 

metabolite diffusion. With the recruitment of immune cells, the nutrient supply decreases, whereas the 

demand increases. This imbalance between demand and supply decreases the availability of nutrients to 

disc cells, thereby leading to adverse effects on cellular activity and viability. In addition, a reduction in 

metabolite excretion and acidification of the IVD microenvironment occurs with the calcification of CEPs, 

resulting in cellular stress that stimulates the apoptosis and senescence of NP cells. The accumulation of 

metabolites in the NP boosts the production of MMPs and ADAMTS, which further increases the 

degradation of ECM components (Huang et al., 2014). For example, hypoxia can promote apoptotic cell 

death and inhibit proliferative activity, whereas it can also drive IVD progenitor cells to different iate in a 

chondrogenic manner. Under hypoxic settings of following hypoxia-inducible factor-1α (HIF-1α) 

induction CEP-derived cells from degenerative IVD tissues exhibit disrupted osteogenesis, whereas under 

normoxic conditions their osteogenic potential was increased (Lyu et al., 2019). 

Various studies have found associations between IVD degeneration risk and mutations in genes 

associated with metabolism or the ECM. Col I, Col IX, Col XI, Acan, and asporin gene polymorphisms, as 

well as mutations in genes  encoding IL-1 signaling-related proteins, have been shown to contribute to 

IVD degeneration susceptibility (Williams et al., 2011). The deletion of IL-1α/β alters systemic 

inflammation and the morphology of vertebral bones, but does not impact IVD health in expected 

manners, instead resulting in the amplification of degeneration following IL-1α/β deletion (Gorth et al., 

2019). The actin-related protein 2/3 (Arp2/3) complex serves as a key mediator of cell-matrix interactions 

and matrix homeostasis. Conditional loss of Arp2/3 leads to IVD defects evident both at early postnatal 

time points and during adulthood (Tessier et al., 2020). The Mkx transcription factor serves as a key 

regulator of AF development and maintenance. Mkx deficiency results in more rapid IVD degeneration 

(Nakamichi et al., 2016). p16 is an important regulator of IVD degeneration, and its deletion attenuates 

IVD degeneration by promoting cell cycle progression and inhibiting the senescence-associated secretory 

phenotype, cell senescence, and oxidative stress (Che et al., 2020). Taken together, these results suggest 

that a genetic predisposition plays a significant role in IVD degeneration. Thus, it is essential to 

understand how polymorphisms in matrix proteins or metabolic mediators impact the resulting molecular 

mechanisms involved in IVD degeneration. 

IVD cells are primary producers of pro-inflammatory cytokines such as IL-1α/β, IL-2, IL-4, IL-6, IL-8, 

IL-12, IL-17, TNF-α, and interferon-γ (IFN-γ), all of which can drive the production of downstream 

factors including prostaglandins and nitric oxide (NO). Of these, IL-1 and TNF-α have been studied 
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extensively in the context of disc degeneration, wherein they are believed to drive degeneration by 

activating MMPs and ADAMTS (Gorth et al., 2019; Patil et al., 2019; Risbud et al., 2014). Mechanical 

loading additionally influences progenitor cell fate, with persistent cyclic stress leading to disc cell 

osteogenic gene induction and apoptotic death. Similarly, the apoptosis of these disc cells can be 

promoted by nutrient deficiencies such as those observed when serum is removed from cultured cells (Lyu 

et al., 2019). Furthermore, degeneration is closely linked to the overall aging process, suggesting that 

gradual matrix breakdown occurs naturally over time. The acceleration of this natural process, however, 

can arise for the reasons described above. It is thus essential that the source of pain be accurately located 

in order to facilitate efficacious therapeutic treatment. 

In summary, the IVD represents the largest avascular tissue, and its potential for self-renewal is very 

limited in humans. The process of IVD degeneration is complex and multifactorial, involving the 

dysregulation of multiple processes, including the overexpression of degradative enzymes, the up-

regulation of pro-inflammatory cytokines, the loss of healthy cells, and a decrease in matrix synthesis. 

Understanding the molecular basis of vascular control in the IVD as well as the exact pathogenesis of IVD 

degeneration will be important for facilitating the development of clinical treatments. 
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1.4 Aims of the thesis 

1.4.1 Study I 

We hypothesized that Tnmd-knockout mice will display delayed and inferior tendon healing when 

challenged with surgically induced Achilles tendon rupture. Our hypothesis is based on previous findings 

that Tnmd plays a regulatory role in the proliferation of tendon cells and the maturation of collagen fibrils, 

processes that are crucial during tendon healing. It is well known that the treatment of tendon injuries is 

currently limited to the use of painkillers, anti-inflammatory drugs, and glucocorticoids and there is a 

profound lack of treatment options that specifically and efficiently influence the performance of tendon 

cells. Since the loss of Tnmd may be associated with poor tendon healing, we propose that this research 

will provide new insights into Tnmd as a novel target for development of tendon-specific therapeutic 

agents.  

In study I, we focused on the following three main objectives: 

i) to apply surgically induced Achilles tendon rupture in Tnmd-deficient and wild type (WT) mice 

ii) to carry out profound histomorphometry analysis at the early stage of tendon healing (via 

histology, immunohistology staining and quantification, cell proliferation and apoptosis analysis, 

and quantitative real-time PCR (qRT-PCR) of tendon tissues) 

iii) to perform in vitro analysis of TSPCs derived from Tnmd-deficient tendons and control (via 

migration, proliferation, adipogenic differentiation assays, ELISA and qRT-PCR of TSPCs) 

 

1.4.2 Study II 

We hypothesized that the expression of Tnmd may suppress vascular ingrowth in the typically 

avascular IVD tissue, thus contributing to the IVD homeostasis. Conversely, the absence of Tnmd will 

lead to IVD degeneration. 

In study II, we focused on the following three main objectives: 

i) to investigate the phenotypic changes of Tnmd-deficient versus WT IVD tissues (via histology, 

immunohistology, histomorphometry, atomic force microscopy (AFM), western blotting, and qRT-

PCR of IVD tissues) 

ii) to investigate the phenotypic changes of Tnmd- and Chm1-deficient IVD tissues (double knockout 

mice) (via histology, immunohistology, and western blotting) 

iii) to perform in vitro analysis of IVD-derived cells from Tnmd-deficient and WT mice (via co-

culture with vascular cells, immunohistology, migration, proliferation, apoptosis, and qRT-PCR 

analyses). 
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1.5 Own contributions 

1.5.1 Publication I  

I designed, performed, and analyzed the experiments and wrote the manuscript.  

Paolo Alberton assisted with the operations and performed tissue dissections and analyses.  

Manuel Delgado Caceres performed ELISA and qRT-PCR experiments.  

Elias Volkmer performed tendon surgery.  

Matthias Schieker reviewed and approved the manuscript.  

Denitsa Docheva conceived the study, designed the experiments, analyzed the data, and wrote the 

manuscript. 

 

1.5.2 Publication II 

I designed, performed, and analyzed the experiments and wrote the manuscript.  

Paolo Alberton performed the co-culture experiments.  

Manuel Delgado Caceres performed western blotting and qRT-PCR experiments.  

Carina Prein performed AFM analyses.  

Hauke Clausen-Schaumann performed AFM analyses. 

Jian Dong reviewed and approved the manuscript.  

Attila Aszodi reviewed and approved the manuscript. 

Chisa Shukunami reviewed and approved the manuscript. 

James C Iatridis reviewed and approved the manuscript. 

Denitsa Docheva conceived the study, designed the experiments, analyzed the data, and wrote the 

manuscript. 
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2. Summary 

Tenomodulin (Tnmd) is a tendon/ligament-specific marker that also serves as an anti-angiogenic 

protein. It is a novel type II transmembrane glycoprotein class member, and exhibits a cysteine-rich C-

terminal domain that can readily be cleaved. Chondromodulin I (Chm1) is the only other characterized 

protein with homology to Tnmd. Tnmd expression is mainly observed in hypovascular tissues, including 

ligaments, tendons, and eyes. There is increasing evidence that Tnmd may have diverse roles in various 

tissues and pathological conditions.  Therefore, it was of great importance to further examine Tnmd-

knockout (Tnmd-/-) model by subjecting it to disease-like conditions, namely tendon rupture, as well as to 

investigate its potential role in the intervertebral disc (IVD) being also avascular tissue. 

First, we carried out an Achilles tendon injury in 6-month-old Tnmd-/- mice and investigated the early 

tendon repair at day 8, at which time it is possible to observe clear evidence of the development of scar 

tissue, infiltration by inflammatory and vascular cells, increased cell migration, proliferation and 

extracellular matrix (ECM) deposition. When comparing wild type (WT) and Tnmd-/- tendons, we 

observed clear reductions in the expression of tendon-associated transcription factors and ECM genes, 

impaired cellular proliferation, altered scar organization, and enhanced apoptosis and blood 

vessel/adipocyte accumulation in Tnmd-/- tendons. We further found that the scars in Tnmd-/- tendons 

exhibited increased biglycan (Bgn), cartilage oligomeric matrix protein (COMP), and fibronectin (Fn) 

deposition within the ECM; an altered macrophage profile, with predominantly M1 macrophages; and 

reduced CD146-positive cell numbers, which may be tendon stem/progenitor cells (TSPCs). In vitro, 

Tnmd-/- TSPCs were found to be markedly less proliferative and migratory than were WT TSPCs. The 

supernatant protein levels of Bgn and Fn were also markedly elevated in media collected from Tnmd-/- 

TSPCs, and these cells were found to more rapidly undergo adipogenic differentiation and to exhibit 

higher mRNA-level expression of  peroxisome proliferator-activated receptor gamma (Pparγ) and 

lipoprotein lipase (Lpl). We therefore concluded that Tnmd is capable of inhibiting the accumulation of 

adipocytes and the formation of a fibrovascular scar in the context of tendon healing. 

Second, to investigate whether loss of Tnmd expression may lead to IVD degeneration, we performed 

immunolocalization and western blotting analyses of WT IVD tissues revealing that Tnmd was age-

dependent and was detectable primarily in the outer annulus fibrosus (AF), with its expression being 

reduced at 6 months of age (the time at which mice begin to exhibit early signs of IVD degeneration). We 

also confirmed that TNMD was predominantly expressed within the ECM of the outer AF of human 

lumbar discs. IVD phenotypic analyses demonstrated more rapid progression of age-related IVD 

degeneration in Tnmd-/- IVD. This included reductions in the diameters of collagen fibrils, decreases in 

compressive stiffness, reductions in the expression of genes associated with tendons/ligaments and with 

IVD, increases in macrophage infiltration and angiogenic activity in the outer AF, and a greater number of 

hypertrophic-like chondrocytes within the nucleus pulposus (NP). Furthermore, Tnmd and Chm1 double 



15 
 

knockout mice displayed an ectopic bone formation in the IVD. In vitro studies demonstrated reduced 

proliferation and migration but increased apoptosis when comparing Tnmd-/- versus WT outer AF-derived 

cells. Furthermore, these cells showed p65 and matrix metalloproteinases (MMPs) upregulation and 

promoted the migration of human umbilical vein endothelial cells. Hence, we concluded that Tnmd can 

inhibit angiogenesis in the context of homeostatic IVD maintenance while protecting against IVD 

degeneration that occurs as a result of aging. 

In summary, we reported that reduced Tnmd expression results in inferior tendon healing and 

increasing the risk of age-related IVD degeneration. These novel findings provided new information 

pertaining to the important role of Tnmd in tendon and IVD tissues, which can facilitate the development 

of novel therapeutic interventions that can prevent or treat tendon and IVD diseases. 
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3. Zusammenfassung 

Tenomodulin (Tnmd), ein Sehnen-/Ligamentspezifischer Marker und antiangiogenetisches Molekül, 

gehört zu den novel class Typ II Transmembranglykoproteinen, welche lediglich noch ein anderes 

homologes Protein, Chondromodulin I (Chm1), enthält. Für die antiangiogene Eigenschaft des Tnmd ist 

eine Spaltung des hochkonservierten C-Terminus und eine subsequente Sekretion nötig. Das Tnmd 

Transkript ist vorwiegend in hypovaskularisierten Geweben wie in Sehnen, Ligamente und im Auge 

exprimiert. Es zeigen sich zunehmend Beweise, dass Tnmd eine entscheidende Rolle in verschiedenen 

Geweben und deren Pathophysiologien einnimmt. Deshalb ist es essentiell, dessen Genfunktion bei der 

Sehnen Gewebsregeneration und Disci Intervertebrales (IVD) pathologischen Prozessen durch Tnmd-

Knockout (Tnmd-/-) Modelle zu untersuchen. 

Um die anfängliche Sehnenheilung zu untersuchen, generierten wir eine Achillessehnenverletzung in 

6 Monate alten Tnmd-/- Mäusen und wählten den 8. Tag nach Verletzung als Beobachtungszeitpunkt, eine 

Auswahl, die sich durch die Narbenbildung, Gefäß- und Entzündungszellinvasion, eine hohe allgemeine 

Zellmigration, Zellproliferation und robuste Extrazellulärmatrix (ECM)-Deposition, auszeichnet. 

Detaillierte Analysen zeigten nicht nur eine veränderte Narbenorganisation mit reduzierter 

Zellproliferation und verminderten Expressionsraten von Sehnen relevanten Transkriptionsfaktoren und 

ECM Genen, sondern auch eine gesteigerte Apoptose, sowie Akkumulation von Adipozyten und 

Gefäßendothel im Vergleich zu den Wildtyp (WT) Mäusen. Auch zeigte das Tnmd-/- Sehnengewebe ein 

verändertes Ablagerungsmuster der Matrixproteine Biglycan (Bgn), oligomeres Knorpelmatrixprotein 

(COMP) und Fibronectin (Fn), ein verändertes Makrophagenprofil mit vorherrschen von M1 

Makrophagen und eine reduzierte Anzahl von CD146 positiven Zellen, welche sehnen-entstammende 

Stamm- und Progenitorzellen (TSPCs) kann sein. Eine Invitro Analyse zeigte, dass Tnmd-/- TSPCs ein 

signifikant reduziertes Migrations- und Proliferationspotential im Vergleich zu WT TSPCs aufweisen. 

Auch waren die Bgn und Fn Proteinlevel im Kulturmedium von Tnmd-/- TSPCs signifikant erhöht im 

Vergleich zu den WT TSPCs. Letztlich haben die Tnmd-/- TSPCs die adipogene Differenzierung 

beschleunigt, begleitend von einem signifikant erhöhtem mRNA Gehalt des Peroxisom proliferator-

aktiviertem gamma Rezeptors (Pparγ) und der Lipoproteinlipase (Lpl). Zusammenbetrachtet zeigten 

unsere Ergebnisse, dass Tnmd für die Prävention von Adipozytenakkumulation und fibrovaskuläre 

Narbenformation in anfänglicher Sehnenheilung benötigt wird. 

Um die IVD Degeneration zu untersuchen, führten wir zuerst Immunlokalisationen und dann Western 

Blot Analysen von IVD Gewebe aus WT Mäusen zu bestimmten Stadien der Skelettbildung durch. Dies 

diente zur Untersuchung der präzisen Verteilung des Tnmd in postnatalen und adulten IVD. Unsere 

Ergebnisse zeigten, dass Tnmd altersabhängig vorallem im äußeren Anulus fibrosus (AF) exprimiert 

wurde und entsprechend der frühen IVD Degeneration in Mäusen ab dem Alter von 6 Monaten 

herunterreguliert wird. Zusätzlich haben wir die TNMD Expression in humanen lumbalen IVD untersucht 
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und bestätigt, dass das TNMD Protein in der ECM des äußeren AF zu finden ist. Anschließend haben wir 

6 Monate und 18 Monate alte Tnmd-/- und WT Mäuse verwendet um die Rolle des Tnmd in natürlich 

vorkommender IVD Degeneration zu untersuchen. Wir fanden heraus, dass Tnmd-/- Mäuse eine rapidere 

Progression der altersabhängingen IVD Degeneration aufweisen. Das beinhaltet auch kleinere 

Kollagenfibrillendurchmesser, eine niedrigere kompressive Steifigkeit, reduzierte IVD- und 

sehnen/ligament-abhängige Genexpression, erhöhte Angiogenese und Makrophageninfiltration in der 

äußeren AF und eine höhere Anzahl von hypertroph-like Chondrozyten im Nucleus pulposus (NP). Bei 

Tnmd und Chm1 Doppelknockout Mäusen zeigten sich beschleunigte IVD Degenerationen und ektope 

Knochenformationen in der IVD. Um ein tieferes Verständnis für die Rolle des Tnmd in der IVD 

Homöostase zu erlangen, führten wir In vitro Experimente mit Zellen des äußeren AF durch, diese wurden 

von lumbalen IVDs von 12 Monate alten Tnmd-/- und WT Mäusen isoliert. Zuerst untersuchten wir den 

Phenotyp der äußeren AF Zellen und fanden heraus, dass ein Tnmd Verlust eine Reduktion des 

proliferativen und migratorischen Potentials, aber auch eine Erhöhung des Apopotoserisikos verursacht. 

Desweiteren zeigte sich eine p65 und Matrixmetalloproteinase (MMP) Hochregulation, sowie eine 

verstärkte Migrationsfähigkeit von humanen venösen Nabelschnurendothelzellen. Damit beweisen unsere 

Forschungsergebnisse, dass Tnmd als ein Angiogeneseinhibitor während IVD Homöostase wirkt und vor 

altersabhängiger IVD Degeneration schützt.  

Zusammenfassend haben unsere Ergebnisse einen neuen Einblick in die Rolle des Tnmd bei der 

anfänglichen Sehnenheilung und IVD Homöostase gegeben. Bei einem Tnmd Verlust ist die 

Sehnenheilung eingeschränkt und dies stellt dementsprechend einen Risikofaktor für die altersabhängige 

IVD Degeneration dar. Das Verständnis für den Tnmd abhängigen Mechanismus wird die Herstellung von 

neuen therapeutischen Strategien für die Prävention und Behandlung von Sehnenerkrankungen und IVD 

Degeneration einleiten. 
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4. Publication I 

Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar 

formation during early tendon healing 

Dasheng Lin, Paolo Alberton, Manuel Delgado Caceres, Elias Volkmer, Matthias Schieker and Denitsa 

Docheva  

Cell Death Dis. 2017;8(10):e3116. doi: 10.1038/cddis.2017.510. 
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OPEN

Tenomodulin is essential for prevention of adipocyte
accumulation and fibrovascular scar formation during
early tendon healing

Dasheng Lin1,2, Paolo Alberton1, Manuel Delgado Caceres3, Elias Volkmer1,4, Matthias Schieker1,5 and Denitsa Docheva*,3

Tenomodulin (Tnmd) is the best-known mature marker for tendon and ligament lineage cells. It is important for tendon maturation,
running performance and has key implications for the resident tendon stem/progenitor cells (TSPCs). However, its exact functions
during the tendon repair process still remain elusive. Here, we established an Achilles tendon injury model in a Tnmd knockout
(Tnmd−/−) mouse line. Detailed analyses showed not only a very different scar organization with a clearly reduced cell proliferation
and expression of certain tendon-related genes, but also increased cell apoptosis, adipocyte and blood vessel accumulation in the
early phase of tendon healing compared with their wild-type (WT) littermates. In addition, Tnmd−/− tendon scar tissue contained
augmented matrix deposition of biglycan, cartilage oligomeric matrix protein (Comp) and fibronectin, altered macrophage profile
and reduced numbers of CD146-positive cells. In vitro analysis revealed that Tnmd−/− TSPCs exhibited significantly reduced
migration and proliferation potential compared with that of WT TSPCs. Furthermore, Tnmd−/− TSPCs had accelerated adipogenic
differentiation accompanied with significantly increased peroxisome proliferator-activated receptor gamma (Pparγ) and lipoprotein
lipase (Lpl) mRNA levels. Thus, our results demonstrate that Tnmd is required for prevention of adipocyte accumulation and
fibrovascular scar formation during early tendon healing.
Cell Death and Disease (2017) 8, e3116; doi:10.1038/cddis.2017.510; published online 12 October 2017

Tendon injuries are some of the most common orthopedic
problems accounting for substantial pain, disability,
and economic burden.1 While many tendon injuries are acute,
a very large number are chronic causing degenera-
tive conditions.2 Repair in either case results in the formation
of fibrovascular scar, fat deposition or heterotopic ossification
that never attains the gross, histological, or mechanical
characteristics of normal tendon.3–5 The precise mechanisms
of matrix degeneration, tissue tearing, and the subsequent
repair process remain poorly understood.1 Tenomodulin
(Tnmd) is a member of a novel class protein family
of type II transmembrane glycoproteins with a highly
conserved cleavable C-terminal cysteine-rich domain.6,7 The
Tnmd gene consists of seven exons localized on the X
chromosome and accounts for an ~1.4 kb transcript
and a predicted full-length protein consisting of 317 amino
acids.6,7 It is predominantly expressed in tendons and
ligaments, but low levels of mRNA transcripts have
also been identified in other tissues.6–9 Tnmd is the best-
known marker of the mature tendon and ligament lineage with
a suggested dual role of its C-terminal domain, namely a
pro-proliferative action with tendon/ligament cells and
anti-angiogenic potential with vascular cells.9,10 Interestingly,
loss of Tnmd expression in gene targeted mice (Tnmd−/−)
abated tenocyte proliferation, led to reduced tenocyte
density and to pathological thickening of collagen fibers

in the tendon extracellular matrix (ECM) in vivo but
caused no major changes in the tendon vasculature.11 In our
recent study, we subjected Tnmd−/− mice and their wild-type
(WT) littermates to exhaustive running tests revealing
significantly inferior running performance of the knockouts
that further worsened with training.12 In vitro analysis of
Tnmd−/− tendon stem/progenitor cells (TSPCs) showed
significantly reduced self-renewal, and augmented senes-
cence paralleled by upregulated p53 mRNA levels, which
was confirmed in vivo by detecting an increased number of
p53-positive tenocytes in Tnmd−/− Achilles tendons.13 In
addition, overexpression of Tnmd in murine mesenchymal
stem cells (MSCs) inhibited their commitment towards the
adipogenic, chondrogenic and osteogenic lineages, whilst
promoting their tenogenic differentiation.14 The above data
motivated us to further examine the potential regulatory role
of Tnmd gene in the early tendon healing stage when
major cellular and ECM events take place,3 such as vascular
and inflammatory cell invasion, intrinsic cell activation,
migration and proliferation, and ECM deposition. Hence,
the objective of this study was to investigate the functions of
Tnmd in early tendon healing in vivo and in wound healing
assays in vitro, including careful tissue phenotyping and
specific molecular target analyses, using the Tnmd−/− mouse
strain.

1Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; 2Orthopaedic Center of People’s
Liberation Army, Xiamen University Affiliated Southeast Hospital, Zhangzhou, China; 3Experimental Trauma Surgery, Department of Trauma Surgery, University
Regensburg Medical Centre, Regensburg, Germany; 4Department of Hand, Plastic and Aesthetic Surgery, LMU, Munich, Germany and 5Novartis Institutes for Biomedical
Research (NIBR), Translational Medicine Musculoskeletal Disease, Basel, Switzerland
*Corresponding author: D Docheva, Experimental Trauma Surgery, Department of Trauma Surgery University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11,
Regensburg, 93053 Germany. Tel: +49(0)9419431605; Fax: +49(0)9419431631; E-mail: denitsa.docheva@ukr.de
Received 10.3.17; revised 19.7.17; accepted 20.7.17; Edited by D Aberdam

Citation: Cell Death and Disease (2017) 8, e3116; doi:10.1038/cddis.2017.510
Official journal of the Cell Death Differentiation Association

www.nature.com/cddis

19

http://dx.doi.org/10.1038/cddis.2017.510
mailto:denitsa.docheva@ukr.de
http://dx.doi.org/10.1038/cddis.2017.510
http://www.nature.com/cddis


Results

Tnmd−/− tendon scars have inferior gross appearance,
histological scores and cell density paralleled with
increased accumulation of adipocytes and vessels. To
analyze Tnmd involvement during early tendon healing, we
established a mouse model of full thickness Achilles tendon
injury.15 We analyzed the mice eight days after surgical

repair, a time point characterized by scar formation, vascular
and inflammatory cell invasion, high cell migration and
proliferation as well as robust ECM secretory activity.3,16

Hematoxylin–eosin (HE) staining of sectioned tendons
revealed a very different scar organization in Tnmd−/− mice,
as indicated by significantly inferior total histological scores17

(Supplementary Table 1) compared with their WT littermates
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(Figures 1a and b). Quantitatively, total cell density was
significantly lower in the Tnmd−/− mice at 8 postoperative
days (Figures 1c and d). Ectopic ossification after tenotomy
of rodent Achilles tendon at late stages of the tendon healing
process has been reported in previous studies.18–20 How-
ever, ectopic endochondral ossification was not detected in
the scar tissues in either of the genotypes following safranin
O staining at 8 days post-injury (Figure 1e). In contrast, the
mean area of adipocyte accumulation, the number of blood
vessels observed in HE staining analyses (Figures 1f–h) and
validated by immunofluorescence staining and quantification
for perilipin- (Figures 1i and j) and collagen IV-positive areas
(Figures 1i and k), were significantly increased in the scar
sites of Tnmd−/− mice compared with WT controls. We also
found increased mRNA levels of the adipogenic marker
genes, peroxisome proliferator-activated receptor gamma
(Pparγ) and lipoprotein lipase (Lpl) in the tendons of
Tnmd−/− mice through quantitative reverse transcriptase
PCR (qRT-PCR) (Figures 1l and m). Expression of fatty
acid-binding protein 4 (Fabp4), another adipogenic marker,
was unaffected (Figure 1n). The above data revealed for the
first time that the absence of Tnmd leads to an inferior
morphological outcome and lower cellular density, whilst it
activates adipocyte accumulation and adipose-related gene
expression as well as vessel numbers in the early repair
region of injured tendons.

Tnmd−/− tendons demonstrate reduced cell proliferation
and CD146-positive cell numbers, downregulated levels
of certain tendon-related genes, whilst increasing cell
apoptosis and occurrence of p53-expressing cells. To
test whether the reduction in cell numbers was due to a
decreased proliferation or increased apoptosis, we carried
out proliferative and apoptotic assays by bromodeoxyuridine
(BrdU) and terminal deoxynucleotidyl transferase-mediated
dUTP-biotin nick end labeling (TUNEL) stainings. Further-
more, immunofluorescence staining was also performed for
p53, which regulates the apoptosis in oxidative stress-
exposed tenocytes,21 and has been previously shown by us
to be elevated in the tendons of uninjured Tnmd−/− mice.11

BrdU analysis confirmed a lower number of proliferating cells
at the scar site of injured Achilles tendons in Tnmd−/− than
WT mice (Figures 2a and b). Furthermore, TUNEL assays
and immunofluorescence staining for p53 showed that
Tnmd−/− scars had an increased number of apoptotic cells
(Figures 2c–f). In order to track activated local stem/
progenitor cells at the scar site, we performed immunofluor-
escence analysis for CD146, which labels MSCs as well as

the TSPCs.22–24 The number of CD146-positive cells was
significantly lower in Tnmd−/− compared with WT mice eight
days after injury (Figures 2g and h). Following this, we
analyzed how the absence of Tnmd affects the expression
levels of tendon-associated gene markers using qRT-PCR of
Tnmd−/− and WT tendon-derived mRNA. We observed
significantly lower mRNA levels for early growth response
protein 1 and 2 (Egr1, Egr2), collagens I, III and V (Col1a1,
Col3a1, Col5a1), tenascin C (Tnc), thrombospondin 2
(Thbs2), alpha smooth muscle actin (Acta2) and transforming
growth factor beta 1 (Tgfb1) in Tnmd−/− samples (Figure 2i).
On the contrary, the relative expression levels of mohawk
(Mkx), scleraxis (Scx), cartilage oligomeric protein (Comp)
and lubricin (Prg4) displayed a dramatic increase, without
affecting those of sine oculis homeobox homolog 1 (Six1),
collagens VI and XII (Col6a1, Col12a1) and thrombospondin
4 (Thbs4) (Figure 2i). In sum, we concluded that the loss of
Tnmd causes simultaneously reduced numbers of BrdU- and
CD146-expressing cells, but an increased incidence of
TUNEL- and p53-positive cells in the tendon scar tissue
and dysregulated expression of key tendon-related transcrip-
tion factors and ECM genes, which in turn can lead to altered
tendon tissue composition during repair.

Tnmd−/− scar tissues are characterized by erroneous
ECM deposition and abnormal macrophage profile. The
ECM of tendon tissue is composed primarily of collagen I, as
well as collagen III, elastin and various proteoglycans and
mucopolysaccharides.3 Anomalies in the ECM composition
of the scar tissue after tendon injury may contribute to a poor
and delayed healing process resulting in compromised tissue
quality.20 Prompted by this observation and the gene
expression changes in Tnmd−/− tendons, we carried out an
ECM phenotyping of the scar tissues of both genotypes. First,
we performed immunofluorescence staining with an anti-C-
terminal Tnmd antibody visualizing Tnmd secretion in the
ECM of WT mice Achilles tendon, but not in Tnmd−/− mice
(Figures 3a and b). Surprisingly, three ECM proteins, namely
biglycan, Comp and fibronectin, were more expressed in
Tnmd−/− tendon healing sites than WT mice (Figures 3c–h).
The increased protein deposition of Comp in Tnmd−/−

samples was consistent with the qRT-PCR data showing
higher Comp mRNA levels in this group (Figure 2i). However,
collagens I and III, decorin, elastin, fibromodulin and lumican
were not significantly affected (Supplementary Figure 1a).
Nonetheless, picrosirious red-stained tendon sections ana-
lyzed by polarized light microscopy exhibited ECM containing
thicker collagen fibers in the scar areas and tendon ends of

Figure 1 Tnmd deficiency results in an inferior tendon repair process, lower cell density and increased adipocyte and vessel accumulation. (a) Low-magnification HE staining
indicates a very different scar organization with clear adipocyte accumulation in Tnmd−/− mice. (b) Evaluation of tendon healing using an established histological scoring system
revealed that Tnmd−/− mice had a significantly lower total histological score at 8 days postoperatively compared with WT mice. (c,d) Cell density in the healing region was
significantly lower in Tnmd−/− versusWTmice. DAPI images were analyzed by computerized image analysis with ImageJ. (e) Ectopic endochondral ossification was not revealed
by safranin O staining in the tendons of either genotype at day 8. (f–h) In HE-stained sections increased areas of adipocyte accumulation and numbers of large blood vessels were
detected in the scar region of Tnmd−/− tendons compared with WT mice. (i) Visualization of adipocytes and blood vessels in Tnmd−/− and WT Achilles tendon scars via
immunofluorescence staining for perilipin and collagen IV. (j,k) The perilipin-positive areas and number of collagen IV-labeled blood vessels were significantly higher by 8 days
after surgery in Tnmd−/− versus WT mice. (l–n) qRT-PCR revealed upregulated mRNA levels of Pparγ and Lpl, but no changes in Fabp4 expression in Tnmd−/− versus WT
tendons. For quantification in (b, d, g, h, j and k), statistical significance was calculated using two-tailed non-parametric Mann–Whitney test, n= 8 (8 animals per group; each
animal represented by 3 tissue sections). For qRT-PCR in (l, m and n), statistical significance between 2 groups was determined by unpaired Student’s t-test (two-tailed) for 5
independent experiments. *Po0.05; ***Po0.001, compared with WT. S, scar; T, tendon; yellow arrows, blood vessels; black arrows, adipocytes. Scale bars: 200 μm
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the Tnmd−/− than that of WT mice (Supplementary
Figure 1b). Our observation of the increased erroneous
ECM deposition in the repair sites of Tnmd−/− tendons
motivated us to investigate by using target-specific ELISA
whether Tnmd−/− TSPCs secrete higher amounts of biglycan
and fibronectin proteins. The obtained quantitative data
further confirmed our in vivo results by showing that the

levels of both proteins were significantly increased in the
supernatant of Tnmd−/− compared with WT TSPCs
(Figures 3i–l).
The repair of injured tendons begins with an early

inflammatory response that is associated with infiltration of
pro-inflammatory, classically activated (M1) macrophages,
whereas the secondary inflammatory response involves

Figure 2 Tnmd deficiency results in reduced cell proliferation, CD146-positive cells, increased cell apoptosis and p53-expressing cells and an altered expression of certain
tendon-related genes. (a,b) BrdU staining and quantification in the tendon scars revealed decreased proliferative cell numbers in Tnmd−/− versus WT mice at 8 days
postoperatively. (c,d) TUNEL-based analyses detecting apoptotic cells showed increased cell apoptosis in Tnmd−/−mice compared with WTmice. (e,f) Increased number of p53-
positive cells was found at day 8 in the tendons scar tissues of Tnmd−/− tendons compared with WT mice. (g,h) Immunofluorescence staining for CD146 showed that the number
of CD146-expressing cells, corresponding to local MSCs and/or TSPCs was lower in Tnmd−/− mice than WT mice. (i) Tnmd−/− tendons displayed significantly lower expression
levels for Egr1, Egr2, Col1a1, Col3a1, Col5a1, Tnc, Thbs2, Acta2 and Tgfb1 compared with WT mice. In contrast, the relative gene expression of Mkx, Scx, Comp and Prg4
displayed a dramatic increase. No effect was found for Six1, Col6a1, Col12a1 and Thbs4. For quantification in (b, d, f and h), statistical significance was calculated using two-
tailed non-parametric Mann–Whitney test, n= 8 (8 animals per group; each animal represented by 3 tissue sections). For qRT-PCR in i, statistical significance between 2 groups
was determined by unpaired Student’s t-test (two-tailed) for 5 independent experiments. *Po0.05; ***Po0.001, compared with WT. Black arrows, BrdU-positive cells. Scale
bars: 100 μm
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anti-inflammatory, alternatively activated (M2) macro-
phages.25 Recent evidence suggested that proper modulation
of inflammation in the early stages of tendon repair may lead to
improved healing.26 Interestingly, in our model, the numbers of
cells positive for CD68, (a prominent surface marker for M1
and tissue-resident macrophages), and CD80, (a M1 macro-
phage surface marker), were significantly increased
(Figures 4a–d), whilst the number of cells expressing
CD163, (a M2 macrophage surface marker), was significantly
reduced in Tnmd−/− mice compared with WT mice eight days
after injury (Figures 4e and f). These results were further
substantiated by immunofluorescence staining of F4/80, a
monoclonal antibody directed specifically against mouse
macrophages, demonstrating a significant increase of labeled

cells in the scar sites of Tnmd−/− mice (Figures 4g and h).
Collectively, this set of data shows that Tnmd deficiency leads
to erroneous ECM deposition in vivo and in vitro and leads to
an abnormal macrophage profile with pre-dominating M1
macrophages in the repair site at day 8 of tendon healing.

Tnmd−/− TSPCs show significantly lesser migratory and
proliferative capacities but have accelerated adipogenic
differentiation rate and significantly upregulated Pparγ
and Lpl mRNA expression. Figures 1c and d and
Figures 2a, b, g and h demonstrated that loss of Tnmd is
associated with significantly lower cell density and numbers
of BrdU- and CD146-positive cells in the scar tissues at day
8. These imply that Tnmd may regulate the migration and

Figure 3 The absence of Tnmd increases erroneous ECM deposition. (a,b) Immunofluorescence staining with anti-Tnmd C-terminal antibody showed Tnmd secretion in the
ECM of WTAchilles tendon, but not in Tnmd−/−. (c–h) Biglycan, Comp and fibronectin protein deposition in the tendon scar, analyzed by fluorescent digital signal quantification,
was clearly augmented in Tnmd−/− when compared with WT mice at 8 days postoperatively. (i–l) Biglycan and fibronectin protein levels from cell lysates and supernatant were
assessed by ELISA and the levels of both proteins were significantly increased in the supernatant and slightly increased in the cell lysates of Tnmd−/− versus WT TSPCs. For
quantification in (b, d, f and h), statistical significance was calculated using two-tailed non-parametric Mann–Whitney test, n= 3 (3 animals per group; each animal represented by
3 tissue sections). For ELISA in (i, j, k and l), statistical significance between 2 groups was determined by unpaired Student’s t-test (two-tailed) for two independent experiments
with two donors/genotypes. *Po0.05 compared with WT. S, scar; T, tendon ends. Scale bars: 100 μm
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self-renewal capacities of TSPCs. Therefore, we carried out
scratch assays mimicking wound closure in vitro. To estimate
the effect of ECM proteins and because of the increased
fibronectin deposition in Tnmd−/− tendons, our scratch
assays were performed on collagen I- and fibronectin-
coated dishes. Quantification of scratch closure rate after
24 h, showed that the migration speed of Tnmd−/− TSPCs
was significantly lower compared with WT TSPCs
(Figures 5a–d). This finding was further solidified by random
migration analysis after 48 h, in which forward migration index
(FMI) of multiple single cells migrating on either of the ECM
proteins was calculated (Figures 5e and f). Quantification of
velocity, accumulated and Euclidean distance, also clearly
indicated a significant reduction of Tnmd−/− TSPCs motility
compared with WT (Figures 5g–l). Furthermore, during
12 days of culture, DNA-based CyQUANT assays at various
time points showed that Tnmd−/− TSPCs proliferated
significantly slower than WT TSPCs (Figure 5m), confirming
and expanding our earlier report that Tnmd is a positive
regulator of TSPC self-renewal.13

The observed adipocyte accumulation during early tendon
healing prompted us to test whether the loss of Tnmd can
accelerate TSPCs differentiation into adipocytes. Previously,
we have observed an increased tendency of in vitro adipogen-
esis of Tnmd−/− TSPCs.13 Here we again subjected TSPCs to
adipocyte differentiation and examined the outcome in-depth.
Tnmd−/− TSPCs grown in adipogenic medium had signifi-
cantly more BODIPY 493/503 staining of neutral lipid droplets,

indicating a higher adipogenic propensity than WT TSPCs
after 7, 14 and 21 days, respectively (Figures 6a and b).
Additional analysis, with the AdipoRed reagent revealed
similar results (Figure 6c). Consistent with our in vivo results,
semi-quantitative RT-PCR and densitometric PCR band
evaluation showed that the expression levels of Pparγ and
Lpl, but not Fabp4, were significantly increased in Tnmd−/−

TSPCs compared with those of WT following 21 days of
adipogenic stimulation (Figures 6d–f). We conclude that the
lack of Tnmd in TSPCs negatively alters their migratory and
proliferative capacities, whilst accelerating their commitment
towards adipocytes and the expression of critical adipose
regulatory genes such as Pparγ and Lpl.

Discussion

Effective strategies to speed up the healing process of tendon
injuries are still not developed because the understanding of
tendon biology lags far behind that of the other components of
the musculoskeletal system, and the molecular mechanisms
controlling the migration, proliferation and fate of TSPCs
during tendon repair are not well understood.1,9 Therefore, it is
still very challenging to identify molecular targets that can be
used to develop medicinal boosters for complete and timely
repair of injured tendons or ligaments. Tnmd is a useful
phenotypic marker of mature tenocytes and ligamentocytes
that has been shown to have intriguing and diverse roles in
developing tendons and those challenged by physical

Figure 4 The lack of Tnmd alters the macrophage profile during early tendon healing. (a–h) The numbers of CD68-, CD80- and F4/80-positive cells were significantly
increased, whereas the number of CD163-positive cells was significantly reduced in the Tnmd−/− tendon scar tissues compared with WTmice. For quantification in (b, d, f and h),
statistical significance was calculated using two-tailed non-parametric Mann–Whitney test, n= 8 (8 animals per group; each animal represented by 3 tissue sections). **Po0.01;
***Po0.001, compared with WT. Scale bars: 100 μm
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exercise.9–12,27 Herein, we further explored the potential roles
of Tnmd in the tendon healing process by subjecting Tnmd−/−

mice to full thickness Achilles tendon injury and carrying out in-
depth characterization of the scar tissues at day 8 as well as
investigating certain TSPCs functions in vitro. The novel
results of this study demonstrate for the first time that the

absence of Tnmd causes inferior tendon repair process, as
shown by adipocyte accumulation and fibrovascular scar
formation during early tendon healing.
Efficient molecular modulation of tendon healing should

accelerate cell proliferation and inhibit apoptosis, or at least
not augment the number of apoptotic events.28 We have

Figure 5 The absence of Tnmd in TSPCs leads to significantly reduced cell migration and proliferation. (a–d) In vitro wound healing assays on collagen I and fibronectin
showed that Tnmd−/− TSPC scratch closure was significantly slower compared with WT TSPCs. The borders of the scratches are outlined with yellow lines. (e,f) Forward
migration index (FMI) plots showed that Tnmd−/− TSPCs were indeed less migratory than WT TSPCs. Upper arrows on each type of matrix show the start point while lower
arrows the end point of example migratory cells. (g–l) Quantification of velocity, accumulated and Euclidean distances further validated Tnmd−/−migratory deficiency. (m) During
0, 4, 8 and 12 days of culture cell growth kinetics were estimated by DNA-based CyQUANTassay revealing that the proliferation of Tnmd−/− TSPCs was significantly lower than
that of WT TSPCs. For quantification in (c, d andm), n= 4 independent experiments per group. For quantifications in randommigration, n= 3 independent experiments per group
(total of 70–80 tracks per genotype). Statistical significance was calculated using two-tailed non-parametric Mann–Whitney test. *Po0.05; **Po0.01; ***Po0.001, compared
with WT. Blue arrows, WT TSPCs; d, day; h, hour; Red arrows, Tnmd−/− TSPCs; Scale bars: 200 μm
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already reported that the tendons of Tnmd knockout mice
exhibit reduced cell density and proliferation11 concomitant
with apparent an in vitro phenotype of Tnmd−/− TSPCs, which
were significantly less self-renewing, and more senescent.13

Our current study provides further evidence that the loss of
Tnmd expression in the healing tendon results in reduced cell
density and proliferation and lower numbers of CD146-
expressing cells, as well as augmented cell apoptosis and
higher numbers of p53-positive cells. Furthermore, we show
for the first time that Tnmd−/− TSPCs also have significant
migratory deficits in two different experimental set-ups. Hence,
we suggest that Tnmd has anti-apoptotic and anti-senescence
roles and has important regulatory roles in cell migration and

proliferation during the early stage of tendon repair. The
positive association of Tnmd expression with advancement of
tendon healing was previously suggested by Tokunaga et al.29

in a growth factor-dependent model of rotator cuff healing.
Adipocyte accumulation and fibrovascular scar are common

pathological changes that occur in ruptured tendons and
ligaments.30–34 They often do not properly remodel and in
some cases continue to worsen even after surgical repair and
physiotherapy. However, little is known of the pathophysiolo-
gical pathways behind these phenomena.30–34 Persistent or
unresolved inflammation is considered amajor trigger in many
fibrotic diseases and in tendon healing has been associated
with abnormal fibrogenesis.35–37 Recent in vivo large animal

Figure 6 The absence of Tnmd in TSPCs leads to significantly accelerated adipogenic differentiation and upregulated Pparγ and Lpl expression levels. (a,b) Tnmd−/−

TSPCs grown in adipogenic medium had significantly more BODIPY 493/503 staining of neutral lipid droplets, indicating a higher propensity of these cells to form adipocytes than
WT TSPCs after 7, 14 and 21 days, respectively. (c) AdipoRed fluorescent quantitative assay confirmed these results. (d–f) Semi-quantitative RT-PCR and densitometric band
analysis revealed that the expression of the two adipogenic marker genes Pparγ and Lpl was increased, while Fabp4 levels were not significant changed in Tnmd−/− TSPCs after
21 days of adipogenic differentiation versusWT TSPCs. For quantification in b and c n= 4 independent experiments. Statistical significance was calculated using two-tailed non-
parametric Mann–Whitney test. For semi-quantitative RT-PCR, n= 5 independent experiments per group. Statistical significance between 2 groups was determined by unpaired
Student’s t-test (2-tailed). *Po0.05; **Po0.01; ***Po0.001, compared with WT. Scale bars: 200 μm
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studies showed that inflammatory factors are dramatically
upregulated within the first week after tendon injury, which in
turn stimulate the production of proteases, cause apoptosis of
tendon cells, impede the intrinsic repair process, and promote
adhesion formation.38–42 During inflammation, macrophages
have essential roles in both promoting and resolving inflam-
mation and in both facilitating and modulating tissue repair. In
an injury setting, M1 cells predominate early, whereasM2 cells
accumulate later. Hence, in tendon injury, it could be
postulated that M1 macrophages promote repair by stimulat-
ing ECM production and that M2 macrophages enter the
process to repress inflammation and clear excess ECM, a
concept that is consistent with experimental evidence.26

Disturbing the balance between these macrophage subtypes
may result in abnormal scar formation, a defective repair
process and impaired tissue function.26 In our model, Tnmd−/−

scars at day 8 exhibited higher numbers of vessels than WT
scars, and displayed a macrophage profile of predominantly
M1 cells with lower M2 numbers. This finding may help to
explain the excess ECM protein deposition of biglycan, Comp
and fibronectin, seen in Tnmd−/− tendons. Similarly, some
recent reports dealing with tendon healing demonstrated
higher expression of biglycan and Comp in the ectopic
chondro-ossification sites in injured tendon tissues.20,43 In
addition, Spiegelman et al.44 found that fibronectin protein can
regulate adipogenic gene expression. Furthermore, a study
focusing on stem cell-based therapy of tendon injuries
suggested that a lower M2 macrophage number leads to less
accumulation of CD146-positive cells and more erroneous
matrix deposition at the repair site.45 Thus, we suggest that the
absence of Tnmd leads to enhanced vascular invasion, a
prolonged inflammatory response, aggravated deposition or
delayed clearing of excessive erroneous ECM. A deficiency of
our study is that we do not describe the precise molecular
mechanism by which Tnmd regulates the above processes. At
present, we are unable to elucidate the exact Tnmd mode of
action because we do not yet know the binding partners of this
protein. Future studies are needed if we are to decipher the
Tnmd signaling pathways. It will also be important to compare
our small animal model with clinical tendon pathologies, for
example by investigating Tnmd expression levels in different
tendinopathy forms.
Interestingly, many recent studies have focused on under-

standing Tnmd involvement in obesity and diabetes.46–52 Of
interest, Senol-Cosar et al.46 suggested that Tnmd facilitates
pre-adipocyte terminal differentiation while Jiang et al.14

showed that overexpression of Tnmd actually inhibits adipo-
genesis of murineMSCs. These data suggest that Tnmdmight
have cell type-specific modes of action; a suggestion
reinforced by the contrasting observations that Tnmd causes
proliferation of tendon-derived cells but inhibits proliferation of
vascular-derived cells.9 Our results are in line with the study of
Jiang et al.14 as we showed Tnmd−/− scars had significantly
higher adipocyte accumulation and also that Tnmd−/− TSPCs
had a higher rate of differentiation into adipocytes.We propose
that the different regulatorymechanisms of the Tnmd signaling
pathway are involved in different cell types, which will be
revealed when the Tnmdmolecular network is finally mapped.
Pparγ is a transcriptional master regulator of adipogenic

differentiation and stimulates adipogenesis.53–56 Here, we

showed that concomitantly with the higher adipocyte numbers,
the lack of Tnmd significantly enhanced the expression levels
of Pparγ and Lpl in vivo and in vitro. Furthermore, we observed
that the absence of Tnmd results in dysregulated expression
of key tendon transcription factors and ECM genes and
proteins, which in turn may lead to altered scar composition
and thereby increased lipid accumulation. Gehwolf et al.57

revealed that loss of the expression of the ECM protein Sparc
drives adipocyte differentiation in tendons. Our study does not
differentiate whether the pathways underlying the induction of
adipogenesis either by Pparγ upregulation or by changes in
ECM properties operate independently of each other or in an
interdependent manner.57,58 We can not provide a conclusive
answer to this question, but we propose that Tnmd may
strongly influence adipogenesis during tendon healing
through the regulation of Pparγ expression, ECM composition
and/or by preventing TSPC adipocyte commitment.
In summary, we created an Achilles tendon injury model in

Tnmd−/−mice, that showed that loss of Tnmd results in inferior
tendon repair characterized by increased adipocyte accumu-
lation, reduced cell density, proliferation and CD146-positive
cells, increased apoptotic and p53-expressing cells, M1:M2
macrophage ratio changes, abnormal expression of tendon-
related genes, and augmented fibrovascular scar composi-
tion. Concomitant in vitro analysis of Tnmd−/− TSPCs revealed
significantly reduced migratory and proliferative capacities,
but upregulated adipogenic gene marker levels and acceler-
ated differentiation down this lineage. Thus, our results
suggest that Tnmd is required for prevention of adipocyte
accumulation and fibrovascular scar formation during the early
phase of tendon healing.

Materials and Methods
Animal model and surgical procedure. Tnmd−/− mice and their WT
littermates were used in this study. The generation of the Tnmd−/− mice and their
primary phenotype were described by Docheva and co-workers.11–13 All the mice
were on a C57BL/6 J background. Surgical procedures were performed as
previously described by Palmes et al.15 with 6-month old mice that had reached
skeletal maturity. In brief, (1) after anesthesia, the skin above the left Achilles tendon
was opened from the gastrocnemius muscle to the calcaneus; (2) using sterile
scissors, the tendon proper (~5 mm above the calcaneus) of the Achilles tendon
was fully resected; (3) the tendon ends were then connected with modified
Kirchmayr 8-0 Dermalon suture and further supported with single 10-0 Dermalon
circular suture; (4) in order to avoid suture failure due to overstretching of the
operated tendons, the movement of the talocrural joint was restricted by a cerclage
that was inserted through the tibiofibular fork and fixed between the calcaneus and
the plantar aponeurosis. This assured a more limited degree of talocrural joint
extension (~30%) but still allowed a tensile load to be actively transferred to the
healing Achilles tendon; and (5) the skin was closed. The tendons were given eight
days for repair, corresponding to the early phase of tendon healing, after which the
animals were euthanized and the whole hind limb including the Achilles tendon-
gastrocnemius muscle-calcaneus complexes were dissected and histologically
processed as described below. All procedures for animal handling prior, during and
after surgery were approved by the Animal Care and Use Committee of the
Bavarian Government (Grant Nr. 55.2-1-54-2531-57-08). Bio-statistical design of the
group size was based on the default values of α= 0.05 and β= 0.8 for type one
error and for the power as well as on pilot histological data for each genotype,
resulting in eight animals per group.

Histomorphometry. Achilles tendons within the hind limbs were fixed in 4%
paraformaldehyde (PFA; Merck, Darmstadt, Germany) overnight at 4 °C. After
fixation, specimens were decalcified in 10% ethylene diamine tetraacetic acid
(EDTA)/phosphate buffered saline (PBS) pH 8.0 (Sigma-Aldrich, Munich, Germany)
for 7 days, and embedded in paraffin or cryogenic media and then sectioned at 5 or
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10 μm for paraffin and frozen specimens, respectively. Every 10th slide was stained
with HE and slides with comparable regional planes between genotypes (where the
whole complex of gastrocnemius muscle-Achilles tendon-calcaneus was exposed)
were selected for in-depth investigation. To analyze the total histological scores on
HE-stained slides we used the established histological scoring system of Stoll
et al.17 given in Supplementary Table 1. To reveal the ectopic endochondral
ossification in the scar tissue, safranin O staining was applied using the standard
histological protocol.
For immunofluorescence, the tissue sections were treated with 2 mg/ml

hyaluronidase (Sigma-Aldrich, Steinheim, Germany) for 30 min at 37 °C in order to
increase antibody permeability. After washing and blocking with 2% bovine serum
albumin (BSA)/PBS (Sigma-Aldrich), primary antibodies against biglycan, CD68,
CD80, CD146, CD163, collagen I, collagen III, collagen IV, Comp, decorin, elastin,
fibromodulin, fibronectin, F4/80, lumican, perilipin, p53 and Tnmd (all from Abcam,
Cambridge, UK; except for Tnmd, which was provided by Denitsa Docheva) were
applied overnight at 4 °C. Next day, corresponding Alexa Fluor 546-labeled
secondary antibodies (all from Life technology, Carlsbad, CA, USA) were applied for
1 h. Then, sections were counter-stained with 4',6-diamidino-2-phenylindole (DAPI)
(Life Technology) and mounted with fluoroshield (Sigma-Aldrich). To detect
proliferating cells, 90 min prior to euthanasia all mice received intraperitoneal
injection with BrdU (50 μg/g body weight). BrdU detection was performed with a BrdU
kit according to the manufacturer’s instructions (Roche Applied Science, Penzberg,
Germany). To analyze apoptotic cells numbers, TUNEL assay was performed
according to the manufacturer’s instructions (Abcam). Photo-micrographs were taken
on the Observer Z1 microscope equipped with the Axiocam MRm camera (Carl
Zeiss, Jena, Germany). In general, all histomorphometry experiments, unless
specified otherwise in the text, were reproduced in with 8 animals per group and
representative images are shown.
In order to analyze biglycan, Comp and fibronectin levels, an automated

quantitative image analysis was performed as described in the literature.18 In brief,
using ImageJ (National Institutes of Health, Bethesda, MD, USA), the following
algorithm was applied: (1) area of interest was manually designated using the
‘drawing/selection’ tool; (2) ‘set measurements for area, integrated density and mean
gray value’ was selected from the analyze menu; (3) the corrected total cryosection
fluorescence (CTCF) representing the biglycan, Comp and fibronectin expression
detected were calculated as follows CTCF=media of integrated density− (media of
area of selected area ×mean fluorescence). Three animals per group were analyzed.
Scar nuclear density was determined on DAPI staining with ImageJ according to

Hsieh and co-workers.18 All cell nuclei (DAPI) in 3 images per scar from 3 sections
per animal with 8 animals per group were counted. To analyze adipocytes (perilipin),
blood vessels (collagen IV), cell proliferation (BrdU), apoptotic cells (TUNEL and
p53), TSPC/MSC cells (CD146) and macrophages (CD68, CD80, CD163, and F4/80)
quantification of labeled cell per scar tissue was carried out for each staining on 8
animals per group. Each animal was represented with 3 different tissue sections with
comparable planes between genotypes. The results were averaged per animal and
shown as final mean and standard deviation (S.D.) between the 8 animals per group.
The above information is given in the figure legends (8 animals per group; each
animal represented by 3 tissue sections).

Mouse TSPCs isolation and cell culture. Mouse TSPCs were isolated
as previously described by Alberton and co-workers13 from tendons of two uninjured
Tnmd−/− and WT 6-month-old mice. Tendon tissues were enzymatically treated
overnight with collagenase II (Worthington, Lakewood, NJ, USA) in Dulbecco’s
modified Eagle’s medium (DMEM)/Ham’s F-12 (1:1) (Biochrom, Berlin, Germany)
supplemented with 10% fetal bovine serum (FBS), 1% l-ascorbic-acid-2-phosphate
(both from Sigma-Aldrich, Steinheim, Germany), 1% minimum essential medium
(MEM)-Amino Acid and 1% penicillin/streptomycine (Pen/Strep) (both from
Biochrom, Berlin, Germany). Then, the cell suspension was filtered through
70 μm nylon mesh, centrifuged at 500 × g for 5 min, and resuspended in fresh
culture media. TSPCs were grown at 37 °C and 5% CO2 and passaged when 70%
confluent with the culture media changed every third day. Cells in passages 1–3
were used for experiments.

In vitro wound healing assay. These experiments were carried out
according to our previously published protocol.59 Shortly, 1 × 104 cells per cm2 were
plated on collagen I- (20 μg/Ml; Millipore, Billerica, MA, USA) or fibronectin-coated
(10 μg/Ml; Sigma-Aldrich, Steinheim, Germany) 6-well plates in low serum (2%)
medium and were allowed to form confluent cell layers for 48 h. Prior to imaging,
the layers were scratched multiple times. Time lapse photography was performed at

4 frames per h for 24 h. For each group, the areas of 12 scratches were measured
at 9 different time points from 4 independent experiments using the ImageJ ‘wound
healing’ tool.

Migration analysis. Migration analysis was performed similarly to our previous
studies.59,60 For random migration, 1.5 × 103 cells/cm2 of Tnmd−/− and WT TSPCs
were seeded on collagen I- (20 μg/ml) or fibronectin-coated (10 μg/ml) 6-well plates
and incubated for 2 h before imaging. Time lapse photography was performed at 4
frames per h for 48 h. The image data was extracted with AxioVisionLE software
(Carl Zeiss, Jena, Germany) and individual cell tracks were analyzed with ImageJ.
Random migration was expressed by calculating the forward migration index (FMI;
the ratio of the vector length to the migratory starting point), velocity, and
accumulated (cumulative track length) and Euclidian (the ordinary straight-line
length between two points) distances. Results of random TSPCs migration
measurements consist of 3 independent time lapse movies of two Tnmd−/− and WT
TSPC donors as a total number of 70–80 TSPC per genotype were tracked.

CyQUANT assays. 1.5 × 103 cells per well were plated in 6-well plates, and
the CyQUANT assay detection was performed according to the manufacturer’s
instructions (Invitrogen, Eugene, OR, USA) after 0, 4, 8 and 12 days of cell culture,
respectively. CyQUANT assay was repeated independently in 4 experiments per
time point with two TSPC donors/genotypes.

Adipogenic differentiation assays. These experiments were carried out
according to our previously published protocol.13 Briefly, 8 × 103 cells/cm2 TSPCs
were seeded in triplicates in 6-well plates, and were cultivated in an induction media
for 5 days (DMEM-high glucose with 10% FBS, 1 μM dexamethasone, 200 μM
indomethacin, 0.01 mg/ml insulin, and 500 μM 3-isobutyl-1-methylxanthine; all from
Sigma-Aldrich, Steinheim, Germany) followed by 2 days in preservation media
(DMEM-high glucose medium supplemented with 10% FBS, 0.01 mg/ml insulin).
The process was repeated for 21 days. The adipogenic differentiation was estimated
by BODIPY 493/503 staining of neutral lipid droplets (Thermo Fisher Scientific,
Waltham, MA, USA) and AdipoRed assay (Lonza, Walkersville, MA, USA). Staining
was carried out according to the manufacturer’s instructions. Using the automatic
color pixel quantification tool in the Adobe Photoshop CS5 software, the BODIPY
493/503 staining-positive areas were estimated and calculated as a percentage of
the image total pixel size. Using a fluorimeter (Tecan, Männedorf, Switzerland),
AdipoRed assays were measured with excitation at 485 nm and emission at 572
nm. BODIPY 493/503 staining and AdipoRed assay were repeated in 4 independent
experiments.

ELISA. The protein levels of biglycan and fibronectin were analyzed by ELISA.
TSPCs (8 × 103 cells/cm2) were seeded in 6-well plates. After 3 days, the cell
supernatant and cell RIPA protein lysates were collected and frozen. Before ELISA,
the total protein of all samples was measured via DC protein assays (BioRad,
Munich, Germany). Secreted biglycan and fibronectin were determined using
mouse biglycan and fibronectin ELISA kits (Cloud-Clone Corp, Katy, TX, USA; and
Aviva Systems Biology, San Diego, CA, USA; respectively) according to the
manufacturer’s instructions. Two independent ELISA measurements were done with
two donors/genotypes. The data was expressed as target-specific concentration to
total protein content.

Semi-quantitative and qRT-PCR. Total RNA from tendon tissue and
adipogenic-stimulated TSPCs was isolated with Qiagen RNeasy Mini kit (Qiagen,
Hilden, Germany) and used for semi-quantitative and qRT-PCR. For cDNA
synthesis, 1 μg total RNA and AMV First-Strand cDNA Synthesis Kit (Invitrogen)
were used. Semi-quantitative PCR was performed with Taq DNA Polymerase
(Invitrogen) in MGResearch instrument (BioRad, Munich, Germany). For Primer
sequences and PCR conditions: Pparγ forward 5′ctccgtgatggaagaccactc3′, reverse
5′agactcggaactcaatggc3′; Lpl forward 5′gtctggctgacactggacaa3′, reverse 5′
tgggccattagattcctcac3′; Fabp4 forward 5′gaagcttgtctccagtcaaaa3′, reverse 5′
agtcacgcctttcataacacat3′; Gapdh forward 5′gagaggccctatcccaactc3′, reverse 5′
gtgggtgcagcgaactttat3′; PCR was performed with incubation at 94 °C for 5 min
followed by 30 cycles of a three step temperature program of 1 min at 94 °C, 20 s at
60 °C, and 30 s at 72 °C. The PCR reaction was terminated after a 7 min extension
at 70 °C. The band intensity of the amplified products in the gel was visualized,
photographed and analyzed using a gel imager (Vilber Lourmat, Eberhardzell,
Germany). The relative gene expression was quantified by densitometry and
normalized to the amount of Gapdh with ImageJ and presented as fold-change to
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WT. Quantitative RT-PCR of adipogenic and tenogenic associated gene markers
was performed using RealTime Ready Custom Panel 96–32+ plates (https://
configurator.realtimeready.roche.com) according to the manufacturer’s instructions
(Roche Applied Science, Mannheim, Germany). Briefly, PCR reactions were
pipetted on ice and each well contained 10 μl LightCycler 480 probes master mix,
0.2 μl cDNA and 9.8 μl PCR grade water. Plates were subsequently sealed and
centrifuged down for 15 s at 2100 rpm. The relative gene expression was calculated
as describe by Dex and co-workers.12 All PCR results have been reproduced
independently in five experiments.

Statistical analysis. Statistical differences between two groups were
determined using two-tailed unpaired Student’s t-test, or two-tailed non-parametric
Mann–Whitney test. Sample size and experimental reproduction are indicated for
each method. Results are presented as mean±S.D. Differences were considered
statistically significant according to values of *Po0.05, **Po0.01 and ***Po0.001.
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Abstract
The	 intervertebral	 disc	 (IVD)	 degeneration	 is	 thought	 to	 be	 closely	 related	 to	 in-
growth	of	new	blood	vessels.	However,	the	impact	of	anti-angiogenic	factors	in	the	
maintenance of IVD avascularity remains unknown. Tenomodulin (Tnmd)	 is	 a	 ten-
don/ligament-specific	marker	and	anti-angiogenic	factor	with	abundant	expression	
in the IVD. It is still unclear whether Tnmd contributes to the maintenance of IVD 
homeostasis,	acting	to	inhibit	vascular	ingrowth	into	this	normally	avascular	tissue.	
Herein,	we	investigated	whether	IVD	degeneration	could	be	induced	spontaneously	
by the absence of Tnmd.	Our	 results	 showed	that	Tnmd	was	expressed	 in	an	age-
dependent	manner	primarily	in	the	outer	annulus	fibrous	(OAF)	and	it	was	downregu-
lated at 6 months of age corresponding to the early IVD degeneration stage in mice. 
Tnmd knockout (Tnmd−/−)	mice	exhibited	more	rapid	progression	of	age-related	IVD	
degeneration.	 These	 signs	 include	 smaller	 collagen	 fibril	 diameter,	markedly	 lower	
compressive	stiffness,	reduced	multiple	IVD-	and	tendon/ligament-related	gene	ex-
pression,	induced	angiogenesis,	and	macrophage	infiltration	in	OAF,	as	well	as	more	
hypertrophic-like	chondrocytes	in	the	nucleus	pulposus.	In	addition,	Tnmd and chon-
dromodulin I (Chm1,	 the	only	homologous	gene	 to	Tnmd)	 double	knockout	 (Tnmd−
/−Chm1−/−)	mice	displayed	not	only	accelerated	 IVD	degeneration,	but	also	ectopic	
bone	formation	of	IVD.	Lastly,	the	absence	of	Tnmd	in	OAF-derived	cells	promoted	
p65	and	matrix	metalloproteinases	upregulation,	and	increased	migratory	capacity	of	
human	umbilical	vein	endothelial	cells.	In	sum,	our	data	provide	clear	evidences	that	
Tnmd acts as an angiogenic inhibitor in the IVD homeostasis and protects against 
age-related	 IVD	degeneration.	 Targeting	Tnmd	may	 represent	 a	 novel	 therapeutic	
strategy	for	attenuating	age-related	IVD	degeneration.

K E Y W O R D S

angiogenesis,	annulus	fibrous,	intervertebral	disc	degeneration,	knockout	mice,	nucleus	
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1  | INTRODUC TION

Intervertebral	disc	(IVD)	degeneration	is	a	common	condition	and	is	
thought	to	be	an	initiating	factor	for	back	pain	(Nguyen,	Poiraudeau,	
&	Rannou,	2015).	The	pathogenesis	of	IVD	degeneration	is	a	com-
plex,	 multifactorial	 process	 with	 large	 contribution	 from	 both	
genetic	 and	 environmental	 components	 (Annunen	 et	 al.,	 1999;	
Pye,	Reid,	Adams,	Silman,	&	O'Neill,	2007;	Song	et	al.,	2013;	Stokes	
&	Iatridis,	2004;	Williams	et	al.,	2013;	Williams	et	al.,	2011).	The	IVD	
is	the	largest	avascular	tissue	in	the	body	and	has	poor	self-healing	
potential	 (Huang,	 Urban,	 &	 Luk,	 2014).	 Under	 pathological	 condi-
tions,	the	IVDs	express	pro-angiogenic	factors	leading	to	neovascu-
larization	(Cornejo,	Cho,	Giannarelli,	Iatridis,	&	Purmessur,	2015;	de	
Vries,	van	Doeselaar,	Meij,	Tryfonidou,	&	Ito,	2018;	Freemont	et	al.,	
1997;	Purmessur,	Freemont,	&	Hoyland,	2008).	However,	the	impact	
of	anti-angiogenic	factors	in	the	maintenance	of	IVD	avascularity	re-
mains unknown.

Tenomodulin	(Tnmd),	a	tendon/ligament-specific	marker	and	an-
ti-angiogenic	molecule,	 is	a	member	of	a	novel	class	protein	family	
of type II transmembrane glycoproteins containing only one other 
homologous	protein,	namely	chondromodulin	I	(Chm1)	that	is	abun-
dant	 in	 cartilage	 tissue	 (Brandau,	Meindl,	 Fässler,	&	Aszódi,	 2001;	
Dex,	Lin,	Shukunami,	&	Docheva,	2016;	Docheva,	Hunziker,	Fässler,	
&	Brandau,	2005;	Kimura	et	al.,	2008;	Shukunami,	Oshima,	&	Hiraki,	
2001).	 The	 cleavage	 of	 the	 highly	 conserved	 C-terminal	 cyste-
ine-rich	domain	of	Tnmd	and	subsequent	secretion	are	required	for	
the	 anti-angiogenic	 activities	 of	 the	 protein	 (Oshima	 et	 al.,	 2004).	
Tnmd	transcript	is	predominantly	expressed	in	hypovascular	tissues,	
such	 as	 tendons,	 ligaments,	 as	well	 as	 eyes	 (Brandau	 et	 al.,	 2001;	
Shukunami	 et	 al.,	 2001).	 Interestingly,	Minogue,	 Richardson,	 Zeef,	
Freemont,	and	Hoyland	(2010)	have	demonstrated	that	Tnmd	mRNA	
has	abundant	expression	in	the	annulus	fibrous	(AF)	and	the	nucleus	
pulposus	(NP).	Concomitantly,	Nakamichi	et	al.	(2016)	showed	that	
Mohawk (Mkx),	an	upstream	gene	of	Tnmd	(Ito	et	al.,	2010),	promotes	
the maintenance and regeneration of the outer annulus fibrous 
(OAF)	of	IVD	suggesting	that	Tnmd may be involved in IVD homeo-
stasis.	To	date,	however,	this	hypothesis	has	not	been	investigated	
in detail.

In	our	previous	studies,	we	compared	Tnmd knockout (Tnmd−/−)	
mice	with	their	wild-type	(WT)	littermates	and	showed	that	the	ab-
sence of Tnmd causes reduced tendon cell proliferation and density 

in	 vivo	 (Docheva	 et	 al.,	 2005),	 coupled	 with	 significantly	 lower	
self-renewal	 and	 augmented	 senescence	 of	 tendon-derived	 stem/
progenitor	cells	(TSPCs)	in	vitro	(Alberton	et	al.,	2015).	Furthermore,	
we observed the pathological thickening and stiffening of collagen I 
(Col	I)	fibers	in	Tnmd−/−	Achilles	tendons	resulting	in	running	distance	
and time failure in Tnmd−/− mice challenged by running tests (Dex 
et	al.,	2017).	Interestingly,	the	local	absence	of	Tnmd in the cardiac 
chordae	tendineae	cordis	(CTC)	promoted	angiogenesis	and	matrix	
metalloproteinases	 (MMPs)	activation	(Kimura	et	al.,	2008),	a	phe-
nomenon also observed when Tnmd−/− mice were subjected to sur-
gically	induced	Achilles	tendon	rupture.	In	this	model,	we	detected	
that genetic ablation of Tnmd leads to blood vessel accumulation ac-
companied	by	abnormal	extracellular	matrix	(ECM)	composition	and	
macrophage profile during the early repair phase of injured tendons 
(Lin	et	al.,	2017).

Cumulatively,	 the	 aforementioned	 data	 reveal	 that	Tnmd plays 
an important regulatory role in the avascular tendogenic/ligamen-
togenic	tissue	homeostasis.	Therefore,	we	hypothesized	that	Tnmd	
in the IVD may act to inhibit vascular ingrowth into this normally 
avascular	 tissue	 and	maintain	 homeostasis.	 Here,	 we	 investigated	
the exact functional role of Tnmd in IVD in vivo and in vitro by phe-
notypization	 of	Tnmd-deficient	 IVD	 tissues	 and	 IVD-derived	 cells.	
Lastly,	to	rule	out	possible	compensatory	effects	between	the	two	
homologs,	 we	 investigated	 the	 IVDs	 of	 Tnmd and Chm1 double 
knockout (Tnmd−/−Chm1−/−)	mice.

2  | RESULTS

2.1 | Tnmd is expressed in the IVD OAF and NP

Tnmd	expression	was	observed	by	us,	along	with	other	researchers,	
in	tendons,	ligaments,	eyes,	and	CTC	(Brandau	et	al.,	2001;	Kimura	
et	al.,	2008;	Shukunami	et	al.,	2001).	 In	the	vertebral	column,	pre-
vious	studies	have	 localized	Tnmd gene expression to areas of the 
IVD	(Minogue	et	al.,	2010;	Nakamichi	et	al.,	2016),	as	well	as	Tnmd	
immunostainings carried out in neonate mice detected robust pro-
tein	expression	in	the	OAF	(Yoshimoto	et	al.,	2017).	To	further	de-
termine the precise distribution of Tnmd in the postnatal and adult 
IVD,	we	first	performed	immunolocalization	studies	on	IVD	tissues	
from	WT	mice	 at	 distinct	 stages	 of	 skeletal	 development	 ranging	

F I G U R E  1  Tnmd	is	mainly	expressed	in	OAF,	and	its	loss	leads	to	age-related	IVD	degeneration.	(a	and	b)	Immunofluorescence	of	Tnmd	
protein	expression	in	developing	adult	and	aged	IVDs	of	WT	mice	shows	that	Tnmd	is	mainly	expressed	in	OAF	and	to	a	lower	extent	in	the	
NP,	and	as	expected,	Tnmd	was	not	detected	in	Tnmd−/−	IVDs.	Fluorescence	intensity	analysis	revealed	an	expression	peak	at	1	month	and	
expression downregulation from 6 months onwards (n	=	3–5	animals).	(c)	Western	blot	confirmed	that	Tnmd	protein	expression	is	higher	at	
1 month than at 6 months (n	=	3	animals).	(d	and	e)	IHC	of	the	human	IVDs	confirmed	that	TNMD	protein	is	mainly	found	in	the	OAF	and	to	
a	lesser	extended	in	the	NP	(two-tailed	nonparametric	Mann–Whitney	test;	n	=	5	samples).	(f)	Representative	H&E	stainings	of	human	IVD	
(n	=	5	samples).	(g)	H&E	staining	demonstrates	greater	degenerative	changes	in	Tnmd−/−	IVDs	when	compared	to	WT	at	6	and	18	months.	
(h)	Safranin	O	staining	reveals	small	roundish	chondrocyte-like	cells	in	IAF	and	NP	of	Tnmd−/−	IVDs.	(i	and	j)	Histological	grading	and	disc	
height index calculation show in Tnmd−/−	mice	significantly	widespread	degeneration	compared	to	WT	at	both	examined	stages	(two-tailed	
nonparametric	Mann–Whitney	test;	6-month-old	mice,	n	=	5	animals;	18-month-old	mice,	n	=	3	animals).	**p < .01; ***p	<	.001.	d,	day;	H&E,	
hematoxylin–eosin;	IAF,	inner	annulus	fibrous;	IHC,	immunohistochemistry;	IVD,	intervertebral	disc;	mo,	month;	NB,	newborn;	NP,	nucleus	
pulposus;	OAF,	outer	annulus	fibrous;	WT,	wild-type.	Scale	bar,	200	μm
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from	newborn	to	18	months	of	age.	We	observed	that	Tnmd	is	pre-
dominantly	produced	and	deposited	in	the	ECM	of	the	OAF,	as	well	
as	 to	 a	 lesser	 extent	 in	 the	NP	 regions.	 Scarce	 positive	 signals	 in	
the	 inner	annulus	 fibrous	 (IAF)	and	the	cartilaginous	endplate	 (EP)	

were	also	detected;	however,	those	were	primarily	cellular	and	not	
in	the	ECM	(Figure	1a).	Notably,	Tnmd	signals	in	the	OAF	and	the	NP	
gradually	peaked	at	1	month	of	age,	while	 it	dropped	at	6	months	
of	age	corresponding	to	the	early	 IVD	degeneration	stage	 in	mice,	
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and	then	further	decreased	at	12	and	18	months	(Figure	1b).	As	ex-
pected,	Tnmd	was	not	detected	in	Tnmd−/−	IVDs	(Figure	1a).	Western	
blotting of IVD tissue protein extracts confirmed that the protein 
levels	of	Tnmd	are	higher	at	1	month,	when	compared	to	6	months	
(Figure	1c)	as	well	as	that	in	the	IVD;	similar	to	Achilles	tendon	and	
CTC,	Tnmd	is	fully	processed	to	its	16	kDa	C-terminal	portion.	We	
also	assessed	the	expression	of	TNMD	in	human	lumbar	discs	(Table	
S1).	Consistent	with	the	observation	in	mice,	TNMD	protein	was	pre-
dominantly	found	in	the	ECM	of	the	OAF	and	to	a	lesser	extent	in	the	
NP	regions	(Figure	1d–f).

2.2 | The absence of Tnmd leads to age-related IVD 
degeneration

To	analyze	the	potential	 involvement	of	Tnmd	during	naturally	oc-
curring	 IVD	 degeneration	 in	 mouse,	 6-	 and	 18-month-old	 lumbar	
IVDs	were	 first	 examined	 by	 hematoxylin–eosin	 (H&E)	 and	 safra-
nin	O	staining	 for	pathological	changes.	 Importantly,	Tnmd−/− mice 
showed	 higher	 levels	 of	 degenerative	 changes	 compared	 to	 WT	
mice.	 Lamellae	 appeared	 thinner,	 looser,	 and	 fibrillated	 in	Tnmd−/− 
AF	 (Figure	 1g).	 In	 the	 IAF	 and	 NP	 areas	 of	 Tnmd−/−	 IVDs,	 small	
round	cells,	morphologically	resembling	chondrocytes,	were	visible.	
Cumulatively,	such	abnormalities	are	often	described	as	degenera-
tive	changes	(Nakamichi	et	al.,	2016),	and	they	were	even	more	evi-
dent in the Tnmd−/−	discs	at	18	months	(Figure	1h).	By	implementing	
the	histological	scoring	system	for	mouse	IVD	(Tam	et	al.,	2018),	we	
detected	higher	degenerative	scores	at	6	and	18	months	in	Tnmd−/− 
mice,	 reflective	 of	 a	 significantly	 widespread	 IVD	 degeneration	
compared	 to	WT	 (Figure	1i).	 In	addition,	 calculation	of	disc	height	
index	(Masuda	et	al.,	2005)	showed	lower	values	for	Tnmd−/− IVDs at 
both	examined	stages	(Figure	1j).	Thus,	our	results	demonstrate	that	
Tnmd is associated with IVD homeostasis and its loss leads to pro-
found tissue degeneration that advances during the aging process.

2.3 | Tnmd deficiency results in 
abnormal diameters and biomechanical 
properties of IVD collagen fibrils, accompanied by 
reduced expression of multiple IVD- and tendon/
ligament-related genes in the OAF

Since	Tnmd	is	highly	expressed	in	the	OAF	and	a	disorganized	OAF	
morphology	characterized	by	thinner	collagen	fibers	 (Figure	S1a,b)	
was observed in Tnmd−/−	 mice,	 we	 next	 examined	 the	 nanotopo-
graphical	and	biomechanical	properties	of	6-month-old	Tnmd−/− and 
WT	 IVDs.	 We	 applied	 indentation-type	 atomic	 force	 microscopy	
(IT-AFM)	to	quantitatively	assess	collagen	fibril	diameters	and	com-
pressive	stiffness	of	AF.	Height	images	revealed	that	the	collagen	fi-
brils of Tnmd−/−	OAF	were	more	frayed	and	interrupted	by	gaps,	and	
vertical deflection images indicated that the collagenous network of 
Tnmd−/−	OAF	was	less	dense	compared	to	WT	(Figure	2a).	The	fibril	
diameters	in	OAF	and	IAF	were	significantly	smaller	in	Tnmd−/− than 

in	WT	mice	 (Figure	 2b).	 Indentation	measurements	 on	 native	 IVD	
tissues indicated a bimodal stiffness distribution in both genotypes 
(Figure	2c).	In	Tnmd−/−	OAF	and	IAF,	the	proteoglycan	stiffness	peaks	
were	detected	at	1.240	±	0.098	and	0.272	±	0.004	MPa	and	those	
of	collagen	network	at	2.972	±	0.033	and	0.532	±	0.049	MPa,	 re-
spectively.	In	WT	OAF	and	IAF,	the	average	proteoglycan	stiffness	
peaks	were	8.134	±	0.307	and	0.285	±	0.013	MPa,	while	the	colla-
gen	stiffness	peaks	were	14.019	±	0.493	and	0.581	±	0.0063	MPa,	
respectively.	 In	sum,	the	overall	compressive	stiffness	of	OAF	was	
markedly lower in Tnmd−/−	than	WT	mice,	but	the	IAF	biomechanical	
properties were not significantly different between genotypes.

Changes	in	expression	levels	of	ECM	and	cross-linking	molecules	
can	 lead	 to	 loss	of	mechanical	properties	and,	 thus,	 impaired	abil-
ity	of	the	OAF	to	resist	compression	delivered	to	the	IVD	and	par-
ticularly	 the	NP	 (Feng,	Danfelter,	 Strömqvist,	&	Heinegård,	2006).	
Therefore,	we	 analyzed	 how	 the	 ablation	 of	Tnmd affects the ex-
pression	 levels	 of	 IVD-	 and	 tendon/ligament-related	 genes	 using	
quantitative	 real-time	 PCR	 (qRT–PCR)	 on	Tnmd−/−	 and	WT	 lumbar	
OAF	tissue-derived	mRNA.	We	observed	downregulation	of	multi-
ple	IVD-	and	tendon/ligament-related	genes	including	scleraxis	(Scx),	
Mkx,	collagens	I,	V,	XII,	XIV,	and	XV	(Col1a1,	Col5a1,	Col12a1,	Col14a1,	
Col15a1),	early	growth	response	protein	1	and	2	(Egr1,	Egr2),	tenascin	
C (Tnc),	thrombospondin	2	and	4	(Thbs2,	Thbs4),	transforming	growth	
factor beta 1 (Tgfb1),	 alpha	 smooth	 muscle	 actin	 (Acta2),	 ephrin	
type-A	receptor	4	(Epha4),	asporin	(Aspn),	and	fibromodulin	(Fmod),	
without affecting those of collagens III and VI (Col3a1,	Col6a1),	eyes	
absent homolog 1 and 2 (Eya1,	Eya2),	sine	oculis	homeobox	homo-
log 1 and 2 (Six1,	Six2),	cartilage	oligomeric	protein	(Comp),	lubricin	
(Prg4),	 biglycan	 (Bgn),	 decorin	 (Dcn),	 fibronectin	 (Fn),	 lysyl	 oxidase	
(Lox),	lumican	(Lum),	procollagen-lysine,	2-oxoglutarate-5-dioxygen-
ase 1 (Plod1),	and	transglutaminase	2	(Tgm2)	in	Tnmd−/− compared to 
WT	mice	(Figure	2d).	Additionally,	we	compared	the	mRNA	levels	of	
IVD-	and	tendon/ligament-related	genes	between	tendon	and	OAF	
tissues	from	both	genotypes,	and	showed	that	the	absence	of	Tnmd 
in	 the	 tendon	and	 the	OAF	causes	opposite	effects	on	 the	mRNA	
expression levels of Scx,	Mkx,	Col14a1,	Col15a1, and Prg4	(Figure	S1c)	
suggesting	tissue-specific	regulation.

Taken	together,	these	findings	demonstrate	that	Tnmd is a critical 
factor	required	to	maintain	the	structural	and	biomechanical	proper-
ties	of	the	OAF	collagen	fibrils	likely	through	the	modulation	of	ECM	
gene expression.

2.4 | Increased angiogenesis, macrophages 
infiltration, and apoptosis in Tnmd−/− OAF

The	AF	and	EP	are	natural	barriers	resistant	to	vascular	invasion	due	
to intrinsic angiogenic inhibitors. IVD degeneration is often marked 
by	blood	vessel	ingrowth,	infiltration	of	inflammatory	cells,	and	in-
creased	cell	apoptosis	(de	Vries,	van	Doeselaar,	Meij,	Tryfonidou,	&	
Ito,	2018;	Freemont	et	al.,	1997;	McCann	&	Séguin,	2016;	Phillips,	
Jordan-Mahy,	Nicklin,	&	Le	Maitre,	2013).	For	this	reason,	we	then	
focused	our	investigation	on	the	OAF	zone	in	6-month-old	mice	in	
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order to reveal if Tnmd contributes to the maintenance of avascu-
larity.	We	 found	 that	 the	occurrence	of	CD31-labeled	vessels	was	
increased	in	the	OAF	of	Tnmd−/−	mice	when	compared	with	WT	mice	
(Figure	3a,b).	Infiltration	of	macrophages	was	confirmed	by	staining	
with	F4/80	monoclonal	antibody	directed	specifically	against	mouse	
macrophages,	 demonstrating	 a	 significant	 increase	 in	macrophage	
number	 in	 the	 OAF	 zone	 of	 Tnmd−/−	 IVDs	 (Figure	 3c,d).	 We	 also	
performed	 in	 situ	 terminal	 deoxynucleotidyl	 transferase-mediated	
dUTP-biotin	 nick	 end	 labeling	 (TUNEL)	 assay	 and	 immunofluores-
cent	staining	for	p53,	to	detect	if	apoptotic	and	senescent	cells	are	
present	 in	 the	OAF	 of	Tnmd−/−	mice,	 landmarks	 of	 IVD	 degenera-
tive	processes	(Feng	et	al.,	2016).	We	observed	a	higher	number	of	
TUNEL-	 and	 p53-positive	 cells	 in	 Tnmd−/−	 compared	 to	 WT	 OAF	
(Figure	 3e,f,	 Figure	 S1d,e).	 Lastly,	 we	 carried	 out	 immunofluores-
cent	 staining	 for	 the	proliferative	marker,	PCNA,	which	confirmed	
a	 lower	 number	 of	 dividing	 cells	 in	 the	OAF	 zone	 of	 6-month-old	
Tnmd−/−	than	WT	IVDs	(Figure	3g,h).	Taken	together,	the	above	find-
ings indicate the essential role of the locally expressed Tnmd in IVD 

homeostasis,	 its	 loss	 led	 to	 induced	 angiogenesis,	macrophage	 in-
filtration,	 and	 apoptosis,	 while	 cell	 proliferation	 was	 significantly	
reduced.

2.5 | Manifestation of hypertrophic 
chondrocytes and Col X-rich matrix in the NP of 
Tnmd−/− mice

It has been shown that ectopic calcifications in IVDs are a known 
characteristic	 of	 IVD	 degeneration	 (Hristova	 et	 al.,	 2011;	 Illien-
Jünger	 et	 al.,	 2016).	 The	 observed	 small	 round	 cells,	 resembling	
chondrocyte	morphology,	 in	the	Tnmd−/−	NP	prompted	us	to	test	
whether the loss of Tnmd is accelerating hypertrophic chondro-
cyte-like	 occurrence.	 The	 major	 proteoglycan	 of	 the	 NP	 is	 ag-
grecan	(Acan),	which	due	to	its	highly	anionic	glycosaminoglycan	
content	provides	osmotic	properties,	enabling	the	NP	to	maintain	
height	and	turgor	against	compressive	loads	(Bedore	et	al.,	2013).	

F I G U R E  2   Tnmd	deficiency	causes	altered	ECM	nanostructure	and	mechanical	properties	of	the	OAF	in	6-month-old	mice.	(a)	AFM	
height	images	(upper	panels	for	both	genotypes)	show	that	the	collagen	fibrils	in	Tnmd−/−	OAF	were	more	frayed	and	interrupted	by	gaps,	
and	vertical	deflection	images	(lower	panels)	demonstrate	that	the	collagen	network	in	this	region	was	less	dense	in	Tnmd−/− compared to 
WT.	(b)	Comparison	of	the	collagen	fibril	diameters	reveals	significantly	smaller	average	size	in	Tnmd−/−	than	in	WT	AF	(two-tailed	unpaired	
Student's	t test; n	=	3	animals,	and	200	fibrils	were	analyzed	per	genotype).	(c)	Plots	of	compressive	stiffness	data	obtained	by	indentation	
AFM	demonstrated	that	ECM	compressive	stiffness	was	markedly	lower	in	the	OAF	regions	of	Tnmd−/− IVDs but not noticeably different in 
the	IAF	regions	(two-tailed	unpaired	Student's	t test; n	=	3	animals).	(d)	Significant	downregulation	of	numerous	IVD-	and	tendon/ligament-
related genes was detected in Tnmd−/−	OAF	by	qRT–PCR	analysis.	For	calculation	of	fold	changes,	WT	was	set	to	1	(two-tailed	unpaired	
Student's	t test; n	=	3	animals).	*p < .05; **p < .01; ***p	<	.001.	AF,	annulus	fibrous;	Col,	collagen;	ECM,	extracellular	matrix;	IAF,	inner	annulus	
fibrous;	IVD,	intervertebral	disc;	OAF,	outer	annulus	fibrous;	PG,	proteoglycan;	qRT–PCR,	quantitative	real-time	PCR;	WT,	wild-type.	Scale	
bar,	1	μm
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Therefore,	we	explored	Acan	expression	by	immunohistochemis-
try	 (IHC)	 in	 IVD	sections	 from	both	genotypes.	At	6	months,	no	
noticeable	 change	 in	Acan	 localization	was	 found	 in	Tnmd−/−	NP	
compared	to	WT	NP.	However,	the	deposition	of	Acan	was	signifi-
cantly	decreased	in	Tnmd-deficient	NP	at	18	months	(Figure	4a,b).	
More	specifically,	it	has	been	proposed	that	Acan	production	ratio	
within	 the	NP	to	hyaline	cartilage	 is	approximately	27:2	 (Mwale,	
Roughley,	 &	 Antoniou,	 2004).	 Hence,	 Acan	 downregulation	 can	
lead	to	appearance	of	hypertrophic-like	chondrocytes,	which	sub-
sequently	contribute	to	calcification,	due	to	the	available	free	cal-
cium	 ions	 (Hristova	 et	 al.,	 2011).	 In	 order	 to	 track	 hypertrophic	
chondrocyte-like	differentiation	in	the	NP,	we	next	 implemented	
immunofluorescence	analysis	for	Sox9,	the	key	pro-chondrogenic	
transcription	 factor	 (Takimoto,	Oro,	Hiraki,	&	Shukunami,	2012),	
and	Runx2	and	Col	X,	markers	of	hypertrophic	chondrocytes	(van	
der	Kraan	&	van	den	Berg,	 2012).	Tnmd−/−	NP	 showed	 composi-
tional	 alterations	 associated	 with	 increased	 levels	 of	 Sox9-	 and	
Runx2-positive	cells	and	Col	X	deposition	at	18	months	of	age	in	
contrast	 to	WT	mice	 (Figure	 4c–h).	 These	 protein	 data	 together	
with the observed transcriptional changes of multiple genes 
(Figure	2d)	 suggested	 that	Tnmd deficiency alters the balance in 
the expression of ECM molecules and is manifested by accumula-
tion	of	hypertrophic	chondrocytes	and	Col	X-rich	matrix	in	the	NP,	
indicating clearly substantial IVD cell dysfunction.

2.6 | Tnmd and Chm1 double mutant mice 
display not only accelerated IVD degeneration but 
also ectopic bone formation

Our findings suggest that Tnmd contributes to protect the IVD 
from	vascularization	and	inflammation.	However,	our	present	data	
do	not	exclude	the	possibility	of	the	existence	of	other	anti-angio-
genic	factors.	Chm1,	the	only	Tnmd	homologous	protein	(Brandau	
et	al.,	2001;	Shukunami	et	al.,	2001),	is	a	cartilage-specific	angio-
genesis	inhibitor	(Hiraki	et	al.,	1997;	Yoshioka	et	al.,	2006)	that	has	
been previously shown to be also highly expressed in the IVD dur-
ing the gestational period and gradually downregulated after matu-
ration	(Takao,	Iwaki,	Kondo,	&	Hiraki,	2000).	Immunofluorescence	
staining for Chm1 in IVD showed that it is deposited in the ECM 
of	NP,	as	well	as	expressed	in	cells	from	EP	and	OAF	(Figure	5a).	
Western	 blotting	 and	 densitometric	 analyses	 of	 Chm1-positive	
areas revealed that Chm1 levels are decreased in Tnmd−/− IVD 
when	compared	with	WTs	 (Figure	5b,c).	These	 lines	of	evidence	
suggest that the expression of Tnmd and Chm1 may be coordinated 
between	the	cell	populations	of	NP,	AF,	and	EP.	Therefore,	we	car-
ried out a pilot investigation of Tnmd−/−Chm1−/− mouse model to 
elucidate for the first time the relationship between both proteins 
and	 IVD	 degeneration.	 Interestingly,	 H&E	 and	 safranin	 O	 stain-
ing demonstrated that Tnmd−/−Chm1−/− mice display more severe 

F I G U R E  3  Loss	of	Tnmd	results	in	blood	vessel	ingrowth,	macrophage	infiltration,	and	increased	cell	apoptosis	in	the	OAF.	(a	and	b)	
Immunofluorescence	staining	with	anti-CD31	antibody	reveals	increased	vessel	number	in	the	OAF	of	Tnmd−/−	than	WT.	(c	and	d)	Higher	
number	of	F4/80-positive	macrophages	was	detected	in	the	OAF	of	Tnmd−/− versus	WT.	(e	and	f)	TUNEL	staining	demonstrates	increased	
number of apoptotic cells in Tnmd−/−	OAF	than	WT.	(g	and	h)	Reduced	number	of	proliferating	cells	was	observed	in	Tnmd−/−	compared	to	WT	
mice	by	PCNA	immunofluorescence	staining.	All	quantitative	histomorphometry	data	were	assessed	by	two-tailed	nonparametric	Mann–
Whitney	test;	n = 5 animals. *p	<	.05.	EP,	endplate;	IAF,	inner	annulus	fibrous;	OAF,	outer	annulus	fibrous;	TUNEL,	transferase-mediated	
dUTP-biotin	nick	end	labeling;	WT,	wild-type;	white	dotted	line,	OAF-IAF	boundary.	Scale	bar,	200	μm
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IVD degeneration associated with ectopic bone formation in the 
IVDs	 at	 18	months	 when	 compared	 with	 Tnmd−/−	 and	WT	mice	
(Figure	5d–f).	Immunofluorescence	of	CD31	showed	that	the	OAF	
of Tnmd−/−Chm1−/−	mice	 contained	many	 capillary-like	 structures	
(Figure	 5g).	 Furthermore,	 multiple	 F4/80-labeled	 macrophages	
were	distributed	in	the	AF	and	NP	regions	(Figure	5h)	and,	lastly,	
ectopic	 ossification	 sites	were	 detected	with	 osteopontin	 (Opn,	
bone-specific	marker)	antibody	in	Tnmd−/−Chm1−/−	IVDs	Figure	5i).	
Based	on	our	novel	data,	we	concluded	that	simultaneous	loss	of	
Tnmd and Chm1 causes a more progressive IVD degenerative phe-
notype than Tnmd single knockout. It remains to be investigated 
to what extent these mutant variants compare to Chm1 single 
knockout.

2.7 | Loss of Tnmd in OAF cells suppresses their 
proliferation and promotes cell apoptosis

To further understand the mechanisms underlying the roles of Tnmd 
in	 IVD	homeostasis,	we	performed	 in	vitro	studies	with	OAF	cells	
isolated	 from	 12-month-old	 Tnmd−/−	 or	 WT	 lumbar	 IVDs	 (Figure	
S2a).	 First,	 we	 characterized	 the	 obtained	 cell	 populations	 by	 im-
munofluorescence	 staining	 and	 RT–PCR.	 Fmod,	 an	 accepted	 AF-
specific	marker	in	rodent	(Leung,	Tam,	Chan,	Chan,	&	Cheung,	2011;	
Smits	&	Lefebvre,	2003),	was	expressed	in	both	genotypes,	but	its	

immunostaining signal was weaker in Tnmd−/−	OAF	cells	compared	
with	WTs	(Figure	S2b,g).

WT	OAF	cells	were	strongly	expressing	Tnmd,	while	as	expected	
Tnmd was not produced by Tnmd−/−	 cells	 (Figure	 S2c).	 To	 analyze	
whether	the	synthesis	of	ECM	proteins	by	the	OAF	cells	 is	altered	
due to Tnmd	 deficiency,	 we	 next	 performed	 immunofluorescence	
analysis	for	Col	I,	which	is	the	main	protein	component	of	OAF;	Fn,	
which	plays	a	pivotal	role	in	facilitating	AF	cell	attachment	and	fiber	
alignment	 (Attia,	Santerre,	&	Kandel,	2011);	and	Lum,	which	 inter-
acts	with	collagen	fibrils	and	contributes	to	AF	mechanical	proper-
ties	(Sztrolovics,	Alini,	Mort,	&	Roughley,	1999).	In	vitro, only a slight 
decrease in the expression of the three proteins was observed in 
Tnmd−/−	OAF	cells	(Figure	S2d–g).	Semiquantitative	RT–PCR	revealed	
that Tnmd	mRNA	could	not	be	detected,	while	Chm1	mRNA	levels	
were reduced in Tnmd−/−	OAF	cells	(Figure	S2h).

To further evaluate the role of Tnmd	 in	OAF	 cell	 behavior,	we	
carried	 out	 time-lapse	 imaging	 of	 random	 migration,	 followed	 by	
plotting	of	forward	migration	index	(FMI).	Our	results	showed	that	
Tnmd−/−	OAF	cells	were	less	migratory	than	WT	cells	(Figure	S3a,b).	
Quantification	 of	 velocity,	 accumulated	 and	 Euclidean	 distance	
clearly	 indicated	 that	 the	 observed	 effect	 was	 significant	 (Figure	
S3c,d).	 Furthermore,	 during	 0,	 3,	 5,	 and	 7	 days	 of	 culture,	 DNA-
based	 CyQUANT	 assays	 showed	 that	 the	 proliferation	 of	 Tnmd−/− 
OAF	cells	was	 significantly	 reduced	compared	 to	 that	of	WT	cells	
(Figure	S3e).	Lastly,	TUNEL	assays	demonstrated	that	Tnmd−/−	OAF	

F I G U R E  4  Accumulation	of	hypertrophic	chondrocyte-like	alterations	in	the	NP	of	Tnmd−/−	mice.	(a	and	b)	Significant	downregulation	
of	Acan	protein	expression	was	detected	at	18	months	by	immunofluorescent	imaging	and	fluorescence	intensity	analysis	in	Tnmd−/−	NP	
compared	to	WT.	(c–h)	Immunofluorescence	stainings	with	anti-Sox9,	anti-Runx2	and	anti-Col	X	antibodies	reveal	increased	expression	
levels of the three hypertrophy markers in Tnmd−/−	NPs	compared	with	WT	at	18	months.	All	quantitative	histomorphometry	data	were	
assessed	by	two-tailed	nonparametric	Mann–Whitney	test;	6-month-old	mice,	n	=	5	animals;	18-month-old	mice,	n = 3 animals. *p < .05; 
**p	<	.01.	AF,	annulus	fibrous;	EP,	endplate;	mo,	month;	NP,	nucleus	pulposus;	WT,	wild-type.	Scale	bar,	200	μm
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cell population contained increased number of apoptotic cells com-
pared	to	WT	cell	population	(Figure	S3f,g).	Taken	together,	we	val-
idated	the	OAF	phenotype	of	our	isolated	cells	and	concluded	that	
the loss of Tnmd causes reduction in their proliferative and migratory 
potential but an increase in apoptotic risk.

2.8 | Human umbilical vein endothelial cells migrate 
more toward Tnmd−/− OAF cells which exhibit 
elevation in p65 and MMPs expression levels

Following	 our	 observation	 of	 increased	 angiogenesis	 and	 mac-
rophage infiltration in Tnmd−/−	OAF,	we	investigated	the	human	um-
bilical	vein	endothelial	cells	(HUVECs)	migratory	capacity	toward	WT	
or Tnmd−/−	OAF	 cells	 by	 implementing	 transwell	 assays	 and	 found	
that	 loss	 of	 Tnmd	 in	 OAF	 supernatant	 promoted	 their	 migratory	
capacity	compared	to	co-culture	with	WT	OAF	cells	 (Figure	6a–c).	

Immunofluorescence analysis revealed that the number of nuclei 
positive	 for	p65,	a	key	 regulator	of	nuclear	 factor-kappa-B	activa-
tion	and	function,	was	significantly	 increased	in	Tnmd−/− compared 
with	WT	OAF	cells	(Figure	6d,e),	which	was	in	parallel	with	elevated	
expression	of	MMP-3	and	MMP-9	 in	Tnmd−/−	OAF	cells	 compared	
with	 WT	 OAF	 cells	 (Figure	 6f–i).	 Thus,	 our	 results	 suggest	 that	
Tnmd-deficient	OAF	cells	exhibit	elevated	p65,	MMP-3,	and	MMP-9	
expression and that the absence of secreted Tnmd by these cells sig-
nificantly	promotes	HUVECs	migration.

3  | DISCUSSION

Low	back	pain	is	an	enormous	medical	and	socioeconomic	burden	in	
modern	society.	Although	there	are	many	etiologies	for	the	devel-
opment	of	low	back	pain,	a	main	component	appears	to	be	IVD	de-
generation,	including	neovascularization	and	inflammatory	element	

F I G U R E  5   Double knockout for Tnmd and Chm1	lead	to	accelerated	IVD	degeneration	coupled	with	ectopic	bone	formation.	(a	and	b)	
Immunofluorescence	analysis	of	Chm1	expression	shows	Chm1	major	localization	in	the	NP	as	well	as	lower	protein	levels	in	Tnmd−/− than 
WT	IVD	at	6	months	(two-tailed	nonparametric	Mann–Whitney	test;	n	=	5	animals).	(c)	Western	blotting	confirmed	the	downregulation	
of Chm1 protein in Tnmd−/−	compared	to	WT	IVD	(n	=	3	animals).	(d-f)	H&E	and	safranin	O	staining	reveal	advanced	IVD	degeneration	
and ectopic bone formation in Tnmd−/−Chm1−/−	mice,	and	histological	grading	shows	significantly	worsened	scores	at	18	months	in	
Tnmd−/−Chm1−/− mice compared to Tnmd−/−	and	WT	mice	(one-way	ANOVA	was	followed	by	Bonferroni	post	hoc	correction,	n	=	3	animals).	
(g)	Immunofluorescence	analysis	for	CD31	demonstrate	that	Tnmd−/−Chm1−/−	OAF	contain	many	capillary-like	structures	(n	=	3	animals).	(h)	
Immunofluorescence	analysis	for	F4/80	shows	many	macrophages	were	distributed	in	and	around	the	NP	of	Tnmd−/−Chm1−/− mice (n = 3 
animals).	(i)	Multiple	sites	of	ectopic	ossifications	in	Tnmd−/−Chm1−/− IVD were observed by carrying out Opn immunostaining (n	=	3	animals).	
*p < .05; **p < .01; ***p	<	.001.	AF,	annulus	fibrous;	EP,	endplate;	H&E,	hematoxylin–eosin;	IAF,	inner	annulus	fibrous;	IVD,	intervertebral	disc;	
NP,	nucleus	pulposus;	OAF,	outer	annulus	fibrous;	WT,	wild-type;	black	arrows,	chondrocyte-like	cells;	white	arrows,	ectopic	ossifications;	
white	dotted	line,	OAF-IAF	boundary.	Scale	bar:	200	μm
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(Cornejo,	Cho,	Giannarelli,	Iatridis,	&	Purmessur,	2015;	Freemont	et	
al.,	1997;	Kwon,	Moon,	Kwon,	Park,	&	Kim,	2017;	Risbud	&	Shapiro,	
2014).	 In	the	present	study,	we	demonstrate	the	important	role	of	
Tnmd in prevention of IVD degeneration by maintaining the avascu-
lar	nature	of	the	IVD	(Figure	6j).

Based	on	our	 initial	 investigation	at	the	protein	 level,	we	could	
show	that	Tnmd	is	strongly	expressed	in	the	ECM	of	the	OAF,	while	
Chm1	is	predominantly	found	in	the	NP.	We	could	detect	to	a	lower	
extent	 a	 signal	 for	 Tnmd	 also	 in	 the	NP;	 however,	 this	 should	 be	
taken	with	caution	considering	the	highly	conserved	C-terminus	be-
tween both proteins against which the primary antibody was raised. 
Moreover,	we	could	 show,	 similar	 to	 the	Achilles	 tendon	and	CTC	
(Dex	 et	 al.,	 2016),	 that	 Tnmd	 processing	 in	 the	 IVD	 undergoes	 a	
proteolytic	cleavage	at	 its	16kDa	C-terminal	portion.	Thus,	we	 re-
port for the first time the expression pattern of Tnmd protein in the 
ECM	of	the	IVD,	but	also	revealing	that	Tnmd	is	downregulated	at	
6 months of age.

Neovascularization	 allows	 the	 infiltration	 of	macrophages	 into	
the	 IVD	 triggering	 inflammation	 (Fontana,	 See,	 &	 Pandit,	 2015;	

Nakazawa	 et	 al.,	 2018;	Walker	 &	 Anderson,	 2004),	 which	 in	 turn	
can	 further	 amplify	 the	 vascularization	 (Cornejo,	 Cho,	 Giannarelli,	
Iatridis,	&	Purmessur,	 2015;	 Lee	 et	 al.,	 2011),	 thereby	 triggering	 a	
self-perpetuating	 process.	 Here,	 we	 revealed	 that	 the	 absence	 of	
Tnmd activates angiogenesis and macrophage infiltration in the IVD 
in	vivo,	as	well	as	HUVECs	migration	in	an	in	vitro	co-culture	setting	
with	 OAF-derived	 cells.	 Furthermore,	 we	 also	 provide	 direct	 evi-
dence that both Tnmd and Chm1	act	as	anti-angiogenic	cues	in	the	
IVD due to the observed severe IVD phenotype in the double mu-
tant	animals.	We	detected	not	only	pronounced	vascularization	and	
infiltration of inflammatory cells into the matrix of the IVD but also 
unusual calcification. These data provide a new insight into the mo-
lecular mechanisms underlying the maintenance of IVD avascularity 
and implicate that disruption of its homeostasis leads to pathological 
status.

The	 ECM	 composition	 and	 organization	 are	 very	 important	
for	 IVD	 structure	 and	 function;	 hence,	 alterations	 in	 the	 ECM	
can	 also	 contribute	 to	 IVD	 degeneration	 (Cs-Szabo	 et	 al.,	 2002;	
Hoogendoorn	 et	 al.,	 2008;	 Liu	 et	 al.,	 2017;	 Zhang	 et	 al.,	 2013).	

F I G U R E  6   Tnmd−/−	OAF	cells	promote	HUVECs	migration	and	have	elevated	p65	and	MMPs	expression.	(a)	Experimental	design	of	
HUVECs-OAF	cells	co-culture	experiments.	(b	and	c)	Significantly	increased	migration	of	HUVECs	toward	Tnmd−/−	OAF	cells.	Representative	
images	of	the	bottom	side	of	the	transwell	membrane	taken	after	36	hr	of	co-culturing	(n	=	3	independent	experiments).	(d–i)	Tnmd−/− 
OAF	cells	exhibit	upregulated	protein	expression	of	p65	(component	NF-κB	complex),	MMP-3,	and	MMP-9	compared	with	WT	cells	
(two-tailed	nonparametric	Mann–Whitney	test;	n	=	3	independent	experiments).	(j)	Cartoon	highlighting	the	hallmarks	of	Tnmd−/− IVD 
phenotype. *p < .05; **p	<	.01.	Scale	bar:	100	μm.	HUVEC,	human	umbilical	vein	endothelial	cells;	IVD,	intervertebral	disc;	MMP,	matrix	
metalloproteinases;	NF-κB,	nuclear	factor-kappa-B;	OAF,	outer	annulus	fibrous;	WT,	wild-type
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In	general,	IVD	degeneration	starts	with	proteoglycan	breakdown	
leading to diminished water retention and disc dehydration. Our 
previous nanostructural and biomechanical analyses of the col-
lagen	matrix	 in	Achilles	 tendons	demonstrated	 that	 the	 absence	
of Tnmd causes thickening and stiffening of the collagen fibrils 
(Docheva	et	al.,	2005).	Therefore,	we	analyzed	whether	 the	 lack	
of Tnmd	 affects	 the	 collagen	 fibrils	of	 the	AF.	 In	 contrast	 to	our	
previous	results,	we	found	out	that	Tnmd−/−	OAF	contain	collagen	
fibrils	with	smaller	calibers	and	lower	compressive	stiffness,	which	
cannot provide enough strength and proper load distribution over 
large	parts	of	the	OAF.	According	to	these	results	and	our	previous	
finding that Tnmd is a mechanosensitive and mechanoregulated 
gene	(Dex	et	al.,	2017),	we	propose	that	the	above-described	phe-
notypic differences between tendon and IVD tissues are the con-
sequence	 of	 the	 different	 biomechanical	 environments,	 namely	
IVDs are subjected mainly to compressive stress while tendons to 
tensile forces.

Altered	OAF	matrix	can	hinder	the	ability	of	the	tissue	to	with-
stand mechanical load and in turn can increase the likelihood of 
tear	formation	(Gruber	&	Hanley,	1998;	Guterl	et	al.,	2013;	Iatridis,	
Nicoll,	 Michalek,	 Walter,	 &	 Gupta,	 2013;	 Roberts	 et	 al.,	 2008;	
Shukunami	et	al.,	2018).	Interestingly,	the	absence	of	Tnmd in ten-
don	versus	OAF	tissues	caused	the	opposite	effect	on	the	mRNA	
expression levels of several ECM genes such as Col14a1,	Col15a1, 
and Prg4, as well as the transcription factors Scx,	a	direct	transac-
tivator	of	Tnmd	(Shukunami	et	al.,	2018),	and	Mkx,	both	known	to	
regulate	collagens.	Furthermore,	we	detected	elevated	expression	
of	MMP-3	and	MMP-9	in	Tnmd−/−	OAF	cells;	thus,	soluble	matrix	
proteins can be extruded from the tissue by mechanical load-
ing	and	enhance	the	degenerative	process	 (Kamper	et	al.,	2016).	
Notably,	the	glycosaminoglycan	to	hydroxyproline	ratio	within	the	
NP	of	young	adults	is	approximately	27:1,	whereas	the	ratio	within	
the hyaline cartilage of the same individuals is about 2:1 (Mwale et 
al.,	2004).	In	our	study,	decreased	Acan	content	in	the	Tnmd−/−	NP,	
paralleled	by	increased	Sox9,	Runx2,	and	Col	X	levels,	is	indicative	
for	a	 transition	 from	a	hydrated	gel-like	NP	 to	a	more	hypertro-
phic	chondrocyte-like	matrix	that	is	involved	in	IVD	degeneration.	
Altogether,	 in	 such	 circumstances,	 sprouting	 of	 blood	 vessels	 in	
the	 abnormal	 OAF	matrix	 and	 further	 toward	 the	 center	 of	 the	
IVD can facilitate ectopic ossification via intermediate hypertro-
phy	state	(Roberts	et	al.,	2008).

Apoptosis	 is	 known	 to	 be	 a	 component	 of	 IVD	degeneration	
(Gruber	&	Hanley,	1998).	Previously,	we	have	reported	a	reduced	
proliferative rate in Tnmd−/−	 tendon	 tissues	 and	 derived	 cells,	
as	 well	 as	 an	 increased	 number	 of	 p53-positive	 cells	 in	 Tnmd−/− 
Achilles	 tendons	 (Alberton	 et	 al.,	 2015;	 Docheva	 et	 al.,	 2005).	
Therefore,	 another	 important	 point	 that	 we	 examined	 was	 the	
effect of Tnmd on cell proliferation and apoptosis in the IVD. 
Interestingly	and	similar	to	tendon	tissues,	our	in	vivo	and	in	vitro	
investigations convincingly prove that Tnmd is a positive regula-
tor	of	cell	proliferation	and	its	loss	accelerates	apoptosis,	which	in	
turn leads to propagation of IVD aging and degenerative process. 
However,	our	study	is	impeded	in	providing	an	explanation	of	the	

exact molecular mode of action of Tnmd,	 due	 to	 lack	 of	 known	
binding	partners.	Therefore,	further	studies	are	promptly	required	
to determine the signaling pathways in which Tnmd participates 
during IVD homeostasis.

Taken	 together,	 our	 findings	 provide	 new	 insights	 into	 the	
protective role of Tnmd in IVD degeneration. Understanding the 
precise Tnmd-dependent	mechanisms	can	 form	the	basis	of	devel-
oping new therapeutic strategies for prevention or treatment of IVD 
degeneration.

4  | E XPERIMENTAL PROCEDURES

4.1 | Animals

Tnmd−/−,	Tnmd−/−Chm1−/−,	and	their	WT	littermates	mice	were	used	in	
this study. The generation of the Tnmd−/−,	Tnmd−/−Chm1−/−	mice,	and	
their primary phenotype tendon tissues and cells were described 
by	Docheva	and	co-workers	(Alberton	et	al.,	2015;	Dex	et	al.,	2017;	
Docheva	et	al.,	2005;	Lin	et	al.,	2017).	All	the	mice	were	backcrossed	
to	a	C57BL/6J	strain.

4.2 | Human samples

Samples	 comprising	 5	 IVDs	 (Table	 S1)	 were	 collected	 from	 5	 pa-
tients undergoing vertebral reconstruction (IVD tissues are re-
moved	 and	discarded)	 due	 to	 burst	 fractures	 or	 lumbar	 tumors	 in	
the	Orthopaedic	Center	of	People's	Liberation	Army,	the	Affiliated	
Southeast	Hospital	of	Xiamen	University.	There	were	3	males	and	2	
females	 (21–32	years	of	age).	All	patients	 received	magnetic	 reso-
nance imaging scans to confirm intact and healthy status of the 
IVDs.	 Samples	 were	 fixed	 immediately	 after	 removal	 in	 4%	 para-
formaldehyde	 (PFA;	Merck)	 overnight	 at	 4°C	 and	 then	 embedded	
in	paraffin.	From	each	patient,	an	 informed	consent	was	obtained.	
Sample	collection	and	experimental	methods	were	authorized	by	the	
Ethics Committee of the Xiamen University.

4.3 | Cell culture

Mouse	OAF	cells	were	 isolated	according	 to	Nakamichi	 and	 col-
leagues	(Nakamichi	et	al.,	2016).	Briefly,	Tnmd−/−	or	WT	mice	were	
euthanized	 and	 lumbar	 discs	 (12-month-old,	 L1/2-5/6,	 6	 animals	
per	 group)	 were	 dissected	 under	 laminar	 flow.	 The	 discs	 were	
trimmed,	and	pieces	of	OAF	tissues	were	obtained,	then	enzymati-
cally	 treated	 overnight	with	 0.04%	 collagenase	 II	 (Worthington)	
in	Dulbecco's	modified	Eagle's	medium	(DMEM)/Ham's	F-12	(1:1)	
(Biochrom)	 supplemented	 with	 10%	 fetal	 bovine	 serum	 (FBS)	
(Sigma-Aldrich)	 and	 1%	 penicillin/streptomycin	 (PS)	 (Biochrom).	
Cell	 suspension	 was	 filtered	 through	 70-µm	 nylon	 mesh	 (VWR	
International)	 and	 centrifuged	 at	 500	 g	 for	 5	min.	 Isolated	 cells	
were	 grown	 in	 DMEM/Ham's	 F-12	 (1:1)	 with	 10%	 FBS,	 1%	
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l-ascorbic-acid-2-phosphate	 (Sigma-Aldrich),	 1%	minimum	 essen-
tial	medium	(MEM)-amino	acid	(Biochrom),	and	1%	PS	until	day	5,	
at which point the medium was changed for the first time. Cells be-
tween	passages	1–3	were	used	for	experiments.	HUVECs	(Lonza)	
were	 cultured	 in	 the	 endothelial	 cell	 growth	medium	 2	 (ECGM-
2)	(PromoCell).	Cells	 in	passages	7–8	were	used	for	experiments.	
Both	cell	types	were	cultured	at	37°C	and	5%	CO2,	kept	up	to	70%	
confluency and supplemented with fresh culture media every third 
day.

4.4 | Histology, immunohistology, and 
histomorphometry

Mouse	 spines	were	 obtained	 after	 euthanasia	 (newborn,	 15	 days,	
1	month,	12	months,	and	18	months	of	age:	n = 3 animals; 6 months 
of age: n	=	5	animals).	The	samples	were	fixed	in	4%	PFA	overnight	at	
4°C.	Following	fixation,	specimens	were	decalcified	in	10%	ethylene	
diamine	tetraacetic	acid	(EDTA)/phosphate-buffered	saline	(PBS)	pH	
8.0	 (Sigma-Aldrich,	Munich,	Germany)	 for	14	days,	 and	embedded	
into	paraffin	or	 cryo-media,	 and	 then	 the	mouse	and	human	sam-
ples were sectioned with 6 μm	(paraffin)	or	10	μm	(cryo),	and	stained	
with	H&E	and	safranin	O	using	standard	protocols.	Quantification	of	
histological	score	was	based	on	a	new	scoring	system	specialized	on	
histomorphology	of	mouse	IVD	(Tam	et	al.,	2018).	In	brief,	the	scor-
ing	system	included	the	following	evaluation:	NP	structure	(0	point,	
single-cell	mass;	1	point,	 cell	 clusters	˂50%;	2	points,	 cell	 clusters	
˃50%;	3	points,	matrix-rich	with	little	cells	NP;	4	points,	mineralized	
NP),	NP	clefts/fissures	(0	point,	none;	+1	point,	mild;	+2	points,	se-
vere),	AF/NP	boundary	(0	point,	clear	cut	boundary;	1	point,	round	
chondrocyte	cells	at	the	boundary;	2	points,	 loss	of	boundary),	AF	
structure	 (0	 point,	 concentric	 lamellar	 structure;	 1	 point,	 serpen-
tine,	widened	or	 rounded	AF	 lamellae;	2	points,	 reversal	of	 lamel-
lae;	3	points,	undefinable	lamellar	structure	or	penetrating	the	NP;	4	
points,	mineralized	or	lost	AF),	and	AF	clefts/fissures	(0	point,	none;	
+1	point,	mild;	+2	points,	severe).	Quantification	of	disc	height	index	
was	performed	on	H&E	images	(Masuda	et	al.,	2005).	In	general,	all	
histology,	 immunohistology,	 and	 histomorphometry	 experiments,	
unless	specified	otherwise	in	the	text,	were	reproduced	in	3	sections	
per sample with 5 or 3 samples per group for investigation.

For	 immunofluorescence	 staining,	 the	 sections	 were	 treated	
with	2	mg/ml	hyaluronidase	 (Sigma-Aldrich)	 for	30	min	at	37°C	 in	
order	 to	 increase	antibody	permeability.	After	washing	and	block-
ing	 with	 2%	 bovine	 serum	 albumin/PBS	 (Sigma-Aldrich),	 primary	
antibodies	 against	 Acan	 (Abcam,	 1:100,	 ab36861),	 CD31	 (Abcam,	
1:50,	ab28364),	Chm1	(Santa	Cruz	Biotechnology,	1:200,	sc-33563),	
Col	 I	 (Abcam,	 1:50,	 ab34710),	 Col	 X	 (Abcam,	 1:50,	 ab58632),	
Fmod	 (Abcam,	1:200,	 ab81443),	 Fn	 (Abcam,	1:50,	 ab2413),	 F4/80	
(Abcam,	1:100,	ab100790),	Lum	(Abcam,	1:50,	ab168348),	MMP-3	
(Novus	Biologicals,	1:100,	NB110-57221),	MMP-9	(Millipore,	1:100,	
AB19016),	Opn	(Abcam,	1:200,	ab8448),	PCNA	(Invitrogen,	1:100,	
13-3900),	 p53	 (Abcam,	 1:100,	 ab61241),	 p65	 (Abcam,	 1:1000,	
ab16502),	 Runx2	 (Abcam,	 1:200,	 ab102711),	 Sox9	 (Abcam,	 1:400,	

ab3697),	 and	 Tnmd	 (Metabion,	 PAB	 201603-00002,	 1:100)	 were	
applied	overnight	at	4°C.	Corresponding	Alexa	Fluor	488-	or	546-la-
beled	secondary	antibodies	(all	from	Life	technology)	were	used	for	
1h	at	room	temperature.	Then,	sections	were	shortly	counter-stained	
with	via	4′,6-diamidino-2-phenylindole	(DAPI)	(Life	technology)	and	
mounted	 with	 fluoroshield	 (Sigma-Aldrich).	 To	 analyze	 apoptotic	
cells	 numbers,	 TUNEL	 kit	 was	 applied	 following	 the	 manufactur-
er's	 instructions	 (Abcam,	 ab66110).	 Photomicrographs	were	 taken	
on	the	Observer	Z1	microscope	equipped	with	the	Axiocam	MRm	
camera	 (Carl	 Zeiss).	 Quantitative	 histomorphometry	 was	 carried	
out	via	an	automated	quantitative	image	analysis	according	to	algo-
rithms	from	literature	(Hsieh	et	al.,	2016;	Lin	et	al.,	2017).	 In	brief,	
using	ImageJ	(National	Institutes	of	Health),	the	following	algorithm	
was	applied:	(a)	area	of	interest	was	manually	designated	using	the	
“drawing/selection”	tool;	(b)	“set	measurements”	for	area,	integrated	
density	and	mean	gray	value	was	selected	from	the	analyze	menu;	
and	(c)	 lastly,	the	corrected	total	cryosections	fluorescence	(CTCF)	
representing	the	Acan,	Col	I,	Col	X,	Fmod,	Fn,	Lum,	MMP3,	MMP-
9,	p65,	and	Tnmd	expression	were	exported	and	calculated	in	Excel	
(Microsoft)	as	follows	CTCF	=	media	of	integrated	density	−	(media	
of	 area	 of	 selected	 area	 ×	mean	 fluorescence).	 To	 analyze	 Chm1-
positive	ratio	of	IVD,	automatic	color	pixel	quantification	tool	in	the	
Adobe	Photoshop	CS5	software	 (Adobe	System)	was	calculated	 in	
percentage	to	the	image	total	pixel	size.	For	IHC	of	the	human	IVDs,	
sections	were	deparaffinized	in	xylene,	dehydrated	in	ethanol,	and	
incubated	with	 0.3%	 hydrogen	 peroxide	 in	 absolute	methanol	 for	
30 min at room temperature to inhibit endogenous peroxidase. To 
enhance	 the	 immunoreactivity	 toward	 TNMD,	 the	 sections	 were	
treated	with	0.05%	citraconic	anhydride	(Sigma-Aldrich)	 in	PBS	for	
30	 min	 at	 60ºϹ.	 After	 washing	 with	 Tris-HCl	 buffer	 (50	 mmol/L	
Tris-HCl,	 pH	 7.6),	 the	 sections	 were	 incubated	 with	 primary	 anti-
body	 (Anti-TNMD	 antibody,	 Sigma-Aldrich,	 1:100,	HPA034961)	 at	
4°C	 overnight,	 followed	 by	 corresponding	 biotinylated	 secondary	
antibody	and	horseradish	peroxidase-labeled	streptavidin.	The	col-
ored	 reaction	 product	 was	 developed	 with	 3,3′-diaminobenzidine	
tetrahydrochloride.	Finally,	the	sections	were	counter-stained	with	
hematoxylin.	For	quantification	of	 the	TNMD-positive	area,	 image	
analysis	of	 the	OAF	or	NP	areas	stained	 in	brown	was	carried	out	
using	ImageJ	(TNMD-positive	area/per	area	of	interest	[%]).

4.5 | IT-AFM

Indentation-type	atomic	force	microscopy	was	performed	on	14	μm-
thick	frozen	tissue	sections	from	6-month-old	Tnmd−/−	and	WT	mice	
(3	animals	per	group;	each	animal	represented	by	3	tissue	sections).	
Measurements	were	taken	with	NanoWizard	AFM	instrument	(JPK	
Instruments)	mounted	on	an	inverted	optical	microscope	(Axiovert	
200,	Zeiss)	as	described	in	detail	previously	(Dex	et	al.,	2017;	Gronau	
et	al.,	2017;	Kamper	et	al.,	2016).	Briefly,	625	indentation	curves	per	
sample were recorded in 2 × 2 μm2 area using pyramidal tips with 
nominal	 radius	of	20	nm	and	 silicon	nitride	 cantilevers	 (MLCT	mi-
crocantilever,	 Bruker).	 The	 spring	 constant	 of	 each	 cantilever	was	
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determined	prior	to	the	experiment	using	the	thermal	noise	method,	
and	the	sample	stiffness	was	determined	via	a	modified	Hertz	model	
using	the	JPK	Data	Processing	software	(V4.2.20,	JPK	Instruments),	
as	 described	 in	 detail	 previously	 (Gronau	 et	 al.,	 2017;	 Kamper	 et	
al.,	2016).	Based	on	these	results,	histograms	were	plotted	and	the	
two maxima were identified by fitting a linear combination of two 
Gaussian	functions	using	OriginLab	software	 (version	6).	As	previ-
ously	reported,	the	lower	stiffness	peak	attributes	to	the	proteogly-
can	moiety,	while	the	higher	stiffness	peak	relates	to	collagen	fibrils	
(Gronau	et	al.,	2017;	Kamper	et	al.,	2016).

4.6 | Western blot analysis

Mouse	IVDs	from	WT	(1	and	6	months	of	age)	and	Tnmd−/− (6 months 
of	age)	animals	were	snap-frozen	in	liquid	nitrogen.	Using	a	mortar	
and	pestle,	the	tissue	was	pulverized	and	resuspended	in	8	M	urea,	
50	mM	Tris-HCl	(pH	8.0),	1	mM	dithiothreitol,	and	1	mM	EDTA.	Protein	
(22 μg)	aliquots	were	loaded	on	a	12%	SDS-polyacrylamide	gel	and	
transferred	 to	 Immobilon-p	 transfer	 membrane	 (Merck	Millipore).	
The	membrane	was	blocked	for	90	min	with	5%	Milk/TBS-T	buffer.	
Anti-Tnmd	 (1:500),	 anti-Chm1	 (1:500),	 and	 anti-β-Actin	 (Abcam,	
1:1,000,	ab8227)	antibodies	were	added.	After	overnight	incubation	
with	 the	primary	antibodies	at	4°C,	membranes	were	washed	and	
probed	with	corresponding	horseradish	peroxidase-conjugated	goat	
anti-rabbit	IgG	(Thermo	Fischer	Scientific).	Protein	bands	were	visu-
alized	 using	 SuperSignal	West	Dura	 Extended	Duration	 Substrate	
(Thermo	Fischer	Scientific)	and	film	paper.	Western	blot	was	inde-
pendently reproduced with two separate preparation of IVDs from 
1-	and	6-month-old	Tnmd−/−	and	WT	animals.

4.7 | Semiquantitative and qRT–PCR

Total	 RNAs	 from	OAF	 tissues	 (n	 =	 3	 animals)	 and	OAF	 cells	were	
isolated	with	Qiagen	RNeasy	Mini	kit	 (Qiagen)	and	used	for	stand-
ard	 semiquantitative	 and	 qRT–PCR.	 For	 cDNA	 synthesis,	 1	 μg 
total	 RNA	 and	 AMV	 First-Strand	 cDNA	 Synthesis	 Kit	 (Invitrogen)	
were	implemented.	Semiquantitative	PCR	was	performed	with	Taq	
DNA	 Polymerase	 (Invitrogen)	 in	MGResearch	 instrument	 (BioRad,	
Munich,	Germany).	Primer	sequences	and	PCR	conditions	were	as	
follows: Tnmd	 forward	 5′gaaaccatggcaaagaatcctccagag3′,	 reverse	
5′ttagactctcccaagcatgcgggc3′;	 Chm1	 forward	 5′atggtagggcctgag-
gacgttg3′,	reverse	5′gctgcatggcatgacgactctg3′;	Gapdh	forward	5′ga-
gaggccctatcccaactc3′,	 reverse	 5′gtgggtgcagcgaactttat3′;	 PCR	 was	
performed	with	incubation	at	94°C	for	5	min	followed	by	30	cycles	
of	a	three-step	temperature	program	of	1	min	at	94°C,	20	s	at	57°C,	
and	30	s	at	72°C.	The	PCR	reaction	was	 terminated	after	a	7	min	
extension	 at	 70°C.	 The	 band	 intensity	 of	 the	 amplified	 products	
in	 the	 gel	was	 visualized,	 photographed,	 and	 analyzed	 using	 a	 gel	
imager	 (Vilber	Lourmat).	The	 relative	gene	expression	was	quanti-
fied	by	densitometry	and	normalized	to	the	amount	of	Gapdh with 
ImageJ	 and	presented	as	 fold	 change	 to	WT.	Quantitative	PCR	of	

tendon-associated	 genes	 was	 performed	 using	 RealTime	 Ready	
Custom	Panel	 96	 –	 32+	 plates	 (https	://confi	gurat	or.realt	imere	ady.
roche.com)	 according	 to	 the	 manufacturer's	 instructions	 (Roche	
Applied	 Science).	 Briefly,	 PCR	 reactions	were	 pipetted	 on	 ice	 and	
each	well	contained	10	µl	LightCycler	480	probes	master	mix,	0.2	µl	
cDNA	(diluted	1:5)	and	9.8	µl	PCR	grade	water.	Plates	were	subse-
quently	 sealed	 and	 centrifuged	 down	 for	 15	 s.	 at	 2,100	 rpm.	 The	
relative gene expression was calculated as a ratio to Gapdh.	All	PCR	
results have been reproduced in three independent experiments.

4.8 | Migration analysis

Migration analysis was performed similarly to our previous 
study	 (Popov,	 Kohler,	 &	 Docheva,	 2016).	 For	 random	 migration,	
1.5 × 103 cells/cm2 of Tnmd−/−	 and	WT	OAF	cells	were	seeded	on	
Col	 I-coated	 (20	μg/Ml;	Millipore)	 6-well	 plates	 and	 incubated	 for	
2 hr prior imaging. Time lapse was performed with 4 frames per 
20	min	for	24	hr.	The	image	data	were	extracted	with	AxioVisionLE	
software	(Carl	Zeiss),	and	individual	cell	tracks	were	analyzed	with	
ImageJ.	Random	migration	was	expressed	by	calculation	of	the	for-
ward	migration	index	(FMI;	the	ratio	of	the	vector	length	to	the	mi-
gratory	starting	point),	velocity,	and	accumulated	(cumulative	track	
length)	and	Euclidian	(the	ordinary	straight-line	length	between	two	
points)	distances.	Results	of	random	OAF	cells	migration	measure-
ments	consist	of	3	 independent	 time-lapse	movies	of	 two	Tnmd−/− 
and	WT	OAF	cells	donors	as	a	total	number	of	20–25	OAF	cells	per	
genotype were tracked.

4.9 | CyQUANT assays

A	total	of	1.5	×	103	cells	(passage	1)	per	well	were	plated	in	6-well	
plates,	and	CyQUANT	assay	detection	was	performed	according	to	
the	manufacturer's	instructions	(Invitrogen)	after	0,	3,	5,	and	7	days	
cell	culture.	CyQUANT	assay	was	repeated	 independently	 in	3	ex-
periments per time point.

4.10 | HUVECs-OAF cells co-culture

Co-cultures	 were	 performed	 using	 Boyden	 chambers	 with	 mem-
brane	 containing	 8.0	 μm	pores	 inserted	 in	 24-well	 plates	 (Becton	
Dickinson	Labware)	as	described	previously	(Kimura	et	al.,	2008).	In	
brief,	Tnmd−/−	or	WT	OAF	cells	(1	×	104	cells	per	well)	were	seeded	on	
the	bottom	of	the	wells	and	cultured	in	DMEM/Ham's	F-12	(1:1)	with	
10%	FBS,	1%	l-ascorbic-acid-2-phosphate,	1%	MEM-amino	acid,	and	
1%	PS	for	24	hr,	and	then,	the	medium	was	replaced	with	ECGM-2.	
Before	seeding	HUVECs	into	the	upper	chamber,	the	membrane	was	
coated with Col I (10 μg/Ml;	Millipore),	 kept	 in	 a	 humidified	 incu-
bator	overnight,	 and	 filled	with	ECGM-2	an	hour	before	 introduc-
ing the 5 × 103	HUVECs	per	well.	After	36	hr	co-culturing,	HUVECs	
that have migrated through the pores and adhered to the lower side 
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of	 the	membrane	were	 fixed	with	4%	PFA	and	stained	with	DAPI.	
The	 cell	 nuclei	 were	 counted	 using	 the	 Observer	 Z1	 microscope	
equipped	with	the	Axiocam	MRm	camera.	Tnmd−/−	or	WT	OAF	cells	
in	the	lower	chamber	were	analyzed	for	p65,	MMP-3,	and	MMP-9	
by	immunofluorescence	staining.	The	interactions	of	the	co-cultures	
assays	were	repeated	independently	in	3	experiments.	All	cell	nuclei	
(DAPI)	in	3	images	per	well	from	5	wells	per	plate	were	counted.

4.11 | Statistical analysis

In	this	study,	each	animal	was	represented	with	3	different	tissue	sec-
tions with comparable planes between genotypes. The results were 
averaged per animal were presented as mean ± SD between the 3–5 
animals per group. Exact animal number and experimental reproduc-
ibility	is	given	for	each	result	in	the	figure	legends.	Statistical	differ-
ences	between	two	groups	were	determined	using	two-tailed	unpaired	
Student's	t	test,	or	two-tailed	nonparametric	Mann–Whitney	test.	In	
multiple	comparisons,	one-way	ANOVA	was	followed	by	Bonferroni	
post hoc correction. Differences were considered statistically signifi-
cant at the values of *p	<	.05,	**p	<	.01,	and	***p < .001.
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