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Summary 
 

The soil is a challenging habitat where microorganisms are exposed to adverse environmental 

conditions and where they compete for space and resources. Surviving in such situations 

requires bacteria to permanently monitor their environment and initiate the appropriate 

responses to counteract the deleterious effects of a given adverse condition. For this, bacteria 

have sophisticated systems to sense environmental changes and elaborate specialized responses 

in order to overcome conditions that could cause harm. These systems are i) one-component 

system (1CS), ii) two-component systems, and iii) extracytoplasmic function (ECF) σ factors. 

Streptomycetes are gram-positive soil bacteria with a complex life cycle, being antibiotic 

producers and also antibiotic resistant. Additionally, these bacteria present one of the highest 

repertoires of ECF σ factors making them the ideal model organism for this study. The aims of 

this study were to i) use of ECF σ factors of S. venezuelae to design and implement orthogonal 

switches in B. subtilis and ii) elucidate the mechanisms of resistance against antimicrobial 

peptides in S. venezuelae. The performance of the ECF19-based switch was tested in the 

presence of its anti-σ factor, upon variation in copy number of each constituent transcriptional 

unit, type of inducible promoter, ECF σ factor stability and under the effects of antisense 

transcription. This systematic characterization of the ECF19 switch has shown it is the best 

performing heterologous ECF-based switch so far described for B. subtilis. Its activity is 

nonetheless compromised by genetic perturbations caused by changes in the copy number, 

protein stability and antisense transcription. This study also demonstrates that S. venezuelae is 

highly resistant to the antimicrobial peptide bacitracin. By performing random mutagenesis 

followed by genome sequencing and RNAseq analysis, it was possible to identify the genes that 

might be involved in bacitracin resistance in S. venezuelae. 
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Zusammenfassung 
 
Der Erdboden ist ein herausforderndes Habitat, in dem Mikroorganismen widrigen 

Umwelteinflüssen ausgesetzt sind und zusätzlich um Raum und Ressourcen konkurrieren 

müssen. Um in solchen Situationen überleben zu können, sind die Bakterien permanent darauf 

angewiesen, ihre Umgebung zu überwachen. Bei gegebenen ungünstigen Bedingungen müssen 

entsprechende angemessene Reaktionen initiiert werden, damit sie diesen schädlichen Effekten 

entgegen wirken zu können. Für diese Aufgabe stellen Bakterien komplexe Systeme bereit, die 

die Umweltveränderungen wahrnehmen und spezialisierte Antworten auslösen, um 

Bedingungen zu überwinden, die Schäden verursachen können. Diese Systeme sind i) 

Einkomponentensysteme (1CS), ii) Zweikomponentensysteme (2CS) und iii) extracytoplasmic 

function (ECF)-Sigmafaktoren. 

Streptomyceten sind grampositive Bodenbakterien mit komplexen Lebenszyklen, die 

Antibiotika produzieren aber auch selbst antibiotische Resistenzen aufweisen. Zusätzlich 

stellen diese Bakterien ein sehr breites Repertoire an ECF-Sigmafaktoren bereit, was sie zu 

einem optimalen Modellorganismus für diese Arbeit macht. 

Das Ziel dieser Arbeit bestand darin, i) die Nutzung von ECF-Sigmafaktoren in S. venezuelae 

zu erläutern, darauf aufbauend orthogonale Schalter in B. subtilis zu konzipieren und zu 

implementieren. ii) Des Weiteren sollten die Mechanismen der Resistenz gegen antimikrobielle 

Peptide in S. venezuelae aufgeklärt werden. 

Die Leistungsfähigkeit des, auf ECF19 basierenden, Schalters wurde unter verschiedenen 

Bedingungen getestet: in der Anwesenheit seines anti-Sigmafaktors, nach Veränderung der 

Kopiezahl jeder einzelnen Transkriptionseinheit, unter der Kontrolle unterschiedlicher Typen 

des induzierenden Promoters, auf Stabilität des ECF-Sigmafaktors und auf den Effekt der 

antisense-Transkription. Diese systematische Charakterisierung des ECF19-Schalters hat 

gezeigt, dass es sich dabei um einen heterologen ECF-Schalter mit der besten Leistung in B. 

subtilis handelt, die bisher beschrieben wurde. Die Aktivität des Schalters wird allerdings 

beeinträchtigt durch genetische Störungen, die durch Änderungen der Kopiezahl, der 

Proteinstabilität und antisense-Transkription hervorgerufen werden. Diese Arbeit hat weiterhin 

demonstriert, dass S. venezuelae hochresistent gegen das antimikrobielle Peptid, Bacitracin, ist. 

Aufgrund der Durchführung von zufälliger Mutagenese, gefolgt von Genomsequenzierung und 

RNAseq war es möglich, Gene zu identifizieren, die höchstwahrscheinlich in der Bacitracin-

Resistenz in S. venezuelae eine wichtige Rolle spielen. 
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1. Introduction 
 

1.1. Streptomyces venezuelae 

The soil poses a highly competitive environment for bacterial growth, which is reflected in the 

production of a broad range of antimicrobial compounds by soil bacteria and, correspondingly, 

in a high prevalence of resistance against these antibiotics (Kieser et al., 2000; D’Costa et al., 

2006). Streptomycetes are gram-positive soil bacteria which have complex life cycles and 

produce a range of secondary metabolites, most of which are biologically active and are often 

useful for medicine. This group of bacteria are considered as the most important producers of 

antibiotics and present a complex program of differentiation. S. venezuelae grows as branching 

vegetative mycelium that under adverse environmental conditions serves as a substrate for the 

formation of aerial hyphae. This morphological transition usually co-occurs with the production 

of secondary metabolites, such as antibiotics. Subsequently, aerial hyphae develop into chains 

of spores that will germinate initiating a new cycle (Figure 1) (Glazebrook et al., 1990; Bibb 

et al., 2012). S. venezuelae has recently become a new model organism for Streptomycetes and 

has been successfully used in transcriptional, proteomic and other analyses. In addition to being 

amenable to genetic manipulation, this bacterium has a relatively fast growth rate and requires 

a short period of culture for production of metabolites. Furthermore, S. venezuelae develops 

synchronously in liquid cultures and sporulates almost completely (> 90%), what is an 

advantage compared to the model organism Streptomyces coelicolor (Bibb et al., 2012).  

 
Figure 1. Life cycle of Streptomyces venezuelae  
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1.2. Antibiotic resistance in Streptomycetes 

Streptomyces species produce numerous secondary metabolites including many clinically 

relevant antibiotics, which correspond to over 60 % of the known antibiotics (Le et al., 2009). 

In consequence, self-protection resistance mechanisms are usually coregulated with the 

biosynthesis of antibiotics, and are expressed prior to or concomitantly with the presence of the 

antimicrobial molecules (reviewed in Mak, Xu and Nodwell, 2014). Thus, the biosynthesis of 

antibiotic is tightly regulated at many levels to ensure the exact time of production and to avoid 

potential toxicity for the producer organisms (Novakova et al., 2010).  

The soil is a competitive habit and the production of antimicrobial molecules is one of the most 

studied mechanisms of bacterial competition. In such context, not only mechanisms of 

resistance to self but also to antibiotics produced by neighbouring organisms are essential for 

survival (Figure 2). 

 
Figure 2. Representation of resistance determinants for antibiotic producing and antibiotic non-producing 
bacteria. Thick blue arrows represent biosynthetic genes, think orange arrow represent resitance genes, thin 
arrows represent promoters, and green cycles represent antimicrobial molecules (modified from Mak et al., 
2014). 

Thus, it is not surprininsg that Streptomyces species are an important reservoir of antibiotic 

resistance genes in soil and can even carry resistance to clinical antibiotics (D’Costa et al., 

2006; Bhullar et al., 2012; Schlatter and Kinkel, 2014). For example, Streptomyces coelicolor 

encodes resistance mechanism against vancomycin, however, it does not produce this antibiotic 

or any similar glycopeptide antibiotics (Hong et al., 2004). 

 
1.3. Signal transduction repertoire of S. venezuelae 

Bacteria such as Streptomyces has complex mechanisms of signal transduction in order to deal 

with often-changing environmental conditions. One-component systems are the most abundant 

mechanisms of signal transduction in bacteria being characterised by the presence of both, the 

sensory domain and regulatory domain in a single polypeptide. The second most common 

mechanism of signal transduction are two-component systems that are composed of a sensor 

histidine kinase that is subject to autophosphorylation upon stimulus sensing, which further 
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activates its cognate response regulator through phosphate transfer (Ulrich, Koonin and Zhulin, 

2005; Laub and Goulian, 2007). The third major mechanism by which bacteria sense and 

respond to external stimuli is through the extracytoplasmic function (ECF) σ factors that are are 

kept inactive by a negative regulator anti-σ factor in the absence of the inducing stimulus 

(Mascher, 2013) (Figure 3). A bacteria’s lifestyle is correlated with the number of ECF σ 

factors it encodes: those facing challenging environments that have to survive diverse stress 

conditions, fluctuating nutrient availability, microbial competition and morphological 

differentiation encode a greater number of ECF σ factors than for example those intracellular 

pathogenic bacteria living in a more stable environment (Gruber and Gross, 2003; Staroń et al., 

2009; Jogler et al., 2012; Mascher, 2013; Huang et al., 2015; Paget, 2015). 

 

 
Figure 3. Representation of signal transduction mechanisms in bacteria. In the left is shown the Streptomyces 
vegetative mycelia. One-component system (1CS), two-component-system (2CS) and ECF σ factors sense the 
environmental stimulus (signal) and promp a specific response. 

 
1.4. Extracytoplasmic function (ECF) σ factors 

Bacteria express several genes whose products are required for normal growth but also for 

successfull adaptation to environmental changes. Hence, controling the production of these 

proteins, ensuring that they will be expressed at the right time and amount in order to sustain 

the bacteria’s life cycle and allow adaptation to stress conditions is crucial (Gross et al., 1998). 

Gene expression is primarily modulated at transcription initiation levels, which has as one 

central player the RNA polymerase (RNAP). The core bacterial RNAP is composed of five 

subunits: the large β and β’ catalytic subunits, two identical α subunits and the small ω subunit. 

Alpha subunits consist of two independently folded domains joined by a flexible linker, being 

the α N-terminal domain (αNTD) responsible for the assembly of the β and β’ subunits. The ω 

subunit seems to assist the folding of the β’ subunit, acting as a chaperone (Blatter et al., 1994; 
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Gourse, Ross and Gaal, 2000; Korzheva et al., 2000; Hampsey and Reinberg, 2001; Browning 

and Busby, 2004; Österberg, Peso-Santos and Shingler, 2011). However, the core RNAP is not 

able to recognize promoters and initiate transcription by itself. A sixth dissociable subunit called 

σ factor is recruited by the core RNAP resulting in the formation of the RNAP holoenzyme 

allowing in this way the i) recognition of specific promoters, ii) correct RNAP holoenzyme 

positioning and iii) unwinding of the DNA-double strand downstream the transcript start site 

(Figure 4) (Gross et al., 1998; Browning and Busby, 2004).  

 

Figure 4. General representation of the transcription initiation complex. RNAP α, β, β’ and ω subunits are 
showed in pink and the σ factor is showed in blue. σ factor recognition sequences (-35 and -10) are in red, up 
element is shown in purple and the transcription start site (+1) is represented by a grey arrow. The direction 
of transcription is indicated. 

The most abundant σ factors belong to the σ70 family, which recognise specific sequences at 

positions -35 and -10 from the transcription start site (position +1). The σ70 family is divided in 

four groups: the group 1 comprises the essential housekeeping σ factors; group 2 their non-

essential paralogues; group 3 contains σ factors involved in specific functions such as motility, 

heat shock resistance and sporulation; and, group 4 contains the extracytoplasmic function 

(ECF) σ factors (Wösten et al., 1998; Gruber and Gross, 2003). Group 1 σ factors are composed 

of four conserved domains (σ1, σ2, σ3 and σ4) and an additional non-conserved region (NCR); 

the group 2 σ factors are closely related to those of group 1 but lack the region σ1.1 of the σ1 

domain; the ones of group 3 lack the complete σ1 domain and the NCR; and, group 4 σ factors 

contain only the σ2 and σ4 domains, which are sufficient for core RNAP binding and promoter 

recognition (Gross et al., 1998; Helmann and Moran, 2002; Butcher, Mascher and Helmann, 

2008; Mascher, 2013) (Figure 5). In the primary σ factors the domain σ1 binds to a 

discriminator sequence located between the -10 region and the transcriptional start site (+1 

region). Domain σ3 recognizes one base upstream the -10 region called extended -10 (Barne et 

al., 1997; Campbell et al., 2002). The σ4 domain binds to the -35 region and σ2 domain binds 
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to the conserved -10 region. Initial binding of the RNAP holoenzyme to the promoter results in 

the formation of the closed complex, in which the DNA is double stranded. Unwinding of the 

dsDNA starts upstream the -10 region and results in the transition to the open complex, in which 

the RNAP holoenzyme interacts simultaneously with both single and double stranded DNA 

(Gross et al., 1998; Campbell et al., 2002). Shorty after initiation, the σ subunit is released from 

the RNAP holoenzyme, freeing the σ factor for association with other core RNAP and start a 

new round of transcription initiation (Murakami and Darst, 2003; Österberg, Peso-Santos and 

Shingler, 2011; Friedman and Gelles, 2012). 

 

Figure 5. Domain architecture and target promoters of A) primary σ70; B) σ70 group 3 of heat shock, flagellar 
and sporulation σ-factors; C) σ70 group 4 of alternative ECF-σ factors. The four σ domains (σ1, σ2, σ3 and σ4) are 
represented in blue. NCR stands for non-conserved region. Promoter regions are highlighted in light red. 
Extended -10 promoter region and discriminator are shown in dark red. Region + 1 in grey shows the 
transcription start site and grey arrows represent the coding sequence. 

Besides being a component of the RNAP that is responsible for promoter specificity, as 

mentioded before, σ factors such as ECF σ factors also play essential roles in signal transduction 

(Sun et al., 2017). The availability of ECF σ factors in the bacterial cell is generally modulated 

by a cognate anti-σ factor that sequesters the ECF σ factors, keeping them inactive in the 

absence of an inducing stimulus. In the presence of such stimulus, the anti-σ releases the ECF 

σ factor through proteolysis or conformational changes allowing in this way the recruitment of 

the ECF σ factor by the core RNAP. ECF σ factors are often co-transcribed with their cognate 

anti-σ factors and are subject of autoregulation. Thus, once the stimulus ceases, the 

transcriptional response mediated by ECF σ factors will be turned off by sequestration of the 

ECF σ factor by the anti-σ and the system is returned to its inactive state (Lonetto et al., 1994; 

Hughes and Mathee, 1998; Reviewed in Paget and Helmann, 2003; Mascher, 2013; Reviewed 
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in Paget, 2015) (Figure 6). The ECF σ factor family is the most abundant and diverse family 

of σ factors. They have been classified in over 50 different subgroups in which some are phyla 

specific and others are widely distributed across bacteria (Staroń et al., 2009; Rhodius et al., 

2013; Huang et al., 2015). 

 

 
Figure 6. Hallmark characteristics of the signal transduction mediated by ECF σ factors. ECF σ factor domains 
are shown in blue; cognate anti-σ factor is shown in green. The RNAP core and its respective subunits are 
shown in pink. Promoter regions -10 and -35 are highlighted in red. Up element is shown is purple. Region +1 
is shown in grey followed by grey arrows that represent the ECF-σ factor – anti-σ factor operon. (Figure 
adapted from Mascher 2013). 

 
1.5. ECF σ factors as building parts for synthetic switches 

Synthetic biology is focused on the rational engineering of biologically based (or inspired) 

systems. For this purpose, it is convinient to use standard parts such as promoters, terminators, 

ribosome binding sites, and gene coding sequences that can be put together in order to build 

synthetic circuits to introduce or modify biological functions (Serrano, 2007). Despite the use 

of well-characterized parts, the complexity of living systems can bring up unexpected 

behaviours as well as the loss of functionality of synthetic circuits when these are implemented 

in a different genetic context (Guet et al., 2002; Morey et al., 2012; Del Vecchio, Dy and Qian, 

2016) (Figure 7). 
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Figure 7. Representation of unexpected cross-interaction between a synthetic circuit with the host parts Thick 
arrows represent the genes, thin arrows represent promoters, circles represent gene products. Green long 
arrows represent desired behaviour and red long arrows represent undesired behaviour (adapted from Zhang, 
Tsoi and You, 2016). 

Thus, the use of orthogonal parts (what means biological parts that are dissimilar to those 

occurring naturally) from different organisms can minimize the chances of cross-interactions 

with the native machinery. Until now, a variety of synthetic circuits were built using natural 

orthogonal parts such as dCas9, riboswitches and transcription factors (Stanton et al., 2014; 

Gao and Elowitz, 2016; Westbrook and Lucks, 2017). These circuits are inspired by biological 

processes that are controlled by feedback loops, switching between OFF and ON states when 

in presence of a specific inducer (Clancy and Voigt, 2010). Rhodius and co-workers (2013) 

successfully implemented ECF-based switches in E. coli and a more recent work reported the 

use of ECF σ factors to build autonomous timers in E. coli and B. subtilis (Pinto et al., 2018b). 

The minimal domain architecture of ECF σ factors and the fact that ECF promoters are highly 

conserved and can be easily found upstream the ECF coding genes (Staroń et al., 2009), makes 

them actractive alternatives to classical transcription regulators in synthetic circuit design. 

Altogether, ECF σ factors have been shown to be modular, orthogonal, universal and scalable 

representing ideal building blocks for complex synthetic biology application. 

The ability of Streptomyces to perceive and respond to diverse environmental challenges is 

crucial for its survival, what probably boosted the development of accurate mechanisms of 

signal transduction. Usually, secondary metabolism and differentiation in Streptomyces are 

controlled by ECF σ factors (Kormanec et al., 2016). The classification of ECF σ factors made 

by Staron and co-workers (2009) showed that bacteria present an average of six ECF σ factors 
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per genome. However, Streptomyces coelicolor, for example, has a total of 51 ECF σ factors, 

which correspond to approximately 80% of the total number of σ factors in this organism 

(Paget, Mark SB; Hong, HJ; Bibb, 2002). A more recent phylum-specific analysis found over 

2200 ECF σ factors in Actinobacteria genomes wherein Streptomycetaceae family was revealed 

as ECF-rich but also containing a large diversity of ECF σ factors. Those belong to twenty 

different ECF groups, of which eight are Actinobacteria-specific (Huang et al., 2015). In 

accordance, S. venezuelae presents a wide repertoire of 47 ECF σ factors, belonging to over 30 

groups and making this organism a good source of ECF σ factors for synthetic biology 

applications. 

Bacillus subtilis is a soil gram-positive bacterium with a low GC content, which differentiates 

into spores to survive long periods of starvation. It is highly amenable to genetic manipulations, 

being extensively used as model organism for gram-positive bacteria (van Dijl and Hecker, 

2013). B. subtilis possess only seven ECF σ factors (reviewed in Helmann, 2016) that mainly 

belong to different subgroups from those of S. venezuelae and implementation of ECF switches 

in B. subtilis has already been successful (Pinto et al., 2018b). For these reasons, we argue that 

B. subtilis can as well be a good host for the implementation of S. venezuelae ECF σ factors.  

 

1.6. Mechanisms of resistance to bacitracin 

Bacitracin is a nonribosomally synthesized antimicrobial peptide (AMP), which is produced by 

soil bacteria such as Bacillus licheniformis (Nakano & Zuber 1990). Bacitracin targets the cell 

envelope by forming a complex with the lipid carrier undecaprenyl pyrophosphate (UPP), 

blocking the reclycing of UPP and consequentelly the biosynthesis of peptidoglycan precursors 

(Siewert, Gerhard; Strominger, 1967) (Figure 8)  Gram-positive bacteria possess several 

mechanisms of resistance against cell wall antimicrobial peptide such as bacitracin. For 

example, the overproduction of undecaprenyl phosphate (UP) confers resistance to bacitracin 

in Klebsiella species by overcoming the sequestration of UPP by bacitracin (Sutherland, 1977). 

Studies in Streptococcus mutans showed two different mechanism of bacitracin resistance: one 

involving the synthesis of rhamnose-glucose polysachharide and other involving the mutans 

bacitracin resitance (mbr) genes, which seem to be related to glucan biosynthesis (Tsuda et al., 

2002). 
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Figure 8. Lipid II cycle. Peptidoglycan subunits are synthetised in the cytoplasm where the UDP-activated 
precursor sugar N-acetylmuranic acid and pentapeptide (L-Ala, DiGlu, L-Lys, D-Ala, D-Ala) are assembled on 
the lipid carrier undecaprenyl phosphate (UPP) by the action of the enzymes MraY and Mur A-F, forming this 
way the the lipid I (1). Further, the addition of the UDP-N-acetylglucosamine by the enzyme MurG forms the 
lipid II (2). The lipid II is subsequently translocated by a flippase across the membrane towards the 
extracytoplasmic space (3). Then, the peptidoglycan subunit is transferred to a growing peptidoglycan chain 
by action of penicillin-binding proteins (4). The lipid carrier UPP is released (5) and recycled back to the 
cytoplasm (6), initiating a new cycle. UPP recycling is blocked by bacitracin (red star). 

Additionally, the upregulation of the enzyme undecaprenyl-pyrophosphate phosphateses 

(UppP) confers resistance to bacitracin in B. subtilis and Enterococcus faecalis (Cao and 

Helmann, 2002; Shaaly et al., 2013). Modifications on the cell wall charge such as alanylation 

or overproduction of teichoic acids were shown to confer resistance to bacitracin in 

Staphylococcus aureus, Clostridium difficile and E. faecalis (Peschel et al., 1999; McBride and 

Sonenshein, 2011; Abranches et al., 2013). 

Another common mechanism that confers high-level resistance to bacitracin is the expression 

of ATP-binding cassette (ABC) transport system. For example, the bacitracin producing 

bacteria Bacillus licheniformis processes a self-immunity mechanism against bacitracin that is 

based in the expression of the BcrAB transport system (Podlesek, Herzog and Comino, 1997). 

The expression of such transporters is controlled by two-component systems, which are usually 

encoded in the neighbourhood of the ABC transporter (Joseph et al., 2002; Dintner et al., 2011). 

This type of tranporters is well exemplified by the BceRS-BcrAB system from B. subtilis, where 

the BceRS correspond to a regulatory component located upstream of the sensor domain and 

ABC transporter BceAB  (Ohki et al., 2003; Gebhard, 2012; Dintner et al., 2014). 



INTRODUCTION	

21 
 

 
Figure 9. Depiction of the BceRS-BceAB bacitracin resistance mechanism of Bacillus subtilis. Genes and proteins 
representing the two-component system BceRS are shown in pink and transporter’s permease and ATP-
binding domain are showed in blue. The presence of the antimicrobial peptide (e.g. bacitracin) is indicated by 
a red star. The proposed interaction between BceB and BceS is shown by a thick double-headed arrow. The 
phospho-relay between BceS and BceR, ATP hydrolysis by BceA, and activation of the bceA promoter by BceR 
are shown by thin single-headed arrows (adapted from Dintner et al., 2014). 

 

1.7. Scope of the thesis 

1.7.1. Implementation of ECF-based switches in B. subtilis 

ECF σ factors have been introduced as a valuable resource for implementing synthetic programs 

of gene expression (Rhodius et al., 2013; Pinto et al., 2018b). The conservation of the core 

RNA polymerase across bacteria and orthogonality of ECF σ factors could allow the 

implementation of ECF-based switches in a variety of species avoiding unwanted behaviours 

caused by host part interference. Thus, this thesis aimed to design and implement synthetic 

switches based in ECF σ factors. For this purpose, ECF σ factors from the high GC 

Actinobacteria S. venezuelae were codon optimized and implememted into the host cell B. 

subtilis. The activity of the ECF-based switches was analysed via luminescence measurements. 

 

1.7.2. Antimicrobial peptide resistance in Streptomyces venezuelae 

Resistance against antimicrobial peptides (AMPs) is well understood in Firmicutes (Draper et 

al., 2008; Alkhatib et al., 2012; Gebhard, 2012), but to date has not been investigated in detail 

in actinomycetes. Several members of the latter group have recently been found to also produce 

AMPs, and to contain immunity genes required for self-protection (Claesen and Bibb, 2010; 

Foulston and Bibb, 2010; Sherwood, Hesketh and Bibb, 2013). Yet little, if any, information is 

available on their resistance against AMPs produced by other bacteria. Considering the co-
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occurrence of actinomycetes and firmicutes in the soil environment, it was hypothesised that 

actinomycetes should frequently be exposed to AMPs and thus should possess dedicated 

resistance mechanisms to defend themselves. Preliminary studies have shown that S. venezuelae 

is highly resistant to the AMP bacitracin, thus, this thesis also aimed at the discovery of 

bacitracin resistance mechanisms in S. venezuelae. For this, S. venezuelae was randomly 

mutagenized and screeneend for bacitracin-sensitive strains. Further genome sequencing and 

RNAseq analysis were performed. 



MATERIALS	AND	METHODS	

23 
 

2. Materials and Methods 
 

2.1. Implementation of ECF σ factor-based switches in B. subtilis 

 
2.1.1. Selection of ECF σ factors and codon optimization 

S. venezuelae ATCC 10712 proteome was obtained from the Protein database of the National 

Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/protein) and the protein 

sequences were identified and classified by using the ECFfinder tool (http://ecf.g2l.bio.uni-

goettingen.de:8080/ECFfinder/) (Staroń et al., 2009) or by similarity analysis with those groups 

classified by Huang et al., 2015. A subset of ten ECF σ factors groups that were not present in 

B. subtilis 168 were selected for implementation into B. subtilis 168 (Table 1) and their 

promoters were predicted accordingly to specific putative target promoter motifs previously 

described (Staroń et al., 2009; Gómez-Santos et al., 2011; Jogler et al., 2012; Huang et al., 

2015; Pinto and Mascher, 2016). 

 
Table 1. Selected ECF σ factors of Streptomyces venezueale 

ECF s factor       Protein accession number ECF group 

Sven_4513 WP_041662789 ECF02 

Sven_4870 WP_015036056 ECF12 

Sven_4793 WP_015035979 ECF14 

Sven_0063 WP_041661965 ECF17 

Sven_0399 WP_041661965 ECF19 

Sven_6501 WP_015037682 ECF20 

Sven_3668 WP_041662652 ECF27 

Sven_2914 WP_015034116 ECF38 

Sven_3369 WP_015034570 ECF38 

Sven_6611 WP_015037792 ECF38 

Sven_3215 WP_015034416 ECF39 

Sven_3278 WP_015034479 ECF39 

Sven_3293 WP_015034494 ECF39 

Sven_3759 WP_015034958 ECF39 

Sven_4575 WP_015035762 ECF39 

Sven_0015 WP_015031223 ECF51 
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In order to ensure the expression of the ECF σ factors from S. venezuelae in B. subtilis, the ECF 

s factor-encoding genes were codon adjusted based on the codon usage frequency of both 

organisms, determined using a set of predicted highly expressed genes (Karlin et al., 2001) 

(Table 2). An RBS and an N-terminal FLAG tag were added upstream the codon adjusted 

coding sequence. Appropriate restriction sites were incorporated at either end and forbidden 

restriction sites - correspondingly to the RFC10 BioBrick standard - were removed. These DNA 

fragments were chemically synthetized by GeneArt, Germany (Invitrogen, Thermo Fischer 

Scientific) and later cloned into selected vectors. 
 

Table 2. Codon usage frequency of S. venezuelae and B. subtilis 

 Streptomyces venezueale ATCC 10712                         Bacillus subtilis 168 
Amino acid Codon Count Frequency Codon Count Frequency 

Ala GCC 734 62,0% GCC 74 9,6% 

GCG 364 30,8% GCG 176 22,9% 

GCT 69 5,8% GCT 292 38,0% 

GCA 16 1,4% GCA 226 29,4% 

Arg CGC 476 59,4% CGC 198 31,5% 

CGT 240 30,0% CGT 364 58,0% 

CGG 72 9,0% CGG 5 0,8% 

CGA 7 0,9% CGA 12 1,9% 

AGG 6 0,7% AGG 1 0,2% 

AGA 0 0,0% AGA 48 7,6% 

Asn AAC 301 99,3% AAC 286 73,5% 

AAT 2 0,7% AAT 103 26,5% 

Asp GAC 638 99,1% GAC 255 44,3% 

GAT 6 0,9% GAT 321 55,7% 

Cys TGC 42 85,7% TGC 11 35,5% 

TGT 7 14,3% TGT 20 64,5% 

Gln CAG 372 100,0% CAG 129 34,7% 

CAA 0 0,0% CAA 243 65,3% 

Glu GAG 805 96,5% GAG 202 24,7% 

GAA 29 3,5% GAA 615 75,3% 

Gly GGC 614 65,1% GGC 225 27,1% 

GGT 295 31,3% GGT 328 39,5% 

GGA 17 1,8% GGA 249 30,0% 

GGG 17 1,8% GGG 29 3,5% 

His CAC 186 99,5% CAC 92 58,6% 

CAT 1 0,5% CAT 65 41,4% 

Ile ATC 537 98,9% ATC 376 60,3% 

ATT 6 1,1% ATT 248 39,7% 

Leu CTG 417 49,9% CTG 91 11,2% 

CTC 397 47,5% CTC 39 4,8% 
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CTT 20 2,4% CTT 405 49,8% 

TTG 1 0,1% TTG 83 10,2% 

CTA 0 0,0% CTA 38 4,7% 

TTA 0 0,0% TTA 158 19,4% 

Lys AAG 654 100,0% AAG 126 16,7% 

AAA 0 0,0% AAA 627 83,3% 

Met ATG 212 100,0% ATG 245 95,7% 

ATA 0 0,0% ATA 11 4,3% 

Phe TTC 285 99,3% TTC 200 69,0% 

TTT 2 0,7% TTT 90 31,0% 

Pro CCG 368 68,7% CCG 110 28,4% 

CCC 159 29,7% CCC 3 0,8% 

CCT 9 1,7% CCT 167 43,2% 

CCA 0 0,0% CCA 107 27,6% 

Ser TCC 210 47,4% TCC 35 7,5% 

TCG 178 40,2% TCG 5 1,1% 

AGC 49 11,1% AGC 61 13,1% 

TCT 5 1,1% TCT 212 45,5% 

AGT 1 0,2% AGT 33 7,1% 

TCA 0 0,0% TCA 120 25,8% 

Thr ACC 429 70,3% ACC 16 3,0% 

ACG 172 28,2% ACG 78 14,7% 

ACT 9 1,5% ACT 186 35,2% 

ACA 0 0,0% ACA 249 47,1% 

Trp TGG 64 100,0% TGG 37 100% 

Tyr TAC 219 99,5% TAC 146 61,3% 

TAT 1 0,5% TAT 92 38,7% 

Val GTC 698 72,1% GTC 106 11,9% 

GTG 212 21,9% GTG 109 12,3% 

GTT 54 5,6% GTT 383 43,1% 

GTA 4 0,4% GTA 290 32,7% 

 
ECF σ factor target promoters were obtained by annealing of complementary oligonucleotides 

(Table 3) generating the appropriate overhangs for EcoRI and SpeI mediated cloning. For each 

annealing reaction, a control reaction using only the forward oligonucleotide was made in 

parallel. The annealing of the oligonucleotides was confimed by electrophoresis and ethidium 

bromide staining. 
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Table 3. Oligonucleotides for promoter generation 

Oligonucleotide 
name 

Description Sequence 5‘ – 3‘ 

TMP0053 PSven_4513 Fwd AATTCGCGGCCGCTTCTAGAGGCGCGCAGCTCGGCGGGGTCCTGCGGAACCGTGATC
GCGTGGAGGTCGACGACCATGTA 

 PSven_4513Rev CTAGTACATGGTCGTCGACCTCCACGCGATCACGGTTCCGCAGGACCCCGCCGAGCT
GCGCGCCTCTAGAAGCGGCCGCG 

TMP0054 PSven_4870 Fwd AATTCGCGGCCGCTTCTAGAGGATCGTCTCGCTCCGCTGACCCACCGGGAATGTTGA
GCGGGGGGCGACGGTTGTTCCGTGCTA 

 PSven_4870 Rev CTAGTAGCACGGAACAACCGTCGCCCCCCGCTCAACATTCCCGGTGGGTCAGCGGAG
CGAGACGATCCTCTAGAAGCGGCCGCG 

TMP0055 PSven_4793 Fwd AATTCGCGGCCGCTTCTAGAGGATCGGGGAGGAGTGCTTCGGCGTCTTCTCAGGTCG
GCGGGTGAGCCGAAATCCGTGATA 

 PSven_4793 Rev CTAGTATCACGGATTTCGGCTCACCCGCCGACCTGAGAAGACGCCGAAGCACTCCTC
CCCGATCCTCTAGAAGCGGCCGCG 

TMP0056 PSven_0063 Fwd AATTCGCGGCCGCTTCTAGAGCCGGCTCCATGTGACCCGGCTCACATGAACCGACGG
TGCAGGCGGCGCGTGTGGGGCACTA 

 PSven_0063Rev CTAGTAGTGCCCCACACGCGCCGCCTGCACCGTCGGTTCATGTGAGCCGGGTCACAT
GGAGCCGGCTCTAGAAGCGGCCGCG 

TMP0057 PSven_6501 Fwd AATTCGCGGCCGCTTCTAGAGGGCCGGTGGAACCGGGAGGAAACACCCATGCTGATC
ACCGGCCTCGTCGCGCTCGGAGTCCTGTA 

 PSven_6501 Rev CTAGTACAGGACTCCGAGCGCGACGAGGCCGGTGATCAGCATGGGTGTTTCCTCCCG
GTTCCACCGGCCCTCTAGAAGCGGCCGCG 

TMP0058 PSven_3668 Fwd AATTCGCGGCCGCTTCTAGAGCGGCATGGGTGCCGCAAGGCGGTCTCGGGAATGTAC
GCCCCTTAGGATCCGTTGGGTGGGGTTA 

 PSven_3668 Rev CTAGTAACCCCACCCAACGGATCCTAAGGGGCGTACATTCCCGAGACCGCCTTGCGG
CACCCATGCCGCTCTAGAAGCGGCCGCG 

TMP0059 PSven_2914 Fwd AATTCGCGGCCGCTTCTAGAGTCGTGGGGTGACACACGTCTGGTGGGTTGAAGGCGC
CCTTCACCCCACCGTGTCCGTCTCTTCTA 

 PSven_2914 Rev CTAGTAGAAGAGACGGACACGGTGGGGTGAAGGGCGCCTTCAACCCACCAGACGTG
TGTCACCCCACGACTCTAGAAGCGGCCGCG 

TMP0060 PSven_3369 
Fwd 

AATTCGCGGCCGCTTCTAGAGCACCGTCGAAAAGGGTGACGCACGCGTACAACCCTG
CCGGGGGGAAGCGTGTCCAACATGCGTA 

 PSven_3369 Rev CTAGTACGCATGTTGGACACGCTTCCCCCCGGCAGGGTTGTACGCGTGCGTCACCCTT
TTCGACGGTGCTCTAGAAGCGGCCGCG 

TMP0061 PSven_6611 Fwd AATTCGCGGCCGCTTCTAGAGCCCTTGGACCTTTGGCGACCCGCCTGGACAGCTCGAC
GAGCGGCCGCTTAGGGTCGGGGTCCGTA 

 PSven_6611 Rev CTAGTACGGACCCCGACCCTAAGCGGCCGCTCGTCGAGCTGTCCAGGCGGGTCGCCA
AAGGTCCAAGGGCTCTAGAAGCGGCCGCG 

TMP0062 PSven_3215 Fwd AATTCGCGGCCGCTTCTAGAGGACGGCTGCCCCGCACAGCCCCGTGACAACCGCTCC
GTAGCGTCATCGACGACACGAGGTA 

 PSven_3215 Rev CTAGTACCTCGTGTCGTCGATGACGCTACGGAGCGGTTGTCACGGGGCTGTGCGGGG
CAGCCGTCCTCTAGAAGCGGCCGCG 

TMP0063 PSven_3278 Fwd AATTCGCGGCCGCTTCTAGAGGGGCTGGCCCCGCCACACCACCCTCACACCCCTGAC
GCCGACCGACTCCGACCCATCGCGATA 

 PSven_3278Rev CTAGTATCGCGATGGGTCGGAGTCGGTCGGCGTCAGGGGTGTGAGGGTGGTGTGGCG
GGGCCAGCCCCTCTAGAAGCGGCCGCG 

TMP0064 PSven_3293 Fwd AATTCGCGGCCGCTTCTAGAGCTGGCCGCGGGAGTCTGGCAGTCAGGCCTCGGACAG
TTCATCGGCGGACTCGTCATCGTCGCCTA 

 PSven_3293 Rev CTAGTAGGCGACGATGACGAGTCCGCCGATGAACTGTCCGAGGCCTGACTGCCAGAC
TCCCGCGGCCAGCTCTAGAAGCGGCCGCG 

TMP0065 PSven_3759 Fwd AATTCGCGGCCGCTTCTAGAGACCCTGAGGGTGTTCCCGGAGCGTCTCCACCCACAG
GAGGTCGGGTCGTCCCCACCCCTTA 

 PSven_3759 Rev CTAGTAAGGGGTGGGGACGACCCGACCTCCTGTGGGTGGAGACGCTCCGGGAACACC
CTCAGGGTCTCTAGAAGCGGCCGCG 

TMP0066 PSven_4575 Fwd AATTCGCGGCCGCTTCTAGAGGAGGACGTCGAGTTCACGGCAGCGGGCCACGATCTC
GGCGGCGAAGATCCCCTCCGCCACGAATA 

 PSven_4575 Rev CTAGTATTCGTGGCGGAGGGGATCTTCGCCGCCGAGATCGTGGCCCGCTGCCGTGAA
CTCGACGTCCTCCTCTAGAAGCGGCCGCG 

TMP0067 PSven_0015 Fwd AATTCGCGGCCGCTTCTAGAGGGAGCACCTGCCGGGCAGCGCTCTGCGGGACCTGCG
GCGCTTCCAGTGGGACTTCGCCACTA 

 P Sven_0015 Rev CTAGTAGTGGCGAAGTCCCACTGGAAGCGCCGCAGGTCCCGCAGAGCGCTGCCCGGC
AGGTGCTCCCTCTAGAAGCGGCCGCG 

TMP0068 PSven_0399 Fwd AATTCGCGGCCGCTTCTAGAGGGGGGCGCCGGTGACGAAGAGCGCTCCCATCCGCAG
GGCCGTCCGCTACGAAGAACGGGCGTA 

 PSven_0399 Rev CTAGTACGCCCGTTCTTCGTAGCGGACGGCCCTGCGGATGGGAGCGCTCTTCGTCACC
GGCGCCCCCCTCTAGAAGCGGCCGCG 

TMP0102 PSven_3185 Fwd AATTCGCGGCCGCTTCTAGAGGAGTGCCGAAGGGTGCCGTCCGACCCGTAACTCTTT
CGAGTGACCGTCGTTGAGAGTGCTA 

 PSven_3185 Rev CTAGTAGCACTCTCAACGACGGTCACTCGAAAGAGTTACGGGTCGGACGGCACCCTT
CGGCACTCCTCTAGAAGCGGCCGCG 

TMP0053 PSven_4513 Fwd AATTCGCGGCCGCTTCTAGAGGCGCGCAGCTCGGCGGGGTCCTGCGGAACCGTGATC
GCGTGGAGGTCGACGACCATGTA 
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Putative -35 and -10 promoter elements are underlined. 

 

2.1.2. Plasmid construction and transformations 

Genes encoding the ECF σ factors were inserted into the vector pBS0E-xylRPxylA or pBS2E-

PxylA via XbaI or EcoRI and SpeI restriction sites. The promoters where inserted into pBS3Clux 

via EcoRI and SpeI sites. pBS3Clux carries the luxABCDE operon that integrates into the sacA 

 PSven_4513Rev CTAGTACATGGTCGTCGACCTCCACGCGATCACGGTTCCGCAGGACCCCGCCGAGCT
GCGCGCCTCTAGAAGCGGCCGCG 

TMP0054 PSven_4870 Fwd AATTCGCGGCCGCTTCTAGAGGATCGTCTCGCTCCGCTGACCCACCGGGAATGTTGA
GCGGGGGGCGACGGTTGTTCCGTGCTA 

 PSven_4870 Rev CTAGTAGCACGGAACAACCGTCGCCCCCCGCTCAACATTCCCGGTGGGTCAGCGGAG
CGAGACGATCCTCTAGAAGCGGCCGCG 

TMP0055 PSven_4793 Fwd AATTCGCGGCCGCTTCTAGAGGATCGGGGAGGAGTGCTTCGGCGTCTTCTCAGGTCG
GCGGGTGAGCCGAAATCCGTGATA 

 PSven_4793 Rev CTAGTATCACGGATTTCGGCTCACCCGCCGACCTGAGAAGACGCCGAAGCACTCCTC
CCCGATCCTCTAGAAGCGGCCGCG 

TMP0056 PSven_0063 Fwd AATTCGCGGCCGCTTCTAGAGCCGGCTCCATGTGACCCGGCTCACATGAACCGACGG
TGCAGGCGGCGCGTGTGGGGCACTA 

 PSven_0063Rev CTAGTAGTGCCCCACACGCGCCGCCTGCACCGTCGGTTCATGTGAGCCGGGTCACAT
GGAGCCGGCTCTAGAAGCGGCCGCG 

TMP0057 PSven_6501 Fwd AATTCGCGGCCGCTTCTAGAGGGCCGGTGGAACCGGGAGGAAACACCCATGCTGATC
ACCGGCCTCGTCGCGCTCGGAGTCCTGTA 

 PSven_6501 Rev CTAGTACAGGACTCCGAGCGCGACGAGGCCGGTGATCAGCATGGGTGTTTCCTCCCG
GTTCCACCGGCCCTCTAGAAGCGGCCGCG 

TMP0058 PSven_3668 Fwd AATTCGCGGCCGCTTCTAGAGCGGCATGGGTGCCGCAAGGCGGTCTCGGGAATGTAC
GCCCCTTAGGATCCGTTGGGTGGGGTTA 

 PSven_3668 Rev CTAGTAACCCCACCCAACGGATCCTAAGGGGCGTACATTCCCGAGACCGCCTTGCGG
CACCCATGCCGCTCTAGAAGCGGCCGCG 

TMP0059 PSven_2914 Fwd AATTCGCGGCCGCTTCTAGAGTCGTGGGGTGACACACGTCTGGTGGGTTGAAGGCGC
CCTTCACCCCACCGTGTCCGTCTCTTCTA 

 PSven_2914 Rev CTAGTAGAAGAGACGGACACGGTGGGGTGAAGGGCGCCTTCAACCCACCAGACGTG
TGTCACCCCACGACTCTAGAAGCGGCCGCG 

TMP0060 PSven_3369 Fwd AATTCGCGGCCGCTTCTAGAGCACCGTCGAAAAGGGTGACGCACGCGTACAACCCTG
CCGGGGGGAAGCGTGTCCAACATGCGTA 

 PSven_3369 Rev CTAGTACGCATGTTGGACACGCTTCCCCCCGGCAGGGTTGTACGCGTGCGTCACCCTT
TTCGACGGTGCTCTAGAAGCGGCCGCG 

TMP0061 PSven_6611 Fwd AATTCGCGGCCGCTTCTAGAGCCCTTGGACCTTTGGCGACCCGCCTGGACAGCTCGAC
GAGCGGCCGCTTAGGGTCGGGGTCCGTA 

 PSven_6611 Rev CTAGTACGGACCCCGACCCTAAGCGGCCGCTCGTCGAGCTGTCCAGGCGGGTCGCCA
AAGGTCCAAGGGCTCTAGAAGCGGCCGCG 

TMP0062 PSven_3215 Fwd AATTCGCGGCCGCTTCTAGAGGACGGCTGCCCCGCACAGCCCCGTGACAACCGCTCC
GTAGCGTCATCGACGACACGAGGTA 

 PSven_3215 Rev CTAGTACCTCGTGTCGTCGATGACGCTACGGAGCGGTTGTCACGGGGCTGTGCGGGG
CAGCCGTCCTCTAGAAGCGGCCGCG 

TMP0063 PSven_3278 Fwd AATTCGCGGCCGCTTCTAGAGGGGCTGGCCCCGCCACACCACCCTCACACCCCTGAC
GCCGACCGACTCCGACCCATCGCGATA 

 PSven_3278Rev CTAGTATCGCGATGGGTCGGAGTCGGTCGGCGTCAGGGGTGTGAGGGTGGTGTGGCG
GGGCCAGCCCCTCTAGAAGCGGCCGCG 

TMP0064 PSven_3293 Fwd AATTCGCGGCCGCTTCTAGAGCTGGCCGCGGGAGTCTGGCAGTCAGGCCTCGGACAG
TTCATCGGCGGACTCGTCATCGTCGCCTA 

 PSven_3293 Rev CTAGTAGGCGACGATGACGAGTCCGCCGATGAACTGTCCGAGGCCTGACTGCCAGAC
TCCCGCGGCCAGCTCTAGAAGCGGCCGCG 

TMP0065 PSven_3759 Fwd AATTCGCGGCCGCTTCTAGAGACCCTGAGGGTGTTCCCGGAGCGTCTCCACCCACAG
GAGGTCGGGTCGTCCCCACCCCTTA 

 PSven_3759 Rev CTAGTAAGGGGTGGGGACGACCCGACCTCCTGTGGGTGGAGACGCTCCGGGAACACC
CTCAGGGTCTCTAGAAGCGGCCGCG 

TMP0066 PSven_4575 Fwd AATTCGCGGCCGCTTCTAGAGGAGGACGTCGAGTTCACGGCAGCGGGCCACGATCTC
GGCGGCGAAGATCCCCTCCGCCACGAATA 

 PSven_4575 Rev CTAGTATTCGTGGCGGAGGGGATCTTCGCCGCCGAGATCGTGGCCCGCTGCCGTGAA
CTCGACGTCCTCCTCTAGAAGCGGCCGCG 

TMP0067 PSven_0015 Fwd AATTCGCGGCCGCTTCTAGAGGGAGCACCTGCCGGGCAGCGCTCTGCGGGACCTGCG
GCGCTTCCAGTGGGACTTCGCCACTA 

 P Sven_0015 Rev CTAGTAGTGGCGAAGTCCCACTGGAAGCGCCGCAGGTCCCGCAGAGCGCTGCCCGGC
AGGTGCTCCCTCTAGAAGCGGCCGCG 

TMP0068 PSven_0399 Fwd AATTCGCGGCCGCTTCTAGAGGGGGGCGCCGGTGACGAAGAGCGCTCCCATCCGCAG
GGCCGTCCGCTACGAAGAACGGGCGTA 

 PSven_0399 Rev CTAGTACGCCCGTTCTTCGTAGCGGACGGCCCTGCGGATGGGAGCGCTCTTCGTCACC
GGCGCCCCCCTCTAGAAGCGGCCGCG 
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locus on B. subtilis, which codes a non-essential phosphosucrase. Genes encoding the 

transcription factors CarD and RpbA were inserted into pBS4S-PxylA via XbaI and Pstl sites. 

Cognate anti-σ factor 19 was inserted into pBS0K-PliaI or pBS1K-PliaI via XbaI and Pstl, or into 

pBS0E-xylRPxylA-SVEN_0399 via EcoRI and XbaI. The transformations with pBS0E-xylRPxylA 

and pBS0-PliaI derivatives, and integration of pBS2E-PxylA and pBS3Clux into B. subtilis were 

confimed by colony PCR using oligonucleotides showed in table 4. The integration of pBS4S-

Pxyl derivatives in the thrC locus was confirmed through threonine auxotropy (Sambrook, 2001; 

Radeck et al., 2013) and that of pBS1K derivatives in the amyE locus by the inability to degrade 

starch. 
 

Table 4. Additional oligonucleotides used in this study 

Primer name Description Sequence 5’ – 3’ 

TM0410 pBS0E check fwd GTTTAAACAACAAACTAATAGGTGATG 

TM2890 pBS0E check fwd ATTACCGCCTTTGAGTGA 

TM2262 pBS3Clux check fwd GAGCGTAGCGAAAAATCC 

TM2263 pBS3Clux check rev GAAATGATGCTCCAGTAACC 

TM2505 pBS3Clux sacA front check 
fwd 

CTGATTGGCATGGCGATTGC 

TM2506 pBS3Clux sacA front check 
rev 

ACAGCTCCAGATCCTCTACG 

TM2507 pBS3Clux sacA back check 
fwd 

GTCGCTACCATTACCAGTTG 

TM2508 pBS3Clux sacA back check 
rev 

TCCAAACATTCCGGTGTTATC 

TM3081 pBS2E check fwd GGCAACCGAGCGTTCTG 

TM3082 pBS2E check rev CTGACAGCGTTTCGATCC 

TM3224 pBS0K check fwd CCGTTACACTAGAAAACCG 

TM3225 pBS0K check rev CTGTGGATAACCGTATTACC 

TM4085 pBS2E LacA front check 

fwd 

TGCTGCAAAAGAATTTTGTGTCCG 

TM4086 pBS2E LacA front check 

rev 

AGGACTCTCTAGCTTGAGGC 

TM4087 pBS2E LacA back check 

fwd 

CTGCAGAGATATCGATTTCAAGC 

TM4088 pBS2E LacA back check 

rev 

CTTTGCTTTTCATGATTTCATCCC 

TM0137 Kan cassette fwd CAGCGAACCATTTGAGGTGATAGG 

TM0138 Kan cassette rev CGATACAAATTCCTCGTAGGCGCTCGG 

TM5144 ydeB up fragment fwd CCGATTCCTGATATAATAAAGAAG 

TM5145 ydeB up fragment rev CCTATCACCTCAAATGGTTCGCTGGGTTAGATACATCCCAAAAG 

TM5146 ydeB down fragment fwd CGAGCGCCTACGAGGAATTTGTATCGGAAACATATCATCCACCTCC 

TM5147 ydeB down fragment rev CGCCATTACGTTATGTAATGGATTATAG 

TM4621 pBS4S check fwd CTGTGAGAAATCACCGATTG 

TM4622 pBS4S check rev TCCTGATCCAAACATGTAAG 

5’ end of joining primers used for the ydeB deletion are underlined. 

General cloning procedures such as endonuclease restriction, ligation and PCR were performed 

with enzymes and buffers from New England Biolabs (NEB, Ipswich, MA, USA) according to 
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the manufacture’s protocols. OneTaq® polymerase or Q5® polymerase were used for PCR 

amplifications. Plasmids were generated according to BioBrick standards. Plasmid preparations 

were obtained according to the manufacture’s protocol with the HiYield Plasmid Mini-Kit 

(Süd-Laborbedarf GmbH (SLG), Gauting, Germany). E. coli competent cells were transformed 

according to OpenWetWare (http://openwetware.org/wikii/TOP_chemically_competent_cells). 

A list of the plasmids generated in this study is shown in table 5. B. subtilis transformations 

were carried out as described previously (Harwood and Cutting, 1990). 
Table 5. List of plasmids used in this study. 

Name Plasmid features and Contruction Source 

pBS0E xylRPxylA ori1030, ampR, mlsR. (Popp et al., 
2017) 

pBS0EPxyl ori1030, ampR, mlsR (Popp et al., 
2017) 

pDA0E xylRPxyl-
SVEN_4513 

pBS0E xylR PxylA RBS FLAG SVEN_4513 This study 

pBS2ERPxyl Integration at lacA, ampR, mlsR, xylR, PxylA (Popp et al., 
2017) 

pBS0EPliaI ori1030, ampR, mlsR (Popp et al., 
2017) 

pBS2PliaI Integration at lacA, ampR, mlsR, PliaI (Popp et al., 
2017) 

pBS3Clux lux-reporter vector, integration at sacA, ampR,cmR. (Radeck et 
al., 2013) 

pBS0K origin of replication of pUB110, ampR, kanR (Joseph et 
al., 2001) 

pBS1K integration at amyE, ampR , kanR (Popp et al., 
2017) 

pBS4S integration at thrC, ampR , specR (Radeck et 
al., 2013) 

pDA 0E xylRPxyl-
SVEN_4870 

pBS0E xylR PxylA RBS FLAG SVEN_4870 This study 

pDA 0E xylRPxyl-
SVEN_4793 

pBS0E xylR PxylA RBS FLAG SVEN_4793 This study 

pDA 0E xylRPxyl-
SVEN_0063 

pBS0E xylR PxylA RBS FLAG SVEN_0063 This study 

pDA 0E xylRPxyl-
SVEN_0399 

pBS0E xylR PxylA RBS FLAG SVEN_0399 This study 

pDA 0E xylRPxyl-
SVEN_6501 

pBS0E xylR PxylA RBS FLAG SVEN_6501 This study 

pDA 0E xylRPxyl-
SVEN_3668 

pBS0E xylR PxylA RBS FLAG SVEN_3668 This study 

pDA 0E xylRPxyl-
SVEN_2914 

pBS0E xylR PxylA RBS FLAG SVEN_2914 This study 

pDA 0E xylRPxyl-
SVEN_3369 

pBS0E xylR PxylA RBS FLAG SVEN_3369 This study 

pDA 0E xylRPxyl-
SVEN_6611 

pBS0E xylR PxylA RBS FLAG SVEN_6611 This study 

pDA 0E xylRPxyl-
SVEN_3215 

pBS0E xylR PxylA RBS FLAG SVEN_3215 This study 
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pDA 0E xylRPxyl-
SVEN_3278 

pBS0E xylR PxylA RBS FLAG SVEN_3278 This study 

pDA 0E xylRPxyl-
SVEN_3293 

pBS0E xylR PxylA RBS FLAG SVEN_3293 This study 

pDA 0E xylRPxyl-
SVEN_3759 

pBS0E xylR PxylA RBS FLAG SVEN_3759 This study 

pDA 0E xylRPxyl-
SVEN_4575 

pBS0E xylR PxylA RBS FLAG SVEN_4575 This study 

pDA 0E xylRPxyl 
SVEN_0015 

pBS0E xylR PxylA RBS FLAG SVEN_0015 This study 

pDA 0E xylRPxyl-
SVEN_0399/SVEN_0398 

pBS0E xylR PxylA RBS FLAG SVEN_0399/SVEN_0398 This study 

pDA 0E xylRPxyl-
SVEN_0399 SVEN_0398 

(p. 1-98) 

pBS0E xylR PxylA RBS FLAG SVEN_0399/SVEN_0398 
cyto 

This study 

pDA 0ExylRPxyl-
SVEN_0399 SVEN_0398 

109 AAA>GGG 

pBS0E xylRPxyl-SVEN_0399 SVEN_0398 109 AAA>GGG This study 

pDP0EPxyl03 pBS0E PxylA RBS FLAG SVEN_0399 This study 

pDP2E-Pxyl24 pBS2E PxylA RBS FLAG SVEN_0399 This study 

pDP2E-Pxyl50 pBS2E PxylA RBS FLAG SVEN_0399(LAA) This study 

pDP2E-Pxyl47 pBS2E PxylA RBS FLAG SVEN_0399(AAV) This study 

pDP2E-Pxyl51 pBS2E PxylA RBS FLAG SVEN_0399(LVA) This study 

pDP2E-Pxyl60 pBS2E PxylA RBS FLAG SVEN_0399(ASV) This study 

pDP2E-Pxyl61 pBS2E PxylA RBS FLAG SVEN_0399(LDD) This study 

pDP2E-Pxyl39 pBS2E PxylA RBS FLAG SVEN_0399(LAD) This study 

pDP2E-Pxyl62 pBS2E PxylA RBS FLAG SVEN_0399(HHA) This study 

pDP2E-Pxyl38 pBS2E PxylA RBS FLAG SVEN_0399(ISV) This study 

pDP2E-Pxyl63 pBS2E PxylA RBS FLAG SVEN_0399(ISS) This study 

pDP2E-Pxyl48 pBS2E PxylA RBS FLAG SVEN_0399(DAG) This study 

pDP2E-Pxyl49 pBS2E PxylA RBS FLAG SVEN_0399(DVS) This study 

pDP2E-Pxyl73 pBS2E PxylA RBS FLAG SVEN_0399 Pveg This study 

pDP2E-Pxyl74 pBS2E PxylA RBS FLAG SVEN_0399 PlepA This study 

pDP2E-Pxyl77 pBS2E PxylA RBS FLAG SVEN_0399 PliaG This study 

pDP2E-Pxyl78 pBS2E PxylA RBS FLAG SVEN_0399 PsigW This study 

pDP2E-Pxyl79 pBS2E PxylA RBS FLAG SVEN_0399 PJ23101 This study 

pDA2ExylRPxyl_ECF19 pBS2E xylR PxylA RBS FLAG SVEN_0399 This study 
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pDP2EPliaI12 pBS2E PliaI RBS FLAG SVEN_0399 This study 

pDA3Clux-PSVEN_0399 pBS3C PSVEN_0399(-60 to +1) luxABCDE This study 

pDP3Clux43 pBS3C PSVEN_0399(-30 to +1) luxABCDE This study 

pDP3Clux44 pBS3C PSVEN_0399(+129 to +71) luxABCDE This study 

pDA3Clux-PSVEN_4513 pBS3C PSVEN_4513 luxABCDE This study 

pDA3Clux-PSVEN_4870 pBS3C PSVEN_4870 luxABCDE This study 

pDA3Clux-PSVEN_4793 pBS3C PSVEN_4793 luxABCDE This study 

pDA3Clux-PSVEN_0063 pBS3C PSVEN_0063 luxABCDE This study 

pDA3Clux-PSVEN_6501 pBS3C PSVEN_6501 luxABCDE This study 

pDA3Clux-PSVEN_3668 pBS3C PSVEN_3668 luxABCDE This study 

pDA3Clux-PSVEN_2914 pBS3C PSVEN_2914 luxABCDE This study 

pDA3Clux-PSVEN_3369 pBS3C PSVEN_3369 luxABCDE This study 

pDA3Clux-PSVEN_6611 pBS3C PSVEN_6611 luxABCDE This study 

pDA3Clux-PSVEN_3215 pBS3C PSVEN_3215 luxABCDE This study 

pDA3Clux-PSVEN_3278 pBS3C PSVEN_3278 luxABCDE This study 

pDA3Clux-PSVEN_3293 pBS3C PSVEN_3293 luxABCDE This study 

pDA3Clux-PSVEN_3759 pBS3C PSVEN_3759 luxABCDE This study 

pDA3Clux-PSVEN_4575 pBS3C PSVEN_4575 luxABCDE This study 

pDA3Clux-PSVEN_0015 pBS3C PSVEN_0015 luxABCDE This study 

pDA3Clux-PSVEN_3204 pBS3C PSVEN_3204 luxABCDE This study 

pDA3Clux-PSVEN_3658 pBS3C PSVEN_33658 luxABCDE This study 

pDA3Clux-PSVEN_5424I pBS3C PSVEN_5424 distal luxABCDE This study 

pDA3Clux-PSVEN_5424II pBS3C PSVEN_5424 proximal luxABCDE This study 

pDA3Clux-PSVEN_5424I 
PSVEN_5424II 

pBS3C PSVEN_5424 distal + proximal promotersluxABCDE This study 

pDA3Clux-SVEN_3966 pBS3C PSVEN_3966 luxABCDE This study 

pDA 0KPliaI-AS19 pBS0K PliaI RBS SVEN_0398 This study 

pDP0K-lux03 pBS0K PSVEN_0399(-60 to +1) luxABCDE This study 
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pDA 1KPliaI-AS19 pBS1K PliaI RBS SVEN_0398 This study 

pDA 4SPxyl-Sven_3966 pBS4S Pxyl RBS Sven_3966 This study 

pDA 4SPxyl-Sven_1012 pBS4S Pxyl RBS Sven_1012 This study 

 

2.1.3. Long-Flanking Homology PCR 

Oligonucleotide encompassing 24 nucleotides were designed about 1 kb upstream of the ydeB 

gene (up forward) and another oligonucleotide with 20 nucleotides (up reverse) long was 

designed downstream of the start of the ydeB gene having 6 nucleotides overlapping the coding 

sequence. A region corresponding to one end of the kanamycin cassette was added to the 5` end 

of this oligonucleotide sequence. Further, twenty base pairs oligonucleotide was designed 

upstream the gene ydeB (down forward) with 7 nucleotides overlapping the coding sequence. 

At the 5` end of this oligonucleotide was added the sequence corresponding to the other end of 

the kanamycin cassette. The downstream reverse oligonucleotide was designed with 28 bp 

about 1 kb downstream of the gene ydeB. 

The up and down fragments were amplified from B. subitilis 168 chromosomal DNA though 

PCR reactions using Phusion Polymerase (NEB, Ipswich, MA, USA). PCR reactions were 

purified by PCR purification HiYield Plasmid Mini-Kit, eluted in 35 µl of elution buffer (Süd-

Laborbedarf GmbH (SLG), Gauting, Germany) and the concentration determined by using 

Nanodrop and 1.5 % agarose gel. One hundrend ng of both up and down fragments were joined 

by PCR using Phusion Polymerase and the up forward and down reverse primers. The PCR 

product was checked by 1.5 % agarose gel and purified using a purification kit (Hi-Yield clean 

up, Süd-Laborbedarf GmbH (SLG), Gauting Germany). 15 x 1.0-9 of the purified product was 

used to perform standard Bacillus subtilis transformation procedure and the obtained colonies 

were verified by colony PCR.  

 

2.1.4. Strains and media 

E. coli strains DH5α, DH10β or XL1-Blue were used for cloning. E. coli and routinely grown 

in Luria-Bertani (LB) medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl) 

at 37°C with agitation. Ampicillin (100 µl/ml) was added for selection and maintenance of 

plasmid in E. coli. B. subtilis strains were grown in LB medium supplemented with the relevant 

antibiotics for selection: chloramphenicol (5 µg/ml), kanamycin (1 µg/ml), erythromycin (1 

µg/ml) and lincomycin (25 µg/ml), or spectomycin (100 µg/ml). Solid media additionally 

contained 1.5% (w/v) agar. Report assays were performed using LB medium or MOPS-based 
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chemically defined medium with succinate and glutamate (MCSE) (Radeck et al., 2013). All 

the strains used in this study are listed in table 6. 
Table 6. Strains used in this study 

Strain Genotype Reference 
E. coli   
DH5a E. coli F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 

nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, 
hsdR17(rK

–mK
+), λ– 

Laboratory stock 

DH10b E. coli F– endA1 deoR+ recA1 galE15 galK16 nupG rpsL 
Δ(lac)X74 φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA 
Δ(mrr-hsdRMS-mcrBC) StrR λ– 

Laboratory stock 

XL1-Blue E. coli endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 
F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK

- mK
+) 

Laboratory stock 

Bacillus subtilis   
168 B. subtilis trpC2 Laboratory stock 

TMB3447 168 pBS0E xylR PxylA RBS FLAG SVEN_4513 This study 

TMB3448 168 pBS0E xylR PxylA RBS FLAG SVEN_4870 This study 

TMB3449 168 pBS0E xylR PxylA RBS FLAG SVEN_4793 This study 

TMB3450 168 pBS0E xylR PxylA RBS FLAG SVEN_0063 This study 

TMB3451 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 This study 

TMB3452 168 pBS0E xylR PxylA RBS FLAG SVEN_6501 This study 

TMB3453 168 pBS0E xylR PxylA RBS FLAG SVEN_3668 This study 

TMB3454 168 pBS0E xylR PxylA RBS FLAG SVEN_2914 This study 

TMB3455 168 pBS0E xylR PxylA RBS FLAG SVEN_3369 This study 

TMB3456 168 pBS0E xylR PxylA RBS FLAG SVEN_3215 This study 

TMB3457 168 pBS0E xylR PxylA RBS FLAG SVEN_3278 This study 

TMB3458 168 pBS0E xylR PxylA RBS FLAG SVEN_3293 This study 

TMB3459 168 pBS0E xylR PxylA RBS FLAG SVEN_3759 This study 

TMB3460 168 pBS0E xylR PxylA RBS FLAG SVEN_4575 This study 

TMB3461 168 pBS0E xylR PxylA RBS FLAG SVEN_0015 This study 

TMB3462 168 pBS0E xylR PxylA RBS FLAG SVEN_6611 This study 

TMB4002 168 sacA::cat PSVEN_0399 luxABCDE This study 

TMB3516 168 sacA::cat PSVEN_4513 luxABCDE pBS0ExylR PxylA 

SVEN_4513 
This study 

TMB3517 168 sacA::cat PSVEN_4870 luxABCDE pBS0E xylR PxylA 

SVEN_4870 
This study 

TMB3518 168 sacA::cat PSVEN_4793 luxABCDE pBS0ExylR PxylA 

SVEN_4793 
This study 

TMB3519 168 sacA::cat PSVEN_0063 luxABCDE pBS0ExylR PxylA 

SVEN_0063 
This study 

TMB3520 168 sacA::cat PSVEN_0399 luxABCDE pBS0E xylR PxylA 

SVEN_0399 
This study 
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TMB3521 168 sacA::cat PSVEN_6501 luxABCDE pBS0E xylR PxylA 

SVEN_6501 
This study 

TMB3522 168 sacA::cat PSVEN_3668 luxABCDE  pBS0E xylR PxylA 

SVEN_3668 
This study 

TMB3523 168 sacA::cat PSVEN_2914 luxABCDE pBS0E xylR PxylA 

SVEN_2914 
This study 

TMB3524 168 sacA::cat PSVEN_3369 luxABCDE pBS0E xylR PxylA 

SVEN_3369 
This study 

TMB3525 168 sacA::cat PSVEN_6611 luxABCDE pBS0E xylR PxylA 

SVEN_6611 
This study 

TMB3526 168 sacA::cat PSVEN_3215 luxABCDE pBS0E xylR PxylA 

SVEN_3215 
This study 

TMB3527 168 sacA::cat PSVEN_3278 luxABCDE pBS0E xylR PxylA 

SVEN_3278 
This study 

TMB3528 168 sacA::cat PSVEN_3293 luxABCDE pBS0E xylR PxylA 

SVEN_3293 
This study 

TMB3529 168 sacA::cat PSVEN_3759 luxABCDE pBS0E xylR PxylA 

SVEN_3759 
This study 

TMB3530 168 sacA::cat PSVEN_4575 luxABCDE  pBS0E xylR PxylA 
SVEN_4575 

This study 

TMB3531 168 sacA::cat PSVEN_0015 luxABCDE pBS0E xylR PxylA 

SVEN_0015 
This study 

TMB3661 168 ydeB::kan  This study 

TMB5782 168 ydeB::kan sacA::cat PSVEN_4870 luxABCDE pBS0E xylR 
PxylA RBS FLAG SVEN_4870 thrC::spec PxylA RBS FLAG 
SVEN_3966 

This study 

TMB5783 168 ydeB::kan sacA::cat PSVEN_4870 luxABCDE pBS0E xylR 
PxylA RBS FLAG SVEN_4870 thrC::spec PxylA RBS FLAG 
SVEN_1012  

This study  

TMB3451 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 This study 

TMB3520 168 sacA::cat PSVEN_0399 luxABCDE pBS0E xylR PxylA RBS 
FLAG SVEN_0399 

This study 

TBM3655 168 sacA::cat PSVEN_0399 (-30 to +1) luxABCDE lacA::erm PxylA 
RBS FLAG SVEN_0399 pBS0K PliaI RBS SVEN_0398 

This study 

TMB3656 168 sacA::cat PSVEN_0399 (-30 to +1) luxABCDE lacA::erm xylR 
PxylA RBS FLAG SVEN_0399 amyE::kan PliaI RBS 
SVEN_0398 

This study 

TMB3790 168 sacA::cat PSVEN_0399 luxABCDE lacA::erm pBS2E PxylA 
RBS FLAG SVEN_0399 

This study 

TMB3901 168 sacA::cat PSVEN_0399 luxABCDE pBS0E xylR PxylA RBS 
FLAG SVEN_0399 SVEN_0398 

This study 

TMB3902 168 sacA::cat PSVEN_0399 (-30 to +1) luxABCDE pBS0E xylR PxylA 
SVEN_0398 (p.1-98) SVEN_0399 

This study 

TMB5449 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_3204 luxABCDE 

This study 

TMB5450 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_3658 luxABCDE 

This study 

TMB5451 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_5424 distal luxABCDE 

This study 

TMB5452 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_5424 proximal luxABCDs 

This study 

TMB5453 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_542 distal + proximalluxABCDE 

This study 

TMB5454 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_3966 luxABCDE 

This study 

TMB5455 168 sacA::cat PSVEN_0399 luxABCDE pBS0E xylR PxylA RBS 
FLAG SVEN_0399 + SVEN_0398 109 AAA>GGG 

This study 

TMB5457 168 pBS0E xylR PxylA RBS FLAG SVEN_0399 sacA::cat 
luxABCDE 

This study 

TMB3854 168 lacA::erm PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_0399 luxABCDE 

This study 

TMB5432 168 sacA::cat PSVEN_0399 luxABCDE pDP0EPxyl03  This study 

TMB5433 168 lacA::erm PxylA RBS FLAG SVEN_0399 pDP0K-lux03  This study 

TMB5434 168 pDP0EPxyl03 pDP0K-lux03  This study 

TMB5443 
 

168 lacA::erm PliaI RBS FLAG SVEN_0399 sacA::cat 
PSVEN_0399 luxABCDE 

This study 
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TMB5495 168 lacA::erm PxylA RBS FLAG SVEN_0399(ISV) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5496 168 lacA::erm PxylA RBS FLAG SVEN_0399(LAD) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TBM5501 168 lacA::erm PxylA RBS FLAG SVEN_0399(AAV) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5502 168 lacA::erm PxylA RBS FLAG SVEN_0399(DAG) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5503 168 lacA::erm PxylA RBS FLAG SVEN_0399(DVS) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5504 168 lacA::erm PxylA RBS FLAG SVEN_0399(LAA) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5505 168 lacA::erm PxylA RBS FLAG SVEN_0399(LVA) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TBM5592 168 lacA::erm PxylA RBS FLAG SVEN_0399(ASV) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5593 168 lacA::erm PxylA RBS FLAG SVEN_0399(LDD) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5594 168 lacA::erm PxylA RBS FLAG SVEN_0399(HHA) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5595 168 lacA::erm PxylA RBS FLAG SVEN_0399(ISS) sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5603 168 lacA::erm PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_0399(-35 to +1) luxABCDE 

This study 

TMB5604 168 lacA::erm PxylA RBS FLAG SVEN_0399 sacA::cat 
PSVEN_0399(-129 to +71) luxABCDE 

This study 

TMB5718 168 lacA::erm PxylA RBS FLAG SVEN_0399 Pveg sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5719 168 lacA::erm PxylA RBS FLAG SVEN_0399 PlepA sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5735 168 lacA::erm PxylA RBS FLAG SVEN_0399 PliaG sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5736 168 lacA::erm PxylA RBS FLAG SVEN_0399 PsigW sacA::cat 
PSVEN_0399(-30 to +1) luxABCDE 

This study 

TMB5752 168 lacA::erm PxylA RBS FLAG SVEN_0399 PJ23101 
sacA::cat PSVEN_0399(-30 to +1) luxABCDE 

This study 

 
 

2.1.5. Luciferase assays 

Luciferase activities of the strains carrying derivatives of the pBS3Clux reporter vector were 

measured using a SynergyTM 2 multi-mode microplate reader from BioTek® (Winooski, VT, 

USA) under control of the software Gen5TM. Day cultures were inoculated with overnight 

cultures diluted 1:165 and incubated at 37 °C under agitation (200 rpm). Cultures were diluted 

to an OD600 0.05 in a volume of 100 µl per well in 96-well plates (black wells, clear bottom; 

Greiner Bio-one, Frickenhausen, Germany) that were incubated at 37 °C with agitation. OD600 

and luminescence were measured every 5 minutes for one-hour (OD600 ~0.1) and then 2 µl of 

the inducer to final concentration of 0.5 % (w/v) xylose or 20 µg/µl of bacitracin were added. 

Cultures were incubated at 37°C at 200 rpm and the OD600 and luminescence were monitored 

every 5 minutes for 16 hours. Optical density (OD600) and relative luminescence values (RLU) 

were corrected by subtracting the negative controls (not inoculated medium). Thereafter, 

RLU/OD600 values were calculated for individual measurements and for each condition the 

mean and standard deviation of RLU/OD600 values were determined from three biological 

triplicates. 
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2.1.6. In silico analysis of ECF19  

The ECF19 regulon was predicted in silico using the Virtual Footprint tool on the prokaryotic 

database of gene regulation (PRODORIC) (http://www.prodoric.de) (Münch et al., 2003). 

ECF19 bipartite sequence motifs were searched for. The genome scan parameters for the 

promoter positions were set to be less than 350 nucleotides upstream of the start codon of the 

gene. The space between the most downstream residue of the -35 motif and the most upstream 

residue of the -10 motif was set as minimum 16 nucleotide and maximum 20 residues. After 

genome scanning and filtering, the predicted promoters were manually analysed. Genome 

organization and synteny of the ECF19 across Streptomycetes was obtained using the webtool 

SyntTax (Oberto, 2013). 

Protein sequences of ECF19 (Sven_0399) and anti-σ 19 (Sven_0398) of S. venezuelae were 

retrieved from StrepDB - the Streptomyces Annotation Server. SigK and RskA protein 

sequences of Mycobacterium tuberculosis were retrieved from NCBI database under the 

accession numbers CCP43176.1 and CCP43175.1, respectively. Sequence alignment and 

homology structure modelling of ECF19 and anti-σ 19 of S. venezuelae were obtained using 

the online tool Phyre2 (Kelley et al., 2015). Subsequently, the resulting structure models were 

superposed using the software Pymol (Schrödinger, 2015). 

 

2.2. High level of Bacitracin resistance in S. venezueale 

2.2.1. Bacterial strain, growth conditions and antibiotics 

The bacterial strains used in this study are listed in table 7. S. venezuelae and S. coelicolor were 

cultivated in MYM medium (STUTTARD, 1982) with 50% tap water and supplemented with 

200 µl of trace elements element solution (Kieser et al., 2000). Bacillus antibiotic producer 

species where grown in Luria-Bertani (LB) broth medium at 37 °C overnight. 

S. venezuelae and S. coelicolor spores were harvested from MYM medium with 4 ml of 20% 

glycerol using sterile cotton pads to scrub the lawns of Streptomyces on the plates. The 

suspensions were collected using a 2 ml syringe and stored in 1.5 ml sterile tubes at -20 °C 

(Bush et al., 2013). In antibiotic stress treatment experiments, it was used commercially 

available bacitracin (Sigma, Germany), vancomycin (Sigma, Gemany), ramoplanin (Sigma, 

Germany), lysozyme (AppliChem, Germany), daptomycin (Sigma, Germany), D-cycloserine 

(Biochemika, Germany), ampicillin (Roth, Germany), penicillin G (Flukaanalytica, Germany), 

fosfomycin (Sigma, Germany) and spectinomycin (Sigma, Germany). 
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Table 7. Strains used in this study 

Strain Description Source/Reference 
Streptomycetes   

S. coelicolor A3(2) Wild-type strain Laboratory stock 
S. venezuelae ATCC 10712 Wild-type strain John Innes Centre, UK 
Mut1-Mut6 Bacitracin-sensitive mutants of S. 

venezuelae ATCC10712 derived by 
random chemical mutagenesis 

This study 

   
Bacilli   

B. subtilis ATCC 6633 Wild-type strain; producer of subtilin Laboratory stock 
B. subtilis NCIB 3610 Wild-type strain Laboratory stock 
B. subtilis 168 Laboratory wild-type strain Laboratory stock 
B. licheniformis DSM13  Wild-type strain Laboratory stock 
B. licheniformis ATCC 10716  Wild-type strain; producer of bacitracin Laboratory stock 
B9 Natural Bacillus isolate; putative peptide 

antibiotic producer 
Nithya et al., 2012 

C2 Natural Bacillus isolate; putative peptide 
antibiotic producer 

Nithya et al., 2012 

EC1 Natural Bacillus isolate; putative peptide 
antibiotic producer 

Nithya et al., 2012 

ME1 Natural Bacillus isolate; putative peptide 
antibiotic producer 

Nithya et al., 2012 

N12 Natural Bacillus isolate; putative bacitracin producer 
Nithya et al., 2012 

 
 

2.2.2. Chemical random mutagenesis and screening 

S. venezuelae was mutagenized with 2.5 mg/ml NTG (N-methyl-N’-nitro-N-nitrosoguanidine) 

(TCI, Germany) diluted in 2.5 ml TM buffer (50 mM Tris Cl, pH 7.5, 10 mM Magnesium 

Sulfate) pH 9 and then divided into two different 2 ml tubes with 1.2 ml each to get a final 

concentration of 1 mg/ml NTG. It was added 0.625 ml of the spore suspension (3.1 x 1010 

spores/ml) in each tube containing NTG plus TM buffer and incubated for 2 hours at 30 °C. 

The spores were washed with TM buffer, pelleted by centrifugation and then resuspended in 

20% glycerol (Delić, Hopwood and Friend, 1970; Kieser et al., 2000). Then 102 spores/ml from 

the mutagenized spore suspension were plated in MYM media for 4 days at 30 °C to get single 

colonies. The single colonies were picked up to a master plate using a 48 spots grid. Each master 

plate was replicated using a 48-pin replicator in two new MYM agar plates, one with 100 µg/ml 

bacitracin and other with no bacitracin, respectively, and incubated for 24 hours at 30 °C. 

 

2.2.3. Determination of bacitracin susceptibility 

Streptomyces species were tested for resistance against different concentrations of bacitracin by 

disc diffusion agar method. The zones of inhibition were measured after incubation at 30 °C for 
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24 h. The minimum inhibitory concentration (MIC) was determined by resazurin microtiter 

assay plate method (Sarker, Nahar and Kumarasamy, 2007). Resazurin is an oxidation-

reduction indicator that changes color from blue to pink to indicate reduction and consequently 

cell viability. Resazurin sodium salt powder (Sigma, Germany) was prepared at 0.01% (w/v) in 

distilled water and sterilized by filtration. Ninety-six well plates (Sarstedt, Germany) were used 

for the MIC assays. Into each well was added a mix solution containing MYM media, resazurin 

(0.001%) and different concentrations of bacitracin. Subsequently, 10 µl of spore suspension 

containing 104 spores/ml was added in each well. As controls, a well contained no bacteria and 

other no antibiotics. The microtiter plates were incubated for 24 hours at 30 °C. The MIC was 

determined as the lowest concentration that prevented the color change, i.e., in which cells were 

no longer metabolically active (Vidal-Aroca et al., 2009; Silva and Ferreira, 2013). 

 

2.2.4. Determination of sensitivity spectra against cell wall active 
antibiotics 

Determination of the sensitivity to cell wall antibiotics was made by inoculating 5x105 

spores/ml of the Streptomyces strains into MYM soft agar, which were plated in petri dishes 

and left to dry for 30 min at room temperature. Six millimeter discs were soaked with 20 µl of 

nine cell wall antibiotics: bacitracin (100 µg), vancomycin (40 µg), ramoplanin (40 µg), 

lysozyme (40 µg), daptomycin (40 µg), D-cycloserine (40 µg), ampicillin (40 µg), penicillin G 

(40 µg) and fosfomycin (40 µg). Spectinomycin (40 µg) inhibits protein synthesis and was used 

here as a control. The soaked discs were subsequently placed into the MYM soft agar containing 

the Streptomyces strains. The plates were incubated at 30 °C for 24 h. The zone of inhibition 

was measured to determine the sensitivity against each antibiotic. 

 
2.2.5. Interaction between Streptomyces and different Bacillus spp. 

antibiotic producer strains 

All antibiotic producer strains were grown in 4 ml LB medium at 37 °C for 24 h. An amount of 

5x105 spores/ml of each Streptomyces strain were spread on MYM agar plates using a glass 

spreader and the plates were dried for 30 min. Five microliters of the overnight culture of each 

antibiotic producer strains were spotted onto the plates containing the Streptomyces strains and 

incubated at 30 °C for 24 h for posterior zone of inhibition measurement. 
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2.2.6. S. venezuelae genomic DNA extraction 

The DNA isolation method is a modification of the salting out procedure described previously 

(Pospiech and Neumann, 1995; Kieser et al., 2000). Streptomyces strains were grown in liquid 

MYM media at 30 °C for 18 h and cultures were harvested as 10 ml aliquots and subsequently 

washed once with 10% sucrose. Pellets were resuspended in 2 ml SET buffer (75 mM NaCl, 25 

mM EDTA pH 8, 20 mM Tris pH 7.5). Streptomyces was incubated with 2 µl RNase (10 mg/ml) 

and 40 µl lysozyme (15 mg/ml) for 60 min at 37 °C, where a drop of 10 % SDS was added 

every 10 minutes. Subsequently, 56 µl  proteinase K (20 mg/ml) and 240 µl of 10% SDS were 

added to the Streptomyces suspension and incubated at 55 °C for 2 hours, inverting 

occasionally. Following, 800 µl of 5 M NaCl was added, mixed gently by hand and allowed to 

cool at room temperature. 2 ml of chloroform were added, mixed gently at room temperature 

for 30 minutes and separated by centrifugation at 6000 rpm for 15 minutes. The aqueous phase 

was transferred with a cut-off 5 ml tip into a new tube. The nucleic acids in the aqueous phase 

were precipitated by adding 0.6 volumes of isopropanol, and collected by centrifugation at 8000 

rpm at 4°C for 10 min. The pellet was washed with 70% ethanol and dried. The dry pellet was 

resuspended in 500 µl TE (10 mM Tris pH 8.0, 1 mM EDTA) solution and stored at 4°C. The 

DNA yield was calculated from the absorbance at 260 nm for clean DNA samples (A260/A280 

between 1.8 and 2.0). A sample of DNA was loaded onto a 1% agarose gel for visualization 

and quality control. 

 
2.2.7. Genome sequencing of bacitracin-sensitive S. venezuelae 

The genome sequence for S. venezuelae ATCC 10712 is available on NCBI database (accession 

number NC_018750). For the mutants obtained through NTG treatment, library construction 

and sequencing were performed by the genomic service unit of the Ludwig-Maximilians 

Universität (LMU) München. To obtain an accurate quantification of the DNA library the DNA 

was quantified using Qubit dsDNA BR Assay system, a fluorometric based method specific for 

duplex DNA combined with use of Bioanalyzer DNA HS Chip from Aligent Technology 2100 

Bioanalyzer. Fifty nanograms were used for the first step, tagmentation and the samples were 

mixed to 20 µl volume with ultra-pure water. Libraries were sequenced as recommended by 

MiSeq Manual (Illumina, Inc.). 

To generate consensus sequences, the genome of S. venezuelae wild-type strain from our 

laboratory stock was assembled by comparison to the reference strain S. venezuelae ATCC 

10712 (GenBank accession no. NC_018750) checking this way for any changes that may have 
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occurred. Further, each S. venezuelae mutant strain was assembly by comparison to our 

reference using CLC genomic workbench (CLC, bio, Qiagen). 

 
2.2.8. Antibiotic stress condition and harvest procedure 

Streptomyces strains (5x105 spores/ml) were grown in metal spring-containing 100 ml flasks 

filled with 20 ml liquid MYM medium. Cells were grown at 30 °C, under heavy shaking and 

when the exponential phase was reached, 10 ml of the cultures were transferred to two new 

metal spring-containing flasks with or without 40 µg/ml bacitracin and incubated for 20 

minutes. 

10 ml cultures were transferred using a glass pipette to precooled (-20 °C) centrifuge tubes 

containing 20 ml glycerol: 0.85% NaCl saline solution (3:2 volumes). The centrifuge tubes 

were placed in an ice-cold block and then centrifuged at -20 °C for 30 min. The tubes were 

placed back in the ice-cold blocks and the supernatant was removed followed by pellet 

resuspension in 1 ml glycerol: 0.85% NaCl saline solution (3:2 volumes) and transferred to 

microcentrifuge tubes. The tubes were cooled in liquid nitrogen and stored at -80 °C until RNA 

extraction (Villas-Bôas and Bruheim, 2007). 

 
2.2.9. RNA isolation, library construction and RNA-seq analysis 

The frozen Streptomyces cells were centrifuged at 10.000 g and 4 °C for 10 min and the 

supernatant discarded. Pellets were resuspended in 1 ml RNA plus (MPBio, France) and 

transferred for a bead-beater tube containing glass beads (MPBio, France). Cells were 

homogenized using a beat-beater for 3 cycles at 6.5 rpm for 30 seconds, resting on ice in 

between each cycle. It was added 1/5 volumes chloroform (Roth, Germany) to the homogenized 

samples in RNA plus, thoroughly mixed by vortexing and centrifuged at 10.000 g and 4 °C for 

20 minutes. The supernatants were transferred to a new sterile tube, 2.5 volumes of 100% ethyl 

ethanol (EtOH) were added and thoroughly mixed by vortexing. The samples were stored at -

20 °C for 12 h. The samples were then centrifuged at 10.000 g, 4 °C for 20 min. The pellets 

were washed twice with 500 µl of 80% ethanol (diluted with RNA free water). The supernatants 

were completely removed; the pellets were air-dried for 5 min and dissolved in 100 µl of RNase 

free water. Starting with the crude nucleic acids extract obtained in the previous steps, the RNA 

purification was performed using a Zymo column purification Direct-zol RNA MiniPrep kit 

(Zymo Research, Germany) following manufacturer’s instructions (Zhang et al., 2013). 

Samples were subjected to DNase treatment using DNA-free DNA removal kit (Ambion, 

Germany). RNAs were quantified using a bioanalyzer (Agilent 2100, Santa Clara, CA, USA) 
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and the quality was checked by electrophoresis in a 1.0 % agarose gel. The rRNA was removed 

using the Ribo-ZeroTM Magnetic Kit for gram-positive bacteria (Epicentre, Germany). Three 

different samples were used for RNAseq. The RNA library was constructed using NEBNext 

Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs, Inc.) modified to 

select for larger sized RNA inserts, by spending less time fragmenting in the beginning and 

longer elongation during cDNA synthesis. Samples were sequenced by MiSeq (Illumina, Inc.). 

Sequence reads were imported into CLC Genomics Workbench 9.5. After mapping against the 

reference, genes with an adjusted P value under 0.05 and fold change above two were 

considered as being differentially expressed.
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3. Results 

 
3.1. ECF σ factor-based switches 

3.1.1. Implementation of S. venezuelae ECF σ factor-based switches in B. subtilis 

Sixteen ECF σ factors from S. venezuelae were codon adjusted, commercially synthetized and 

placed under control of the inducible promoter PxylA. An additional copy of the gene encoding 

the PxylA repressor XylR was also added given that it has been reported that additional copies of 

the XylR operator reduce its effectiveness on each given site (Gärtner, Geissendörfer and 

Hillen, 1988). Additionally, an N-terminal FLAG-tag was added to the ECF-σ factor (Figure 

10A). The nature and location of this tag had been reported not to interfere with the ECF σ 

factor activity (Dufour, Landick and Donohue, 2008; Wecke et al., 2012; Gangaiah et al., 2014; 

Toyoda et al., 2015; Mao et al., 2017). 

In order to check the activation of the ECF target promoters, a reporter system based on the 

bacterial luciferase operon luxABCDE was used (Radeck et al., 2013). The promoters were 

inserted upstream of the luxABCDE operon (Figure 10B) and thereafter integrated into the B. 

subtilis sacA locus, which encodes a non-essential phosphosucrase involved in sucrose 

utilization (Lepesant et al., 1975). The output of the ECF σ factor based switches was monitored 

through luminescence measurements. 

 
Figure 10. Vector maps showing plasmids carrying the ECF σ factors (A) and the ECFs promoters followed by 
the reporter luxABCDE (B). Rectangles represent regions that are necessary for homologous recombination 
into B. subtilis 168 chromosome. Circles represent origins of replication. Thick arrows represent open reading 
frames. ‘T’ represents terminators. Half circles represent ribosome binding sites. Thin arrows represent 
promoters. Oblique lines represent restriction sites. 

The ECF σ factor switches were built as depicted in Figure 11A. No growth differences was 

observed between strains harboring the ECF-σ factor-based switches and the wild type strain, 

suggesting that in these conditions, the ECF-based switches were not toxic to B. subtilis (Figure 

11B). This data is in accordance to similar work in E. coli and B. subtilis where ECF-σ factor-

based switches, in general, did not affect the growth rate of the host (Rhodius et al., 2013; Pinto 

et al., 2018a).  
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Figure 11. Activity of ECF- based switches build from S. venezuelae native ECF σ factors. (A) Representation of 
the ECF σ 19 switch. Expression of the ECF σ factors was induced by xylose. The activity of the corresponding 
ECF σ factor target promoter was monitored via luminescence measurements. Thick arrows represent open 
reading frames. Half circles represent ribosome binding sites. Thin arrows represent promoters. Plasmid is 
represented as rounded rectangle. (B) Growth curves of the strains containing each ECF-based switch. Blue 
lines show the growth without induction of the ECF-based switches and red lines show growth of cultures in 
which the expression of the ECF-based switches was induced (0.5% xylose) after 60 minutes (vertical black 
line). (C) Fold induction of each switch. The output of each switch was assessed from the relative luminescence 
units (RLU) normalized by the optical density measured at 600 nm (OD600nm). (D) Dose-response curve of ECF 
(Sven_0399)-based switch in which the switch output is represented through relative luminescence units (RLU) 
normalized by the optical density measured at 600 nm (OD600) achieved 90 min after the addition of the 
inducer. The graph presents the measurements performed with the B. subtilis strain harbouring the switch 
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pictured in figure 11A. Final concentrations of xylose used for induction of PxylA were 0, 0.002, 0.008, 0.03, 
0.125 or 0.5 % (w/v). Vertical bars represent standard deviations calculated from three independent 
experiments. 

 

Here, only one out of 16 ECF-based switches were active while the remaining ones showed no 

activity (Figure 11C). The active ECF-switch belongs to the group ECF19 (Sven_0399) and 

showed about twenty-fold increase of promoter activity within 5 min after addition of 0.5% 

xylose (w/v). The concentration of inducer required to turn ON the Sven_0399-based switch 

was below 0.002% xylose (Figure 11 D), that was lower than what was needed to turn ON 

others ECF-based switches successfully implemented in B. subtilis (Pinto et al., 2019). 
 

3.2 Characterisation of ECF19-based switch 
3.2.1 ECF19 alignment and homology structure modelling 

The ECF σ factor K (sigK) is a well-studied example of ECF19 in Mycobacteria being involved 

in controlling the expression of the antigen proteins Mbt70 and Mbt83, which are virulence 

determinants (Charlet et al., 2005; Saïd-Salim et al., 2006). It has been demonstrated that the 

intracellular levels of SigK in M. tuberculosis are regulated by a membrane-associated anti-σ 

factor named RskA. Under inducing stimuli the anti-σ RskA is subject to regulated 

intramembrane proteolysis (RIP), which involves three steps: first, a site-1 protease (S1P) 

cleaves the RskA ectodomain; then a site-2 protease (S2P) cleaves the transmembrane helice, 

releasing the RskAcyto/SigK complex from the membrane; finally, the complete dissociation of 

the ECF-σ factor and the AS is achieved in the cytoplasm through selective degradation of the 

AS cytosolic part (Makinoshima and Glickman, 2005; Urban, 2009; Sklar et al., 2010; Shukla 

et al., 2014). Structural studies of SigK-RskA interaction in M. tuberculosis showed two 

cysteines (Cys133 and Cys183) forming a disulphide bridge in the σ4 domain of SigK which 

acts as a sensor in order to induce the dissociation of SigK from the cytoplasmic part of its 

negative regulator RskA. Multiple sequence alignments have shown that these disulphide-

forming cysteines are conserved in 70% of the homologs from different species of which 27 

belong to Streptomyces spp. (Shukla et al., 2014).  

Sequence alignment (Figure 12) and structure comparison  (Figure 13) of the ECF19-AS19 

complex of M. tuberculosis (PDB entry 4NQW) and S. venezuelae showed that ECF19 of S. 

venezuelae also has the disulphide-forming cysteines as previously reported for Mycobacteria 

SigK by Shukla and co-workers (2014). 
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Figure 12. Sequence alignment of the ECF19 (A) and AS19 (B) of S. venezuelae with SigK and RskA of M. 
tuberculosis (PDB entry 4NQW), respectively. Identical residues are highlighted with a grey background, green 
helices represent α-helices, pink boxes show the conserved disulphide-forming cysteines, red background 
indicates insertions relative to template and Orange background indicates deletions relative to template. 
Sequence alignment  was obtained using the online tool Phyre2 (Kelley et al., 2015). 

 
The conserved disulphide-forming cysteines Cys133 and Cys183 in SigK of M. tuberculosis 

align to Cys186 and Cys216 in ECF19 of S. venezuelae (Figure 12A, Figure 13A). In like 

manner, superposition of the anti-σ factor structures show high homology between S. 

venezuelae AS19 and RskA of M. tuberculosis (Figure 12B, Figure 13B). Additionally, the 

homology between the S. venezuelae ECF19-AS19 complex to the template corresponding to 

the crystal structure of M. tuberculosis SigK-RskA interaction (PDB entry 4NQW) is extensive 

(Figure 13C). Shukla and co-workers (2014) suggested that the effect of redox stimuli on SigK-

RskA interaction is most likely conserved across other ECF σ factors presenting disulphide-

forming cysteines. 
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Figure 13. Homology structure modelling analyses. (A) Superposition of S. venezuelae ECF19 (yellow) on M. 
tuberculosis SigK (blue). (B) Superposition of S. venezuelae AS19 (green) on M. tuberculosis RskA (blue). (C) 
Superposition of both S. venezuelae ECF19 (yellow) and its AS19 (green) on the SigK-RskA complex (PBD entry 
4NQW; blue). The conserved disulphide-forming cysteines in the ECF σ factor are shown in pink. White lines 
show the distance between correspondent amino acids. Structure models were obtained using the online tool 
Phyre2 (Kelley et al., 2015) and superposition was performed on pyMol (Schrödinger, L. 2015). 

 
 

3.2.2 Genomic context of ECF19 

In M. tuberculosis, the ECF19 SigK regulates the expression of genes encoding the antigenic 

proteins Mbt83 and Mbt70 (Saïd-Salim et al., 2006). Veyrier and co-workers (2008) showed 

that in some Actinobacteria these genes can be localized in the same or different loci than the 

sigK. Here, the genome organization and synteny of the ECF19 from S. venezuelae was 

compared with that of other actinobacterial species previously analysed by Veyrier. In 

Streptomyces genomes, they are usually located upstream conserved genes that encode 

oxidoreductases, fasciclins (homologous of MPT83 antigen protein) and cyclopropane-fatty-

acyl-phospholipid synthases (Figure 14), which have been reported as part of the ECF19 

regulon in Mycobacteria. 
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Figure 14. Genomic context and synteny of ECF19 in Actinobacteria obtained by using the web tool SyntTax 
(Oberto, 2013). Homologous genes are represented with the same colours along the different species. Bit 
scores threshold ≥20%. 

 

3.2.3 Prediction of the ECF19 regulon in S. venezuelae 

In bacteria, the formation of the complex DNA-RNAP is initiated though the recognition of 

specific promoter DNA by the σ subunit of the RNAP (Saecker, Record and Dehaseth, 2011; 

Feklístov et al., 2014). Regulon studies on SigK of Mycobacteria (Veyrier, Saïd-Salim and 

Behr, 2008) and the ECF σ factor classification made by Staroń and collaborators (2009) 

identified the promoter sequence motif for ECF19, which is rich in CCGATCC in the -35 region 

and GAA in the -10 region (Figure 15). 

 
Figure 15. Weblogo of ECF19 target promoters illustrating the degree of sequence conservation (Staroń et al., 
2009). 
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Here, the Psven_0399 sequence motif was used to screen the S. venezuelae genome for the ECF19 

putative target promoters using the Virtual Footprint tool PRODORIC (Münch et al., 2003). 

Thirteen putative promoters were identified (Table 8). These predicted ECF19 target promoters 

had a spacer of 18 and 20 bp between -10 and -35 motifs and were located between 47 to 339 

bp from the start codon. In order to confirm some of the promoters predicted by PRODORIC, 

the transcription start sites (TSS) of S. venezueale in different phases of growth were checked 

(Bush et al., 2016) and eight of the ECF19 predicted promoters showed some basal level of 

transcription initiation in these conditions. The promoter sequences confirmed by TSS data are 

shown in bold in table 8.  
Table 8. ECF19 putative target promoters 

Start 
(genome 

coordinates) 

End 
(genome 

coordinates) 

Promoter Sequence 
(putative -10 and -35 elements are underlined) 

-10/-35 
spacer 
length 
(bp) 

-35/start 
codon 

distance 
(bp) 

Downstream 
gene Annotations 

381263 3812988 CCTTCCCCGTTCGTGAAGAACCGCCGAA 19 122 sven_0354 Hypothetical protein -  
SecY superfamily 

426462 426487 CATCCGCAGGGCCGTCCGCTACGAAGAA 20 89 sven_0399 RNA polymerase sigma-70 
factor ECF19 

359637 359661 CCGTTCCGGGCCCATTGTGTGCGCCGAA 18  93 sven_0333 Hypothetical protein 

3217396 3217421 TCGTCCGGAATGCGGACGTCCGGATCGAA 20 76 sven_2943 
Putative two-component 

system 
sensor kinase 

3329847 3329872 CCGTCCGGAGGTGACCATTGCCGACCGAA 20 65 sven_3043 Pyruvate formate-lyase 

3512289 3512314 CCGTCCGCCATCCGGACGAGCTGTCCAGA 18 59 Sven3204 Dihydroxy-acid 
dehydratase 

3974201 3974225 TCGTCCACCTACGCAGCGGTGCATCGAA 20 252 sven_3658 Protein YidD / membrane 
insertase activity 

1069418 1069441 CCGTCCTACCGTCCCGCCATGACCGAA 20 47 sven_0940 Signal peptidase I 

4771902 4771926 CCGTCCGGTGCACAGATGGCGCTTCGAA 18 68 sven_4431 Putative secreted protein 

7979786 7979813 CCCTCCAGCCCTGGACGTGTGACCCGAA 20 256 sven_7255 Methylenetetrahydrofolate 
dehydrogenase (NADP+) 

4212275 4212298 CCATCCGACACCCCGACGAAGTACGAA 19 236 sven_3873 NADH dehydrogenase 

4307352 4307380 CCGTCCGCGCAGCCGCTCCGACCTGCGAA 19 140 sven_3966 CarD transcriptional 
regulator 

5874550 5874573 TCGTCCGCATACCCGAACATCATCGAA 19 101 sven_5417 putative two-component 
system sensor kinase 

5880880 5880905 CCATTCTCATGGAAGCCCGGCCCTTGGAA 18 118 sven_5424I RecA protein 

5880997 5881020 CGATCGACTCAAGCAAACCGGGTGGAA 18 3 sven_5424I RecA protein 

8027115 8027138 CCGTCCGCTACACTGAGGGACTGCGAA 19 218 sven_7296 Putative integral membrane 
protein 
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In order to confirm the predicted ECF19 target promoters, they were implemented in the 

ECF19-based switch (Figure 16A). As before, implementation of most of the target promoters 

was not toxic to B. subtilis, except for the proximal promoter of Sven_5424 which resulted in 

growth defect 250 minutes after induction. However, none of switches with the predicted 

ECF19 target promoters showed activity (Figure 16B). 

 
Figure 16. ECF19 target promoters (A) Genetic design of the ECF19-based switch. Thick arrows represent open 
reading frames. Half circles represent ribosome binding sites. Thin arrows represent promoters. Plasmid is 
represented as rounded rectangle. (B) Growth curves assays (left) and luminescence outputs (right) of the 
ECF19-based switch build using different putative ECF19 target promoters. Luminescence output is 
represented through relative luminescence units (RLU) normalized by the optical density measured at 600 nm 
(OD600nm). Vertical back line crossing the graphs indicates the time of addition of the inducer. 
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3.3 Modulation of the ECF19-based switch behaviour 

 
3.3.1 Anti-σ factor 19 implementation 

Previous studies in SigK of M. tuberculosis showed that ECF σ factor 19 activity is regulated 

by its antagonist anti-σ factor 19 (Makinoshima and Glickman, 2005; Urban, 2009; Sklar et al., 

2010; Shukla et al., 2014). In order to test whether the AS19 would affect the activity of the 

ECF19-based switch in B. subtilis, the AS19 gene of S. venezuelae was codon adjusted and later 

integrated into the amyE (amylase) locus of B. subtilis or placed into a replicative vector, in 

both cases under control of the bacitracin-inducible promoter PliaI (Mascher et al., 2004; 

Toymentseva et al., 2012; Radeck et al., 2013) (Figure 17A). The PliaI promoter, which is 

induced by bacitracin, has been well characterized elsewhere as a sensitive and strong promoter 

with low basal level of expression that is induced in a concentration-dependent manner 

(Mascher et al., 2004; Toymentseva et al., 2012; Radeck et al., 2013). Expression of the ECF 

σ factor 19 was induced by the addition of xylose and after one hour the expression of the anti-

σ factor 19 was induced by the addition of bacitracin.  

It has been previously reported that the implementation of anti-σ factors could be toxic to E. 

coli (Rhodius et al., 2013). Nevertheless, in our system the expression of the AS19 caused no 

visible growth defect in the host strain (Figure 17B). In these conditions AS19 did not interfere 

with the ECF19 activity (Figure 17C) in contrast to studies in E. coli, where a high fraction of 

anti-σ factors repressed the activity of their cognate ECFs (Rhodius et al., 2013). 
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Figure 17. Anti-σ19 implementation. (A) Genetic depiction of the ECF σ factor 19 switch plus anti-σ factor 19. 
The ECF σ factor 19 is integrated in the amyE locus of B. subtilis under control of the promoter PxylA and the 
anti-σ factor 19 in a replicative vector, whose expression is induced by bacitracin through the promoter PliaI. 
Thick arrows represent open reading frames. Half circles represent ribosome binding sites. Thin arrows 
represent promoters. Plasmid is represented as rounded rectangle. (B) Growth curve and (C) luminescence 
output of the respective strains are shown. Luminescence output is represented through relative luminescence 
units (RLU) normalized by the optical density measured at 600 nm (OD600). Black lines show the cultures 
without induction, red lines show cultures under the first induction with xylose (0.5%) after 60 minutes of 
growth (vertical black line marked with “x”) and the second induction with bacitracin (20 ug/ul) 60 minutes 
after the first induction (vertical black line marked with “b”). Grey vertical error bars represent standard 
deviations calculated from three independent experiments. 

 
Additionally, the ECF19 was implemented together with the full-length AS19 or only its 

cytoplasmic part in a replicative vector both under control of a single PxylA promoter, as showed 

in Figure 18A. As observed previously, B. subtilis showed no growth defect when carrying the 

anti-σ factor (Figure 18B).  The presence of the AS19, encoded in the same operon as ECF19, 

was able to decrease the switch’s activity by 2.7-fold when compared to the strain lacking the 

AS19. Further, the expression of only the cytoplasmic part of the AS19 resulted in a decrease 
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in activity of 9-fold when compared to the strain lacking the AS19 (Figure 18C and Figure 

18D). 

 
Figure 18. AS19 implementation (A) Genetic depiction of the anti-σ factor 19 implemented in the same operon 
than ECF-σ factor 19. Thick arrows represent open reading frames. Half circles represent ribosome binding 
sites. Thin arrows represent promoters. Plasmids are represented as rounded rectangles. (B) Growth curves 
assays. (C) Luminescence output represented through relative luminescence units (RLU) normalized by the 
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optical density measured at 600 nm (OD600nm). (D) Fold decrease of ECF19 activity when in presence of anti-
σ 19. Vertical black line crossing the graphs in panels A and B indicate the time of addition of the inducer. Grey 
vertical error bars represent standard deviations calculated from three independent experiments. 

 

3.3.2 Variations of the inducible promoters 

The ECF19 switch was built under control of the PxylA promoter plus an additional copy of XylR 

repressor (Figure 19A, left). PxylA is induced by xylose in a concentration-dependent manner 

and it is controlled by the XylR repressor in B. subtilis (Gärtner, Geissendörfer and Hillen, 1988; 

Jeong et al., 2015). Thus, in order to access variations in the switch behaviour, the xylR 

repressor coding gene was removed (Figure 19A, middle), which caused no growth defect 

(Figure 19B) and consequently improved the performance of the ECF19 switch (Figure 19C, 

middle). The fact that the presence of the additional copy of xylR causes a reduction in the 

overall activity of the switch was unexpected to us. However, a thorough inspection of the 

available literature revealed that XylR by itself mediated xylose-independent glucose-depended 

repression of PxylA (Kraus et al., 1994; Radeck et al., 2013). Our hypothesis is that here, the 

additional copy of xylR intensified the glucose-dependent repression of XylR over PxylA, 

decreased the dynamic range and maximal output of the ECF19 switch as already observed for 

switches based in ECF σ factors from other groups other than ECF19 (Pinto et al., 2019). 

Next, the evaluation of the behaviour of ECF19-based switch under control of the PliaI promoter 

was performed (Figure 19A, right). Regarding the viability of the cells, there was no growth 

defect when ECF19 was under control of PliaI (Figure 19B, right).  

Here, PliaI drove the expression of ECF19 in a concentration-dependent manner, showing a 

lower basal level and a sigmoid dose-response curve (Figure 19D, right), characteristic of PliaI 

itself (Radeck et al., 2013; Pinto et al., 2019). Also, worth mentioning is that the PliaI driven 

switch showed a transitory activation that contrasts to the stable activation seen in the PxylA 

driven switch (Figure 19). This characteristic behaviour of ECF-based switches under control 

of PxylA and PliaI has been also described for other ECF-based switches (Pinto et al., 

unpublished). 
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Figure 19. ECF19-based switch control by different inducible promoters. (A) Genetic design of the generated 
ECF-based switches. Thick arrows represent open reading frames. Circles represent ribosome binding sites. 
Thin arrows represent promoters. An arrow with a ‘T’ end represents repression. (B) Growth curves of the 
strains carrying the ECF19-based switch under control of different inducible promoters. (C) Output curves 
(luminescence over time) generated after induction with 0.5% xylose for strains carrying PxylA promoter and 10 
µg/ml bacitracin for strains carrying PliaI promoter. (D) Dose-response curves using the luminescence output 
value, represented through relative luminescence units (RLU) normalized by the optical density measured at 
600 nm (OD600), obtained 90 min after the addition of the inducer to the exponentially growing culture. Each 
graph represents the measurements performed with the B. subtilis strain harbouring the switches presented 
in A. Final concentrations of xylose used for induction of PxylA were 0, 0.002, 0.008, 0.03, 0.125 or 0.5 % (w/v) 
while final concentration of bacitracin used for induction of PliaI were 0, 0.1, 0.3, 1, 3 or 10 µg/ml. Vertical black 
line crossing the graphs indicates the time of addition of the inducer. Grey vertical error bars represent 
standard deviations calculated from three independent experiments. 

 

3.3.3 Variations of copy number 

Plasmid copy number strongly affects the behaviour of genetic circuits (Loinger and Biham, 

2009). The robustness of the ECF19-based switch was tested by placing its transcriptional units 

in four distinct genetic designs (Figure 20A) in order to independently or simultaneously 

increase the number of copies of the ecf19 transcription unit or the reporter transcription unit.  
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Figure 20. Changes in the copy number of the transcriptional units that constitute the ECF19 switch. (A) Genetic 
design of the ECF19-based switch by changing the copy number of each transcriptional module. Thick arrows 
represent open reading frames. Half circles represent ribosome binding sites. Thin arrows represent promoters. 
Plasmids are represented as rounded rectangles. (B) Growth curves of the strains carrying each of the four 
different genetic designs depicted in panel A after induction with 0.5% xylose. (C) Output curves (luminescence 
over time) generated after induction with 0.5% xylose. (D) Dose-response curves using the luminescence output 
value which is represented through relative luminescence units (RLU) normalised by the optical density measured 
at 600 nm (OD600nm), obtained 90 min after addition of inducer to the exponentially growing culture. Each 
graph (1-4) represents the measurements performed with the B. subtilis strain harbouring the switch presented 
in A1-4. Final concentrations of xylose used for dose-response assays were 0, 0.002, 0.008, 0.03, 0.125 or 0.5 % 
(w/v). Vertical back line crossing the graphs indicates the time of addition of the inducer. Grey vertical error bars 
represent standard deviations calculated from three independent experiments. 

 

None of the variations in copy numbers in any of the transcriptional units caused growth defects 

in the strains carrying these distinct ECF19-based switches (Figure 20B). Firstly, our ECF19-

based switch was implemented in the B. subtilis chromosome, presenting only one copy of each 

transcriptional unit: PxylA-ecf19 and the reporter gene Pecf19-luxABCDE (Figure 20A.1). Further, 

the unit PxylA-ecf19 was placed in a replicative plasmid in order to increase its copy number in 
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relation to the reporter cassette Pecf19-luxABCDE. Multiple copies of ecf19 caused an increase 

in the basal levels of the switch together with a decrease in the maximum output, which results 

in a decrease in the overall performance of the switch (Figure 20C.2 and Figure 20D.2). In 

contrast, the ECF19-based switch designed to have multiple copies of the reporter 

transcriptional unit presented higher basal level that rendered the Pecf19 constitutively active 

(Figure 20C.3 and 4 and Figure 20D.3 and 4). Our data shows that the ECF19-based switch 

is stable to changes in the ecf19 transcriptional units but that it is in contrast sensitive to changes 

in the unit carrying the reporter. 

 
 

3.3.4 Variations of ECF19 protein stability 

In prokaryotes, the SsrA tmRNA marks aberrant proteins for degradation by the addition of a 

peptide (SsrA) tag.  These proteins are then degraded in the cytoplasm by the ClpXP and ClpXA 

proteases. These peptide tags are conserved in Gram-positive bacteria and it has been already 

shown that the nature of the last three terminal residues controls the level of protein stability 

(Wiegert and Schumann, 2001; Ahlawat and Morrison, 2009; Tao and Biswas, 2015). This 

feature has been previously used to manipulate the protein levels in synthetic circuit in E. coli 

(Stricker et al., 2008) and to study and induce SsrA-mediated mechanism in B. subtilis (Wiegert 

and Schumann, 2001; Griffith and Grossman, 2008). In order to access the stability of the 

ECF19-based switch, eleven variations of SsrA tag were added to the 3’ end of ecf19 (Figure 

21A). All the ECF19_SsrA variants were built using the least frequently used codon as observed 

for the native SsrA tmRNA in B. subtilis (Pinto et al., 2019). 

Contrary to other studies where the increase in proteases recruitment caused by the 

overexpression of the tagged proteins interfered with growth rate (Andersen et al., 1998), none 

of the strains carrying the SsrA tagged ECF19 showed any growth defect (Figure 21B). The 

ECF19-based switches tagged with the native B. subtilis SsrA_LAA as well as the variant 

SsrA_LVA were inactive. The SsrA_LDD tag was the only switch showing the same output 

curves and dose-response behaviour than the switch without any tag. 
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Figure 21. Stability of the ECF19 with fused SsrA tags. (A) Genetic design of the variants of ECF19-based switch. 
Thick arrows represent open reading frames. Half circles represent ribosome binding sites. Thin arrows 
represent promoters. The ‘lollypop’ shape indicates the relative positions of the SsrA tag. On the right side the 
native sequence of the SsrA tag is shown in a pink box. The variable section of the tag is underlined. (B) Growth 
curves of the strains carrying the ECF19 tagged with different SsrA and induced with 0.5% xylose. (C) Output 
curves (luminescence over time) generated by induction with 0.5% xylose. (D) Dose-response curves using the 
luminescence output value which is represented through relative luminescence units (RLU) normalised by the 
optical density measured at 600 nm (OD600nm), obtained 90 min after addition of inducer to the exponentially 
growing culture. The top of each graph has a representation of the ECF19 with the SsrA variant implemented. 
Vertical black lines crossing the graphs indicate the time of addition of the inducer. Grey vertical error bars 
represent standard deviations calculated from three independent experiments. 

 
In general, the remaining tagged switches maintained the switch activation, however, they 

showed significant decrease in the maximum output curves to over 10-fold. Additionally, the 

time dynamics of most of the switches showed a delay in activation when compared to the non-

tagged ECF19 (Figure 21C and Figure 21D). 
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3.3.5 Variations of the ecf19 promoter size 

The σ70 family of σ factors recognize distinct promoters based on consensus sequences at the -

35 and -10 regions upstream the transcription start site (Rosenberg and Court, 1979; Harley and 

Reynolds, 1987). Additionally, an A+T rich element upstream the -35 region increases the 

transcription by interaction with α subunits of the RNA polymerase and it has been shown that 

modifications of this UP element can result in altered promoter activity (Estrem et al., 1998; 

Holátko et al., 2012; Rhodius et al., 2013).  

Details of the ecf19 promoter region are depicted in Figure 22A. Primarily, Pecf19 was 

implemented from -60 to +1. Subsequently, two different versions of Pecf19 were created: a 

shorter version from -35 to +1 and a longer version from -129 to +70, which extends until the 

RBS sequence (Figure 22B). None of these modifications in the Pecf19 interfered with the B. 

subtilis growth (Figure 22C). Nevertheless, these changes led to altered behaviour of the 

ECF19-based switch, where the promoter lacking the 29 nucleotides upstream the -35 region 

(UP element) showed a decrease in the output curve during the luminescence over time 

measurements. Additionally, the dose-response assays showed a differential behaviour related 

to the concentration range of inducer (Figure 22D) where the minimum size promoter (-35 to 

+1) showed the same dynamics but lower output while the longer promoter covering from -129 

position to +71 was not active (Figure 22E). We hypothesize that the reason why the longer 

promoter, containing all the necessary promoter elements, is not active is due to its high GC 

content that can present as a challenge to the B. subtilis RNA polymerase and lead to ineffective 

transcription initiation.  
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Figure 22. ECF19-based switch upon variation of the promoter size. (A) ECF19 promoter sequence with the 
relevant positions marked above the sequence. Start codon is shown in a grey box. Promoter -35 and -10 
elements are shown in green boxes while +1 is underlined and showed by the use of lowercase character. 
The ribosome binding (RBS) site sequence is shown in a blue box. (B) Growth curves of the strains carrying 
the ECF19-based switches with different promoter sizes induced by 0.5% xylose measured in an optical 
density of 600 nm (C) Output curves (luminescence over time) generated after induction with 0.5% xylose. 
(D) Dose-response curves drawn using the luminescence output value, represented through relative 
luminescence units (RLU) normalized by the optical density measured at 600 nm (OD600), achieved 90 min 
after the addition of the inducer to the exponentially growing culture. Start and end positions of the 
promoter variants are labelled inside each graph. Final concentrations of xylose used for induction of PxylA 
were 0, 0.002, 0.008, 0.03, 0.125 or 0.5 % (w/v). Vertical black line crossing the graphs indicates the time of 
addition of the inducer. Grey vertical error bars represent standard deviations calculated from three 
independent experiments. 

 

3.3.6 Regulation of ECF19 switch by anti-sense transcription 

In order to check the effect of antisense transcription, five promoters with different strengths 

were added in the antisense orientation of the ecf19 gene (Figure 23A): (i) the weakest 

promoter PJ23101, an E. coli σA-dependent promoter generated as part of a combinatorial library 

of constitutive promoters for the iGEM competition (Anderson promoter collection, 2006); 

followed by (ii) PliaG and (iii) PlepA, which are B. subtilis σA-dependent promoters involved in 

the envelope stress response system and, translation elongation and heme biosynthesis, 

respectively (Jordan et al., 2006; Michna et al., 2016); (iv) PsigW, a B. subtilis σW-dependent 
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promoter, which is a target promoter of the ECF-σ factor σW (Helmann and Moran, 2002); and 

the strongest promoter (v) Pveg, another σA-dependent promoter which regulates genes involved 

in biofilm formation in B. subtilis (Michna et al., 2016). 

 

 

Figure 23. Influence of antisense transcription in the switch behaviour. (A) Genetic design of the ECF19-based 
switches. Thick arrows represent open reading frames. ‘T’ represents terminators. Half circles represent 
ribosome binding sites. Thin arrows represent promoters. The relative strength of the antisense promoter (Px) 
is shown in the right side of Px. (B) Growth curves (optical density of 600 nm) of the strains carrying the ECF19-
based switches with different promoter sizes, after induction with 0.5% xylose. (C) Output curves 
(luminescence over time) generated after induction with 0.5% xylose. (D) Dose-response curves obtained by 
using the luminescence output value, represented through relative luminescence units (RLU) normalized by 
the optical density measured at 600 nm (OD600) obtained 90 min after induction. Each graph represents the 
measurements performed with each B. subtilis strain harbouring the ECF19-based switch variants shown in A 
and each graph is labelled with the antisense promoter used. Final concentrations of xylose used for induction 
of PxylA were 0, 0.002, 0.008, 0.03, 0.125 or 0.5 % (w/v). Vertical black line crossing the graphs indicates the 
time of addition of the inducer. Grey vertical error bars represent standard deviations calculated from three 
independent experiments. 

None of the switches carrying the antisense promoters containing switches caused any defect 

in growth (Figure 23B). Nevertheless, Pveg caused a drastic decrease in the output curve over 

time (~10-fold) and a 45 minutes delay for activation. Nevertheless, the other promoters showed 

a slightly decrease in the maximal achieved output (Figure 23C). The dose-response curves 

showed that the antisense transcription caused changes in the threshold of activation which 
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decreased drastically in all the switches carrying antisense promoters. Additionally, a reduced 

basal level of expression of the switches carrying the PJ23101, PsigW and Pveg was observed 

(Figure 23D). 

 

3.3.7 Implementation of Actinobacteria transcription factors 

The high number of inactive switches prompted us to investigate reasons for this, given that 

this observation was not in agreement with what has been previously observed in E. coli 

(Rhodius et al., 2013). Hence, we turned our attention to additional transcription factors that 

might be necessary for the activity of S. venezuelae ECF σ factors. Actinobacteria require two 

additional transcription factors for initiation - CarD and Rpb. CarD activates transcription in a 

σ-independent way, where the RNA interaction domain (RID) interacts with the β1-lobe in the 

β subunit of RNA polymerase and the C-terminal domain interacts with the promoter DNA, 

being essential to stabilize the open complex and prevent transcription bubble collapse (Bae et 

al., 2015; Lee and Borukhov, 2016). RpbA is known to interact with the σ2 domain and a non-

coding region of group 1 and certain group 2 σ factors. It contacts DNA (phosphate backbone) 

upstream of -10 element (-13 / -14 positions) and could be working on the stabilization of the 

open complex (Tabib-Salazar et al., 2013; Hubin et al., 2015). 

B. subtilis has a CarD homolog (YdeB) with 33% identity but no RpbA homolog. We then set 

out to investigate if the lack of any of these additional transcription factors was the reason 

behind the inactivity of the S. venezuelae ECF σ factors implemented in B. subtilis. The B. 

subtilis ydeB gene was replaced by a kanamycin resistance cassette through the long flank 

homology PCR method. Genes coding for CarD or RpbA were integrated into the thrC locus 

in one of the previously inactive switches (Sven_4870) (Figure 24A). The presence of CarD 

caused no growth defect in B. subtilis (Figure 24B, left) while RbpA caused a decreased 

exponential growth rate, even when in non-inducing conditions (Figure 24B, right). 
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Figure 24. Activity of the ECF sigma factors Sven_4870 in the presence of transcription factors CarD or RbpA. 
(A) ECF-σ factor and CarD or RbpA expression was induced by xylose through the promoter PxylA. The activity 
of PSven_4870 was monitored through luminescence measurements. Thick arrows represent open reading frames. 
Half circles represent ribosome binding sites. Thin arrows represent promoters (B) Growth curve (left) and 
luminescence (right) of the strains containing Sven_4870 plus CarD or RbpA. Blue lines show the cultures 
without induction and red lines show cultures under induction (0.5% xylose). 
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3.4 High level bacitracin resistance in S. venezuelae 

 
3.4.1 Streptomyces venezuelae is highly resistant against bacitracin 

The co-existence of antibiotic-producing bacteria in the soil can lead to the development of 

antibiotic resistance mechanisms (Surette and Wright, 2017). A study testing a variety of soil 

bacteria against 24 drugs showed that 80% of these bacteria were multidrug resistant (Walsh 

and Duffy, 2013). Additionally, resistance mechanisms found in soil bacteria has been also 

found in clinical isolates (Peterson and Kaur, 2018). The facts mentioned above enforces the 

need for discovery of the mechanisms of resistance against antibiotic in bacteria such 

Streptomyces. 

To gain an overview of the sensitivity spectra of Streptomyces sp. against cell wall active 

antibiotics, a previous study compared the inhibition of eight species from our laboratory 

collection by nine cell wall active antibiotics from different chemical classes. S. venezuelae 

displayed a striking resistance to bacitracin in this disk diffusion assay. Comparison of the 

inhibition zones of S. coelicolor and S. venezuelae revealed large differences in sensitivity, with 

about 50-fold more bacitracin required to inhibit S. venezuelae to a similar degree as S. 

coelicolor.  

Determination of the minimal inhibitory concentration (MIC) of an antibiotic using the classical 

broth dilution technique is not feasible with filamentous bacteria such as streptomycetes. We 

therefore adopted the method developed by Sarker and colleagues (2007) that uses resazurin as 

an indicator of growth, which produced robust results for both species of Streptomyces. These 

quantitative assays confirmed the striking difference in bacitracin MIC between S. coelicolor 

(5 µg/ml) and S. venezuelae (128 µg/ml) (Table 8). Importantly, this high-level resistance of S. 

venezuelae was specific to the peptide bacitracin, as it displayed similar sensitivity against the 

glycosylated peptides vancomycin and ramoplanin, and an increased sensitivity against β-

lactams compared to S. coelicolor (Figure 25).  
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Figure 25. Sensitivity of S. coelicolor and S. venezueale to cell wall active antibiotics. Disc diffusion assays on 
lawns of both Streptomyces species. Antibiotics were added on filter discs, pre-soaked with 40 µg vancomycin 
(Van), ramoplanin (Ram), ampicillin (Amp) or penicillin G (Pen), or with 100 µg bacitracin (Bac). Growth 
inhibition was scored after 24 h incubation. No inhibition was observed for daptomycin, D-cycloserine, 
fosfomycin or nisin, thus these data were not included in the figure. 

 

3.4.2 Random chemical mutagenesis generated bacitracin-sensitive 
derivatives of S. venezuelae 

The striking observation of the high-level resistance of S. venezuelae against bacitracin, which 

was not seen in most of the other streptomycetes previous analyzed, stimulated our interest in 

elucidating the molecular mechanisms for this striking AMP resistance.  

To identify the genes required for bacitracin resistance, spore suspensions of S. venezuelae were 

randomly mutagenized with the chemical mutagen N-methyl-N’-nitro-N-nitrosoguanidine 

(NTG). The spores were then germinated and plated under sub-inhibitory concentration of 

bacitracin (100 µg/ml). Approximately 20.000 clones were screened for the inability to grown 

in presence of bacitracin. All candidate clones identified as sensitive in this initial screen were 

characterized with respect to growth rate, and only clones that displayed similar growth to the 

wild type were chosen for further analysis to ensure sensitivity was not due to grossly altered 

growth behavior.  

The candidate clones were then analysed by MIC assays using the resazurin indicator method 

described above, resulting in a final set of six bacitracin sensitive mutants of S. venezuelae, 

designated Mut1 through Mut6 (Table 9). 
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Table 9. Bacitracin sensitivity of S. venezuelae, its derived mutants and S. coelicolor. 

Strain Zone of inhibitiona MICb (µg/ml) 
S. venezuelae wild-type 2.7 ± 0.6 mm 128 

Mut1 3.3 ± 0.6 mmns 50 
Mut2 3.2 ± 0.3 mmns 64 
Mut3 2.7 ± 0.6 mmns 64 
Mut4 9.8 ± 1.4 mm ** 10 

Mut5 2.7 ± 0.6 mmns 64 
Mut6 3.2 ± 0.3 mmns 50-64 

S. coelicolor 15.3 ± 0.6 mm 5 
a Data were derived from disc diffusion assays and are shown as mean ± standard deviation of three independent 
experiments; ** p < 0.005; ns, not significant from an unpaired t-test between each mutant and wild-type S. venezuelae; S. 
coelicolor is shown for comparison and no t-test was performed. bMinimal inhibitory concentration determined from broth-
dilution assays using resazurin as growth indicator; assays were performed in three independent replicates; where results 
differed between replicates, a range of concentrations is given. 

Five of these mutants displayed only a slight decrease in resistance of approximately two-fold, 

whereas the MIC of Mut4 was strongly reduced from 128 µg/ml to 10 µg/ml. It should be noted 

that the two-fold change in bacitracin resistance of mutants 1, 2, 3, 5 and 6 also did not result 

in significant changes in inhibition zones (Table 9). 

 

3.4.3 Streptomyces venezuelae sensitivity spectra against cell wall active 
antibiotics 

To gain a better understanding of antimicrobial peptide resistance in S. venezuelae and its 

mutants, they were tested for sensitivity against other cell wall active antibiotics. The 

bacitracin-sensitive strains showed no increased sensitivity to the other cell wall antibiotics 

tested here. For Mut4, disc diffusion assays reflected the significant decrease in bacitracin 

resistance, but no changes were observed for the remaining antibiotics, suggesting that this 

mutant had specifically lost its resistance against bacitracin and not acquired a defect causing 

overall antibiotic sensitivity (Figure 26). 
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Figure 26. Sensitivity of S. venezuelae to cell wall active antibiotics. Disc diffusion assays on lawns of different 
Streptomyces strains. Antibiotics were added on filter discs pre-soaked with 40 µg vancomycin, ramoplanin, 
lysozyme, daptomycin, D-cycloserine, ampicillin, penicillin G, fosfomycin or spectinomycin, or with 100 µg 
bacitracin. Growth inhibition was scored after 24 h incubation. S. coelicolor is used for comparison. 
Spectinomycin is a protein synthesis inhibitor and it was used as a control. Results are shown as inhibition 
zone diameters and presented as the mean ± standard deviation of at least three independent experiments. 
0, no growth inhibition was observed. No inhibition was observed for lysozyme and fosfomycin, thus these 
data were not included in the figure. 

 
3.4.4 S. venezuelae resistance against growth-inhibition by antimicrobial 

peptide producers 
Many AMPs, including bacitracin, are produced by bacteria belonging to the phylum 

Firmicutes, which frequently share the soil habitat with actinobacteria. To test if these producers 

could inhibit the growth of streptomycetes, a spot-on-lawn assays was performed, were 

suspensions of ten different Bacillus sp. strains were spotted onto lawns of either S. coelicoloror 

or S. venezuelae (Figure 27A). B. subtilis wild-type W168 did not inhibit any of the 

streptomycetes strains while the undomesticated wild type B. subtilis NCIB3610 strain and the 

subtilin-producer ATCC6633 (Klein, Kaletta and Entian, 1993) were able to clearly inhibit the 

growth of S. coelicolor, but caused no or only minor inhibition of S. venezuelae and its mutants. 

The bacitracin-producer B. licheniformis ATCC10716 again inhibited S. coelicolor, but not S. 
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venezuelae wild-type, further confirming the bacitracin-resistance of the latter but 

unexpectedly, it did not inhibit the S. venezuelae bacitracin-sensitive mutants. The second B. 

licheniformis strain, DSM13, only produced minor inhibition zones on either streptomycete. 

The remaining strains had previously been isolated as putative producers of peptide antibiotics 

(Nithya and Halami, 2012). Of these, EC1 and B9 caused marked growth inhibition of S. 

coelicolor, but only slightly inhibited S. venezuelae and its mutants. However, some of the 

bacitracin-sensitive mutants presented an increased growth inhibition when in contact with the 

strains NCIB3610 and B9 (Figure 27B). 

 
 

 
Figure 27. Inhibition of S. coelicolor and S. venezuelae growth by Bacillus sp. Experiments were performed as 
spot-on-lawn assays where 5 µl overnight culture of a Bacillus sp. was spotted onto a lawn of the respective 
streptomycete. (A) Representative results for S. venezuelae, S. venezuelae bacitracin-sensitive mutant 4 and 
S. coelicolor strains are shown. (B) Results shown as inhibition zone diameters. The Streptomyces isolates are 
named in the top of each graph. Growth inhibition was scored as the diameter of the clear zone, corrected for 

A 

B 
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the diameter of the Bacillus colony after 24 h incubation. Results are shown as inhibition zone diameters and 
presented as the mean ± standard deviation of three independent experiments. 0, no growth inhibition was 
observed. 

3.4.5 Identification of mutations associated with bacitracin resistance in S. 
venezuealae 

Since the acquired bacitracin sensitivity of the S. venezuelae mutants remained stable and these 

strains showed to be insensitive to other cell wall antibiotics, we expected to identify the 

genomic alterations responsible for bacitracin resistance in S. venezuelae by performing 

genome sequencing of these strains. Point mutations, insertions and deletions (InDels) of each 

strain were identified relative to the reference genome S. venezuelae ATCC 10712 deposited in 

the NCBI under reference sequence NC_018750.1. Our laboratory wild-type strain was also 

sequenced as a control. The genome sequencing results showed that only the bacitracin-

sensitive mutant 4 presented non-synonymous mutations. Eleven point mutations were 

identified, of which eight were predicted as deleterious by using the online tool Protein 

Variation Effect Analyzer (PROVEAN) (http://provean.jcvi.org/seq_submit.php). In addition, 

three one base pair deletions were also identified (Table 10). 
 

Table 10. Mutations in S. venezuealae mutant 4 identified by Illumina sequencing. 

Type of 
mutation 

Position 
(chromosome 
coordinates) 

Mutation Site/Amino acid 
change ORF Annotation/Function 

 

 

 

 

 

SNPs 

1860147 gtg>atg V to M Sven_1662 ATP-dependent RNA helicase 

2370594 gcc>gtc A to V* Sven_2202 Proposed lipid II flipase Mur J 

2573383 ggg>gcg G to A Sven_2380  Ribonuclease G 

4315815 ggc>gac G to D* Sven_3974 SN-glycerol-3-phosphate transport ATP-

binding protein UgpC 

4826299 gcc>acc A to T* Sven_4475 Hypothetical protein 

5307481 gcc>gtc A to V Sven_4932 Hypothetical protein 

5319931 acc>gtc T to I* Sven_4947 Putative methyltransferase 

5502767 ggc>gac G to D* Sven_5105 Hypothetical protein 

6454375 cgg>gac R to Q* Sven_5927 DNA topoisomerase IB 

7250596 gcg>acg A to T* Sven_6632 Putative glycoside hydrolase 

7408742 gcg>acg A to T* Sven_6766 Serine phosphatase RsbU, regulation of 

sigma subunit 

INDELS 655584 one bp deletion  Sven_0570 Putative ABC transporter (ATPase) 

 3460069 one bp deletion  Sven_3164 Putative Oxidoreductase 

 6868775 one bp deletion  Sven_6295 Branched-chain amino acid transport 

ATPase (Liv-transporter) 

*Amino acid variants predicted as deleterious 
 

A point mutation in a gene coding for a proposed lipid II flippase MurJ (Sven_2202) led to 

substitution of alanine to valine at position 528. MurJ flippase is involved in peptidoglycan 
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biosynthesis by transporting the lipid II-anchored peptidoglycan precursors from the cytoplasm 

to the extracellular space during the process of peptidoglycan biosynthesis (Sham et al., 2014). 

Another amino acid substitution (Glycine to Aspartic acid) at the position 312 was identified in 

the SN-glycerol-3-phosphate importer UgpC subunit (Sven_3974), member of the CUT 1 

subfamily of ABC importers involved in uptake of SN-glycerol-3-phosphate (G3P) and G3P 

diesters that are components of glycerophospholips, the main constituent of biological 

membranes. This importer showed to be active under phosphate starvation conditions in E. coli 

(Schneider, 2001; Wuttge et al., 2012).  

Another gene with a predicted deleterious point mutation encodes a hypothetical protein 

(Sven_4475) with a metallopeptidase domain that is similar to the L-Ala-D-Glu endopeptidase 

of B. subtilis, which has functions in cell wall organization, cell cycle and sporulation 

(Horsburgh, Atrih and Foster, 2003). The gene coding a hypothetical protein with a histidine 

kinase domain (Sven_5105) which forms an operon with a gene coding a DNA-binding 

response regulator from LuxR family also presented a point mutation predicted as deleterious. 

A topoisomerase IB (Sven_5927) coding gene presented a point mutation resulting in an 

arginine in the place of a glutamine at the amino acid position 128. Topoisomerases are 

responsible for relaxing positively and/or negatively supercoiled DNA, what is vital for 

replication, transcription and recombination processes (Forterre et al., 2007).  

Additionally, the gene Sven_6632 coding for a putative glycoside hydrolase family 3 presented 

a point mutation that resulted in a substitution of an alanine for threonine at the position 576. 

Glycosyl hydrolases are a widespread group of enzymes involved in carbohydrate metabolic 

process and the family 3 of glycoside hydrolases comprises enzymes like beta-glucosidase, N-

acetyl beta-glucosaminidase, beta-xylosidase, glucan beta-1,3-gluconase, and exo-1,3- 1,4 

glucanase (Davies and Henrissat, 1995; Henrissat et al., 1995). A gene coding for a positive 

regulator of σB (Sven_6766), a general stress response σ-factor in Gram positive bacteria 

(Delumeau et al., 2004a), presented a point mutation that resulted in an substitution of glycine 

to aspartic acid at position 389. Also, one base pair deletion was identified in the genes coding 

for a putative ABC-transporter (Sven_0570), a putative oxidoreductase (Sven_3164) and a 

Branched-chain amino acid transport ATPase (Liv-transporter) (Sven_6295). 

3.4.6 Differentially expressed genes in S. venezuelae in the presence of 
bacitracin 

In order to obtain the transcriptome of S. venezuelae wild type in the presence of bacitracin, 

RNAseq analysis was performed. We found 151 genes as upregulated in presence of bacitracin.  

Genes in putative operons or clustered together are highlighted in shades of grey (Table 11).  
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Table 11. Upregulated genes in S. venezuelae treated with bacitracin (Fold change ≥5, P ≤0.005). 

Gene Fold change Function/annotation 

SVEN_0054 
12.21 

Hypothetical protein 

SVEN_0055 Dimethylallyltransferase 

SVEN_0057 
12.77 

Hypothetical protein 

SVEN_0059 ABC-type multidrug transport system 

SVEN_0109 5.59 Mannan endo-1,4-beta-mannosidase precursor 

SVEN_0124 11.92 Choline or glycine betaine ABC transporter 

SVEN_0230 18.06 RNA polymerase sigma factor SigB 

SVEN_0232 13.36 SAM-dependent methyltransferases 

SVEN_0333 43.92 Hypothetical protein 

SVEN_0372 
125.11 

Putative two-component system sensory histidine kinase 

SVEN_0373 Putative membrane protein 

SVEN_0456 

SVEN_0457 9.53 
Vancomycin B-type resistance protein VanW 

Beta-lactamase class C 

SVEN_0460 98.35 Membrane protein, putative 

SVEN_0890 13.62 Putative integral membrane protein 

  Undecaprenyl-diphosphatase 

SVEN_1073 20.23 Hypothetical protein 

SVEN_1181 21.07 Transcriptional regulator, GntR family domain 

SVEN_1216 5.11 Glycine betaine ABC transport system 

SVEN_1300 39.01 Hypothetical protein 

SVEN_1373 21.76 Putative DHA2-subfamily multidrug transporter 

SVEN_1676 7.56 Glutamate synthase 

SVEN_1688 7.67 Putative membrane protein 

SVEN_1715 5.77 ABC-type multidrug transport system 

SVEN_1719 7.08 Hypothetical protein 

SVEN_1720 5.82 Putative membrane protein 

SVEN_1818 5.29 Large membrane protein 

SVEN_1833 66.55 Integral membrane protein 

SVEN_1834 61.59 Putative integral membrane protein 

SVEN_1836 27.45 Endo alpha-1,4 polygalactosaminidase 

SVEN_1879 8.39 Putative reductase 

SVEN_1937 

22.21 

Putative transmembrane efflux protein 

SVEN_1938 Putative membrane protein 

SVEN_1939 TetR family regulator (Multi drug resistance) 

SVEN_2048 21.03 Hypothetical protein 

SVEN_2050 6.04 Antibiotic biosynthesis monooxygenase 

SVEN_2300 
5.51 

Undecaprenyl pyrophosphate synthetase 

SVEN_2301 Repair protein RecO 

SVEN_2351 7.15 Hypothetical protein DUF194, DegV family 

SVEN_2382 22.92 Integral membrane protein 

SVEN_2393 16.89 Rod shape-determining protein MreB 

SVEN_2394 8.73 Two-component sensor kinase 

SVEN_2418 
150.2 

Hypothetical protein 

SVEN_2419 Hypothetical protein 

SVEN_2436 6.7 4-alpha-glucanotransferase (amylomaltase) 
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SVEN_2447 15.82 Secreted protein 

SVEN_2448 13.46 Amino acid ABC transporter solute-binding protein 

SVEN_2449 16.96 Hypothetical protein 

SVEN_2450 12.95 Serine or threonine protein kinase 

SVEN_2451 6.83 Serine or threonine protein phosphatase 

SVEN_2452 8.87 Conserved hypothetical protein SC6D10.11 

SVEN_2459 38.24 Hypothetical protein 

SVEN_2559 52.09 Hypothetical protein 

SVEN_2560 13.79 Butyryl-CoA dehydrogenase 

SVEN_2561 24.85 acyl-CoA thioesterase II 

SVEN_2611 6.86 Chitin binding protein 

SVEN_2651 6.79 L-Proline or Glycine betaine transporter ProP 

SVEN_2732 6.13 Serine or threonine protein kinase 

SVEN_2790 26.72 Cell envelope-associated transcriptional attenuator LytR-CpsA-Psr, subfamily A1 

SVEN_2812 11.67 Hypothetical protein 

SVEN_2815 6.78 Glycosyl transferase, family 2 

SVEN_2817 10.24 Hypothetical protein 

SVEN_3050 6.21 Glycosyl transferase, group 2 family protein 

SVEN_3076 9.87 D-alanyl-D-alanine carboxypeptidase 

SVEN_3135 7.39 Cytosine deaminase 

SVEN_3248 8.47 Putative membrane protein (Abhydrolase super family) 

SVEN_3279 17.71 Hypothetical protein 

SVEN_3299 5.12 Hypothetical protein 

SVEN_3398 13 Putative ABC transporter ATP-binding protein 

SVEN_3399 15.03 Putative ABC transporter membrane protein 

SVEN_3434 150.2 Undecaprenyl- phosphategalactosephosphotransferase 

SVEN_3437 41.02 Putative integral membrane protein 

SVEN_3483 10.57 Hypothetical protein - RNA polymerase sigma-70 factor 

SVEN_3484 6.55 Erythropoiesis-stimulating protein (response regulator - LuxR family) 

SVEN_3532 9.74 Lyase VOC domain 

SVEN_3534 6.4 ABC-type multidrug transport system, ATPase component 

SVEN_3630 5.62 Cell division protein FtsW (lipid II flipase) 

SVEN_3631 5.16 Cell division protein FtsI 

SVEN_3703 361.49 Putative membrane spanning protein 

SVEN_3704 113.15 Transcriptional regulator, IclR family 

SVEN_3705 60.03 putative regulator (Streptomyces sporulation and cell division protein, SsgA) 

SVEN_3706 10.48 Putative membrane protein 

SVEN_3751 5.25 Macro domain, possibly ADP-ribose binding module 

SVEN_3774 8.45 putative glycosyl transferase /  

SVEN_3791 6.13 Hypothetical protein 

SVEN_3840 8.66 HP with META domain-containing protein 

SVEN_3857 55.87 Possible diacylglycerol kinase, catalytic region 

SVEN_3858 31.94 Integral membrane protein 

SVEN_3859 21.85 Putative RNA polymerase ECF sigma factor 

SVEN_3860 22.85 Sporulation associated protein 

SVEN_3921 23.27 Putative secreted protein 

SVEN_3948 8.41 Putative membrane protein 

SVEN_4108 7.64 Oxirreductase 
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SVEN_4111 5.43 Hypothetical protein 

SVEN_4181 5.08 Hypothetical protein with DMT (drug/metabolite transporter) family 

SVEN_4183 5.22 A-factor biosynthesis protein AfsA 

SVEN_4229 6.91 RNA polymerase ECF-subfamily sigma factor 

SVEN_4231 9.56 Putative cyclohex-1-ene-1-carboxylate:CoA ligase 

SVEN_4270 22.67 NADH-ubiquinone oxidoreductase chain F 

SVEN_4277 5.88 NADH-ubiquinone oxidoreductase chain M 

SVEN_4285 16.03 Di-or tripeptide transporter 

SVEN_4321 12.41 Hypothetical protein from Barstar_like super family 

SVEN_4375 8.29 PIG-L family deacetylase 

SVEN_4542 18.05 Putative lipoprotein murein L,D-transpeptidase  

SVEN_4571 59.55 Integral membrane/VanZ family protein (antibiotic teicoplanin resistance) 

SVEN_4582 187.36 Hypothetical protein  

SVEN_4606 12.5 Putative lipoprotein 

SVEN_4647 6.4 Hypothetical protein 

SVEN_4740 15.08 Threonine synthase 

SVEN_4743 5.3 Transcriptional regulator, GntR 

SVEN_4750 19.71 Putative membrane protein  GH18 (glycosyl hydrolase, family 18) 

SVEN_4751 5.79 Hypothetical protein from Fiu superfamily 

SVEN_4832 6.51 Hypothetical protein - ATPase superfamily 

SVEN_4848 7.91 DUF124 domain-containing protein 

SVEN_4849 6.02 DUF124 domain-containing protein 

SVEN_4954 11.49 Endoglycoceramidase 

SVEN_4972 

9.59 

ABC transporter ATP-binding site 

SVEN_4973 Hypothetical protein 

SVEN_4974 RNA polymerase ECF-subfamily sigma factor 

SVEN_4976 9.5 Hypothetical protein 

SVEN_5030 7.49 Putative two-component system sensor kinase 

SVEN_5090 7.01 Putative MerR-family transcriptional regulator 

SVEN_5181 13.4 Putative integral membrane protein 

SVEN_5224 10.63 Putative lipoprotein 

SVEN_5225 17.47 Hypothetical protein with a phosphatase 2C domain-containing protein 

SVEN_5226 34.97 Hypothetical protein with Von Willebrand factor type A (vWA) domain 

SVEN_5227 12.85 Hypothetical protein from DNA_pol3_gamma3 super family 

SVEN_5476 24.65 Siderophore synthetase small component, acetyltransferase 

SVEN_5505 9.25 Putative membrane protein 

SVEN_5770 
5.02 

hypothetical protein from BlaI/MecI/CopY family transcriptional regulator 

SVEN_5771 Integral membrane protein 

SVEN_5813 14.43 N-acetylmuramoyl-L-alanine amidase 

SVEN_5834 9.58 Hypothetical membrane protein 

SVEN_5898 16.13 Glycogen debranching enzyme 

SVEN_6021 8.67 Cold shock domain-containing protein 

SVEN_6023 7.23 Major facilitator superfamily permease 

SVEN_6392 28.93 Hypothetical protein 

SVEN_6402 11.39 Putative regulatory protein 

SVEN_6403 6.76 Fer4_19 and zf-CDGSH domain-containing protein 

SVEN_6423 8.61 Oxidoreductase 

SVEN_6669 12.53 Peptidase 
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SVEN_6845 5.87 Hypothetical protein 

SVEN_6884 12.08 FAD-dependent NAD(P)-disulphide oxidoreductase 

SVEN_6950 47.37 Acetyl-coenzyme A carboxyl transferase alpha or beta chain 

SVEN_7021 13.04 Hypothetical protein from Golgi phosphoprotein 3 (GPP34) family 

SVEN_7040 8.84 Branched-chain amino acid aminotransferase 

SVEN_7041 8.75 Putative ligase or carboxylase protein 

SVEN_7043 6.21 Major facilitator superfamily MFS_1 protein 

SVEN_7044 6.66 Periplasmic_Binding_Protein_Type_2 super family 

SVEN_7178 9.88 Secreted protein 

SVEN_7261 7.41 Hypothetical protein from Abhydrolase super family 

SVEN_7336 5.48 D-alanyl-D-alanine carboxypeptidase 

SVEN_7342 25.01 Transcriptional regulator, AraC family 

SVEN_7346 

10.62 

Hypothetical protein 

SVEN_7347 
Transcriptional regulator, PadR family 

 

Putative operons are highlighted in grey.  
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4 Concluding discussion 
 

4.1  S. venezueale ECF σ factor 19 can be successfully implemented into 
B. subtilis 

 Gene expression is the core of this engineering process and the bacterial ECF σ factors showed 

to be a potential source of regulatory parts for synthetic biology due to their orthogonality, 

modularity and scalability. The use of ECF σ factors to build synthetic circuits has been 

previously described (Chen and Silver, 2012; Shin and Noireaux, 2012; Rhodius et al., 2013; 

Pinto et al., 2018a, 2019). Nevertheless, heterologous regulatory parts have been rarely 

extrapolated beyond the taxonomic borders. A study with the same rational design used here 

showed that ECF σ factors from Bacillus licheniformis and Bacillus cereus were successfully 

implemented in B. subtilis, with no need of further manipulation (Pinto et al., 2018; Pinto et al., 

2019). This indicates that B. subtilis is more likely to accept foreign parts from closely related 

species. The unsuccessful implementation of most the S. venezuelae ECF s factors, and the 

surprisingly activity of ECF 19 in B. subtilis observed in this study reinforces the need for 

further investigation on how synthetic switches can interfere with the host cell -physiology.  

 

4.2  Anti-σ factor AS19 modulates the output of the ECF19 based switch 

The level of ECF19 in the cell is negatively regulated by the membrane associated AS19 which 

forms a complex with the ECF19 preventing its interaction with the RNA polymerase (Shukla 

et al., 2014). Studies in M. tuberculosis reported that the ECF19 SigK is released through 

multiple mechanisms involving the cleavage of the ectodomain of the AS RskA by a site-1 

protease which triggers the site-2 protease Rip1 releasing the ECF19-AS19cyto complex from 

the membrane (Makinoshima and Glickman, 2005; Urban, 2009; Sklar et al., 2010; Shukla et 

al., 2014). 

Here, the activity the ECF19-based switch was not affected by the co-expression of its full 

length cognate anti-σ factor (Figure 17). This observation was somehow surprising, since ASs 

successfully regulated the activity of their cognate ECF in E. coli ECF-based switches without 

the necessity of further manipulations (Rhodius et al., 2013). Next, only the cytoplasmic part 

of the AS19 was implemented into the ECF19-based switch, and this caused a decrease in 

output up to 9-fold (Figure 18). However, this downregulation was observed only when the 

AS19cyto was placed in the same operon than ECF19.  
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The reason why the AS19cyto was able to regulate the ECF19 only when placed in the same 

operon is unclear. However, one can speculate that this organization can enable coordinated 

expression and regulation. In fact, studies of sporulation proteins under control of SigF in B. 

subtilis showed that operon organisation together with translational coupling are important to 

keep the ratio between protein concentrations which is altered when co-regulation is not present 

(Zaslaver et al., 2004; Hazkani-Covo and Graur, 2005; Price et al., 2005; Iber, 2006; Price, 

Arkin and Alm, 2006).  

 

4.3  Robustness of the ECF19 based genetic switch 

Promoters are modular units and the variety of well-known promoters offers many choices for 

obtaining circuits with ample expression ranges (Kelly et al., 2009). Choosing the type of 

promoter is crucial for the design of a synthetic switch. Thus, the activation and stability of the 

ECF19-based switch under control of two naturally occurring inducible promoters was 

compared. The used promoters were: (i) PxylA which is induced by xylose and repressed by XylR 

and (ii) PliaI which is induced by bacitracin. The activity of these promoters has been already 

evaluated (Radeck et al., 2013), and while the induction mediated by PxylA had a constant output 

that of PliaI is only transient. Here we have shown that the ECF19 switch has an output curve 

(luminescence over time) that follows the same shape of that of the inducible promoter 

controlling the ECF expression (Figure 19). 

Changes in the copy number of genes and promoters can strongly affect the behaviour of genetic 

circuits by switching gene expression to or from an oscillatory state, particularly the ones 

involving feedback as the genetic switches (Atkinson et al., 2003; Ingolia and Murray, 2007; 

Mileyko, Joh and Weitz, 2008). Parts of synthetic circuits are often inserted in plasmids due the 

easier manipulation and the stronger signal obtained but on the other hand, these circuits are 

subject of fluctuations and noise in gene expression. Genes encoded on the chromosome have 

a copy number that correlates to that of the chromosome and are more stable to fluctuations in 

the expression level (Loinger and Biham, 2009).  

Genetic circuits can be also controlled at a post-translational level. The SsrA tag system has 

been used to create variants of GFP reporter protein with different half-lives in E. coli and 

Pseudomonas putida (Andersen et al., 1998; Kim et al., 2000; Singh et al., 2000; Bohn, Binet 

and Bouloc, 2001), and also to modify the rate of protein degradation in a dual-feedback 

oscillator circuit in order to decrease the protein lifetime and improve the temporal 

responsiveness of the transcriptional factors (Stricker et al., 2008). Additionally, five σ factors 
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of B. subtilis have been tagged with SsrA in order to create a set of degradable factors in an E. 

coli cell-free expression toolbox (Shin and Noireaux, 2012). 

Taking this in consideration, the stability of the response of the ECF19-based switch to ECF 

SsrA tagging was investigated. Eleven SsrA tag variants, reported to confer different protein 

stabilities, were tested. With exception of three switches (one carrying the native B. subtilis 

SsrA-tag (LAA), the variant LVA and the variant LDD), all the others SsrA variants led to 

alterations in the time of activation and maximum output of the switch. Unlike, similar studies 

using different groups of ECF-based switches showed to be more robust in the presence of 

SsrA-tagging keeping this way their dynamics and output unchanged (Pinto et al., 2019), thus, 

it is important to evaluate the effect of SsrA-tagging in each individual protein of interest.  

Several promoter elements have important roles because they are recognition or interaction sites 

for the RNAP and additional transcription factors. The UP element is an AT-rich sequence 

upstream the -35 motif of a given promoter, often located within the -40 to -55 regions, and 

responsible for thr interaction with the α C-terminal domain of the RNAP (Perez-Martin, Rojo 

and de Lorenzo, 1994; Meng et al., 2001; Pátek et al., 2003). Here, truncations performed in 

the Pecf19 showed that the removal of this UP element (-60 to -36 region) caused a decrease in 

the dynamic range and maximum output curve of the ECF19-based switch. This result is in 

accordance with studies where the presence of an UP element enhanced expression from ECF 

promoters (Rhodius et al., 2013) and those that highlighted its important role in the regulation 

of transcription initiation in E. coli and Mycobacterium tuberculosis by increasing transcription 

rate to up three-fold (Zuo and Steitz, 2015; Hubin et al., 2017).  

Antisense transcription occurs when two promoters are oriented in the opposite direction of a 

gene generating this way antisense RNAs (Georg and Hess, 2011). Antisense transcription has 

been used to evaluate the robustness of synthetic switches before and for some cases it has been 

showed to be cryptic, inducing changes in the host gene expression (Gorochowski et al., 2017). 

The behaviour of ECF 19 based switch was influenced by antisense transcription and similar 

results has been observed for ECF based switches from other ECF groups but ECF19. However, 

once the effect of this transcriptional interference is known, it is possible to avoid unwanted 

behaviour by adding antisense terminators (Pinto et al., 2019).  

 

4.4  Bacitracin resistance mechanisms in S. venezuelae 

The most striking observation in this study is the high-level resistance of S. venezuelae 

against bacitracin and against inhibition by Bacillus species. We were therefore interested in 

elucidating the molecular mechanisms for this marked AMP resistance. Because bacitracin 
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resistance is well understood in low-GC Gram-positive bacteria, we first analysed the genome 

sequence of S. venezuelae ATCC10712. The genome contains a single gene annotated as 

undecaprenyl pyrophosphate (UPP) phosphatase, which is responsible for dephosphorylation 

of the lipid carrier UPP during cell wall biosynthesis. Because UPP is the cellular target of 

bacitracin (Siewert, Gerhard; Strominger, 1967), UPP phosphatases can often impart some 

protection against this antibiotic (Podlesek et al., 2000; Cao et al., 2002; Shaaly et al., 2013). 

However, because dephosphorylation of UPP is essential for the biosynthesis of peptidoglycan 

(El Ghachi et al., 2005), such a gene is found in all available Streptomyces genomes and can 

thus no explain the unique bacitracin resistance of S. venezuelae.  

A second common mechanism for AMP resistance is the Dlt-system, which modified teichoic 

acids to restrict access of the AMP to the cell membrane (Peschel et al., 1999; Saar-Dover et 

al., 2012; Revilla-Guarinos et al., 2014), but this system is not present in actinobacteria. The 

third main mechanism of AMP resistance in Gram-positive bacteria is through ATP-dependent 

transport systems (Gebhard, 2012; Revilla-Guarinos et al., 2014). It has been previously shown 

that BceAB-like systems, which are the primary bacitracin-resistance determinant in B. subtilis 

(Rietkötter, Hoyer and Mascher, 2008), are restricted to the Firmicutes and not found in 

actinobacteria (Dintner et al., 2011). Self-protection in bacitracin producer strains is 

accomplished by the transporter BcrAB (Neumüller, Konz and Marahiel, 2001), and a 

homologous transporter mediates high-level bacitracin resistance in Enterococcus faecalis 

(Manson et al., 2004), however, no homologous genes to the transport permease BceB could 

be identified in the genome of S. venezuelae.  

To identify the genes required for bacitracin resistance, we randomly mutagenised spore 

suspensions of S. venezuelae. A strong bacitracin sensitive mutant was found; and precise 

mutations present in Mut4 were identified. The isolation of a single highly sensitive mutant, 

that moreover specifically lost its resistance to bacitracin but no other cell wall active 

antibiotics, points towards the existence of a defined molecular determinant of resistance. 

Taking in consideration the number and distinct cellular process of the mutant genes found in 

S. venezuelae Mut4 (Table 10), functional analysis to evaluate the effect of each mutation 

separated will be necessary in the future. However, the transcriptomic analysis of the bacitracin 

stimulon in S. venezuelae together with literature mining could shine a light on the genes that 

could most likely be involved in bacitracin resistance in S. venezuelae. 

Our transcriptomics results showed that over 100 genes were more than 5-fold upregulated in 

the presence bacitracin. The list of genes in table 11 shows that these genes are involved in 

diverse biological process. Previous studies in S. coelicolor showed that the presence of 
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bacitracin upregulated over 1000 genes, in which only the minority changed the expression in 

response to bacitracin uniquely. Most of the genes were affected similarly by vancomycin or 

moenomycin (Hesketh et al., 2011). 

When we looked at the genes that were upregulated in the presence of bacitracin in the study 

made by Hesketh and co-workers (2011), we could identify common genes present in our 

transcriptomic data. Alike to S. coelicolor, the bacitracin stimulon in S. venezuelae showed 

upregulation of genes involved in the extracellular peptidoglycan biosynthesis and cell wall 

remodeling and division (Figure 28). The bacitracin stimulon in S. venezueale also showed 

upregulation of genes involved in the cytoplasmic process of peptidoglycan precursor 

biosynthesis while these genes were described as repressed in the presence of bacitracin in S. 

coelicolor (Hesketh et al., 2011).  In addition to peptidoglycan biosynthesis, cell wall 

remodeling is an important process to maintain shape and differentiation. 

Sigma factors were the major response found in the bacitracin stimulon in S. coelicolor 

(Hesketh et al., 2011), where 33 upregulated genes were identified as being part of the SigB 

regulon. Our data showed that for S. venezuelae, the presence of bacitracin led to the 

upregulation of 5 sigma factors, including SigB. SigB is described as involved in 

osmoprotection and differentiation in S. coelicolor (Huang et al., 1999; Shaaly et al., 2013). 
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Figure 28. Peptidoglycan biosynthesis scheme. Peptidoglycan biosynthesis requires the lipid carrier 
undecaprenylphosphate (UP). In the cytoplasm, farnesyl pyrophophate (FPP) is synthetized by the FPP 
synthetase (1). Then, undecaprenyl pyrophosphate (UPP) through sequential condensation of FPP and 
isopentenyl pyrophosphate (IPP) by is synthetised by the action of UPP synthase (UppS) (2). UPP is 
dephosphorylated to UP by undecaprenyl pyrophosphate phosphatase (UppP) (3). UDP-N-acetyl muramic acid 
pentapeptide (UDP-MurNAc-pentapepitide) is formed by the enzymes MurA-F (4). MraY catalases the reaction 
of UP with UDP-MurNAc-pentapepitide to form lipid I (5). Then lipid I reacts with UDP-N-acetyl glucosamine 
(UDP-GlcNAc) to form lipid II by action of MurG (6). Lipid II is translocated to the extracellular space by a lipid 
II flippase (7). The disaccharide pentapeptide is incorporated to the growing peptidoglycan chain by penicillin 
binding proteins (PBPs) (8) and the UPP is released to be recycled by UppP (9). However, the binding of 
bacitracin to the UPP complex inhibits the UPP recycling (10). Gram-positive bacteria present free 
undecaprenyl which is phosphorylated to UP by the action of DgkA (11). Division (Fts complex, Ssgs and Ami1) 
and elongation (Mre complex) proteins are shown. In dark blue are the products of genes that were 
upregulated in presence of bacitracin; in underlined dark blue are gene products found very close to 
upregulated genes; in light blue represents is the mutated MurJ found in the bacitracin-sensitive strain of S. 
venezuelae. Bacitracin is represented by a red star and bacitracin action is shown in red. 

Our study showed that the presence of bacitracin caused an upregulation of up to 125-fold of a 

putative operon coding a putative membrane protein (Sven_0373) and the homologous of the 

regulators of SigB: two-component system sensory histidine kinase RsbK (Sven_0372), serine 

phosphatase RsbU (Sven_0371), anti-σB factor antagonist RsbV (anti anti-σ factor) 

(Sven_0370) and anti-σ factor RsbW (Sven_0370). Rsb proteins are usually found in an operon 

upstream the coding gene for σB (Lee et al., 2004). Studies in B. subtilis, L. monocytogenes and 

S. coelicolor showed that RsbU activity is triggered by a multiprotein signaling stressosome 

(RsbR-RsbS-RsbT) (Wise and Price, 1995; Hecker, Pané-Farré and Uwe, 2007). Despite of the 

conservation of RsbU, RsbV and RsbW, the components of the stressosome (RsbR-RsbS-RsbT) 

are not present in S. venezueale. However, the regulation of RsbV, RsbW and σB in B. cereus 

involves a multisensory histidine kinase RsbK and a RsbY phosphatase (RsbU homologous) 

(Marles-Wright and Lewis, 2010). S. venezuelae also present a gene coding for a sensory 
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histidine kinase upstream the rsbU-rsbV-rsbW genes and in addition to this, it presents two 

additional SigB regulators coding homologous for the osmotic stress adaptation proteins OsaC 

and OsaB, which are located upstream the sigB gene (Figure 29A). OsaC and OsaB were 

described as regulatory proteins for post-osmotic stress modulation of σB activity in S. 

coelicolor (De Been et al., 2011). Here, our transcriptomic data showed the possible 

involvement of SigB and σB regulators of S. venezuelae in the response to bacitracin (Figure 

29B). Similar findings were reported for S. coelicolor, which had over 30 genes belonging to 

the SigB regulon induced in presence of bacitracin (Martínez et al., 2009). 

 
Figure 29. Modulation of σB activitiy. (A) Operon structure of sigB and sigB regulators genes in S. venezuelae. 
Thick arrows represent open reading frames. Thin arrows indicate putative sigB target promoters predicted 
using the online tool PRODORIC (http://prodoric.tu-bs.de/vfp/). (B) Under normal conditions the 
phosphorylated RsbV is inactive being unable to bind RsbW thereby σB is sequestered by the anti-σ factor 
RsbW, preventing the induction of the SigB regulon. Under stress condition (e.g., bacitracin), the sensory 
histidine kinase (HK) RsbK transmits the signal to RsbU, which de-phosphorylates RsbV allowing its binding to 
the anti-σ factor RsbW, releasing RsbW from SigB. RsbW phosphorylate RsbV to keep its inactivity. Once SigB 
binds RNA polymerase transcribing the σB regulon, the OsaC phosphorylate its antagonist OsaB releasing OsaC 
for binding to σB what negatively regulates the expression of sigB. In dark blue are the products of genes that 
were upregulated in presence of bacitracin; in underlined dark blue are gene products in the same operon or 
very close to upregulated genes; yellow cycle indicates mutated RsbU found in the bacitracin-sensitive strain 
of S. venezuelae. Bacitracin is represented by a red star. Modified from Martínez et al., 2009. 
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S. venezuelae encodes 14 genes annotated as RsbU but only two of them is found surrounded 

by or nearby other Rsb coding genes (sven_0371 and sven_0375). The other RsbU coding genes 

are located close to genes related to drug efflux, antibiotic biosynthesis, and light and oxygen 

stress responses. Here, we found a point mutation in a gene coding for a RsbU regulator 

(sven_6766) in the Mut4 bacitracin-sensitive strain of S. venezuelae. The sven_6766 gene is 

placed in an operon along with a gene involved in the biosynthesis of mitomycin antibiotics. 

Although σB is known as responsible for general stress response, it has been reported that it 

responds to cell wall-acting antibiotics like vancomycin and bacitracin in B. subtilis and Listeria 

monocytogenes (Hesketh et al., 2011). Further, transcriptional studies in S. colelicolor also 

showed the involvement of σB in the response to antibiotics that target the cell envelope 

(Delumeau et al., 2004a; Hecker, Pané-Farré and Uwe, 2007; Shin, Brody and Price, 2010). 

Taking in consideration the upregulation of the rsb operon in S. venezuelae treated with 

bacitracin in addition to the point mutation found in one of the rsbU genes of the bacitracin-

sensitive mutant of S. venezuelae, it could be likely that RsbU and consequently σB is involved 

in the bacitracin response in S. venezuelae. 

In this study, the bacitracin-sensitive strain of S. venezuelae presented one base pair deletion in 

the ABC leucine-isoleucine-valine (Liv) transporter (Sven_6295), which is the second gene in 

an operon composed of four liv-transporters (livF-livM). Liv transporters can be involved in the 

transport of a variety of compounds such sugars, ions, peptides and more complex molecules 

(Hesketh et al., 2011). Besides, one base pair deletion was also found in a gene coding a putative 

ABC transporter (Sven_0570). This putative ABC transport system does not share any common 

domain with the known bacitracin efflux systems previously described; it was not found as 

upregulated in presence of bacitracin; and it does not present a neighboring two-component 

system. Despite the lack of similarities with the ABC-transporters involved in bacitracin 

resistance reported until date, the permease component of this putative ABC transporter 

presents a YadH domain which is annotated as an ABC-type multidrug transport system. 

Considering that, further studies will be needed to reveal if these ABC transporters are 

somehow involved in bacitracin resistance. 
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5 Conclusion and Outlook 

 
Here, we showed that B. subtilis has a low acceptance for ECF σ factors derived from S. 

venezuele. The reason why only the ECF19-switch was active is not clear. However, the 

characterization of the ECF19-based switch showed that alterations in different parts of the 

switch do not improve the switch performance and the presence of antisense transcription and 

the addition of ssrA-tag can negatively affect the switch behavior. Further research work is 

necessary in order to understand the differences between the transcription machinery across 

bacteria in order to optimize the use of heterologous ECF σ factors based switches in non-

related organisms. 

S. venezuelae showed to be resistant to bacitracin and the random mutagenesis generated one 

strong bacitracin-sensitive mutant (Mut4), which presented mutation in a number of genes 

involved in different cellular processes. In the presence of bacitracin, S. venezuleae upregulated 

over 100 genes with part of them being known for being involved in antibiotic response, eg. 

cell wall biosynthesis and remodeling genes. This fact is not surprisingly since bacitracin targets 

the lipid II recycling pathway, which is essential for peptidoglycan biosynthesis. We could not  

correlate the mutations found in the bacitracin-sensitive Mut4 and the bacitracin stimulon 

results from the transcriptomic data of S. venezuelae in the presence of bacitracin. Based on our 

results, it is hard to infer that there is a clear relationship between the two data. However, the 

point mutation found in the positive regulator of σB RsbU in the bacitracin-sensitive Mut4 in 

addition to the upregulation of genes involved in the SigB regulation found in our transcriptome 

analysis could indicate the possible involvement of the SigB regulon in the response to 

bacitracin. Generation of bacitracin-sensitive strains of S. venezuelae and accessing the 

transcriptomic profile of the wild type strain in presence of bacitracin did not elucidate the 

mechanism of resistance to bacitracin in S. venezuelae. Thus, functional studies involving 

deletion and complementation of the putative genes involved in bacitracin resistance are 

essential.  The differences in antimicrobial production by Bacillus sp. and in resistance against 

these compounds of Streptomyces sp. are likely to play an important role in determining the 

composition of bacterial soil communities. Identification of the molecular determinant of the 

observed high-level bacitracin resistance of S. venezuelae will further contribute to our 

understanding of antibiotic resistance and its role in natural bacterial populations. The isolation 

of a single highly sensitive mutant, that moreover specifically lost its resistance to bacitracin 

but no other cell wall active antibiotics, will be crucial to the following studies on bacitracin 

resistance in S. venezueale. 
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