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1 Summary 

1.1 English version 
PWWP domains are highly conserved in eukaryotes and act in recruiting histone 

modifiers to chromatin that is decorated by methylation. In S. cerevisiae, the NuA3b 

subunit Pdp3 targets this H3K14-specific HAT complex histone H3 (di- and) 

trimethylated at K36, which promotes transcriptional elongation. However, in its 

S. pombe homologue Mst2C the function and target of Pdp3 have yet remained 

unknown. 

In this doctoral thesis, I provide evidence that Mst2C functions in euchromatic and 

heterochromatic transcription but through entirely different means. 

My research revealed that deletion of pdp3+ in S. pombe results in perturbed silencing 

at pericentromeric and subtelomeric heterochromatin domains. However, this is 

suppressed in absence of Mst2, a catalytic subunit of Mst2C, which is also required for 

the functional integrity of the complex. Based on this observation, and in cooperation 

with the Bühler group in Basel, I studied the distribution of Mst2 and Pdp3 on 

chromatin. We could show that pdp3+ deletion or mutation of its PWWP domain led to 

loss of Mst2 binding and its encroachment on heterochromatin, thereby demonstrating 

that Mst2 localization to euchromatin is dependent on Pdp3. In addition, I could reveal 

that the PWWP domain of Pdp3 is able to discriminate between the different 

methylation states of H3K36. Both binding of Mst2 and of Pdp3 was abolished in a 

Set2 truncation mutant, which mediates mono and di methylation but not trimethylation 

of H3K36. Lastly, my collaborators could show that in addition to H3K14, euchromatic 

Mst2C acetylates the HULC subunit Brl1, thereby promoting transcription and 

preventing the initiation of ectopic silencing.  

Several studies have reported that loss of Set2 results in a silencing defect itself. 

Through studying heterochromatic transcription in set2∆ in conjunction with deletion 

mutants of pdp3+, mst2+, and nto1+ and ptf2+, which are essential for Mst2C integrity, 

I determined that, as in pdp3∆, the silencing defect of set2∆ is solely founded in the 

encroachment of Mst2C on heterochromatin. Intriguingly, deletion of any of the three 

critical subunits resulted in suppression below the level of found in wild-type strains, 

implying that Mst2C is required to maintain basal transcription in heterochromatin. 

Together with the previous observations, this suggests that loss of Pdp3 and Set2 



1. Summary 

2 
 

leads a silencing defect via the same pathway that promotes basal transcription. 

Surprisingly, I found that Mst2C promotes heterochromatin transcription via an entirely 

different Pdp3-independent mechanism than in euchromatin, as it functions neither 

through Brl1 nor H3K14ac, but a yet unknown target.  

In conclusion, this thesis has demonstrated that Pdp3-dependent anchoring of Mst2C 

to H3K36me3 has a dual purpose: (a) in euchromatin it prevents formation of ectopic 

heterochromatin at regions decorated with H3K36me3 and promoting transcription in 

a Brl1-dependent manner; (b) in heterochromatin, this sequestration protects Mst2C-

mediated but Pdp3 and Brl1-independent basal transcription from becoming 

hyperactivated and interfering with maintenance of this region. 

1.2 Deutsche Version 
PWWP-Domänen sind in Eukaryoten hochkonserviert und werden dazu verwendet 

Histonmodifizierer zu mit Methylierung gekennzeichnetem Chromatin zu rekrutieren. 

In S. cerevisiae lotst die Pdp3, eine Untereinheit von NuA3b, diesen H3K14-

spezifischen HAT-Komplex zu Histon H3, welches an K36 (di- und) trimethyliert ist, 

was wiederum transkriptionelle Elongation begünstigt. Jedoch blieben die Funktion 

und der Interaktionspartner von Pdp3 in seinem Homolog Mst2C in S. pombe bis dato 

bekannt. 

Anhand dieser Doktorarbeit liefere ich nun Beweise dafür, dass Mst2C sowohl an 

euchromatischer als auch an heterochromatischer Transkription beteiligt ist, aber auf 

gänzlich verschiedene Art und Weise. 

Meine Nachforschungen enthüllten, dass Deletion von pdp3+ in S. pombe in einer 

Beeinträchtigung der Stilllegung perizentromerischer and subtelomerer 

Heterochromatindomänen resultiert. Diese wird bei Fehlen von Mst2, einer 

katalytischen Untereinheit von Mst2C, welche auch für den Erhalt der Komplexfunktion 

benötigt wird, supprimiert. Basierend auf dieser Beobachtung untersuchte ich 

zusammen mit unseren Kollaborationspartnern, der in Basel ansässigen Bühler-

Gruppe, die Verteilung von Mst2 und Pdp3 auf Chromatin. Wir konnten zeigen, dass 

Deletion von pdp3+ oder Mutation seiner PWWP-Domäne zum Verlust der Bindung 

von Mst2 und einem Vordringen dessen in Heterochromatin führt, wodurch 

demonstriert wurde, dass die euchromatische Positionierung von Mst2 von Pdp3 

abhängt. Darüber hinaus konnte ich enthüllen, dass die PWWP-Domäne von Pdp3 

dazu in der Lage ist zwischen den Methylierungsstadien von H3K36 zu unterscheiden. 
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Sowohl die Anbindung von Mst2 also auch Pdp3 wurden in einer trunkierten Set2-

Mutante, welche zwar Mono- und Dimethylierung, jedoch keine Trimethylierung von 

H3K3 vermitteln kann, aufgehoben. Schlussendlich konnten meine Mitpartner 

darlegen, dass euchromatisches Mst2C zusätzlich zu H3K14 die HULC-Untereinheit 

Brl1 acetyliert, wodurch Transkription begünstigt und die Initiierung ektopischer 

Stilllegung verhindert wird.  

Aus einigen Studien ist bekannt, dass der Verlust von Set2 selbst in einem 

Stilllegungsdefekt resultiert. Dadurch, dass ich heterochromatische Transkription in 

set2∆ im Zusammenhang mit der Deletion von pdp3+, mst2+, nto1+ and ptf2+, welche 

ebenfalls essentiell für den Erhalt von Mst2C sind, stellte ich fest, dass sich, wie bei 

pdp3∆, der Stilllegungsdefekt von set2∆ allein auf dem Vordringen von Mst2C in 

Heterochromatin begründet. Interessanterweise resultierte die Deletion jeglicher 

kritischen Untereinheit in einer Suppression, die unterhalb des Niveaus in Wildtyp lag, 

was impliziert, dass Mst2C zum Erhalt der basalen Transkription innerhalb von 

Heterochromatin notwendig ist. Zusammengenommen mit den vorherigen 

Beobachtungen deutet dies an, dass die Stilllegungsdefekte durch Verlust von Pdp3 

und Set2 auf dieselbe Weise entstehen, in der basale Transkription unterstützt wird. 

Zu meiner Überraschung stellte sich heraus, dass Mst2C basale Transkription von 

Heterochromatin durch einen völlig anderen Mechanismus vorantreibt als in 

Euchromatin, da dieser weder über Brl1 noch über H3K14 agiert, sondern über ein 

noch unbekanntes Zielobjekt.  

Im Großen und Ganzen hat diese Arbeit demonstriert, das Pdp3-vermittelte 

Verankerung von Mst2C an H3K36me3 zwei Aufgaben erfüllt: (a) in Euchromatin 

verhindert diese die Bildung von ektopischem Heterochromatin in Regionen, die mit 

H3K36me3 markiert sind; (b) in Heterochromatin, schützt diese Abtrennung davor, 

dass Mst2-vermittelte, aber Pdp3- und Brl1-unabhängige basale Transkription 

hyperaktiviert wird und dadurch mit der Instandhaltung dieser Region interferiert. 
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2 Introduction 

2.1 Spatial regulation of chromatin 

2.1.1 From nucleosome to chromatin  
Genetic information is encoded by deoxyribonucleic acid (DNA) and stored as 

macromolecular chromosomes inside the nucleus of every eukaryotic cell. 

Chromosomes consist of millions of base pairs (bp) and require multiple layers of 

organization to fit into the nucleus but also to remain accessible to transcription, DNA 

replication and repair processes. When DNA is visualized under an electron 

microscope, it appears as a 10-nm fiber that resembles beads on a string [1]. These 

beads constitute the nucleosomes that consist of DNA and an octamer of four different 

histone proteins (i.e. the canonical histones H2A, H2B, H3, and H4) [2]. Prior to 

nucleosome assembly histones H2A and H2B as well as H3 and H4 form a heterodimer 

via handshake of a histone fold domain in their respective C-terminal region [3]. This 

is followed by tetramerization of two H3-H4 dimers and the binding 147 bp of DNA as 

well as of one H2A-H2B dimer above and below the tetramer-DNA axis, resulting in 

nucleosomes [4]. Nucleosomes are highly stable, as the negatively charged phosphate 

backbone of the DNA interacts with basic surface residues exposed on the outward 

surface of the histone octamer [5], [6]. The N-termini of the histones protrude from the 

nucleosome and are often post-translationally modified (see chapters 2.1.3 and 2.1.4). 

The nucleosome core particle together with two linker H1 histones and 10 bp of DNA 

on both ends forms the chromatosome, which assists in the formation of higher order 

nucleosome structures [7]. Chromatosomes together with the connecting linker DNA 

form the nucleosomal arrays [8].The nucleosome arrays and  their interacting proteins, 

such as nucleosome remodelers and proteins that bind to modified histones, together 

form the nuclear structure known as chromatin [9]. 

2.1.2 Chromatin states are determined by chromatin organization 
Chromatin is present in either ‘open’ or ‘closed’ conformation. Domains with the former 

trait are known as euchromatin (EC) and the latter as heterochromatin (HC). The 

composition of EC and HC differs regarding DNA modifications, posttranslational 

protein modifications, and associated proteins. Though these modifications primarily 

have regulatory functions, many eukaryotes have co-evolved interacting factors that 
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are specific to subnuclear compartments. Thus, HC and EC are delegated to one of 

three main areas of the nucleus: (i) the nuclear interior (ii) the periphery or (iii) the 

nucleolus [10].  

2.1.2.1 Heterochromatin is often located at the nuclear periphery  

Transcriptionally silent heterochromatin comes in two main variants, facultative and 

constitutive. Facultative HC consists of inactive genes whose expression is specific to 

other tissues. Constitutive HC is gene poor and enriched in repetitive DNA sequences. 

Long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) fall 

under this category [11], [12]. The periphery of the nucleolus is specifically involved in 

the silencing of ribosomal RNA (rRNA) but also contributes to X chromosome 

inactivation [13], [14]. In many eukaryotic cells constitutive HC is located at the nuclear 

periphery, a stable protein network below the inner membrane that consisting of 

filaments called lamins and integral proteins of the inner nuclear membrane [15], [16]. 

The nuclear lamina acts as a central hub for many processes, in particular 

chromosome positioning within the nucleus and chromatin regulation [16]. Repressed 

chromatin can be recruited to the nuclear periphery by interaction with peripheral 

proteins, such as Lamin-associated proteins (e.g. PRR14) and the lamin B receptor 

(LBR), which binds to heterochromatin protein 1 (HP1), a reader of H3K9 di- and 

trimethylation and hallmark of constitutive heterochromatin [17]. Chromatin recruitment 

is further assisted by LAP2-emerin-MAN1 (LEM) domain proteins reviewed in [15]. 

Certain LEM domain proteins may also be involved HC maintenance, as recently 

shown the yeast Schizosaccharomyces pombe (S. pombe); interestingly, however, 

silencing by these proteins is mediated not by the LEM domain but a different 

nucleoplasmic domain [18]. Finally, telomeres and subtelomeres, which flank the 

chromosome ends in eukaryotes, are also heterochromatic and often localized at the 

nuclear periphery reviewed in [19].  

Both euchromatin and heterochromatin are further regulated by the interplay of 

transcription factors (TFs), posttranslational (histone) modifications (PTMs), PTM 

binding proteins and enzymes that are guided by TFs or bind to PTMs themselves.  

2.1.2.2 Nuclear sub-compartments and coordination of transcriptional 
processes promote transcription efficiency  

EC is gene-rich and actively transcribed into protein-coding or non-coding ribonucleic 

acid (RNA). EC is replicated during early S phase and constitutes the majority of genes, 
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which are either tissue-specific or constitutively expressed in all cell types 

(housekeeping genes), e.g. cytoskeletal genes [20]–[22]. According to some models, 

transcription of genes takes place in distinct nuclear foci known as transcription 

factories that contain enzymes and factors required for transcription, e.g. the RNA 

polymerase complex (RNAP) that mediates transcription and various factors involved 

in the transcription initiation process [23]–[25]. These factories are stable 

subcompartments in the nucleus and need to be contacted by the genes [25], [26]. The 

genes, while co-regulated, often stem from different chromosomes and migrate from 

the rest of the chromosome to co-localize in these factories, thereby inducing an 

adjustment of the nuclear architecture to facilitate the migration [27]–[29]. Genes are 

composed of the promoter to which the RNAP is recruited, the 5’ untranslated region 

(5’-UTR), the gene body comprising the coding sequence (known as open reading 

frame or gene body), the 3’-UTR, and the terminator sequence. Following initiation, the 

transcribing polymerase passes into the adjacent nuclear compartment space, where 

other transcription steps, such as elongation, take place [24]. In parallel, the 

transcription machinery coordinates RNA nascence co-transcriptionally with the 

spliceosome, a multi-subunit ribozyme complex that removes introns from the nascent 

precursor messenger RNA (pre-mRNA) to generate mature mRNA [30]. Lastly, the 

mRNA is associates with the TREX complex, which mediates the nuclear export of 

mRNA [31]. mRNA transcripts include both UTRs, though only the codons contained 

in the gene body will be translated from RNA to protein.  

2.1.3 Spatial regulation inside heterochromatin 
Heterochromatin is not only topologically separated from euchromatin but also 

controlled by a complex network of regulatory mechanisms to differentiate it from 

euchromatin. While some of the mechanisms in HC regulation have a rather broad 

function, others are specific for facultative or constitutive heterochromatin. 

2.1.3.1 Facultative heterochromatin is regulated by Polycomb proteins 

Facultative HC is formed during cellular differentiation and development. Throughout 

embryogenesis, cells of multicellular eukaryotic organisms differentiate from a 

totipotent zygote via pluripotent stem cells and progenitors into somatic cells [32]. 

Cellular differentiation requires transcription of genes with tissue-specific functions, 

whereas genes required for other cell types are inactivated. This necessitates gene 

expression to be coordinated at the level of TF binding and chromatin modification.  
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Lineage-specific TFs activate transcription of genes that promote differentiation to the 

next developmental stage of a specific cell type. For example, the TF p63 promotes 

the recruitment of remodelers to activate transcription at genes involved in murine 

keratinocyte differentiation [33].  

Facultative heterochromatin is formed during differentiation and early development 

(reviewed in [34]). During embryogenesis, lineage-specific TFs establish specific gene 

expression patterns through enhancer interactions [35], [36]. These TF-enhancer 

interactions are relatively short-lived; thus, a second layer of regulation is required to 

maintain a stable memory of lineage-specific gene patterns. Genes are either silenced 

via Polycomb group (PcG) proteins or activated via Trithorax group (TrxG) proteins, 

which is achieved through modifications of PcG/TrxG response elements (PRE/TRE) 

[34]. 

Prominent examples of lineage-commitment are the Hox genes in Drosophila whose 

study led to the discovery of the PcG repressor complexes (reviewed in [37]). Two 

main repressor complexes are known, PRC1 and PRC2. PRC2 contains a SET domain 

lysine methyltransferase (KMT) that mediates H3K27me3 at PREs. H3K37me3 is 

recognized by the chromodomain subunit CBX of PRC1. PRC1 also contains the 

ubiquitin ligase RING1 that monoubiquitylates histone H2A (H2Aub); however, the 

function of this modification is unclear, as it is not required for silencing [38], [39]. 

Recent studies suggest that PRC1 mediates silencing primarily through the 

compaction of heterochromatin, which is dependent on the PRC1 subunits Cbx2 and 

Phc1 (in Drosphila Psc and Ph, respectively). They act as bridge between 

nucleosomes and promote self-interaction of PRC1, respectively, resulting in the 

formation of globular domains for neighboring PRC1 domains and looping of non-

PRC1 regions by distal PRC1 domains interacting with each other [40], [41].  

In Drosophila, PRC2 is recruited to PREs assisted by interaction with other proteins, 

like Pho, a DNA-binder and interactor of the nucleosome remodeler Brama, which is 

targeted to histone acetylation marks at promoter regions [42], [43]. Such PRE-binding 

factors have not been found in mammals, but alternative binding modes seem to exist. 

For instance, the murine PCL3/Phf19 Tudor domain subunit recruits PRC2 to 

H3K36me3 at specific target genes [44]. Another prominent example is the long non-

coding RNA (lncRNA)-mediated PcG recruitment linked to sex chromosome dosage 

compensation. This takes place during X chromosome inactivation in females to 

assure similar levels of X chromosomal transcripts in males and females. This 
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mechanism involves the lncRNA Xist, which is encoded in the X inactivation center 

(Xic) on the X chromosome to act as a nucleation site for heterochromatin formation 

reviewed in [45]. 

2.1.3.2 Constitutive heterochromatin is continuously present 

While facultative heterochromatin regions differ between different cell types, 

pericentromeric DNA and telomeres are persistently silenced throughout development.  

2.1.3.2.1 DNA methylation and histone methylation influence each other  
Pericentromeric DNA consists of tandem repetitive elements that evolved from 

transposons but differ in sequence composition and number of repeats between 

species [46]. Due to their repetitive nature these tandem repeats, as well as 

transposons, are prone to recombination such as insertions or deletions; therefore they 

need to be silenced to maintain genome integrity [47], [48].  

A hallmark of constitutive heterochromatin is methylation at H3K9, which can be 

present as mono-, di- and trimethylated. In higher eukaryotes, the three different states 

of H3K9me are established by more than a single KMT. A study in murine cells 

uncovered that H3K9me1 is conferred redundantly by the cytosolic KMTs Prdm3 and 

Prdm16 prior to import of histone H3 into the nucleus [49]. H3K9me2 is mediated by 

the GLP/G9a (also known as EHMT1/EHMT2) complex [50], [51]. Lastly, Suv39h1 and 

Suv39h2 (Su(var)3-9 in Drosophila) as well as Setdb1 mediate trimethylation of H3K9. 

These enzymes share a conserved catalytic region, the Su(var)3–9, Enhancer of zeste 

(E(z)) and trithorax (trx) (SET) domain (Tschiersch et al., 1994). In S. pombe, all three 

methylation steps are mediated by a sole SET domain KMT, Clr4; in contrast, 

S. cerevisiae does not possess H3K9 methylation [52]–[54]. 

In mammals and other species, H3K9me occurs in conjunction with DNA methylation 

at C5 of cytosine bases (which is absent in Drosophila and fission yeast; reviewed in 

[55]). During embryogenesis, most germline-specific chromatin marks, including DNA 

methylation, are first removed, which allows that lineage-specific de novo formation of 

heterochromatin during differentiation. However, as DNA methyltransferases do not 

recognize specific DNA motifs, DNA methylation needs to be directed by other means. 

Establishment of DNA methylation partially depends on preexisting histone methyl-

lysine marks that direct DNA methyltransferases to specific positions, although this 

process is not fully understood. The maintaining DNA methyltransferase Dnmt1 is 

recruited to newly replicated hemi-methylated DNA by Uhrf1 [56], [57]. In contrast, the 
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de novo methylating enzymes, Dnmt3A and Dnmt3B, possess an N-terminal ADD 

(ATRX, DNMT3, DNMT3L) domain and a C-terminal PWWP (proline-tryptophan-

tryptophan-proline) domain. The PWWP domains of Dnmt3A and Dnmt3B recognize 

H3K36me3, although Dnmt3B also binds nonspecifically to DNA [58], [59]. Dnmt3L 

forms a complex with Dnmt3A or Dnmt3B at later developmental stages, thereby 

controlling binding and the activity of these DNA methylases. Chromatin binding of 

Dnmt3A and Dnmt3B is further regulated by their ADD domains, which bind to 

H3K4me0 but cannot recognize H3K4me2 or H3K4me3 [60]. Recent insights into 

mammalian DNMT3A suggest that ADD-binding to H3K4me0 alleviates autoinhibition 

of its catalytic domain [61]. Conversely, CpG islands, which are void of DNA 

methylation, are specifically trimethylated at H3K4, thereby preventing the recruitment 

of Dnmt proteins and their interference with transcription [62]. A similar mechanism 

may act at CEN chromatin, which is methylated at H3K4 as well [63].  

DNA methylation assists in the deposition of methyl-lysine marks as the ADD domains 

of Dnmt3A and Dnmt3B have been shown to recruit Suv39h1 and Setdb1, thereby 

acting as a nucleation site for H3K9 methylation [64], [65]. Furthermore, both Dnmt3s 

interact with heterochromatin protein 1 (HP1), which binds to H3K9me3 via its 

chromodomain and is another conserved hallmark of heterochromatin. HP proteins in 

turn can interact with each other via their chromoshadow domains and promote 

heterochromatin spreading [65]. Moreover, DNA methylation itself is recognized by 

specific proteins, such as MeCP2, which is known to recruit histone deacetylases and 

Suv39h1/2, adding another layer of heterochromatin formation at pericentromeres [66]. 

2.1.3.2.2 RNA interference and H3K9me2/me3 
In several organisms, including nematodes, flies, fungi, and plants, silencing of 

transposons by RNA interference (RNAi) is highly conserved. RNAi is often induced 

by small interference RNAs (siRNA). These are generated from double-stranded DNAs 

by different mechanisms. Either siRNAs are excised from transcripts of inverted 

repeats that folded back into a hairpin; or they result from bidirectional transcription; 

alternatively they are generated from single-stranded RNA transcripts by use of an 

RNA-dependent RNA polymerase (RdRP) reviewed in [67]–[70]. The last option occurs 

for example in S. pombe where the nucleation site stems from a nascent transcript, 

which is first recognized by through base pairing by the RNA-induced transcriptional 

silencing complex (RITS), a paralog of the RNA-induced silencing complex (RISC) 
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[71]. RITS then recruits an RdRP that synthesizes a complementary strand. Perfectly 

paired double-stranded RNA is cleaved by a Dicer ribonuclease (Dcr1) into to 22 

nucleotides long fragments with a characteristic 2-bp 3’ overhang [72]. The siRNA 

duplex is passed onto the intermediary complex (ARC) that contains an Argonaute 

protein (Ago1) whose slicing activity is inhibited by the other two subunits Arb1 and 

Arb2 [73]–[75]. Once loaded on ARC, the passenger strand of the siRNA duplex strand 

is removed, resulting in Arb1/2 release. Ago1 with the bound single-stranded siRNA 

assembles with Chp1 and Tas3 into RITS [76]. Chp1 possesses a chromodomain that 

interacts with methylated histones as well as DNA, while Tas3 mediates cis-spreading 

of the complex through self-association [77], [78]. The loaded siRNA is complementary 

to heterochromatic transcripts and guides RITS to heterochromatin together with Chp1. 

In addition, through interaction with the bridging factor Stc1, Ago1 recruits CLRC, a 

complex comprising the KMT Clr4 and a ubiquitin ligase, resulting in the establishment 

of H3K9me2/H3K9me3 [79]–[81]. This induces a feed-forward loop, as the HP proteins 

Swi6 and Chp2 as well as Chp1, and Clr4 itself, each contain chromodomains that bind 

H3K9me2/me3 (see Figure 1). 

Figure 1 - Overview of the RNAi pathway in S. pombe: Nascent HC RNA is recognized by RDRC, which 

synthesizes a complimentary strand; the dsRNA is sheared into siRNA by Dcr1 and then loaded onto the ARC 

complex containing Ago1; the passenger strand is discarded and Ago1 forms the RITS complex with two other 

subunits; RITS is recruited to HC via recognition of nascent RNA by Ago1 and interaction with H2K9me2; Ago1 

recruits CLRC via the bridging factor Stc1, which then methylates H3K9.  
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2.1.3.2.3 Telomeric and subtelomeric silencing 
Due to DNA polymerase needing an RNA primer for its annealing, the 5’ end of the 

lagging strand of a linear chromosome would not be replicated and the chromosome 

would lose genetic information with each cell duplication (replication end problem). 

However, observations in vivo show the opposite as with each replication cycle, the 3’-

ends of a chromosome are shortened reviewed in [82]. To prevent the shortening of 

the 5’-end an RNA-dependent DNA polymerase, called telomerase, adds DNA repeats 

to the chromosomal 3’-ends. These tandem repeats and the 5’-region of the lagging 

strand are then replicated by DNA polymerase, thereby leading to an extension of the 

telomeres and continuous protection of the chromosome ends [83]. However, the free 

telomeric ends resemble DNA double strand (dsDNA) breaks and can result in inter- 

or intrachromosomal fusions if recognized by the DNA repair machinery. This is 

counteracted by binding of the highly conserved shelterin complex, comprised of 

dsDNA and ssDNA binding proteins interconnected by bridging proteins, which also 

acts as a recruiting platform for telomerase [84], [85], reviewed in [86]. An electron 

microscopy study in mammalians revealed that here shelterin also promotes the 

formation t-loops by the telomeric ssDNA strand invading the dsDNA repeats, thereby 

adding another layer of protection [87]. 

In S. pombe, the shelterin complex recruits besides telomerase in addition CLRC and 

the multifunctional repressor complex SHREC, which contains the HDAC Clr3, via the 

shelterin subunit Ccq1 [88]–[91]. Among other functions, the mutually exclusive binding 

of SHREC and telomerase contributes to modulating the activity of telomerase [89], 

[90], [92].  

Both telomeres and the adjacent subtelomeric region, which is gene-poor and repeat-

rich, have several hallmarks of constitutive heterochromatin in common with 

centromeric heterochromatin. In higher eukaryotes, decoration of telomeric and 

subtelomeric HC with H3K20me3, H3K9me3 and HP1 proteins regulates telomere 

length and contributes to protection against telomeric damage and sister chromatid 

exchange [93], [94], reviewed in [95]. Furthermore, subtelomeric HC DNA is 

methylated, which also negatively regulates telomere length [96]. In fungi, presence of 

HC hallmarks differs between the species with some displaying H3K9me at 

subtelomeric HC such as S. pombe and Neurospora crassa (N. crassa) while others 

are marked by DNA methylation, e.g. N. crassa or the formation of HC requires a 

different set of factors altogether (S. cerevisiae) reviewed in [47]. 
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2.1.3.2.4 Other constitutive silencing mechanisms 
Centromeres, telomeres and subtelomeres are often located to the nuclear periphery 

via specific recruiting mechanisms. Two examples for perinuclear heterochromatin can 

be found in S. pombe, which may also be conserved in higher eukaryotes. The LEM 

domain (see section 1.1.2.1) of the transmembrane factor Lem2, which sits in the inner 

nuclear envelope, interacts with centromeres and recruits them to the nuclear 

envelope, whereas the telomeric dsDNA binder and TRF homolog Taz1 associates 

with members of the peripheral bouquet complex via the bridging protein Rap1 [18], 

[97], [98]. The localization to the nuclear periphery is of great importance for the 

formation and maintenance of HC, as this environment is enriched for HDACs, such 

as HDAC3 for which a study in mammals has indicated direct association with nuclear 

envelope proteins [99], [100]. Hypoacetylation by HDACs promotes heterochromatin 

formation, e.g. deacetylation of H3K9ac makes the lysine residue available for 

subsequent methylation reactions, whereas removal of H3K14ac prevents histone 

turnover [43], [101], [102].  

2.1.4 Regulation of euchromatic transcription 
Euchromatin consists of cell type-specific genes and the housekeeping genes, i.e. 

genes that are essential for cell survival and constitutively transcribed into mRNA, as 

well as various other RNAs that don’t encode proteins [21], [103]. Euchromatin is more 

dispersed across the chromosomes than heterochromatin, which can result in genes 

encoding similarly regulated proteins being located on different chromosomes. 

Moreover, transcribed DNA needs to be accessible to the transcription machinery, 

which requires bypassing nucleosomes. To control all these aspects of euchromatic 

transcription cells have evolved many different regulatory mechanisms, of which 

underlying principles will be described in the following chapters.  

2.1.4.1 Regulation of transcription factors 

Initiation of transcription and regulation of transcriptional elongation in euchromatin 

require transcription factors [104]. Except for pioneer factors, TFs bind only to 

nucleosome-free DNA sequences. In contrast, pioneer factors have the capacity to 

bind to nucleosomal (closed) DNA and open it up, which otherwise may happen only 

through spontaneous unwrapping of the nucleosome [105]–[107]. When DNA is 

accessible, regulatory transcription factors come into play. General or basal TFs are 

ubiquitously present in every cell and constitutively expressed. They bind to a 
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consensus sequence, e.g. the TATA box, in the promoter region of protein coding 

genes and assemble into a pre-initiation complex with RNAPII, which is needed to 

position RNAPII at the transcriptional start site [108], [109]. Unlike general TFs, specific 

transcription factors interact with a discrete set of loci within a cell. They are involved 

in multiple processes including cell development, differentiation, oxidative stress, and 

apoptosis [110], [111].  

Specific transcription factors that negatively regulate transcription are called 

repressors. They interact with binding sites termed silencers situated close to or within 

the gene they regulate. Examples for silencers have been reported for promoter 

regions, introns and exons as well as the 3’-UTR of certain genes reviewed in [112]. 

In contrast, activators bind to promoter-proximal recognition sites or to enhancers and 

recruit the RNAP II machinery. Enhancers are comprised of several TF binding motives 

that are located up to over a million base pairs upstream or downstream of the 

transcription start site on the same chromosome, thus acting in cis [113]–[115]. In few 

cases, enhancers may also regulate gene expression from a different chromosome in 

trans [116]. Multiple TFs can co-localize to a single enhancer, with the binding pattern 

dependent on the differentiation state, such as seen for hematopoiesis [117]. The 

enhancer then brings the transcription factors into promoter vicinity where the TFs act 

as effectors through recruitment of nucleosome remodelers that co-activate 

transcription by modulating nucleosome occupation and composition [118], [119].  

2.1.4.2 Nucleosome remodelers and their interplay with histone marks 

Nucleosomes pose an obstacle not only for RNA polymerases during transcription 

initiation, but also interfere with DNA polymerase during replication and the repair 

machinery during the DNA damage response. Minor and major grooves of the DNA 

change their shapes when wound around the histone octamer and thus cannot be 

recognized by DNA binding proteins [120]. While some pioneer factors (see section 

2.1.4.1) can intrinsically bind to closed chromatin, most DNA interacting proteins are 

not capable of removing or shifting nucleosomes [121]. For that purpose, the pioneer 

factors recruit nucleosome remodelers, a family of ATPases that use the energy stored 

in ATP to break the hydrogen bonds between the DNA backbone and histone residues 

[6], [121], [122]. Remodeler functions entail the deposition and removal of histones, 

sliding nucleosomes along the DNA, positioning of nucleosomes, and the exchange of 

histone variants [122]. Remodelers are often part of complexes with multiple subunits 
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that specify their function. For example, the remodeling enzyme ISWI can act in 

transcription, DNA replication, DNA repair, and other pathways, depending on the 

presence of other proteins with which this remodeler forms a complex [123].  

Furthermore, remodeling functions are often coordinated with covalent modifications 

of the protruding histone N-termini. Histone marks include methylation, acetylation, 

phosphorylation, ADP-ribosylation, sumoylation, and ubiquitylation, with more marks 

still being discovered [124], [125]. Though not all these marks are recognized by 

remodelers, there are well documented examples where binding modules in one of its 

subunits mediate the recognition of a specific posttranslational histone modification 

(PTM) and assist in the chromatin recruitment of the remodeler. One example is the 

S. cerevisiae ISWI family remodeler Isw1b. This remodeler is specifically recruited to 

trimethylated H3K36 (H3K36me3) via the PWWP domain of its subunit Ioc4 and 

suppresses histone exchange and cryptic transcription [126]. Comparable to Isw1b, 

studies in S. cerevisiae have demonstrated that Swi/Snf complexes are only efficiently 

retained at promoters when interacting with a transcription factor or via histone 

acetylation that is recognized by the bromodomain of one of the complex subunits 

[127]. In agreement, acetylated lysine histone residues K9 and K14 on histone H3 as 

well as K12 and K16 on histone H4 are mostly enriched at the promoter region and 5’-

end of genes and decline towards the 3’-end [43], [128]. Swi/Snf complexes are 

recruited by transcriptional activators and promote transcription by making the 

promoter accessible via nucleosome sliding [129]. The recruitment of SWR 

chaperones relies partially on acetylated histones, which the complexes recognize via 

bromodomain subunits BRD proteins in higher eukaryotes and Brd1 in S. cerevisiae 

[130].  

In conclusion, cross-talk between remodelers and histone acetylation marks is a 

conserved mechanism that directs nucleosome remodelers to their target site. 

2.1.4.3 Writers that read – How histone acetylation and methylation are 
functionally linked 

Lysine acetyltransferase (KAT) complexes are histone writers that mediate the 

acetylation of histones and are needed to retain remodelers at promoters. KATs are 

recruited through their interaction with effectors, i.e. proteins that recognize specific 

histone modifications and interact with the enzyme complex or are part of the complex 

itself [119]. Recruitment can also occur via the binding to transcription factors [131]. 

For example, this is the case for the co-activator SAGA (Spt-Ada-Gcn5 
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acetyltransferase) complex, which contains the highly conserved KAT GCN5 (general 

control of amino-acid synthesis 5), and the S. cerevisiae NuA4 (Nucleosome 

Acetylation at histone 4) complex, which contains the MYST (Moz-Ybf2/Sas3-Sas2-

Tip60) family member Esa1 as its catalytic subunit. Both SAGA and NuA4 are recruited 

by transcription factors like Gal4 and Gcn4, or the viral TF VP16 [132]–[135]. 

Alternatively, enzymes can bind their target sites through recognition of other histone 

marks, such as H3K4me and H3K36me (methylated histone H3 lysine 4 and lysine 

36), as seen for the mammalian MYST complexes MOZ/MORF and HBO1–BRPF1 

(see chapter 2.1.4.5 for details on H3K36me) [136]–[138]. This type of recruitment is 

highly conserved and has also been reported for S. cerevisiae, where both complexes 

share the homologous MYST family member Sas3 [139]–[141]. H3K4 and H3K36 can 

be mono, di- or trimethylated. Both marks are associated with active transcription. 

Methylation of H3K4 is mediated by the Set1/COMPASS complex (Set1C) family of 

KMTs whereas each state of H3K36me is regulated by different enzymes in higher 

eukaryotes and a single enzyme in yeast (see chapter 2.1.4.5). Like other lysine 

residues, H3K4me3 is and found at promoters and the 5’ region of genes [128], [142]. 

H3K4me2 is situated further downstream of H3K4me3 and targets NuA4 to promoters 

in S. cerevisiae [143]. H3K4me2 also correlates with transcription factor binding sites 

in humans [144]. In contrast to H3K4me3, H3K36me3 is usually found along the gene 

body, increasing towards the 3’-end [128], [145]. The level of H3K36me3 correlates 

with the gene’s transcription frequency [146]. Unlike H3K36me3, H3K36me2 appears 

to inversely correlated with transcription with less expressed genes displaying a higher 

level of H3K36me2 than higher expressed loci [128]. H3K36me is involved in a variety 

of different processes with H3K36me3 promoting transcription whereas H3K36me2 

rather acts in inducing its suppression (for details see chapter 2.1.4.5). 

This specific recruitment of proteins via interaction with distinct histone modifications 

to induce downstream events, which was also noted for heterochromatic H3K9me and 

chromodomains, has come to be known as the ‘histone code’ [147], [148]. A further 

layer of regulation is added by the interaction of histone modifications with other 

enzymes that also modify nucleosomes. 

2.1.4.4 The Paf1 regulatory mechanism – an example for histone cross-talk 

Deposition of H3K4 is regulated by the highly conserved RNAP II associated factor 

complex (Paf1C), which is has multiple functions (see Figure 2). 
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Figure 2: Overview of pathways promoting transcription, here in S. pombe - Paf1C recognizes the RNAPII-

CTD phosphorylated at S5 and recruits the COMPASS complex, the remodeller CHD1 and the ubiquitin ligase 

HULC to initiating RNAPII, which mediate deposition of H3K4me3, promoter escape of RNAPII, and H2Bub1, 

respectively; Set2 is recruited directly to the elongating RNAPII via interaction of its SRI domain with the CTD 

phosphorylated at S2 and S5 and co-transcriptionally mediates H3K36me3; H3K36me2 is deposited by a different 

mechanism.   

Paf1C is required for the control of histone H2B monoubiquitylation (H2Bub). H2Bub 

is a highly conserved euchromatic mark in eukaryotes. It is enriched over gene bodies 

and its level strongly correlates with transcription [149], [150]. Ubiquitylation of H2B is 

mediated by the E2-E3 ligase RAD6-RNF20/40 in humans, and homologs exist in 

S. cerevisiae (Rad6-Bre1) and S. pombe (HULC) [151]–[154]. Studies in S. cerevisiae 

and in flies revealed that the Paf1C subunit Rtf1 directly interacts with the E3 Rad6 

[155], [156]. Through the interaction with Paf1C, the Rad6-Bre1 complex travels along 

with the initiating and elongating RNAPII and modifies H2B co-transcriptionally [155].  

Further, Paf1C genetically interacts with the KMT Dot1 (Dot1L in humans, Dot1p in 

S. cerevisiae), which mediates methylation of H3K79 and is involved in multiple 

euchromatic regulatory processes [157]–[159]. Both Set1C/COMPASS and Dot1 need 

H2Bub for their function. Human Dot1L interacts with H2Bub and uses it as a pivot to 

rotate into position for downstream interactions of Dot1L with histone H4 and H3K79 

[160]. In S. cerevisiae, H2Bub acts as a binding partner for COMPASS, which 

facilitates its recruitment to chromatin and promotes the methylation of all three stages 

of H3K4 [161]. Paf1C also physically interacts with Set1; however as Paf1C promotes 

H2Bub and Set1C recognizes the phosphorylated C-terminal domain (CTD) of Rpb1, 
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the largest subunit of RNAP II, it is unclear whether this physical interaction plays a 

role in the recruitment to early elongating RNAP II [153], [162]–[164]. Lastly, in 

humans, both Paf1C and H3K4me3 interact with the chromatin remodeler CHD1, 

thereby recruiting this remodeler to promoter and 5’-regions of genes during early 

elongation. At promoters CHD1 assists RNAPII in escaping the nucleosome barrier, 

while within the gene body it is needed to maintain the boundary between H3K4me3 

and H3K36me3 [165], [166].  

2.1.4.5 H3K36 methylation – at the crossroads between different pathways 

The methylation state and localization of lysine position 36 of histone H3 (H3K36me) 

is controlled by a network of regulatory mechanisms that are highly conserved in 

eukaryotes [167], [168].  

Trimethylation of H3K36 is carried out by the SET2BD family of KMTs throughout all 

eukaryotes [167], [169]. Usually, H3K36me3 is mediated by a single KMT in any given 

higher eukaryote at H3K36 residues that were previously mono- and demethylated; 

however, mono- and dimethylation are in general deposited by more than one enzyme 

[168]. For example, in humans, three different KMTs, NSD1 to NSD3 (nuclear receptor 

binding SET domain proteins), are responsible for mono- and/or dimethylation of 

H3K36 [170]–[172]. In contrast, in yeast, this redundancy is not present and all 

methylation stages are carried out by single enzyme, Set2 [167], [169]. Demethylation 

of histones is mediated by the Jumonji domain of lysine demethylases (KDMs), e.g. 

the conserved H3K36me3 and H3K9me3-specific JMJD2A and the H3K36me2-

specific JMJD5, to restrict the downstream processes of H3K36me3 [173]–[175].  

Trimethylation by Set2 is coupled to active transcription. Set2 is recruited to 

transcribing RNAP II via interaction of the Set2 Rpb1 interacting (SRI) domain with the 

CTD of elongating RNAP II that is phosphorylated at serine two and five [176], [177]. 

This interaction not only controls the localization of Set2 but also contributes to its 

protein stability [178]. Secondly, a study in S. cerevisiae has shown that part of the SRI 

domain of Set2 interacts with linker DNA thereby providing further substrate specificity 

for nucleosomes over free histones and histone octamers [179]. Moreover, an AID 

(autoinhibitory domain) that is situated between the SET domain and the WW domain 

of Set2 blocks its activity when not bound to the CTD [179]. The level of H3K36me3 is 

also negatively regulated by proteolysis, as a recent study revealed that human SPOP, 
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the E3 subunit of the ubiquitin ligase complex SPOP/CUL3/ROC1, targets SETD2 for 

proteasomal degradation [180].  

Lastly, another layer of control links H3K36me3 to Paf1C. A study in S. cerevisiae 

revealed that H3K36me3 levels on chromatin are significantly reduced when Paf1 or 

Ctr9 are lacking, while the loss of other subunits has only a moderate or no effect [181]. 

Another study in mouse embryos focusing on Ctr9 suggests that Paf1C is required to 

control the levels of H3K36me3 during development, possibly in connection with the 

Paf1C-CHD1 interaction [166], [182]. This complex level of control for the different 

stages of H3K36me, particularly for H3K36me3, suggests that they are required for 

different pathways that may even counteract each other.  

Indeed, all three stages of H3K36me have distinct functions. H3K36me1 acts as a 

substrate for H3K36me2-specific KMTs (e.g. NSD1) and may also be recognized as a 

secondary substrate along H3K36me2 by the binding sites of certain proteins, such as 

the human DNA methylhydroxylase TET2 [170], [183]. H3K36me2 is involved in both 

acetylation and deacetylation of histones. In S. cerevisiae, H3K36me2 is sufficient to 

recruit the chromodomain protein Eaf3, which is part of the histone lysine deacetylase 

(HDAC) Rdp3S [184]. Rdp3S recruitment in turn prevents transcription from cryptic 

start sites through deacetylation of histone H4 [185]. Moreover, H3K36me2, in 

conjunction with H3K4me2/me3, is one of the histone marks that is needed for the 

recruitment of S. cerevisiae NuA4 and is also required for acetylation of H4K16ac 

during the larval stage in Drosophila [143], [186]. Thus, dimethylation can have 

different functions, depending on whether the modification overlaps with 

H3K4me2/me3 or not.  

The strict control of H3K36me3 levels highlights its importance in chromatin regulation. 

H3K36me3 is needed for processes that promote transcriptional silencing, as 

described for S. cerevisiae ISWI remodeler Isw1b [126] (see also 2.1.4.2). H3K36me3 

also interacts with the DNA methyltransferases Dnmt3A, which recognize the mark via 

its PWWP domain, and a subunit of PRC2; thus, it is also required for processes 

involving facultative silencing [58], [187], [188].  

In addition, exons are enriched for H3K36me3 while introns are depleted for this mark 

[55]. The maintenance of this distribution is critical as it promotes intron retention 

whereas its increase at specific splice sites results in aberrant splicing via exon 

exclusion [180], [189], [190].  
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Lastly, H3K36me3 is involved in DNA damage response and histone acetylation, as 

binding partner of the transcriptional co-activator LEDGF [191]–[194]. 

In conclusion, like H3K4me, H3K36me is essential in the control of transcriptional 

processes. However, H3K36me, particularly H3K36me3, participates in different 

regulatory pathways depending on both its methylation state and chromatin context.  

2.2 Chromatin reader domains are conserved through evolution 
Regulatory mechanisms require fine-tuning on chromatin. They often depend on 

proper chromatin effectors, e.g. nucleosome remodelers or histone writers, such as a 

KAT or KMT, which are recruited to either HC or EC. To this end, proteins contain 

specific domains that discriminate between PTMs, such as acetylation and 

methylation, or even different methylation states. These domains are conserved from 

yeast to mammals and classified into different families based on the composition of 

their histone-binding pocket and their secondary and tertiary structure.  

The PWWP domain, a member of the Royal family of methyllysine binders, is one such 

example and is found in many regulatory factors, such as the above mentioned LEDGF 

and the Dnmts [195]. PWWP domains owe their name to the presence of a conserved 

proline-tryptophan-tryptophan-proline motif (see Figure 3A). The domain itself spans 

100-130 amino acids and is folded into a five-stranded β-barrel, followed by a bundle 

of two to five α-helices (Figure 3B and 3C)[196]–[198]. Methyllysine binders often 

employ an aromatic cage for substrate recognition; this pocket comprises two to four 

residues depending on the binding motif [199]. The aromatic cage of PWWP domains 

consists of three residues (Figure 3A) [197], [200]. The first and third residues is either 

tyrosine, tryptophan, or phenylalanine, whereas the second residue is either a 

tryptophan or tyrosine. The first aromatic residue precedes the first proline of the 

PWWP motif and is part of the loop between the β1 and β2 strand of the beta-barrel 

structure. The second aromatic residue comprises the amino acid in the third position 

of the PWWP motif and is part of the β2 strand and the third aromatic residue, which is 

part of the β3 strand, is located further downstream. 
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Figure 3: Aromatic cage of PWWP domain proteins - (A) Positioning of the aromatic residues comprising the 

aromatic cage within an amino sequence context and relative to the PWWP motif, aromatic residues are shown in 

red in different species; (B) Solution NMR structure of Pdp1 PWWP domain visualized with NGL, DOI: 

10.2210/pdb2l89/pdb, retrieved from rcsb.org/pdb/ on December 4, 2017; (C) Solution NMR structure of Pdp2 

PWWP domain visualized with NGL, DOI: 10.2210/pdb1h3z/pdb, retrieved from rcsb.org/pdb/ on December 4, 

2017. 

The structures of other Royal family members, like the Tudor domain or the 

chromodomain, use a similar arrangement of β strands, α-helices, and positions of the 

binding residues but are otherwise diverged from each other during evolution [195]. 

Many PWWP domain proteins bind specifically to H3K36me3, e.g. mammalian 

Dnmt3A, whereas only few members recognize H3K79me3 or H4K20me3 [197], [198], 

[200]. In contrast, chromodomains preferentially interact with H3K9me2/me3 or 

H3K27me3, e.g. in HP1 or PRC2, respectively.  
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2.3 The reader writer problem 
A confounding observation is that many histone writers can read the same histone 

PTM they deposit. However, if the writer recognizes its own mark then deposition 

should theoretically not be possible to write the mark in the first place as general 

consensus is that recruitment to chromatin mediates histone writer activity. 

Nonetheless, many histone writers display such a target specificity. The mammalian 

methyltransferase Suv39h and fission yeast Clr4 recognize H3K9me2/me3 through 

their chromodomain [201], [202]. Similarly, the S. pombe PWWP domain protein Pdp1 

is recruited to H4K20me1, the mark that is deposited by its binding partner Set9 [197]. 

Such modifiers are often part of a feedforward loop (see also 2.1.4.4). For instance, in 

fission yeast, the bridging protein Stc1 mediates the interaction between the Clr4-

containing CLRC complex and the RITS complex, which is recruited to nascent HC 

transcripts via Ago1 and to H3K9me2 via Chp1, resulting in increased H3K9 

methylation [79], [81]. In mammals, Dnmt3A interacts with Suv39h1 and HP1 proteins, 

thereby feeding a similar loop [64]. It is also possible that the interaction with the 

chromatin marks deposited by these enzymes keep them in place, thereby preventing 

the breakdown of the loop; an example is H3K9me2 in a dcr1∆ or stc1∆ mutant [79]. 

In a dcr1∆ mutant siRNA cannot be generated anymore resulting in a cease of RITS 

recruitment. In a stc1∆ mutant CLRC cannot be recruited to HC. Though loss of either 

protein results in de-repression of centromeric HC, H3K9me2 is maintained at a 

reduced level (~35% in dcr1∆ and ~50% in stc1∆) due to direct recruitment of Clr4 via 

its chromodomain.  

Considering the presence of such a loop for HC, the question arises whether more 

such connections exist that have not yet been discovered. However, the complexity of 

the regulatory pathways and the redundancy of the factors involved, e.g. three different 

H3K9me2 and H3K9me3 HMTs each in humans, further complicate the elucidation of 

interconnections between mechanisms.  

2.4 S. pombe as a model for the study of chromatin regulation  
Model organisms that harbor conserved mechanisms of higher eukaryotes but are less 

complex can facilitate the identification of novel regulatory factors. A powerful genetic 

model system is S. pombe. Compared with the human genome, which is made up of 

3.1 billion base pairs arranged on 23 chromosomes that encode around 19 – 20,000 

genes, the S. pombe genome consists of 12.6 million base pairs, which are organized 
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into three chromosomes and encodes 5064 protein-coding genes [203]–[205]. Also, 

many chromatin factors are not essential for survival, thus allowing studies with null 

mutants, e.g. clr4∆. Additionally, similar to higher eukaryotes a vast array of genomic 

tools is available to generate mutants, reporter strains and epitope-tagged strains in 

S. pombe, including the use of homologous recombination and CRISPR [206], [207]. 

Compared to higher eukaryotes, such as mouse cells which need 14 kb of homologous 

flanking sequences for successful insertion into a targeted locus, S. pombe requires 

only 600 bp, and S. pombe cells have a much shorter division time than higher 

eukaryotes (2 h compared to 24 h in humans) [208]–[210]. Thus, genetic modification 

of S. pombe requires much less time and effort than for higher eukaryotes. 

 

Figure 4: Overview of constitutive heterochromatin in S. pombe - Shown are the two heterochromatic regions 

used of this study and the mating type locus with the heterochromatic domains shaded in red, red stripes – tRNA, 

grey – euchromatic genes: top – centromeric region of chromosome 1, heterochromatic repeats: sequences 

depicted as red stripes, imr- innermost repeats, otr – outer repeats, IRC – inverted repeats at centromeres; middle 

– mating type locus, mat1+ locus – actively transcribed mating type, mat2-P and mat3-M - silenced mating type 

cassettes, cenH - dg/dh-like region, IR – inverted repeats; bottom – subtelomeric region of the left arm of telomere 1. 

Like in higher eukaryotes, constitutive heterochromatin in S. pombe is found at the 

pericentromeres and the subtelomeric regions. A third region of constitutive 

heterochromatin is located at the mating type locus. In contrast to higher eukaryotes, 

where only the pericentromeric region is clearly defined, this applies to all constitutive 

heterochromatin regions in S. pombe, making it excellently suited for studying silencing 

mechanisms (see Figure 4). 

Pericentromeric DNA is organized into four kinds of non-coding repeats: (i) the inner 

most repeats (imr) that flank the centromere on each chromosome; the outer repeats 

(otr) that flank the imr and consist of (ii) dg repeats and (iii) dh repeats; (iv) the inverted 

centromeric repeats (IRC) that flank pericentromeric HC on each side and act as a 

physical boundary to euchromatin [47].  
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The mating type locus contains the actively transcribed mat1 locus and the two 

transcriptionally silent mating type loci (mat2-P and mat3-M), which each contains a 

cassette (h+ and h-, respectively) with copies of the two mating type genes. These 

copies are used as templates for mating type switching [211]. The central part of the 

mating locus contains the cenH region, which consists of sequences homologous to 

the pericentromeric dg/dh repeat [212]. The mat locus is flanked by another set of IR 

domains that function as boundaries [213]. The telomeres of S. pombe are comprised 

of G/T rich heterogeneous tandem repeats (G0-6GGTTACAC0-1) [214], [215]. This is 

different from mammals, whose telomeres usually only consist of the repeat GGGTTA 

[216]. Nonetheless, telomere protection via the shelterin complex works similar in 

mammals and S. pombe [216], [217]. The subtelomeric region of S. pombe comprises 

the TAS (telomere associated repeats), which together with the telomeric repeats give 

rise to TERRA and other telomeric RNAs, pseudogenes and repetitive sequences 

(long terminal repeats, LTRs) but also mostly genes that are upregulated during 

meiosis but silenced during the mitotic cell cycle [218], [219]. In case of chromosome 3, 

the subtelomeric region contains in addition the rDNA repeats, which are also 

heterochromatic. Furthermore, in addition to the dg/dh repeats and the dg/dh-like cenH 

region at pericentromeres and the mating type locus, respectively, the tlh1+ and tlh2+ 

genes present on the subtelomeric arms of chromosome 1 and 2 (and probably 

chromosome 3) may act as the telomeric nucleation site for heterochromatin formation 

and spreading, as they are partially homologous to dg/dh reviewed in [67], [212], [220]. 

Comparable to higher eukaryotes, S. pombe also possesses facultative HC in the form 

of heterochromatin islands, which include several meiotic genes that directly neighbor 

euchromatic genes [221]. Two other types of HC have been reported, however these 

form only temporarily during G1 phase and in certain exosome mutants [222], [223].  

Many key HC factors are conserved in S. pombe and well characterized, for instance 

HP1 proteins, KMTs , KDMs, HDACs, and the RNAi machinery [71], [224], [225]. 

Conversely, silencing in S. pombe is less complex than in higher eukaryotes, as it lacks 

DNA methylation and PcG proteins. Instead, S. pombe employs RNAi to establish de 

novo heterochromatin at the pericentromeres (and to some extent at the mating type 

locus and subtelomeres). S. pombe has two HP1 proteins, Swi6 and Chp2 [226]. Chp1, 

although a chromodomain protein, lacks the chromoshadow domain and forms with 

Ago1 and Tas3 the RITS complex involved in RNAi [226], [227]. Swi6 plays an 

important role during heterochromatin spreading but has also been shown to retain 
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pericentromeric transcripts to promote their degradation [228], [229]. Both Swi6 and 

Chp2 bind the S. pombe specific-boundary factor Epe1, a putative H3K9me 

demethylase, which antagonizes heterochromatin spreading beyond the endogenous 

boundaries [229]–[232]. In addition, Chp2 recruits the multifunctional SHREC complex, 

which promotes heterochromatin formation. SHREC is orthologous to NuRD and 

contains the H3K14ac-specific HDAC Clr3 and the nucleosome remodeler Mit1 [88], 

[233]. The HDAC Sir2, the homolog of S. cerevisiae Sir2, deacetylates H3K14ac as 

well as H3K9ac, H4K16ac and H3K4ac [43], [234], [235]. Especially the deacetylation 

of H3K9ac and H3K14ac have been shown to oppose heterochromatin assembly in 

S. pombe [101], [234], [235].  

Many of the histone marks found in higher eukaryotes are conserved as well. For 

example, HC is marked by H3K9me2/me3 and H4K20me3, whereas H3K4me3 as well 

as H3K14ac and H3K9ac decorate promoter regions, and H3K36me2 and H3K36me3 

are distributed throughout the gene body [43], [128]. However, in contrast to the 

redundancy of KMTs in higher eukaryotes, all three methylation stages are conferred 

by single copy enzyme, which are a homolog of the trimethylase found in higher 

eukaryotes: In HC, H3K9me and H4K20me are mediated by Clr4 and Set9, 

respectively; in EC, Set1 deposits H3K4me, whereas Set2 methylates H3K36 [74], 

[169], [236], [237].  

The S. pombe genome also contains three known KATs, the SAGA complex subunit 

Gcn5 and two MYST family members, Mst1 and Mst2; among which only Mst1 is 

essential [238], [239]. Mst1 is a homolog of the S. cerevisiae HAT complex NuA4 and 

acetylates H3K4 and histone H4 [240], [241]. Gcn5, named after its homologs in higher 

eukaryotes, and Mst2 both acetylate H3K14 with Gcn5 additionally targeting H3K9 

[238], [239], [242]. 

To summarize, S. pombe is highly suitable to study HC formation and its 

spatiotemporal regulation, as many hallmarks of EC and HC are conserved, and critical 

factors are often encoded by single-copy genes, resulting in reduced complexity.  

2.5 The Mst2 HAT complex is a known anti-silencing factor 
In S. cerevisiae, the HAT complex NuA3 is present as two subcomplexes that target 

different chromatin regions: NuA3a contains the PHD finger domain protein Yng1p that 

recruits NuA3 to H3K4me3 at promoter regions, whereas NuA3b binds to H3K36me3 

(and to a lesser degree H3K36me2) via its PWWP subunit Pdp3p (Figure 5A and 5B) 
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[140], [243]. Additionally, both subcomplexes contain the PHD domain protein Nto1, 

which binds to H3K4me and H3K36me via its two PHD domains [244]. In S. pombe, 

NuA3 is named after its catalytic HAT subunit as Mst2 complex (hereafter Mst2C). 

Mst2C lacks a corresponding Yng1 subunit but contains a homolog of Pdp3; in 

addition, it comprises two pombe-specific subunits (Figure 5C) [245].  

 

 

Figure 5: Comparison of recruitment strategies between S. cerevisiae NuA3 and S. pombe Mst2C - (A) 

NuA3a is recruited to H3K4me3 via the PHD domain protein Yng1; (B) NuA3b is recruited to H3K36me3 via the 

PWWP domain protein Pdp3, though Yng1 is still present; (C) function of Pdp3 within Mst2C is unclear, but it is 

possibly involved in the complex’ recruitment; homologous subunits of the complexes are similarly colored.  

An early study proposed that Mst2 requires the presence of other Mst2C subunits to 

function as immunoprecipitated Mst2-HA did display HAT activity in in vitro assays 

[238]. This notion was confirmed by the discovery that Mst2C is catalytically inactive in 

absence of Nto1 or the pombe-specific Ptf2 [245]. In vivo, Mst2 acts redundantly with 

the HAT Gcn5: H3K14ac is maintained in single mutants but lost in the gcn5∆ mst2∆ 

double mutant [245].  

H3K14ac plays a role in DNA damage response by increasing chromatin accessibility 

and promoting the recruitment of the RSC remodeler [245]. However, Mst2 also 

appears to promote transcription, as mst2∆ cells display reduced H3K9ac and H4ac 

levels, both marks of active promoters, at two loci telomere-distal of tlh1+ [43], [128], 

[238], [242]. This anti-silencing function of Mst2C appears to oppose RNAi, as loss of 

mst2+ suppresses the silencing defect caused by the lack of components of the RNAi 

pathway [242]. Silencing in RNAi-deficient cells is also rescued by a catalytically 

inactive mst2-E274Q mutant but, surprisingly, not by the loss of gcn5. In contrast to 

the silencing defects in RNAi mutants, loss of silencing in HDAC mutants cannot be 

rescued by concomitant deletion of mst2+ [242]. Together, this implies that Mst2C 

antagonizes heterochromatin in a manner that requires its HAT activity but is 

independent of H3K14 acetylation. 
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The anti-silencing function of Mst2C is not directly linked to H3K9me deposition, since 

loss of Mst2 does not rescue silencing defects in mutants lacking CLRC or HP1 [238], 

[242]. Rather, Mst2C acts redundantly with Epe1 in the maintenance of 

heterochromatin boundaries, as loss of Mst2, like that of Epe1, results in H3K9me2 

spreading [230], [231], [246], [247]. Furthermore, while H3K9me2 levels in mst2∆ and 

epe1∆ are comparable at pericentromeres, mating type, and meiotic islands (e.g. 

mei4+), they are drastically increased at subtelomeric regions in an mst2∆ single 

mutant [247]. Thus, while not directly involved in H3K9me deposition, Mst2 acts 

redundantly with Epe1 in the prevention of H3K9me spreading as well as the ectopic 

formation of heterochromatin.  

Moreover, loss of both Mst2 and Epe1 results in the silencing of genes that neighbor 

meiotic islands through H3K9me2 spreading, indicating that Mst2 also counteracts 

ectopic silencing [247]. Lastly, Mst2C has also been reported to mediate maintenance 

of heterochromatin boundaries through promoting nucleosome turnover and impedes 

ectopic heterochromatin formation [101].  

 

Thus, Mst2C is an H3K14-specific HAT but has another target that opposes RNAi and 

H3K9me2-speading as well as the retention of nucleosomes. However, the molecular 

mechanism by which Mst2C antagonizes heterochromatin has not yet been elucidated. 

2.6 Aims and objectives of this study 
While Mst2C acts in promoting transcription, the loss its subunit Pdp3 causes 

paradoxically a defect in heterochromatin silencing [231]. As PWWP domain proteins 

are known to affect the localization of chromatin-modifying enzymes, it seems plausible 

that Pdp3 fulfills a similar function for Mst2C [140]. This raised the question whether 

Pdp3 acts as a specification factor of Mst2C through anchoring to euchromatin. This 

hypothesis makes the prediction that loss of Pdp3 causes relocalization of Mst2 and in 

turn perturbs silencing through aberrant acetylation at heterochromatin. The overall 

goal of my thesis was to test this hypothesis. In particular, I sought to examine whether 

Pdp3 sequesters Mst2C to euchromatin and whether the silencing defect of pdp3∆ can 

be alleviated by eliminating Mst2 or any of the other complex subunits.  

Revealing the mechanism by which Pdp3 acts within Mst2C makes it necessary to 

know where Mst2 is localized on chromatin and which histone modification is 

recognized by Pdp3. If Pdp3 recruits Mst2 to chromatin, their binding profiles should 
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be similar to each other. If Pdp3 recruits Mst2C to chromatin via its PWWP domain, 

then binding of Mst2 should be lost in a strain lacking Pdp3 and as a result encroach 

on heterochromatin. Further, Pdp3 should no longer interact with chromatin in strains 

with a mutated PWWP domain. Lastly, neither Mst2 nor Pdp3 should be detectable on 

chromatin in strains that lack the target of Pdp3, i.e. a specific methylated histone 

residue [200].  

Once the histone modification that recruits Pdp3 has been identified, genetic 

interaction studies can be applied to further explore the functional relationship. A 

double deletion mutant of the histone-modifying enzyme (likely a KMT) and pdp3+ 

would be expected to be epistatic with its single mutant, as the KMT would function 

upstream of Pdp3. In contrast, concomitant deletion of mst2+ should rescue the 

silencing defect the mutant lacking the KMT, as seen for pdp3∆.  

Finally, if delocalization of Mst2 is responsible for the silencing defect in pdp3∆, this 

suggests that perturbed silencing is mediated through its unrestrained KAT activity. 

While Mst2 has been shown to acetylate histone H3K14, previous studies suggested 

that H3K14ac by Mst2 is not involved in HC de-repression. Thus, identifying the 

relevant acetylation target is critical to fully understand the molecular mechanism. 
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3 Materials and methods 

3.1 Microbiological methods 

3.1.1 E. coli methods 

3.1.1.1 Bacterial strains 
Table 1: Electrocompetent E. coli strain 

name genotype source 
XL1 blue recA1; endA1; gyrA96; thi-1; hsdR17; supE44; relA1; 

lac[F´ proAB lacIqZΔM15 Tn10(Tetr)] 
Stratagene 

 

3.1.1.2 Plasmids 
Table 2: Plasmids used and generated during the study 

strain designation plasmid genotype source 
ESB96 pFA6a-NATMX6 ori, ampR, natR  

 
[248] 

ESB251 pRS416 CEN, URA3, ampR Stratagene 
ESB466 pRS416-CBP-FLAG-pdp3 CEN, URA3, ampR, 

natMX:2xFLAG-CBP-
Pdp3 

this study 

ESB467 pRS416-CBP-FLAG-
pdp3_F109A 

CEN, URA3, ampR,  
natMX:CBP-2xFLAG-
pdp3_F109A 

this study 

ESB468 pRS416-mst2-CBP-FLAG CEN, URA3, ampR, mst2-
CBP-2xFLAG:natMX 

this study 

3.1.1.3 Media 
Table 3: LB liquid media 

compound amount final concentration 
tryptone 10 g 10 g/l 
yeast extract 5 g 5 g/l 
NaCl 10 g 10 g/l 
ddH2O up to 1000 ml - 
Ampicilline (50 mg/ml) [for LB+Amp) 1 ml 50 µg/ml 

LB non-selective stored at RT, LB+Amp stored at 4ºC 

 

Table 4: LB + Amp plates 

compound amount final concentration 
tryptone 10 g 10 g/l 
yeast extract 5 g 5 g/l 
NaCl 10 g 10 g/l 
Agar (Serva) 15 g  1.5 % 
ddH2O up to 1000 ml - 
Ampicilline (50 mg/ml) 1 ml 50 µg/ml 

stored at 4ºC 
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3.1.1.4  Growth and storage of strains 

For colony growth, cells were plated onto LB media containing antibiotic and incubated 

at 37 °C overnight. For maxipreps (section 3.3.2.1), 50 ml of medium were inoculated 

from the -80ºC stock using a sterile pipet tip to add a small amount of cells directly to 

the medium. For minipreps, 2 ml of medium were inoculated with a single colony, using 

a sterile pipet tip as well. The cells were grown overnight at 37 ºC and 200 rpm (rounds 

per minute). For long-term storage, 125 µl of cells suspended in LB (+ antibiotic), e.g. 

from a miniprep, were mixed with 1.275 ml of filtered and cold 20% glycerol and stored 

at -80 ºC. 

3.1.1.5 Transformation of plasmids via electroporation 

For propagation in E. coli, DNA was extracted from 1/3 to 1/2 of a plate of S. cerevisiae 

transformants using the Smash and Grab method (section 3.3.2.3) and resuspended 

in 50 µl ddH2O. 10 µl were placed on a filter disc (Millipore 0.05µm VMWP; Cat#: 

VMWP02500) swimming on 100 ml of H2O and dialyzed for 10 minutes. The rest was 

stored at -20ºC. Electrocompetent XL1blue cells (Table 1) were thawed on ice and 

aliquoted to 40 µl per transformation. 10 µl of dialyzed plasmid were mixed with the 

thawed cells and pipetted into sterile electroporation cuvettes (Bio-rad #165-2089; 

brown cap). The cells were electroporated using a Bio-Rad Gene Pulser 

Electroporation system (1.8 kV, 200 Ohm, 25 µF). Immediately after electroporation 

the transformants were mixed with 400 µl of RT LB medium (Table 3) and transferred 

to a fresh 1.5 ml tube. For recovery, the cells were incubated for 45 min at 37ºC and 

constant agitation. 40 µl of cells were plated onto LB + Amp (Table 4) as a 1:10 plate 

while the rest of the cells were spun down and about 200 µl of supernatant were 

removed. The cells were resuspended again and plated onto LB + Amp as 9:10 plate. 

The colonies were grown over night at 37 ºC. All inoculation steps were performed 

using aseptic laboratory techniques [249]. 

3.1.2 S. cerevisiae methods 

3.1.2.1 Strains 
Table 5: S. cerevisiae strain for homologous recombination 

Strain designation genotype source 
YSB92 BHM1669 (pEG202) 

[W303] 
Sigma-Aldrich 
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3.1.2.2 Media 
Table 6: YPD liquid media 

compound amount final concentration 
yeast extract 10 g 10 g/l 
Bacto peptone 20 g 2 % 
amino acids 10 ml each see amino acids table 
ddH2O up to 950 ml - 
40 % glucose 50 ml (directly before use) 2 % 

common RT stock 

Table 7: SD plates 

compound amount final concentration 
yeast nitrogen base w/o amino acids 6.7 g 6.7 g/l 
agar (Serva) 20 g 2 % 
amino acid or uracil 10 ml each 20-200 mg/ml depending on the 

compound 
ddH2O 850 ml - 

common 4ºC stock 

Table 8: SC-ura plates 

compound amount final concentration 
yeast nitrogen base w/o amino 
acids 

6.7 g 6.7 g/l 

agar (Serva) 20 g 2 % 
amino acid 10 ml each 20-200 mg/ml depending on the amino 

acid 
ddH2O 850 ml - 

common 4ºC stock 

10 ml per amino acid and of uracil were added from 100 ml preparations of 100x stock 

solutions as required (all reagents were purchased from Sigma-Aldrich).  

Table 9: amino acids and uracil 

compound amount final concentration (in 1l media) 
Arginine HCl 200 mg 2 mg/ml  
Isoleucine 300 mg 3 mg/ml  
Lysine HCl 300 mg 3 mg/ml  
Methionine 200 mg 2 mg/ml  
Phenylalanine 500 mg 5 mg/ml  
Threonine 2000 mg 20 mg/ml  
Tyrosine 300 mg 3 mg/ml  
Uracil 200 mg  2 mg/ml  
Valine 1500 mg 15 mg/ml  

common RT stock 

The compounds were mixed in by stirring and brought to 950ml with ddH2O. The pH 

was adjusted to 5.8 with HCl and the mixture autoclaved. 50 ml 40% glucose were 

added after cooling the mixture to 55ºC before pouring.  

3.1.2.3 Growth of strains 

Solid cultures were inoculated from -80 °C stock by streaking the cell onto SD plates 

(Table 7) using a sterile 2-ml serological glass pipette. For liquid cultures, 2-ml of YPD 

was inoculated from plate. The preculture was grown overnight at 30ºC on a turning 
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wheel. In the morning 1.25 ml of the preculture were diluted 1:40 in 50 ml of YPD 

medium (Table 6) in a 250 ml flask. The OD600 (optical cell density at 600 nm) was 

measured using an OD600 DiluPhotometer™ (IMPLEN).  The culture was then grown 

at 30 C and 160 rpm until the desired OD600. All inoculation and measurement steps 

were performed using aseptic laboratory techniques [249]. 

3.1.2.4 Plasmid generation via homologous recombination 

To increase the rate of successful transformants in S. pombe, the mutants were first 

constructed in S. cerevisiae, then propagated in E. coli to produce a high quantity of 

material for transformation. To this end, the shuffle vector pRS416, which is 

propagated both in S. cerevisiae and E. coli, was used as backbone plasmid for 

molecular cloning (Sikorski and Hieter, 1989). S. cerevisiae was used as it has a 10-

fold higher capacity for homologous recombination than S. pombe, thus requiring 

shorter homologous domains for recombination (50 bp compared 500 bp for 

S. pombe). Plasmids containing FLAG-tagged pdp3+, pdp3+_F109A or mst2+ were 

generated by homologous recombination with the shuffle vector pRS416 (markers 

URA3 and ampR) in the S. cerevisiae W303 strain (Table 5). pRS416 was linearized 

with EcoI-HF (see section 3.3.4.1), tested for linearization by agarose gel 

electrophoresis and purified (see sections 3.3.4.3 and 3.3.4.4). The cells were grown 

to an OD of at least 0.6, then pelleted and washed twice with 25 ml of ddH2O at room 

temperature and 400xg for 5 min. The cells were resuspended in 500 µl H2O, aliquoted 

to 100 µl each and pelleted again for 1.5 min at 400 x g. The pellets were then treated 

with a lithium acetate, polyethylene glycol mix containing the DNA fragments (250 µl 

50% PEG 3350, 5 µl boiled 10 mg/ml single-stranded DNA, 36 µl of 1 M LiOAc, 500 ng 

per DNA fragment in a total of 50 µl ddH2O). The mix was vortexed and incubated for 

40 min at 42°C on a heating block. After incubation the transformed cells were spun 

down for 2 min at 400xg and washed with 500 µl of sterile ddH2O. Lastly, the cells were 

resuspended in 100 µl of ddH2O and plated onto SC-ura (Table 8). These plates were 

grown at 30ºC for four days. 

3.1.3 S. pombe methods 

3.1.3.1 Strains 

Strains of the Bioneer collection are derived from the SP286 background (M (h-), smt0, 

ade6-M210, leu1-32, ura4-D18). The reporter gene strains are derived from the wild 
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type strain 972 (M(h-), ade6-M210, leu1-32, ura4-D18). Table 10 comprises all strains 

that were utilized during this study.  

Table 10: S. pombe strains used in the study. 

name genotype use source applied 
in Figure 

PSB065  h+, imr1L::ura4+ gene reporter 
assay, RT-qPCR  

Braun Lab 1B, 1D, 
4D, 5A, 
5E, 6A-
6C 

PSB090 h+, imr1L::ura4+, clr4∆ positive control for 
gene reporter assay  

Braun Lab 1B 

PSB582 h- SPSQ (cyhR), SPL42 (cyhS), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210 

SGA, gene reporter 
assay, RT-qPCR, 
ChIP-qPCR 

Braun Lab 1D, 2C, 
3B, 3C, 
7A-7C, 
8A, 8B 

PSB619 h+, pdp3∆::kanMX gene reporter 
assay, deletion 
cassette donor, 
marker switch 

Bioneer 1B 

PSB623 h+, pdp3∆::natMX deletion cassette 
donor  

Braun Lab - 

PSB657 h+, imr1L::ura4+, pdp3∆::natMX gene reporter 
assay, RT-qPCR 

Braun Lab 1B, 1D, 
4D, 5A 

PSB658 imr1L::ura4+, pdp3∆::natMX gene reporter assay  Braun Lab 1B 

PSB689 h-, SPSQ (cyhR), SPL42 (cyhS), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, pdp3∆::natMX 

gene reporter 
assay, RT-qPCR, 
SGA 

Braun Lab 1D, 2C, 
3B, 3C, 
7B, 8A, 
8B 

PSB955 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, pdp3∆::natMX, 
mst2∆::kanMX 

ChIP-qPCR this study 9G-9I, 
10H 

PSB969 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, mst2∆::kanMX 

ChIP-qPCR, 
deletion cassette 
donor, marker 
switch 

this study 9D-9F, 
10C 

PSB972 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, eaf6∆::kanMX 

genotyping, deletion 
cassette donor, 
marker switch 

this study - 

PSB975 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, nto1∆::kanMX 

genotyping, deletion 
cassette donor, 
marker switch 

this study - 

PSB978 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, ptf1∆::kanMX 

genotyping, deletion 
cassette donor, 
marker switch 

this study - 

PSB981 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, ptf2∆::kanMX 

genotyping, deletion 
cassette, donor, 
marker switch 

this study - 

PSB984 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, tfg3∆::kanMX 

genotyping, deletion 
cassette donor, 
marker switch 

this study - 

PSB1042 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, mst2∆::natMX 

genotyping, deletion 
cassette donor 

this study - 

PSB1044 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, eaf6∆::natMX 

genotyping, deletion 
cassette donor 

this study - 
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name genotype use source applied 
in Figure 

PSB1046 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, nto1∆::natMX 

genotyping, deletion 
cassette donor 

this study - 

PSB1050 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, ptf2∆::natMX 

genotyping, deletion 
cassette donor 

this study - 

PSB1122 h- SPSQ (cyhR), SPL42 (cyhS), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210,  mst2∆::natMX 

SGA, gene reporter 
assay, RT-qPCR, 
ChIP 

this study 2C, 3B, 
3C, 7A, 
8A, 8B 

PSB1124 h- SPSQ (cyhR), SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E,  ade6-M210, eaf6∆::natMX 

SGA this study 2C 

PSB1127 h- SPSQ (cyhR), SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E,  ade6-M210, nto1∆::natMX 

SGA this study 2C, 7B 

PSB1130 h- SPSQ (cyhR), SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E,  ade6-M210, pdf2∆::natMX 

SGA this study 2C, 7B 

PSB1303 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210 

ChIP-qPCR this study 9A-9I, 
10C, 
10F, 10H 

PSB1305 h+, SPSQ (cyhR)), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210, pdp3∆::kanMX 

ChIP-qPCR this study 9A-9C, 
10F 

PSB1524 h+, SPSQ (cyhR), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E,  ade6-M210, clr3∆::kanMX 

ChIP-qPCR this study 8A, 8B 

PSB1696 h+, imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-
32, ura4-DS/E, ade6-M210, natMX::CBP-
2xFLAG-pdp3 

ChIP-qPCR  this study 4D, 5A, 
5E, 6A-
6C, 10A, 
10D 

PSB1698 h+, imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-
32, ura4-DS/E, ade6-M210, natMX::CBP-
2xFLAG-pdp3_F109A 

ChIP-qPCR this study 5E, 6A-
6C, 10A 

PSB1769 h+, imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+ leu1-
32 ura4-DS/E ade6-M210, natMX::CBP-
2xFLAG-pdp3, set2∆::kanMX 

ChIP-qPCR  this study 5A, 6A, 
6B, 10D 

PSB1817 h+ imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-
32, ura4-DS/E, ade6-M210,  natMX::CBP-
2xFLAG-pdp3, set2-SRI∆:kanMX 

ChIP-qPCR this study 5A, 6A, 
6B, 10D 

PSB1782 
 

h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+ ChIP-qPCR Buehler 
Lab 

4E, 4F, 
6A-6C, 
10B, 10E 

PSB1855 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+,  
mst2-CBP-2xFLAG::natMX 

ChIP-qPCR this study 4E, 4F, 
5B, 5C, 
6A-6C, 
10B, 
10E, 10G 

PSB1870 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
mst2-FLAG::natMX, set2∆::kanMX 

ChIP-qPCR this study 5B, 5C, 
6A, 6B, 
10E, 10G 

PSB1871 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
mst2-FLAG::natMX, pdp3∆::kanMX 

ChIP-qPCR this study 4E, 4F, 
6A, 6B, 
10B 

PSB1882 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
mst2-FLAG::natMX, set2-SRI∆::kanMX 

ChIP-qPCR this study 5B, 5C, 
6A, 6B, 
10G 

PSB2099 h-, SPSQ (cyhR) SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210, pdp3Δ::natMX 
mst2∆::kanMX 

RT-qPCR this study 3B, 3C 

PSB2111 h- SPSQ (cyhR), SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210, set2∆::kanMX 

RT-qPCR this study 7A, 7B 
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name genotype use source applied 
in Figure 

PSB2113 h- SPSQ (cyhR), SPL42 (cyhS),  hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210, set2∆::kanMX, 
pdp3∆::natMX 

RT-qPCR this study 7B 

PSB2115 h- SPSQ (cyhR), SPL42 (cyhS), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, nto1∆::natMX, 
set2∆::kanMX 

RT-qPCR this study 7B 

PSB2131 h- SPSQ (cyhR), SPL42 (cyhS), hphMX::cen1, 
imr1L(NcoI)::ura4+, otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E ade6-M210, set2∆::kanMX, 
mst2∆::natMX 

RT-qPCR this study 7A 

PSB2325 h-, SPSQ (cyhR) SPL42 (cyhS)  hphMX::cen1, 
imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+, leu1-32, 
ura4-DS/E, ade6-M210, ptf2∆::natMX, 
set2∆::kanMX 

RT-qPCR this study 7B 

PSB2356 
(spb426) 

h-, leu1-32, ura4-D18, ade6-704, trip1+::ade6+, 
shade6-250/natMX 

RT-qPCR this study 7C 

PSB2357 
(spb2982) 

h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
nmt1+::ade6-hp+::natMX, brl1-K242R  

RT-qPCR this study 7C 

PSB2568 
(spb2983) 

h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
nmt1+::ade6-hp+::natMX, brl1-K242Q  

RT-qPCR this study 7C 

PSB2361 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
shade6-250/natMX, set2∆::kanMX  

RT-qPCR this study 7C 

PSB2363 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
nmt1+::ade6-hp+::natMX, brl1-K242R, 
set2∆::kanMX  

RT-qPCR this study 7C 

PSB2565 h-, leu1-32, ura4-D18, ade6-704, trp1+::ade6+, 
nmt1+::ade6-hp+::natMX, brl1-K242Q, 
set2∆::kanMX  

RT-qPCR this study 7C 

 

3.1.3.2 Media 

YES (yeast extract with supplements) liquid media was prepared as a 2x stock without 

glucose and distributed to 500 ml per 1 l bottle before autoclaving. The glucose was 

added directly before use and the bottle filled up to 1 l with ddH2O. The amounts listed 

are required for 3 liters of 2xYES. 

Table 11: 2x YES liquid media (3 l) 

compound amount final concentration 
yeast extract (Serva) 30 g 10 g/l 
SP Supplements 6 g 2 g/l 
1M KH2PO4 350 ml 112 mM 
ddH2O 2650 ml - 

 

All S. pombe solid media was prepared with a Masterclave® 09 (bioMérieux 

Deutschland GmbH) at 4 liters of media volume. The amounts listed are required for 

one liter of media. The media was dispensed to 35 ml per round plate and 50 ml per 

square plate using a peristaltic pump (bioMérieux Deutschland GmbH) with a sterilized 

medium sized outlet to keep media volumes constant and throughout experiments and 

thus any gained data more reproducible. All pouring steps were performed in the sterile 

field of a Bunsen burner flame. 
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Table 12: YES plates 

compound amount final concentration 
yeast extract (Serva) 6 g 5g/l 
SP Supplements 1 g 1 g/l 
agar (Serva) 20 g 2% 
1M KH2PO4 56 ml 56 mM 
ddH2O 875 - x ml - 
glucose 40%* 75 ml 3% 

YES non-selective stored at RT, selective plates stored at 4ºC 

x represents the added volume of antibiotic, cycloheximide or 5-FOA per liter medium. 

Table 13: Selective reagents 

compound amount solvent final concentration 
cycloheximide  
(50 mg/ml) 

2 ml DMSO 100 mg/l 

Geneticin G418  
(50 mg/ml) 

2 ml liquid stock 100 mg/l 

cloNAT  
(50 mg/ml) 

2 ml sterile H2O 100 mg/l 

hygromycin B  
(50 mg/ml) 

2 ml liquid stock 100 mg/l 

5-fluoroorotic acid 250 ml sterile H2O  
(Dissolve 1 g per 250 ml by 
prewarming at 62°C for 1h 
in a shaking water bath. 
Then, add to pouring 
temperature media and mix 
for 10 minutes before 
dispensing) 

250 mg/l 

Stored at 4ºC 

Table 14: SPAS plates 

compound amount final concentration 
KH2PO4  1 g 1g/l 
SP Supplements 1 g 1 g/l 
agar (Serva) 20 g 2% 
ddH2O 975 ml - 
1000x Vitamin mix 1 g 1/1000 
glucose 40% 25 ml 1% 

Stored at 4ºC 

The vitamin mix was prepared according to Table 15. 

Table 15:1000x vitamin mix 

compound amount final concentration 
Biotin 0.01 g 0.04 mM 
Pantothenic Acid 1 g 81.2 mM 
myo-Inositol 10 g 4.2 mM 
Nicotinic Acid 10 g 81.2 mM 

Stored at 4ºC 

Table 16: EMM (Edinburgh minimal medium) plates 

compound amount final concentration 
EMM-Gluc (ForMedium) 12.3 g 1g/l 
SP Supplements 1 g 1 g/l 
agar (Otto Norwald) 20 g 2% 
glucose hexahydrate 20 g 20 g/l 
ddH2O 1000 ml (750 ml for EMM+FOA) - 

Stored at 4ºC 
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For EMM + FOA plates 5-FOA was prepared and added similarly to YES + FOA. 

Table 17: EMM-ura plates 

compound amount final concentration 
EMM-Gluc (ForMedium) 12.3 g 1g/l 
Each His Leu Ade Lys 0.225 g 225 mg/l 
agar (Otto Norwald) 20 g 2% 
glucose hexahydrate 20 g 20 g/l 
ddH2O 1000 ml - 

Stored at 4ºC 

3.1.3.3 Growth of strains 

Solid cultures were inoculated from -80 °C stock by streaking the cell onto YES plates 

(Table 12) using a sterile 2-ml serological glass pipette. The plates were incubated for 

2-3 days at 30 °C. For liquid cultures, a sterile 250-ml flask 50 ml or a 500-ml flask or 

100 ml of YES (Table 11) was inoculated directly from plate to an OD600 of 0.03 to 0.1 

using autoclaved wooden sticks. The optical cell density was measured using an 

OD600 DiluPhotometer™ (IMPLEN). The liquid cultures were incubated at 30 °C and 

150-160 rpm. In the morning the OD600 measured again and harvested at an OD600 of 

0.4-0.8. Cultures between and OD600 of 0.8 and 1.0 back-diluted to 0.2 grow for two 

more division cycles (4-5 hours). For experiments requiring more than one culture to 

be at a similar OD600 all cultures were discarded if one culture was completely 

overgrown (OD600 >1.0). For slow growing cultures, 10 µl of culture were tested for 

bacteria contamination under a light microscope (40x magnification). All inoculation 

and measurement steps were performed using aseptic laboratory techniques [249]. 

3.1.3.4 Homologous recombination via gap gene repair 

To introduce deletions into a reporter strain, the endogenous locus of the strain was 

replaced by the deletion cassette via homologous recombination. To this end the 

deletion cassette was amplified from either a confirmed library strain for kanMX 

resistance using KO primers, or the strain was first transformed with a natMX cassette 

amplified from pFA(natMX6) and then amplified with KO primers. Double mutants were 

generated by successive transformation of confirmed re-KO. To insert a tagged 

construct into S. pombe, the respective null mutant was transformed with the digested 

construct plasmid. Before transformation the concentration of the plasmid was 

measured, and 5 µg of plasmid treated with PmeI to liberate the mutant construct (see 

section 3.3.4.1). The insert was not separated from the backbone after enzyme 

digestion. 
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For the transformation, liquid cultures were harvested at an OD of 0.4 - 0.8. To this 

end, the cultures were transferred to a 50 ml-tube and the cells were pelleted by 

centrifugation (5 min at 400xg), washed in 10 ml ddH2O and after a second 

centrifugation step washed again in 5 ml LiOAc/TE solution (Table 18). The pellets 

were then resuspended LiOAc/TE again. An aliquot of 100 µl of cells per 

transformation was transferred to a new reaction tube and 20 µl of PCR product of 

digested construct (~2 µg of plasmid) and 10 µl denatured Carrier DNA (10 mg/ml) 

were added. The reaction mix was vortexed and then incubated at room temperature 

for 15 min. 

Table 18: LiOAc/TE solution (100 ml) 

compound volume final concentration 
1M lithium acetate (pH 7.5), autoclaved 10 ml 100 mM 
1M TRIS/HCl (pH 8.0), autoclaved 1 ml 10 mM 
0.5M EDTA (pH 8.0), autoclaved 200 µl 0.1 mM 
ddH2O), autoclaved 88.8 ml - 

Stored at 4ºC 

Table 19: PEG/LiOAc solution (100 ml) 

compound volume final concentration 
50% PEG 3350 80 ml 40 % (v/v) 
1M lithium acetate (pH 7.5), autoclaved 10 ml 100 mM 
1M TRIS/HCl (pH 8.0), autoclaved 1 ml 10 mM 
0.M EDTA (pH 8.0), autoclaved 200 µl 0.1 mM 
ddH2O), autoclaved 8.8 ml - 

Stored at 4ºC 
Following the addition of 5-fold the total volume of reaction mix of PEG/LiOAc solution 

(Table 19) and mixing the cells were incubated at 30°C for 30 min, after which 9/100 

of the reaction volume of DMSO were added. The cells were incubated at 42°C for 

10 min and recovered by pelleting them (3 min at 400Xg) to discard the supernatant 

and washing them in 500 µl YES. The cells were then resuspended in 100 µl YES and 

plated onto non-selective YES medium (Table 12). 

The cells were grown for 2 days at 30°C to allow for recovery. The success of the 

recombination process was determined by replica-plating the colonies onto selective 

YES medium and incubating the plates for 2-3 days at 30°C. To gain mutants of a 

single population, colonies were picked and single-streaked onto selective media 

(6 streaks per plate). The streaks were incubated for 3 days at 30°C. One colony per 

streak was patched. To assure that the cassette was inserted at the right locus, a 

sample of each patch was streaked onto the previously used selective medium for the 

former marker followed by non-selective medium to control for presence of cells for the 

streak. 
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The DNA of cells positive for growth was extracted via zymolyase prep (section 3.3.2.2) 

and tested by diagnostic PCR (3.3.3.2).  

3.1.3.5 Synthetic genetics array (SGA) 

Null mutant cassettes of pdp3+, mst2+, eaf6+, nto1+, and ptf2+ with a replacement of 

the ORF with a natMX resistance were first integrated into PSB582, an imr::ura4+ 

reporter strain with its reporter genetically linked to a hygR resistance cassette against 

hygromycin B (HYG), which allows to select for the reporter’s presence during the 

SGA. The strain has an h- mating type and additionally contains a dominant negative 

allele of a cycloheximide (Cyh) sensitive ribosomal subunit (cyhS) within its mating type 

locus [250]. YES plates with and without antibiotics were prepared according to Table 

12 and Table 13. 

A fresh deletion library and a query plate of the same age were prepared, as mating 

requires relatively young cells. Query strain cells (the mutant of interest as well as a 

wild-type control) were freshly grown for 2-3 days at 30ºC on YES plates. These cells 

were used to inoculate a 50 ml YES culture, which was grown over night. On the next 

day, a Rotor HAD station (Singer) was used to replicate a deletion library (Bioneer, 

3. generation) onto YES + G418 plates. The query strains were pinned from the culture 

onto EMM plates (Table 16). Both sets of plates were then incubated for 2 days at 

30°C. The plates were used as a source to mate the Bioneer strains with the query 

strains on SPAS (Table 14). The mated strains were left to sporulate for 3 days at room 

temperature. For the germination, the spores were replica plated onto YES + Cyh to 

select against diploids and h- cells as both carry the cyhS  allele. The haploid cells were 

incubated at 30°C for 2 days and then went through three selection steps via replica 

plating and 2 days of incubation at 30°C. The first and third selection entails plating on 

YES plates that contained NAT, G418, Cyh and HYG. To select for the deletions, the 

mating type and for the presence of the imr::ura4+ reporter gene. In the second step 

the mutants were replica-plated onto EMM-ura (Table 17) to select against mutants, 

which have a mutation inside their ura4+ gene. After two days growth at 30°C, the 

mutants were tested for growth in absence and presence of 5-FOA (see and Table 12 

Table 16). Pictures were taken of all plates on the 2nd to 4th day of the reporter assay.  

3.1.3.6 ura4+ gene reporter assays 

For the purpose of verifying the phenotypic effect of single and double mutants in SGAs 

the deletion cassettes of interest were transformed into a reporter strain with 
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imr1L::ura4+ background as they have the same reporter gene location (PSB65 for 

Figure 6, PSB582 for Figure 7). For that purpose, strains were freshly grown on YES 

media for 2-3 days at 30ºC. A small number of cells was resuspended in 1 ml of YES 

and the OD600 measured. 200º µl YES were added to a 96-well flat-bottom plate was. 

The resuspension was diluted to an OD600 of 0.2 in the first well and then used as 

starting culture for a 1:5 serial dilution. The cells were plated onto non-selective EMM 

medium (N/S) and EMM medium containing 5-FOA (see Table 12 and Table 16) by 

using a sterilized pin array (stamp, pin diameter 0.3 cm). The pin array was sterilized 

by dipping it briefly in 100 % ethanol, flaming it off and cooling the array down on non-

selective medium. The serial dilution was prepared during the cooling phase by 

transferring 50 µl of culture with a multi-channel pipet to the next well and mixing it in. 

The pin array was dipped briefly into the wells and left on the plate for 25 s each. The 

cells were incubated at 30 C for 3-5 days and then photographed. 

3.2 Protein biochemical methods 

3.2.1 Chromatin immunoprecipitation (ChIP) 

3.2.1.1 Buffers 
Table 20: 10xPBS (1 l) 

compound amount final concentration 
NaCl 80.0 g 1.37 M 
Na2HPO4 · 2H2O  14.4 g 92 mM 
KCl 2.0 g 27 mM 
KH2PO4 2.4 g 18 mM 
ddH2O, autoclaved Up to 1 l - 

Sterile filtered and stored at RT 

Table 21: Quenching solution (500 ml) 

compound amount final concentration 
Glycine 93.84 g 2.5M 
ddH2O, autoclaved Up to 500 ml - 

Sterile filtered and stored at RT 

Table 22: Lysis buffer (500 ml) 

compound volume [ml] final concentration 
0.5 M HEPES/KOH pH 7.5, sterile filtered 50 50 mM 
5 M NaCl, autoclaved 14 140 mM 
0.5 M EDTA, autoclaved 1 1 mM 
10 % Triton X-100 50 1 % 
10 % Na-Deoxycholate 5 0.1 % 
ddH2O, autoclaved 380  - 

Stored at 4ºC 
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Table 23: Lysis buffer - high salt (500 ml) 

compound volume [ml] final concentration 
0.5 M HEPES/KOH pH 7.5, sterile filtered 50 50 mM 
5 M NaCl, autoclaved 50 500 mM 
0.5 M EDTA, autoclaved 1 1 mM 
10 % Triton X-100 50 1 % 
10 % Na-Deoxycholate 5 0.1 % 
ddH2O, autoclaved 344 - 

Stored at 4ºC 

Table 24: Wash buffer (500 ml) 

compound volume [ml] final concentration 
1 M TRIS/HCl, pH 8.0 5 10 mM 
4 M LiCl, autoclaved 31.25 250 mM 
0.5 M EDTA, autoclaved 1  1 mM 
10 % NP-40 25 0.5 % 
10 % Na-Deoxycholate 25 0.5 % 
ddH2O, autoclaved 417.75 - 

Stored at 4ºC 

Table 25: TE (100 ml) 

compound volume [ml] final concentration 
1 M TRIS/HCl, pH 8.0 1 10 mM 
0.5 M EDTA, autoclaved 0.2  1 mM 
ddH2O, autoclaved 98.8 - 

Stored at RT 

Table 26: TE + 1 % SDS (100 ml) 

compound volume [ml] final concentration 
1 M TRIS/HCl, pH 8.0 1 10 mM 
0.5 M EDTA, autoclaved 0.2  1 mM 
10 % SDS, autoclaved 10 1 % 
ddH2O, autoclaved 88.5 - 

Stored at RT 

Table 27: Elution buffer 3 (100 ml) 

compound volume [ml] final concentration 
1 M TRIS/HCl, pH 8.0 5 50 mM 
0.5 M EDTA, autoclaved 2 10 mM 
10 % SDS, autoclaved 8 0.8 % 
ddH2O, autoclaved 85 - 

Stored at RT 

3.2.1.2 Procedure 

100 ml-cultures were inoculated to an OD600 of 0.03 to 0.1 from freshly grown plates 

and harvested at an OD600 of 0.4-0.8 (14-16 hrs at 30ºC). The chromatin was cross-

linked with formaldehyde for 10 min at a final concentration of 1% (stock is 37%) with 

occasional mixing. The cross-linking reaction was quenched by adding 2.5 M glycine 

(Table 21) to a final conc. of 125 mM and incubating for 10 min with occasional mixing. 

The cells were centrifuged for 5 min at 700xg at 4°C and the pellets resuspended in 

25 ml ice-cold PBS (see Table 20) and the aliquots pooled. The cells were washed 
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again with 50 ml PBS, resuspended in 1 ml ice-cold PBS. to 1.5-ml screw-cap tubes, 

pelleted, and frozen pellets in liquid nitrogen to be stored at -80ºC. 

The frozen cell pellets were resuspended in 500 µl of ice-cold lysis buffer (Table 22) 

with Protease Inhibitors (1 mM AEBSF, 100 µg/ml Leupeptin, 400 µl/10 ml lysis buffer 

of a 1 pill/2 ml resuspension of Roche complete protease inhibitor cocktail). 

Approximately 500 µl of zirconia beads were added and the cells broken up in a 

Precyllis 24 (Peqlab) for 4x 30 s (program 1: 6,800) with 5 min rest on ice. The lysate 

was extracted by puncturing the bottoms of the tubes with a hot 30-gauge needle and 

placing the tubes in 2-ml microtubes. These were spun at 700xg and 4°C for 3 min. To 

separate the zirconia beads from the lysates, the bottoms of the tubes were punctured 

with a hot 22-gauge needle and inserted into 2-ml micro tubes. These were centrifuged 

at 700xg for 3 min. The lysates including debris were transferred to polystyrene 

sonicaton tubes (Active Motif Inc.) and sheered using a Q800R1 sonicator (QSonica) 

with the settings: 30 min, 30-sec on /off cycles, 90% amplitude. After sonication the 

lysate was transferred into a new tube and spun down for 10 min at 16,00xg and the 

supernatant transferred. The step was repeated again, and the cleared lysate diluted 

in a final volume 540 µl lysis buffer with inhibitors. 40 µl of lysate were treated with 

160 µl of TE/1% SDS solution (Table 26) as “Input DNA” sample and stored at -20ºC.  

2 µg of the following antibodies was used per IP (source, identifier, and cell lysates 

corresponding to different amounts of OD600 in brackets): αFLAG to target FLAG-Pdp3 

(Sigma-Aldrich, F3165; 30 ODs); αH3K14ac (Abcam plc, ab52946, 10 ODs); 

αH3K36me3 (Abcam plc, ab9050, 5 ODs); αH3 (Active Motif Inc., 61475, 5 ODs); 

αH3K9me2 (Abcam plc, ab1220, 15 ODs). For ChIP experiments targeting Mst2-

FLAG, 4 µg of αFLAG and volume of cell lysate corresponding to 50 ODs were used. 

The IPs with their respective antibody were transferred to a nutator in the cold room 

and incubated with αFLAG for 4 h and/or for a minimum of 1.5 h with all histone and 

histone modification antibodies. 

The cross-linked DNA was immunoprecipitated with 25 µl Dynabeads Protein G (Life 

Technologies™). To this end, the beads were washed twice with 10x the total bead 

volume of PBS + 1% Tween20 and resuspended in 100 µl lysis buffer per 25 µl beads. 

The beads were added to the IPs and the samples incubated overnight at 4ºC while 

nutating. Using a magnetic bead rack the beads were then washed with 1 ml each of 

the following buffers (ice-cold) for 1 min each on a nutator: 2x with Lysis buffer (Table 

22), 2x with high salt Lysis buffer (Table 23), 2x with Wash buffer (Table 24). Then the 
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beads were washed once with 150 ml TE (Table 25) and transferred to a new reaction 

tube and the TE removed. 200 µl Elution buffer (Table 27) were added after which the 

IPs and the inputs were incubated for 10 min at 95°C and max. rpm to elute. The eluted 

IPs were spun down shortly and transferred to new reaction tubes. The beads were 

discarded. The IP and “input DNA” samples were incubated for 3 h at 65ºC to abolish 

the crosslink. 

To denature the chromatin bound proteins, 40 µg Proteinase K (10 µl of a freshly 

prepared 4 mg/ml solution) were added to each sample, and the samples incubated 

for 2x 1 hr at 55ºC with a vortexing step in between.  

The IPs and inputs were cleaned with a ChIP DNA Clean & Concentrator™ kit (Zymo 

Research). The DNA was eluted with 50 µl elution buffer for input and 25 µl for IP’d 

DNA. 

3.2.2  Denaturing TCA precipitation 
Total proteins of exponentially growing cells of an OD600 0.4 to 0.6 were extracted from 

10 ml of culture by pelleting them for 5 min at 700xg. The pellets were flash-frozen in 

liquid nitrogen and stored at -80ºC for later extraction. The samples were resuspended 

in 1 ml of ice-cold ddH2O and mix of 138.75 µl 2N NaOH and 11.25 µl β-

mercaptoethanol was added to each sample. The samples were incubated on ice for 

15 min with occasional vortexing. 150 µl of 55 % trichloroacetic acid (TCA) were added 

to each sample. The samples were incubated on ice for another 15 min with occasional 

mixing. The samples were centrifugated for 15 min at 4 °C and maximum speed. The 

supernatant was removed with a pipette, the pellet spun again for 5 min and the rest 

of the supernatant removed. The pellets were resuspended in 1 ml of ice-cold 100% 

acetone, spun down at maximum speed for 15 min and the supernatant discarded. As 

before the sample were spun down for another 5 min and the supernatant discarded. 

Fresh HU (hydroxyurea) buffer (Table 29) was warmed to 65 °C. The samples were 

resuspended in HU Buffer to a final concentration of 0.1 OD/µl by pipetting up down. 

The samples were boiled for 5 min at 65ºC before storing them at -20°C. 
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3.2.3 NuPAGE 

3.2.3.1 Buffers 
Table 28: 7x BisTris buffer 

compound amount  final concentration 
BisTris (MW=209.24 g/mol) in 160 ml H2O 104.62 g 2.5 M 
37 % HCl 20 ml 1.5 M 
37 % HCl, dropwise adjust to pH 6.5-6.8 1.5 M 
ddH2O, autoclaved fill up to 200 ml total 

volume 
- 

Stored at 4ºC 

 

Table 29: HU loading buffer (10 ml) 

compound amount  final concentration 
Phosphate buffer, pH 6.8 - 200 mM 
urea 4.81 g 8 M 
10 % SDS, autoclaved 5 ml 5 %  
0.5 M EDTA, autoclaved 20 µl 1 mM EDTA 
Bromphenol blue - - 
1 M DTT added freshly 

before use 
100mM 

Stored at -20ºC 

 

Table 30: 20x MOPS running buffer (100 ml) 

compound volume [ml] final concentration 
1 M TRIS/HCl, pH 8.0 5 50 mM 
0.5 M EDTA, autoclaved 2 10 mM 
10 % SDS, autoclaved 8 0.8 % 
ddH2O, autoclaved 85 - 

Stored at 4ºC 

3.2.3.2 Procedure 

NuPAGE (polyacrylamide gel electrophoresis) gels were cast and run using a Mini-

PROTEAN® Tetra Handcast System (Bio-Rad). The gels were prepared in 50-ml 

conical tubes using the following recipes. The preparation of 7x BisTris buffer is found 

in Table 28. The resolving gel was poured into the casting chambers to the upper edge 

of the clamp overlay every single gel by with 500 µl isopropanol. The gels were left to 

polymerize for at least 2 hours. The isopropanol was drained, and chamber rinsed with 

deionized water. Excess water was removed with strips of Whatman paper. The 

stacking gel was poured onto the resolving gel and the combs added. The composition 

of resolving and stacking gels are noted in Table 31. The acrylamide was left to 

polymerize for 3 h. Remaining polyacrylamide was rinsed off with H2O and the gels 

were stored overnight at 4ºC wrapped in moist paper towels inside a sealable plastic 

bag. 
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For the running, the inner and outer chamber were filled with 1x MOPS buffer (see 

Table 30) and a stirring rod added. 500 µl of 200x reducing agent (1 M DTT) were 

added to the inner (cathode) chamber (chamber volume is approximately 100 ml). 

The samples were boiled for at least 5 min at 65 ºC and 0.5 ODs per sample were 

loaded. The gels were run at 4 W constant for 1 gel or 7 W for 2 gels for 2 h 40 min in 

the cold room.  

 

Table 31: Recipe for NuPAGE gels (2 gels) 

compounds resolving gel (10 %) stacking gel (4 %) 
AA/bis 3.33 ml 1.32 ml 
7x BisTris buffer 0.94 ml 0.94 ml 
H2O 5.66 ml 7.68 ml 
TEMED 20 µl 20 µl 
APS 40 µl 40 µl 

3.2.4 Western blot 

3.2.4.1 Buffers 
Table 32: 10x Transfer buffer for WB (1 l) 

compound amount final concentration 
TRIS/HCl 24.2 g 50 mM 
glycine 112.6 g 10 mM 
SDS 8 g 28 mM 
ddH2O, autoclaved up to 1l - 

Stored at RT 

 

Table 33: 1x Transfer buffer for WB (1 l) 

compound volume [ml] final concentration 
10x Transfer buffer 100 1x 
100% methanol 200 20% 
ddH2O, autoclaved 700 - 

Stored at 4ºC 

 

Table 34: 10x TBS for anti-FLAG immunoblotting 

compound amount final concentration 
TRIS/HCl, pH 8.0 60.6 g 0.5 M 
NaCl 80.7 g 1.38 M 
KCl 2.0 g 27 mM 
ddH2O, autoclaved up to 1 l - 

Stored at RT 

3.2.4.2 Procedure 

The proteins were blotted onto an Immobilon-P PVDF (polyvinylidene fluoride) 

membrane (Millipore) using semidry blotting for 1h at 250 mA and room temperature 

(for buffer see Table 33). The membranes were blocked with 3 % Milk in TBS (see 
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Table 34) and incubated with anti-αFLAG (Sigma, F3165, 1:1,000) and goat anti-

mouse IgG (H + L)-HRP conjugate (Bio-Rad, #1706516, 1:10’000) according to the 

manual for the αFLAG antibody though incubation with αFLAG occurred overnight at 

4ºC on a nutator. The antibody was detected using Immobilon HRP substrate 

(Millipore) on a Fusion FX Vilber Lourmat CCD camera (~ 5 min).  

3.3 Molecular biological methods 

3.3.1 Reverse transcription 
The strains were woken up on YES and grown at 30°C for 3 days. Streaks from these 

freshly grown plates were used for a maximum of 4 days to inoculate 50 ml YES liquid 

medium to a starting OD600 of 0.02 to 0.08 depending on the individual strain. The 

cultures were grown 14-16 hours at 30ºC and 150 rpm. The cells were harvested at an 

OD600 of 0.4 - 0.8, transferred to 50 ml conical tubes and centrifuged at 700xg for 

5 min, the cell pellets washed once with 50 ml ice-cold H2O, transferred to1.5 screw 

cap tubes, spun down at maximum speed for 14 s in a tabletop centrifuge. The pellets 

were flash frozen in liquid N2 and stored at -80ºC.  

For RNA extraction, the pellets were thawed by resuspending them in 1 ml ice-cold 

TRIzol. 250 µl zirconia beads were added and the cells broken up in a Precyllis 24 

(Peqlab) for 3x30 s (program 1:6800) with 5 min rest on ice. The tubes were 

centrifuged at 12,000xg at 4ºC for 10 min and the cleared lysate moved a new 1.5-ml 

micro tube and immediately mixed after adding 200 µl chloroform. The mix incubated 

at room temperature for 10 min, and spun at 12,000xg at 4ºC for 10 min. The aqueous 

phase was treated with another 500 µl of chloroform, briefly vortexed and spun at 

12,000xg at 4ºC for 10 min. The aqueous phase was extracted, treated with 500 µl 

isopropanol, mixed and incubated on ice for 15 min to precipitate all nucleic acids. The 

nucleic acids were pelleted by centrifugation (5 min, 12,000xg) and washed by 

resuspending the pellet twice in 1 ml of RNAse-free 70 % ethanol. The supernatant 

was removed with a pipette, and the pellets were carefully dried without heat in a 

Speedvac RVC 2-25 (Christ). The pellets were then resuspended in 60 µl RNase-free 

H2O and incubated at 55ºC for 30 min to make sure that the RNA/DNA mix was totally 

dissolved. 

Directly before the next step the RNA yield was determined using a Nanodrop 2000. 

20 µg of RNA mix was treated with a TURBO DNA-free™ kit (Ambion) mostly following 

the manufacturer’s instructions. However, instead of 1 µl DNAseI for 1 h, 0.5 µl TURBO 
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DNA-free DNaseI were pipetted into each sample and the samples were incubated at 

37ºC for 30 min, before repeating the procedure. DNaseI was inactivated by adding 

6 µl of TURBO DNase inactivation reagent and incubating the samples at room 

temperature for 10 min, occasionally resuspending the beads by vortexing them 

shortly. The samples were spun down according to the manufacturer’s instructions and 

35 µl of supernatant were transferred to a fresh tube (~15 ug RNA). 

The cDNA was synthesized using SuperScript™ III Reverse Transcriptase 

(Invitrogen). 5 µg total RNA (i.e. 11 µl of the TURBO DNase treatment reaction) were 

mixed with 1 µl of oligo-(dT)20 primers (50 µM) and 1 µl of 10 mM dNTP mix and heated 

to inactivate any residual DNAseI (Table 36, top half). A master mix was prepared for 

the other reaction components (see Table 35) of which 7 µl were added to each sample 

and the RNA transcribed to cDNA (Table 36, bottom half): 

 
Table 35: reaction mix for one RT reaction 

components volume 
5x first strand buffer  4 µl 

0.1 M DTT 1 µl 

RNAseIN 1 µl 

SuperScript III 0.25 µl 

RNAse-free H2O 0.75 µl 

Table 36: Program for reverse transcription 

step  duration 
Heat lid to 110.0 ºC - 
Pause at 70.0 ºC - 
70 ºC 10 min 
Pause at 8.0 ºC - 
50 ºC 1 h  
70 ºC 15 min 
Store forever at 8 ºC  

3.3.2 DNA isolation 

3.3.2.1 Isolation of plasmid DNA from E. coli 

For minipreps, plasmid was extracted from 1 ml of culture using a mi-Plasmid Miniprep 

Kit (metabion) according to instructions. For maxipreps, cells were grown in 50 ml 

medium, harvested, and the plasmid extracted with the vacuum method of the 

PureYield™ Plasmid Midiprep System (Promega). The plasmid was eluted with 500 ml 

of 55ºC ddH2O and stored at -20ºC.  

3.3.2.2 Isolation of S. pombe DNA with Zymolyase 

A pipet tip of solid yeast culture was resuspended in 15µl of Zymolyase solution 

(2.5 mg/ml in 0.1 M sodium phosphate buffer, pH 7.5) in either 8-strips or 96-well plates. 

This was incubated in a PCR machine first at 37ºC for 20 min and then at 95ªC for 5 

min. The supernatant was used as template for diagnostic PCR (3.3.3.2). To this end, 

the Zymolyase prep was diluted 1:10 by addition of 135 µl of ddH2O, mixed through 
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inversion and spun down to pellet cell debris to clear the supernatant. The supernatant 

was used for a maximum of two days before discarding. 

3.3.2.3  Isolation of crude DNA from yeast 

For S. pombe, strains were patched onto a YES (yeast extract containing 

supplements) media plate containing the antibiotics in case of a null mutant strain or a 

tagged strain. After 3 days of incubation at 30°C the genomic DNA was extracted. For 

S. cerevisae, this method was used to extract DNA of 1/3 of the cells from 

transformants generated in section 3.1.2.4. The cells were resuspended in 200 µl of 

breaking buffer (Table 37) after which 200 µl of zirconia beads and 200 µl equilibrated 

phenol were added. The cells were lysed by vortexing for 2-5 min after which 200 µl 

water were added. The organic and aqueous phases were separated in a microfuge 

at top speed for 5 min. 350 µl of supernatant were mixed with 1 ml of ice-cold 100% 

ethanol via vortexing to precipitate the DNA and spun at top speed for 10 min. The 

supernatant was discarded, the pellet washed with 500 µl of ice-cold 70% ethanol and 

spun at top speed for 5 min. Lastly, the pellet was first dried in a speedvac (37°C, 

5 min), the resuspended in 50 µl Tris, pH 7.5 for longer stability during storage and 

stored at -20°C when not in use. 

Table 37: Breaking buffer (100 ml) 

compound volume [ml] final concentration 
10 %Triton X-100 20  2 % (v/v) 
10 % Sodium dodecyl sulphate (SDS), 
autoclaved 

10 1 % (v/v) 

1 M TRIS/HCl (pH 8.0), autoclaved 1 10 mM 
0.5 M EDTA (pH 8.0), autoclaved  2 1 mM 
5 M NaCl, autoclaved 2 100 mM 
ddH2O, autoclaved 62 - 

Stored at RT 

3.3.2.4 Isolation of high purity DNA from S. pombe 

To procure DNA template of high purity for the amplification of DNA fragments for 

plasmid generation in S. cerevisiae, S. pombe DNA was purified from solid culture 

according to protocol using the Yeast DNA Extraction Kit (Thermo Scientific™) and 

resuspended in 50 µl of 10 mM Tris, pH 7.5. The DNA was stored at -20ºC. 
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3.3.3 Polymerase chain reaction 

3.3.3.1 Primer preparation 

All primers used in this study were produced by metabion. The 100 µM stocks were 

resuspended in 10 mM Tris, pH 7.5 to 8.0. Any further dilutions specified in the 

methods were prepared in autoclaved ddH2O. All stocks were stored at -20 ºC. 

3.3.3.2 Diagnostic PCR 

Diagnostic PCRs were used to test the presence or insertion of deletion cassettes and 

of mutant constructs at the correct locus in S. pombe cells. To this end flanking PCRs 

of the 5’ and 3’ junction of the locus was conducted. For deletion cassettes, primer 

pairs consisted of the 5’ or 3’ junction specific Chk primer and a respective reverse or 

forward primer annealing to the resistance cassette. This was used for testing Bioneer 

library mutants and transformations of deletion cassettes. The ORF primers were used 

as a control for loss of the coding region. 

For the Mst2-FLAG strain, the selection marker was inserted after the FLAG tag. A 

pairing of 5’ Chk primer and the reverse ORF primer was used for the 5’ junction and 

the 3’ junction was tested with a primer pair consisting of a forward primer annealing 

to natMX and the 3’ Chk primer. For the FLAG-Pdp3 strains the selection marker was 

inserted before the gene and the FLAG tag. The junction primers consisted of the of 

Chk primer and natMX-internal reverse primer for the 5’ junction and a Pdp3 internal 

forward primer (pdp3_seq_4) and the Chk primer for the 3’ junction. The reactions were 

prepared according to Table 38 using Zymolyase preps (chapter 3.3.2.2) as template. 

The PCRs were performed in a peqSTAR 96X HPL using a 2xFAST PCR Kit (both 

PEQLAB Biotechnologie GMBH). The preparations and PCR products were discarded 

after successful amplification. 

 

Table 38: Reaction mix for diagnostic PCR 

solution  volume [μl]  
2xFAST (PEQLAB Biotechnologie 
GMBH) 

4 

DNA template (1:10 dilution)  2 
primer for/rev mix (1 µM) 2  

 

 

 

 

Table 39: PCR program for 1.5 kb amplicons 

step  duration 
Heat lid to 110.0 ºC - 
Pause at 95.0 ºC - 
95 ºC 3 min  
Start loop, 30x  
95 ºC 15 s 
48 ºC 15 s 
72 ºC 15 – 45 s depending on 

amplicon length 
Close loop  
72 ºC 30 s 
Store forever at 8 ºC  
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Table 40: Primers utilized for diagnostic PCR. 

oligo 
no 

name gene for 
rev 

total sequence source 

Sg739 MX6-1 (5' junction) kan rev GCACGTCAAGACTGTCAAGG Braun 
Lab 

Sg780 NatR_Rev(5'junction) nat rev AGCCGTGTCGTCAAGAGTGG Braun 
Lab 

Sg781 NatR_For(3'junction) nat for CGCTCTACATGAGCATGC Braun 
Lab 

Sg909 SPCC24B10.18_WT_int_F SPCC24B10.18  for GCTGCAACTGTCAAATATTCG
GTG 

Braun 
Lab 

Sg910 SPCC24B10.18_WT_int_R SPCC24B10.18  rev AACGACTCAATGCTTTCCCTC
CTT 

Braun 
Lab 

Sg915 SPAC23D3.01_WT_int_F pdp3+  for ACAATTAGCGTATGTTCCGAG
GAC 

Braun 
Lab 

Sg916 SPAC23D3.01_WT_int_R pdp3+  rev GGTCGTTGCTTCGATGTTTGA
GAA 

Braun 
Lab 

Sg969 ura4-ORF-F ura4 for GCTAGAGCTGAGGGGATGAA Braun 
Lab 

Sg970 ura4-ORF-R ura4 rev CCCGTCTCCTTTAACATCCA Braun 
Lab 

Sg1262 mst2_Chk_F mst2+ for CAACAACAAGAGTGTTTCAGA
GGA 

this 
study 

Sg1263 mst2_Chk_R mst2+ rev CTAAATTACCTCCAAAGCACC
CGT 

this 
study 

Sg1266 mst2_WTint_F mst2+ for TGGGTCTATTAACTAAAGGGC
AAG 

this 
study 

Sg1267 mst2_WTint_R mst2+ rev TTGCCGTTGACCATCAACTTC
AAA 

this 
study 

Sg1268 eaf6_Chk_F eaf6+ for CAGAAGATTTCCACCAGCAAA
GAT 

this 
study 

Sg1269 eaf6_Chk_R eaf6+ rev GGGTGATGACTTTGGATTTGT
AAC 

this 
study 

Sg1272 eaf6_WTint_F eaf6+ for AAGCGACAATTGTTGGAAACT
TCG 

this 
study 

Sg1273 eaf6_WTint_R eaf6+ rev GGTTGATTAAATGATGCTAGC
GCA 

this 
study 

Sg1274 nto1_Chk_F nto1+ for GGTCATAACCCTATGTATTCC
GAA 

this 
study 

Sg1275 nto1_Chk_R nto1+ rev CATCACCTGAAGTGAAATCGA
AGA 

this 
study 

Sg1278 nto1_WTint_F nto1+ for CCAGACCTACAAATAGACGA
ACCT 

this 
study 

Sg1279 nto1_WTint_R nto1+ rev GAACAGAAGTGTTACAGTTAT
CGC 

this 
study 

Sg1280 tfg3_Chk_F tfg3+ for GGGATAAACTCTTACCTCTGC
ATA 

this 
study 

Sg1281 tfg3_Chk_R tfg3+ rev TATCCCGGTCAAGTTTGCAG
GAAA 

this 
study 

Sg1284 tfg3_WTint_F tfg3+ for ACTTTGGCATTATACAGGATG
CTC 

this 
study 

Sg1285 tfg3_WTint_R tfg3+ rev CTGGCCTAGTAGCATTGATAT
TCT 

this 
study 

Sg1286 ptf1_Chk_F ptf1+ for ACAATACCTACACTCAGTTGC
TAC 

this 
study 

Sg1287 ptf1_Chk_R ptf1+ rev TGGGGAGTTAGGTGAAGAAA
GAAA 

this 
study 

Sg1290 ptf1_WTint_F ptf1+ for ATTACACTCCAGGATTCCAAT
GAC 

this 
study 

Sg1291 ptf1_WTint_R ptf1+ rev CCACTTGAAAGGATGATTACA
CGA 

this 
study 

Sg1292 ptf2_Chk_F ptf2+ for CCCATCATTCGCATTGTAAAC
TAC 

this 
study 

Sg1293 ptf2_Chk_R ptf2+ rev GACACTGAGTGTATGGTATTG
TAC 

this 
study 
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oligo 
no 

name gene for 
rev 

total sequence source 

Sg1296 ptf2_WTint_F ptf2+ for AATTTAAATACCGCTGCCAGG
TTG 

this 
study 

Sg1297 ptf2_WTint_R ptf2+ rev GGAGAAATAAACCTTGGGGA
GTAA 

this 
study 

Sg1663 set2_chk_F set2+ for AGCACGCTGACTGCCTCACT
CAAA 

this 
study 

Sg1664 set2_Chk_R set2+ rev GGGTATTAACTTAACTGCCGC
TGA 

this 
study 

Sg1665 set2_WT_int_F set2+ for GTCGGTTCATCACCATCTTCT
TCG 

this 
study 

Sg1666 set2_WT_int_R set2+ rev CTCACTATCGTATTGTCGCAT
ACG 

this 
study 

Sg1824 clr3_Chk_F clr3+ for GGTTGATGAGCTATTAACCCT
CTA 

Braun 
Lab 

Sg1825 clr3_Chk_R clr3+ rev ATCTCACGTGCTAACCATTAC
ACC 

Braun 
Lab 

Sg1828 clr3_WTint_F clr3+ for ATAACGAATCCCATGAAATGT
CGC 

Braun 
Lab 

Sg1829 clr3_WTint_R clr3+ rev CTTGCGGTTACAGAAACATTG
TTG 

Braun 
Lab 

 

3.3.3.3 PCR for the amplification of deletion cassettes 

Deletion cassettes were amplified using the KAPA2G Robust PCR Kit (PEQLAB 

Biotechnologie GMBH) from relatively crude DNA samples (see chapter 3.3.2.3). The 

PCRs were performed in a peqSTAR 96X HPL (PEQLAB Biotechnologie GMBH). The 

reaction mix and program are listed below (Table 41 and Table 42). The KAPA B buffer 

was always used in conjunction with Enhancer. For templates problematic in 

amplification, GC buffer was employed instead of KAPA B and Enhancer. The 

cassettes were amplified using KO primers (see Table 43). The PCR products were 

directly used without further purification. 

 

Table 41: Reaction mix for 50 µl KAPA2G Robust 
PCR 

solution  volume [μl]  
ddH2O, autoclaved 26 
5x KAPA B 10 
5x Enhancer 10 
dNTPs 1 
primer for/rev mix (10 µM) 1  
DNA template (1:10 dilution)  1 
KAPA2G Robust 1 

 

 

Table 42: PCR program for KAPA2G Robust 

step  duration 
Heat lid to 110.0 ºC - 
Pause at 95.0 ºC - 
95 ºC 3’  
Start loop, 35x  
95 ºC 15 s 
50 ºC 15 s 
72 ºC 2,5 – 3 min depending 

on amplicon length 
Close loop  
72 ºC 5 min 
Store forever at 8 ºC  
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Table 43: Primers to amplify deletion cassettes. 

oligo 
no 

name gene for 
rev 

total sequence source 

Sg911 SPAC23D3.01_KO_F pdp3+  for GCACGAAGCCTTTCTATTTCC
ACA 

Braun 
Lab 

Sg912 SPAC23D3.01_KO_R pdp3+  rev CCAGGAGAGCCATAAAACAA
CATG 

Braun 
Lab 

Sg1264 mst2_KO_F mst2+ for TGCTGCTTCCTTTGCATTCTT
ACA 

this 
study 

Sg1265 mst2_KO_R mst2+ rev CTATAGGAAATGAACTTCTTC
CCC 

this 
study 

Sg1270 eaf6_KO_F eaf6+ for GTCAATTGAGACGAGCTCTTT
GAT 

this 
study 

Sg1271 eaf6_KO_R eaf6+ rev GAACCGGGCCAAGCCCGATG
TGGA 

this 
study 

Sg1276 nto1_KO_F nto1+ for TAGGTAAACTCTAGAGGCCC
ATTT 

this 
study 

Sg1277 nto1_KO_R nto1+ rev GCTTCCTTAGCTATCCCACTT
ATT 

this 
study 

Sg1282 tfg3_KO_F tfg3+ for GTGCTCGAGGGTTTGTTTACT
ATA 

this 
study 

Sg1283 tfg3_KO_R tfg3+ rev GGCAGAATACTTCTCAAAGG
CTAA 

this 
study 

Sg1288 ptf1_KO_F ptf1+ for ACGAAACTGCGTAGCTAACAT
TAG 

this 
study 

Sg1289 ptf1_KO_R ptf1+ rev GGTATGGTAGTAGACAGGAT
ACAT 

this 
study 

Sg1294 ptf2_KO_F ptf2+ for CTTATTGACTCAAACCGGGAT
TGA 

this 
study 

Sg1295 ptf2_KO_R ptf2+ rev CACAACCGAAGTGCGTTTAAT
GTA 

this 
study 

Sg1661 set2_KO_R set2+ for GCTACATAAGGCGCCGAGTG
TAAA 

this 
study 

Sg1662 set2_KO_R set2+ rev GTGGAACCATTGAAGAACGG
ATTG 

this 
study 

Sg1826 clr3_KO_F clr3+ for CGTTCTTCCTACATCTTGATC
CTT 

Braun 
Lab 

Sg1827 clr3_KO_R clr3+ rev GCTAACCATTACACCATACAA
CCA 

Braun 
Lab 

 

3.3.3.4 PCR to amplify fragments for homologous recombination in 
S. cerevisiae 

Fragments for construct generation were generated using a KAPA HiFi PCR Kit 

(HiFi = high fidelity) in a peqSTAR 96X HPL (both PEQLAB Biotechnologie GMBH). 

The primers utilized are documented in Table 46. The fragments were amplified from 

DNA purified by Kit (see chapter 3.3.2.4) to further reduce the possibility of mutations. 

The natMX6 cassette containing a resistance against nourseothricin (NAT) was 

amplified from pFA6a-natMX6. One µl per product was diluted in H2O, mixed with 6x 

Orange G buffer and loaded a gel for testing. PCR products were purified according to 

sections 3.3.4.3 and 3.3.4.4.  
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Table 44: Reaction mix for 50 µl PCR reaction 

solution  volume [μl]  
ddH2O, autoclaved 31.5 
5x Buffer 10 
dNTPs 1.5 
primer for/rev mix (10 µM) 5  
DNA template (1:10 dilution)  1 
KAPA2G HiFi 1 

 

 

Table 45: PCR program for 1.5 kb amplicons 

step  duration 
Heat lid to 110.0 ºC - 
Pause at 95.0 ºC - 
95 ºC 3 min  
Start loop, 35x  
98 ºC 20 s 
55 ºC 15 s 
72 ºC 1 min per kb  
Close loop  
72 ºC 10 min 
Store forever at 8 ºC  

Table 46: Fragment primers for homologous recombination in S. cerevisiae 

oligo no name gene for 
rev 

total sequence source 

1467 pRS_mst2_F mst2+ for TTGGGTACCGGGCCCCCCCTCGAG
GTCGACGGTATCGATAAGCTTGATA
TCGGTTTAAACGCTGCTTCCTTTGC
ATTCTT 

this study 

1468 mst2_FLAG_R mst2+ rev TCCATCTTCTCTTAGAACCAGAACCA
ACGGAATCCAGATGATGAGAGTTA 

this study 

1469 mst2_FLAG_F mst2+ for TAACTCTCATCATCTGGATTCCGTTG
GTTCTGGTTCTAAGAGAAGATGGA 

this study 

1470 FLAG_pTEF1_R C-terminal 
FLAG 

rev GGAGGGTATTCTGGGCCTCCATGTC
GCTGGCCGGGTGACCCGGCGGGG
AC 

this study 

1471 FLAG_pTEF1_F C-terminal 
FLAG 

for GTCCCCGCCGGGTCACCCGGCCAG
CGACATGGAGGCCCAGAATACCCTC
C 

this study 

1472 tTEF1_mst2_R mst2+ rev AGATTAAAATACTTATTTATTTGAAC
AGTATAGCGACCAGCATTCACATA 

this study 

1473 tTEF1_mst2_F mst2+ for TATGTGAATGCTGGTCGCTATACTG
TTCAAATAAATAAGTATTTTAATCT 

this study 

1474 mst2_pRS_R mst2+ rev ACCGCGGTGGCGGCCGCTCTAGAA
CTAGTGGATCCCCCGGGCTGCAGG
AATTGTTTAAACAAATGAACTTCTTC
CCCTTT 

this study 

1478 pdp3_tTEF1_R pdp3+ rev AGAATCTTTTTATTGTCAGTACTGAT
TAGGTAGTGATGACAGATGGTCTG 

this study 

1479 pdp3_tTEF1_F pdp3+ for CAGACCATCTGTCATCACTACCTAAT
CAGTACTGACAATAAAAAGATTCT 

this study 

1491 pdp3_pRS_R pdp3+ rev ACCGCGGTGGCGGCCGCTCTAGAA
CTAGTGGATCCCCCGGGCTGCAGG
AATTGTTTAAACAGCCATAAAACAAC
ATGTGA 

this study 

1496 Pdp3_A_mt2_R pdp3+ rev AATAGCGTAATCTCTTGAAGGAAGT
GCCTGAACAAATATTCCATTGTCCA 

this study 

1497 Pdp3_A_mt2_F pdp3+ for TGGACAATGGAATATTTGTTCAGGC
ACTTCCTTCAAGAGATTACGCTATT 

this study 

1863 FLAG-Pdp3_F5_F CBP-FLAG 
cassette 

for TAAAGATGACGATGACAAGGGGTCA
GGGTCAGTTGCTAGGACACGCAGT
C 

this study 

1864 FLAG-Pdp3_F1_F pdp3+ for TTGGGTACCGGGCCCCCCCTCGAG
GTCGACGGTATCGATAAGCTTGATA
TCGGTTTAAACGTCATATTCTTCTTT
TGGGT 

this study 

1867 FLAG-Pdp3_F2_R natMX rev TATCCTTATAAAATGTTCAAAATGGC
AGTATAGCGACCAGCATTCACATA 

this study 

1868 FLAG-Pdp3_F3_F pdp3+ for TATGTGAATGCTGGTCGCTATACTG
CCATTTTGAACATTTTATAAGGATA 

this study 

1869 FLAG-Pdp3_F3_R pdp3+ rev AAATTCTTTTTCCATCTTCTCTTCATC
GTTAATTACATTCCTTATAAGCC 

this study 
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oligo no name gene for 
rev 

total sequence source 

1870 FLAG-Pdp3_F4_F pdp3+ for GGCTTATAAGGAATGTAATTAACGAT
GAAGAGAAGATGGAAAAAGAATTT 

this study 

1871 FLAG-Pdp3_F4_R pdp3+ rev GACTGCGTGTCCTAGCAACTGACCC
TGACCCCTTGTCATCGTCATCTTTA 

this study 

1972 FLAG-Pdp3_c_1_R pdp3+ rev AGGAGGGTATTCTGGGCCTCCATGT
CGTTAATTACATTCCTTATAAGCCA 

this study 

1973 FLAG-Pdp3_c_2_F natMX for TGGCTTATAAGGAATGTAATTAACGA
CATGGAGGCCCAGAATACCCTCCT 

this study 

3.3.3.5 Quantitative PCR (qPCR) 

The DNA gained from ChIP and RT experiments were quantified by PCR using 

2x PowerUp™ SYBR® Green Master Mix (Life Technologies™) and a 7500 Fast Real-

Time PCR System (Applied Biosystems). The reaction set-up is shown in Table 47. 

Table 47: qPCR reaction set-up 

components volume 
2x PowerUp™ SYBR® Green Master Mix 4 µl 
FOR/REV primer mix 1 µl 
cDNA 1 µl 

 

Samples of RT experiments were diluted 1:25 for heterochromatic genes (e.g. the 

ura4+ reporter gene or the dg repeats); for euchromatic genes (e.g. act1+) they were 

diluted 1:2000. The qPCR primers used are listed below in Table 48. 

Table 48: Primers used for RT-qPCR 

 

oligo 
no 

name gene for/rev total sequence source 

Sg1020 cen-dg_F dg repeats for TGCTCTGACTTGGCTTGTCTT Braun Lab 
Sg1021 cen-dg_R dg repeats rev CCCTAACTTGGAAAGGCACA Braun Lab 
1022 cen-dh-F dh repeats for TGAATCGTGTCACTCAACCC Braun Lab 
1023 cen-dh-R dh repeats rev CGAAACTTTCAGATCTCGCC Braun Lab 
Sg1026 ura4_3'-F ura4+ for CAGCAATATCGTACTCCTGAA Braun Lab 
Sg1027 ura4_3'-R ura4+ rev ATGCTGAGAAAGTCTTTGCTG Braun Lab 
Sg1030 act1+ (V) forward act1 for AACCCTCAGCTTTGGGTCTT this study 
Sg1031 act1+ (V) reverse act1 rev TTTGCATACGATCGGCAATA this study 
Sg2940 tlh1-6_F (T4-1_F) tlh1/2+ for TGCCCCGTACGCTTATCTAC this study 
Sg2941 tlh1-6_R (T4-1_R) tlh1/2+ rev TTGCCTTTCTAGCCCATGAC this study 
Sg2942 T4-2_F SPAC212.09c+ for TCCTTCAGAAATGGCTTGCT this study 
Sg2943 T4-2_R SPAC212.09c+ rev GCATGTGTGTTATCCCGTTG this study 
Sg2944 T4-3_F SPAC212.08c+ for TAATGAGTTGCCCCGGGTAT this study 
Sg2945 T4-3_R SPAC212.08c+ rev CCGAATGGCAAGATGGTAAT this study 
Sg2946 T4-4_F SPAC212.12c+ for TGACAGCCAAAAGCCCTACT this study 
Sg2947 T4-4_R SPAC212.12c+ rev GTGGCAAGGCAGACTCATTT this study 
Sg2948 T4-5_F SPAC212.06c+ for GGCGAATGTGTATGTTGTGC this study 
Sg2949 T4-5_R SPAC212.06c+ rev ACTGCTACTCCCTGGCTGTG this study 
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For ChIP experiments, qPCR was performed with 1:100 dilutions of both inputs and 

IPs. The primers used are noted in Table 49.  

Table 50, and Table 51. The quantification and analysis of the readout is described in 

section 3.4.2. 

Table 49: Tiled arrays for high resolution profiling of euchromatin 

oligo 
no 

name gene for/
rev 

total sequence source 

Sg1742 mitoDNA_qPCR_F mitochondri
al DNA 

for ACCAGTACACGAACACGCATT this study 

Sg1743 mitoDNA_qPCR_R mitochondri
al DNA 

rev ATCCTTCAATCTCCCTCTCCA this study 

Sg2670 ade2+ forward ade2+ for AGGCATCTGATCCCAATGAG Braun Lab 
Sg2671 ade2+ reverse ade2+ rev ATTTTGGATGCCTTGGATGA Braun Lab 
Sg2736 tef3+ forward tef3+ for TGGCCTTCTTAGCCTTTTCA Braun Lab 
Sg2737 tef3+ reverse tef3+ rev CTGAGGAAGTTTGGGCTGTC Braun Lab 
Sg2864 mto1 downstream_F mto1+ for TTCCCAGAACCCGGTGTTTG this study 
Sg2865 mto1 downstream_R mto1+ rev TCCCAAGTGAATTGCTTTTTCCA this study 
Sg2866 mto1 3'-UTR_F mto1+ for CTGGATAGTTTGCGGTTGAAGT this study 
Sg2867 mto1 3'-UTR_R mto1+ rev TCAGGGAGATACAAACACCAAA this study 
Sg2868 mto1-6_F mto1+ for CAAGGGCTTCAAAACGCGTT this study 
Sg2869 mto1-6_R mto1+ rev TACGACCTTCTTGCTCAGCC this study 
Sg2870 mto1-5_F mto1+ for CCCACTGCTCGGTTAACCAT this study 
Sg2871 mto1-5_R mto1+ rev GGATCGTCTTTCCGCATCCA this study 
Sg2872 mto1-4_F mto1+ for GGACTGAAGCAGAGCGTGAA this study 
Sg2873 mto1-4_R mto1+ rev AAGTTTGCAGCCGCTTTTGT this study 
Sg2874 mto1-2/3_F mto1+ for CCACGATCAGGAGGTTCAAGA this study 
Sg2875 mto1-2/3_R mto1+ rev ATTAGGTTTGAAGGGGCCGG this study 
Sg2876 mto1-2_F mto1+ for ACATTCTCAAGATGCCCCCA this study 
Sg2877 mto1-2_R mto1+ rev AAAGTTAAGGAGGAGCCGGG this study 
Sg2878 mto1 5'-UTR_F mto1+ for GCGTCAAGTAGAGACAGCCA this study 
Sg2879 mto1 5'-UTR_R mto1+ rev AGCAAATCCAAAGCAGTAGGC this study 
Sg2880 mto1-tef3 1_F mto1+ tef3+ for TCCGCTACGATTATGCTTGAGT this study 
Sg2881 mto1-tef3 1_R mto1+ tef3+ rev CCGTTGCGATTGAAATCATCGA this study 
Sg2882 mto1-tef3 2_F mto1+ tef3+ for ACTTGGCATCATCACTCGCT this study 
Sg2883 mto1-tef3 2_R mto1+ tef3+ rev GATATTCAGCGTTGTGTATCGCA this study 
Sg2884 mto1-tef3 3_F mto1+ tef3+ for CGCGAATGAACTCATAAACGGA this study 
Sg2885 mto1-tef3 3_R mto1+ tef3+ rev AGGGTCGGCATAATCGCATT this study 
Sg2886 tef3 5'-UTR_F tef3+ for TGGCCACCACCAAGAAGAAA this study 
Sg2887 tef3 5'-UTR_R tef3+ rev GACATCCCGGGGAAATGGTT this study 
Sg2888 tef3-1_F tef3+ for TGTCGAGCCTTACTTGGTCG this study 
Sg2889 tef3-1_R tef3+ rev CCAGTGGTGTGGATGGACTC this study 
Sg2890 tef3-2_F tef3+ for GAATGAGCGTTCCACTCCCA this study 
Sg2891 tef3-2_R tef3+ rev GTGGTGATGGCACGTTGAAC this study 
Sg2892 tef3-3_F tef3+ for TGGTGCTTCTCATGCTGAGG this study 
Sg2893 tef3-3_R tef3+ rev TGGCACGCATAAGGGTAGAC this study 
Sg2894 tef3-4_F tef3+ for TGTTGCCTGGTTGGAGAACT this study 
Sg2895 tef3-4_R tef3+ rev GACTTGGCGGAAGGAACCTT this study 
Sg2896 tef3-5_F tef3+ for TATCCACAGCCGTCGTAAGC this study 
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oligo 
no 

name gene for/
rev 

total sequence source 

Sg2897 tef3-5_R tef3+ rev CACTCTTCAAGGCCTCAGCA this study 
Sg2898 tef3-6_F tef3+ for AAGAGAAGGAGGAGGGCGAT this study 
Sg2899 tef3-6_R tef3+ rev ACAGCTCATCGTCACTGACC this study 
Sg2900 tef3 3'-UTR_F tef3+ for GGTCAGTGACGATGAGCTGT this study 
Sg2901 tef3 3'-UTR_R tef3+ rev ACCACATGTTAGAGTCGTATACTGG this study 
Sg2902 tef3 downstream1_F tef3+ for ATGAAAGGCGTTCGTCGTCC this study 
Sg2903 tef3 downstream1_R tef3+ rev AGCAAAGAATACCTATGCTGCA this study 
Sg2904 bub1-6_F bub1+ for CCACCGGCCTTGGGTTTAAT this study 
Sg2905 bub1-6_R bub1+ rev GCGCCCATCTTTATTGCGTG this study 
Sg2906 bub1-5_F bub1+ for CACTCAGAGTCTGCAACGGT this study 
Sg2907 bub1-5_R bub1+ rev GCGCATAATTGAAGCCCTGC this study 
Sg2908 bub1-4_F bub1+ for CGAACCTCCAGTGGAATGGT this study 
Sg2909 bub1-4_R bub1+ rev ACTTGCCAATGACGGAGGAG this study 
Sg2910 bub1-3_F bub1+ for ACTGCTGCTTCTTTCCCGAA this study 
Sg2911 bub1-3_R bub1+ rev CGGCCACAGGGTTCTTGTAA this study 
Sg2912 bub1-2_F bub1+ for TGCAACGTTGGAAAGAGGCT this study 
Sg2913 bub1-2_R bub1+ rev GAGAACTCAGCAGCGTTCCT this study 
Sg2914 bub1-1_F bub1+ for AACCCAGGGAGTCCAAGACT this study 
Sg2915 bub1-1_R bub1+ rev AAACATCCACGGGGTCATCC this study 
Sg2916 bub1-ade6 1_F bub1+ 

ade6+ 
for TTCTGCACTTGGTTCGACGA this study 

Sg2917 bub1-ade6 1_R bub1+ 
ade6+ 

rev ACCTTATACTGCACCAGGCTG this study 

Sg2918 ade6 5'-UTR_F ade6+ for TTAAGCTGAGCTGCCAAGGT this study 
Sg2919 ade6 5'-UTR_R ade6+ rev GACCACCTCCAAGGATCCCT this study 
Sg2920 ade6-1_F ade6+ for GGGCCGAATGATGGTAGAGG this study 
Sg2921 ade6-1_R ade6+ rev GTGCTCACGTCCTCCATCAA this study 
Sg2922 ade6-2_F ade6+ for ATTTTGCGATGCACCTGACC this study 
Sg2923 ade6-2_R ade6+ rev CGTAATTTCCACGACCGTCG this study 
Sg2924 ade6-3_F ade6+ for CGACGGTCGTGGAAATTACG this study 
Sg2925 ade6-3_R ade6+ rev AAAGCGGACGATCACCAAGT this study 
Sg2926 ade6-4_F ade6+ for TGCAGTGATGGTAGTACGCA this study 
Sg2927 ade6-4_R ade6+ rev GAAGACGAGCAGGGGCATAT 

 
this study 

Sg2928 ade6-5_F ade6+ for CAACGAAATTGCTCCTCGGC 
 

this study 

Sg2929 ade6-5_R ade6+ rev ATGGCCCGTAAGTGAGCTTC 
 

this study 

Sg2930 ade6-6_F ade6+ for ACGTTCTCTGTCCATTCCCG this study 
Sg2931 ade6-6_R ade6+ rev TAACGTGTCCCATCTTGCGA this study 
Sg2932 ade6-8_F ade6+ for TGTCGCCACTGTTGCTATCA this study 
Sg2933 ade6-8_R ade6+ rev CAGCCAAAAGGGAGGGTTGA this study 
Sg2934 ade6-9_F ade6+ for TGGCTGCTATGGAGAGCTTT this study 
Sg2935 ade6-9_R ade6+ rev GTCTATGGTCGCCTATGCAGA this study 
Sg2936 ade6-vtc4 2_F ade6+ vtc4+ for TGCTGTGAAGCAGTTGAAAGA this study 
Sg2937 ade6-vtc4 2_R ade6+ vtc4+ rev TTGGGAACATGGTCAACGGG this study 
Sg2938 vtc4-3_F vtc4+ for GCCAAACATAATGCGGTCCG this study 
Sg2939 vtc4-3_R vtc4+ rev AACATTGGCGCTGATTGCAG this study 
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Table 50: Tiled array used for profiling of constitutive HC and HC-EC boundaries 

oligo no name gene for/
rev 

total sequence source 

standard 
plate 

sam1-3'_fwd sam1+ for CAAAACACCAGGACGAAGGT Braun Lab 

standard 
plate 

adf1-3'_fwd adf1+ for CGGAGAAATCAGTTGCTTGG Braun Lab 

standard 
plate 

tif51-3'_fwd tif51+ for GCGGAGACAACGGTAATGAT Braun Lab 

standard 
plate 

sam1-3'_rev sam1+ rev ATTGCCAAATCTTTGGTTGC Braun Lab 

standard 
plate 

adf1-3'_rev adf1+ rev CCTGAAAAGGATTGCCGTTA Braun Lab 

standard 
plate 

tif51-3'_rev tif51+ rev CCTTCCACTCACAACATGGA Braun Lab 

HC plate IRC-L/R_alt1 IRC - L boundary for TGTCAAGGGAAAAACCGAGA Braun Lab 
HC plate IRC-L/R_alt2 IRC - L boundary for CCCTTGAAGTTTGCCAAAAA Braun Lab 
HC plate ICR-L/R_alt3 IRC - L boundary for CCCGCAAAACCATAAAATGT Braun Lab 
HC plate IRC-L4 IRC - L boundary for TCGTTAGCATTTGGCTTTGA Braun Lab 
HC plate IRC-L2 IRC - L boundary for AACCCAAGCAGATAGACTGAAA Braun Lab 
HC plate cen01 cnt for GCAAAGATCGAACGAGTTGTC Braun Lab 
HC plate cen06 cnt/imr for TTACCAAATTTGTCAAACGTTAA

AT 
Braun Lab 

HC plate cen07 cnt/imr for TGAGGTTTTTCGTTCTTAGGG Braun Lab 
HC plate cen08 cnt/imr for TGGACACCACTCTTGCCATA Braun Lab 
HC plate cen10 cnt/imr for GGCATTTTGTAAGCGGAAAT Braun Lab 
HC plate cen12 cnt/imr for CAGCTTCTTGTACTCACTCACT

CA 
Braun Lab 

HC plate cen16 imr for ATCACGCTTCCTTAGCATGG Braun Lab 
HC plate cen17 imr for ACATTGCTCCGGTGATTTTC Braun Lab 
HC plate cen18 imr for AACCACCACCATGCTCTTTT Braun Lab 
HC plate cen19 dg repeats/imr for TGCGGTCATTTAAAGGCATA Braun Lab 
HC plate cen20 dg repeats for CCCATGATGTCGTTGGTTAAA Braun Lab 
HC plate cen21 dg repeats for ATTTCGCTTTGGCAAAACAT Braun Lab 
HC plate cen22 dg repeats for TGGAACCCCTAACTTGGAAA Braun Lab 
HC plate cen24 dg repeats for AGAAAATTTCACAACTCCGTTG

AT 
Braun Lab 

HC plate cen25 dg repeats for ACAACATGCAATACCGATTGT Braun Lab 
HC plate cen26 dg repeats for GCACCGTTTTTCCAAATGTC Braun Lab 
HC plate cen27 dg repeats for TCGGAAAATTCATCCTTCAAA Braun Lab 
HC plate cen28 dg repeats for TGAGGTTCATGATGGGTTCA Braun Lab 
HC plate cen29 dg repeats for CGAAGTATGACCCGAATTGC Braun Lab 
HC plate cen30 dg/dh repeats for CGAAAATTGTGTTGTGCCAGT Braun Lab 
HC plate cen31 dg/dh repeats for ATGCTCCGTTGCTTATCTCG Braun Lab 
HC plate cen33 dh repeats for TTTGCATTCTTATCACTTGGAT

G 
Braun Lab 

HC plate cen34 dh repeats for GTTTGTTTTGGGGAGACGAA Braun Lab 
HC plate cen35 dh repeats for CCTACCGAACGTATGATTAGCA Braun Lab 
HC plate cen36 dh repeats for CGATCGATTTCTCTTGGTTTTC Braun Lab 
HC plate cen37 dh repeats for CCAAAGCAAATAGTCTAATGAT

CAAA 
Braun Lab 

HC plate cen38 dh repeats for CCACCAGACCATTACAAGCA Braun Lab 
HC plate cen39 dh repeats for CGTTGAATGTTGTTGCTTTCA Braun Lab 
HC plate cen40 dh repeats for CATCTCGACTCGCTTGATGA Braun Lab 
HC plate cen41 dh repeats for GTCCTGAATCTTGGCAAACAG Braun Lab 
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oligo no name gene for/
rev 

total sequence source 

HC plate cen42 dh repeats for GAAATGGGCAACAAGTCGAT Braun Lab 
HC plate cen43 dh repeats for TCCACTTGGATGACAGAATCC Braun Lab 
HC plate IRC-L/R_alt1 IRC - R boundary for TTGTCACGGTTTGGTTTTCA Braun Lab 
HC plate IRC-L/R_alt2 IRC - R boundary for TTTTCCCTTGACAAAGCTGA Braun Lab 
HC plate ICR-L/R_alt3 IRC - R boundary for TTGGCAAACTTCAAGGGAGT Braun Lab 
HC plate IRC-L/R1 IRC - R/L 

boundary 
for TGCTGAATGTAACCAACATCA Braun Lab 

HC plate IRC-R2 IRC - R boundary for GCAGTGTTTACCAACAAGCGTA Braun Lab 
Sg1787 CEN1 RB1_F 

(mb4719) 
IRC - R boundary for ATGCGTTTGCGATTCTCTGC 

 
Bühler Lab 

HC plate IRC-R3 IRC - R boundary for TGTGTGTCAAGCAAGAAAGC Braun Lab 
Sg1789 CEN1 RB2_F 

(mb4721) 
emc5+ 
 

for ACACTGCTTATTCTGCACATGA Bühler Lab 

Sg1791 CEN1 RB3_F 
(mb4509) 

rad50+ for AGCCAAACTACATATATTCTCTT
CATCG 
 

Bühler Lab 

Sg1793 CEN1 RB4_F 
(mb4539) 

rad50+ for ACGTACATCTTCGACTAGTTTA
TCCA 

Bühler Lab 

HC plate IRC-L/R_alt1 IRC - L boundary rev TGAAAACCAAACCGTGACAA Braun Lab 
HC plate IRC-L/R_alt2 IRC - L boundary rev TTTTCCCTTGACAAAGCTGA Braun Lab 
HC plate ICR-L/R_alt3 IRC - L boundary rev TTGGCAAACTTCAAGGGAGT Braun Lab 
HC plate IRC-L4 IRC - L boundary rev TGCCATATCGTCTTCCGTCT Braun Lab 
HC plate IRC-L2 IRC - L boundary rev TAGGACCGAACTGCCAAAAC Braun Lab 
HC plate cen01 cnt rev TGAAATTCCATAAACGGGCTA Braun Lab 
HC plate cen06 cnt/imr rev TGCGTTTTCTTAGTAAAAACCT

GAT 
Braun Lab 

HC plate cen07 cnt/imr rev GGCAATGTCACAAAGTTTCAA Braun Lab 
HC plate cen08 cnt/imr rev TTGCGCATCAAGTATTTTGC Braun Lab 
HC plate cen10 cnt/imr rev TGCTTGTTTAGTGTTTGAACGA

A 
Braun Lab 

HC plate cen12 cnt/imr rev TCGTTCTTGCCTAGCGAAAT Braun Lab 
HC plate cen16 imr rev TCATTCGTTGTACCAACTGCT Braun Lab 
HC plate cen17 imr rev GGCGTGAATATTGATGTTTTGA Braun Lab 
HC plate cen18 imr rev TCGCAACGATTTGAACTGTC Braun Lab 
HC plate cen19 dg repeats/imr rev CTGTTGTTGAGTGCTGTGGA Braun Lab 
HC plate cen20 dg repeats rev CATGGAGAGCGTATGTTGAAA Braun Lab 
HC plate cen21 dg repeats rev GTTTCCCGCCCAGTAGATG Braun Lab 
HC plate cen22 dg repeats rev TGCTCTGACTTGGCTTGTCTT Braun Lab 
HC plate cen24 dg repeats rev AGAGTTGCCGCAATTGAAAC Braun Lab 
HC plate cen25 dg repeats rev TCGTTATTGAAACACGAATAGG

A 
Braun Lab 

HC plate cen26 dg repeats rev AACCATTCGCATCCATTTTT Braun Lab 
HC plate cen27 dg repeats rev TCAGCAATTGTTTCAGAAAATG Braun Lab 
HC plate cen28 dg repeats rev TTCGGTCTTTGCAGGACTCT Braun Lab 
HC plate cen29 dg repeats rev CCACGGAAAACAAATTACCG Braun Lab 
HC plate cen30 dg/dh repeats rev CATTCATCTTGCGTGTCTGC Braun Lab 
HC plate cen31 dg/dh repeats rev TCCTCACATTCGACATGACTG Braun Lab 
HC plate cen33 dh repeats rev TGTCTACGTACGCCAGTTGC Braun Lab 
HC plate cen34 dh repeats rev CGATCAAATCGGTCAGTACG Braun Lab 
HC plate cen35 dh repeats rev TGGGATCGCAATTTTTGATT Braun Lab 
HC plate cen36 dh repeats rev TCGCGAACATCAGCATTACT Braun Lab 
HC plate cen37 dh repeats rev CACGGCGATAAGAAATGGA Braun Lab 
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oligo no name gene for/
rev 

total sequence source 

HC plate cen38 dh repeats rev CTCGCCTATTTACCGATCCA Braun Lab 
HC plate cen39 dh repeats rev AATGACAAAGGTGCCGAATC Braun Lab 
HC plate cen40 dh repeats rev TGGGCATTCACGAAACATAG Braun Lab 
HC plate cen41 dh repeats rev TACAAGGACTAAGCCCAAGCA Braun Lab 
HC plate cen42 dh repeats rev GTTGCGCAAACGAAGTTATG Braun Lab 
HC plate cen43 dh repeats rev CAACGCATCTACCTCAGCAG Braun Lab 
HC plate IRC-L/R_alt1 IRC - R boundary rev TGTCAAGGGAAAAACCGAGA Braun Lab 
HC plate IRC-L/R_alt2 IRC - R boundary rev CCCTTGAAGTTTGCCAAAAA Braun Lab 
HC plate ICR-L/R_alt3 IRC - R boundary rev CCCGCAAAACCATAAAATGT Braun Lab 
HC plate IRC-L/R1 IRC - R/L 

boundary 
rev GCCTCAATTGCCTATTAGTGCT Braun Lab 

HC plate IRC-R2 IRC - R boundary rev AGAGAATCGCAAACGCATCT Braun Lab 
Sg1788 CEN1 RB1_R 

(mb4720) 
IRC - R boundary rev GTGTGAGCGCTAACTTTTGCT 

 
Bühler Lab 

HC plate IRC-R3 IRC - R boundary rev TTCATGTGCAGAATAAGCAGTG Braun Lab 
Sg1790 CEN1 RB2_R 

(mb4722) 
emc5+ 
 

rev TGCCGCATGTGGTAAAGACA 
 

Bühler Lab 

Sg1792 CEN1 RB3_R 
(mb4510) 

rad50+ rev TTGGCAGAATGTCTAGGTGTAA
ACTGTG 
 

Bühler Lab 

Sg1794 CEN1 RB4_R 
(mb4540) 

rad50+ rev CTATACTGGCTAACCAACTGAT
GACATTG 
 

Bühler Lab 

TMH plate T4-1 tlh1/2+ for TTGCCTTTCTAGCCCATGAC Braun Lab 
HC plate tel95 tlh1/2+ for TCGTGGTCATAAACGCACAT Braun Lab 
HC plate tel92 tlh1/2+ for CTGCAAGGACTAAGCCCAAG Braun Lab 
HC plate tel90 tlh1/2+ for GCAACAGCCAGTCATTCATTT Braun Lab 
HC plate tel88 subTelIIR for TCAAAAATGGCTTTTGTCCA Braun Lab 
TMH plate T4-2 SPAC212.09c+ for TCCTTCAGAAATGGCTTGCT Braun Lab 
HC plate tel86 subTelIIR for CATACGGCAGGCTCTTTCTC Braun Lab 
TMH plate T4-3 SPAC212.08c+ for TAATGAGTTGCCCCGGGTAT Braun Lab 
TMH plate T4-4 SPAC212.12+ for TGACAGCCAAAAGCCCTACT Braun Lab 
TMH plate T4-5 SPAC212.06c+ for ACTGCTACTCCCTGGCTGTG Braun Lab 
HC plate tel85 subTelIIR for GATCGAACACACACACATCG Braun Lab 
HC plate tel83 subTelIIR(LTR) for CTGAGGAACGATGTTCAGTTG Braun Lab 
TMH plate T4-6 SPAC212.04c+ for AGACGTCTCCTGATGTCACAA Braun Lab 
TMH plate T4-7 SPAC212.01c+ for CACAGACGTCTCCTGGTGTC Braun Lab 
TMH plate T5-1 SPAC977.04+ for TTTTGAGGGGTCAAATGGTC Braun Lab 
TMH plate T5-2 SPAC977.06+ for TTGTAGAAGCCAATGGCAGA Braun Lab 
TMH plate T5-3 SPAC977.08+ for AAAGCAATTTCGCATTTTGG Braun Lab 
TMH plate T4-1 tlh1/2+ rev ACGTGTGGTGCAATTGTGTT Braun Lab 
HC plate tel95 tlh1/2+ rev ATACTCGGCGAAATGAATGG Braun Lab 
HC plate tel92 tlh1/2+ rev AGTCCTGAACTTTGGCAAACA Braun Lab 
HC plate tel90 tlh1/2+ rev TCACCCATGTTGAATCGAGA Braun Lab 
HC plate tel88 subTelIIR rev CGCCCTTCATGTTACGAAGT Braun Lab 
TMH plate T4-2 SPAC212.09c+ rev TGCAACAGTTGGTTCTGACA Braun Lab 
HC plate tel86 subTelIIR rev GGCTTTTGGCTGTCACATTT Braun Lab 
TMH plate T4-3 SPAC212.08c+ rev ATCGCTTAGCAAGGGATTTG Braun Lab 
TMH plate T4-4 SPAC212.12+ rev GGCTTTTGGCTGTCACATTT Braun Lab 
TMH plate T4-5 SPAC212.06c+ rev CGCCCTTCATGTTACGAAGT Braun Lab 
HC plate tel85 subTelIIR rev ATCGCTTAGCAAGGGATTTG Braun Lab 



3. Materials and methods 

56 
 

oligo no name gene for/
rev 

total sequence source 

HC plate tel83 subTelIIR(LTR) rev TGCAACAGTTGGTTCTGACA Braun Lab 
TMH plate T4-6 SPAC212.04c+ rev TCACCCATGTTGAATCGAGA Braun Lab 
TMH plate T4-7 SPAC212.01c+ rev AGTCCTGAACTTTGGCAAACA Braun Lab 
TMH plate T5-1 SPAC977.04+ rev ACGTGTGGTGCAATTGTGTT Braun Lab 
TMH plate T5-2 SPAC977.06+ rev TGCAACAGTTGGTTCTGACA Braun Lab 
TMH plate T5-3 SPAC977.08+ rev ATCGCTTAGCAAGGGATTTG Braun Lab 

HC = heterochromatin, TMH = TEL-MEI-HOOD 

Table 51: Primers for mei4 array 

oligo no name gene for/rev total sequence source 
Sg2222 cdk9-1_qPCR_F cdk9+ for GACGGGAAGGTATATGCGCT this study 
Sg2223 cdk9-1_qPCR_R cdk9+ rev GCAATCAAGTCGATGCGTCC this study 
Sg2224 cdk9-2_qPCR_F cdk9+ for TTCCGGTTCATGACTCGTGG this study 
Sg2225 cdk9-2_qPCR_R cdk9+ rev TTTGCTGACGCTTAGGCTGA this study 
Sg2226 cdk9 3'U_qPCR_F cdk9+ for TAATGGCCTTTCCGCGTGAT this study 
Sg2227 cdk9 3'U_qPCR_R cdk9+ rev CCGTGCTCAATTTGCTAAGGT this study 
Sg2228 mei4-1_qPCR_F mei4+ for AATGGCGGGCTTTGTGGATA this study 
Sg2229 mei4-1_qPCR_R mei4+ rev AAACGTGTTGCGAATCCACG this study 
Sg2230 mei4-2_qPCR_F mei4+ for CCACTACGTCCATCATCCCG this study 
Sg2231 mei4-2_qPCR_R mei4+ rev AGCGTAGGACTTGAAGGTGC this study 
Sg2232 mei4 3'U_qPCR_F mei4+ for GCCATGCATTCAACATCCCT this study 
Sg2233 mei4 3'U_qPCR_R mei4+ rev TGCCTGAACTCGTGACAGAG this study 
Sg2234 act1 3'U_qPCR_F act1+ for TGTTTCTTCTCGAGTCCGGC this study 
Sg2235 act1 3'U_qPCR_R act1+ rev TACATTGCACCACTTCCGCT this study 
Sg1030 act1_3'(5)-F act1+ for AACCCTCAGCTTTGGGTCTT Braun Lab 
Sg1031 act1_3'(5)-R act1+ rev TTTGCATACGATCGGCAATA Braun Lab 
Sg1028 act1_mid(4)-F act1+ for GATTCTCATGGAGCGTGGTT Braun Lab 
Sg1029 act1_mid(4)-R act1+ rev CGCTCGTTTCCGATAGTGAT Braun Lab 
Sg1878 act1-5P_F act1+ for AAGAAATCGCAGCGTTGGTT this study 
Sg1879 act1-5P_R act1+ rev AGCTTCATCACCAACGTAGGA this study 
Sg1872 act1-P1_F act1+ for CGTGAAGTGCTAACGCTGTG this study 
Sg1873 act1-P1_R act1+ rev CTGAGGTGGTATGAAGCCGT this study 

 

3.3.4 Molecular cloning methods 

3.3.4.1 Restriction digest of plasmids 

pRS416 plasmids and plasmid constructs using the pRS416 as a backbone were 

digested in different phases of the mutant generation process. Plasmid constructs were 

tested by digestion with one to two restriction enzymes that produce 3-4 fragments, 

which can be easily differentiated on an agarose gel (see section 3.3.4.2). The 

digestion reactions were set up according to Table 52. 
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Table 52: Set-up of plasmid digestions with restriction enzymes 

compound 25 µl control digest  50 µl reaction for linearization or insert removal 
enzyme 0.5 µl per enzymel 3 µl for linearization, 1 µl PmeI for insert removal 
5x Buffer 5 µl 10 µl 
plasmid DNA 5 µl 5 µg 
ddH2O, autoclaved 14.5 µl 37 µl-x ml plasmid for linearization, 39 µl -x µl plasmid for 

insert removal 
 

The success of the linearization or insert removal was tested using 1 µl of reaction. For 

plasmid constructs 5 µl were used. 

3.3.4.2 Agarose gel electrophoresis 

PCR products and restriction digests were visualized on 0.8% agarose gels containing 

0.5 µg/ml EtBr (25 ml gel, 90 V; 50 ml gels, 100 V; 200 ml gel, 125 V). The gels were 

prepared and run with TAE buffer (see Table 53). Unless noted otherwise the PCR 

products were stored at -20  C in 10 mM Tris, pH 7.5. Except for diagnostic PCR, 

6x Orange (Table 54) was used as a loading buffer.

Table 53: 50x TAE buffer (5 l) 

compound amount final 
concentration 

Tris Acetate 1800.38 g 2 M 
EDTA 93.06 g 50 mM 
ddH2O up to 5 l - 

Autoclave and store at RT  

Table 54: 6x Orange DNA loading buffer (50 ml) 

compound amount final 
concentration 

SDS 150 mg 3 mg/ml 
orange G 75 mg 1.5 mg/ml 
glycerol 75 µl 0,15 % (v/v) 
0.5 M EDTA, 
autoclaved 

1,500 µl 15 mM 

ddH2O up to 50m l - 
Store at 4 °C 

3.3.4.3 Purification of DNA fragments from gels 

For samples with more than one PCR product, the relevant band was cut out with a 

scalpel under UV light and purified according to instructions using a mi-

Gel Extraction Kit (metabion international AG). The samples were eluted to 10 mM 

Tris, pH 7.5 and stored at -20 °C. 

3.3.4.4 Purification of PCR samples and linearized plasmid 

Samples and for use in homologous recombination in S. cerevisiae (section 3.1.2.4) 

were purified using a mi-PCR Purification Kit (metabion international AG). The 

samples were eluted to 10 mM Tris, pH 7.5 and stored at -20 °C. This method was 

also used to purify linearized plasmid as loss of sample is less extensive compared to 

gel purification. 
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3.3.4.5 Sequencing 

Plasmid constructs with the correct restriction pattern were sent for sequencing to 

GATC (https://www.eurofinsgenomics.eu/en/custom-dna-sequencing/gatc-services/) 

with the respective primers to check for point mutations, deletions and insertions. The 

sequencing results were analyzed as described in section 3.4.3. The sequencing 

primers are listed in Table 55. In addition, cassette-specific internal primers such as 

Sg781 were used to sequence starting from a resistance cassette. 

Table 55: Sequencing primers 

oligo no name gene for 
rev 

total sequence source 

1555 pdp3_SEQ_1 pdp3+ for GTTGATGGCGAAGAAATGCT this study 
1556 pdp3_SEQ_2 pdp3+ for GTTGCTAGGACACGCAGTCA this study 
1557 pdp3_SEQ_3 pdp3+ for ACTTCAAAAGCCCATCGAGA this study 
1558 pdp3_SEQ_4 pdp3+ for TTGAGAATTTCAGCGCAATAAA this study 
1559 pdp3_SEQ_5 pdp3+ for GGTCAGGTTGCTTTCTCAGG this study 
1560 pdp3_SEQ_6 pdp3+ for TGGGTACCACTCTTGACGAC this study 
1561 pdp3_SEQ_7 pdp3+ for TGGGTACCACTCTTGACGAC this study 
1562 pdp3_SEQ_8 pdp3+ for AAGAAAACGGAGCAGGAAGC this study 
1842 mst2_SEQ_1 mst2+ for GCTGCTTCCTTTGCATTCTT this study 
1843 mst2_SEQ_2 mst2 for CCAGAGGAGTATAGCTGTGCA this study 
1844 mst2_SEQ_3 mst2 for GCTTGGATCACCTGAAAAGCC this study 
1845 tTEF1_SEQ tTEF1 for TTGTTTTCAAGAACTTGTCA this study 
1846 mst2_SEQ_4 mst2 for GGCTTTTGGCTTGGAAGTGG this study 
1955 pRS416-5'_SEQ 

 
pRS416 
plasmid 

for CCCTCGAGGTCGACGGTATC this study 

 

3.4 Computer-based methods 

3.4.1 Primer design 

3.4.1.1 Primers designed with Perl 

Primers for knockout generation and confirming successful integration were designed 

using the script KOprim_ver13.5.7 written by S. Braun in ActivePerl V5.16.3 Build 1603 

(ActiveState Software Inc) (48ºC as annealing temperature). The program has the 

purpose to automatically calculate the optimal annealing temperature and binding 

positions for these primers while avoiding polyA stretches. It outputs the sequences of 

three primer pairs, which consist of (1) a gene internal set to determine the presence 

of an ORF (~500 bp amplicon), (2) a set to amplify a locus-specific deletion cassette 

with 500 bp homology on each side of the cassette, and (3) flanking (Chk) primers that 

anneal to a region 600 bp up- or downstream of the cassette. The chromosome 

sequences used for primer design were taken from PomBase. 
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3.4.1.2 Primers for plasmid construction via homologous recombination in 
S. cerevisiae 

Tagged Pdp3 and Mst2 were inserted into S. pombe by replacing a deletion cassette. 

A selection marker was included either upstream of an N-terminal tag or downstream 

of a C-terminal tag. The constructs were devised as inserts with 500 bp of homology 

to the locus on each side for homologous recombination. 

Primers with overlap for recombination with the plasmid were designed with a total 

length of 80 bp of which were 20 bp homologous to the neighboring insert followed by 

a PmeI restriction site and homology to a backbone linearized with EcoRI. Primers 

between insert fragments were designed with 50 bp of total length with the forward 

primer complimentary to the reverse primer of the previous fragment. To insert point 

mutations the homologous primer pairs were designed with the mutation at the center. 

The plasmids and primers were designed using SeqBuilder, Lasergene 10 (DNA Star 

Inc.). 

3.4.1.3 Sequencing primers  

Sequencing primers for the Pdp3 and Mst2 constructs were designed as forward 

primers with a length of 20 bp and a spacing interval of 600 bp using Primer3Plus 

V2.4.0 [251]. In addition, a general sequencing primer was designed for the 5’ insertion 

site of pRS416. 

3.4.1.4 Tiled arrays for qPCR 

Four sets of tiled array primers were designed for this study. Two arrays were designed 

to profile the binding pattern of Pdp3 and Mst2 via ChIP-qPCR. The loci were chosen 

based on gene length and clear separation by a long intergenic region. Additionally, 

the gene sets were of differing directionality to each other to examine the influence of 

gene orientation on the binding pattern of Pdp3 and Mst2 on neighboring genes. The 

coverage was defined as one amplicon to every 500 bp between the centers of the 

amplicons using SeqBuilder, Lasergene 10 (DNA Star Inc.). The primers were 

designed by inputting 1000 bp of target region from the end of the last primer set into 

Primer3Plus and adjusting the general parameters to an amplicon length of 150-200 bp 

and a primer length of 20-25 bp length. The resulting primers were then narrowed 

down to one primer pair based on GC content (50-60%). Each primer pair was tested 

by running a 6-point standard curve with 1:10 dilutions using a 1:20 dilution of a WT 

input ChIP as starting solution. 
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3.4.2 Analysis of qPCR data 
Using the cloud-based data analysis app Standard Curve (Thermo Fisher Cloud) the 

measured sample data was assigned relative values based previously generated 

triplicates of standard curves of a 1:10 dilution series. For further analysis, the data 

was imported into Excel 365 (Microsoft Corp.). 

For RT-qPCR experiments, the resulting relative values were analyzed as ratio of the 

respective heterochromatin PCR product over actin. 

For ChIPs, data sets from each independent experiment (n=3-4) were standardized 

using an experimental normalization by defining a global mean value for ChIP 

efficiency. This global mean value includes all qPCR amplicons (used for each tiling 

array) from the entire sample pool of strains (wild-type and mutant strains used in each 

experiment). For ChIP experiments with FLAG-tagged Mst2 and Pdp3, the raw values 

were first normalized against mitochondrial DNA as an internal control before applying 

the same calculations as above. The background signal for each amplicon was 

subtracted. Here, the signal is defined as the mean value of the untagged strain and 

the pdp3∆ (or pdp3-F109A) for each amplicon as opposed to using only the untagged 

control as this significantly reduces the noise level in the background-corrected data. 

For ChIP with H3K14ac and H3, the raw values were also normalized against 

mitochondrial DNA and input; these normalized data were then put in relation to the 

mean value of the wild type for each amplicon. For ChIPs with H2K9me2, the raw value 

of each amplicon was normalized normalized to the mean value of three differentially 

expressed euchromatic loci: adf1+, sam1+, and tif1+. 

The qPCR data was visualized using Prism V6-V8 (GraphPad Software, Inc). 

3.4.3 Analysis of sequencing data 
Finished sequencings were compared to the expected DNA sequence of the construct 

or tagged region using SeqMan, Lasergene 10 (DNA Star Inc.). Constructs with point 

mutations, except silent mutations, or deletions in the sequence were discarded. The 

first 20 bp of the sequencing data were discounted for analysis as empirically these 

are prone to being misread by the polymerase. 

3.4.4 Analysis of SGA data 
The ratio of the growth of in FOA presence on day 4 to the growth EMM on day 2 was 

used to discern possible synthetic and epistatic interactions.  
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To this end, the colony sizes were processed with the software programs HT Colony 

Grid Analyzer V1.1.7 [252]. The conversion of the ratio of +FOA /–FOA into log2 values 

and the normalization to the median were achieved using R and RStudio with the R 

script screen_analyzer V1.8 written by S. Braun and exported to text files [253], [254]. 

All text files were imported into Excel 365 (Microsoft Corp.) and unrelated files added 

to the analysis to act as additional controls. The log2 values of the double mutants were 

compared to the values of the single mutants from an SGA with the library and the 

background of PSB582 as well as the unrelated array. To assess the genetic 

interaction, the averaged log2 value for each query mutant crossed with PSB582 

(Wx[MED]) was subtracted from the corrected median normalized value of each double 

mutant (Wxy[MED]) (see section 4.2). Log2 values specific to the Mst2C subunits were 

collected and exported. For visualization in Java TreeView V1.1.6r4, the data was 

transcribed into a *.cdt file in Cluster V3.0 [255], [256].  

3.4.5 Quantification of western blot data 
Quantification was done using ImageJ V1.47 [257]. To this end, the signal intensity of 

the protein band was divided by the signal of the cross-reactive band above it, which 

is present in all samples. The ratio of the mutant was then put into relation to that of 

the respective wild-type to measure changes in protein expression. 

3.4.6 Data research 
For database searches (sequence search, literature search) services were used that 

were provided by PomBase (http://www.pombase.org/) and National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/pubmed). 

3.4.7 Thesis composition 
The thesis text and tables were composed in Word 365 (Microsoft Corp.). The figures 

were designed with Photoshop and Illustrator of Creative Suite V5.1 

(Adobe Systems Inc.). Citations were added using Mendeley Desktop V1.19.4 

(Mendeley Ltd.). 
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4 Results 

4.1 Loss of the PWWP domain protein Pdp3 causes a silencing defect 
The PWWP domain protein Pdp3 (Figure 6A) was isolated as a potential silencing 

factor in multiple independent genetic screens for mutants with silencing defects in the 

fission yeast Schizosaccharomyces pombe (S. pombe). However, its function has not 

yet been elucidated. The first screen entailed a small collection of deletion mutants of 

genes encoding either proteins with similar nuclear localization of the HP1 protein Swi6 

or proteins that contained motifs known to associate with chromatin [231]. The second 

screen employed a genome-wide library of deletions of all non-essential genes [18]. 

The readout of these screens was a growth-based reporter assay utilizing the 

auxotrophic ura4+ gene that encodes orotidine 5'-phosphate decarboxylase, which 

metabolizes the nucleotide analog 5-fluorootidine (5-FOA) into cytotoxic 5-fluorouracil 

(Figure 6C) [258]. To monitor the silent state of heterochromatin in vivo, ura4+ was 

inserted into a heterochromatic region, thus allowing cells to grow on 5-FOA-containing 

medium when heterochromatin is intact, and the locus is transcriptionally repressed. 

Conversely, perturbation of heterochromatin causes expression of ura4+ and results in 

impaired growth on 5-FOA. In previous studies, as well as here, ura4+ is integrated at 

the left innermost repeat located adjacent to the centromere on chromosome 1 (imr1L). 

Due to its position at the boundary between heterochromatin and euchromatin, the 

imr1L::ura4 reporter is highly sensitive towards perturbation of heterochromatin.  

Lack of Pdp3 results in reduced growth when plated onto 5-FOA containing medium 

whereas no difference to wild-type (WT) is observed on non-selective medium (Figure 

6B) [18], [231]. On the other hand, no silencing defect was detected when ura4+ was 

inserted into the silenced mating type locus, suggesting that silencing at this domain 

is not affected by the loss of Pdp3 [231]. To test whether the silencing defect results 

from deletion of pdp3+ or is caused by a secondary mutation in the strain background 

of the deletion library, I generated a re-knockout mutant (re-KO). For this, I amplified 

the pdp3∆ deletion cassette by PCR from genomic DNA of the library pdp3∆ mutant 

and transformed it into a WT strain that harbors the same reporter as the original 

mutant. Unlike the previous KO strain, which comes from a genetic cross and has a 

mixed genetic background, the WT strain used for the re-knockout has a clearly 

defined genotype. I isolated several transformants and compared them with the 
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deletion strain from the previous screen [18]. Analogous to the library mutant, two 

representative re-KO mutants displayed a reproducible silencing defect in presence of 

5-FOA, while displaying WT growth phenotypes on non-selective media (Figure 6B). 

The silencing defect of pdp3∆ is moderate when compared to a deletion of clr4+, the 

sole H3K9 methyltransferase in S. pombe. This suggests that Pdp3 is not a critical 

component of the core silencing machinery (H3K9me or RNAi). 

 

Figure 6- Loss of Pdp3 causes a silencing defect: (A) domain organization of Pdp3; (B) silencing assay utilizing 

an imr::ura4+ reporter strain; 5-fold dilution series of wild-type (WT), two independent pdp3+ knockout strains (re-

KO 1 and 2), the commercial Bioneer strains of pdp3∆ (library) and clr4∆ (positive control) crossed with the reporter 

background; (N/S) non-selective, (5-FOA) medium containing 5-fluroorotic acid; (C) flow diagram of the imr::ura4+ 

reporter assay employed for this study. (D) RT-qPCR analysis; displayed are transcript levels relative to wild-type 

after normalization to act1+; imr::ura4+ represents transcription of the ura4+ gene inserted into the imr region of the 

left arm of chromosome 1, tlh1+ is the first gene of the subtelomeric region on the left arm of chromosome 1; h+ and 

h- refer to the mating types; data are presented as individual data (circles) and median (horizontal line) from 3 

independent experiments. 

Since growth-based assays are an indirect and semi-quantitative method for assessing 

heterochromatin silencing, I used a more quantitative and direct approach to study 

levels of heterochromatic transcripts. To this end, I employed a reverse transcription 

assay coupled to quantitative PCR (RT-qPCR). cDNA is generated by 1st strand 
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synthesis from poly-adenylated mRNA and quantified by qPCR. For normalization, I 

used the euchromatic housekeeping gene act1+ as an internal control. act1+-

normalized transcript levels were displayed relative to the mean value of all biological 

replicates of the WT strain (i.e. set to 1) for the respective heterochromatic loci. The 

dg repeats, which are located further inside the silenced pericentromeric region, were 

mostly unaffected (Figure 6D, left panel). In contrast, the ura4+ reporter at the 

pericentromeric imr1L displayed 2-2.3 higher transcript levels in pdp3∆ mutant cells 

compared to WT (Figure 6D, middle panel). Conversely, silencing of the homologous 

tlh1+ and tlh2+ genes, which are located subtelomeric gene ~10 kb downstream of the 

telomeric repeats of chromosome 1 and 2, was perturbed as well (Figure 6D, right 

panel).  

Interestingly, I noticed that heterochromatic transcripts in the h- WT strain are stronger 

repressed than in the corresponding h+ WT strain (data not shown), suggesting that 

this strain is more sensitive to perturbations in heterochromatic transcription. In support 

of this notion, the silencing defects in pdp3∆ were more pronounced in strains with the 

h- mating type at all loci tested. Together, the results suggest that lack of Pdp3 impairs 

silencing. However, the influence of Pdp3 loss appears to vary depending on the 

heterochromatic region.  

4.2 Pdp3 acts as a negative regulator of the histone acetyltransferase 
Mst2C 

I found that loss of Pdp3 causes a silencing defect, but the actual function of Pdp3 with 

Mst2C was unknown (Figure 7A). To elucidate if the silencing defect of Pdp3 was 

connected to a specific silencing mechanism, I tested genetic interactions on a 

genomic scale using the synthetic genetic array (SGA) approach. To that end, I 

crossed a query pdp3∆ strain that harbors the imr::ura4+ reporter with a genome-wide 

library of non-essential mutants (y). To calculate quantitative genetic interactions, 

which require assessing the silencing defects in pdp3∆, the other library single mutants 

and the resulting double mutants, I additionally performed a cross with the WT reporter 

(Figure 7B). Upon mating, germinated spores were selected for the presence of both, 

the selection markers of the mutations (natMX for the query strain, kanMX for the 

library mutation) and the reporter gene (a hphMX cassette 2 kb adjacent of imr::ura4+). 

The quantitative readout of each SGA was calculated as log2 value of the ratio of 

growth (colony size) on 5-FOA containing medium versus growth on non-selective 
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medium (Figure 7B) and normalized the data to the median of each plate using the 

programs described in section 3.4.4. The level of genetic interaction ε, I calculated as 

difference of colony growth in the double mutant (Wx,y [MED]) and growth of the query 

mutation (x) in a WT background (Wx [x]): 

𝜀𝜀 = 𝑊𝑊𝑥𝑥,𝑦𝑦[𝑀𝑀𝐸𝐸𝐸𝐸] −𝑊𝑊𝑥𝑥[𝑀𝑀𝐸𝐸𝐸𝐸]  

 

Following the readout, I organized the data by similarities of the silencing phenotype 

of the single mutants and the respective double mutants with pdp3∆ between the 

different crosses.  

 

 

Figure 7 - Pdp3 is a negative regulator of the Mst2 complex: (A) Composition of the Mst2 complex, color key: 

red – Pdp3, blue – integral subunits; green – complex-specific non-essential subunits, grey – multi complex subunit; 

the color code of the subunits applies for all subfigures; (B) flow diagram depicting an overview of the synthetic 

genetics array (SGA) performed in this study; the query strains containing the imr::ura4+ marker in a wild type 

background or a deletion of the gene of interest (X∆::natMX) were crossed with a commercial library containing all 

null-mutants of non-essential genes (Bioneer; Y∆::kanMX), the ratio of colony sizes on 5-FOA over non-selective 

medium (N/S) was used as a readout; (C) Pdp3 is a negative regulator of the Mst2 complex: heatmap visualizing 

log2 values compiled of the readout of crosses of the Mst2C subunits with: left – wild-types, middle - subunits of 

Mst2C complex, right - query strains from an unrelated study as non-specific control; columns – arrays, rows – cross 

with the library mutant; each data point represents the average of crosses performed with the same query strain; 

color key: yellow – suppression or epistatic interaction, black – no interaction, blue – synthetic interaction, grey – 

synthetic lethal. 
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Since the readouts were comparable between technical and biological replicates (see 

Figure 7C - left panel), I took the average of the log2 values from all replicates per 

single and double mutant SGAs with the same query strain (e.g. WT or pdp3∆). These 

values are visualized in a heat map with columns representing the query strains and 

the rows representing the cross with the library strain. This I then used to determine 

whether the silencing defect of a single mutant could be suppressed or even reversed 

by additional deletion of another gene. The log2 values are represented in the heat-

map ranging from blue (ε < 0) over black (ε = 0) to yellow (ε > 0). The respective 

readout appears blue-colored if the additional deletion added through a mating with 

the library mutant either causes a growth defect on its own and/or it exacerbates the 

genetic defect of the queried mutant and is synthetic. In the latter case, the gene 

products work in parallel pathways that are part of the silencing machinery. The square 

is black if lack of the gene does not result in any growth difference in general or the 

queried genetic defect is not influenced by concomitant deletion of the gene targeted 

in the library mutant. The gene products can be part of unrelated molecular pathways 

or are part of the same step of a pathway, i.e. as subunits of the same complex. If the 

readout is represented by yellow coloring, the lacking gene product may antagonize 

silencing on its own and/or the additional deletion alleviates the silencing defect in the 

queried strain. 

In accordance with the silencing assay and RT-qPCR data at imr::ura4+ (see Figure 

6), deletion of pdp3+ caused a silencing defect at pericentromeric heterochromatin 

(Figure 7C - left panel, first lane). When I analyzed the cross of pdp3∆ with the deletion 

library, I discovered that the silencing defect of pdp3∆ was suppressed by several 

mutants (Figure 7C - middle panel first and second column). Intriguingly, all mutants 

belonged to the MYST histone acetyltransferase complex Mst2 (Mst2C) of which Pdp3 

is a subunit. A study of the Jia group has previously demonstrated that Mst2C consists 

of seven subunits, of which five have homologs in the S. cerevisiae histone 

acetyltransferase NuA3 complex [245]. The conserved subunits comprise Mst2, Nto1, 

Eaf6, Tfg3, and Pdp3 (Figure 2A). The remaining two subunits are Ptf1 and Ptf2 (Pdp 

three- interacting factor 1 and 2). Among the subunits, only Mst2, Nto1 and Ptf2 are 

critical for the integrity and catalytic activity of the complex. 

Mst2 antagonizes telomeric silencing, and mst2∆ mutant cells are able to bypass the 

need for RNAi in the silencing of pericentromeric heterochromatin [238], [242]. 

Considering that Pdp3 contributes to heterochromatic silencing, it is tempting to 
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speculate that Pdp3 negatively regulates Mst2C. To test this hypothesis, I repeated 

the first SGAs with two more biological replicates. Moreover, in parallel to pdp3∆, I 

tested the deletions of two more subunits of Mst2C in the imr::ura4+ reporter strain 

(mst2+, eaf6+, nto1+, ptf2+) per assay replicate (Figure 7C – middle panel) to analyze 

genetic interactions of Mst2C at a genome-wide scale. As a negative control, I 

compared my genetic interaction data to data from an unrelated study in the lab (Figure 

7C – right panel, lem2∆ and nur1∆).  

As single mutants, all Mst2C subunits displayed silencing defects whose extent was 

close to or less pronounced than that of pdp3∆ (Figure 7C – left panel). The average 

of all log2 values for the single mutants is shown in the first columns in the middle panel 

of Figure 7C. Double mutants with Mst2C subunits on the other hand consistently 

displayed complete suppression of the silencing defect of pdp3∆ both when pdp3∆ was 

used as a query strain (Figure 7C – middle panel, column 2) as well when the pdp3+ 

deletion was crossed in (Figure 7C – middle panel, lane 1). Contrarily, disrupting lem2+ 

or nur1+ did not suppress the silencing defect of pdp3∆ or other Mst2C mutants (like 

ptf1∆ and ptf2∆; Figure 7C, right panel, columns two and three). The suppression of 

the silencing defect of pdp3∆ by additional deletion of mst2+, nto1+, or ptf2+ suggests 

that Pdp3 is a negative regulator of the anti-silencing activity of Mst2C. 

 

To verify the suppression phenotype for the mst2∆ pdp3∆ double mutant and rule out 

secondary effects through crossing with the library strain, I deleted both pdp3+ and 

mst2+ in same the background (imr::ura4+, h-) I used for SGA query strain. I then 

compared this strain with both query strain mutants by individual silencing assays and 

quantification of transcript levels.  

When plated on non-selective medium, the three tested mutants displayed no growth 

defect compared to WT, suggesting that none of them affect cell proliferation (Figure 

8B, left panel). On 5-FOA-containing media, loss of Pdp3 led to a moderate silencing 

defect as previously observed, whereas lack of Mst2 (Figure 8A) did not perturb 

pericentromeric heterochromatin (Figure 8B, right panel, compare to Figure 6B). 

However, when mst2+ was deleted in the pdp3∆ strain silencing was rescued, 

supporting the hypothesis that the silencing defect of pdp3∆ depends on Mst2C. 
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Figure 8 - The silencing defect of pdp3∆ can be suppressed by concomitant deletion of Mst2: (A) domain 

organization of the HAT Mst2; (B) imr::ura4+ silencing reporter assay for verification of the SGA; a 5-fold serial 

dilutions of wild type (WT), pdp3+ and mst2+ single knockouts as well as a pdp3+ mst2+ double knockout, N/S – non-

selective.(C) RT-qPCR analysis at pericentromeric and subtelomeric heterochromatin as well as ade2+ as control 

for euchromatin, experiments were performed with the same mutants as the silencing reporter assay, data is shown 

relative to WT after normalization to act1+, circles represent individual data of 3 independent experiments and the 

horizontal their median. 

To quantitatively analyze the suppression of the silencing defect, I compared levels of 

heterochromatic transcripts in the pdp3∆ and mst2∆ single mutants and the 

corresponding double mutant by RT-qPCR (Figure 8C). At pericentromeric 

heterochromatin, I tested imr::ura4+ and the dg repeats. At the subtelomeric 

heterochromatin domain, I analyzed tlh1+/tlh2+ at the left arm of chromosome 1 

(TEL1L) and chromosome 2 as it is affected by loss of Pdp3 (see Figure 6D). However, 

not only tlh1+/tlh2+ but also the following four genes (SPAC212.08c, SPAC212.09c+, 

SPAC212.12, and SPAC212.06c) have robust H3K9me2 levels that are comparable 

to heterochromatin at pericentromeres [18]. To test if this region is similarly sensitive 

towards loss of Pdp3, I analyzed heterochromatic transcripts at tlh1+/tlh2+, 

SPAC212.08c+, and SPAC212.09c+, at which H3K9me2 enrichment peaks. At both 

imr::ura4+ (Figure 8C - 2nd panel) and TEL1L (Figure 8C - 3rd to 5th panel) concomitant 

deletion of mst2+ suppressed the silencing defect of pdp3∆. At imr::ura4+ the transcript 

level of mst2∆ pdp3∆ was comparable to that of the WT, at SPAC212.08c and 

SPAC212.09c transcription was significantly lower in the double mutant than in WT. At 

the flanking gene tlh1+/tlh2+, the silencing defect of pdp3∆ was also suppressed nearly 

to WT levels in mst2∆ pdp3∆.  
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Regions whose transcript levels were not perturbed by loss of Pdp3, like the 

pericentromeric dg repeats or euchromatic genes such as ade2+ (Figure 8C – last 

panel), were equally unaltered in the mst2∆ single mutant or the mst2∆ pdp3∆ double 

mutant. 

At nearly all loci tested, the mst2∆ single mutant reflected the phenotype of the 

mst2∆ pdp3∆ double mutant. As an exception, at tlh1+/tlh2+ the mst2∆ single mutant 

itself displayed a silencing defect. 

In summary, loss of Mst2 suppresses the silencing defect of pdp3∆ to the transcription 

level found in the mst2∆ single mutant, suggesting the catalytic activity and possibly 

presence of Mst2 as a likely cause. The silencing defect of mst2∆ at tlh1+/tlh2+ implies 

that acetylation by Mst2 may indirectly promote heterochromatin maintenance.  

4.3 Pdp3 recruits Mst2C to gene bodies and prevents its encroachment 
into heterochromatin 

Given that loss of Pdp3 causes a silencing defect that is suppressed by additional 

removal of the anti-silencing factor Mst2, I postulated that Pdp3 might prevent Mst2 

from invading heterochromatin. Therefore, I studied the binding pattern of Mst2 and 

Pdp3 each other. 

In order to study chromatin association of Mst2 at a genome-wide scale, I collaborated 

with Valentin Flury (VF), a member of the group of Marc Buehler at the Friedrich 

Miescher Institute in Basel. His group is experienced in the use of DamID, a technique 

that allows the detection of even transient protein-chromatin interactions on a global 

scale by DNA methylation in S. pombe and higher eukaryotes [259]–[261]. To this end, 

the protein of interest is expressed as a fusion with the prokaryotic DNA 

methyltransferase Dam, which modifies adenine bases at GATC sites. Methylated 

DNA sites are digested by the DNA methylation-sensitive restriction enzyme DpnI. 

Blunt ends generated by DpnI digestion are ligated with direction-specific adapters; the 

remaining unmethylated GATC are digested with DpnII to remove fragments of regions 

that were not targeted by the Dam-fused protein. Specific ligation products are 

amplified with adapter-complementary primers and then analyzed by DNA micro-

arrays or next-generation sequencing. DamID data generated by Dam-fusion proteins 

are corrected by analysis of the non-fused enzyme (Dam-only) to factor in the 

propensity of Dam to bind to DNA. The readout of DamID is calculated as the ratio of 

Dam-fused proteins to Dam-only. 



4. Results 

70 
 

Using this method to study the localization pattern of Dam-Mst2 via DNA microarrays, 

we found that Mst2 is distributed across all chromosomes but depleted from 

centromeric and telomeric regions (Figure 9A – bottom). When the DamID data were 

compared with H3K9me2-specific ChIP sequencing data, we found that Mst2 is 

specifically depleted from constitutive heterochromatin; this becomes most evident for 

the centromeres and (sub)telomeric regions (Figure 9A – top, H3K9me data from [262]; 

Figure 9B). This suggests a mechanism that sequesters Mst2C to euchromatin and 

limits its access to heterochromatin. Since my findings imply that Pdp3 is a negative 

regulator for Mst2C, VF tested whether the deletion of Pdp3 influences the global 

distribution of Mst2. Indeed, when performing DamID with a strain lacking Pdp3, we 

found that Mst2 encroached on heterochromatin, suggesting that Pdp3 prevents 

unrestricted access of Mst2 to heterochromatin (Figure 9C).  

The advantage of DamID is the visualization of the global distribution of a Dam-fused 

protein across different chromatin domains and even within large genes [259]. 

Furthermore, it is very sensitive due to the high procession rate of Dam and allows the 

detection of transient interactions via stable DNA methylation of regions in the vicinity 

of the Dam-fused protein. Thus, based on the Mst2-DamID results, we hypothesized 

that Mst2 is restricted to specific regions in euchromatin and that recruitment of Mst2C 

depends on Pdp3. This is likely mediated by its PWWP domain, since these domains 

often interact with methylated histones [200]. However, it was not clear whether Mst2 

is recruited to a specific euchromatic posttranscriptional modification or region, such 

as enhancers, promoters, intergenic regions, or a specific end of the open reading 

frame. DamID is a stochastic process and thus does not reflect the quantity of Mst2 

present at a specific domain. This is generally the case with Dam-fused proteins, as 

Dam recognizes GATC sites, which occur every 265 nucleotides, and DamID 

empirically has maximum resolution of one kilobase [259]. To validate the DamID 

results and clarify the manner of Mst2C recruitment and its location on chromatin, I 

applied an alternative method. The first priority was to assess where Pdp3 is located 

on euchromatin, followed by studying whether Mst2 binds to euchromatic regions but 

is no longer recruited in absence of Pdp3. To address these questions, I employed 

chromatin immunoprecipitation coupled to qPCR (ChIP-qPCR). 

For this purpose, I generated strains with C-terminally FLAG-tagged Mst2 and Pdp3; 

this type of epitope-tagging has been successfully used in a previous study in pull-

down experiments to determine the subunits of the Mst2 complex [245].  
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First, I examined the association of Pdp3 with euchromatin (Figure 9D). Euchromatin 

comprises transcriptionally active regions including genes that encode proteins and 

non-coding RNAs. To better understand the function of Pdp3 and Mst2 at chromatin I 

needed an approach that allows me to differentiate whether Pdp3 preferentially 

associates with specific chromatin regions (e.g. parts of a gene). To achieve a higher 

resolution than 1 kb as observed for DamID, I designed and generated tiled primer 

pairs in approximately 500 bp intervals for genes with large intergenic regions that 

ideally span more than a kilobase. One of the arrays includes the genes mto1+ and 

tef3+, which are in divergent orientation (Figure 9D - first panel). These two genes also 

differ significantly in the cellular mRNA level during vegetative growth (1.7 and 160 

mRNA molecules per cell for mto1+ and tef3+, respectively) [263]. When examining 

FLAG-Pdp3, I found that Pdp3 was preferentially enriched at the mto1+ and tef3+ gene 

bodies while being depleted from the intergenic region. I detected no difference in the 

level of Pdp3 enrichment for mto1+ and tef3+. I observed a similar enrichment for sam1+ 

and pgk1+ , which are present in a head-to-tail orientation, and a small gene for a non-

coding RNA present in their intergenic region (160 and 250 mRNA molecules per cell, 

for sam1+ and pgk1+ respectively, Figure 9D - second panel). Thus, Pdp3 binds to 

genes and is not found in intergenic regions. Further, Pdp3 association is not 

correlated with the transcription rate of the gene. 

Next, I assessed the distribution of Mst2-FLAG. Like with Pdp3, I observed that Mst2 

was enriched over gene bodies at mto1+ and tef3+ (Figure 9E, left panel). Analogously, 

I detected comparable results for the ade6+ gene and its neighboring genes bub1+ and 

vtc4+ (Figure 9E – right panel). Notably, in absence of Pdp3 all Mst2 association was 

lost in both regions.  

One possibility is that Pdp3 binds to a specific histone mark that gene bodies are 

decorated with. The other option is that loss of Pdp3 results in nucleosome reduction. 

To rule out nucleosome loss as a cause for reduced Mst2 binding, I performed H3 ChIP 

as a proxy for the nucleosome levels in mst2-FLAG and the pdp3∆ strains. I chose this 

approach to monitor nucleosome density as H3, besides H2A, H2B, and H4, is one of 

the four core histones that form the canonical nucleosome present in transcribed 

regions [2], [5]. H3 density remained unchanged, suggesting that epitope-tagging of 

Mst2 or deleting pdp3+ does not interfere with nucleosome levels and chromatin 

integrity (Figure 9F). Thus, Mst2 recruitment to gene bodies depends on the presence 

of Pdp3. Taken together, the DamID and ChIP data suggest that Pdp3 acts as a factor 



4. Results 

72 
 

that recruits Mst2 to gene bodies and thereby prevents Mst2 from encroaching on 

heterochromatin.  
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4.4 Pdp3-dependent recruitment of Mst2 requires H3K36me3 
Our previous data showed that Pdp3 is essential for the recruitment of Mst2 to gene 

bodies. This suggests that Pdp3 interacts with chromatin through a histone 

modification that is found in actively transcribed chromatin. Pdp3 is a PWWP domain 

protein and a member of the Tudor family of histone readers [195]. Tudor family 

members are known to recognize histone proteins methylated at lysine or arginine 

residues. The prevalent histone mark recognized by PWWP domains is trimethylated 

H3K36 (H3K36me3) [200]. H3K36me3 is conserved across a variety of species and 

considered as one of the hallmarks of transcribed chromatin [168]. Indeed, probing the 

mto1+ and tef3+ loci for H3K36me3 by ChIP revealed that the methylation pattern 

overlapped with the regions enriched for Pdp3 and Mst2 (compare the WT sample of 

Figure 10A with 10C). A similar result was observed when probing the sam1+ and 

pgk1+ loci (data not shown).  

In S. pombe, methylation of H3K36 is mediated by a sole histone methyltransferase, 

Set2 [168]. To test whether methylation of H3K36 is crucial for the recruitment of Pdp3, 

I performed Pdp3-ChIP in a strain lacking Set2. Recruitment of Pdp3 was completely 

abolished at all tested loci (Figure 10A). Similarly, Mst2-FLAG was absent at gene 

bodies in a strain deleted for set2+. This suggests that methylation of H3K36 by Set2 

is essential for the recruitment of Pdp3 and Mst2. However, it remained elusive, which 

specific modification state (i.e. di- or trimethylation) is recognized by Pdp3. For 

example, in S. cerevisiae, Pdp3 preferentially interacts with H3K36me3 but also binds 

to H3K36me2, though with lower specificity [140], [141]. In vitro assays in S. cerevisiae 

Figure 9 - Mst2 requires Pdp3 for recruitment to gene bodies: (A) Mst2 is depleted from heterochromatin: 

shown is an overview of chromosome 1 with annotated heterochromatin domains; top – H3K9me2 ChIP-seq to 

denote the location of the heterochromatic domains; bottom – DamID of Dam-Mst2 over Dam-only; data is 

represented in log2 scale; (B) Mst2 is excluded from all heterochromatic loci: Mst2 DamID heatmap representing 

the average of all enrichment values of primers binding in the regions annotated as the respective chromatin 

domain; blue – depleted, red – enriched relative to Dam-only. (C) Mst2 encroaches on heterochromatin in absence 

of Pdp3; depicted are Dam-Mst2 enrichment values in relation to Dam-only (log2 scale) for oligos covering the 

pericentromeric region of chromosome 1; top – wild-type, bottom – pdp3∆ background. (D) ChIP enrichment of 

FLAG-Pdp3 at mto1+/tef3+ and sam1+/pgk1+, data presented with background subtracted, n = 3 ± SEM; (E) first 

and second panel - ChIP enrichment of Mst2-FLAG at mto1+/tef3+ and bub1+/ade6+/vtc4+, data presented with 

background subtracted, n = 4 ± SEM; (F) H3 ChIP enrichment at mto1+/tef3+ and bub1+/ade6+/vtc4+; data is 

presented relative to FLAG-mst2; n = 3; subfigures (A to C) adapted from Valentin Flury, who performed the 

experiments. 



4. Results 

74 
 

revealed that H3K36me2 is sufficient to recruit the histone deacetylase (HDAC) Rdp3p 

(the S. cerevisiae homolog of Clr6) via the chromodomain protein Eaf3, suggesting 

that H3K36me3 may have a different function [184], [185]. In that vein, in S. pombe, 

genes with a high H3K36me2 display lower levels of H3K27ac, likely due to recruitment 

of the HDAC Clr6 by Alp13, the S. pombe homolog of Eaf3 [128], [264]. 

To determine the binding specificity of Pdp3, I took advantage of a property that is 

unique to fission yeast Set2: All Set2 homologs contain a SET domain and a Set2 

Rpb1 interacting domain (SRI), which are both critical for methylation activity [176]. 

The SRI domain binds the S2-S5-biphosphorylated C-terminal repeats of RNA 

polymerase II during the elongation step of transcription. However, in contrast to S. 

cerevisiae Set2, which is inactive in absence of the SRI domain, the fission yeast SRI 

truncation mutant is defective in trimethylation but still mediates dimethylation of 

H3K36 [177], [265]. To discern the specificity of Pdp3 binding, I analyzed the binding 

profiles of Pdp3 and Mst2 in strains expressing the Set2 mutant lacking the SRI domain 

(set2-SRI∆). H3K36me3 was lost at all tested loci in the set2-SRI∆ mutant, apart from 

tef3+ where it was partially retained (Figure 10C – left and middle panels). Mirroring 

the pattern of H3K36me3, Pdp3 and Mst2 binding was completely abolished from all 

tested genes lacking H3K36me3 in the Set2-SRI∆ strain (Figure 10A and 10B, 

respectively). On the other hand, at the tef3+ locus where H3K36me3 was partially 

retained, both Pdp3 and in part Mst2 remained bound. To ensure that loss of H3K36 

methylation did not affect nucleosome abundance at the analyzed loci, I performed 

ChIP for non-modified histone H3 in H3K36me-deficient mutants (set2∆, set2-SRI∆) 

and in the isogenic WT strain (Figure 10C - right panel). H3 levels in both mutants were 

comparable to the WT, indicating that loss of H3K36me3 is not indirectly caused by 

loss of nucleosome density but rather a direct consequence of the lack of Set2 activity. 

However, it was not clear if the recruitment of Pdp3 proceeded via its PWWP domain.  

In S. pombe, three PWWP domain proteins are present but only the Set9 complex 

subunit Pdp1 has been studied in detail [197], [266]. Pdp1 recruits the H3K20-specific 

histone methyltransferase to monomethylated H3K20 as part of a positive feedback 

loop [266]. The binding pocket of the Pdp1 PWWP domain consists of three aromatic 

residues (Y63, W66, and F94) of which W66 and F94 are essential for maintaining the 

binding function. To test whether PWWP domain of Pdp3 had a similar role, I mutated 

phenylalanine F109 to alanine, this residue putatively corresponding to the essential 

residue F94 in the Pdp1 PWWP domain (Figure 10D). This F109A mutation is 
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expected to prevent binding. By ChIP experiments, I found that the F109A mutation 

abolished chromatin binding of FLAG-Pdp3 to all tested loci (Figure 10E).  

 

To exclude potential secondary effects by fusion with the FLAG-tag and the 

introduction of an additional mutation, I examined the transcript levels of pdp3+ and 

mst2+ mRNA in all strains used for ChIP and compared them to the respective 

untagged strain (Figure 11). Further, I interrogated the protein levels of tagged Mst2 

and Pdp3.  

Transcription of mst2+-FLAG was unaltered compared to mst2+ and unaffected by 

concomitant deletion of pdp3+but slightly increased in the set2∆ strain and set2-SRI∆ 

mutant (Figure 11A - left panel). This observation was mirrored in strains, I used to 

profile Pdp3 binding (Figure 11A - middle panel). Additionally, I analyzed the protein 

level of Mst2-FLAG in the wild-type and the pdp3∆ strain (Figure 11A - right panel). 

Mst2 levels were increase by 30 % in pdp3∆ compared to WT. Thus, a reduction in 

mRNA transcription or in protein level can be excluded as a cause for reduced Mst2 

binding in the pdp3∆ and the set2 mutants (Figure 9E and Figure 10B, respectively).  

Transcription of pdp3+ was slightly increased in both the wild-type and the set2∆ 

mutant of the mst2-FLAG strain, when compared to the untagged strain (Figure 11B – 

left panel). Transcription of pdp3+ in the set2-SRI∆ mutant was comparable to that of 

the untagged strain. When I tested the transcript levels of the epitope-tagged versions 

of the WT and mutant alleles of pdp3+, both strains displayed increased transcription 

compared to the untagged WT (Figure 11B - middle panel). However, transcription was 

not altered between WT and point mutant. Complete loss of Set2 did not reduce FLAG-

pdp3+ expression but rather led to heightened transcription. mRNA transcription of 

FLAG-pdp3+ in the set2-SRI∆ mutant equaled that of the WT. Thus, lack of Pdp3 

binding in all tested mutants (Figure 10A and 10E) is not the result of reduced mRNA 

transcription at the pdp3 locus. At the protein level, I assessed the FLAG-tagged WT 

and the F109A mutant. The amount of point mutant detected was 0.6-fold less than 

that of Pdp3-FLAG. However, rather than a reduction, I observed a complete loss of 

binding in the point mutant. Therefore, the loss of Pdp3 binding for the F109A point 

mutant and in the Set2 mutants is based purely on the mutation of the PWWP domain 

and lack of its target, respectively.  
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Figure 10 - The PWWP domain of Pdp3 and H3K36me3 mediate the recruitment of Mst2: (A) + (E) binding of 

Pdp3 is abolished in a PWWP domain mutant and in strains lacking H3K36me3: ChIP enrichment of FLAG-Pdp3 

at mto1+/tef3+ and sam1+/pgk1+, data is depicted with background subtracted, n = 3 ± SEM; (B) ChIP enrichment 

of Mst2-FLAG over untagged at mto1+/tef3+ and mto1+/pgk1+/vtc4+, data is depicted with background subtracted, 

n=4 ± SEM, zero enrichment represented by dotted line; (C) first and second panel - H3K36me3 enrichment over 

gene and third panel – H3 enrichment at the loci tested in (B), data is shown relative to mst2-FLAG; n = 3 ± SEM 

(for H3, mst2-FLAG set2∆ n = 2 ± range); (D) sequence alignment of the PWWP domains of Pdp1 and Pdp3, 

residues forming the binding pocket are marked in red with the point mutant shown in a darker shade. 
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In addition to testing transcription of the mst2 and pdp3 loci and the corresponding 

protein levels, I interrogated whether epitope tagging of either Mst2 or Pdp3 in its wild-

type or point mutant form compromise silencing (Figure 11C). To this end, I examined 

transcription at tlh1+/tlh2+ as these loci displayed de-repression in both pdp3∆ and 

mst2∆ (see Figure 8C – 3rd panel). I detected no de-repression of heterochromatin 

when either Mst2 or Pdp3 was fused to a FLAG tag (left and right panels, respectively). 

Rather in both cases less tlh1+/tlh2+ was transcribed less than in the corresponding 

untagged strain. In contrast, mutating F109 in Pdp3 did resulted in 6-fold more mRNA 

expression than in the untagged strain, mirroring the silencing defect of pdp3∆. In 

conclusion, the epitope tagging with FLAG as used in the ChIP experiments has no 

negative influence the function of either Pdp3 or Mst2. However, mutating F109 in the 

PWWP domain of Pdp3 results in a silencing defect. Based on these results and in 

agreement with previous findings [140], I conclude that Ppd3 recruits the Mst2 complex 

to gene bodies via specific interaction with H3K36me3 likely involving its PWWP 

domain.  
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Figure 11- Control experiments for the strains used in Figures 9 and 10: (A) first and second panel - RT-qPCR 

at the mst2+ locus, data has been normalized to act1+ and is presented relative to wild-type, shown are individual 

data of 3 and 2 independent experiments (circles) and median (horizontal lines) for the Mst2-FLAG and FLAG-Pdp3 

strains, respectively, last panel - immunodetection of Mst2-FLAG, lysate equating 1 OD was loaded per lane, 

numbers below represent protein enrichment relative to enrichment in Mst2-FLAG after normalization to uppermost 

unspecific band as loading control; (B) first and second panel - RT-qPCR at the pdp3+ locus, data was normalized 

and is presented similar to (A), last panel - immunodetection of FLAG-Pdp3; experiment and normalization 

performed as in (A), except for presentation relative to FLAG-Pdp3; (C) RT-qPCR at subtelomeric tlh1+/tlh2+, data 

has been normalized and is presented as in (A).  
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4.5 The silencing defect in set2∆ cells is caused by Mst2  
Distribution of H3K36me2 and H3K36me3 within active genes differs among 

eukaryotes. For example, in chicken and budding yeast, H3K36me2 peaks towards 

the 3’ end of genes, while it is enriched at promoters and the 5’ region of genes in 

Drosophila melanogaster and S. pombe [128], [145], [186], [267]. In S. cerevisiae, 

H3K36me3 (but not H2K26me2) correlates with the rate of transcription [128], [146], 

[267]. However, my data implies that in S. pombe H3K36me3 is saturated on gene 

bodies regardless of the gene’s transcription rate (see Figure 10C). This raises the 

question whether there is a specific function of H3K36me3 beyond transcriptional 

regulation.  

In S. pombe, H3K36me3 can be sometimes detected within silenced chromatin, which 

seems counterintuitive as it is considered a euchromatic mark [177]. One possibility is 

that the detected H3K36me3 is a remnant of reestablishing heterochromatin during 

S phase [268]. However, H3K36 methylation is required for maintaining the ‘knobs’, a 

silenced region lacking histone marks that is found next to the subtelomeric region and 

constitutes a very condensed form of chromatin in the interphase nucleus [269]. 

Furthermore, loss of H3K36me, either by deletion of set2+ or a mutation in histone H3 

(H3K36R), has been associated with transcriptional de-repression at centromeres and 

telomeres [177], [233], [269]. Since I demonstrated that presence of Pdp3 and 

H3K36me3 ensures specific recruitment of Mst2 to gene bodies, I hypothesized that 

the silencing defect of set2∆ could be attributed to the delocalization of Mst2, resulting 

in the encroachment on heterochromatin. To test this hypothesis, mst2+ in a set2∆ 

strain and analyzed the outcome by heterochromatic transcription at pericentromeric 

and subtelomeric heterochromatin.  

At all tested loci, loss of set2+ resulted in a silencing defect. At pericentromeric HC 

(Figure 12A - left side), I detected for set2∆ cells an upregulation of 2–4-fold at the dg 

and dh repeats as well as for the imr::ura4+ reporter gene. In contrast, mst2∆ set2∆ 

displayed a suppression phenotype with silencing being completely restored at 

imr::ura4+ and the dg repeats, and partially rescued at the dh repeats. As shown before 

(see Figure 3), loss of mst2+ had no effect on pericentromeric heterochromatin. At 

subtelomeric heterochromatin (Figure 12A – right side) the silencing defect of set2∆ 

was more pronounced than at pericentromeric heterochromatin with a 10-fold, 14-fold, 

and a more than 60-fold increase in heterochromatic transcripts at tlh1+/tlh2+, 

SPAC212.09c, and SPAC212.08c, respectively. When I concomitantly deleted mst2+ 
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in the set2∆ strain background, heterochromatic transcription was completely 

suppressed to the level seen in the mst2∆ mutant at all three loci.  

Since de-repression of heterochromatin in set2∆ depends on mst2+, I tested whether 

a lack of Pdp3, which directly interacts with H3K36me3, would cause a similar 

phenotype, thus putting Pdp3 into the same pathway as Set2. As in the experiments 

before (compare to Figure 6 and Figure 8) I detected a moderate silencing defect with 

a 2-fold increase in transcripts at pericentromeric imr::ura4+ in a pdp3∆ strain. Similarly, 

loss of Set2 caused de-repression of pericentromeric heterochromatin, albeit the de-

repression was stronger than in pdp3∆. De-repression in the pdp3∆ set2∆ double 

mutants was 3-fold and thus lower than the transcript level of set2∆ cells but higher 

than in pdp3∆. I also tested silencing in these three mutants at subtelomeric 

heterochromatin domain of TEL1L using the tlh1+/tlh2+ and SPAC212.09c loci (Figure 

12B – right side). Transcriptional de-repression was more pronounced for the 

subtelomeric region than for pericentromeric heterochromatin, with a 3- and 6-fold 

increase and a 2- and 9-fold increase in the pdp3∆ and pdp3∆ set2∆ strains, 

respectively. This is in accordance with previous findings that indicate this region as 

more sensitive to chromatin perturbations [233]. Nonetheless, the behavior at 

subtelomeres was comparable to pericentromeric heterochromatin. Deletions of either 

pdp3+ or set2+ led to heterochromatin de-repression, with the set2∆ mutant displaying 

a stronger silencing defect than pdp3∆, while the pdp3∆ set2∆ double mutant displayed 

partial suppression compared to the set2∆ single mutant.  

Apart from Mst2 and Pdp3, Mst2C contains 5 other subunits: Eaf6, Nto1, Ptf1, Ptf2, 

and Tfg3, though not much is known about their functions within chromatin [245]. Of 

these, I excluded Tfg3 from further investigation as it is also a subunit of Ino80, TFIID, 

TFIIF, and SWI/SNF, thus any mutation would have a widespread effect [270]–[272]. 

Of the remaining four subunits, neither Eaf6 nor Ptf1 have been shown as vital for 

Mst2C, whereas Nto1 and Ptf2 have been revealed as critical for complex integrity and 

function [245]. Based on these previous observations, I investigated whether lack of 

either Nto1 or Ptf2 affects silencing in set2∆ deletion mutants (Figure 12B - second 

panels). The set2∆ nto1∆ and set2∆ pft2∆ double mutants resembled the mst2∆ set2∆ 

strain in that silencing of heterochromatin was fully restored at all tested loci. Likewise, 

neither loss of nto1+ nor of ptf2+ caused heterochromatic de-repression; rather, akin to 

mst2∆, transcript levels remained comparable to WT at imr::ura4+ and were decreased 
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at subtelomeric heterochromatin. This implies that the silencing defect of set2∆ 

depends on the integrity of Mst2C. 

 

 

Figure 12 - The silencing defect of set2∆ is caused by encroachment of Mst2C on heterochromatin but Brl1-
independent: shown are RT-qPCR experiments at pericentromeric and subtelomeric heterochromatin, (A) set2+ 

and mst2+ single knockouts as well as a set2+ mst2+ double knockout, n = 6-12; (B) each 1st panel - set2+ and pdp3+ 

single knockouts as well as a set2+ pdp3+ double knockout, each 2nd panel - set2+ nto1+, and ptf2+ single knockouts 

as well as a set2+ nto1+ and set2+ ptf2+ double knockouts, n = 6, except n = 3 for ptf2∆ and ptf2∆ set2∆, and n = 12 

for WT; (C) set2+, brl1-K242R, brl1-K242Q single knockouts as well as set2∆ brl1-K242R and set2∆ brl1-K242R 

double mutants, n = 3; all data has been normalized to act1+ and is depicted in relation to wild-type (WT), circles 

represent individual data and horizontal lines the median from n independent experiments. 

As part of our collaborative work, we showed recently that Mst2 acetylates K242 of 

Brl1, a non-histone substrate [273]. Brl1 forms with Rhp6, a homolog of S. cerevisiae 

Rad6, the histone H2B ubiquitin ligase complex (HULC) [152], which mediates 

ubiquitylation of histone H2Bub at K119, thereby promoting H3K4 methylation and 

transcription [152], [274]. To interrogate whether Mst2C-dependent acetylation of Brl1 
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is responsible for the silencing defect of set2∆ in heterochromatin, I employed two 

previously used Brl1 mutants: brl1-K242R and brl1-K242Q [273]. Brl1-K242R cannot 

be acetylated, whereas Brl1-K242Q mimics the acetylated state. However, in contrast 

to deletion of mst2+, silencing in the absence of Set2 was not rescued in the brl1-

K242R set2∆ double mutant. Rather, compared to set2∆ there was no detectable 

suppression at the outer centromeric repeats and only a partial suppression from 3- to 

2.3-fold over WT at imr::ura4+ (Figure 12C- 1st to 3rd panel). Furthermore, unlike in 

mst2∆ cells, silencing at subtelomeric heterochromatin in the brl1-K242R single mutant 

was reduced rather than enhanced, resulting in a 70-, 14- and 6-fold increase over WT 

at tlh1+/tlh2+ SPAC212.09c, and SPAC212.08c, respectively (Figure 12C – 4th to last 

panels). Since Brl1-K242Q mimics constitutively acetylated Brl1, its phenotype should 

be independent of Mst2 but epistatic with set2∆ [273]. Though the brl1-K242Q single 

mutant indeed showed de-repression for some of the heterochromatic transcripts 

examined, it was much less than seen for set2∆. Even more surprisingly, when 

examining the brl1-K242Q set2∆ double mutant, I found that silencing was restored at 

pericentromeres, whereas I observed a synthetic de-repression at the subtelomeric 

tlh1+/tlh2+ and SPAC212.09c loci, increasing transcription substantially compared to 

the set2∆ single mutant. Taken together, these observations for brl1-K242R and brl1-

K242Q suggest that Brl1 is not the primary target of delocalized Mst2C in 

heterochromatin. 

In summary, I found that pdp3∆ set2∆ exhibits a non-additive phenotype that is partially 

suppressed compared to set2∆, whereas lack of Mst2, Nto1 or Ptf2 suppresses the 

silencing defect of set2∆ at all tested loci. This corroborates the notion that Pdp3 acts 

downstream of Set2, but upstream of the other Mst2C subunits. These results further 

imply that the silencing defect of set2∆ mutants is caused by encroachment of Mst2 on 

heterochromatin and underline the importance of H3K36me3 for the global regulation 

of Mst2C localization. However, the results of the experiments with the Brl1 mutants 

indicate that Mst2C has a different target in heterochromatin as compared to 

euchromatin.  

4.6 Acetylation of H3K14 remains unaffected in the absence of Mst2 
Mst2 is an anti-silencing factor that prevents the ectopic assembly of heterochromatin, 

as shown by our collaborative study [273]. Moreover, we found that Mst2C invades 

heterochromatin and causes a silencing defect when not anchored to gene bodies by 
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Pdp3 and H3K36m3. However, so far it remains elusive how Mst2 functions in the 

prevention of silencing. Mst2 belongs to the MYST family of histone acetyltransferases 

and acts redundantly with Gcn5 in vivo in acetylation of H3K14 (H3K14ac). Yet 

contrary to lack of Mst2, loss of Gcn5 does not perturb silencing, suggesting that Mst2C 

functions in a separate pathway to Gcn5 [242], [245]. To gain more insight into the role 

of Mst2C in chromatin regulation, I examined whether H3K14ac levels in euchromatin 

and heterochromatin are affected by delocalization or loss of Mst2. For this, I 

interrogated the levels of H3K14ac in a pdp3∆, an mst2∆, and in a WT strain at the 

mto1+/tef3+ locus for euchromatin as well as pericentromeric and subtelomeric 

heterochromatin. As a gauge for the maximum accumulation of H3K14ac, I employed 

a null mutant of clr3+ (clr3∆), the H3K14ac-specific histone deacetylase [99]. 

Furthermore, to exclude indirect effects, I normalized the H3K14ac enrichments to H3 

ChIP experiments I performed in parallel using the same lysates since loss of Clr3 has 

been associated with decreased nucleosome occupancy [101], [233]. By examining 

the mto1+/tef3+ locus (Figure 13A), to which Pdp3 and Mst2 bind (left panel of Figure 

4D and 4E), I found that neither loss of Pdp3 nor Mst2 significantly affected H3K14ac 

levels. except for a slight increase in H3K14ac over tef3+ in pdp3∆ (right panel). In 

conformance with earlier studies, the clr3∆ mutant displayed a 25 to 50% loss of 

nucleosome occupancy and notable increase in H3K14ac enrichment, due to its role 

in counteracting histone turnover by global regulation of H3K14ac levels [43]. Similarly, 

I did not detect a significant difference in H3K14ac enrichment at any of the tested 

pericentromeric and subtelomeric loci in either pdp3∆ or mst2∆ (Figure 13B - bottom 

row)  

The lack in net change of euchromatic H3K14ac levels in pdp3∆ and in mst2∆ suggests 

that Gcn5 likely compensates the loss of Mst2. However, these results also imply that 

Mst2 acts on another substrate that is not targeted by Gcn5. 
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Figure 13 - Encroachment of Mst2C on heterochromatin does not affect acetylation of H3K14: ChIP-qPCR 

of H3K14ac and H3 enrichments in pdp3+ and mst2+ single knockouts with a clr3+ knockout as positive control (A) 

enrichments at euchromatic mto1+/tef3+, data for H3K14ac and H3 is shown relative to WT with n = 3 ± SEM; 

H3K14ac/H3 is shown as is (B) enrichments at pericentromeric and subtelomeric heterochromatin; enrichments for 

H3K14ac and H3 are shown relative to wild-type, The ratio of H3K14acc 7H3 is shown at log2 scale; represented 

is individual data (circles) of same experiments as in (A) with their median as horizontal line. 

4.7 Mst2, but not Pdp3, prevents spreading of H3K9me2 
My results showed that loss of Mst2 anchoring and invasion into heterochromatin 

induces de-repression of silenced regions, resulting in increased levels of 

heterochromatic transcripts (see Figure 8C and Figure 12C). On the other hand, loss 
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of Mst2 results in increased silencing compared to WT at subtelomeric 

heterochromatin (see Figure 8C- 4th and 5th panel, and Figure 12A). Thus, within 

subtelomeric heterochromatin, Mst2 appears to maintain basal levels of transcription. 

At euchromatic regions, neither Pdp3 nor Mst2 influence transcription (Figure 8C - last 

panel) but prevent the initiation of silencing [273]. However, none of these Mst2-

dependent mechanisms involves acetylation of H3K14 (Figure 13). Methylation of 

H3K9 (here dimethylation, H3K9me2) is the hallmark of heterochromatin in S. pombe 

and higher eukaryotes [52], [275]. An earlier study showed that Mst2, like the ant-

silencing factor Epe1, prevents spreading of H3K9me2 across heterochromatin 

boundaries [247]. Thus, I asked whether Pdp3 influences methylation of H3K9 as well. 

To analyze the influence of Pdp3 and Mst2 on H3K9 methylation, I performed 

H3K9me2-specific ChIP experiments at pericentromeric and subtelomeric 

heterochromatin and their boundaries in WT and the respective single mutant strains 

as well as the mst2∆ pdp3∆ double mutant.  

When testing the pericentromeric region, I found that H3K9me2 levels in pdp3∆ were 

reduced by ~20% compared to WT (Figure 14A). Conversely, H3K9me2 outside the 

pericentromeric boundaries (inverted repeats at centromeres, IRC; Figure 14B) was 

not affected. Subtelomeric heterochromatin displayed an opposing behavior: While the 

first 18 kb of TEL1 of subtelomeric heterochromatin, H3K9me2 was not affected, the 

region beyond showed reduced H3K9me2 levels, reaching a minimum of ~50% 

compared to WT.  

Next, I examined the strain lacking mst2+. Here, H3K9me2 levels remained unaffected 

inside the heterochromatic domain of the tested CEN1 region (Figure 14D). However, 

in agreement with the earlier study [247], H3K9me2 spread outside of heterochromatin 

at the pericentromeric boundary (IRC; Figure 14E). Similarly, I observed for the 

subtelomeres an increase in H3K9me2 starting from approximately the 18 kb with a 

maximum level at ~32 kb (Figure 14F).  

The mst2∆ pdp3∆ double mutant exhibited a similar phenotype as the pdp3∆ single 

mutant inside pericentromeric heterochromatin but presented the phenotype of mst2∆ 

with H3K9me2 spreading outside of the heterochromatin boundaries (Figure 14G and 

14H). Similarly, at telomere-proximal subtelomeres, H3K9me2 in the mst2∆ pdp3∆ 

double mutant resembled the pdp3∆ single mutant, while telomere-distal ~18 kb the 

double mutant phenocopied mst2∆ (Figure 14I). In summary, pdp3∆ and mst2∆ 

displayed differing phenotypes with the mst2∆ pdp3∆ acting like pdp3∆ inside 
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heterochromatin but like mst2∆ at heterochromatin boundaries and heterochromatin-

adjacent regions. The reduction in pericentromeric H3K9me2 levels in pdp3∆ and at 

pericentromeres in the double mutant suggests that Pdp3 indirectly influences 

heterochromatin levels. The fact that I detected spreading of heterochromatin in the 

mst2∆ single and double mutant but not the pdp3∆ single mutant suggests that 

transient presence of Mst2 is sufficient to prevent spreading of H3K9me2 at 

heterochromatin boundaries.  

 

Figure 14 - Mst2 prevents spreading of H3K9me2 over heterochromatin boundaries independent of Pdp3: 
Shown is enrichment of H3K9me2 over different heterochromatic regions with (A, D, G) pericentromeric 

heterochromatin of centromere 1, (B, E, H) righthand boundary of centromere 1, and (C, F, I) TEL1L; (A - C) 

enrichment in pdp3∆, (D-F) enrichment in mst2∆, and (G-I) enrichment in mst2∆ pdp3∆; all data have been 

normalized to the average of three euchromatic genes (adf1+, sam1+, tif51+); n = 3 ± SEM. 
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4.8 The mei4+ locus presents a special case with regards to the function 
of Mst2C 

When performing H3K9me2 ChIP, I first used the housekeeping gene act1+, a 

commonly used reference for both RT-qPCR and ChIP experiments, as a control for 

normalization. However, while usually euchromatic genes display no notable 

H3K9me2 levels and remain unaffected by the deletion of heterochromatin factors, I 

noticed an increase in H3K9me2 for act1+, when pdp3+ was deleted (compare Figure 

10F). Interestingly, the act1+ locus is situated next to mei4+, a meiotic gene.  
Meiotic genes belong to the class of facultative heterochromatin [276]. These genes 

are transcriptionally and post-transcriptionally silenced during vegetative growth, and 

form small ‘heterochromatic islands’ within a euchromatic domain [221]. Intriguingly, 

while heterochromatin islands, like the mei4+ gene, are decorated with H3K9me2 

during cell growth, the levels of this modification are very low compared to constitutive 

heterochromatin. [221]. H3K9me2 at heterochromatin islands is established via the 

exosome pathway through the RNA elimination factor Red1 that recruits Clr4. Thus, 

H3K9me2 at heterochromatin islands may be a byproduct. Interestingly, ChIP-chip 

data revealed that H3K9me2 levels are further enriched at mei4+ in mst2∆ [247]. My 

H3K9me2 data for act1+ raised the question whether Mst2 and Pdp3 are involved in 

the regulation of silencing at heterochromatin islands modified with H3K9me2. To test 

this hypothesis, I conducted H3K9me2 ChIP experiments on the mei4+ locus, and its 

two flanking genes cdk9+ and act1+.  

Consistent with other euchromatic genes (compare Figure 9D and 9E), Mst2 and Pdp3 

are present at all three loci (Figure 15A and 15B). Their recruitment depends on Pdp3 

or its PWWP domain, respectively. Interestingly, Mst2 recruitment was stronger at the 

highly expressed act1+, compared to the other two genes (Figure 15B). In set2∆ and 

set2-SRI∆ mutants, which completely lack H3K36me or only H3K36me3, respectively, 

I detected neither Pdp3 nor Mst2 at the gene bodies of cdk9+ and mei4+ (Figure 15D 

and 15E). However, like the highly expressed tef3+ (Figure 10A and 10B), act1+ also 

retained binding of Pdp3 in the absence of the Set2-SRI domain, supporting the notion 

of an alternative mechanism apart from interaction of Set2-SRI domain with the 

RNAP II CTD. As seen for the other loci tested (see Figure 10C), enrichment of Pdp3 

and Mst2 overlapped with H3K36me3, with nucleosome density remaining unaffected 

in the set2-SRI∆ (Figure 15G). Thus, the mei4 locus does not differ from other 

euchromatic regions tested in terms of Pdp3 and Mst2 binding.  
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Figure 15 - The mei4 locus displays similar behavior to the previously tested loci for recruitment of Pdp3 
and Mst2 as well as for H3K36me3 but peculiar behavior in terms of H3K9me2 enrichment: (A and D) ChIP-

qPCR of FLAG-Pdp3 with (A) Pdp3_F109A, and (D) Set2 mutants, data shown with background subtracted; (B and 

E) ChIP-qPCR of Mst2-FLAG in (B) pdp3∆, and (E) Set2 mutants; data shown with background subtracted; (C, F, 

H) ChIP-qPCR of H3K9me2 in pdp3∆ (C), mst2∆ (F) and mst2∆ pdp3∆ (H), data relative to three euchromatic loci 

(adf1+, sam1+, tif51+); (G) ChIP-qPCR of left – H3K36me3, right – H3; data shown relative to respective enrichments 

in Mst2-FLAG; n = 3 ± SEM for all experiments. 

However, since mei4+ is also decorated with H3K9me2, I tested whether H3K9me2 

levels are altered in mst2∆, a pdp3∆, or the mst2∆ pdp3∆ strain. I discovered a 

substantial increase in H3K9me2 in mst2∆ at mei4+ (14-fold to 73-fold over the average 

of 3 euchromatic loci) coupled to spreading of this mark into cdk9+ and act1+ (Figure 
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15C). Interestingly, I noted a similar affect for pdp3∆, although at lower level (14 – 

35-fold) (Figure 15F). Furthermore, whereas mst2∆ pdp3∆ behaved like a pdp3∆ single 

mutant inside constitutive heterochromatin (compare Figure 14), at mei4+ the double 

mutant looked rather like the mst2∆ strain (Figure 15H), though H3K9me2 was more 

enriched (up to ~95-fold over the average of 3 euchromatic loci). 

In summary, the mei4+ locus displayed the characteristics of other euchromatic loci for 

binding of Mst2 and Pdp3 as well as for H3K36me3 but showed behavior reminiscent 

of heterochromatin boundaries for H3K9me2. However, this data also suggests that 

H3K9me2 spreading at this and similarly regulated heterochromatin islands is 

completely suppressed by direct recruitment of Mst2 to the locus via Pdp3 and partially 

suppressed in absence of Pdp3. 
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5 Discussion 
Mst2 and Gcn5 are H3K14-acetylating histone acetyl transferases. However, whereas 

Gcn5 has no influence on heterochromatin silencing, Mst2C promotes transcription of 

pericentromeric heterochromatin in the absence of a functional RNAi machinery [242]. 

Paradoxically, the Mst2C subunit and PWWP domain protein Pdp3 displays opposing 

behavior as deletion of pdp3+ leads to increased heterochromatic transcription of 

pericentromeric heterochromatin [231], [277]. Earlier studies indicate that a variety of 

specification factors contribute to the maintenance of HC via positive feedback loops 

[278], [279]. Here, I will discuss how the silencing defect of Pdp3 and Set2 are 

connected to their functions in a positive feedback loop that promotes transcription and 

suppresses HC formation. 

5.1 Pdp3 contributes to heterochromatin maintenance 
RT-qPCR experiments revealed that the silencing defect caused by the loss of Pdp3 

not only compromises silencing of pericentromeric HC, as reported in a previous study 

[231], but affects HC at a global scale. This came to light when I examined transcript 

levels in pdp3∆ strains with primers specific to pericentromeric HC and a primer set 

that is annealing to the telomere proximal 3’-end of the tlh1/tlh2+ gene. In contrast to 

Pdp3, Mst2 has been described as an anti-silencing factor that counteracts RNAi, a 

prerequisite to HC formation. Using functionally genetics I found through SGA that the 

silencing defect of pdp3∆ was suppressed by additionally deleting any other Mst2C 

subunit (see Figure 2). This gave rise to the notion that Pdp3 may act as a negative 

regulator for Mst2C with regard to antagonizing heterochromatin 

Similar behavior of mst2∆ to catalytically inactive Mst2 point mutants in a previous 

study indicated that any influence of Mst2C on heterochromatin is coupled to its 

catalytic activity [242].  

Corroborating this notion, concomitant deletion of mst2+ completely suppressed the 

silencing defect of pdp3∆ at both pericentromeric imr::ura4+ and several subtelomeric 

genes (see Figure 6), which suggests that the silencing defect is caused by the 

catalytic activity of Mst2C.  
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5.2 Pdp3 acts as a specification factor for Mst2C localization 
In S. cerevisiae, the remodeler Isw1b is recruited to actively transcribed regions via the 

PWWP subunit Ioc4p that interacts with H3K36me3 [280]. Similarly, the Mst2C 

homolog NuA3b is recruited to H3K36me3 via its PWWP domain subunit Pdp3p [140]. 

In S. pombe, Pdp3 is one of three PWWP domain proteins [266]. While the function of 

Pdp2 has not been determined, Pdp1 forms a heterodimer with the H4K20-methylating 

KMT Set9 and recruits this enzyme to H4K20me1 where it mediates the addition of 

further methyl groups to H4K20me1 [266]. This study further revealed that mutating 

the binding site of Pdp1-PWWP caused diminished Set9 recruitment to chromatin. 

However, only H4K20me3 levels were reduced, while H4K20me1 and H3K20me2 was 

increased or unaltered, respectively, suggesting that delocalized Set9 is still active, 

though not fully processive.  

Mst2C is able to acetylate H3K14, and potential other targets, in the absence of Pdp3 

[245]. In addition, my results showed that loss of Pdp3 causes transcriptional de-

repression that is suppressed when mst2+ is deleted. Therefore, we tested the 

hypothesis whether Pdp3 localizes Mst2C to specific chromatin regions to restrain its 

activity and prevent aberrant acetylation of silent chromatin. Indeed, our collaborators 

at the FMI showed using DamID that Mst2 is usually depleted from heterochromatin 

but invades repressed pericentromeres and subtelomeres in the absence of Pdp3. 

Thus, Pdp3 was critical to keep Mst2C from encroaching on HC. By determining the 

binding pattern of Pdp3 and Mst2 on EC by ChIP, I discovered that both proteins 

preferentially localize to gene bodies, while being depleted from the intergenic regions. 

Furthermore, Mst2 recruitment was lost in absence of Pdp3. This implies that, similar 

to the PWWP protein Ioc4p for S. cerevisiae remodeler Isw1b, Pdp3 is responsible for 

keeping the Mst2 complex to euchromatin [280].  

Additional evidence was provided by mutagenesis studies with other PWWP domain 

proteins such as Pdp1 [266]. To test whether Pdp3 is directly interacting with 

chromatin, I first mutated one of the three binding residues comprising the PWWP 

domain (F109A). This led to a loss of Pdp3 binding to chromatin. While protein levels 

of Pdp3_F109A were also partially reduced, probably due instability, the complete loss 

of binding of Pdp3_F109A suggested that this was largely due to a loss of function of 

the PWWP domain. Although mass spectrometry data from previous studies indicates 

that Pdp3 is more than 100-fold higher translated than Mst2 [281], steady state levels 

examined by immunoblot experiments using the same epitope tag show comparable 
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amounts of Mst2 and Pdp3 , suggesting that stability of Pdp3 might require interaction 

with Mst2C (Figure 6A and 6B). To test this further end, interaction of Pdp3 and Mst2 

could be examined by co-immunoprecipitation experiments with Pdp3 and 

Pdp3_F109A, as well as when Mst2 is overexpressed.  

To identify the binding site on chromatin for Pdp3 we focused on H3K4me and 

H3K36me, as both residues are targeted by NuA3 the, S. cerevisiae homolog of 

Mst2C, and are reportedly recognized by PWWP domains [141], reviewed in [200]. To 

this end, our collaboration partner studied genome-wide localization of Mst2 in set1∆ 

and set2∆ strains by DamID. This revealed that loss of Set2, but not Set1, caused 

delocalization of Mst2 (see Figure 4C and data not shown). Therefore, unlike the 

NuA3a subcomplex, which is recruited to H3K4me3 via its PHD finger subunit Yng1 

[139], Mst2C is exclusively targeted to H3K36me. In both S. cerevisiae and S. pombe, 

H3K36me2 is sufficient to mediate HDAC recruitment, suggesting a different function 

for trimethylated H3K36 [184], [185], [264]. In S. cerevisiae H3K36me3 is recognized 

by Ioc4 and Pdp3p. Moreover, in S. pombe, H3K36me3 was recently shown to be 

critical for heterochromatic silencing and the suppression of cryptic transcripts [177]. 

Consistent with previous reports, I found that H3K36me3 was distributed across the 

gene body. To elucidate whether Pdp3 discriminates between di- and trimethylated 

H3K36 I took advantage of truncated mutant lacking the Set2– Rpb1 interaction (SRI) 

domain, which can convey mono- and dimethylation of H3K36 but not H3K36me3 

[177]. This revealed that binding of Pdp3 and recruitment of Mst2, respectively, were 

lost in absence of H3K36me3 at gene bodies, though H3 levels remained the same. 

Therefore, the PWWP domain of Pdp3 is specific for H3K36me3.  

5.3 The interaction of Pdp3 with H3K36me3 contributes to a positive 
feedback loop promoting transcription 

Results from our collaboration partner suggest that Mst2C is part of a regulatory circuit 

that prevents ectopic silencing of euchromatic genes by RNAi. In a previous study, 

they uncovered that mutation of paf1+ or other subunits of Paf1C results in the local 

production of siRNAs and accumulation of H3K9me at a locus targeted by an RNA 

hairpin [282]. In our collaborative study, genetic experiments with a paf1 mutant and 

mst2∆ revealed that the corresponding double mutant was more prone to ectopic 

silencing compared to the paf1 mutant alone [273]. Therefore, in the absence of Mst2, 

Paf1 likely acts as a buffer to prevent ectopic silencing and allows for normal 
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progression of transcription in euchromatin. Mst2C is a known acetyltransferase for 

H3K14 whose acetylation has been shown to promote DNA damage response but also 

histone turnover in HC domains [101], [245]. However, several lines of evidence 

suggest that Mst2 has additional targets besides H3K14. Loss of Pdp3 causes neither 

a decrease in this modification at euchromatic genes not does this induce increased 

H3K14ac across pericentromeric and subtelomeric HC, i.e. under conditions when 

Mst2 encroaches heterochromatin. Similarly, loss of Mst2 did not affect euchromatic 

or heterochromatic H3K14ac enrichment. Likely Gcn5, which acts redundant in 

acetylating H3K14, compensates for the loss of Mst2 [283], [284]. Furthermore, mst2∆ 

but not gcn5∆ is capable of bypassing RNAi [242]. Conversely, the silencing defect of 

HDAC mutants cannot be suppressed by concomitant deletion of mst2+ [242]. Put into 

context with the present H3K14ac data, I conclude that Mst2 has an additional target 

besides H3K14, whose acetylation affects heterochromatin initiation. Through a 

combination of pan-acetylation ChIP and mass spectrometry in mst2∆ and gcn5∆ 

strains, our collaborators identified a new Mst2 target involved in preventing ectopic 

heterochromatin, the E3 ubiquitin ligase Brl1. Brl1 is a subunit of the H2B ubiquitin 

ligase complex (HULC) that monoubiquitylates histone H2B at lysine 119 (H2Bub), a 

mark that is associated with positive regulation of transcriptional elongation [152], 

[285]. In our collaborative study, we showed that acetylation of Brl1 promotes HULC 

activity and di- and trimethylation of H3K4me [273], which is consistent with the 

findings that this modification requires the presence of H2Bub on gene bodies (see 

chapter 2.1.4.4). Set2 is recruited to transcribed genes via its SRI domain that interacts 

with the phosphorylated C-terminus of elongating RNAPII. In addition, H3K36me3 

deposition also requires the Paf1 complex [176]. Thus, the recruitment of Mst2C to 

H3K36me3 participates in a positive feedback loop promoting transcription.  

Taking the findings into account (i) that the mst2∆ paf1 double mutant displays higher 

rates of ectopic silencing, (ii) that Pdp3 target Mst2C to H3K36me3 and (iii) that Mst2C 

acetylates Brl1, the following working model for the prevention of ectopic silencing by 

Mst2C emerges. Concomitant deletion of mst2+ in the paf1 mutant may result in slower 

transcription compared to the paf1 single mutant, which may result in prolonged 

presence of nascent RNA at the locus. Furthermore, these cells expressed an RNA 

hairpin, that caused the production of reporter gene-specific siRNAs loaded onto RITS. 

The nascent reporter gene RNA is targeted by RITS and acts as nucleation site for HC 

formation via RNAi [67], which shuts down transcription of the reporter gene. In 
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contrast, slowed down transcription in the paf1 mutant is suppressed when Mst2C is 

recruited to H3K36me3 by Pdp3 and acetylates Brl1, as the succeeding increase in 

H2Bub promotes the positive feedback loop described in Figure 2 . 

5.4 The silencing defect of set2∆ is caused by the delocalization of Mst2C 
The Mst2C functions not only in the prevention of ectopic silencing euchromatin but is 

also required to maintain a basal level of transcription in subtelomeric heterochromatin 

[238]. This is further supported by my observation that the levels of several 

subtelomeric transcripts were reduced below WT level in yeast strains lacking Mst2 

(Figure 6D). As mentioned above, Mst2C encroaches on heterochromatin when not 

anchored to euchromatin by its subunit Pdp3. Similarly, Mst2C was delocalized from 

euchromatin in the absence of Set2 or when a Set2-SRI∆ truncation mutant was 

expressed (Figure 10B). In addition, earlier studies reported that heterochromatic 

transcription at pericentromeres and subtelomeres is elevated in the absence of Set2 

[177], [233], [269]. Given these observations, it seems likely that the silencing defect 

not only of pdp3∆ but also of set2∆ is based on the delocalization of Mst2C to 

heterochromatin. To test this hypothesis, I analyzed how heterochromatic transcription 

in a set2∆ strain is affected by concomitant deletion of pdp3+ or mst2+. Akin to pdp3∆, 

loss of set2+ caused a silencing defect at pericentromeric and subtelomeric HC, 

suggesting Set2 and Pdp3 work in the same pathway. Heterochromatin silencing was 

more affected in the set2∆ than in pdp3∆, however, the pdp3∆ set2∆ double mutant 

showed a non-additive phenotype, which is in line with Set2 working upstream of Pdp3 

(Figure 12B). This is underlined by the revelation that, as seen for pdp3∆, 

heterochromatic transcription in set2∆ was completely suppressed when mst2+ deleted 

(Figure 8B - 8D and Figure 12A). Similarly, silencing was restored when nto1+ or ptf2+, 

two other subunits that are critical for Mst2C integrity and function [245] were deleted 

(Figure 12B). From these observations I conclude that the silencing defect in strains 

lacking Set2 is solely caused by Mst2C encroaching on heterochromatin.  

The requirement of Mst2C for basal heterochromatic transcription as well as the 

silencing defect caused by its delocalization raise the hypothesis that Mst2C has 

acetylates a substrate within heterochromatin as well. To test whether Mst2C targets 

Brl1 in heterochromatin, I employed two mutants we generated in our collaborative 

study [273], Brl1-K242R, which cannot be acetylated, and Brl1-K242Q, which mimics 

constitutive acetylation (Figure 12C). However, contrary to our prediction that Brl1-
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K242R would act like mst2∆ and rescue silencing in set2∆, heterochromatin 

transcription in the set2∆ double mutant was unaffected or only partially suppressed. 

Even more unexpectedly, the brl1-K242Q set2∆ displayed synthetic phenotype at 

several subtelomeric loci. Thus, I conclude from this observation that Mst2C does not 

acetylate Brl1 within heterochromatin, or at least that Brl1 is not the relevant target. 

Indeed, this result is in accordance with a previous study on Set2 in S. cerevisiae, 

where the authors discovered that a silencing defect due to lack of Set2 is exacerbated 

by concomitant deletion of Paf1 complex subunits and Bre1, the homolog of Brl1 [286]. 

If Bre1 were also acetylated by NuA3B in heterochromatin, then deletion of bre1+ 

should have suppressed the silencing defect of set2∆. However, as de-repression was 

enhanced instead, this did not seem to be the case. These results further suggest that 

acetylation of Brl1, and likely Bre1, require the respective KAT to be anchored to 

euchromatin.  

In addition, Mst2C does not seem to regulate heterochromatic transcription by 

acetylation of H3K14 as neither eu- nor heterochromatin showed altered H3K14ac in 

pdp3∆ or mst2∆ (Figure 8). Likely, H3K14ac is maintained by Gcn5, with which Mst2C 

acts redundantly [284].  

In conclusion, I propose that Mst2C has another target in heterochromatin that is 

required for maintaining basal transcription but that can be modified — in contrast to 

Brl1 — also by transiently bound Mst2C. This observation underlines the critical role 

of Pdp3 sequestering Mst2C to EC. 

5.5 Pdp3 is likely not the only anchoring factor in Mst2C 
Although Pdp3 acts downstream of Set2, the phenotypes of pdp3∆ and set2∆ mutants 

differ from each other with respect to heterochromatic transcription. De-repression in 

pdp3∆ is significantly weaker that in the set2∆ mutant (Figure 12B). This discrepancy 

between the silencing defects in pdp3∆ and set2∆ might be linked to a putative role of 

Pdp3 in stabilizing the complex and thereby enhancing acetylation even though it is 

not required for catalytic activity. This hypothesis would need to be tested by 

performing RT-qPCR in a Set-SRI∆ strain in the absence and presence of Pdp3, as 

HC transcript levels should drop in that case in a pdp3∆ strain. However, there might 

also be other factors involved. According to recently published data on Set2 and 

H3K36me3 by the Murakami group, both the pericentromeric and subtelomeric region 

display a low amount of this mark with the amount in the subtelomeric region 
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decreasing towards the chromosome ends in chromosome 1 and 2 [177], [269]. 

Moreover, SPAC212.08c, which is found to be most repressed among the tested 

subtelomeric heterochromatin loci, was much more affected in set2∆ than in pdp3∆ 

(compare Figure 8C, and Figure 12A). This suggests while Mst2C cannot stably 

interact with H3K36me3 in the absence of Pdp3, it only moves freely when H3K36 

methylation has been abolished through the deletion of set2+. Thus, even though Pdp3 

is required to for stable binding of Mst2C to gene bodies, a second Pdp3-independent 

mechanism involving H3K36 methylation might exist to prevent Mst2C encroachment 

on silent chromatin. Among the other subunits of Mst2C, the PHD domain protein Nto1 

poses a likely candidate. The S. cerevisiae homolog of Nto1, a subunit of the Mst2C 

homolog NuA3, contains two PHD domains, and one of these domains displays 

binding affinity for H3K36me3 [244]. Therefore, Nto1 could have a similar binding 

affinity. However, testing this hypothesis would require mutating the PHD domain, 

since Nto1 is essential for the integrity and function of Mst2C [245].  

5.6 Mst2C activity and localization influence the maintenance of the EC-
HC boundary and ectopic silencing 

Mst2C fulfils multiple functions in chromatin regulation. Acetylation of H3K14 by Mst2C 

and Gcn5 acts as a signal for the remodeler RSC in DNA damage response and 

reduces nucleosome density by promoting histone turnover [245]. In our collaborative 

study, we showed that Mst2C also targets the HULC subunit Brl1, thereby promoting 

H2Bub and transcription, and prevents ectopic silencing [273] Lastly, I showed that 

Mst2C is part of a Pdp3-independent pathway that promotes a basal level of 

transcription in heterochromatin, but becomes hyperactivated when Mst2C is no longer 

bound to transcribed chromatin in pdp3∆ and Set2 mutants. However, loss of Pdp3 

and Mst2C may also affect the distribution of silencing factors on chromatin. For 

euchromatin, this is corroborated by my observations for the mei4+ locus, which is 

surrounded by cdk9+ and act1+. The mei4+ locus is a heterochromatic island marked 

by H3K9me2 [221]. Here, loss of both Mst2 and of Pdp3 appear to promote silencing. 

In wild-type cells, all three loci are decorated with H3K36me3 to which Pdp3 and Mst2 

are recruited Figure 15A, 15B, and 15G). Similar to other euchromatic domains, the 

recruitment of Mst2 is lost in the absence of either Pdp3 or H3K36me3. An exception 

of this observation is the residual binding of Pdp3 to the genes act1+ and tef3+ in the 

Set2-SRI mutant (Figure 10A and Figure 15D), suggesting a different mechanism in 
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H2K36me3 establishment (Figure 10C). H3K9me2 enrichment at the mei4+ locus was 

increased in the absence of Mst2 (Figure 15C). This was also the case for H3K9me2 

in pdp3∆, though to a much lower degree (Figure 14F). The mst2∆ pdp3∆ double 

mutant essentially displayed a similar enrichment compared to the single mst2∆ 

mutant. Likewise, I detected H3K9me2 spreading at the pericentromeric boundary 

region of CEN1R and the region adjacent to TEL1L in mst2∆ and mst2∆ pdp3∆ (Figure 

14E, 14F, 14H, and 14I). Based on their role in preventing ectopic silencing, the loss 

of Pdp3 and Mst2C is predicted to make euchromatin more prone to silencing, resulting 

in increased accumulation of heterochromatin.  

Loss of Mst2C may also affect distribution of silencing factors indirectly. In contrast to 

the other loci tested at subtelomeres, loss of Mst2 did not suppress silencing at the 

tlh1+/2+ loci but caused de-repression instead. In addition, the silencing defects in 

pdp3∆ and set2∆ at this locus were only partially rescued in the mst2∆ pdp3∆ and 

mst2∆ set2∆ double mutants (Figure 8C and Figure 12A, respectively). Yet, while 

H3K9me2 in pericentromeric and subtelomeric HC, was moderately reduced in pdp3∆, 

it was unaltered in the absence of Mst2 (Figure 14A-14F). This suggests that the cause 

the heterochromatin derepression at tlh1+/tlh2+ acts downstream of H3K9me2. The 

HP1 protein Swi6 binds to H3K9me2 and H3K9me3 via its chromodomain and acts as 

binding partner for other proteins involved in heterochromatin regulation, e.g. Epe1 

[80], [230]. Furthermore, Swi6 proteins can oligomerize, thereby aiding in the 

spreading of heterochromatin [229]. Swi6 is also highly mobile [287] but its cellular 

population is limited [288]. Therefore, if ectopic silencing of a region is initiated and 

H3K9me2/3 starts to accumulate, then Swi6 will be likely redistributed to other 

domains. As subtelomeric HC has negotiable boundaries that are less rigid (see 

section 2.4), Swi6 is more likely to be relocated from the HC bordering regions. Thus, 

the silencing defect in mst2∆ at the TEL1L boundary genes may stem from the 

redistribution of Swi6 to ectopically silenced euchromatin. It is also plausible that this 

reorganization is partially responsible for the silencing defect in pdp3∆. 

In summary, the activity of Mst2C and the localization of the complex influence 

heterochromatin maintenance not only directly but also indirectly.  

5.7 Concluding remarks 
The findings from this study have provided new insights into how euchromatin 

maintenance is regulated by a positive feedback loop involving the acetyltransferase 
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Mst2C, H3K36me3 and H2Bub. Particularly, the study revealed that the PWWP 

domain protein Pdp3 is not just a recruitment factor but also required to maintain the 

identity of chromatin domains, i.e. euchromatin and heterochromatin. This function is 

achieved through regulating the localization of Mst2C by Pdp3. The study 

demonstrated that Mst2C promotes transcription at its target location on gene bodies 

and prevents spreading of H3K9me2 over HC boundaries through an H3K14ac-

independent mechanism involving the HULC subunit Brl1.  

In addition, I have uncovered a Pdp3-independent activity of Mst2C that contributes to 

maintaining a basal transcription level at subtelomeric HC, which does not involve Brl1 

or H3K14ac. When Mst2C is delocalized from actively transcribed chromatin and gains 

increased access to HC in the absence of Pdp3, this mechanism becomes hyperactive, 

resulting in the silencing defects seen in pdp3∆ and set2∆. Thus, the study showed 

that Pdp3 not only targets Mst2C but also prevents the aberrant activity of the complex 

(Figure 16).  

Set2, which deposits the target of Pdp3, H3K36me3, is highly conserved, and many 

enzymes contain PWWP domains or interact with PWWP domain proteins [200]. Thus, 

it seems likely that other H3K36me3-bound enzymes are similarly anchored to not only 

specify the targeted region but also to avoid promiscuous modification of their 

interaction partners. 

 

Figure 16 - Model for regulation of transcription by Mst2C In euchromatin Mst2C is recruited to H3K36me3 by 

Pdp3 where it acetylates the Brl1 subunit of HULC; this stimulates H2B ubiquitylation, resulting in increased 

transcription that prevents ectopic silencing; in addition, Mst2C is required for maintaining basal transcription 

through a pathway that acts in a Pdp3/H3K36me3-independent manner; in absence of Pdp3 or Set2 Mst2C is 

delocalized and encroaches on heterochromatin, which results in hyperactivation of this pathway and de-repression  

of pericentromeric and subtelomeric heterochromatin.
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6 Tables and Figures 

6.1 List of Tables 
Table 1: Electrocompetent E. coli strain 

Table 2: Plasmids used and generated during the study 

Table 3: LB liquid media 

Table 4: LB + Amp plates 

Table 5: S. cerevisiae strain for homologous recombination 

Table 6: YPD liquid media 

Table 7: SD plates 

Table 8: SC-ura plates 

Table 9: amino acids and uracil 

Table 10: S. pombe strains used in the study. 

Table 11: 2x YES liquid media (3 l) 

Table 12: YES plates 

Table 13: Selective reagents 

Table 14: SPAS plates 

Table 15:1000x vitamin mix 

Table 16: EMM (Edinburgh minimal medium) plates 

Table 17: EMM-ura plates 

Table 18: LiOAc/TE solution (100 ml) 

Table 19: PEG/LiOAc solution (100 ml) 

Table 20: 10xPBS (1 l) 

Table 21: Quenching solution (500 ml) 

Table 22: Lysis buffer (500 ml) 

Table 23: Lysis buffer - high salt (500 ml) 

Table 24: Wash buffer (500 ml) 

Table 25: TE (100 ml) 

Table 26: TE + 1 % SDS (100 ml) 

Table 27: Elution buffer 3 (100 ml) 

Table 28: 7x BisTris buffer 

Table 29: HU loading buffer (10 ml) 

Table 30: 20x MOPS running buffer (100 ml) 
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Table 31: Recipe for NuPAGE gels (2 gels) 

Table 32: 10x Transfer buffer for WB (1 l) 

Table 33: 1x Transfer buffer for WB (1 l) 

Table 34: 10x TBS for anti-FLAG immunoblotting 

Table 35: reaction mix for one RT reaction 

Table 36: Program for reverse transcription 

Table 37: Breaking buffer (100 ml) 

Table 38: Reaction mix for diagnostic PCR 

Table 39: PCR program for 1.5 kb amplicons 

Table 40: Primers utilized for diagnostic PCR. 

Table 41: Reaction mix for 50 µl KAPA2G Robust PCR 

Table 42: PCR program for KAPA2G Robust 

Table 43: Primers to amplify deletion cassettes. 

Table 44: Reaction mix for 50 µl PCR reaction 

Table 45: PCR program for 1.5 kb amplicons 

Table 46: Fragment primers for homologous recombination in S. cerevisiae 

Table 47: qPCR reaction set-up 

Table 48: Primers used for RT-qPCR 

Table 49: Tiled arrays for high resolution profiling of euchromatin 

Table 50: Tiled array used for profiling of constitutive HC and HC-EC boundaries 

Table 51: Primers for mei4 array 

Table 52: Set-up of plasmid digestions with restriction enzymes 

Table 53: 50x TAE buffer (5 l) 

Table 54: 6x Orange DNA loading buffer (50 ml) 

Table 55: Sequencing primers  
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6.2 List of Figures 
Figure 1 - Overview of the RNAi pathway in S. pombe 

Figure 2 - Overview of pathways promoting transcription, here in S. pombe 

Figure 3 - Aromatic cage of PWWP domain proteins 

Figure 4 – Overview of constitutive heterochromatin in S. pombe 

Figure 5 – Comparison of recruitment strategies between S. cerevisiae NuA3 and 

S. pombe Mst2C 

Figure 6 – Loss of Pdp3 causes a silencing defect 

Figure 7 – Pdp3 is a negative regulator of the Mst2 complex 

Figure 8 – The silencing defect of pdp3∆ can be suppressed by concomitant deletion 

of the HAT Mst2 

Figure 9 – Mst2 requires Pdp3 for recruitment to gene bodies 

Figure 10 – The PWWP domain of Pdp3 and H3K36me3 mediate the recruitment of 

Mst2 

Figure 11 – Control experiments for the strains used in in Figure 9 and 10 

Figure 12 – The silencing defect of set2∆ is caused by encroachment of Mst2C on 

heterochromatin 

Figure 13 – Encroachment of Mst2C on heterochromatin does not affect acetylation of 

H3K14 

Figure 14 – Mst2 prevents spreading of H3K9me2 over heterochromatin boundaries 

independent of Pdp3 

Figure 15 – The mei4+ locus displays similar behavior to the previously tested loci for 

recruitment of Pdp3 and Mst2 as well as for H3K36me3 but peculiar behavior in terms 

of H3K9me2 enrichment 

Figure 16 – Model for regulation of transcription by Mat2C 
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7 Abbreviations 
ac acetylated residue 

ARC Argonaute RNA chaperone 

bp basepair(s) 

CEN centromeric region 

ChIP chromatin immunoprecipitation 

CLRC Clr4 complex, mediates H3K9me 

Clr6CII Clr6 complex II  

cnt transcribed core region of centromeres 

CTD C-terminal domain (of the RNAPII subunit Rpb1) 

DNA deoxyribonucleic acid 

dsRNA double-stranded RNA 

EC euchromatin 

E. coli Escherichia coli 

5-FOA 5-fluoroorotic acid 

for forward (in context of primers) 

Gcn5 general control of amino-acid synthesis 5 

H2A/2B/3/4 histone 2A/2B/3/4 

H2BK119 H2B lysine 119 

H2Bub(1) monoubiquitylated H2B (in S. pombe at K119) 

H3KX H3 lysine X 

H3KXac H3 acetylated at lysine X 

H3KXme1/2/3 H3 mono-, di-, or trimethylated at lysine X 

H4K16ac H4 acetylated at lysine 16 

H4K20me1/2/3 H4 mono-, di-, or trimethylated at lysine 20 

H4KX H4 lysine X 

HAT histone acetyl transferase 

HDAC histone deacetylase 

HMT histone methyl transferase 

Hox homeobox 

HC heterochromatin 

HP1 heterochromatin protein 1 

HULC histone ubiquitin ligase complex 
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imr innermost repeats 

IR inverted repeat element at the mating type locus 

IRC inverted repeat element at centromeres 

K242R/Q substitution of lysine 242 with arginine (R) or glutamine (Q) 

KAT lysine acetyl transferase 

KMT lysine methyl transferase 

KO knockout 

LTR long terminal repeat 

MAT mating type locus 

mRNA messenger RNA 

me1/2/3 mono-/di-/trimethylated residue 

Mst2C Mst2 complex 

ncRNA noncoding RNA 

N/S non-selective 

ORF open reading frame 

otr outermost repeats 

Nto1 NuA three orf 1, subunit of Mst2C 

NuA3/4 nucleosome acetylation at histone ¾ 

PCR polymerase chain reaction 

Pdp3 PWWP domain protein 3, subunit of Mst2C 

Ptf1/2 Pdp three-interacting factor 1/2, subunits of Mst2C 

PWWP proline-tryptophan-tryptophan-proline  

qPCR quantitative PCR 

Paf1C polymerase II-associated factor 1 complex 

PRC Polycomb-repressive complex 

PRE Polycomb group response element 

PTM post-translational modification 

RDRC RNA-directed RNA polymerase 

RITS RNA-induced transcriptional silencing complex 

RNA ribonucleic acid 

RNAi RNA interference 

RNAPII RNA polymerase II 

rpm rounds per minute 

RT-qPCR reverse transcription coupled with qPCR 
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S. cerevisiae Saccharomyces cerevisiae 

S. pombe Schizosaccharomyces pombe 

SAGA Spt-Ada-Gcn5 acetyltransferase 

SHREC Snf2/HDAC-containing repressor complex 

siRNA small interfering RNA 

SRI Set2 Rpb1 interacting domain 

Su(var) suppressor of variegation 

TEL telomeric region 

TF transcription factor 

ub ubiquitylated residue 

3’/5’-UTR 3’/5’-untranslated region 
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