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Zusammenfassung

Diese Doktorarbeit beschreibt die Realisierung von topologischen Floquet-Systemen mit
ultrakalten Atomen in einem optischen, zweidimensionalen hexagonalen Gitter. Topolo-
gische Phasen können mittels periodisch getriebener Quantensysteme simuliert werden.
Dabei wird ein statisches System als Zeit-Mittel über eine Modulationsperiode dargestellt,
was unter dem Begriff Floquet-Engineering bekannt ist. Periodische Modulation kann je-
doch auch dazu verwendet werden, intrinsisch zeit-abhängige Konfigurationen zu erzeu-
gen, die in keinem statischen System auftreten können. Ein Beispiel dafür sind zwei-
dimensionale, anomale Floquet-Phasen, in denen die Chern-Zahlen aller Energiebänder
gleich null sind, aber trotzdem robuste Randzustände existieren. Ein statisches System
hingegen, in dem alle Chern-Zahlen verschwinden, ist topologisch trivial.

Im optischen, hexagonalen Gitter können anomale Floquet-Systeme durch kontinuier-
liche, periodische Modulation der Laser-Intensitäten erzeugt werden. Das resultierende
topologische Phasen-Diagramm beinhaltet unterschiedliche Bereiche, von denen drei ge-
nauer untersucht werden, unter anderem die anomale Floquet-Phase und eine Haldane-
ähnliche Phase. Zeit-periodische Systeme besitzen periodische Quasi-Energien und kön-
nen durch Windungszahlen beschrieben werden, welche die Anzahl der Randzustände in
den Quasi-Energie-Lücken angeben. Das Schließen der Bandlücken definiert topologische
Phasen-Übergänge, die mit Hilfe von interferometrischen Messungen nachgewiesen wer-
den. Die entsprechende Änderung der Windungszahlen ist mit einem Vorzeichenwechsel
der Berry-Krümmung an den Berührpunkten der Bänder verknüpft. Die Berry-Krüm-
mung im Impulsraum wird anhand einer transversalen Ablenkung im Realraum gemessen,
was die Bestimmung der Windungszahlen ermöglicht. Dies gibt direkt Aufschluss über
die Existenz von Randzuständen, auch in einem System mit flachen Rändern, wie es
im Experiment verwendet wird. Die gemessenen Bandlücken und transversalen Ablen-
kungen stimmen quantitativ sehr gut mit theoretischen Werten überein, die auf einer nu-
merischen Berechnung der Floquet-Bandstruktur basieren. Um ein System mit Rändern
zu beschreiben, wird außerdem ein Tight-Binding-Modell für das modulierte Gitter ein-
geführt.

Anomale Floquet-Phasen können ebenfalls in frequenz-modulierten, zweidimensiona-
len hexagonalen Gittern auftreten, falls die Inversions-Symmetrie des Gitters gebrochen
wird. Die beiden Modulations-Schemata werden hinsichtlich ihrer Phasen-Diagramme
und der experimentellen Umsetzbarkeit verglichen.

Die Zustände im Inneren eines anomalen Floquet-Systems können durch ein unge-
ordnetes Potential vollständig lokalisiert werden, was dazu verwendet werden könnte,
wechselwirkende, periodisch getriebene Systeme gegen Heizeffekte zu stabilisieren. Die
experimentelle Realisierung eines ungeordneten Potentials und starker Wechselwirkung
wird diskutiert, ebenso wie eine direkte Messung der Randzustände.

Darüber hinaus werden die Eigenwerte von Wilson-Linien im zweidimensionalen hexa-
gonalen Gitter betrachtet, welche die geometrischen Eigenschaften von entarteten Bloch-
Bändern beschreiben, sowie Heizeffekte in schwach-wechselwirkenden, getriebenen Syste-
men am Beispiel eines eindimensionalen Gitters untersucht.
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Abstract

This thesis reports on the realization of Floquet topological systems with ultracold atoms
in an optical honeycomb lattice. Using periodically driven quantum systems, topological
phases of matter can be simulated by an effective, static Hamiltonian related to the
time-evolution at integer multiples of the driving period, which is known as Floquet
engineering. However, periodic driving can also give rise to genuinely time-dependent
settings without static counterparts. One example is the anomalous Floquet phase in two
dimensions, in which all bulk bands have a Chern number of zero but nevertheless robust
chiral edge modes appear, which would be precluded by the bulk-edge correspondence in
a static system.

In an optical honeycomb lattice, anomalous Floquet systems can be created by contin-
uous, periodic modulation of the laser intensities. This driving scheme results in different
topological regimes, three of which are investigated, including the anomalous Floquet
phase and a Haldane-like phase. Periodically driven systems feature periodic quasiener-
gies and can be characterized in terms of winding numbers, which count the number
of chiral edge modes in each quasienergy gap. By interferometric measurements of the
quasienergy gaps between the first two Floquet bands, the topological phase transitions,
emerging as gap closings, are located. For periodically driven systems, a modified bulk-
edge correspondence can be formulated. In particular, the change of the winding number
at a phase transition is related to the sign change of the local Berry curvature. The Berry
curvature at the gap closing points is probed by Hall deflection measurements to obtain
the winding numbers in each of the topological regimes, revealing the existence of chiral
edge modes also in a setting with smooth boundaries as used in the experiments. The
measured quasienergy gaps and transverse deflections are quantitatively well described
by a numerical calculation of the Floquet bandstructure that includes coupling to higher
bands during the driving period. To derive the spectrum of the modulated lattice in a
geometry with edges, a tight-binding description of the system is discussed.

Circular phase modulation of the honeycomb lattice can also give rise to an anomalous
Floquet system when inversion symmetry is broken. The topological phase diagrams and
the experimental feasibility are compared for both modulation schemes.

Due to the vanishing Chern numbers, the bulk states in the anomalous Floquet regime
can be fully localized by a disorder potential. This could prevent heating in interacting,
periodically driven systems, resulting in a many-body localized bulk coexisting with ther-
malizing edge states. The experimental realization of disorder and strong interactions, as
well as independent probes of the edge states are investigated.

Bloch band geometry can be extended to multiband systems, using Wilson lines. The
possible symmetry protection of their eigenvalues is discussed, along with measurements
in the optical honeycomb lattice. Moreover, the onset of heating in weakly-interacting,
periodically driven systems, triggered by parametric instabilities, is studied experimen-
tally in a one-dimensional lattice.
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Chapter 1

Introduction

The properties of a material emerge not only from the properties of its constituents,
but also from their arrangement. According to Landau’s approach [1], phases of matter
can be characterized by underlying symmetries, related to different kinds of order in the
organization of particles. A transition between two distinct phases corresponds to the
spontaneous breaking of a symmetry. One example is the transition from a liquid to a
solid: In the liquid phase, particles can be displaced arbitrarily without changing the
properties of the system. In contrast, in a crystal, the energy is minimized when the
particles are arranged in a periodic pattern, which only exhibits discrete translational
symmetry. Thus, at the phase transition from a liquid to a solid, continuous translational
symmetry is broken.

Triggered by the discovery of the integer quantum Hall effect (QHE) in 1980 [2], the
symmetry-based classification of phases has been extended by the concept of topological
order [3, 4]. In the QHE, the transverse conductivity of a two-dimensional (2D) sample
takes quantized values νe2/(2π~), ν ∈ N, at low temperatures and high magnetic fields.
The plateaus of the conductivity, described by different values of the integer ν, correspond
to states with the same symmetries but different properties, which define distinct topo-
logical phases [5, 6]. The value of ν is insensitive to continuous deformations or smooth
variations of the material properties [7]. Due to its robustness, the quantization of the
Hall conductivity has been measured with a great degree of accuracy and is currently
used to define the standard of resistance [8].

Topological order of a physical system manifests in complex properties of the quantum
mechanical ground state wave function. In many cases, it is rooted in the dependence
of the Bloch eigenstates on the electrons’ quasimomentum in the crystal. The notion
of topology originally stems from the field of differential geometry, describing the global
properties of curved manifolds [9]. A closed surface can be classified by its genus g, which
basically counts the number of holes in it. Hence, a sphere has a genus of g = 0 and is
topologically different from a torus with g = 1. Two surfaces are characterized by the
same value of g, if they can continuously be deformed into each other. In QHE systems,
the genus corresponds to the integer ν counting the plateaus in the conductivity. It is
identical to the sum over the Chern numbers of all occupied energy bands. These invari-
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ants characterize the topological properties of non-interacting, static systems. Similarly
as the genus is defined as the integral over the local curvature of the manifold, the Chern
number is given by the integral over the Berry curvature, which quantifies the curvature
of the Bloch states in quasimomentum space.

Although the general concept of topological phase transitions is not rooted in symme-
try breaking, there are topological phases which require a certain symmetry of the Hamil-
tonian. The topological phases of static, free particle systems are grouped according to
their symmetries and dimensionality by the Altland-Zirnbauer (AZ) classification [10,11].
Depending on the presence of time-reversal, particle-hole or chiral symmetry and the
dimension of the system, it specifies the number of equivalence classes of gapped Hamil-
tonians. If two Hamiltonians are in the same equivalence class, they can be continuously
deformed into each other without breaking the protecting symmetry or closing an energy
gap [12]. For the QHE states, in which all of the three mentioned symmetries are absent,
the set of equivalence classes is given by Z. Thus, each class is characterized by a single,
integer number, which corresponds to ν. A prominent example of a topological phase
respecting time-reversal symmetry are topological insulators [13–17] characterized by a
Z2 invariant, which have been predicted theoretically [18,19] and observed experimentally
in different kinds of solid state materials [20–23].

Topological order can give rise to new, interesting phenomena such as long-range
entanglement and quasi-particles with fractional statistics [24, 25], that can also be non-
Abelian [26, 27], being of particular interest for topological quantum computation [28].
Moreover, topologically non-trivial Bloch bands involve the existence of robust boundary
modes [29–31] at the edge of the system or at interfaces between systems being charac-
terized by different topological indices. These edge modes are topologically protected,
which makes them insensitive to local defects and therefore interesting for technical ap-
plications like the realization of robust analog signal processing [32]. The appearance
of gapless edge modes is described by the bulk-edge correspondence, which relates the
topological invariants of the bulk bands directly to the states at the boundary. In the
case of Chern insulators, such as the QHE states, the Chern number of each energy band
is given by the difference between the number of chiral edge modes being present in the
gaps above and below the band.

In analogy to topological insulators there exist also time-reversal invariant topolog-
ical superconductors and superfluids [33–35], where the superconducting gap directly
corresponds to the band gap of the insulator [36]. The counterpart of Chern insulators
are chiral superconductors in 2D, exhibiting chiral Majorana modes at their boundaries,
which can give rise to non-Abelian statistics [37–39].

Topology in periodically driven systems The description of phases in terms of
symmetry breaking and topological order can be applied in a modified form also to sta-
tionary states of non-equilibrium systems [12]. In periodically driven lattices, the role of
the Bloch waves, defining the topological properties at the single particle level, is taken
by the eigenstates of an effective Floquet Hamiltonian that is derived from the time-
evolution operator over one period of the driving. In many cases, the concepts developed
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to describe the topology in equilibrium settings, such as Chern numbers, can directly be
applied to the effective Hamiltonian. By optimizing the properties of the periodic drive,
systems with specific properties can be tailored using periodic driving. This stroboscopic
simulation of a static system is called Floquet engineering [40].

Periodically driven systems can, however, also realize genuinely time-dependent settings
which have no static counterpart. These systems can not be described by standard
topological invariants being derived from the stroboscopic evolution, since their properties
are related to the micromotion that occurs within the driving period. In 2D, an anomalous
Floquet phase exists [41], in which the Chern numbers of all bulk bands are equal to zero,
but nevertheless robust chiral edge modes appear at the boundary of the system. The
existence of such edge modes would be ruled out by the bulk-edge correspondence in a
time-independent setting. Due to the time-periodicity of the Hamiltonian, its spectrum
also becomes periodic and the energies are only defined up to integer multiples of the
driving frequency. Similar to the quasimomentum in a space-periodic potential, they
are called quasienergies. Thus, there is no notion of a lowest band anymore and edge
states can exist in the quasienergy gap below the first band. While in a static system the
knowledge of all Chern numbers is sufficient to derive the number of chiral edge modes in
all energy gaps, in the periodic quasienergy spectrum there is no reference point to start
counting.

Periodically driven systems can be characterized in terms of winding numbers which
count the number of edge modes in each quasienergy gap. The topological properties
of N quasienergy bands are encoded either in the N winding numbers or, alternatively,
in the N − 1 independent Chern numbers and one winding number. The symmetry
classification of topological phases provided by the AZ scheme can also be extended
to Floquet topological systems. Instead of considering the Hamiltonians, it gives the
number of equivalence classes of unitary evolution operators with a gapped spectrum at
the end point [12]. Based on the description by winding numbers, a modified bulk-edge
correspondence can be formulated for periodically driven systems. The change of the
winding numbers at a topological phase transition can be directly related to the sign
change of the local Berry curvature at the gap closing point. Thus, the number of chiral
edge modes can be determined by probing the properties of the bulk eigenstates, which
will be used in the experiments presented in this work.

Anomalous Floquet phases exhibit remarkable properties, especially in the presence
of disorder. Since the Chern numbers of all bands are equal to zero, the bulk states can
be fully localized by the disorder [42], which is not possible in conventional topological
insulators characterized by non-zero Chern numbers. At the same time, the chiral egde
modes remain mobile, as they can be viewed as a single mode winding around the entire
quasienergy spectrum [43]. The complete localization of bulk states could help to stabilize
interacting Floquet systems. Due to the relaxation of energy conservation, periodically
driven many-body systems are expected to heat up to a featureless, infinite temperature
state in the thermodynamic limit [44, 45]. This heating problem could be overcome
by either investigating prethermalization regimes [46–54] at intermediate timescales or
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by many-body localization [12,55–58]. In anomalous Floquet systems with an additional
disorder potential, a many-body localized bulk could exist in the presence of thermalizing
edge states [59], serving as a starting point for the exploration of interacting, topological
systems.

Realization with ultracold atoms Ultracold atoms in optical lattices have emerged
as a powerful tool to study exotic phases of matter, which are otherwise difficult to observe
in conventional solid state experiments [60, 61]. The relatively large lattice spacings and
low densities have allowed for the verification of many theoretical concepts, such as the
observation of Bloch oscillations in real- and momentum space [62–64]. Moreover, by
controlling the kinetic energy via the lattice depth and the interaction energy by the use
of Feshbach resonances, strongly correlated many-body phases have been realized [65,66].
Topological phases of matter can be simulated via Floquet engineering with ultracold
atoms loaded into periodically driven optical lattice potentials [67–70].

In this work, the experimental realization of an anomalous Floquet system using a
Bose-Einstein condensate (BEC) subjected to a periodically driven optical honeycomb
lattice [71] is described. The modulated lattice gives rise to a variety of different topo-
logical regimes, which are fully characterized in terms of their winding numbers. By
probing the quasienergy gaps in the Floquet spectrum, the transitions between the dif-
ferent regimes are identified. Combining these results with Hall deflection measurements
of the local Berry curvature allows to derive the winding numbers. Due to the modified
bulk-edge correspondence, probing the properties of the bulk states directly reveals the
number of chiral edge modes in each quasienergy gap, even in a system with smooth
boundaries defined by a harmonic trap, as it is used in this work.

Thesis contents

This thesis is structured as follows. The basic theoretical concepts describing the topology
of static and periodically driven 2D systems are introduced in chapter 2 along with a
short introduction into Floquet engineering. The properties of the anomalous Floquet
phase are discussed and the relation of the winding numbers to the bulk states is derived,
constituting the basis for their measurement using an ultracold bosonic quantum gas.

In chapter 3, the realization of an anomalous Floquet system via chiral modulation
of the tunnelings in an optical honeycomb lattice is presented. This is achieved by period-
ically varying the intensities of the laser beams. The Floquet band structure is calculated
numerically, providing a theoretical model which can be quantitatively compared to the
experimental results. In order to derive the dispersion of the edge modes in a semi-finite
geometry, a tight-binding description is introduced.

Chapter 4 is dedicated to the experimental setup. The creation of the BEC and
the characterization of the optical lattice is described, as well as the techniques used to
determine the quasienergy gaps and Berry curvature. Moreover, the combination of the
2D honeycomb lattice with an additional lattice along the vertical direction is discussed,
which will be important for future experiments involving strong interactions.
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The characterization of the different Floquet topological regimes by energy gap and de-
flection measurements is presented in chapter 5, which is based on the results presented
in [71]. Starting from the limit of high modulation frequencies, the winding numbers are
derived in each regime, directly revealing the existence of an anomalous Floquet setting.
By systematically scanning the modulation parameters, the full 2D phase diagram is ob-
tained. Different loading schemes are explained, which are needed to probe the system
in each topological regime, enabling also an investigation of the second band.

Anomalous Floquet regimes can also be realized by a periodic modulation of the
lattice phases, leading to a chiral motion of the complete potential in real space, as
described in chapter 6. The theoretical phase diagram of the model is discussed, being
supported by the edge mode dispersion derived from a tight-binding description of the
semi-finite setting. The phase shaking is compared to the intensity modulation regarding
their experimental feasibility to probe the anomalous Floquet regime.

Based on the previous results, chapter 7 provides an outlook on future experiments
utilizing the special properties of anomalous Floquet systems. Amongst others, modifi-
cations to the setup allowing for direct imaging of the chiral edge modes and the creation
of a sharp boundary are discussed, as well as the realization of a disorder potential.

The topological properties of degenerate multiband systems can be described by Wil-
son lines. In chapter 8, the symmetry protection of the eigenvalue phases of certain
Wilson lines is discussed along with attempts to probe these in the optical honeycomb
lattice, based on the measurements reported in [72,73].

As mentioned above, periodic driving of interacting systems in general leads to heat-
ing. To gain insight into the physical processes involved, a periodically driven one-
dimensional optical lattice is studied. While the dynamics at long time-scales can be
understood by a Floquet Fermi’s golden rule [74], the onset of heating at short timescales
is expected to be triggered by coherent excitations. The experimental investigation of
these parametric instabilities is briefly described in chapter 9, while a more detailed
discussion can be found in [75,76].

The thesis concludes with a summary of the results and a short outlook in chapter 10.
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Chapter 2

Floquet topological phases

The motion of electrons in a periodic potential is described in terms of quantized energy
bands which can be classified according to their topological properties. The chapter starts
with a brief introduction into the notion of Bloch band topology for two-dimensional (2D)
systems, which is exemplified by the characterization of electrons in a magnetic field [2.1].
Here, the connection between the topological properties of the bulk eigenstates and the
existence of chiral edge modes is illustrated. The generation of artificial magnetic fields
for ultracold atoms using periodic modulation, called Floquet engineering, is discussed in
Sec. 2.2. Periodically driven lattices can also be used to simulate systems with novel prop-
erties that exceed those of conventional static systems, one example being the anomalous
Floquet phase. The topological characterization of periodically driven systems and the
properties of the anomalous Floquet phase are presented in the last section [2.3].

2.1 Topological characterization of static systems

The concept of topology, originally defined in differential geometry for the description
of curved manifolds, can be generalized to the Hilbert space of quantum mechanical
systems. The topological properties of non-degenerate Bloch bands in two dimensions
are usually described in terms of an integer-valued invariant, called the Chern number,
which can be viewed as the counterpart of the genus in mathematics, counting the number
of handles on a connected, orientable surface. The Chern number can be derived from
the geometric properties of the Bloch bands, which will be introduced in the first section.
The connection between the Chern number of a bulk energy band and the number of
chiral modes at the boundary of a system with edges is discussed, being apparent in the
description of the integer Quantum Hall effect. A paradigmatic example for topological
Bloch bands in a honeycomb lattice is the Haldane model, which is introduced in the last
part.
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2.1.1 Geometric properties of Bloch bands

The Schrödinger equation for a single particle in a periodic potential V (r) = V (r + R)
in the nth energy band with quasimomentum q reads:

Ĥ(r)ψnq(r) =

(
p̂2

2m
+ V (r̂)

)
ψnq(r) = En

q ψ
n
q(r) (2.1)

According to Bloch’s theorem [77], the eigenstates ψnq(r) are Bloch-waves, which can be
written as the product of a plane wave and a periodic function unq(r) = unq(r + R) with
the same periodicity as the lattice:

ψnq(r) = eiqr unq(r). (2.2)

This leads to the Schrödinger equation of the periodic functions:

(
(p̂ + ~q)2

2m
+ V (r)

)
unq(r) = En

q u
n
q(r), (2.3)

which depends explicitly on the quasimomentum, yielding an eigenvalue equation for each
value of q. In contrast, the Bloch-waves ψnq(r) are just labeled by the quasimomentum
and 〈ψnq(r)|ψnq′(r)〉 = δq,q′ per definition, which is not necessarily the case for the cell-
periodic functions unq(r). The geometric properties of Bloch bands become apparent when
considering the adiabatic transport of an eigenstate in quasimomentum space. The system
is initialized at t = 0 in the eigenstate unq(0) and its quasimomentum is changed slowly
enough such that it remains in the instantaneous eigenstate unq during the evolution,
according to the adiabatic theorem [78]. After a time t, the state has acquired a phase
factor

unq(0) → eiφ(t) unq(t), (2.4)

which is the sum of the dynamical phase φd, arising from the energy dispersion, and a
geometric phase φg:

φ(t) = φd + φg = −1

~

∫ t

0

En
q(t′) dt′ + i

∫ q(t)

q(0)

〈unq′|∇q′|unq′〉 · dq′ (2.5)

The geometric phase can be written in terms of the Berry connection An(q), that de-
scribes the change of the eigenstates along the path in quasimomentum space

An(q) = i〈unq|∇q|unq〉. (2.6)

In general, the Berry connection and the geometric phase are gauge dependent, i.e. they
change under a gauge transformation unq → eiχ(q)unq, which leaves the physical properties
of the system unchanged. However, when considering the evolution along a closed path
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∂S, the geometric phase becomes gauge-independent and is called the Berry phase [79].
In this case, Stokes’ theorem can be applied and the Berry phase φB can be expressed as:

φB =

∮

∂S

An(q) · dq =

∫

S

Ωn(q) d2q, (2.7)

where Ωn(q) denotes the Berry curvature, which is gauge-independent and defined by

Ωn(q) = ∇q ×An(q) = i〈∇qu
n
q| × |∇qu

n
q〉. (2.8)

The Berry curvature can be viewed as an effective magnetic field B = ∇×A in quasimo-
mentum space, whereas the Berry connection corresponds to the vector potential. Using
the Schrödinger equation, the Berry curvature can be rewritten as [79]:

Ωn(q) = i
∑

m 6=n

〈unq|∇qĤ(q)|umq 〉 × 〈umq |∇qĤ(q)|unq〉
(En − Em)2

. (2.9)

An example for a Berry phase being directly observable is the Aharonov-Bohm-effect [80],
where the motion of two fractions of the same initial wavepacket around a magnetic
solenoid is considered. Although the magnetic flux is confined to the interior of the
solenoid, the two parts pick up a phase difference when passing the solenoid on the left
and right, which directly corresponds to the Berry phase and can be measured interfero-
metrically.

The concept of the Berry phase presented here is defined for a single Bloch band n,
but can be generalized to multiband systems. If the transport of the Bloch state is non-
adibatic with respect to the gap between several energy bands, these bands are mixed
and the time-evolution can be described by the matrix-valued Wilson line [81,82], which
is discussed in more detail in chapter 8.

2.1.2 Chern number and bulk-edge correspondence

The topological properties of non-interacting, static systems can be completely charac-
terized in terms of the Chern numbers associated with their energy bands. For a finite
system, these are defined in terms of the bulk bands, but also contain information about
the states at the edge of the system. In the following, this is illustrated by means of the
Quantum Hall effect (QHE) [2], describing the quantization of the Hall conductance at
high magnetic fields and low temperatures. In these experiments, a constant current is
sent through a 2D solid state sample in the presence of a large magnetic field normal to its
surface. This leads to a potential drop across the sample perpendicular to the direction
of the current, that is measured to derive the transverse conductivity σxy. As a function
of the magnetic field, the conductivity exhibits plateaus at quantized values

σxy = ν
e2

2π~
, (2.10)
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with e being the elementary charge. The existence of these plateaus is related to the
population of chiral edge states propagating along the boundary of the system. The solid
state sample can be described by a 2D electron gas moving in the periodic potential
of the crystalline lattice and a random onsite potential modeling the disorder, which is
always present in real materials due to defects. The resulting energy dispersion consists
of broadened bands describing the bulk, which are separated by gaps. The centers of the
bands in energy correspond to states being delocalized over the interior of the sample
and their tails to localized states [83]. In addition, the gaps between the bulk bands are
crossed by single energy levels, which belong to states at the edge of the sample, which
are delocalized along the complete boundary.

If the Fermi energy lies within a bulk gap, the conductivity will exhibit a quantized
value according to Eq. 2.10. Decreasing the magnetic field reduces the number of available
states within each band, and additional levels are populated. As the lower lying levels of
the next band belong to localized states, the conductivity is not changed when these are
occupied. If the Fermi energy reaches the center region of the bulk bands, delocalized
states start to contribute which leads to an increase of σxy. The next plateau is reached
when the band is completely filled and another edge state in the following gap is occupied.
Hence, the integer number ν in Eq. 2.10 counts the number of populated chiral edge
modes.

On the other hand, it has been shown, that the quantization of the Hall conductance
can be directly related to the topological properties of the bulk bands when calculating
the conductivity using Kubo’s formula [3]. In fact, the integer ν equals the sum over
the Chern numbers of all occupied energy bands. The Chern number of the nth energy
band can be expressed as the integral of the Berry curvature over the first Brillouin zone
(BZ) [3]:

Cn =
1

2π

∫

BZ

Ωn(q) d2q. (2.11)

The Chern number C is defined for a non-degenerate energy band and is a topological
invariant, which means that it is robust against deformations of the Hamiltonian that
preserve the gaps to the neighboring bands.

The connection between the Chern number of the bulk bands and the number of
populated edge modes is in general known as the bulk-edge correspondence [5, 84–86]:

Cn = Nu −Nl, (2.12)

where Nu and Nl denote the net number of chiral edge modes in the gaps above and
below the band. The net number of edge modes inside a gap is obtained by counting the
states according to their propagation direction, i.e. subtracting the right-moving from
the left-moving contributions.

2.1.3 The topological Haldane model

In the quantum Hall effect, the presence of the magnetic field changes the eigenstates
and -energies of the system such that there are regions in quasimomentum space with
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finite Berry curvature which sum up to a non-zero Chern number. In general, a non-
zero Chern number can also appear in the absence of an external magnetic field. One
prominent example is the Haldane model [87], conceived in 1988, which considers a tight-
binding model on a honeycomb lattice, describing systems similar to graphene.

The constant, external magnetic field in the QHE breaks time-reversal symmetry
(TRS), which is already apparent in classical electrodynamics. Since the transverse con-
ductivity σxy ∼ jx/Ey changes sign under time-reversal (jx → −jx, Ey → Ey), it can
only acquire a non-zero value if TRS is broken. In the Haldane model, this is realized
by an internal magnetic field with zero net flux per unit cell but a staggered flux pattern
exhibiting the symmetry of the honeycomb lattice (see Fig. 2.1a). The honeycomb lattice
is not a Bravais lattice, it consists of two interlaced triangular sublattices, denoted by A
and B. The unit cell is spanned by the two direct lattice vectors a1 and a2 and contains
a single A- and B-site.

a1 =
a

2

(
3√
3

)
, a2 =

a

2

(
3

−
√

3

)
, (2.13)

where the lattice spacing a is defined as the distance between two adjacent sites. The
reciprocal lattice of the honeycomb lattice is again a honeycomb lattice, but rotated by
90◦ and is spanned by the vectors K1 and K2 which comprise the first Brillouin zone
(BZ):

K1 =
kL
2

(√
3

3

)
, K2 =

kL
2

(√
3
−3

)
, kL =

4π

3
√

3a
. (2.14)

In the Haldane model, tunneling between neighboring sites with amplitude J is consid-
ered, as well as tunneling between next-nearest neighbors with amplitude J̃ . The A- and
B-sites are connected by the vectors δj and the sites of the same types via a1, a2 and
a3 = a1 − a2.

δ1 = a

(
−1
0

)
δ2 =

a

2

(
1

−
√

3

)
δ3 =

a

2

(
1√
3

)
. (2.15)

The directions corresponding to a positive sign of the tunneling coefficients are depicted in
Fig. 2.1b, whereas hopping A→ A is defined along −a1, a2, a3 (solid red arrows), which
will be referred to as aj, and B → B accordingly along −aj (dashed gray arrows). In
this way, next-nearest neighbor hopping along a closed triangular path connecting three
A- or B-sites encloses a net flux of 3Φ, which leads to a phase factor φ = 2π(3Φ/Φ0),
with Φ0 = h/e denoting the flux quantum. Considering nearest neighbor hopping around
the plaquette, the total enclosed flux is zero (see Fig. 2.1a). Hence, the staggered flux
configuration emerges as a complex-valued tunneling coefficient J̃ = t eiφ and a real
hopping amplitude J . A non-zero value of Im[J̃ ] directly reflects broken TRS, as the latter
corresponds to complex conjugation, which reverts the sign of the phase φ, describing
hopping of particles along the other direction. In addition to the tunneling, an energy
offset ∆ between the A- and B-sites is introduced, breaking inversion symmetry (IS).
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Figure 2.1: Flux configuration, tunneling directions and phase diagram in the
Haldane model. a. Staggered flux pattern with zero net flux per plaquette. The posi-
tive flux Φ points out of the plane. b. Vectors δj and aj, j = {1, 2, 3}, connecting nearest
neighbors and next-nearest neighbors. Positive tunneling coefficients are associated with
the directions δ1, δ2, δ3 and −a1,a2, a3 (blue and red arrows). In this way, next-nearest
neighbor hopping on a closed loop connecting A- or B-sites encloses a flux of 3Φ. c. Phase
diagram of the Haldane model as a function of the phase φ of the complex next-nearest
neighbor tunneling and the sublattice offset ∆, given in terms of the absolute value t of
the next-nearest neighbor tunneling. The phase boundaries are obtained by the closing
of the energy gap at K ′ or K (black and red solid lines).

The tight-binding Hamiltonian of the Haldane model reads

Ĥ =
∑

rA

[
J

3∑

j=1

(
â†rA ârA+δj + h.c.

)
+

∆

2

(
â†rA ârA − â

†
rA+δ1

ârA+δ1

)

+
3∑

j=1

(
J̃ â†rA ârA+aj + h.c.

)
+

3∑

j=1

(
J̃ â†rA+δ1

ârA+δ1−aj + h.c.
)]

. (2.16)

Here, the operator â†r creates a particle on a lattice site located at r. The sum is taken
over all A-sites and the locations of the B-sites have been expressed in terms of rA. To
derive the energy dispersion, the Hamiltonian is written in quasimomentum space by
taking the Fourier transform of the creation and annihilation operators.

â†rA =
∑

q

e−iq·rA â†q â†rA+δj
=
∑

q

e−iq·(rA+δj) b̂†q. (2.17)
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Using
∑

rA
e−irA(q−q′) = δq,q′ , the Hamiltonian reduces to

Ĥ =
∑

q

[
J

3∑

j=1

(
eiq·δj â†qb̂q + e−iq·δj b̂†qâq

)
+

∆

2

(
â†qâq − b̂†qb̂q

)

+
3∑

j=1

(
J̃eiq·aj + J̃∗e−iq·aj

)
â†qâq +

3∑

j=1

(
J̃e−iq·aj + J̃∗eiq·aj

)
b̂†qb̂q

]
. (2.18)

The Hamiltonian Ĥq for each quasimomentum, being a hermetian 2 × 2-matrix, can be
written in terms of the Pauli matrices

σ̂0 =

(
1 0
0 1

)
σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(2.19)

as

Ĥq = σ̂0h0(q) + σ̂ · h(q). (2.20)

The respective components are given by

h0(q) = 2t cos(φ)
3∑

j=1

cos(q · aj)

hx(q) = J
3∑

j=1

cos(q · δj)

hy(q) = −J
3∑

j=1

sin(q · δj)

hz(q) =
∆

2
− 2t sin(φ)

3∑

j=1

sin(q · aj). (2.21)

Calculating the eigenvalues as a function quasimomentum yields

E∓(q) = h0(q)∓ |h(q)|. (2.22)

Applying time-reversal to Eq. 2.21, corresponds to taking q → −q and complex conju-
gation, leading to hz(q) = hz(−q) as φ → −φ. On the other hand, invoking inversion
symmetry yields hz(q) = −hz(−q), which means that hz = 0 if both symmetries are
present [5]. In this case, the two energy bands defined in Eq. 2.22 touch at the two
quasimomenta q = (0, 1) := K and q = (0,−1) := K ′. In the case of broken IS or TRS,
energy gaps open at these points with a size of

∆E(K) = 2|∆/2 + 3
√

3t sin(φ)|, ∆E(K ′) = 2|∆/2− 3
√

3t sin(φ)|. (2.23)
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The case of unbroken TRS corresponds to t sin(φ) = 0, leading to gaps of equal size
∆E = ∆ at both points. If inversion symmetry is present, ∆ = 0 and ∆E = 6

√
3t sin(φ).

In the first case the system is topologically trivial with Chern number zero, whereas
in the latter case the Chern numbers of the two bands are ±1, constituting a Chern
insulator. In the situation where both IS and TRS are broken, the trivial phase occurs for
t sin(φ) < ∆/(6

√
3) and the topological phase for t sin(φ) > ∆/(6

√
3). At the transition,

t sin(φ) = ∆/(6
√

3), and either the gap at K ′ or K closes, depending on the sign of the
sublattice offset ∆. The phase diagram as a function of φ and ∆/t is shown in Fig. 2.1c.

The Chern numbers in the different phases can be derived from the Berry curvature,
which is concentrated around the points K and K ′. The transition from the trivial to
the topological regime is accompanied by a sign change of the Berry curvature at K or
K ′, which can be directly seen when considering the Hamiltonian in the vicinity of these
points. Expanding Eq. 2.20 around the K and K ′ points up to first order results in a
Hamiltonian which is linear in quasimomentum, where 1 and 2 denote K and K ′:

Ĥ ′1/2(q) = −3t cos(φ)σ̂0 ∓
3

2
Jaqyσ̂x +

3

2
Jaqxσ̂y + (∆/2± 3

√
3t sin(φ))σ̂z. (2.24)

Apart from the term proportional to σ̂0, which only leads to a constant energy offset,
Eq. 2.24 takes the form of a Dirac Hamiltonian with mass m1/2 = ∆/2 ± 3

√
3t sin(φ),

which is the reason why K and K ′ are in general called Dirac points. Calculating the
eigenstates and applying Eq. 2.9 yields for the Berry curvature Ω− of the lower band in
the vicinity of the K (K ′) point:

Ω−1/2 = ±9J2a2

8

h′z
|h′|3 = ±9J2a2

8|h′|3 m1/2. (2.25)

Hence, the sign of the Berry curvature is given by +sgn(m1) at K and −sgn(m2) at K ′,
whereas its magnitude is similar at both points. For ∆ > 0 and sin(φ) > 0, the mass term
m1 at K is always positive which corresponds to positive Berry curvature. At K ′, in the
trivial phase, m2 > 0, leading to negative Berry curvature which cancels the contribution
of K when summing over the complete BZ and hence giving C∓ = 0, where ∓ denotes
the first (second) band. In the topological phase, the mass term at K ′ has opposite sign,
m2 < 0, and the Berry curvature is positive which yields C∓ = ±1. The Berry curvature
in the upper band is given by Ω+

1/2 = −Ω−1/2.

2.2 Floquet engineering

In the previous section, the influence of either a homogeneous external magnetic field or a
staggered flux pattern on the topological properties of Bloch bands have been discussed.
In experiments with charge-neutral, ultracold atoms, different methods exist to simulate
the effect of a magnetic field. A homogeneous flux can be implemented using laser-
assisted tunneling [88–90] or Raman-coupling between internal states of the atoms [91–93],
resulting amongst other in the realization of the Harper-Hofstadter model [94,95].
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In general, as discussed in the context of the Haldane model, the presence of a magnetic
field breaks time-reversal symmetry, which can be achieved by a time-periodic modula-
tion of the system’s Hamiltonian in a chiral manner. The periodically driven system is
usually mapped to an effective Hamiltonian exhibiting tailored properties, such as topo-
logically non-trivial band structures, which is called Floquet-engineering [67,68,70]. This
has successfully been incorporated in many different experimental platforms including
the irradiation of solid state samples with circularly polarized light [96–98] or coupled
waveguide arrays [99–101], where time is represented by the propagation direction of the
light. Topological band structures for ultracold atoms in optical lattices have been created
using time-periodic modulation in the context of laser-assisted tunneling [102] or circular
shaking of an optical honeycomb lattice [103–105], which effectively realizes the Haldane
model. Other non-equilibrium phenomena such as frustrated magnetism [106] or the su-
perfluid to Mott-insulator transition [107] have also been observed by employing periodic
driving. In this section, the basic principles of Floquet-engineering are introduced and
the calculation of the effective Hamiltonian is described.

2.2.1 Simulation of an effective Hamiltonian via periodic
driving

According to Floquet’s theorem [108–110], the evolution of a time-periodic system with
Ĥ(t+T ) = Ĥ(t) over one full period T can be described by an effective, time-independent
Hamiltonian. In this way, systems with new properties governed by the effective Hamil-
tonian can be realized by a stroboscopic simulation. In analogy to Bloch’s theorem for
a Hamiltonian being periodic in real space, the eigenstates of Ĥ(t), defined by the time-
dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (2.26)

can be written as the product of an exponential and a wavefunction |φ(t + T )〉 = |φ(t)〉
exhibiting the same periodicity as Ĥ(t):

|ψn(t)〉 = e−
i
~ εnt |φn(t)〉. (2.27)

The periodic functions |φn(t)〉 are called Floquet modes and εn is the quasienergy. In-
serting this ansatz into Eq. 2.26 yields the eigenvalue equation of the Floquet modes:

(
Ĥ(t)− i~ ∂

∂t

)
|φn(t)〉 = εn|φn(t)〉. (2.28)

Similar as the quasimomentum q for space-periodic systems, the quasienergy εn is only
defined up to multiples of ~ω, where ω = 2π/T denotes the driving frequency. This
becomes apparent when multiplying the Floquet mode by a phase factor such that

|φn,m(t)〉 = eimωt |φn(t)〉 m ∈ Z, (2.29)
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which leaves the eigenstate |ψ〉 of the time-dependent Hamiltonian unchanged:

|ψn,m(t)〉 = e−
i
~ (εn+m~ω)t |φn,m(t)〉 = |ψn(t)〉. (2.30)

Hence, the quasienergy εn + m~ω describes the same physical state as εn. This means
that the eigenvalue spectrum defined in Eq. 2.28 consists of infinitely many copies of
each band, spaced in energy by ~ω. The set of quasienergy bands εn can be chosen to
lie within the interval ]− ~ω/2, ~ω/2], which is called the Floquet Brillouin zone (FBZ),
analogously to the Brillouin zone in quasimomentum space.

Effective Hamiltonian The evolution of an eigenstate |ψn(t)〉 within the time-interval
[t0, t] is described by the unitary time-evolution operator Û(t, t0):

|ψn(t)〉 = Û(t, t0)|ψn(t0)〉, (2.31)

which is defined as

Û(t, t0) = T̂ e−
i
~
∫ t
t0
Ĥ(t′) dt′

, (2.32)

where T̂ denotes the time-ordering operator. For time-periodic systems, the evolution
over n full periods of the drive is given by [111]:

Û(τ + nT, τ) =
[
Û(τ + T, τ)

]n
. (2.33)

Hence, the long-time behavior of the system after n driving periods is obtained by re-
peated application of the evolution operator over a single driving period, which defines
an effective, time-independent Hamiltonian Ĥeff :

Û(τ + T, τ) = e−
i
~ Ĥ

τ
effT . (2.34)

This means that the evolution of the system at stroboscopic times nT is governed by
Ĥeff . By adapting the specific shape of the driving protocol, the properties of Ĥeff can be
tailored to give rise to topological systems.

Micromotion and initial driving phase The effective Hamiltonian defined in Eq. 2.34
in general depends on the initial time τ of the driving. Moreover, the stroboscopic de-
scription of the system neglects the evolution within the driving period which is often
called the micromotion. In a more general form, the time-evolution operator can be
written as [67,112]:

Û(tf , ti) = e−
i
~ K̂(tf ) e−

i
~ Ĥeff(tf−ti) e

i
~ K̂(ti), (2.35)

where the time-periodic kick-operator K̂(t + T ) = K̂(t) evaluated at the initial and
final times ti and tf contains the information about the launch of the drive and the
micromotion, respectively. In this way, the dependence on the initial phase of the driving
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is moved from the effective Hamiltonian into the kick-operators. The information about
the initial phase becomes irrelevant, if the driving is ramped up adiabatically, as in the
experiments presented in this work. In this case, τ = 0 can be used and Eq. 2.34 simplifies
to

Û(T, 0) ≡ Û(T ) = e−
i
~ ĤeffT Ĥeff =

i~
T

ln(U(T )). (2.36)

The decomposition of the time-evolution operator in Eq. 2.35 corresponds to splitting the
evolution into a fast part, captured by K̂, and its long-time behavior which is governed
by Ĥeff . The full time-dependent Hamiltonian Ĥ(t) is connected to the time-independent

effective Hamiltonian by a unitary transformation e−
i
~ K̂ , which means that they share

the same quasienergy spectrum and the eigenstates |u〉 of the effective Hamiltonian are
connected to the Floquet modes as

|φ(t)〉 = e−
i
~ K̂ |u〉. (2.37)

2.2.2 High-frequency limit

In most cases, the unitary transformations e−
i
~ K̂ and the effective Hamiltonian can not

be computed analytically. To describe the modulated honeycomb lattice presented in
chapter 3 for general parameters of the driving, the effective Hamiltonian is calculated
numerically by replacing the time-integral in Eq. 2.32 with a discrete sum. In the limit
of large driving frequencies, however, it is possible to derive an analytic expression for
Ĥeff . Applying the Magnus-expansion apporach [113,114], the effective Hamiltonian can
be expressed as a series in 1/(~ω):

Ĥeff = Ĥ0ω + Ĥ1ω +O
(

1

(~ω)2

)
. (2.38)

Using the τ -independent definition of Ĥeff in Eq. 2.35 and writing the time-dependent
Hamiltonian Ĥ(t) in terms of its Fourier components

Ĥ(t) =
∞∑

n=−∞
Ĥn e

inωt, (2.39)

the first two terms in Eq. 2.38 can be derived as

Ĥ0ω = Ĥ0

Ĥ1ω =
1

~ω

∞∑

n=1

1

n
[Ĥn, Ĥ−n]. (2.40)

This form of the effective Hamiltonian can be employed to explicitly show the equiva-
lence of a periodically modulated honeycomb lattice to the Haldane model introduced in
Sec. 2.1.3 for large driving frequencies ~ω � 1.
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2.3 Anomalous Floquet phases

Periodically driven systems can be used to simulate the behavior of other systems, which
are governed by the effective Hamiltonian, corresponding to the integrated time-evolution
of the original Hamiltonian over one full period of the driving. In this way, effective static
systems can be represented with their topological properties being fully described by the
Chern numbers of the bulk bands. However, periodic driving can also be applied to real-
ize settings that have no static counterpart, exploiting the periodicity of the quasienergy
spectrum. An intriguing example for such a system is the anomalous Floquet phase.
The topological characterization in terms of the bulk Chern numbers is in general not
sufficient for periodically driven systems. A new description using winding numbers of
the quasienergy bands is presented in the first part of this section [2.3.1], leading to a
modified bulk-edge correspondence. In the second part [2.3.2], the change of the winding
numbers at topological phase transitions is derived and related to the Berry curvature of
the bulk bands, being directly accessible in the experiments. In the presence of disorder
and interactions, anomalous Floquet systems are expected to behave differently than con-
ventional topological insulators, potentially paving the way for the realization of robust
chiral edge modes in many-body systems, as discussed in [2.3.3].

Experimentally, anomalous Floquet regimes have been realized in photonic systems
where coupled waveguides are arranged in a square lattice pattern [100, 101], imple-
menting the model depicted in Fig. 2.3, as well as in arrays of coupled microwave res-
onators [115, 116] and liquid crystal devices [117]. These experiments are well suited to
study the propagation of chiral edge modes along the boundary of the sample, whereas
cold atomic systems offer more possibilities to investigate the bulk properties as well as
the implementation of interacting systems.

2.3.1 Topological characterization of periodically driven
systems

The anomalous Floquet phase describes a system where the Chern numbers of all bulk
bands are equal to zero, but nevertheless chiral edge modes exist in the energy gaps [41,
118], which is depicted in Fig. 2.2b for the case of two bands. A situation like this, where
edge modes enter the lowest band from below and leave the highest band at the top,
is only possible in periodically driven systems with an unbounded spectrum of periodic
quasienergies.

In static systems (Fig. 2.2a), the energies are bounded, meaning that there cannot
be any state having an energy below the minimum of the lowest band. Hence, the
anomalous Floquet phase constitutes a genuinely time-dependent setting, which can not
occur in static systems.

A simple example of an anomalous Floquet phase is a finite-size bipartite square lattice
with stepwise modulated hoppings, as introduced in [41], and indicated in Fig. 2.3. The
driving period T is divided into four equal steps, during which the tunneling along a
certain bond direction is enabled, while it vanishes along the other directions, such that
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Figure 2.2: Schematics of energy bands in static and periodically driven systems
for a two-band model. a. In static systems, chiral edge modes can only exist in gaps
between the bands, which are bounded in energy from below. b. Quasienergy bands in a
periodically driven two-band system in the anomalous Floquet phase. Chiral edge modes
can occur in the quasienergy gap at zero or between the Floquet copies of the bands, at
quasienergy εT/~ = π. As the bands are periodic with ~ω, an edge mode can enter the
lowest band from below and a situation can occur where chiral edge modes exist in the
gaps although the Chern numbers of all bands are zero. The definition of the quasienergy
gaps and the corresponding winding numbers, counting the number of chiral edge modes
per gap, are denoted on the left and right. The sketch is based on a similar illustration
in [41].

after a time-interval of T/4 a particle has moved with probability 1 from one lattice site
to the next. A possible sublattice energy offset can be added in a fifth part of the driving
period to explicitly differentiate between the A- and B-sites, but in the case illustrated
here, the potential is equal on both sublattices. After one period of the driving, a particle
initially localized in the bulk (purple arrows in Fig. 2.3a) returns to its original position,
corresponding to a completely trivial evolution of the bulk states with Û(T ) = 1. Hence,
the quasienergy spectrum of the bulk consists of two flat bands at zero energy (Fig. 2.3b).
However, a particle at the edge of the sample hops by one lattice site during the driving
period, performing a chiral motion, which yields linearly dispersing bands for the upper
and lower edge. In the case depicted in Fig. 2.3, the system is finite along the vertical
direction, but periodic along the horizontal direction, which results in two edge modes
propagating along the upper and lower boundary. This example illustrates that the
stroboscopic evolution at times t = nT, n ∈ Z does not contain all information necessary
to fully describe an anomalous Floquet system.

Winding numbers The fact that the Chern number of a certain bulk band is given
by the difference between the net number of edge modes above and below the band, is
still valid in periodically driven systems, but the reverse conclusion does not hold any
more, as illustrated above. Thus, the knowledge of the bulk Chern numbers alone is
not sufficient to fully describe the system including the number of chiral edge modes.
Instead, periodically driven systems can be characterized in terms of winding numbers
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Figure 2.3: Anomalous Floquet phase in a bipartite square lattice. a. Sketch of
the model introduced in [41]. The square lattice is comprised by two sublattices A and B
and is assumed to be fininte along the vertical but periodic along the horizontal direction.
The driving period consits of 4 equal steps, in which tunneling along one bond direction
is enabled, resulting in a trivial evolution of the bulk states but chiral motion along the
boundary. b. Quasienergy spectrum containing two flat bands of the bulk states (purple)
and two linearly dispersing edge modes (green and orange).

W , which are related to the spatio-temporal winding structure of the time-evolution
operator U(t), including the full dynamics at all times within the driving period and
not only at integer multiples of T . The winding numbers are integer valued quantities
associated with the quasienergy gaps, meaning that a periodically driven system with N
bands is characterized by N invariants, as there are N − 1 gaps between the bands and
the gap at the edge of the FBZ. In contrast, N -band static systems are fully described by
N−1 Chern numbers, since

∑N
n=1 Cn = 0. In Fig. 2.2b the quasienergy gaps and winding

numbers are depicted for a two-band model. In this case, there are only two different
quasienergy gaps: The gap g0 at zero quasienergy between the two bands, and the gap
gπ at the edge of the FBZ, lying between the Floquet copies of the bands. The winding
number W j of a certain quasienergy gap gj is equal to the number of edge modes in that
gap, counted with a sign corresponding to their chirality [41]:

W j = nedge(g
j). (2.41)

The winding numbers can be calculated explicitly from the general time-evolution oper-
ator Û(q, t) depending on the quasimomentum q and with t ∈ [0, T ], as derived in [41].
Considering a situation as in Fig. 2.3, with Û(T ) = 1, there is basically one quasienergy
gap at ε = π~/T = ~ω/2, as the two bulk bands collapse onto each other at ε = 0. The
winding number associated with this gap is defined by

W (Û) =
1

8π2

∫
tr(Û−1∂tÛ [Û−1∂qxÛ , Û

−1∂qy Û ]) dt dqx dqy, (2.42)

where Û = Û(q, t). In a general setting with Û(T ) 6= 1, the problem can be reduced
to the above case for each gap at a certain quasienergy ε. It is possible to construct a
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corresponding time-evolution operator Û ε(q, t), which satisfies Û ε(T ) = 1 and is smoothly
connected to Û(q, t) for every q and t. The map between these operators preserves a
quasienergy gap in the spectrum of Û at some value ε̃, which changes from ε to π~/T . By
constructing the appropriate interpolations, Eq. 2.42 can then be applied to each Û ε(q, t),
yielding the winding number W ε in the gap at ε. The Chern number of a bulk band can
be derived from the winding numbers in the quasienergy gaps above and below the band.
Writing the Chern number of the nth band in terms of the operators P̂ n, which project
to the nth Floquet eigenstate

Cn =
1

2πi

∫
tr(P̂ n[∂qxP̂

n, ∂qy P̂
n]) dqx dqy, (2.43)

it can be expressed in terms of the winding number in Eq. 2.42 for Û(T ) = 1 and thus
also in the general setting [41].

The Chern number of the quasienergy band extending between [ε, ε′] is given by

Cε,ε′ = W (U ε′)−W (U ε). (2.44)

In the case of a two-band system, where the Chern numbers of the first and second band
are denoted by ∓, this yields

C∓ = ±(W 0 −W π). (2.45)

As shown in [41], the number of edge modes in a certain quasienergy gap can be explicitly
related to the winding number in Eq. 2.42 using similar expressions. Hence, a modified
bulk-edge correspondence exists also for periodically driven systems, as the number of
chiral edge modes that occur at the boundary of a finite system can be derived solely from
bulk invariants - the winding numbers - which are also defined for an infinite system. Note,
that the spectrum of the edge modes will be of course revealed directly, if the effective
Hamiltonian is evaluated on a finite geometry with a boundary.

Formulation in terms of phase bands The topological properties of periodically
driven systems are connected with the non-trivial evolution of the system during one
driving period. This becomes more evident when considering the eigenvalues e−iϕn(q,t) of
the time-evolution operator Û(q, t), which are called the phase-bands [119]. At t = T ,

they coincide with the eigenvalues e−
i
~ εn(q)T of Û(T ). In this setting, the topology of a

periodically driven system can be defined in terms of isolated degeneracies between the
phase bands at the egde of the FBZ. As pointed out in [119], the phase bands can be
smoothly changed as long as Û(T ) is kept fixed. In particular, they can be deformed
into equal flat bands for times 0 ≤ t < T − δt, followed by a linear increase to their final
values within the small time-interval T − δt ≤ t < T , describing an evolution equivalent
to a static system. Band touchings which occur within the FBZ are thereby eliminated,
as all bands collapse onto each other, and only the degeneracies between FBZs remain,
which are thus identified as topologically protected singularities.
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Each singularity at the edge of the FBZ can be assigned a charge, which is derived
from the winding of Û(q, t) in its neighborhood. The system with N phase bands can
be characterized by the Chern numbers of the bands 1 to N − 1 and the sum over the
charges qZES of the zone-edge singularities:

C1, ..., CN−1,
∑

i

qZES
i . (2.46)

The winding number of a gap gj counting the chiral edge modes inside the gap, is then
given by

W j =

j∑

n=1

Cn −
∑

i

qZES
i . (2.47)

2.3.2 Change of the winding numbers at band touching points

The winding number of a certain quasienergy gap is a topological invariant, which means
that it can only change if the gap closes, defining a topological phase transition. These
touchings between the quasienergy bands of Ĥeff can be treated similarly to the degenera-
cies of the phase bands introduced above, by assigning them a charge Qs which quantifies
the change of the topological invariants at the singularity. For a linear closing of the gap
gj, the change of the corresponding winding number is defined as

∆W j = Qj
s. (2.48)

In the following, a periodically driven system is considered which is characterized by a
2D quasimomentum q and a parameter λ that represents the modulation parameters,
e.g. being equal to the frequency ω. In the vicinity of a gap closing point, the Hilbert
space can be decomposed into the subspace spanned by the two touching bands and
the remaining non-degenerate bands, which can assumed to be constant there [119].
Hence, the description of the singularity reduces to a two-band model and the effective
Hamiltonian in the degenerate subspace can be written in terms of the Pauli matrices:

Ĥeff(q, λ) = hF(q, λ) · σ̂. (2.49)

Possible energy offsets corresponding to terms ∝ σ̂0 are omitted here. The topological
charge Qs of a linear band-touching singularity at ps = (qs, λs) is determined by the
winding of hF(q, λ) around ps [119,120]

Qs = sgn(det(JF(ps))), (2.50)

where JF(ps) is the Jacobi matrix of hF. It can be related to the Berry flux through a
closed surface around the singularity [121, 122], as derived below. Setting hF(ps) = 0
without loss of generality, the Taylor expansion of hF(q, λ) around ps up to first order
reads:

hF(ps + p) ≈ JF(ps)p =
∂hF

∂qx
(ps) qx +

∂hF

∂qy
(ps) qy +

∂hF

∂λ
(ps)λ. (2.51)
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For linear, non-degenerate band touching points, the vectors ∂hF

∂pj
are linearly independent

and thus form a basis in the 3D parameter space. Without changing the topological
invariants [121], these vectors can be chosen to coincide with the standard basis formed
by the unit vectors q̂x, q̂x, λ̂, up to orientation. The orientation O of the basis formed by
∂hF

∂pj
is given by

O = sgn

(
∂hF

∂qx
·
(
∂hF

∂qy
× ∂hF

∂λ

))
= sgn(det(JF)). (2.52)

Thus, Eq. 2.51 can be expressed as

hF(ps + p) ∼= O
(
q̂xqx + q̂yqy + λ̂λ

)
= sgn(det(JF(ps))) p, (2.53)

and the effective Hamiltonian becomes:

Ĥeff(p) = sgn(det(JF(ps))) p · σ̂. (2.54)

For a two-band Hamiltonian of the form Ĥ = r · σ̂, exhibiting a singularity at r = 0 and
E = 0, the Berry curvature is given by:

Ω∓(r) = ± r

2|r|3 , (2.55)

where ∓ denotes the first and second band lying below and above the degeneracy.
Transforming to spherical coordinates, the Berry flux trough a unit sphere containing the
singularity can be evaluated as

Φ∓ =

∫

S

Ω · dS = ±1

2

∫ 2π

0

dϕ

∫ π

0

dϑ r2sin(ϑ)
r

|r|3 ·
r

|r| = ±2π. (2.56)

Using this identity, the Berry flux of the effective Hamiltonian in Eq. 2.54 can be directly
related to the topological charge at the singularity inside the sphere:

Φ∓ = ±sgn(det(JF(ps))

∫

S

p

2|p|3 · dS = ±2π sgn(det(JF(ps))) = ±2πQs. (2.57)

Hence, the sign of the topological charge, defining the change of the winding number,
is given by the sign of the Berry flux through a closed surface around the singularity,
employing the Berry curvature of the band lying below the degeneracy:

sgn(Qs) = sgn(Φ−). (2.58)

Equivalently, the Berry curvature of the band above the singularity can be used, leading to
sgn(Qs) = −sgn(Φ+). This relation can be applied in experiments to measure the change
of the winding number at a phase transition point, by probing the Berry curvature flux
around it.
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Figure 2.4: Determination of the Berry flux around a band touching singularity.
a. Sketch of the singularity with charge Qs in the 3D parameter space spanned by qx, qy
and λ. The sign of the total Berry curvature flux through a closed surface, represented
by a cuboid with height 2ε, determines the topological charge. b. In the limit of ε→ 0,
the total flux is given by the contributions of the two surfaces Aε and A−ε above and
below the singularity. In the experiments, both surfaces are oriented upwards.

The shape of the closed surface can be arbitrarily modified without changing the
flux, as long as the singularity ps is still enclosed. In particular, it can be deformed
into a cuboid of height 2ε (see Fig. 2.4a), where the flux through all 6 surfaces had to
be probed [120]. In the limit of ε → 0, the determination of Φ then reduces to the
measurement of the flux through the two surfaces Aε and A−ε located at λs + ε and
λs − ε. In the experiments, the Berry flux is probed in the qx-qy-plane for λs + ε and in
the same way for λs−ε, which corresponds to the two surfaces Aε and A−ε having the same
orientation (Fig. 2.4b). Since the Berry curvature distribution is spherically symmetric
and ε → 0, the flux is equally distributed between the two planes, and directed parallel
to the upper and antiparallel to the lower surface for Φ > 0, as depicted in Fig. 2.4b,
such that

sgn(ΦAε) = +1, sgn(ΦA−ε) = −1, for Φ > 0

sgn(ΦAε) = −1, sgn(ΦA−ε) = +1, for Φ < 0. (2.59)

Hence, the sign of the total flux can be obtained by comparing the sign of the flux through
the surfaces located above and below the phase transition point. As the sign of the flux is
directly given by the sign of the Berry curvature at the singularity, the topological charge
can be determined as

Qs = sgn(Φ−) = sgn(Φ−Aε)− sgn(Φ−A−ε)

= sgn(Ω−(qs, λ+ ε))− sgn(Ω−(qs, λ− ε)). (2.60)

For a periodically driven two-band system, as considered in this work, the topological
charge of a band touching in the gap g0 or gπ can thus be derived from the sign change
of the Berry curvature in the lower or upper band across the phase transition:

Q0
s = sgn(∆Ω−(qs)) Qπ

s = sgn(∆Ω+(qs)). (2.61)
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In this way, the change of the winding numbers can be measured by comparing the sign of
the Berry curvature at quasimomentum qs for modulation parameters λ just before and
after the transition point λs. The application of Eq. 2.61 to experimentally determine
the winding numbers in the anomalous Floquet regime is presented in chapter 5.

The singularities described above are non-degenerate, linear band touchings, charac-
terized by the matrix JF(ps) having full rank and corresponding to three linearly inde-
pendent vectors ∂hF

∂pj
. If the matrix JF(ps) is not invertible, having a rank of 3 − D, a

D-dimensional manifold of degenerate touching points exists, which is in general not topo-
logically protected [119]. By adding a perturbation, the degeneracy can either be lifted
completely, or is reduced to a set of isolated singularities. There can also be parabolic
band touching points [123–125], if the first derivative of hF is zero and the Taylor expan-
sion is continued to the second order, as described in [121]. In this case, again a basis
of three vectors can be identified and the topological charge equals two times the Berry
flux around the singularity.

2.3.3 Anomalous Floquet phases in the presence of disorder and
interactions

In view of exploring topological many-body phases, the question arises how periodic driv-
ing can be combined with interactions. In general, closed, interacting periodically driven
quantum systems are expected to approach a featureless state in the thermodynamic
limit, where eigenstates of all energies are mixed. The system constantly absorbs en-
ergy from the drive, which can not be released to an external bath, eventually heating
up to infinite temperature. In cold atomic systems, this problem could be overcome in
many-body localized (MBL) systems, where non-trivial stationary states can persist also
at long times due to the presence of disorder [44, 45, 126, 127]. In this way, interacting
topological systems could be stabilized, exhibiting a localized bulk and protected chiral
edge modes at their boundaries.

However, in a system with energy bands having a non-zero Chern number, there are
always delocalized bulk states accompanying the chiral edge modes, which can not be
removed by disorder and prevent the system from being fully localized [43]. Consider
a situation similar to the quantum Hall effect described in Sec. 2.1.2, but now defined
in an annular geometry with additional magnetic flux piercing through the hole in the
center [29]. If one full flux quantum Φ0 is inserted into the sample, the overall spectrum
returns to its original value, whereas the states at the boundary flow to a higher or lower
energy, depending on their propagation direction. To terminate this flow, there must be
extended bulk states connecting the edge modes on opposite sites [42, 128].

In a periodically driven system, the spectrum is periodic and there can be edge states
which wrap around the complete FBZ and do not need to be terminated by a bulk state.
This scenario is realized in the anomalous Floquet phase, where the same number of
chiral edge states is present at all quasienergies, persisting also in the spectral region
of the bulk, and thus fully winding around the FBZ and turning into themselves again.
The equal value of all winding numbers necessarily implies C = 0 for all bands, enabling
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the complete localization of the bulk states in the presence of disorder. In periodically
driven systems with non-zero Chern numbers, the quasienergies are also periodic, but
nevertheless, delocalized bulk states occur, as there must be chiral edge states exhibiting
an unterminated spectral flow. The topological phase characterized by a fully localized
bulk and propagating chiral edge modes is accordingly called the anomalous Floquet-
Anderson insulator (AFAI) [42]. It is expected to be robust against perturbations up
to a certain magnitude, which is defined by the disorder strength. Above that value,
the mobility gap in the bulk closes leading to backscattering between the edge modes on
opposite sites.

Adding disorder to an anomalous Floquet system will thus result in the AFAI phase
described above, if the disorder is not too large. Increasing the disorder strength above
a critical value will lead to the appearance of delocalized states sweeping through all
quasienergies and thereby removing the edge modes. This results in the transition to a
trivial phase with winding numbers equal to zero, where all of the bulk and edge states
are localized. For systems with non-zero Chern numbers, increasing the disorder strength
does not yield a complete localization of the bulk. The delocalized states move towards
the energy gaps and finally annihilate, indicating the transition to the trivial phase.

The presence of interactions is expected to result in a coupling between the thermal-
izing edge states and the localized bulk states. The AFAI phase might persist for finite
disorder and interaction strengths, leading to a MBL bulk with only minor leakage from
the mobile edge states [58,59]. Hence, the anomalous Floquet phase constitutes a possible
setting to stabilize interacting, periodically driven systems using disorder.



Chapter 3

Anomalous Floquet phases in a
honeycomb lattice

In this chapter, the realization of anomalous and other Floquet topological phases in
an optical honeycomb lattice is presented. First, the creation and characterization of
the honeycomb lattice is described as well as the implementation of a sub-lattice energy
offset or a lattice potential with broken rotational symmetry. In the second section, the
driving scheme for the anomalous Floquet system, based on intensity modulation of the
lattice beams, is introduced and the quasienergy bands and Berry curvature distribution
of the effective Hamiltonian are calculated. The resulting phase diagram, hosting several
topological phases, is discussed for the symmetric lattice and for the case of a non-zero
sub-lattice offset. In view of calculating the energy bands in a semi-finite geometry,
which directly reveals the dispersion of the edge states, a tight-binding description for
the modulated honeycomb lattice is introduced in Sec. 3.3. Thereby, a two-band model
is compared to an approach that includes also higher bands, which appear to influence
the shape of the two lower Floquet bands. In the last section, the quasienergy bands
are derived for a semi-finite system terminated by an armchair-edge, complementing the
characterization of the different topological regimes.

3.1 The optical honeycomb lattice

Conservative potentials for neutral atoms can be created using intense, far detuned laser
light. As described below, by interfering three running waves, a honeycomb lattice struc-
ture is realized. The properties of the lattice potential and the resulting energy bands
are modified by changing the polarization or intensity of the beams. In this section,
the experimental implementation of the optical lattice is described, as well as the the-
oretical methods to calculate the energy bands and the Berry curvature distribution in
quasimomentum space for different configurations of the lattice.
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3.1.1 Creation of the honeycomb lattice

The honeycomb lattice is created by interference of three, coplanar laser beams propa-
gating at angles of 120◦ in the x-y-plane, as depicted in Fig. 3.1a. The interaction of the
oscillating electric field of the laser light with the dipole moment induced in a neutral
atom results in a dipole potential, which is known as the AC-Stark-effect. The wave-
length of the light is λL = 736.8 nm, which is far blue-detuned from the D1- and D2-line
of 39K at 770 nm and 767 nm. If the detuning is larger than the hyperfine splitting of the
excited states, the corresponding levels are not resolved, and for alkali atoms, the dipole
potential is given as [129]

Vdip(r) =
πc2

2

(
ΓD2

ω3
D2

2 + gFmFP
∆D2

+
ΓD1

ω3
D1

1− gFmFP
∆D1

)
I(r) = U0I(r), (3.1)

where ωD1(D2) and ΓD1(D2) denote the frequency and the natural linewidth of the D1(D2)
transition, mF and gF the magnetic quantum number and the Landé-factor, c the speed
of light and I(r) the spatially-dependent intensity. The detuning ∆D1(D2) is defined as

1

∆D1(D2)

=
1

ωL − ωD1(D2)

+
1

ωL + ωD1(D2)

(3.2)

with ωL = 2πλL
c

. Hence, for blue detuned light with ωL > ωD1(D2), ∆D1(D2) is positive,
corresponding to a repulsive potential, and the atoms are trapped in the intensity minima.
The factor P depends on the polarization of the light and is P = 0 for π- and P = ±1 for
σ±-polarization, defined in the plane perpendicular to the magnetic quantization axis.
If P = ±1, the potential contains a state-dependent part, which can be utilized for
the creation of optical flux lattices [130, 131]. This part is mainly proportional to the
difference of the detunings ∆D1 and ∆D2, which is negligible for 39K and λL = 736.8 nm.
To calculate the intensity pattern, each lattice beam is described as a plane wave with
frequency ωL propagating along the direction kj:

Ej(r, t) =
√
Ij e

−iωLt−ikjr(cos(θj)z + sin(θj) e
iαj(z× kj)) = Ej,s + Ej,p. (3.3)

The angle θj describes the amplitudes of the s- and p-polarized parts and αj the relative
phase shift between them, accounting for elliptical polarization, as illustrated in Fig. 3.1a.
The propagation directions of the three beams are

k1 = kL

(
0
1

)
, k2 =

kL
2

(
−
√

3
−1

)
, k3 =

kL
2

(√
3
−1

)
, kL =

2π

λL
. (3.4)

The total interference pattern, consisting of the s- and p-polarized part, is given by

I(r) = Is(r) + Ip(r)

Is(r) = |Es|2 =

∣∣∣∣∣
3∑

j=1

Ej,s

∣∣∣∣∣

2

=
3∑

j,l=1

√
IjIl cos(θj)cos(θl) e

−ikjlr

Ip(r) = |Ep|2 =
3∑

j,l=1

√
IjIl sin(θj)sin(θl)cos(ηj − ηl) e−ikjlr eiαjl , (3.5)
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where η = (0, 4π/3, 2π/3), kjl = kj − kl and αjl = αj − αl. If all beams are s-polarized
and have equal intensities Ij = I0, the intensity minima form a symmetric honeycomb
lattice, which is shown in Fig. 3.1b. In this case, Eq. 3.5 can be simplified and the optical
lattice potential with V0 = U0I0 reads:

V (r) = V0 (3 + 2cos(k12r) + 2cos(k13r) + 2cos(k23r)). (3.6)

Figure 3.1: Creation of the honeycomb lattice and real space potential. a. The
honeycomb lattice is generated by interference of three running waves in the x-y-plane
with polarizations described by θj, αj, j = {1, 2, 3}. b. Lattice potential for s-polarized
beams with equal intensities. Since the lattice wavelength is blue detuned to the atomic
transitions, the potential is positive and the atoms are trapped in the minima, forming
a honeycomb lattice, as depicted by the white hexagon. c. Lattice vectors a1 and a2 in
real space forming the unit cell (gray area) which contains a single A- and B-site.

The unit cell of the honeycomb lattice is spanned by the two lattice vectors a1 =
a(3/2,

√
3/2) and a2 = a(3/2,−

√
3/2), as introduced in Sec. 2.1.3, and contains to in-

equivalent sites, denoted by A and B, which is illustrated in Fig. 3.1c. In the optical
honeycomb lattice, the spacing is given by

a =
4π

3
√

3kL
≈ 284 nm. (3.7)

3.1.2 Calculation of the energy bands and Berry curvature

The energy bands of the honeycomb lattice are usually described as functions of the
quasimomentum. The first Brillouin zone (BZ) (see Fig. 3.2a) is spanned by the reciprocal
lattice vectors (Sec. 2.1.3)

K1 =
kL
2

(√
3

3

)
= k1 − k2 K2 =

kL
2

(√
3
−3

)
= k3 − k1. (3.8)
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The honeycomb lattice potential as described in Eq. 3.6 exhibits inversion- (x→ −x) and
threefold rotational symmetry. There are certain quasimomenta in the first BZ, which are
invariant under these transformations, and are accordingly called high-symmetry points.
These are the Γ-point in the center of the hexagon, the M -point in the center of the edge
and the Dirac points K and K ′ in the corners of the hexagon, as shown in Fig. 3.2b.
The two K-points are in-equivalent, since they can not be mapped onto each other by a
reciprocal lattice vector. The Schrödinger equation for the cell-periodic Bloch functions
uqn(r) = uqn(r + R) in the honeycomb lattice is given by:

(
(p̂ + ~q)2

2m
+ V (r)

)
unq(r) = En

q u
n
q(r). (3.9)

To solve the equation, the functions uqn(r) are expanded in plane waves, whereas the cor-
responding wave vectors are multiples of reciprocal lattice vectors, due to the periodicity
of uqn(r) in real space:

unq(r) =
∑

K

cn,qK eiKr, K = l1K1 + l2K2, l1, l2 ∈ Z. (3.10)

The plane wave expansion of the lattice potential corresponds to a two-dimensional (2D)
Fourier transformation, again restricted to reciprocal lattice vectors:

V (r) =
∑

K

VK e
iKr ⇒ VK = Vl1,l2 =

∑

r

eir(l1(k1−k2)+l2(k3−k1)) V (r), (3.11)

where the reciprocal lattice vectors are expressed in terms of the lattice propagation direc-
tions, according to Eq. 3.8. Substituting the plane wave expansions into the Schrödinger
equation, results in an eigenvalue equation for the coefficients cn,qK (see also [73]):

∑

K

HKK′c
n,q
K = En

q c
n,q
K′ (3.12)

with

HKK′ =
~2(q + K)2

2m
δK,K′ + VK′−K. (3.13)

The summation over the reciprocal lattice vectors corresponds to the summation over the
double index l1, l2. Using Eq. 3.11 and 3.5, the Fourier coefficients of the lattice potential
Vl1,l2 can be calculated, leading to equations for the integers l1 and l2 depending on the
values of the indices j, l in Eq. 3.5. Most of the Fourier coefficients evaluate to zero except
for (l1, l2) = [(0, 0), (−1, 0), (1, 0), (0, 1), (0,−1), (1, 1)]. The Hamiltonian from Eq. 3.13
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can be written in matrix form depending on the two double indices, l1, l2 and l′1, l
′
2

Hl1,l2,l′1,l
′
2

=





(l1K1 + l2K2 + q)2 + V00, l′1 = l1, l
′
2 = l2

V01, l′1 = l1, l
′
2 − l2 = 1

V0−1, l′1 = l1, l
′
2 − l2 = −1

V10, l′1 − l1 = 1, l′2 = l2

V−10, l′1 − l1 = −1, l′2 = l2

V11, l′1 − l1 = 1, l′2 − l2 = 1

V−1−1, l′1 − l1 = −1, l′2 − l2 = −1

0, otherwise.

(3.14)

Here, the Hamiltonian is given in units of the recoil energy Er =
~2k2

L

2m
. The coefficients of

the lattice potential depend on the differences of the indices, l1−l′1 and l2−l′2. Combining
the prefactors of the optical potential with the beam intensities to Vj = U0Ij, the matrix
entries are given as:

V00 = V1 + V2 + V3

V01 = V ∗0−1 =
√
V1V3

(
cos(θ1)cos(θ3)− 1

2
sin(θ1)sin(θ3) eiα13

)

V10 = V ∗−10 =
√
V2V1

(
cos(θ2)cos(θ1)− 1

2
sin(θ2)sin(θ1) eiα21

)

V11 = V ∗−1−1 =
√
V2V3

(
cos(θ2)cos(θ3)− 1

2
sin(θ2)sin(θ3) eiα23

)
. (3.15)

The energy bands and eigenstates are then obtained in the plane wave basis by diagonal-
ization of the Hamiltonian matrix in Eq. 3.14, which is cut at some finite size. The indices
run from −lmax to lmax, whereas the value of lmax has to be increased when considering
bands with higher energy. For the calculations at a depth of V0 = 6Er, lmax = 7 is used,
resulting in a matrix of size 225 × 225. The BZ is described by a 2D rhombic grid of
N×N discrete points q, with normally N = 61, defined along the directions of the lattice
vectors K1 and K2 and centered around q = 0:

q = q1K1 + q2K2 −
√

3

2
kL

(
1
0

)
, q1 =

n1

N − 1
q2 =

n2

N − 1
, n1, n2 ∈ [0, ..., N − 1].

(3.16)

Since the unit cell of the honeycomb lattice contains two lattice sites, the lowest band
is split into two bands, which touch at the K- and K ′-points, as depicted in Fig. 3.2b.
These are usually called s-bands, since the wavefunctions in real space are expected to be
approximately spherically symmetric. In the vicinity of the touching points, the energy
dispersion is nearly linear and thus takes a form similar to the relativistic Dirac equation
for electrons, as described in Sec. 2.1.3.
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Figure 3.2: Energy bands and Berry curvature in quasimomentum space. a.
Reciprocal lattice vectors K1 and K2 (blue arrows) spanning the first Brillouin zone (gray
diamond). The high-symmetry points are sketched as well as the path Γ-M -K-Γ, along
which the energy bands are usually plotted (dashed, red line). b. The two lowest energy
bands of the symmetric honeycomb lattice with V0 = 6Er in 2D-quasimomentum space.
The bands touch at the six Dirac points. c. The six lowest energy bands at the same
lattice depth plotted along the high-symmetry line depicted in a. d. Berry curvature
distribution of the lowest band for V0 = 6Er, in the first BZ, exhibiting two sharp peaks
at the K- and K ′-points with opposite sign. For visual clarity, a small sublattice offset
(θ = 0.02 rad, see Eq. 3.5) was used in the plot.

The next higher energy levels are separated by a large gap and form a group of four
bands, which are pairwise degenerate at the Dirac points and at the Γ-point. These
would be described as superpositions of px- and py-orbitals in real space, again doubled
due to the two sites per unit cell. This is discussed in more detail in the context of a
tight-binding model in Sec. 3.3. The first six energy bands of the honeycomb lattice are
plotted in Fig. 3.2c for V0 = 6Er along a line in quasimomentum space connecting the
high-symmetry points Γ-M -K-Γ.

To obtain the Berry curvature of the nth energy band on the discrete grid in momen-
tum space, the method described in [132] is employed. Defining link variables Un

1 and Un
2

along the directions K1 and K2 as

Un
1 =

〈un(q)|un(q + e1)〉
|〈un(q)|un(q + e1)〉| Un

2 =
〈un(q)|un(q + e2)〉
|〈un(q)|un(q + e2)〉| , (3.17)

the Berry curvature is given by

Ωn(q) = ln (Un
1 (q)Un

2 (q + e1)Un
2 (q)−1 Un

1 (q + e2)−1). (3.18)

This effectively approximates the state derivatives of Eq. 2.8 around a single plaquette
by finite differences. The vectors connecting the points of the grid are defined as

e1 =
1

N − 1
K1 e2 =

1

N − 1
K2, (3.19)
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whereas kL = 1 in the numerical calculations. In the symmetric honeycomb lattice, the
degeneracy of the two lowest bands at the Dirac points gives rise to a Berry flux of ±π
concentrated at the singularity and a Chern number of zero. The formula in Eq. 3.18 is
only valid for non-degenerate bands, but can be generalized to the case of band touching
points [132]. The Berry curvature is usually calculated for the lowest band in cases
where energy gaps have opened either due to lattice modulation or by breaking inversion
symmetry, where Eq. 3.18 can be applied directly. To better visualize the Berry curvature
distribution of the static lattice, it is plotted for a finite sublattice offset in Fig. 3.2d. In
the remainder of this thesis, the numerically calculated Berry curvature will be plotted
in units of 1/(|e1| |e2|), where the denominator corresponds to the size of the plaquette
in reciprocal space.

3.1.3 Breaking of inversion or rotational symmetry

If all lattice beams are s-polarized and have equal intensities, the honeycomb lattice
potential is fully symmetric, as described by Eq. 3.6 and plotted in Fig. 3.1b. In this case,
the system exhibits inversion, threefold rotational and time-reversal symmetry, which
constrains the existence of Dirac points to the positions of K and K ′ at the corners of
the hexagon in reciprocal space [133–135].

Changing the polarizations or relative intensities of the lattice, either inversion sym-
metry can be broken by introducing an energy offset between the A- and B-sites or the
lattice potential can be deformed, breaking threefold rotational symmetry. The sublat-
tice energy offset can be realized using lattice beams with equal intensities and elliptical
polarizations with θ1 = θ2 = θ3 = θ. Now, the potential is given as the sum of the
interference patterns from the s- and p-polarized components of the lattice beams, which
read

Vs = 3V0 + 2V0 cos(θ)2(cos(k12r) + cos(k13r) + cos(k23r))

Vp = 3V0 − V0 sin(θ)2(cos(k12r− α12) + cos(k13r− α13) + cos(k23r− α23)). (3.20)

While the s-part creates a honeycomb potential, the interference of three blue-detuned,
p-polarized beams at 120◦ results in a triangular lattice. If the polarizations of all beams
are linear with angle θ, the lattice potential is still symmetric and only the depth is
reduced, as shown in Fig. 3.3a. Making the polarization elliptical leads to a relative
phase difference between the s- and p-polarized part of each individual beam. If the
angles αj are different, the p-components of the corresponding beams are phase shifted
relative to each other. The interference of the three p-polarized parts with relative phase
offsets results in a triangular lattice moved in real space relative to the honeycomb pattern
generated by the s-parts.

To create a potential difference between the A- and B-sites, the p-lattice is shifted such
that is has a minimum at the positions of the A-sites in the s-lattice, and a maximum at
the positions of the B-sites, resulting in a reduced potential at the B-sites compared to
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the A-sites (see Fig. 3.3b). This can be realized by choosing

α1 =
4π

3
α2 = 0 α3 =

2π

3
, (3.21)

which leads to a displacement of the p-interference pattern along the direction 2k1 + k3

by one lattice constant.

Figure 3.3: Realization of a potential offset between the A- and B-sites. Lattice
potentials Vs and Vp arising from the s- and p-polarized parts of the lattice beams and
total potential Vtot = Vs + Vp in real space. The limits of the colorbar are different
for Vp for better visibility. a. Potentials for linear polarizations with θ = π/4 and
αj = 0 ∀j, resulting in a honeycomb lattice with reduced depth. b. Potentials for elliptical
polarization of two beams, θ = π/4 and αj according to Eq. 3.21, realizing a sublattice
offset. The p-polarized part is shifted relative to the s-part by one lattice constant along
(1/2,

√
3/2), having a minimum at the loaction of the A-sites and a maximum at the

B-sites of the honeycomb lattice, as indicated by the white, dashed line.

The magnitude of the sublattice offset is tuned by changing θ ∈ [0, π/4] and its sign
could be inverted e.g. by switching the polarizations of beam 2 and 3. The energy offset
between the A- and B-sites leads to an opening of the energy gaps between the two lowest
bands at the Dirac points, realizing a mass-term in the tight-binding description. The
size of the energy gap at K and K ′ is approximately proportional to the sublattice energy
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offset ∆ (see Eq. 2.23), which in turn is changed by the polarization angle θ in a non-linear
fashion (see next section). Another way to gap out the Dirac points is the breaking of
time-reversal symmetry, which can be accomplished by time-periodic modulation of the
lattice potential in a circular fashion, as described the next section and in chapters 2 and
6. If the lattice beams are linearly polarized but have unequal intensities, the real space
potential is deformed (see Fig. 3.5), breaking threefold rotational symmetry. In this case,
the Dirac points are shifted in quasimomentum space with increasing intensity imbalance
and finally annihilate at a time-reversal-invariant quasimomentum q = −q [133,136,137].

3.2 Periodic intensity modulation

Anomalous Floquet systems can be realized with an optical honeycomb lattice by peri-
odic modulation of the tunnelings, which is accomplished by imbalancing the intensities
of the lattice beams. In this section, the modulation scheme is explained, followed by
the numerical calculation of the Floquet band structure. The resulting topological phase
diagram is derived for experimentally accessible parameters and the quasienergy bands
and Berry curvature of the two lowest bands are discussed in the different phases. Fi-
nally, the phase diagram in the presence of a sublattice energy offset is shown, hosting a
topological phase with Chern number C∓ = ∓2.

3.2.1 Lattice modulation scheme

As discussed in Sec. 2.3, anomalous Floquet systems have been generated on a bipartite
square lattice, where the tunneling between neighboring sites is periodically switched
on and off in a chiral fashion. A similar scheme has been proposed for the honeycomb
lattice in [118], which is sketched in Fig. 3.4a and b. The nearest neighbor hopping J0

is enhanced by a factor Λ along each of the three bond directions during one third of
the driving period T , leading to a chiral motion around the hexagonal plaquette. For
small modulation amplitudes Λ > 1, the system is in a Haldane-like phase with C− = 1
and chiral edge modes exist in the quasienergy gap g0, that opens at the Dirac points.
Increasing the amplitude results in a phase transition to an anomalous Floquet phase at
Λc ≈ 3.3, exhibiting chiral edge modes in the quasienergy gaps at 0 and π, and C− = 0.

In the optical honeycomb lattice, anisotropic tunnelings can be achieved by imbalanc-
ing the relative intensities of the lattice beams. If the intensity of beam j is increased,
the potential well along the perpendicular tunneling direction is lowered, leading to a
larger hopping amplitude along this bond. Since a stepwise switching of the laser intensi-
ties could lead to distortions and heating of the atomic cloud, the intensities are instead
modulated smoothly in time according to (see Fig. 3.4c):

Ij(t) = I0 (1−m+m cos(ωt+ φj)), φj =
2π

3
j. (3.22)

Here, m ∈ [0, 0.5] denotes the (relative) modulation amplitude and ω = 2π
T

, with the
driving period T .
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Figure 3.4: Periodic modulation of the tunnelings with different protocols. a.
Stepwise modulation scheme proposed in [118]. The NN hopping is increased along
each bond direction by Λ within one third of the driving period. For Λ > Λc ≈ 3.3, an
anomalous Floquet phase exists. b. Time-dependent hopping amplitudes for the stepwise
modulation. c. Continuous modulation protocol used in the experiments, exhibiting
similar topological phases as the scheme in a. The intensities of the lattice beams and
hence the optical potentials Vj are periodically modulated according to Eq. 3.22, shown
for V0 = 6Er and m = 0.25.

This modulation protocol also breaks time-reversal symmetry and leads to similar
topological phases as the stepwise model from [118], as shown explicitly in the next
section. The imbalanced lattice potentials at different times within the modulation period
are depicted in Fig. 3.5, illustrating the increased tunneling along the different bonds. It
is important to note that the lattice beam intensities and hence the potentials associated
with each beam are modulated in a cosine-fashion, but the tunnelings themselves exhibit
a different time-dependence, nevertheless being periodic and chiral. The detailed time-
dependence of the hopping amplitudes is discussed further in Sec. 3.3.

3.2.2 Floquet band structure calculation

In periodically driven systems, the bulk-edge correspondence is modified such that the
number of chiral edge modes in a certain quasienergy gap is given by the winding number
associated with the gap, which can be obtained from the sign change of the local Berry
curvature across the phase transition (see Sec. 2.3). Thus, it is still possible to derive
the existence of the edge modes solely from properties of the bulk bands, namely their
quasienergy bands and Berry curvature. The bulk bands are described by the effective
Hamiltonian, defined in Sec. 2.3 as the integral of the time-dependent Hamiltonian over
one driving period:

Heff =
i~
T

ln(U(T )), U(T ) = T e− i
~
∫ T
0 H(t) dt, (3.23)

where T denotes time-ordering and ln the matrix logarithm.
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Figure 3.5: Lattice potentials at different times within the driving period. The
real space potential is plotted at t = 0, t = T/3 and t = 2T/3, where the intensities I3, I2

and I1 are maximal, lowering the potential barrier in the perpendicular direction, which
increases the hopping along this bond. The lattice depth is V0 = 6Er and the modulation
amplitude m = 0.25.

The topological properties discussed in chapter 2 are defined for a two-band system,
which is represented by the two s-bands of the honeycomb lattice in this work. Hence, to
obtain the phase diagram of the Floquet system, only the two lowest bands of the effective
Hamiltonian need to be calculated. However, for certain modulation parameters used in
the experiment, the shape of the effective s-bands is modified by coupling to higher bands
during the driving period. To take these effects into account, mixing of the first six bands
is allowed within one driving period by using 6× 6 matrices instead of 2× 2. Increasing
the size of the matrix even further does not change the resulting quasienergy bands any
more for the modulation parameters considered in this work, which means that coupling
to even higher bands than the p-bands can be neglected, which is also justified by the
very good agreement between the numerical and experimental results (see chapter 5).

To calculate the effective Hamiltonian, the integral in Eq. 3.23 is approximated by a
sum over N = 300 discrete time steps of length ∆t = 1/N :

− i
~

∫ T

0

H(t) dt = − i
~
T

N∑

j=1

H(tj)∆t. (3.24)

Using Eq. 3.14, the instantaneous Hamiltonian H(tj) at each time step tj is derived for
a certain modulation amplitude m, polarization angles θ, α, and quasimomentum q. To
allow for coupling of the first six bands, each H(tj,m,q) is projected to its eigenstates
vij, i ∈ [1, 6], corresponding to the six lowest eigenvalues (the polarization angles are
omitted in the following)

H∗p (tj,m,q) = M †(tj,m,q) ·H(tj,m,q) ·M(tj,m,q), (3.25)
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where · denotes matrix multiplication and the columns of the matrix M are defined as
the eigenvectors vij:

M(tj,m,q) =







...
v1
j
...







...
v2
j
...







...
v3
j
...







...
v4
j
...







...
v5
j
...







...
v6
j
...





 . (3.26)

For the calculation of U(T ), the resulting 6× 6-matrices H∗p need to be transferred to a
common basis, which is chosen to consist of the eigenstates vi0, i ∈ [1, 6], which belong to
the first six eigenvalues of H(t = 0,m = 0,q = 0). In principle, any basis could be used,
as long as it is independent of q and t. The vectors vi0 comprise the columns of a matrix
M0, similar as in Eq. 3.26, and the basis change of the Hamiltonian is performed by:

Hp(tj,m,q) = B(tj,m,q) ·H∗p (tj,m,q) ·B−1(tj,m,q) (3.27)

with

B(tj,m,q) = M †
0 ·M(tj,m,q). (3.28)

The time-evolution operator U over one driving period is obtained from the projected
Hamiltonians Hp(tj,m,q), according to Eqs. 3.23 and 3.24:

U(m, f,q) =
∏

j

e−
i
~Hp(tj ,m,q) ∆t

f , (3.29)

with the driving frequency f = 1/T = ω/(2π). The effective Hamiltonian in units of ~ω
is given by

Heff(m, f,q) =
i

2π
ln(U(m, f,q)). (3.30)

The eigenvalues of the matrix Heff are bound to the interval ]− 0.5, 0.5] ~ω, denoting the
first Floquet Brillouin zone (FBZ). Due to the periodic driving, the quasienergies are only
defined up to multiples of ~ω, and the lowest band of the effective Hamiltonian at some
quasimomentum q is not associated with the smallest eigenvalue any more. However, in
the limit of m → 0, the dispersion of the static lattice has to be recovered, where the
eigenstates of the first six bands are given by the corresponding unit vectors, when being
written in the basis vi0. To extract the two lowest bands of the effective Hamiltonian,
the quasimomentum is scanned over the discrete grid spanning the first BZ, and the
eigenstates of Heff(q) are compared at neighboring points by calculating their overlap.
The overlap between two states |u(qi)〉 and |u(qj)〉 is given by the fidelity Fij:

Fij = |〈u(qi)|u(qj)〉|2. (3.31)
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At the first point of the grid, the two lowest bands are defined as the eigenvalues which
eigenstates have the maximal overlap with the first two unit vectors, being the corre-
sponding eigenstates in the static lattice. Here, the first (second) Floquet band can
either be associated with the first (second) or the second (first) band of the static lat-
tice, depending on the quasimomentum and the modulation parameters, as discussed in
the next section. Then, for the following quasimomenta, the eigenstates having maximal
overlap with the states of the first and second Floquet band from the previous step are
determined, defining the first and second band at the current step. In Fig. 3.6, the eigen-
values of Heff for m = 0.2, f = 16 kHz and f = 6 kHz are plotted along the high-symmetry
line in quasimomentum space, whereas the two lowest bands ε1 and ε2 are depicted by
the black and gray dots, switching between the different eigenvalues (denoted by Ej).
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(h̄
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Figure 3.6: Eigenvalues of Heff and two lowest Floquet bands. Eigenvalues and
Floquet bands ε for different modulation parameters along the high-symmetry line in
quasimomentum space for V0 = 6Er. The eigenvalues (blue lines) are bound to the
interval ]−0.5, 0.5] ~ω. The two lowest bands of Heff (black and gray dots) are determined
from the overlap between the eigenstates on neighboring points as described in the text.
The association of each band with a certain eigenvalue depends on the quasimomentum
and the modulation parameters. a. m = 0.2 and f = 16 kHz. Both Floquet bands
exhibit jumps when passing an avoided crossing between the eigenvalues. b. m = 0.2
and f = 6 kHz.

The coupling of the s- and p-bands within the driving period leads to avoided crossings
and to jumps in the Floquet bands when switching between the eigenvalues, which is also
apparent in both bands in Fig. 3.6a. In the vicinity of the crossings, the overlap of
the eigenstates with the first or second Floquet state from the previous step decreases
and there can be several states having an overlap of similar magnitude. To avoid false
attributions in these cases, the overlap with the unit vectors is used instead to determine
the lowest bands, if the maximal overlap with the neighboring states drops below a certain
threshold ν. As the magnitude of these effects increases with the modulation frequency
and amplitude, the value of this threshold depends on the modulation parameters. The
optimal values of ν are determined by checking the resulting Floquet bands in the first
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BZ and along the high-symmetry line for each modulation amplitude and frequency. For
small frequencies and amplitudes, the lowest bands are reliably obtained by using the
overlap with the neighboring states everywhere, which corresponds to ν = 0.5. When
increasing the modulation parameters, values of ν = 0.8 to ν = 0.9 are normally used.

Berry curvature The Berry curvature of the first and second Floquet band is calcu-
lated from Eq. 3.18 using the corresponding eigenstates. From the definition of the Berry
curvature Ω it becomes apparent that regions in quasimomentum space with Ω 6= 0 are
characterized by a state overlap between neighboring points being smaller than 1. On the
other hand, in the vicinity of the avoided crossings described above, the overlap between
neighboring eigenstates decreases, which leads to discontinuities in Berry curvature, con-
sisting of a positive and a negative peak around that point. These peaks are not physical
as they arise from the numerical calculation of the Berry curvature using Eq. 3.18, and
the Chern number of the band is unchanged. Hence, to characterize the topological
phases, the discontinuities could be neglected except for the case when they appear at
high-symmetry points close to the phase transition, complicating the determination of
the sign change. However, in the experiment, the Berry curvature is probed by Hall de-
flection measurements over an extended region in quasimomentum space (see Sec. 4.2.4).
To be able to simulate the corresponding trajectories, a smooth distribution is needed.
The discontinuities are detected by calculating the overlap between neighboring eigen-
states in the complete BZ and finding the points where it becomes smaller than ∼ 0.95,
or where the first or second derivative of the Berry curvature diverges. These points are
then removed from the distribution and replaced by cubic interpolation of the neighbor-
ing values. If a discontinuity appears at a quasimomentum where the Berry curvature is
highly concentrated, e.g. at a Dirac point, the interpolation is not reliable any more. In
these cases, the Berry curvature distribution of the other band needs to be multiplied by
(−1) and can be used for the calculation of the deflections, since Ω−(q) = −Ω+(q) for
the two lowest bands.

The Berry curvature distributions of the Floquet bands are not perfectly sixfold rota-
tional symmetric, as visible for example in Fig. 3.8. This arises mainly from the projection
of the instantaneous Hamiltonian to its six lowest eigenstates. The quasienergy bands are
fully symmetric and well described by the 6× 6 matrices used for the calculation. Since
the effect of the asymmetry on the calculated transverse deflections is small compared to
errorbars of the experimental data, the six-band calculation is sufficient. This is discussed
in more detail in appendix A.

3.2.3 Phase diagram

The periodically modulated honeycomb lattice realizes different Floquet topological pha-
ses, depending on the modulation parameters and the sublattice energy offset. In this
section, the phase diagram in the system without a sublattice offset is discussed, ex-
hibiting inversion symmetry. In the parameter regime relevant for the experiments, three
different topological phases occur, which are depicted in Fig. 3.7: ¬ A Haldane-like
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phase with C− = 1 in the lowest band and chiral edge modes in the quasienergy gap
g0, an anomalous Floquet phase ­, with C− = 0 but chiral edge modes in both gaps,
and a third phase ® having C− = −1 and chiral edge modes only in the gap gπ between
FBZs. The transitions between the topological phases as well as the quasienergy disper-
sion and Berry curvature of the two lowest bands will be discussed in the following and
are summarized in Fig. 3.8 for m = 0.2 and different modulation frequencies.

Figure 3.7: Phase diagram of the modulated lattice. Topological phases as a
function of the modulation frequency f and modulation amplitude m for V0 = 6Er in
the parameter regime relevant for the experiment. The phase boundaries are determined
by the quasienergy gap closings at q = Γ, whereas the red lines denote a closing at gπ

between FBZs and the black line a closing at g0 within a single FBZ. The gray shaded
area depicts further topological regimes, which are not investigated in this work.

For large modulation frequencies, the system is in the Haldane regime, where quasi-
energy gaps have opened between the two lowest bands at both Dirac points, giving rise
to positive Berry curvature in the lowest band, concentrated around K and K ′ (first
row in Fig. 3.8). As already described in Sec. 2.1, the Chern number, given by the
integral of the Berry curvature over the 2D BZ, equals ±1 in the first (second) band. If
the chirality of the modulation is switched, the Berry curvature distribution would be
inverted, resulting in negative values at the Dirac points. The Haldane model can also be
obtained analytically from a two-band tight-binding description of the modulated lattice
in the limit of high modulation frequencies, which is shown in Sec. 3.3.4.

Increasing the modulation frequency reduces the gap at the Dirac points, which re-
mains open though, and the bands do not touch anywhere else, meaning that the Hal-
dane regime extends to the limit ω → ∞. The Floquet copies of the two lowest bands
are spaced by ~ω and hence, the gap between FBZs diverges in this limit, which means
that no chiral edge mode can exist there, so W π = 0. Relating the Chern numbers and
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winding numbers as described in Sec. 2.3 by

C∓ = ±(W 0 −W π), (3.32)

yields W 0 = 1, describing the chiral edge modes in the gap within the FBZ, that has
opened at the Dirac points. In general, the size of the quasienergy gap at K and K ′

decreases for smaller modulation amplitudes, connecting the Haldane phase to the static
lattice for m→ 0.

When the modulation frequency is decreased, the gap gπ between the Floquet copies
of the bands is reduced. The transition to the anomalous phase occurs when ~ω equals
the effective width of the two lowest bands and the gap gπ closes at q = Γ. This means
that the first band and the lower Floquet copy of the second band touch, as depicted
in the second row of Fig. 3.8 where f = 10 kHz. For a constant modulation frequency,
the transition is reached by increasing the modulation amplitude, which increases the
effective bandwidth until it equals ~ω. Shortly before the transition, positive Berry
curvature arises around Γ and is concentrated to a sharp peak when the transition is
reached. At the band touching point, the sign of the peak changes from positive to
negative, so it is characterized by a topological charge of Qπ = +1. The negative Berry
curvature at Γ then spreads out in quasimomentum space in a ring-like shape, following
the nearly degenerate minimum in the lowest band that is created by the hybridization
with the Floquet copy of the second band (third row in Fig. 3.8 with f = 7 kHz). The
gap at the Dirac points remains open, so the winding number W 0 = 1 is not changed
and corresponding Berry curvature is still positive. Together with the negative Berry
curvature around Γ, this results in C∓ = 0. The band touching at Γ creates a chiral edge
mode in the gπ gap and W π = 1, following from the sign change of the Berry curvature.
In a setting with boundaries, there are now edge modes present in both quasienergy gaps
g0 and gπ, constituting an anomalous Floquet phase, as introduced in chapter 2.

Reducing the modulation frequency further, leads to an increase of the quasienergy
gaps within the FBZs at K and K ′ and the positive Berry curvature spreads out accord-
ingly, similar to the ring minimum in the lowest band and the negative Berry curvature
around Γ. Due to the modulation, the bands are deformed and touch again at Γ, now
within the FBZ, when the modulation frequency equals half the effective bandwidth, as
shown for f = 4.83 kHz in Fig. 3.8. Again, positive Berry curvature accumulates at Γ
shortly before the gap closing occurs, which then turns into a negative peak and gives
rise to a negative topological charge Q0 = −1. Hence, the edge modes in the gap g0

are annihilated and W 0 = 0, while W π = 1 remains unchanged. The negative Berry
curvature at Γ again spreads out in a ring-shape, now corresponding to a maximum in
the lowest band (last row of Fig. 3.8) and C∓ = ∓1. This regime looks similar to the
Haldane phase, but hosts chiral edge modes in the gap gπ between FBZs, which does not
exist in a static model. However, the system can be mapped to a Haldane-type model in
a static setting by a gauge transformation.
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Figure 3.8: Quasienergy bands and Berry curvature in the different topological
phases. First column: The two lowest quasienergy bands along the high-symmetry line
Γ-M -K-Γ in the extended zone scheme. Second column: Quasienergy bands as a function
of the 2D quasimomentum in the reduced zone scheme. Third column: Berry curvature
of the lowest band in the first BZ. The bands and Berry curvature are calculated for
V0 = 6Er, m = 0.2 and modulation frequencies f = (16, 10, 7, 4.83, 4) kHz, scanning the
Haldane, anomalous and third phase. The Chern and winding numbers are noted on the
right of each row.
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For small modulation frequencies f . 2 kHz or larger amplitudes m & 0.3, further topo-
logical phases occur, which are not discussed in this work, as these parameter regimes
are difficult to characterize in the experiment, which is described in Sec. 5.1. The third
regime ends with a closing of the gπ gap at Γ, as depicted by the second red line in
Fig. 3.7, which is followed by another closing of the gπ gap, now at the Dirac points.
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Figure 3.9: Connection of the quasienergy bands to the static lattice. a. Floquet
bands in the Haldane phase shortly before the first phase transition. b. The quasienergy
bands in the anomalous phase emerge from shifting the former bands into each other
(gray dashed lines) and opening gaps at the crossing points. Hence, the lowest band
consists of the former second band at quasimomenta around Γ, where the bands have
already hybridized, which is depicted by the brown color. These parts are connected
to the second band of the static lattice in the limit of m → 0. c. In the third phase,
the bands have again touched at Γ, now at quasienergy 0, and the first band is again
connected to the first band of the static lattice around Γ, indicated by the blue color. Due
to the band dispersion, the level of band mixing depends on q, changing the ’character’
of the bands within the first BZ, as illustrated by the color change along the lines. The
quasienergy bands are calculated for m = 0.2 and frequencies f = (10, 7, 4) kHz from left
to right. The numbers denote the first and second band in the respective phase.

The lowest quasienergy band in the anomalous phase arises from mixing of the first
band in the Haldane phase with the lower Floquet copy of the second band, which is
shifted by ~ω. At the intersection points, the old bands hybridize and gaps open, which
increase in magnitude with the modulation amplitude. Lowering the modulation fre-
quency effectively moves the two bands further into each other, shifting the intersection
points away from Γ. In the Haldane phase, the first band has positive curvature around
Γ, whereas the curvature of the second band is negative there, which leads to a mini-
mum and maximum in the first and second band in the anomalous phase at the avoided
crossings. This is illustrated in Fig. 3.9a and b, where the formation of the quasienergy
bands in the anomalous phase from the shifted bands before the transition is illustrated
for m = 0.2. If the modulation amplitude is lowered, the size of the gaps at the avoided
crossings decreases. For modulation frequencies f ∈ [3.3, 6.6] kHz, the limit of m → 0
corresponds to the static lattice with its bands being shifted by ~ω and crossing each
other. Hence, in the anomalous phase, the part of the lowest band around Γ, which
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originates from the former second band, is adiabatically connected to the second band of
the static lattice in the limit of m→ 0. This is illustrated by the changing colors of the
quasienergy bands in the anomalous phase Fig. 3.9b.

At the second phase transition, the bands touch again at Γ, but now in the gap g0.
Similar to the anomalous phase, the bands after the transition can be viewed as the
former bands being shifted into each other with gaps opened at the intersection points.
Hence, in the third phase, the first band is again connected to the first band of the static
lattice around Γ (blue color in Fig. 3.9). These considerations are of practical interest,
as the connection to the bands of static lattice is used in the experiments to load the
atoms into the second band of the modulated lattice, by starting with f ∈ [3.3, 6.6] kHz
at m = 0 and ramping up the modulation amplitude, which is discussed in Sec. 5.3.

3.2.4 Topological phases with a sublattice offset

In the experiments presented in this work, the topological regimes of the honeycomb lat-
tice without a sublattice energy offset are characterized, which have been described in the
previous section. Combining the lattice modulation with a time-independent sublattice
offset ∆ results in additional topological phases, including a regime with a Chern number
of C∓ = ∓2, as depicted in Fig. 3.10. In general, the energy offset leads to the opening
of a topologically trivial energy gap at the Dirac points with Berry curvature of opposite
sign at the K and K ′ point. This corresponds to a mass term ∝ ±mσ̂z in the two-band
tight-binding Hamiltonian of the honeycomb lattice, having equal sign at both points (see
Sec. 2.1.3).

On the contrary, the gap that opens at the Dirac points due to the lattice modulation
results in a Berry curvature of the same sign, representing mass terms of opposite signs
at K and K ′, as described in the context of the Haldane model. Since the Chern number
in the lowest band equals +1 in the Haldane phase, the lattice modulation corresponds
to the case of positive complex hopping sin(φ) > 0 in Eq. 2.23, giving m > 0 at K. The
size of the topological gap increases with the modulation amplitude and the size of the
trivial gap with the sublattice energy offset, which depends on the polarization angle θ
of the lattice beams. In the following, θ > 0 corresponding to ∆ > 0, which results in
positive Berry curvature at the K-point and negative Berry curvature at the K ′-point.
Hence, adding a sublattice offset to the modulated lattice increases the size of the gap
at K, whereas the gap at K ′ is decreased for larger values of θ, until it closes within the
FBZ, resulting in a sign change of the Berry curvature from positive to negative values.
Being in the Haldane regime, the system undergoes a transition to a topologically trivial
phase, where the edge mode in the gap g0 is annihilated, as ∆W 0 = sgn(∆Ω−) = −1 at
K ′. The phase boundary, given by the closing of g0 at K ′, is depicted by the blue line in
Fig. 3.10a, where the phase diagram is shown as a function of the modulation frequency
and amplitude for θ = 0.1 rad. The other transition lines, defined by the gap closings at
Γ, are similar as for θ = 0, but slightly shifted to higher modulation frequencies, since
the effective bandwidth of the two lowest bands is increased by the sublattice offset. As
the polarization angle is the relevant quantity for the experiments, the phase diagram
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is presented in terms of θ rather than in terms of the sublattice energy offset ∆ (see
Fig. 3.12b for the conversion from θ to ∆).

Figure 3.10: Topological phases with a sublattice energy offset for V0 = 6 Er. a.
Phase diagram as a function of the modulation frequency and amplitude for θ = 0.1 rad.
The red and black lines denote gap closings of the π- and 0-gap at Γ and the blue
line the closing of the 0-gap at K ′. For large modulation amplitudes, the quasienergy
gap at K ′ induced by the modulation is larger than the gap that would arise from the
sublattice offset and the system exhibits the same topological phases as for θ = 0. If
the modulation amplitude is small, the sublattice gap at K ′ has not closed and a trivial
phase ¯ is realized for larger modulation frequencies followed by phases ® and ° with
C− = −1 and C− = −2. b. Phase diagram as a function of the modulation frequency
and the polarization angle θ for m = 0.2. The regimes described in a are obtained in
reversed order and additional phases occur due to the closing of the π-gap at K, which
is depicted by the purple line. This gives rise to two further topologically trivial regions
¯ at large θ, and a Haldane-like phase with C− = −1 denoted by ±.

Starting from the trivial phase ¯ with C− = 0 and W 0 = 0 = W π and reducing
the modulation frequency, the bands touch in the π-gap at Γ, creating negative Berry
curvature there, which brings the system into the third topological regime with C− = −1
and W π = 1, again denoted by ®. For smaller modulation frequencies, the second
touching at Γ in the 0-gap results in a phase with C− = −2, again adding a negative
Berry curvature peak. Now, W 0 = −1 and W π = 1, which means that a pair of chiral
edge modes is created in the gap g0, but with opposite sign as the edge modes at gπ.
This phase ° is expected to have similar properties as the Haldane like phases ¬, ® and
±, regarding the localization of the bulk states in the presence of disorder: There is no
winding of the edge modes around the complete FBZ, as the winding numbers of g0 and
gπ have opposite sign, and the non-zero Berry curvature necessarily results in delocalized
bulk states, as discussed in Sec. 2.3. If the modulation amplitude is increased, the energy
gap at K ′ decreases until it closes and reopens, which leads then to the same phases as for
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θ = 0, including the anomalous Floquet phase for intermediate modulation frequencies.
In Fig. 3.10b, the phase diagram is shown as a function of the modulation frequency

and the polarization angle θ for a fixed modulation amplitude of m = 0.2. Here, the
original phases ¬-® appear in the lower part of the diagram, as they are realized when
the sublattice offset is small compared to the modulation amplitude. Increasing θ leads
to the closing of g0 at K ′ (blue line) and the same phases as discussed above. But in
addition, as the bands are deformed by the sublattice offset, the π-gap at K closes for
larger polarization angles, which is illustrated by the purple line. Depending on the
modulation frequency, this happens before the second and third gap closings at Γ (black
and second red line), resulting in a trivial phase ¯ and another Haldane-like phase ± with
C− = −1 and W 0 = −1, W π = 0 at large values of θ. In the phase diagrams of Fig. 3.10a
and Fig. 3.7, the closing of gπ at K takes place at smaller modulation frequencies lying
outside the parameter range accessible in the experiments (dark gray shaded areas).

The quasienergy bands and Berry curvature in the lowest band for the different phases
®-± are presented in Fig. 3.11 for m = 0.2, first following a line at θ = 0.15, which passes
the regimes of ¯, ®, ° and ¯ with f = (14, 8, 4.5, 3.7) kHz, and in addition at θ = 0.2
and f = 5 kHz representing phase ±. The quasienergy bands (first column) are evaluated
along the two high-symmetry paths Γ-M -K-Γ (solid lines) and Γ-M -K ′-Γ (dashed lines)
and are also shown as 3d-plots in the second column. In the trivial phase, the gap at zero
quasienergy is larger at K than at K ′, as described above, resulting in the positive Berry
curvature at K being spread out further as the negative contribution from K ′. After
the transition to phase ®, where ∆W π = 1, the negative Berry curvature at Γ again
spreads out, but now, due to the broken inversion symmetry, in a triangular shape along
the directions Γ-K (second row in Fig. 3.11). Originally, the lowest band exhibits two
maxima at K and K ′. Reducing the modulation frequency leads to a flattening of the
maximum at K, which can already be observed for f = 8 kHz, resulting in a complete
spread of the corresponding positive Berry curvature. In contrast, the maximum at K ′

becomes more pronounced and the negative Berry curvature is contracted further, as the
quasienergy gap here is reduced until it closes at θ = 0.15 and f ≈ 4 kHz.

The second gap closing at Γ, now at zero quasienergy, results again in a negative Berry
curvature peak, which also spreads in a triangular pattern, now along the directions Γ-K ′,
as visible in the third row of Fig. 3.11 for f = 4.5 kHz. The negative Berry curvature from
the previous transition, moving along with minima in the lowest band, has accumulated
at the K-points, where the lowest band now exhibits a minimum. The additional Berry
curvature from the second transition is located at maxima in the lowest band, similar as
in phase ® for θ = 0. These two triangular parts together with the opposite contributions
from the Dirac points in the trivial phase constitute C− = −2 with W 0 = −1, W π = 1.
For f = 3.7 kHz, two gap closings have occurred at both Dirac points. AtK, the minimum
of the lowest band touches the maximum in the lower copy of the upper band, so the
gap is closing at energy π. Shortly before this transition, a sharp negative peak of Berry
curvature arises at K, which then turns to a positive peak in addition to the negative
contributions from Γ that have accumulated there. Hence, ∆W π = −sgn(∆Ω−) = −1,
so the edge mode in the gap gπ is annihilated.
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Figure 3.11: Quasienergy bands and Berry curvature with a sublattice offset.
First column: The two lowest quasienergy bands along the high-symmetry lines Γ-M -
K-Γ (solid lines) and Γ-M -K ′-Γ (dashed lines) in the extended zone scheme. Second
column: Quasienergy bands as a function of the 2D quasimomentum, plotted in the
reduced zone scheme. Third column: Berry curvature in the first BZ. The bands and
Berry curvature are calculated for V0 = 6Er, m = 0.2 and f = (14, 8, 4.5, 3.7, 5) kHz with
θ = (0.15, 0.2) rad, scanning across the additional phases depicted in Fig. 3.10b. The
Chern and winding numbers are noted on the right of each row.
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At K ′, the maximum of the lowest band touches in the minimum of the second band
within the FBZ. Here, the original negative Berry curvature has completely collapsed
along with the decreasing of the gap, and is turned into a positive peak, removing the
edge mode in the zero gap since ∆W 0 = sgn(∆Ω−) = 1 which leads to W 0 = 0, W π = 0.

The positive and negative Berry curvature at the Dirac points in the trivial phase
can be described by having a weight of 1/2, in contrast to the new contributions arising
from the gap closings at Γ and at K, which have a weight of 1. As the Chern number
in the Haldane phase is equal to 1, each of the two positive peaks at K and K ′ carries
a weight of 1/2 and at the transition to the trivial phase, the weight of the peak at K ′

turns from +1/2 to −1/2. Hence, the transition at K ′ is qualitatively different from
the other transitions encountered here, as a Berry curvature peak being already present
before concentrates and changes sign, whereas in the other cases, a new peak appears
in addition to the other contributions. Accordingly, in the trivial phase at f = 3.7 kHz,
there are now two positive parts with weight 1/2, and the new positive peak at K with
weight 1, which indeed sum up to C− = 0 together with the two negative contributions
of weight 1 from the transitions at Γ. In the Haldane-like phase ±, depicted in the last
row of Fig. 3.11, the gap gπ at K has already closed, but g0 at K ′ remains open. Hence,
W π = 0 but W 0 = −1, leading to C− = −1, constituted by the two negative triangles of
Berry curvature originating from Γ and the positive Berry curvature from K, in addition
to the two contributions from the Dirac points in the trivial phase. For f = 5 kHz and
θ = 0.2 rad, as shown in the plot, the Berry curvature at K, as well as the accumulated
parts from the first gap closing at Γ are already quite distributed, whereas the triangle
from the second transition at Γ is clearly visible. For large values of θ the gap closing at
K occurs at larger modulation frequencies than the second gap closing at Γ, giving rise
to a trivial phase again, since the edge mode at energy π, being present in phase ®, is
annihilated as ∆W π = −1.

3.3 Tight-binding description of the modulated

honeycomb lattice

In the previous section, the numerical calculation of the effective Hamiltonian in the pe-
riodically modulated honeycomb lattice has been described. The resulting quasienergy
bands and Berry curvature distributions are used to derive the energy gaps and trans-
verse deflections, which can be directly compared to experimental data. As presented in
chapter 5, the theoretical values based on the numerical six-band calculation are in gen-
eral in very good quantitative agreement with the measured data over the full parameter
range. The bulk properties of the modulated lattice are well described by this model in
all three topological regimes considered in this work. Nevertheless, in view of probing
the localization properties of the system in the anomalous Floquet regime, a direct mea-
surement of the chiral edge modes is desirable, as further explicated in chapter 7. In this
regard, the quasienergy dispersion of the edge modes needs to be derived, determining the
group velocity of the atoms at the edge, which can be directly accessed in experiments.
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Moreover, the influence of the harmonic trapping potential on the edge modes can be
studied.

So far, a sensible and numerically feasible model of a finite, or semi-finite lattice system
is usually composed of a tight-binding description. In this way, the specific shape of the
edge in real space can be accounted for. To provide quantitative information about
the edge mode dispersion, first, a tight-binding description of the infinite, modulated
honeycomb lattice is introduced, and based on this, the corresponding model on a semi-
finite geometry will be discussed in the next section.

The current section starts with a two-band tight-binding model [3.3.1], which aims to
describe the instantaneous Hamiltonian at every time step during one modulation period,
to finally calculate an effective Hamiltonian by integration, similar to the numerical cal-
culation in the previous section. In this context, different methods are discussed to obtain
the optimal tight-binding parameters, including the use of an eight-band model [3.3.2].
The quasienergy bands in the Haldane phase can directly be fitted with the model from
Sec. 2.1.3, providing an adequate description in this regime [3.3.3]. Finally, the direct
mapping between the modulated lattice and the Haldane model is derived analytically in
the limit of high modulation frequencies [3.3.4].

3.3.1 Two-band tight-binding model

The general form of a tight-binding model for the honeycomb lattice has been introduced
in Sec. 2.1.3. The system is described in the basis of wavefunctions localized on the A
and B sublattice sites. If the two lowest bands are considered, there is only one type of
orbital at each site, being approximately spherically symmetric and thus called s-orbital.
Similar as in the Haldane model, nearest neighbor (NN) and next-nearest neighbor (NNN)
hopping is taken into account, whereas all tunneling amplitudes are assumed to be real-
valued here. To calculate the effective Hamiltonian, the system needs to be described
at every time step within the modulation period, hence, a tight-binding version of the
imbalanced honeycomb lattice is needed, revealing Ĥ(t) for the two lowest bands. Due to
the intensity imbalance, the location of the lattice sites changes periodically in time, as
depicted in Fig. 3.5 and it is not possible to find a co-moving reference frame, in contrast to
the case of lattice shaking, where the whole potential is moved (see chapter 6). However,
there is a reference frame, where all A-sites or all B-sites are at rest and the sites of
the respective other sublattice move along trajectories in real space having the shape
of rounded triangles, similar to a Reuleaux-triangle. In fact, the vectors δj connecting
nearest neighbors (see Fig. 2.1b), namely A- and B-sites, become time-dependent, whereas
the lattice vectors aj, which connect next-nearest neighbors, remain constant.

In the imbalanced honeycomb lattice, the NN and NNN tunneling amplitudes depend
on the bond direction and on time, whereas the bonds themselves are additionally chang-
ing in the former case. The two-band tight-binding Hamiltonian of the imbalanced lattice
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at a time t during the driving period can be written as

Ĥ(t) =
∑

rA

[
3∑

j=1

Jj(t)
(
â†rA ârA+δj(t) + h.c.

)
+

∆

2

(
â†rA ârA − â

†
rA+δ1

ârA+δ1

)

+
3∑

j=1

(
J̃j(t)â

†
rA
ârA+aj + h.c.

)
+

3∑

j=1

(
J̃j(t)â

†
rA+δ1

ârA+δ1−aj + h.c.
)]

, (3.33)

where the sublattice offset ∆ is time-independent and the locations of the B-sites have
been expressed in terms of the A-sites. Performing a Fourier transform similar as in
Sec. 2.1.3,

â†rA =
∑

q

e−iq·rA â†q â†rA+δj
=
∑

q

e−iq·(rA+δj) b̂†q, (3.34)

yields the Hamiltonian in quasimomentum space:

Ĥ(t) =
∑

q

[
3∑

j=1

Jj(t)
(
eiq·δj(t) â†qb̂q + e−iq·δj(t) b̂†qâq

)

+
3∑

j=1

J̃j(t)2 cos(q · aj)
(
â†qâq + b̂†qb̂q

)
+

∆

2

(
â†qâq − b̂†qb̂q

)]
. (3.35)

The Schrödinger equation Ĥ(t)|ψ(t)〉 = E(t)|ψ(t)〉 can then be solved for every quasimo-
mentum and time by making the ansatz

|ψ(q, t)〉 = cA(q, t)|φsA(q)〉+ cB(q, t)|φsB(q)〉 = cA(q, t)â†q|0〉+ cB(q, t)b̂†q|0〉, (3.36)

where the superscript s illustrates the assumption of spherically symmetric s-orbitals.
Using the bosonic commutation relations

[âq, â
†
q′ ] = δq,q′ , [b̂q, b̂

†
q′ ] = δq,q′ , (3.37)

with all other commutators being equal to zero, leads to the eigenvalue equation for the
coefficients cA and cB with the Hamiltonian being represented by a 2× 2 matrix for each
q and t:

Ĥq(t) =




∆
2

+
∑3

j=1 J̃j(t) 2 cos(q · aj)
∑3

j=1 Jj(t) e
iq·δj(t)

∑3
j=1 Jj(t) e

−iq·δj(t) −∆
2

+
∑3

j=1 J̃j(t) 2 cos(q · aj).


 (3.38)

Fitting the tight binding parameters The time-dependent connection vectors δj
are obtained by numerically evaluating the minima of the lattice potential defined in
Eq. 3.5 within one unit cell at every time t. The length and angle of each vector varies
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Figure 3.12: Time-dependence of the connection vector δ1 and sublattice offset
in the tight-binding model for V0 = 6 Er. a. Length |δ1| and angle Arg[δ1] =
arctan(δy1/δ

x
1 ) of the vector connecting A- and B-sites along bond direction 1, being

parallel to the x-direction in the symmetric lattice, during one period of the lattice
modulation for m = 0.25. The connection vectors are derived by evaluating the minima
of the imbalanced lattice potential at every time step t. The length and angle of δ2 and
δ3 vary similarly but are phase shifted by 2π/3 and 4π/3. b. Sublattice energy offset ∆
as a function of the polarization angle θ obtained from fitting the tight-binding model to
the bands of the symmetric, static lattice. The relation can be described by a polynomial
as defined in Eq. 3.39.

periodically in time, as depicted in Fig. 3.12a for δ1, whereas the curves for the other two
vectors are similar, but phase shifted by 2π/3 and 4π/3.

The magnitude of the oscillations increases with the modulation amplitude m and
the connection vectors are derived for each value of m separately. The sublattice offset
∆ is time-independent and not modified by the intensity imbalance. Its relation to the
polarization angle θ of the lattice beams is derived by fitting the energy bands from the
tight-binding model in Eq. 3.38 for Jj(t) = J, J̃j(t) = J̃ to the two lowest bands of the
symmetric, static lattice for a given value of θ, both evaluated on a grid spanning the
complete 2D BZ. Here, the free fit parameters are J , J̃ and ∆. The resulting values of
the sublattice offset depending on the polarization angle are plotted in Fig. 3.12b for a
lattice depth of V0 = 6Er. They can be described by a polynomial function

∆(θ) = A∆θ
2 +B∆θ

4, (3.39)

where the prefactors for V0 = 6Er, derived from fitting this function to the curve in
Fig. 3.12b, are A∆ = 20.456(8)Er/rad2 and B∆ = −11.38(6)Er/rad4.

The tunneling amplitudes are obtained in a similar manner, namely by fitting the
tight-binding bands at every t to the bands of the imbalanced lattice calculated from
Eq. 3.14 for a certain modulation amplitude m, including the direction dependence of
the hoppings and using the corresponding time-dependent connection vectors. Thereby,
a higher weight is assigned especially to the Γ-, but also to the K-points, to ensure that
the dispersion at these points is reproduced as precise as possible. If a sublattice offset is
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considered, the bands need to be fitted separately for each value of ∆, as it changes the
width and dispersion of the bands.
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Figure 3.13: Time- and direction-dependent hopping amplitudes in the modu-
lated lattice for V0 = 6 Er, m = 0.25 and ∆ = 0. a. NN tunneling amplitudes along
the different bond directions obtained by fitting the energy bands of the tight-binding
model in Eq. 3.38 to the two lowest bands of the full Hamiltonian in Eq. 3.14. The black
line denotes a fit to J1(t) using Eq. 3.40, resulting in A = −0.204(2)Er, B = 0.813(7)
and C = 0.049(2)Er. b. NNN hopping amplitudes from the same band fit as in a. The
parameters of the fitted function (black line) are Ã = 5.16(3) · 10−3Er, B̃ = −1.733(5)
and C̃ = 1.50(2) · 10−3Er.

Again, the fit is performed on a 2D grid corresponding to the first BZ. The NN hopping
amplitude along a certain bond direction j is expected to be proportional to 1/|δj|, as the
tunneling probability between two lattice sites increases when the distance between the
sites is reduced. In Fig. 3.13a, the resulting NN hoppings along the different directions
are shown for a modulation amplitude of m = 0.25 and ∆ = 0, indeed following the
inverted length of the connection vectors. The NNN tunnelings, depicted in Fig. 3.13b,
are about one order of magnitude smaller and exhibit a similar time-dependence. The
evolution of the tunneling amplitudes can be described by the following functions:

Jj(t) = AeBcos(ωt+φj) + C, φj =
2π

3
j,

J̃j(t) = Ã eB̃cos(ωt+φ̃j) + C̃, φ̃j =
2π

3
(j + 1), j = {1, 2, 3}. (3.40)

The form of the curves is motivated by the fact that the intensities of the lattice beams
are modulated according to Eq. 3.22, and thus the height of the potential barrier between
two sites is ∝ cos(ωt) and the corresponding tunneling probability ∝ ecos(ωt). As depicted
by the black lines in Fig. 3.13, being fits of Eq. 3.40 to the values J1(t) and J̃1(t), the time-
dependence of the hoppings is in general well described by this approach. For increasing
modulation amplitudes and larger sublattice offsets, the small kinks deviating from the
fit functions become more pronounced, restricting the use of Eq. 3.40 to m . 0.3 and
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θ . 0.12 rad. Nevertheless, in any case the values of Jj, J̃j obtained from the fit to the
full bands can be used directly for the calculation of the effective Hamiltonian, provided
that they are evaluated at sufficiently many time steps.

As the orbitals are assumed to be spherically symmetric, the change of the connection
vectors could in principle be completely absorbed into the time-dependence of the hopping
amplitudes. Indeed, fitting the bands with a tight-binding model incorporating constant
vectors δj,0 being equal to their counterparts in the symmetric lattice, leads to the same
values for all Jj(t) and J̃j(t). However, as discussed below, even if the resulting bands look
similar, leading to the same fit parameters, the corresponding tight-binding Hamiltonian
Ĥ(t) is different, as it explicitly depends on δ(t), changing the resulting Floquet bands.

Floquet bands Using the time-dependent tight-binding parameters, the Hamiltonian
at every time step t can be determined according to Eq. 3.38. The time-evolution operator
over one period of the driving is calculated numerically, again by replacing the integral
in Eq. 3.23 with a sum over N = 300 discrete time steps. Since the tight-binding Hamil-
tonian is represented in the basis of the time-independent, localized wavefunctions |φsA〉
and |φsB〉, no projection or basic change is necessary. The resulting effective Hamiltonian
is accordingly a 2× 2 matrix and the first and second Floquet band are identical to the
lower and higher eigenvalues for most quasimomenta. Otherwise, the correct assignment
of the bands can be obtained by again tracking the maximal overlap with the eigenstate
at the previous quasimomentum, as described in Sec. 3.2.2.

In Fig. 3.14, the quasienergy gaps obtained from the two-band tight-binding model
for m = 0.25 and ∆ = 0 (blue lines) are compared to the results from the full calculation
(black lines) introduced in the previous section for different modulation frequencies in the
third and anomalous regime along the high-symmetry line Γ-M -K-Γ in quasimomentum
space. In this way, the applicability of the tight-binding description is benchmarked
with the bulk dispersion, which is reproduced well by the full band calculation, to be
thereupon used for the calculations in the semi-finite system. The dashed, blue lines
denote the resulting gaps for time-independent connection vectors δj(t) = δj,0 in the
tight-binding Hamiltonian, while employing the same hopping amplitudes as before. In
addition, the quasienergy gaps derived from an eight-band tight-binding model are shown
(red lines), which partly incorporates the coupling of the s-bands to higher bands. As
described in detail in Sec. 3.3.2, more than six tight-binding orbitals are necessary to
correctly reproduce the lowest six bands of the honeycomb lattice with V0 = 6Er. For
the corresponding quasienergy gaps in Fig. 3.14, the first eight bands of the full model are
fitted in the 2D BZ, and the resulting hopping amplitudes for the s-bands are inserted in
the two-band tight-binding model from eq. 3.38, employing time-dependent connection
vectors. Hence, all tight-binding results presented in Fig. 3.14 are obtained from an
effective 2× 2 Hamiltonian.

At the Γ-point, the quasienergy gap is best described by the eight-band fit for larger
modulation frequencies in the anomalous phase, but by the two-band model in the third
phase. Here, the two versions of the two-band description using δ(t) and δ0 coincide.
The gap at the K point is matched well by the models with time-dependent connection
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Figure 3.14: Quasienergy gaps for V0 = 6 Er, m = 0.25 and ∆ = 0. Quasienergy
gaps in the anomalous (f = (7, 10) kHz) and third (f = 4 kHz) regime, plotted along the
high-symmetry line in quasimomentum space. The results obtained from the full band
calculation (black lines) are compared to different tight-binding models (blue and red
lines), all incorporating an effective 2×2 Hamiltonian, but using tight-binding parameters
derived from fitting either two or eight bands (see Sec. 3.3.2). At the high-symmetry
points Γ and K, the values from the full band model are altogether best described by the
two-band tight-binding model employing time-dependent connection vectors (solid, blue
lines).

vectors δ(t), whereas the two-band model with δ0 deviates significantly from the full
model at this point. Along the lines Γ-M and K-Γ however, it fits best to the gap from
the full band calculation, which becomes especially apparent for f = 7 kHz.

Quasienergy gaps vs. modulation frequency In Fig. 3.15a and b, the quasienergy
gaps at Γ and K calculated using the different models are shown as a function of the
modulation frequency, extending over all three topological regimes. In addition to the
tight-binding models mentioned above, the quasienergy gaps obtained from a two-band
calculation using the full Hamiltonian are presented (dashed, gray lines). In this case,
the calculation proceeds as described in the previous section, but the Hamiltonian is
projected to its two lowest eigenstates at each time step. Remarkably, this yields no
improvement compared to the two-band tight-binding model, it fits even worse at the
K-point. This justifies the use of a tight-binding description in general, as the important
drawbacks seem to be connected to the fact that only two bands are employed rather
than to the application of a tight-binding model.

The quasienergy gap at Γ, determining the phase transition points, is captured equally
well by the different tight-binding models at low modulation frequencies. In the Haldane
phase and for larger frequencies in the anomalous phase, using the parameters from the
eight-band fit performs slightly better (see also inset of Fig. 3.15a showing the first phase
transition), but its difference to the pure two-band fits is negligible compared to the
overall deviation from the full band calculation. At the K-point, the gaps from the
two-band model with δ(t) differ from the results employing constant vectors nearly over
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Figure 3.15: Energy gaps at Γ and K for V0 = 6 Er, m = 0.25 and ∆ = 0 as
a function of the modulation frequency. The gaps obtained from the full band
calculation (black lines) are compared to different tight-binding models (blue and red
lines), all incorporating a 2×2 effective Hamiltonian, but using tight-binding parameters
obtained from fitting either two or eight bands, and to a full band calculation using
only two bands (dashed, gray lines). a. All effective two-band models describe the gap
at Γ well for small modulation frequencies, but deviate for large f , suggesting the use
of a different approach in the Haldane phase. b. At the K-point, the models using
time-dependent connection vectors fit the full band calculation much better, except for
the jump at high modulation frequencies, which could only be reproduced by a model
incorporating six bands within the time-integration.

the complete frequency range, but especially at large modulation frequencies. The jump
of the gap in the full model, resulting from avoided crossings between the s-bands and
higher bands (also being observed in the experiments), is not captured by any of the
tight-binding models, since they all employ a two-band Hamiltonian, just incorporating
parameters obtained from fitting a different number of bands.

Nevertheless, the models using δ(t) describe the overall development of the quasi-
energy gap at K sufficiently well, which is also verified for a larger modulation amplitude
of m = 0.3 in Sec. 5.2.1. As apparent in Fig. 3.15, the Haldane regime occurring for
high modulation frequencies is in general not captured well by the models employing a
2× 2 Hamiltonian, as the direct coupling to higher bands during the modulation period
is increased in this parameter range. However, the Haldane phase can be described by
an effective, time-independent Hamiltonian, as derived in Sec. 2.1.3, which is used to
provide a tight-binding description in this regime, as further illustrated in Sec. 3.3.3.
In conclusion, the quasienergy bands and gaps in the anomalous and third regime can
be well described by a two-band tight-binding model, employing fitted time-dependent
hopping amplitudes and time-dependent connection vectors.
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3.3.2 Eight-band tight-binding model

The shape of the two lowest bands of the effective Hamiltonian is influenced by coupling
to the p-bands during the modulation period, especially at high modulation frequencies
and amplitudes. In particular, in the full band calculation, the effective Hamiltonian is
obtained by multiplication of 6×6 matrices which are in general not diagonal, as they are
transformed to a common basis. To provide a complete description of the Hamiltonian
at every time step, a six-band tight-binding model would be desirable, embedding the
coupling between s- and p-bands. However, at a lattice depth of V0 = 6Er as used in the
experiments and hence in the calculations, it is not possible to find a model that describes
all of the first six bands of the imbalanced honeycomb lattice correctly by employing only
six tight-binding orbitals, as illustrated below.

Tight-binding description of the p-bands Using the localized basis introduced
above, the eigenstates of the next four bands are expressed in terms of px- and py-
orbitals on the A- and B-sites, analogously to the description of the hydrogen atom, being
projected to the x-y-plane. These orbitals are not spherically symmetric but oriented
along the x- and y-direction (see Fig. B.1).

To describe hopping along a certain bond, directed orbitals are constructed from
linear combinations of px and py, being either oriented along the respective bond or
perpendicular to it [138]. For NN hopping, the prefactors are given by the x- and y-
coordinates of the normalized connection vectors δ̂j(t) or the corresponding unit vectors
γ̂j(t) perpendicular to them:

|φj‖A(B)(t)〉 = δ̂xj (t)|φpxA(B)〉+ δ̂yj (t)|φ
py
A(B)〉, δ̂j(t) =

δj(t)

|δj(t)|
,

|φj⊥A(B)(t)〉 = γ̂xj (t)|φpxA(B)〉+ γ̂yj (t)|φpyA(B)〉, γ̂j(t) · δ̂j(t) = 0, j = {1, 2, 3}. (3.41)

In general, the hopping p‖-p‖ is expected to be much larger than p⊥-p⊥, whereas the
amplitude vanishes for p‖-p⊥. The NNN hopping is described by orbitals oriented along
the lattice vectors ±aj for A- and B-sites, which are chosen to be −a1, a2, a3 as depicted
in Fig. 2.1, and hopping of perpendicular orbitals is not accounted for as its amplitude
is negligible. The corresponding oriented orbitals are time-independent and read:

|φ̃j‖A(B)〉 = ±âxj |φpxA(B)〉 ± â
y
j |φ

py
A(B)〉, âj =

aj
|aj|

. (3.42)

Moreover, tunneling between s and p‖ orbitals is taken into account on the NN-level,
whereas the amplitude for s-p⊥ is zero and NNN-s-p‖ is negligible for the lattice config-
urations considered here. Using the oriented orbitals, a tight-binding Hamiltonian can
be constructed analogously to the two-band case, being represented by a 6× 6 matrix at
every q and t in the basis of the localized orbitals. Then, the tight-binding parameters
for this model could be fitted at each time step to derive an effective Hamiltonian.



58 3. Anomalous Floquet phases in a honeycomb lattice

Figure 3.16: Energy bands of the symmetric honeycomb lattice. The first 12
energy bands plotted along the high-symmetry line for different lattice depths. The f -
and d-bands are highly mixed for V0 = 6Er and strongly couple to the p-bands. The
bands for V0 = 20Er already exhibit a larger gap above the p-bands. At V0 = 50Er, the
grouping of the f - and d-bands becomes apparent.

Coupling to higher bands in the symmetric lattice for V0 = 6 Er The p-bands
of the honeycomb lattice at V0 = 6Er are however not well described by the model
described above, not even in the symmetric lattice, as illustrated in Fig. B.1c. To correctly
reproduce the bands of the full model, higher orbitals must be included, at least the next
two bands, which correspond to two f -orbitals. The reason for this becomes apparent in
Fig. 3.16, where the first 12 bands of the symmetric honeycomb lattice are compared for
different lattice depths.

At V0 = 6Er, there is a significant gap between the s- and p-bands, indicating the
vanishing s-p-coupling in the symmetric case. However, above the p-bands, there is only
a small gap to the next higher bands, which are themselves highly mixed and do not
appear to be arranged in groups of even numbers of bands, as expected from having two
sites per unit cell. This already suggests that there is a non-negligible coupling between
these bands and the p-bands. To disentangle the higher bands into groups of orbitals, the
lattice depth has to be increased considerably to about 50Er, where the s- and p-bands
are nearly flat and the higher bands are well separated from them. These appear in a
group of two bands, being described by 6-fold rotational fx(x2−3y2)-orbitals and a group
of four bands, corresponding to dxy- and dx2−y2-orbitals, which exhibit 4-fold rotational
symmetry [139], as depicted in Fig. B.1a.
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Figure 3.17: Fitted energy bands from the eight-band tight-binding model at
different time steps. Energy bands using the fitted tight-binding parameters (colorful
lines) compared to the bands from the full model (black lines) along the high-symmetry
line for V0 = 6Er. The s-bands are described well at all time steps, whereas the agreement
of the p-bands decreases with higher energy, especially for t = 0.2T . In general, the fitted
bands match well again at t = T/3, t = 2T/3 and t = T and deviate the most at t ∼ 0.2T ,
t ∼ 0.5T and t ∼ 0.8T . As the f -bands are described incompletely in the eight-band
tight-binding model, they strongly deviate from the full calculation.

Eight-band model including f-orbitals Including the f -orbitals in the tight-binding
model provides a reasonable description of the p-bands in the symmetric lattice (see
Fig. B.1d) and to some extent also in the imbalanced case (Fig. 3.17). In addition to
the s- and p-hopping terms described above, this eight-band model contains NN hopping
in the f -bands and between p- and f -orbitals. The coupling of s- and f -bands can be
neglected. The f -orbital considered here has lobes which are oriented along the vectors
δj, so no linear combinations need to be formed to describe NN hopping, if the direction
change of the orbitals is neglected.

In principle, this would need to be taken into account, as well as possible NNN hopping
of the f -f and p-f -orbitals, if one would aim for a correct representation of the f -bands.
As the coupling between f - and d-orbitals is apparently even larger than between p
and f though, a complete description of the f -bands is anyway only possible if the d-
bands would be taken into account. Hence, at a lattice depth of 6Er, in principle only
the s-bands can be described by a tight-binding model which contains solely coupling
between these orbitals. All higher bands are mixed with the next higher bands to some
extent, preventing the development of a tight-binding model that correctly reproduces the
properties of all participating bands. A full description of the eight-band tight-binding
Hamiltonian is given in appendix B.
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The corresponding hopping amplitudes for s-s, s-p, p-p, p-f and f -f coupling can
be obtained by fitting the lowest eight bands of the imbalanced lattice in the 2D BZ
at every time step with the tight-binding model outlined above and defined by Eq. B.4.
The resulting bands are plotted along the high-symmetry line Γ-M -K-Γ at different times
during the driving period along with the bands of the full model (black lines) in Fig. 3.17.
The s-bands and the lowest p-band are captured well at all times, whereas the fitted higher
bands still deviate, especially at t = 0.2T . The f -bands from the tight-binding fit are
entirely different than in the full model, owing to their incomplete description which
misses the coupling with the d-bands. Including these would lead to similar problems, as
described above, and as the degree of band mixing increases for higher energies, incorrect
d-bands would in turn lead to wrong f -d-coupling and hence corrupt the f -bands.

Calculating the effective Hamiltonian in the eight-band tight-binding model using the
fitted parameters leads to incorrect Floquet bands, which strongly deviate from the full
model compared to the results from the two-band tight-binding approach. The reason
for this is on the one hand the wrong f -bands, leading to corrupted p-f coupling terms,
and on the other hand the hoppings of the p-bands themselves, which are not entirely
correct at all times, as apparent in Fig. 3.17. Projecting down the Hamiltonian to its six
lowest eigenstates does not improve the calculation, as the initial eight-band Hamiltonian
is already not correct and misses the contributions from all higher bands, which are in
contrast apparent in the full band calculation, emanating from a large Hamiltonian matrix
at every time step.

Employing the parameters from the eight-band fit in a two-band model The
resulting tight-binding parameters for the s-bands can nevertheless be incorporated in a
two-band tight-binding model, which leads to slight improvements in the shape of the
resulting Floquet bands and gaps, as illustrated in Figs. 3.14 and 3.15. This is accounted
for by the finite s-p-hopping terms arising in the imbalanced lattice, which represent the
coupling between these bands, finally leading to the avoided crossings in the Floquet
bands at larger modulation frequencies and amplitudes. Even if these terms are not
contained in the time-dependent Hamiltonian, the NN and NNN tunneling amplitudes
of the s-bands, which are modified indirectly due to a finite coupling to p-bands, slightly
differ from the values obtained in a pure two-band fit, as depicted in Fig. 3.18.

There is only a small difference between the resulting NN hopping amplitudes, mostly
close to their maximum, but this already leads to an improvement in the description of
the quasienergy gap at Γ, as mentioned in the last section. The relative deviation between
the NNN terms is more obvious, but as they are about one order of magnitude smaller
than the NN contributions, this difference can in principle be neglected. Using the NN
hopping from the eight-band fit along with NNN hoppings from the two-band fit results
basically in the same bands as when using the eight-band NNN terms. Depending on
the situation and the degree of accuracy needed to describe the quasienergy gaps of the
Floquet bands, using the s-band parameters from the eight-band fit could constitute a
helpful improvement of the tight-binding description.

Considering the fitted tight-binding parameters as a function of time, they obey the
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Figure 3.18: Fitted hopping amplitudes of the s-bands from the eight-band
and two-band models along δ1 for V0 = 6 Er. a. NN tunneling within one driving
period. Although the resulting values mostly coincide, the slight differences lead indeed
to an improved description of the Floquet bands at Γ, when using the parameters from the
eight-band fit, which includes s-p-coupling. b. The relative difference between the NNN
tunneling is larger, though having only little influence on the shape of the Floquet bands,
as the contributions are about one order of magnitude smaller than the NN hoppings.

expected periodicity and phase shifts, when comparing hopping amplitudes along different
directions, but not all of them appear as smooth curves, as apparent for the NNN s-
band hopping in Fig. 3.18b. One reason for this could be a non-optimal basis choice.
Alternatively, a tight-binding description could also be carried out in a basis of Wannier
functions which are localized only to the range of a unit cell and not to a single site.
These form a basis of energy eigenstates instead of single orbitals corresponding to A-
and B-sites. The hopping amplitudes can then be calculated directly as overlap integrals
between functions on neighboring unit cells, leading to a 6 × 6 matrix assinged to each
pair of sites when considering s- and p-bands. This might result in tunneling amplitudes
being smooth functions of time, it does however not solve the general problem of coupling
to higher bands. Truncating the model at 6-bands again leads to an incorrect description
of the p-bands and thus to erroneous Floquet bands, as the large coupling to the f -bands
is neglected.

3.3.3 Fitting the effective bands in the Haldane phase

The Floquet bands obtained by employing a two-band tight-binding Hamiltonian at every
time step, using the fitted, time-dependent hopping amplitudes, deviate from the full
bands for high modulation frequencies. To provide an adequate tight-binding description
in the Haldane regime, enabling the derivation of the edge mode dispersion, the Floquet
bands from the full band calculation are directly fitted with the two-band model defined
in Eq. 2.18.

The topological Haldane phase can be described by an effective static model, as there
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Figure 3.19: Quasienergy bands and gaps in the Haldane phase for V0 = 6 Er. a.
Floquet bands from the full model (black lines) and the bands obtained by directly fitting
them with the two-band Haldane model from Eq. 2.18, for m = 0.25, f = 16 kHz and
∆ = 0 (green lines), plotted along the high-symmetry line. The fitted hopping amplitudes
are J = 0.116Er, t = −0.018Er and φ = 1.241 rad. b. Corresponding quasienergy gaps,
compared also to the results from the two-band and eight-band fits (blue and red lines),
where the Hamiltonian at every time step during the driving period is approximated by
a tight-binding model.

are only chiral edge modes in the gap at zero quasienergy, which will be reproduced
when evaluating the Haldane model on a finite geometry. The quasienergy bands are
described by an isotropic, real-valued NN hopping J and complex NNN hopping J̃ = t eiφ,
expressed in terms of its absolute value and phase. In addition, the tight-binding bands
are shifted by a constant energy offset to resemble the Floquet bands lying in the interval
] − ~ω/2, ~ω/2]. The Haldane-tight-binding model is fitted to the quasienergy bands
from the full model on the 2D BZ, whereas this procedure needs to be repeated for
each modulation amplitude and frequency. The resulting quasienergy bands and gaps
for m = 0.25 and f = 16 kHz are plotted along the high-symmetry line Γ-M -K-Γ in
Fig. 3.19 (green lines). Overall, the fitted quasienergy bands conincide well with the full
Floquet bands, especially at the high-symmetry points. Considering the energy gap, the
deviations along the Γ-M and K-Γ lines become more obvious, compared to the tight-
binding approach using time-independent connection vectors. However, at Γ and K, the
gap is best described by the Haldane fit.

3.3.4 Derivation of the Haldane model in the high-frequency
limit

The two-band tight-binding description of the modulated honeycomb lattice directly re-
sembles the Haldane model from Eq. 2.18 in the limit of large modulation frequencies,
validating the use of this model to fit the quasienergy bands in this regime. As described
in Sec. 2.2.2, the effective Hamiltonian can be approximated by a series expansion up
to first order for ~ω � 1, containing the Fourier components Ĥn of the time-dependent
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Hamiltonian (see Eq. 2.38):

Ĥeff ≈ Ĥ0 +
1

~ω

∞∑

n=1

1

n
[Ĥn, Ĥ−n] +O

(
1

(~ω)2

)
. (3.43)

Using the expressions for the time-dependent hoppings given in Eq. 3.40 and neglecting
the time-dependence of the NN connection vectors, being valid for small modulation
amplitudes, the Hamiltonian defined in Eq. 3.35 can be written in terms of Pauli matrices
for each quasimomentum q:

Ĥ(q, t) =
3∑

j=1

[
2 cos(q · aj)

(
Ã eB̃cos(ωt+φ̃j) + C̃

)]
σ̂0

+
3∑

j=1

[
cos(q · δj)

(
AeBcos(ωt+φj) + C

)]
σ̂x

−
3∑

j=1

[
sin(q · δj)

(
AeBcos(ωt+φj) + C

)]
σ̂y +

∆

2
σ̂z. (3.44)

The Fourier components are obtained by employing the relation

eir sin(ϑ) =
+∞∑

n=−∞
Jn(r) einϑ, (3.45)

where Jn denotes the Bessel function of the first kind of integer order n. Thus, the
time-dependent part of the hopping-amplitudes can be expressed as

eBcos(ωt+φj) = ei(−iB)sin(ωt+φj+π/2) =
+∞∑

n=−∞
Jn(−iB) ein(ωt+φj+π/2), (3.46)

and the Fourier components of the time-dependent Hamiltonian are read off as the pre-
factors of the terms ∝ ein(ωt). The commutator of the nth and −nth component evaluates
to:

[Ĥn, Ĥ−n] = −2 (Jn(−iB))2A2(−1)n 2
3∑

j=1

sin(q · aj) sin(nξj)σ̂z. (3.47)

Here, the differences of the NN connection vectors δj have been expressed in terms of the
lattice vectors aj, defined as −a1, a2 and a3 and the angles ξj describe the corresponding
differences in the modulation phases:

ξ = (φ1 − φ3, φ2 − φ1, φ3 − φ2) =

(
2π

3
,
2π

3
,−4π

3

)
. (3.48)
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By inserting this result into Eq. 3.43, the effective Hamiltonian becomes:

Ĥeff(q) =
3∑

j=1

[
2 cos(q · aj)

(
ÃJ0(−iB̃) + C̃

)]
σ̂0

+
3∑

j=1

[cos(q · δj) (AJ0(−iB) + C)] σ̂x −
3∑

j=1

[sin(q · δj) (AJ0(−iB) + C)] σ̂y

+

[
∆

2
−

3∑

j=1

(
2 sin(q · aj)

2A2

~ω

∞∑

n=1

(−1)n

n
(Jn(−iB))2 sin(nξj)

)]
σ̂z. (3.49)

This form of the Hamiltonian can be directly compared to Eq. 2.21, resembling a two-
band model with real-valued, isotropic NN hoppings J ′ = AJ0(−iB) + C and complex
NNN tunneling amplitudes, which are also independent of the bond direction:

J̃ ′ =
(
ÃJ0(−iB̃) + C̃

)
+ i

(
2A2

~ω

∞∑

n=1

(−1)n

n
(Jn(−iB))2 sin

(
n

2π

3

))
. (3.50)

The zeroth order Bessel function J0(−iB) has a global minimum at B = 0 and is real and
positive for all B, meaning that the absolute value of the NN tunneling monotonically in-
creases with the modulation amplitude, where m ∈ [0, 0.4] corresponds approximately to
B ∈ [0, 1]. This confirms the observation that the effective bandwidth is increasing with
m, shifting the phase transition points at Γ to higher frequencies for larger amplitudes.
The higher order Bessel functions Jn(−iB) are purely imaginary for odd n and real for
even n, leading to an overall positive contribution from n = 1 and a negative contribution
from n = 2, being however more than one order of magnitude smaller. Thus, the sum in
Eq. 3.50 evaluates to a real and positive number. For NNN hopping, B̃ < 0, but since
J0(−ix) is symmetric with respect to x = 0 and Ã, C̃ > 0, the real part of J̃ ′ is also pos-
itive. Hence, the renormalized complex hopping has a positive real and imaginary part
corresponding to φ > 0 in the Haldane model, resembling a Chern number of C− = +1
in the lowest band for ∆ > 0, as also occurring in the numerical calculations. The con-
tributions from the different Bessel functions are also shown in Fig. 6.7, being compared
to the corresponding terms for a phase modulated lattice introduced in chapter 6.

3.4 Calculation of the edge mode dispersion

The quasienergy dispersion of the edge modes is obtained by calculating the effective
Hamiltonian on a stripe-geometry, being periodic along one direction but finite along the
other direction. To incorporate the specific shape of the edge, a two-band tight-binding
model is used and the corresponding parameters are derived from fitting the bulk bands,
as described in the previous sections. The honeycomb lattice can exhibit several kinds of
edges, depending on the spatial direction along which it is cut [140]. In the following, the
armchair-termination will be considered, which occurs when the lattice is assumed to be
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finite along the y-direction. The zigzag-geometry, corresponding to a system being finite
along the x-direction, is discussed in appendix C.

3.4.1 Tight-binding model in the stripe-geometry

The system considered in the following is periodic along the x-direction and consists of
2N lattice sites along the y-direction, as depicted in Fig. 3.20. The effective unit cell is
indicated by the gray shaded area, having a width of aeff = 3a and extending over the
complete length of the system along the y-direction. The effective Hamiltonian of the
modulated lattice is obtained by numerical integration of the tight-binding Hamiltonian at
every time step during the modulation period. To describe the imbalanced lattice within
the modulation period as well as the Haldane phase, real-valued, direction-dependent NN
tunneling is considered, employing the time-dependent connection vectors δ(t) derived
for each modulation amplitude. The NNN hopping amplitudes are in general assumed
to be complex and also depend on the bond direction. Thereby, the time-dependent
hopping parameters derived previously from fitting the bulk bands of the infinite system
are used, yielding the dispersion of both the bulk and edge states when being evaluated
on the stripe-geometry. In the Haldane regime, the Floquet bands are calculated directly
with the parameters obtained from fitting the Haldane model to the bulk bands. The
semi-finite system is described by pairs of lattices sites (mA,mB) located inside a single
unit cell with m ∈ N ∈ [1, N ]. Depending on the bond direction and the site index, the
tunneling connects sites within the same unit cell or sites in neighboring cells.

Figure 3.20: Sketch of the armchair-geometry. Honeycomb lattice being periodic
along the x- direction and finite along y. The unit cell (gray shaded area) consists of N
A- and N B-sites and has a width of 3a. The locations of the odd and even A-sites in
the lth unit cell are denoted by xl and xl + 3

2
a.
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The corresponding tight-binding Hamiltonian reads:

Ĥ(t) =
∑

l

[
J1(t)

(∑

m odd

â†l (m) b̂l−1(m) + h.c.+
∑

m even

â†l (m) b̂l(m) + h.c.

)

+
∑

m

J2(t)
(
â†l (m) b̂l(m+ 1) + h.c.

)
+ J3(t)

(
â†l (m) b̂l(m− 1) + h.c.

)

+
∑

m odd

(
J̃1(t) â†l (m) âl−1(m+ 1) + J̃1(t) b̂†l (m) b̂l+1(m− 1) + h.c.

+J̃2(t) â†l (m) âl(m+ 1) + J̃2(t) b̂†l (m) b̂l(m− 1) + h.c.
)

+
∑

m even

(
J̃1(t) â†l (m) âl(m+ 1) + J̃1(t) b̂†l (m) b̂l(m− 1) + h.c.

+J̃2(t) â†l (m) âl+1(m+ 1) + J̃2(t) b̂†l (m) b̂l−1(m− 1) + h.c.
)

+
∑

m

(
J̃3(t) â†l (m) âl(m− 2) + J̃3(t) b̂†l (m) b̂l(m+ 2) + h.c.

+
∆

2

(
â†l (m) âl(m)− b̂†l (m) b̂l(m)

))]
, (3.51)

where the operators â†l (m) and b̂†l (m) create a particle on the mth A- and B-site in the
unit cell denoted by l.

Since the lattice is periodic along x, a one-dimensional (1D) Fourier transform of the
operators can be performed in this direction:

â†l (m) =
∑

q

e−iqxl,mA â†q(m) b̂†l (m) =
∑

q

e−iqxl,mB b̂†q(m). (3.52)

In the following, the A-sites are assumed to be at rest, and the locations of the B-sites
are thus time-dependent and can be derived using the normalized connection vectors:

m odd: xl,mA = xl xl−1,mB(t) = xl,mA + δ̂x1 (t)

xl,(m+1)B(t) = xl,mA + δ̂x2 (t) xl,(m−1)B(t) = xl,mA + δ̂x3 (t)

m even: xl,mA = xl +
3

2
a xl,mB(t) = xl,mA + δ̂x1 (t)

xl,(m+1)B(t) = xl,mA + δ̂x2 (t) xl,(m−1)B(t) = xl,mA + δ̂x3 (t). (3.53)

The site-locations appearing in the NNN hopping-terms can be directly expressed using
the geometry of the symmetric lattice, as depicted in Fig. 3.20, since the lattice vec-
tors are time-independent. This yields phase factors containing the differences in the
x-coordinates of the vectors aj, which would otherwise also emerge from subtracting the
connection vectors, using the definitions in Eq. 3.53. Analogously to the infinite system,
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the Schrödinger equation can be solved by the ansatz

|ψq〉 =
∑

m

(
cmA â

†
q(m) + cmB b̂

†
q(m)

)
|0〉. (3.54)

Using the commutation relations between operators for different quasimomenta and site
numbers

[âq(m), â†q′(m
′)] = δq,q′ δm,m′ , [b̂q(m), b̂†q′(m

′)] = δq,q′ δm,m′ , (3.55)

and shifting the indices m → m ± 1, the prefactors of â†q(m) and b̂†q(m) can be read off
on both sides of the equation. This yields the eigenvalue equations for the coefficients
cmA(B):

E cmA = J1(t) eiqδ̂
x
1 (t) cmB + J2(t) eiqδ̂

x
2 (t) c(m+1)B + J3(t) eiqδ̂

x
3 (t) c(m−1)B

+
(
J̃1(t) e−iq

3
2
a + J̃2(t) eiq

3
2
a
)
c(m+1)A +

(
J̃∗1 (t) eiq

3
2
a + J̃∗2 (t) e−iq

3
2
a
)
c(m−1)A

+ J̃∗3 (t) c(m+2)A + J̃3(t) c(m−2)A +
∆

2
cmA,

E cmB = J1(t) e−iqδ̂
x
1 (t) cmA + J2(t) e−iqδ̂

x
2 (t) c(m−1)A + J3(t) e−iqδ̂

x
3 (t) c(m+1)A

+
(
J̃1(t) eiq

3
2
a + J̃2(t) e−iq

3
2
a
)
c(m−1)B +

(
J̃∗1 (t) e−iq

3
2
a + J̃∗2 (t) eiq

3
2
a
)
c(m+1)B

+ J̃3(t) c(m+2)B + J̃∗3 (t) c(m−2)B −
∆

2
cmB. (3.56)

In the basis of the coefficients, being defined as (c1A, c1B, c2A, c2B, ..., cNA, cNB), the Hamil-
tonian can be written as a 2N × 2N matrix for every quasimomentum q. The first BZ
in the armchair-geometry is given by qx ∈ [− π

3a
, π

3a
]. Using the time-dependent hop-

pings obtained from the bulk band fits, the Hamiltonian can be derived at every time
step t, and the effective Hamiltonian is accordingly also represented by a 2N × 2N ma-
trix. Hence, there are 2N quasienergy bands for each quasimomentum. Analogously, the
bands in the Haldane regime are given by the eigenvalues of the Hamiltonian in Eq. 3.56,
when employing the corresponding time-independent, isotropic tunnelings and the static
connection vectors.

3.4.2 Quasienergy dispersion

In Fig. 3.21, the quasienergy bands in the armchair geometry are shown for m = 0.25
and f = (5, 9, 16) kHz, representing the third, anomalous and Haldane regime. In the
first case, a pair of chiral edge modes is visible in the quasienergy gap at the FBZ edge,
whereas the bands are gapped at zero energy, as expected from the bulk winding numbers
being W π = 1 and W 0 = 0. In the anomalous regime, two pairs of edge modes appear in
both energy gaps, confirming both winding numbers being equal to 1, and in the Haldane
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phase, only the edge mode in the g0-gap remains. Since the stripe considered here has
an upper and a lower boundary, pairs of counter-propagating edge modes are created. In
the armchair-geometry, the Γ- and K-points both correspond to qx = 0, thus the edge
states appear in the center of the BZ in all cases.
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Figure 3.21: Quasienergy bands in the armchair-geometry. Quasienergy bands for
V0 = 6Er m = 0.25 and f = (5, 9, 16) kHz as a function of the 1D quasimomentum along
the x-direction, resembling the third, anomalous and Haldane regime. The calculations
are performed without a harmonic trap and for N = 50 pairs of sites.

The semi-finite system considered so far has a well defined, sharp edge and the two
states having energies in the gap of the bulk bands directly correspond to the edge modes.
In the experiment, the edge of the system is defined by the harmonic trapping potential,
resembling a soft boundary. The trap can be included as a 1D potential along the finite
y-direction, maintaining the periodicity of the lattice in the x-direction. This corresponds
to adding diagonal terms to the Hamiltonian in Eq. 3.56, which depend on the distance
of the corresponding site to the center, which is assumed to be located at y = 0, so
m = N/2. Averaging over the time-dependence of the connection vector δ1, the mth
A- and B-site have the same distance ∆y(m) to the center of the unit cell, as in the
symmetric case. The energy offset for the mth pair of sites is thus given by

UT (m) =
1

2
mKω

2
T (∆y(m))2. (3.57)

In general, this describes a system exhibiting an infinitely steep wall at its upper and
lower end with an additional harmonic confinement. To simulate the effect of the smooth
boundary set by the trap and not only of the numerical edge, the system size needs to
be increased considerably above N = 50 which is used in Fig. 3.21.

In [141], the effect of different trapping potentials has been investigated in a 2D
system being finite along both directions. The dispersion of the edge modes is expected
to flatten when adding a soft confinement, like a harmonic trap, and auxiliary states
appear in the gaps which nevertheless do not change the topological invariants. However,
when using a harmonic confinement, the effective edge region is extended in real space
and it becomes more difficult to distinguish the bulk from the edge states. One possibility
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is to define the edge as the point in real space where no states have energetic overlap with
the eigenstates in the center of the trap. Replacing the harmonic trapping potential with
a steeper confinement leads to a better separation of the bulk and edge states, already
in the case of a quartic potential [141]. The possible realization of a sharp edge in the
experiment will be discussed in chapter 7.
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Chapter 4

Overview of the experimental setup
and techniques

In this chapter, the experimental setup and techniques are described that have been used
for the measurements presented in this work. The first section provides an overview of
the creation and detection of an ultracold atomic gas [4.1.1, 4.1.2], the optical lattice
setup [4.1.3 and 4.1.5] and the optical dipole trap [4.1.4]. The experimental methods
needed for the characterization of the different Floquet systems are illustrated in the sec-
ond section, starting with the change of the quasimomentum by lattice acceleration [4.2.1].
This is used to measure the band gaps in the static or modulated lattice employing Stück-
elberg interferometry [4.2.2]. Moreover, it enables the determination of the atomic cloud’s
extent in quasimomentum space [4.2.3] and the application of an effective force to probe
the Berry curvature distribution by Hall deflection measurements [4.2.4].

4.1 Experimental setup

All measurements reported in this work have been performed with a Bose-Einstein con-
densate (BEC) of 39K. The preparation of the BEC and technical details of the setup
are described in great detail in other works [73,75,142,143], hence only a short overview
of the most relevant experimental steps is given in the first section. To detect either the
real space position or momentum of the atomic cloud, absorption imaging is employed
insitu or after a time-of-flight (TOF), as described in the second part. Subsequently,
the loading of the atoms into the optical honeycomb lattice and its characterization
using TOF measurements is presented as well as the determination of the harmonic
trapping frequencies in the combined potential generated by the optical dipole trap and
the honeycomb lattice. In addition to the two-dimensional (2D) honeycomb lattice in
the x-y-plane, there is also a one-dimensional (1D) lattice along the z-direction, which
is not used in the measurements presented here, but can be an important tool for future
experiments, as discussed in chapters 7 and 9. The optical setup and characterization of
the vertical lattice is described in Sec. 4.1.5, as well as first attempts to load the atoms
into a three-dimensional (3D) lattice configuration.
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4.1.1 Creation of the BEC

The experimental setup allows for the creation of either a 39K- or 87Rb-BEC. The mea-
surements reported here have been performed with 39K, since it exhibits an experimentally
accessible Feshbach resonance, which allows for tuning of the inter-particle interactions, as
described further below. Nevertheless, to prepare the 39K BEC, atoms of both species are
employed to enable sympathetic cooling of 39K with 87Rb, thereby reducing the amount
of 39K atoms that is lost during the cooling process.

Figure 4.1: Hyperfine levels of the D2-lines of 87Rb and 39K. The optical tran-
sitions used in the experiment are sketched with black arrows. The reference transi-
tion (blue arrow) is used for locking the other lasers to this line. The data are taken
from [144,145].

The sequence starts with precooling of 39K and 87Rb in a double-species 2D+ magneto-
optical trap (MOT), where the atoms are optically cooled by counter-propagating laser
beams and magnetically trapped along the transverse directions [146]. Another beam
traveling along the longitudinal direction provides further axial cooling [147]. Subse-
quently, the atoms are pushed by an additional beam [148] into the next chamber, which is
connected by a differential pumping section to maintain a lower pressure of ∼ 10−10 mBar.
Here, a 3D MOT [149,150] is imposed on the atoms, which is loaded for ∼ 3 s in the case
of 87Rb and during the last ∼ 0.4 s for 39K. The level structure of Potassium and Rubid-
ium with the corresponding transitions used for cooling and imaging is shown in Fig. 4.1.
After the 3D MOT phase the cloud is compressed [151] by increasing the magnetic field
gradients and detuning the laser frequencies to prepare it for subsequent further cooling
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by optical molasses [149,150,152], where the magnetic fields are switched off.

The next cooling steps are performed in the science chamber which is separated from
the 3D MOT by another differential pumping section. The atoms are transported there by
magnetic transport [153]: A series of overlapping coils is subsequently switched on in the
Anti-Helmholtz-configuration to produce an adiabatically moving quadrupole potential,
trapping the atoms and pulling them into the next chamber. To trap the atoms in the
quadrupole fields, both species are transferred to the low field seeking state |F = 2,mF =
2〉 by a resonant light pulse. After recapturing the atoms in the quadrupole field of the 3D
MOT coils, the transport is started. Due to the small diameter of the differential pumping
section connecting the MOT and science chamber, a low pressure of ∼ 6 · 10−12 mBar is
achieved in the latter. On the other hand, this reduces the transport efficiency, since
about 80% of the 87Rb and 90% of the 39K atoms are lost when entering the differential
pumping section.

In the science chamber, evaporative cooling is performed first in a magnetic quadru-
pole trap and afterwards in an optical dipole trap. To avoid Majorana spin-flips in the
center of the magnetic trap, where B = 0, a tightly-focused, blue detuned plug beam is
sent in laterally, repelling the atoms from that region [154, 155]. In this magnetic trap,
87Rb is cooled by forced microwave evaporation [156]: A microwave field is applied for
a duration of ∼ 10 s, selectively transferring hot atoms from |F = 2,mF = 2〉 to the
antitrapped state |F = 1,mF = 1〉, and thus removing them from the trap. The energy
levels are shifted by the Zeeman-effect depending on the position of the atoms in the
magnetic field. Hence, the frequency of the microwave is swept to continuously match
the resonance of the hot atoms, which are first located in the outer regions of the trapping
potential and then approach the center of the trap during the evaporation. The microwave
field is only acting on 87Rb, which sympathetically cools 39K [157], necessitating the rather
long evaporation ramp due to the small inter-species scattering length of ∼ 36 a0 [158].

To reach temperatures below the µK-regime, the evaporation continues in an optical
dipole trap [129], formed by superimposing two laser beams with λ = 1064 nm propagat-
ing at angles of 90◦ along the directions denoted by X and Y , as depicted in Fig. 4.2a.
The polarizations of the beams are perpendicular and they are additionally shifted in fre-
quency relative to each other by 200 MHz, thus preventing cross interference. The atoms
are trapped in the intensity maximum due to the AC-Stark-effect (see 3.1), whereas the
total potential is additionally bent along the vertical direction by gravitation. While
the quadrupole field is ramped down, the intensity of the dipole trap beams is simul-
taneously increased to its maximal value, which is held for 1 s. During the last 70 ms
of the quadrupole ramp-down, a small bias-field along the vertical direction is switched
on to keep the atoms spin-polarized. To avoid possible spin-changing collisions in the
subsequent evaporation, 87Rb and 39K are then both transferred to their ground state
|F = 1,mF = 1〉 by microwave and radio-frequency sweeps, respectively. An additional
laser pulse resonant with the F = 2 → F ′ = 3 transition removes remaining atoms in
|F = 2,mF = 2〉.

After switching off the quadrupole field, the current in the coils is ramped up again,
now in the Helmholtz-configuration, realizing a homogeneous magnetic field directed
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along the vertical axis which is used to tune the scattering lengths during the evaporation
via Feshbach resonances (see below). In a first evaporation ramp, the intensity of the
dipole trap beams is reduced exponentially within 6 s, and the inter-species scattering
length is increased to ∼ 90 a0, utilizing the Feshbach resonance between 87Rb and 39K
at 317.9(5) G [158], to enhance the sympathetic cooling of 39K [157,159]. Since the mass
of a Rubidium atom is about two times larger than the mass of a Potassium atom, it
experiences a weaker total trapping potential and at the end of this first part, nearly all
87Rb-atoms are evaporated from the trap. Then, the evaporation continues for another
5 s with Potassium alone, increasing the K-K scattering length to ∼ 150 a0 by exploiting
the Feshbach resonance in the |F = 1,mF = 1〉 state at 403.3(7) G [160]. At the end, the
atoms are held in the low potential for about 1 s to create the BEC.

Figure 4.2: Sketch of the optical setup and Feshbach resonances. a. Sketch of the
science chamber with the optical dipole trap beams (red) and the lattice beams (blue),
denoted by Ij. The atoms enter the chamber from the top and the BEC is located at the
intersection point of the beams. b. Calculated scattering lengths between 39K-39K (blue
lines) and 87Rb-39K (green lines) depending on the magnetic field strength according to
Eq. 4.1. The parameters are: B0 = 403.3(7) G, ∆B = 52 G and abg = −29 a0 [160] for
39K-39K and B0 = 317.9(5) G, ∆B = 7.6 G and abg = 34 a0 [158] for 87Rb-39K.

Feshbach resonances An important tool in experiments with ultracold gases are Fesh-
bach resonances, which allow for the tuning of the s-wave scattering length as using
magnetic or optical fields [161, 162]. The resonances between 87Rb-39K and 39K-39K
are both induced by magnetic fields. The mechanism of a Feshbach resonance can be
understood by considering the scattering process of two atoms with initial total energy
E, being the sum of the internal energies of both atoms as well as their relative kinetic
energy. In general, for cold bosonic atoms, it is sufficient to consider elastic s-wave
scattering [161]. After the collision process, the system can either be in a scattering state
or a molecular bound state. If the total energy of the final state is smaller than E, it is
called an open channel, and if it is larger than E, the state is called a closed channel.
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In the presence of a magnetic field, the internal states of the atoms are described by the
projection of their angular momentum to the field axis. If the spin states of the individual
atoms are different after the collision, while maintaining their total angular momentum
projection, they generally possess a different magnetic moment compared to the initial
state. Hence, by changing the magnetic field, the energy levels of the final and initial state
can be shifted relative to each other. When the molecular bound state of a closed channel
is shifted in energy such that it equals the initial energy of the two scattering atoms, the
two channels strongly mix leading to a large increase in the scattering length [163, 164].
The resulting s-wave scattering length for a magnetic Feshbach resonance can be described
as follows [161,165]:

as(B) = abg

(
1− ∆B

B −B0

)
, (4.1)

where abg denotes the background scattering length in the absence of the magnetic field,
∆B the width of the resonance andB0 its position. In Fig. 4.2b, the corresponding curve is
shown for the two Feshbach resonances between 87Rb-39K and 39K-39K. Both resonances
are located at rather high magnetic fields where in principle F and mF are not good
quantum numbers any more, since the electron and nuclear spin decouple and the system
should be described in terms of J and I (Paschen-Back-regime [144]). Nevertheless, in
the context of Feshbach resonances, the participating states are usually named after the
zero-field eigenstates which they are connected to [161]. In the case of 39K, the ground
state in the presence of the Feshbach field is |mJ = −1/2,mI = +3/2〉, which is connected
to |F = 1,mF = 1〉 at B = 0.

4.1.2 Imaging techniques

To obtain information about the BEC, absorption images [166] are taken either while the
cloud is held in the lattice and the harmonic trap, or after releasing it from all potentials
during TOF. For this purpose, a resonant light pulse is sent through the cloud along the
vertical direction and is detected on a charge-coupled device (CCD) chip. When imaging
in TOF, the dipole trapping potential and the lattice are switched off, and subsequently
the Feshbach field is ramped down within 1 ms while the atoms fall. Depending on the
purpose of the experiment, the TOF is varied between 3.5 ms and 15 ms. The imaging
light is resonant with the F = 2 → F ′ = 3 transition (see Fig. 4.1), so the atoms are
transferred to the |F = 2〉 state by a repumper beam just before the imaging. In most
measurements reported here, the atoms are imaged in the x-y-plane, but it is also possible
to take images along the propagation directions of the dipole trap, lattice and plug beams,
mainly for alignment purposes.

The intensity of the light is reduced after traveling through the atomic cloud with
density n, according to the Beer-Lambert law [167]:

I(x, y) = I0 e−σ0

∫
n(x,y,z) dz = I0 e−σ0 ncol(x,y), (4.2)
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where σ0 is the resonant scattering cross section for a two-level atom and ncol(x, y) denotes
the column density. To determine the column density in the experiment, three images are
taken: The first one contains the shadow cast by the atoms, the second image is taken
with the same imaging pulse but without the atoms, and for the third image the light is
switched off to determine the background of the CCD. The initial intensity distribution
without the atoms, Ii(x, y), is obtained by subtracting the dark image from the second
image. For the final distribution If (x, y) after passing the atoms, the dark image is
subtracted from the first image. Then, by employing these two difference images, the
column density is obtained as:

ncol(x, y) = − 1

σ0

ln

(
If (x, y)

Ii(x, y)

)
. (4.3)

Using TOF imaging, the quasimomentum of the cloud in the lattice can be measured, as
described in the next section. To obtain the real-space distribution of the atoms, insitu
images are taken with the harmonic trap, lattice and Feshbach field being on - hence, the
atoms are now imaged in the presence of a high magnetic field, shifting the resonance
frequency. As mentioned in the last section, magnetic field strengths of around 400 G
are used here, so the eigenstates of the atoms are described by their quantum numbers
J and I with |mJ = −1/2,mI = +3/2〉 being the ground state. The imaging light has
σ−-polarization and as it does not change the nuclear spin, the only excited state that
can be addressed is |m′J = −3/2,m′I = +3/2〉, forming a cyclic transition, since radiative
decay into |mJ = +1/2,mI = +3/2〉 is dipole-forbidden. Due to the scattering of the
imaging light, the atoms acquire a recoil velocity which leads to an increase in the cloud
size if many photons are scattered [149]. To reliably determine the size and shape of the
cloud insitu, the duration of the imaging pulse is reduced to 2µs, compared to 40µs used
for the TOF images. This necessitates an increase of the light intensity far above the
saturation intensity Isat, to obtain useful images on the CCD, taking into account the
relatively large magnification of ∼ 16 of the imaging system. In principle, the expression
for the column density in Eq. 4.3 is now modified according to [168]:

ncol(x, y) = −α ln

(
If (x, y)

Ii(x, y)

)
+
Ii(x, y)− If (x, y)

Isat

, (4.4)

where the parameter α is a generalization of the resonant cross section σ0 for a two-level
atom, taking into account imperfections of the imaging beam as well as the level-structure
of the ground and excited states. To obtain the full column density, α would need to be
calibrated experimentally [168]. However, in the measurements reported here, the insitu
images are only used to determine either the width or the center-of-mass position of the
cloud, whereas the actual density distribution is not relevant and moreover, the actual
absorption due to the atoms is small in case of the insitu imaging. Hence, the second
term can be neglected in the imaging processing, since it does not modify the resulting
position or width of the cloud.
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4.1.3 Honeycomb lattice setup

As described in chapter 3 and also shown in Fig. 4.2a, the optical honeycomb lattice
is created by interfering three laser beams in the x-y-plane with λL = 736 nm. Since
the lattice wavelength is blue detuned to the atomic resonances, it generates a repulsive
potential and the X-Y -dipole trap needs to be switched on in order to hold the atoms
against gravity. The focus of both trap beams is elliptical with wxy ∼ 10 ·wz, creating a
relatively flat BEC, which could facilitate the loading of the atoms into a single plane of
a vertical lattice, that is described in more detail in Sec. 4.1.5. The lattice beam foci have
a similar extent in the x-y-plane, but the waist along the vertical direction is only smaller
by a factor of ∼ 3. Thus, the confinement in the vertical direction is determined by the
X-Y -dipole trap beams, whereas in the x-y-plane it can be adjusted by a third dipole
beam, traveling along the z-direction. Since this beam is not involved in the creation
of the BEC, a lower power of ∼ 800 mW is sufficient, compared to a maximum value of
∼ 8− 9 W in each of the trapping beams. In the experiments characterizing the different
Floquet topological systems, the X-Y -trap is increased again after the evaporation, to
compensate for the anticonfinement of the lattice. After that, the z-dipole beam is ramped
up close to its maximum value and subsequently the lattice is ramped up exponentially
within 200 ms to adiabatically load the BEC from its ground state in the harmonic trap
into the lowest band of the lattice at q = Γ.

Lattice alignment and balancing To align the lattice beams onto the BEC, the
atoms can be imaged along each of the beam directions by combining resonant light with
the lattice light on a beam-splitter. Owing to the larger atom number, the quality of the
insitu images is better for 87Rb than for 39K, especially when imaging along the lattice
directions, where the resolution is much lower than in the x-y-plane. In order to align the
lattice, the 87Rb-BEC is imaged insitu along each direction and afterwards the beams are
moved to the corresponding position on the camera using motorized mirrors. Since the
lattice light has a different wavelength than the imaging light and the imaging system
is optimized for the latter, the position and size of the lattice beam foci will in general
not be imaged correctly due to optical aberrations. Nevertheless, since the waist of the
lattice beams is rather large compared to the extent of the BEC, this technique provides
sufficiently good alignment. The position of the dipole trap minimum is slightly shifted
when changing the trap depth, probably due to a small tilt of the focus of one beam.
Hence, to maximize its depth, the lattice has to be aligned to the trap position which is
used in the experiments. When creating a 87Rb-BEC, the final value of the dipole trap
has to be higher than for 39K to compensate for the larger gravitational sag. The insitu
images of the 87Rb-BEC are taken with the z-dipole trap at maximum and the X-Y -trap
being set to its final value, which is two times larger than the evaporation value of 39K,
and roughly coincides with the evaporation value of 87Rb.

Due to drifts of the optical components over time, the alignment of the lattice slightly
changes on a daily basis, leading to unequal intensities at the position of the atoms.
This effect could be reduced by increasing the focus sizes, reducing however the maximal
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Figure 4.3: Diffraction peaks and bandmapping in the honeycomb lattice. a.
Diffraction peaks of 39K at a0 = 6 a0 after abruptly switching off the honeycomb lattice
with V0 = 6Er and tTOF = 3.5 ms. The white dashed lines illustrate the axes correspond-
ing to the overlap between adjacent beams as denoted by the numbers, used for balancing
of the lattice. b. Sketch of the first four Brillouin zones (BZs) of the honeycomb lattice
(numbers), and the unfolding of the second BZ during bandmapping. c. Absorption
image of 39K at a0 = 6 a0 with tTOF = 3.5 ms after performing bandmapping at q = Γ in
the honeycomb lattice, exhibiting populations in several bands.

lattice depth available, which is already quite small with 7Er, limited by the maximal
output power of the Ti:sapphire (TiSa) laser. Instead, the imbalance is compensated by
slightly modifying the relative intensities of the lattice beams. To measure the imbalance
effect, the atoms are loaded into the lattice with nearly maximal depth and are then
released by abruptly switching off the lattice and the dipole trap beams. The resulting
density distribution after free expansion reflects the quasimomentum of the atoms in the
lattice [169]. For a cloud exhibiting perfect phase coherence and hence being represented
by a δ-function at q = Γ in reciprocal space, the pattern would consist of sharp peaks
with a spacing corresponding to the width of the first BZ. In the experiment, the BEC
is extended around q = Γ, leading to a slight broadening of the peaks, as visible in the
absorption image shown in Fig. 4.3a. If the lattice beams have unequal intensities at the
position of the BEC, the visibility of the diffraction peaks is reduced along the directions
of lower intensity. As denoted in Fig. 4.3a, the axes of the first order peaks can be assigned
to the overlap of the two beams propagating along the adjacent directions. The relative
intensity of each beam is obtained by summing up all pixels of the corresponding four
first order diffraction peaks it contributes to and dividing the result by the total sum.
Due to vibrations of the components and air flow on the table, the relative intensities
also vary from shot to shot, so the relative weights are averaged over ∼ 5 − 10 images
and then the intensities of the beams are adapted accordingly.

Bandmapping By switching off the lattice abruptly and imaging the cloud after free
expansion, information about the quasimomentum of the atoms in the lattice can be
obtained, but not about their energy. To quantify the amount of atoms being in a certain
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energy band, the lattice potential is ramped down to perform bandmapping [170]. This
corresponds to an unfolding of the periodic BZs, converting the energy bands back to the
dispersion of a free particle. In this way, higher bands are mapped to larger momenta and
atoms occupying different energy levels can be separated from each other by expansion.
The first four BZs of the honeycomb lattice and their folding is illustrated in Fig. 4.3b.
The points corresponding to q = Γ in the second to sixth band are mapped to the same
position, coinciding with the location of the first order diffraction peaks. In Fig. 4.3c
an absorption image after bandmapping is shown, exhibiting atoms in the lowest band
around q = Γ, represented by the center peak, and atoms in the second to sixth band,
distributed over the outer peaks. In the experiments, bandmapping is mostly performed
at q = Γ. Hence, it can not be directly inferred from the images in which of the bands
2-6 the atoms have been. But usually, only the relative population of the first two bands
is of interest and it can be deduced from the relevant energy scales that excitations to
the p-bands are negligible.

4.1.4 Dipole trapping frequencies

Close to the center of the dipole trap, the generated potential can be approximated
by a harmonic function. In the deflection measurements explained in Sec. 4.2.4, the
atomic cloud is displaced in real space which leads to a restoring force of the harmonic
trap, changing the position and quasimomentum of atoms. Hence, to correctly solve the
equations of motion, the trapping frequencies need to be determined for the configuration
used in the experiments, i.e. in the presence of the honeycomb lattice with V0 = 6Er and
the z-dipole beam. The dipole trapping frequencies are measured by exciting a breathing
mode of the BEC, which can be observed insitu as oscillations of the width of the cloud.
For an oblate cloud, the trapping frequency f can be obtained from the frequency f̃ of
the breathing oscillation according to [171]:

f =

√
3

10
f̃ . (4.5)

The atoms are first loaded into the honeycomb lattice and dipole traps as described above,
then the intensity of the z-dipole beam is lowered to 0 within 10µs, held there for 3 ms
and ramped up again in 10µs. Due to the fast change of the confinement, a breathing
oscillation is generated. The BEC is imaged insitu after a variable hold time and the
width of the cloud is extracted by fitting a 2D Gaussian function to the absorption images.
Hereby, the principle axes are oriented perpendicular to the propagation directions of the
two trap beams, capturing the width of the Gaussian along the axis of the corresponding
focus. From the fits, the Gaussian widths σX and σY are extracted and plotted as a
function of the hold time, as shown in Fig. 4.4. To obtain the oscillation frequencies, a
damped cosine function is fitted to the oscillation:

σ(t) = Ae−t/τcos(2πf̃t+ φ) + σ0. (4.6)
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Figure 4.4: Breathing mode in the dipole trap. The oscillation of the insitu width
(data points) along the directions of the dipole beam foci, denoted by σX and σY , is
measured after a fast ramp-down and -up of the in-plane confinement. The oscillation
frequency f̃ is extracted by fitting a damped cosine (solid lines) and the trapping fre-
quency can be obtained from Eq. 4.5. Each data point is an average over 2-3 individual
images and the errorbars denote the standard error. The measurement is performed with
39K at a0 = 6 a0 in the presence of the honeycomb lattice at V0 = 6Er, and the dipole
beams are set to their corresponding values used in the experiments.

From the frequencies of the breathing modes, the trapping frequencies are obtained as

fX = 27.9(7) Hz fY = 26.8(4) Hz, (4.7)

which are rather similar along both directions. Hence, in the calculations of the transverse
deflections, the weighted arithmetic mean of

fT =
fX/σ

2
fX

+ fY /σ
2
fY

1/σ2
fX

+ 1/σ2
fY

= 27.0 Hz, σfT =

√
1

1/σ2
fX

+ 1/σ2
fY

= 0.4 Hz (4.8)

is used.

4.1.5 Vertical lattice

In the experiments with the honeycomb lattice, the confinement along the vertical di-
rection is mainly determined by the focus size of the optical dipole trap beams traveling
along the X- and Y -directions, as described above. Hence, the system is not truly 2D,
but each lattice site is effectively extended along the z-direction (’tubes’). This does not
affect the topological properties of the Floquet systems studied in this work, as they are
defined for 2D systems. Nevertheless, as discussed in chapter 7, increasing the vertical
confinement by adding another lattice will be necessary to study strongly-interacting sys-
tems where the onsite-interaction energy is comparable to or larger than the tunneling.
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Moreover, restricting the degrees of freedom in the transverse direction could help to re-
duce scattering processes and extend the lifetime of ultracold bosonic gases in modulated
optical lattices (see chapter 9).

Figure 4.5: Vertical lattice setup and characterization measurements. a. Sketch
of the setup used to create the vertical optical lattice. The lattice beam (blue line) is split
into two parts with equal intensity with a relative distance of d, that interfere under an
angle α. Moving the beam on the first polarizing beam splitter (PBS) changes the distance
and results in a different lattice spacing (dashed blue line). The z-dipole beam defining the
confinement in the x-y-plane is depicted as the red line. b. Diffraction peaks of 39K with
as = 50 a0 imaged from the side after tTOF = 15 ms, used to determine the lattice spacing.
The colorbar indicates the pixel sum. c. Calibration of the vertical lattice via parametric
heating (see text). The relative pixel sum (data points) is measured as a function of the
modulation frequency with a relative modulation amplitude of ∼ 1% and as = 50 a0. The
solid line indicates a Gaussian fit resulting in a resonance frequency of f0 = 25.58(2) kHz
which corresponds to VZ = 360ErZ . The pixel sum is obtained from absorption images
taken in the x-y-plane after ramping down the lattice and tTOF = 15 ms. Each point is
an average over 4 individual images and the errorbars denote the standard error.

Setup To realize a 1D lattice along the vertical direction, two blue-detuned laser beams
with λL = 740 nm enter the chamber from the side with a distance d and interfere under
an angle α, as depicted in Fig. 4.5a. This creates interference fringes along the z-direction
with a lattice spacing of

aZ =
λL

2 sin(α)
. (4.9)

Compared to sending in two counter-propagating beams from above and below, this
arrangement has the advantage, that the spacing of the lattice can be varied by changing
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the distance between the beams, which is why it is often called ’accordion lattice’ [172,
173]. The two beams are created out of a single one by splitting it at a polarizing beam
splitter (PBS). To achieve equal intensities, a half-wave-plate is put before the first cube
rotating the incoming linear polarization to 45◦. The light being transmitted through the
first PBS is then again transmitted at the second PBS, passes a quarter-wave-plate and
is back-reflected at the top. The quarter-wave-plate is rotated such that after the second
transit the polarization of the light propagating downwards is rotated by 90◦, so that it is
now reflected at the second PBS. The top mirror is mounted on a piezo, to enable active
stabilization of the relative phase of the two beams, which was however not used so far.

Behind the cubes, the two beams are propagating parallel to each other, and are then
focused onto the atoms by an aspheric lens with a focal length of f = 10 cm placed at
a distance of ∼ 9.34 cm to the atoms. After passing through the chamber the light is
collected again by a similar lens and imaged onto a camera (not shown in Fig. 4.5a). To
properly align the lattice beams to the position of the BEC, a part of the imaging light for
39K and 87Rb is sent through the same fiber as the lattice light. Then, the position of the
BEC is imaged on the camera behind the lattice for each of the two beams separately and
afterwards the corresponding beam is moved to this position, similar to the alignment of
the honeycomb lattice.

To vary the lattice spacing, the entering beam can be moved on the first cube by a
motorized mirror, which shifts the two beams relative to each other, as indicated by the
dashed, blue line in Fig. 4.5a. This setup offers the possibility of changing the lattice
spacing dynamically during the experiment to load the atoms into a single plane of the
vertical lattice, realizing a true 2D system. In this case, the sequence would start with
a large lattice spacing to fit the BEC into a single lattice site, and then the spacing is
reduced adiabatically to compress the cloud into a plane, which was realized in [172]. As
pointed out there, the compression needs to be performed carefully not to heat up the
cloud.

In the setup presented here, it is technically possible to change the lattice spacing
dynamically, but keeping the proper alignment of the beams during the compression is
rather challenging. The vertical lattice has been added after the honeycomb lattice and
dipole setup, so the available space on the experimental table is rather limited. This
demands for a very compact setup as shown in Fig. 4.5a, which in turn offers less control,
for example it is not possible to place additional mirrors behind the cubes to modify the
paths of the two beams independently. Since it is not necessary to load a single plane
to study the effects mentioned above, the spacing of the lattice is kept fixed close to its
minimal value, corresponding to the maximal distance between the beams.

Characterization of the vertical lattice To determine the lattice spacing, the lat-
tice is pulsed on within 1 ms and the dipole trap is switched off simultaneously, leading to
diffraction of the BEC, similar as described above for the honeycomb lattice. The inter-
ference pattern is recorded by absorption imaging after TOF. The momentum imparted
on the atoms in the jth maximum is pj = 2π~

aZ
j. Hence, by measuring the distance ∆s
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between the maxima, the lattice spacing can be obtained as

aZ =
2π~

∆smK

tTOF. (4.10)

An example of such interference peaks is shown in Fig. 4.5b, measured at tTOF = 15 ms,
which yields a lattice spacing of aZ = 1.91µm. The large lattice spacing results in a much
smaller recoil energy compared to the honeycomb lattice of ErZ ≈ 371.6 Hz · h ≈ 0.04Er
for Potassium and accordingly higher lattice depths. When the atoms are loaded into
the vertical lattice, the X-Y -trap can be lowered or even switched off, since gravity is
compensated by the lattice, and only the confinement in the x-y-plane provided by the
z-dipole beam is needed.

The lattice depth is calibrated via parametric heating [174,175]: By weak modulation
of the lattice intensity the atoms can be excited to a higher band if the frequency of the
modulation matches the corresponding energy gap. Here, the modulation is treated as a
time-dependent perturbation to the static lattice potential, allowing for transitions from
the first band to higher bands with the same parity, i.e. the 3rd, 5th, 7th, band, etc.
The width of the resonance is determined by the bandwidth of the participating bands,
which makes this technique suitable for deep lattices where the bands are more flat. The
amplitude of the modulation should not be too large in order to stay in the perturbative
regime and to avoid deformation of the bands. In the experiment, the transition from the
first to the third band is measured as atom loss, since the energy of the excited atoms is
high enough to leave the trap.

The atoms are loaded into the lowest band of the vertical lattice by ramping up the
laser intensity exponentially within 100 ms while all dipole beams are kept at constant
values. Then, the lattice intensity is modulated with a relative amplitude of ∼ 1% for
100 ms and subsequently the atoms are held in the static lattice for another 50 ms before
the lattice is ramped down linearly within 100 ms. Afterwards, the harmonic trapping
potentials are switched off and the cloud is imaged after tTOF = 15 ms in the x-y-plane.
The number of atoms remaining in the trap is measured as a function of the modulation
frequency, by summing up the pixel counts in a region-of-interest (ROI) containing the
BEC. To obtain the resonance position, an inverted Gaussian is fitted to the pixel sum
normalized by the counts far away from the resonance, Σrel, as shown in Fig. 4.5c. By
comparing the measured resonance frequency to band structure calculations, the lattice
depth is determined.

Combination with the honeycomb lattice To load the BEC into the 3D lattice,
the respective intensities are ramped up after another, combined with ramping of the
dipole trapping potential, in order to minimize heating effects due to fast compression
of the cloud, which is illustrated in Fig. 4.6a. First, the z-dipole intensity is increased
up to its final value followed by ramping up the vertical lattice while reducing the X-
Y -trap potential to 0. The cloud is held in this configuration for ∼ 100 ms to allow
for redistribution in the planes of the vertical lattice. Then, the honeycomb lattice is
ramped up exponentially within 100 ms together with the X-Y -dipole beams, which are
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either increased back to their initial magnitude (red curve), which is the final value of
the evaporation, or to a lower value (dashed, green line) resulting in a lower overall
confinement. The z-dipole trap is usually held at an intermediate value being about two
times smaller than in the experiments with the honeycomb lattice alone. The honeycomb
lattice is then calibrated, as described in the next section, in the presence of the vertical
lattice. While the depth of the honeycomb lattice is slightly modified by the vertical
lattice, the depth of the deep, vertical lattice, obtained from parametric heating, remains
practically unchanged. Hence, the values derived from the calibration presented above
can be used.

In general, the lifetimes of the 39K- and 87Rb-BEC in the 3D lattice are strongly
reduced compared to loading the atoms only into the honeycomb or the vertical lattice.
The loading scheme presented above has been optimized regarding the durations and
shapes of the ramps as well as the depth of the confining dipole potentials, all of which
has had only minor effects on the lifetimes. Similar results are obtained, for example,
when ramping up the honeycomb and the vertical lattice simultaneously or keeping the
dipole trap at a fixed value. In Fig. 4.6b, two measurements of the lifetime of the 39K-
BEC are shown, performed at two different final values of the X-Y -dipole ramp (red and
green data points, corresponding to the red and green curves for Vdxy in Fig. 4.6a), with
lattice depths VZ = 120ErZ and Vhex = 4Er.

Both lattices are ramped up as described in Fig. 4.6a, then the atoms are held in the
3D lattice for a time t, and afterwards all potentials are switched off suddenly, resulting in
interference peaks of the BEC, which are recorded in the x-y-plane after a TOF of 7 ms.
For the green data points, denoted by ’shallow trap’, the overall confinement is reduced
compared to the red data points, resulting in lower densities of the cloud. The decay of
the pixel sum in the central peak, representing the atom number in the BEC, is rather
comparable in both cases, and accordingly the lifetimes obtained from an exponential
fit are very similar. In principle, the density of the cloud is increased in the 3D lattice
compared to loading into the honeycomb or vertical lattice alone, but not as much as to
cause heating effects due to three-body losses. This can be directly seen from the fact
that changing the confinement (as in Fig. 4.6b) or the atom number in the BEC (by
reducing the duration of the 3D MOT by a factor of 2) does not influence the lifetimes
much. Moreover, if three-body-losses were present, the decay of the atom number should
be fast in the beginning and then slow down, since the density is reduced by the atom
losses, exhibiting a kink. However, the observed decay is rather purely exponential, as in
Fig. 4.6b, or even linear. Increasing the scattering length has also reduced the lifetimes
even more, although the density of the cloud is decreased in this case.

To further examine the cause of the reduced lifetime, the number of remaining atoms
is measured as a function of the two lattice depths, when holding in the 3D lattice for
a fixed time of 50 ms, which is shown in Fig. 4.7a. The ramp-up and detection are the
same as in the lifetime measurements in Fig. 4.6b, whereas now the mean pixel sum is
normalized to the maximum value, which occurs at Vhex = 0.5Er and VZ = 120ErZ . In
the left panel, the depth of the vertical lattice is scanned while Vhex = 4Er. Increasing
the depth of the vertical lattice first results in a slight reduction of the atom number, but
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Figure 4.6: Loading scheme and lifetimes in the 3D lattice. a. Sketch of the
sequence for ramping up the vertical lattice VZ and the honeycomb lattice Vhex, combined
with changes in the X-Y -dipole trap VdXY to allow for redistribution of the atoms after
loading into the vertical lattice. The final confinement is varied by changing VdXY. b.
Lifetimes measured in the 3D lattice with VZ = 120ErZ and Vhex = 4Er for 39K at
as = 80 a0. All potentials are switched off suddenly, and the cloud is imaged in the
x-y-plane after tTOF = 7 ms. Each data point represents the pixel sum in the central
peak averaged over 3 individual images, normalized to the value at t = 0, the errorbars
denote the standard error. For the green data points, VdXY is reduced by a factor of two
compared to the red data points, where the evaporation value was used. The lines denote
an exponential deay fit to extract the lifetimes.

then it remains more or less constant for VZ & 200ErZ . In contrast, the atom number
decreases almost linearly with the honeycomb depth, as shown in the right panel, which
means that the reduction of the lifetime is more likely connected to the honeycomb and
not the vertical lattice. This is confirmed by monitoring the cloud insitu while being held
in the 3D lattice, which is performed with 87Rb to obtain a larger signal. In Fig. 4.7b,
absorption images of the 87Rb-BEC are shown for increasing hold times, either in both
lattices (first row), only the honeycomb lattice (second row) or only in the vertical lattice
(last row), again with VZ = 120ErZ and Vhex = 4Er. Holding in the 3D lattice results in
heating of the cloud, which is only slightly reduced when just the honeycomb lattice is
switched on. However, the atoms remain much colder even after 2 s hold time, when they
are loaded only into the vertical lattice. From this it can be concluded that the main
reason for the reduced lifetimes in the 3D must be connected to the honeycomb lattice.
Moreover, the insitu images show that the atoms are primarily heated in the trap rather
than directly lost from it.

Due to the different setup geometry and lattice spacings, a much higher laser power
(∼ 700 mW per beam) is necessary to reach the depth of 4Er in the honeycomb lattice
than for VZ = 120ErZ in the vertical lattice (∼ 20 mW per beam). Hence, the pho-
ton scattering rate from the honeycomb lattice is larger and detrimental effects due to
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Figure 4.7: Probing the effect of the honeycomb and vertical lattice separately.
a. Mean relative pixel sum in the central diffraction peak after holding the 39K-BEC at
as = 80 a0 in the 3D lattice for 50 ms as a function of the individual lattice depths. Each
point is an average over 3 individual images, being normalized to the maximum sum
occurring at Vhex = 0.5Er and VZ = 120ErZ , the errorbars denote the standard error.
The images are taken after suddenly switching off all potentials and tTOF = 7 ms, the
dipole trapping potentials and the loading scheme are similar to the lifetime measurements
in Fig. 4.6. Left panel: Scan of the vertical lattice depth at Vhex = 4Er, showing only
small changes of the atoms number. Right panel: Increasing the honeycomb lattice depth
for VZ = 120ErZ strongly reduces the relative counts. b. Insitu absorption images of the
87Rb-BEC taken in the x-y-plane when being held in both lattices, only the honeycomb
lattice, or only in the vertical lattice, (first to last row) with VZ = 120ErZ and Vhex = 4Er.
The hold time in the lattice is increased from left to right and denoted by the numbers
below the last row. Heating of the BEC in the trap is observed, mainly when being loaded
into the honeycomb lattice.

amplitude- or phase-noise of the laser beams are more pronounced. The intensity of all
laser beams is actively stabilized by monitoring a small portion of the light exiting the
optical fiber on the experimental table and comparing it to a reference value. The inten-
sity spectrum of all lattice beams has been measured by Fourier transforming the signal
of the control photodiodes resulting in a single peak at f ≈ 60 kHz, being present for
the honeycomb and vertical lattice beams. Since this peak is also observed in the light
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directly after the output of the TiSa-lasers, it must originate from there. However, the
observed heating of the cloud in the trap can not be caused by this amplitude-noise, since
the frequency of 60 kHz is too large: After absorbing a single energy quantum the atoms
would directly be lost from the trap. The heating must originate from some source ex-
hibiting frequencies in the lower kHz-regime, in order to heat up the BEC while keeping it
trapped. Hence, the most probable reason for the heating in the 3D lattice is phase-noise
from the honeycomb lattice beams. So far, the frequency of two beams can be shifted
using acousto-optic modulators (AOMs), but the relative phases of the three beams are
not stabilized. There are definitely drifts of the relative phase present due to the fibers,
the different path lengths on the optical table, vibrations of the components, possible
drifts of the optical breadboards and a constant air flow on the table from the top, due
to the temperature stabilization.

When measuring the lifetime in the honeycomb lattice alone, the relative phase drifts
of the lattice beams are negligible and the lifetimes are sufficient to perform the experi-
ments described in this work, even when additionally modulating the intensity or phase
to realize topological systems. However, to be able to use the 3D lattice configuration
for future experiments, the implementation of an active phase stabilization for the hon-
eycomb lattice is planned. In the intended setup, each lattice beam will be synthesized
out of a right- and left-circular polarized part, of which the relative phase and intensity
are actively stabilized [176, 177]. Referencing these for all three lattice beams will allow
for precise and dynamic control of the polarization of each lattice beam, and at the same
time will provide phase stability of the beams relative to each other.

4.2 Measurement techniques

In this section, the experimental techniques which are used for the characterization of
the Floquet topological systems are presented. By acceleration of the lattice potential
relative to the atoms, as described in Sec. 4.2.1 , the quasimomentum of the cloud can be
changed either adiabatically or diabatically. This is employed to probe the energy gaps
in the static and modulated lattice [4.2.2], as well as to determine the extent of the cloud
in momentum space [4.2.3] and to perform Hall deflection measurements. In Sec. 4.2.4
the deflection measurements as well as the corresponding theoretical simulations will be
discussed.

4.2.1 Lattice acceleration: Creating a gradient

Since the honeycomb lattice is created by combination of three running waves, the inter-
ference pattern can be shifted in space by detuning the frequency of one or two beams
relative to the others using AOMs. The frequency difference between the waves leads
to a time-dependent phase shift ∆ω t, which corresponds to a moving pattern. If the
frequency of the jth lattice beam has a constant offset of ∆fj = ∆ωj/(2π), the lattice
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potential moves along the propagation direction of the beam with a constant velocity of

vj =
2

3
λL∆fj. (4.11)

By changing the frequency detuning linearly in time, the interference pattern is acceler-
ated with a constant acceleration

aj =
2

3
λL

∆fj
∆t

. (4.12)

In the reference frame co-moving with the lattice, the atoms experience a force Fj = maj
along the direction of the jth beam, which can be seen by transformation of the time-
dependent Hamiltonian. In the lab frame, the Hamiltonian for a lattice potential moving
by R(t) reads:

Ĥ(t) =
p̂2

2m
+ VL(r̂−R(t)). (4.13)

The transformation into the co-moving frame is described by the unitary operator [73]

Û = e−i
m
~ Ṙ(t)·r̂ e

i
~R(t)·p̂, (4.14)

accounting for the changing position and momentum of the atoms. The time-dependent
Schrödinger equation i~ψ̇ = Ĥψ in the co-moving frame is given by i~ψ̇′ = Ĥ ′ψ′ with
ψ′ = Uψ. The Hamiltonian is transformed as

Ĥ ′ = UĤU † + i~UU †. (4.15)

Using the commutation relations between the position and momentum operator yields:

UĤU † =
p̂2

2m
+ V (r̂) +

mṘ(t)2

2
+ Ṙ(t) · p̂ (4.16)

i~UU † = mR̈(t) · r̂− Ṙ(t) · p̂−mṘ(t)2, (4.17)

which leads to the following expression for the Hamiltonian in the co-moving frame:

Ĥ ′ =
p̂2

2m
+ V (r̂) +mR̈(t) · r̂− mṘ(t)2

2
. (4.18)

The term mR̈(t) = −F describes the fictitious force that the atoms experience in the
moving inertial frame which is directed opposite to the motion of the interference pattern.
This induces a translation in quasimomentum space along the direction of the force [62]:

F = ~
∆q

∆t
. (4.19)

The measurements are performed in the lab frame, where the interference pattern of the
lattice and hence the Brillouin zone is moving relative to the atoms, whereas the opposite
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happens in the lattice frame, as depicted in Fig. 4.8. Since both reference frames are
equivalent, the atoms can be effectively shifted through the Brillouin zone by accelerating
the lattice.

The last term in Eq. 4.18 corresponds to the kinetic energy of the atoms moving with
a velocity of Ṙ(t) along with the lattice, thus into the opposite direction of the force. In
general, the atoms will perform Bloch oscillations in real- and momentum space under
the influence of the force [62]. If the quasimomentum reaches the edge of the BZ, the
velocity of the atoms is reversed and performs a periodic oscillation in time. The velocity
from the lattice motion has the opposite sign and counteracts the Bloch velocity when
the latter is positive. Hence, if bandmapping is performed at a finite quasimomentum
in the first BZ, the atoms appear at q = Γ and when the quasimomentum is increased
across the edge of the BZ, they are mapped to q = Γ in the next BZ. Due to the motion
of the atoms relative to the harmonic trap, a non-negligible restoring force occurs when
the lattice acceleration is applied for a long time, as described further in Sec. 4.2.4.

By comparing Eq. 4.12 and 4.19, the change in quasimomentum along the direction
of lattice beam j can be related to the frequency detuning:

∆qj =
2λLm∆fj

3~
. (4.20)

For 39K and a laser wavelength of λL = 736.8 nm, a frequency shift of ∆f = 28.297 kHz
corresponds to ∆q = 1 kL. In the experiment, the frequencies of two laser beams can be
modulated, allowing for the application of forces along arbitrary directions in the 2D BZ.
The total quasimomentum is then given as the vector sum of the individual quasimomenta
along the propagation directions of the corresponding lattice beams. For a certain final
quasimomentum, the magnitude of the force is set independently by the duration ∆t of
the frequency ramp. Hence, compared to the application of a magnetic gradient, much
larger forces can be realized by lattice acceleration, which can also be changed rather
quickly and point along an arbitrary direction.

4.2.2 Stückelberg interferometry

As described in the last section, the quasimomentum of the atoms can be changed by
lattice acceleration. This is applied to measure the energy gap between the two lowest
bands of the honeycomb lattice depending on the quasimomentum using Stückelberg
interferometry [178, 179]: Starting in the lowest band of the lattice at q = Γ, the atoms
are driven to the quasimomentum Q, where the gap should be measured, as depicted in
Fig. 4.8b. The applied force is large compared to the energy gap between the two bands
(but smaller than the gap to the third band), which coherently transfers some atoms
from the first to the second band during the acceleration. The initial state is denoted by
|ψ1

Γ〉, with all atoms being in the lowest band. After the acceleration, the state at Q is a
superposition of the two bands:

|Ψ2(Q)〉 = a1|ψ1
Q〉+ a2|ψ2

Q〉. (4.21)
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Figure 4.8: Effect of the lattice acceleration and Stückelberg sequence. a. In
the lab frame, the Brillouin zone is moved across the atoms by the lattice acceleration,
which leads to a change in quasimomentum in the reference frame co-moving with the
lattice. b. Schematics of the Stückelberg interferometry used to probe the energy gaps.
The atoms are loaded into the lowest band at q = Γ, then a force is applied (1) to
drive the atoms non-adiabatically to the desired quasimomentum Q. The second band
is populated during the acceleration (2) and then the atoms are held at Q (3), acquiring
different dynamical phases in the two bands. Afterwards, the force is reverted (4), and
bandmapping is performed at q = Γ (5) to measure the relative population in the lowest
band.

Then, the atoms are held at Q for a time t, acquiring a dynamical phase that depends
on the energy band they are occupying:

|Ψ3(Q)〉 = a1e
− i

~E1(Q)t|ψ1
Q〉+ a2e

− i
~E2(Q)t|ψ2

Q〉. (4.22)

The atoms are driven back to q = Γ with the same force applied in the opposite direction,
leading again to a split of the populations in each band.

|Ψ4(Q)〉 = a1e
− i

~E1(Q)t(b1|ψ1
Γ〉+ b2|ψ2

Γ〉) + a2e
− i

~E2(Q)t(c1|ψ1
Γ〉+ c2|ψ2

Γ〉). (4.23)

At the end of the sequence, bandmapping is performed at q = Γ and the relative popu-
lation in the lowest band is measured, which is given by

n1(Q) = |〈ψ1
Γ|Ψ4(Q)〉|2 = |e− i

~E1(Q)t(a1b1 + a2c1e
− i

~ (E2(Q)−E1(Q))t)|2

= |a1b1|2 + |a2c1|2 + 2|a1b1a2c1| cos

(
E2(Q)− E1(Q)

~
t+ φ

)
. (4.24)

Hence, the population in the lowest band (and similarly in the second band) oscillates
with a frequency that equals the energy gap at the quasimomentum Q. In the experiment,
the relative population is obtained from the bandmapping images by counting the pixels
corresponding to the lowest band and dividing the result by the total pixel sum of both
bands. In Fig. 4.9a, an example image is shown. The atoms in the lowest band appear
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in the central peak and the atoms in the second band are distributed over the 6 outer
peaks, as explained in the last section. To account for inhomogeneities in the background,
arising from the spatially dependent intensity of the imaging beam, the pixel sum Σj of a
certain peak is obtained by subtracting the background at the position of the peak. The
pixels are summed inside a circular ROI with radius r, containing only the peak (yellow
circles in Fig. 4.9a), and inside a larger ROI with radius r′ =

√
2r and hence twofold area

(white circles). Then, the pixel sum of the jth peak is defined as Σj = 2Σr − Σr′ and
the relative population in the lowest band is given by dividing Σ0 by the total pixel sum
over all peaks. The energy gap ∆E(Q) is obtained by fitting a damped cosine function
to the population oscillation and extracting the frequency:

n1(t) = Ae−
t−t0
τ cos(2πf(t− t0)) + n0. (4.25)

To calibrate the depth of the honeycomb lattice, the energy gap at Q = Γ is measured with
Stückelberg interferometry and compared to bandstructure calculations. In principle, the
gap could be measured at any point in the BZ, but at Γ the gap is maximal, which allows
for shorter hold times t and leads to a higher amplitude of the population oscillation.
In Fig. 4.9b, an example of a lattice calibration is shown, yielding an energy gap of
∆E(Γ) = 6.67(4) kHz · h which corresponds to a lattice depth of V0 = 5.97Er. The
lattice calibration is performed at as = 6 a0 with the dipole trap beams being set to their
values used in the experiments and tTOF = 3.5 ms.

4.2.3 Momentum space width

In the following and in the next section, the BEC is represented as a semiclassical
wavepacket. Due to finite temperatures and spatial confinement, the atomic cloud can
not be described by a perfect δ-function, but is broadened in momentum space. Since the
involved mechanisms can be captured by single-particle physics, the measurements for
the characterization of the Floquet systems are performed at a small but finite scattering
length of as = 6 a0, which also increases the extent in reciprocal space. The density dis-
tribution of the BEC in momentum space is described by a symmetric, two-dimensional
Gaussian profile.

When a force is applied by lattice acceleration, the quasimomentum of the center-of-
mass (CoM) in reciprocal space is changed according to Eq. 4.20. For the energy gap
measurements, the overall quasimomentum can be approximated by the CoM-momentum,
as the observed population oscillation is well described by a single cosine wave, rather
than by a superposition of oscillations with different frequencies, which would correspond
to the simultaneous probing of multiple energy gaps. In principle, the effect of the mo-
mentum space width also depends on the quasimomentum at which the energy gaps
should be probed. Around the Γ-point, as used in the lattice calibrations, the disper-
sion is relatively flat, which facilitates the measurements compared e.g. to the M -point,
where the steeper dispersion can lead to instabilities when holding the atoms there for
a long time. Nevertheless, apart from measuring very small energy gaps, using Stückel-
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Figure 4.9: Measuring energy gaps with Stückelberg interferometry. a. Counting
of the pixel sums to obtain the relative population in the lowest band after bandmapping.
For each peak, the total counts are given by subtracting the pixel sum in the white
circle from two times the pixel sum inside the yellow circle, effectively subtracting the
background around the peak. The relative population in the lowest band is then obtained
by dividing the pixel counts of the central peak by the total sum over all peaks. b.
Stückelberg oscillation at Q = Γ to calibrate the lattice. The frequency is determined
from fitting Eq. 4.25 and corresponds to V0 = 5.97Er. Each data point is an average over
1-2 individual images, the errorbars denote the standard error.

berg interferometry allows for an accurate determination of the energy gaps, also in the
modulated lattice, as discussed in Sec. 5.1.1.

When probing the Berry curvature using Hall deflection measurements, the momen-
tum space extent of the BEC has to be taken into account. Depending on the width
of the cloud compared to the spread of the Berry curvature distribution, either not all
atoms might experience a transverse deflection or only a certain part of the Berry curva-
ture could be probed. In the experiments, the CoM position of the cloud in real space is
detected, being the average over all quasimomenta (neglecting any scattering events), as
described in the next section. Hence, to be able to theoretically simulate the deflections
measured in the experiments, the width in momentum space needs to be determined.
The momentum space extent slightly changes over time, mainly due to fluctuations of
the atom number, and therefore it is probed along with every deflection measurement
presented in this work and used in the corresponding calculations (see Sec. 5.1.1).

The momentum space width is determined by a knife-edge measurement, where the
cloud is moved across the edge of the first BZ and the transfer into the second BZ is
observed. A small force of Fa/h = 204 Hz is applied along the x-direction, changing
the CoM-quasimomentum adiabatically in small steps up to one reciprocal lattice vector.
After every step, bandmapping is performed at the corresponding quasimomentum along
the path, so the lattice intensity is ramped down while keeping a constant frequency offset.
Since the images are taken in the lab frame, the atoms appear at q = Γ as long as they
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Figure 4.10: Measurement of the momentum space width a. Bandmapping im-
ages after tTOF = 3.5 ms when adiabatically changing the quasimomentum along the
x-direction, crossing the edge of the first BZ at qx =

√
3/2 kL (second image). The rel-

ative population in the first BZ is obtained by diving the pixel sum in the right peak
by the total sum. The pixel sums for both peaks are counted by subtracting the back-
ground similarly as for the Stückelberg oscillations, using the ROIs depicted by the white
and yellow circles. b. Relative population in the first band as a function of the CoM-
quasimomentum, representing an integration of the Gaussian density distribution in mo-
mentum space inside the first BZ. Each data point is an average over 6 individual images
and the errorbars denote the standard error. The momentum space width σ is extracted
by fitting an errorfunction according to Eq. 4.26.

are still in the first BZ, due to the velocity from the moving lattice. When some atoms
reach the edge of the BZ, they are mapped to q = Γ in the next BZ, as mentioned in the
last section. Hence, in the bandmapping images, two peaks appear and the population
is gradually transferred from the first to the second one, as shown in Fig. 4.10a. The
relative population in the first peak is determined by dividing the corresponding pixel
sum by the total pixel sum in both peaks, whereas the counts of each peak are again
obtained by subtracting the background at the position of the peak, as described in the
last section (yellow and white circles in Fig. 4.10a). Plotting the relative population in the
first peak as a function of the quasimomentum corresponds to integrating the Gaussian
density distribution in reciprocal space within the first BZ, which is described by an error
function:

n1(qx) = −1

2

[
erf

(
qx −

√
3

2
kL√

2σ

)
+ 1

]
+ 1. (4.26)

To obtain the momentum space width σ, this function is fitted to the measured relative
populations in the first BZ, as shown in Fig. 4.10b.

4.2.4 Deflection measurements and simulations

The Berry curvature associated with a certain energy band can be probed by Hall deflec-
tion measurements. This is used in the characterization of the Floquet systems to extract
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the sign change of the local Berry curvature in the lowest band across the phase transition,
which determines the change of the corresponding winding number (see Secs. 2.3, 5.1.3
and 5.1.4). In the experiments, a small force is applied to the atoms via lattice acceler-
ation and they are moved adiabatically within a single band through the domain where
the Berry curvature should be probed. The Berry curvature acts like a magnetic field in
quasimomentum space [102,103,180,181], adding a transverse component to the velocity
of the atoms, which is directly proportional to it. Hence, by detecting the displacement
in real space perpendicular to the direction of the force, a signal corresponding to the
total amount of Berry curvature traversed in quasimomentum space is obtained. The
full dynamics in real- and quasimomentum space can be described by the semiclassical
equations of motion [182]:

ẋ =
1

~
∂ε

∂qx
(q)− 1

~

(
Fy −

∂Vtrap

∂y

)
Ω(q) +

Fx
mK

t

ẏ =
1

~
∂ε

∂qy
(q) +

1

~

(
Fx −

∂Vtrap

∂x

)
Ω(q) +

Fy
mK

t

q̇x =
1

~

(
Fx −

∂Vtrap

∂x

)

q̇y =
1

~

(
Fy −

∂Vtrap

∂y

)
, (4.27)

where ε(q) and Ω(q) denote the energy dispersion and Berry curvature of the band and

the terms
Fj
mK
t describe the velocity of the atoms along the direction of the force due to

the lattice acceleration. The harmonic trapping potential with radial trapping frequency
fT is given by:

Vtrap =
1

2
mK(2πfT )2(x2 + y2). (4.28)

To measure the transverse deflections, the atoms are first loaded at q = Γ into the band
that should be probed, which is the lowest band in most cases. Then, the quasimomentum
is changed adiabatically to move through the Berry curvature, with the force being small
compared to the energy gap to the next band in order to avoid excitations. The real
space position of the cloud after the acceleration is detected by taking absorption images
insitu at the final quasimomentum and the CoM-position is extracted from a 2D Gaussian
fit. In order to obtain a more robust signal, the differential deflection is evaluated: The
measurement is repeated with opposite chirality of the modulation, which inverts the
Berry curvature and hence the transverse deflection. Measuring additionally the initial
position of the cloud without applying a force enables the derivation of the displacement
with respect to the bisecting axis, as depicted in Fig. 4.11a, which is defined as the
differential deflection s⊥.

The insitu position of the BEC on the camera changes from shot to shot due to the air
flow on the table and vibrations of the optical components, with the largest contribution
arising from the z-dipole beam: It mainly determines the position and width of the
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cloud, and, at the same time, the beam path is rather long to be able to enter the
experimental chamber from the top, which makes it especially susceptible to distortions.
Since the scatter of the position between two single images can be larger than the expected
transverse deflections, typically 30− 40 experimental realizations are averaged to obtain
the initial CoM-position and similarly for each of the final positions. This results in a
standard error of the mean lying well below the absolute value of the differential deflection,
allowing for reliable probing of the Berry curvature. The observed position scatter is not
isotropic, but larger along the direction of the X-dipole beam, which propagates nearly
parallel with lattice beam 2 (see Fig. 4.2a). A possible reason for this asymmetry is, that
the focus of this dipole beam is slightly tilted out of the horizontal plane with respect to
the other beam, which also leads to a shift of the potential minimum when changing its
depth, as mentioned in Sec. 4.1.3. In the measurements presented in this work, the energy
bands and the Berry curvature are sixfold rotational symmetric, so the Berry curvature
can be probed around any of the high-symmetry points in the BZ. To minimize the errors
in the transverse directions, the forces are directed approximately along the axis of the
largest position scatter. When probing the Berry curvature around the Γ-point, the force
is applied along the negative x-direction, measuring at q = (−

√
3, 0) kL. To probe a

K-point, it is directed towards q = (−
√

3/2, 1/2) kL.

Calculation of the transverse deflections To calculate the transverse deflections,
Eq. 4.27 is solved numerically in the time interval ∆t used in the experiments, yielding
the trajectories in real- and momentum space. The probing of the Γ- and K-point is
simulated by a force directed along the x- and y-axis, respectively. The theoretical Berry
curvature distribution is originally defined on a rhombic grid spanning the first BZ. To
cover the full range of the trajectory including the momentum space extent of the BEC, it
is then interpolated on a quadratic grid spanning several BZs with a step size of 0.0145 kL.
This is the largest value at which the resulting transverse deflections do not change any
more with the step size. The transformation from the rhombic to the quadratic grid gives
rise to a factor of

√
3/2 when expressing the Berry curvature in SI units. Accordingly,

in Fig. 4.11b and c, the Berry curvature is plotted in units of 1/(
√

3/2 |e1| |e2|), with
|e1| = |e2| =

√
3 kL (see Eq. 3.19 and Sec. 3.1.2).

To take into account the momentum space width, the equations of motion are in-
tegrated for about 7300 different initial points in momentum space lying inside a circle
with radius r = 0.5 kL centered around the starting point of the trajectory. Each point
is assigned a weight according to the Gaussian density distribution in momentum space
with width σ, as depicted by the green shading in Fig. 4.11b. The CoM positions in real-
and momentum space are then calculated as the weighted average over the corresponding
final points. In Fig. 4.11c, the trajectories along the transverse direction and the Berry
curvature probed along the path are shown as a function of the quasimomentum set by
the force, for different initial positions in quasimomentum space, which are indicated
by the green arrows in Fig. 4.11b. Here, the calculation of the transverse deflection is
illustrated for a force directed along the y-axis, probing the Berry curvature around the
K-point in the Haldane regime.
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Figure 4.11: Measurement and calculation of the transverse deflections. a.
Definition of the differential deflection s⊥. The CoM position of the cloud is determined
from insitu images without applying a force (gray circle) and after moving through the
Berry curvature in reciprocal space for opposite chiralities of the modulation (blue and
yellow circle), leading to opposite deflections. This gives a larger signal being more
robust against position scatter (see text). The differential deflection is defined as half
the distance between the two final points, measured perpendicular to the bisecting axis
(dashed line). b. Calculation of the transverse deflection, illustrated for probing the
Berry curvature around K in the Haldane regime with the force being directed along the
y-axis. The equations of motion are solved numerically for various initial points (green
arrows) in quasimomentum space lying inside a circle with r = 0.5 kL (gray circle) and
being weighted according to the momentum space width (green shading). The CoM
positions are obtained as the weighted average over all final values. c. Berry curvature
and calculated transverse position along different paths in quasimomentum space with
initial positions of q0

x = (0, 0.05, 0.15) kL and q0
y = 0, corresponding to the arrows in b, as

a function of the quasimomentum along the path.

From the equations of motion it can be seen that the transverse velocity in real space is
determined by the Berry curvature and the derivative of the energy dispersion along this
direction. In the deflection measurements, the CoM in momentum space is moved along
high-symmetry paths in the BZ, connecting e.g. Γ and K. The transverse derivative of the
energy dispersion is symmetric with respect to these lines and vanishes for quasimomenta
lying on the path. Since the momentum distribution is symmetric with respect to the
center point, the derivative along the center part is zero and the contributions from the
neighboring paths cancel each other. This means that without the harmonic trap the
transverse velocity would only be affected by the Berry curvature when probing along
high-symmetry lines. In the presence of the trapping potential, a displacement from
the trap minimum in real space leads to a change of the quasimomentum along the
corresponding direction. Hence, due to the transverse deflection initially induced by the
Berry curvature, the transverse quasimomentum acquires a finite value and the path
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starts to deviate from the high-symmetry line, now being affected by the derivative of
the dispersion. Overall, this means that the transverse deflection is not only proportional
to the Berry curvature any more.

Since the force in the deflection measurements is small, the lattice acceleration is ap-
plied for a long time ∆t, which leads to large longitudinal displacements and to a signifi-
cant effect of the harmonic trap along this direction, as discussed in Sec. 5.1.3. However,
along the transverse direction, the displacements are small and thus the restoring force of
the trap has only a minor effect. The simulated final transverse CoM-quasimomenta are
q⊥ < 0.005 kL for all experimental parameters used in this work. Thus it can be assumed
that the measured transverse deflections are indeed directly proportional to the Berry
curvature, allowing for the determination of the sign changes of the Berry curvature from
sign changes of the deflections.
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Chapter 5

Characterization of the Floquet
topological regimes

Anomalous Floquet settings have been realized experimentally in photonic systems [100,
101, 115, 117, 183]. These platforms turned out to be especially useful for studying the
propagation of chiral edge modes, since the system can be initialized in a state where
mainly the edge states are populated. However, a full experimental characterization of
the anomalous Floquet topological phase, including the properties of the bulk and edge
states, is still missing. So far, an experimentally feasible scheme has been presented to
realize a variety of topological regimes, including anomalous Floquet systems, by periodic
modulation of the tunnel couplings in an optical honeycomb lattice. In this chapter the
invariants describing the different topological regimes are obtained experimentally by
energy gap and local deflection measurements using the techniques described in the last
chapter. Moreover, the complete two-dimensional (2D) phase diagram is mapped out
and the mixing of the two lowest bands across the phase transitions is used to load and
probe also the second band. The chapter concludes with measurements of the condensate
lifetime at the Γ-point in all regimes.

5.1 Determination of the winding numbers

Floquet topological phases are characterized by winding numbers associated with the
different quasienergy gaps which give the net number of chiral edge modes crossing the
respective gap. As described in Sec. 2.3.2, a phase transition occurs when a quasienergy
gap gj within or between Floquet Brillouin zones (FBZs) is closing, which changes the
winding number in this gap by ∆W j:

∆W j = Qj
s, (5.1)

where the topological charge Qj
s of the band touching point at (qs, λs) is given by the

sign change of the local Berry curvature across the phase transition. Hence, to determine
the phase boundaries and the development of the winding numbers, the quasienergy gap
closings and the change of the local Berry curvature at these points need to be probed.
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Figure 5.1: Phase diagram of the modulated lattice as a function of the modu-
lation frequency f and modulation amplitude m. The blue shadings indicate the
different topological phases: ¬ The Haldane phase, ­ anomalous phase and ® the third
phase. The red line marks the path along which the modulation parameters are varied
to determine the winding numbers in the different topological regimes.

To locate the phase transitions, the quasienergy gap between the two lowest bands
is measured at various quasimomenta and modulation parameters. The latter are varied
along a path in f -m-space, where f denotes the modulation frequency and m the relative
modulation amplitude, which traverses all three topological regimes characterized here, as
depicted by the red line in Fig. 5.1. The path starts in the high frequency limit where the
quasienergy gap between the FBZs is much larger than the gaps within a single FBZ, at a
modulation amplitude and frequency of m = 0.1 and f = 40 kHz. Then, the frequency is
reduced to 10 kHz while keeping m fixed, traversing the Haldane regime. The transition
to the anomalous regime is crossed by increasing the modulation amplitude to m = 0.3
at a constant frequency of 10 kHz. Finally, the parameter regime of the third phase is
entered by decreasing the frequency to 4.6 kHz at m = 0.3. In this way, the modulation
parameters are varied along a smooth path connecting the high frequency limit, where the
properties of the system are known, to the other topological regimes. The specific shape
of the path is chosen mainly for technical reasons: At high modulation frequencies, small
amplitudes are favorable due to longer lifetimes and reduced coupling to the p-bands,
both of which will be discussed later in this chapter. The third regime is probed for a
larger modulation amplitude, since for m = 0.1 the modulation frequency would need
to be reduced to very small values below f ≈ 3.8 kHz, where the gap sizes that can be
probed using Stückelberg interferometry are restricted, as described in the next section.

The scan of the modulation parameters is performed at three different quasimomenta:
Γ, K and M . In the inversion-symmetric, 2D honeycomb lattice the phase transitions can
only occur via energy gap closings at the high-symmetry points in the first Brillouin zone
(BZ) [184], so it is sufficient to probe these points for the modulation scheme investigated
in this chapter. After determination of the modulation parameters λs and quasimomenta
qs, at which the phase transitions occur, the change of the Berry curvature is probed
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across the transitions. The quasimomentum is fixed at q = qs, whereas the modulation
parameters are varied and the Berry curvature is compared before and after each phase
transition:

∆Ωµ(qs) = Ωµ(qs, λs + ε)− Ωµ(qs, λs − ε), (5.2)

with µ denoting the upper or lower band and λ the modulation frequency or amplitude,
respectively. Depending on the quasienergy gap that is closing, the topological charge of
the corresponding singularity is determined by the Berry curvature change in the lower
or upper band (see Eq. 2.61)

Q0
s = sgn(∆Ω−(qs)) Qπ

s = sgn(∆Ω+(qs)). (5.3)

Since the Berry curvature of the upper band equals the inverse Berry curvature of the
lower band, ∆Ω+ = −∆Ω−, the winding numbers can be obtained by probing any of
the two bands. In the experiments presented in this section, the Berry curvature is
measured in the lower band. This is realized by performing Hall deflection measurements,
as described in the previous chapter: The cloud is driven through the phase transition
point qs and the differential transverse deflection s−⊥ at the end of the path is recorded,
being proportional to the total amount of Berry curvature traversed along the path.
Hence, the sign change of the Berry curvature across the phase transitions, and therefore
the topological charge, can directly be inferred from the sign change of the transverse
deflection:

Q0
s = sgn(∆s−⊥(qs)) Qπ

s = −sgn(∆s−⊥(qs)), (5.4)

where
∆s−⊥(qs)) = sgn[s−⊥(qs, λs + ε)]− sgn[s−⊥(qs, λs − ε)]. (5.5)

Using the deflection measurements, the topological charges of the band touching points
are derived, which enables the determination of both winding numbers in all three topo-
logical regimes using the connection to the high-frequency limit.

5.1.1 Stückelberg interferometry in the modulated lattice

The quasienergy gap between the two lowest bands is probed using Stückelberg inter-
ferometry. As mentioned above, the gaps are measured at the Γ-, K-, and M -point for
different modulation parameters. The starting point for all following measurements is
the Bose-Einstein-Condensate (BEC) at q = Γ, adiabatically loaded into the lowest band
of the static honeycomb lattice with V0 = 6Er. Then, the intensity modulation of the
lattice beams is ramped up within tr = 5T for all modulation frequencies used here,
held for an integer number of periods and ramped down again within tr, as depicted in
Fig. 5.2a. For all quasienergy gap measurements, the modulation amplitude is ramped
up and down linearly in time at a constant modulation frequency (Fig. 5.2c and d). The
final values mf and ff are varied according to the path in parameter space shown in
Fig. 5.1.

To probe the quasienergy gap at a certain point Q in the BZ, a large force is applied
to the atoms by accelerating the lattice simultaneously with the intensity modulation,
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Figure 5.2: Schematics of the lattice intensity and quasimomentum ramps to
measure the quasienergy gaps via Stückelberg interferometry. a. The intensity
modulation Ij(t) of each lattice beam is ramped up within tr = 5T , starting at Ij = I0,
held for ∆t = NT, N ∈ N, and then ramped down within tr, now ending at Ij =
I0 − mI0. Subsequently, the intensity of all beams is ramped down to 0 to perform
bandmapping (not shown). Here, ∆t = 5T and j = 1 is illustrated. The intensities
of the other two beams follow the same trace but phase shifted by 2π/3 and 4π/3,
respectively. b. Non-adiabatic change of the cloud’s quasimomentum to perform the
Stückelberg interferometry at Q = Γ. The ramp starts with a delay such that the final
quasimomentum is reached when the intensity ramp is finished, similarly for the ramp-
down. c and d. Ramp of the modulation amplitude m and modulation frequency f used
in the Stückelberg interferometry. The amplitude is changed linearly to its final value mf

at constant frequency f = ff .

changing their quasimomentum non-adiabatically from Γ to Q. Since the force is large
compared to the quasienergy gaps between the two lowest bands, a coherent superposition
between the first and second band is created, as described in Sec. 4.2.2. To probe the
quasienergy bands, being eigenvalues of the effective Hamiltonian, the hold time ∆t at
Q is set to integer multiples of the modulation period T . The time needed to move the
atoms to Q is usually smaller than tr, so the lattice acceleration starts later, such that
it finishes simultaneously with the modulation ramp-up (Fig. 5.2b). After the hold time
at Q in the modulated lattice, the atoms are accelerated back to Γ while ramping down
the modulation. Subsequently, the lattice is ramped down to perform bandmapping and
the relative population in the first band is counted (see Sec. 4.2.2).

The hold times are varied between ∆t = 0 and ∆t = 22T , providing 23 points for
the oscillation fit for each quasienergy gap that is measured. In all gap measurements
presented in Sec. 5.1.2, a force of Fa/h ≈ 4.081 kHz is used. The time needed to accelerate
the atoms by one reciprocal lattice vector from Γ to Γ is tΓ ≈ 0.163ms, to probe the other
high symmetry points the acceleration times are tM ≈ 0.082ms and tK ≈ 0.094ms. For
most modulation frequencies, the ramp time tr = 5T is larger than the acceleration
times, but for very high modulation frequencies they are comparable (i.e. tr = 0.125ms
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for f = 40 kHz). The start of the lattice acceleration is then shifted forward or backward
in time accordingly.

The band gap at a certain quasimomentum is determined by fitting a cosine function
to the oscillation of the relative population n1(t) in the lowest band and extracting the
frequency (Sec. 4.2.2). In the periodic spectrum of the modulated lattice, the quasienergy
differences can be measured between bands within the same FBZ or between bands in
different FBZs. In the experiments performed here, the gap between the two lowest bands
and their lowest order Floquet copies are probed. But at high modulation frequencies
and amplitudes, the coupling to the Floquet copies of the p-bands increases, which means
that more than two bands can be populated in the Stückelberg sequence. This leads to
an oscillation of the lowest band population with several frequencies, which is taken into
account by fitting a sum of two cosines:

n1(t) = e−(t−t1)γA1 cos(ω1(t− t1)) + A2 cos(ω2(t− t2)) + n1
0. (5.6)

Here, A1, A2, ω1, ω2, t1, t2, γ, n
1
0 are all free fit parameters and the main oscillation fre-

quency corresponding to the quasienergy gap between the two lowest bands is defined as
having the larger amplitude. For most modulation parameters, A2 � A1, confirming that
normally the oscillation is well described by a single quasienergy gap being probed. The
damping constant γ takes into account heating and depletion effects, as well as dephasing
due to the finite momentum space width of the cloud. These effects are visible in the
time-of-flight (TOF) images at long hold times, i.e. when probing the quasienergy gaps at
low modulation frequencies where T is large. They arise predominantly when the atoms
are held for long times at a maximum of the quasienergy dispersion, as it appears in the
first band at K in the Haldane regime. Since the ramp-up of the modulation starts at Γ,
the atoms will be transferred to the second band when probing the anomalous or third
regime, as the quasienergy gap is closing. However, since the atoms will be populating
the second band anyway during the Stückelberg sequence, this simply adds an offset to
the population oscillation.

Due to the extent of the cloud in momentum space, the quasienergy gaps are ac-
tually probed in a finite region around the center point set by the lattice acceleration.
The population oscillation n1(t) would correspond to a sum of several oscillations with
similar frequencies close to the gap frequency. However, the measured oscillations are
better described by a sum of two cosines with unequal frequencies as in Eq. 5.6 (see
also Fig. 5.13b), whereas the momentum space width mainly leads to a damping of the
oscillation due to dephasing, as mentioned above. This is also confirmed by the very
good agreement of the measured gaps with the theoretical calculations, which take into
account only the Center-of-mass (CoM) of the cloud in momentum space.

Starting with the atoms in the first band, the quasienergy gap between the first and
second band, g0, or between the the first band and the lower copy of the second band,
gπ, can be measured. To probe the spectrum of the effective Hamiltonian, the hold times
are integer multiples of the modulation period, so the gap oscillation is scanned with
time steps of size T . The cosine wave needs to be sampled with at least two points per
cycle (Nyquist–Shannon sampling theorem), which means that the minimal gap oscillation
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period that can be probed is 2T . Hence, the maximal gap frequency that can be measured
in this way is

ωmax =
ω

2
. (5.7)

This complicates on the one hand the measurements at low modulation frequencies,
restricting the accessible range of quasienergy gaps. On the other hand, it can be used
to determine which of the two possible quasienergy gaps, g0 or gπ, is probed. Since
g0 + gπ = ~ω, if the first gap is smaller than ~ωmax, the other one is necessarily larger, so
in the experiment the measured gap is

∆Eexp = min(g0, gπ). (5.8)

Starting in the high frequency limit where gπ � g0, the gap within the zone, i.e. g0, is
probed. Reducing the modulation frequency decreases gπ until gπ = g0 = ~ω/2, after
what gπ is measured. This is used in the next section to detect not only the phase
transitions, but also to deduce which of the two quasienergy gaps is closing.

5.1.2 Measurement of the phase transition points

The quasienergy gaps between the two lowest bands are probed for various modulation
parameters along the path depicted in Fig. 5.1, covering the three different topological
regimes. For each set of modulation parameters, Stückelberg interferometry measure-
ments are performed at the high symmetry quasimomenta Γ, K and M , consisting of 23
population measurements per oscillation, each of which is averaged over 3-4 individual
images. The oscillations are fitted according to Eq. 5.6 and the main oscillation frequency,
corresponding to the minimal gap min(g0, gπ), is plotted against the modulation parame-
ters to detect the phase transitions indicated by gap closings. The resulting relative gaps
∆E/(~ω) at Γ are presented in Fig. 5.3 together with the theoretical values (solid lines),
calculated using the six-band model introduced in Sec. 3.2.2. The results at K and M
are shown in Fig. 5.4.

At the Γ-point, the quasienergy gap closes two times, indicating two phase transitions,
at f = 10 kHz around m = 0.2 and close to f = 6.4 kHz and m = 0.3. At the K- and
M -point, the quasienergy gaps remain open for all modulation parameters, confirming
that the band touchings at Γ constitute the only phase transitions that occur in this
range. Moreover, the measured quasienergy gaps are in excellent quantitative agreement
with the theoretical calculations for all quasimomenta and modulation parameters. At
high modulation frequencies, where ~ω is much larger than the combined width of the
two lowest bands, gπ � g0, and hence g0 is measured, as indicated by the gray arrow in
the upper right area of Fig. 5.3. The first two quasienergy bands in the high frequency
limit are plotted in the upper right panel of Fig. 5.3 for f = 30 kHz and m = 0.1,
illustrating the large separation between the Floquet copies of the lowest bands. Reducing
the modulation frequency decreases gπ, while g0/(~ω) increases, until g0 = gπ = ~ω/2
at the cusp around f = 15 kHz. For lower modulation frequencies, gπ < g0, and gπ is
measured in the Stückelberg interferometry. The subsequent increase of the modulation
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Figure 5.3: Quasienergy gaps at Γ across the phase transitions. Measured relative
quasienergy gaps (data points) at Q = Γ and theoretical values (solid lines) as a function
of the modulation amplitude and frequency. Every data point is the result of a fit to
the Stückelberg population oscillation consisting of 23 points, each being an average over
3-4 individual images. The errorbars denote fitting errors. The blue shadings and the
numbers illustrate the different topological phases separated by the closings of the relative
gap. The gap maxima signal if the gap g0 or gπ is measured, as indicated by the gray
arrows and annotations. Upper panels: Calculated dispersion of the two lowest bands in
the extended zone scheme for m = (0.3, 0.215, 0.1) and f = (6.2, 10, 30) kHz, from left to
right. The first two plots show the band touchings at quasienergies 0 and π, marking the
phase transitions, the last plot illustrates the high frequency limit.

amplitude reduces gπ further since the effective bandwidth increases, until the lowest
band and the lower Floquet copy of the upper band touch, as depicted in the central
upper panel of Fig. 5.3. Hence, at the first phase transition, the quasienergy gap at Γ
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closes between FBZs which means that W π is changing. For even higher modulation
amplitudes and lower frequencies, the bands cross and hybridize at the Floquet zone
edge and the gap reopens and increases again until gπ = g0 = ~ω/2 at the second
maximum around f = 8.2 kHz and m = 0.3. Now, the relative gap within the FBZ is
smaller again and closes at the second phase transition, which means that now W 0 is
changed. The following cusp then signals again a change of the measured quasienergy
gap as indicated in the plot. By measuring the quasienergy gaps, the phase transition
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Figure 5.4: Quasienergy gaps at K and M across the phase transitions. Mea-
sured relative quasienergy gaps at Q = K (gray data points) and Q = M (yellow data
points) and theoretical values (solid lines) as a function of the modulation amplitude and
frequency. Every data point is the result of a fit to the Stückelberg population oscillation
consisting of 23 points, each being an average over 3-4 individual images. The errorbars
denote fitting errors. The blue shadings again illustrate the different topological phases
obtained from the gap closings at Γ. The quasienergy gaps at K and M remain open
over the full range of modulation parameters scanned here.

points are detected as gap closings at q = Γ and the modulation parameters at which they
occur are determined. Following the maxima of the relative gap allows for identification
of whether the gap is closing within or between FBZs and hence which of the winding
numbers W 0 and W π is changing at which set of modulation parameters. In the next two
sections, the measurements of the local Berry curvature are described, quantifying the
amount by which the respective winding numbers are changed at the phase transitions
and thus completing the characterization of the topological regimes.
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5.1.3 Deflection measurements in the lowest band

To determine the topological charges at the phase transition points, the sign change
of the local Berry curvature is probed via Hall deflection measurements as described
in Sec. 4.2.4. Due to the extend of the cloud in reciprocal space, the Berry curvature
integrated over the corresponding area is probed. To characterize the topological regimes,
the deflection measurements are performed along paths in reciprocal space traversing the
Γ-point or both Dirac points, K and K ′, once with the complete cloud.

Figure 5.5: Schematics of the paths in reciprocal space and calculated final
quasimomenta including the harmonic trap. a. Paths in quasimomentum space
traversed to probe the Berry curvature at Γ (green arrow) or at K and K ′ (blue arrow)
in the Haldane and anomalous regime, denoted as Γ- and K-directions in the text. The
cloud is accelerated to the final value ∆q = qf along the direction of the force and
the modulation is ramped up during the first part of the path (red arrows), ending at
a distance of ∆q = q0. b. Effective longitudinal quasimomentum in the presence of
the harmonic trap with fT = 27.0(4) Hz calculated using Eq. 4.27 as a function of the
quasimomentum qx, set by the lattice acceleration when driving along the Γ-direction.
The colors represent different forces and the black line depicts the values without the
trap, i.e. qeff = qx. The gray dotted lines mark the quasimomentum after the modulation
ramp-up at qx = q0 and at the final point of qx = qf = 1.5

√
3 kL, used for measuring the

Berry curvature in the Haldane and anomalous regime.

The measurements start at the Γ-point in the first BZ and the quasimomentum is
changed by an amount ∆q = qf along the respective direction using lattice acceleration,
as depicted in Fig. 5.5a by the green and blue trajectories. To avoid excitations to the
second band during the acceleration, the forces are chosen to be much smaller than the
quasienergy gaps that occur along the path. In turn, this leads to large displacements
in real space along the longitudinal direction in the range of ∼ 100µm and hence to
significant restoring forces of the harmonic trap, counteracting the lattice acceleration in
real and momentum space. Thus, the length of the path in reciprocal space is reduced
from qf , the value set by the lattice acceleration, to an effective value qeff . The change of
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the quasimomentum along the path due to the harmonic trap is shown in Fig. 5.5b for
different forces, calculated using Eq. 4.27. Here, the black line represents the ideal values
qx = qf without the harmonic trap. Along the transverse direction, the displacements
in real space are small and the effect of the harmonic trap is negligible, which means
that the transverse quasimomentum is essentially unchanged and the cloud is still driven
along the high-symmetry paths in reciprocal space, as described in Sec. 4.2.4. Hence,
the contribution of the transverse dispersion derivative is vanishing and the measured
deflections are indeed directly proportional to the integrated Berry curvature.

Since the energy gap at Γ is closing at both phase transitions, the atoms will be
excited to the second band when ramping up the modulation amplitude in the anomalous
or third regime while the cloud resides at Γ. To prevent these excitations and load the
complete BEC into the lowest band in each of the topological sectors, different ramp-
up-schemes are used depending on the modulation parameters. The general idea is to
move the cloud in quasimomentum space by ∆q = q0 = 0.5

√
3 kL while the modulation is

ramped up, to avoid the gap closing at Γ (see Fig. 5.7 and red arrows in Fig. 5.5a). The
corresponding schemes are chosen such that no transverse deflection is expected during
the ramp-up. Hence, the Berry curvature is effectively probed along paths from q0 to
qeff along the respective directions, traversing the Γ- and both K-points approximately
once with the cloud. The effect of the harmonic trap during the ramp-up is minor, since
the longitudinal displacement is still small when accelerating by q0, even for the smallest
force of Fa/h = 170 Hz used in this work. So the absolute value of the quasimomentum
after the ramp-up can be assumed as q ≈ q0, which is also shown in Fig. 5.5b, where the
lines for all forces coincide at qx = q0.

Ramp-up scheme for large modulation frequencies To probe the Berry curvature
in the Haldane regime and for large modulation frequencies in the anomalous regime, the
modulation amplitude is ramped up linearly from m = 0 to m = mf within a time tr,
while the cloud is accelerated by q0 along the Γ- or K-direction. When measuring along
the Γ-direction, this corresponds to probing the Berry curvature along the line M -Γ-
M . The ramp-up time tr is determined by rounding up the time ∆t that is needed to
change the quasimomentum by q0 with a given force to full cycles of the modulation. The
modulation frequency is held at a constant value ff . The ramp-up scheme is presented
in Fig. 5.6 for f = 10 kHz and m = 0.16. The values of the modulation amplitude and
frequency during the course of the ramp-up are drawn as a white line in the quasienergy
plot in Fig. 5.6d, with the final quasimomentum after the ramp-up noted at its end. The
procedure is applied when measuring along the Γ- as well as along the K-directions.

This ramp-up scheme is used for probing the Berry curvature in the Haldane and
anomalous regime for modulation frequencies ff > flim, whereas the value of flim depends
on the modulation amplitude: For m < 0.3, it is set to flim = 7 kHz and for m =
0.3 to flim = 8 kHz, which is discussed in more detail in appendix D. For frequencies
smaller than flim, the overall quasienergy gaps at the quasimomenta of the moving BEC
during the ramp-up become too small to avoid excitations to the second band. Moreover,
with decreasing modulation frequency, the modulation parameters will cross the phase



5.1 Determination of the winding numbers 109

I0

I j

mI0

{

a

0 tr tf
t

Γ

q0

√
3

qf

q

b
0 tr tf

0

mf
c

ff

5 10 15
f (kHz)

0

0.1

0.2

0.3

m q0

d

0

2

4

6

∆
E

Γ
/
h

(k
H

z)

Figure 5.6: Ramp-up sequence in the Haldane and anomalous regime. Time-
dependent parameters to probe the Berry curvature of the first band in the Haldane
regime and for large frequencies in the anomalous regime along the Γ- and K-direction,
illustrated for f = 10 kHz and m = 0.16. a. Time-dependent intensity Ij of a single
beam, the modulation of the other two beams is similar but phase shifted by 2π

3
and

4π
3

, respectively. The atoms are imaged insitu at t = tf in the modulated lattice and
afterwards the modulation, the lattice and the trap are switched off abruptly. b. Linear
quasimomentum change during the ramp-up and the subsequent crossing of the Berry
curvature between tr and tf . c. Time-dependent modulation amplitude (green) and
frequency (red). The amplitude is ramped up linearly to mf within tr, while the frequency
is constant at its final value ff . d. Calculated energy gaps ∆EΓ at Γ depending on the
modulation parameters, resembling the phase diagram. The ramp-up path in parameter
space is depicted as the white line, ending at a quasimomentum of q = q0.

transition at earlier times in the interval [0, tr], which means that the cloud is still close
to the Γ-point at the moment of the gap closing. This favors excitations and can lead to
a transverse deflection during the ramp-up, since the cloud potentially overlaps with the
Berry curvature spreading around Γ in reciprocal space after the phase transition. The
changing Berry curvature distribution when ramping across the phase transition together
with the BEC moving in it along the Γ-direction is shown in Fig. 5.7 for f = 8 kHz and
m = 0.2. Here, no overlap in reciprocal space occurs between the cloud and the Berry
curvature, avoiding transverse deflections during the ramp-up.

When measuring deep in the Haldane regime, where no Berry curvature is present at
Γ, the modulation amplitude could also be ramped up while keeping the cloud at Γ and
then starting to probe from here. However, to provide a consistent measurement scheme
and assure comparability between the results in the different topological sectors, the
ramp-up scheme described here is chosen for all modulation parameters in the Haldane
regime.
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t = 0.5 tr t = 0.75 tr t = tr t = tf

Figure 5.7: Moving the atoms in reciprocal space during the modulation ramp-
up. Berry curvature and BEC in reciprocal space when measuring along the Γ-direction
for f = 8 kHz and m = 0.2. The modulation amplitude is ramped up linearly in time
while the cloud is accelerated to the M -point, as illustrated by the green dashed lines.
The BEC is depicted by the green circles with radius R = σ̄ = 0.153 kL being the
mean over all measured momentum space widths. At the beginning of the ramp-up the
modulation parameters lie in the Haldane regime exhibiting no Berry curvature at Γ, and
the transition to the anomalous regime at m = 0.12 is passed at t = 0.6 tr. Shortly before
the phase transition at t = 0.5 tr, positive Berry curvature concentrated at Γ arises which
is not probed by the cloud being already at a different quasimomentum. At the phase
transition, the Berry curvature at Γ becomes negative and then starts to spread when
increasing the modulation amplitude further to its final value (t = 0.75 tr and t = tr).
Then, the Berry curvature distribution around the Γ-point in the next BZ is probed (last
image).

Ramp-up scheme for small modulation frequencies in the anomalous regime
For final modulation frequencies ff ≤ flim in the anomalous regime, the frequency and
amplitude of the modulation are changed simultaneously during the ramp-up. The mod-
ulation amplitude is still increased linearly in time from 0 to mf , but the frequency is
ramped from f0 to ff according to an exponential function:

f(t) = f0 +

(
ff − f0

e p·mf − 1

)
(e p·m(t) − 1), m(t) =

mf

tr
t. (5.9)

This functional form is motivated by the shape of the phase boundaries in m-f -space,
which approximately follow f(m) ∝ em for θ = 0, and is used for optimizing the ramp-up
paths to load the atoms into the lowest band in the third regime, as described later. The
ramp-up time tr is chosen close to the time needed to accelerate by q0, but ending at
full cycles of the modulation. For all modulation parameters in the anomalous regime
with ff ≤ flim, p = 20 and the initial modulation frequency is f0 = 13.3 kHz, where
the relative quasienergy gap at Γ is maximal for m → 0. In Fig. 5.8 the ramp-up and
probing scheme for the Γ-and K-directions is illustrated for m = 0.3 and f = 7 kHz, with
similar plots as in Fig. 5.6. Due to the exponential change of the modulation frequency,
the phase transition is now crossed at later times during the ramp-up as compared to
the case where the frequency would be held constant at f(t) = ff . This ensures that the
cloud has already moved away far enough from Γ in reciprocal space and neither probes
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the Berry curvature arising there nor traverses through points with small quasienergy
gaps.
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Figure 5.8: Ramp-up sequence in the anomalous regime at small frequencies.
Time-dependent parameters to probe the Berry curvature of the first band in the anoma-
lous regime for modulation frequencies ff ≤ flim along the Γ- and K-direction, illustrated
for f = 7 kHz and m = 0.3. a. Time-dependent intensity Ij of a single beam. b. Linear
quasimomentum change during the full sequence. c. Time-dependent modulation ampli-
tude (green) and frequency (red). The amplitude is ramped up linearly to mf within tr,
while the frequency is changed exponentially from f0 = 13.3 kHz to ff . d. Calculated
energy gaps ∆EΓ at Γ depending on the modulation parameters with the ramp-up path
in parameter space (white line), ending at a quasimomentum of q = q0.

To calculate the transverse deflections, the real space positions and quasimomenta
after the modulation ramp-up are used as starting points for the trajectories, with q‖ = q0,
q⊥ = 0 and r⊥ = 0. The longitudinal offset r‖ in real space is obtained by solving
Eq. 4.27 numerically including the momentum space width (as described in Sec. 4.2.4),
while applying the respective force for a time ∆t = tr and setting Ω(q) = 0. Here, the
quasienergy dispersion for the final modulation parameters is used. This gives similar
results as when employing the changing dispersion during the ramp-up, which has been
tested numerically.

Measured deflections during the modulation ramp-up and test of adiabaticity
To further confirm that there is no Berry curvature probed when driving the atoms
by q0 during the linear or exponential ramp-up of the modulation, the corresponding
transverse deflection is measured for m = 0.25 and modulation frequencies f ∈ [6, 16] kHz
scanning the Haldane and anomalous regime, as presented in Fig. 5.9a. For f ≤ 7 kHz
the exponential frequency ramp is applied, in the other cases the modulation frequency
is constant during the amplitude ramp-up. The cloud is accelerated by q0 along the
Γ- or K-direction (green and gray data points) with a force of Fa/h = 204 Hz while
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the modulation parameters are changed to their final values as just described. Indeed,
there is no significant transverse deflection observed along both directions, verifying the
ramp-up schemes presented above.
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Figure 5.9: Measured transverse deflections during the modulation ramp-up
and as a function of the applied force. a. Deflections after the modulation ramp-
up for m = 0.25 and various modulation frequencies in the Haldane and anomalous
regime. The cloud is accelerated by q0 with Fa/h = 204 Hz along the Γ- (green data
points) and K-direction (gray data points), while the modulation amplitude is increased
linearly and the modulation frequency is either held constant or, for f ≤ 7 kHz, changed
exponentially according to the schemes presented before. The data points represent the
differential deflection evaluated from three measurements, each being an average over 30-
40 experimental realizations, the errorbars denote the standard error of the mean (SEM).
b. Transverse deflections along the Γ- and K-direction (green and gray data points) in
the anomalous regime (f = 10 kHz, m = 0.24) for the path q0 → qeff ≈ 1.25

√
3 kL and

different applied forces. The lattice acceleration is adapted to reach the same value of
qeff for all forces, the data points and errorbars are obtained similarly as in a.

As mentioned earlier, excitations to the second band could not only occur during
the loading of the atoms into the modulated lattice, but also when changing the quasi-
momentum to probe the Berry curvature for t > tr, if the applied force is too large
compared to the quasienergy gaps along the path. The forces used in this work for the
deflection measurements are chosen such that they are at least two times smaller than
the smallest quasienergy gaps occurring along the path, expect for some points very close
to the phase transitions (see Fig. 5.12), where the force is of similar magnitude as the
quasienergy gap at Γ. Nevertheless, the magnitude of the force is tested experimentally
by probing the transverse deflections along the Γ- and K-directions for different forces,
shown in Fig. 5.9b.

The modulation parameters lie in the anomalous regime, f = 10 kHz and m = 0.24,
and the final quasimomentum set by the lattice acceleration is adapted such that qeff ≈
1.25
√

3 kL for all forces investigated here. The solid lines denote the theoretical values
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including the momentum space width measured along with the data set. Along the
Γ-direction, the measured deflections are smaller than the theoretical predictions for
Fa/h > 300 Hz, indicating excitations: The second band has opposite Berry curvature
and hence the CoM-deflection is reduced, representing a superposition of atoms in both
bands. Along the K-direction, the transverse deflection does not drop until Fa/h >
400 Hz, which is explained by the larger quasienergy gaps traversed here. Since the
modulation parameters are relatively close to the phase transition, the quasienergy gap at
Γ, ∆E Γ/h = 1110(70) Hz, is smaller than the gap at K, ∆EK/h = 1500(30) Hz, requiring
smaller forces. In the deflection measurements at these modulation parameters, forces of
Fa/h = 170 Hz and Fa/h = 204 Hz are used, being sufficiently small as confirmed by the
data presented here.

Ramp-up schemes in the third regime When loading the atoms into the first band
in the third regime, the phase transition points can not be avoided by acceleration of
the cloud, since the quasienergy gap at Γ closes two times when starting in the Haldane
regime. Instead, the modulation ramp-up is directly performed in the parameter regime
corresponding to the third phase. As discussed in Sec. 3.2.3, in the limit of m→ 0, at Γ,
the first band of the static lattice is connected to the first band of the modulated lattice in
the Haldane and third phase, but connected to the second band in the anomalous phase.
Hence, by choosing an initial modulation frequency in the range of f ∈ [2.2, 3.3] kHz,
the atoms are directly loaded into the lowest band of the modulated lattice in the third
topological regime. To avoid excitations to the second band during the ramp-up, the
modulation frequency is changed exponentially from f0 = 2.7 kHz to ff according to
Eq. 5.9, but now the parameter p, characterizing the shape of the curve in m-f -space, is
optimized to maximize the quasienergy gap at Γ along the ramp-up path in parameter
space. At the initial frequency f0, the relative quasienergy gap at Γ for m→ 0 is maximal.
The modulation amplitude is increased linearly in time and the atoms are held at Γ during
the ramp-up. The ramp-up time tr is chosen to be similar as in the other two regimes,
again rounded to full modulation cycles.

To probe the Berry curvature around Γ, the cloud is then accelerated by ∆q =
√

3 kL
along the path Γ-M -Γ. In this way, for the modulation parameters used in this work,
the same Berry curvature distribution is traversed as along M -Γ-M , which is used in the
Haldane and anomalous regime when measuring around Γ. This has also been verified
numerically by comparing the calculated transverse deflections for both paths. However,
the situation is different when measuring along the K-direction. Driving by ∆q =

√
3 kL

from Γ probes only one of the Dirac points and not both, as in the other two regimes,
and in addition the negative Berry curvature around Γ in the first BZ is traversed. To
get comparable results, the transverse deflection is measured for accelerating by qf =
1.5
√

3 kL and then, in a second set of measurements, for accelerating by q0 = 0.5
√

3 kL.
In the end, the resulting differential deflections are subtracted to resemble the path
q0 → qf , which is probed in the Haldane and anomalous regime.

The rampup-scheme is illustrated in Fig. 5.10, where the orange line in Fig. 5.10b
indicates the larger quasimomenta when probing along the K-direction, extending to
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Figure 5.10: Ramp-up sequence in the third regime. Time-dependent parameters
to probe the Berry curvature of the first band in the third regime along the Γ- and K-
direction, illustrated for f = 5 kHz and m = 0.3. a. Time-dependent intensity Ij of a
single beam. b. Linear quasimomentum change during the ramp-up and the subsequent
crossing of the Berry curvature between tr and tf . When measuring along the Γ-direction
(blue line), the Berry curvature is probed for Γ → Γ, giving similar results as M → M .
Along the K-direction (orange line), the deflections for Γ→ qf = 1.5

√
3 kL and Γ→ q0 =

0.5
√

3 kL are subtracted, effectively probing q0 → qf . Since the same force is used, the
measurement times are different: tKf > tΓ

f . c. Time-dependent modulation amplitude
(green) and frequency (red). The amplitude is ramped up linearly to mf within tr, while
the frequency is changed exponentially from f0 = 2.7 kHz to ff . d. Calculated energy
gaps ∆EΓ at Γ depending on the modulation parameters with ramp-up path in parameter
space (white line), while the cloud remains at Γ.

q = qf , whereas the path ends at q =
√

3 kL when probing along the Γ-direction. The
ramp-up path in Fig. 5.10d (white line), maximizing ∆EΓ, exhibits a similar shape as
the phase transition lines, motivating the functional form of Eq. 5.9.

5.1.4 Derivation of the winding numbers

The change of the winding numbers across the topological phase transitions, which are
detected as quasienergy gap closings at Γ in Sec. 5.1.2, is given by the topological charges
of the corresponding band touching singularities. The topological charge is measured
as the sign change of the local Berry curvature at the singularity. Hence, to determine
the change of the winding numbers, the Berry curvature of the lowest band is probed
using transverse deflection measurements along the Γ-direction for modulation parameters
following the same path as in the quasienergy gap measurements, which is depicted in
Fig. 5.1.
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Haldane regime The absolute values of the winding numbers are derived by exploiting
the connection to the high-frequency limit: Starting from the Haldane regime and sending
f →∞, the quasienergy gap between FBZs, gπ, diverges and necessarily W π = 0, which
holds everywhere in the Haldane sector, since gπ remains open. The winding number W 0

can then be deduced from the well known properties of the Haldane model, which has
been tested in several experiments [96,99,103,104], exhibiting a Chern number of C− = 1
in the lowest band (see Sec. 3.3 for the derivation of the Haldane model in the limit of
large modulation frequencies):

W π
1 = 0 W 0

1 = C− +W π
1 = 1. (5.10)

The Chern number of the lowest band in the Haldane regime is verified experimentally
by measuring the transverse deflections along all Γ- and K-directions, as illustrated by
the green and blue dashed lines in Fig. 5.11a.

Figure 5.11: Transverse deflections measured in units of the lattice constant
a along all Γ- and K-directions. a. Sketch of the paths traversed in quasimomen-
tum space, probing the Berry curvature around the Γ- (dahsed green lines) or K- and
K ′-directions (dashed blue lines). The BEC is illustrated by the green and blue circles
with radius R = σ̄ = 0.153 kL. b. Measured transverse deflections along all directions
depicted in a, in the Haldane regime at f = 16 kHz and m = 0.25 (purple data points)
and in the anomalous regime at f = 10 kHz and m = 0.24 (yellow data points) for
q0 → qeff ≈ 1.33

√
3 kL using Fa/h = 204 Hz. The data points represent differential

deflections derived from three measurement points, each being an average over 30-40
experimental realizations, the errorbars denote the SEM. The calculated deflections in-
cluding the measured momentum space widths are plotted as solid purple and yellow
lines. Right panel: Corresponding calculated Berry curvature distributions in the lowest
band.
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The modulation parameters are chosen to lie deep in the Haldane regime, f = 16 kHz and
m = 0.25, such that the Berry curvature is mainly concentrated around the Dirac points
(see upper right panel of Fig. 5.11b). Accelerating by qf = 1.5

√
3 kL with Fa/h = 204 Hz

moves the center of the cloud by qeff ≈ 1.33
√

3 kL, hence traversing the Berry curvature at
both Dirac points and around Γ once with all atoms (σ = 0.159 kL in this measurement).
The modulation amplitude is ramped up linearly at a constant frequency while driving
by q0, as described in Sec. 5.1.3. This effectively probes the Berry curvature of the entire
first BZ, corresponding to the Chern number.

The measured transverse deflections (purple data points in Fig. 5.11b) reach large,
positive values along all K-directions and small positive values along the Γ-directions,
confirming the expected Berry curvature distribution. The Chern number of 1 is moreover
verified by the good agreement with the theoretical calculations (purple solid lines) em-
ploying the lowest band with C− = 1 and the momentum space width. In contrast, in the
anomalous regime for f = 10 kHz and m = 0.24 (yellow data points and solid lines), the
transverse deflection turns to large negative values along all Γ-directions and to slightly
smaller positive values at the K-directions, as compared to the Haldane regime. This
resembles the negative Berry curvature arising at Γ behind the phase transition and the
still positive Berry curvature at the K-points (see lower right panel of Fig. 5.11b), adding
up to a Chern number of zero. Also here, the measured values coincide well with the
corresponding theory lines. The Haldane regime could also be characterized by adding
a sublattice energy offset and starting in the trivial region of the phase diagram with
a small modulation amplitude and large frequency (see Sec. 3.2.4). By increasing the
amplitude, the closing of the 0-gap at K ′ could be observed along with the sign change of
the corresponding Berry curvature from negative to positive values, resembling ∆W 0 = 1.

Anomalous and third regime The winding numbers in the other two regimes can
now be derived by detecting the sign changes of the transverse deflection at the phase
transitions (see Eq. 5.4) in combination with the winding numbers in the Haldane regime.
The measured transverse deflections along the Γ-direction are shown in Fig. 5.12, the
modulation parameters are varied in the same way as for the gap measurements in Fig. 5.3.
The modulation ramp-up is performed according to the different schemes presented in
Sec. 5.1.3, depending on the topological regime that is probed. The cloud is accelerated
by qf = 1.5

√
3 kL with a force of Fa/h = 170 Hz, hence moving by qeff ≈ 1.25

√
3 kL,

for all measurements in the Haldane and anomalous regime. In the third regime, the
quasimomentum is not changed during the ramp-up and the Berry curvature is probed
for Γ→ qeff ≈ 0.93

√
3 kL, using the same force. The blue shaded areas and the numbers

denote the different topological regimes with the boundaries derived from the gap closing
points at Γ.

In the Haldane regime, the transverse deflections are positive everywhere and rise when
approaching the first gap closing point, which is traversed by changing the modulation
amplitude. For m > 0.2, the deflections then turn to negative values with a pronounced
minimum around m = 0.24, resembling the Berry curvature at Γ, which is jumping
from positive to negative values (see upper panels of Fig. 5.3). Hence, at the first phase
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Figure 5.12: Probing the Berry curvature across the phase transitions. Mea-
sured transverse deflections s−⊥ in the lowest band along the Γ-direction (data points)
and theoretical values (solid green line, see Sec. 3.2.2) as a function of the modulation
amplitude and frequency. The Berry curvature is probed for q0 → qeff ≈ 1.25

√
3 kL in the

Haldane and anomalous regime and for Γ → qeff ≈ 0.93
√

3 kL in the third regime using
Fa/h = 170 Hz. Every data point is derived from three measurement points, each being
an average over 30-40 experimental realizations, the errorbars denote the SEM. The blue
shaded areas and the numbers illustrate the different topological regimes. Upper panel:
Calculated Berry curvature distributions in the first BZ for f = (6, 6.4, 10, 10, 10) kHz and
m = (0.3, 0.3, 0.22, 0.21, 0.1) from left to right. Lower panel: Winding numbers derived
from the sign change of the measured transverse deflections.
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transition, characterized by the closing of gπ, the winding number W π is increased by
+1, whereas W 0 remains unchanged, which is also plotted in the lower panel of Fig. 5.3:

∆W π = Qπ
s = −sgn(∆s−⊥(Γ)) = 1 ⇒ W π

2 = 1 W 0
2 = 1, (5.11)

corresponding to C− = W 0 − W π = 0 = C+. Thus, an additional pair of chiral edge
modes is created in the quasienergy gap gπ, while the edge modes at g0 are still present,
constituting the realization of an anomalous Floquet system.

When tuning the modulation parameters further into the anomalous regime, the Berry
curvature around Γ spreads, indicated by the negative transverse deflection which is
decreasing in magnitude, since the area of the Berry curvature ring is not fully covered
by the momentum space extent of the BEC any more. For modulation frequencies close
to 7 kHz, the deflections become positive again and after passing through a pronounced
maximum, s−⊥ turns to negative values for f ≥ 6.4 kHz, also confirming the position of
the second phase transition determined from the gap measurements. The negative Berry
curvature at Γ spreads out again (first upper panel of Fig. 5.3), leading to a decrease in
absolute value of the transverse deflections when turning the parameters deeper into the
third regime. At the second phase transition, the energy gap g0 is closing, which now
changes the winding number W 0:

∆W 0 = Q0
s = sgn(∆s−⊥(Γ)) = −1 ⇒ W π

3 = 1 W 0
3 = 0. (5.12)

The measured transverse deflections coincide well with the theoretical values (solid
green line), which are calculated as described in Sec. 4.2.4. The momentum space width
is measured along with each data point in Fig. 5.12 and used in the calculation of the
corresponding s−⊥-value. The theoretical deflections are also evaluated for parameters in
between the measured points, especially in the vicinity of the phase transitions. Here,
the momentum space width of the nearest experimental point is used.

Close to the phase transitions, for f = 10 kHz, m ∈ [0.2, 0.22] and f ∈ [6.4, 5.8] kHz,
m = 0.3, the experimental deflections are reduced compared to the theoretically expected
positive and negative peaks. Since the quasienergy gap at Γ is very small at these points,
some atoms can be excited to the second band when moving the cloud through that region
in quasimomentum space, even for the small force used here. There are also modulation
parameters at which the measured deflections exceed the theoretical values. In addition
to possible drifts of the relative beam positions influencing the balancing and depth of
the lattice, this might be explained by excitations to Floquet copies of p-bands which
exhibit different Berry curvature distributions than the s-bands.

To directly probe the band touching point, the Berry curvature would need to be mea-
sured exactly at q = Γ for modulation parameters being infinitely close to the transition,
hence sending ε→ 0 in Eq. 5.5. Due to the vanishing quasienergy gaps, it is not possible
to measure the deflections at modulation parameters arbitrarily close to the phase transi-
tion. Moreover, the Berry curvature integrated over a region around Γ is probed, because
of the cloud’s extent in quasimomentum space. Nevertheless, the topological charge of
the band touching singularity can indeed be determined from these measurements, since
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it is given by the sign change of the Berry curvature which can unambiguously be defined
from a sign change of the transverse deflections. In addition, the good quantitative agree-
ment of the experimental values with the numerical calculations justifies the change of
the winding numbers by ±1, being characteristic of linear, non-degenerate band touching
points. Hence, using deflection measurements in the Haldane regime and across the phase
transitions enables the derivation of the winding numbers, and provides a complete char-
acterization of the different topological regimes investigated in this work. Moreover, the
existence of chiral edge modes can be revealed, even in a system with smooth boundaries,
as it is used in the experiments presented here.

5.2 Probing the phase diagram

To further confirm the observations from the previous section and benchmark the theoret-
ical model presented in Sec. 3.2.2, the phase diagram of Fig. 5.1 is explored in a larger pa-
rameter range. For modulation frequencies f ∈ [5, 16] kHz and amplitudes m ∈ [0.2, 0.3]
the quasienergy gaps and Berry curvature at Γ and K are studied systematically to obtain
the phase boundaries and confirm the change of the winding numbers.

5.2.1 Quasienergy gaps

The phase boundaries are located by measuring the quasienergy gaps at Γ when varying
the modulation frequency within f ∈ [5, 16] kHz while keeping the modulation amplitude
constant at m = (0.2, 0.22, 0.25, 0.27, 0.3), thus scanning the phase diagram in Fig. 5.1
along horizontal lines. The quasienergy gaps are also probed at K, to further test the the-
oretical calculations and to determine the correct forces for the deflection measurements
(Sec. 5.2.2), matching the minimal gaps. The measurements are again performed using
Stückelberg interferometry in the same way as described in Sec. 5.1.1, now with a force
of Fa/h = 1360 Hz. For larger forces, excitations to higher bands occur, when probing
the gaps for high modulation frequencies (f & 12 kHz) and amplitudes (m & 0.25) along
both directions. In the previous band gap measurements presented in Sec. 5.1.2, the
modulation parameters have been chosen to avoid combinations of high f and m, thus
enabling the use of a larger force.

An example of Stückelberg oscillations at Γ is shown in Fig. 5.13a for m = 0.25.
The relative population in the lowest band is plotted as a function of the hold time and
the modulation frequency. Since the hold times are integer multiples of the modulation
period, with t ∈ [0, 22]T , the width of the time steps decreases with increasing modulation
frequency. The oscillations for each modulation frequency are clearly visible as well
as the decrease and increase of the oscillation frequency when approaching the phase
transitions around f ≈ 11 kHz and f ≈ 5.5 kHz. The gap frequencies presented in
Fig. 5.14 are obtained by fitting Eq. 5.6 to the oscillation for each set of modulation
parameters. Usually the contribution of the second component arising from excitations
to p-bands is small, and the oscillation is well described by a single, damped sine wave.
This is illustrated when computing the fast Fouier transform (FFT) of the time-dependent
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Figure 5.13: Population oscillations and FFT. a. Measured relative population
n1(t) in the lowest band depending on the hold time and the modulation frequency for
f ∈ [5, 16] kHz and m = 0.25. Each data point is an average over 3−4 individual images,
with the average SEM being Σ̄ = 0.030(4). b. Fast Fourier transform (FFT) of the
population signal in b, signaling the opening and closing of the energy gaps. The DC
component is not displayed for clarity.

population signals in Fig. 5.13a, which is shown in Fig. 5.13b. For most values of f ,
there is a single maximum in the FFT signal, corresponding to the main oscillation
frequency in Eq. 5.6. Only for some values close to the first phase transition, a second
component arises at small gap frequencies. In general, the opening and closing of the
quasienergy gaps is clearly visible already in the raw data and its FFT, highlighting the
applicability of Stückelberg interferometry to experimentally determine the band gaps
with great quantitative precision.

In Fig. 5.14, the resulting gap frequencies at Γ and K are plotted as a function of the
modulation frequency (green and gray data points) for the different modulation ampli-
tudes, along with the theoretical calculations employing the six-band model presented in
Sec. 3.2.2 (green and gray lines). For m = 0.3, the data is also compared to a two-band
tight-binding calculation, as introduced in Sec. 3.3, which incorporates the change of the
vectors connecting nearest neighbor lattice sites, δj(t) (blue lines).

The quasienergy gaps calculated using the six-band model are in excellent agreement
with the experimental values for both quasimomenta and all modulation parameters
considered here. The two-band calculation describes the gaps well at low modulation fre-
quencies and amplitudes where the coupling to the p-bands is weak, as already discussed
in Sec. 3.3. But for increasing modulation parameters, the quasienergy gaps at Γ and
hence the phase transition lines are shifted, as visible in the lower left panel of Fig. 5.14.
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Figure 5.14: Quasienergy gaps as a function of the modulation frequency and
amplitude. Quasienergy gaps at Γ and K (green and gray data points) vs. modulation
frequency for increasing modulation amplitude measured using Stückelberg interferom-
etry with Fa/h = 1360 Hz. The solid green and gray lines show the calculated gaps
employing the six-band model, for the blue solid lines at m = 0.3, the two-band tight-
binding model introduced in Sec. 3.3 is used including time-dependent connection vectors
δj(t). The dashed, red lines are linear fits to the gaps at Γ to determine the phase tran-
sition points (see text). The data points are the frequencies resulting from fits to the
Stückelberg population oscillations consisting of 23 points, each of which is an average
over 3-4 individual images. The errorbars denote fitting errors.
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The difference between the two models becomes also apparent for the quasienergy gaps at
K, which exhibit jumps at high modulation frequencies that increase in height with the
modulation amplitude. These originate from avoided crossings with the p-bands and are
well captured by the six-band model, also indicating that it is not necessary to include
more than six bands in the calculation for the modulation parameters considered here.
Accordingly, they do not appear in the two-band model, which predicts a monotonically
decreasing gap at K with higher modulation frequencies. However, apart from the miss-
ing jumps, the values of the measured quasienergy gaps at K are in general also well
described by the two-band tight-binding model.

For very small gap frequencies, the measurement of the quasienergy gaps using Stück-
elberg interferometry becomes more difficult, since the hold times needed to observe a
full period of the population oscillation diverge. As described earlier, at long hold times,
heating effects start to play a role, limiting the minimal gap that can be measured also
for large modulation frequencies, which is indicated by the increasing fitting errors at the
gap minima. Hence, the phase transition points are not read-off directly, but determined
by applying linear fits to the quasienergy gaps at Γ in the vicinity of the transition, where
the measurements are more reliable. The gap frequencies increase and decrease linearly
with the modulation frequency around the closing point. At the first phase transition,
where the modulation frequency equals the effective bandwidth, ~ω = Weff , the gap
changes with a slope of 1 and at the second phase transition (2~ω = Weff) with a slope of
2. For modulation amplitudes m ≥ 0.25, both phase transitions are obtained by fitting
∆E/h = n · |f − fPT

n | with n = {1, 2} to the measured gaps lying at lower and higher
frequencies around the minima. Since the transition frequencies move to smaller values
with decreasing modulation amplitude, for m < 0.25, only the first phase transition is
determined. The fits are shown as dashed, red lines in Fig. 5.14. The errors of the phase
transition frequencies fPT

n are derived as a combination of the standard deviations from
the linear fit, Σfit, and systematic errors, Σsys:

Σtot =
√

Σ2
fit + Σ2

sys. (5.13)

The latter are given by the step size of the modulation frequency used in the measurements
in Fig. 5.14, Σsys = 300 Hz, and dominating over the fitting errors being in the range of
Σfit ∈ [20, 70] Hz. The resulting phase transition points are plotted in Fig. 5.17 (dark
gray data points), matching the theoretically expected phase boundaries.

This is also illustrated in Fig. 5.15a, where the measured relative quasienergy gaps
at Γ, ∆E Γ/(~ω), are plotted in the m-f parameter space, resembling the phase diagram
very well, which is derived from the theoretical quasienergy gaps at Γ (Fig. 5.15b). The
maxima of the relative gap at ∆E Γ/(~ω) = 0.5 indicate the change from measuring gπ to
measuring g0 and vice versa (see Sec. 5.1.2). For modulation frequencies in the Haldane
regime, the gap between FBZs is measured, which is deduced from the comparison with
theory, as the corresponding maxima occur at higher modulation frequencies that lie
outside the parameter range considered here. In the gap measurements in Fig. 5.3, the
Haldane regime is probed for a small modulation amplitude of m = 0.1, where the
phase boundaries are shifted to smaller frequencies, enabling the observation of this first
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maximum there. In Fig. 5.15a, the maximum line obtained for f ∈ [6, 8] kHz accordingly
signals the change from probing gπ to probing g0. Hence, the points obtained for the first
phase transition at larger modulation frequencies describe the closing of gπ and the second
phase transition for smaller modulation frequencies occurs as a closing of g0. Overall,
the positions of the gap closings as well as of the gap maxima match the values expected
from theory.
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Figure 5.15: Relative quasienergy gaps at Γ depending on the modulation fre-
quency and amplitude. a. Measured values using Stückelberg interferometry. The
same data points as in Fig. 5.14 are used. b. Calculated quasienergy gaps using the
six-band model for the same modulation parameters as the experimental values. The
phase boundaries are given by the gap closings.

Quasienergy gaps along the high-symmetry line To further study the different
topological regimes, the quasienergy gaps are also probed at different quasimomenta along
the high-symmetry line Γ-M -K-Γ, which is presented in Fig. 5.16. In these experiments,
the lattice acceleration is divided into two parts: First, the cloud is moved along Γ-
M (gray path in Fig. 5.16a). Then, a second lattice frequency ramp is performed to
either drive to different quasimomenta along the axis M -Γ (green arrows) and M -K
(blue arrows), or to points lying on the connection line Γ-K (red arrows), reached by
changing the angle of the path. The lattice acceleration starts with a delay in time, such
that it finishes simultaneously with the modulation ramp-up performed within tr = 5T .
The resulting quasienergy gaps along all three segments are combined in Fig. 5.16b and
Fig. 5.16c, probing the Haldane and anomalous regime for m = 0.25, f = 14 kHz and
f = 7 kHz, respectively. The measured values agree well with the calculated gaps, thus
validating the model also for quasimomenta lying in between the high-symmetry points.
The cusp-like maxima indicate again the change of the measured gap from gπ to g0 or
vice versa, now depending on the quasimomentum instead of the modulation parameters
(gray and white backgrounds). In the plots, the absolute quasienergy gaps are shown,
but since each data set is measured at constant f , the relative quasienergy gaps along
the path would look similar, but rescaled to the range [0, 0.5].
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Figure 5.16: Quasienergy gaps along high-symmetry lines in reciprocal space.
a. Sketch of the paths along which the atoms are accelerated to measure the at the quasi-
momenta lying on the connections lines Γ-M (green arrows), M -K (blue arrows) and K-Γ
(red arrows). b. Measured quasienergy gaps along the complete path Γ-M -K-Γ in the
Haldane regime for f = 14 kHz and m = 0.25, using Fa/h = 1360 Hz, and corresponding
theory values (blue line). c. Measured quasienergy gaps in the anomalous regime for
f = 7 kHz and m = 0.25 with Fa/h = 6801 Hz, the theoretical gaps are depicted by the
red line. The gray (white) shaded areas denote the regions where the quasienergy gap
gπ (g0) is probed. All data points are obtained from a fit to the Stückelberg population
oscillations consisting of 23 points, each being an average over 3-4 individual images,
errorbars denote fitting errors.

5.2.2 Berry curvature

From the measured quasienergy gaps at Γ, the phase boundaries in the m-f parameter
space are obtained by linear fits, as described in the last section. To obtain the topological
properties of the different sectors, the Berry curvature around Γ and K is probed, enabling
the determination of the topological charge along the phase transitions. The local Berry
curvature is again measured by performing Hall deflection measurements in the lowest
band, employing the ramp-up schemes presented in Sec. 5.1.3. The forces that are used to
move the cloud in quasimomentum space depend on to the modulation parameters. In the
anomalous and third regime, Fa/h = 204 Hz is used for all modulation frequencies and
amplitudes, hence probing the Berry curvature for q0 → qeff ≈ 1.33

√
3 kL in the anomalous

and along K in the third regime (here, the contributions from Γ→ qeff ≈ 1.33
√

3 kL and
Γ → q0 are subtracted). Along the Γ-direction in the third regime, the modulation is
ramped up at Γ and hence the path Γ→ qeff ≈ 0.95

√
3 kL is measured.

In the Haldane regime for m = 0.2, 0.22 and 0.27, the deflections are also measured
with Fa/h = 204 Hz, probing q0 → qeff ≈ 1.33

√
3 kL. For m = 0.25 and m = 0.3, at

certain high modulation frequencies deep in the Haldane regime, large positive deflections
at Γ have been be observed, comparable to the values at K, when using a force of Fa/h =
204 Hz or smaller. Since the coupling to higher bands is increased at these parameters,
it might be that some of the atoms are transferred to p-bands via avoided crossings at
which the lower band exhibits a jump, but the atoms are driven into another band which
is resonant. This can be prevented by slightly increasing the force to Fa/h = 272 Hz for
m = 0.25 and Fa/h = 340 Hz for m = 0.3, moving the cloud along q0 → qeff ≈ 1.40

√
3 kL
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and q0 → qeff ≈ 1.33
√

3 kL, whereas in the latter case, the quasimomentum is set to
qf = 1.381

√
3 kL by the lattice acceleration, to compensate for the effect of the harmonic

trap.
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Figure 5.17: Probing the Berry curvature as a function of the modulation
frequency and amplitude. Transverse differential deflections along the Γ- and K-
directions (left and right panel) in units of the lattice constant, depending on the mod-
ulation frequency and amplitude. a. Measured deflections (colored pixels) and phase
transition points (gray data points) which are obtained from linear fits to the measured
quasienergy gaps at Γ. The solid black lines depict the theoretical phase boundaries. For
the deflections, every data point is derived from three measurement points, each being
an average over 30-40 experimental realizations. The mean SEMs along the Γ- and K-
directions are Σ̄Γ = 0.72(4) a and Σ̄K = 0.78(5) a. The used forces and effective path
lengths are denoted in the text. b. Calculated transverse deflections from the six-band
model using the measured momentum space widths at each point and the corresponding
forces. The black lines show again the theoretical phase boundaries.

The resulting transverse deflections along the Γ- and K-directions are presented in
the left and right panel of Fig. 5.17a. The phase transition points obtained from the gap
measurements are plotted as dark gray data points, following the theoretically expected
phase boundaries quite well (black solid lines). The calculated deflections using the forces
and momentum space widths from the experiments, are shown in the left and right panels
of Fig. 5.17b. Across the first phase transition, the measured deflections at Γ change sign
from positive to negative for all amplitudes, similar to the measurements in Fig. 5.12,
indicating ∆W π = 1 everywhere. The observed variation in the transverse deflection is
in very good agreement with the theoretical calculations. At the second phase transition,
observed for m ≥ 0.25, the sign change of s−⊥ is less pronounced than in Fig. 5.12, and
for m = 0.25 and m = 0.3 it is hardly visible. This is partly due to the larger step size
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of 1 kHz that is used for the modulation frequency, effectively jumping over the sharp
peaks around the phase transition, which is also apparent in the calculations: Before the
second phase transition, the theoretical deflections are still close to zero, since the narrow
positive peak, as visible in Fig. 5.12, occurs at modulation frequencies lying in between
the values probed here. Moreover, the magnitude of the negative deflection behind the
transition might be reduced due to small excitations to the second band, as also observed
in Fig. 5.12, since the corresponding quasienergy gaps at Γ are very small.

Along the K-direction, the measured transverse deflections are positive mostly ev-
erywhere as expected from the theoretical calculations shown below. The energy gap at
K increases for larger modulation amplitudes and with decreasing modulation frequency
across the Haldane and anomalous regime (see Fig. 5.14), which corresponds to a spread
of the Berry curvature around K. The increasing area over which the Berry curvature
is distributed can not be probed entirely by the cloud, leading to the decrease in the
transverse deflections. Close to the second phase transition (probed for m ≥ 0.25), there
is nearly no transverse deflection observed around K any more. The positive deflections
at K together with the changing deflections at Γ illustrate again the change from C− = 1
in the Haldane regime to C− = 0 in the anomalous regime. Apart from the small modula-
tion frequencies close to the second phase transition, the measured transverse deflections
at Γ and K coincide well with the calculated values, confirming the theoretical model
and the winding numbers previously derived for the different topological regimes.

5.3 Deflection measurements in the second band

The Berry curvature distribution in the lowest band and the quasienergy gaps between
the first two bands have been probed, enabling the full characterization of the three topo-
logical regimes considered in this work in terms of the winding numbers. As described in
Sec. 5.1.3, by combining the lattice acceleration with carefully chosen ramp-up schemes
for the intensity modulation, the atoms can be loaded into the lowest band for all modu-
lation parameters. Exploiting the limit of m→ 0, which connects the modulated lattice
to the static lattice, it is also possible to load the atoms adiabatically into the second
band and to measure the Berry curvature there, which will be described consecutively.

5.3.1 Loading into the second band

At the transition from the Haldane to the anomalous regime, the quasienergy gap gπ is
closing at Γ. Subsequently, gaps open at avoided crossings, which are formed between
the two lowest bands being shifted into each other. As discussed in Sec. 3.2.3, in the
region in quasimomentum space around Γ, where the bands have already hybridized, the
new lowest band in the anomalous regime is connected to the second band of the static
lattice for m→ 0 and vice versa. Hence, by starting the modulation ramp-up at Γ with
initial frequencies f0 ∈ [3.3, 6.6] kHz, lying in the anomalous regime at m→ 0, the atoms
are loaded from the first band of the static lattice into the second band of the modulated
lattice.
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In Fig. 5.18, the ramp-up scheme for measuring the second band in the Haldane regime is
presented for f = 10 kHz and m = 0.16. In the first part of the ramp-up, the modulation
amplitude is always increased linearly up to m = 0.3, while the frequency is ramped
exponentially according to Eq. 5.9 from f0 = 4.4 kHz (maximal gap for m→ 0) to ff . In
order to minimize excitations to the first band, the parameter p characterizing the ramp
is again optimized to yield a maximum quasienergy gap ∆E Γ during the ramp-up.
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Figure 5.18: Ramp-up sequence to load the second band in the Haldane regime.
Time-dependent parameters to probe the Berry curvature of the second band in the
Haldane regime along the Γ- and K-direction, illustrated for f = 10 kHz and m = 0.16.
a. Time-dependent intensity Ij of a single beam. b. Quasimomentum set by the lattice
acceleration. The atoms are held at Γ during the first part of the ramp-up and then
moved to q0. Subsequently, the Berry curvature is traversed between q0 and qf . c. Time-
dependent modulation amplitude (green) and frequency (red). The amplitude is increased
linearly to m = 0.3 and the frequency is ramped up exponentially from f0 = 4.4 kHz to ff
within tr to load the second band. Then the modulation amplitude is decreased linearly
to its final value mf , crossing the phase transition within tq0 − tr. d. Calculated energy
gaps ∆EΓ. The ramp-up path in parameter space is depicted by the white line, ending
at a quasimomentum of q = q0.

In the second part, the modulation amplitude is then decreased linearly from m = 0.3
to its final value mf at constant frequency ff , while the atoms are accelerated by q0 to
move away from the gap closing point at Γ. In this way, excitations to the first band
at the transition to the Haldane regime can be avoided. However, the atoms necessarily
traverse through the contracting Berry curvature around Γ, when the phase transition
is approached. This leads to a non-vanishing transverse deflection resulting from the
modulation ramp-up. To extract the signal originating from the Berry curvature between
q0 and qeff , the transverse deflection is measured first only for the ramp-up, Γ→ q0, which
is then subtracted from the result for the complete path Γ→ qeff . This procedure needs
to be performed along the Γ- and K-direction. The duration tr of the first part is chosen
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to be similar to the traversing time ∆t from Γ to q0 for the given force, ending with a
full cycle of the modulation. The ramp-up time of the second part tq0 − tr is given by the
time needed to accelerate by q0 rounded up to full modulation cycles. Due to the change
of the modulation period in the first part, the two times differ in general from each other.
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Figure 5.19: Ramp-up sequence to load the second band in the anomalous
regime. Time-dependent parameters to probe the Berry curvature of the second band
in the anomalous regime along the Γ- and K-direction, depicted for f = 7 kHz and
m = 0.3. a. Time-dependent intensity Ij of a single beam. b. Quasimomentum set by
the lattice acceleration. The atoms are held at Γ during the ramp-up and then moved
to qf to probe the Berry curvature. Along the K-direction, the transverse deflection for
Γ → q0 is subtracted from the signal for q0 → qf = 1.5

√
3 kL (orange lines), along the

Γ-direction, the path Γ→
√

3 kL is traversed (blue line). c. Time-dependent modulation
amplitude (green) and frequency (red). The amplitude is increased linearly to its final
value and the frequency is ramped up exponentially to ff within tr. d. Calculated energy
gaps ∆EΓ, the atoms remain at Γ during the ramp-up.

To probe the anomalous regime, the modulation amplitude and frequency are directly
ramped to their final values while the atoms are held at Γ, so the ramp-up consists only
of the first part. The modulation amplitude is increased linearly while the frequency
again follows an exponential ramp from f0 = 4.4 kHz to ff with an optimized p-value.
Measuring the Berry curvature around Γ along Γ-M -Γ is equivalent to M -Γ-M , and hence
the cloud is subsequently accelerated by

√
3 kL. Along the K-direction, the transverse

deflections for Γ → qeff and Γ → q0 need to be subtracted, similar as in the Haldane
regime. The corresponding time-traces for probing the deflection in the anomalous regime
are shown in Fig. 5.19 for f = 7 kHz and m = 0.3. The ramp-up time tr is again given
by the time being closest to ∆t and assuring that the modulation ends at full cycles.

In the third regime, the ramp-up is again divided into two parts to first load the atoms
into the second band via the anomalous regime and then move across the transition to the
third phase without exciting to the first band. As illustrated in Fig. 5.20, the modulation
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Figure 5.20: Ramp-up sequence to load the second band in the third regime.
Time-dependent parameters to probe the Berry curvature of the second band in the
third regime along the Γ- and K-direction, illustrated for f = 5 kHz and m = 0.3. a.
Time-dependent intensity Ij of a single beam. b. Quasimomentum set by the lattice
acceleration. The atoms are held at Γ during the first part of the ramp-up and then
moved to q0. Subsequently, the Berry curvature is traversed between q0 and qf . c. Time-
dependent modulation amplitude (green) and frequency (red). The amplitude is increased
linearly to m = 0.1 and the frequency is ramped up exponentially from f0 = 4.4 kHz to ff
within tr to load the second band. Then, the modulation amplitude is increased linearly
to its final value mf crossing the phase transition within tq0 − tr. d. Calculated energy
gaps ∆EΓ, the white line depicts the ramp-up path in parameter space, ending at q = q0.

amplitude is first increased linearly up to m = 0.1 and the frequency is ramped up
exponentially from f0 = 4.4 kHz to ff , where the p-value is again optimized to maximize
the quasienergy gap during the ramp-up. Then, in the second part, the transition to the
third regime is traversed by ramping up the modulation amplitude to its final value and
keeping the frequency constant at ff .

Similar as in the Haldane regime, the atoms are accelerated by q0 in the second part to
avoid the gap closing at Γ. Approaching the second phase transition, the Berry curvature
around Γ spreads out, which means that both the radius and the width of the ring are
increasing and the atoms can pass through some Berry curvature during this stage. The
positive and negative peaks of Berry curvature at Γ, occurring shortly before and after
the phase transition, are however not traversed, since the cloud is moved by q0. To
ensure that there is no transverse deflection during the ramp-up, the signals for Γ→ qeff

and Γ → q0 are both measured and again subtracted when probing along the Γ- and
K-direction. The ramp times tr and tq0 − tr are chosen just as in the Haldane regime,
both being close to the traversing time ∆t and rounded to full cycles of the modulation,
taking into account the changing frequency in the first part.
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5.3.2 Probing the different topological regimes

With the ramp-up schemes described above, it is possible to load the atoms into the
second band in all topological regimes to probe the Berry curvature. To test the loading
schemes and to benchmark the topological regimes also in the second band, the trans-
verse deflections are measured around the Γ-and K-point at several sets of modulation
parameters along the path depicted in Fig. 5.1. This allows for a direct comparison with
the results for the first band, presented in Fig. 5.12. The sum of the Chern numbers of
the two s-bands is always zero and the Berry curvature distribution in the second band
is the inverse of the distribution in the first band (in the ideal two-band tight-binding
model). This is confirmed by the measured transverse deflections in the second band, s+

⊥,
which are shown in Fig. 5.21. The cloud is accelerated with Fa/h = 170 Hz, and hence
moved by qeff ≈ 1.25

√
3 kL, similar to the measurements in Fig. 5.12. The time needed

to accelerate up to q0 during the modulation ramp-up is ∆t ≈ 1.96 ms, determining the
values for tr and tq0 − tr.
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Figure 5.21: Probing the Berry curvature of the second band. Transverse de-
flections in the second band s+

⊥ in units of the lattice constant, measured along the Γ-
and K-directions (green and gray data points and lines) depending on the modulation
frequency and amplitude. Every data point represents the differential deflection derived
from three measurement points, each being an average over 30-40 experimental realiza-
tions, the errorbars denote the SEM. The deflections are measured with Fa/h = 170 Hz
for q0 → qeff ≈ 1.25

√
3 kL, except for the Γ-direction in the anomalous regime, where

Γ → qeff ≈ 0.93
√

3 kL is probed. The solid lines depict the theoretical calculations, in-
corporating the measured momentum space widths. The different topological phases are
indicated by the blue shaded areas and the numbers.
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In the Haldane regime, the Berry curvature at Γ (green data points) is negative and
increases in magnitude, when approaching the first phase transition. Subsequently, the
deflections turn to positive values indicating the peak of positive Berry curvature arising
at Γ and signaling again the change of the winding number: ∆W π = sgn(∆s+

⊥(Γ)) = 1.

The second phase transition is not measured in detail, but deeper in the anomalous
regime the deflection decreases in magnitude and is then distinctly positive again in the
third regime. The signal at K (gray data points) remains negative throughout the Hal-
dane and anomalous regime with decreasing magnitude, as expected from the spreading
negative Berry curvature around the Dirac points, and then becomes slightly positive in
the third regime. Overall, the measured transverse deflections agree well with the theo-
retical predictions calculated in the same way as for the first band. This confirms once
more the derived change of the winding numbers across the two phase transitions.

Moreover, it shows that the loading schemes presented above are functional and the
atoms are indeed loaded into the second band without many losses, as visible from the
good quantitative agreement with the calculations. Hence, the connection between the
lowest band of the static lattice and the first or second band of the modulated lattice
in the limit m → 0 does not remain a theoretical consideration, but could be verified
experimentally.
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Figure 5.22: Test of the loading schemes in the Haldane regime. a. Absorption
image after loading the atoms into the first band in the Haldane regime, reverting the
ramp-up and subsequently performing bandmapping in the static lattice, resulting in all
atoms being back in the lowest band. b. Absorption image when loading the atoms into
the second band in the Haldane regime and then decreasing the modulation amplitude
at a constant frequency while moving back to Γ. The population remains in the second
band of the modulated lattice, which is connected to the second band of the static lattice
in the Haldane regime. c. Calculated energy gaps ∆EΓ. The ramping paths in parameter
space corresponding to the images in a and b are depicted by the orange and white lines,
respectively. The CoM quasimomenta at the different stages of the ramps are noted next
to the lines.

The loading schemes used for the first and second band have also been tested by
performing bandmapping measurements. To verify that no excitations to the other band
occur, the respective modulation ramp-up is performed as described in this and the
previous section, including possible accelerations by q0. Then, the modulation is directly
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ramped down again, while also inverting the lattice acceleration, moving the atoms back
to Γ in the static lattice. The lattice intensity is ramped down to execute bandmapping
after a TOF of 3.5 ms and the populations in the first and second band are counted,
resulting in most of the atoms being back in the lowest band. In Fig. 5.22a, an absorption
image is shown when testing the loading into the first band in the Haldane regime, which
corresponds to the orange path in Fig. 5.22c. The ramp-up times and forces presented
previously are optimized by maximizing the population in the lowest band after this
sequence. In addition, the loading of the second band can also be proven directly: After
the second band is loaded in the Haldane regime, the modulation amplitude is ramped
down linearly for constant f = ff , while moving the atoms back to Γ, as illustrated by
the white path in Fig. 5.22c. Hence, the modulation parameters remain in the Haldane
regime, where the second band of the modulated lattice is connected to the second band
of the static lattice, resulting now in all population being distributed to the outer peaks
in the bandmapping images (see Fig. 5.22b).

5.4 Lifetimes

With the lattice intensity modulation scheme presented in this work, different topological
regimes, including an anomalous Floquet setting, can be realized and have been inves-
tigated experimentally in the last sections. On the one hand, the combination of the
Haldane model with larger interactions is desirable in view of exploring fractional Quan-
tum Hall phases. On the other hand, interesting features of anomalous Floquet systems
as the ring like-minimum in the lowest band or the propagation of chiral edge modes in
all topological regimes are subjects of interest and will be discussed in more detail in
chapter 7. To get a first idea of the experimental feasibility of these phenomena and to
enable a direct comparison with the phase modulation scheme presented in chapter 6,
the lifetime of the BEC is measured in the different topological regimes. The methods
used to determine the lifetime and the results are described in the course of this section.

5.4.1 Measurement of the lifetimes

The lifetimes are measured at the Γ-point, since this will be the starting point for most
kind of measurements. To determine the lifetimes, the modulation is ramped up at Γ,
held for integer multiples of the driving period, t = NT, N ∈ N, until most of the atoms
are lost, and then ramped down again. Subsequently, the intensities of all lattice beams
are ramped down to perform bandmapping after a TOF of 10 ms. Here, a long TOF is
used to reduce the contributions from thermal atoms expanding much faster than the
BEC and to count only the condensed atoms being left in the lowest band of the static
lattice. In the anomalous regime, the lifetime is measured in the second band, exhibiting
a minimum at Γ, similar as the lowest band in the Haldane and third regime.

For modulation parameters in the Haldane regime, the amplitude is increased linearly
to mf at a constant frequency within tr = 5T , and ramped down in the same way. In the
anomalous regime, the modulation frequency is ramped exponentially from f0 = 4.4 kHz
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to ff , as described in the last section, thus loading the second band. The rampup time
is tr = 12T , being close to 2 ms for all parameters probed here. In the third regime, the
lowest band is loaded as explained in Sec. 5.1.3, also using an exponential frequency ramp,
starting from f0 = 2.7 kHz, with tr = 7T −8T ≈ 2 ms. The ramp-down of the modulation
is always the inverse of the ramp-up. After bandmapping, the pixel sum corresponding
to the population in the first band, Σ1 is determined, as described in Sec. 4.2.2.
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Figure 5.23: Decay measurements of the BEC depending on the modulation pa-
rameters. Measured relative population (data points) in the lowest band after bandmap-
ping, normalized to the value at t = 0 as a function of the hold time in the different
topological regimes. The red lines depict a fit according to Eq. 5.14 to determine the
lifetime τ . a. Decay of the BEC loaded into the lowest band at Γ in the Haldane regime
for f = 10 kHz and m = (0.12, 0.15, 0.18) from left to right. b. Decay in the anoma-
lous regime in the second band at Γ for f = 7 kHz and m = (0.2, 0.24, 0.3) from left to
right. c. Decay in the third regime in the lowest band at Γ for f = (4, 4.5, 5) kHz and
m = (0.2, 0.25, 0.3) from left to right. Each data point is an average over 10 experimental
realizations, the errorbars denote the standard error.
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The values of the hold time are adapted to the lifetime such that most of the atoms are
lost at the end of the trace, enabling a meaningful fit to determine the lifetime. For each
hold time, the pixel sum for about 10 individual images is averaged and the relative sum,
divided by the value for t = 0, is plotted as a function of the hold time, as shown in
Fig. 5.23. To determine the lifetime, an exponential decay is assumed and the following
function is fitted to the data, with A, τ and Σ0 being free parameters:

Σ1
rel(t) = Ae−

t
τ + Σ0. (5.14)

Since the maximal hold times are chosen such that nearly all atoms are lost, the offset
Σ0 is vanishing in most of the measurements.

For the static lattice and deep in the Haldane regime the measured decay is well de-
scribed by Eq. 5.14. But when approaching the transition to the anomalous regime, oscil-
lations of the population on top of the decay can be observed, as presented in Fig. 5.23a
for increasing modulation amplitude and f = 10 kHz. For m = 0.18, the frequency of
these oscillations is around 1 kHz, roughly matching the quasienergy gap at Γ between
the first and second band. This might be a sign of excitations to the second band during
the hold time. In the anomalous regime, the shape of the decay also changes with the
modulation parameters. In Fig. 5.23b, the measured decay is compared for f = 7 kHz and
different modulation amplitudes. At m = 0.2, it exhibits an s-shape, which turns into an
exponential decay for large modulation amplitudes, departing from the phase transition.
A similar behavior is observed in the third regime at f = 5 kHz and m = 0.3 shown in
the last panel of Fig. 5.23c. But now the shape also changes to exponential for f = 4kHz
and m = 0.2 (left panel), which is similarly close to the phase transition. One reason
for the observed s-shaped decay might be that atoms being excited at early times do not
leave the trap and are still counted in the TOF images. Nevertheless, to get comparable
results, the decay is fitted according to Eq. 5.14 for all modulation parameters.

5.4.2 Lifetimes in the different topological regimes

In the Haldane regime, the lifetime is determined at f = 10 kHz for different modulation
amplitudes and at m = 0.1 for modulation frequencies of f = (10, 20) kHz, as presented
in Fig. 5.24a. The lifetime in the static lattice is measured along with each data set
and the corresponding point in Fig. 5.24a represents an average over four measurements.
The lifetime decreases linearly with the modulation amplitude and increases with the
modulation frequency, which corresponds to shifting the modulation parameters towards
or away from the phase transition. Along with the modulation amplitude the coupling
to the Floquet copies of higher bands is increased, which enhances the probability of
excitations, leading to a depletion of the BEC.

At f = 20 kHz and m = 0.1 the lifetime is comparable to the static lattice. Due to
the small modulation amplitude, the coupling to higher bands is weak and at the same
time the modulation frequency is large enough that gπ > g0, as the cusp with gπ = g0

occurs at f = 15.5 kHz for m = 0.1. This yields quasienergy bands similar to the static
lattice apart from the gap at K. Increasing the modulation frequency further brings the
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p-bands into resonance: At f = 30 kHz (not shown in the plot), the lifetime decreases
again and takes the same value as for f = 10 kHz.
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Figure 5.24: Measured lifetimes at Γ in the different topological regimes. a.
Lifetimes for various modulation amplitudes and frequencies in the lowest band in the
Haldane regime, compared to the static lattice (which is an average over 4 data sets). b.
Anomalous regime probed in the second band, which exhibits a minimum at Γ. c. Third
regime, probed in the lowest band for modulation parameters lying similarly close to the
second phase transition. d. Lifetimes vs. scattering length measured in the lowest band
in the Haldane regime for f = 20 kHz and compared with the static lattice. The data
points are obtained by fitting Eq. 5.14 to a decay measurement consisting of 23 points,
each being an average over 10 experimental realizations, the errorbars denote the fitting
errors.

In the second band and anomalous regime, the measured lifetimes at Γ are consider-
ably smaller than in the Haldane regime (Fig. 5.24b). In general, the lifetimes approxi-
mately drop by a factor of two when increasing the modulation frequency, signaling more
excitations to higher bands, as expected in this parameter range. The difference of the
modulation parameters compared to the first phase boundary does not seem to play a
major role, since m = 0.2, f = 7 kHz and m = 0.3, f = 10 kHz lie similarly close to the
phase transition but the lifetimes differ by a factor of five.
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This is also observed in the third regime (see Fig. 5.24c), where three sets of modu-
lation parameters are compared, all lying similarly close to the second phase transition.
The lifetime strongly depends on the absolute values of the modulation amplitude and
frequency, decreasing by more than a factor of 10 from m = 0.2, f = 4 kHz to m = 0.3,
f = 5 kHz. In total, the lifetime of the BEC at Γ is reduced for larger modulation ampli-
tudes, enhancing the probability of coupling to Floquet copies of higher bands and partly
also for higher modulation frequencies.

The smallest lifetimes observed in Fig. 5.24 are in the range of τ ≈ 2 ms, which is
already less than the maximal durations of the deflection and Stückelberg measurement
sequences: Probing the Berry curvature with Fa/h = 170 Hz up to qeff ≈ 1.25

√
3 kL

takes about 5.88 ms. Holding the atoms at Γ for a time t = 23T in the Stückelberg
measurements with f = 4.6 kHz, which is the smallest modulation frequency for which
the quasienergy gaps are measured, takes about 5 ms. As described in Sec. 5.1.1, at these
long hold times, the heating and depletion of the BEC are visible in the TOF images used
for the Stückelberg interferometry, leading to the observed damping of the oscillations
and limiting the maximal hold times and minimal modulation frequencies that can be
probed. On the other hand, atom loss and heating have only a minor influence on the
insitu images used in the deflection measurements. Here, the CoM-position is evaluated,
which is not altered by a reduction of the cloud size and the BEC can still be fitted well
in all insitu images used in this work.

So far, all measurements have been done in the non-interacting limit by setting the
scattering length to as = 6 a0 using the Feshbach resonance of 39K. As mentioned in the
beginning of this section, it would be interesting to combine topological band structures
with strong inter-particle interactions. Since all experiments reported here are performed
in a 2D lattice of tubes with harmonic confinement along the vertical direction, the ratio
of the Hubbard interaction U to the hopping will remain small, even if the Feshbach
resonance is used to increase the scattering length. For as = 6 a0, it amounts to U/J ≈
0.01 in the presence of the harmonic trapping potential with fz = 200 Hz along the
vertical direction (see Sec. 7.1.3).

Nevertheless, as a first test along these lines, the lifetimes in the Haldane regime
are measured as a function of the scattering length, which is shown in Fig. 5.24d. The
modulation frequency is set to f = 20 kHz and the lifetimes for m = 0.1 are compared
to the static lattice. The lifetime decreases non-linearly with the scattering length and
the further reduction due to the lattice modulation is small compared to the effect of
the interactions. In the 2D lattice system studied here, interaction-induced resonances
are moreover facilitated by the harmonic confinement along the vertical axis, leading to
a nearly continuous energy spectrum in this direction. These effects are investigated in
chapter 9 using the example of a periodically driven 1D lattice. However, the minimal
lifetime observed in the Haldane regime for as = 80 a0 is about τ ≈ 15 ms, which is still
sufficient to conduct measurements of the quasienergy gaps and the Berry curvature.

In the anomalous regime, the lifetime is probed in the second band, exhibiting a
minimum at Γ. To measure the lifetime of the BEC in the lowest band, it would be
desirable to load it into the degenerate ring-like minimum around the Γ-point, which
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can also be the starting point to explore the interplay with interactions and to observe
fermionization effects. This will be discussed in more detail in chapter 7, along with
modifications of the experimental setup which enable a direct measurement of the chiral
edge modes. In general, anomalous Floquet systems could be stabilized by disorder, since
they allow for a many-body localized bulk, coexisting with thermalizing edge states (see
Sec. 7.1 and [59]).
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Chapter 6

Anomalous Floquet phases in a
shaken honeycomb lattice

By periodic intensity modulation of the optical honeycomb lattice, different topological
regimes, including an anomalous Floquet system, can be realized and have been char-
acterized theoretically and experimentally in the previous chapters. As mentioned in
Sec. 2.2, circular shaking of the entire honeycomb lattice potential has been used to
generate a Haldane phase [103, 104]. This technique can also be employed to realize an
anomalous Floquet system when adding a sublattice energy offset [120]. In general, a
variety of topological regimes arise in the circularly shaken honeycomb lattice, these are
discussed in Sec. 6.1, along with the emergence of the anomalous phase. To derive the
dispersion of the chiral edge modes, a tight-binding description of the modulated lattice
is introduced in Sec. 6.2, which also serves as a starting point for the analytical deriva-
tion of the effective Hamiltonian in the limit of large shaking frequencies. Measurements
of the quasienergy gaps and the lifetimes of the atomic cloud in the shaken lattice are
presented in Sec. 6.3. For the shaking parameters considered there, the quasienergy gaps
are small compared to the regimes probed in the intensity modulated lattice. Moreover,
the anomalous Floquet regime requires relatively large shaking amplitudes, where the
lifetimes are expected to be strongly reduced, favoring the use of intensity modulation to
realize these regimes experimentally.

6.1 Modulation scheme and topological phase

diagram

The circular shaking of the lattice potential can be implemented by modulating the
relative phases of the laser beams in a chiral manner. This results in an interference
pattern moving along a circle in real space and thus breaking time-reversal symmetry.
In this section, the modulation scheme is presented and the resulting phase diagram
is discussed, especially in the presence of a sublattice energy offset, which additionally
breaks inversion symmetry. Thereby, a formerly degenerate band touching point at q = Γ
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is split in frequency and quasimomentum space, giving rise to an anomalous Floquet
phase.

6.1.1 Circular shaking of the honeycomb lattice

The phase modulation of the honeycomb lattice is realized by changing the frequency of
two laser beams periodically in time with frequency ω and amplitude b:

ω1(t) = ωL + b sin
(
ωt− π

3

)

ω2 = ωL

ω3(t) = ωL + b sin (ωt) , (6.1)

which corresponds to a circular motion of the interference pattern in real space. The
frequency modulation gives rise to an additional, time-dependent phase in the electric
fields:

φj(t) =

∫ t

0

(ωL + b sin (ωt− ζj)) dt′ = ωLt−
b

ω
(cos(ωt+ ζj)− cos(ζj)) , (6.2)

where ζj denotes the phase of the frequency modulation of the jth beam. Thus, the
electric field of the beam propagating along the direction kj, j = {1, 3}, is given by

Ej(r, t) =
√
Ij e

−ikjr−iωLt+i bω (cos(ωt+ζj)−cos(ζj))(cos(θj)z + sin(θj) e
iαj(z× kj)), (6.3)

and the resulting interference pattern becomes time-dependent. The change of the
wavevectors arising from the frequency modulation can be neglected, as b/c � ωL/c
with b being in the range of several kHz. Since the complete lattice potential is moving in
space, a transformation into a rotating frame, co-moving with lattice, can be performed,
which leads to a time-independent potential. By defining

r→ r′ + rlat = r′ +
b√

3kLω

(
cos(ωt)− 1

sin(ωt)

)
, (6.4)

the intensity I(r′) takes the same form as in the static lattice (see Eq. 3.5):

I(r′) =
3∑

j,l=1

√
IjIl e

−ikjlr′ (cos(θj)cos(θl) + sin(θj)sin(θl)cos(ηj − ηl) eiαjl
)
. (6.5)

The Hamiltonian in the co-moving frame can be expressed as

Ĥ(r′, t) =
(p̂′ −A(t))2

2m
+ V (r′) ≈ p̂′2

2m
− p̂′ ·A(t)

m
+ V (r′), (6.6)

where the term ∝ A(t)2 has been neglected, as it just describes a time-dependent offset.
Hence, the modulation corresponds to an emerging gauge field A(t) in the reference frame
of the lattice, which is defined as

A(t) = −mṙlat(t) =
bm√
3kL

(
sin(ωt)
−cos(ωt)

)
. (6.7)
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To solve the Schrödinger equation for a given time t, the Hamiltonian can be expanded
in plane waves, as described in Sec. 3.1.2, resulting in an eigenvalue equation for the
coefficients as stated in Eq. 3.12, with the modified Hamiltonian matrix

HKK′(t) =

(
~2(q′ + K)2

2m
− ~2

2m

2

~
q′ ·A(t)

)
δK,K′ + VK′−K. (6.8)

The effective Hamiltonian describing the shaken honeycomb lattice in the co-moving
frame can be calculated analogously to the case of intensity modulation, namely by
numerically integrating the time-dependent Hamiltonian over one period of the driving,
as defined in Eq. 3.23. The instantaneous Hamiltonian Ĥ(t) at each time step t is derived
using Eq. 6.8 for a given quasimomentum, modulation amplitude and polarization. In
the following, the topological properties of the two lowest Floquet bands are considered.
To allow for coupling of these bands with the p-bands during the driving period, the
instantaneous Hamiltonian is projected to its six lowest eigenstates at each time step and
then transferred to a common basis, similar to the procedure described in Sec. 3.2.2. To
identify the two lowest Floquet bands, the overlap between the eigenstates at neighboring
quasimomenta is considered, starting again with the unit vectors which correspond to the
eigenstates of the static lattice in the common basis.

The influence of the higher bands on the shape of the two lowest Floquet bands
depends on the modulation parameters. For the shaking amplitudes considered in the
following and used in the lifetime measurements, the coupling to the p-bands is small,
facilitating the determination of the two lowest bands. Moreover, in this parameter
regime, the system is well described by projecting only to the two lowest bands during the
modulation period or by using a two-band tight-binding model, as discussed in Sec. 6.2.

6.1.2 Overview of the topological phases

Using circular phase modulation of the honeycomb lattice, a variety of different topolog-
ical regimes can be realized, including an anomalous Floquet system. In the following,
shaking amplitudes in the range of ν = b/(2π) ∈ [0, 20] kHz and frequencies f ∈ [2, 10] kHz
are considered, representing a parameter regime accessible in experiments (see Sec. 6.3).
The lattice depth is set to V0 = 6Er and the sublattice energy offset ∆ is generated by
using elliptically polarized lattice beams, as explained in Sec. 3.1.3. Its magnitude can be
varied by changing the angle θ = θj,∀j of the ellipse (see Eq. 6.5). The topological phase
diagram in terms of f and ν is presented in Fig. 6.1a for the symmetric lattice and in
Fig. 6.1b for θ = 0.05 rad, which corresponds to a sublattice energy offset of ∆ ≈ 0.051Er.

Symmetric lattice If θ = 0, the shaken lattice resembles a Haldane phase ¬ for large
frequencies and amplitudes. Quasienergy gaps have opened at the two Dirac points,
giving rise to negative Berry curvature and C− = −1 for the driving phases specified
in Eq. 6.1, which can also be seen directly when calculating the effective Hamiltonian
in the high frequency limit (Sec. 6.2.2). Reverting the modulation direction leads to
a complete inversion of the Berry curvature distribution and hence of the Chern and
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winding numbers. The quasienergy bands along the high-symmetry line Γ-M -K-Γ as
well as the bands and Berry curvature in the two-dimensional (2D) Brillouin zone (BZ)
are shown in Fig. 6.2 in the different regimes for the symmetric lattice.

Figure 6.1: Topological phases of the shaken honeycomb lattice for V0 = 6 Er.
a. Phases in the symmetric lattice for θ = 0 as a function of the shaking frequency f
and shaking amplitude ν. The red and black lines depict closings of the π- and 0-gap at
Γ, and the green line a simultaneous closing of gπ at six different quasimomenta along
the lines Γ-K and Γ-K ′. For large frequencies, the system resembles a Haldane phase ¬

with C− = −1. The Chern numbers in the phases ­-° are C− = (−3,−2, 3, 4). b. Phase
diagram for θ = 0.05 rad, corresponding to a sublattice energy offset of ∆ ≈ 0.051Er.
The additional blue line marks the closing of g0 at K and the purple line in the top
left corner the closing of gπ at K ′. The dark and light green lines denote simultaneous
band touchings in the π-gap at three points along the lines Γ-K ′, forming a triangle in
quasimomentum space. The corresponding radii decrease and increase with the shaking
amplitude and the singularities along each line merge and annihilate for ν ≈ 14.9 kHz,
leading to an anomalous Floquet phase ². The Chern numbers in the phases ±, ³ and
´ are C− = (0, 1,−1).

Decreasing the shaking frequency results in a gap closing between the Floquet Bril-
louin zones (FBZs) at Γ, similar as in the intensity modulated lattice. However, the
system does not undergo a transition to an anomalous Floquet phase but to a phase ­

with C− = −3, characterized by negative Berry curvature at Γ, which carries a Chern
number of −2 and spreads in a hexagonal shape along with a nearly-degenerate minimum
in the lowest band (second row of Fig. 6.2). In fact, the band touching point at Γ is de-
generate, consisting of two subsequent transitions which have collapsed onto each other.
Adding a finite sublattice energy offset lifts the degeneracy and pulls the singularities
apart in the three-dimensional parameter space, which consists of qx, qy and f in this
case, as discussed below.
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Figure 6.2: Quasienergy bands and Berry curvature in the different topological
phases for V0 = 6 Er. First column: The two lowest quasienergy bands along the high-
symmetry line Γ-M -K-Γ in the extended zone scheme. Second column: Quasienergy
bands as a function of the 2D quasimomentum, plotted in the reduced zone scheme.
Third column: Berry curvature in the first BZ. The shaking amplitude and frequency are
denoted on the left of each row, and the corresponding Chern and winding numbers on
the right.
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As the Berry curvature at Γ turns from positive values slightly before the transition to
negative values, sgn(∆W π) = +1 and W π = 2 in phase ­. For even lower shaking
frequencies, the bands touch again at Γ, now at quasienergy 0, which gives rise to posi-
tive Berry curvature and ∆W 0 = 1, removing the edge state in g0. Hence, in phase ®,
C− = −2, as illustrated in the third row of Fig. 6.2. In contrast to the intensity modu-
lated lattice, the effective bandwidth decreases with the shaking amplitude, which can be
described by a renormalization of the nearest neighbor (NN) hopping in the limit of high
modulation frequencies (Sec. 6.2.2), leading to a reduction of the tunneling until J → 0
for ν ≈ 32 kHz. Without any next-nearest neighbor (NNN) hopping, this limit of would
correspond to flat bands which only touch for f → 0, where all phase transitions collapse.
After that, the NN hopping changes its sign and increases in magnitude again. In the
system considered here, the gap closing lines at Γ are bent to the left for ν . 32 kHz,
as apparent in Fig. 6.1a, and then turn to the right for ν & 32 kHz, shifting the phase
transitions to higher shaking frequencies again.

For larger shaking amplitudes and small frequencies, the bands touch in the π-gap
simultaneously at six points along the high-symmetry lines Γ-K and Γ-K ′. In phase
­, the six minima in the lowest band spread away from Γ, carrying the negative Berry
curvature. Increasing the shaking amplitude first increases the gap that has opened
between the two bands, but then it starts to decrease again due to the deformation of the
bands and finally closes. In the parameter range considered here, the touching happens
at a radius of qr ∈ [0.72, 0.34] kL and f ∈ [2, 2.84] kHz for amplitudes between 13 kHz and
20 kHz, as represented by the light green line in Fig. 6.1a. Since the same quasienergy
gap which has opened previously is closing again, the corresponding Berry curvature is
concentrated and switches its sign at the six touching points. Thereby it changes from
an effective weight of −1/3 at each point (adding up to C− = −2) to +2/3, leading to a
hexagon that carries C− = 4, as illustrated in the fourth row of Fig. 6.2. Together with the
negative Berry curvature at the Dirac points, this yields C− = 3 and the winding number
in the π-gap changes to W π = −4, characterizing phase ¯. If the shaking frequency is
decreased further, the 0-gap closes at Γ, which leads to W 0 = 0 due to the positive Berry
curvature arising there, and C− = 4 (phase °, last row of Fig. 6.2).

Adding a sublattice offset If the polarization of the lattice beams is made elliptical
with angle θ, an energy offset ∆ is introduced between the A- and B-sites, which opens
a trivial quasienergy gap the Dirac points. Similar as in the intensity modulated lattice,
a transition from the Haldane phase to a trivial phase occurs if the gap arising from ∆
becomes larger than the topological gap. In the Haldane model, this corresponds to a
sign change of the mass term (see Sec. 2.1.3) at K from m < 0 to m > 0 and thus from
negative to positive Berry curvature, resembling the same Berry curvature distribution as
in the trivial phase of the intensity modulated lattice. This transition is depicted by the
blue line in Fig. 6.1b, where the trivial phase is denoted by ±. The quasienergy bands
along both high-symmetry paths Γ-M -K-Γ and Γ-M -K ′-Γ (solid and dashed lines), as
well as the 2D bands and Berry curvature are shown in Fig. 6.3 for the new phases arising
when ∆ > 0.
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Figure 6.3: Quasienergy bands and Berry curvature with a sublattice offset for
V0 = 6 Er. First column: The two lowest quasienergy bands along the high-symmetry
lines Γ-M -K-Γ (solid lines) and Γ-M -K ′-Γ (dashed lines) in the extended zone scheme.
Second column: Quasienergy bands as a function of the 2D quasimomentum, plotted in
the reduced zone scheme. Third column: Berry curvature in the first BZ. In all plots,
θ = 0.05 rad, scanning the phase diagram in Fig. 6.1b. The shaking amplitude and
frequency are denoted on the left of each row, and the corresponding Chern and winding
numbers on the right.
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The sublattice offset breaks inversion symmetry and thus the lattice is not sixfold rota-
tionally symmetric any more, but only threefold. This lifts the degeneracy of the first
band touching at Γ. The closing of the π-gap gives rise to positive Berry curvature at
Γ, carrying a weight of 1, which spreads for smaller shaking frequencies, now along a
triangle due to the broken inversion symmetry (first row in Fig. 6.3). Hence, ∆W π = −1
and C− = 0 for shaking amplitudes above the transition at K, resembling the transition
from the Haldane to an anomalous Floquet phase ² with W 0 = −1 and W π = −1.

If the shaking frequency is lowered and ν ≤ 14.9 kHz, gπ starts to decrease again at
the minima of the lowest band and closes simultaneously at three points, each of which is
located along one of the lines Γ-K ′, forming a triangle centered around Γ. The transition
is depicted by the dark green line in Fig. 6.1b and illustrated in Fig. 6.4. At each of the
touching points, the Berry curvature changes its sign, from an effective weight of +1/3 to
−2/3, thus leading to the negative structure with C− = −2 and an overall Chern number
of C− = −3 in phase ­ along with W π = 2, as shown in the second row of Fig. 6.3.

The distance q1 ∈ [0.08, 0.39] kL of the touching points to the center of the BZ increases
with the shaking amplitude ν ∈ [0, 14.9] kHz and the transition shifts to lower frequencies.
For smaller values of θ, it moves towards the gap closing line at Γ and finally merges with
it for θ = 0, annihilating the anomalous Floquet phase there.

Figure 6.4: Schematics of the phase transitions along the lines Γ-K′. Sketch of
the quasienergy bands for decreasing shaking frequencies f and amplitudes 12.5 kHz .
ν ≤ 14.9 kHz, illustrating the closings of gπ along the connection lines Γ-K ′. Lowering
f , the gap closes first at Γ, signaling the transition into the anomalous Floquet phase
². After the band minima in the first band (drawn above the second) have spread out,
the gap closes simultaneously along the three lines Γ-K ′ (only two of the closings are
shown for clarity), bringing the system into phase ­. There is one touching point per
connection line, each of which has a distance of q1 to the center of the BZ. At the third
transition, the distance of each point has increased to q2. For smaller shaking frequencies,
the system is back in the anomalous Floquet phase. The radii q1 and q2 converge with
increasing shaking amplitude and the two band touching points along each line Γ-K ′

merge for ν = 14.9 kHz.
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Starting in phase ­ and lowering the shaking frequency further, the π-gap along the lines
Γ-K ′ first increases and the minima in the lowest band move to larger quasimomenta.
Then the gap becomes smaller again and closes a second time (light green line), now
at a larger value q2 ∈ [0.92, 0.39] kL, that decreases with the shaking amplitude ν ∈
[10, 14.9] kHz and the transition shifts to higher frequencies. The Berry curvature weight
changes from −2/3 to +1/3 at each point, bringing the system back to the anomalous
Floquet phase for ν & 12.5 kHz. The radius q1 of the first set of touching points along the
line Γ-K ′ increases with the shaking amplitude, while q2 decreases. The two singularities
along each line merge and annihilate at q1/2 ≈ 0.39 kL for ν = 14.9 kHz and f = 3.8kHz,
resulting in a connected anomalous Floquet phase for amplitudes above this point. Since
the same gap, gπ, is closing several times, the phase transitions occurring along the high-
symmetry lines are qualitatively different from the band touchings at Γ. In the latter case,
usually one of the gaps g0 or gπ closes and increases afterwards, and the next transition
happens in the other one.

For smaller shaking frequencies, the 0-gap at Γ closes, creating again positive Berry
curvature and changing ∆W 0 = 1, which annihilates the edge mode there. Thus, a
topological phase ³ with C = 1 and a single chiral edge mode in the π-gap arises (third
row of Fig. 6.3), similar to the third regime in the intensity modulated lattice. Lowering
the shaking amplitude, the second transition along the lines Γ-K ′ is traversed, resembling
phase ® with C− = −2. The positive contributions from the gπ-transition at Γ change
their sign and weight, as described above and illustrated in the fourth row of Fig. 6.3. If
the shaking amplitude is reduced further, the 0-gap at K closes and the corresponding
Berry curvature is turned to positive values, leading to ∆W 0 = 1 and thus creating
again an edge mode in this gap while W π = 2 remains. Now, the Berry curvature
contributions from the two Dirac points cancel each other resulting in C− = −1 together
with the positive and negative triangles with total weights +1 and −2 from the previous
transitions, characterizing phase ´ (last row of Fig. 6.3). Increasing the shaking frequency
again for small amplitudes below the transition at K, first the 0-gap closing at Γ is
traversed, bringing the system again into phase ®. Then, gπ closes along the lines Γ-K ′

at q1 ∈ [0.08, 0.39] kL, which changes the weight of each point from −2/3 to +1/3, leading
to a triangle carrying weight +1. Since W 0 = 0, this does not resemble an anomalous
Floquet regime, but phase ³ with C− = 1 and W π = −1. The remaining edge mode in
the π-gap is then removed at the gap closing at Γ, marking the transition into the trivial
phase ±.

In summary, an anomalous Floquet regime can also be realized using circular phase
modulation of an optical honeycomb lattice, if inversion symmetry is broken by a finite
sublattice energy offset, lifting the degeneracy of the first band touching at Γ.

6.2 Tight-binding-description

In the previous section, the topological phase diagram and the winding numbers have
been obtained from the gap closings and Berry curvature changes of the bulk bands.
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The dispersion of the edge modes can be derived directly if the system is evaluated on
a semi-finite geometry. To capture the details of the edge in real space, a tight-binding
description of the shaken honeycomb lattice is introduced in Sec. 6.2.1. Moreover, it
provides additional physical insight into the Floquet system by allowing for an analytic
derivation of the effective Hamiltonian in the limit of high shaking frequencies (Sec. 6.2.2).
The quasienergy bands of the semi-finite system based on the tight-binding approach are
presented in Sec. 6.2.3.

6.2.1 Two-band tight-binding model

In the phase modulated honeycomb lattice, the tunnelings are isotropic and time-in-
dependent. The vectors δj connecting the lattice sites also remain constant, basically
corresponding to the symmetric, static lattice being moved on a circular trajectory in real
space. The tight-binding Hamiltonian consists of a time-independent part resembling the
static lattice and a time-dependent part which describes the periodic driving in terms of
an on-site potential [185]:

Ĥ(t) = Ĥ0 + Ĥ1(t)

=
∑

rA

[
3∑

j=1

J
(
â†rA ârA+δj + h.c.

)
+

∆

2

(
â†rA ârA − â

†
rA+δ1

ârA+δ1

)

+
3∑

j=1

J̃
(
â†rA ârA+aj + â†rA+δ1

ârA+δ1−aj + h.c.
)

−â†rA ârA(F(t) · rA)− â†rA+δ1
ârA+δ1(F(t) · (rA + δ1))

]
. (6.9)

The time-dependent force is defined as

F(t) = −mr̈lat(t) =
bmω√

3kL

(
cos(ωt)
sin(ωt)

)
= F

(
cos(ωt)
sin(ωt)

)
. (6.10)

Similar to the calculations in the previous section, the Hamiltonian can be transferred
into a reference frame co-moving with the lattice, which moves the time-dependence into
the tunneling amplitudes. The corresponding unitary transformation reads [185,186]:

Û(t) = exp

[
i

~
∑

j=A,B

(A(t) · rj) â†j âj
]
, (6.11)

where A(t) denotes the emergent vector potential introduced in Eq. 6.7 and the operator
â†j creates a particle on the lattice site located at rj, describing either A- or B-sites. The
Hamiltonian is transformed by

Ĥ ′(t) = Û †Ĥ(t)Û − i~Û †∂tÛ , (6.12)
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where the second term evaluates to

−i~Û †∂tÛ =
∑

j=A,B

(∂tA(t) · rj) â†j âj =
∑

j=A,B

(F(t) · rj) â†j âj, (6.13)

and thus cancels out the contribution from Ĥ1(t). The hopping terms in Ĥ0 connecting
sites j and l are renormalized according to

Jjl â
†
j âl → e−

i
~A(t)·(rj−rl)Jjl â

†
j âl. (6.14)

The vectors connecting nearest- and next-nearest neighbors can be rewritten as

rA − rB = δj = a

(
cos(ϕj)
sin(ϕj)

)
, ϕ =

(
π,−π

3
,
π

3

)
,

rA − rA = aj =
√

3a

(
cos(χj)
sin(χj)

)
, χ =

(
−5π

6
,−π

6
,
π

2

)
, j = {1, 2, 3}, (6.15)

which yields for the phases of the prefactors in Eq. 6.14:

− i
~

A(t) · (rA − rB) = −iFa
~ω

sin(ωt− ϕj) = −iκ sin(ωt− ϕj),

− i
~

A(t) · (rA − rA) = −i
√

3κ sin(ωt− χj), j = {1, 2, 3}, (6.16)

where the dimensionless driving strength κ = Fa
~ω has been defined. Since the potential

arising from the periodic forcing depends on the difference between the lattice sites, the
transformation does not change the onsite-terms in Ĥ(t), describing the sublattice energy
offset ∆. Thus, the Hamiltonian in the co-moving frame is given by

Ĥ ′(t) =
∑

rA

[
3∑

j=1

J
(
â†rA ârA+δj e

−iκ sin(ωt−ϕj) + â†rA+δj
ârA e

−iκ sin(ωt−ϕj+π)
)

+
3∑

j=1

J̃
(
â†rA ârA+aj e

−i
√

3κ sin(ωt−χj) + â†rA+aj ârA e
−i
√

3κ sin(ωt−χj+π)

+â†rA+δ1
ârA+δ1−aj e

−i
√

3κ sin(ωt−χj+π) + â†rA+δ1−aj ârA+δ1 e
−i
√

3κ sin(ωt−χj)
)

∆

2

(
â†rA ârA − â

†
rA+δ1

ârA+δ1

)]
. (6.17)

As the complex conjugate terms describe hopping along the opposite direction, the con-
nection vectors are flipped, which corresponds to changing their angles by π. The NNN
hopping from A to A is defined along the directions −a1, a2, a3 (see Fig. 2.1a), which
are denoted by aj in Eq. 6.15, and along −aj from B to B. The creation and annihilation
operators are Fourier transformed according to Eq. 3.34, which yields the Hamiltonian in
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quasimomentum space:

Ĥ ′(q, t) =
∑

q

[
3∑

j=1

J
(
eiq·δj−iκ sin(ωt−ϕj) â†qb̂q + e−iq·δj+iκ sin(ωt−ϕj) b̂†qâq

)

+
3∑

j=1

J̃ 2 cos(q · aj −
√

3κ sin(ωt− χj))
(
â†qâq + b̂†qb̂q

)
+

∆

2

(
â†qâq − b̂†qb̂q

)]
.

(6.18)

By making the ansatz defined in Eq. 3.36, the Hamiltonian is then given by a 2 × 2
matrix for every time t and quasimomentum q. The effective Hamiltonian is calculated
by numerical integration, similarly as described in the previous section for the full band
calculation, employing Eq. 6.18 at every time step.
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Figure 6.5: Fitted hopping amplitudes as a function of θ for V0 = 6 Er. The pa-
rameters are obtained by fitting the tight-binding model with time-independent, isotropic
hoppings to the two lowest bands of the static lattice. a. The NN hopping is negative
and increases in magnitude with θ. b. The NNN tunneling also increases, being positive
for all θ. The dependence of both tunneling coefficients on the polarization angle can be
described by polynomial functions given in Eq. 6.19.

The tight-binding parameters J , J̃ and ∆ are obtained by fitting the time-independent
tight-binding model to the two lowest bands of the static honeycomb lattice for a certain
value of the polarization angle θ, evaluated on the 2D BZ. In Fig. 6.5, the resulting
hopping amplitudes are shown as a function of θ for V0 = 6Er, whereas the corresponding
sublattice energy offsets have been presented in Fig. 3.12b. The tunnelings themselves
can be fitted by the following polynomials:

J(θ) = AJ θ
2 +BJ θ

4 + J0, J̃(θ) = AJ̃ θ
2 +BJ̃ θ

4 + CJ̃ θ
6 + J̃0, (6.19)

where J0 = −0.1159Er and J̃0 = 0.0051Er denote the hopping parameters in the sym-
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metric lattice with θ = 0. The resulting prefactors are

AJ = −0.090(2)
Er

rad2 , BJ = −2.23(2)
Er

rad4 ,

AJ̃ = 9.8(1) · 10−3 Er

rad2 , BJ̃ = 0.062(2)
Er

rad4 , CJ̃ = 0.42(1)
Er

rad6 . (6.20)

Figure 6.6: Quasienergy gaps at Γ and K as a function of the shaking frequency
for V0 = 6 Er. a. Quasienergy gaps at Γ for θ = 0 and shaking amplitudes ν =
(20, 8) kHz, calculated using the full band description with projection to the first six
bands (dark lines), the first two bands (gray, dashed lines) and by employing the two-
band tight-binding model (light lines). The two-band descriptions deviate from the full
model mainly at large f for ν = 20 kHz, the phase transition points are well resolved. b.
Quasienergy gap at K for the same parameters and models as described in a. Apart from
the jumps at high shaking frequencies arising from avoided crossings with higher bands,
the gaps are well captured by the two-band description.

The emerging quasienergy bands resemble the full bands derived from Eq. 6.8 for
small shaking frequencies and amplitudes. In Fig. 6.6 the quasienergy gaps at Γ and K
are shown as a function of the shaking frequency for different amplitudes ν. The gaps
from the tight-binding model (light blue and red lines) are nearly identical to the results
from the full calculation using only the two lowest bands (gray, dashed lines) and coincide
with the six-band gaps (dark blue and red lines) at small frequencies for ν = 20 kHz and
at mostly all frequencies for ν = 8 kHz. Similar to the Floquet bands of the intensity
modulated lattice, jumps appear in the gap at K for large shaking parameters, which are
not captured by the two-band description.

6.2.2 Haldane model for large shaking frequencies

In the limit of large driving frequencies, the circularly shaken honeycomb lattice directly
resembles the Haldane model introduced in Sec. 2.1.3. Similar to the derivation for the
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intensity modulated lattice in Sec. 3.3.4, the expansion of the effective Hamiltonian up
to first order is employed:

Ĥeff ≈ Ĥ0 +
1

~ω

∞∑

n=1

1

n
[Ĥn, Ĥ−n] +O

(
1

(~ω)2

)
. (6.21)

To determine the Fourier-components of the Hamiltonian, all of the time-dependent parts
in Eq. 6.18 are rewritten in their exponential form as apparent in Eq. 6.17 and the Bessel-
identity defined in Eq. 3.45 is applied:

e−iκ sin(ωt−ϕj) =
+∞∑

n=−∞
Jn(−κ) ein(ωt−ϕj) =

+∞∑

n=−∞
(−1)nJn(κ) ein(ωt−ϕj)

e−i
√

3κ sin(ωt−χj) =
+∞∑

n=−∞
(−1)nJn(

√
3κ) ein(ωt−χj). (6.22)

Thus, the Hamiltonian in the lattice frame evaluates to:

Ĥ ′(t) =
+∞∑

n=−∞
(−1)n

∑

q

[
3∑

j=1

JJn(κ)
(
â†qb̂q e

iq·δj+in(ωt−ϕj) + b̂†qâq e
−iq·δj+in(ωt−ϕj)(−1)n

)

+
3∑

j=1

J̃Jn(
√

3κ)
(
â†qâq

(
eiq·aj+in(ωt−χj) + e−iq·aj+in(ωt−χj)(−1)n

)

+b̂†qĉq
(
e−iq·aj+in(ωt−χj)(−1)n + eiq·aj+in(ωt−χj))

)
+

∆

2

(
â†qâq − b̂†qb̂q

)]
. (6.23)

The Fourier-components Ĥn can be read off as the prefactors of the terms ∝ einωt and
are expressed in terms of the Pauli matrices for each quasimomentum q:

Ĥn(q) = σ̂0hn0(q) + σ̂ · hn(q)

hn0(q) = (−1)nJ̃Jn(
√

3κ)
3∑

j=1

e−inχj
(
eiq·aj + (−1)ne−iq·aj

)

hnx(q) = JJn(κ)
3∑

j=1

e−inϕj
1

2

(
(−1)neiq·δj + e−iq·δj

)

hny(q) = −iJJn(κ)
3∑

j=1

e−inϕj
1

2

(
−(−1)neiq·δj + e−iq·δj

)

hnz(q) =
∆

2
δn. (6.24)
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Using the commutation relations of the Pauli matrices analogously to the derivation in
Sec. 3.3.4, the commutator of the nth and −nth component is given by

[Ĥn, Ĥ−n] = 2i (hnx(q)h−ny(q)− hny(q)h−nx(q)) σ̂z

= −2 (Jn(κ))2 J2 2
3∑

j=1

sin(q · aj) sin(nϑj)σ̂z. (6.25)

Thereby, the differences of the connection vectors δj have been expressed in terms of the
lattice vectors −a1, a2 and a3 and the angle differences ϑj are defined as

ϑ = (ϕ3 − ϕ1, ϕ1 − ϕ2, ϕ2 − ϕ3) =

(
−2π

3
,
4π

3
,−2π

3

)
. (6.26)

Inserting these results into Eq. 6.21 yields the effective Hamiltonian for each quasimo-
mentum q:

Ĥeff(q) =
3∑

j=1

2J̃ cos(q · aj)J0(
√

3κ) σ̂0

+
3∑

j=1

J cos(q · δj)J0(κ) σ̂x −
3∑

j=1

J sin(q · δj)J0(κ) σ̂y

+

[
∆

2
−

3∑

j=1

(
2 sin(q · aj)

2J2

~ω

∞∑

n=1

1

n
(Jn(κ))2 sin(nϕj)

)]
σ̂z, (6.27)

which takes the form of the Haldane model in Eq. 2.21 with renormalized, real NN
hoppings J ′ = JJ0(κ) and complex NNN tunneling amplitudes:

J̃ ′ = J̃J0(
√

3κ) + i

(
2J2

~ω

∞∑

n=1

1

n
(Jn(κ))2 sin

(
−n2π

3

))
. (6.28)

In contrast to the effective Haldane model derived for the intensity modulated lattice
with the complex NNN hoppings given by Eq. 3.50, the argument κ of the Bessel functions
is real, which leads to an oscillating function. In Fig. 6.7a, the contributions to J ′ and
to the real and imaginary part of J̃ ′ are plotted as a function of κ, whereas Fig. 6.7b
shows the corresponding parts ∝ J0(−iB), J0(−iB̃), (Jn(−iB))2 appearing in Eq. 3.50.
To account for the sign of the resulting hoppings, in both cases the complete contribution
to the imaginary part of J̃ ′ is shown, namely 1/n (Jn(κ))2 sin (−n2π/3) in Fig. 6.7a and
(−1)n/n (Jn(iB))2 sin (n2π/3) in Fig. 6.7b. In general, the NN hopping amplitudes are
about one order of magnitude larger than the NNN values, but for better visibility, the
factors J , J̃ and A, Ã are not taken into account in the plots.

In the shaken honeycomb lattice, the magnitude of the effective NN tunneling is
decreasing with the shaking amplitude until it vanishes for κ ≈ 2.39 and then turns to
negative values (black line). This resembles the observed shift of the gap closing lines at
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Figure 6.7: Bessel functions contributing to the renormalized NN and NNN
hoppings in the high frequency limit. a. Bessel functions J0(κ), J0(

√
3κ) describing

the NN hopping J ′ and the real part of the NNN hopping J̃ ′ in Eq. 6.28, depicted by
the black and red line. The main contributions to the imaginary part of J̃ ′ are given by
1/n (Jn(κ))2 sin (−n2π/3) for n = 1, 2, 3, which are plotted as the blue, yellow and green
line. For κ . 1.38, Re[J̃ ′] > 0 and Im[J̃ ′] < 0, which is dominated by the term n = 1.
The absolute value of the NN hopping is decreasing with the shaking amplitude and turns
to negative values for κ ≈ 2.39. b. Corresponding Bessel functions J0(−iB), J0(−iB̃)
and (−1)n/n (Jn(iB))2 sin (n2π/3) determining the effective hoppings in the intensity
modulated lattice in the high frequency limit, as defined in Eq. 3.50. The magnitude of
the NN hopping is increasing with the modulation amplitude and Re[J̃ ′], Im[J̃ ′] > 0 for
all m.

Γ to smaller frequencies for larger values of ν ∝ κ, corresponding to a decrease in the
effective bandwidth with the shaking amplitude if ν . 32 kHz. In the regime of κ . 1.38,
Re[J̃ ′] > 0 and Im[J̃ ′] < 0, which means that the argument φ of the complex NNN
hopping is negative, yielding a Chern number of C− = −1 if ∆ > 0 in the phase diagram
of the Haldane model (see Fig. 2.1c). In the intensity modulated lattice, the absolute
value of the NN hopping, and thus the bandwidth, is monotonically growing with the
modulation amplitude, as visible in Fig. 6.7b.

6.2.3 Edge mode dispersion

The dispersion of the edge modes is calculated in a semi-finite honeycomb lattice with
an armchair-edge, being periodic along x and finite along y, as described in Sec. 3.4 and
depicted in Fig. 3.20. The effective unit cell corresponds to a stripe of width 3a and
extends over N pairs of A- and B-sites in the y-direction. The tight-binding Hamiltonian
in the armchair geometry can be derived analogously to the intensity modulated lattice.

The Hamiltonian Ĥ ′(q, t) in the lattice frame, given in Eq. 6.18, takes a similar form
as the Hamiltonian in Eq. 3.35 with time-independent, isotropic tunnelings J and J̃ ,
time-independent connection vectors, and additional time-dependent factors arising from
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the gauge transformation. Thus, the semi-finite system at time t in the co-moving frame
is described by the Hamiltonian from Eq. 3.51, where each term corresponding to NN
hopping from an A(B) to a B(A) site along the bond δj acquires a factor of e∓iκ sin(ωt−ϕj).
For NNN tunneling along the positive (negative) directions ∓a1, ±a2, ±a3, the hopping

amplitudes are accordingly multiplied by e∓i
√

3κ sin(ωt−χj), with ϕj and χj being defined
in Eq. 6.15 and κ = ma√

3kLh
ν.

Fourier transforming along x yields the Hamiltonian in quasimomentum space and
using the same ansatz as in Eq. 3.54,

|ψq〉 =
∑

m

(
cmA â

†
q(m) + cmB b̂

†
q(m)

)
|0〉, (6.29)

the Schrödinger equation is transformed into an eigenvalue equation for the coefficients
cmA and cmB:

E cmA = J1 e
−iqa−iκsin(ωt−ϕ1) cmB + J2 e

iq a
2
−iκsin(ωt−ϕ2) c(m+1)B + J3 e

iq a
2
−iκsin(ωt−ϕ3) c(m−1)B

+
(
J̃1 e

−iq 3
2
a−i
√

3κsin(ωt−χ1) + J̃2 e
iq 3

2
a−i
√

3κsin(ωt−χ2)
)
c(m+1)A

+
(
J̃∗1 e

iq 3
2
a+i
√

3κsin(ωt−χ1) + J̃∗2 e
−iq 3

2
a+i
√

3κsin(ωt−χ2)
)
c(m−1)A

+ J̃∗3 e
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This describes the Hamiltonian at each time t and quasimomentum q by a 2N × 2N
matrix in the basis (c1A, c1B, c2A, c2B, ..., cNA, cNB) of the coefficients. Using the fitted
tight-binding parameters of the static lattice, the effective Hamiltonian is calculated by
integrating over one period of the driving, resulting in 2N quasienergies at each q.

In Fig. 6.8, the quasienergy dispersion is shown for a shaking amplitude of ν = 16 kHz
and θ = 0.05 rad, scanning across phase ³, the anomalous and the Haldane regime.
For f = 6 kHz, a single pair of edge modes is apparent at zero energy, arising from the
opening of the gaps at the Dirac points in the Haldane phase. Decreasing the shaking
frequency to f = 3 kHz leads to the closing of gπ at Γ, creating an additional pair of
edge modes in the π-gap and thus W 0 = −1 = W π, constituting the anomalous Floquet
phase. For f = 2.2 kHz, g0 has closed at Γ, annihilating the edge modes in this gap and
resembling phase ³ with C− = 1. Since the stripe considered here has an upper and a
lower boundary, a pair of counter-propagating edge modes is created at each transition.
The bands in Fig. 6.8 are calculated without a harmonic trapping potential, which can
be included similarly as for the intensity modulated lattice.
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Figure 6.8: Quasienergy bands of the shaken honeycomb lattice in the armchair
geometry. Band dispersion calculated for ν = 16 kHz, V0 = 6Er, N = 50 and θ =
0.05 rad with shaking frequencies f = (2.2, 3, 6) kHz, scanning the phases ³, ² and ¬ in
Fig. 6.1b. The latter two describe the anomalous Floquet phase with W 0 = −1 = W π,
thus hosting edge modes in both gaps, and the Haldane phase with W 0 = −1 and W π = 0.

6.3 Measured energy gaps and lifetimes

In the circularly shaken honeycomb lattice, momentum-resolved measurements are com-
plicated, as the quasimomentum itself is periodically modulated. Nevertheless, for small
shaking amplitudes, the quasienergy gaps in the modulated lattice can be probed using
Stückelberg interferometry, as discussed in the first part of this section. Moreover, the
lifetimes in the Haldane regime are measured depending on the shaking frequency and
amplitude and compared to the value in the intensity modulated lattice realizing a sim-
ilar quasienergy gap at K, which is presented in the second part. All measurements are
performed at a lattice depth of V0 = 6Er.

6.3.1 Probing the energy gaps in the shaken honeycomb lattice

The shaking of the honeycomb lattice corresponds to a time-dependent quasimomentum
in the reference frame of the lattice. Thus, the CoM of the atomic cloud is effectively
moving on a circular trajectory in quasimomentum space centered around the Γ-point. As
described in chapters 4 and 5, the quasienergy gaps in the static or intensity modulated
lattice can be measured using Stückelberg interferometry, which involves a fast, linear
acceleration of the lattice. This usually corresponds to forces in the range of 1 − 4 kHz,
being comparable to the energy scales of the lattice shaking. To probe the quasienergy
gaps in the shaken lattice, the atoms are first accelerated to the corresponding point in
quasimomentum space in the static lattice, using an intermediate force of Fa/h ≈ 667 Hz,
and then the shaking is suddenly quenched on. After a certain hold time t in the effective
Floquet bands, being an integer multiple of the driving frequency, the modulation is
switched off suddenly and the atoms are driven back to Γ to perform bandmapping and
count the relative population in the lowest band. Possible excitations to the second band
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due to the quench correspond to an offset in the population oscillations, not changing
their frequency. Assuming that the number of atoms in bands higher than the second
remains small, the quasienergy gap between the two lowest bands is effectively probed
along a circle in quasimomentum space, centered around the point set by the lattice
acceleration. The radius of this circle is proportional to the shaking amplitude ν:

qr(ν) =
m

~
ṙlat =

m2π√
3kL~

ν. (6.31)

Thus, a single point in quasimomentum space can only be probed in the limit of small
shaking amplitudes. In Fig. 6.9a, the quasienergy gap for ν = 4 kHz and θ = 0 is shown
as a function of the shaking frequency, measured at a radius of qr ≈ 0.122 kL around Γ.
The data points are compared to the theoretical gap derived from the full six-band model
at the same radius (solid line), being an average over the values along the directions Γ-M
and Γ-K, which exhibit nearly identical gaps though. The calculation matches the mea-
sured data quite well, which exhibit a distinct minimum, corresponding to the first phase
transition. While the actual closing occurs at Γ, the quasienergy gaps at points nearby are
also expected to be rather small due to the low shaking amplitude. The theoretical gap
nearly vanishes at f ≈ 6.3 kHz. Although the quasienergy gaps at Γ can not be probed
directly using Stückelberg interferometry, the predicted phase transition can nevertheless
be observed. The good quantitative agreement between the theoretical and experimental
values confirms the Floquet calculations performed in the shaken honeycomb lattice. In
principle, the Berry curvature in the shaken lattice could be probed with Hall deflection
measurements, applying a force by lattice acceleration, similar as for the intensity mod-
ulation. In order to stay adiabatically within a single band, the force has to be small
compared to the quasienergy gaps, lying at least about one order of magnitude below
the forces corresponding to the shaking. However, due to the motion in quasimomentum
space, the Berry curvature can not be probed locally any more, complicating the measure-
ments directly at the phase transition points. Moreover, for the shaking amplitudes used
in the gap and lifetime measurements presented here, the quasienergy gaps between the
lowest bands are in general much smaller as in the parameter regimes considered for the
intensity modulation. This increases the probability of excitations to the second band,
demanding very small forces which lead to large displacements in real space, when being
realized with lattice acceleration, and thus to an increased back-action of the harmonic
trap. To realize a gap at K in the Haldane regime being comparable to the result for an
intensity modulation amplitude of m = 0.2, the shaking amplitude has to be increased
to at least ν ∼ 20 kHz, corresponding to a large radius qr ∼ 0.6 kL.

6.3.2 Lifetimes

The lifetimes are measured in the Haldane regime without applying an additional force
to the atoms, so effectively for quasimomenta lying on the radius qr(ν) around Γ, cor-
responding to the shaking amplitude ν. The atoms are loaded into the lowest band of
the static lattice and the shaking amplitude is ramped up within ∆t = 5T , followed by
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a variable hold time in the modulated lattice, being always an integer multiple of the
driving period T . Afterwards, the shaking is ramped down again in the same time and
bandmapping is performed after a time-of-flight (TOF) of tTOF = 10 ms.
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Figure 6.9: Energy gap around Γ and lifetimes in the circularly shaken hon-
eycomb lattice for V0 = 6 Er. a. Measured quasienergy gaps as a function of the
shaking frequency f for ν = 4 kHz along a circle in quasimomentum space with radius
qr ≈ 0.122 kL centered around Γ. The solid line depicts the theoretical gap derived from
the six-band Floquet calculation. Every data point is the result of a fit to the Stückelberg
population oscillation consisting of 23 points, each being an average over 3-4 individual
images, the errorbars denote fitting errors. b. Lifetime in the lowest band around Γ for
ν = 6.6 kHz and f = 8 kHz, resembling the Haldane regime and leading to a quasienergy
gap of ∆E = 160 Hz at K, along with the value for ν = 0 (blue data points). The
red data point depicts the measured lifetime in the intensity modulated lattice in the
Haldane regime with m = 0.1 and f = 20 kHz, corresponding to the same gap at K. c.
Lifetimes in the Haldane regime in the lowest band around Γ as a function of the shaking
amplitude ν for f = 8 kHz. d. Lifetimes in the Haldane regime as a function of the
shaking frequency for ν = 6.6 kHz. The data points in b-d are obtained by fitting the
exponential function in Eq. 6.32 to a decay measurement consisting of 23 points, each
being an average over 10 realizations. The errorbars denote fitting errors.
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The pixel sum corresponding to the relative population in the lowest band, Σ1, is de-
termined from each image, as described in Sec. 4.2.2. The relative population, averaged
over 10 experimental realizations at each t and normalized to the mean value at t = 0, is
then plotted as a function of the hold time and an exponential function is fitted to the
data to extract the lifetime τ :

Σ1
rel = Ae−

t
τ + Σ0. (6.32)

The resulting lifetimes as a function of the shaking amplitude and frequency are presented
in Fig. 6.9b-d, whereas θ = 0 and as = 6 a0 in all measurements. For ν = 6.6 kHz and
f = 8 kHz, the calculated quasienergy gap at the Dirac points is ∆E = 160 Hz and
the corresponding lifetime (blue data points in Fig. 6.9b) is compared to the intensity
modulated lattice with m = 0.1 and f = 20 kHz (red data point), also resembling the
Haldane regime with a similar gap. While the latter is comparable to the lifetime in the
static lattice, the lifetime is reduced when realizing the same effective band structure with
phase shaking, but nevertheless still large enough to probe the system experimentally. In
general, the lifetimes measured in the parameter regime of ν, f ∈ [6, 9] kHz are all on the
order of τ ∼ 200−400 ms and mostly depend on the difference of the shaking parameters
to the first phase transition line, similar to the observations in the Haldane regime of
the intensity modulated lattice (see Sec. 5.4.2). In Fig. 6.9c, the lifetime remains rather
constant when increasing the shaking amplitude, which moves the system deeper into the
Haldane regime, since the phase transition is shifted to smaller modulation frequencies.
Keeping the shaking amplitude constant at ν = 6.6 kHz and decreasing the modulation
frequency towards the the phase transition at f ≈ 6 kHz (Fig. 6.9d) reduces lifetime by
almost a factor of two.

The measured lifetimes presented in Fig. 6.9 are rather long, but they correspond
to the Haldane regime with small quasienergy gaps between the two lowest bands. To
prepare a system with larger gaps, facilitating the probing of a single band in the Haldane
or anomalous regime, the shaking amplitude has to be increased by a factor of two or
three, which is expected to reduce the lifetime considerably [74,143].

In summary, the circularly shaken honeycomb lattice also hosts an anomalous Floquet
phase when adding a sublattice offset. However, the size of the energy gaps increases
slower with the shaking amplitude than in the intensity modulated lattice, demanding
relatively high values of ν, which in turn lead to reduced lifetimes. Thus, in the lattice
system with V0 = 6Er considered in this work, the intensity modulated lattice has major
advantages over the shaken lattice both for realizing and probing anomalous Floquet
systems, but also when considering the topological Haldane regime.
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Chapter 7

Novel phenomena in anomalous
Floquet systems

The experimental realization and topological characterization of an anomalous Floquet
system in an optical honeycomb lattice has been shown in chapter 5. In the following,
possible future directions for the experiments shall be illustrated, which utilize the special
properties of the anomalous Floquet regime. As mentioned in Sec. 2.3.3, due to the zero
Chern numbers, the bulk states in the anomalous regime can be completely localized by
disorder, which is not possible for settings with C 6= 0 [42, 128]. This could be used to
stabilize interacting topological systems, hosting a many-body localized (MBL) bulk, but
thermalizing edge states [44,45,126,127]. In view of realizing such systems experimentally,
direct probing of the bulk and edge state properties is desirable. A setup for imaging
of the edge modes as well as prospects of realizing and probing disorder with increasing
interactions among the constituents is discussed in the first part.

Another direction could be to investigate the nearly-degenerate ring-minimum in the
dispersion of the first band, that arises in the anomalous Floquet regime. Loading inter-
acting bosons into this band minimum is expected to give rise to fermionization effects,
meaning that the bosons do not condense, but behave like non-interacting fermions. In
the second part, this statistical transmutation is briefly introduced along with a discussion
of possible ways to detect it experimentally.

7.1 Probing disordered anomalous Floquet systems

In the presence of disorder, the bulk states in the anomalous Floquet regime should be
localized, while the edge modes are expected to stay mobile. To probe the localization
properties at the boundary, the evolution of particles occupying the edge states could
be investigated insitu. Preparation of the cloud directly at the boundary of the system
can facilitate the observation of the chiral motion by increasing the population in the
corresponding modes, as described in Sec. 7.1.1. The realization of disorder by adding
a random onsite-potential is discussed in Sec. 7.1.2, along with a method to probe the
localization of the bulk states. Being able to measure the bulk and edge states, the
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localization could be compared in the anomalous Floquet and the Haldane regime, pre-
sumably exhibiting different behavior in the bulk, but similar propagation along the
boundary. Moreover, by increasing the disorder strength, the transition into a trivial
phase [42], where also the edge states are localized, could be studied. As pointed out
in [59], the anomalous Floquet Anderson insulator described above might persist in the
presence of interactions. In the honeycomb lattice considered in the previous chapters,
the ratio of the Hubbard interaction to the hopping is rather small. In Sec. 7.1.3, possible
ways of increasing this ratio by either implementing a deeper honeycomb lattice or adding
a vertical lattice are considered.

7.1.1 Direct imaging of the edge modes

Directly observing the time-evolution of a topological edge state is challenging because
usually both, bulk and edge states are populated. In photonic setups, which employ
arrays of coupled waveguides, the light can directly be launched at the boundary of the
system, facilitating the observation of the chiral edge states [100, 101]. To probe the
propagation along the boundary in a cold atom experiment, the atomic cloud could be
released from an additional confining potential [187]. This results in a superposition
of the chiral motion from the edge modes and the homogeneous spreading of particles
occupying the bulk states. The speed of this spread is increased with the bulk band
dispersion. Therefore, the visibility of the edge mode propagation depends on the ratio
of the bulk dispersion to the group velocity associated with the edge states: If it is too
small, the chiral motion will be overshadowed in the absorption images by the outspread
bulk atoms. One way to ensure a good visibility of the edge modes would be to realize
flat bulk bands. In the anomalous Floquet systems presented in this work, the absolute
width of the band dispersion (in SI units) depends mostly on the modulation frequency.
In general, it decreases with the frequency until the bands become more dispersive again
shortly before the transition to the third regime. The modulation amplitude has no
direct influence on the bandwidth, but the gap to the second band increases with larger
amplitudes.

Another strategy is to improve the ratio of particles occupying the edge compared
to the bulk states by directly preparing the cloud at the boundary of the system, using
a small confining potential, as described in the supplementary material of [187] and
illustrated in Fig. 7.1a. Moreover, this geometric arrangement is more suitable for the
current experimental setup and will thus be implemented in the near future, as outlined
below. The additional potential is realized by a tightly-focused laser beam with λ =
1064 nm and a focus size of ∼ 2µm, corresponding to a strongly confining optical dipole
trap. The beam propagates along the vertical direction and enters the experimental
chamber from below, passing through an acousto-optical deflector (AOD), which is used
to control the position of the focus in the plane of the atoms [188,189].

After the creation of the Bose-Einstein condensate (BEC), the small trapping beam
is ramped up at the center position of the cloud to capture the atoms. Subsequently, its
focus is moved by the AOD in the x-y-plane, positioning the cloud at the edge of the
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system, after which it is loaded into the intensity modulated honeycomb lattice. The
propagation of the edge state and the spread of the bulk states can be observed by taking
insitu absorption images after releasing the atoms from the small trap.

In the experimental setup presented in the previous chapters, the boundary of the
system in the x-y-plane is determined by the harmonic trapping potential, especially by
the z-dipole beam. The harmonic trap generates an extended edge region in real space,
which complicates the differentiation between the bulk and edge states in energy and
leads to a flattening of the edge mode dispersion, as mentioned in Sec. 3.4. Hence, the
z-dipole trap will be replaced by a repulsive, hard-wall potential, which is created by
imaging an obstruction target onto the atoms using blue-detuned light with λ = 532 nm.
The mask has a diameter of 50µm, corresponding to a disk-shaped repulsive wall in the
plane of the atoms with an inner diameter of ∼ 30µm and an edge thickness of ∼ 3µm.
Using this technique and ramping down the X-Y -trap to a minimal value, a nearly flat
potential could be created, being confined by steep walls and thus constituting a suitable
platform to observe the propagation of the edge modes.

7.1.2 Adding disorder and probing the bulk

Disorder potentials have been realized for cold atomic systems in different ways, such as
passing a laser beam through a diffuser plate [190–192] or by superimposing two optical
lattices with incommensurate wavelengths, which results in a quasi-random optical po-
tential [193]. Another possibility is the use of a Digital Mirror Device (DMD) [194,195],
an array of micro-mirrors with typical sizes in the range of 6 − 15µm. Each mirror is
controlled individually and can be switched between two angles, reflecting the incoming
light either towards the setup or into another direction corresponding to no light at the
atoms’ position. Due to their small size, the mirror-array acts like a grating, diffracting
light into several directions. The intensity being reflected into a specific order can be
maximized by optimizing the incident angle of the light and the alignment of the DMD.
Due to spatial restrictions on the experimental table and the possibility of creating arbi-
trary potential patterns, the DMD would be suitable for creating a disorder potential in
the current setup.

The disorder can be generated from a two-dimensional (2D) random distribution
which is transferred to the DMD, setting the state of each mirror accordingly. Projecting
the reflected laser beam onto the atoms through imaging lenses leads to a finite disorder
correlation length arising from a convolution of the random distribution with the point-
spread function of the imaging system [194,195]. Superimposing the speckle pattern from
the DMD with an optical lattice, the atoms experience a different light shift on each site.
The strength of the disorder can be determined by the width of the histogram of all local
light shifts [195]. Apart from probing the special properties of the anomalous Floquet
regime mentioned in the beginning of this chapter, adding a weak disorder potential could
also facilitate the observation of the chiral edge modes in general [196], by at least partly
localizing the bulk states also in regimes with C 6= 0.
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Figure 7.1: Probing the localization of edge and bulk states. a. Imaging of
the edge mode propagation. The atoms (filled, blue circle) are initially prepared at
the boundary of the system (gray line) to maximize the relative occupation of the edge
modes, utilizing an additional, tightly focused trapping beam. Then, the small trap is
switched off and atoms populating edge modes will undergo a chiral motion (dark blue
arrow), while the bulk spreads out homogeneously (light blue arrows). b. Probing the
localization of the bulk. The initial state is a CDW where only A-sites are occupied
(1), realized by a large sublattice energy offset ∆. After time-evolution in the disordered
lattice potential with ∆ = 0 (step 2), the population imbalance between A- and B-sites
is measured (3) by increasing ∆ again and transferring atoms on B-sites to higher bands.
c. Honeycomb lattice potential with V0 = 6Er along x for different values of θ, increasing
the sublattice offset and finally converting it into a triangular lattice, needed for the last
step of the sequence in b.

Probing the localization of the bulk states The localization of the bulk states
could be measured by observing the time-evolution of the atomic cloud after a quench
of the disorder potential, similar to the technique described in [193]. The initial state of
the system is a charge-density wave (CDW), where every second lattice site is empty. In
the honeycomb lattice, this could be realized by adding a large sublattice energy offset
∆, which effectively creates a triangular array of tilted double wells, with only the A-
sites being populated, as illustrated in Fig. 7.1b. Then, the potential difference between
neighboring sites is suddenly reduced and subsequently the disorder potential is switched
on, to allow for equilibration of the density distribution (step 2). After a certain evolution
time, the populations on the A- and B-sites are frozen out by quickly ramping up the
sublattice offset again and turning off the disorder.

The sublattice offset is controlled by the polarization angle θ of the lattice beams.
By increasing θ towards π/2, where the potential minima form a triangular lattice (see
Fig. 7.1c), and subsequently performing bandmapping, atoms occupying the B-sites af-
ter the evolution are transferred into higher energy bands of the final lattice [197–199],
while the atoms occupying A-sites remain in the ground state (setp 3). In this way, the
population on A- and B-sites corresponds to different bands and could be distinguished
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after bandmapping and time-of-flight (TOF). The timing of the disorder and polarization
ramps will have to be optimized in order to minimize excitations to higher bands arising
from the quenches.

If the atoms are localized due to the disorder, they mostly remain on their initial
positions and only a few B-sites will be occupied after the evolution. On the contrary,
if no localization occurs, the initial density pattern will smear out and both types of
sites are populated equally. This change of the distribution can be quantified by the
imbalance [193]

I =
NA −NB

NA +NB

, (7.1)

where NA(B) denotes the number of atoms on A(B) sites. Starting with I close to 1, it
will decay to zero if the system thermalizes, which is not the case if localization occurs,
thus providing a quantitative measure for the localization of the bulk states.

The procedure described above involves fast ramping of the sublattice energy offset,
and hence of the polarization angle θ. In the current setup, this is not possible, as the
polarization of the lattice beams is adjusted manually by waveplates placed in rotation
mounts. As mentioned at the end of Sec. 4.1.5, a new setup for the honeycomb lattice is
planned, including an active phase stabilization of the left- and right-circularly polarized
components of each beam, which will also allow for dynamic switching of the polarization
angles. Another possibility to measure the localization of the bulk states induced by the
disorder would be to study the expansion of the cloud after releasing it from the small
confining potential placed in the center of the system.

7.1.3 Interplay with interactions

Interacting, closed, periodically driven quantum systems are expected to be stabilized by
disorder, leading to MBL bulk states in the high frequency limit [45, 58]. The existence
of MBL in a Floquet setting with large driving frequencies has also been confirmed
experimentally, using time-periodic modulation of a quasi-random one-dimensional (1D)
optical lattice [200]. In contrast, the anomalous Floquet regime is manifestly not in the
high-frequency limit, since ω ∼ J , but it can be mapped to an equivalent setting by
time-dependent unitary transformations [59]. Numerical simulations indicate that the
bulk states can be many-body localized, while the edge states thermalize [59]. In cold
atom experiments, MBL has been observed in 2D for fermions in a quasi-random optical
lattice [201] and for bosons subjected to a random onsite potential [194].

Changing the interaction strength In the 2D honeycomb lattice with V0 = 6Er
and as = 6 a0, as used in the experiments presented in chapter 5, U ≈ 0.01J , basically
corresponding to a non-interacting system. Thus, to study many-body physics or to
realize a Mott-insulating state in the honeycomb lattice, the ratio U/J has to be increased.
The interaction strength can be enhanced by utilizing the Feshbach resonance of 39K,
leading to a larger scattering length as, and by adding a lattice along the vertical direction.
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As described in Sec. 4.1.5, the current setup suffers from phase noise of the honeycomb
lattice beams, which has to be reduced first to be able to load the atoms into the three-
dimensional (3D) lattice configuration.

If these issues can be solved in the future, the ratio U/J could indeed be increased to
values much larger than 1, even close to the theoretically expected transition to the Mott-
insulating regime at U/J ∼ 18 [202], as shown in Fig. 7.2a and b. The interacting BEC
loaded into the lowest band of the optical lattice can be described by the Bose-Hubbard
Hamiltonian [203]

Ĥ =
∑

〈R,R′〉
JR,R′ â

†
RâR′ +

∑

〈〈R,R′〉〉
J̃R,R′ â

†
RâR′ +

1

2
U
∑

R

â†Râ
†
RâRâR, (7.2)

considering nearest neighbor (NN) and next-nearest neighbor (NNN) hopping, which is
denoted by the single and double angular brackets, and onsite interactions with strength
U . The sum runs over all lattice sites R, representing A and B. The interaction U is
given by [204]

U =
4π~2as
m

∫
|w1(r)|4 d3r =

4π~2as
m

∫
|whex(x, y)|4 d2r

∫
|wZ(z)|4 dz, (7.3)

where w1(r) denotes the Wannier function for a particle in the lowest band, which is
factorized into the part describing the honeycomb lattice, whex(x, y), and the contribution
from the vertical direction, wZ(z). The Wannier functions of the honeycomb lattice used
for the plots in Fig. 7.2 are taken from [205] and have been calculated using the method
presented in [204]. Along the vertical direction, the case of a harmonic trapping potential
is compared to a 1D lattice, being created as described in Sec. 4.1.5. If the system is
only confined by the trap, the atoms are assumed to occupy the lowest energy level of
the harmonic oscillator, where the eigenfunction corresponds to a normalized Gaussian:

wTrap
Z (z) =

(mωz
π~

)1/4

e−
mωz
2~ z2 ⇒

∫
|wTrap

Z (z)|4 dz =

√
mωz
2π~

, (7.4)

with ωz = 2πfz and fz = 200 Hz. The Wannier functions of the 1D lattice, being localized
to a single unit cell, are calculated from the corresponding Bloch functions as [206]

wZ(z) =
aZ
2π

∫

BZ

ψ1
qz(z) dqz. (7.5)

Replacing the harmonic confinement with a lattice increases the onsite interaction
noticeably, allowing to enter the regime with U � J , as shown in Fig 7.2a, where the
ratio U/J is plotted for as = 100 a0 as a function of the honeycomb lattice depth, being
combined with either harmonic confinement along z (green dots) or with the vertical
lattice at VZ = 120ErZ and VZ = 500ErZ (blue dots). In the latter case, U/J ∼ 15 can
be reached in a deep honeycomb lattice with Vhex = 16Er. For the vertical lattice, the
spacing of aZ = 1.91µm is used in the calculations.
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Figure 7.2: Calculated Hubbard interaction U as a function of the lattice depth.
a. Interaction in units of the NN hopping J of the honeycomb lattice as a function of
the honeycomb lattice depth Vhex. The green dots correspond to a harmonic trapping
potential with fz = 200 Hz along the vertical direction, as it is the case in the experiments
presented in this work. The blue dots are calculated assuming the vertical lattice with
spacing aZ = 1.91µm and different depths. b. U as a function of the vertical lattice
depth VZ , again in units of the honeycomb tunneling amplitude J , which is now constant
along each of the two curves. c. Interaction U in the 3D lattice (blue points) and NN
hopping J of the honeycomb lattice (yellow points) as a function of the honeycomb lattice
depth. While U increases with Vhex, J decreases, leading to the steep rise of U/J in a.
The scattering length is as = 100 a0 in all plots.

In the current setup, employing a Ti:sapphire laser to create the honeycomb lattice,
the maximal depth that can be reached is about ∼ 7 − 8Er, corresponding to U/J < 5
for as = 100 a0. Since U ∝ as, the curves are simply scaled by constant factor for larger
scattering lengths. In Fig 7.2b, U/J is shown as a function of the vertical lattice depth,
also for as = 100 a0. It exhibits a slower growth than the data in Fig 7.2a, since the
interaction U is divided by the nearest neighbor hopping J of the honeycomb lattice
in both cases. Changing the depth Vhex not only increases U but also decreases J , as
illustrated in Fig 7.2c for as = 100 a0, which leads to a steeper rise of U/J . Keeping the
honeycomb depth constant reflects solely the growth of U with VZ , since the points for
each curve in Fig 7.2b are divided by the same number.

In general, large values of U/J could be realized when implementing a deeper hon-
eycomb lattice in combination with the vertical lattice and a large scattering length. To
raise the lattice depth Vhex to values above 8Er, a much higher laser power is needed,
which could be achieved by using a laser with λ = 1064 nm, similar as for the optical
dipole trap. In this case, a honeycomb lattice is generated for horizontal polarization,
since the light is red detuned and the atoms are trapped in the intensity maxima.
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7.2 Fermionization in the anomalous Floquet regime

In 1D lattice systems, strongly interacting Bose gases can exhibit features of non-inter-
acting fermions, realizing what is known as the Tonks-Girardeau (TG) gas [207,208]. In
this regime, two bosons cannot occupy the same lattice site due to the strong, repulsive
onsite-interactions, thus showing behavior similar to fermions. While some properties
of the interacting Bose gas are similar to those of non-interacting fermions, such as the
density pattern in real space, others remain different, one example being the momentum
distribution. Due to the restrictions in real space, the width of the bosonic cloud in
momentum space is increased, but in contrast to ideal, non-interacting fermions, several
particles can still occupy the same momentum state. A TG gas has been realized experi-
mentally with ultracold atoms in an optical lattice, confirming the theoretical predictions
for the specific form of the momentum distribution [209].

Fermionization of interacting bosons has also been predicted in 2D [210,211], whereas
the detailed mechanism of the statistical transmutation is different than in 1D. In the
TG gas, the dynamics are dominated by the interactions, since the interaction energy is
much larger than the kinetic energy. A similar situation can be achieved if interacting
bosons are loaded into a band structure with a flat dispersion, minimizing their kinetic
energy. It is thereby sufficient for the energy band to be degenerate along a 1D line
in quasimomentum space [211]. These dispersions are referred to as moat bands. The
occurrence of statistical transmutation in a degenerate band minimum will be briefly
introduced in the first part of this section, after which a possible experimental realization
is discussed, utilizing the band structure in the anomalous Floquet regime.

7.2.1 Statistical transmutation in a degenerate band minimum

The ground state of repulsively interacting bosons in a degenerate ring-minimum is ex-
pected to be different from a BEC and can be described by non-interacting fermions
placed in a magnetic field. The corresponding many-body wavefunction Φ of N bosons
can be approximated by a composite fermion state [211]

Φ(r1, ..., rN) = ei
∑
j<l Arg[rj−rl] ΨF (r1, ..., rN), (7.6)

where ΨF (r1, ..., rN) denotes the fully antisymmetric wavefunction of N non-interacting
fermions, which are transformed to bosons with the Chern-Simons flux attachment, being
described by the exponential prefactor. As shown in [211], the Chern-Simons factor is
related to an emergent gauge field which depends on the particle density. In the mean-field
approximation, this magnetic field is replaced with its mean value, thus being proportional
to the average density n. The wavefunction ΨF then describes N non-interacting fermions
subjected to a moat-like dispersion and a homogeneous magnetic field, with their energies
being described by Landau-levels that depend on the density.

The realization of the composite fermion state could be verified by probing the velocity
distribution of the expanding gas [211]. While condensation leads to a sharp peak at v = 0
that broadens with increasing temperature, the velocity distribution of the fermionic state



7.2 Fermionization in the anomalous Floquet regime 169

follows a step function which becomes more pronounced at lower densities. The composite
fermion state is expected to emerge for low densities and strong interactions [211], which
are described by the dimensionless interaction strength g. For g = 1, the transition from
the BEC to the fermionic state occurs at n ∼ n0 = q2

0/(2π), where q0 denotes the radius
of the ring minimum in quasimomentum space [211]. If the interactions are smaller, the
transition shifts to lower densities.

7.2.2 Probing the fermionization

The momentum distribution of a gas, being proportional to its velocity distribution, can
be measured by free expansion in a TOF experiment. However, this only reveals the pure
momentum distribution in the limit of tTOF →∞, otherwise an effective convolution with
the real space density distribution is probed. To overcome this problem, the technique
introduced in [212] could be employed: After switching off only the lattice, the cloud
expands in the harmonic trap for a time of T/4, where T = 2π/fT , during which the initial
momentum distribution is completely transferred to the real space density distribution,
which is subsequently measured by absorption imaging. This works only for the ballistic
expansion of a non- or weakly interacting gas, where the distribution is not distorted by
particle collisions during the expansion. When probing a strongly interacting system, as
it will be the case when realizing the statistical transmutation, the scattering length has
to be ramped down prior to the expansion.

The moat dispersion can be realized when loading the atoms into the first Floquet
band in the anomalous regime, where the hybridization with the second band leads to a
ring-like minimum. In fact, the exact shape of the minimum is a mixture between a ring
and a hexagon, as illustrated in Fig. 7.3a, where the dispersion of the first band is plotted
for m = 0.2 and f = 6 kHz at the corresponding quasimomenta in the 2D Brillouin zone
(BZ), which is indicated by the dashed, gray lines. The hexagon-ring is also not perfectly
degenerate, but exhibits minima along the lines Γ−M . The flatness F of the moat can
be described by [211]

F =
Emax − Emin

EΓ − Emin

, (7.7)

where the maximal and minimal energy along the moat are denoted by Emax and Emin,
and EΓ is the energy at Γ. For the band minimum in the anomalous regime, Emax is
given by the value of the dispersion at the minimum along the line Γ −K and Emin by
the energy of the corresponding point along Γ−M .

Although the derivation in [211] assumes a perfectly flat moat, the authors also present
a model for realizing a moat which exhibits a flatness F . 0.1. This regime could indeed
be reached using the anomalous Floquet band structure, as shown in Fig. 7.3b for m = 0.2
and various modulation frequencies. While the flatness of the moat decreases with larger
frequencies, its radius also becomes smaller, approaching the transition to the Haldane
regime. Thus, the quasienergy gap to the second band at the position of the moat also
decreases for f & 6 kHz, which is depicted in Fig. 7.3c for the band minima along the
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Figure 7.3: Moat dispersion in the anomalous Floquet regime for m = 0.2 and
V0 = 6 Er. a. Lowest Floquet band at the quasimomenta corresponding to the moat
for f = 6 kHz. The 2D BZ is indicated by the dashed, gray lines. b. Calculated flatness
F of the band minimum defined according to Eq. 7.7 as a function of the modulation
frequency f . c. Quasienergy gap between the two lowest bands at the band minima along
the lines Γ−M and Γ−K as a function of the modulation frequency, corresponding to
the minimal and maximal points along the moat.

lines Γ−M and Γ−K. The decrease of the gaps for f . 6 kHz signals the approach of
the second phase transition. A smaller quasienergy gap could lead to excitations to the
second band, and, as discussed in Sec. 5.4.2, the lifetime of the condensate is in general
reduced for modulation parameters close to the phase transitions. Thus, a compromise
between a small flatness and a maximal quasienergy gap has to be found, which could be
achieved for f ∼ 6− 7 kHz at m = 0.2.

While a relatively flat moat structure can created in the anomalous Floquet regime,
the onsite interactions would need to be increased to achieve the composite fermion
regime, depending on the density of the BEC. In principle, the density could be made very
small simply by decreasing the atom number of the BEC in combination with a reduction
of the in-plane confinement. However, in order to probe the momentum distribution using
absorption imaging, the overall density can not be too small to retain a useful signal-to-
noise ratio.

The scattering amplitude for s-wave collisions in 2D in general depends logarithmically
on the relative momentum of the atoms [213], in contrast to the 3D case, where it is
independent of the momentum. In cold atomic gases being confined into a 2D plane by
some trapping potential along the third direction, the range of the scattering potential is
usually small compared to the extent of the system along this axis. Thus, the collisions
can still be treated as 3D and are described by the dimensionless interaction strength [214–
216]

g =
√

8π
as
aho

, aho =

√
~

mωho

, (7.8)

with the harmonic oscillator length aho describing the extent of the system along the
third direction. For a harmonic trap, the corresponding frequency ωho is directly given
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by the trapping frequency. If a 1D lattice with spacing aZ and depth VZ is implemented
along the third direction, the onsite trapping frequency is given by

ωho =

√
2VZ
m

(
π

aZ

)2

. (7.9)

For a scattering length of as = 100 a0, the dimensionless interaction strength amounts
to g ≈ 0.02 if the system is confined by the harmonic trap with fz = 200 Hz, which is
far below the value of g = 1 mentioned above. Thus, the composite fermion state could
only be observed for very small densities. The value of g could be raised to g ≈ 0.2
for as = 100 a0 in the presence of the vertical lattice with VZ = 500ErZ . To determine
whether the fermionization could be observed, the imaging at low densities needs to be
tested, finding a lower limit for n and thus for the interaction strength that is needed.

To realize the system described above, the BEC needs to be loaded into the lowest
band of the modulated lattice in the anomalous Floquet regime. Due to the gap closing
at Γ, this involves changing the quasimomentum during the ramp-up of the modulation,
to minimize excitations to the second band, as described in Sec. 5.1.3. Moreover, the
atoms need to be held at the quasimomentum of the band minimum, which would lead
to large displacements in real space arising from the accelerated lattice. Another option
could be to directly transfer the atoms to the desired point in quasimomentum space by
using Bragg beams. In this case, two laser beams with frequencies ω1 6= ω2 propagating
along different directions k1, k2 are imposed onto the atoms. The energy and momentum
of the cloud are changed in a two-photon process by ~(ω1 − ω2) and ~(k1 − k2), which
can also be used for spectroscopy [217, 218]. In summary, after finding a way to load
the condensate into the band minimum, the statistical transmutation could be measured,
provided that absorption imaging is still possible at low densities and the interaction
strength can me made large enough.
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Chapter 8

Measuring symmetry protected
Wilson lines

The topological properties of a single, non-degenerate energy or quasienergy band can
be characterized in terms of Chern or winding numbers, which are related to the Berry
curvature of the respective band. The change of the topological properties at band
touching points is described by the topological charge, as outlined previously in chapters 2
and 5.

The concept of the Berry curvature, arising for adiabatic transport of a quantum state
within a single Bloch band, can be generalized to the case of degenerate bands. Transport
in a degenerate multiband system is captured by the matrix-valued Wilson line [81, 82],
which contains off-diagonal terms that describe the mixing of bands. The eigenvalues of
the Wilson line matrix are related to the Z2-invariant characterizing topological insula-
tors [219, 220] and also play an important role in the description of symmetry protected
topological phases [221,222]. Moreover, a simplified form of the Wilson line has been used
to directly access the properties of the cell-periodic Bloch-wavefunctions as a function of
quasimomentum [72].

The chapter starts with a brief introduction to Wilson lines, a more detailed descrip-
tion can be found in [73]. Under certain circumstances, the difference of the eigenvalue
phases of the Wilson line can be viewed as a topological invariant, being protected by
the point-group symmetries of the lattice [223], which is discussed in Sec. 8.1.3 and 8.1.4.
The measurement of the Wilson line eigenvalues in an optical honeycomb lattice is pre-
sented in the second part of the chapter, starting with the description of the experimental
protocol in Secs. 8.2.1 and 8.2.2. The eigenvalue phases are derived as a function of the
lattice depth for different paths in quasimomentum space [8.2.3]. In the lattice system
considered here, the effect of the symmetry protection is expected to be small compared
to systematic errors that arise in the measurements. The chapter concludes with the dis-
cussion of prospects how to investigate the symmetry protection of the eigenvalue phases
in future experiments.
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8.1 Wilson lines

The Wilson line describes the transport of a state in a subset of multiple, degenerate
bands, which is adiabatic with respect to higher lying bands outside the corresponding
subspace. In the following, this will be applied to the dispersion of the honeycomb
lattice by considering the evolution of an eigenstate being transported in two-dimensional
quasimomentum space by one reciprocal lattice vector G. The applied force is large
compared to the combined width of the two s-bands, but small with respect to the gap to
the p-bands, realizing an effectively degenerate two-band system. After deriving different
expressions for the Wilson line in the first part, the properties of the eigenvalue phases of
the SU(2)-part of the Wilson line will be discussed. The notion of the atomic limit of a
band representation is introduced, which is used to define a parameter regime where the
symmetry protection of the eigenvalue phase difference of certain Wilson lines becomes
relevant.

8.1.1 Transport in degenerate band subspaces

In Sec. 2.1.1, the adiabatic transport of a state in a single Bloch band has been considered,
giving rise to a geometric phase factor, which is equal to the line integral of the Berry
connection along the path being traversed in quasimomentum space. For transport along
a closed path, it is gauge invariant and termed Berry phase or Zak phase [224], when
the path consists of a reciprocal lattice vector G, representing a closed loop due to the
periodicity of the Brillouin zone (BZ). The transport in reciprocal space is realized by
applying a force F which changes the quasimomentum q0 of the initial state to

q(t) = q0 +
Ft

~
. (8.1)

The Schrödinger equation for a particle moving in a periodic, time-independent potential
reads

i~
∂

∂t
|Ψ(t)〉 = (Ĥ − F · r̂)|Ψ(t)〉, (8.2)

and can be solved by writing the state as a linear combination of the Bloch states |ψnq(r)〉
with time-dependent coefficients:

|Ψ(t)〉 =
∑

n

cn(t)|ψnq(t)(r)〉 =
∑

n

cn(t) eiq(t)·r |unq(t)(r)〉. (8.3)

The Bloch states are eigenstates of the Hamiltonian Ĥ with eigenvalues En
q :

Ĥ =
∑

n,q

En
q |ψnq(r)〉〈ψnq(r)|. (8.4)
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Inserting this and the ansatz from Eq. 8.3 into Eq. 8.2 yields the equations of motion for
the coefficients cn(t):

i~
∂

∂t
cn(t) = cn(t)En

q(t) − i
∑

n′

cn
′
(t) F · 〈unq(t)|∇q|un

′

q(t)〉

= cn(t)En
q(t) −

∑

n′

cn
′
(t) F ·Ann′(q(t)), (8.5)

where Ann′(q(t)) = i〈unq(t)|∇q|un′q(t)〉 is defined as the generalized Berry connection, which
is often called the non-Abelian Berry connection if n 6= n′. For a two-band system, the
time-evolution is described by a 2× 2 matrix

i~
∂

∂t



c1(t)

c2(t)


 =



E1

q(t) − F ·A11(q(t)) −F ·A12(q(t))

−F ·A21(q(t)) E2
q(t) − F ·A22(q(t))





c1(t)

c2(t)


 . (8.6)

If the force is large compared to the energy dispersion, which means that F ·Ann′ � En,
the equations of motion are reduced to

i~
∂

∂t



c1(t)

c2(t)


 =



−F ·A11(q(t)) −F ·A12(q(t))

−F ·A21(q(t)) −F ·A22(q(t))





c1(t)

c2(t)


 = −F · Âq(t)



c1(t)

c2(t)


 .

(8.7)

The state of the system after a time t is obtained by acting with the corresponding
time-evolution operator:

|Ψ(t)〉 = T e− i
~
∫ t
0 F·Âq(t′)dt

′ |Ψ(0)〉 = Ŵq0→qf |Ψ(0)〉, (8.8)

with time-ordering denoted by T . The operator Ŵq0→qf describing the transport from
quasimomentum q0 to qf is called the Wilson line or Wilson-Zak loop [221]. Neglect-
ing the energy dispersion corresponds to transport in two effectively flat and degenerate
bands. Thus, the Wilson line can be viewed as the generalization of the Berry phase
factor introduced in Eq. 2.7 to a subset of multiple, degenerate bands. Similar as for
a single band, the Berry connection matrix Âq and also the Wilson line are gauge de-
pendent, whereas the eigenvalues of the Wilson line are gauge-independent for transport
along a closed path, and accordingly named non-Abelian Berry phases [221]. The Berry
connection matrix can be used to define the non-Abelian Berry curvature [182]

B = ∇q × Âq − iÂq × Âq, (8.9)

which is a gauge-dependent quantity in contrast to its single-band counterpart. While
the Berry connection and curvature in the single band case have a similar structure as
a vector potential and magnetic field in quasimomentum space, Â and B correspond to
the gauge potential and gauge field in a non-Abelian SU(2) gauge theory [225].
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Wilson lines as projectors If the bands of the degenerate subspace span the same
Hilbert space at all quasimomenta, as it is the case for the s-bands of the honeycomb
lattice, the integration in Eq. 8.8 becomes independent of the path in quasimomentum
space [221]. The elements of the Wilson line describing the transport from q0 to qf
are then given by the overlap of the cell-periodic Bloch states at the initial and final
quasimomentum:

W nm
q0→qf

= 〈unqf |u
m
q0
〉. (8.10)

This effectively corresponds to the situation where the applied force is the largest energy
scale of the system and F · r̂ � Ĥ in Eq. 8.2. In this case, the Wilson line, being equal
to the time-evolution operator, simplifies to

Ŵq0→qf = e
i
~F·r̂ t = ei(qf−q0)·r̂. (8.11)

Hence, its matrix elements in the basis of the Bloch states can be expressed as

W nm
q0→qf

= 〈ψnqf |Ŵq0→qf |ψmq0
〉 = 〈unqf |e

−iqf ·r ei(qf−q0)·r eiq0·r|umq0
〉 = 〈unqf |u

m
q0
〉. (8.12)

The relation in Eq. 8.10 can be used for state tomography [226, 227] of the cell-periodic
Bloch states, characterizing them as a function of quasimomentum [72].

Decomposition of the Wilson line matrix The Wilson line defined in Eq. 8.8 is
a unitary 2 × 2 matrix and can thus be split into a U(1)-phase and an SU(2)-part.
Decomposing the Berry connection matrix as

Â =




A11+A22

2
0

0 A11+A22

2


+




A11−A22

2
A12

A21 A22−A11

2


 = ÂU(1) + ÂSU(2), (8.13)

where the dependence on the quasimomentum has been omitted for clarity, the Wilson
line is given by

Ŵq0→qf = T e− i
~
∫ t
0 F·(ÂU(1)+ÂSU(2))dt′

= e−
i
~
∫ t
0 F·ÂU(1)dt

′ T e− i
~
∫ t
0 F·ÂSU(2)dt

′
. (8.14)

The first part describes the sum of the geometric phases acquired in both bands and
is proportional to the identity matrix, hence commuting with ÂSU(2) and itself at all
quasimomenta. The experiment reconstructs the SU(2)-part of the Wilson line [72, 73],
WSU(2) ∈ U(2)/U(1) = SU(2)/Z2, since the global U(1)-phase factor can not be mea-
sured. Here, Z2 indicates the ambiguity in choosing ±WSU(2). Writing WSU(2) in the
general form of an SU(2) matrix,

WSU(2) =

(
W 11 W 12

−(W 12)∗ (W 11)∗

)
, (8.15)
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its eigenvalues λ± are given by

λ± = e±iξ = cos(ξ)± i sin(ξ)

= Re[W 11]± i
√
|W 12|2 + Im[W 11]2. (8.16)

Due to the Z2-ambiguity of WSU(2), the eigenvalue phase ξ is only defined up to ±π.
Considering the real part of Eq. 8.16, the eigenvalue phase can be determined solely from
the first entry W 11 of the Wilson line:

ξ = arccos
(
Re[W 11]

)
= arccos

(
|W 11| cos(Arg[W 11])

)
. (8.17)

By extracting the absolute value and argument of the complex number W 11, the eigen-
value phase is derived in the experiment, as described in Sec. 8.2.

8.1.2 Real space picture

In the following, transport along the qx-direction by one reciprocal lattice vector G =
K1 +K2 is considered, starting at q0 = Γ in the first BZ and ending at qf = Γ in the next
BZ, as depicted in Fig. 8.1a. The path exhibits twofold rotational symmetry, meaning
that its second half can be mapped to the first half by a rotation of 180◦, and will be
denoted by C2 accordingly.

In the absence of a sublattice energy offset, the eigenstates of the two lowest bands
in the honeycomb lattice can be generally expressed as equal superpositions of wavefunc-
tions being localized on A- and B-sites. The force applied to realize the non-adiabatic
transport within the s-bands corresponds to a gradient along x, shifting the potential of
neighboring lattice sites by Fa (see left panel of Fig. 8.1b). Thus, if the applied force is
large compared to the energy dispersion, Fa� J , with J denoting the nearest neighbor
(NN) hopping, the wavefunctions on A- and B-sites are effectively decoupled and can
evolve independently.

During the transport, atoms being initialized on an A- or B-site acquire a phase
difference of 2π/3 [73], which is illustrated in the right panel of Fig. 8.1b: Transporting a
Bloch state from A to A or B to B, corresponding to a real space distance of 3a/2 along
x, must result in a trivial phase shift of 2π. The distance between A- and B-sites is given
by a/2, corresponding to a phase shift of 2π/3 (or equivalently −4π/3 when considering
the other pair of sites spaced by a). This can be seen directly when writing the Wilson
line as the propagator in quasimomentum space [73] as given by Eq. 8.11. The system is
initialized in the lowest Bloch band at Γ and transported by G = (

√
3, 0) kL:

|u1
Γ+G〉 = eiG·r̂|u1

Γ〉 = eiG·r̂
1√
2

(∑

rA

|wrA〉+
∑

rB

|wrB〉
)
, (8.18)

where the states localized on A- and B-sites have been expressed in terms of the Wan-
nier functions |wrA(B)〉, which are eigenstates of the position operator r̂ with eigenvalues
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rA(B) [228]. Thus, they are also eigenstates of the Wilson line operator eiG·r̂ with eigen-
values eiG·rA(B) . The locations of the B-sites can be related to the A-sites as rB = rA+δ1,
which directly reveals the phase difference of 2π/3 when transporting by G:

|u1
Γ+G〉 =

1√
2

(∑

rA

eiG·rA|wrA〉+ eiG·(rA+δ1)|wrA+δ1〉
)

=
1√
2

(∑

rA

|wrA〉+ ei
2π
3 |wrA+δ1〉

)
=

1√
2

(
|uAΓ 〉+ ei

2π
3 |uBΓ 〉

)
, (8.19)

where G · rA = 2π, since rA can be written as a sum over the lattice vectors a1 and a2.
This means that the system only returns to its original state after transporting by 3G,
which has also been measured experimentally by observing the population of the lowest
band after non-adiabatic transport along qx for various path lengths [72, 73]. The phase
difference between wavefunctions localized on A- and B-sites, that is acquired during the
transport by G, directly corresponds to the difference of the eigenvalue phases of the
Wilson line eiG·r̂, as outlined above. This relation will be investigated in more detail in
the next section, as well as possible deviations from the value of 2π/3.

8.1.3 Symmetry protection of the eigenvalue phase difference

In the situation discussed above, the two lowest bands of the honeycomb lattice can be
expressed by superpositions of two s-orbitals being localized on A- and B-sites. In general,
this kind of mapping is called a band representation. The atomic limit of such a band
representation describes the situation that a finite number of bands can be represented by
a superposition of a finite number of Wannier functions per unit cell [223]. In this sense,
the first six bands of the symmetric honeycomb lattice at V0 = 6Er are not in the atomic
limit, since they can not be completely described by a set of six tight-binding orbitals, as
discussed in Sec. 3.3.2. On the other hand, the two lowest bands are in the atomic limit
for V0 = 6Er, being fully captured by the two s-orbitals with negligible sp-coupling.

In the atomic limit, there exists a one-to-one correspondence between the eigenvalue
phase differences of the Wilson line and the phase difference between the wavefunctions
localized on A- and B-sites acquired during the transport [223,229]. Thus, the difference
of the eigenvalue phases just depends on the angle of the force relative to the vector
δ1 connecting A- and B-sites, as illustrated in the previous section. As a consequence
of this, the phase difference is similar for all paths that are homotopically equivalent,
which means that they can be continuously deformed into each other. The path C3,
which connects the centers of the first and second BZ via the K ′-point (see Fig. 8.1c),
and accordingly exhibits threefold rotational symmetry, is homotopically equivalent to
C2 and thus ∆ξ(C3) = 2π/3.

Away from the atomic limit, the eigenvalue phase differences will be modified in
general, but for certain paths they remain quantized as long as the point-group symmetry
of the path is preserved [223,229]. This is the case for the C3 path, where ∆ξ is protected
by threefold rotational symmetry. In contrast, the phase difference for the C2 path is
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Figure 8.1: Transport paths in reciprocal space and real space embedding of
the Wilson line eigenvalues. a. Path C2 in quasimomentum space for transport by
G = K1+K2 from Γ to Γ. b. The applied force corresponds to a gradient Fa of the lattice
potential. If Fa� J , the wavefunctions (filled, blue lines) localized on A- and B-sites can
evolve independently and acquire a phase difference of 2π/3 when transporting along C2,
since the distance between A and B equals 1/3 of the total distance from A to A. [72,73].
c. Path C3 being homotopically equivalent to C2, but threefold rotationally symmetric.
Away from the atomic limit, the eigenvalue phase difference of the corresponding Wilson
line is protected by threefold rotational symmetry.

expected to change when leaving the atomic limit, independent of whether inversion
symmetry is broken or not. The atomic limit is characterized by vanishing non-Abelian
Berry curvature, which accordingly acquires a finite value away from it.

Symmetry protected phase differences of the Wilson line eigenvalues can also occur
in topological bands with non-zero Chern numbers. Although no description in terms of
Wannier functions exists there [230, 231], the geometrical phases arising from transport
in reciprocal space can always be formulated [223].

As mentioned in the beginning, Wilson lines can be employed to obtain the Z2-
invariant characterizing topological insulators. These systems can be viewed as two copies
of a Chern insulator having opposite Chern numbers C↑, ↓ for particles with opposite spin,
preserving time-reversal symmetry. This results in no net chiral edge current, as the
particles with spin up and down move in opposite directions. Since the Chern numbers
for the different spin components have the same magnitude, their difference is given by a
Z2-number C↑−C↓ = ±1, which is a topological invariant characterizing the system. The
Chern number can be expressed in terms of polarizations [220], that essentially describe
the transverse motion of a particle when its quasimomentum is changed. Similar to the
Wannier functions above, they are related to the eigenvalue phases of the Wilson line
which allows for determination of the Z2-invariant from ∆ξ [219,220].

In order to observe the symmetry protection of the eigenvalue phase difference, a band-
subpace has to be found which is not described by an atomic limit, corresponding to a non-
zero value of the non-Abelian Berry curvature. The strong gradient dynamics mentioned
above can be realized experimentally for the s-bands of the honeycomb lattice, since they
are separated by a gap from the p-bands, allowing to choose the magnitude of the force
such that it lies in the gap between the s- and p-bands. Going away from the atomic
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limit there means that the two lowest bands need to be described as superpositions of s-
and p-orbitals, amounting to a finite sp-coupling. As mentioned above and in Sec. 3.3,
the sp-coupling vanishes in the static, symmetric honeycomb lattice for V0 = 6Er. The
sp-hybridization could be enhanced by lowering the lattice depth, since this reduces the
energy gap between the s- and p-bands, as described in the next section.

8.1.4 Correction terms

The limit of completely flat, degenerate bands can not be reached in the experiment,
since the force can not be arbitrarily large due to the presence of higher bands. There
are two kinds of corrections to the Wilson line matrix defined in Eq. 8.8 that can arise in
a realistic setting: If the force is not large enough, the dispersion of the two lowest bands
can not be neglected any more and the time integration in Eq. 8.8 needs to be carried out
over the full matrix given in Eq. 8.6, which contains the band energies on the diagonal.
In general, this leads to deviations of the eigenvalue phase difference from 2π/3 which
scale with (∆E21

max/Fa)2 [229], where ∆E21
max denotes the maximal energy gap between

the two lowest bands, being equal to their combined width.

If the force is too large, excitations to higher bands will occur, leading to corrections
of the order Fa/∆E32

min [229], with ∆E32
min being the minimal gap to the higher bands.

To include these in the dynamics, a six-band model needs to be considered. In a tight-
binding description, the excitations from the s- to the p-bands would scale with the sp-
hybridization. This illustrates the difficulties which appear in the experiment: Increasing
the sp-hybridization to observe the effect of the symmetry protection, e.g. by reducing the
lattice depth, leads to an enhanced probability of excitations to higher bands. Moreover,
as discussed in Sec. 8.2.3, the s-band dispersion is also increased in a shallow lattice,
complicating the realization of the strong gradient regime and the distinction between
the effects from the symmetry protection and the correction terms.

To isolate the effect of the sp-hybridization in the calculations, leading to the finite
non-Abelian Berry curvature and hence to the symmetry protection, a 2× 2-Wilson line
not containing the energy dispersion can be used, thereby also excluding excitations to
the p-bands. The eigenstates of the two lowest bands, that enter the derivation of the
Berry connection matrix, are however obtained from either a full band calculation which
incorporates all couplings, or from a tight-binding model with more than two bands,
containing non-zero sp-hoppings [229].

Using the full band calculation, care must be taken when carrying out the derivatives
of the band eigenstates, since the Berry connections are gauge-dependent (in contrast
to the gauge-independent single-band Berry curvature which has been calculated e.g. in
Sec. 3.1.2). To derive the Berry connections, a suitable gauge choice has to be made which
ensures that the cell-periodic Bloch functions are numerically differentiable everywhere
in the BZ [72,73,232]. In a two-band tight-binding model, this is not necessary, since the
eigenstates and Berry connections can be calculated analytically.
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8.2 Measurement of the eigenvalue phases

The eigenvalues of the Wilson line can be measured experimentally, enabling the deriva-
tion of their phases, and thus of the phase difference and its potential symmetry protec-
tion. As mentioned at the end of Sec. 8.1.1, the experiment reconstructs the SU(2)-part
of the Wilson line, which has eigenvalues e±iξ. Hence, the phase difference is given by
∆ξ = 2ξ and its quantization to a value of 2π/3 corresponds to ξ being quantized to π/3,
which will be considered in the following for simplicity.

The eigenvalue phase of the Wilson line is measured along the C2 and C3 paths
introduced above for different lattice depths between V0 = 7Er and V0 = 3Er, simulating
the presence or absence of the atomic limit. The data in the symmetric lattice are
compared to the values in an imbalanced lattice, where threefold rotational symmetry
is broken, in order to detect the predicted symmetry protection of the eigenvalue phase
along C3. As mentioned in the last section, deviations of the eigenvalue phase from π/3
will also occur due to excitations to higher bands and the non-negligible energy dispersion.
To probe the influence of these corrections independently of each other, the measurements
are carried out for two different force settings where either Fa/∆E21

max or Fa/∆E32
min is

kept constant while varying the lattice depth.
From the theoretical considerations in Sec. 8.1.3 it would be expected that the eigen-

value phase of the C3 path should only deviate from π/3 away from the atomic limit if
threefold rotational symmetry is broken, thus in the shallow, imbalanced lattice, while ξ
along C2 should always change when lowering the lattice depth, regardless of the lattice
symmetry.

8.2.1 Experimental sequence to obtain the eigenvalue phase

According to Eq. 8.17, the eigenvalue phase of the SU(2) Wilson line is completely
determined by the complex number W 11. In the experiment, the absolute value and
argument of this number are obtained by band population measurements, as described
in [72, 73]. The Bose-Einstein condensate of 39K at as = 6 a0 is loaded into the lowest
band of the honeycomb lattice at q0 = Γ. The force is applied by lattice acceleration,
being directed either along the qx-direction corresponding to the C2 path or towards
K ′ to realize transport along the C3 path. For the latter, the direction of the force
is then switched when reaching K ′ (see Fig. 8.1c) to continue the acceleration towards
Γ in the second BZ. The fast switching of the force direction did not lead to heating
or excitations, probably also due to the relatively large angle of the path. The band
population measurements are carried out by performing bandmapping at the end of the
path and counting the population in the lowest band at qf = Γ. This corresponds to a
projection to the eigenstate |u1

Γ〉.

Population measurements: |W11| Writing the entries of the Wilson line as projection
operators as introduced in Eq. 8.10, the absolute value of the matrix entry W 11 can
directly be accessed by measuring the population in the lowest band after transporting
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from Γ by one reciprocal lattice vector G, either along C2 or C3:

|W 11
Γ→Γ+G|2 = |〈u1

Γ+G|u1
Γ〉|2 = n1(Γ + G), |W 11

Γ→Γ+G| =
√
n1(Γ + G). (8.20)

The relative population n1 in the lowest band is derived from absorption images, which are
taken after performing bandmapping at Γ in the second BZ and a time-of-flight (TOF)
of tTOF = 3.5 ms, by counting the pixel sum in the central peak corresponding to the
lowest band. The background is subtracted by choosing appropriate regions-of-interest
as described in Sec. 4.2.2 and the relative population is given as the pixel sum in the
central peak divided by the total sum. From these images it can not be inferred whether
the atoms not being in the lowest band are populating the second or higher bands.
Nevertheless, it can be deduced that there is vanishing population in bands higher than
the 6th in the measurements presented here.

Since the imaging intensity is larger in the center of the images, the population in
the central peak is slightly underestimated compared to the outer peaks. This effect is
reduced by performing the mentioned subtraction of the local background pixels close
to each peak and by choosing a short TOF, resulting in a more equal intensity at the
location of the different peaks.

Oscillation measurements: Arg[W11] The argument of W 11 is obtained from in-
terferometric measurements [72, 73] similar to Stückelberg oscillations [4.2.2], which is
illustrated in Fig. 8.2a for the C3 path. The atoms are loaded into the lowest band at
Γ and then accelerated along qx to the next Γ-point in the second BZ, creating a co-
herent superposition of populations in the first and second band (step 1). In this part,
an intermediate force is used which depends on the lattice depth and varies between
Fa = 0.68 kHz and 6.80 kHz for V0 ∈ [3, 7]Er. The atoms are held at Γ for a variable
time t (step 2), leading to the time-dependent superposition state

|ψ(2)(t)〉 = a1|u1
Γ〉+ a2 e

i(ωt+φ0)|u2
Γ〉, (8.21)

with ω = (E2(Γ)−E1(Γ))/~. This constitutes the initial state for the application of the
Wilson line, transporting from Γ in the second BZ to Γ in the third BZ either along C2

or C3 (step 3). After the transport, the population in the lowest band is measured as
a function of the initial hold time, again by performing bandmaping and TOF-imaging.
The population measurement after transport by ŴΓ→Γ+G corresponds to projecting the
initial state in Eq. 8.21 to the projector state

|u1
Γ+G〉 = 〈u1

Γ|u1
Γ+G〉 |u1

Γ〉+ 〈u2
Γ|u1

Γ+G〉 |u2
Γ〉 = (W 11

Γ→Γ+G)∗|u1
Γ〉+ (W 12

Γ→Γ+G)∗|u2
Γ〉, (8.22)

where the second part directly follows from Eq. 8.10. Hence, the population in the lowest
band oscillates a function of the hold time t according to

n1
C+(t) = |〈u1

Γ+G|ψ(2)(t)〉|2 = |a1W
11 + a2e

i(ωt+φ0)W 12|2

= |a1W
11|2 + |a2W

12|2 + 2|a1a2W
11W 12|cos

(
ωt+ φ0 + Arg[W 12]− Arg[W 11]

)

= |a1W
11|2 + |a2W

12|2 + 2|a1a2W
11W 12|cos (ωt− φC+) . (8.23)
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Figure 8.2: Schematic representation of the experiment to measure Arg[W11]
and experimental data. a. The atoms are first accelerated to Γ in the second BZ
(1) and held there for a variable time (2) to create a time-dependent superposition state
between the first and second band. Subsequently, the Wilson line path is traversed either
along the forward (C+, red arrow) or along the backward direction (C−, blue arrow).
Bandmapping at the end of the path (3) results in an oscillation of the relative population
in the lowest band with a frequency given by the energy gap at Γ, which is fitted to obtain
its phase. The argument of W 11 is derived from the difference of the oscillation phases
between C+ and C−. b. Measured relative population n1 in the lowest band (data
points) as a function of the hold time t at (2) along the forward and backward direction
for the C3 path with V0 = 7Er and Fa = 3∆E21

Γ ≈ 16.7 kHz. The solid lines depict the fit
according to Eq. 8.24. Each data point is obtained by averaging n1 over three individual
images, the errorbars denote the standard deviation.

By fitting a damped cosine-function to the measured, time-dependent populations,

n1(t) = Ae−
t
τ cos(ωt− φ) + n0, (8.24)

the phase φC+ = Arg[W 11] − Arg[W 12] − φ0 of the oscillation is extracted. In principle,
the phase of the population oscillation would be a gauge-dependent quantity [73], that
becomes gauge-independent when comparing it at different quasimomenta. This corre-
sponds to choosing a reference point in the BZ, relative to which all other phases are
defined. In Eq. 8.23, this reference momentum is the Γ-point and the fitted oscillation
phase corresponds to the difference between the Wilson line phase and the offset phase
φ0. The latter arises from the initial transport which generates the superposition state.

To obtain Arg[W 11], the measurement is repeated, but after creating and holding the
superposition state in the second BZ, the subsequent path is traversed in the opposite
direction (blue arrow in Fig. 8.2a). The Wilson line matrix corresponding to the reversed
path is given by

ŴΓ→Γ−G = Ŵ †
Γ→Γ+G =

(
(W 11)∗ −W 12

−(W 12)∗ W 11

)
, (8.25)
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which is known as the back-tracking condition [73,233]. Since the first part of the sequence
remains unchanged, the same offset phase φ0 is acquired as when transporting along the
forward direction. The oscillation phase for the backward path C− can be accordingly
expressed as

φC− = Arg[W 11
Γ→Γ−G]− Arg[W 12

Γ→Γ−G]− φ0

= Arg[(W 11
Γ→Γ+G)∗]− Arg[−W 12

Γ→Γ+G]− φ0

= −Arg[W 11
Γ→Γ+G]− (Arg[W 12

Γ→Γ+G] + π)− φ0. (8.26)

Subtracting the oscillation phases for the forward and backward path yields Arg[W 11]:

Arg[W 11
Γ→Γ+G] =

1

2
(φC+ − φC− − π) . (8.27)

Thus, for each parameter setting and path, the population oscillation is measured along
the forward and backward direction and the fitted oscillation phases are inserted into
Eq. 8.27. In Fig. 8.2b, the measured oscillations along both directions are shown together
with the corresponding fit for the C3 path in the symmetric lattice with V0 = 7Er and
Fa = 3∆E21

Γ ≈ 16.7 kHz. The relative populations at the end of the path are counted
similarly as described above. In the oscillation measurements, tTOF = 5 ms is used, since
the systematic reduction of n1 due to the imaging intensity just shifts the values for all
times by a constant offset, not changing the frequency or phase of the oscillation.

8.2.2 Strong gradient regime

The ideal strong gradient regime, where the Wilson line is given by Eq. 8.8, would be
reached if the applied force is very large compared to the combined width of the two
s-bands, but still much smaller than the gap to the p-bands. This situation can be
realized approximately if the lattice is sufficiently deep, providing a large gap between
s- and p-bands with negligible dispersion for the s-bands. To test whether the dynamics
correspond to the strong gradient regime, the population in the lowest band is measured as
a function of the force after transporting along C2 [72,73], which is plotted in Fig. 8.3a for
V0 = 7Er. Starting with all atoms in the lowest band, the relative population is lowered
for larger forces until it nearly saturates around n1 ∼ 0.25, but still slightly decreases.
In the ideal case of transport in two flat, degenerate bands, the population would be
n1 = 0.25 (as indicated by the dashed line), resulting from a two-band tight-binding
model [72, 73]. The deviations from this value at very large forces arise from excitations
to higher bands. This is confirmed by a full band calculation (solid line), including the
first six bands in the time-integration in Eq. 8.8 as well as the band dispersion, that mostly
coincides with the measured values. In the calculation, the gauge of the eigenstates has
been chosen such that the cell-periodic Bloch functions are differentiable along qx, as
described in [72, 73]. To simulate the transport along the C3 path, a different gauge has
to be used, enabling also the differentiation along qy.
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Figure 8.3: Test of the strong gradient regime and band dispersions for different
lattice depths. a. Relative population in the lowest band as a function of the applied
force when transporting along C2 for V0 = 7Er. In the ideal case of two flat, degenerate
bands the population would be n1 = 0.25, as indicated by the dashed line. The solid
line depicts a full band calculation including the first six bands in the dynamics and
capturing the slight decrease of n1 below 0.25 at large forces. Each data point is an
average over three individual images, the errorbars denote the standard error. b. Energy
bands in the symmetric lattice along the high-symmetry line Γ-M -K-Γ for V0 = 7Er and
V0 = 3Er. The dashed, black lines mark the energies corresponding to the forces Fa in
the different settings probed in the experiments. While the strong gradient regime can
be reached for V0 = 7Er in both cases, at V0 = 3Er, excitations to the p-bands will
occur for Fa = 3∆E21

Γ , while Fa = 0.5∆E32
Γ lies within the energy range of the s-bands,

complicating the realization of strong gradient dynamics.

The saturation of the population with increasing force indicates that the underlying
dynamics are different from Landau-Zener dynamics, describing the tunneling of atoms
between bands at points in quasimomentum space where the bands are close [234]. For
forces in the range of Fa/h ∈ [10, 40] kHz, the transport in a lattice with V0 = 7Er well
approximates the strong gradient regime.

8.2.3 Investigating the symmetry protection

The eigenvalue phases ξ of the Wilson lines along the C2 and C3 path are determined by
combining the population and oscillation measurements described in Sec. 8.2.1 to obtain
W 11, and applying Eq. 8.17. As mentioned above, a lattice depth of V0 = 6Er still
corresponds to the atomic limit of the two s-bands. To observe the symmetry protection
of the C3 eigenvalue phase, the lattice depth is reduced, in order to increase the sp-
coupling and move away from the atomic limit. The breaking of threefold rotational
symmetry is achieved by increasing the relative intensity of one lattice beam by a factor
of 1.44 compared to the other two. The depth V0 in the imbalanced lattice is defined as
V0 = V2,3 and accordingly V1 = 1.44V0. In the deep lattice, the eigenvalue phases for both
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paths are always expected to be quantized to π/3, regardless of the lattice symmetry.
The value of the phase should persist for the C3 path in the symmetric lattice also at
lower depths, but deviate when breaking threefold rotation.

To estimate the size of the sp-hybridization in the different lattice settings, the eight-
band tight-binding model introduced in Sec. 3.3.2 is fitted to the first eight bands obtained
from the full band calculation for each lattice depth in the symmetric and imbalanced
lattice. As pointed out in in Sec. 3.3.2, the f -bands are not captured completely, but
the p-bands can be described reasonably well, even for the smallest depth of V0 = 3Er.
The resulting sp-NN tunneling amplitudes decrease with the lattice depth, similar as
the other hopping parameters. For V0 = 7Er, J

sp/Js ≈ 0.03, which increases for lower
lattice depths to Jsp/Js ≈ 0.32 at V0 = 3Er. In the imbalanced lattice, the hoppings
along δ1 are enhanced compared to the other two directions. The absolute values of Jsp1

and Jsp2,3 do not change with the lattice depth any more, but Js still decreases, leading
to an increase of the relative sp-coupling from Jsp1 /J

s
1 ≈ 0.35, Jsp2,3/J

s
2,3 ≈ 0.25 for 3Er

to Jsp1 /J
s
1 ≈ 0.42 and Jsp2,3/J

s
2,3 ≈ 0.99 at 7Er. The calculated deviation of ξ from π/3

as a function of the relative sp-coupling can be found in [229]. It remains rather small -
even for a very large band hybridization of Jsp/Js = 10, the eigenvalue phase is expected
to be reduced by only 1%. Thus, for the values of the sp-coupling presented above, the
expected change of the eigenvalue phase due to the symmetry breaking is even smaller
than that. The corrections arising from to the presence of higher bands and the finite
s-band dispersion are much larger, as shown below.

To probe the influence of the s-band dispersion and the coupling to p-bands, two
different settings of forces are used to measure the eigenvalue phases. In the first set of
experiments, the force per lattice site is set to Fa = 3∆E21

max = 3∆E21
Γ for all lattice

depths, keeping the effect of the s-band dispersion constant. Since the combined s-
bandwidth decreases with the lattice depth, the force is reduced, and adapted accordingly
in the imbalanced lattice, which exhibits modified energy dispersions. The measured
eigenvalue phases along both paths are shown in Fig. 8.4a. In this setting, the coupling
to higher bands varies with the lattice depth. At high lattice depths V0 ≥ 6Er, the
measured eigenvalue phase in the symmetric lattice is close to the expected value of π/3.

Away from the atomic limit, the eigenvalue phase of the C2 path is not expected to
be quantized any more, but for the C3 path this should be the case. Lowering the lattice
depth leads to similar deviations along both paths, which thus most probably arise from
excitations to higher bands due to the decreasing gap between the s- and p-bands. The
energy bands of the symmetric lattice for V0 = 7Er and V0 = 3Er are shown in Fig. 8.3b
along the high-symmetry line Γ-M -K-Γ. The values of Fa in units of Er are indicated
by the dashed, black lines for both force settings. From this plot it becomes clear that
there must be excitations to the p-bands for V0 = 3Er, as the line corresponding to
Fa = 3∆E21

Γ lies within the 3rd and 4th band. In the imbalanced lattice, the eigenvalue
phases are increased to ξ ∼ 1.3π/3 even for high lattice depths. Considering the different
parts that amount to the determination of ξ, the largest effect can be seen in the measured
populations |W 11|2, which lie slightly below 0.25 in the deep, symmetric lattice, but are
reduced to |W 11|2 ∼ 0.05 in the imbalanced lattice due to the strongly modified band
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Figure 8.4: Eigenvalue phases of the Wilson lines along C2 and C3 as a function
of the lattice depth. The eigenvalue phase ξ is measured for increasing lattice depths,
simulating the absence or presence of the atomic limit. The values are compared for
the C2 and C3 path in the symmetric and imbalanced lattice with V1/V2,3 = 1.44 and
V0 = V2,3. a. By setting Fa = 3∆E21

Γ , the influence of the finite s-band dispersion is
held constant at all lattice depths, effectively probing the effect of excitations to higher
bands, which increase for small V0. The phases in the imbalanced lattice strongly deviate
from π/3 due to the modified band dispersion. b. Eigenvalue phases for Fa = 0.5∆E32

Γ ,
corresponding to a similar excitation probability for all lattice depths to investigate the
influence of the s-band dispersion. The data points in a and b are determined from |W 11|
and Arg[W 11] which are obtained by averaging the results from 3 or 5 individual images,
respectively. The errorbars are derived from error propagation of the corresponding
standard deviations.

dispersion, leading to larger values of ξ. The influence of the band dispersion is constant
for the different lattice depths, resulting in similar phases, which are slightly changed
from the different coupling to higher bands.

In the second setting, Fa = 0.5∆E32
min = 0.5∆E32

Γ , which corresponds to a similar
probability of band excitations for all lattice depths while probing the influence of the
s-band dispersion. Since the gap to the p-bands increases with the lattice depth, the
force now becomes larger with V0 and is modified accordingly in the imbalanced case.
In Fig. 8.4b, the measured eigenvalue phases are presented. In the symmetric lattice, ξ
remains close to π/3 for both paths, although Fa = 0.5∆E32

Γ corresponds to an energy
lying already within the upper s-band for V0 = 3Er (see Fig. 8.3b). The values along
C2 deviate slightly more than for C3, especially at low lattice depths, except for the
C3 data point at 3Er. This could be an indication for the general change of ξC2 away
from the atomic limit. Comparing the results for the symmetric lattice with Fig. 8.4a
shows that the excitations to p-bands seem to play a larger role than the finite s-band
dispersion, when lowering the lattice depth. The eigenvalue phases in the imbalanced
lattice are again increased due to the modified dispersion and vary with the lattice depth.
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The larger influence of the band dispersion at low lattice depths interestingly leads to
smaller eigenvalue phases, which could however also arise from changes in Arg[W 11] due
to excitations.

In general, the deviations of the eigenvalue phase from π/3 due to the finite s-band
dispersion and excitations to higher bands are much larger than a possible change of
ξC3 when breaking threefold rotational symmetry. Especially in the imbalanced lattice,
realizing the symmetry broken case, the value of ξ strongly increases due to the modified
band dispersion, complicating a meaningful comparison to the symmetric lattice. Thus,
in the experimental setting presented here, the symmetry protection of the Wilson line
eigenvalue phase could not be investigated. Increasing the sp-hybridization by lowering
the lattice depth leads to an enhanced influence of the s-band dispersion and excitations.

Higher sp-coupling can also be obtained in the imbalanced lattice, and since Jsp re-
mains mostly constant, the ratio Jsp/Js is increased in a deeper lattice, which facilitates
the realization of strong gradient dynamics. While this approach is not suitable for prob-
ing the protection of ξC3 by threefold rotational symmetry, since it is already broken, the
eigenvalue phases could be studied for the C2 and C3 paths being oriented along different
directions, which exhibit different values of Jsp/Js. Another possibility to increase the
sp-hybridization could be the use of an additional Raman laser [229,235].

As mentioned in Sec. 8.1.3, the symmetry protection of the Wilson line eigenvalue
phase can also occur in bands with a non-zero Chern number. Creating an effective
Haldane model by periodic intensity modulation, incorporating increased sp-coupling
within the driving period, could also result in an enhanced band hybridization between
the Floquet s- and p-bands. This would need to be checked by first identifying the 3rd to
6th Floquet band similar as the two lowest bands (see Sec. 3.2.2) and then fitting at least
a six-band tight-binding model to the effective band structure. The measurement schemes
for |W 11| and Arg[W 11] presented here could be applied in principle also to the Floquet
bands, if the modulation frequency is large enough to ensure that the time-interval during
which the force is applied amounts to at least one period of the driving.



Chapter 9

Parametric instabilities in a shaken
1D optical lattice

Topological band structures can be created by time-periodic modulation of two-dimen-
sional (2D) optical lattice potentials, as presented in the previous chapters. In view of
combining periodically driven systems with interactions, which is expected to result in an
infinite temperature state in the thermodynamic limit [45, 236], a better understanding
of the heating effects in interacting systems is desirable. A periodically driven one-
dimensional (1D) optical lattice, although not resulting in topological Floquet bands
itself, can serve as a more simple starting point to gain insight into the physical processes
that dominate the interplay between interactions and lattice modulation.

In this chapter, a weakly interacting Bose-Einstein condensate (BEC) in a phase
modulated 1D lattice is studied at short timescales, where the behavior is expected to
be dominated by coherent excitations which can be described in terms of parametric
instabilities. The physical processes leading to these excitations are investigated in the
first section. Moreover, the influence of the harmonic trapping potential is discussed,
which eventually prevents the existence of a stable parameter regime. The occurrence of
parametric instabilities can be measured by observing the dynamics of the excited atoms
in momentum space, as presented in the second section. A more detailed description of
the experiments and parametric instabilities in shaken 1D optical lattices can be found
in [75,76].

9.1 Heating effects in 1D shaken lattices

Due to the periodic quasienergies, a periodically driven system can exchange energy
quanta ~ω with the drive, leading to heating effects as mentioned above. In the absence of
interactions, particles can be excited to higher bands when the driving frequency matches
the corresponding energy gap of the static lattice [237], constituting the major loss channel
in this case. These resonances can usually be avoided by carefully choosing the shaking
frequency. In contrast, the presence of interactions leads to scattering processes, which
are always resonant in low dimensional lattice systems, as the lattice degrees of freedom
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are coupled to the transverse directions.
Moreover, if the shaking frequency is larger than the energy gap to the next higher

band, a variety of different processes can arise [74], in which scattering of two particles is
combined with excitations. For shaking frequencies being smaller than the gap, mainly
two-particle scattering within the lowest band occurs. These incoherent processes dom-
inate the behavior of the system at long timescales and are well captured by a Floquet
Fermi’s golden rule (FFGR) [74, 238–240]. In contrast, the dynamics of a periodically
driven 1D lattice at short timescales can be described by coherent processes, as discussed
below.

9.1.1 Parametric instabilities

The energy of weakly interacting bosons in a periodically driven 1D lattice is given by
the effective Bogoliubov-dispersion [241]:

Eeff(q) =

√
4|Jeff | sin2

(a
2
q
)(

4|Jeff | sin2
(a

2
q
)

+ 2g
)
, (9.1)

where the hopping J in the static lattice is renormalized by the drive to Jeff = JJ0(α),
similar as in the shaken honeycomb lattice, and α (≡ κ, see Eq. 6.16) denotes the dimen-
sionless driving strength being proportional to the shaking amplitude. The interactions
are described by g = nU with the Hubbard interaction parameter U and the particle
density n [76], thus being different from the dimensionless interactions strength defined
in Eq. 7.8. If the energy of the drive, quantized in multiples of ~ω, matches the energy
2Eeff of a collective excitation, parametric instabilities occur. Two atoms being initially
at q = 0 are excited to Eeff(qres) corresponding to a change of their quasimomentum by
±qres, conserving the total momentum, which is illustrated in Fig. 9.1a. These instabili-
ties can only arise for even multiples of ~ω [241], and thus the resonance condition is to
lowest order given by 2~ω = 2Eeff(qres).

In a true 1D system without a harmonic trap, the occurrence of instabilities could be
prevented for ~ω > ~ωsat ≈ Weff , where Weff = Eeff(π/a) denotes the effective Bogoliubov
bandwidth. In this case, the energy cannot be transformed into an excitation and the
system would be stable, provided that ~ω is still smaller than the energy gap to the
next higher band. However, in many optical lattice experiments, the system is three-
dimensional (3D) and consists of a low-dimensional lattice combined with a harmonic
trapping potential along all directions, which couples the lattice with the perpendicular
degrees of freedom. In this case, the resonance condition needs to be defined with respect
to the 3D quasimomentum:

~ω = Eeff(qres) qres = (qxres,q
⊥
res), (9.2)

describing a 1D lattice of ’pancakes’ directed along the x-axis, as used in the experiments
described below. Thus, in the coupled 3D system, for ~ω > ~ωsat the excess energy can
always be dumped into the transverse directions and there is no stable parameter regime
any more.
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9.1.2 Most unstable mode

The parametric resonance has a finite width, resulting in several collective excitations
with different quasimomenta q lying around qres defined in Eq. 9.2. Each of these modes
grows exponentially in time with a certain rate Γq. The overall behavior of the system
is dominated by the mode exhibiting the largest growth rate Γmum = maxqΓq, which is
accordingly called the most unstable mode (mum) and associated with the quasimomen-
tum qmum. Using the time-dependent Bogoliubov–de Gennes (BdG) equations of motion,
approximate analytical expressions can be derived for the momentum and growth rate
of the most unstable mode [241,242], showing a clear separation between the lattice and
transverse degrees of freedom: If ~ω < ~ωsat (regime I), the energy of the drive is mainly
transformed into excitations along the lattice direction and qmum is directly defined by
the Bogoliubov dispersion:

qxmum(ω, α) =
2

a
arcsin

(√(√
g2 + (~ω)2 − g

) 1

4|Jeff |(α)

)
,

|q⊥mum| = 0, ω < ωsat. (9.3)

In the second regime ~ω > ~ωsat, the quasimomentum of the excitations along the lattice
direction saturates at π/a and the remaining energy is distributed into the perpendicular
directions, leading to a growth of the transverse quasimomentum according to

qxmum =
π

a
,

~2(q⊥mum(ω, α))2

2m
=
√
g2 + (~ω)2 − g − 4|Jeff |(α), ω > ωsat, (9.4)

as depicted in Fig. 9.1b. The momentum of the most unstable mode is determined
experimentally as a function of the shaking frequency ω for two different values of α,
which can directly be compared with Eq. 9.3, as described in the next section.

The presence of the harmonic trap along the transverse directions leads to the cou-
pling between the lattice and the perpendicular degrees of freedom, enabling the transfer
of energy from the periodic drive into a growth of q⊥mum. In the experiments, the potential
of the X-Y -trap is also present along the lattice direction x. Using numerical simula-
tions, it has been shown [76] that even in a true 1D system, a trapping potential along
the lattice direction prevents the existence of a stable parameter regime. The spectrum
in the combined potential hosts states with continuous energies above the Bogoliubov
dispersion of the lowest band, which can be resonantly excited by the drive, thus leading
to instabilities. To reduce the amount of excitations, a 3D lattice configuration would
be desirable, limiting the number of available states along the transverse directions. An-
other possibility could be the engineering of box-potentials [243,244] to replace the weak
harmonic confinement.
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Figure 9.1: Sketch of parametric excitations and creation of the 1D lattice.
a. Parametric instabilities occur in a periodically driven 1D lattice when two atoms
are excited to quasimomenta ±qxres by absorbing 2~ω from the drive. The bandwidth
Weff of the dispersion is reduced compared to the static lattice, since the hopping J is
renormalized to Jeff = JJ0(α). b. Momentum of the most unstable mode along the
lattice direction x and along the perpendicular directions as a function of the driving
frequency. If ω < ωsat, excitations in the lattice direction occur, whereas the energy is
completely dumped into the transverse modes for ω > ωsat. c. Creation of the 1D lattice
by interference of two laser beams. The frequency of one beam is changed periodically
in time, resulting in the potential moving back and forth.

9.2 Measurement of parametric instabilities

The occurrence of parametric instabilities is detected by recording the momentum dis-
tribution of the BEC after holding it in the modulated 1D lattice and subsequently
performing bandmapping. Since the atoms which are excited by the drive do not leave
the harmonic trap, they appear in the absorption images, having a different quasimo-
mentum than the main peak representing the BEC. The maximum of these satellite
peaks corresponds to the most unstable mode and qmum can be directly determined from
the time-of-flight (TOF) images for different shaking parameters and compared to the
theoretical predictions.

9.2.1 Modulated lattice potential

The 1D optical lattice potential is created by switching off one laser beam in the hon-
eycomb setup described in Sec. 3.1, resulting in the interference of two beams at angles
of 120◦. Using the beams E2 and E3 propagating along k2 and k3 (see Fig. 3.1), the
resulting 1D lattice is directed along x:

V1D(x) = V0 cos2

(√
3

2
kL x

)
. (9.5)

The wavelength of the light is λL = 736.8 nm, which corresponds to a lattice spacing
of a = λL/

√
3 = 425 nm. Due to the modified geometry, higher lattice depths can
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be reached in the 1D potential, when using the same laser power as in the honeycomb
lattice. The experiments presented in this chapter are performed at a lattice depth of
V0 = 11Er, again using a BEC of 39K. The harmonic trap is present in all measurements,
being set to similar values as in the experiments described previously, resulting in a 1D
lattice of disks elongated along the perpendicular directions (see Fig. 9.1c). The measured
trapping frequencies in the combined potential are fT = 26(2) Hz in the x-y-plane and
fz = 204(3) Hz along the vertical direction [75].

The 1D lattice is characterized by turning the lattice on for a variable time and
recording the diffraction peaks. When switching on the lattice suddenly, the ground
state |q0〉 of the BEC in the harmonic trap is projected onto the Bloch states |ψnq0〉 with
the same quasimomentum. Due to parity conservation, only states with the same parity
as the ground state appear in the superposition. If the lattice is shallow, only the lowest
and third band are populated and the state after the projection is given by

|ψ(t)〉 = 〈ψ1
q0
|q0〉 e−

i
~E1(q0)t |ψ1

q0
〉+ 〈ψ3

q0
|q0〉 e−

i
~E3(q0)t |ψ3

q0
〉. (9.6)

After holding the atoms in the lattice for a certain time, the lattice and the trap are
switched off suddenly and the state is projected back to the free space dispersion, resulting
in different momenta of 0 or ±2π/a, depending on the band the atoms have populated
before. These components appear as peaks located at the center of the first and second
Brillouin zone (BZ) when taking absorption images after TOF. If the hold time is varied,
the population oscillates between the two bands and hence between the peaks, with a
frequency corresponding to the band gap at q0 = 0:

f∆E(q0) = (E3(q0)− E1(q0))/h. (9.7)

Counting the relative population in the lowest band and fitting a cosine function to the
oscillation allows for the extraction of the energy gap, which can be compared to band
structure calculations to obtain the lattice depth.

The shaking of the lattice is realized by changing the frequency of one laser beam
periodically in time with frequency ω and amplitude b:

ω2 = ωL

ω3(t) = ωL + b sin (ωt) , α =
ma2b

h
. (9.8)

Since the driving amplitudes ν = b/(2π) are usually in the range of several kHz, the
time-dependence of the wavevectors can be neglected. The resulting interference pattern
is moving back and forth in real space. To study parametric instabilities, the shaking
frequency lies in the range of f = ω/(2π) ∈ [0.5, 1] kHz, being much smaller than the
energy gap to the second band of ∆E/h = 41.6(5) kHz.

9.2.2 Determination of the most unstable mode

The momentum of the most unstable mode along the lattice and transverse directions is
determined as a function of the shaking frequency for different shaking amplitudes. The



194 9. Parametric instabilities in a shaken 1D optical lattice

coherent processes underlying the parametric instabilities described above can only be
observed at short time scales, before they are overlain by incoherent scattering processes.
This defines a short time regime t . ts, in which the coherent processes dominate the
behavior. In the following, the determination of ts and the extraction of qmum from TOF
images in this time range is described.

Analysis of the absorption images The momentum and growth rate of the most
unstable mode are measured by holding the atoms in the modulated lattice for a variable
time being an integer multiple of the driving period, t = NT,N ∈ N, and observing
the excitation peaks in momentum space. The atoms are loaded into the lowest band
of the 1D lattice with the scattering length set to as = 20 a0, resembling the weakly
interacting regime which is expected to be described by Bogoliubov theory. Since the
coherent dynamics related to parametric instabilities occur at short times, the shaking is
quenched on, in order to probe the system in this regime. After the hold time, the shaking
amplitude is also switched off suddenly and the lattice is ramped down within ∼ 100µs
to perform bandmapping. It has been verified experimentally, that the quench does not
change the resulting momentum distribution [76]. The cloud expands for tTOF = 6 ms
and subsequently the momentum distribution is recorded by taking absorption images in
the x-y-plane. These consist of a large peak in the center of the first BZ resembling the
BEC and a pair of small satellite peaks at larger quasimomenta located within the first
BZ, which correspond to atoms being excited by the drive. The axes of the images can
be transformed into quasimomentum by measuring the diffraction peaks when switching
off the lattice suddenly, which are known to have a relative distance of 2π/a.

The most unstable mode corresponds to the maximum of the excitation peaks. These
are quantified by first subtracting an image at t = 0, containing only the BEC, from each
image at t > 0, which results in a 2D difference image showing only the excitation peaks,
as depicted in Fig. 9.2. To account for shot-to-shot fluctuations of the peak positions on
the camera, all images are shifted such that the BEC is located at (0, 0) before subtracting
them. The position of the excitation peaks along the lattice direction is determined by
integrating the image along the perpendicular axis to obtain a 1D profile, which is fitted
by two Lorentzian functions separately for qx > 0 and qx < 0 (black lines in Fig. 9.2).
The center region of the image is excluded, which contains negative pixels arising due
to the depletion of the BEC. The amplitude Ax and center position qxmax of both peaks
are extracted from the fit. For each hold time t > 0, the fitted amplitudes and positions
from 10 individual images are averaged, with 5 images being taken with a driving phase
of φ = 0 and 5 with φ = π to minimize systematic deviations.

Along the transverse direction, the excitations result in a broadening of the peaks, due
to the extent of the BEC in momentum space and the width of the parametric resonance.
Thus, qymum can not be measured directly, but its growth is indicated by the increasing
transverse width of the satellite peaks in time. To determine the transverse peak width,
the difference images are integrated along the lattice direction, now within two separate
regions-of-interest containing only the excitation peaks. The resulting 1D profiles are
again fitted with a Lorentzian and the full width at half maximum (FWHM) ∆qy is
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Figure 9.2: Difference image with integrated profiles. Absorption image at t = 14T
for α = 1.78 and f = 0.72 kHz from which the image at t = 0 has been subtracted,
resulting in negative pixel values in the center due to the depletion of the BEC. The
satellite peaks correspond to atoms being excited by the drive. Their position qxmax and
amplitude Ax along the lattice direction qx are extracted by fitting asymmetric Lorentzian
functions to the pixel sum Σy integrated along y, accounting for the thermal background
which increases the peak height towards the center. Along the perpendicular direction,
the FWHM ∆qy of the peak is extracted from a symmetric Lorentzian fit to the integrated
profiles Σx. The blue curves depict the profiles and the black lines the fitted functions.

extracted for each peak and averaged over the 10 images for every hold time t > 0. A
more detailed description of the data analysis can be found in the supplementary material
of [76].

Extraction of the momentum and growth rates In Fig. 9.3a, the logarithm of
the amplitude Ax of the left and right excitation peak is plotted as a function of the
hold time for α = 1.78 and f = 0.72 kHz. At short times t . ts, the amplitude grows
exponentially, as expected from the analytical description based on the BdG equations.
At long times, the growth slows down, resulting in a nearly constant curve for ln(Ax)
due to interactions between the excited atoms and the condensate, that are described by
incoherent processes. Thus, the purely coherent excitations only occur in a small time
window. The end ts of this short time regime is defined by the onset of the backscattering
and determined by fitting a ’kink’ function to ln(Ax), consisting of a linear and a constant
part (solid lines in Fig. 9.3a). The time ts is derived as the mean over the fit results from
the left and right peak. The momentum of the most unstable mode is obtained by
averaging the positions qxmax(t) for the left and right peak over all times t ≤ ts, with ts
being determined for each set of shaking parameters separately. Within the short time
regime, the peak maximum position stays mainly constant but then starts to decrease for
long times (see Fig. 9.3b), which also signals the onset of incoherent scattering, changing
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Figure 9.3: Peak parameters, momentum of the most unstable mode and trans-
verse width. a. Logarithm of the fitted peak amplitudes Ax as a function of the hold
time for α = 1.78 and f = 0.72 kHz. The solid lines depict the fitted kink functions to
determine the end ts of the short time regime. b. Momentum qxmax of the peak maximum
as a function of the hold time for the same shaking parameters. The points for t ≤ ts
are averaged to obtain qxmum (black solid line), being the mean over the results for the
left and right peak. The yellow and green shaded bars illustrate its standard error of the
weighted mean. The grey shaded area depicts the time range over which the transverse
widths are averaged, yielding ∆qy⊥. Each data point in a and b corresponds to the average
over 10 individual images, the errorbars denote the standard deviation. c. Momentum of
the most unstable mode and transverse width as a function of the shaking frequency for
α = 1.44 and α = 1.78, the errorbars denote the standard error of the mean. The dark
blue and red solid lines depict Eq. 9.3 for g = 11.5 J and the vertical dashed lines mark
the corresponding saturation frequency. The dotted lines serve as a guide to the eye.

the quasimomentum of the excited atoms. The transverse peak width is evaluated at the
end of the short time regime, where the amount of excitations is expected to be maximal,
by averaging ∆qy over t ∈ [ts − T, ts + T ] which defines ∆qy⊥, representing the transverse
momentum component of the most unstable mode.

The momentum of the most unstable mode qxmum and the transverse width ∆qy⊥ are
measured as a function of the shaking frequency, spanning the range below and above ωsat

to verify the behavior predicted in Eq. 9.3. The resulting values are plotted in Fig. 9.3c
for shaking amplitudes of ν = 13 kHz (blue data points) and ν = 16 kHz (red data points),
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corresponding to α = 1.44 and α = 1.78. For increasing modulation frequencies, qxmum

grows until it saturates at q ≈ π/a, approximately following the theoretical prediction
from Eq. 9.3 for g = 11.5 J (solid lines) [76]. As expected, the saturation frequency shifts
to smaller values when increasing α, since the effective bandwidth decreases with the
shaking amplitude due to the renormalization of the tunneling.

The slight deviation of the final quasimomentum from π/a arises due to the finite
TOF used in the experiments, as described in [76]. For small frequencies, the deviation
between the experimental and theoretical values increases, especially for α = 1.78. Since
the incoherent scattering processes are enhanced for smaller shaking frequencies and
larger amplitudes [74], the time window t . ts, in which the coherent excitations can be
observed, becomes shorter, complicating the observation of the most unstable mode, as
it might not yet fully dominate over the other modes. Moreover, due to the finite width
of the BEC in momentum space, the satellite peaks can only be reliably detected if they
are centered at qxmax & 0.4π/a, which sets a lower bound for the shaking frequencies that
can be probed. The transverse width ∆qy⊥ remains constant for frequencies below the
saturation frequency and then increases for ω > ωsat, signaling the transfer of energy into
the perpendicular directions.
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Figure 9.4: Measured instability rates. Growth rates Γmum of the most unstable
mode for α = 1.44 and α = 1.78 as a function of the shaking frequency (data points),
obtained from linear fits to the logarithmic peak amplitudes for t ≤ ts, errorbars denote
the standard deviation. The solid lines depict the theoretical rates calculated with BdG
theory for g = 11.5 J , approximately coinciding with the experimental data. The rates
derived using an FFGR approach for the same modulation parameters (dashed lines),
describing incoherent scattering processes which dominate on long time scales, are about
two orders of magnitude smaller.

According to BdG theory, the peak amplitudes along the lattice direction are expected
to grow exponentially in time:

Ax ∝ e2Γt. (9.9)
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The instability rates Γ can be extracted from the slopes µ of the kink functions fitted to
ln(Ax) for t ≤ ts as Γ = µ/2 and are averaged over the left and right peak. The resulting
mean values corresponding to Γmum are plotted in Fig. 9.4 as a function of the shaking
frequency for α = 1.44 and α = 1.78 (blue and red data points). Lying in the range
of ∼ 200 Hz, the measurd rates approximately coincide with the theoretical predictions
from the BdG equations [241], which are depicted by the solid lines. In contrast, the rates
derived from FFGR theory (dashed lines) are about two orders of magnitude smaller,
validating the role played by coherent excitations at short modulation times. The growth
rates have also been studied in a linearly shaken 2D square lattice [245], revealing the
effects of parametric instabilities in a higher dimensional lattice.

In summary, the growth and saturation of qxmum, along with the dependence of the
saturation frequency on the shaking amplitude, confirms the assumption that the ob-
served peaks in momentum space indeed arise due to coherent excitations which can be
described by parametric instabilities. The increase of the transverse peak width indicates
the transfer of energy into the perpendicular directions for ω > ωsat, which are coupled
to the lattice shaking via the harmonic trap. Thus, the presence of the trap prevents
the existence of a stable parameter regime, even in 1D systems, as described above. To
overcome these limitations and reduce the heating in periodically driven, weakly interact-
ing systems, the transverse degrees of freedom could be frozen by engineering 3D lattice
potentials.



Chapter 10

Conclusions and Outlook

In this thesis, the experimental realization and characterization of different Floquet topo-
logical systems in an optical honeycomb lattice have been demonstrated. The periodic
modulation of the tunneling amplitudes along the different bond directions, achieved by
continuous variation of the laser intensities, gives rise to multiple topological regimes,
including an anomalous Floquet phase. The winding numbers describing the different
regimes have been determined by measurements of the quasienergy gaps and Berry cur-
vature, as described in chapters 2 and 5.

Using ultracold, bosonic atoms, which only occupy a narrow range of quasimomenta,
these quantities could be probed locally in reciprocal space. The small extent of the
atomic cloud in quasimomentum space, stemming from finite temperatures and interac-
tions, does not affect the measurements of the winding numbers, as these are derived from
sign changes of the Berry curvature. Applying the respective forces via lattice accelera-
tion allows for precise control over the magnitude and direction of the force, but leads to
large displacements in real space along the longitudinal direction. However, as shown in
chapter 4, the effect of these displacements on the transverse deflections, which are used
to measure the sign of the Berry curvature, is negligible. Simultaneously ramping the
laser frequencies and intensities has enabled to probe the topological properties of the
first and second Floquet band in each of the regimes, utilizing the hybridization of the
two lowest bands due to the lattice modulation.

Anomalous Floquet systems can also be generated by circular phase shaking of the
honeycomb lattice potential, as pointed out in chapter 6. In this case, inversion symmetry
needs to be broken to observe the anomalous Floquet regime, lifting a degenerate band
touching point. Applying the measurement techniques introduced in chapter 4 and used in
chapter 5 to the shaken lattice is however more complicated, since the quasimomentum is
already periodically modified, hindering localized measurements in reciprocal space. This
highlights one mayor advantage of the intensity modulation, namely that the periodic
driving itself and the measurement of the system’s properties rely on two independent
degrees of freedom. Moreover, Floquet band structures with larger quasienergy gaps
can be realized as compared to circular phase shaking, since the lifetimes of the Bose-
Einstein condensate (BEC) remain sufficiently long even for relatively high modulation
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amplitudes. This facilitates the measurement of the Berry curvature of a single band, as
excitations to higher bands can be avoided.

The effective Floquet Hamiltonian of the intensity modulated lattice has been calcu-
lated numerically, employing the first six bands of the instantaneous Hamiltonian dur-
ing the time-evolution, as discussed in chapter 3. The resulting quasienergy gaps and
transverse deflections are in very good quantitative agreement with the experimental
data (chapter 5). Hence, this model provides an accurate description of the periodically
driven system in the entire parameter regime considered in this work. It has been used
to derive the topological phase diagram also in the presence of a sublattice offset, which
gives rise to an additional regime with a Chern number of 2. The properties of the phase
shaken lattice have been calculated similarly, predicting the anomalous Floquet regime
when breaking inversion symmetry and revealing a variety of other topological phases
with higher Chern numbers up to 4.

In order to describe the modulated lattice in a finite or semi-finite geometry, a tight-
binding model has been introduced. The coupling to higher bands, which comprises an
essential part of the full six-band calculation, can be partially implemented by fitting
the hopping amplitudes using an eight-band tight-binding model, while representing the
Hamiltonian by a 2 × 2 matrix. A satisfying description of the intensity modulated
honeycomb lattice employing two tight-binding bands has been found in each of the
topological regimes (see chapter 3). Based on these models, the dispersion of the chiral
edge modes has been derived in a semi-finite geometry. In the future, this could be
extended to a completely finite system to provide a quantitative comparison of the edge
states’ group velocity with the bulk dispersion in a setting which resembles the experiment
as close as possible.

The geometric properties of degenerate multiband systems, captured by Wilson lines,
have been outlined in chapter 8. While the eigenvalue phases of the Wilson lines have
been derived experimentally, their predicted symmetry protection could not be measured
directly. The changes of the eigenvalue phases arising from the presence of higher bands
and the finite band dispersion have emerged as being much larger than the theoretically
expected effects of symmetry breaking. In future experiments, the Wilson line eigenvalues
could be probed in the topological bandstructure of the intensity modulated lattice, which
might help to reveal the symmetry protection. Moreover, Bloch state tomography of the
Floquet bands could be performed, as suggested in [72]. Another option could be the
investigation of the static, imbalanced lattice, where the properties of the Wilson line
depend on the specific direction of the path.

Periodically driven, closed, interacting quantum systems are expected to heat up
to infinite temperature in the thermodynamic limit [44, 45]. To gain insight into the
processes which trigger the onset of heating, a periodically shaken one-dimensional (1D)
optical lattice has been investigated in chapter 9, based on the results reported in [75,76].
As expected from the approximate analytic theory, the dynamics of the system at short
times are indeed dominated by coherent excitations which can be described in terms
of parametric instabilities. The crucial role played by the harmonic trapping potential
perpendicular to the lattice as well as parallel to it has been revealed. While the former
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leads to a coupling of the lattice shaking to the continuous, transverse degrees of freedom,
the latter results in additional states along the lattice direction, preventing the existence
of a stable parameter regime even in a true 1D setting. To reduce the amount of these
coherent excitations, especially in the two-dimensional honeycomb lattice, the vertical
lattice introduced in chapter 4 could be added, restricting the number of available states
in the transverse direction.

In the anomalous Floquet regime, the bulk states can be completely localized in
the presence of disorder, due to the vanishing Chern numbers of all quasienergy bands,
while the edge modes remain mobile [42]. This promises a potential solution to the
heating problem by realizing a many-body localized bulk coexisting with thermalizing
edge states [59]. To investigate these intriguing properties of anomalous Floquet systems,
an independent probe of the chiral edge modes and the bulk states is needed. In chapter 7,
modifications to the current setup are described to enable the direct imaging of the edge
modes, which will also be facilitated by replacing the harmonic trap in the x-y-plane
with a hard-wall potential. The propagation of the edge modes could be compared in the
different topological regimes, including the setting with Chern number 2. The disorder
could be realized by projecting a random optical potential pattern onto the atoms with a
digital mirror device. Provided that a dynamic switching of the polarizations of the laser
beams can be implemented, the localization of the bulk states can then be quantified by
the population imbalance between A and B sites. In this regard, the differences between
the anomalous Floquet and Haldane regime are of particular interest, as the latter should
not allow for a complete localization, even for large disorder strengths, owing to the
non-zero Chern numbers.

Another interesting phenomenon that can occur in the anomalous Floquet regime is
the fermionization of interacting bosons being loaded into the nearly degenerate ring-like
minimum of the first Floquet band. To be able to observe this phenomenon, a scheme has
to be derived to load the BEC into this minimum. Moreover, the currently small ratio of
the Hubbard interaction U to the nearest neighbor hopping J has to be increased to enter
the strongly-correlated regime. As discussed in chapter 7, this can be achieved by adding
the vertical lattice and by implementing a deeper honeycomb lattice. The former relies
on building the planned active phase stabilization of the honeycomb lattice to enable
a loading of the BEC into the three-dimensional lattice configuration. This setup will
also provide the desired full control over the lattice beam polarizations mentioned before.
To obtain a deeper honeycomb lattice, probably a different laser has to be used, as the
currently available Ti:sapphire lasers do not provide sufficiently high power.

Further future experiments could also investigate topological band structures with a
degenerate Fermi gas, the creation of which is in principle technically possible with the
current setup.
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Appendix A

Shape of the calculated Berry
curvature distribution

As described in Sec. 3.2.2, the quasienergy bands obtained from the six-band calculation
are symmetric, but the Berry curvature distribution exhibits a slight asymmetry arising
from the projection of the Hamiltonian to its six lowest eigenstates. The shape of the
distribution can be be modified when adding an offset ∆φ to the modulation phase of all
lattice beams, as illustrated in Fig. A.1a.

-0.75 0 0.75
qx(kL)

-1

0

1

q y
(k
L
)

a

-0.75 0 0.75
qx(kL)

-0.01

0

0.01

Ω
−

-0.75 0 0.75
qx(kL)

b

-0.75 0 0.75
qx(kL)

-0.02

0

0.02

Ω
−

Figure A.1: Berry curvature in the modulated and static lattice for V0 = 6 Er.
a. Berry curvature of the lowest band in the first Brillouin zone (BZ) for m = 0.2 and
f = 6 kHz with an initial phase offset ∆φ = 0 (left panel) and ∆φ = π/3 (right panel).
The asymmetry of the distribution arising from the projection of the Hamiltonian is
rotated with the initial phase. b. Berry curvature of the lowest band in the symmetric,
static lattice with θ = 0.05 rad, calculated from the full eigenstates (left panel) and when
truncating the eigenstates to the six lowest bands (right panel). The truncation leads to
a similar asymmetry as in the modulated lattice with ∆φ = 0.
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The left panel shows the Berry curvature distribution in the anomalous phase for ∆φ = 0,
as used in the calculations of the transverse deflections. In the right panel, the Berry
curvature is plotted for ∆φ = π/3, which effectively turns the pattern by ∼ 30◦. In the
static lattice, the Berry curvature distribution is fully symmetric as visible in the left
panel of Fig. A.1b, displaying the distribution for a sublattice offset with θ = 0.05 rad. In
this case, the full eigenstates of the lowest band are used in the calculation, each having
a length of (2lmax + 1)2 = 225. If the eigenstates are however truncated to their first six
entries, the Berry curvature becomes also asymmetric (right panel) with a similar shape
as in the modulated lattice for ∆φ = 0. This suggests that the asymmetry observed in
the Berry curvature of the effective Floquet Hamiltonian originates from the projection
of the Hamiltonian to its six lowest eigenstates at every time step in the calculation.

In the experiment, the Berry curvature is of course expected to be fully symmetric and
the properties of the Floquet Hamiltonian should in general be independent of the initial
driving phase, since the modulation is ramped up adiabatically. To estimate the influence
of the asymmetry in the numerically calculated Berry curvature, the initial phase offset is
varied and the resulting theoretical transverse deflections are compared to the measured
values for m = 0.2 at different modulation frequencies across the Haldane and anomalous
regime, as shown in Fig. A.2.

Figure A.2: Transverse deflections depending on the initial driving phase. Trans-
verse deflections in the lowest band as a function of the modulation frequency for m = 0.2
and V0 = 6Er, the measured data are the same as in the bottom line of Fig. 5.17a and b.
Every data point is derived from three measurement points each being an average over
30-40 experimental realizations, the errorbars denote the SEM. The solid lines represent
the corresponding theoretical values, whereas the color shading indicates the offset of
the initial driving phase ∆φ used in the calculation. The left and right panel show the
deflections for probing along the Γ- and K-direction, respectively.
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Along the Γ-direction (left panel), the theoretical curves are similar for most modu-
lation frequencies and only start to deviate at f = 5 kHz, whereas the relative difference
is larger along the K-direction (right panel) for all modulation frequencies. In general
however, the change of the transverse deflection due to the asymmetry is small com-
pared to the deviation from the measured values and the measurement errors. Hence,
replacing the Berry curvature for ∆φ = 0 by a mean distribution averaged over all initial
phases would not lead to a significant change in the deflection curves compared to the
experimental values, which justifies the use of ∆φ = 0 in all calculations.
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Appendix B

Details on the eight-band
tight-binding model

The eight-band tight-binding model introduced in Sec. 3.3.2 consists of s-, p- and f -
orbitals, which exhibit different spatial symmetries [139], as illustrated in Fig. B.1a. The
hopping of p-orbitals is described in terms of oriented orbitals being linear combinations
of px and py, which are directed either parallel or perpendicular to the corresponding
bond [138]. The following tunneling terms are considered in the tight-binding description
of the imbalanced honeycomb lattice:

NN : s− s, s− p, p‖ − p‖, p⊥ − p⊥, p− f, f − f,
NNN : s− s, p‖ − p‖.

Including also a possible sublattice offset ∆ between the A- and B-sites, the tight-binding
Hamiltonian reads:

Ĥ(t) =
∑

rA

[
3∑

j=1

[
Jssj (t)

(
ŝ†rA ŝrA+δj(t) + c.c.

)
+ J̃ssj (t)

(
ŝ†rA ŝrA+aj + ŝ†rA+δ1

ŝrA+δ1−aj + c.c.
)

+Jspj (t)
(
ŝ†rA p̂jrA+δj(t)

(t) + c.c.
)

+ Jspj (t)
(
p̂j
†
rA

(t) ŝrA+δj(t) + c.c.
)

+J
p‖
j (t)

(
p̂j
†
rA

(t) p̂jrA+δj(t)
(t) + c.c.

)
+ Jp⊥j (t)

(
r̂j
†
rA

(t) r̂jrA+δj(t)
(t) + c.c.

)

+J̃
p‖
j (t)

(
t̂j
†
rA
t̂jrA+aj

+ t̂j
†
rA+δ1

t̂jrA+δ1−aj + c.c.
)

+Jpfj (t)
(
p̂j
†
rA

(t) f̂rA+δj(t) + c.c.
)

+ Jpfj (t)
(
f̂ †rA p̂jrA+δj(t)

(t) + c.c.
)

+Jffj (t)
(
f̂ †rA f̂rA+δj(t) + c.c.

)]
+

∆

2

(
ŝ†rA ŝrA + p̂x

†
rA
p̂xrA + p̂y

†
rA
p̂yrA + f̂ †rA f̂rA

−ŝ†rA+δ1
ŝrA+δ1 − p̂x†rA+δ1

p̂xrA+δ1
− p̂y†rA+δ1

p̂yrA+δ1
− f̂ †rA+δ1

f̂rA+δ1

)]
. (B.1)
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Figure B.1: Orbitals used in the tight-binding models and bands in the sym-
metric lattice. a. Sketch of the different orbitals which describe the first 12 bands of
the honeycomb lattice in a tight-binding model. b. p-orbitals oriented parallel or perpen-
dicular to the nearest neighbor (NN) and next-nearest neighbor (NNN) bonds, defined
according to Eq. B.2. c. Tight-binding bands (colorful lines) fitted to the full calcu-
lation (black lines) for V0 = 6Er using a model which only includes s- and p-orbitals.
The p-bands can not be fully described without coupling to higher bands. d. Fitted
tight-binding bands using the eight-band model described in the text. Due to the large
p-f -coupling, the f -bands (not shown) need to be taken into account to correctly describe
the p-bands.

The creation and annihilation operators are directly denoted by the orbitals to simplify
the notation. The direction-dependent p-orbitals are defined similarly as in Eq. 3.41
and 3.42:

p̂j
†
rA

(t) = δ̂xj (t) p̂x
†
rA

+ δ̂yj (t) p̂y
†
rA
, δ̂j(t) =

δj(t)

|δj(t)|
r̂j
†
rA

(t) = γ̂xj (t) p̂x
†
rA

+ γ̂yj (t) p̂y
†
rA
, γ̂j(t) · δ̂j(t) = 0, j = {1, 2, 3},

t̂j
†
rA(B)

= ±âxj p̂x†rA(B)
± âyj p̂y†rA(B)

, âj =
aj
|aj|

, aj = {−a1, a2, a3}. (B.2)

The creation and annihilation operators can be Fourier transformed analogously to the
two-band case, yielding the Hamiltonian in quasimomentum space. By making the general
ansatz

|ψ(q, t)〉 = csA(q, t)|φsA(q)〉+ csB(q, t)|φsB(q)〉+ cpxA (q, t)|φpxA (q)〉+ cpxB (q, t)|φpxB (q)〉
+ c

py
A (q, t)|φpyA (q)〉+ c

py
B (q, t)|φpyB (q)〉+ cfA(q, t)|φfA(q)〉+ cfB(q, t)|φfB(q)〉,

(B.3)
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the Hamiltonian for a certain quasimomentum q and time t can be written as an 8×8 ma-

trix in the basis
(
|φsA〉, |φsB〉, |φpxA 〉, |φ

py
A 〉, |φpxB 〉, |φ

py
B 〉, |φfA〉, |φfB〉

)
of the localized orbitals:

H t
q =




M̃ ss + ∆
2

M ss 0 0 M sp
x M sp

y 0 0

M ss∗ M̃ ss − ∆
2
−M sp

x
∗ −M sp

y
∗ 0 0 0 0

0 −M sp
x M̃

p‖
xx + ∆

2
M̃

p‖
xy Mpp

xx Mpp
xy 0 Mpf

x

0 −M sp
y M̃

p‖
xy M̃

p‖
yy − ∆

2
Mpp

xy Mpp
yy 0 Mpf

y

M sp
x
∗ 0 Mpp

xx
∗ Mpp

xy
∗ M̃

p‖
xx + ∆

2
M̃

p‖
xy −Mpf

x
∗

0

M sp
y
∗ 0 Mpp

xy
∗ Mpp

yy
∗ M̃

p‖
xy M̃

p‖
yy − ∆

2
−Mpf

y
∗

0
0 0 0 0 −Mpf

x −Mpf
y

∆
2

M ff

0 0 Mpf
x
∗

Mpf
y
∗

0 0 M ff −∆
2




,

(B.4)

where each entry is given by a sum over the corresponding hopping terms:

M ss =
3∑

j=1

Jssj (t) eiq·δj(t) M̃ ss =
3∑

j=1

J̃ssj (t) 2 cos(q · aj)

M sp
x =

3∑

j=1

Jspj (t) δ̂xj (t) eiq·δj(t) M sp
y =

3∑

j=1

Jspj (t) δ̂yj (t) e
iq·δj(t)

Mpp
xx =

3∑

j=1

J
p‖
j (t) (δ̂xj (t))2 eiq·δj(t) + Jp⊥j (t) (γ̂xj (t))2 eiq·δj(t)

Mpp
xy =

3∑

j=1

J
p‖
j (t) δ̂xj (t) δ̂yj (t) e

iq·δj(t) + Jp⊥j (t) γ̂xj (t) γ̂yj (t) eiq·δj(t)

Mpp
yy =

3∑

j=1

J
p‖
j (t) (δ̂yj (t))

2 eiq·δj(t) + Jp⊥j (t) (γ̂yj (t))2 eiq·δj(t)

M̃p‖
xx =

3∑

j=1

J̃
p‖
j (t)(âxj )

2 2 cos(q · aj) M̃p‖
xy =

3∑

j=1

J̃
p‖
j (t) âxj â

y
j 2 cos(q · aj)

M̃p‖
yy =

3∑

j=1

J̃
p‖
j (t)(âyj )

2 2 cos(q · aj) M ff =
3∑

j=1

Jffj (t) eiq·δj(t). (B.5)

To account for the higher energy of the p- and f -bands with respect to the s-bands, a
diagonal term HE needs to be added to the Hamiltonian, containing constant energy
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offsets which are also fitted along with the hopping parameters:

HE =




0 . . . . . . . . . . . . . . 0
0

Esp
... Esp

...
... Esp

...
Esp

Epf
0 . . . . . . . . . . . . . . Epf




. (B.6)



Appendix C

Edge modes in the zigzag-geometry

A semi-finite honeycomb lattice can also be described in a zigzag-geometry which is
periodic along the y-direction and consits of N pairs of sites in x. The effective unit
cell corresponds to a stripe of height

√
3a, as depicted in Fig. C.1. The zigzag-geometry

has the advantage that the Γ- and K-points are in principle differentiable, when being
projected to the qy-axis. At the edge of the zigzag-stripe, the original honeycomb-unit
cell is effectively cut, yielding single lattice sites. This leads to the emergence of flat edge
modes with zero energy at qy = π/(

√
3a) which further extend into the BZ with increasing

width of the stripe, up to qy = 2π/(3
√

3a) in the limit of N → ∞ [140]. In general, the
identification of topological edge modes arising from to the lattice modulation might be
complicated due to the presence of the intrinsic edge states. However, as illustrated
below, the latter usually exhibit a flat dispersion, corresponding to localized states, in
contrast to the edge modes induced by the lattice modulation.

Figure C.1: Sketch of the zigzag-geometry. The system is periodic in the y-direction
and finite along x, consisting of N pairs of A- and B-sites. The effective unit cell (gray
shaded area) is a horizontal stripe with height

√
3a. The presence of single lattice sites

at the edges results in the appearance of intrinsic, localized edge states in the energy
spectrum.



212 C. Edge modes in the zigzag-geometry

The tight-binding Hamiltonian in the zigzag-geometry is obtained similarly to the case
of the armchair edge described in Sec. 3.4, including direction- and time-dependent hop-
pings:

Ĥ(t) =
∑

l

[
J1(t)

∑

m

(
â†l (m) b̂l(m− 1) + c.c.

)
+

∆

2

(
â†l (m) âl(m)− b̂†l (m) b̂l(m)

)

+
∑

m odd

(
J2(t)â†l (m) b̂l(m) + J3(t)â†l (m) b̂l+1(m) + c.c.

)

+
∑

m even

(
J2(t)â†l (m) b̂l−1(m) + J3(t)â†l (m) b̂l(m) + c.c.

)

+
∑

m odd

(
J̃1(t) â†l (m) âl(m− 1) + J̃1(t) b̂†l (m) b̂l(m+ 1) + c.c.

+J̃2(t) â†l (m) âl(m+ 1) + J̃2(t) b̂†l (m) b̂l(m− 1) + c.c.
)

+
∑

m even

(
J̃1(t) â†l (m) âl−1(m− 1) + J̃1(t) b̂†l (m) b̂l+1(m+ 1) + c.c.

+J̃2(t) â†l (m) âl−1(m+ 1) + J̃2(t) b̂†l (m) b̂l+1(m− 1) + c.c.
)

+
∑

m

(
J̃3(t) â†l (m) âl+1(m) + J̃3(t) b̂†l (m) b̂l−1(m) + c.c.

)]
. (C.1)

Now, the 1D Fourier transform is performed along the y-direction

â†l (m) =
∑

q

e−iqyl,mA â†q(m) b̂†l (m) =
∑

q

e−iqyl,mB b̂†q(m), (C.2)

whereas the locations of the A-sites are again assumed to be fixed and the y-coordinates
of the B-sites are obtained from the normalized, time-dependent connection vectors in
the case of NN tunneling:

m odd: yl,mA = yl +

√
3

2
a yl,(m−1)B(t) = yl,mA + δ̂y1(t)

yl,mB(t) = yl,mA + δ̂y2(t) yl+1,mB(t) = yl,mA + δ̂y3(t)

m even: yl,mA = yl yl,(m−1)B(t) = yl,mA + δ̂y1(t)

yl−1,mB(t) = yl,mA + δ̂y2(t) yl,mB(t) = yl,mA + δ̂y3(t). (C.3)

For NNN hopping, the connection vectors are time-independent and the corresponding
coordinates of −a1, a2 and a3 can be directly used, leading to a fixed difference appearing
in the exponential factors.
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By making the same ansatz for the wavefunction as in the case of the armchair edge

|ψq〉 =
∑

m

(
cmA â

†
q(m) + cmB b̂

†
q(m)

)
|0〉, (C.4)

using the commutations relations defined in Eq. 3.55 and relabeling m→ ±m accordingly,
the eigenvalue equation for the coefficients evaluates to

E cmA = J1(t) eiqδ̂
y
1 (t) c(m−1)B + J2(t) eiqδ̂

y
2 (t) cmB + J3(t) eiqδ̂

y
3 (t) cmB

+
(
J̃1(t) e−iq

√
3

2
a + J̃∗2 (t) eiq

√
3

2
a
)
c(m−1)A +

(
J̃∗1 (t) eiq

√
3

2
a + J̃2(t) e−iq

√
3

2
a
)
c(m+1)A

+

(
J̃3(t) eiq

√
3a + J̃∗3 (t) e−iq

√
3a +

∆

2

)
cmA

E cmB = J1(t) e−iqδ̂
y
1 (t) c(m+1)A + J2(t) e−iqδ̂

y
2 (t) cmA + J3(t) e−iqδ̂

y
3 (t) cmA

+
(
J̃∗1 (t) e−iq

√
3

2
a + J̃2(t) eiq

√
3

2
a
)
c(m−1)B +

(
J̃1(t) eiq

√
3

2
a + J̃∗2 (t) e−iq

√
3

2
a
)
c(m+1)B

+

(
J̃3(t) e−iq

√
3a + J̃∗3 (t) eiq

√
3a − ∆

2

)
cmB. (C.5)

The energies are derived by finding the eigenvalues of the 2N × 2N Hamiltonian-matrix
for every quasimomentum qy ∈ [− π√

3a
, π√

3a
]. In the modulated lattice, either the fitted

time-dependent hoppings are used to calculate an effective Hamiltonian by integration
over the driving period in the anomalous and third regime, or the parameters obtained
from the Haldane-model are employed directly in this regime.
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Figure C.2: Energy bands in the zigzag-geometry for V0 = 6 Er. a. Energy bands
of the static honeycomb lattice for θ = 0 and θ = 0.05 rad, exhibiting localized, intrinsic
edge modes around E = 0. b. Quasienergy bands in the Haldane regime for m = 0.25
and f = 16 kHz. The topological edge modes are dispersive and cross the gap between
the bands. In all calculations, the system size is N = 50.

The harmonic trap could be included similarly as for the armchair edge, now being
described by a 1D potential along x, depending on the distance of the sites to the center



214 C. Edge modes in the zigzag-geometry

of the stripe. In Fig. C.2a, the energy bands of the static honeycomb lattice in the
zigzag-geometry are shown for θ = 0 (left panel) and θ = 0.05 rad (right panel). In the
symmetric lattice, the bands touch at the Dirac points and the intrinsic edge state at
E ≈ 0 extends from there to the outer edge of the BZ. Adding a sublattice offset opens a
gap between the two bands. This also results in a splitting of the edge states which remain
flat in energy. In contrast, the topological edge modes in the Haldane regime, presented
in Fig. C.2b, are dispersive and cross the gap between the bands at zero quasienergy.



Appendix D

Changing between ramp-up schemes
in the anomalous regime

To probe the Berry curvature of the lowest band in the different topological regimes, the
ramp-up of the modulation is combined with a change of the quasimomentum to avoid
the gap closings at the Γ-point, as described in Sec. 5.1.3. In the anomalous regime, the
modulation frequency is thereby held constant or ramped up exponentially, depending
on the modulation parameters. The limiting values flim at which the ramp-up of the
frequency is changed to the exponential scheme are set by considering the quasienergy
gaps along the ramp-up path as well as the distance between the cloud’s edge and the
location of the spreading Berry curvature in quasimomentum space. In the following,
the scheme involving a linear ramp of the modulation amplitude at a constant frequency
will be denoted as ’linear’, while ’exponential’ describes the scheme employing a linear
amplitude ramp and an exponential change of the frequency, as given by Eq. 5.9. The
quasienergy gaps are calculated for the corresponding modulation parameters during the
linear or exponential ramp at q ∈ [0, q0] along the Γ- and K-direction, as well as at the
borders of the cloud in reciprocal space, traversing the same paths shifted by the width
σ in quasimomentum space.

The minimum of the gap over the different quasimomenta of the cloud, ∆Emin, is
plotted in Fig. D.1 for every point during the ramp-up, when moving along the Γ- or
the K-direction. The different colors depict the minimal quasienergy gap for certain
modulation parameters that are probed within this work with modulation frequencies
close to flim. At f = 7 kHz and m = 0.2, the gaps are compared for the linear and the
exponential ramp: When linearly increasing the modulation amplitude at f = 7 kHz, the
minimal quasienergy gaps along the Γ- and K-direction (solid, blue lines) become much
smaller than 500 Hz (light gray line), which is set as the lower limit, being about a factor of
two larger than the average value of Fa/h used in the deflection measurements. Changing
the ramp to exponential (dashed, blue lines), considerably increases the minimal gap in
both directions, illustrating the choice of flim = 7 kHz here: For f = 8 kHz, which is
the next larger modulation frequency probed for m = 0.2, both gaps are well above the
limit of 500 Hz for the linear ramp (solid, green line). The linear and exponential ramp
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Figure D.1: Minimal quasienergy gap during the ramp-up along the Γ- and K-
directions for various modulation parameters and different ramping schemes.
a. Calculated minimal quasienergy gap over the extent of the cloud in reciprocal space vs.
time when moving the center along the path Γ-M during the modulation ramp-up. The
different colors and line shapes represent different final modulation parameters and ramp-
up schemes: Either increasing the modulation amplitude linearly at constant modulation
frequency (lin) or while changing the frequency exponentially (exp). The mean width
σ̄ = 0.153 kL of the BEC averaged over all measured widths is used in the calculations.
b. Minimal quasienergy gap during the ramp-up when probing along the K-direction for
the same modulation parameters as in the left panel.

are also compared for f = 8 kHz and m = 0.3 (red lines). The minimal gaps are larger
than 500 Hz for both path directions also for the linear ramp, similar to f = 8 kHz and
m = 0.27 (solid, orange lines), where a linear ramp-up is used. The choice of flim = 8 kHz
for m = 0.3 results from considerations of the Berry curvature that the cloud potentially
probes during the ramp-up.

In the anomalous regime, the negative Berry curvature arising at Γ spreads out in
reciprocal space after the first phase transition. The Berry curvature ring is located at
the nearly degenerate minimum of the lowest band which occurs due to the crossing and
hybridization of the two lowest bands. Hence, the minimum of the ring along the radial
direction resides at the point qcross where the bands would intersect for m → 0. The
value of this crossing point is calculated as a function of time for the same modulation
parameters and ramping schemes as the minimal gaps and is compared to the width of
the moving BEC in Fig. D.2, exhibiting similar values for probing the Γ- and K-direction.
The center of the BEC moves linearly from q = 0 to q0 = 0.5

√
3 (dark gray line) and

its extent in reciprocal space is illustrated by the gray shaded area. In order to avoid
transverse deflections during the ramp-up, the minimal distance between the center of
the spreading Berry curvature and the edge of the cloud is set to 0.1 kL (solid, light
gray line), corresponding to the average width of the Berry curvature along the ring.
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Figure D.2: Calculated band crossing points as a function of time. Band crossing
points during the modulation ramp-up for various modulation parameters and ramp-up
schemes. a. Crossing points qΓ

cross along the Γ-M -axis, the dark gray line depicts the
quasimomentum of the cloud’s center during the ramp-up, while the Gaussian width of
σ̄ = 0.153 kL is illustrated by the gray shaded stripes. The light gray line marks the
minimal distance of 0.1 kL from the band crossing points to the edge of the cloud to
ensure that no Berry curvature is traversed. The different colors and line shapes repre-
sent different final modulation parameters and ramp-up schemes: Either increasing the
modulation amplitude linearly at constant modulation frequency (lin) or while changing
the frequency exponentially (exp). b. Calculated crossing points along the Γ-K-axis for
the same parameters as in a.

For the linear ramp-up at f = 8 kHz and m = 0.3 (solid, red line), the crossing point
surpasses this limit and hence the exponential ramp-up is applied for these modulation
parameters (dashed, red line). For the next smaller modulation amplitude that is probed
at f = 8 kHz, m = 0.27, the distance is sufficiently larger than 0.1 kL (solid, orange line)
when using the linear ramp-up, justifying flim = 7 kHz for m < 0.3. At m = 0.2, the
exponential and linear ramps for f = 7 kHz and f = 8 kHz (dashed, blue and solid, green
lines) also ensure that no significant amount of Berry curvature is probed during the
modulation ramp-up.
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[71] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D. Liberto, N. Goldman,
I. Bloch, and M. Aidelsburger, “Realization of an anomalous Floquet topological
system with ultracold atoms,” Nature Physics, 2020.

[72] T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M. Schleier-Smith,
I. Bloch, and U. Schneider, “Bloch state tomography using Wilson lines,” Science,
vol. 352, no. 6289, pp. 1094–1097, 2016. arXiv: 1509.02185.

[73] T. Li, Probing Bloch band geometry with ultracold atoms in optical lattices. PhD
thesis, Ludwig-Maximilians-Universität München, 2016.
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[169] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch, “Interfer-
ence pattern and visibility of a Mott insulator,” Physical Review A, vol. 72, no. 5,
p. 053606, 2005.

https://link.aps.org/doi/10.1103/PhysRevA.75.022715
https://link.aps.org/doi/10.1103/PhysRevA.77.052705
https://link.aps.org/doi/10.1103/PhysRevA.77.052705
https://link.aps.org/doi/10.1103/PhysRevA.73.040702
https://iopscience.iop.org/article/10.1088/1367-2630/9/7/223
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://linkinghub.elsevier.com/retrieve/pii/S0370157399000253
https://link.aps.org/doi/10.1103/RevModPhys.78.1311
https://link.aps.org/doi/10.1103/RevModPhys.78.1311
https://www.sciencedirect.com/science/article/abs/pii/0003491658900071
https://link.aps.org/doi/10.1103/PhysRevA.51.4852
https://link.aps.org/doi/10.1103/PhysRevA.51.4852
https://www.osapublishing.org/abstract.cfm?URI=ol-32-21-3143
https://www.osapublishing.org/abstract.cfm?URI=ol-32-21-3143
https://link.aps.org/doi/10.1103/PhysRevA.72.053606
https://link.aps.org/doi/10.1103/PhysRevA.72.053606


232 BIBLIOGRAPHY

[170] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, and T. Esslinger, “Exploring Phase
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rik Lüschen, Oscar Bettermann and Giulio Pasqualetti for the relaxing lunch breaks, beers
and fruitful discussions. And not to forget the team from the Bürgerliche Dämmerung,
motivating me to go running even when the weather was bad. Even though Garching
sometimes seemed to be far away, also our MPQ colleagues have been helpful and support-
ive at all times. In particular I want to thank Antonio Rubio Abadal, Jayadev Vijayan,
Simon Hollerith, Timon Hilker, Roman Bause, Marcel Duda and Nikolaus Lorenz.

Thanks to Ildiko Kecskesi, Kristina Schuldt and Doreen Seidl I enjoyed numerous
nice group retreats and Christmas parties. Many thanks goes to Ildiko for finding flexible
and unbureaucratic solutions to any kind of problem, being kind and creating a pleasant
atmosphere. I also want to thank Bodo Hecker for his valuable technical support and
always being in a good mood.

I would like to thank our theory collaborators André Eckardt, Nur Ünal, Nathan Gold-
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