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Chapter 1 General introduction 

1.1 Self-interaction of monoclonal antibodies 

Attractive self-interaction of proteins, also referred to as self-association, reflects a process, 

in which native, monomeric proteins of the same species form dimers and oligomers. If 

oligomers are the functional entity of these proteins, attractive self-interaction will lead to 

activation of components as shown for enzymes and enzymatic cascades.1, 2 For 

monoclonal antibodies, self-interaction can be linked to unwanted phenomena such as 

protein aggregation and particle formation as well as exceptional increase in viscosity.3–10 

This introduction will give an overview of the mechanism underlying the self-interaction 

process as well as a description of the commonly used analytical techniques to characterize 

mAb self-interaction. Additionally, influencing factors are presented and discussed. 

1.1.1 The driving forces of mAb self-interaction 

Protein interaction processes are driven either by repulsive or attractive forces. If antibodies 

are regarded as colloids, the interaction can be described by the DLVO theory.11 

Accordingly, the net interaction forces depend on the distance between the surface layers 

of the molecules. At low protein concentration, large distances between molecules can lead 

to repulsive interactions dominated by the electric double layers that surround each colloid. 

Upon increase in concentration, distances between molecules become smaller leading to 

prevalence of attractive Van der Waals forces. The theory of proximity energies provides 

an energetic framework to these high concentration environments, where not only proteins 

but also the whole solution composition as a mixture of differently charged components is 

considered.12, 13 Non-specific charge-charge, charge-dipole and dipole-dipole interactions 

contribute to the overall long distance electrostatic forces whereas attractive hydrophobic 

forces are present at short distances.13, 14 Crowding at high protein concentration leads to 

very short distances, which favor the presence of hydrophobic, attractive forces. Therefore, 

close proximity of the molecules will raise the probability to attractive interaction and thus, 

to the formation of protein oligomers.3  

Monoclonal antibodies are multi-domain proteins consisting of two Fab and one Fc 

domains. All domains can be involved in the self-interaction mechanism. Under low ionic 

strength conditions, Fc-Fc interaction were observed which led to liquid-liquid phase 

separation.15 Fab-Fc interactions were also identified in a formulation dependent manner, 
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with enhanced oligomerization at higher pH and elevated sodium chloride concentration.16 

Fab-Fab interactions were also described for mAbs and they also depend on ionic strength 

and pH, which underlines the heterogeneity of this type of non-specific protein-protein 

interaction.17 So far, it is not possible to clearly predict distinct self-interaction sites based 

on primary sequence and structural modeling. Work and cost extensive studies are 

necessary to investigate this kind of weak protein-protein interaction in order to enhance 

the molecule specificity, manufacturability and overall developability. 

1.1.2 A brief overview of suitable analytical techniques 

The analysis of protein-protein interactions is well established in various fields of scientific 

research. High affine interactions such as antibody-antigen binding can be easily assessed 

by ELISA or SPR measurements. For the detection of weak interaction processes such as 

mAb self-interaction, other techniques with different sensitivity and assay principle are 

used. Analytical Ultracentrifugation (AUC) is regarded as the gold-standard to analyze 

weak protein-protein interaction processes enabling to calculate the second virial 

coefficient B22 as interaction parameter.18 It was used in several studies to investigate the 

extent of self-interaction9, 19–21 Whereas AUC provides high quality data and characteristic 

physical numbers, its throughput is very limited. Light scattering techniques such as 

Dynamic Light Scattering (DLS) can be applied in high throughput to determine the 

diffusion interaction parameter kD.21–23 Emerging techniques such as Affinity Capture Self-

Interaction Nanoparticle Spectroscopy (AC-SINS), Bio-Layer-Interferometry (BLI) and 

Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) have been used recently 

to characterize mAb self-interaction processes and to rank mAbs by their self-interaction 

propensity.24–27 In particular, HDX-MS was used to identify key residues contributing to 

the self-interaction of mAbs.16, 24, 28–30 The published work is limited to either a comparison 

of different mAbs in one formulation or of various formulations of one mAb. Because self-

interaction is formulation dependent, the combination of both would be highly useful to 

characterize mAb candidates in early stages of discovery. Further advantages and 

disadvantages of the abovementioned methods are discussed in detail in chapter 2 of this 

thesis. The methods described here differ in their assay and detection principle, which 

makes it challenging to compare data sets and studies. To this end, the multi method 

characterization of one particular model system may disclose new correlations and 

understandings of the results from the various analytical methods providing more 

comprehensive insights into the self-interaction process. 
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1.1.3 Factors affecting self-interaction of mAbs 

 

Figure 1  Formulation and rational engineering as two approaches to influence factors that impact mAb self-

interaction. 

MAb self-interaction processes are driven by electrostatic and hydrophobic forces 

depending on the molecules proximity.31 Various factors influence the self-interaction 

propensity, which are related to i) the formulation composition or b) intrinsic properties of 

the mAb, which can be affected by engineering (Figure 1). During discovery phase and 

lead candidate optimization, intrinsic properties of a protein can be adjusted by engineering, 

whereas in later stages of development, when a lead candidate has already been defined, 

formulation development can affect the self-interaction and its consequences. 

1.1.4 Formulation of mAbs 

A biopharmaceutical formulation typically consists of a buffer at a specific pH and ionic 

and non-ionic excipients that should protect the biotherapeutic from chemical, 

conformational and colloidal degradation. The latter is strongly affected by mAb self-

interaction. Thus, the selection of formulation components to prevent strong attractive self-

interaction of mAbs is important to reduce aggregation and viscosity. Various examples 

can be found in literature and a few are highlighted in the following. Sodium chloride as 

ionic excipient effectively lowers the viscosity of a mAb at high protein concentration and 

both, different cations and anions affect the solution properties reducing the self-interaction 
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propensity.9 32 In addition to sodium chloride, arginine hydrochloride was described as 

viscosity reducing agent by lowering the attractive self-interaction propensity. 32, 33 

Recently, dipicolinic acid was shown to reduce viscosity by lowering intermolecular 

attractions.34 Specifically the pH significantly influences the self-interaction behavior of 

mAbs.35–38 The pH dictates the surface charge distribution of the protein molecules which 

are key for the interactions. Thus, a formulations pH far away from the pI might reduce 

self-interaction by increasing overall electrostatic repulsion, but may not necessarily reduce 

the viscosity at high protein concentration if charge heterogeneity on the surface acts as the 

main driver.18  

1.1.5 Engineering of mAbs 

As depicted in figure 1, engineering approaches can be used to change the surface charge 

distribution, the overall surface hydrophobicity and aggregation prone regions. These 

properties were shown to be associated with mAb self-interaction. Yadav et al. 

demonstrated the effect of the proteins charge on the rheological characteristics of two 

mAbs, which differed mainly in their CDR regions, and one of which showed high self-

interaction propensity and high viscosity at elevated concentration whereas the other did 

not.4, 14, 18 39 They generated “charge-swap” mutants and the resulting variants showed 

decreased viscosity and pronounced repulsive intermolecular interaction.39 Apgar et al. 

generated 40 variants of a mAb, which exhibited high viscosity at 80 mg/ml and a strong 

self-interaction propensity in AC-SINS.40 They identified a high net negative charge within 

the variable region as most promising engineering area. Only some variants showed 

decreased viscosity although the mutations were of the similar nature indicating that the 

interplay between structure, viscosity and self-interaction is not clearly understood. 

For another mAb, three hydrophobic residues were identified by HDX-MS to be 

responsible for its aberrant self-interaction behavior which could be resolved by mutation.29 

Wu et al. identified a hydrophobic triad consisting of phenylalanine, histidine and 

tryptophan within the HCDR3 of the mAb CNTO607 as a key driver for its low solubility 

and high self-interaction propensity.41 The exchange of these residues against more 

hydrophilic residues such as alanine improved the solubility but diminished target 

binding.41, 42 The precursor molecule of CNTO607 was included in this thesis and is 

referred to as mAb1 in Chapter VI. 
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Calculations for predicting aggregation prone regions (APR) were developed to understand 

the effect of hydrophobicity, β-sheet propensity and on the probability for polypeptides and 

small proteins mainly consisting of secondary structure elements to build amyloidic 

fibrils.43 The approach to predict the APRs was transferred to large antibodies by 

Chennamsetty et al. using the “spatial-aggregation propensity (SAP)” based on a three 

dimensional simulation of a full IgG1 molecule.44 The SAP depends on the surface 

accessible area of a residue and its hydrophobicity. The authors selected sites for rational 

engineering and generated variants with reduced SAP score in the CH2 domain which 

showed less turbidity upon shaking and a higher apparent unfolding temperature.44 Nichols 

et al. designed variants by disrupting the APR of a model mAb.45 Introducing a single 

mutation in this region led to destabilization and a loss of antigen binding. In contrast, 

variants with a mutation in spatial proximity retained their target binding properties and 

showed slightly improved physicochemical properties although kD, as a measure for 

attractive self-interaction, was not significantly influenced.45 

Thus, rational engineering can improve the physicochemical properties of mAbs but 

antigen binding was impaired in most cases, indicating that the link between structure, self-

interaction behavior and target binding is not clearly understood. Thus, application of 

different predictive tools for APRs or surface hydrophobicity for rational mutagenesis and 

detailed analytical characterization of resulting variants would by highly valuable. 

1.2 Developability of mAbs 

Developability assessments of monoclonal antibodies are the investigation of properties of 

a therapeutic compound that are linked to an overall low risk of failure during chemistry, 

manufacturing, control (CMC), preclinical and clinical development.  

The term developability of a mAb includes different aspects which are important for 

success along the road to a market product. To this end, an “ideal” drug candidate can be 

produced with high yields and high quality, if possible using a platform bioprocess.46 High 

quality includes low heterogeneity and high storage stability. Moreover, a candidate should 

enable the use of high concentration solutions, which simplifies processing and 

administration. 

The very early evaluation during discovery and candidate selection based on in silico 

approaches and experimental data from extended characterization and forced degradation 
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studies can be used to decide for a candidate with the most favorable properties for 

subsequent development. 46, 47 

In general, an early developability assessment of a mAb consists of at least three major 

parts, depending of the project progress and availability of material. First, computational 

tools are applied to predict various properties of a protein including pI, presence of free 

cysteine residues and N-glycosylation sites in CDRs.46 If homology modeling is 

appropriate, common chemical degradation sites such as surface exposed deamidation and 

oxidation sites can be predicted.46–48 

Computational predictions of the colloidal stability and the aggregation propensity can be 

based on physics or statistics.49 Physics based predictions do not require prior experimental 

data. In contrast, the statistical methods, implemented as machine learning approaches and 

the generation of artificial intelligence, rely on previously obtained experimental data and 

the accuracy depends on the data quality used to train the prediction method.49, 50 

Aggregation prone regions of mAbs can be predicted by a variety of algorithms such as 

AggreScan3D 2.0 and AggScore, which are based on homology modeling of the variable 

region of a mAb on available 3D models of Fab fragments.51, 52 A “developability index” 

based on spatial aggregation propensity and net charge was correlated with long-term 

stability and successfully applied to unknown mAb candidates.53 The limitation to a certain 

segment was overcome by Jain et al. who published a database of 12 biophysical properties 

of 137 clinical stage or approved mAbs.54 This dataset includes various properties 

commonly connected to “good” developability characteristics such as drug-like 

specificity55, high conformational as well as high colloidal stability. Based on machine 

learning approaches and subsequent analysis of homology models of 56 antibodies, 

developability guidelines for mAbs considering five metrics were proposed: 1) total length 

of CDRs, 2) surface hydrophobicity, 3) abundance of positive and 4) negative charges in 

CDR and 5) asymmetric distribution of surface charges.56 Protein-sol is another tool based 

on the publication of Jain et al. to model clusters according to charge and hydrophobicity 

and to predict biophysical properties of mAbs based on the primary sequence of the variable 

fragment.57  

The second step is the small-scale production of promising candidates. Expression and 

purification titer can be used to tell whether a mAb should be well producible or bears a 

higher risk for extended optimization effort. After production of typically less than 100 

candidates, biophysical characterization is performed with high-throughput assays which 
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require only little sample, which includes e.g. analysis of thermal stability and monomer 

content. At this stage, assessment of the self-interaction propensity could be included. 

Clone Self-Interaction Bio-Layer-Interferometry (CSI-BLI) as well as Affinity-Capture 

Self-Interaction Nanoparticle Spectroscopy (AC-SINS) are assays which only require small 

amounts of material and can be run in high-throughput.25, 26, 58 However, neither of these 

assays is suitable to assess the impact of formulation on self-interaction. Thus, the risk of 

excluding promising candidates due to challenges, which could be easily covered by 

formulation development, is high. Because the developability assessments typically do not 

include formulation screenings or considerations, implementation of preformulation 

studies in the second step of the assessment might be useful. 

In the third step of a developability assessment, forced degradation studies are performed 

to explore degradation pathways and to rank the remaining candidates based on their 

stability profiles.47 Due to the low number of candidates, production processes can be 

scaled up to provide material for further in-depth characterization of the candidates. For the 

analysis of self-interaction, assays can be used that require medium to high sample amounts 

like SLS and DLS and even viscosity measurements.59–61 These physico-chemical results 

can be combined with data from pharmacokinetics and pharmacodynamics as well as 

manufacturability experiments to get the full picture of the potential candidates for decision 

making.46, 47  

  



General introduction 

 

8 

 

References 

1. Hüttl S, Fiebig J, Kutter S, et al. Catalytically active filaments - pyruvate decarboxylase from 

Neurospora crassa. pH-controlled oligomer structure and catalytic function. 2012. FEBS J 

279: 275–284. 

2. Kutter S, Spinka M, Koch MHJ, König S. The influence of protein concentration on oligomer 

structure and catalytic function of two pyruvate decarboxylases. 2007. Protein J 26: 585–

591. 

3. Wang W, Roberts CJ. Protein aggregation - Mechanisms, detection, and control. 2018. Int J 

Pharm 550: 251–268. 

4. Yadav S, Shire SJ, Kalonia DS. Factors affecting the viscosity in high concentration solutions 

of different monoclonal antibodies. 2010. J Pharm Sci 99: 4812–4829. 

5. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration 

formulations. 2004. J Pharm Sci 93: 1390–1402. 

6. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. 2014. Trends 

Biotechnol 32: 372–380. 

7. Pindrus MA, Shire SJ, Yadav S, Kalonia DS. The Effect of Low Ionic Strength on Diffusion 

and Viscosity of Monoclonal Antibodies. 2018. Mol Pharm 15: 3133–3142. 

8. Neergaard MS, Kalonia DS, Parshad H, et al. Viscosity of high concentration protein 

formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of 

viscosity through protein-protein interaction measurements. 2013. Eur J Pharm Sci 49: 

400–410. 

9. Liu J, Nguyen MDH, Andya JD, Shire SJ. Reversible self-association increases the viscosity of 

a concentrated monoclonal antibody in aqueous solution. 2005. J Pharm Sci 94: 1928–

1940. 

10. Li L, Kumar S, Buck PM, et al. Concentration dependent viscosity of monoclonal antibody 

solutions: explaining experimental behavior in terms of molecular properties. 2014. Pharm 

Res 31: 3161–3178. 

11. Arzenšek D, Kuzman D, Podgornik R. Colloidal interactions between monoclonal antibodies 

in aqueous solutions. 2012. J Colloid Interface Sci 384: 207–216. 

12. Laue TM, Shire SJ. The Molecular Interaction Process. 2020. J Pharm Sci 109: 154–160. 

13. Laue T. Proximity energies: a framework for understanding concentrated solutions. 2012. J 

Mol Recognit 25: 165–173. 

14. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody 

solutions resulting in high viscosity. 2010. J Pharm Sci 99: 1152–1168. 



General introduction 

 

9 

 

15. Nishi H, Miyajima M, Wakiyama N, et al. Fc domain mediated self-association of an IgG1 

monoclonal antibody under a low ionic strength condition. 2011. J Biosci Bioeng 112: 326–

332. 

16. Arora J, Hu Y, Esfandiary R, et al. Charge-mediated Fab-Fc interactions in an IgG1 antibody 

induce reversible self-association, cluster formation, and elevated viscosity. 2016. MAbs 8: 

1561–1574. 

17. Gentiluomo L, Roessner D, Streicher W, et al. Characterization of Native Reversible Self-

Association of a Monoclonal Antibody Mediated by Fab-Fab Interaction. 2020. J Pharm 

Sci 109: 443–451. 

18. Yadav S, Laue TM, Kalonia DS, et al. The influence of charge distribution on self-association 

and viscosity behavior of monoclonal antibody solutions. 2012. Mol Pharm 9: 791–802. 

19. Lerch TF, Sharpe P, Mayclin SJ, et al. Infliximab crystal structures reveal insights into self-

association. 2017. MAbs 9: 874–883. 

20. Sarangapani PS, Weaver J, Parupudi A, et al. Both Reversible Self-Association and Structural 

Changes Underpin Molecular Viscoelasticity of mAb Solutions. 2016. J Pharm Sci 105: 

3496–3506. 

21. Connolly BD, Petry C, Yadav S, et al. Weak interactions govern the viscosity of concentrated 

antibody solutions: high-throughput analysis using the diffusion interaction parameter. 

2012. Biophys J 103: 69–78. 

22. Menzen T, Friess W. Temperature-ramped studies on the aggregation, unfolding, and 

interaction of a therapeutic monoclonal antibody. 2014. J Pharm Sci 103: 445–455. 

23. Esfandiary R, Parupudi A, Casas-Finet J, et al. Mechanism of reversible self-association of a 

monoclonal antibody: role of electrostatic and hydrophobic interactions. 2015. J Pharm Sci 

104: 577–586. 

24. Arora J, Hickey JM, Majumdar R, et al. Hydrogen exchange mass spectrometry reveals 

protein interfaces and distant dynamic coupling effects during the reversible self-

association of an IgG1 monoclonal antibody. 2015. MAbs 7: 525–539. 

25. Sun T, Reid F, Liu Y, et al. High throughput detection of antibody self-interaction by bio-

layer interferometry. 2013. MAbs 5: 838–841. 

26. Geng SB, Wittekind M, Vigil A, Tessier PM. Measurements of Monoclonal Antibody Self-

Association Are Correlated with Complex Biophysical Properties. 2016. Mol Pharm 13: 

1636–1645. 

27. Geng SB, Cheung JK, Narasimhan C, et al. Improving monoclonal antibody selection and 

engineering using measurements of colloidal protein interactions. 2014. J Pharm Sci 103: 

3356–3363. 



General introduction 

 

10 

 

28. Majumdar R, Middaugh CR, Weis DD, Volkin DB. Hydrogen-deuterium exchange mass 

spectrometry as an emerging analytical tool for stabilization and formulation development 

of therapeutic monoclonal antibodies. 2015. J Pharm Sci 104: 327–345. 

29. Dobson CL, Devine PWA, Phillips JJ, et al. Engineering the surface properties of a human 

monoclonal antibody prevents self-association and rapid clearance in vivo. 2016. Sci Rep 

6: 38644. 

30. Geoghegan JC, Fleming R, Damschroder M, et al. Mitigation of reversible self-association 

and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv 

engineering. 2016. MAbs 8: 941–950. 

31. Kumar V, Dixit N, Zhou LL, Fraunhofer W. Impact of short range hydrophobic interactions 

and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody 

and a dual-variable domain immunoglobulin at low and high concentrations. 2011. Int J 

Pharm 421: 82–93. 

32. Inoue N, Takai E, Arakawa T, Shiraki K. Specific decrease in solution viscosity of antibodies 

by arginine for therapeutic formulations. 2014. Mol Pharm 11: 1889–1896. 

33. Dear BJ, Hung JJ, Truskett TM, Johnston KP. Contrasting the Influence of Cationic Amino 

Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody. 2017. 

Pharm Res 34: 193–207. 

34. Ke P, Batalha IL, Dobson A, et al. Novel salts of dipicolinic acid as viscosity modifiers for 

high concentration antibody solutions. 2018. Int J Pharm 548: 682–688. 

35. Yadav S, Scherer TM, Shire SJ, Kalonia DS. Use of dynamic light scattering to determine 

second virial coefficient in a semidilute concentration regime. 2011. Anal Biochem 411: 

292–296. 

36. Sule SV, Cheung JK, Antochshuk V, et al. Solution pH that minimizes self-association of 

three monoclonal antibodies is strongly dependent on ionic strength. 2012. Mol Pharm 9: 

744–751. 

37. Sahin E, Grillo AO, Perkins MD, Roberts CJ. Comparative effects of pH and ionic strength on 

protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. 2010. J Pharm 

Sci 99: 4830–4848. 

38. Tomar DS, Kumar S, Singh SK, et al. Molecular basis of high viscosity in concentrated 

antibody solutions: Strategies for high concentration drug product development. 2016. 

MAbs 8: 216–228. 

39. Yadav S, Sreedhara A, Kanai S, et al. Establishing a link between amino acid sequences and 

self-associating and viscoelastic behavior of two closely related monoclonal antibodies. 

2011. Pharm Res 28: 1750–1764. 



General introduction 

 

11 

 

40. Apgar JR, Tam ASP, Sorm R, et al. Modeling and mitigation of high-concentration antibody 

viscosity through structure-based computer-aided protein design. 2020. PLoS ONE 15: 

e0232713. 

41. Wu S-J, Luo J, O’Neil KT, et al. Structure-based engineering of a monoclonal antibody for 

improved solubility. 2010. Protein Eng Des Sel 23: 643–651. 

42. Bethea D, Wu S-J, Luo J, et al. Mechanisms of self-association of a human monoclonal 

antibody CNTO607. 2012. Protein Eng Des Sel 25: 531–537. 

43. Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. 

2006. Curr Opin Chem Biol 10: 437–444. 

44. Chennamsetty N, Voynov V, Kayser V, et al. Design of therapeutic proteins with enhanced 

stability. 2009. Proc Natl Acad Sci U S A 106: 11937–11942. 

45. Nichols P, Li L, Kumar S, et al. Rational design of viscosity reducing mutants of a 

monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. 2015. 

MAbs 7: 212–230. 

46. Jarasch A, Koll H, Regula JT, et al. Developability assessment during the selection of novel 

therapeutic antibodies. 2015. J Pharm Sci 104: 1885–1898. 

47. Xu Y, Wang D, Mason B, et al. Structure, heterogeneity and developability assessment of 

therapeutic antibodies. 2019. MAbs 11: 239–264. 

48. Sharma VK, Patapoff TW, Kabakoff B, et al. In silico selection of therapeutic antibodies for 

development: viscosity, clearance, and chemical stability. 2014. Proc Natl Acad Sci U S A 

111: 18601–18606. 

49. Kuroda D, Tsumoto K. Engineering Stability, Viscosity, and Immunogenicity of Antibodies 

by Computational Design. 2020. J Pharm Sci 109: 1631–1651. 

50. Gentiluomo L, Roessner D, Augustijn D, et al. Application of interpretable artificial neural 

networks to early monoclonal antibodies development. 2019. Eur J Pharm Biopharm 141: 

81–89. 

51. Kuriata A, Iglesias V, Pujols J, et al. Aggrescan3D (A3D) 2.0: prediction and engineering of 

protein solubility. 2019. Nucleic Acids Res 47: W300-W307. 

52. Sankar K, Krystek SR, Carl SM, et al. AggScore: Prediction of aggregation-prone regions in 

proteins based on the distribution of surface patches. 2018. Proteins 86: 1147–1156. 

53. Lauer TM, Agrawal NJ, Chennamsetty N, et al. Developability index: a rapid in silico tool for 

the screening of antibody aggregation propensity. 2012. J Pharm Sci 101: 102–115. 

54. Jain T, Sun T, Durand S, et al. Biophysical properties of the clinical-stage antibody landscape. 

2017. Proc Natl Acad Sci U S A 114: 944–949. 

55. Starr CG, Tessier PM. Selecting and engineering monoclonal antibodies with drug-like 

specificity. 2019. Curr Opin Biotechnol 60: 119–127. 



General introduction 

 

12 

 

56. Raybould MIJ, Marks C, Krawczyk K, et al. Five computational developability guidelines for 

therapeutic antibody profiling. 2019. Proc Natl Acad Sci U S A 116: 4025–4030. 

57. Hebditch M, Warwicker J. Charge and hydrophobicity are key features in sequence-trained 

machine learning models for predicting the biophysical properties of clinical-stage 

antibodies. 2019. PeerJ 7: e8199. 

58. Liu Y, Caffry I, Wu J, et al. High-throughput screening for developability during early-stage 

antibody discovery using self-interaction nanoparticle spectroscopy. 2014. MAbs 6: 483–

492. 

59. Gentiluomo L, Svilenov HL, Augustijn D, et al. Advancing Therapeutic Protein Discovery 

and Development through Comprehensive Computational and Biophysical 

Characterization. 2020. Mol Pharm 17: 426–440. 

60. Lavoisier A, Schlaeppi J-M. Early developability screen of therapeutic antibody candidates 

using Taylor dispersion analysis and UV area imaging detection. 2014. MAbs 7: 77–83. 

61. Calero-Rubio C, Saluja A, Sahin E, Roberts CJ. Predicting High-Concentration Interactions of 

Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly 

Attractive Versus Repulsive Conditions. 2019. J Phys Chem B 123: 5709–5720. 

  



Aim and outline of this thesis 

 

13 

 

Aim and outline of this thesis 

MAbs play a major role in the treatment of various severe diseases. To increase patient 

comfort and compliance, high concentration liquid formulations are developed which 

enable subcutaneous applications. Several challenges are associated with the high 

concentration approach including increased protein aggregation and a viscosity which is 

not suited for injection through fine needles and some steps in manufacturing. These 

challenges can be partially explained by the intrinsic propensity of a protein to self-interact, 

depending on the protein structure itself and on the formulation conditions. 

This thesis should give insights into the self-interaction behavior of mAbs. The investigated 

set of model proteins comprised three mAbs derived from the phage display HuCAL library 

of the MorphoSys AG, four derived from the phage display Ylanthia library of the 

MorphoSys AG and two commercially available mAbs. The goal was to investigate and 

understand the connection between molecule structure, formulation composition, target 

binding and self-interaction propensity. The topic was approached in three steps. First, 

orthogonal techniques were established to characterize the self-interaction propensity of 

the mAbs. Subsequently, the self-interaction behavior of the mAbs was studied in detail. 

Lastly, self-interaction hot spots identified for three model mAbs were modified by rational 

mutagenesis and the mAb variants were characterized regarding their self-interaction 

propensity and target binding properties. 

Chapter 2 describes the establishment of an analytical technique to determine the self-

interaction propensity of mAbs in a formulation dependent manner (SI-BLI), which can be 

applied in high throughput. In this context, the newly established method is compared to 

other, well-known techniques such as dynamic light scattering. 

In Chapter 3, the SI-BLI assay is applied in a developability assessment combined with 

preformulation screening for mAbs derived from the Ylanthia library. The assay can predict 

rankings of formulations regarding the increase in viscosity at higher protein concentration. 

In Chapter 4, self-interaction of the model mAb Infliximab is characterized under 

pharmaceutically relevant formulation conditions using a multi-method approach 

comprising AUC, DLS, viscosimetry, HDX-MS, SI-BLI and small angle X-ray scattering. 
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Chapter 5 describes the detailed analysis of the formulation dependent self-interaction and 

the identification of hot spots by both, in silico and in vitro approaches for one mAb from 

the HuCAL library. Based on these results, variants were generated and characterized. 

In Chapter 6, an engineering approach for two mAbs from the HuCAL library is presented, 

which is based on computational methods. Results from the experimental characterization 

of these variants is compared to predictions of protein-sol. 

Chapter 7 is a summary and conclusion of this thesis, which contains suggestion for future 

analysis of mAb self-interaction and guidance for next-generation mAb design. 
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Chapter 2 Assessment of antibody self-interaction by 

bio-layer-interferometry as a tool for early stage 

formulation development 

This chapter is published as: 
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2.1 Abstract 

Purpose: 

To speed up the drug development process in the biopharmaceutical industry, high 

throughput methods are indispensable for assessing drug candidates and potential lead 

formulations, in particular during late stages of discovery and early phases of development. 

This study aimed to establish a bio-layer-interferometry based high throughput assay for 

assessing formulation dependent mAb self-interaction (SI-BLI) and to compare the results 

with kD values obtained by dynamic light scattering (DLS). 

Methods: 

Self-interaction of proprietary and commercially available mAbs was analyzed by SI-BLI 

and dynamic light scattering (DLS).  

Results: 

We found significant correlations of the SI-BLI results and kD-values obtained by DLS for 

both, different mAbs in one platform formulation and for mAbs formulated in several 

buffer compositions. In total, we assessed self-interaction propensity of different mAbs in 

58 formulations and found significant Pearson correlation (p<0.05) between kD and results 

of SI-BLI. 

Conclusions: 

The SI-BLI results correlate with kD and enable fast ranking of both different drug 

candidates and potential lead formulations. Thus, SI-BLI might decrease the risk to lose 

potent mAb candidates during transition from discovery to development, and help to 

accelerate the development of high concentration liquid formulations. 

2.2 Introduction 

By 2020, 70 monoclonal antibodies products will be available on the market and the world-

wide sales will be nearly $125 billion.1 These delicate biomolecules are prone to various 

forms of instabilities which have to be kept minimal in the course of manufacturing, storage 

and delivery to the patient. In particular, mAb molecules as colloids exhibit attractive and 

repulsive forces amongst each other. Pronounced attractive self-interaction is linked to 

protein oligomerization or aggregation as well as drastically increased solution viscosity at 

elevated protein concentration.2, 3 High mAb concentrations may be essential to enable 
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subcutaneous administration. High viscosities can lead to problems during purification, 

formulation, filtration or injection of mAb solutions. 

Self-interaction at high mAb concentrations can be triggered by charge-charge interactions, 

charge-dipole and dipole-dipole interactions. Additionally, short range forces such as 

hydrophobic or van der Waals interactions are present at high protein concentrations where 

the distance between the mAb molecules is low.3, 4 Attractive forces between mAb 

molecules might lead to cluster formation of up to nine mAb molecules, and the size of the 

cluster correlates with solution viscosity at high protein concentrations.5 

Development of high concentration formulations is mostly initiated in advanced stages of 

antibody development when more protein material is available and one or two lead 

candidates have been selected. Several studies show the influence of buffer composition, 

pH and presence of excipients on the self-interaction propensity of a mAb.3, 6–10 

To find suitable antibody candidates for development, various assessments are performed 

during early stages of the development phase. This includes developability assessment to 

reduce the risk of costly failure during later stages due to physico-chemical deficiencies of 

the mAb molecule. Such evaluation often includes evaluation of production performance 

like yield and protein titer as well as colloidal, conformational and chemical stability. As 

these assessments are performed during early stages, the number of mAbs to be screened 

is high and material availability is limited. Computational tools are available to link primary 

structure to the proteins behavior at high concentration but cannot advise how to change 

the formulation composition in order to solve self-interaction related problems.11 Thus, 

decisions based on these computational tools may erroneously exclude highly potent mAbs 

in early phase. Therefore, predictive methods with minimal protein consumption suitable 

for high throughput are sought after. 

The colloidal stability of mAbs is an important parameter to be assessed in early 

development, which is typically evaluated via the diffusion interaction parameter kD and 

the second virial coefficient.8, 12 Using a well-plate based light scattering device, the 

required volume of sample is reduced. A mAb dilution series is required to assess protein 

self-interaction. Consequently, the material requirements increase and insufficient mAb 

quantities may be available during early stages of development, especially to evaluate the 

mAb behavior in different formulations. Another method to assess mAb self-interaction is 

self-interaction chromatography based on the retention of a mAb on a column with a 
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stationary phase to which the mAb of interest is covalently coupled.13 Column preparation 

as well as the chromatography itself requires several milligrams of protein material making 

the self-interaction chromatography hardly available for a single assessment during early 

development stages. Affinity-capture self-interaction nanoparticle spectroscopy is a very 

recent method for assessing mAb self-interaction in a high throughput manner.14, 15 This 

technique requires low sample amounts and is dedicated for developability screenings but 

includes labor intensive steps such as conjugation of capture antibodies to gold 

nanoparticles. 

Additionally, analytical ultracentrifugation (AUC) is used to describe the self-interactions 

of mAbs via the second virial osmotic coefficient.16, 17 Major disadvantages of this 

technique are its low throughput and enormous material consumption. On the other hand, 

this method provides the possibility to investigate the formulation dependency of the 

oligomerization in detail. A bio-layer interferometry (BLI) -based technique was 

introduced by Sun et al. to describe self-interaction processes of mAbs.18 The method can 

be run in high throughput with low sample consumption. Commercial anti-human-Fc 

biosensors, a capture level of 0.8 nm and a mAb concentration of 1 µM during the assessed 

self-interaction event were found to result in the best assay condition for the screening. By 

analyzing nine different mAbs in PBS, they found a good correlation of the assay results 

obtained from self-interaction chromatography and cross-interaction chromatography.18 

To our knowledge, there is no analytical methodology published that combines ranking of 

mAbs and formulations by self-interaction propensity in high throughput fashion. We 

therefore tried to establish BLI on a 96 biosensor system, improving loading, quenching 

and baseline steps in order to enhance reproducibility. Our goal was to show a correlation 

between kD and responses from the SI-BLI assay. We therefore analyzed a larger set of 

mAbs formulated in PBS and a selection of mAbs formulated in different commonly used 

buffers. We chose proprietary mAbs, which showed problematic behavior during 

downstream processing and functional assays. Additionally we included adalimumab into 

our sample set as it is marketed in a high concentration liquid formulation. To verify the 

applicability of formulation dependent SI-BLI we used Omalizumab, because of its known 

self-interaction propensity, influenced by formulation composition.18, 19 
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2.3  Materials and methods 

2.3.1 Materials 

Phosphate buffered saline (Thermo Fisher Scientific, MA), L-histidine (Merck KGaA, 

Germany), sodium chloride (Carl Roth GmbH + Co. KG, Germany), hydrochloric acid 

(Merck KGaA, Germany), citric acid monohydrate (Merck KGaA, Germany), sodium 

phosphate monobasic (Merck KGaA, Germany), L-Arginine (Merck KGaA, Germany), L-

tryptophan (Merck KGaA, Germany), L-phenylalanine (Merck KGaA, Germany) were all 

of analytical grade. 

Adalimumab (Humira®) and Omalizumab (Xolair®) were purchased and buffer 

exchanged into PBS including polysorbate 20 removal by protein A chromatography using 

Äkta Avant (GE Healthcare, Chicago, IL). mAb stock solutions were concentrated using 

30 kDa Amicon Ultra-15 centrifugal devices (Merck KGaA, Germany) to 10 mg/ml.  

MorphoSys mAb1 to mAb8 were expressed in HKB11 cells and purified via Protein A 

chromatography. Antibodies were formulated by dialysis overnight. mAb stock solutions 

were concentrated using 30 kDa Amicon Ultra-15 centrifugal devices (Merck KGaA, 

Germany) to 5 mg/ml.  

The mAb concentration was determined by UV absorbance at 280 nm using a Nanodrop 

device (Thermo Fisher Scientific, MA) by applying the theoretical extinction coefficient of 

the individual mAb. Molar extinction coefficients were calculated based on primary 

structure only and without further consideration of higher order structure or glycan content. 

Extinction coefficients vary between 206000 and 237000 M-1/cm. After downstream 

processing, mAbs were analyzed by UHPLC-SEC. All mAbs showed a monomer content 

of >90%. 

Disulfide-linked human Fc protein was expressed in HKB11 cells and purified via Protein 

A chromatography and buffer exchanged into PBS using PD10 columns and gravity flow 

(GE Healthcare, Chicago, IL). The protein was concentrated using 30 kDa Amicon Ultra-

15 centrifugal devices (Merck KGaA, Germany) to 5 mg/ml.  

2.3.2 Determination of the diffusion interaction parameter kD by DLS 

DLS experiments were performed using a DynaPro plate reader (Wyatt Technologies, 

Santa Barbara, CA). Samples were 0.22 µm filtrated and measured at 25°C as triplicates in 

384 well plates with 12 acquisitions for 5 s. The mutual diffusion coefficient D of the 
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antibodies was calculated for at least 5 different protein concentrations by applying 

cumulant fit analysis. kD was calculated as described by Connolly et al..8 The 

concentrations used for determining the kD were in the range of 0.5 mg/ml to 10 mg/ml 

depending on the available sample amount. Exemplary raw data of kD determination are 

presented in the supplemental material (Figure S1) 

2.3.3 Detection of mAb self-interaction by SI-BLI 

The method described by Sun et al. was adapted for high throughput on an Octet HTX 

system (FortéBio, CA), which is able to address up to 96 samples in parallel.18 Anti-hIgG 

Fc capture (AHC) biosensors (FortèBio, CA) were used. In the first assay step, a baseline 

was established in PBS for at least 60 s, followed by capture of the mAb of interest at 25 nM 

in PBS until the BLI signal increased by approximately 1 nm (Fig. 1). Remaining binding 

capacity of the capture sensors was saturated for 600 s with 1 µM of human Fc in PBS. 

Subsequently, a second baseline was acquired in the formulation composition of interest 

for 60 s, followed by incubation with 2 µM mAb in the respective formulation for at least 

1200 s. Preliminary experiments demonstrated that this time span was sufficient to reach 

equilibrium binding. As shown by Sun et al., the mAb concentration during association can 

affect the signal to noise ratio (BLI response difference between capture level and 

association equilibrium) in BLI measurements. They chose an IgG concentration of 1 µM 

for the screening condition.18 We performed experiments indicating that with 2 µM IgG 

concentration the largest assay window could be achieved (data are shown in the 

supplemental material, Figure S2). The response at equilibrium was used for further 

calculations. To compensate for differences in the amount of captured mAb, the self-

interaction signal normalized to the amount of captured mAb (Rrel), was calculated 

according to Equation 1. 

𝑅𝑟𝑒𝑙 =
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 [𝑛𝑚]

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑠𝑡𝑒𝑝[𝑛𝑚]
 

(1) 

As negative controls, sensors were used without captured IgG, i.e. which were only 

saturated with human Fc protein. Even if the protein of interest showed an association 

behavior to the human Fc-protein, this was also regarded as potential self-association, 

which could have been caused by Fab-Fc or Fc-Fc interactions. Further, unspecific binding 

to the biosensor surface itself cannot be excluded by using only this negative control. 
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Figure 1  Schematic overview of the BLI-based self-interaction assay (a – Capture of mAb, b – Saturation of 

remaining binding sites of the biosensor, c – Baseline acquisition in the formulation of interest, d – 

Association reaction in formulation of interest until equilibrium) 

2.3.4 Preparation of mAb3 formulations 

The mAb was formulated by dialysis and concentrated to 10 mg/ml using Amicon Ultra-

15 centrifugal devices (Merck KGaA, Germany).  

Table 1   Formulations of mAb3 

Formulation Buffer system pH Excipient 

F1 25 mM Na-phosphate 7.0 --- 

F2 25 mM Na-phosphate 7.0 25 mM NaCl 

F3 25 mM Na-phosphate 7.0 25 mM Trp 

F4 25 mM Na-phosphate 7.0 25 mM Phe 

F5 25 mM Na-phosphate 7.0 25 mM Arg-HCl 

F6 25 mM His-HCl 6.0 --- 

F7 25 mM His-HCl 6.0 25 mM NaCl 

F8 25 mM His-HCl 6.0 25 mM Trp 

F9 25 mM His-HCl 6.0 25 mM Phe 

F10 25 mM His-HCl 6.0 25 mM Arg-HCl 

F11 25 mM Na-citrate 5.0 --- 

F12 25 mM Na-citrate 5.0 25 mM NaCl 

F13 25 mM Na-citrate 5.0 25 mM Trp 

F14 25 mM Na-citrate 5.0 25 mM Phe 

F15 25 mM Na-citrate 5.0 25 mM Arg-HCl 
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2.3.5 Calculation of statistical significance 

In order to evaluate the suitability of the BLI-based self-interaction assay, Pearson 

correlation as well as Spearman correlation analysis of results obtained by DLS and BLI 

was performed using the software PRISM 5.04. A significance level of p = 0.05 was 

applied. 

2.4 Results and discussion 

2.4.1 kD and SI-BLI of different mAbs in PBS 

The diffusion interaction parameter kD is widely used to describe intermolecular 

interactions of proteins.8, 16 It can be calculated based on a first-order approximation of the 

concentration dependence of the apparent diffusion coefficient. We analyzed nine different 

antibodies formulated in PBS.  

Table 2   Rrel ± SD and kD ± SD of different mAbs in PBS. 

mAb Rrel kD [ml/g] 

Adalimumab 0.19 ± 0.02 -6.8 ± 1.83 

mAb1 0.16 ± 0.17 -1.4 ± 0.66 

mAb2 0.38 ± 0.02 -56.4 ± 10.31 

mAb3 0.04 ± 0.02 -26.8 ± 3.49 

mAb4 0.99 ± 0.06 -114.4 ± 8.82 

mAb5 0.68 ± 0.06 -44.8 ± 5.80 

mAb6 0.32 ± 0.00 -6.5 ± 0.82 

mAb7 0.32 ± 0.02 -9.6 ± 1.28 

mAb8 2.21 ± 0.20 -80.9 ± 3.00 

 

For mAb1, mAb6 and mAb7 as well as adalimumab, kD values were slightly negative, 

whereas we observed strongly negative kD values for mAb8 and mAb4 (Table 2). mAbs2, 

3 and 5 also exhibit net attractive protein-protein interaction in PBS but to a different extent. 

mAb1 showed no significant attractive interactions in PBS. These results indicate a wide 

spectrum of attractive self-association behavior of our chosen model proteins in PBS. 

The same sample set was characterized by SI-BLI (Table 2). The results indicate strong 

self-interaction propensity of mAb8 and mAb4, followed by mAb5. Adalimumab, as well 

as mAb1 and mAb3 showed low signals in the SI-BLI assay. As the standard deviation of 
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the triplicates was low, a ranking of the mAbs regarding the self-interaction propensity was 

possible. mAbs with prominent behavior like mAb4 and mAb8 which showed strongly 

negative kD values also gave high signals in the SI-BLI assay. In contrast, adalimumab 

showed rather low interaction propensity as determined by DLS as well as by SI-BLI. 

However, we observed differences between the results e.g. for mAb4 and mAb8. Whereas 

mAb4 showed the most negative kD, mAb8 showed the highest in SI-BLI signal. In the SI-

BLI assay, one binding partner is attached to the sensor surface and the other one is free in 

solution. If oligomerization takes place as a consequence of mAb self-interaction, the 

oligomers can be large in size. If such large oligomers either bind to the attached mAb at 

the BLI sensor surface, the signal is increased compared to binding signals based on 

dimerization. In DLS, the formation of only few large oligomers will not affect the 

measurements especially, if these oligomers are present over the whole concentration range 

analyzed. This effect might explain this deviation between DLS and SI-BLI observed but 

we do not have any information on the nature of interactions for these mAbs. A Pearson 

correlation analysis of the results obtained by both methods showed a non-significant 

correlation (p > 0.05). We then analyzed the data based on self-interaction ranking of the 

different mAbs in PBS and found significant Spearman correlation (p < 0.05). We therefore 

conclude that ranking of different mAbs in a platform formulation like phosphate buffered 

saline is possible by using SI-BLI.  

2.4.2 Assay variability of SI-BLI 

According to the assay setup, each experiment is performed on one AHC biosensor. To 

study the assay variability of the proposed setup, we analyzed the self-interaction 

propensity of mAb3, mAb4 and adalimumab in PBS with 6 different biosensors for each 

antibody (Fig. 2). Overall, the standard deviations are low and the results are reproducible. 

Adalimumab showed the highest relative standard deviation (7.5 %) compared to mAb3 

(4.0 %) and mAb4 (2.2 %). For mAbs with a high tendency for self-interaction, the absolute 

standard deviation is higher, indicating that these interactions include unspecific 

interactions as well as oligomerization processes. In case of low self-interaction propensity, 

the absolute standard deviations are smaller but relative standard deviations are higher due 

to very low Rrel values. Comparing different mAbs in different formulations, ranking of 

formulations seems to be more difficult for formulations showing low mAb self-interaction 

propensity. 
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Figure 2  Assay variability of SI-BLI for mAb3, mAb4 and adalimumab in PBS. Error bars represent the relative 

standard deviation. 

2.4.3 Characterization of formulation dependent self-interaction 

behavior of mAbs using kD and SI-BLI 

In addition to screening different mAbs in the same formulation, in our case PBS, we 

evaluated SI-BLI for screening the formulation dependency of self-interaction exemplarily 

for mAb3 and compared the obtained Rrel with the kD values from DLS. We varied pH 

values, buffer type and added sodium chloride, arginine hydrochloride, tryptophan or 

phenylalanine, excipients known for affecting self-interaction of mAbs.6 We ranked the 

formulations based on the measured self-interaction propensity of mAb3. A strong negative 

kD value was ranked with a high number, whereby a slightly negative kD was ranked with 

a low number (Raw data are listed in the supplemental material in table S1). The most 

negative kD-value of mAb3 and therefore the highest ranking was observed in 25 mM 

histidine hydrochloride pH 6.0 without further excipients (F6) (Fig. 3). An increase in ionic 

strength, (F7 – 25 mM sodium chloride; F10 – 25 mM arginine hydrochloride) led to charge 

shielding and reduced electrostatic repulsion. Correspondingly, kD was reduced. In general, 

mAb3 showed stronger attractive interactions in histidine hydrochloride based 

formulations compared to sodium citrate formulations (F11-F15). kD in sodium phosphate 

pH 7.0 (F1) without excipients was higher than in histidine hydrochloride at pH 6.0, 

indicating that attractive self-interaction was more pronounced at pH 6.0. Contrary to the 

results for F7 and F10, adding 25 mM sodium chloride (F2) or 25 mM arginine 

hydrochloride (F5) did not influence the kD of mAb3 in sodium phosphate buffer. But kD 
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was decreased by addition of hydrophobic amino acids like L-tryptophan (25 mM, F3) and 

L-phenylalanine (25 mM, F4). 

 

Figure 3   Spearman correlation plot of Rrel and kD for mAb3 in 15 different formulations. 

We ranked the formulations based on the Rrel obtained by SI-BLI. A high response 

correspond to a high ranking. Similar to the kD results, the sodium citrate based 

formulations showed low Rrel compared to the histidine hydrochloride based formulations. 

Furthermore, the self-interaction propensity as observed by SI-BLI was reduced by addition 

of sodium chloride and arginine hydrochloride to histidine formulations (F7, F10). Rrel was 

not significantly affected by adding charged excipients to sodium phosphate based 

formulation (F2, F5) but was increased by adding L-tryptophan to the formulation (F4).  

Overall, the kD and SI-BLI results correlated well. Formulations that triggered self-

interaction of mAb3 as indicated by strongly negative kD –values also showed increased 

Rrel in SI-BLI. mAb3 showed attractive interactions in all formulations. A correlation 

analysis of the results obtained by DLS and SI-BLI showed significant Spearman 

correlations (p < 0.05), whereas a Pearson correlation remained non-significant (p > 0.05). 

Additionally, mAb2 and mAb3 were formulated at different pH values and buffer 

concentrations. Figure 4A depicts a high in self-interaction propensity of mAb2 at pH of 

5.5 to 6.0. At a buffer concentration of 7 mM, this strong attractive interaction is also found 

at higher pH, whereas the SI-BLI signal decreases at higher buffer concentrations. We 

hypothesize that self-interaction of this mAb is reduced at higher buffer concentration due 

to charge shielding of protonated amino acids at pH 7.0. mAb2 and mAb3 have a similar 

framework region and only differ in their complementary determining regions. At pH 4.5, 
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self-interaction of the two mAbs is similar, but at higher pH mAb2 showed significantly 

higher response (Fig. 4B). mAb3 contains an N-glycosylation site within its CDR which 

could decrease the self-interaction propensity. Thus, the BLI-based self-interaction assay 

was able to differentiate self-interaction propensity between different mAbs in dependence 

of formulation conditions. 

 

Figure 4 Rrel of mAb2 in sodium phosphate/sodium citrate buffer at different pH and buffer concentration (A) 

and mAb2 and mAb3 as a function of pH in 25 mM sodium phosphate/sodium citrate buffer (B). 

2.4.4 Characterization of self-interaction propensity of Omalizumab by 

SI-BLI 

Omalizumab has been shown to exhibit a marked increase in viscosity with increasing 

concentration triggered by self-interaction.20 The kinematic viscosity of a formulation 

containing 16 mM Histidine pH 6.0, 266 mM sucrose, 0.03 % PS20 and 125 mg/ml mAb 

was 80 cSt. The addition of 100 mM sodium chloride to a 125 mg/ml Omalizumab solution 

reduced the viscosity by a factor of 4 from 80 cSt to 20 cSt.20 Therefore, we challenged the 

SI-BLI assay with this extreme, studying the effect of salt, pH and buffer strength on the 

self-interaction of Omalizumab. 
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Figure 5  Formulation dependent self-interaction behavior of Omalizumab determined by SI-BLI in dependence 

of formulation pH-value in 20 mM histidine buffer (A), of histidine buffer concentration at pH 6.0 (B), 

of sodium chloride concentration in 20mM histidine buffer pH 6.0 (C) and of magnesium chloride 

concentration in 20 mM histidine buffer pH 6.0 (D). 

The formulation pH had tremendous impact on the self-interaction propensity of 

Omalizumab (Fig. 5A). At pH 7.0, the theoretical isoelectric point of Omalizumab20, the 

BLI signal was 40-fold higher compared to pH 5.0. Increasing the net surface charge of the 

antibody by lowering the pH below the pI resulted in stronger electrostatic repulsion and 

in a lower Rrel. Although addition of salt caused a strong decrease in Rrel, the self-interaction 

propensity of Omalizumab was not significantly affected by the concentration of the 

histidine buffer at pH 6.0 in a range from 2 to 20 mM (Fig. 5B). The Rrel of 3.7 in 20 mM 

histidine hydrochloride pH 6.0 substantially decreased with addition of sodium chloride 

(Fig. 5C). The decrease was more pronounced with magnesium chloride (Fig. 5D). This 

reduction of attractive self-interaction with higher ionic strength is in line with findings 

reported in literature.20 The addition of salt results in a disruption of attractive electrostatic 

interactions. 

2.4.5 Correlation of kD obtained by DLS and Rrel obtained by SI-BLI 

During this study, in total 58 mAb formulations were analyzed by DLS and SI-BLI 

regarding the self-interaction propensity. Overall, a more negative kD-value is associated 

with a higher response of the SI-BLI assay. We found significant Spearman correlation 
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coefficients for smaller sample sets of both different antibodies formulated in PBS and for 

one mAb formulated in different buffer compositions. In order to assess, if the SI-BLI assay 

can be used as a high throughput alternative to kD determination by DLS, we used all 

corresponding DLS and SI-BLI results and looked for Spearman and Pearson correlation. 

First we analyzed our complete data set for Gaussian distribution and found non-significant 

differences for our data set (p > 0.05). For the 58 samples we found significant Spearman 

correlation between Rrel and kD (ρ = - 0.77, p < 0.0001) as well as statistically significantly 

correlation (p < 0.0001) with a Pearson correlation coefficient of -0.72 (Fig. 6). Thus, 

ranking of the self-interaction propensity of different mAb formulations by SI-BLI is 

possible. In addition, Rrel can be used as a predictor for kD. 

 

Figure 6   Correlation of Rrel obtained by SI-BLI- and kD obtained by DLS for different mAbs in different 

formulations. 

2.4.6 Using the SI-BLI assay for developability assessments and 

preformulation 

Various studies show the correspondence of net attractive mAb self-interaction as indicated 

by negative kD with the viscosity increase of antibody formulations at high protein 

concentration.8,21,22 In order to predict the self-interaction propensity at early stages of 

development, promising in silico tools are available.23 But these tools do not consider 

excipient and formulation effects. The formulation dependent self-interaction behavior can 

be studied by DLS techniques in a high throughput manner. However, sample preparation 

including dialysis and preparation of a dilution series are labor intensive. Furthermore, 
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excipients such as sucrose and trehalose can affect the results obtained by DLS.24 The SI-

BLI assay setup was described by Sun et al.18 They used this method to screen for suitable 

antibody clones in discovery. It was proposed that mAbs which showed higher self-

interaction response as adalimumab should be considered as potentially problematic for 

later development steps. They used PBS as platform formulation only. We transferred the 

assay to a 96 well setup which enables interaction assessment with only 21 µg of mAb 

material per formulation at a single concentration of 0.3 mg/ml (2 µM). This setup was 

applied to screen the self-interaction of various mAbs in different formulations. The 58 

samples rendered a significant correlation of the Rrel from SI-BLI and the kD from DLS. 

At early development stage either mAbs which show low viscosity at high concentration 

have to be selected or mAb candidates require optimization by mutagenesis or the 

formulation composition needs to be adapted. This can be supported by analysis of protein-

protein interaction in high throughput with minimal sample consumption and preparation 

effort. All these attributes are combined in the SI-BLI assay which makes it suitable for use 

already during transition from discovery to development stage. This early assessment of 

protein-protein interactions is of high value for candidate selection and for formulation 

selection in the discovery phase. It cannot replace detailed analysis of the protein behavior, 

specifically at high concentration at later stages of development. 

2.4.7 Limitations of the SI-BLI assay 

The SI-BLI assay setup included the essential mAb capture step. The utilized anti-hIgG Fc 

capture sensors have a high affinity to human Fc and this binding was shown to be stable 

for the whole assay duration.18 Nevertheless, we observed loss of binding capacity of the 

biosensor in acetate buffers below pH 4.0. Furthermore, by losing the captured IgG and Fc 

protein, the association reaction will be overestimated. Further, a possible association 

reaction cannot be safely attributed to self-interaction, as this association curve can also be 

caused by binding of IgG to the biosensor itself, which at least lost part of the captured IgG 

and blocking Fc. 

Self-interaction processes of mAbs can be triggered by Fab-Fc domain interactions or by 

Fab-Fab domain interactions.25–27 Also Fc-Fc domain interactions are possible as well. 

Especially in the latter case, association of the free mAb molecules with the Fc-protein used 

for saturation after the capture step might interfere. To avoid this, other biosensors like anti-
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hFab-CH1 capture sensors or sensors based on covalent binding of analyte (amino reactive 

biosensors) can be used. 

The optical thickness of the layer on the sensor surface is a result of association of protein 

molecules. Net repulsive interactions can therefore not be analyzed. Thus, the SI-BLI assay 

cannot discriminate between molecules and conditions which show weak attractive 

interaction and repulsive interaction. But it can cover the range of critical substantial 

attractive interactions.  

During kD analysis, diffusion coefficients of the mAb molecules are determined with the 

analyte in solution. Similar to self-interaction chromatography, the SI-BLI method studies 

the interaction of mAb molecules bound to the sensor surface with molecules in solution, 

which potentially restricts their movement, flexibility and accessibility sterically. We 

therefore suggest using SI-BLI as a rapid screening method for suitable formulations, and 

kD analysis for in-depth characterization of self-interaction for selected final formulations.  

2.4.8 Comparison to other SI analyzing techniques 

As discussed, SI-BLI seems to be a powerful tool for early stage formulation development 

or developability assessments, when only small amounts of protein material are available 

and the number of candidates and possible formulations is high. SI-BLI is a relatively new 

technique for analyzing mAb self-interaction behavior compared to other techniques such 

as AUC, DLS and SIC. AUC provides the second virial coefficient, but consumes 

substantial amounts of material and offers low throughput. Methods of medium throughput 

are DLS and SLS. Both are also based on molecular interactions present in solution. As it 

was mentioned for AUC, DLS and SLS can provide information on the second virial 

coefficient and kD. But to assess self-interaction propensity by these techniques, a dilution 

series of the mAb formulation is necessary starting at concentrations of several g/L. 

Upconcentration and dilution make these methods more labor intensive and can lead to 

material loss, which increases material consumption. Both SIC and AC-SINS require 

several preparation steps including conjugation to either suitable chromatographic beads or 

via a capture antibody conjugated to gold nanoparticles. Both methods study interactions 

of immobilized mAb with mAb molecules in solution. A very recent technique for 

analyzing mAb self-association is HDX-MS. It enables to detect the mAb structures 

involved on peptide level or potentially even higher resolution. If mutagenesis is an option 

to reduce the self-interaction propensity of a lead candidate, HDX-MS can give important 
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advice. It is specifically of use at later stages of development when more protein material 

is available. We summarize a comparison of the techniques for analyzing mAb self-

interaction in Figure 7 and Table 2. 

 

Figure 7   Comparison of different techniques to assess mAb self-interactions. 
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Table 3   Overview of methods to analyzed mAb self-interaction. 

Method SI-BLI AC-SINS SIC DLS/SLS AUC HDX-MS 

Interaction partners Immobilized /  

in solution 
Immobilized / immobilized 

Immobilized /  

in solution 
in solution in solution in solution 

Assay read out 
Binding normalized to 

amount of captured 

sample, Rrel 

Wavelength shift caused 

by binding Δλ 28
 

Retention factor 29 
Diffusion interaction 

parameter kD 

Sedimentation coefficient, 

second virial coefficient, 

hydrodynamic non-ideality 

coefficient19, 30 

Differences in deuterium 

uptake 26 

Required protein 

amount 

Very low, approx. 24 µg 

per antibody and 

formulation 

Very low, approx. 0.5 µg 

per antibody solution 28 

High (column preparation); 

low for analysis (5-10 µg 

sample) 29 

Moderate, approx. 500 µg 

per antibody and 

formulation8 

High, 15 mg per antibody 

and formulation16 

High, 30 mg per antibody 

and formulation 26 

Sample preparation 

Dilution or buffer 

exchange. 

Working concentration: 

0.3 mg/ml 

Preparation of gold 

nanoparticles with capture 

antibody. 

Working concentration: 

0.05 mg/ml 

Immobilization of mAbs to 

stationary phase at a 

concentration of 15 mg/ml; 

Injection of protein 

solutions of 2.5 mg/ml to 

10 mg/ml 

Buffer exchange, 

upconcentration, 

preparation of dilution 

series from 0.5 mg/ml to 

10 mg/ml 

Buffer exchange, 

upconcentration and 

preparation of dilution 

series to high protein 

concentrations (up to 

150 mg/ml) 

Lyophilization or dialysis 

and reconstitution in D2O 

containing reconstitution 

buffer 25. No technical 

limitations in protein 

concentration. 

Application for early 

development 
Yes Yes No Yes No No 

Advantages 
Very low sample 

consumption; high 

throughput; 

Low sample consumption; 

High–throughput, no 

interference with 

compounds from 

supernatants 

Moderate throughput , 

automated sampling, 

standard LC equipment 

required 

 

Moderate sample 

consumption & 

throughput; 

Assessment in solution 

Interaction parameter are 

directly accessible. Direct 

measurement of 

oligomerisation possible. 

High resolution of self-

interaction sites 

Disadvantages 

Unspecific binding needs 

to be excluded, buffers 

must be compatible with 

capture (pH above 4.0), 

only rank order of mAbs 

and formulations possible, 

weak attractive or 

repulsive interactions 

cannot be measured 

 

only ranking of mAbs 

relative to each other, no 

formulation dependent SI 

measurements published 14 

High sample consumption 

(SIC), 

Moderate throughput 

(sequential sampling) 

 

Low - moderate sample 

consumption & 

throughput, limitations at 

low-ionic strength and 

sugar containing 

formulations24 

 

Low throughput, high 

sample consumption, 

expensive AUC devices 

required 

Very low throughput, 

expensive HDX-MS 

devices required complex 

evaluation, time-

consuming method 

development 
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2.5 Conclusion 

We were able to differentiate the self-interaction behavior of different mAbs in PBS as a 

platform formulation both by kD analysis via DLS as well as by SI-BLI. The self-interaction 

rankings of the mAbs obtained from the two methods correlated significantly. Additionally, 

we analyzed the self-interaction behavior of one mAb in different formulations using both 

methods. Again, we found a significant correlation between the results from both 

methodologies, kD and Rrel, based on a sample set of 58 different conditions. Thus, SI-BLI 

is suitable to rank the self-interaction propensity of mAbs in a formulation dependent 

manner. Over and above our proprietary mAbs, we analyzed the self-interaction behavior 

of Omalizumab, which is commercially available and well described in the literature. Our 

SI-BLI and DLS data corroborated the reduction of attractive self-interaction with 

increasing ionic strength and decreasing pH value from pH 7.0 to 5.0, as described in 

literature. Whereas the SI-BLI assay allows to characterize the self-interaction behavior of 

mAbs for ranking purpose, this assay cannot provide a physico-chemical interaction 

parameter like kD. Furthermore, the SI-BLI assay provides information based on the 

interaction of mAb molecules in solution with non-covalently surface attached mAb 

molecules and cannot replace interaction assays where both interaction partners are free in 

solution. These aspects have to be weighed against the clear benefits of the SI-BLI assay, 

low material requirements and working at one diluted concentration only, which enables 

analysis of the formulation effect already at very early stages. 

In summary, SI-BLI appears to be a powerful tool for early stage formulation development 

when only limited amount of protein is available and the number of antibody candidates is 

high. By implementing this approach in developability assessments of mAbs, the risk to 

lose potential lead candidates based on highly attractive self-interaction propensity can be 

decreased. 
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Supplementary data 

Table S1  kD and Rrel of different formulations of mAb3. Mean and standard deviation (SD) were calculated 

based on n=3. 

 kD [ml/g] Rrel 

mean±SD Rank mean±SD Rank 

Formulation 1 -24.3±2.4 2 1.2±0.1 1 

Formulation 2 -33.2±1.3 9 1.4±0.1 4 

Formulation 3 -55.9±4.5 13 1.5±0.2 7 

Formulation 4 -57.5±2.6 14 2.4±0.0 12 

Formulation 5 -33.0±0.7 8 1.9±0.1 9 

Formulation 6 -93.9±8.1 15 3.1±0.4 15 

Formulation 7 -34.9±1.6 10 2.2±0.2 10 

Formulation 8 -40.8±2.8 11 2.7±0.1 14 

Formulation 9 -53.6±3.4 12 2.6±0.6 13 

Formulation 10 -28.7±0.9 7 2.4±0.1 11 

Formulation 11 -26.1±0.6 6 1.5±0.0 8 

Formulation 12 -24.6±0.6 3 1.4±0.1 5 

Formulation 13 -24.6±1.5 4 1.4±0.1 3 

Formulation 14 -25.1±0.7 5 1.4±0.1 6 

Formulation 15 -23.5±0.5 1 1.3±0.0 2 
 

 

Figure S1  Exemplary data of kD determination for adalimumab, mAb2 and mAb4. 
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Figure S2  Linearity check of Rrel in dependence on used mAb concentration for association. 
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bio-layer interferometry as tool to support lead 

candidate selection during preformulation and 
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3.1 Abstract 

Developability assessment of therapeutic mAb candidates before entering CMC 

development mitigates the risk of later failure because of manufacturing and stability 

issues. For mAbs derived from library based screenings, such evaluation starts with the first 

panning and ends with the selection of a lead candidate. This candidate should show, 

amongst others, high affine target binding and beneficial conformational as well as 

chemical stability. In addition, colloidal stability, reflected by the self-interaction 

propensity, should be superior in order to reduce aggregate formation and unacceptably 

high viscosity at elevated protein concentrations. Here, we present a study demonstrating 

the application of self-interaction bio-layer interferometry (SI-BLI) in a developability 

assessment, including the evaluation of preformulations. We reveal that the formulation 

rankings based on SI-BLI, DLS and viscosity measurements correlate. SI-BLI provides a 

deeper understanding of influencing factors on mAb self-interaction such as ionic strength 

or cation species. The attractive mAb self-interaction propensity was significantly more 

suppressed by Mg2+ compared to Na+. SI-BLI can be performed in high throughput with 

minimal material and sample preparation needs. Therefore, it can be applied in early stages 

of developability assessment going beyond the use of a platform formulation and a small 

number of analysis, to screen more parameters before proceeding with candidate selection 

and further extensive development. 

 

Graphical abstract Analysis of antibody self-interaction by bio-layer interferometry as tool to support lead 

candidate selection during preformulation and developability assessments 
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3.2 Introduction 

A major challenge in early stages of development of therapeutic monoclonal antibodies 

(mAbs) is the efficient and rational selection of the best candidate for moving forward into 

CMC and clinical development. The lead candidate should provide functionality and 

sufficient stability during manufacturing, filling and storage. Thus, analytical tools have to 

be applied to evaluate the chemical, conformational and colloidal stability of the potential 

candidates. This developability assessment starts in an early phase when hundreds to 

thousands of molecules have to be screened. To this end, methodologies capable of high 

throughput and low sample consumption, as well as in silico tools have to be employed.1 

In an intermediate phase, tens to hundreds of molecules can be tested to obtain a better 

mechanistic understanding of processes. Finally, few candidates are characterized in-depth 

to decide for a lead and a backup candidate.2, 3 This decision path should mitigate the risk 

of failure in subsequent CMC development. 

The colloidal stability in terms of protein-protein self-interaction can be described by the 

second virial coefficient B22 or the related diffusion interaction parameter kD.4–6 Both 

parameters are typically assessed by light scattering techniques 7, 8 since other analytical 

methods come with throughput limitations or require extensive amounts of sample like 

AUC and self-interaction chromatography.9–11 Although SIC analyses can be performed in 

high throughput on HPLC systems requiring only small injection amounts, the preparation 

of the stationary phase requires several milligrams. The light scattering based 

methodologies can be used in a high throughput manner if corresponding instruments are 

available. But sample preparation steps including concentration and preparation of a 

dilution series still requires 500 µg of sample.12 The self-interaction can be assessed with 

even less material in high throughput manner by using bio-layer interferometry (SI-BLI). 

Sun et al. applied this technique to distinguish between different antibodies based on their 

self-interaction propensity in a platform formulation.13 Because self-interaction processes 

are dependent on the formulations composition 14–20, we developed the assay further and 

showed its correlation with kD.12 

Here we present the applicability of this assay for the final stage of mAb assessment when 

the decision for a lead and backup candidate has to be taken. We used SI-BLI for a 

preformulation study to determine the effect of buffer, ionic strength, pH and excipients on 
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the self-interaction propensity of four different mAbs. These mAbs, derived from phage 

display library 21, target the same epitope of the antigen and were matured based on one 

common parental mAb. They were produced by comparable upstream and downstream 

processes and have theoretical isoelectric points between 9.3 and 9.4. We screened 19 

different formulations for each mAb by SI-BLI and found remarkable effects on self-

interaction propensity. The findings could be confirmed by dynamic light scattering and 

viscosimetry for selected formulations. Additionally, we differentiated between a general 

effect of ionic strength and a more specific metal ion modality for one dedicated mAb. 

Thus, we successfully applied the SI-BLI assay as a high-throughput approach for 

preformulation and for follow-up studies, which demonstrated its usefulness for fast and 

reliable screening of the formulation dependent self-interaction propensity of mAbs. 

3.3 Materials and methods 

3.3.1 MAb production and formulation 

Four mAbs were expressed in HKB11 stable cell pools and purified via affinity Protein A 

chromatography. To reach at least 95 % monomeric content, preparative size exclusion 

chromatography was performed followed by buffer exchange to 150 mM histidine 

hydrochloride pH 6.0. The protein concentration was adjusted to 10 mg/ml. For 

preformulation assessment, samples were diluted to 1 mg/ml with the respective 

formulation buffer. For the follow up studies, the 10 mg/ml protein solution was dialyzed 

over night against the formulations F1-F4 (Table 1) by using Slide-A-Lyzer dialysis 

cassettes with a MWCO of 30 kDa (Thermo Fisher Scientific, MA). Formulations F5 to 

F11 were prepared by dilution to the SI-BLI assay concentration (0.3 mg/ml) after dialysis 

to water over night (Table 1). 

A D-Optimal Design approach was applied for preformulation screening (MODDE, 

Sartorius Stedim, Sweden). As formulation factors, histidine hydrochloride at pH 5.0, 6.0 

and 7.0, sodium chloride, magnesium chloride, arginine hydrochloride and surfactant were 

used. These factors were combined to reach a theoretical osmolarity of 300 mOsm in each 

formulation. A detailed overview of the compositions of the preformulations can be found 

in the supplemental material (Table S1). Results were statistically analyzed by applying 

multivariate data analysis, which is implemented in the DoE software. After model 
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refinement by excluding combination factors, statistically estimated effects were calculated 

for the linear terms pH, sodium chloride, arginine hydrochloride, magnesium chloride and 

surfactant. 

Table 1   Overview of the formulations used. 

 Buffer pH NaCl [mM] MgCl2 [mM] Ionic strength 

F1 15 mM Histidine-HCl 6.0 - -  

F2 15 mM Histidine-HCl 6.0 130   

F3 15 mM Histidine-HCl 6.0 130 0.5  

F4 15 mM Histidine-HCl 6.0 - 90  

F5 50 mM Na-Acetate 5.5  100 0.342 

F6 50 mM Na-Acetate 5.5 100  0.142 

F7 50 mM Na-Acetate 5.5  50 0.192 

F8 50 mM Na-Acetate 5.5 200  0.242 

F9 50 mM Na-Acetate 5.5 - - 0.042 

F10 25 mM Na-Acetate 5.5 - - 0.021 

F11 10 mM Na-Acetate 5.5 - - 0.008 

3.3.2 Self-Interaction Bio-Layer Interferometry 

The SI-BLI method was performed as previously described.12 Briefly, anti-hIgG Fc capture 

(AHC) biosensors were used on an Octet HTX system (Sartorius AG, FortéBio, CA) in a 

384 well plate format. A baseline was established in PBS, followed by capture of the mAb 

of interest at 25 nM in PBS until the BLI signal increased by approximately 1 nm followed 

by saturation of the sensor with 1 μM of human Fc in PBS. Subsequently, a second baseline 

was acquired in the formulation composition, followed by an association step with 2 μM 

mAb in the same formulation. The response at equilibrium normalized to the amount of 

captured mAb (Rrel) was used for further calculations:  

𝑅𝑟𝑒𝑙 =
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 [𝑛𝑚]

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑠𝑡𝑒𝑝[𝑛𝑚]
 

(1) 

As control, sensors saturated with human Fc without IgG capture were used. 
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3.3.3 Dynamic Light Scattering 

Dynamic light scattering was conducted on a DynaPro® Plate Reader (Wyatt Technology, 

CA). 80 µl of sample were filtrated using 96 well filter plates (0.22 µm, Merck Millipore, 

Germany). Afterwards, 20 µl of sample were transferred to a 384 well plate (Corning INC, 

NY) in triplicates. Wells were sealed with silicone oil and then centrifuged at 400xg for 

2 min. Diffusivity was measured with 5 acquisitions à 10 s at 25 °C. Data were processed 

using Dynamics 7.8 (Wyatt Technology, CA). Five different protein concentrations 

between 0.5 and 10 mg/ml were analyzed to determine the diffusion interaction parameter 

kD via linear regression using PRISM 5 (GraphPad Software Inc., CA) 22. 

3.3.4 Viscosimetry 

Viscosity of mAb solutions was analyzed using a Viscosizer TD capillary system (Malvern, 

UK) at mAb concentrations between 1.5 and 80 mg/ml. A constant pressure of 1000 mbar 

was applied at a capillary temperature of 20 °C with UV detection at 280 nm. The relative 

values were referenced to 1 mg/ml caffeine solution in H2O. The concentration dependent 

increase in viscosity was characterized by the slope B1 of logarithmized viscosity values 

based on ln η= ln η0 + B1  c. 

3.3.5 nano Dynamic Scanning Fluorimetry 

1 mg/ml mAb samples were filled in standard nanoDSF glass capillaries and measurements 

were performed using a Prometheus NT.48 (NanoTemper Technologies, Germany). 

Intrinsic fluorescence at 330 nm and 350 nm was evaluated during a temperature ramp from 

20 °C to 90 °C at 1 K/min. Transition onset and inflection points were determined from the 

first derivative using the PR.Control software (NanoTemper, Germany). 
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3.4 Results 

3.4.1 SI-BLI preformulation screening as part of a developability 

assessment 

We evaluated the effect of pH and excipients on the self-interaction of the four candidate 

mAbs by SI-BLI as a preformulation screening before initiation of subsequent extensive 

stability studies. This enables the evaluation of the colloidal stability under formulation 

conditions with low self-interaction propensity. We varied pH, buffer concentration as well 

as the concentration of different excipients based on a DoE approach according to Table 

S1 (Supplemental material). MAb self-interaction was remarkably decreased if ionic 

excipients were included in the formulation. The addition of magnesium chloride 

minimized the BLI response (exemplarily shown for mAbA in Figure 1).  

 

Figure 1 SI-BLI association reaction of mAbA in 15 mM His pH 7.0, 0.05% PS20 (His-HCl; PF13), 15 mM 

His pH 7.0, 0.05% PS20, 135 mM NaCl (+NaCl; PF16), 15 mM His pH 7.0, 0.05% PS20, 135 mM 

Arg-HCl (Arg-HCl; PF15), 15 mM His pH 7.0, 0.05% PS20, 90 mM MgCl2 (+MgCl2; PF14). 

The results of the preformulation study were statistically analyzed and effects were 

calculated. The effect plot showed comparable results for all mAbs (Figure 2 shows the 

effects exemplarily for mAbA). We determined a significant, negative effect on attractive 

self-interaction for magnesium chloride (p<0.001). In addition, a higher pH increased 

attraction of the mAb molecules significantly (p<0.001), whereas surfactant concentration 

as well as addition of NaCl and Arg-HCl did not show a significant effects. These results 

suggest, that a formulation comprising magnesium chloride at slightly acidic pH would 
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reduce the self-interaction propensity of the mAb und thus, the response of the SI-BLI 

assay. 
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Figure 2  Effect plot of the DoE-based SI-BLI preformulation screening of mAbA. Error bars represent the 95 % 

confidence interval. 

3.4.2 Assessment of self-interaction propensity by DLS for selected 

formulations 

The effects of pH and MgCl2, although not all salts, point to electrostatics as an important 

trigger for self-interaction of the mAbs. Therefore, we conducted a more detailed 

investigation of all four mAbs in four formulations, 15 mM His pH 6.0 containing either 

no salt, 130 mM NaCl, 130 mM NaCl + 0.5 mM MgCl2 or 90 mM MgCl2 (F1 – F4, 

Table 1). We analyzed kD by DLS, Rrel as indicator of attractive self-interaction by SI-BLI 

and the viscosity as a function of protein concentration. 

The concentration dependent diffusivity of mAbB is exemplarily shown in Figure 3A. We 

observed negative slopes for all mAbs in all formulations with the most negative for the 

His buffer without additional salt (F1) and the least negative with addition of 90 mM MgCl2 

(F4). Thus, the most negative kD values indicating strong attractive self-interaction was 

observed in absence of salts (Figure 3B). With addition of salt, kD increased and at the high 

MgCl2 concentration the only slightly negative kD values reflect diminished self-

interaction. Comparing NaCl (F2) and NaCl + MgCl2 (F3), the addition of only 0.5 mM 

MgCl2 did not have a significant impact on a formulation already containing 130 mM NaCl. 
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Figure 3  kD analysis of the four mAbs in 15 mM His pH 6.0 without salt (F1), 15 mM His pH 6.0 + 130 mM 

NaCl (F2),15 mM His pH 6.0 + 130 mM NaCl + 0.5 mM MgCl2 (F3) and 15 mM His pH 6.0 + 90 

mM MgCl2 (F4) by DLS. A) concentration dependent diffusivity of mAbB (for mAbA, mAbC and mAbD 

see Figure S1); B) kD values (± SD). 

 

3.4.3 Assessment of self-interaction propensity by SI-BLI for selected 

formulations 

The self-Interaction propensity of the mAbs was additionally assessed by SI-BLI. 

Association curves of mAbC are exemplarily shown in Figure 4A. The highest Rrel values 

for all mAbs and formulations indicating strong attractive self-interaction resulted from His 

buffer without additional salt (F1) (Figure 4B). Rrel decreased in salt containing 

formulations. Formulation F4, containing a high MgCl2 concentration, resulted in low Rrel 

values, indicating that self-interaction was diminished in these formulations. The addition 

of a low amount of MgCl2 to a 130 mM NaCl formulation only slightly influenced the 

attractive self-interaction (F2 vs. F3).  
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Figure 4  SI-BLI results of the four mAbs in in 15 mM His pH 6.0 without salt (F1), 15 mM His pH 6.0 + 

130 mM NaCl (F2),15 mM His pH 6.0 + 130 mM NaCl + 0.5 mM MgCl2 (F3) and 15 mM His pH 6.0 

+ 90 mM MgCl2 (F4). A) Association curve of the self-interaction of mAbC (for mAbA, mAbB and 

mAbD see Figure S2); B) Overview of calculated Rrel values (± SD). 

 

3.4.4 Analysis of mAb concentration dependent viscosity for selected 

formulations 

All mAbs showed a formulation dependent increase of viscosity with increased 

concentration (Figure 5). The dynamic viscosity of mAbD formulations increased 

exponentially from 1.0 mPa*s at 2.7 mg/ml to 1.5 mPa*s at 43 mg/ml in F1 without salt. 

The addition of MgCl2 (F4) led to a reduced increase from 1.0 mPa*s (4.9 mg/ml) to 

1.1mPa*s (39 mg/ml). For formulations 2 and 3, the viscosity increased from 1.0 mPa*s to 

1.2 mPa*s at 27 mg/ml and 35 mg/ml, respectively. We linearized the data for 

determination of the slope of the increased dynamic viscosity (Figure 5A). The slope was 

used to compare the formulations and mAbs. As shown in figure 5B, the strongest increase 

in viscosity was observed for F1 containing only histidine. The addition of NaCl in F2, as 

well as NaCl + 0.5 mM MgCl2 in F3 significantly reduced the slope for all mAbs except 

for mAbC, which showed the same trend, which was not significant though. The slope of 

the increased viscosity was the lowest for all mAbs in formulation F4 containing a high 

amount of MgCl2. 
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Figure 5  Viscosity of the four mAbs in in 15 mM His pH 6.0 without salt (F1), 15 mM His pH 6.0 + 130 mM 

NaCl (F2),15 mM His pH 6.0 + 130 mM NaCl + 0.5 mM MgCl2 (F3) and 15 mM His pH 6.0 + 90 mM 

MgCl2 (F4). A) Concentration dependent viscosity of mAbD (natural log of the dynamic viscosity in 

mPa*s) (for mAbA, mAbB and mAbC see Figure S3); B) Overview of calculated slopes of the 

concentration dependent dynamic viscosity (B1). 

3.4.5 Correlation of results obtained by SI-BLI, DLS and Viscosimetry 

SI-BLI, DLS and Viscosimetry were performed to analyze the self-interaction propensity 

of the four model mAbs in four different formulations differing in ionic strength and the 

cation type. Comparable rankings of the formulations for all mAbs were observed by all 

methods. We calculated significant Pearson correlation coefficients for results of Rrel and 

kD (r = 0.82, p < 0.001) (Fig S4) as also reported previously 12. Additionally, the correlation 

of Rrel and B1, reflecting the concentration dependent viscosity increase, was also 

significant (r = 0.68, p < 0.01). 

3.4.6 The Mg2+ effect on mAb self-interaction propensity 

Since the self-interaction propensity was decreased in high ionic strength formulation and 

was further reduced by MgCl2 at higher concentration, we performed additional SI-BLI and 

nanoDSF experiments. To differentiate between the effect of ionic strength and a specific 

or non-specific effect of the divalent ion Mg2+, we formulated mAbC exemplarily in 

formulations based on sodium acetate buffer pH 5.5 with NaCl and MgCl2 concentrations 

(F5-F8) and with different buffer strength (F9-F11). 
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The self-interaction propensity of mAbC decreased with an increase in ionic strength of the 

buffer only formulations (Figure 6). The supplement of salt reduced attractive self-

interaction generally. In addition, the Rrel was lower in solutions containing the same 

concentration of chloride, but Mg2+ instead of Na+. Further, Rrel was lower in the 

formulation containing 50 mM MgCl2 compared to 200 mM NaCl although the ionic 

strength of the latter was higher. 

 

Figure 6  SI-BLI results for mAbC in formulations containing different buffer concentrations and low and high 

concentration of ionic excipients. 

To determine if the effect of MgCl2 on self-interaction arises from specific Mg2+ binding 

to the mAb, we performed nanoDSF for mAbC in 10 mM sodium acetate, 50 mM sodium 

acetate without salt, 50 mM sodium acetate + 100 mM NaCl and 50 mM sodium acetate + 

50 mM MgCl2. A specific interaction should alter the conformational stability of the 

protein.23 The apparent unfolding temperature varied between 64.9°C as the lowest 

temperature in the formulation containing NaCl and 66.0°C in 10 mM sodium acetate as 

the highest temperature (See Table S2). We did not observe significant differences in Tm 

comparing formulations with NaCl or MgCl2 and therefore consider the interaction of Mg2+ 

and the mAbs as unspecific and not targeted to specific interaction sites of the protein 

molecules. 
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3.5 Discussion 

To minimize cost and time, platform approaches are widely used in the development of 

biopharmaceutical products.24, 25 This includes the use of platform formulations 

considering a narrow pH range and standard excipients derived from commercially 

available products especially in early phases of development.26–28 In addition to surfactants 

like polysorbate 20 or 80, ionic modifiers and sugars are used to stabilize the product. For 

the development of high concentration mAb formulations, the assessment of protein self-

interaction is of utmost importance as this propensity drives viscosity and colloidal 

instability. 9,18,29,30 Limiting this analysis to platform formulations bears the risk of 

dismissing high potential candidate molecules in early stages due to inadequately high 

viscosity or colloidal instability. We established a workflow, which makes use of SI-BLI 

during candidate screening to analyze candidates in a high number of formulations with 

minimal effort and material requirements. This enables the combination of both candidate 

assessment and preformulation in the development of high concentration mAb 

formulations. Recent studies applied kD to train artificial neural networks to predict the 

formulation behavior of therapeutic protein candidates.31 The SI-BLI datasets obtained in 

high throughput could be included to improve model accuracy and precision by including 

the formulation dependent attractive self-interaction propensity. 

In addition to the assessment of colloidal stability and viscosity, the evaluation of 

conformational properties can be included both in developability assessments and 

preformulation work.31 As the apparent unfolding temperature of a mAb can be easily 

analyzed in high throughput by DSF, mAbs with lower stability can be excluded prior to 

subsequent lab extensive parts of developability assessments. 

With regard to developability, computational tools such as Therapeutic Antibody Profiler 

(TAP) and Developability Index (DI) have been generated to predict developability 

challenges based on the structural properties of the variable domains of a mAb.32, 33 In case 

of TAP, these structural properties include CDR length, surface hydrophobicity, surface 

exposed positive and negative charged properties as well as charge symmetry at 

pH 7.4.32.The DI is based on spatial aggregation propensity and net charge.33 Thus, DI can 

reflect pH dependence of surface charge and the probability of electrostatic interactions. 

Because SI-BLI can be performed in high-throughput at different pH values, the 
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combination of data from in silico tools such as DI and experimental data from SI-BLI may 

support the assessment at early stages of discovery. Thus, the development of mAb 

candidates, which are suitable for high concentration formulations can be initiated earlier 

which can save time and effort at later stages of development. 

We analyzed four mAbs in four different formulations containing different NaCl or MgCl2 

levels. Rrel from SI-BLI was increased for formulations without salt and was remarkably 

reduced by the addition of ionic excipients. Ions potentially influence the self-interaction 

process by shielding electrostatically driven interactions. Thus, attractive self-interaction 

was decreased in formulations containing NaCl and was further minimized by MgCl2. 

Based on kD we identified strong attractive interactions in formulations without salt and 

less attractive interaction in formulations containing salt. With both methods, we observed 

comparable rankings of the formulations which confirmed the correlation of SI-BLI and 

DLS results12. We further evaluated the effect of protein concentration on the dynamic 

viscosity of the formulations. Viscosity increased exponentially with protein concentration 

which was consistently described for other mAbs. 9,14,17,18,30,34,35 However, the increase was 

overall small but we were able to rank the formulation based on the slope of this increase. 

We observed a stronger increase in formulations without salt for all mAbs. The addition of 

90 mM MgCl2 minimized the viscosity. To this end, the ion effect on the attractive self-

interaction of the mAbs was confirmed by all methodologies used. The results of SI-BLI, 

DLS and viscosimetry correlate significantly and confirm previous findings.4,22,36 In this 

context, rankings based on Rrel values may reflect a new approach to predict the solution 

behavior at high protein concentration and to generate developability rankings. A limitation 

which has to be kept in mind is the fact that net repulsive interactions cannot be assessed 

by SI-BLI.4 

Since the attractive self-interaction of the investigated mAb samples could be significantly 

reduced by salts, we tested different facets of this factor with SI-BLI: the effect of different 

Cl-concentration, of mono- or divalent cations and of overall ionic strength. As depicted in 

figure 6, attractive self-interaction was less pronounced in formulations containing 50 mM 

MgCl2 compared to 200 mM NaCl, although the ionic strength as well as the Cl- 

concentration of the 200 mM NaCl containing formulation was higher. Thus the divalent 

cation Mg2+ reduces attractive self-interaction distinctively more than Na+ or a general 

increase in ionic strength. This may indicate the salting-in effect of Mg2+, which has been 
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described before 37, although different proteins were studied and higher MgCl2 

concentrations were required to observe significant effects. In addition, we could not 

confirm specific binding of cations to the protein by nanoDSF and therefore hypothesize 

that the observed behavior is caused by the combination of two effects: a preferential, 

although rather unspecific, interaction of Mg2+ with the mAbs, and the effect of increasing 

ionic strength of the solution. A special attractive interaction and viscosity decreasing effect 

of cations on mAbs has been demonstrated for cationic amino acids 34 and we observed a 

decrease in Rrel for mAbA upon addition of Arg-HCl. Screening of different ionic species, 

e.g. by SI-BLI can improve the chances of successfully developing high concentration 

formulations by minimizing electrostatically driven self-interaction processes. 

3.6 Conclusion 

We described the application of SI-BLI in a preformulation screening as part of the 

developability assessment of mAbs. We analyzed four mAbs in 19 different formulations 

and identified significant effects on mAb self-interaction. After formulation selection, self-

interaction propensity was analyzed by DLS and SI-BLI. Additionally, the viscosity at 

elevated protein concentration was determined. We observed a significant correlation of 

rankings based on kD obtained by DLS, Rrel obtained by SI-BLI and the increase in 

viscosity. Additionally, SI-BLI enabled us to understand the influence of different ions on 

the self-interaction behavior. Based on our findings, SI-BLI could be helpful to predict the 

solutions behavior at high protein concentration and thus to mitigate risks in CMC 

development of high concentration protein formulations. As this assay only requires a 

single, low concentration of protein for determination of attractive self-interaction, it can 

be applied in very early stages of development where the number of potential candidates is 

high and the available amount of protein material is limited. This could accelerate the 

design of high concentration liquid formulations for subcutaneous administration and thus 

decrease effort and shorten timelines for late stage CMC development. 
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Supplementary data 

 

Figure S1  Diffusivity of mAbA, mAbC and mAbD in Formulations F1 to F4. 

 

 

Figure S2  Association curves of SI-BLI of mAbA, mAbB and mAbD in Formulations F1 to F4. 

 

 

Figure S3  Viscosity profiles (ln) of mAbA, mAbB and mAbC in Formulations F1 to F4. 
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Figure S4  Correlation plot of Rrel and A) kD and B) B1. 

 

Table S1   Overview of preformulations tested and the results of SI-BLI. 

Preformulation matrix Rrel 

# Buffer pH NaCl Arg-HCl MgCl2 PS20 mAbA mAbB mAbC mAbD 

PF1 

1
5

m
M

 H
is

-H
C

l 

5 --- --- --- --- 0.8 0.8 1.5 0.7 

PF2 5 --- --- 90 --- 0.5 1.5 0.6 0.4 

PF3 5 --- 135 --- --- 0.8 3.0 2.0 0.7 

PF4 5 135 --- --- --- 1.3 0.5 3.6 1.4 

PF5 7 --- --- --- --- 9.0 12.6 16.1 10.4 

PF6 7 --- --- 90 --- 0.6 2.2 0.5 0.6 

PF7 7 --- 135 --- --- 1.1 1.2 1.7 0.9 

PF8 7 135 --- --- --- 2.0 1.5 4.0 1.7 

PF9 5 --- --- --- 0.05 0.9 1.0 1.5 0.7 

PF10 5 --- --- 90 0.05 0.4 0.5 0.4 0.6 

PF11 5 --- 135 --- 0.05 0.8 0.7 1.1 0.8 

PF12 5 135 --- --- 0.05 1.1 1.2 1.7 1.7 

PF13 7 --- --- --- 0.05 8.1 7.0 10.7 7.7 

PF14 7 --- --- 90 0.05 0.5 0.6 0.5 0.3 

PF15 7 --- 135 --- 0.05 1.0 0.9 1.3 0.8 

PF16 7 135 --- --- 0.05 1.9 1.8 2.3 1.5 

PF17 6 27 54 54 0.025 1.1 0.9 1.3 1.7 

PF18 6 27 54 54 0.025 1.0 1.0 1.5 0.8 

PF19 6 27 54 54 0.025 1.1 1.2 1.4 0.8 
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Table S2   NanoDSF results of mAbC. 

Formulations of mAbC Tm [°C] ± SD Tm onset [°C] ± SD 

10mM Na-Acetate pH 5.5 66.0 ± 0.1 53.0 ± 0.4 

50mM Na-Acetate pH 5.5 65.4 ± 0.1 56.4 ± 0.3 

50mM Na-Acetate pH 5.5 + 100 mM NaCl 64.9 ± 0.2 55.2 ± 0.2 

50mM Na-Acetate pH 5.5 + 50 mM MgCl2 65.4 ± 0.3 55.0 ± 0.2 
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4.1 Abstract 

Attractive self-interaction processes in antibody formulations increase the risk of 

aggregation and extraordinarily elevated viscosity at high protein concentrations. These 

challenges affect manufacturing and application. This study aimed to understand the self-

interaction process of Infliximab as a model system with pronounced attractive self-

interaction. The association mechanism was studied by a multi method approach 

comprising analytical ultracentrifugation, dynamic light scattering, small angle X-ray 

scattering, self-interaction bio-layer interferometry and hydrogen-deuterium exchange 

mass spectrometry. Based on our results, both Fab and Fc regions of Infliximab are 

involved in self-interaction. We hypothesize a mechanism based on electrostatic 

interactions of polar and charged residues within the identified areas of the heavy and the 

light chain of the mAb. The combination of fast and reliable screening methods and low 

throughput but high resolution methods can contribute to detailed characterization and 

deeper understanding of specific self-interaction processes. 

4.2 Introduction 

By 2020, 70 monoclonal antibody (mAb) products will be available on the market and the 

world-wide sales will be nearly $125 billion.1 These biomolecules are susceptible to various 

forms of instability during manufacturing, storage and delivery to the patient. In particular, 

as colloids mAb molecules exhibit attractive and repulsive interactions with each other.2 

This reversible self-interaction is linked to protein oligomerization or aggregation as well 

as drastically increased solution viscosity at elevated protein concentration.3, 4  

mAb self-interaction can either be driven by Fc-Fc interaction, Fab-Fab-interactions or 

Fab-Fc-interactions5–9 and the identification of self-interaction sites on an IgG domain level 

can be highly useful. Analytical ultracentrifugation (AUC)10, dynamic light scattering 

(DLS)11, small-angle X-ray scattering (SAXS)11 and self-interaction bio-layer 

interferometry (SI-BLI)12, 13 have been described for this purpose. The identification 

requires either digestion of the IgG into Fab and Fc domain or separate expression of the 

fragments as single proteins. In addition, lab extensive purification is necessary to achieve 

high sample quality. An even deeper structural understanding of interaction hot spots on a 

peptide or residue level would be highly beneficial to engineer mAbs and to avoid 
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unfavorable amino acids and sequences in the primary structure. Results of hydrogen-

deuterium-exchange mass spectrometry could provide such high resolution data. In general, 

this method is used for analyzing highly specific interaction processes during the in-depth 

characterization process of biopharmaceutical drug development.14 In addition, this method 

allows the analysis of weaker protein-protein interactions like in the case of mAb self-

interaction processes.7, 15 

In 2017, Lerch et al. published the self-interaction site of Infliximab based on studies by 

X-ray crystallography, SEC, SV-AUC and SE-AUC. Based on X-ray crystallography of 

the Fab fragment, a “head-to-tail orientation” was proposed. The VL of one Fab builds an 

interaction interface with the CL of another Fab. Patches, which indicate hydrophobic 

interactions have been identified within these chains e.g. Leu3 of the CL was shown to stack 

into a pocket created by Thr197, Lys145 and Glu143 of VL. In addition, they identified other 

interaction sites in other crystal forms indicating that multiple arrangements are possible.16 

But the question arises whether these findings are relevant for pharmaceutical formulations 

of the protein, in this case Infliximab. High ionic strength buffers and crystallization agents 

have to be used for crystallization. Furthermore, only the Fab fragment was crystallized, 

not the full mAb. In addition, the identified interaction sites were present in solid crystals 

of Infliximab Fab fragments. But do they also play a role in solution, specifically a 

pharmaceutically relevant formulation? 

In our study, we used Infliximab as a model system to generate and challenge a multi-

method approach for identifying self-interaction sites based on approaches alternative to 

X-ray crystallography working in solutions reflecting pharmaceutically relevant 

formulations and for the whole mAb. DLS, SI-BLI, SAXS and AUC were used to assess 

the overall propensity for reversible self-interaction on protein level. We further 

investigated the interaction process after fragmentation of the IgG into Fab and Fc domain 

by SI-BLI and AUC. Finally, we performed HDX-MS as a high resolution method to 

identify residues that are involved in the self-interaction process of Infliximab. In our study, 

we identified that residues in both the Fc and the Fab region trigger the self-interaction of 

Infliximab. This finding, mostly driven by HDX-MS and AUC results, indicate that 

interaction hot-spots of mAbs found in solution can differ markedly from the hot-spots 

identified by crystallography. 
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4.3 Experimental section 

4.3.1 Materials 

Phosphate buffered saline (Thermo Fisher Scientific), sodium phosphate monobasic 

(Merck KGaA), trehalose dihydrate (Merck KGaA) were all of analytical grade. Deuterium 

oxide (99.96%) was purchased from Eurisotop GmbH. 

Infliximab (Flixabi®) was purchased, reconstituted according to the manufacturer’s 

protocol and buffer exchanged into 10 mM sodium phosphate pH 7.2 including polysorbate 

20 removal by protein A chromatography using an Äkta Avant (Cytiva). mAb stock 

solutions were concentrated using Amicon Ultra-15 centrifugal devices (Merck KGaA) to 

10 mg/ml. 

4.3.2 Digestion 

Infliximab (Flixabi®) was reconstituted according to the manufacturer’s protocol and 

buffer exchanged into 150 mM sodium phosphate pH 7.0 using PD10 columns (Cytiva). 

Digestion was performed using FabALACTICA Fab Kit (Genovis) according to the manual 

overnight. Purification of Fc fragments was performed using a HiTrap MabSelect SuRe 5 

mL pre-packed column (Cytiva) on an Äkta Avant system loading the eluate from the 

FabALACTICA Fab Kit. Purification of Fab fragments was performed using CaptureSelect 

IgG-CH1 5 mL pre-packed column (Thermo Fischer Scientific) on an Äkta Avant system 

loading the flow through of the Fc fragment purification. Fc fragments and Fab fragments 

were formulated in PBS after purification. Sterile filtration was performed and the 

fragments were subjected to SEC analysis. 

4.3.3 Lyophilization 

Lyophilization stoppers (B2 TR coating, West) and DIN 2R Vials (Fiolax®, Schott) were 

cleaned with ddH2O and dried at 60 °C for 8 h. The vials were filled with 300 µl and semi-

stoppered subsequently. A thermocouple was used for temperature recording throughout 

the freeze drying process. Both placebo and protein formulations were freeze-dried using a 

FTS LyostarTM 3 freeze dryer (SP Scientific) by 1) freezing to -50 °C, ramp: 0.5 K/min; 
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2) primary drying at 0.1 mbar and -25 °C shelf temperature for 20 h followed by a 

0.15 K/min ramp to 10 °C; 3) secondary drying at 0.1 mbar and 10 °C for 10 h. The vials 

were stoppered at 800 mbar after secondary drying and crimped with flip-off seals. 

4.3.4 Size-Exclusion-Chromatography combined with Multi Angle Laser 

Light Scattering 

SEC analysis was performed using a Vanquish UHPLC system (Thermo Fisher Scientific,). 

A Waters BEH200 column (1.7 µm, 4.6 x 150 mm) was used with a flowrate of the mobile 

phase (50 mM sodium phosphate, 400 mM sodium perchlorate, pH 6.0) of 0.4 ml/min. 

Routine UV-detection was at 210 nm. All samples were diluted to 5 mg/ml in formulation 

buffer prior to injection of 0.75 µg. For MALS measurements, samples were directed to a 

µDAWN MALS detector and a µREX RI detector (both Wyatt Technologies). 

4.3.5 Circular Dichroism spectroscopy (CD) 

Near-UV spectra of Infliximab were recorded on a Chirascan instrument (Applied 

Photophysics). Samples were diluted in 6 mM sodium phosphate pH 6.2, 90 mM trehalose 

to 2 mg/ml and pipetted to quartz cuvettes with a path length of 1 mm. The CD spectra 

were acquired from 260 nm to 350 nm at 1 nm step size, 0.5 s-1 sampling time and 20 °C. 

Collected spectra (n=6) were blank corrected. The absorbance at 280 nm was used for 

concentration and MRME calculation. 

4.3.6 Dynamic Light Scattering 

DLS experiments were performed using a DynaPro plate reader III (Wyatt Technologies). 

Samples were filtrated through 0.22 µm filters to remove larger particulate impurities and 

measured at 25 °C as triplicates in 384 well plates with 12 acquisitions for 5 s. Six protein 

concentrations between 0.5 and 20 mg/ml were measured. Data were processed by the 

software DYNAMICS V7.8 (Wyatt Technologies). Cumulant fit analysis was applied for 

determination of the apparent diffusion coefficient and polydispersity, followed by 

calculation of hydrodynamic radii based on Stokes-Einstein relation.  
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4.3.7 Self-Interaction Bio-Layer-Interferometry (SI-BLI) 

SI-BLI was performed on an Octet HTX device (Sartorius AG, FortéBio) as previously 

described.13 Full-length IgG or Fc domain were captured (Anti-hIgG Fc capture (AHC) 

biosensors) and the association of IgG, Fc and Fab domain analyzed. To capture equal 

amounts, we captured 1 nm of the full-length IgG or 0.3 nm of the Fc domain which is 

approximately a third in size. 

4.3.8 Hydrogen-Deuterium-Exchange Mass Spectrometry 

HDX-MS Experiments using Waters HDX with LEAP system (Waters) were conducted in 

two independent laboratories 1 and 2. In both laboratories, lyophilized Infliximab was 

reconstituted to a protein concentration of 60 mg/ml. For the high concentration condition, 

the reconstituted product was diluted to 20 mg/ml in D2O containing formulation buffer. 

For the low concentration condition, the reconstituted product was first diluted to 1.5 mg/ml 

in formulation buffer and subsequently diluted to the assay concentration of 0.5 mg/ml in 

D2O containing formulation buffer. After incubation at 20 °C, the labeling reaction was 

quenched by 1:1 dilution in quenching buffer followed by online digestion at 15 °C using 

a Enzymate Pepsin column (300 Å, 5 µm, 2.1x30 mm, Waters) at a flowrate of 80 µl/min 

(0.1 % Formic acid). Peptides were trapped for 3 minutes at 0 °C using an Acquity UPLC 

BEH C18 VanGuard column (1.7 µm, 2.1x5 mm, Waters, MA). After trapping, C18 

separation was performed on an Acquity UPLC BEH C18 column (1.7 µm, 1.0x100 mm, 

Waters) at 0 °C and a flowrate of 40 µl/min. A 9 min linear gradient from 8 % to 40 % 

Acetonitrile was applied and eluting peptides were directed to MS detection. Protein Lynx 

Global Server (PLGS) version 2.5.3 and DynamX version 3.0 (both Waters) were used to 

identify peptides and analyze H/D exchange. Statistical analysis was performed using 

Hybrid Significance Testing.17 In Lab1, samples were incubated in D2O containing buffer 

for 1, 3 and 10 min at 20 °C before quenching 1:1 with 0.1 M potassium phosphate, 4 M 

guanidine hydrochloride, 0.2 M TCEP at pH 2.6 at 2 °C. The eluate was directed into a 

Waters Synapt G2Si mass spectrometer for MS/MS-IMS detection.  

In Lab2 protein solutions were incubated for 1, 3, 10, 60 and 240 min and quenched with 

0.1 M potassium phosphate, 2 M guanidine hydrochloride, 75 mM TCEP pH 2.6 at 4 °C. 

MS/MS detection was performed on a Waters Synapt G2S mass spectrometer. 
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4.3.9 Analytical Ultracentrifugation 

Experiments were conducted at 20 ℃ using an Optima XL-I or Optima AUC (Beckman 

Coulter) equipped with a UV-VIS detection system. Sedimentation velocity experiments 

were performed with 0.5, 5.0, and 20 mg/mL protein solutions at 42,000 rpm. For 0.5 and 

5.0 mg/mL, 390 µL sample was loaded into the sample sector of 12 mm double-sector 

charcoal-filled epon centerpiece, and 400 µL buffer (6 mM sodium phosphate pH 6.2, 

90 mM trehalose) was loaded into the reference sector of centerpiece. For 20 mg/mL 

sample, 97.5 µL sample was loaded into sample sector of 3 mm double-sector charcoal-

filled epon centerpiece, and 100 µL buffer was loaded into the reference sector of 

centerpiece. The collected data were analyzed using continuous c(s) distribution model of 

Program SEDFIT ver. 16.2b fitting for the frictional ratio, meniscus, and time-invariant 

noise and using regularization level of 0.68 for 0.5 and 5.0 mg/mL samples. For the 20 

mg/mL sample, the non-ideal distribution model implemented in SEDFIT was used as 

described previously.18 

Sedimentation equilibrium experiments were performed at 20 °C with 0.1, 0.5, 1.0, 2.5, 

5.0, 10, and 20 mg/mL protein solutions at 5,000, 9,000 and 13,000 rpm. For 0.1, 0.5, 1.0, 

2.5, and 5.0 mg/mL, 100 µL sample was loaded into sample sector of the 12 mm 6-channel 

charcoal-filled epon centerpiece, and 110 µL buffer was loaded into the reference sector of 

the centerpiece. For 10 and 20 mg/mL sample, 25 µL sample was loaded into sample sector 

of the 3 mm double-sector charcoal-filled epon centerpiece, and 27.5 µL buffer was loaded 

into the reference sector of the centerpiece. Data were collected at sedimentation 

equilibrium at each rotor speed. The average data from eight scans were analyzed using 

Program SEDPHAT ver. 15.2c. 19, 20 

4.3.10  Small Angle X-ray Scattering 

SAXS data collection was performed at the EMBL beamline P12 at the Petra III storage 

ring (DESY, Hamburg). Data were collected at 0.5, 0.9, 2.5, 5.8, 7.1, 10.3, and 18.7 mg/mL 

in 6 mM sodium phosphate pH 6.2, 90 mM trehalose. A buffer was measured before and 

after each sample. The experimental details are shown in Table S2 in supplementary 

material. Pair-distance distribution function (p(r)) and all molecular parameters, including 
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radius of gyration (Rg), maximum dimension (Dmax), molecular weight (MW), were derived 

from the experimental data with the graphical data analysis program PRIMUSQT.21, 22 

4.3.11 Viscosimetry 

Viscosity measurements were performed on a ViscoSizerTD system (Malvern) at 20 °C. 

The capillary was flushed with water before applying the sample at a constant pressure of 

1500 mbar. Caffeine in water (1 mg/ml) was used as reference.  

 

4.4 Results 

4.4.1 Formulation development for self-interaction analysis of 

Infliximab 

At first, we performed a screening of Infliximab for self-interaction to identify formulations 

which are i) suitable for pharmaceutical application, ii) suitable for freeze-drying in order 

to expand the pharmaceutical application, use the process for simple water removal to 

initiate HDX-MS and iii) provide highly attractive interaction for detailed analysis and 

method evaluation. We observed an increased binding signal at low pH and low buffer 

concentration (Figure 1). In addition, trehalose up to a concentration of 90 mM did not 

influence the interaction, whereas the BLI signal was reduced at 120 mM trehalose. As the 

protein concentration should be higher in the reconstituted product to enable the dilution to 

the HDX assay concentration with D2O containing buffers, we performed lyophilization 

with a diluted formulation containing 20 mg/ml Infliximab in 2 mM sodium phosphate pH 

6.2, 30 mM trehalose. The lyophilized product was intended to be reconstituted in a third 

of the initial volume to a solution ending up in 60 mg/ml Infliximab in 6 mM sodium 

phosphate pH 6.2, 90 mM trehalose. The integrity of the mAb after lyophilization and 

reconstitution was confirmed by HPLC-SEC which indicates only 0.3% monomer loss and 

by CD spectroscopy which indicated structural integrity (Figure S1). 
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Figure 1 SI-BLI results of Infliximab to identify formulation conditions suitable for assessing SI behavior and 

lyophilization in 20 mM sodium phosphate at different pH values, in sodium phosphate buffer pH 7.2 

of different concentration, and in 5 mM sodium phosphate pH 6.2 at different trehalose 

concentrations. 

4.4.2 Characterization of self-interaction of Infliximab by DLS 

The apparent diffusion coefficient (Dapp) of Infliximab in the target formulation of 6 mM 

sodium phosphate pH 6.2, 90 mM trehalose was analyzed by DLS as a function of protein 

concentration in order to characterize the self-interaction processes (Figure 2). We 

observed a non-linear dependence with a strong decrease of the diffusion coefficient at 

protein concentrations below 2.5 mg/ml. 
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Figure 2  DLS results (apparent diffusion coefficient Dapp and polydispersity index PDI) of Infliximab from 1 to 

20 mg/ml in 6 mM sodium phosphate pH 6.2, 90 mM trehalose. 

4.4.3 Analysis of self-interaction and oligomerization of Infliximab by 

SAXS 

Subsequently we performed SAXS measurements of Infliximab in the target formulation 

at different concentrations. The intensity at low q-values increased with increasing 

concentration, pointing towards oligomerization (Figure 3A and B). Additionally, the shape 

of the p(r) function changed with concentration and an additional third peak at around 20-

25 nm was observed at higher concentrations flagging the formation of larger oligomeric 

species (Figure 3C). Furthermore the Rg, Dmax, and MW increased with increasing 

Infliximab concentration (Figures 3D, E, and F). At 18.3 mg/ml Dmax reached 60 nm which 

did not correspond to a monomer with approximately 15 nm23 or a dimer with 20 to 30 nm24 

Dmax and indicated the formation of large oligomeric species. 

As the first two peaks at approximately 5 and 9 nm of the p(r) profile, which are 

characteristic for an IgG23, 24, were preserved at higher Infliximab concentration, we 

hypothesize that the increasing in Rg, Dmax, and MW is related to the presence of distinct 

oligomers and not to unspecific aggregation. 
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Figure 3 SAXS data of Infliximab at different concentrations in 6 mM sodium phosphate pH 6.2, 90 mM 

trehalose. A) SAXS curves, B) zoomed view at low q values C) p(r) functions, D) Rg, E) Dmax, F) MW 

calculated from porod volume. 

4.4.4 Analysis of self-interaction and dimerization of Infliximab by AUC 

In a subsequent step, SV-AUC was performed to determine the size distribution of 

Infliximab species in solution (Figure 4). At low concentration of 0.5 mg/ml, Infliximab 

was monodisperse with a sedimentation coefficient (s20,w) of 6.6 S which is a typical value 

of an antibody monomer.25 At higher concentration of 5 mg/ml we observed two peaks with 
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6.6 S and 8.3 S which confirmed the observations reported by Lerch et al.16 The authors 

described a peak resolution between 6.6 S and 8.2 S at 0.6 mg/ml. However, 8.2 S and, in 

our case, 8.3 S do not represent a stable and fully dimerized antibody species, which would 

be expected to sediment at a higher sedimentation coefficient.25 These results indicate fast 

kinetics of the weak self-association process of Infliximab. The distribution of the solution 

at 20 mg/ml obtained by C(s) incorporating non-ideality was monodisperse with 8.3 S, 

which corresponds to Infliximab dimer. SE-AUC was performed to generate an equilibrium 

concentration gradient from which the apparent molecular weight reflecting the 

intermolecular interactions of Infliximab in solution can be deduced. The apparent 

molecular weight of Infliximab increased with concentration > 1 mg/ml which corresponds 

to the data acquired by DLS, SAXS and SV-AUC (Table 1). The apparent molecular weight 

increased to 272 kDa indicating the presence of dimeric species. With increasing the 

Infliximab concentration from 10 to 20 mg/ml the apparent molecular weight decreased 

from 272.0 kDa to 224.8 kDa which is consistent with the decrease in S observed in SV-

AUC. Additionally, at higher rotor speed of 9,000 and 13,000 rpm, the apparent molecular 

weight could not be determined at concentrations of 2.5 mg/ml and higher due to a strong 

increase in turbidity from the entire solution in the cell. This is reflected in decrease in light 

intensity at 350 nm at the cell bottom (supplemental material figure S2 and S3) suggesting 

formation of a highly concentrated Infliximab layer at the cell bottom. This layer may arise 

from a concentration dependent formation of higher order structures which we also 

observed by DLS and SAXS at protein concentrations of 20 mg/ml. Thus, AUC of full-

length Infliximab indicates dimerization of Infliximab in solution, which can be further 

oligomerize to fast dissociating higher order structures. The inverse of the apparent 

molecular weight was plotted against the protein concentration (Figure S4). This plot 

indicated differences in B22 below and above 2.5 mg/ml. Below this concentration 

threshold, a negative B22 was observed which indicated attractive interactions between 

Infliximab molecules. B22 was increased at concentrations above 2.5 mg/ml. 
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Table 1  Concentration dependent apparent molecular weight of Infliximab in 6 mM sodium phosphate pH 

6.2, 90 mM trehalose obtained by SE-AUC at different rotor speeds. 

Rotor Speed [rpm] 

Infliximab Concentration [mg/ml] 

0.1 0.5 1 2.5 5 10 20 

5,000 166.6 150.0 160.3 237.1 238.6 272.0 224.8 

9,000 146.4 154.4 164.2 n.d. n.d. n.d. n.d. 

13,000 143.7 154.0 n.d. n.d. n.d. n.d. n.d. 

Unit: kDa; n.d.: Not determined due to the turbidity at cell bottom 

 

 

Figure 4 Distribution of the sedimentation coefficient of Infliximab in 6 mM sodium phosphate pH 6.2, 90 mM 

trehalose obtained by SV-AUC. Non-ideal c(s) model was used for the analysis of the sedimentation 

profile obtained at 20 mg/ml Infliximab. 
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4.4.5 Viscosity as an indicator for attractive self-interaction of Infliximab 

A high self-interaction propensity of mAb molecules frequently correlates with increased 

viscosity at high protein concentrations.26–29 We observed an exponential increase in 

viscosity with increasing Infliximab concentration in 6 mM sodium phosphate pH 6.2, 

90 mM trehalose from 1.1 mPa*s at 1.0 mg/ml, which corresponds to the viscosity of the 

formulation buffer, to 10 mPa*s at 90 mg/ml (supplemental material figure S5). This 

increase in viscosity indicated the presence of higher order structures due to network 

formation. These results correspond to our observations from DLS, SAXS and SE-AUC, 

which also indicated large oligomeric species at elevated protein concentrations.  

4.4.6 Analysis of intermolecular interactions of Infliximab fragments by 

SI-BLI 

We wanted to understand, which of the three potential interactions, Fab-Fab, Fc-Fc or Fab-

Fc, is or are relevant. We therefore digested the IgG and performed experiments on the two 

fragments. After purification, SEC-MALS indicated 83.6 % purity of the 53 kDa Fc 

fragment which contains approx. 8% of a 110 and a 151 kDa species each as impurities and 

more than 98 % purity of the 51 kDa Fab-fragment. 

First, we captured the Fc fragment by using the anti-hFc capture biosensor. Thus, the Fc 

part was presented on the sensor surface. We did not observe further binding of Fc 

fragments during the association reaction (Figure 5). In contrast, binding of Fab fragment 

and the whole IgG was detected. Using the same biosensors, we captured the whole IgG 

and thus, presented the Fab region. We observed binding of Fc fragment and whole IgG. If 

we applied the Fab fragment as analyte, no association was seen. In summary, binding 

processes were identified in BLI assay set ups, where the Fc part was presented on the 

sensor surface and the Fab fragment was in solution or the Fab fragment was presented on 

the surface and the Fc part was in solution. In addition, we characterized the self-interaction 

in the SEC mobile phase used by Lerch et al. for SEC and AUC experiments.16 Self-

interaction was suppressed at pH 7.2 and the high ionic strength conditions and we only 

detected net attraction between captured IgG and Fc fragment or IgG in solution.  
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Figure 5  SI-BLI results for Infliximab fragments with either Fc or whole IgG as capture molecule in 6 mM 

sodium phosphate pH 6.2, 90 mM trehalose (□) and in 20 mM sodium phosphate, 400 mM sodium 

chloride (■). The association signals of Fab and Fc only reached a third of the binding signal of an 

IgG which reflects the difference in molecular size. 

We further performed experiments which involved a capture setup of the Fab fragment. We 

identified unspecific interactions of Fab, Fc and IgG with the anti-hFab biosensors in these 

experiments. Thus we could not distinguish clearly between non-specific binding to the 

underlying sensor, and Fab-Fab interactions in the absence of Fc or whole IgG. 

4.4.7 Analysis of intermolecular interactions of Infliximab fragments by 

AUC 

Additional AUC analyses were performed using the Infliximab Fab and Fc fragments to 

understand the interactions of Infliximab in solution. The maximum concentrations of 

34.3 M Fc (1.7 mg/mL) and 68.7 M Fab (3.3 mg/mL) tested correspond to 34.3 M 

Infliximab (5.0 mg/ml). At lower concentration of 0.33 mg/ml the Fab fragment was 

monodisperse with a sedimentation coefficient of 3.7 S (Figure 6A). At higher 

concentration of 3.3 mg/ml two peaks with 3.8 S and 4.7 S corresponding to monomer and 
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dimer were observed. Also Lerch et al. observed the shift in monomer dimer equilibrium 

of the Fab fragment at higher concentrations.16 We did not see an indication for attractive 

self-interaction of the Fc fragment (Figure 6B), which showed concentration independently 

3.9 S. In mixtures of Fab and Fc fragment, a slight shift of the 3.8 S peak to 4.0 S was 

observed. Additionally, the peak at 4.7 S was shifted to 4.9 S which points towards weak 

hetero association of Fab and Fc fragment (Figure 6C). We hypothesize that the 

dissociation of Fab and Fc fragments is fast, and therefore the Fab-Fc complex could not 

be observed as a distinct and well separated peak by SV-AUC.19 Additionally we conducted 

SE-AUC and did not observed the enrichment at the bottom of the cell, unlike for the full-

length Infliximab (Figure S2 A-F) Based on these AUC results, we can hypothesize that 

the self-interaction of infliximab occurs through association of Fab domains, and further 

oligomerization requires complete IgG molecules containing both, Fab and Fc domains. 

 

Figure 6  SV-AUC experiments of Infliximab-Fab and Infliximab-Fc fragment and mixtures thereof. A) Fab 

fragment at 6.87 μM and 68.7 μM (0.33 mg/ml and 3.3 mg/ml), B) Fc fragment at 3.43 μM and 34.3 

μM (0.17 mg/ml and 1.7 mg/ml). C) Fab, Fc and mixture of both at 68.7 and 34.3 μM respectively 

which corresponds to 5.0 mg/ml whole IgG molecule. 
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4.4.8 Identification of peptides involved in self-interaction of Infliximab 

by HDX-MS 

To identify amino acids or peptide sequences involved in the pronounced attractive self-

interaction of Infliximab in solution we compared the deuterium uptake incubation in D2O 

containing formulation buffer at low (0.5 mg/ml) and high protein concentration 

(20 mg/ml). As Infliximab tends to form larger structures at 20 mg/ml, we expected that 

peptides involved in the interaction should show a decreased deuterium uptake at high 

concentration. To challenge our data for reproducibility, we performed HDX-MS 

experiments at two different laboratories utilizing two different HDX-MS device settings 

regarding the MS setup, labeling and quenching conditions as described above. Comparing 

laboratory 1 and 2, we identified 615 and 1092 data points of peptides / corresponding 

labeling times respectively, reflecting approx. 90% sequence coverage in both setups. 

Statistical analysis of the data sets demonstrated comparable findings (Figure 7). We 

observed a significant decrease in deuterium uptake at 20 mg/ml Infliximab compared to 

0.5 mg/ml in the VH domain region (E50IRSKSINSATHYAESVKGRF70) and two regions 

of the CH domain of the Fc fragment (K329ALPAPIEKTISKAKGQPREPQV351 and 

V430MHEALHNHYTQKSLSLSPG449). In addition, we identified a region in the CL 

domain, (K149VDNALQSGNSQESVTEQDSKDSTYSLSSTL179). A list of peptides with 

significant differences in H/D uptake can be found as supplemental material (Table S1). 
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Figure 7  Overview of HDX-MS results. Infliximab was incubated in 6 mM sodium phosphate pH 6.2, 90 mM 

trehalose at 0.5 mg/ml and 20 mg/ml for various time frames. A) Volcano plot of results from 

laboratory 1; B) Volcano plot of results from laboratory 2; C) Annotation of regions with significant 

differences in H/D exchange on a homology model of Infliximab (pdb: 1HZH) 

 

4.5 Discussion 

4.5.1 Analysis of Infliximab self-interaction on protein resolution level 

We chose Infliximab as a model system because the self-interaction process of this protein 

was described for in-solution conditions and in a solid crystalline state.16 But the 

formulations used in literature were not of pharmaceutical relevance as they were either 

SEC mobile phases or crystallization inducing buffers. Thus we searched for a 

pharmaceutical formulation which enabled the analysis of the self-interaction behavior and 

which was capable of lyophilization. SI-BLI revealed insights into the pH dependence of 
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the self-interaction process of Infliximab and indicated the effect of buffer and trehalose 

concentration. Based on that, we developed a formulation that displayed the wanted 

features.  

Light scattering techniques such as DLS and SAXS8, 30, 31 are established methods for 

analyzing protein-protein interactions and were used in this study to determine self-

interaction behavior of Infliximab on a protein level. DLS provides the apparent diffusion 

coefficient of a scattering agent whereas SAXS can provide the radius of gyration. By 

analyzing both physical parameters in a concentration dependent manner, attractive 

protein-protein interactions are indicated by an increase in size with concentration. 

Our results indicated attractive interactions between mAb molecules in solution. Usually, 

reversible self-interaction processes analyzed by DLS include the calculation of the 

diffusion interaction parameter kD. This parameter contains both, a thermodynamic as well 

as a hydrodynamic term.32 At low protein concentration and in our case at low ionic strength 

the hydrodynamic effects may cause the non-linearity. Additionally, the SV-AUC (Figure 

4) and SAXS results (Figure 3) indicated that Infliximab tends to specifically dimerize at 

protein concentration above 2.5 mg/ml, which results in a heterogeneous solution at higher 

protein concentration. Due to this association as a function of concentration, it was not 

possible to differentiate between unspecific self-interaction, which is represented by kD and 

dimerization of Infliximab by the light scattering signal.33, 8 To this end, we refrained from 

including quantitative values.. With SAXS, we observed an increase of the radius of 

gyration and of the molecular weight at a protein concentration of 20 mg/ml indicating 

oligomerization of Infliximab at higher concentration. Furthermore, the characteristic 

features from antibodies were still present in the p(r) function suggesting conserved 

structure and no unspecific aggregation. The increase in Rg and Dmax pointed into the 

direction of very large, oligomeric species. The presence of such oligomers may explain 

the increase in turbidity observed in SE-AUC experiments. 

In addition to DLS and SAXS, we performed AUC as a powerful method to assess the 

intermolecular interaction of macromolecules.34–36 A weak reversible self-association of 

Infliximab IgG was confirmed by SV-AUC and SE-AUC at a protein concentration above 

2 mg/ml, where the results indicated an apparent molecular weight corresponding to a 

dimeric species. This dimeric species is predominant at concentrations between 2 and 
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20 mg/ml. It should be noted that at 20 mg/mL a single species was observed at 6.8S by 

C(s) for non-interacting systems while this species takes 8.3S by non-ideal C(s) analysis, 

corresponding to dimer of Infliximab IgG. At higher rotor speeds, we observed a decrease 

in light transmission towards the cell bottom in SE-AUC which can be explained by further 

intermolecular interactions.  

In fact, the apparent molecular weight in SE-AUC becomes higher than that of a monomer 

when the initial concentration is above 1 mg/mL, indicating the formation of oligomers. At 

higher concentrations like 5 mg/ml, the apparent molecular weight reached at a value close 

to dimer, while light scattering (turbidity) which is a sign of the formation of large 

oligomers was detected at the bottom of the cell. The volume of the region where light 

scattering is confirmed increases as the initial concentration and/or the speed of rotation 

increases. Thus SV-AUC demonstrated Infliximab dimerization while didn’t form further 

large oligomers. B22 reflects these observation as was negative below 2.5-5 mg/ml and 

slightly positive over 5 mg/ml. 

Also Nishi et al. reported the property of liquid-liquid phase separation (LLPS) for a mAb 

.37 

MAbs with LLPS tendency exist as monomer and small oligomers at low concentration at 

which LLPS does not occur. Above a certain concentration LLPS can be noted, as in 

addition to monomer and small oligomers, higher oligomers emerge. These higher 

oligomers form a phase that has slightly higher density than a phase composed from 

monomer and small oligomers. Under gravity force, formation of LLPS takes long time. It 

can be accelerated by centrifugation because higher oligomers sediment faster to the 

bottom, leading to the formation of a heavy lower phase, and higher oligomers are depleted 

in the upper phase solution corresponding (Figure 8). These higher order structures were 

also observed by SAXS reflected by the increase in Dmax and Rg. Additionally, these 

oligomeric interactions trigger the formation of networks, which cause the increase in 

viscosity. Our data show, that the dimerization of Infliximab is not the final state of the 

self-interaction process. Whereas SV-AUC showed that the dimer is stable at 20 mg/ml, a 

further increase in concentration confirmed the additional oligomerization and also lead to 

the increase in the viscosity (Figure S5). 
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Figure 8  Schematic overview of phase separation behavior of Infliximab IgG under centrifugal force for the 

solution below 20 mg/ml. 

4.5.2 Analysis of Infliximab self-interaction on fragment resolution level 

For a more detailed understanding of the self-interactions processes, the characterization of 

the Infliximab Fab and Fc fragments was performed after digestion of the native protein. 

Several studies showed results based on analysis of self-interaction mechanisms of 

fragments.5, 6, 8  Kanai et al demonstrated that the increase in viscosity of a Fab only 

containing solution was comparable to the solution of the corresponding full length IgG.5 

Nishi et al. showed that a liquid liquid phase separation of a mAb was mainly driven by 

attractive electrostatic interactions of Fc fragments.6 Fab-Fc interactions were identified as 

self-interaction mechanism by Arora et al., demonstrated by HDX-MS experiments.7 For 

Infliximab, Lerch et al proposed a Fab-Fab based self-interaction process based on their 

crystallization, AUC and SEC data.16 All these references differed in their solution 

conditions. To this end, we aimed to understand how the formulation affects Infliximab 

self-interaction and what are the processes occurring in solutions. We used SI-BLI with 
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captured IgG or Fc fragment on the sensor, and Fab, Fc or native IgG as analyte in solution. 

A marked attractive interaction of captured Fc with Fab or IgG in solution, as well as of 

captured IgG with IgG or Fc in solution was observed. Thus, Fab and Fc fragments are 

involved in the self-interaction process of Infliximab. For further elucidation, we performed 

SV-AUC experiments. The Fab fragment dimerized at higher protein concentration, 

whereas the Fc fragment was in its monomeric form at both concentrations. In a Fab Fc 

mixture, we observed a small shift of the Fc and Fab as well as the Fab-Dimer peak to 

higher S-values indicating a weak reversible association of Fab-Fc that may coexist with 

Fab homodimers. Upon concentration during the centrifugation process, only the IgG 

preparation showed turbidity indicating that the IgG format itself provided interaction sites 

responsible for larger network formation. 

Thus, Fab fragments tended to form concentration dependent dimers in AUC, but IgG-Fab 

interaction was not observed by SI-BLI. Fab-Fab interaction could not be studied with SI-

BLI for technical reasons. Both methods demonstrated Fab-Fc interaction. Additionally, 

pronounced oligomerization resulting in the marked accumulation of large protein 

structures at the cell bottom did occur with Infliximab but not in the Fab-Fc mixture. Thus, 

AUC demonstrated that attractive interactions may not occur in mixtures of Fab and Fc 

fragments to the same extent and by the very same mechanism as for the full-length mAb. 

On the same account, we did not find IgG-Fab interactions in SI-BLI. As identified by X-

ray crystallography, the Fab tends to form dimers via head-to-tail orientation.16 Potentially 

this head-to-tail interaction process cannot proceed after capturing the IgG on a biosensor, 

or the “tail”-epitope is not accessible in the complete IgG molecule. Overall, we 

demonstrated that Fab-Fc interactions substantially contribute to the Infliximab self-

interaction in solution, on top of the Fab-Fab interactions previously identified. 

4.5.3 Analysis of Infliximab self-interaction on peptide resolution level 

Lerch et al. identified distinct regions within the Fab fragment by X-ray crystallography 

that are involved in the self-interaction process of Infliximab. We aimed to identify the 

sequences, which trigger the self-interaction in solution in particular after the detection of 

Fc involvement by AUC and BLI measurements. In addition, we targeted for a method, 

which overcomes the challenge of having results obtained by methods performed under 



A multi-method approach to assess the self-interaction behavior of Infliximab 

 

 

82 

 

 

artificial conditions and the interactions in the pharmaceutically relevant formulation 

applied to the patient. To this end, we chose HDX-MS as a high resolution technique which 

can be operated under native circumstances. HDX-MS is an emerging techniques to 

understand higher order structures of proteins, targeted mutations or chemical 

modifications.7, 38, 39 This technique is also used in epitope mapping, where the binding 

affinity is usually high.40, 14 In addition, HDX-MS can be used to examine low affine mAb 

self-interaction.7, 41, 15 Correspondingly, we compared the H/D exchange of Infliximab in 

the monomeric state at 0.5 mg/ml and in the oligomerized state at 20 mg/ml. 

By analyzing overlapping peptides for the identified heavy chain region, we identified the 

four residues H61YAE64 as present in all peptides that showed significant differences in 

deuterium uptake. By SI-BLI we showed that the attractive interaction of Infliximab was 

more pronounced at pH 6.2 compared to pH 7.2 and pH 8.2. Thus, H61 may play an 

important role in the self-interaction process as this residue gets deprotonated at pH 7.2 

then becoming a surface exposed neutral residue. E64 is deprotonated at pH 6.2. We 

therefore hypothesize that the protonated state of H61, together with deprotonated E64 can 

interact with other domains via electrostatic interactions or hydrogen bonding. We further 

identified a region in the CH2 domain of Infliximab Fc fragment 

(K329ALPAPIEKTISKAKGQPREPQV351) which showed less deuterium uptake at higher 

protein concentration. This area contains several electron-rich residues like proline and 

glutamic acid. These residues might interact with H61 and E64 at pH 6.2 until H61 gets 

deprotonated at pH 7.2 and hydrogen bonds are destabilized. In addition, the C-terminus of 

the IgG heavy chain (V430MHEALHNHYTQKSLSLSPG449) showed significant 

concentration dependent differences in H/D exchange, confirming that the Fc region is 

involved in self-interaction as well. As this area contains several histidine residues, the state 

of protonation might be the trigger for the self-interaction processes of Infliximab. Within 

the light chain of Infliximab Fab fragment we identified a region consisting of 30 residues 

(K149VDNALQSGNSQESVTEQDSKDSTYSLSSTL179) that showed differences in 

deuterium uptake at high protein concentration. This region contains several polar amino 

acids like serine and threonine that are accessible for hydrogen bonding. Because the 

identified peptides of this region were not well overlapping, a more detailed differentiation 

might be too speculative.  
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The regions identified by HDX-MS differ from the sites identified by X-ray 

crystallography. Thus, the identified self-interactions sites differ between processes present 

in solution and in a crystal. This indicates the importance of analysis interaction processes 

by a multi-method approach where various results contribute to the overall picture of a self-

interaction mechanism. 

In summary, our results indicate that Infliximab self-interaction in solution is driven by a 

combination of Fab-Fab and Fab-Fc interactions under conditions which are relevant for 

pharmaceutical formulations. A possible self-interaction process may start with Fab-Fab 

interactions leading to dimerization. These dimers can further oligomerize by weak Fab-Fc 

interactions at higher protein concentration. This higher order oligomerization was only 

observed in the presence of complete IgG molecules which may indicate conformational, 

sterical and avidity effects contributing to the self-interaction mechanism. Our results 

complement published data which showed Fab-Fab interaction of Infliximab only. Lerch 

et al. performed the analysis at high ionic strength for crystallization of Fab fragments 

followed by X-ray structure determination. The protein crystals are 1) a solid state and 2) 

did not contain the whole IgG molecule. Here, we present a study in a pharmaceutically 

relevant formulation considering the whole IgG molecule. We assume that the use of a 

multi-method approach containing analyses of intact IgG, fragments and peptides led to a 

clearer picture of the self-interaction process. We found that mAb self-interaction is not 

only dependent on the protein structure, but that the formulation buffer itself can influence 

the self-interaction mechanism. Depending on the environment of the molecule, different 

sites can be involved in self-interaction which may explain the differences between findings 

of crystallography and in-solution methods. We assume that the ionic strength and the pH 

impact the nature of the interaction sites. By increasing the ionic strength of the 

formulation, charge shielding might reduce the ability to form hydrogen or electrostatic 

bonds between Infliximab molecules. For crystallization, the ionic strength is higher and 

the protein concentration might further increase during the process of crystal growth. This 

might increase the probability for hydrophobic interactions because the distance between 

the molecules becomes smaller. In solution, where the protein concentration is lower, 

electrostatic interactions are more pronounced than hydrophobic forces.2 The interplay 

between the solution parameters and specific residues of the protein also may explain why 

even for proteins which are prone to self-interact, formulation development or rational 
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engineering can both be successful strategies for developing stable high concentration 

liquid formulations.  
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Figure S1  CD spectra of Infliximab formulations before lyophilization in 2 mM sodium phosphate pH 6.2, 

30 mM trehalose and after reconstitution in 6 mM sodium phosphate pH 6.2, 90 mM trehalose. 
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Figure S2:  Observation of turbidity in sedimentation equilibrium by A350 measurement;  

(A-F) Infliximab Fab, Fc and Fab-Fc mixture (sedimentation equilibrium at 5,000 rpm).  

(A) Fab (6.87 µM)-Fc (3.43 µM) mixture, (B) Fab (6.87 µM), (C) Fc (3.43 µM), (D) Fab (68.7 µM)-

Fc (34.3 µM) mixture, (E) Fab (68.7 µM), (F) Fc (34.3 µM).   

(G-J) Full-length Infliximab (sedimentation equilibrium at 9,000 rpm). 

(G) 2.5 mg/mL, (H) 5 mg/mL, (I) 10 mg/mL, and (J) 20 mg/ml. 

(K-O) Full-length Infliximab (sedimentation equilibrium at 13,000 rpm). 

(K) 1 mg/mL, (L) 2.5 mg/mL, (M) 5 mg/mL, (N) 10 mg/mL, and (O) 20 mg/ml. 

Data for (I), (J), (O) and (N) were obtained in 3mm path centerpiece, and the rest were obtained in 

12 mm path centerpiece. 
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Figure S3  Sedimentation equilibrium profiles of Infliximab with non-linear fitting analysis and residual plots. 
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Figure S4  Inverse plot of molecular weight at each sample concentration  

 

 

Figure S5  Viscosity as a function of protein concentration. Infliximab was analyzed in 6 mM sodium phosphate 

pH 6.2, 90 mM trehalose.  
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Table S1  List of peptides with significant decrease in H/D uptake at 20 mg/ml compared to 0.5 mg/ml 

Infliximab 

  Protein Star
t 

End Sequence Exposur
e time 
[min] 

ΔHX 
[Da] 

p-value 

L
a

b
o

ra
to

ry
 1

 Heavy 
chain 

48 64 VAEIRSKSINSATHYAE 10 -0,32 0,002 

50 70 EIRSKSINSATHYAESVKGRF 10 -0,33 0,005 

51 62 IRSKSINSATHY 10 -0,31 0,003 

51 64 IRSKSINSATHYAE 10 -0,38 0,001 

51 64 IRSKSINSATHYAE 60 -0,37 0,001 

238 255 LGGPSVFLFPPKPKDTLM 1 -0,32 <0,001 

329 351 KALPAPIEKTISKAKGQPREPQV 10 -0,52 <0,001 

430 449 VMHEALHNHYTQKSLSLSPG 10 -0,46 0,006 

430 449 VMHEALHNHYTQKSLSLSPG 60 -0,37 0,006 

Light 
chain 

149 172 KVDNALQSGNSQESVTEQDSKD
ST 

60 -0,31 <0,001 

155 161 QSGNSQE 1 -0,45 0,003 

L
a

b
o

ra
to

ry
 2

 

Heavy 
chain 

60 70 THYAESVKGRF 10 -0,32 0,003 

60 70 THYAESVKGRF 60 -0,40 0,005 

427 449 SCSVMHEALHNHYTQKSLSLSPG 10 -0,36 0,002 

427 449 SCSVMHEALHNHYTQKSLSLSPG 60 -0,43 0,001 

Light 
chain 

136 161 LNNFYPREAKVQWKVDNALQSG
NSQE 

3 -0,29 <0,001 

136 161 LNNFYPREAKVQWKVDNALQSG
NSQE 

10 -0,29 0,003 

144 161 AKVQWKVDNALQSGNSQE 10 -0,28 <0,001 

162 172 SVTEQDSKDST 3 -0,28 0,001 

162 179 SVTEQDSKDSTYSLSSTL 1 -0,27 <0,001 

162 179 SVTEQDSKDSTYSLSSTL 60 -0,29 0,002 
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Table S2   SAXS - experimental details 

Instrument P12 BioSAXS beamline (PETRAIII) 

Date 12th July 2019 

Detector Pilatus6m 

Wavelength (nm) 1.23981 

Beam size (mm2) 0.2 × 0.12 

Detector distance (m) 4.0 

q-measurement range (nm-1) 0.017- 5.506 

Absolute scaling method Comparison with scattering from BSA 

Normalization To transmitted intensity by beam-stop counter  

Monitoring for radiation 

damage 

Frame-by-frame comparison 

Exposure time (s) 20 x 0.195 

Sample configuration Quartz glass capillary 

Sample temperature (ºC) 20 

c) Software employed for SAXS data reduction, analysis and interpretation 

SAS data reduction PRIMUSqt29 from ATSAS 2.8.330  

Basic analyses: Guinier, p(r), 

VP 

PRIMUSqt29  
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5.1 Abstract 

Strongly attractive self-interaction of therapeutic protein candidates can impose challenges 

for manufacturing, filling, stability and administration due to elevated viscosity or 

aggregation propensity. Suitable formulations can mitigate these issues to a certain extent. 

Understanding the self-interaction mechanism on a molecular basis and rational protein 

engineering provides a more fundamental approach, and it can save costs and efforts as 

well as alleviate risks at later stages of development. In this study, we used computational 

methods for identification of aggregation prone regions in a mAb and generated mutants 

based on these findings. We applied hydrogen-deuterium exchange mass spectrometry to 

identify distinct self-interaction hotspots. Ultimately, we generated mAb variants based on 

a combination of both approaches and identified mutants with low attractive self-interaction 

propensity, minimal off-target binding and even improved target binding. Our data show 

that the introduction of arginine in spatial proximity to hydrophobic patches is highly 

beneficial on all these levels. For our mAb, variants which contain more than one aspartate 

residue flanking to the hydrophobic HCDR3 show decreased attractive self-interaction at 

unaffected off-target and target binding. The combined engineering strategy described here 

underlines the high potential of understanding self-interaction in early stages of 

development to predict and reduce risk of failure in subsequent development. 

 

 

Graphical abstract Generation of mAb variants with less attractive self-interaction but preserved target binding 

by well-directed mutation 
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5.2 Introduction 

By the end of 2019, more than 80 antibody therapeutics reached the biopharmaceutical 

market in US or EU.1 The design of suitable candidate molecules and their formulation play 

a pivotal role in every stage of discovery and development. In general, a formulation must 

ensure chemical, conformational and colloidal protein stability. The latter objective is 

strongly influenced by the self-interaction of the protein molecules. This challenge is 

enhanced in case of high concentration protein, specifically monoclonal antibody (mAb) 

formulations which are increasingly demanded for subcutaneous self-application by 

patients and for other convenience and safety reasons. Protein aggregation can arise from 

native oligomers as a result of strong attractive self-interaction.2 Self-interaction of mAbs 

can be associated with an extreme increase in viscosity at higher concentration3–5, a higher 

tendency for aggregation due to increased frequency of intermolecular collisions6 and filter 

clogging and fouling.7 

Several studies showed that self-interaction processes of mAbs are diverse and can be 

triggered by Fab-Fab, Fab-Fc or Fc-Fc interactions.4, 8–15 These interactions can be driven 

by both electrostatic and hydrophobic forces.12, 16, 17 Thus, formulation strategies can be 

applied to reduce the self-interaction propensity of a mAb. Ionic excipients like sodium 

chloride and arginine hydrochloride disrupt the self-interaction processes by either charge 

shielding or hydrophobic interactions and therefore reduce solutions viscosity.18–22 

Additionally, the solutions pH has a strong impact on the solvent accessible charges of a 

mAb and thus on self-interaction.10, 22-24 

Another approach to influence the propensity of a mAb to self-interact reversibly is rational 

mutagenesis. Data from in silico modeling or in vitro experiments can help to identify 

critical sites or residues in the protein, and thus set the basis for planning a rational 

engineering strategy.9,17,25,26 Applying computational methodologies for calculation of 

aggregation prone regions led to antibody variants with high solubility and lowered 

viscosity at high protein concentrations. However, these tools address the aggregation 

prone regions and not discrete sites for reversible self-interaction. Additionally, mutations 

addressing unequal charge distributions on the mAb surface improved the physicochemical 

properties of a less soluble mAb.17 
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Besides computational tools, emerging techniques for studying mAb self-interaction such 

as HDX-MS have driven rational engineering.9 Geoghegan et al. introduced mutations in 

protein regions, which were identified as self-interaction sites by HDX-MS.27 Some of the 

mAb variants showed improved solution properties, whereas others showed a decrease in 

target binding or conformational stability. The prediction of self-interaction sites based on 

crystal structures was also used for rational mutagenesis of mAbs.26, 28 The mAb CNTO607 

is a model mAb with low solubility and high self-interaction propensity.25, 29, 30 For this 

mAb, a hydrophobic triad within the HCDR3 was shown to mediate self-interaction. But 

mutations within this region compromised target binding affinity.25, 29, 30 

In addition to mAb low self-interaction propensity and high target affinity, minimized off-

target binding plays an important role for characterization and selection of drug candidates 

and needs to be considered upon mutation. As recently reviewed by Starr and Tessier, 

antibody specificity is a key property to optimize mAb therapeutics.30 In a study of 137 

antibodies, specificity measurements identified advantages of approved mAbs compared to 

mAbs currently under clinical investigations.31 

Here, we present a study on a mAb directed against Estradiol-decorated BSA as a model 

IgG protein which was derived from a fully human phage library.32 This mAb exhibits only 

one of the three desired features, namely high affine target binding, but shows several 

unwanted properties like precipitation in PBS during downstream processes, significantly 

higher retention time in SEC analysis compared to other mAbs and strong off-target 

binding.33 Goal of this study was to understand the mAbs aberrant behavior and to find 

solutions based on rational mutagenesis. To maintain the paratope and thus, the antigen 

binding capacity of the mAb, we first determined the target binding site by HDX-MS. We 

analyzed the self-interaction propensity of the mAb by self-interaction bio-layer 

interferometry (SI-BLI) and found significant effects for pH and ionic strength. We used 

this knowledge for protein surface analysis to identify hydrophobic patches and aggregation 

prone regions, which could be potentially involved in reversible self-interaction. HDX-MS 

was additionally applied to identify distinct self-interaction sites. After identification of 

potential self-interaction hot spots by in silico and in vitro experiments, mutations were 

introduced to experimentally verify these predictions and resolve the described issues. In 

total, 39 mAb variants were generated and subsequently characterized regarding self-

interaction, target binding and off-target binding. Thus we could gain a deeper 
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understanding of the self-interaction process of our model mAb and identify variants with 

improved specificity by combining both, in silico and in-vitro based rational engineering. 

5.3 Experimental section 

5.3.1 Materials 

Phosphate buffered saline (Thermo Fisher Scientific, MA), L-histidine (Merck KGaA, 

Germany), sodium chloride (Carl Roth GmbH + Co. KG, Germany), hydrochlorid acid 

(Merck KGaA, Germany), L-Arginine (Merck KGaA, Germany), trehalose dihydrate 

(Pfanstiehl Technologies, Waukegan, IL) were all of analytical grade. 

5.3.2 mAb Cloning 

DNA of variants containing mutations in the CH and VH variants with mutations next to 

restriction sites (HCDR1 or 3) were prepared via mutagenesis PCR. Other DNA strings 

were purchased (Thermo Fisher Scientific, MA). For Gibson assembly®, DNA strings 

were designed with a 21bp overlap next to restriction sites. 

The vectors were prepared via restriction digest followed by dephosphorylation with 

shrimp alkaline phosphatase and agarose gel purification prior to the Gibson cloning. After 

Gibson cloning, the DNA constructs were transformed in chemically competent DH5alpha 

competent E. coli cells and then checked via colony PCR sequencing. From the correct 

clones, Miniprep Plasmid DNA was prepared and sequenced. After consolidation via 50 pg 

retransformation, the final Plasmid Maxi prep DNA was transferred for transfection and 

expression of the constructs in HEK293 cells. 

5.3.3 mAb Production 

For large scale production, the wildtype mAb was expressed in HKB11 stable pool 

expression system for 6 days. Cell culture supernatant was applied to a MabSelect SuRe 

column with a column volume (CV) of 32 ml (Cytiva, MA) equilibrated with 0.1 M sodium 

phosphate pH 6.0 (NaPhos pH 6). Three washing steps were performed (wash 1: 5 CV 

NaPhos pH 6, wash 2: 5 CV NaPhos pH 6 + 1.5 M sodium chloride, wash 3: 5 CV NaPhos 

pH 6). Product was eluted with 0.1 M sodium acetate pH 3.0. Protein containing fractions 



Generation of mAb variants with less attractive self-interaction but preserved target binding 

by well-directed mutation 

 

100 

 

 

were pooled and adjusted to pH 5 with 2 M sodium acetate. The concentration was 

determined by UV absorbance at 280 nm (molar extinction coefficient 211580 M-1 cm-1, 

146.6 kDa) using Nanodrop 2000 (Thermo Fischer Scientific, MA). 

The protein containing pool was subjected to buffer exchange using Sephadex G-25 in PD-

10 desalting columns (Cytiva, MA) to the final formulation buffer (15 mM histidine 

hydrochloride pH 6.0). The concentration was determined by UV absorbance and adjusted 

to 20 mg/mL utilizing Amicon Ultra 15 centrifugal filter units (50 kDa cut-off, 

Merck KGaA, Germany). The final product was sterile filtered using a 50 mL Steriflip 

(Merck KGaA, Germany). 

The protein variants were expressed in small scale in HEK293 cells for 6 days after 

transfection. Cell culture supernatants were applied to HiTrap MabSelect SuRe columns 

(Cytiva, MA) installed on an Äkta Xpress system equilibrated with NaPhos pH 6. Three 

washing steps were performed (wash 1: 5 CV NaPhos pH 6, wash 2: 5 CV NaPhos pH 6 + 

1.5 M NaCl, wash 3: 5 CV NaPhos pH 6). Product was eluted with 0.1 M sodium acetate 

buffer pH 3 and protein containing fractions were pooled without pH adjustment. The 

protein containing pools were subjected to buffer exchange using Sephadex G-25 in PD-10 

desalting columns (Cytiva, MA) to the final formulation buffer (15 mM histidine 

hydrochloride pH 6.0). The concentration was determined by UV absorbance at 280 nm 

using an average molar extinction coefficient of 208356 M-1 cm-1 and an average molecular 

weight of 146.6 kDa using Nanodrop 2000 (Thermo Fischer Scientific, MA). The final 

products were sterile filtered using Microsep Advance Centrifugal Devices (PALL, NY). 

5.3.4 SI-BLI 

The SI-BLI method was performed as previously described.34 Anti-hIgG Fc capture (AHC) 

biosensors (FortèBio, CA) were used to assess antibody self-interaction on an Octet QK384 

or HTX system (FortéBio, CA). In the first assay step, a baseline was established in 15 mM 

histidine hydrochloride pH 6.0 for at least 60 s, followed by capture of the mAb of interest 

at 25 nM in 15 mM histidine hydrochloride until the BLI signal increased by approximately 

1 nm. Remaining binding capacity of the capture sensors was saturated for 300 s with 1 μM 

of human Fc in PBS. Subsequently, a second baseline was acquired in the formulation 

composition of interest for 500 s, followed by an association step with 2 μM mAb in the 
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same formulation of interest for at least 1200 s. The response at equilibrium was used for 

further calculations. To compensate for differences in the amount of captured mAb, the 

equilibrium binding signal obtained during self-interaction was normalized to the amount 

of captured mAb (Rrel, equation 1). 

𝑅𝑟𝑒𝑙 =
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 [𝑛𝑚]

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑠𝑡𝑒𝑝[𝑛𝑚]
 

(1) 

5.3.5 HDX-MS 

HDX-MS experiments were performed on a fully automated system equipped with a Leap 

robot (HTS PAL, Leap Technologies, NC), a Waters Acquity NanoUPLC, a HDX manager 

and the Synapt G2-Si mass spectrometer (Waters, MA).35 For ionization in positive mode 

(300-2000 m/z) a capillary voltage of 3.0 kV, a desolvation gas flow of 500 L/hr, a source 

temperature of 80°C and a desolvation temperature of 250°C was applied. Sampling cone 

and offset was set to 40.0 and 50.0, respectively. Peptide elution occurred using a gradient 

from 10-60% (B) within 8.5 min followed by a 1.5 min gradient from 60-95% (B) prior a 

reconditioning-step. Peptides were identified via MSE using a collision energy ramp from 

10-45 eV. 

5.3.6 Paratope mapping 

For determination of the antigen binding site of the mAb, HDX-MS analysis was performed 

for the antigen-antibody complex and for mAb only. 1:10 dilutions of complex (3.7 µM 

antigen and 6.8 µM mAb) and mAb only (6.8 µM) in 15 mM histidine DCl pH 5.0 were 

incubated for 1, 10, 60 and 240 min at 25°C. After incubation in D2O containing buffer, the 

labeling reaction was quenched by 1:1 dilution with quenching buffer (0.1 M potassium 

phosphate pH 2.6, 0.2 M TCEP, 4 M guanidine hydrochloride). For proper denaturation, 

the solution was incubated under quenching conditions for 1 min at 2.0 °C. Afterwards, 

50 µl of the solution were directed to a pepsin column for online digestion at 15°°C (Waters 

Enzymate 300 Å, 5 µm; 3 min, 0.1 ml/min 0.1 % formic acid in H2O). Peptides were 

trapped (Waters VanGuard C18) and subsequently separated on a Waters UPLC column at 

0 °C (Waters Acquity UPLC, BEH C18, 130 Å, 1.7 µm).36 Eluting peptides were directed 
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into a Synapt G2-Si TOF mass spectrometer by electrospray ionization (Waters, MA). 

Before fragmentation by MSE and mass detection in resolution mode, the peptide ions were 

additionally separated by drift time within the mobility cell. Data processing was performed 

using the Waters Protein Lynx Global Server PLGS (version 2.5.3) and DynamX 

(version 3.0). Each incubation time point was measured in triplicates. Statistical analysis 

of significant differences was performed using Hybrid Significance Testing as described.37  

5.3.7 Self-interaction sites mapping 

For determination of self-interaction sites, the protein stock solutions (180 mg/ml) were 

diluted 1:3 with 15 mM Histidine-DCl pH 7.0 to 60 mg/ml for high concentration condition 

and to 0.5 mg/ml for low concentration condition. After incubation for 0, 2 and 10 min, 

samples were analyzed and processed as described above. As control experiment, labeling 

was performed in 15 mM Histidine-DCl pH 5.0 because self-interaction propensity was 

low under these conditions.  

5.3.8 Protein surface analysis 

Homology models of the wildtype mAb were generated by using BioLuminate 

(Schrödinger Release 2018-2, Schrödinger LLC, NY, 2015). As template structure, an 

already published crystal structure derived from a HuCAL phage display library was used.38 

The knowledge based approach was used for model building. A further preparation of the 

structure was carried out by checking for missing side chains, overlapping H-bonds and 

false molecule geometry. A restrained minimization using the OPLS3e force field was 

performed. The Protein Surface Analyzer Tool in combination with AggScore calculation 

was used to identify aggregation prone regions and hydrophobic patches.39 

5.3.9 Protein panel profiling 

The method was essentially performed as described before.33 Briefly, off-target binding of 

IgG samples was assessed in a plate-based assay, using electrochemiluminescence readout. 

A panel of 32 proteins and controls was coated onto two MSD standard 384-well plates per 

assay, each row coated with one protein or control. Subsequently, the plate was blocked 

with 3 % (w/v) BSA in PBS. The coated proteins and samples included highly abundant 
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serum proteins, different cytokines and cell-surface receptors, proteins bearing different 

post-translational modifications (phosphorylation, glycosylation), representatives for 

different pI values (ranging from 2.8 to 10.7), and vesicles prepared from HKB11 cells and 

Baculovirus particles40. Additionally, Protein A, anti-human Fc and anti-human Fab 

antibodies, lysozyme and target proteins of the sample IgGs, as well as blank rows were 

included as controls. Each IgG sample was assessed at 10 and 100 nM. For referencing 

purposes, an anti-lysozyme antibody was included known to show negligible non-specific 

binding. ECL-labeled anti-human Fab antibody was added for detection, and ECL-signals 

detected using a Sector Imager S 600 instrument (Meso Scale Discovery, MD). Binding 

signals were divided by the signal of the reference mAb on the same protein. The sum of 

binding ratios on all off-target probes (i.e. excluding specific antigens and controls) were 

used as a metric for off-target binding of the respective IgG. 

5.3.10 BLI for target binding 

BLI assays were performed on an Octet HTX system (FortéBio, CA) using Streptavidin 

sensors (Fortébio, CA) loaded with 3 µg/ml biotinylated MabSelect SuRe Ligand (Cytiva, 

MA) for 600 s followed by quenching for 5 min with 20 µg/ml biocytin (Merck KGaA, 

Germany) in PBS. PBS containing 0.05 % polysorbate 20 and 1 % (w/v) BSA was used as 

assay buffer. 5 µg/mL IgG was captured on several sensors in parallel, until a capture level 

of 0.8 nm was achieved. Subsequently, association of a 3-fold serial dilution series of 

estradiol-BSA (0.2 – 150 nM) was monitored for 300 s; dissociation was recorded for 300 s. 

After each interaction, captured IgG including bound estradiol-BSA was removed from the 

sensor with an acidic regeneration (Glycine-HCl pH 1.5; 3 steps à 30 s). Signals recorded 

on sensors with captured IgG but without estradiol-BSA were used for reference 

subtraction.  

Each assay was performed in triplicates. Raw data were preprocessed using the Octet Data 

Analysis HT 10.0 software (FortéBio, CA), and evaluated using Xlfit software (IDBS, 

MA). Binding signals at the end of the association were plotted against analyte 

concentrations, and fitted to a steady state model. Due to the multivalent and unknown 

coupling ratio of estradiol-BSA, i.e. unknown valency of binding sites per molecule, only 

an apparent KD value could be obtained, i.e. an apparent affinity including avidity. 
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5.3.11 Viscosity determination 

Viscosity measurements were performed on a ViscoSizer TD system (Malvern, UK). The 

sample is automatically pumped through a capillary under constant pressure. Viscosity is 

calculated relative to a caffeine standard (1 mg/l in H2O) depending on the time needed to 

pass a set capillary length. Protein samples were detected by UV absorbance at 280 nm. 
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5.4 Results and Discussion 

5.4.1 Characterization of the self-interaction behavior of the wildtype 

mAb 

SI-BLI was performed to analyze the formulation dependent self-interaction propensity of 

the wildtype mAb, using a histidine buffered formulation covering the typical pH range of 

mAb formulation 5 and 7. An increase in pH from 5 to 7 led to a higher Rrel and thus, to an 

increase in attractive self-interaction propensity (Figure 1 A). This effect was further 

intensified by addition of the ionic excipients sodium chloride and arginine hydrochloride. 

We further evaluated the effect of buffer concentration (Figure 1 B). At pH 5.0 the SI-BLI 

response clearly increased with higher buffer concentration. This effect was also observed 

at pH 6.0 and pH 7.0 but less pronounced at neutral pH. These results underlined the strong 

pH effect on the self-interaction of the wildtype mAb and may explain the aberrant 

precipitation and poor recovery during downstream processing, where typically buffers are 

applied which contain e.g. sodium chloride and are close to neutral pH.  

Strong attractive self-interaction of mAbs can lead to a disproportionately high increase in 

viscosity at higher protein concentration. As shown in Figure 1 C, the viscosity increased 

extremely, starting at 50 mg/ml protein. At 100 mg/mL wildtype mAb the viscosities 

reached 300 mPa*s at pH 7.0, and 130 mPa*s at pH 5.0, respectively. We therefore decided 

to use formulations at pH 7.0 for in-depth characterization of the mAb self-interaction and 

at pH 5.0 as low self-interaction control condition for HDX-MS experiments. 

 

Figure 1 Self-interaction analysis of the wildtype mAb. A) SI-BLI in 15 mM His HCl at pH 5.0, 6.0 and 7.0 

with different excipients added; B) SI-BLI in dependence of buffer concentration and pH; C) Increase 

in solutions viscosity in 15 mM His-HCl at pH 5.0 and pH 7.0. 
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5.4.2 Paratope mapping of the wildtype mAb by HDX-MS 

HDX-MS was performed to detect the antibody-antigen interaction site comparing the 

deuterium uptake of the antibody-antigen complex to antibody alone by hybrid significance 

testing. For evaluation of significance, we calculated a ∆HX threshold of 0.41 Da (Table 

S1). Regions of the mAb that showed less uptake in the complex state were interpreted as 

antigen binding sites. In total, we analyzed 113 peptides of the heavy chain and 45 peptides 

of the light chain, which reflects a coverage of 85 % and 92 % respectively. In the Fc 

domain, peptides in proximity to the N-glycosylation region were not covered. However, 

antigen binding was expected to be mediated by the CDR regions of the mAb. We identified 

several peptides in the HCDR2 (W47MGGIIPIYGTAYYAQKFQG65) and the HCDR3 

(S95PRSYVTYRRYWFDY102) of the Fab domain as being involved in antigen binding 

(Figure 2). The H/D exchange of the CDRs of the light chain did not depend significantly 

on the presence of antigen, indicating that these segments did not contribute to the antigen 

binding. Thus, the introduction of mutations in only one of the two identified regions could 

weaken target binding but may not abolish it. 

 

Figure 2 Volcano plot of HDX-MS results of the paratope mapping of the wildtype mAb. Data points within 

the area of significance showed decreased uptake in the complex state compared to mAb alone. A 

peptide list and the calculation of ∆HX threshold can be found in the supplemental material in table 

S1. As ∆HX, the difference in uptake between mAb-antigen complex and mAb alone is shown.  
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5.4.3 Identification of self-interaction sites by in silico surface analysis 

We prepared a homology model of the wildtype Fab fragment to perform protein surface 

analysis at pH 7.0. Hydrophobic patches were identified in the HCDR2 and the HCDR3 

(Figure 3). The hydrophobic patch of the HCDR2 consisted of I52, I53, Y54 and Y58. The 

non-hydrophobic residues G55 and T56 were also located within the paratope region, and in 

close proximity to the hydrophobic patch In the HCDR3 the hydrophobicity was 

prominently driven by a surface exposed W100c. In addition to visual analysis of the 

hydrophobicity, aggregation scores were calculated for individual HCDR2 residues39. For 

rational mutagenesis, we introduced residues into the identified regions by in-silico 

mutagenesis to change the extent of hydrophobicity or to insert negative or positive charges 

(Table 1). Additionally, we mutated HCDR1 (G27) based on its spatial proximity to HCDR2 

and HCDR3. 

 

 

Figure 3  Homology model of the wildtype Fab fragment on crystal structure 5D7S (Light Green: Heavy chain, 

Blue: Light chain, Dark green: Surface exposed hydrophobic patches). 
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Table 1   Characterization of mAb variants based on in silico surface analysis: Experimental parameters were 

compared to wildtype (Self-interaction, Target binding: ↓↓ decreased >2SD, ↓ decreased >1SD, ≈ 

comparable, ↑ increased >1SD, ↑↑ increased >2SD; Off-target binding: ↓↓ < 50 %, ↓ < 75 %, ↑ > 

125 %). Absolute values can be found in the supplemental material in table S2. 

mAb variant Region 

Cumulative 

AggScore 

of HCDR2 

Self-

interaction 

Off-

target 

binding 

Target 

binding 

wildtype  43  

I52R 

HCDR2 

12 ↓ 

 

↑ 

I53R 16 ↓↓ ↑ 

Y54R 13 ↓↓ ≈ 

Y58R 30 ↓↓ ≈ 

G55R 34 ↓↓ ↑ ↑ 

G55D 25 ↓↓ 
 

≈ 

T56R 23 ↓ ↑↑ 

T56D 29 ↓↓ ↓↓ ↑ 

I52A I53A Y54A Y58A 7 ↑ ↓↓ ↓↓ 

I52A I53A Y54S Y58S 2 ≈ ↓↓ ↓↓ 

I52V I53V Y54A Y58A 12 ≈ ↓↓ ↓↓ 

I52V I53V Y54S Y58S 5 ↓↓ ↓↓ ↓↓ 

W100cV 
HCDR3 

44 ↑↑ ↓ ↑ 

W100cS 44 ↑ ↓ ≈ 

G27R HCDR1 43 ↓↓ ↑ ↑↑ 

G27R T56D HCDR1/HCDR2 29 ↓ ↓ ↑ 

5.4.4 Characterization of mAb variants engineered based on in silico 

surface analysis 

The mAb variants shown in Table 1 were characterized regarding the change in the 

cumulative Aggscore, self-interaction, target binding and off-target binding.  

For comparison of mutants, the scores of each residue of the patch were added up to a total 

AggScore. The cumulative AggScore was reduced for variants with single mutations in the 

HCDR2 (e.g. I52R, T56D) and further minimized for variants with multiple mutations (e.g. 

I52A I53A Y54S Y58S). Mutations introduced to HCDR3 or flanking to HCDR2 (G27R) did 

not influence the calculated AggScore of HCDR2. 
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All variants containing single point mutations in the HCDR2, which also introduced 

additional negative or positive charges, showed decreased self-interaction propensity. In 

case the hydrophobic patch in HCDR2 was resolved by replacing all positions with either 

Ser or Val, but no Ala, attractive self-interaction was reduced as well. Additionally, the 

introduction of a charged residue flanking HCDR2 (G27R) resulted in improved self-

interaction behavior. Variants of the HCDR3 showed unaffected or slightly increased 

attraction of the mAb molecules. Regarding target binding, single mutations in HCDR2 

influenced the behavior only slightly whereas multiple mutations reduced the apparent 

target binding affinity. This was expected as HCDR2 was shown to mediate target binding. 

Target binding of HCDR3 variants was not changed or slightly improved. Introduction of 

arginine in HCDR1 and HCDR2 improved target binding slightly but increased off-target 

binding. The most prominent decrease in off-target binding was observed for variants 

containing multiple mutations in HCDR2. Thus, this region was involved in target and off-

target binding. In summary, the introduction of charged residues into the hydrophobic patch 

of HCDR2 or in spatial proximity of the patch in HCDR1 of our mAb reduced self-

interaction significantly. A single mutation did not impair target binding behavior. Inserting 

a charged residue in proximity to hydrophobic hotspots, which were identified as target 

binding region, could reflect an approach to reduce the self-interaction propensity while 

maintaining the target binding properties.  

Additionally, we evaluated the combined effect of the most promising single mutations in 

reducing self-interaction propensity, T56D and G27R, by producing and characterizing a 

variant containing both mutations in HCDR1 and HCDR2 (Table 1). Interestingly, the 

effects of the single mutations contributed additively to the properties of the double 

mutation variant. We observed decreased self-interaction propensity, improved target 

binding and decreased off-target binding. As mentioned above, G27 was not located in a 

hydrophobic patch based on results from computational calculations. We hypothesize, that 

the reduction of attractive self-interaction is driven by electrostatic shielding of self-

interaction sites in HCDR2 and flanking to HCDR3. The interplay of CDRs for self-

interaction has also been reported for the mAb MEDI1912 with relevant motifs in HCDR1 

and HCDR2.11 Additionally, shielding of self-interaction sites by more hydrophilic 

moieties like N-glycans was described for CNT060726 with a reintroduced Fab-
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glycosylation shielding the hydrophobic triad, increasing the solubility and maintained high 

affine target binding. 

The calculation of AggScores was used to generate and evaluate variants in silico. The 

scores indicate that the aggregation propensity of the HCDR2 mutants might be reduced 

due to the reduction of overall hydrophobicity of the identified patches. Overall, the 

AggScore was not predictive for self-interaction. However, mutants with a lower AggScore 

showed reduced off-target binding, indicating that these hydrophobic patches contributed 

to non-specificity. Additionally, our results showed that the Fc region was also involved in 

self-interaction. The AggScore calculations do only include properties of the Fab domain. 

This may explain the limited predictive power for lowering self-interaction only by 

inserting mutations into the Fab. 

In summary, rational engineering of hydrophobic patches based on homology modeling 

and protein surface analysis led to mAb variants with reduced attractive self-interaction 

propensity. As shown by the 4-fold mutants, molecular modeling revealed insights into 

structural regions involved in off-target binding. Thus, this approach guided to 

“unspecificity” hot spots of the mAb. Additionally, we observed that mutations flanking 

this hydrophobic patch influenced the self-interaction behavior positively. 

5.4.5 Identification of self-interaction sites by HDX-MS 

HDX-MS experiments followed by Hybrid Significance Testing were performed to 

determine self-interaction sites of the wildtype mAb. At pH 7.0, we analyzed 92 peptides 

of the heavy chain and 51 peptides of the light chain, which corresponds to a total sequence 

coverage of 90 %. At pH 5.0, we identified 80 peptides of the heavy chain and 45 peptides 

of the light chain, resulting in a sequence coverage of 85 %. As shown in Figure 4 A, several 

peptides showed significant differences in deuterium uptake when comparing high and low 

concentration condition. Analyzing the H/D exchange of overlapping peptides and surface 

exposure at pH 7.0, three major hot spots of attractive self-interaction were defined: Hot 

spot 1 was located in spatial proximity to HCDR3 (W103 – L108), hot spot 2 was located in 

the Fc part of the mAb containing the PENNY loop (V379 – N384) and hot spot 3 was located 

in CL of the Fab fragment (S155 – T163). At pH 5.0 no significant differences of H/D 

exchange between high and low protein concentration were observed, confirming the 
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decreased attractive self-interaction at low pH seen in SI-BLI and viscosimetry (Figure 4 

B). We additionally studied the G27R mutant at pH 7.0 by HDX-MS and identified 96 heavy 

chain and 48 light chain peptides, which reflects 90 % sequence coverage. The deuterium 

uptake did not differ significantly between the low and high concentration conditions 

demonstrating decreased attractive self-interaction propensity compared to the wildtype 

mAb (Figure 4 C). 

 

Figure 4   Volcano plots of HDX-MS analysis of A) wildtype mAb at pH 7.0, ∆HX threshold = 0.61 Da; B) 

wildtype mAb at pH 5.0, ∆HX threshold = 0.64 Da; C) G27R variant at pH 7.0, ∆HX threshold = 

0.34 Da. A peptide list and the calculation of ∆HX threshold can be found in the supplemental material 

in table S4. As ∆HX, the difference between the uptake at low protein concentration (0.5 mg/ml) and 

high protein concentration (60 mg/ml) is shown. 

5.4.6 Characterization of mAb variants engineered based on HDX-MS 

Subsequently, we designed mAb variants with mutations in the identified hot spots 

introducing positive (R) or negative charges (D, E) or combinations thereof. The variants 

were analyzed regarding self-interaction, off-target binding and target binding (Table 2). 

Binding to the neonatal Fc receptor was not investigated, because the mutated regions were 

not in spatial proximity to the receptor binding site of our mAb.41, 42 Introduction of arginine 

residues in hot spot 1 resulted in decreased self-interaction propensity (Y102R, Q105R and 

L108R) while target binding remained unaffected or was slightly improved. As already 

shown for the G27R variants, the presence of arginine residues increased off-target binding. 

Introducing aspartate did not affect the self-interaction behavior, improved target binding 

and only marginally impacted off-target binding (Y102D, Q105D and L108D). Introduction of 

more than one aspartate in hot spot 1 led to a decrease in self-interaction combined with 

improved target binding and decreased off-target binding (Q105D-L108D and Y102D-Q105D-
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L108D). In addition, we identified residues R100 and R100a as residues within HCDR3 

contributing to target binding, which confirmed the results of the paratope mapping 

experiment (R100aD, R100aD-Y102D and R100D-R100aD). 

We further analyzed the change in self-interaction by mutations of hot spot 2 located in the 

heavy chain of the Fc fragment. Contrary to hot spot 1, the introduction of one negatively 

charged aspartate residue decreased self-interaction while maintaining or improving target 

binding properties (V379D). Mutations introducing arginine did not show significant 

changes in self-interaction (E380R and E382R). Interestingly, off-target binding was 

increased for all the variants of hot spot 2, indicating that the engineering of the Fc region 

increased unspecific binding processes, presumably mediated via this domain. 

Mutations introduced in the light chain of the mAb (hot spot 3) led to a reduction of self-

interaction in variants containing arginine in position 155 or aspartate in position 157 or 

159 (S155R, N157D and Q159D). As shown for hot spot 1, we saw a cumulative effect of more 

multiple negatively charged residues leading to a strongly reduced self-interaction 

propensity of the 4-fold mutant S155D N157D Q159D T163D, resulting in 74 % of the self-

interaction propensity of the wildtype (Table S3). Unexpectedly, all variants of the light 

chain showed an improved target binding behavior, indicating that not only the CDRs of a 

mAb contribute to target binding. Because this region did not light up in paratope mapping, 

we hypothesize that this segment of the light chain contributes to target binding by 

conformational effects. Similar effects were reported for the constant region of an 

immunoglobulin heavy chain.43 Another hypothesis is based on the introduction of charged 

and polar residues, which could mediate additional interactions with the antigen. 

Additionally, the four fold light chain variant showed decreased off-target binding behavior 

which was not observed by the single mutations. 

In summary, the variants which were engineered based on the HDX-MS results showed 

decreased self-interaction propensity if one positive charge was introduced in the hot spot 

1 or 3. Additionally, self-interaction was reduced for variants in which more than one 

negatively charged residue was introduced in the region flanking the HCDR3. But a 

reduction in self-interaction was not necessarily accompanied by a reduction in off-target 

binding. Thus, HDX-MS results guided towards engineered mutants with reduced self-

interaction, several of which additionally showed improved target binding or reduced off-



Generation of mAb variants with less attractive self-interaction but preserved target binding 

by well-directed mutation 

 

113 

 

 

target binding. Contrary to that, changes in the hydrophobic patch identified by homology 

modeling reduced self-interaction by reducing the overall off-target binding behavior of the 

protein. Both approaches guided to mAb variants with decreased self-interaction propensity 

independent of the engineering approach. The lab-extensive approach including HDX-MS 

method development and refinement helped to identify specific self-interaction sites 

outside of the CDRs and thus led to variants with maintained affinity. For rapid 

identification of unspecificity hot spots, homology modeling followed by protein surface 

analysis was a valuable tool which can save cost and effort in the laboratory. But 

engineering may compromise the target binding properties because the paratope is not 

specified in silico. Further, homology modeling includes only the Fab region and cannot 

take Fab-Fc interactions or conformational effects into account. 
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Table 2   Characterization of mAb variants engineered based on HDX-MS analysis: Experimental parameters 

were compared to wildtype: (Self-interaction, Target binding: ↓↓ decreased >2SD, ↓ decreased 

>1SD, ≈ comparable, ↑ increased >1SD, ↑↑ increased >2SD; Off-target binding: ↓↓ < 50 %, ↓ < 

75 %, ≈ comparable, ↑ > 125 %; ↑↑ > 150 %). Absolute values can be found in the supplemental 

material in table S3. 

Hot 

spot 
mAb variant 

Domain 

/ 

Chain 

Self-

interaction 

Off-

target 

binding 

Target 

binding 

1 

Y102D 

Fab/HC 

≈ ↓ ↑↑ 

Q105D ≈ ≈ ↑↑ 

L108D ≈ ≈ ↑↑ 

Q105D L108D ↓↓ ≈ ↑ 

Y102D Q105D L108D ↓ ↓↓ ↑↑ 

Y102R ↓ ↑↑ ↑ 

Q105R ↓↓ ≈ ≈ 

L108R ↓↓ ↑↑ ↑ 

R100aD ↓ ↓↓ ↓ 

R100aD Y102D ≈ ↓↓ ↓↓ 

R100D R100aD ↓ ↓↓ ↓↓ 

2 

V379D 

Fc/HC 

↓↓ ↑ ↑↑ 

E380R ≈ ↑↑ ↑ 

E382R ≈ ↑↑ ≈ 

N384D ↓ ↑ ≈ 

3 

S155D 

Fab/LC 

≈ ↑ ↑↑ 

S155R ↓↓ ↑ ↑↑ 

N157D ↓ ↑↑ ↑↑ 

Q159D ↓ ↑ ↑↑ 

Q159E ≈ ↑ ↑↑ 

T163D ≈ ↑ ↑↑ 

T163R ≈ ↑↑ ↑↑ 

S155D N157D Q159D T163D ↓ ≈ ↑↑ 

 

5.4.7 Engineering of mAb variants based on results of HDX-MS and in 

silico surface analysis 

Because both, the in silico approach and the in vitro HDX-MS approach resulted in mAb 

variants with improved properties regarding self-interaction, off-target binding and 
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apparent target binding affinity, we additionally generated and analyzed variants 

combining input from both methodologies. Based on the low self-interaction propensity, 

we selected the G27R and T56D variants from the in-silico approach and combined them 

with Q105D, L108D and N384D from the HDX-MS approach, where these variants showed 

improved self-interaction behavior. Additionally, we chose N384D to generate a variant with 

mutations in both, Fab and Fc region. The analyzed combinations are shown in Figure 5. 

The pedigree visualizes how these new combined mAb mutants compare to the single 

mutants. All variants containing either G27R or T56D showed a decreased attractive self-

interaction propensity. For Q105D and L108D, a reduction of self-interaction was only 

observed if both mutations were introduced. The triple mutant G27R Q105D L108D showed 

the lowest self-interaction propensity. Additionally, target binding was improved. As 

shown for G27R, introduction of arginine at this position increased off-target binding also 

for the triple mutant. 

Based on the HDX-MS results a Fab-Fc interaction was hypothesized as a plausible self-

interaction mechanism, because both sites were identified within Fab and Fc domain of the 

wildtype mAb. For further evaluation, a mutation in the Fab domain (G27R) was combined 

with a mutation in the Fc domain (N384D). Interestingly, self-interaction was not further 

improved compared to the wildtype mAb and the G27R mutant. 

 

Figure 5  Pedigree of combination mutants containing heavy chain mutations G27R, T56D, Q105D, L108D and 

N384D. * - variants originate from in-silico approach, # - variants originate from HDX-MS approach. 

Self-interaction, target binding and off-target binding are shown in relation to the wildtype properties. 
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5.4.8 The effect of arginine and aspartate residues on mAb self-

interaction 

As shown in Tables 1 and 2, we generated variants containing either arginine or aspartate 

at distinct positions identified by surface analysis or HDX-MS. In total, we evaluated six 

pairs of this combination. Depending on the position, in 4 out of 6 cases the introduction 

of arginine decreased self-interaction more pronounced than the corresponding aspartate 

variant. In particular, this effect was observed for the region flanking HCDR3. Whereas the 

introduction of aspartate did not influence self-interaction at all, arginine drastically 

reduced attractive self-interaction. In two cases (G55 and T56), both mutations showed the 

same extent in reduction of self-interaction indicating that the addition of a charged residue 

itself influenced interaction propensity. As both mutations affected the HCDR2 region of 

the mAb reflecting the hot spot of off-target binding, this effect could be associated with 

the overall decrease in off-target binding. 

5.4.9 The effect of arginine residues on off-target binding 

Within our set of mAb variants, the introduction of arginine residues in HCDR1, HCDR2 

or in spatial proximity to HCDR3 increased off-target binding. Corresponding mutations 

to aspartate residues decreased this propensity. Thus our results confirmed former results 

by Tiller et al., who demonstrated that the enrichment of arginine residues in the CDRs of 

scFv contributed to non-specificity while target binding affinity was improved for variants 

containing arginine in the CDR.44 In particular, the introduction of arginine in HCDR1 

(G27R) led to more affine target binding but impaired off-target binding. However, self-

interaction propensity of this variant was significantly reduced. This finding demonstrates 

that self-interaction propensity is not necessarily connected to non-specificity. The 

increased off-target binding coming with G27R was also observed for variants containing 

this mutation in combination. Whereas off-target binding was not affected by the 

combination of Q105D and L105D, the addition of G27R increased off-target binding 

(Figure 5). Adding the G27R variation to the HCDR2 hydrophobic patch variant (T56D), 

which show substantially reduced off-target binding, did not lead to an increase 

highlighting the impact of this mutation on off-target binding. 
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5.5 Conclusions 

Here, we presented different, complementary approaches to study self-interaction of a mAb 

as input for a rational mutagenesis to reduce attractive self-interaction. We applied 

computational methods such as homology modeling and protein surface analysis of the Fab 

fragment to identify aggregation prone regions. This strategy enabled us to generate 

variants with decreased self-interaction by parallel maintaining target binding properties 

upon a single mutation. Additionally, we identified a hydrophobic patch in the HCDR2 

responsible for the increased off-target binding. As an alternative approach, we determined 

self-interaction sites via HDX-MS by comparing the H/D exchange at high and low protein 

concentration. The introduction of mutations in the identified self-interaction hot spots 

reduced the self-interaction propensity of the variants compared to the wildtype mAb. Only 

for a subset of the generated variants the decrease in self-interaction was accompanied by 

a reduction in off-target binding. Except for variants with modifications in HCDR3, all 

variants showed comparable or improved target binding. 

For our model system, in silico methodologies allowed us to identify residues within and 

close to the CDRs which could be addressed to reduce self-interaction. A hydrophobic 

patch in HCDR2 turned out to be additionally a hot spot for off-target binding. HDX-MS 

gave independent information on self-interaction sites even outside of the CDRs. This input 

helped to generate variants with in most cases reduced self-interaction, but concomitantly 

also affected target and off-target binding. For our mAb the introduction of one additional 

positive charge in form of an arginine in HCDR1 or HCDR2 reduced self-interaction, 

similar to the effect of introducing two negative charges (aspartates) flanking the HCDR3. 

In addition, the introduction of acidic residues also decreased off-target binding. If 

mutagenesis was guided by both, computational and in vitro experiments, we generated 

variants with properties improved in all investigated aspects, i.e. stronger target binding, 

lower attractive self-interaction propensity and reduced off-target binding, compared to the 

wildtype mAb. Thus, both approaches can be successfully applied to guide engineering 

with the aim to reduce self-interaction, and potentially influence additional parameters. In 

silico modeling provided information on CDR structures, exposed hydrophobic patches and 

suitable flanking residues amenable to engineering. Self-interaction sites were more 

specifically identified by HDX-MS experiments. As both approaches gave complementary 
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input for engineering, also combinatorial variants were generated, which mostly behaved 

as expected from the individual results obtained with the parental variants. Thus the most 

effective strategy for similar engineering campaigns should be to apply the combination of 

both approaches. 
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Supplementary data 

Table S1  Peptide list of paratope mapping 

Chain start end Sequence time ΔHX p-value 

Heavy Chain 46 58 EWMGGIIPIYGTA 1 -1.08 0.001 

46 58 EWMGGIIPIYGTA 10 -0.90 0.000 

46 58 EWMGGIIPIYGTA 60 -0.75 0.000 

46 58 EWMGGIIPIYGTA 240 -0.66 0.000 

48 59 MGGIIPIYGTAY 1 -1.08 0.001 

48 59 MGGIIPIYGTAY 10 -0.77 0.003 

48 59 MGGIIPIYGTAY 60 -0.81 0.000 

48 59 MGGIIPIYGTAY 240 -0.92 0.001 

50 59 GIIPIYGTAY 1 -1.09 0.001 

50 59 GIIPIYGTAY 60 -0.52 0.000 

50 59 GIIPIYGTAY 240 -0.53 0.001 

103 111 YVTYRRYWF 1 -0.85 0.001 

103 111 YVTYRRYWF 10 -0.80 0.009 

103 111 YVTYRRYWF 60 -1.18 0.000 

103 111 YVTYRRYWF 240 -1.33 0.000 

103 112 YVTYRRYWFD 1 -0.81 0.001 

103 112 YVTYRRYWFD 10 -0.79 0.009 

103 112 YVTYRRYWFD 60 -1.18 0.000 

103 112 YVTYRRYWFD 240 -1.43 0.000 

103 113 YVTYRRYWFDY 1 -1.11 0.000 

103 113 YVTYRRYWFDY 10 -0.68 0.000 

103 113 YVTYRRYWFDY 60 -1.59 0.000 

103 113 YVTYRRYWFDY 240 -1.70 0.000 

104 113 VTYRRYWFDY 1 -0.80 0.000 

104 113 VTYRRYWFDY 10 -0.71 0.010 

104 113 VTYRRYWFDY 60 -1.35 0.000 

104 113 VTYRRYWFDY 240 -1.64 0.000 

106 113 YRRYWFDY 1 -0.45 0.000 

106 113 YRRYWFDY 60 -1.09 0.000 

106 113 YRRYWFDY 240 -1.35 0.000 

Criteria for significant differences of ΔHX: 

Pooled standard deviation sp = 0.135, standard error of the mean SEM = 0.11, Confidence criteria 

for ΔHX values were calculated by following equation: |Δ𝐻𝑋|>𝑘×𝑆𝐸𝑀 using k = -3.75 according 

to Student’s t-distribution (One-tailed, α = 0.01, df = 4) 
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Table S2  Characterization of mAb variants generated based on in silico surface analysis -  Absolute values 

mAb variant Region 

Self-interaction 

[%] 

Off-

target 

binding 

[%] 

Target binding 

KD
app [nM] 

Average SD Average SD 

Wildtype --- 100.0 13.9 100 7.7 1.0 

I52R 

HCDR2 

83.0 4.0 

 

5.9 0.8 

I53R 70.6 2.0 6.6 0.2 

Y54R 67.6 2.0 7.4 0.4 

Y58R 67.9 3.0 7.3 0.4 

G55R 50.0 2.0 180 6.0 0.2 

G55D 66.0 8.0 
 

6.8 0.6 

T56R 75.4 2.0 5.7 0.4 

T56D 50.4 2.0 25 5.9 0.6 

I52A I53A Y54A Y58A 127.8 3.0 8 9.7 0.5 

I52A I53A Y54S Y58S 110.0 3.0 16 11.1 0.4 

I52V I53V Y54A Y58A 86.2 3.0 18 9.8 0.6 

I52V I53V Y54S Y58S 63.4 3.0 12 9.7 0.6 

W100cV 
HCDR3 

135.5 2.0 67 5.8 0.2 

W100cS 124.8 1.0 67 7.7 0.4 

G27R HCDR1 48.8 2.0 161 5.4 0.7 

G27R T56D HCDR1/HCDR2 85.7 7.4 61 6.3 0.8 
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Table S3   Characterization of mAb variants engineered based on HDX-MS analysis – Absolute values 

Hot 

spot 
mAb variant 

Domain 

/ 

Chain 

Self-interaction 

[%] 

Off-

target 

binding 

[%] 

Target binding 

[nM] 

Average SD Average SD 

--- Wildtype --- 100.0 13.9 100 7.7 1.0 

1 

Y102D 

Fab/HC 

100.0 7.7 64 5.3 0.5 

Q105D 96.0 8.0 120 5.3 0.7 

L108D 88.0 5.0 118 5.3 0.5 

Q105D L108D 58.6 2.3 99 6.0 0.5 

Y102D Q105D L108D 81.4 1.9 38 5.6 0.6 

Y102R 73.2 2.0 180 5.8 0.8 

Q105R 65.7 2.5 119 7.0 0.9 

L108R 69.2 3.7 171 6.6 0.5 

R100aD 76.4 1.2 1 9.6 0.6 

R100aD Y102D 90.7 4.5 1 11.1 0.4 

R100aD R100 77.8 2.3 1 22.1 1.0 

2 

V379D 

Fc/HC 

53.5 0.8 140 4.5 0.9 

E380R 96.1 5.0 176 6.6 0.7 

E382R 90.9 4.4 183 7.2 0.8 

N384D 8.9 0.1 144 7.2 0.7 

3 

S155D 

Fab/LC 

95.2 8.8 144 4.0 0.7 

S155R 71.6 2.8 135 5.5 0.9 

N157D 82.4 1.5 160 4.7 0.8 

Q159D 85.3 3.7 139 4.7 0.6 

Q159E 95.8 1.5 140 4.7 0.6 

T163D 90.9 4.7 144 5.1 0.7 

T163R 93.0 3.9 151 4.7 0.6 

S155D N157D Q159D 

T163D 

74.1 1.8 119 5.4 0.8 
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Table S4. Peptide list of self-interaction sites mapping 

Chain start end Sequence time ΔHX p-value 

Heavy Chain 103 112 YVTYRRYWFD 10 -0.925 0.000 

103 113 YVTYRRYWFDY 10 -0.595 0.000 

104 119 VTYRRYWFDYWGQGTL 2 -0.761 0.001 

104 119 VTYRRYWFDYWGQGTL 10 -0.806 0.000 

106 119 YRRYWFDYWGQGTL 2 -0.589 0.002 

106 119 YRRYWFDYWGQGTL 10 -0.653 0.000 

107 119 RRYWFDYWGQGTL 10 -0.592 0.000 

363 387 EEMTKNQVSLTCLVKGFYPSDIAVE 10 -0.627 0.008 

387 405 EWESNGQPENNYKTTPPVL 2 -0.692 0.000 

388 405 WESNGQPENNYKTTPPVL 2 -0.620 0.001 

Light Chain 150 173 KVDNALQSGNSQESVTEQDSKDST 2 -1.069 0.001 

150 173 KVDNALQSGNSQESVTEQDSKDST 10 -1.101 0.000 

156 173 QSGNSQESVTEQDSKDST 2 -0.560 0.007 

163 179 SVTEQDSKDSTYSLSST 2 -0.576 0.003 

163 179 SVTEQDSKDSTYSLSST 10 -0.580 0.003 

163 180 SVTEQDSKDSTYSLSSTL 2 -0.584 0.000 

163 180 SVTEQDSKDSTYSLSSTL 10 -0.637 0.000 

168 193 DSKDSTYSLSSTLTLSKADYEKHKVY 10 -0.652 0.005 

168 195 DSKDSTYSLSSTLTLSKADYEKHKVYAC 10 -0.782 0.000 

Criteria for significant differences of ΔHX: 

Wildtype mAb at pH 7.0 

Pooled standard deviation sp = 0.183, standard error of the mean SEM = 0.15, Confidence 

criteria for ΔHX values were calculated by following equation: |Δ𝐻𝑋|>𝑘×𝑆𝐸𝑀 using k = -

3.75 according to Student’s t-distribution (One-tailed, α = 0.01, df = 4) 

Wildtype mAb at pH 5.0 

Pooled standard deviation sp = 0.208, standard error of the mean SEM = 0.17, Confidence 

criteria for ΔHX values were calculated by following equation: |Δ𝐻𝑋|>𝑘×𝑆𝐸𝑀 using k = -

3.75 according to Student’s t-distribution (One-tailed, α = 0.01, df = 4) 

G27R variant at pH 7.0 

Pooled standard deviation sp = 0.107, standard error of the mean SEM = 0.09, Confidence 

criteria for ΔHX values were calculated by following equation: |Δ𝐻𝑋|>𝑘×𝑆𝐸𝑀 using k = -

3.75 according to Student’s t-distribution (One-tailed, α = 0.01, df = 4) 



Resolving high self-interaction propensity of therapeutic mAbs by in silico surface analysis 

and rational engineering 

 

127 

 

 

Chapter 6 Resolving high self-interaction propensity 

of therapeutic mAbs by in silico surface analysis and 

rational engineering 

 

M. Domnowski1,2, J. Binder1, F. Kummer2, J. Reindl2, L. Lehmann2, M. Satzger2, 

J. Jaehrling2, W. Frieß1 

 

1Department of Pharmacy: Pharmaceutical Technology and Biopharmaceutics; Ludwig-

Maximilians-Universitaet Muenchen, Butenandtstrasse 5, 81377 Munich, Germany   

2MorphoSys AG, Semmelweisstraße 7, 82152 Planegg  

 

Author contributions: 

M.D., J.J. and W.F. conceived and designed the study. M.D. conducted and analyzed 

homology modelling, SI-BLI, mAb production and protein-sol calculations, J.B. conducted 

homology modelling, F.K. and L.L. conducted mAb production, J.R. performed mAb 

cloning, M.S. performed and analyzed 3P measurements, J.J. conducted and analyzed SPR 

experiments. M.D., J.J. and W.F. analyzed and interpreted the data and contributed to the 

writing of the manuscript.  

Keywords: Antibody; Protein; Self-interaction; Self-association; Mutagenesis; AggScore; 

Protein-sol 

Abbreviations: HIC – Hydrophobic Interaction Chromatography; CIC – Cross-Interaction 

Chromatography; CSI – Clone Self-Interaction; AC-SINS – Affinity-Capture Self-

Interaction Nanoparticle Spectroscopy; SI-BLI – Self-Interaction Bio Layer 

Interferometry; CDR – Complementary Determining Region; DSF – Differential Scanning 

Fluorimetry; 3P – Protein Panel Profiling 



Resolving high self-interaction propensity of therapeutic mAbs by in silico surface analysis 

and rational engineering 

 

128 

 

 

6.1 Abstract 

Strong attractive self-interaction of monoclonal antibodies (mAbs) poses the risk for 

limited solubility, increased aggregation propensity, and high viscosity at elevated protein 

concentration. We describe the improvement of two strongly self-interacting wildtype 

mAbs which are related, have the same target and show these adverse properties. Based on 

homology modeling and calculation of aggregation scores we designed and generated 26 

variants. Self-interaction as well as target and off-target binding were characterized. 

Hydrophobic patches affected both self-interaction, as well as target binding. The LCDR3 

hosts a self-interaction hot spot whereas a hydrophobic patch in the HCDR3 mediated target 

binding. Variants based on rational mutagenesis within the LCDR3 showed improved self-

interaction behavior at a maintained highly affine target binding. The experimental results 

were compared to the mAbs’ biophysical properties predicted by the algorithm of protein-

sol. Protein-sol was able to distinguish between the model systems but showed limitations 

in its capability to predict the self-interaction behavior of the variants. Thus the approach 

of in silico identification of aggregation hot spots and subsequent generation and 

experimental characterization for mAb variants proved to be most suitable to achieve leads 

with low self-interaction and off-target binding as well as high target affinity during 

candidate selection. 

6.2 Introduction 

Attractive self-interaction processes of mAbs can be key driver for native oligomerization.1 

These oligomers can form clusters which entail a tremendous increase in viscosity2–4, an 

enhanced tendency for aggregation5 as well as downstream processing challenges.6 Each 

domain of a mAb molecule can be involved in the self-interaction processes 3, 7–14 which 

are driven by both, electrostatic and hydrophobic forces.11, 15, 16 Formulation factors such 

as pH and excipients influence the properties of the molecule and consequently impact 

aggregation propensity and solution viscosity.9, 17–23 However, formulation development is 

usually initiated after lead candidate selection. At earlier project stages, during the selection 

process itself, changes within the protein sequence are still possible to address an enhanced 

self-interaction propensity. 
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Mutations can be introduced based on rationales derived from molecular modelling or 

experimental data.8, 16, 24, 25 In silico methodologies have been developed to predict 

biophysical properties based on primary sequence alone, or in combination with structural 

information of homology models. Recently, Hebditch and Warwicker published a machine 

learning approach trained with the biophysical properties of 137 clinical stage or approved 

antibodies.26, 27 This tool, called protein-sol, is available as web application and provides 

predictions based on the primary sequence of the variable fragment. Prediction of 

aggregation prone regions (APRs) is also possible with AggScore which is based on 3D 

homology models.28 The input structure is used to calculate the energetic contribution of 

each residue to surface patches which can be hydrophobic or electrostatic in nature. Sankar 

et al. applied the AggScore algorithm on selected biophysical parameters of the dataset 

published by Jain et al. and observed correlations between hydrophobic interaction 

chromatography, cross interaction chromatography and standup monolayer adsorption 

chromatography with AggScore.27, 28 Mutations based on computational methodologies 

were successfully applied to improve solubility and reduce viscosity at high concentration 

for mAbs. This can be achieved by disruption of a hydrophobic patch and neutralization of 

a negatively charged surface by single mutation16 or by introduction of asparagine and 

positively charged residues such as arginine or lysine without negatively affecting target 

binding.29 

The mAb CNTO607 has been used in various studies as an example for a mAb with low 

solubility and high self-interaction propensity.24, 30, 31 A hydrophobic triad within the 

HCDR3 (F99H100W100a) was shown to mediate aggregation of CNTO607.25 Engineering of 

the hydrophobic patches increased solubility but diminished target binding, e.g. variants 

including W100aA 24 and F99A H100AW100aA, also called mAbVI. 25 The precursor of 

CNTO607, a phage display derived mAb against hIL-13 from the Human Combinatory 

Antibody Library HuCAL GOLD32 is used in the present study and is referred to as mAb1. 

The second mAb, mAb2, targets the same antigen.The two mAbs show a sequence 

similarity of 99.5 % and exhibited precipitation in typical platform formulations like PBS 

and phase separation after storage at 2-8°C during downstream processing. 

Previous studies showed the generation of variants of CNTO607, which include mutations 

within the HCDR3 as the most striking hydrophobic patch of this mAb. By mutagenesis of 

this target binding region, the variants showed impaired antigen affinity. Therefore, in this 
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study we applied homology modelling and computational tools to understand the structure 

of the molecules and identify critical residues as a starting point for engineering. Variants 

of the two mAbs were generated with the aim of improving self-interaction behavior while 

maintaining the high affinity for the target, and the low off-target binding propensity. In 

addition to the hydrophobic patch of the HCDR3, we identified an additional hydrophobic 

patch in the LCDR3 which was not involved in target binding but in self-interaction 

processes. The aggregation propensity calculated based on AggScore corresponded with 

self-interaction determined by SI-BLI. The introduction of either positively or negatively 

charged residues in spatial proximity of the hydrophobic patches reduced self-interaction. 

By using computational techniques, lab and cost extensive techniques to identify self-

interaction hot spots such as hydrogen deuterium exchange mass spectrometry were 

avoided, and distinct sequences for rational mutagenesis were defined faster. Our data 

extend the already published data set for CNTO607 and help to understand self-interaction 

processes for challenging mAbs based on structural analysis. Furthermore, we challenged 

our approach of experimentally generating and characterizing mAb variants by comparing 

our results with physico-chemical properties predicted by the machine learning tool 

protein-sol, which would have been a faster way to find superior variants. 

6.3 Material and Methods 

6.3.1 mAb cloning 

Genestrings of mutated VL and VH were purchased from Thermo Fisher Scientific (MA). 

The DNA fragments were designed with a 21 bp overlap next to restriction enzyme sites. 

After Gibson cloning, the constructs were transformed in chemically competent DH5alpha 

cells. From resulting single colonies, Miniprep Plasmid DNA was prepared and sequenced. 

After consolidation via 50 pg retransformation the final plasmid Maxiprep DNA was used 

for transfection and expression of the constructs. 

6.3.2 mAb production 

The wildtype mAb was expressed in HKB11 stable pool expression system for 6 days. Cell 

culture supernatant was applied to a MabSelect SuRe column of 32 ml column volume 

(CV) (Cytiva, MA) equilibrated with 0.1 M sodium phosphate buffer pH 6.0 (NaPhos pH 
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6). After washing with 5 CV NaPhos pH 6, product was eluted with 0.1 M sodium acetate 

buffer pH 3.0. Protein containing fractions were pooled and adjusted to pH 5 with 2 M 

sodium acetate solution. The concentration was determined by UV absorbance at 280 nm 

(molar extinction coefficient 211580 M-1 cm-1, 146.6 kDa) using Nanodrop 2000 (Thermo 

Fischer Scientific, MA). 

The protein containing pool was subjected to buffer exchange using Sephadex G-25 in PD-

10 desalting columns (Cytiva, MA) to the final formulation buffer (15 mM histidine 

hydrochloride pH 6.0). The concentration was determined by UV absorbance and adjusted 

to 20 mg/mL utilizing Amicon Ultra 15 centrifugal filter units (50 kDa cut-off, Merck 

KGaA, Germany). The final product was sterile filtered using a 50 mL Steriflip (Merck 

KGaA, Germany). 

The protein variants were expressed in HEK293 cells for 6 days after transfection. Cell 

culture supernatants were applied to HiTrap MabSelect SuRe columns (Cytiva, MA) 

installed on an Äkta Xpress system equilibrated with NaPhos pH 6. Three washing steps 

were performed (wash 1: 5 CV NaPhos pH 6, wash 2: 5 CV NaPhos pH 6 + 1.5 M NaCl, 

wash 3: 5 CV NaPhos pH 6). Product was eluted with 0.1 M sodium acetate buffer pH 3 

and protein containing fractions were pooled without pH adjustment. The protein 

containing pools were subjected to buffer exchange using Sephadex G-25 in PD-10 

desalting columns (Cytiva, MA) to the final formulation buffer (15 mM histidine 

hydrochloride pH 6.0). The concentration was determined by UV absorbance at 280 nm 

using an average molar extinction coefficient of 208356 M-1 cm-1 and an average molecular 

weight of 146.6 kDa using Nanodrop 2000 (Thermo Fischer Scientific, MA). The final 

products were sterile filtered using Microsep Advance Centrifugal Devices (PALL, NY) 

and analyzed for monomer content by SEC-MALS. All variants contained a monomer 

portion of > 90 %. 

6.3.3 Self-interaction Bio layer interferometry (SI-BLI) 

SI-BLI was performed as described previously.33 Briefly, anti-hIgG Fc capture biosensors 

were used on an Octet HTX system (Sartorius AG, FortéBio, CA) in a 384 well plate 

format. A baseline was established in PBS (Gibco), followed by capture of the mAb of 

interest at 25 nM in PBS until the BLI signal increased by approximately 1 nm followed 
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by saturation of the sensor with 1 μM human Fc in PBS. Subsequently, a second baseline 

was acquired in the formulation composition, followed by an association step with 2 μM 

mAb in the same formulation. The response at equilibrium normalized to the amount of 

captured mAb (Rrel) was used for further calculations. As control, sensors saturated with 

human Fc without IgG capture were used. 

6.3.4 Homology Modelling and Protein Surface Analysis 

Homology models of the wildtype mAb were generated with BioLuminate (Schrödinger 

Release 2019-4, Schrödinger LLC, NY). Homology modelling of the Fab fragment was 

based on the published crystal structure of CNTO607 (PDB: 3G6D) achieving a composite 

score of 0.99 for mAb1 and 0.97 for mAb2. A restrained minimization using the OPLS3e 

force field was performed. For both mAbs, loops of the LCDR1 to the HCDR2 were 

modelled by automated cluster selection and the HCDR3 by a built-in PRIME module for 

H3 prediction. The AggScore was calculated with the Protein Surface Analysis module. In 

silico mutations were generated with the residue-scanning module followed by backbone 

minimization and calculation of the solvent exposed surface area (SASA). Residue specific 

AggScores within the regions were added up for each model. 

6.3.5 Protein-sol Analysis 

Based on the protein-sol algorithm, regression values of 12 biophysical properties were 

calculated for our data set (https://protein-sol.manchester.ac.uk/abpred).26 The variants 

were ranked regarding self-interaction, off-target binding and apparent temperature of 

unfolding. Afterwards, we ranked the mAbs of our data set based on our own experimental 

SI-BLI, protein panel profiling (3P) and nanoDSF results. Spearman correlation 

coefficients were calculated by PRISM 5 (GraphPad, CA). Raw data for apparent unfolding 

temperature and results from protein panel profiling can be found as supplemental material 

(Table S1). 
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6.3.6 Protein Panel Profiling (3P) 

The method was performed as described before.34 Briefly, off target binding of MAb 

samples was assessed in a plate-based assay, using electrochemiluminescence readout. A 

panel of 32 proteins and controls including highly abundant serum proteins, different 

cytokines and cell-surface receptors, proteins bearing different post-translational 

modifications (phosphorylation, glycosylation), representatives for different pI values 

(ranging from 2.8 to 10.7), and vesicles prepared from HKB11 cells and Baculovirus 

particles35 as well as protein A, anti-human Fc and anti-human Fab antibodies, lysozyme 

and target proteins of the sample MAbs as controls was coated onto two MSD standard 

384-well plates (Meso Scale Discovery, MD) per assay, each row coated with one protein 

or control. Subsequently, the plate was blocked with 3 % (w/v) BSA in PBS. Each mAb 

sample was assessed at 10 nM and 100 nM. For referencing purposes, an anti-lysozyme 

mAb was included known to show negligible non-specific binding. ECL-labeled anti-

human Fab antibody was added for detection, and ECL-signals acquired using a Sector 

Imager S 600 instrument (Meso Scale Discovery, MD). For evaluation, binding signals of 

the mAb of interest were divided by the signal of the anti-lysozyme mAb on the same 

protein, resulting in a binding ratio. The sum of binding ratios on all off target probes (i.e. 

excluding specific antigens and controls) at 10 nM and 100 nM mAb were used as a metric 

for off target binding of the respective mAb. 

6.3.7 Target Binding Analysis by SPR 

Affinities were determined in kinetic experiments using a Biacore 8K+ instrument (Cytiva, 

MA). 0.01 M HEPES pH 7.4 with 0.15 M NaCl, 3 mM EDTA, and 0.05% (v/v) polysorbate 

20 was used as assay buffer. Human IL-13 was produced and purified at MorphoSys and 

contained at 93% monomer by SEC-MALS. A high-capacity, high–affinity capture surface 

was prepared by covalently immobilizing MabSelect SuRe ligand (Cytiva, MA) at high 

density onto all flowcells and channels of a CM5 SPR chip (BR-1005-30; approx. 3700 

RU). With each mAb (approx. 70 RU) captured onto one channel of the sensor, serial 

dilutions of hIL-13 (up to seven concentrations; highest concentration between 100 nM and 

900 nM, depending on the KD of the individual interaction) were analyzed in separate 

cycles for 240 s at 30 µL/min with subsequent 1200 s dissociation phase (multi-cycle 
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kinetics). At the end of each cycle, mAb and remaining bound antigen were completely 

removed from the sensor by two 30 s injections of Glycine / HCl pH 1.5. The sensorgrams 

were fitted to a monovalent binding model with both rate constants (kon, koff) fitted globally 

and bulk RI fixed at 0 RU. Sensorgrams not contributing to the kinetics (insignificant or no 

signal) were excluded from evaluation. All interactions were characterized at least in 

duplicate (n=2 to n=4). 

6.3.8 Nano Differential Scanning Fluorimetry (nanoDSF) 

1 mg/ml mAb samples were filled in standard nanoDSF glass capillaries and measurements 

were performed using a Prometheus NT.48 (NanoTemper Technologies, Germany). 

Intrinsic fluorescence at 330 nm and 350 nm was evaluated during a temperature ramp from 

20 °C to 90 °C at 1 K/min. Transition onset and inflection points were determined from the 

first derivative using the PR.Control software (NanoTemper, Germany). 

6.4 Results 

6.4.1 Identification of self-interaction sites by in silico surface analysis 

We generated homology models of mAb1 and mAb2 using the published crystal structure 

of CNTO607.36 After model refinement, surface analysis was performed to calculate 

AggScores and SASA of residues in the CDRs (Table 1). 

For mAb1, aggregation prone regions were identified in the LCDR3 and the HCDR3 

(Figure 1A and B). The identification of the hydrophobic triad containing phenylalanine, 

histidine and tryptophan (F99HW100a) in the HCDR3 as aggregation hot spot confirmed 

previously published data for CNTO607.24, 25 The SASA of W100a was the highest in this 

patch pointing towards hydrophobic interactions mediated by this residue as the potential 

driver for aggregation. A patch consisting of methionine (M93) and valine (V94) in the 

LCDR3 was identified as second hydrophobic, aggregation prone region with M93 showing 

the highest solvent accessibility. Consequently, we selected M93 in the LCDR3 and the 

hydrophobic triad of the HCDR3 containing W100a for structure guided engineering. 

Additionally, we generated the mAb formerly published as CNTO607 and its variants 

mAbVI and W100aA in order to compare our data set to literature. The variants which 
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include alanine mutations in the HCDR3 were shown to have an improved solubility but 

diminished target binding. 24, 25 

For mAb2, two major aggregation prone regions were identified in the LCDR3 and the 

HCDR3 (Figure 1C and D). In the LCDR3, valine (V94) and tyrosine (Y95) showed the 

highest AggScores and highest surface accessibility. In the HCDR3, the patch 

F99VYLFF100d contributed most to the surface exposed hydrophobicity. In addition to these 

two major hot spots, hydrophobic residues phenylalanine and tyrosine in the LCDR1 

(F31Y32) contributed to an aggregation prone region but the AggScores were lower than in 

LCDR3 and HCDR3. To this end, F99VY100 in the HCDR3 and V94 and Y95 in the LCDR3 

were mutated and additionally, aspartate (D27) in the LCDR1, which is in spatial proximity 

to its hydrophobic residues. As shown by Teplyakov et al., the HCDR1 plays a subordinate 

role in IL-13 binding. Thus, we chose phenylalanine (F27) as the most solvent accessible 

residue of the HCDR1 for further engineering to improve target binding affinity by 

introducing tryptophan as a more hydrophobic amino acid to enhance the interaction with 

IL-13. The generated and characterized mAb variants are shown in Table 2. 

 

Figure 1  Homology models of Fab fragments of mAb1 and mAb2. Grey: Light Chain; Blue: Heavy Chain; Red: 

Aggregation prone residues (high AggScore). A) Homology model and surface analysis of mAb1; B) 

Aggregation hot spot of mAb1 in HCDR3 (F99HW100a) and LCDR3 (M93V94); C) Homology model and 

surface analysis of mAb2; D) Aggregation hot spot of mAb2 in HCDR3 (F99VY100a) and LCDR3 

(V94Y95). 
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Table 1   AggScores and SASA of residues located in hydrophobic patches of mAb1 and mAb2.  

Protein Area Residue SASA [Å2] AggScore 
m

A
b

1
 

L
C

D
R

3
 

W91 50.5 4 

D92 20.5 8 

M93 165.5 9 

V94 91.0 6 

T95 45.6 0 

D95a 8.6 0 
H

C
D

R
3

 

A98 14.0 12 

F99 85.9 17 

H100 58.2 18 

W100a 146.5 7 

D100b 38.8 2 

M100c 0.0 0 

Q100d 7.7 0 

P100e 2.3 0 

D101 11.0 0 

Y102 112.1 0 

m
A

b
2
 

L
C

D
R

1
 

S24 40.7 0 

G25 17.6 0 

D26 116.3 0 

N27 7.9 0 

L28 1.1 0 

G29 56.8 0 

T30 117.7 6 

F31 47.8 8 

Y32 83.8 8 

L
C

D
R

3
 

S90 0.0 0 

F91 0.2 0 

D92 10.2 1 

T93 5.2 5 

V94 87.4 9 

Y95 173.1 10 

H
C

D
R

1
 

G26 45.3 0 

F27 109.8 0 

T28 82.3 0 

F29 7.6 0 

S30 56.6 0 

S31 57.2 0 

Y32 13.3 0 

H
C

D
R

3
 

F97 86.3 4 

G98 12.8 0 

F99 69.0 12 

V100 0.0 0 

Y100a 128.8 18 

L100b 49.1 21 

F100c 105.5 21 

F100d 45.2 17 

D101 3.6 0 

Y102 43.9 4 

 



Resolving high self-interaction propensity of therapeutic mAbs by in silico surface analysis 

and rational engineering 

 

137 

 

 

6.4.2 AggScore analysis of variants of mAb1 and mAb2 

AggScores of mAb variants were calculated by surface analysis of homology models 

(Table 3). For mAb1, AggScores were decreased for the LCDR3 variants mAb1-6 (M93A) 

and mAb1-7 (M93R) as well as for the HCDR3 variants W100aA, mAbVI (A99AA100a), 

mAb1-4 (F99HE100a) and mAb1-5 (Y99HH100a).  

LCDR3 mutants of mAb2, V94Y95 to A94A95 (mAb2-5 and mAb2-12) and Y95 to T95 

(mAb2-15) showed a markedly decreased AggScore compared to the wildtype and 

complete removal of hydrophobic residues as embodied by e.g. mAb2-6 (V94Y95 to E94S95) 

reduced the AggScore more than the introduction of a less hydrophobic residue e.g. in 

mAb2-7 (V94Y95 to E94L95). Also the HCDR3 mutation of mAb2 in case of mAb2-1 to 

mAb2-4, mAb2-8 to mAb2-10 and mAb2-15 led to lower AggScore. As observed for 

LCDR3, the complete removal of the hydrophobic residues in the HCDR3 represented by 

mAb2-1 (A99A100A100a) had a more significant impact than a decrease in hydrophobicity by 

introducing less hydrophobic residues as reflected in mAb2-9 (V99A100T100a). 

6.4.3 Conformational properties of mAb1, mAb2 and variants thereof 

To evaluate correlations of the change in AggScores with experimental data, we produced 

all variants of mAb1 and mAb2 and performed nanoDSF for determination of unfolding 

temperatures, protein panel profiling for off-target binding analysis, SI-BLI for the 

determination of self-interaction and SPR to evaluate target binding kinetics and affinity 

(Table S1 and Table 3). The wildtype proteins mAb2 and mAb3 differed in their unfolding 

temperatures by approximately 10 K. The Tm values of the mAb1 and mAb2 variants were 

in a range of ± 5 K and 3 K respectively of the wildtype Tm (see supplemental material 

Table S1). Thus, all variants showed a similar conformational stability as the wildtype 

proteins.  
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Table 2:  Overview of the sequences of mAb1 and mAb2 as well as the generated variants thereof. 

mAb Variant LC 1-4 LCDR1 LC 76-81 LCDR3 HCDR1 HCDR2 HCDR3 Rationale 

mAb1 DIEL SGDNIGGTFVS GTQAE GTWDMVTNN GFTFNSYWIN WVSGIAYNSSNTLYADSVKG GLGAFHWDMQPDY  

CNTO607 SYEL     …DSSN…  Wu et al. (2010)25 

W100aA SYEL     …DSSN… AFHADM Bethea et al. (2012)24 

mAbVI SYEL  RVEAG   …DSSN… …AAAADM… Wu et al. (2010)25 

mAb1-1      …DSSN…  Removal of N-Glyc site 

mAb1-2       …AFVYDM… 

Change of hydrophobicity in 

HCDR3 

mAb1-3      …DSSN… …AFHLDM… 

mAb1-4      …DSSN… …AFHEDM… 

mAb1-5      …DSSN… …AYHHDM… 

mAb1-6    …DAVT…  …DSSN…  Change of hydrophobicity in 

LCDR3 mAb1-7    …DRVT…  …DSSN…  

mAb1-8  …TEVS    …DSSN…  Insertion of a charged residue 

mAb2 DIEL SGDNLGTFYVD GTQAE QSFDTVYPGI GFTFSSYGLS WVSSIVYSGSSTSYADSVGR EKFGFVYLFFDY  

mAb2-1       …GAAALF… 

Change in hydrophobicity in 

HCDR3 

mAb2-2       …GAASLF… 

mAb2-3       …GVESLF… 

mAb2-4       …GFHWLF… 

mAb2-5    …DTAA…    
Change in hydrophobicity in 

LCDR3 
mAb2-6    …DTES…    

mAb2-7    …DTEL…    

mAb2-8    …DTAA…   …GAAALF… 
Combination of HCDR3 and 

LCDR3 variants 
mAb2-9    …DTAA…   …GVATLF… 

mAb2-10    …DTES…   …GVESLF… 

mAb2-11    …DTAA… GWTF…   
Change in hydrophobicity of 

HCDR1 

mAb2-12  SGANL…  …DTAA…    

Change in hydrophobicity in 
LCDR3 and removal of 

potential salt bridge in LCDR1 

mAb2-13 DDEL       
Insertion of a charged residue 

mAb2-14 DDEL SGLDL…      

mAb2-15 DDEL SGLDL…  …DTVT…   …GAAALF… 

Change in hydrophobicity of 

LCDR3 and HCDR3 and 

insertion of charges in LCDR1 
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Table 3:  AggScore and experimental characteristics of mAb1, mAb2 and variants thereof. 

n.b. – no binding observed; HB – heterogeneous binding, best approximation of monovalent model applied; n.d. – not determined 

 AggScore Experimental data 

mAb Variant LCDR1 LCDR3 HCDR1 HCDR2 HCDR3 Rrel 
kon [1/M*s]  

( ±SE ) 

koff [1/s]  

( ±SE ) 

KD [nM] 

( ±SE ) 
Off-target binding 

mAb1 0 28 0 0 57 3.4 ± 0.5 1.08E+6 ( 8.02E+4 ) 1.68E-4 ( 5.61E-5 ) 0.15 ( 0.06 ) 55 

CNTO607 0 41 0 0 57 3.1 ± 0.2 1.34E+6 ( 1.79E+5 ) 8.95E-5 ( 9.23E-6 ) 0.07 ( 0.01 ) 68 

W100aA 0 28 0 0 37 2.7 ± 0.2 1.31E+6 ( 2.22E+5 ) 8.70E-3 ( 1.50E-4 ) 6.9 ( 1.1 ) 59 

mAbVI 0 43 0 0 0 1.8 ± 0.1 n.b. 70 

mAb1-1 0 28 0 0 57 3.9 ± 0.2 1.27E+6 ( 1.11E+5 ) 1.11E-4 ( 2.01E-5 ) 0.09 ( 0.02 ) 54 

mAb1-2 0 28 0 0 47 3.8 ± 0.2 1.10E+6 ( 1.11E+4 ) 3.85E-3 ( 2.73E-4 ) 3.5 ( 0.2 ) 59 

mAb1-3 0 29 0 0 55 3.1 ± 0.1 4.74E+6 ( 9.92E+5 ) 4.98E-3 ( 5.26E-4 ) 1.1 ( 0.1 ) 64 

mAb1-4 0 28 0 0 29 4.0 ± 0.1 5.46E+6 ( 7.76E+5 ) 3.43E-3 ( 1.56E-4 ) 0.65 ( 0.05 ) 55 

mAb1-5 0 28 0 0 28 2.3 ± 0.1 2.28E+6 ( 3.79E+5 ) 8.65E-3 ( 3.86E-4 ) 3.9 ( 0.5 ) 67 

mAb1-6 0 0 0 0 60 3.2 ± 0.1 1.54E+6 ( 9.57E+4 ) 1.39E-4 ( 4.57E-6 ) 0.09 ( 0.01 ) 57 

mAb1-7 0 0 0 0 60 2.3 ± 0.2 1.08E+6 ( 9.23E+4 ) 1.16E-4 ( 1.63E-5 ) 0.11 ( 0.02 ) 60 

mAb1-8 0 26 0 0 56 4.0 ± 0.1 1.71E+6 ( 1.73E+5 ) 6.43E-2 ( 9.13E-3 ) 37.2 ( 1.8 ) HB 56 

mAb2 51 65 0 29 175 3.0 ± 0.6 3.54E+4 ( 3.47E+3 ) 1.05E-4 ( 8.84E-6 ) 3.0 ( 0.3 ) 102 

mAb2-1 59 82 0 28 113 1.6 ± 0.1 n.b. 53 

mAb2-2 59 82 0 28 103 1.7 ± 0.1 n.b. 53 

mAb2-3 45 84 0 28 118 2.4 ± 0.2 n.b. 52 

mAb2-4 52 78 0 29 221 1.5 ± 0.1 9.59E+3 ( 1.62E+3 ) 8.96E-3 ( 7.55E-4 ) 978 ( 110 ) 57 

mAb2-5 64 1 0 28 181 1.5 ± 0.1 3.69E+4 ( 5.90E+3 ) 5.18E-4 ( 9.33E-6 ) 14.5 ( 2.5 ) 67 

mAb2-6 62 1 0 21 169 2.2 ± 0.1 3.75E+4 ( 5.50E+3 ) 5.04E-4 ( 1.18E-5 ) 14.0 ( 2.7 ) 55 

mAb2-7 65 10 0 26 169 1.6 ± 0.1 3.23E+4 ( 2.75E+3 ) 9.91E-4 ( 7.14E-5 ) 31.0 ( 2.7 ) 59 

mAb2-8 66 1 0 28 113 1.6 ± 0.1 n.b. 57 

mAb2-9 68 1 0 28 131 1.6 ± 0.2 n.b. 52 

mAb2-10 48 1 0 23 112 2.5 ± 0.1 n.b. 56 

mAb2-11 64 1 0 28 181 1.6 ± 0.1 2.64E+4 ( 7.63E+3 ) 4.59E-4 ( 2.32E-5 ) 13.5 ( 2.0 ) 61 

mAb2-12 57 1 0 28 181 0.9 ± 0.1 2.54E+4 ( 3.23E+3 ) 5.14E-4 ( 6.15E-5 ) 21.0 ( 5.5 ) 59 

mAb2-13 45 54 0 28 180 1.4 ± 0.1 2.09E+4 ( 2.01E+3 ) 2.58E-4 ( 1.01E-4 ) 11.8 ( 3.6 ) n.d. 

mAb2-14 49 54 0 28 180 1.8 ± 0.2 3.33E+4 ( 8.62E+3 ) 2.80E-4 ( 1.04E-4 ) 8.5 ( 2.7 ) 67 

mAb2-15 60 7 0 28 111 2.1 ± 0.3 n.b. 52 
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6.4.4 Evaluation of off-target binding by protein panel profiling (3P) 

We determined the proteins propensity to interact with a variety of proteins which differ in 

size, charge and origin.34 The sum of ratios of all variants were determined in a range of 52 

to 102 (Table S1), which is well below the value of >5000 for the positive control. Thus, 

all variants were regarded as non-critical in terms of off-target binding. 

6.4.5 Influence of the HCDR3 hydrophobic patch on self-interaction and 

target binding affinity of mAb1 

In order to enable a comparison with previous publications on the behavior of CNTO607, 

we generated the mAb variants mAbVI and W100aA which had shown an increased 

solubility in these studies.24, 25 Variant W100aA was shown to bind the target molecule with 

a 10-fold lower affinity.24 Target binding of variant mAbVI, which contains a triple alanine 

mutant in the HCDR3 (F99A H100A W100aA) was further reduced compared to CNTO607 

and W100aA.25 We analyzed self-interaction by SI-BLI and observed a lower self-interaction 

propensity for both variants of CNTO607 which correlated with published solubility data.  

We tried to maintain target binding by exchanging the hydrophobic residues phenylalanine 

and tryptophan by tyrosine, leucine, and histidine (mAb1-3, mAb1-5). Additionally, we 

added glutamic acid as negatively charged residue (mAb1-4). We observed slightly 

decreased target binding for all variants. The reduction in hydrophobicity of this patch led 

to less attractive self-interaction for mAb1-3 and mAb1-5. Because self-interaction 

propensity of mAb2 was less pronounced compared to mAb1, we generated variant mAb1-

2 containing the hydrophobic triad F99VY100a of mAb2 in the mAb1 backbone HCDR3. 

Self-interaction was not decreased for these variant but we observed a target affinity 

comparable to mAb2. Thus, we hypothesize that the HCDR3 is involved in target binding 

of both mAb1 and mAb2.  
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6.4.6 Influence of the LCDR1 and the LCDR3 hydrophobic patch on self-

interaction and target binding affinity of mAb1 

The LCDR1 showed a slightly hydrophobic surface element comprising phenylalanine 

(F31) and valine. We generated a mutant containing glutamic acid instead of phenylalanine 

to switch from a hydrophobic to a negatively charged surface (mAb1-8). This variant 

showed no significant changes in self-interaction behavior but a drastically decreased target 

binding. To evaluate the impact of the LCDR3 hydrophobic patch, we introduced alanine 

and arginine at position 93 instead of methionine (mAb1-6. mAb1-7). Both variants showed 

comparable target affinity, indicating that M93 was not involved in target binding. Self-

interaction was only slightly influenced for the alanine variant but decreased by the 

introduction of arginine. Based on these findings, a change in the hydrophobic patch in the 

LCDR3 reduces self-interaction of the mAb at maintained high target affinity. 

6.4.7 Influence of the HCDR3 hydrophobic patch on self-interaction and 

target binding affinity of mAb2 

mAb1 and mAb2 show a sequence similarity of 99.5 % but differ in their CDR 

composition. For mAb2, two major hydrophobic patches were determined in silico. Our 

targeted mutagenesis comprised the exchange of residues F99VY100a in the HCDR3 to less 

hydrophobic amino acid such as alanine (mAb2-1, mAb2-2) or valine (mAb2-3). To 

maintain the polar hydroxyl group of Y100a, serine containing mutants were generated 

(mAb2-2, mAb2-3). In addition, we introduced the hydrophobic triad of mAb1 in the mAb2 

HCDR3 (mAb2-4). 

With stronger depletion of the HCDR3 hydrophobicity the self-interaction propensity was 

significantly reduced for mAb2-1 and mAb2-2 whereas a less pronounced decrease of 

hydrophobicity (mAb2-3) led to little reduction of self-interaction (Table 3). All these 

variants with a reduced HCDR3 hydrophobicity lost affinity to the target molecule 

(exemplarily shown for mAb2-2 in Figure 2). Target binding of mAb2 appears to be 

mediated by the HCDR3, which indicates a comparable target binding mechanism to 

mAb1. Variant mAb2-4 contained the hydrophobic triad of mAb1 and CNTO607 and 

showed less self-interaction compared to the wildtype but reduced target binding affinity. 
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Based on AggScore calculation a higher self-interaction propensity could be expected. 

However, the lower target affinity of mAb2-4 may be due to conformational changes in the 

hydrophobic surface region which are not covered by AggScore calculations. 

 

Figure 2  SPR sensorgram overlays and applied monovalent fits of the interaction of human IL-13 with mAb2 

(A), the HDCR3 variant mAb2-2 (B), and the LCDR3 variant mAb2-5 (C). SPR sensorgram overlays 

of all mAbs are depicted in figure S1 and S2 in the supplementary data. 

6.4.8 Influence of the LCDR3 hydrophobic patch on self-interaction and 

target binding affinity of mAb2 

The variants mAb2-5, mAb2-6 and mAb2-7 were generated to illuminate the influence of 

the second hydrophobic patch identified for mAb2 in the LCDR3 on self-interaction 

propensity. The variants contained either alanine residues (A94A95, mAb2-5), charged and 
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polar residues glutamic acid and serine (E94S95, mAb2-6) or charged and hydrophobic 

residues glutamic acid and leucine (E94L95, mAb2-7) instead of the surface exposed 

hydrophobic residues V94Y95. All variants showed a decreased self-interaction propensity 

(Table 3). Target binding was reduced, especially for mAb2-7 (Figure 2C), but the effect 

was less drastic compared to mutations in the HCDR3. For further understanding, we 

generated a mAb2 variant that contained a double alanine mutation in the LCDR3 and a 

mutation to increase the HCDR1 hydrophobicity (F27W V94A Y95A, mAb2-11). Compared 

to the variant mAb2-5, which only contains the double alanine mutation, self-interaction 

and target binding affinity were not further influenced by the introduction of the tryptophan 

residue (Table 3), indicating that the phenylalanine F27 as the most surface exposed 

hydrophobic residue of the HCDR1 was neither directly involved in self-interaction nor in 

target binding processes. Because changes in both, HCDR3 and LCDR3 influenced self-

interaction propensity, we generated variants engineered in both hydrophobic patches 

(mAb2-8, mAb2-9 and mAb2-10). Self-interaction was not further reduced compared to 

single patch mutations, but all variants lost target binding affinity, which confirmed the 

involvement of the HCDR3 in hIL-13 binding. 

Next, we engineered variants with modified hydrogen acceptor and modified potential for 

electrostatic interactions (mAb2-12 to mAb2-15). In mAb2-12, an aspartate to alanine 

mutation (D27A) was introduced in addition to the LCDR3 mutations V94A Y95A. Self-

interaction was further reduced compared to mAb2-5, indicating that electrostatics are 

involved in self-interaction. Variants mAb2-13 to mAb2-15 contained a modified N-

terminal sequence of the light chain. We determined a spatial proximity of this area to the 

hydrophobic patch in the LCDR3 in silico and hypothesized that the introduction of a 

negative charge may influence self-interaction. As shown for mAb2-13, self-interaction 

was drastically decreased compared to wildtype mAb2 and target affinity was slightly 

reduced. Adding further mutations did not decrease self-interaction, but affected hIL-13 

binding, which was lost for mAb2-15. 
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6.4.9 Can machine learning approaches predict results of our 

engineering data set? 

Protein-sol is a machine learning approach to predict the biophysical properties of 

antibodies based on the sequence of their variable fragments.26, 27 Using tools for predicting 

the effect of distinct mutations can save costs and time compared to experimental 

mutagenesis. Thus, to challenge our approach, we compared our experimental results of the 

mAb variants generated based on homology modeling and AggScore evaluation with 

predictions of protein-sol. We focused on most similar methods and parameters with the 

highest impact in context of our engineering approach: i) self-interaction, the main focus 

of this engineering campaign, was experimentally determined by SI-BLI which is very 

similar to CSI included in protein-sol; additionally, we included AC-SINS (AC in protein-

sol) in our analysis, ii) off-target binding experimentally evaluated by protein panel 

profiling (3P) was compared with CIC integrated in protein-sol. A major handicap of 

protein-sol is that it cannot predict target binding which was important aspect of the mAb 

optimization. Although we did not observe major effects of the mutations on Tm in our 

dataset by nanoDSF, we included comparison with Tm from DSF as included in protein-sol 

as indicator for conformational stability.  

With regard to self-interaction, the correlation graph for CSI indicated a clustering of the 

two model systems (Figure 3A). We determined correlation coefficients cluster wise and 

found significant correlation for mAb2. In particular, the low measured self-interaction 

propensity of mAb2-12, where the LCDR3 hydrophobicity was depleted by a double 

alanine mutation, was predicted by protein-sol (Figure 3A). For mAb1, no significant 

correlation between the protein-sol prediction and the experimental results was obtained 

(Table 4). For the whole data set, we found a significant correlation between the predictions 

based on AC and the experimental results (Table 4). A low self-interaction propensity of 

mAb2-12 was also predicted based on AC (Figure 3B). The algorithm indicated clustering, 

predicting higher self-interaction propensity for the mAb1 variants compared to the mAb2 

variants, which is opposite to the predicted self-interaction based on CSI. Therefore, cluster 

wise correlation analysis was performed, but no significant correlation was obtained. 

Surprisingly, engineering of the mAbs did not influence the off-target binding as shown 

experimentally in the 3P assay. A similar outcome was predicted by protein-sol considering 
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CIC. Therefore, only a weak correlation could be found between experiment and prediction 

applying the whole data set (Table 4). 

Finally, we looked for correlation between the Tm values measured and predicted as 

indicator for conformational stability. Using the whole data set, we found significant 

correlation indicating that the algorithm was able to predict the higher Tm
app of mAb2 and 

variants thereof. Clustering was observed for the two mAbs (Figure 3C and Table 4), but 

no significant correlations were given within the individual mAb clusters. Although the 

experimentally determined Tm
app values differed by 5 K for the mAb1 and 3 K for the mAb2 

variants, the in silico approach was not able to predict the effect of the mutations. A detailed 

overview of the correlation matrices can be found in the supplemental material Table S2, 

S3 and S4. 
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Figure 3 Correlation plots of CSI (A) and AC-SINS (B) and Rrel obtained by SI-BLI; DSF and Tm
app obtained 

by nanoDSF (C). Circles indicate clustering of data prior to cluster wise correlation analyses. Open 

symbols reflect values of the wildtype proteins mAb1 and mAb2. 
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Table 4 Correlation matrix of experimental results and selected values from protein-sol. The complete 

correlation matrix can be found in the supplemental material Table S2 and S3. 

 
SI-BLI 

Spearmans ρ (p-value) 

3P 

Spearmans ρ (p-value) 

nanoDSF 

Spearmans ρ (p-value) 

 
Total 

(n=28) 

mAb1 

(n=12) 

mAb2 

(n=16) 

Total 

(n=28) 

mAb1 

(n=12) 

mAb2 

(n=16) 

Total 

(n=28) 

mAb1 

(n=12) 

mAb2 

(n=16) 

CSI 
-0.48 

(<0.05) 

0.40 

(0.20) 

0.61 

(<0.05) 

 

 
AC-

SINS 

0.69 

(<0.01) 

0.24 

(0.44) 

0.40 

(0.12) 

CIC 

 

0.41 

(<0.05) 

0.39 

(0.21) 

0.41 

(0.12 

DSF  
0.70 

(<0.01) 

0.06 

(0.86) 

0.10 

(0.71) 

 

6.5 Discussion 

6.5.1 The role of the HCDR3 in target binding and self-interaction 

In our study, we focused on improving self-interaction while maintaining or as well 

improving other properties of our initial mAbs which are critical for developability and 

functionality: the Tm
app was included as an indicator for conformational integrity and 

stability, the 3P assay as a measure for off-target binding, SI-BLI for the determination of 

self-interaction, and ultimately affinity for the target molecule analyzed by SPR as a central 

factor for mAb functionality. Several algorithms are published to predict at least one part 

of developability such as spatial aggregation propensity and net charge37 or hydrophobicity 

analyzed by HIC.38 We used AggScore to identify regions with high aggregation propensity 

that trigger self-interaction.28 

The HCDR3 of both wildtype proteins contain a hydrophobic region. By introducing more 

hydrophilic residues into these patches (e.g. triple alanine in mAbVI and mAb2-1), target 

binding was diminished. Thus, we identified the HCDR3 as paratope of both wildtype 

proteins. The target binding processes of mAb1 and mAb2 were comparable and showed 
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similarities to the published data for CNTO607.36Although self-interaction was decreased 

for many of the HCDR3 variants, a reduction in target binding affinity is not acceptable as 

trade off. Therefore, we focused on the second hydrophobic patch identified in the LCDR3.  

6.5.2 The role of the LCDR3 in target binding and self-interaction 

For mAb1 we focused on M93 as the most surface exposed residue of the patch. Mutations 

to alanine and arginine reduced the AggScore and the self-interaction propensity, especially 

for the arginine variant (mAb1-7) but did not affect binding to hIL-13. Despite slight 

differences in the primary sequence, mAb2 showed a similar hydrophobic patch in the 

LCDR3. Variants of mAb2 with LCDR3 mutations (mAb2-5 and mAb2-6) showed target 

affinities similar to the wildtype protein. However, self-interaction propensity was 

significantly reduced for these variants. To our knowledge, these are the first mAbs shown 

to undergo self-interaction mediated by the LCDR3. In previous studies, Fab-Fc interaction 

via the HCDR3, the LCDR2 and the Fc domain as well as Fab-Fab interaction between the 

HCDR2 and the LCDR2 were demonstrated.7, 39 For Infliximab, a chimeric IgG1 from 

hybridoma, interacting regions outside of the CDRs were identified by X-ray 

crystallography.12, 40 Furthermore, Fc-Fc-interactions were identified for a humanized 

IgG1.14 mAbs derived from phage display, such as our model systems, show an overall 

increased prevalence of aliphatic residues which might have contributed to the generation 

of the hydrophobic LCDR3.41 Our results show that rational mutagenesis of the CDRs of 

our model mAbs improved the physico-chemical behavior while maintaining a high affinity 

for the target hIL-13. Thus, CDRs can be addressed in engineering to resolve certain 

unwanted properties such as enhanced self-interaction, but knowledge of the paratope is a 

prerequisite for this approach. 

Additionally, we introduced a shielding negatively charged aspartate at the N terminus of 

the light chain of mAb2 (mAb2-13) due to the spatial proximity to the hydrophobic patch 

in the LCDR3 and since positively charged residues are correlated to non-specific 

binding.30 Compared to the wildtype, this variant showed a decreased self-interaction 

behavior and maintained high affinity to hIL-13. Thus, not directly mutating hydrophobic 

sites but changing the charge distribution in their vicinity appears another attractive 
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approach, especially in the context of the high conformational flexibility of the N terminal 

region. 

For CNTO607, the reintroduction of the N-linked carbohydrate moiety in the HCDR2 

increased the solubility, most probably due to shielding of the hydrophobic triad by the N-

glycan.25 Comparing mAb1 which contains the N-glycosylation consensus sequence and 

variant mAb1-1 containing N53D mutation shows that removal of the consensus sequence 

only slightly increases the self-interaction and that the carbohydrate attachment may simply 

increase solubility because of its hydrophilic nature.42  

The conformational properties and stability was not influenced by the introduced 

mutations. With Tm
app values of 59 °C for mAb1 and 72 °C for mAb2, both mAbs can be 

regarded as conformationally stable. However, minor structural changes in secondary or 

tertiary structure of the mAbs cannot be resolved by nanoDSF experiments. Whereas self-

interaction was significantly reduced for many variants, their off-target binding and 

unspecificity resp. were low compared to a non-specific positive control, and similar to the 

wildtype mAbs. 

In summary, the CDRs of the model mAbs were shown to mediate both, target binding 

(HCDR3) and self-interaction processes (LCDR3). Engineering approaches of the LCDR3 

led to variants with improved self-interaction behavior without negatively impacting target-

binding. Additionally, negatively charged residues in the N-terminal region of the light 

chain decreased self-interaction, which reflects a new attractive approach to influence the 

physico-chemical behavior of a mAb. All variants showed comparable Tm
app and off-target 

binding behavior. 

6.5.3 The use of in silico tools to predict the outcome of mutagenesis 

Applying protein-sol, a machine learning approach to predict biophysical parameters of 

mAbs, followed by targeted mutagenesis of the predicted best variants has the potential to 

be a more efficient approach compared to lab and cost extensive engineering approaches. 

To challenge our combination of homology modeling, AggScore analysis and experimental 

engineering, we applied protein-sol to predict the properties of our mAb variants in terms 

of self-interaction, off-target binding and Tm and compared these predictions with the 

experimental data. 
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For self-interaction of mAb2, we found significant correlation of CSI and SI-BLI. Both 

methods highlighted mAb2-12 (D27AV94AY95A) as the mAb with the lowest self-

interaction propensity compared to other mAb2 variants. For this distinct variant, the 

prediction and the work extensive engineering approach led to similar results. 

We did not observe correlations for mAb1. This may be due to the fact that SI-BLI was 

performed in 15 mM histidine hydrochloride pH 6.0 as formulation buffer, whereas the CSI 

data, which were used to train the algorithm, were acquired in PBS. Self-interaction 

strongly depends on formulation composition and pH-value.15, 19, 22, 43–46 In addition, mAb1 

contains unusual carbohydrate moieties and therefore its self-interaction behavior may 

differ from that of the mAbs used to train the machine learning tool. 

Both the CIC predictions as well as the experimental 3P results indicated no remarkable 

effect of the mutations on off-target binding. This resulted in a weak correlation, but overall 

the protein-sol prediction was in agreement with the experimental results. Regarding the 

conformational stability, protein-sol predicted a higher Tm for mAb2, which was confirmed 

by our experimental data, but within the two groups, the mAb1 variants and the mAb2 

variants, the algorithm could not predict the effects seen in the measurements. 

In summary, for our data set, in silico predictions of protein-sol were not suitable to guide 

rational engineering by predicting residue specific effects to reduce self-interaction. Target 

binding affinity is an essential factor which is however not included in protein-sol. 

Applying homology modeling, AggScore evaluation to guide targeted mutagenesis, 

generating these mutants and analyzing self-interaction, target binding and off-target 

binding the mutagenesis was well directed and led to in-depth understanding of the 

contributions of the different CDRs, and effects of the individual mutations. The affinity 

measurements highlight which mutated regions are involved in the target binding process, 

in our case the HCDR3. Using the in silico approach based on protein-sol to design the 

variants, where target binding is not addressed, would have allowed to come up with mAb 

variants with reduced self-interaction propensity. But the scientist would be in the dark 

what the effect of the mutations on target binding would be and still needs to generate the 

variants and analyze their target affinity. 
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6.6 Conclusions 

This study illustrates the application of structure guided engineering to reduce self-

interaction of therapeutic mAbs. After homology modeling of wildtype proteins, the 

algorithm AggScore was used to identify aggregation prone surface patches. These were 

subsequently modified by targeted mutagenesis. In total, 26 variants of 2 wildtype proteins 

were generated and characterized. All variants showed comparable apparent Tm as indicator 

for conformational integrity, and unchanged off-target binding behavior. The results 

demonstrate the impact of mutations in hydrophobic patches on mAb self-interaction and 

target binding properties. For our model systems, HCDR3 mutations led to a decrease in 

self-interaction propensity but diminished target binding. Mutations in the LCDR3 resulted 

in reduced self-interaction but did not affect antigen affinity. In particular, a variant of 

mAb1 containing arginine in the LCDR3 showed improved self-interaction behavior. 

Comparable findings were shown for a double alanine variants of the LCDR3 of mAb2. 

Based on our observations, self-interaction of mAb1 and mAb2 are mediated by the 

LCDR3. In addition, introduction of a negatively charged residue at the N terminus of the 

light chain minimized self-interaction propensity indicating that a charge shielding of 

surface exposed hydrophobicity of the CDRs is a possibility to improve the developability 

of a mAb without compromising antigen affinity. Further, we used protein-sol as a machine 

learning approach to predict the effect of the mutations on the self-interaction, off-target 

binding and melting temperature for the variants. Protein-sol does not include the 

prediction of target affinity. The algorithm could be useful to come up with protein 

sequences which show reduced self-interaction, but its applicability for directing targeted 

engineering is limited. 

Ultimately, deeper understanding of the self-interaction process as well as of the target 

binding is a prerequisite for successful engineering of therapeutic mAbs to improve their 

physico-chemical behavior while maintaining the antigen affinity. Homology modeling and 

identification of hydrophobic surface exposed region followed by generation and analysis 

of designed variants is well suited to resolve effects and ultimately find mAb variants with 

improved properties. 
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Supplementary data 

 

 

Figure S1 SPR sensorgram overlays and applied monovalent fits of the interaction of human IL-13 with mAb1 

and variants thereof 
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Figure S2 SPR sensorgram overlays and applied monovalent fits of the interaction of human IL-13 with mAb2 

and variants thereof 
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Table S1  Additional characterization of mAb2, mAb3 and variants thereof 

 

 

 

 

 

   

mAb Variant Tm
app [°C] Sum of off-target binding 

mAb1 58.9 55 

CNTO607 63.7 69 

W100aA 61.0 59 

mAbVI 65.4 70 

mAb1-1 61.3 54 

mAb1-2 59.3 59 

mAb1-3 59.6 64 

mAb1-4 60.9 55 

mAb1-5 63.3 67 

mAb1-6 63.6 57 

mAb1-7 64.0 60 

mAb1-8 62.5 56 

mAb2 72.2 54 

mAb2-1 71.7 53 

mAb2-2 71.7 53 

mAb2-3 71.0 52 

mAb2-4 74.1 57 

mAb2-5 73.2 67 

mAb2-6 72.7 55 

mAb2-7 72.6 59 

mAb2-8 72.9 57 

mAb2-9 72.3 52 

mAb2-10 71.9 56 

mAb2-11 69.5 61 

mAb2-12 73.4 59 

mAb2-13 70.5 n.d. 

mAb2-14 70.2 67 

mAb2-15 70.1 52 

Positive control (3P)  5041 ± 1565 
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Table S2  Spearman correlation matrix. The whole data set (n=28) was used for correlation analysis. 

  

n=28                               

Spearman ρ HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 1.000 0.968 0.832 -0.145 0.602 -0.760 0.565 -0.932 -0.194 -0.841 0.837 -0.775 0.794 0.107 -0.527 

SMAC 0.968 1.000 0.746 -0.031 0.444 -0.733 0.475 -0.919 -0.291 -0.791 0.774 -0.779 0.732 0.192 -0.456 

SGAC 0.832 0.746 1.000 -0.176 0.565 -0.749 0.467 -0.796 -0.117 -0.776 0.848 -0.649 0.770 0.018 -0.430 

CIC -0.145 -0.031 -0.176 1.000 -0.626 0.430 -0.681 0.259 -0.430 0.248 -0.320 0.237 -0.405 0.418 -0.082 

CSI 0.602 0.444 0.565 -0.626 1.000 -0.427 0.631 -0.533 0.438 -0.539 0.666 -0.476 0.637 -0.295 -0.238 

AC -0.760 -0.733 -0.749 0.430 -0.427 1.000 -0.729 0.880 0.303 0.881 -0.633 0.686 -0.794 0.179 0.199 

HEK 0.565 0.475 0.467 -0.681 0.631 -0.729 1.000 -0.627 0.099 -0.678 0.529 -0.499 0.659 -0.422 -0.093 

PSR -0.932 -0.919 -0.796 0.259 -0.533 0.880 -0.627 1.000 0.285 0.913 -0.793 0.830 -0.864 -0.040 0.432 

ELISA -0.194 -0.291 -0.117 -0.430 0.438 0.303 0.099 0.285 1.000 0.413 0.051 0.212 -0.129 -0.298 0.273 

BVP -0.841 -0.791 -0.776 0.248 -0.539 0.881 -0.678 0.913 0.413 1.000 -0.660 0.758 -0.855 0.117 0.376 

DSF 0.837 0.774 0.848 -0.320 0.666 -0.633 0.529 -0.793 0.051 -0.660 1.000 -0.717 0.696 0.046 -0.415 

AS 0.827 0.699 0.783 -0.545 0.868 -0.781 0.788 -0.830 0.108 -0.842 0.781 -0.705 0.827 -0.269 -0.334 

SI-BLI -0.775 -0.779 -0.649 0.237 -0.476 0.686 -0.499 0.830 0.212 0.758 -0.717 1.000 -0.778 -0.067 0.427 

Tm 0.794 0.732 0.770 -0.405 0.637 -0.794 0.659 -0.864 -0.129 -0.855 0.696 -0.778 1.000 -0.042 -0.304 

3P 0.107 0.192 0.018 0.418 -0.295 0.179 -0.422 -0.040 -0.298 0.117 0.046 -0.067 -0.042 1.000 -0.279 

HEK -0.527 -0.456 -0.430 -0.082 -0.238 0.199 -0.093 0.432 0.273 0.376 -0.415 0.427 -0.304 -0.279 1.000 

  
               

p-value HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 0.000 0.000 0.000 0.460 0.001 0.000 0.002 0.000 0.322 0.000 0.000 0.000 0.000 0.596 0.006 

SMAC 0.000 0.000 0.000 0.875 0.018 0.000 0.011 0.000 0.133 0.000 0.000 0.000 0.000 0.336 0.019 

SGAC 0.000 0.000 0.000 0.370 0.002 0.000 0.012 0.000 0.554 0.000 0.000 0.000 0.000 0.930 0.028 

CIC 0.460 0.875 0.370 0.000 0.000 0.022 0.000 0.184 0.022 0.204 0.097 0.225 0.032 0.030 0.691 

CSI 0.001 0.018 0.002 0.000 0.000 0.023 0.000 0.004 0.020 0.003 0.000 0.010 0.000 0.136 0.242 

AC 0.000 0.000 0.000 0.022 0.023 0.000 0.000 0.000 0.117 0.000 0.000 0.000 0.000 0.370 0.330 

HEK 0.002 0.011 0.012 0.000 0.000 0.000 0.000 0.000 0.618 0.000 0.004 0.007 0.000 0.028 0.651 

PSR 0.000 0.000 0.000 0.184 0.004 0.000 0.000 0.000 0.141 0.000 0.000 0.000 0.000 0.842 0.027 

ELISA 0.322 0.133 0.554 0.022 0.020 0.117 0.618 0.141 0.000 0.029 0.797 0.278 0.514 0.131 0.177 

BVP 0.000 0.000 0.000 0.204 0.003 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.562 0.058 

DSF 0.000 0.000 0.000 0.097 0.000 0.000 0.004 0.000 0.797 0.000 0.000 0.000 0.000 0.819 0.035 

AS 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.585 0.000 0.000 0.000 0.000 0.176 0.095 

SI-BLI 0.000 0.000 0.000 0.225 0.010 0.000 0.007 0.000 0.278 0.000 0.000 0.000 0.000 0.742 0.030 

Tm 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.514 0.000 0.000 0.000 0.000 0.837 0.131 

3P 0.596 0.336 0.930 0.030 0.136 0.370 0.028 0.842 0.131 0.562 0.819 0.742 0.837 0.000 0.176 

HEK 0.006 0.019 0.028 0.691 0.242 0.330 0.651 0.027 0.177 0.058 0.035 0.030 0.131 0.176 0.000 
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Table S3  Spearman correlation matrix. Cluster wise correlation analysis (mAb1. n=12) 

mAb1 (n=12)                

Spearman ρ HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 1.000 0.979 0.130 0.676 -0.780 -0.361 -0.515 -0.646 -0.742 -0.623 0.105 -0.340 0.088 0.497 -0.210 

SMAC 0.979 1.000 0.165 0.613 -0.780 -0.452 -0.522 -0.646 -0.732 -0.587 0.147 -0.389 0.025 0.581 -0.155 

SGAC 0.130 0.165 1.000 0.112 -0.338 -0.399 -0.455 -0.186 -0.172 -0.423 0.406 -0.308 -0.070 0.203 -0.273 

CIC 0.676 0.613 0.112 1.000 -0.517 0.070 -0.706 -0.369 -0.525 -0.536 -0.343 -0.133 0.357 0.392 0.064 

CSI -0.780 -0.780 -0.338 -0.517 1.000 0.739 0.502 0.892 0.879 0.884 -0.160 0.397 0.022 -0.375 0.206 

AC -0.361 -0.452 -0.399 0.070 0.739 1.000 0.140 0.642 0.543 0.558 -0.238 0.245 0.469 -0.154 0.118 

HEK -0.515 -0.522 -0.455 -0.706 0.502 0.140 1.000 0.523 0.634 0.657 0.147 0.503 -0.483 -0.531 0.318 

PSR -0.646 -0.646 -0.186 -0.369 0.892 0.642 0.523 1.000 0.948 0.900 -0.183 0.574 -0.290 -0.484 0.368 

ELISA -0.742 -0.732 -0.172 -0.525 0.879 0.543 0.634 0.948 1.000 0.927 0.007 0.480 -0.305 -0.476 0.501 

BVP -0.623 -0.587 -0.423 -0.536 0.884 0.558 0.657 0.900 0.927 1.000 -0.021 0.401 -0.274 -0.341 0.516 

DSF 0.105 0.147 0.406 -0.343 -0.160 -0.238 0.147 -0.183 0.007 -0.021 1.000 -0.594 0.056 0.385 0.136 

AS -0.481 -0.481 0.480 -0.393 0.318 -0.044 0.393 0.493 0.481 0.222 0.044 0.480 -0.480 -0.480 -0.100 

SI-BLI -0.340 -0.389 -0.308 -0.133 0.397 0.245 0.503 0.574 0.480 0.401 -0.594 1.000 -0.538 -0.783 -0.018 

Tm 0.088 0.025 -0.070 0.357 0.022 0.469 -0.483 -0.290 -0.305 -0.274 0.056 -0.538 1.000 0.531 -0.245 

3P 0.497 0.581 0.203 0.392 -0.375 -0.154 -0.531 -0.484 -0.476 -0.341 0.385 -0.783 0.531 1.000 0.055 

HEK -0.210 -0.155 -0.273 0.064 0.206 0.118 0.318 0.368 0.501 0.516 0.136 -0.018 -0.245 0.055 1.000 

  
               

p-value HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 0.000 0.000 0.688 0.016 0.003 0.249 0.087 0.023 0.006 0.031 0.745 0.280 0.787 0.100 0.536 

SMAC 0.000 0.000 0.609 0.034 0.003 0.140 0.082 0.023 0.007 0.045 0.648 0.212 0.940 0.047 0.649 

SGAC 0.688 0.609 0.000 0.729 0.282 0.199 0.138 0.562 0.594 0.171 0.191 0.331 0.829 0.527 0.417 

CIC 0.016 0.034 0.729 0.000 0.085 0.829 0.010 0.237 0.079 0.072 0.276 0.681 0.255 0.208 0.853 

CSI 0.003 0.003 0.282 0.085 0.000 0.006 0.096 0.000 0.000 0.000 0.619 0.202 0.946 0.230 0.543 

AC 0.249 0.140 0.199 0.829 0.006 0.000 0.665 0.024 0.068 0.059 0.457 0.443 0.124 0.633 0.729 

HEK 0.087 0.082 0.138 0.010 0.096 0.665 0.000 0.081 0.027 0.020 0.649 0.095 0.112 0.075 0.340 

PSR 0.023 0.023 0.562 0.237 0.000 0.024 0.081 0.000 0.000 0.000 0.569 0.051 0.360 0.111 0.265 

ELISA 0.006 0.007 0.594 0.079 0.000 0.068 0.027 0.000 0.000 0.000 0.983 0.114 0.336 0.117 0.116 

BVP 0.031 0.045 0.171 0.072 0.000 0.059 0.020 0.000 0.000 0.000 0.948 0.196 0.390 0.278 0.104 

DSF 0.745 0.648 0.191 0.276 0.619 0.457 0.649 0.569 0.983 0.948 0.000 0.042 0.863 0.217 0.689 

AS 0.113 0.113 0.114 0.206 0.313 0.893 0.206 0.104 0.113 0.488 0.893 0.114 0.114 0.114 0.770 

SI-BLI 0.280 0.212 0.331 0.681 0.202 0.443 0.095 0.051 0.114 0.196 0.042 0.000 0.071 0.003 0.958 

Tm 0.787 0.940 0.829 0.255 0.946 0.124 0.112 0.360 0.336 0.390 0.863 0.071 0.000 0.075 0.467 

3P 0.100 0.047 0.527 0.208 0.230 0.633 0.075 0.111 0.117 0.278 0.217 0.003 0.075 0.000 0.873 

HEK 0.536 0.649 0.417 0.853 0.543 0.729 0.340 0.265 0.116 0.104 0.689 0.958 0.467 0.873 0.000 
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Table S4  Spearman correlation matrix. Cluster wise correlation analysis (mAb2. n=16) 

mAb2 (n=16)                

Spearman ρ HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 1.000 0.971 0.674 0.753 -0.442 -0.318 -0.212 -0.781 -0.419 -0.295 0.673 -0.453 0.276 0.689 -0.749 

SMAC 0.971 1.000 0.629 0.738 -0.593 -0.444 -0.126 -0.879 -0.444 -0.358 0.612 -0.529 0.315 0.611 -0.627 

SGAC 0.674 0.629 1.000 0.515 -0.322 -0.468 -0.124 -0.541 -0.374 -0.344 0.681 -0.144 0.559 0.314 -0.254 

CIC 0.753 0.738 0.515 1.000 -0.364 -0.059 -0.338 -0.494 -0.484 -0.406 0.409 -0.379 -0.015 0.425 -0.552 

CSI -0.442 -0.593 -0.322 -0.364 1.000 0.876 -0.508 0.805 0.700 0.776 0.056 0.609 -0.584 -0.129 0.093 

AC -0.318 -0.444 -0.468 -0.059 0.876 1.000 -0.582 0.733 0.593 0.681 -0.010 0.403 -0.776 -0.021 -0.129 

HEK -0.212 -0.126 -0.124 -0.338 -0.508 -0.582 1.000 -0.129 -0.368 -0.452 -0.389 -0.059 0.338 -0.364 0.308 

PSR -0.781 -0.879 -0.541 -0.494 0.805 0.733 -0.129 1.000 0.572 0.562 -0.433 0.584 -0.558 -0.497 0.355 

ELISA -0.419 -0.444 -0.374 -0.484 0.700 0.593 -0.368 0.572 1.000 0.956 0.060 0.319 -0.456 -0.250 0.186 

BVP -0.295 -0.358 -0.344 -0.406 0.776 0.681 -0.452 0.562 0.956 1.000 0.130 0.370 -0.515 -0.106 0.083 

DSF 0.673 0.612 0.681 0.409 0.056 -0.010 -0.389 -0.433 0.060 0.130 1.000 -0.159 0.096 0.418 -0.457 

AS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SI-BLI -0.453 -0.529 -0.144 -0.379 0.609 0.403 -0.059 0.584 0.319 0.370 -0.159 1.000 -0.326 -0.200 0.534 

Tm 0.276 0.315 0.559 -0.015 -0.584 -0.776 0.338 -0.558 -0.456 -0.515 0.096 -0.326 1.000 0.221 0.054 

3P 0.689 0.611 0.314 0.425 -0.129 -0.021 -0.364 -0.497 -0.250 -0.106 0.418 -0.200 0.221 1.000 -0.827 

HEK -0.749 -0.627 -0.254 -0.552 0.093 -0.129 0.308 0.355 0.186 0.083 -0.457 0.534 0.054 -0.827 1.000 

  
               

p-value HIC SMAC SGAC CIC CSI AC HEK PSR ELISA BVP DSF SI-BLI Tm 3P HEK 

HIC 0.000 0.000 0.004 0.001 0.087 0.231 0.431 0.000 0.106 0.267 0.004 0.078 0.300 0.004 0.001 

SMAC 0.000 0.000 0.009 0.001 0.016 0.085 0.641 0.000 0.085 0.174 0.012 0.035 0.235 0.016 0.012 

SGAC 0.004 0.009 0.000 0.041 0.224 0.068 0.649 0.030 0.154 0.192 0.004 0.594 0.024 0.254 0.360 

CIC 0.001 0.001 0.041 0.000 0.165 0.829 0.200 0.052 0.057 0.119 0.116 0.147 0.957 0.114 0.033 

CSI 0.087 0.016 0.224 0.165 0.000 0.000 0.044 0.000 0.003 0.000 0.837 0.012 0.018 0.646 0.742 

AC 0.231 0.085 0.068 0.829 0.000 0.000 0.018 0.001 0.015 0.004 0.970 0.122 0.000 0.940 0.647 

HEK 0.431 0.641 0.649 0.200 0.044 0.018 0.000 0.633 0.161 0.079 0.137 0.829 0.200 0.182 0.264 

PSR 0.000 0.000 0.030 0.052 0.000 0.001 0.633 0.000 0.021 0.023 0.094 0.017 0.025 0.059 0.194 

ELISA 0.106 0.085 0.154 0.057 0.003 0.015 0.161 0.021 0.000 0.000 0.824 0.228 0.076 0.368 0.506 

BVP 0.267 0.174 0.192 0.119 0.000 0.004 0.079 0.023 0.000 0.000 0.630 0.159 0.041 0.708 0.767 

DSF 0.004 0.012 0.004 0.116 0.837 0.970 0.137 0.094 0.824 0.630 0.000 0.557 0.725 0.121 0.086 

AS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SI-BLI 0.078 0.035 0.594 0.147 0.012 0.122 0.829 0.017 0.228 0.159 0.557 0.000 0.217 0.475 0.040 

Tm 0.300 0.235 0.024 0.957 0.018 0.000 0.200 0.025 0.076 0.041 0.725 0.217 0.000 0.428 0.849 

3P 0.004 0.016 0.254 0.114 0.646 0.940 0.182 0.059 0.368 0.708 0.121 0.475 0.428 0.000 0.000 

HEK 0.001 0.012 0.360 0.033 0.742 0.647 0.264 0.194 0.506 0.767 0.086 0.040 0.849 0.000 0.000 
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Chapter 7 Summary 

Self-Interaction processes of monoclonal antibodies are linked to the intrinsic molecular 

properties as well as to the composition of the formulation environment. Considering both 

factors in combination helps the pharmaceutical scientist to understand the process itself 

and to master challenges arising from high self-interaction propensity during development, 

manufacturing and application. 

Chapter 1 describes the current understanding of self-interaction of mAbs as a process as 

well as of the impact of protein structure and formulation. Additionally, the link between 

self-interaction and developability of mAbs is introduced. In silico approaches are 

highlighted which can be used to predict physicochemical parameters based on the proteins 

primary structure. 

At first, a high-throughput assay was established for determining formulation dependent 

self-interaction based on bio layer interferometry (SI-BLI) (Chapter 2). Due to minimal 

sample consumption and high throughput, this assay enables the differentiation between 

several candidate molecules in parallel to a formulation screening. The assay results 

correlated significantly with kD from DLS, a parameter well-established for describing 

protein self-interaction. Whereas kD analysis requires the preparation and measurement of 

various protein solutions at different protein concentration, SI-BLI requires only one low 

protein concentration (2 µM) and a single measurement of an association reaction. The 

assay can be implemented in early stages of developability assessments, when the available 

protein amount is low and the number of potential candidates is high. Subsequently the 

assay was utilized in a developability assessment for ranking potential lead candidates in 

combination with a preformulation screening (Chapter 3). With SI-BLI, specific ion 

effects on mAb self-interaction were detected and further studied. In particular, bivalent 

magnesium ions reduce the self-interaction propensity of the mAbs more than sodium ions. 

Moreover, the SI-BLI results correlated with viscosimetry data. This case study confirmed 

the applicability of the assay for both, high-throughput studies and in-depth self-interaction 

characterization.  

Chapter 4 describes a multi-method approach to analyze the self-interaction process of 

Infliximab as a model system. Within this study, established analytical techniques were 

combined with emerging techniques for analyzing self-interaction. Thus, AUC, 
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Viscosimetry, DLS, SAXS and SI-BLI were used for analysis on a protein resolution level. 

Additionally, SI-BLI and AUC investigations were carried out to describe the self-

interaction process on a fragment level after digestion. Finally, HDX-MS, which comprises 

online pepsin digestion, led to high resolution results of peptides involved in the interaction. 

Based on the results, we hypothesize a self-interaction mechanism for Infliximab that 

differs from a previously published mechanism of Infliximab identified by X-ray 

crystallography of the Fab fragment. This study underlines the importance of a multi 

method approach on different level to analyze and understand mAb self-interaction in a 

pharmaceutically relevant formulation. 

Ultimately we demonstrated the application of different approaches to modify mAb 

interactions by targeted mutation based on an understanding of loci involved in self-

interaction (Chapter 5 and 6).  

At first, the self-interaction of a model mAb was analyzed, which showed striking 

disadvantageous properties, namely precipitation at low protein concentration during 

downstream processes, high retention time in size exclusion chromatography and strong 

off-target binding (Chapter 5). The high self-interaction propensity of the mAb at neutral 

pH and high ionic strength was associated with an increase in viscosity at elevated protein 

concentration. Distinct self-interaction sites in the HCDR2, the HCDR3 as well as in the 

constant regions of the Fab and Fc domains were identified by HDX-MS and in silico. 

Based on the finding, 39 mAb variants were generated and characterized. The introduction 

of a positively charged residue in spatial proximity to the self-interaction hot spot in the 

HCDR2, which was identified in silico reduced self-interaction but increased off-target 

binding. Placing more than one negative charged residues in spatial proximity to the 

hydrophobic patch of the HCDR3, which was identified by HDX-MS, decreased self-

interaction and off-target binding while maintaining high affine target binding.  

Secondly, two closely related mAbs directed against the same target were mutated in 

hydrophobic hot spots in the HCDR3 and the LCDR3 regions identified based on homology 

modeling and calculation of the residue specific aggregation propensity (Chapter 6). In 

total, 26 variants were generated and characterized. The HCDR3 was identified as essential 

paratope locus, whereas the introduction of alanine and aspartate residues in the LCDR3 

decreased hydrophobicity and the self-interaction propensity without affecting target 

binding. The data set was used to challenge a recently published machine learning approach 
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(protein-sol). This approach was able to differentiate between the different parental mAbs 

and their variants, but the capability of rankings within the mAb family was limited.  

In summary, the combination of in silico and experimental techniques is key to understand 

and improve the self-interaction propensity of mAbs. Fast screening methods with minimal 

material consumption and effort should be used in early stages of discovery, whereas 

methods with lower throughput but high resolution should be applied later. By that, the risk 

of failure due to developability issues arising from pronounced self-interaction propensity 

of a mAb can be reduced by engineering and formulation development. In particular, the 

use of HDX-MS to identify loci involved in self-interaction sites enables rational 

engineering without the loss of functionality.  

 


