Aus der Medizinischen Klinik und Poliklinik I – LMU Klinikum der Ludwig-Maximilians-Universität München Direktor: Prof. Dr. med. Steffen Massberg

Neuartige PET Tracer zur Gewebecharakterisierung und zum Therapiemonitoring nach Myokardinfarkt im Mausmodell

Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München

> vorgelegt von Mathias Johannes Zacherl

> > aus München

im Jahre 2020

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	PrivDoz. Dr. med. Bruno Huber
Mitberichterstatter:	Prof. Dr. med. R. Tiling PrivDoz. Dr. med. C. Übleis
Dekan:	Prof. Dr. med. dent. Reinhard Hickel
Tag der mündlichen Prüfung:	08.10.2020

Eidesstattliche Versicherung

Ich, Mathias Zacherl, erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema:

Neuartige PET Tracer zur Gewebecharakterisierung und zum Therapiemonitoring nach Myokardinfarkt im Mausmodell

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde.

München, 20.10.2020

Mathias Johannes Zacherl

Kumulative Dissertation Gemäß § 4a der Promotionsordnung

Die vorliegende kumulative Dissertation umfasst zwei bereits publizierte Manuskripte:

Zacherl MJ, Todica A, Wängler C, Schirrmacher R, Hajebrahimi M, Pircher J, Xiang L, Lindner S, Brendel M, Bartenstein P, Massberg S, Brunner S, Lehner S, Hacker M, Huber BC. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer [published online ahead of print, 2020 Jul 16]. J Nucl Cardiol. 2020;10.1007/s12350-020-02262-6. doi:10.1007/s12350-020-02262-6

Todica A, Zacherl MJ, Wang H, Böning G, Jansen NL, Wängler C, Bartenstein P, Kreissl MC, Hacker M, Brunner S, Lehner S. In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [⁶⁸Ga]Annexin A5 and [¹⁸F]FDG PET. J Nucl Cardiol. 2014 Dec;21(6):1191-9. doi: 10.1007/s12350-014-9987-0. Epub 2014 Sep 5.

Inhaltsverzeichnis

Abkürzungsverzeichnis	6
Einführung	7
Inhalt der Promotionsarbeit	12
Zusammenfassung	22
Summary	23
Veröffentlichung I	24
Veröffentlichung II	35
Literaturverzeichnis	36
Danksagung	40

Abkürzungsverzeichnis

ACKR3	Atypischer Chemokinrezeptor 3 (synonym CXCR7)
CXCR4	CXC-Motiv-Chemokinrezeptor 4
CXCR7	CXC-Motiv-Chemokinrezeptor 7 (synonym ACKR3)
CXCL12	CXC-Motiv-Chemokine 12 (synonym SDF-1)
EDV	Enddiastolisches Volumen
EF	Ejektionsfraktion
EPO	Erythropoetin
ESV	Endsystolisches Volumen
¹⁸ F-FDG	2-deoxy-2-[18F]fluoro-D-glucose
⁶⁸ Ga	Gallium-68
%ID/g	Prozent der injizierten Dosis pro Gramm Gewebe
I/R	Verhältnis der Anreicherung von Infarkt zu gesundem Gewebe
KHK	Koronare Herzerkrankung
ns	nicht signifikant
PET	Positronen-Emission-Tomographie
SDF-1	stromal cell-derived factor 1 (synonym CXCL12)
SV	Schlagvolumen

1. Einführung

Die chronische ischämische koronare Herzkrankheit ist weltweit die häufigste Todesursache (Lopez et al. 2006; Murray & Lopez 2013) und verursacht weltweit, gemessen in *Disability-Adjusted Life Years* (DALY), die höchste Krankheitsbelastung (Murray & Lopez 2013). Im Jahr 2018 betrafen in Deutschland 36% der Todesursachen das Herz-Kreislaufsystem, wobei 22,1% (absolut 8,0%) der Sterbefälle durch die koronare Herzkrankheit (KHK) sowie 13,4% (absolut 4,8%) durch einen akuten Myokardinfarkt verursacht wurden (Statistisches Bundesamt 2020; Destatis 2020).

Die zugrundeliegende Pathologie der KHK und in der Folge auch des Myokardinfarktes ist die Atherosklerose, definiert als Plaquebildung mit konsekutiver Einengung der großen und mittleren Arterienwände (Hansson & Hermansson 2011; Weber & Noels 2011). Dieser chronische Entzündungsprozess, ausgelöst durch inflammatorische Reize wie Dyslipidämie, führt zu einer Funktionsstörung der die Arterienwand auskleidenden Endothelschicht. Weitere Risikofaktoren, welche eine Atherosklerose begünstigen, sind Adipositas, Diabetes mellitus, arterieller Hypertonus, Nikotinabusus und eine familiäre Disposition (Chambless et al. 1997). Durch die Funktionsstörung des Endothels werden gerinnungsfördernde anstelle von gerinnungshemmenden Faktoren aktiviert und dadurch vasoaktive Moleküle, Zytokine und Wachstumsfaktoren ausgeschüttet (Kwon et al. 2008; Hansson & Hermansson 2011). Wird die Entzündungsreaktion nicht gestoppt, beginnen Monozyten an der Endothelwand zu haften und diese zu durchwandern. Cholesterinreiche LDL-Partikel (Low Density Lipoprotein) werden durch monozytäre Makrophagen in der Arterienwand aufgenommen wodurch sogenannte Schaumzellen entstehen (Steinberg 1997). Des Weiteren kommt es zu einer Migration und Proliferation von glatten Muskelzellen (Ross & Glomset 1973) und weitere extrazelluläre Matrixmoleküle wie Elastin, Kollagen und Proteoglycane werden synthetisiert (Kwon et al. 2008). Im weiteren Verlauf kommt es zu einer Vergrößerung und Umstrukturierung des atherosklerotischen Plaques, dieser wird bedeckt durch eine faserige Kappe über einem Kern

aus Lipid und nekrotischem Gewebe. Es entsteht eine fortgeschrittene, komplizierte Läsion, auch vulnerabler Plaque genannt (Nakahara et al. 2018). Im weiteren Verlauf ist eine Kompensation durch Dilatation nicht mehr möglich und es kommt zu relevanten, flussbegrenzenden Stenosen und, im drastischsten Fall, zu Plaquebrüchen mit nachfolgender Thrombusbildung bis hin zum Gefäßverschluss mit Auslösung eines Myokardinfarkts.

Nach stattgehabtem Myokardinfarkt kommt es, neben der Apoptose von Kardiomyozyten, zu einer Signalkaskade, die das angeborene Immunsystem aktiviert und eine ausgeprägte Entzündungsreaktion, insbesondere durch Leukozyten, auslöst (Kenneth Mallory et al. 1939). Im Tiermodell konnte gezeigt werden, dass sich eine Modulation der Immunreaktion durch Leukozyten positiv auf die Infarktgröße auswirkt (Simpson et al. 1988), allerdings konnten klinische Studien diese Ergebnisse mit einem CD11/18 Antikörper (Cluster of Differentiation) nicht reproduzieren (Rusnak et al. 2001). Im weiteren Verlauf rückte zunehmend das sogenannte Remodeling, also die Immunreaktion im Hinblick auf den Umbau des Herzens, in den Fokus (Mann Douglas L. 2002). Das Remodeling beinhaltet morphologische, molekulare und funktionelle Veränderungen, die sowohl das infizierte als auch das nicht infizierte Myokard betreffen und entscheidend für die Pathogenese der Herzinsuffizienz sind (Sutton Martin G. St. John & Sharpe Norman 2000). Die dabei ablaufende Entzündungsreaktion wird dabei unter anderem durch Zytokine aktiviert und moduliert (Bartekova et al. 2018). Zytokine sind Proteine, die an der Signalübertragung zwischen Zellen beteiligt sind und dabei Wachstum und Differenzierung steuern.

Als Untergruppe der Zytokine koordinieren die Interleukine die Immunantwort der Leukozyten. Im CANTOS Trial konnte 2017 gezeigt werden, dass bei Patienten nach Myokardinfarkt und mit nachweisbar erhöhten Entzündungswerten (CRP \geq 2 mg/L) eine Therapie mit einem Antikörper gegen das inflammationsfördernde Zytokin IL-1 β signifikant das Auftreten erneuter kardiovaskulärer Ereignisse verminderte, jedoch auch tödliche Infektionen häufiger auftraten (Ridker et al. 2017). Im Gegensatz dazu konnte eine Studie mit dem Zytostatikum Methotrexate das Risiko für eine KHK bzw. die Mortalität aufgrund einer KHK nicht vermindern (Ridker et al. 2019), sodass eine detaillierte Erforschung der Signalwege sinnvoll erscheint (Lutgens et al. 2019). Aufgrund der multifaktoriellen Genese einer KHK können im Rahmen von genomweiten Assoziationsstudien bestimmte Polymorphismen (SNP, single nucleotide polymorhism) in erkrankten Personen identifiziert werden. Neben einem starken Signal auf Chromosom 9p21 konnte ein weiteres stark gehäuftes Allel auf Chromosom 10p11 in der Nähe des für CXCL12 kodierenden Gens gefunden werden (Farouk et al. 2010).

CXCL12 (CXC-Motiv-Chemokine 12) oder nach älterer Nomenklatur auch SDF-1 (stromal cell-derived factor 1) ist ein Chemokin, das an die Rezeptoren CXCR4 (CXC-Motiv-Chemokinrezeptor 4) und ACKR3 (Atypischer Chemokinrezeptor 3), alternative Nomenklatur CXCR7 (CXC-Motiv-Chemokinrezeptor 7), bindet (Janssens et al. 2018). Chemokine, kleine Proteine zwischen 8-14 kDa, bilden die größte Untergruppe der Zytokine, welche aufgrund eines Konzentrationsgradienten eine Wanderungsbewegung auslösen. Im infarzierten Myokard werden bestimmte Chemokine freigesetzt, die über die zugehörigen Rezeptoren Subpopulationen von Leukozyten rekrutieren.

Der CXCR4 Rezeptor erscheint somit als geeignete Zielstruktur, um die pathophysiologischen Vorgänge nach einem Myokardinfarkt weiter zu untersuchen. Dafür wurde der Rezeptor bereits als mögliches Ziel für die molekulare Bildgebung eingeführt, um das Ausmaß der Entzündungsaktivität direkt zu beurteilen (Gourni et al. 2011). CXCR4 gehört zur Familie der G-Protein-gekoppelten Rezeptoren und spielt eine entscheidende Rolle bei der Hämatopoese, Organogenese und Vaskularisation während der Embryogenese (Berger 1998), da es Zellen auf höhere Konzentrationen von Chemokinen hinweist (Zlotnik 2006; Burger & Kipps 2006). Eine Dysregulation des Chemokinrezeptors CXCR4 und seines Liganden CXCL12 kann zur Entwicklung einer Vielzahl von Erkrankungen des Menschen führen, u.a. Karzinome, Immundefizienzen, Autoimmunerkrankungen und chronisch entzündliche Erkrankungen (Luster 1998; Charo & Ransohoff 2006; Gerard & Rollins 2001).

CXCR4 wird stark von Leukozyten einschließlich Granulozyten, Monozyten, T-Zellen, B-Zellen und natürlichen Killerzellen sowie deren aus dem Knochenmark stammenden Vorläuferzellen exprimiert (Zaruba & Franz 2010).

Nach einem Myokardinfarkt zeigen sich unterschiedliche Wirkungen auf die CXCL12 / CXCR4 Achse im Herzen (Döring et al. 2014). Nach myokardialer Ischämie ist die CXCL12 mRNA signifikant erhöht nachweisbar und CXCR4 beziehungsweise CXCL12 werden in Fibroblasten und Herzmuskelzellen exprimiert (Hu et al. 2007). Hierbei konnte auch gezeigt werden, dass eine Vorbehandlung mit CXCL12 die Infarktgröße reduziert und *in vitro* zu einer verringerten Apoptose führte. Ein erhöhter Spiegel von CXCL12, zum Beispiel mittels Hydrogelen, führt zu einer verstärkten Ansiedlung von CXCR4 exprimierenden Stammzellen im Myokard (Purcell et al. 2012). Für kardioprotektive Effekte von transplantierten mesenchymalen Stammzellen wird zudem eine myokardiale CXCR4 Expression benötigt (Dong et al. 2012).

Eine Heterozygotie des CXCR4 Rezeptors verringerte die Infarktgröße, ohne die Ejektionsfraktion zu beeinträchtigen (Liehn et al. 2011). Zudem wurde bei einer, durch Adenoviren erzeugte, Überexpression des CXCR4 Rezeptors ein vergrößerter myokardialer Infarkt sowie eine verringerte Herzfunktion detektiert, wobei dies mit einer erhöhten Expression des Tumornekrosefaktors α und einer Aktivierung apoptotischer Signalwege verbunden war (Chen et al. 2010).

Insgesamt zeigt dies die ambivalente Rolle des CXCR4 Rezeptors beziehungsweise seiner Chemokinliganden nach einem Myokardinfarkt sowie den damit einhergehenden Entzündungsprozessen. Die Komplexität wird dabei durch die weiteren Chemokinliganden und -rezeptoren weiter erhöht, als alternativer Ligand zu CXCL12 bindet MIF (Makrophagenmigrationsinhibierender Faktor) an den CXCR4 Rezeptor und CXCL12 bindet zusätzlich an ACKR3, sodass zur Entwicklung selektiver Therapeutika ein besseres Verständnis dieses Zusammenspiels notwendig ist.

Neben einer Nekrose von Myokardgewebe und inflammatorischen Prozessen kommt es nach akutem Myokardinfarkt im hypoxischen und ischämischen Gewebe zur Apoptose in Kardiomyozyten (Fliss & Gattinger 1996). Die Apoptose beschreibt den aktiv eingeleiteten Zelltod, dieser kann von extern angeregt oder von der Zelle selbst ausgelöst werden (Kerr et al. 1972; Elmore 2007). Der apoptotische Prozess kann dabei bis zu einem gewissen Grad umgekehrt beziehungsweise beeinflusst werden (Chandrashekhar et al. 2004). Mittels des Tracers ⁶⁸Ga-Annexin A5 kann Apoptose im PET (Positronen-Emission-Tomographie) *in vivo* dargestellt werden (Lehner et al. 2012). Annexin A5 gehört zur Annexinfamilie, der eine Ca²⁺abhängige Bindung an negativ geladene Phospholipidoberflächen gemein ist (De Saint-Hubert et al. 2009).

Um das Remodeling und Überleben nach Myokardinfarkt positiv zu beeinflussen, wurde eine Behandlung mit Erythropoetin (EPO) versucht (Mastromarino et al. 2013). Eine Behandlung mit EPO nach Myokardinfarkt zeigte dabei in Tierstudien eine Reduktion der Infarktgröße sowie eine verbesserte Neoangiogenese (van der Meer et al. 2004). In humanen Studien konnten diese Ergebnisse nicht repliziert werden, exemplarisch sei hier die REVEAL Studie und REVIVAL-3 Studie genannt (Najjar et al. 2011; Ott Ilka et al. 2010).

Im Rahmen dieser Dissertation wurde das komplexe Zusammenspiel der Entzündungsprozesse nach Myokardinfarkt im Mausmodell *in vivo* untersucht. Hierbei stellt der CXCR4 Rezeptor eine bedeutende Zielstruktur zum grundlegenden Verständnis dar. Darüber hinaus wurde der kurzfristige Effekt einer Behandlung mittels EPO auf apoptotische Zellen nach Myokardinfarkt mittels ⁶⁸Ga-Annexin A5 PET gemessen sowie der langfristige Effekt einer EPO-Behandlung auf linksventrikuläre Funktionsparameter im ¹⁸F-FDG PET untersucht.

2. Inhalt der Promotionsarbeit

Das native, murine Protein CXCL12 (Pepro-Tech Germany, Hamburg, Deutschland) als Ligand von CXCR4 wurde in Zusammenarbeit mit der Radiochemie der Klinik und Poliklinik für Nuklearmedizin für das "kit-like labeling" (Wängler et al. 2011) vorbereitet und markiert (siehe **Abbildung 1**). Dabei wurde ein ⁶⁸Ge/⁶⁸Ga-Generator (Eckert & Ziegler, Berlin, Deutschland) verwendet.

Abbildung 1. Schematische Darstellung der Tracersynthese von ⁶⁸Ga-CXCL12. (A) Vorbereitung des NODA-GA-T-modifizierten CXCL12 (PDB ID: 1A15 (Dealwis et al. 1998)) als Precursor (blau), anschließend wird der ⁶⁸Ga-kitradiolabeling Schritt dargestellt (grün). (B) Radio-HPLC Chromatogramm von ⁶⁸Ga-CXCL12. Aus Zacherl et al. 2020, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Bei männlichen, 8 bis 12 Wochen alten, C57BL/6-Mäusen (Charles River Laboratories, Sulzbach, Deutschland) wurde ein Myokardinfarkt durch permanente Ligatur des *Ramus interventricularis anterior* induziert (Huber et al. 2011).

Zur Untersuchung der Spezifität der ⁶⁸Ga-CXCL12 Bindung wurde eine *in vitro* Autoradiographie durchgeführt. Zwei Tage nach Induktion des Myokardinfarktes wurde das Herz entnommen, mit physiologischer Kochsalzlösung gespült und in einem Einbettmedium für gefrorene Gewebeproben (Tissue-Tek, Sakura Finetek USA, Torrance, Kalifornien, USA) eingefroren. Mittels eines auf -20 °C gekühlten Kryostaten (Leica CM1510, Nussloch, Deutschland) wurden die Herzen entlang der kurzen Herzachse in 20 µm messende Schichten geschnitten, auf Objektträger gelegt und bei Raumtemperatur getrocknet. Um die

Bindung des ⁶⁸Ga-CXCL12 Tracers zu blockieren und somit eine spezifische Tracerbindung zu zeigen, wurden die Objektträger 30 Minuten mit 0,15 mM CXCR4 Antikörper (hCXCR4-PE, R&D Systems, Minneapolis, Minnesota, USA) inkubiert. Zur Kontrolle wurden weitere Objektträger für die gleiche Zeitdauer mit HEPES-Pufferlösung inkubiert.

Anschließend wurden die Objektträger sorgfältig mit HEPES gewaschen und über 45 Minuten mit 0,5 mM ⁶⁸Ga-CXCL12 inkubiert. Nach erneutem Spülen wurden Autoradiographien durchgeführt (Fujifilm MS Imaging Plates in einer Fujifilm BAS Cassette 2 2025, Fujifilm, Düsseldorf, Deutschland). Die Autoradiographieplatten wurden ausgelesen und "Regions of interest" (ROIs) innerhalb des infarzierten und gesunden Myokards eingezeichnet, um das Verhältnis von Infarkt zu gesundem Myokard (I/R) zu berechnen. Hierbei konnte eine signifikant höhere, spezifische Anreicherung im infarzierten Gewebe gezeigt werden (Abbildung 2).

Abbildung 2. In vitro Autoradiographie. (A). Myokardschnitte mit ⁶⁸Ga-CXCL12 Mehranreicherung im Infarktareal in der vorderen und *antero-septalen* Herzwand als Referenz (untere Reihe). Nach Inkubation mit einem CXCR4 Antikörper zeigten die Schnitte keine sichtbare ⁶⁸Ga-CXCL12 Aufnahme mehr (obere Reihe). (B). Die quantitative Auswertung zeigt ein deutlich höheres Verhältnis von ⁶⁸Ga-CXCL12 im Myokardinfarkt zum gesunden Herzgewebe im Vergleich zu den mit CXCR4 Antikörper inkubierten Schnitten, I/R nach CXCR4 Antikörper Inkubation 1,01 ± 0,01 zu 1,38 ± 0,23 in den Kontrollen (p < 0,001). Aus Zacherl et al. 2020, Layout angepasst, Lizenz: http://creativecommons.org/licenses/by/4.0/

Um die Spezifität von ⁶⁸Ga-CXCL12 auch *in vivo* zu zeigen, wurden Kompetitionsstudien mit einem Überschuss von nativem CXCL12 mit anschließender PET Bildgebung und Autoradiographie durchgeführt. Wie in **Abbildung 3** zu sehen ist, zeigten beide Experimente eine vollständige Blockade des Tracersignals in der Infarktregion und bestätigten somit die CXCR4-spezifische Aufnahme des neu entwickelten Liganden.

Abbildung 3. Kompetitionsstudie. (A) In der PET Bildgebung an Tag 2 zeigte sich keine sichtbare ⁶⁸Ga-CXCL12 Mehranreicherung im infarzierten Myokard nach Zugabe eines Überschusses von nativem CXCL12. Im ¹⁸F-FDG PET wird das vitale Myokard gezeigt (roter Pfeil: keine sichtbare ⁶⁸Ga-CXCL12 Anreicherung; blauer Pfeil: infarziertes Myokard). (B) Die Autoradiographie am Tag 2 nach Zugabe eines Überschusses von nativem CXCL12 zeigt keine signifikante Aufnahme von ⁶⁸Ga-CXCL12 (repräsentative Schnitte von der Herzbasis bis zur -spitze). Aus Zacherl et al. 2020, geändert, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Nachdem eine spezifische Bindung von ⁶⁸Ga-CXCL12 gezeigt werden konnte, sollte der zeitliche Verlauf der myokardialen CXCR4 Expression mittels Autoradiographie und PET untersucht werden.

Um den optimalen Zeitpunkt *post injectionem* (p.i.) für die *ex vivo* Autoradiographie zu bestimmen, wurde an wenigen Versuchstieren am zweiten Tag nach Myokardinfarkt ⁶⁸Ga-CXCL12 injiziert und die Herzen nach 15, 45, 75 und 105 Minuten entnommen um die Traceranreicherung im Infarktgebiet im Vergleich zum gesunden myokardialen Gewebe zu

untersuchen. Wie die **Abbildung 4** zeigt, steigt das I/R-Verhältnis auf ein Maximum von 7,9 ± 2,7 nach 45 min p.i. an und zeigt anschließend einen langsamen, aber stetigen Abfall bis 110 min p.i. Basierend auf diesen Ergebnissen wurden alle weiteren *ex vivo* Autoradiographie Untersuchungen 45 Minuten p.i. durchgeführt.

Abbildung 4. Verschiedene Zeitpunkte der Entnahme des Herzens p.i. mit Quantifizierung der ⁶⁸Ga-CXCL12 Anreicherung im Vergleich zum gesunden myokardialen Gewebe. Aus Zacherl et al. 2020, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Zur Analyse des zeitlichen Verlaufs der myokardialen CXCR4 Expression im Infarktgebiet wurde nach 12 Stunden und an den Tagen 1 bis 6 sowie am 10. Tag nach Myokardinfarkt eine *ex vivo* Autoradiographie durchgeführt, dabei zeigte sich in der quantitativen Auswertung 12 Stunden nach Myokardinfarkt eine 1,4 ± 0,3-fach erhöhte Anreicherung von ⁶⁸Ga-CXCL12 im Vergleich zum gesunden Herzgewebe mit einem stetigen und signifikanten Anstieg bis zum zweiten Tag (4,5 ± 0,6; p = 0,023). Zwischen den Tagen 2 und 4 wurde eine Plateau-Phase erreicht, gefolgt von einem stetigen und signifikanten Abfall bis zum 10. Tag nach erfolgtem Myokardinfarkt (1,3 ± 0,6; p = 0,004; siehe **Abbildung 5**).

Abbildung 5. Zeitverlauf der CXCR4 Expression in der Autoradiographie: Nach einem signifikanten Anstieg bis Tag 2 zeigt die CXCR4 Expression im Infarktgebiet im Verhältnis zum gesunden Gewebe einen stetigen Abfall von Tag 4 bis Tag 10. Zur besseren Visualisierung der CXCR4 Kinetik über die Zeit wurde eine polynomiale Regression berechnet. Aus Zacherl et al. 2020, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Zur Darstellung der *in vivo* CXCR4 Expression im Herzen wurde an den Tagen 1 bis 6 nach Myokardinfarkt eine ⁶⁸Ga-CXCL12 und ¹⁸F-FDG-Bildgebung im MikroPET (Inveon Dedicated PET, Preclinical Solutions, Siemens Healthcare Molecular Imaging, Knoxville, Tennessee, USA) durchgeführt (**Abbildung 6**). Die anschließende ¹⁸F-FDG PET Untersuchung diente der anatomischen Markierung und zur Abgrenzung des infarzierten Myokards.

Abbildung 6. Experimentelles Design der *in vivo* PET Bildgebung. ⁶⁸Ga-CXCL12 PET wurde an Tag 1 bis 6 über 30 Minuten, 60 Minuten p.i. durchgeführt, im Anschluss erfolgte ein 7-minütiger Transmissionsscan (Tx), drei Mäuse wurden dynamisch über 90 Minuten gescannt; anschließend wurde ein zusätzliche 30-minütiger ¹⁸F-FDG-PET Bildgebung zur anatomischen Korrelation durchgeführt. Aus Zacherl et al. 2020, Lizenz: http://creativecommons.org/licenses/by/4.0/

Um den optimalen Zeitpunkt für eine ⁶⁸Ga-CXCL12 PET Messung mit hohem Verhältnis von myokardialer Infarktanreicherung zum Hintergrund abzuschätzen, wurden einzelne dynamische Scans von 0 bis 90 Minuten aufgenommen und Zeit-Aktivitäts-Kurven berechnet (**Abbildung 7**). Für die Bildgebung des Herzens zeigte sich ein optimales Verhältnis von Anreicherung im Infarkt zum umliegenden Gewebe im Zeitraum von 60 bis 90 Minuten nach Tracerinjektion. Die mittlere Konzentration des Tracers wurde als Prozentsatz der injizierten Dosis pro Gramm (%ID/g) berechnet. Alle Daten wurden am Inveon Acquisition Workplace (Siemens Medical Solutions, Knoxville, Tennessee, USA) ausgewertet. Die PET Daten wurden unter Verwendung von 3D-Bildrekonstruktionsalgorithmen (vier Iterationen) und MAP-Bildrekonstruktionsalgorithmen (32 Iterationen) iterativ als statisches Bild rekonstruiert (OSEM). Die Biodistributionsdaten von ⁶⁸Ga-CXCL12 wurden unter Verwendung des gleichen Algorithmus in unterschiedlichen Einzelbilder (3 × 10 min, 2 × 30 min) rekonstruiert.

Abbildung 7. ⁶⁸Ga-CXCL12 Biodistribution. ⁶⁸Ga-CXCL12 Zeit-Aktivitäts-Kurven im PET über 90 Minuten (drei 10minütige, zwei 30-minütige Frames) im Blut, dem Myokard und verschiedenen Geweben der Maus. Aus Zacherl et al. 2020, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

In der PET Bildgebung zeigte sich von Tag 1 bis Tag 3 eine deutlich erhöhte Akkumulation von 68 Ga-CXCL12 im Bereich des Myokardinfarktes (Tag 1: 4,6 ± 3,2 %ID/g; Tag 3: 9,7 ± 5,0

%ID/g), die dann bis zum 4. Tag eine Plateau-Phase erreichte und anschließend bis zum 6. Tag wieder abnahm (2,8 ± 1,0 %ID/g). Die Traceraufnahme im nicht infarzierten Myokard blieb im zeitlichen Verlauf im Wesentlichen unverändert. An Tag 2 zeigte sich eine signifikant höhere Aufnahme im Infarkt im Vergleich zum gesunden myokardialen Gewebe (siehe **Abbildung 8**).

Abbildung 8. ⁶⁸Ga-CXCL12 PET. (A) PET Beispielbild an Tag 3 mit erhöhter ⁶⁸Ga-CXCL12-Anreicherung im Infarktgebiet (roter Pfeil: ⁶⁸Ga-CXCL12-Aufnahme; blauer Pfeil: Myokardinfarkt). ¹⁸F-FDG PET zeigt das vitale Myokard. (B) CXCR4 Expression in PET am Tag 1-6 nach Myokardinfarkt. Die prozentuale injizierte Dosis pro Gramm Gewebe (%ID/g) im Infarkt nimmt bis zum 3. Tag zu, mit einer darauffolgenden Abnahme bis zum 6. Tag (gestrichelte Linie). Keine zeitliche Veränderung des ⁶⁸Ga-CXCL12 PET im gesunden Myokard (gepunktete Linie). Zur besseren Visualisierung der CXCR4 Kinetik (%ID/g) über die Zeit wurde eine polynomiale Regression berechnet, für das gesunde Myokard wurde eine lineare Trendlinie aufgezeichnet. Aus Zacherl et al. 2020, Layout angepasst, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Um zu bestätigen, dass die Veränderungen in der ⁶⁸Ga-CXCL12 Bindung im Herzen mit der Überexpression von CXCR4 assoziiert sind, analysierten wir die CXCR4 Expression in infizierten Tieren mittels Immunfluoreszenz am Tag 3 nach dem MI. Die Auswertung zeigte sichtbare CXCR4 Expression im Infarktgebiet (**Abbildung 9**).

Abbildung 9. CXCR4 Immunfluoreszenz. Immunhistochemisch nachgewiesene Verteilung von CXCR4. Balken 500 μ M für niedrigere und 100 μ M für höhere Vergrößerung. Aus Zacherl et al. 2020, Lizenz: <u>http://creativecommons.org/licenses/by/4.0/</u>

Im Rahmen der zweiten Arbeit sollten die Auswirkungen einer EPO-Behandlung auf die frühe Expression des Apoptosemarkers Phosphatidylserin mittels ⁶⁸Ga-Annexin A5 PET sowie auf die linksventrikuläre Funktion mittels ¹⁸F-FDG PET im Mausmodell untersucht werden.

Nach Myokardinfarkt wurden die Mäuse in eine EPO-Behandlungsgruppe sowie eine Kontrollgruppe aufgeteilt, an Tag 2 nach Infarkt erfolgte das ⁶⁸Ga-Annexin A5 PET, an den Tagen 6 und 30 erfolgte eine EKG-getriggerte ¹⁸F-FDG PET Untersuchung. Die Behandlungsgruppe erhielt EPO (Epoetin alpha, Janssen-Cilag, Neuss, Deutschland) subkutan nach dem Myokardinfarkt (Tag 0) mit einer Anfangsdosis von 3000 IE/kg sowie 1000 IE/kg an den Tagen 1 und 2. In der gleichen Weise wie die Behandlungsgruppe erhielt die Kontrollgruppe an drei aufeinanderfolgenden Tagen Kochsalzlösung (0,9%, NaCl) (Brunner et al. 2012). Die Durchführung und Auswertung der ⁶⁸Ga-Annexin A5 PET Untersuchung erfolgte wie bereits oben beschrieben.

Im ⁶⁸Ga-Annexin A5 PET an Tag 2 nach Myokardinfarkt betrug die Tracermehranreicherung im Infarktareal 7,9 ± 5,2 %ID/g in der EPO-Gruppe und unterschied sich damit nicht signifikant von jener in der Kontrollgruppe (7,4 ± 3,6 %ID/g, p = 0,591). Im gesunden Myokard war die Annexin-Aufnahme in der Behandlungsgruppe gegenüber der Kontrollgruppe ebenfalls nicht signifikant erhöht (5,2 ± 1,3 zu 3,6 ± 1,7 %ID/g, p = 0,074). Die Annexin-Anreicherung im gesunden Myokard war im Vergleich zum Infarktareal in der Behandlungsgruppe (p < 0,001) und auch im Vergleich zum entsprechenden Areal in der Kontrollgruppe (p = 0,010) signifikant niedriger (Todica et al. 2014, **Figure 1**).

Am 6. Tag nach Myokardinfarkt zeigten beide Behandlungsgruppen im ¹⁸F-FDG PET vergleichbare Infarktgrößen (26 ± 11% in der Kontrollgruppe zu 29 ± 14% in der EPO-Behandlungsgruppe, p = 0,657). An Tag 30 stieg die Infarktgröße in der Kontrollgruppe auf 27 ± 12% (p = 0,105 zu Tag 6) und sank in der Behandlungsgruppe gering auf 27 ± 13% (p = 0,486 zu Tag 6), wie in **Figure 2** (Todica et al. 2014) dargestellt. Die Veränderung der

Infarktgrößen von Tag 6 bis Tag 30 unterschied sich nicht zwischen den Behandlungsgruppen.

Am Tag 6 nach Herzinfarkt zeigten die linksventrikulären Volumina und die Ejektionsfraktion (EDV, ESV, SV und EF) keine signifikanten Unterschiede zwischen der Kontrollgruppe und der EPO-Gruppe (p = ns). Innerhalb der Kontrollgruppe blieben die Werte ebenfalls fast unverändert (p = ns). Innerhalb der EPO-Gruppe zeigten EDV, ESV und SV von Tag 6 bis Tag 30 einen signifikanten Anstieg, während die EF stabil blieb (EDV, ESV, und SV jeweils p < 0,05; EF: p = 1,0). Am 30. Tag zeigte die EPO-Gruppe eine deutlich höhere EDV und ESV sowie ein signifikant höheres SV (p = 0,027) im Vergleich zur Kontrollgruppe, während die EF in beiden Gruppen identisch war. Der Vergleich der Unterschiede von Tag 6 bis Tag 30 zwischen der Kontrollgruppe und der EPO-Gruppe ergab signifikant höhere Werte für EDV (p = 0,020) und ESV (p = 0,014) sowie einen tendenziell höheren Wert für das SV (p = 0,092). Bei der EF gab es keine signifikanten Veränderungen (Todica et al. 2014, **Figure 3**).

3. Zusammenfassung

Die koronare Herzerkrankung und deren Folgen stehen unverändert weltweit in der Todesursachenstatistik an oberster Stelle. Trotz immenser Fortschritte kann das Verständnis und die Erprobung neuer Therapieansätze einen weiteren Beitrag zur Behandlung einer KHK liefern. Die Forschung an Kleintieren, wie hier Mäusen, bietet die Möglichkeit, mittels standardisierter Modelle systembiologische Zusammenhänge zu erforschen und neue Therapien zu erproben. Die Positronen-Emmissions-Tomographie erlaubt dabei eine nicht invasive Bildgebung auf molekularer Ebene unter anderem durch die Entwicklung neuer Radiopharmaka für relevante Zielstrukturen.

Der CX-motivierte Chemokinrezeptor Typ 4 (CXCR4) ist an einer Vielzahl von Stoffwechselvorgängen beteiligt und somit ein besonders interessantes Ziel zum Verständnis systembiologischer Mechanismen. Das Ziel der vorliegenden Arbeiten war die Etablierung eines neuen PET Tracers zur Darstellung und Evaluation der CXCR4 Expression nach myokardialem Infarkt im Mausmodell. Zudem wurde in einer zweiten Arbeit die Wirkung einer Behandlung mittels Erythropoietin nach Myokardinfarkt mittels eines Apoptosetracers und ¹⁸F-FDG untersucht.

Zusammenfassend konnte der neue Tracer ⁶⁸Ga-CXCL12 im Infarktmodell der Maus validiert und eine Hochregulation der CXCR4 Expression nach einem akuten Myokardinfarkt mit einer maximalen Aufnahme an Tag 3 mit anschließendem Abfall des Tracersignals visualisiert werden. Zukünftige Arbeiten müssen zeigen, inwieweit die Quantifizierung eine Prognoseabschätzung erlaubt und wie das Signal, das nach aktuellem Verständnis eine Immunantwort widerspiegelt, moduliert und für therapeutische Zwecke verwendet werden kann. Die Behandlung mit Erythropoetin nach Infarkt führte, entgegen früherer präklinischer Ergebnisse, zu keiner signifikanten Reduktion der Apoptose im Infarkt, jedoch zu einer signifikanten Dilatation des linken Ventrikels bei erhaltener Ejektionsfraktion. Diese nachteiligen Effekte der EPO-Therapie könnten auch für die negativen Ergebnisse klinischer Studien verantwortlich sein.

4. Summary

Coronary heart disease and its consequences continue to be the leading cause of death worldwide. Despite immense progress, the understanding and testing of new therapeutic approaches can make a further contribution to the treatment of coronary heart disease. Research on small animals, such as mice in this case, offers the opportunity to use standardized models to investigate systems biological interactions and test new therapies. Positron emission tomography allows non-invasive imaging at the molecular level, including the development of new radiopharmaceuticals for relevant target structures.

The C-X-C chemokine receptor type 4 (CXCR4) is involved in a variety of metabolic processes and is therefore a particularly interesting target to understand systems biological mechanisms. The aim of the present work was the establishment of a new PET tracer for the visualization and evaluation of CXCR4 expression after myocardial infarction in a mouse model. In addition, a second study investigated the effect of erythropoietin treatment after myocardial infarction using an apoptosis tracer and ¹⁸F-FDG.

In summary, the new tracer ⁶⁸Ga-CXCL12 was validated in the mouse infarction model and an upregulation of CXCR4 expression after acute myocardial infarction with a maximum uptake around day 3 and a subsequent decrease of the tracer signal was visualized. Future work will have to show to what extent quantification allows a disease prognosis and how the signal, which according to current understanding reflects an immune response, can be modulated and used for therapeutic purposes. In the second study, contrary to earlier preclinical results, treatment with erythropoietin after infarction did not lead to a significant reduction of apoptosis in infarction, but to a significant dilatation of the left ventricle while retaining the ejection fraction. These deleterious effects of erythropoietin treatment might be responsible for the negative outcome of clinical trial.

Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel ⁶⁸Ga-mCXCL12 PET tracer

Mathias Johannes Zacherl, MD,^a Andrei Todica, MD,^a Carmen Wängler, PhD,^b Ralf Schirrmacher, PhD,^c Mohammad Ali Hajebrahimi, MD,^d Joachim Pircher, MD,^{d,e} Xiang Li, PhD,^f Simon Lindner, PhD,^a Matthias Brendel, MD,^a Peter Bartenstein, MD,^a Steffen Massberg, MD,^{d,e} Stefan Brunner, MD,^d Sebastian Lehner, MD,^{a,g} Marcus Hacker, MD,^f and Bruno C. Huber, MD^d

- ^a Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- ^b Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- ^c Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, Canada
- ^d Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
- ^e German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- ^f Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- ^g Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation Therapy, Regensburg, Germany

Received Jul 2, 2019; accepted Jun 8, 2020 doi:10.1007/s12350-020-02262-6

Background. The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to be a possible imaging and therapeutic target after myocardial infarction (MI). The murinebased and mouse-specific ⁶⁸Ga-mCXCL12 PET tracer could be suitable for serial in vivo quantification of cardiac CXCR4 expression in a murine model of MI.

Methods and Results. At days 1-6 after MI, mice were intravenously injected with 68 GamCXCL12. Autoradiography was performed and the infarct-to-remote ratio (*I/R*) was determined. In vivo PET imaging with 68 Ga-mCXCL12 was conducted on days 1-6 after MI and the

- **Electronic supplementary material** The online version of this article (https://doi.org/10.1007/s12350-020-02262-6) contains supplementary material, which is available to authorized users.
- The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.
- The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.
- Mathias Johannes Zacherl and Andrei Todica contributed equally to this work.
- **Funding** A substantial part of this work originated from the doctoral thesis of Mathias Zacherl. This work was supported by the FöFoLe-program of the Ludwig-Maximilians-University, Munich. Joachim Pircher received a Postdoc Start-Up Grant from the German Centre for Cardiovascular Research (DZHK).
- Reprint requests: Marcus Hacker, MD, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; marcus.hacker@meduniwien.ac.at 1071-3581/834.00

Copyright © 2020 The Author(s)

percentage of the injected dose (% ID/g) of the tracer uptake in the infarct area was calculated. ¹⁸F-FDG-PET was performed for anatomical landmarking. Ex vivo autoradiography identified CXCR4 upregulation in the infarct region with an increasing *I/R* after 12 hours (1.4 ± 0.3), showing a significant increase until day 2 (4.5 ± 0.6), followed by a plateau phase (day 4) and decrease after 10 days (1.3 ± 1.0). In vivo PET imaging identified similar CXCR4 upregulation in the infarct region which peaked around day 3 post MI ($9.7 \pm 5.0 \%$ ID/g) and then subsequently decreased by day 6 ($2.8 \pm 1.0 \%$ ID/g).

Conclusion. Noninvasive molecular imaging of cardiac CXCR4 expression using a novel, murine-based, and specific ⁶⁸Ga-mCXCL12 tracer is feasible both ex vivo and in vivo. (J Nucl Cardiol 2020)

Key	Words: Myocardial infarction	CXCR4/CXCL12	chemokine axis •	mice • PET •	tracer
⁶⁸ Ga					

Abbreviation	s
CXCR4	Chemokine receptor 4
CXCL12	C-X-C motif chemokine 12 (synonym:
	SDF-1)
MI	Myocardial infarction
LAD	Left anterior descending coronary
	artery
PET	Positron emission tomography
¹⁸ F-FDG	¹⁸ F-fluorodeoxyglucose
⁶⁸ Ga	Gallium-68
%ID/g	Percentage of the injected dose per
	gram of tissue
I/R	Infarcted myocardium to remote myo-
	cardium ratio

INTRODUCTION

In recent years, there has been a growing interest in a better understanding of the inflammatory processes after myocardial infarction (MI) through employing molecular imaging techniques.^{1,2} Several studies have used the well-established and broadly available PET tracer 2-deoxy-2-[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) and these studies were able to show enhanced metabolic activity in inflammatory cells.³ However, a major limitation of ¹⁸F-FDG PET is the non-specific uptake in cells with glycolytic metabolism and the requirement of protocols to suppress physiological myocardial glucose uptake.⁴

More recently, the CX-motive chemokine receptor type 4 (CXCR4) has been introduced as suitable target for molecular imaging, which possibly allows to directly assess the extent of inflammatory activity.⁵ CXCR4 is a member of the G-protein-coupled receptor family and plays a pivotal role in hematopoiesis, organogenesis, and vascularization during development⁶ while it directs cells toward higher concentrations of chemokines.^{7,8} Dysregulation of the chemokine receptor CXCR4 and its ligand CXCL12, also known as stromal cell-derived factor 1 (SDF-1), leads to the development of many human diseases, including cancer, immunodeficiency, and autoimmune and chronic inflammatory diseases.⁹⁻¹¹ CXCR4 is strongly expressed by leukocytes, including granulocytes, monocytes, T cells, B cells, and natural killer cells as well as by bone-marrow-derived progenitor cells.¹²

The CXCL12/CXCR4 axis has been shown to play a pivotal role during cardiovascular development, cardiac repair, and tissue homeostasis after ischemia.¹² However, it seems that the CXCL12/CXCR4 axis has a more complex and double-edged role in cardiovascular disease. On one hand, previous and current data demonstrate that activation of CXCL12/CXCR4 signaling leads to attenuation of ischemic cardiomyopathy by tissue protective effects, increased neovascularization, reduced infarct size, and an improved heart function after MI.^{12,13} On the other hand, the CXCL12/CXCR4 axis has also been demonstrated to have a negative impact on cardiac remodeling after myocardial infarction, potentially associated with the recruitment of proinflammatory cells to the ischemic region.¹⁴ Also, two previous studies investigating a blockade of CXCR4 with the small molecule antagonist AMD3100 generated conflicting results. A continuous blockade of CXCR4 with AMD3100 resulted in impaired survival and reduced cardiac function after acute MI^{15,16}, whereas a single-time treatment caused improved healing and functional recovery.^{16,17}

Hence, the exact role of the chemokine receptor CXCR4 in tissue repair is still undefined and therefore noninvasive imaging of CXCR4 expression after acute MI is of substantial value. For this purpose, we applied a novel, mouse-specific ⁶⁸Ga-mCXCL12 tracer to identify myocardial CXCR4 expression in a mouse model of acute MI.

MATERIALS AND METHODS

Tracer Synthesis

Recombinant murine CXCL12 (mCXCL12, Pepro-Tech Germany, Hamburg, Germany) was kit-like labeled as previously described.¹⁸ In brief, amino functionalities of the protein were randomly first derivatized with sulfo-SMCC, a maleimide-bearing crosslinking agent and afterwards reacted with NODAGA-thiol. After purification of the protein, it can be stored until the labeling is performed. By introducing only 1.6 derivatization sites per molecule, the binding characteristic of the derivatized mCXCL12 should remain preserved.¹⁸ For the radiolabeling reaction, 240 to 340 MBq ⁶⁸Ga were obtained by fractional elution of a commercially available ⁶⁸Ge/⁶⁸Ga generator (Eckert & Ziegler, Berlin, Germany) in 1 mL of 0.1 M HCl. The pH of the solution was adjusted to 3.5 to 4.0 by adding approximately 85 mL of a 1.25 M sodium acetate solution. Subsequently, a solution of the NODAGA-T-derivatized protein (6.9 to 10 nmol) in HEPES buffer (0.025 M, pH 4.0) was added and incubated for 7 min at room temperature. After radiolabeling, HEPES buffer (2 M;150 mL) was added to this mixture to adjust the pH to 7.0, and the solution was filtered sterile. The radiolabeled protein was analyzed by analytic radio-HPLC (gradient of 0% to 100% MeCN + 0.1% TFA in 5 min). A schematic depiction of the preparation of the precursor and the kit-like labeling procedure is shown in Fig. 1.

Animal Model

Myocardial infarction was induced in male C57BL/ 6 mice (Charles River Laboratories, Sulzbach, Germany) at 8 to 12 weeks of age, by permanently ligating the proximal left anterior descending artery (LAD) as previously described.¹⁹ In short, mice were anesthetized by intraperitoneal (i.p.) injection of a mixture of 100 mg/ kg ketamine (Sigma Chemical Co., St. Louis, MO) and 5 mg/kg Xylazine (Sigma-Aldrich, Munich, Germany), intubated, and artificially ventilated by a mouse ventilator (HUGO SACHS, March, Germany) with 200 strokes/min. Animal care and all experimental procedures were performed in strict accordance to the German and National Institutes of Health animal legislation guidelines and were approved by the local animal care and use committees.

In Vitro Autoradiography with ⁶⁸GamCXCL12

To investigate the specificity of the ⁶⁸GamCXCL12 binding, an in vitro autoradiography experiment was performed. Therefore, two days after LAD ligation, induction of anesthesia was performed as described previously and mice were sacrificed by cervical dislocation. The heart was excised, rinsed with cold physiologic saline solution, and then frozen in Tissue-Tek (Embedding Medium for Frozen Tissue Specimens, Sakura Finetek USA, Torrance, CA). Hearts (n = 4) were then cut using a cryostat (Leica CM1510, Nussloch, Germany) set at -20 °C into serial short-axis sections (20 µm thickness each), which were thawmounted on glass slides. Slides were dried at room temperature for 60 minutes. For blocking ⁶⁸GamCXCL12 binding, 30 slides were incubated for 30 minutes with 0.15 mM CXCR4 antibody (hCXCR4-PE, R&D Systems, Minneapolis, Minnesota, USA). An additional 30 slides were incubated for the same amount of time with HEPES buffer solution and served as controls. Each slide was carefully washed with HEPES and then incubated with 0.5 mM ⁶⁸Ga-mCXCL12 for 45 minutes.²⁰ Slides were washed again three times with HEPES and then exposed to autoradiographic imaging plate (Fujifilm MS Imaging Plates in a Fujifilm BAS Cassette 2 2025, Fujifilm Europe, Düsseldorf, Germany) for at least 12 hours. The imaging plate was scanned at 25 µm resolution with Raytest equipment (CR 35 BIO, Dürr Medical, Germany), and analyzed with AIDA Image Analysis software V4.50 (Elysia-Raytest, Straubenhardt, Germany). Regions-of-interest (ROIs) were drawn within the infarcted and remote myocardium to calculate the infarct-to-remote ratios (I/R).

Ex Vivo Autoradiography with ⁶⁸GamCXCL12

To visualize and analyze the time course of ⁶⁸GamCXCL12 accumulation, ex vivo autoradiography was performed in mice after 12 hours (n = 2), on day 1 (n = 6), day 2 (n = 4), day 3 (n = 5), day 4 (n = 4), day 5 (n = 4), and day 6 (n = 4) and day 10 (n = 3)after myocardial infarction. After induction of anesthesia, as mentioned above, 20 ± 2 MBq of ⁶⁸GamCXCL12 were injected into a tail vein. Mice were sacrificed by cervical dislocation at 45 minutes after tracer injection (also refer to supplement); the heart was excised, rinsed with cold physiologic saline solution, and then cut and prepared as described above. Within 30 minutes (i.e., 120 minutes after tracer injection), the slides were placed on an autoradiographic imaging plate (Fujifilm MS Imaging Plates in a Fujifilm BAS Cassette 2 2025, Fujifilm Europe, Düsseldorf, Germany) for at least 12 hours. Readout was performed and I/R were calculated as described above.

Zacherl et al. ⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI

Figure 1. Schematic depiction of tracer synthesis. (**A**) Preparation of the NODA-GA-T-modified mCXCL12 protein (PDB ID: 1A15³³) labeling precursor (blue) and the ⁶⁸Ga-kit-radiolabeling step (green). (**B**) Analytical radio-HPLC chromatogram of ⁶⁸Ga-mCXCL12.

In Vivo PET Imaging

⁶⁸Ga-mCXCL12 and ¹⁸F-FDG imaging was performed on a dedicated small-animal microPET scanner (Inveon Dedicated PET, Preclinical Solutions, Siemens Healthcare Molecular Imaging, Knoxville, TN, USA) on day 1 (n = 3), day 2 (n = 6), day 3 (n = 3), day 4 (n = 3), day 5 (n = 3), and day 6 (n = 3) after LAD artery occlusion. To avoid unnecessary stress for the rodents and keep drop-out rates low, no longitudinal measurements were performed. For scanning, anesthesia was induced with isoflurane (2.5%), and subsequently maintained with isoflurane (1.5%) delivered in pure oxygen at a rate of 1.2 L/min via a face mask without intubation. A volume of approximately 100 µL with 20 ± 3 MBq of ⁶⁸Ga-mCXCL12 were injected into a tail vein after placing an intravenous catheter and flushed with 50 µL of saline solution. Animals were placed within the aperture of the PET scanner. The body temperature was monitored using a rectal thermometer and was held within the normal range using a heating pad. A three-dimensional list-mode acquisition was initiated lasting from minutes 60 to 90 after tracer injection followed by a seven-minute transmission scan performed with a rotating [⁵⁷Co] source for attenuation and scatter correction. To estimate the optimal imaging time point with a high infarct-to-remote ratio in the heart, dynamic scans lasting from minutes 0 to 90 were acquired. For anatomical landmarking and to delineate the infarcted myocardium, an additional ¹⁸F-FDG PET scan, lasting 30 minutes, was subsequently initiated. Therefore, 20 MBq ¹⁸F-FDG were injected in a volume of 100 μ L, as previously described²¹ (Fig. 2). Recovery from anesthesia and the PET scan was monitored in the home cage and overseen by a veterinarian.

All data were processed with the Inveon Acquisition Workplace (Siemens Medical Solutions, Knoxville, TN). The ⁶⁸Ga-mCXCL12 data were iteratively reconstructed as static image using ordered-subsets expectation maximization (OSEM) 3D (four iterations) and MAP (32 iterations) image reconstruction algorithms. The final images consisted of a 256×256 matrix (159 slices, thickness 0.796 mm) with a zoom factor of 100% and a β of 0.15 as previously established by our group.^{21 18}F-FDG PET data were reconstructed as a static image using the same reconstruction algorithm as described above. ⁶⁸Ga-mCXCL12 biodistribution data were reconstructed as framed images (3 \times 10 min, 2 \times 30 min) using the same algorithm. All data were normalized and corrected for random coincidences, dead time and decay, as well as attenuation.

PET Image Analysis

The ⁶⁸Ga-mCXCL12 PET scans were analyzed using the Inveon Research Workplace (Siemens Medical Solutions, Knoxville, TN). The biodistribution of ⁶⁸GamCXCL12 in the blood pool and the infarcted myocardium was evaluated (n = 3; day 1, 4, and 6) to estimate the optimal timeframe for further analysis, indicating an optimal infarct-to-remote ratio lasting from 60 to 90 minutes. Therefore, standard volumes of interest (VOI) were drawn in the last frame (60 to 90 minutes) in the infarcted area, using a co-registration with the ¹⁸F-FDG pet scan for landmarking. To avoid spill-over from the liver, the VOI was placed in the front wall of the heart, in the infarcted myocardium. The correct placement of the VOI was verified in axial, coronal, and sagittal projections. The mean radioactivity concentration was quantified as the percentage of the injected dose per Journal of Nuclear Cardiology® Zacherl et al. ⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI ⁶⁸Ga-mCXCL12 PET scan 30 min. Tx scan 7 min. LAD occlusion ⁶⁸Ga-mCXCL12 inj. day 0 // day 1, 2, 3, 4, 5, 6 Dynamic scan 0-90 min p.i. (n=3) 60-90 min p.i.

Figure 2. Experimental design of the in vivo PET Imaging. 68 Ga-mCXCL12 PET was performed on day 1 to 6 over 30 min. 60 min. p.i. followed by a 7 min. transmission (Tx) scan, three mice were scanned dynamically over 90 min; subsequently an additional 30-min 18 F-FDG-PET scan was acquired for landmarking.

gram of tissue (%ID/g). Another VOI was drawn within the remote, healthy myocardium in the *basal anterior* wall of the heart to avoid spill-over from the liver and the %ID/g was calculated likewise to serve as an internal control. Furthermore, time-activity curves were calculated for the infarcted area, the remote myocardium, the liver, the bladder, and the right limb to demonstrate the biodistribution of ⁶⁸Ga-mCXCL12.

Validation of Radiotracer Specificity by Blocking with Native mCXCL12

After synthesis of 68 Ga-mCXCL12, a 10 times higher molar excess of native mCXCL12 was dissolved and co-injected with 15 MBq 68 Ga-mCXCL12 on day 2 after myocardial infarction (n = 2). After 60 minutes, a 30-min PET scan was performed. A 18 F-FDG scan was conducted subsequently as previously described. For autographic analysis, an additional mouse received the same co-injection with mCXCL12 and the heart was extracted after 45 min. Autoradiography was carried out as described above (Fig. 4C and D).

Immunofluorescence Analysis

For immunofluorescence analysis, hearts were harvested 3 days after arterial ligation and were immediately embedded in OCT and frozen at - 80 °C. Frozen samples were cut with a cryotome (Leica CM1510, Nussloch, Germany) into 10 µm sections, fixed with 4% formaldehyde, and blocked with goat serum. The sections were incubated with monoclonal PE-conjugated anti mouse CXCR4 (clone2B11, eBioscience) or respective PE-labeled isotype control (Rat IgG2b kappa, eBioscience) for 1 hour at room temperature. DNA was stained with 1 µg/mL DAPI (Sigma), and a coverslip was placed using mounting medium (DAKO). Primary antibodies were applied 1:100 (final dilution). Images were acquired using a LSM 880 confocal microscope with Airyscan module and Plan-Apochromat $20 \times /0.8$ air objective (Carl Zeiss Microscopy) and processed using ZEN software (Zeiss).

Statistical Analysis

Group comparisons of *I/R* in autoradiography and %ID/g in PET results were performed using one-way ANOVA and the Holm-Bonferroni method was used to correct for multiple comparisons, calculated by IBM SPSS 25 Statistics. Shapiro-Wilk was used to test for normal distribution. A paired Student's *t* test was used to compare data between healthy and infarcted myocardium in the ⁶⁸Ga-mCXCL12 PET. In general, a threshold of P < 0.05 was considered to be significant for rejection of the null hypothesis.

RESULTS

Tracer Synthesis, In Vivo Biodistribution, In Vitro Autoradiography, and Blocking with Native mCXCL12 Co-injection to Test Target Specificity

The protein mCXCL12 was prepared for labeling by introducing only 1.6 derivatization sites per molecule. Before every experiment, mCXCL12 was labeled using a kit-like labeling technique with ⁶⁸Ga. Consequently, the radiotracer was analyzed by analytical radio-HPLC (gradient of 0% to 100% MeCN + 0.1% TFA in 5 min) and found to be 95% to 99% pure, the molar activity of the tracer was between 20 and 45 GBq/µmol. The molecular weight is 8.3 kDa and mCXCL12 consists of 68 amino acids.

Representative time-activity curves for ⁶⁸GamCXCL12 are presented in Fig. 3 with volumes of interest placed in the infarcted myocardium, blood pool (myocardial cavity), liver, kidney, bladder, bone (*femur*), muscle, lung, and brain. Radioactivity concentration in the liver consistently exceeded that of all other organs. Blood pool activity decreased constantly within the first 30 minutes and showed afterwards only a slight decrease until the end of the study. A relatively constant phase of radioactivity distribution was reached after approx. 45 minutes with minor changes up to 60 minutes after tracer injection.

Figure 3. ⁶⁸Ga-mCXCL12 time-activity curves. ⁶⁸Ga-mCXCL12 PET time-activity curves over 90 min (three 10-min, two 30-min frames) in the blood pool, the myocardium and several tissues of the mouse. All data represent mean \pm SEM (n = 3).

Target specificity of the ⁶⁸Ga-mCXCL12 tracer was evaluated using consecutive sections of the same heart of previously infarcted animals. Sections were either incubated with CXCR4 antibody or saline as control. Figure 4A (bottom row) demonstrates an increased tracer uptake in the anterior and antero-septal wall within the infarcted myocardium (LAD-territory). After blocking with CXCR4 antibody, comparative sections of the same heart area showed a fully suppressed ⁶⁸GamCXCL12 tracer uptake (Fig. 4A, top row). Semiquantitative assessment of the antibody-blocked slides revealed a significantly lower I/R of 1.01 ± 0.01 as compared to the unblocked control slides $(1.38 \pm 0.23; P$ < 0.001; Fig. 4B). To further address the specificity of our radiotracer, we performed competition studies with excess of native mCXCL12 for in vivo imaging and autoradiography. As can be seen in Fig. 4C and D, both experiments revealed complete blocking of radiotracer accumulation in the infarct region and thus confirmed the CXCR4-specific uptake of the newly developed ligand.

Ex Vivo Molecular Imaging of Cardiac CXCR4 Expression by Autoradiography

To visualize and analyze the time course of cardiac ⁶⁸Ga-mCXCL12 accumulation, one-way ANOVA was performed (methods), showing significant differences for *I/R* among time points (P < 0.001) with normal distributed data (Shapiro-Wilk, P = 0.883) and equal variances (P = 0.273). ⁶⁸Ga-mCXCL12 *I/R* was initially 1.4 ± 0.3 at 12 hours after acute MI with a steady and significant increase until day 2 (4.5 ± 0.6 ; P = 0.023). A plateau phase was reached between days 2 and 4, followed by a steady and significant decline up to day 10 after MI (1.3 ± 0.6 ; P = 0.004; see Fig. 5)

In Vivo Molecular Imaging of Cardiac CXCR4 Expression

Journal of Nuclear Cardiology®

Image fusion of ¹⁸F-FDG and ⁶⁸Ga-mCXCL12 PET scans was performed to allow for proper attribution of CXCR4 uptake to the area of infarction (Fig. 6A; middle row). As visualized in Fig. 7, the PET scan shows an increasing uptake of ⁶⁸Ga-mCXCL12 in the infarcted area. The high uptake in the liver is evident in all three axes of the PET image (Fig. 6A) as already visualized in tracer biodistribution curves (Fig. 3). Figure 6C indicates a constant decrease of the blood pool activity with a constant accumulation in the infarcted area and therefore an optimal infarct-to-remote ratio is obtained between 60 and 90 minutes.

Even though not significant at the 5% level, there was an evidently increasing tracer uptake in the infarcted myocardium from day 1 to day 3 in the PET scan (day 1: $4.6 \pm 3.2 \%$ ID/g; day 3: $9.7 \pm 5.0 \%$ ID/g), which then reached a plateau phase until day 4 and then again a subsequent decrease until day 6 ($2.8 \pm 1.0 \%$ ID/g). The tracer uptake in the remote myocardium remained essentially low and stable without any significant changes over time. Day 2 revealed a significantly higher uptake of ⁶⁸Ga-mCXCL12 in the infarcted area as compared to the remote myocardium (see Fig. 7).

Immunofluorescence Analysis

To confirm that the changes in ⁶⁸Ga-mCXCL12 binding in the heart are associated with the overexpression of CXCR4, we analyzed the CXCR4 expression in infarcted animals by immunofluorescence analysis at day 3 after MI. Evaluation of the infarcted myocardium with an anti-CXCR4 antibody demonstrated visible expression levels of CXCR4 (Fig. A3).

DISCUSSION

The current study was designed as proof of concept to demonstrate that ex vivo and in vivo molecular imaging of CXCR4 expression in the murine heart using the proposed novel and mouse-specific PET tracer ⁶⁸GamCXCL12 is feasible. Furthermore, our intent was to investigate the CXCR4 expression after initial acute MI over time in a mouse model of permanent LAD occlusion. This might indicate the optimal timeframe for future in vivo imaging studies in preclinical models of ischemic heart disease. Although, due to the lower positron range, which leads to a higher spatial resolution, a ¹⁸F-based tracer would have been preferable, but considering the kit-like labeling technique, the mousespecific protein, as well as the widespread availability of generator-produced ⁶⁸Ga, the proposed ⁶⁸Ga-mCXCL12 Journal of Nuclear Cardiology®

⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI

Figure 4. Specificity of ⁶⁸Ga-mCXCL12. (**A**) Unblocked slices with ⁶⁸Ga-mCXCL12 accumulation in the infarcted heart in the *anterior* and *antero-septal* wall (bottom row). After blocking with CXCR4 antibody sections show no visible ⁶⁸Ga-mCXCL12 uptake anymore (top row). (**B**) Significantly higher ⁶⁸Ga-mCXCL12 myocardial infarct-to-remote activity ratios as compared to the unblocked slices. All data represent mean ± SD. (**C**) PET image on day 2 shows no visible ⁶⁸Ga-mCXCL12 uptake in the infarcted myocardium after Co-Injection with excess of native mCXCL12. ¹⁸F-FDG PET showing the viable myocardium (red arrow: no ⁶⁸Ga-mCXCL12 uptake; blue arrow: infarcted myocardium). (**D**) Autoradiography on day 2 after Co-Injection with excess of native mCXCL12 shows no significant ⁶⁸Ga-mCXCL12 uptake (top to bottom shows representative slides from the base to the apex of the heart).

Figure 5. Time-course of CXCR4 expression in autoradiography. After a significant increase until day 2 CXCR4 infarctto-remote activity ratios (I/R) significantly decrease from day 4 to day 10. For better visualization of the CXCR4 kinetic (I/R) over time a fourth-order polynomial regression trendline was calculated. All data represent mean \pm SEM.

radioligand is an ideal tracer, potentially available at many research sites.¹⁸

Our findings reveal an increasing tracer signal in the infarcted area corresponding to an increased cardiac CXCR4 expression peaking between day 3 and 4 as shown by concordant findings in ex vivo autoradiography and PET with a subsequent decrease up to day 10 post MI.

In recent years, ⁶⁸Ga-Pentixafor has been introduced as suitable clinical tracer for imaging CXCR4 expression.²² Initially, ⁶⁸Ga-Pentixafor has been used for tumor imaging and in patients with lymphoproliferative disease.⁵ Additionally, in small pilot studies of noninvasive imaging, ⁶⁸Ga-Pentixafor was suitable to visualize myocardial CXCR4 expression in patients after acute MI.²³⁻²⁶ However, despite high affinity of 68 Gapentixafor for the human CXCR4 receptor, affinity for murine CXCR4 was significantly lower in this study.^{5,23} Therefore, the proposed tracer, which uses a murine CXCL12 protein should be more appropriate to visualize murine CXCR4 expression.¹⁸ The highest mean %ID/g on day 3 for ⁶⁸Ga-Pentixafor reported by Thackeray et al. was 1.5, whereas we observed a mean %ID/g on day 3 of 9.7 indicating the higher specificity of our novel tracer to the murine CXCR4 receptor.²³ Comparably better results were also observed for the I/R with an up

Zacherl et al. ⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI

Figure 6. ⁶⁸Ga-mCXCL12 PET and time-activity curves. (**A**) PET image on day 3 with increased ⁶⁸Ga-mCXCL12 uptake in the infarcted myocardium (red arrow: ⁶⁸Ga-mCXCL12 uptake; blue arrow: infarcted myocardium). ¹⁸F-FDG PET showing the viable myocardium. (**B**) Fused and zoomed images of ⁶⁸Ga-mCXCL12 and ¹⁸F-FDG PET with red dotted lines around the myocardium. (**C**) Representative ⁶⁸Ga-mCXCL12 PET time-activity curves in the myocardium and the blood pool with the best infarct-to-blood pool ratio at the end of the acquisition time. All data represent mean ± SEM.

Figure 7. Time-course of CXCR4 expression in PET. (**A**) Percentage injected dose per gram of tissue (%ID/g) in the infarct increasing until day 3 with a consecutive decrease until day 6 (dashed line). No change in ⁶⁸Ga-mCXCL12 PET in the remote myocardium over time (dotted line). For better visualization of the CXCR4 kinetic (%ID/g) over time a fourth-order polynomial regression trendline was calculated, for remote myocardium a linear trendline was plotted. (**B**) Infarct-to-remote ratios (*I/R*) of ⁶⁸Ga-mCXCL12 PET over time. All data represent mean ± SEM.

to threefold higher ratio in our study compared to results obtained with ⁶⁸Ga-pentixafor.

The performed blocking study with a CXCR4 antibody decreased the ⁶⁸Ga-mCXCL12 uptake in the infarcted area to values which were not different from the background level (Fig. 4). This demonstrates a CXCR4-specific binding of ⁶⁸Ga-mCXCL12, suggesting that the ex vivo and in vivo signals obtained using this

tracer primarily arises from CXCR4-positive cells. Similar results were reported with the CXCR4-antagonist AMD3100 for ⁶⁸Ga-pentixafor.²³

By autoradiography and in vivo PET imaging we identified regional CXCR4 upregulation in the infarct region peaking approximately at day 3 post MI, reaching a plateau phase followed by a steady and significant decline which was in good agreement to previously published data.^{23,27} Thackeray et al. reported a significantly increased I/R at day 3 as compared to the control group with a significant decline up to day 7.²³ Li et al. investigated the CXCR4 expression in a rat ischemia-reperfusion model (I/R) with ¹²⁵I-pentixather and found a maximum uptake 3 days after I/R. Signal decreased after 3 days but was still visible 7 days after MI.²⁷

However, with our PET imaging approach, the exact source of the cellular signal remains unclear. In fact, the image displays a composition of different cell types, which are present in the respective myocardial region. Based on the observation that our tracer signal peaked at the time point of maximum inflammation in the infarcted animals, points to a high probability that most of the CXCR4 signal is derived from leukocytes.²⁶ This is in agreement with previous data, where the ⁶⁸Ga-Pentixafor signal in the infarct area 3 days post MI was associated with increased detection of macrophages and granulocytes by immunostaining.

Zhang et al. demonstrated augmented CXCR4 expression in the infarct zone as early as 24 hours after acute myocardial infarction by immunofluorescent CXCR4 staining in the infarct border zone¹³ with increased levels up to day 7 which corroborates our CXCR4 expression kinetics. Furthermore, flow cytometry analysis detected increased levels of CD45 positive leukocytes in the damaged myocardial region at the same time point.²³

The regional and systemic inflammatory processes play an important role for left ventricular remodeling after myocardial infarction and the subsequent development of chronic heart failure.²⁸ Therefore, CXCR4 expression after MI might be a possible predictor for a beneficial or deleterious post infarct remodeling. A recent study investigated the use of ⁶⁸Ga-Pentixafor in patients after acute MI. The authors were able to demonstrate that imaging of myocardial CXCR4 is feasible up to 2 weeks after acute MI. Furthermore, tracer uptake in the damaged myocardium correlated with smaller scar volumes at follow-up.²⁵ Consistently, a single-time treatment with a CXCR4 antagonist resulted in an attenuated ischemia/reperfusion injury.¹ Interestingly, a continuous blockade of CXCR4 with AMD3100 resulted in impaired survival and reduced cardiac function after acute MI.15,16 This shows the unmet need to define the exact role of the chemokine receptor CXCR4 in tissue repair and points out that noninvasive imaging of CXCR4 expression after acute MI is of substantial value.

It is well known, that not only the myocardium at risk but also the remote myocardium is affected by the inflammatory process which also provides the basis for adverse left ventricular remodeling.²⁹ In our study, the

tracer uptake in the remote myocardium remained essentially low and stable over the 6 days. This might be attributed to our rather short imaged period. Gross et al. found a significant decrease in cardiac ¹⁸F-FDG uptake from day 6 to day 30 after acute MI which might be attributed to an initial elevated inflammatory process in the remote myocardium.³⁰ Unfortunately, no data until day 6 was reported by Gross et al. Future studies are therefore warranted focusing on the long-term CXCR4 expression in the remote myocardium as a prognostic marker for cardiac remodeling.

To our knowledge, CXCR4 chemokine imaging has not been translated to other conditions of the heart with increased inflammatory activity so far. Therefore, the murine based ⁶⁸Ga-mCXCL12 should also be used in well-established mouse models of myocarditis³¹ or hypertrophic cardiomyopathy³² to further clarify a potential prognostic and therapeutic value of CXCR4 molecular imaging.

Limitations

Although there was an obvious and increased ⁶⁸Ga-mCXCL12 uptake in the infarcted myocardium as compared to the remote area in autoradiography and PET, only day 2 showed a significantly higher %ID/g (see also Fig. 7). This might be attributed to the partially small group size, which also represents a major limitation of this study. As obvious from the biodistribution data (Fig. 3) and the microPET images (Fig. 6), there is a relatively high blood pool activity as well as a quite-high liver uptake. This represents a major limitation of ⁶⁸Ga-mCXCL12 for cardiac imaging and in particular in small animal models due to spill-over in the myocardial wall. Although the number of introduced chemical modifications is rather low (in average 1.6 per CXCL12 molecule), this represents a non-insignificant fraction of derivatized amino acids because of the small size of the protein. This derivatization might lead to a higher binding potential to proteins in the blood which might lead to a somewhat higher blood pool activity as well as the relatively high liver uptake. A possible strategy to reduce these effects might be to reduce the number of derivatized amino acids although this might on the other hand result in lower achievable molar activities or a site-specific labeling which, however, would preclude the use of endogenous protein. Future studies should include a respiratory movement correction and, if a CT scan is available, an additional spill-over correction. Although we showed that ⁶⁸Ga-mCXCL12 binds mainly to CXCR4, we cannot exclude cross reactivity with other chemokine receptors like ACKR3.

Zacherl et al. ⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI

CONCLUSION

In summary, molecular imaging with the ⁶⁸Galabeled murine protein CXCL12, ⁶⁸Ga-mCXCL12, is feasible to detect CXCR4 upregulation early after acute MI in mice with a peak uptake around day 3. Furthermore, we were able to show the CXCR4-specific uptake of the new radioligand. The development of imaging techniques estimating the immune response in the heart after acute MI could in the future help selecting those patients who are going to benefit from dedicated antiinflammatory therapies. In addition, it will be the goal of further studies to test a potential prognostic and therapeutic value of CXCR4 molecular imaging and the value of chemokine imaging in more clinically relevant models like myocardial ischemia/reperfusion injury as well as other cardiac inflammatory conditions.

Acknowledgments

Open access funding provided by Medical University of Vienna.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Kircher M, Lapa C. Novel noninvasive nuclear medicine imaging techniques for cardiac inflammation. Curr Cardiovasc Imaging Rep 2017;10:6.
- Fernández-Ruiz I. Inflammation: New insights from PET imaging. Nat Rev Cardiol 2018;15:135.
- Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, Dutta P, Iwamoto Y, Ueno T, Begieneman MPV, Niessen HWM, Piek JJ, Vinegoni C, Pittet MJ, Swirski FK, Tawakol A, Di Carli M, Weissleder R, Nahrendorf M. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 2012;59:153-63.
- Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for ¹⁸F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging 2015;42:771-80.

- Gourni E, Demmer O, Schottelius M, D'Alessandria C, Schulz S, Dijkgraaf I, Schumacher U, Schwaiger M, Kessler H, Wester H-J. PET of CXCR4 expression by a ⁶⁸Ga-labeled highly specific targeted contrast agent. J Nucl Med 2011;52:1803-10.
- Berger EA. Introduction: HIV co-receptors solve old questions and raise many new ones. Semin Immunol 1998;10:165-8.
- 7. Zlotnik A. Chemokines and cancer. Int J Cancer 2006;119:2026-9.
- Burger JA, Kipps TJ. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006;107:1761-7.
- Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436-45.
- Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610-21.
- Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001;2:108-15.
- Zaruba M-M, Franz W-M. Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin Biol Ther 2010;10:321-35.
- Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, Koc ON, Penn MS. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 2007;21:3197-207.
- 14. Chen J, Chemaly E, Liang L, Kho C, Lee A, Park J, Altman P, Schecter AD, Hajjar RJ, Tarzami ST. Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 2010;176:1705-15.
- Dai S, Yuan F, Mu J, Li C, Chen N, Guo S, Kingery J, Prabhu SD, Bolli R, Rokosh G. Chronic AMD3100 antagonism of SDF-1alpha-CXCR4 exacerbates cardiac dysfunction and remodeling after myocardial infarction. J Mol Cell Cardiol 2010;49:587-97.
- 16. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, Ito A, Misener S, Tanaka T, Klyachko E, Kobayashi K, Tongers J, Roncalli J, Tsurumi Y, Hagiwara N, Losordo DW. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 2010;107:11008-13.
- 17. Jujo K, Ii M, Sekiguchi H, Klyachko E, Misener S, Tanaka T, Tongers J, Roncalli J, Renault M-A, Thorne T, Ito A, Clarke T, Kamide C, Tsurumi Y, Hagiwara N, Qin G, Asahi M, Losordo DW. CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism. Circulation 2013;127:63-73.
- Wängler C, Wängler B, Lehner S, Elsner A, Todica A, Bartenstein P, Hacker M, Schirrmacher R. A universally applicable ⁶⁸Ga-labeling technique for proteins. J Nucl Med 2011;52:586-91.
- Huber BC, Brunner S, Segeth A, Nathan P, Fischer R, Zaruba MM, Vallaster M, Theiss HD, David R, Gerbitz A, Franz W-M. Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1driven homing of CXCR4(+) stem cells into the ischaemic heart. Cardiovasc Res 2011;90:529-37.
- Rominger A, Brendel M, Burgold S, Keppler K, Baumann K, Xiong G, Mille E, Gildehaus F-J, Carlsen J, Schlichtiger J, Niedermoser S, Wängler B, Cumming P, Steiner H, Herms J, Haass C, Bartenstein P. Longitudinal assessment of cerebral β-amyloid deposition in mice overexpressing Swedish mutant β-amyloid precursor protein using ¹⁸F-florbetaben PET. J Nucl Med 2013;54:1127-34.
- Lehner S, Todica A, Brunner S, Uebleis C, Wang H, Wängler C, Herbach N, Herrler T, Böning G, Laubender RP, Cumming P, Schirrmacher R, Franz W, Hacker M. Temporal changes in phosphatidylserine expression and glucose metabolism after

Journal of Nuclear Cardiology®

Zacherl et al. ⁶⁸Ga-mCXCL12 PET for monitoring murine cardiac CXCR4 expression after AMI

myocardial infarction: An in vivo imaging study in mice. Mol Imaging 2012;11:461-70.

- 22. Wester HJ, Keller U, Schottelius M, Beer A, Philipp-Abbrederis K, Hoffmann F, Šimeček J, Gerngross C, Lassmann M, Herrmann K, Pellegata N, Rudelius M, Kessler H, Schwaiger M. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 2015;5:618-30.
- Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, Schäfer A, Tillmanns J, Wester HJ, Wollert KC, Bauersachs J, Bengel FM. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging 2015;8:1417-26.
- 24. Rischpler C, Nekolla SG, Kossmann H, Dirschinger RJ, Schottelius M, Hyafil F, Wester HJ, Laugwitz KL, Schwaiger M. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J Nucl Cardiol 2016;23:131-3.
- Reiter T, Kircher M, Schirbel A, Werner RA, Kropf S, Ertl G, Buck AK, Wester H-J, Bauer WR, Lapa C. Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [⁶⁸Ga]Pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc Imaging 2018. https://doi.org/10. 1016/j.jcmg.2018.01.001.
- Lapa C, Reiter T, Werner RA, Ertl G, Wester H-J, Buck AK, Bauer WR, Herrmann K. [⁶⁸Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression after myocardial infarction. JACC Cardiovasc Imaging 2015;8:1466-8.
- 27. Li J, Peng C, Guo Z, Shi C, Zhuang R, Hong X, Wang X, Xu D, Zhang P, Zhang D, Liu T, Su X, Zhang X. Radioiodinated pentixather for SPECT imaging of expression of the chemokine receptor CXCR4 in rat myocardial-infarction-reperfusion models. Anal Chem 2018;90:9614-20.
- Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE. Inflammation as a driver of adverse left ventricular

remodeling after acute myocardial infarction. J Am Coll Cardiol 2016;67:2050-60.

- Ruparelia N, Digby JE, Jefferson A, Medway DJ, Neubauer S, Lygate CA, Choudhury RP. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm Res 2013;62:515-25.
- 30. Gross L, Paintmayer L, Lehner S, Brandl L, Brenner C, Grabmaier U, Huber B, Bartenstein P, Theiss H-D, Franz W-M, Massberg S, Todica A, Brunner S. FDG-PET reveals improved cardiac regeneration and attenuated adverse remodelling following Sitagliptin + G-CSF therapy after acute myocardial infarction. Eur Heart J Cardiovasc Imaging 2016;17:136-45.
- 31. Brunner S, Todica A, Böning G, Nekolla SG, Wildgruber M, Lehner S, Sauter M, Ubleis C, Klingel K, Cumming P, Franz WM, Hacker M. Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [¹⁸ F]FDG-PET: Comparison with cardiac MRI and monitoring erythropoietin therapy. EJNMMI Res 2012;2:43.
- Todica A, Beetz NL, Günther L, Zacherl MJ, Grabmaier U, Huber B, Bartenstein P, Brunner S, Lehner S. Monitoring of cardiac remodeling in a mouse model of pressure-overload left ventricular hypertrophy with [¹⁸F]FDG MicroPET. Mol Imaging Biol 2018;20:268-74.
- 33. Dealwis C, Fernandez EJ, Thompson DA, Simon RJ, Siani MA, Lolis E. Crystal structure of chemically synthesized [N33A] stromal cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor. Proc Natl Acad Sci USA 1998;95:6941-6.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6. Veröffentlichung II

Todica A, **Zacherl MJ**, Wang H, Böning G, Jansen NL, Wängler C, Bartenstein P, Kreissl MC, Hacker M, Brunner S, Lehner S. In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [68Ga]Annexin A5 and [18F]FDG PET. J Nucl Cardiol. 2014 Dec;21(6):1191-9. <u>https://doi.org/10.1007/s12350-014-9987-0</u>. Epub 2014 Sep 5.

7. Literaturverzeichnis

- Bartekova, M. et al., 2018. Role of cytokines and inflammation in heart function during health and disease. *Heart failure reviews*, 23(5), pp.733–758.
- Berger, E.A., 1998. Introduction: HIV co-receptors solve old questions and raise many new ones. *Seminars in immunology*, 10(3), pp.165–168.
- Brunner, S. et al., 2012. Migration of bone marrow-derived cells and improved perfusion after treatment with erythropoietin in a murine model of myocardial infarction. *Journal of cellular and molecular medicine*, 16(1), pp.152–159.
- Burger, J.A. & Kipps, T.J., 2006. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. *Blood*, 107(5), pp.1761–1767.
- Chambless, L.E. et al., 1997. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. *American journal of epidemiology*, 146(6), pp.483–494.
- Chandrashekhar, Y. et al., 2004. Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. *Journal of the American College of Cardiology*, 43(2), pp.295–301.
- Charo, I.F. & Ransohoff, R.M., 2006. The many roles of chemokines and chemokine receptors in inflammation. *The New England journal of medicine*, 354(6), pp.610–621.
- Chen, J. et al., 2010. Effects of CXCR4 gene transfer on cardiac function after ischemiareperfusion injury. *The American journal of pathology*, 176(4), pp.1705–1715.
- Dealwis, C. et al., 1998. Crystal structure of chemically synthesized [N33A] stromal cellderived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor. *Proceedings of the National Academy of Sciences of the United States of America*, 95(12), pp.6941– 6946.
- De Saint-Hubert, M. et al., 2009. Molecular imaging of cell death. *Methods* , 48(2), pp.178–187.
- Destatis, 2020. Spezifikation für Indikator 516 Sterbefälle für die 10 20 50 100 häufigsten Todesursachen. Available at: http://www.gbe-bund.de/oowa921install/servlet/oowa/aw92/dboowasys921.xwdevkit/xwd_init?gbe.isgbetol/xs_start_neu/& p_aid=i&p_aid=44751566&nummer=516&p_sprache=D&p_indsp=4065&p_aid=946131 38 [Accessed June 14, 2020].
- Dong, F. et al., 2012. Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. *Circulation*, 126(3), pp.314–324.
- Döring, Y. et al., 2014. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. *Frontiers in physiology*, 5, p.212.
- Elmore, S., 2007. Apoptosis: a review of programmed cell death. *Toxicologic pathology*, 35(4), pp.495–516.
- Farouk, S.S. et al., 2010. CXCL12: a new player in coronary disease identified through human genetics. *Trends in cardiovascular medicine*, 20(6), pp.204–209.

- Fliss, H. & Gattinger, D., 1996. Apoptosis in ischemic and reperfused rat myocardium. *Circulation research*, 79(5), pp.949–956.
- Gerard, C. & Rollins, B.J., 2001. Chemokines and disease. *Nature immunology*, 2(2), pp.108–115.
- Gourni, E. et al., 2011. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. *Journal of nuclear medicine: official publication, Society of Nuclear Medicine*, 52(11), pp.1803–1810.
- Hansson, G.K. & Hermansson, A., 2011. The immune system in atherosclerosis. *Nature immunology*, 12(3), pp.204–212.
- Huber, B.C. et al., 2011. Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1driven homing of CXCR4(+) stem cells into the ischaemic heart. *Cardiovascular research*, 90(3), pp.529–537.
- Hu, X. et al., 2007. Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. *Circulation*, 116(6), pp.654–663.
- Janssens, R., Struyf, S. & Proost, P., 2018. The unique structural and functional features of CXCL12. *Cellular & molecular immunology*, 15(4), pp.299–311.
- Kenneth Mallory, G., White, P.D. & Salcedo-Salgar, J., 1939. The speed of healing of myocardial infarction: A study of the pathologic anatomy in seventy-two cases. *American heart journal*, 18(6), pp.647–671.
- Kerr, J.F., Wyllie, A.H. & Currie, A.R., 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *British journal of cancer*, 26(4), pp.239–257.
- Kwon, G.P. et al., 2008. Contribution of macromolecular structure to the retention of lowdensity lipoprotein at arterial branch points. *Circulation*, 117(22), pp.2919–2927.
- Lehner, S. et al., 2012. Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. *Molecular imaging*, 11(6), pp.461–470.
- Liehn, E.A. et al., 2011. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. *Journal of the American College of Cardiology*, 58(23), pp.2415–2423.
- Lopez, A.D. et al., 2006. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. *The Lancet*, 367(9524), pp.1747–1757.
- Luster, A.D., 1998. Chemokines--chemotactic cytokines that mediate inflammation. *The New England journal of medicine*, 338(7), pp.436–445.
- Lutgens, E. et al., 2019. Immunotherapy for cardiovascular disease. *European heart journal*, 40(48), pp.3937–3946.
- Mann Douglas L., 2002. Inflammatory Mediators and the Failing Heart. *Circulation research*, 91(11), pp.988–998.
- Mastromarino, V. et al., 2013. Erythropoietin in cardiac disease: effective or harmful? *Journal* of cardiovascular medicine, 14(12), pp.870–878.

- van der Meer, P. et al., 2004. Erythropoietin in cardiovascular diseases. *European heart journal*, 25(4), pp.285–291.
- Murray, C.J.L. & Lopez, A.D., 2013. Measuring the global burden of disease. *The New England journal of medicine*, 369(5), pp.448–457.
- Najjar, S.S. et al., 2011. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. *JAMA: the journal of the American Medical Association*, 305(18), pp.1863–1872.
- Nakahara, T., Narula, J. & Strauss, H.W., 2018. Molecular Imaging of Vulnerable Plaque. *Seminars in nuclear medicine*, 48(3), pp.291–298.
- Ott Ilka et al., 2010. Erythropoietin in Patients With Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. *Circulation. Cardiovascular interventions*, 3(5), pp.408–413.
- Pfeffer, M.A. & Braunwald, E., 1990. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. *Circulation*, 81(4), pp.1161–1172.
- Purcell, B.P. et al., 2012. Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. *Biomaterials*, 33(31), pp.7849–7857.
- Ridker, P.M. et al., 2017. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. *The New England journal of medicine*, 377(12), pp.1119–1131.
- Ridker, P.M. et al., 2019. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. *The New England journal of medicine*, 380(8), pp.752–762.
- Ross, R. & Glomset, J.A., 1973. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. *Science*, 180(4093), pp.1332–1339.
- Rusnak, J.M. et al., 2001. An anti-CD11/CD18 monoclonal antibody in patients with acute myocardial infarction having percutaneous transluminal coronary angioplasty (the FESTIVAL study). *The American journal of cardiology*, 88(5), pp.482–487.
- Simpson, P.J. et al., 1988. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. *The Journal of clinical investigation*, 81(2), pp.624–629.
- Statistisches Bundesamt, Die 10 häufigsten Todesfälle durch Herz-Kreislauf-Erkrankungen. *Statistisches Bundesamt*. Available at: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/Tabellen/sterbefaelle-herz-kreislauf-erkrankungeninsgesamt.html [Accessed June 14, 2020].
- Steinberg, D., 1997. Low density lipoprotein oxidation and its pathobiological significance. *The Journal of biological chemistry*, 272(34), pp.20963–20966.
- Sutton Martin G. St. John & Sharpe Norman, 2000. Left Ventricular Remodeling After Myocardial Infarction. *Circulation*, 101(25), pp.2981–2988.
- Todica, A. et al., 2014. In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [68Ga]Annexin A5 and [18F]FDG PET, *Journal of nuclear cardiology: official publication of the American Society of Nuclear Cardiology*, 21(6), pp.

1191–1199.

- Wängler, C. et al., 2011. A universally applicable 68Ga-labeling technique for proteins. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 52(4), pp.586–591.
- Weber, C. & Noels, H., 2011. Atherosclerosis: current pathogenesis and therapeutic options. *Nature medicine*, 17(11), pp.1410–1422.
- Zacherl, M. J. et al., 2020. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer, *Journal* of nuclear cardiology: official publication of the American Society of Nuclear Cardiology.
- Zaruba, M.-M. & Franz, W.-M., 2010. Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. *Expert opinion on biological therapy*, 10(3), pp.321–335.
- Zlotnik, A., 2006. Chemokines and cancer. *International journal of cancer. Journal international du cancer*, 119(9), pp.2026–2029.

8. Danksagung

Meinem Doktorvater, Herrn PD Dr. med. Bruno Huber, möchte ich für die Überlassung des Forschungsthemas, die profunde wissenschaftliche Ausbildung und die immer außerordentlich gute Betreuung dieser Arbeit danken. Die Zusammenarbeit war stets angenehm, immer konstruktiv und mündete in weitere anregende Diskussionen, weit über diese Dissertation hinaus.

Herrn Prof. Dr. med. Peter Bartenstein, Herrn Prof. Dr. med. Marcus Hacker und Herrn Prof. Dr. med. Wolfgang-Michael Franz möchte ich für die langjährige Unterstützung und die Knüpfung der Kooperation mit der Klinik und Poliklinik für Nuklearmedizin danken.

Den Herrn PD Dr. med. Andrei Todica, PD Dr. med. Sebastian Lehner, Dr. med. Cajetan Lang, Dr. med. Alexander Segeth und Prof. Dr. rer. nat. Robert David gilt mein Dank für die ausgesprochen kompetente Unterstützung und Zusammenarbeit in Bezug auf die Versuchsplanung, Versuchsgestaltung und Auswertemethodik und vor allem für viele interessante Diskussionen. Ganz herzlich möchte ich außerdem Frau Prof. Dr. rer. nat. Carmen Wängler für die kompetente und immer schnelle Unterstützung zu allen chemischen Fragen danken.

Weiterhin danke ich Judith Arcifa, Barbara Markieton, Rosel Oos und Karin Bormann-Giglmaier für die exzellente methodische und technische Unterstützung und die hervorragende Zusammenarbeit bei der Durchführung der Experimente.

Mein Dank gilt außerdem meinen Eltern, die mich in allen Belangen fortwährend unterstützen und motivieren. Ganz besonders möchte ich mich zudem bei meiner Frau Marie bedanken, die oft auf mich warten musste und mir trotzdem immer zur Seite stand.