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1. Introduction 

Primary hepatic carcinoma (PHC) is a malignant tumor that develops from either 

hepatocytes or intrahepatic biliary epithelial cells. Hepatocellular carcinoma (HCC) is 

the most common type of PHC. Even though medical technologies have been 

constantly improving, the overall 5-year survival rate remained stable and generally 

unfavorable.[1] Currently, it is believed that the progression and prognosis of various 

tumors, including HCC, are related to the immune status of the patient. Tumor-

infiltrating leukocytes (TILs) have been shown to be predictive. These measurements 

however are only possible after the treatment. To truly predict outcome after surgical 

resection of HCC I established a comprehensive assessment of the immunophenotype 

of HCC patients.  

1.1. Epidemiology of HCC 

Hepatitis B virus (HBV) infections and hepatitis C virus (HCV) infections account for 

75-80% and 10-20% of virus-associated HCC.[2] Cancer statistics estimated that 28920 

people died of liver cancer and intrahepatic bile duct cancer worldwide in 2017. This 

globally accounts for 9% of the world's cancer deaths (Figure 1).[3] These statistics also 

emphazise that the incidence of liver cancer in the world increases by approximately 

4% in men and 3% in women per year.[4]  
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Figure 1: Ten leading cancer types for new cancer deaths, 2017. [3] 

1.2. Treatment of HCC 

At present, there are many therapeutic methods against HCC, mainly including surgery 

and non-surgical treatments. When treating HCC various factors, such as tumor 

volume, tumor number, metastasis, liver function reserve capacity, patient's age and 

complications should be considered.[5, 6] 

Currently the standard treatment algorithm for HCC patients is Barcelona Clinic Liver 

Cancer (BCLC) staging system (Figure 2).[7] Surgical resection of early HCC in 

compensated cirrhosis or in non-cirrhosis is likely to result in long-term survival and 

can be considered curative. For advanced HCC the prognosis is poor. Liver 

transplantation (LT) is the most effective treatment for small liver cancer within cirrhosis 

that otherwise could not be resected (BCLC A). During LT, the tumor and the underlying 

liver cirrhosis, which can be considered a precancerosis, are removed. However, livers 

for transplantation are scarce and not every patient can receive the needed organ for 

the treatment of the disease. Therefore clinicians have opted to allocate these organs 

to patients who supposedly have the best survival.[8] At present, the most widely used 

criteria for selection are the Milan Criteria (MC). The MC was developed by Mazzaferro 

et al. in 1996, that is, one lesion with a diameter no more than 5 cm, or up to 3 lesions 

with the maximum diameter smaller than 3 cm, without vascular and lymph node 

invasion. [9] After the MC was proposed and implemented, the 5-year survival rate of 

HCC patients with LT increased from 25.3% to 61.1%.[10] Although HCC patients who 

meet the MC have a good prognosis after LT, however, with the progress of LT 

technology and the growing understanding of HCC, some researchers have found that 

some patients beyond MC can still achieve satisfactory results after LT.[11] This means 

the MC are regarded as overly strict and might exclude patients from transplantation 
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even though the benefit for the individual patient could be immense compared to 

interventional palliative treatment.[12] In addition, the MC pays less attention to the 

indicators affecting the prognosis of HCC, such as tumor differentiation, invasion, 

metastasis degree and liver function. These deficiencies prompt researchers to further 

explore a change in allocation of LT for HCC. Local ablative treatment (LAT) is the most 

important non-surgical treatment of HCC. Compared with surgical treatment, LAT is 

minimally invasive and can be utilized either as palliative treatment or bridging-to-

transplant treatment.[13] Most chemotherapeutic drugs are less sensitive to primary 

liver cancer, such as adriamycin, gemcitabine, cisplatin, 5-fluorouracil.[14] The only 

officially approved targeted therapy drug for HCC is Sorafenib.  

In summary, due to overly strict subsidiary selection of patients scheduled for LT and 

unclear prediction of postoperative course, treatment allocation of our patients needs 

to be optimized to achieve the best results.  

 

Figure 2: The BCLC staging system. 
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1.3. Predictive Markers for HCC after Surgery 

A variety of factors may predict recurrence and overall survival (OS) after surgical 

treatment of HCC. I will concentrate on 9 key variables which I will describe in more 

detail below (Table 1). 

The impact of patient's age and gender on its prognosis has been controversial. Most 

data indicate that the patient's age relates to prognosis. Surgical resection rate and 

postoperative prognosis of young patients were better than that of elderly patients, due 

to their better liver reserve function than elderly patients.[15, 16] However, there is also 

data showing that young patients tend to have tumors with a higher grading and poorer 

prognosis compared to elderly people.[17] It is also reported that the prognosis of female 

HCC patients was better than male. Because liver is a hormone-sensitive organ, this 

can be associated with sex hormone receptors. Additionally  male patients tend 

towards a decreased adherence in medical treatment.[18]  

In comparison, tumor-free survival rate of multiple HCC nodules was generally lower 

than a single nodule. Laurent et al. showed that the 5-year disease-free survival (DFS) 

rates of single nodules and multiple nodules after radical resection were 37% and 6%, 

respectively.[19] Moreover they found that HCC with satellite foci had a poor prognosis. 

Also, they reported that small HCC had a better prognosis than large HCC. Arii et al. 

reported that the 5-year survival rate was 71.5% in stage III patients with single tumors 

<2 cm, compared to 42.8% in those with tumors between 2 to 5 cm.[20] Bismuth et al. 

believed that the size (>9 cm) of the main nodule was an important factor affecting 

postoperative survival time.[21] However, our previous study does not show any 

relevance of survival and tumor multiplicity.[22] Zhu et al. found that microvascular 

invasion is an important factor in the early postoperative recurrence of HCC.[23]  
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Hepatitis and cirrhosis are important factors affecting the prognosis of HCC patients. It 

is reported that among HCC patients who had received hepatectomy, those who had 

active HBV infection had a lower OS rate.[24] Cirrhosis is one of the most important risk 

factors for the prognosis of HCC since it is a precancerosis. Therefore, patients with a 

HCC in cirrhosis have a relatively poor prognosis.[25] Not only the hepatocarcinogenic 

effects of cirrhosis lead to worsened survival in the long-term but also immediate 

perioperative complications because of cirrhosis. HCC patients with cirrhosis are prone 

to bleeding during surgery and their functional liver remnant are reduced leading to 

postoperative liver failure.[26] 

It is suggested that the immune system is suppressed in HCC patients, and is therefore 

conducive to the occurrence and development of HCC. Unitt E et al. indicated that 

TILs, especially CD4/CD8 ratio could even predict recurrence after LT.[27] Our previous 

study also showed that perivascular infiltration of CD3+, CD8+ cells had significance on 

predicting OS and DFS of HCC patients that were resected.[22]  

Tumor markers are proteins and other substances that are abnormal in structure and 

quantity produced by tumor cells. AFP is a marker to assist diagnosis and possibly 

prognosis of HCC. It was reported that AFP>800 ng/mL was an independent factor 

influencing the recurrence of HCC.[23] Lubrano et al. believed that high serum 

concentrations of aspartate transaminase and alanine transaminase in HCC patients 

before surgery would reduce OS after LR.[28] Chen et al. found that in HCC patients 

without cirrhosis and low concentrations of albumin have reduced postoperative 

survival rates.[29]  

As mentioned above, many factors influence survival of HCC patients and ideally 

combinations out of clinical and experimental data could be used to predict patients’ 

survival. Schoenberg et al. proposed the concept of the biological resection criteria 
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(BRC), to establish criteria for safe and oncological satisfactory hepatectomy for early 

HCC patients. These criteria are a combination of liver function, age and tumor 

immunology in a simple score. Within the criteria LR patients, who in general have 

poorer survival rates than LT patients, achieved similar postoperative results.[30] 

However a better understanding of the tumor immunological factors are needed to get 

an accurate risk stratification between LR and LT. 

Table 1. Predictive markers for HCC patients after surgery. 

Patient specific variables Tumor specific variables 

Age The number of tumor nodule 

Gender The size of tumor nodule 

Hepatitis Microvascular invasion 

Cirrhosis Tumor-infiltrating leukocytes 

AFP level  

 

1.4. Components of the Immune System in the Context of HCC 

In this part the relevant players of the immune response to HCC will be described. 
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1.4.1. Cells of the Innate Immune System  

Neutrophils are the most abundant white blood cells in the circulatory system.[31] They 

play an important role in infection immunity. Li et al. found that HCC patients with 

neutrophil infiltration in tumor had worse survival.[32] Moreover, neutrophil to 

lymphocyte ratio (NLR) is often used to evaluate the balance of systemic inflammatory 

response and immune system function. It was reported that NLR may closely correlate 

with the survival of gastric cancer, colorectal cancer, and HCC patients. [33-35] 

Monocytes are important innate immune cells that are produced by bone marrow and 

remain in peripheral blood (PB) for a short time.[36] Monocytes not only have functions 

such as opsonophagocytosis and antigen presentation, but also can produce a variety 

of cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)-α.[37] A meta-

analysis showed that high levels of the lymphocyte-to-monocyte ratio (LMR) was 

related with better OS of HCC patients.[38] Macrophages are mainly found in lymph 

nodes, alveolar walls, liver and so on. They are highly plastic, can be polarized to 

tumor-associated macrophages (TAMs).[39] Atanasov G et al. found that elevated tumor 

infiltrating TAMs was positively correlated with OS of cholangiocarcinoma patients.[40] 

DC are the most functional antigen-presenting cells (APC), which can uptake, process 

and present antigens.[41] One explanation of tumor cells escape immune surveillance, 

leading to the formation and development of tumors, is the functional defects of DC 

initiated by tumors. For example, significantly reduced amounts of DC in cancer 

patients or DC in tumor patients that have an immature phenotype.[42, 43] 

Myeloid-derived suppressor cells (MDSC) are heterogeneous cell populations. 

According to the different morphology of MDSC, they can be divided into two cell 

subpopulations: Monocyte-like MDSC (M-MDSC) and granulocyte-like MDSC (G-

MDSC).[44] Elwan N et al. reported that HCC patients had significant higher counts of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Atanasov%20G%5BAuthor%5D&cauthor=true&cauthor_uid=28919993
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MDSC in the PB than in HD.[45] MDSC can not only inhibit T cells mediated specific 

immunity, but also directly inhibit the immune functions of macrophages and DC.[46] 

MDSC can also promote the expansion of regulatory T cells (Tregs).[47, 48] 

NK cells are non-specific immune cells, often associated with the first line of anti-tumor 

responses. The NKG2 family is an important class of receptors on NK cells, including 

NKG2A, NKG2B, NKG2C, NKG2D and other members.[49] NKG2 family members can 

be divided into two types: activating receptors and inhibitory receptors, which transmit 

positive and negative signals, respectively.[50] Tumor cells can inhibit the expression of 

activated receptors and inhibit the activation and function of NK cells.[51] More and more 

evidence showed that NKG2D expression was down-regulated in NK cells of patients 

with HCC, gastric cancer and so on.[51-54] Natural killer T (NKT) cells are a special group 

of cells that co-express NK cell receptors and TCR. NKT cells recognize specific 

glycolipid antigens presented by CD1d molecules, which is similar to MHC I.[55] After 

activation, NKT cells can secrete IL-2, IFN-γ, perforin, granzyme and so on.[56]  

1.4.2. Cells of the Adaptive Immune System  

T cells are the major player in cellular immunity. They have two subsets: Th and CTL. 

Th can assist B cells to secrete antibodies while CTL are the major cytotoxic effector 

cells.[57] Th differentiate into distinct cell subpopulations under the control of different 

specific transcription factors: Type 1 helper T cells (Th1), type 2 helper T cells (Th2), 

type 17 helper T cells (Th17) and Tregs.[58] Th1 cells mainly secrete IFN-γ, IL-2 and 

TNF-α, which can promote cellular immunity.[59] Th2 cells secrete IL-4 and IL-10 and 

mediate humoral immunity.[60] Th17 cells secrete high levels of IL-17, IL-21, IL-22, IL-

6 and TNF-a.[61] A prospective study showed that HCC patients had higher amounts of 

Th17 in PB than in HD.[62] Tregs are an immunosuppressive cell subpopulation, which 

can maintain the tolerance of the immune system to its own components and maintain 
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the immune homeostasis.[63] It has immunoregulatory properties by releasing cytokines 

IL-10 and TGF-β.[64] Higher densities of Tregs were observed in paracancerous tissues 

of HCC, additionally, higher Tregs levels was associated with a worse prognosis.[65] 

According to the different differentiation stages, T cells can also be divided into: naive 

T cells, effector T cells and memory T cells.[66] After initial exposure to antigens, naive 

T cells can be activated, differentiate into effector T cells after recognizing the antigen 

presented by APC and migrate to the antigen site under chemotaxis to kill infected and 

transformed cells. When the antigen is cleared, most of the effector T cells will perform 

apoptosis. A portion of them however can differentiate into memory T cells.[66] Memory 

T cells can be further divided into central memory T cells (cmT cells) and effector 

memory T cells (emT cells) according to different homing characteristics and effector 

functions.[67] The emT cells exist in the non-lymphoid tissue of the infected site and 

perform immunological surveillance. When exposed to the antigen again, they can 

produce IFN-γ and IL-4 under T-cell receptor (TCR) stimulation. The cmT cells can 

rapidly expand and differentiate into effector T cells to aide in antigen clearance.[68] 

B cells are an important part of humoral immunity. The differentiation of hematopoietic 

stem cells into mature B cells has gone through many stages: progenitor B (pro-B) 

cells, precursor B (pre-B) cells, immature B cells, transitional B cells and mature B 

cells.[69] In human PB, according to the different developmental stages and functions, 

B cells can be divided into naïve B cells, memory B cells and plasma cells. When naive 

B cells are sensitized by Th or by certain microbial antigens, part of them will rapidly 

proliferate into plasma cells.[70] These plasma cells can produce immunoglobulin (Ig) 

M, the remaining naive B cells will continue to develop and form the germinal center B 

cells.[71, 72] This continue to develop into memory B cells that eventually differentiate 

into plasmablasts.[73] Plasmablasts then evolve into plasma cells that secrete IgM, IgG 

and IgA.[74] At this stage they are called long-lived plasma cells. Memory B cells can 

be divided into non class-switched memory B cells (ns-memory B cells) and class-
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switched memory B cells (cs-memory B cells). Both them play important roles in 

secondary immunity. The former mainly secretes IgM after stimulation and mediates 

protective immunity, while the latter mainly secretes IgG and IgA.[75] Regulatory B cells 

(Bregs) are a group of recently discovered B cells. Bregs can suppress the 

differentiation and proliferation of various cells by secreting IL-10 and TGF-β.[76, 77]  

1.5. Aim of this Study 

The purpose of this project was to establish an immunophenotyping protocol of 

relevant immune cells in non-HBV/non-HCV HCC patients prior surgery. Furthermore, 

we aim to investigate differential expression of immune cells between HCC patients 

and HD. 

  

https://www.sciencedirect.com/topics/immunology-and-microbiology/tgf-beta
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2. Material and Methods 

2.1. Materials 

2.1.1. Laboratory Equipment 

Centrifuge Heraeus, Germany 

Cell culture incubator Binder, Germany 

Combitips Plus Sigma-Aldrich, USA 

Flow Cytometer BD Biosciences, USA 

Multipette Plus Eppendorf, Germany 

Pipettes Sigma-Aldrich, USA 

Vortex Labnet, Germany 

Water bath Köttermann, Germany 

4℃ fridge Liebherr, Germany 

 

2.1.2. Computer and Software 

Computer hardware HP, USA 

FACSDIVA™ SOFTWARE BD, USA 

Prism Version 7.0, USA 

SPSS Version 21, USA 
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2.1.3. Consumables 

0.5-20µl Ep T.I.P.S Eppendorf, Germany 

2-200µl Ep T.I.P.S Eppendorf, Germany 

Gloves ecoSHIELD, USA 

7.5ml Heparin vacuum blood collection tube Sarstedt, USA 

5ml Polystyrene Round-Bottom Tube Falcon, USA 

15ml Falcon Falcon, USA 

50ml Falcon Falcon, USA 

40µm cell strainer BD, USA 

100µm cell strainer BD, USA 

 

2.1.4. Chemical 

Ammonium Chloride Fluka, USA 

Bovine Serum Albumin(BSA)Fraction V Biomol,Germany 

Calcium bicarbonate Fluka, USA 

Collagenase NB 8 SERVA, Germany 

EDTA Calbiochem,Germany 

FACS Lysing Solution BD, USA 

Golgi Stop BD, USA 
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leukocytes activation kit BD, USA 

IC Fixation Buffer(10x) eBiosciences, Austria 

Permeabilization buffer(10x) eBiosciences, Austria 

Trypsin EDTA Lonza,Switzerland 

trypan blue Sigma,Germany 

 

2.1.5. Buffers and Solutions 

ACK Lysing Buffer pH 7.3 

 8.3g/l Ammonium Chloride 

 1g/l Calcium bicarbonate 

 0,0372g/l EDTA 

   

2.55U/ml Collagenase NB 8   

 250mg Collagenase NB 8 

 100ml 1x DPBS 

   

1x Lysing Solution   

 50ml 10x Lysing Solution 

 450ml Millipore H2O 
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1xPermeabilization buffer pH 7.3 

 8ml 10 x Permeabilization 

buffer 

 72ml Millipore H2O 

   

FACS buffer pH 7.3 

 1 L 1 x DPBS 

 2ml Natriumacid 

 5g BSA 

2.1.6. Antibodies 

Antibody Isotype Flourochrom Reactivity 

Anti-CD3  Mouse (BALB/c) IgG1, κ PerCP Cy5.5 Human 

Anti-CD4 Mouse (BALB/c) IgG1, κ BUV395 Human 

Anti-CD5 Mouse (BALB/c) IgG1, κ BV421 Human 

Anti-CD8 Mouse (BALB/c) IgG1, κ APC-H7 Human 

Anti-CD10 Mouse (BALB/c) IgG1, κ PE  Human 

Anti-CD14 Mouse BALB/c IgG2b, κ BV510  Human 

Anti-CD15 Mouse IgG1, κ PECF594  Human 

Anti-CD16 Mouse BALB/c IgG1, κ FITC Human 

Anti-CD19 Mouse (BALB/c) IgG1, κ FITC Human 

Anti-CD20 Mouse BALB/c IgG2a, κ APC-H7 Human 

Anti-CD24 Mouse BALB/c IgG2a, κ PE-CF594 Human 
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Anti-CD25 Mouse (BALB/c) IgG1, κ BB515 Human 

Anti-CD27 Mouse (BALB/c) IgG1, κ BV786 Human 

Anti-CD33 Mouse BALB/c IgG1, κ BV786 Human 

Anti-CD38 Mouse (BALB/c) IgG1, κ BV605 Human 

Anti-CD45 Mouse (BALB/c) IgG1, κ BV650 Human 

Anti-CD56 Mouse BALB/c IgG2b, κ APC R700  Human 

Anti-CD68 Mouse BALB/c IgG2b, κ BV711  Human 

Anti-CD69 Mouse IgG1, κ BUV395  Human 

Anti-CD127 Mouse IgG1, κ PE-CF594 Human 

Anti-CD194 Mouse C57BL/6 IgG1, κ BV510 Human 

Anti-CD196 Mouse IgG1, κ PE  Human 

Anti-CD197 Mouse IgG2a BV421 Human 

Anti-CD1d Mouse (BALB/c) IgG1, κ APC Human 

Anti-CD11b Mouse IgG1, κ PECy7 Human 

Anti-CD11c Mouse (BALB/c) IgG1, κ PE  Human 

Anti-CD45RO Mouse (BALB/c) IgG2a, κ PE-Cy7 Human 

Anti-CD66b Mouse BALB/c IgM, κ Alexa 647   Human 

Anti-IgD Mouse BALB/c IgG2a, κ PE-Cy7 Human 

Anti-IgM Mouse (BALB/c) IgG1, κ BV510 Human 

Anti-HLA-DR Mouse IgG2a, κ APC Human 

Anti-HLA-DR Mouse IgG2a, κ BV421 Human 

Anti-IFN-γ Mouse IgG1, κ FITC Human 
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2.2. Methods 

2.2.1. Literature Review 

A systematic literature review was conducted to investigate the available literature of 

circulating immune cells in HCC patients. The following search terms ("Liver 

Neoplasms/blood"[Mesh]) AND ("Leukocytes"[Mesh]) were used to search the 

PubMed and Medline database to assess the differences of circulating immune cells 

between HD and HCC patients. The last time point for the search was April 2018. The 

retrieval strategy was to browse the titles and abstracts of the literature to select 

relevant publications. When a relevant article was identified, the full text was retrieved 

and checked. Inclusion criteria: (1) research type: Clinical research; (2) research object: 

Human; (3) research content: Circulating immune cells; (4) literature languages: 

English. Exclusion criteria: (1) animal research or non-HCC; (2) clinical trials or studies 

of therapy; (3) basic researches on genes, proteins, etc.; (4) case reports, meta-

analysis or reviews; (5) articles published before 2000 or not in English. 

2.2.2. HD and Patients 

In this study, 10 patients with primary HCC were recruited. None of them had HBV or 

HCV infection. All the patients underwent surgery from 2016 to 2017 at the Ludwig-

Maximilians-University Munich (LMU) hospital. Among them: 7 males and 3 females; 

average age 58. 10 HD were used as healthy controls. Among them: 6 males and 4 

females; average age 61; the collection of specimens obtained the informed consent 

of the volunteers. Institutional review board approvement was obtained (#EK 54-16, 

53-16). 
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2.2.3. Definition of Monitored Cell Subsets 

Immune cells can be separated into various subsets by their diverse nature, distinct 

activation stages, as well as differential cytokine production profiles. Specific subsets 

can be selected by different cluster of differentiation (CD) molecules. The definitions 

for immune cells involved in this study are described below. (Table 2) 

Table 2. Definition of measured cell subsets. Abbreviations: Bregs: Regulatory B cells; 

CTL: Cytotoxic T cells; MDSC: Myeloid-derived suppressor cells; M-MDSC: Monocyte-like 

MDSC; G-MDSC: Granulocyte-like MDSC; NK: Natural killer cells; NKT: Natural killer T; pro B 

cells: Progenitor B cells; pre B cells: Precursor B cells; Tregs: Regulatory T cells; Th: Helper T 

cells; Th1: Type 1 helper T cells; Th2: Type 2 helper T cells; Th17: Type 17 helper T cells.  

Cell type Marker 

T cells, % of Leukocytes CD3+, % of CD45+ 

Th, % of T cells  CD4+/CD8-, % of CD45+/CD3+ 

CTL, % of T cells  CD8+/CD4-, % of CD45+/CD3+ 

Th1, % of Th  CD4+/CD8-/CCR4-/CCR6-, % of CD45+ 

/CD3+ 

Th2, % of Th  CD4+/CD8-/CCR4+/CCR6-, % of CD45+ 

/CD3+ 
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Th17, % of Th  CD4+/CD8-/CCR4+/CCR6+[78], % of CD45+ 

/CD3+ 

Effector memory T cells, % of T cells  CCR7-/CD45RO+, % of CD45+/CD3+ 

Central memory T cells, % of T cells  CCR7+/CD45RO+, % ofCD45+/CD3+ 

Effector T cells, % of T cells  CCR7-/CD45RO-, % of CD45+/CD3+ 

Naïve T cells, % of T cells  CCR7+/CD45RO-[79], % of CD45+/CD3+ 

Activated T cells, % of T cells  HLA-DR+/CD38+[80] , % of CD45+/CD3+ 

Regulatory T cell, % of Th  CD4+/CD8-/ CD25+/CD127-, % of CD45+ 

/CD3+ 

Memory Tregs, % of Tregs   HLA-DR-/CD45RO+, % of CD45+/CD3+ 

/CD4+/CD8-/ CD25+/CD127- 

Naive Tregs, % of Tregs HLA-DR-/CD45RO-, % of CD45+ 

/CD3+/CD4+/CD8-/ CD25+/CD127- 

Activated Tregs, % of Tregs HLA-DR+/CD45RO-, % of CD45+ 

/CD3+/CD4+/CD8-/ CD25+/CD127- 
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Memory-activated Tregs, % of Tregs HLA-DR+/CD45RO+[81-83], % of  

CD45+/CD3+/CD4+/CD8-/ CD25+/CD127- 

B cells, % of Leukocytes CD3-/CD19+, % of CD45+ 

Memory B cells, % of B cells CD27+, % of CD45+/CD19+/CD3- 

Class-switched memory B cells, % of B 

cells 

CD27+/IgD-/IgM-/CD20+/CD38+[84], % 

 of CD45+/CD19+/CD3- 

Plasmablast, % of B cells CD27+/IgD-/IgM-/CD20-/CD38hi[85] 

 , % of CD45+/CD19+/CD3- 

Bregs-1 B cells, % of B cells CD27+/IgD-/IgM-/CD20-/CD38hi 

/CD5+ [76], % of CD45+/CD19+/CD3- 

Non class-switched memory B cells, % 

of B cells 

CD27+/ IgD+[86], % of CD45+ 

/CD19+/CD3- 

Naïve B cells, % of B cells CD27-/IgD+ [87], % of CD45+/CD19+/CD3- 

Transitional B cells, % of B cells CD24hi/CD38hi [88], % of CD45+ 

/CD19+/CD3- 
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Bregs-2 B cells, % of B cells CD24hi/CD38hi/CD1d+/CD5+[89], % of  

CD45+/CD19+/CD3- 

Pro B cells, % of B cells CD24hi/CD38hi/CD10+/IgM-, % of  

CD45+/CD19+/CD3- 

Pre B cells, % of B cells CD24hi/CD38hi/CD10+/IgM- 

/CD20+, % of CD45+/CD19+/CD3- 

Plasma cells, % of B cells CD10-/IgD-/IgM-/CD27hi/CD38hi[90],  

% of CD45+/CD19+/CD3- 

Neutrophils, % of Leukocytes CD66b+/CD15+[91-93], % of CD45+ 

Monocytes, % of Leukocytes CD14+/CD33+[94, 95], % of CD45+ 

Macrophages, % of Leukocytes CD33+/CD11b+/CD11c+/CD68+[96],  

% of CD45+ 

DC, % of Leukocytes CD33+/HLA-DR+/CD11b-/CD11c+[97, 98],  

% of CD45+ 

MDSC, % of Leukocytes HLA-DR-/ CD11b+/CD33+[99, 100],  

% of CD45+ 
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2.2.4. Staining Panels  

The flow cytometry (FCM) analysis was designed in a modular system comprising 4 

different panels which examine T cells and its subsets (Supplement Table 1); B cells 

and its subsets (Supplement Table 2); monocytes, neutrophils, DC, MDSC, NK cells 

and NKT cells (Supplement Table 3); IFN-γ (Supplement Table 4). Each panel included 

unstained tubes which served as blank control, fluorescence minus one (FMO) control 

tubes and experimental tubes.  

2.2.5. Immunophenotyping Staining of PB 

5ml PB samples were collected from HD and HCC patients before operation. All 

specimens were tested as soon as possible and never after longer than 24h after 

G-MDSC, % of Leukocytes HLA-DR-/ CD11b+/CD33+/CD14- 

/CD15+[101, 102], % of CD45+ 

M-MDSC, % of Leukocytes HLA-DR-/ CD11b+/CD33+/CD14+ 

/CD15-[103, 104], % of CD45+ 

NK cells, % of Leukocytes CD3-/CD16+/CD56+/CD8+-[105, 106],  

% of CD45+ 

NKT cells, % of Leukocytes CD3+/CD16+/CD56+/CD8+-[107, 108], %  

of CD45+ 
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collection. All experiments were conducted at room temperature. Whole blood was 

measured directly. The specific steps were as follows: 

Staining methods for T cell panel (extracellular staining): 200µl whole blood was added 

in each FACS tube, then antibodies were added (Supplement Table 1). All tubes were 

vortexed and incubated for 15-30 minutes. 2ml 1x FACS lysing solution was added. 

Vortex and then incubated for 15-30 minutes. All tubes were centrifuged 500xg for 5 

minutes and supernatant was discarded. 2 ml FACS buffer was added. Vortex and 

centrifuge were done as described before. 200µl FACS buffer was added and all 

stained cells were measured. 

Staining methods for B cell panel, monocytes, neutrophils, DC, MDSC, NK cells and 

NKT cells: 200µl whole blood was added in each FACS tube, then antibodies were 

added (Supplement Table 2-3, except CD20 and CD68). All tubes were vortexed and 

incubated for 15-30 minutes. 2ml 1x FACS lysing solution was added. Vortex and then 

incubated for 15-30 minutes. All tubes were centrifuged 500xg for 5 minutes and 

supernatant was discarded. 100µl IC fixation buffer was added. Vortex and incubated 

for 20 minutes. 2ml 1x perm buffer was added. Vortex and centrifuge were done as 

described before (2 times). Antibodies CD20 and CD68 were added according to 

table4 and table5. All tubes were vortexed and incubated for 15-30 minutes. 2ml 1x 

perm buffer was added. Vortex and centrifuge were done as described before. 2 ml 

FACS buffer was added. Vortex and centrifuging were done as described before. 300µl 

FACS buffer was added and all stained cells were measured. 

2.2.6. Immunophenotyping Staining of Tumor Infiltrating Cells  

Fresh tumor tissues of HCC patients after surgery was collected and cut into 1-3mm 

small pieces. 10 ml collagenase was added in slices of tumor tissues. Tumor tissues 

were shaked for 20 minutes in a shaking water bath at 37 °C. 5 ml trypsin EDTA was 
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added in the above mixture sand the mixture was pressed through 100µm filter. The 

collected mixture was centrifuged 500xg for 5 minutes and the supernatant was 

discarded. 10ml ACK buffer was added and the mixture was pressed through 40µm 

filter. Centrifuge was done as before. 10ml PBS was added and the mixture was 

pressed through 40µm filter. Centrifuge was done as before (2 times). A portion of 

collected tumor infiltrating cells was measured directly after cell counting. Other cells 

were used to detect the production of IFN-γ. These cells were divided into two groups, 

stimulated cells group and unstimulated cell group. BD leukocytes activation kit (BLK) 

and Golgi stop were added separately into the two groups. These cells were placed in 

a 37 °C, 5% CO2 incubator for 4 hours before staining. The specific staining operations 

were as follows: 

Staining methods for T cells panel of tumor infiltrating cells (extracellular staining): 

Tumor infiltrating cell suspension 200µl was added in each FACS tube, then antibodies 

were added (Supplement Table 1). All tubes were vortexed and incubated for 15-30 

minutes. All tubes were centrifuged 500xg for 5 minutes and supernatant was 

discarded. 2 ml FACS buffer was added. Vortex and centrifuge were done as before. 

200µl FACS buffer was added and all stained cells were measured staining methods 

for B cell panel, monocytes, neutrophils, DC, MDSC, NK cells and NKT cells and IFN-

γ of tumor infiltrating cells: Tumor infiltrating cell suspension 200µl was added in each 

FACS tube, then antibodies were added (Supplement Table 2-4, except CD20, CD68 

and IFN-γ). All tubes were vortexed and incubated for 15-30 minutes. 100µl IC fixation 

buffer was added. All tubes were vortexed and incubated for 20 minutes. 2ml 1x perm 

buffer was added. Vortex and centrifuge were done as before (2 times). Antibodies 

CD20 and CD68 were added according to Supplement Table 2 and Supplement Table 

3. Vortexing was done as described before and then incubated for 15-30 minutes. 2ml 

1x perm buffer was added. Vortex and centrifuge were done as described before. 2 ml 

FACS buffer was added. Vortex and centrifuge were done as before. 300µl FACS 
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buffer was added and all stained cells were measured. 

2.2.7. Gating Strategy 

The gating was done by using FMO and unstained cells. The specific gating strategy 

was as follows:  

T cell panel 

As shown in Figure 3, first, on the basis of FSC/SSC scatter plot (Figure 3A) and 

CD45/SSC plot (Figure 3B), all leukocytes were selected. On the basis of CD3+ T cells, 

Th and CTL were selected (Figure 3D). This assay was continued by detecting the 

expression of CD45RO and CD197 in Th and CTL (Figure 3H, 3F).[79] Both Th and CTL 

include naïve, effector, effector memory, and central memory subsets.[109, 110] Activated 

Th and CTL are definite as CD38hi/HLA-DRhi (Figure 3I, 3G). For Th, Th1(CD194- 

CD196-), Th2 (CD194+ CD196-), Th17 (CD194+ CD196+) were also examined (Figure 

3E).[78] CD127- CD25+ cells were considered as Tregs (Figure 3J) and its subsets 

include naïve, memory-activated, memory, and activated (Figure 3J) were also 

measured.[81, 83]  

B cell panel 

As shown in Figure 4, on the basis of CD45/SSC plot (Figure 4A), all leukocytes were 

selected. For the definition of B cells, the negative expression of CD3 and positive 

expression of CD19 were used (Figure 4B). The B cells were further differentiated into 

transitional B cells (Figure 4H), CD27- and CD27+ memory populations (Figure 4C).[88] 

From the CD27+ memory populations, IgD- IgM- subsets and non-class switched 

memory subsets were gated (Figure 4E).[87] From the IgD- IgM- subsets, plasmablasts 

and class switched memory B cells were achieved (Figure 4F). From plasmablasts, 
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Bregs-2 were analyzed (Figure 4G).[84, 85] From transitional B cells, Bregs-1(Figure 4K) 

and pro B cells (Figure 4I) were analyzed. Additionally, pre B cells were analyzed from 

pro B cells (Figure 4J). Plasma cells (Figure 4N) were gated from CD10- (Figure 4L) 

and then IgD- IgM- subsets (Figure 4M).[90]  

Monocytes, neutrophils, DC, MDSC, NK cells and NKT cells panel 

As shown in Figure 5, firstly, all leukocytes were selected (Figure 5A). The neutrophils 

expressed CD66b and CD15 (Figure 5B), monocytes expressed CD14 and CD33 

(Figure 5C), and they were gated from leukocytes.[93, 94] The CD68+ granulocytes 

(Figure 5D) were defined as CD33+ CD11b+ CD11c+ CD68+, and they were gated from 

monocytes. The DC (Figure 5F) were defined as CD33, HLA-DR, CD11b and CD11c.[96] 

It is well described that MDSC (Figure 5H) are CD11b and CD33 positive. They can 

then further be subdivided in to G-MDSC and M-MDSC by their expression of CD14 

and CD15 (Figure 5I).[99, 102, 103] NK cells lack of CD3, but express CD56 and CD16. 

The NKT cells are identified by their CD3 expression that simultaneously express 

CD56 and CD16. Thus, I investigated the expression of CD56, CD16, CD3 to record 

NK cells (Figure 5K) and NKT cells (Figure 5L).[106, 107]  

IFN-γ panel 

The gating strategy of IFN-γ is shown in Figure 6. First, CD45 negative subsets and 

CD45 positive leukocytes were selected (Figure 6A). Then the CD4+ and CD8+ 

populations from T cells were selected (Figure 6F). IFN-γ of CD45- subsets (Figure 6B), 

CD45+ subsets (Figure 6C), CD3+ subsets (Figure 6D), CD4+ subsets (Figure 6G) and 

CD8+ subsets (Figure 6H) were respectively selected. 
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2.2.8. Statistical Analysis 

SPSS 21.0 software package was used for statistical analysis. The Kolmogorov-

Smirnov method was used to test whether the measurement variables were subjected 

to normal distribution. Two groups of normal distribution variables were compared with 

independent t test. The two groups of non-normal distribution variables were compared 

with Mann-Whitney U test. Paired t test was used to compare the PB and tumor tissues 

of the same patient. Paired t test was used to compare IFN-γ with and without 

stimulation of the same patient. A p value less than 0.05 was considered statistically 

significant. 
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Figure 3: Gating strategy for the T cell subsets. (A) All cells from PB except red blood cells; 

(B) Leukocytes; (C) CD3+ T cells; (D) According to differential CD4 and CD8 expression, Th 

and CTL were identified; (E) By CD194 and CD196 expressions, the Th were distinguished into 

Th1, Th2, and Th17; (F) According to differential CD197 and CD45RO expression, the Th were 

further distinguished into eTh, nTh, emTh, cmTh subsets; (G) CD38+/HLA-DR+ aTh; (H) 

According to differential CD197 and CD45RO expression, the CTL were further distinguished 

into eCTL, nCTL, emCTL, cmCTL; (I) CD38+/HLA-DR+ aCTL; (J) Tregs were identified by 

CD25+/CD127- expression; (K) By the CD45RO and HLA-DR expression, Tregs can be defined 

as naïve, memory, memory activated and activated Tregs.  
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Figure 4: Gating strategy for B cell subsets. (A) Leukocytes; (B) CD3- CD19+ B cells; (C) B 

cells were differentiated into CD27- populations and CD27+ memory populations; (D) Naïve B 

cells; (E) IgD- IgM- populations and IgD+ IgM- non class switched memory B cells; (F) 

Plasmablast and class switched memory B cells; (G) Bregs-2; (H) Transitional B cells; (I) Pro B 

cells from transitional B cells; (J) Pre B cells from pro B cells; (K) Regulatory B cells-1; (L) CD10- 

populations from B cells; (M) IgD- IgM- populations from CD10- populations of B cells; (N) 

Plasma cells. 
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Figure 5: Gating strategy for neutrophils, monocytes, macrophages and DC, MDSC. (A) 

Leukocytes; (B) Neutrophils; (C) Monocytes; (D) Macrophages; (E) HLA-DR+ subsets; (F) DC; 

(G) HLA-DR- subsets; (H) MDSC; (I) G-MDSC and M-MDSC; (J) CD3- CD16+ and CD3+ CD16+ 

subsets; (K) NK cells gated from CD3- CD16+ subsets; (L) NKT cells gated from CD3+ CD16+ 

subsets. 

 

 



 

37 

 

 

Figure 6: Gating strategy for measuring IFN-γ in HCC tumor tissue. (A) Leukocytes and 

CD45- populations; (B) IFN-γ of CD45- populations; (C) IFN-γ of CD45+ leukocytes; (D) CD3+ T 

cells; (E) IFN-γ of CD3+ T cells; (F) CD4+ and CD8+ populations from T cells; (G) IFN-γ of CD4+ 

subsets; (H) IFN-γ of CD8+ subsets.  
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3. Results 

3.1. Literature Review 

In this systematic review the relationship between circulating immune cells and 

clinicopathological characteristics or prognosis of HCC patients will be described.  

3.1.1 Characteristics of Studies included in the Review  

After the systematic search of the literature, 258 potentially related publications were 

identified. According to the exclusion criteria mentioned above, 226 articles were 

excluded. One full-text was not available through institutional subscriptions, therefore 

this article was also excluded.[111] Finally, 31 studies were included in this review 

(Figure 7).  

 

Figure 7: Flow diagram of study selection 



 

39 

 

In these studies, circulating immune cells were analyzed from 31 publications including 

7447 HCC patients and 925 HD or hepatitis patients. As can be seen from Figure 8A, 

most of the studies (n=27, 87%) were conducted in East Asia.[112-138] Only four studies 

were conducted in Europe (n=3, 10%) and North America (n=1, 3%).
[139-142] The most 

common treatment of the included studies was resection (n=16, 52%).[113, 115-117, 120, 126-

128, 130, 132-134, 137, 138, 141, 142] Some other studies offered information on patients 

undergoing multimodal treatments (6%), such as combined ablative therapies.[122, 136] 

LT was only performed in one study (3%) (Figure 8B).[118]  

As shown in Figure 8C, PBMC isolated from fresh blood were measured in 15 (48%) 

studies.[125, 127-134, 136-141] Immune cells direct from fresh whole blood samples were used 

in 4 (13%) studies.[116, 124, 126, 135] FCM analysis were done in more than half of the 

studies (18, 58%) (Figure 8D).[124-141]  

Figure 8: Characteristics of studies included in the review. (A) Geographic distribution of 

publications; (B) Surgical methods; (C) Source of the specimen; (D) Detection methods. 

(Abbreviations: PBMC: Peripheral blood mononuclear cells) 
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In the following paragraphs, the results regarding differences of immune cells between 

HCC patients and HD in PB as well as their correlation with clinical characteristics and 

outcomes are described. 

3.1.2 Immune Cell Counts and their Ratios 

Evidence has accumulated that immune cell counts and ratios have prognostic value 

in HCC. They can be easily obtained without expensive measurement costs. Li J et al. 

showed that the frequency of peripheral leukocytes, neutrophils and monocytes in 

HCC patients were elevated compared with HD. But HCC patients had lower 

lymphocytes amounts than HD.[112]  

As shown in Table 3, elevated preoperative monocyte counts in HCC patients indicated 

worse prognosis in three studies.[113, 114, 142] Another two studies showed that higher 

ratios of peripheral neutrophil-monocyte/lymphocyte and monocyte-granulocyte / 

lymphocyte also correlated with worse outcomes.[121, 122] Similarly, another study 

showed that higher lymphocyte / monocyte ratio indicated lower cirrhosis grading, 

lower levels of bilirubin and better outcome.[123] Six publications presented data of NLR. 

All of them demonstrated that the low NLR HCC patients group had better OS and 

recurrence free survival (RFS).[115-120] Additional to the results obtained in resection, 

one of these studies claimed that a preoperative NLR ≥ 4 can even be an independent 

predictive factor to predict tumor recurrence after LT.[118]   

These results already indicate that the differences of relevant circulating immune cells 

have predictive value of HCC. In the following these broadly analyzed circulating 

immune cells were further subspecified to possibly identify the relevant effector cells 

responsible for the observed effects. 
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3.1.3 Cells of the Adaptive Immune System 

One study reported that PB from HCC patients, contains lower amounts of T cells 

compared to HD.[124] In contrast to that, another study reported no difference in T cells 

between HCC patients and HD.[125] In a large study with 715 HCC patients a higher 

frequency of CTL could be demonstrated.[126] None of these studies reported on 

survival. Another experimental analysis reported that the amount of Th in HCC patients 

showed no difference from HD. However, they identified higher frequencies of Th17 

cells, lower frequencies of Th1 cells and a higher Th17/Th1 ratio in HCC patients when 

compared to HD.[127]  

Six articles provided information on Tregs. Four of these studies demonstrated that 

HCC patients had higher preoperative frequency of Tregs in their PB than HD.[128, 129, 

139, 140] Furthermore, they found that higher Tregs levels positively correlated with tumor 

burden, disease progression and poorer OS.[129, 140] However, Chen et al. found that 

preoperative circulating Tregs frequency in HCC patients was lower when compared 

to HD.[130] One study concentrated on further phenotypes of Tregs. Takata et al 

reported that CD45RO antigen (commonly expressed on memory cells) was elevated 

on Tregs as compared to HD. Also this higher frequency of memory Tregs indicated a 

larger tumor burden.[131] 

One study providing information about CD4+ cytotoxic T cells (CD4+ CTL). It was 

showed that HCC patients had higher amounts of CD4+ CTL when compared to HD in 

PB.[132] In a singular report Duan et al. showed that amounts of Th1-like and Th17-like 

subsets of T follicular helper cells (Tfh) (CXCR5+ CD4+ CD45RA−) were significantly 

decreased in HCC patients, while the Th2-like subset were increased compared to 

HD.[133] Two articles provided information regarding NKT cells, both of them 

demonstrated that there was no difference between the two groups.[125, 134]  
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Only three studies that investigated B cells were identified.[125, 126, 135] Two of them 

reported lower amounts of B cells in PB of HCC patients HD.[125, 126] In contrast to that 

one study did not confirm these results. However, they showed that the amount of 

memory B cells was lower in HCC patients. [135] Chen et al. additionally looked at the 

newly defined group of Bregs (CD19+ IL-10+). In their work they report that HCC 

patients had lower amounts of Bregs than in HD.[130] 

3.1.4. Cells of the Innate Immune System 

Attallah et al. demonstrated that HCC patients had an increased amounts of NK in 

blood.[124] However, Cai et al. showed that NK cells were significantly decreased in 

HCC patients.[136] Another two studies did not find any difference of NK cells amounts 

between HCC patients and HD.[125, 134] CD56bright NK cells and CD56dim NK cells are 

two different NK cell subsets, the former mainly produces cytokines, while the latter 

exerts direct cytotoxic effects.[143] Two studies showed higher amounts of CD56bright NK 

cells and lower amounts of CD56dim NK cells in the PB of HCC patients compared to 

HD.[136, 141] Also, Cariani et al. revealed that higher amounts of CD56bright NK cells and 

lower amounts of CD56dim NK cells correlated with worse OS. [141] As shown in Table 3, 

one study found that the amount of MDSC positively correlated with a more advanced 

disease, larger tumors and worse Child-Pugh stage.[137] This was confirmed by Li and 

colleagues who found that MDSC were increased in HCC patients.[138]  
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Table 3. Summary of included studies. Abbreviations: Bregs: Regulatory B cells; CHB: Chronic hepatitis B; CTL: Cytotoxic T Lymphocytes; DFS: Disease-

free survival; DC: Dendritic cells; FCM: Flow cytometry; FBC: Full blood count; FBCA: Full blood count analysis; HBeAg: hepatitis B envelope antigen; LT: 

Liver transplantation; LC: Liver cirrhosis; M/GLR: Monocyte/granulocyte to lymphocyte ratio; NK: Natural killer cells; HD: Healthy donors; NLR: Neutrophil-to-

lymphocyte ratio; NMLR: Neutrophil-monocyte/lymphocyte ratio; N/A: Data not found; N.S.: Data found but have no significance; LMR: Lymphocyte-to-

monocyte ratio; MDSC: Myeloid-derived suppressor cells; OS: Overall survival; RFS: Recurrence-free survival; PBMC: Peripheral blood mononuclear cells; 

TTR: Time to disease recurrence; Tregs: Regulatory T cells; TIL: Tumor-infiltrating leukocytes; Tfh: T follicular helper cells; WB: Whole blood. 

Reference Study Population Study Cell  Changing 

Tendency in HCC 

Higher Amount Association 

 
HCC 

Patients 
Controls Region Treatment Cell Source Method Cell Marker Cell Type  

Clinicopathological 

Characteristics 
Survival 

Li J1 et 

al.2016[112] 

175 69 HD China N/A N/A  FBCA N/A 

Leukocytes       

 
Lymphocytes 

Monocytes 

Neutrophils 

Higher in non-HBV 
HCC patients 

Lower  

Higher  

Higher  

N/A N/A 



 

  

4
4 

Shen SL et 

al.2014[113] 

351 N/A China Resection N/A  FBCA N/A Monocytes N/A N/A Monocyt

es ≥ 

545/mm3 

; Worse 

prognosi

s 

Sasaki A et 

al.2014[142] 

198 N/A Japan Resection N/A FBCA N/A Monocytes N/A Microvascular 

invasion, large 

tumor, increased 

platelet count  

Monocyt

es >300/

mm3; 

Worse 

DFS 

Lee, S.D et 

al.2014[114] 

603  N/A Korea N/A N/A FBCA N/A Monocytes N/A N/A 
Monocyt

es >7%; 

Worse 

DFS 

Yang HJ et 

al.[115] 

526 N/A China Resection N/A FBCA N/A NLR N/A N/A 
NLR ≥ 

2.81; 

Worse 

OS, DFS 



 

  

4
5 

Mano Y et 

al.2013[116] 

958  N/A Japen Resection WB FBCA N/A NLR N/A N/A NLR ≥ 

2.81; 

Worse 

OS and 

RFS 

Peng W et 

al.2014[117] 

189 N/A China Resection N/A FBCA N/A NLR N/A N/A 
Worse 

OS and  

RFS 

Xiao, GQ et 

al.2013[118] 

280  N/A China LT N/A FBCA N/A NLR N/A More recurrence NLR ≥ 4; 

Worse 

OS and 

RFS  

Okamura, Y. 

et al.2015[119] 

256   N/A China N/A N/A FBCA N/A NLR N/A N/A Worse 

OS and 

RFS 
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Liao R et 

al.2015[120] 

222 N/A China Resection N/A FBCA N/A NLR N/A Higher bilirubin, 

white blood cell 

counts and HBsAg 

Worse 

OS and 

TTR 

Liao, R. et 

al.2016[121] 

387 N/A China N/A N/A FBCA N/A NMLR N/A NMLR > 1.2; 

Increased ALT, 

tumor number, 

tumor size 

and BCLC stage 

NMLR > 

1.2; 

Worse 

OS and 

RFS 

Zhou D et 

al.2015[122] 

1061 N/A China ResectionT

ACE 

N/A FBCA N/A M/GLR N/A N/A Worse 

OS and 

RFS 

Lin, Z.X. et 

al.2015[123] 

210  N/A China N/A N/A FBCA N/A LMR N/A LMR > 3.23; Lower 

presence of 

cirrhosis, lower 

levels of bilirubin  

LMR > 

3.23; 

Better 

OS and 

RFS in 

LC-HCC 
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A.M. 

Attallah. et 

al.2003[124] 

40 42 HD Egypt N/A WB FCM CD3+ 

CD4+ 

CD8+ 

CD57+ 

T cells 

Th 

CTL 

NK cells 

Lower 

Lower 

N.S. 

Higher 

N/A N/A 

Lin, J.C. et 

al.2010[125] 

45 

 

46 HD China N/A PBMC FCM 

 

CD3+ 

CD3- CD19+ 

CD3+ CD4+ 

CD3+ CD8+ 

CD3- CD16+ 

CD56+       

CD3+ CD16+ 

CD56+ 

T cells 

B cells 

Th 

CTL 

NK cells 

 

NKT cells 

N.S. 

Lower 

Lower 

N.S. 

N.S. 

 

N.S. 

B cells: Worse TNM 

stage, more tumor 

numbers 

N/A 
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Liu, H.Z. et 

al.2016[126] 

715 100 China Resection WB FCM N/A 

CD19+ 

CD8+ 

NK cells 

B cells 

CTL 

Lower 

Lower 

Higher  

N/A N/A 

Yan, J. et 

al.2014[127] 

150 50 HD China Resection PBMC FCM N/A Th 

Th1 

Th17 

Th17/Th1 

N.S. 

Lower 

Higher 

Higher 

N/A Th1: 
Better 
OS and 
DFS 

Th17 and 
Th17/Th1 
: Worse 
OS and 
DFS 

Ormandy, 

L.A. et 

al.2005[139] 

84 

 

74 HD, 

HBV 

patients 

Germa

ny 

N/A PBMC FCM CD4+ CD25+ Tregs Higher  N/A N/A 

Cao, M. et 

al. 2007[140] 
105 20 HD USA N/A PBMC FCM CD4+ CD25+ Tregs Higher  

Larger tumor 

burden 
N/A 



 

  

4
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Feng X et 

al.2011[128] 
42 15 HD China Resection PBMC FCM 

CD4+FoxP3+ 

CD25high 
Tregs Higher N/A N/A 

Fu J et 

al.2007[129] 

123 47 HD China N/A PBMC  FCM CD4+ 

FoxP3+ 

CD25+ 

Tregs Higher N/A Worse 

OS 

Chen, T. et 

al.2012[130] 

36  10 HD China Resection PBMC FCM CD4+ CD25+ 

CD127- 

CD19+ IL-

10+ 

Tregs 

 

Bregs 

Lower before 

surgery, increased 

after surgery.  

Advanced clinical 

stages  

HBeAg and HBV 

DNA number 

N/A 

Takata, Y. et 

al. 2011 [131] 

62 41HD Japan N/A PBMC FCM CD45RO+ 

CD4+ 

CD25high 

Memory 

Tregs 

Higher  Larger tumor 

burden 

N/A 

Fu, J. et 

al.2013[132] 

232 

44CHB 

86 LC 

88 HD 

China Resection PBMC FCM 
CD4+ 

granzyme + 

perforin+ 

CD4+ CTL Early stage higher, 

progressive stage 

lower 

N/A Better 

OS 



 

  

5
0 

Duan Z et 

al.2015[133] 

21 11 HD China Resection PBMC FCM CXCR5+ 

CD4+ 

CD45RA− 

Tfh Lower Th1-like and 

Th17-like Tfh cells, 

higher Th2-like Tfh 

cells, lower ratios of 

Th1-/Th2-like and 

Th17-/Th2-like Tfh 

cells 

N/A N/A 

Li, X.F. et 

al.2017 [134] 

11 11HD China Resection PBMC FCM CD3+ CD56+ 

CD3- CD56+ 

NKT cells 

NK cells 

N.S. 

N.S. 

N/A 

N/A 

N/A 

N/A 

Wang, X.D. 

et 

al.2012[135] 

38 30HD China N/A WB FCM CD19+ 

CD29+ 

CD27– 

CD19+ 

CD27+ 

B cells 

Naïve B cells 

 

Memory B 

cells 

N.S. 

N.S. 

 

Lower   

  

B cells: Lower ALT  

Memory B cells: 

Better BCLC scores  

N/A 



 

  

5
1 

Cai L. et 

al.2008[136] 

110 69 HD China ETCT 

TACE 

Resection 

LT  

PBMC FCM CD3- CD56+ 

CD56br 

CD16neg  

CD56dim 

CD16pos  

NK cells 

NK cells 

 

NK cells 

Lower 

Higher on stage III 

 

Lower 

N/A N/A 

Cariani, E. et 

al.2016 [141] 

70 18 HD 

12 HCV-

related 

cirrhosis  

Italy Resection PBMC FCM CD3- CD56br 

 

CD3-CD56dim 

CD56br NK 

cells 

CD56dim NK 

cells 

Higher 

 

Lower 

N/A Worse 

OS ,TTR 

Better 

OS,TTR 

Wang, D. et 

al.2016[137] 

92  

 

22HD China Resection PBMC FCM CD14+ HLA-

DR−/low 

MDSC Higher  More advanced 

disease, bigger 

tumor size, worse 

Child-Pugh stage 

Worse 

OS 

Li, X. et 

al.2017[138] 

55 20HD China Resection PBMC FCM N/A 

HLA-DR-/low 

MDSC Higher  N/A N/A 



 

  

5
2 

CD11b+CD3

3+CD14+ 

HLA-DR-/low 

CD11b+CD3

3+CD15+CD

66b+ 

M-MDSC 

 

G-MDSC 

      

Higher  

 

Higher 
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As shown in the review above, many publications have reported on circulating immune 

cells in HCC patients. These studies were limited to investigate one or only selected 

immune cells. Naturally many results are contradictory and not comparable across the 

different methods and patients’ etiology of HCC. Therefore, in this translational study, 

I aimed to comprehensively assess the immune signature of HCC patients and 

compare it to the immune signature of age and gender matched HD. In the following, 

I will concentrate on results that have showed significant differences between the 

groups. The detailed cell counts and comparisons are listed in Supplement Table 5-7. 

3.2. FCM Measurements of PB Immune Cells in HCC Patients 

and HD 

First, I compared the difference of immune cells in PB between HD and HCC patients.  

3.2.1. HCC Patients have lower Frequency of Macrophages and DC but 

Higher Amounts of MDSC than HD 

HCC patients had lower amounts of macrophages when compared to HD (0.32±0.24% 

vs. 0.84±0.47%, p=0.01) (Figure 9G). Similarly, the amount of DC in HCC patients was 

lower than in HD (0.12±0.14% vs. 0.39±0.24%, p=0.01) (Figure 9H). On the contrary, 

HCC patients showed a higher frequency of MDSC in the PB (HCC: 2.01±2.02% vs. 

HD: 0.56±0.44%, p=0.04) (Figure 9I). No differences were found between the two 

groups in neutrophils, monocytes, M-MDSC and G-MDSC (p=0.25, p=0.28, p=0.35, 

p=0.29, respectively) (Supplement Table 5, Figure 9M, 9N, 9K, 9L). 
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Figure 9: Typical FCM pictures of significant differentially expressed macrophages, DC 

and MDSC in HD and HCC patients. (A: Macrophages in HD; B: Macrophages in HCC; C: DC 
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in HD; D: DC in HCC; E: MDSC in HD; F: MDSC in HCC). Dot plots illustrating cell subsets in 

HD and HCC patients. (G: Lower amounts of macrophages in HCC; H: Lower amounts of DC 

in HCC; I: Higher amounts of MDSC in HCC). No differences were found in the following cell 

groups between HD and HCC patients (J: NK cells; K: M-MDSC; L: G-MDSC; M: Neutrophils; 

N: Monocytes) (Unpaired t test, * p<0.05 and ** p<0.01). 

3.2.2. HCC Patients have lower Amounts of T cells than HD 

T cells in HCC patients were less frequent when compared to HD (19.15±12.55% vs. 

30.93±5.14%, p=0.01) (Figure 10I). Similarly, HCC patients also had lower amounts of 

NKT cells (HCC: 0.06±0.04% vs. HD: 0.24±0.27%, p<0.001) (Figure 10L). The 

frequency of cmTh in HCC patients was lower than in HD (10.45±7.38% vs. 

21.85±9.94%, p=0.01) (Figure 10N). Also, the amount of nTh in HCC patients was 

significantly lower (HCC: 9.35±9.62% vs. HD: 26.99±13.35%, p<0.01) (Figure 10N). 

On the contrary, the frequency of emTh in HCC patients was significantly higher than 

HD (55.92±14.77% vs. 34.54±13.48%, p<0.01) (Figure 10J). Similarly to emTh, Tregs 

had a higher frequency in HCC patients (HCC: 10.2±4.8% vs. HD: 6.49±2.11%, p=0.04) 

(Figure 10K). The frequency of Th, CTL, CD4/CD8 ratio, Th1, Th2, Th17, eTh, aTh, 

emCTL, cmCTL, eCTL, nCTL, aCTL, mTregs, nTregs, aTregs and maTregs were not 

significantly different between the two groups (p=0.87, p=0.7, p=0.38, p=0.46, p=0.99, 

p=0.62, p=0.3, p=0.1, p=0.61, p=0.41, p=0.34, p=0.73, p=0.07, p=0.24, p=0.26, p=0.76, 

p=0.96, respectively) (Supplement Table 5, Supplement Figure 1).  
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Figure 10: Typical FCM pictures of significant differentially expressed T cells, emTh, 

cmTh, nTh, Tregs and NKT cells in HD and HCC patients. (A: T cells in HD; B: T cells in 

HCC; C: Subsets of Th in HD; D: Subsets of Th in HCC; E: Tregs in HD; F: Tregs in HCC; G: 

NKT cells in HD; H: NKT cells in HCC). Dot plots illustrating cell subsets in HD and HCC patients. 

(I: Lower amounts of T cells in HCC; J: Higher amounts of emTh in HCC; K: Higher amounts of 

Tregs in HCC; L: Lower amounts of NKT cells in HCC; M: No differences of Th; N: Lower 

amounts of cmTh in HCC; O: Lower amounts of nTh in HCC; P: No differences of eTh) 

(Unpaired t test, * p<0.05, ** p<0.01 and *** p<0.001).
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3.2.3. HCC Patients have lower Amounts of Memory B Cells, NS-Memory 

B Cells and Bregs-2 than HD 

HCC patients had lower amounts of memory B cells and ns-memory B cells than HD 

(memory B cells: 11.6±8.53% vs. 31.57±28.34%, p<0.05; ns-memory B cells: 

3.59±4.03% vs. 8.44±5.06%, p=0.01, respectively) (Figure 11G, 11H). Similarly, the 

amount of Bregs-2 in HCC patients was lower than HD (0.32±0.81% vs. 1.65±1.57%, 

p=0.01) (Figure 11I). The frequency of B cells, naïve B cells, transitional B cells, pro B 

cells, pre B cells, plasma cells and plasmablasts were not significantly different 

between the two groups (p=0.2, p=0.34, p=0.06, p=0.07, p=0.23, p=0.14, p=0.11, 

respectively) (Supplement Table 5, Figure 11). 
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Figure 11: Typical FCM pictures of significant differentially expressed memory B cells, 

ns-memory B cells and Bregs-2 in HD and HCC patients. (A: Memory B cells in HD; B: 

Memory B cells in HCC; C: ns-memory B cells in HD; D: ns-memory B cells in HCC; E: Bregs-

2 in HD; F: Bregs-2 in HD). Dot plots illustrating cell subsets in HD and HCC patients. (G: Lower 

amounts of memory B cells in HCC; H: Lower amounts of ns-memory B cells in HCC; I: Lower 

amounts of Bregs-2 in HCC). No differences were found in the following cell groups between 

HD and HCC patients. (J: B cells; K: Naive B cells; L: cs-memory B cells; M: Plasma cells; N: 

Plasmablasts; O: Transitional B cells; P: Bregs-2; Q: Pro B cells; R: Pre B cells) (Unpaired t 

test, * p<0.05, ** p<0.01). 

3.3. FCM Measurements of Tumor Infiltrating Immune Cells 

To further understand the local immune status of HCC, I isolated tumor infiltrating 

immune cells and compared them with circulating immune cells in the same patients. 

3.3.1. Tumor Tissues have lower rate of Accumulation of Neutrophils and 

Monocytes compared to PB 

In HCC tumor tissues neutrophils had a significantly lower rate of accumulation than 

PB (0.85±0.56% vs. 55.92±22.52%, p=0.01) (Figure 12H). Similarly, monocytes were 

less frequent in HCC tumor tissues when compared to PB (1.97±1.38% vs. 

5.12±2.64%, p=0.03) (Figure 12I). The frequency of macrophages, DC, MDSC, G-

MDSC and M-MDSC showed no difference between tumor tissues and PB (p=0.27, 

p=0.84, p=0.76, p=0.08, p=0.03, respectively) (Supplement Table 5, Figure 12). 
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Figure 12: Typical FCM pictures of immune cells in freshly harvested HCC tissues. (A: 

Neutrophils; B: Monocytes; C: Macrophages; D: DC; E: MDSC; F: G-MDSC and M-MDSC; G: 

NK cells). Dot plots illustrating cell subsets in PB and HCC tissues. (H: Lower amounts of 

neutrophils in HCC tissues; I: Lower amounts of monocytes in HCC tissues; J: No differences 

of the neutrophil to lymphocyte ratio; K: No differences of macrophages; L: No differences of 

DC; M: No differences of MDSC; N: No differences of G-MDSC; O: No differences of M-MDSC; 

P: No differences of NK cells) (Paired t test, * p<0.05 and ** p<0.01). 
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3.3.2. Tumor Tissues have a higher rate of Accumulation of T cells than 

PB 

In HCC tumor tissues T cells accumulated (Tissues: 58.17±15.95% vs. PB: 

22.84±12.15%, p=0.02) (Figure 13K). Th had a lower rate of accumulation in HCC 

tumor tissues when compared to PB (42.61±14.99% vs. 73.82±10.43%, p<0.01) 

(Figure 13L). Similarly, the ratio of CD4/CD8 in HCC tissues was lower than PB 

(2.19±1.14% vs. 4.26±2.17%, p=0.02) (Figure 13M). HCC tumor tissues had a higher 

accumulation degree of Th1, lower accumulation degree of Th2 and higher ratio of 

Th1/Th2 when compared to PB (Th1: 77±22.1% vs. 48.23±21.05%, p=0.04; Th2: 

3.54±0.71% vs. 12.03±6.36%, p<0.05; Th1/Th2 ratio: 21.54±3.4% vs. 8.18±10.98%, 

p=0.04) (Figure 13N, 13O, 13Q). In HCC tumor tissues emTh were more frequent 

(78.43±10.67% vs. 57.28±16.18%, p=0.04), while cmTh and mTregs were less 

frequent (cmTh: 0.09±0.12% vs. 8.41±4.82%, p=0.02; mTregs: 33.25±20.1% vs. 

62.53±10.71%, p=0.02, respectively) than PB (Figure 13R, 13S, 13V). The frequency 

of Th17, eTh, aTh, nTh, CTL, emCTL, cmCTL, eCTL, nCTL, aCTL, Tregs, nTregs, 

aTregs and maTregs were not different between tumor tissues and PB (p=0.06, p=0.47, 

p=0.38, p=0.06, p=0.74, p=0.95, p=0.17, p=0.16, p=0.05, p=0.87, p=0.69, p=0.81, 

p=0.23, p=0.73, respectively) (Supplement Table 6, Supplement Figure 2). 



 

62 

 

 

Figure 13: Typical FCM pictures of T cells and its subsets in freshly harvested HCC 

tissues. (A: T cells; B: Th and CTL; C: Th1; Th2 and Th17; D: emTh, cmTh, eTh and nTh; E: 

aTh; F: Tregs; G: mTregs, maTregs, nTregs and aTregs; H: emCTL, cmCTL, eCTL and nCTL; 

I: aCTL; J: NKT cells). Dot plots illustrating T cells and its subsets in PB and HCC tissues. (K: 

Higher amounts of T cells in HCC tissues; L: Lower amounts of Th in HCC tissues; M: Lower 

amounts of CD4+ T cells to CD8+ T cells ratio in HCC tissues; N: Higher amounts of Th1 in HCC 

tissues; O: Lower amounts of Th2 in HCC tissues; P: No differences of Th17; Q: Higher amounts 

of Th1 to Th2 ratio in HCC tissues; R: Higher amounts of emTh in HCC tissues; S: Lower 
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amounts of cmTh in HCC tissues; T: No differences of nTh; U: No differences of Tregs; V: Lower 

amounts of mTregs) (Paired t test, * p<0.05, ** p<0.01 and *** p<0.001). 

3.3.3. There are no Differences between B cells and its Subsets in HCC 

Tissues and PB. 

The frequency of B cells, naïve B cells, transitional B cells, pro B cells, pre B cells, 

memory B cells, ns-memory B cells and cs-memory B cells were not different between 

the two groups (p=0.87, p=0.73, p=0.46, p=0.2, p=0.24, p=0.16, p=0.26, p=0.15, 

respectively) (Supplement Table 6, Figure 14). Plasmablasts, plasma cells, Bregs-1, 

and Bregs-2 were almost undetectable in HCC tissues (Supplement Table 6, Figure 

14). 
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Figure 14: Typical FCM pictures of B cells and its subsets in freshly harvested HCC 

tissues. (A: B cells; B: Memory B cells; C: ns-memory B cells; D: Naïve B cells; E: Plasmablast 

and cs-memory B cells; F: Transitional B cells; G: Bregs-1; H: Bregs-2; I: Pre B cells; J: Pro B 

cells; K: Plasma cells. Dot plots illustrating B cells and its subsets in PB and HCC tissues. (L: 

No differences of B cells; M: No differences of memory B cells; N: No differences of ns-memory 

B cells; O: No differences of naïve B cells; P: No differences of cs-memory B cells; Q: No 

differences of plasma cells; R: No differences of plasmablasts; S: No differences of transitional 

B cells; T: No differences of Bregs-1; U: No differences of Bregs-2; V: No differences of pro B 

cells; W: No differences of pre B cells) (Paired t test). 

3.4. TILs from HCC Tissues Produce IFN-γ 

From the above results, it can be seen that there is immune cell infiltration in HCC 

tissues. Some cell groups accumulate to mount the antitumor defense. However, to 

investigate the functional state, I further analyzed IFN-γ production to understand 

whether TILs were stimulated and functionally active. 

As mentioned above we created a stimulated and an unstimulated group. For this 

investigation we analyzed only effector cells of the antitumor immune response. As 

shown in Figure 15, the production of IFN-γ from CD45+ and CD3+ cells in the 

stimulated group were significantly higher when compared to unstimulated group 

(CD45+ cells: 13.75±7.7% vs. 0.49±0.29%, p=0.02; CD3+ cells: 13.76±8.17% vs. 

0.26±0.16%, p=0.02, respectively) (Supplement Table 7, Figure 15L, 15M). The IFN-γ 

production of CD3+ cells was driven by the effector subsets of T cells: CD4+ and CD8+ 

cells. In stimulated group the production of IFN-γ from CD4+ cells and CD8+ cells were 

significantly higher when compared to the unstimulated group (CD4+ cells: 18.9±10.6% 

vs. 0.75±0.12%, p=0.02; CD8+ cells: 42.93±25.07% vs. 2.03±2.94%, p=0.02, 

respectively) (Supplement Table 7, Figure 15O, 15N). The production of IFN-γ from 

CD45- cells (which were used as control) was not different between the two groups 

(p=0.11). 
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Figure 15: Typical FCM pictures of IFN-γ in unstimulated group and stimulated group. (A: 

IFN-γ of CD45- cell populations in unstimulated group; B: IFN-γ of CD45- cell populations in 

stimulated group; C: IFN-γ of CD45+ cells in unstimulated group; D: IFN-γ of CD45+ cells in 

stimulated group; E: IFN-γ of CD3+ cells in unstimulated group; F: IFN-γ of CD3+ cells in 

stimulated group; G: IFN-γ of CD8+ cells in unstimulated group; H: IFN-γ of CD8+ cells in 

stimulated group; I: IFN-γ of CD4+ cells in unstimulated group; J: IFN-γ of CD4+ cells in 

stimulated group. Dot plots illustrating IFN-γ in unstimulated group and stimulated group (K: No 

differences of IFN-γ of CD45- cell populations; L: Higher amounts of IFN-γ of CD45+ cell 

populations in stimulated group; M: Higher amounts of IFN-γ of CD3+ cell populations in 

stimulated group; N: Higher amounts of IFN-γ of CD8+ cell populations in stimulated group; O: 

Higher amounts of IFN-γ of CD4+ cell populations in stimulated group) (Paired t test, * p<0.05). 
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4. Discussion 

In reviewing the literature, there are differential expression of multiple immune cells 

between HCC patients and HD. The differential expression of these cells is not only 

related to clinicopathological characteristics but can even predict the prognosis of HCC 

patients after treatment.[128, 129, 139, 140] However, these studies were limited to 

investigate one or only selected immune cells. Naturally many results are contradictory 

and not comparable across the different methods and patients’ etiology of HCC. This 

study established an immunophenotyping protocol for detecting more than 40 immune 

cells in PB and tumor tissues of HCC patients. Furthermore, to our knowledge, this is 

the first study to comprehensively assess the immune signature of nonHBV/nonHCV 

HCC patients.  

In this discussion I will systematically analyze my results and put these into context 

with the literature. To allow for a structured understanding of the many subsets of 

measured immune cells in this study, the discussion will be partly divided into 

immunosuppressive and immune stimulating cells. A separate paragraph will be 

devoted to cell groups from the innate immune cells which have dual (immune 

stimulating and immunosuppressive) function. 

Tregs are a small subset of T cells with an important immune regulatory function. They 

repress the immune response through intercellular contact with other T cells.[144] 

Additionally, they can also exert immunoregulatory effects by producing IL-10 and 

TGF-β.[145] I found that the frequency of Tregs in PB was higher in HCC patients when 

compared to HD. This is in accordance with previous studies (FCM was used), which 

have also demonstrated that Tregs amount was higher in the PB of HCC patients 
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compared to HD.[128, 130] One explanation is that HCC exerts an immunosuppressive 

environment, which expands the amount of circulating Tregs and their 

immunosuppressive function.[128] Another explanation might be that this 

immunosuppressive environment inhibits other cell compartments on favor of 

expanding Tregs. As reported Tregs can inhibit the function of other immune cells, such 

as T cells, NK cells, NKT cells and B cells. [159] My results indicated that the count of 

overall T cells, NKT cells were significantly reduced in PB of HCC patients. Feng et al 

found that HCC patients had a higher amounts of tumor-infiltrating Tregs than that in 

PB.[128] Contrary to that, my results, also obtained with FCM, illustrated that there was 

no difference in relative Tregs quantity between tumor tissues and PB. These results 

may be different because the progression of chronic hepatitis is corelated with an 

increased amounts of Tregs.[146] Our cohort however was comprised of 

nonHBV/nonHCV HCC patients. Theories for the infiltration of Tregs in tumor tissue 

are still not unified. One previous study has reported that tumor cells and macrophages 

in malignant ascites can secrete a large number of chemokines and cause Tregs in PB 

to aggregate locally into tumors.[147] 

Bregs mainly play a negative regulatory role by secreting IL-10 (similarly to Tregs). 

This plays an important protective role in autoimmune diseases and chronic 

inflammatory diseases.[148] However, such a negative regulatory role may also promote 

the progress of cancer.[149] Studies have indicated that Bregs also can induce Treg 

activation and thus accelerate the metastasis of cancer cells.[150] In addition, IL-10, IL-

35 and IL-33 had the effect of promoting Bregs, thus promoting tumor metastasis and 

accelerating disease progression.[151] With FCM Chen et al. found that Bregs increased 

significantly in patients with HCC.[130] However, my results revealed that the frequency 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Feng%20X%5BAuthor%5D&cauthor=true&cauthor_uid=21633918
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of Bregs in PB of HCC patients was lower than that of HD. This may also be related to 

nonHBV/nonHCV HCC patients in this study. This might be underlined by the fact that 

the above mentioned study by Chen et al. also showed a positive correlation between 

the frequency of Bregs and HBV DNA copy number.[130] Another study of Li et al., which 

used FCM, also reported an increased amount of Bregs in chronic hepatitis patients in 

China.[152] In general, therefore, it seems that the inflammatory state caused by 

hepatitis rather than HCC may play a major role on the frequency of circulating Bregs. 

Previous studies have demonstrated that intertumoral Bregs correlated with impaired 

anti-tumor immunity.[153, 154] Wang et al. revealed that Bregs were significantly elevated 

in tumor tissues compared to PB in gastric cancer patients (FCM).[155] Moreover, they 

demonstrated that Bregs exert immune suppressive capacity by producing IL-10 and 

TGF-β. However, little is known about the Bregs in HCC tissues. I found that Bregs 

were almost undetectable in HCC tissues. A possible explanation for this might be the 

heterogeneity between different tumors. Another possibility may be related to 

nonHBV/nonHCV HCC patients in this study. As mentioned above, the inflammatory 

state caused by hepatitis may play a major role on the frequency of Bregs.  

MDSC are heterogeneous cell populations and mainly play an immunosuppressive 

role. [156] MDSC can not only inhibit T cells mediated specific immunity, but also directly 

inhibit the immune functions of macrophages, NK cells and DC.[46] Hoechst et al. found 

that MDSC count was significantly increased in PB of HCC patients. FCM was applied 

in this study. Moreover they found that MDSCs can significantly inhibit the production 

of IFN-γ and T cells proliferation.[157] Similarly, with FCM Arihara et al. showed that the 

frequency of MDSC in HCC patients was significantly higher compared to HD.[158] In 

agreement with previous findings, in this study the results also demonstrated that HCC 

patients had higher amounts of MDSC in PB than that of HD. One explanation for the 

expansion of MDSC is that under pathological conditions, the immature myeloid cells 

differentiation process is blocked, resulting in an increase of MDSC. Another 
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explanation is that tumor cells release immunosuppressive molecules, which can 

recruit Tregs and MDSC. These inhibiting cells can secrete inhibitors to further promote 

the growth of tumors, and they can inhibit T cells, B cells, NK cells and so on.[159] My 

results showed that the T cells amount was significantly reduced while Tregs amounts 

were increased in PB of HCC patients. Taken together, it suggests that MDSCs can 

affect the expansion of Tregs and work together with Tregs to exert an 

immunosuppressive state. Only a few publications regarding HCC have evaluated 

MDSCs in tumor tissues. In colorectal cancer, it was demonstrated that the frequency 

of MDSC in the tumor tissues was higher than paracancerous tissues (FCM was 

used).[160] This finding is consistent with that of Sun et al. who also found that the 

frequency of MDSC was markedly increased in tumor tissues of colorectal cancer 

patients.[161] In this study FCM was employed to measure MDSC. In addition, they 

presented that intertumoral MDSCs was correlated with metastasis and tumor stage. 

In my results, MDSCs were observed in HCC tissues. But no difference was found in 

MDSCs between tumor tissues and PB. The reasons for the MDSC infiltration may 

include the following aspects: COX-2 is highly expressed in cancer cells, which can 

produce prostaglandin E2 (PGE2). PGE2-COX2 pathway can induce MDSC 

production. Tumor cells can secrete negative regulatory factors such as IL-1β and IL-

6, which effectively prevent the differentiation and maturation of bone marrow 

precursor cells.[162] 

Supporting the notion that HCC may exert an immunosuppressive environment, it was 

found in this study that HCC patients had a lower frequency of T cells in PB than HD. 

This is in accordance with previous studies (FCM was employed).[123, 124] As mentioned 

above, the decrease in circulating T cells may be caused by higher amounts of MDSCs 

and Tregs. MDSC can significantly inhibit T cells proliferation and Tregs can cause T 

cell death through perforin/granzyme pathway.[163] Another possibility explanation is 

that circulating T cells migrate to the tumor tissues. Since I found that the amount of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sun%20HL%5BAuthor%5D&cauthor=true&cauthor_uid=22783056
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tumor infiltrating T cells were higher than that in PB. TILs were firstly reported in 1986 

and the phenotype of TILs are heterogeneous. In general, the majority of TILs are 

CD3+ cells.[164] This study also indicated that T cells were the main infiltrating cells in 

HCC tissues, which was consistent with previous reports. Increased T cell infiltration, 

suggesting that the body can produce a local cellular immune response to HCC.  

T cells have two major subsets. Studies found that in HCC patients the frequency of 

CD4+ T cells in PB were significantly reduced, while CD8+ T cells were not different 

from that of HD.[124, 125] In these publications FCM was employed. However, in a large 

study with 715 HCC patients a higher amounts of CD8+ T cells could be demonstrated 

(FCM).[126] Another study with the same experimental method found that the amount of 

CD4+ T cells in HCC patients did not differ significantly from HD.[127] Our results 

indicated that the frequency of both CD4+ T cells and CD8+ T cells were not different 

from that of HD. This inconsistency may be due to the limited patient number. Another 

possible explanation might be that although the overall T cells are significantly reduced, 

the major two compositions of T cells are still stable. This is because under most 

circumstances, CD4+ T cells and CD8+ T cells are in a relatively stable balance to 

maintain the immune function of the body.[165] But in HCC tissues, this balance is 

altered. This study revealed that tumor tissues had lower amount of CD4+ T cells and 

CD4+/CD8+ ratio than that in PB. With FCM Elisabetta et al. displayed that HCC tumor 

tissues had higher amounts of CD4+ T cells while CD8+ T cells were more represented 

in paracancerous tissues .[166] My study did not compare to paracancerous tissues. The 

abnormalities of CD4+ and CD8+ T cells may be due to the immunosuppressive factors 

in tumor microenvironment, such as TGF-β, VEGF and IL-10.[167] The decrease of 

CD4+/CD8+ ratio indicates that the immune regulation function of the tumor 

microenvironments is abnormal, showing an immunosuppressive state.[168] 

In 1986, Mosmann et al. divided CD4+ T cells into Th1 and Th2 according to their 
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different cytokine profile.[169] In 2005, Th17 were described.[60] A study by Yan et al., 

which used FCM, reported that HBV-related HCC patients had higher frequencies of 

Th17, lower frequencies of Th1 and a higher Th17/Th1 ratio in PB compared to non-

HBV-related HCC and HD. My results revealed that frequencies of Th1, Th2 and Th17 

were not different from that of HD. This inconsistency may be due to nonHBV/nonHCV 

HCC patients in this study. In the previous study reported by Yan et al. a decreased 

amount of Th1 was also not found in non-HBV-related HCC patients (FCM was used). 

They indicated that HBV infection may correlate with abnormalities of Th1, TH17.[127] A 

probable explanation is that chronically inflammation induced by HBV infection can 

affect CD4+ T cells response.[170] However, the distribution of Th1, Th2 and Th17 in 

HCC tissues displayed a dramatically difference. My results indicated that the 

frequency of Th1 was elevated in HCC tissues compared to PB, while Th2 were 

significantly decreased and Th17 showed a decreased trend. Yan et al. revealed that 

amounts of tumor infiltrating Th17 and Th1 were significantly higher in HBV-related 

HCC and non-HBV-related HCC patients than a paracancerous tissues. However, this 

study used IHC to measure and count immune cells. Moreover, they found that patients 

with higher infiltrating Th1 densities had besser OS and DFS, while patients with higher 

infiltrating Th17 densities had worse OS and DFS.[127] Lorvik et al. found that when Th1 

were activated in PB, they could migrate to the local microenvironment of tumors.[171] 

My results also indicated that tumor infiltrating Th1 was dramatically higher than 

circulating Th1. Higher amounts of Th1 infiltration in this study, suggest that the body 

can produce a strong antitumor response to HCC. As we found IFN-γ (mainly secreted 

by Th1) from TILs. Th2 in HCC tissues was rarely reported. My results revealed that 

amounts of tumor infiltrating Th2 was significantly lower than that in PB. The lower 

amounts of Th2 cells may partly explain the humoral immunodeficiency in HCC 

microenvironment. Since the frequency of infiltrating B cells had no difference 

compared to PB in HCC patients, there was also no difference regarding circulating B 
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cells between HCC patients and HD. Moreover, most tumor infiltrating B cell subsets 

were undetectable. The role of Th17 cells in the tumor microenvironment remains 

controversial. Studies have found that Th17 cells amounts were higher in HCC tissues 

than corresponding paracancerous tissues.[127, 172] However, IHC was applied to 

measure Th17 cells in this research. Th17 in paracancerous tissues were not 

measured in this study. However, my result showed a decreased trend of infiltrating 

Th17 compared to that in PB. An explanation may be that the majority of Th cells 

differentiate into Th1 cells to exert anti-tumor effects, resulting in a relative decreased 

proportion of Th17. 

Memory T cells react rapidly and strongly after re-contact with antigens, producing a 

large number of effector cells and releasing a large number of cytokines.[173] Memory 

T cells survive in the host for many years in the form of functional silence and slow cell 

cycle.[174] According to different homing characteristics and effector functions, memory 

T cells can be divided into two subgroups: emT cells and cmT cells. The results of my 

study revealed that naive CD4+ T cells decreased significantly in PB of HCC patients. 

This may suggest that circulating naive T cells are stimulated by tumor antigens and 

transformed into memory T cells, thus leading to a decline in naive T cell reserve. 

Beckhove et al. isolated the initial T cells and memory T cells derived from bone marrow, 

stimulated them with DC, and then imported them into breast cancer bearing mice. It 

was found that initial T cells did not infiltrate tumors, whereas memory T cells 

selectively infiltrated tumor tissues.[175] The results of this study indicated that the 

amount of both circulating and tumor infiltrating emCD4+ T cells was significantly higher, 

while both circulating and tumor infiltrating cmCD4+ T cells was significantly lower than 

the control groups. This has not been described previously. This may indicate that more 

cmCD4+ T cells differentiate to emCD4+ T cells, to exert strong killing function.  

B cells play an important role in humoral immunity, even in anti-tumor immune 
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response. Previous researches, which used FCM, have reported that HCC patients 

had lower amounts of B cells in PB than HD.[125, 126] However, my results revealed that 

there was no difference of B cell amounts in PB between HCC patients and HD. This 

may be related to nonHBV/nonHCV HCC patients in this study. Since it was reported 

that viral infections result in quantitative and qualitative changes in circulating B cell 

developmental systems.[176] In the previously reported study by Liu et al., they found 

that HBV and HCV infections altered the proportions of the lymphocyte subsets, 

including B cells. Moreover, they suggested that the reduced amounts of T cells and B 

cells in HCC patients indicated a decreased antiviral ability of the body.[177] Studies 

have found that the abnormal distribution of memory B cells exists in a variety of 

autoimmune diseases.[178-180] Consistent with the literature, this research found that 

memory B cells amounts in PB of HCC patients was significantly lower than that of 

HD.[135] Similarly, the ns-memory B cells amounts of HCC patients was significantly 

reduced. The reduction of memory B cells in the PB of HCC patients may due to the 

development and differentiation of memory B cells into plasma cells after recruitment 

to secondary lymphoid tissues. Since I found no difference in the frequency of 

circulating B cells and most of their subsets between HCC patients and HD, and no 

difference in B cells and their subsets between tumor tissues and PB, I speculate that 

humoral immunity does not play a major role in nonHBV/nonHCV HCC patients. 

As the first line of defense against bacterial invasion, neutrophils play an important role 

in infection immunity. The NLR is often used to evaluate the balance of systemic 

inflammatory response and immune system function. Studies found that the OS and 

RFS of resected patients were significantly poorer in the high NLR HCC patients 

group.[115-120] My results presented that circulating NLR had an elevated tendency in 

HCC patients compared to HD. One explanation for an elevated NLR with worse 

outcome is that many patients with elevated NLR had low amounts of lymphocytes, 

which may lead to a weakened immune response.[181] As I found no difference of 
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circulating neutrophils between HCC patients and HD, while lymphocytes especially T 

cells were significantly reduced. Intertumoral neutrophils are independent prognostic 

factors for a variety of malignancies.[182, 183] Li et al. found that the density of neutrophils 

was lower in HCC than the paracancerous tissues. (IHC was used). In addition, 

increased tumor-infiltrating neutrophils can predict worse outcome of HCC patients 

after resection.[32] To my knowledge, this is the first study to show that the frequency of 

tumor-infiltrating neutrophils was dramatically lower than that in PB. It seems that the 

distribution of cell subsets from the innate immune system, especially neutrophils, was 

significantly different between tumor tissues and PB.  

Monocytes are precursor cells of DCs and macrophages. Pre-mononuclear cells, 

mononuclear cells, macrophages and cells at all stages of their development are 

generally referred to as mononuclear macrophage systems. My results firstly 

presented that monocytes had a significantly lower rate of accumulation in HCC tissues 

than PB. A possible explanation for this is that monocytes in tissues mature and 

differentiate into DCs and macrophages. Activated macrophages include two types: 

Classically activated macrophage (M1) and alternative activated macrophage (M2).[184] 

Tumor-associated macrophages (TAM), which may have M2 phenotype, are closely 

related to tumor angiogenesis and lymphangiogenesis.[185,186] Some studies 

demonstrated that the frequency of macrophages in HCC tissues was lower than that 

in normal control tissues.[187, 188] However, IHC and real time PCR were used in these 

two studies, respectively. Macrophages in normal liver tissues were not measured in 

this study. However, macrophages showed no significant difference between tumor 

tissues and PB. DC are less than 1% of mononuclear cells in PB, but it has strong 

antigen-presenting ability.[189] My results illustrated that the frequency of DC in PB of 

patients with HCC was significantly lower than that of HD, which was consistent with 

previous reports (performed by FCM).[190, 191] One explanation is that immature DC in 

PB of HCC patients had maturation disorders, mainly manifested by low expression of 

https://www-sciencedirect-com.emedien.ub.uni-muenchen.de/topics/medicine-and-dentistry/neutrophil
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MHC-I molecules.[192] Another possible explanation for this might be higher amounts of 

MDSC in PB of HCC patients. As mentioned above MDSC can directly inhibit the 

immune functions of DC. [58] In this study tumor infiltrating DC were also obtained, but 

they showed no difference from that in PB. The role of DC in tumor microenvironment 

is controversial. On the one hand, as APC DC can induce antitumor immune responses. 

On the other hand, under tumor microenvironments DC may polarize into 

immunosuppressive DC, which can promote appearance of Tregs and MDSC.[193]  

NKT cells exert direct anti-tumor effects through the perforin pathway, and can also kill 

tumor cells via the Fas/FasL pathway and the TNF-α pathway.[194] One research, which 

used FCM, found that the number of NKT cells in PB of cancer patients was lower than 

HD, and this reduction was not related to the type or load of tumors.[195] My results also 

indicate that compared to HD, NKT cells significantly decreased in the PB of HCC 

patients. A possible explanation for this may be NKT cell death or impaired NKT cell 

proliferation in cancer patients.[195] Another possible explanation for this might be 

higher amounts of Tregs in PB of HCC patients. As mentioned above, Tregs can 

directly inhibit the immune functions of NKT cells. Whether NKT cells are accumulated 

in tumor tissues are not clear. Some researchers have found that only a small amount 

of NKT cells exist in the tumor-bearing livers.[196] On the contrary, Motohashi et al. 

reported an increased amounts of NKT cells in lung tumors.[197] However, these two 

studies were performed by IHC and did not compare tumor infiltrating NKT cells with 

circulating NKT cells. My results revealed that the frequency of NKT cells had no 

difference between tumor tissues and PB. 

IFN-γ is a glycoprotein mainly produced by Th and CTL after activated by various 

physical and chemical factors.[198] In addition, NKT cells, DC and macrophages can 

also produce a small amounts of IFN-γ.[199] IFN-γ has antiviral, anti-tumor and immune 

regulation effects. Kortylewski et al. reported that IFN-γ can significantly inhibit the 
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growth of human melanoma cell lines.[200] Similarly, Majewski et al. found that by 

directly injecting IFN-γ into tumor-bearing hosts can inhibit tumor growth.[201] In the liver, 

IFN-γ can regulate hepatocyte apoptosis and cell cycle progression.[202] Jian et al. 

illustrated that IFN-γ-producing cells were found in HCC tumor tissues and its 

frequency were higher than adjacent liver tissues. Moreover, this higher frequency of 

intertumoral IFN-γ-producing cells can predict better OS and DFS.[127] This study 

confirms that TILs from HCC tissues can produce IFN-γ. Moreover, after stimulating 

the production of IFN-γ was significantly increased. It can thus be suggested that tumor 

tissues can induce specific T cell responses with the production of IFN-γ and TILs can 

play an important role in anti-tumor immunity. 

This study has limitations. The sample size of the current study cohort was small. 

However, nonHBV/nonHCV HCCs represent a select but etiologically homogenous 

group of patients. All patients with primary HCC resection from 02.2016 to 04.2017 in 

our center were screened. To obtain this homogenous group we had to exclude 

patients suffering from hepatitis or with a history of hepatitis. Additionally, ethical 

concerns only allowed for 10 HD. However, to create balanced groups between HD 

and HCC patients we chose the sample size of n=10 per group. However, despite the 

limited sample size we were able to show distinctive immune patterns between those 

groups. Experimentally, FCM is the appropriate and most effective way to measure the 

immunophenotype in PB and tumor tissue. However, measurement with FCM in 

general includes a certain degree of subjectivity when setting gates. By rigorous 

standardization of our gating strategy and the fact that gating was double checked we 

were able to prevent human variability in gate setting.  

https://fanyi.baidu.com/#en/zh/despite
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5. Conclusion 

In conclusion, we have established the technique to measure the immune patterns of 

circulating immune cells in patients suffering from non-HBV/non-HCV HCC. Compared 

to age and gender matched HD, we showed that non-HBV/non-HCV HCC patients 

exhibit distinct differences in the measured immune pattern. Further we demonstrated 

an immunosuppressive gradient from tumor to peripheral blood. This 

immunosuppressive state in the PB is actively caused by high amounts of Tregs and 

MDSC. Moreover, the lower frequency of T cells, NK cells, NKT cells and DC in PB 

contribute to the weakened anti-tumor response of HCC patients. In contrast, we found 

the tumor to activate a specific T-cell response. This led to an active secretion of IFN-

γ, illustrating the functional state of the involved cell groups.  

In the future we plan to use this, combined with machine learning algorithms, to 

accurately predict survival of resected and transplanted patients. This holds the 

potential to guide therapy to those patients that truly benefit from surgery. 

6. Summary 

Hepatocellular Carcinoma (HCC) is one of the most lethal tumors in the world. Even 

though medical technologies have been constantly improving, the overall 5-year 

survival rate remained unfavorable. Liver transplantation (LT) is the most effective 

treatment for HCC within cirrhosis and confined to the liver. The Milan Criteria for LT 

selection are regarded as overly strict. They pay no attention to tumor differentiation, 

metastasis degree and immune state. These deficiencies prompted people to further 

explore the allocation of treatment for HCC. Currently, it is believed that the 

progression and prognosis of various tumors, including HCC, are also related to the 
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immune status of the patient. Tumor infiltrating leukocytes (TILs) have been revealed 

to be predictive for outcome of HCC patients after both resection and transplantation. 

These measurements however are only possible after the treatment. To truly predict 

outcome before surgery of HCC patients I established a comprehensive assessment 

of the immunophenotype of nonHBV/nonHCV HCC patients.  

In this study, firstly, I conducted a systematic review to assess the differences of 

circulating immune cells between HD and HCC patients. I found that these studies 

were limited to investigate one or only selected immune cells. Naturally many results 

are contradictory and not comparable across the different methods and patients’ 

etiology of HCC. For example, most studies focused on HCC patients with hepatitis. 

As we know, chronic hepatitis infection can also affect the immune status of HCC 

patients. In order to truly reflect the impact of HCC on immune status, we selected 

nonHBV/nonHCV HCC patients. I aimed to comprehensively assess the immune 

signature of HCC patients and compare it to the immune signature of age and gender 

matched HD. To further understand the local immune status of HCC, I isolated TILs 

from HCC patients and compared them with circulating immune cells in the same 

patients. Lastly, to investigate the functional state, I analyzed IFN-γ production to 

understand whether TILs were stimulated and functionally active.  

Our results indicated that HCC patients had lower amounts of T cells, NKT cells and 

DC in PB than that in HD. Similarly, the frequency of circulating cmTh and nTh in HCC 

patients was significantly lower than in HD. On the contrary, HCC patients showed a 

higher frequency of emTh, Tregs and MDSC in the PB. HCC patients had lower 

amounts of memory B cells and ns-memory B cells when compared to HD. In HCC 

tumor tissues neutrophils and monocytes were less abundant when compared to the 

PB. HCC tumor tissues had a higher accumulation degree of T cells and Th1. Contrary 

to that, Th and Th2 were less accumulated in HCC tumor tissues when compared to 
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PB. In HCC tumor tissues emTh were more frequent, while cmTh were less frequent 

when compared to PB. Moreover, the infiltrating T cells, CD4+T cells and CD8+T cells 

in 5 HCC patients can produce IFN-γ.  

In conclusion, a comprehensive FCM analysis method was established to assess the 

immune signature of nonHBV/nonHCV HCC patients. The distribution of circulating 

immune cells in HCC patients is abnormal, showing an immunosuppressive tendency. 

With regard to HCC tumor tissue, effector T cells can induce specific anti-tumor 

response. 

With this we can measure the immune patterns of circulating immune cells in HCC 

patients. In the future we plan to use this to predict survival of resected and 

transplanted patients to guide therapy to those patients that truly benefit from surgery. 

7. Zusammenfassung 

Das hepatozelluläre Karzinom (HCC) ist einer der tödlichsten Tumoren der Welt. 

Obwohl sich die medizinischen Technologien ständig verbessert haben, blieb die 5-

Jahres-Überlebensrate insgesamt ungünstig. Lebertransplantation (LT) ist die 

wirksamste Behandlung für HCC bei Leberzirrhose. Die Mailänder Kriterien für die LT-

Auswahl gelten als zu streng. Sie achten nicht auf Tumordifferenzierung, 

Metastasierungsgrad und Immunzustand. Diese Mängel veranlassten die Menschen 

dazu, die Verteilung der Behandlung für HCC weiter zu untersuchen. Derzeit wird 

angenommen, dass das Fortschreiten und die Prognose verschiedener Tumore, 

einschließlich des HCC, auch mit dem Immunstatus des Patienten zusammenhängen. 

Es wurde festgestellt, dass tumorinfiltrierende Leukozyten (TILs) sowohl nach 

Resektion als auch nach Transplantation prädiktiv für das Ergebnis von HCC-

Patienten sind. Diese Messungen sind jedoch erst nach der Behandlung möglich. Um 
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das Ergebnis vor der Operation von HCC-Patienten wirklich vorhersagen zu können, 

habe ich eine umfassende Bewertung des Immunphänotyps von Nicht-HBV / Nicht-

HCV-HCC-Patienten durchgeführt. 

In dieser Studie führte ich zunächst eine systematische Literatur Review durch, um die 

Unterschiede der zirkulierenden Immunzellen zwischen gesunden Menschen und 

HCC-Patienten zu bewerten. Ich fand heraus, dass sich diese Studien darauf 

beschränkten, eine oder nur ausgewählte Immunzellen zu untersuchen. Natürlich sind 

viele Ergebnisse widersprüchlich und nicht vergleichbar. Zum Beispiel konzentrierten 

sich die meisten Studien auf HCC-Patienten mit Hepatitis. Wie wir wissen, kann eine 

chronische Hepatitis-Infektion auch den Immunstatus von HCC-Patienten 

beeinflussen. Um den Einfluss von HCC auf den Immunstatus wirklich widerzuspiegeln, 

haben wir Nicht-HBV/Nicht-HCV-HCC-Patienten ausgewählt. Ich wollte die 

Immunsignatur von HCC-Patienten umfassend bewerten und mit der Immunsignatur 

von alters- und geschlechtsangepasster gesunden Menschen vergleichen. Um den 

lokalen Immunstatus von HCC besser zu verstehen, isolierte ich TILs von HCC-

Patienten und verglich sie mit zirkulierenden Immunzellen bei denselben Patienten. 

Um den Funktionszustand zu untersuchen, analysierte ich schließlich die IFN-γ 

Produktion, um zu verstehen, ob TILs stimuliert und funktionell aktiv waren. 

Unsere Ergebnisse zeigten, dass HCC-Patienten im Blut geringere Mengen an T-

Zellen, NKT-Zellen und DC aufwiesen als in gesunden Menschen. In ähnlicher Weise 

war die Häufigkeit der Zirkulation von cmTh und nTh bei HCC-Patienten signifikant 

niedriger als bei gesunden Menschen. Im Gegensatz dazu zeigten HCC-Patienten 

eine höhere Häufigkeit von emTh, Tregs und MDSC in der PB. HCC-Patienten hatten 

im Vergleich zur gesunden Menschen eine geringere Menge an Speicher-B-Zellen und 

ns-Speicher-B-Zellen. In HCC-Tumorgeweben waren Neutrophile und Monozyten im 

Vergleich zum Blut niedriger. HCC-Tumorgewebe hatten einen höheren 
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Akkumulationsgrad von T-Zellen und Th1. Im Gegensatz dazu waren Th und Th2 im 

Vergleich zum Blut in HCC-Tumorgeweben weniger akkumuliert. In HCC-

Tumorgeweben war emTh häufiger, während cmTh im Vergleich zum Blut weniger 

häufig waren. Darüber hinaus können die infiltrierenden T-Zellen, CD4+ T-Zellen und 

CD8+ T-Zellen bei 5 HCC-Patienten IFN-γ produzieren. 

Zusammenfassend wurde eine umfassende FCM-Analysemethode etabliert, um die 

Immunsignatur von Nicht-HBV/Nicht-HCV-HCC-Patienten zu bewerten. Die Verteilung 

der zirkulierenden Immunzellen bei HCC-Patienten ist abnormal und zeigt eine 

immunsuppressive Tendenz. In Bezug auf das HCC-Tumorgewebe können Effektor-

T-Zellen eine spezifische Antitumorantwort induzieren. 

In Zukunft planen wir, dies zu nutzen, um das Überleben von resezierten und 

transplantierten Patienten vorhersagen zu können, um die Therapie zu den Patienten 

zu leiten, die wirklich von einer Operation profitieren. 
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Supplement Table 1: Overview of the 6 staining tubes to dedicate T cell and its subsets. (Tube 1, served as blank control; Tube 2-5, served as FMO 

control; --, no antibody was added). Tube 1 had no antibodies; Tube 2 included all the antibodies except antibody CD197, CD25, CD196 and antibody HLA-DR; 

Tube 3 included all the antibodies except antibody CD194, CD127; Tube 4 included all the antibodies except antibody CD38, CD45RO; Tube 5 included all the 

antibodies except antibody CD27; Tube 6 was the sample.  

Tube Antibody 

Tube 1  --  --  --  --  --  --  --  --  --  --  --  --  -- 

Tube 2 CD4  -- CD194 CD38 CD45 CD27  -- CD3  -- CD127 CD45RO  -- CD8 

Tube 3 CD4 CD197  -- CD38 CD45 CD27 CD25 CD3 CD196  -- CD45RO HLA-DR CD8 

Tube 4 CD4 CD197 CD194  -- CD45 CD27 CD25 CD3 CD196 CD127  -- HLA-DR CD8 

Tube 5 CD4 CD197 CD194 CD38 CD45  -- CD25 CD3 CD196 CD127 CD45RO HLA-DR CD8 

Tube 6 

Amount 

CD4 

1µl 

CD197 

1µl 

CD194 

1µl 

CD38 

1µ) 

CD45 

3µl 

CD27 

1µl 

CD25 

1µl 

CD3 

1µl 

CD196 

1µl 

CD127 

1µl 

CD45RO 

1µl 

HLA-DR 

5µl 

CD8 

1µl 
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Supplement Table 2. Overview of the 6 staining tubes to dedicate B cell and its subsets. (Tube7, served as blank control; Tube8-11, served as FMO 

control; --, no antibody was added; *, Intracellular antibody). Tube 7, had no antibodies. Tube 8, included all the antibodies except antibody CD5, CD10, CD14; 

Tube 9, included all the antibodies except antibody CD24, CD20 and antibody IgM; Tube 10, included all the antibodies except antibody CD38 and antibody 

IgD; Tube 11, included all the antibodies except antibody CD27; Tube 12 was the sample.  

Tube Antibody 

Tube 7  --  --  --  --  --  --  --  --  --  --  --  -- 

Tube 8  -- IgM CD38 CD45 CD27 CD19 CD3  -- CD24 IgD  -- CD20* 

Tube 9 CD5  -- CD38 CD45 CD27 CD19 CD3 CD10  -- IgD CD1d  -- 

Tube 10 CD5 IgM  -- CD45 CD27 CD19 CD3 CD10 CD24  -- CD1d CD20* 

Tube 11 CD5 IgM CD38 CD45  -- CD19 CD3 CD10 CD24 IgD CD1d CD20* 

Tube 12 

Amount 

CD5 

2µl 

IgM 

5µl 

CD38 

2µl 

CD45 

3µl 

CD27 

2µl 

CD19 

5µl 

CD3 

2µl 

CD10 

5µl 

CD24 

2µl 

IgD 

2µl 

CD1d 

2µl 

CD20* 

2µl 

 

 

 



 

 

 

1
0

3 

Supplement Table 3. Overview of the 6 staining tubes to dedicate monocytes, neutrophils, DC, MDSC, NK and NKT cells. (Tube13, served as blank 

control; Tube14-17, served as FMO control; --, no antibody was added; *, intracellular antibody). Tube 13, had no antibodies. Tube 14, included all the antibodies 

except antibody CD69, CD68, CD16, CD11c and CD66b; Tube 15, included all the antibodies except antibody HLA-DR, CD15 and CD96; Tube 16, included all 

the antibodies except antibody CD14, CD11b; Tube 17, included all the antibodies except antibody CD33; Tube 18, was the sample.  

Tube Antibody 

Tube 13  --  --  --  --  --  --  --  --  --  --  --  --  --  -- 

Tube 14  --  -- HLA-DR CD14 CD45 CD33  -- CD3  -- CD15 CD11b  -- CD56 CD8 

Tube 15 CD69 CD68*  -- CD14 CD45 CD33 CD16 CD3 CD11c  -- CD11b CD66b  -- CD8 

Tube 16 CD69 CD68* HLA-DR  -- CD45 CD33 CD16 CD3 CD11c CD15  -- CD66b CD56 CD8 

Tube 17 CD69 CD68* HLA-DR CD14 CD45  -- CD16 CD3 CD11c CD15 CD11b CD66b CD56 CD8 

Tube 18 

 Amount 

CD69 

5µl 

CD68* 

2µl 

HLA-DR 

3µl 

CD14 

4µl 

CD45 

3µl 

CD33 

2µl 

CD16 

4µl 

CD3 

2µl 

CD11c 

5µl 

CD15 

2µl 

CD11b 

2µl 

CD66b 

2µl 

CD56 

5µl 

CD8 

(2µl) 
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Supplement Table 4. Overview of the 4 staining tubes to dedicate IFN-γ. (Tube 19, served as blank control; Tube 20, served as FMO control; --, no antibody 

was added; *, intracellular antibody; Tube 22 were added with non-stimulated cell group, while all other tubes were added with stimulated cell group). Tube 19, 

had no antibodies; Tube 20, included all the antibodies except antibody IFN-γ; Tube 21, included all the antibodies; Tube 22, was the sample.  

Tube Antibody 

Tube 19 -- -- -- -- -- 

Tube 20 CD4 CD45 CD3 -- CD8 

Tube 21 CD4 CD45 CD3 IFN-γ* CD8 

Tube 22 CD4 CD45 CD3 IFN-γ* CD8 
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Supplement Table 5: Statistical calculations for all detected subsets between HD and HCC patients. Abbreviations: aT cells: Activated T cells; aTregs: 

Activated Tregs; Bregs: Regulatory B cells; cmT cells: Central memory T cells; CTL: Cytotoxic T cells; cs-memory B cells: Class-switched memory B cells; DC: 

Dendritic cells; eT cells: Effector T cells; emT cells: Effector memory T cells; G-MDSC: Granulocyte-like MDSC; pro-B: Progenitor B cells; pre-B: Precursor B 

cells; MDSC: Myeloid-derived suppressor cells; M-MDSC: Monocyte-like MDSC; mTregs: Memory Tregs; maTregs: Memory-activated Tregs; nT cells: Naïve T 

cells; nTregs: Naive Tregs; NK: Natural killer; NKT: Natural killer T; Tregs: Regulatory T cells; Th: Helper T cells; Th1: Type 1 helper T cells; Th2: Type 2 helper 

T cells; Th17: Type 17 helper T cells. 

Cell Type HD HCC p 

(Mean ± SD, Number) (Mean ± SD, Number) value 

Neutrophils, % of Leukocytes 55.79±6.83, n=10 64.23±21.26, n=10 0.25  

Monocytes, % of Leukocytes 5.41±1.77, n=10 4.36±2.35, n=10 0.28  

Macrophages, % of Leukocytes 0.84±0.47, n=10 0.32±0.24, n=10 0.01  

DC, % of Leukocytes 0.39±0.24, n=10 0.12±0.14, n=10 0.01  
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MDSC, % of Leukocytes 0.56±0.44, n=10 2.01±2.02, n=10 0.04  

G-MDSC, % of MDSC 40±23.43, n=10 28±25.75, n=10 0.29  

M-MDSC, % of MDSC 35.26±24.52, n=10 46.9±29.47, n=10 0.35  

NK cells, % of Leukocytes 3.42±1.64, n=10 1.94±1.86, n=10 0.08  

NKT cells, % of Leukocytes 0.24±0.27, n=10 0.06±0.04, n=10 <0.001 

B cells, % of Leukocytes 2.61±0.82, n=10 1.9±1.49, n=10 0.2  

ns-memory B cells, %of B cells 8.44±5.06, n=10 3.59±4.03, n=10 0.01 

Naïve B cells, % of B cells 61.67±23.6, n=10 50.2±28.59, n=10 0.34  

cs-memory B cells, % of B cells 8.25±7.73, n=10 5.28±4.02, n=10 0.29  

Plasma cells, % of B cells 4.46±4.82, n=10 2.06±2.72, n=10 0.14  

Plasmablasts, % of B cells 0.03±0.06, n=10 0.2±0.35, n=10 0.11  
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Transitional B cells, % of B cells 28.46±22.98, n=10 11.4±13.76, n=10 0.06  

Bregs-2, % of B cells 1.65±1.57, n=10 0.32±0.81, n=10 0.01 

Pro B cells, % of B cells 7.35±8.49, n=10 2.06±2.36, n=10 0.07  

Pre B cells, % of B cells 2.86±2.94, n=10 1.38±2.26, n=10 0.23  

Memory B cells, % of B cells 31.57±28.34, n=10 11.6±8.53, n=10 <0.05 

Bregs-1, % of B cells 0±0, n=10 0±0, n=10 0.33  

T cells, % of Leukocytes 30.93±5.14, n=10 19.15±12.55, n=10 0.01  

Th, % of T cells  67.76±6.66, n=10 66.75±18.22, n=10 0.87  

Th17, % of Th  15.68±9.83, n=10 18.07±11.18, n=10 0.62  

Th1, % of Th  54.3±16.44, n=10 48.61±17.07, n=10 0.46  

Th2, % of Th 13.08±7.71, n=10 13.14±8.19, n=10 0.99  
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emTh, % of Th 34.54±13.48, n=10 55.92±14.77, n=10 <0.01  

cmTh, % of Th 21.85±9.94, n=10 10.45±7.38, n=10 0.01  

eTh, % of Th 16.62±14.93, n=10 24.28±17.04, n=10 0.3  

nTh, % of Th 26.99±13.35, n=10 9.35±9.62, n=10 <0.01  

aTh, % of Th 0.75±0.57, n=10 1.21±0.61, n=10 0.1  

CTL, % of T cells 25.59±6.8, n=10 27.83±17.06, n=10 0.7  

emCTL, % of CTL 38.5±17.3, n=10 34.78±14.48, n=10 0.61  

cmCTL, % of CTL 11.05±4.8, n=10 7.85±10.98, n=10 0.41  

eCTL, % of CTL 33.4±13.64, n=10 42.9±27.54, n=10 0.34  

nCTL, % of CTL 17.06±14.11, n=10 14.46±18.22, n=10 0.73  

aCTL, % of CTL 1.73±1.18, n=10 4.4±4.19, n=10 0.07  
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Tregs, % of Th 6.49±2.11, n=10 10.2±4.8, n=10 0.04  

mTregs, % of Tregs  59.36±6.56, n=10 64.45±11.6, n=10 0.24  

maTregs, % of Tregs 14.53±7.39, n=10 14.36±8.5, n=10 0.96  

nTregs, % of Tregs 25.82±4.9, n=10 20.98±12.08, n=10 0.26  

aTregs, % of Tregs 0.19±0.18, n=10 0.22±0.18, n=10 0.76  

Th/CTL 2.92±1.19, n=10 3.91±3.31, n=10 0.38 

Th1/Th2 8.26±9.61, n=10 7.58±8.74, n=10 0.87  

Th1/Th17 6.48±7.51, n=10 4.7±4.95, n=10 0.54  

neutrophils/lymphocytes 1.55±0.58, n=10 6.51±8.14, n=10 0.07  
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Supplement Table 6: Statistical calculations for all detected subsets between PB and tumor tissues of HCC patients. Abbreviations: aT cells: Activated 

T cells; aTregs: Activated Tregs; Bregs: Regulatory B cells; cmT cells: Central memory T cells; CTL: Cytotoxic T cells; cs-memory B cells: Class-switched 

memory B cells; DC: Dendritic cells; eT cells: Effector T cells; emT cells: Effector memory T cells; G-MDSC: Granulocyte-like MDSC; pro-B: Progenitor B cells; 

pre-B: Precursor B cells; MDSC: Myeloid-derived suppressor cells; M-MDSC: Monocyte-like MDSC; mTregs: Memory Tregs; maTregs: Memory-activated Tregs; 

nT cells: Naïve T cells; nTregs: Naive Tregs; NK: Natural killer; NKT: Natural killer T; Tregs: Regulatory T cells; Th: Helper T cells; Th1: Type 1 helper T cells; 

Th2: Type 2 helper T cells; Th17: Type 17 helper T cells. 

Cell Type Blood Tumor p 

( Mean ± SD, Number) (Mean ± SD, Number) value 

Neutrophils, % of Leukocytes 55.92±22.52, n=5 0.85±0.56, n=5 0.01  

Monocytes, % of Leukocytes 5.12±2.64, n=5 1.97±1.38, n=5 0.03  

Macrophages, % of Leukocytes 0.41±0.29, n=5 0.31±0.18, n=5 0.27  

DC, % of Leukocytes 0.16±0.19, n=5 0.14±0.09, n=5 0.84  
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MDSC, % of Leukocytes 2.38±2.82, n=5 1.83±1.94, n=5 0.76  

G-MDSC, % of MDSC 29.34±26.11, n=5 1.68±1.69, n=5 0.08  

M-MDSC, % of MDSC 44.68±27.91, n=5 4.468±5.96, n=5 0.03 

NK cells, % of Leukocytes 2.3±2.27, n=5 2.31±2.61, n=5 0.99  

NKT cells, % of Leukocytes 0.06±0.03, n=5 8.13±11.52, n=5 0.19  

B cells, % of Leukocytes 2.5±1.59, n=5 2.31±2.03, n=5 0.87  

ns-memory B cells, %of B cells 2.94±2.27, n=5 1.01±1.13, n=5 0.26  

Naïve B cells, % of B cells 51.41±29.13, n=5 57.83±20.51, n=5 0.73  

cs-memory B cells, % of B cells 6.33±5.14, n=5 1.31±1.55, n=5 0.15  

Plasma cells, % of B cells 1.58±1.82, n=5 0.15±0.34, n=5 0.18  

Plasmablasts, % of B cells 0.30±0.48, n=5 0±0, n=5 0.23  
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Transitional B cells, % of B cells 14.03±17.62, n=5 6.6±7.07, n=5 0.46  

Bregs-2, % of B cells 0.58±1.15, n=5 0.38±0.35, n=5 0.69 

Pro B cells, % of B cells 2.73±2.91, n=5 0.46±0.84, n=5 0.2  

Pre B cells, % of B cells 2.54±2.85, n=5 0.46±0.84, n=5 0.24  

Memory B cells, % of B cells 12.72±7.81, n=5 5.58±2.15, n=5 0.16  

Bregs-1, % of B cells 0±0, n=5 0±0, n=5 

 

T cells, % of Leukocytes 22.84±12.15, n=5 58.17±15.95, n=5 0.02  

Th, % of T cells  73.82±10.43, n=5 42.61±14.99, n=5 ＜0.01  

Th17, % of Th  19.89±14.38, n=5 3.40±4.69, n=5 0.06  

Th1, % of Th  48.23±21.05, n=5 77±22.1, n=5 0.04  

Th2, % of Th 12.03±6.36, n=5 3.54±0.71, n=5 ＜0.05  
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emTh, % of Th 57.28±16.18, n=5 78.43±10.67, n=5 0.04  

cmTh, % of Th 8.41±4.82, n=5 

.. 

.., n=5 

0.09±0.12, n=5 0.02  

eTh, % of Th 28.13±22.56, n=5 21.15±11, n=5 0.47  

nTh, % of Th 6.18±4.91, n=5 0.33±0.45, n=5 0.06  

aTh, % of Th 1.05±0.48, n=5 2.71±3.49, n=5 0.38  

CTL, % of T cells 20.35±7.61, n=5 21.18±5.04, n=5 0.74  

emCTL, % of CTL 38.9±12.78, n=5 38.24±21.96, n=5 0.95  

cmCTL, % of CTL 11.33±14.92, n=5 0.05±0.05, n=5 0.17  

eCTL, % of CTL 43.82±24.18, n=5 61.62±21.84, n=5 0.16  

nCTL, % of CTL 5.95±4.72, n=5 0.09±0.11, n=5 0.05  

aCTL, % of CTL 4.19±3.97, n=5 3.44±7.16, n=5 0.87  
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Tregs, % of Th 9.06±5.22, n=5 7.02±8.93, n=5 0.69  

mTregs, % of Tregs  62.53±10.71, n=5 33.25±20.1, n=5 0.02  

maTregs, % of Tregs 16.08±9.18, n=5 18.74±21.73, n=5 0.73  

nTregs, % of Tregs 21.17±12.93, n=5 23.89±27.76, n=5 0.81  

aTregs, % of Tregs 0.21±0.083, n=5 4.12±6.13, n=5 0.23  

Th/CTL 4.26±2.17, n=5 2.19±1.14, n=5 0.02  

Th1/Th2 8.18±10.98, n=5 21.54±3.4, n=5 0.04  

Th1/Th17 5.27±6.71, n=5 139.02±120.43, n=5 0.06  

neutrophils/lymphocyte 2.96±2.52, n=5 0.01±0.01, n=5 0.06  
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Supplement Table 7: Statistical calculations for IFN-γ between unstimulated group and stimulated group from tumor tissues of HCC patients. 

Abbreviations: IFN-γ: interferon-γ. 

Cell type Unstimulated group Stimulated group p 

(Mean ± SD, Number) (Mean ± SD, Number) value 

CD45- IFN-γ+, % of CD45- 0.17±0.14, n=5 0.25±0.18, n=5 0.11 

CD45+ IFN-γ+, % of CD45+ 0.49±0.29, n=5 13.75±7.7, n=5 0.02 

CD3+ IFN-γ+ ,% of CD3+ 0. 26±0.16, n=5 13.76±8.17, n=5 0.02 

CD8+ IFN-γ+, % of CD8+ 2.03±2.94, n=5 42.93±25.07, n=5 0.02 

CD4+ IFN-γ+, % of CD4+ 0.75±0.12, n=5 18.9±10.6, n=5 0.02 
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Supplement Figure 1: Dot plots illustrating Th1, Th2 and other subsets of T cells in HD and 

HCC patients. (Unpaired t test). 
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Supplement Figure 2: Dot plots illustrating CD8+ T cells and its subsets, and other subsets of T 

cells in blood and HCC tissues (Paired t test). 
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