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SUMMARY 

Transcription is the first step on the complex way of converting genetic information into proteins. In recent 

years, various studies have contributed to a vast knowledge about eukaryotic transcription – on both the 

global nuclear and the molecular level. However, knowledge pertaining to an intermediate level of 

transcriptional organization, that is how individual expressed genes are spatially organized, is surprisingly 

limited. The only information about arrangements of transcribed chromosomal regions derives from studies 

of exceptional types of chromosomes, namely lampbrush chromosomes – meiotic bivalents in diplotene 

oocytes of most of vertebrates – or polytene chromosomes in salivary glands of Diptera larvae. Transcription 

units of these chromosomes – due to their prominent length and high expression level – form microscopically 

resolvable loops densely decorated by nascent RNA transcripts.  

In striking contrast, expressed genes in interphase or post-mitotic somatic nuclei in mammals, as revealed by 

Fluorescence in situ Hybridization (FISH), do not form loops but exhibit a focus-like shape. This discrepancy 

can be attributed to (i) the limitation of light microscopy not allowing to resolve structures of short expressed 

genes and/or to (ii) a relatively low expression level of previously studied long genes. 

Therefore, for this study, we first selected long highly expressed genes from the human GTEx consortium 

database, and confirmed the expression level for the orthologous mouse genes by RNA-seq. We selected five 

genes: thyroglobulin (Tg) expressed in thyroid secretory cells, titin (Ttn) and nebulin (Neb), both expressed in 

striated muscles and cultured myotubes, as well as myosin heavy chain (Myh11) and caldesmon (Cald1), both 

expressed in smooth muscles. Using RNA and DNA FISH, we visualized these genes and found that, upon 

expression, they form huge loops. These loops are characterized by ongoing transcription and structurally 

highly similar to the loops formed by transcription units of lampbrush and polytene chromosomes. Thus, we 

termed these loops “transcription loops” (TLs).  

We further confirmed transcription-dependent dynamics of TL formation by experimentally manipulating 

transcription levels of the Ttn gene, using inhibitory drugs and a CRISPR/Cas9-based approach. A 

combination of FISH and Hi-C analysis allowed us to show that TLs dynamically shape harboring 

chromosomal loci: TLs protrude into the nuclear space, separate gene flanking regions and even modify the 

structure of their corresponding chromosome territories. These features of TLs suggested that they are 

intrinsically stiff structures. Based on our observations, we hypothesized that TL stiffness is caused by the 

dense decoration of a highly expressed gene with ribonucleoprotein particles, which are formed 

concomitantly with transcription progression. Three lines of evidence, obtained by (i) differential labeling of 

nascent RNA along a gene body, (ii) electron microscopy of myotube nuclei and (iii) polymer modeling of Tg 

TLs, supported our hypothesis. 

Taken together, our results indicate that TL formation is a universal principle of eukaryotic transcription. 

Our work sets the ground for reconsiderations of previous assumptions on the spatial organization of 

transcribed genes in eukaryotes.
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ZUSAMMENFASSUNG 

Transkription ist der erste Schritt auf dem komplexen Weg von der genetischen Information zum fertigen 

Protein. Viele Studien – sowohl den Zellkern im Ganzen betreffend als auch auf molekularer Ebene – haben 

zu einem besseren Verständnis der eukaryotischen Transkription beigetragen. Erstaunlicherweise ist jedoch 

das Wissen über die Zwischenebene der transkriptionellen Organisation, nämlich die räumliche Struktur 

einzelner exprimierter Gene, sehr begrenzt. Die einzigen Informationen über die räumliche Organisation 

exprimierter Loci finden sich in Studien, die an zwei Arten von außergewöhnlichen Chromosomen 

durchgeführt wurden: zum einen an sogenannten “lampbrush” Chromosomen, meiotischen Bivalenten in 

diplotenen Oozyten der meisten Wirbeltiere, und zum anderen an polytenen Chromosomen in den 

Speicheldrüsen von Larven der Ordnung Diptera. Aufgrund ihrer enormen Länge und ihres hohen 

Expressionslevels, bilden Transkriptionseinheiten in diesen Chromosomen mikroskopisch auflösbare 

Schleifen, die dicht mit RNA bepackt sind. 

Im deutlichen Gegensatz dazu bilden exprimierte Gene in post-mitotischen Säugerzellkernen oder in 

Säugerzellkernen, die sich in der Interphase befinden, keine Schleifen, sondern kleine Foci. Dieser 

Unterschied lässt sich auf zwei Arten erklären: (i) durch die lichtmikroskopische Auflösungsgrenze, welche 

die Auflösung der Struktur kurzer exprimierter Gene verhindert und/oder (ii) durch die verhältnismäßig 

niedrige Expression von langen untersuchten Genen. 

Folglich haben wir für unsere Studie zunächst lange und hoch exprimierte Gene aus der humanen GTEx 

Datenbank ausgewählt und die Expressionslevel der orthologen Gene in den entsprechenden Mausgeweben 

mittels RNA-seq bestätigt. Die Auswahl umfasste fünf Gene: Thyroglobulin (Tg), das in sekretorischen Zellen 

der Schilddrüse exprimiert wird, Titin (Ttn) und Nebulin (Neb), die beide spezifisch in Skelettmuskelzellen 

und Myotubenkulturen exprimiert werden, sowie eine Myosinkomponente (Myh11) und Caldesmon (Cald1), 

die beide in Muskelzellen der glatten Muskulatur exprimiert werden. Mittels DNA- und RNA-Fluoreszenz in 

situ Hybridisierung (FISH), machten wir diese Gene sichtbar und zeigten, dass sie im aktiven Zustand große 

Schleifen bilden. Diese Schleifen sind durch laufende Transkription gekennzeichnet und strukturell sehr 

ähnlich zu den Schleifen, welche man in lampbrush Chromosomen und polytenen Chromosomen findet. 

Folglich bezeichneten wir diese Schleifen als Transkriptionsschleifen („Transcription loops”). 

Des Weiteren bestätigten wir die transkriptionsabhängige Dynamik der Schleifenbildung, indem wir die 

Expressionsrate des Ttn Gens mit Transkriptionsinhibitoren und mit einem CRISPR/Cas9 basierten Ansatz 

experimentell beeinflussten. Mit einer Kombination aus FISH und Hi-C konnten wir zeigen, dass 

Transkriptionsschleifen ihre direkte chromosomale Umgebung dynamisch formen: Transkriptionsschleifen 

ragen ins Nucleoplasma, führen zur Trennung der unmittelbar an das betreffende Gen angrenzenden 

Regionen und verändern sogar die Struktur des jeweiligen Chromosomenterritoriums. Diese Eigenschaften 

der Transkriptionsschleifen legten nahe, dass es sich bei ihnen um Strukturen mit inhärenter Steifheit handelt. 

Auf Grundlage dieser Beobachtungen vermuteten wir, dass die Steifheit durch die dichte Bepackung eines 

exprimierten Gens mit Ribonucleoproteinkomplexen, die im Zuge der Transkription entstehen, verursacht 

wird. Drei Beobachtungen, basierend auf (i) der Visualisierung von RNA an bestimmten Teilen eines Gens,  
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(ii) elektronenmikroskopischen Untersuchungen von Myotubezellkernen und (iii) Polymermodellen der Tg 

Transkriptionsschleife, unterstützen unsere Hypothese. 

Zusammenfassend deuten unsere Ergebnisse darauf hin, dass die Bildung von Transkriptionsschleifen ein 

universelles Prinzip der eukarotischen Transkription darstellt. Unsere Arbeit legt die Grundlage für eine 

Neubetrachtung bestehender Annahmen bezüglich der strukturellen Organisation transkribierter 

eukaryotischer Gene. 
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1 INTRODUCTION 
 
1.1 HIERARCHICAL GENOME ORGANIZATION   
1.1.1 CHROMATIN ORGANIZATION 

In eukaryotic cells, the genome is separated from the cytoplasm and confined to the nucleus. To achieve this, 

the genomic DNA has to be fairly tightly packed. Therefore, it is complexed with various proteins and RNA 

into a structure referred to as chromatin (Kornberg, 1974). The basic structural unit of chromatin is a 

nucleosome, consisting of a histone octamer and 147 base pairs (bp) of DNA wrapped around it (Luger et 

al., 1997). The canonical histone octamer comprises two copies of each of the histones H2A, H2B, H3 and 

H4 (Luger et al., 1997). Nucleosomes measure 11 nm in diameter and are arranged into a linear array spaced 

by a linker region of 10 to 50 bp, resembling a “beads on a string” structure (Baldi et al., 2020; Olins and 

Olins, 1974; Olins and Olins, 2003). The linker region provides a binding platform for histone H1 or other 

non-histone proteins.  

During development, throughout the cell cycle or upon the impact of a stimulus, the chromatin environment 

undergoes dramatic changes. These changes are not based on alterations in the underlying DNA sequence 

but on marks set on chromatin and represent the epigenetic (epí: Greek for above, on top of) level of chromatin 

regulation (Waddington, 1942). The best studied epigenetic marks include DNA methylation, post-

translational modifications (PTMs) of histone tails, incorporation of histone variants and non-coding RNAs 

(ncRNA). All of these marks regulate transcriptional output and shape cellular identity by altering chromatin 

accessibility or serving as interaction platform for additional regulatory factors. In recent years, evidence 

emerged that not only the described factors but also the three dimensional arrangement of chromatin within 

the nucleus itself strongly influences transcriptional output and therefore controls genome function (see 

below). 

 

1.1.2 SPATIAL SEGREGATION OF EU- AND HETEROCHROMATIN 

The tight orchestration of spatio-temporal gene expression patterns is crucial for the correct development of 

an organism (Reik, 2007; Zheng and Xie, 2019). One of the main requirements to achieve this orchestration 

is the spatial separation of active and inactive chromatin (Kosak et al., 2007; Misteli, 2007). Genes that are 

actively transcribed reside in the so-called euchromatin (EC) in the nuclear interior whereas silent genes are 

sequestered to heterochromatin (HC) at the nuclear periphery (Solovei et al., 2016; van Steensel and Belmont, 

2017) (Figure 1.1 A). Eu- and heterochromatin not only differ in the level of gene activity but also in their 

sequence composition and associated chromatin binding factors as well as epigenetic marks (Bannister and 

Kouzarides, 2011; Bernardi, 1989; Jenuwein and Allis, 2001; Korenberg and Rykowski, 1988). Euchromatin 

is decondensed (“open”) and accessible to binding of regulatory factors. It is generally characterized by a high 
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GC content and the presence of active histone modifications such as H3K4me3 and H3K9ac at promoters 

and H3K36me3 at gene bodies (Bannister et al., 2005; Barski et al., 2007; Liang et al., 2004). Heterochromatin,  

in contrast, is highly condensed (“closed”), rather inaccessible for binding factors, and is defined by a low 

GC content as well as repressive histone modifications. HC comprises two different forms – facultative HC 

(fHC) and constitutive HC (cHC) – that differ in their transcriptional activity as well as epigenetic marks. 

fHC contains tissue-specific and differentially expressed genes that are rapidly up- or downregulated at a 

certain developmental stage. fHC is further marked by the repressive histone modifications H3K27me3, 

H3K9me2, and H4K20me1 (Peters et al., 2003). The inactive X chromosome ensuring dosage compensation 

in mammalian female cells serves as an example of facultative heterochromatin: it is characterized by 

H3K27me3 marks and association with polycomb repressive complexes (PRCs) (Dossin et al., 2020; Trojer 

and Reinberg, 2007).  

cHC predominantly consists of highly repeated sequences (satellite DNA) accumulated mostly in sub-

centromeric and sub-telomeric regions and remains condensed throughout development (Grewal and Jia, 

2007). It is characterized by the repressive histone marks H3K27me1, H4K20me3, and H3K9me3 (Peters et 

al., 2003; Schotta et al., 2004). H3K9me3 serves as interaction platform for heterochromatin protein 1 (HP1), 

a family of three proteins crucial for heterochromatin formation via a positive feedback loop propagating the 

H3K9me3 mark along repressed chromatin by interaction with the H3K9 methyltransferase Suv39 (Bannister 

et al., 2001; Maison and Almouzni, 2004). In mouse cell nuclei, the cHC at pericentromeric regions of 

acrocentric chromosomes clusters to form dense spherical structures called chromocenters (CCs) intensely 

stained by 4′,6-diamidino-2-phenylindole (DAPI) (Guenatri et al., 2004) (Figure 1.1 A).  

Genome wide chromosome conformation capture (Hi-C) analysis of mammalian genomes showed that 

chromatin can be divided into specific multi mega base pair (Mb) domains, termed A and B compartments. 

A and B compartments correspond to EC or HC, respectively (Lieberman-Aiden et al., 2009; Zhang et al., 

2012) (Figure 1.1 B). Gene-rich, transcriptionally active A compartments cluster preferentially with other A 

compartments and gene-poor, transcriptionally silent B compartments cluster preferentially with B 

compartments, but do not mix (Gibcus and Dekker, 2013).  

An exception from the conventional nuclear architecture with EC residing in the nuclear interior and HC on 

the nuclear periphery was found in the nuclei of rod photoreceptor cells of nocturnal mammals. In these 

nuclei, the conventional genome architecture is inverted and a dense heterochromatic nuclear core is 

surrounded by peripheral euchromatin. This inversion facilitates the vision of nocturnal mammals by 

channeling the light through the dense nuclear cores and thereby reducing light scattering in the retina 

(Solovei et al., 2009). 

Polymer modeling approaches in combination with Hi-C and Fluorescence in situ Hybridization (FISH) 

revealed the driving force for spatial separation of eu- and heterochromatin in mammalian nuclei. 

Interestingly, euchromatic interactions are dispensable for the formation of chromatin compartments, 

whereas heterochromatic interactions are essential for this formation in both, conventional and inverted 
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nuclei. For building the conventional chromatin distribution, tethering of heterochromatin to the lamina 

needs to be established, suggesting that without such tether all nuclei would be inverted (Falk et al., 2019). 

 

 

 

 
 
FIGURE 1.1: Hierarchical genome organization. (A) Active euchromatin (light gray) in the nuclear center is spatially separated 

from inactive heterochromatin (medium gray) at the nuclear periphery as well as around nucleoli and chromocenters (dark gray). 

(B) Each chromosome (purple, dark blue, light blue, magenta, and turquoise) occupies a distinct chromosome territory (CT). 

Chromosome folding within their territories leads to gene-rich, active regions residing in the euchromatic A compartment and 

gene-poor, inactive regions residing in the heterochromatic B compartment. Depending on the transcriptional status of a 

chromosomal region, the region shifts to the corresponding compartment. (C) Topologically associating domains (TADs) define 

regions of high long-range interaction frequencies (e.g. promoter enhancer loops) and are confined by boundaries characterized 

by architectural proteins such as cohesin and CTCF. TSS: transcription start site; CTCF: CCCTC-binding factor. 
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1.1.3 CHROMOSOME TERRITORIES (CTS) 

Towards the end of the 20th century, researchers extensively investigated the spatial intra-nuclear distribution 

of chromosomes. Chromosome painting (Lichter et al., 1988; Pinkel et al., 1988) revealed that each eukaryotic 

chromosome occupies a distinct area in the nucleus, a so-called chromosome territory (CT) (Cremer and 

Cremer, 2010) (Figure 1.1 B). This finding was later confirmed by Hi-C studies (Lieberman-Aiden et al., 2009; 

Zhang et al., 2012). Importantly, CTs persist during interphase, but their spatial arrangement may vary from 

cell to cell in a population as well as during development or in different cell types (Mayer et al., 2005). 

Nevertheless, the distribution of chromosomes within the nucleus is not random. This holds true for all 

human chromosomes, with gene-poor late replicating chromosomes, such as HSA18 (Homo sapiens 

chromosome 18), localizing at the nuclear periphery and gene-rich, early replicating chromosomes, like 

HSA19 (Homo sapiens chromosome 19), residing in the nuclear interior (Boyle et al., 2001; Cremer et al., 2001; 

Croft et al., 1999; Habermann et al., 2001). The same principle of chromosome arrangement is observed in 

various species, including birds (Habermann et al., 2001; Tanabe et al., 2002), rodents (Mayer et al., 2005; 

Neusser et al., 2007), and cattle (Koehler et al., 2009). Not only CTs themselves, but also their sub-regions, 

follow the rule of radial distribution: gene-rich EC regions localize towards the nuclear interior, whereas gene-

poor HC regions localize towards the nuclear periphery (Goetze et al., 2007; Kupper et al., 2007). Therefore, 

since EC and HC regions alternate along chromosomes, chromosomes fold between nuclear periphery and 

nuclear interior. Such folding is facilitated by so-called lamina-associated domains (LADs). These are regions 

that are bound to the nuclear lamina and alternate with so called inter-LADs, regions rarely contacting the 

lamina (Guelen et al., 2008). LADs are a major constituent of heterochromatic B compartments as identified 

by DNA adenine methyltransferase identification (DamID) (Guelen et al., 2008; van Steensel and Belmont, 

2017). 

Accumulating evidence suggests that chromosomal territoriality is dispensable for genome function within 

the nucleus and rather represents a consequence of mitotic division. Even though in mitosis partitioning into 

chromosomes is crucial to ensure proper genome division, chromosomes are microscopically 

indistinguishable thereafter (Solovei et al., 2016). Nevertheless, researchers still refer to CTs as a basic 

structural element of the nucleus. 

Chromosomes are largely immobile during interphase, however, their sub-regions can be highly dynamic. 

Short-range movements (0.5 – 1 µm) occur due to the inert constrained diffusion of chromatin, but also 

larger movements on the scale of a few microns have been observed, mostly linked to gene activation or 

silencing and taking place rather over cell division than during interphase (Chuang et al., 2006; Lanctot et al., 

2007; Soutoglou and Misteli, 2007). Genes move within their respective CT depending on the transcriptional 

state, with expressed genes moving towards the borders of a territory and even looping out of it (Shah et al., 

2018; Volpi et al., 2000). 
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1.1.4 TOPOLOGICALLY ASSOCIATING DOMAINS (TADS) 

Topologically associating domains (TADs) are formed by loci within the same compartment that are engaged 

in long-range contacts (Dixon et al., 2012; Hou et al., 2012; Sexton et al., 2012) (Figure 1.1 C) and include 

chromatin with similar expression level and replication timing. TADs were identified in humans (Dixon et 

al., 2012), mice (Dixon et al., 2012; Nora et al., 2012), and Drosophila (Sexton et al., 2012) by mapping 

chromatin interaction frequencies via Hi-C. In mice, the size of these domains ranges from tens of kilo base 

pairs (kb) to several mega base pairs (Mb), with the median being 880 kb (Dixon et al., 2012).  

Genes within the same TAD are mostly co-regulated during differentiation and development (Nora et al., 

2012) and the borders of TADs correspond to those of replication domains (Pope et al., 2014). Perturbing 

TAD insulation leads to severe misregulation of gene expression due to contacts of gene promoters with 

“false” regulatory elements resulting in developmental defects and cancer (Flavahan et al., 2016; Hnisz et al., 

2016; Lupianez et al., 2015).  

TAD formation has been recently attributed to chromatin loop extrusion by the cohesin complex (Nuebler 

et al., 2018). Besides the cohesion complex, TAD boundaries are predominantly associated with the CCCTC-

binding factor CTCF (Phillips-Cremins et al., 2013; Vietri Rudan et al., 2015) (Figure 1.1 C). Notably, the 

orientation in which a CTCF site is present in the genome influences the formation of TAD boundaries – 

with TADs mostly forming between convergent CTCF sites (de Wit et al., 2015). A change in orientation or 

complete removal of CTCF sites leads to a TAD’s disappearance, shifting or fusion (Guo et al., 2015; 

Lupianez et al., 2015). 

 

1.1.5 ENHANCER-PROMOTER LOOPS 

The regulation of mammalian transcription on a small scale requires the precise interplay of various factors, 

including transcription factors (TFs), the histone code and Pol II C-terminal domain (CTD) code, DNA 

modifications, and non-coding RNAs. To transcribe a gene in the correct spatio-temporal manner, crosstalk 

between the gene’s promoter and its non-coding regulatory elements is crucial. Depending on whether these 

elements interact intramolecularly (enhancers, silencers and insulators) or intermolecularly (transcription 

factors, lncRNA), they are referred to as cis- or trans-acting, respectively. One of the best-studied cis-regulatory 

elements are enhancers (Figure 1.1 C). Enhancers are short nucleotide sequences within the genome, which 

may be located a few kb to 1 Mb apart from their target promoter(s) and may reside in intra- or intergenic 

regions, including gene introns and exons (Birnbaum et al., 2012; Mifsud et al., 2015; Sanyal et al., 2012; 

Schoenfelder et al., 2015). These elements are characterized by histone modifications including H3K4me1, 

H3K27me3, H3K27ac, H3K36me3 and combinations thereof and thus influence the developmental state 

(Creyghton et al., 2010; Rada-Iglesias et al., 2011; Schoenfelder and Fraser, 2019; Zentner et al., 2011). The 

diverse locations and different features of the regions make it very difficult to map putative enhancers 

(Schoenfelder and Fraser, 2019). 
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To stimulate the expression of its target gene, an enhancer region is bound by TFs and co-factors (Calo and 

Wysocka, 2013) and thus increases the activity of a promoter that resides in close proximity. As accumulating 

evidence suggests, the contact between a promoter and an enhancer is achieved by the formation of 

promoter-enhancer loops that are regulated by the Mediator initiation core complex (Nolis et al., 2009; 

Tolhuis et al., 2002; Williamson et al., 2016). Therefore, especially chromosome conformation capture 

techniques (C-techniques) like 4C or capture Hi-C that enable the identification of interactions between one 

locus and many or all other loci, respectively, together with dedicated computational pipelines, have been 

proven useful in locating putative enhancers through identifying promoter loops (Ron et al., 2017).  

Enhancers vastly outnumber protein-coding genes as hundreds of thousands of putative enhancers have been 

mapped in the mouse genome (Andersson et al., 2014; Schoenfelder and Fraser, 2019; Shen et al., 2012). 

Therefore, the promoter of one gene is mostly influenced by more than one enhancer, augmenting the level 

of transcriptional regulation by additive enhancer action. However, the interaction of a promoter with an 

enhancer mainly occurs within TAD boundaries and transcription is correlated with local chromatin 

insulation (Bonev et al., 2017). 

Clusters of enhancers in conjunction with a bulk of bound transcription factors are called super-enhancers 

(SEs) (Pott and Lieb, 2015). These SEs are found throughout the genome and are linked to the rapid 

upregulation of developmental genes to ensure cell identity and the transcriptional control of genes with 

prominent roles in cell-type specific processes (e.g. pluripotency genes Oct4, Sox2, and Nanog in embryonic 

stem cells (ESCs)) (Whyte et al., 2013). Furthermore, SEs are involved in the regulation of oncogenes in 

cancer cells (Hnisz et al., 2013). Although exact mechanisms leading to the attraction between promoters and 

enhancers, as well as to the formation of super-enhancers, are not known, it was suggested that liquid-liquid 

phase separation driven by proteins binding these genomic regions may play a crucial role in these processes 

(see also section 1.2.4). 
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1.2 THE SPATIAL ORGANIZATION OF TRANSCRIPTION 
 

1.2.1 EARLY MICROSCOPIC VISUALIZATION OF TRANSCRIPTION 

In the 1950s and 60s, a series of studies fundamentally contributed to the view on the spatial organization of 

transcription. The most important ones were conducted on Miller spreads of chromatin from various types 

of nuclei, lampbrush chromosomes (LBCs) isolated from amphibian diplotene oocytes, and polytene 

chromosomes of Diptera. Due to their size of several tens of microns and their distinctive structures, these 

types of chromosomes are perfectly suited for microscopic studies. 

In 1969, Miller and Beatty invented an important method to visualize chromatin. This method, now 

commonly referred to as “Miller spreading” (Miller and Beatty, 1969a, b), is based on treating chromatin with 

very low ionic strength and alkaline pH to gently unfold it and preparing spreads on electron microscope 

(EM) grids. These spreads enabled researchers to visualize interphase chromatin and, in particular, observe 

transcription units with attached nascent RNA transcripts (Figure 1.2 A).  

LBCs are diplotene bivalents formed in the course of meiosis in the oocytes of most animals except mammals 

(Macgregor, 1993). On these chromosomes, transcription units are highly active to ensure sufficient protein 

synthesis during oogenesis and early embryogenesis. The high expression of these long transcription units, in 

most cases exceeding the length of one gene, leads to the formation of chromatin loops emanating laterally 

from the chromatid axis, thus causing the bivalents to appear as fluffy brushes (Callan, 1986) (Figure 1.2 B). 

Miller spreads of LBCs suggested that on highly transcribed genes, the chromatin thread is massively stretched 

and depleted of nucleosomes (Franke et al., 1976). 

Polytene (“multi-stranded”) chromosomes arise from successive chromatid duplications in the absence of 

cell division (“endoreplication”) and consist of thousands of homologous DNA strands tightly attached to 

each other (Bjork and Wieslander, 2015). They are found in the interphase nuclei of several fly tissues but 

especially prominent in larval salivary glands (Macgregor, 1993). As in LBCs, highly transcribed genes loop 

out from the chromosome axis, but since thousands of strands lie next to one another, they do not form 

single loops but several collateral loops called “puffs”, the biggest of them known as “Balbiani rings” 

(Daneholt, 1975) (Figure 1.2 C). In both LBCs and polytene chromosomes, the key features for the 

microscopic visualization of transcription are (i) the immense size of the chromosomes and their transcription 

units and (ii) the high expression level of the visualized genes. 
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FIGURE 1.2: Models for the early microscopic visualization of transcription. (A) Left: Miller spreads prepared from rRNA 

genes of a Pleurodeles oocyte show a flattened gene axis with nascent RNAs emerging from it. RNAs grow in size as transcription 

progresses (from left to right) and lead to the appearance of a “christmas-tree” like shape characteristic for this type of chromatin 

preparation. Adapted from (Scheer, 1987). Right: Schematic depiction of the gene axis (black line) on a Miller spread covered by 

elongating polymerases (gray) with attached nascent transcripts (blue). (B) Left: Phase contrast micrograph of a part of a 

lampbrush chromosome. The bivalent chromosome axes are covered by lateral loops formed by highly expressed transcription 

units. Adapted from (Macgregor, 2012). Right: Schematic depiction of transcription on lampbrush chromosomes. Transcription 

units are covered by polymerases (gray) that produce nascent RNA (blue). Increasing transcript length leads to the formation of 

an RNA gradient on the lateral loops. (C) Left: Polytene chromosome from a Chironomus salivary gland. Regions with increased 

transcription loop out from the chromosome axis and form so-called “puffs”. Especially single copy genes encoding the largest 

proteins in salivary gland cells are highly expressed and form so-called “Balbiani rings” (black arrowhead). Adapted from (Diez, 

1973). Right: Schematic depiction of transcription on Balbiani rings. Thousands of DNA strands lie next to one another as a result 

of endoreplication. Since the DNA strands are homologous, increased transcription (and therefore dense loading with polymerases 

(gray) and nascent transcripts (blue)) of certain genes accumulates within the same region in all strands and leads to looping out 

of these regions from the chromosome axis.  
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1.2.2 THE TRANSCRIPTION FACTORY MODEL AND NUCLEAR SPECKLES 

Even though knowledge about transcriptional fine regulation as well as the three-dimensional organization 

of the mammalian genome on a broad scale is largely comprehensive, the intermediate level of transcriptional 

organization is poorly understood. Based on the microscopic visualization of actively transcribed genes, 

elongating polymerases and nascent RNA transcripts, the existence of transcription factories has been 

proposed (Ghamari et al., 2013; Iborra et al., 1996; Jackson et al., 1993; Papantonis and Cook, 2013; Wansink 

et al., 1993). Transcription factories are distinct loci distributed throughout the nucleoplasm, at which 

hyperphosphorylated RNA polymerases are immobilized in groups (presumably by anchoring to a nuclear 

matrix). Upon transcription stimulation, genes approach these factories and are then reeled through the 

polymerases. Therefore, the extruding nascent RNAs are confined to a small volume, a single focus 

(Figure 1.3). 

 

 
FIGURE 1.3: Schematic depiction of a transcription factory. Genes to be transcribed are reeled through immobilized 

polymerases. Thereby, nascent mRNA is produced at small discrete spots. Co-regulated genes approach a transcription factory at 

the same time and are transcribed simultaneously. 

 
Supposedly, 8-30 RNA polymerases accumulate in a single transcription factory (Jackson et al., 1998; Martin 

and Pombo, 2003) with a diameter of about 75 nm on average, as determined by electron microscopy (Iborra 

et al., 1996). However, sizes may range from 40 to 200 nm depending on the associated factors (Eskiw and 

Fraser, 2011; Eskiw et al., 2008), linking the size of a factory to transcriptional activity, with many highly 

transcribed genes recruiting more polymerases (Rieder et al., 2012). The number of transcription foci per cell 

depends on the cell type and its differentiation state and varies between a few hundred and >1500 (Jackson 

et al., 1998; Osborne et al., 2004). Accumulation of genes in transcription factories might facilitate the quick 

and coordinated expression of co-regulated genes during differentiation or in response to cellular stimuli 

(Osborne et al., 2004). 

Foci with RNA Pol II and nascent RNA accumulation have been shown to localize with or in close proximity 

to domains formed by splicing factor SC35 (Jackson et al., 1993; Wansink et al., 1993), a major constituent 

of nuclear speckles, indicating that co-transcriptional splicing occurs directly at these sites. 
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This co-localization is especially prominent for highly transcribed genes found in close proximity to nuclear 

speckles (Chen et al., 2018b; Hu et al., 2009; Khanna et al., 2014; Shopland et al., 2003). Moreover, it was 

shown that co-regulated and co-transcribed genes associate rather with the same nuclear speckle than with 

the same Pol II accumulation (Brown et al., 2008), challenging the transcription factory hypothesis. 

 

1.2.3 TRANSCRIPTIONAL BURSTING 

Labeling nascent RNAs enables the visualization of transcription kinetics. The visualization of RNAs in vivo 

mostly relies on RNA binding proteins fused to a fluorescent protein. For instance, in the MS2-MCP system, 

an array of stem loops derived from the MS2 bacteriophage is incorporated into the RNA of interest and 

then detected by the phage derived MS2 coat protein (MCP) fused to a fluorescent protein (Bertrand et al., 

1998; Grunwald and Singer, 2010; Johansson et al., 1997; Larson et al., 2011; Peabody, 1993; Wu et al., 2016).  

Studies visualizing transcripts in prokaryotes (Cai et al., 2006; Golding et al., 2005), yeast (Tan and van 

Oudenaarden, 2010; Zenklusen et al., 2008) and other eukaryotes (Raj et al., 2006; Raj et al., 2010; Suter et 

al., 2011) have shown that transcription is a discontinuous process. Transcription occurs in so-called bursts, 

characterized by alternating active (ON) and inactive (OFF) states of a promoter (Chubb et al., 2006; Raj et 

al., 2006). Fluorescent experimental read-outs as described for the MS2/MCP system detect ON and OFF 

promoter states and enable to measure their frequency, amplitude and duration. 

Using this system to visualize HIV-1 RNA, polymerase complexes were shown to move along a transcribed 

gene in groups termed convoys. A Pol-II convoy consists of closely spaced polymerases, and – in case of 

HIV-1 – includes on average approx. 20 enzyme complexes (Tantale et al., 2016). Moreover, factors like 

transcription factor availability, DNA looping and the composition of the local chromatin environment 

regulate different aspects of transcriptional bursting (Nicolas et al., 2017). Perturbations of the transcriptional 

co-activator Mediator severely influence the formation of RNA Pol II convoys, highlighting its prominent 

role in transcriptional regulation. For instance, knock-down of the Mediator subunit MED11 led to a 

reduction of polymerases per convoy, an increase of the spacing between the polymerases, and a shorter 

overall promoter ON time (Tantale et al., 2016).  

 

1.2.4 PHASE SEPARATION 

Live cell super-resolution studies on the spatio-temporal organization of transcription foci revealed that they 

are transiently formed (Buckley and Lis, 2014; Cisse et al., 2013) and contain proteins with intrinsically 

disordered domains, such as the activation domains of TFs and the C-terminal domain (CTD) of RNA Pol II 

(Boehning et al., 2018; Chong et al., 2018). These intrinsically disordered domains favor the formation of a 

separate liquid phase within the nucleoplasm. Since this phase is enriched in intrinsically disordered 

molecules, it separates from other liquid phases that are depleted of these molecules. This process is known 

as liquid-liquid phase separation (LLPS) (Hyman et al., 2014). Due to their disordered activation domains, 

TFs can promote phase separation – which is in turn associated with gene activation (Boija et al., 2018).  
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Additionally, TFs can recruit the intrinsically disordered CTD of Pol II and the CTD can also phase separate 

on its own (Boehning et al., 2018; Kwon et al., 2013). Therefore, formation of transient transcription clusters 

is likely dependent on LLPS of proteins with disordered regions (Hnisz et al., 2017).  

The various transcription-coupled phase separating condensates differ in their composition (Cramer, 2019). 

Whereas the transcriptional co-activator Mediator and RNA Pol II are found in condensates on sites of active 

transcription (Cho et al., 2018), condensates found at super enhancers are enriched in Mediator and BRD4 

(Sabari et al., 2018). Two other forms of transient condensates have been determined by microscopy: one at 

promoters and one at gene bodies with RNA Pol II shuttling between them (Cramer, 2019). At promoters, 

Pol II forms condensates with TFs, co-activators, initiation factors, and unphosphorylated Pol II. When the 

CTD of RNA Pol II is phosphorylated via cyclin dependent kinase 7 (CDK7) to promote elongation, it no 

longer forms a phase with TFs but now with a disordered region in the positive transcription elongation 

factor P-TEFb (Lu et al., 2018). At this point, the condensate loses its promoter specificity and forms an 

elongation-dependent gene body condensate containing phosphorylated Pol II, nascent RNA, elongation 

factors, and RNA processing factors (Cramer, 2019). These condensates in turn might correspond to foci 

where Pol II and splicing factors co-localize (Herzel et al., 2017; Misteli and Spector, 1999; Mortillaro et al., 

1996).  

 

1.2.5 LIGHT MICROSCOPY RESOLUTION AS A LIMITING FACTOR 

Even though the development of C-techniques vastly improved our understanding of transcription-

dependent genome organization, microscopic visualization of the structure of transcribed genes in cell nuclei 

is still elusive. The main constraint in this regard is the resolution limit of light microscopy (Schermelleh et 

al., 2010). Indeed, a gene with the size of 10 kb would measure approx. 0.5 µm if the chromatin fiber were 

stretched.  However, genes as parts of chromosomal regions are rather coiled in the nucleus and therefore 

should be even smaller. These considerations tentatively explain why visualizations of genes by FISH result 

in dot-like signals with irresolvable 3D structure. 
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1.3 AIMS AND SCOPE OF THIS STUDY 
 
In recent years, we have gained a vast knowledge about eukaryotic transcription – on both global nuclear and 

molecular levels. Paradoxically, knowledge pertaining to an intermediate level of transcriptional organization, 

that is how individual expressed genes are spatially organized, is surprisingly limited. The only information 

about the arrangement of transcribed genes is achieved from studies of meiotic lampbrush chromosomes in 

diplotene oocytes in vertebrates and polytene chromosomes in salivary glands of Diptera. In both cases, due 

to their length and expression level, genes and transcription units form microscopically resolvable loops 

densely decorated by nascent RNA transcripts. In contrast, expressed genes in mammalian interphase nuclei 

are resolved as foci restricted to a small nuclear area. The discrepancy between these observations could be 

attributed to (i) the limitation of light microscopy, not allowing to resolve genes that are coiled within the 

nucleus and/or to (ii) a relatively low expression level of the studied genes, when compared to the studied 

genes in lampbrushes and polytenes. 

In this thesis, we set out to gain deeper insights into the spatial organization of transcription. Based on 

observations on LBCs and polytene chromosomes, we hypothesized that all expressed genes form loops and 

test this hypothesis by investigating the appearance of long and highly expressed genes utilizing a combination 

of imaging and molecular techniques. 

First, we selected candidate genes that are long and highly expressed, and microscopically analyzed their 

appearance in both silent and expressed transcriptional states. Second, we experimentally manipulated the 

expression level of the genes and tested their morphology upon irreversible or reversible transcription 

inhibition, as well as after ectopically induced transcription. Third, we set out to determine what causes genes 

to exhibit a certain morphology and finally propose a model for the spatial organization of transcribed genes.  
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2 MATERIALS AND METHODS 
 

2.1 CELL CULTURE 

2.1.1 CULTURE OF PMI28 MOUSE MYOBLASTS 

Pmi28 cells (kindly donated by Prof. Dr. Cristina Cardoso, Technical University Darmstadt, Darmstadt, 

Germany) were routinely cultivated in Nutrient Mixture F-10 Ham (Sigma-Aldrich) supplemented with 20 % 

FCS (Biochrom) and 1 % Penicillin/Streptomycin (Sigma-Aldrich) at 37 °C and 5 % CO2. Every 2 to 3 days, 

or before cells reach confluency, they were passaged as follows: cells were trypsinized (1x Trypsin-EDTA 

solution, Sigma-Aldrich) for 3 min at 37 °C and resuspended in fresh medium. A fraction of cells (usually 

1/5 or 1/10, depending on cell density) was transferred into a new tissue culture flask for further 

differentiation. The remaining cells were either discarded or used for downstream applications. It is important 

that cells never reach confluency during routine cultivation, since this negatively affects the cells’ potential to 

differentiate. 

 

2.1.2 MYOTUBE DIFFERENTIATION 

Cells were seeded at a density of 8 x 104 cells/cm2 and incubated in differentiation medium (high glucose 

DMEM supplemented with 1 % Penicillin/Streptomycin (Sigma-Aldrich) and 2 % horse serum (Thermo 

Fisher) at 37 °C and 5 % CO2. Differentiation medium was replaced every 2 days. Typically, after 5 to 6 days 

contracting myotubes have formed. 

 

2.1.3 POLY-L-LYSINE COATING OF COVERSLIPS 

15 x 15 mm square coverslips (R. Langenbrinck or Carl Roth) were thoroughly cleaned with 80 % EtOH and 

coated with poly-L-lysine. Therefore, a drop of 1 mg/ml poly-L-lysine (Sigma-Aldrich) was placed on 

parafilm and a coverslip was positioned on top. The coverslips were incubated with poly-L-lysine for 15 min. 

Then, coverslips were carefully picked up with forceps and plunged into a beaker containing ddH2O to wash 

off residual poly-L-lysine. Coverslips were placed into 12-well plates and air-dried in the fume hood. To 

ensure sterility, 12-well plates with coverslips were then placed in a tissue culture hood under UV light for 

1 h without lids. 
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2.1.4 TRANSCRIPTION INHIBITOR TREATMENT  

Note: As transcription inhibitors are highly toxic, it is mandatory to wear protective equipment (gloves and eye protection). 

Medium supplemented with transcription inhibitors needs to be collected separately and disposed appropriately.  

Actinomycin D 

Differentiation medium was supplemented with 10 µg/ml actinomycin D (Sigma-Aldrich) and cells were 

incubated at 37 °C and 5 % CO2 for 12 h before fixation. 

 

α-Amanitin  

Differentiation medium was supplemented with 25 µg/ml α-amanitin (Sigma-Aldrich) and cells were 

incubated at 37 °C and 5 % CO2 for 24 h before fixation. 

 
5,6-Dichloro-1-β-D-ribofuranosylbenzimidazol (DRB) 

Differentiation medium was supplemented with 100 µM DRB (Sigma-Aldrich) and cells were incubated for 

different timepoints (2 min, 25 min, 50 min, 75 min, 3 h and 6 h) at 37 °C and 5 % CO2 before fixation. In a 

second experiment, cells were treated with 100 μM DRB for 6 h, washed with PBS twice and incubated in 

differentiation medium without DRB for different timepoints (25 min, 50 min, 75 min and 3 h) before 

fixation. 
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2.2 TISSUE PREPARATION 

2.2.1 ISOLATION AND FIXATION OF MOUSE TISSUES  

CD1 exbreeder mice (Charles River Laboratories) were sacrificed by cervical dislocation after anesthetizing 

with IsoFlo (Isofluran, Abbott) by Dr. Irina Solovei.  

For isolation of the thyroid gland, a vertical anterior neck incision was made. After removing the parotid 

glands and surrounding muscle tissue, the thyroid lobes were visible below the thyroid cartilage on each side 

of the trachea. A piece of trachea (5 to 7 mm) with the attached thyroid lobes was excised and placed into 

PBS in a small plastic dish. Under a binocular, the thyroid tissue was carefully cleaned from connective and 

fat tissue, muscles as well as the parathyroid glands (dense, slightly whitish tissue) using fine forceps and fine 

scissors (both Fine Science Tools).  

For isolation of colon, a vertical incision in the lower abdomen was made and extended horizontally in both 

directions. The abdominal musculature was carefully removed, a part of the distal colon was excised and 

placed into PBS in a small plastic dish.  

For isolation of bladder, mice were injected with Narcoren (Boehringer Ingelheim, conc. 5 µl/g body weight) 

by Hilde Wohlfrom (Biocenter, LMU München, Munich, Germany) in order to relax smooth muscles before 

sacrificing. The abdominal musculature was carefully removed, the bladder was excised and placed into PBS 

in a small plastic dish.  

All tissues were washed once with PBS and then fixed in 4 % paraformaldehyde (Carl Roth) solution in PBS 

overnight.  

Sections of in vitro grown thyroid follicles as well as grafted thyroid tissue were kindly provided by Dr. Andrea 

Schiavo and Dr. Sabine Costagliola (Université libre de bruxelles, Brussels, Belgium) (Antonica et al., 2012).  

Fixed thyroids of hypo- and hyperthyroid mice and of mice in different developmental stages were kindly 

provided by Prof. Dr. Heike Heuer (Universitätsklinikum Essen, Klinik für Endokrinologie und 

Stoffwechselerkrankungen, Essen, Germany). Hypo- and hyperthyroid mice were obtained as previously 

described (Groba et al., 2013; Shibusawa et al., 2003; Trajkovic-Arsic et al., 2010) (see also Results section 

3.7.4). 
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2.2.2 THYROID TISSUE OF OTHER VERTEBRATES 

Danio rerio, expressing nuclear eGFP under the TG promoter, were kindly provided by Dr. Sabine Costagliola 

(Université libre de bruxelles, Brussels, Belgium) (Opitz et al., 2013). 

Dissected thyroid glands of Xenopus tropicalis females were kindly provided by Dr. Jean-Baptiste Fini (Centre 

national de la recherche scientifique CNRS, Paris, France).  

Chicken thyroid glands were kindly provided by Prof. Dr. med. vet. Bernd Kaspers (Institut für 

Tierphysiologie, LMU München, Munich, Germany). 

Human thyroid gland samples were kindly provided by Prof. Dr. Heike Heuer (Universitätsklinikum Essen, 

Klinik für Endokrinologie und Stoffwechselerkrankungen, Essen, Germany). 

 

2.2.3 EMBEDDING AND CRYOSECTIONING OF TISSUE 

After fixation, mouse tissues were washed in PBS and incubated in increasing concentrations of sucrose: 

10 % for 1 h, 20 % for 1 h and 30 % for 1 to 12 h. For storage, tissues were frozen at –20 °C in 30 % sucrose 

solution. For embedding, tissues were incubated for 10 min in Tissue-Tek O.C.T. compound freezing 

medium (Sakura). A drop of freezing medium was placed on the bottom of a small flexible silicone rubber 

mold (Pelco) and the tissue was placed on top and oriented in the desirable angle. The mold was filled up 

with freezing medium to cover the whole tissue and the molds were placed into a container with dry ice. 

Once the medium with tissue was frozen, blocks were stored in boxes at –80 °C.  

Frozen mouse tissues were cut into 16 µm sections using a cryostat (Leica CM3050S). Chamber temperature 

was set to –20 °C and object temperature was set to –18 °C. Immediately after cutting, the section adheres 

to the knife and a microscopic slide with increased adhesion properties (Superfrost Plus, Thermo Scientific) 

was brought close to the section so that the section would stick to it. Slides with cryosections were kept in 

plastic boxes in the cryostat chamber while sectioning. For long term storage, the boxes were kept at –80 °C.  
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2.3 TRANSCRIPTION STIMULATION VIA DCAS9-VPR 

To activate transcription, we employed a Cas9-based approach described by Chavez and colleagues (Chavez 

et al., 2015). A nuclease dead Cas9 (dCas9) fused to a tripartite transcriptional activator termed VPR 

(consisting of VP64, p65 and Rta) and targeted to the upstream promoter region of a gene of interest via a 

set of different gRNAs. Therefore, we stably integrated a cassette to inducibly express dCas9-VPR into Pmi28 

mouse myoblasts via the PiggyBac transposon system. dCas9-VPR expression was induced by addition of 

1 µg/ml doxycycline (Sigma-Aldrich). 

 

2.3.1 GRNA EXPRESSION PLASMID GENERATION 

To monitor gRNA transfection efficiency, a plasmid expressing GFP-H2A additionally to the respective 

gRNA (U6-gRNA-GFP-H2A) was generated. CMV-GFP-H2A was inserted into the pEX-A-U6-gRNA 

expression plasmid via Gibson assembly. pEX-A-U6-gRNA was synthesized at Eurofins MWG Operon 

according to (Mali et al., 2013). Gibson assembly was performed using pEX-A-U6-gRNA linearized by SacI 

and GFP-H2A generated by PCR using the following primers: 

Fwd (5’ → 3’): atatgggtaccgagctTAGTTATTAATAGTAATCAATTACGGG 

Rev (5’ → 3’): ttgcggccgcgagctTGATCAGTTATCTAGATCCGG 

 

gRNA vectors were generated by amplifying U6-gRNA-GFP-H2A with forward and reverse primers which 

introduced the protospacer sequence for the respective promoter target region. Primer sequences for 

introducing protospacer sequences are listed in the Appendix, Table S1.  

 

2.3.2 STABLE DCAS9-VPR EXPRESSION 

Pmi28 mouse myoblasts were transfected with PB-TRE-dCas9-VPR (purchased from Addgene, ID 63800, 

laboratory internal identifier pc4538) and PiggyBac transposase (purchased from System Biosciences, 

#PB200PA-1, laboratory internal identifier pc3015) expression plasmids at a ratio of 3:1 with Lipofectamine 

3000 (Invitrogen) according to manufacturer’s instructions. Clones that stably integrated dCas9-VPR were 

selected with medium containing 50 µg/ml hygromycin B (Sigma-Aldrich) over a time course of 2 weeks. 

Single cells were sorted into 96 well plates by fluorescence activated cell sorting (FACS) (BD Biosceiences 

Aria II Sorter) and cultured for one week in presence of hygromycin B. dCas9-VPR expression was induced 

with doxycyclin at a final concentration of 1 µg/ml for 50 h. Individual clones were tested for dCas9-

expression by western blot using a Cas9 antibody (Clontech, dilution 1:1000). To verify that dCas9-VPR 

could be correctly targeted to a desired genomic region, stable Pmi28 clones were transfected with gRNA 

expression plasmids containing the protospacer sequences for major and minor satellites and telomere 

repeats, respectively, as described previously (Anton et al., 2014). Localization of dCas9-VPR was assessed 
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via immunofluorescence staining (see Materials and Methods Section 2.4.9) with Cas9 antibody (Clontech, 

dilution 1:150).  

 

2.3.3 TRANSFECTION OF GRNA PLASMIDS 

For gRNA transfection, 3 x 105 cells were seeded per 6 well on coverslips and transfected with 2.5 µg of a 

mix of 6 different gRNA plasmids per target gene (see Appendix, Table S1) at equimolar amounts with 

Lipofectamine 3000 (Invitrogen) according to manufacturer’s instructions. Medium was removed after 12 h 

and replaced by medium containing 1 µg/ml doxycyclin to induce dCas9-VPR expression. 

 

2.3.4 ANALYSIS 

After 50 h of doxycycline treatment, cells were fixed and subjected to ImmunoFISH as described in section 

2.4.9. A mouse anti-GFP antibody (Roche, dilution 1:400) together with a donkey anti-mouse Alexa 488 

antibody (Invitrogen, dilution 1:500) were used to identify cells that are transfected with gRNAs. The FISH 

probe was generated by nick translation (see Materials and Methods section 2.4.3) from BAC clone RP23-

310F9, encompassing the Ttn gene. 

The relative expression level of Ttn and Neb was assessed by quantitative real time PCR (see Materials and 

Methods section 2.5.2) using the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (Gapdh) as 

reference. qPCR was performed with one biological replicate in technical triplicates. 
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2.4 FLUORESCENCE IN SITU HYBRIDIZATION (FISH) 

2.4.1 LABELING OF DUTPS 

Labeling of dUTPs was performed as described previously (Cremer et al., 2008) with modifications. 1 mg of 

aminoallyl-dUTP (AA-dUTP, Sigma-Aldrich) was dissolved in 96 μl 0.2 M bicarbonate buffer (NaHCO3), 

yielding a final concentration of 20 mM. Fluorochromes and haptens were diluted in DMSO according to 

Table 2.1. 

 

TABLE 2.1: Fluorochrome/hapten dilutions in DMSO 

Fluorochrome/Hapten Manufacturer 
Delivered 

quantity 

DMSO 

added 

Final 

conc. 

Biotin succinimidyl ester (BIO) Invitrogen 100 mg 4,401 µl 40 mM 

Digoxigenin succinimidyl ester (DIG) Invitrogen 5 mg 213 µl 40 mM 

FITC succinimidyl ester Invitrogen 10 mg 417 µl 40 mM 

Cy3 mono NHS ester Amersham Biosciences 1 mg 66 µl 20 mM 

TAMRA succinimidyl ester Invitrogen 10 mg 1,560 µl 10 mM 

Texas Red succinimidyl ester Invitrogen 5 mg 612 µl 10 mM 

Cy5 mono NHS ester Amersham Biosciences 1 mg 62 µl 20 mM 
  

 

To conjugate fluorophores/haptens to dUTPs, a reaction was set up according to Table 2.2 and incubated at 

RT for 3 to 4 h.  

 

 
                                                       TABLE 2.2: Conjugation reaction set-up 

Ingredient Volume 

20 mM AA-dUTP 10 µl 

H2O 10 µl 

0.2 M bicarbonate buffer 10 µl 

40 mM FITC or 
20 mM Cy3 or 
10 mM TAMRA or 
10 mM TexasRed or 
20 mM Cy5 

10 µl 
(for Texas Red 
use 20 µl) 

    
2 µl 2 M glycine (pH 8.0) and 4 µl 1 M Tris-HCl (pH 7.75) were added to stop the reaction and stabilize the 

nucleotides. Then, the volume was adjusted to 200 µl with ddH2O, yielding 1 mM solutions of the respective 

conjugated dUTP. Labeled nucleotides were stored at –20 °C.   
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2.4.2 PREPARATION OF DNTP MIX FOR NICK TRANSLATION AND DOP-PCR 

For convenience, a mix of unlabeled dNTPs and labeled dUTPs was prepared in advance for later use in nick 

translations. First, a 1 mM solution of dATP/dGTP/dCTP was prepared by adding 4 µl of each dNTP (100 

mM, Roche) to 388 µl ddH2O. Second, a 1 mM solution of dTTP was prepared by adding 4 µl of dTTP (100 

mM, Roche) to 396 µl ddH2O. To prepare the dNTP mix (1 mM), combine 50 µl 1 mM dATP/dGTP/dCTP, 

25 µl 1 mM dTTP and 25 µl 1 mM fluorophore/hapten-labeled dUTP.  

2.4.3 NICK TRANSLATION (NT) 

DNA was labeled with fluorophores or haptens by nick translation (NT). In this reaction, lowly concentrated 

DNase I induces single strand breaks into the DNA. DNA Pol I fills these nicks by elongating the 3’ hydroxy 

terminus while it removes nucleotides with its 5’ to 3’ exonuclease activity. Thereby, labeled nucleotides are 

incorporated. Typically, 1 µg of DNA was labeled in a reaction volume of 50 µl (Table 2.3).  

 

TABLE 2.3 : Nick translation set-up 

Probe 

DNA* 

NT 

buffer* 

0.1 M 

β-ME 

dNTP 

Mix  
H2O 

DNase I (1:250) 

(Roche) 

DNA Pol I 

(Thermo Scientific) 

1 µg 5 µl 5 µl 5 µl (33-x) µl 1 µl 1 µl 
* See notes to this section 

 

The reaction was incubated at 15 °C in a waterbath for 2 h. Labeled DNA was column purified (NucleoSpin 

Gel and PCR Clean-up Kit, Macherey-Nagel) and eluted in 25 µl H2O (half the reaction volume). The volume 

was adjusted by adding 25 µl (half the reaction volume) blue stop mix (0.1 % bromophenol blue, 0.5 % 

dextran blue, 0.1 M NaCl, 20 mM Tris-HCl pH 7.5). 

Notes : 

• The reaction is scalable up to 100 µl. 

• Typically, 4 µl of GenomiPhi amplified BAC DNA were used for NT in 50 µl. However, depending 

on the BAC, volumes might need to be adjusted.  

• DNase I dilution can vary; one should figure out the exact dilution for every new batch of DNase I. 

• 10 x DNA Pol I buffer is used as NT buffer. Alternatively, 10 x NT buffer (0.5 M Tris-HCl (pH 7.5) 

supplemented with 50 mM MgCl2 and 0.05 % BSA) can be prepared.  
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2.4.4 FISH PROBE DESIGN AND PREPARATION 

BAC DNA 

BAC clones encompassing the desired genomic region were selected using the UCSC genome browser 

(https://genome.ucsc.edu/) and purchased from BACPAC Resources (Oakland children’s hospital) as agar 

stabs (https://bacpacresources.org/). Bacteria were grown in LB medium containing 12.5 µg/ml 

chloramphenicol and BACs were purified via standard alkaline lysis (2 ml of bacterial culture) or the 

NucleoBond Xtra Midi Kit (Macherey-Nagel) (200 ml of bacterial culture) and amplified using the 

GenomiPhi Kit (GE Healthcare) according to the manufacturer’s instructions. BAC probes were labeled with 

the desired fluorophores or haptens by NT (see Materials and Methods section 2.4.3). BAC clones used in 

this study are listed in the Appendix, Table S2. 

 

Tg exon probes 

Probes to specifically label exons 2 to 12 and 33 to 47 of Tg were generated by standard polymerase chain 

reaction (PCR) using a cDNA clone (transOMIC technologies, BC111467) as template. Primer sequences are 

indicated in the Appendix, Table S3. 

2 µg of PCR amplified DNA were labeled with fluorophores by NT (see Material and Methods section 2.4.3) 

in 100 µl reactions. Incubation time at 15 °C was reduced to 1.5 h due to the small size of the DNA fragments 

(3,045 bp and 2,143 bp for Ex 2 to 12 and Ex 33 to 47, respectively) in order to avoid excessive digestion by 

DNase I.  

 

Tg start and intron 41 probes 

Fragments for FISH probes to cover either the start of Tg or one of the two halves of Tg intron 41 were 

amplified from genomic J1 ESC wt DNA. Therefore, genomic DNA was isolated from one 6 well of J1 ESC 

wt cells using the DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions. 

Primers to amplify fragments for FISH probes were designed with the HD FISH probe generator platform 

accessible via http://www.hdfish.eu/ (Bienko et al., 2013). Probe generation was conducted as described 

previously (Bienko et al., 2013) in 96 well plates (LightCycler 480 Multiwell, Roche) using a LightCycler 480 

Instrument II (Roche) and KAPA SYBR FAST (Roche) (Tables 2.4 and 2.5).  

Primers were ordered from Eurofins Genomics (Ebersberg, Germany) in a 96 well plate format in mixed 

plates, with each well containing both the forward and respective reverse primer at a concentration of 5 µM. 

Primer sequences for amplification of probes specific for the start of Tg and the first and second half of Tg 

intron 41 are displayed in the Appendix Tables S4, S5 and S6, respectively.  
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                    TABLE 2.4: Reaction set-up for probe amplification 

 For 1 well  For 96 well plate (x100) 

KAPA SYBR FAST 2x 25 μl 2,500 μl 

gDNA 50 ng/μl in TE 1 μl 100 μl 

nuclease-free water 20 μl 2,000 μl 

 46 μl  
  

4 μl of the 5 μM forward and reverse primer dilution was added to the corresponding well. 

 
            TABLE 2.5: LightCycler 480 II settings for probe amplification 

 Target 
[°C] 

Acquisition 
mode 

Hold 
[hh:mm:ss] 

Ramp rate 
[°C/s] 

Acquisitions 
[per °C] 

Pre-Incubation 95 none 00:05:00 4.4 - 

Amplification 

95 none 00:00:10 4.4 - 

55 none 00:00:15 2.2 - 

72 single 00:00:30 4.4 - 

Melting Curve 

95 none 00:00:05 4.4 - 

65 none 00:01:00 2.2 - 

97 continuous - - 10 

Cooling 40 none 00:00:10 1.5 - 
 

 

 

After amplification in 96 well plates, fragments corresponding to one probe were mixed in a 15 ml tube and 

EtOH precipitated.  

1 µg of DNA was labeled with fluorophores using the corresponding Ulysis Nucleic Acid Labeling Kit 

(Invitrogen) according to the manufacturer’s instructions with minor modifications. The labeling reaction 

was carried out at 80 °C for 60 min instead of 15 min, since we experienced that longer incubation times yield 

a higher labeling efficiency. We found that labeling with Alexa 647 and Alexa 594 works particularly well. We 

do not recommend labeling with Alexa 561, since the fluorophore was subject to severe photobleaching when 

imaged with confocal microscopy. Unbound dye was removed by gelfiltration using Micro Bio-Spin Columns 

with Bio-Gel P-30 (BioRad) or KREAPure columns (Kreatech) according to manufacturer’s instructions. 

KREAPure columns generally yielded higher DNA concentrations after elution. All product from one 

labeling reaction was used to generate a FISH probe of 5 µl. The labeled product was EtOH precipitated 

using 10 µg of sheared salmon sperm DNA (Thermo Fisher), dried in a SpeedVac (Vacuum concentrator, 

Bachofer) and resuspended in 5 µl of hybridization buffer (50 % formamid, 10 % dextran sulfate, 1 x SSC).  
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Chromosome paints 

Whole chromosome paints were a kind gift from Dr. Nigel Carter and Dr. Johannes Wienberg (Cambridge 

University, Department of Pathology, Cambridge, United Kingdom) and amplified as well as 

fluorophore/hapten labeled with biotin or digoxigenin via DOP-PCR with a partially degenerate 

oligonucleotide primer (6MW primer: 5’- CCG ACT CGA GNN NNN NAT GTG G -3’, Eurogentec) 

according to tables 2.6 and 2.7.  

 

    TABLE 2.6: Set-up for labeling DOP-PCR 

 Start 
concentration 

Volume Final concentration 

PCR buffer (PerkinElmer) 10 x 5 µl 1 x 

MgCl2 (PerkinElmer) 25 mM 4 µl 2 mM 

6MW primer 20 µM 5 µl 2 µM 

dATP/dGTP/dCTP-Mix 2 mM 2.5 µl 100 µM 

dTTP 1 mM 4 µl 80 µM 

Label-dUTP 1 mM 1 µl 20 µM 

H2O - 26.5 µl - 

  48 µl*  
 

       *To this mixture, 1 µl DNA and 1 µl Taq polymerase were added (total volume 50 µl). 

    
            TABLE 2.7: Cycling conditions for labeling DOP-PCR 

 Temperature Time  

Initial denaturation 94°C 3 min  

Denaturation 94°C 1 min  
20 cycles Annealing 56°C 1 min 

Extension 72°C 30 sec 

Final extension 72°C 5 min  

 4°C hold  
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2.4.5 PREPARATION OF HYBRIDIZATION MIXTURE 

In general, hybridization mixtures contain fluorophore- or hapten-labeled DNA as well as repeat-enriched 

Cot-1 DNA and salmon sperm DNA to block non-specific hybridization. All components were mixed well 

in a 1.5 ml reaction tube. For probe precipitation, at least 2.5 times the volume of ice-cold EtOH was added.  

 

Hybridization mixture for 2D FISH with BAC derived probe (6 µl: 3 µl FA + 3 µl MM) 

Chromosome paint - BIO 15 µl 

BAC - DIG 25 µl 

Cot-1 DNA (Thermo Fisher) 20 µl 

Salmon sperm DNA (Thermo Fisher) 2 µl 

Pre-cooled (–20 °C) 100 % ethanol 300 µl 
 

 

Hybridization mixture for 3D FISH with BAC derived probe (12 µl: 6 µl FA + 6 µl MM) 

BAC - fluorophore/hapten 100 µl 

Cot-1 DNA (Thermo Fisher)* 25 µl 

Salmon sperm DNA (Thermo Fisher)* 3 µl 

Pre-cooled (–20 °C) 100 % ethanol* 500 µl 
*If more BACs were to be combined in the same probe, the volume of Cot-1, salmon sperm and EtOH were upscaled 
accordingly. 
 

 

Hybridization mixture for 3D FISH with PCR derived probes (5 µl: 2.5 µl FA + 2.5 µl MM) 

PCR probe - fluorophore 10 µl 

Salmon sperm DNA (Thermo Fisher)* 10 µl 

Pre-cooled (–20 °C) 100 % ethanol* 250 µl 
*If more than one PCR-derived probe were to be combined in the same FISH probe, the volume of salmon sperm and 
EtOH were upscaled accordingly.  
 

 

The mixture was incubated for > 2 h (or overnight) at –20 °C and spun down at 14,000 rpm for 30 min at 

4 °C in a tabletop centrifuge. To remove residual traces of EtOH, pellets were dried in a SpeedVac (Vacuum 

concentrator, Bachofer) with heating for approx. 5 min or until no liquid was visible. The pellet was dissolved 

in 100 % ultrapure deionized formamid (FA, VWR Amresco) by alternating incubation in the waterbath at 

50 °C and thorough vortexing. The addition of FA to the hybridization mixture affects the thermodynamic 

stabilty of the DNA double helix and enables to carry out the hybridization at lower temperatures. Once the 

pellet had dissolved, an equal volume of the so-called master mix (MM; 20 % dextran sulfate in 2 x SSC) was 

added to the probe and mixed by vortexing. Dextran sulfate acts as an volume exclusion agent and therefore 

increases the local concentration of probe DNA enhancing the hybridization rate. Hybridization mixtures 

were kept at –20 °C for long term storage.  

 



MATERIALS AND METHODS 

29 

2.4.6 2D FISH 

2D FISH experiments were carried out on metaphase spreads of mouse embryonic fibroblasts (MEFs) to 

verify the correct position of the selected BACs on the respective chromosome. BACs were labeled with 

digoxigenin via NT and chromosome paints were labeled with biotin via DOP-PCR.  

Slides with metaphase spreads were withdrawn from the freezer approx. 30 min prior to usage to enable 

temperature acclimatization. The regions containing metaphase spreads were marked on the backside of the 

microscopic slide using a diamond cutter and hybridization mixture was directly placed on top of the spreads. 

The sample area was covered with a 15 x 15 mm coverslip and the edges were sealed with rubber cement 

(Fixogum) to prevent drying during hybridization. Once the rubber cement was completely dry, slides were 

placed on a heatblock set to 78 °C for 3 min to simultaneously denature target DNA and probe DNA.  

Hybridization was carried out at 37 °C in a chamber in the waterbath overnight. Post hybridization washings 

were carried out using 2 x SSC at 37 °C (3 x 10 min) and 0.1 x SSC at 60 °C (1 x 5 min). Detection was carried 

out using a biotin binder (streptavidin-Alexa 555, Molecular Probes, dilution 1:200) and an antibody against 

digoxigenin (sheep α DIG FITC, Roche, dilution 1:200). Antibodies were diluted in blocking solution (4 % 

BSA/4 x SSCT). Antibody incubation was carried out for 45 to 60 min. Washing was performed using 4 x 

SSCT (2 x 10 min). DNA was counterstained with 2 µg/ml DAPI (Sigma-Aldrich) for 10 min in a dark 

chamber. Preparations were washed once with PBS and once with distilled H2O and air dried in the darkness. 

A drop of Vectashield (Vector Laboratories) was placed on the sample area and the area was mounted under 

a coverslip. Excess Vectashield was removed and the edges of the coverslip were sealed with nail polish.  

 

2.4.7 3D FISH ON TISSUE CRYOSECTIONS 

FISH on cryosections was conduced as previously described (Solovei et al., 2007) with modifications. In 

general, incubation and washing steps were conducted by placing the slides with the section into Coplin jars 

with the corresponding buffers. When a probe was mounted, the slides were kept in darkness to avoid 

photobleaching.  

Cryosections were dried at RT for 20 to 30 min. Slides were then placed into 10 mM sodium citrate buffer 

(pH 6.0) for 3 min to re-hydrate the sections before they were transferred to a Coplin jar containing pre-

heated 80 °C sodium citrate buffer and incubated for 20 min to remove fixation-derived antigen masking 

(antigen retrieval). For DNA FISH, sections were treated with RNase to ensure hybridization only to DNA. 

Therefore, slides were briefly washed in PBS, sections were covered with a drop of 50 µg/ml RNase and a 

coverslip was placed on top. Incubation was carried out in a metal chamber in the water bath at 37°C for 1h 

followed by washing in PBS (3 x 30 min). For both DNA and RNA FISH, slides were then briefly equilibrated 

in 2 x SSC and incubated in 50 % formamid/2 x SSC for 30 min to 1 h. Slides were carefully dried from 
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excess liquid using a tissue paper and sections were covered by special glass chambers made from coverslips 

in order to prevent tissue squeezing (Solovei et al., 2007).  

For DNA FISH, a probe was loaded under the chamber, the edges of the chamber were sealed with rubber 

cement and the slides were put into darkness until the rubber cement had fully dried out. Slides were then 

placed into a metal chamber in the water bath at 37 °C in order to equilibrate the section in the hybridization 

mixture and to ensure probe penetration. Denaturation of both probe and sample DNA was carried out 

simultaneously on a hot block at 80 °C for 3 min.  

For RNA FISH, only the probe DNA, but not the sample DNA was denatured, so that the then single 

stranded probe only hybridizes to single stranded sample RNA and not to double stranded sample DNA. 

Therefore, the probe DNA was denatured in the water bath at 95 °C for 5 min, before it was loaded under 

the glass chamber and sample DNA denaturation was omitted.  

Hybridization was carried out in the water bath at 37 °C for 2 days. Post hybridization washings were carried 

out using 2 x SSC at 37 °C (3 x 30 min) and 0.1 x SSC at 60 °C (1 x 7 min). For some experiments, depending 

on the probe label, detection was necessary. Antibodies used were the same as described for 2D FISH. 

Antibody incubation times were prolonged to 12 h to ensure proper antibody penetration into the tissue. 

Washings were performed using 4 x SSCT (3 x 30 min).  

DNA was counterstained with 2 µg/ml DAPI (Sigma-Aldrich) for 1 h at 37 °C in the water bath. Sections 

were washed once in PBS, a drop of Vectashield (Vector Laboratories) was placed directly on the section and 

the area was mounted under a coverslip. Excess Vectashield was carefully removed in order to keep fragile 

sections intact and the edges of the coverslip were sealed with nail polish.  

 

2.4.8 3D FISH ON ADHERENTLY GROWING CELLS 

FISH on adherently growing cells was conduced as previously described (Solovei and Cremer, 2010) with 

modifications. Washing as well as incubation steps for cells were carried out in 6 well or 12 well plates 

depending on the coverslip size used.  

Cells were grown on coverslips (R. Langenbrinck or Carl Roth) pre-coated with 1 µg/ml poly-L-lysine (Sigma-

Aldrich). Coverslips were washed twice with pre-warmed (37 °C) cell culture grade PBS (Sigma-Aldrich) and 

fixed in 4 % PFA (Merck) for 10 min at RT. During the last minute of fixation, a drop of PBS/0.5 % Triton 

X-100 was added to prevent cell drying in subsequent steps. Cells were washed 3x in PBS/0.01 % Triton X-

100 for 5 min, permeabilized with PBS/0.5 % Triton X-100 for 10 min and then equilibrated in 20 % 

glycerol/PBS for 60 min. Cells were frozen by submerging the coverslip directly into liquid nitrogen for 

approx. 20 sec, then, coverslips were gradually thawed at RT, before they were frozen again. This 

freezing/thawing cycle was repeated four times. Then, cells were washed three times with PBS/0.01 % Triton 

X-100 for 10 min. For DNA FISH, cells were first treated with 0.1 N HCl for 5 min sharp in order to 
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depurinate DNA and remove proteins, improving access of the probe to the DNA. Then, cells were treated 

with RNase to ensure hybridization only to DNA. Therefore, coverslips were briefly washed in PBS, and 

placed on drops of 50 µg/ml RNase on a piece of parafilm with attached cells facing downwards. Incubation 

was carried out in a metal chamber in the water bath at 37°C for 1h followed by washing in PBS (3 x 10 min). 

For both DNA and RNA FISH, cells were rinsed in 2 x SSC and equilibrated in 50 % FA/2 x SSC.  

For DNA FISH, a probe was loaded on a microscopic slide, the coverslip with the cells facing the slide was 

carefully placed on top to avoid bubble formation and the edges of the coverslip were sealed with rubber 

cement (Fixogum). The slides were put into darkness until the rubber cement had fully dried out. 

Denaturation of both probe and sample DNA was carried out simultaneously by placing the slide on a hot 

block at 78 °C for 3 min.  

For RNA FISH, only the probe DNA, but not the sample DNA was denatured, as described for FISH on 

sections, before it was loaded on the microscopic slide and the coverslip with cells was placed on top. Sample 

DNA denaturation was omitted.  

Hybridization was carried out in the water bath at 37 °C for 2 days. Post hybridization washings were carried 

out using 2 x SSC at 37 °C (3 x 30 min) and 0.1 x SSC at 60 °C (1 x 7 min). For some experiments, depending 

on the probe label, detection was necessary. Antibodies used were the same as described for 2D FISH. 

Washings were performed using 4 x SSCT (3 x 10 min).  

DNA was counterstained with 2 µg/ml DAPI (Sigma-Aldrich) for 10 min in a dark chamber. Coverslips were 

washed once in PBS, a drop of Vectashield (Vector Laboratories) was placed on a microscopic slide and the 

coverslip was carefully mounted on top avoiding bubble formation. Excess Vectashield was very carefully 

removed from the edges of the coverslip in order to not move the coverslip and the edges of the coverslip 

were sealed with nail polish.  

 

2.4.9 IMMUNOFISH 

ImmunoFISH on cryosections 

To visualize the co-localization of RNA Pol II or nuclear speckles (SC35) and the Tg transcription loop, 

immunostaining combined with 3D FISH was conducted on mouse (for RNA Pol II) or human (for SC35) 

thyroid cryosections. The general 3D FISH protocol on cryosections (see Material and Methods section 2.4.7) 

was followed, instead of DAPI staining directly after the post-hybridization washings, slides were briefly 

equilibrated in PBS. Permeabilization was done in 0.1 % Triton X-100/PBS for 30 min. The sections were 

then incubated with primary and secondary antibodies diluted in blocking solution (1 % BSA/0.1 % Triton 

X-100/0.1 % saponin) each overnight at RT under a glass chamber in a humidified chamber in the dark. 

DAPI (2 µg/ml) was added directly to the secondary antibody. 
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Primary antibodies: 

• mouse α-RNA Pol II S2P, Pc26, dilution 1:100 (kind gift from Prof. Dr. Hiroshi Kimura, Tokyo 

Institute of Technology, Tokyo, Japan) 

• mouse α-SC35 (Sigma-Aldrich), dilution 1:50 

Secondary antibody: donkey α-mouse Alexa 488 (Invitrogen), dilution 1:250  

Washings in between antibodies and after the secondary antibody were performed with 0.01 % Triton X-

100/PBS at 37 °C three times for 30 min. Sections were briefly washed with PBS and then mounted in 

Vectashield. 

 

ImmunoFISH on cells 

ImmunoFISH on adherently growing cells was performed as previously described (Solovei and Cremer, 2010) 

with modifications. To visualize the Ttn gene together with H2A-GFP indicating successful transfection of 

gRNAs targeting Ttn promoter regions, immunostaining combined with 3D FISH was conducted on mouse 

Pmi28 myoblasts. Coverslips were washed in PBS prewarmed to 37 °C twice, before cells were fixed in 4 % 

PFA/PBS for 10 min at RT. Cells were permeabilized with 0.5 % Triton X-100/PBS for 10 min at RT and 

incubated with primary and secondary antibodies diluted in blocking solution (PBS/4 % BSA/0.01 % Tween 

20) for 1 h each. 

• Primary antibody: mouse α-GFP (Roche), dilution 1:400 

• Secondary antibody: donkey α-mouse Alexa 488 (Invitrogen), dilution 1:500  

Washings in between antibodies and after the secondary antibody were performed with PBS/0.1 % Tween 20. 

Cells were post-fixed in 2 % PFA/PBS for 10 min and then incubated in 20 % glycerol for 1 h. From here 

on, the standard protocol for FISH on adherently growing cells was followed.  
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2.5 GENE EXPRESSION ANALYSIS 

2.5.1 RNA ISOLATION 

Total RNA from cells or tissues was isolated using the NucleoSpin RNA Kit (Macherey-Nagel) according to 

the manufacturer’s instructions. To enable proper lysis, tissues were disrupted directly in 350 µl lysis buffer 

RA1 using a Tissue Homogenizer (Bullet Blender 24, Next Advance) with zirconium oxide beads with a 

diameter of 0.5 mm for 5 to 10 minutes until a homogeneous solution had formed, prior to applying the 

sample to the clearing column (violet ring). RNA integrity was checked by separating RNA fragments on a 

1 % agarose (Carl Roth) gel. Only samples with a 28S:18S rRNA ratio of ≈ 2:1 and without genomic 

contamination and RNA degradation were used for downstream applications. 

2.5.2 CDNA PREPARATION AND QUANTITATIVE REAL TIME PCR (QPCR) 

1 µg of total RNA was reverse transcribed using the High capacity cDNA reverse transcription Kit (Applied 

Biosystems) according to the manufacturer’s instructions. A sample without reverse transcriptase served as 

control. 

Quantitative PCR (qPCR) was performed in technical and biological triplicates in 10 µl reactions on a 

LightCycler 480 Instrument II (Roche) using LightCycler 480 SYBR Green Master Mix (Roche) according to 

the manufacturer’s instructions. Primers (Appendix, Table S7) were used at a final concentration of 250 nM. 

Primer specificity was ensured by melting curve analysis and PCR efficiency was determined using a standard 

curve of serially diluted cDNA. Primers were designed specifically covering exon-exon junctions via NCBI 

primer design tool accessible at https://www.ncbi.nlm.nih.gov/tools/primer-blast/. 

Typically, 1 ng of cDNA were used per qPCR reaction. Due to its high transcript abundance, 50 pg of cDNA 

were used per reaction to determine the Tg transcription levels in different developmental stages as well as in 

hypo- and hyperthyroid mice. Amplification was run according to Table 2.8. 

 

              TABLE 2.8: Settings for cDNA amplification 

 Target 
[°C] 

Acquisition 
mode 

Hold 
[hh:mm:ss] 

Ramp rate 
[°C/s] 

Acquisitions 
[per °C] 

Denaturation 95 none 00:05:00 4.4 - 

Amplification 

95 none 00:00:10 4.4 - 

60 none 00:00:10 2.2 - 

72 single 00:00:20 4.4 - 

Melting Curve 

95 none 00:00:10 4.4 - 

65 none 00:00:30 2.2 - 

95 continuous - - 5 

Cooling 40 none 00:00:30 2.2 - 
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CT (cycle threshold) values were normalized to the transcript level of thyroid specific transcription factor 

paired box gene 8 (Pax8) for Tg or glyceraldehyde 3-phosphate dehydrogenase (Gapdh) for Ttn and Neb and 

further analyzed based on the 2-ΔΔCT method. 

 
2.5.3 RNA SEQUENCING (RNA-SEQ) 

Sample and library preparation 

Total RNA was isolated as described in section 2.5.1. Sequencing libraries for RNA-seq were prepared by 

Christopher Mulholland (BioSysM, LMU München, Munich, Germany) as follows: digital gene expression 

libraries for RNA-seq were produced using a modified version of single-cell RNA barcoding sequencing 

(SCRB-seq) optimized to accommodate bulk cells (Bagnoli et al., 2018; Ziegenhain et al., 2017) in which a 

total of 70 ng of input RNA was used for the reverse-transcription of individual samples.  

 

Sequencing 

Sequencing was performed at the laboratory for functional genome analysis (LAFUGA, Gene Center, LMU 

München, Munich, Germany). RNA-seq libraries were sequenced on an Illumina HiSeq 1500.  

 
Analysis 

Bioinformatical analyses were performed by Dr. Sebastian Bultmann (BioSysM, LMU München, Munich, 

Germany). RNA-seq libraries were processed and mapped to the mouse genome (mm10) using the zUMIs 

pipeline (Parekh et al., 2018). UMI count tables were filtered for low counts using HTSFilter (Rau et al., 

2013).  

GENCODE gene annotation version vM11 (mouse) was downloaded from 

https://www.gencodegenes.org/. Using R (https://www.R-project.org/), mitochondrial genes were 

excluded and only protein-coding genes with a known gene status were selected to ensure proper annotation 

and used for further evaluation. Gene lengths were calculated from GENCODE annotated start and end 

positions of each gene. 
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2.5.4 NANOPORE SEQUENCING (NANOPORE-SEQ) 

Sample preparation 

Mouse thyroid glands were excised as described in section 2.2.1. For each sample, the glands of five mice 

were used. The glands were cut into small pieces (< 1 mm) with fine scissors under a binocular in RNase free 

PBS and directly transferred to TRIzol (Thermo Fisher). Samples were stored at –80 °C. Total RNA was 

isolated using the TRIzol method at the Laboratory for Functional Genome Analysis (LAFUGA, Gene 

Center, LMU München, Munich, Germany). 

 
Library preparation and sequencing 

Library preparation for direct RNA sequencing and sequencing itself were performed at the Laboratory for 

Functional Genome Analysis (LAFUGA, Gene Center, LMU München, Munich, Germany). Due to the low 

concentration of starting material, no polyA enrichment was performed, but total RNA was used for library 

preparation directly. 

 
Analysis 

Nanopore sequencing alignment and analysis were conducted by Dr. Sebastian Bultmann (BioSysM, LMU 

München, Munich, Germany). Reads were mapped against the mouse genome (mm10) using minimap2 with 

standard parameters. Coverage of introns and exons was calculated using Bedtools (Quinlan et al., 2010) and 

custom R scripts.  
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2.6 NATIVE CHROMATIN IMMUNOPRECIPITATION FOLLOWED BY SEQUENCING 
(NCHIP-SEQ) 

Native ChIP-seq (nChIP-seq) experiments were performed with help and advice from Stephanie Link 

(Biomedical Center, LMU München, Munich, Germany). The following nChIP-seq protocol was adapted 

from (Punzeler et al., 2017) and (Link et al., 2018). Immunoprecipitations were carried out with S1 

mononucleosomes derived from Pmi28 myoblasts and Pmi28 myotubes. nChIP-seq experiments were 

performed in independent duplicates. 

 

Sample preparation  

Pmi28 myoblasts 

Pmi28 myoblasts were washed with PBS (Sigma-Aldrich), detached using 0.25 % Trypsin/1 mM EDTA (Pan 

BioTech) for 3 min and collected in a centrifuge tube. After centrifugation for 4 min at 1300 g, cells were 

washed with PBS and centrifuged again. The pellet obtained from three 150 mm cell culture dishes (Corning) 

roughly corresponding to 15 Mio cells was snap frozen in liquid nitrogen. 

 

Pmi28 myotubes 

In order to separate differentiated myotubes from undifferentiated myoblasts, cells were harvested in the 

following way: first, myotubes were gently trypsinized using 0.025 % Trypsin/0.1 mM EDTA and progress 

of trypsinization was monitored with a phase contrast microscope; when myotubes detached, leaving the 

majority of myoblasts still attached to the bottom of the dish, the supernatant containing myotubes and some 

myoblasts was transferred to a fresh 150 mm cell culture dish (Corning). The remaining myoblasts re-adhered 

to the dish bottom within 30 to 60 min, whereas myotubes were not re-adherent within this time and could 

be collected with the supernatant yielding a pure myotube population.  After centrifugation for 4 min at 

1,300 g, cells were washed with PBS and centrifuged again. The pellet obtained from three 150 mm cell 

culture plates was snap frozen in liquid nitrogen. 

 

Micrococcal nuclease (MNase) digest of chromatin 

Per immunoprecipitation, 5 Mio cells were used. Cells were resuspended in 750 µl PBS + 1 x PI + 0.3 % 

Triton X-100 and incubated for 10 min at 4 °C while rotating. The cell lysate was centrifuged for 10 min at 

3,000 g and 4 °C, the pellet was resuspended in 625 µl PBS + PI and centrifuged for 5 min at 3,000 g at 4 °C. 

Supernatant was carefully removed and the pellet was resuspended in 62.5 µl EX100  (10 mM HEPES pH 

7.6, 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA, 10 % (v/v) glycerol, 10 mM β-glycerol phosphate) + 

1 x PI + 1 mM DTT and transferred into a DNA low binding tube (Eppendorf). CaCl2 concentration was 

adjusted to 2 mM with 0.5 µl 250 mM CaCl2 and 0.1875 µl MNase (1 U/µl, Sigma-Aldrich) were added. 

MNase digest was carried out for 20 min at 26 °C. The reaction was stopped by the addition of 1.25 µl 0.5 M 

EDTA to a final concentration of 10 mM and the suspension was centrifuged at 13,300 rpm for 30 min at 
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4 °C in a tabletop centrifuge. The supernatant (S1 mononucleosomes) was transferred into a fresh DNA low 

binding tube (Eppendorf) and filled up to 500 µl with EX100 + 1 x PI + 1 mM DTT. 25 µl (5 %) were saved 

as input. 

 

Chromatin Immunoprecipitation 

5 µg of antibody (mouse α-RNA polymerase II CTD repeat YSPTSPS, 8WG16, Abcam) were added per IP 

(5 Mio cells) in 500 µl and incubated with mononucleosomes at 4 °C overnight while rotating. On the next 

day, magnetic beads (Dynabeads Protein G, Thermo Fisher) were washed 3 times with EX100 + 1 x PI + 

1 mM DTT (500 µl/wash), resuspended in 30 µl EX100 + 1 x PI + 1 mM DTT per IP, added to the antibody-

mononucleosome suspension and rotated at 4 °C for 3 h. A beads-only IP served as negative control. 

 

Washing 

Washing steps were conducted using 500 µl of buffer per washing step and samples were rotated at 4 °C for 

5 min. Beads were magnetically separated after each washing step. Beads were washed twice with WB1 

(10 mM Tris pH 7.5, 1 mM EDTA, 0.1 % SDS, 0.1 % sodiumdeoxycholate, 1 % Triton X-100), twice with 

WB2 (10 mM Tris pH 7.5, 1 mM EDTA, 0.1 % SDS, 0.1 % sodiumdeoxycholate, 1 % Triton X-100, 150 mM 

NaCl), once with TE + 0.2 % Triton-X 100 and once with TE buffer. 

 

DNA preparation 

Washed beads were resuspended in 100 µl TE buffer. To the input DNA sample, 75 µl TE were added. 3 µl 

of 10 % SDS and 5 µl of proteinase K were added and the suspensions were incubated 1 h at 65 °C. After 

brief vortexing, suspensions were magnetically separated and supernatant was transferred into DNA low 

binding tubes (Eppendorf). Beads were washed with 100 µl TE + 0.5 M NaCl, vortexed briefly, magnetically 

separated and the supernatant added to the first supernatant. For input DNA, 100 µl TE + 0.5 M NaCl were 

added. Eluted IP DNA and input DNA were phenol/chloroform/isoamylalcohol extracted using MaXtract 

high density tubes (Qiagen) and ethanol precipitated according to a standard protocol. After extraction, the 

IP DNA pellets were resuspended in 12 µl 10 mM Tris-HCl pH 7.5 and the input DNA pellet was 

resuspended in 20 µl 10 mM Tris-HCl pH 7.5. 

 

Quality control 

For quality control, DNA concentrations were determined via the Qubit dsDNA High Sensitivity Kit 

(Invitrogen) and DNA size was analyzed on a DNA 1000 BioAnalyzer chip (Agilent).  
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Library preparation 

Illumina sequencing libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit for Illumina 

(New England Biolabs) and the NEBNext Multiplex Oligos for Illumina (New England Biolabs) according 

to the manufacturer’s instructions. The number of amplification cycles was scaled according to the amount 

of input material, amplification was validated by measuring DNA concentrations using the Qubit dsDNA 

High Sensitivity Kit (Invitrogen) and library quality was determined using a DNA 1000 BioAnalyzer chip 

(Agilent).  

 

Sequencing 

Sequencing was performed at the laboratory for functional genome analysis (LAFUGA, Gene Center, LMU 

München, Munich, Germany). ChIP-seq libraries were sequenced on an Illumina HiSeq 1500 platform using 

single read 50 nucleotide sequencing. 

 

Analysis 

Read mapping and bioinformatic analyses were performed by Dr. Sebastian Bultmann (BioSysM, LMU 

München, Munich, Germany). ChIP-seq reads were aligned to the mouse genome (mm10) with Bowtie 

(v.1.2.2) with parameters ‘-a -m 3 -n 3 --best --strata’. Subsequent ChIP-seq analysis was carried out on data 

of merged replicates. Signal pile up was performed using MACS2 callpeak (Zhang et al., 2008) with the 

parameters ‘--extsize 150’ for ChIP, ‘--extsize 220’ for hMeDIP, and ‘--nomodel -B --nolambda’ for all 

samples.  
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2.7 CHROMATIN CONFORMATION CAPTURE (HI-C)  
Sample preparation 

Hi-C was performed as described previously (Belaghzal et al., 2017) by Dr. Yana Feodorova (Medical 

University of Plovdiv, Plovdiv, Bulgaria) with help of Dr. Erica Hildebrand (University of Massachusetts 

Medical School, Worcester, USA) in the laboratory of Prof. Dr. Job Dekker (University of Massachusetts 

Medical School, Worcester, USA). Three biological replicates were used for each of the studied cell types – 

myoblasts, myotubes, thyrocytes and bladder.  

For each thyroid sample, thyroid glands from 6 mice were used. For each bladder sample, the bladder from 

one mouse was used. Glands and bladder were dissected, cleaned from neighboring tissues, minced with 

micro-scissors into small pieces and transferred to a 2 ml tube using low retention blue tips (BRAND). 

Fixation was carried out in 1 % formaldehyde for 10 min.  

Sample preparation on myoblasts and myotubes for Hi-C was done in the same way as for ChIP-seq 

experiments, but cells were fixed (1 % formaldehyde for 10 min) and then washed once in PBS prior to snap 

freezing. Per sample, cells from three p150 dishes were used. 

 

Sequencing 

Hi-C libraries were sequenced using Illumina 50 bp paired-end sequencing in the laboratory of Prof. Dr. Job 

Dekker (University of Massachusetts Medical School, Worcester, USA). 

 
Analysis 

Hi-C data processing was conducted by Dr. Johannes Nübler (Institute for Medical Engineering and Science, 

Massachusetts Institute of Technology, Cambridge, USA) as described previously (Imakaev et al., 2012). 

Iterative correction was applied to the data in order to remove biases as much as possible (Imakaev et al., 

2012). Cis/trans contact frequencies were calculated for each bin as the number of cis (same chromosome) 

contacts divided by the number of trans (different chromosome) contacts of that bin. For plotting, x-

axes were rescaled for each gene, so that TSS and TTS align. Interpolation was used to yield the same number 

of points in each gene. Plotted quantities were normalized to regions outside the genes (the regions 

from [TSS ‒ 3 * gene length] to [TSS ‒ 0.5 * gene length] and [TTS + 0.5 * gene length] to 

[TTS + 3 * gene length] was used to normalize cis/trans profiles to unity). Long lowly expressed control genes 

for cis/trans ratio plots are listed in Appendix Table S8.  

   
 



MATERIALS AND METHODS 

40 

2.8 MICROSCOPY 

2.8.1 LIGHT MICROSCOPY 

Epifluorescent microscopy 

To examine chromosomal location of BACs on 2D FISH preparations and to assess the quality of FISH and 

immunostaining, an epifluorescent microscope (Axiophot 2, Zeiss) was used. The system was equipped with 

a CCD camera (Coolview CCD Camera System) and the MetaVue software (Zeiss).  

Confocal laser scanning microscopy 

Image stack series were acquired using a TCS SP5 confocal microscope (Leica) using a Plan Apo 63/1.4 NA 

oil immersion objective and the Leica Application Suite Advanced Fluorescence (LAS AF) Software (Leica). 

Z step size was typically set to 300 nm. XY pixel size varied from 20 to 60 nm, depending on the final 

magnification. Used laser lines are depicted in Table 2.9. 

 

TABLE 2.9: Equipped laser lines on Leica SP5 

Fluorophore Excitation Emission Laser line 

DAPI 358 nm 461 nm 405 nm (Diode) 

FITC,  Alexa488 490 nm 525 nm 488 nm (Argon) 

Cy3 554 nm 568 nm 
561 nm (DPSS) 

TAMRA, Alexa555 555 nm 580 nm 

TexasRed 596 nm 615 nm 594 nm (HeNe) 

Cy5 649 nm 666 nm 633 nm (HeNe) 
  

 
Processing of image stacks 

Confocal stacks were processed using the ImageJ software (https://imagej.nih.gov/ij/). Before analysis, 

stacks were corrected for chromatic shift in z direction using the StackGroom/z-shift corrector plugin. This 

plugin re-aligns the images of an acquired z-stack according to the axial chromatic shift  measured using 

TetraSpeck beads (Molecular Probes). 

RGB image stacks with all desirable combinations of channels were generated using the 

StackGroom/3channels plugin. 

Images in this study are maximum intensity projections of several shift corrected optical planes of a z-stack 

(typically covering 1 to 1.5 µm) unless stated otherwise. 
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2.8.2 ELECTRON MICROSCOPY 

Blocks for sectioning were prepared in the laboratory of Prof. Dr. Andreas Klingl (Biocenter, LMU München, 

Munich, Germany). In brief, Pmi28 myoblasts and in vitro differentiated myotubes were grown on coverslips 

and fixed with 2.5 % glutaraldehyde in 300 mOsm cacodylate buffer (75 mM Caco, 75 mM NaCl, 2 mM 

MgCl2), postfixed in 1 % osmium tetroxide and contrasted with 8 % uranyl acetat. Embedding was performed 

in Epon epoxy resin. 

Sectioning of Epon-embedded cells, contrasting of sections with lead citrate after Reynolds and microscopy 

were performed in the laboratory of Dr. Yannick Schwab (European Molecular Biology Laboratory, 

Heidelberg, Germany), using a screening technique allowing high cell number acquisition. 

  
 
2.9 BIOINFORMATICS 

2.9.1       GTEX DATA ANALYSIS 

GENCODE gene annotation version v19 (human) was downloaded from https://www.gencodegenes.org/. 

Using R (https://www.R-project.org/), mitochondrial genes were excluded from the analysis and only 

protein-coding genes with a known gene status were selected to ensure proper annotation and used for further 

evaluation. Gene lengths were calculated from GENCODE annotated start and end positions of each gene. 

RNA-seq data on human tissues was downloaded from the website of the GTEx portal 

(https://gtexportal.org/home/datasets, version 7, median gene level TPMs). GENCODE annotations were 

joined with GTEx RNA-seq data based on the genes’ Ensembl gene ID. 

 

2.9.2      SEMI-AUTOMATED GENE FLANKS MEASUREMENT 

3D gene flanks distance measurements were conducted on confocal stacks using a semi-automated script 

developed by David Hörl (BioSysM, LMU München, Munich, Germany). 

The signal spots in both channels were identified by detecting local minima in a Laplacian-of-Gaussian (LoG)-

filtered image (with the expected size/sigmas set to enhance spots at the diffraction limit). A pairing of spots 

from both channels with minimal total distance was calculated using linear assignment and coordinates of 

both partners saved for further analysis. In both the detection and matching step, results were visualized 

immediately, with the option to manually curate them and remove erroneous detections or pairings. The spot 

pair detection was implemented in Python in the form of a Jupyter notebook. The code is available at 

https://github.com/hoerldavid/fish_analysis. 
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2.9.3     COMPUTATIONAL CHROMATIN MODELING 

Computational modeling was conducted by Dr. Johannes Nübler (Institute for Medical Engineering and 

Science, Massachusetts Institute of Technology, Cambridge, USA). Chromatin was modeled as a polymer 

with a monomer size of 1 kb roughly corresponding to 5 nucleosomes packed in a 20 nm globule and included 

6 chromosomes, each 50 Mb in length. Territorial chromosomes were generated by initiating them in a 

mitotic-like conformation and letting them expand. In a dense environment, polymer dynamics is exceedingly 

slow, therefore, chromosomes mixed only moderately and retained their territoriality. For completeness, 

subdivision of chromatin into A- and B-compartments with attraction of B-compartments to the nuclear 

periphery were included. On each chromosome, a small region was assigned as our gene of interest, and it 

was explored how TL formation is reproduced by changing different parameters. 
Simulations were based on polymer simulation code developed in the laboratory of Prof. Dr. Leonid Mirny 

(Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 

USA). Polymer simulations were performed using a Mirny laboratory written wrapper (available 

at https://github.com/mirnylab/openmm-polymer-legacy) around the open source GPU-assisted molecular 

dynamics package OpenMM (Eastman et al., 2017). Polymers are represented as a chain of monomers with 

harmonic bonds, a repulsive excluded volume potential, and an additional small attraction for the interaction 

of two monomers of type B. To obtain Hi-C maps from simulated data, polymer conformations were first 

coarse grained by a factor fo 10 (i.e. only every 10th monomer is considered) in order to reduce the size of 

the computed Hi-C matrix. Then, a cutoff radius was defined, mimicking the crosslinking radius in an actual 

Hi-C experiment. The cutoff radius was 10 monomer diameters (we verified that results are insensitive to the 

cutoff).  
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3 RESULTS 
 

3.1 LONG MAMMALIAN GENES ARE RARELY HIGHLY EXPRESSED  
Due to the resolution limit of light microscopy that prevents structural resolution of short lowly expressed 

genes, we first aimed at finding genes that are both long and highly expressed and thus allow their microscopic 

visualization.  

 

3.1.1 THE MAJORITY OF MAMMALIAN GENES IS SHORT 

To estimate the amount of possible candidate genes for our subsequent studies, we analyzed the length of 

GENCODE annotated protein coding genes in human and mouse. In human, 43 % of the genes span below 

20 kb and only 18 % of the genes span more than 100 kb (Figure 3.1 A). Mouse genes are on average smaller: 

46 % of the genes measure below 20 kb and 14 % of the genes measure above 100 kb (Figure 3.1 B).  

 

 

 
 
FIGURE 3.1: The majority of human and mouse genes is short. Histograms depicting the distribution of gene lengths in 

human and mouse. Genes were annotated according to GENCODE. (A) 43 % of human protein coding genes measure below 

20 kb, 18 % measure more than 100 kb. (B) 46 % of mouse protein coding genes measure below 20 kb, 14 % measure more than 

100 kb. Only genes with a length below 500 kb are depicted. Bins represent 20 kb. 
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3.1.2 LONG HUMAN GENES ARE RARELY HIGHLY EXPRESSED 

In order to select candidate genes that are both long and highly expressed, we consulted a comprehensive 

published RNA-seq dataset from the Genotype Tissue Expression Portal (GTEx) for a variety of human 

tissues. In the dataset comprising 51 tissues, only ten protein coding genes exceeded both a gene length of 

100 kb and a transcription level of 1000 transcripts per million (TPM) (Table 3.1) indicating that long genes 

are not only rare but also generally not highly expressed. 

 

 

TABLE 3.1: Ten genes > 100 kb and > 1000 TPM found in the GTEx dataset.  

Tissue Gene(s) 

Artery: Aorta MYH11, MYH9, RGS5, CALD1  

Artery: Coronary MYH11 

Artery: Tibial MYH11, RGS5, CALD1, MYH9 

Bladder MYH11 

Brain: Hippocampus MBP 

Brain: Spinal cord cervical MBP 

Brain: Substantia nigra MBP 

Ectocervix MYH11 

Colon sigmoid MYH11, CALD1 

Colon transverse MYH11 

Esophagus: Gastroesophageal junction MYH11 

Esophagus: Mucosa SPINK5, JUP 

Esophagus: Muscularis MYH11, CALD1 

Fallopian Tube MYH11 

Skeletal Muscle MYBPC1 

Prostate MYH11 

Skin: not sun exposed JUP 

Skin: sun exposed JUP 

Thyroid TG, TPO 

Uterus MYH11 
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3.1.3 LONG GENES EXHIBIT LOWER POLYMERASE LEVELS THAN SHORT GENES 

Another line of evidence for the low expression of long genes arose from our own ChIP-seq experiments. 

We conducted native ChIP-seq with an antibody against the CTD of RNA Pol II in undifferentiated 

myoblasts and differentiated myotubes in order to compare RNA Pol II occupancy of genes depending on 

their length and expression level. For evaluation, genes were divided into five size groups (group 1: 0–25 kb; 

group 2: > 25–50 kb; group 3: > 50–75 kb; group 4: > 75–100 kb; group 5: > 100 kb) (Figure 3.2 A). In 

accordance with the fact that the majority of mammalian genes is short, we found group 1 to contain the 

most genes (Figure 3.2 B). We further divided genes into “expressed” (> 1 TPM) and “not expressed” genes 

(< 1 TPM) in the respective cell type (Figure 3.2 C). The number of genes in each group was highly similar 

between myoblasts and myotubes, indicating that a similar number of genes of the respective length is 

expressed in both cell types. However, average polymerase occupancy along gene bodies varied in the 

different groups and was directly proportional to the gene length: the shorter the genes, the higher the 

polymerase occupancy (Figure 3.2 D). This was also supported by the finding that smaller genes on average 

had a higher transcription level than long genes indicated by higher average TPM values as determined by 

RNA-seq (Figure 3.2 E). Collectively, these data provide further evidence that long genes are on average 

lower expressed than short genes.  

 

 

 

 

 

 

 

 

(Figure on the next page)  

FIGURE 3.2: Expressed short genes exhibit a higher RNA Pol II occupancy than expressed long genes. ChIP-seq with 

an antibody against the CTD of RNA Pol II in Pmi28 mouse myoblasts and differentiated myotubes showed that expressed genes 

overall display a higher occupancy with RNA Pol II along their gene bodies than non-expressed genes in both cell types. The 

difference is especially prominent at the TSS. In the group of expressed genes, the RNA Pol II occupancy of gene bodies is on 

average higher in small genes than in long genes. (A) Genes were divided into five groups depending on their size (group 1: 0–25 

kb, group 2: > 25–50 kb, group 3: > 50–75 kb, group 4: > 75–100 kb, group 5: > 100 kb). (B) Group 1 is by far the biggest group 

(12,452 genes), followed by groups 5 (2,267 genes), 2 (3,388 genes), 3 (1,471 genes), and 4 (819 genes). (C) Genes in the different 

size groups were divided according to their transcriptional status into expressed (>1 TPM, light gray) and non expressed (<1 TPM, 

dark gray) genes. (D) RNA Pol II density is generally higher around the TSS compared to the gene body in both cell types (left: 

myoblasts; right: myotubes) and irrespective of the gene length. Pol II density along the gene bodies of transcribed genes (green) 

correlated with gene length: the smaller the genes, the higher the Pol II density. For non-expressed genes (red), Pol II levels were 

generally low and did not correlate with gene length. Each gene was divided into 200 equally sized bins (x-axis, position) and genes were aligned 

according to bins. (E)The median expression levels of genes belonging to the “expressed” group were higher in groups containing 

smaller genes, and negatively correlated with gene length in myoblasts (top) as well as in myotubes (bottom): The longer the genes, 

the lower the median expression level. Expression levels (median): Myoblasts: group 1: 20.1 TPM; group 2: 17 TPM; group 3: 14.3 

TPM; group 4: 12.4 TPM; group 5: 10.5 TPM. Myotubes: group 1: 18.3 TPM; group 2 14.7 TPM; group 3: 13.3 TPM; group 4: 

11.9 TPM; group 5: 10.9 TPM. Data from RNA-seq experiments, see Results section 3.1.5. 
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3.1.4 SELECTION OF LONG HIGHLY EXPRESSED HUMAN GENES FROM GTEX DATASET 

For our studies, we aimed at investigating long and highly expressed genes coding for structural proteins and 

expressed in cell types that are easily identifiable on tissue sections to enable their visualization in mouse 

tissues. To find such genes, we mined the GTEx RNA-seq dataset for possible candidates. One of the human 

genes with a high expression level is thyroglobulin (TG) (Table 3.1), expressed in the thyroid gland and coding 

for a protein serving as a precursor for thyroid hormones triiodothyronine (T3) and thyroxine (T4) (Di Jeso 

and Arvan, 2016). In humans, the TG gene measures ≈ 268 kb and is expressed at 7,510 TPM, strongly 

exceeding the expression levels of all other protein-coding genes in the thyroid gland, including housekeeping 

genes, such as beta actin (ACTB; 2,214 TPM) and ribosomal protein L41 (RPL41; 652 TPM) by 3.4- and 

11.5-fold, respectively (Figure 3.3 A).  

In addition to TG, we selected four genes specifically expressed in muscle cells: the smooth muscle isoform 

of myosin heavy chain 11 (MYH11, ≈ 154 kb and 5,006 TPM) and caldesmon 1 (CALD1, ≈ 226 kb and 736 

TPM) highly expressed in smooth muscle, as well as titin (TTN, ≈ 305 kb and 350 TPM) and nebulin (NEB, 

≈ 249 kb and 858 TPM) highly expressed in skeletal muscle (Figure 3.3 A). MYH11 codes for a smooth 

muscle specific contractile protein belonging to the myosin heavy chain family and is capable of hydrolyzing 

adenosine triphosphate (ATP) and thereby converting chemical energy to mechanical energy (Weiss and 

Leinwand, 1996). CALD1 encodes a calmodulin- and actin-binding protein and inhibits the ATPase activity 

of myosin (Huber, 1997). TTN encodes the largest human protein that is essential for the stability, elasticity 

and passive tension of striated muscle (Linke, 2018). NEB codes for an actin-binding filamentous protein 

and is part of the skeletal muscle thin filament (Chu et al., 2016).   
 

3.1.5 VALIDATION OF SIMILAR CHARACTERISTICS FOR ORTHOLOGOUS MOUSE GENES 

To confirm the high expression of the five selected genes in the corresponding mouse tissues, we performed 

RNA-seq of thyroid and smooth muscle tissue, as well as cultured myoblasts and myotubes differentiated 

from myoblasts in vitro. Expression of the Tg gene (≈ 180 kb) in the mouse thyroid was exceptionally high 

(22,924 TPM), exceeding the expression levels of highly and robustly expressed housekeeping genes by almost 

10 fold (e.g. Actb ≈ 4 kb and 2,791 TPM; Rpl41 ≈ 1 kb and 2,467 TPM) (Figure 3.3 B left). RNA-seq analysis 

of bladder smooth muscle tissue confirmed the high expression level of Myh11 (≈ 97 kb and 2,180 TPM) and 

Cald1 (≈ 177 kb and 1,698 TPM) in the mouse (Figure 3.3 B right). The expression levels of the genes of 

interest in myotubes were compared to the expression levels in undifferentiated myoblasts. Both genes (Ttn 

≈ 279 kb and 2,100 TPM and Neb ≈ 242 kb and 980 TPM) exhibited a high expression in myotubes (Figure 

3.3 B middle) and low expression in myoblasts (both genes ≈ 30 TPM). Of note, the expression of the genes 

in myoblasts above the zero level can be explained by a heterogeneous population of myoblasts, some of 

which start spontaneous differentiation into myotubes.  
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FIGURE 3.3: Five genes are long and highly expressed in both human and mouse tissues. Scatterplots showing the gene 

length (x-axis) and the transcription level (in TPM, y-axis) of all genes below 500 kb detected by RNA-seq in the respective tissue 

in (A) human and (B) mouse. Selected genes (red) stick out in terms of gene length and transcription level in both species and 

show substantially higher expression rates than examplary housekeeping genes (green). Human RNA-seq data taken from GTEx.  
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3.2 EXPRESSED LONG GENES FORM TRANSCRIPTION LOOPS 
 
Next, we sought to visualize the five candidate genes detected by RNA-seq via Fluorescence in situ 

Hybridization (FISH) on tissue cryosections or on cultured cells. We reasoned that – due to their high 

expression level – these genes should be densely decorated with nascent RNA transcripts. Similar to lateral 

loops of lampbrush chromosomes, the combination of a high amount of nascent RNA transcripts and the 

large size of the selected genes should enable their visualization with light microscopy.  

 

3.2.1 FISH PROBE DESIGN  

FISH probes, if not indicated otherwise, were BAC clones labeled by NT with either fluorophores or haptens 

(see Materials and Methods section 2.4.3). BAC derived probes span large regions (≈ 150‒250 kb) and, 

importantly, they are hybridizing mostly to introns because they are generally longer than exons (Deutsch 

and Long, 1999; Sakharkar et al., 2004; Zhu et al., 2009). Therefore, for visualizing DNA or RNA of a long 

gene, BAC probes are well suited. However, for labeling of short regions and specifically for labeling of 

selected introns or exons, a proportion of probes was generated by PCR from cDNA and genomic templates, 

or oligo probes were used (see Materials and Methods section 2.4.4). 

 

3.2.2 3D FISH ON LONG HIGHLY EXPRESSED GENES REVEALS TRANSCRIPTION LOOPS  

To visualize the genes selected from RNA-seq data, we carried out both DNA and RNA FISH on 

cryosections of the corresponding mouse tissues or cultured cells using BAC probes (Figure 3.4 A). 

Additionally, we visualized two “control genes” – highly expressed but short actin alpha 1 (Acta1) and long 

but lowly expressed dystrophin (Dmd). 

In DNA FISH experiments, we observed two different FISH signal patterns corresponding to the gene’s 

expression status. Expressed genes exhibited a dispersed FISH signal, sometimes consisting of several small 

foci in the nuclear interior (Figure 3.4 C). In contrast, silent genes assumed a dot-like shape with high 

fluorescence intensity and resided at the nuclear periphery or chromocenter surface (Figure 3.4 B). These 

different patterns suggest that transcribed long genes are highly decondensed, whereas they are condensed in 

a silent state. 

RNA FISH with the same set of probes did not show signals in cells in which the respective gene is silent. 

Expressing cells, in contrast, yielded RNA FISH signals in the shape of coiled loops in all tested genes (Figure 

3.4 D). These loops were especially large (up to 10 µm) in case of highly upregulated Tg. Importantly, nuclei 

exhibited two loops corresponding to two alleles (Figure 3.4 D).  

Due to the large length of introns (Deutsch and Long, 1999; Sakharkar et al., 2004; Zhu et al., 2009), the BAC 

derived genomic FISH probes mainly label intronic regions in nascent RNA transcripts (Figure 3.4 A). RNA 

FISH signal size therefore mostly depends on the presence of and corresponds to the amount of nascent 

transcripts. Hence, we concluded that the loops formed by transcribed genes are microscopically visible 

because the gene bodies are covered with thousands of nascent transcripts, comparable to transcription units 
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of lampbrush chromosomes and genes in polytene chromosome puffs. Thus, we termed these loops 

“Transcription Loops” (TLs). The data further corroborated our hypothesis that in order to be resolved by 

light microscopy, a gene requires both a reasonable length and a high transcription level. Consistent with that, 

the highly expressed (4,362 TPM) but short (≈ 3 kb) Acta1 gene did not form a TL in myotubes (Figure 3.4 

D). Likewise, the exceptionally long but very lowly expressed (5.5 TPM) Dmd gene (≈ 2,257 kb) also did not 

form a TL (Figure 3.4 D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.4: Microscopic visualization of transcription loops formed by long and highly expressed genes. (A) Green 

bars represent locations of genomic BAC probes relative to respective genes. Exons are depicted as vertical lines. BAC clone identifiers 

are indicated next to the bars. (B) DNA FISH in cells not expressing the respective gene, showed dot-like signals at the nuclear 

periphery or next to chromocenters. (C) DNA FISH in cells expressing the respective gene, revealed strongly decondensed gene 

bodies, especially prominent in the case of Ttn. For the short Acta1 gene, gene body decondesation was not resolvable. (D) RNA 

FISH in cells expressing the respective genes displayed coiled loop-like structures of different sizes for Tg, Neb, Ttn, Cald1 and 

Myh11. As in DNA FISH, the structure of transcribed Acta1 was irresolvable. The very lowly expressed Dmd gene did not show 

an RNA FISH signal. DNA was counterstained with DAPI (red). Scale bars 5 μm and 1 μm (zoom). 
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3.2.3 PROGRESSION OF TRANSCRIPTION ALONG TLS: VISUALIZATION OF EXONS AND ELONGATING 

POLYMERASES  

To investigate whether the observed RNA FISH signals (Figure 3.4 D) represent nascent RNAs produced by 

ongoing transcription, we performed FISH experiments with probes differentially labeling specific exons at 

the 5’ and 3’ ends of the Tg gene. The two probes showed different labeling patterns: the 5’ exon probe (exons 

2‒12) labeled the entire loop, whereas the 3’ exon probe (exons 33‒47) labeled only a part of the loop (Figure 

3.5 A). 

In contrast to introns, exons remain in the nascent RNA from the time they are transcribed. Therefore, early 

5’ exons mark transcripts along the whole TL, whereas 3’ exons that are transcribed later mark transcripts 

deriving from later parts of the gene. Given the design of FISH probes, the sequential labeling of the TLs 

thus depends on the presence of exons in nascent RNAs and therefore reflects ongoing transcription. In line 

with that, we showed co-localization of the Tg TLs with accumulations of the elongating form of RNA Pol II 

(RNAPII S2P) (Figure 3.5 B). Folded TLs formed structures with such a high concentration of RNA and 

proteins that nucleoplasmic areas corresponding to the loops were visibly depleted of chromatin, as indicated 

by DAPI staining (Figure 3.5 B). 
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FIGURE 3.5: Transcription loops manifest transcription progression. (A) RNA FISH with probes specifically labeling exons 

at the 5’ (exons 2‒12, green) and 3’ (exons 33‒ 47, red) ends of Tg allows to follow transcription progression along transcription 

loops. Early transcribed exons (5’) label the whole loop structure, whereas late transcribed exons (3’) only label part of the loop. 

Top: Scheme of Tg gene highlighting the positions of exon probes generated by PCR. Exons are depicted as vertical lines. Bottom left: 

Schematic representation of the observed labeling pattern. Arrow indicates the direction of transcription. Bottom right: Examples of 

thyrocyte nuclei fully labeled by a probe for exons 2-12 (green) and partly labeled by a probe for exons 33-47. The early portion 

of the gene only labeled by the probe for exons 2-12 is indicated by white and green arrows. Scale bar 2 μm. (B) Tg transcription 

loops (red and red arrows) co-localized with actively elongating RNA Pol II phosphorylated at CTD serine 2 (RNAPII S2P, green 

and green arrows). Co-localization occurred in euchromatic regions as indicated by DAPI staining (blue arrows). Scale bar 5 μm.                
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3.2.4 PROGRESSION OF TRANSCRIPTION ALONG TLS: VISUALIZATION OF INTRONS AND NUCLEAR 

SPECKLES  

In contrast to exon specific probes, RNA FISH with BAC probes labels mostly intronic regions, largely 

exceeding exons by length (Deutsch and Long, 1999; Sakharkar et al., 2004; Zhu et al., 2009) and therefore 

comprising most of nascent transcripts. Therefore, we used two sequential overlapping BACs to highlight Tg 

introns. The two probes labeled the Tg TL sequentially with a small portion of signal overlap (Figure 3.6 A). 

The 5’ probe strongly labeled the first half of the loop decorated by nascent RNAs containing both unspliced 

introns and exons and only faintly labeled the second half of the loop with remaining 5’ exons but spliced 

out 5’ introns.  The 3’ probe marked the second half of the loop by hybridizing to both 3’ exons and 3’ 

introns. This successive pattern of labeling demonstrates co-transcriptional splicing occurring on Tg TLs. 

Furthermore, we confirmed the occurrence of co-transcriptional splicing for all of the selected long genes 

using differentially labeled genomic probes for 5’ and 3’ halves of the genes (Figure 3.6 C). Consistent with 

ongoing high splicing activity on the abundant transcripts, the Tg TLs were found either in close proximity 

to or overlapping with nuclear speckles (Figure 3.6 B). Notably, RNA FISH with genomic probes also labeled 

multiple granules in the nucleoplasm (Figure 3.6 A and 3.6 C), which we interpreted either as accumulations 

of spliced out but not degraded introns or as not yet exported mRNAs.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.6: Transcription loops exhibit co-transcriptional splicing. (A) Genomic BAC probes (red and green) sequentially 

labeled the transcription loop due to hybridization to intronic sequences in nascent RNA (RNA FISH). Top: Scheme of Tg gene 

highlighting the positions of genomic BAC derived probes. Probe overlap is indicated by diagonal stripes. Exons are depicted as vertical lines. 

Bottom left: Schematic representation of the observed labeling pattern. Arrow indicates the direction of transcription. Bottom right: 

Examples of thyrocyte nuclei exhibiting sequential labeling pattern of the Tg transcription loop with BAC probes. The first half 

of the loop was labeled by the 5’ probe (green), the second half of the loop was labeled by the 3’ probe (red) due to hybridization 

to nascent RNA transcripts. The 5’ probe yielded a faint signal in the second half of the loop due to hybridization to early exons 

(filled arrowheads). As BAC probes are overlapping, the mid part of the gene yielded signal from both probes (empty arrowheads). 

Scale bar 2 μm. (B) Tg transcription loops (red) co-localized with (top) or resided in close proximity to (bottom) SC35 (green), a 

major constituent of nuclear speckles, in human thyrocytes. Transcription loops were typically localized in euchromatic regions 

(blue arrows). Scale bar 5 μm. (C) Top: Schemes of Ttn, Neb, Myh11 and Cald1 genes highlighting the positions of genomic BAC 

derived probes. Exons are depicted as vertical lines. Bottom: Sequential labeling of transcription loops with two BAC probes was also 

observed for Ttn and Neb in mouse skeletal muscle and for Myh11 and Cald1 in bladder smooth muscle tissue. DNA was 

counterstained with DAPI (blue). Scale bar 5 μm. 



RESULTS 

55 

 

 

 

 

 

 



RESULTS 

56 

3.2.5 ABSENCE OF RECURSIVE SPLICING FOR THE LONGEST TG INTRON  

It has been observed that a number of introns is not excised as a whole but undergoes so-called recursive 

splicing – successive rounds of splicing of parts of the intron until the whole intron is removed 

(Georgomanolis et al., 2016; Sibley et al., 2015). Since the Tg gene harbors a large intron (intron 41) of 53.8 kb, 

we set out to investigate whether this intron is subject to recursive splicing. To this end, we generated two 

FISH probes for the two halves of intron 41, each spanning ≈ 25 kb. The probe hybridizing to the 5’ half of 

the intron labeled the TL region corresponding to the entire intron, the probe for to the 3’ half of the intron 

labeled only half of this region (Figure 3.7). In case of recursive splicing, we would have expected the 5’ half 

probe to label only a part of the intron as a result of co-transcriptional excision before the entire intron is 

transcribed. Absence of sequential labeling of the intron suggests that the 53.8 kb intron 41 of the Tg gene is 

not spliced recursively. 

 

  
FIGURE 3.7: The 53.8 kb Tg intron 41 is not spliced recursively. Top: Scheme of Tg gene highlighting the location of PCR 

derived probes in intron 41. Each probe covers ≈ 25 kb. Exons are depicted as vertical lines. Bottom: Two examples of thyrocyte nuclei 

exhibiting labeling of the entire intron 41 by a probe for the first intron half (5’, green) and labeling of only a part of intron 41 

with a probe for the second half (3’, red). DNA was counterstained with DAPI (blue). Scale bars 2 μm and 1 μm (zoom).   
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3.3 INDUCTION AND INHIBITION OF TRANSCRIPTION LOOPS 
 
To provide further evidence that TLs are dynamic structures formed in response to transcriptional activation, 

we performed several experiments to either activate or inhibit transcription of the Ttn gene in vitro. 

 

3.3.1 INITIATION OF TTN TRANSCRIPTION LOOPS BY TRANSCRIPTION INITIATION  

First, we aimed at ectopically inducing Ttn TL formation in cells that do not express the gene endogenously. 

To this end, we generated myoblasts stably expressing a nuclease dead Cas9 (dCas9) conjugated with the 

transcription activator VP64-p65-Rta (VPR) (Chavez et al., 2015). VPR consists of three parts: 1) VP64, four 

tandem copies of VP16, typically inducing immediate early gene transcription in herpes simplex viruses, 

2) p65, a TF involved in immune modulation, and 3) Rta, a TF of the Epstein Barr virus expressed during 

the immediate early stage of the lytic cycle. These modified myoblasts were co-transfected with a cocktail of 

six plasmids expressing gRNAs targeting the Ttn (Ttn gRNAs) or Neb (Neb gRNAs) promoter region and 

H2A-GFP that enables selection of transfected cells for qPCR and microscopic analyses. Upon transfection, 

firstly, Ttn transcription was induced to a level comparable to myotubes, exceeding the expression of Ttn in 

myoblasts transfected with Neb control gRNAs by > 60-fold (Figure 3.8 A). Secondly, 90 % of cells (n = 49) 

transfected with gRNAs targeting the Ttn promoter region exhibited Ttn TLs (Figure 3.8 B), indicating that 

TLs are formed upon transcription initiation.   

 

 
 
FIGURE 3.8: Transcription induction leads to the formation of Ttn TLs in mouse myoblasts. Upon transcription 

induction via dCas9-VPR, transcription of the Ttn gene is upregulated and formation of a transcription loop is induced in Pmi28 

mouse myoblasts. (A) The relative transcription levels of Ttn in Pmi28 myoblasts transfected with Neb control gRNAs or Ttn 

gRNAs and in differentiated myotubes were assessed via qPCR. Ttn transcription was induced in cells transfected with Ttn gRNAs 

to a comparable level as in myotubes corresponding to a > 60 fold induction compared to myoblasts transfected with Neb control 

gRNAs. Bars represent standard deviation. (B) Whereas untransfected control cells (–gRNAs) as well as cells transfected with control 

off-target gRNAs (+Neb gRNAs) did not show transcription loop formation of the Ttn gene, but revealed condensed gene bodies 

(top), cells transfected with Ttn gRNAs (+Ttn gRNAs) exhibited TL formation in both alleles in 90 % of cells (arrows). DNA was 

counterstained with DAPI (red). Scale bar 5 μm.  
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3.3.2 ELIMINATION OF TTN TRANSCRIPTION LOOPS BY TRANSCRIPTION INHIBITION 

Second, we aimed at eliminating Ttn TLs by transcription inhibition. We applied three different inhibitors 

with various mechanisms. 1) α-Amanitin is a cyclic peptide derived from the mushroom genus Amanita and 

selectively inhibits RNA Pol II and III. It interferes with the bridge helix between the two largest Pol II 

subunits, Rpb1 and Rpb2, and thus hinders DNA and RNA translocation, slowing down transcription to a 

few bp per minute (Bushnell et al., 2002; Rudd and Luse, 1996). 2) Actinomycin D is a cyclic peptide antibiotic 

that binds directly to DNA by intercalating into GC rich regions, thereby stabilizing covalent complexes with 

topoisomerase I and preventing RNA polymerase progression at the initiation site (Sobell, 1985; Trask and 

Muller, 1988). 3) The adenosine analog 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) reversibly 

inhibits CDK9 and therefore prevents the phosphorylation of negative elongation factor (NELF) and DRB 

sensitivity inducing factor (DSIF), hampering Pol II from escaping the promoter into active elongation and 

holding it in a stalled state a few bp downstream of the TSS (Nechaev and Adelman, 2011).  

Transcription inhibition with either of these drugs abolished the formation of TLs (Figure 3.9 A). A dot-like 

bright FISH signal indicated that the gene body condenses upon drug treatment (Figure 3.9 A). Applying 

DRB, reversibly keeping Pol II in a stalled state, allowed to monitor the kinetics of TL formation. Upon DRB 

treatment, no polymerases are released into elongation, whereas the already elongating polymerases continue 

to move along the gene body. Consistent with that, upon incubation with DRB, the RNA FISH signal was 

gradually reducing, reaching its minimum size after 3 hours of incubation (longer incubation for up to 6 hours 

did not further diminish the signal). After drug withdrawal, the RNA FISH signal was restored and gradually 

grew over time (Figure 3.9 B). Within 75 min after drug withdrawal, Ttn TLs reached their full size in some 

myotube nuclei. Given an elongation speed of RNA Pol II of 3.8 kb/min (Singh and Padgett, 2009), this is 

consistent with the estimated time for one full round of transcription of the Ttn gene of approx. 75 min. 

In addition, using differentially labeled probes for 5’ and 3’ nascent RNAs, we demonstrated that after DRB 

removal the 5’ RNA signal (corresponding to early RNA transcripts) emerges and grows first, whereas the 3’ 

signal (corresponding to late RNA transcripts) emerges and grows later (Figure 3.9 C). These data provide 

further evidence that TL formation depends on active transcription. 
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FIGURE 3.9: Transcription loop formation is obliterated by transcription inhibition. (A) Transcription loop formation of 

Ttn is abolished upon treatment with either of the transcriptional inhibitors actinomycin D, α-amanitin or DRB. FISH labeling 

both DNA and RNA on drug treated Pmi28 myotubes revealed dot-like signals corresponding to a condensed gene body, 

comparable to the signal oberserved in myoblasts (left). Scale bar 5 μm. (B) Treatment of myotubes with DRB led to a gradual 

shrinkage of the Ttn TL as visualized with a genomic BAC probe (scheme, green bar) by FISH labeling both DNA and RNA. 

Upper panel: Ttn TLs were withdrawn gradually (left to right) as drug treatment time increases (+DRB). After 3 h of treatment, 

the gene body appeared as condensed bright spot. Lower panel: Starting from a condensed gene body after 6 h of DRB treatment, 

removal of the drug (–DRB) led to a gradual restoration of the Ttn transcription loop (left to right). BAC clone identifier is indicated 

below green bar. DNA was counterstained with DAPI (red). Scale bar 5 μm. (C) RNA FISH using differentially labeled probes for the 5’ 

and 3’ regions of Ttn (scheme, green and red bars) revealed that after drug removal, the 5’ signal (green) grew first and reached its 

full DRB). Scale bar 5 μm. 
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3.4 CORRELATION OF TRANSCRIPTION LOOP SIZE, GENE SIZE AND 

TRANSCRIPTION LEVEL 
 

3.4.1 HIGHLY EXPRESSED GENES ARE EXPRESSED BIALLELICALLY 

Monoallelic expression refers to the random expression of a gene from only one of the two alleles in a diploid 

cell and has been reported for > 10 % of autosomal mouse genes (Zwemer et al., 2012). Monoallelic 

expression is cell-type specific and leads to a high heterogeneity between different cells of the same tissue 

(Eckersley-Maslin and Spector, 2014). It was suggested as a mechanism to fine-tune gene dosage in order to 

control developmental regulatory pathways (Gendrel et al., 2014).  

All five genes we investigated exhibit high and robust transcription levels and therefore could serve as 

convenient models to study random monoallelic expression by microscopy. Using RNA FISH on the 

respective gene, we scored nuclei with one Tg TL in thyrocytes or one Ttn TL in cultured myotubes or skeletal 

muscle. Only 5.4 % of myotube nuclei exhibited one active Ttn allele (TL). In tissues, the percentage of nuclei 

with only one active allele was even lower: 2 % exhibited one active Ttn allele in skeletal muscle and 3 % 

exhibited one active Tg allele in thyrocytes. Neb, Myh11 and Cald1 also consistently exhibited two TL signals 

when visualized by RNA FISH in respective tissues. Based on these observations, we conclude that highly 

upregulated genes are generally expressed biallelically.  

 
3.4.2 TRANSCRIPTION LOOP SIZE DOES NOT CORRESPOND TO GENE SIZE 

Transcriptional bursting is considered to be a universal principle of gene expression (Chubb et al., 2006). It 

is characterized by a stochastic alternation between activation and inactivation of promoters, which results in 

the discontinuous production of mRNAs in bursts interrupted by pauses. The active periods of a promoter 

may range from minutes to hours leading to the production of a few to hundreds of transcripts during one 

burst (Nicolas et al., 2017). Furthermore, it was shown previously that during a transcription burst, RNA 

polymerases are loaded and move in groups, so-called convoys (Tantale et al., 2016). Therefore, one gene can 

feature multiple transcription bursts (RNA Pol II convoys) along its body. Assuming an elongation speed of 

3.8 kb/min, the time needed for transcription of the entire Ttn gene is approx. 75 min, for Neb approx. 

60 min, for Tg and Cald1 approx. 45 min, and for Myh 11 approx. 25 min. The presence of consistent biallelic 

RNA signals of the studied genes (see Results section 3.4.1) implies that in case of temporal silencing of one 

of the homologs, such pause must be less than 25 min.  

A recent study has shown that the expression level of a gene is directly connected to the frequency as well as 

the duration of its transcription bursts (Larsson et al., 2019). Highly expressed genes are transcribed in long 

bursts, that is they are covered by long RNA Pol II convoys that are frequently initiated and interrupted by 

short pauses. Lowly expressed genes, in contrast, are transcribed in short bursts with long pauses (Larsson et 

al., 2019). Taking these considerations into account, we assumed that the TLs of the studied genes expressed 

on different levels, should have different bursting patterns reflected by their TL structure. Indeed, the patterns 

of DNA FISH signals strongly differ between the genes. Whereas the Tg gene (22,924 TPM) is highly 
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decondensed and its axis is hardly traceable, the Ttn gene (2,110 TPM) shows a beads-on-string structure with 

alternating decondensed and condensed regions (Figure 3.10 A). The gene body of Neb (980 TPM) exhibits 

a rather solid signal and exhibits only one or two resolvable gaps (Figure 3.10 A). We reason that the 

decondensed regions correspond to transcription bursts, while the condensed regions correspond to pauses 

between two bursts.  For a given gene, the TL pattern, that is the number of DNA FISH foci, differs between 

different cells, indicating that each cell and even each allele exhibit their own bursting rhythm. Consistent 

with our reasoning, the size of RNA FISH signals (Tg > Ttn > Neb) of the studied genes does not directly 

correlate with the length of the genes (Ttn: ≈ 280 kb > Neb: ≈ 242 kb > Tg: ≈ 180 kb) but rather with their 

transcription level (Tg: 22,924 TPM > Ttn: 2,100 TPM > Neb: 980 TPM) (Figure 3.10 B). We therefore 

conclude that a gene’s bursting kinetics is reflected in the structure of the formed TL. 

 

   
FIGURE 3.10: Transcription loop size does not correspond to gene length. Tg transcription loops are generally bigger than 

the TLs formed by Ttn (279 kb) or Neb (242 kb), despite its smaller genomic size (180 kb). However, the Tg gene (22,924 TPM) 

exhibits a 10-fold higher transcription level than Ttn (2,110 TPM) and a 20-fold higher transcription level than Neb (980 TPM). 

(A) DNA FISH for the same genes in the respective cell types (thyrocytes for Tg and myotubes for Ttn and Neb) revealed a high 

decondensation of the Tg gene body, reflected by a hardly traceable FISH signal (left). In contrast, the gene bodies of Ttn and Neb 

exhibited condensed regions indicated by bright dots (middle and right, respectively), with the Ttn gene body consisting of five to 

eight such dots and the Neb gene body consisting of one or two dots. DNA was counterstained with DAPI (red). Scale bar 5 μm. (B) 

RNA FISH for Tg in thyrocytes (left) and Ttn and Neb in myotubes (middle and right, respectively) revealed that Tg TLs are more 

expanded than those of Ttn and Neb. Scale bar 5 μm.  
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Transcriptional bursting of the Tg gene was further investigated by using a probe encompassing selective 

regions of the gene. RNA FISH with two differentially labeled probes encompassing the 5’ end (32 kb) and 

intron 41 (50 kb) of the Tg gene (Figure 3.11) revealed varying patterns of bursting between homologues. 

8 % of the Tg alleles did not have one of the signals, indicating that these TLs 5’ or 3’ regions were in between 

two bursts (Figure 3.11). Given that the length of the intron probe is approx. 50 kb, the data indicate that the 

pause between two bursts (the distance between two Pol II convoys) can be up to 50 kb. Additionally, analysis 

of the signal sizes of 87 Tg alleles showed that in 38 % of the alleles, the start signal deriving from a smaller 

genomic region is bigger than the intron signal, in 18 % of the alleles the intron signal is bigger, and in 44 % 

they are of equal size (Figure 3.11). The different sizes of RNA FISH signals and their absence in some cases 

suggest that alleles of the same gene exhibit different bursting patterns. 

 

  
FIGURE 3.11: Not all regions of Tg are transcribed at the same time. RNA FISH with probes encompassing short ( ≈ 30–

50 kb) regions of the Tg gene (top, beginning of Tg in green, end of Tg in red) reveals that not every part of the Tg gene is transcribed 

at any time. In 38 % of investigated alleles (n = 87), the start signal is bigger than the intron signal, in 18 %, the intron signal is 

bigger and in 44 %, they are equally sized.  8 % of investigated alleles show an absence of signal of either of the two probes (5 %: 

absence of intron signal, 3 %: absence of start signal), indicating that this respective part of the gene is not covered by polymerases 

and therefore no RNA is transcribed. DNA was counterstained with DAPI (blue). Scale bars 2 μm and 1 μm (zoom). 

 

 

 

 

 

 

 

 



RESULTS 

63 

3.5 TRANSCRIPTION LOOPS SHAPE THEIR IMMEDIATE CHROMATIN 

NEIGHBORHOOD 
 

3.5.1 TG TRANSCRIPTION LOOPS ARE EXCLUDED FROM HARBORING CHROMOSOME TERRITORIES 

Since chromosome territoriality has been considered a major hallmark of genome organization in the cell 

nucleus (see Introduction section 1.1.3), we investigated the spatial relationship between a highly transcribed 

gene forming a TL and its harboring chromosome. Using a paint for mouse chromosome 15 and a genomic 

probe for the Tg gene, we performed FISH simultaneously detecting DNA and RNA and observed that the 

transcribed Tg gene is consistently excluded from the harboring chromosome and forms its own 

“transcription territory” directly adjacent to the chromosome territory (CT) (Figure 3.12). Moreover, in 2 % 

of the alleles (n = 200), the Tg transcription loop splits the CT into two parts (Figure 3.12). 

We also visualized Ttn and Neb TLs together with their harboring chromosome 2 in myotubes and found 

these genes residing either on the surface, or outside of the respective CT but not within the CT in the 

majority of the investigated alleles (90 % of Ttn alleles, n = 100; and 72 % of Neb alleles, n = 81). 

 

 
 

FIGURE 3.12: The Tg TL disrupts the territory of mouse chromosome 15. Visualization of the Tg TL (red) together with 

the respective chromosome 15 (MMU15, green) in mouse thyrocytes. The TLs form their own “territory” next to the CT. In 2 % 

of alleles, the TL divides the CT into two parts (red arrowheads). DNA was counterstained with DAPI (blue). Scale bar 5 μm.  
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3.5.2 HI-C DATA CONFIRM EXCLUSION OF TRANSCRIPTION LOOPS FROM CHROMOSOMES  

The relationship between the selected highly expressed genes and their harboring chromosomes was further  

quantified by the number of interactions between the respective gene and the rest of the genome. Four cell 

types were subjected to Hi-C: undifferentiated myoblasts, myotubes differentiated in vitro, thyrocytes (thyroid) 

and smooth muscle (bladder).  

To comparably estimate the extent to which the TL forming genes are excluded from the respective CT, we 

calculated the ratio of cis (same chromosome) to trans (other chromosome) contacts along the gene body of 

the respective gene in the active and silent states. Analysis of these ratios revealed that genes exhibiting the 

largest TLs detected by FISH, such as Tg and Ttn, displayed a lower cis/trans contact frequency ratio than 

other long genes in the same cell type but with weaker expression (Figure 3.13). The decline in the cis/trans 

contact frequency ratio was especially prominent for the expressed Tg gene in thyrocytes (Figure 3.13). 

Notably, the dip in this case exhibits an asymmetrical shape with a deeper incline towards the TTS suggesting 

a more distinct exclusion from the CT of this part of the gene. Similarly, an asymmetric dip was also observed 

for expressed Ttn in myotubes. Neb, Cald1 and Myh11, characterized by lower expression and visibly smaller 

TLs, have cis/trans ratios similar to other long lowly expressed genes (Figure 3.13). 

Taken together, the observed transcription dependent decline in the cis/trans contact frequency ratio along 

the TL forming genes further suggests that long and highly expressed genes loop out of their respective CT.  

 

 

 

 

 

 

 

 

 
FIGURE 3.13: Hi-C data confirm the exclusion of TLs from the respective CT. Left: FISH images depicting the shape of 

TL forming genes (green; Tg, Ttn, Neb, Cald1 and Myh11) in the active (+) and silent (–) states. DNA was counterstained with DAPI 

(red). Scale bar 5 µm. Middle: Hi-C maps and cis/trans contact ratios. 25 Mb Hi-C contact map and a 1 Mb zoom view with different 

resolutions showing contact frequencies in regions harboring TL forming genes in active and silent states. Blue cross hairs indicate 

the location of the respective gene. Surprisingly, the morphological features observed by microscopy are not reflected in Hi-C 

maps, where differences between “on” and “off” are only moderate and differ between the studied genes. Right: The ratio of 

cis/trans contact frequencies (number of cis reads/number of trans reads) along the gene bodies of Tg, Ttn, Neb, Cald1 and Myh11 

was calculated based on Hi-C data in the active and silent states of the genes. Ratios along the genes of interest are depicted as red 

lines, dark gray lines correspond to long lowly expressed control genes. Gene body location is indicated by a light gray box. Ratios 

below 1 indicate a higher frequency of trans contacts in comparison to cis contacts and therefore suggest the exclusion of a region 

from the harboring CT. The Tg gene shows a pronounced cis/trans dip in thyroids; other highly expressed long genes show a 

moderate dip (Ttn in myotubes, Myh11 in bladder). For comparability of cis/trans profiles, the x-coordinates are rescaled such that 

TSS and TTS of all genes in a panel align (gene length is marked by shaded area). Furthermore, to highlight potential dips in the gene 

body against longer range variations, cis/trans profiles are normalized to unity in the region outside the gene body (see Materials 

and Methods section 2.7 for details). 
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3.5.3 TRANSCRIPTION LOOPS ARE OPEN LOOPS WITH SEPARATED FLANKS  

Earlier studies suggested that, in highly expressed genes, the promoter physically interacts with the 

transcription termination site (Hampsey et al., 2011). It is assumed that this interaction facilitates the recycling 

of polymerases since they directly engage in a new round of transcription immediately after being released at 

the 3’ gene end (Shandilya and Roberts, 2012). Accordingly, transcriptional bursting has been attributed to 

the assembly and disassembly of such loops (Hebenstreit, 2013). Therefore, we were prompted to investigate 

whether in our selected highly expressed genes, the 5’ and 3’ ends reside in close proximity. 

We conducted FISH detecting DNA and RNA simultaneously with probes hybridizing to the gene bodies of 

either Tg or Ttn and to their respective flanking regions and measured 3D distances between the flanks using 

confocal stacks and a semi-automated script (see Materials and Methods sections 2.8.1 and 2.9.2). We found 

that distances (median) between Tg flanks (0.703 µm) are 2.3 times larger than in control cells (0.311 µm) not 

expressing the Tg gene (Figure 3.14).  

 

 
FIGURE 3.14: The gene flanking regions of expressed Tg are spatially separated. 85 % of alleles exhibit visibly separated 

3’ and 5’ flanks of the expressed Tg gene in mouse thyrocytes. In cells not expressing Tg (trachea epithelial cells), the flanks 

separation is microscopically visible in only 20 % of alleles. (A) UCSC genome browser snapshot showing the position of Tg and 

neighboring genes. Color bars depict the location of BAC derived probes for Tg (yellow) and its 5’ (green) and 3’ (red) flanks. BAC 

clone identifiers are indicated below the bars. (B) Simultaneous detection of the Tg gene and its flanking regions (left) or flanking regions 

only (right) by FISH labeling both DNA and RNA in thyrocytes and control cells (trachea epithelial cells). DNA was counterstained 

with DAPI (blue). Scale bar 5 μm. (C) Boxplot depicting the 3D distance between the flanking regions in the two tissues measured 

on confocal stacks. The inter-flank distances in thyrocytes (n = 203, median = 703 nm) expressing Tg is 2.3 times larger than in 

control cells (n = 180, median = 311 nm) not expressing Tg. ***p-value < 0.001; Wilcoxon rank sum test. 
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Similarly, median distances between Ttn flanks in myotubes (1.104 µm) expressing the gene were 1.7 times 

larger than in myoblasts (0.634 µm) in which the gene is silent (Figure 3.15). 

Transcription inhibition with DRB shortened the distance between the flanks to 0.963 µm, whereas 

transcription restoration after DRB removal caused convergence of the Ttn flanks to a median distance of 

1.130 µm, a value not significantly different from the distance measured in untreated myotubes (Figure 3.15). 

These results indicate that (i) transcription actively shapes the chromatin environment at the respective locus, 

and (ii) gene flanking regions are driven to diverge upon transcriptional induction.  

 

 
 

FIGURE 3.15: The separation of gene flanking regions is highly dynamic. Measurements of gene flank distances in 

myoblasts, untreated myotubes as well as myotubes after reversible transcription inhibition via DRB, and myotubes with restored 

transcription after DRB removal, showed that the Ttn locus and its flanking regions exhibit dynamic reshaping depending on the 

gene’s transcriptional state. (A) UCSC genome browser snapshot showing the position of Ttn and neighboring genes. Color bars 

depict the location of BAC derived probes for Ttn (yellow) and its 5’ (green) and 3’ (red) flanks. BAC clone identifiers are indicated 

below the bars. (B) Simultaneous detection of the Ttn gene and its flanking regions by FISH labeling both DNA and RNA in 

myoblasts, untreated myotubes, myotubes treated with DRB for 6h, and myotubes 6h after DRB removal. DNA was counterstained 

with DAPI (blue). Scale bar 5 μm. (C) Boxplot depicting the 3D distances between the flanking regions of Ttn in the 4 different 

conditions measured on confocal stacks. The inter-flank distances in myotubes (w/o DRB; n = 116, median = 1104 nm) expressing 

Ttn was 1.7 times larger than in myoblasts (blasts; n = 62, median = 634 nm), i.e. cells not expressing the gene. Upon transcription 

inhibition with DRB, the gene flanks converged (+DRB 6h; n = 113, median = 963 nm), after DRB removal and transcription 

restoration, the gene flanks diverged again (–DRB 6h; n = 87, median = 1130 nm).  ***p-value < 0.001, *p-value < 0.05, n.s. not 

significant; Wilcoxon rank sum test. 
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3.6 DECIPHERING THE CAUSE OF TRANSCRIPTION LOOP FORMATION 

3.6.1 ARE TRANSCRIPTION LOOPS STIFF STRUCTURES? 

Collectively, the data presented in chapter 3.5 concerning the exclusion of TLs from harboring chromosomes 

and the separation of gene flanking regions point towards an intrinsic stiffness of TL structures. We 

hypothesize that such rigidity of the highly expressed genes could be caused by the dense decoration of their 

axis with RNA Pol II carrying nascent RNA transcripts. Nascent RNAs are known to bind hundreds of 

proteins involved in splicing, mRNA export, capping, poly adenylation, etc. (Muller-McNicoll and 

Neugebauer, 2013) and therefore form nascent ribonucleoprotein particles (nRNPs). In case of a long nascent 

RNA, the nRNPs decorating the gene axis therefore are quite voluminous exceeding the volume of 

nucleosomes and even polymerase complexes. When a gene is highly expressed, voluminous RNPs, attached 

to polymerases traveling in convoys, are densely spaced along the gene axis and thus render the gene axis less 

flexible but stiff. This in turn causes looping of a gene out of its harboring chromosome territory and 

protruding into the nuclear interior. 

To test this hypothesis, we chose three different strategies. First, we investigated via FISH if the region of a 

TL corresponding to a long intron is markedly more expanded than a region corresponding to alternating 

short introns. Second, we employed EM to visualize nRNPs formed on the Ttn gene. Third, we used polymer 

models of TLs with varying parameters in order to explore which of the models recapitulates our biological 

observations. 

 

3.6.2 THE LONGEST INTRON OF THE TG GENE IS STRONGLY EXPANDED 

In FISH experiments differentially labeling 5’ and 3’ halves of the Tg gene, the two halves are often stretched 

to different extents with a more expanded 3’ half (Figure 3.16 A). This 3’ half of the gene includes the long 

intron 41 measuring 53.8 kb (see also Results section 3.2.5). During transcription, nascent RNA (nRNA) 

grows from 7.3 kb to 61.1 kb across this intron. Since we demonstrated that the intron does not undergo 

microscopically detectable recursive splicing (see Results section 3.2.5), we expected that in case of a 

transcription burst including the entire intron, it should be expanded to a greater extent than the rest of the 

Tg TL. To estimate expansion of the intron, we designed a probe consisting of closely spaced fragments of 

approx. 200 bp obtained by PCR (see Material and Methods section 2.4.4). The probe encompasses the first 

half of the Tg intron 41 and therefore hybridizes to all nRNAs of the intron 41 before its excision. RNA 

FISH with a combination of the intron probe and a genomic probe encompassing most of the Tg gene 

showed that in the majority of the alleles, the part of the Tg TL corresponding to the large intron 41 is much 

more extended than the rest of the gene (Figure 3.16 B). Based on these observations, we concluded that (i) 

different TL regions are coiled to various degrees and (ii) the degree of coiling is dependent on the size of 

the associated transcripts: regions corresponding to short transcripts are coiled stronger than regions with 

longer transcripts. 
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FIGURE 3.16: The large Tg intron substantially contributes to TL expansion. Intron 41, located in the 3’ half of the Tg 

gene, measures 53.8 kb and exhibits greater expansion than the first gene half as shown by RNA FISH with BAC- and PCR 

derived probes. (A) Two examples of thyrocyte nuclei with TLs differentially labeled with two BAC probes for the first (red) and 

the second (green) half of the Tg gene. The signal deriving from the second half of the gene was expanded whereas the first half 

was rather coiled. Probe location is indicated by a scheme of Tg and red and green bars above the image panel. BAC identifiers are indicated next to 

bars. Vertical bars correspond to exons. DNA was counterstained with DAPI (blue). Scale bars 5 μm and 1 μm (zoom). (B) Two examples of 

thyrocyte nuclei with TLs labeled with a BAC probe encompassing almost the whole Tg gene (red) and a PCR derived probe 

specific for the first half of the 53.8 kb intron 41 (green). The signal deriving from the intronic probe was expanded comparable 

to the signal of the second half of the gene in (A). Probe location is indicated by a scheme of Tg and red and green bars above the image panel. 

BAC identifiers are indicated next to bars. Vertical bars correspond to exons. DNA was counterstained with DAPI (blue). Scale bars 2 μm and 1 

μm (zoom). 
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3.6.3 ELECTRON MICROSCOPY REVEALS UNIQUE ACCUMULATIONS OF GRANULES IN MYOTUBE 

NUCLEI 
 

Electron microscopy was carried out in collaboration with Dr. Mandy Börmel and Dr. Yannick Schwab at the European 

Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. 

A literature search revealed that unambiguous and reliable identification of nRNPs so far was performed on 

polytene chromosomes, active at the larval stage in salivary glands of midges from the genus Chironomus 

(Mehlin and Daneholt, 1993; Olins et al., 1992; Stevens and Swift, 1966). The three highly upregulated genes 

on Chironomus chromosome IV are strongly decondensed and form huge polytene puffs, so called Balbiani 

rings (Bjork and Wieslander, 2015). The almost intronless genes measure about 35–40 kb and are decorated 

by nRNPs progressively growing in size, reaching a diameter of 50 nm at the end of the genes (Bjork and 

Wieslander, 2015).  

For visualization of RNPs, we chose the Ttn gene because its mRNA measures ≈ 103 kb and therefore RNPs 

formed towards the middle or the end of the Ttn gene are likely detectable with electron microscopy. We 

investigated the ultrastructure of nuclei from in vitro differentiated myotubes and found conspicuous 

accumulations of densely packed granules of varying sizes from approx. 30 nm to approx. 50 nm in diameter 

(Figure 3.17 A). Smaller granules were packed in dense accumulations, whereas larger granules were packed 

more loosely (Figure 3.17 B). 40 % of examined myotube nuclei exhibited granular accumulations of approx. 

30 nm, 30 % of nuclei exhibited larger granules of approx. 50 nm (n = 152). 

 
FIGURE 3.17: Myotube nuclei exhibit granular accumulations. Transmission electron microscopy revealed accumulations 

of 30 (A) to 50 (B) nm granules in myotube nuclei that typically reside within nuclear speckles as indicated by small granules with 

fibrillar connections (red arrowheads). (A) Myotube nucleus depicted in increasing magnifications (left to right) highlighting dense 

granular accumulations in euchromatin (right, outlined in red). Each individual granule measured approx. 30 nm. n = nucleolus, cc = 

chromocenter. (B) Myotube nucleus depicted in increasing magnifications (left to right) highlighting dense granular accumulations 

with sizes up to 50 nm (red doubled arrowheads) found in 30 % of myotube nuclei (n = 82).  
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3.6.4 POLYMER MODELING CONFIRMS TRANSCRIPTION LOOP STIFFNESS  
 

Polymer modeling was carried out in collaboration with Dr. Johannes Nübler and Prof. Dr. Leonid Mirny at the Institute for 

Medical Engineering and Science and Physics at the Massachusetts Institute of Technology (MIT) in Cambridge, USA. 

To investigate whether TL stiffness indeed is the main determinant of TL formation, we sought to model 

genes with various physical properties and compared the resulting models with biological observations on 

the Tg gene. Six chromosomes were modeled as 50 Mb polymers with a monomer size of 1 kb. Simulated 

mitotic-like conformations were allowed to expand within a spherical nucleus to achieve chromosomal 

territoriality. On each simulated chromosome, a region of 100 kb was assigned as gene of interest. By changing 

different parameters of such a gene, we explored at which conditions biological observations on the Tg TLs 

were recapitulated – the visual appearance of the TLs, including loop size and degree of coiling, the distances 

between the gene flanking regions and the ratio of cis/trans contacts along the gene (Figure 3.18 A). For 

instance, a mere (3-fold) increase in the gene length as result of a partial nucleosome loss as it has been found 

for highly expressed genes (Kulaeva et al., 2010), did neither lead to the formation of TLs with separate flanks 

nor to changes in cis/trans ratio of contact frequencies calculated from a simulated Hi-C (Figure 3.18 B). Only 

models employing both a 3-fold gene length extension and a 12-fold increase in gene stiffness successfully 

recapitulated all three parameters – the morphology of Tg TLs, inter-flank distances and the decline in the 

ratio of cis/trans contact frequencies (Figure 3.18 C). Models implicating an increase in gene stiffness from 

the 5’ towards 3’ gene end mimicking tapered gene stiffness due to growing nRNPs performed even better. 

Analysis of simulated Hi-C of these models exhibited asymmetrical cis/trans ratio curves with a steeper incline 

towards the 3’ end (Figure 3.18 D), similar to the curves derived from biological experiments (compare with 

Tg and Ttn in Results section 3.5.2, Figure 3.13). 
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FIGURE 3.18: Polymer models implicating gene stiffness recapitulate TL formation. Polymer models confirm that a mere 

increase in gene length does not lead to TL formation. Only an increase in both gene length and gene stiffness recapitulates 

biological observations on the Tg TL. (A) Biological observations on Tg in thyrocytes used to determine model performance. From 

left to right: visual appearance of the Tg TL (green, DNA was counterstained with DAPI (red)), inter-flank distances of 776 nm 

(mean), HiC map and a decrease in the cis/trans contact frequency ratio along the gene body (red line; long, lowly expressed genes 

serve as comparison (grey lines)). Scale bars 2 μm. (B) – (D) Polymer models with varying parameters. From left to right: Visual 

appearance of the genes of interest (red, blue and green) within modeled nuclei, simulated inter-flank distances (red dot, actual 

measured distances for active and inactive genes are indicated by solid and dashed blue lines, respectively), simulated HiC  maps 

and a plot depicting the respective cis/trans contact frequency ratio along the gene (grey background) and its immediate 

surrounding. All models implicate 6 chromosomes of 50 Mb each with regions of 100 kb assigned as genes of interest. (B) In first 

model, the gene length was increased 3-fold. This mere increase in gene length yielded shorter inter-flank distances than measured 

and did not lead to a decrease in the cis/trans contact frequency ratio. (C) Same model as in (B), but with a 12-fold increase in gene 

stiffness. This model recapitulates both, the measured inter-flank distances and the decrease in the cis/trans contact frequency ratio 

(red line). Cis/trans contact frequency ratio from (B) is shown in dark grey as comparison. (D) Same model as in (B) but with a 

tapered stiffness along the gene body increasing towards the TTS. This model also recapitulates both the measured inter-flank 

distances and the decrease in the cis/trans contact frequency ratio, but performs even better. Note that the dip in cis/trans contact 

frequency ratio along the gene body (red line) is asymmetrical with a slightly deeper decrease towards the TTS that is also seen in 

(A). Cis/trans contact frequency ratio from (B) is shown in dark grey as comparison. 
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3.7 TAKING A CLOSER LOOK AT THE EXTRAORDINARY THYROGLOBULIN GENE  

The mouse Tg gene is especially unique in terms of its remarkably high expression level combined with its 

length. After characterizing Tg as a TL forming gene, we aimed at further exploiting this extraordinary gene 

to investigate TL formation with regard to evolutionary aspects, systemic influences and regulatory pathways 

beyond direct transcriptional output. Therefore, experiments focusing on the Tg gene are illustrated and 

discussed in this separate chapter.  

 

3.7.1 TG FORMS TRANSCRIPTION LOOPS IN OTHER VERTEBRATE SPECIES 

Given the importance of T3 and T4 hormones for vertebrate physiology and development (Iwen et al., 2013; 

Little, 2006a, b), we were prompted to investigate whether the TG gene is highly upregulated not only in 

mammals, but also in other vertebrate groups. To this end, we conducted RNA FISH experiments on 

thyrocytes of other vertebrate species. We prepared cryosections of chicken (Gallus gallus domesticus) and frog 

(Xenopus tropicalis) thyroid glands, as well as heads of fish (Danio rerio). Fish thyrocytes were identified based 

on green fluorescence deriving from eGFP expression under the TG promoter (see Materials and Methods 

section 2.2.2). We found that in all of these species, similar to mouse thyrocytes, both alleles of the Tg gene 

form transcription loops (Figure 3.19), suggesting that Tg is highly upregulated in all vertebrate groups.   
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FIGURE 3.19: The Tg gene forms transcription loops in all other vertebrate groups. TL formation in other vertebrate 

species was assessed by RNA FISH with genomic BAC probes in thyroid tissue of different vertebrate groups (icons). From top 

to bottom: Zebrafish (Danio rerio) tg (≈ 68 kb), frog (Xenopus tropicalis) tg (≈ 122 kb) and chicken (Gallus gallus domesticus) TG (≈ 139 

kb) all show TL comparable to those of mouse (Mus musculus, Tg ≈ 180 kb) thyrocytes. Phylogenetic tree is shown for reference. 

Scale bars 10 μm (overview) and 2 μm (zoom). 
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3.7.2 TG FORMS TRANSCRIPTION LOOPS IN IN VITRO GROWN AND IN GRAFTED THYROID FOLLICLES 

In 2012, researches succeeded in generating functional thyroid tissue from mouse embryonic stem cells 

(mESCs) by overexpressing the thyroid specific transcription factors NKX2.1 and PAX8 in combination 

with thyrotropin (TSH) treatment in vitro (Antonica et al., 2012). The obtained tissue was grafted into the 

kidneys of athyroid mice, rescued hormone plasma levels, and also led to recovery of athyroidism derived 

symptoms (Antonica et al., 2012) (Figure 3.20 A). Since this thyroid tissue appears to be fully functional, we 

reasoned that also the transcription rate of Tg should be as high as in endogenous mouse tissue.  

We conducted FISH detecting both DNA and RNA with a genomic BAC probe for Tg on cyrosections of in 

vitro grown thyroid follicles as well as grafted kidney tissue provided by Dr. Sabine Costagliola (Université 

libre de Bruxelles, Brussels, Belgium), and found TLs in follicles grown in matrigel in vitro (Figure 3.20 B). 

However, the structure and fine morphology of these TLs were hardly comparable to Tg TLs in endogenous 

mouse thyroid tissue due to the compromised morphology of thyrocyte nuclei after FISH on matrigel 

embedded follicles (Figure 3.20 B). Therefore, we also performed FISH on cryosections derived from the 

kidney of a female mouse with implanted cultured follicles (Antonica et al., 2012). To identify the grafted 

male mouse tissue, we used a BAC spanning sex-determining region Y (Sry) on the Y chromosome. In this 

case, FISH revealed Tg TLs comparable in shape and size to those of endogenous mouse thyroid tissue 

(Figure 3.20 C). This data indicate that Tg TLs are formed in functional thyrocytes irrespective of their origin 

and that tissue functionality coincides with Tg TL formation. 
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FIGURE 3.20: Tg forms a TL in grafted thyroid follicles generated from mESCs in vitro. mESCs transiently expressing 

the TFs NKX2.1 and PAX8 were differentiated in vitro to form functional thyroid tissue. When transplanted into hypothyroid 

mice, these tissues rescue blood thyroid hormone levels (Antonica et al., 2012). (A) Schematic depiction of the workflow to 

generate thyroid follicles from mESCs in vitro and to test tissue functionality. TFs Nkx2.1 and Pax8 are overexpressed under the 

control of a doxycycline inducible promoter. Then, cells are treated with recombinant human TSH for 15 days. After a total of 22 

days, functional thyroid follicles have formed. These follicles are grafted under the renal capsule of hypothyroid mice previously 

subjected to radioiodine ablation. From (Antonica et al., 2012). (B) FISH detecting both DNA and RNA with a BAC probe for 

Tg in in vitro grown thyroid follicles before transplantation. Tg (green) also forms transcription loops in these follicles comparable 

to the Tg TL found in endogenous mouse tissue. DNA was counterstained with DAPI (red). Scale bar 5 μm. (C) FISH detecting both 

DNA and RNA with a BAC probe for Tg in in vitro grown thyroid follicles after subcapsular renal transplantation. The transplanted 

tissue originates from male mESCs and is therefore distinguishable from the surrounding female host tissue by FISH using a probe 

for the Sry (sex-determining region Y) gene located on the Y chromosome (red). The grafted thyrocytes exhibit giant TLs (green) 

similar to thyrocytes of the native thyroid gland. DNA was counterstained with DAPI (blue). Scale bars 25 μm (upper panel) and 10 μm 

(lower panel).  
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3.7.3 TG IS HIGHLY UPREGULATED AND FORMS TRANSCRIPTION LOOPS UPON BIRTH 

Next, we asked when the formation of Tg TLs is initiated during development and whether TL size and 

transcription level are concurrent during the onset of developmental Tg upregulation. Therefore, we first 

performed qPCR on thyroid glands from different developmental stages (P1, P14 and adult) to determine Tg 

transcription levels. We showed that Tg expression increases during development, reaching a 3.3-fold 

elevation at the adult stage compared to P1 (Figure 3.21 A). Interestingly, the transcription level was also 

reflected by the size of the TLs in the respective developmental stages. Even if most of the alleles exhibited 

huge TLs comparable to the TLs found in adult animals, some P1 thyrocytes had small loops coinciding with 

a lower transcription level (Figure 3.21 B). P14 thyrocytes, exhibiting a medium level of Tg expression, also 

harbored small TLs, however, these loops were larger than the ones found at the P1 stage (Figure 3.21 B). In 

contrast, thyrocytes of adult animals featuring extremely high Tg expression, stably displayed large TLs (Figure 

3.21 B). Therefore, we conclude that Tg TL loop formation is established early in development, and that TL 

size correlates with developmental stage due to a gradually established Tg expression level. 

 

 

FIGURE 3.21: The Tg gene forms TLs early in development. (A) Tg transcript levels gradually increase throughout 

development from P1 to the adult stage as shown by qPCR (relative transcription levels: P1: 0.30; P14: 0.65; ad: 1). ad = adult.   

Bars represent standard deviation. (B) RNA FISH with a genomic BAC probe for Tg reveals huge TLs (green) in all of the tested 

developmental stages (P1, P14, adult). However, some undeveloped TLs are found in thyrocytes from P1 (filled arrowheads) and 

P14 (empty arrowheads) mice. These small undeveloped loops correspond well to the lower expression level of Tg in earlier stages 

as shown in (A). DNA was counterstained with DAPI (red). Scale bar 5 μm. 
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3.7.4 TG IS HIGHLY EXPRESSED AND FORMS TRANSCRIPTION LOOPS IRRESPECTIVE OF THYROID 

HORMONE LEVELS 
 

Thyroid hormones positively influence cellular metabolism and therefore are important regulators of 

development (Brent, 2012; Iwen et al., 2013; Little, 2006a, b; Oetting and Yen, 2007). The production of 

these hormones is regulated via a series of interconnected feedback loops on the hypothalamus-pituitary-

thyroid axis (DiStefano, 1973; Hoermann et al., 2015; Ortiga-Carvalho et al., 2016). A simplified scheme 

depicting basic pathways of thyroid hormone regulation is provided in Figure 3.22: in case of low blood 

hormone levels, the hypothalamus secretes thyrotropin releasing hormone (TRH). TRH binds to thyrotropin 

releasing hormone receptors (TRHRs) on the surface of thyrotropes in the pituitary gland. These cells in turn 

secrete thyroid stimulating hormone (TSH) which stimulates the thyroid gland to produce thyroid hormones 

T3 and T4. Thyroid hormones are secreted into the blood stream via the mono-carboxylate transporter 8 

(MCT8). When thyroid hormone levels in the blood exceed the necessary level, the hormones bind to thyroid 

hormone receptor beta (THRb1) in the hypothalamus and the pituitary gland signaling to reduce TRH and 

TSH hormone production.  

 

 

 
 

FIGURE 3.22: Schematic representation of the regulation of thyroid hormone levels. Thyroid hormone production involves 

three major players, the hypothalamus, the pituitary gland as well as the thyroid itself, and is controlled via a negative feedback 

loop. The hypothalamus secretes thyrotropin releasing hormone (TRH) which binds to TRH receptors (TRHR1) in the pituitary 

gland. The pituitary in turn secretes thyroid stimulating hormone (TSH) which binds to TSH receptors in the thyroid gland and 

signals the gland to produce triiodothyronin (T3) and thyroxin (T4) and release them through MCT8 transporters. T4 is converted 

to the active form T3 by deiodinases intercellularly. If thyroid hormone blood levels reach a certain threshold, they bind to thyroid 

hormone receptor b1 (TRb1) in hypothalamus and pitutary, and thus signal to lower TRH and TSH release in order to eventually 

reduce T3 and T4 levels in the blood stream.  
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Misregulation of the gland’s hormonal output causes hypo- or hyperthyroidism, manifested through 

insufficient or excessive hormone production, respectively (Little, 2006a, b). In order to test whether the 

misregulation of hormone production influences the formation of TLs, the topology of the Tg gene in mice 

with induced hypo- or hyperthyroidism was investigated.  

Thyroid tissues from hypo- and hyperthyroid mice provided by Prof. Dr. Heike Heuer (Universitätsklinikum 

Essen, Klinik für Endokrinologie und Stoffwechselerkrankungen, Essen, Germany) were subjected to qPCR 

and RNA FISH. Hypothyroid mice were generated by deleting both alleles of Trhr1 (Trhr1 –/–) prohibiting 

signaling of the pituitary gland to stimulate TSH production and therefore downregulate T3 and T4 

production. Hyperthyroid mice were generated by three different approaches: 1) Stimulation with bovine 

TSH (500 mU) directly leads to the increased production of hormones in the thyroid. 2) Knock-out of Trb1 

(Trb1 –/–) inhibits the negative feedback loop and does not signal the hypothalamus and the pituitary to stop 

thyroid stimulation even though high thyroid hormone levels are present. 3) Knock-out of Mct8 (Mct8 –/–) 

prevents thyroid hormones from leaving the thyrocytes into the bloodstream, thus inhibiting the negative 

feedback loop and leading to an overstimulation of the thyroid (see Materials and Methods section 2.2.1).  

First, we asked whether Tg expression is increased in hypothyroid mice compared to control mice in response 

to hormone deficiency signaling. Second, we asked whether, on the contrary, Tg expression is decreased in 

thyrocytes of hyper-thyroid mice due to sufficient hormone levels in the blood and subsequent 

downregulation of hormone production. In both hypo- (Figure 3.23 A) and hyperthyroid (Figure 3.23 B-D) 

mice, however, we did not detect significant differences in the transcription level of Tg by qPCR. Consistent 

with this finding, there were no microscopically observable differences in the appearance of the TLs found 

in glands of hypo- and hyperthyroid mice compared to control mice (Figure 3.23 A-D). We therefore 

conclude that when the transcription of Tg and the resulting TL formation are initiated during thyrocyte 

differentiation, they are robustly maintained and not affected by the tested perturbations of thyroid hormone 

level. 

Previous studies suggested a direct link between the presence of TSH and Tg gene activity in a cAMP 

dependent manner (Van Heuverswyn et al., 1984; Van Sande et al., 1990). In animals with thyroid glands 

overstimulated by TSH, no changes in the consistently high Tg transcription levels were found (Van 

Heuverswyn et al., 1984). In line with that, we did neither observe a change in the transcription level nor the 

TL appearance of the Tg gene in thyroid glands from hyperthyroid mice stimulated with TSH or deletions of 

Trb1 or Mct8.  

However, the study also showed that in animals with suppressed endogenous TSH levels, Tg transcription 

levels decreased (Van Heuverswyn et al., 1984). In contrast, we did not observe a variation in transcription 

level or TL appearance of the Tg gene in thyroid glands from hypothyroid mice with Trhr1 deletion, even 

though this deletion ultimately also reduces TSH levels. These data indicate that Trhr1, in contrast to TSH 

itself as shown by other studies, does not regulate Tg expression directly. As suggested previously, Tg 

transcription control therefore might mostly rely directly on TSH.  
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FIGURE 3.23: Perturbation of blood thyroid hormone levels does not affect Tg expression or TL formation. Thyroid 

glands of hypo- (A) and hyperthyroid (B-D) mice were subjected to qPCR to determine the Tg expression level and to RNA FISH 

to assess TL formation (left and right, respectively). None of the perturbations in the thyroid hormone regulatory pathway affected 

the Tg transcription level or TL formation. (A) Hypothyroid mice were generated by deletion of thyrotropin releasing hormone 

receptor 1 (Trhr1 –/–). The Tg transcription level as well as the appearance of the TL in thyrocytes from these mice is not different 

from control thyrocytes (Trhr1 +/–). Hyperthyroid mice were generated by exogenous stimulation with (B) 500 mU bovine 

thyroid stimulating hormone (+ TSH), or by (C) deletion of both alleles of either thyroid hormone receptor beta (Trb1 –/–) or 

(D) mono-carboxylate transporter 8 (Mct8 –/–). The Tg transcription level as well as the appearance of the TL in thyrocytes from 

these mice is not different form control thyrocytes (– TSH, Trb1 +/+ and Mct8 +/+). Scale bars 5 μm.  
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3.7.5 MATURE TG TRANSCRIPTS DO NOT RETAIN INTRONS 

Results of this study point towards Tg as a gene that is constantly active. We assumed, however, that some 

level of transcriptional and/or translational fine-tuning might be present in thyrocytes to ensure appropriate 

TG levels. 

First, we asked whether Tg transcription follows a circadian rhythm. A recent study in baboons indicates that 

Tg expression does not rely on a circadian rhythm (Mure et al., 2018). Out of ≈11,000 universally expressed 

genes in baboons almost 97 % exhibit rhythmic transcripts in at least one tissue (82 % of protein coding 

genes) (Mure et al., 2018). Globally, there seems to be a trend for most genes reaching their peak expression 

level during early morning or late afternoon. Using the dataset from this study, we checked the expression 

level of Tg in the thyroid at 12 different timepoints throughout the day and found stable Tg expression during 

these 24 h that does not seem to depend on a circadian rhythm. 

Since we did not find evidence for the regulation of TG production at the level of gene activity, we reasoned 

that regulation might occur on the level of translation. Recent studies have pointed towards a phenomenon 

called intron retention as a mechanism to regulate mRNA levels in the cytoplasm (Braunschweig et al., 2014; 

Mauger et al., 2016; Naro and Sette, 2017; Wong et al., 2016). For example, the retention of introns in an 

mRNA after its dissociation from RNA Pol II prevents its export from the nucleus and thereby delays its 

translation. Only upon certain stimuli, rapid splicing is induced and mature mRNAs in turn undergo nuclear 

export (Mauger et al., 2016). Intron retention is therefore considered a “transcript tuner” and well 

documented for plants, fungi and insects, and also for mammals (Braunschweig et al., 2014; Kim et al., 2007; 

McGuire et al., 2008; Monteuuis et al., 2019; Naro and Sette, 2017). The nucleoplasmic RNA granules found 

within thyrocyte nuclei (see Results section 3.2.4, Figure 3.6 A) might represent such unspliced mRNAs 

remaining in the nucleus for regulation purposes. To examine whether unspliced introns are present in mature 

mRNAs in Tg, we performed direct Nanopore sequencing of RNA isolated from mouse thyrocytes in 

collaboration with LAFUGA (Gene Center, LMU München, Munich, Germany) and Dr. Sebastian Bultmann 

(BioSysM, LMU München, Munich, Germany). This recently developed technique has two major advantages. 

First, it enables sequencing of long reads which is especially important in case of the Tg gene with a length of 

180 kb. Second, it does not rely on reverse transcription of RNA and therefore reduces bias introduced by 

cDNA amplification as it can occur during the preparation of libraries for Illumina sequencing (Aird et al., 

2011).  

Analysis of Nanopore RNA sequencing of RNA extracted from mouse thyroid showed that intron retention 

is more common for (i) weakly expressed genes (Figure 3.24 A) and (ii) for short introns (Figure 3.24 B). 

Consistant with that, we did not find intron retention in the Tg mRNA (Figure 3.24 C). Even though the 

quality of the sequencing declines towards the TSS (as indicated by fewer reads in the first half of Tg, Figure 

3.24 C) as a result of sequencing from the 3’ end of isolated RNAs, this data strongly indicate that fine tuning 

of TG production is likely not regulated by intron retention in Tg mRNAs.  
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FIGURE 3.24: Mouse Tg does not exhibit intron retention. Direct Nanopore sequencing of total thyroid RNA shows no 

intron retention in the Tg gene, but reveals that intron retention is more common for lowly expressed genes and short introns. (A) 

Genes with few mapped reads (less abundant transcripts) show a higher level of relative intron retention. Relative intron retention was 

calculated as (reads mapped to introns)/(reads mapped to genes). (B) Shorter introns are more often retained than long introns. Intron width 

is depicted on the x-axis, the total number of retentions of the respective intron is depicted on the y-axis. (C) No intron retention is observed for 

Tg. Coverage decreases towards the TSS due to sequencing from the 3’ end.   
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4 DISCUSSION AND FUTURE PERSPECTIVES 

Despite the fact that transcription is a crucial step in gene expression and therefore extensively studied, the 

spatial organization of transcription is still poorly understood. On the one hand, numerous studies have 

elucidated players that fine-tune transcriptional regulation on the molecular scale – among them promoter-

enhancer loops (Schoenfelder and Fraser, 2019), modifications of the RNA Pol II CTD (Eick and Geyer, 

2013) and the complex dynamic network of factors associating with Pol II during different steps of 

transcription progression (Chen et al., 2018a) as well as RNA maturation (Muller-McNicoll and Neugebauer, 

2013). On the other hand, studies on a broader scale showed that active genes reside in the nuclear interior 

and tend to locate at the edges of their harboring CT (Shah et al., 2018; Takizawa et al., 2008; Volpi et al., 

2000). However, knowledge on the intermediate level of transcriptional organization, i.e. the three 

dimensional structure of a single transcribed gene, is surprisingly limited.  

Our study contributes to filling this gap in knowledge by investigating the spatial organization of long genes. 

Thus, we circumvented the resolution limit of conventional light microscopy, which has prevented resolving 

the structure of small genes in the past (Lawrence et al., 1988; Trask et al., 1989). 

We showed that long and highly expressed genes are strongly decondensed and form microscopically 

detectable loop-like structures strongly resembling the lateral loops formed by highly expressed transcription 

units of LBCs (Figure 3.4). We termed these loops “transcription loops” (TLs) and determined two conditions 

crucial for their formation: genes need to be long and highly transcribed (Figures 3.3 and 3.4). Further, we 

showed that TLs represent sites of ongoing transcription as we can follow transcription along the loops using 

FISH probes specifically labeling exons (Figure 3.5). Using probes highlighting introns, we demonstrated that 

TLs exhibit co-transcriptional splicing (Figure 3.6 A,C). Additionally, we showed that TLs overlap with or 

are localized adjacent to nuclear speckles, in agreement with a high rate of ongoing splicing activity (Figure 

3.6 B). We revealed that genes forming TL expand from their harboring CTs and dynamically modify 

surrounding chromosomal loci by separating flanking regions (Figures 3.12 and 3.13). We put forward the 

hypothesis that TL expansion is caused by an increased stiffness of the gene axis due to a dense decoration 

with nRNPs and provided evidence supporting this hypothesis.
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4.1 TRANSCRIPTIONAL BURSTING SHAPES TRANSCRIPTION LOOP STRUCTURE 

Transcription loops exhibit different appearances (in shape and size) depending on the gene and cell type 

(Figures 3.4 and 3.10). The major determinant of TL appearance seems to be a gene’s transcription rate. TLs 

formed by Tg in thyrocytes are the largest among the investigated genes. The notably longer Ttn and Neb 

genes, however, form smaller TLs compared to Tg TLs. This can be explained by the fact that expression 

levels of both muscle genes are ≈ 10- to 20-fold lower than that of Tg. Similar observations were made on 

smooth muscle specific genes: although the Cald1 gene is almost twice as long as the Myh11 gene, it is 

expressed lower and thus forms smaller TLs. Based on these considerations, we conclude that there is  an 

inverse correlation of transcription level and gene body condensation: the higher the transcription level, the 

higher the degree of gene decondensation, and hence the larger the formed TL. 

We reason that the differences in gene condensation patterns reflect different bursting kinetics of the five 

genes. Transcription bursts are characterized by their initiation rate (frequency of transcription initiation) and 

duration (reflected by number of polymerases in one burst) (Tantale et al., 2016). The distance between the 

polymerases in one burst also varies depending on the gene (Tantale et al., 2016). We therefore suppose that 

the bursting kinetics of a gene’s promoter strongly influences the appearance of the respective transcription 

loop: highly expressed genes are expressed in long bursts interrupted by short pauses resulting in a high 

degree of gene body decondensation; lowly expressed genes are transcribed in shorter bursts separated by 

long pauses resulting in a lower level of gene body decondensation (Figure 4.1).  

It has to be noted, that a comparison of expression levels of different genes in different cell types is 

challenging due to high sample heterogeneity (Blake et al., 2020). It is therefore basically impossible to make 

statements about absolute differences in transcription levels between different genes in different tissues. 

However, in our study, for each cell type, four independent replicates were used for RNA-seq and the 

expression level of genes was calculated in transcripts per million (TPM) to ensure the highest possible 

comparability between samples. Thus, the data most probably still reflect relative expression levels, i.e. very 

highly expressed genes will yield very high TPM values, genes with an intermediate expression level will yield 

intermediate values and so forth, allowing a general comparison between expression level and TL structure. 

Using spike-in controls in RNA-seq experiments could circumvent these challenges (Chen et al., 2015). 
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FIGURE 4.1: Transcription loop structure depends on a gene’s bursting kinetics. Top: Scheme depicting the proposed 

different bursting kinetics of very highly expressed long genes (e.g. Tg in thyrocytes), highly to moderately expressed long genes 

(e.g. Ttn and Neb in myotubes and Myh11 and Cald1 in smooth muscle), lowly expressed long genes (e.g. Dmd in myotubes) and 

highly expressed short genes (e.g. Acta1 in myotubes) (left to right) reflecting the size of the respective TL. Very highly expressed 

long genes are transcribed in long frequent bursts resulting in the gene body almost entirely being covered by actively elongating 

polymerases (gray) with only very few condensed regions in between (green). Genes with a comparable length but slightly lower 

expression levels form smaller TLs since their gene body is covered by fewer and shorter bursts and they exhibit more condensed 

regions throughout the gene body. Lowly expressed long genes are covered by few polymerases and therefore do not show 

resolvable transcription loops. Likewise, short but highly expressed genes do not form resolvable TLs due to their size, even if the 

gene body is entirely covered with elongating polymerases. Bottom: Expected nuclear signals yielded by FISH for the respective 

genes. Long and very highly expressed genes form huge transcription loops detected by RNA FISH (green). In DNA FISH, the 

gene body (green) is hardly traceable due to the high level of decondensation. The gene flanking regions (red) are mostly located 

at a distance. Long genes with a high/intermediate expression level still exhibit TLs in RNA FISH, albeit their size is slightly 

smaller. In DNA FISH, these genes show a ‘beads-on-a-string’ pattern with alternating condensed and decondensed regions. Also 

in this case, gene flanking regions are mostly located at a distance. Long lowly expressed genes yield only a very faint RNA FISH 

signal and a spot-like DNA FISH signal due to the high degree of gene body condensation. In this case, gene flanks are in close 

proximity. For very highly expressed short genes, both RNA and DNA FISH yield a strong dot-like signal and gene flanks are in 

close proximity.  
 

As shown previously, many factors such as DNA looping, transcription factor availability as well as general 

local chromatin environment regulate transcriptional bursting (Bartman et al., 2016; Kafri et al., 2016; Kalo 

et al., 2015; Larson et al., 2013; Nicolas et al., 2017). Many of these molecular features even specifically affect 

certain aspects of bursting (Nicolas et al., 2017). For example, DNA looping and nucleosome occupancy 
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modulate burst frequency, the number as well as the affinity of cis-regulatory elements modulate burst size, 

and TF availability and histone modifications affect both burst frequency and size (Nicolas et al., 2017). In 

Drosophila, changes in enhancer position and sequence specifically influence burst frequency (Fukaya et al., 

2016). Mapping of enhancer regions of TL forming genes (especially Tg and Ttn) via 4C or promoter capture 

Hi-C will further shed light on how the transcription of these genes is regulated. Additionally, the influence 

of promoter-enhancer loop kinetics can be assessed by single cell 4C as it allows to determine whether 

promoter-enhancer contacts are stable or transient. Contact frequencies in turn could then be correlated to 

transcription level and TL structure. 

Visualization of TLs in living cells would provide a direct approach allowing to study transcriptional bursting. 

The viral derived MS2/MCP or PP7/PCP systems, relying on the incorporation of stem loop structures into 

RNA and their detection via the respective fluorescently labeled binder (Bertrand et al., 1998; Larson et al., 

2011; Lim et al., 2001; Peabody, 1993), may provide promising tools to visualize nascent transcripts and 

investigate transcriptional bursting and TL formation in living cells. To this end, the stem loop repeats would 

need to be incorporated into the 5’ untranslated region (UTR) of the respective gene in order to visualize 

RNAs along the entire transcription loop, since 3’ UTR incorporation would label nascent RNAs only at the 

end of the transcript. Specifically targeting an intron with MS2/MCP or PP7/PCP potentially enables 

visualizing co-transcriptional splicing.  

Possibly, TLs may as well be visualized by labeling active RNA Pol II due to its high abundance. Previous 

studies involving live cell imaging of RNA Pol II mostly relied on expressing an exogenous α-amanitin 

resistant fluorescent fusion form of Pol II and simultaneous degradation of endogenous Pol II by α-amanitin 

(Cho et al., 2016a; Hongo et al., 2008; Nguyen et al., 1996). Recently, a CRISPR/Cas9 based gene editing 

approach was successfully used to endogenously incorporate a fluorescent protein sequence into the Rpb1 

locus (Cho et al., 2016b; Steurer et al., 2018). Another promising approach is labeling RNA Pol II with a 

photoswitchable fluorescent protein as described previously by Cho and colleagues (Cho et al., 2016b), since 

this does not only permit super resolution imaging but could provide further insights into Pol II dynamics 

on TLs. Converting a small fraction of fluorescent protein fused to initiating Pol II at the TSS would allow 

to follow polymerase elongation along the gene body and thus may provide conclusions on Pol II speed as 

well as a gene’s bursting kinetics.  

The mintbody strategy (Sato et al., 2013) could be used to visualize the Ttn locus together with occupying 

polymerases in Pmi28 myotubes. This system relies on the detection of the gene via dCas9-sfGFP and the 

simultaneous detection of RNA Pol II via a modification-specific intracellular antibody (mintbody) specific 

for the elongating serine 2 phosphorylated (S2P) form of the Pol II CTD (Sato et al., 2013). Given that the 

specificity of Ttn labeling via dCas9-GFP as well as the specificity of the mintbody for elongating RNA Pol 

II are assured, simultaneous labeling of nascent RNAs and elongating Pol II could further elucidate the spatio-

temporal dynamics of TL formation.  
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4.2 TRANSCRIPTION LOOPS ARE STIFF STRUCTURES DUE TO DENSE DECORATION 
WITH RIBONUCLEOPROTEIN PARTICLES 

Nascent transcripts are coated by a complex network of partially inter-dependent RNA binding proteins 

(RBPs) (Figure 4.2 A) and form compact nascent ribonucleoprotein particles (nRNPs) (Figure 4.2 B) (Muller-

McNicoll and Neugebauer, 2013). RNA recognition motif (RRM) containing SR-proteins – among them 

slicing factor SC35 – associate with pre-mRNAs to promote (alternative) splicing (Shepard and Hertel, 2009). 

Exon junction complex (EJC) forms on sites of joined exons during splicing and acts as a binding platform 

for peripheral factors (Le Hir et al., 2016). hnRNPC binds introns in nascent transcripts and greatly influences 

pre-mRNA compaction (Konig et al., 2010). It has been proposed that hnRNPC tetramers serve as ‘RNA 

nucleosome’ as they harbor 150–250 nt of RNA wrapped around them, likewise to DNA wrapped around 

histones (Huang et al., 1994; McAfee et al., 1996). Transcription export complex (TREX), linking 

transcription and mRNA export, is already co-transcriptionally recruited to nascent transcripts in a splicing-

dependent manner in mammals (Reed and Cheng, 2005). Thus, we hypothesized that this dense occupation 

with bulky RNP entities renders the gene body stiff (Figure 4.2 C).  

We provide several lines of evidence indicating that TLs are stiff structures. First, we showed that gene flanks 

are separated in a transcription dependent manner and that genes loop out from their harboring chromosome 

(Figure 3.13). In agreement with this, lowly expressed genes, such as Neb and Cald1, do not loop far from 

their CTs. Direct evidence for the splitting of chromosome 15 by the Tg TL as observed by FISH, was not 

found by Hi-C analysis. We tentatively explain this by (i) the relatively high heterogeneity of the thyroid Hi-

C sample — we estimate that about 40 % of cells in the tissue are non-thyrocytes — and (ii) the appearance 

of CT splitting in only 2 % of homologs that might escape detection by Hi-C.  

Second, Tg TLs exhibit different degrees of coiling on different parts of the gene. Tg’s long intron 41, 

measuring ≈ 53 kb, is generally more expanded than the rest of the gene. We assume that the decoration of 

the intron with nRNPs, formed by nRNAs growing from approx. 7 kb (at the beginning of intron 41) to 

approx. 61 kb (at the end of intron 41), particularly increases the stiffness of the TL and thus the radius of 

curvature in this region.  Since RNP size correlates with the length of the RNA component (Beyer et al., 

1977; Derman et al., 1976), RNPs close to the TSS are (much) smaller than RNPs close to the TTS. Gene 

bodies of transcribed genes will therefore presumably generally exhibit stronger coiling towards the 5’ end 

where the RNPs are small and enable a smaller bending radius, whereas they will exhibit strong expansion 

towards their 3’ ends where RNPs are large and prevent high curvatures (Figure 4.2 C). Especially in the case 

of Ttn, a gene with an unusually high exon/intron ratio and thus with an exceptionally long mRNA of ≈ 

103 kb, the nRNPs increase in size towards the TTS, despite co-transcriptional splicing, which is indeed 

reflected by a decrease in the cis/trans contact frequency ratio towards the 3`end of the Ttn gene (Figure 3.13). 

In line with our hypothesis, small genes such as Acta1 did not show TL formation but only a dot-like FISH 

signal even though its expression level is very high. Based on our hypothesis, we reason that due to the small 

size of Acta1 and therefore the small size of nascent RNPs, the gene is highly coiled which prevents its 

structural resolution. 
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FIGURE 4.2: Possible mechanism of transcription loop formation. (A) Nascent transcripts are bound by hundreds of RNA 

binding proteins (RBPs) for splicing, quality control, nuclear export, etc. (B) Nascent transcripts and associated RBPs are tightly 

packed and form so-called ribonucleoprotein particles (RNPs). (C) Densely spaced polymerases carry RNPs along the gene body 

of a highly transcribed gene. The size of the RNPs increases towards the end of the gene as the associated RNA grows progressively 

and determines the rigidity of the respective part of a TL. Close to the TSS, RNPs are small and therefore allow the gene body to 

coil. Close to the TTS, RNPs are large and bulky and render the gene body stiff due to their intrinsic steric configuration. In turn, 

this leads to the formation of TLs on long and highly expressed genes. Splicing as well as transcriptional bursting are not depicted for 

simplicity reasons. TSS: transcription start site; TTS: transcription termination site. 

 

The granules seen in myotube nuclei by electron microscopy (EM) (Figure 3.17) likely correspond to nascent 

RNPs decorating the Ttn gene. They resemble RNPs previously visualized on Balbiani rings of polytene 

chromosomes (Bjork and Wieslander, 2015) and display a heterogeneity in size, probably reflecting their 

growth. Further studies of these granular structures are currently on the way in our group and will serve to 

(i) further corroborate the hypothesis that their formation depends on active transcription by imaging 

myotube nuclei treated with transcription inhibitors and (ii) to determine that granules indeed correspond to 

the Ttn gene body by combining EM and FISH in a correlative approach.  

Since methods to measure DNA flexibility in vivo are highly artificial and only provide general estimations on 

DNA stiffness in very defined environments (Peters and Maher, 2010), we chose to rely on polymer models 

of chromatin to investigate physical parameters of TL formation. Indeed, polymer models strongly 

corroborated our hypothesis that gene body stiffness substantially contributes to TL formation (Figure 3.18).  
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4.3 TRANSCRIPTION LOOP FORMATION AS UNIVERSAL MODE OF 

TRANSCRIPTION 

Our hypothesis suggests that TL formation is the universal principle of transcription in eukaryotes. In favor 

of this hypothesis, TLs have been observed in all vertebrate species (Figure 3.19) and in native tissues (Figures 

3.4, 3.10 and 3.19) as well as cultured cells (Figures 3.4, 3.9 and 3.10). We assume that all eukaryotic genes 

form TLs when they are transcribed.  We suppose that until now TLs have escaped visual detection by FISH 

because the investigated genes were either too small or too lowly expressed to yield a resolvable signal. 

Notably, even though we show TL formation for five genes and in diverse cell types and different vertebrates, 

other eukaryotic species such as plants were not considered in this study. Therefore, to support our 

hypothesis, the investigation of more examples would be necessary. However, as our search for long and 

highly expressed genes in the published GTEx RNA-seq dataset resulted in very few matches, the major 

limitation in this concern will probably be the low number of suitable candidate genes. 

Therefore, experimental approaches aiming at increasing either the length of highly expressed genes or the 

transcription level of long genes could be strategies to further accumulate evidence in favor of our hypothesis. 

Various other dCas9-based approaches were successfully applied previously to upregulate the transcription 

of certain genes and could be used to complement our experiments. For example, the SunTag activation 

system relies on a dCas9 fused to a repeating polypeptide scaffold (SUperNova tag, SunTag) which recruits 

antibodies fused to an activation domain (Tanenbaum et al., 2014). Since multiple antibodies bind to one 

scaffold, transcription activator recruitment is thus amplified. The synergistic activation mediator (SAM) 

system relies on recruitment of several transcriptional factors via hairpin aptamers that are incorporated into 

the gRNA yielding beneficial concerted action of different activators (Konermann et al., 2015; Zhang et al., 

2015). Furthermore, a short highly expressed gene (such as Acta1) could be elongated by CRISPR/Cas-

mediated insertion of DNA stretches in order to form resolvable TLs.  

The finding that long and highly expressed genes form TLs urges the need for revisiting current models for 

the spatial organization of transcription. Our study indicates that transcription is carried out by RNA 

polymerases moving along template DNA like a train on a track accompanied by their attached RNP cargo. 

Our findings set the ground for reconsiderations on the basic principles of transcription and highlight the 

significance as well as the versatility of TL forming genes for investigating these principles.  
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            *For visualization of the entire Cald1 gene, BACs RP23-265A17 and RP23-386A17 were combined. 

            **For visualization of the entire Dmd gene, BACs RP23-39F15, RP23-35L6, RP23-191F11, RP23-386E22,  

            RP23- 121C23 and RP24-70A8 were combined.  

 

 

 

 

TABLE S2: Overview of BAC clones used in this study. 

BAC identifier 
Laboratory internal 

identifier 
Location Organism 

RP24-229C15 BAC 92 Tg gene body Mus musculus 

RP23-193A18 BAC 98 Tg 5’ half Mus musculus 

RP23-266I10 BAC 99 Tg 3’ half Mus musculus 

RP24-171I15 BAC 223 Tg 5’ flank Mus musculus 

RP24-312F21 BAC 224 Tg 3’ flank Mus musculus 

RP11-806J1 BAC 18 (human) Tg gene body Homo sapiens 

CH216-26O19 XTR 2 Tg gene body Xenopus tropicalis 

CH211-184D12 DR 2 Tg gene body Danio rerio 

CH261-128F8 CH 2 Tg gene body Gallus sp. 

RP23-310F9 BAC 162 Ttn gene body Mus musculus 

RP23-140P12 BAC 234 Ttn 5’ half Mus musculus 

RP23-314B24 BAC 237 Ttn 3’ half Mus musculus 

RP23-1M1 BAC 238 Ttn 5’ flank Mus musculus 

RP23-316G15 BAC 231 Ttn 3’ flank Mus musculus 

RP23-82J15 BAC 176 Neb gene body Mus musculus 

RP23-91F4 BAC 257 Neb 5’ half Mus musculus 

RP23-177B19 BAC 256 Neb 3’ half Mus musculus 

RP24-158B9 BAC 225 Myh11 gene body Mus musculus 

RP24-283P15 BAC 229 Myh11 5’ half Mus musculus 

RP23-291J21 BAC 230 Myh11 3’ half Mus musculus 

RP23-265A17 BAC 244 Cald1 5’ half * Mus musculus  

RP23-386A17 BAC 243 Cald1 3’ half * Mus musculus 

RP23-39F15 BAC 143 Dmd gene body ** Mus musculus 

RP23-35L6 BAC 144 Dmd gene body ** Mus musculus 

RP23-191F11 BAC 145 Dmd gene body ** Mus musculus 

RP23-386E22 BAC 146 Dmd gene body ** Mus musculus 

RP23-121C23 BAC 147 Dmd gene body ** Mus musculus 

RP24-70A8 BAC 148 Dmd gene body ** Mus musculus 

RP23-427K5 BAC 174 Acta1 gene body Mus musculus 

RP24-332J21 BAC 111 Sry gene body Mus musculus 
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TABLE S3: Primers to amplify Tg exons 

Probe Sequence (5' → 3') 

Ex 2 – 12 fwd: AGGTAGATGCACAGCCACTC (in exon 2) 
rev: CAGGTTCCCAGCCTCCAATC (in exon 12) 

Ex 33 – 47 fwd: TGCTGCACTGGCTTTGGTTT (in exon 33) 
rev: AGGAGCAGTCAGCTTGTTTGA (in exon 47) 
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TABLE S4: 96 primer pairs to amplify probes for the start of Tg. The probe covers a region of 32,404 bp. Since the fragments 

amplified by PCR are not directly adjacent to one another but are interspersed by stretches of 10 to 587 bp, the effective probe 

size is 20,021 bp. Lengths of the respective amplicons are indicated on the right. 

 Chr. Start End Forward primer (5' → 3') Reverse primer (5' → 3') 
Length 

(bp) 

1 15 66670771 66670984 TTCATCCCAGTAGGGGACAG CTCTGGGCATTTGTGAGGTT 213 

2 15 66671026 66671228 GAGAGATGAGCTGAATCGCC CCCCTGACACAGACACCTTT 202 

3 15 66671247 66671451 GTAGGACTGGGAGGAAAGGG AGGACCCTGGAGCTCCTAAT 204 

4 15 66671529 66671742 TATGTTGTCATTTTCCGGGG TTGCCCTACCAGAGAATTGG 213 

5 15 66671828 66672035 TGAAAGGAGCTTTTGCAGGT TGGGCCTATAGGAAGCTTGA 207 

6 15 66672233 66672434 CCTCTCCTGCCTTGTGTGAT CTGCCAGGTACTTCTCTGCC 201 

7 15 66672501 66672707 ATACTGGGGCACCTCACATC CTCAGTGCTGGACACAGTGG 206 

8 15 66672795 66673004 GGATGCTCTTTTTCAGTGGG ATTGCAAATCCTAACGTGGG 209 

9 15 66673127 66673329 GAAGCAACTTTTCAGGCCAC GAAGGATTGCAGGATCAGGA 202 

10 15 66673526 66673729 CACAGAGGGGATGGAAGTGT TGTGGGATGACCAAAAGTCA 203 

11 15 66673957 66674159 TAGGAGACAGGTCACCACCC ACACTCCCAGATCCTGATGC 202 

12 15 66674924 66675130 TGGCTGTGTTGTTCTCCATC AATTCTACCCTTGCACTGCC 206 

13 15 66675384 66675590 TCCTGTCAAAGGGGAAAGAA TCATTTAAAGGCTGCATGGC 206 

14 15 66675846 66676048 AGCCTGGCGTTTTCATTAGA CAGGGACCTAGGACACAGGA 202 

15 15 66676091 66676308 GTACAATCCTGCCCCATAGC CAGATGATCACGTTGGGATG 217 

16 15 66676364 66676576 CCACCTGGCGACTACAGATT TTCCCAGGGTGAGCTCTTTA 212 

17 15 66677065 66677284 TTTGAACCAGTGGAAGGAGC TAAAGTGCAGGCATCTGGTG 219 

18 15 66677390 66677605 GCACTTAGGAGGTGGAGCTG GGGATTGGGAAGGACTGACT 215 

19 15 66677762 66677963 CCCCTATATGTGGGGACAAG AGCAGAGTCCTCAGCTGCAT 201 

20 15 66678005 66678205 GTGACCACGCATCTTCCTCT GCCTTAGGCACCAGAGTCAA 200 

21 15 66678304 66678517 TCTGCTTGCTTGTATGGTGC TAAGCTAGATGCAGCCCCTG 213 

22 15 66678560 66678778 TGTTGTTGCTGTTTGCATTG TTCCAGTCCTGAGCAAATGT 218 

23 15 66678856 66679060 CCGGATATTGCAGAGACGAT TGTTCACAGCCTGCATGAAT 204 

24 15 66679215 66679429 GACAGAAGGGATGTGCTGGT CAGTTTGAAGGACCTCTGGG 214 

25 15 66679653 66679854 CTTCATGGGTGAGGGACAGT CATATCAGCCTCACCACCCT 201 

26 15 66679885 66680089 CATGTGGGATATACGCCTCC AGTTCCTGCTTTGACTCGGA 204 

27 15 66680304 66680509 ACGCACACACACACACACAC CGTAAGCAAGCTCCATCCTC 205 

28 15 66680653 66680858 CACAAGGGGTGCTACAACAA CTCTGGTTCCTCTGGTGTCC 205 

29 15 66680956 66681156 TGTTAGCAAACTGGGCTCCT ATAGATGCAGCCATGAAGCC 200 

30 15 66681190 66681404 CCTCTTTGCTGTGGCTCTTC GCCTATGAGATACCAGCCCA 214 

31 15 66681823 66682038 TCAGTCATGTGCCTTGGAAA GAAAGCCGTTGGTAGTGCTC 215 

32 15 66682109 66682321 CTTCAGTTCACCACCAACCC GGAGTCCAATCTCACAGGGA 212 

33 15 66682381 66682591 TGTGGGTAACTTTGGCTTCA TGGGACAAAGAACTTCCCAG 210 

34 15 66682676 66682880 GATGGCTCGAGAGTCAGAGG CAGGAATAACCTGGCCTTCA 204 

35 15 66682897 66683108 TGGAGAAGCCAAGCAGTGTA CAAGCAAATATCTTTATCTGCTCATT 211 

36 15 66683127 66683326 TACATACCTGGGCTGGGAAG AGCCTGGAGCTTTCCAATTA 199 

37 15 66683661 66683880 CTGAACAAGCTTTCCTTGGG ATCTTCATTAGCAGTGCGGC 219 

38 15 66683900 66684112 GCTTCCAGAAACTTCAGCCT GTAGGGACCTGGGTATTGGC 212 

39 15 66684154 66684373 CTGTTGGTGTGTGGATGAGG GGGTGGATAGGTGTGAATGG 219 

40 15 66684953 66685163 GGCTGTGGCCTAAAATGGTA GGAAACCTGCAGAAGACTGG 210 

41 15 66685389 66685590 GACCAGTGAGGAGCTTGACC TGCTCATGGAAACCAAATGA 201 

42 15 66685653 66685853 CATGATCCTTCAGCAAAGCC AAAGGAGCAATGGGTTCTCA 200 

43 15 66685874 66686090 GCAGGTCCCAAAGGTTTGTA GGAGTAAACCTGGGCAAGTG 216 

44 15 66686301 66686516 CTCTGAGCCTTGTCTGAGCC GAGTGGCAGCAACAGACTGA 215 

45 15 66686732 66686950 CACAAAATGCAGAGGAGCTG ACCAAAATCCCCAAACTTCC 218 

46 15 66686979 66687198 CAAAGCACATTTGGCTGGTA GGTACCATTCCTCTTGGCTG 219 

47 15 66687225 66687428 TTGATAGCTCCATGCACAGC TAACCAGGTTGTGGCCTTTC 203 

48 15 66687520 66687727 AACTGGGAGACCCAGACTCA TGTGGCTCAGTGGAATAGGA 207 

49 15 66688109 66688311 GCCATGCAAGGATAGGAGAG TTTCAGAGCTGCTGACTGGA 202 

50 15 66688339 66688558 GGACCCAACACAAAACCATAA GGTAAATGACTTCACGCCCT 219 
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51 15 66688577 66688788 TGAAATTACCACGCAGAGCA CCACGGAGAGAAAAAGGACA 211 

52 15 66688846 66689052 CAGCCAGTCTTCTGTGGTCA TAGTTGAGAAGGCAAGGGCT 206 

53 15 66689102 66689319 GAAATTCCCATTTGCTGGAA CGAGCCTGGAATGAACTCTC 217 

54 15 66689415 66689622 GCTTGGTCATGCAACTGAGA GCTAGGAGCCAGAACACAGG 207 

55 15 66689739 66689946 CCCACATCTGTCCCTGAACT GCCTGTTTCCATGCAGAAAT 207 

56 15 66689969 66690180 CCGGGAGATCTGTTCATACC ACTATCCAGTGGCCCACATC 211 

57 15 66690396 66690610 TCTGCTGGCAGTTCATTGAC TCGTGATAGCCACACCACAT 214 

58 15 66690678 66690885 TTGGTTGACAAACCACCTTT AGCAGTTTGGGTAGTGAGGG 207 

59 15 66690899 66691113 GCCTCCCTTTACCTCCAAAG ATCTGCTGCCCTCATCATTC 214 

60 15 66691125 66691335 CCTTTCTGAGTGCTTGTGGA TTTGGCAATTAAGTCCCCTG 210 

61 15 66691786 66691988 AAACCCTGCTGACACAGGAC TCCACACTGACCAGAACCAG 202 

62 15 66692090 66692289 GGCAAAACTTGTCCTTGCTT CCCGTCTGCAATAAAACCAT 199 

63 15 66692318 66692527 ACAGGAACATGGTGTGTGGA GCCTGTGCTCTAGATGGGAA 209 

64 15 66692560 66692759 CAGTATGGCCAGGAGTCTGC GTAAAGAGCCCAGGGTTGGT 199 

65 15 66692925 66693125 ATCTACCTTTCCCCACGCTT TGTTTCTCCCATTGCCTACC 200 

66 15 66693150 66693349 TGCCTAGTAGGGCAGGGGTA ACTGGGGAGAAGGCTCCAT 199 

67 15 66693371 66693574 CAGTTGTTGGTGTGTCCTGG GTTTCCCCACCACATCAATC 203 

68 15 66693678 66693891 GTCCCCAATCATGTGATGC CACCCAAATGGGACTCAAAC 213 

69 15 66694061 66694260 ACCTTGATGACTGAGGTGTCC TCAGTCACTAAGAGTTCCCCAAA 199 

70 15 66694293 66694492 TCAGAGAATCCCGAAGTGCT CATCCTCTGTACCTCAGGGC 199 

71 15 66694621 66694838 CCTGACAGAGCAGGACACAA TGCTGAACAGTCGTCACTCC 217 

72 15 66695021 66695221 ACAGCCTTTTCACGTCAGGT GTCCCTAACTCAGCAGCAGG 200 

73 15 66695264 66695483 CCCTAACCTCTCCCCACATT GGCTATGCTATGTCCCATGC 219 

74 15 66695540 66695741 CTTCCTGGGGTCAGTGGTAG AGCTGGGACCACTCTGTCAT 201 

75 15 66695849 66696066 ATGGGAGACTTTCCAGGGAG TGGGGCAATAGGTCTGTAGG 217 

76 15 66696114 66696320 CCATGCAAACTCAAGCACAC AATCTGAGGCTCCCTGACAA 206 

77 15 66696341 66696550 CCACTCTTCAGGAGCAGGAC AAACGCTCTGCAGTCAGACA 209 

78 15 66696632 66696835 TACCTGAACTGCTGCCTTGA AGTGGCTCACAACCACCTGT 203 

79 15 66697291 66697498 GGTGGAGAAAGGAGTCCTCA CCACCCTACCAGAAAGCTCA 207 

80 15 66697562 66697775 GTGGCCAGACACCCAGTAGT AGAGGAAGGCTGACCCAAAT 213 

81 15 66697829 66698038 TGTCCCAGCTTCAGTGTGAG GCATACCCTTCTGTTGGGAA 209 

82 15 66698161 66698366 ACCTGAATAGTGCACCCCAG GCTGCCTAGAATGGCTTGAC 205 

83 15 66698429 66698646 CTGTCTTACAGAAAGGGCGG GAGCATCCTGTCTGGTGGTT 217 

84 15 66699233 66699436 CATGGGTCTCCTTGGCTAAA GCTGTGGAAGTTTCCTGGAG 203 

85 15 66699526 66699738 GATGTGGTGGTGTGTGGGTA CAAATTCACTTGGCAGGGAT 212 

86 15 66699753 66699961 CCCAGCACAGAGTACAGAAGC TATGGTGACTTCAAGCCCCT 208 

87 15 66700100 66700302 CCCAGAGAGGGCATCTCATA CTAACCCCCAATCTCCTGGT 202 

88 15 66700393 66700607 AAAATCCAGAATGGTGCCTG GTAGAGCAAATGAGGCTGGC 214 

89 15 66700617 66700831 TTGAGCAGCTTCACTTCAGC AAATTCACTGGGGCTTCTCA 214 

90 15 66700897 66701103 AGCAAGCTTTGGAAGCTGAG TCAGGGGTACTCACTGAGGG 206 

91 15 66701232 66701449 GGCTTCTCCTTCTTGGCTTT GGGTCAGAATGACCATGTCC 217 

92 15 66701491 66701709 GCTGTGGTTTTCTCAGGACA TCCACAGGGAACGAGTTCTA 218 

93 15 66701752 66701967 TTCCTCCCTTACCCCTTTTC GCTCACTTTTTCAGACCCCA 215 

94 15 66702322 66702532 GGAGGTGACCCATCAAGAAA CCCAGCAGTGACAGGTCATA 210 

95 15 66702709 66702920 CTGGTCTTGAGAGGAGCCAC GTCCCGATGAAGACAGGAAA 211 

96 15 66702962 66703175 CATTAGTTTCCTTTGGCCCC CTTGGTCTGCATGCATTCTT 213 
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TABLE S5: 71 primer pairs to amplify probes for the first half of Tg Intron 41. The probe covers a region of 24,622 bp. 

Since the fragments amplified by PCR are not directly adjacent to one another but are interspersed by stretches of 6 to 825 bp, 

the effective probe size is 14,779 bp. Lengths of the respective amplicons are indicated on the right. 

 Chr. Start End Forward primer (5' → 3') Reverse primer (5' → 3') 
Length 

(bp) 

1 15 
66773879 66774078 TCAGGAGCTATTCTGCCACA GGGGCCTCTTTTTAAACGTC 199 

2 15 
66774149 66774363 AAGGCTGTGGAAGCATTGAC GCAAGACCAAGTTCTGGAATG 214 

3 15 
66774390 66774591 CTCAGGGATGGAGCTGTCTC AAGTACAGGGCTCCCATTCA 201 

4 15 
66774827 66775044 CCCATTATTTTCCTTTTGGC TCATTTCCCCAAATACCTCG 217 

5 15 
66775363 66775566 ACATGCACATGCACACACAG CATCAAGCATCAGTTTTGGC 203 

6 15 
66775709 66775911 CCCTGCCCATTCATCATTTA ACCTGGGGGAAAAGGTACAC 202 

7 15 
66775963 66776173 CAGCCAGTGTGCAAGTGAAT CCAGGATCAGCCTAGAGCAC 210 

8 15 
66776193 66776406 TGTTAGCAACCAGACCCCTT AAATAAGCTCACCCGATCCC 213 

9 15 
66776439 66776658 TCATGGCTCTTGCAGTGTTC CCAGTCAGTGGGAAGCATCT 219 

10 15 
66777183 66777389 TCCAATTCCAAAGGAATCCA TCAGCTGAATTCCAGAGGCT 206 

11 15 
66777502 66777720 TAGCTATGGAAATGGCCCAG CAGGCAGAATTCCTCAAAGC 218 

12 15 
66777943 66778143 TTCGCCTAACAAGAGTGATTCTC CACTCCCACTATGTTACAGGCA 200 

13 15 
66778178 66778396 GGCCAGTCTTGAGCACAAAT TGAAACAATCCAAGGACACTCA 218 

14 15 
66778464 66778665 ATTTGGTTGGTGTGAATGGC GCTTTGGTGCTGGGTCTCTA 201 

15 15 
66779279 66779495 CACCCTCAAGACTCACTGGA CTGGGTGCTGGAGAGCTAAG 216 

16 15 
66779715 66779925 GGCCACAATGCACCTTTAAT TTGATGAACGTGCGGAAATA 210 

17 15 
66780145 66780359 TCAACTTCCACCTAGCGTCC CCTGTAGGCCTGAGCAAGTC 214 

18 15 
66780509 66780708 GTTAATGGCATCCTCCTCCA GAGAGAAGGGATCAAGAGGGA 199 

19 15 
66780731 66780935 GGGACCCTGAGTCAGAACAG GGGAAGCATTACACTTTGCC 204 

20 15 
66780979 66781196 TGACCACAACAGAAAACAGCA GCCTTGACATGACGTGACATA 217 

21 15 
66781236 66781453 GAATGCACATGATGGGTGAC GGAAAGGGGAACTGGAGAAG 217 

22 15 
66781632 66781832 TCCATGGGAATAAGAGCACC TGCCTGGGTGAAATACTGTG 200 

23 15 
66782026 66782228 TGCTAAAGATTCCATTCGGC AGACCATGTGGAAAGCATCC 202 

24 15 
66782245 66782450 GGATTTCGAGTTGGAGTCAGTC GGTCTTCCAGGAATCAAGGG 205 

25 15 
66782486 66782698 ACCCCAGGTGACAGTCAAAG CAGCTATGGTCTTCGGGAAA 212 

26 15 
66782717 66782927 CTGAGTGGGTTCTCTGCTCC CCACCATTGCAAGAAATGAA 210 

27 15 
66783109 66783322 AGCCCACATATACACACCTGG TCACCCTGCTCTTTCTGATT 213 

28 15 
66783685 66783887 GGGATGTTGGAGCAGGTATG CCTTTAGCATCTTGGCCTCA 202 

29 15 
66783999 66784212 TTGCTTTGATCTGATGGTGC ACATATGCTTTGGAGGTGCC 213 

30 15 
66784332 66784531 AAATAGGACGGGGAGGAGAA GGGAGTCATATCCTGCTGCT 199 

31 15 
66784677 66784883 CCAGCAGGACACGGTTATCT GTGGTGTGTCCTCCCTCACT 206 

32 15 
66784999 66785217 AGTCAACATGACCCAGAGGC ACAGGCAGGACAGGGTTATG 218 

33 15 
66785233 66785441 ATCTCATTCACCCTGGTCCC AAGCTGGTGCAGTGTCTCAA 208 

34 15 
66785457 66785670 GTCCAGAAGCTCAGGTGGAG AAAGAGGAAGGGAGTCCTGG 213 

35 15 
66785736 66785949 TAGACATGGCACAAGGACCA AAAGGGCATTTCAAGGAGGT 213 

36 15 
66785996 66786202 TCCCAGTACAAGGTCAAGCA GAGGCACCGTGAGAATTTGT 206 

37 15 
66786286 66786502 CCACCCGGTAGACATGAGAT TGGGGAGAATCACCAAGAAG 216 

38 15 
66786662 66786879 GGGGAGAGATTGACATTGGA TGAGCATCCTGCTTGGATAG 217 

39 15 
66786945 66787150 CAATGGCTTTTCTCAGGGAC TGAGACACAGGCAGGTGAAG 205 

40 15 
66787294 66787506 AGGGGATCTTGCCCTATTTG AAACTGAGGAACAGGGAGCA 212 

41 15 
66787623 66787834 TACCATCACCTCTTGGAGCC TCAGGAATCTGAAACCGAGG 211 

42 15 
66787861 66788064 TTGCTCTTCAGTCCTAGTTTTGG CAGGGTGTCACAGTTCATGC 203 

43 15 
66788088 66788304 TCAACCCTGGATCCTTTGAG CTGTGAGTTTTCCCAGGACC 216 

44 15 
66789079 66789278 CCAGGCTCATAGAGAGGCAG AGTTACTTCTGGGCTGGGGT 199 

45 15 
66789436 66789643 GTATGTCAAGATGCTGCCCA AACATATGGCCACATAGCCC 207 

46 15 
66789766 66789978 CCAGTCCTTCAAACAGCCAG ACTGGGCACAAATGGCTACT 212 

47 15 
66790037 66790251 TGGCACTGACTAGAGCAGGA TCAGGAGCAGAACCACACTG 214 

48 15 
66790387 66790593 GGGAGGACCACTTTCACAGA CTGAGTTAGGCCTGGGGATT 206 

49 15 
66790726 66790933 TTCCATTTACCTGTGGCTCC CCCCACATGGGTCTTGATAC 207 

50 15 
66791001 66791201 TACACAGGCAAAACTTCCCC ATAATCCTGGCCCTATCGGT 200 
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51 15 
66791336 66791536 TGGACATGACTCCCATAGCA CCTGAGCTAGGTCATGCACA 200 

52 15 
66791610 66791810 ATGACAGAAGGGAAGCCTGA GCTGAAGTGGAGGTTCCAGA 200 

53 15 
66791890 66792107 CTTGCCCGTTATCTCATGGT ACCCCATCCTTGGGGTAATA 217 

54 15 
66792123 66792335 AGCAATGCTTTCTTTCCACTG TCCTTTTCTGCTTTGTCCTGA 212 

55 15 
66793160 66793373 CAAGTTACGTGTTCACAGGGG ACACGCTAAGGGCTCTGTGT 213 

56 15 
66793515 66793714 CACTGGAGGCTGTAAGGTCC TCCGGAGAGGAGAGAAACTG 199 

57 15 
66794359 66794565 GAACCTTACCCCAGAAGGCT CCTCCCTCCCTCCATCTATC 206 

58 15 
66794608 66794815 GAGAGAGAGAGAGAGAGAGAAACAGA GCCTGACACTTTCCTCCAAG 207 

59 15 
66795238 66795437 AGCAACATTTGCTCCCATTC GCCCCAATGAGGAGTCACTA 199 

60 15 
66795533 66795747 TGCCTTGGCTTCAGAAAGTT GCTTCATTCACCAATCAGCA 214 

61 15 
66795773 66795980 GCACACGCAAATGTGTTGTT GGGCAGTGTTAGAATCATTCAG 207 

62 15 
66796004 66796220 CTCTTCTCTTTGTGGCCCAG TATCTTGGGCTCCTTGATGG 216 

63 15 
66796252 66796452 GGCTGCCATTCAAGAGTCTG AAAGACCTGTCGCTCTCAGC 200 

64 15 
66796474 66796680 ATGAGCTGTCCCTCTGCCTA CGTGCTCAGTTTTCTAGGGG 206 

65 15 
66796749 66796949 GGGAAACAAAATGGAGCTGA AATGTGACCACATCAAGCCA 200 

66 15 
66797097 66797306 GATTCACAGTTGCAGAGGCA CACTGATGTTCCCTGGAGGT 209 

67 15 
66797329 66797533 CTTTAGGGCCCCACTGTCTT CGTTTGTCAAAATGTCTGCC 204 

68 15 
66797539 66797748 GCTACCTGTTTAGGCAGACTTATACAT CTCTGTGACTCTCATTACTGACCA 209 

69 15 
66797780 66797991 CATTTGAAATCAGCTGGGCT GAGCTGGTCTTGATTGGGAA 211 

70 15 
66798027 66798231 GAGGCAATGTGAGGCTTTCT AGGCCTGCTCTTCGAGCTA 204 

71 15 
66798297 66798500 AGCCCCATTGGTGTCTGTAG TGAGGAGAGCCTAGACCCAA 203 
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TABLE S6: 74 primer pairs to amplify probes for the second half of Tg Intron 41. The probe covers a region of 24,460 bp. 

Since the fragments amplified by PCR are not directly adjacent to one another but are interspersed by stretches of 8 to 622 bp, 

the effective probe size is 15,429 bp. Lengths of the respective amplicons are indicated on the right. 

 Chr. Start End Forward primer (5' → 3') Reverse primer (5' → 3') 
Length 

(bp) 

1 15 66802529 66802730 TTTCCCATTTCCAGGAACAA TATGAGGGGCATTTGAGGAG 201 

2 15 66802961 66803177 TGGCTTTTGTGCCACTGTTA TGGTCTCAAGGCTGACTCCT 216 

3 15 66803299 66803516 TTGCACCTATATTTCCCCCA GGGAGAGGTTACTTCATTACCCA 217 

4 15 66803827 66804031 GCACACAGAGACAAACCCAA ATGTGGTGCAATGCTATGGA 204 

5 15 66804182 66804400 GGTGGAGAGAGGTGCAAGAG AGGCTAAAGGGCACACAGAA 218 

6 15 66804451 66804650 AGAGAGAGCCTTGTCACCCA CTCTCAGAGATGCTGCCGA 199 

7 15 66804696 66804905 CTTGGGTTCCCGTGTAGAAA AGGCAAAAGACCTGCAGAGA 209 

8 15 66804930 66805149 TGGTTCTCCATCAGTGCAAG CCTTGTGTGACTTCCAGGGT 219 

9 15 66805246 66805460 CACTCCTGTGGCCATCTTCT TTGAAGCCTCAGAGCATGTG 214 

10 15 66805674 66805893 GAAACCTAGGCCTGGAAACC CTAAGCCAGCTTGGGCTATG 219 

11 15 66805913 66806126 GAGCCTGTGGAGTACTGGGA GCACATAAGGCAAGTGTGGA 213 

12 15 66806203 66806413 TTATTCAGGTCCCCATTTGC CACTCTGTCACACCAAAAGGC 210 

13 15 66806451 66806654 TTTCTGGGCCACATTACCTC CTGACAATTGAGGCCAGGAT 203 

14 15 66806677 66806876 AGCAAGACTACCAAGGCAGC TGGCTGTGAGTTAGGCACAC 199 

15 15 66807040 66807253 TGGGCATTGCTTTACACAGT CTCTCAGGCTCCTTCTCCTG 213 

16 15 66807292 66807495 GAACCCCAACACTAGCAAGG TGACGTGAGATCCTAACCAGG 203 

17 15 66807514 66807723 GCTCTCCCACAAGAGTCCAG GCACCCATAGCTTTTGCTTT 209 

18 15 66807860 66808073 GAACCTCCCAGCAGTACCAG GGGCACAGAAATTGGAGAAA 213 

19 15 66808695 66808908 TTAGGCCCACACTCAGGTATG TGAAGTGGTGGAGCTCAGTG 213 

20 15 66808965 66809178 GGCCTCCATTGTGCTTAAAA CCTCTGTACCTTCTGCAGGG 213 

21 15 66809196 66809412 CTGAAAGCCAATTTGCACTG GAGGGATAGTGTCTTGCCCA 216 

22 15 66809442 66809653 GTAGGCAGAGCAGATGGAGG TTCCTGAAAAATGGCAAAGG 211 

23 15 66809811 66810013 CCCCAGGGCAATAGATACAA TGTACTCTGGTTGGGGTTCC 202 

24 15 66810193 66810393 TGGTCAGAAATGCTCCTTCC TACCCTATCATCCAGCCAGC 200 

25 15 66810624 66810842 CCCCTCAGGTGACTAGCAGA CTGGGGAAAGGATGACAGAA 218 

26 15 66810869 66811072 TGTTAGGAACACGTTCCACTTG CAGGCAAAGCCTGCCTAAT 203 

27 15 66811221 66811439 GTCCTTTGATGGCAAACCTG AACTGAGCTGTGTGGCAGTG 218 

28 15 66811525 66811724 CTTTCTTTCCCTGTGAAGGC CCTGCTGTGACTGCATTAAA 199 

29 15 66811765 66811969 TCTGAAGGTTCAGCCCAGAT CTGAAGTAGGCTGCTGGGAG 204 

30 15 66812094 66812300 CCTCACTGGGTACCTCCTGT CCAGGGGAAGTCTGACTCAA 206 

31 15 66812322 66812522 CACCTAGCACAGCACCTTGT AGAGAACTGTGGCTGGGACA 200 

32 15 66812553 66812772 CCTGGGAGTTGGCAGTAGAG AGAAAACAGGAACCTGCCCT 219 

33 15 66812796 66813008 CTCTACAAGGACGATGGGGA GCAGTGAGCTATCCTCAGCC 212 

34 15 66813075 66813276 GGAGTCCCTGAAACTGTGCT AAGGATCACGCCTTGCTCTA 201 

35 15 66813387 66813601 AAATGGATGAGACACCCAGG GCCTAACCCCATCCTCTCTC 214 

36 15 66813625 66813824 CTGGATGTGCACACATTGCT GCACTACTGCCTGCCATTTT 199 

37 15 66813854 66814053 CCAAAGTTGAAAACCCCTCA TAGCTTCTGCCCCACTGTTT 199 

38 15 66814169 66814369 TCAGTGAGGAAGAGCAAGCA CAGCCATGTTAAGGGAAGGA 200 

39 15 66814473 66814680 CACATTTGTGGTGCTGCTCT CCTCTGCCATTGATGTTCCT 207 

40 15 66814876 66815089 CCCTAGTCCACCGAGATTGA GGAGTGACCCATTTTGTGCT 213 

41 15 66815307 66815524 TGCACTGAGGTTTAGCAGGA TGGCTTGAGTGTCTTTGTGG 217 

42 15 66815646 66815846 GGCACTGTGGTTTCTACCGT GCCTCACATATCTGCCATGA 200 

43 15 66815941 66816156 AAGAACCAGGTAGCATCCCTT TGTTGCAAATACAGCTCCCA 215 

44 15 66816164 66816383 CAAAGTCAAGAGACGGAGGC CCACCTCCTGTGCCATTTAT 219 

45 15 66816399 66816612 GCCACTGAACCTACCCTGAA CTCAGATCTTCCCACAGGCT 213 

46 15 66816630 66816846 GTTTCTAAACCGGCGTGTGT TATGGAGCTGAGAACCACCC 216 

47 15 66816876 66817079 AGCTTGATCGCCATTGTCTT TAGATGCGTTTTCTGGGGTC 203 

48 15 66817138 66817345 CAGCTAGACATCTGAGGGTCTC GGAGGGGATGCAGGATTATT 207 

49 15 66817367 66817579 CCTGGGCACTTCATGGATAC AAGATGGAAGCCAGGAGGAT 212 

50 15 66817783 66817987 TTCATGTGGAGCTTCAGTGG AAAAAGCTGTCTGTGAGGCG 204 
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51 15 66818148 66818358 CGGCTCACAGACAGCATTT GGGGCCTTCTTTTCTCTCTG 210 

52 15 66818434 66818633 CAGAAGTTGCCGGAATTAGC GCCAGTTACTTTGGCATGGT 199 

53 15 66818699 66818903 CACTCACTGAAACCCCACCT ATGGATCAGTGCATGCTGAG 204 

54 15 66819148 66819353 CTTGGTCTTAGGCAAGCCCT TGTGAAAATCAAATGAAACCACA 205 

55 15 66819411 66819619 GCTTGGTACACATAAGAAGCCC AGAAGCATTGAGAGCATGGG 208 

56 15 66820237 66820454 CAAACATGGAGGTGCAAAAG GTGTTCAGATGGACTTGGCA 217 

57 15 66820533 66820747 AGCTGCGGAGATGAAAAGAG TGATGGGAAAATAGGCCTTG 214 

58 15 66820777 66820996 GCAGGCTAGGTCTTGCATCT TATGGGGAGAAGGGGACAG 219 

59 15 66821017 66821236 GCTGGTCTCAGGAATGAATGA CAAAACACCTTTTGCCATCTG 219 

60 15 66821266 66821471 ATAGGTGCAAATCCGTTCCA GGTATGGCTAAGGCCATTGA 205 

61 15 66821500 66821701 TGTGCAAATGTCTGCTGTCC CAATTCCTAAAGCTCCCTGC 201 

62 15 66821734 66821933 GTGGGCAGGTAATAGGGTGA TGTGTGTAAAATTTCCATAGATTCAGA 199 

63 15 66822502 66822717 TATCATCTCCCCGCTCTCTG AGAAGGAGGAGGCAAGGTGT 215 

64 15 66822828 66823033 AGGCCCCTTATAAAGGCTGA GTGTGGCTTGCTATTGCTCA 205 

65 15 66823251 66823463 TGCCTCTTGGTTAAAGGCAT CCAGAGAATGTGTCCAGTGC 212 

66 15 66823785 66823984 TTTCAGTCTGGCCAAAATCC ACAAACAGAATGGATGGGGA 199 

67 15 66824041 66824252 CCCCAGGTTTTTCTTCAACA GCTATTGGGACCAGGACAAA 211 

68 15 66824441 66824642 GGGTGTTGCACTGCTGTAGA ACCCTGTGATCAACTGCTCC 201 

69 15 66824717 66824929 ACAGGGCCTTCCTACTGGAT TATCAGAACCGCCCATGAAT 212 

70 15 66825435 66825637 CCCAAATGAGGACAGCCTAC GGGCCTCTGATGTTTTCAAT 202 

71 15 66825952 66826158 CTATGCCGCACTGTGAAGAC TGCACATCAAACTTGCATCC 206 

72 15 66826295 66826509 AAACCCCCTGTCTGCTACCT ACCTGTGACCAGAGCCTGAG 214 

73 15 66826564 66826765 ATCAGGAGCCTCCCAGGTAT AGCACCCAGAACTCAGCAGT 201 

74 15 66826790 66826989 AGGCACCAGCAACTTCTCTG TGATATAGCTCTGAATGCGGAC 199 
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TABLE S7: Primers used for qPCR 
Gene Sequence (5' → 3') Organism 

Pax8 fwd: CAGCAGTGGTCCTCGAAAGC  
rev: GGTTGCGTCCCAGAGGTGTA  

Mus musculus 

Tg fwd: CCATGGCAGCCTAGAATTGC 
rev: ACTCATGTGGGTAGTTAGGATTTCCT 

Mus musculus 

Gapdh fwd: CATGGCCTTCCGTGTTCCTA 
rev: CTTCACCACCTTCTTGATGTCATC 

Mus musculus 

Ttn fwd: GCCGCGCTAGATTGATGATC 
rev: TCTCGGCTGTCACAAGAAGCT 

Mus musculus 

Neb fwd: CAGCAGATGCAGAGTGGGAA 
rev: TAACAATGCTGGCGTGACCT 

Mus musculus 
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TABLE S8: Long control genes with low expression used for depiction of the ratio of cis/trans contact frequencies. 

Gene Expression level (TPM) Length (bp) 
 

Myoblasts 
 

Pde4d 482.09 1,503,513 

Magi2 1.48 1,477,756 

Agbl4 4.09 1,266,663 

Tenm2 1.21 1,229,308 

Csmd3 2.10 1,211,426 

Ccser1 0.56 1,202,541 

Prkg1 5.87 1,197,482 

Dab1 7.281 1,125,485 

Auts2 44.26 1,106,011 

Sgcd 4.60 1,092,716 
 

Myotubes 
 

Dlg2 2.06 1,358,541 

Agbl4 2.07 1,266,663 

Park2 0.39 1,222,977 

Csmd3 0.62 1,211,426 

Prkg1 13.82 1,197,482 

Dab1 2.70 1,125,485 

Auts2 32.30 1,106,011 

Sgcd 10.71 1,092,716 

Nrg1 0.55 1,069,478 

Rbms3 21.95 1,057,167 
 

Thyroid 
 

Fhit 15.57 1,611,943 

Pde4d 236.00 1,503,513 

Magi2 4.20 1,477,756 

Agbl4 24.44 1,266,663 

Lingo2 0.07 1,245,100 

Ccser1 5.16 1,202,541 

Prkg1 0.15 1,197,482 

Ptprt 0.29 1,139,157 

Kcnip4 0.15 1,135,405 
 

Bladder 
 

Fhit 10.45 1,611,943 

Pde4d 379.15 1,503,513 

Magi2 2.67 1,477,756 

Lrrc4c 0.38 1,313,497 

Agbl4 18.93 1,266,663 

Tenm2 16.53 1,229,308 

Csmd3 3.56 1,211,426 

Ccser1 1.30 1,202,541 

Prkg1 4.44 1,197,482 
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5.3 ABBREVIATIONS 
 

3D   Three dimensional 

Ac   Acetylation 

Acta1/Acta1/ACTA1 Actin alpha 1 

Actb/Actb/ACTB Acin beta 

BAC   Bacterial artificial chromosome 

bp   Base pair 

Cald1/Cald1/CALD1 Caldesmon 

Cas   CRISPR associated 

CC   Chromocenter 

CDK   Cyclin dependent kinase 

cHC   Constitutive heterochromatin 

ChIP   Chromatin immunoprecipitation 

cDNA   Complementary DNA 

CRISPR  Clustered regularly interspaced short palindromic repeats 

CT   Chromosome territory 

CTCF   CCCTC-binding factor 

CTD   C-terminal domain (of RNA polymerase II) 

DamID   DNA adenine methyltransferase identification 

DAPI   4′,6-diamidino-2-phenylindole 

Dmd/Dmd/DMD Dystrophin 

DNA   Deoxyribonucleic acid 

DRB   5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 

DSIF   DRB Sensitivity Inducing Factor 

EC   Euchromatin 

EJC   Exon junction complex 

EM   Electron microscope/microscopy 

ESC   Embryonic stem cell 

fHC   Facultative heterochromatin 

FISH   Fluorescence in situ Hybridization 

GFP   Green fluorescent protein 

gRNA   Guide RNA 

GTEx   Genotype Tissue Expression 

HC   Heterochromatin 

HIV   Human immunodeficiency virus 

hnRNPC  Heterogeneous nuclear ribonucleoprotein C1 
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HP1   Heterochromatin protein 1 

HSA   Human (Homo sapiens) chromosome  

kb   Kilo base (pair) 

LAD   Lamina associated domain 

LBC   Lampbrush chromosome 

LLPS   Liquid-liquid phase separation 

Mb   Mega base (pair) 

MCT8   Monocarboxylate transporter 8 

Me   Methylation 

MMU   Mouse (Mus musculus) chromosome 

mRNA   messenger RNA 

Myh11/Myh11/MYH11 Myosin heavy chain 11 

ncRNA   Non-coding RNA 

Neb/Neb/NEB  Nebulin 

NELF   Negative elongation factor 

NKX2.1  NK2 Homeobox 1 

nRNA   Nascent RNA 

nRNP   Nascent ribonucleoprotein particle 

P1   Postnatal day 1 

P14   Postnatal day 14 

PAX8   Paired box gene 8 

PCR   Polymerase chain reaction 

Pol II    RNA polymerase II 

PRC   Polycomb repressive complex 

P-TEFb   Positive transcription elongation factor b 

PTM   Posttranslational modification 

RNA   Ribonucleic acid 

Rpl41/Rpl41/RPL41 60S ribosomal protein L41 

RRM   RNA recognition motif 

SAM   Synergistic activation mediator 

SC35   Splicing component 35 kDa 

SE   Super-enhancer 

SR   serine and arginine (rich) 

Sry   Sex determining region Y 

SunTag   SUperNova tag 

T3   Triiodothyronine 

T4   Thyroxine 
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TAD   Topologically associating domain 

TF   Transcription factor 

Tg/Tg/TG  Thyroglobulin 

THRb1   Thyroid hormone receptor beta 1 

TL    Transcription loop 

TPM   Transcripts per million 

TREX   Transcription export complex 

TRH   Thyrotropin releasing hormone 

TRHR   Thyrotropin releasing hormone receptor 

TSH   Thyroid stimulating hormone 

TSHR   Thyroid stimulating hormone receptor 

TSS   Transcription start site 

Ttn/Ttn/TTN  Titin 

TTS   Transcription termination site 

VPR   VP64-p65-Rta, transcriptional activator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


