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viii Zusammenfassung

Zusammenfassung

Obwohl die Qualität der Vorhersage von Regen große Fortschritte gemacht hat, so ist
das Verständnis der Regenentwicklung noch lückenhaft. Auf mikrophysikalischer Ebene
bilden sich die Tropfen an Aerosolen und wachsen über Di↵usion von Wasserdampf. Nach-
dem die Tropfen eine gewisse Größe erreicht haben (schätzungsweise 20 µm), beginnen
sie zu kollidieren und die Wachstumsrate beschleunigt sich stark. Auch wenn die nu-
merische Beschreibung der Tropfenkollisionen noch eine Herausforderung darstellt, so ist
man sich einig, dass diese das Tropfenwachstum stark beschleunigen und in kurzer Zeit Re-
gentropfen entstehen lassen. Noch schlecht verstanden ist jedoch der Übergang dieser bei-
den Wachstumsprozesse. Die aktuellen Prozesse scha↵en es nicht, die kurzen beobachteten
Zeitskalen der Regenentwicklung zu reproduzieren. Das di↵usive Wachstum verlangsamt
sich derart, dass Tropfen über 15 µm nicht ausreichend und nicht in realistischen Zeit-
skalen enstehen. Um diese Lücke zu schließen, wird in dieser Arbeit mit einer, um ther-
mische Abstrahlung erweiterten, Beschreibung des Di↵usivenwachstums experimentiert.
Die freiwerdende latente Wärme wird neben der Wärmedi↵usion auch über thermische
Strahlung verteilt. In Kombination mit einer neuen Beschreibung von Turbulenz, welche
die lokalen, nicht aufgelösten Schwankungen im Feuchtefeld für jeden Tropfen beschreibt,
wurden einfache Luftpaket- und darauf aufbauend umfassendere Strömungs-Simulationen
(LES) durchgeführt. Die verwendete Beschreibung des mikrophysikalischen Modells löst
dabei die Orte und Bewegungen, sowie das di↵usive Wachstum der Tropfenpopulation ex-
plizit auf. Die Ergebnisse der Luftpaketsimulationen zeigen, dass die Kühlung am Tropfen
durch thermische Strahlung grössere Tropfen hervorbringt und dies auf kürzeren Zeit-
skalen. Das veränderte Wachstum kann hier zu einer leichten Untersättigung im Luftpaket
führen, wodurch die kleinsten Tropfen zu verdunsten beginnen können. Dieser E↵ekt wird
am deutlichsten in der Kombination mit Fluktuationen im Feuchtefeld. Auch wenn die
Fluktuationen bereits alleine einen beschleunigenden Einfluss auf die Kollisionszeitskala
haben, so ist die Beschleunigung am deutlichsten in der Kombination. Es werden mehr
kleine Tropfen durch Feuchtefluktuationen erzeugt und diese verdunsten häufig in dem
durch thermische Strahlung untersättigten Luftpaket. Die Sensitivitätsstudien zeigen, dass
langsamere Aufwinde die Verbreiterung der Tropfenverteilung und die Beschleunigung des
Kollisionsbeginns, durch thermische Strahlung und durch Feuchtefluktuationen, deutlich
voran treiben. Der Einfluss der Aerosolverteilung hat den grössten E↵ekte für wenige und
kleine Aerosole. Die LES Simulationen einer nächtlichen stratus Wolke zeigen, dass die
Menge der kollisionsaktiven Tropfen an der Wolkenoberkante durch thermische Strahlung
zunimmt. In besonderem Maße wirken sich Die Feuchteflukuationen führen zu einer Zu-
nahme von größeren Tropfen an der Wolkenoberkante, aber auch an der Wolkenunterkante.
In den LES Strömungs-Simulationen nimmt der E↵ekt durch die Kombination von ther-
mischer Strahlung und Turbulenz ab, denn im Vergleich zu den Luftpaketsimulationen sind
hier Feuchtefeld und Tropfenposition weniger stark gekoppelt. Die untersuchten mathema-
tischen Beschreibungen tragen zum Schliessen der Lücke zwischen den Wachstumsprozessen
bei. Für eine detailliertere Aussage, sollten diese aber mit expliziten Kollisionen auf di-
versen Wolkentypen untersucht werden.



ABSTRACT ix

Despite impressive advances in rain forecasts over the past decades, our understanding
of rain formation on a microphysical scale is still poor. Droplet growth initially occurs
through di↵usion and, for su�ciently large radii, through the collision of droplets. However,
there is no consensus on the mechanism to bridge between the two growth processes. The
analysis of prior methods is extended by including Radiatively enhAnced Di↵usional growth
(RAD) to a Markovian turbulence parameterization. This addition increases the di↵usional
growth e�ciency by allowing for emission and absorption of thermal radiation. Specifically,
an upper estimate for the radiative e↵ect is quantified by focusing on droplets close to
the cloud boundary. The strength of the parcel model approach is that it determines
growth rate dependencies on a number of parameters, like updraft speed and the radiative
e↵ect, in a deterministic way. Realistic calculations with a cloud resolving model are
sensitive to parameter changes, which may cause completely di↵erent cloud realizations and
thus it requires considerable computational power to obtain statistically significant results.
The simulations suggest that the addition of radiative cooling can lead to a doubling of
the standard deviation for the droplet size distributrion. However, the magnitude of the
increase depends strongly on the broadening established by turbulence, due to an increase
in the maximum droplet size, which accelerates the production of drizzle. Furthermore, the
broadening caused by the combination of turbulence and thermal radiation is largest for
small updrafts and the impact of radiation increases with time, which is most pronounced
for slow synoptic updrafts.

The second part of the thesis treats more realistic and complex large eddy simulations
(LES) conducted with the model PALM. LES resolve large laminar and turbulent motions
and the associated mixing process of dry and wet air. The parametrizations of the unre-
solved subgrid scales (SGS) include the prognostic equation for the SGS kinetic energy,
which is coupled to the investigated SGS Markovian turbulence parametrization. Further-
more, the superdroplet microphysics resolves the positions of the cloud droplets, including
their individual sedimentation movements. Therefore, the evolution of water vapor and
liquid water is decoupled in comparison to the parcel model simulations and as a result the
impact of radiation decreases. The radiative heating rates are calculated for each model
column independently. The simulations were initialized with atmospheric profiles from the
first nocturnal measurements of the DYCOMS campaign. After a spin up period of 30
minutes the simulations show a stratocumulus cloud deck between 600 and 900 m. The
statistical analysis of the clouds show that the drizzle water content increases due to both
radiation and turbulence, with a larger contribution from turbulence. Turbulence also in-
troduces a significant amount of drizzle water at the cloud bottom. In contrast, thermal
radiation increases drizzle formation mainly at the cloud top. The impact of RAD on the
amount of drizzle is similar to that of coupling radiative heating rates to the temperature
field. The radiative impact increases slightly in combination with turbulence. Both, ther-
mal radiation and turbulence speed up the production of drizzle and to verify that the
gap between di↵usional and collisional growth is bridged simulations with explicit droplet
collisions should be compared to warm rain observations.





Chapter 1

Introduction

The Intergovernmental Panel on Climate Change IPCC (2013) considers the representation
of clouds as the greatest source of uncertainty in current climate models. Furthermore,
the World Economic Forum considers water scarcity as one of the 10 most pressing global
problems, in their current Global Risk Report WEF (2019). Precipitation is the ultimate
source of fresh water. Without rain, life as we know it, would not be possible. Those are
only two international organizations pointing at the importance of expanding our under-
standing of clouds and the process of rain formation to improve the predictions of weather
and climate models.

Two thirds of the earth’s surface are covered with clouds. Clouds are made of condensed
and/or frozen water and appear generally in rising air, which cools and saturates with
respect to water. The transported water vapor and aerosols (e.g. sea salt, soot, dust
particles) are essential to create clouds. In typical atmospheric conditions, water vapor
condenses on aerosol particles, which lowers the necessary saturation pressure. Clouds can
be distinguished in terms of shape, between sheet like, homogeneous stratus clouds and
heap like, inhomogeneous cumulus clouds. Furthermore, the transitional regime between
the two is termed: stratocumulus clouds. Stratus clouds are generally larger then cumulus
clouds, with and extent of several hundred kilometers. They are easier to predict, compared
to cumulus clouds, because they are generated from large scale motions, which are better
represented in global models. Cumulus clouds, of a few hundred meters evolve according
to the local, small scale atmospheric dynamics with large spatial and temporal variability.
Finally, the frequent stratocumulus clouds evolve due to a mixture of small and large
scale dynamics. Current climate models run on 100 km and weather models on 3 km
resolution, both are far from capturing the small scales required to develop cumulus clouds.
Furthermore, not only that the range of spatial scales limit the representation of clouds, but
also the knowledge gaps in microphysical cloud processes. Even now, ice free clouds, that
contain only liquid droplets, are not su�ciently well understood to represent the formation
of rain with confidence.
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Here we focus on the knowledge gap concerning the formation of rain in clouds, that do not
contain ice. How do droplets become big enough to form rain like droplets of several mm?
The current understanding of the growth mechanisms has the following shortcoming: the
initial droplet growth by condensation becomes very slow, when the growth by collision
has not started yet. This gap is called the Condensation-Collision Bottleneck and happens
around a droplet radius of r⇠15 µm. We need to bridge this gap, in order to understand
the formation of rain in realistic timescales. Several attempts have been made, including
the role of giant aerosol particles, turbulence and radiation. Here, we investigate the
combination of unresolved turbulence and thermal radiation and their impact on bridging
the gap between the growth processes. Furthermore, a recently developed microphysics is
applied, which resolves positions, motions and explicitly models the growth process for so
called superdroplets. One superdroplet is representing several normal droplets of the same
size. The research question of the current thesis can be formulated as:

Can thermal radiation in combination with unresolved turbulence explain

the formation of rain in ice free clouds?

Thermal radiation and unresolved turbulence are two of the most promising candidates to
complete the understanding of warm rain formation. To this end, two experimental setups,
a simple parcel model and a complex Large Eddy Model are expanded by parametrizations
for thermal radiation and turbulence and evaluated.

The following paragraph focuses on the parcel model approach, which is published in
Barekzai and Mayer (2020).

Warm rain plays an important role for tropical precipitation (Hou et al., 2014; Lau and
Wu, 2003; Liu and Zipser, 2009), but the precise processes that convert cloud droplets to
rain are not well understood. The formation of warm rain begins with the condensation
of water on Cloud Condensation Nuclei (CCN) to form haze droplets. If the environment
reaches a critical saturation, the haze particle nucleates and grows freely by condensation.
The droplets grow until they are su�ciently large to collide, at that point the collision and
coalescence process dominates the growth and creates drizzle and eventually rain drops.
Although there is agreement on these principal steps the details of drizzle formation remain
an open question. Drizzle is defined as hydrometeors with a radius between 20 and 250
µm (Feingold et al., 1999; Hudson and Yum, 2001; Rasmussen et al., 2002) and its forma-
tion cannot be explained solely by di↵usional growth and subsequent collisions (Illingworth,
1988; Beard and Ochs III, 1993; Laird et al., 2000). The classical di↵usional growth process
is proportional to the inverse of the droplet radius (dr/dt/1/r) which results in very slow
growth speeds for droplets larger than 15 µm. Collision is generally considered e�cient for
radii larger than 20 µm (Brenguier and Chaumat (2000)). Furthermore, di↵usional growth
decreases the standard deviation of the droplet size distribution, which slows down the on-
set of collisions by narrowing the fall speed spectrum. The classical approaches to growth
by di↵usion and collision are therefore insu�cient to explain the formation of drizzle in
realistic timescales and also to reproduce the observed, broad and multi-modal droplet
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distributions (Warner, 1969a,b). The aforementioned problem is called “the Condensation
Coalescence Bottleneck” (Brewster, 2015; Wang and Grabowski, 2009). Previous attempts
to pass the bottleneck and simulate more realistic droplet distributions investigated the
role of Giant Cloud Condensation Nuclei (GCCN) (Feingold et al., 1999; Houghton, 1938;
Johnson, 1982; Yin et al., 2000), turbulence (Fouxon and Stepanov, 2002; Grabowski and
Wang, 2013; Pinsky and Khain, 1997) and radiation (Brewster, 2015; Guzzi and Rizzi,
1980; Klinger et al., 2019; Lebo et al., 2008; Marquis and Harrington, 2005; Rasmussen
et al., 2002; Roach, 1976). Here, the often underrepresented role of radiation in the di↵u-
sional growth process in combination with turbulence is highlighted. The key idea is that
both heat di↵usion and thermal radiation allow the droplet to dissipate latent heat released
during condensation. Radiative cooling can reduce the temperature of the droplet below
the temperature of the surrounding air. Consequently, droplets can continue to grow even
in slightly subsaturated environments. This process will be referred to as the “Radiatively
enhAnced Di↵usional” growth (RAD), which is not considered in the classical di↵usional
growth theory and which is not included in the current microphysical parametrizations,
despite being already proposed by Roach (1976). (Harrington et al., 2000; Hartman and
Harrington, 2005a,b) investigated the impact of RAD on the formation of drizzle in arctic
stratus clouds. They applied LES simulations and a Trajectory model to compare the
e↵ects of radiation using a bin microphysics. Radiative fog simulations have also been
conducted as proposed in the fundamental paper of Roach (1976) (Brown and Roach,
1975; Duynkerke, 1991; Roach et al., 1976). Here, a parcel model with Lagrangian mi-
crophysics is used to investigate RAD in combination with turbulence induced saturation
fluctuations, which can serve as a foundation for the interpretation of more elaborated LES
simulations. The Lagrangian microphysics representation applies so-called superdroplets,
each representing a group of droplets with the same aerosol properties throughout the
parcel (Cooper et al., 2013; Shima et al., 2009; Vaillancourt et al., 2002). In contrast to
passive tracers, the superdroplets nucleate and subsequently grow and shrink by interact-
ing with the surrounding moisture field. The advantage of this approach is that it allows
the explicit treatment of the growth by di↵usion and the implementation of a turbulence
parametrization, resulting in di↵erent growth histories for each superdroplet. The thermal
radiative cooling is only relevant near the cloud edges, because at the cloud center the
emitted radiation is in balance with the absorbed radiation. The distance from the cloud
edges at which cooling is relevant depends on the liquid water content and ranges from 50
to 100 m (Klinger and Mayer (2016)). The implementation details of the parcel model are
based on Grabowski and Abade (2017a). The current parcel model investigation can be
understood as a continuation of that study.

In contrast to the parcel simulations, more realistic, yet complex simulations are done and
presented in the Chapter 5 with the large eddy model PALM-LES. LES simulations solve
the Navier-Stokes equations for the large, energy containing eddies and parametrize the
smaller, subgrid scale (SGS) eddies. In contrast to the prescribed development of the parcel
model, the LES develops its turbulent and dynamic state autonomously. Prescribed is only
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the initial state of the atmosphere, by the temperature, pressure and humidity profiles. In
the spin up period of approximately 20 minutes, the model develops its stationary state.
In this section, the measurements from the first nocturnal research flight (RF01) of the
Dynamics and Chemistry of Marine Stratocumulus field study (DYCOMS-II), presented in
Stevens et al. (2005), are used to initialize the LES Model and as a result a warm stratus
cloud develops.

The LES simulations are evaluated on a 3 dimensional grid. Therefore, the water vapor
and water droplets change grid cells and are less tightly coupled, compared to the parcel
simulations. Superdroplets change grid cells, due to sedimentation or turbulence and may
leave the flow of air in which they were formed. Furthermore, the mixing process of dry
and wet air, at the cloud bottom and top, is included in LES simulations, which further
attenuates the connection between the water vapor and the condensed water. The mixing
of dry and wet air is considered to be very important for the formation of rain, because
droplets need to experience large supersaturations, in combination with only a low droplets
concentration, to become rain. This condition is most likely found at the continuously
evolving cloud edges.

Collision is the most potent droplet growth process and is known to e↵ectively produce
rain. However, collisions are di�cult to parametrize and still considered experimental for
the superdroplet microphysics. Droplets, that collide must be aware of their neighboring
superdroplets and in the process of colliding, new superdroplet are created, which becomes
computationally demanding. Therefore, the process of collisions is not included in this
study. Instead, the focus lies on the production of smaller drizzle droplets, starting at a
droplet radius of about 20 µm, which are known to initiate collisions. In LES simulations,
radiation is evaluated at the grid layers for each column independently. This is called:
independent column approximation, and neglects the influence of the other columns with
the focus on the thermal spectral range.



Chapter 2

Scientific Background

2.1 The Atmosphere

The earth system may be split into three parts: atmosphere, ocean and land. All parts are
coupled in a complex way. In the context of this thesis, only the atmosphere is explicitly
considered and the coupling to the land surface is neglected. The ocean is considered by
the initial conditions of the simulations, which are based on measurements from research
flights over the ocean. The atmosphere is a gaseous shell around the planet. It is made
up of approximately 78% N2, 21% O2 and 1% Argon. The surface continuously introduces
aerosol particles into the atmosphere, which plays an important role in the formation of
clouds (Andreae and Rosenfeld, 2008; Fan et al., 2016). In the context of this thesis, the
considered aerosol is sea salt, which is introduced into the atmosphere by sea spray. Fur-
thermore, the atmosphere contains water vapor as well as liquid and frozen water, in the
form of so called warm, ice and mixed clouds.

A summarizing table of the variables and constants, used in the following chapters, can be
found in the Tables (6.1) and (6.2).

The description of atmospheric gases starts with randomly moving molecules, idealized
as point particles, which are interacting via elastic collisions. The resulting description is
termed the ideal gas law:

p = ⇢ RdT. (2.1)

The equation describes the state of an gas, e.g. air, as a function of the density ⇢, pressure
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p and temperature T. The specific gas constant Rd can be calculated with:

Rd =
R

M
=

NA

kBMair
, (2.2)

with the universal gas constant R, the Avogadro constant NA and the molar mass of air
Mair. The specific gas constant of air becomes: Rd = 287 J K–1 kg–1.

The average temperature profile, for the well mixed lower atmosphere, can be approximated
as linear decreasing from the surface temperature T0.

T(z) = T0 – z · �d (2.3)

The slope is given by the dry atmospheric lapse rate, which can be calculated with �d =
g/cp = 9.8 K km–1. The decrease in temperature with height of dry air depends on the
earth’s gravitational acceleration g = 9.81 m s–2 and the specific heat cp = 1003.5 J kg–1

K–1. Similar, the atmospheric lapse rate for moist air can be approximated with �w ⇡ 5
K km–1. The value is approximated, because it depends on the temperature and on the
amount of released latent energy by the condensed water.

The hydrostatic pressure profile is established by the gravitational force acting on the air,
approximated as motionless, and serves as the reference state for the pressure deviations,
calculated from atmospheric models:

dp

dz
= –⇢ g (2.4)

The potential temperature ⇥ is a useful quantity, which is describing the temperature of a
dry air parcel, that is brought adiabatically to a reference pressure level p0 (usually 1000
hPa or the earth surface pressure). It allows to easily assess the stability of the atmosphere
and is the preferred way to specify atmospheric temperature profiles.

⇥ = T ·
✓

p0

p

◆Rd/cp

(2.5)

Furthermore, the liquid water potential temperature ⇥l accounts for the temperature in-
crease from condensation. The exact formulation can be found in Betts (1973), a simple
approximation results to:

⇥l ⇡ ⇥ –
Lv

cp
qc, (2.6)
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with the cloud water mixing ratio qc, which is the fraction of water mass to air mass over
the considered volume.

The water vapor in the atmosphere is the basis of all fresh water on earth and the micro-
physical processes, involved in the formation of clouds and eventually rain, are described
in the following section.

2.2 Microphysics

The amount of water vapor, that air can hold depends on temperature and pressure. The
excess water vapor changes state into liquid water or ice. The amount of water vapor
to saturate the air, is described with the Clausius-Clapeyron relation Rogers and Yau
(1996). It describes the phase transition from water vapor to liquid water, by providing
the temperature dependence of the saturation water pressure:

des

dT
=

Lv es

Rv T2 . (2.7)

The latent heat of vaporization for water is Lv = 2.257 · 106 J kg–1 and the specific
gas constant for water vapor is Rv = 461 J K–1 kg–1. The solution of Eq. (2.7) for
the saturation pressure es can be approximated with the August-Roche-Magnus formula
Alduchov and Eskridge (1996) for typical atmospheric temperatures:

es(T) = 6.1094 · exp

✓
17.625 T

T + 243.04

◆
. (2.8)

T is the temperature in Celsius and es the saturation pressure in hPa. Finally, the satura-
tion pressure translates to the saturation water vapor mixing ratio qvs, by using the ideal
gas law to:

qvs =
Rv

Rd

es

p – es
(2.9)

Water vapor condenses to liquid water, if the water vapor mixing ratio qv exceeds the
saturation mixing ratio qvs. The mixing ratio qv describes the ratio of the water vapor
mass to the respective air mass.

Two frequently used quantities to describe water in the atmosphere, are the liquid water
content and liquid water path (lwc and lwp). Both are defined for a grid or parcel volume
as:

lwc =
4⇡

3
⇢w

Z
n(r) r3 dr and lwp =

Z
lwc dz, (2.10)
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with the radius dependent droplet number concentration n(r).

The condensed water appears in the form of clouds. Clouds come in di↵erent shapes and
are made of liquid and/or frozen water droplets/crystals. Clouds are especially hard to
predict, because their evolution depends on a broad range of length scales, that can not be
resolved in current weather models. However, the correct prediction of clouds has many
applications. They range from the prediction of solar irradiance at the earth’s surface for
renewable energy production, the impact on earth’s climate evolution to the forecast of rain
in a world with growing deserts. The clouds microphysical structure and optical thickness,
as well as, the height of the cloud top, determine their impact on the earth radiative energy
budget. In summary, high clouds warm the atmosphere due to their lower temperature
and, therefore, lower thermal radiative emission. Optically thick clouds, at all altitudes,
cool the atmosphere, due to their contribution to an increased albedo, which is the ratio of
reflected to total incoming solar radiation IPCC (2013) (Chapter 7 Clouds and Aerosols).
In total, clouds are assumed to have a cooling e↵ect on the climate, due to the optically
thick and therefore reflective, low lying stratus clouds.

The principle steps of warm (ice free) cloud development, from a droplet perspective, are
called: nucleation, condensation, collision and the final stage of sedimentation, resulting
in evaporating drizzle or rain.

10�1 100 101
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Figure 2.1: Köhler curves that show the equilibrium supersaturation S⇤ at the droplet surface for
NaCl aerosol particles of di↵erent radii r.
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2.2.1 Nucleation

The first step, from water vapor to a cloud droplet, is called nucleation. Water vapor con-
denses at the aerosol surface and forms droplets. This is described by the Köhler process.
The Köhler process is based on equilibrium thermodynamics and takes into account: the
increase of saturation pressure at the droplet surface, due to the curvature of the droplet,
which is called the Kelvin-E↵ect, and the decrease of saturation pressure, due to the mix-
ing and dissolution of aerosol in the droplets, which is called the Raoult-E↵ect. The first
order approximation of the resulting equations, from Rogers and Yau (1996), has the form

S⇤ = e
es

– 1 = CK
r – CR

r3
and will be explained in Section 3.1.1. The Figure 2.1 shows the

Köhler relation for di↵erent sea salt aerosols, with respect to the equilibrium supersatu-
ration at the droplet surface. For typical atmospheric conditions, aerosols are needed to
form droplets. Without aerosols, the needed saturation pressure would not be reached,
which is due to the Kelvin E↵ect (Curvature E↵ect). A cloud droplet nucleates, when the
environment surpasses the critical supersaturation Scr, allowing the droplet to grow be-
yond the critical radius rcr see Eq. (3.6). The critical values describe the maximum in the
Köhler curve, shown in Fig. 2.1. Before the nucleation, the droplet does not grow freely,
the size is determined by the saturation of the droplet environment. After surpassing rcr,
the droplet grows freely, as long as, the droplet environment is supersaturated.

Figure 2.2: Sketch of di↵usional growth. At the center is the droplet, which exchanges water
molecules (blue circles) and latent heat (red circles) by di↵usion with the environment, and that
interacts with long and short wave radiation, which are indicated on the left side, by the short
and long waves.
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2.2.2 Di↵usional Growth

Eq. (2.11) describes the classical di↵usional growth of the droplet, which is deduced from
Maxwell (1890). From the processes of water and heat di↵usion, one arrives at the following
equation for the droplet radius:

dr

dt
=

1

A⇢w

✓
S⇤

r

◆
with:

A

⇢w
=

L2
v

RvT2
+

RvT

esDw
, (2.11)

with the thermal conductivity of air  = 0.0243 W m–1 K–1 and the di↵usion constant of
water vapor in air Dw = 2.82 · 10–5 m2 s–1.

The parameter A=

✓
L2

v
RvT2

+ RvT
esDw

◆
is approximated under the assumption that Lv/(RvT)

� 1. The analytical solution of Equation (2.11), given in Rogers and Yau (1996), results
in:

r(t) =

s
2S⇤

A⇢w
t (2.12)

In section 3.1.1, the radiative augmented di↵usional growth (RAD) is presented, which
builds upon Eq. (2.11) and is a fundamental part of this thesis.

2.2.3 Condensation-Coalescence Bottleneck

The formation of rain in warm clouds and in realistic timescales can not be explained by
di↵usional growth alone. It slows down significantly and it takes too long to reach droplets
with radius of 15 micron, due to the square root dependence of time in Eq. (2.12). Another
e�cient growth mechanism, known to form rain very rapidly, is collision and coalescence
between droplets. The simplest approach to collisions is the gravitational kernel method,
presented by Hall (1980). It describes the probability of two colliding droplets with radii
r and r0 as:

K(r, r0) = ⇡ (r + r0)2 E(r, r0) kv(r) – v(r0)k. (2.13)

It is proportional to the di↵erence in terminal fall velocity v(r), which increases with the
di↵erences in the droplet radii. E(r, r0) are the experimental radius dependent collision
e�ciencies. However, collisions become e↵ective after some of the droplets reach the size
of drizzle droplets (approximately 20 microns). This can not be reached in realistic atmo-
spherical conditions, by sole classical di↵usional growth, according to Eq. (2.11). Further-
more, collisions are not yet accurately implemented in the current Lagrangian microphysical
approach Shima et al. (2009) and as a consequence: they are not included in this thesis.
Therefore, we focus on the formation of drizzle droplets by di↵usional growth, alone. Driz-
zle is expected to initiate collisions, if present in su�ciently large quantities. The current
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challenge in warm cloud physics is to find and describe the processes, that bridge the bot-
tleneck for droplets, with radius between 15 and 20 microns. Possible processes to bridge
the bottleneck are unresolved scales of turbulence and their impact on saturation (Wang
and Grabowski, 2009; Grabowski and Abade, 2017b), as well as, collisions Franklin et al.
(2005), details about the aerosol distribution (giant aerosol particles) Feingold et al. (1999)
and radiation Barekzai and Mayer (2020). Here, the focus is on saturation fluctuations
due to turbulence, radiation and the combination of both processes.

2.3 Radiation

The dynamical processes on earth are fueled by energy from the sun and this energy is
distributed over the atmosphere. Atmospheric radiative transport models describe the
distribution of energy and in order to understand it, one has to learn the basics of radia-
tion.

Our current understanding of light is fundamentally based on the work of Maxwell (1996)
and Einstein (1905). Electromagnetic radiation propagates like a wave, but it interacts like
a particle. The discrete particle nature of light is called quantum of light or photon. The
energy E⌫ of a photon, is proportional to its frequency ⌫, from the corresponding wave, it
is associated with:

E⌫ = h⌫, (2.14)

with Planck’s constant h = 6.626 · 10–34 J s. The wavelength � can be derived from the
frequency of light ⌫ with c = �/⌫, where c is the universal speed of light. Furthermore,
light can be described by frequency, direction of propagation and polarization.

Two fundamental quantities to describe the radiative transfer in the atmosphere are called
irradiance and radiance. Both can be defined in terms of the radiant flux �e = dQ/dt,
which is the radiative energy Q per unit time. The irradiance Ee is the radiative flux per
unit area.

Ee =
d�e

dA
[Wm–2] (2.15)

The radiance L is the radiative flux per solid angle per projected area:

Le =
d2�

cos✓ dA d⌦
[Wm–2sr–1], (2.16)

with the di↵erential of the solid angle as d⌦ = sin✓ d✓ d�.

To describe the radiance emitted from a thermal source, the concept of a black body is
introduced by Planck (1901). A black body absorbs all incoming radiation. Radiation
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from a black body is in thermal equilibrium and as a result the photon statistics is only
temperature dependent, as described by Planck’s law:

B(�, T) =
2hc2

�5
1

exp
⇣

hc
� kBT

⌘
– 1

. (2.17)

The integral over the wavelength and the solid angle of the Planck’s law is called the
Stefan-Boltzmann law (2.18). It describes the radiative power per surface area of a black
body, which is proportional to the fourth order in temperature:

P/A = � T4, (2.18)

with � =
2⇡5k4

B
15c2h3 . For real bodies Eq. (2.18) is modified by the bodies e↵ectiveness of

emission, the emissivity ✏.

2.3.1 Emission, Absorption and Scattering

A way to think about light in terms of a photon is: that at some point, the photon gets
emitted and absorbed by matter and, in between, the direction of propagation may be
changed by scattering. The thermal emission of a source depends on the temperature. It
is di↵erent, depending on the e↵ectiveness of the material, the so called emissivity ✏ of the
material. Kirchho↵s law (2.19) states, that at thermal equilibrium and for all wavelengths
of light, the emissivity ✏� equals the absorptivity ↵� for every object. In other words, the
e↵ectiveness of emission equals the e↵ectiveness of absorption. The reference absorption
comes from the idea of a black body, which absorbs and reemits all incoming radiation,
corresponding to a maximal absorptivity of 1.

✏� = ↵� (2.19)

The change in the direction of light, by scattering, happens with a certain probability,
which is modeled for a single scattering particle, by the scattering cross section �sca and
for several scattering particles, which will be present in the atmosphere, with the scattering
coe�cient �sca:

�sca(r) =

Z 1

0
n(r) �sca(r)dr. (2.20)

Light is also absorbed with a certain probability, which is described by the absorption
cross section �abs(r) or the absorption coe�cient �abs. For atmospheric absorption, the
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integration over all atmospheric constituents is used:

�abs =

Z 1

0
n(r) �abs(r) dr. (2.21)

The extinction is the sum of absorption and scattering:

�ext = �abs + �sca. (2.22)

The cross sections, �sca and �abs, are measures for the probability of scattering or absorp-
tion of light. They can be calculated by assuming a spherical charge distribution of the
target. This is called Mie theory Mie (1908). In the limit of small wavelengths, compared
to the droplet size � < r, the geometrical approximation of �(r) = 2⇡r2 for the scatter-
ing cross section, can be used. This is valid for short wave radiation and for long wave
radiation, absorption dominates the propagation.

2.3.2 Radiative Transfer Equation

A simple approximation of the radiative transfer approach, is the Beer-Lambert-Bouguer
law (Beer, 1852; Lambert, 1760; Bouguer, 1729), which describes the extinction of radiance
in a medium, along its path:

dLe

ds
= – �ext Le Le(z)=Le(0) exp

✓
–

Z s

0
�ext ds

◆
=Le(0) exp (–⌧) , (2.23)

with the optical thickness ⌧ . The full radiative transfer equation (RTE) describes the
emission, scattering and absorption of light in a medium. This integro-di↵erential equation
was introduced by Cha (1950) and has no analytical solution:

dLe

ds
= –�ext Le +

�sca

4⇡

Z

4⇡
Pe(⌦

0!⌦) Le(⌦
0) d⌦0 + �absB(T). (2.24)

It contains, in addition to the Beer-Lambert-Bouguer term, the scattering term with the
probability Pe, that a photon is scattered from all directions ⌦0 into the direction ⌦ of
propagation, and, finally, the thermal emission term according to Planck’s law (2.17).
Solving the RTE in the atmosphere allows to estimate the net radiative fluxes at the
droplet surface and from that the impact of radiation on the droplet and cloud evolution
can be investigated.
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Schwarzschild Approximation

The Schwarzschild approximation to the radiative transport equation (2.24) neglects the
scattering of light. This is a good approximation in the thermal spectral range, where
photons are absorbed with high probability from the atmosphere, which is reflected in
large values for �abs. Therefore, the scattering term with the integral of the RTE can be
neglected and the resulting Eq. (2.25) becomes analytically solvable (2.26)

dLe

ds
= –�abs Le + �abs B(T) (2.25)

The Schwarzschild approximation gives accurate results in the thermal spectral range, even
though the scattering is large. If the absorption coe�cient is large enough, the scattering
coe�cient can be neglected. The analytical solution of Eq. (2.25) becomes:

Le(⌧) = Le exp (–⌧) + B (1 – exp (–⌧)) (2.26)

2.4 Turbulence

Turbulent motions, in addition to the general motion of air, lead to local fluctuations in the
temperature and the water vapor field. This is strongest for vertical velocity fluctuations,
which is, in general, the direction in which the temperature and water vapor field change the
most rapidly. Therefore, cloud droplets experience local, fluctuating saturation conditions
and these small scale turbulent motions are not resolved in current weather models.

The general idea is that: Energy inserted at large length scales into the atmosphere turns
into circular moving air, called eddies. Over time, the eddies decay into smaller eddies,
which is transporting the kinetic energy to smaller scales. This part of the eddy spectrum
is called the inertial subrange. The transport continues until viscosity dominates the
evolution and the kinetic energy dissipates into heat. The smallest scales of turbulent
motion are termed the dissipation range or Kolmogorov range. The characteristics of the
energy transport, the energy cascade is visualized in Fig. 2.3.

Fig. 2.3 pictures the subgrid scale (SGS) cut-o↵. Small scale Eddies, below that cut-o↵, are
not resolved by LES simulations but parametrized using a subgrid scale (SGS) turbulence
scheme. The problem, of describing the unresolved scales in a model, that only resolves
larger scales, in the context of the Navier-Stoked Equation, is called turbulence closure.
The first LES simulations were run by (Deardor↵, 1973, 1974). LES simulations can be
applied to turbulent flows with large Reynolds numbers with the basic idea, that the larger
motions of the flow contain the major part of the energy, therefore, smaller eddies can be
neglected.



2.4 Turbulence 15

Figure 2.3: Turbulent energy spectrum, representing the kinetic energy production, inertial, and
dissipation ranges. The figure is based on Ouro (2017)

2.4.1 Navier-Stokes Equation

The Navier-Stokes equations (2.27) are the fundamental equations in fluid dynamics and
LES modeling. They describe the motion of a viscous fluid. It is basically Newton’s second
law of motion applied to continuous media. The solution is the flow velocity field in form
of a vector field, that describes the direction and velocity of the flow at any point in time
and space. For an incompressible fluid the Navier-Stokes equations are:

⇢
D~u

Dt
= –rp + µr2~u + ⇢~g – 2~⌦ ⇥ ~u r~u = 0, (2.27)

where ~u is the velocity field, which is divergence free, for an incompressible fluid. µ is the
viscosity of the fluid and ~⌦ is the earth angular velocity vector.

2.4.2 Boussinesq Approximation

The Boussinesq approximation is used to simplify the Navier-Stokes equation for convective
motions in the atmosphere. Density di↵erences are ignored, except in terms concerning
the gravitational acceleration. Therefore, are traveling density waves, like sound waves,
not possible. Density and pressure are approximated as constant values with fluctuations
(2.28).

⇢ = ⇢ + ⇢ ↵ �T p = p0 + p0 (2.28)



16 2. Scientific Background

The Boussinesq approximation cancels the hydrostatic terms from Eq. (2.4) and simplifies
the Navier-Stokes Equation to:

⇢
D~u

Dt
= –rp0 + µ�2~u – ⇢~g ↵�T – 2 ~⌦ ⇥ ~u. (2.29)

In a LES model, the separation between resolved and SGS scales is achieved by averaging
over the governing equations, according to the discrete Cartesian grid Schumann (1975).
The filtering length for the Navier-Stokes equation is the grid spacing used in the computa-
tions, which moves the viscosity term into the subgrid model. The resulting Navier-Stokes
equations describe the dynamics of grid size eddies.
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Methods

In order to test the importance of radiation on the formation of rain and compare it to the
e↵ect of unresolved turbulence, numerical models have been written, selected, configured
and expanded. In the following, the parcel model is presented, which is written in Python,
and the PALM LES is briefly described. The LES is provided by the PALM group at the
University of Hannover and selected, due to its sophisticated Lagrangian microphysics and
expanded, by the Tenstream library Jakub and Mayer (2015), which is providing the radi-
ation solver. The solver is coupled to the di↵usional droplet growth implementation.

The following section, about the parcel model, is published in Barekzai and Mayer (2020).

3.1 Parcel Model

The parcel model equations for temperature (T), water vapor mixing ratio (qv) and the
pressure (p) are implemented according to (Grabowski and Abade, 2017a; Grabowski and
Wang, 2009; Grabowski et al., 2011):

cp
dT

dt
= –gw – Lv

dq⌫

dt
(3.1)

dp

dt
= –⇢0wg (3.2)

(see Table 6.1 for the notations used throughout the equations and text). The temperature
of the parcel decreases moist adiabatically as the parcel ascends due to the coupling to the
latent heat of condensation (Eq. 3.1). A constant density of air is assumed with ⇢0=1
kg m–3, according to the approximation of small vertical displacement (⇠ 1 km). The
initial conditions are T=281.7 K, p=89880 Pa and qv=0.0077 kg kg–1, which result in a
relative humidity of �=99%. Accordingly, the ascending parcel will rapidly begin with the
development of a cloud.
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Figure 3.1: Sketch of the superdroplet parametrization, where one representative Superdroplet
stands for a group of equally sized ordinary droplets

3.1.1 Microphysics

Here, the superdroplet approach is used in the context of warm clouds (Andrejczuk et al.,
2008; Shima et al., 2009). It is based on Lagrangian particles, which carry information
about the aerosol type in the dry radius (rdry), chemical composition defaulted here to
sodium chloride, droplet size after nucleation and multiplicity factor. The multiplicity
factor Ni is the represented number concentration of aerosols, and after nucleation, of
droplets by a superdroplet. The multiplicity factors were chosen to be the same for all
superdroplets and constant over time with Ni=103 m–3 and can therefore be seen as a
scaling factor for the liquid water mixing ratio. The maximal possible number of nucleated
superdroplets is set to Nsd=105 m–3 with a total CCN number density of nCCN=100 cm–3.
The droplet size starts at the dry radius and diverges after nucleation due to di↵usional
growth. The superdroplets grow only by condensation and the combined condensation
rates of all nucleated superdroplets can be written as:

dq⌫

dt
= –

d

dt

X

i

4

3
⇡r3i Ni

⇢w

⇢0
(3.3)

The advantage of the superdroplet approach is the combination of a global representation
of distributed cloud droplets with the local, explicit treatment of nucleation and di↵usional
growth processes.

Nucleation

The dry radius is sampled from two log-normal distributions with mean radii of 20 and 75
nm and geometric standard deviations of 1.4 and 1.6. The relative concentrations of 60
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and 40 % correspond to CCN number concentrations of n20=60 cm–3 and n75=40 cm–3,
if nccn=100 cm–3 (from Grabowski and Abade (2017a)). The aerosol size information and
chemical composition determine the critical supersaturation (Scr) that must be reached to
nucleate the corresponding aerosol. The nucleated superdroplets start to grow freely from
the critical radius (rcr), which are obtained by calculating the maximum of the Koehler
equation (Rogers and Yau (1996))

S⇤
eq =

CK

r
–

CR

r3
. (3.4)

The critical supersaturation and radius are:

rcr = min

 ✓
3CR

CK

◆1/2

, 1µm

!
Scr =

✓
4CK

27CR

◆1/2

(3.5)

with the corresponding parameters:

CK =
2�Mw

RVT⇢w
CR =

2r3dry⇢NaClMw

⇢wMNaCl
(3.6)

Critical radii larger than 1 µm are cut o↵ to eliminate the impact of the aerosol distribution
tail on the evolution of the droplet population. This condition allows us to isolate the e↵ect
of radiation from possible Giant Cloud Cloud Condensation Nuclei (GCCN). The resulting
cut o↵ value is a rough estimate of the average droplet embryo size after one model time
step.

Di↵usional Growth

After the nucleation process, the droplets begin to grow by di↵usion. Classical di↵usional
growth considers the di↵usion of water molecules and latent heat to and from the droplet.
Both processes come together in the di↵usion Eq.:

dri
dt

=
1

A⇢w

✓
S⇤

ri

◆
(3.7)

The subscript i denotes the i-th superdroplet. Equation (3.7) was extended by Roach
(1976) to include the emission and absorption of radiation. It becomes the Radiatively
enhAnced Di↵usional (RAD) growth equation:

dri
dt

=
1

A⇢w

✓
S⇤

ri
– DR

◆
. (3.8)

The parameter R is the radiative power per droplet surface area, defined as the di↵erence
of absorbed and emitted power. Positive R indicate radiative heating of the droplet and
negative values indicate cooling. Equation (3.8) is obtained with the approximation of
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Lv
Rv·T � 1 and contains the temperature-dependent parameters A=

✓
L2

v
RvT2 + RvT

Dwes

◆
and

D= Lv
RvT2 .

An individual droplet grows with decreasing speed as it increases in size, proportional to
1/r from Eq. (3.7). This statement still holds for RAD growth if S⇤

r > –DR with small
droplets and large supersaturations. The di↵erences compared to the classical di↵usional
growth can be seen in the asymptotic:

lim
r!1

dr

dt

����
classic

= 0 (3.9)

lim
r!1

dr

dt

����
enhanced

=
–DR
A⇢w

. (3.10)

Large droplet radii under classical di↵usional growth show zero growth speed (Eq. (3.9)),
in contrast to RAD growth, which converges to a term proportional to R (Eq. (3.10)). The
behavior now strongly depends on the sign of R. If only thermal radiation is considered,
R becomes negative, and therefore large droplets continue to grow (except close to the
lower cloud boundary). The additional cooling due to the emission of thermal radiation
lowers the temperature of the droplet compared to the environment, e↵ectively reducing
the saturation vapor pressure at the droplet surface. For completeness it should be men-
tioned that thermal radiation causes considerable cooling at the cloud top and moderate
warming at the cloud base. Here, the focus is on the cloud top.
It is known that the standard deviation of the droplet size distribution will decrease, be-
cause smaller droplets grow faster and catch up with larger drops under classical di↵usional
growth. The addition of radiative cooling to the di↵usional growth is expected to cause
more complex behavior: The standard deviation of the distribution will initially decrease,
until the parcel becomes subsaturated. Subsequently, the subsaturated parcel will contain
large droplets, which continue to grow and small droplets which start to evaporate. The
radius, which separates growing from shrinking droplets is calculated with dr/dt=0 from
Eq. (3.8):

rsep =
S⇤

DR . (3.11)

Therefore, the standard deviation of the droplet distribution increases due to thermal radi-
ation (Harrington et al., 2000; Hartman and Harrington, 2005a,b). Finally, some droplets
will completely evaporate, which again decreases the standard deviation. Figure 3.2 shows
the dependence of the droplet growth speed on the radius, according to Equation (3.8) with
and without the radiative term. The gray lines show the solution for the droplet growth
speed, under constant super or subsaturated conditions. The left panel, without radiation,
shows that the growth (I) (evaporation (II)) is fastest for small droplets and symmetric
with respect to dr/dt=0. The right panel, with thermal radiation, adds a third growth
regime (III) in which the environment is subsaturated, but the droplets keep growing, par-
ticularly, with large droplets that grow faster than smaller ones. The zero crossings of the
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Figure 3.2: The two panels show the droplet growth speed evaluated for the RAD growth equation
(Eq. 3.8). On the left, the radiative term is set to zero and on the right, according to Equation 3.14
(with f=1/6 and T=282 K from the American Standard Atmosphere at 1 km). The isosaturation
lines are centered around S⇤=0 and 10 times incremented and decremented by �S⇤ ± 0.02 %.
The Greek numbers I, II and III indicate di↵erent droplet growth regimes: The small droplets I)
grow faster, II) evaporate faster, III) grow slower than the large droplets.

isosaturation lines indicate below which radius and subsaturation the droplets evaporate.
The di↵usional growth equation is evaluated for a model time step of 0.2 s with the Euler
forward schema.

3.1.2 Radiation

The additional term in Eq. (3.8) contains the net radiative power per droplet surface area
(R). This term could comprise solar and thermal contributions. Here, the focus is on
thermal radiation only, which can be thought of as a nocturnal setting. It was shown in
Roach (1976) that R can be directly calculated from the radiative fluxes. In particular,
Eq. (11) of Roach (1976) shows that R is directly related to di↵erences of the actinic flux
or “average intensity” Fact=

R
4⇡ I(�)d⌦ and the black body emission:

R = Qa(r)


1

4
Fact – �sbT4

�
(3.12)

where Qa(r) is the absorption e�ciency, weighted with the spectral actinic flux and aver-
aged over wavelength. Qa(r) is typically close to 1 for the droplet sizes under consideration.
Roach (1976) further showed that the actinic flux can be approximated by the sum of the
upward (Eup) and downward fluxes (Edn) (F# and -F", in the notation of Roach (1976)
where the upward component is actually negative):

Fact ⇡ 2 · (Edn + Eup) (3.13)
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For the parcel model the e↵ect of radiation close to the cloud top is estimated. In the
following, it is shown that the heating rate at cloud top can simply be approximated by:

R ⇡ –f · �sbT4. (3.14)

It is assumed that Tdrop ⇡ T, because Marquis and Harrington (2005) estimated that the
di↵erence between droplet and environment temperature is �T  1 K for droplets with
r  200 µm and a maximum of of 3 K is reached for r � 1000 µm. In the simulations,
droplet radii are well below 1000 micron and show only small temperature di↵erences.
The radiative factor (f) allows for a first and simple approximation of the surrounding
atmosphere and the geometry of the parcel. f=1 would describe a parcel in vacuum. For a
parcel at cloud top, f reduces to 1/2, because the downward emitted radiation is balanced
by the upward emitted radiation from the droplets below. Finally, only the atmospheric
window regions contribute to the cooling, which adds a factor of 1/3 for shallow cumulus
cloud tops. In summary, this yields f=1/6.
To check the validity of f, the actinic flux is calculated for a number of typical atmospheric
profiles: pressure, temperature, water vapor, other trace gases (Anderson et al., 1986) and
cloud top heights (Fig. 3.3). R was calculated following (3.12). More specifically, rather
than using the approximated Qa(r), the integral over wavelength

R =

Z
Qa(�)


1

4
Fact(�) – ⇡B(�, T)

�
d�, (3.15)

where B(�, T) is the Planck function, is used. The corresponding simulations were done
with the radiative transport library libRadtran (Mayer and Kylling, 2005; Emde et al.,
2016) using the correlated-k distribution by Fu and Liou (1992) for the molecular absorp-
tion and assuming an optically thick cloud with an e↵ective droplet radius of 10 µm. Cloud
optical properties were calculated by Mie theory (Mie (1908)). Figure 3.3 illustrates that
f=1/6 is a valid approximation for shallow cumulus clouds with top heights of approxi-
mately 2 km. f clearly depends on the amount of water vapor above the cloud: For the
mid-latitude summer and tropical atmospheres with high temperature and absolute hu-
midity f is considerably smaller than for the dry sub-arctic winter and mid-latitude winter
atmospheres with low temperatures, which is due to the higher atmospheric transmission
for less water vapor. For the same reason f increases with increasing cloud top height until
it reaches values slightly above 0.5. For the following simulations f=1/6 is used, if not
stated otherwise. This approach allows us to investigate the underlying mechanisms in a
idealized way, which will serve as a interpretation basis for more elaborated LES simula-
tions.

3.1.3 Turbulence

The turbulence parametrization is based on the work of Grabowski and Abade (2017a)
and references therein, and will only be briefly summarized here. The aforementioned
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Figure 3.3: Estimation of the cloud top height dependence of f (Eq. 3.14) for an optically thick
cloud and a number of typical atmospheric profiles: U.S. standard atmosphere (afglus), subarctic
winter (afglsw), midlatitude winter (afglmw), subarctic summer (afglss), midlatitude summer
(afglms), tropical (afglt). The vertical black line marks the reference value of f=1/6.

paper describes saturation fluctuations for isotropic homogeneous turbulence, which are
implemented for each superdroplet. The evolution for the saturation fluctuations (S⇤0

i ) is
given by:

dS⇤0
i

dt
= a1w

0
i –

S⇤0
i

⌧relax
(3.16)

The equation uses the phase relaxation time scale (⌧relax) from Squires (1952), which is
describes the time scale the droplet distribution needs to remove the excess saturation.
The fluctuations of the vertical velocity field (w0

i) are described by the Gaussian stationary
process (Ornstein-Uhlenbeck process):

w0
i(t + dt) = w0

i(t) exp

✓
–
dt

⌧

◆
+

s

1 – exp

✓
–
2dt

⌧

◆r
2

3
E · � (3.17)

The solution of the random process depends only on the standard normal distributed
random variable (�), the turbulent kinetic energy (E(✏, L)) and the integrated turbulent
timescale (⌧(✏, L)) (Schumann, 1991; Lasher-Trapp et al., 2005). The last two quantities
can be formulated as functions of the dissipation rate ✏=50 cm2 s–3 and the length scale
of the adiabatic parcel L=50 m. The values for L and ✏ correspond to an adiabatic core
of a cumulus cloud and are taken from the predecessor studies of (Grabowski and Abade,
2017a; Jonas, 1996; Lasher-Trapp et al., 2005). For a direct comparison between the two
studies these values are adopted. Furthermore, the impact of thermal radiation should be
largest at cloud edges, therefore simulations with ✏=10 cm2 s–3 are included, which is a
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estimate for the turbulent dissipation rate at the stratocumulus cloud top (Moeng et al.
(1996)).

3.2 Large Eddy Model

Additionally, to the parcel model, the PALM LES model from Maronga et al. (2015) is
used to investigate the impact of thermal radiation and saturation fluctuations from un-
resolved turbulence, on the formation of drizzle. The impact is analysed with a model,
that resolves the large scale dynamics of clouds. PALM solves the non-hydrostatic, in-
compressible Boussinesq-Approximation of the Navier-Stokes equation. Furthermore, the
prognostic equations for water vapor mixing ratio, potential temperature and subgrid scale
kinetic energy are solved.

3.2.1 Microphysics

In order to test for the sensitivities of radiation and saturation fluctuations on drizzle for-
mation, the Lagrangian Cloud Model (LCM) Ho↵mann et al. (2017) is expanded by the en-
hanced di↵usion Eq. (3.8) and coupled to the Schwarzschild radiation solver Grant (2004),
with saturation fluctuations from Grabowski and Abade (2017b). The superdroplets for
the LES model follow the same implementation as for the parcel model, except of the
following distinctions:

Superdroplets are randomly initialized, each grid cell initially contains the same number of
superdroplets, which are placed at random locations inside the cell. This was not needed
in the parcel model, due to the lack of spatial dimensions.

Droplet nucleation is neglected, instead droplets grow freely by di↵usion according to Eq.
(3.8) and, depending on the environmental conditions, from a minimal radius of r0 = 10–8

µm, which is the same for all droplets.

Initially, droplets grow according to the analytical di↵usional growth equation (2.12), until
they reached a size of 1 micron. This is done to eliminate errors, due to the sti↵ness of the
di↵usional growth equation.

Potential drizzle droplets are split, as proposed in Schwenkel et al. (2018), to improve the
representation of large and therefore rare droplets. Superdroplets with radii larger then 15
µm, which have a multiplicity larger then Ni·0.03, are split into two separate superdroplets
for each time step, with each superdroplet representing half of the ancestor multiplicity.
The additional superdroplet is randomly located in the same grid box, within a radius of
1/n around the parent superdroplet location. n is the droplet number concentration in the
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corresponding grid cell. As a result, superdroplets may be split in total 64 times, when
growing into a drizzle droplet. The splitting parameters are set to balance the improvement
in resolution with the numerical cost of increasing the superdroplet number.

3.2.2 Radiation

In contrast to the parcel simulations, which use a black body approach to parametrize
radiation, the PALM LES simulations are coupled to the Tenstream library from Jakub
and Mayer (2015) and run with the provided Schwarzschild solver. The resulting dis-
tributed thermal radiative energy is then separated into an atmospheric and a cloud part.
Finally, the absorbed and emitted radiative energy at the cloud is distributed over the
droplets.

Schwarzschild Approximation

The Schwarzschild approximation to the radiative transport equation (2.24) neglects the
scattering of light. From the solution (2.26) of the radiance, the upwards and downwards
irradiance are calculated, by integrating over several zenith angles ✓, which appear as
µ✓ = cos(✓). The zenith integration of Eq. (3.18) is done with 10 sample points for each
orientation.

Eup =

Z 2⇡

0
d�

Z 1

0
µ✓ Le(+µ✓, �) dµ✓ Edn =

Z 2⇡

0
d�

Z 1

0
µ✓ Le(–µ✓, �) dµ✓ (3.18)

It is numerically e�cient to calculate the radiances according to (2.26). From that, the
spectrally integrated heating rates can be calculated, using the net irradiance from each
LES grid layer Enet = Edn–Eup, with:

dT

dt
= –

1

⇢cp
rEnet = –

1

⇢cp

Enet(z + �z) – Enet(z)

�z
(3.19)

In the last step, the equation simplifies due to the discrete layer nature of the LES mod-
els. The boundary conditions for the Schwarzschild solver and thermal radiation are: no
incoming radiation from the top of atmosphere (toa), but black body radiation from the
bottom, according to the earth surface temperature. There are other approaches to solve
Eq. (2.24), which include the scattering term, but those are more numerically expensive.
In case of solar radiation, scattering becomes important and the Schwarzschild approach
is not a valid approximation anymore. If the experiment features approximately one di-
mensional stratus clouds, the discrete ordinate approach may be a good starting point. It
is developed and applied by Cha (1950) and Liou (1973) and includes the scattering term
in the RTE.
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The spectral integration of the thermal radiation and the calculation of the optical prop-
erties is done according to the correlated-k method, presented in Fu and Liou (1992).
The implementation from the radiative transfer model RRTMG is used and presented in
Clough et al. (2005). In contrast to the numerically expensive line by line calculations, the
correlated-k approach requires less sample points to integrate the spectrum of light and is
therefore more computationally more e�cient.

Furthermore, the resulting radiative flux divergence rEnet is separated into two parts,
due to the atmospheric gasses and due to the cloud droplets: rEnet = rEatm + rEcld.
The net radiative flux at the droplet surface, for each individual cloud droplet R from Eq.
(3.8), is calculated by distributing the radiative power in the grid box rEcld · Vgrid over
the droplets. Finally, the power for each droplet has to be distributed over the respective
droplet surface.

R = rEcldVgrid ·
r2iP
r2

1

4⇡r2i
=

1

4⇡

rEcldVgridP
r2

(3.20)

3.2.3 Turbulence

A LES like PALM solves the filtered Navier-Stokes equations. A detailed description of
PALM can be found in Maronga et al. (2015). Additional, so called covariance terms arise
in the filtered of the equations. The covariance terms are calculated with a subgrid scale
(SGS) model. The problem is called turbulence closure. PALM runs the 1.5-oder closure
with modifications, according to Deardor↵ (1980) and Moeng and Wyngaard (1988). The
SGS model explicitly calculates the SGS kinetic energy, which is plugged into Eq. (3.17)
to generate the vertical velocity fluctuations. Those are used to calculate the saturation
fluctuations with Eq. (3.16). The prognostic equation for the SGS kinetic energy can
be found in Maronga et al. (2015) in Eq. (16). Otherwise, the implementation of the
saturation fluctuations follows the parcel model section 3.1.3.

3.2.4 Statistics

The evaluation of the LES time series data assumes a Gaussian distribution. The mean
hXi values and the standard deviation �sam of the mean, for each time point, are calculated
according to:

hXi= 1

Nens

NensX

i=1

Xi �2
sam=

1

Nens

NensX

i=1

(Xi – hXi)2 (3.21)
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If sums or di↵erences of random values are calculated, the variances are added or sub-
tracted, according to: hX – Yi / N (µX – µY, �2

X + �2
Y). X and Y are placeholders for any

atmospheric quantities.

The RMS values are calculated for the time period between 55 and 60 minutes, according
to:

RMS =
q

h(X – Xref)
2it, (3.22)

with Xref as the result for the reference simulation.
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Chapter 4

Parcel Simulations

This chapter contains the results of the parcel model simulations. The idea of the parcel
model is to keep the setup as simple as possible. It describes a single rising volume
of air, with constant updraft velocity. The turbulent motions of air are included only
indirectly in the saturation fluctuation parametrization from Eq. 3.16. As the initially dry
parcel of air rises, droplets nucleate and grow into a population of droplets. The following
results show how the development of the droplet population, especially the development
of drizzle, depends on the saturation fluctuations and the thermal radiative cooling at the
droplet. The parametrizations are called T and RAD in the following figures. Furthermore,
several sensitivity studies are carried out with respect to the updraft speed of the parcel,
the strength of the radiative cooling at the droplet and the aerosol background of the
simulations. The results of the parcel simulations chapter are published in Barekzai and
Mayer (2020).

4.1 Results

First, it is emphasized, that this study is a theoretical one. The nature of parcel models
allows only for a limited range of scales and processes to be included. However, the
parcel model reduces complexity and therefore improves the understanding of the individual
processes, which might be concealed in a chaotic LES simulation. A important idealization
is the neglection of cloud edge mixing, which may be included in the statistics of the
saturation fluctuations in future studies. A first approach to include the process of mixing
is shown in Abade et al. (2018). Furthermore, the sensitivity studies show a range in
parameter space that extends beyond the values found in nature.
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Figure 4.1: The droplet size distributions (upper panels) and corresponding mean growth speeds
(lower panels), evaluated 15 min after the onset of condensation. The simulations are run with
w=0.1 m s–1, f=1/6 and ✏=10 cm2 s–3. A bin-size of 1 µm centered around integer values was
applied. The shaded area marks two standard deviations around the mean growth speed. The
colors and labels represent: (green, 0): the reference simulation without radiation or turbulence,
(yellow, RAD): the reference simulation including radiation, (blue, T): the reference simulation
including turbulence and (red, RAD&T): the combination of radiation and turbulence. � is the
standard deviation of the droplet distribution.
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Figure 4.2: The simulations are run with w=1 m s–1, f=1/6 and ✏=50 cm2 s–3 (see Fig. 4.1 for
more informations).
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Figure 4.3: The time series of several parcel model quantities, from the onset of condensation
until 15 min. The simulations are run with w=0.1 m s–1, f=1/6, ✏=10 cm2 s–3 on the left panel
and w=1 m s–1, f=1/6, ✏=50 cm2 s–3 on the right panel. Shown are the standard deviation (�),
the mean radius of the largest droplets (rmax) (representing a number density of nmax=0.1 cm–3),
the mean radius (hri) and the supersaturation (S⇤). The label and color convention is the same
as in the Figure 4.1.
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4.1.1 Distributions and Time Series

In this section, the temporal development of the droplet distribution is compared for di↵er-
ent parcel model setups. The first one, for a cloud edge environment, is w=1 m s–1, ✏=50
cm2 s–3, L=50 m and f=1/6, which is also used by Grabowski and Abade (2017a) and
allows us to validate the results and to directly compare the impact of thermal radiation
in combination with turbulence. The second one, for a cloud edge environment, is w=0.1
m s–1, ✏=10 cm2 s–3, L=50 and f=1/6. Here, the turbulent dissipation rate is taken from
Moeng et al. (1996) for a stratocumulus cloud top. Furthermore, the updraft is an order
of magnitude smaller. If not stated otherwise the figures have the following conventions
for labels and colors: The base case applies classical di↵usional growth (0, green), the
turbulent parcel is identical to the setup of Grabowski and Abade (2017a) (T, blue), the
simulations with radiation only (RAD, yellow) and the combination of turbulence and ra-
diation (RAD&T, red). The histograms in Figure 4.1 and 4.2 are evaluated 15 min after
the onset of condensation. The first two droplet size histograms, which evolved under
classical di↵usional growth or RAD (green or yellow) show sharply peaked distributions
centered around radii that decrease with decreasing updraft, due to less adiabatic cooling.
The standard deviation of the droplet size distribution, �, is small and the sole addition
of radiation introduces just a small amount of spread into the droplet distribution (�<0.5
µm). The spreading is caused by the subsaturated environment, due to radiative cooling,
which happens earlier for the w=0.1 m s–1 than for the w=1 m s–1 case, as can be seen in
the S⇤ panel of Fig. 4.3.

The droplet growth in a subsaturated environment changes the radius dependence of
droplet growth: When classical di↵usional growth in a supersaturated environment is
considered, smaller droplets grow faster and catch up with larger ones, due to the 1/r
dependence of Equation 3.7 (regime I in Figure 3.2). However, in a subsaturated envi-
ronment, smaller droplets evaporate faster than larger droplets (regime II in Fig. 3.2).
Finally, the addition of thermal radiation introduces a third growth regime with subsatu-
rated environment, where smaller droplets grow slower than larger droplets, which causes
� to increase (regime III in Fig. 3.2). The earlier and the longer the parcel is subsaturated,
the larger the increase in �. Therefore, the radiation only simulation (yellow) with w=0.1
m s–1 produces larger � values than the w=1 m s–1 simulations. The di↵erence in � is
small, because the evaporation in regime II has not yet started. The two histograms on
the right (blue and red) allow to estimate the impact of radiation added on top of tur-
bulence. The histogram with turbulence (blue) shows the increase of � due to turbulence
alone, which evolves according to the balance between the spread introduced by satura-
tion fluctuations and the narrowing of the droplet spectrum due to classical di↵usional
growth. The saturation fluctuations show a larger e↵ect for small droplets, which can be
seen in the diverging isosaturation lines in the regimes I and II of Figure 3.2. Therefore,
the simulations with low updraft (w=0.1 m s–1) show a larger spread in the droplet size
distribution, despite of having a lower turbulent dissipation rate (✏=10 cm2 s–3). The red
histograms combine the impact of turbulence with thermal radiation and show that larger
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vertical motions produce larger supersaturations, which will produce larger droplets and is
less sensitive to turbulence or radiation (�⇠2 µm). In contrast, radiation with turbulence
is most e↵ective in the low updraft environment and substantially broadens the standard
deviation. The addition of radiation to the simulations approximately doubles the droplet
size standard deviation. Furthermore, the droplet size distribution is symmetric for w=1
m s–1, in contrast to the w=0.1 m s–1, where droplets are more likely to de-activate, result-
ing in a asymmetric droplet size distribution. The broadening of the droplet distribution
is critical for the initiation of collision because a narrow droplet size spectrum also has
a narrow fall-speed spectrum. Since di↵erences in fall-speed are required to initiate the
collection process, narrow spectra tend to suppress collisions.

Figure 4.3 shows the time series for the standard deviation (�), the maximal radius (rmax),
the mean radius (hri), the droplet number concentration (n) and the saturation (S⇤) of
the environment. The maximal radius rmax is defined as the mean radius over the largest
droplets

rmax =
1

nmax

Z 1

r0
r n(r)dr (4.1)

where r0 is chosen by the condition
R1
r0

n(r)dr
!
= nmax with nmax=0.1 cm–3. This is similar

to the approach of (Feingold and Chuang, 2002; Feingold et al., 1999), who propose that a
drizzle number concentration of ndrizzle=10–3 cm–3 of droplets with radii larger then 20 µm
is required for drizzling and eventually raining parcels. A more cautious value for nmax is
chosen to increase the number of droplets representing the tail of the droplet distribution,
which would otherwise lead to strong noise. The standard deviation initially increases due
to the nucleation of droplets and then develops according to the applied parametrizations.
The subsequent narrowing due to the classical di↵usional growth (green and yellow) is
followed by broadening due to a subsaturated environment (yellow only). The resulting �
are small (< 1 µm) for all updrafts, because the spread introduced by nucleation, which
increases with increasing w, is reduced by the narrowing di↵usional growth (regime I in
Fig. 3.2). In this case, thermal radiation is acting only on narrow distributions, therefore
the di↵erential growth is weak. However, the simulations with turbulence (blue and red)
show a larger increase in the standard deviation after nucleation. The time series confirms
that turbulence introduces spread most e↵ectively at the beginning of the simulations,
when droplets are small. The reason is that the growth of small droplets is more sensitive
to saturation fluctuations, which is shown by the diverging growth speeds in Fig. 3.2 for
small radii. Consequently, turbulence has a larger impact for small updrafts. Although,
after 15 min, the mean droplet size is only about 10 microns for w=0.1 m s–1 compared
to 18 microns for w=1 m s–1 (a consequence of the adiabatic growth assumption), the
standard deviation of the size distribution is a factor of 3 larger with lower updraft. Addi-
tionally, thermal radiation (red line) complements the turbulent growth by subsaturating
the environment, which further supports the growth of large droplets. For both cases, the
standard deviation of the droplet size distribution approximately doubles after 15 min,



34 4. Parcel Simulations

when radiation is added. Therefore, the largest standard deviations are found for w=0.1
m s–1 simulations with the combination of turbulence and radiation. The maximum radius
is introduced as a measure for the tail of the distribution, because it may harbor the rain
droplet candidates, also known as embryonic drizzle from Hobbs and Rangno (1998). For
the base and radiation simulations (green and yellow), the maximum radius rmax is similar
to the mean radius, because the distribution is sharply peaked and rmax is close to hri.
The turbulent simulations (blue and red) reach similar values for rmax after 15 min, for
both updraft cases although the mean radius is di↵erent by a factor of 2.
The mean radius (hri) and the droplet number concentration (n) depend on the updraft
and are hardly a↵ected by radiation or turbulence in the w=1 m s–1 case. For the low
updraft simulations (w=0.1 m s–1), this is only true for the base and radiation only simu-
lations (green and yellow). After nucleation, turbulence causes the evaporation of droplets
due to negative saturation fluctuations and leaves the droplets with positive saturation
fluctuations. This bias initially subsaturates the environment. However, after a few min-
utes the environment saturates again, due to additional sign switches of the saturation
fluctuations, which remove the bias from the distribution and S⇤0

becomes equally dis-
tributed. Simultaneously, small droplets nucleate, which lowers hri. The combination of
radiation and turbulence (red) is similar in the development, but shows less renucleation
of small droplets due to initially negative saturation fluctuations (number concentration
in 4.3). The environment stays subsaturated, due to thermal radiation and therefore the
critical saturation needed for renucleation is only rarely reached. However, the mean radius
decreases, due to the evaporation of droplets at the benefit of a few large ones, which was
also found in Guzzi and Rizzi (1980).

4.1.2 Sensitivity to the Radiation Factor

In this section, f is increased from 0 to 1 and investigate the impact on the droplet size
distribution. Values for f larger than 0.5, that are not reached in the atmosphere are
shaded gray. For estimates of possible f values see the Figure 3.3. The results are shown
for simulations with w=1 m s–1, ✏=50 cm2 s–3 (solid lines) and w=0.1 m s–1, ✏=10 cm2

s–3 (dotted lines) in Fig. 4.4. The vertical black lines indicate the value f=1/6, which
is used in the previous sections for the distributions and time series results. The general
impact of higher radiation factors is that the subsaturation of the environment increases
and therefore the separation radius becomes larger, which increases � and rmax of the
droplet population and decreases the droplet number concentration. All simulations show
a decreasing droplet number concentration with increasing f. The droplet number concen-
tration decreases stronger for simulations with turbulence (red) and starts at lower values
for simulations with lower w. Therefore, all simulations show increasing mean radii with
increasing f. Only the simulations with w=1 m s–1 and without turbulence (solid yellow)
show a decreasing mean, because small droplets are introduced by passing rsep, but com-
plete evaporation has not yet started. The impact of passing rsep is strongest for sharply
peaked droplet distributions with a large number of droplets at once below rsep. � and
rmax increase strongly with increasing f, as expected.
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Figure 4.4: A sensitivity study with respect to the radiative factor. The simulations are evaluated
after 15 min. The colors and labels represent the combination of radiation and turbulence (red,
RAD&T) and the reference simulations including radiation (yellow, RAD). The solid and dotted
lines show updraft speeds of 1 and 0.1 m s–1 with ✏=50 cm2 s–3 or ✏=10 cm2 s–3 if the simulations
include turbulence. Additionally, the gray shaded area indicate f values that are not present in
the atmosphere. For more information see the caption of Figure 4.5.
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4.1.3 Sensitivity to the Updraft Speed

Updraft speeds are varied between 0.01 and 1.5 m s–1, which correspond to slow (synoptic)
and shallow convective vertical motions. The simulations are evaluated 15 min after nu-
cleation and result in clouds with vertical extents varying between 10 and 1250 m. Figure
4.5 shows the standard deviation, the maximum radius, the mean radius and the droplet
number concentration. The shaded regions (blue and red) connect the range of turbulent
dissipation rates from 10 to 50 cm2 s–3. The two black vertical lines at w=0.1 m s–1 and
w=1 m s–1 highlight the setups for which the time series and histograms were already
shown in the previous section. The simulations with classical di↵usion only (green) show
a small increase of � with increasing updraft, due to a increasing spread introduced by
nucleation. The simulations with radiation (yellow) approximately double the spread from
nucleation by subsaturating the environment and entering regime III (Fig. 3.2). For low
updrafts, the spread increases stronger, due to evaporating droplets, which are below the
separation radius (Eq. 3.11). Nonetheless, the standard deviations for simulations with-
out turbulence are small (< 0.1 µm). For simulations with turbulence (blue and red) the
standard deviations are larger (� 2(1,6) µm) and increase with decreasing updrafts. The
impact of turbulence and thermal radiation on � for lower updrafts increases due to di-
verging growth rates for small droplets.
For the simulations without turbulence (green and yellow), the updraft dependence of the
maximum radius is determined by the increase of adiabatic cooling with increasing updraft.
rmax is nearly identical to hri, because the distributions are sharply peaked. The simu-
lations with turbulence only (blue) show larger values of rmax with strongest impact for
low updrafts, if compared to the base simulations (green). It also reveals an intermediate
w range, where w-dependence of rmax shows a minimum. The minimum is caused by an
increasing rmax at high updrafts due to increasing adiabatic cooling, which increases hri.
However, � is largest at low updrafts, therefore, rmax shows a minimum at intermediate
updrafts. The same can be found for the combination of turbulence and radiation (red),
resulting in standard deviations of approximately 22.5 µm. The mean radius is determined
by adiabatic cooling for simulations with w > 0.5 m s–1. For w < 0.5 m s–1, slightly
smaller hri appear in turbulent simulations (blue and red) (�hri < 2 µm). The reason is,
that the droplets start to evaporate right after nucleation followed by a period of secondary
nucleation, which lowers the mean by introducing small droplets into the population. The
combination of turbulence and thermal radiation (red) is similar to turbulence only (blue)
but with less secondary nucleation due to the subsaturated environment. Furthermore,
the parcel with radiation continues to evaporate droplets over time, which also introduces
smaller droplets into the population that lower the mean. Additionally, the initial droplet
number concentration increases with larger updrafts, according to higher reached peak sat-
urations in the nucleation process. The dependence on the turbulent dissipation rate (blue
and red shaded regions) shows smaller impact on � and rmax then the impact of adding
radiation (T and RAD&T).
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Figure 4.5: A sensitivity study with respect to the updraft velocity. The simulations are evalu-
ated 15 min after condensation onset. Shown are the standard deviation (�), the mean radius of
the largest droplets (rmax) (representing a number density of nmax=0.1 cm–3), the mean radius
(hri) and the droplet number density n. The colors and labels represent: (green, 0): the reference
simulation without radiation or turbulence, (yellow, RAD): the reference simulation including
radiation, (blue, T): the reference simulation including turbulence and (red, RAD&T): the com-
bination of radiation and turbulence. For simulations with turbulence, two dissipation rates are
shown: ✏=50 cm2 s–3 and ✏=10 cm2 s–3 (solid and dotted lines). Additionally, the blue and red
shaded regions mark intermediate values of ✏. The vertical black lines at w=0.1 m s–1 and w=1
m s–1 indicate where distributions and time series are evaluated.
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4.1.4 Sensitivity to the Simulation Time

Figure 4.6 compares clouds with the same vertical extent of 100 m, which develop under
di↵erent updraft conditions ranging from w=0.01 m s–1 to 1.5 m s–1 and therefore in
di↵erent time intervals (1 to 160 min). For w > 0.5 m s–1, all simulations are approximately
parametrization independent and the observed increase in � and rmax with increasing w for
simulations without turbulence is due to the increasing spread introduced by nucleation.
Additionally, simulations with turbulence shift � and rmax to larger values (< 1µm). For
w < 0.5 m s–1, the behavior is influenced by turbulence and radiation and the impact
increases with simulation time and therefore decreasing w. The base simulations (green)
show less nucleated droplets due to a smaller peak supersaturations reached in the process
of nucleation. Therefore, hri and rmax increase, because the condensed water is shared
among less droplets. The simulations with radiation only (yellow) are similar to the base
simulations except for long simulation times corresponding to w <0.2 m s–1, where hri,
rmax and � strongly increase. The reason is that many droplets from the initially sharply
peaked droplet distribution fall at the same time below the separation radius (Eq. 3.11) and
start to evaporate until they eventually denucleate (regime III). The turbulent simulations
(blue) increase in � and rmax with simulation time. The droplet number concentration
does not drop as low as for the base simulations, because droplets with positive saturation
fluctuations keep nucleating over time, resulting in an approximately constant mean radius.
For simulations with the combination of turbulence and radiation (red) the increasing
impact of radiation on � and rmax happens earlier compared to radiation only simulations
(yellow), because droplets smaller then the separation radius are introduced early on from
saturation fluctuations. The droplet number concentration is smaller then for the base
simulations (green) because the droplets that nucleate do not grow in the subsaturated
environment. Therefore, thermal radiation acts as an secondary nucleation inhibitor. The
shaded regions which indicate dissipation rates between ✏=10 and 50 cm2 s–3 (blue and
red) show only a small impact. Most notably, the standard deviation is reduces, but with
a decreasing impact at low updrafts.
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Figure 4.6: The simulations were evaluation after the clouds reached a vertical extent of 100 m
under di↵erent updraft velocities. Simulations with turbulence show two dissipation rates: ✏=50
cm2 s–3 and ✏=10 cm2 s–3 (solid and dotted lines). Additionally, the blue and red shaded regions
mark intermediate values of ✏. For more information see the caption of Fig. 4.5.
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4.1.5 Collection Initiation

Following a similar approach as Hartman and Harrington (2005a), the collection initiation
timescale ⌧coll is calculated as the time needed to grow droplets with a number concen-
tration of nmax=0.1 cm–3 that have a radius larger than rdrizzle=20 µm. The noise of
⌧coll, due to a small number of droplets in the tail, decreases with increasing nmax, but the
timescale itself increases. A trade-o↵ value for nmax is chosen to balancing the two im-
pacts. Figure 4.7 shows that turbulence and radiation lower ⌧coll. Turbulence alone lowers
⌧coll significantly (blue) while radiation alone has only a small impact (yellow). However,
the combination of turbulence and radiation (red) shows significantly shorter timescales
for collection initiation than turbulence alone. A interesting feature is the peak of the
collection initiation time centered around w=0.2 m s–1 (depending on ✏) for the turbulent
simulations (blue) and around w=0.6 m s–1 for RAD&T simulations (red). For larger
updraft speeds, adiabatic cooling due to w dominates the collision initiation timescale and
the di↵erences between parametrizations become small. For turbulent simulations (red
and blue) and updrafts below the peak, the additional spread in the droplets populations
significantly reduces ⌧coll. The parameters of the time series in Figure 4.3 are indicated
by black vertical lines in the Figure 4.7 and show that both updrafts (0.1 and 1 m s–1)
produce drizzle at a similar rate, if turbulence is included (blue and red).
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Figure 4.7: A sensitivity study of the collision initiation timescale with respect to the updraft
velocity. ⌧coll is defined as the time needed to have nmax=0.1 cm–3 with size r>rdrizzle. Two
dissipation rates are shown: ✏=50 cm2 s–3 and ✏=10 cm2 s–3 (solid and dotted lines). Additionally,
the blue and red shaded regions mark intermediate values of ✏. The vertical black lines at w=0.1 m
s–1 and w=1 m s–1 mark where the previously shown distributions and time series are evaluated.
The label and color convention is the same as in the Figure 4.1.
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4.1.6 Sedimentation

This section is intended to quantify the vertical droplet dispersion due to sedimentation
in the context of a parcel model of 50 m vertical extent. The sedimentation speed of the
droplets can be calculated with a piecewise function of the droplet radius as shown in
Equation 4.2 and provided by Rogers and Yau (1996).

v(r) =

8
><

>:

1.19 · 108 · r2, if r < 40 · 10–6 m

8 · 103 · r, if 40 · 10–6 < r < 0.6 · 10–3 m

2.01 · 102 · r1/2, else

(4.2)

A spectrum of droplet radii will lead to a spectrum of sedimentation speeds. The sedimen-
tation distance after 15 min for each droplet can be obtained by integrating the sedimenta-
tion speeds over time. Figure 4.8 shows the standard deviation of the total sedimentation
distances obtained over all droplets. More precisely, 4 times the standard deviation, which
states that 95.4 % of the droplets have a relative distance below 4 · �dz m, in the approxi-
mation of a Gaussian distribution of sedimentation distances. The intermediate updrafts
between w=0.2 m s–1 and w=0.4 m s–1 show the largest spread, with a maximum of 30
m, which is below the assumed vertical parcel length of 50 m.
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Figure 4.8: A sensitivity study of the relative sedimentation distances evaluated after 15 min.
In the Gaussian approximation 95, 45% of the droplets have a relative vertical distance below
4⇤�dz. For simulations with turbulence, two dissipation rates and updrafts are shown: ✏=50 cm2

s–3 with w=1 m s–1 and ✏=10 cm2 s–3 with w=0.1 m s–1 (solid and dotted lines). The vertical
black lines at w=0.1 m s–1 and w=1 m s–1 indicate where previously shown distributions and
time series are evaluated. The label and color convention is the same as in the Figure 4.1.

4.1.7 Sensitivity to the Aerosol Distribution

This section is intended to access the impact of the aerosol distribution. In Fig. 4.9
the time series results for simulations with di↵erent CCN number concentrations (left
panels) and ratios of n20/nccn (right panel) are shown. n20/nccn=0 signifies that the
CCN are only taken from the larger aerosol mode and n20/nccn=1 that the CCN are
only taken from the smaller aerosol mode, with a constant nccn=100 cm–3. The standard
deviation of the droplet size distribution is influenced by the evolution of the saturation
in the nucleation process. A higher and broader peak in saturation gives rise to more
diverse saturation growth histories of the droplets and therefore a larger standard deviation.
The peak saturation increases with a decreasing droplet number concentration, because
less droplets bind less water in short time intervals. The experiments either decrease
the droplet number concentration directly by decreasing the CCN number concentration
(left panel) or indirect by using smaller CCN sizes which need higher peak saturations
to nucleate. Smaller droplet number concentrations also lead to a larger mean radius,
because the condensed water is shared among less droplets. Consequently, the increasing
mean radius and standard deviation lead to a increasing maximal radius. Figure 4.10
confirms that larger mean radii, standard deviations and maximal radii result from smaller
droplet number concentrations in all parametrization combinations.
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Figure 4.9: The time series are evaluated from the beginning of condensation over 15 min with
w=1 m s–1, f=1/6, ✏=50 cm2 s–3 and with the combination of radiation and turbulence (RAD&T).
The red lines represent the reference simulations with nccn=100 cm–3 and n20/nccn=0.6. The
left panel shows a sensitivity study with respect to the CCN number concentration nccn. The
gray colors represent nccn values below and the blue colors above 100 cm–3. The right panel
shows a sensitivity study with respect to the CCN number concentration ratio n20/nccn with
nccn=n20 + n75=100 cm–3 from the two aerosol modes. The gray colors represent larger ratios
and therefore smaller CCN and the blue colors represent smaller ratios and therefore larger CCN
compared to the reference ratio of 0.6.
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Figure 4.10: The simulations are evaluation after 15 min and run with with w=1 m s–1, f=1/6 and
✏=50 cm2 s–3. The left panel shows the sensitivity with respect to the CCN number concentration
nccn and the right panel with respect to the CCN number concentration ratio n20/nccn with
nccn=n20 +n75 from the two aerosol modes. The vertical black lines indicate the reference values
of n=100 cm–3 and n20/nccn=0.6. For more information see the caption of Figure 4.5.
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Chapter 5

Large Eddy Simulations

This chapter starts by presenting the model settings for the atmospheric model: the Par-
allelized Large-Eddy Simulation Model (PALM) (Raasch and Schröter, 2001; Maronga
et al., 2015). Furthermore, a explanation of the used syntax and variables is given, to pre-
pare the reader for the subsequent experiments. Finally, the experiments investigate the
convergence of the Lagrangian microphysics and the sensitivity with respect to Radiative
enhAnced Di↵usional (RAD) growth and the turbulence parametrization. Shown are time
series and profile data.

The initial profiles are based on the first nocturnal research flight (RF01) of the Dynamics
and Chemistry of Marine Stratocumulus field study (DYCOMS-II), presented in Stevens
et al. (2005). The liquid water potential temperature ⇥l and the cloud water mixing ratio
qc are given in Eq. (5.1), with zi = 850 m.

⇥l =

(
289 K, for z  zi

297.5 + (z – zi)
1/3 K, for z > zi

qc =

(
9 g kg–1, for z  zi

1.5 g kg–1, for z > zi
(5.1)

The geostrophic winds are set to ug = 7 and vg = –5.5 m s–1. The domain size in x, y and
z direction is set to 400, 400 and 1600 m with a constant grid spacing of 25 m. The total
simulation time was set to 1 h, with a time step of 1 s.

The first 30 min are not evaluated and considered the spin up period, in which random
disturbances are added to the horizontal velocity field until convection is triggered, with an
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amplitude of 0.25 m s–1 every 2.5 min. This happens after approximately 10 min. During
the spin up period, maximal vertical wind speeds of 7 m s–1 are reached, which relax within
25 min to approximately 1.5 m s–1. During this period, dry air is entrained into the stratus
cloud deck, which reduces the liquid water content.

The experiments are evaluated with up to Nens = 20 ensemble members, which are gener-
ated with statistically independent random numbers from di↵erent random number seeds.
The time series and profiles show the mean over the ensemble, with an error bar according
the standard deviation of the mean estimator.

The Schwarzschild radiation routine from the Tenstream software package is called in every
model time step. It calculates the optical properties from the Rapid Radiative Transfer
Model (RRTMG) Clough et al. (2005). The broadband ground albedo is set constant to
0.06 for long and short wave radiation, which describes an ocean according to Brenguier
and Chaumat (2001). The resulting radiative heating rates are feedback to the atmospheric
temperature field, if not stated otherwise.

The stratus clouds are represented using a Lagrangian approach (Andrejczuk et al., 2008;
Shima et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al., 2012). The processes of
nucleation and collisions are excluded. Superdroplets grow freely from a minimal radius
of r0 = 10–8. The number concentration is set to 100 cm–3, if not stated otherwise. Su-
perdroplets are coupled to subgrid velocities, which are calculated according to Kim et al.
(2005).

The representation of rare, large droplets (drizzle) is improved by the splitting approach,
which is evaluated in Schwenkel et al. (2018). The critical splitting radius is set to 15 µm,
which is the estimated beginning of the condensation coalescence bottleneck. The critical
droplet multiplicity is set to 0.03 ·Ni, below which no splitting is applied. No surface model
is used and the surface latent and sensible heat fluxes are set to zero. This simplifies the
simulations setup, but becomes increasingly unrealistic with simulation time. Furthermore,
droplets that collide with the surface are absorbed.

In general, each time series plot has a corresponding profile plot, which shows the same or
closely related quantities in the same order.
The averaged quantities h⇤i⇤gc are calculated over the total domain for time series and
over each horizontal layers in the profile figures. Furthermore, the evaluated grid cell sub-
sets are indicated with the subscript of the square brackets and explained in the Table (5.1).

The capitalized letters correspond to domain integrated quantities, which are calculated
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according to:

M =

I

V
⇢0qc dv N =

I

V
n dv (5.2)

The same applies for the total integrated drizzle mass Mzz and drizzle number Nzz. The
profiles show the layer integrated quantities, which can be described according to:

�M

�z
=

I

F
⇢0qc df

�N

�z
=

I

F
n df. (5.3)

F = �x ·�y is the total LES domain area. The same applies for the layer integrated drizzle
mass profile �Mzz

�z and drizzle number profile �Nzz
�z .

The normalization, indicated by the wide hat above the quantities, is done with respect
to the reference parametrization and time point (e.g. after 30 min). Equation (5.4) shows
the normalized cloud water mass as example. The reference simulation parametrization
changes over the experiments, which is indicated in the respective figure captions.

d�M
�z

=
1

Mref

�M

�z
(5.4)

gc grid cells all

cgc cloudy grid cells qc > 10–7 [kg kg–1]

dgc drizzle grid cells qzz > 0

Table 5.1: Grid cell subset definitions and their notation
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5.1 Results

5.1.1 Superdroplet Convergence Experiment

The key idea in this experiment is that the simulations become more realistic and rep-
resentative of real clouds by increasing the number of superdroplets. The Lagrangian
microphysical parametrization has converged to reality, when each superdroplet is repre-
senting only one aerosol particle or droplet. However, a large number of superdroplets lead
to slow and memory intensive simulations, which are not feasible at LES scales. Therefore,
the first question is:

How many superdroplets are required to represent drizzle formation in

a stratus cloud?

The following experiment increases the number of superdroplets per grid cell (Nsd) in the
stratus cloud simulations until the microphysical properties show convergence. Conver-
gence is measured according to the root mean square (RMS), calculated with Eq. (3.22)
over a 5 min period between 55 and 60 min. Table (5.2) summarizes the RMS results for a
set simulations with di↵erent Nsd. In addition to the RMS values, it shows the percentage
relative to the reference simulation, the relative RMS. Here, the reference simulation is the
one with the largest number of superdroplets Nsd = 2·104.

The figures show time series of integrated quantities and the atmospheric profile data,
which are separated into cloud (Figures 5.1 and 5.3) and drizzle (Figures 5.2 and 5.4)
quantities. In this experiment, Nsd is increased from 10 to 2·104 in steps each by a factor
of 10, with the exception of the largest two simulations, which are only altered by a factor
of 2. The 103sp simulation additionally runs with activated splitting algorithm for larger
droplets. Nsd = 2·104 is chosen out of computational limitations. Therefore, it can not
be stated that the microphysics has converged for certain. However, the inclusion of the
large droplet splitting for the intermediate simulation of 103 shows good agreement with
the reference simulation 2·104, The simulation, which includes the large droplet splitting
is called 103sp.

cloud quantities

The time series results in Figure 5.1 show, that the total mass of water in the atmosphere
to the LES domain surface area (M/F) and the total number of cloud droplets in the at-
mosphere to the LES domain surface area (N/F) are not sensitive to Nsd. The RMS values
are around 2% and 1.2%, already for a very low superdroplet number of Nsd = 102. The
integrated stratus cloud quantities M/F and N/F are prescribed from the initial profiles
and independent from details of the microphysics. For the same reason, the saturation ad-
justment approach already yields a good representations of M/F in McDonald (1963). In a
saturation adjustment simulation the supersaturation is instantaneously brought down to
saturation (in one model time step), which turns all the access supersaturation into liquid
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water.

The time series of the mean quantities hqcicgc and hnicgc decrease in value with increasing
Nsd and reach relative RMS values of 7.8% and 6.5% for Nsd = 103. The profiles in Figure
5.3 show, that those quantities are biased towards larger values at the cloud top and bottom
for simulations with a low number of superdroplets Nsd = 10. Therefore, the cloud edges
need a larger number of superdroplets than the cloud center to adequately sample the
di↵erent saturation conditions. A droplet can experience a wide range of conditions due to
the mixing of dry and moist air. The shift towards larger mean values at the cloud edges,
is introduced from multiplicity factors that are too large. The number of superdroplets at
initialization is too low. As a result, cloud edge conditions are favored to initiate a cloudy
cell, if they have larger supersaturations, which result in larger values for mean quantities
like hqcicgc and hnicgc.

drizzle quantities

In contrast to the integrated cloud quantities, is the formation of drizzle very sensitive
to Nsd. This highlights the error of classical one or two moment schemes, which do not
explicitly resolve the droplet positions and the droplet number and therefore rely on ap-
proximations for the local droplet number concentration. The profiles in Fig. 5.4 show
that drizzle is mainly formed at the cloud edges, especially at the cloud top. The for-
mation of drizzle happens in conditions of high supersaturation and low droplet number
concentration.

The profiles also reveal, that Nsd = 10 is not su�cient to represent the formation of drizzle.
The low superdroplet number leads to underrepresented drizzle profiles, which is especially
pronounced for the mean quantities hqzzidgc and hnzzidgc.

The time series reveal, that if the multiplicity is too large, only the rare, high supersatu-
ration conditions actually produce drizzle. Those conditions are less frequent. Therefore,
show the integrated quantities like total drizzle water per LES domain area Mzz/F and to-
tal drizzle droplet number per LES domain area Nzz/F smaller values, which increase with
increasing Nsd. These conditions are rare, but they have the potential to produce larger
values for drizzle cloud water and droplet number concentration. Therefore, the mean
quantities hqzzidgc and hnzzidgc decrease with increasing Nsd. The Table 5.2 summarizes
the results, where Mzz/F and Nzz/F have RMS values of 15.9% and 8.4% and hqzzidgc
and hnzzidgc have RMS values of 276.4% and 251.1%. The bad representation is also the
reason for the large RMS values in Table 5.2 found for simulations with low superdroplet
number.

The representation of mean drizzle quantities can be notably improved by adding the large
droplets splitting algorithm to the simulations Schwenkel et al. (2018). The algorithm
improves the sampling of drizzle generating conditions by converting a few superdroplets
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�ref10 (%) �ref102 (%) �ref103 (%) �ref104 (%) �ref103sp (%)

M/F [g m–2] 3.16 (4.5) 1.44 (2.0) 1.51 (2.2) 1.7 (2.4) 0.16 (0.2)

N/F [mm–2] 787.99 (3.1) 297.47 (1.2) 260.26 (1.0) 461.06 (1.8) 350.44 (1.4)

hqcicgc [mg kg–1] 67.58 (39.6) 39.26 (23.0) 13.27 (7.8) 1.24 (0.7) 2.21 (1.3)

hnicgc [cm–3] 23.35 (37.5) 13.8 (22.2) 4.06 (6.5) 0.52 (0.8) 0.31 (0.5)

hricgc [µm] 0.16 (2.1) 0.49 (6.2) 0.27 (3.4) 0.13 (1.7) 0.18 (2.3)

h�icgc [µm] 1.2 (39.5) 0.9 (27.4) 0.4 (14.2) 0.2 (6.0) 0.2 (6.8)

Mzz/F [mg m–2] 388.68 (78.6) 284.6 (57.6) 78.65 (15.9) 58.02 (11.7) 80.3 (16.2)

Nzz/F [mm–2] 9.81 (74.1) 6.62 (50.0) 1.11 (8.4) 1.61 (12.2) 1.38 (10.4)

hqzzidgc [mg kg–1] 306.89 (19485.4) 31.49 (1999.7) 4.35 (276.4) 0.41 (26.2) 0.1 (6.6)

hnzzidgc [dm–3] 9992.16 (23673.4) 1002.28 (2374.6) 105.98 (251.1) 11.27 (26.7) 0.88 (2.1)

hrzzidgc [µm] 1.43 (6.5) 1.24 (5.6) 0.03 (0.2) 0.12 (0.5) 0.11 (0.5)

dgc/cgc 0.76 (99.9) 0.74 (97.6) 0.52 (69.1) 0.07 (9.4) 0.06 (8.3)

Table 5.2: The root mean square data with respect to the reference simulation Nsd=2·104 eval-
uated over 5 min for t<55 min according to Eq. (3.22). The corresponding Figures are 5.1 and
5.2. The RMS and relative values are calculated with respect to the 2·104 simulation.

with high multiplicity to several superdroplets with low multiplicity, with an independent
trajectory. As a result, the representation of the mean drizzle quantities hqzzicgc and
hnzzicgc is improved to 6.6% and 2.1% for the RMS. The values for the integrated drizzle
quantities Mzz/F and Nzz/F stay with RMS values of 16.2% and 10.4% approximately
constant. Furthermore, the ratio of drizzle containing to cloud containing grid cells dgc/cgc,
shown in Figures 5.2 and 5.4 reveal that drizzle containing grid cells become increasingly
abundant. The frequency increases especially at the cloud top, which are not rare anymore
as the Nsd = 103 simulation suggested.

summary

As a result, the subsequent experiments will use a superdroplet number of 103 per grid cell
in combination with the splitting algorithm. This combines a good representation of cloud
quantities with an improved representation of drizzle quantities.
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Figure 5.1: The time series data of PALM LES stratus cloud simulations with the RAD&T
parametrizations. The RAD and T parametrizations are switched on after 30 min. M/F and
N/F show the total water mass and total number of droplets in the atmosphere each over the
LES domain surface area F. The superdroplets per grid cell are changed from 10 to 2·102 and the
splitting algorithm is added in 103sp. The averages are evaluated according to the Table (5.1).
The time series error shows the standard deviation of the mean estimator function for at least 6
ensemble runs Eq. (3.21). The gray shaded regions <30 and >55 min indicate the spin up period
and the evaluation period of the RMS values summarized in the Table (5.2).
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Figure 5.2: The time series data of PALM LES drizzle quantities. Mzz/F and Nzz/F show the
total drizzle mass and total number of drizzle droplets in the atmosphere each over the LES
domain surface area F. The results for Nsd < 103 in hqzzidgc and hnzzidgc are neglected, due to
their large values. Further information can be found in the caption of Figure 5.1



56 5. Large Eddy Simulations

0 5

0.4

0.6

0.8

1.0

z
[k

m
]

10

30min

60min

0 5

2·104

30min

60min

-1 0 1

c�M
�z

[km�1]

10�2·104

60min

0 2.5

0.4

0.6

0.8

1.0

z
[k

m
]

0 2.5 0 0.5

c�N
�z

[km�1]

0 0.25

0.4

0.6

0.8

1.0

z
[k

m
]

0 0.25 0 0.2

hqcicgc

[g kg�1]

0 100

0.4

0.6

0.8

1.0

z
[k

m
]

0 100 0 50

hnicgc

[cm�3]

0 20

0.4

0.6

0.8

1.0

z
[k

m
]

0 20 -20 0

hricgc

[µm]

0 5

0.4

0.6

0.8

1.0

z
[k

m
]

0 5 -5 0

h�icgc

[µm]

cloud quantities

Figure 5.3: The Profiles of cloud quantities from PALM LES stratus simulations, that are averaged
over a 2 min interval and ensemble runs. The plots with c�M/�z and c�N/�z show the vertical
normalized distribution of the total water mass and cloud droplet number. hqcicgc, hnicgc, hricgc
and h�icgc show the average values of the respective quantity for each model layer over cloudy
grid cells (cgc). The RAD and T parametrizations are switched on after 30 min. The first two
columns highlight the temporal evolution for one setup and the right column shows the di↵erence
between parametrizations after 60 min. The error bars show the standard deviation of the mean
estimator function for at least 6 ensemble runs Eq. (3.21). Compared are the smallest and the
largest tested number of superdroplets 10 and 2·102. The integrated quantities are normalized
with respect to the 2·102 simulation at 30 min according to Eq. (5.4).
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Figure 5.4: The plots with d�Mzz/�z and d�Nzz/�z show the vertical normalized distribution of the
total drizzle mass and drizzle droplet number. hqzzidgc, hnzzidgc, hrzzidgc and dgc/cgc show the
average values of the respective quantity for each model layer over drizzle containing grid cells
(dgc). The presented range of hqzzidgc and hnzzidgc are limited due to the large values for the
Nsd = 10 case. Further information can be found in the caption of the Figure 5.3.
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5.1.2 Thermal Cooling Experiment

The thermal cooling experiment aims to answer the question:

What is the impact of thermal radiation, when (only) acting on the

temperature field?

This experiment may serve as a interpretation basis on the importance of the here tested
parametrizations. Furthermore, it is an interesting experiment in itself. Here, the radiation
routine is switched o↵ after 30 minutes and the simulations continue for another 30 minutes.
The experimental setup chosen this way, because all subsequent experiments evolve starting
from a spin up period with radiation, which is changing the temperature field. In following,
the reference simulation is denoted 0. It applies thermal radiation to the temperature field,
but does not include the turbulence or RAD growth parametrizations.

environment quantities

The Figure 5.9 shows the Profiles of selected environment variables. The layer averaged
thermal cooling rates hḣradicgc are calculated only for the reference simulation (0). The
profiles show that the reference simulations sustains the subgrid-scale kinetic energy (e)
over the whole cloud, in contrast to the NoHeat simulation. Thermal radiative cooling
introduces turbulent motions. As a result, e appears to be approximately constant with
e = 0.005 m2 s–2 over the cloud and peaks at the cloud edges. Furthermore, the cloudy

grid cell integrated saturation profiles (
d�S⇤

tot
�z cgc) show that mixing of subsaturated air into

the cloud strongly decreases at the cloud edges for the NoHeat simulation. At the same
time, the changes in the averaged saturation profile (hS⇤icgc) are small. Therefore, the
distribution of saturation conditions stays constant, but the total subsaturation increases,
due to more subsaturated grid cells. Furthermore, the normalized liquid water profile in

subsaturated conditions (
d�MS⇤<0
�z ) is increasing across the cloud for the sedimentation dom-

inated and evaporating NoHeat stratus simulation.

The sharply defined cloud top is due to the presence of a strong inversion above the cloud.
In contrast to the more spread out cloud bottom from the indi↵erent initial potential
temperature profile below the cloud top. The whole cloud, especially the cloud edges, are
in a constant state of development and dissolution. For the simulations with radiation
(0), condensation is stronger than evaporation. In contrast, without radiation (NoHeat),
evaporation is stronger than condensation. The cloud top cooling of the 0 simulations is
moving upwards due to additional condensation from the cloud top cooling and the cloud
bottom moves upward due to the evaporation from cloud bottom warming.
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cloud quantities

The time series data in Figure 5.5 show for the simulations with radiation (0) that M/F
and N/F increases over time by 16.6% and 7.2% respectively. The profiles in Figure 5.7 of
c�M
�z and

c�N
�z show, that the increase is due to the additional droplets at the cloud top from

radiative cooling induced condensation. The droplet evaporation at the cloud bottom is
due to the radiative warming and the condensation at cloud top from radiative cooling.
Without radiation (NoHeat), the integrated quantities, M/F decreases by 21.8% and N/F
increases by 1.9% compared to 0. Sedimentation of droplets from the cloud top, where
the most liquid water is located, increases �M

�z and �N
�z at the cloud center. This leads to

an overall increase of N/F for 0 and NoRad. The profiles of
c�M
�z and

c�N
�z from Figure 5.7

show the increase at the cloud center. This may be a direct remnant of neglecting the
nucleation process in the LES simulations. The process of nucleation imposes a critical
supersaturation Scrit, that has to be reached and a critical droplet radius rcri that has
to be surpassed in order for the droplets to nucleate or renucleate. Nucleated droplets
grow freely from the surrounding supersaturation. The presented temporal development
of the integrated and mean quantities is qualitatively similar, which indicates that the
shape of the distribution for the respective quantities has not changed. The profile of the
mean droplet radius increases with height with a global maximum at cloud top and a local
maximum at the cloud base. Furthermore, the droplet size standard deviation for the
simulations with radiation is closely centered around 2 µm over the cloud with pronounced
peaks at the cloud edges.

drizzle quantities

The drizzle droplets have radii larger then 20 µm and initiate collisions and therefore the
formation of rain. The time series in Figure 5.6 show, that Mzz/F and Nzz/F increase by
75.3% and 68% over time for simulations with radiation (0). This is due, to the drizzle
droplets introduced at the cloud top by thermal radiation, as the profiles in Figure 5.8
suggest. For simulations without radiation (NoHeat), Mzz/F and Nzz/F decrease by 65.4%
and 64.1% with respect to 0. The averaged quantities hqzzidgc and hnzzidgc show a similar
qualitative behavior as the integrated quantities. Not all cloudy grid cells contain drizzle
yet, as shown in the dgc/cgc profile. For the simulations with radiation (0), the dgc/cgc
ratio increases over time by 58.8% and it increases by 19.2% compared to the simulation
without radiation (NoHeat).

summary

Thermal radiation already has a significant impact on drizzle formation, if (only) coupled
to the temperature field. The total amount of drizzle water and drizzle droplet decrease
by approximately 2/3, with the largest di↵erence at the cloud top.
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Figure 5.5: The time series data of PALM LES stratus cloud simulations with (0) and without
(NoHeat) radiation coupled to the temperature field. The radiation is switched o↵ after 30 min.
M/F and N/F show the total water mass and total number of droplets in the atmosphere each
over the LES domain surface area F. The superdroplets per grid cell are set to Nsd = 103 with
large droplet splitting. The averages are evaluated according to the Table (5.1). The time series
error shows the standard deviation of the mean estimator function for at least 20 ensemble runs
Eq. (3.21). The gray shaded regions <30 and >58 min indicate the spin up period and the 2 min
evaluation period of the mean values are summarized in Table (5.3).
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Figure 5.6: Mzz/F and Nzz/F show the total drizzle mass and total number of drizzle droplets in
the atmosphere each over the LES domain surface area F. For further information take a look at
the caption of the Figure 5.5.
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Figure 5.7: The profiles of cloud quantities from PALM LES stratus simulations are averaged
over a 2 min interval and ensemble runs. The plots with c�M/�z and c�N/�z show the vertical
normalized distribution of the total water mass and cloud droplet number. hqcicgc, hnicgc, hricgc
and h�icgc show the average values of the respective quantity for each model layer over cloudy
grid cells (cgc). The panels that show two snapshots of the profiles at 30 and 60 min highlight the
temporal evolution for one setup and the panels that show the profiles only at 60 min highlight
the di↵erence between parametrizations. The error bars show the standard deviation of the mean
estimator function for at least 6 ensemble runs Eq. (3.21). Compared are simulations with
(0) and without (NoHeat) radiation coupled to the atmospheric temperature. The radiation is
switched o↵ after 30 min. The integrated quantities are normalized with respect to the reference
simulation (0) at 30 min according to Eq. (5.4).
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Figure 5.8: The profiles of drizzle quantities from PALM LES stratus simulations. The plots
with d�Mzz/�z and d�Nzz/�z show the vertical normalized distribution of the total drizzle mass
and drizzle droplet number. hqzzidgc, hnzzidgc, hrzzidgc and dgc/cgc show the average values of
the respective quantity for each model layer over drizzle containing grid cells (dgc). For further
information see the caption of the Figure 5.7.
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Figure 5.9: The profiles of environment quantities from PALM LES stratus simulations. For
further information see the caption of the Figure 5.7.
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�t0 (%) �tNoHeat (%) NoHeat-0 (%)

M/F [g m–2] 9.91 (16.6) -5.29 (-8.9) -15.2 (-21.8)

N/F [mm–2] 1725.96 (7.2) 2209.75 (9.2) 481.35 (1.9)

hqcicgc [mg kg–1] 36.69 (19.6) -3.75 (-2.0) -40.46 (-18.1)

hnicgc [cm–3] 7.57 (10.0) 13.18 (17.4) 5.61 (6.7)

hricgc [µm] 0.58 (8.1) -0.14 (-2.0) -0.72 (-9.3)

h�icgc [µm] -0.42 (-16.7) -0.28 (-11.1) 0.14 (6.7)

Mzz/F [mg m–2] 64.54 (75.3) -33.6 (-39.2) -98.2 (-65.4)

Nzz/F [mm–2] 1.92 (68.0) -1.12 (-39.6) -3.04 (-64.1)

hqzzidgc [mg kg–1] 0.11 (17.8) -0.31 (-49.0) -0.43 (-56.8)

hnzzidgc [dm–3] 2.66 (12.6) -10.46 (-49.4) -13.13 (-55.1)

hrzzidgc [µm] 0.33 (1.6) 0.11 (0.6) -0.21 (-1.0)

dgc/cgc 0.23 (58.8) 0.11 (28.4) -0.12 (-19.2)

Table 5.3: The summary table of time series data. The data is averaged over a 2 min time interval
after 30 and 60 min and the temporal di↵erences are shown the �t columns. The NoHeat-0 column
shows the di↵erence between the parametrizations after 60 min. The relative values in percent
for the time di↵erences �t are calculated with respect to the reference simulation (0) after 30
min and for the parametrization di↵erences after 60 min.
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5.1.3 Turbulence Experiment

The Turbulence Experiment compares the simulation results with (T) and without (0) the
turbulence parametrization for PALM LES stratus simulations. The same parametrizations
are used in the parcel simulations and the same colors highlighting and notation is applied.
The Figures 5.10 and 5.11 show times series results for the simulations with and without
turbulence, but also for with RAD growth with and without turbulence. The RAD growth
timeseries are discussed the in section 5.1.4. In contrast, the profile Figures 5.12 and 5.13
compare only the 0 and T parametrizations. The research question of the section is:

How much drizzle is produced by adding the turbulence parametrization?

cloud quantities

The integrated quantities M/F and N/F are only weakly a↵ected by saturation fluctuations.
All saturation fluctuations add up to zero, but they change the droplet size distribution.
Therefore the speed changes at which water condensates at the droplets. The time series
in Figure 5.10 shows an increase in M/F by 10.37 g m–2 (17.4%) over time and only by
0.35 g m–2 (0.5%) due to turbulence. N/F increases by 1269.4 mm–2 (5.2%) over time and
decreases by 403.37 mm–2 (1.7%) due to turbulence. The profiles in the Figure 5.12 show,
that turbulence increases �M/�z at the cloud bottom and below the cloud. �N/�z decreases

at the cloud bottom and slightly increases below the cloud. Furthermore, d�Ndry/�z in
Figure A.1 show the evaporation of cloud droplets at the cloud base.

The time series of the mean quantities hqcicgc decrease over time by –17.15 mg kg–1 (–9.2%)
and by –53.88 mg kg–1 (-24.1%) due to turbulence. hnicgc decrease over time by 14.06 cm–3

(–18.5%) and by 21.35 cm–3 (–25.7%) due to turbulence.

The profiles show that hqcicgc is decreased at the cloud bottom and increased below the
cloud due to turbulence. It introduces grid cells with low liquid water content at the cloud
bottom and below the cloud, which contributes to a decreasing the mean values. Those
grid cells would be dry without turbulence and therefore are not included in the cloud
quantity calculations. hnicgc is decreased at cloud bottom and slightly increased below
cloud. Both changes contribute to a lower mean value.

drizzle quantities

The Figures 5.11 and 5.13 focus on the drizzle development and show that drizzle formation
is strongly increased by turbulence. The time series of Mzz/F shows an increase by 487.44
mg m–2 (563.3%) over time and by 424 mg m–2 (282.7%) due to turbulence. Furthermore,
Nzz/F increases by 11.08 mm–2 (388.4%) over time and by 9.19 mm–2 (194.2%) due to
turbulence.

The profiles reveal, that the increased formation of drizzle droplets happens over the total
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�t0 (%) �tT (%) T-0 (%)

M/F [g m–2] 10.04 (16.8) 10.37 (17.4) 0.35 (0.5)

N/F [mm–2] 1779.54 (7.4) 1269.4 (5.2) -403.37 (-1.6)

hqcicgc [mg kg–1] 37.02 (19.9) -17.15 (-9.2) -53.88 (-24.1)

hnicgc [cm–3] 7.71 (10.2) -14.06 (-18.5) -21.35 (-25.7)

hricgc [µm] 0.59 (8.2) 1.05 (14.7) 0.47 (6.0)

h�icgc [µm] -0.43 (-17.2) 0.47 (18.8) 0.91 (43.7)

Mzz/F [mg m–2] 65.4 (77.3) 487.44 (563.3) 424 (282.7)

Nzz/F [mm–2] 1.95 (69.8) 11.08 (388.4) 9.19 (194.2)

hqzzidgc [mg kg–1] 0.12 (19.0) 0.99 (153.2) 0.88 (116.0)

hnzzidgc [dm–3] 2.85 (13.6) 18.68 (87.8) 16.13 (67.7)

hrzzidgc [µm] 0.33 (1.6) 1.9 (9.3) 1.58 (7.6)

dgc/cgc 0.23 (59.0) 0.43 (110.5) 0.21 (34.1)

Table 5.4: The summary table of time series data for the comparison of simulations with (T) and
without (0) turbulence parametrization. The data is averaged over a 2 min time interval after 30
and 60 min and the temporal di↵erences are shown in the �t columns. The T-0 column shows
the di↵erence between the parametrizations after 60 min. The relative values in percent for the
time di↵erences �t are calculated with respect to the reference simulation (0) after 30 min and
for the parametrization di↵erences after 60 min.

cloud. It is especially pronounced at the cloud bottom. Furthermore, the impact of the
additional small droplets and drizzle droplets introduced from saturation fluctuations, can
be seen in the time series of hricgc. It first decreases due to the immediate creation of
additional small droplets and then increases again, with the onset of drizzle formation.
The time series of hricgc increases by 1.05 µm (14.7%) over time and by 0.47 µm (6%) due
to turbulence.

summary

The addition of saturation fluctuations, drastically increases the formation of drizzle. The
increase is on the order of 500%. It impacts not only the cloud top, but also the cloud
bottom. This is highlighting the role of both cloud edges in the formation of drizzle and
eventually rain.
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Figure 5.10: The time series data of PALM LES stratus cloud simulations, which compare the
0, RAD, T and RAD&T parametrizations, that consider turbulence and/or radiation in the
di↵usional growth Eq. (3.8). The parametrizations are switched on after 30 min. M/F and N/F
show the total water mass and total number of droplets in the atmosphere each over the LES
domain surface area F. The superdroplets per grid cell are set to Nsd = 103 with large droplet
splitting. The averages are evaluated according to the Table (5.1). The time series error shows
the standard deviation of the mean estimator function for at least 20 ensemble runs Eq. (3.21).
The gray shaded regions <30 and >58 min indicate the spin up period and the 2 min evaluation
period of the mean values summarized in the Tables (5.4) and (5.5).
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Figure 5.11: Mzz/F and Nzz/F show the total drizzle mass and total number of drizzle droplets
in the atmosphere each over the LES domain surface area F. For further information take a look
at the caption of the Figure 5.10.
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Figure 5.12: The profiles of cloud quantities from PALM LES stratus simulations, that are
averaged over a 2 min interval and ensemble runs. The plots with c�M/�z and c�N/�z show the
vertical normalized distribution of the total water mass and cloud droplet number. hqcicgc, hnicgc,
hricgc and h�icgc show the average values of the respective quantity for each model layer over
cloudy grid cells (cgc). The panels that show two snapshots of the profiles at 30 and 60 min
highlight the temporal evolution for one setup and the panels that show the profiles only at
60 min highlight the di↵erence between parametrizations. The error bars show the standard
deviation of the mean estimator function for at least 6 ensemble runs Eq. (3.21). Compared
are the simulations with (T) and without (0) the turbulence parametrization. The turbulence is
switched on after 30 min. The integrated quantities are normalized with respect to the reference
simulation (0) at 30 min according to Eq. (5.4).
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Figure 5.13: The plots with d�Mzz/�z and d�Nzz/�z show the vertical normalized distribution of
the total drizzle mass and drizzle droplet number. hqzzidgc, hnzzidgc, hrzzidgc and dgc/cgc show
the average values of the respective quantity for each model layer over drizzle containing grid
cells (dgc). For further information take a look at the caption of the Figure 5.12.
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5.1.4 RAD Growth Experiment

The RAD Growth Experiment compares simulations with (RAD) and without (0) the
radiative enhanced di↵usional growth. The Figures 5.10 and 5.11 show time series results
for simulations with and without RAD growth. They also show simulations with and
without turbulence, which where discussed in Section 5.1.3. In contrast, the profile Figures
5.14 and 5.15 compare only the 0 and T parametrizations. The research question of the
current section is:

What has the larger impact on drizzle formation, turbulence or RAD

growth?

cloud quantities

The time series and profiles in Figure 5.10 and 5.14 for M/F and hqcicgc show no signifi-
cant impact from thermal radiation. Only a tendency towards larger values in the cloud
center can be made out. The time series for N/F is decreasing by 138.17 mm–2 (0.5%)
due to radiation. The profiles show, that the decrease is located at the cloud top, with an
associated increase in d�Ndry/�z at the cloud top. The same evolution is shown by hnicgc,

which decreases by -0.7 cm–3 (-0.8%) due to radiation. It decreases over the cloud, espe-
cially at the cloud top. hricgc increases by 0.05 µm (0.6%). The profiles show that the
increase appears at the cloud top and bottom. In Figure A.2, the quantity �MS⇤<0/�z
shows a significant increase of liquid water in subsaturated conditions. The RAD growth
allows large droplets at the cloud top to keep growing in subsaturated environments. In
this conditions small droplets already start to evaporate. Additionally, the droplets grow
to larger sizes and it takes longer to evaporate large droplets due to mixing of dry air into
the cloud.

drizzle quantities

The impact on drizzle quantities is stronger than on cloud quantities and the profiles reveal,
that the increase in drizzle is located at the cloud top. The time series of Mzz/F increases
by 128.22 mg m–2 (149.4%) over time and by 64.05 mg m–2 (42.7%) due to radiation. Nzz/F
increases by 3.82 mm–2 (135.1%) over time and by 1.91 mm–2 (40.4%) due to radiation.
Similarly, the time series of hqzzidgc increase by 0.38 mg kg–1 (59.3%) over time and by

0.27 mg kg–1 (35.4%) due to radiation. hnzzidgc increase by 10.52 dm–3 (49.6%) over time

and by 7.89 dm–3 (33.1%) due to radiation.

summary

Simulations with RAD growth show an increase of 50% in drizzle liquid water and drizzle
droplet number. This on the order of the impact of the Thermal Cooling Experiment.
Therefore, RAD growth can not be neglected, but the increase is smaller then from the
turbulence parametrization.
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�t0 (%) �tRAD (%) RAD-0 (%)

M/F [g m–2] 10.04 (16.8) 10.3 (17.2) 0.31 (0.4)

N/F [mm–2] 1779.54 (7.4) 1645.89 (6.8) -138.17 (-0.5)

hqcicgc [mg kg–1] 37.02 (19.9) 36.87 (19.7) 0.26 (0.1)

hnicgc [cm–3] 7.71 (10.2) 6.91 (9.2) -0.7 (-0.8)

hricgc [µm] 0.59 (8.2) 0.62 (8.7) 0.05 (0.6)

h�icgc [µm] -0.43 (-17.2) -0.4 (-16.1) 0.03 (1.4)

Mzz/F [mg m–2] 65.4 (77.3) 128.22 (149.4) 64.05 (42.7)

Nzz/F [mm–2] 1.95 (69.8) 3.82 (135.1) 1.91 (40.4)

hqzzidgc [mg kg–1] 0.12 (19.0) 0.38 (59.3) 0.27 (35.4)

hnzzidgc [dm–3] 2.85 (13.6) 10.52 (49.6) 7.89 (33.1)

hrzzidgc [µm] 0.33 (1.6) 0.44 (2.1) 0.11 (0.5)

dgc/cgc 0.23 (59.0) 0.27 (69.0) 0.04 (6.8)

Table 5.5: The summary table of time series data for the comparison of simulations with and
without (RAD and 0) the RAD parametrization. The data is averaged over a 2 min time interval
after 30 and 60 min and the temporal di↵erences are shown in the �t columns. The RAD-0
column shows the di↵erence between the parametrizations after 60 min. The relative values in
percent for the time di↵erences �t are calculated with respect to the reference simulation (0)
after 30 min and for the parametrization di↵erences after 60 min.



74 5. Large Eddy Simulations

0 5

0.4

0.6

0.8

1.0

z
[k

m
]

0

30min

60min

0 5

RAD

30min

60min

-0.25 0 0.25

c�M
�z

[km�1]

RAD�0

60min

0 2.5

0.4

0.6

0.8

1.0

z
[k

m
]

0 2.5 0 0.25

c�N
�z

[km�1]

0 0.25

0.4

0.6

0.8

1.0

z
[k

m
]

0 0.25 -0.025 0 0.025

hqcicgc

[g kg�1]

0 100

0.4

0.6

0.8

1.0

z
[k

m
]

0 100 -5 0 5

hnicgc

[cm�3]

0 10

0.4

0.6

0.8

1.0

z
[k

m
]

0 10 0 0.5

hricgc

[µm]

0 2

0.4

0.6

0.8

1.0

z
[k

m
]

0 2 -0.5 0 0.5

h�icgc

[µm]

cloud quantities

Figure 5.14: The profiles of cloud quantities from PALM LES stratus simulations, that are
averaged over a 2 min interval and ensemble runs. The plots with c�M/�z and c�N/�z show the
vertical normalized distribution of the total water mass and cloud droplet number. hqcicgc, hnicgc,
hricgc and h�icgc show the average values of the respective quantity for each model layer over
cloudy grid cells (cgc). The panels that show two snapshots of the profiles at 30 and 60 min
highlight the temporal evolution for one setup and the panels that show the profiles only at
60 min highlight the di↵erence between parametrizations. The error bars show the standard
deviation of the mean estimator function for at least 6 ensemble runs Eq. (3.21). Compared are
the simulations with (RAD) and without (0) the RAD parametrization. The RAD is switched on
after 30 min. The integrated quantities are normalized with respect to the reference simulation
(0) at 30 min according to Eq. (5.4).
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Figure 5.15: The plots with d�Mzz/�z and d�Nzz/�z show the vertical normalized distribution of
the total drizzle mass and drizzle droplet number. hqzzidgc, hnzzidgc, hrzzidgc and dgc/cgc show
the average values of the respective quantity for each model layer over drizzle containing grid
cells (dgc). For further information take a look at the caption of the Figure 5.14.
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5.1.5 RAD&T Experiment

In this section the combination RAD&T is investigated and compared to T only simula-
tions. Furthermore, the strength of radiation is increased by an arbitrary factor of 3 for
the 3RAD&T simulations. The research question in this section is:

Does turbulence increase the impact of RAD growth in LES simulations?

cloud quantities

M/F and N/F show no significant qualitative change in the time series, when comparing
RAD&T and T simulations. In general the results are the same as in the RAD section,
and changes e.g. a decrease in the droplet number concentration at the cloud top, become
only visible for the simulation with 3 times increased thermal radiation strength.

drizzle quantities

The drizzle quantities change for the RAD&T simulation according to: Mzz
F increases by

697.5% over time and by 15.1% due to radiation. Nzz
F increases by 499.2% over time and

by 17.4% due to radiation. hqzzidgc increases by 179.3% over time and by 10% due to
radiation. hnzzidgc increases by 110.5% over time and by 11.18% due to radiation.

The drizzle quantities increase for the 3RAD&T simulation according to: Mzz
F increases by

1116.6% over time and by 76% due to radiation. Nzz
F increases by 863.5% over time and

by 89.3% due to radiation. hqzzidgc increases by 321.4% over time and by 66.5% due to
radiation. hnzzidgc increases by 234.1% over time and by 77.9% due to radiation.

summary

The increase in drizzle water content from RAD growth is 86.43 with and 64.05 mg m–2

without turbulence. Therefore, the turbulence increases the impact of thermal radiation
by 35 %. However, the impact of the combination is smaller then in the parcel model
simulations.
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�tT (%) �tRAD&T (%) RAD&T-T (%) �t3RAD&T (%) 3RAD&T-T (%)

M/F [g m–2] 10.37 (17.4) 9.8 (16.5) -0.78 (-1.1) 10.79 (18.1) 0.22 (0.3)

N/F [mm–2] 1269.4 (5.2) 1222.99 (5.1) -132.73 (-0.5) 886.29 (3.7) -472.28 (-1.9)

hqcicgc [mg kg–1] -17.15 (-9.2) -21.98 (-11.8) -4.83 (-2.9) -19.43 (-10.4) -2.26 (-1.3)

hnicgc [cm–3] -14.06 (-18.5) -15.39 (-20.3) -1.24 (-2.0) -16.11 (-21.2) -1.98 (-3.2)

hricgc [µm] 1.05 (14.7) 1.11 (15.6) 0.05 (0.6) 1.07 (15.1) 0.02 (0.2)

h�icgc [µm] 0.47 (18.8) 0.53 (21.2) 0.07 (2.2) 0.54 (21.6) 0.08 (2.5)

Mzz/F [mg m–2] 487.44 (563.3) 577.6 (697.5) 86.43 (15.1) 927.37 (1116.6) 436.45 (76.0)

Nzz/F [mm–2] 11.08 (388.4) 13.62 (499.2) 2.42 (17.4) 23.63 (863.5) 12.44 (89.3)

hqzzidgc [mg kg–1] 0.99 (153.2) 1.15 (179.3) 0.16 (10.0) 2.07 (321.4) 1.08 (66.5)

hnzzidgc [dm–3] 18.68 (87.8) 23.45 (110.5) 4.71 (11.8) 49.81 (234.1) 31.13 (77.9)

hrzzidgc [µm] 1.9 (9.3) 2.02 (9.8) 0.1 (0.4) 1.97 (9.6) 0.05 (0.2)

dgc/cgc 0.43 (110.5) 0.46 (117.8) 0.02 (2.3) 0.48 (123.8) 0.04 (5.2)

Table 5.6: Summary of di↵erences for 2 minutes averaged values between the time points at
30 and 60 minutes (indicated by �t) and between parametrizations at 60 minutes (else). The
turbulent simulation T is taken as the reference. See the corresponding Figures 5.16 and 5.17.
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Figure 5.16: Time series of cloud quantities of PALM LES stratus simulations, which compare
the T, RAD&T, 2RAD&T and 3RAD&T parametrizations, that consider turbulence and a in-
creasing strength of radiation (by a factor of 2 and 3) in the di↵usional growth Eq. (3.8). The
parametrizations are switched on after a spin up period of 30 minutes. M/F and N/F show the
total water mass and total number of droplets in the atmosphere each over the LES domain
surface area F. The averages are evaluated according to the Table (5.1). The uncertainties to the
data points shows the standard deviation of the mean estimator function for at least 10 ensemble
runs Eq. (3.21). The gray shaded regions at t<30 and >55 minutes indicate the 2 minutes period,
over which the results of the Table (5.6) are calculated.
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Figure 5.17: Mzz/F and Nzz/F show the total drizzle mass and total number of drizzle droplets
in the atmosphere each over the LES domain surface area F. See the caption of the Figure 5.17.
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Figure 5.18: Cloud quantity profiles, that compare between two time points (left) and between

parametrizations (right). The plots with c�M/�z and c�N/�z show the vertical normalized distri-
bution of the total water mass and cloud droplet number. hqcicgc, hnicgc, hricgc and h�icgc show
the average values of the respective quantity for each model layer over cloudy grid cells (cgc).
The integrated quantities are normalized to the T simulation after 30 minutes. See the caption
of the Figure 5.16.
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Figure 5.19: The plots with d�Mzz/�z and d�Nzz/�z show the vertical normalized distribution of
the total drizzle mass and drizzle droplet number. hqzzidgc, hnzzidgc, hrzzidgc and dgc/cgc show
the average values of the respective quantity for each model layer over drizzle containing grid
cells (dgc). See the caption of the Figure 5.16 and 5.18.
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Chapter 6

Discussion

6.1 Parcel Model

The discussion of the parcel model is published in Barekzai and Mayer (2020).

The investigation of the turbulent parcel model shows the following results: Cooling by the
emission of thermal radiation can cause a doubling of the droplet size standard deviation,
with particularly strong e↵ects in combination with turbulence (Fig. 4.3). The updraft
sensitivity shows that turbulence and RAD are more important at small updraft speeds
with approximately equal contributions to the standard deviation (Fig. 4.5). Furthermore,
the longer the radiation can operate, the larger the impact. It even becomes the domi-
nant contributor to the droplet size standard deviation, for slowly developing clouds with
w=0.01 m s–1 (Fig. 4.6). Radiation acts as a secondary nucleation inhibitor, due to the
subsaturated environment, which suppresses the nucleation of cloud droplets.
Finally, the results for the collision initiation timescale suggest that thermal radiation may
play a role in bridging the Condensation Coalescence Bottleneck by increasing the droplet
size standard deviation and accelerating the creation of larger droplets.
The simple parcel model allows fast studies which illustrate the dependencies of a number
of parameters. In comparison, LES simulations are more expensive and introduce com-
plexity, which requires additional statistical analysis. Nevertheless, the simplistic approach
comes with limitations and in the following some possible issues are highlighted and an
outlook on subsequent work is given.
Sedimentation is not included. All droplets stay in the parcel, if they do not completely
evaporate. An estimate of droplet fall speeds using Stokes approximation shows that
droplets with radius of 10 and 20 µm would have fallen 10 and 50 m in 15 min. This is
suggesting that sedimentation can be neglected for the time period of 15 min, but longer
simulations may become increasingly unrealistic without sedimentation. The sedimenta-
tion analysis of the parcel simulations can be found in the section 4.1.6. Additionally, the
secondary nucleation process depends on RAD and turbulence, which has the most impact
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for low updraft speeds. The dependence is not separately evaluated here, but details can
be found in Marquis and Harrington (2005). Furthermore, the statistics of the turbulence
parametrization is kept constant while changing the updraft speed from 0.01 m s–1 to 1.5
m s–1. The saturation and corresponding updraft fluctuations for ✏=10 cm2 s–3 and ✏=50
cm2 s–3 are based on stratocumulus cloud top and shallow cumulus core cases. de Lozar
and Mellado (2015a) showed that cloud top regions of stratiform clouds have updraft speed
fluctuations similar to those of a shallow cumulus cloud base. There are uncertainties with
respect to turbulence which may be due to unresolved scale interactions or dependence
on atmospheric composition. Furthermore, turbulent mixing of moist and dry air is ne-
glected, even though it is a very important process at the cloud edges. The correlation of
dry downdrafts and wet updrafts may result in even larger saturation fluctuations. Finally,
the parcel position is kept at cloud top, which might be unrealistic, but serves as a maximal
impact scenario for thermal radiation. The current simple approach can be investigated
without explicitly solving the radiative transfer equation and serves as a baseline for more
complicated scenarios. The next step will be to run RAD and the turbulence parametriza-
tion in LES simulations with resolved radiation. In a LES, the saturation fluctuations can
be calculated with the prognostic subgrid turbulent kinetic energy. The positions of the
droplets inside the scene will be resolved, as well the cloud edges with realistic radiative
cooling rates (e.g. Jakub and Mayer (2015)). Alternatively, it would be interesting to in-
vestigate the impact of radiative cooling on ice clouds, because turbulence decreases with
height and thermal radiation is transmitted more e↵ectively to space.

6.2 LES Model

The Superdroplet Convergence Experiment 5.1.1 shows the improvement of the drizzle
representation due to the addition of a droplet splitting algorithm. Simulations can be
run with only 103 superdroplets per grid cell and still give a accurate representation of
microphysical. The profiles show, that the cloud edges are the sensitive cloud regions
with respect to the number of superdroplets, concerning the correct representation of the
formation of drizzle droplets. The results confirm the importance of the splitting approach
as stated in Schwenkel et al. (2018)

The Radiative Heat Experiment 5.1.2 removes the thermal radiative feedback on the tem-
perature field. Therefore, the liquid cloud water content decreases, due to the lack of
radiative cooling driven condensation at the cloud top. The drizzle water content for simu-
lations without radiation decreases by 98.2 mg m–2 (65.4%), mostly at the cloud top. The
profiles show that, the subgrid kinetic energy reduces with height for simulations without
thermal radiation and vanishes over the extent of the cloud. Cloud top entrainment driven
by evaporative and radiative cooling is an important process investigated in many studies
(Stevens et al., 2005; de Lozar and Mellado, 2015b; Mellado, 2017). In the current analysis,
the direct impact of radiative driven cloud top entrainment is measured with the impact
on cloud top drizzle production, which has not been shown yet.
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The Turbulence Experiment 5.1.3 reveals that saturation fluctuations increase the drizzle
production significantly by 424 mg m–2 (282.7%). Additionally to the cloud top, drizzle
is produced in significant quantity at the cloud bottom. This highlights the role of all
cloud edges in the process of forming drizzle. In general, the impact of turbulence should
decrease with height, as the atmosphere becomes more stable. The SGS kinetic energy,
a prognostic variable of the LES, enters the saturation fluctuations parametrization and
decreases with height as shown in A.1. This may also influence the creation of drizzle at the
cloud bottom. The results are in accordance with previous studies (Grabowski and Abade,
2017b; Abade et al., 2018), that show an significant broadening of the droplet distribution
due to turbulence. The quantitative results on the drizzle mass and the potentially impor-
tance of the cloud bottom have not been shown yet. Further theoretical and experimental
investigations may validate the role of the cloud bottom in the drizzle production.

The RAD Experiment 5.1.4 shows that RAD growth further increases drizzle formation at
the cloud top by 64.05 mg m–2 (42.7%).

The RAD&T Experiment 5.1.5 shows, that for the combination of thermal radiation and
turbulence, the drizzle formation increases by 86.43 mg m–2 (15.1%). In contrast to the
other experiments, here, the turbulent simulation is taken as reference. The absolute
increase in drizzle water content from adding RAD is similar to that from the coupling of
the radiative heating rates to the temperature field. Furthermore, with a radiative cooling
that is increased by a factor of 3, the drizzle water content increases by 436.45 mg m–2

(76%), which is similar in magnitude to the increase from the turbulence parametrization.
The role of radiative cooling on the drizzle production has been investigated in Klinger
et al. (2019). The study could not establish statistical significance in the radiative feedback,
which is done in the present analysis by investigating a set of up to 20 ensemble simulations
for each profile and time series.

The RAD growth parametrization increases the drizzle formation. The impact further
increases if combined with saturation fluctuations. Furthermore, the impact of RAD on
the drizzle water content is with 64 mg m–2 in magnitude similar to the coupling of thermal
radiation heating rates to the temperature field with 98 mg m–2. In comparison to the
impact of saturation fluctuations on the drizzle water content is with 424 mg m–2 much
larger. The increase due to RAD growth becomes similar in magnitude to the increase
from the turbulence parametrization, if thermal radiation is increased by a factor of 3
(3RAD&T) leading to an increase of 436 mg m–2.
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6.3 Conclusion and Outlook

The starting point for the conclusions should be the initially stated research question:

Can thermal radiation in combination with unresolved turbulence explain

the formation of rain in ice free clouds?

The parcel and the LES simulations show, that thermal radiation and unresolved tur-
bulence have an significant impact on the droplet distribution and accelerate the drizzle
creation timescale. Therefore, both can not be neglected. In comparison, the increased
drizzle production due to unresolved turbulence is stronger then from thermal radiation,
in both experimental setups. The LES simulations with turbulence also show a significant
amount of drizzle at the cloud bottom. In parcel simulations, thermal radiation leads to
slightly subsaturated atmospheric conditions. As a result, smaller droplets start to evapo-
rate. This reduces the droplet number and supports the creation of drizzle. The impact is
amplified by including the moisture fluctuations from the unresolved turbulence. However,
in dynamic LES simulations, the impact due to the intaraction of both parametrizations is
smaller. The moisture field and the droplet trajectories are less stronly coupled. Finally,
drizzle is not yet rain and to eliminate any uncertainty, simulations with explicit collision
parametrization should be carried out. The resulting rain timescales should be compared
to observations. Furthermore, to provide a more general answer to this question, simula-
tions for di↵erent cloud types must be evaluated and compared, to estimate the impact of
cloud sides and the dynamical state of the atmosphere.

In the current setup, the ground fluxes of sensible and latent heat are set to zero to
reduce complexity. The evolution of the clouds is therefore decoupled from the ground.
More elaborated and realistic simulations should apply adequate ground fluxes, which will
increase the spin up period and therefore overall simulation time.

In general, high resolution simulations depend on the time stepping approach Barrett et al.
(2019). In the current setup, a fixed time step of 1 s is used, but to put the results on
stronger grounds a time step convergence study could be carried out. A possible side
e↵ect of a large superdroplet number may be a faster convergence with respect to the time
step.

In stratus simulations, the cloud droplets are continuously activating and deactivating,
especially at the cloud center. However, the current setup neglects droplet activation as
recommended by Ho↵mann et al. (2015). One could argue, that the role of the activation
process may be important in the current study due to the frequent renucleation of droplets.
Furthermore, the stratus cloud will change the aerosol distribution by the process of nu-
cleation and denucleation and also by collisions. An interesting question is: How might
an explicit nucleation approach used in Abade et al. (2018) might change the cloud and
aerosol evolution? Here, also longer simulations seem more interesting.

Furthermore, solar radiation should be included and combined with thermal simulations.
Also, longer simulation times should be investigated to further evaluate the stratocumu-
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lus cloud systems. A more realistic approach to radiation may include a diurnal cycle in
the solar irradiance. Furthermore, 3D radiation should be investigated, as it takes into
account of the cloud sides. Changes in the background profiles may facilitate the com-
parison to previous studies of Harrington et al. (2000), which investigate summer time
arctic stratus clouds, presented in Curry (1986). The described profiles, show a similar
measured inversion structure as the used DYCOMS-II case, but with di↵erent water vapor
and temperatures levels.

A broader understanding of the simulations could be achieved by sensitivity studies with
respect to the initial aerosol number concentration or the vertical resolution. Although
(Stevens et al., 2005) propose a vertical grid spacing of 5 m it is still unclear, if the
process of cloud top entrainment has converged. (Hartman and Harrington, 2005b) show
that the results may also strongly depend on the droplet number concentration. The
simulation setup might be changed to investigate the development of cumulus clouds. As
a first step, cumulus clouds should be initialized with ideal and reproducible warm bubble
simulations and after that with free evolving simulations from cumulus cases like RICO
or BOMEX (Rauber et al., 2007; Jiang and Cotton, 2000). Furthermore, the impact of
thermal radiation on the development of the cloud should increase with cloud height, as
shown in Fig. 3.3. Therefore, cirrus clouds should be studied, which implies the usage of
a more complex and uncertain ice microphysics. For those high clouds, the atmosphere is
also more stable, reducing the impact of turbulence.

A sophisticated analysis of drizzle droplet trajectories might bring light in the details of the
process and help interpreting the current results. An attempt was made in Klinger et al.
(2019) by following parcel trajectories based on the parcels time spend at cloud top and
sides, but the superdroplet approach allows to specifically focus on the droplet trajectories
that result in drizzle droplets. Lagrangian microphysics will become very expensive, if
collisions are included. Depending on the paradigm, the number of superdroplets may
increase drastically and each superdroplet must be aware of its nearest neighbors. To
circumvent the challenges of explicit collisions in the LES, the profiles can be used with a
external collision model to post process the impact on rain formation timescale.

Furthermore, the radiative solver may be coupled to the resolved droplet distribution and
not the averaged grid cell quantities and the coupling of RAD growth to the droplets may
be calculated with Mie theory, compared to the current geometrical optics approach.
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symbol description symbol description

A&D parameter of Eq. (3.8) ⇢w density of water with 103 kg m–3

a1 constant from Squires (1952) with
3 · 10–4 m–1

⇢NaCl density of sodium chloride with
2160 kg m–3

B(�, T) Planck’s function qv water vapor mixing ratio in kg
kg–1

cp specific heat of air at const. pres-
sure 1003.5 J kg–1 K–1

R net radiative flux per droplet sur-
face area in W m–2

C1&C2 parameter of Eq. (3.5), defined by
Eq. (3.6)

r0 radius to distinguish the droplet
distribution tail

Dw water vapor in air di↵usion con-
stant 2.82 · 10–5 m2 s–1

rcr critical radius of nucleation

E turbulent kinetic energy (Schu-
mann (1991))

rdry dry radius in µm

✏ turbulent dissipation rate in cm2

s–3
rdrizzle embryonic drizzle radius 20 µm

es saturation vapor pressure over flat
water surface in Pa

ri radius of ith superdroplet in µm

f radiation modulation factor rsep separation radius for which
dr/dt=0 in µm

g gravitational acceleration with
9.81 m s–2

hri mean radius of droplet distribu-
tion in µm

� surface tension of water at 293 K
with 0.0727 N m–1

rmax mean radius of the largest
droplets, representing nmax

 thermal conductivity of air with
0.0243 W m–1 K–1

Rv specific gas constant of water va-
por 461.401 J kg–1 K–1

L parcel length scale in m S⇤ supersaturation of the environ-
ment

Lv latent heat of vaporization with
2.257 · 106 J kg–1

S⇤
eq equilibrium supersaturation at the

droplet surface from Koehler the-
ory

Mw molar mass of water 0.018 kg
mol–1

S⇤
cr critical supersaturation for nucle-

ation

MNaCl molar mass of sodium chloride
0.058 kg mol–1

S⇤0
i supersaturation fluctuation of the

i-th superdroplet

n droplet number concentration
cm–3

� standard deviation of the droplet
distribution

n20 & n75 CCN number concentration of
aerosol modes in cm–3

�sb Stefan Boltzmann constant with
5.67 · 10–8 W m–2 K–4

nccn CCN number concentration cm–3 t&dt simulation time and time step of
0.2 in s

ndrizzle embryonic drizzle number concen-
tration 10–3 cm–3 (Feingold and
Chuang (2002))

T environment temperature in
Kelvin

nmax used embryonic drizzle number
concentration 10–1 cm–3

Tdrop droplet temperature in Kelvin

Ni represented number density per
superdroplet: 103 m–3

⌧relax relaxation time scale of qv due to
the droplet distribution in s from
Squires (1952)

Nsd number of superdroplets per parcel
105

⌧ turbulent time scale (Schumann
(1991))

p pressure in Pa w & w0
i vertical wind and fluctuations in m

s–1

⇢0 air density 1 kg m–3 (shallow con-
vection approx.)

� normal distributed random vari-
able

Table 6.1: Used symbols and descriptions for variables and constants.
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symbol description

↵� absorbtivity of radiation from a
body

B(T) Planck’s law

�sca, �abs, �ext scatterting, absorption and extinc-
tion coe�cient

Eup, Edn, Enet up, downwards and netto irradi-
ance

Ee irradiance

E(r, r0) collision e�ciencies of the hall ker-
nel

E⌫ photon energy of frequency ⌫

✏� emissivity of radiation from a body

rEcld, rEatm radiative flux divergence from the
cloud and atmosphere

h Planck’s constant h = 6.626 ·10–34

J s

K(r, r0) hall collision kernel

Le radiance

lwc, lwp liquid water content and path

µ viscosity

µ✓ cosine of zenith angle

Pe scattering phase function of the at-
mosphere

Pk power of turbulent motion with
wavenumber k

� zenith angle

�e the radiant flux

Rd specific gas constant for air 287 J
kg–1 K–1

⇢ mean density

�sca, �abs scattering and absorption cross
section

✓ azimut angle

⌧ optical thickness

~u fluid velocity field

~! vector of earths angular velocity

⌦ solid angle

Table 6.2: Additional symbols and descriptions for variables and constants.
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Appendix A

Appendix

Additional figures from the Section 5 showing environment quantities for the Turbulence
and the RAD Growth Experiment.
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Figure A.1: The profiles of environment quantities. For further information take a look at the
caption of the Figure 5.12.
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caption of the Figure 5.14.
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