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1. Introduction 

 

New modalities in fluorescence imaging can drive and reveal fundamental aspects in 

biomedical research. With the advent of new technologies, machinery and protocols, 

researchers nowadays have a powerful toolbox to study biology on a microscopic scale with 

astonishing resolution at both spatial and temporal levels. Microscopy is one of the few 

analytical methods that produces accurate spatial information on the molecule or structure of 

interest. Increasing speed, resolution and performance come with more complex sample 

preparation, more sophisticated technical setup and more complicated image analysis. 

Consequently, a gap has emerged between cutting-edge technology and biologists routinely 

using microscopic techniques for their research (Power & Huisken, 2019). Scientists heaving 

knowledge on both, the technical as well as on the biological aspects can bridge this gap 

and bring the latest advancements to the bench. 

 

 

1.1 Aims 

 

The aim of this dissertation was to implement new imaging techniques for studying biological 

processes during development and in context of organ disease. More specifically, we were 

interested in general fibrotic responses following injury, in both skin and internal organs. 

Scarring is thought of as a general outcome of quick but defective and excessive tissue 

repair (Greenhalgh, 2007). The failed repair mechanism results in impaired functionality, 

restrictions in motion and contractility, discomfort, pain and even death (Zeisberg & Kalluri, 

2012). Regenerative research aims to preserve or re-activate mechanisms that initially can 

form a fully functional organism during development. The regenerative capacity is constantly 

reduced during adult life in most vertebrates and a scarring phenotype is characteristic of 

tissue/organ injury in postnatal life. Trying to reverse this process, from scarring-to-

regeneration, presupposes a thorough picture of the developmental stage, the steady- and 

diseased state. The proverbial picture of a biological state is the main discipline of microcopy 

as such and imaging in a broader sense. Microscopy offers two different ways of usage in a 

scientific context. Firstly, it is used to observe biology at a level usually hidden for the human 

eye. Upon observation of an interesting feature, researchers usually compare different 

stages, states or conditions and consequently develop and formulate biological questions. 

The saying “seeing is believing” means that the visual perception is extremely well evolved 

in humans and our brain is highly confident on visual input. Secondly, it is used to document 

the presence or absence, the amount, the behavior or dynamics of cells, molecules and 

6



structures of interest. It therefore enables one to prove or disprove previously formulated 

hypotheses. 

 

 

1.2 Advances in fluorescent microscopy 

 

A whole plethora of different microscopy techniques have been developed over the last fifty 

years based on those two basic operational modes. Fluorescence microscopy has proven to 

be the most sensitive and versatile method. Most of the popular advances have been using 

this physical principle of the absorption of light and subsequent emission of light that has 

lower energy than the incident light. Be it multi-photon microscopy (Strickler, et al., 1990), 

super-resolution microscopy (Hell & Wichmann, 1994) or light-sheet microscopy (Huisken, et 

al., 2004) and all their derivatives. They all share the common feature to allow for imaging in 

all three spacial dimensions. As we live in a three-dimensional world, biology should be 

looked at accordingly. A sample that was physically sectioned in order to make it accessible 

for light microscopy offers only a fraction of the original informative content. Everything 

above or below a thin and finite volume is ignored. Especially supracellular structures and 

networks suffer from this preparation. Not surprisingly, neuroscience was always in the 

frontline of developing new optical methods to detect far spanning neuronal connections 

(Dodt et al., 2007; Ertürk et al., 2011). True 3D imaging is achieved via optical sectioning and 

successive 3D reconstruction of the single planes, leaving the original sample intact. A 

general limitation is the restricted penetration depth of light in un-dissected biological tissue. 

Absorption and scattering of incident and emitted light make it very difficult to look deep 

inside the sample.  

One strategy to overcome this limitation is the use of long wavelength light in the far-red or 

infrared region. The low scattering and absorption in this spectral range (700 – 1300 nm) is 

utilized in multi-photon microscopy. Two photons of roughly half the energy (or three photons 

of one third the energy in case of three-photon excitation) that is normally needed are used 

to excite a certain fluorophore. High peak power, pulsed lasers guarantee sufficient 

probability for the simultaneous absorption to occur. Less energetic light can penetrate 

deeper into tissue and it also reduces toxic effects in live preparations.  

The second strategy to increase penetration depth is to render the sample transparent. The 

idea is to clear for scattering and absorbing molecules and remove transitions in refractive 

indices within the sample (Susaki & Ueda, 2016). A variety of tissue clearing methods for 

different tissues and sample sizes are described (Richardson & Lichtman, 2015).  
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1.3 Sample preparation 

 

In the publications presented in this dissertation we used both, multi-photon microscopy and 

light-sheet microscopy of optically cleared tissues to image a broad range of samples in high 

resolution. Due to the incompatibility of the multi-photon objective with organic clearing 

solvents used in our tissue clearing protocol, we could not use both methods in combination. 

Their application however demands appropriate sample preparation. We therefore 

developed a strategy to conjoin both preparation protocols, simultaneously. In this way both 

methods can be applied on the same sample if needed. The first part involves 

immunolabeling of the protein of interest. Antibodies and fluorescent probes are allowed to 

diffuse into the fixed tissue using an adopted protocol from Belle et al. (Belle et al., 2014). 

Depending on the size of the sample this process is completed within 3-14 days. After 

immunostaining the samples can be subjected to whole mount 3D multi-photon microscopy 

or directly be treated for tissue clearing. The clearing protocol is based on the 3DISCO 

procedure (Ertürk et al., 2012). In the last step of the protocol the sample is immersed in an 

organic solvent, which is also the imaging environment. These samples are typically imaged 

using a light-sheet or confocal microscope. 
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1.4 Imaging of live tissue 

 

Imaging of living tissues adds another dimension to microscopic imaging. The temporal 

dimension can reveal dynamics and behavioral aspects of cells or proteins of interest in live 

samples that are otherwise lost or distorted during subsequent histochemical protocols. It 

can be utilized to visualize, for example, how cells react to a stimulus or treatment, how they 

behave in different conditions or at different developmental stages, how cells move with 

respect to thier location and how their morphology changes over time. This additional 

information comes with the price of additional measures that need to be considered. The 

main aspect is viability of the sample. Physiologic conditions can be ensured by the use of 

an environmental chamber. Using far-red excitation and reasonable laser power can 

minimize toxic effects (Foyer et al., 1994; Rieder & Khodjakov, 2003). Live cell imaging 

mostly makes use of cells growing in a dish under controlable conditions and in a format that 

is compatible to microscops (Stevens & Allan, 2003; Ettinger & Wittman, 2014). But since 

cells change morphology, behavior and activity on plastic (Vlodavsky et al., 1980), they are 

best imaged in their native habitat as a whole ex vivo or even in vivo. Only then exogenous 

stimuli and their influence on the cells behavior can be prevented. Consequently, intravital 

microscopy (IVM) models for diverse organs have been developed and are used to study 

immunology (Sumen et al., 2004), oncology (Condeelis & Segall, 2003), renal and hepatic 

disease (Molitoris & Sandoval, 2005), and regeneration (Pineda et al., 2015). IVM is the 

closest observation scenario of biology as it occurs in real life. But it is also the most 

challenging one. There are multiple factors, such as anesthesia, vital parameters, 

stabilization against movement, accessibility, that need to be taken in to account in order to 

obtain useful data. 

In the publications presented in the dissertation and in a submitted manuscript (Jiang, Christ, 

Correa-Gallegos, Ramesh et al., Cell Stem Cell, in review, not included) we developed a 

setup for multi-photon live imaging of whole organs ex-vivo and an intravital microscopy 

model of wound healing. 
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2. Two succeeding fibroblastic lineages drive dermal development 
and the transition from regeneration to scarring 

 

 

2.1 Introduction 

 

Mammalian back skin reacts differently to injuries in fetal life compared to postnatal stages. 

Strikingly, during early embryogenesis mammals can heal skin with no obvious scars, 

whereas later dermal injuries are patched with a dense collagen plug, a scar (Mast et al., 

1992). This scarless to scarring transition occurs beginning of the last trimester of embryonic 

development. It was shown before that early expression of the transcription factor engrailed 

1 (En1) defines a fibroblastic lineage with cell intrinsic fibrogenic potential (Rinkevich et al., 

2015). The central aim of this study was to link the emergence of scars with the expansion of 

the scar prone En1-lineage-past fibroblast (EPF) lineage in the murine dorsal back skin. 

Elucidating the transition of scarless regeneration to skin scarring holds clinically relevant 

potential in the prevention of scars and their treatment. 

There was the need for an imaging technique, which faithfully recapitulates the spatial and 

temporal location of a fibroblastic subpopulation in a developing embryo on a cellular level. 

Heaving a complex distribution of the cells of interest both on a compartment and tissue 

level, we decided to use an optical clearing method combined with immunolabeling of a 

transgenic reporter system. Hence, we used the double-fluorescent reporter mouse line 

Rosa26mT/mG (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo) and crossed it to an En1 

cre-driver line (En1tm2(cre)Wrst ;En1Cre). Double transgenic offspring universally express 

membranous red fluorescent protein (RFP) and upon cre dependent recombination switches 

to permanent membrane bound GFP expression. Cre+ embryos were collected at different 

time points and subjected to whole mount immunolabeling followed by a solvent based 

optical clearing method. Immunolabeling of fluorescent proteins became necessary because 

the native fluorescence of fluorescent proteins is heavily quenched by dehydration and is not 

stable in organic solvents (Belle et al., 2014). It furthermore gave us the opportunity to use 

far-red fluorophores with higher penetration depth and lower scattering compared to 

conventional fluorophores. Due to the limited working distance of the objectives in our 

confocal microscopy setup, only half of the embryo was scanned. We also tested light-sheet 

microscopy of the sample, which in principle suits the optically cleared sample type better, 

but it was almost impossible to mount the fragile embryos to the holder and if successful, 

cellular resolution could not be achieved. 
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The second major contribution to this project was the live imaging setup. From whole 

embryo 3D imaging we knew, that EPFs populate the dorsal dermis in an arcing fashion from 

anterior to posterior and spreading from the dermomyotome ventrally. We were interested in 

the migration characteristics of EPFs during the ENF-to-EPF replacement. Therefore, we 

went on to establish a confocal live-imaging setup. Since the cells of interest are located 

directly underneath the developing epidermis, which is very thin at this developmental stage, 

confocal microscopy with a penetration depth of a few tens of micrometers was sufficient 

and multi-photon microscopy was not needed. In order to stably fix the sample during image 

acquisition, we embedded the embryo in a collagenous 3D matrix. Physiological conditions 

were ensured with the use of an environmental chamber heated to 37°C and 5% CO2 

supplemented air. In order to track single cells, we used the less phototoxic and far-red 

excitable live stain SiR-DNA (Spirochrome AG, Switzerland). As cell density increases 

drastically during the ENF-to-EPF replacement, the membrane bound GFP signal was not 

sufficient to identify cell boundaries and the additional nuclear stain became necessary. 

Furthermore, cell detection algorithms work significantly better on nuclear signal compared 

to a membrane signal. By combining these approaches, we were able to obtain good 

GFP/RFP signal for identification of fibroblast lineage and generated good quality tracks 

from the nuclear signal for cell tracking. We were able to maintain healthy cells over a period 

of 24 hours. The setup enabled us to show that EPFs migrate into spaces freed by ENFs. 

The live data also showed the population of the dermis by EPFs in a dorsally and laterally 

directed migration trajectory. 

Combined, the whole mount 3D imaging of optically cleared embryos and confocal live-

imaging of developing embryos allowed us to study the scarless regeneration to scar 

formation process in great detail with state of the art spatial and temporal resolution. The 

appealing image of the optically cleared embryo was further selected as cover image for the 

Nature Cell Biology journal issue. 

 

 

2.2 Contribution 

 

• Sample preparation, 3D immunolabeling and clearing of E12.5 embryo (Fig. 2f). 

• Confocal live imaging En1Cre;R26mT/mG embryo (Fig. 2j; Video 2). 

• 3D representations form live imaging (24h) of anterior region in En1Cre;R26mT/mG 

embryo and maximum intensity projection (MIP) of whole embryo (Suppl Fig 4).  

• Support in planning and analysis of experiments. Helped in the preparation of figures 

and writing of the respective sections.  
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2.3 Publication I 

 

Jiang, D.*, Correa-Gallegos, D.*, Christ, S.*, Stefanska, A., Liu, J., Ramesh, P., Rajendran, 

V., De Santis, M.M., Wagner, D.E. & Rinkevich, Y. (2018). Two succeeding fibroblastic 

lineages drive dermal development and the transition from regeneration to scarring. Nature 

cell biology, 20(4), 422.                * contributed equally 

 

 

https://doi.org/10.1038/s41556-018-0073-8 
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3. Surgical adhesions in mice are derived from mesothelial cells 
and can be targeted by antibodies against mesothelial markers 

 

 

3.1 Introduction 

 

Postsurgical adhesions are fibrotic bridges that form between abdominal organs or internal 

organs and the peritoneal wall. They are an outcome of a trauma to the serosa lining 

induced by abdominal surgery or peritoneal dialysis and bare great clinical implications and 

a burden on healthcare systems. The molecular mechanism and cellular origin underlying 

postsurgical adhesions has been vague. In Tsai et al. we identified podoplanin (PDPN) and 

mesothelin (MSLN) expressing mesothelial cells as the main drivers of adhesion formation in 

mice trough hypoxia-inducible factor 1 alpha (HIF1-α) dependent pathways.  

First, we used whole mount multi-photon imaging combined with 3D immunolabeling to show 

surface marker expression in mesothelial cells and their contribution to abdominal 

adhesions. Since the mesothelium is a monocellular layer covering several body cavities and 

all internal organs, it is quite difficult to fully visualize its morphological aspects. Once the 

sample is sectioned for histology, the two-dimensional layer is reduced to one-dimensional 

line, which makes it difficult to examine its distribution and coverage on a surface. We 

therefore decided to image the samples (healthy peritoneum and adhesion) as a whole 

head-on with a volumetric multi-photon scan. We immunostained the sample prior to imaging 

to visualize the expression of the surface markers PDPN, MSLN and a marker for 

myofibroblasts alpha-smooth muscle actin (α-SMA). Using a multi-photon microscopic 

approach, we were able to image the whole surface with a penetration depth of a few 

hundred micrometers deep into the tissue. 

Abdominal adhesions were induced using a combination of ischemic buttoning and abrasion 

of opposing surfaces. With this model we were able to reproducibly induce adhesions 

between the peritoneal wall and internal organs. The membranous expression of PDPN 

revealed cobblestone morphology of healthy mesothelium on the peritoneal wall. In contrast, 

MSLN expression was low in healthy mesothelium and absent within the tissue. The 

expression of α-SMA under steady-state conditions was restricted to vascular smooth 

muscle cells. Following injury, PDPN+ mesothelial cells lose their cell-cell contacts and adopt 

an activated morphology. They stay the predominant cell population within the injured 

surface and expand to a multilayered structure. In case of an injury the mesothelial surface 

marker MSLN gets locally upregulated and overlaps with PDPN expression. Therefore, we 
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identified PDNP+ MSLN+ mesothelial cells as the main drivers of adhesion formation. 

Notably, the expression of fibroblast-associated α-SMA was upregulated following injury. 

In order to study the accessibility of the target cells we switched to a different method. We 

established an in-vivo immunolabeling protocol using fluorescently labeled antibodies. This 

method allowed the visualization of protein expression throughout the entire injury site and 

local protein expression at the time if injury. The idea was to only label the early response of 

MSLN expression on the injured peritoneal surface up to 30 minutes after injury. We labeled 

an anti-MSLN antibody with the fluorescent tag IRDye 800CW (LI-COR Biotechnology, 

Lincoln, NE, USA) and injected the conjugate after surgery into the peritoneal cavity. After 30 

minutes the mouse was sacrificed and organs were collected. After the samples were 

rendered transparent with an organic solvent-based clearing method, they were subjected to 

light sheet microscopy. Using this technique, we found local upregulation of MSLN in injured 

mesothelial cells. The expression of MSLN was localized to the site of injury and already 

apparent 30 minutes after induction. 

With this experimental setup, we intended to use multispectral optoacoustic tomography 

(MSOT), a noninvasive intravital-imaging approach, to image early MSLN expression in 

injured mesothelium in live mice. This could be a valuable diagnostic detection tool of a 

clinically relevant biomarker for postsurgical adhesions. Unfortunately, the available 

resolution of the method was not sufficient at the time. 

Taken together, we showed that local upregulation of MSLN in mesothelial cells upon injury 

is the main driver of adhesion formation in the abdominal cavity. 

 

 

3.2 Contribution 

 

• Animal model of post-surgical adhesions and administration of labeled antibody. 3D 

light sheet imaging of optically cleared sample and 3D rendering of data (Fig. 3a,b; 

Fig. S17; Movie S1,S2). 

• Whole mount immunostaining (PDPN, MSLN, α-SMA) of healthy and injured 

peritoneum 24h post surgery and 3D multi-photon imaging (Fig. S3). 

• Helped designing the in-vivo immunolabeling model 

• Helped preparing the figures and wrote respective material and methods section. 
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3.3 Publication II 

 

Tsai, J. M., Sinha, R., Seita, J., Fernhoff, N., Christ, S., Koopmans, T., Krampitz, G.W., 

McKenna, K.M., Xing, L., Sandholzer, M., Sales, J.H., Shoham, M., McCracken, M., Joubert, 

L-M., Gordon, S.R., Poux, N., Wernig, G., Norton, J.A., Weissman, I.L. & Rinkevich, Y. 

(2018). Surgical adhesions in mice are derived from mesothelial cells and can be targeted by 

antibodies against mesothelial markers. Science translational medicine, 10(469), eaan6735. 

 

 

https://doi.org/10.1126/scitranslmed.aan6735  
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4.  Patch repair of deep wounds by mobilized fascia 

 

 

4.1 Introduction 

 

Mammalian wounds are quickly patched with dense collagen plugs by invading fibroblasts. 

But the origin of fibroblasts has been elusive. The current dogma of immigrating dermal 

fibroblasts and their subsequent de novo synthesis of ECM is challenged by our findings on 

a previously undescribed mobile fascia. 

In this project, microscopy played a pivotal role in both, identifying and studying the dynamic 

mobility of fascia during wound healing. First we found that the connective tissue layer, 

located underneath the panniculus carnosus (PC), is highly enriched in fibroblasts by using a 

high resolution multi-photon scan of the dorsal skin in a neonatal double transgenic mouse 

(En1Cre;R26mT/mG). Scar-prone engrailed1-past fibroblasts (EPF) were arranged in continuous 

monolayers ranging from interscapular fat patch to the hip region. Strikingly, we found open 

passages to the dermis in parts where nerve fibers and blood vessels transit to the dermis. 

Even though there is a direct connection from fascia to dermis their respective cellular 

compositions are quite different. We found higher number of fibroblastic, endothelial and 

lymphatic cells in the fascia and a similar count for immune and nerve cells. The challenge 

was to find a way to image the 1,5 cm whole dermis (epidermis, dermis, panniculus 

carnosus, fascia) in a conceiving way with high resolution that would allow morphological 

identification of single cells. We successfully did so by carefully excising the dorsal back 

skin, separating it from underlying skeletal muscle and embedding it into a layer of agarose 

upside down. Here it was important to use enough agarose to stably fixate the sample 

without covering it in order not to interfere with the optical light path. The high resolution of 

the multi-photon scan allowed us to zoom in to any region across the sample and identifying 

localized cellular composition, morphologies and large-scale organization. Furthermore, we 

established a superficial wounding model, in which we removed only epidermis and dermis, 

leaving the PC and the underlying superficial fascia intact. Using this model, we could show 

that EPFs can traverse the PC upwards into the dermis in response to injury.  

With the use of multi-photon microscopy, we were also able to obtain second harmonic 

generation (SHG) signal from fibrillar collagens and therefore visualize the ECM architecture 

in a label-free manner. SHG signal in fascia showed a coiled structure indicative for relaxed 

fibers. Comparing the structure of immature fascia matrix to corrugated and tensed dermal 

collagen network showed significant differences in ECM architecture. We also used SHG 

signal to track fascia in a wound healing scenario. Here, we developed an incubation 
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chamber to allow live imaging of fascia biopsies for an extended period of time. This custom-

made chamber permitted the water-dipping objective of an upright microscope to be fully 

immersed in the media, while still sealing the chamber against loss of sterility, humidity, CO2 

atmosphere and heat. At the same time, it needed to provide degrees of freedom for normal 

operation of the stage and focus. Using this newly developed setup, we were able to 

visualize fascia movements based on SHG signal up to 30 hours and showed locomotion 

with a rate of 11.4 μm/h. This corresponds to about 2 mm in 7 days of a normal wound 

healing process. We went on to investigate role of EPFs and proliferation in the process of 

fascia movement. Using the same experimental setup, we imaged fascia biopsies with 

depleted EPFs. This was achieved using cre sensitive diphtheria toxin receptor (DTR) 

expression and exposure to diphtheria toxin (DT). Fascia depleted of EPFs showed no 

movement. In a second experiment we supplemented the media with proliferation inhibitor 

Etoposide and saw no significant differences in migration behavior. 

In conclusion, we showed fascia architecture and cellular composition in neonatal back skin 

using a large volume multi-photon scan. Furthermore, we visualized EPF driven fascia 

movements using a custom-made incubation chamber. 

 

 

4.2 Contribution 

 

• 3D live imaging (30h) and quantification of fascia movement in full thickness skin 

biopsy (Fig. 3d,e).  

• Volumetric multi-photon image of superficial fascia in En1Cre;R26mT/mG mice 

(Extended Data Fig. 2f) and large-area 3D tile-scan and high magnification zoom-in 

images of whole neonatal skin (Extended Data Fig. 2g,h,i).  

• 3D imaging of fascia and panniculus carnosus in En1Cre;R26Rainbow mice (Extended 

Data Fig. 2j).  

• Superficial wounding in back skin of En1Cre;R26mT/mG mice and 3D tile-scan 3 dpw 

(Extended Data Fig. 2k).  

• 25 h live imaging and quantification of contraction of DT treated skin biopsy from 

En1Cre;R26iDTR mice and Etoposide treated biopsy (Extended Data Fig. 9d,e,I,h). 

• Design and implementation of used incubation chamber 

• Support in planning and analysis of experiments. Helped in writing of the respective 

sections. 
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4.3 Publication III 

 

Correa-Gallegos, D., Jiang, D., Christ, S., Ramesh, P., Ye, H., Wannemacher, J., Kalgudde 

Gopal, S., Yu, Q., Aichler, M., Walch, A., Mirastschijski, U., Volz, T. & Rinkevich, Y. (2019). 

Patch repair of deep wounds by mobilized fascia. Nature, 576(7786), 287-292. 

 

 

https://doi.org/10.1038/s41586-019-1794-y  
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5. Summary 

 

In the publications included in this dissertation we successfully implemented a broad range 

of cutting-edge microscopy techniques into basic science. We demonstrated how 

improvements in fluorescence microscopy can accelerate biomedical research by providing 

high resolution imaging of biological processes in space and time. The obtained multi-

dimensional data allowed us to study fibrotic responses from development to adulthood and 

from homeostasis to pathology. The observations made with these techniques had a great 

impact on finding the right research questions and answering them with convincing visual 

data.  

In the first publication we used whole mount 3D-imaing of optically cleared embryos to show 

the emergence of scar prone fibroblasts during development. Furthermore, we could unravel 

their migration behavior by confocal live imaging. Taken together we linked the scarless-to-

scarring transition in developing mammals with the given priority for this fibroblastic 

subpopulation. 

In the second publication we elucidated the mechanism and cellular origin of abdominal 

adhesions, a postsurgical fibrotic pathology. We utilized whole mount 3D-imaging of optically 

cleared samples in combination with an in-vivo immunolabeling method to show the local 

upregulation of a targetable surface marker in injured mesothelium. Furthermore, we 

identified the cellular origin and initiation process with the use of volumetric multi-photon 

microscopy. 

In the third publication presented in this dissertation, we used large-area 3D multi-photon 

scanning to show that superficial fascia in murine back skin is enriched in scar prone 

fibroblasts. We used the same method to further characterize the cellular composition and 

ECM structure and found significant differences compared to dermis. We could also show 

that superficial fascia is the main source for wound fibroblasts and ECM in dermal wound 

repair. We developed a new custom-made imaging chamber for multi-photon live imaging to 

show the dynamics of mobile fascia. Our finding will challenge the current dogma of invading 

fibroblasts and de novo synthesis of ECM. 

The custom made chamber and a novel intravital multi-photon microscopy model for 

cutaneous wound healing was extensively used to show dynamics of cell migration during 

wound healing in a submitted manuscript that is currently under revision and therefore not 

included in this dissertation.  
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6. Zusammenfassung 

 

In den Publikationen, die in dieser Dissertation enthalten sind, zeigen wir erfolgreich die 

Umsetzung modernster Mikroskopietechniken in die Grundlagenforschung. Wir zeigen wie 

neue Entwicklungen in der Fluoreszenzmikroskopie die biomedizinische Forschung durch 

eine hohe Auflösung in Raum und Zeit beschleunigen und erleichtern können. Die 

gewonnenen multi-dimensionalen Daten erlaubten es uns, fibrotische Prozesse von der 

Entwicklung bis zum Erwachsenenalter und von der Homöestase bis zur Pathologie zu 

untersuchen. Die mit diesen Techniken gewonnenen Erkenntnisse hatten einen großen 

Einfluss darauf, die richtigen Forschungsfragen zu finden und diese mit überzeugenden 

visuellen Daten zu beantworten.  

In der ersten Veröffentlichung haben wir ein 3D-Bildgebungsverfahren von optisch geklärten 

Embryonen verwendet, um das Aufkommen von narbenbildenden Fibroblasten während der 

Entwicklung zu zeigen. Darüber hinaus konnten wir ihr Migrationsverhalten durch konfokale 

Mikroskopie von vitalen Proben abbilden. Wir haben damit den Übergang von der 

narbenlosen zu narbenreichen Wundheilung in der späten Entwicklungsphase von 

Säugetieren mit der erhöhten Präsenz dieser fibroblastischen Unterpopulation verknüpft. 

In der zweiten Publikation haben wir den Mechanismus und die zelluläre Herkunft von 

Bauchverwachsungen, einer häufigen fibrotischen Pathlogie nach Bauchhöhlenoperationen, 

aufgeklärt. Dafür haben wir ein 3D-Bildgebungsverfahren von optisch transparenten Proben 

in Kombination mit einer in-vivo Immunmarkierungsmethode verwendet.  Wir konnten damit 

die lokale Hochregulation eines Oberflächenmarkers im verletzten Mesothel zeigen, der 

mittels Immuntherapie beeinflussbar ist. Darüber hinaus haben wir den zellulären Ursprung 

und Initiationsprozess mit Hilfe der volumetrischen Mehrphotonen-Mikroskopie identifiziert. 

In der dritten Publikation, die in dieser Dissertation vorgestellt wurde, haben wir mittels einer 

großflächigen 3D-Aufnaheme gezeigt, dass die oberflächliche Faszie in der murinen 

Rückenhaut mit narbenbildenden Fibroblasten angereichert ist. Wir verwendeten die gleiche 

Methode, um die zelluläre Zusammensetzung und die ECM-Struktur weiter zu 

charakterisieren und fanden signifikante Unterschiede im Vergleich zu der darüberliegenden 

Haut. Des Weiteren konnten wir zeigen, dass dieses Bindegewebe die Hauptquelle für 

verschiedene Zelltypen und ECM bei der dermalen Wundheilung ist. Wir haben eine neue, 

maßgeschneiderte Inkubationskammer für die Mehrphotonen-Mikroskopie entwickelt, um die 

Mobilität der Faszie zu zeigen. Die gängige Meinung, dass Fibroblasten nach einer 

Verwundung in das verletzte Gewebe einwandern und dort neue extrazelluläre Matrix 

synthetisieren, wird durch unsere Ergebnisse in Frage gestellt. 
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Die oben erwähnte Inkubationskammer und ein neuartiges intravitales Wundheilungmodell 

für die Mehrphotonen-Mikroskopie wurden in einem weiteren Manuskript umfassend 

behandelt, das sich derzeit in review befindet und daher nicht Bestandteil dieser Arbeit ist. 

Diese beiden innovativen Methoden wurden entwickelt, um die Dynamik der Zellmigration 

während der Wundheilung zu zeigen.  
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