
 
 

 

 

 

Aus der Kinderchirurgischen Klinik und Poliklinik 

im Dr. von Haunerschen Kinderspital 

Klinik der Universität München 

Direktor: Professor Dr. med. Dietrich von Schweinitz 

 

 

 

 

 

“BCORL1 regulates stemness in hepatoblastoma 
cells through inhibition of KRT19 expression“ 

 

 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Naturwissenschaften 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 

 

 

 

 

vorgelegt von 

Tamara Manuela Krause 

aus 

Wangen im Allgäu 

2019 

  



 
 

 

 

Mit Genehmigung der Medizinischen Fakultät  

der Universität München  

  

  

  

Betreuer:    Prof. Dr. rer. nat. Roland Kappler  

Zweitgutachter:       Prof. Dr. rer. nat. Aloys Schepers 

  

Dekan:     Prof. Dr. med. dent. Reinhard Hickel  

Tag der mündlichen Prüfung:   15.10.2020 

  

 

 

  



 
 

Eidesstattliche Erklärung 

 

Tamara Manuela Krause 

  

Ich erkläre hiermit an Eides statt, 

dass ich die vorliegende Dissertation mit dem Thema, 

 

BCORL1 regulates stemness in hepatoblastoma cells through inhibition of KRT19 expression 

 

selbstständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und  

alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche  

kenntlich gemacht und nach ihrer Herkunft unter Beziehung der Fundstelle einzeln  

nachgewiesen habe.  

  

Ich erkläre des Weiteren, dass die hier vorliegende Dissertation nicht in gleicher oder in  

ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades  

eingereicht wurde.  

  

  

München,  22.10.2020 

Tamara Krause

 

  



1 
 

TABLE OF CONTENT 

Table of content ............................................................................................................................................... 1 

List of abbrevations .......................................................................................................................................... 4 

1. Introduction ................................................................................................................................................. 7 

1.1. Hepatoblastoma ................................................................................................................................... 7 

1.1.1. Epidemiology ................................................................................................................................. 7 

1.1.2. Histology ........................................................................................................................................ 7 

1.1.3. Symptoms and diagnosis/clinical presentation ............................................................................. 8 

1.1.4. Staging ........................................................................................................................................... 8 

1.1.5. Long-term and side effects of chemotherapeutical treatment ................................................... 10 

1.1.6. Cytogenetics of hepatoblastoma ................................................................................................. 10 

1.1.7. Genetics of hepatoblastoma ....................................................................................................... 11 

1.1.8. Other signaling pathways ............................................................................................................ 14 

1.1.9. Epigenetics of hepatoblastoma ................................................................................................... 15 

1.2. BCL6 Corepressor Like 1 ...................................................................................................................... 17 

1.3. Hepatocellular carcinoma ................................................................................................................... 19 

1.4. Transitional liver cell tumor ................................................................................................................ 19 

1.5. Aim ...................................................................................................................................................... 19 

2. Materials .................................................................................................................................................... 20 

2.1. Cell culture .......................................................................................................................................... 20 

2.1.1. Cell lines ....................................................................................................................................... 20 

2.1.2. Cell Culture Reagents .................................................................................................................. 20 

2.1.3. Cell Culture Material .................................................................................................................... 20 

2.1.4. Cell Culture Transfection Reagents ............................................................................................. 21 

2.2. Prokaryotic Cultures ........................................................................................................................... 21 

2.2.1. Bacteria ........................................................................................................................................ 21 

2.2.2. Culture Media .............................................................................................................................. 21 

2.3. Primers ................................................................................................................................................ 22 

2.4. Antibiotics ........................................................................................................................................... 23 

2.5. Plasmids .............................................................................................................................................. 23 

2.6. Short-hairpin RNAs (shRNAs) .............................................................................................................. 23 

2.7. Guide RNAs (gRNAs) ........................................................................................................................... 23 

2.8. Antibodies ........................................................................................................................................... 23 

2.8.1. Primary Antibodies ...................................................................................................................... 23 

2.8.2. Secondary Antibodies .................................................................................................................. 24 

2.9. Chemicals/Reagents ............................................................................................................................ 24 

2.10. Buffers and Solutions ........................................................................................................................ 26 

2.10.1. Cloning ....................................................................................................................................... 26 

2.10.2. Proliferation assay ..................................................................................................................... 26 

2.10.3. Western Blot .............................................................................................................................. 27 

2.10.4. Immunoprecipitation ................................................................................................................. 27



TABLE OF CONTENT 

2 
 

2.10.5. ChIP ............................................................................................................................................ 28 

2.10.6. Immunocytochemistry ............................................................................................................... 29 

2.11. Molecular Size Markers .................................................................................................................... 29 

2.12. Enzymes ............................................................................................................................................ 29 

2.13. Kits .................................................................................................................................................... 29 

2.14. Consumables ..................................................................................................................................... 30 

2.15. Equipment ......................................................................................................................................... 30 

2.16. Software ............................................................................................................................................ 32 

3. Methods ..................................................................................................................................................... 33 

3.1. Patients ............................................................................................................................................... 33 

3.2. Polymerase chain reaction (PCR) ........................................................................................................ 33 

3.3. RNA extraction .................................................................................................................................... 33 

3.4. Reverse Transcription ......................................................................................................................... 34 

3.5. Quantitative real-time PCR (qRT-PCR) ................................................................................................ 34 

3.6. Knockdown/knockout of BCORL1 ....................................................................................................... 34 

3.6.1. Generation of a short-hairpin RNA vector ................................................................................... 34 

3.6.2. Generation of a CRISPR-Cas9 vector ............................................................................................ 35 

3.7. Plasmid propagation ........................................................................................................................... 36 

3.7.1. Transformation of DH5α .............................................................................................................. 36 

3.7.2. Colony picking and MiniPrep ....................................................................................................... 36 

3.8. Cell culture .......................................................................................................................................... 36 

3.8.1. Thawing of cells ........................................................................................................................... 36 

3.8.2. Passaging of cells ......................................................................................................................... 36 

3.8.3. Freezing of cells ........................................................................................................................... 36 

3.8.4. Transient/stable transfection of cells .......................................................................................... 36 

3.9. Phenol-Chloroform extraction of DNA ................................................................................................ 37 

3.10. Proliferation assay ............................................................................................................................ 37 

3.11. Clonogenicity assay ........................................................................................................................... 37 

3.12. Immunocytochemistry ...................................................................................................................... 37 

3.13. Immunodetection of proteins/Western Blot .................................................................................... 38 

3.13.1. Protein extraction ...................................................................................................................... 38 

3.13.2. SDS-PAGE and Western blot ...................................................................................................... 39 

3.13.3. Antibody establishment ............................................................................................................ 39 

3.14. Immunoprecipitation (IP) .................................................................................................................. 39 

3.15. Chromatin Immunoprecipitation (ChIP) ........................................................................................... 40 

3.15.1. Chromatin preparation .............................................................................................................. 40 

3.15.2. Chromatin shearing ................................................................................................................... 40 

3.15.3. Chromatin quality check ............................................................................................................ 40 

3.15.4. Immunoprecipitation ................................................................................................................. 41 

3.15.5. Evaluation of ChIP ...................................................................................................................... 41 

3.16. Sequencing ........................................................................................................................................ 41 



TABLE OF CONTENT 

3 
 

3.16.1. Sanger sequencing ..................................................................................................................... 41 

3.16.2. RNA sequencing ......................................................................................................................... 41 

3.16.3. ChIP sequencing ........................................................................................................................ 41 

4. Results ........................................................................................................................................................ 42 

4.1. Genetic investigation .......................................................................................................................... 42 

4.2. Protein level ........................................................................................................................................ 43 

4.2.1. Improvement of protein extraction ............................................................................................. 44 

4.2.2. BCORL1 antibody screening ......................................................................................................... 45 

4.3. Creation of BCORL1 knockout cells ..................................................................................................... 50 

4.3.1. CRISPR efficiency ......................................................................................................................... 50 

4.3.2. Mutation analysis of knockout clones ......................................................................................... 51 

4.3.3. Effects of genome editing on protein level ................................................................................. 52 

4.4. Effect of BCORL1 knockout on tumor biology ..................................................................................... 52 

4.4.1. Morphology ................................................................................................................................. 52 

4.4.2. Cell proliferation .......................................................................................................................... 54 

4.4.3. Clonogenicity ............................................................................................................................... 55 

4.5. Effect of BCORL1 knockout on gene regulation .................................................................................. 56 

4.5.1. Establishment of ChIP .................................................................................................................. 56 

4.5.2. Establishment of ChIP-seq ........................................................................................................... 58 

4.5.3. Target genes of BCORL1 regulation ............................................................................................. 59 

4.6. BCORL1 rescue .................................................................................................................................... 67 

4.6.1. Effect of BCORL1 rescue on morphology ..................................................................................... 67 

4.6.2. Effect of BCORL1 rescue on proliferation .................................................................................... 68 

4.6.3. Effect of BCORL1 rescue on clonogenicity ................................................................................... 69 

4.6.4. Effect of BCORL1 rescue on gene regulation ............................................................................... 70 

5. Discussion ................................................................................................................................................... 73 

5.1. Mutations ............................................................................................................................................ 73 

5.2. Target genes of BCORL1 ...................................................................................................................... 75 

5.3. Perspectives and future plans ............................................................................................................. 77 

6. Summary/Zusammenfassung ..................................................................................................................... 79 

6.1. Summary ............................................................................................................................................. 79 

6.2. Zusammenfassung .............................................................................................................................. 80 

7. APPENDIX ................................................................................................................................................... 82 

8. ACKNOWLEDGEMENTS .............................................................................................................................. 86 

9. References .................................................................................................................................................. 87 

 

 



 

4 
 

LIST OF ABBREVATIONS 
°C    Degree Celsius  

CRISPR  Clustered Regularly Interspaced Short Palindromic Repeats 

ACTB  Beta-actin  

AFP   Alpha-fetoprotein 

AKT   Protein kinase B 

ALAS1  Delta-aminolevulinate synthase 1  

ALDH2  Aldehyde dehydrogenase 2  

APC   Adenomatous polyposis coli  

ATCC   American Type Culture Collection  

bp    Base pair  

BSA   Bovine Serum Albumin  

BWS   Beckwith-Wiedemann syndrome  

C1   Cluster 1  

C2   Cluster 2  

ChIP   Chromatin immunoprecipitation  

CK1   Casein kinase 1  

CO2   Carbon dioxide  

COG   Children´s Oncology Group  

Ct   Cycle of threshold  

CTNNB1   Beta-catenin  

d   Day  

DAPI  4',6-diamidino-2-phenylindole  

DAVID  Database for Annotation, Visualization and Integrated Discovery  

DMSO  Dimethyl sulfoxide  

dNTPs  Deoxy-nucleoside triphosphate  

DTT    Dithiothreitol  

E.coli  Lat: Escherichia coli  

ECL    Electrochemiluminescence  

EDTA  Ethylenediaminetetraacetic acid  

EPCAM  Epithelial cell adhesion molecule  

EtOH  Ethanol 

FAP    Familial adenomatous polyposis  

FCS    Fetal Calf Serum  

FWD  Forward  

FZD    Frizzled  

GADPH  Glyceraldehyde-3-phosphate dehydrogenase  

GPC3  Glypican 3 

GSK3β  Glycogen synthase kinase 3 beta  

h   Hour  

H3K27me3  Histone H3 lysine 27 tri-methylation  



LIST OF ABBREVATIONS 

5 
 

H3K4me3  Histone H3 lysine 4 tri-methylation  

HBV   Hepatitis B virus 

HCC    Hepatocellular carcinoma  

HDAC  Histone deacetylase  

HHIP  Hedgehog-interacting protein  

IGF2   Insulin-like growth factor 2 

IGFBP3  Insulin-like growth factor binding protein 3  

IGF1R  Insulin-like growth factor 1 receptor  

IgG    Immunoglobulin G  

INI1   Integrase Interactor 1 Protein 

KRT19  Keratin 19  

kDa    Kilo Dalton  

l   Liter  

LB    Lysogeny Broth  

LOH    Loss of heterozygosity  

LRP    Low density lipoprotein receptor-related protein  

M   Molar 

MeOH   Methanol  

MgCl2   Magnesium chloride  

min    Minute  

ml    Milliliter  

mM    Millimolar 

n    Nano  

NaCl   Sodium chloride  

NSD1  Nuclear receptor binding SET Domain Protein 1 

ng    Nanogram  

nm    Nanometer  

O2    Oxygen  

PBS    Phosphate buffered saline  

PCR    Polymerase chain reaction  

PcG   Polycomb Group 

PCGF  Polycomb Group Ring Finger 

PI3K   Phosphoinositide 3-kinase 

PRC   Polycomb repressive complex 

PRETEXT   Pre-treatment EXTend of disease  

POSTEXT  POST-Treatment EXTend of Tumor 

PTCH1   Patched1  

PTEN   Phosphatase and tensin homolog  

qRT-PCR   Quantitative real time polymerase chain reaction  

RV   Reverse  

RING   Ring Finger Protein  

RNA   Ribonucleic acid  



LIST OF ABBREVATIONS 

6 
 

rpm    Rounds per minute  

RPMI   Roswell Park Memorial Institute Medium  

RT    Room temperature  

SDS    Sodium dodecyl sulfate  

sec    Second  

SEM   Standard error of the mean  

SFRP1   Secreted frizzled-related protein 1  

SHH    Sonic hedgehog  

SIOPEL   International Childhood Liver Tumor Strategy Group  

SMO  Smoothened  

STE    Sodium Chloride-Tris-EDTA  

TBE    Tris/Borate/EDTA  

TBP    TATA-Box-binding-Protein  

TE    Tris-EDTA Buffer  

TLCT   Transitional liver cell tumor  

Tris   Tris (hydroxymethyl) aminomethane  

TSG    Tumor suppressor gene  

U    Unit  

UV    Ultraviolet  

V   Volt  

WIF    Wnt Inhibitory Factor 

β    Beta  

µg    Microgram  

µl    Microliter  

µM    Micromolar  



 

7 
 

1. INTRODUCTION 

The term cancer describes different diseases associated with uncontrolled cell growth. These 

malignant neoplasms or tumors can potentially spread to other parts of the body and invade them [1]. 

Benign tumors do not spread and therefore do not count as cancer [2]. While there are over 100 types 

of cancer that may affect human beings [1], there are common unspecific signs and symptoms like 

fever, weight loss, fatigue or skin changes. Most symptoms are more locally observed, like masses or 

lumps. 

Pediatric cancer is a relatively rare disease compared to adult cancer, but nonetheless one of 600 

children with an age below 15 years is affected. The 5 year survival is about 80 % [3] but the 

development of pediatric cancers is still mostly unidentified [4]. Whereas adult cancers originate from 

acquired mutations, pediatric cancers are suspected to arise from mistakes in embryogenesis. 

Subtypes and tumor localization also differ from adult cancers [5]. One of the subclasses of pediatric 

cancers is hepatobiliary cancer, which includes hepatoblastoma, transitional liver cell tumors (TLCTs) 

and hepatocellular liver carcinoma (HCC). 

1.1. Hepatoblastoma 

1.1.1. Epidemiology 

Hepatoblastoma makes up 1 % of all pediatric cancers and thus, is classified a rare disease. With 1 

child per million children per year affected, hepatoblastoma is still the most common childhood liver 

tumor below the age of 15 years [6, 7]. In 80 % of patients, the manifestation age is between 6 to 36 

months [8]. Occurrence is more frequently in boys [9-11], as well as children with low birth weight and 

premature births [12, 13]. Even though the origin of hepatoblastoma is still unknown, the prominent 

theory of tumorigenesis is based on derailed developmental processes of the immature hepatocyte 

precursors, which are normally supposed to differentiate into cells like hepatocytes, biliary, 

mesenchymal, and epithelial cells. 

1.1.2. Histology 

The histology of hepatoblastoma is heterogenic with different phenotypes. The epithelial 

phenotype makes up 56 % of cases, with 31 % being fetal, 19 % embryonal, 3 % small-cell 

undifferentiated, and 3 % macrotrabecular. The mixed epithelial-mesenchymal phenotype makes up 

44 % [14-16]. Mesenchymal elements like spindle cells, fibrous tissue, and osteoid are most frequent. 

In advanced disease, these elements also promise better prognosis. Fetal elements on the other hand 

show better results with resected tumors. Undifferentiated cells are generally more aggressive and 

have a worse prognosis [17]. 
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1.1.3. Symptoms and diagnosis/clinical presentation 

Usually hepatoblastoma occurs associated with unspecific symptoms varying with tumor size and 

presence of metastases. These symptoms include weight loss, swollen abdomen, fever, pain, and 

nausea. Blood tests for kidney function, liver vitality, blood count, and alpha-fetoprotein (AFP) levels 

are used for diagnosis. Low AFP levels are associated with high risk [18-21]. Metastases are present in 

20 % of hepatoblastoma cases in the lung, but are also possible in brain and bone [22]. Magnetic 

resonance imaging as well as computed tomography or ultrasound can help in staging the 

hepatoblastoma. 

1.1.4. Staging 

Based on tumor localization and presence of metastases, hepatoblastoma cases are staged 

according to one of the following systems.  

1.1.4.1. PRE-Treatment tumor EXTension (PRETEXT) 

The radiologic PRETEXT staging system depends on the tumor extend identified prior to any 

therapy [23]. Stage I involves the right posterior or left lateral liver section. With two adjoining tumor-

free sections, the tumor is defined as stage II. In stage III cases, one or two sections are free of tumor. 

The tumor defines as stage IV, when all four liver sections are involved [23]. Besides the primary tumor 

extent, other factors are included in the PRETEXT system. These include caudate lobe involvement (C), 

extrahepatic abdominal disease (E), multifocality of the liver tumor (F), and the existence of distant 

(M) or lymph node metastases (N). Other important factors are the involvement of the portal vein (P), 

tumor rupture at the time of diagnosis (R), and hepatic vein or inferior vena cava involvement (V) [24]. 

 

Figure 1: PRETEXT staging system, Emre et al., 2012 [25].  
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1.1.4.2. Childhood Liver Tumors Strategy Group (SIOPEL)  

SIOPEL started with its first clinical study in 1990 with 154 hepatoblastoma cases and 40 pediatric 

HCCs. Since then, more SIOPEL studies have been done and led to a SIOPEL staging system that divides 

into high-risk and standard risk patients [26]. With the SIOPEL 1 study, a combination of doxorubicin 

and cisplatin was tested [10]. SIOPEL 2 focused on the efficacy and toxicity of cisplatin monotherapy in 

standard risk hepatoblastoma. Moreover, alternating cycles of cisplatin, carboplatin and doxorubicin 

were tested in high-risk patients [11]. SIOPLEL 3 then compared cisplatin with multiagent 

chemotherapy and aggressive surgery in standard risk patients [27, 28]. The SIOPEL 4 study focused on 

high-risk hepatoblastoma cases by using radical surgery and cisplatin therapy [27].  

Collectively, these studies allowed staging and led to a therapy scheme for hepatoblastoma 

patients. Patients with standard risk tumors present with PRETEXT I, II or III tumors and no additional 

adverse features [29]. The standard treatment is four cycles preoperative cisplatin therapy followed 

by surgical resection and two post-operative cycles of therapy [28, 30]. Patients of the high-risk group 

present with PRETEXT IV tumors and/or factors like extrahepatic abdominal disease (E), metastases 

(M), portal (P) or hepatic vein or inferior vena cava involvement (V) and/or AFP levels less than 100 

ng/ml [26]. Treatment recommendation is seven preoperative alternating cisplatin and carboplatin 

cycles with addition of doxorubicin and three cycles postoperatively [31]. Patients in this group are 

likely to have challenging surgical disease and are recommended to consult with a specialist liver 

surgery/transplant service [30].  

1.1.4.3. German Society for Pediatric Oncology and Hematology (GPOH) 

GPOH groups patients not only into standard risk and high-risk, but also has a category for very 

high-risk cases. Hepatoblastoma cases with PRETEXT I, II and III are ranked as standard risk. High-risk 

hepatoblastoma cases are staged PRETEXT IV and show additional features like multifocality (F), 

vascular involvement (P, V) or invasion of extrahepatic structures (E). GPOH differentiates very high-

risk patients, as any hepatoblastoma with distant metastases (M) and/or AFP <100 ng/ml [32]. 

Standard risk patients are treated with two or three cycles of cisplatin and doxorubicin presurgically 

with one postsurgical cycle [10] or four cycles cisplatin presurgically and two cycles postsurgically [28, 

32]. For high-risk hepatoblastoma, GPOH recommends four cycles of cisplatin alternating with 

carboplatin and doxorubicin presurgically and two cycles of carboplatin and doxorubicin alternating 

with cisplatin postsurgically [31, 32]. Patients that rank into the very high-risk group are treated with 

three cycles of cisplatin and doxorubicin and one cycle carboplatin and doxorubicin before resection 

and one cycle of carboplatin and doxorubicin postsurgically [27, 32]. 
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1.1.4.4. 16-gene signature of hepatoblastoma 

In 2008, Cairo et al., discriminated tumor samples through a microarray expression analysis 

approach into two clusters and showed that the 16-gene classifier discriminates aggressive from more 

favorable tumors. The 16-gene classifier is very precise at prediction of survival. When compared to 

clinical criteria, multiple analyses exhibited a strong correlation with the 16-gene signature [33]. 

Cluster 1 (C1) tumors are mostly of fetal phenotype, whereas C2 tumors present with immature 

pattern and embryonal or crowded fetal histology. C2 tumors have a high proliferation rate and exhibit 

upregulation of hepatic progenitor and proliferation markers like Alpha Fetoprotein (AFP), Keratin 19 

(KRT19), and Epithelial cell adhesion molecule (EPCAM) compared to C1 tumors. Furthermore, markers 

for mature hepatocytes are downregulated in C2 tumors. These include 5'-Aminolevulinate Synthase 

1 (ALAS1) and Aldehyde Dehydrogenase 2 Family Member (ALDH2), as well as UDP 

Glucuronosyltransferase Family 2 Member B4 (UGT2B4) [33]. 

1.1.5. Long-term and side effects of chemotherapeutical treatment 

Chemotherapeutic agents have a range of side effects, not specific to the type of hepatoblastoma, 

but the type of therapy and dosage. It can cause nausea, hair loss, bruising, bleeding, fatigue, and 

diarrhea. Moreover, patients suffer from increased infection risk. Doxorubicin and cisplatin can also 

have long-term consequences. These include ototoxicity as well as nephrotoxicity in case of 

carboplatin or cisplatin. Moreover, doxorubicin can lead to cardiac toxicity [34]. Other long-term 

effects include secondary cancers, infertility, lung defects, cognitive impairment and growth 

deficiencies due to treatment related developmental changes [35]. Because of treatment and 

hospitalization, psychological difficulties like depression, learning difficulties, and social behavior 

problems concerning same age are also known to affect children suffering from hepatoblastoma [36, 

37]. Thus, it is necessary to improve treatment and diagnostics in order to reduce toxicity, side effects, 

and late treatment effects. 

1.1.6. Cytogenetics of hepatoblastoma 

Cytogenetic changes are rare in hepatoblastoma. Besides genetic or overgrowth syndromes, 

hepatoblastoma occurs sporadically. One genetic syndrome associated with hepatoblastoma is familial 

adenomatous polyposis (FAP) [38].  

FAP is an autosomal recessive disease, which presents with polyps in the colon and is associated 

with germline mutations of the tumor suppressor gene adenomatous polyposis coli (APC). These 

mutations can cause multiple colon polyps or even colon cancer [39]. In about 0.42 % of FAP cases, 

patients also develop hepatoblastoma [40].  
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The most commonly known overgrowth syndrome is the Beckwith-Wiedemann syndrome (BWS). 

BWS patients have a 2,280-fold increased risk of developing hepatoblastoma compared to healthy 

children [41, 42]. Besides macroglossia and macrosomia, BWS can cause neonatal hypoglycemia, ear 

pits/creases, and midline abdominal defects. This is due to variations of chromosome 11p like 

uniparental isodisomy of 11p.15.5. This variation correlates with occurrence of embryonal tumors like 

hepatoblastoma through paternal duplication and maternal loss of heterozygosity (LOH) [43]. Aside 

from BWS, there are other overgrowth syndromes that are associated with hepatoblastoma, like the 

Sotos syndrome or the Simpson-Golabi-Behmel syndrome. These are caused by mutations or deletions 

in different genes. In case of the Sotos syndrome, the Nuclear receptor binding SET Domain Protein 1 

(NSD1) gene is affected, while the Simpson-Golabi-Behmel syndrome revealed changes of the Glypican 

3 (GPC3) gene on chromosome Xq26 [44-46]. 

The most frequent cytogenetic alteration of hepatoblastoma is trisomy of chromosome 2, 8, and 

20. Besides an individual occurrence, these trisomies can occur alongside with structural changes of 

the DNA. In contrast, the loss of chromosomes is relatively rare [47, 48]. The most likely to be lost is 

chromosome 18. Furthermore, unbalanced translocations of the chromosomal arm 1p and 4q occur in 

hepatoblastoma. One of the first recurrent translocations described, was identified as 

der(4)t(1;4)(q12;q34) [49]. This typical breakpoint at the chromosomal arm 1p always leads to 1q 

duplication. Hepatoblastoma was reported to be associated with translocations at breakpoints on 

chromosome 1q12 and 1q24 [48, 50].  

1.1.7. Genetics of hepatoblastoma 

In contrast to adult tumors, pediatric tumors are characterized by a low mutation rate [51]. With 

a remarkable low mutation rate of 2.9 mutations per tumor genome [52], hepatoblastoma reveals the 

lowest mutation rate of all tumors (Figure 2). This indicates that hepatoblastoma is a rather simple 

tumor from a genetic perspective [51].  
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Figure 2: Mutation rate of different cancer types in children and adults, Gröbner et al., 2018 [51].  

Very few recurrent mutations have been identified so far. The best investigated gene is the β-

catenin (CTNNB1) gene and the connected Wnt pathway. Our lab previously showed that CTNNB1 is 

mutated in 72.5 % of hepatoblastoma cases [52]. Other genes with recurrent mutations are the Nuclear 

Factor, Erythroid 2 Like 2 (NFE2L2) gene, which demonstrated a mutation rate of 9.8 % and the 

telomerase reverse-transcriptase (TERT) gene with a mutation rate of 5.9 % [52].  

1.1.7.1. CTNNB1 and the Wnt pathway 

The CTNNB1 mutations are mostly point mutations or deletions in exon 3 [53]. CTNNB1 is involved 

in the canonical Wnt signaling pathway, which plays an important role in organogenesis and processes 

like differentiation, proliferation, morphology, cell motility, apoptosis, and cell survival [54, 55]. 

Moreover, it has a crucial function in development, metabolism, and regeneration of the liver. 

Furthermore, it strongly supports the maintenance of the normal adult liver function. Wnt was first 

identified in fruit flies missing wings as Wingless (Wg). The combination with the later identified mouse 

homologue Integrin 1 (Int1) [56, 57] led to the name fusion Wnt [58].  
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Figure 3: Canonical Wnt signaling pathway, Barker et al., 2006 [59]. A) Without Wnt-binding, β-catenin is marked through 

phosphorylation and ubiquitination by the destruction complex (APC, AXIN, GSK3β, CK1α) leading to proteasomal 

degradation. B) Wnt binding causes dissociation of AXIN and inactivation of the destruction complex. Thus, cytoplasmatic β-

catenin levels increase and lead to translocation of β-catenin to the nucleus, activating Wnt target gene expression by binding 

to TCF [59]. 

In quiescent cells, CTNNB1 is part of adherens junctions located at the plasma membrane. These 

consist of cadherin 1 (CDH1) and α-catenin besides CTNNB1. As part of the destruction complex, the 

Glycogen Synthase Kinase 3 Beta (GSK3β) phosphorylates excess cytoplasmic CTNNB1 and thereby 

marks it for degradation. Other proteins belonging to this complex are Adenomatous Polyposis Coli 

(APC), Axis Inhibition protein (AXIN), and Casein Kinase 1 α (CK1α) [60-62]. Activation of the Wnt 

pathway takes place when Wnt or other ligands are bound by Frizzled (FZD). Recruitment of the low 

density lipoprotein receptor-related protein (LRP) 5/6, is followed by Dishevelled and AXIN recruitment 

to the membrane [63]. As a consequence, the destruction complex is inactivated and CTNNB1 not 

phosphorylated. Hence, CTNNB1 is stabilized in the cytosol and can replace the repressor Groucho in 

a TCF/LEF-complex in the nucleus and induce the expression of Wnt target genes like the proto-

oncogene MYC, the cell cycle regulating cyclin D1 (CCND1), and Paired Like Homeodomain 2 (PITX2) 

[64-69]. Other target genes are proteins of the Wnt signaling pathway like FZD, LRP5/6, AXIN and 

TCF/LEF leading to auto-regulation of the pathway [58]. Wnt signaling is also negatively regulated by 

inhibitors of the Dickkopf (DKK) family, which mediate inactivation by LRP-binding. Other inhibitors of 

the Wnt signaling pathway are the Wnt inhibitory factor 1 (WIF1) and the secreted Frizzled-related 

protein 1 (SFRP1) [70, 71]. These two proteins can either form an inactive complex with the FZD or 

directly bind Wnt [72]. 

When CTNNB1 is mutated, it cannot be degraded by the ubiquitin-proteasome pathway. Thus, 

CTNNB1 translocates to the nucleus to activate target genes [64-68]. Somatic APC and AXIN mutations 
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are associated with hepatoblastoma but with a low frequency of less than 10 % [33, 73-75]. CTNNB1 

and AXIN are both also found to be mutated in HCC. The co-occurrence of these mutations in 

hepatoblastoma and HCC suggest that the Wnt signaling pathway possesses a crucial role in liver tumor 

development [74, 76, 77]. CTNNB1 mutations can induce hepatomegaly or even induce tumors in 

bipotential fetal liver cells of mice [78]. 

1.1.7.2. Nuclear Factor, Erythroid 2 Like 2  

Mutations of the NFE2L2 gene are missense mutations [52]. NFE2L2 is a transcription factor, 

regulating the counteraction of xenobiotics and oxidative stress by activating the cellular antioxidant 

response. In normal cells, cytoplasmic NFE2L2 is ubiquitinated by a Cullin 3 (CUL3)-dependent E3 

ubiquitin ligase and thus marked for proteasomal degradation. The Kelch-like erythroid cell-derived 

protein 1 (KEAP1) facilitates this reaction. NFE2L2 is not degraded when the cell is under oxidative 

stress. After translocation to the nucleus and heterodimerization with musculoaponeurotic 

fibrosarcoma (Maf) family proteins, NFE2L2 induces expression of genes involved in cytoprotection 

and metabolism [79-81]. Mutations in the NFE2L2 gene in tumor cells prevent the proteasomal 

degradation and create protection from anti-oxidative stress, chemotherapy [82-84], and radiotherapy 

[85]. 

1.1.7.3. Telomerase reverse-transcriptase 

Previous studies identified point mutations associated with increased TERT expression. The 

Mutations were located in the TERT promoter upstream of the transcriptions start site [52]. TERT is 

part of the telomerase complex [86], which adds telomeric repeats to the ends of chromosomal DNA, 

allowing cells to escape senescence and even become immortal [87]. Upregulation of TERT is found in 

stem cells and cancerous cells [88-91]. TERT expression is regulated by activating transcription factors 

like MYC, specificity protein 1 (SP1), hypoxia-inducible factor-1 (HIF-1), adipocyte protein 2 (AP2), and 

suppressing genes such as p53 and the Wilms tumor protein (WT1) [91-94]. 

1.1.8. Other signaling pathways 

1.1.8.1. Hedgehog signaling pathway  

The HH signaling pathway is involved in liver regeneration after injury in adults [95-98] and 

developmental processes [99-107]. HH signaling is induced through autocatalytic processing of an HH 

ligand [108], leading to interaction of Patched 1 (PTCH1) and Smoothened (SMO) [109-115]. This 

interaction induces GLI transcription factor family-mediated expression of target genes like MYCN, 

IGF2 and CCND1 [116-118]. Hedgehog interacting protein (HHIP) alters HH signaling by binding HH to 

prevent complex formation with PTCH1 [119].  
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Deregulation of the HH pathway was found in solid tumors like cholangiocarcinoma, HCC, and 

hepatoblastoma [52, 98, 120, 121]. In hepatoblastoma, overexpression of Sonic Hedgehog (SHH), 

PTCH1, SMO, and GLI1 [52, 122] and silencing of HHIP [52] was observed.  

1.1.8.2. IGF2/PI3K/AKT 

Another important signaling pathway concerning hepatoblastoma is the insulin-like growth factor 

2 (IGF2) pathway. This pathway takes regulates normal liver development and liver cell growth. Insulin-

like growth factor binding-protein-3 (IGFBP3) binds IGF2 in normal cells, hence reduces its availability 

for insulin-like growth factor 1 receptor (IGF1R). As a consequence, IGF-independent apoptosis is 

induced in order to prevent abnormal cell growth [123]. When IGF2 binds to IGF1R, diverse signaling 

pathways are activated. These include the PI3K/AKT and RAS/RAF/MEK/ERK pathways, which stimulate 

transcription as well as cell cycle progression. As a result, proliferation and cell growth increase [123].  

IGF2 upregulation [124, 125] and IGFBP3 silencing [122] were reported in hepatoblastoma. Both 

result in a constant activation of the IGF2 signaling pathway and hence inadequate activation of 

proliferation [126]. Amplifications of the IGF2 activator Pleomorphic adenoma gene 1 (PLAG1) [127] 

could contribute to this deregulation.  

Hepatoblastoma also shows a small variety of frequently occurring mutations in genes of the PI3K 

signaling pathway, like Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta 

(PIK3C2B) or Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) [128, 

129]. Moreover, the downstream target AKT and Phosphatase and Tensin Homolog (PTEN) were found 

to be mutated [130], and AKT activation in hepatoblastoma due to phosphorylation was reported 

[128].  

Taking together these findings, an active IGF signaling pathway seems to be characteristic for liver 

pathogenesis. 

1.1.9. Epigenetics of hepatoblastoma 

Epigenetics study phenotypic alterations, which do not stem from changes in certain gene 

sequences, but a specific transcriptional program. This program is started by a triggering signal and 

uphold until a new input signal triggers an alternative program [131]. Criteria for epigenetic 

information are quite simple. They have to regulate gene transcription and self-propagate across cell 

divisions until the signal is replaced. This is true for chemical or post-translational modifications of DNA 

or histones [131]. In general, a nucleosome consists of an octamer of histones (H2A, H3, H2B and H4) 

wrapped in DNA, RNAs and non-histonic proteins. These nucleosomes build up chromatin loops, 

stabilized by effector proteins, non-coding RNAs (ncRNAs), and histone modifications [132, 133]. These 

histone modifications can be arranged by histone (de)acetylases, histone methyltransferases, and 
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other proteins [134-136]. Acetylation leads to relaxation of chromatin and induction of transcription, 

whereas the effects of methylation depend on the histone residue. Trimethylation of lysine 4 of histone 

3 (H3K4me3) is known to be a histone modification on active genes in contrast to H3K27me3, which is 

a silencing mark [136]. Due to relaxation of the chromatin, the DNA is more accessible for the RNA 

polymerase II (RNAP) and cofactors, which upon transcriptional activation elongates the DNA and 

produces mRNA [137].  

 

Figure 4: Hierarchical chromatin organization of mammalian cells, Arana et. al 2015 [138]. DNA wrapped around histones 

with different modifications, leading to chromatin loops and TADs (TAD: Topologically associated domains, CTD: C-terminal 

domain, RNAP: RNA polymerase II). 

Due to the rarity of recurring mutations and the deregulation of certain pathways, hepatoblastoma 

was examined for epigenetic alterations over the last decade. Recently, our group identified several 

tumor suppressor genes (TSG) to be epigenetically modified in hepatoblastoma. These TSGs included 

members of the three major derailed pathways in hepatoblastoma. As an inhibitor of the Wnt 

pathway, SFRP1 was found to be highly repressed through DNA methylation and a high level of 

H3K9me2 [139]. This was also shown for HHIP, an inhibitor of the Hedgehog pathway [52] and IGFBP3, 

an inhibitor of the IGF2 signaling [122]. These TSGs are silenced in hepatoblastoma, thus allowing 

tumor progression [139].  
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1.2. BCL6 Corepressor Like 1 

BCL6 Corepressor Like 1 (BCORL1) is a transcriptional corepressor [140] and its gene is located on 

the X chromosome. There are two transcript variants, which both consist of 12 exons, but the 1a 

transcript variant has an additional exon 9. Important features of the BCORL1 protein are the C-

terminal binding protein (CtBP) binding-site in form of a PDXLS-motif [140], a nuclear localization 

signal, some nuclear receptor recruiting motifs and an ankyrin repeat (Figure 5).  

 

Figure 5: The two transcript variants of BCORL1 (CtBP-BS: C-terminal Binding Protein-Binding Site, NLS: Nuclear Location 

Signal, ANK: Ankyrin repeat). 

BCORL1 is closely related to the BCL6 Corepressor (BCOR), which potentiates BCL6 repression 

[141]. Moreover, BCORL1 is known to be part of the Polycomb repressive complex 1.1 (PRC1.1) also 

known as the BCORL1-complex [142-145]. PRC1.1 belongs to the group of non-canonical PRC1 

(ncPRC1) complexes, all including a Ring Finger Protein 1 (RING1), one Polycomb Group Ring Finger 

(PCGF) protein, and RING1 And YY1 Binding Protein (RYPB), also called YY1 Associated Factor 2 (YAF2) 

as essentials [143, 146-148]. The PRC1.1 obtains its catalytic activity from the E3 ligase RING1B with 

H2Aub1 at lysine 119 as main substrate. PCGF1 enhances this RING1B function [144, 149, 150]. 

Moreover, PRC1.1 consists of Lysine Demethylase 2 (KDM2B), a histone demethylase with a CxxC 

domain for DNA binding and CGI targeting [142, 150, 151], the H2B-deubiquitinating Ubiquitin Specific 

Peptidase 7 (USP7)[138], and S-Phase Kinase Associated Protein 1 (SKP1)[143, 152]. Interaction of 

BCORL1 and the PRC1.1 is established through interaction of a RAWUL domain in PCGF1 and the PCGF 

Ub-like fold discriminator (PUFD) domain of BCORL1 [152].  
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Figure 6: Polycomb repressive complex 1.1/BCORL1 complex. BCORL1 directly interacts with PCGF1 through interaction of 

PUFD and RAWUL motif. 

BCORL1 was also reported to interact with class II histone deacetylases (HDAC) 4/5/7 [140] and 

perform gene repression by ubiquitination of histone 2A in cooperation with PCGF1 [153], which is 

also known to cooperate with RUNX1 to regulate self-renewal and differentiation of hematopoietic 

cells through downregulation of HOXA-cluster genes [153].  

In 2007, Pagan et al., exposed the interaction of BCORL1 and CtBP upon repression of target genes 

like CDH1 [140]. CtBP has different functions in epithelial mesenchymal transition (EMT), apoptosis, 

cell proliferation, evasion of growth suppressors, and genome stability [154-160]. In mammals, there 

are two forms, CtBP1 and CtBP2, which are highly homologous and both involved in developmental 

processes [161, 162]. Furthermore, CtBP associates with the PRCs to mediate repression [163-166]. 

The effects of altered CtBP expression reach from embryonic lethality upon complete depletion [167] 

to development of cancer hallmarks, like evasion of cell death, EMT, increased proliferation, and loss 

in genome stability upon overexpression [154-160].  

BCORL1 was found to be mutated in different kinds of cancers. In breast cancer, mutations were 

found in exon 4, intron 5, and intron 13 but they have tolerable effects if even an effect at all. So 

BCORL1 is most unlikely a high-risk predisposition gene in breast cancer, but eventually has middle to 

low penetrance [168]. In acute myeloid leukemia, BCORL1 was reported to be mutated in 6 % of cases 

[145, 169]. Most mutations are frameshift, nonsense, splice-site, or missense mutations [169]. BCORL1 

was also found to be mutated in intracranial germ cell tumors. The six identified mutations were 

frameshift or missense mutations [170]. Other diseases like myelodysplastic syndrome or chronic 

myelomonocytic leukemia show lower mutation rates with 0.8 % and 1.9 %, whereas acute myeloid 

leukemia with myelodysplasia-related changes has a mutation rate of 9.1 % [145]. Another liver cancer, 

the hepatocellular carcinoma was reported to occur with a gene fusion of the BCORL1 gene to the ELF4 

gene [145]. Due to the BCORL1 gene position on the X-chromosome, BCORL1 is affected by the X- 

inactivation especially in breast cancer [168]. 
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1.3. Hepatocellular carcinoma 

Besides hepatoblastoma, the hepatocellular carcinoma (HCC) is the second most common 

pediatric liver tumor. It potentially affects children over 6 years (predominantly boys) [16]. Mostly, HCC 

develops de novo, but pre-existing conditions like metabolic diseases, cirrhosis, and hepatitis B virus 

(HBV) infection are at a high risk for HCC development [171-173]. Treatment faces difficulties through 

high chemotherapy resistance and advanced disease at time of diagnosis. Since only complete 

resection of the primary tumor is a cure, tumor resectability and mortality are directly correlated and 

thus, results in a survival rate of 25 % after 3 years [173]. 

1.4. Transitional liver cell tumor 

The third kind of pediatric liver tumors , which is neither hepatoblastoma nor HCC, is called TLCTs. 

These tumors differ from hepatoblastoma and HCC in clinical presentation, morphology, 

immunophenotype as well as reaction to treatment [174]. These aggressive hepatic tumors are bigger, 

show high AFP levels and high CTNNB1 expression. Affected children are also older than 

hepatoblastoma patients. TLCTs are descendants of hepatoblastomas and stem from a neoplastic 

extension of oncogenic differentiation pathways between hepatoblastoma and HCC. Thus, they show 

clinical and histological features of both pediatric liver cancer types [174]. 

1.5. Aim 

The origin of hepatoblastoma is widely unknown, even though development and progression has 

been associated with mutations of CTNNB1, NFE2L2 and TERT. Moreover, deregulation of signaling 

pathways like the IGF2, Wnt, and HH signaling pathway contribute to hepatoblastoma development 

and progression as well as some genetic syndromes. Thus, we attempted to investigate the genetic 

basis of hepatoblastoma. 

Recent exome sequencing data generated by our lab revealed one BCORL1 mutation aside from 

mutations that were already in focus of other research [52]. Hence, we focused on targeted Sanger 

sequencing for BCORL1 mutations of additional hepatoblastoma cases, TLCTs, and cell lines. Moreover, 

we intended to perform functional analyses of BCORL1 mutations, concerning the effects on tumor 

biology and gene regulation. This included the truncation of the BCORL1 protein by CRISPR-Cas9, 

resembling the patient situation and analysis of morphology, proliferation, and clonogenicity. Due to 

the unavailability of a commercial antibody meeting our criteria to perform protein analysis, we 

wanted to establish a custom-made antibody. Considering BCORL1 being a transcriptional corepressor, 

we also aimed to identify novel target genes of BCORL1 and their functional involvement. Moreover, 

our studies intended to define clinical relevance of BCORL1 mutations and restoration. 
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2. MATERIALS 

2.1. Cell culture 

2.1.1. Cell lines 

HepT1 Homo sapiens (human), liver, hepatoblastoma Pietsch et al., 1996 [175] 

Hep3B Homo sapiens (human), liver, pediatric HCC ATCC, Manassas, USA 

HepG2 Homo sapiens (human), liver, TLCT  ATCC, Manassas, USA 

HUH6 Homo sapiens (human), liver, hepatoblastoma  JCRB, Osaka, Japan 

HUH7 Homo sapiens (human), liver, adult HCC  JCRB, Osaka, Japan 

HEK293T Homo sapiens (human), embryonic kidney  ATCC, Manassas, USA 

2.1.2. Cell Culture Reagents 

Dimethyl sulfoxide (DMSO), sterile   Merck, Darmstadt, Germany 

Dulbecco`s Modified Eagle Medium (DMEM)   Invitrogen, Karlsruhe, Germany 

Dulbecco's Phosphate-Buffered Saline (DPBS)  Invitrogen, Karlsruhe, Germany 

Fetal Calf Serum (FCS), sterile     Sigma-Aldrich, Taufkirchen, Germany 

Penicillin-Streptomycin (10 x)     Invitrogen, Karlsruhe, Germany  

Roswell Park Memorial Institute Medium (RPMI)  Invitrogen, Karlsruhe, Germany 

Trypsin - EDTA 0.05 %      Invitrogen, Karlsruhe, Germany 

G418       Millipore, Darmstadt, Germany 

Puromycin      Sigma-Aldrich, Taufkirchen, Germany 

2.1.3. Cell Culture Material 

Biosphere® Filtertips 1-10 µL, sterile    Sarstedt AG & Co., Nümbrecht, Germany 

Biosphere® Filtertips 1-100 µL, sterile    Sarstedt AG & Co., Nümbrecht, Germany 

Biosphere® Filtertips 100-1000 µL, sterile   Sarstedt AG & Co., Nümbrecht, Germany 

Cell scraper       Sarstedt AG & Co., Nümbrecht, Germany 

Costar® Stripette® Serologic Pipettes    Corning GmbH, Wiesbaden, Germany 

(5ml, 10 ml and 25 ml, sterile) 

Cryotubes, Nalgene      Thermo Scientific, Wilmington, USA 

EasyFlasksTM, Cell culture flasks, 25 cm2   NUNC, Langenselbold, Germany 
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EasyFlasksTM, Cell culture flasks, 75 cm2  NUNC, Langenselbold, Germany  

Plastic tubes, 15 ml, sterile     greiner bio-one, Frickenhausen, Germany 

Plastic tubes, 50 ml, sterile     greiner bio-one, Frickenhausen, Germany 

Petri dishes 100 x 20 mm, non-pyrogenic, sterile  NUNC, Langenselbold, Germany 

6-Well Plates, non-pyrogenic, sterile BD   NUNC, Langenselbold, Germany 

12-Well Plates, non-pyrogenic, sterile BD   NUNC, Langenselbold, Germany 

24-Well Plates, non-pyrogenic, sterile BD  NUNC, Langenselbold, Germany 

96-Well Plates, non-pyrogenic, sterile BD   NUNC, Langenselbold, Germany 

2.1.4. Cell Culture Transfection Reagents 

FuGene HD Transfection Reagent   Promega, Madison, USA 

2.2. Prokaryotic Cultures 

2.2.1. Bacteria 

Escherichia coli DH5α (Invitrogen, Karlsruhe, Germany)  

Genotype: F-φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rK
–, mK

+) phoA supE44 λ– thi-1 

gyrA96 relA1 

2.2.2. Culture Media 
Lysogeny Broth (LB) Medium: pH: 7.0    Roth, Karlsruhe, Germany 

• 10 g/L Tryptone 

• 5 g/L Yeast extract 

• 10 g/L NaCl 

LB-Agar for plates: pH: 7.0     Roth, Karlsruhe, Germany 

• 10 g/L Tryptone 

• 5 g/L Yeast extract 

• 10 g/L NaCl 

• 15 g Agar 

Super Optimal Broth Medium with glucose (S.O.C) Invitrogen, Karlsruhe, Germany 

  



MATERIALS 

22 
 

2.3. Primers 

Table 1: Genes and dedicated primer sequences. 

Gene Use FWD: 5’à 3’ RV: 5’à 3’ 
ACTB qRT-PCR CCGAGGACTTTGATTGCACATT AAGTGGGGTGGCTTTTAGGAT 
ACTB  qRT-PCR, ChIP GCCAACGCCAAAACTCTCC CAGTGCAGCATTTTTTTACCCC 
BCORL1 qRT-PCR GGGCCAACGTGAACTGCA  CCCATAGGACAGCAGGAGCC 
BCORL1 (431-1360) PCR, sequencing AGTGCTACAGAAAAACTTGGGC TGTAGGGGCTGGAGTAAAGATG 
BCORL1 (484-1628) PCR, sequencing GCCAAAAATGGACTACGCTG CGTAAGAGTGGAGGAAACCC 
BCORL1 (764-1699) PCR, sequencing CCCCTGGTTACCACTAACTTCA CACAGAAAATGCATACGGGTAA 
BCORL1 (from 951) sequencing TAGCACCTGTCCCGGCTC  
CDCP1 qRT-PCR AGTAGCAACCTCACCCTGAC GTGGTCTGTGCAGCTTATGG 
CDH1 qRT-PCR CGAGAGCTACACGTTCACGG  TTGTCGACCGGTGCAATCT 
CDH1  qRT-PCR, ChIP CGAGAGCTACACGTTCACGG TTGTCGACCGGTGCAATCT 
CDH26 qRT-PCR ACGCAGGGAGTTAAGGATCT GCTCAAAGGGCTTGCCATAA 
CDH3 qRT-PCR ATCATCCCGACACCCATGTA TCTCTCCCCTCCCCTCAATTA 
CDH4 qRT-PCR CCTGAACGCCATCAACATCA TTGGGCATAGTCACCGTTCA 
CDKN2B qRT-PCR AGCTGAGCCCAGGTCTCCTAG  CACCGTTGGCCGTAAACTTAAC 
EHF qRT-PCR ACCAAAAAGCACAACCCGAG ATCCTGGGTTCTTGTCTGGG 
EPCAM qRT-PCR ATCGTCAATGCCAGTGTACTTCA TGAGCCATTCATTTCTGCCTT 
ESRP1 qRT-PCR CGAAATGGCTTATCCCCACC GCTGGTAAATGGCAGCTTCT 
GAPDH qRT-PCR GGCACCGTCAAGGCTGAG  CCCACTTGATTTTGGAGGGAT 
GAPDH  qRT-PCR, ChIP GAGAGAGCCGCTGGTGCAC GAGGTTTCTGCACGGAAGGTC 
HHIP qRT-PCR CAGAACTGCAAAATGTGAGCCA ATCAAGAATACCTGCCCTGGTC 
HHIP  qRT-PCR, ChIP TTCCCACCTCCTACGGCC TCCTCTCTCCTCCCCGCTT 
IFGBP3  qRT-PCR, ChIP GCTCCCTGAGACCCAAATGTAA GCTCGGCATTCGTGTGTACC 
JAG2 qRT-PCR TGCATCTGTGACAGTGGCTTTA TGCATGTGCCCCCATTG 
Li3-1 (BCORL1) Sequencing   CCTGTTTGCTCATTTGGGTGT 
Li3-2 (BCORL1) Sequencing    AACCTGGAATGCATCTGGAAC 
Li3-4 (BCORL1) Sequencing TAGCACCTGTCCCGGCTC   
Li3-5 (BCORL1) Sequencing   ACAGGGAGCGTAAGAGTGGAG 
Li3-6 (BCORL1) Sequencing   AGGTATCTGCCAAAGGCCC 
Li3-7 (BCORL1) Sequencing TTTCCTCCACTCTTACGCTCC   
Li3-8 (BCORL1) Sequencing ATCTGTCCTCCAAGTCCAACC   
Li3-10 (BCORL1) Sequencing GAAACGATATACTCCAGCCCG   
Li3-11 (BCORL1) Sequencing GTGCCAAACCAAGGAACTCTC   
Li3-13 (BCORL1) Sequencing GCAGGAGACACGAAGCCTAAG   
KRT19 qRT-PCR GCCACTACTACACGACCATCCA AGCCAGACGGGCATTGTC 
MFAP4 qRT-PCR GGACTCATAGCATGGGGGAA CCAGGAGTGCGAGTTTCAAG 
NANOG qRT-PCR AGAACTCTCCAACATCCTGAACCT TCGGCCAGTTGTTTTTCTGC 
NOXA qRT-PCR CGCGCAAGAACGCTCAAC  CCGGAAGTTCAGTTTGTCTCCA 
NR2E1 qRT-PCR ACTGGGTTTCCCTTTAGGCT ATCTAAAATGCGGCCTCCTG 
OCT4 qRT-PCR CACTGCAGCAGATCAGCCA  GCTTGATCGCTTGCCCTTC 
PCDH19 qRT-PCR GCCCATTTAATCAAGAGCAGC TGTTCAGCACATCGTTGACA 
PCDHA1 qRT-PCR TCCAAGTCTTAACACGTCAGAA GGCTGTCGTGGATTACCAG 
PCDHAC2 qRT-PCR CAGGAATCTCACAGGCCAAAG GGCTGTCGTGGCTCATTTT 
SFPR1  qRT-PCR, ChIP ACGCCGTGATCCATTCCC CGGCTCAACACCCCTTAAAAA 
SFRP1 qRT-PCR CATGACGCCGCCCAAT  GATGGCCTCAGATTTCAACTCG 
TIMP2 qRT-PCR CTCATTGCAGGAAAGGCCG CTCTTCTTCTGGGTGGTGCT 
U6 Sequencing GAGGGCCTATTTCCCATGATTCC  
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2.4. Antibiotics 

Kanamycin (50 µg /ml)      Sigma, Steinheim, Germany 

Ampicillin (100 µg /ml)      Sigma, Steinheim, Germany 

Puromycin (10 mg/ml)     Sigma, Steinheim, Germany 

2.5. Plasmids 

pTER+       provided by Prof. Dr. Westermann 

pEGFP-N1      Clontech, Mountain View, CA, USA 

pEGFP-BCORL1      provided by Dr. Khanna 

pEGFP-BCORL1T6     provided by Dr. Beck 

eSPCas9 (1.1)-2a-Puro     provided by Prof. Dr. Schnurr 

2.6. Short-hairpin RNAs (shRNAs) 

Self-designed Oligonucleotides    Eurofins, Ebersberg, Germany 

5‘-GATCCCCGTGGCAGAGGCTGAGGGCTTCAAGAGAGCCCTCAGCCTCTGCCACGTTTTTGGAAA-3‘ 

5‘-AGCTTTTCCAAAAACGTGGCAGAGGCTGAGGGCTCTCTTGAAGCCCTCAGCCTCTGCCACGGG-3‘ 

2.7. Guide RNAs (gRNAs) 

Self-designed Oligonucleotides    Eurofins, Ebersberg, Germany 

Oligo 1:  5’-CACCGGAGGCGGGATATATACCAG-3‘ 

  5‘-AAACCTGGTATATATCCCGCCTCC-3‘ 

Oligo 2:  5’-CACCGTCCAAAGCCTTTACTCCGG-3‘ 

5‘-AAACCCGGAGTAAAGGCTTTGGAC-3‘ 

2.8. Antibodies 

2.8.1. Primary Antibodies 

Anti-Histone H3 antibody (#2897200)   Millipore, Darmstadt, Germany 

Anti-Histone H3K4me3 antibody (ab8580)  Abcam, Cambridge, UK 

Anti-Histone H3K27me3 antibody (ab6002)  Abcam, Cambridge, UK 

Anti-RNA polymerase II antibody (ab817)  Abcam, Cambridge, UK 

Normal mouse IgG antibody (sc-2025)    Santa Cruz, Heidelberg, Germany 

Rabbit anti-human β-actin (# 4970)    Cell signaling technology, Danvers, USA 
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Rabbit anti-BCORL1 (Ap50363PU-N)   Acris Antibodies, Herford, Germany 

Rabbit anti-BCORL1 (PA5-24333)   Thermo Scientific, Wilmington, USA 

Rat anti-BCORL1 (various supernatants)   Helmholtz center, Munich, Germany 

Rabbit anti-CDH1 (#3195)    Cell signaling technology, Danvers, USA 

Rabbit anti-GFP (NB600-308)    Novus, Wiesbaden, Germany 

Rabbit anti-KRT19 (#HPA002465)   Sigma-Aldrich, Steinheim, Germany 

Rabbit IgG, polyclonal - Isotype Control (ab37415) Abcam, Cambridge, UK 

Rat (IgG2a) anti-GFP 3H9     Helmholtz center, Munich, Germany 

2.8.2. Secondary Antibodies 

Horseradish peroxidase-conjugated    DakoCytomation, Hamburg, Germany   

goat anti-rabbit immunoglobulins (P0488) 

Horseradish peroxidase-conjugated    DakoCytomation, Hamburg, Germany   

goat anti-mouse immunoglobulins (P0488) 

Goat-Anti Rabbit (H+L) AlexaFluor 555   Thermo Scientific, Wilmington, USA 

Goat-Anti Rat (H+L) AlexaFluor 555   Thermo Scientific, Wilmington, USA 

Mouse-Anti Rat IgG2a/IgG2b/IgG2c/IgG1-HRP  Helmholtz center, Munich, Germany 

2.9. Chemicals/Reagents 

6x orange DNA Loading Dye     Thermo Scientific, Wilmington, USA 

Acetic Acid       Carl Roth, Karlsruhe, Germany 

Agarose      VWR, Munich, Germany   

Albumin Fraction V (BSA)     Carl Roth, Karlsruhe, Germany 

β-Mercaptoethanol      Sigma-Aldrich, Steinheim, Germany 

Bio Rad Protein Assay      Bio-Rad, Munich, Germany 

Boric acid       Carl Roth, Karlsruhe, Germany 

Bromophenolblue      SERVA, Heidelberg, Germany 

CaCl2       Calbiochem, San Diego, USA 

Chloroform       Carl Roth, Karlsruhe, Germany 
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cOmplete Protease Inhibitor Cocktail Tablets (PI)  Roche, Mannheim, Germany 

Crystal violet      Sigma-Aldrich, Steinheim, Germany 

ddH20        Invitrogen, Karlsruhe, Germany 

dNTPs        Roche, Mannheim, Germany 

Dimethyl sulfoxide (DMSO)     Merck, Darmstadt, Germany 

Disodium hydrogen phosphate    Merck, Darmstadt, Germany 

Dithiothreitol (DTT) (0.1 M)     Invitrogen, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA)   Carl Roth, Karlsruhe, Germany 

Ethanol, absolut      Merck, Darmstadt, Germany 

Ethidium bromide (EtBr), 10 mg /ml    Sigma, Steinheim, Germany 

Formaldehyde 37 %      Merck, Darmstadt, Germany 

Glycerol       Applichem, Darmstadt, Germany 

Glycine        Carl Roth, Karlsruhe, Germany 

HCl       Carl Roth, Karlsruhe, Germany 

HEPES       Applichem, Darmstadt, Germany 

Isopropyl alcohol      Sigma-Aldrich, Steinheim, Germany 

IGEPAL CA-630       Sigma-Aldrich, Steinheim, Germany 

Potassium chloride     Carl Roth, Karlsruhe, Germany 

Lithium chloride     Carl Roth, Karlsruhe, Germany 

Magnesium chloride      Carl Roth, Karlsruhe, Germany 

Methanol       Merck, Darmstadt, Germany 

MG-132 proteasome inhibitor    Sigma-Aldrich, Steinheim, Germany 

Nonidet P-40       Roche, Basel, Switzerland 

Paraformaldehyde      Carl Roth, Karlsruhe, Germany 

Phenol        Carl Roth, Karlsruhe, Germany 

Phosphate buffered saline (PBS)    Invitrogen, Karlsruhe, Germany 

PIPES       Sigma-Aldrich, Steinheim, Germany 
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Potassium chloride     Merck, Darmstadt, Germany 

Potassium dihydrogen orthophosphate   Merck, Darmstadt, Germany 

Powdered milk       Carl Roth, Karlsruhe, Germany 

Propidium iodide      Sigma-Aldrich, Steinheim, Germany 

Sodium acetate      Carl Roth, Karlsruhe, Germany 

Sodium chloride      Carl Roth, Karlsruhe, Germany 

Sodiumdeoxycholate     Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS)     Biomedicals, Eschwege, Germany 

Thiazolyl Blue tetrazolium (MTT1)   Sigma-Aldrich, Steinheim, Germany 

TRI Reagent® RNA Isolation Reagent    Sigma-Aldrich, Steinheim, Germany 

Tris (hydroxymethyl) aminomethane    Carl Roth, Karlsruhe, Germany 

Triton X-100       Sigma-Aldrich, Steinheim, Germany 

Tween 20       Sigma-Aldrich, Steinheim, Germany 

Ultra PureTM DNase/RNase-Free Distilled water   Invitrogen, Karlsruhe, Germany 

Vectashield® Mounting Medium with DAPI   Vector Laboratories Inc., Burlingame, USA 

2.10. Buffers and Solutions 

Buffers and solutions were prepared in dH2O, autoclaved if needed and pH adjusted with NaOH or 

HCl. 

2.10.1. Cloning 

Buffer R     Thermo Scientific, Wilmington, USA 

5 x TBE Buffer, pH 8.0:   445 mM Tris 

445 mM Boric acid 

10 mM EDTA 

2.10.2. Proliferation assay 

MTT1:     0.5 % Thiazolyl Blue tetrazolium in DPBS 

MTT2 stock solution:   4.15 ml 37 % HCl 

45.85 ml dH2O 

MTT2 working solution:   500 µl Stock solution 

49.5 ml 10 % SDS 
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2.10.3. Western Blot 

5 x SDS Buffer:    312.5 mM Tris-HCl (pH 6.8) 

50 % Glycerol 

5 % SDS 

5 % β-Mercaptoethanol 

0.05% Bromophenol blue 

Cell Lysis Buffer:   50 mM Hepes 

1 mM EDTA 

0.7 % DOC 

1 % NP40 

0.5 M LiCl 

PBS-T:     50 % PBS (2 x) 

0.1 % Tween 20 

Running Buffer:    10 % Novex™ Tris-Glycine SDS Running Buffer (10X), 

     Thermo Scientific, Wilmington, USA 

Transfer Buffer:    25 mM Tris 

192 mM Glycine (pH 8.3) 

20 % Methanol 

2.10.4. Immunoprecipitation 
Lysis Buffer/ Wash Buffer 1: 50 mM Tris-HCl (pH 7.5) 

150 mM NaCl 

1 % NP40 

0.1 % SDS 

0.5 % DOC 

1 µM MG-132 proteasome inhibitor 

Wash Buffer 2:    50 mM Tris-HCl (pH 7.5) 

500 mM NaCl 

0.1 % NP40 

0.1 % SDS 

0.05 % DOC 

Wash Buffer 3:   50 mM Tris-HCl (pH 7.5) 

0.1 % NP40 

0.05 % DOC 
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2.10.5. ChIP 

Cell Lysis Buffer:    5 mM PIPES (pH 8.0) 

85 mM KCl 

0.5 % Nonidet P-40 (NP40) 

Mnase Digestion Buffer (pH 8):  50 mM Tris-HCl 

5 mM CaCl2 

Nuclei Lysis Buffer:   1 % SDS 

10 mM EDTA 

50 mM Tris-HCl (pH 8.1) 

ChIP Dilution Buffer:  0.01 % SDS 

1 % Triton X-100 

1.2 mM EDTA 

16.7 mM Tris-HCl (pH 8.1) 

167 mM NaCl 

High Salt Wash Buffer:  0.1 % SDS 

1 % Triton X-100 

2 mM EDTA 

20 mM Tris-HCl (pH 8.1) 

500 mM NaCl 

Low Salt Wash Buffer:  0.1 % SDS 

1 % Triton X-100 

2 mM EDTA 

20 mM Tris-HCl (pH 8.1) 

150 mM NaCl 

LiCl Wash Buffer:   250 mM LiCl 

1 % NP40 

1 % Sodiumdeoxycholate (DOC) 

1 mM EDTA 

10 mM Tris-HCl (pH 8.1) 

TE Buffer:     10 mM Tris-HCl (pH 7.8) 

1 mM EDTA 
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2.10.6. Immunocytochemistry 

IF-Buffer:  3 % BSA  

10 % FCS 

DPBS 

2.11. Molecular Size Markers 

Gene RulerTM 100 bp DNA Ladder    Thermo Scientific, Wilmington, USA 

Gene RulerTM 1 kb DNA Ladder     Thermo Scientific, Wilmington, USA 

Page RulerTM Prestained Protein Ladder   Thermo Scientific, Wilmington, USA 

Spectra™ Multicolor Broad Range Protein Ladder  Thermo Scientific, Wilmington, USA 

2.12. Enzymes 

Bgl II       Fermentas GmbH, St. Leon-Rot, Germany 

Fast Digest BbsI      New England Biolabs, Ipswich, USA 

Hind III       Fermentas GmbH, St. Leon-Rot, Germany 

iTaq SYBR Green Supermix with ROX    Bio-Rad, Munich, Germany 

Maxima Hot Start Taq DNA – Polymerase  Fermentas, St. Leon-Rot, Germany 

Micrococcal Nuclease     Thermo Scientific, Wilmington, USA 

Proteinase K, 10 mg/ml     Sigma-Aldrich, Steinheim, Germany 

Plasmid Safe buffer     New England Biolabs, Ipswich, USA 

Plasmid Safe Endonuclease    New England Biolabs, Ipswich, USA 

Q5 Hot Start High-Fidelity DNA - Polymerase   New England BioLabs, Ipswich, USA 

RNase A      QIAGEN GmbH, Hilden, Germany 

Super ScriptTM II Reverse Transcriptase    Invitrogen, Karlsruhe, Germany 

T4 DNA Ligase       Fermentas, St. Leon-Rot, Germany 

T4 polynucleotide kinase (PNK)    New England Biolabs, Ipswich, USA 

2.13. Kits 

QIAquick PCR Purification Kit     QIAGEN GmbH, Hilden, Germany 

QIAquick Gel Extraction Kit     QIAGEN GmbH, Hilden, Germany 

QIAprep Spin Miniprep Kit     QIAGEN GmbH, Hilden, Germany 
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2.14. Consumables 

BD FalconTM Round-Bottom Tubes    BD, Heidelberg, Germany  

Biosphere® Filtertips      Sarstedt AG & Co., Nümbrecht, Germany 

Pipette tips (10 µl, 100 µl, 1000 µl)    Sarstedt, Nümbrecht, Germany 

8-Well PCR stripes      Eppendorf, Hamburg, Germany 

PCR 96 Well Plates     PeQLab, Erlangen, Germany 

NovexTMWedge WellTM 4 - 12 % Tris-Glycine Gel  Invitrogen, Karlsruhe, Germany 

Safe-lock Eppendorf tube (1.5 ml, 2 ml)   Eppendorf, Hamburg, Germany 

Trans-Blot®TurboTM Mini PVDF Transfer Packs  Biorad, Munich, Germany 

ibiTreat µ-Plate 96 Well Black    ibidi, Munich, Germany 

2.15. Equipment 

XCell SureLock™Mini-Cell    Invitrogen, Karlsruhe, Germany 

Biofuge fresco, Heraeus     Kendro, Langenselbold, Germany 

Biofuge pico, Heraeus      Kendro, Langenselbold, Germany 

Camera AxioCam MRm      Zeiss, Jena, Germany 

Camera Power Shot G6      Canon, Krefeld, Germany 

Cell screen Olympus IX50     Innovatis, Bielefeld, Germany 

Centrifuge 5702      Eppendorf, Hamburg, Germany 

Centrifuge J2-21      Beckman Coulter, Krefeld, Germany 

Centrifuge LMC-3000      G. Kisker, Steinfurt, Germany 

ChemiDoc XRS+      Biorad, Munich, Germany 

CO2-Incubator MCO-20AIC    Sanyo, Tokio, Japan 

Excella E24 Incubator Shaker Series    New Brunswick Scientific, Enfield, USA 

Heat block MR 3001     Heidolph, Kehlheim, Germany 

Heatblock „Thermomixer comfort“   Eppendorf, Hamburg, Germany 

Homogenizer Miccra     ART, Mühlheim, Germany 

GelJet Imager Version 2004     Intas, Göttigen, Germany 
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GENios Microplate reader     Tecan, Crailsheim, Germany 

Mastercycler RealPlex2     Eppendorf, Hamburg, Germany 

Mastercycler personal      Eppendorf, Hamburg, Germany 

Microlitercentrifuge MZ014     G. Kisker, Steinfurt, Germany 

Microscope Axiovert 40 CFL    Zeiss, Jena, Germany 

Microscope Axiovert 135     Zeiss, Jena, Germany 

Microtom Leica SM 2000R     Leica, Solms, Germany 

Micro scales Te1245      Sartorius, Göttingen, Germany 

Microwave       Panasonic, Hamburg, Germany 

Minilys       bertin TECHNOLOGIES, France 

Mini®-Sub Cell GT      Biorad, Munich, Germany 

NanoDrop 1000 instrument     Thermo Scientific, Wilmington, USA 

Incubator       Memmert, Schwabach, Germany 

pH-Meter inoLab pH720     WTW, Weilheim, Germany 

Pipette Accu-Jet      Brand, Wertheim, Germany 

PowerPac BasicTM      Bio-Rad, Munich, Germany 

PyroMark Q24 system      QIAGEN GmbH, Hilden, Germany 

PyroMark Q24 Vacuum Workstation   QIAGEN GmbH, Hilden, Germany 

Scales Vic-5101      Acculab, Edgewood, USA 

Shaker, Rock-N-Roller      G. Kisker, Steinfurt, Germany 

Shaker, Unimax 1010      Heidolph, Schwabach, Germany 

Suctionsystem „EcoVac“     Schütt, Labortechnik, Göttingen, Germany 

Thermal Printer DPU-414  Seiko Instruments, Neu-Isenburg, Germany 

Thermomixer Compact      Eppendorf, Hamburg, Germany 

Vortexer „Genie2“      Scientific Industries, NY, USA 

Water bath GFL 1083      GFL, Wien, Austria 

Work flow, Hera Safe      Kendro, Hanau, Germany 
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XCell IITM Blot Module      Invitrogen, Karlsruhe, Germany 

XCell SureLockTM Electrophoresis Cell    Invitrogen, Karlsruhe, Germany 

Brandson Digital Sonifier® W450   Emerson, St. Louis, USA 

2.16. Software 

CHROMAS v1.45 software    Griffith University, Queensland, Australia 

SeqMan NGen, Arraystar, GenVision Pro  DNAstar, Madison, USA 

GraphPad Prism 5.0      GraphPad Software, La Jolla, USA 

Methyl Primer Express® Software v1.0    Applied Biosystems, Darmstadt, Germany 

PyroMark Q24 Advanced Software    QIAGEN GmbH, Hilden, Germany 

Realplex       Eppendorf, Hamburg, Germany 

AxioVision Release 4.8.2    Zeiss, Oberkochen, Germany 
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3. METHODS 

3.1. Patient samples 

In order to obtain tumor samples from hepatoblastoma cases, patients undergoing surgery in the 

department of pediatric surgery of the Dr. von Hauner Children‘s Hospital in Munich were asked for 

their consent in participation of the study protocol (Munich, Germany; no. 431-11), approved by the 

Ludwig-Maximilians-University Ethics Committee. Therefore, written consent was obtained from each 

patient before taking hepatoblastoma tumor samples along with corresponding liver tissue. 

3.2. Polymerase chain reaction (PCR) 

For amplification of candidate exons, 50 ng DNA, 2 µl hot start buffer, 500 nM forward and reverse 

primer, 0.4 µl 10 mM dNTPs, 13.2 µl ddH2O, and 1 U Taq-polymerase were mixed and incubated with 

the following protocol in the Mastercycler personal. 

 Hot start:   4 min at 94 °C 

 Denaturation:  40 sec 94 °C 

 Annealing:   40 sec 59 °C 50x 

 Extension:   1 min 72 °C 

 Final extension:  10 min 72 °C 

 Hold:    4 °C 

3.3. RNA extraction 

For the extraction of RNA, patient samples as well as different cell lines were used. To extract RNA 

from cells, the culture medium was exchanged for PBS to wash the cells. Then, cells have been mixed 

with 1 ml TRI Reagent and transferred to Eppendorf tubes. Tissue samples needed to be cut up first. 

Then tumor and the corresponding normal liver tissue samples were homogenized with the 

homogenizer Miccra with 1 ml TRI Reagent. Cells and tissue samples were incubated for 5 min at RT. 

In the next step, 200 µl chloroform have been added to each sample and, after vortexing for 15 s. For 

phase separation, the samples were then centrifuged for 15 min at 12,000 rpm (4 °C). After transfer of 

the aqueous phase to a new tube, 1 volume of isopropanol was added and incubated for 1 min at RT. 

Afterwards, the samples were centrifuged for 15 min at 12,000 rpm (4 °C). To wash the pellet, 1.5 ml 

of 70 % cooled ethanol were used, followed by centrifugation at 7,500 rpm (4 °C). After air drying of 

the pellet at RT for 10-15 min, the pellet was dissolved in 20-50 µl DNase/RNase-free water at 55 °C 

for at least 15 min. The concentration of RNA was quantified using the NanoDrop 1000. 
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3.4. Reverse Transcription 

To synthesize cDNA of the extracted RNA, 2 µg RNA were used. Samples were diluted with 

RNase/DNase-free water to a volume of 7 µl and incubated for 10 min at 70 °C with 5 µl random 

hexamers (20 ng/µl). Afterwards 4 µl 5x 1st strand buffer, 1 µl 10 mM dNTPs, and 2 µl 0.1 M DTT have 

been added and the mixture was incubated at 25 °C for 10 min. After incubation at 42 °C for 2 min, 1 

µl SuperScriptII was added by gently pipetting up and down and incubated at 42 °C for 1 h. To stop the 

reaction, the mixture was heated for 10 min to 70 °C. Samples were filled up with ddH2O to 100 µl.  

3.5. Quantitative real-time PCR (qRT-PCR) 

For qRT-PCR the Master cycler RealPlex2 in combination with the Software Realplex were used for 

detecting mRNA abundance. The protocol for qRT-PCT was SYBR green based. For one reaction, cDNA 

corresponding to 40 µg RNA of sample, 10 µl iTaq-SYBR Green-Supermix, 6 µl DNase/RNase-free water 

(ddH20), 500 nM forward primer, and 500 nM reverse primer were used with the following protocol. 

The primers, which were used, are listed in Table 1 (p. 22). 

SYBR green protocol:  Initial denaturation: 2 min at 95 °C  

Denaturation:  15 sec at 95 °C  

Annealing:  15 sec at 58 °C      40-45 cycles  

Extension:  20 sec at 68 °C  

After analyzing the melting curve, relative expression was calculated and normalized to TATA-Box 

binding Protein (TBP) expression according to the ∆∆Ct method [176]. 

3.6. Knockdown/knockout of BCORL1 

3.6.1. Generation of a short-hairpin RNA vector 

To anneal the oligonucleotides, 5 µl annealing buffer, 1 µl oligo sense (100 pmol/µl), 1 µl oligo 

antisense (100 pmol/µl), and 43 µl ddH2O were mixed, boiled at 95 °C for 5 min and slowly cooled 

down to RT.  

1 µg of the pTER+ plasmid was digested by using the restriction enzymes BamHI and BglII as 

indicated by the manufacturer’s manual. 

For ligation, 1 µl annealed oligos, 50-100 ng digested vector, 2 µl T4 ligase buffer and 1 µl T4 ligase 

were mixed on ice and filled up to 20 µl with ddH2O. After overnight incubation at 16 °C, ligase 

inactivation was accomplished by 10 min at 65 °C. 
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3.6.2.  Generation of a CRISPR-Cas9 vector 

Oligonucleotides (Table 2), which recognize the target sequence (Exon 4 of BCORL1) and use the 

Protospacer Adjacent Motif (PAM) of the CRISPR-associated endonuclease 9 (Cas9) are shown in Figure 

7 and were designed using the CRISPR design tool [177]. 

Table 2: Oligonucleotides as guideRNAs (gRNA) to recognize Exon 4 of BCORL1, provided by the company Eurofins. 

gRNA Sense Antisense 
1 5’-CACCGGAGGCGGGATATATACCAG-3‘ 5‘-AAACCTGGTATATATCCCGCCTCC-3‘ 
2 5’-CACCGTCCAAAGCCTTTACTCCGG-3‘ 5‘-AAACCCGGAGTAAAGGCTTTGGAC-3‘ 

 
Figure 7: Location of designed gRNAs in the BCORL1 gene (gRNA BS: guideRNA binding site, PAM: Protospacer Adjacent 

Motif). 

For phosphorylation and annealing of the oligonucleotides, 10 µM oligo sense, 10 µM oligo 

antisense, 1 µl T4 PNK and 1 µl T4 ligase buffer were mixed with 6 µl ddH2O incubated in the Master 

cycler personal for 30 min at 37 °C, for 5 min 95 °C, then ramping down at 5 °C per min to 25 °C. To 

clone the annealed gRNAs into the eSPCas9 (1.1)-2a-Puro plasmid, the gRNAs were diluted 1:200. 2 µl 

of this dilution, 100 ng plasmid, 2 µl 10x Tango buffer, 0.5 mM ATP, 0.5 mM DTT, 0.5 µl T4 ligase and 1 

µl FastDigest BbsI were added up with ddH2O to 20 µl. For ligation, this mixture was incubated for 5 

min at 37 °C and for 5 min at 21 °C in 1-6 cycles. Afterwards, 11 µl of ligation reaction were digested 

with 1 mM ATP, 1.5 µl 10x PlasmidSafe buffer, and 1 µl PlasmidSafe exonuclease for 30 min at 37 °C, 

followed by 30 min at 70 °C, to get rid of any residual linearized DNA.  

For plasmid propagation DH5α were used as described below. For sequence validation, the plasmid 

had been Sanger sequenced by using a forward primer for the U6 promoter. For functional validation, 

different liver tumor cell lines were transfected with the plasmid and put under puromycin selection 

(100 µg/ml) for 3 days. To establish single clones, one cell per well was seeded out in a 96-well plate 

and grown until DNA extraction was possible. DNA was extracted using phenol-chloroform-extraction 

and thus, used to perform a PCR of exon 4 of the BCORL1 gene (primers BCORL1 (484-1628), table 1). 

The PCR product had been extracted using the Qiagen Gel extraction kit and Sanger sequenced for 

mutation analysis by using the primers for BCORL1 (764-1699) (see Table 1).  
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3.7. Plasmid propagation 

3.7.1. Transformation of DH5α 

One aliquot of 50 µl DH5α was thawed on ice for each ligation or plasmid. After adding either 2-20 

µl of ligation or 5 ng of plasmid, the DH5α were cooled on ice for 30 min. After a 40 s heat shock at 42 

°C, the mixture was incubated two more min on ice. Then 250 µl of S.O.C. medium had been added to 

the DH5α and incubated at 37 °C for a minimum of 1 h with shaking at 350 rpm. When grown enough, 

50 to 100 µl of bacteria have been plated on an agar dish. 

3.7.2. Colony picking and MiniPrep 

One colony per sample was picked from the agar dish and incubated shaking at 37 °C overnight 

with 10 ml LB medium. The plasmid preparation was done according to the Qiagen MiniPrep manual. 

3.8. Cell culture 

3.8.1. Thawing of cells 

To thaw cells, an aliquot was taken from liquid nitrogen and thawed fast in a water bath (37 °C). 

Then cells were transferred to falcons with pre-warmed medium. After centrifugation for 5 min at 

1,200 rpm, the cell pellet was resuspended in 5 ml medium, transferred to T25 cell culture flasks and 

incubated at 37 °C. 

3.8.2. Passaging of cells 
After three days, medium was discarded and cells were washed with PBS. To detach the cells, an 

incubation with 1 ml Trypsin/EDTA for 1 min at 37 °C followed. The reaction was stopped by adding 3-

4 ml medium (10 % FCS and 1 % P/S in RPMI 1640). After gently mixing the cell suspension to detach 

them from each other, part of the suspension was diluted and transferred to a new flask. The cell 

suspension was then incubated until further use at 37 °C.  

3.8.3. Freezing of cells  
The remaining cell suspension from passaging was transferred to a falcon and centrifuged by 1,200 

rpm. After resuspending the cell pellet in 0.5 ml DMEM, 5 to 10 ml ice cold freezing medium (12.5 % 

DMSO and 50 % FCS in DMEM) were added dropwise and the suspension was transferred to cryotubes. 

These were incubated for 1 to 3 days at -80 °C before moving them to the liquid nitrogen tank. 

3.8.4. Transient/stable transfection of cells 

Based on the FuGene manufacturer’s manual, cells were transfected with the pEGPF-N1 vector as 

a positive control and with a pEGFP-BCORL1 construct. To obtain stably transfected cells, a pool of 

transfected cells was propagated under G418 selection and selected by fluorescence-activated cell 
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sorting (FACS) for high expression of EGFP. This process has been done twice to exclude remaining 

non-transfected cells. 

3.9. Phenol-Chloroform extraction of DNA 

After passaging, the remaining cell suspension was used for DNA extraction. Thus, the suspension 

was centrifuged for 5 min at 2,000 rpm, then the pellet was washed with PBS. After resuspending the 

pellet in 500 µl STE buffer, incubation with 30 µl proteinase K (10 mg/ml) shaking overnight at 55 °C 

followed.  

The next day, 1 volume phenol was added, after mixing, the emulsion was centrifuged at 3,000 

rpm for 10 min. The upper phase was moved to a new Eppendorf tube with 1 volume chloroform, 

mixed and centrifuged again. Again, the upper phase was transferred to another tube and mixed with 

2.5 volumes 100 % ethanol. This was followed by an incubation for 10 min at -20 °C for DNA 

precipitation. After centrifuging the mixture at 12,000 rpm for 10 min, the supernatant was discarded, 

the pellet was washed with 70 % ethanol and air dried. Finally, the DNA pellet was dissolved for 15 min 

in 30 µl ddH2O at 50 °C and quantified with the Nanodrop1000.  

3.10. Proliferation assay 

Depending on the cell line, between 2,000 and 5,000 cells per well were seeded a 96-well plate 

and incubated with 10 µl MTT1 per well at different time points (0 h, 48 h, 96 h, 144 h, 192 h, 240 h). 

After 4 hours, 100 µl MTT2 was added to each well to lyse cells. The next morning, absorbance was 

measured with the GENios Microplate reader at 592 nm. 

3.11. Clonogenicity assay 

To assess the clonogenicity of the different cell types, between 1,000 and 5,000 cells were seeded 

per 6-well. After 8 to 10 days, the cells were washed with cold PBS and fixed with methanol for 5 min. 

Staining was done by a 15 min incubation with a 0.5 % crystal violet solution. Afterwards, the number 

of colonies was counted and the percentage of colony forming units was calculated by dividing the 

counted cell number by the seeded cell number. 

3.12. Immunocytochemistry 

For fluorescent labeling of different protein, 10,000 cells per well were seeded in an ibiTreat µ-

Plate (96 wells). After adhesion of cells to the surface, cells were washed two times with DPBS and 

then fixed for 20 min at RT with 100 µl of 3.7 % formaldehyde in DPBS. To stop this process, the 

formaldehyde solution was exchanged with 100 µl of 0.1 M glycine in DPBS and incubated at RT for 10 

min. After this step, the fixed cells could remain in DBPS in the dark at 4 °C until further use. 

For fluorescent labeling, the next step was permeabilization, which was done by adding 100 µl 0.5 

% triton X-100 in DPBS for 10 min at RT. In the next step, the cells were washed twice with DPBS and 
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subsequently blocked with IF-buffer at RT for 30 min. After washing twice with DPBS, 60 µl of the 

primary antibody solution was added (1:150-1:200 for established antibodies, 1:2 for test serums) for 

overnight incubation at 4 °C in the dark.  

To remove non-bound first antibody, two washes with DPBS followed. Then 60 µl of secondary 

antibody were added for 45 min at RT. Following this, the cells were again washed with DPBS and 

incubated with a few drops of Vectashield Mounting Medium, containing DAPI overnight at RT in the 

dark. 

Storage of fluorescent-labeled cells continued at 4 °C in the dark until further use. For imaging and 

analysis of the fluorescent-labeled cells, the microscope Zeiss Axiovert 200M and the AxioVision 

software was used. 

3.13. Immunodetection of proteins/Western Blot 

3.13.1. Protein extraction 

Tissue samples were sliced into small pieces with a clean razor blade and supplemented with 500 

µl lysis buffer supplemented with protease inhibitors. This mixture was homogenized using the Minilys 

homogenizer for 5 x 30 s with breaks on ice in between. After lysis for 20 min on ice and vortexing 

multiple times, the mixture was centrifuged for 30 min at 13,000 x g and 4° C. Presenting the whole 

cell lysate, the supernatant was then transferred to a new tube. 

For cell line samples, cells were washed with and scraped into 1 ml PBS. This suspension was 

transferred to an Eppendorf tube on ice and centrifuged for 5 min at 2,000 rpm and 4 °C. The cell pellet 

was subsequently resuspended in 400 µl lysis buffer and incubated for 25 min on ice. Before 

centrifuging for 1 min at 13,000 rpm, 25 µl of 10 % IGEPAL were added and vortexed. The supernatant 

presents the whole cell lysate, the pellet can be used to generate nuclear extracts. 

For nuclear extracts, 75 µl nuclear extraction buffer were used to resuspend the pellet, followed 

by an 1 h incubation on ice with vortexing every few minutes. Afterwards, the suspension was 

centrifuged for 10 min at 13,000 rpm and 4° C, leaving the supernatant as the nuclear extract. 

Bradford analysis was used to determine protein concentrations of lysates and nuclear extracts. 

Thus, lysates and extracts were diluted 1:10 in a 96-well plate and incubated with 1:5 diluted Bradford 

reagent for 15 min at RT. The adsorption was measured with the GENios Microplate reader at 595 nm. 

To calculate the protein content, a dilution curve with BSA was used. 
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3.13.2. SDS-PAGE and Western blot 

25 µg of protein extract were diluted to 20 µl and mixed with 5 x SDS loading buffer. After 

denaturation at 99 °C for 10 min, the samples were loaded onto a 4-20 % Tris-Glycine SDS gel, which 

was run with 225 V for 30 min. Subsequently, the gel was blotted onto a PVDF membrane using the 

Trans-Blot Turbo Transfer System for 10 min at 25 V. The membrane was washed with PBS-T three 

times for 5 min and then blocked with 5 % milk in PBS-T at room temperature for one hour. Afterwards, 

the membrane was washed for 15 min with refreshing of the PBS-T and incubated at 4 °C shaking with 

the primary antibody overnight. The next day, the membrane was washed three times for 15 min and 

followed by a one-hour incubation with secondary antibody. After washing for 15 min three times, the 

immunostained proteins were detected by using the ChemiDoc XRS+ system. 

3.13.3. Antibody establishment 

For the BCORL1 protein, new antibodies were generated against different epitopes of the protein 

and produced in rats by the monoclonal antibody core facility in the Helmholtz center in Munich. The 

sera of these rats were tested by Western Blot as primary antibody with a 1:10 dilution. The specific 

secondary antibody was diluted 1:1,000.  

3.14. Immunoprecipitation (IP) 

HEK293 cells have been transiently transfected with pEGFP-BCORL1WT or pEGFP-BCORL1T6 and 

cultivated for 48 h. Following this, the cells were washed two times with DPBS, scraped of the culture 

plates with lysis buffer (106-107 cells/ml) and homogenized five times for 30 s with the Minilys system. 

In between, the tubes were incubated on ice. The cell suspension was centrifuged at 12,000 x g and 4 

°C for 10 min. After transferring the supernatant to a new tube, it was blocked with 50 µl Protein G 

Agarose at 4 °C on a rotator for 1 h. The blocking agent was removed by centrifugation and transfer of 

the supernatant to a new tube. The precleared protein lysate was incubated with 10 µl Rat (IgG2a) 

anti-GFP 3H9 for 4-5 h and then 50 µl Protein G Agarose were added rotating overnight, both at 4 °C. 

The next day, the coupled protein-antibody-beads mixture was washed by centrifuging and incubation 

on a rotator in new wash buffer for 20 min. After two washes with the first two wash buffers, followed 

by a wash with wash buffer 3, 40 µl of SDS-loading dye were added. The suspension was directly 

denatured by 3 min incubation at 99 °C and centrifuged again for elution. The supernatant was directly 

used for immunodetection of proteins with the BCORL1 antibody supernatants. 
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3.15. Chromatin Immunoprecipitation (ChIP) 

3.15.1. Chromatin preparation  

To perform ChIP with cell lines, around 20 x 106 cells were seeded one day prior. For tissue-ChIP, 

100-400 µg liver or tumor tissue was cut into tiny pieces on dry ice. Cells, as well as the tissue pieces, 

were incubated with a RPMI solution, containing 10 % FCS, 1 % P/S, and 1 % formaldehyde at RT for 

15 min while shaking. In order to quench the crosslinking, glycine was added to a final concentration 

of 125 mM and incubated for 5 min at RT. Cells and tissue pieces were washed twice with pre-chilled 

PBS and put on ice. The cells were scraped off and collected in 1 ml cell lysis buffer in Eppendorf tubes 

on ice. The tissue pieces were incubated with 1 ml cell lysis buffer per sample in tubes for the Minilys 

homogenizer. The samples were homogenized 4 times for 30 s at maximum speed with breaks on ice. 

After an incubation for 10 min, all the samples were centrifuged at 0.3 x g and 4 °C for 10 min. The 

residual supernatant was discarded. 

3.15.2. Chromatin shearing 

500 µl Mnase reaction buffer were used to resuspend the chromatin pellet. To shear the 

chromatin, an incubation at RT with 100 U Mnase followed for 5-15 minutes depending on the cell line. 

Then EGTA was added to a final concentration of 20 mM and by putting the sample on ice to stop this 

reaction. After centrifuging at 0.3 x g (4 °C) for 10 min, the pellet was resuspended in nuclei lysis buffer 

supplemented with protease inhibitor. Nuclei lysis was accomplished by a 10 min incubation on ice. 

Afterwards, samples were sonified 3-5 times for 30 s (pulse on 0.8 s, pause 0.2 s) on ice. Subsequently, 

the sonified samples were centrifuged for 10 min at 17.0 x g (4 °C). The sheared chromatin in the 

supernatant was then was transferred into a new tube and stored at -20 °C until further use.  

3.15.3. Chromatin quality check 
To check the chromatin length, 5 µl chromatin were used to prepare an input control. 200 µl 

elution buffer, 4 µl 0.5M EDTA, 8 µl 1M Tris-HCl (pH 8), and 1 µl RNase A (10 µg/µl) were incubated 

with the input control at 37 °C for 15-30 min shaking (650 rpm). To reverse crosslinks, 1 µl proteinase 

K (10 mg/ml) and 8 µl 5 M NaCl were added overnight at 65 °C shaking (650 rpm). The next day, 500 µl 

ice-cold 100 % ethanol, 20 µl 3 M NaAc and 1 µl glycogen were supplemented for DNA precipitation 

for at least 10 min at -20 °C. Afterwards, the input samples were centrifuged for 15 min at 13,300 rpm 

(4 °C). 70 % ethanol was used to wash the pellet, which was then air-dried. 5 µl DNase/RNase-free 

water had been used to solve the pellet at 50 °C. To quantify the DNA, the Nanodrop1000 was used. 

To check the chromatin length, 500 µg DNA were resolved using a 1 % agarose gel containing EtBr at 

120 V. When the DNA length was between 600 Mb and 1 kb, the chromatin was blocked with 100 µl 

Protein G Agarose in dilution buffer containing protease inhibitor to final volume of 2 ml for 1 h shaking 
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at 4 °C. 100 µg chromatin per antibody were filled up to 1 ml with dilution buffer and incubated with 

a ChIP-grade antibody overnight at 4 °C shaking.  

3.15.4. Immunoprecipitation 

The next day, 60 µl Protein G Agarose were added to each sample for a 4-5 h incubation at 4 °C 

while shaking. Subsequently, the samples were washed once with low and high salt buffer, once with 

LiCl buffer and two times with TE buffer at 4 °C for 5 min shaking with centrifugation steps of 1 min at 

4.0 x g (4 °C) to pellet the Protein G Agarose. The beads were eluted using a 15 min incubation at 30 

°C shaking (1,250 rpm) with 100 µl elution buffer and the antibody-coated Protein G Agarose twice 

with subsequent centrifugation at 4.0 x g (4 °C) for 1 min and transferring the supernatant to a new 

tube. The eluted chromatin was digested afterwards with 1 µl RNase A (10 µg/µl), 8 µl 1 M Tris-HCl, 

and 4 µl 0.5 M EDTA for 30 min at 37 °C. 1 µl proteinase K (10 mg/ml) and 8 µl 5 M NaCl were used to 

reverse crosslinks overnight at 65 °C shaking (650 rpm). On the following day, the DNA was purified by 

using the Qiagen PCR purification kit.  

3.15.5. Evaluation of ChIP 

To test the ChIP efficiency, a small amount of DNA was used to do a qRT-PCR with a SYBR green 

based protocol with primers for known active and inactive loci. Samples were sent to the Helmholtz 

center for library prep and ChIP-sequencing. 

3.16. Sequencing 

3.16.1. Sanger sequencing 

Different BCORL1 exons were amplified by PCR (primers for BCORL1, see table 1) and evaluated on 

a 1 % agarose gel by gel electrophoresis. Using the Qiagen Gel extraction kit, the desired band was 

extracted and used for sequencing. Sequencing was done with the primers (Li3-1 to Li3-13, see Table 

1) in the LMU Sequencing Facility using the ABI BigDye Terminator kit on an ABI 3730 capillary 

sequencer. The CHROMAS v1.45 software was used to perform the sequence analysis. 

3.16.2. RNA sequencing 

3,000 ng of RNA were used to prepare a library with subsequent NGS sequencing by Illumina, 

performed in the institute of Human Genetics in the Helmholtz center. 

3.16.3. ChIP sequencing 

The ChIP DNA was checked for quality and quantity by nanodrop, gel electrophoresis, and 

bioanalyzer before performing a library preparation with subsequent NGS sequencing by Illumina in 

the Helmholtz center.  
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4. RESULTS 

4.1. Genetic investigation 

For a better understanding of childhood liver cancers, our lab performed an initial genome wide 

exome sequencing of 15 hepatoblastoma patient samples, 3 transitional liver cell tumor samples as 

well as the corresponding normal tissue samples [52]. Besides the most common recurrent mutation 

in CTNNB1, a frameshift mutation in the BCORL1 gene was identified in case T528. Hence, our lab 

Sanger sequenced 79 additional HB samples and 5 cell lines for BCORL1 mutations and found 3 further 

mutations (Table 3), which sums up to a 5 % mutation rate (performed by Dr. Alexander Beck and 

Sebastian Sigl).  

Table 3: BCORL1 mutations in hepatoblastoma samples. 

Case Mutation Protein 
T6 c.3001_3001delC  p. Q1001Rfs*49 
T4 c.3607G>A  p. G1203S 
HepT1 c.3765_3767delAGA   p.E1257del 
T528 c.4262_4262delA p.K1421Sfs*29 

Two mutations were frameshift mutations. Three of the mutations were located in front of the 

nuclear location signal (Figure 8). 

 

Figure 8: Mutations in the BCORL1 protein (CtBP-BS: C-terminal Binding Protein-Binding Site, NLS: Nuclear Location Signal, 

ANK: Ankyrin repeat, frameshift (fs)). 

All these mutations were introduced into the pEGFP-BCORL1 vector by site-directed mutagenesis 

and expressed in HEK293 cells (performed by Dr. Alexander Beck). Interestingly, only the Q1001Rfs*49 

mutation of case T6 resulted in a loss of function (LOF) mutation that led to BCORL1 exclusion from 

the nucleus (Figure 9). 

 
Figure 9: BCORL1 mutant EGFP-tagged plasmids expressed in HEK293 cells. 
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4.2. Protein level 

Due to the obvious LOF effect in case T6, we aimed to further investigate this on the protein level. 

Hence, we examined our hepatoblastoma, TLCT, and HCC cell lines for their BCORL1 expression by qRT-

PCR to identify a high expressing cell line for immunodetection. Expression levels of BCORL1 vary 

strongly between the cell lines. The HepT1 cell line, which has a BCORL1 mutation, exhibited the 

highest BCORL1 expression. The second highest expression showed the HUH7 cell line, followed by the 

normal liver tissue, which we have chosen for comparison. HUH6 and Hep3B cells showed rather low 

BCORL1 expression and HepG2 cells exhibited the lowest BCORL1 expression (Figure 10).  

 

Figure 10: BCORL1 expression relative to TBP in normal liver tissue (NL) and the different hepatoblastoma (HepT1 and HUH6), 

TLCT (HepG2) and HCC (HUH7 and Hep3B) cell lines. 

To detect the BCORL1 protein by immunoblotting, we selected the HUH7 cell line due to the high 

BCORL1 expression and their expression of the wildtype BCORL1 protein. Thus, we probed whole cell 

lysates with two commercially available antibodies, one from Thermo Scientific and the other from 

Acris Antibodies. These antibodies revealed multiple bands with molecular weights varying from 15 

kDa to 170 kDa. The molecular weight of wildtype BCORL1 is 189 kDa, but no band of this weight could 

be detected (Figure 11).  
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Figure 11: BCORL1 protein detection. Whole cell lysates of HUH7 wildtype cells were used for detection of BCORL1 with 

antibodies from Thermo Scientific (left) and Acris Antibodies (right). As loading control, ACTB was used. 

Unfortunately, the commercially available antibodies from Thermo Scientific and Acris Antibodies 

could not be used for further investigation of the mutated BCORL1 protein due to their inability to 

detect the wildtype BCORL1. Moreover, both antibodies were not specific enough for further 

experiments. Thus, our lab decided to order a custom-made antibody for BCORL1 detection that would 

detect the wildtype version of the protein, as well as the truncated version. Therefore, different 

antibody epitopes were manufactured for different domains of the BCORL1 protein near the N-

terminus in order to detect the wildtype and the truncated BCORL1 protein. The manufacturing was 

done by the Monoclonal Antibody Core Facility at the Helmholtz Center. 

4.2.1. Improvement of protein extraction 

Prior to testing the supernatants for BCORL1 detection, different lysis buffers were tested to 

enhance BCORL1 levels in the lysate. This was accomplished by detecting an EGFP-tagged wildtype 

BCORL1 (estimated size: 216 kDa) with a GFP antibody. Hence, HepG2 O1.1 cells were used to 

overexpress the EGFP-tagged wildtype BCORL1, because these cells contain no wildtype BCORL1 and 

are easily transfectable. Thus, unspecific binding of the GFP antibody with the wildtype BCORL1 protein 

could be ruled out. After visual proof of the overexpression (GFP positivity) by fluorescent microscopy, 

the cells were incubated with 1 µM MG-132 proteasome inhibitor before cell lysis and different lysis 

buffer compositions were tested. These lysates were used for SDS-PAGE and subsequent 

immunoblotting. Detection was performed using a GFP antibody (Figure 12). Buffer 1 and 5 exhibited 

the most intense GFP signal, but in direct comparison, buffer 1 has the more intense GFP to ACTB ratio. 

Thus, buffer 1 was used for further experiments.  
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Figure 12: Testing of different protein extraction methods. One exemplary immunoblot out of five, showing the detection 

of protein lysates of HepG2 O1.1 cells transfected with pEGFP-BCORL1WT with anti-GFP antibody. Protein lysates were 

obtained by using different lysis buffers containing a proteinase inhibitor cocktail and 1 µM MG-132 (1: 25 mM Tris, 150 mM 

NaCl, 1 % Triton-X 100, 1 % DOC, 0.1 % SDS; 2: 50 mM Hepes, 1 mM EDTA, 0,7 % DOC, 1 % NP40, 0.5 M LiCl; 3: 10 mM Hepes, 

2.5 mM KCl, 0.5 mM MgCl₂, 1 mM DTT, 0.1 mM EDTA; 4: 20 mM Hepes, 0.42 M NaCl, 1.5 mM MgCl₂, 1 mM DTT, 0.2 mM 

EDTA, 25 % Glycerol; 5: 5 mM PIPES, 85 mM KCl, 0.5 % NP40; 6: 1 % SDS, 10 mM EDTA, 50 mM Tris). As loading control, ACTB 

is shown.  

4.2.2. BCORL1 antibody screening 

For the antibody screening, the cellular supernatants were tested with immunoblotting and 

immunocytochemistry. For immunoblotting, whole cell lysates of HepG2 (Figure 13) or HUH7 (Figure 

14) wildtype, knockout and rescue cells were produced and used for SDS-PAGE with subsequent 

immunoblotting. These cells contain different versions of the BCORL1 protein. Wildtype cells should 

show a band with a molecular weight around 189 kDa, whereas the knockout versions both carry a 

truncated version of approximately 47 kDa. The rescue cells contain the 47 kDa version and additionally 

the EGFP-tagged BCORL1 of 216 kDa. Seventeen supernatants exhibited a difference in the detection 

between wildtype and knockout cells. Moreover, these blots did not show bands over the whole blot, 

so the supernatants were more specific than the rest, which either did not reveal any bands or the blot 

exhibited bands of all weights, like blot #22 and #68 (Figure 13). 
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Figure 13: BCORL1 detection by using supernatants of clone 1-83. For detection of BCORL1, immunoblotting of whole cell 

lysates of HepG2 wildtype (left lane) versus HepG2 O1.1 knockout cells (right lane) was performed against supernatants of 

clone 1-83. ACTB, which has a molecular weight of 42 kDa, was used as loading control. Circled numbers were used for further 

experiments. 

The second batch of supernatants (84-105) was tested on nuclear extracts of HUH7 cells due to 

their high BCORL1 expression (Figure 10). From the second batch, only #86 and #103 were chosen for 

further testing. #86 exhibited a clear difference in bands around the wildtype BCORL1 and showed a 

faint band in the knockout cells, which had approximately the calculated size of the truncated BCORL1. 
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#103 showed a slight difference between the different samples and was therefore further investigated 

as well (Figure 14). 

 

Figure 14: BCORL1 detection by using supernatants of clone 83-105. Immunoblotting of whole cell lysates of HUH7 wildtype 

(left lane), HUH7 O1.1 (middle lane) knockout and HUH7 O1.1 knockout, stably transfected with pEGFP-BCORL1WT plasmid 

against supernatants of clone 83-105. Histone 3, which has a molecular weight of 17 kDa, was used as loading control. Circled 

numbers were used for further experiments. 

Collectively, we identified twenty supernatants as possible candidates to detect BCORL1 protein. 

In a next step, we examined the ability of the candidate supernatants to detect the truncated BCORL1 

by immunofluorescence. We hypothesized that BCORL1 should not be able to translocate to the 

nucleus due to the missing NLS in BCORL1 knockout cells. As an internal control, HepG2 O1.1 knockout 

cells were transiently transfected with pEGFP-BCORL1WT plasmid and used for immunofluorescent 

labeling of BCORL1 with the candidate supernatants. For comparison, two commercially available 

antibodies (Acris Antibodies and Thermo Scientific) were also tested (Figure 15).  

As anticipated, pEGFP-BCORL1WT transfected cells showed localization of the exogenous EGFP-

tagged wildtype BCORL1 protein in the nucleus depicted in green, which was also detected by all 

candidate supernatants depicted in red (Figure 15). However, non-transfected HepG2 O1.1 cells that 

showed no green signal and should only show endogenous truncated BCORL1 protein predominantly 

outside the nucleus was only amenable for eight candidate supernatants as marked in Figure 15. 
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Figure 15: Fluorescent labeling of HepG2 O1.1 transiently transfected with pEGFP-BCORL1WT to detect BCORL1 with 

candidate supernatants. DAPI (blue) staining marks nuclei, GFP fluorescence (green) detects cells transfected with pEGFP-

BCORL1WT. Cy3 (red) shows the BCORL1 labeled by commercially available antibodies from Acris Antibodies and Thermo 

Scientific or the candidate supernatants. Circled supernatants detected plasmatic truncated BCORL1. 

In order to validate detection in a cell line known to express high levels of endogenous BCORL1, 

HEK293 cells were transfected with pEGFP-BCORL1WT or mutant pEGFP-BCORL1T6. Figure 16 shows the 

fluorescent labeling with three antibodies, which marked the BCORL1WT predominantly in the nucleus, 

whereas the truncated version was found in the cytoplasm.  

100 x 



RESULTS 

49 
 

 

Figure 16: Fluorescent labeling of HEK293 cells transiently transfected with pEGFP-BCORL1WT (left) or pEGFP-BCORL1T6 

(right). DAPI (blue) staining marks nuclei and the GFP fluorescence detects the transfected cells (green). Cy3 (red) shows 

BCORL1 labeled by the candidate supernatant or Thermo Scientific antibody. 

Since all three supernatants exhibited positive colocalization of the wildtype and truncated EGFP-

tagged BCORL1, the following step was to see their performance in an immunoblotting setup with 

transfected HEK293 cell. Hence, HEK293 cells were transfected with pEGFP-BCORL1WT or pEGFP-

BCORL1T6 and were used for preparation of whole cell lysates. These lysates were then used to perform 

an immunoprecipitation to exclude any unspecific binding of the supernatants to other proteins. The 

precipitated lysate was then used for SDS-PAGE with subsequent immunoblotting with candidate 

supernatants. Due to the insufficiency of supernatant #60 and #62 in detection of EGFP-tagged 

BCORL1, they were removed from the candidate list, which left #78 as the best candidate for 

production of a BCORL1 antibody (Figure 17). 

 
Figure 17: Immunoblot of immunoprecipitated BCORL1-EGFP from transiently with pEGFP-BCORL1WT (left lane) or pEGFP-

BCORL1T6 (right lane) transfected HEK293 cells. Detection with supernatant #60 (left), #62 (middle) and #78 (left) as primary 

antibodies. 

The use of supernatant #78 not only confirmed that the BCORL1 protein of case T6 is indeed 

truncated (Figure 17), but also clearly demonstrated that the truncated BCORL1T6 was not translocated 

to the nucleus (Figure 16) as predicted due to the loss of the nuclear location signal.  
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4.3. Creation of BCORL1 knockout cells 

To further investigate the consequences of BCORL1 LOF mutation, different approaches of BCORL1 

knockout were evaluated. Due to the fact that the LOF mutation still produces a truncated version of 

BCORL1, siRNA and shRNA based knockdown or knockout would not be able to reflect the patient 

situation. The existence of the truncated BCORL1 might have unknown effects. Thus, a CRISPR-Cas9 

mediated knockout of BCORL1 was performed. Therefore, two different guideRNAs (gRNA), targeting 

the middle and the end of the BCORL1 gene, were designed (Table 2, Figure 7). We used two different 

loci to exclude target dependent effects. Both gRNAs were designed to guide Cas9 to the designated 

loci for introducing a double strand break, leading to frameshift mutations and thus, truncated versions 

of BCORL1 (performed by Sebastian Sigl).  

4.3.1. CRISPR efficiency 

To evaluate the efficiency of the two gRNAs in the performed CRISPR-Cas9 mediated knockouts, 

multiple single clones of the HepG2 cell line were cultivated until DNA could be extracted and used for 

proofing the mutagenesis. Figure 18 displays the ratio of frameshift and in-frame mutations. 

Furthermore, it depicts remaining wildtype clones and clones where sequencing did not work or a 

double sequence indicated that the colony was not grown from a single clone. The use of gRNA1 led 

to frameshift mutations in 33 % of clones and gRNA2 resulted in frameshift mutations in 53 % of clones.  

 

Figure 18: CRISPR clones of HepG2 obtained using gRNA1 or gRNA2 (no seq: no sequencing possible, double seq: no single 

clone, WT: wildtype). 

In the exemplary HepG2 cell line, both gRNAs induced frameshift mutations in at least one third of 

cells undergoing CRISPR-Cas9 editing. Thus, both gRNAs could be used to generate CRISPR-Cas9 

mediated knockout clones from other cell lines.  
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4.3.2. Mutation analysis of knockout clones 

For further experiments, two clones of each cell line were picked. Mutation analysis was done by 

forward Sanger sequencing of genomic DNA (gDNA) and verified by reverse Sanger sequencing (Figure 

19). In Hep3B clone O1.1, HepG2 clone O1.1, and HUH6 clone O2.2 CRISPR-editing resulted in large 

insertions at the CRISPR locus. Both HUH7 clones obtained single deletions. For HUH6, two clones from 

gRNA2 were selected due to lethality of the CRISPR clones. HUH6 clone O2.1 showed a small deletion. 

Hep3B clone O2.5 and HepG2 clone B2.24 both presented with the same insertion of a single cytosine. 

All mutations caused frameshifts leading to a stopcodon shortely after and thus, loss of CtBP-binding 

site, nuclear location signal, and PUFD domain. 

 

Figure 19: Sequencing of the BCORL1 gene mutations in different knockout clones. The knockout was mediated by CRISPR-

Cas9 system using gRNA1 or gRNA2 for different loci in exon 4 of BCORL1. Arrows point at the location of insertion or deletion, 

brackets mark longer insertions. On the right side the corresponding protein changes of each mutation in BCORL1 are shown. 

To see if genome editing of BCORL1 is also reflected on the transcriptional level, RNA was 

extracted, reverse transcribed into cDNA and sequenced. Sanger sequencing of the cDNA verified all 

mutations found on the DNA level (not shown).  
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4.3.3. Effects of genome editing on protein level 

To investigate the effect of the CRISPR-Cas9 mediated mutagenesis on the BCORL1 protein, whole 

cell lysates of HepG2 knockout clone O1.1 and wildtype HepG2 cells were produced and used for SDS-

PAGE with subsequent immunoblotting with the above selected BCORL1 antibody (#78). In case of the 

wildtype, the detection of the immunoblot showed a band of 189 kDa, whereas the knockout exhibited 

a band of approximately 47 kDa (Figure 20A) as predicted [178]. This clearly confirmed that the CRISPR-

Cas9 induced mutation is also translated into a truncated BCORL1 protein. As the truncated BCORL1 

lacks the nuclear localization signal, it should not be translocated to the nucleus. To verify this theory, 

wildtype HepG2 cells and HepG2 knockout clone O1.1 cells were analyzed for the localization of 

BCORL1 by immunofluorescent staining. The immunostaining clearly showed that the wildtype BCORL1 

protein is exclusively located in the nucleus, whereas the truncated BCORL1 is located in the cytoplasm 

(Figure 20B). 

 

Figure 20: BCORL1 levels in HepG2 cells. A) Immunoblot with whole cell lysates of wildtype HepG2 (WT) and HepG2 clone 

O1.1 (KO) against BCORL1 (supernatant #78). The upper line shows the WT version of BCORL1, the second line shows the 

truncated BCORL1 version. B) Immunofluorescent staining of BCORL1 (#78) of HepG2 WT and HepG2 KO cells. DAPI (blue) 

marks the nuclei, Cy3 (red) marks BCORL1 detection. 

4.4. Effect of BCORL1 knockout on tumor biology 

The creation of CRISPR-Cas9 mediated BCORL1 knockout cell lines was the first step of investigating 

BCORL1. After ensuring that the wildtype version of the protein is actually lost, the knockout cell lines 

could be examined for changes in tumor biology. Hence, morphology of the knockout cell lines was 

compared to the wildtype cell line morphology. 

4.4.1. Morphology 

Cell morphology and growth are indicators for aggressiveness of a tumor and can have different 

causes [14-17]. Hence, our lab examined wildtype cells and two knockout clones of each cell line for 

their growth patterns using microscopy. The wildtype cell lines of the hepatoblastoma cell line HUH6, 

as well as the pediatric HCC cell line Hep3B, the TLCT cell line HepG2 and the adult HCC cell line HUH7 

exhibited a flat growth pattern. The colonies expanded in one layer until the cell patches closed the 
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gaps in between, so there was no more space. Neither the two knockout clones from the HUH6 cell 

line, nor the two clones from the Hep3B cell line changed their growth pattern upon knockout of 

BCORL1. However, the two knockout clones of the HepG2 and HUH7 cell line revealed a completely 

different growth pattern. All four knockout clone colonies started to expand horizontally and vertically. 

This growth pattern was continued after passaging the knockout clone lines. When grown until 

confluence, the vertical expansion of cells was even visible without a microscope. Thus, the knockout 

clones from the HepG2 and HUH7 cell line changed their growth pattern from flat to a three-

dimensional crowded or stem cell-like phenotype (Figure 21).  

 
Figure 21: Morphology of wildtype (WT) and knockout (KO) cell lines. From each cell line, one exemplary picture of the 

wildtype cell line (upper line) as well as two knockout clones is shown. In the right corner, the number of the clone is indicated 

(HB: Hepatoblastoma, pHCC: Pediatric HCC, TLCT: Transitional liver cell tumor, aHCC: adult HCC).  

Next, we examined more CRISPR-Cas9 treated HepG2 cells for their morphological changes. Of the 

42 single clones generated using gRNA1, about 40 % showed stem-cell like morphology. The use of 

gRNA2 led to 30 clones, of which 50 % exhibited stem-cell like morphology (Figure 22).  

Subsequently, the clones with stem-cell like morphology were sequenced for correlation of the 

morphological change and the knockout. The use of gRNA2 demonstrated a higher amount of 

frameshift mutations than gRNA1. Moreover, less gRNA2 clones revealed in-frame mutations, could 

not be sequenced, or revealed double sequences, indicating that this sample contained more than one 

clone. Unfortunately, the use of gRNA2 resulted in a small amount of wildtype clones, whereas gRNA1 

did not (Figure 22).  
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Collectively, these data demonstrate that most clones with stem-cell like morphology also carried 

truncating frameshift mutations in the BCORL1 gene (taking the clones out of the equation, which 

could not be sequenced or showed double sequences). This clearly corroborates the connection of 

BCORL1 and the observed morphological changes. 

  

Figure 22: CRISPR-Cas9 mediated knockout clones of HepG2 with stem-cell like morphology, grouped by the used gRNA (no 

seq: no sequencing possible, double seq: no single clone, WT: Wildtype, n=72). 

4.4.2. Cell proliferation 

Besides morphological changes, an important aspect of tumor behavior is cell proliferation. Hence, 

our lab performed cell viability assays of all four cell lines and the associated two BCORL1 knockout 

clones of every cell line to measure proliferation. This was done by seeding cells in equivalent amounts 

of wildtype and knockout cells and performing a MTT assay at indicated time points (Figure 23). 

In the HUH6 cell line, the wildtype cells showed the lowest increase in proliferation. Both knockout 

clones exhibit considerable higher proliferation rates. This situation is reversed in BCORL1 knockout 

clones from the cell lines Hep3B, HepG2, and HUH7. In all three cell lines, the wildtype has the highest 

proliferation rate. In Hep3B and HepG2 cells, the decrease in knockout clones from gRNA2 was more 

prominent than gRNA1 clones. The HUH7 cell line and the two HUH7 knockout clones showed the 

same proliferation pattern. Both knockout clones showed a similar cell viability curve, which was 

dramatically lower than the wildtype.  

The knockout of BCORL1 led to decreased proliferation levels in most cell lines. The biggest 

difference was observed in HepG2 B2.24 cells, which reached growth saturation at day 6 with 3-fold 

the starting cell number. HepG2 wildtype cells almost doubled in comparison to B2.24 (Figure 23). 
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Interestingly, the clones with stem cell-like morphology also demonstrated the most prominent 

decreases of proliferation rates.  

 
Figure 23: Proliferation rate of all liver tumor cell lines over 10 days. Wildtype cell lines are depicted in black and two knockout 

clones in blue and red (* p < 0.05, ** p<0.01, *** p<0.005, **** p<0.001). 

4.4.3. Clonogenicity 

For further investigation of changes in tumor biology, we subsequently examined the four cell lines 

and the two BCORL1 knockout clones of each cell line for changes in clonogenicity. Increased 

clonogenicity is a feature of stemness, meaning the stem cell characteristics of a certain cell. Therefore, 

wildtype and knockout cells were seeded in an equally low number and grown to observe how many 

colonies would grow from the seeded cells.  

The percentage of colony forming units increased significantly in all cell lines upon BCORL1 

knockout with the highest increase in HepG2 clone B2.24 (Figure 24). 

 
Figure 24: Colony formation assay of wildtype liver tumor cell lines (black) versus knockout (blue and red) clones of each cell 

line 10 days after seeding (* p < 0.05, ** p<0.01, *** p<0.005, **** p<0.001). Underneath are representative photographs of 

the culture plates. 

Taken together with the observed decreased proliferation rates of most knockout clones, these 

results indicate that the observed morphological changes are indeed connected to a stem cell 

characteristic growth.  
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4.5. Effect of BCORL1 knockout on gene regulation 

Since we observed definite effects on tumor biology upon BCORL1 knockout, we started to 

examine the knockout cells for effects on the molecular level. BCORL1 works as a transcriptional 

corepressor [179] and is part of the PRC1.1 [138], which regulates histone marks like the ubiquitination 

of H2A and thus, affects transcription [136]. Hence, we established the ChIP method in our lab to 

examine the effects of BCORL1 on the distribution of the transcriptionally activating histone mark 

H3K4me3 and the silencing histone mark H3K27me3. 

4.5.1. Establishment of ChIP 

To establish ChIP, positive and negative controls needed to be found for enrichments of H3K4me3 

and H3K27me3. Thus, different genes were tested for their expression in normal liver tissue and all 

wildtype cell lines (Figure 25). The housekeeping genes Actin Beta (ACTB) and Glyceraldehyde-3-

Phosphate Dehydrogenase (GAPDH) are normally highly expressed in tissues and cells. Therefore, they 

should show enrichments of H3K4me3. The normal liver tissue and all cell lines showed high ACTB 

expression. GAPDH exhibited lower expression than ACTB in all samples. As a negative control for 

expression and thus H3K4me3 enrichment, we selected the tumor suppressor gene Secreted Frizzled 

Related Protein 1 (SFRP1), which demonstrated a low expression (=0.511) in normal liver tissue and 

was silenced in the hepatoblastoma cell line HUH6 (=0.0002), the TLCT cell line HepG2 (<0.0001) and 

the HCC cell lines Hep3B (=0.007) and HUH7 (=0.0001).  

 

Figure 25: Relative mRNA expression of control genes. Expression of Actin Beta (ACTB), Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH) and Secreted Frizzled Related Protein 1 (SFRP1) normalized to TATA-binding Protein (TBP). 

According to the expression analysis, the housekeeping genes ACTB and GAPDH were chosen as 

positive control and SFRP1 was selected as negative control for H3K4me3 enrichment. Thus, the 

parameters for ChIP establishment were defined and ChIP could be performed on normal liver tissue 

as well as the wildtype cell lines. In every case, there was a clear H3K4me3 enrichment at the 

housekeeping gene loci as predicted by the expression analysis. The tumor suppressor gene locus 
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SFRP1 showed small enrichment in normal liver tissue confirming the low expression observed above 

and no or very low enrichment in the cell lines (Figure 26). 

 

Figure 26: H3K4me3 enrichments at control loci. Enrichments in normal liver tissue and the cell lines HUH6, Hep3B, HepG2 

and HUH7 at ACTB, GAPDH and SFRP1 loci, evaluated from qRT-PCR with ChIP-DNA as template in % of input. 

For the silencing mark H3K27me3, the housekeeping gene loci served as negative control and 

SFPR1 has been used as positive control for enrichment. Enrichment analysis by qRT-PCR confirmed 

low enrichments for the housekeeping gene loci in normal liver tissue and all of the four cell lines. The 

normal tissue, as well as the cell lines, presented by far the largest enrichment at the SFRP1 locus. The 

absolute quantity of ChIP-DNA enrichment pointed to HepG2 as the best proof for enrichment at 

SFRP1. However, the ratios between positive and negative loci emphasized that HUH7 and Hep3B cells 

showed the highest enrichment over negative loci (Figure 27). 

 

Figure 27: H3K27me3 enrichments at control loci. Enrichments of normal liver tissue and the cell lines HUH6, Hep3B, HepG2 

and HUH7 at ACTB, GAPDH and SFRP1 loci, evaluated from qRT-PCR with ChIP-DNA as template in % of input. 

In summary, the enrichments of H3K4me3 at the housekeeping gene loci proofed the high 

expression of these genes. Thus, ACTB and GAPDH work as positive controls for H3K4me3 ChIP. 

Moreover, the observed H3K27me3 enrichments of the cell lines at the SFRP1 locus corroborated the 

silencing of SFRP1. In normal liver tissue, the basal expression of SFRP1 could be linked to a low 

H3K4me3 enrichment, but also H3K27me3 enrichment. However, SFRP1 can be used as positive 

control for H3K27me3 enrichment. 
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4.5.2. Establishment of ChIP-seq 

The verification of H3K4me3 and H3K27me3 target loci allowed us to upscale the ChIP approach 

from single genes to the whole genome by subsequent sequencing of the enriched ChIP-DNA. Out of 

the global data we first examined the housekeeping genes ACTB and GAPDH, as well as the tumor 

suppressor gene SFRP1, in order to confirm the enrichments of H3K4me3 and H3K27me3 observed by 

qRT-PCR. The sequencing results of the ChIP-DNA were also compared to expression, derived from 

RNA sequencing results. The housekeeping genes showed high expression in the hepatoblastoma cell 

line HUH6, the TLCT cell line HepG2, and the HCC cell line HUH7. This coincides with a high level of 

H3K4me3, but almost no H3K27me3. The tumor suppressor gene SFRP1 exhibited a marginal 

expression in HUH6, but no expression in HepG2 and HUH7 cells. This was corroborated by very low 

H3K4me3 and high H3K27me3 levels (Figure 28). 

These results clearly presented similar patterns of the small scale qRT-PCR approach and the large-

scale global approach. Both corroborated the link of high expression with the enrichment of H3K4me3 

and marginal expression with enrichment of H3K27me3.  

 
Figure 28: RNA and ChIP-seq of the control genes ACTB, GAPDH, and SFRP1 in HUH6, HepG2 and HUH7 cells. Expression 

(black), trimethylation of H3K4 (blue) and H3K27 (red) was measured in reads per kilobase per million. 

  



RESULTS 

59 
 

4.5.3. Target genes of BCORL1 regulation 

In regard to the above observed effects of BCORL1 LOF on tumor biology, the next step was to 

identify novel target genes of BCORL1, responsible for these changes. Thus, after confirming the 

successful establishment of the ChiP-seq, global data was generated for one CRISPR-Cas9 mediated 

knockout clone of the hepatoblastoma cell line HUH6, the TLCT cell line HepG2, and the HCC cell line 

HUH7. The global RNA-seq and ChIP-seq (H3K4me3 and H3K27me3) data of wildtype cells and 

knockout cells were then used for identification of new target genes of BCORL1 regulation. 

4.5.3.1. CDH1 – the known target gene 

As the CDH1 gene has been described as a gene regulated by BCORL1 [140], we first looked at this 

locus to see if this is also true for liver cancer cell lines. In HepG2 cells, knockout clone O1.1 exhibited 

a drastic increase of CDH1 expression and H3K4me3 levels, but no changes of H3K27me3 levels were 

observed. The observation of HUH7 cells exhibited an increase of CDH1 expression upon knockout of 

BCORL1. H3K4me3 and H3K27me3 levels slightly decreased. HUH6 cells showed no increase in CDH1 

expression after knockout. H3K4me3 levels, as well as H3K27me3 levels, showed no changes upon 

BCORL1 knockout in the HUH6 clone O2.2 (Figure 29). Collectively, these expression and H3K4me3 

enrichment data demonstrated the reactivation of CDH1 upon BCORL1 knockout only in the HepG2 

cell line as Pagan [179] presented. This might also be the case for the HUH7 cell line, but not the HUH6 

cell line. 

 
Figure 29: Reactivation of CDH1 upon BCORL1 knockout in HepG2 and HUH7. Expression (black) and levels of H3K4me3 

(blue) and H3K27me3 (red), measured in reads per kilobase per million. 
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To see if these findings actually affect the CDH1 protein level, immunoblotting for CDH1 was 

performed with the three wildtype cell lines and two knockout clones of each cell line. The HepG2 and 

HUH7 knockout cells exhibited increased in CDH1 levels, which were more prominent in HUH7 

knockout clones. HUH6 knockout cells exhibited no changes (Figure 30). This data verified the effect 

on CDH1 protein levels in HepG2 and HUH7 cells and thus, the regulation of CDH1 transcription through 

BCORL1 in HepG2 and HUH7 cells. 

 
Figure 30: CDH1 protein levels of wildtype cells and BCORL1 knockout clones. For immunoblotting, whole cell lysates of 

wildtype HUH6, HepG2 and HUH7 cell lines and two BCORL1 knockout clones of each cell line were used to detect CDH1 levels 

with GAPDH as control. Quantification was calculated relative to GAPDH and expressed in fold change to wildtype. 

4.5.3.2. Candidate target genes of BCORL1 regulation 

After conformation of the known target gene CDH1, we aimed to identify new target genes of 

BCORL1 regulation. As the HUH6 cell line revealed completely different features upon BCORL1 

knockout compared to the other cell lines in terms of its inability to change morphology and to 

reactivate CDH1 expression, we compared the expression data of HUH6 wildtype cells with HepG2 and 

HUH7 wildtype cells and a normal liver tissue sample (N528) for genes, which are differentially 

expressed. Hierarchical clustering showed a close relationship between the HepG2 and HUH7 cell lines. 

Both cell lines also cluster close to the normal liver sample. The HUH6 cell line reveals a completely 

different pattern (Figure 31).  

Next, we used a 2.3-fold increase or decrease to filter out genes which are highly differentially 

expressed between HUH6 and the other samples (HepG2, HUH7 and N528) and found this to be the 

case for 8,437 genes. These genes were cross-examined for a relationship to BCORL1 and/or CDH1. 

Interestingly, CtBP2 as well as RING1B revealed to be one of these genes (Figure 31). CtBP acts as a 

transcriptional repressor on certain target loci like CDH1. This repression is partially mediated by 

BCORL1 [179]. The expression of CtBP2 in wildtype HUH6 cells at least 3.2-fold higher than normal liver 

tissue, wildtype HUH7, and HepG2 cells. RING1B is a component of the many PRC complexes [138]. 

BCORL1 is known to associate with PRC1.1 [142-145] through interaction with PCGF1 [152]. The 

expression of RING1B in wildtype HUH6 cells is at least 2.3-fold higher than the other samples. In 

wildtype HUH7 cells the expression of RING1B is highly suppressed (Figure 31). 
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Figure 31: Hierarchical clustering of differentially expressed genes between the normal liver sample 528 and the cell lines 

HepG2, HUH7, and HUH6. These genes were filtered by 3-fold change between HUH6 and the other samples and shown as a 

heat map with suppressed genes marked green and highly expressed genes marked red (N528: normal liver tissue of patient 

528, WT: wildtype, CtBP2: C-terminal binding protein 2). 

Considering the differential clustering and the morphological differences upon knockout of 

BCORL1, we decided to examine the expression data exclusively for 2-fold increased expression in 

HepG2 and HUH7 knockout clones. The two data sets were overlapped using a Venn diagram as shown 

in Figure 32.  

 
Figure 32: Venn diagram showing genes with 2-fold overexpression in HepG2 clone O1.1 compared to wildtype HepG2 cells 

(left) and in HUH7 clone O1.1 compared to wildtype HUH7 cells (right). The overlap exhibits the amount of genes, which 

showed a 2-fold increase of expression in both knockout clones.  
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Furthermore, we examined the ChIP-seq data of HepG2 clone O1.1 and HUH7 clone O1.1 to 

confirm if these 7,866 genes also show changes of H3K4me3 levels compared to the according 

wildtype. Hence, the both clones were cross-examined unaltered or increased H3K4me3 levels. Due to 

the low H3K27me levels in general, these were not used for filtering. The 2,547 genes, which are 

overexpressed and show unaltered or increased H3K4me3 levels in one cell line were used for 

functional annotation with the DAVID database. Figure 33 shows the functional annotation with Gene 

ontology (GO) terms related to biological processes or cellular compartments, selected for significant 

p-value and a false discovery rate less than 5 %. 

The analysis of GO terms revealed terms related to plasma membrane with the highest enrichment 

scores and gene counts. Other terms like cell adhesion, cell proliferation and cell division also showed 

high enrichment scores. Considering the observed effects of BCORL1 knockout on morphology, we 

examined genes belonging to the GO term plasma membrane, which are also associated with adhesion 

more closely (Figure 33).  

 
Figure 33: DAVID analysis of genes with increased expression and H3K4me3 levels upon knockout in HepG2 and HUH7. The 

enrichment score is calculated from -log10 (p-value). All samples have a false discovery rate <5 % and p<0.05. 

For further evaluation, five genes with the highest increases of expression and H3K4me3 levels in 

HepG2 clone O1.1 and HUH7 clone O1.1 were chosen. These genes were Cadherin 24 (CDH24), 

Endothelial Cell Adhesion Molecule (ESAM), Epithelial Cell Adhesion Molecule (EPCAM), 

Teratocarcinoma-Derived Growth Factor 1 (TDGF1), and Keratin 19 (KRT19). 

CDH24 belongs to the group of cadherins and is also linked to adhesion, but the GO term single 

organismal cell-cell adhesion. The combination of RNA-seq and ChIP-seq data revealed an increase of 

expression in HepG2 clone O1.1 and increased H3K4me3 levels in HUH7 clone O1.1. No changes of 

expression in HUH7 clone O1.1, H3K4me3 levels in HepG2 and H3K27me3 in both clones were 

observed (Figure 34). Even though expression was increased in HepG2 upon BCORL1 knockout, this 

pattern could not confirm CDH24 as target gene of BCORL1, due to the missing increase of H3K4me3 

levels. 
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Figure 34: RNA (black) and ChIP-seq results at the CDH24 locus in wildtype (WT) and knockout HUH6, HepG2 and HUH7 cells 

(KO) in reads per kilobase per million. The input control is depicted in green, H3K4me3 and H3K27me3 in blue and red. 

Furthermore, we checked the gene ESAM for changes upon BCORL1 knockout in the cell lines 

HepG2 and HUH7. As an immunoglobulin-like transmembrane protein [180], ESAM also belongs to the 

GO terms related to single organismal cell-cell adhesion and plasma membrane. All three knockout 

clones exhibited increased expression as well as increased H3K4me3 levels, when compared to the 

wildtype cell lines. H3K27me3 levels stayed unchanged. While the expression pattern of ESAM (Figure 

35) differed from CDH1 (Figure 29), we observed similar changes of H3K4me3 levels as CDH1.  

 
Figure 35: RNA-seq (black) and ChIP-seq results at the ESAM locus in wildtype (WT) and knockout (KO) HUH6, HepG2 and 

HUH7 cells. Input control is shown in green, H3K4me3 and H3K27me3 levels in blue and red. All data is depicted in reads per 

kilobase per million. 
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The third plasma membrane-related gene, is EPCAM, a transmembrane glycoprotein, which 

mediates cell-cell adhesion in an Ca2+-independent manner [181]. Observations of the sequencing data 

at the EPCAM locus exhibited huge expression increases in HepG2 and HUH7 knockout clones and 

increased H3K4me3 levels in HepG2 clone O1.1, but no changes in H3K27me3 levels (Figure 36). This 

expression and enrichment pattern resembles the one of CDH1 (Figure 29) and thus, suggests EPCAM 

as a target gene of BCORL1.  

 
Figure 36: RNA-seq (black) and ChIP-seq results at EPCAM locus in wildtype (WT) and knockout (KO) HUH6, HepG2 and HUH7 

cells. Input control is shown in green, H3K4me3 levels in blue and H3K27me3 levels in red. All data is depicted in reads per 

kilobase per million. 

The fourth gene related to the GO term plasma membrane, is TDGF1. Expression analysis of TDGF1 

revealed a high increase in HepG2 clone O1.1. H3K4me3 levels decreased in HepG2 clone O1.1, while 

HUH7 clone O1.1 exhibited a high increase in H3K4me3 levels. H3K27me levels did not show any 

alternations (Figure 37). 

After closer examination, the expression and enrichment pattern of TDGF1 did not meet the 

dictated criteria and thus, is no target gene of BCORL1. 
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Figure 37: RNA-seq and ChIP-seq results at TDGF1 locus in wildtype (WT) and knockout (KO) HUH6, HepG2 and HUH7. RNA 

levels are shown in black, input control in green, H3K4me3 levels in blue and H3K27me3 levels in red. All data is depicted in 

reads per kilobase per million. 

Finally, we sought out effects on expression of KRT19 upon knockout of BCORL1. As part of the 

Keratin family, KRT19 is also associated with the GO term plasma membrane. Moreover, it was also 

associated with cell proliferation in breast cancer [182]. We observed increased expression in HepG2 

and HUH7 knockout clones, as well as increased H3K4me3 levels in HepG2 clone O1.1. Moreover, 

H3K27me3 levels were strongly decreased in HUH7 clone O1.1 (Figure 38) in contrast to the other 

observed loci. 

 
Figure 38: RNA-seq (black) and ChIP-seq results at KRT19 locus in HUH6, HepG2 and HUH7 wildtype (WT) and knockout (KO) 

cells. The input control is shown in green, H3K4me3 levels in blue and H3K27me3 levels in red. All data is depicted in reads 

per kilobase per million. 
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KRT19 met the three criteria for being a target gene of BCORL1. The expression pattern, as well as 

the enrichment pattern for both histone methylations demonstrated that KRT19 is regulated through 

BCORL1 in HepG2 and HUH7. 

When looking into ESAM, EPCAM, and KRT19, one common term attracted our attention. All three 

genes are also connected to stemness [180, 183, 184]. This knowledge, combined with the stem cell-

like morphology, the decreased proliferation and the increased clonogenicity suggests BCORL1 as 

regulator of KRT19 expression and thus, stemness in HepG2 and HUH7 cells. In addition to the 

observed changes on RNA and chromatin level, we investigated the KRT19 protein level upon BCORL1 

knockout by immunoblotting. 

Both HepG2 and HUH7 clones revealed increased KRT19 protein levels. The HUH7 clone O1.1 

showed the highest increase in KRT19 protein level, which was followed by the HUH7 clone O2.33 

(Figure 39). These results perfectly resemble the expression data observed (Figure 38) above and thus, 

confirm KRT19 as a valid target gene of BCORL1. 

  

Figure 39: KRT19 levels in wildtype (WT) cell lines and BCORL1 knockout clones. For immunoblotting, whole cell lysates of 

HUH6, HepG2 and HUH7 cells were used. As the GAPDH loading control indicates, the HUH7 blot is the same as Figure 30. 
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4.6. BCORL1 rescue 

For the validation of the functional consequences of a BCORL1 LOF, rescue experiments were 

performed by transfecting EGFP-tagged BCORL1 wildtype into the knockout clones. Protein levels of 

BCORL1 were examined by immunoblotting using the BCORL1 antibody #78, as identified in 4.2.2. The 

two immunoblots clearly detected the EGFP-tagged BCORL1WT (216 kDa) and demonstrated the low 

endogenous BCORL1 levels (189 kDa). Moreover, both knockout cells revealed the loss of wildtype 

BCORL1 (Figure 40A). We also used immunoblotting to show again the inefficiency of the commercial 

BCORL1 antibody from Thermo Scientific to detect BCORL1 in liver cancer cell lines. Figure 40B clearly 

depicted the detection of some protein, but not BCORL1, and thus, corroborated the need for the 

custom-made antibody #78. 

 
Figure 40: BCORL1 protein levels of wildtype (WT) HepG2 and HUH7 cells, knockout clones O1.1 of both cell lines, and the 

respective rescue cells (R), which were generated by transfection with pEGFP-BCORL1WT. A) Immunoblotting was performed 

using the antibody #78 and ACTB as control. B) Detection using the commercially available antibody from Thermo Scientific 

on whole cell lysates (upper blot) and ACTB as control and nuclear extracts with H3 as loading control (bottom blot). 

4.6.1. Effect of BCORL1 rescue on morphology 

The observed changes in morphology and KRT19 expression observed upon knockout of BCORL1 

indicated a connection with a more stem cell-like behavior of these cells.  

Hence, we examined the BCORL1 rescue for effects on tumor biology after verification of the 

BCORL1 rescue on protein level. Cell morphology, as well as proliferation and clonogenicity, were 

examined. HepG2 and HUH7 knockout clones were transfected with a control plasmid (pEGFP-N1) or 

the EGFP-tagged BCORL1WT to examine the effects of BCORL1 restoration in the knockout clones. All 

clones exhibited a high expression of the according plasmids. Soon after fluorescent activated cell 

sorting, both HepG2 and HUH7 knockout clones showed the expected stem cell-like morphology. 

However, the four rescued clones exhibited a totally normal one-layered horizontal growth pattern. 

Even after extended culture periods, the rescue clones did not regain the stem cell-like morphology 

(Figure 41). Collectively, these results demonstrated the reversibility of the phenotypic alterations 

upon BCORL1 knockout.  
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Figure 41: HepG2 and HUH7 knockout clones and rescue clones. All knockout clones were stably transfected with either 

pEGFP-N1 (KO) as a control or pEGFP-BCORL1WT (Rescue). Growth pattern were analyzed by conventional microscopy (grey), 

the FACS efficiency and fluorescence intensity was analyzed by fluorescent microscopy (green cells). 

4.6.2. Effect of BCORL1 rescue on proliferation 

The successful rescue of the normal cell morphology by restoring BCORL1WT expression indicated 

that restoration of BCORL1 could also reverse the other effects of BCORL1 loss. Thus, proliferation was 

investigated as the next aspect of tumor biology, which can also be regulated by KRT19 expression 

[182].  

Upon knockout of BCORL1, we observed significant decreases in proliferation rates of HepG2 as 

well as HUH7 clones (Figure 23). The proliferation rate of all knockout clones from HepG2 and HUH7 

increased upon restoring BCORL1WT expression. The rescue of HepG2 clone B2.24 demonstrated a 

highly significant increase of proliferation until day 4, when it was matched by HepG2 clone B2.24 

(Figure 42). Together, these results showed the reversibility of the effect of BCORL1 knockout on 

proliferation. 
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Figure 42: Proliferation rate of knockout versus rescue. HepG2 and HUH7 knockout clones were stably transfected with 

pEGFP-N1 as control (blue) and the rescue (black) of these clones by transfection with pEGFP-BCORL1WT (* p < 0.05, ** p<0.01, 

*** p<0.005). 

4.6.3. Effect of BCORL1 rescue on clonogenicity 
The effects of BCORL1 knockout on morphology, as well as proliferation, proofed to be reversible 

upon restoration of BCORL1WT expression. A third aspect of tumor biology is clonogenicity, which was 

highly affected by the loss of BCORL1. Increased clonogenicity is a trait of stemness and might also be 

regulated by deregulation of the stemness associated gene KRT19. 

Upon knockout of BCORL1, all cell lines showed a high increase in colony formation (Figure 24). 

This situation was reversed by restoring the BCORL1WT expression. Upon rescue of BCORL1, all clones 

revealed significant decreases in colony formation (Figure 43). This is also clearly visible when looking 

at the culture plates underneath, which exhibit a high colony number in case of the rescue on the left 

and a low colony number for the knockout clone on the right. These results clearly demonstrate the 

inhibitory effect of BCORL1 restoration on clonogenicity and confirm that the effects of BCORL1 loss 

are reversible.  

 

Figure 43: Colony formation assay of knockout versus rescue. Knockout clones (blue) were transfected with pEGFP-N1 as 

control versus rescue (black) of each knockout clone transfected with pEGFP-BCORL1WT 10 days after seeding. Underneath 

are representative photographs of the culture plates (* p < 0.05, **** p<0.001). 
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Summing up, the investigation of tumor biology pointed out the effects of BCORL1WT loss. All these 

effects were demonstrated to be reversible by restoration of BCORL1WT expression. This concerned the 

induction of the stem cell-like morphology, as well as changes in proliferation and clonogenicity.  

4.6.4. Effect of BCORL1 rescue on gene regulation 

Considering the effects of BCORL1 knockout on gene regulation, we intended to see if these are 

also reversible upon reintroduction of the wildtype BCORL1. Thus, RNA of rescue HepG2 clone O1.1 

and rescue HUH7 clone O1.1 was sequenced and used for expression analysis. 

For selection of candidate target genes of BCORL1 regulation, the expression data of HepG2 and 

HUH7 cells was filtered for genes, which are reactivated upon BCORL1 knockout and exhibit decreased 

expression upon restoration of BCORL1WT expression. The cross-examination of these potential target 

genes pointed out 195 genes, which occurred in both groups (Figure 44). These 195 genes were 

subsequently used for DAVID analysis.  

 
Figure 44: Genes with 1.4-fold increased expression in knockout HepG2 (left) and HUH7 (right) clone O1.1 compared to the 

respective rescue and wildtype cells.  

Functional annotation revealed different GO terms with a highly significant p-value, an enrichment 

score >1 and FDR <1 % (Figure 45). The most striking GO term is plasma membrane, due to its 

identification in the DAVID analysis above (Figure 33). 

 
Figure 45: DAVID analysis of genes with increased expression in knockout clone O1.1 of HepG2 and HUH7 in comparison 

to wildtype and rescue cells. 

Out of the group plasma membrane, we examined KRT19 and the known target gene CDH1. 

Therefore, qRT-PCR was performed for the HepG2 and HUH7 clones and the respective BCORL1 rescue 
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cells. Both HepG2 and HUH7 clones showed decreased CDH1 expression upon restoration of BCORL1 

expression. The expression of CDH1 in HUH7 clone O1.1 was significantly decreased. Moreover, the 

restoration resulted in decreased KRT19 expression in all rescue clones. Most clones demonstrated 

significantly decreased KRT19 expression (Figure 46). 

 

Figure 46: Relative expression of candidate genes in knockout and rescue HepG2 and HUH7 clones measured with qRT-PCR 

and normalized to TBP. The EGFP-control (ctrl) cells were stably transfected wit pEGFP-N1, rescue cell lines with pEGFP-

BCORL1WT (* p < 0.05, ** p<0.01, ***p<0.005, **** p<0.001). 

In summary, the expression data verified the sequencing data and demonstrated the reverse effect 

of BCORL1 rescue on expression of CDH1 and KRT19 in HepG2 and HUH7 cells. Considering the 

reversible changes in morphology, proliferation, and clonogenicity, these results corroborated the 

regulation of stemness through BCORL1 via KRT19 expression. 

In regards of the above measured expression decrease of CDH1 and KRT19 expression, we also 

looked for changes on protein level in the knockout and rescue cell lines of HepG2 and HUH7. The 

immunoblotting demonstrated increased CDH1 and KRT19 protein levels in all knockout clones, which 

decreased upon restoration of the BCORL1WT expression. The increases in protein levels were higher 

in HUH7 clones, but the rescue proofed higher efficiency in reversing the effects of BCORL1 knockout 

in HepG2 clone rescue (Figure 47). 
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Figure 47: Protein levels of A) CDH1 and B) KRT19 in wildtype (WT), knockout and rescue (R) HepG2 and HUH7 cells. All 

samples were quantified for bands relative to the GAPDH loading control and expressed in fold wildtype (WT). As the GAPDH 

loading control indicates, the HepG2 blot A) is the same as Figure 30 and the KRT19 blots (B) are the same as Figure 39. 

In summary, the restoration of BCORL1WT expression showed that the effects of BCORL1 knockout 

on tumor biology, as well as gene regulation, are reversible. Rescue of BCORL1 in knockout clones by 

transfection with an EGFP-tagged BCORL1WT reversed the stem cell-like morphology of HepG2 and 

HUH7 knockout cells and increased proliferation. Furthermore, clonogenicity decreased. The known 

target gene CDH1, which was reactivated by knockout of BCORL1, demonstrated decreased expression 

after restoration of BCORL1WT expression. This was also the case for the newly identified target gene 

KRT19. The inverse effects of rescue and knockout corroborated the role of BCORL1 as a regulator of 

stemness through KRT19.  
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5.  DISCUSSION 

Even though hepatoblastoma is the most common childhood liver cancer, it is still poorly 

understood. The prominent theory of tumorigenesis is based on differentiation errors of immature 

hepatocyte precursors. Deregulated pathways like the WNT-, IGF2- and hedgehog signaling pathway, 

genetic syndromes, and/or mutations can contribute to development and progression of 

hepatoblastoma. Due to a very low mutation rate, the only recurrent mutations identified so far, are 

in CTNNB1, NFE2L2 and TERT genes.  

In this study, we identified BCORL1 mutations in 5 % of hepatoblastoma cases and uncovered the 

role of BCORL1 in gene regulation and the resulting tumor biology. Our correlative data suggests KRT19 

as a target gene of BCORL1, through which BCORL1 regulates stemness. Moreover, we demonstrated 

the reversibility of BCORL1 LOF mutation effects and thus, revealed the clinical relevance of BCORL1 

mutations.

5.1. Mutations 

With a mutation rate of 5 %, BCORL1 is number four of the most common mutated genes in 

hepatoblastoma. The four identified BCORL1 mutations are at different loci and result in different 

protein changes. The T4 and HepT1 mutation cause only an amino acid change and deletion without 

potential to cause damage to any known functional unit according to PROVEAN [185]. The T6 and T528 

mutation are both truncating frameshift mutations (Figure 8). Interestingly, both patients have been 

tested positive for the aggressive C2 subtype of the 16-gene signature, including strong overexpression 

of KRT19. The immature C2 pattern indicates a hepatic stem-cell like phenotype of these tumor cells 

[33]. The patients also suffered from metastases, thus were marked high-risk hepatoblastoma by 

SIOPEL [26, 30] and received chemotherapy. 

The T6 mutation is located between CtBP-binding site and the nuclear location signal (Figure 8). 

The CtBP-binding site is not affected, but the nuclear location signal, LxxLL motifs, ankyrin repeats, and 

PUFD domain get lost [140, 152]. The loss of the nuclear location signal denies BCORL1 the access to 

the nucleus and causes BCORL1 to accumulate outside the nucleus as shown in Figure 9. The BCORL1 

mutation in patient T528 only causes the loss of the PUFD domain [152] and one LxxLL motif, which 

normally facilitates the nuclear receptor recruitment [140, 186]. Loss of the LxxLL motif was shown to 

disturb IRF-1 dependent growth inhibitory activity in colon carcinoma and non-small cell lung 

carcinoma cell lines [187] and could also have an impact on growth of these tumors.  

Due to the loss of the PUFD domain in both cases, BCORL1 is also not able to bind PCGF1 anymore 

and thus cannot associate with PcG proteins to form PRC1.1 [138]. PCGF1 was previously reported to 

be required for ESC differentiation [188]. With the immature C2 pattern, the T6 and T528 tumor cells 

are suspected to have the hepatic stem-cell like phenotype [33]. Thus, the inability to bind PCGF1 and 
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thereby PRC1.1, due to the truncating mutations, could be the reason for the global deregulation, 

resulting in an immature pattern. 

For further investigation of the role of BCORL1 in hepatoblastoma, it was crucial to have a model 

system for BCORL1 loss. Accordingly, we constructed cell lines with a truncated version of BCORL1, 

mediated by CRISPR-Cas9. This truncated BCORL1 missed the PUFD domain, the nuclear location signal, 

as well as the CtBP-binding site. These knockout cells clearly demonstrated that the loss of BCORL1 

had dramatic effects. One of these effects is the complete morphological rearrangement, as suggested 

by the induction of a stem cell-like morphology in HepG2 and HUH7 cells (Figure 21). Depletion of 

PCGF1 alone is not able to cause any morphological changes [189], but depletion of CtBP can cause 

EMT deficiencies [154, 158]. The observed phenotypic changes are not the result of just one missing 

protein-protein interaction, but are probably caused by the inability of recruiting PRC1.1 and/or CtBP 

and thus, global rearrangements. 

Moreover, we observed decreased proliferation in HepG2 and HUH7 cells (Figure 23), coinciding 

with findings of decreased proliferation in case of CtBP depletion in fibroblasts [154, 190]. Contrary to 

these effects, the depletion of PCGF1 alone does not affect cell viability [189]. One of the potential 

target genes of BCORL1 that we identified is KRT19. Coincidently, a recent study showed that KRT19 

expression inversely regulates proliferation in breast cancer cells. Moreover, Ju et al., demonstrated 

that KRT19 silencing abolished colony formation [182]. The induction of a stem cell-like phenotype and 

the decreased proliferation upon BCORL1 LOF are accompanied by an increased clonogenicity in 

HepG2 and HUH7 cells (Figure 24). These stem cell characteristics could indicate that the knockout 

cells behave like embryonal/hepatic stem or progenitor cells. PCGF1, as well as CtBP2 were previously 

shown to be a crucial part of ESC differentiation [188, 191, 192]. The observed effects towards stem 

cell behavior indicate that this common role of PCGF1 and CtBP2 might be due to the combined 

regulation. Due to the truncating mutations, BCORL1 is not able to associate with the PRC1.1 and/or 

CtBP, leading to reactivation of target genes like KRT19, which then suppress proliferation and increase 

colony formation.  

However, none of these proteins directly regulates any of the observed effects on tumor biology 

but both are part of a PRC1.1. Hence, potential target genes of BCORL1 needed to be identified and 

examined for the ability to induce such effects. Furthermore, we addressed functional relevance by 

restoration of BCORL1WT expression and were able to reverse all the observed effects on tumor biology 

as well as gene regulation. Since our findings demonstrated that BCORL1 loss led to stem cell 

characteristics, we assume that tumor cells harboring BCORL1 mutations might also show higher 

resistance to chemotherapeutical treatment like other cancer stem cells [193]. Unfortunately, the 
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resistance provided by cancer stem cells makes using a higher dosage of chemotherapy pointless, but 

increases the therapeutic burden and thus, increases the occurrence of side and long-term effects.  

However, the findings within this study suggest future treatment options for hepatoblastoma 

cases with BCORL1 mutations by restoring the normal BCORL1 function. We demonstrated the possible 

reversion of the stem cell-like behavior of these tumor cells. Using this approach in a clinical setting 

could dramatically ease the burden of chemotherapeutical treatment.

5.2. Target genes of BCORL1 

The previously identified target gene CDH1 [140] is known to play major roles in cell adhesion upon 

interacting with β-catenin [194]. CDH1 expression is regulated by BCORL1, CtBP and PCGF1 [140, 195, 

196]. These proteins might act together in repressing CDH1 in form of the PRC1.1, but were also shown 

have an individual effect on CDH1 (Figure 29) [140, 195, 196]. Interestingly, we found in our functional 

annotation analysis other adhesion-related genes belonging to the functional group “plasma 

membrane”, such as CDH24, ESAM, EPCAM, TDGF1 and KRT19, which were highly enriched in the 

group of differentially expressed genes between knockout and wildtype cells (Figure 33). CDH24 

belongs to the group of cadherins [197], but is mostly uncharacterized [197]. Even though, CDH24 was 

previously associated with gastric and colorectal cancers [198], our results could not definitely confirm 

CDH24 as a target gene of BCORL1, because it did not meet all the criteria, meaning clearly increased 

expression and H3K4me3 levels and/or decreased K27me3 levels in the HepG2 and HUH7 knockout 

clones. Moreover, there are no previous reports of CDH24, being involved in any of the observed 

effects on tumor biology.  

Upregulation of the immunoglobulin-like transmembrane protein ESAM [180] was reported to be 

relevant in metastatic lung tumors. Cangara et al., connected the expression of ESAM to metastatic 

adenocarcinoma of the lung and the induction of migration, but did not report any effects on 

proliferation [199]. Moreover, high ESAM expression was associated with a subset of human leukemias 

[200] and increased expression was found in tumor vessels of head and neck squamous cell carcinoma 

and colorectal carcinoma [201]. Contrary to these reports, in case of the BCORL1 knockout, no 

induction of migration was observed, but reduced proliferation. These tumors differ strongly from the 

hepatoblastoma. Hence, we presume that the increased ESAM expression is not responsible for the 

decreased proliferation of the BCORL1 knockout cells. EPCAM mediates Ca2+-independent adhesion 

[181] and is known to promote an aggressive tumor phenotype in HCC [183, 202]. Moreover, EPCAM 

was associated with promotion of proliferation [33, 203, 204], contrary to our results. Parallel to the 

decrease of proliferation, we detected an increase in EPCAM expression upon BCORL1 knockout 

(Figure 23) and therefore proliferation might be regulated via other target genes or a byproduct of the 

induction of the stem cell-like features observed (Figure 21, Figure 24). ESAM and EPCAM are not 
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exclusively associated with the functional group plasma membrane, but also with stemness [183, 200]. 

Thus, the increased expression of ESAM as a result of BCORL1 knockout could induce increased 

clonogenicity (Figure 24) as it was shown for hematopoietic stem cells [200]. More convincingly is the 

relationship of EPCAM and stemness. Munz et al., demonstrated a clear effect on colony formation 

upon EPCAM knockdown [203]. Moreover, multiple studies describe a relationship between EPCAM 

and cancer stem cells [183, 184, 204-206]. Hence, EPCAM might be involved in the development of 

stem cell-like features upon BCORL1 knockout.  

Further investigation of plasma membrane-related genes exposed differential expression of TDGF1 

and KRT19, which are also related to stemness [205, 207]. The membrane bound TDGF1 [208] plays a 

role in normal stem cells as well as cancer stem cell populations contributing to early cancer 

progression [209, 210]. Moreover, TDGF1 expression is associated with poor prognosis and known to 

promote tumor resistance in HCC [211, 212]. Karkampouna et al., demonstrated the induction of a 

more aggressive phenotype with stem cell characteristics upon overexpression of TDGF1 in HepG2 

cells [211]. Unfortunately, TDFG1 did not meet all the criteria for being a valid target gene, even though 

we observed similar induction of stem cell characteristics, as mentioned before.  

Finally, KRT19 demonstrated to be a valid target gene of BCORL1. The expression pattern as well 

as the enrichment pattern of H3K4me3 and H3K27me3 changed as expected upon BCORL1 knockout. 

Coinciding with our findings, increased expression of KRT19 expression was previously associated with 

hepatobiliary cancers [183, 213] and a hepatic stem cell-like phenotype [33]. KRT19 revealed increased 

expression upon BCORL1 knockout as well as the other candidate genes, but also decreased expression 

upon restoration of BCORL1WT expression (Figure 46, Figure 47). Previously, KRT19 was reported to 

suppress proliferation and enhance colony formation in breast cancer [182]. These findings 

corroborate the theory that reactivated KRT19 expression due to BCORL1 loss is responsible for the 

observed effects on tumor biology. In line with other stem cell markers, KRT19 is highly expressed in 

hepatic progenitor cells and liver cancer stem cells [202, 214]. Hence, increased expression of KRT19 

could induce stem cell or progenitor cell characteristics upon knockout of BCORL1.  

Interestingly, the hepatoblastoma cell line HUH6 did not show any changes in morphology (Figure 

21) or CDH1 reactivation (Figure 29) upon BCORL1 knockout. The analysis of differentially expressed 

genes pointed out that the HUH6 cell line showed completely different expression patterns than all 

the other cell lines or even the normal liver tissue sample (Figure 31). Two genes connected to CDH1 

expression showed highly increased expression in HUH6 cells, compared to the normal liver tissue 

sample, HepG2 and HUH7 cells. These genes were CtPB2 and RING1B (Figure 31). CtBP is known to 

partially mediate CDH1 repression in a BCORL1-dependent manner [140], but most literature does not 

distinguish between CtBP1 and CtBP2 due to their closely related functions [162]. Recently, some 
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research groups have started to distinguish between their individual functions [192, 195, 215]. Thus, it 

might be possible that CDH1 repression is partially mediated by CtBP2 without BCORL1 [140]. More 

interesting is the differential expression of RING1B. BCORL1 is known to associate with the PRC1.1 

[142-145] and RING1B as component of the PRC1.1 complex, which negatively regulates other 

stemness related genes like NANOG in embryonal carcinoma cells and mouse ESC [216, 217]. We also 

found increased NANOG expression (data not shown) upon BCORL1 knockout. Hence, upregulation of 

this stemness-related gene upon BCORL1 knockout corroborates the theory that BCORL1 together with 

PCR1.1 regulates the expression of KRT19 and eventually also ESAM, EPCAM, and TDGF1 in 

hepatoblastoma cells. RING1B is not exclusively associated with PRC1.1, but is also part of other PRC1 

complexes [138]. One of these complexes is PRC1.2, which is defined by association with PCGF2. PCGF2 

was recently shown to compensate loss of PCGF1 due to its enzymatical engagement of the same 

target sites in the absence of the other [189]. Moreover, PCGF2 target annotation revealed terms such 

as epithelial cell differentiation and embryonic pattern specification in HEK293 [143], which include 

the indirect target CDH1. CDH1 expression is regulated through repression of the CDH1-repressors 

ZEB1/2 [218]. Hence, the highly increased expression of RING1B and the missing reactivation of CDH1 

and stemness-related target genes in HUH6 cell line (Figure 31) suggest that RING1B in fact represses 

these genes in association with PRC1.2. The above explained connections are depicted in Figure 48. 

 
Figure 48: Hypothetical relational network of BCORL1. 

5.3. Perspectives and future plans 

Within this study, a novel antibody for BCORL1 was established. This antibody should be used for 

conformation of the identified target genes by direct ChIP-seq. In addition, it would be of interest to 

further investigate the regulatory network of BCORL1. Luciferase assays could potentially bring up new 

insights on direct or indirect interactions of BCORL1 with certain target gene promoters. Furthermore, 

re-ChIP could determine which gene is regulated in association with CtBP1/2 or PRC1.1. Additional 

knockout studies of CtBP1/2 and/or inhibition of PRC1.1 and PRC1.2 members might also determine 

which other proteins are actually needed for BCORL1 regulation of target genes and how it would 
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affect for example the HUH6 cell line if PRC1.2 would not compensate BCORL1 and thus result in 

PRC1.1 function loss. 

Another aspect to be investigated is the observed tumorigenic effects. It is crucial to know if the 

identified target genes are actually responsible for the induction of the stem cell-like morphology, the 

decreased proliferation, and the increased clonogenicity. Hence, these target genes should be used for 

siRNA/CRISPR-Cas9 mediated knockdown/knockout to discover evidence on which target genes are 

responsible for these effects. In general, the newly identified as well as additional target genes of the 

ChIP-seq have to be investigated for their tumorigenic effects in hepatoblastoma.  

We showed that BCORL1 regulates the expression of stemness related target genes. It is known 

that cancer stem cells respond worse to chemotherapy or are even resistant to it. We presume that 

BCORL1 mutations can actually lead to cancer cells with stem cell properties. The two patients with 

truncating BCORL1 mutations were both identified as high-risk hepatoblastoma, due to metastases 

and the C2 subtype of the 16-gene signature. Thus, these patients suffer from intense 

chemotherapeutical treatment. Restoration of BCORL1WT expression could have beneficial effects for 

these patients by lessening the intensity of the chemotherapy. BCORL1 is also known to be mutated in 

other cancers, like AML or intracranial germ cell tumors. If BCORL1 induces stem cell-like behavior in 

these cancers as well, restoring BCORL1WT expression could also show perspectives for other patients. 
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6. SUMMARY/ZUSAMMENFASSUNG 

6.1. Summary 

With an incidence rate of one in a million children, hepatoblastoma is the most common pediatric 

liver tumor. The surgical resection indeed promises a cure, but is often not possible. In lots of cases, 

the tumor is identified in late stages and therefore only treatable in combination with chemotherapy. 

Due to the unknown origin of hepatoblastoma, targeted therapy is not possible. However, certain 

factors were identified, which influence development and tumor progression. Besides genetic 

syndromes and variations in cancer-associated signaling pathways like WNT, IGF2, or Hedgehog, these 

factors include sporadic mutations in CTNNB1, NFE2L2, and TERT.  

Exome sequencing of hepatoblastoma samples revealed one previously unknown mutation in the 

BCORL1 gene. BCORL1 is a transcriptional corepressor, which is associated with the PRC1.1 complex. 

Sanger sequencing of additional hepatoblastoma samples, TLCTs, and cell lines led to the identification 

of further mutations of the BCORL1 gene. For functional analysis, HEK293 cells were transfected with 

a plasmid containing an EGFP-tagged version of the mutated BCORL1. In turn, this revealed a complete 

loss of function in case of one mutation due to the inability to translocate to the nucleus and therefore 

emphasized the need for further investigation of the role of BCORL1 in hepatoblastoma.

Hence, hepatoblastoma cell lines were used for targeted mutagenesis of the BCORL1 gene by the 

CRISPR-Cas9 system in order to generate a loss-of-function model. Two clones of each cell line with 

mutations in different loci of BCORL1 were selected to exclude target-dependent effects. In order to 

detect the truncated version of BCORL1, a custom-made antibody was established due to the 

insufficiency of commercially available antibodies in hepatoblastoma cells. After successful 

establishment of the new antibody, the truncated BCORL1 and the missing translocation to the nucleus 

were detected. The mutagenesis had serious effects on tumor biology. Four out of eight clones showed 

induction of a stem cell-like morphology instead of a flat growth pattern. Furthermore, six of the clones 

demonstrated strong decreases in proliferation. Clonogenicity on the other hand strongly increased in 

comparison to the parental cell lines.  

To uncover the molecular context of these effects, the effects of BCORL1 knockout on gene 

regulation were examined by global RNA and ChIP sequencing. This led to the identification of the 

candidate target genes CDH24, ESAM, EPCAM, TDGF1, NANOG, and KRT19, which are associated with 

adhesion and/or stemness. KRT19 was also investigated on protein level in comparison to the wildtype 

cell lines and found to be increased. 

Furthermore, we investigated the reversibility of the effects on tumor biology and gene regulation. 

Thus, restoration of the wildtype BCORL1 expression was performed by transfection of the knockout 
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clones. The investigation of morphology, proliferation and clonogenicity not only demonstrated to be 

reversible, but also the examination of target genes. 

In summary, we demonstrated the role of BCORL1 in regulation of adhesion and stemness-related 

genes and identified associated target genes. Regarding tumor biology, functional loss of BCORL1 was 

associated with serious consequences, which proved to be reversible and thus might aid future anti-

tumor therapies. 

6.2. Zusammenfassung 

Das Hepatoblastom ist mit einer Häufigkeit von einem aus 1 Million Kindern der häufigste 

pädiatrische Lebertumor. Die vollständige chirurgische Resektion verspricht zwar Heilung, jedoch ist 

dies oft nicht direkt möglich. In vielen Fällen werden diese Tumore erst in späten Stadien erkannt und 

sind daher nur in Kombination mit einer Chemotherapie behandelbar. Da der Ursprung des 

Hepatoblastoms größtenteils unbekannt ist, kann leider keine gezielte Ursachenbekämpfung erfolgen. 

Allerdings sind Faktoren bekannt, die Entwicklung und Fortschreiten des Tumorwachstums 

beeinflussen. Zu diesen gehören neben genetischen Syndromen und Veränderungen bekannter Krebs-

assoziierter Signalwege wie WNT-/IGF2-/Hedgehog-Signalweg, sporadische Mutationen in den Genen 

CTNNB1, NFE2L2 und TERT.  

Ein Exom-Sequenzierprojekt von Hepatoblastomproben ergab neben den bereits bekannten 

Genen auch eine Mutation in dem BCORL1 Gen. BCORL1 ist ein transkriptioneller Ko-Repressor, der 

mit dem Polycomb Repressiven Komplex PRC1.1 assoziiert ist. Durch Sanger-Sequenzierung von 

weiteren Hepatoblastomproben, transitionellen Lebertumoren und Zelllinien konnten weitere 

BCORL1-Mutationen identifiziert werden. Um diese Mutationen funktionell zu untersuchen, wurden 

HEK293 Zellen mit Plasmiden transfiziert, die die mutierten Varianten von BCORL1 gekoppelt an ein 

GFP exprimieren. Dies zeigte den kompletten Funktionsverlust einer Mutation an, da diese Variante 

nicht mehr befähigt war, in den Nukleus zu translozieren und betonte die Dringlichkeit weiterer 

Forschung in Bezug auf die Rolle von BCORL1 in Hepatoblastomen.  

Daher wurden Hepatoblastomzelllinien mit Hilfe des CRISPR-Cas9 Systems einer Mutagenese 

unterzogen, um ein loss-of-function Modell zu kreieren. Für jede der vier Zelllinien wurden zwei Klone 

ausgewählt, welche an unterschiedlichen BCORL1-Loci mutiert waren, um Lokus-abhängige Effekte 

auszuschließen. Um die verkürzte Form von BCORL1 nachzuweisen, musste ein eigens generierter 

Antikörper etabliert werden, da die kommerziell verfügbaren Varianten für die Detektion in 

Hepatoblastomzellen leider unzureichend waren. Nach erfolgreicher Etablierung des neuen 

Antikörpers konnte die verkürzte Variante von BCORL1 und deren fehlende Translokation in den 

Nukleus gezeigt werden. Die Mutagenese bewirkte ebenfalls gravierende Effekte bezüglich des 

tumorbiologischen Verhaltens. Vier der acht Klone zeigten eine stark veränderte Morphologie. Anstatt 
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des normalen, einschichtigen Wachstums zeigten diese Klone die Induktion einer Stammzell-ähnlichen 

Morphologie. Darüber hinaus war in sechs von acht Klonen eine starke Reduktion der 

Proliferationsrate ersichtlich. Zudem stieg auch der prozentuale Anteil neu gebildeter Kolonien in allen 

Klonen stark an gegenüber den Wildtypzelllinien.  

Um die molekularen Zusammenhänge dieser Effekte nachvollziehen zu können, wurden die Folgen 

der BCORL1 Mutagenese auf Genregulation mittels globaler RNA und ChIP Sequenzierung untersucht. 

Hierbei wurden die möglichen Zielgene CDH24, ESAM, EPCAM, TDGF1, NANOG und KRT19 identifiziert, 

die mit Adhäsion und/oder stemness zusammenhängen. Als wahrscheinlichstes Zielgen wurde KRT19 

zusätzlich auf Proteinebene in den Knockout-Klonen im Verhältnis zur jeweiligen Wildtypzelllinie 

untersucht und erhöhte Mengen festgestellt. 

Des Weiteren wurde die Reversibilität dieser Effekte untersucht. Dafür wurde die Expression von 

Wildtyp-BCORL1 durch Transfektion der knockout Klone wiederhergestellt. Sowohl die Untersuchung 

von Morphologie, Proliferation und klonogenem Wachstum als auch die Untersuchung der Zielgene 

bestätigte die Reversibilität der beobachteten Effekte.  

Zusammenfassend wurde BCORL1 eine Rolle in der Regulation von Adhäsion- und stemness- 

assoziierten Genen zugeschrieben und dazu gehörige Zielgene identifiziert. Ein Funktionsverlust von 

BCORL1 wurde assoziiert mit dramatischen Folgen bezüglich Tumorbiologie, welche jedoch reversibel 

sind und daher die Möglichkeit einer zukünftigen Tumortherapie anbieten.  
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7. APPENDIX 

Table 4: List of BCORL1 supernatants 

# Supernatant Reactivity Secondary 
antibody 

1 4B2 R2A IgG2a 
2 5B1 R2A IgG2a 
3 5C3 R2A IgG2a 
4 5F10 R2A IgG2a 
5 6C11 R2A IgG2a 
6 6D4 R2A IgG2a 
7 6E4 R2A IgG2a 
8 6G1 R2A IgG2a 
9 7G6 R2A IgG2a 
10 8A8 R2A IgG2a 
11 8B12 R2A IgG2a 
12 8C9 R2A IgG2a 
13 8D11 R2A IgG2a 
14 8H11 R2A IgG2a 
15 9D7 R2A IgG2a 
16 10B8 R2A IgG2a 
17 10C10 R2A IgG2a 
18 1D1 R2A IgG2a 
19 12A5 R2A IgG2a 
20 12G8 R2A IgG2a 
21 13E10 R2A IgG2a 
22 14F7 R2A IgG2a 
23 16A4 R2A IgG2a 
24 16A11 R2A IgG2a 
25 18E10 R2A IgG2a 
26 19A4 R2A IgG2a 
27 20G1 R2B IgG2b 
28 3E6 R2A IgG2a 
29 1H3 R2C IgG2c 
30 1H2 R2C IgG2c 
31 17H7 R2C IgG2c 
32 19H7 R2C IgG2c 
33 1H1 R2C IgG2c 
34 1B11 RG1 IgG1 
35 1C8 RG1 IgG1 
36 3G11 RG1 IgG1 
37 4F9 RG1 IgG1 
38 9H11 RG1 IgG1 
39 13B11 RG1 IgG1 
40 15A5 RG1 IgG1 
41 1F11 R2C IgG2c 
42 2F4 R2C IgG2c 
43 4G1 R2C IgG2c 
44 5D9 R2C IgG2c 
45 5E11 R2C IgG2c 
46 8G9 R2C IgG2c 
47 11G10 R2C IgG2c 
48 18G2 R2C IgG2c 
49 19F3 R2C IgG2c 
50 19H9 R2C IgG2c 
51 1D8 R2C IgG2c 
52 2B5 R2C IgG2c 

53 2D2 R2C IgG2c 
54 3D10 R2C IgG2c 
55 9B3 R2C IgG2c 
56 9D1 R2C IgG2c 
57 13C2 R2C IgG2c 
58 17F12 R2C IgG2c 
59 19E11 R2C IgG2c 
60 20E2 R2C IgG2c 
61 3A8 R2C IgG2c 
62 3C9 R2C IgG2c 
63 4C8 R2C IgG2c 
64 5C5 R2C IgG2c 
65 7A5 R2C IgG2c 
66 11C10 R2C IgG2c 
67 12C11 R2C IgG2c 
68 16C8 R2C IgG2c 
69 18C8 R2C IgG2c 
70 20H3 R2C IgG2c 
71 2A5 R2C IgG2c 
72 3A9 R2C IgG2c 
73 5A8 R2C IgG2c 
74 9B12 R2C IgG2c 
75 10A8 R2C IgG2c 
76 10C5 R2C IgG2c 
77 13A7 R2C IgG2c 
78 15A4 R2C IgG2c 
79 18A12 R2C IgG2c 
80 23A11 R2C IgG2c 
81 20C2 R2C IgG2c 
82 5D1 R2B IgG2b 
83 12B3 R2A IgG2a 
84 22F3 R2A2C IgG2a, IgG2c 
85 9C3 R2A2C IgG2a, IgG2c 
86 5E2 R2A IgG2a 
87 11B3 R2A2C IgG2a, IgG2c 
88 17F2 R2A2C IgG2a, IgG2c 
89 23F6 R2a2c IgG2a, IgG2c 
90 20C9 R2A2C IgG2a, IgG2c 
91 14A8 R2C IgG2c 
92 13B7 R2A2C IgG2a, IgG2c 
93 5E4 R2A2C IgG2a, IgG2c 
94 20E11 R2B IgG2b 
95 2H10 R2A2C IgG2a, IgG2c 
96 13B5 R2A2C IgG2a, IgG2c 
97 8E6 R2C IgG2c 
98 1D8 R2B IgG2b 
99 18H9 R2C IgG2c 
100 11C11 R2A2C IgG2a, IgG2c 
101 12A3 R2A2C IgG2a, IgG2c 
102 18C6 R2A2C IgG2a, IgG2c 
103 14A6 R2A2C IgG2a, IgG2c 
104 19D5 R2B IgG2b 
105 13H7 R2A2C IgG2a, IgG2c 
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Table 5: GO terms of DAVID analysis of reactivated genes after BCORL1 knockout in HepG2 and HUH7 clone O1.1. 

Term Genes 

cell division 

ITGB3BP, SEPT3, CDC14A, CUZD1, FAM83D, ATAD3B, OIP5, MIS18A, CCSAP, KLHL21, TPR, CDCA5, CCNO, 
CCNA2, CDCA4, CDCA3, CDC7, CDC6, ARHGEF2, KIF11, DSN1, LIG1, CCNF, DYNLT3, LIG4, HEPACAM2, TACC3, 
MCM5, NCAPD3, TACC1, MAD2L1, SPAG5, ZWINT, CDK11B, ARL8A, FBXL7, MAD2L2, CKS1B, BRSK2, CDC73, 
CHEK2, RCC1, SPC24, SPC25, NCAPH, MAP10, PMF1-BGLAP, APITD1-CORT, NCAPG2, FIGN, BUB1, SKA3, 
SKA1, HELLS, NUDC, SEPT14, CENPF, CDC20, CDC25C, MISP, SMC2, CDC25B, CCNB1, FAM64A, CCNB2, 
PHF13, USP44 

positive 
regulation 
of GTPase 
activity 

RAB3GAP2, FGF9, FGF17, PREX1, RGL3, ARHGAP19, RASGEF1C, MCF2L, ARHGAP4, ARHGAP6, GRIN2B, 
GRIN2C, STARD8, RAPGEF6, SHC1, ARHGAP11A, EIF2B3, ERRFI1, EGFR, F11R, ARHGEF2, ARHGEF19, SIPA1L2, 
PSD3, ARTN, ACTN2, CCL4L2, FGF22, DEPDC1, ARHGEF9, CD40, FGF20, ARHGEF12, ARHGAP23, CDKL5, 
ELMO1, ARHGEF11, ACAP3, SBF2, JUN, PDGFRB, SRGAP1, FGD2, CCL3, CCL2, RAP1GAP, ERBB4, ASAP3, RCC1, 
GCGR, MYO9A, DENND2C, ADCYAP1, CCL25, DOCK2, CCL23, PLEKHG1, PLEKHG7, RASGRP4, RASGRP1, TEK, 
RASGRP2, PLEKHG5, CAMK2B, IL2RG, AGRN, RAP1GAP2, RASA3, INPP5B, FGD6, CAMK2A, CDC42EP3, 
ARHGEF10L, ARHGDIB, LAMTOR5, OBSCN, GNAO1, ARHGEF38, ARHGEF37, SRGAP2C, DOCK9, S100A10, 
DOCK8, VAV1, DOCK3, DENND1B, FZD10, RGS5, RGS6, HBEGF, RAP1A, RGS7, RGS9, ARHGAP10, BCAR3 

cell 
proliferation 

RETNLB, TSPAN1, CDC14A, E2F8, CUZD1, AURKB, FER, TXLNA, MCM10, PRDX1, TGFB2, FAM83D, KDM1A, 
GFI1B, FAM83A, INSIG1, TGFA, GNG2, ROS1, IL1A, OCA2, CYR61, EGFR, NANOG, KIF15, CD160, LIG4, TACC3, 
TACC1, GLUL, CHRM3, CDK11B, FBXL7, MDM4, EMP2, MELK, MIA, CKS1B, ACHE, ERBB4, CSF1, MAP4K1, 
TYMS, RASGRP4, BCL2, ENTPD5, BUB1, LHX9, NUDC, CSF1R, GNAT1, CRIP1, MKI67, NASP, CENPF, SKI, 
DACH1, CDC25C, EPS15, PPP1R8, H3F3A, MPL, LRP2 

cell 
adhesion 

ITGB3BP, NRP2, ATP1B1, MYBPC2, CLSTN1, PCDHA1, FER, MMRN1, KIAA1462, CD44, CSF3R, IZUMO1, 
KIRREL2, CYR61, F11R, ADGRE1, CLCA2, PTPRF, IZUMO1R, EFNB2, ACTN2, PTPRU, SIGLEC14, SSPO, SIRPA, 
CD36, HEPACAM, LSAMP, CX3CR1, CNTN3, CD226, EMP2, PARVB, ACHE, CCL2, CYP1B1, ITGB4, ITGA11, 
DSCAML1, ITGA10, CLDN10, SPOCK1, CDH4, VCAM1, SEMA5A, IGSF11, LAMB3, LGALS3BP, ITGB8, ITGB7, 
COMP, COL6A2, CD2, CD4, SSX2IP, COL8A1, SELPLG, APBA1, THBS3, HAPLN1, LPP, HCK, STAB2, COL16A1, 
TINAGL1, TINAG, ADGRG1, COL5A1, LAMA1, CASS4, EPHA8, CD58, TROAP, PDZD2, FEZ1 

basolateral 
plasma 
membrane 

KCNC2, FXYD2, ATP1B1, NKD2, CLDN19, ERBB4, LEPR, RHBG, DSTYK, EPCAM, P2RY6, NOD2, ATP2B4, DISP1, 
CD46, P2RY1, TEK, TGFA, DLG3, CEACAM5, MSN, DLG2, EGFR, MYO1A, LPO, SLCO4C1, SLC8A2, SLC22A7, 
SLC22A8, ANXA1, FRMPD2, STXBP3, ATP1A1, IL6R, ATP7A, KCNJ4, CA9, CHRM3, OTOF, SLCO1B1, ST14, 
SLC41A1, ANXA13, MAP7, SLC9A1 

apical 
plasma 
membrane 

KCNC2, ATP1B1, OCLN, LZTS1, DUOX2, DUOX1, DSTYK, AMOTL1, SLC52A3, EPCAM, SLC2A5, SLC2A2, TDGF1, 
TRPV5, RAPGEF6, ATP8B1, MSN, RAB27B, CHRFAM7A, DPEP1, USH2A, MUC13, KCNMA1, EGFR, PLD1, 
STXBP3, IL6R, ADRB2, CD36, PDGFRB, VAMP3, EMP2, CPO, SHROOM2, PKHD1, OXTR, NAALADL1, P2RY6, 
AKR1A1, TEK, P2RY1, SCNN1B, MUC1, GNAT1, MYO1A, SLC12A3, SI, ANXA1, ATP1A1, UPK3A, SLCO2B1, 
EPS15, TMEM114, ANXA13, AHCYL1, LRP2, SLC14A2, SLC9A1 

plasma 
membrane 

SLC9A9, SGMS2, CROCC, SLC9A2, GRIN3B, MYLIP, KIAA0319L, SLC52A3, GNG8, ADTRP, GRIN2B, GRIN2C, 
GNG2, ADAM8, GNG4, CDCA5, GNG5, ROS1, CDH24, CLCA2, PTPRF, PIK3CD, F8, CDHR4, COLEC12, LIG4, 
PTPRU, HLA-DQA2, SIRPA, MARK1, HLA-DQA1, ERMAP, SSTR5, SSTR3, SSTR1, F3, KIAA1524, ST14, ROR1, 
RYR2, MST1R, SLC30A10, PMP22, DOC2B, CD226, HLA-DRA, ADSS, LY6G6F, ERBB4, LY6G6C, KCNJ3, OR52N2, 
OR56B4, RAC2, KLKB1, AHNAK2, CDC42EP3, SLC28A1, TECTA, EPM2A, ATP11A, PCDH19, DVL1, KCNJ5, 
BTBD17, KCNJ4, ARF1, CD207, RGS5, RGS6, RGS7, SYTL2, RGS9, SYTL1, SLC9A1, GPR84, KCNAB3, ATP10B, 
KCNAB2, GLRA1, MARCKSL1, USH1G, GLRA3, GLRA2, UNC93A, NOD2, KISS1R, SMPDL3B, MAPT, TRPV5, 
GUCY1A2, SNAP47, DPEP1, STX6, CLMP, PIK3C2A, SLC22A7, PIK3C2B, SDK2, SLC22A8, IL6R, ELMO1, EPB41L3, 
MAST2, CLIC4, PLXDC1, CLIC6, KCNH6, GRIP2, KCNH8, TNFSF12-TNFSF13, THEM4, PARVB, KCNH4, RASD2, 
KCNH5, EXOC8, GPR63, FFAR2, CSF1, FPR1, IGSF11, PLEKHG5, PCSK9, SLC4A9, HTR3A, HTR3B, PHLDA3, 
HSD17B7, ACSL6, ABCA12, FLRT2, SLC8A1, CNST, SLC8A2, DGKK, STAB2, CAPN2, TMPRSS6, PLG, SDHB, 
WNT7B, PTP4A2, PRSS27, HBEGF, LRP8, LRP2, KCNC2, GNA14, KCNC1, ENAH, SLCO1B7, TSPAN1, PRC1, 
SLC44A3, SLC44A5, GRIK4, JAG2, SLC2A7, PACSIN1, SLC2A5, UNC5A, SLC2A2, TDGF1, SLCO1C1, FLVCR1, 
EGFR, KCND3, ACTN2, C1ORF210, ANKRD13B, C2CD4C, VAMP3, C2CD4A, PTGFRN, EDA, FLAD1, COBL, ACHE, 
ME3, FGR, FOLH1B, NKAIN1, CDC42SE1, ABCA3, RABGGTB, P2RY6, ECE1, P2RY1, TEK, HCN4, PRIMA1, SDF4, 
HCN3, EPB41, SYT12, TNFRSF13C, BFSP2, CACNA2D3, SLCO2B1, VAV1, CACNA2D2, CACNA2D4, EPS15, 
ATP7A, P2RX7, P2RX6, COA6, CACNA1G, SLC13A2, RHBDL2, TM4SF20, CACNA1C, DNAJB4, CACNA1D, 
SLC5A11, CACNA1B, MTNR1A, RHOJ, IGDCC4, CYB5R1, LEPR, PREX1, LRRC8D, DUOX2, GABBR1, DUOX1, 
MFSD2A, RHOV, RHOU, GPC5, PCDH1, FRMD6, SPINT2, SLC1A7, ANO3, ANO2, DLG3, ANO5, TREH, AHNAK, 
ANO9, DLG2, PTGER2, TRPM5, IZUMO1R, SLA2, SPINT1, STXBP3, EDAR, SIGLEC14, SLC7A11, LYPD6B, 
SIGLEC1, ADRB2, RIF1, CA9, CHRM3, STXBP6, LCK, SLC41A1, CNTN3, JAM2, PTAFR, DCC, CD101, APH1A, 
CLCNKA, C2CD4D, CLCNKB, OXTR, CDH4, ALDH3A1, VCAM1, NDC1, CDH9, HRH4, CD2, CD4, SCNN1B, SELPLG, 
INPP5B, SCNN1D, SECTM1, GNAO1, SLC12A3, ANXA1, TSPAN13, C4BPB, ASIC1, ANXA3, GDPD2, CYBB, 
SLCO1B1, MEP1B, SMPD3, FEZ1, SLC14A2, SLC36A1, RAB3GAP2, ATP1B1, EFNA1, LYPD8, EFNA3, S100A9, 
SYT6, CCT3, ATP2B4, CD44, CD46, RAB29, RAPGEF6, IZUMO1, NPSR1, HCAR1, F11R, CD3E, EFNB2, POLE, 
CD40, KRT19, CCR7, CD36, RAB19, SERBP1, CX3CR1, FER1L5, CCR2, HTR6, PLA2G2A, PDGFRB, EFNA4, RAB13, 
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ADD2, CLCN1, CATSPERD, ITGA11, STK17B, ITGA10, BDKRB2, GPR142, EPHB2, SEMA5A, EPHB6, ACE, AGRN, 
EMB, STX11, RAP1GAP2, FCHO1, GNAT1, CNKSR1, S100A16, GPR157, TRPC5, CELSR2, EPHA2, ABCG1, 
GPR153, NOTCH2, EPHA8, CD58, RIT1, NRP2, JPH4, STEAP4, ACVRL1, SUSD2, CDCP1, PCDHA1, KCNJ11, 
MCF2L, KCNIP4, SLC24A3, TGFA, FANCG, CAP1, CHRFAM7A, IFNLR1, KCNMA1, RXFP4, ADAM11, ATP4A, 
LY96, CD160, NFAM1, SLIT2, GRM4, GRM2, SEMA4A, PLA2G5, CLDN16, DHH, PRF1, SHROOM2, CA14, PRTN3, 
SLC39A10, CLDN10, SLC19A3, CLDN11, SLC19A2, GCGR, PLCL1, FAT3, CLEC2A, UGT8, FZD9, SI, CD1C, HSPG2, 
ATP1A1, GRIA4, FZD2, PTGFR, ITPR3, RAPH1, ITPR1, IYD, KREMEN2, GRIA1, TENM1, DRP2, TJP3, CIT, ABCC8, 
FAM126B, SLC22A17, OCLN, TUSC3, SLC6A1, HFE2, CNGB1, TLR5, ILDR1, VIPR1, TLR7, GHRHR, WNT1, 
SLC16A1, GP6, ZNF185, CSF3R, ORC1, SLCO4A1, PLXNB3, BASP1, RALGAPA2, LSAMP, LRP11, SLC38A1, EMP2, 
C1ORF186, SLC38A4, FXYD2, FXYD3, SNAP91, SSH1, HAX1, PAQR6, ITGB4, DSCAML1, PAQR7, EPHA10, TRH, 
PAQR5, KCNS3, PPP1R16B, SLC30A1, ITGB8, ITGB7, ENTPD3, MFAP3L, TBC1D30, CSF1R, SETDB1, SLCO4C1, 
LPP, CPNE7, ADGRG6, MISP, RAB33A, ADGRG3, CORO1A, RAP1A, CD79A, DIO1, FAM84B, PHEX, IFI6, RSC1A1, 
ARHGAP10, SLC5A5, TACR2, CXCR1, LGR6, ACVR1C, EPCAM, KCNQ4, VN1R2, TMEM59, PAK3, VN1R5, 
ATP8B1, ATP8B2, ESAM, SHC1, MSN, KCNQ2, KIRREL2, LTB, AKT3, ATP8B4, RAMP3, LAIR1, PARM1, COL23A1, 
RAB39B, PRKCG, CD83, BVES, CD82, CEMIP, MELK, PPP1R12B, RHBG, LINGO1, KRT5, RASGRP4, RASGRP1, 
RASGRP2, SLC39A8, IL2RG, CAMK2B, CAMK2A, ENO1, EDA2R, SPARC, GPRC6A, PARK7, KCNN4, KCNN3, 
KCNN2, SLC5A9, ANXA13, MPL, ATP8A1 

integral 
component 
of plasma 
membrane 

SGMS2, EFNA1, EFNA3, SLC52A3, ATP2B4, GRIN2B, CD44, GRIN2C, CD46, NPSR1, ADAM8, CLCA2, PTPRF, 
CD3E, PTPRG, TRABD2B, EFNB2, PTPRU, CD40, HLA-DQA2, HLA-DQA1, SSTR5, SSTR3, CD36, SSTR1, CCR2, 
CX3CR1, ST14, HTR6, ROR1, MST1R, EFNA4, CD226, HLA-DRA, CLCN1, BDKRB2, EPHB2, EPHB6, XG, EMB, 
SLC28A1, TRPC5, ATP13A2, ABCG1, EPHA2, NOTCH2, SEMA6C, EPHA8, CD58, TGFBR3, SLC9A1, GPR84, 
STEAP4, ACVRL1, GLRA1, GLRA3, GLRA2, PCDHA1, KCNJ11, KISS1R, SLC24A3, TRPV5, TGFA, CEACAM5, 
RXFP4, ATP4A, SLC22A7, SLC22A8, GRM4, GRM2, KCNH6, KCNH8, TNFSF12-TNFSF13, DEGS1, KCNH5, 
SLC39A10, FFAR2, FPR1, SLC19A3, GCGR, SLC19A2, BEST4, BEST2, FUT1, SLC4A9, HTR3B, FLRT2, SLC8A1, 
SLC8A2, LRRN4, TMPRSS9, CD1C, NLGN3, STAB2, ITPR3, PTGFR, OPN5, TENM1, TENM3, HBEGF, OPN3, 
KCNC2, SLC22A17, TUSC3, TSPAN1, SLC6A1, GRIK4, JAG2, KIAA1324, CNGB1, TLR5, VIPR1, IL17RD, TLR7, 
SLC16A1, SLC2A5, GP6, SLC2A2, SLCO1C1, CSF3R, FLVCR1, SLCO4A1, SLC22A25, PLXNB3, SLC38A1, EDA, 
SLC38A4, FXYD3, EPHA10, ABCA4, P2RY6, LAPTM5, TEK, P2RY1, B3GNT3, SLC30A3, HCN4, HCN3, CSF1R, 
MUC1, SLCO4C1, GPR137B, SLCO2B1, ADGRG1, MUC4, ATP7A, P2RX7, P2RX6, SLC13A2, CD79A, PHEX, 
SLC5A11, MTNR1A, SLC5A5, TACR2, LRRC8D, GABBR1, MFSD2A, LGR6, EPCAM, GPC5, PCDH1, ATP8B1, TIE1, 
RAMP3, PTGER2, ADGRE1, SLC7A11, CD83, ADRB2, CHRM3, CD82, JAM2, PTAFR, APH1A, CLCNKA, RHBG, 
CLCNKB, OXTR, TNFRSF8, CDH4, GPR3, PRRG2, C1QTNF1, SLC39A8, CD2, IL2RG, SCNN1B, SELPLG, FAM26D, 
AMHR2, SLC12A3, EDA2R, TSPAN13, ASIC1, SLC10A5, CYBB, FZD10, SLCO1B1, MEP1B, SLC5A9, MPL, SLC14A2 

cell surface 

KCNC1, ACVRL1, HFE2, SLC6A1, STRC, CLSTN1, GHRHR, EPCAM, WNT1, NOD2, KISS1R, GP6, CD44, GRIN2B, 
CD46, TDGF1, TGFA, ADAM8, ROS1, EGFR, RAMP3, CIITA, TMEM206, CLMP, SCUBE1, PLXNB3, FGF22, 
NFAM1, CD40, IL6R, HNRNPU, SLC7A11, SLIT2, ADAMTS7, CCR7, CD36, CLIC4, F3, PDGFRB, VAMP4, VAMP3, 
PTGFRN, MST1R, CD226, EMP2, HLA-DRA, KCNH5, ACHE, TSPEAR, ITGB4, DSCAML1, TIMP2, VCAM1, EPHB6, 
FOLR2, ITGB8, ITGB7, TEK, P2RY1, CD2, PCSK9, FUT4, TNN, HTR3B, CSF1R, FZD9, PLAT, BMP2, ANXA1, 
NLGN3, MXRA8, SPARC, ASIC1, GPRC6A, EPHA2, PLG, NOTCH2, FZD10, SRPX2, GRIA1, CD58, KCNN2, SFRP4, 
HBEGF, TGFBR3, MPL, SLC9A1 

cytoplasm 

KIFC2, CTHRC1, FHIT, XRCC3, CROCC, AIF1, AMOTL1, CCDC141, PPP1R1B, WDR77, PHTF1, PLS1, RPL11, 
ZNF664-FAM101A, ADAM8, CCNA2, SDR9C7, CDCA5, LRRC7, YARS, BCL2L14, MYLK3, SPAG1, ESPL1, SCYL3, 
LIG4, MARK1, ERMAP, BTBD8, GLUL, SSTR3, MSX1, WDR87, SSTR1, SPAG5, KIAA1524, ZWINT, ROR1, ARL8A, 
GRAP2, DOC2B, TRAPPC3, UNC13A, TP53TG3, RTP3, CPSF3L, CRTC2, DNAH10, ADSS, KIF4A, DNAH12, 
DNAH14, ACP6, PABPC4, DUSP10, FAM19A2, WARS2, DUSP12, RCC1, SH3BP5L, RAC2, CASZ1, AHNAK2, 
CDC42EP3, ARHGEF10L, NUDC, FH, SEPT14, MKI67, ARHGEF38, ARHGEF37, EPM2A, MYADML2, TINAGL1, 
GAS7, EMILIN3, RPS8, BTBD17, AIDA, AKNAD1, RGS5, MAP2, CDC42BPA, TGFBR3, RWDD3, SYTL2, MAP7, 
RGS9, BTBD11, SLC9A1, APOL5, GAS2L3, BACH2, LZTS1, KCNAB3, ELF3, KCNAB2, NUAK2, MARCKSL1, FGF9, 
TP63, RNF187, LRRC15, EIF2D, YBX2, DDI2, NOD2, MAPT, SPIB, ERRFI1, USH2A, CCDC28B, CDC7, CDC6, 
ARHGEF2, PIK3C2A, GMEB1, TNMD, KLHDC1, ARHGEF9, PI4KB, ARHGEF12, TTF2, LRRC26, ARHGEF11, 
ELMO1, EPB41L3, MAST2, KSR2, CLIC3, CLIC4, FANCD2, HIST2H2BF, CKAP2L, PLXDC1, CLIC5, RRM2, CLIC6, 
RRM1, C1QL1, TXK, USP24, CLOCK, SRGAP1, REPS2, EXOC8, FGGY, EEA1, TRIM10, ZNF175, TRIM11, NECAB1, 
TEKT1, PLEKHG5, BUB1, PCSK9, TEKT4, PER3, LYPLAL1, RASA3, ACSL4, HTR3A, PHLDA3, HPGDS, ABCA12, 
FLRT2, NBPF15, LRRC41, CAPN8, TRIM29, NBPF11, CAPN9, SRGAP2C, LMNA, DGKK, STAB2, CAPN2, MID1, 
LRRC49, KANK4, MT1X, CCNB1, WDR26, PTP4A2, TUBAL3, NLRP12, HSPA4L, MYCBPAP, DPYD, NR5A2, 
DUSP8, BARD1, CGB1, ENAH, TSPAN1, PRC1, TXLNA, ZIC1, TXLNB, IL11, PACSIN1, OIP5, MIER1, CDKN2C, 
SLC2A2, LIX1L, BPNT1, ASPM, MTUS2, EGFR, DFFA, SIX4, TACC3, TACC1, ANKRD13B, MIB2, SPATA17, HSPB3, 
FLAD1, SSC5D, ZNF438, ZNF436, ACTBL2, FGD2, CAMTA1, MEAF6, HMGB2, CCL3, FOLH1B, CDC42SE1, 
ARPC5, SESN2, ARNT, SESN3, OAZ3, PTK6, DDX3Y, TEK, TFDP3, FGD6, SDF4, ARHGDIB, MUC1, GINS1, 
MYO1A, LURAP1, EPB41, FDPS, NR4A2, ARMC4, BFSP2, BRIP1, DOCK3, EPS15, IKBKE, HDAC4, P2RX7, CASS4, 
PLK3, P2RX6, HDAC1, PLK2, BEX5, DDX59, CACNA1G, HIVEP3, FABP4, CACNA1C, PDZD2, HDAC9, DNAJB4, 
KIF22, CDC14A, REG4, PREX1, DEDD, LRRC8D, ARID4B, GABBR1, IFI44L, MFSD2A, FER, PRDX1, SPRY3, FRMD3, 
ACOT7, FRMD5, TRIM2, FRMD6, SPINT2, NBPF1, TRIM7, HEY2, NBPF3, DLG3, NBPF4, KDM5B, AHNAK, OCA2, 
NBPF8, PPIAL4C, KIF11, PPIAL4G, PPIAL4F, SLA2, SARS, PPIAL4E, PPIAL4D, TBCE, PADI2, TP53TG3B, IRF2BP2, 
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PRPF3, MBNL1, HUNK, RIF1, CAPN11, ATG4C, CA8, INPP4A, CA1, FHOD1, KMT2A, BRSK2, FPGT-TNNI3K, 
CDC73, EGLN1, IVNS1ABP, ALDH3A1, ESPN, NDC1, FIGN, SAPCD2, DCLK3, PLEKHO1, GPSM2, NFATC4, 
CALML6, INPP5B, NFATC1, EXO1, RSG1, TMC8, ANXA1, DACH1, SMC2, FUCA1, ANXA3, CDC25B, ACTL8, 
GDPD2, FZD10, PPP1R9A, CCDC110, CCDC116, ID4, KDM4A, ID3, FEZ1, FAM110A, CTTNBP2NL, ITGB3BP, 
RAB3GAP2, TARS2, ALOXE3, S100A7, NELL1, DZIP1, PRR11, BBX, KPRP, DNAJB13, IARS2, CCT3, KDF1, CD44, 
RAVER2, RBM8A, MIS18A, RAB29, NPSR1, RARB, EIF2B3, RNF220, EMX1, UNC5CL, UBR4, WNK3, CD40, 
RSPH9, VASH1, TMEM27, TXNDC2, HEPACAM, CAMK4, PIAS3, SERBP1, PGM1, CCR2, PDGFRB, PDE4DIP, 
FBXL7, RAB13, PRDM1, EPS8L3, MAD2L2, KIF26B, NEK7, TADA1, ASAP3, MYT1, POMC, GPR142, CAPZB, 
TIPRL, TEX40, FAM65B, FAM65C, DNAAF3, CEP170, FBXO6, SKA3, AGRN, RAP1GAP2, WDHD1, PLAT, GNAT1, 
CRIP1, MSTO1, S100A16, TRPC5, TP53BP2, NOTCH2NL, SMYD3, CHI3L1, EPRS, CDC20, CELSR2, SKI, CRYZ, 
S100A13, TULP2, OASL, DESI2, FAM64A, SRPX2, SFRP4, PLA2G4F, CHAF1B, SASH3, ADAR, CPEB4, TTLL6, 
DMAP1, GLI3, MCF2L, KCNIP4, CKB, AP3B2, FANCG, CCNO, IP6K3, ZCCHC11, LPGAT1, DSN1, ZNF354C, IQCJ-
SCHIP1, HERC6, SLIT2, CHRDL2, CDK11A, CDK11B, SNRNP40, FCRLB, RAB11FIP1, GADD45A, SGCA, 
SHROOM2, CLDN19, CLDN10, SFN, PLCL1, PEX19, STRIP1, MEFV, TOE1, AGT, BCL2, AGO1, AGO3, AGO4, 
STPG1, FZD9, BCAS1, NOS1, IPO13, NASP, BIRC7, FZD2, PTGFR, ITPR3, RAPH1, SNAI1, AFP, SPANXB1, TEX15, 
ILF2, PPP1R8, TENM1, PBX1, SEPT3, ALDH1L1, APOBEC1, CRABP1, TRIM50, DSTYK, APOBEC3H, MCM10, 
TLR7, CALB2, FOXO6, APOBEC3C, GHRHR, APOBEC3D, GSTM2, WNT1, GSTM3, GSTM4, ZNF185, TRIM45, 
ATOH8, C1ORF198, ORC1, CEP85, UBIAD1, BASP1, CDKL5, RALGAPA2, CDKL1, FAM72A, FAM72B, LYST, 
CELF3, AKAP6, RAD18, MAP7D1, EMP2, CEP97, SSH1, PKHD1, SSH2, MAP4K1, LIN28A, SOX8, CMPK1, RRAGC, 
KCNS3, PEF1, PSMB4, GCKR, TRIM67, SLC30A1, PSMB2, HECTD3, UBAP2L, SLC30A3, MFAP3L, RUNX3, 
SLC30A7, SETDB1, LPO, LPP, EEF1A2, CPNE7, DMP1, LCE2C, MUL1, BRCA2, AK5, TRIM62, AK9, RIMKLA, 
CORO1A, PPIH, LCE1E, LCE1F, TROAP, MTR, GLMN, RAP1A, AHCYL1, CD79A, FAM84B, PPP1R14D, SULT2B1, 
FAM83D, ARHGAP4, ARHGAP6, FAM83A, PAK3, CAMSAP2, ACOT11, KLHL21, PSMD4, YRDC, MSN, TPR, AKT3, 
KLHL20, PARM1, DYNLT3, MCM2, NLRP3, EML6, PANK4, CTH, HIPK1, TPPP, HIPK2, PERM1, CEMIP, KLHL11, 
NANOS3, MOB1B, CNN3, PPP1R12B, FOXM1, KIAA0101, TNFRSF8, SPOCK1, PALMD, EXOSC10, TYMS, KRT5, 
HJURP, SH3GLB1, KRT7, POU2F3, POU2F2, PYCARD, TGM3, MAGEA11, H1FOO, ZC3H12D, ENO1, TXNIP, ICA1, 
UBE4B, FRMPD2, CENPF, SPARC, BAALC, GORAB, PARK7, SH3BGRL, MICALCL, SYDE2, IRF5, KCNN3, SP4, SP7 
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