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1 Summary

Deciphering the role of gut microbiota in health and disease is an emerging field of research,

addressing how the immune system regulates the microbiota and how this shapes host im-

munity. To study microbial-host interactions we used a CD40-mediated colitis model where

CD11c+ dendritic cells (DCs) receive a constitutive CD40 signal.

We previously published that DC-LMP1/CD40 animals show a strong reduction in CD103+

DCs in mesenteric lymph nodes and colon which leads to an impaired generation of

ROR𝛾t+Helios- iTregs and an increase of inflammatory IL-17+IFN-𝛾+ Th17/Th1 and

IFN-𝛾+ Th1 cells. This breakdown of intestinal tolerance leads to early onset of fatal colitis in

DC-LMP1/CD40 mice. However, crossing these mice onto Rag1−/− background or treatment

with antibiotics could rescue them, indicating that colitis development in DC-LMP1/CD40

animals depends on T or B cells as well as on microbiota.

In the present work, we confirmed that CD40-signaling in DCs is activating the non-canonical

NF-𝜅B pathway that is central for the pathogenesis in this colitis model. We further studied

the impact of microbiota on disease development. We observed dysbiosis concomitant with

"blooming" of Enterobacteriaceae in DC-LMP1/CD40 mice as a hallmark of colitis. Further,

we could detect increased IgA-levels and bacteria highly coated with IgA in the feces as well

as elevated IgA- and IgG-levels in sera from DC-LMP1/CD40 animals. Serum antibodies

from transgenic animals are bacteria-specific and we identified a protein from Helicobacter

hepaticus (Hh) as specific antigen. Finally, transgenic animals which were rendered Hh-free

showed a strong delay in colitis onset, less morbidity and remarkably improved survival rates.

In contrast, the reinfection of transgenic animals with Hh led to a rapid disease onset and

the generation of inflammatory IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells in the colon.

Thus, the present work highlights the impact of gut microbiota on modulating the host im-

mune response and its concomitant role on disease onset, progression and outcome in the

CD40-mediated colitis model.



2 Zusammenfassung

Die Entschlüsselung der Rolle der Darmmikrobiota in Gesundheit und Krankheit ist ein

aktuelles Forschungsfeld, das sich mit Wechselwirkungen zwischen Immunsystem und Mikro-

biota auseinandersetzt. Für die Untersuchung der Mikrobiota-Wirt-Interaktionen wurde ein

CD40-vermitteltes Colitis-Modell herangezogen, in dem CD11c+ Dendritische Zellen (DCs)

ein konstitutives CD40 Signal erhalten.

Wir haben hierzu bereits veröffentlicht, dass DC-LMP1/CD40 Tiere eine starke Reduzierung

der CD103+ DCs in mesenterischen Lymphknoten und im Colon zeigen, die zu einer

reduzierten Produktion von ROR𝛾t+Helios- iTregs und einer Vermehrung von inflamma-

torischen IL-17+IFN-𝛾+ Th17/Th1 und IFN-𝛾+ Th1 Zellen führt. Diese Beeinträchtigung

der intestinalen Toleranz resultiert in einem frühen Ausbruch der Colitis in DC-LMP1/CD40

Tieren, die tödlich verläuft. Colitis trat nicht auf, wenn die Mäuse auf den Rag1−/− Hin-

tergrund gekreuzt oder mit Antibiotika behandelt wurden, was darauf schliessen lässt, dass

die Entstehung von Colitis in DC-LMP1/CD40 Tieren von T oder B Zellen sowie von der

Mikrobiota abhhängt.

In der vorliegenden Arbeit konnten wir bestätigen, dass das CD40 Signal in DCs den

nicht-kanonischen NF-𝜅B Signalweg aktiviert, der für die Pathogenese in unserem Colitis-

Modell unerlässlich ist. Des Weiteren untersuchten wir den Einfluss der Mikrobiota auf

die Krankheitsentwicklung in dem CD40-vermittelten Colitis-Modell. In DC-LMP1/CD40

Mäusen stellten wir eine für Colitis charakteristische Dysbiose mit einhergehendem "En-

terobacteriaceae blooming" fest. Zusätzlich konnten wir erhöhte IgA-Level und hochgradig

IgA-dekorierte Bakterien in den Exkrementen sowie erhöhte IgA- und IgG-Werte in Seren von

DC-LMP1/CD40 Tieren detektieren. Zudem waren Serum-Antikörper von transgenen Tieren

spezifisch für Bakterien und wir identifizierten ein Protein des Helicobacter hepaticus (Hh)

als spezifisches Antigen. Schließlich zeigten transgene Tiere, die von Hh befreit wurden, einen

stark verzögerten Colitis-Ausbruch, eine verringerte Morbidität sowie beachtlich verbesserte

Überlebensraten. Im Gegensatz dazu führte die Infektion transgener Tiere mit Hh zu einem
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schnellen Krankheitsausbruch und Generierung inflammatorischer IL-17+IFN-𝛾+ Th17/Th1

und IFN-𝛾+ Th1 Zellen im Colon.

Somit stellt die vorliegende Arbeit den Einfluss der Darmmikrobiota hinsichtlich der

Modulierung der Wirtsimmunantwort und ihrer damit einhergehenden Rolle in Bezug auf

den Krankheitsbeginn, -verlauf und -ausgang in unserem CD40-vermittelten Colitis-Modell

heraus.



3 Introduction

3.1 The immune system

The immune system protects the body from invading pathogens like bacteria and viruses

while self-proteins and beneficial bacteria have to be tolerated. To meet this challenge, the

immune system has to discriminate between self and non-self. The immune system consists

of two interlocking arms, the innate immunity as first line of defense followed by the adaptive

immune response, providing immunological memory.

The innate immune system is activated immediately after infection when membrane bound

pattern recognition receptors such as Toll-like receptors (TLRs) bind pathogen-associated

molecular patterns expressed by invading microbes. These receptors show a rather small and

less diverse repertoire that is germ-line encoded. Innate immunity further includes defensive

barriers (skin, mucus), different cell types releasing pro-inflammatory cytokines (macrophages,

natural killer cells) or acting as phagocytes (macrophages, neutrophils, monocytes), and

various proteins (complement proteins, chemokines, defensins).

As second line of defense, adaptive immunity is acting antigen-dependent and antigen-specific

to eliminate pathogens sufficiently. Antigen presenting cells (APCs) like dendritic cells (DCs)

(but also B cells, macrophages, fibroblast and epithelial cells) are considered as interface

between innate and adaptive immunity as they take up antigen from invading pathogens

and present peptides on their surface via major histocompatibility complex (MHC) molecules

recognized by the appropriate T cell receptor (TCR) on T cells. T cells representing the cell-

mediated response are distinguished into cytotoxic T cells (CD8+ T cells) or T helper (Th)

cells (CD4+ T cells). While CD8+ T cells activated by peptide-MHC class I (MHCI) complex

destroy infected cells by the production of perforin, granzyme or granulysin, Th cells activated

by peptide-MHC class II (MHCII) secrete cytokines to attract other cells or activate B cells.

In contrast to T cells, B cells bind native antigen directly on their B cell receptor (BCR)

without the need of presentation on MHC molecules by APCs. Upon receiving signals from
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Th cells, B cells will undergo differentiation into antibody-secreting plasma cells or memory

B cells, representing the humoral response. On the one hand, secreted antibodies bind to

pathogens for neutralization, complement activation or opsonization to finally eliminate the

pathogen. On the other hand, memory B cells are generated to enable appropriate responses

upon repeated contact with the same pathogen.

The opportunity to provide a huge repertoire of TCRs and BCRs with high specificity and

affinity is achieved by V(D)J-recombination. In contrast to innate pattern recognition re-

ceptors with a fixed repertoire, the rearrangement of TCRs and BCRs from a constrained

amount of gene segments enables the expression of a broad variety to recognize the whole

spectrum of potential foreign antigens. However, as this process relies on a low frequency

of precursor cells, the generation of appropriate cell numbers requires some time. Further,

the random process of somatic recombination is also generating self-reactive receptors, which

requires tolerance induction as further quality assurance to avoid autoimmunity.

3.1.1 Central and peripheral T cell tolerance

T cell development takes place in the thymus where they have to be trained to distinguish

self- and nonself-antigens. As soon as the TCR is expressed on the surface of CD4+CD8+

double-positive thymocytes, cells are selected due to their strength of the interaction of the

TCR with self-peptide-MHC complexes [1]. More than 90 % of double-positive thymocytes do

not bind self-peptide-MHC at all and die by neglect [2]. In contrast, immature double-positive

thymocytes expressing a TCR with intermediate affinity for self-peptide-MHC complexes are

positively selected to differentiate into mature CD4 or CD8 single-positive thymocytes. Thy-

mocytes bearing a high-affinity TCR for self-peptide-MHC complexes are eliminated (negative

selection or clonal deletion), become Treg cells (clonal diversion) or a second round of TCR

rearrangement (receptor editing) takes place [1].

Since about 25-40 % of self-reactive T cells might escape from clonal deletion [3] and the

selection process is limited by the variety of antigens expressed in the thymus, tolerance has
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to be induced in the periphery, too (peripheral tolerance). This concerns mainly food- and

commensal-derived antigens which are first encountered outside the thymus but should be

tolerated as well to prevent from allergic and inflammatory diseases [4].

To control self-reactive T cells in the periphery, DCs play a crucial role as professional APCs

which effectively process antigen, express costimulatory molecules and secrete cytokines [5].

During both, steady state and inflammation, DCs are continously sampling for antigen and

migrate from peripheral tissues into draining lymph nodes to finally present processed pep-

tides to T cells [6]. To convert immature, antigen-capturing DCs into fully mature, antigen-

presenting DCs, some functional changes have to take place. Therefore, DCs stop sampling

for antigens but instead (i) upregulate MHC to stimulate the TCR on T cells, (ii) upregulate

co-stimulatory molecules like CD80 and CD86, binding to CD28 on T cells and (iii) secrete

cytokines such as interleukin (IL)-12 for T cell polarization [7].

DCs can induce both, immunity and tolerance. It is assumed that the maturation state of

DCs determines the outcome of T cell polarization, thus immature DCs induce tolerance

while mature DCs induce immunity [8, 9]. However, it is also reported that mature DCs are

mediating T cell tolerance by inducing Tregs [10] or unresponsive T cells [11]. Therefore, it is

under debate whether the activation state, meaning which types of stimuli DCs receive, rather

than the maturation state in terms of upregulation of costimulatory molecules, determines

immunity versus tolerance induction.

3.1.1.1 Regulatory T cells

Regulatory T cells (Tregs) have been extensively studied due to their role in establishing

and maintaining immune tolerance and therefore preventing autoimmune and inflammatory

diseases. The main types of Tregs are CD4+ IL-10-producing type 1 Tregs, tumor growth

factor 𝛽 (TGF-𝛽)-producing CD4+ Th3 cells and CD4+CD25+ forkhead box protein P3

(FoxP3)+ cells. We are focusing here only on CD4+CD25+FoxP3+ cells with Foxp3 as key

transcription factor (TF) crucial for Treg development, function and homeostasis [12, 13, 14].

Mutations in the Foxp3 gene in both humans and mice have been shown to lead to fatal
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autoimmune diseases such as fatal lymphoproliferative disorder of the scurfy mouse and the

human equivalent immune dysregulation, polyendocrinopathy, enteropathy, X-linked inheri-

tance syndrom [15, 16], demonstrating the crucial role of Tregs in peripheral tolerance.

FoxP3+ Tregs can be distinguished further into natural Tregs (nTregs) and induced Tregs

(iTregs). While nTregs develop in the thymus upon the process of central tolerance, iTregs

are generated in the periphery depending on environmental factors [17]. Therefore, it is

obvious that the intestinal environment with its high amount of microbial antigens is the

primary site of iTreg generation to sustain tolerance towards commensal bacteria and food-

antigens, which cannot be represented in the thymus. To phenotypically differentiate iTregs

from nTregs, surface markers such as Neuropilin-1 [18] and Helios [19] have been found to be

preferentially expressed on nTregs. In addition, iTregs can be identified by the expression of

retinoic acid-related orphan receptor 𝛾t (ROR𝛾t), while they are negative for Helios [20].
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3.2 Dendritic cells

Since DCs were first described by Ralph Steinman in 1973 in mouse spleen as cells with

dendrite-shaped protrusions [21], this field of research, regarding DC origin, development

and function got huge interest. As mentioned before, DCs are specialized cells sampling for

antigens in peripheral tissues. Antigen-loaded DCs migrate into draining lymph nodes to

prime antigen-specific T cells. Therefore, antigens are internalized and processed by DCs

and peptides are finally loaded onto MHC molecules. Endogenous antigens are degraded

by the proteasome and peptides are transported by the transporter associated with antigen

processing into the endoplasmic reticulum to be loaded onto MHCI molecules [22] and pre-

sented to activate CD8+ T cells. In contrast, exogenous antigens are internalized by endo-

cytosis and degraded in lysosomal compartments to be loaded onto MHCII molecules [23]

and presented to activate CD4+ T cells. Next to these classical pathways, DCs show the

property of cross-presentation, defined by the presentation of exogenous antigens also via

MHCI [24, 25]. This concerns in particular viruses that are not infecting DCs directly or

tumors [26].

Next to classical or conventional DCs (cDCs) described by Steinman, another subpopula-

tion of DCs, plasmacytoid DCs, exists. These cells resemble plasma cells and produce large

amounts of type I interferon in response to viral infections [27] but will not be discussed

further in this thesis.

All DCs originate from hematopoietic stem cell-derived progenitors in the bone marrow and

undergo several steps of differentiation. They differentiate from myeloid progenitors into

granulocyte-macrophage precursers and further macrophage/DC progenitors, which are the

origin for monocytes and the common DC precursers. Common DC precursers finally dif-

ferentiate in the blood into plasmacytoid DCs and the precursor of cDCs which then enter

lymphoid and non-lymphoid tissues to mature into cDCs. [28].
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3.2.1 Conventional DCs

cDCs are divided into CD8a+ cells in lymphoid tissues and the equivalent population in

non-lymphoid tissues, expressing the CD103 integrin marker, or CD11b+ cells [29]. CD8+

splenic DCs [30] as well as CD103+ DCs from non-lymphoid tissues [31] are specialized in

cross-presentation. Further, CD8a+ splenic DCs are also described to secrete high amounts

of IL-12p70 upon TLR stimulation [32].

CD11b+ DCs are present in all lymphoid organs except for the thymus and additionally in

non-lymphoid tissues. In contrast to CD8+ DCs, the CD11b+ subset is more prominent to

produce IL-6 and IL-23 and to induce CD4+ T cell responses instead of cross-presentation

[33, 34, 35].

3.2.2 Intestinal DCs

DCs in the intestine are constantly exposed to foreign but also food- and commensal-derived

antigens. Therefore, a tight regulation of intestinal DC function is indispensable to sustain

tolerance towards commensal bacteria but at the same time protect from invading pathogens.

Disturbance of intestinal homeostasis can result in chronic intestinal inflammation such as

inflammatory bowel disease (IBD) [36].

Intestinal DCs are located in the gut-associated lymphoid tissue, consisting of peyer’s patches

(PPs) and isolated lymphoid follicles, as well as in mesenteric lymph nodes (mLNs) and

throughout the intestinal lamina propria (LP) [37]. Intestinal DCs are defined as CD11c+

MHCII+ cells, lacking expression of CD64 to be distinguished from macrophages [38].

The three subpopulations of CD11c+MHCII+CD64− intestinal DCs are CD103+CD11b−,

CD103+CD11b+ and CD103−CD11b+ cells, whereby CD103+CD11b+ are most prominent

in the small intestine LP [37]. This subset is reduced in the large intestine LP where

CD103+CD11b− and CD103−CD11b+ DCs are the major subsets instead [37].

It is assumed that the main antigen sampling cells in the intestine are resident C-X3-C

motif chemokine receptor 1 (CX3CR1)+ macrophages rather than CD103+ DCs [39, 40, 41].
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Nevertheless, also DCs are able to acquire luminal antigens by several pathways. First, they

can directly acquire antigens that actively invade the epithelium [40] or that are interna-

lized by epithelial M cells [42]. Further, DCs can take over luminal antigen from CX3CR1+

macrophages that previously acquired antigen via gap-junction proteins [43]. In addition,

Farache et al. could visualize that upon bacterial challenge, CD103+ DCs are recruited from

the intestinal LP into the epithelium to directly sample for luminal antigens by expanding

their dendrites into the lumen [44]. As soon as DCs have acquired luminal antigen, they are

able to migrate into draining lymph nodes where they initiate adaptive immune responses by

T cell priming. Of note, all three intestinal DC subsets have the potential to migrate into

mLNs in a CC-chemokine receptor 7-dependent manner [45, 46], but it is still not completely

clear whether the different subsets are processing and presenting different luminal antigens

and whether they prime different cells in the mLNs.

By presenting dietary antigens or antigens from commensal bacteria, intestinal DCs sustain

gut homeostasis upon inducing oral tolerance. It was first shown by the group of Fiona

Powrie that CD103+ DCs are the predominant subset to convert naïve T cells into Tregs

and that this process depends on TGF-𝛽 and retinoic acid (RA) [47]. Therefore, CD103+

DCs highly express 𝛼v𝛽8 integrin to convert latent into active TGF-𝛽 as well as aldehyde

dehydrogenase to metabolize vitamin A into RA [47, 48]. RA induces the expression of gut-

homing receptors CC-chemokine receptor 9 and 𝛼4𝛽7 on T cells [49, 50]. So far, there are

many contradictory studies, regarding the contribution of the different CD103+ DC subsets

on the generation of peripheral iTregs. However, Esterhazy et al. could recently demonstrate

that CD103+CD11b− DCs are more efficient in inducing Tregs in the periphery rather than

CD103+CD11b+ DCs [51].

As mentioned above, intestinal DCs are not only efficient in mediating tolerance but also

effector responses. Also in the steady state, effector T cells are found in the intestine as result

of previous pathogen encounter but also specific for commensals [52, 53]. In this context,

CD103− DCs are described to migrate into mLNs to induce effector T cells even in the
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absence of further stimuli [46]. Hence, in the steady state, effector T cells can contribute

to enhance the epithelial barrier [54] but are simoultaneously controlled by CX3CR1+ cells,

anti-inflammatory cytokines and Tregs [55, 56].

By now, the conditions that convert tolerogenic into immunogenic DCs are not entirely known.

As it is very likely that pathogen-associated molecular patterns from commensals are also

encountered in the healthy intestine, it is comprehensible that a "second signal" might be

critical for this conversion. So far, this second signal is not studied very well but a recent

study by Hansen et al. supports this hypothesis. They show that IgA-containing immune

complexes present after bacterial infection of the LP can convert tolerogenic into immunogenic

human CD103− DCs further inducing Th17 respones [57].

Another second signal that might be involved in conversion of tolerogenic into immunogenic

DCs is CD40, which will be discussed in more detail below.

3.2.3 CD40-signaling in DCs

The costimulatory molecule CD40 is a transmembrane protein expressed on many cell types

such as B cells, DCs, monocytes, epithelial cells, and endothelial cells [58]. CD40 is activated

by CD40 ligand (CD40L), that is transiently expressed on activated CD4+ T cells [59] but

also B cells, mast cells, basophils, eosinophils, DCs and platelets [60, 61].

CD40-CD40L interactions are critical mediators of immune responses and are also associated

with the pathogenesis of IBD. Several human studies report higher levels of CD40L expression

on T cells and platelets as well as elevated serum levels of soluble CD40L in IBD patients

[62, 63, 64]. Further, patients suffering from Crohn’s disease show CD40 overexpression

on mucosal cells, endothelial cells and DCs [65, 66] and the treatment of Crohn’s disease

patients with an antagonistic CD40 monoclonal antibody (mAb) showed beneficial responses

and remission rates [67].

In contrast to CD40-signaling on B cells that in particular induces proliferation [58], its impact

on DCs is less well understood. It has been reported that CD40-signaling on DCs leads to
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upregulation of MHCII and CD80/CD86, making them more effective in antigen presentation

[68, 69, 70]. It has also been shown that CD40-ligation on DCs induces cytokine production

such as IL-12 in vitro [71] and administration of agonistic anti-CD40 antibody has revealed

immunostimulatory effects in vivo [72, 11]. However, other studies suggested that CD40-

signaling needs further microbial stimuli, the TLR-ligands, to activate DCs completely for

cytokine production [73, 74].

By using anti-CD40 mAb in vivo, the group of Fiona Powrie could show that CD103+ DCs

were absent after administration of anti-CD40 mAb, resulting in colitis [75]. However, a

big disadvantage of in vivo anti-CD40 antibody studies are the side effects as CD40 is also

expressed on other cell types than DCs. For instance, CD40-signaling on B cells was reported

to mediate necroinflammatory responses in the liver [76]. To study the direct effect of CD40

on DCs in vivo, avoiding the side effects upon anti-CD40 antibody usage, our group generated

a mouse model with DC-specific constitutive CD40-signaling [77].

3.2.3.1 CD40-mediated non-canonical NF-𝜅B activation in DCs

Nuclear factor-𝜅B (NF-𝜅B) activation is essential for the expression of a variety of genes

involved in survival, proliferation and immune responses [78]. For B cells, it is reported

that constitutive CD40-signaling activates the non-canonical NF-𝜅B pathway, promoting lym-

phomagenesis [79]. As CD40-signaling in DCs is associated with their maturation state, the

NF-𝜅B pathway also plays an important role in DCs.

NF-𝜅B activation can be achieved via two signaling pathways, the canonical and the non-

canonical NF-𝜅B pathway. The canonical NF-𝜅B activation is mediated for instance by TLRs.

The formation of the inhibitor of 𝜅B kinase (IKK) complex, consisting of IKK1, IKK2 and

NF-𝜅B essential modulator (NEMO), leads to phosphorylation and subsequent proteasomal

degradation of inhibitor of 𝜅B (I𝜅B), resulting in p50/RelA heterodimer translocation into

the nucleus to finally activate target genes [80] (Fig.3.1).

In contrast, the non-canonical NF-𝜅B pathway can be activated by tumor necrosis factor

receptor (TNFR) superfamily members such as CD40. TNFRs bear cytoplasmic motifs that
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bind TNFR associated factor 2 and/or 3 which enable degradation of NF-𝜅B-inducing ki-

nase (NIK) and thus initiation of the signaling cascade. Upon phosphorylation of p100 by

activated IKK1, p52 is generated and leads to the nuclear translocation of the p52/RelB

complex, subsequently inducing target gene transcription [81] (Fig.3.1). Previous studies,

using the alymphoplasia mouse with a spontaneous single point mutation in the NIK gene

and mice with DC-specific NIK-deficiency indicate that non-canonical NF-𝜅B activation is

critical for DC cross-presentation but not necessarily for DC development or CD4+ T cell

priming [82, 83]. The non-canonical NF-𝜅B pathway is also involved in tolerance induc-

tion by DCs. In vitro, using siRNA-mediated knockdown of NIK or IKK1 in human DCs,

it was demonstrated that the non-canonical NF-𝜅B pathway leads to immunosuppressive in-

doleamine 2,3 dioxygenase expression in DCs to ensure their immune regulatory functions [84].
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Figure 3.1: Schematic illustration of the canonical and non-canonical NF-𝜅B path-
way in DCs. The canonical NF-𝜅B pathway (left) is activated upon TLR-stimulation on DCs.
The complex, consisting of NEMO, IKK1 and IKK2, induces I𝜅B phosphorylation followed by
degradation, finally releasing p50/p65 to activate target gene transcription. The non-canonical
NF-𝜅B pathway (right) is activated upon CD40-signaling on DCs. Activated IKK1 induces phos-
phorylation and processing of p100. The resulting p52/RelB complex is translocated into the
nucleus and activates transcription of target genes.



3.3 Gut microbiota 14

3.3 Gut microbiota

The role of gut microbiota in health and disease is an emerging field of research that has

gained huge interest during the last years. In particular, 16S rRNA sequencing of luminal

content provides much information about the bacterial composition in the mammalian gut

[85, 86].

The mammalian gastrointestinal tract is shaped by highly diverse microbiota. More than

1000 species with about five million genes have been reported to exist in the human gut

[87, 88], whereby the concentration increases from small intestine with 103 to 107 bacterial

cells/g to large intestine with 1012 bacterial cells/g [89]. Of note, the microbial composition is

influenced by multiple factors such as host genetics, age, diets, infections, and antibiotics [90].

From the first contact with bacteria at birth, bacterial diversity develops, whereby the phyla

Bacteroidetes and Firmicutes predominate the adult mammalian intestine [91]. As mucosal

immune cells are constantly exposed to harmless, so called commensals as well as harmful

bacteria, a precise coordination between microbiota and host immune cells is indispensable

to regulate the induction of tolerance or inflammatory responses in this environment.

3.3.1 Microbial-host interactions

The intestinal LP is home of a variety of host immune cells such as DCs, plasma cells, nTregs

and iTregs as well as effector T cells like Th17 and Th1 cells (Fig.3.2). As described in chapter

3.2.2, intestinal DCs are constantly sampling luminal bacteria to transport bacterial antigen

into draining mLNs where they prime naïve T cells to differentiate into Tregs or effector T

cells in the LP. Further, secretory IgA (SIgA) is produced by intestinal plasma cells and

transcytozed across the epithelium to coat bacteria in the lumen. However, if homeostasis

is disturbed and microbial composition changes from symbiosis towards dysbiosis, microbial-

host interactions might contribute to the development of inflammatory diseases like IBD.

Several studies could reveal that the gut microbiota is not only influencing a variety of

metabolic and physiological functions of the host [92] but also effecting the host immune
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system itself [93]. However, there are still major gaps in our understanding of the complex

interaction between the microbial community and the host. One important question that

still remains to be addressed is how the immune system regulates the microbiota and how

the microbiota shape host immunity to finally reveal whether intestinal diseases are cause or

consequence of altered bacterial compositions.
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Figure 3.2: Microbial-host interactions during health and disease. Intestinal DCs
sample for bacterial antigens and transport them into mLNs. Primed naïve T cells re-enter the
LP to differentiate into Tregs or effector T cells to sustain tolerance during symbiosis in health
or promote inflammatory responses upon dysbiosis, leading to IBD. SIgA produced by plasma
cells in the LP is transported across the epithelium to bind luminal bacteria.

In a healthy gut, the host cells live in mutualistic symbiosis with the gut microbiota. Benefi-

cial bacteria, termed commensals, are indispensable in the intestine with regard to digestion

and nutrition. For instance, commensals provide us with short chain fatty acids such as

acetate, propionate and butyrate from indigestible dietary fibers as source of energy and

synthesize vitamin B and K [94]. Therefore, commensal bacteria must be tolerated while

invading pathogens must be eliminated to prevent intestinal inflammation. To maintain this

mucosal homeostasis, different levels of protection have evolved.

The epithelium represents a barrier, consisting of absorptive epithelial cells, goblet cells and

paneth cells, separating the lumen from the LP but also cross-talking between both com-
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partments. The structural epithelial integrity is sustained by cell-cell junctions such as tight

junctions, adherens junctions and desmosomes [95]. Further, the epithelium is protected by

a covering mucus layer whereby goblet cells, which are enriched in the large intestine, secrete

mucins such as MUC2 to build an inner and an outer mucus layer [96]. Commensal bacteria

are usually colonizing the outer mucus layer while the inner mucus layer separates the com-

mensal bacteria from the epithelium [96]. The inner mucus layer can only be penetrated by

some specialized bacteria such as Clostridium, Lactobacillus or Enterococcus [89]. Although

the bacterial diversity is much higher in the lumen, mucosa-associated bacteria might be even

more important in the context of interaction with host cells and thus mucosal homeostasis as

they are in closer contact with epithelial cells [97].

Despite secreting mucins, antimicrobial peptides (AMPs), chemokines and cytokines [98], a

recent study suggested that goblet cells might also play a critical role in luminal antigen

delivery to CD103+ DCs in the LP by formation of goblet cell-associated antigen passages to

induce oral tolerance in the steady state [99]. Another type of intestinal epithelial cells are

paneth cells, in particular producing AMPs [100]. However, paneth cells are only present in

the small intestine, thus the amount of AMPs in the large intestine is rather low [100].

Further, the epithelial barrier is influenced by immune cells. It was reported that secretion

of IL-5 and IL-13 by Th2 cells contributes to colonic wound repair by macrophage activation

followed by epithelial cell proliferation [101]. In contrast, a human study with patients suf-

fering from Ulcerative Colitis did show that pro-inflammatory IL-13, that is upregulated in

these patients, leads to apoptosis of epithelial cells and thus to barrier disruption [102].

3.3.1.1 The role of IgA

IgA is the predominating immunoglobulin (Ig) in the gut and the second most abundant

isotype in the blood [103]. While serum IgA can be present as monomer as well as polymers,

intestinal IgA is only found as dimer [104]. These IgA dimers bind to polymeric Ig receptor

at the basolateral membrane of epithelial cells to be transported across the epithelium [105].
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IgA is then released into the intestinal lumen, thereby containing the secretory component

as part of the polymeric Ig receptor that provides stability of SIgA within the lumen and

adhesion to mucus [105].

IgA is essential for mucosal homeostasis [106, 107] and the fact, that germ-free mice show 10-

fold reduced numbers of IgA-producing cells [108] highlights the impact of the microbiota on

host immune cells. SIgA is known to be involved in both maintenance of commensal bacteria

as well as neutralization of invading pathogens [109, 110]. Although potential functions of

IgA might include immune exclusion, neutralization, motility alteration, modulation of gene

expression, niche occupancy, and antigen uptake via epithelial M cells [111], the diverse and

complex functions of IgA are not fully understood so far.

IgA originates from B cells that undergo class switching and affinity maturation in organized

follicular structures of the gut-associated lymphoid tissue as well as extrafollicularly in the

LP [111]. The most prominent IgA-inductive sites are PPs, only present in the small intes-

tine, but also mLNs, isolated lymphoid follicles in small and large intestine and the cecal

patch [111]. These B cells home to the intestinal LP via the blood circulation and finally

differentiate into IgA-secreting plasma cells. IgA+ plasma cells as well as both free IgA and

IgA bound to bacteria are in particular found in the small intestine LP and only to a minor

extent in the large intestine LP, while a small population of IgA+ plasma cells can be also

found in extraintestinal tissues such as liver or bone marrow [111].

IgA can be induced in a T cell-dependent and T cell-independent manner. T cell-dependent

induction requires the formation of germinal centers, thus PPs and mLNs are prone for this

pathway. Here, T cell help provided by CD4+ T cells such as T follicular helper cells, Tregs

and Th2 cells promote B cell proliferation, class switch recombination and somatic hypermu-

tation via CD40-CD40L interaction and production of cytokines such as TGF-𝛽1, IL-4, IL-6

and IL-10, resulting in IgA-secreting plasma cells [112]. It is assumed that T cell-dependent

IgA induction leads to high-affinity and monospecific IgA, responsible for neutralizing toxins

and pathogens [111]. In contrast, IgA can also be induced T cell independently at follicular

and extrafollicular sites in the LP without the need of germinal centers [111]. IgA induction
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without T cell help is suggested to be of low-affinity and polyspecific nature to interact with

commensal bacteria [111]. However, this differentiation is not absolute and needs further

studies as there are reports that also high-affinity IgA is involved in the regulation of com-

mensal microbiota [113] and that low-affinity IgA plays a role in protection against pathogens

[114].

Increased coating of bacteria with IgA is reported for patients suffering from IBD as well as

in mice [115, 116, 117]. The study by Palm and colleagues revealed that highly IgA-coated

bacteria from IBD patients lead to colitis upon transfer into germ free mice [115]. For the

human intestine, next to bacterial IgA-coating, also IgM- and IgG-coating is detectable [116].

Although IgM+ and IgG+ plasma cells are not observed in the murine intestine, serum IgM

and IgG antibodies are reactive to bacteria and in particular for serum IgG it was shown that

this isotype binds to a similar bacterial subset that is coated by IgA [118, 119].

In recent years, it became more widely accepted that the microbiota is influencing not only the

mucosal but also the systemic IgA repertoire. For instance, serum IgA induced by commen-

sals was reported to protect mice from fatal sepsis upon epithelial barrier breakdown [120].

Further, patients with IBD show higher levels of bacteria-specific serum IgA levels [121],

whereby some studies observed serum IgA-reactivity for flagellin and autoantigens [122, 123,

124]. Interestingly, Iversen et al. recently revealed that serum IgA and intestinal IgA are spe-

cific for the same epitopes in patients suffering from celiac disease, suggesting that systemic

and mucosal IgA-secreting plasma cells derive from the same B cell clone [125]. Furthermore,

two studies demonstrated that commensals are able to induce serum IgG responses that could

protect from systemic infection and influence mucosal T cell fate decisions [118, 119].

Although studies focusing on the role of IgA in microbial-host interactions could provide

important insights, there is further research necessary to reveal the mutualistic relationship

of bacteria and mucosal IgA. In particular, there is little known about the role of distinct

bacterial species in inducing IgA class switch and the impact of IgA inductive sites on mucosal

homeostasis [112].
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3.3.1.2 Intestinal CD4+ T cells

CD4+ T cells are the most common T cells in the intestinal LP. As described in section

3.1.1.1, Tregs are the predominant intestinal subset in the steady state, maintaining tolerance

towards food- and commensal-derived antigens. In contrast, a key component of intestinal

inflammation is the infiltration of the LP by CD4+ effector T cells.

Naïve CD4+ T cells recognize their cognate antigen presented by MHCII on APCs. Upon

TCR stimulation in combination with distinct cytokine combinations, naïve CD4+ T cells

can not only differentiate into Tregs but also Th cells which are further classified into Th1,

Th2 and Th17 cells. Th1 cells are the major subset that develops in response to intracellular

pathogens such as bacteria and viruses upon stimulation with interferon-𝛾 (IFN-𝛾) and IL-12

[126]. In addition to signal transducer and activator of transcription (STAT) 1 and STAT4,

Th1 cells express the key TF T-bet, driving the production of the signature cytokine IFN-𝛾

but also TNF-𝛼 and IL-2 [127]. Th1 cells are linked to autoimmunity as they are able to

induce experimental autoimmune encephalomyelitis [128] as well as intestinal inflammation

while naïve T cells with T-bet or STAT4 deficiency were not able to induce colitis upon

adoptive transfer experiments in mice [129, 130]. In contrast, IL-4 and IL-2 drive the fate of

Th2 cells in the context of extracellular pathogens and are key mediators, providing B cell

help for antibody production. Th2 cells express the TF STAT5, STAT6 and GATA3 and

predominantly secrete IL-4, IL-5 and IL-13 [126]. Th17 cells are induced by TGF-𝛽, IL-6 and

IL-21. This Th subset is characterized by the expression of the TF STAT3 and ROR𝛾t and

production of the signature cytokines IL-17A, IL-17F and IL-22 [126]. While TGF-𝛽 alone is

sufficient to induce FoxP3+ Tregs, Th17 cell differentiation needs IL-6 in addition, that leads

to expression of IL-23R [126, 131]. These non-pathogenic Th17 cells are not able to induce

autoimmune tissue inflammation as they also produce IL-10 [132]. However, upon further

IL-23 stimulation, Th17 cells show a more pathogenic gene expression pattern, indicated by

upregulation of T-bet, IL-23R, IL-7R and granulocyte-macrophage colony-stimulating factor,

and are reported to contribute to experimental autoimmune encephalomyelitis [133, 134]. Of



3.3 Gut microbiota 20

note, so called pathogenic Th17 cells can also be induced independent of TGF-𝛽1 by IL-1𝛽,

IL-6 and IL-23 or TGF-𝛽3 and IL-6 [133, 135]. A major hallmark of Th17 cells is their

high plasticity as they are more prone for transdifferentiation as compared to Th1 and Th2

cells. Thus, Hirota et al. could demonstrate the property of Th17 cells to acquire a Th1-like

phenotype by downregulation of IL-17 but upregulation of IFN-𝛾 expression [136].

In the context of CD4+ T cell fate decisions, there is increasing evidence that gut micro-

biota has a major impact, thus eliciting pro- as well as anti-inflammatory responses. At

the steady state, Th17 cells are abundant in the intestinal LP to ensure protection against

pathogens such as Candida albicans [137]. However, the Th17 cell response is related to se-

veral autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis,

psoriasis and IBD [138]. Interestingly, Th17 cells are not detectable in the intestine of germ

free mice [52], demonstrating the requirement of microbial stimuli for Th17 differentiation.

The most prominent strain known in this regard is segmented filamentous bacteria (SFB).

These gram-positive bacteria, predominantly colonizing the small intestinal mucus layer, are

potent inducers of Th17 cells in the small intestinal LP of mice [139]. In this context, serum

amyloid A produced by SFB was shown to promote DCs to prime Th17 cells in vitro and

SFB colonization could protect the host from the pathogen Citrobacter rodentium, suggesting

SFB as a major part of Th17-mediated mucosal protection [139]. Further, it is reported that

the Th17 effector function depends on the respective species triggering Th17 differentiation.

For instance, Zielinski and colleagues reported IL-17A and IFN-𝛾 production of human Th17

cells upon infection with Candida albicans, whereas Staphylococcus aureus leads to IL-17A

and IL-10 producing human Th17 cells [140].

Tregs are also known to be affected by gut microbiota. For instance, the short chain fatty acid

butyrate, as product of fiber utilization by commensals is essential for colonic Treg responses

[141]. In particular, Clostridium cluster IV and XIVa are potent drivers of IL-10+Helios−

iTregs in the large intestine [142]. Further, Round and Mazmanian reported that the human

commensal Bacteroides fragilis is capable of promoting mucosal tolerance. They could show
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that the bacterial antigen polysaccharide A leads to differentiation of CD4+ T cells into IL-10

producing Tregs in the steady state but also under inflammatory conditions [143].

Of note, this interaction between microbiota and host immune cells is a bidirectional crosstalk,

in which the microbiota is shaping the host immunity but also the host effector T cells have

a major impact on the microbiota colonizing the gut. If these processes are not tightly

regulated, inflammatory diseases like IBD can be the consequence.

3.3.2 Inflammatory Bowel Disease

IBD is a multifactorial chronic inflammatory disease that is dependent on a variety of envi-

ronmental and genetic risk factors as well as on the microbiota, colonizing the gut, and the

host immune cells [144]. Patients with IBD are either suffering from Crohn’s disease, affecting

different sites of the gastrointestinal tract or Ulcerative Colitis, confining to the large intestine

[97].

The most common phyla colonizing the healthy colon are Firmicutes and Bacteroidetes

[145]. However, certain circumstances such as infection, inflammation, dietary changes, im-

mune deficiency or antibiotic treatment can disturbe mucosal homeostasis, causing a shift in

relative abundance of bacteria towards less diversity. This inbalance is termed dysbiosis and

characteristic for the pathogenesis of IBD. In this regard, IBD patients show about 25 % less

microbial genes as compared with healthy people [146]. The most prominent change during

IBD is the "blooming" of Enterobacteriaceae of the phylum Proteobacteria, which are less

frequently represented in the healthy gut [145]. However, the determination of species shifted

during IBD is difficult to summarize as it depends on the age of patients, disease stage as

well as type of tissue sample and analysis [97]. Nevertheless, data from the largest study so

far revealed that the abundance of Enterobacteriaceae, Pasteurellaceae, Veillonellaceae and

Fusobacteriaceae was increased in patients with Crohn’s disease whereas the abundance of

Erysipelotrichales, Bacteroidales and Clostridiales was reduced, correlating with severity of

the disease status [147].
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The most abundant anaerobic species in the human intestine, the Bacteroides, are described

as pathobionts that are able to act as commensals but under certain conditions, these species

can contribute to disease development [148]. Other pathobionts reported to be increased in

patients with IBD are Escherichia coli, Shigella, Rhodococcus, Stenotrophomonas maltophilia,

Prevotellaceae, Clostridium difficile, Klebsiella pneumoniae, Proteus mirabilis and Helicobac-

ter hepaticus [97].

3.3.3 Helicobacter hepaticus

The finding that Helicobacter species are critical players in the context of IBD is not surprising

as every species systematically examined to date is colonized by at least one Helicobacter

species [149]. In 2005, Warren and Marshall received the Nobel price in physiology for the

discovery of Helicobacter pylori in 1982 [150]. Since H. pylori infection is associated with

gastritis, gastric carcinoma and mucosa-associated lymphoid tissue lymphoma in humans

[149], many other Helicobacter species were discovered and raised the interest to study their

potential impact on disease development. The Helicobacter genus comprises 26 formally

named species, colonizing several hosts such as humans, cats, dogs, swine, sheep, birds, mice,

rats and many more [149].

Fox and colleagues were able to isolate Helicobacter hepaticus (Hh) from liver but also from

cecum and colon of mice [151]. Hh is a gram-negative, urease-positive as well as nitrate-

reducing bacterium, growing under microaerobic and aerobic conditions. Further, Hh has a

curved to spiral shape with bipolar flagella, thus being actively motile and able to colonize

the mucus of cecum and colon [151]. Of note, Hh is found in many academic and commercial

mouse colonies [152, 153] and infection is linked to chronic hepatitis as well as hepatocellu-

lar carcinoma [154, 155]. Most interestingly, Hh is able to elicit intestinal inflammation in

immunodeficient or -compromized mice as demonstrated by several mouse models, mimicking

human IBD. For instance, Hh-infected severe combined immunodeficiency mice reconsti-
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tuted with naïve CD45RBℎ𝑖CD4+ T cells develop severe colitis [156]. Further, Hh infection

of Rag2−/− [157, 158], IL10-deficient [159] as well as TCR𝛼𝛽-deficient mice [160] has been

used to model human IBD in mice and to study the role of this specific pathobiont regarding

the complex interaction with both, innate as well as adaptive host immune cells. In the T-

cell dependent colitis model used by Kullberg and colleagues, Hh infection of IL10-deficient

mice induced pathogenic, Hh-specific T cells, expressing both IL-17 and IFN-𝛾 [161]. Only

recently, the group of Dan Littmann published a further study, using the Hh infection model

of IL-10−/− mice [162]. The data reveal the TF c-Maf in iTregs as key component to restrain

colitogenic Th17 cells in Hh-positive mice [162].

However, while it is reported that Hh causes lesions in the liver by producing a cytotoxic

protein [163], the underlaying mechanism by which this pathobiont leads to the development

of colitis is still a major gap in our knowledge. Thus, further research is indispensable to

determine the properties and functions of Hh, making this pathobiont such a potent inducer

of intestinal disease.

Of note, there is a group of proteins related to bacterial infections, that might be a key

component in eliciting host pathology. These bacterial proteins are the chaperonins, asso-

ciated with human diseases such as systemic lupus erythematosus, rheumatoid arthritis and

Crohn’s disease [164]. Chaperonins are a subgroup of molecular chaperones, the heat-shock

proteins (Hsps), which are typically noticed as protein folders but emerging evidence high-

lights their function also in cell-cell signaling and therefore eliciting immune response [164].

Chaperonins are expressed on the cell surface of various prokaryotic and eukaryotic cells but

can also be secreted to interact with several cell types such as leukocytes and epithelial cells

or activate cytokine production [164].

The best studied chaperonins are chaperonin 60 (GroEL) and chaperonin 10 (GroES) from

E. coli [165, 166]. Chaperonins are highly conserved among human and bacteria, therefore

tolerance of bacterial chaperonins upon infection would be expected. However, chaperonins

are known to be immunogenic in both human and animals. For instance, mice infected with
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Mycobacterium tuberculosis showed T cells specific for the chaperonin 60.2 of this species [167].

In addition, anti-chaperonin antibodies, for instance serum antibodies, targeting Hsp70 of Hh,

have been detected in mice with chronic active hepatitis [168].

However, the role of Hh-chaperonins and host cell interaction in the context of IBD has not

been studied so far.
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3.4 The DC-LMP1/CD40 mouse model

To study conditions that convert tolerogenic into immunogenic DCs, we previously generated

a mouse model, where CD11c+ cells, mostly DCs, receive a constitutive CD40-signal [77].

Therefore, a floxed stop cassette, followed by the gene for the fusion protein LMP1/CD40,

consisting of the transmembrane protein LMP1 of Epstein-Barr-Virus and the intracellu-

lar signaling domain of human CD40, was knocked into the transcriptionally active rosa26

locus of LMP1/CD40fl/flSTOP mice (Fig.3.3 A). Upon breeding these mice with mice ex-

pressing Cre-recombinase under the control of the CD11c promoter, DC-LMP1/CD40 mice

express LMP1/CD40, thus receive ligand-independent, DC-specific CD40-signaling (Fig.3.3

A). In contrast to control littermates, DC-LMP1/CD40 animals develop severe colitis, macro-

scopically characterized by a strongly shortened and thickened colon (Fig.3.3 B, upper

panels) as well as microscopically by immune cell infiltration, loss of crypts and reduction of

goblet cells (Fig.3.3 B, lower panels). Further, spontaneous colitis in DC-LMP1/CD40 mice

is fatal after some weeks, whereas 100 % of transgenic animals that were crossed onto Rag1-/-

background or treated with mixture of antibiotics (ABX), survived as compared with control

littermates (Fig.3.3 C). In addition, DC-LMP1/CD40 animals but not transgenic mice on

Rag1-/- background or treated with ABX showed increased levels of fecal lipocalin-2, a sensi-

tive, non-invasive marker for inflammation (Fig.3.3 D), suggesting that disease development

in DC-LMP1/CD40 mice depends on T and B cells as well as on microbiota.

In DC-LMP1/CD40 mice, a huge reduction in frequency as well as absolute numbers of

CD103+CD11b− and CD103+CD11b+ DCs has been observed in the colonic LP (Fig.3.4 A)

while CD103−CD11b+ DCs were increased when compared to control littermates. We fur-

ther could demonstrate that this reduction in the colonic LP results from the migration of

CD103+ DCs into mLNs where they undergo apoptosis (data not shown here). While overall

FoxP3+CD4+ T cells did not differ between transgenic and control mice (data not shown

here), due to the loss of CD103+ DCs, ROR𝛾t+Helios- iTregs were significantly impaired in

different organs, most importantly in the colonic LP of DC-LMP1/CD40 mice (Fig.3.4 B).
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As a consequence of constitutive CD40-signaling on DCs, we did observe increased inflamma-

tory IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells in the colon of transgenic animals but

not in control littermates (Fig.3.4 C).

In summary, our previously published data suggest that CD40-activation of DCs might serve

as powerful tool to shut down immune tolerance by various CD40L-expressing immune cells.
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Figure 3.3: DC-LMP1/CD40 animals spontaneously develop fatal colitis.
A) Schematic representation of the rosa26 locus in LMP1/CD40fl/flSTOP and DC-LMP1/CD40
mice. B) Macroscopic pictures of colons (upper panel, scale bars = 1 cm) and colon histopatho-
logy (lower panel, scale bars = 100 𝜇m) of control (Ctr) or DC-LMP1/CD40 animals, showing
severe colitis with thickening of the colon mucosa, extensive proprial infiltration of mixed inflam-
matory mononuclear cells, loss of crypts and reduction of goblet cells (paraffin sections, inset to
DC-LMP1/CD40: GMA/MMA section, HE-staining). C) Kaplan-Meier plot showing survival
of Ctr and untreated or ABX-treated DC-LMP1/CD40 animals on C57BL/6 or Rag1-/- back-
ground (n ≥ 6). D) Levels of fecal lipocalin-2 as measured by ELISA in 8-10-week-old mice on
different genetic backgrounds or treated with ABX. Bar graphs represent mean ± SEM (n ≥ 3
per group). Figure is adapted from Figure 2 in our recently published paper [77].
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Figure 3.4: CD103+ DCs are strongly reduced in DC-LMP1/CD40 animals, leading
to severely impaired iTreg induction and breakdown of T cell tolerance. A) DC subsets
in the LP from Ctr and DC-LMP1/CD40 animals were gated on live, CD45+, CD11c+MHCII+,
CD64- cells. Representative FACS-plots are shown with numbers, indicating frequency of DC
subsets and bar graphs show absolute numbers per colon (mean ± SEM, n=6). B) Single-
cell suspensions from different organs were analyzed for Tregs. The representative FACS plots
show nTreg (ROR𝛾t-Helios+) and iTreg (ROR𝛾t+Helios-) distribution within FoxP3+ T cells
from colon LP. Cells are pre-gated on CD45+, CD3+CD4+, CD25+FoxP3+. Statistics of iTreg
(ROR𝛾t+Helios-) distribution within FoxP3+ T cells in different organs pooled from two experi-
ments are depicted as bar graphs (mean ± SEM, n=6). C) Single-cell suspensions were stimu-
lated with PMA/Ionomycin and subsequently stained intracellularly for the production of IL-17
and IFN-𝛾. Shown are representative FACS plots for LP (gated on live, CD45+, CD3+CD4+

cells) as well as pooled statistics from more than five experiments (mean ± SEM, n=14-18).
Figure is adapted from Figure 3, 4 and 5 in our recently published paper [77].
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3.5 Aim of the thesis

We recently published a CD40-mediated mouse model of colitis, where CD11c-specific con-

stitutive CD40-signaling leads to migration of CD103+ DCs from the colonic LP to draining

lymph nodes followed by DC-apoptosis [77]. Loss of tolerogenic CD103+ DCs caused lack of

ROR𝛾t+Helios- iTregs and increase of inflammatory IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+

Th1 cells in the colon, resulting in breakdown of mucosal tolerance and early onset colitis

that is fatal [77]. By crossing mice on Rag1−/− background or by treatment with antibiotics,

DC-LMP1/CD40 mice showed no signs of colitis, indicating that CD40-mediated colitis de-

pends on both, T or B cells as well as on microbiota [77].

Nowadays, it is common knowledge that microbiota have critical impact on the pathogenesis

of many diseases such as IBD. However, it is not known whether changes in the microbial

composition during IBD are cause or rather consequence of inflammation. Further, under-

laying cellular and molecular mechanisms as well as specific bacterial proteins, contributing

to disease development are rarely studied by now. Therefore, the aim of this study was to

analyze microbial-host interactions in DC-LMP1/CD40 mice to determine how intestinal mi-

crobiota can modulate host immune response with impact on disease onset, progression and

outcome in CD40-mediated colitis.



4 Material and Methods

4.1 Materials

4.1.1 Devices

Analytic scale (Adventurer, Ohaus Corp., Pine Brooks, NJ, USA), automatic pipettors (Inte-

gra Biosciences, Baar, Switzerland), bench centrifuge (Centrifuge 5415 D, Eppendorf, Ham-

burg, Germany), cell counter (CASY cell counter and analyzer, OMNI life science, Bremen,

Germany), centrifuge (Rotixa RP, Hettich, Tuttlingen, Germany; Heraeus Multifuge X3R,

Thermo Fisher Scientific, Waltham, MA, USA), chemical scale (Kern, Albstadt, Germany),

ELISA-reader (𝜈max kinetic microplate reader, Molecular Devices, Biberach, Germany),

tissue homogenizer (FastPrep-24, MP Biomedicals, Santa Ana, CA, USA), flow cytometer

(FACSCalibur and FACSCantoII BD, Heidelberg, Germany), incubator (Hera cell, Heraeus

Kendro Laboratory Products, Hanau, Germany), laminar airflow cabinet (Heraeus, Hanau,

Germany), magnetic stirrer (Ika Labortechnik, Staufen, Germany), Molecular Imager Gel Doc

XR+ (BIO-RAD, Hercules, CA, USA), NanoDrop SimpliNano (GE Healthcare), OPTIMAX

X-ray film processor (Protec, Oberstenfeld, Germany), PCR-machine (Biometra, Goettingen,

Germany), pH-meter (Inolab, Weilheim, Germany), pipettes (Gilson, Middleton, WI, USA),

power supply (Amersham Pharmacia, Piscataway, NJ, USA), Qubit Fluorometer (Invitrogen,

Carlsbad, CA, USA), Sonifier 150 Cell Disruptor (Branson/Emerson, St. Louis, MO, USA),

vortex-Genie2 (Scientific Industries, Bohemia, NY, USA)

4.1.2 Consumables

BD Microtainer tube BD, Franklin Lakes, NJ, USA

Disposable cell strainer (100 𝜇m nylon) Falcon, Corning, NY, USA

Disposable injection needle (26 G x 1/2”) Terumo Medical Corporation, Tokyo,

Japan
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Disposable syringe (1+5 ml) Braun, Melsungen, Germany

Disposable glass pasteur

pipettes (150+230 mm)

VWR International, Leuven, Belgium

Laboratory gloves Latex Gentle Skin Grip Meditrade, Kiefersfelden, Germany

Lysing matrix tubes (matrix A and E) MP Biomedicals, Eschwege, Germany

Petri dish (94 x 16 mm) Greiner Bio-One, Frickenhausen,

Germany

PCR strips tubes (0.2 mL) VWR International, Leuven, Belgium

Qubit assay tubes (0.5 mL) Life technologies, Eugene, Oregon, USA

Reaction container 1.5 ml and 2 ml Eppendorf, Hamburg, Germany

Reaction container 5 ml (FACS tubes) BD, Franklin Lakes, NJ, USA

Reaction container 15 ml and 50 ml Greiner Bio-One, Frickenhausen,

Germany

Serological pipette, sterile (5, 10, 25, 50 ml) Greiner Bio-One, Frickenhausen,

Germany

TipOne filter tips (10, 200, 1000 𝜇l) STARLAB, Hamburg, Germany

Tissue culture plates (96 wells-U, sterile) Thermo Fisher Scientific, Waltham,

MA, USA

Microtest staining plates (96 wells-U) Sarstedt, Nümbrecht, Germany

Nunc MaxiSorp ELISA plates

(96 wells, flat-bottom)

Thermo Fisher Scientific, Waltham,

MA, USA

4.1.3 Chemicals

Unless stated otherwise, chemicals were purchased from Merck (Darmstadt, Germany), Roth

(Karlsruhe, Germany) or Sigma-Aldrich (St. Louis, MO, USA). All buffers and solutions were

prepared using double distilled water.
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4.1.4 Buffer and media

ACK: 8.29 g NH4Cl

1 g KHCO3

37.2 mg Na2EDTA

H2O ad 1 L

pH 7.4

FACS buffer: PBS

2 % (v/v) FCS

0.01 % NaN3

HBSS: 137 mM NaCl

5.4 mM KCl

0.25 mM Na2HPO4

0.1 g glucose

0.44 mM KH2PO4

1.3 mM CaCl2

1.0 mM MgSO4

4.2 mM NaHCO3

HBSS-EDTA: HBSS

8 % (v/v) FCS

10 mM EDTA

10 mM HEPES
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PBS: 137 mM NaCl

2.7 mM KCl

10 mM Na2HPO4

pH 7.4

50x TAE buffer: 242 g Tris-HCl

57.1 ml 100 % (v/v) acetic acid

100 ml 0.5 M EDTA (pH 8.0)

H2O ad 1 L

T cell-medium: RPMI

10 % (v/v) FCS

100 U/ml Penicillin

100 g/ml Streptomycin

500 mM β-mercaptoethanol

10x Gitocher: 670 mM Tris pH 8.8

166 mM NH

65 mM MgCl2

0.1 % (v/v) gelatin

1x Gitocher buffer: 5 µl 10x Gitocher buffer

2.5 µl 10 % Triton X-100 (v/v)

0.5 µl β-mecaptoethanol

3 µl proteinase K (10 mg/ml)

39 µl H2O
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Carbonate Coating Buffer 8.4 g NaHCO3

3.56 g Na2CO3

H2O ad 1 L

pH 9.5

5x SDS Loadingbuffer 250 nM Tris-HCL pH 6.8

500 mM β-mecaptoethanol

10 % (w/v) SDS

0.5 % Bromophenol blue sodium salt

50 % glycerol

5x Running Buffer 25 mM Tris

192 mM Glycin

0.1 % SDS

Transfer Buffer 25 mM Tris

192 mM Glycin

20 % Methanol

0.002 % SDS

4.1.5 Antibodies

Unless stated otherwise, anti-mouse antibodies were used.

epitope conjugate clone manufacturer

CD3 AlexaFluor488 17A2 BioLegend

PE-Cy7 17A2 BioLegend

Continued on the next page.
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epitope conjugate clone manufacturer

CD4 APC-Cy7 GK1.5 BioLegend

PerCP RM4-5 BioLegend

CD11b APC-eFlour780 M1/70 Invitrogen

CD11c PE-Cy7 N418 BioLegend

CD25 PerCP PC61 BD Pharmingen

CD45 BV421 30-F11 BioLegend

CD64 APC X54-5/7.1 BioLegend

CD103 PE M290 BD Pharmingen

FoxP3 eFlour660 FJK-16s eBioscience

Helios FITC 22F6 eBioscience

human HSP60 LK-2 Enzo

IFN-𝛾 APC XMG1.2 eBioscience

IgA HRP SouthernBiotech

PE mA-6E1 eBioscience

IgG HRP SouthernBiotech

IL-17A PE TC11-18H10.1 BioLegend

MHCII (I-A/I-E) FITC M5/114.15.2 BioLegend

ROR𝛾t PE AFKJS-9 eBioscience
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4.1.6 Oligonucleotides

All oligonucleotides were purchased from Eurofins Genomics GmbH (Ebersberg, Germany).

target primer sequence 5’ to 3’ application reference

bacteria universal_for TCCTACGGGAGGC-

AGCAGT

PCR [169]

universal_rev GGACTACCAGGGT-

ATCTAATCCTGTT

Helicobacter

spp.

hspp_for TATGACGGGTATC-

CGGC

PCR [170]

hspp_rev ATTCCACCTACCT-

CTCCCA

H. hepaticus hh_for GCATTTGAAACTG-

TTACTCTG

PCR [152]

hh_rev CTGTTTTCAAGCT-

CCCC

H. typhlonius Ht_Franklin_for TTAAAGATATTCT-

AGGGGTATAT

PCR [171]

Ht_Franklin_rev TCTCCCATACTCT-

AGAGTGA

Continued on the next page.
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target primer sequence 5’ to 3’ application reference

H. rodentium Hr_Shen_for GTCCTTAGTTGCT-

AACTATT

PCR [172]

Hr_Shen_rev AGATTTGCTCCAT-

TTCACAA

H. bilis Hb_Fox_for AGAACTGCATTTG-

AAACTACTTT

PCR [173]

Hb_Fox_rev GGTATTGCATCTC-

TTTGTATG

Cre RO334 GGACATGTTCAGG-

GATCGCCAGGCG

genotyping

RO335 GCATAACCAGTGA-

AACAGCATTGCTG

LMP1/CD40 HL15 AAGACCGCGAAGA-

GTTTGTCC

genotyping

HL54 TAAGCCTGCCCAG-

AAGACTCC

HL152 AAGGGAGCTGCAG-

TGGAGTA

Continued on the next page.
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target primer sequence 5’ to 3’ application reference

IKK1 Ikk1FL-U CGCTTAGTGTGAC-

TGAGGAAC

genotyping

Ikk1FL-L ATGAGCCCAACAT-

TTAATCTT

Ikk1D-U GGCATCAGAGTCC-

GTGGGT

4.1.7 Mouse strains

All mouse strains were bred and kept in the Institute for Immunology at the LMU Munich.

Mice were housed under conventional conditions. In the course of move into a new animal

facility, embryo transfer rederivation was performed by ENVIGO (Huntingdon, United King-

dom) and mice were subsequently housed under specific-pathogen-free (SPF) conditions. The

following mouse strains have been used:

CD11c-Cre

The CD11c-Cre mouse strain was produced in the Lab of Boris Reizis and expresses the Cre

recombinase under control of the CD11c promotor [174]. This mouse allows the deletion of

floxed allels in DCs and other CD11c-expressing cells. Mice were kept on the C57BL/6 genetic

background.

DC-LMP1/CD40

To obtain DC-LMP1/CD40 animals, CD11c-Cre mice were crossed with LMP1/CD40fl/flSTOP

mice [79]. The latter mouse strain carries the knock-in of the LMP1/CD40 gene which is

preceded by a floxed stop-codon into the rosa26 locus. The cre-mediated excision of the

stop codon then leads to the constitutive expression of the fusion-protein between LMP1,

derived from Epstein-Barr-Virus, and the intracellular signaling domain of human CD40.
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The LMP1 domain anchors the protein in the plasma membrane and at the same time leads

to a multimerization, which in turn leads to signaling by the CD40 molecule.

DC-LMP1/CD40 mice were previously published [77, 175, 187].

DC-LMP1/CD40 ΔIKK1

By additional DC-specific deletion of IKK1 as part of the non-canonical NF-𝜅B pathway,

DC-LMP1/CD40 mice with impaired non-canonical NF-𝜅B signaling in DCs were generated.

Therefore, LMP1/CD40fl/flSTOP mice were kept on IKK1fl/fl background and crossed with

CD11c-Cre mice on IKK1fl/fl background to obtain DC-LMP1/CD40ΔIKK1 mice. In these

mice, the CD11c-Cre allows the deletion of the floxed IKK1 allels in DCs next to excision of

the stop codon, leading to the constitutive expression of CD40 in DCs.

4.2 Methods

4.2.1 Immunological and cell biology methods

4.2.1.1 Harvesting of organs and single cell preparation

Animals were euthanized in a CO2 chamber or sacrificed by cervical dislocation after they

had been sedated using Isoflurane. Organs were removed using scissors and fine tweezers and

put into phosphate buffered saline (PBS). Spleen and lymph nodes were mashed through a

100 𝜇m cell strainer and washed with ice cold PBS. Red blood cells were lyzed using 1 ml

ACK buffer for 5 min at room temperature. Cells were washed once again with PBS, counted

using the CASY-counter (OMNI life science) and stored on ice for further analysis.

To analyze cells from the colonic LP, the colon was cleaned from fecal content, opened

longitudinally and cut into pieces about 5 mm in size. The pieces were incubated with

Hank’s balanced salt solution (HBSS)-ethylenediaminetetraacetic acid (EDTA) for 10 min on

a shaker at 37∘C and the supernatant containing epithelial cells was discarded. The pieces

were then digested once for 30 min and twice for 20 min with a mixture of Collagenase IV (157
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Wuensch units/ml, Worthington, reconstituted in HBSS with 8% fetal calf serum (FCS)),

DNAse I (0.2 mg/ml) and Liberase (0.65 Wuensch units/ml, both from Roche, reconstituted

in H2O). The supernatant was collected after each digestion and cells were always washed

with PBS. Collected cells were enriched for immune cells with Percoll gradient centrifuga-

tion. Therefore, cells were resuspended in 40 % Percoll (GE Healthcare) and underlayed

with a 80 % Percoll solution using a glass pasteur pipette. After centrifugation for 20 min

at 1800 rpm and 4∘C (acceleration set to 3, deceleration set to 0), cells at the interphase

were collected, washed once, counted using the CASY-counter and stored on ice for further

analysis.

4.2.1.2 Flow Cytometry staining

For flow cytometric analysis, 2 x 106 cells per staining and per well were aliquoted into a 96

well plate. Cells were stained for 20 min at 4∘C in the dark in 50 𝜇l of antibody mix diluted

in fluorescence-activated cell sorting (FACS) buffer. After incubation, cells were washed once

with 150 𝜇l FACS buffer and directly acquired at the FACS device.

For intracellular stainings, cells were fixed and permeabilized after they have been stained

for all surface markers. Cells were fixed/permeabilized with a Cytofix/Cytoperm kit (BD)

for 30 min at 4∘C in the dark, according to manufacturer’s instructions. After washing, cells

were stained for intracellular markers for additional 30 min at 4∘C in the dark.

For intranuclear staining of FoxP3 and Helios, cells were washed once and then resuspended in

200 𝜇l 1x Fixation/Permeabilization solution (eBioscience) for 30 min at 4∘C in the dark. Cells

were collected by centrifugation, the supernatant was removed and the cells were washed twice

with 1x Permeabilization Buffer (eBioscience). Cells were then stained with either FoxP3-

or Helios-specific antibody in 50 𝜇l Permeabilization Buffer for 30 min at 4∘C in the dark.

Afterwards, cells were washed once and acquired by FACS.

Acquisition was performed using a FACSCalibur or a FACSCantoII (BD). Data analysis was

performed using the FlowJo software (version 9 and 10, TreeStar, Ashland, OR, USA).
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4.2.1.3 Fecal IgA flow cytometry

To analyze IgA-binding of bacteria by flow cytometry, 2-3 fecal pellets from 8- to 15-week-old

mice were homogenized by bead beating and fecal bacteria were stained with anti-mouse IgA

as described previously [115]. Therefore, feces were placed into Matrix D tubes and incubated

in 500 𝜇l PBS for 1 h on ice. Afterwards, homogenization was performed using the FastPrep-

24 Instrument (MP Biomedicals) for 5 sec at maximum speed, followed by centrifugation

at 50 x g for 15 min at 4∘C. 100 𝜇l of fecal bacteria in the supernatant were washed with

PBS/1 % bovine serum albumin (BSA) and centrifuged at 8000 x g for 5 min at 4∘C. After

an additional wash, bacterial pellets were resuspended in 100 𝜇l PBS/1 % BSA/20 % rat

serum and incubated for 20 min on ice. Finally, bacteria were stained with 100 𝜇l PBS/1 %

BSA containing a PE anti-mouse IgA antibody (1.3 𝜇g/ml, eBioscience) for 30 min on ice.

Bacteria were washed three times with PBS and analyzed by flow cytometry.

4.2.1.4 Depletion of commensal bacteria

To deplete as many commensal bacteria as possible, animals were provided a mixture of

antibiotics (ABX), containing ampicillin sodium salt (1 g/l), vancomycin hydrochloride

(500 mg/l), neomycin sulfate (1 g/l) and metronidazole (1 g/l) in the drinking water for

at least 3 weeks before analysis [176].

4.2.1.5 Ex vivo T cell restimulation

To asses the cytokine secretion potential of a polyclonal T cell population, animals were

sacrificed and single cell suspensions of spleen, mLNs or colon LP were prepared as described

in section 4.2.1.1. 2x106 cells per well were aliquoted into 96 well plates and unspecifically

stimulated for 4 h at 37∘C with phorbol-12-myristate-13-acetate (PMA) (40 ng/ml final) and

ionomycin (1 𝜇g/ml final) in T cell-medium in the presence of 2 𝜇M Monensin (Golgi-Stop,

BD). Afterwards, cells were washed twice with FACS buffer, stained extra- and intracellularly

and acquired by FACS as described in section 4.2.1.2.
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4.2.1.6 Lipocalin-2 ELISA

Fecal samples were prepared as published previously [177] but adjusted for a smaller amount

of starting material. Therefore, 2-3 fecal pellets were collected, weighed and reconstituted in

100 𝜇l PBS containing 0.1 % Tween20 per 10 mg feces. The fecal homogenate was centrifuged

at 100 x g for 15 min at 4∘C and 100 𝜇l of the supernatant were transferred into a new tube

containing 10 𝜇l protease inhibitor (cOmplete ULTRA Tablets, Roche). After centrifugation

at 10,000 x g for 10 min at 4∘C, the supernatant was stored at -20∘C until use.

Samples were diluted 1:200 to 1:600 in Calibrator Diluent RD5-24 (1X) and lipocalin-2 was

measured according to manufacturer’s instructions using the Quantikine enzyme-linked im-

munosorbent assay (ELISA) for mouse Lipocalin-2/NGAL (R&D Systems).

4.2.1.7 Determination of fecal and serum antibody concentrations

Fresh feces were used to prepare fecal homogenates as described in section 4.2.1.6.

Blood from mice was collected by terminal cardiac puncture and transferred into a micro-

tainer tube (BD). After incubation at room temperature for at least 3 h, the coagulated blood

was centrifuged at 8,000 rpm for 5 min at room temperature and serum was frozen at -20∘C

until further use.

Fecal or serum antibody concentrations were determined using the Mouse IgG total Ready-

SET-Go! or the Mouse IgA Ready-SET-Go! ELISA (eBioscience) according to the manufac-

turer’s instructions.

4.2.1.8 Preparation of commensal bacterial lysate

The cecum of C57BL/6 mice was removed, opened longitudinally, transferred into a 2 ml

tube, containing 1.5 ml PBS and cecal content was expelled by vigorous vortexing to get rid

of the cecal tissue. Remaining cecal content was transferred into Lysing Matrix E tubes (MP

Biomedicals) and then homogenized using the FastPrep-24 Instrument (MP Biomedicals) for

45 sec at maximum speed. Samples were spun down and supernatant was collected, filtered
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and spun again at maximum speed. The protein concentration was determined according to

the manufacturer’s instructions using the Qubit Protein Assay Kit and Fluorometer (Invitro-

gen) and the cecal bacterial lysate (CBL) was stored at -20∘C until use.

4.2.1.9 Culture and lysate preparation of Helicobacter hepaticus

The Helicobacter hepaticus strain Hh-2 (ATCC 51448, [151]) was purchased from the Leibniz

Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSM No.: 22909)

and kindly cultivated by the group of Prof. Dr. Bärbel Stecher (Max von Pettenkofer-

Institute, LMU Munich). Bacteria from cryo stock were resuspended in brain heart infusion

medium and put onto blood agar plates (Columbia agar with 5% sheep blood, BD). Plates

were incubated in a chamber with anaerobic conditions (83 % N2, 10 % CO2, 7 % H2) for 4

days at 37∘C. A subculture was cultivated further on in brain heart infusion medium with

3% sheep serum in a culture flask in the chamber with anaerobic conditions for additional 4

days at 37∘C.

For lysate preparation, bacterial cells were harvested and washed 2-3 times with PBS. Cell

pellets were resuspended in PBS and lyzed by sonification with the Sonifier 150 Cell Disruptor

(Branson/Emerson) 6 times for 3 min at level 3 on ice. Lyzed cells were centrifuged at 20,000 x

g for 30 min at 4∘C and the supernatant was mixed with protease inhibitor (cOmplete ULTRA

Tablets, Roche). The protein concentration was determined according to the manufacturer’s

instructions using the Qubit Protein Assay Kit and Fluorometer and the lysate was stored at

-20∘C until used for ELISA or immunoblotting.

4.2.1.10 ELISA for commensal- or Helicobacter hepaticus-specific antibodies

CBL was prepared as decribed in section 4.2.1.8 and diluted in Carbonate Coating Buffer to

a final concentration of 1 𝜇g/ml. Lysate from Hh (HhL) was prepared as described in section

4.2.1.9 and diluted in Carbonate Coating Buffer to a final concentration of 0.1 𝜇g/ml. 100 𝜇l

of diluted lysate were coated per well over night at room temperature. Wells were washed five



4.2 Methods 43

times with PBS/0.05 % Tween20 followed by blocking of unspecific binding sites using 200 𝜇l

PBS/0.5 % nonfat dried milk for 2 h at room temperature and again washing five times.

Differences in serum antibody concentrations between Ctr and DC-LMP1/CD40 mice (as

determined in 4.2.1.7) were adjusted by using 2.5 𝜇g/ml serum IgG or 6.5 𝜇g/ml serum IgA

for each sample.

100 𝜇l of diluted serum were added per well, incubated for 2 h at room temperature and

washed again five times with PBS/0.05 % Tween20. For detection, isotype-specific antibodies

coupled to horseradish peroxidase (HRP) were used at a dilution of 1:4,000 in PBS/0.5 %

nonfat dried milk for 2 h at room temperature. After washing, the ELISA was developed

using 100 𝜇l of 3,3’,5,5’-tetramethylbenzidine solution. The reaction was stopped by adding

50 𝜇l 2 N H2SO4 and the optical density (OD) was measured at a wavelength of 450 nm with

630 nm as a reference wavelength, using the ELISA reader (𝜈max kinetic microplate reader,

Molecular Devices).

4.2.1.11 Immunoblotting

Serum IgG or IgA reactivity towards CBL or HhL was analyzed by immunoblotting. CBL

prepared as described in section 4.2.1.8 (30 𝜇g per lane or 600 𝜇g for Mini-PROTEAN II

Multiscreen Apparatus (Bio-Rad)) or HhL prepared as described in section 4.2.1.9 (20 𝜇g per

lane or 200 𝜇g for Mini-PROTEAN II Multiscreen Apparatus) were separated by sodium do-

decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at 90 V for 1-3 h in 1x Running

Buffer and transferred to a nitrocellulose membrane, using the tank blot method.

Proteins were transferred to a nitrocellulose membrane by blotting at 30 V O/N at 4∘C in

Transfer Buffer. Membranes were blocked for unspecific binding with PBS/5 % nonfat dried

milk for 1 h and then incubated with sera as primary antibodies in PBS/1 % nonfat dried milk

for 1 h at room temperature or O/N at 4∘C. Differences in serum antibody concentrations

between Ctr and DC-LMP1/CD40 mice (as determined in 4.2.1.7) were adjusted by using 2.5

𝜇g/ml serum IgG or 1 𝜇g/ml serum IgA for each sample.

In some experiments, mouse IgG1 anti-human heat shock protein 60 (𝛼HSP60) mAb (clone
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LK-2) was additionally used as primary antibody (1:10,000 in PBS/1 % nonfat dried milk).

Membranes were washed with PBS/1 % nonfat dried milk 3 times for at least 15 min each

and incubated with HRP-coupled secondary antibodies (goat anti-mouse IgG-HRP or goat

anti-mouse IgA-HRP, 1:10,000 in PBS/1 % nonfat dried milk) for 1 h at room temperature

or O/N at 4∘C, followed by additional washing as described above. Western Lightning Plus-

ECL Detection Reagent (PerkinElmer) and X-ray films (Amersham) were used for protein

detection at the OPTIMAX X-ray film processor (Protec).

4.2.1.12 Immunoprecipitation of potential antigens

Identification of bacterial antigens within CBL was performed by using serum antibodies

from control and DC-LMP1/CD40 mice for immunoprecipitation followed by label-free liquid

chromatography tandem mass spectrometry (LC-MS/MS). Therefore, 50 𝜇l protein G beads

(Dynabeads Protein G, Invitrogen) were coupled with 2.5 𝜇g serum IgG from control or

DC-LMP1/CD40 mice for 10 min at room temperature. 1600 𝜇g CBL were added to the

coated beads, incubated for 30 min at room temperature, and the complex was washed three

times with PBS/Tween 0.02 % followed by additional 3 rounds of washing with 50 mM

NH4HCO3. Samples were stored at -20∘C until LC-MS/MS was performed in the Protein

Analysis Unit (Biomedical Center, LMU Munich).

4.2.1.13 On-beads trypsin digest and Mass Spectrometry

Following the immunoprecipitation procedure, beads were incubated with 100 𝜇l of a 10

ng/𝜇l trypsin solution in 1 M Urea and 50 mM NH4HCO3 for 30 min at 25∘C for trypsin

digestion. The supernatant was collected, beads washed twice with 50 mM NH4HCO3 and

all three supernatants collected together and incubated overnight at 25∘C at 800 rpm after

addition of dithiothreitol to 1 mM. Iodoacetamide was added to a final concentration of 27

mM and samples were incubated at 25∘C for 30 min in dark. One 𝜇l of 1 M dithiothreitol

was added to the samples and incubated for 10 min to quench the iodoacetamide. Finally,

2.5 𝜇l of trifluoroacetic acid were added to the samples and the samples were subsequently
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desalted using C18 Stage tips. Samples were evaporated to dryness, resuspended in 15 𝜇l of

0.1 % formic acid solution and injected in an Ultimate 3000 RSLCnano system (Thermo),

separated in a 15 cm analytical column (75 𝜇m ID home-packed with ReproSil-Pur C18-AQ

2.4 𝜇m from Dr. Maisch) with a 50 min gradient from 5 to 60 % acetonitrile in 0.1 % formic

acid. The effluent from the HPLC was directly electrosprayed into a Qexactive HF (Thermo)

operated in data dependent mode to automatically switch between full scan MS and MS/MS

acquisition. Survey full scan MS spectra (from m/z 375 - 1600) were acquired with resolution

R = 60,000 at m/z 400 (AGC target of 3 x 106). The 10 most intense peptide ions with

charge states between 2 and 5 were sequentially isolated to a target value of 1 x 105, and

fragmented at 27 % normalized collision energy. Typical mass spectrometric conditions were:

spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary temperature, 250∘C;

ion selection threshold, 33,000 counts. MaxQuant 1.5.2.8 was used to identify proteins and

quantify by intensity-based absolute quantification (iBAQ) with the following parameters:

Database, uniprot_proteomes_Bacteria_151113.fasta; MS tol, 10 ppm; MS/MS tol, 0.5 Da;

Peptide FDR, 0.1; Protein FDR, 0.01 Min. peptide Length, 5; Variable modifications, Oxida-

tion (M); Fixed modifications, Carbamidomethyl (C); Peptides for protein quantitation, razor

and unique; Min. peptides, 1; Min. ratio count, 2. Identified proteins were considered as

interaction partners if their MaxQuant iBAQ values were greater than log2 2-fold enrichment

and p-value 0.05 (ANOVA) when compared to the control.

4.2.1.14 Infection with Helicobacter hepaticus by oral gavage

Bacterial suspensions cultured as described in section 4.2.1.9 were used for oral infection of

mice. Hh identity was confirmed by sequencing prior to infection. Bacterial density was

determined by OD measurements at 600 nm. Appropriate amount of suspension was washed

with PBS and then adjusted to OD(600) 3.0. Mice were inoculated with 100 𝜇l of the

suspension by oral gavage at d0, d3 and d5, for a total of 3 doses. Animals were analyzed 40

days post inoculation (p.i.).
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4.2.2 Molecular biology methods

4.2.2.1 Isolation of genomic DNA

In order to isolate genomic deoxyribonucleic acid (DNA) for genotyping, a little piece of

mouse tail tip or ear was put into a 50 𝜇l 1x Gitocher buffer and incubated at 55∘C for 6 h,

followed by a 5 min incubation at 95∘C for proteinase K inactivation.

Isolation of bacterial DNA from fecal pellets was performed with the QIAamp Fast DNA

Stool Mini Kit (Qiagen) according to the manufacturer’s instructions.

4.2.2.2 Polymerase chain reaction

To determine the genotype of mice, template DNA from tail or ear, isolated as described in sec-

tion 4.2.2.1, was used. The region of interest was amplified using the respective primers (listed

in 4.1.6) and respective polymerase chain reaction (PCR) programs at the PCR-machine

(Biometra):

Reaction mix - genotyping

DNA template 1 𝜇l
5x MyTaq Red Reaction buffer (Bioline) 5 𝜇l
Primer for (100 pmol/𝜇l) 0.1 𝜇l
Primer rev (100 pmol/𝜇l) 0.1 𝜇l
MyTaq Polymerase (Bioline) 0.15 𝜇l
H2O 18.65 𝜇l
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PCR conditions - genotyping

initialization
denaturation

annealing
elongation

final elongation
final hold

CD11c-Cre

95 ∘C 5 min
95 ∘C 30 sec

⎤⎥⎥⎥⎦ 35 cycles55 ∘C 30 sec
72 ∘C 45 sec
72 ∘C 5 min
4 ∘C

LMP1/CD40

94 ∘C 2 min
94 ∘C 10 sec

⎤⎥⎥⎥⎦ 35 cycles62 ∘C 30 sec
72 ∘C 30 sec
72 ∘C 2 min
4 ∘C

To screen mice for bacterial colonization, bacterial DNA was isolated from fecal pellets as

described in section 4.2.2.1, concentration was measured at the NanoDrop (GE Healthcare)

and adjusted to 2 ng/𝜇l. Amplification of the region of interest was performed, using 5-10 ng

DNA and the respective primers (listed in 4.1.6) with the following PCR programs:

PCR conditions - bacterial colonization

initialization 94 ∘C 4 min
denaturation 94 ∘C 1 min

⎤⎥⎥⎥⎦ 35 cyclesannealing 55-61 ∘C 1 min
elongation 72 ∘C 1 min

final elongation 72 ∘C 7 min
final hold 4 ∘C

annealing temperature

universal bacteria 58 ∘C
H. spp, H. hepaticus 61 ∘C
H. bilis, H. rodentium 55 ∘C
H. typhlonius 55 ∘C

4.2.2.3 Agarose gel electrophoresis

To visualize and separate DNA fragments according to size, samples were subjected to agarose

gel electrophoresis. The gel consisted of 1 - 2 % agarose dissolved in 1x TAE buffer with

addition of ethidium bromide at a final concentration of 0.5 𝜇g/mL. Separation of fragments

on the gel was achieved with a constant voltage (90 V) applied to an electrophoresis chamber

containing a conductive buffer (1x TAE). For size estimation of fragments, a 100 bp ladder

was used (New England Biolabs). The DNA samples were visualized by examination under

ultraviolet light at 312 nm, using the Molecular Imager Gel Doc XR+ (BIO-RAD).
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4.2.2.4 16S rRNA amplicon sequencing and taxonomic profiling

Analysis of the intestinal microbiota of mouse fecal samples was based on the recently de-

veloped dual-index strategy for sequencing on the MiSeq Illumina platform [178]. Briefly,

genomic DNA was extracted from stool samples using the phenol-chloroform extraction

technique with mechanical disruption [179]. Inserts were PCR-amplified in duplicate using

multiplexed 8 forward x 12 reverse primers targeting the V3-V4 variable regions of the 16S

ribosomal ribonucleic acid (rRNA) gene [180] and purified using the Agencourt AMPure XP

PCR Purification system (Beckman Coulter). Purified amplicons were combined in equimolar

amounts in one pool and sent to Eurofins Genomics (Ebersberg, Germany) for library quality

control and sequencing on the Illumina MiSeq v.3 as 300-bp paired-end runs. Sequencing

output was pre-processed to retain only high-quality reads, which were then analyzed with

QIIME v1.8 [181]. Open-reference operational taxonomic unit (OTU) clustering and taxono-

my assignment of sequences were done with UCLUST [182] against the Silva database Release

111 [183] at the 97 % similarity level. Alpha diversity was calculated on rarefied OTU tables

using the observed OTUs metric. 16S rRNA amplicon sequencing data have been deposited

in the NCBI Sequence Read Archive under Accession Number SRX1799186.

4.2.2.5 Statistics

For statistical analysis, the PRISM software (version 5 and 7, GraphPad, La Jolla, CA,

USA) was used. If not mentioned otherwise, bar graphs represent mean ± standard error

of mean (SEM) and p-values were calculated with two-tailed unpaired Student’s t-test, with

*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.



5 Results

5.1 Role of the non-canonical NF-𝜅B pathway in

DC-LMP1/CD40 animals

To study the effect of CD40-signaling on DCs, we generated a mouse model with constitutive

CD40-signaling on DCs. These transgenic DC-LMP1/CD40 mice develop early-onset colitis

that is fatal [77]. We could demonstrate that the generation of ROR𝛾t+Helios- iTregs in the

large intestine of DC-LMP1/CD40 mice is impaired due to the loss of tolerogenic CD103+

DC subsets in the colonic LP and the mLNs [77].

As it is known that CD40 can activate the non-canonical NF-𝜅B pathway [81], we asked

whether this is the predominant downstream signaling pathway in our CD40-mediated model

of colitis. Therefore, we generated mice not only with DC-specific constitutive CD40-signaling

but also with DC-specific deletion of IKK1, a critical component for p100 phosphorylation

(Fig.5.1 A). As a consequence, p100 is neither phosphorylated nor processed into p52, and

the p52/RelB complex is not assembled to be translocated into the nucleus for subsequent

target gene transcription. Thus, constitutive CD40-signaling in DCs cannot activate the

non-canonical NF-𝜅B pathway in DC-LMP1/CD40ΔIKK1 animals.

In contrast to control and DC-LMP1/CD40 mice, DC-LMP1/CD40ΔIKK1 animals did show en-

larged spleens and mLNs (Fig.5.1 B) with significantly elevated total cell numbers

(Fig.5.1 C). Surprisingly, we did neither observe macroscopic signs of colitis (Fig.5.1 B) nor

elevated total cell numbers in the colonic LP (Fig.5.1 C) and no increase in fecal lipocalin-

2 levels (Fig.5.1 D) in DC-LMP1/CD40ΔIKK1 mice when compared to control littermates.

This pathological phenotype was only detected in DC-LMP1/CD40 mice. Further, DC-

LMP1/CD40ΔIKK1 mice showed even significantly reduced colon LP cell numbers (Fig.5.1

C) and fecal lipocalin-2 levels (Fig.5.1 D) similar to controls, confirming a non-inflammatory

environment in DC-LMP1/CD40ΔIKK1 animals.
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Figure 5.1: DC-LMP1/CD40ΔIKK1 animals show enlarged spleens and mLNs but
no colitis. A) Schematic illustration of the impaired non-canonical NF-𝜅B pathway in DCs
of DC-LMP1/CD40ΔIKK1 animals upon IKK1 deletion. B) Macroscopic pictures of spleen,
mLN and colon from Ctr, DC-LMP1/CD40 and DC-LMP1/CD40ΔIKK1 animals. Shown are two
representative organs per group. C) Bar graphs show total spleen, mLN and colon cell numbers
in Ctr, DC-LMP1/CD40 and DC-LMP1/CD40 ΔIKK1 animals from two pooled experiments for
spleen (mean ± SEM, n=4-6) and four pooled experiments for mLN and LP (mean ± SEM,
n=8-12). D) Levels of fecal lipocalin-2 were measured by ELISA in Ctr, DC-LMP1/CD40 and
DC-LMP1/CD40ΔIKK1 animals. Shown are data from two pooled experiments as mean ± SEM,
n=7-14.
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5.1.1 Loss of colonic iTregs in DC-LMP1/CD40 animals depends on

CD40-activated non-canonical NF-𝜅B signaling

To reveal the impact of non-canonical NF-𝜅B activation in our CD40-mediated colitis model

in further detail, we analyzed cell subsets in the spleen, mLNs and colonic LP of DC-

LMP1/CD40ΔIKK1 animals.

Most interestingly, we have found some changes in the colonic LP of DC-LMP1/CD40 ΔIKK1

animals. CD103+ DCs were strongly reduced in DC-LMP1/CD40 ΔIKK1 animals, similar to

DC-LMP1/CD40 animals (Fig.5.2 A). However, although not statistically significant, DC-

LMP1/CD40ΔIKK1 mice showed a tendeny towards increased frequency of CD103+CD11b-

DCs when compared to DC-LMP1/CD40 animals (Fig.5.2 A).

When we analyzed Tregs in the colonic LP, the frequeny of FoxP3+CD25+ Tregs was simi-

lar in control, DC-LMP1/CD40 as well as DC-LMP1/CD40ΔIKK1 animals (Fig.5.2 B, upper

panel). As we previously published ([77], Fig.3.4 B), DC-LMP1/CD40 animals showed an

almost complete loss of ROR𝛾t+Helios- iTregs. Surprisingly, DC-LMP1/CD40ΔIKK1 animals

were able to induce ROR𝛾t+Helios- iTregs (Fig.5.2 B, lower panel). Here, iTregs were still

reduced in frequency when compared to controls, but stronly increased when compared to

DC-LMP1/CD40 animals (Fig.5.2 B, lower panel).

The analysis of effector T cells in the large intestine revealed a strong increase in IL-17-

producing Th17 cells in DC-LMP1/CD40ΔIKK1 animals (Fig.5.2 C). Notably, IL-17+ Th17

cells in DC-LMP1/CD40ΔIKK1 animals were accumulating but not transdifferentiating into

IL-17+IFN-𝛾+ Th17/Th1 or IFN-𝛾+ Th1 cells (Fig.5.2 C). This transdifferentiation of Th17

cells was only observed in DC-LMP1/CD40 animals as also shown previously ([77], Fig.3.4 C).

Therefore, pathogenic effector T cells are not induced in the colon LP when CD40-activated

DCs are deficient in non-canonical NF-𝜅B signaling.

Further, DC-LMP1/CD40ΔIKK1 animals showed some signs of splenic inflammation as indi-

cated by granulocytes increased in frequency and number (data not shown), causing macro-

scopically enlarged spleens in these animals as shown in Fig.5.1 B. We did not find any
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differences in the mLNs of DC-LMP1/CD40ΔIKK1 and DC-LMP1/CD40 animals, meaning

CD103+CD11b- as well as CD103+CD11b+ DCs were similarly reduced as we showed for DC-

LMP1/CD40 animals but not control littermates (data not shown). Of note, ROR𝛾t+Helios-

iTregs were also significantly reduced in mLNs of DC-LMP1/CD40ΔIKK1 as previously seen

in DC-LMP1/CD40 animals (data not shown).

Taken together, CD40-signaling is activating the non-canonical NF-𝜅B pathway in DCs that

seems to be crucial for the pathogenesis in our colitis model. Our data suggest that the im-

paired non-canonical NF-𝜅B pathway in CD40-activated DCs preserves some characteristics

that are sufficient to generate iTregs in DC-LMP1/CD40ΔIKK1 animals. This improved in-

duction of iTregs in turn restrains pathogenic effector T cells in the large intestine, preventing

development of colitis.
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Figure 5.2: Deficiency of non-canonical NF-𝜅B signaling in DCs leads to generation
of iTregs and IL-17+ effector T cells in the colonic LP. A-C) Different cell subsets
in the colonic LP were analyzed in Ctr, DC-LMP1/CD40 and DC-LMP1/CD40ΔIKK1 animals.
Shown are representative FACS-plots as well as pooled statistics from two experiments (mean
± SEM, n=4-6), illustrating frequencies of the indicated cell subsets within the gates. A)
DCs were gated on single, live, CD45+, MHCII+CD11c+, CD64- cells. B) Tregs were gated on
single, live, CD45+, CD3+CD4+, FoxP3+CD25+ (upper panel) and for further differentiation on
ROR𝛾t+Helios- (iTregs) or ROR𝛾t-Helios+ (nTregs) (lower panel). C) Single-cell suspensions
were stimulated with PMA/Ionomycin and subsequently stained intracellularly for IL-17 and
IFN-𝛾 production. CD4+ T cells were pre-gated on single, live, CD45+, CD3+CD4+ cells.
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5.2 Analysis of gut microbiota in DC-LMP1/CD40 mice

As transgenic animals treated with ABX or crossed onto Rag1−/− background do not suffer

from intestinal inflammation, colitis development clearly depends on T or B cells as well as on

microbiota [77]. It is well known that microbiota shape the host immune system and have a

relevant impact on health and disease. To maintain mucosal homeostasis, a balance between

appropriate immune responses to invading pathogens and tolerance to dietary and commensal

antigens is essential. Disturbed balances, dysbiosis, can result in severe inflammatory disor-

ders like IBD. To evaluate the role of microbiota within the CD40-mediated colitis model,

we studied changes of microbiota during disease development.

To get further insights into the complex microbiota responsible for shaping adaptive immu-

nity and inflammation in CD40-mediated colitis, we first determined the disease onset in

DC-LMP1/CD40 mice by measuring fecal lipocalin-2, a sensitive non-invasive inflammatory

marker [184]. In contrast to non-transgenic littermates, lipocalin-2 levels in DC-LMP1/CD40

mice were significantly increased starting in week 5 after birth (Fig.5.3 A), indicating a very

early disease onset due to constitutive CD40-signaling in DCs as published previously [77]. In

addition, neither ABX-treated control nor transgenic animals did show elevated lipocalin-2

levels (Fig.5.3 A), confirming our previous results that colitis development depends on micro-

biota [77].

As a first hint for bacterial changes during disease development, we determined the fecal bacte-

rial load of DC-LMP1/CD40 mice at different ages. We plated fecal content onto MacConkey

agar, which is selective for gram-negative bacteria. Therefore, mainly Enterobacteriaceae are

represented, the bacterial load of which can be determined as colony-forming units (cfu). We

already observed a tendency towards higher bacterial load in 4-week-old DC-LMP1/CD40

mice when compared to cohoused control littermates (Fig.5.3 B). This difference became

more obvious upon colitis onset in 5-week-old DC-LMP1/CD40 mice and finally statistically

significant in 8-week-old DC-LMP1/CD40 mice (Fig.5.3 B). The so-called "Enterobacteriaceae

blooming" in DC-LMP1/CD40 mice indicates dysbiosis, a hallmark of colitis [145]. Of note,
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all ABX-treated mice showed almost no bacterial load, confirming successful treatment.
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Figure 5.3: DC-LMP1/CD40 animals show "Enterobacteriaceae blooming" upon
colitis onset. A) Levels of fecal lipocalin-2 were measured by ELISA in untreated or ABX-
treated Ctr and DC-LMP1/CD40 mice at the indicated time points. Data is shown as mean ±
SEM (n=3-5). B) Fecal bacterial load of untreated or ABX-treated Ctr and DC-LMP1/CD40
mice at the indicated time points. Fecal content was plated onto MacConkey agar and cfu were
calculated. Data represents mean ± SEM (n=3-5 per group).

5.2.1 Dysbiosis in DC-LMP1/CD40 animals

To reveal more detailed changes in the microbial composition upon disease development in

DC-LMP1/CD40 animals, we performed 16S rRNA gene sequencing of fecal bacteria in col-

laboration with the group of Prof. Dr. Bärbel Stecher (Max von Pettenkofer-Institute, LMU

Munich), amplifying the variable region V3-V4 (Fig.5.4 A). We analyzed the intestinal mi-

crobiota in fecal samples from 3-week-old DC-LMP1/CD40 animals, which did not show any

signs of colitis as well as 8-week-old DC-LMP1/CD40 animals, suffering from colitis (Fig.5.3

A).

We have determined the microbiota within-group (alpha-) diversity at the operational taxo-

nomic unit (OTU) level upon amplicon sequencing of the 16S rRNA gene regions V3-V4. Here,

our data revealed a strong and statistically significant decrease in the number of observed

OTUs in 8-week-old DC-LMP1/CD40 mice as compared with cohoused control littermates

(Fig.5.4 B), indicating a shift in microbiota diversity further confirming dysbiosis in transgenic

animals.
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Figure 5.4: DC-LMP1/CD40 animals show reduced numbers of OTUs. A) Schematic
representation of the variable region 3-4 of the 16S rRNA gene used for sequencing. B) Rare-
faction plots illustrating within-group (alpha-) diversity of Ctr and DC-LMP1/CD40 mice at
the indicated time points. On the basis of 16S rRNA gene sequencing of the V3-V4 regions, the
number of observed OTUs versus sequencing depth are shown. Data indicate mean ± standard
deviation (n=5 per group). Figure is adapted from Figure 5 in our published paper [77].

We further analyzed the samples for taxa composition at the family level. Changes ob-

served in 3-week-old mice were littermate-dependent (Fig.5.5 upper panel) while changes

in 8-week-old mice were genotype-dependent (Fig.5.5 middle panel). Here, DC-LMP1/CD40

mice showed distinct fecal microbial compositions when compared to control littermates. Con-

sistent with our findings in Fig.5.3 B, 8-week-old DC-LMP1/CD40 mice showed an increase

in the abundance of the Proteobacteria Enterobacteriaceae (Fig.5.5 middle panel). Further,

abundance of Firmicutes Clostridiaceae, Erysipelotrichaceae and Peptostreptococcaceae was

increased whereas abundance of Firmicutes Ruminococcaceae and Lachnospiraceae was re-

duced (Fig.5.5 middle panel). When mice were treated with ABX, we did not detect a

complex taxa composition as in untreated animals (Fig.5.5 lower panel). Here, we did find

mainly Mycoplasmataceae in both control and DC-LMP1/CD40 animals, which were resistant

to the antibiotics cocktail we used.
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Figure 5.5: DC-LMP1/CD40 animals show changes in taxa composition upon colitis
onset. Analysis of composition of intestinal microbiota in fecal samples from untreated or ABX-
treated Ctr and DC-LMP1/CD40 mice at the indicated time points was based on sequencing
the V3-V4 variable regions of the 16S rRNA gene (Illumina MiSeq; open-reference OTU picking,
reference database SILVA, UCLUST). Shown is the relative abundance of taxa at family level
with each bar representing one animal (n=4-5 per group). Underline codes indicate littermates
(dashed or solid black line) or caging (solid grey lines).
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5.3 Microbial-host interactions

Due to the fact that we observed major changes in taxa composition during disease progres-

sion, we asked whether and to what extend adaptive immune responses have the potential

to modulate microbiota or how and to what extend microbiota impact host immunity in

the CD40-mediated colitis model. Therefore, we analyzed microbial-host interactions in DC-

LMP1/CD40 animals to subsequently identify mechanisms and/or species driving disease

development.

5.3.1 Fecal bacteria in DC-LMP1/CD40 mice are highly IgA-coated

Palm et al. previously showed that in particular highly IgA-coated bacteria have the potential

to drive intestinal inflammation [115]. Therefore, we measured fecal IgA-levels by ELISA.

We detected elevated fecal IgA-levels in DC-LMP1/CD40 mice starting at week 5 (Fig.5.6

A). These levels further increased with age but were entirely abolished if the mice were

treated with ABX (Fig.5.6 A). We further monitored bacterial IgA-coating by flow cytometry,

whereby a higher percentage of intestinal microbiota was IgA-coated and also more IgA was

bound per microbe in DC-LMP1/CD40 animals (Fig.5.6 B), indicating that highly IgA-coated

bacteria are driving the disease in transgenic animals.
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Figure 5.6: Fecal bacteria from DC-LMP1/CD40 animals are highly coated by IgA.
A) Fecal IgA concentrations in Ctr and DC-LMP1/CD40 animals at different time points and
treated as indicated were measured by ELISA. Data is represented as scatter plot (mean ± SEM,
n=3-5). B) Feces homogenates from Ctr and DC-LMP1/CD40 mice were stained with 𝛼-mouse
IgA and analyzed by flow cytometry. Data shows one representative histogram and scatter plots
with percentage or MFI of IgA+ bacteria (mean ± SEM for two pooled experiments, n=6).
Figure is adapted from Figure 5 in our published paper [77].
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5.3.2 DC-LMP1/CD40 mice produce commensal-specific antibodies

We next analyzed IgG and IgA serum levels in DC-LMP1/CD40 animals during colitis pro-

gression. Compared with control littermates, DC-LMP1/CD40 mice showed elevated total

serum IgG-levels already at 6 weeks of age (Fig.5.7, left panel). These levels further increased

with age. Also IgA-levels were elevated in DC-LMP1/CD40 animals at every age tested and

strongly increased further with age (Fig.5.7, right panel).
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Figure 5.7: DC-LMP1/CD40 mice show elevated serum IgG- and IgA-levels upon
colitis onset. Total IgG (left panel) or IgA (right panel) concentrations in sera from Ctr and
DC-LMP1/CD40 animals at the indicated time points were measured by ELISA. Data from two
pooled experiments are shown as mean ± SEM (n=3-13).

As mice with spontaneous colitis have the propensity to develop antibody responses against

commensal bacteria [185], we next set out to identify antibody specificities in DC-

LMP1/CD40 mice. To this end we used cecal bacterial lysate (CBL) from non-transgenic

C57BL/6 mice, representing normal intestinal microbiota [185] for ELISA (Fig.5.8 A). In

DC-LMP1/CD40 mice, serum IgG response to commensal antigens was significantly increased

at the 10-week time point when compared to control littermates (Fig.5.8 A, left panel). In

contrast, we detected significantly higher serum IgA reactivities in mice at the age of 10, 12

and 14 weeks (Fig.5.8 A, right panel).

To further visualize the whole variety of bacterial antigens potentially recognized by serum

Ig from DC-LMP1/CD40 mice, we tested these sera also by immunoblotting (Fig.5.8 B).

Serum IgG from both, DC-LMP1/CD40 mice and control littermates, detected some proteins
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of different sizes ranging from 10 to 250 kDa (Fig.5.8 B, left panel). However, in contrast

to sera from controls, each serum IgG sample from DC-LMP1/CD40 mice showed reactivity

with a protein of about 60 kDa (Fig.5.8 B, left panel). This reactivity was increasing with

the age of the mice (Fig.5.8 B, left panel). Serum IgA from 10-, 12- and 14-week samples of

DC-LMP1/CD40, but not control mice, selectively detected proteins around 60 kDa (Fig.5.8

B, right panel).

Summarized, our data reveal that DC-LMP1/CD40 mice produce more serum antibodies

upon colitis onset and that serum antibodies are specific for bacterial antigens present in

CBL from healthy mice.

A

B

*

αC
BL

sI
gG

O
D
45
0
nm

αC
BL

sI
gA

O
D
45
0
nm

we
ek
6

we
ek
10

we
ek
12

we
ek
14

we
ek
6

we
ek
10

we
ek
12

we
ek
14

250
130
100
70

Ctr

αI
gG

w6 w10 w12

DC-LMP1/CD40
w14 w6 w10 w12 w14

Ctr
w6 w10 w12

DC-LMP1/CD40
w14 w6 w10 w12 w14

55

35

25

15

αI
gA

130
100
70
55

35

25

15

*

**

**

Ctr DC-LMP1/CD40

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

Figure 5.8: DC-LMP1/CD40 mice show commensal-specific antibodies. A-B) Serum
IgG (left) and IgA (right) response in Ctr and DC-LMP1/CD40 mice towards commensal anti-
gens within the CBL was determined by (A) ELISA (mean ± SEM, n=3-5 per group and time
point) or (B) immunoblotting at the indicated time points (n=2 per group and time point, each
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or goat 𝛼-mouse IgA-HRP were used as secondary antibodies. Arrows indicate 60 kDa.
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5.3.3 Identification of bacterial antigens by serum antibody

reactivity

To identify bacterial antigens recognized by serum antibodies in DC-LMP1/CD40 animals, we

performed label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) (Fig.5.9

A). For this approach, serum antibodies were coupled to beads and incubated with CBL

for binding of potential target proteins. Upon immunoprecipitation we performed on-bead

digestion of bead-bound proteins followed by LC-MS/MS. The resulting peak intensities were

finally used for intensity-based absolute quantification (iBAQ). Proteins identified with a fold

change > 2 and a p-value < 0.05 were considered for further analyses. Interestingly, the results

provided only five proteins precipitated by serum antibodies from DC-LMP1/CD40 mice and

two proteins by control serum antibodies that met these requirements (Fig.5.9 B). We focused

on proteins precipitated by serum antibodies from DC-LMP1/CD40 animals with the highest

fold change and lowest p-value. These were (i) the 60 kDa chaperonin GroEL (Hsp60) from

Hh (CH60_HELHP, 8.36 fold change, p-value < 0.00001) (ii) the probable peroxiredoxin

from H. pylori (TSAA_HELPJ, 9.93 fold change, p-value < 0.000001). The data analysis for

the number of precipitated peptides (Fig.5.9 C, upper panels) and the percentage of sequence

coverage of the proteins (Fig.5.9 C, lower panels) revealed that CH60_HELHP was identified

by 1-21 peptides with a sequence coverage ranging from 2.4 % up to 43.7 %. In contrast,

TSAA_HELPJ was identified by only one peptide and with a sequence coverage of only 5.6

% for every single DC-LMP1/CD40 serum sample (Fig.5.9 C). To exclude biased results due

to differences in serum antibody amounts from DC-LMP1/CD40 and control animals bound

by protein G beads, samples were adjusted by calculating equal amounts of serum IgG before

coupling onto the beads and also the peak intensities of Ig-related proteins were quantified

within the same experiment. Here, DC-LMP1/CD40 and control serum samples showed no

differences in Ig-related protein intensities (Fig.5.9 D), indicating equal coupling of serum

antibodies from both control and transgenic mice.
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Figure 5.9: Serum antibodies from DC-LMP1/CD40 mice are specific for a protein
from Hh. A) Schematic illustration of sample preparation for LC-MS/MS. Protein G beads
were coupled with 2.5 𝜇g serum IgG from Ctr or DC-LMP1/CD40 mice (as determined in Fig.5.7)
to bind commensal antigens within the CBL. Upon immunoprecipitation, proteins were trypsin-
digested, analyzed by LC-MS/MS and the resulting peak intensity was used for iBAQ (pooled
results from two experiments, n=6). B) Results obtained by iBAQ are illustrated by the volcano
plot. Identified proteins were considered as interaction partners if their MaxQuant iBAQ values
were greater than log2 2-fold enrichment and p-value 0.05 (ANOVA) when compared to the
control. C) Data illustrate the number of peptides (upper panel) and the percentage of protein
sequence coverage (lower panel) of the identified proteins CH60_HELHP and TSAA_HELPJ
from B). Each symbol represents one single mouse. D) Experiment was performed as in A), but
data wwere filtered for Ig-related proteins only. Intensities of all Ig-related proteins, detected by
LC-MS/MS within every single Ctr or DC-LMP1/CD40 sample, are illustrated by bar graphs
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The fact, that a protein from Hh was precipitated with this approach was plausible as the

mice were housed under conventional conditions, increasing the probability that the mouse

colony might have been endemically infected with Hh.

We next tested the serum antibody reactivity from DC-LMP1/CD40 mice towards whole

Hh lysate (HhL) by ELISA (Fig.5.10 A) and immunoblotting (Fig.5.10 B, C). Indeed, both

serum IgG as well as IgA from DC-LMP1/CD40 mice showed a strong reactivity towards HhL

when compared to sera from control littermates by ELISA (Fig.5.10 A). To detect GroEL

from Hh by immunoblotting, we used the anti-human Heat shock protein 60 (𝛼HSP60) mAb
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(clone LK-2, mouse IgG1 isotype) as positive control, recognizing both human HSP60 and

the bacterial homologue GroEL [186]. As expected, in Western blot analyses LK-2 detected

recombinant GroEL from E.coli (rGroEL (Ec)) and GroEL in CBL and HhL (Fig.5.10 B,

left panel), confirming the specificity of this antibody and the presence of GroEL in CBL

and HhL used for this screening. Furthermore, in contrast to sera from control littermates

(Fig.5.10 B, middle panel), sera from DC-LMP1/CD40 (Fig.5.10 B, right panel) detected a

band of the same size in CBL as well as HhL. Interestingly, we did detect the 60 kDa protein

in HhL with serum IgG from DC-LMP1/CD40 with every age tested and this reactivity was

increasing with the age of the mice (Fig.5.10 C). Further, detection of the 60 kDa protein

in HhL with serum IgA from DC-LMP1/CD40 mice was only observed in mice at the age

of 14 weeks and older (Fig.5.10 C). In contrast, there was no 60 kDa protein-specific signal

detected neither with serum IgG nor IgA from control mice (Fig.5.10 C).

Taken together, we identified the 60 kDa chaperonin GroEL from Hh as potential antigen

recognized by the immune system during early colitis onset, indicating that Hh might be a

disease driver in the DC-LMP1/CD40 colitis model.
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Figure 5.10: Serum antibodies from DC-LMP1/CD40 mice are specific for a 60 kDa
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Ab. C) Detection of the 60 kDa protein by immunoblotting with serum IgG (upper panel) or IgA
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5.4 Helicobacter hepaticus as disease driver

The pathobiont Hh is associated with IBD and known to induce spontaneous colitis in im-

munodeficient mice with severe combined immunodeficiency or IL-10-deficiency [156, 159].

To determine the infection rates of conventionally-housed mice used in this study, we screened

fecal contents from mice at week 3 and week 10 after birth for presence of Helicobacter by

genus-specific (Hspp) and species-specific PCR (Fig.5.11 A).

We did find Hspp throughout all DC-LMP1/CD40 and control littermates (Fig.5.11 A). More-

over, all control littermates were consistently colonized with Hh (Fig.5.11 A). Surprisingly,

young DC-LMP1/CD40 mice showed already reduced infection rates (week 3, 57.1 % Hh-

positive transgenic animals, Fig.5.11 B), whereas Hh was hardly detectable in older DC-

LMP1/CD40 mice (week 10, 8.3 % Hh-positive transgenic animals, Fig.5.11 B). Of note, we

obtained similar results for colonization with H. typhlonius (Ht) and all animals tested were

also colonized with H. rodentium (Hr), explaining consistent Hspp positive results (Fig.5.11

A). In contrast, none of the animals was tested positive for H. bilis (Hb) (Fig.5.11 A).

Taken together, conventionally-housed mice were endemically infected with Hh. The fact, that

DC-LMP1/CD40 animals show loss of Hh colonization in particular upon colitis progression

suggests that this pathobiont is eliminated by either ongoing immune response against Hh,

Hh transition from the lumen into the LP upon manifestation of dysbiosis and inflammation

or Hh displacement by other bacteria during dysbiosis.
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Figure 5.11: DC-LMP1/CD40 mice show loss of Hh colonization upon disease pro-
gression. A) Bacterial DNA was extracted from fecal samples from Ctr or DC-LMP1/CD40
mice at the indicated time points. 16S rRNA gene primers were used to detect the species in-
dicated (n=7-14). B) Data from A) is represented as bar graphs, illustrating the percentage
of 3- or 10-week-old Hh-pos Ctr or DC-LMP1/CD40 animals. bac: universal bacteria; Hspp:
Helicobacter species; Hh: H. hepaticus; Ht : H. typhlonius; Hr : H. rodentium; Hb: H. bilis

5.4.1 Helicobacter hepaticus-free DC-LMP1/CD40 mice are

protected from early disease onset

By embryo transfer rederivation, we rendered mice Hh-free and maintained them under

specific-pathogen-free (SPF) conditions. We confirmed Hh-colonization status by genus-

specific and species-specific PCR with fecal content from 6- and 10-week-old mice (Fig.5.12).

Notably, all animals were tested negative for Hh as well as Ht, Hr and Hb.
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Figure 5.12: Control and DC-LMP1/CD40 animals are no longer colonized with
Helicobacter after embryo transfer rederivation. Bacterial DNA was extracted from fecal
samples from Ctr or DC-LMP1/CD40 mice after rendering them Hh-free at the indicated time
points. 16S rRNA gene primers were used to detect the species indicated (n=5-9).
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None of the Hh-free DC-LMP1/CD40 animals showed elevated fecal lipocalin-2 levels at the

age of 8 or 14 weeks (Fig.5.13 A, lower panel), in contrast to Hh-positive DC-LMP1/CD40

mice, which already had significantly elevated fecal lipocalin-2 levels (Fig.5.13 A, upper panel).

Interestingly, we did detect significantly increased fecal lipocalin-2 levels only at much later

time points in some but not all Hh-free DC-LMP1/CD40 mice (Fig.5.13 A, lower panel). At

week 20, 55.5 % and at week 25 only 30.8 % of Hh-free transgenic mice showed elevated

lipocalin-2 levels. Of note, Hh-free DC-LMP1/CD40 mice not only showed less morbidity

but also a remarkably improved survival rate. Compared to Hh-positive DC-LMP1/CD40

mice, which usually die between 10 to 18 weeks of age (Fig.5.13 B, [77]), none of Hh-free

DC-LMP1/CD40 animals died before week 25 (Fig.5.13 B), the time point we sacrificed the

mice for analyses.
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Figure 5.13: Hh-free DC-LMP1/CD40 mice show delayed inflammation with pro-
longed survival. A) Levels of fecal lipocalin-2 were measured by ELISA in Hh-pos (upper
panel) or Hh-free (lower panel) Ctr and DC-LMP1/CD40 mice at the indicated time points.
Shown are data from two pooled experiments for Hh-pos animals (n=5-9) and for Hh-free ani-
mals (n=9-13) as mean ± SEM. Crosses represent animals already dead at the indicated time
points. B) Kaplan-Meier plot showing survival of Hh-free or Hh-pos Ctr and DC-LMP1/CD40
animals (n=6-10). Data for Hh-pos animals were taken from Figure 2 in our previous publication
[77].
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When we compared the phenotype of Hh-pos and Hh-free animals at the age of 14 weeks,

Hh-pos DC-LMP1/CD40 mice already suffered from acute colitis, indicated by shortened and

thickened colon as well as strong increase in total colonic cell numbers (Fig.5.14 upper left

panel, [77]). In contrast, we observed neither macroscopic signs of colitis, nor elevated total

infiltrate cell numbers in the colonic LP of 14-week-old Hh-free DC-LMP1/CD40 animals

(Fig.5.14 lower left panel). However, in aged mice of 25 weeks, again some but not all Hh-free

DC-LMP1/CD40 mice showed an inflamed phenotype with shortened and thickened colon as

well as increased cell numbers, infiltrating the colon LP (Fig.5.14 right panel).

Our data show a substantial delay in disease onset as well as less morbidity of Hh-free DC-

LMP1/CD40 mice, indicating a crucial role for this pathobiont in disease initiation and out-

come in CD40-mediated colitis.
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Figure 5.14: Hh-free DC-LMP1/CD40 mice show delayed inflammation and less
morbidity. Macroscopic pictures of colons from Hh-pos (upper panel) or Hh-free (lower panels)
Ctr and DC-LMP1/CD40 mice at the indicated time points. Shown are two representative
colons per group with scale bars = 1 cm. Bar graphs show total colon LP cell numbers in Ctr
and DC-LMP1/CD40 mice from three pooled experiments (mean ± SEM, n=6-13).
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5.4.2 DC-LMP1/CD40 mice rapidly develop strong intestinal

inflammation upon reinfection with Helicobacter hepaticus

To further investigate the role of Hh in disease initiation, we reinfected Hh-free animals with

Hh (strain ATCC 51448, [151]) by oral gavage (Fig.5.15 A).

Already at day 21 post inoculation (p.i.), all DC-LMP1/CD40 mice and control littermates,

but not PBS-treated mice were Hh-positive as shown by species-specific PCR from feces

(Fig.5.15 B). Also at day 40 p.i., when animals were finally sacrificed for analysis, all Hh-

reinfected mice were still colonized with Hh (Fig.5.15 B). Of note, all mice were negative for

the other most relevant Helicobacter species, confirming mono-colonization with Hh by oral

gavage (Fig.5.15 B).
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Figure 5.15: Oral gavage with Hh leads to rapid mono-colonization of Hh-free Ctr
and DC-LMP1/CD40 mice. A) Schematic illustration of reinfection of Hh-free Ctr and
DC-LMP1/CD40 mice with cultured Hh by oral gavage at the indicated time points. Feces
were collected at the indicated time points and animals were sacrificed 40 d p.i.. B) Bacterial
DNA was extracted from fecal samples from either PBS-treated or Hh-reinfected Ctr and DC-
LMP1/CD40 mice at the indicated time points. Hh-colonization was confirmed by PCR as in
Fig.5.11 A and 5.12. Shown is one representative experiment out of two (n=4). bac: universal
bacteria; Hspp: Helicobacter species; Hh: Helicobacter hepaticus; Ht : Helicobacter typhlonius;
Hr : Helicobacter rodentium; Hb: Helicobacter bilis
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Furthermore, only Hh-reinfected DC-LMP1/CD40 mice did show significantly elevated fecal

lipocalin-2 levels already 21 d p.i. when compared to controls, indicating a rapid disease onset

upon reinfection with Hh (Fig.5.16 A). By d40 p.i., Hh-reinfected DC-LMP1/CD40 animals

but not control littermates showed not only increased fecal lipocalin-2 levels (Fig.5.16 A) but

also a huge increase in cells infiltrating the colonic LP as well as a shortened and thickened

colon (Fig.5.16 B), indicating acute colitis. In contrast, PBS-treated DC-LMP1/CD40 and

control mice did not have elevated lipocalin-2 levels in their feces (Fig.5.16 A), neither did

they show elevated cell numbers nor macroscopic changes of the large intestine (Fig.5.16 B)

as also observed previously in 14-week-old Hh-free transgenic mice (Fig.5.13, 5.14).

Thus, our data reveal that Hh is rapidly provoking strong intestinal inflammation in DC-

LMP1/CD40 mice, indicating that this bacterial stimulus combined with CD40-signaling in

DCs is needed for the development of early onset colitis.
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Figure 5.16: Hh-reinfection leads to rapid colitis onset in DC-LMP1/CD40 mice.
A) Fecal lipocalin-2 levels in untreated (upper panel) or Hh-reinfected (lower panel) Ctr and
DC-LMP1/CD40 mice were measured by ELISA at the indicated time points. Data is shown as
scatter plot with mean ± SEM for two pooled experiments (n=9). B) Untreated (upper panel)
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well as bar graphs, representing total colon LP cell numbers from two pooled experiments with
mean ± SEM (n=9).
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5.4.3 Helicobacter hepaticus affects colonic CD4+ T cell

differentiation

We previously reported the effect of constitutive CD40-signaling on intestinal DCs [77]. Trans-

genic animals showed a strong reduction of tolerogenic CD103+ DC subsets in the colonic LP

and mLNs. As a consequence, ROR𝛾t+Helios- iTreg generation was drastically impaired in

the large intestine of DC-LMP1/CD40 mice. As the conventionally-housed mouse colony used

for our previous study was endemically infected with Hh (Fig.5.11), we wondered whether Hh

affects DC subpopulations and/or CD4+ T cell differentiation in the CD40-mediated colitis

model.

Therefore, we next analyzed cell subsets in the colonic LP of Hh-free DC-LMP1/CD40 mice

and control littermates (Fig.5.17). We did find a strong reduction in the frequencies of

CD103+CD11b- as well as CD103+CD11b+ intestinal DCs in both 14- and 25-week-old Hh-

free DC-LMP1/CD40 animals but not control littermates (Fig.5.17 A), similar to what we

previously described for Hh-pos animals [77]. Further, ROR𝛾t+Helios- iTregs were signifi-

cantly reduced in 14- as well as 25-week-old Hh-free DC-LMP1/CD40 mice but not control

animals (Fig.5.17 B) comparable with our previous findings in Hh-pos animals [77].

Of note, it seemed that CD103+CD11b- DCs of Hh-free DC-LMP1/CD40 animals (Fig.5.17

A) were not as strongly reduced as in Hh-pos animals [77]. However, this level of preserved

CD103+CD11b- DCs was not sufficient for the generation of iTregs in the colonic LP of Hh-

free DC-LMP1/CD40 mice (Fig.5.17 B).

We conclude that reduction of CD103+ DCs and impaired iTreg generation are rather a con-

sequence of the transgene expression in DCs, suggesting that Hh has no direct impact on DC

or Treg differentiation in this model.
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Figure 5.17: Loss of CD103+ DCs and iTregs in DC-LMP1/CD40 animals is not
induced by Hh. A-B) Different cell subsets in the colonic LP were analyzed in Hh-free Ctr and
DC-LMP1/CD40 animals at the indicated time points. Shown are representative FACS-plots
as well as pooled statistics from two experiments for week 14 (mean ± SEM, n=7) and week
25 (mean ± SEM, n=7-8), illustrating frequencies of the indicated cell subsets. A) DCs were
pre-gated on single, live, CD45+, MHCII+CD11c+, CD64- cells. B) Tregs were gated on single,
live, CD45+, CD3+CD4+, FoxP3+CD25+, ROR𝛾t+Helios- (iTregs) or ROR𝛾t-Helios+ (nTregs).

We also know from our previous study that DC-LMP1/CD40 mice show a strong increase

in IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells in the colonic LP, indicating that non-

pathogenic Th17 cells in DC-LMP1/CD40 mice are differentiating into pathogenic Th1 cells

[77]. To evaluate the role of Hh in this CD4+ T cell differentiation process in DC-LMP1/CD40
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animals, we compared IL-17 and IFN-𝛾 producing CD4+ T cells in different mice (Fig.5.18).

We did not detect significant differences in the frequency of IL-17+CD4+ T cells between DC-

LMP1/CD40 and control animals neither in Hh-free nor in Hh-reinfected animals (Fig.5.18

A). However, at day 40 p.i., Hh-reinfected DC-LMP1/CD40 mice had significantly increased

frequencies and total numbers of IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells when com-

pared to 14- or 25-week-old Hh-free DC-LMP1/CD40 mice (Fig.5.18 A). The increase in

cell numbers of all three CD4+ T cell subsets detected in Hh-reinfected DC-LMP1/CD40

mice results from the huge increase in total cell numbers in the colonic LP of these mice as

shown in Fig.5.16 B. Of note, also Hh-free DC-LMP1/CD40 mice showed some induction of

IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells in the colonic LP when compared to appro-

priate control littermates (Fig.5.18 A). However, when we analyzed the mean fluorescence in-

tensity (MFI) of IFN-𝛾 expression in IFN-𝛾+CD4+ T cells, only Th1 cells from Hh-reinfected

DC-LMP1/CD40 mice produced significantly higher amounts of IFN-𝛾 when compared to

Hh-free transgenic animals (Fig.5.18 B).

In the context of constitutive CD40-signaling in DCs, we could show that Hh has the potential

to rapidly initiate the transdifferentiation of non-pathogenic Th17 into pathogenic Th1 cells

in the colonic LP. However, this might not be an exclusive property of Hh but could also be

accomplished in Hh-free mice by other commensals at slower rates.
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Figure 5.18: Hh-reinfection leads to rapid transdifferentiation into pathogenic Th1
effector cells in DC-LMP1/CD40 mice. A-B) Single-cell suspensions of the colonic
LP from Hh-free or Hh-reinfected Ctr and DC-LMP1/CD40 animals were stimulated with
PMA/Ionomycin and subsequently stained intracellularly for IL-17 and IFN-𝛾 production at
the indicated time points. Bar graphs represent pooled statistics from two experiments (mean
± SEM, n=7-9). A) T cells were pre-gated on single, live, CD45+, CD3+CD4+ cells. Shown
are representative FACS-plots as well as bar graphs, illustrating the frequencies and numbers of
indicated cell subsets within the CD4 T cell population. B) Shown are representative histograms
as well as bar graphs, illustrating the MFI of IFN-𝛾 expression within IFN-𝛾+CD4+ T cells from
A) as median ± SEM.



6 Discussion

The microbiota is known as critical player in the context of IBD and bacterial infections are

commonly used in colitis mouse models [156, 157, 158, 159, 162]. However, it is not fully

understood how the microbiota modulates host immune cells and how the host is interacting

with and discriminating between commensal and pathogenic bacteria present in the gut.

We studied microbial-host interactions in our previously published CD40-mediated model

of colitis as DC-LMP1/CD40 mice did not show any signs of colitis if they were crossed

onto Rag1-/- background or if they were treated with antibiotics, indicating that disease

development depends on the presence of T or B cells as well as on microbiota.

In the present study, we could identify the pathobiont Helicobacter hepaticus as disease driver

with impact on disease onset, progression and outcome in our colitis model.

6.1 Role of the non-canonical NF-𝜅B pathway in

DC-LMP1/CD40 animals

To determine the signaling pathway upon CD40 activation of DCs, IKK1 as part of the non-

canonical NF-𝜅B pathway was knocked out in DCs of DC-LMP1/CD40 mice.

These DC-LMP1/CD40ΔIKK1 animals showed enlarged spleens and mLNs due to infiltrating

granulocytes. However, these animals did not develop colitis as DC-LMP1/CD40 mice, in-

dicating that the non-canonical NF-𝜅B pathway is the predominant signaling pathway upon

CD40 activation of DCs. Our data further showed that DC-LMP1/CD40ΔIKK1 animals are

protected from disease as iTregs were generated and accumulating Th17 cells did not trans-

differentiate into pathogenic Th1 cells in the colon LP.

We previously published that DC-LMP1/CD40 animals on C57Bl/6 x Balb/c background

(F1DC-LMP1/CD40) develop only mild colon inflammation that is not fatal [187]. In

F1DC-LMP1/CD40 animals, CD103+CD11b- DCs were not completely lost, iTregs were in-

creased in frequency and transdifferentiation of Th17 cells into Th17/Th1 and Th1 cells was
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attenuated [187]. Similarly, the impaired non-canonical NF-𝜅B pathway in DCs might pre-

serve some level of CD103+CD11b- DC induction in the colon LP of DC-LMP1/CD40ΔIKK1

animals that migth be sufficient to generate iTregs and therefore protect these animals from

disease [187]. Further, the deficiency of IKK1 as well as the expression of LMP1/CD40 in

DC-LMP1/CD40ΔIKK1 animals is under control of the CD11c-Cre promotor. Thus, the non-

canonical NF-𝜅B pathway might also be impaired in CD11c-expressing macrophages in these

animals. As we showed previously in DC-LMP1/CD40 mice, intestinal macrophages express

elevated levels of Il1a and Il1b, delivering survival signals to effector T cells [187]. Therefore,

we can not exclude that also macrophages with deficiency of non-canonical NF-𝜅B signaling

might contribute to protection from colitis.

However, our findings are in contrast to the results published by Tas et al. [84] where it

was shown at least in vitro that the non-canonical NF-𝜅B pathway is involved in tolerance

induction by DCs. In this study, the non-canonical NF-𝜅B pathway was impaired in vitro in

human DCs by siRNA-mediated knockdown of NIK or IKK1. Here, they showed that the

non-canonical NF-𝜅B pathway is essential for indoleamine 2,3 dioxygenase expression in DCs

to control proinflammatory cytokine production and Treg induction [84]. However, for this

in vitro study, human DCs were stimulated with CD40L and of course, tissue-specific DC

analysis is not possible with this setup, hence the results are not completely comparable with

our ex vivo analyses.

Of note, we did not analyze DCΔIKK1 mice with DC-specific deletion of IKK1 but no expression

of the LMP1/CD40 transgene. However, DCΔIKK1 animals were previously studied by the

group of Prof. Dr. Marc Schmidt-Supprian, demonstrating that IKK1 deletion in DCs has no

significant effect neither on DC development nor on DC subsets in spleen and LNs (data not

published). This is at least in parts in line with studies using alymphoplasia mice with a single

point mutation in the NIK gene or mice with DC-specific NIK-deficiency, demonstrating that

the non-canonical NF-𝜅B activation is critical for DC cross-presentation but not necessarily

for DC development or CD4+ T cell priming [82, 83].
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However, as we could demonstrate that both iTregs and effector T cells are affected in DC-

LMP1/CD40ΔIKK1 mice which finally leads to protection from colitis, our data suggest that

the non-canonical NF-𝜅B activation also impacts DCs in CD4+ T cell priming.

6.2 Dysbiosis in DC-LMP1/CD40 mice

To study the impact of microbiota on disease development in our CD40-mediated colitis

model, we analyzed the microbial composition in healthy and sick mice. DC-LMP1/CD40

mice start to develop colitis very early in life, already at the age of 5 weeks. Concomitant

with disease onset, they showed higher bacterial loads in feces, which was significantly in-

creased in transgenic mice with the age of 8 weeks, when they suffer from severe colitis. As

fecal content was plated onto MacConkey agar which is selective for gram-negative bacteria,

gram-negative Enterobacteriaceae are mainly represented using this method. We also con-

firmed this "blooming" of Enterobacteriaceae in DC-LMP1/CD40 mice by 16S rRNA gene

sequencing. Our results are in line with the literature as "Enterobacteriaceae blooming" is

also reported as common phenomenon in both IBD patients as well as IBD mouse models

[145].

We could also confirm dysbiosis in the CD40-mediated colitis model by analyzing the mi-

crobiota alpha-diversity at the OTU level in control and DC-LMP1/CD40 mice. Only in

8-week-old transgenic animals a strong reduction in the number of OTUs was observed. This

reduced microbial diversity we observed in DC-LMP1/CD40 mice is very typical for colitis and

also reported for IBD patients which show about 25 % less microbial genes when compared

to healthy people [146].

By analyzing the 16S rRNA gene sequencing data at the family level, taxa differences turned

out to be littermate-dependent at the age of 3 weeks but genotype-dependent in 8-week-old

sick animals. Hence, our data suggest microbial changes observed in DC-LMP1/CD40 mice

upon colitis onset as direct effect of the transgene and/or indirect effect of inflammation

but not as direct environmental effect. Further, our data reveal an increase of the relative
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abundance of the Proteobacteria Enterobacteriaceae and a decrease of the phylum Firmicutes

such as Lachnospiraceae and Ruminococcaceae in DC-LMP1/CD40 mice suffering from severe

colitis, which is also reported by the largest study so far which analyzed human IBD samples

[147]. In contrast, we also detected an increase in Clostridiaceae and Peptostreptococcaceae

which also belong to the phylum Firmicutes but which have not been reported in the study

mentioned. Also in contrast to this study with IBD patients is our finding of an increase in

Erysipelotrichaceae in 8-week-old DC-LMP1/CD40 mice while this family is decreased in IBD

patients as reported by Gevers et al [147]. Of note, specific microbial changes in our model

are difficult to compare with other studies as results are very much dependent on the region

of amplification of the 16S rRNA gene and the bioinformatic analysis as well as the type of

database used. Another limitation is also the fact that different studies discuss abundancies

of taxa at different taxonomic levels which hampers the comparison of results. Further, even

if same taxonomic level is discussed, it is difficult to compare results of studies with IBD

patients as human samples are very heterogenous, depending on the age, disease stage as well

as the type of sample and analysis [97].

6.3 Microbial-host interactions

6.3.1 Fecal bacteria in DC-LMP1/CD40 mice are highly IgA-coated

We observed that fecal IgA-levels were significantly elevated upon colitis onset and further

increasing with age in DC-LMP1/CD40 mice. As expected, we did not detect fecal IgA in

ABX-treated animals, indicating that the amount of IgA we measured in untreated mice

was bound to bacteria. Further, flow cytometry analysis of fecal bacteria revealed not only

higher percentages of bacteria coated by IgA but also more IgA bound per microbe in DC-

LMP1/CD40 animals. It is known that IBD patients show higher percentage of IgA- but

also IgG- and IgM-coated bacteria as compared to healthy people [116]. More recently, Palm

and colleagues reported that potential disease drivers in IBD could be identified by their
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IgA-coating level [115]. More in detail, germ-free mice were colonized with either IgA+ or

IgA- bacteria isolated from IBD patients. Surprisingly, highly IgA-coated bacteria from IBD

patients were not able to cause disease in the steady state of germ-free mice but increased

susceptibility and severity of dextran sodium sulfate-induced colitis in germ-free mice [115].

Of note, they found also highly IgA-coated bacteria in healthy people which do not show

any pathology, indicating that potential bacterial disease drivers marked by high IgA-coating

need a predisposing environment further contributing to disease development [115].

The cause for higher mucosal IgA-levels detected in DC-LMP1/CD40 mice could be that

maybe more IgA is produced in response to certain bacteria that are hidden by others during

homeostasis. However, upon dysbiosis, when microbial diversity decreases, these bacteria

might be in closer contact to the epithelium and could therefore be actively recognized by

intestinal immune cells. These bacteria could now also be able to even cross the epithelial

barrier, which would lead to active recognition by immune cells in the LP. Of note, it seems

that increased mucosal IgA, which is coating bacteria, is not effective enough to restore

dysbiosis and stop ongoing inflammation in the CD40-mediated colitis model.

Hence, our data suggest that highly IgA-coated bacteria are potential disease drivers in DC-

LMP1/CD40 mice.

6.3.2 DC-LMP1/CD40 mice produce commensal-specific antibodies

We did demonstrate that DC-LMP1/CD40 animals show both elevated serum IgG as well

as serum IgA levels as soon as colitis onset was detectable and these levels were further in-

creasing with the age of mice. While control animals showed also measurable IgG levels,

serum IgA was entirely absent in this group, suggesting that serum IgA production is an

exclusive hallmark of mice suffering from colitis.

The serum IgG reactivity towards commensal antigens tested by ELISA was only signifi-

cant for DC-LMP1/CD40 animals at the age of 10 weeks. In contrast, significantly higher

commensal-specific serum IgA was detected in DC-LMP1/CD40 animals at the age of 10,
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12 and 14 weeks. However, proteins with approximately 60 kDa in size were more clearly

detectable with serum IgG from DC-LMP1/CD40 mice at every age when tested by im-

munoblotting.

Although IgA is mainly produced locally in the gut, we also did detect elevated serum IgA

levels and increased anti-commensal serum IgA in DC-LMP1/CD40 mice when compared to

control littermates. The presence of commensal-specific serum antibodies in DC-LMP1/CD40

mice suggests that compartmentalization might be partly broken in mice suffering from colitis,

leading to a systemic antibody response. This hypothesis is also supported by human studies,

reporting elevated serum antibody levels in IBD patients [188, 189]. To ensure mucosal

homeostasis, the gut sustains tolerance towards commensal bacteria by restraining them with

the epithelium and the mucus layer, secreting protective AMPs and bacteria-specific IgA.

Nevertheless, also under homeostatic conditions, contact between bacteria and host cells is

not excluded but antigens are enclosed at mucosal sites. In particular, DCs in the intestinal

LP are constantly sampling the lumen with their dendrites and transport antigen into drain-

ing mLNs for B and T cell priming. In line with this, Konrad and colleagues confirmed that

serum antibodies against bacteria are not detectable in SPF-housed mice [190]. However,

if this tightly reguated balance is disturbed, bacteria can be delivered outside from mLNs

to induce systemic responses [191]. This is the case for instance when Tregs are missing,

upon removal of mLNs, chemical disruption of the epithelium, but also upon infection with

pathogens, which can also actively spread beyond mLNs and thus bacteria-specific antibodies

can be systemically detectable [191].

However, our data also show some level of bacteria-specific serum IgG in control littermates.

One explanation for this observation might be that we used conventionally- but not SPF-

housed mice for this experiment. This hypothesis is supported by the fact that also for

healthy humans which are of course not reaching SPF status, some level of systemic bacteria-

specific IgG is reported, with levels further increasing during IBD [191]. During inflammatory

conditions as in patients suffering from IBD, it is well known that systemic antibodies are
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produced as a consequence of mucosal barrier dysfunction and thus increased exposure of

commensals to systemic sites [191]. For instance, increased systemic IgG as well as IgA

specific for E. coli outer membrane porin (OmpC) or CBir1-flagellin are detectable in IBD

patients [189].

We observed (i) elevated serum IgG- and IgA-levels upon colitis onset that are further in-

creasing with age of DC-LMP1/CD40 mice and (ii) commensal-specific serum IgG and IgA in

DC-LMP1/CD40 mice. This might reflect the time of antigen exposure and further the degree

of disease due to concomitant increased gut permeability. Only recently, it was reported by

Wilmore and colleagues that in particular members of Proteobacteria are able to induce T

cell-dependent serum IgA responses in conventional mice to protect them from lethal sepsis

[120]. They identified the commensal Helicobacter muridarum as driving species, inducing

mucosal IgA-secreting plasma cells as well as IgA+ bone marrow plasma cells [120].

Our data suggest that dysbiosis in DC-LMP1/CD40 mice affects dissemination of bacteria,

inducing systemic IgG as well as IgA production.

6.3.3 Identification of bacterial antigens by serum antibody

reactivity

We were able to identify a 60 kDa protein from Hh recognized by serum antibodies in

DC-LMP1/CD40 mice upon colitis onset. Although five proteins were precipitated by serum

antibodies from transgenic mice but not control littermates, only two proteins, a protein from

H. pylori and a protein from Hh, were precipitated with high fold change and low p-value

when analyzed with iBAQ.

However, the protein from H. pylori was not considered for further analyses as both the

numbers of peptides as well as the percentage of protein sequence coverage were not reliable.

One explanation for recovering a protein from H. pylori next to Hh with this approach might

be the fact that about 50 % of total proteins from Hh have orthologs in H. pylori [192] and

therefore might arise by the analysis within the bacterial database used for iBAQ.
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The fact that only the 60 kDa chaperonin from Hh was identified with this method with

high fold change and low p-value when compared to control sera and by showing up reliable

numbers of peptides and percentage of protein sequence coverage was quite surprising with

respect to the high number and variety of bacteria in CBL. Of note, for this approach we used

protein G beads that mainly bind IgG, thus bacterial antigens recognized by other isotypes

might not be considered here. Therefore, immunoprecipitation with protein A or protein L

beads might identify further bacterial antigens by serum antibodies, in particular by serum

IgA, in our colitis model. However, both serum IgG as well as serum IgA response was

detected when we tested whole lysate from Hh by ELISA. Moreover, we could also detect a

60 kDa protein within the lysate with both serum IgG as well as serum IgA by immunoblot.

Although we were not able to test the 60 kDa chaperonin from Hh directly, we used LK-2 as

positive control, recognizing both human HSP60 and the bacterial homologue GroEL [186].

Our data indicate that serum antibodies from transgenic animals are specific for the 60 kDa

chaperonin GroEL from Hh, confirming the data obtained by mass spectrometry.

The fact that we identified a bacterial chaperonin as target antigen in DC-LMP1/CD40

mice is supported by the literature as heat shock proteins are reported as immunodominant

antigens, inducing humoral and cellular immune responses to several diseases in humans and

mice. For instance, 𝛼Hsp60 antibodies are found in patients with tuberculosis as well as in

mice infected with Mycobacterium tuberculosis [193, 194]. Further, it was demonstrated that

pathogen-derived 60 kDa chaperonin induces pro-inflammatory cytokines in vitro [195], that

mice infected with Yersinia enterocolitica produce 60 kDa chaperonin-specific T cells involved

in anti-pathogenic immune response [193], and serum antibodies specific for Hsp60 from

H. pylori are reported in patients with gastric cancer [196].

Our data suggest that Hh is involved in disease development and that the 60 kDa chaperonin

we identified in Hh might be a potential immunodominant antigen in our CD40-mediated

colitis model. Further work using the 60 kDa chaperonin from Hh in an ex vivo T cell

restimulation assay would reveal whether effector T cells in the colonic LP of DC-LMP1/CD40
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mice are specific for this bacterial antigen.

6.4 Helicobacter hepaticus as disease driver

With respect to the results we obtained by mass spectrometry upon immunoprecipitation of

bacterial antigens with serum antibodies from DC-LMP1/CD40 mice, we studied the role of

Hh in our colitis model in more detail.

Hh is known as pathobiont, endemic in many mouse colonies [152, 153], which is able to

elicit intestinal inflammation in immunodeficient or -compromized mice as demonstrated by

several mouse models, mimicking human IBD [156, 159]. The screening of fecal samples from

DC-LMP1/CD40 animals and control littermates confirmed that our conventionally housed

mouse colony was endemically infected with the Helicobacter genus. Of note, only control

mice were consistently positive for Hh. In contrast, young DC-LMP1/CD40 mice showed

already reduced infection rates while Hh was hardly detectable in older DC-LMP1/CD40

mice.

One reason for this phenomenon might be the clearance of Hh, indicated by increased anti-

HhL serum IgG and IgA we observed. However, DC-LMP1/CD40 mice show ongoing disease

once colonized with Hh and finally die from severe colitis before the age of 20 weeks. This

would rather suggest that serum antibodies from transgenic animals show cross-reactivity with

a GroEL homologue from other bacteria after clearance of Hh. Another explanation would

be that Hh is able to cross the epithelial barrier in DC-LMP1/CD40 mice more easily due

to dysbiosis and inflammation and therefore this species would not be detectable anymore

in the luminal content. Screening of tissue biopsies from the colon LP would be helpful

to confirm this hypothesis. Another possibility would be that Hh is simply displaced by

other bacteria such as Enterobacteriaceae which bloom during dysbiosis in DC-LMP1/CD40

animals, indicated by the data we obtained from 16S rRNA gene sequencing of fecal samples.

However, this would suggest that Hh is needed for disease initiation but not maintenance and

progression.
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6.4.1 Helicobacter hepaticus-free DC-LMP1/CD40 mice are

protected from early disease onset

Upon embryo transfer rederivation, animals were bred and maintained under SPF conditions,

thus all DC-LMP1-CD40 mice and control littermates were negative for the Helicobacter

genus. As expected, Hh-free DC-LMP1/CD40 mice did not show any signs of colitis at

the age of 8 or 14 weeks when Hh-positive transgenic animals were already suffering from

severe colitis. However, some but not all Hh-free transgenic animals developed intestinal

inflammation at the age of 20 or 25 weeks when Hh-positive transgenic animals had already

died from the disease. Interestingly, also Kullberg and colleagues reported that IL-10-deficient

mice developed intestinal inflammation when maintained under SPF conditions but with

delayed onset and less severity as indicated by less infiltrating lymphocytes in 5- to 6-month

old animals [159]. Consistent with Kullberg et al., also Xu and colleagues have shown that

Hh-free transgenic mice with Treg-specific c-Maf deficiency developed mild spontaneous colitis

at a later age of 6 to 12 month [162].

The protection from early disease onset in Hh-free DC-LMP1/CD40 mice suggests that Hh

might be a very potent disease driver in the CD40-mediated colitis model. However, as some

of the Hh-free DC-LMP1/CD40 animals show intestinal inflammation, although with strong

delay, also other bacteria may be considered as disease driving species in these animals. Of

note, none of Hh-free animals died before the end of the experiment in week 25 after birth,

indicating that those Hh-free transgenic animals which show signs of intestinal inflammation

suffer from a milder degree of disease than Hh-positive DC-LMP1/CD40 animals did.

To finally reveal the cause of less morbidity in Hh-free DC-LMP1/CD40 mice, we plan to

perform 16S rRNA gene sequencing of fecal content also with Hh-free animals as well as

immunoprecipitation of potential bacterial antigens with serum antibodies from Hh-free mice.
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6.4.2 DC-LMP1/CD40 mice rapidly develop strong intestinal

inflammation upon reinfection with Helicobacter hepaticus

Upon reinfection of Hh-free animals with Hh using oral gavage, this species but not any other

Helicobacter genus was rapidly detectable from day 21 p.i. in fecal samples from treated

animals, confirming effective oral infection. Concomitant with mono-colonization by Hh, DC-

LMP1/CD40 animals rapidly developed severe colitis, determined by elevated fecal lipocalin-2

levels, thickened and shortened colon as well as strong infiltration of the colonic LP with im-

mune cells. Thus, our data suggest Hh as potent disease driver in our colitis model.

As mentioned before, many studies have applied Hh infection to immunodeficient or im-

munocompromized mice to elicit spontaneous colitis [156, 157, 158, 159, 162]. For instance,

SPF-housed IL-10 deficient mice rapidly developed strong intestinal inflammation upon ex-

perimental infection with Hh [159].

6.4.3 Helicobacter hepaticus affects colonic CD4+ T cell

differentiation

While we determined Hh as disease driver in our CD40-mediated colitis model, this pathobiont

did not have a direct impact on DC subset composition or Treg differentiation in the colon

LP. CD103+ DCs were reduced in both 14- and 25-week-old Hh-free transgenic animals,

comparable with our previous findings in Hh-pos DC-LMP1/CD40 animals [77].

However, it seemed that CD103+CD11b- DCs in Hh-free DC-LMP1/CD40 mice were not

as strongly reduced as in Hh-pos animals [77]. This level of CD103+CD11b- DCs was not

sufficient for the induction of iTregs in the colonic LP of Hh-free DC-LMP1/CD40 mice

as ROR𝛾t+Helios- iTregs were similarly reduced in both Hh-free as well as Hh-pos DC-

LMP1/CD40 mice.

As IBD is well known as multifactorial disease [144], it is difficult to determine the causative

factor in this context. One main difference was the housing of mice. While Hh-free animals
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were raised under SPF conditions, Hh-pos mice were conventionally housed, suggesting that

the mice show an overall different microbial composition that also might impact the DC-iTreg

axis. Thus, 16S rRNA gene sequencing of fecal content from Hh-free animals is planned as

also mentioned before.

In contrast, we could demonstrate that CD4+ effector T cell differentiation in the colon LP

is directly affected by Hh. Upon Hh-reinfection, DC-LMP1/CD40 mice showed significantly

increased frequencies and total numbers of IL-17+IFN-𝛾+ Th17/Th1 and IFN-𝛾+ Th1 cells

as compared to 14- or 25-week-old Hh-free DC-LMP1/CD40 mice.

Of note, we were only able to perform unspecific ex vivo T cell restimulation with

PMA/ionomycin. Although we failed to stimulate CD4+ T cells using whole Hh lysate to

detect Hh-specific T cells, also other studies have shown Hh to induce colitogenic effector T

cells [161, 162]. Kullberg et al. demonstrated that Hh-infection of IL-10-deficient mice led

to the induction of pathogenic, Hh-specific T cells, expressing both IL-17 and IFN-𝛾 [161].

Further, only recently, the group of Dan Littmann used Hh infection of IL-10−/− mice to

study microbial-host interactions [162]. By generating TCR transgenic mice with T cells

specific for the Hh transmembrane protein porin, they identified the TF c-Maf in iTregs as

key component to restrain colitogenic Th17 cells in Hh-positive IL-10−/− mice [162].

Our data revealed that the intestinal microbiota is able to modulate the host immune response

with impact on disease onset, progression and outcome. Here, we identified the pathobiont

Hh as disease driver in our CD40-mediated model of colitis. In the context of constitutive

CD40-signaling in DCs, we could show that Hh has the potential to induce early onset coli-

tis, concomitant with initiation of the transdifferentiation of non-pathogenic Th17 cells into

pathogenic Th1 cells in the colonic LP. Our results are also of relevance for other studies

using conventionally housed mice as Hh is endemic in many mouse colonies.

Our data further confirm the important role of the gut microbial composition during health

and disease and reveal that single bacterial species can dramatically affect host immunity.

Nevertheless, the identification of other potential disease driving bacteria as well as specific
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bacterial antigens and underlaying mechanisms in IBD is central. This would further con-

tribute to understand the complex interaction of microbiota and host immune cells to develop

and improve in particular personalized therapeutic strategies in IBD.



Bibliography

[1] Y. Xing and K. A. Hogquist, “T-Cell Tolerance: Central and Peripheral,” Cold Spring

Harbor Laboratory Press, pp. 1–16, 2012.

[2] L. Klein, B. Kyewski, P. M. Allen, and K. A. Hogquist, “Positive and negative se-

lection of the T cell repertoire: what thymocytes see and don’t see,” Nature Reviews

Immunology, vol. 14, no. 6, pp. 377–391, 2014.

[3] C. Bouneaud, P. Kourilsky, and P. Bousso, “Impact of Negative Selection on the T Cell

Repertoire Reactive to a Self-Peptide,” Immunity, vol. 13, no. 6, pp. 829–840, 2004.

[4] D. Lo, L. Burkly, R. Flavell, R. Palmiter, and R. Brinster, “Tolerance in transgenic

mice expressing class II major histocompatibility complex on pancreatic acinar cells,”

Journal of Experimental Medicine, vol. 170, no. 1, pp. 87–104, 1989.

[5] R. M. Steinman, “Dendritic cells: versatile controllers of the immune system,” Nature

Medicine, vol. 13, no. 10, pp. 1155–1159, 2007.

[6] R. Förster, A. Braun, and T. Worbs, “Lymph node homing of T cells and dendritic cells

via afferent lymphatics,” Trends in Immunology, vol. 33, no. 6, pp. 271–280, 2012.

[7] M. L. Kapsenberg, “Dendritic-cell control of pathogen-driven T-cell polarization,” Na-

ture Reviews Immunology, vol. 3, no. 12, pp. 984–993, 2003.

[8] M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, “Antigen-

Specific Inhibition of Effector T Cell Function in Humans after Injection of Immature

Dendritic Cells,” The Journal of Experimental Medicine, vol. 193, no. 2, pp. 233–238,

2001.

[9] M. de Heusch, G. Oldenhove, J. Urbain, K. Thielemans, C. Maliszewski, O. Leo, and

M. Moser, “Depending on their maturation state, splenic dendritic cells induce the

differentiation of CD4+ T lymphocytes into memory and/or effector cells in vivo,”

European Journal of Immunology, vol. 34, no. 7, pp. 1861–1869, 2004.



Bibliography 88

[10] V. Verhasselt, O. Vosters, C. Beuneu, C. Nicaise, P. Stordeur, and M. Goldman, “In-

duction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous

dendritic cells,” European Journal of Immunology, vol. 34, no. 3, pp. 762–772, 2004.

[11] D. Hawiger, K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch,

R. M. Steinman, and M. C. Nussenzweig, “Dendritic cells induce peripheral T cell

unresponsiveness under steady state conditions in vivo.,” The Journal of experimental

medicine, vol. 194, no. 6, pp. 769–79, 2001.

[12] S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by

the transcription factor Foxp3,” Science., vol. 299, no. 5609, pp. 1057–1061, 2003.

[13] J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development

and function of CD4+CD25+ regulatory T cells,” Nature immunology, vol. 198, no. 3,

pp. 986–992, 2003.

[14] R. Khattri, T. Cox, S. A. Yasayko, and F. Ramsdell, “An essential role for Scurfin

in CD4+CD25+T regulatory cells,” Nature immunology, vol. 198, no. 3, pp. 993–998,

2003.

[15] M. E. Brunkow, E. W. Jeffery, K. A. Hjerrild, B. Paeper, L. B. Clark, S.-A. Yasayko,

J. E. Wilkinson, D. Galas, S. F. Ziegler, and F. Ramsdell, “Disruption of a new

forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disor-

der of the scurfy mouse,” Nature genetics, vol. 27, no. 1, pp. 68–73, 2001.

[16] R. S. Wildin, F. Ramsdell, J. Peake, F. Faravelli, J.-L. Casanova, N. Buist, E. Levy-

Lahad, M. Mazzella, O. Goulet, L. Perroni, F. D. Bricarell, G. Byrne, M. McEuen,

S. Proll, M. Appleby, and M. E. Brunkow, “X-linked neonatal diabetes mellitus, en-

teropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy,”

Nature genetics, vol. 27, no. january, pp. 2–4, 2001.



Bibliography 89

[17] A. M. Bilate and J. J. Lafaille, “Induced CD4+ Foxp3+ Regulatory T Cells in Immune

Tolerance,” Annual Review of Immunology, vol. 30, no. 1, pp. 733–758, 2012.

[18] J. M. Weiss, A. M. Bilate, M. Gobert, Y. Ding, M. A. Curotto de Lafaille, C. N.

Parkhurst, H. Xiong, J. Dolpady, A. B. Frey, M. G. Ruocco, Y. Yang, S. Floess,

J. Huehn, S. Oh, M. O. Li, R. E. Niec, A. Y. Rudensky, M. L. Dustin, D. R. Littman,

and J. J. Lafaille, “Neuropilin 1 is expressed on thymus-derived natural regulatory T

cells, but not mucosa-generated induced Foxp3+ T reg cells,” The Journal of Experi-

mental Medicine, vol. 209, no. 10, pp. 1723–1742, 2012.

[19] A. Thornton, P. Korty, D. Tran, E. Wohlfert, P. Murray, Y. Belkaid, and E. She-

vach, “Expression of Helios, an Ikaros Transcription Factor Family Member, Differen-

tiates Thymic-Derived from Peripherally Induced Foxp3,” J Immunol., vol. 184, no. 7,

pp. 3433–3441, 2010.

[20] C. Ohnmacht, J.-h. Park, S. Cording, J. B. Wing, K. Atarashi, Y. Obata, V. Gaboriau-

Routhiau, R. Marques, S. Dulauroy, M. Fedoseeva, M. Busslinger, N. Cerf-Bensussan,

I. G. Boneca, D. Voehringer, K. Hase, K. Honda, S. Sakaguchi, and G. Eberl, “The mi-

crobiota regulates type 2 immunity through ROR𝛾t T cells,” Science, vol. 349, pp. 989–

993, 2015.

[21] R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral

lymphoid organs of mice,” The Journal of experimental medicine, vol. 137, pp. 1142–

1162, 1973.

[22] A. W. Purcell and T. Elliott, “Molecular machinations of the MHC-I peptide loading

complex,” Current Opinion in Immunology, vol. 20, no. 1, pp. 75–81, 2008.

[23] E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman, “Activation

of lysosomal function during dendritic cell maturation,” Science, vol. 299, no. 2003,

pp. 1400–1404, 2003.



Bibliography 90

[24] M. J. Bevan, “Cross-priming for a secondary cytotoxic response to minor H antigens

with H-2 congenic cells which do not cross-react in the cytotoxic assay,” The Journal

of experimental medicine, vol. 143, 1976.

[25] C. Kurts, W. R. Heath, F. R. Carbone, J. Allison, J. F. Miller, and H. Kosaka, “Con-

stitutive class I-restricted exogenous presentation of self antigens in vivo,” Journal of

Experimental Medicine, vol. 184, no. 3, pp. 923–930, 1996.

[26] W. R. Heath and F. R. Carbone, “Cross-presentation in viral immunity and self-

tolerance,” Nature Reviews Immunology, vol. 1, no. 2, pp. 126–135, 2001.

[27] M. Colonna, G. Trinchieri, and Y. J. Liu, “Plasmacytoid dendritic cells in immunity,”

Nature Immunology, vol. 5, no. 12, pp. 1219–1226, 2004.

[28] F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, and K. Ley, “Development of

monocytes, macrophages and dendritic cells,” Science, vol. 327, no. 5966, pp. 656–661,

2010.

[29] A. Mildner and S. Jung, “Development and function of dendritic cell subsets,” Immunity,

vol. 40, no. 5, pp. 642–656, 2014.

[30] J. M. den Haan, S. M. Lehar, and M. J. Bevan, “CD8+ but Not CD8- Dendritic

Cells Cross-Prime Cytotoxic T Cells in Vivo,” The Journal of Experimental Medicine,

vol. 192, no. 12, pp. 1685–1696, 2000.

[31] S. Bedoui, P. G. Whitney, J. Waithman, L. Eidsmo, L. Wakim, I. Caminschi, R. S.

Allan, M. Wojtasiak, K. Shortman, F. R. Carbone, A. G. Brooks, and W. R. Heath,

“Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells,”

Nature Immunology, vol. 10, no. 5, pp. 488–495, 2009.

[32] C. Reis e Sousa, S. Hieny, T. Scharton-kersten, D. Jankovic, H. Charest, R. N. Germain,

and A. Sher, “In Vivo Microbial Stimulation Induces Rapid CD40Ligand-independent



Bibliography 91

Production of Interleukin 12 by Dendritic Cells and their Redistribution to T Cell

Areas,” The Journal of experimental medicine, vol. 186, no. 11, pp. 1819–1829, 1997.

[33] D. Dudziak, A. O. Kamphorst, G. F. Heidkamp, V. R. Buchholz, C. Trumpfheller,

S. Yamazaki, C. Cheong, K. Liu, H.-W. Lee, C. Gyu Park, R. M. Steinman, and

M. C. Nussenzweig, “Differential Antigen Processing by Dendritic Cell Subsets in Vivo,”

Science, no. January, pp. 107–111, 2007.

[34] E. Persson, H. Uronen-Hansson, M. Semmrich, A. Rivollier, K. Hägerbrand, J. Marsal,

S. Gudjonsson, U. Håkansson, B. Reizis, K. Kotarsky, and W. W. Agace, “IRF4

Transcription-Factor-Dependent CD103+CD11b+ Dendritic Cells Drive Mucosal T

Helper 17 Cell Differentiation,” Immunity, vol. 38, no. 5, pp. 958–969, 2013.

[35] A. Schlitzer, N. McGovern, P. Teo, T. Zelante, K. Atarashi, D. Low, A. W. Ho, P. See,

A. Shin, P. S. Wasan, G. Hoeffel, B. Malleret, A. Heiseke, S. Chew, L. Jardine, H. A.

Purvis, C. M. Hilkens, J. Tam, M. Poidinger, E. R. Stanley, A. B. Krug, L. Renia,

B. Sivasankar, L. G. Ng, M. Collin, P. Ricciardi-Castagnoli, K. Honda, M. Haniffa,

and F. Ginhoux, “IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in

Human and Mouse Control Mucosal IL-17 Cytokine Responses,” Immunity, vol. 38,

no. 5, pp. 970–983, 2013.

[36] C. Abraham and R. Medzhitov, “Interactions between the host innate immune sys-

tem and microbes in inflammatory bowel disease.,” Gastroenterology, vol. 140, no. 6,

pp. 1729–37, 2011.

[37] V. Bekiaris, E. K. Persson, and W. W. Agace, “Intestinal dendritic cells in the regulation

of mucosal immunity,” Immunological reviews, vol. 260, pp. 86–101, 2014.

[38] S. Tamoutounour, S. Henri, H. Lelouard, B. de Bovis, C. de Haar, C. J. van der Woude,

A. M. Woltman, Y. Reyal, D. Bonnet, D. Sichien, C. C. Bain, A. M. Mowat, C. Reis e

Sousa, L. F. Poulin, B. Malissen, and M. Guilliams, “CD64 distinguishes macrophages



Bibliography 92

from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph

node macrophages during colitis,” European Journal of Immunology, vol. 42, no. 12,

pp. 3150–3166, 2012.

[39] M. Rescigno, M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio,

F. Granucci, J. Kraehenbuhl, and P. Ricciardi-Castagnoli, “Dendritic cells express tight

junction proteins and penetrate gut epithelial monolayers to sample bacteria,” Nature

Immunology, vol. 2, no. 4, pp. 361–7, 2001.

[40] J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas,

M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-

mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science,

vol. 307, no. 5707, pp. 254–258, 2005.

[41] O. Schulz, E. Jaensson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst,

“Intestinal CD103+ , but not CX3CR1+ , antigen sampling cells migrate in lymph and

serve classical dendritic cell functions,” The Journal of Experimental Medicine, vol. 206,

no. 13, pp. 3101–3114, 2009.

[42] A. Vallon-Eberhard, L. Landsman, N. Yogev, B. Verrier, and S. Jung, “Transepithelial

Pathogen Uptake into the Small Intestinal Lamina Propria,” The Journal of Immunol-

ogy, vol. 176, no. 4, pp. 2465–2469, 2006.

[43] E. Mazzini, L. Massimiliano, G. Penna, and M. Rescigno, “Oral Tolerance Can Be

Established via Gap Junction Transfer of Fed Antigens from CX3CR1+ Macrophages

to CD103+ Dendritic Cells,” Immunity, vol. 40, no. 2, pp. 248–261, 2014.

[44] J. Farache, I. Koren, I. Milo, I. Gurevich, K. W. Kim, E. Zigmond, G. C. Furtado,

S. A. Lira, and G. Shakhar, “Luminal Bacteria Recruit CD103+ Dendritic Cells into

the Intestinal Epithelium to Sample Bacterial Antigens for Presentation,” Immunity,

vol. 38, no. 3, pp. 581–595, 2013.



Bibliography 93

[45] M. H. Jang, N. Sougawa, T. Tanaka, T. Hirata, T. Hiroi, K. Tohya, Z. Guo, E. Umem-

oto, Y. Ebisuno, B.-G. Yang, J.-Y. Seoh, M. Lipp, H. Kiyono, and M. Miyasaka, “Re-

sponse to Comment on "CCR7 Is Critically Important for Migration of Dendritic Cells

in Intestinal Lamina Propria to Mesenteric Lymph Nodes",” The Journal of Immunol-

ogy, vol. 176, no. 4, pp. 803–810, 2006.

[46] V. Cerovic, S. A. Houston, C. L. Scott, A. Aumeunier, U. Yrlid, A. M. Mowat, and

S. W. F. Milling, “Intestinal CD103- dendritic cells migrate in lymph and prime effector

T cells,” Mucosal Immunology, vol. 6, no. 1, pp. 104–113, 2013.

[47] J. L. Coombes, K. R. R. Siddiqui, C. V. Arancibia-Cárcamo, J. Hall, C.-M. Sun,

Y. Belkaid, and F. Powrie, “A functionally specialized population of mucosal CD103+

DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent

mechanism.,” The Journal of experimental medicine, vol. 204, no. 8, pp. 1757–64, 2007.

[48] J. J. Worthington, B. I. Czajkowska, A. C. Melton, and M. A. Travis, “Intestinal den-

dritic cells specialize to activate transforming growth factor-𝛽 and induce Foxp3+ reg-

ulatory T cells via integrin 𝛼v𝛽8,” Gastroenterology, vol. 141, no. 5, pp. 1802–1812,

2011.

[49] M. Iwata, A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song, “Retinoic

acid imprints gut-homing specificity on T cells,” Immunity, vol. 21, no. 4, pp. 527–538,

2004.

[50] B. Johansson-Lindbom, M. Svensson, O. Pabst, C. Palmqvist, G. Marquez, R. Förster,

and W. W. Agace, “Functional specialization of gut CD103+ dendritic cells in the

regulation of tissue-selective T cell homing,” The Journal of Experimental Medicine,

vol. 202, no. 8, pp. 1063–1073, 2005.

[51] D. Esterházy, J. Loschko, M. London, V. Jove, T. Y. Oliveira, and D. Mucida, “Classical

dendritic cells are required for dietary antigen-mediated induction of peripheral Treg

cells and tolerance,” Nature Immunology, vol. 20, no. August 2015, 2016.



Bibliography 94

[52] I. I. Ivanov, R. d. L. Frutos, N. Manel, K. Yoshinaga, D. B. Rifkin, R. B. Sartor,

B. B. Finlay, and D. R. Littman, “Specific Microbiota Direct the Differentiation of

IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine,” Cell Host and

Microbe, vol. 4, no. 4, pp. 337–349, 2008.

[53] A. N. Hegazy, N. R. West, M. J. Stubbington, E. Wendt, K. I. Suijker, A. Datsi, S. This,

C. Danne, S. Campion, S. H. Duncan, B. M. Owens, H. H. Uhlig, A. McMichael,

A. Bergthaler, S. A. Teichmann, S. Keshav, and F. Powrie, “Circulating and Tissue-

Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in

Healthy Individuals and Function Is Altered During Inflammation,” Gastroenterology,

vol. 153, no. 5, pp. 1320–1337.e16, 2017.

[54] K. L. Edelblum, G. Sharon, G. Singh, M. A. Odenwald, A. Sailer, S. Cao, S. Ravens,

I. Thomsen, K. El Bissati, R. McLeod, C. Dong, S. Gurbuxani, I. Prinz, S. K. Mazma-

nian, and J. R. Turner, “The Microbiome Activates CD4 T-cell-mediated Immunity to

Compensate for Increased Intestinal Permeability,” Cmgh, vol. 4, no. 2, pp. 285–297,

2017.

[55] H. Kayama, Y. Ueda, Y. Sawa, S. G. Jeon, J. S. Ma, R. Okumura, A. Kubo, M. Ishii,

T. Okazaki, M. Murakami, M. Yamamoto, H. Yagita, and K. Takeda, “Intestinal CX3C

chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent coli-

tis,” Proceedings of the National Academy of Sciences, vol. 109, no. 13, pp. 5010–5015,

2012.

[56] G. Monteleone, A. Kumberova, N. M. Croft, C. Mckenzie, H. W. Steer, and T. T.

Macdonald, “Blocking Smad7 restores TGF-b1 signaling in chronic inflammatory bowel

disease,” Journal of Clinical Investigation, vol. 108, no. 4, pp. 601–609, 2001.

[57] I. S. Hansen, L. Krabbendam, J. H. Bernink, F. Loayza-Puch, W. Hoepel, J. A. Van

Burgsteden, E. C. Kuijper, C. J. Buskens, W. A. Bemelman, S. A. Zaat, R. Agami,

G. Vidarsson, G. R. Van Den Brink, E. C. De Jong, M. E. Wildenberg, D. L. Baeten,



Bibliography 95

B. Everts, and J. Den Dunnen, “Fc𝛼RI co-stimulation converts human intestinal

CD103+ dendritic cells into pro-inflammatory cells through glycolytic reprogramming,”

Nature Communications, vol. 9, no. 1, 2018.

[58] C. van Kooten and J. Banchereaut, “Functions of CD40 on B cells , dendritic cells and

other cells,” Current opinion in immunology, vol. 9, pp. 330–337, 1997.

[59] J. Banchereau, F. Bazan, D. Blanchard, F. Briè, J. P. Galizzi, C. van Kooten, Y. J.

Liu, F. Rousset, and S. Saeland, “The CD40 Antigen and its Ligand,” Annual Review

of Immunology, vol. 12, no. 1, pp. 881–926, 1994.

[60] I. S. Grewal and R. A. Flavell, “CD40 and CD154 in Cell-Mediated Immunity,” Annual

Review of Immunology, vol. 16, no. 1, pp. 111–135, 1998.

[61] V. Henn, J. R. Slupsky, M. Gräfe, I. Anagnostopoulos, R. Förster, G. Müller-Berghaus,

and R. A. Kroczek, “CD40 ligand on activated platelets triggers an inflammatory reac-

tion of endothelial cells,” Nature, vol. 391, pp. 591–594, 1998.

[62] Z. Liu, S. Colpaert, D. H. GR, A. Kasran, M. Boer, P. Rutgeerts, K. Geboes, and J. L.

Ceuppens, “Hyperexpression of CD40 ligand (CD154) in inflammatory bowel disease

and its contribution to pathogenic cytokine production,” J Immunol, vol. 163, no. 7,

pp. 4049–4057, 1999.

[63] S. Danese, J. A. Katz, S. Saibeni, A. Papa, G. A, M. Vecchi, and C. Fiocchi, “Activated

platelets are the source of elevated levels of soluble CD40 ligand in the circulation of

inflammatory bowel disease patients,” Gut, vol. 52, pp. 1435–1441, 2003.

[64] O. Ludwiczek, A. Kaser, and H. Tilg, “Plasma levels of soluble CD40 ligand are elevated

in inflammatory bowel diseases,” International journal of colorectal disease, vol. 18,

no. 2, pp. 142–7, 2003.

[65] S. Danese, M. Sans, and C. Fiocchi, “The CD40/CD40L costimulatory pathway in

inflammatory bowel disease,” Gut, vol. 53, no. 7, pp. 1035–1043, 2004.



Bibliography 96

[66] A. L. Hart, H. O. Al-Hassi, R. J. Rigby, S. J. Bell, A. V. Emmanuel, S. C. Knight, M. A.

Kamm, and A. J. Stagg, “Characteristics of intestinal dendritic cells in inflammatory

bowel diseases,” Gastroenterology, vol. 129, no. 1, pp. 50–65, 2005.

[67] A. Kasran, L. Boon, C. H. Wortel, R. A. Van Hogezand, S. Schreiber, E. Goldin,

M. D. Boer, K. Geboes, P. Rutgeerts, and J. L. Ceuppens, “Safety and tolerability of

antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn ’

s disease,” Aliment Pharmacol Ther, vol. 22, pp. 111–122, 2005.

[68] C. Caux, C. Massacrier, B. Vanbervliet, B. Dubois, C. Van Kooten, I. Durand, and

J. Banchereau, “Activation of human dendritic cells through CD40 cross-linking,” Jour-

nal of Experimental Medicine, vol. 180, no. 4, pp. 1263–1272, 1994.

[69] L. M. Pinchuk, P. S. Polacino, M. B. Agy, S. J. Klaus, and E. A. Clark, “The role of

CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection,”

Immunity, vol. 1, no. 4, pp. 317–325, 1994.

[70] B. F. Sallusto and A. Lanzavecchia, “Efficient Presentation of Soluble Antigen by

Cultured Human Dendritic Cells Is Maintained by Granulocyte/Macrophage Colony-

stimulating Factor Plus Iuterleukin 4 and Downregulated by Tumor Necrosis Factor

alpha,” Journal of Experimental Medicine, vol. 179, no. April, pp. 1109–1118, 1994.

[71] M. Cella, D. Scheidegger, K. Palmer-lehmann, P. Lane, A. Lanzavecchia, and G. Alber,

“Ligation of CD40 on Dendritic Cells Triggers Production of High Levels of Interleukin-

12 and Enhances T Cell Stimulatory Capacity: T-T Help via APC Activation,” Journal

of Experimental Medicine, vol. 184, no. August, pp. 747–752, 1996.

[72] L. Bonifaz, D. Bonnyay, K. Mahnke, M. Rivera, M. C. Nussenzweig, and R. M. Stein-

man, “Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in

the steady state leads to antigen presentation on major histocompatibility complex

class I products and peripheral CD8+ T cell tolerance.,” The Journal of experimental

medicine, vol. 196, no. 12, pp. 1627–38, 2002.



Bibliography 97

[73] O. Schulz, A. D. Edwards, M. Schito, J. Aliberti, S. Manickasingham, A. Sher, and

C. Reis e Sousa, “CD40 triggering of heterodimeric IL-12 p70 production by dendritic

cells in vivo requires a microbial priming signal,” Immunity, vol. 13, no. 4, pp. 453–462,

2000.

[74] P. J. Sanchez, J. A. McWilliams, C. Haluszczak, H. Yagita, and R. M. Kedl, “Combined

TLR/CD40 Stimulation Mediates Potent Cellular Immunity by Regulating Dendritic

Cell Expression of CD70 In Vivo,” The Journal of Immunology, vol. 178, no. 3, pp. 1564–

1572, 2007.

[75] O. Annacker, J. L. Coombes, V. Malmstrom, H. H. Uhlig, T. Bourne, B. Johansson-

Lindbom, W. W. Agace, C. M. Parker, and F. Powrie, “Essential role for CD103 in

the T cell-mediated regulation of experimental colitis,” The Journal of Experimental

Medicine, vol. 202, no. 8, pp. 1051–1061, 2005.

[76] K. Kimura, H. Moriwaki, M. Nagaki, M. Saio, Y. Nakamoto, M. Naito, K. Kuwata,

and F. V. Chisari, “Pathogenic role of B cells in anti-CD40-induced necroinflammatory

liver disease,” American Journal of Pathology, vol. 168, no. 3, pp. 786–795, 2006.

[77] C. Barthels, A. Ogrinc, V. Steyer, S. Meier, F. Simon, M. Wimmer, A. Blutke,

T. Straub, U. Zimber-Strobl, E. Lutgens, P. Marconi, C. Ohnmacht, D. Garzetti,

B. Stecher, and T. Brocker, “CD40-signalling abrogates induction of ROR𝛾t+ Treg cells

by intestinal CD103+ DCs and causes fatal colitis,” Nature Communications, vol. 8,

p. 14715, 2017.

[78] B. R. Pires, R. C. Silva, G. M. Ferreira, and E. Abdelhay, “NF-kappaB: Two sides of

the same coin,” Genes, vol. 9, no. 1, 2018.

[79] C. Hömig-Hölzel, C. Hojer, J. Rastelli, S. Casola, L. J. Strobl, M. Werner,

L. Quintanilla-martinez, A. Gewies, J. Ruland, K. Rajewsky, and U. Zimber-strobl,

“Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-



Bibliography 98

kB pathway and promotes lymphomagenesis,” The Journal of experimental medicine,

vol. 205, no. 6, pp. 1317–1329, 2008.

[80] S. C. Sun, “The non-canonical NF-𝜅B pathway in immunity and inflammation,” Nature

Reviews Immunology, vol. 17, no. 9, pp. 545–558, 2017.

[81] H. J. Coope, P. G. Atkinson, B. Huhse, M. Belich, J. Janzen, M. J. Holman, G. G.

Klaus, L. H. Johnston, and S. C. Ley, “CD40 regulates the processing of NF-𝜅B2 p100

to p52,” EMBO Journal, vol. 21, no. 20, pp. 5375–5385, 2002.

[82] E. F. Lind, C. L. Ahonen, A. Wasiuk, Y. Kosaka, B. Becher, K. A. Bennett, and R. J.

Noelle, “Dendritic Cells Require the NF-𝜅B2 Pathway for Cross-Presentation of Soluble

Antigens,” The Journal of Immunology, vol. 181, no. 1, pp. 354–363, 2014.

[83] A. K. Katakam, H. Brightbill, C. Franci, C. Kung, V. Nunez, C. Jones, I. Peng, S. Jeet,

L. C. Wu, I. Mellman, L. Delamarre, and C. D. Austin, “Dendritic cells require NIK for

CD40-dependent cross-priming of CD8+ T cells,” Proceedings of the National Academy

of Sciences, vol. 112, no. 47, pp. 14664–14669, 2015.

[84] S. W. Tas, M. J. Vervoordeldonk, N. Hajji, J. H. N. Schuitemaker, K. F. V. D. Sluijs,

M. J. May, S. Ghosh, M. L. Kapsenberg, P. P. Tak, and E. C. de Jong, “Noncanonical

NF- kB signaling in dendritic cells is required for indoleamine 2 , 3-dioxygenase (IDO)

induction and immune regulation,” Blood, vol. 110, no. 5, pp. 1540–1549, 2007.

[85] S. Gill, M. Pop, R. T. DeBoy, P. B. Eckburg, P. J. Turnbaugh, B. S. Samuel, J. I.

Gordon, D. A. Relman, C. M. Fraser-Liggett, and K. E. Nelson, “Metagenomic analysis

of the human distal gut microbiome,” Science, vol. 312, no. 5778, pp. 1355–1359, 2006.

[86] T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contr-

eras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, A. C. Heath, B. Warner,

J. Reeder, J. Kuczynski, J. G. Caporaso, C. A. Lozupone, C. Lauber, J. C. Clemente,



Bibliography 99

D. Knights, R. Knight, and J. I. Gordon, “Human gut microbiome viewed across age

and geography,” Nature, vol. 486, no. 7402, pp. 222–228, 2012.

[87] The Human Microbiome Project Consortium, “Structure, function and diversity of the

healthy human microbiome,” Nature, vol. 486, no. 7402, pp. 207–214, 2012.

[88] The Human Microbiome Project Consortium, “A framework for human microbiome

research,” Nature, vol. 486, no. 7402, pp. 215–221, 2012.

[89] I. Sekirov, S. L. Russell, L. C. M. Antunes, and B. B. Finlay, “Gut Microbiota in Health

and Disease,” Physiol Rev, vol. 90, pp. 859–904, 2010.

[90] W. Dieterich, M. Schink, and Y. Zopf, “Microbiota in the Gastrointestinal Tract,”

Medical Sciences, vol. 6, no. 4, p. 116, 2018.

[91] R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping

microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006.

[92] F. Backhed, R. Ley, J. Sonnenburg, D. Peterson, and J. Gordon, “Host-Bacterial Mu-

tualism in the Human Intestine - supplemental materials,” Science, vol. 307, no. 5717,

pp. 1915–1920, 2005.

[93] A. J. Macpherson and N. L. Harris, “Interactions between commensal bacteria and the

chicken immune system,” Nature Reviews Immunology, vol. 4, no. 6, pp. 478–85, 2004.

[94] J. G. LeBlanc, F. Chain, R. Martín, L. G. Bermúdez-Humarán, S. Courau, and P. Lan-

gella, “Beneficial effects on host energy metabolism of short-chain fatty acids and vita-

mins produced by commensal and probiotic bacteria,” Microbial Cell Factories, vol. 16,

no. 1, pp. 1–10, 2017.

[95] M. A. Garcia, W. J. Nelson, and N. Chavez, “Cell-Cell Junctions Organize Structural

and Signaling Networks To Regulate Epithelial Tissue Homeostasis,” Cold Spring Har-

bor Perspect Biol., vol. 10, no. 4, 2018.



Bibliography 100

[96] T. Pelaseyed, J. H. Bergström, J. K. Gustafsson, A. Ermund, G. M. H. Birchenough,

A. Schütte, S. van der Post, F. Svensson, A. M. Rodríguez-Piñeiro, E. E. L. Nyström,

C. Wising, M. E. V. Johansson, and G. C. Hansson, “The mucus and mucins of the

goblet cells and enterocytes provide the first defense line of the gastrointestinal tract

and interact with the immune system,” Immunological Reviews, vol. 260, no. 1, pp. 8–20,

2014.

[97] J. D. Forbes, G. Van Domselaar, and C. N. Bernstein, “The gut microbiota in immune-

mediated inflammatory diseases,” Frontiers in Microbiology, vol. 7, no. JUL, pp. 1–18,

2016.

[98] K. A. Knoop and R. D. Newberry, “Goblet cells: multifaceted players in immunity at

mucosal surfaces,” Mucosal Immunology, vol. 11, no. 6, pp. 1551–1557, 2018.

[99] J. R. McDole, L. W. Wheeler, K. G. McDonald, B. Wang, V. Konjufca, K. A. Knoop,

R. D. Newberry, and M. J. Miller, “Goblet cells deliver luminal antigen to CD103+ DCs

in the small intestine,” Nature, vol. 483, no. 7389, pp. 345–349, 2012.

[100] R. N. Cunliffe and Y. R. Mahida, “Expression and regulation of antimicrobial peptides

in the gastrointestinal tract,” Journal of Leukocyte Biology, vol. 75, no. 1, pp. 49–58,

2004.

[101] H. Seno, H. Miyoshi, S. L. Brown, M. J. Geske, M. Colonna, and T. S. Stappenbeck,

“Efficient colonic mucosal wound repair requires Trem2 signaling,” PNAS, vol. 106,

no. 1, pp. 256–261, 2009.

[102] F. Heller, P. Florian, C. Bojarski, J. Richter, M. Christ, B. Hillenbrand, J. Mankertz,

A. H. Gitter, N. Bürgel, M. Fromm, M. Zeitz, I. Fuss, W. Strober, and J. D. Schulzke,

“Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithe-

lial tight junctions, apoptosis, and cell restitution.,” Gastroenterology, vol. 129, no. 2,

pp. 550–64, 2005.



Bibliography 101

[103] C. Papista, L. Berthelot, and R. C. Monteiro, “Dysfunctions of the Iga system: A com-

mon link between intestinal and renal diseases,” Cellular and Molecular Immunology,

vol. 8, no. 2, pp. 126–134, 2011.

[104] P. N. Boyaka, “Inducing mucosal IgA: A challenge for vaccine adjuvants and delivery

systems,” J Immunol., vol. 199, no. 1, pp. 9–16, 2017.

[105] C. Gutzeit, G. Magri, and A. Cerutti, “Intestinal IgA production and its role in host-

microbe interactions,” Immunological Reviews, vol. 260, no. 1, pp. 76–85, 2014.

[106] S. Fagarasan and M. Muramatsu, “Critical Roles of Activation-Induced Cytidine Deam-

inase in the Homeostasis of Gut Flora | Science,” Science, vol. 298, pp. 1424–1428, 2002.

[107] M. Wei, R. Shinkura, Y. Doi, M. Maruya, S. Fagarasan, and T. Honjo, “Mice carrying a

knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired

gut homeostasis and compromised mucosal defense,” Nature Immunology, vol. 12, no. 3,

pp. 264–270, 2011.

[108] M. C. Moreau, R. Ducluzeau, D. Guy-Grand, and M. C. Muller, “Increase in the popula-

tion of duodenal immunoglobulin A plasmocytes in axenic mice associated with different

living or dead bacterial strains of intestinal origin,” Infection and Immunity, vol. 21,

no. 2, pp. 532–539, 1978.

[109] D. A. Peterson, N. P. McNulty, J. L. Guruge, and J. I. Gordon, “IgA Response to

Symbiotic Bacteria as a Mediator of Gut Homeostasis,” Cell Host and Microbe, vol. 2,

no. 5, pp. 328–339, 2007.

[110] S. Boullier, M. Tanguy, K. A. Kadaoui, C. Caubet, P. Sansonetti, B. Corthesy, and

A. Phalipon, “Secretory IgA-Mediated Neutralization of Shigella flexneri Prevents In-

testinal Tissue Destruction by Down-Regulating Inflammatory Circuits,” J Immunol,

vol. 183, no. 9, pp. 5879–5885, 2009.



Bibliography 102

[111] J. J. Bunker and A. Bendelac, “IgA Responses to Microbiota,” Immunity, vol. 49, no. 2,

pp. 211–224, 2018.

[112] A. Cerutti, “The regulation of IgA class switching.,” Nature reviews. Immunology, vol. 8,

pp. 421–34, jun 2008.

[113] S. Hapfelmeier, M. a. E. Lawson, E. Slack, J. K. Kirundi, M. Stoel, M. Heikenwalder,

J. Cahenzli, Y. Velykoredko, M. L. Balmer, K. Endt, M. B. Geuking, R. Curtiss, K. D.

Mccoy, and A. J. Macpherson, “Reversible Microbial Colonization of Germ-Free Mice

Reveals the Dynamics of IgA Immune Responses,” Science, vol. 328, pp. 1705–09, 2010.

[114] O. L. Wijburg, T. K. Uren, K. Simpfendorfer, F.-E. Johansen, P. Brandtzaeg, and R. A.

Strugnell, “Innate secretory antibodies protect against natural Salmonella typhimurium

infection,” The Journal of Experimental Medicine, vol. 203, no. 1, pp. 21–26, 2006.

[115] N. W. Palm, M. R. D. Zoete, T. W. Cullen, N. A. Barry, J. Stefanowski, L. Hao, P. H.

Degnan, J. Hu, I. Peter, W. Zhang, E. Ruggiero, J. H. Cho, A. L. Goodman, and R. A.

Flavell, “Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory

Bowel Disease,” Cell, 2014.

[116] L. A. Van Der Waaij, F. G. Kroese, A. Visser, G. F. Nelis, B. D. Westerveld, P. L.

Jansen, and J. O. Hunter, “Immunoglobulin coating of faecal bacteria in inflammatory,”

European Journal of Gastroenterology and Hepatology, vol. 16, no. 7, pp. 669–674, 2004.

[117] M. Viladomiu, C. Kivolowitz, A. Abdulhamid, B. Dogan, D. Victorio, J. Castellanos,

V. Woo, F. Teng, N. Tran, A. Sczesnak, C. Chai, M. Kim, G. Diehl, N. Ajami, J. Pet-

rosino, X. Zhou, S. Schwartzman, L. Mandl, M. Abramowitz, V. Jacob, B. Bosworth,

A. Steinlauf, E. Scherl, H.-J. Wu, and K. Simpson, “IgA-coated E. Coli enriched

in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation,” Science

Translational Medicine, vol. 9, no. 376, p. eaaf9655, 2017.

[118] M. A. Koch, G. L. Reiner, K. A. Lugo, L. S. Kreuk, A. G. Stanbery, E. Ansaldo, T. D.



Bibliography 103

Seher, W. B. Ludington, and G. M. Barton, “Maternal IgG and IgA Antibodies Dampen

Mucosal T Helper Cell Responses in Early Life,” Cell, vol. 165, no. 4, pp. 827–841, 2016.

[119] M. Y. Zeng, D. Cisalpino, S. Varadarajan, J. Hellman, H. S. Warren, M. Cascalho, N. In-

ohara, and G. Núñez, “Gut Microbiota-Induced Immunoglobulin G Controls Systemic

Infection by Symbiotic Bacteria and Pathogens,” Immunity, vol. 44, no. 3, pp. 647–658,

2016.

[120] J. R. Wilmore, B. T. Gaudette, D. Gomez Atria, T. Hashemi, D. D. Jones, C. A.

Gardner, S. D. Cole, A. M. Misic, D. P. Beiting, and D. Allman, “Commensal Microbes

Induce Serum IgA Responses that Protect against Polymicrobial Sepsis,” Cell Host and

Microbe, vol. 23, no. 3, pp. 302–311.e3, 2018.

[121] K. Mitsuyama, M. Niwa, H. Takedatsu, H. Yamasaki, K. Kuwaki, S. Yoshioka, R. Ya-

mauchi, S. Fukunaga, and T. Torimura, “Antibody markers in the diagnosis of inflam-

matory bowel disease,” World Journal of Gastroenterology, vol. 22, no. 3, pp. 1304–1310,

2016.

[122] C. J. Landers, O. Cohavy, R. Misra, H. Yang, Y. C. Lin, J. Braun, and S. R. Targan,

“Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses

to auto- and microbial antigens,” Gastroenterology, vol. 123, no. 3, pp. 689–699, 2002.

[123] M. J. Lodes, Y. Cong, C. O. Elson, R. Mohamath, C. J. Landers, S. R. Targan, M. Fort,

and R. M. Hershberg, “Bacterial flagellin is a dominant antigen in Crohn disease,”

Journal of Clinical Investigation, vol. 113, no. 9, pp. 1296–1306, 2004.

[124] S. V. Sitaraman, J.-M. Klapproth, D. A. Moore, C. Landers, S. Targan, I. R. Williams,

and A. T. Gewirtz, “Elevated flagellin-specific immunoglobulins in Crohn’s disease,”

American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 288, no. 2,

pp. G403–G406, 2005.

[125] R. Iversen, O. Snir, M. Stensland, J. E. Kroll, Ø. Steinsbø, I. R. Korponay-Szabó,



Bibliography 104

K. E. Lundin, G. A. de Souza, and L. M. Sollid, “Strong Clonal Relatedness between

Serum and Gut IgA despite Different Plasma Cell Origins,” Cell Reports, vol. 20, no. 10,

pp. 2357–2367, 2017.

[126] J. Zhu, H. Yamane, and W. E. Paul, “NIH Public Access: Differentiation of Effector

CD4 T Cell Populations*,” Annu Rev Immunol, vol. 28, no. 1, pp. 445–489, 2010.

[127] S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher,

“A novel transcription factor, T-bet, directs Th1 lineage commitment,” Cell, vol. 100,

no. 6, pp. 655–669, 2000.

[128] V. K. Kuchroo, A. C. Anderson, H. Waldner, M. Munder, E. Bettelli, and L. B.

Nicholson, “T Cell response in Experimental Autoimmune Encephalomyelitis (EAE):

Role of Self and Cross-Reactive Antigens in Shaping, Tuning, and Regulating the Au-

topathogenic T Cell Repertoire,” Annual Review of Immunology, vol. 20, no. 1, pp. 101–

123, 2002.

[129] S. J. Simpson, S. Shah, M. Comiskey, Y. P. de Jong, B. Wang, E. Mizoguchi, A. K.

Bhan, and C. Terhorst, “T Cell-mediated Pathology in Two Models of Experimental

Colitis Depends Predominantly on the Interleukin 12/Signal Transducer and Activator

of Transcription (Stat)-4 Pathway, but Is Not Conditional on Interferon 𝛾 Expression

by T Cells,” The Journal of Experimental Medicine, vol. 187, no. 8, pp. 1225–1234,

1998.

[130] M. F. Neurath, B. Weigmann, S. Finotto, J. Glickman, E. Nieuwenhuis, H. Iijima,

A. Mizoguchi, E. Mizoguchi, J. Mudter, P. R. Galle, A. Bhan, F. Autschbach, B. M.

Sullivan, S. J. Szabo, L. H. Glimcher, and R. S. Blumberg, “The transcription factor

T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease.,”

The Journal of experimental medicine, vol. 195, no. 9, pp. 1129–43, 2002.

[131] M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGF𝛽



Bibliography 105

in the context of an inflammatory cytokine milieu supports de novo differentiation of

IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006.

[132] P. R. Burkett, G. Meyer, K. Vijay, J. C. Invest, P. R. Burkett, G. Meyer, and V. K.

Kuchroo, “Pouring fuel on the fire: Th17 cells , the environment , and autoimmunity,”

vol. 125, no. 6, pp. 2211–2219, 2015.

[133] Y. Lee, A. Awasthi, N. Yosef, F. J. Quintana, S. Xiao, A. Peters, C. Wu, M. Kleinewi-

etfeld, S. Kunder, D. A. Hafler, R. A. Sobel, A. Regev, and V. K. Kuchroo, “Induction

and molecular signature of pathogenic Th17 cells,” Nature Immunology, vol. 13, no. 10,

pp. 991–999, 2012.

[134] C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedg-

wick, T. McClanahan, R. A. Kastelein, and D. J. Cua, “IL-23 drives a pathogenic T

cell population that induces autoimmune inflammation,” The Journal of Experimental

Medicine, vol. 201, no. 2, pp. 233–240, 2005.

[135] K. Ghoreschi, A. Laurence, X. P. Yang, C. M. Tato, M. J. McGeachy, J. E. Konkel, H. L.

Ramos, L. Wei, T. S. Davidson, N. Bouladoux, J. R. Grainger, Q. Chen, Y. Kanno,

W. T. Watford, H. W. Sun, G. Eberl, E. M. Shevach, Y. Belkaid, D. J. Cua, W. Chen,

and J. J. O’Shea, “Generation of pathogenic Th17 cells in the absence of TGF-𝛽 2

signalling,” Nature, vol. 467, no. 7318, pp. 967–971, 2010.

[136] K. Hirota, J. H. Duarte, M. Veldhoen, E. Hornsby, Y. Li, D. J. Cua, H. Ahlfors, C. Wil-

helm, M. Tolaini, U. Menzel, A. Garefalaki, A. J. Potocnik, and B. Stockinger, “Fate

mapping of IL-17-producing T cells in inflammatory responses,” Nature Immunology,

vol. 12, no. 3, pp. 255–263, 2011.

[137] T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 Cells.,” Annual

review of immunology, vol. 27, pp. 485–517, 2009.



Bibliography 106

[138] C. M. Wilke, K. Bishop, D. Fox, and W. Zou, “Deciphering the role of Th17 cells in

human disease,” Trends in Immunology, vol. 32, no. 12, pp. 603–611, 2011.

[139] I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C.

Goldfarb, C. A. Santee, S. V. Lynch, T. Tanoue, A. Imaoka, K. Itoh, K. Takeda,

Y. Umesaki, K. Honda, and D. R. Littman, “Induction of intestinal Th17 cells by

segmented filamentous bacteria.,” Cell, vol. 139, no. 3, pp. 485–98, 2009.

[140] C. E. Zielinski, F. Mele, D. Aschenbrenner, D. Jarrossay, F. Ronchi, M. Gattorno,

S. Monticelli, A. Lanzavecchia, and F. Sallusto, “Pathogen-induced human TH17 cells

produce IFN-𝛾 or IL-10 and are regulated by IL-1𝛽,” Nature, vol. 484, no. 7395, pp. 514–

518, 2012.

[141] P. M. Smith, M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-y,

J. N. Glickman, and W. S. Garrett, “The Microbial Metabolites, Short-Chain Fatty

Acids, Regulate Colonic Treg Cell Homeostasis,” Science, vol. 341, pp. 569–574, 2013.

[142] K. Atarashi, T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara, Y. Momose, G. Cheng,

S. Yamasaki, T. Saito, Y. Ohba, T. Taniguchi, K. Takeda, S. Hori, I. I. Ivanov, Y. Ume-

saki, K. Itoh, and K. Honda, “Induction of colonic regulatory T cells by indigenous

Clostridium species,” Science, vol. 331, pp. 337–341, 2011.

[143] J. L. Round and S. K. Mazmanian, “Inducible Foxp3+regulatory T-cell development

by a commensal bacterium of the intestinal microbiota: Commentary,” PNAS, vol. 107,

no. 27, pp. 12204–12209, 2010.

[144] R. B. Sartor, “Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative

colitis,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 7, pp. 390–

407, 2006.

[145] M. Zeng, N. Inohara, and G. Nuñez, “Mechanisms of inflammation-driven bacterial

dysbiosis in the gut,” Mucosal immunology, vol. 10, no. 1, pp. 18–26, 2017.



Bibliography 107

[146] J. Qin, R. Li, J. Raes, M. Arumugam, S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons,

T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang,

H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.-m. Batto, T. Hansen, D. L.

Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, Y. Zhou, Y. Li, X. Zhang,

S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen,

O. Pedersen, J. Parkhill, J. Weissenbach, M. Consortium, P. Bork, S. D. Ehrlich, and

J. Wang, “A human gut microbial gene catalog established by metagenomic sequencing,”

Nature, vol. 464, no. 7285, pp. 59–65, 2010.

[147] D. Gevers, S. Kugathasan, L. A. Denson, Y. Vázquez-Baeza, W. Van Treuren, B. Ren,

E. Schwager, D. Knights, S. J. Song, M. Yassour, X. C. Morgan, A. D. Kostic, C. Luo,

A. González, D. McDonald, Y. Haberman, T. Walters, S. Baker, J. Rosh, M. Stephens,

M. Heyman, J. Markowitz, R. Baldassano, A. Griffiths, F. Sylvester, D. Mack, S. Kim,

W. Crandall, J. Hyams, C. Huttenhower, R. Knight, and R. J. Xavier, “The treatment-

naive microbiome in new-onset Crohn’s disease,” Cell Host and Microbe, vol. 15, no. 3,

pp. 382–392, 2014.

[148] H. M. Wexler, “Bacteroides: The good, the bad, and the nitty-gritty,” Clinical Micro-

biology Reviews, vol. 20, no. 4, pp. 593–621, 2007.

[149] M. T. Whary and J. G. Fox, “Natural and Experimental Helicobacter Infections,” Com-

parative Medicine, vol. 54, no. 2, pp. 128–158, 2004.

[150] B. J. Marshall and J. R. Warren, “Unidentified Curved Bacilli in the Stomach of Patients

With Gastritis and Peptic Ulceration,” The Lancet, vol. 323, no. 8390, pp. 1311–1315,

1984.

[151] J. G. Fox, F. E. Dewehirst, J. G. Tully, B. J. Paster, L. Yan, N. S. Taylor, M. J. Collins,

P. L. Gorelick, and J. M. Ward, “Helicobacter hepaticus sp . nov ., a Microaerophilic

Bacterium Isolated from Livers and Intestinal Mucosal Scrapings from Mice,” Journal

of Clinical Microbiology, vol. 32, no. 5, pp. 1238–1245, 1994.



Bibliography 108

[152] B. Shames, J. G. Fox, F. Dewhirst, L. Yan, Z. Shen, and N. S. Taylor, “Identification of

widespread Helicobacter hepaticus infection in feces in commercial mouse colonies by

culture and PCR assay,” Journal of Clinical Microbiology, vol. 33, no. 11, pp. 2968–2972,

1995.

[153] N. S. Taylor, S. Xu, P. Nambiar, F. E. Dewhirst, and J. G. Fox, “Enterohepatic He-

licobacter Species Are Prevalent in Mice from Commercial and Academic Institutions

in Asia, Europe, and North America,” Journal of Clinical Microbiology, vol. 45, no. 7,

pp. 2166–2172, 2007.

[154] J. G. Fox, X. Li, L. Yan, R. J. Cahill, R. Hurley, R. Lewis, and J. C. Murphy, “Chronic

proliferative hepatitis in A/JCr mice associated with persistent Helicobacter hepaticus

infection: A model of helicobacter-induced carcinogenesis,” Infection and Immunity,

vol. 64, no. 5, pp. 1548–1558, 1996.

[155] M. Ihrig, M. D. Schrenzel, and J. G. Fox, “Differential susceptibility to hepatic inflam-

mation and proliferation in AXB recombinant inbred mice chronically infected with

Helicobacter hepaticus,” American Journal of Pathology, vol. 155, no. 2, pp. 571–582,

1999.

[156] R. J. Cahill, C. J. Foltz, J. G. Fox, C. A. Dangler, F. Powrie, and D. B. Schauer,

“Inflammatory bowel disease: An immunity-mediated condition triggered by bacterial

infection with Helicobacter hepaticus,” Infection and Immunity, vol. 65, no. 8, pp. 3126–

3131, 1997.

[157] S. E. Erdman, T. Poutahidis, M. Tomczak, A. B. Rogers, K. Cormier, B. Plank, B. H.

Horwitz, and J. G. Fox, “CD4+ CD25+ Regulatory T Lymphocytes Inhibit Micro-

bially Induced Colon Cancer in Rag2-Deficient Mice,” American Journal Of Pathology,

vol. 162, no. 2, pp. 2079–2090, 2003.

[158] A. Burich, R. Hershberg, K. Waggie, W. Zeng, T. Brabb, G. Westrich, J. L. Viney, and

L. Maggio-Price, “Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-



Bibliography 109

deficient mice,” American Journal of Physiology-Gastrointestinal and Liver Physiology,

vol. 281, no. 3, pp. G764–G778, 2001.

[159] M. C. Kullberg, J. M. Ward, P. L. Gorelick, P. Caspar, S. Hieny, A. Cheever,

D. Jankovic, and A. Sher, “Helicobacter hepaticus triggers colitis in specific-pathogen-

free interleukin-10 (IL-10)-deficient mice through an IL-12-and gamma interferon- de-

pendent mechanism,” Infection and Immunity, vol. 66, no. 11, pp. 5157–5166, 1998.

[160] E. Y. Chin, C. A. Dangler, J. G. Fox, and D. B. Schauer, “Helicobacter hepaticus

infection triggers inflammatory bowel disease in T cell receptor alphabeta mutant mice,”

Comp Med, vol. 50, no. 6, pp. 586–594, 2000.

[161] M. C. Kullberg, D. Jankovic, C. G. Feng, S. Hue, P. L. Gorelick, B. S. McKenzie, D. J.

Cua, F. Powrie, A. W. Cheever, K. J. Maloy, and A. Sher, “IL-23 plays a key role in

Helicobacter hepaticus-induced T cell-dependent colitis,” The Journal of Experimental

Medicine, vol. 203, no. 11, pp. 2485–2494, 2006.

[162] M. Xu, M. Pokrovskii, Y. Ding, R. Yi, C. Au, O. J. Harrison, C. Galan, Y. Belkaid,

R. Bonneau, and D. R. Littman, “C-MAF-dependent regulatory T cells mediate im-

munological tolerance to a gut pathobiont,” Nature, vol. 554, no. 7692, pp. 373–377,

2018.

[163] N. S. Taylor, J. G. Fox, and L. Yan, “In-vitro hepatotoxic factor in Helicobacter hepati-

cus, H. Pylori and other Helicobacter species,” Journal of Medical Microbiology, vol. 42,

no. 1, pp. 48–52, 1995.

[164] J. C. Ranford, A. R. Coates, and B. Henderson, “Chaperonins are cell-signalling pro-

teins: the unfolding biology of molecular chaperones,” Expert reviews in molecular

medicine, vol. 2, no. 8, pp. 1–17, 2000.

[165] N. A. Ranson, H. E. White, and H. R. Saibil, “Chaperonins,” Biochemical Journal,

vol. 333, pp. 233–242, 1998.



Bibliography 110

[166] J. L. Feltham and L. M. Gierasch, “GroEL-Substrate Interactions: Minireview Molding

the Fold, or Folding the Mold?,” Cell, vol. 100, pp. 193–196, 2000.

[167] S. H. Kaufmann, U. Väth, J. E. Thole, J. D. Van Embden, and F. Emmrich, “Enumera-

tion of T cells reactive with Mycobacterium tuberculosis organisms and specific for the

recombinant mycobacterial 64-kDa protein,” European Journal of Immunology, vol. 17,

no. 3, pp. 351–357, 1987.

[168] J. M. Ward, R. E. Benveniste, C. H. Fox, J. K. Battles, M. A. Gonda, and J. G. Tully,

“Autoimmunity in chronic active Helicobacter hepatitis of mice: Serum antibodies and

expression of heat shock protein 70 in liver,” American Journal of Pathology, vol. 148,

no. 2, pp. 509–517, 1996.

[169] N. A. Nagalingam, C. J. Robinson, I. L. Bergin, K. A. Eaton, G. B. Huffnagle, and V. B.

Young, “The effects of intestinal microbial community structure on disease manifestation

in IL-10-/- mice infected with Helicobacter hepaticus,” Microbiome, pp. 1–15, 2013.

[170] C. S. Beckwith, C. L. Franklin, R. R. Hook, C. L. Besch-williford, and L. K. Riley,

“Fecal PCR Assay for Diagnosis of Helicobacter Infection in Laboratory Rodents,” Mi-

crobiology, vol. 35, no. 6, pp. 1620–1623, 1997.

[171] C. L. Franklin, P. L. Gorelick, L. K. Riley, F. E. Dewhirst, R. S. Livingston, J. M.

Ward, C. S. Beckwith, and J. G. Fox, “Helicobacter typhlonius sp. nov., a novel murine

urease-negative Helicobacter species,” Journal of Clinical Microbiology, vol. 39, no. 11,

pp. 3920–3926, 2001.

[172] Z. Shen, J. G. Fox, F. E. Dewhirst, B. J. Paster, C. J. Foltz, L. Yan, B. Shames, and

L. Perry, “Helicobacter rodentium sp. nov., a Urease-Negative Helicobacter Species Iso-

lated from Laboratory Mice,” International Journal of Systematic Bacteriology, vol. 47,

no. 3, pp. 627–634, 1997.

[173] J. G. Fox, L. L. Yan, F. E. Dewhirst, B. J. Paster, B. Shames, J. C. Murphy, A. Hayward,



Bibliography 111

J. C. Belcher, and E. N. Mendes, “Helicobacter bilis sp. nov., a novel Helicobacter

species isolated from bile, livers, and intestines of aged, inbred mice,” Journal of Clinical

Microbiology, vol. 33, no. 2, pp. 445–454, 1995.

[174] M. L. Caton, M. R. Smith-Raska, and B. Reizis, “Notch-RBP-J signaling controls

the homeostasis of CD8- dendritic cells in the spleen,” The Journal of Experimental

Medicine, vol. 204, no. 7, pp. 1653–1664, 2007.

[175] P. Kusters, T. Seijkens, C. Bürger, B. Legein, H. Winkels, M. Gijbels, C. Barthels,

R. Bennett, L. Beckers, D. Atzler, E. Biessen, T. Brocker, C. Weber, N. Gerdes, and

E. Lutgens, “Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by

Provoking In fl ammatory Bowel Disease and Ensuing Cholesterol Malabsorption,” The

American Journal of Pathology, vol. 187, no. 12, pp. 2912–2919, 2017.

[176] S. Rakoff-Nahoum, J. Paglino, F. Eslami-varzaneh, S. Edberg, and R. Medzhitov,

“Recognition of Commensal Microflora by Toll- Like Receptors Is Required for Intestinal

Homeostasis,” Cell, vol. 118, pp. 229–241, 2004.

[177] I. R. Peters, E. L. Calvert, E. J. Hall, and M. J. Day, “Measurement of Immunoglobulin

Concentrations in the Feces of Healthy Dogs,” Clinical and Vaccine Immunology, vol. 11,

no. 5, pp. 841–848, 2004.

[178] J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, and P. D. Schloss, “Devel-

opment of a dual-index sequencing strategy and curation pipeline for analyzing amplicon

sequence data on the miseq illumina sequencing platform,” Applied and Environmental

Microbiology, vol. 79, no. 17, pp. 5112–5120, 2013.

[179] C. Ubeda, L. Lipuma, A. Gobourne, A. Viale, I. Leiner, M. Equinda, R. Khanin,

and E. G. Pamer, “Familial transmission rather than defective innate immunity shapes

the distinct intestinal microbiota of TLR-deficient mice,” The Journal of Experimental

Medicine, vol. 209, no. 8, pp. 1445–1456, 2012.



Bibliography 112

[180] S. Takahashi, J. Tomita, K. Nishioka, T. Hisada, and M. Nishijima, “Development of

a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using

next-generation sequencing,” PLoS ONE, vol. 9, no. 8, 2014.

[181] J. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. Bushman, E. Costello, F. N,

A. Gonzalez-Peña, J. Goodrich, J. Gordon, G. Huttley, S. T. Kelley, D. Knights, J. E.

Koenig, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R.

Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld,

and R. Knight, “QIIME allows analysis of high-throughput community sequencing

data,” Nat Methods, vol. 7, no. 5, pp. 335–336, 2010.

[182] R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,” Bioin-

formatics, vol. 26, no. 19, pp. 2460–2461, 2010.

[183] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and

F. O. Glöckner, “The SILVA ribosomal RNA gene database project: Improved data

processing and web-based tools,” Nucleic Acids Research, vol. 41, no. D1, pp. 590–596,

2013.

[184] B. Chassaing, G. Srinivasan, M. A. Delgado, A. N. Young, A. T. Gewirtz, and M. Vijay-

Kumar, “Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker

for Intestinal Inflammation,” PLoS ONE, vol. 7, no. 9, pp. 3–10, 2012.

[185] S. L. Brandwein, R. P. McCabe, Y. Cong, K. B. Waites, B. U. Ridwan, P. A. Dean,

T. Ohkusa, E. H. Birkenmeier, J. P. Sundberg, and C. O. Elson, “Spontaneously colitic

C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric

bacterial flora.,” Journal of immunology (Baltimore, Md. : 1950), 1997.

[186] C. J. Boog, E. R. de Graeff-Meeder, M. A. Lucassen, R. van der Zee, M. M. Voorhorst-

Ogink, P. J. S. van Kooten, H. J. Geuze, and W. van Eden, “Two monoclonal antibodies

generated against human hsp60 show reactivity with synovial membranes of patients



Bibliography 113

with juvenile chronic arthritis,” Journal of Experimental Medicine, vol. 175, no. 6,

pp. 1805–1810, 1992.

[187] A. Ogrinc Wagner, V. Friedrich, C. Barthels, P. Marconi, A. Blutke, F. Brombacher,

and T. Brocker, “Strain specific maturation of Dendritic cells and production of IL-1 𝛽

controls CD40-driven colitis,” PloS one, pp. 1–20, 2019.

[188] E. Furrie, S. Macfarlane, J. H. Cummings, and G. T. Macfarlane, “Systemic antibodies

towards mucosal bacteria in ulcerative colitis and Crohn’s disease differentially activate

the innate immune response,” Gut, vol. 53, no. 1, pp. 91–98, 2004.

[189] I. Dotan, “New serologic markers for inflammatory bowel disease diagnosis,” Digestive

Diseases, vol. 28, no. 3, pp. 418–423, 2010.

[190] A. Konrad, Y. Cong, W. Duck, R. Borlaza, and C. O. Elson, “Tight Mucosal Com-

partmentation of the Murine Immune Response to Antigens of the Enteric Microbiota,”

Gastroenterology, vol. 130, no. 7, pp. 2050–2059, 2006.

[191] K. Zimmermann, A. Haas, and A. Oxenius, “Systemic antibody responses to gut mi-

crobes in health and disease,” Gut Microbes, vol. 3, no. 1, 2012.

[192] S. Suerbaum, C. Josenhans, T. Sterzenbach, B. Drescher, P. Brandt, M. Bell, M. Droge,

B. Fartmann, H.-P. Fischer, Z. Ge, A. Horster, R. Holland, K. Klein, J. Konig, L. Macko,

G. L. Mendz, G. Nyakatura, D. B. Schauer, Z. Shen, J. Weber, M. Frosch, and J. G. Fox,

“The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus,”

PNAS, vol. 100, no. 13, pp. 7901–7906, 2003.

[193] A. Noll and I. B. Autenrieth, “Immunity against Yersinia enterocolitica by vaccination

with Yersinia HSP60 immunostimulating complexes or Yersinia HSP60 plus interleukin-

12,” Infection and Immunity, vol. 64, no. 8, pp. 2955–2961, 1996.

[194] D. Young, R. Lathigra, R. Hendrix, D. Sweetser, and R. A. Young, “Stress proteins are



Bibliography 114

immune targets in leprosy and tuberculosis,” Proceedings of the National Academy of

Sciences, vol. 85, pp. 4267–4270, 1988.

[195] Y. Bulut, K. S. Michelsen, L. Hayrapetian, Y. Naiki, R. Spallek, M. Singh, and

M. Arditi, “Mycobacterium tuberculosis heat shock proteins use diverse toll-like recep-

tor pathways to activate pro-inflammatory signals,” Journal of Biological Chemistry,

vol. 280, no. 22, pp. 20961–20967, 2005.

[196] A. Tanaka, T. Kamada, K. Yokota, A. Shiotani, J. Hata, K. Oguma, and K. Haruma,

“Helicobacter pylori heat shock protein 60 antibodies are associated with gastric cancer,”

Pathology Research and Practice, vol. 205, no. 10, pp. 690–694, 2009.



Acknowledgements

Herrn Prof. Dr. Thomas Brocker danke ich insbesondere für seine Unterstützung und seinen

Input, den großen wissenschaftlichen Freiraum, mit dem ich dieses Projekt gestalten durfte

und die vielen Möglichkeiten, das Projekt auf nationalen und internationalen Konferenzen

vorstellen zu können.

Vielen Dank an Prof. Dr. Bärbel Stecher und Dr. Debora Garzetti, die mich bei der Analyse

der Microbiota unterstützten. Herzlichsten Dank vor allem an Diana, die Heli-Expertin, die

ich ein paar Nerven gekostet habe...

Prof. Dr. Axel Imhof und Dr. Ignasi Forne danke ich für die Proteinanalytik.

Ein großes Dankeschön geht an Christian, der mir den Einstieg in dieses Projekt sehr er-

leichtert hat und mich mit Tipps und Tricks für die Zeit als Doktorandin ausgestattet hat.

Vielen Dank auch all unseren Tierpflegern und insbesondere Dana für die Unterstützung im

finalen Experiment.

Ein riesiges Dankeschön an Frau Eisen, die sich "the" Mühe der Vorkorrektur machen musste

und immer ein offenes Ohr für mich hatte.

Ganz besonders danke ich der lieben Cri...ich wusste es sehr zu schätzen, dass sie mir immer

zu Hilfe geeilt kam, wenn ich sie brauchte. Sie stand mir "nichtsdestowenigertrotz" einfach

immer mit Rat und Tat (nicht nur als TA) zur Seite.

Von ganzem Herzen bedanke ich mich bei meinen lieben Eltern und Mikosch, die mich sowieso

immer unterstützen und mir auch während der Zeit der Doktorarbeit im Hintergrund den

Rücken gestärkt haben.

Meinem Mann danke ich vor allem für all unsere Gespräche und Diskussionen, die mich immer

antreiben. Danke, dass du mich auch in diesem Abschnitt begleitet hast und ich immer auf

dich zählen kann.




