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Abstract  

When neurons change their activity pattern, they remodel their synapses. Synaptic remodeling 

is characterized by changes in synaptic stability, number, and morphology. Remodeling occurs  

during normal CNS function, but also under pathological conditions, such as Alzheimer´s 

Disease (AD) and stroke. Under these circumstances, when the brain undergoes substantial 

functional and morphological alterations, loss of synaptic connections have been reported to 

be the anatomical correlate of decreasing cognitive function. 

In addition to loss of synapses, AD is also characterized by axonal pathology. Axons form 

axonal dystrophies (DNs), bundles of pathologically altered axons in the vicinity of Aß plaques. 

The role of DNs in AD are, however, not well defined. For example, it is not even known 

whether Aß plaques induce DNs or whether DNs form first and trigger the formation of Aß 

plaques later on. Since this question can only be answered by longitudinal observation of DN 

and Aß formation in vivo with cellular resolution, one aim of the current thesis was to use a 

mouse AD model and co-register DNs and Aß plaques by repetitive 2-photon microscopy, a 

technique able to observe these processes in the living brain. For this purpose, we used two 

transgenic AD mouse lines each crossed to a mouse line with green fluorescent neurons 

(dE9xGFP-M and APP-PS1xGFP-M). Plaques were stained with the specific dye methoxy-X04. 

Over a follow up of 210 days, we found that DNs were formed in only 25% of GFP-expressing 

axons near plaques, indicating selective vulnerability. We observed that DNs were highly 

dynamic and plastic structures with large variations in size and shape (axonal regrowth). These 

changes were more prominent in larger DNs. Large Aβ plaques appeared around imaging day 

130 and smaller, satellite plaques appeared later (day 232). 

Moreover, the analysis of the neurochemical and ultrastructural characteristics of DNs 

revealed that most GFP-expressing DNs widely express presynaptic, autophagy, and lysosomal 

markers while APP/Aβ is selectively present in 50-60% of the GFP-expressing DNs. Our data 

suggests a relationship between different plaques and DNs, where dystrophies are involved in 

the plaque formation and development. Larger DNs might be the main source of Aβ peptide 

and thus, an active participant in the amyloid pathology, whereas smaller DNs seem to be a 

consequence.  

Taking these results together, the existence of neuronal plasticity increases the likelihood that 

the synaptic abnormalities associated with pathological conditions can be influenced within a 

certain time window. Indeed, our data demonstrated that the axonal pathology linked to the 

presence of dystrophies could be reversed within a longer time window than previously 

thought.  

Moreover, ischemic stroke is associated to the presence of disabilities in patients. Previous 

studies have demonstrated that the chronic impairment may be related to a maladaptive 

plasticity after ischemia. However, it is not clear which structural and functional alterations 

underlie this process. It is known that stroke leads to alterations in remote areas (diaschisis) 

through the loss of neuronal input from the damaged region (deafferentation). Focusing on 

the contralesional cortex , we aimed to characterize the long-term effect of cerebral ischemia 

on its reorganization and dendritic dynamics in correlation with sensorimotor behavior and 

neuronal activity.  

Here, we benefit from two-photon imaging through a cranial window and retrograde virus 

tracing in C57BL/6N mice (1-2 months old). Ischemic stroke was induced by electrocoagulation 
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of the distal part of the MCA (dMCAo) or by 1h occlusion with a filament (fMCAo). A post-

operative care protocol was applied to mice subjected to fMCAo to facilitate a better surgery 

recovery and higher survival chances. Global and focal neurological deficits were assessed by a 

modified neurological severity score. The contralesional NVC response was measured after 

whisker stimulation by using laser speckle imaging. Nissl staining, immunofluorescence and 

PCR were performed as well as MRI scanning.  

Our post-operative care protocol enabled optimal survival (90-100%) of mice after fMCAo. The 

evaluation of global and focal neurological deficits in this model, demonstrated a general 

recovery of the sickness behavior but the presence of sustained neurological deficits over time 

(40% residual deficit). We found a decrease in the cortical thickness (11%) without any cell 

death and a significant decrease in the neuropil fraction (14%). By using retrograde viral 

tracing, we could unequivocally follow the dendritic arbor of transcallosal neurons connected 

to the infarct. We observed dendritic remodeling and dynamic changes in the apical dendrites 

of transcallosal neurons after stroke reflected by more transient spines together with a 

decrease in spine density (35%). Thus the dendritic reorganization of these neurons might 

explain this remote effect. In parallel we demonstrated changes in relative 

excitatory/inhibitory balance between both hemispheres but also at the level of transcallosal 

neurons which became hyperexcitable. Using laser speckle imaging, we showed that the 

observed structural reorganization was accompanied by functional hyperemia (increase in 

blood flow during stimulation) up to one month, followed by a decrease at three months post-

stroke. These data indicates that at one month, neurons in the contralesional cortex would 

show an increase in activity reflected by more demand of blood flow (higher laser speckle 

signal) when the whiskers are stimulated (NVC principle). In contrast, the scenario would be 

inverted at three months and the decrease in neuronal activity would be also supported by our 

previous observation, the reduction of spine density in that area. 

Our findings suggest that the ongoing atrophy, at the level of the infarcted hemisphere, would 

lead to an extension of the damage through the transcallosal pathway to the contralesional 

side. The triggered alterations would lead to spine remodeling resulting in both structural and 

functional reorganization of the contralesional cortex. These findings might therefore give 

insight into the neurophysiological underpinnings through which neurorehabilitation therapies 

benefit to stroke recovery. 

In sum, we demonstrate the relevance of neuritic integrity and plasticity in AD and ischemic 

stroke and highlighted the importance that axons and dendrites own as a therapeutic target to 

reduce structural damages and preserve cognitive and functional abilities. 
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1. Introduction 

The brain represents the most complex organ in the human body, providing us with the ability 

to think, act, generate memories, feel, and experience the world that surrounds us. It is 

formed by billions of neurons (Sotelo, 2003) that are connected through synapses. Brain 

activity is mediated by the reinforcement or loss of the connecting patterns. Functions such as 

memory storage, learning of habits, or personality will be shaped through dynamic changes 

these synapses undergo.  

In the brain, the cerebral cortex is responsible for the execution of higher-order functions, 

including cognition, sensory perception, and sophisticated motor control. It represents a 

complex circuit where neurons are allocated together with blood vessels and a wide range of 

other cell types, e.g. glial cells. These cells interact as a unit to enable the well-functioning of 

the nervous system responding to external and internal signals (Attwell et al., 2010).  

1.1. Insight into the cortical network  

The cortical neuronal network is organized into six horizontal layers defined as molecular 

(Layer I containing very few neurons), supragranular (layers II/III), granular (layer IV) and 

infragranular (layer V and VI). Neurons within the cortex communicate horizontally across 

cortical areas and radially within functional columns that contain neurons from different layers 

connected in a highly stereotyped fashion (Figure 1). Neurons constitute a very heterogeneous 

cell population, and their classification into different subtypes may still not be complete. In 

general, they are divided into excitatory pyramidal (or projection) neurons (PNs) and inhibitory 

local cortical interneurons (INs) (Lodato and Arlotta, 2015).  

PNs are excitatory, glutamatergic neurons that connect the cerebral cortex with its distal 

intracortical and subcortical targets. These cells represent the vast majority of the neurons of 

the cortex (70–80%) and are distributed within all cortical layers (Han and Sestan, 2013; 

Lodato and Arlotta, 2015). They can be broadly classified into intracortical and corticofugal 

neurons based on both, the layer where their soma is located and the area where their 

projections are sent. A set of projections, formed by a bundle of axons directed to a specific 

target, gives rise to the different fiber tracts in the nervous system (Friederici, 2009).  

The intracortical PNs type is located in all layers (predominantly layer II/III) and further divided 

into “associative” and “commissural”. Associative PNs project their axons either to targets in 

the same hemisphere or to different layers of the same area or column (association fibers). In 

contrast, they are classified as “commissural” when their axons project to targets located in 

the opposite hemisphere (commissural fibers) (Molyneaux et al., 2007). Here three main 

commissural tracts, the anterior and posterior commissures together with the corpus callosum 

(CC), enable interhemispheric communication (Ribas et al., 2018). 

 

Moreover, corticofugal neurons are mainly located in the deep cortical layers sending their 

axons to distal targets outside the cortex such as the thalamus or spinal cord (projection fibers) 

(Guo et al., 2017).  
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Figure 1. Organization of the cortex into layers and columns where the different types of 

excitatory projection neurons are distributed. Colors correspond to the frontal/motor cortex 

(blue), somatosensory cortex (green), auditory cortex (yellow) and visual cortex (red). PNs 

project to different areas depending on their location. Abbreviations: CC, corpus callosum; Th, 

thalamus; IT, intratelencephalic; PN, projection neuron. Roman numerals refer to the six 

cortical layers. Modified from (Lodato and Arlotta, 2015). 

 

Interneurons, also known as short-axon neurons, represent 20-30% of cortical neurons. They 

expand through all layers, and their classification is most likely also not complete (Lodato et 

al., 2015). In general, interneurons are subdivided into spiny pyramidal cells and aspiny non-

pyramidal cells. Spiny cells are excitatory glutamatergic neurons located in layer IV that receive 

sensory input from the thalamus, while the aspiny type consists of inhibitory GABAergic 

neurons located in all layers of the cortex. They represent the main inhibitory component of 

the cortical circuit, modulating projection neurons activity by regulating both synaptic function 

and the timing of action potential generation (Kepecs and Fishell, 2014). Cortical GABAergic 

interneurons are very diverse, containing subtypes that differ in morphology, molecular 

identity, firing properties, and patterns of connectivity. 

Both populations of excitatory and inhibitory neurons interact through stereotypical 

connectivity patterns within and across cortical layers, forming functional units in the cortical 

circuit (Wolf et al., 2014). The connections between the large population of excitatory cells are 
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believed to underlie the generation of persistent activity in the cortex. In contrast, INs would 

provide a dense “blanket of inhibition” constantly modulating this resulting activity (Karnani et 

al., 2014). In this manner, the cortical network would operate according to a strong and 

dynamic interaction between recurrent excitation and feedback inhibition (Isaacson and 

Scanziani, 2011; Wolf et al., 2014). Under pathological conditions, this equilibrium can be 

disturbed, leading to important functional alterations (Scharfman, 2007; Malcolm et al., 2015; 

Ren et al., 2018).  

Besides the key interaction of PNs and INs, the successful functioning of the cortex also 

involves other types of connecting patterns. Inhibitory neurons are known, for instance, to 

interact with each other, contributing to spike synchronization and coordination of inhibitory 

input (Galarreta and Hestrin, 2001; Gibson et al., 2005).  

Moreover, the excitatory and inhibitory activity can be affected by glia-mediated processes 

that affect mainly the transmission of information and remodeling of the connecting patterns 

(Henstridge et al., 2019). 

 

1.2. Neurites of pyramidal neurons, interaction via synapses and synaptic rearrangement 

under normal physiological conditions  

During embryonic development of the cortex, neuronal progenitors differentiate into mature 

neurons. This process includes the formation of neurites as well as the acquisition of mature 

electrophysiological properties and functional excitatory synaptic network formation (Hobert, 

2011; Shi et al., 2012). The term neurite refers to the emerging processes from the neuronal 

body and is either classified into an axon or dendrite (Flynn, 2013). Axons constitute long, 

slender projections that typically conduct electrical impulses (action potential) away from the 

cell body while dendrites refer to branched protoplasmic extensions that propagate the 

electrochemical stimulation received from other neurons to the soma, from which dendrites 

project (Chklovskii, 2004). 

1.2.1. Synapses 

In the cortex, neurites will enable the integration and communication of neurons in the cortical 

network through the establishment of synapses. Although axon-dendrite synaptic connections 

are the main norm, other variations (e.g., dendrite-dendrite, dendrite-axon, axon-axon) are 

also possible (Figure 2). In normal conditions, electrical impulses will travel through the pre-

synaptic component (axon) until the synaptic terminal, where the release of neurotransmitters 

is activated. The dendritic spines, small membranous protrusion allocated on dendrites, 

constitute the post-synaptic component where receptors will be involved in the recognition 

and integration of the sent signal. In addition, the pre- and postsynaptic components are 

surrounded by a third element (tripartite synapse concept), the astrocytic processes, which 

control synaptic transmission (Perea et al., 2009; Chung et al., 2015). 
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Figure 2. Types of synapses at different levels of the pyramidal neuron together with 

inputs from astrocytes (blue) and interneurons (green) to regulate neuronal activity. 

Modified from Rochelle S. Cohen 2013. 

 

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system 

(Zhou and Danbolt, 2014). Glutamate receptors are classified into ionotropic (NMDA, Kainate, 

and AMPA receptors) and metabotropic (mGluR1-8). Ionotropic receptors tend to be quicker in 

relaying information while metabotropic are associated with a more prolonged stimulus. 

Gamma-aminobutyric acid (GABA) refers to the most common inhibitory neurotransmitter 

with two classes of receptors: GABAA (ligand-gated ion channels) and GABAB (G protein-

coupled receptors). The main source of GABA are interneurons with GABAA receptors being 

the most abundant type of receptor in the brain (Farrant and Nusser, 2005). They are localized 

at both synaptic and extrasynaptic membranes. 

Synaptic-localized GABAA receptors (low affinity for GABA) mediate phasic inhibition which 

shows a transient effect. On the other hand, extrasynaptic GABAA receptors mediate tonic 

inhibition. Here, receptors own a higher affinity for GABA resulting in a more persistent 

GABAergic conductance and longer effect (Lee and Maguire, 2014). Both phasic and tonic 

inhibitions regulate neuronal activity, but whether they control each other is not very clear 

(Wu et al., 2013). 

 

The sent signal is recognized by the post-synaptic element. Dendritic spines are thin 

protrusions, primarily localized in the excitatory synapses. They consist of a dense network of 

cytoskeletal, transmembrane, scaffolding molecules and numerous surface receptors 

(Chidambaram et al., 2019). Spines arise from filopodia like structures and are formed through 

their interaction with molecules such as ephrins and telencephalin that regulate their motility 

and transformation. Trans-synaptic signaling involving nitric oxide, proteases, adhesion 

molecules, and Rho GTPases further controls contact formation or the structural remodeling of 

spines and their stability (Yoshihara et al., 2009). Their morphology is variable and ranges from 

filopodia-like protrusions to more stubby, thin, or mushroom-shaped structures (Peters and 

Kaiserman-Abramof, 1970) (Figure 3). 

 

https://en.wikipedia.org/wiki/Gamma-aminobutyric_acid
https://en.wikipedia.org/wiki/GABAA_receptor
https://en.wikipedia.org/wiki/Ligand-gated_ion_channels
https://en.wikipedia.org/wiki/GABAB_receptor
https://en.wikipedia.org/wiki/G_protein-coupled_receptors
https://en.wikipedia.org/wiki/G_protein-coupled_receptors
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Figure 3. Illustration of different types of dendritic spines. Top: from left to right, the 

distinct maturity stages can be identified together with length and width change. 

Bottom: Golgi-cox stained dendritic branch of a Layer II/III pyramidal neuron in mouse 

primary visual cortex. The different spine types are indicated by arrowheads, color-

coded to match previous illustration. Scale bar, 5 µm. (Risher et al., 2014). 

  

The morphology of spines, has great impact on their function (Rochefort and Konnerth, 2012; 

Berry and Nedivi, 2017). Using electron microscopy and labeling with post-synaptic markers 

(PSD-95) it was shown that filopodia-like spines are the precursors of mushroom spines 

(mature stage) while thin and stubby represent intermediate shapes. Indeed, many filopodia 

lack mature synaptic structures, show none or little synaptic function (smaller synaptic cleft 

and fewer synaptic vesicles) and lack PSD-95. On the other hand, mushroom shaped spines, 

contain the largest number of excitatory synapses and high synaptic function as well as PSD-95 

(Berry and Nedivi, 2017).  

 

Through the interaction with actin-binding proteins, postsynaptic signaling messengers, and 

the dynamics of actin filaments, spines are formed, maintained, and eliminated. This process 

plays an essential role in the refinement of the brain circuits, neuronal development, and 

cognitive functions including memory and learning (Borovac et al., 2018). Considering their 

dynamic properties, spines are classified into persistent or transient (Berry and Nedivi, 2017). 

The first type includes spines which are formed and remain for an extended time (months to 

years) or disappear and never return. Transient spines are added and then removed with a 

mean lifetime of approximately two days. These spines tend to be smaller, but spines of all 

sizes and morphological subtypes from mushroom spines to filopodia can fall into either 

dynamic class. From a functional point of view, persistent spines are associated with the 

maintenance of learned skills while more dynamic spines are related to skill acquisition (Xu et 

al., 2009; Yang et al., 2009; Berry and Nedivi, 2017). 

1.2.2. Synaptic plasticity 

During early postnatal development, the synapses undergo a pruning phase that eliminates 

unnecessary or improper connections. In the adult brain, synaptic formation and elimination 

are believed to be at equilibrium with a fraction of connections been consistently added and 

removed (Petanjek et al., 2011; Chen et al., 2014). The ability to change their number and 
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morphology, which is usually activity-dependent, gives rise to the concept of synaptic 

plasticity, which entails the weakening or strengthening of synapses over time as well as 

synapse formation and elimination (structural plasticity).  

The idea that synapses could change depending on how active or inactive they are, was first 

proposed by the Canadian psychologist Donald Hebb in 1949 (Berlucchi and Buchtel, 2009). 

Hebbian plasticity is divided into short-term and long-term. Short-term plasticity takes place 

when changes in synaptic strength occur on a sub-second timescale, a fast up or down 

adjustment to determine the importance of the connection and to decide if ongoing 

communication is essential or not. This type of plasticity might be involved in decision making 

as well as working memory (Deng and Klyachko, 2011). In contrast, long-term synaptic 

plasticity lasts anywhere from minutes to hours, days, or years and constitutes the dominant 

model for how the brain stores information (Takeuchi et al., 2014). 

 

According to the Hebbian theory, an increase in synaptic efficacy arises from repeated and 

persistent stimulation of a postsynaptic cell by a presynaptic cell. The formation and 

elimination of synapses are, therefore, dependent on activity. The input that neurons receive 

is converging on dendrites and would differ in synaptic activity. Inputs with less active synaptic 

regions would be ultimately eliminated giving rise to the “use it or lose it” concept (Shors et 

al., 2012).  

 

Dendritic spine turnover plays a crucial role in synaptic plasticity (Frankfurt and Luine, 2015). 

The changes in the synaptic strength are related mainly to the rapid modification of the 

expression of membrane glutamate receptors in an activity-dependent manner. In contrast, 

structural plasticity would be an enlargement, growth, pruning, and stabilization of dendritic 

spines. These rearrangements have the potential to continuously modify the organization of 

the synaptic network and are thereby tightly linked to brain activity, cognitive, and functional 

function. Plasticity can be triggered by external signals such as learning, storage of new 

memories (Howland and Wang, 2008), sleep (Rao et al., 2007) or environmental enrichment 

(Baroncelli et al., 2010). 

1.3. Neuritic alterations in pathological conditions 

In response to pathology-induced alterations, neurons reorganize their projections 

(Kempermann et al., 2000) as a way to compensate for the damage. As main components of 

synapses, the induced changes will lead to disrupted synaptic stability, number, and 

connecting patterns that define normal brain functioning (Masliah et al., 1994; Scheff and 

Price, 2006). Neuritic pathology would thus contribute to disease´s progression and worsening 

of the associated symptoms. In pathologies, such as Alzheimer´s Disease (AD) and stroke, 

synaptic and neuritic alterations have been reported and related to deficits in the disease´s 

outcome (Masliah et al., 1994; Serrano-Pozo et al., 2011; Jang, 2013). 

 

In the context of aging and Alzheimer´s Disease (AD), neurons are affected by beta-amyloid 

toxicity and deposition (plaques) that lead to the formation of dystrophic structures, neurite 

malfunction, and degeneration (Reitz et al., 2011). Although processes to counteract the 

damage such as axonal regrowth have been observed (Blazquez-Llorca et al., 2017), very often, 

these neurons fail to successfully integrate into the circuit and propagate information (Stern et 

al., 2004). In ischemic stroke, especially the infarct core, neurons undergo irreversible damage 

that will avoid any chances of self-repairing by these cells. Nevertheless, other more distant 

areas from the core could represent a potential source for repair and compensation mainly 

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/long-term-synaptic-plasticity
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/long-term-synaptic-plasticity
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Presynaptic_cell
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through dynamic changes of dendritic spines (Brown et al., 2007). Although this structural 

rearrangement might play a key role in stroke recovery, a wide range of patients keeps lifelong 

disabilities, pointing out that the repair is not entirely successful and the function not fully 

restored. 

1.4. Axonal pathology in Alzheimer´s Disease  

1.4.1. AD and main pathological hallmarks  

AD is the leading cause of dementia worldwide, representing 60-80% of all cases (Garre-Olmo, 

2018). It is characterized by a progressive decline in cognitive function, which usually begins 

with deterioration in memory and continues affecting intellectual functions leading to 

complete dependence for basic daily activities as well as premature death (Mayeux and Stern, 

2012). The AD brain is characterized by neuropathological hallmarks, including extracellular 

amyloid plaques, intracellular neurofibrillary tangles and dystrophic neurites surrounding 

plaques (Reitz et al., 2011). The term “dystrophic neurites” (DNs) refers to abnormal, swollen 

and tortuous neuronal processes. These pathologies are often accompanied by the presence of 

reactive microglia as well as a loss of neurons, synapses, and white matter (Serrano-Pozo et al., 

2011). The etiology of AD remains unclear, but environmental factors, advancing age, and 

genetic factors such as mutations in APP, PSEN1, and PSEN2 genes are believed to play an 

important role (Giri et al., 2016). 

 
In the past decades, two hypothesis about the pathogenesis of AD are discussed (Kametani 
and Hasegawa, 2018). Some researchers support the notion that the accumulation and 
deposition of oligomeric or fibrillar amyloid β (Aβ) peptide (β-amyloidopathy) is the primary 
cause of AD (Masters et al., 1985). In contrast, others claim that the microtubule-associated 
protein tau is the main responsible factor. The production of Aβ peptide synthesis requires the 
cleavage of the amyloid precursor protein (APP) by the β and γ secretases, respectively 
through the so-called amyloidogenic pathway (Figure. 4). 
 

 
Figure 4. Diagram of APP processing. EC: extracellular; TM: transmembrane; IC: intracellular; 
IACD: intracellular domain of APP; p3: small peptide. Domain Aβ highlighted in red. From 
(Zheng and Koo, 2006). 
 
Aβ is not an abnormal protein and is produced during healthy cell metabolism (Seubert et al., 
1992; Shoji et al., 1992). Under normal conditions, the soluble Aβ peptide found in the 
extracellular space is degraded by peptidases (Carson and Turner, 2002). It can also be 
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internalized and degraded by activated microglia or removed by an out-input balance process 
from the brain through the blood-brain barrier (Tanzi et al., 2004). An imbalance between the 
production and/or degradation of Aβ would increase the levels of this peptide in the brain. 
While in familial AD, the overexpression of Aβ is related to mutations in the genes APP, PSEN1, 

and PSEN2, in sporadic AD, a failure in the degradation processes of this peptide is involved 

(Wang et al., 2006). 

APP has been found in the plasma membrane as well as in the membrane layers of the trans-

Golgi region, endoplasmic reticulum, endosomes, lysosomes and mitochondria. Thus these 

compartments might be the source of Aβ. Part of this process takes place in the distal axons 

and dendrites, both in the pre-synaptic and post-synaptic compartments. Also, synaptic 

activity appears to promote the transport of APPs to synaptic terminals, their endocytosis, and 

subsequent formation of Aβ (Cirrito et al., 2008; Tampellini et al., 2009). Moreover, the 

extracellular Aβ can be recaptured and internalized, increasing the intracellular reservoir 

(Mohamed and Posse de Chaves, 2011).  

Amyloid plaques result from the extracellular accumulation of fibrillar Aβ and constitute an 
important hallmark of the AD pathology. There are classified into primitive, classic, and 
compact plaques (Wisniewski et al., 1973). Primitive plaques are formed by degenerated 
neurites with some amyloid deposits visible at the ultrastructural level. Classic plaques are 
generated from the previous ones, forming a central amyloid nucleus, while compact plaques 
are a result of complete degeneration of neurites leaving only the amyloid mass (Probst et al., 
1987). 
 
The amyloid plaques have other components besides dystrophic neurites and Aβ. A classic 
plaque, for example, is formed by a central nucleus of Aβ 42 surrounded by a halo formed by 
active microglia and astrocytes arranged in the periphery (Figure 5). 
 

 
 
Figure 5. Main components of a senile plaque. The Aβ42 produced by the neurons deposited in 
the plaques. Microglia is then activated and begins to release cytokines such as IL-1β and TNF-
α that can cross the blood-brain barrier and induce the activation of astrocytes. 
Hyperphosphorylated tau protein is added in neurofibrillary tangles (NFT) to neurons (in the 
soma and neuritic dystrophies) around the plaques. Modified from (Perrin et al., 2009). 
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1.4.2. Axonal dystrophies in close proximity to amyloid plaques 

DNs are found around amyloid plaques and contain mainly autophagocytic vacuoles, 
lipofuscin, degenerating mitochondria, and hyperphosphorylated tau (PHF-tau) (Sanchez-Varo 
et al., 2012; Mitew et al., 2013) (Figure 6). Dystrophies can develop in both, axons and 
dendrites, but axons seem to show greater vulnerability for their formation (Yang et al., 2013; 
Blazquez-Llorca et al., 2017). The reason for this distinct degree of vulnerability remains 
unknown but differences in the arrangement of microtubules and different maturation of 
autophagosomes in both compartments may be related (Yang et al., 2013).  
  
 

 
 
Figure 6. Impaired steps of neuronal autophagy in neurodegenerative disorders. (A) Defective 
autophagosome biogenesis and disruption of axonal transport leading to the accumulation of 
autophagosomes in dystrophic neurites (B). Failure of autophagosomes to fuse with lysosomes 
(C). LC3-II: Microtubule-associated protein 1A/1B-light chain 3, present in autophagosomal 
membranes and marker for autophagic activity. From Audrey Ragagnin 2013. 
 
 
Moreover, several factors might contribute to the formation of dystrophies in axons. Some of 
them rely on the neurotoxic effect of Aβ as key player. For example, a study performed on 
cultured cortical neurons, demonstrated that treatment with fibrillar Aβ, resulted in the 
development of neuritic dystrophy in a concentration-dependent manner (Grace et al., 2002). 
In addition, it has been shown that soluble oligomeric assemblies of Aβ, which surround 
plaques, induce calcium-mediated secondary cascades that lead to dystrophic changes. Soluble 
Aβ oligomers would lead to the activation of the calcium-dependent phosphatase calcineurin 
altering neuritic structure (Wu et al., 2010).  
Other important factors involved in the formation of dystrophies are autophagy and 
autophagic vacuoles (Sanchez-Varo et al., 2012). In AD, an increased number and accumulation 
of vesicles is observed in axons, event that might be associated to an altered lysosomal activity 
(Lee et al., 2011). Lysosomes contain enzymes that are important for the degradation and 
digestion of compounds either from the cell (autophagy) or from the extracellular space 
(heterophagy). Mutations in the presenilin gene make lysosomes unable to maintain an 
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optimal acidic pH for their enzyme activity. As a result, they cannot function normally, as 
binding to the autophagosomes, and degradation of their content would not take place 
properly. Therefore, vesicles would start accumulating and would lead to an alteration of the 
axonal structure as well as transport. At the same time, Aβ can damage cellular organelles such 
as mitochondria which would become targets of more autophagy promoting the accumulation 
of additional vesicles worsening the dystrophic pathology (Perez-Gracia et al., 2008). Aβ would 
lead to mitochondrial dysfunction by impairment of oxidative phosphorylation, elevation of 
reactive oxygen species production, and alteration of the mitochondrial proteins and 
membrane (Pagani and Eckert, 2011). 
 
Once dystrophies are formed, they behave as dynamic structures with complex and variable 
morphologies over time (Blazquez-Llorca et al., 2017). The more numerous and severe they 
are, the more vulnerable the nerve cell will be to lysis and cell death. Even so, it seems that the 
cells try to resist the maximum time possible presenting severe dystrophies that at first sight 
could indicate that the neuron is no longer functional when it really is (Adalbert et al., 2009). 
Not surprisingly when considering the effect that dystrophies have on axons, they have been 
related to synaptic dysfunction and progression of AD (Knowles et al., 1999; Stern et al., 2004).  
 
1.5. Ischemic stroke as a pathological condition, evolution over time and neuritic alterations 

1.5.1. Stroke, epidemiology, causes, and symptoms  

Affecting 13.7 million people worldwide and causing about 5.5 million deaths every year, 

stroke is the second most frequent cause of death and the leading cause of disability globally 

(Campbell et al., 2019). Patients can suffer two types of stroke: ischemic and hemorrhagic. 

Hemorrhagic stroke is caused by the rupture of a cerebral vessel which results in the formation 

of a hematoma (intracerebral or subarachnoid hemorrhage), while ischemic stroke is caused 

by vessel occlusion, most often (71%) of the middle cerebral artery (MCA) (Fluri et al., 2015). 

Ischemic strokes are mainly unilateral (Ilyayeva et al., 2018) and are thromboembolic of origin. 

The main risk factors for occurrence are, among others, atherosclerosis, small vessel disease, 

cerebral vasculitis, or atrial fibrillation (Previtali et al., 2011). Besides, non-modifiable risk 

factors, including age, sex, and genetic factors, are also believed to have an influence (Boehme 

et al., 2017). Symptoms will vary depending on the location and size of the tissue damaged by 

the reduced blood flow (infarct), but the most common symptoms include weakness of the 

limbs or face, trouble speaking or understanding speech, impaired vision, headache and 

dizziness (Musuka et al., 2015). 

For the diagnose and patient´s follow-up, different imaging techniques are used including 

computed tomography (CT), magnetic resonance imaging (MRI), and sometimes even positron 

emission tomography (PET) (Wey et al., 2013; Lin and Liebeskind, 2016).  

Even though current strategies based on reperfusion have improved survival, patients are 

often confronted with lifelong disabilities such as motor/sensory disturbances, aphasia or 

personality and emotional changes together with cognitive impairment (Schaapsmeerders et 

al., 2013). A major explanation for this is that the pathophysiological events happening in the 

later stages of ischemic stroke are poorly understood (Dirnagl et al., 1999). A better knowledge 

about the progression of ischemic stroke together with a detailed understanding of the brains 

endogenous mechanisms for neuroprotection, repair and neuroanatomical rewiring are 

needed to develop new strategies and improve stroke care.  
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1.5.2. Pathophysiology, temporal course of ischemic stroke and infarct growth 

The brain has high energy demands and almost exclusively relies on oxidative phosphorylation 

(Hossmann, 1994). When a cerebral vessel is occluded and the blood supply is interrupted, the 

previously irrigated tissue undergoes oxygen and glucose deprivation (Kalogeris et al., 2012). 

The brain area affected by irreversible tissue damage, forms the infarct core, while the 

surrounding area where cells are still viable but dysfunctional is known as penumbra (Paciaroni 

et al., 2009). Once stroke occurs, brain tissue inside and outside the infarct undergoes 

considerable changes over time. 

The time course of ischemic stroke can be in general divided into three clinical phases: acute, 

sub-acute and chronic (Zhao and Willing, 2018) (Figure 7).  

 

Figure 7. Time course of the progression of stroke from the acute over the subacute to the 

chronic phase. Modified from (Dirnagl et al., 1999).  

The acute phase of stroke lasts 48 hours after symptom onset. As blood flow within the core 

drops, energy depletion and metabolic failure leads to anoxic depolarization and activation of 

the “ischemic cascade” that leads to neuronal death already minutes after onset of ischemia 

(Dirnagl et al., 1999; Doyle et al., 2008). In normal physiological conditions, neurons polarize by 

building up ion gradients in an ATP-dependent manner to be able to generate action 

potentials. During occlusion, the reduced blood flow leads to a reduction in ATP production 

and failure of energy dependent membrane receptors, ion channels and ionic pumps. This, at 

the same time, results in a collapse of transmembrane potential as ions such as sodium (Na+), 

potassium (K+) and calcium (Ca2+) flow freely down their concentration gradients, leading to 

anoxic depolarization and the release of additional excitatory neurotransmitters (primarily 

glutamate) (Belov Kirdajova et al., 2020). The resulting excitotoxicity is potentiated even more 

by the disruption of energy dependent glutamate reuptake from the synaptic cleft (Lai et al., 

2014), and the ensuing activation of the glutamatergic NMDA and AMPA receptors causing 

further depolarization and excitotoxicity. The over activation of the excitatory AMPA and 

NMDA receptors, leads to a higher influx of calcium ions triggering a cascade of harmful events 

including proteolytic cleavage of cytoskeletal and extracellular proteins such as actin and 

laminin, generation of reactive oxygen species, and nitrative stress (Dirnagl et al., 1999; 

Atochin and Huang, 2011). Beyond the direct effect on cell death, increased levels of reactive 

oxygen and nitrogen species also induce release of pro-inflammatory factors from immune 

cells, leading to inflammation (Dirnagl et al., 1999). 
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Moreover, the alterations in ion concentrations also result in water entering the cells 

producing cytotoxic oedema, an important pathophysiological marker of ischemia (Dostovic et 

al., 2016). 

In general, the described processes of energy failure, depolarization, and excitotoxicity 

represent the main pathological events during acute ischemia at the level of the core (Dirnagl 

et al., 1999). 

The penumbra surrounding the stroke core is a band of tissue in which blood flow is partially 

preserved due to collateral circulation (Rusanen et al., 2015). However, its viability is variable 

and time dependent. Peri-infarct depolarizations, apoptosis, and inflammation constitute the 

main factors leading to an ongoing cell death and expansion of the infarct core into the 

penumbra (Lakhan et al., 2009; Dreier, 2011). 

The tissue at this level would still have the potential to repolarize, but it depolarizes again in 

response to the increased levels of glutamate coming from the core. These depolarizations 

spread in waves running from the ischemic core throughout the penumbra and would 

contribute to the progression and expansion of excitotoxic cell death (Dirnagl et al., 1999). 

Each new wave of these peri-infarct depolarizations would lead to infarct volume growth 

(Strong et al., 2007).  

In addition, while neurons in the infarct core undergo necrotic cell death, neurons in the 

penumbra are affected by apoptosis which contributes to the expansion of the damage. 

Apoptosis is the systematic degradation of a cell in response to injury and is characterized by 

the condensation of chromatin, nuclear fragmentation, preserved membrane integrity and 

blebbing of the plasma membrane (Bredesen, 2000). At the level of the penumbra, apoptosis is 

induced by several factors. For instance, the excessive Ca2+ influx occurring due to 

excitotoxicity or persistent NMDA receptor activation leads to alterations in mitochondrial 

membrane permeability increasing the release of pro-apoptotic factors including cytochrome c 

(Garrido et al., 2006).  

Another key factor is the activated inflammatory response which is characterized by the 

infiltration and proliferation of immune cells, and the secretion of chemokines and pro- and/or 

anti-inflammatory cytokines (Ahmad and Graham, 2010). Inflammation facilitates the 

elimination of cellular debris and pathogens but is also known to contribute to cell death and 

infarct growth even days after ischemic onset (Dirnagl et al., 1999). Leukocytes, monocytes, 

neurons, and glial cells, all participate in the inflammatory response to stroke. During and after 

ischemia, leukocytes aggregate and adhere to the vascular endothelium, in part due to 

increased release of adhesion molecules such as selectins in ischemic territories (Marquardt et 

al., 2009). Selectin promotes cellular interactions with leukocytes and aggregates of leukocytes 

that accumulate platelets and fibrin. Thus, vessels are occluded, perfusion reduced, and the 

infarct expands (Ritter et al., 2000). 

Furthermore, glial cells are major contributors to post-stroke inflammation. After stroke, 

microglia becomes activated and migrates to the stroke penumbra. Therein, they adopt an 

activated morphology and participate in modulating inflammation through the secretion of 

pro- and anti-inflammatory cytokines able to trigger multiple signaling pathways relevant to 

cell death (Kim et al., 2016). 

In the following days to weeks after stroke onset, the subacute phase starts. Excitotoxicity and 

the induction of oxidative and nitrative stress declines, but cell death together with the 
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expansion of the damage continues due to the previous described inflammation (Dirnagl et al., 

1999).  

 

Later in time, the subacute phase transitions into the chronic phase where the observed 

inflammation and ongoing apoptosis will also decrease and the infarct begins to be resolved 

(Doyle et al., 2008). The chronic phase characterized by the formation of a glial scar (Wang et 

al., 2018) together with tissue remodeling (Silver and Miller, 2004; Karki et al., 2010). The 

chronic phase starts the earliest at 3 months and the latest at 6 months post-stroke (Zhao and 

Willing, 2018). Glial scarring and tissue remodeling might be important to minimize damage, 

however, they are likely to be detrimental for recovery later on (Lo, 2008). For instance, the 

glial scar helps to seal off the lesioned area, preventing further microbial infections and the 

spread of cellular damage (Silver and Miller, 2004). In contrast, the scar hinders regeneration 

by creating a barrier for axonal regrowth (Yiu and He, 2006). In addition to the lack of recovery, 

also progressive neurodegeneration occurs in the chronic phase. This is reflected by the fact 

that a great amount of patients develop delayed cognitive impairment or even dementia after 

stroke (Brainin et al., 2015). The ongoing neurodegeneration is not fully understood yet but 

some mechanisms have been suggested.  

In stroke survivors, increased homocysteine levels were found 3 months after infarction 

(Meiklejohn et al., 2001). Homocysteines are known to promote free-radical formation and 

oxidative damage, showing that oxidative stress could play a key role (Sibrian-Vazquez et al., 

2010). Another contributor to the delayed neurodegeneration is Wallerian degeneration. 

According to this concept, when an axon is damaged, its remaining distal part undergoes 

delayed degeneration too. This process may occur over weeks after the initial damage 

(Hinman, 2014) and is linked to the infiltration of macrophages to clear the cell debris (Gaudet 

et al., 2011). These macrophages have a pro-inflammatory status and may cause sustained 

damage and cell death (Gaudet et al., 2011). Due to damage of axons projecting to areas 

outside the lesion side, Wallerian degeneration may also cause delayed damage in unaffected 

areas connected to the lesion. 

 1.5.3. Expansion of the focal ischemic damage to remote areas 

The damage due to ischemic stroke extends beyond the ischemic territory to distant regions 

that are anatomical connected to the lesioned area, an effect known as diaschisis. This 

phenomenon can appear soon after ischemia and persist for weeks, and includes, changes in 

blood flow, metabolism, as well as atrophy in remote areas. The term was first described by 

Constantin von Monakow in 1914, a Russian-Swiss neurologist (Seitz et al., 1999). The main 

primary mechanism of diaschisis explanation is thought to be deafferentation also defined as 

loss of neuronal input from the damaged area (Butz et al., 2014). Additionally, other potential 

processes have been suggested to interfere. 

For instance, brain edema and spreading depression (depolarization waves) as well as 

neuroanatomical disconnection might contribute to diaschisis. Cytotoxic and vasogenic edema 

are induced by stroke, and persistent water accumulation occurs in the brain over the days 

following ischemia (Witte et al., 2000). Edema in remote areas can occur and probably results 

from the migration of extravasated fluid and protein (Izumi et al., 2002). Brain swelling can 

directly compress the contralesional hemisphere and remote ipsilesional regions (Izumi et al., 

2002) inducing secondary damage directly through physical compression or inducing 

secondary hypoperfusion and ischemia due to pressure on low resistance vasculature (Witte et 

al., 2000).  
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Moreover, it has been proved that spreading depolarization contributes to the expansion of 

the damage to non-ischemic regions. The resulting waves induce significant metabolic stress, 

with an initial increase in brain metabolism followed by profound hypometabolism and 

transient changes in the expression of a number of neurotrophic and inflammatory cytokines 

as well as molecular signaling cascades (Witte et al., 2000). In vivo calcium imaging studies 

demonstrated that spreading depression is associated with calcium waves propagating 

through both neurons and astrocytes, and that these waves elicit vasoconstriction enough to 

stop capillary blood flow in affected cortex (Chuquet et al., 2007). 

By means of positron emission tomography (PET), computed tomography, and magnetic 

resonance imaging, changes in cerebral blood flow have been observed in remote areas. 

Approximately one half of stroke patients exhibit “mirror diaschisis” during the first two weeks 

after stroke, indicated by a decrease in oxygen metabolism and blood flow in the contralateral 

hemisphere, in the homotopic regions to the infarct (Lenzi et al., 1982). Together with these 

alterations in the blood flow, hypometabolism has been also reported in human patients as 

well as animal models after focal stroke. In patients, oxygen consumption measured by PET 

decreased throughout the ipsilesional hemisphere (including the thalamus and remote, non-

ischemic tissue) acutely and three weeks after MCAo (Iglesias et al., 2000). Similarly, a study 

performed by Carmichael et al. (2004) demonstrated impaired glucose metabolism (a 

reflection of neuronal activity) one day after stroke throughout ipsilesional cortex, striatum, 

and thalamus, effect that was resolved eight days post-stroke (Carmichael et al., 2004). 

Moreover, crossed cerebellar diaschisis is a well known effect after stroke characterized by a 

reduction in cerebral blood flow and metabolism in the cerebellar hemisphere contralateral to 

the lesion. This is attributed to a disruption of the cortico-ponto-cerebellar pathways with 

consecutive cerebellar functional inactivation which still persists in the chronic phase (Gold 

and Lauritzen, 2002). 

Another important mechanism involved in stroke´s remote effect might be related to the 

alterations that damaged axons undergo. Their lesion would lead to inflammation trigerring 

secondary damage and atrophy in structures with neuroanatomical links to the infarct. Indeed, 

studies have demonstrated that white matter fiber tracts may represent a crucial mechanism 

underlying the communication of the damage to other areas (Ho et al., 2005; Wang et al., 

2016). Infarcts at the level of the white matter have also shown to induce remote effects 

translated, into cortical thinning (Duering et al., 2015). These findings highlight the idea that 

the ischemic damage and its consequences can spread through the white matter tracts 

resulting in alterations in distant areas too. Previous studies have demonstrated that local 

axonal damage leads to alterations in microtubule-associated protein (MAP-2) together with 

altered phosphorylation levels of neurofilaments in distant and connected regions (Wiley et 

al., 2016). Therefore axonal lesions would affect the intracellular neuronal transport and 

machinery, supporting that consequences would not just be evident locally where the damage 

took place but also transmitted along the neuron, altering its functioning as well as its 

connected targets.  

Thus, the organization and distribution of fiber tracts in the nervous system would enable the 

effect to be communicated to several distant structures. As the most prominent fiber tract 

linking both hemispheres, the CC represents the main structure involved in the contralesional 

remote effect. Changes in excitation/inhibition levels, as well as blood flow, have been 

observed previously in this context (Andrews et al., 1993; Ruan et al., 2017).  
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Overall, the described remote effect of stroke highlights that the pathology is not just 

restricted to the damaged area. In the past, great effort has been made to understand the 

alterations during the acute phase but very little is known about the long term effect that 

stroke has on the brain as well as the mechanisms underlying stroke´s effect on distant 

regions. In this context, mainly functional alterations have been described lacking information 

about the anatomical or structural changes underlying this effect. 

The lifelong disabilities patients suffer, which up to know remain untreatable, could be 

explained by the ongoing alterations that the brain undergoes at this level. Additionally, 

distant areas might represent a highly interesting target for stroke treatment since they are 

formed by healthy tissue and constitute a possibility for structural and functional 

compensation.  

 1.5.4. Neuronal plasticity after ischemic stroke: dendritic remodeling 

In the first days following ischemic stroke, to even 6 months after, neurons in damaged and 

intact brain regions undergo spontaneous alterations involved in brain self-repairing or 

nontreatment-induced recovery (Zhao and Willing, 2018). Early recovery has been associated 

to the resolution of oedema (Lo, 1986; Hallett, 2001) and reperfusion of the ischemic 

penumbra (Barber et al., 1998) while later recovery may be related to brain plasticity (Nudo, 

2003). Especially in later phases of this repairing process, neuronal plasticity related to the 

sprouting and retraction of dendritic spines plays a critical role (Zhao and Willing, 2018). 

 

This remodeling takes place in different cortical areas and results on the rewiring of neuronal 

circuits and changes in synaptic connectivity (Trachtenberg et al., 2002). Dendritic remodeling 

after ischemic stroke has been extensively investigated in perfused peri-infarct and distant 

regions within the ipsilateral cortex, notably by Tim Murphy´s team (Brown et al., 2007; Brown 

et al., 2008; Brown et al., 2010). The dendritic tuff of layer II/III as well as of layer V pyramidal 

neurons were analyzed mainly through two-photon or Golgi-Cox staining after inducing stroke 

in the photothrombotic model. Altogether spine turnover and remodeling were observed and 

associated with cortical map displacement within the first three months. This would represent 

an adaptive mechanism where functional gaps due to the lesion are taken over by other areas 

to compensate for the missing function (Harrison et al., 2013). 

 

Moreover, the dendritic remodeling at the level of the contralesional hemisphere is still under 

debate. Some studies claim that dendritic changes take place after stroke (Takatsuru et al., 

2009; Takatsuru et al., 2013; Miquelajauregui et al., 2015) while other research lines support 

the fact that there are no evidence of dendritic plasticity or functional remapping in the 

contralateral hemisphere (Johnston et al., 2013). 

 

Currently, it remains unclear whether the observed dendritic changes are beneficial or if they 

might lead to an imbalance hindering recovery. Probably both, an adaptive as well as a 

maladaptive plasticity take place over stroke recovery (Dalise et al., 2014). Understanding how 

this remote and still healthy tissue responds to the damage would be crucial to enhance the 

capacity of brain self-repairing and recovery after stroke (Cirillo et al., 2020).  

1.5.5.  Impact of structural changes on the neuronal circuits: interhemispheric imbalance and 

role of the corpus callosum 

The multiple short and long-term alterations in the brain after stroke result in an imbalance of 

excitatory and inhibitory neuronal circuits (Naghavi et al., 2019). During the acute phase, 
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cortical hyperexcitability occurs in both the ipsi- and the contralateral hemisphere (Xerri et al., 

2014). Later in the subacute and chronic phases, the excitability of the ipsilateral cortex 

decreases while it remains elevated in the contralateral side (Liepert et al., 2000). As a result, 

the inhibition towards the ipsilateral cortex is increased too, interfering in activity-dependent 

mechanism such as synaptic plasticity and functional recovery (Johansson, 2000; Carmichael, 

2012).  

The concept is based on a disruption of the interhemispheric communication through the 

corpus callosum important for the coordination of interhemispheric information and functions 

(Bertolucci et al., 2018).  

The CC represents the largest commissure in the brain and is formed by fibers, which arise 

mainly from layer II/III (Mooshagian, 2008). Through the CC, the information from both 

cerebral hemispheres is integrated and transferred to process sensory, motor, and high-level 

cognitive signals (Schulte and Muller-Oehring, 2010). Experiments based on performing 

motor/visual tasks, simultaneous imaging (MRI, DTI), and paired-pulse transcranial magnetic 

stimulation (TMS) have significantly contributed to understand the CC topographic structure 

and functioning, especially related to right/left motor coordination (Wahl et al., 2007; Battal et 

al., 2010). Imagine a skilled pianist who needs to coordinate different movements in each hand 

(bimanual coordination) but also individuated finger control. Such skillful act will require that 

hand movement is coordinated in space and time, with minimal inter manual crosstalk or 

interference (Bloom and Hynd, 2005). The ability to successfully coordinate such movements 

by the two cortical hemispheres relies on callosal mediated communication (Carson, 2005).  

 

This interhemispheric communication is based on a complex equilibrium between facilitatory 

and inhibitory interactions (interhemispheric inhibition). The action potentials transmitted via 

transcallosal neurons are primarily excitatory; however, the fiber tracts between the primary 

motor cortices project primarily to inhibitory interneurons, and thus the effect of transcallosal 

potentials between them results in an inhibitory effect (Meyer et al., 1995). 

In other words, the activation of a motor function in one hemisphere, triggered in normal 

conditions by task performance or induced artificially by transcranial stimulation, leads to the 

inhibition of the contralateral motor cortex within several milliseconds. This effect would be 

controlled by excitatory transcallosal fibers that connect to interneurons in the opposite cortex 

leading to inhibition of the targeted area (Fling and Seidler, 2012). 

While interhemispheric inhibition would be important to prevent interference of control 

processes between the two hemispheres (Fling et al., 2011), previous studies show that low 

levels of interhemispheric inhibition could be beneficial to conduct independently controlled 

bimanual tasks (Ridding et al., 2000; Shim et al., 2005).  

 

In stroke conditions, the interhemispheric competition and coordination would be affected 

leading to interhemispheric activity imbalance (Figure 8). In this scenario, inhibition of the 

overexcited contralateral hemisphere, which in return would also lead to reduced inhibition of 

the damaged area, would promote plasticity and help to restore function (Xerri et al., 2014). 

Studies based on drug administration targeting inhibition in mice (Clarkson et al., 2010) or 

transcranial magnetic stimulation in patients (Mansur et al., 2005), have shown that 

rebalancing the disturbed interhemispheric inhibition is a promising therapeutic intervention. 
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Figure 8. Interhemispheric imbalance model. According to this model, each side of the brain 

inhibits each other equally. After unilateral cortical stroke, this equilibrium is altered and the 

inhibition coming from the affected side is decreased (dashed line). The unaffected 

hemisphere, therefore, becomes more excitable and sends stronger inhibition onto the peri-

lesional tissue. From (Boddington and Reynolds, 2017). 

 

1.5.6. Current clinical management of ischemic stroke and disabilities 

Nowadays the only pharmaceutical treatment of stroke is limited to the acute phase where 

drugs (alteplase and tenecteplase) are applied intravenously to break up the formed clot 

(Campbell et al., 2019). However, this treatment has a short therapeutic window of 3 - 4.5 

hours after onset of symptoms (Hacke et al., 2008). Another available treatment is 

endovascular thrombectomy where the clot is removed using different techniques such as a 

vacuum to suck the thrombus out or a mechanical equipment (saline jets or ultrasound waves) 

to break it up (Tawil and Muir, 2017). 

 

Up to date, research has mainly focused on reducing the primary damage (Dirnagl et al., 1999) 

explaining the absence of treatment for later phases of stroke to counteract secondary 

damage and facilitate brain repair. This leads to the situation where stroke-survivors are often 

confronted with lifelong disabilities (Campbell et al., 2019). A major reason explaining the 

sustained functional deficit could be related to the alterations that the brain undergoes during 

these later phases and mechanisms of maladaptive plasticity (Zhao and Willing, 2018). 

Understanding the ongoing pathophysiological events would be crucial for the development of 

new treatments with an increased therapeutic window in order to stop the progression of 

symptoms promoting deficits. In this context, the study of stroke-induce alterations in remote 

areas such as the contralesional hemisphere represent a high interesting target. Since this 

tissue is still healthy, therapies can be used to induce beneficial changes leading to a reduction 

in patient´s functional impartment.  

 

Considering this concept, rehabilitation therapies are currently used to improve motor 

disabilities. Here repetitive transcranial magnetic stimulation (rTMS) and constraint-induced 

movement therapy (CIMT) have proven to be potent therapeutic interventions to rebalance 

the disturbed interhemispheric inhibition. rTMS studies provided evidence that inhibiting the 

contralateral cortex (overexcited after stroke) would hypothetically lead to decreased 
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transcallosal inhibition of the ipsilateral side improving motor function in stroke patients 

(Figure 9) (Mansur et al., 2005; Fregni et al., 2006). 

 

 

 
 

Figure 9. Principle of non-invasive brain stimulation (NIBS) such as rTMS to prevent bimanual 

movement deterioration in stroke patients. Inhibitory NIBS over the unaffected hemisphere 

(left picture) decreases the excitability of the contralesional motor cortex. It increases 

excitability of the ipsilesional motor cortex by reducing interhemispheric inhibition from the 

unaffected to the affected hemisphere. Moreover, excitatory NIBS, along with inhibitory NIBS 

(right picture), decreases excitability of the contralesional motor cortex and increases 

excitability of the ipsilesional motor cortex. However, bilateral NIBS limits the reduction in 

interhemispheric inhibition induced by inhibitory NIBS and prevents antiphase bimanual 

movement deterioration. From (Takeuchi and Izumi, 2012). 

 

 

In the CIMT method, stroke patients with a paretic arm are subjected to physiotherapy 

(already 24 to 48 hours after stroke onset) of the affected arm while the unaffected arm is 

immobilized (Corbetta et al., 2010). The paretic arm is connected to the damaged cortical area, 

and forced use should increase the activity and excitability in this area promoting functional 

recovery. In contrast, the absence of activation of the contralateral cortex due to the 

constraint of the unaffected arm should reduce excitation in this area and therefore inhibition 

of the connected damaged ipsilateral cortex (Xerri et al., 2014). Clinical studies using this 

principle reported improvement of functional recovery of the affected limb (Sterr et al., 2002; 

Page et al., 2005). 

 

Although both techniques seem to contribute to rebalance interhemispheric inhibition and 

promote functional recovery their use still needs to be further investigated (Xerri et al., 2014). 

Besides the described strategies, the level of cortical inhibition/excitation could be also 

influenced using a pharmacological approach. In animal models, the reduction of tonic GABA 

inhibition was shown to improve motor function (Clarkson et al., 2010; Jaenisch et al., 2016). 

Since tonic inhibition is controlling overall excitability, reducing it could help to increase the 

diminished activity of the damaged ipsilateral cortex. Moreover, studies performed in animal 
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models, also have targeted phasic inhibition by enhancing it with the positive allosteric 

modulator Zolpidem and observed an improved motor function (Hiu et al., 2016).  

 

Last but not least, promising advances are made in the field of experimental stroke to develop 

putative therapies to enhance brain self-repairing and recovery. Accumulating evidence 

showed that enriched environment leads to adaptive plasticity. Indeed, it promoted dendritic 

branching, increasing spine density, glial numbers and vascular arborization together with 

better functional outcomes (Zhao and Willing, 2018). Other therapeutic approaches include 

stem cell transplantation (Misra et al., 2012), modulation of the inflammatory responses 

(Leonardo et al., 2010) or the use of optogenetic tools (Cheng et al., 2016). The latest consists 

of targeting specific cell types, GABAergic neurons, manipulating their activity by light. 

Although optogenetics itself cannot be applied directly to clinical patients, it is a powerful 

method to identify specific excitatory or inhibitory circuitry that may work in human patients. 

This would allow more precise and effective outcomes for noninvasive and mature stimulation 

toolboxes such as rTMS. 

 

The key to successful stroke treatment may reside in the optimal combination of rehabilitative 

training and pharmacological intervention in accordance with defined plastic time windows 

(Wahl and Schwab, 2014). There is still a high controversy regarding the best time window for 

stroke treatment (Zhao and Willing, 2018), and future studies should focus on understanding 

what changes take place and when to plan the best treatment accordingly. 

1.6. Experimental approach used in our study to investigate structural and functional 

alterations 

 1.6.1. Chronic two-photon imaging and optical access to cortical structures 

GFP expression in neurites from cortical neurons was visualized and follow over time after 
cranial window implantation using two-photon excited fluorescence laser scanning microscopy 
(TPLSM). TPLSM was developed in the 1990s and remained a powerful technique used to 
understand many neurobiological phenomena, including the plasticity of individual synapses 
and neuronal network activity (Helmchen and Denk, 2005; Svoboda and Yasuda, 2006).  
The application of fluorescence microscopy to living systems has always been limited by 
photobleaching and phototoxicity (photodamage effect). Each time the sample is excited, 
there is a risk of photodamage. Two-photon (2P) microscopy optimizes this problem by 
dramatically improving the detection of signal photons per excitation event (Svoboda and 
Yasuda, 2006). Usually, two low-energy photons from the same laser, contribute to induce a 
higher-energy electronic transition in a fluorescent molecule (e.g., GFP). 2P excitation is a 
nonlinear process where the absorption depends on the second power of the light intensity. 
When the laser is focused, the intensity is higher in the vicinity of the focus and reduces 
quadratically with distance below and above. As a consequence, fluorophores are excited in a 
small diffraction-limited focal volume. If the beam is focused by a high numerical aperture 
objective, the majority of fluorescence excitation occurs in a focal volume that can be as tiny 
as ∼0.1 μm3 (Zipfel et al., 2003). Through the scanning of the sample, fluorescence light is 
collected and an image obtained. Two-dimensional, as well as volume, can be acquired using 
different scanning methods (raster-like, line-by-line, plane-by-plane).  
 
Compared to one-photon techniques, 2P excitation offers major advantages for microscopy in 
scattering specimens (Denk, 1994). First, excitation light is of longer wavelength compared to 
single-photon absorption, typically in the near-infrared wavelength range, enabling the 
penetration into deeper areas of the sample since longer-wavelength light is less scattered in 

https://www.sciencedirect.com/topics/neuroscience/numerical-aperture
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biological tissue. Second, the fluorescence signal depends nonlinearly on excitation light 
intensity. This nonlinear dependence is highly beneficial because it confines fluorescence 
generation to the focus spot. At each time point photons are generated only locally, and they 
can be correctly assigned to their point of origin in 3D space irrespective of whether they are 
scattered on their way out of the tissue to the detector (Helmchen and Denk, 2005; Kerr and 
Denk, 2008). 
 

Despite its advantages and its high value as a tool there are still some problems that might be 

considered when observing, for example, fluorescently labeled neuronal structures or 

microvasculature. The strong scattering caused by the skull over the cortex is one of the main 

factors hindering the imaging process (Kneipp et al., 2016). In prevention various cranial 

window methods were developed, including the open-skull glass window (Levasseur et al., 

1975; Holtmaat et al., 2009), the thinned-skull cranial window (Yang et al., 2010; Yu and Zuo, 

2014) and their variants (Shih et al., 2012; Dombeck and Tank, 2014; Goldey et al., 2014; 

Roome and Kuhn, 2014). 

In the open skull glass window, a glass coverslip is placed on top of the brain parenchyma after 

having removed a section of the skull while in the thinned-skull cranial window, the skull needs 

to be thinned down before imaging. Both techniques induce inflammatory responses and bone 

regrowth. 

 

To solve this problem, researchers are working on the development of safe and easy-handling 

cranial window technique. Tissue optical clearing, already shows promising results for the 

observation of cortical structures acutely (Erturk et al., 2012; Pan et al., 2016; Zhao et al., 

2018) as well as chronic (Zhang et al., 2018).  

 

 1.6.2. AD models and models of unilateral ischemic stroke 

For the study of AD´s pathophysiology as well as the testing of new drugs, experimental 

models relie on the utilization of genetic mutations associated with familial AD such as APP, 

PSEN1, APOE4 (Esquerda-Canals et al., 2017) or genetically modified mice that lack genes 

associated with this disorder, for example, knockout mice for APP secretases (BACE and 

ADAM10) (LaFerla and Green, 2012). Although none of the existing models fully reproduces 

the complete spectrum of the human disease, important characteristics can be recapitulated 

such as Aβ accumulation, tau pathology together with memory impairments and cognitive 

deficits (Elder et al., 2010; LaFerla and Green, 2012).  

The mice used in our study correspond to two lines: APPswe/PS1dE9 (Jankowsky et al., 2004b) 

and the APP-PS1 line (Radde et al., 2006). These are double transgenic mice that express a 

chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and mutant human 

preseniline 1, both of which are targeted to neurons in the CNS. In addition, these mice were 

crossed with the GFP-M line, resulting on a subpopulation of pyramidal cells of layers III and V 

of the neocortex expressing GFP under the Thy-1 promoter (Feng et al., 2000). As relevant 

data, it is important to highlight that in the APP-PS1 mouse, amyloid pathology and related 

dystrophic neuritic changes around the Aβ plaques developed earlier (at 2 months) (Radde et 

al., 2006) than in the APPswe/PS1dE9 mouse (at 6 months) (Jankowsky et al., 2004a). Once 

extracellular Aβ deposits were formed, we could further analyze the axonal pathology in close 

proximity to senile plaques with the two-photon microscope. 

In contrast to AD transgenic models, stroke conditions needed to be induced by surgery in 

mice. Nowadays, there is a wide range of experimental models available in the field of 
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ischemic stroke. Some of the most commons methods used in rodents are the 

photothrombotic model, endothelin-I model, the intraluminal suture of the MCAo, and the 

embolic stroke model (Fluri et al., 2015). In the photothrombotic stroke model, infarcts are 

induced by photoactivation of a systemically given dye (e.g., Rose Bengal) through the intact 

skull. Illumination is followed by the activation of the dye causing singlet oxygen that damages 

components of endothelial cell membranes. As a result, subsequent platelet aggregation takes 

place as well as thrombi formation, which determines the interruption of local blood flow 

(Labat-gest and Tomasi, 2013).  

Endothelin-I is a potent vasoconstrictor that allows the induction of transient focal ischemia in 

different areas of the brain. The two other models are mimicking human stroke most closely 

(Sommer, 2017). They are characterized by the occlusion of the MCA using sutures or an 

injection of homologous blood clots (Ren et al., 2012).  

 

In our study, we made use of the transient MCA occlusion for 60 min (filament model). The 

MCA and its branches are the cerebral vessels that are most often affected in human ischemic 

stroke. The model is less invasive than others since it does not require craniectomy and thus 

avoids additional damage to cranial structures. Depending on the duration of the occlusion, 

the extension of the damage can be controlled. For example, when using the filament model, 

ischemia times larger than 60 min, induce large cortico-striatal infarcts together with 

significant focal neurological deficits (Lourbopoulos et al., 2017). 

Furthermore, it resembles the damage of the vascular endothelium observed in clinical 

conditions (Peschillo et al., 2017) by the use of stent retrievers. The same effect is mimicked 

with a silicone-coated filament inserted in the MCA.  

A relevant consideration of this model is the fact that animals show sustained neurological and 

behavioral deficits, which represents crucial factors for the assessment of treatment efficiency 

not always reached with other models (Freret et al., 2009).  

Nevertheless, the model is associated with high mortality. The severe weight loss, together 

with body temperature changes (hypo- and hyperthermia), inflammation, difficulty to chew or 

swallow, scarring of wounds, motor deficits, and sometimes even blindness which 

compromises the food and water intake, represent the leading causes (Lourbopoulos et al., 

2017).  

1.6.3. Laser speckle imaging as a tool to measure functional outcome  

In our stroke study, we used laser speckle imaging as main tool to translate structural 

alterations in the cortical network to functional outcome.  

Laser speckle imaging is a powerful tool for full-field imaging of blood flow. This method can 

instantly visualize microcirculatory tissue blood perfusion combining high resolution with high 

speed (Boas and Dunn, 2010). When an object, such as red blood cells in a tissue, is illuminated 

by laser light, the backscattered light forms an interference pattern consisting of dark and 

bright areas. This pattern is defined as a speckle pattern. If the illuminated object is static, the 

speckle pattern is stationary. When there is movement in the object, the speckle pattern 

changes over time. The software records these changes in the speckle pattern, and 

hemodynamic signals can be monitored. In our experimental setup, the hemodynamic signal is 

generated by the activation through the whisker´s stimulation of the neurons in the barrel 

cortex.  

Based on the NVC coupling principle (del Zoppo, 2010), this activation, together with the 

communication between neurons, astrocytes, and cerebral blood vessels, leads to more blood 

flow in the activated area and a measurable hemodynamic signal (Wey et al., 2013) 
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Laser speckle imaging readout is comparable to blood oxygenation level-dependent (BOLD) 

imaging in human. Therefore, we used it as main technique providing results that would be 

comparable to those obtained in translational research. 

In stroke patients, BOLD imaging is the standard technique used to generate images 

in functional MRI (fMRI) studies. It relies on regional differences in cerebral blood flow too. 

When a specific region of the cortex increases its activity in response to a task, the extraction 

fraction of oxygen from the local capillaries leads to an initial drop in oxygenated hemoglobin 

(oxyHb), an increase in local carbon dioxide (CO2), and deoxygenated hemoglobin (deoxy-Hb). 

Following a lag of some seconds, cerebral blood flow also increases, delivering an excess of 

oxygenated hemoglobin, washing away deoxyhemoglobin (Gore, 2003). It is this substantial 

rebound in local tissue oxygenation, which is imaged. The reason fMRI can detect this change 

is due to a fundamental difference in the paramagnetic properties of oxyHb and deoxy-Hb.  
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2. Aim 

Considering the critical role that neurites play for the maintenance and normal functioning of 

synapses in the cortical circuit, we aimed to understand the alterations they undergo under 

two pathological scenarios (AD and ischemic stroke).  

On one hand, we focused on axonal pathology in close proximity to Aβ plaques. Our objective 

was to get a better insight into the formation and evolution over time (210 days of imaging) of 

axonal dystrophies revealing their potential contribution to the disease and plaque growth.  

On the other hand, we aimed to investigate the long-term effect of cerebral ischemia on 

dendritic dynamics in an area distant to the damaged tissue. We therefore focused on the 

contralesional hemisphere, and targeted the dendritic arbor of transcallosal neurons 

connected to the infarct. Our main purpose is to understand if the observed alterations could 

be a source of maladaptive plasticity involved in the presence of functional impartment, since 

disabilities in stroke patients are extremely frequent and an important consequence 

associated to the disease. 
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3. Research articles 

3.1. High plasticity of axonal pathology in Alzheimer's Disease mouse models 

Alzheimer’s disease (AD) is commonly associated with a set of neuronal cytoskeletal 

alterations – neurofibrillary tangles (NFTs), neuropil threads and dystrophic neurite (DN) 

formation, causing spine and synapse loss – as well as neuronal degeneration. DNs are swollen 

and tortuous neurites that are intimately associated with extracellular depositions of amyloid 

β (Aβ). They show a variable morphology and composition depending on the pathological 

stage of AD.  

Using chronic two-photon in vivo imaging, correlative electron microscopy, and 

immunohistochemical techniques, we performed a detailed long-term study (up to 210 days of 

imaging) on the formation, development, and elimination of DNs in two transgenic mice 

(dE9xGFP-M and APP-PS1xGFP-M) to understand the temporal course of the dystrophic 

pathology and its relationship with the development of the amyloid pathology. The three-

dimensional reconstruction and study of the GFP-expressing dystrophic axons and Methoxy-

X04 stained Aβ plaques we followed in vivo has allowed us to observe different Aβ plaques and 

DNs near them. Regarding DNs, we observed they are highly plastic structures that present 

great variations in size and morphology (axonal sprouting) over time. These changes are more 

prominent in those DNs that reach larger volumes at some time point in comparison to smaller 

DNs. Regarding Aβ plaques, we distinguished those that reach large volumes and appear early 

in the animal lifetime (large Aβ plaques) and those others that are smaller and appear later in 

the animal lifetime near previous existing large Aβ plaques (satellite Aβ plaques). We found 

interesting relationships between different Aβ plaques and DNs since larger DNs are 

associated specifically with large Aβ plaques (but not to satellite Aβ plaques) and present an 

earlier development in the animal lifetime in comparison to smaller DNs. Moreover, most DNs 

are formed and develop during the cubic phase of the Aβ plaque volume growth, and 

numerous DNs are already disappeared at the end of this phase (the cubic phase is 

characterized, first by the formation of new Aβ plaques and second, by the increase in the 

growth rate of Aβ plaques). The analysis of the neurochemical and ultrastructural 

characteristics of DNs revealed that most GFP-expressing DNs widely express presynaptic, 

autophagy and lysosomal markers while APP/Aβ is selectively present in 50-60% of the GFP-

expressing DNs, independently of their volume.  

Based on these results, we propose that DNs are directly involved in the Aβ plaque formation 

and development, and due to the spatiotemporal segregation of distinct DNs, they could have 

different roles in the Aβ pathogenesis. Larger DNs might be the main source of Aβ peptide and 

thus, an active participant in the amyloid pathology, whereas smaller DNs seem to be a 

secondary consequence of it. However, both processes are not mutually exclusive and could 

occur concomitantly in the same DN. We consider that the development of DNs is a more 

dynamic and plastic event than previously thought, and this fact could also have important 

implications on the possible reversion of the pathology by treatments within a defined 

temporal window. 

 
 
 
Contribution of V.F.S to this work: equal contribution to the performance of all experiments, data analysis, 
interpretation of the results, writing and correcting the manuscript than B.L.L. Moreover, I performed surgeries for 
cranial window implantation, chronic 2P imaging, immunostainings, and confocal imaging together with 3D 
reconstruction of the dystrophic axons (please see section 8 for further details). 
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Abstract

Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions
of amyloid β (Aβ) and have been observed to contribute to synaptic alterations occurring in Alzheimer’s disease.
Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the
disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic
mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing
axons near Aβ-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long
lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time.
In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth
phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD
had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were
formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time.
This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Aβ plaques.
We hypothesized that a therapeutically early prevention of Aβ plaque formation or their growth might halt disease
progression and promote functional axon regeneration and the recovery of neural circuits.

Keywords: Alzheimer’s disease, Dystrophic neurites, FIB/SEM microscopy, Three-dimensional, Two-photon microscopy

Introduction
Alzheimer’s disease (AD) is typically associated with a
set of neuronal cytoskeletal alterations – the formation
of neurofibrillary tangles (NFTs), neuropil threads and
dystrophic neurites, which are associated with dendritic
spine and synapse loss, as well as neuronal degeneration
(e.g., [2, 42, 53, 61]). These pathological changes develop
in a characteristic spatiotemporal progression across the
cerebral cortex and other brain regions in AD patients
[12] and AD mouse models [10]. Dystrophic neurites are
swollen and tortuous neurites, which were originally de-
tected by Alois Alzheimer because of their argyrophilia [1].
They have a variable morphology and composition depend-
ing on the pathological stage of AD [44, 51, 58, 60, 62].

They are closely associated with extracellular deposits of
amyloid β (Aβ), known as “Aβ plaques”, which represent
another hallmark of AD pathology. Dystrophic neurites are
normally formed in axons [18, 24, 25, 36, 38, 57, 58, 62].
From now on we will refer to axonal dystrophies as AxDs.
Synaptic loss is the major neurobiological basis of

cognitive dysfunction in AD. Synaptic failure is an early
event in the pathogenesis that is already clearly detect-
able in patients with mild cognitive impairment (MCI), a
prodromal state of AD. Compelling evidence suggests
that different forms of Aβ peptide and abnormal phos-
phorylated tau induce synaptic loss in AD and transgenic
mice models [6]. Synaptic breakdown in AD mouse
models with no relation to amyloid plaques but as a conse-
quence of high level of soluble amyloid beta has been re-
ported [3, 4]. Aβ plaques are associated to alterations of
dendrites and axons that are in contact or in the proximity
to them, and with a clear decrease of synapses. The major-
ity of studies has been focused on alterations of dendrites
in contact with Aβ plaques [8, 9, 28, 32–35, 43, 52, 53, 59].

* Correspondence: lblazquez@psi.uned.es; Jochen.Herms@med.uni-
muenchen.de
†Equal contributors
1German Center for Neurodegenerative Diseases-Munich site (DZNE-M) and
Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians
University, Munich, Feodor-Lynen-St 23, 81377 Munich, Germany
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Blazquez-Llorca et al. Acta Neuropathologica Communications  (2017) 5:14 
DOI 10.1186/s40478-017-0415-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-017-0415-y&domain=pdf
http://orcid.org/0000-0002-4865-8974
mailto:lblazquez@psi.uned.es
mailto:Jochen.Herms@med.uni-muenchen.de
mailto:Jochen.Herms@med.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


However, less attention has been paid to the alterations of
axons [2]. This is unfortunate since the loss of synapses
found in or around Aβ plaques could be related to alter-
ations of postsynaptic targets (dendrites), presynaptic
elements (axons) or both.
For this reason, we consider that understanding the

temporal course of the axonal pathology is of high rele-
vance to comprehend the progression of the disease over
time and define possible therapeutic targets and the
window time where a treatment might be effective. The
dystrophic pathology is one of the alterations of the dis-
ease that has been better resembled in the animal
models [2, 13, 53, 59]. Previous in vivo studies have been
undertaken to analyze the dystrophic pathology over
time [13, 15, 23, 53, 59]. One of the main findings from
these studies was that the elimination rates were signifi-
cantly higher than the formation rates, suggesting that
there is a gradual net loss of neuronal structures over
time near Aβ plaques, causing a permanent disruption
of neuronal connections [59]. Furthermore, it has been
reported that the dystrophic pathology is reversible with
an anti-Aβ antibody treatment [13] and curcumin [23].
However, these studies did not perform either a detailed
quantitative analysis of the observed changes or a long-
term study of the dystrophic pathology (the longest was
only 35 days). Moreover, the relationship of specific
axonal dystrophic changes to Aβ accumulation has not
been addressed. In the present work, we performed a
detailed long-term study (of up to 210 days and weekly
imaging) focusing on the formation, development and
elimination of AxDs with the aim of examining the
plasticity of AxDs and their potential to be reversed. To
achieve these objectives, we have used two-photon in
vivo imaging and electron microscopy including trans-
mission electron microscopy (TEM) and focused ion
beam/scanning electron microscopy (FIB/SEM).

Materials and methods
Animals and housing
Mouse lines Amyloid Precursor Protein – Preseniline 1
(APP-PS1) (dE9) [30], APP-PS1 [48] and the Green
Fluorescent Protein-M (GFP-M) [19] were used in this
study. The dE9 and GFP-M lines were purchased from
The Jackson Laboratory (Bar Harbor, USA). The APP-
PS1 mice were provided by Matthias Jucker (University
of Tübingen and German Center for Neurodegenerative
Diseases, Tübingen, Germany). Heterozygous dE9 and
APP-PS1 mice were crossed with heterozygous GFP-M
mice resulting in triple transgenic dE9xGFP-M and
APP-PS1xGFP-M mice, which were inbred. Heterozy-
gous triple transgenic mice of mixed gender were used
for experiments at the ages indicated below. Mice were
group-housed under pathogen-free conditions until sur-
gery, after which they were singly housed in standard

cages with food and water ad libitum. The studies were
carried out in accordance with an animal protocol ap-
proved by the Ludwig-Maximilians-University Munich
and the government of Upper Bavaria (Az. 55.2-1-54-
2531-188-09).

Two-photon in vivo imaging
For in vivo imaging, a chronic cranial window was
prepared as described previously [22]. Surgery was per-
formed in six 6-month-old dE9xGFP-M and seven 2-
month-old APP-PS1xGFP-M mice. In vivo imaging
began after a 4–5-week post-surgery recovery period,
using an LSM 7 MP setup (Zeiss) equipped with a
MaiTai laser (Spectra Physics). Around 24 h before im-
aging, Methoxy-X04 (0.4 to 2.4 mg/Kg body weight,
Xcessbio, San Diego, CA, USA) was intraperitoneally
injected to visualize Aβ plaques in vivo [31]. Imaging
was performed once a week for 24 weeks in dE9xGFP-M
mice and for 30 weeks in the APP-PS1xGFP-M mice. In
the dE9 model, the imaging began when the mice were
around 7 months-old (the age corresponding to the ini-
tial stage of the amyloid pathology) and was prolonged
until they were approximately 13 months-old (corre-
sponding to the advanced stage of the disease). In the
APP-PS1 mouse, the imaging began when the mice were
around 3 months-old (the age corresponding to the ini-
tial stage of the amyloid pathology) and was prolonged
until they were approximately 10 months-old (which
corresponds to the advanced stage of the disease).
Two-photon excitation of Methoxy-X04-labeled Aβ

plaques was performed at 750 nm and the signal was
detected using a short pass (SP) 485 nm filter. Two-
photon excitation of GFP-expressing neuronal structures
was performed at 880 nm and the signal was detected
using a bandpass (BP) 500–550 nm filter. To exclude
false positive fluorescent spots from the analysis, we also
recorded emissions at 590–650 nm. These auto-
fluorescent spots were found both in the neuropil and
within neuronal and glial cells (Additional file 1). A × 20
1.0 NA water-immersion objective (Zeiss) was used.
Stereological coordinates were used to locate the som-
atosensory cortex [29]. Overview images were taken at
low resolution (logical size 512 × 512 pixels; physical size
x, y, z: 424.3 × 424.3 × 300 μm; z-step = 3 μm) to a depth
of 300 μm (supragranular layers) to find the same pos-
ition over time. At least 2–3 overviews were taken per
animal at each imaging session. Note that performing
long-term in vivo two-photon imaging weekly during
near 6 months is challenging. Although more imaging
positions were acquired only those that were successfully
imaged during the whole time period were used for the
quantitative analysis. These numbers are shown in
Additional file 2. Two types of images were taken to
perform the analysis:
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i) The three-dimensional (3D) reconstruction of AxDs
over time: High magnification images (logical size
512 × 512 pixels; physical size x, y, z: 84.9 × 84.9 ×
40–60 μm; z-step = 1 μm) of single Aβ plaques
stained with Methoxy-X04 and the GFP-expressing
neurites around them (46 GFP-expressing axons
around 6 Aβ plaques in the dE9xGFP-M mouse
model (n = 6), 10 of which became dystrophic and
were 3D reconstructed; 58 GFP-expressing axons
around 6 Aβ plaques were followed in the APP-
PS1xGFP-M mouse model (n = 7), 16 of which
became dystrophic and were 3D reconstructed).
Care was taken to ensure similar fluorescence levels
in space and time.

ii) The spatiotemporal relationship between Aβ plaques
and AxDs: Panoramic high resolution images (logical
size 1400 × 1400 pixels; physical size x, y, z: 202.3 ×
202.3 × 39.9–50.1 μm; z-step = 0.3 μm) showing
several Aβ plaques stained with Methoxy-X04 and
GFP-expressing neurites near and far from them (33
Aβ plaques and 52 AxDs were followed over time in
the APP-PS1xGFP-M mouse model (n = 7)). AxDs
were not 3D reconstructed at all time points, but
rather only on those days when the volume of the
AxD was visually observed to be largest. Thus, we
recorded “the maximum volume data” over time.
Moreover, the day of appearance and disappearance
and the type of axon in which the AxD appeared
was also annotated for every single AxD. Care was
taken to ensure similar fluorescence levels in space
and time.

Electron microscopy preparation and TEM and FIB/SEM
imaging
A correlative two-photon in vivo imaging and TEM or
FIB/SEM microscopy method was used to analyze the
ultrastructure of the same Aβ plaques (and AxDs around
them) as those previously studied in vivo [11]. Briefly,
after the final in vivo imaging session, three dE9xGFP-M
mice were transcardially perfused with 2% paraformalde-
hyde and 2.5% glutaraldehyde in 0.12 M PB, pH 7.4.
Later, regions of interest in a thick section cut from the
window region were marked by laser, using the two-
photon-laser system according to the Near Infrared
Branding (NIRB) technique [7]. This thick section was
resectioned in thinner sections of 50 μm with a LeicaVibra-
tome (VT1200, Leica Microsystems, Wetzlar, Germany).
After the cutting, sections were analyzed again under the
two-photon microscope to find those slices where the
marked regions of interest were present. Selected 50 μm
sections containing the regions of interest were post-
fixed in 2.5% glutaraldehyde/2% paraformaldehyde in
0.1 M cacodylate buffer for 1 h, treated with 1% osmium
tetroxide in 0.1M cacodylate buffer for 1 h, dehydrated,

and flat embedded in Araldite resin [17, 41]. The postfixa-
tion, dehydration and embedding steps were done with a
laboratory microwave oven with a vacuum chamber and
cooling stage (Ted Pella, Redding, CA, USA).
In those samples that were analyzed by TEM, plastic-

embedded sections were studied by correlative light and
electron microscopy, as described in detail elsewhere
[17]. Briefly, sections were photographed under the light
microscope and then serially cut into semithin (2-μm
thick) sections on a Leica ultramicrotome (EM UC6,
Leica Microsystems). The semithin sections were stained
with 1% toluidine blue in 1% borax, examined under the
light microscope, and then photographed to locate the
NIRB-marked region of interest. Serial ultrathin sections
(50- to 70-nm thick) were obtained from selected semi-
thin sections on a Leica ultramicrotome, and collected
on formvar-coated single-slot nickel grids and stained
with uranyl acetate and lead citrate. Digital images were
captured at different magnifications on a Jeol JEM-1011
TEM (JEOL Inc., MA, USA) equipped with an 11 Mega-
pixel Gatan Orius CCD digital camera.
In those samples that were analyzed by FIB/SEM, semi-

thin sections (1-μm thick) were obtained by means of a
Leica ultramicrotome from the surface of the block until
the most superficial NIRB marks around the region of
interest were reached (Additional file 3). The blocks
containing the embedded tissue were then glued onto
aluminum sample stubs using conductive carbon adhesive
tabs (Electron Microscopy Sciences, Hatfield, PA). All sur-
faces of the Araldite blocks, except for the top surface
containing the sample, were covered with colloidal silver
paint (Electron Microscopy Sciences, Hatfield, PA) to pre-
vent charging artifacts. The stubs with the mounted
blocks were then placed into a sputter coater (Emitech
K575X, Quorum Emitech, Ashford, Kent, UK) and were
coated with platinum for 10 s to facilitate charge dissipa-
tion. The marks were still visible on the surface of the
block with the FIB/SEM. The ultrastructural 3D study of
these samples was carried out using a combined FIB/SEM
microscope (Neon40 EsB, Carl Zeiss NTS GmbH,
Oberkochen, Germany). The sequential automated use of
alternating FIB milling and SEM imaging allowed us to
obtain long series of images representing 3D sample vol-
umes of selected regions. Images of 2048 × 1536 pixels at
a resolution of 6.203 nm per pixel were taken; each indi-
vidual photomicrograph therefore covered a field of view
of 12.7 × 9.5 μm. The layer of material milled by the FIB
in each cycle (equivalent to section thickness) was 30 nm.
A total of 305 serial sections were obtained. Thus, the
physical size of the stack was (x, y, z) 12.7 × 9.5 × 9.15 μm.

Images, data processing and statistics
The deconvoluted two-photon images (AutoQuantX2,
Media Cybernetics) were processed later by means of
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Imaris software (Bitplane AG, Zurich, Switzerland) to
obtain the 3D reconstructions of the dystrophic axons
and the Aβ plaques, as well as the volumes of each of
them at the different time points. For the alignment
(registration) of the stack of FIB/SEM images, we used
Fiji (http://fiji.sc). Reconstruct Software v1.1.0.0 [21] was
used to carry out the 3D reconstruction of the AxDs and
the microglial cell.
Regarding Aβ plaques: the images were analyzed as

time series of 3D images in Imaris. First, images were
contrast-normalized (i.e., based on the average and
standard deviation of the 3D stack intensities). Plaque
volumes were extracted by 3D-surface-rendering with
background subtraction and a threshold of 500. Newly
formed Aβ plaques were tracked back to the first time
point when they appeared and were only assessed when
present for at least 3 time points. Regarding AxDs: they
were manually segmented in the images stacks. Only
those AxDs and parent axons that were present in the
whole imaging stack at all time points were recon-
structed. An axonal segment was considered dystrophic
when its volume was double that of the non-dystrophic
axonal segment. When possible, non-dystrophic axonal
volume was calculated as the average of three measure-
ments at three different time points for the same axonal
segment that would later go on to show the AxD. When
the AxD was already present from the first day of obser-
vation, non-dystrophic segments of the same axon out-
side the Aβ plaque were averaged at three different time
points. In all cases, reference non-dystrophic axonal
segments had the same length as the maximal segment
affected by the AxD (Additional file 4).
Photoshop CS6 (Adobe Systems Inc., San José, CA,

USA) software was used to generate the figures.
All data sets were tested for normality with the

Kolmogorov-Smirnov and D’Agostino and Pearson omni-
bus normality tests with a significance level set to p = 0.05,
before the appropriate parametric or non-parametric stat-
istical comparison test was carried out with GraphPad
Prism 5.04 (GraphPad Inc., La Jolla, CA, USA).

Results
Kinetics of formation, development and elimination of
AxDs: 3D reconstructions
In the dE9 mouse, we observed a total of 46 axonal seg-
ments located not further than 40 μm from the border
of the adjacent Methoxy-X04-stained amyloid plaques.
Out of all of these axonal segments, we detected the for-
mation of AxDs in only 22% of them (n = 10 AxDs; all
were reconstructed with Imaris software) (Figs. 1, 2 and
3). In the APP-PS1 mouse, we examined a total of 58
axonal segments located not further than 40 μm from
the border of the adjacent Methoxy-X04-stained amyloid
plaques. Out of all these axonal segments, we only

detected the formation of AxDs in 28% of them (n = 16
AxDs, all were reconstructed with Imaris software)
(Figs. 1 and 3). We observed that a given AxD presented
size variations over time (intra-size variations) and
distinct AxDs could have very different sizes (inter-size
variations) (Figs. 1 and 2). Due to this heterogeneity, we
performed a detailed quantitative study of the morpho-
logical changes that take place and the kinetics of forma-
tion, development and elimination of single AxDs over
time. Each AxD was independently named and they are
referred to in the text and graphs as “dys 1–10” in the
dE9 mouse and “dys 1–16” in the APP-PS1 mouse.
Axons of control mice (GFP-M) displayed unchanged
morphology after long-term in vivo two-photon imaging
(observations are not shown).
Using Imaris software, 3D reconstructions of the AxDs

were performed and it was possible to quantify their
volume and study their morphological changes over time
(Figs. 1 and 2).

Morphological changes of AxDs: size and shape
AxDs were highly variable in terms of their size both in
the dE9 and the APP-PS1 models. AxDs sizes varied
between 45 and 3081 μm3 in the dE9 model and be-
tween 25 and 2814 μm3 in the APP-PS1 model (Fig. 3).
Moreover, AxDs did not grow continuously; indeed their
volume grew and decreased over time. Changes in vol-
ume were more prominent in the larger AxDs than in
the smaller ones. For example, dys 3 in the dE9 model
ranged between 159 and 3081 μm3 (Figs. 3a and 4e–g),
while smaller AxDs showed less pronounced changes
(e.g., dys 5 in the dE9 model only changed between 45
and 76 μm3; Fig. 3a). Thus, it can be observed that larger
AxDs at some point are similar in size to those AxDs
that are smaller over their whole lifetime.
When we calculated the ratio between the volume of

an AxD and the volume of the non-dystrophic axonal
segment of the same AxD (size ratio) (Fig. 3c, d;
Additional file 4), we observed that the volume increase
of the AxDs ranged between 2 and 39 times in the dE9
model and between 2 and 35 times in the APP-PS1
model (Table 1).
In some cases, both in the dE9 and the APP-PS1 mice,

we observed significant changes in the shape of the
AxDs and the formation of more than one swollen vari-
cosity of irregular shape with new short axonal segments
leaving from the dystrophic structures (axonal sprouting)
(Fig. 2). This phenomenon was observed in those AxDs
reaching larger sizes (greater than 500 μm3) —n = 3 in the
dE9 and n = 7 in the APP-PS1 mice, see Table 1 and
Fig. 3— but was not seen in the smaller ones that nor-
mally remained as single spherical swollen varicosities
(Fig. 1a-c). To quantify this observation, we estimated the
mean sphericity factor of each AxD over time. The
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sphericity factor, defined as the ratio of the surface area of
a sphere to the surface area of the structure analyzed
(both with the same volume) provides a quantitative

record of the morphological complexity of the 3D-
reconstructed AxDs, since spherical objects would yield a
sphericity value close to 1, while more complex shapes

Fig. 1 Intra- and inter-size variations of AxDs over time. (a-c), Maximum projection (40 optical sections, z-step = 1 μm) of a stack of images taken
with a two-photon microscope in the somatosensory cortex of a dE9 mouse at three different time points. Small AxDs (yellow and red arrows, dys 6
and 7, respectively) in GFP-expressing axons (green) are present around an Aβ plaque stained with Methoxy-X04 (blue). (d-i), Maximum projection (32
optical sections, z-step = 1 μm) of a stack of images taken with the two-photon microscope in the somatosensory cortex of the APP-PS1 mouse at six
different time points. A large AxD (brackets in e-h; dys 4) in a GFP-expressing axon (green; arrowheads) is present around an Aβ plaque stained with
Methoxy-X04 (blue). This plaque was observed growing in size from its birth (d) to maturation (i). There is a degeneration of the distal part of the axon
and the AxD remains at the edge of the proximal part of the axon (h). On the final day of imaging, the whole axon had disappeared (i). AxDs in panels
a-c do not show strong variations in size and shape over time as compared to the AxD in panels d-i, and numerous axons and dendritic processes do
not become dystrophic. There is an axon segment that does not become dystrophic and disappears (white arrow). (j-m), 3D reconstructions of the
AxD showed in images e-h, respectively, using Imaris software. The dystrophic segment of the axon is shown in red and this is the portion of the axon
that was used to calculate the AxD volume (Fig. 3b). The days shown refer to the number of days after day 0 (when imaging began). Purple arrows in
g-i point out a re-growing axon that is also shown in greater detail in Fig. 5. Scale bar (in m): 19.5 μm in a-m
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with larger surface-to-volume ratios would yield progres-
sively lower values. We found an inverse correlation
(Pearson’s r: −0.7366, p < 0.0001; Fig. 3e) between the
sphericity and the maximum volume that the AxD
reaches, so larger AxDs showed smaller sphericity factors
and vice versa. Thus, larger AxDs tend to be complex,
non-spherical shapes.

Axonal sprouting: re-growth phenomenon
In the case of the APP-PS1 mouse only, the formation
of new long axonal segments in dystrophic axons (re-
growth phenomenon, n = 3 (out of 17)) was observed
(Fig. 5 and Additional file 5). These new axonal
segments were observed either (i) leaving from a dys-
trophic structure (n = 1 (dys 13)) with a maximum

Fig. 2 Three-dimensional reconstructions of AxDs. (a-f), Images obtained (over 148 days) of the same dystrophic axon expressing GFP (dys 1) in
contact with an Aβ plaque stained with Methoxy-X04 (blue) in the supragranular layers of the somatosensory cortex of a dE9 mouse (two-photon
microscopy). (g-l), Three-dimensional reconstructions of the AxD showed in panels a-f, respectively, using Imaris software. On day 91 (j) the
degeneration of the distal part of the axon (arrowheads) begins. This degenerative process is completed in the successive days but the AxD
remains at the end of the cut axon (k, l). Note that the AxD presents numerous changes in volume and shape. The existence of more than one
swollen varicosity (asterisks in e show an example) and short axonal sprouting can be identified (arrows in b, c, f, h, i and l). Note that the
dystrophic segment of the axon is shown in red and from this part the numerical AxD volume was calculated and plotted in Fig. 3a. The days
shown refer to the number of days after day 0 (when imaging began). Scale bar (in l): 19.5 μm in a-l
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Fig. 3 (See legend on next page.)
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observed length of the new axonal segment of 53 μm or
(ii) re-growing from axons that were previously sec-
tioned at a dystrophic point (n = 2) with a maximum
observed length of the new axonal segments of 104.5
(dys 9, Fig. 5) and 32 μm (this AxD was not 3D recon-
structed, but is shown in Additional file 5). The re-
grown segment followed a different trajectory from the
previously existing axon segment (Fig. 5 and Additional
file 5, Table 1).

Lifetime and elimination of AxDs
We found that on average AxDs had a very long life-
time. It was common to find AxDs that were present
for more than 100 days both in the dE9 and the
APP-PS1 mice —n = 7 (out of 10) and n = 7 (out of
16), respectively— (see Table 1). In the APP-PS1
mouse, it was feasible to analyze a larger number of
AxDs (see next section and Additional file 6). In this
case, the average lifetime of AxDs was 76.43 ± 7.8 days

(See figure on previous page.)
Fig. 3 Volume and morphological changes of in vivo AxDs over time. (a, b), Graphs showing the changes in volume of the different AxDs
studied over time in the dE9 (a) and the APP-PS1 (b) mice. (c, d), Size ratio indicates the ratio between the volume of an AxD and the volume of
its equivalent non-dystrophic axonal segment. Graphs correspond to the same AxDs represented in a, b, respectively. With the aim of simplifying
the graph visualization, the AxD size ratio was plotted only from the imaging day in which the AxD became dystrophic (size ratio ≥2, dashed line).
Note that in a-d the scale has been transformed to Log 10 to illustrate that volume values of larger and smaller AxDs can be very similar at some
time points. The days shown refer to the number of days after day 0 (when imaging began). Graph legend: Asterisks refer to those AxDs that
disappear at the end of the imaging period (one asterisk means the parental axon stays and two asterisks mean that the AxD disappears due to
the loss of the parental axon); underlined AxDs (dys) are those that show morphology changes (more than one swollen varicosity of irregular
shape and new short axonal segments). (e), Correlation between the mean sphericity value over time and the maximum volume that the AxD
reaches. Larger AxDs tend to be more complex, non-spherical shapes (Pearson’s r: −0.7366, p < 0.0001). (f), Correlation between the AxD lifetime
and the maximum AxD volume in the APP-PS1 mouse. Larger AxDs tend to have longer lifetimes (Pearson’s r: 0.4974, p = 0.0071). (g), Comparison
between the axon type (EPB en passant bouton axons, TB terminal bouton axons) and the maximum volume that the AxD reaches in the APP-
PS1 mouse. The size of AxDs is not related to the type of axon in which they are formed (Mann–Whitney U: 163.0; p = 0.6339)

Fig. 4 Re-formation of AxDs. Dendrites and axons expressing GFP (green) in contact with Aβ plaques stained with Methoxy-XO4 (blue) in the supragranular
layers of the somatosensory cortex of the dE9 mouse (two-photon microscopy). (a-d), Maximum projection of images taken around an Aβ plaque (40
images, z = 1 μm) at different time points. The AxD (dys 4; arrow) is smaller on day 10 (b), and has disappeared on day 126 (d). Notice that the parental
axon on day 126 is shortened. (e-g), Maximum projection of images taken around another Aβ plaque (40 images, z = 1 μm) at different time points. The
AxD (dys 3; arrow) disappeared on day 10 (f) but the parental axon remains. A new large AxD is generated at the same point on day 133. The days shown
refer to the number of days after day 0 (when imaging began). Scale bar (in g): 25.9 μm in a-d and 19.5 in e-g
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(n = 28) —not taking into account those AxDs that
were present on the first and/or last day of imaging.
Moreover, we found a correlation (Pearson’s r: 0.4974,
p = 0.0071) between the AxD lifetime and the max-
imum volume that the AxD reaches, that is, larger
AxDs had longer lifetimes and vice versa (Fig. 3f ).
When AxD loss occurred, it happened in two ways:

1- Loss of the whole axon where the AxD was present
(Figs. 1d–i and 3, Table 1). In addition, around Aβ
plaques, both normal-looking axons and dystrophic
axons could disappear (see Fig. 1d–i). However, we
cannot rule out the possibility of the normal axon
being dystrophic at a segment close to an Aβ plaque
in another microscopic field.

Table 1 Characteristics of the 3D reconstructed AxDs

dE9xGFP-M

Type
of axon

Lifetime
(days)

Disappearance of AxDs
at the end of the imaging
period

Disappearance of
the parent axon

Reformation
of AxDs

Maximum AxD
volume (μm3)

Maximum AxD
size ratio

Axonal sprouting

Dys 1 TB >168 No No No 2049 22.98 Yes

Dys 2 EPB >75 Yes Yes No 414 19.40 No

Dys 3 EPB 3a: >10
3b: 62
3c: >6

No No Yes 3a: 3081
3b: 646
3c: 697

3a: 39
3b: 8.18
3c: 8.82

Yes

Dys 4 TB 4a: >10
4b: 116

Yes No Yes 4a: 952
4b: 789

4a: 21.3
4b: 17.64

Yes

Dys 5 EPB >155 Yes Yes No 76 3.57 No

Dys 6 EPB 120 Yes Yes No 310 10.33 No

Dys 7 EPB >110 No No No 150 4.83 No

Dys 8 EPB >168 No No No 176 5.33 No

Dys 9 EPB >168 No No No 165 12.58 No

Dys 10 EPB >49 No No No 458 6.83 No

APP-PS1xGFP-M

Type
of axon

Lifetime
(days)

Disappearance of AxDs
at the end of the
imaging period

Disappearance of
the parent axon

Reformation
of AxDs

Maximum AxD
volume (μm3)

Maximum
AxD size ratio

Axonal
sprouting

Regrowth

Dys 1 EPB 110 Yes No No 778 20.2 Yes No

Dys 2 EPB 2a: 47
2b: >88

No No Yes 2a: 565
2b: 669

2a: 9.81
2b: 35.20

Yes No

Dys 3 TB >63 Yes Yes No 514 24.49 Yes No

Dys 4 EPB 160 Yes Yes No 2814 20.14 Yes No

Dys 5 TB >138 No No No 565 14.77 Yes No

Dys 6 EPB 124 Yes Yes No 755 16.01 No No

Dys 7 TB 95 Yes Yes No 565 4.03 Yes No

Dys 8 TB 101 Yes Yes No 1496 27.46 Yes No

Dys 9 TB >47 Yes No No 512 21.30 No Yes

Dys 10 EPB 59 Yes Yes No 221 8.10 No No

Dys 11 EPB 51 Yes No No 64 5.00 No No

Dys 12 EPB 72 Yes Yes No 259 9.45 No No

Dys 13 TB >131 No No No 274 18.84 No Yes

Dys 14 EPB 14a: 29
14b: >40

No No Yes 14a: 32
14b: 65

14a: 2.45
14b: 7.20

No No

Dys 15 EPB 15a: >23
15b: 117

Yes Yes Yes 15a: 116
15b: 203

15a: 14.43
15b: 21.05

No No

Dys 16 TB 37 Yes Yes No 48 4.80 No No
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Fig. 5 Re-growing phenomenon in a dystrophic axon. (a-d), Maximum projection of a stack of images taken in the supragranular layers of the
somatosensory cortex of the APP-PS1 mouse at four different time points (two-photon microscopy). To facilitate the visualization of the axon of interest,
only those optical sections where this axon was present were used for the maximum projections (32 sections in a, 30 in b, 10 in c and 15 in d; z-step:
1 μm). Panels a-d correspond to the same regions and days as those also illustrated in Fig. 1d-g. In day 61 (c), the distal part of the axon (white arrowheads)
was lost just before the dystrophic part (dys 9, blue arrowhead in b). In day 68 (d), the axon starts to re-grow (red arrowheads). The inset in d shows the
growth cone. (e-h), Schematic representation from images a-d, respectively, showing the axon of interest (green) and the re-growth segment (red). (i, j),
Maximum projection of a stack of lower magnification images (89 sections in i and 98 in j; z-step: 0.7 μm), showing that the new axon segment (in d) can
re-grow (red arrowheads) longer distances over time (re-growth segment: 73.9 μm in i and 104.5 μm in j). The square delimits the size of the regions shown
in a-d. (k, l), Schematic representation from images i-j, respectively, showing the axon of interest (green) and the re-growth segment (red). Note that the
re-growth axonal segment has changed its trajectory whereas the original axon segment maintains the original trajectory. The days shown refer to the
number of days after day 0 (when imaging began). Scale bar (in l): 24 μm in a-h, 11.6 μm in d (inset) and 20.6 μm in i-l
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2- Loss of the dystrophic structures only, but not the
parental axon. Interestingly, in some of these cases,
after a variable period of time, new AxDs appeared
at the same point of the axon where the previous
AxD had been located. This re-formation
phenomenon of AxDs always occurred at the edge
of the axon (Figs. 3 and 4; Additional file 5; Table 1).

Electron microscopy Using correlative FIB/SEM, we
were able to analyze a region of approximately 1200 μm3

where an AxD had been observed in vivo to have disap-
peared (Fig. 6). In this region, at the ultrastructural level,
we found an activated microglial cell containing a large
amount of electron-dense material, full of phagocytosed
fragments of membranes and organelles. This accumula-
tion of electron-dense material corresponded to the
auto-fluorescence observed with the two-photon micro-
scope (Additional file 1) and maintained days later at a
point where an AxD was lost (Additional file 7). Further-
more, we used correlative two-photon in vivo imaging
and TEM of GFP-expressing AxD near to Aβ plaque.
We found that in some cases, microglial cells with nu-
merous phagocytic inclusions were in close apposition
to AxDs, suggesting that these cells are participating in
phagocytosis of AxDs (e.g., see [56]) (Fig. 7d).

Type of axon and dystrophic pathology
We were also interested in knowing if different types of
axons seem to be selectively vulnerable to the amyloid
pathology. We distinguished two main types of axons:
En Passant Bouton (EPB) axons and Terminal Bouton
(TB) axons. EPB axons had a high density of en passant
boutons and relatively few spine-like terminal boutons.
TB axons were similar to the EPB axons but had a high
density of spine-like terminal boutons. Moreover, we
could distinguish thin and thick EPB axons. In the dE9
mouse, 80% (8 out of 10) of the AxDs were present in
EPB axons (see Fig. 4e–g) and the remaining 20% (2 out
of 10) were in TB axons (see Fig. 2). In the APP-PS1
mouse, it was possible to analyze a larger number of AxDs
(n = 39) (see next section and Additional file 6). In this
case, 60% (24 out of 39) of the AxDs were present in EPB
axons —Fig. 1d–i; 1 out of these 24 AxDs was present in a
thick-EPB axon, see Fig. 8a, b— and the remaining 40%
(15 out of 39) were in TB axons (Additional file 4 a–i). In
addition, we calculated the number of EPB and TB axons
in our images (on day 0 of imaging) in the APP-PS1
mouse model and it was estimated to be 71 and 29%, re-
spectively. Thus, the presence of higher numbers of AxDs
in EPB axons could be explained by the higher numbers
of EPB axons. When we compared the maximum
AxD volume depending on the type of axon, we did
not observe significant differences between AxDs in
EPB axons (419.6 ± 138.5 μm3) and TB axons (374.3

± 100.4 μm3) (Mann–Whitney U: 163.0; p = 0.6339).
Thus, the size of AxDs was not related to the type of
axon in which they were formed (Fig. 3g).
In summary, our data suggest that AxDs were formed

in a quarter of GFP-expressing axons, which indicates a
selective vulnerability. AxDs, especially those reaching
larger sizes, had long lifetimes and appeared as highly
plastic structures with large variations in size and shape
and axonal sprouting over time. Moreover, they seemed
to be formed on different types of axons. Finally, it ap-
peared that microglial cells which are associated with
phagocytic activity, may contribute to the disappearance
and morphological changes of AxDs. These and other
results are summarized in Table 1.

Relationship between Aβ plaques and AxD formation and
development
In order to study early events regarding the formation of
AxDs and Aβ plaques, the APP-PS1 mouse was used
due to the early Aβ plaque development and high dens-
ity of Aβ plaques in the neocortex in this mouse com-
pared to the dE9 mouse. Using panoramic and high
resolution images (Additional file 6 a-f ), it was possible
to study 52 AxDs (5 of which were not associated with
Aβ plaques) and 33 Aβ plaques (Additional file 6), 15 of
which were pre-existing Aβ plaques (Aβ plaques that
were already present on the first day of imaging) and 18
were new Aβ plaques (Aβ plaques that appeared during
the imaging period).

– The vast majority of AxDs were associated with Aβ
plaques and in all these cases the formation of AxDs
was observed after the appearance of the Aβ plaques
(n = 18). However, in a small number of cases we
observed an axon with two AxDs (n = 5 out of 52);
one small AxD that was not associated with Aβ
plaques, and another which was close to an Aβ
plaque (Fig. 8e).

– There was a correlation (Spearman r: 0.6173, p < 0.0001)
between the maximum size of a given AxD and the
maximum size of the Aβ plaque with which it is
associated, in such a way that large AxDs were present
only around large Aβ plaques, whereas small Aβ plaques
were associated only with small AxDs. Nevertheless,
both large and small AxDs were present around large
Aβ plaques (Fig. 8a-d, h).

– There was a correlation (Spearman r: −0.4711,
p = 0.0022) between the maximum AxD volume
and the time of AxD appearance, such that
larger AxDs developed earlier than smaller
AxDs in the animal lifetime (Fig. 8a-d, g).

– When we studied the distribution of the 47 AxDs
associated with Aβ plaques over time, we observed
that most of them developed during the imaging

Blazquez-Llorca et al. Acta Neuropathologica Communications  (2017) 5:14 Page 11 of 18



Fig. 6 Correlative two-photon in vivo imaging and FIB/SEM microscopy. (a, b), Optical single plane images taken at two different time points at the
same region in layer I of the somatosensory cortex of the dE9 mouse, showing a Methoxy-X04-stained plaque (blue) and GFP-expressing processes.
There is a loss of an AxD (arrow) in the space of 1 week. (c), Same region as in a, b taken ex vivo after the perfusion of the animal on day 8. This image
was obtained by the combination of two optical single planes: one taken at the same z-level as in a, b and the other taken 4 μm above it, showing
the NIRB marks (pseudocolored in yellow and orange) performed to locate the region of interest at the ultrastructural level. (d), Electron-micrograph
picture from the last ultrathin section taken from the surface of the block that was further analyzed by FIB/SEM microscopy. The same NIRB marks
(pseudocolored in yellow and orange) as in c can be seen. The plaque halo is pseudocolored in green. The rectangle shows the position and the x, z
dimensions of the FIB/SEM stack that was obtained. The same rectangle is shown in a-c. The three dashed lines inside the rectangle show the perpendicular
plane in the approximate region where images e-g were obtained by FIB/SEM. (e-g), Examples of FIB/SEM images that were taken in the
z = 9.15 μm image stack (305 images of 30 nm thickness). Using Reconstruct software, the AxDs (green) and the microglial cell (red) that were present in
the stack of images were segmented every 2 sections. (i), 3D visualization of the segmented elements (microglial cell: red, AxDs: green). There is an activated
microglia cell in the region where the loss of a GFP-expressing AxD was observed. Scale bar (in g): 18.2 μm in a-c; 5.1 μm in d; 1.8 μm in e-h
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period —only 15% of them were present from the
first day of imaging (day 100). At the end of the
imaging period, around 70% of AxDs had been lost,
in most cases due to the disappearance of the whole
axon (76%) (Fig. 8f, Additional file 6 a-f ).

Discussion
In our study, we observed that around 22 and 28% of
the axons adjacent to Aβ plaques developed dystrophic
pathology in the dE9 and APP-PS1, respectively. This is
an interesting finding since it indicates that most of the

Fig. 7 Correlative two-photon microscopy and TEM of an Aβ plaque. (a), Maximum projection of images taken from a GFP-expressing AxD near
an Aβ plaque stained with Methoxy-X04 (blue) on day 162 (the same AxD (dys 7) as in Fig. 1a-c – red arrow). (b), Ex vivo single plane of the AxD (note
that some NIRB marks were made around the region of interest to locate it in subsequent processing steps; marks have been labeled with asterisks). (c),
Low-magnification electron micrograph showing the Aβ plaque (the central core formed by fibrillar Aβ peptide has been pseudocolored in blue). The
GFP-expressing AxD (dys 7) that was imaged in vivo is surrounded by the laser marks (pseudocolored in orange and labeled with asterisks). Rectangles
delimit the regions shown at a higher magnification in panels d, e. (d), Image showing a microglial cell with numerous phagocytic inclusions (arrows) in
close apposition to an AxD, suggesting that this cell is participating in phagocytosis of the AxD. Microglial cell was identified based on its ultrastructural
characteristics. (e), Higher magnification of dys 7. Note that autophagic vacuoles take up a large area of the AxD contents, and also that the AxD is
almost devoid of any normal-looking organelles. A normal-looking asymmetric synapse can be observed in close apposition to the AxD (arrowhead).
Scale bar (in e): 23.1 μm in a, b; 3 μm in c; 0.61 μm in d; 0.52 μm in e
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Fig. 8 Relationship between Aβ plaques and AxDs formation and development. (a, b), Maximum projection of images (120 images, z = 0.3 μm)
showing the presence of a large AxD (blue arrow) and a small AxD (red arrow) (GFP, green) close to a large plaque stained with Methoxy-X04
(blue) (b). Note that the larger AxD starts to develop around day 130 (animal age). (c, d), Maximum projection of images (120 images, z = 0.3 μm)
showing the presence of smaller AxDs (red arrows) (GFP, green) close to a small Aβ plaque stained with Methoxy-X04 (blue) (d). These two smaller
AxDs appear around day 232 (animal age). (c). Panoramic images that show the regions in panels a - d are in the Additional file 6. (e), Maximum
projection of images (134 images, z = 0.3 μm) showing GFP-expressing neurites and Aβ plaques stained with Methoxy-X04 (blue). There is an axon
with two AxDs: one small AxD that is not associated with Aβ plaques (arrowhead), and another which is close to an Aβ plaque stained with
Methoxy-X04 (arrow). The days shown refer to the animal age (the imaging began on day 100 of the animal lifetime). (f), Graph showing the
percentage of the total number of AxDs (n = 47) that are present over time. Days in X correspond to the bin center (bin width = 20 days). (g),
Correlation (Spearman r: −0.4711, p = 0.0022) between the maximum AxD volume and the day of AxD appearance, indicating that larger AxDs
develop earlier than smaller AxDs in the animal lifetime. (h), Correlation (Spearman r: 0.6173, p < 0.0001) between the maximum volume that an
AxD reaches and the maximum volume of the Aβ plaque it is associated with. Large AxDs are present only around large Aβ plaques. Scale bar
(in e): 25.1 μm in a-d; 28.4 μm in e
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axons near the Aβ plaques are resistant to this path-
ology. Thus, this raises the question as to why some
axons (a minority) seem to be more susceptible than
others to the dystrophic pathology.
Using the GFP-M model, it was possible to analyze

supragranular layers axons which have been reported
[16] to originate mainly from neurons whose soma are
located in cortical layers II/III/V (type A3 axon), layer
VI (type A2 axon) and thalamus (type A1 axon). These
axons are morphologically very similar to thin-EPB, TB
and thick-EPB axons, respectively, as defined in the
present study. In previous in vivo studies regarding bou-
ton turnover in axons present in layer I of the mouse
barrel cortex, it was found that axons from layer VI were
highly plastic, followed by axons from layer II/III/V that
showed intermediate levels of plasticity and thalamocor-
tical axons in which most of the boutons were persistent
[16]. In the present study, we found dystrophic path-
ology in all these types of axons. However, the majority
of axons in contact with Aβ plaques did not develop
AxDs. In this regard, it is important to take into account
that pyramidal neurons from different layers and even
those located in the same layer have different morpho-
logical, neurochemical and physiological properties (e.g.,
[54]). Thus, it is possible that particular types of neurons
located in layers II/III/V, layer VI and in the thalamus
are more susceptible to developing dystrophic pathology.
Indeed, previous studies mainly using a variety of neuro-
chemical markers showed that there are some subpopu-
lations of neurons selectively vulnerable to the AxD
development, e.g., those cortico-cortical fibers that ex-
press SMI-312 and GAP-43 [37], or neurofilament triplet
proteins (NF) [18, 44]. Furthermore, we analyzed only
the supragranular layers and it is possible that the suscep-
tibility of the axons in contact with Aβ plaques in layers
IV to VI is different to the observations in the present
study in the supragranular layers. Thus, further studies are
necessary to identify the subpopulation(s) of pyramidal
cells that are more susceptible to this pathology.
The relationship between the formation of extracellu-

lar Aβ deposits and their associated AxDs remains
elusive. For years it has been considered that the forma-
tion of AxDs was a consequence of Aβ deposits or
microglia activation, but not an active participant in the
pathogenesis of the Aβ plaques (see [20]). However, this
view is changing and there are increasing data sug-
gesting that beta-secretase 1 (BACE1) elevation and
associated Aβ overproduction occurs inside the AxDs
[26, 27, 46, 55, 64] (see Additional file 8). Moreover,
Aβ is a possible cause of the alterations in axonal trans-
port [50]. If a partial transport defect allows more time for
axonal APP processing as suggested [55], then this could
generate more Aβ, feeding back into a worsening trans-
port defect and progressive enlargement of both Aβ

plaques and AxDs. These facts —together with anomalous
mitochondrial function and oxidative stress, autophagy
and altered lysosomal processing considered in synthesis
with the mechanisms of disrupted axonal transport— sug-
gest that AxDs are an important source of extracellular
amyloid deposits (see [20]). The plaque induction of neur-
itic changes and the contribution of AxDs to Aβ depos-
ition are probably not mutually exclusive and could occur
concomitantly even in the same AxD.
Several authors have also contributed to the in vivo

study of AxDs, providing information about their forma-
tion near Aβ plaques and their probability of recovery
after different treatments [13, 15, 23, 53, 59]. However,
in these studies, the pathology was followed over rela-
tively short time periods (3 days to 5 weeks maximum)
and no detailed morphometric studies were performed.
Plasticity and axonal sprouting has been observed
around amyloid plaques performing in vitro and ex
vivo studies using different IHC markers (e.g., GAP-43)
([38, 40, 47, 49, 65] see [5] for a review). The existence
of many growth factors around the Aβ plaques has
been studied and sprouting has been proposed as a
compensatory mechanism for the synaptic alterations
that take place near Aβ plaques [39, 45, 63]. However,
this plasticity phenomenon had not been detailed de-
scribed and quantified in vivo to date. An important
advantage of our study was that the AxDs were
followed over long periods of time (up to 210 days). A
great number of axonal segments were followed and
AxDs were studied individually to further analyze the
heterogeneous changes between different AxDs and in
the same AxD over time (plasticity of AxDs). The individ-
ual study of the axons and their dystrophies was possible
by means of the GFP-M transgenic model that has a low
density of neurons expressing GFP. Moreover, the use of
specialized tools allowed the performance of 3D recon-
struction and measurement of volumes to carry out a de-
tailed quantitative study. Most AxDs were formed and
developed during the imaging period, and numerous
AxDs had already disappeared by the end of this period
(Additional file 9). We were able to observe that AxDs
had long lifetimes (commonly more than 100 days). In the
APP-PS1 mouse, amyloid pathology and related dys-
trophic neuritic changes around the Aβ plaques developed
earlier than in the dE9 mouse (Aβ plaque deposition in
the neocortex begins around the age of 6 months in the
dE9 [30] and 2 months in the APP-PS1 mouse [48]). How-
ever, we observed in both models similar findings regard-
ing the high AxD plasticity over time. The most important
observations are the following: i) AxDs did not grow
steadily —their volume increased and decreased over
time, showing dramatic volume differences at distinct time
points; ii) AxDs located at the end of the axon could also
become fully reversed while the parental axon remained
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and a new AxD could be generated after a variable period
of time; iii) Axonal sprouting was a common event: prom-
inent morphological changes occurred in larger AxDs over
time and interestingly the re-growth of long axonal seg-
ments from axons that were cut at a dystrophic point was
observed in the APP-PS1 mouse. This is interesting since
it has been recently observed in vivo that, depending on
the cell type, some ablated axons spontaneously re-grow
and although they never reconnect to their original
targets, axons consistently form new boutons at compar-
able pre-lesion synaptic densities, implying the existence
of intrinsic homeostatic programs, which regulate synaptic
numbers on regenerating axons [14]. We cannot rule out
the possibility that the absence of this phenomenon in
dE9 could suggest that the sample size was not sufficient,
or an intrinsic difference of the amyloid pathology be-
tween the two mouse lines.
Taking these results together, the existence of this

neuronal plasticity (especially around Aβ plaques) in-
creases the likelihood that the synaptic abnormalities
associated with the Aβ plaques can be reversed within a
certain time window before most AxDs and their axons
have disappeared. Thus, this opens up the possibility
that early prevention or elimination of the Aβ plaques
with appropriate therapeutic strategies might prevent
disease progression and promote functional axon regen-
eration and the recovery of neural circuits.

Conclusion
AxDs were formed only in a quarter of GFP-expressing
axons near Aβ-plaques, which indicates a selective vulner-
ability. AxDs, especially those reaching larger sizes, had
long lifetimes and appeared as highly plastic structures
with large variations in size and shape and axonal sprout-
ing over time. We observed that most AxDs were formed
and developed during the imaging period, and numerous
AxDs had already disappeared by the end of this time.
This work is the first in vivo study analyzing quantitatively
the high plasticity of the axonal pathology around Aβ pla-
ques. We hypothesized that a therapeutically early preven-
tion of Aβ plaque formation or their growth might halt
disease progression and promote functional axon regener-
ation and the recovery of neural circuits.
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Supplementary Fig. 1 Location of auto-fluorescent spots. (ad), Two-photon in vivo images of the same GFP-expressing AxD (dys 

1) around an Aβ plaque stained with Methoxy-X04 (blue) in the somatosensory cortex of the dE9 mouse (the same AxD is shown in Fig. 
2). Two-photon excitation of GFP-expressing neuronal structures was performed at 880 nm and the signal was detected using a 

bandpass (BP) 500550 nm filter (a). To exclude false positive fluorescent spots from the analysis, we also recorded emissions at 

590650 nm (b). By combining both images, the auto-fluorescent spots can be visualized as yellow structures (arrowheads, the same as in 
f) (c). When necessary, Photoshop was used to facilitate the visualization of GFP-expressing structures by manually darkening those 

auto-fluorescent structures that were alone in the neuropil and not inside any GFP-expressing structure (d). (eg), Higher magnification 
of two-photon in vivo images showing that the auto-fluorescent spots can be inside GFP-expressing AxDs (arrow, E), in the neuropil 

(arrowheads, f) and inside neuronal cell bodies (lipofuscin, g). (ho), Immunohistochemistry for Iba-1 (red) was performed to better 
define the presence of the auto-fluorescence. (h), Maximum projection of images (44 images, z = 0.4 µm) showing a GFP-expressing 

pyramidal neuron and numerous neuronal processes (green) near an Aβ plaque stained with Methoxy-X04 (magenta). The far-red 
fluorescence was also recorded to facilitate the visualization of auto-fluorescent spots (blue). (I), Same stack of images and field of view 
as in h adding the fluorescence recorded for Alexa 594 (immunofluorescence of Iba-1, red) and excluding the fluorescence recorded for 

Methoxy-X04 (Aβ plaque, magenta). (jl), Single optical section showing a higher magnification of the neuronal body of the pyramidal 
neuron in (h, i). Auto-fluorescent spots (recorded with far-red fluorescence (j), Alexa 594 (k) and GFP channel (l)) are inside the 

neuronal cell body (lipofuscin (white), arrowheads) (l). (mo), Single optical section showing a higher magnification of the region in i 
that was delimited by a square. Auto-fluorescent spots (arrowheads, recorded with far-red (m), GFP (n) and Alexa 594 channel (o)) are 

enclosed within microglial processes (red) (o). Scale bar (in o): 25.5 µm in ad; 5.2 µm in eg; 12.5 µm in h, i; 6 µm in jl; 6.3 µm in 

mo 



Images properties Aim Mouse 
model 

Number of 
imaging 
positions 

Number of 
time points / 
Total number 

of images 

Number of 
dystrophic 

axons 

Total 
number of 

axons 

Number of 

Aβ plaques 

High magnification 
images (logical size 
512 × 512 pixels; 
physical size x, y, z: 

µm; z-step = 1 µm) 

The 3D 
reconstruction 
of AxDs over 
time 

dE9 
(number 

of 
animals,  
n = 6) 

#1 19 / 19 1 6 1 

#2 19 / 19 4 11 1 

#3 19 / 19 1 5 1 

#4 19 / 19 1 8 1 

#5 18 / 18 2 10 1 

#6 18 / 18 1 6 1 

TOTAL 18 - 19 / 112 10 46 6 

APP-PS1 
(number 

of 
animals,  
n = 7) 

#1 17 / 17 3 9 1 

#2 23 / 23 5 14 1 

#3 23 / 23 3 9 1 

#4 23 / 23 3 11 1 

#5 19 / 19 1 8 1 

#6 19 / 19 1 7 1 

TOTAL 17 - 23 / 124 16 58 6 

Panoramic high-
resolution images 
(logical size 1400 × 
1400 pixels; physical 
size x, y, z: 202.3 x 

z-step = 0.3 µm)* 

The 
spatiotemporal 
relationship 

between Aβ 
plaques and 
AxDs 

APP-PS1 
(number 

of 
animals,  
n = 7) 

#1 23 / 23 14 - 6 

#2 23 / 23 6 - 4 

#3 23 / 23 3 - 2 

#4 23 / 23 9 - 7 

#5 23 / 23 11 - 6 

#6 21 / 21 4 - 4 

#7 17 / 17 5 - 4 

TOTAL 17 - 23 / 153 52 - 33 

 
Supplementary Table 1 Table showing the number of imaging positions that was successfully weekly imaged during near 6 months. For 
each imaging position is also shown: the number of images acquired over time (time points), and the number of dystrophic axons, axons 

and Aβ plaques present in each imaging position. 
Two types of images were acquired to carry out the aims of the work. 
*Note that data from panoramic high-resolution images (lifetime of AxDs and type of axon where AxDs are formed) were also used in 
Aim “The 3D reconstruction of AxDs over time”. 

 



 

Supplementary Fig. 2 Correlative light and FIB/SEM microscopy. (a), Photograph of the final Toluidine blue stained semithin 

section that was taken from the surface of the block containing the region of interest shown in Fig. 6 and that was further analyzed using 

FIB/SEM microscopy. NIRB marks are visible (pseudocolored in yellow and orange; see Fig, 6 c). (b), Same field of view as in a 

showing the correlative laser marks on the surface of the block used for FIB/SEM (pseudocolored in yellow and orange). (cd), Higher 

SEM image magnification of the region of interest (rectangle), before (c) and after (d) milling of the trench needed to obtain back-

scattered electron images. d shows the beginning of acquisition of the stack of electron microscopy images and e shows the trench after 

the region of interest has been fully reconstructed. The rectangle in all images shows the position and the x, z dimensions of the 

FIB/SEM stack that was obtained. The asterisk points out the same blood vessel. Scale bar (in e): 44.5 µm in a, b; 15 µm in ce 



 

Supplementary Fig. 3 Size ratio of dystrophic segments. (ai), Two-photon in vivo images of a GFP-expressing AxD (dys 7) near an 

Aβ plaque stained with Methoxy-X04 (blue) in the somatosensory cortex of the APP-PS1 mouse at three different time points (a, d, g). 

The axon was reconstructed using Imaris software (b, e, h, respectively). The reconstruction can be observed in isolation in c, f, i, 

respectively. The dystrophic segment is shown in red. To obtain the size ratio: the “normal axon volume” was determined by taking, if 

possible, the average volume of 3 axonal segments at three different time points, prior to the AxD formation. Segments were of the same 

length and in the same position as the maximum AxD segment that will later appear (c). In i, the maximum AxD segment can be 

observed. Note that in f the region pointed out by the arrow is still non-dystrophic. (jl), Two-photon in vivo images of a GFP-expressing 

AxD (dys 1) around an Aβ plaque stained with Methoxy-X04 (blue) in the somatosensory cortex of the dE9 mouse (same as in Fig. 2). 

The axon was reconstructed using Imaris software (k). The reconstruction can be observed in isolation in l. The dystrophic segment is 

shown in red, as is the "normal-looking axon segment" (arrow). In those cases where the AxD was present from the first day of imaging, 

the segments taken as “normal” were those that were from the same normal-looking axon, with the same length as the maximum AxD 

segment and which were situated outside the Aβ plaque. Scale bar (in l): 23.1 µm in al 



 

Supplementary Fig. 4 Re-formation of AxDs and sprouting phenomenon (re-growth) in the APP-PS1 mouse. (ae), Maximum 
projection of a stack of images (40 images; z-step: 1 µm) taken with the two-photon microscope in the supragranular layers of the 

somatosensory cortex of the APP-PS1 mouse at five different time points showing some neurites expressing GFP around an Aβ plaque 
stained with Methoxy-X04 (blue). There are two axons of interest, one is marked with arrowheads (axon 1) and the other with arrows 
(axon 2). Axon 1: At the beginning, axon 1 looks normal (a). Days later, the middle part of the axon becomes dystrophic (yellow 
arrowhead – dys 2a), as does a short branch (red arrowhead – dys 1). Moreover, a distal portion of axon 1 disappears and so the axon as 
a whole is shortened (b). One week later, the AxD in the middle part has disappeared and axon 1 is cut at this point (c). Days later, the 
AxD at the short branch (dys 1) has disappeared and another AxD (dys 2b) appears at the edge of axon 1 where dys 2a was previously 

present (d). The morphology of this AxD changes over time (e). Axon 2: At the beginning, axon 2 looks normal (ab). Days later, this 

axon gets thicker (cd) and, at some point, the axon is cut and then re-grows through the Aβ plaque. The new re-growth segment (32 

µm) becomes dystrophic (e, red arrows). Scale bar (in e): 19.5 µm in ac; 10.3 µm in de 

 

 

 



 

Supplementary Fig. 5 Relationship between Aβ plaques and AxDs formation and development. Quantitative analysis of 

different types of Aβ plaques. (a-f), Maximum projection of images (136 images, z = 0.3 µm) showing GFP-expressing neurites and 

the formation and growth of different types of Aβ plaques over time in the supragranular layers of the somatosensory cortex of the APP-

PS1 mouse (two-photon microscopy). An Aβ plaque that reaches a large volume is pointed out by an arrow. Arrowheads point out small 
plaques. Rectangles in b, e surround the region shown in Fig. 8 a, b, respectively. Rectangles in d, f surround the region shown in Fig. 8 
c, d, respectively. Note that most AxDs were formed and developed during the imaging period, and numerous AxDs had already 

disappeared by the end of this time (see Aβ plaque pointed out by an arrow). (g, h), Graphs showing the volume of large Aβ plaques 

(both pre-existing plaques, gray lines; and plaques that appeared during the imaging period, black lines) (g) and small Aβ plaques (h) in 

the animal lifetime. Open red circles show the mean ± SEM volume over time for large (g) and small (h) Aβ plaques. Dashed red line 

shows the fitted sigmoid curve for large (R2 0.36) and small Aβ plaques (R2 0.45): the inflection point of the fitted curve dividing the 

cubic and asymptotic parts of the function is expected at day 408 in g and at day 271 in h. (i), Graph showing the density of Aβ plaques 
in the animal age (mean ± SEM) (red circles). Dashed red lines correspond to the two fitted regression lines (R2 0.28); both lines 
intercept at day 190. The slope is 15.75 ± 6.34 µm3/day for the first line and 4.28 ± 5.45 µm3/day for the second line. The density of 

small Aβ plaques against animal age (mean ± SEM) (green open circles) has been also represented. Scale bar (in f): 42.7 µm in af 



 

Supplementary Fig. 6 Behavior of auto-fluorescent spots after the elimination of an AxD. (a, b), Maximum projection of a stack 
of images (40 images; z-step: 1 µm) taken with the two-photon microscope in the supragranular layers of the somatosensory cortex of 

the dE9 mouse at two different time points, showing some neurites expressing GFP around an Aβ plaque stained with Methoxy-X04 
(blue). This AxD is the same one showed in Fig. 4. It can be observed that the auto-fluorescence (yellow spots) inside the GFP-
expressing AxD (in a) remains at the same location after the loss of the AxD (in b). The arrows point out the region of interest. Scale bar 
(in b): 12.4 µm in a, b 

 

 



 

Supplementary Fig. 7 Quantitative study of the neurochemical characteristics of the AxDs. Confocal images of the supragranular 

layers of the somatosensory cortex in coronal sections of the dE9 mouse brain (~ 12 months) in which immunohistochemistry was 

performed with different antibodies. (a, e, i, m), Maximum projection (z = 0.4 µm) to display the AxDs present in axons of pyramidal 

neurons expressing GFP (white arrows) in close proximity to an Aβ plaque stained with Methoxy-X04 (magenta, white asterisks). (b, c), 

Single plane of the stack taken in the region in a showing immunoreactivity for SNAP-25 (blue) and LC3 (red), respectively. (f, g), Single 

plane of the stack taken in the region in e showing immunoreactivity for LAMP1 (blue) and VGLUT 1 (red), respectively. (j, k), Single 

plane of the stack taken in the region in I showing immunoreactivity for BACE 1 (blue) and Aβ4G8 (red), respectively. (n, o), Single 

plane of the stack taken in the region in m representing immunoreactivity for VGLUT-1 (blue) and Aβ42 (red), respectively. (d, h, l, p), 

Same optical plane in bc, fg, jk and no, respectively, in which the image showing the expression of GFP in this plane has been 

digitally added. (r), Quantification of the expression of VGLUT-1, Aβ42, SNAP25, LC3, BACE1, Aβ4G8 and LAMP1 in AxDs 

expressing GFP in the dE9 mouse. Scale bar (in p): 21.7 µm in ap 



 

Supplementary Fig. 8 Schematic representation of Aβ plaques and AxDs development over time. Initially, Aβ plaques develop 

(A1). Larger AxDs appear associated with Aβ plaques that will become large (A1, A2). Smaller Aβ plaques are formed next to pre-

existing large Aβ plaques. Small AxDs develop around both small and large Aβ plaques. Large Aβ plaque volume increases rapidly (A3). 

Finally, numerous axons and AxDs disappear. Large Aβ plaques continue increasing their volume whereas plaque density is stabilized 

(A4). Neurites are represented in green 
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 3.2. Transcallosal deafferentation induces contralesional cortex reorganization after stroke 

Every year 15 million people suffer a stroke. Of these, six millions die and five millions survive 

with permanent disabilities. This makes stroke the fifth most frequent cause of death and the 

most frequent cause for long-term disability worldwide. The dimension of the problem 

becomes even more evident considering that the total number of stroke survivors will rise 

from 33 million in 2010 to a staggering 70 million by 2030. In the past decades tremendous 

clinical and pre-clinical efforts were undertaken to understand the acute, life-threatening 

consequences of stroke and to develop novel therapeutic options. However, even today very 

little is known about the mechanisms responsible for long-term impairments after stroke and 

therefore no pathophysiology-based therapeutic options are available. Current knowledge 

suggests that stroke does not cause only local damage, but also affects the performance of the 

whole brain by destabilizing the microanatomy and physiology of healthy, remote brain 

regions connected to the infarcted brain. This process that also occurs in the contralateral 

hemisphere may limit or even actively suppress functional recovery after stroke. Here we want 

to address the mechanisms of this destabilization in the contralateral cortex and its 

contribution to functional recovery. To mimic stroke, we will use an already well establish 

model where we occlude for one hour the MCA (medial cerebral artery) by inserting a 

filament. After 60 min the filament is removed leading to reperfusion. Neurons connected to 

the infarct will be labeled using virus tracing (AAV expressing GFP) and their dendritic arbor 

will be visualize through a cranial window glued with dental cement in the contralateral 

hemisphere with a diameter of 4mm. The cranial window as well as the virus injection, were 

done 1 month prior to stroke induction.  

Using this experimental paradigm, we will analyze changes in the arborization and synapses of 
the neurons connected to the infarcted tissue and reorganization of these cells and their 
associated network over time. The detailed investigation of these processes will allow us to 
better understand how the brain responds and reorganizes after injury and to develop 
measures to enhance or possibly inhibit this remodeling in order to develop novel therapeutic 
strategies for patients suffering from brain injury. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contribution of V.F.S to this work: I performed all surgical procedures (cranial window implantation and stroke 
induction), lesion standardization, development and implementation of post-operative care protocol together with 
behavior testing, retro-virus injections, laser speckle imaging (CO2 challenge, whisker stimulation and heatmap 
generation), chronic 2P imaging, immunostainings and confocal imaging. Furthermore, I contributed to all data 
acquisition and analysis together with the writing and correcting of the manuscript under the supervision of H.F and 
P.N. (please see section 8 for further details) 
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Abstract 

Stroke induces neuronal deafferentation leading to remote anatomical and functional 

changes (diaschisis) via mechanisms not yet fully understood. The current study aimed 

to characterize the long-term effect of cerebral ischemia on contralesional cortical 

reorganization and dendritic dynamics and to correlate these changes to sensorimotor 

behavior and neural activity.  

To achieve these aims, we performed the following experiments: We (i) characterized 

the consequences of deafferentation of neurons of origin in the contralesional cortex 

using anterograde and retrograde viral labeling up to three months after cerebral 

ischemia, (ii) investigated dendritic spine turnover in the contralesional hemisphere by 

repetitive 2-photon in vivo imaging, in correlation with behavioral analysis using an 

optimized long-term survival mouse model depicting large stroke and sustained 

sensorimotor deficit, and (iii) mapped the contralesional neural activity by functional 

hyperemia using laser speckle imaging.  

Three months after stroke, we found significant contralesional cortical thinning (-11%; 

p<0.001) in the absence of substantial cell loss or neuronal body shrinkage but a 

decrease of neuropil fraction (-14%). Throughout stroke recovery, which plateaued after 

three weeks (40% residual deficit), the deafferented neurons displayed dynamic 

dendritic spine turnover. In parallel with changes in relative excitatory/inhibitory 

balance between both hemispheres, we also observed decreased contralesional spine 

density in apical dendrites of transcallosal neurons (-35%), which became prone to 

hyperexcitability. This structural reorganization is accompanied by increased functional 

hyperemia up to one month, followed by a normalization phase at three months, further 

implicating changes in neural activity and synaptic transmission in the contralesional 

cortex. Our data reveal that stroke-induced transhemispheric diaschisis is mediated by 



 

 

 

 

the deafferentation of transcallosal neurons. Affected transcallosal neurons remodel 

their dendritic spines and trigger contralesional cortex structural and functional 

reorganization. 

 

 

One sentence summary: 

Deafferentation of transcallosal neurons induces contralesional cortex 

reorganization after ischemic stroke. 

  



 

 

 

 

INTRODUCTION: 

Stroke is the second cause of lifelong disability, primarily affecting the aged population 

but also increasingly younger adults worldwide (1, 2). Clinical and preclinical studies 

on ischemic stroke have helped to deepen our understanding on gray matter injury and 

neuronal loss, however, more recently it was recognized that white matter injury may 

also contribute to stroke outcome (3, 4). White matter lesions elicit further progression 

of the structural damage and functional loss, putting the surviving victims at the highest 

risk for severe disability and increased physical dependence. Indeed, injury to white 

matter fiber tracts may underlie the progressive nature of stroke (5-7).  

Brain coordinated function relies on the dense anatomical connections of white matter 

tracts to transmit information rapidly both locally and to somewhat distant locations. 

Therefore, fiber damage by ischemia can result in deafferentation and interruption of 

functional connectivity in regions that are remote from the stroke lesion (8-10). 

Lateralization of the infarct, as seen in middle cerebral artery stroke alters the dynamics 

of exchange and connections between the two hemispheres. This interhemispheric 

communication, which is inhibitory, is primarily occurring through the corpus callosum 

(11). Consecutively widespread symptoms of dysfunctions referred to as diaschisis will 

appear within and across both hemispheres, seemingly unrelated to the location of the 

initial infarct (10, 12). Crossed cerebellar and transcallosal diaschisis are primarily 

reported in human stroke and are associated with perfusion and metabolism alterations 

in the contralesional hemisphere (10). The underlying anatomical changes orchestrating 

these dysfunctional events, including alterations onto the transcallosal neurons, are yet 

not fully understood. Despite compelling data of their implication in the recovery of 

function, only a macroscale representation of their contribution to stroke pathology has 

emerged (12). It is also not clear how diaschisis and the transcallosal pathways evolve 



 

 

 

 

during stroke recovery, specifically at the more chronic stages. Only a few longitudinal 

experimental stroke studies have engaged in examining how the damaged corpus 

callosum contributes to contralesional cortical alterations beyond the sub-acute phase, 

and with conflicting results (13, 14).  

Here we aimed to characterize the contribution of the transcallosal pathway to long-term 

contralesional alteration after stroke. To this end, we subjected mice to one hour MCA 

occlusion followed by reperfusion (fMCAo) to mirror the mechanical thrombectomy 

intervention in humans (15). In our hands, this model has the benefit of presenting the 

entire spectrum of stroke severity and a sustained chronic sensorimotor deficit enabling 

to determine the contribution of the contralesional hemisphere to the long-term 

functional outcome (16). To better understand the structural underpinnings of remote 

alterations of transcallosal deafferentation seen in subcortical stroke, we extended our 

investigation to a cortical stroke model induced by distal MCA occlusion (dMCAo).  

Using anterograde and retrograde viral labeling, we unequivocally traced transcallosal 

neurons damaged by stroke and characterized the consequences of their deafferentation 

up to three months after cerebral ischemia. We investigated dendritic spine turnover and 

density in the contralesional hemisphere ex-vivo and longitudinally by repetitive 2-

photon in vivo imaging in parallel with monitoring of the neurological deficit. We 

analyzed the impact on neuronal transmission. We finally mapped the contralesional 

neural activity upon whiskers stimulation by functional hyperemia using laser speckle 

imaging.  

 

 

 

 



 

 

 

 

RESULTS: 

Chronic ischemic stroke is characterized by sustained neurological impairment  

In order to investigate chronic diaschisis after ischemic stroke in association with 

functional recovery, we needed to optimize a severe experimental stroke model that 

would display assessable long-term neurological impairment. One major impediment of 

large stroke experimental models, such as the mouse fMCAo model, is mortality (15-

17). We previously demonstrated that the fMCAo model in mice is accompanied by 

cachexia and a high mortality rate, specifically during the critical period encompassing 

the acute and sub-acute phases of stroke pathophysiology (16). To overcome this critical 

period, we developed a post-operative care protocol supporting the animals to recover 

from anesthesia and the surgical procedure which permitted to reach 100% of survival 

(Fig. 1A). We monitored the behavior of the animals, using a single composite score 

paralleling the NIH Stroke Scale (18) which provides a separate readout for general 

health and neurological deficits (16). We found that the sickness behavior peaked 

during the first day after surgery. The effect was, however, more prominent in the 

fMCAo group as compared to sham operated animals (3.5 fold). After one week, all 

mice recovered and became asymptomatic (Fig. S1B). We evaluated the neurological 

deficit through scoring of 12 items, including body asymmetry, gait, and balance 

abilities (16). Stroke animals, in comparison to the sham group, presented substantial 

and sustained neurological impairment with the most severe deficit during the first day 

(9.5 disability points versus 0.37 for the sham group). Although a spontaneous recovery 

occurred during the first week, it plateaued at this point, remaining at about 40% of the 

initial level (p<0.0001) up to 9 weeks after fMCAo (Fig. 1B). Altogether the post-

operative care protocol by reducing the burden of surgery and anesthesia permitted to 



 

 

 

 

keep the entire spectrum of stroke severity reflected by sustained long term impairment 

paralleling the human condition (18). 

Chronic sustained neurological impairment is correlated with tissue atrophy in both 

ipsilesional and contralesional hemispheres 

Ipsilesional and contralesional hemispheric volume, as well as surface across the 

cerebrum, were analyzed in PFA fixed brains isolated from mice at three months after 

fMCAo and age matching controls. The lesion area in the ipsilesional hemisphere 

extended from the cortex to other vital structures such as the corpus callosum, 

hippocampus, and thalamus (Fig. 1C-F). The MRI performed at three months following 

fMCAo showed that the initial infarct has evolved to atrophy expending to the entire 

hemisphere in the chronic phase (31% of the control hemisphere). Interestingly, the 

volume of the contralesional hemisphere was also affected and displayed a statistically 

significant reduction of about 9 % in comparison to controls (Fig. 1D).  

We also analyzed the profile of cross-sectional areas along the rostrocaudal axis. We 

aimed to understand whether there was a specific change of cross-sectional areas in the 

contralesional hemisphere in regards to the lesion core (homotopic area in Fig. 1E). 

Indeed we found that the area change in the contralesional hemisphere was not uniform. 

In the corresponding sections homotopic to the lesion, the contralesional hemisphere 

area was significantly reduced while the area size increased in the next caudal sections 

(average Bregma - 2.5 mm to – 3.5 mm in Fig. 1E). These results indicate that the 

process of remodeling occurring in the ipsilesional hemisphere after stroke extends to 

the contralesional hemisphere. Since transcallosal neurons show also a homotopic 

representation we hypothezised that this process is mediated through the 

interhemispheric connectivity and the transcallosal pathway.  



 

 

 

 

Transcallosal deafferentation leads to contralesional cortical thinning and neuropil 

shrinkage  

To better understand the individual contribution of interhemispheric transcallosal 

connections to structural changes in the contralesional hemisphere, we induced an 

ischemic stroke by occluding the distal part of the MCA (dMCAo). This type of stroke 

generates lesion confined to the primary somatosensory cortex S1 and barrel field and 

the immediate subcortical region, which in the mouse is mainly the corpus callosum 

(19, 20). 

We first performed histological analysis at two months after dMCAo to analyzed the 

contralesional cortex response. We measured the contralesional cortical thickness on 

Nissl-stained sections through cortical regions spanning the sensorimotor cortex. We 

observed a significant thinning of the contralesional cortex after dMCAo of 11% (p= 

0.0001; Fig. 2A), a finding well in line with our previous findings in humans by MRI 

(21, 22). When analyzing the barrel cortex, the homotopic region to the infarct, we did 

not find any overt alterations in the cortical layering (data not shown), nor significant 

changes in the total cell or neuronal density (Fig. 2B). Also, we did not observe 

variations in the overall neuronal cell body size distribution (Fig. 2C). The most striking 

finding was, however, a 14% shrinkage of the cortical neuropil, the fraction of the brain 

parenchyma which harbors synapses, axons, and dendrites (p< 0.0001; Fig. 2D and E). 

From these findings we conclude that transcallosal deafferentation elicits contralesional 

cortical thinning by a refinement of the cellular processes of the cortical neurons 

projecting into the tissue damaged by ischemic stroke, as also indicated by 

morphological changes of their soma. 

To further characterize the consequences of transcallosal deafferentation, we 

specifically examined neurons of the contralesional cortex sending processes to the 



 

 

 

 

infarcted tissue through the corpus callosum. We labeled these neurons using viral 

labeling with AAV1-hSyn-EGFP. The virus was injected one month before stroke to 

allow recovery. The use of a pressure injection system allowed us to generate sparse 

labeling (Fig. 3A). Up to two months after stroke, we found dystrophic axons and 

varicosity-like structures in the ipsilesional cortex that persisted along the corpus 

callosum, which may suggest ongoing damage to the axonal fiber bundles (Fig. 3B). 

Then we traced back trough the corpus callosum the soma and dendrites of these 

deafferented transcallosal neurons in the contralateral hemisphere. Indeed along the 

callosal path some alterations were present within the fiber bundles (Fig. 3C) as well as 

its surface (Fig. 3D).Their soma identified via the viral labeling in contrast to other 

cortical neurons displayed signs of atrophy and condensation in a number of cells 

indicative of cellular reorganization (Fig. 3E and F). Moreover, the apical dendrites of 

these transcallosal neurons depicted a significant spine density decrease of 35% 

(p=0.008; Fig. 4A and B). This massive loss of apical spines suggests a significant 

disruption of intracortical synaptic connections within the contralateral hemisphere.  

Transcallosal dendritic spine dynamics underlie diaschisis 

We then examined whether this contralesional cortex network disruption occurred in 

association with changes in spine functionality by visualizing spine dynamics of 

transcallosal neurons in the cerebral cortex contralateral to the ischemic lesion by 2-

photon imaging (Fig. 4C and D). To unambiguously trace the dendritic tufts of 

transcallosal neurons, we injected a retrograde viral tracer (rAVV-CAG-GFP) in the 

cortex later on subjected to cerebral ischemia. The mice were implanted with a cranial 

glass window and, after one month, were subjected to fMCAo or sham surgery (Fig. 

4C). Under our experimental conditions, stroke did not altere the number of stable 

spines (Fig. 4E ) while the number of lost spines seems tend to be more proiminent than 



 

 

 

 

the gained spines (Fig. 4F). Overall, the spines tended to be more dynamic over time 

(Fig. 4H) presenting more transient spines (p=0.04) (Fig. 4G). At two months post-

stroke the spine density decreased together with loss of dendritic branches in the 

homotopic region mirroring the residual lesion core in the ipsilesional cortex ((p=0.02) 

(Fig. 4I).We found that most appearing spines survived for at most one imaging session 

(2 weeks). Similarly spines present a the baseline and surviving more than 4 weeks were 

prone to survive longer until 8 weeks. Hence the stable and transient fractions do not 

relatively transfer and likely belong to independent populations with potentially 

different functions.  

Transcallosal deafferentation promotes increased contralesional cortical inhibition  

We next aimed to characterize how transcallosal neuron deafferentation and spine 

reorganization affect the contralesional cortical synaptic transmission. We, therefore, 

quantified the number of inhibitory and excitatory punctates present in the barrel field 

column by immunofluorescence using gad65-67 and vGlut1 as specific markers for total 

inhibitory and excitatory synapses, respectively (Fig. 5A). Twenty-four hours after 

stroke both Gad65-67- and vGlut1-positive synapses decreased as a sign of acute 

deafferentiation from the infarct area (Fig. 5B and C), but recovered to sham levels 

within seven days after stroke. Gad65-67 expression was stable until two weeks after 

stroke, but showed a drastic increase three month after the insult (Fig. 5B), while Vglut1 

showed a dramatic decrease at this time point (Fig. 5C). These changes in excitatory and 

inhibitory synapses and, hence, neurotransmission, were reflected by the regulation of 

contralesional hemisphere GABAA receptor subunit expression on the RNA level.  

In order to reflect the global changes of inhibition, we plotted the average expression 

levels of the GABAA receptor subunits for phasic (α1-3 and γ2) and tonic (α4-5 and δ) 

inhibition. Stroke induced decrease of both phasic and tonic inhibition at 24h in 



 

 

 

 

ipsilesional (p=0.005) and contralesional (p=0.01) cortices (Fig. 5D and E). The levels 

were however higher in the contralesional cortex. While the phasic inhibition 

progressively normalize for both cortices at two months psotstroke, the tonic inhibition 

remained unstable. At 7d the tonic inhibition decreased in the contralesional cortex 

equalizing with the ipsilesional cortex (p=0.009). The levels were then restaured to the 

sham in both cortices. However, at two months, the expression of subunits mediating 

tonic inhibition displayed an upregulation in the contralateral cortex compared to the 

ipsilateral cortex (p = 0.019) (Fig. 5E). So, transcallosal deafferentiated neurons 

remodeled their dendrites and refined their spines to receive more excitatory input. This 

initiated reorganization of the contralesional cortical synaptic transmission. While the 

inhibition stabilized in the ipsilateral cortex, the contralesional cortex further remodels 

increasing phasic inhibition in the homotopic barrel field cortex.  

Deafferented transcallosal neurons are prone to hyperexcitability 

To better understand the changes in interhemispheric connectivity, we also analyzed the 

nature of the remaining synapses contacting the deafferented transcallosal neurons. 

Thus, after immunofluorescence for vGlut1 and gad65-67, we counted the number of 

GFP positive spines contacting vGlut1 or gad65-67 punctate in the homotopic area to 

the lesion (Fig. 5F). We found an increasing number of vGlut1 contacts within the 

dendritic tuft of transcallosal neurons deafferented by fMCAo in comparison to the 

sham group (47% p=0.04, Fig. 5G). In contrast, the amount of gad65-67 contacts was 

reduced (Fig. 5H). The ratio of vGlut1and Gad65-67 punctates further indicate that the 

deafferented transcallosal neurons remain hyperexcitable at 3 months after stroke (Fig. 

5I). 



 

 

 

 

Neurovascular coupling and functional connectivity are impaired in the contralesional 

hemisphere  

To link the anatomical changes to functionality, we analyzed the cortical hemodynamics 

as a surrogate for neural activity. It is well recognized that a local neuronal activity 

results in increases in local cerebral blood flow (CBF) in the activated region, a 

phenomenon called functional hyperemia and mediated by a processed named 

neurovascular coupling (NVC) (23, 24). In order to ensure that the changes in CBF 

reflect neuronal excitability and not alterations in vascular reactivity, we assessed 

vascular reactivity by the application of the direct and selective cerebral vasodilator CO2 

(25), a procedure also used in humans (26). Indeed, CO2 inhalation induced vasodilation 

and increased CBF in both sham and stroke groups equally (Fig. S3) demonstrating that 

following stroke local cortical hemodynamics changes indeed reflect neuronal activity.  

We recorded the CBF response of the contralesional hemisphere upon stimulation of the 

ipsilesional whisker pad by laser speckle imaging at 5, 7, 14, 60, and 90 days after 

stroke (Fig. 6AB and Fig. S4). The average of the maximum responses to whisker 

stimulation (five trials) showed a gradual increase of NVC from 7d becoming 

statistically significant at 14d after stroke in comparison to sham (p=0.028). The values 

normalized until 30 days and fell slightly below the sham level at three-month post-

stroke (Fig. 6C). To better understand the pattern of changes in the different cortical 

areas, we generated heatmaps to analyze the spatiotemporal evolution of CBF responses 

in the contralesional cortex. For all whiskers stimulated, the initial CBF response was 

localized to branches of the MCA spreading within the entire barrel field (Fig. 6B, 

Movie S2). The local response remained stable within the sham group over time while 

presenting a more dynamic pattern in the stroke group. At the initial assessment at 5d, 

the local CBF response in stroke appeared in ectopic areas independent of the barrel 



 

 

 

 

field. The signal tends to increase beyond the sham topographic representation 

propagating over the rest of the sensorimotor cortex from 7d to 1-month post-stroke 

(p=0.1 at 7-14d) (Fig. 6G and Movie S3). The map of the signal became similar to the 

sham topographic representation at 3-month post-stroke (Fig. 6G and Movie S4). 

Altogether the local CBF response and neuronal activity fluctuate in the contralesional 

cortex. In parallel to remodeling of the lesion and recovery of function, the 

contralesional cortex responds by neuronal hyperactivation in sensorimotor regions 

extending the whiskers representation within the first month to finally normalizing three 

months after stroke.  



 

 

 

 

DISCUSSION:  

In the present study, we investigated long-term transcallosal diaschisis after ischemic 

stroke. We found that chronic stroke is characterized by tissue atrophy which 

encompasses the original lesion site, the ipsilesional hemisphere as a whole, and the 

contralesional hemisphere. These structural changes are accompanied by decreased 

neuronal activity in the contralateral region homotopic to the infarct site. We could 

demonstrate that the transcallosal pathway connecting the ipsilateral and contralesional 

hemispheres is the substrate for this change. Stroke damage and deafferent fibers of 

transcallosal neurons that remodel their dendritic spines to retain the excitatory input 

onto their dendrites triggering in the contralesional cortex increase inhibitory synaptic 

transmission in the homotopic barrel field.  

A large body of literature has focused on tissue atrophy of the ischemic hemisphere 

after stroke. The atrophy occurs throughout recovery at the infarct region orchestrated 

by inflammation aiming at the clearance of cell debris and lesion seclusion by scar 

formation (16, 27, 28). The lesion progresses jeopardizing the corpus callosum integrity 

and the interhemispheric communication. Serial diffuse tensor imaging had revealed 

occurrence of Wallerian degeneration in callosal fibers after large MCA stroke and in 

correlation with persistence and worsening of motor disability up to 1 month after 

infarction (29, 30). Nonetheless, as of today, few preclinical studies have analyzed 

changes in remote areas within the same hemisphere and even less in the contralesional 

hemisphere. In fact, in most current investigations, the contralesional hemisphere is 

used as control tissue for normalization.  

Long-term structural remodeling of contralesional white matter has been associated with 

subcortical infarcts in various clinical studies, including ours (3, 4, 21, 22, 31). We and 

others have observed contralesional cortical thinning as a hallmark response of 



 

 

 

 

anatomically connected regions in subcortical stroke patients at six months after the 

event (22). Here we reproduced the change in cortical thickness and demonstrated that a 

cortical stroke lesion triggers cortical thinning via mechanisms that we could attribute to 

transcallosal neuron deafferentation. Cortical infarction damages the fibers running 

through the corpus callosum leading to progressive disconnections. Damaged to the 

fibers even in the absence of disconnection may as well affect the velocity, the volume 

of signal transmission, and mitigate the axonal functionality, which may impact the 

contralesional cortex. The propagation of a retrograde injury signal potentially 

involving dynein associated factors upon axotomy has been suggested as a potential 

mechanism of communication from the damaged area to the soma to explain the 

somatic responses such chromatolysis and changes in gene transcription (32, 33). 

Specific viral labeling of transcallosal neurons allowed to observe morphological signs 

of disconnection, including dystrophy and retraction bulbs formation along the callosal 

pathway (34, 35). The morphological changes of the fibers extended to the 

contralesional hemisphere and persisted up to three months after stroke.  

In the current study we show that this deafferentation does not result in cell death in the 

homotopic contralesional cortex. We did not find any change in cell density or soma 

size distribution, which would have indicated active retrograde degeneration, aprocess 

linked to axotomy close to the cell body (36). What we revealed, in contrast, is 

significant neuropil alterations, which would suggest at least in part a structural 

reorganization of the dendritic arborization in the cortical circuit. Because the 

deafferentation occurs far distal from the cell body, the axotomized neurons do not 

shrink their soma, but their dendrites (36, 37). In fact, we found significant spine 

density loss in the apical dendrites of deafferented transcallosal neurons.  



 

 

 

 

Dendritic remodeling after stroke has been extensively investigated in perfused peri-

infarct and remote regions within the ipsilateral cortex, notably by Tim Murphy’s team. 

Altogether extensive remodeling associated with cortical map displacement is occurring 

within the first three months and is presented as an adaptative mechanism assuming the 

functional gaps due to the lesion (38-41). In contrast, the contralesional dendritic 

remodeling is still debated (13, 14, 42). One of the shortcomings of previous analysis is 

the use of thy1-GFP multivariant transgenic mice, which provide a non-uniform label of 

neurons through layers but also regions of the cortex, including the S1 barrel field (43, 

44). Using retrograde viral labeling of transcallosal neurons, we removed the ambiguity 

of specificity by targeting directly the transcallosal neurons deafferented by an ischemic 

stroke, which exhibited reduced spine density. 

Interestingly, the spine loss seems to preferentially affect inhibitory input onto 

transcallosal neurons as most of the remaining synapses were positive for vGlut1 and 

were therefore excitatory. This enhanced presynaptic excitability also reported 

elsewhere may be mediated by a decrease in GABAergic (γ-aminobutyric acid) 

inhibition or an increase in glutamatergic responses, which have been found in the 

contralesional hemisphere (36). Our study demonstrated a heavily damaged ipsilesional 

hemisphere, and degeneration of transcallosal projections typically exerting inhibition. 

Their degeneration could explain uncovering of preexisting excitatory connections 

resulting in the early enhanced ipsilesional excitability (36, 37, 45, 46).  

To get an insight into the functionality of the contralesional cortex, we analyzed the 

changes in neuronal activity through neurovascular coupling and whiskers stimulation. 

We found prolonged contralesional activation in the barrel field during early and late 

sub-acute phases post-stroke this in agreement with human fMRI data and finger-thumb 

opposition task (47). The activation extended the barrel field network within the first 



 

 

 

 

two weeks, likely reflecting recruitment of lateral excitatory projections leading to 

broader disinhibition. The enhanced activation occurring at the time when the function 

is impaired after stroke may contribute to its partial restoration through potentiation of 

uncrossed cortical pathways. Conversely, in the context of interhemispheric inhibition, 

this hyperactive contralesional cortex, via increasing inhibition, can exert greater control 

over the ipsilateral cortex and hinder its functions (48). This notion at the basis of major 

inhibitory neuromodulation protocols in humans (48, 49) correlates with commonly 

reported increased ipsilateral inhibition within the same time frame, specifically for M1-

dependent motor function (49). The strength of interhemispheric inhibition was found to 

be proportional to motor impairment, and reduction of contralesional excitability 

promoted recovery of hand function (50, 51).  

Although within the last decade, the contribution of the contralesional cortex to stroke 

recovery is increasingly understood in experimental models, the part attributable to the 

deafferented transcallosal neurons is still not clear. Inactivation of the contralesional 

cortex using the GABAA receptor agonist muscimol induced by endothelin showed a 

biphasic effect. During the 14 day treatment period, muscimol worsened the deficit but 

corrected grasping performance and asymmetry of the paretic forelimb after withdrawal 

up to 2 months post-stroke (52). We saw that during the first 14 days, the contralesional 

cortex adjusted to the hyperactivity of these neurons while normalizing its activity at 

three months after stroke. Still, the deafferented transcallosal neurons remodeled their 

spines, becoming more prone to receive excitatory input within this normalized 

network. Attempt to inhibit the contralesional cortex at this later stage has proven not 

been efficient or even worsening the outcome after brain injury (53). 

In conclusion, this study demonstrated that the contralesional cortex reorganizes after 

stroke triggered by the deafferented transcallosal neurons, which remain hyperexcitable 



 

 

 

 

over the chronic phase. These findings of biphasic reorganization underlying diaschisis 

may give insight into the neurophysiological underpinnings through which 

neurorehabilitation therapies benefit to stroke recovery. Furthermore, this study 

provides the basis for preclinical evaluation of the transcallosal neuron path as a 

potential therapeutic target to alleviate chronic stroke impairment.  
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Figure Legends  

Fig.1 fMCAo characterization 

(A) The post-operative care protocol enabled a 100% survival rate in the chronic stroke 

phase. (B) Mice sustained neurological deficit up to 2 months after stroke (n= 11 

fMCAo and 8 Sham) Two-way ANOVA followed by Sidak post-hoc test; means±sd; 

***p<0.0001. (C) Illustration MRI imaging slice control and 3-month post-stroke 

(corpus callosum CC, Hippocampus Hipp, and Thalamus Th). (D) Corresponding 

quantification of hemispheric volume and (E) cross-sectional surface analysis Two-way 

ANOVA followed by Sidak post-hoc test; means±sd;*p<0.05 ***p<0.0001 stroke 

compared to naïve and #p<0.05 contralesional (contra) compared to ipsilesional (Ipsi). 

(F) 3D reconstruction of MRI image slices three months poststroke.  

Fig.2 Transcallosal deafferentation leads to contralesional cortical thinning and 

neuropil shrinkage 

(A) Quantification of contralesional cortical thickness, (B) total cell and neuronal 

density, (C) neuronal soma size distribution in the region of the barrel cortex (250-500 

counted cells per brain), and (D) Region of the barrel cortex analyzed and neuropil 

extraction from Nissl stained inverted images. (E) Quantification of the neuropil 

fraction at two months after dMCAo (n= 10 mice/group). Data were analyzed by Mann-

Whitney Rank Sum test and are presented as means ± standard deviation **** p< 

0.0001, *** p< 0.001.  

Fig.3 Callosal damage and soma alterations onto deafferented transcallosal 

neurons 

(A) Schem of transcallosal neurons labeling and workflow. (BC) Cortical and callosal 

projections of transcallosal neurons in sham and after stroke damage where GFP 

positive axons present signs of degeneration and retraction bulbs (arrowheads) in the 



 

 

 

 

cortex (B) and corpus callosum (C), hallmark of degeneration and ongoing dieback at 

eight weeks after lesion. (D) Quantification of corpus callosum surfaces. (E) eGFP 

positive soma of transcallosal neurons presenting scarce atrophy. (F) Corresponding 

quantification of soma distribution (n=8-9 mice /group). 

Fig.4 Contralesional transcallosal dendritic spine dynamics after stroke 

(A) Contralesional transcallosal neurons labeled with AAV-EGFP portion of apical 

dendrite from sham-operated and injured animals two months after dMCAo. (B) 

Quantification ex-vivo of spine density in apical dendrites (region taken at least 100 µm 

away from soma and with no branching point). Data were analyzed by a two-tailed t-test 

and are presented as means ± standard deviation (n=5/ group; average of 700) *** p< 

0.001. (C) Scheme of the workflow and illustrations of viral labeling. (D) 2-photon 

microscope acquired pictures of the same dendrites followed over different time points 

in the same animal. Quantification of (E) stable spines number (F) dynamic of gained 

and lost spine fractions (G) percentage of transient spines, (H). Data were analyzed by a 

two-way ANOVA followed by Sidak post-hoc test (n= 8-11 Sham and fMCAo, 

respectively). 

Fig.5 Contralesional excitation-inhibition balance 

 (A) Contralesional cortical column in the barrel field at 12 weeks poststroke labeled 

with Vesicular glutamate transporter 1 (vGlut1) and the glutamic acid decarboxylase 

65/67 (Gad65/67) and blow up in the layer II/III in sham and stroke brain respectively. 

Quantification of (B) Gad65/67 and vGlut1 (C) punctate within the cortical column 

(n=7/group).  

Relative expression of GABAA receptor subunits mediating phasic (D) and tonic (E) 

inhibition in the ipsilesional peri-infarct and contralesional homotopic region versus the 

sham group (dashed line). Illustration of inhibitory (red) and excitatory (blue) contacts 



 

 

 

 

(F) together with quantification of vGlut1 (G) and Gad65/67 (H) punctate onto 

dendrites of deafferented transcallosal neurons in the homotopic area to the lesion. (I) 

Ratio of vGlut1/Gad65-67 synapses (n=8-9 mice /group). Data were analyzed by one-

way ANOVA followed by Bonferroni post-hoc test and Student t-Test (ipsilesional 

versus contralesional), and are presented as means ± standard deviation * p<0.05, 

***p<0.001; ****p<0.0001. 

Fig.6 Contralesional neurovascular coupling and functional connectivity 

impairment  

 (A) Timeline of the left whiskers stimulations (five trials) and cranial window on the 

contralesional cortex (CS, cortical suture; M, midline, BF, barrel field, blue dot shows 

the Bregma). (B) CBF at baseline and during stimulation. (C) Quantification of the 

average of maximum response. Data are presented as means ± sd; Student t-Test 

*:p<0.05. (D) Heat maps averaging the response of all animals in each group and (E) 

stroke component of the response versus sham.  



 

 

 

 

Supplementary material 

Materials and Methods 

Animals: 

Animals were housed in our animal facility, under a 12/12hrs light/dark cycle, and were 

provided food and water ad libitum. Adult male C57BL/6N mice (12-16 weeks old, 23-

26 g of body weight, Charles Rivers Laboratories) were used for the study. All surgical 

procedures and experiments were approved by the Ethics Review Board of the 

Government of Upper Bavaria in compliance with the ARRIVE (Animal Research: 

Reporting In Vivo Experiments) criteria (1). All experiments were performed and 

analyzed following randomized and blinded protocols.  

Surgical procedures:  

Virus injections and cranial window implantation:  

Mice were anesthetized with an intraperitoneal (i.p.) triple combination injection of 

Medetomidin (0.5 mg/kg), Midazolam (5mg/kg) and Fentanyl (0.05 mg/kg). Stereotaxic 

virus injections were performed as previously described (2) with some modifications as 

follow. In brief, after placing the animal in the stereotaxic frame (David Kopf 

apparatus) on a warm pad, the skin was incised at the midline to expose the skull. A 

trepanation (3x4 mm) were carried out on the left or right side of the sagittal suture for 

the retrograde and anterograde labeling respectively. Mannitol (250 µl of 20%, B Braun 

Mesulgen) was injected intraperitoneally to facilitate virus penetration. About 10
9
 

copies in 1µl of Adeno-associated viruses (AAV1-hSyn-EGFP or retroAAV2-CAG-

EGFP) per mouse were distributed through pulled glass micropipettes (outside diameter 

at tip of about 30-40 μm) attached to a picospritzer (Twenty air-driven pulses per site, 



 

 

 

 

20 PSI; 5-15 ms; General valve). Six defined locations (0.5 mm in depth to reach the 

layer II/III) were selected to include cortical areas that innervate the forelimbs and the 

whisker pad. After the injections the removed piece of bone was glued back with dental 

cement and Crazy glue. The anesthesia was then antagonized with a combination of 

Atipamezol (2.5 mg/kg), Flumazenil (0.5 mg/kg) and Naloxon (1.2 mg/kg) 

subcutaneously. Cranial window implantation was performed on the right hemisphere 2-

3 days after the injections and one-month prior stroke surgery as previously described 

(3) with the following modifications. In brief, buprenorphine (100µg s.c. Temgesic 

Schering-Plough, Germany) was injected 30 minutes before the surgery. The mice were 

anesthetized with a combination of 2% Isoflurane/70%air/30%O2 and received an 

injection of 200µg of Dexamethasone (s.c. to prevent brain swelling before trepanation 

(4 mm diameter). The dura mater was carefully removed with a thin forceps, and a 

circular cover glass (4 mm diameter) was placed directly on the surface of the brain. 

The cover glass was fixed to the cranial bone using a mixture of dental cement (Cyano 

Veneer) and Crazy glue. A plastic ring (100µg of weight) used for the fixation of the 

head during imaging was then firmly glued to the cranial bone. Animals were placed in 

a pre-heated recovery chamber (32°C) until all the vital functions had been recovered. 

All animals received daily analgesia up to 3 days (100µg s.c. Temgesic Schering-

Plough, Germany) and Enrofloxacin (10 mg/kg; Baytril 50mg/ml Bayer, Germany) for 

five consecutive days.  

2-Photon imaging and spine dynamics evaluation  

Starting one month after cranial window implantation, dendritic tufts in upper layer 

II/III were imaged five times at two weeks interval. Imaging experiments were 

performed under light sedation Anesthesia was induced by subcutaneous bolus injection 

of medetomidin (0.05mg / kg) 10 min before experimentation and maintained through a 



 

 

 

 

mask with a combination of 0.5-1 % isoflurane/70% air/30% oxygen (4). The dendritic 

tufts of transcallosal neurons connected to the infarct were imaged using a water 

immersion Plan-Apochromat 20x/NA 1.0 objective mounted on A Carl Zeiss LSM-

7 MP, Oberkochen, Germany equipped with a Li:Ti laser (Chameleon, Coherent, USA). 

Repetitive imaging of the same dendrites could be achieved with the mouse head fixed 

with the plastic ring to a custom-made imaging setup. Superficial vessels were used as 

initial landmarks, and overview images (stack image ≈200µm, x: 424.89 µm, y: 424.89 

µm) were taken to relocate the dendrites of interest (3-5 per mouse). Dendrites selected 

for imaging were located at superficial levels of the cortex (≈30µm depth; x: 87.23 µm, 

y: 87.23 µm ) and a z-stack (Laser power varied between 5-10%, speed 8, Long Pass 

570) was acquired. Also, the imaging lasted a maximum of 1 hour per session to 

preserve the EGFP signal over the imaging sessions (Fig.S2A,B). Besides, the heart rate 

and peripheral oxygen saturation were monitored by pulse oximeter on Lab Chart 

Reader. At the end of the imaging sessions, the mice were left to recover in 32°C 

recovery chamber prior returning to their home-cage. Spine quantifications: Spine 

density overtime was measured by dividing the total number of spines on the dendritic 

branch by its length for each time point. Spines were counted as stable when persisting 

during all imaging sessions. Transient spines were defined as spines appearing in single 

timepoint excluding baseline and the last time point (8 weeks). Gained and lost fractions 

of spines were calculated over the total number of spines. The spine density at three 

months was measured ex-vivo by counting the number of spines per 10µm dendritic 

length.  

Cerebral ischemia models 

The mice were anesthetized with 4% isoflurane, (balanced with 30% O2, and 65% N2) 

and maintained with 1.5-2% isoflurane for the duration of surgery. The body 



 

 

 

 

temperature was maintained at 37°C using a feedback-controlled heating pad. 

Permanent focal cerebral ischemia (dMCAo) was induced by electrocoagulation of the 

distal part of the middle cerebral artery (MCA) as previously described (5). In brief, 30 

minutes before surgery, the mice received subcutaneous of Buprenorphine (100µg s.c.; 

Temgesic Schering-Plough, Germany) for analgesia. The skin was excised to expose the 

skull, a burr hole was drilled in the temporal bone, and the MCA was permanently 

occluded using high-frequency electrocoagulation forceps. This model causes less than 

5% mortality. Transient cerebral ischemia (referred as fMCAo) was induced by 

occlusion of the left middle cerebral artery for 60 min followed by reperfusion using the 

filament model (silicon-coated filament #701912PK5Re, Doccol) as previously 

described (6, 7). Certainty of the occlusion was confirmed by decreased regional 

cerebral blood flow (CBF) monitored by a laser Doppler probe fixed to the skull above 

the MCA territory (Fig.S1C). Vital parameters were controlled by pulse oximeter 

(Fig.S1DE). Wounds were treated with Povidone-iodine and sutured; the mice received 

an injection of saline (1 ml s.c.; B Braun Mesulgen) and were placed in 32°C recovery 

chamber until full recovery of motor function. Then the mice were returned to their 

home cage with free access to water and food. Sham surgeries were performed 

following the same surgical procedures without occlusion of the MCA.  

Post-operative care: 

To minimize mortality after tMCAo, we applied post-operative care based on the 

feeding protocol we previously described (7) with the following modifications 

(Fig.S1A). During the first three days following surgery, the mice received daily 

injections of Burprenorphine (4 mg/kg s.c.) as analgesic and 0.2% Glucose (G-20 B 

Braun Mesulgen) up to 14 days until stabilization of the body weight. In addition to the 

regular food and water supply, Petri dishes containing freshwater gel slices were placed 



 

 

 

 

a the bottom of the cage along with daily refreshed gel formulated food containing 12.8 

KJ/g of metabolizable energy (regular mouse/rat maintenance powdered food (V1530, 

Ssniff Germany) mixed with water (1:3 ratio). Bodyweight was monitored before 

surgery, daily for the first week, and weekly after that until five weeks after stroke 

induction as an indicator of animal welfare (data not shown). Only animals which 

showed less than 20% body weight loss were included in the study.  

Behavior assessment: 

Sickness and sensorimotor behavioral deficits (also called modified Neurological 

Severity Score mNSS) were assessed as previously described (7) starting from the day 

of stroke surgery and every two weeks in alternate with the 2-photon imaging sessions 

for nine weeks.  

Whisker stimulation and Laser speckle imaging: 

Wisker stimulation was performed under light sedation, as described above. The left 

whiskers were stimulated five times with a frequency of 1-2 Hz for 40 seconds with 3 

minutes interval while the CBF response was recorded on the right somatosensorial 

cortex through the cranial window previously used for the imaging. PeriCam PSI High-

Resolution Laser Speckle was used for acquisition of whisker stimulation responses at a 

resolution of 44 frames/sec (Movie S2). Numerical values were generated using the 

PIMSoft program. For each 30 sec of stimulation, the CBF response was normalized to 

an individual baseline corresponding to the 20-sec recording before stimulation (Movie 

S2, see TOI). Individual and averaged responses for sham and stroke groups were 

analyzed. 

 



 

 

 

 

CO2 challenge: 

Vasomotor reactivity was evaluated using CO2 as a vasoactive stimulus, as previously 

described (8). Animals were kept under light sedation as described above to record the 

baseline and exposed to 10% CO2 for 5 min to induce a hypercapnic blood flow 

response (Fig.S3A). Inhaled CO2 was controlled by microcapnometry (Fig.S3B). The 

contralesional CBF response was monitored before and after CO2 inhalation (Fig.S3C) 

until recovery of baseline (4 min) by laser speckle imaging.  

Heat map acquisition: 

Laser Doppler perfusion imaging (LDPI) was used to capture 2-D images of the 

perfusion in the cortex contralateral to the infarct while stimulating the ipsilateral 

forepaw. For each mouse, a series of images were acquired with an acquisition rate of 

4.4Hz and image matrix 245 x 245 pixels. Image acquisition started 2 minutes before 

the first forepaw stimulation. Stimulations lasted 30 seconds and were repeated five 

times with an inter-stimulus-interval of 3 minutes. Perfusion images were analyzed in 

MATLAB (R2016b, The MathWorks, Natick, MA) using custom scripts. First, a 

spherical region of interest (ROI), containing the exposed cortex, was defined manually. 

For each pixel within the ROI, the perfusion signal time-series was highpass filtered 

with a cutoff frequency of 0.004 Hz, in order to remove signal drift. This filter was 

implemented using the MATLAB functions cheby1 and filtfilt to design a Chebyshev 

Type I filter of order 2 and to perform zero-phase digital filtering. Then a threshold was 

defined using Otsu's method, in order to detect stimulation periods automatically. The 

correct detection of stimulation periods was verified visually. To account for a 

potentially ramp-like increase of the perfusion signal at the beginning of the stimulation, 

the perfusion signal was averaged within 10 and 30 seconds after the automatically 

detected stimulation onset and normalized to the baseline perfusion signal, defined 



 

 

 

 

individually for each stimulation period as the average signal within 40 to 10 seconds 

before the automatically detected stimulation onset. The hereby resulting, normalized 

response of the perfusion signal to the stimulation was then averaged across stimulation 

periods, first individually for each animal, and then across animals within each 

experimental group. To allow averaging across animals, the images, cropped around the 

spherical ROI, were resized to an image matrix of 120 x 120 pixels. One animal of the 

sham group was excluded due to signal fluctuations, not being related to the stimulation 

periods. For a better understanding of the individual responses, heat maps were also 

acquired for individual animals (Fig. S4). Given the within sham group variation in the 

response to stimulation we had to implement exclusion criteria. We included datasets 

only if at least a connected area of pixels, covering at least 5% of the total area in the 

spherical ROI and having response to stimulation above 10% of baseline intensity (data 

not shown). 

Tissue processing and imaging: 

Animals were anesthetized by intraperitoneal injection of mix midazolam (5mg/kg; 

Braun, Melsungen, Germany), fentanyl (0.05mg/kg; Jansen-Cilag, Neuss, Germany), 

and medetomidine (0.5mg/kg; Pfizer, Karlsruhe, Germany) and transcardially perfused 

with saline followed by 4% paraformaldehyde in 0.1 M sodium phosphate buffer pH 7.4 

(PBS). Brains were removed and post-fixed the same fixative for 24h and transfer to 

PBS for further processing. After a brief wash in PBS, the brains were either embedded 

in 4% low melting temperature agarose for vibratome sectioning or kept in graded 

solutions of sucrose (10-30%) and froze in dry-ice chilled isopentane for 

cryosectioning. Serial free-floating 50µm thick coronal sections were cut through the 

cerebrum with a Leica VS1200 vibratome and collected in cryoprotectant solution 

(polyethylene glycol 400 and glycerol TBS/0.05% sodium azide). Serial cryo-sections 



 

 

 

 

(20µm) were cut on Thermo Shandon 620 Cryostat collected on Superfrost plus slides. 

All samples were stored at -20°C until further processing. 

Brain thickness and neuropil fraction measurements  

To explore the extent of brain atrophy, the thickness of the contralesional cortex and 

corpus callosum were assessed at bregma 0, -0.5 and -1.5 levels covering the infarct in 

Nissl-stained sections. Sections mounted onto Superfrost slides were air-dried 

overnight, and incubated for 45 minutes at 60°C in a solution of 0.05% Cresyl fast 

violet /0.05% acetic acid, rinsed in distilled water, and differentiated through a graded 

series of alcohols before clearing in xylene and coverslipped with DPX. To evaluate the 

cortical thickness, 15 perpendicular lines extending from white matter to pial surface 

were placed on the sections using a 5X objective covering cortical regions spanning the 

sensorimotor cortex including the primary visual, primary motor, and lateral entorhinal 

cortices according to the landmarks described by Paxinos and Franklin. Ispilesional and 

contralesional (until midline) corpus callosum surfaces were measured at bregma level 

slices, as previously described using ImageJ software (9). The average of three sections 

was then calculated for each animal and used for statistical comparison between groups. 

Results were expressed as the mean cortical thickness in µm and surface coverage for 

corpus callosum.  

The Nissl-stained volume fraction corresponds to cell bodies of neurons, glia, and 

endothelial cells. The non-stained area represents the neuropil space containing the glial 

and neuronal dendrites and axons, which provides an indirect readout of connectivity 

coverage. The neuropil fraction was evaluated in layers II/III from high-resolution 

images taken in the homotopic region to the lesion. The area covered by the neuropil 

was extracted in the inverted images after conversion to 8 bit and binarization (erode 



 

 

 

 

and dilate) using Image J software. The average of three sections was then calculated 

for each animal and used for statistical comparison between groups.  

 

Cell density and soma size: 

To determine the neuronal and non-neuronal cell densities, three brain sections (bregma 

0, -0.5 and -1.5 levels) were stained with NeuN and Dapi. Four regions per section were 

delimited and imaged in homotopic region to the lesion in the contralesional cortex 

(layer II/III and V). Manual counting of the number of Dapi stained cells NeuN positive 

or NeuN negative was performed after blinding for the sham and stroke groups. 

Neuronal soma size area was traced and measured using Image J software. Frequency 

distribution of the neuronal soma sizes was generated using Excel software.  

Immunofluorescence and confocal imaging 

Immunofluorescent stainings were performed on vibratome sections as previously 

described (10) using guinea pig anti -Vesicular glutamate transporter 1(vGlut1; 

Millipore AB5905; and the rabbit anti- glutamic acid decarboxylase 65/67 (Gad65/67; 

Sigma G5163) both at the dilution 1:5000 followed by Donkey anti Guinea pig Alexa 

647 and Donkey anti rabbit Alexa 488 (1:1000) secondary. Fluorescence images were 

acquired with EC Plan-Neofluar 40x/1.30 Oil DIC M27, and the Plan-Apochromat 

100x/1.46 Oil DIC objectives mounted on confocal laser scanning microscope (LSM 

880, Carl Zeiss) equipped with the GaAsP and Airyscan detectors.  

Quantification of vGlut1 and Gad 65/67 punctate was performed in the homotopic 

contralesional cortex on 3 representative sections (bregma 0, -0.5 and -1.5 levels). 7 

regions of interested (30µm z-stack; 42.43 µm width); delineating a full cortical column 

from marginal zone to corpus callosum) were defined per section. Total number of 



 

 

 

 

vGlut1 and Gad 65/67 punctates were counted using the macro Find Maxima from FIJI 

Image J software (Noise tolerance 15 and 20 respectively). The average of three 

sections was then calculated for each animal and used for statistical comparison 

between groups. We also manually counted the number of vGlut1 and gad65/67 

overlapping with contacting the GFP positive spines from labeled transcallosal neurons 

in the anterior and posterior region homotopic to the lesion (see neurovascular coupling 

result section for details).  

 

Ex-vivo MRI acquisition 

In vivo MRI was performed using a 3T nanoScan® PET/MR (Mediso, Münster 

Germany). The magnet is equipped with a 3 Tesla cryogen-free system (bore size 2350 

mm, > 450 mT/m maximum gradient) and a 42 mm internal diameter quadrature mouse 

body coil was used. The brains stored in PBS in 15 ml falcon tubes were fixed on 

custom-made holder during MRI scanning. Coronal MRI sections of the entire 

cerebrum were performed. T2-weighted imaging (T2WI) were acquired with the 

following parameters: 2D fast-spin echo (FSE); TR/TE = 3000/65.3 ms; number of 

averages 17; matrix size = 272 × 272; field of view = 38 mm × 38 mm; resolution 140 x 

140 x 660 µm3. To determine the stroke lesion area, the ROI was identified by refering 

to T2-weighted images. Ipsilesional and contralesional hemispheric were manually 

measured on 12 consecutive sections using ImageJ software (polygone tool; National 

Institutes of Health, Bethesda, MD). Volume was then calculated using the following 

equation: V = d*(A1/2 + A2 + A3…+ An/2) with d being the distance between sections 

in mm and A being the measured area. 3D reconstruction of the representative MRI 

images was performed using Imaris Software. 

 



 

 

 

 

Real-Time PCR 

At different time-points after stroke, the brains were dissected and the lesion area in the 

ipsilateral cortex, as well as the homotopic corresponding area in the contralesional 

cortex, were collected separately using a biopsy punch (3 mm diameter) and used to 

isolate total RNA. Total RNA was isolated using the RNeasy Mini kit (Qiagen), 

according to the manufacturer’s protocol and quantified by measuring optical density. A 

total of 1000 ng of total RNA was treated with amplification grade DNase I (Invitrogen; 

Karlsruhe, Germany) to eliminate residual genomic DNA from the sample, and reverse 

transcribed with oligo(dT)12-18 primers and Superscript II Reverse Transcriptase, using 

the Omniscript First-Strand Synthesis System for RT-PCR (Qiagen), according to the 

manufacturer’s instructions. Real-Time PCR reactions were carried out with 20 ng of 

cDNA template and 20 pm each of forward and reverse gene-specific primer, using the 

LightCycler QuantiNova SYBR Green RT-PCR Kit (Qiagen). Primers for GABAA 

receptor subunits α1, α2 and δ targeting phasic (extrasynaptic ) and α4, α5 and γ2 

targeting tonic ( synaptic) inhibition were designed spanning intronic regions to rule out 

contamination from genomic DNA (Table. S1). Real-time PCR reactions were 

performed in triplicate on a Light Cycler 480 Instrument (Roche; Mannheim, Germany). 

Melting curve analysis was run for each primer pair to ensure that the PCR reaction 

yielded a single, pure, PCR product. CP (Crossing Point) values, which correlate 

inversely with the log of the initial template concentration, were determined by 

averaging CP values from three independent Light Cycler reactions. Fold increase in 

expression of the transcript was calculated as a ratio of 2ΔCP from target gene and 

2ΔCP from GAPDH gene. The housekeeping gene, GAPDH was used for normalization 

in order to compensate for variability in RNA amount and for exclusion of general 

transcription effects. All expression values are relative to the ones of sham operated 



 

 

 

 

animals. Relative expression values of all subunits mediating phasic respectively tonic 

inhibition were averaged for each animal to obtain a measure for phasic and tonic 

inhibition. 

Statistical analysis: 

Sample size and statistical analysis were performed using Graphpad Prism 8 software. 

All plotted values were expressed as means plus standard deviation (SD). F test was 

applied to define similarity in variances. For comparison between two groups statistical 

significance was determined by two-tailed Student’s t-test with Welch’ correction or 

Mann-Whitney Rank Sum test. For multiple comparison one-way analysis of variance 

(ANOVA) followed by followed by Sidak post-hoc test was used. Two ANOVA 

followed by followed by Sidak or Bonferroni post-hoc test were applied for repeated 

measures as indicated in figure legends. A p-value of less than 0.05 was considered 

statistically significant.  

 

Movie legends  

Movie S1: 3D reconstruction of representative MRI images of a brain 3 months 

after stroke 

Positioning of the lesion core and the corresponding homotopic region in the 

contralesional hemisphere. 

Movie S2: Example of CBF response to whiskers stimulation in Sham- operated 

animal Activity of ROI (blue) versus full field of view (black). TOI (time of interest) 

defining the baseline and following stimulation (2 trials).  

Movie S3: Example of CBF response to whiskers stimulation 14 days after stroke  



 

 

 

 

Movie S4: Example of CBF response to whiskers stimulation 90 days after stroke  
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Fig. S1. Post-operative care workflow, sickness behavioral recovery and vital parameters (A) 

Protocol for optimum survival. (B) Sickness behavior recovery overtime. (C) Drop in cerebral 

blood flow at the MCA during the occlusion. (D) Rectal temperature and (E) heart rate are not 

altered.  Data is analyzed by Two-way ANOVA followed by Sidak post-hoc test and presented as 

means ± standard deviation ***p<0.001; (n = 8-11/group). 
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Fig. S2. Analysis of fluorescence over the course of time 

(A) 2-photon overview picture of GFP positive dendritic tuffs of transcallosal neurons 

connected to the lesion (B) GFP coverage does not vary over the repetitive imaging sessions. 

Data are presented as means ± standard deviation (n = 7/group).  
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Fig. S4. Individual heat maps 

Mouse individual heat maps (5 averaged stimulations). Missing signals are from 

animals presenting blurry infected cranial windows which had to be terminated. 
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Table. 1 qPCR primers  

Gene Gene product Forward Reverse 

Gabra1 GABA Receptor A 

subunit α1 

GCCCACTAAAATTCGGAAGC CTTCTGCTACAACCACTGAACG 

Gabra2 GABA Receptor A 

subunit α2 

TTCACAAAAAGAGGATGGGC TGACGGAGCCTTTCTCTTTT 

Gabra3 GABA Receptor A 

subunit α3 

TGGCACTTTTATGTGACCAGA CATGCTTGGGAGAGATGCCT 

Gabra4 GABA Receptor A 

subunit α4 

AAAGCCTCCCCCAGAAGTT CATGTTCAAATTGGCATGTGT 

Gabra5 GABA Receptor A 

subunit α5 

GACGGACTCTTGGATGGCTA ACCTGCGTGATTCGCTCT 

Gabrd GABA Receptor A 

subunit delta 

CAAGGTCAAGGTCACCAAGC GGGAGATAGCCAACTCCTGA 

Gabrg2 GABA Receptor A 
subunit gamma 2 

GGAATACAACTGAAGTAGTGA
AGACAA 

TTCTGCTCAGATCGAAGTACAC
A 

Gapdh Glyceraldehyde-3-

phosphate 

dehydrogenase 

ATTGTCAGCAATGCATCCTG ATGGACTGTGGTCATGAGCC 
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4. Discussion 
 
4.1. Critical reasoning of the results 
 

Our results characterized the long-lasting and high plasticity undergoing in neurites in 

pathological conditions. As the main components of the synapses, the alterations axons and 

dendrites undergo has a great impact on synaptic strength, number, and function (Lin and 

Koleske, 2010; Araya et al., 2014) worsening the pathological condition. Synaptic pathology 

has been previously studied in neurodegenerative diseases and psychiatric disorders (van 

Spronsen and Hoogenraad, 2010), highlighting the importance of the structural and molecular 

organization of synapses for brain function and recovery. 

 

We can summarize our results on axonal pathology in AD, in two main points according to the 

experiments developed in vivo and ex vivo. The three-dimensional reconstruction and study of 

dystrophic axons expressing GFP followed in vivo, allowed us to observe the possible existence 

of two subpopulations of dystrophies, both with a long life span. On the one hand, a more 

"active" population characterized by more significant variations in size over time that reach 

higher volumes. Interestingly, in this population, both the disappearance and formation of new 

dystrophies in the same parental axon as well as "sprouting" or abnormal axonal growth can 

be observed. On the other hand, we find other more stable or "passive" dystrophies that 

present less variation over time. With the ex vivo analysis, we were able to observe that most 

of the dystrophies that express GFP express markers of a presynaptic nature as well as 

lysosomal and autophagy markers. We also found that Aß peptide is expressed in only 60% of 

the GFP-expressing dystrophies. 

 

Previous research has focused on imaging neurites in the vicinity of amyloid plaques (D'Amore 

et al., 2003; Tsai et al., 2004; Garcia-Alloza et al., 2006; Serrano-Pozo et al., 2011; Sadleir et al., 

2016). DNs were observed over short periods (3 days to 5 weeks maximum) as a pathological 

hallmark near plaques analyzing their nature and potential origin. Also, dystrophies were 

imaged before and after applying antioxidants (Garcia-Alloza et al., 2006), Aβ antibodies 

(Brendza et al., 2005), or BACE inhibitors as treatments (Peters et al., 2018).  

An essential contribution of our study was the follow-up of individual dystrophies over a long 

period (5.5 months). This enabled the analysis of long-lasting heterogeneous changes that take 

place between different dystrophies or in the same dystrophy. We observed that they are 

present for a longer time than previously thought and do not grow steadily, but show "waves" 

of growth and decrease. They can also disappear while the parental axon remains and 

generate new dystrophy. 

Although DNs apply to both morphological changes in axons and dendrites, in our model, the 

dystrophies expressing GFP were predominant axonal as by their characteristics seen in vivo 

and by immunostaining and co-localization with the common synaptic markers (Vglut-1, BACE-

1, and SNAP-25).  

 

Moreover, we observed that almost all DNs expressing GFP had immunoreactivity for BACE-1 

(92%). However, in the case of Aß and APP peptide, only 60% of the GFP expressing 

dystrophies expressed Aß42, which recognizes monomeric forms of Aß. 50% of the GFP 

expressing dystrophies were positive for Aß4G8, which recognizes both APP and some forms of 

Aß peptide. This is probably why only about half of the dystrophies could be explained by the 

presence of BACE-1 and the generation of Aß. However, we cannot exclude that Aß formation  
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may be a transitory event in DNs since we have observed that over time they are very flexible 

structures.  

As described in other studies, we also found the colocalization of DNs with lysosomal and 

autophagy markers. Therefore, the accumulation of autophagic vesicles in DNs is essential in 

their formation. However, it remains unclear what exactly leads to the formation of these 

abnormalities in the axons near the plaques in AD. 

In our study, we observed that about 22% of the axons crossing near the amyloid plaque 

developed a dystrophic pathology. This is an interesting finding since most axons seem to be 

resistant to the pathology. Until recently, cortical pyramidal neurons have been considered a 

homogeneous class of cells. This concept is now changing and different pyramidal cell types 

have been recognized. Cortical regions, layers, or even within the same layer pyramidal 

neurons could differ in morphology, neurochemistry, and physiological properties (Molnar and 

Cheung, 2006; Schubert et al., 2006; Hattox and Nelson, 2007). These different properties may 

explain the different susceptibility to dystrophic pathology. 

Furthermore, the relationship between extracellular amyloid deposits and the formation of 

dystrophies is not known. Are DNs a cause or a consequence of the plaque formation? For 

years, it has been considered that the formation of DNs was a consequence of amyloid 

deposition or microglia activation but not an active participant in the pathogenesis of the 

plaques. This view is changing and instead suggest that the processing of the Aß peptide in DNs 

contributes to the formation of the plaques (Nixon et al., 2005). This fact, together with the 

disruption of axon transport, abnormal mitochondrial function, oxidative stress, autophagy, 

and altered lysosomal processing, places DNs as a possible nest for plaque formation (Fiala, 

2007). 

We found two subpopulations of DNs: stable or "passive" dystrophies versus a more “active” 

type. The existence of these two types seems to suggest that both situations can coexist and 

that the dystrophies can be cause or consequence of the plaques, being the "active" ones 

those that contribute more pronounced to the formation of the plaque and the "passive" ones, 

the dystrophies that would originate in a second way. 

In the same line, our neurochemical analyses suggest the existence of two populations of 

dystrophies that express GFP, those that present APP and Aß (over 50%), and others that do 

not. The first may correspond to those formed by the intracellular presence of BACE-1 and the 

generation of Aß and which would actively participate in the formation of the plaque, while 

the others may be those, which originate secondarily from the effect of the Aß of the plaque. 

 

Taking into account all these results and the existence of this neuronal plasticity, especially 

around the amyloid plaques, the possibility that synaptic abnormalities associated with 

amyloid plaques may be reversible within a specific time window increases. To that end, the 

two-photon in vivo technique and the use of appropriate tools for the development of detailed 

three-dimensional reconstructions can help to establish the guidelines for future research to 

promote axonal functional regeneration and the restoration of neuronal circuits. 

 

Regarding our stroke research, we demonstrate that damaged and deafferented transcallosal 

neurons remodel their dendritic spines underlying the observed diaschisis in the contralesional 

hemisphere. The ongoing atrophy at the level of the infarcted hemisphere (ipsilesional) would 

lead to an extension of the damage to the contralesional side through the transcallosal 

pathway. The first effect we could see was a decrease in the cortical thickness, which has also 

been observed in previous clinical studies (Duering et al., 2015; Cheng et al., 2020). 
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The thinning took place without any cell death since no change in the cell density nor in the 

soma size was seen. Interestingly, we found a significant decrease in the neuropil fraction, 

together with a decrease in spine density in the apical dendrites of transcallosal neurons after 

stroke. The dendritic reorganization of these neurons might explain this remote effect. 

Previous studies have focused on dendritic alterations in the contralesional hemisphere, but it 

remains unclear if there is remodeling or not (Takatsuru et al., 2009; Johnston et al., 2013). 

The controversy might lie in differences in the observed cortical area and the use of thy1-GFP 

multivariant transgenic mice, which provides non-uniform labeling through layers as well as 

cortical regions (Porrero et al., 2010). One crucial aspect of our work, also contributing to 

lower the level of ambiguity in the field, was the use of retrograde labeling to target 

specifically the transcallosal neurons deafferented by an ischemic stroke.  

Moreover, the structural changes observed were related to the functional outcome by 

measuring the response to whisker´s stimulation using laser speckle imaging. Based on the 

NVC principle, activated and more functional neurons demand more blood supply and induce 

an increase in the hemodynamic signal that is recorded by the laser speckle. Structural 

alterations would translate at the same time into different functionality/responding patterns. 

The homotopic area presented a peak of activity at 14 days post-ischemia, followed by a 

decrease at three months. Surprisingly to our previous findings (decreased response to 

whisker stimulation at three months), our immunostainings revealed an imbalance towards 

more excitation in the homotopic region after stroke. This might be related to the fact that the 

signal obtained with the laser speckle shows a global response of the whole imaged window, 

which could be indeed decreased. In contrast, in our staining, we focused just on the GFP 

expressing transcallosal neurons that displayed a higher level of excitation. A similar situation 

has been observed before in cultured neurons where distal axonal injury (axotomy) was 

followed by spine loss and an increase in excitability. A cascade of events leading to a 

retrograde axon-to-soma signaling and then trans-synaptic signaling from the injured neuron 

to uninjured presynaptic neurons might be responsible for the synaptic changes and enhanced 

excitability (Nagendran et al., 2017). 

 

The detailed investigation of dendritic changes allows us to understand better how the brain 

responds and reorganizes after injury and to develop measures to enhance or possibly inhibit 

this remodeling from developing novel therapeutic strategies for patients suffering from a 

stroke. 

 

4.2. Technical considerations 

For both studies, we chose the longitudinal two-photon imaging through a chronic cranial 

window as a technical approach. For the visualization of neuronal structures, we made use of 

transgenic models or retrograde viral labeling. Two-photon laser scanning microscopy (TPLSM) 

is a well-known tool used since the 1990s for the imaging of structural dynamics of dendritic 

and axonal arbors (Denk et al., 1990; Svoboda and Yasuda, 2006). An advantage of two-photon 

microscopy is that by using long wavelength-excitation light, it provides a depth penetration of 

several micrometers (~800 µm) into the intact nervous tissue (Rochefort and Konnerth, 2012). 

Usually, for the imaging of spines, the spatial resolution is limited to around 300 nm, although 

current super-resolution techniques such as STED microscopy overcome this resolution barrier 

(Nagerl et al., 2008).  

In general, TPLSM offers great advantages for the observation of brain structures. However, 

the strong scattering caused by the skull over the cortex can hinder the observation of 

fluorescently labeled neuronal structures or microvasculature (Kneipp et al., 2016). For this 
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reason, we performed a craniotomy and removed the bone before implanting the chronic 

glass window.  

 

The procedure offers, on the one hand, higher imaging quality but is known to be related to 

alterations such as inflammation and microglial activation (Dorand et al., 2014). For instance, 

immunohistochemical analysis using glial fibrillary acidic protein (GFAP) and ionized calcium-

binding adaptor molecule-1 (Iba-1) showed gliosis under the cranial window during four weeks 

post craniotomy (Koletar et al., 2019). Therefore, we started our imaging at least four weeks 

after window implantation. 

In our experiment, we circumvented the craniotomy induced artifacts by following different 

steps. First, we avoided local damage and the resulting brain edema by using dexamethasone. 

This drug is a well-known corticosteroid that reduces cerebral edema (Dietrich et al., 2011) and 

enables the successful placement of the glass on the brain parenchyma. 

Another crucial point during surgery was related to the hole drilled in the bone. By using a 

biopsy punch with the same diameter as the cover glass, we ensured a perfect match and 

adjustment of the glass on the brain. The tight coupling avoided movement artifacts during 

imaging caused by normal breathing and heartbeat (Paukert and Bergles, 2012).  

After the surgery, the window can get infected and occluded by fibrotic scarring, periosteal 

dura, together with bone regrowth compromising its use for repetitive longterm imaging (Heo 

et al., 2016). Therefore we treated the animals with enrofloxacin the day of surgery as well as 

in the first postoperative days. Also known as baytril, this antibiotic owns significant post-

antibiotic effect for both, Gram-negative and Gram-positive bacteria, and is active in stationary 

and growth phases of bacterial replication (Slate et al., 2014). Nevertheless, we still had to 

exclude some animals from the experiment (~28%). 

 

For the observation of dendritic spines in our stroke experiment, we performed viral 

injections. To facilitate the penetration of viral cargo, we made use of mannitol. The co-

infusion with this compound has been shown to improve gene transfer to neurons, increasing 

the distribution and the total number of transduced cells (Mastakov et al., 2001). 

However, in contrast to the transgenic expression of GFP, viral labeling might be less stable 

and possibly bleach over the imaging sessions. We measured the stability of the GFP signal and 

ensured that the GFP coverage remained stable. Additionally, imaging sessions were separated 

for at least a week for the GFP signal to recover.  

 

The axonal pathology was studied in two transgenic mouse lines (dE9xGFP-M and APP-

PS1xGFP-M), which are well-known models in AD research (Hall and Roberson, 2012).  

Heterozygous dE9 and APP-PS1 mice were crossed with heterozygous GFP-M mice resulting in 

triple transgenic dE9xGFP-M and APP-PS1xGFP-M mice, which express GFP in pyramidal 

neurons. In the dE9 model, plaques appear at six months while in the APP-PS1 mouse, it begins 

at two months (Hall and Roberson, 2012).  

Our data showed DNs, which may contribute to the disease progression. However, it was 

recently shown that GFP expression might change neuronal behavior. It has been 

demonstrated that GFP expression increases oxidative stress (Ganini et al., 2017) as well as 

changes in the expression of proteins that are associated with protein folding, cytoskeletal 

organization, and cellular immune response (Coumans et al., 2014). Nevertheless, these 

studies were performed using cell culture and not in the living animal. In addition, a study that 

analyzed the long-term expression of GFP and its variants in transgenic mice showed a minimal 

toxic effect (Feng et al., 2000). 

 

https://en.wikipedia.org/wiki/Gram-negative
https://en.wikipedia.org/wiki/Gram-positive
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In our stroke study, we contributed to clear the controversy reached by other studies about 

the contralesional structural and functional remodeling. Some findings pointed out dendritic 

alterations while others showed the opposite results (Takatsuru et al., 2009; Johnston et al., 

2013). The controversy could be due to differences in the observed cortical area and the use of 

thy1-GFP multivariant transgenic mice, which provides non-uniform labeling through layers as 

well as cortical regions (Porrero et al., 2010). With our retrograde labeling, we were able to 

target the transcallosal neurons and study stroke-induced deafferentation specifically.  

 

The imaging of the spine plasticity was performed under light sedation since it can be strongly 

influenced by the use of anesthetics. For example, the administration of ketamine has been 

shown to alter dendritic filopodial dynamics (Yang et al., 2011) as well as synaptic remodeling 

(Crosby et al., 2010). Considering the impact of drugs, we designed our protocol to reach only 

a level of light sedation. Too much anesthesia could lead to no response or anesthesia-induced 

alterations, while too little amount could result in movement artifacts during imaging. To 

obtain light sedation, we based our protocol on medetomidine in combination with a low dose 

of isoflurane (Cramer et al., 2019). The drug medetomidine is a potent alpha 2-adrenoceptor 

agonist and stimulates receptors centrally to producing dose-dependent sedation. In the 

periphery, it causes an analgesic effect accompained by marked bradycardia and decrease the 

cardiac output (Cullen, 1996). 

  

Furthermore, to relate the structural dendritic reorganization observed in mice after ischemia 

to neuronal activity, we relied on the neurovascular coupling (NVC) and laser speckle imaging 

after the whisker´s stimulation. This technique is based on similar principles than BOLD-fMRI 

used in patients, therefore, our experimental outcome is directly comparable to BOLD imaging 

and translational research. In addition, a previous study by Lecrux and collaborators (Lecrux et 

al., 2019) observed that sensory input, such as whiskers stimulation, evoked comparable laser-

doppler flowmetry, and BOLD-fMRI signals. 

 

Moreover, we used the filament model (fMCAo) as the method to induce an ischemic stroke. 

In this model, a silicone-coated filament is pushed into the internal carotid artery until the 

laser-doppler signal (probe placed on the skull) indicates occlusion of the MCA territory. The 

occlusion was performed for 60 min, followed by filament removal and reperfusion time 

(Groger et al., 2005). This model, broadly used in the field of experimental stroke, recapitulates 

most of the pathophysiology of ischemic stroke in humans (Lourbopoulos et al., 2017; 

Sommer, 2017). Nevertheless, it causes cortico-striatal infarcts and severe neurological deficits 

(Dirnagl and Endres, 2014) that are linked to a high mortality rate of 30– 90% (Ingberg et al., 

2016). Previous research made by our group highlighted that mortality is not primarily caused 

by ischemic brain damage and infarct size, but secondarily by inadequate food and water 

intake (Lourbopoulos et al., 2017). We, therefore, we adapted of post-stroke nutritional 

support established in our laboratory to increase survival,  

We could keep all mice induced with stroke and depict sustained neurological deficits allowing 

to characterize the subacute and chronic phases of stroke. Moreover, the improvement of 

long-term survival, together with the presence of chronic functional impairments, significantly 

increased the translational potential of our findings. 

4.3. Considerations about the findings and future directions  

In our study, we offer new insights into nature and progression in pathological conditions of 

neuritic changes. Recent studies focusing on BACE1 inhibitory drugs are currently developed to 

treat AD patients and showed promising results in animal models. The sequential and 
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increased deletion of BACE1 in an adult AD mouse model (5xFAD) was capable of completely 

reversing amyloid deposition. This resulted in significant improvement in gliosis and neuritic 

dystrophy, as well as a significant improvement of synaptic functions (Hu et al., 2018). Even if it 

represents an exciting pharmacological approach, the interference in BACE1 metabolism has 

presented side effects in the past, and further research needs to be performed for a better 

understanding of its role in health and disease (Vassar, 2014; Moussa-Pacha et al., 2020). Here 

we provide relevant cues for the discovery of novel therapeutic strategies together with 

information related to the optimal time window for pharmacological treatment. The 

therapeutic window to treat DNs is more extended than previously thought, and neurons 

could still be rescued also if they looked altered and dysfunctional at first sight (Adalbert et al., 

2009).  

 

Furthermore, our findings associated with the structural and functional changes after stroke 

provided relevant information about how and when to enhance brain repair and recovery. In 

contrast to the limited therapeutic window for the acute phase of stroke 

(thrombolytic/thrombectomy treatment), interventions during later phases of stroke display 

much broader applicability. For that reason, current and future research focus on the 

structural and functional reestablishment of the neurovascular networks as the fundamental 

process for stroke recovery. Combining physical interventions (rehabilitation) with other 

treatments (e.g., drugs, stem cell transplantation, or electrical stimulations) may enhance the 

brain repairing power, reestablishing the altered networks, brain functions, and contributing to 

counteracting the lifelong disabilities (Zhao and Willing, 2018). 

Nevertheless and according to both preclinical and clinical studies, intervention timing is a 

sensitive issue to the restorative approach. Our findings associated with dendritic changes 

after stroke suggested that neurons in the contralesional hemisphere undergo very dynamics 

and progressive alterations. This dynamic would explain the difficulty of defining the correct 

time for an intervention. The dendritic reorganization and the functional outcome would 

suggest 14 days at the latest.  

Future experimental efforts using electrophysiology recordings and calcium imaging could 

provide understanding to better targeting the transcallosal neurons connected to the infarct. 

 

Stroke is often associated with cognitive decline and dementia attributed to the vascular 

pathology (Iadecola, 2013). Current clinical studies have documented a close relationship 

between cerebrovascular disease and Alzheimer's disease risk (Garcia-Alloza et al., 2011). Our 

work on axonal dystrophy, deafferentation, and dendritic spines alterations highlighted 

damages in white matter and fiber tracts. These alterations were critical and common features 

defining disease progression in both Alzheimer´s Disease and ischemic stroke, suggesting their 

implication in the development of dementia-like conditions. 

 

 

 

 

 

 

 



116 
 

5. References 

Adalbert R, Nogradi A, Babetto E, Janeckova L, Walker SA, Kerschensteiner M, Misgeld T, 
Coleman MP (2009) Severely dystrophic axons at amyloid plaques remain 
continuous and connected to viable cell bodies. Brain 132:402-416. 

Ahmad M, Graham SH (2010) Inflammation after stroke: mechanisms and therapeutic 
approaches. Transl Stroke Res 1:74-84. 

Andrews RJ, Bringas JR, Alonzo G, Salamat MS, Khoshyomn S, Gluck DS (1993) Corpus 
callosotomy effects on cerebral blood flow and evoked potentials (transcallosal 
diaschisis). Neurosci Lett 154:9-12. 

Araya R, Vogels TP, Yuste R (2014) Activity-dependent dendritic spine neck changes are 
correlated with synaptic strength. Proc Natl Acad Sci U S A 111:E2895-2904. 

Atochin DN, Huang PL (2011) Role of endothelial nitric oxide in cerebrovascular 
regulation. Curr Pharm Biotechnol 12:1334-1342. 

Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and 
neuronal control of brain blood flow. Nature 468:232-243. 
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