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I. INTRODUCTION 

Duchenne muscular dystrophy (DMD) is the most prevalent heriditary 

neuromuscular disease in newborn boys (1:3500) (Emery, 1991; Ryder et al., 2017). 

It is characterized by severe and progressive generalized muscle degeneration and 

wasting, manifesting at an average age of 2.5 years (Ciafaloni et al., 2009), and 

leading to a total loss of ambulation latest at the age of 12 years (Blake et al., 2002). 

Affected individuals die within their 2nd to 3rd decade of life due to cardiorespiratory 

failure (Eagle et al., 2007; Passamano et al., 2012). DMD is triggered by a great 

variety of mutations, located within the dystrophin (DMD) gene, the largest gene in 

the human genome, located on the X-chromosome (Koenig et al., 1987; Monaco et 

al., 1986; Roberts et al., 1993). Mutations cause a loss of function of the muscle 

structure protein dystrophin, which is anchored as part of the dystrophin 

glycoprotein complex (DGC) to the sarcolemma (Nowak and Davies, 2004; Straub 

et al., 1992). Some mutations, however, lead to a low presence of truncated but 

partially functional dystrophin, which results in a milder form of the disease, the 

Becker muscular dystrophy (BMD) (Blake et al., 2002). Up to date, the most 

important therapeutic measures concerning the treatment of DMD are 

multidisciplinary care and glucocorticoid medication, aiming to relieve the 

symptoms and to slow down disease progression (Bello et al., 2015a; reviewed in 

Birnkrant et al., 2018b). Besides, for few disease-causing mutations, promising 

mutation-specific therapies intending to restore dystrophin expression have been 

developed within the past few years or are currently under investigation (National 

Library of Medicine, 2019; Ryan, 2014; Van Ruiten et al., 2017). Some recent 

molecular therapy approaches aim to permanentely restore dystrophin expression 

by editing the genome, converting DMD into the milder BMD (Long et al., 2016; 

Xu et al., 2016). Especially in therapeutic trials, the reliable assessment of disease 

progression is of prior importance. However, the availability of noninvasive, easy 

to use, sensitive diagnostic tools is limited, especially for young pediatric DMD 

patients. One of the primary used outcome measures for the assessment of physical 

capacity and the validation of therapeutic interventions, is the 6-minute walking test 

(6-MWT) (Bushby et al., 2014; McDonald et al., 2017; McDonald et al., 2010; 

Mendell et al., 2016). The diagnostic validity of this muscle function test is highly 

limited by its dependance on an active cooperation, the individual performance of 

the day (Geiger et al., 2007; McDonald et al., 2010) and, in general, of the ability 

to walk. For the development and validation of new therapeutic and diagnostic 

approaches, animal models mirroring the clinical picture of DMD are of need. 

However, the existing mammalian animal models have different genotypic or 

phenotypic characteristics limiting their applicability in biomedical research 

(McGreevy et al., 2015; Willmann et al., 2009). In comparison to other animals, the 

pig as omnivore shares a high number of similarities with humans (Aigner et al., 

2010). Therefore, a genetically engineered DMD pig lacking DMD exon 52 

(DMDΔ52) has been generated using somatic cell nuclear transfer (SCNT) and 

characterized at our institute (Klymiuk et al., 2013). 

In this work, a female DMD carrier sow, generated by SCNT, was used to generate 

a stable DMD breeding herd. Different husbandry conditions to increase nursing 

efficiency were evaluated and DMD knockout pigs generated by breeding were 

characterized. A genome-wide combined linkage disequilibrium and linkage 

analysis (cLDLA), to identify potential genetic modifiers, which might influence 

phenotypic variations, was commenced. A new therapeutic approach, aiming at 
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permanently converting DMD into the milder BMD by restoring the DMD reading 

frame using adeno-associated viral vectors (AAV) to introduce CRISPR/Cas9 and 

two gRNAs targeting exon 51 flanking sequences, was applied to DMDΔ52 pigs. 

The restoration of internally truncated but functional dystrophin expression was 

assessed and improvement of muscle function was validated. Furthermore, a study 

using multispectral optoacoustic tomography (MSOT) to detect collagen in muscles 

of DMD knockout pigs was performed and the method was validated as new 

diagnostic biomarker in DMD. 

Parts of this dissertation have been published: 

Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, 

Schneider CM, Sinnecker D, Klett K, Fröhlich T, Rahman FA, Haufe T, Sun S, 

Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs 

S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, 

Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, 

Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf 

E, Wurst W, Kupatt C. Somatic gene editing ameliorates skeletal and cardiac 

muscle failure in pig and human models of Duchenne muscular dystrophy. Nature 

Medicine 2020; 26(2):207-214. 

Regensburger AP, Fonteyne LM, Jungert J, Wagner AL, Gerhalter T, Nagel AM, 

Heiss R, Flenkenthaler F, Qurashi M, Neurath MF, Klymiuk N, Kemter E, Frohlich 

T, Uder M, Woelfle J, Rascher W, Trollmann R, Wolf E, Waldner MJ, Knieling F. 

Detection of collagens by multispectral optoacoustic tomography as an imaging 

biomarker for Duchenne muscular dystrophy. Nature Medicine 2019; 25(12):1905-

1915. 
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II. REVIEW OF THE LITERATURE 

1. Duchenne muscular dystrophy 

Duchenne muscular dystrophy (DMD) is the most prevalent hereditary 

neuromuscular disease in newborn boys (1:3500) (Emery, 1991). In newborn 

screening studies in the USA, the prevalence of DMD has been reported as 15.9 

cases per 100,000 and in the UK as 19.5 cases per 100,000 live male births 

(reviewed in Ryder et al., 2017). The disorder is inherited in a X-linked recessive 

manner, therefore primarily boys are affected, whereas female carriers of the 

disease rarely manifest clinical symptoms (Moser and Emery, 1974). 

DMD is caused by mutations in the DMD gene, which prevent the expression of the 

functional muscle structure protein dystrophin. Phenotypically, the lack of 

dystrophin results in progressive muscle damage and degeneration leading to 

muscle weakness and wasting. Following symptoms are a loss of ambulation (LoA), 

severe respiratory impairment and cardiomyopathy (Nigro et al., 1990; Nigro et al., 

1995). 

Currently, for most patients only symptomatic therapies are available, which aim to 

slow down disease progression but are no cure. However, for few disease-causing 

mutations, promising new therapies aiming at the restoration of dystrophin 

expression, were developed within the past few years or are currently under 

investigation. Moreover, life expectancy of affected patients has been 

fundamentally improved in the past decades due to multidisciplinary care. 

Nevertheless, as a consequence of cardiorespiratory complications, DMD still leads 

to an early death between the ages of 20 and 30 (Eagle et al., 2002; Eagle et al., 

2007; Passamano et al., 2012). 

1.1. Clinical features 

DMD patients are clinically normal at birth, albeit serum creatine kinase (CK) 

levels, a blood serum marker for muscle damage, are already elevated (reviewed in 

Blake et al., 2002). The first clinical manifestations of DMD appear in early 

childhood at soonest one year of age (average at 2.5 years of age) (Ciafaloni et al., 

2009). Caregivers, e.g. family members or other educators, might notice initial 

signs, such as clumsiness and a developmental delay (e.g., children start walking 

later than usual). Nevertheless, symptoms usually are consciously recognized later, 

between two and five years of age, during toddler and preschool age (Ciafaloni et 

al., 2009), when children present a waddling gait and/or toe walking (reviewed in 

Birnkrant et al., 2018b; Verma et al., 2010). DMD patients at this stage also show 

a special manner to get up from a sitting in a standing posture, called Gowers’ sign, 

which is typical for neuromuscular disorders (Gowers, 1879). The Gowers’ sign 

description (Fig. 1) goes back on Dr. Gowers, who, in 1879, first published a 

definition of this special pattern of standing up (Gowers, 1879; Wallace and 

Newton, 1989). 
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Figure 1: Gowers’ sign. The Gowers’ sign is a medical sign describing the typical 

way of getting from a sitting into a standing posture by “walking up the legs” with 

the hands. This behavioral pattern indicates muscle weakness in the lower limbs, 

hips and pelvic girdle (Asadi, 2017). 

 

The first clinical stage is followed by a plateau phase, called the “honeymoon 

period” between the ages 5 and 8, where symptoms are often stabilized or even 

slightly improved (Brooke et al., 1983; Connolly et al., 2013). Subsequently, at the 

age of 7 to 8 years, a rapid clinical deterioration with a severe decline in functional 

ability and muscle strength starts (Brooke et al., 1983; Yiu and Kornberg, 2015). 

Patients show a severely labored gait and lose the ability to climb stairs, chairs or 

even toilet seats. In this stage, individuals with DMD may not be able to walk more 

than ten steps and are already dependent on physical assistance (Deutsche 

Duchenne Stiftung, 2017). 

Calf pseudohypertrophy, Achilles heel contractures and tightening iliotibial bands 

on the one hand and an abnormal body posture on the other hand are most likely 

mutually dependent (Brooke et al., 1983). The chronic static positioning together 

with the inability to move the joints to their full extent, the muscle imbalances 

around the joints and the fibrotic changes cause joint contractures and a decreased 

muscle extensibility. These pathological changes exacerbate the symptoms and lead 

to severe deformity such as lordosis or scoliosis. Until the age of 12 years, most 

DMD patients already lose the ability to walk and become wheelchair bound. 

Limited upper-limb function follows at a later disease stage (reviewed in Birnkrant 

et al., 2018b; Verma et al., 2010). 

Respiratory muscles (i.e. intercostal muscles and diaphragm) undergo similar 

pathological changes as other skeletal muscles. As a consequence of immobilization 

and muscle contractures, individuals with DMD develop a declined chest wall 

function leading to a reduced respiratory function and restricted breathing. 

Restricted breathing results in hypoventilation, first requiring assisted cough and 
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nocturnal ventilation and a full-time ventilation at later stages (reviewed in 

Birnkrant et al., 2018b; Verma et al., 2010). 

The heart muscle, as a subtype of striated muscle, is likewise affected by the loss 

of dystrophin, causing myocardial fibrosis, dilated cardiomyopathy and arrhythmia 

(Nigro et al., 1990; Nigro et al., 1995; Silva et al., 2017). Even though an early 

involvement of the heart has been reported, cardiomyopathy in DMD patients is 

often asymptomatic, even at late stages. However, the development of a clinically 

apparent heart failure in DMD patients is latest present until the age of 18 (Nigro et 

al., 1990). In former times, the respiratory failure was the major reason for mortality 

in DMD. Nowadays, the cardiomyopathy is the main cause of death. This is due to 

the fact, that all other clinical features of the disease can be improved or cured by 

surgical or therapeutical means (Cheeran et al., 2017). Recognizing heart failure 

remains a challenge and requires a regular assessment of cardiac function (reviewed 

in Birnkrant et al., 2018b; Nigro et al., 1990; Van Ruiten et al., 2017). 

Regarding mental capabilities, DMD patients might show a mild cognitive 

impairment, which indicates that the brain function is also abnormal in some 

individuals with DMD (reviewed in Blake and Kroger, 2000; Hinton et al., 2007; 

Prior and Bridgeman, 2005). 

The gastrointestinal motor function also is shown to be markedly disturbed in 

several individuals with DMD (Lo Cascio et al., 2016). According to Kraus et al., 

in a cross-sectional prospective study, nearly 50% of patients are diagnosed with a 

functional obstipation (Kraus et al., 2016). However, there are only few case reports 

including histological examinations of the intestine, one showing smooth muscle 

fibrosis in the entire gastrointestinal tract (Leon et al., 1986). Another study 

hypothesizes a prolonged gastrointestinal transit time, but contrarily proves a 

normal gut transit (Kraus et al., 2018). Other nutritional complications are loss or 

gain of weight, low bone density, mandibular contracture, and swallowing 

dysfunction. These symptoms are partly attributed to long-term glucocorticoid 

treatment or calcium supplementation (reviewed in Birnkrant et al., 2018b; Kraus 

et al., 2016). However, the clinical context of gastrointestinal symptoms has not yet 

been fully elucidated. 

Even though the awareness of DMD as important neuromuscular disease increased 

over the past years, these days there is still an average delay of 1 year, before boys 

are brought to a healthcare provider to evaluate the symptoms (Ciafaloni et al., 

2009). 

As women have two X-chromosomes, female carriers of DMD have one functional 

and one dysfunctional copy of the DMD gene. Therefore, they present a mosaic 

expression of dystrophin (Arahata et al., 1989), meaning that there is no total lack 

but a partial availability of dystrophin, compensating the loss. Nevertheless, there 

are some manifesting carriers showing symptoms, based on non-random X-

chromosome inactivation (XCI) (Kamdar and Garry, 2016). Thus, clinical signs 

may vary from mild muscle weakness and cramps to DMD like severity (Moser and 

Emery, 1974; Soltanzadeh et al., 2010). However, affected female carriers do not 

mainly present with severe paralysis as seen in affected males, but primarily with 

symptoms of a cardiomyopathy, such as dilated cardiomyopathy, often seen as left-

ventricle dilatation (Bushby et al., 1993; Hoogerwaard et al., 1999). 
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1.2. Becker muscular dystrophy 

Becker muscular dystrophy (BMD) is a milder form of the neuromuscular disorder. 

The clinical course is similar to DMD but has a later onset of clinical manifestation 

and a much longer survival. BMD, equally to DMD, is caused by mutations in the 

DMD gene. The great majority of mutations on this gene locus result in a total loss 

of dystrophin leading to the manifestation of the severe disease type, DMD. 

However, mutations can also lead to a low presence of truncated but partially 

functional dystrophin, which results in the milder BMD disorder (reviewed in Blake 

et al., 2002). 

In the past few years, new molecular therapy approaches took a major step in the 

direction of curing DMD by aiming to partially restore dystrophin, thus converting 

DMD into the milder BMD. 

1.3. Structure of the DMD gene  

The DMD gene is located on chromosome Xp21.2-p21.1 (OMIM#300377) 

(McKusick, 2002). With 2.5 million base pairs, it is the largest known gene in the 

human genome. Composed of 79 exons, it is transcribed into a full-length 14-kb 

mRNA (Roberts et al., 1993). The gene encodes dystrophin, a 427-kDa cytoskeletal 

protein. Dystrophin is predominantly expressed in skeletal and cardiac muscle and, 

with smaller amounts, in the brain. 

Three independently regulated promoters are responsible for ensuring the 

expression of the full-length dystrophin: The B promoter (brain), the M promoter 

(muscle) and the P promoter (Purkinje cells), designated after the regions of their 

predominant activity. These promoters control the transcription of three different 

mRNAs, which share 78 same exons but contain unique first exons. The three 

resulting isoforms are designated Dp427 (B), Dp427 (M) and Dp427 (P) (Figure 2; 

reviewed in Blake et al., 2002). 

Besides the promoters for these three long isoforms, there are four internal 

promoters, controlling the expression of truncated COOH-terminal dystrophin 

transcripts. To express their tissue-specificity, they are called R (retinal), (B3) 

brain-3, (S) Schwann cell and (G) general promoter. These promoters, which are 

distally located, use a unique first exon, splicing into exons 30, 45, 56 and 63, 

respectively. The generated protein products are referred to as Dp260 (R), Dp140 

(B3), Dp116 (S) and Dp71 (G). These smaller proteins are ubiquitously expressed 

(reviewed in Blake et al., 2002; Muntoni et al., 2003). Dp71 (71kDa) is the most 

abundant transcript of the DMD gene in non-muscle tissue. It is expressed in several 

tissues such as brain, liver, kidney, lung and cardiac muscle, and ubiquitously 

expressed in most other tissues except for skeletal muscle (Austin et al., 1995; 

reviewed in Blake et al., 2002; Lederfein et al., 1992; Muntoni et al., 2003; Sarig et 

al., 1999). The other truncated isoforms are mainly expressed in the central and 

peripheral nervous system (reviewed in Blake et al., 2002). All in all, there are 

numerous isoforms and splice variants of mRNAs transcribed from the DMD gene 

in various tissues throughout the whole body (Austin et al., 1995; Feener et al., 

1989).
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Figure 2: Schematic representation of the human DMD gene and the 

localization of the different promoter regions within the gene (adapted from 

Blake et al., 2002). 

 

1.4. Dystrophin 

Dystrophin, the product of the DMD gene, is a rod-shaped cytoplasmic muscle 

structure protein of about 150 nm length. It shares several features with the 

cytoskeletal protein spectrin and α-actinin (Koenig et al., 1988). Strongly anchored 

to the sarcolemma (the plasma membrane of cardiac and skeletal muscle), 

dystrophin connects the dystrophin glycoprotein complex (DGC) with the 

extracellular matrix (ECM) and the intracellular contractile apparatus (Campbell 

and Kahl, 1989; Rybakova et al., 2000; Straub et al., 1992). Figure 3 shows the 

DGC, an assembly of integral membrane proteins, and its localization in the 

sarcolemma. 

 

Figure 3: Schematic representation of the dystrophin glycoprotein complex 

(DGC). Dystrophin, localized to the periphery of striated muscles, is the membrane 

linker between the actin filaments and the external scaffold (adapted from Nowak 

and Davies, 2004). 
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Dystrophin can be separated into four domains. The 240 amino acid NH2-terminal 

domain (N-terminus) is identified as actin-binding site. A following rod-shaped 

domain is formed by a sequence of 25 triple-helical segments, which are similar to 

the repeat domains of spectrin. This rod domain and the N-terminus are part of the 

subsarcolemmal cytoskeleton. A third domain is a cysteine-rich segment. It is 

similar in part to the complete COOH domain of α-actinin in Dictyostelium. The 

last segment is a 420 amino acid COOH-terminal domain (C-terminus). It is located 

within or at the plasma membrane and links dystrophin to the integral membrane 

proteins (Koenig et al., 1988; Straub et al., 1992). 

As shown in Figure 3, the main function of dystrophin is to be a transmembrane 

linker between actin and laminin in striated muscle cells (Campbell and Kahl, 1989; 

Ervasti and Campbell, 1993). Muscle fibers are protected from long-term 

contraction-induced damage and necrosis by the DGC stabilizing the sarcolemma 

(Rando, 2001; Straub and Campbell, 1997).  

1.5. Mutations in the DMD gene 

DMD, as well as BMD, can be the result of a spontaneous or an inherited mutation 

of the DMD gene. There is a great amount of independent mutations, varying in 

type, size and localization. Intragenic single- or multi-exon deletions build the 

majority of mutations. The frequency varies between 72%, according to Leiden 

DMD mutation database (Aartsma‐Rus et al., 2006) and 60-65%, often mentioned 

in literature (Koenig et al., 1989; reviewed in Muntoni et al., 2003). Duplications 

of one or more exons are found in 5-15% of patients, depending on the sensitivity 

of the technique used. The remaining portion contains smaller deletions and 

insertions, or point mutations (reviewed in Aartsma‐Rus et al., 2006; Abbs and 

Bobrow, 1992; Prior and Bridgeman, 2005). 

Deletions in the DMD gene are found to be apparently nonrandom. There are two 

hotspot regions within the gene, where deletions are primarily located (Koenig et 

al., 1987). The first hotspot region is located towards the central portion of the gene. 

It includes exons 45-55. The endpoint where the mutation actually occurs, called 

genomic breakpoint, lies within intron 44. The second hotspot region lies within the 

5´ portion of the DMD gene, including exons 2-19. The genomic breakpoints are 

most frequently found in the introns 2 and 7 but also expand towards the 

downstream introns (Beggs et al., 1990; Koenig et al., 1989; Muntoni et al., 2003; 

Prior and Bridgeman, 2005). The hotspot regions for deletions make the detection 

of these larger mutations comparatively straightforward (Prior and Bridgeman, 

2005). Using a single multiplex polymerase chain reaction (PCR) technique, about 

98% of deletions can be identified by the use of two multiplex reactions only (Beggs 

et al., 1990). 

Point mutations are found evenly distributed among the DMD gene. They can cause 

frameshifts or affect splice sites, but they can also create missense codons or 

premature stop codons (reviewed in Roberts et al., 1994). 

Generally, most mutations result in nonsense codons or frameshifts. A schematic 

explanation for an out-of-frame mutation is shown in Figure 4. A frameshift 

mutation is caused by the deletion or duplication of a number of nucleotides not 

divisible by three, which disrupts the open reading frame (ORF) (Monaco et al., 

1988). 
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Figure 4: Schematic description of an out-of-frame mutation and its 

consequence on dystrophin expression. a) An intact exon intron sequence, 

resulting in a stable mRNA product after splicing. The mature mRNA is translated 

into functional dystrophin. b) Intragenic deletions lead to a disrupted ORF, thus to 

a frameshift. The result is either an unstable mRNA resulting in nonsense mediated 

mRNA decay, or a truncated nonfunctional dystrophin protein. 

 

According to Monaco et al. (1988), the phenotypic difference between BMD and 

DMD can be explained by the type of mutation. The authors stated that deletion 

events in the genome, which maintain an ORF, result in the production of a 

truncated but semi functional dystrophin protein, leading to BMD. These kinds of 

mutations are called in-frame mutations. In contrast, an out-of-frame mutation is an 

intragenic deletion that cannot maintain the ORF and frameshifts after splicing of 

intron sequences. The translation either leads to an unstable mRNA product, 

causing mRNA degradation due to nonsense mediated mRNA decay, or the 

generation of a truncated nonfunctional dystrophin protein, with both translation 

pathways resulting in DMD. 

In general, the milder BMD most commonly results from deletions or duplications 

that do not disrupt the ORF (Beggs et al., 1990). However, few deletions or 

duplications (9%) do not follow the reading-frame rule, stated by Monaco et al. In-

frame mutations are also found in some DMD patients (Beggs et al., 1991; Koenig 

et al., 1989), whereas out-of-frame mutations are present in few BMD individuals 

(Aartsma‐Rus et al., 2006). 

Additionally, the phenotype, to some extent, is also determined by the size and 

location of the deletion (Arikawa-Hirasawa et al., 1995; Beggs et al., 1991; Fanin 

et al., 1996). Regarding the size, very large deletions, especially in particular 

regions, may result in a more severe phenotype (Beggs et al., 1991). Concerning 

the location of in-frame mutations the severity of the phenotype can be anticipated: 

It has been reported, that mutations in the N-terminal domain result in low levels of 

dystrophin and thus are classified as severe BMD or intermediate. An additional 

deletion of parts of, or of the whole central rod domain, give rise to DMD. Patients 

with deletions or duplications only in the proximal rod domain show primarily 

severe cramps and myalgia. Mutations in the central rod domain usually are 

associated with milder phenotypes, such as mild BMD, except if the deleted region 

becomes too large. Some BMD patients show deletions in the syntrophin binding 

domain, whereas mutations concerning the cysteine-rich domain result in DMD. 

Mutations in exon 74 or higher are found in BMD as well as in DMD patients 

(reviewed in Aartsma‐Rus et al., 2006; Beggs et al., 1991). An intact C-terminal 

domain seems to be essential for the stability of dystrophin (Koenig et al., 1989). 

Nevertheless, individuals with similar mutations show different phenotypes, 

suggesting epigenetic or environmental influence on the clinical expression. Thus, 

the severity of the phenotype cannot be certainly predicted by the size or type of 
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mutation (Beggs et al., 1991). 

1.6. Pathomechanism  

Dystrophin is a structural key component in muscle fibers. The main function of 

the DGC is to stabilize the plasma membrane. The loss of dystrophin in DMD 

patients results in delocalization of the dystrophin-associated proteins from the 

membrane (reviewed in Deconinck and Dan, 2007). This impairs the structural 

integrity of the muscle membrane resulting in fragile membranes. Mild exercise-

induced muscle fiber damage is normal to occur even in healthy musculature (Petrof 

et al., 1993). However, in DMD patients the damage is greater. Regenerative 

processes aim to replace or repair lost or damaged muscle fibers, but repetitive 

greater damage exceeds the regenerative capacity of the muscles, due to limited 

number and ability of satellite cells. Therefore, normal mechanical stress in the 

musculature already leads to micro-lesions, followed by membrane leakage and 

muscle fiber damage (reviewed in Deconinck and Dan, 2007; Klingler et al., 2012; 

Petrof et al., 1993). The micro-lesions and resulting hyperosmotic stress lead to an 

increased sodium and calcium permeability. 

The intracellularly increased sodium leads to depletion of ATP supply, as Na+/K+ 

pumps, normally regulating the electrolyte balance, cannot compensate the 

increased influx. Sodium, accompanied by water molecules, leads to cellular edema 

and necrosis (Klingler et al., 2012). Calcium, as a second messenger, is able to 

activate a cascade of inflammatory processes. With the disturbance of Ca2+-

homeostasis, various Ca2+-dependent proteases, such as calpain, are activated, 

resulting in cell and membrane proteolysis and therefore cell death (Bodensteiner 

and Engel, 1978; reviewed in Deconinck and Dan, 2007; Klingler et al., 2012; 

Yeung et al., 2005). Calcium overload also results in oxidative stress (due to the 

production of reactive oxygen species), leading to an accumulation of acidic 

metabolites, such as lactic acid, mainly dissociated into La- and H+ at physiological 

pH. La- increases the activity of collagen promoters. Procollagen mRNA production 

increases, leading finally to collagen synthesis. However, until now comparatively 

little attention has been paid to the actual role of fibrosis in DMD. As fibrosis in 

general is described as the exchange of normal tissue against scar tissue, indicating 

that fibrous connective tissue results from a reparative or reactive process, it is a 

general belief, that the increase of connective tissue in DMD is a secondary 

phenomenon. Fibrosis in DMD is generally seen as a compensatory replacement of 

the lost muscle tissue. Nevertheless, an endomysial tissue increase can already be 

observed long before any muscle fiber degradation appears, indicating that the 

fibrotic remodeling itself plays a major role in DMD. A co-determining role in the 

myofascial pathology is discussed, for example due to a possible negative effect of 

fibrosis on the nutrition of enclosed muscle cells (Klingler et al., 2012). 

In histological examinations, muscle fibers are in process of regeneration, 

degeneration or are already necrotic. Degeneration and necrosis are followed by 

phagocytosis, with the presence of inflammatory cells (reviewed in Blake et al., 

2002). Regenerating muscle cells histologically show larger and centrally placed 

myonuclei. The cytoplasm is RNA-rich, hence basophilic. The muscle fiber 

diameter decreases, leading to an increased variation of muscle fiber diameters 

(Bell and Conen, 1968; Bradley et al., 1972; Schmalbruch, 1984). Necrotic fibers 

are often seen in clusters, so called grouped necrosis. Necrotic tissue is gradually 

replaced by fatty and connective tissue (fibrosis), with the functional consequence 

of a decrease in the quantity of contractile tissue. These structural changes give rise 
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to the then clinically apparent pseudohypertrophy and contractures (reviewed in 

Blake et al., 2002; Wokke et al., 2014). 

1.7. Modifier genes in DMD 

Factors, independent from the pathogenic mutation, can influence the expressivity 

of Mendelian diseases (Bello et al., 2016). These factors are called modifier genes 

and are defined as genetic loci, which are able to positively or negatively influence 

the phenotype of a primary disease-causing mutation. As shown above, in DMD 

not a single, but several different causative mutations are present. As a result, it is 

hard to distinguish between the primary mutation, which is causative for the 

disease, and a secondary modifying locus (reviewed in Vo and McNally, 2015). 

Besides the genetic heterogeneity in DMD, the identification of modifier genes is 

complicated by the above-mentioned varying onset of clinical symptoms and 

different disease progression. Nonetheless, common symptoms can be observed and 

taken into account in regards to modifying gene loci. To identify these bases of 

variability in DMD is important for patient consultation, prognosis and an 

appropriate therapeutic approach (reviewed in Bello and Pegoraro, 2019). To date, 

several loci have been identified to be associated with variable DMD sub-

phenotypes. In general, their influence may be reflected by the age of onset, the 

muscle groups which are affected, the severity or the progression of the disease 

(reviewed in Vo and McNally, 2015). Yet, the most commonly observed 

phenotypic variation in DMD patients, whose DMD mutations all prevent 

dystrophin expression, is the age at loss of ambulation (LoA) (Bello et al., 2016). 

In this context a single nucleotide polymorphism (SNP) in the gene promoter of 

secreted phosphoprotein 1 (SPP1 or Osteopontin, encoded by the SPP1 gene) has 

been described as potential genetic modifier in DMD patients (Bello et al., 2015b). 

Pegoraro et al. (2011) described this polymorphism, rs28357094, as significantly 

associated with disease progression (disease severity was defined by the age at 

LoA). The less common G allele (GT/GG genotype) was related to an earlier 

ambulatory loss of about one year. Thereby, the effect of the TT genotype is similar 

in magnitude to the therapeutic use of steroids (delaying LoA for about one year). 

At the age of 14, 20% of DMD patients with the TT genotype where shown to be 

still ambulatory, whereas none of the individuals with the GT/GG genotype were 

able to walk. The cause is, that the G allele variant decreases the promoter strength 

and consequently leads to a lower SPP1 mRNA production. Many studies were 

done to explain the function of SPP1. Osteopontin, amongst others, plays a role in 

bone-remodeling, muscle repair, the maintenance or reconfiguration of tissue 

integrity during inflammation and immune function (Giacopelli et al., 2004; 

reviewed in Vo and McNally, 2015). Furthermore, SPP1 is activated by 

transforming growth factor beta (TGFB) family members. There exist more than 30 

TGFB family members, located in the ECM, which, for example, coordinate cell 

growth during development, regulate injury response, or are important for muscle 

health (Lamar et al., 2016; Taipale et al., 1994). Studies in double mutant mice, 

lacking both dystrophin and SPP1, revealed significant reduction in TGFB, fibrosis 

and inflammatory cell infiltration. Yet, due to its broad expression pattern, it is 

complicated to understand the means by which SPP1 exactly modifies DMD 

(Vetrone et al., 2009; reviewed in Vo and McNally, 2015). Moreover, the working 

group of van den Bergen et al. (2015) in their study disproved the significant 

association between SPP1 rs28357094 SNP and LoA as they were unable to 

replicate the results in 336 genotyped patients. 
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Another important potential genetic modifier, also associated with the age at LoA 

in DMD patients, is latent TGFB binding protein 4 (LTBP4). Its function is to 

regulate, together with other latent TGFB binding proteins (LTBPs), the 

extracellular availability of latent TGFB (Lamar et al., 2016). Latent TGFB gets 

secreted as precursor and gets activated before the interaction with TGFB receptors 

on the cell surface (reviewed in Vo and McNally, 2015). LTBPs bind to inactivate 

TGFB in the ECM (Ceco et al., 2014). The importance of the regulating role of 

LTBP4, especially during development, is underlined by findings describing a 

multi-organ syndrome in humans with an recessive LTBP4 loss (Urban et al., 2009). 

LTBP4 is primarily expressed in skeletal muscle, smooth muscle, heart and at a 

lower level in other tissues. In patients with DMD, four non-synonymous SNPs 

(nsSNPs) in LTBP4 are associated with a prolonged ambulation (Giltay et al., 1997; 

Lamar et al., 2016). The four nsSNPs (rs2303729, rs1131620, rs10880 and 

rs1051303) form two major amino acid haplotypes: IAAM and VTTT (the names 

derive from the amino acids specified by these nsSNPs). From these two, a 

homozygous IAAM haplotype shows a significant association with a later LoA in 

several studies. Patients heterozygous or homozygous for VTTT showed an earlier 

ambulatory loss (Bello et al., 2015b; Flanigan et al., 2013; van den Bergen et al., 

2015). LTBP4 containing the ameliorative haplotype IAAM, is able to alter TGFB 

binding or release. Consequently, TGFB signalling is reduced leading to decreased 

muscle fibrosis and benefiting muscle regeneration capacity (Flanigan et al., 2013). 

In line with these findings, Ltbp4 was also identified to modify muscular dystrophy 

in mice. By differently targeting the Ltbp4 gene, the outcomes in muscular 

dystrophy could be modified in both directions, a decreased fibrosis and improved 

muscle pathology, or increased proteolysis and fibrosis (Heydemann et al., 2009). 

To explore the function of LTBP4 in detail in skeletal muscle and, in particular, in 

muscular dystrophy, Lamar et al. (2016) generated mice, which overexpress the 

murine Ltbp4 gene. The elevated levels of LTBP4 here led to increased muscle 

strength and, proportional to it, an increased muscle mass. Therefore, targeting 

LTBP4 is discussed as a therapeutic approach. 

The two named genetic modifiers, SPP1 and LTBP4, are the most researched 

polymorphic loci in DMD. They are both involved in molecular pathways, which 

regulate inflammation response to muscle injury, regeneration, and fibrosis 

(reviewed in Bello and Pegoraro, 2019). Several further, less investigated, possible 

genetic modifiers of the clinical phenotype in DMD have been discussed. Recently, 

in 2017, a common null polymorphism (R577X, rs1815739) in human ACTN3 

(encoding α-actinin-3) was shown to be significantly correlated to reduced muscle 

strength and a longer time in 10 m walking test in ambulatory patients with DMD. 

α-Actinin-3, an isoform of sarcomeric α-actinins, is only expressed in fast, 

glycolytic muscle fibers. In patients homozygous for the null polymorphism 

R577X, α-actinin-3 is completely absent (Hogarth et al., 2017). ACTN3 is known 

as “the gene for speed”: an α-actinin-3 deficiency was already previously shown to 

be detrimental in elite athletes as well as in general population, reducing muscle 

power and sprint performance (reviewed in Bello and Pegoraro, 2019; Clarkson et 

al., 2005; Eynon et al., 2013; Moran et al., 2007). Bello et al. (2016) prioritized 

rs1883832 SNP in the untranslated region of CD40. CD40, also known as tumor 

necrosis factor receptor superfamily member 5 (TNFRSF5), is a co-stimulatory 

molecule for T cell polarization. The minor allele at rs1883832 reduces the 

expression of CD40. In the study of Bello et al., this was shown to be associated 

with an earlier LoA in a total of 660 DMD patients. Nevertheless, the precise role 

of CD40 in muscular dystrophy is still poorly understood (reviewed in Bello and 
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Pegoraro, 2019). Another modifier locus, THBS1, was detected by Weiss et al. 

(2018). THBS1 gene encodes thrombospondin-1 (THBS1), which activates TGFB 

signaling by directly interacting with LTBP4 in the ECM. Thus, it controls the 

bioavailability of TGFB. Furthermore it acts as inhibitor of pro-angiogenic nitric 

oxide signaling. Weiss et al. discussed a protective effect of the THBS1 distal 

regulatory SNPs. Together with regulatory variants resulting in reduced expression 

of LTBP4, it was found to prolongate ambulation in patients with DMD. The 

working group of Davis et al. (2000) discussed myoferlin (MYOF) as possible 

modifier of muscular dystrophies after they found out, that a mouse model of DMD 

(mdx mouse) showed an upregulation of MYOF at the membrane of skeletal 

muscle. C2 domains, which are part of all ferlin family members, play a role in 

calcium-mediated membrane fusion events. Vieira et al. (2017) suggested 

phosphatidylinositol transfer protein α (PITPNA) as possible DMD modifier, 

referring to findings in two atypical DMD-dogs which demonstrated a strikingly 

mild dystrophic phenotype. This finding was pursued by knockdown of PITPNA 

gene in dystrophin-deficient sapje zebrafish and human DMD myogenic cells. 

Decreased expression of PITPNA led to increased expression of phosphorylated 

Akt (pAkt) and decreased phosphatase and tensin homolog (PTEN) levels. The 

muscle structure was ameliorated and survival was increased. 

Although several genetic modifiers have been identified in DMD, the overall 

knowledge in this field is still initial. However, a detailed knowledge about modifier 

genes in DMD is important, since individual differences in disease progression 

complicate the interpretation of results of clinical trials (reviewed in Aartsma-Rus 

and Spitali, 2015). Most studies rely on hypothesis only, discovering candidate 

genes which are pre-specified genes of interest to find putative modifiers. Hence, 

most identified modifiers were already known to play a role in muscle health, with 

their pathways beeing already well established. Genome-wide association studies 

(GWAS) of polymorphisms influencing the muscle phenotype, however, scan the 

entire genome for common genetic variants. As hypothesis-free, unbiased approach 

GWAS would be necessary to identify also unexpected associations in DMD 

(reviewed in Bello and Pegoraro, 2019). To further increase the mapping precision 

of quantitative trait loci (QTL) a genome-wide combined linkage disequilibrium 

and linkage analysis (cLDLA) as fine mapping method can be conducted (Farnir et 

al., 2002). This method is based on the informative recombinations within 

gentoyped pedigrees as well as on informations given from historical 

recombinations of earlier, not genotyped generations (Meuwissen et al., 2002). For 

example, Muller et al. (2017) demonstrated that the haplotype-based genome-wide 

cLDLA can allow more precise mapping of QTL than the more commonly used 

SNP-based GWAS. 

2. Animal models for DMD 

There is a wide range of natural and engineered mammalian animal models 

reflecting the clinical aspects of DMD, including mouse, rat, rabbit, cat, monkey, 

dog and pig models. Tailored animal models are indespensable for the elucidation 

of DMD pathogenesis (reviewed in Nakamura and Takeda, 2011). The model 

organisms are of great importance for the development of new targeted therapies, 

aiming to prevent disease progression or to reverse pathological mechanisms 

(reviewed in Wells, 2018). Safety, as well as efficacy prediction of new therapeutic 

strategies requires reliable animal models mimicking the situation displayed in 

humans. Moreover, the discovery and validation of new biomarkers, indicating 
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physiological processes, pathological changes and the response to therapeutic 

treatment, plays a major role (Aigner et al., 2010). 

2.1. Rodent models 

The X Chromosome-Linked Muscular Dystrophy (mdx) in mouse (Bulfield et al., 

1984) is the best known animal model for DMD. With more than 2800 published 

papers using the mdx mouse, it is the most widely utilized DMD model to date 

(reviewed in Wells, 2018). The model is a spontaneous mutant failing to produce 

dystrophin due to a mutation in exon 23 of the murine Dmd gene, which introduces 

a premature stop codon (Sicinski et al., 1989). This mouse model displays the 

biochemical processes and early stages of the disease, but yet it is not the best model 

organism in reflecting the clinical aspects of DMD. While exhibiting muscular 

dystrophy (Bulfield et al., 1984), the phenotype of mdx mice is much milder than 

in DMD patients. Obvious clinical signs of dystrophic musculature are completely 

missing (reviewed in Wells, 2018). Histological key features such as fibrosis and 

fatty deposits among muscle tissue, smaller number of myofibrils, insufficient 

regeneration process and severe degeneration in muscle fibers are only present in 

the diaphragm of mdx mice, but absent in every other muscle (Fukada et al., 2010). 

Last but not least, the life span of mdx mice is only slightly reduced (Chamberlain 

et al., 2007). A possible explanation for this milder phenotype might be that the 

mutation does not disturb the expression of four shorter isoforms, expressed from 

the Dmd gene through varying promoter usage (Araki et al., 1997). As the original 

B10-mdx mouse (C57BL/10 background) (Bulfield et al., 1984) is a weak model 

for DMD, it has been backcrossed onto several other genetic backgrounds. One 

resulting mouse line was the DBA/2J-mdx model, which is a backcross onto the 

DBA/2J mouse strain (reviewed in Wells, 2018). This model organism seems to 

worsen the dystrophic phenotype as desired and even reflects a cardiomyopathy. 

Unfortunately, the control DBA/2J mice show a similar myocardial pathology. 

Hence, the DBA/2J-mdx mouse is also a poor model for DMD (Hakim et al., 2017). 

Another tailored mouse model has been generated by Araki et al. (1997), disrupting 

exon 52 of the Dmd gene. This mutation is known to result in clinical DMD in 

humans. Nevertheless, the mdx52 still shows limited, if at all, clinical signs of 

muscular dystrophy (reviewed in Wells, 2018). Perkins and Davies (2002) 

discussed, that throughout an increased expression of utrophin, an autosomal 

homologue of dystrophin, the loss of dystrophin in mdx mice could, at least in part, 

be compensated. Therefore, utrophin knockout (KO) mice were crossed with mdx 

mice (Deconinck et al., 1997). While these double-KO mice display a more severe 

dystrophic phenotype, they are obviously inappropriate as models for DMD, since 

DMD patients do not lack both, dystrophin and utrophin (reviewed in Wells, 2018). 

Altogether, there are several mouse models of DMD, but none of them 

appropriately mirrors the phenotype of DMD patients. A further disadvantage of 

the mouse as animal model can be seen in the small body size, imposing limitations 

on analysis, such as dose-finding in therapeutic trials of new treatments. 

Two different rat models of DMD have been generated, both published in the year 

2014. Larcher et al. (2014) engineered two lines of Dmd-mutant rats using 

transcription activator-like effector nucleases (TALENs) targeting exon 23 of the 

Dmd gene. The musculature of the Dmdmdx rat lacks dystrophin and displays severe 

necrosis and regeneration, at a later stage it shows fibrosis and fatty infiltration. 

Clinically, muscle strength and spontaneous motor activity are impaired. 

Furthermore, Dmdmdx rats show signs of dilated cardiomyopathy. Nakamura et al. 
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(2014) generated Dmd-mutated rats using a clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas system, targeting exon 3 and 16 in the rat Dmd 

gene simultaneously. Phenotypically this rat model shows similiar alterations as the 

Dmdmdx rats, except for the heart, where a clear evidence of a functional 

cardiomyopathy is missing (reviewed in Wells, 2018). The two rat models of DMD 

seem to reflect the clinical aspects of DMD better that the mouse models. 

2.2. Rabbit model 

A novel animal model for DMD in the rabbit has been engineered and characterized 

by Sui et al. (2018). DMD knockout (KO) rabbits were generated by co-injection 

of Cas9 mRNA and sgRNA targeting exon 51 into zygotes of rabbits. This model 

exhibits a typical DMD phenotype, with impaired physical activity, muscle 

degeneration and fibrosis, and increased CK levels. Also functional alterations in 

the heart seem to be present in this model, indicating the development of 

cardiomyopathy. Nevertheless, this publication was the first introduction to this 

new animal model for DMD and it is not yet clear, if, for example, the reduction in 

activity, shown in this model, is sufficiently robust for accurate drug trials 

(reviewed in Wells, 2018). 

2.3. Feline model 

Progressive muscular dystrophy due to dystrophin-deficiency has been described to 

naturally occur in cats (Carpenter et al., 1989; Gaschen et al., 1999). The 

hypertrophic feline muscular dystrophy (HFMD) mainly results in muscle 

hypertrophy, predominantly observed in the tongue and diaphragm, leading to 

difficulties in eating and drinking. In histological examinations, degeneration and 

regeneration processes can be observed. Nevertheless, dystrophin in cats with 

HFMD is still faintly detectable in immunostaining of muscle fibers. About 10% of 

dystrophin, compared to normal dystrophin amounts, is detectible in Western blot 

analysis of skeletal muscle, showing that there is no total failure of dystrophin 

expression. Additionally, muscle fibers in HFMD cats do not show fibrotic 

alterations. Moreover, only a few cats suffer of cardiomyopathy. Histological 

changes in the heart are only present in some cases (Gaschen et al., 1999). All in 

all, dystrophin-deficient cats are not suitable as experimental models for human 

DMD (reviewed in Wells, 2018). 

2.4. Nonhuman primate model  

Chen et al. (2015) generated a dystrophin deficiency in rhesus monkeys. By using 

CRISPR/Cas9 for injection into fertilized oocytes, they targeted exon 4 and exon 

46 in the monkey DMD gene, causing a frame shift of the coding sequences and 

thereby a termination of the full-length expression of dystrophin. The mutation 

results in a partial depletion of dystrophin and muscle degeneration. However, the 

CRISPR/Cas9 technology causes mosaic mutations, targeting only up to 87% of the 

dystrophin alleles, resulting in genetic and phenotypic variability. This again 

doesn’t comply with the mutations found in human DMD patients, which result in 

a total loss of dystrophin. 
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2.5. Canine models 

The most famous homologue of DMD in dogs is the Golden Retriever Muscular 

Dystrophy (GRMD), also known as Canine X-linked Muscular Dystrophy 

(CXMD), which is the result of a spontaneous single base change in intron 6 leading 

to the skipping of exon 7 and therefore the termination of the dystrophin reading 

frame (Sharp et al., 1992). As well as DMD patients, GRMD dogs show myofiber 

degeneration with mineralization and fibrosis with fatty infiltration, altogether 

resulting in an atrophy of the musculature. Serum CK levels in affected dogs are 

elevated. The dog model also shows signs of cardiomyopathy (Sharp et al., 1992; 

Valentine et al., 1988). The mutation of the GRMD model has been introduced onto 

a Beagle background to enable a better handling due to a smaller body size. The 

phenotype of the resulting Beagle-based canine X-linked Muscular Dystrophy 

(CXMDJ) is roughly identical to the phenotype described in GRMD dogs (Shimatsu 

et al., 2005). Another canine model of DMD is the Cavalier King Charles Spaniel 

with dystrophin-deficient muscular dystrophy (CKCS-MD). It carries a missense 

mutation in the splice site of exon 50 in the canine dystrophin gene. The mutation 

gives rise to a single exon deletion (exon 50) in the mRNA, leading to a disrupted 

reading frame and the premature truncation of the gene product. While the 

phenotype of this dog model of DMD seems to resemble that of the two previously 

described dog models, GRMD and CXMDJ, the localization of the mutation is 

clinically more relevant. The region is also most commonly mutated in human 

DMD patients (Walmsley et al., 2010). There are many other dog breeds diagnosed 

with a muscular dystrophy due to a loss of dystrophin. Several of them have been 

used for the development of a dog model of DMD. Nevertheless, the big 

disadvantage of all these models is the high phenotypic dog-to-dog diversity 

described. These individual variations and the fact, that many DMD dogs die within 

the first 6 month of life, lead to difficulties in reaching the size of an experimental 

group and in showing clear statistically significant results (reviewed in Wells, 

2018). 

2.6. Pig models 

Last but not least, in 2013, a tailored pig model of DMD has been generated in our 

working group. Klymiuk et al. (2013) established the large animal model by gene 

targeting, deleting DMD exon 52 in male pig cells. The region corresponding to 

human DMD exon 52 was replaced by a neomycin resistance cassette. DMD pigs 

were then generated by nuclear transfer. The introduced mutation reflects a frequent 

mutation in human DMD patients (Muntoni et al., 2003). DMD pigs lack dystrophin 

and exhibit progressive muscle weakness, impaired mobility and disturbances in 

locomotion due to dystrophic changes of skeletal musculature. Histological 

examination of the DMD pig muscle tissue reflects the structural changes seen in 

DMD patients. These findings include excessive variation of muscle fiber 

diameters, internalized central nuclei indicating regeneration processes, cell 

infiltration, necrosis of muscle fibers and interstitial fibrosis. The DMD pig shows 

an accelerated strong muscle phenotype and disease progression, leading to muscle 

structure changes already in newborn piglets. Furthermore, serum CK levels are 

severely elevated. Most likely due to respiratory failure, the maximum life span of 

DMD pigs is around 3 month of age (Klymiuk et al., 2013). Therefore, male DMD 

pigs do not reach sexual maturity. To overcome this drawback, in cooperation with 

the working group of Matsunari we generated unique chimeric boars, comprising 

mutant cells which harbor the lethal DMD mutation and normal cells. These 
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chimeric boars, containing DMD XKOY germ cells, show a milder impairment of 

respiratory and motor function. The model indicates, that muscle dysfunction, at 

least partly, can be cured by normal cells. However, most importantly, the chimeric 

boars are able to reach adulthood. The design of such chimeric DMD XKOY boars 

as effective system to produce tailored DMD pigs, will have a great impact on the 

establishment of next-generation theraphies, such as gene editing and gene therapy, 

cell-transplantation therapy and medication aiming at exon-skipping (Matsunari et 

al., 2018). 

Summarizing the advantages and disadvantages of the different animal models for 

DMD it becomes apparent that, except for the pig, all models are far from humans 

with regard to genetics, anatomy and physiology. Most models of DMD are not able 

to reliably reflect the patients’ situation and therefore are not stable in predicting 

efficiency and safety of new therapies or devices. This is an obstacle to the 

extrapolation and interpretation of treatment effects from animal to human 

(reviewed in Aigner et al., 2010; Echigoya et al., 2016). Pigs, unlike the other 

named animals, are omnivores, as well as humans. They show a huge number of 

similarities in anatomy, physiology, pathology and metabolism (reviewed in Aigner 

et al., 2010). The cardiovascular and immune, as well as respiratory and skeletal 

muscle system of pigs and humans closely resemble each other. Therefore, 

generally one can say, that pigs as large animal model for DMD are supporting 

translational medicine by bridging the gap between proof-of-concept trials in mice 

and clinical studies in DMD patients (Klymiuk et al., 2016). 

3. Diagnostic approaches in DMD 

As already mentioned above, diagnosis of DMD is regularly delayed. The first 

clinical symptoms are noted at a mean age of 2.5 years with a first evaluation by a 

care provider at a mean age of 3.6 years. In many cases the initial consultation of a 

pediatrician doesn’t result in diagnostic testing, but in referral to occupational, 

physical or speech therapy or programs for development stimulation (Ciafaloni et 

al., 2009). Immediate referral to a specialist for neuromuscular problems, who 

requests genetic analysis of the DMD gene, would avoid the diagnostic delay 

(reviewed in Birnkrant et al., 2018b). To date, definite diagnosis of DMD disease 

is made at a mean age of 4.9 years (Ciafaloni et al., 2009). Early diagnosis of the 

disease and sensitive monitoring of disease progression are necessary for most of 

the current therapeutic approaches, such as corticosteroid treatment, which aim to 

intervene before severe and irreparable muscle damage have taken place (reviewed 

in Ciafaloni et al., 2009). 

Family history in many cases gives a first hint for the diagnosis of DMD, as 

approximately 1 in 3 DMD cases (about 30%) stem from spontaneous de novo 

mutations in the DMD gene (reviewed in Aartsma-Rus et al., 2016; reviewed in 

Ciafaloni et al., 2009). Therefore it is carefully analyzed before further diagnosis in 

patients presenting any suspicion of abnormal muscular function (reviewed in 

Birnkrant et al., 2018b). 

3.1. Genetic testing  

DMD diagnosis is verified by genetic testing. A correct diagnosis is important for 

providing proper care and support to patients and for further family planning. 

Moreover, mutation-specific therapy approaches require clear and exact 
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localization of the underlying mutation (reviewed in Aartsma-Rus et al., 2016). 

Dystrophin gene deletion or duplication analysis is the initial confirmatory DNA 

analysis done in individuals with suspected DMD. It is the most labor- and cost-

efficient way, since approximately 65% of the DMD causing mutations are single- 

or multi-exon deletions or duplications in the dystrophin gene, as shown above 

(reviewed in Aartsma-Rus et al., 2016; reviewed in Birnkrant et al., 2018b). 

Chamberlain et al. (1988) established a multiplex PCR kit, containing primers for 

9 exons to detect 80% of deletions in the DMD gene. Two years later, Beggs et al. 

(1990) presented primers for 9 additional exons. In conjunction the Chamberlain 

and Beggs multiplex PCR kit is able to detect 97% of all deletions. However, 

multiplex PCR is no longer recommended for the genetic diagnosis of DMD, but is 

still used in many laboratories, since the method is cheap. Aartsma-Rus et al. (2016) 

even recommends re-analysis of historic cases identified with multiplex PCR. The 

detection of duplications is more technically and laborious demanding. Although 

causing DMD in 5-8% of patients, these mutations were not routinely screened, 

until a multiplex ligation-dependent probe amplification (MLPA) assay had been 

designed. To date MLPA is the most reliable and suitable method, simultaneously 

screening all 79 exons of the DMD gene for both, deletions and duplications 

(reviewed in Aartsma-Rus et al., 2016; reviewed in Birnkrant et al., 2018b). It is a 

cheap and simple assay offering a high ease of use (Lalic et al., 2005). Although 

MLPA is proposed as the screening method of choice for detecting rearrangements 

in the DMD gene, ambiguous MLPA amplification products can occur. These 

uncertain products should absolutely be verified by other methods, as they might 

result from small mutations which partially disturb MLPA amplification (Okizuka 

et al., 2009; Sansovic et al., 2013). Alternatively to MLPA, comparative genomic 

hybridisation array (array CGH) can be used to detect relative abundance of each 

exon of the DMD gene (reviewed in Aartsma-Rus et al., 2016). MLPA and array 

CGH are both able to identify the boundaries of a deletion or duplication and hence 

might indicate, whether the mutation results in a disruption of the reading frame or 

not. As explained before, this is important to predict disease progression (reviewed 

in Aartsma-Rus et al., 2016). 

If the screening for deletions or duplications is negative, whole dystrophin gene 

analysis is the next step to analyse for the remaining mutation types able to cause 

DMD (reviewed in Birnkrant et al., 2018b). These mutations, as stated above, 

include point mutations and smaller deletions, duplications or insertions. Therefore, 

Sanger sequencing can be used to identify individual exons. Sanger sequencing is 

more expensive and labor-intensive than MLPA or array CGH. A better alternative 

to this method, however, are next-generation sequencing (NGS) techniques, which 

in the future might even be able to replace MLPA, array CGH and Sanger 

sequencing. NGS has a high sensitivity and specificity and is able to identify various 

types of mutations, including novel mutations not identified before, such es novel 

partial deletions (Okubo et al., 2016; Wang et al., 2014; Wei et al., 2014). However, 

NGS until now is cost- and labor-intensive. In some cases, genetic testing does not 

confirm the clinical diagnosis. The reason for this can be mutations located within 

an intronic region, which are harder to detect. This is the case in about 0.5% of 

reported mutations. Even if such mutations are identified by NGS, it is still 

questionable whether they cause an alteration on the RNA level. Hence, subsequent 

RNA analysis need to be done (reviewed in Aartsma-Rus et al., 2016). 
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3.2. Examination of muscle biopsies 

Finally, if a clear identification of the DMD causing mutation by genetic analysis 

is not possible at all, the presence of dystrophin protein in skeletal muscle can be 

tested. This is done by staining cross-sections of a muscle biopsy with 

immunohistochemical (IHC) techniques or by analysing muscle protein extract by 

western blot (immunoblotting) (reviewed in Birnkrant et al., 2018b; Magrath et al., 

2018). Hereby it can be tested, if any dystrophin is produced or not (reviewed in 

Muntoni et al., 2003). Furthermore, histological examinations in individuals with 

DMD can give a clear picture of the degree of severity of the dystrophic process. 

Therefore, cross-sections of muscle tissue are stained with haematoxylin and eosin 

(HE). In the preclinical stage typical alterations in muscle tissue are active necrosis, 

phagocytosis and regenerative activity. With increasing age, the degree of variation 

in fiber size diameter increases, as well as phagocytosis, whereas regeneration 

processes decline (Bradley et al., 1972). Special staining methods, such as Masson 

Trichrome (MT) and Sirius Red (SR), allow the detection of fibrosis, which is 

discussed to be a significant co-determining factor for myofascial pathology. An 

increase of collagenous connective tissue might have a negative effect on the 

nutrition of the enclosed muscle cells (Klingler et al., 2012). 

Muscle biopsies are not only of use with regard to histological examinations and 

gel-based quantitative proteomics. Although two-dimensional polyacrylamide gel 

electrophoresis (2-DE) up to date remains the method of choice and is widely 

applied (Abdallah et al., 2012), gene expression profiles from muscle biopsies can 

also be generated by other methods. Expression microarrays for example, can 

identify components with possible important control functions or unexpected 

involvement in regulatory or pathological pathways in muscle (Bakay et al., 2002; 

Haslett et al., 2003). Even more effective, however, are holistic proteome analyses 

by mass spectrometry (MS). MS as a gel-free quantitative technique enables 

profiling of proteins with a high throughput rate, thus providing high precision in 

quantification of proteins (Abdallah et al., 2012). Several MS-based gene 

expression studies in animal models for DMD emphasize the increasing importance 

of these holistic proteome studies. 

A 2-DE and MS of hindlimb muscles of mdx compared to WT mice identified 

differently abundant proteins (Ge et al., 2003). Investigation of mdx mice at 

different ages revealed age-dependent changes of the muscle proteome (Ge et al., 

2004). Several subsequent proteome studies in the mdx mouse investigated age-

related changes in other muscles, such as the tibialis anterior muscle or diaphragm 

and proteome differences between different muscle groups (Carberry et al., 2013; 

Carberry et al., 2012a, b). In the GRMD dog model a quantitative proteomic study, 

using isotope-coded affinity tag (ICAT) profiling analyzed by MS, indicated that a 

central hallmark of muscular dystrophy in dogs is a defective energy metabolism, 

providing new insights into molecular pathology of DMD (Guevel et al., 2011). In 

the tailored pig model of DMD generated by our institute (Klymiuk et al., 2013), a 

proteome analysis revealed the extent of proteome changes in DMD muscle 

compared to WT. Analysis of 2-day-old versus 3-month-old DMD and WT pigs 

showed that proteome changes increase markedly with age. This reflects the 

progression of early pathological changes in this model (Frohlich et al., 2016). Carr 

et al. (2017) incorporated the different existing MS-based proteomic datasets of 

dystrophin-deficient tissue. The authors used proteome datasets of the mdx mouse, 

the GRMD dog and the dystrophin-deficient pig. Since in DMD patients proteome 

studies of skeletal muscle are still missing, they performed the intersection of data 
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of studies using blood and urine of DMD patients. The muscle proteome differs 

between species, individuals and muscles. However, the absence of dystrophin has 

a profound impact on the muscle proteome. The identification of differentially 

expressed proteins in DMD might unveil the molecular pathophysiology, leading 

to novel therapeutic targets or possible biomarkers to monitor disease progression. 

Biopsy procedure, however, involves an invasive surgical intervention. It requires 

general anesthesia with special precautions in DMD boys in comparison to healthy 

individuals. Risks are mainly perioperative cardiac and respiratory complications 

due to anesthesia, but also rhabdomyolysis. Up to date, little is known about the 

short- and long-term consequences of muscle biopsy excision (Hayes et al., 2008; 

Verhaart et al., 2019). Therefore, this method indeed is a last necessary step for a 

reliable diagnosis, but an inappropriate tool concerning clinical trials. 

3.3. Muscular function tests 

Since up to now primary outcome measures are based on quantitative and manual 

muscle examinations and timed function tests, it is of current interest to develop 

classification systems and simplified scales to assess the functional abilities of 

DMD patients (Kim et al., 2018). Multidisciplinary rehabilitation assessment 

includes muscular function tests for the evaluation of mobility and disease 

progression. 

In most early studies in children with neuromuscular diseases (NMD) in general, 

the muscle strength was measured and assessed. One example of this is the Brooke 

Scale (Brooke et al., 1981; Stuberg and Metcalf, 1988). Already in 1982, a scale 

especially devised for boys with DMD, called the Hammersmith Motor Ability 

Scale (HMAS) was developed (Scott et al., 1982). Used within a clinical setting, 

this test is satisfactory. However, validity and reliability have never been 

determined. Moreover, the test has been developed before the broad application of 

corticosteroids, thus excludes the detection of an improvement following treatment 

(Scott et al., 2012). 

The more recent studies focus on functional scales. There are several general scales 

which can be utilized for the assessment of different NMD, such as the Gross Motor 

Function Measure (GMFM) and the Motor Function Measure (MFM) (Berard et 

al., 2005; Mazzone et al., 2010; Russell et al., 1989). Other scales are specifically 

designed to evaluate aspects of function in certain cohorts. The Hammersmith 

Functional Motor Scale (HFMS) for spinal muscular atrophy (SMA) types 2 and 3 

in children, for example monitors the clinical progress and tests the motoric abilities 

in children with limited mobility (Main et al., 2003). An expanded version of this 

test evaluates the ambulatory patients in this certain cohort (O'Hagen et al., 2007). 

The test was further expanded to assess children with non-ambulant SMA using the 

Modified Hammersmith Functional Motor Scale (MHFMS) (Krosschell et al., 

2006). This test especially is useful in young children (younger than 30 months) 

and thus may also be beneficial in young DMD boys (Connolly et al., 2013; 

Krosschell et al., 2011). As young DMD patients are an especially challenging 

population, another test, the Bayley III infant motor scale, which normally is used 

to test motor delay in the first years of life, has been validated and demonstrated as 

useful in very young DMD boys. The Bayley III test allows to study motor function 

in children less than 6 months old (Connolly et al., 2013). Another currently 

relevant functional scale, particularly designed for the evaluation of disease 

progression in ambulant DMD boys, is the North Star Ambulatory Assessment 
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(NSAA). This test of Scott et al. (2012) is an adaption of the HMAS for DMD boys 

developed in 1982. The NSAA contains important disease milestones, already 

previously used in DMD boys, such as getting from sitting to standing, timed rising 

from the floor or the 10 m timed walk/run test. Furthermore, it includes new items 

that allow the detection of possible improvement due to treatment, such as running 

and hopping – aspects of function which usually are not observed in untreated DMD 

boys. NSAA performance takes only approximately 10 minutes to complete, has a 

high test-retest ability and a good intra- and inter-rater reliability. Last but not least, 

it is practical, requiring only minimal equipment for standardization. The NSAA is 

designated as reliable test and actual gold standard to score DMD motor ability 

(Cacchiarelli et al., 2011; De Sanctis et al., 2015). 

A simple but regularly applied global assessment of the endurance and ability to 

walk, as well as of the evaluation of functional mobility in DMD patients is the 6- 

minute walking test (6-MWT) (Pane et al., 2014). It describes the distance walked 

over a period of 6 minutes. The 6-MWT is used to assess functional capacity in 

several different diseases (McDonald et al., 2010). For the measurement of walking 

skills at baseline, functional capacity and assessment of disease progression it is 

useful in DMD patients. Furthermore, it is regularly used as additional evaluation 

method for muscle function in clinical trials of DMD therapies (Goemans et al., 

2011; Pane et al., 2014). The 6-MWT is simple to apply, accurate, well-tolerated 

and reproducible (Anonymous 2002). Pane et al. (2014) refers to the 6-MWT as the 

primary outcome measure in most of clinical trials of DMD. However, since DMD 

patients fall frequently, safety, feasibility and accuracy of this test might be 

compromised (McDonald et al., 2010). 

The NSAA and timed functional tests have a high reliability and validity. They are 

foundational clinical assessments of muscle function in the ambulatory period of 

DMD patients and thus should be done every 6 months (reviewed in Birnkrant et 

al., 2018b). 

A new Comprehensive Functional Scale for DMD (CFSD) and accompanying 

Ambulatory Functional Classification System for DMD (AFCSD) have been 

developed based on other previously published classification systems. The CFSD 

only, already consists of 21 items and 78 sub-items (Kim et al., 2018). This new 

functional assessment was established in 2018. It appears as rather complex 

evaluation scale, and might thus be not practical in use. To date only preliminary 

evaluation of CFSD and AFCSD exist. 

There are several functional tests to assess muscular function in DMD patients. First 

of all, the great number of different functional scales might complicate the 

comparison of the results of different clinical trials. Moreover, lack of 

understanding and motivation, especially in young children, may affect the 

performance outcome (Geiger et al., 2007). Cognitive impairment and behavioral 

challenges in some individuals with DMD can additionally exacerbate the potential 

problems of functional tests (Hinton et al., 2007). Last but not least, muscular 

function tests are only feasible in ambulant DMD patients, excluding the evaluation 

of disease progression in non-ambulatory individuals with DMD. However, non-

ambulant patients make up the majority of the patients, since the average age at loss 

of ambulation is about 10.5 years and the median survival of the patients is 30 years 

(Straub et al., 2016). 
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3.4. Biomarkers in DMD 

A biomarker is defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic response to therapeutic intervention” by the Biomarkers Definitions 

Working Group of the National Institutes of Health (NIH) (Anonymous 2001). This 

definition includes prognostic, as well as diagnostic biomarkers, and biomarkers, 

that indicate the response to a therapeutic agent (reviewed in Aartsma-Rus and 

Spitali, 2015). In DMD there are several different kinds of biomarkers which aim 

to quantify disease pathology and progression. Biofluid markers, found in serum, 

urine and saliva, occur due to passive protein leakage or an active release of proteins 

in the circulatory system. Primary tissue markers are compounds of the dystrophin 

glycoprotein complex. Secondary muscle tissue markers are for example cellular 

stress proteins, metabolite transporters and mitochondrial enzymes. Last but not 

least, there are several noninvasive imaging biomarkers (reviewed in Dowling et 

al., 2019).  

3.4.1. Biomarkers in body fluids 

3.4.1.1. CK, AST, ALT, LDH in blood serum 

An elevation of blood serum creatine kinase (CK) level counts as important 

indicator for DMD. CK plays a major role in tissues with fluctuating energy 

demands, like brain and muscle (Schlattner et al., 2006). It catalyzes the reversible 

reaction of creatine and adenosine triphosphate (ATP) forming phosphocreatine and 

adenosine diphosphate (ADP) (reviewed in Wallimann et al., 1992). There exist 

mitochondrial and cytosolic CK isoenzymes. The elevation of circulating cytosolic 

CK isoforms in serum is tissue-specific. The circulating isoform CK-BB rises after 

brain damage, CK-MB after acute myocardial infarction. The myofibrillar CK-MM 

is present in skeletal muscle, its elevation in serum indicates muscle damage 

(Ebashi et al., 1959; Koch et al., 2014; Schlattner et al., 2006). In the case of muscle 

injury, cell membrane permeability increases, allowing CK-MM to leak into 

interstitial fluids. This results in elevated circulating CK-MM in blood serum. The 

quantification of serum CK levels is low in cost and an easy to apply measurement 

method (Ciafaloni et al., 2009; Koch et al., 2014). CK-MM hence is routinely 

measured and proposed as best biomarker for skeletal muscle damage in general 

(reviewed in Koch et al., 2014; McLeish and Kenyon, 2005). 

CK in newborn infants with DMD is already severely increased. As a result, the 

routine measurement is discussed as potential newborn screening method for DMD 

(Zellweger and Antonik, 1975). However, it has to be noted, that there are several 

other causes for a CK elevation, such as other hereditary forms of muscular 

dystrophy, injuries or traumas, recent bacterial or viral infections, hypothyroidism 

or drugs. Even though CK under the named differential diagnoses rarely approaches 

the levels found in DMD patients, false positive diagnosis need to be seriously taken 

into account and should be avoided (reviewed in Verma et al., 2010). A single-tier 

newborn screening, only based on increased CK levels at birth, as it was introduced 

in many countries, therefore strictly requires a re-testing at around 6-8 weeks of age 

(reviewed in Mendell and Lloyd‐Puryear, 2013). A lasting CK elevation is an 

indicator but still no prove for the disease. Diagnosis of DMD needs to be confirmed 

by further methods, such as genetic testing (reviewed in Birnkrant et al., 2018b). 

Last but not least, since only limited data on the impact of an early diagnosis and 

an early initiation of therapy in DMD exist, so far there are restrictions of regular 
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screenings for DMD in newborns (Kemper and Wake, 2007). 

Not only newborn screening benefits from CK as diagnostic marker in DMD. Using 

CK as indicative measurement in children displaying early clinical symptoms of 

DMD is recommended but yet underutilized (Ciafaloni et al., 2009). Typically, in 

patients with DMD, CK levels are severely elevated, ranging between 5000 and 150 

000 IU/L (normal <200 IU/L) (reviewed in Verma et al., 2010). Regular 

measurements show a CK peak between 1 and 6 years of age and a decrease with 

age due to the replacement of muscle tissue by connective and fatty tissue (Zatz et 

al., 1991). Elevated CK levels consequently indicate a floride, i.e. active, state of 

the disease. Thus, as CK elevation is directly associated with muscle damage, the 

parameter can also be utilized as biomarker in therapeutic trials. However, it is 

discussed to be of little use here, as a decline of CK can stand for both, the reduction 

of CK-leakage due to the success of a therapeutic approach or a further decrease of 

muscle quality (reviewed in Aartsma-Rus and Spitali, 2015; Jensen et al., 2017). 

Interestingly, in 1972 observations of an individual with DMD already showed, that 

CK levels may vary between different measurement timepoints, sometimes being 

only mildly increased and years after being elevated severely (Bradley et al., 1972). 

A reason for varying CK levels could be hemolysis due to the procedure of blood 

collection. Perovic and Dolcic (2019) in their study examined the influence of 

hemolysis on clinical chemistry parameters, and described a hemolysis interference 

for CK. For CK-MB even clinically significant differences were detected (Koch et 

al., 2014). Other reasons for varying serum CK levels are, for example, seasonal 

and an intra- and interindividual variation (Nicholson et al., 1985; Percy et al., 

1982). Summarizing, CK evaluation as indicator for DMD, as informative 

biomarker about the clinical course of the disease, or as diagnostic biomarker in 

therapeutic trials is reasonable. Nevertheless, for a reliable clinical assessment CK 

has always to be considered together with several other clinical parameters. 

Serum analysis of DMD patients will not only reveal the presence of elevated CK. 

Persistently elevated serum activities of transaminases, i.e., aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT), together with a 

negative diagnostic workup for a hepatic dysfunction (e.g. gamma GT is not 

elevated), can also be indicative for DMD and should be considered, although the 

reason for this is so far unexplained (reviewed in Aartsma-Rus et al., 2016; 

Birnkrant et al., 2018b; Verma et al., 2010). Less commonly, DMD is considered 

due to increased serum enzyme concentration of lactate dehydrogenase (LDH) 

(reviewed in Birnkrant et al., 2018b). 

3.4.1.2. Emerging DMD biomarkers in blood 

There is an entire list of emerging biomarkers in body fluids, which are found to be 

altered in DMD patients and animal models for DMD compared to healthy controls 

(HC). 

Concerning the coagulation cascade, in serum a peptide of coagulation factor XIIIa 

was for example identified as discriminator between dystrophin-deficient mdx mice 

and wild-type (WT) controls (Alagaratnam et al., 2008). Several more up- and 

down-regulated factors in plasma samples of mdx compared with WT mice were 

identified. Among these is fibrinogen, another important factor in the coagulation 

cascade. It was shown to be increased in abundance in dystrophic mice (Colussi et 

al., 2010) as well as in DMD patients (Hathout et al., 2014; Nadarajah et al., 2012). 

Moreover, fibrinogen was shown to be accumulated in dystrophic muscles of DMD 
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patients and mdx mice, and it was speculated to promote inflammation and to be 

linked to the formation of fibrotic tissue (Vidal et al., 2008). 

Concerning serum lipids, significantly higher triglycerides, phospholipids, free 

cholesterol, cholesterol esters and total cholesterol concentrations were measured 

in DMD patients compared to healthy controls (HC) (Srivastava et al., 2010). 

Another discussed serum biomarker for DMD is fibronectin, a glycoprotein. 

Fibronectin is a major component of the ECM. Significantly increased levels in 

DMD patients compared to age-matched healthy subjects are found (Cynthia 

Martin et al., 2014). 

Matrix metalloproteinase-9 (MMP-9) is another potential serum biomarker in 

individuals with DMD. Longitudinal studies in DMD patients on corticosteroid 

treatment showed that MMP-9 levels were significantly elevated in older, non-

ambulatory patients. Moreover, MMP-9 was shown to increase significantly with 

age. It is therefore discussed as biomarker for the assessment of disease progression 

(Hathout et al., 2014; Nadarajah et al., 2011). However, studies in patients on 

corticosteroid treatment did not allow the discrimination of effects derived from 

aging or the influence of the therapy on MMP-9 (Zocevic et al., 2015). 

In a new proteome profiling study of individuals with DMD not yet treated with 

glucocorticoids, compared to HC, 107 elevated and 70 decreased proteins were 

identified in serum. Elevated proteins mainly were of muscle origin and cell 

adhesion proteins, but also ECM and pro-inflammatory proteins. Proteins that were 

found to be decreased, are mainly involved in cell adhesion processes, cell 

differentiation or have to do with growth factors. Interestingly, subsequent 

treatment of the same cohort with glucocorticoids allowed to examine the impact 

of therapy on the detected serum biomarkers. 17 proteins, associated with DMD, 

were shown to normalize under treatment. 80 proteins, not associated with DMD, 

were shown to be up- or downregulated after treatment, illustrating a broader effect 

of glucocorticoids (Hathout et al., 2019). These results are important, since most 

current therapies and therapy trials in DMD patients contain glucocorticoid 

treatment (reviewed in Aartsma-Rus and Spitali, 2015). 

Several other elevated proteins, mainly of muscle origin, were identified in serum 

of DMD patients. Among these were for example myofibrillar proteins, such as titin 

(connectin) and myosin, glycolytic enzymes, such as aldolase, transport proteins, 

as for example fatty acid binding protein and myoglobin and others, like CK-MM 

(Hathout et al., 2014). 

Another important group of potential biomarkers for the diagnosis of DMD in early 

stages, and the analyses of progression and treatment, are microRNAs (miRNAs). 

miRNAs are small non-coding RNAs, which function in the post-transcriptional 

regulation of gene-expression in a sequence specific manner by inducing mRNA 

degradation or translational repression. In the control of skeletal muscle and cardiac 

development, several essential miRNA families were identified. miRNAs are 

known to control in part regenerative myogenesis, and the differentiation, 

maintenance and repair of muscle (reviewed in Hrach and Mangone, 2019). Due to 

muscle cell damage specific muscle-miRNAs (dystromiRs) leak into the 

bloodstream. Thus, dystromiRs are extracellular dystrophy-associated miRNAs, 

whose levels correlate with the severity of the disease. Up to now, several miRNAs 

were found to be up- or downregulated in DMD patients or animal models for DMD 

compared to healthy controls (Becker et al., 2016; Cacchiarelli et al., 2011; 
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Catapano et al., 2018; Llano-Diez et al., 2017; Mitchell et al., 2008; Zaharieva et 

al., 2013). 

3.4.1.3. Emerging DMD biomarkers in urine 

Since taking blood samples still is minimally invasive, some recent studies focused 

on potential urine-accessible metabolites as biomarkers associated with DMD. 

Urine can be collected easily, on multiple time-points and noninvasively (reviewed 

in Dowling et al., 2019; Thangarajh et al., 2019). Titin, which is already named 

above as a serum biomarker, was also detectable in urine of DMD patients (Matsuo 

et al., 2019; Rouillon et al., 2014). Equally, the L-arginine/nitric oxide pathway (L-

Arg/NO), which regulates endothelial function and was found to be impaired in 

DMD patients, was reported to be affected in urine (and plasma) of individuals with 

DMD (Horster et al., 2015). A major PGD2 metabolite, tetranor-PGDM, was 

observed to be elevated in urine of DMD patients. Even longitudinal changes were 

detectable, as the metabolite was found to increase further with age. This supported 

the hypothesis, that prostaglandin D2 (PGD2)-mediated inflammation is involved in 

the DMD pathology (reviewed in Aartsma-Rus and Spitali, 2015; Nakagawa et al., 

2013; Takeshita et al., 2018). Several further studies of candidate biomarkers in 

urine of DMD patients exist (Catapano et al., 2018; Rouillon et al., 2018). However, 

until now none of these urine biomarkers reached practical implementation. 

3.4.2. Noninvasive imaging biomarker in DMD 

Until now, clinical trials generally rely on measures of muscle function and strength 

(Zaidman et al., 2017). However, noninvasive imaging modalities are valuable 

clinical and research tools for monitoring disease progression in DMD. Imaging 

biomarkers can be used for cardiac and respiratory assessment, but also for 

monitoring progressive alterations in muscle over time. 

3.4.2.1. Echocardiography and Holter monitoring 

Echocardiography (ECG) allows the monitoring of cardiac dysfunction in DMD 

patients (reviewed in Birnkrant et al., 2018b; Cheeran et al., 2017; Silva et al., 

2007). As noninvasive imaging method for cardiac assessment it is recommended 

for young patients (before the age of 6-7 years) as it is well tolerated and does not 

require anesthesia. By ECG, the ejection fraction (EF) and cavity dimensions can 

be noted, thus enabling the detection of left ventricular dysfunction or dilated 

cardiomyopathy (Barison et al., 2009; reviewed in Birnkrant et al., 2018a). In the 

late non-ambulatory stage of DMD patients, it is recommended to include periodic 

24 h Holter monitoring in surveillance (reviewed in Birnkrant et al., 2018a). 

3.4.2.2. Quantitative ultrasound assessment 

Fatty infiltration as well as increased interstitial fibrous tissue among dystrophic 

skeletal muscle of DMD boys results in an increased echo intensity in standard 

ultrasound B-mode imaging (Pillen et al., 2009; Reimers et al., 1993). The echo 

intensity, also known as the grey value of the image, is determined by the amount 

of returning echoes per square area. The changes in echo intensity can be quantified 

by two different methods: by quantitative backscatter analysis (QBA) the 

amplitudes of the sound-waves, which are scattered back from the tissue, are 

directly measured during imaging procedure; the backscattered amplitudes can also 

be analyzed after the imaging process, after compression into greyscale levels 
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(GSL) received from the images. Both methods are shown to perform similarly 

(Rutkove et al., 2014; Shklyar et al., 2015; Zaidman et al., 2017). Skeletal muscle 

echogenicity can visually be graded, for example by the Heckmatt scale, ranging 

from normal (grade I) to very strong muscle echo and complete loss of bone echo 

(grade IV) (Heckmatt et al., 1982). 

Quantitative ultrasound (QUS) was shown to identify differences earlier than 

simple functional measures, such as the 6-MWT and supine-to-stand test (Rutkove 

et al., 2014; Zaidman et al., 2017). A near-significant association between QUS and 

the NSAA functional scale was demonstrated (Rutkove et al., 2014). Moreover, 

QUS was stated to detect disease progression in DMD (Zaidman et al., 2017). QUS 

is a noninvasive and painless imaging modality, demanding low effort. As it does 

not require anesthesia, it is especially useful in the assessment of skeletal muscle in 

young children with DMD. 

3.4.2.3. Magnetic resonance imaging and spectroscopy 

One of the preferred approaches to noninvasively diagnose disease pathology and 

progression in individuals with DMD is magnetic resonance imaging (MRI). MRI 

benefits of a high soft tissue contrast with exquisite detail and provides volumetric 

information. It avoids harmful ionizing radiation, unlike for example computed 

tomography (CT) or x-ray and is therefore generally applicable to pediatric patients 

(Magrath et al., 2018). 

With regard to cardiac assessment in individuals with DMD, cardiovascular 

magnetic resonance imaging (CMR) is the noninvasive imaging method of choice 

for assessing cardiac dysfunction and evaluating the degree of cardiomyopathy 

(reviewed in Birnkrant et al., 2018a; Cheeran et al., 2017; Magrath et al., 2018). 

CMR provides higher sensitivity compared to ECG and is recommended already at 

early ages (Buddhe et al., 2016). It enables to detect the earliest signs of 

cardiomyopathy, long before the onset of clinical symptoms (Magrath et al., 2018). 

A typical cardiac MRI protocol, to assess cardiac function and morphologic 

changes in DMD patients, incorporates several different techniques: black-blood 

imaging for the evaluation of thoracic and cardiovascular anatomy, dynamic (cine) 

white-blood imaging (balanced steady-state free precession) for the assessment of 

global and regional cardiac function, contrast enhanced perfusion imaging and late 

gadolinium enhancement (LGE) for the assessment of myocardial fibrosis (Silva et 

al., 2007). As a result, CMR allows to note early heart failure symptoms, such as 

tissue degeneration and myocardial structural changes (e.g. myocardial fibrosis and 

fibrofatty involvement), just as myocardial function and regional wall motion 

abnormalities (normal/ mild or severe hypokinesia/ akinesia, dyskinesia). Cardiac 

mass, left ventricular (LV) remodeling and wall thickening as well as abnormal 

chamber dimensions can be assessed. End systolic and end diastolic time frames 

can be identified, allowing for example to detect depressed LV ejection fraction 

(LVEF) (Barison et al., 2009; reviewed in Birnkrant et al., 2018a; Magrath et al., 

2018; Silva et al., 2007). There are several alternative MRI methods to assess 

cardiovascular function in DMD. Pre- (native) and postcontrast parametric "spin-

lattice" relaxation time (T1-weighted mapping) (Bell and Jones) techniques, for 

example, are emerging cardiac biomarkers for early myocardial microstructural 

remodeling (such as diffuse fibrosis), enabling to estimate extracellular volume 

fraction. However, these methods assist ancillary to the named standard biomarkers, 

but are not widely used (Magrath et al., 2018). One reason for this is, that for 
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implementing T1 mapping in clinical routine, the characteristic range of normal T1 

values at a particular magnetic field strength must be established to identify 

deviations from the normal range (Bottomley et al., 1984). Apart from magnetic 

field strength, a plethora of factors influence T1 time values, such as protocol 

parameters, motion, sequence design and scanner adjustments. Altogether, these 

factors highly reduce comparability between different sites over time. A further 

limitation in the comparability of T1 times between different study sites is, that 

analysis of parametric T1 maps often uses relatively restricted in-house developed 

tools, early-stage commercial packages, or manufacturer prototypes. Therefore, 

highly adaptable and robust tools for standardized T1 quantification and map 

presentation are desirable. Furthermore, analysis is not standardized and often 

based on expert knowledge (reviewed in Messroghli et al., 2017). 

Since current clinical trials mostly rely on ambulatory endpoints (e.g. muscular 

function tests), thereby excluding non-ambulatory patients, MRI and magnetic 

resonance spectroscopy (MRS) are emerging techniques providing promising 

biomarkers for muscle quality or primary outcome measures for all DMD patients. 

MRS is capable to measure the concentrations of different chemical components 

within tissues and is based on the same physical principles as MRI. As DMD 

muscles show compositional and structural changes, these approaches can be used 

to assess the following: alterations of the maximal muscle cross-sectional area 

(mCSA), muscle damage, inflammation and edema and, at a later stage of the 

disease, fat infiltration and fibro-fatty replacement (Forbes et al., 2013; Mathur et 

al., 2010). The visualisation of these pathologic changes depends on different 

specialized imaging protocols, which provide quantitative outcome measures 

(Straub et al., 2016). mCSA, for example, can be measured using longitudinal 

relaxation time (T1) weighted MRI (Mathur et al., 2010). High sensitivity for 

detecting DMD disease pathology and progression was shown for two quantitative 

MR measures: transverse relaxation time (T2) weighted magnetic resonance 

measures (MRI-T2) and intramuscular fat fraction (FF) (Willcocks et al., 2016). 

Both methods are most commonly used in (multicenter) clinical trials to assess 

disease severity, activity and progression by MRI (Barnard et al., 2018; Forbes et 

al., 2013; Forbes et al., 2014; Willcocks et al., 2016). FF can for example be 

measured by 3-point chemical shift-encoded (Dixon) MRI or proton MRS (1H-

MRS). With 1H-MRS the separation of water and lipid signal is possible. For a more 

targeted evaluation of inflammation and damage in muscle tissue, 1H20 T2 can be 

used. FF is not only shown to correlate with disease progression but also with the 

outcome of functional tests (Willcocks et al., 2016). However, there are several 

limitations to these methods indicating, that other MRI variables need to be 

established. As 1H20 T2 primarily detects inflammation and damage, it is not 

suitable for tracking disease progression in terms of fibrosis. Consistent with its 

sensitivity to inflammation, 1H20 T2 is highly responsive to corticosteroid therapy 

and might thus be more appropriate for clinical trials with anti-inflammatory 

therapeutics (Arpan et al., 2014). In MRI-T2, water T2 changes are nonspecific due 

to the sensitivity to edema, inflammation, necrosis and fibrosis on the one hand, and 

lipid on the other hand (Straub et al., 2016). Moreover, MRI-T2 is influenced by 

treatment with corticosteroids. In addition, the measurement of FF has poor 

prognostic value, since there is a high inter- and intrasubject variability (Gerhalter 

et al., 2019). Furthermore, adipose infiltration of muscles tissue has a very 

heterogeneous distribution in DMD patients (Chrzanowski et al., 2017; Hooijmans 

et al., 2017). 

A relatively new emerging MRI protocol is 23Na MRI, to calculate total sodium 



II. Review of the literature     28 

concentration (TSC) and intracellular-weighted 23Na signal (ICwS) in muscle 

tissue. As intracellular sodium concentration is shown to increase severely due to 

loss of dystrophin and resulting muscle cell damage, 23Na MRI is a more promising 

tool for informations about early pathological changes (Gerhalter et al., 2019; 

Glemser et al., 2017), but its capability is highly restricted to a limited number of 

specialized ultra high-field MRI sites worldwide and it is not established in the 

clinical routine. 

Even if MRI exams may become shorter and simpler and the acceptance for 

younger patients improves (reviewed in Magrath et al., 2018), very young children 

are usually not able to cooperate for MRI procedure, such as breath holding for 

periods of 5 to 20 seconds for cardiac MRI. Thus, MRI in patients younger than 6-

7 years requires anesthesia, harboring specific risk for DMD patients. Hence, these 

procedures are typically avoided in early live periods, when they are not tolerated 

(Birnkrant et al., 2018a). 

3.4.2.4. Other noninvasive imaging modalities 

When DMD patients, at a later stage of the disease, complain about cardiac rhythm 

disturbances, event monitors, recording for a longer period of time, can additionally 

be indicated for cardiac surveillance (reviewed in Birnkrant et al., 2018a). 

Another noninvasive imaging tool to assess muscle condition in DMD patients is 

electrical impedance myography (EIM). The method is based on applied low-

electric alternating current, dissipating as it travels through a substance (here: 

muscle), and thereby producing a measurable voltage (reviewed in Rutkove, 2009). 

Localized impedance changes indicate underlying muscle structure alterations. EIM 

is painless and requires low effort (Rutkove et al., 2014). However, there are only 

few studies about EIM in DMD and many questions to the mechanism remain open. 

Thus EIM still needs to be refined (reviewed in Rutkove, 2009). 

An emerging tool to assess clinical anisotropy for monitoring muscle degeneration 

in DMD is Viscoelastic Response (VisR) ultrasound. The extent of anisotropy is 

given by the ratios of VisR relative viscosity (RV) or relative elasticity (RE). RE 

and RV are measured with parallel versus perpendicular to muscle fiber alignment 

oriented asymmetric radiation force. VisR ultrasound shows significantly higher 

RE and RV anisotropy ratios in rectus femoris muscle of DMD patients compared 

to HV. However, even if VisR ultrasound is stated to reflect changes in viscous and 

elastic anisotropy associated with muscle degeneration, investigations in other 

muscle groups do not exactly reflect these results. Furthermore, to date, only a pilot 

in vivo clinical feasibility study exists (Moore et al., 2018). 

Concerning the appearance of gastrointestinal symptoms, such as constipation and 

gastro-oesophageal reflux, a scintigraphic gastric emptying scan, to assess gastric 

emptying time, can be useful (Birnkrant et al., 2018b). 

4. Multidisciplinary treatment and emerging therapies for DMD 

DMD disease requires exhaustive clinical multidisciplinary management. Up to 

date, despite corticosteroid treatment, there exists no effective therapy for DMD. 

However, several genetic approaches have been made in the last few years 

(reviewed in Guiraud and Davies, 2017). 



II. Review of the literature     29 

4.1. Multidisciplinary treatment for DMD  

A main aspect of multidisciplinary care in DMD patients is the treatment with 

glucocorticoids. Glucocorticoids, as anti-inflammatory and immunosuppressant 

drugs, slow down muscle deterioration. This causes prolongation of ambulation 

(estimated 3-year median delay of LoA), prevention of scoliosis surgery and 

maintained respiratory and upper limb function (reviewed in Bello et al., 2015a; 

Birnkrant et al., 2018b). Prednisone and prednisolone, typical representatives for 

synthetic glucocorticoids, however, show significant adverse effects in long-term 

treatment. Side effects include, in order of frequency, weight gain, adrenal 

suppression and insulin resistance (cushingoid appearance), growth retardation, 

behavioral changes, bone morbidity, cataracts, and skin abnormalities (Bello et al., 

2015a; Hoffman et al., 2019). These effects are in particular problematic in very 

young and elderly patients (Hoffman et al., 2019). However, glucocorticoid 

initiation in younger children with DMD, not yet affected from significant physical 

decline, was shown to be especially beneficial (Merlini et al., 2012). Deflazacort, a 

synthetic corticosteroid with labelled indication especially for DMD, showed a 

greater effect on extending the preservation of independent ambulation than 

prednisone/prednisolone treatment. However, the same adverse effects as for 

prednisone or prednisolone were observed for deflazacort, with the sole difference 

of less weight gain (Bello et al., 2015a). A novel synthetic steroid for treatment of 

DMD is vamorolone. Vamorolone seems to optimize the anti-inflammatory effect, 

traditional for steroids. Of importance, suspectibility to bone morbidity, adrenal 

suppression and insulin resistance appeared to be less pronounced for vamorolone 

relative to other published trials of glucocorticoid treatment (Hoffman et al., 2019). 

Another important aspect in the multidisciplinary care for DMD patients at all ages 

is physiotherapy to prevent contractures and deformity. Postural correction, as well 

as orthotic intervention and splinting, are necessary at later stages of the disease. 

To further improve quality of life and to extend the overall lifespan, physical aids, 

such as wheelchairs and medical devices for assisted respiration are used. Rarely, 

orthopaedic surgery, such as posterior spinal fusion, is required (reviewed in 

Birnkrant et al., 2018b; Hrach and Mangone, 2019). 

As soon as any signs of heart failure are detectable, or latest at the age of 10 years, 

specific treatment should be initiated for patients with DMD (reviewed in Birnkrant 

et al., 2018b). Cardiovascular medication regimes vary in individuals with DMD 

and show different efficiency at treating the DMD associated cardiomyopathy 

(Cheeran et al., 2017). As first-line therapy, patients in young adulthood receive 

angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor 

blockers (ARBs) (reviewed in Birnkrant et al., 2018a; Cheeran et al., 2017). Only 

about a third of DMD patients receive β-blockers. Few DMD patients are on other 

guideline-directed medications for heart failure, such as diuretic therapy and 

mineralocorticoid receptor antagonists. Additionally, steroid therapy is suggested 

to delay the progression of cardiomyopathy and therefore, to improve the overall 

survival (reviewed in Cheeran et al., 2017; Verma et al., 2010). 

Gastrointestinal and nutritional management is indispensable for DMD patients 

with complications, such as weight loss or gain, swallowing dysfunction, 

mandibular contracture, constipation or low bone density. The management 

includes general nutrition plans, nutrient supplementation (e.g. 25-hydroxy-vitamin 

D, multivitamin or mineral supplement), as well as daily intake of osmotic laxatives 

(e.g. polyethylene glycol, or lactulose) (Birnkrant et al., 2018b). 
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4.2. Emerging treatments for DMD 

Considerable progress, concerning the treatment of DMD, has been made in the 

past years in genetic approaches. There is a full list of treatment trials for DMD, 

which changes continually. An update on the ongoing trials is available at the WHO 

International Clinical Trials Registry Platform or at ClinicalTrials.gov (reviewed in 

Birnkrant et al., 2018b). 

4.2.1. Cell therapy 

Muscle precursor cells of one genotype are able to fuse with host muscle fibers of 

another genotype and then to express the donor genes (Partridge et al., 1989). Based 

on this, the transplantation of myoblasts of healthy donors into skeletal muscle of 

DMD patients, with the main goal to create a pool of dystrophin competent satellite 

cells, is one therapeutic approach studied for treatment of DMD (Bajek et al., 2015; 

Sun et al., 2019). Partridge et al. (1989) showed, that transplantation of normal 

muscle precursor cells in skeletal muscle of dystrophic mdx mice induces 

dystrophin expression. In a DMD patient, intramuscular cell transplantation of 

normal muscle precursor cells even showed long-term expression of donor derived 

dystrophin (Skuk et al., 2007). However, several other studies in DMD patients 

state that there is either no or only low expression of donor derived dystrophin 

(Karpati, 1991; Mendell et al., 1995) and that there are no functional improvements, 

except for one study (Huard et al., 1992). Compared to myoblasts, muscle stem 

cells, with their regenerative ability and their capacity to renew themselves, have a 

strong therapeutic advantage (Sun et al., 2019). Stem cell transplantation, using 

muscle satellite cells transduced with micro-dystrophin, was shown to regenerate 

mdx dystrophic muscles (Ikemoto et al., 2007). The transplantation of a single 

mouse muscle fiber, containing only few or even a single satellite cell, in mouse 

likewise showed better engraftment than myoblast transplantation (Collins et al., 

2005; Sacco et al., 2008). In addition, experiments of transplanting human satellite 

cells into immunocompromised mdx mice led to a stable engraftment (Garcia et al., 

2018). Equally, stem cell transplantation using bone marrow stromal cells showed 

potential as therapeutic agent (Dezawa et al., 2005). A recent study analyzed the 

effect of intracoronary allogeneic cardiosphere-derived cells (CAP-1002) 

administered by global intracoronary infusion in hearts of DMD patients with 

substantial myocardial fibrosis. Cell therapy here showed signals of efficacy on 

cardiac as well as on upper limb function (Taylor et al., 2019). 

Up to date, several subsequent studies focus on stem cell-based therapies for DMD. 

However, there are many safety concerns and practical limitations (such as for 

example the small number of satellite cells that can be isolated from a muscle 

biopsy), which so far prevent the clinical application of human satellite cells. 

Another disadvantage of cell therapy is the low dissemination rate of satellite cells 

and the high rate of death among satellite cells after transplantation. Furthermore, 

systemic administration with the goal to reach all skeletal muscles including, for 

example, diaphragm, leads to the aggregation of satellite cells as microthrombi in 

small vessels, instead of the colonization of muscle tissue (Sun et al., 2019). The 

transplantation of allogeneic cells also requires posttransplantational 

immunosuppression to prevent rejection of the cells (Bajek et al., 2015). 
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4.2.2. Ribosomal read-through of premature termination codons 

In 11% of individuals with DMD, a nonsense point mutation generates a premature 

termination codon (PTC) within the protein coding region of the mRNA. The PTC 

stalls translation, leading to an unstable and nonfunctional truncated dystrophin 

protein product (Bladen et al., 2015). By altering the RNA confirmation and hence 

reducing the codon-anticodon accuracy, aminoglycoside antibiotics, such as 

gentamicin, enable the read-through of PTCs by promoting the insertion of 

alternative amino acids at the position of the mutated codon. Thereby, dystrophin 

synthesis increases. However, aminoglycosides also have severe adverse effects 

when used long-term or at high dosage, such as renal and otic toxicity (reviewed in 

Guiraud and Davies, 2017; Linde and Kerem, 2008). PTC124, a new small organic 

molecule without antibiotic characteristics, was shown to read through disease-

causing PTCs without displaying the severe side effects observed for 

aminoglycosides. It furthermore does not affect intended termination due to the stop 

codon localized at the end of the coding sequence (Linde and Kerem, 2008). Due 

to these properties, PTC124 is a promising genetic treat for DMD patients with the 

causal mutation being a nonsense mutation leading to premature termination of 

translation (Bushby et al., 2014; McDonald et al., 2017). PTC124 with the trade 

name translarna, in 2014, under its former name ataluren, gained approval by the 

European Commission for use in the European Union, as the first mutation-specific 

therapy in DMD (Ryan, 2014). 

4.2.3. Utrophin modulators 

Another therapeutic approach in DMD is the upregulation of the expression of the 

protein utrophin. Utrophin, a member of the spectrin superfamiliy, shares 80% 

homology with dystrophin, thus is an autosomal homologue of the protein. It is 

normally highly expressed during embryogenesis and is later progressively 

substituted at the sarcolemma by dystrophin. In adult muscle, utrophin can be found 

at neuromuscular and myotendinous junctions. The great structural and functional 

similarities between the two proteins allow for using utrophin as surrogate for 

dystrophin (reviewed in Guiraud and Davies, 2017; reviewed in Perkins and Davies, 

2002; Song et al., 2019). As already stated above, in dystrophin-deficient mdx mice, 

the upregulation of utrophin is discussed to prevent the expression of the severe 

DMD phenotype. This thesis is supported by the generation of the utrophin null-

mdx double knockout mice, which exhibit a severe dystrophic phenotype, lethal 

within several weeks after birth (reviewed in Perkins and Davies, 2002). Altogether, 

this gives rise to the approach of utrophin-derived therapies to treat dystrophin 

deficiency in DMD patients (Goyenvalle et al., 2011). In different animal models, 

such as the GRMD dog and the mdx mouse, a miniaturized utrophin encoding 

synthetic transgene was shown to be highly functional acting as surrogate to 

compensate the loss of dystrophin. Miniaturized utrophin was able to prevent most 

of the detrimental physiological and histological aspects, such as necrosis of muscle 

fibers and mononuclear cell infiltrates. Unfortunately, limitations to this method are 

set by the achievable adeno-associated viral (AAV) vector dose (Song et al., 2019). 

Ezutromid (SMT C1100), an utrophin modulator, was shown to reduce 

degeneration of musculature, leading to an improved muscle function in the mdx 

mouse (reviewed in Guiraud et al., 2015). Subsequently, first in pediatric clinical 

trials with SMT C1100 have been completed, reporting tolerability and safety for 

this agent (reviewed in Guiraud and Davies, 2017; Ricotti et al., 2016). There are 

other utrophin modulators, such as heregulin and resveratrol, aiming to upregulate 
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utrophin by modulating the utrophin promoter. However, these drugs were reported 

to be efficient in the mdx mouse, but clinical trials for DMD are still missing 

(Moorwood et al., 2011).  

4.2.4. Delivery of mini- or microdystrophin via AAV vectors 

Adeno-associated viruses (AAV) as vectors are not only capable to deliver 

miniaturized utrophin, but also used to deliver mini- and microdystrophin systems, 

thereby restoring dystrophin in DMD patients. In general, AAV vectors have clear 

benefits compared to other vector systems, e.g. they display non-pathogenicity and 

only minimal immunogenicity and they show an extensive tissue and cell tropism 

(e.g. muscle cells amongst others count as the most efficient targets), accompanied 

by site-specific integration and long-term persistence (reviewed in Athanasopoulos 

et al., 2000; Athanasopoulos et al., 2004). In mice, AAV vectors are shown to 

mediate high long-term transgene expression in muscle fibers (Fisher et al., 1997). 

However, a disadvantage is the size of the AAV genome (<5 kb), limiting the 

packaging volume and therefore the transgene capacity (reviewed in 

Athanasopoulos et al., 2004). To overcome this obstacle, dystrophin protein is 

reduced to its essential components. A rod-truncated micro-dystrophin is shown to 

ameliorate the dystrophic phenotype of mdx mice (Sakamoto et al., 2002; 

Yoshimura et al., 2004). As one approach, systemic in utero AAV delivery of 

micro-dystrophin in mdx mice to reach the dystrophin deficient fetuses, shows 

dystrophin-expressing muscle-fibers and a significant improvement of the 

dystrophic phenotype at 9 weeks after birth (Koppanati et al., 2010). In the GRMD 

dog, localized and systemic delivery of recombinant AAV vectors expressing a 

canine microdystrophin was shown to restore dystrophin expression, stabilizing the 

clinical symptoms (Le Guiner et al., 2017). Trials of AAV micro-dystrophin 

therapies in human DMD patients are partly completed or currently running 

(National Library of Medicine, 2019). So far, small adverse events were 

manageable and the treatment results in neuromuscular and respiratory function 

improvements (reviewed in Duan, 2018). However, a steep setback is a recently 

reported vector-dose-dependent severe immunotoxicity of AAV vectors in non-

human primates and piglets (Hinderer et al., 2018). Concerning this, careful clinical 

monitoring and early laboratory evaluations for signs of toxicity is indispensable 

(Hinderer et al., 2018). Moreover, further studies in large animal models to 

cautiously approach non-toxic levels are essential. 

4.2.5. Exon skipping by antisense oligonucleotides targeting RNA 

In DMD, most mutations disrupt the ORF, whereas mutations where the ORF 

remains intact, lead to the synthesis of truncated dystrophin, resulting in the milder 

BMD. This less severe form of the disease exemplifies, that an internally deleted 

dystrophin can be functional. The spectrin-like rod domain, for example, in which 

most of the DMD causing mutations occur, is largely dispensable. Thus, splicing 

around a here located mutation can lead to the production of a truncated but 

functional dystrophin (Lu et al., 2003). Antisense oligonucleotide (AON)-mediated 

exon skipping aims to correct the ORF, and hence to restore the synthesis of partly 

functional dystrophin (Sharp et al., 2011). It thus converts an out-of-frame mutation 

in an in-frame mutation, inducing a BMD phenotype (Aartsma‐Rus et al., 2009). 

AONs are synthetic single-strand DNAs or RNAs with a length of 20 to 25 bases. 

The sequences are designed in a way, that they recognize and bind to a 

complementary sequence in the target RNA and modulate premature mRNA 
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splicing (reviewed in Nakamura and Takeda, 2009) by hiding specific exons from 

the splicing process or from translation. This leads to skipping of the target exon 

and thereby restoration of the ORF (Aartsma‐Rus et al., 2009). The AONs 2′-O-

methyl phosphorothionate AO (2OMeAO) and phosphorodiamidate morpholino 

oligomer (PMO) are most frequently used. To enhance their pharmaceutical 

properties, they differ from each other in chemical modifications of the 

oligonucleotides (reviewed in Nakamura and Takeda, 2009). PMO is largely 

unmetabolized, charge-neutral, and not linked to hepatotoxicity, immune or platelet 

activation. It thus provides properties, necessary for safety and tolerability (Mendell 

et al., 2016). 

The approach is mutation specific. Nevertheless, as shown above, most deletions 

cluster in hotspot regions, allowing that AON-mediated skipping of a small number 

of exons is applicable to a relatively large number of patients. In theory, exon-

skipping mediated by AONs, amounts to 83% of all DMD mutations, including 

deletions, small mutations and duplications (Aartsma‐Rus et al., 2009). The 

therapeutic approach has been extensively tested in DMD mouse models, (Aoki et 

al., 2012; Sharp et al., 2011), in dog models of DMD (Mcclorey et al., 2006; Yokota 

et al., 2009), and has already been translated into clinical trials (Goemans et al., 

2011; Van Deutekom et al., 2007). Eteplirsen is a PMO, designed to skip exon 51 

in the DMD gene (Mendell et al., 2016). Exon 51 skipping restores the ORF of 13% 

of DMD patients. This is the largest targetable group of all individuals with DMD 

(Aartsma‐Rus et al., 2009). In 2016, eteplirsen, with the trade name Exondys 51 

(Sarepta Therapeutics), reached approval by the U.S. Food and Drug 

Administration (FDA) (Syed, 2016). Patients, treated with eteplirsen over a longer 

period of time, show no or only rare signs or symptoms of renal or hepatic toxicity, 

which is attributed to the chemistry of PMO (Mendell et al., 2016). Effects on 

cardiac muscle, however, have not been reported yet (reviewed in Guiraud and 

Davies, 2017). There are several ongoing or already completed trials of other exon 

skipping therapies, such as golodirsen (SRP-4053), amenable to exon 53 skipping, 

PRO045, designed to skip exon 45, or PRO044, designed for exon 33 skipping 

(National Library of Medicine, 2019; Van Ruiten et al., 2017). Nevertheless, as 

AONs target RNA, so far they are only able to cause very small, temporary 

increases of dystrophin. As a consequence, exon skipping drugs based on AONs 

require regular systemic application and it is not yet clear if the levels of restored 

dystrophin in patients are sufficient to affect the course of the disease (Muntoni and 

Wood, 2011). 

4.2.6. Somatic gene editing 

Better than exon-skipping on the level of RNA is a permanent gene correction. 

There are different genome editing tools, i.e. transcription activator-like effector 

nucleases (TALEN), zinc-finger nucleases (ZFN) or Cas9 endonuclease associated 

to clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) (Gaj et 

al., 2013). Among these, the emerging CRISPR/Cas9 technology, first published 

by Jinek et al. (2012), which originally provides bacteria and archaea immunity to 

viruses, represents the most promising, simple and versatile RNA-directed tool for 

introducing double-stranded (ds) breaks into the DNA. The CRISPR/Cas9 enzyme 

mechanism in bacteria and archaea operates as adaptive defense system using 

antisense RNAs of past viral invasions as memory signatures. Cas9, as a CRISPR-

associated endonuclease, uses a guiding sequence within a RNA duplex for the 

formation of base pairs with targeted DNA sequences. Thereby the endonuclease is 

able to introduce a site-specific DNA ds break (Doudna and Charpentier, 2014). In 
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January 2016, the emerging importance of CRISPR/Cas9 as preferred gene editing 

tool in DMD was stressed by two publications, published parallely. CRISPR-

mediated genome editing was shown to restore the dystrophin expression in 

dystrophin deficient mdx mice. An intact Dmd ORF was restored by skipping the 

mutant Dmd exon 23. The gene editing components were delivered by adeno-

associated viral vectors. Long et al. (2016) were able to show dystrophin expression 

in varying degrees not only in skeletal but also in cardiac muscle. In Xu et al. 

(2016), dystrophin expression in the transduced muscles was restored to about 50%. 

In 2018, the proof of concept was confirmed in a large animal model for DMD, a 

small group (n = 4) of deltaE50-dogs. The CRISPR/Cas9 system and the sgRNAs 

targeting a mutation specific region were delivered by adeno-associated virus 

serotype 9 (AAV9). Amoasii et al. (2018) were able to restore dystrophin 

expression levels ranging from 3 to 90% of normal. Cardiac muscle showed a 

dystrophin expression of up to 93% of normal. 

CRISPR/Cas9 to date is the most powerful and promising method to heal inherited 

or from de novo gene mutation deriving diseases, such as DMD, by correcting the 

mutations responsible for the disease (Long et al., 2016). 
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III. ANIMALS, MATERIAL AND METHODS 

1. Animals 

In this work animals were produced by breeding from a herd of heterozygous 

female DMD+/- pigs inseminated with sperm of wild-type boars. One single German 

Landrace and Swabian-Hall mix sow with a heterozygous DMD exon 52 deletion 

(DMDΔ52) was used to establish the breeding herd. Following Mendelian 

inheritance, litters comprised male and female wild-type piglets (WT), 

heterozygous DMDΔ52 carrier pigs (DMD+/-) and male DMDΔ52 knockout pigs 

(DMDY/-). As DMD is an X-chromosomal disease, the male offspring of a female 

carrier (DMD+/-), receiving the X-chromosome with the mutated DMD, still have a 

Y-chromosome not carrying a DMD allele. Therefore, in the following, DMD 

knockout pigs are referred to as DMDY/-. 

All animal experiments were carried out according either to the German Animal 

Welfare Act with permission by the Regierung von Oberbayern (55.2-1-54-2532-

163-2014 and 02-16-137). 

2. Material 

2.1. Devices 

Agarose gel elecrophoresis chamber   OWL Inc., USA 

Artificial wet nurse unit    HCP-Technology, Notrup 

AT-FS708 switch     Allied Telesis Inc., USA 

BE400 incubator     Memmert, Schwabach 

Benchtop 96 Tube working rack   Stratagene, USA 

Centrifuge 5424 R     Eppendorf, Hamburg 

Centrifuge 5430 R     Eppendorf, Hamburg 

Centrifuge Rotina 380 R Hettich Lab Technology, 

Tuttlingen 

Daewoo KOC-154K microwave   Daewoo, South Korea 

Excelsior AS A82310100  Thermo Scientific, USA 

FiveEasy pH meter F20    Mettler-Toledo, USA 

FreeStyle Freedom Lite blood glucose meter  Abbott Laboratories, USA 

Grant JB Nova water bath    Grant Instruments, UK 

Heating plate with magnetic stirrer RH basic IKA-Werke, Staufen im 

Breisgau 

HLC Cooling-ThermoMixer MKR 13  Ditabis, Pforzheim 
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IKA MS1 Minishaker Vortexer IKA-Werke, Staufen im 

Breisgau 

Incubator Kendro Laboratory Products, 

Hanau 

IndigoVision 9000 Encoder    IndigoVision Inc., UK 

inoLab® pH meter 7110    WTW, Weilheim 

Labcycler thermocycler    SensoQuest, Göttingen 

Lax Disco Box  Lax Stalleinrichtung, Geldern 

Leica DM IL LED Inverse microscope  Leica Microsystems, Wetzlar 

MS-196VUT microwave    LG Electronics, South Korea 

MSOT Acuity Echo protoype imaging system  iThera Medical, Munich 

Pipettes (1000 µL, 200 µL, 100 µl, 20 µL, 10 µL,  

 2 µL)       Gilson Inc., USA 

Platform Scale Kern und Sohn   Kern und Sohn, Balingen 

Power Pac 300 gel electrophoresis unit   BioRad, Munich 

Power Station 300 gel electrophoresis unit   Labnet International, USA 

Precision balanace Chyo MJ-3000   YMC Co. Ltd., Japan 

Precision balance Kern PCB 3500-2   Kern und Sohn, Balingen 

RH Basic magnetic stirrer with heating  IKA, Staufen 

Rotary microtome Microm HM 325  Thermo Scientific, USA 

Rotilabo® mini centrifuge    Carl Roth, Karlsruhe 

SANTEC color camera VTC-E220IRP  Santec, Ahrensburg 

Select vortexer     Select BioProducts, USA 

SimpliNano spectrophotometer   Thermo Scientific, USA 

Smart Weigh GLS50 instecho   Better Basics, USA 

TES 99 modular paraffin embedding system  Medite, Burgdorf 

Thermo-Shaker TS-100    BioSan, Lettland 

Tilting table Rocky® Froebel Laboratory 

Technology, Lindau 

Tissue cool plate COP 30  Medite, Burgdorf 

Tissue float bath 1052  GFL, Burgwedel 

UVP GelStudio PLUS    Analytik Jena, Jena 

Zeiss Axiovert 200 M     Zeiss, Oberkochen 
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2.2. Chemicals 

Acetic Acid (glacial)     Carl Roth, Karlsruhe 

Agarose Universal      Bio&SELL, Nuremberg 

Bromphenolblue Sodium Salt    Carl Roth, Karlsruhe 

di-Sodium hydrogen phosphate, ≥ 99%, water free Carl Roth, Karlsruhe 

EDTA (Ethylenediaminetetraacetic acid)   Roth, Karlsruhe 

Eosin Y (yellowish) powder (C.l. 45380)  Merck, Darmstadt 

Ethanol Rotipuran® 99.8%    Carl Roth, Karlsruhe 

Formaldehyde 37%     Carl Roth, Karlsruhe 

GelRed® Nucleic Acid Gel Stain   Biotium, USA 

Histokitt      Karl Hecht, Sondheim/ Rhön 

Hydrochloric acid 25%    VWR, USA 

Hydrogen chloride 37%    Carl Roth, Karlsruhe 

Hydrogen peroxide 35% pure, stabilised  Carl Roth, Karlsruhe 

Mayer’s Hemalum Solution    Merck, Darmstadt 

Methanol      Carl Roth, Karlsruhe 

NaOH (Sodium hydroxide 2N)    Roth, Karlsruhe 

Roti Histofix 4%     Carl Roth, Karlsruhe 

Sodium chloride Emsure®    Merck, Darmstadt 

Sodium dihydrogen phosphate monohydrate  Carl Roth, Karlsruhe 

≥ 98% 

Sodium hydroxide 2 mol / l (2 N ) in aqueous VWR, USA 

solution, AVS TITRINORM 

Tissue Tek O.C.T.TM Compound   Sakura, Staufen 

Tris (Tris-(hydroxymethyl)-aminomethane)   Roth, Karlsruhe 

TRIS PUFFERAN® ≥ 99%    Carl Roth, Karlsruhe 

Tri-Sodium- citrate 2-hydrate    Carl Roth, Karlsruhe 

Tween®20      Sigma-Aldrich, Steinheim 

Xylene       VWR, USA 

2.3. Consumables 

Cellstar® tubes (15 ml, 50 ml)   Greiner BioOne, Austria 

Cover slips for histology    Carl Roth, Karlsruhe 
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Disposable plastic pipettes    Greiner BioOne, Austria 

Disposable scalpel #21    Henry Schein, Munich 

Embedding molds premium    Medite, Burgdorf 

Feather® microtome blades S35   pfm medical, Cologne 

FreeStyle Freedom Lite Blood glucose Test Strips Abbott Laboratories, USA 

Glass pasteurpipettes     Brand, Wertheim 

K3E Monovette®     Sarstedt, Nümbrecht 

LH Monovette®     Sarstedt, Nümbrecht 

Microscope slides Marienfeld SuperiorTM Marienfeld Superior, Lauda-

Königshofen 

Microscope slides Star Frost®    Engelbrecht, Edermünde 

NitriSense nitrile gloves    Süd-Laborbedarf, Gauting 

Parafilm® M      Carl Roth, Karlsruhe 

PCR reaction tubes (0.2ml)  Brand, Wertheim 

Petri dish 94×16     Greiner BioOne, Austria 

Pipet tips with filter     Greiner BioOne, Austria 

Pipet tips      Eppendorf, Hamburg 

Qualitative filter paper, grade 303, folded filter VWR, USA 

SafeGrip® latex gloves    SLG, Munich 

Safe-Lock reaction tubes (1.5 ml, 2 ml)  Eppendorf, Hamburg 

Serum Monovette®     Sarstedt, Nümbrecht 

Tissue-Tek® Cryomold® (25 mm × 20 mm × 5 mm 

and 15 mm × 15 mm × 5 mm)   Sakura, Staufen 

Uni-link embedding cassettes    Engelbrecht, Edermünde 

2.4. Enzymes, oligonucleotides and antibodies 

HotStarTaq DNA Polymerase    Qiagen, Hilden 

Oligonucleotides 

Oligonucleotides were manufactured by Thermo Scientific, USA. 

DMDqf1 5´-TGC ACA ATG CTG GAG AAC CTC A-3´ 

DMDqfr1 5´-GTT CTG GCT TCT TGA TTG CTG G-3´ 

neoPf  5´-CAG CTG TGC TCG ACG TTG TC-3´ 

neoSr  5´-GAA GAA CTC GTC AAG AAG GCG ATA G-3´ 
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Primary antibodies 

Monoclonal mouse anti-DYS1 (Rod domain,  Leica Biosystems, Wetzlar 

no. NCL-DYS1; clone no. Dy4/6D3) 

Secondary antibodies 

Biotinylated goat anti-mouse IgG    Jackson ImmunoResearch, 

(no. 115-065-146)     USA 

2.5. Buffers and solutions 

Unless indicated otherwise, water, deionized in a Easypure® II ultrapure water 

system (Werner, Leverkusen) or a Milli-RO 60 Plus device (Merck Millipore, 

USA), and termed as aqua bidest was used as solvent. 

Buffers and solutions for PCR and agarose gels 

DNA loading buffer (10×) 

10% glycerol in aqua bidest. 

Add 1 spatula tip of bromophenolblue. 

Add 0.5 M NaOH until the colour turns blue. 

Stored in aliquots at 4°C. 

dNTP-mix 

2 mM dATP, dCTP, dGTP, dTTP mixed in aqua bidest. 

Stored in aliquots at -20°C. 

GeneRulerTM 1 kb DNA molecular weight standard 

100 µl GeneRulerTM 1 kb DNA molecular weight standard. 

100 µl 6× loading dye. 

400 µl aqua bidest. 

Stored in aliquots at -20°C. 

TAE buffer (50×) 

242 g 2 M Tris, 

100 ml 0.5 M EDTA (pH8.0), 

57 ml gl acetic acid, 

add 1000 ml aqua bidest. 

Buffer was filtered, autoclaved and stored at room temperature. Before usage the 

buffer solution was diluted to single concentration with aqua bidest. 

Buffers and solutions for DNA isolation 

10 mM Tris/HCl, pH 8.0 

10 mM Tris 

Adjust pH to 8.0 with HCl. 

Buffers and solutions for fixation and immunological detection 

Phosphate-Buffer 

40 g Sodium dihydrogen phosphate monohydrate 

65 g di-Sodium hydrogen phosphate  

mixed and dissolved in 1000 ml aqua bidest. 
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4% Formalin solution  

100 ml Phosphate Buffer 

100 ml Formaldehyde 37% 

mixed in 800 ml aqua dest. 

Eosin 1% 

10 g Eosin Y powder 

dissolved in 1000 ml aqua bidest, 80°C. 

Cooled down to room temperature. 

Add 1.5 ml gl acetic acid. 

Filtrate the solution through a 5-13 µm filter. 

Stored in darkness, at room temperature. 

Note: Solutions stored over an extended period can be refreshed with gl acetic 

acid. 

HCl 25% 

675 ml hydrogen chloride 37% 

mixd with 325 ml aqua bidest. 

EtOH 70% 

700 ml EtOH 100% 

mixed in 300 ml aqua bidest. 

EtOH 96% 

960 ml EtOH 100% 

mixed in 40 ml aqua bidest. 

HCl-EtOH stock solution 

1500 ml Ethanol 96% 

mixed in 357 ml aqua bidest. 

Add 14.2 ml HCl 25%. 

0.5% HCl-EtOH solution 

100 ml HCl-EtOH stock solution. 

Add 100 ml 70% EtOH. 

10 mM Sodium citrate buffer pH 6.0 for IHC 

2.94g Tri-sodium-citrate 2-hydrate, 

mixed in 1000 ml aqua bidest.  

Adjust pH to 6.0 with HCl 25%. 

Add 0.5 ml Tween 20. 

Stored at room temperature for a maxium of 3 months. 

For extended storage, store at 4°C. 

10× TBS buffer for IHC 

83.33 g NaCl 

60.57 g Tris 

Ad 1000 ml aq. bidest. 

Adjusted to pH 7.6 using HCl 25%. 

Concentrated stock solution of buffer was autoclaved. 

The TBS stock was diluted to single concentration with aq. bidest. before use: 

100 ml TBS stock 

mixed in 900 ml aqua bidest. 



III. Animals, material and methods     41 

2.6. Kits 

DNeasy® Blood & Tissue Kit (250)   Qiagen, Hilden 

HotStarTaq Plus DNA Polymerase   Qiagen, Hilden 

ImmPACTTM DAB Peroxidase (HRP) Substrate  Vetor Laboratories, Biozol, 

Eching 

nexttecTM Genomic DNA IsolationKit Nexttec, Leverkusen 

SK-4105      Vector Laboratories, USA 

Vectastain® Elite ABC-Peroxidase Kit Vetor Laboratories, Biozol, 

Eching 

2.7. Other reagents 

Buffer AE      Qiagen, Hilden 

dNTP Set (100 mM)     Thermo Scientific, USA 

Gene RulerTM 1 kb DNA Ladder   Thermo Scientific, USA 

Goat Serum      MP Biomedicals, USA 

PCR Buffer 10 ×     Qiagen, Hilden 

2.8. Software 

ASReml  VSNi, Hemel Hempstead, UK 

cLabs software v.2.66     iThera Medical, München 

IndigoVision control center software v.3.19.5 IndigoVision Inc., UK 

Leica Application Suite v.4.4.0   Leica Microsystems, Wetzlar 

AxioVision V 4..10 or newer    Zeiss, Oberkochen 

PathZoom LiveView 

Microsoft office Suite 2016 Standard   Microsoft, USA 

Graphad Prism v.5.04 or newer   GraphPad Software, USA 

UVP Software VisionWorksTM LS   Thermo Scientific, USA 

ViewMSOT software v.3.8    iThera Medical, München 

2.9. Drugs and supplementary feed 

astoral® Pet Lax     almapharm, Wildpoldsried 

Atropine sulfate (0.5 g/ 1 ml) (monohydrate)  B. Braun, Melsungen 

Azaperone (Stresnil®)     Elanco, USA 

Bonimal SB PowerMilk with blood plasma  Bonimal, Munich 
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Bromhexidinhydrochloride powder (Bisolvon®) Boehringer Ingelheim, 

Ingelheim am Rhein 

Buscopan® Boehringer Ingelheim, 

Ingelheim am Rhein 

Cloprostenol as sodium salt (Estrumate®)  MSD, USA 

Embutramid, Mebezonium, Tetracain (T61®) Intervet, Unterschleißheim 

Fentadon (50 µg/ 1 ml)    Dechra, Aulendorf 

Glucose solution 20%  B. Braun, Melsungen 

HS Cat Laxative     Henry Schein, USA 

Ketamine hydrochloride (Ursotamin® 10%) Serumwerk Bernburg, 

Bernburg 

Lactulose AL Syrup     Aluid Pharma, Laichingen 

Oxytocin 10 IE/ml  cp-pharma, Burgdorf 

Potassium choride 7.45%  B. Braun, Melsungen 

Propofol 2% (20 mg/ 1 ml) MCT Fresenius Fresenius Kabi, Bad 

Homburg 

Stomach tube 80 cm × 4 mm    Henry Schein, USA 

Ursoferran® (200 mg/ 1ml) Serumwerk Bernburg, 

Bernburg 

Xylazine Serumwerk 

Bernburg,Bernburg 

3. Methods 

3.1. Animal generation 

Generation of the DMDΔ52 founder sow 

The exon 52 deletion of the porcine DMD gene was generated by the working group 

of Nikolai Klymiuk of our institute, according to Klymiuk et al. (2013), as described 

in Moretti et al. (2020). In summary, the targeting bacterial artificial chromosome 

CH242-9G11 was modified to carry instead of exon 52 a neomycin selection 

cassette. Subsequently, the modified BAC was nucleofected into a female primary 

kidney cell line (PKCf). Single cell clones were generated, according to Richter et 

al. (2012). From a batch of each cell clone genomic DNA was isolated. In order to 

screen for correctly targeted cell clones with a heterozygous deletion of DMD exon 

52, the copy number of the DMD exon 52 was compared to the number of copies 

of two reference loci within the POU5F1 and the NANOG genes (Klymiuk et al., 

2013). Of 258 screened cell clones, 9 cell clones were identified to have one intact 

and one modified allele. For the generation of DMDΔ52 carrier sows, the cell clones 

with the heterozygous deletion of DMD exon 52 were used for somatic cell nuclear 

transfer (SCNT), carried out by Prof. Dr. Valeri Zakhartchenko, Dr. Mayuko 

Kurome, Dr. Barbara Keßler and Tuna Güngör of our institute. A total of 14 

transfers of SCNT embryos to synchronized recipients were performed, resulting in 
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3 litters and 4 live piglets with the heterozygous DMDΔ52 (DMD+/-) genotype. Only 

one animal could be raised to adulthood: clone #3040, the founder sow of the DMD 

breeding herd. 

Generation of male DMDY/- piglet clones 

Furthermore, male DMDY/- clones were generated by SCNT as decribed by 

Klymiuk et al. (2013). 

3.2. Genotyping of piglets 

Isolation of genomic DNA from tail biopsies 

For the isolation of genomic DNA tail biopsies were obtained from individual 

piglets within 24 h after birth and stored at -20 °C until further processing. Genomic 

DNA was isolated with the nexttecTM Genomic DNA Isolation Kit for Tissues and 

Cells, according to the manufactorer’s instructions. A very small amount of tissue 

(3-4 pieces with an approximate diameter of 0.5 mm) was incubated in a 1.5-ml 

reaction tube with 303 µl lysis buffer mix, using a thermomixer attuned to 60 °C 

and 1200 rpm for at least 30 min. Each sample additionally containted 3 µl DTT to 

increase the DNA yield and to ensure proper lysis of the tissue. After the tissue 

samples were dissolved, 120 µl of the lysate was purified on an equilibrated 

nexttecTM cleaning column. The eluate, containing the purified DNA, was 

subsequently used for PCR. 

PCR 

Two different sets of primers were used to detect the intact (WT) and the mutant 

sequence. The presence of the wildtype DMD allele, containing exon 52, was 

detected by the specific primer pair DMDqf1 and DMDqfr1. The neomycin 

selection cassette, replacing DMD exon 52, was detected by the primer pair neoPf 

and neoSr. All PCR components were mixed on wet ice to a final volume of 20 µl 

in 0.2 ml PCR reaction tubes. Previously isolated genomic DNA of WT (#5142) 

and DMDY/- (#5143) piglets served as controls. As non-template control aq. dest. 

was used. Table 1 and 2 below list the details for master mix composition and PCR 

condition. 

Table 1: Master mix composition for genotyping PCR. 

aq. dest.  14 µl 

dNTPs (2 mM) 2 µl 

10× PCR Buffer 2 µl 

Primer f (10 µM) 0.4 µl 

Primer r (10 µM) 0.4 µl 

Taq Polymerase (5U/µl) 0.2 µl 

DNA template 1 µl 
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Table 2: Cycler protocol for genotyping PCR. 

Denaturation 95 °C 5 min  

Denaturation 95 °C 30 s 

35× Annealing 62 °C 30 s 

Elongation 72 °C 30 s 

Final elongation 72 °C 5 min  

Termination 4 °C 5 min  

 

Agarose gel electrophoresis 

After completion of PCR amplification, the presence of amplified DNA was proven 

by agarose gel electrophoresis. A 1.0% agarose gel was prepared, heating 1 g 

Universal Agarose per 100 ml 1 × TAE buffer solution in a microwave, panning 

from time to time, until total dissolution of the agarose. After cooling down the 

agarose gel to 50-60 °C, it was poured into a gel electrophoresis chamber, then left 

to settle. To each 20 µl PCR sample, 2.5 µl of a 1:250 mixture of GelRed® and 

DNA loading buffer (10×) (GR:BPB 1:250) was added. 1 × TAE buffer was used 

to fill the gel electrophoresis chamber. The samples as well as 6 µl GeneRulerTM 1 

kb DNA molecular weight standard mixed with 2.5 µl of GR:BPB 1:250 were 

loaded into individual gel slots. DNA fragments were seperated according to their 

size by applying an electric current to the gel electrophoresis chamber. Afterwards, 

the DNA fragments were visualized under UV light. PCR products were analyzed 

in relation to the DNA molecular weight standard. 

3.3. Rearing of DMDY/- piglets 

Rearing of the DMDY/- piglets required birth monitoring and subsequent intense 

nursing during the first days of life, including supplementary feeding. A reduced 

general condition of newborn DMDY/- piglets, due to a severe DMD phenotype, 

may lead to increased losses of animals resulting from severe energy deficit and/or 

crushing by the sow. To increase survival chances, different rearing conditions for 

suckling DMDY/- piglets were validated. In the described breeding systems, 

straddling piglets received anti-straddle cuffs until independent standing and 

walking, if not described otherwise. Furthermore, all piglets received an 

intramuscular iron supplementation of 1 ml Ursoferran® 200 mg/ml on day 5 of life. 

Motherless rearing in an artificial rearing unit 

First, motherless rearing in an artificial rearing unit for piglets was studied. To allow 

colostrum intake, piglets remained with the sow during the first 12 h of life under 

supervision by a veterinarian. After these 12 h, the piglets were separated from the 

mother and transferred into an artificial rearing unit, the Lax Disco Box. The unit 

was equipped with slatted floor, constant access to fresh water and an automatic 

temperature regulation were provided. Supplementary milk was manually mixed 

and replaced every 8 h. Piglets were trained to independently drink milk substitute 

out of an installed drinking trough. In case piglets were not able to drink 

independently, they received milk substitute orally via a syringe. The 

supplementary milk was fed for the normal suckling period of 4 weeks, with slowly 

reducing the amount to none. After the first week of life, dry piglet feed was 
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supplemented progressively. After weaning, piglets were rehoused in barn 

compartments, equipped with heating lamps. During the whole rearing period 

piglets had ad libitum access to food and water. 

48 h supervised suckling at the sows’ teats 

To reduce losses due to cruhsing by the sow, all DMDY/- piglets were separated 

from the sow right after birth by a disconnecting device for the first 48 h of life. 

Suckling at the sows’ teats only took place under the supervision by a veterinarian 

at approximately every 2 h. No further supportive actions were provided. 

5 d intense nursing  

During the first 5 days after birth DMDY/- piglets were left with the sow and intense 

nursing by a veterinarian, as explained in the following, was ensured: 

In a first approach, drinking at the sows’ teats was taught to piglets, which were not 

able to suckle without support. Soonest 24 h after birth, weak DMDY/- piglets were 

trained to drink milk substitute (Bonimal SB PowerMilk with blood plasma, 

Bonimal, Munich) independently out of a drinking trough, which was replaced after 

every 8 h. If independent milk intake out of the trough was not possible, adjuvant 

tube-feeding of a maximum of 20 ml milk substitute was offered. Pale DMDY/- 

piglets received 0.5 ml Ursoferran® 200 mg/ml i.m. injected ahead of schedule, 

followed by the regular 1 ml Ursoferran® 200 mg/ml i.m. injection on day 5 of life. 

Birth weight was documented and weight was subsequently controlled every 24 h 

for the first 5 days of life. In case of strongly reduced general condition and severe 

weight loss, 10 ml glucose solution 20% was injected intraperitoneally (i.p.), and 

heat supply, to support the increase of body temperature, was provided. After the 

first week of life, dry piglet feed was supplemented. Additional milk subsitute 

feeding was maintained for the normal suckling period of 4 weeks, with slowly 

reducing the amount to none. 

In a second approach all piglets appearing weak right after birth (before the 

completion of genotyping), received adjuvant tube-feeding of frozen stored and 

reheated colostrum to ensure sufficient colostrum intake and to avoid energy 

deficiency. Drinking at the sows’ teats was taught to the piglets, which were not 

able to suckle without support. Venous blood for blood glucose measurement was 

gained by puncturing the lateral ear vein. Glucose levels were measured using a 

FreeStyle Freedom Lite blood glucose meter. If the blood glucose level of a DMDY/- 

piglet was low compared to a WT piglet, adjuvant tube-feeding of frozen stored and 

reheated colostrum was provided to the individual animal. In case of severe energy 

deficiency and strongly reduced general condition, 10 ml glucose solution 20% was 

injected i.p., and heat supply was provided. Straddling piglets received anti-straddle 

cuffs, which were enhanced by supportive taping, and manual physiotherapy was 

applied to stimulate circulation, to prevent contructions and to strengthen the 

muscles. The individual birth weight was documented and weight was subsequently 

controlled every 24 h for the first 5 days of life. If the weight loss within 24 h 

exceeded 50 g, adjuvant tube-feeding of a maximum of 20 ml freshly retrieved 

breast milk and/or milk substitute at approximately every 5-8 h was continued 

during the first 2-3 days of life, depending on the general condition of the individual 

animal. After 24 h of life, all DMDY/- piglets were trained to independently drink 

milk substitute out of a drinking trough, replaced every 8 h. Pale DMDY/- piglets 

received 0.5 ml Ursoferran® 200 mg/ml i.m. ahead of schedule, followed by the 
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regular 1 ml Ursoferran® 200 mg/ml i.m. on day 5 of life. Additional milk subsitute 

feeding was maintained for the normal suckling period of 4 weeks, with slowly 

reducing the amount to none. After the first week of life, dry piglet feed was 

supplemented. In a further approach, the rearing conditions in later litters were 

extended by an automatic wet-nursing unit (HCP Technology, Notrup), providing 

freshly mixed supplementary milk every hour, automatically calculating the 

necessary milk amout per day. In a last experimental approach, piglets noted with 

increasing abdominal girth and loss of appetite at the same time, received laxatives 

and digestion-aiding nutritional supplements. 

3.4. Blood collection and clinical chemistry 

Blood samples of DMDY/-, DMD+/- and WT pigs were taken with Serum 

Monovettes®. Animals had free access to food and water before blood collection. 

Blood was collected from the jugular vein. After clotting at room temperature for 

30 min, serum was separated by centrifugation at 1.800 rcf for 10-20 min at 4 °C. 

The blood serum was transferred into 1.5 reaction tubes and stored at –80 °C until 

further processing. Serum samples for creatine kinase (CK) measurement did not 

exceed a storage period of 6 months until further processing. CK values were 

determined by the Clinic for Swine LMU Munich, Oberschleißheim. 

CK analysis 

For the characterization of the DMD breeding herd (VI. 3), CK values were 

monitored over a longer time period. Therefore, blood of DMDY/-, DMD+/- and WT 

pigs was collected in the first, second, third and fourth week of life, and at the 

second and third month of life, and CK levels were determined subsequently. 

In the therapeutic trial (IV.5.), CK levels were analysed as biomarker for the 

severity of the disease. Therefore, blood was collected before application of the 

therapeutic agent and right before euthanasia, and CK levels were determined. 

Longitudinal CK measurement was not feasible due to the occurrence of sudden 

cardiac death in some DMDY/- pigs. 

3.5. Necropsy 

All animals were euthanised at a predetermined timepoint, or if the state of health 

necessitated euthanasia. Generally, for euthanasia, pigs were sedated with 

Ursotamin® at a dosage of 20 mg ketamine/kg body weight (BW) in combination 

with Stresnil® (2 mg Azaperone/kg BW), applicated intramuscularly (i.m.). To 

deepen anesthesia, Ursotamin® (20 mg ketamine/kg BW) in combination with 

xylazine (1 mg/kg BW) was injected intraveniously (i.v.). Animals were euthanised 

with an i.v. or intracardial (i.c.) application of T61® in a dosage of 1 ml/10 kg BW. 

Animals used in the therapeutic trial (IV.3.) were presedated with an i.m. 

application of Ursotamin® (20 mg ketamine/kg BW) in combination with Stresnil® 

(2 mg Azaperone/kg BW) and atropine sulfate (0.025 mg/kg BW). To deepen and 

maintain anesthesia during veterinary-accompanied transportation and subsequent 

examination of the individual animal, Propofol (1.5-4.4 mg/kg BW/h, depending 

on the effect) was applied intravenously. Fentanyl was administered i.v. as bolus 

(0.5-1 ml) before surgery or euthanasia. Animals were euthanised with an i.c. 

overdose of potassium chloride (30-60 mg/kg BW, depending on the effect), 

generating an atrioventricular block and cardiac arrest. 
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Post-mortem examination for cLDLA study 

Necropsy of the animals included in the genome-wide cLDLA (IV.4.) contained the 

macroscopic evaluation of the severity of musular dystrophy, apparent as 

macroscopically visible white striated muscle bundles, exemplarily shown in Figure 

5, and laparatomy. 

 

Figure 5: Exemplary presentation of macroscopically striated muscle 

phenotype of short-term surviving DMDY/- piglets. a, Extensor muscles of the 

lower arm of piglet #6311 on day 3 after birth. b, Mylohyoid muscle of piglet #6837 

on day 4 after birth. c, Latissimus dorsi muscle of piglet #5970 on day 2 after birth. 

d, Cut surface of triceps brachii muscle of piglet #6311. Arrows: macroscopically 

striated muscle bundles. 

 

Necropsy done for somatic gene therapy trial 

Of the animals included in the therapeutic trial (IV.5.), tissue specimens of different 

organs (lung, liver, spleen and kidney) were taken following a systematic sampling 

protocol. A proportion of the obtained tissue specimens was fixed in 4% formalin 

solution and processed as described below for staining. Another part of the tissue 

samples was cut into pieces of desired sizes, placed into tissue tek cryo molds, 

surrounded with Tissue Tek® O.C.T.TM compound and shock frozen on dry ice. 

Samples embedded in Tissue Tek® O.C.T.TM compound were stored at -80 °C. 

Furthermore, around 10 small pieces of approximately 3 mm × 3 mm × 3 mm of 

each tissue specimen were cut, shock frozen on dry ice and transferred into 1.5-ml 

reaction tubes for storage at -80 °C. The whole heart of each animal was sampled 

following a systematic sampling protocol. Tissue samples were obtained and stored 

as described above. Tissue specimens of different skeletal muscles (masseter, 

longissimus dorsi, triceps brachii, biceps femoris, lower limb muscles and 

diaphragm) were taken. Importantly, for the i.m. treated animals skeletal muscles 

of both sides (treated and non-treated) of the body were sampled. Tissue samples 

were obtained and stored as described above. 

  



III. Animals, material and methods     48 

Necropsy done for diagnostic trial, validating MSOT 

From all animals including the four anatomical regions previously imaged with the 

MSOT imaging system for validation as an imaging biomarker (IV.6.) 

representative tissue biopsies were taken. A schematic description of the anatomical 

regions is shown in Figure 6. One proportion of the obtained tissue specimens was 

fixed in 4% formalin solution and processed as described below for staining. The 

other part of the tissue samples was cut in around 10 small pieces of approximately 

3 mm × 3 mm × 3 mm, shock frozen on dry ice and transferred into 1.5 ml reaction 

tubes for storage at -80 °C. 

 

Figure 6: Schematic overview over the tissue specimens taken at MSOT 

necropsy. Tissue samples were extracted of both body sides, since both sides were 

imaged with MSOT imaging system. a, As palpable landmarks of the upper arm, 

elbow and shoulder joint were used to locate piglet muscles before imaging. The 

area between the shoulder and elbow joint, mainly containing the triceps femoris 

muscle, was taken at necropsy. b, For the thigh, the ischiadic tuber and the stifle 

joint were used. Tissue specimens were taken in the area between the two 

landmarks, mainly containing biceps femoris muscle. 

 

3.6. Tissue preparation 

Formalin fixation and paraffin embedding 

For formalin-fixed, paraffin-embedded (FFPE) sampling, harvested tissue samples 

were directly transferred into 4% formalin solution for a maxium of 24 h for pre-

fixation. Subsequently, tissue was cut into desired sizes, placed into embedding 

cassettes, and fixed further in 4% formalin solution for another 6 h at maximum. 

After fixation, tissue underwent automated processing in the Thermo Scientific 

Excelsior, as described in Table 3. 



III. Animals, material and methods     49 

Table 3: Tissue processing in Scientific Excelsior. 

 

Dehydration 

Ethanol 70% 2 × 1.5 h 

Ethanol 90% 1.5 h 

 
Ethanol 90%  1 h 

 
Ethanol 100% 2 × 1 h 

Intermedium Xylol 3 × 1 h 

Infiltration 
Paraffin 2 × 1.75 h 

Paraffin 2 h 

 

In the following, the paraffin-impregnated tissue samples were paraffin embedded 

with the TES 99 modular paraffin embedding system. With a Rotary microtome 

Microm HM 325 sections of about 4 µm were cut and mounted on microscope 

slides Star Frost® for immunohistochemistry stain (IHC) or on microscope slides 

Marienfeld SuperiorTM for hematoxylin and eosin stain (H.E.). Sections were stored 

at 37 °C until staining. 

Tissue fixation for cryo-conservation 

Three different methods for cryo-conservation of tissue specimens were applied, 

depending on further processing. For expression data analysis, homogenous tissue 

specimens were cut into pieces of approximately 3 mm × 3 mm × 3 mm, frozen on 

dry ice, and stored in 1.5 ml reaction tubes on –80 °C. For staining of cryosections, 

obtained tissue samples were cut into pieces of approximately 10 mm × 5 mm × 2 

mm before embedding in the correct orientation in OCT compound and snap-

freezing on dry ice. This conservation method should not interfere with antigenicity 

of epitopes and should lead to better conservation of tissue morphology than FFPE 

tissue. 

3.7. Staining methods 

Hematoxylin and eosin stain 

H.E. staining results in blue dyed nuclei and pink to red dyed cytoplasm. It was 

used to visualize cellular and tissue structure detail. H.E. staining was performed 

on slices of FFPE tissue, mounted on Marienfeld SuperiorTM microscope slides. It 

was applied following a standard H.E. protocol as shown in Table 4. After the 

clearing the tissue slice in the last step, the tissue was mounted with Histokitt 

mounting medium. All steps were performed at room temperature. 
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Table 4: Standard H.E. protocol. 

Dewaxing Xylol 20 min 

Rehydration 

EtOH 100% 2 × 2 min 

EtOH 96% 2 × 2 min 

EtOH 70% 2 min 

Washing Aqua bidest. 2 min 

Staining Mayer’s Hemalum 5 min 

Rinsing Floating tap water, warm 5 min 

Differentiation 0.5% HCl-EtOH solution  1-2 × 1 s 

Rinsing Floating tap water, warm 5 min 

Counterstaining Eosin 1% 2 min 

Washing  Aqua bidest.  2-3 × 1 s 

Dehydration EtOH 70% 2 min 

Dehydration 

Clearing 

EtOH 96% 2 × 2 min 

EtOH 100% 2 × 2 min 

Xylol ≥ 5 min 

 

H.E. staining for the diagnostic trial (IV.6.) was performed by the Department of 

Pediatrics and Adolescent Medicine, University Hospital Erlangen, FAU Erlangen-

Nuremberg, according to the laboratory protocols. 

Masson Trichrome, Sirius Red, Von Kossa staining 

For Masson trichrome (MT), Sirius Red (SR) and Von Kossa staining tissue 

samples were fixed in 4% formalin solution and subsequently embedded in paraffin 

as described above. MT and SR staining of skeletal muscle sections for the 

diagnostic trial (IV.6.) as well as analyses of the collagen content of these sections 

was performed by the Department of Pediatrics and Adolescent Medicine, 

University Hospital Erlangen, FAU Erlangen-Nuremberg, as described in 

Regensburger et al. (2019). Therefore, the MT and SR stained sections were 

photographed using an AXIO Scope.A1 (Carl Zeiss, Oberkochen) and the AXIO 

Vs40 software (v.4.8.10, Carl Zeiss, Oberkochen) at 10 × magnification. TIF 

images were split into three channels (red, blue and green) and the red and green 

channels were used for collagen quantification. Therefore, the respective positive-

stained areas were calculated as a fraction of the whole image. 

For the characterization of the DMD breeding herd (IV.3.) cutting of 4 µm sections 

and staining with MT, SR and Von Kossa was performed by the paraffin laboratory 

of the Institute for Veterinary Pathology, LMU Munich. 

Immunohistochemical staining 

Immunostaining of muscle sections of DMDY/- pigs compared to WT littermates 

was performed using monoclonal mouse anti-DYS1 as primary antibody, reacting 

with the rod domain (between amino acids 1181 and 1388) of human dystrophin, 

with cross-reactivity to porcine dystrophin. As secondary antibody biotinylated 

goat anti-mouse IgG was used. In detail, for immunohistochemical staining (IHC) 

staining, all tissue sections were mounted on Star Frost® microscope slides and 
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stored at 37 °C before further processing. All steps were performed at room 

temperature, if not indicated otherwise. Dilutions of H2O2, normal serum and 

antibodies were prepared with TBS buffer. In a first step, FFPE tissue sections were 

deparaffinized and rehydrated through a descending alcohol row, according to 

Table 5. In Table 6, an overview over the workflow of the used IHC protocol is 

given. 

Table 5: Dewaxing and rehydration of FFPE tissue sections.  

Dewaxing Xylol 20 min 

Rehydration 

EtOH 100% 2 × 2 min 

EtOH 96% 2 × 2 min 

EtOH 70% 2 min 

Washing Aqua bidest. 2 × 2 min 

 

Table 6: IHC protocol for dystrophin detection. 

 Procedure Agent Conditions 

STEP 1 Heat induced 

antigen-retrieval 

10 mM Citrate 

buffer pH 6.0 + 

0.05% Tween  

800 W until 

boiling, then 

subboiling (320 

W) for 15 min 

STEP 2 Cooling  30 min 

STEP 3 Washing 1 × TBS buffer 10 min  

STEP 4 Blocking of 

endogenous 

peroxidase activity 

1% H202  15 min  

STEP 5 Washing 1 × TBS buffer 10 min  

STEP 6 Blocking in normal 

serum 

5% NS goat   1 h 

STEP 7 Primary antibody    4 °C over night  

STEP 8 Washing 1 × TBS buffer 10 min 

STEP 9 Secondary 

antibody 

   1 h  

STEP 10  Washing 1 × TBS buffer 10 min 

STEP 11 Detection Avidin-biotin-

complex 

30 min 

STEP 12 Washing 1 × TBS buffer 10 min 

STEP 13 Substrate DAB  

STEP 14 Rinsing Floating tap water    5 min 

STEP 15  Counterstaining Meyer’s Hemalum  

STEP 16 Rinsing Floating tap water   5 min 

 

Heat induced antigen-retrieval (HIAR), to restore hidden antigen sites, was 

performed by heating the tissue sections mounted on Star Frost® microscope slides 

in a microwave at subboiling temparature for 15 min, with 10 mM sodium citrate 
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buffer as agent, applied to break the protein cross-links, which were formed during 

formalin fixation. After cooling down for 30 min, endogenous peroxidase activity 

was blocked with 1% H2O2 for 15 minutes. Following a 10 min washing step in 1 

× TBS buffer, 5% normal goat serum was used for blocking non-specific antibody 

binding. Primary antibody was NCL-DYS1 (dilution 1:20; overnight at 4 °C), 

secondary antibody was biotinylated AffiniPure goat anti-mouse IgG (dilution 

1:250, 1 h at room temperature). For the detection of dystrophin in striated muscles, 

the Vectastain Elite ABC HRP Kit with 3.3-diaminobenzidine tetrahydrochloride 

dihydrate (DAB) as chromogen (brown color) was used. Meyer’s Hemalum was 

applied as counterstain. 

Immunofluorescence staining 

Concerning the somatic gene editing therapy study (IV.5.), described and published 

by Moretti et al. (2020), immunofluorescence (IF) staining was applied for the 

visualization of dystrophin in striated muscles. The staining process, imaging and 

analyses of the stained samples, were performed by Tarik Bozoglu of the Clinic and 

Policlinic for Internal Medicine I, Klinikum Rechts der Isar, TU Munich. As 

primary antibody against dystrophin, Leica NCL-DYS2 (1:25, Novocastra) was 

used. The IF staining protocol, as described in Dorn et al. (2018), was used. For 

imaging of the stained samples, inverted and confocal laser scanning microscopes 

were used (DMI6000B and TCS Sp8, Leica Microsystems, Wetzlar). 

3.8. Total protein and total collagen quantification 

Total collagen (hydroxyproline) quantification was calculated in relation to total 

protein content to confirm MSOT collagen signal (IV.6.). All analyses were 

performed by the Department of Pediatrics and Adolescent Medicine, University 

Hospital Erlangen, FAU Erlangen-Nuremberg. In brief, a Total Protein Assay and 

a Total Collagen Assay (both QuickZyme Biosciences, Leiden) were performed 

according to the manufacturer’s instructions. Per muscle, five FFPE muscle tissue 

sections of 10 µm were analyzed, as described in Regensburger et al. (2019). 

3.9. Proteomic experiments 

Sample preparation for proteomic experiments 

Tissue samples were homogenized using an ultrasonic device (Sonoplus GM3200 

with BR30 cup booster, Bandelin, Berlin) in 8 M urea/0.4 M NH4HCO3 (15 µl/mg 

frozen tissue). Protein concentrations were measured photometrically using the 

Pierce 660 nm Protein Assay (Thermo Scientific, USA). The lysates were analyzed 

either by selected reaction monitoring or by a holistic proteome analysis. 

Selected reaction monitoring 

Selected reaction monitoring (SRM) was performed in cooperation with Thomas 

Fröhlich and Florian Flenkenthaler, Gene Center - Laboratory for Functional 

Genome Analysis (LAFUGA), LMU Munich, as described in Moretti et al. (2020) 

and explained in the following: 
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In detail, samples containing 100 µg of total protein were diluted with equal 

volumes of 2-fold sample buffer (0.125 M Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 

10% β-mercaptoethanol, 0.002% bromophenol blue) and separated on a 4–20% 

Mini-PROTEAN® TGXTM precast gel (Bio-Rad, Hercules, USA). After Coomassie 

staining (Roti-Blue, Carl Roth, Karlsruhe), the gel slices with proteins >250 kDa 

were excised, de-stained using 50% acetonitrile (ACN) in 50 mM NH4HCO3 and 

subjected to in-gel digestion. For reduction, the gel pieces were incubated in a 

reduction solution of 45 mM dithioerythritol (DTE) dissolved in 50 mM NH4HCO3 

for 30 min at 55°C. By incubating the gel slices in 100 mM iodoacetamide (IAA) 

dissolved in 50 mM NH4HCO3 in the dark for 30 min at room temperature, the 

alkylation of sulfhydryl (–SH) groups was achieved. Prior to digestion, 50 fmol of 

the synthetic heavy peptides (JPT, Berlin) were spiked in. Using 70 ng Lys-C 

(FUJIFILM Wako Chemicals Europe, Neuss), a first digestion step for 4 h at 37°C 

was performed. A second digestion step was carried out using 70 ng porcine trypsin 

(Promega, Fitchburg, WI, USA) overnight at 37°C. Subsequently, extraction of 

peptides was performed utilizing 70% ACN. 

Before mass spectrometry, samples were dried using a SpeedVac vacuum 

concentrator. The SRM runs were carried out using a nanoACQUITY UPLC® 

system (Waters Corporation, USA), which is coupled to a triple‐quadrupole linear 

ion trap mass spectrometer (QTRAP 5500, AB SCIEX, USA). The tryptic peptides 

were transferred to a trap column (PepMap100 C18, 5 μm, 300 μm i.d. × 5 mm, 

Thermo Scientific, USA) with a flow rate of 10 μl/min. A reversed‐phase C18 nano‐

LC column (ReproSil‐Pur 120 C18‐AQ, 1.9 μm, 75 μm i.d. ×15 cm, Dr. Maisch 

HPLC, Ammerbuch) separated the tryptic peptides at 280 nl/min. As consecutive 

linear gradients 1-5% B (0.1% formic acid in acetonitrile) in 1 min, 5–35% B in 45 

min and 35-85% B in 5 min were used. Three transitions were measured for every 

peptide. 

To increase the sensitivity and specificity of the approach, proteins > 250 kDa were 

enriched using 1D-SDS-PAGE. Proteins within the corresponding gel slice were 

digested using LysC and Trypsin. The resulting peptides were separated by liquid 

chromatography and detected by a mass spectrometer. A triple-quadrupole analyzer 

was used with the first quadrupole (Q1) selecting the targeted precursor peptide and 

transferring it to the second quadrupole (Q2), where it undergoes collision-induced 

dissociation (CID). 

For an accurate absolute quantification, internal standards, consisting of synthetic 

peptides labeled with 13C/ 15N (so called heavy peptides), were spiked into the 

sample. Since the „heavy peptide” is chemically identical to the corresponding 

endogenous peptide, it shows identical behavior, concerning chromatography and 

ionization. Therefore, the “heavy” and the corresponding endogenous peptide both 

coelute from the chromatography column, but can be detected individually by the 

mass spectrometer due to their difference in molecular weight. The coelution of the 

synthetic internal standard and the endogenous peptide proves the specificity of the 

signal and further allows the accurate absolute quantification of the target protein. 

For dystrophin quantification, the two peptides NILSEFQR (Dystrophin AA 2207-

2214) and LSALQPQIER (Dystrophin AA 876-885) as well as corresponding 

heavy internal standard peptides were used. 



III. Animals, material and methods     54 

Holistic proteome analysis 

Beside targeted approaches, the combination of liquid chromatography and tandem-

mass spectrometry (LC-MS/MS) allows the quantitative comparison of proteomes. 

Since LC-MS/MS can more effectively be performed at the peptide level, the 

proteins were cleaved by LysC and trypsin in a first step. Subsequently, during the 

LC-MS/MS run, the mass spectrometer measured the masses as well as the 

intensities of the peptides eluting from the chromatography system. Since beside 

pure peptide molecular weights, structural information is mandatory for the peptide 

identification, ions of individual peptides were fragmented and a second mass 

spectrum of the peptide fragments (a so-called MS/MS or MS2 spectrum) was 

acquired. Using latest high-performance mass spectrometers, such an analysis 

allows the identification and quantification of thousands of proteins. 

Holistic proteome analyses for the therapeutic trial (IV.5.) as well as for the 

diagnostic trial (IV.6.) were performed in cooperation with Thomas Fröhlich and 

Florian Flenkenthaler, Gene Center - LAFUGA, LMU Munich, as described in 

Moretti et al. (2020) and Regensburger et al. (2019). The detailed procedure was as 

follows: Using 8 M Urea/ 0.4 M NH4HCO3, the lysates’ protein concentration was 

adjusted to a concentration of 2.3 µg/µl. Using DTE at a final concentration of 5 

mM, 250 µg of total protein was reduced for 30 min at 37°C. Cysteines were 

alkylated with iodoacetamide (final concentration 15 mM) at room temperature for 

30 min in the dark. Adding 2.5 µg LysC (FUJIFILM Wako Pure Chemicals, Osaka, 

Japan), digestion of the proteins for 4 h at 37 °C was carried out. Samples were 

diluted with water to 1 M urea and a second digestion step overnight with 5 µg 

porcine trypsin (Promega, USA) at 37°C was carried out. 1.5 µg of tryptic peptides 

were seperated on an Ultimate 3000 nano-LC system (Thermo Scientific, USA). A 

50-cm column (Column: PepMap RSLC C18, 75 µm x 50 cm, 2 µm particles, 

Thermo Scientific, USA) was used for separation. A 160 min gradient from 5% 

solvent A (0.1% formic acid in water) to 25% solvent B (0.1% formic acid in 

acetonitrile) was followed by a 10 min gradient from 25% to 40% solvent B. Using 

an online coupled Q Exactive HF-X mass spectrometer (Thermo Scientific, USA) 

the identification of the tryptic peptides was performed with a top 15 data dependent 

method. For protein identification (false discovery rate < 1%) and label-free 

quantification the obtained spectra were analyzed using the porcine subset of the 

NCBI refseq database combined with the MaxQuant software platform (V1.6.1). 

3.10. Combined linkage disequilibrium and linkage analysis (cLDLA) 

DNA isolation for cLDLA 

For the isolation of genomic DNA from freshly docked tails of newborn piglets for 

the GWAS, the DNasy® Blood & Tissue Kit was employed. Therefore, the tail 

biospsies were cut into little pieces (3-4 pieces with an approximate diameter of 0.5 

mm). Afterwards, the manufacturer’s instructions for the treatment of tissue were 

performed. No optional steps to increase DNA yield were implemented. DNA 

concentration was measured at 260 nm using the SimpliNano spectrophotometer. 

DNA purity was examined by measuring 260 nm/280 nm and 260 nm/230 nm 

ratios. The DNA samples were diluted to a concentration of 70 ng/µl using 10 mM 

Tris buffer, pH 8.0. In cases of a DNA concentration lower than 70 ng/µl, high-salt 

precipitation was performed. Therefore, 20 µl NaOAc 3M were added to the 200 µl 

DNA sample, diluted in buffer AE. Afterwards, 500 µl 100% EtOH were added. 
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Subsequently, the sample was incubated at -80 °C for 30 min. After centrifugation 

at 13.000 rpm for 30 min at 4 °C, the supernatant was removed with a pipette and 

the pellet was washed in 500 µl 70% EtOH. The sample was stored at 4 °C 

overnight. Afterwards, the sample was centrifuged at fullspeed for 3 min. The 

supernatant was removed with a pipette and the pellet was left to air-dry at room 

temperature for 6 min. The pellet was resuspended in 32 µl of buffer AE. DNA 

concentration was measured again and DNA was diluted to a concentration of 70 

ng/µl as described previously. 

The SNP genotyping was performed by the working group of Doris Seichter, TZF 

Poing-Grub, using the PorcineSNP60 (Illumina, USA). 

Study criteria 

A subset of male DMDY/- pigs, based on the following criteria, was selected for 

SNP genotyping: 1.) Phenotype observed as continuous trait was abbreviated as 

PhContinous and was coded as “length of life in days”; 2.) Phenotype observed as 

discrete trait was abbreviated as PhDiscrete and coded as category 1 if DMDY/-pigs 

“died within 2-9 days of life” and as category 2 if DMDY/-pigs “died within ≥ 10 

days of life”. The selected subset consisted of n = 52 male DMDY/-pigs (for further 

details see section IV.4.1.). Markers of PorcineSNP60 chip were remapped to the 

Sus scrofa reference genome assembly Sscrofa11.1 (Genome - Assembly - NCBI). 

The data was analyzed by Ivica Međugorac, Population Genomics Group, 

Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, 

Martinsried, as described in Gehrke et al. (2020). In brief, markers with a call rate 

per marker < 0.9, minor allele frequency (MAF) of < 0.025 and with unknown 

position were excluded during quality control. Missing genotypes were imputed 

and haplotypes reconstructed using the software BEAGLE 5 (Browning et al., 

2018). The genome-wide quantitative trait loci (QTL) mapping was performed 

using a combined linkage disequilibrium and linkage analysis (cLDLA) approach, 

as described in Medugorac et al. (2017). In brief, first a genomic relationship matrix 

(G) (Powell et al., 2010) was estimated. To correct for potential polygenic effects 

and population structure in the model of the subsequent QTL mapping its inverse 

(G-1) was applied. For sliding windows consisting of 40 SNPs identical by descent 

(IBD) probabilities for pairs of haplotypes (Meuwissen and Goddard, 2001) were 

estimated. The estimated IBD probabilities were than summarized into a diplotype 

relationship matrix (DRM). The computation of a DRM is performed similarly to 

the additive genotype relationship matrix (GRM) (Lee and Van der Werf, 2006). 

cLDLA mapping of PhContinous and PhDiscrete coded phenotype was performed 

using a procedure similar to that reported in (Meuwissen et al., 2002), considering 

random QTL and polygenic effects. In the middle of each of the sliding windows 

of 40 SNPs a variance component analysis was performed using the ASReml 

package (https://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf) and a 

mixed linear model as already described in and adopted from Medugorac et al. 

(2017) and Gehrke et al. (2020). 

The cLDLA mapping was performed in two runs: first, the DMD phenotype was 

considered as continuous variable (PhContinous), i.e. “length of life in days”, in a 

second run the DMD phenotype was considered as discrete variable (PhDiscrete), 

i.e. group 1, including all piglets “death within 0-9 days of life” and group 2, 

including all piglets “death within ≥ 10 days of life”. cLDLA mapping was only 

performed for male affected DMDY/- pigs. Genotyping and haplotyping of parental 

https://www.vsni.co.uk/downloads/asreml/release3/UserGuide.pdf
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animals was performed as well, with the results not directly involved in the cLDLA 

mapping. 

The parental genotypes included female DMD+/- mother sows and WT boars. SNP-

genotypes of the WT sires were provided by Martin Heudecker (EGZH, Poing-

Grub) and Kay-Uwe Götz (ITZ, Poing-Grub). Haplotyping of DMDY/- pigs in trios 

(sire-dam-offspring) ensured high quality haplotypes for the cLDLA mapping. 

3.11. Therapeutic approach 

Somatic gene editing approach 

As described in Moretti et al. (2020), adeno-associated viral vectors, serotype 9, 

coated with PAMAM-G2 nanoparticles and carrying an intein-split Cas9 and a pair 

of guide RNAs, targeting exon 51 flanking sequences (G2-AAV9-Cas9-gE51), 

were used to introduce somatic gene editing in DMDY/- piglets. Therefore, the 

intein-split Cas9 and gRNAs were established by the working group of Wolfgang 

Wurst of the Institute of Developmental Genetics, Helmholtz-Centre and Munich 

School of Life Sciences Weihenstephan, TU Munich, Freising. The AAV9-vectors 

were generated and raised by Tarik Bozoglu, Tilman Ziegler and Anja Wolf, and 

G2-optimization in vitro and in vivo was introduced by Seungmin Lee, Tilman 

Ziegler, members of the Clinic and Policlinic for Internal Medicine I, Klinikum 

Rechts der Isar, TU Munich, and DZHK, Munich Heart Alliance, and Manfred 

Ogris, MMCT Laboratory of Macromolecular Cancer Therapeutics, Department of 

Pharmaceutical Chemistry, University of Vienna, Vienna, Austria. 

As therapeutic approach, AAV9-Cas9-gE51 was tested as a somatic gene editing 

agent. In brief, as described above, DMDY/- piglets lack exon 52 (DMDΔ52), with 

the frameshift mutation resulting in an unstable mRNA leading to nonsense-

mediated mRNA decay and therefore a total loss of dystrophin. G2-AAV9-Cas9-

gE51 was aimed to restore the open reading frame as shown in Figure 7, introducing 

the expession of an internally truncated, but partially functional, dystophin protein, 

thus converting the Duchenne muscular dystrophy into the milder Becker muscular 

dystrophy. 

 

Figure 7: Schematic description of the somatic gene editing approach in 

DMDΔ52 pigs. The treatment aims to achieve a corrected reading frame (ΔE51-52) 

by Cas9-mediated excision of exon 51 (adapted from Moretti et al., 2020). 

 

Conduction of the pig transduction 

Whenever possible, matched pairs (siblings treated or untreated) with equally 

distributed birthweights were choosen for the experimental study. During 96 h after 

the injection of G2-AAV9-Cas9-gE51, piglets were seperated in metabolism cages 

for the collection and safe disposal of all excrements. General condition of all 

animals was monitored and scored daily throughout the entire duration of the study. 

Animals injected i.m. received pain-relieving agents before application of the 

therapeutic agent and on two consecutive days.  
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In a first proof-of-principle study, with the aim to show local dystrophin expression 

and functional improvement of skeletal muscle fibers, n = 6 DMDY/- piglets, at day 

14 after birth, received unilateral i.m. injections of 200 µl each (100 µl of each virus 

subsequently) at a total of 15 injection sites (6 × upper arm, 9 × thigh). Of both 

Cas9-intein-halfs (N-Cas9 and C-Cas9), 2.5 × 1013 vector genomes (vg) / kg BW 

were injected. The muscular part of the contralateral side of the body served as 

untreated control. For a further experimental set-up, with the aim to also achive 

diaphragm and heart muscle additionally to skeletal muscle, DMDY/- piglets 

received either low-dose (1-5 × 1013 coated virus particles (vp)/ kg BW for each, 

N-Cas9 and C-Cas9) or high-dose (2 × 1014 vp / kg BW for each strain) G2-AAV9-

Cas9-gE51 i.v. injections, applied into the ear vein. Intravenously injected animals 

received G2-AAV9-Cas9-gE51 not before weaning from the mother, due to the 

potential presence of colostral antibodies against AAV. 

The duration of the experiment varied between the individual animals, on the basis 

of the following reasons: studies were terminated due to animal protection 

regulations (DMD characteristic physical deterioration, e.g. stridor, tachypnea or 

exhaustion), or DMDY/- pigs succumbed to sudden cardiac death, occurring at rest 

or following environmental stressors (e.g. dominant behavior of siblings, trapping, 

transportation, or anaesthetic induction). To overcome these obstacles, pigs to be 

euthanized at a predetermined time point, received anaesthetic introduction directly 

followed by intubation, ensuring sufficient oxygen supply. 

Off-target anaysis 

The analysis to detect undesired off-target effects triggered by CRISPR/Cas9 was 

performed by the research unit Genomics of LAFUGA, Gene Center Munich, LMU 

Munich, using a targeted and a holistic approach, as described in Moretti et al. 

(2020). 

Concerning the targeted sequencing approach, potential off-targets were predicted 

using the CRISPOR and the CHOPCHOP web tool (Labun et al., 2019). For intron 

50 and 51 gRNA, the top five predicted off-targets were amplified by PCR, 

performed by Florian Giesert, Institute of Developmental Genetics, Helmholtz-

Centre and Munich School of Life Sciences Weihenstephan, TU Munich, Freising. 

Therefore, genomic DNA from muscle tissue of n = 1 WT pig, n = 2 i.m. treated 

pigs and n = 1 i.v. treated pig, was used. For each reaction, 400 ng of genomic DNA 

was utilized. The PCR products were analyzed subsequently, using next-generation 

sequencing (NGS). Therefore, NGS libraries of the PCR-products were created. 

The sequencing of these libraries was performed in paired-end mode, with a read 

length of 100 nucleotides, using the HiSeq® 1500 system (Illumina, USA) and the 

received sequences were compared to the original PCR-products, respectively. The 

Bioconductor package CrispRVariants was used for data analysis (Lindsay et al., 

2016). 

As holistic approach, genome wide sequencing of human DMDΔ52 induced 

Pluripotent Stem Cells (iPSCs) and an isogenic edited DMDΔ51-52 iPSC clone was 

applied. The reads were sequenced in paired-end mode, with a read length of 100 

bases, using a HiSeq® sequencer (Illumina, USA). Applying the GATK somatic 

SNV + INDEL pipeline (Van der Auwera et al., 2013), insertions or deletions of 

bases (INDELs) and single nucleotide variants (SNVs) in each sample were called 

and filtered for variants specific to the edited DMDΔ51-52 iPSC clone. 

Subsequently, a minimal Levenshtein distance analysis was applied to clarify, if the 
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identified variants represented off-target effects due to the use of CRISPR/Cas9, or 

randomly occurring variants, due to the clonal expansion of the edited DMDΔ51-

52 iPSCs. Therefore, two gRNAs were aligned in a sliding window, which covered 

25 base pairs (bp) upstream and 25 bp downstream of each variant position. The 

alignment with the smallest distance, i.e. the smallest number of mismatches with 

which a gRNA could have bound and cause an off-target effect, was determined. 

3.12. Movement and gait analysis 

To assess functional muscle parameters as biomarker for the clinical course of the 

disease was indispensible for the evaluation of the somatic gene editing approach 

achieved by G2-AAV9-Cas9-gE51 (IV.5.). Due to sudden arrhythmia-induced 

death as difficulty in working with the DMDY/--pig model, performing treadmill 

tests to assess muscle strength and endurance was not feasible. Therefore, a video 

surveillance system was installed, allowing to observe the animals at any time of a 

day, on seven days a week (24/7). 

Video surveillance 

Digital night and day vision infrared cameras provided a 24/7 video surveillance of 

the pigs. Each stable compartment contained one camera, allowing an overview 

over the whole sector. Clear distinction of the observed animals was possible either 

by individual coat patterns, tags with animal marker pens, colored ear tags, or by 

great variation in body sizes within the compared couple. On site, a control room 

served for monitoring all cameras. Camera signals were digitalized by encoders of 

the type IndigoVision 9000. Encoders were connected to a computer via an AT-

FS708 switch, as represented schematically in Figure 8. The evaluation of the 

videos was performed using the IndigoVision control center software (v.3.19.5). 

 

Figure 8: Schematic representation of the monitoring unit for 24/7 video 

surveillance of pigs. 
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Evaluation of behavioral patterns 

For analysing behavioral patterns, two behavioral observation methods were used, 

according to Martin et al. (1993). Instantaneous sampling was used to record the 

state of an individual animal at predetermined time intervals. Therefore, the animals 

were observed over a total period of 24 h and the behavioral information at every 

5th min was assessed. Only the instant moment (measured down to the centisecond) 

was graded. However, to ensure reliability, the seconds before and after grading 

were involved in the evaluation. Continous recording allowed the observation of 

total activity and total resting time in 24 hours. For this purpose, only two states, 

upright and lying posture, were measured to the second. Subsequently, the duration 

of standing and lying postures, as well as the frequency for these events, were 

evaluated. 

3.13. Multispectral optoacoustic tomography 

MSOT imaging was performed with the MSOT Acuity Echo prototype imaging 

system (iThera Medical) as described in Regensburger et al. (2019). In brief, MSOT 

is based on a photoacoustic effect. Using a 25-Hz pulsed Nd:YAG laser, the system 

induces thermoelastic expansion of endogenous absorbers in the examined tissue, 

allowing the detection of resulting pressure waves, which can be subsequently 

identified by spectral unmixing. Thus, it enables the visualization and quantification 

of different endogenous chromophores, such as hemoglobin, melanin and oxygen 

saturation. Illumination in the near- and extended near-infrared rages (exNIR) from 

680-1.100 nm enables the visualization and quantification of lipids and collagens. 

A 2D concave handheld detector (4-MHz center frequency, 256 transducer 

elements) enables cross-sectional imaging. It provides a spatial resolution of < 150 

µm and a field of view of 30 mm. For anatomic guidance during examination, the 

device is combined with a reflective ultrasound computed tomography (RUCT) 

unit. With a 3D hemispherical handheld detector (8-MHz center frequency, 256 

transducer elements), isotropic volumetric optoacoustic imaging is provided. This 

detector offers a spatial resolution of 100 µm and a field of view of 15 mm. 

Study design 

At the time point of imaging, genotypes of all animals were already determined. 

The investigator and persons carrying out analysis, however, were blinded to the 

genotypes. To ensure a stress-free handling during imaging procedure, piglets 

underwent a daily training from birth onwards. Only WT piglets were sedated with 

midazolam, administered intranasally, if required. To reduce interfering signals, 

skin-locations, in the regions to be examined, were shaved cautiously shortly before 

imaging procedure. During imaging, the piglets were hold gently. To improve the 

level of comfort during imaging, piglets were placed on a heat cushion, whenever 

necessary. Warmed transparent ultrasound gel (AQUASONIC clear, Parker 

Laboratories, USA) was used for optimal coupling between the MSOT detector and 

the skin. 

In a first step, a proof-of-concept study was performed in the DMD pig model, 

scanning newborn WT and DMDY/- piglets. Therefore, standardized 2D MSOT 

transverse imaging was applied to the muscles of the upper arm (triceps brachii) 

and the thigh (biceps femoris). In a subsequent longitudinal study, WT and DMDY/- 

piglets underwent standardized 2D transversal and 3D scanning of bilateral upper 
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arm and thigh muscles. Here, MSOT imaging was performed on a total of 4 

successive time points: days 1/2 (week 1), days 8/9 (week 2), days 15/16 (week 3) 

and days 22/ 23 (week 4) of life. 

In a second step, the approach was applied to pediatric patients and correlation of 

MSOT collagen signal to magnetic resonance imaging and patients’ functional 

status was investigated (not shown). 

3.14. Exclusion criteria for individual DMDY/- piglets from the studies 

Concerning the GWAS to investigate phenotype variability in DMDY/- piglets, all 

stillbirths, crushed piglets and animals, which died due to an infectious disease or 

due to questionable reasons were excluded from the analysis. Concerning the 

therapeutic approach, aiming at somatic gene editing, DMDY/- piglets, which died 

during the first week of life (d 0-6), were excluded from the study. For the diagnostic 

approach, using the MSOT device to detect collagens, all alive piglets were 

included in the study. 

3.15. Statistics 

In all results, differences between groups were considered as significant at P < 0.05. 

P-values were presented as: *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 

0.0001. 

In chapter IV. 1.-3. results are presented as mean±s.e.m. Two experimental groups 

(WT vs. DMDY/-) were compared using independent samples t-test. Kaplan-Meier 

survival curves were used in Fig. GraphPad Prism v.5.04 was used for statistical 

analyses. 

In chapter IV.4. in the middle of each of the sliding windows of 40 SNPs a variance 

component analysis was performed using the ASReml package (VSNi, Hemel 

Hempstead, UK) and a mixed linear model as already described in and adopted 

from Medugorac et al. (2017) and Gehrke et al. (2020). 

In chapter IV.5.-6., concerning selection reacted monitoring (SRM), 

chromatograms were evaluated using Analyst V 1.5.1. (AB SCIEX, USA). 

Regarding holistic proteome analysis principal component analysis, hierarchical 

clustering, and Student's t-test were calculated with Perseus (V 1.5.3.2), part of the 

MaxQuant proteomics software package. 

In chapter IV.5., results are presented as mean±s.e.m., unless indicated otherwise. 

If more than two experimental groups were compared, one-way analysis of variance 

(ANOVA) was applied and whenever a significant effect was obtained multiple 

comparison tests between the groups were performed, using the Bonferroni 

procedure (parametric). The SPSS statistical program (version 25) was used for 

statistical analyses in IV.5.2. GraphPad Prism v.5.04 was used for statistical 

analyses in IV.5.3. 

In chapter IV.6., continous variables were presented as mean±s.d. Categorial 

variables were presented as numbers and percentages. For testing the normal 

distribution, Shapiro-Wilk test was used before inferential analysis. Two 

experimental groups (WT vs. DMDY/-) were compared using independent samples 

t-test. Welch’s correction was applied in cases of unequal variance in independent 

samples t-test. A Mann-Whitney U-test was applied for comparison of independent 

samples if the assumption of normal distribution was violated. To compare 
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longitudinal 3D MSOT collagen signals, Tukey’s honest significant difference 

(HSD) test following a two-way ANOVA, including time points and piglet group, 

was performed. For the comparison of longitudinal 2D MSOT collagen signals, post 

hoc Tukey’s HSD following a mixed-effects model were applied (with fixed 

effects: time points and piglet group, and random effect: piglet), due to missing 

values in week 1. All scans of WT and DMDY/- in each week were compared using 

independent samples t-test. Welch’s correction was applied in cases of unequal 

variance in independent samples t-test. A Mann-Whitney U-test was chosen for 

comparison of independent samples if the assumption of normal distribution was 

violated. Correlations are given by the Spearman correlation coefficient (rs), two-

tailed test. GraphPad Prism v.7.00 or newer was used for statistical analyses. 
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IV. RESULTS 

1. Animal generation by a DMD breeding herd 

A total of 29 litters were generated by the DMD breeding herd, consisting of 9 

DMD+/- sows, at the Lehr- und Versuchsgut, LMU Munich, Oberschleißheim. The 

DMD+/- founder animal #3040, born in 2014, generated a total of 10 litters. As 

shown in Table 7, n = 5 F1-sows (#5153, 3 litters; #5381, 3 litters; #5382, 4 litters; 

#5383, 4 litters; #6314, 1 litter) and n = 3 F2-sows (#6225, 1 litter; #6243, 1 litter; 

#6245, 2 litters), were used to complete the DMD breeding herd. 

Table 7: DMDY/- pigs generated breeding. 

 

 

Sows were inseminated with sperm of WT boars of Bayern Genetik, Poing-Grub. 

In total, n = 97 affected DMDY/- piglets were produced by breeding. The DMDY/- 
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phenotype was confirmed by PCR analysis of DNA isolated from individual tail 

biopsies, with the primer pair 5´-TGC ACA ATG CTG GAG AAC CTC A-3´ and 

5´-GTT CTG GCT TCT TGA TTG CTG G-3´ detecting the intact DMD allele and 

a second primer pair 5´-CAG CTG TGC TCG ACG TTG TC-3´ and 5´-GAA GAA 

CTC GTC AAG AAG GCG ATA G-3´ detecting the mutated (DMDΔ52) allele by 

the neomycin selection cassette. Of all DMDY/- piglets generated by breeding, n = 

6 piglets were still born and n = 13 piglets were crushed by the sow (n = 8 crush 

secured, n= 5 possibly crushed). Another n = 44 animals died within the first week 

of life (d 0-6), equivalent to 50.55% survivors of day 6 of life. 

2. Validation of different rearing conditions for DMDY/- 

piglets 

For the validation of the different husbandry conditions for rearing, a total of 27 

litters was considered, as shown in Table 8. 

Table 8: Color coding for the 4 different husbandry conditions applied for a 

total of 27 litters. Litters highlighted in orange indicate motherless nursing of 

DMDY/- piglets in an artificial rearing unit. Litters highlighted in pink indicate 48 

h supervised suckling at the sows’ teats. Litters highlighted in green indicate 5 d 

intense nursing (first approach) and in dark blue 5 d intense nursing (second 

approach). The litters colored in light blue indicate 5 d intense nursing (second 

approach) combined with a further experimental approach (explained in IV.3.). 
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Artificial rearing unit 

n = 5 litters, resulting in n = 12 alive DMDY/- piglets, were nursed in an artificial 

rearing unit, the Lax Disco Box. Despite supervision by a veterinarian, n = 3 piglets 

were crushed by the sow during birth or during the first 12 h of suckling at the sows’ 

teats. Another n = 7 DMDY/- piglets died or had to be euthanized due to poor general 

condition or the inability of drinking milk substitute by themselves. Only 17% of 

all animals (equivalent to n = 2 out of n = 12 DMDY/- piglets) survived the suckling 

period, as shown in Figure 10a. 

48 h of supervised suckling at the sows’ teats 

Due to the low efficiency of rearing DMDY/- piglets in an artificial rearing unit, as 

a second nursing approach, 48 h of supervised suckling at the sows’ teats was 

evaluated. The main intention was to increase the colostrum and breast milk intake. 

After 48 h of supervised suckling, no further supplementation or nursing was 

provided and piglets were left alone with the sow. Under these conditions, the 

survival success increased to 44% (equivalent to n = 7 out of n = 16 DMDY/- piglets), 

as shown in Figure 10b. These results indicated, that colostrum intake over a longer 

time period and the further nutrition with natural mother milk instead of milk 

replacers, plays a major role in survival of DMDY/- piglets. In total, n = 3 litters, 

resulting in n = 16 alive DMDY/- piglets, underwent the named breeding conditions, 

of which n = 3 animals were crushed by the sow during birth or supervised suckling. 

In the first two named approaches, n = 16 out of n = 28 alive DMDY/- piglets showed 

severe loss of body weight within the first 1-3 days after birth, combined with a 

complex of symptoms, appearing as lateral positioning, rowing with the four limbs, 

salivation and, in part, nystagmus. A meningitis infection with Staphylococcus 

aureus was suspected at first. Therefore, n = 3 animals (n = 1 WT and n = 2 DMDY/-

) were examined in the Institute for Veterinary Pathology, LMU Munich, where a 

meningitis infection could be ruled out. For all animals, appearing with the 

described symptoms, every attempt to retrieve a normal general condition failed 

and piglets had to be euthanized immediately. To evaluate a putative link between 

the described complex of symptoms and hypoglycemia, which might be caused by 

an insufficient milk intake due to suckling problems, a special focus was drawn on 

macroscopic examination of head muscles. As displayed in Figure 9, facial muscles 

used for suckling motions, neck muscles important for keeping the head upright, 

and forelimb muscles, enabling standing posture and forward pressure, showed 

white striated bundles of muscles, indicating a severe DMD phenotype. 
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Figure 9: Representative pictures of muscles of short-term surviving DMDY/- 

piglets. All shown muscle areas are important for the positioning at the sows’ teats 

and the suction process. Facial and neck muscles, as well as muscles of the forelegs 

show paleness when compared to healthy musculature. Furthermore, a different 

amount of bundles of muscles appearing with a white striated pattern were 

observed. Upper row: DMDY/- piglet #6215 shows pale depressor rostri and 

depressor labii muscles; DMDY/- piglet #6215 shows a pale mylohyoid muscle. 

Middle row: DMDY/- piglet #6311 shows a pale trapezius muscle, equally as 

DMDY/- piglet #6972. Bottom row: DMDY/- piglet #6215 shows pale 

cleidobrachialis and pectoralis muscles, DMDY/- piglet #6311 shows pale extensor 

muscles of the lower arm. Pale and white striated muscle bundles were always 

observed in conjunction with a severe DMD phenotype. 

 

5 days of intense nursing 

Due to the results above, two further approaches for nursing DMDY/- piglets were 

developed. In a first attempt, the main goal was to avoid energy deficiency, 

particularly dangerous within the first 24 h after birth. The first approach was 

applied for 7 litters (n = 23 DMDY/- piglets). 35% of DMDY/- piglets (equivalent to 

n = 8 out of n = 23 DMDY/-) survived day 6 of life utilizing this rearing approach, 
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as shown in Figure 10c. 

The second approach was applied for a total of n = 9 litters (n = 23 alive born 

DMDY/- piglets). It was extended by hedging colostrum intake and subsequently 

upgraded by further parameters. To varify if colostrum intake was sufficient, the 

blood glucose levels of weak appearing DMDY/- piglets (n = 17 newborn DMDY/- 

piglets) was measured. 

A glucose level lower than 50 mmol/l (present in n = 7 newborn DMDY/- piglets) 

was considered as threshold to initiate supplementary gastric tube feeding of frozen 

stored and reheated colostrum. Using this advanced approach of 5 days of intense 

nursing, 70% (equivalent to n = 16 out of n = 23 DMDY/- piglets) survived day 6, 

as shown in Figure 10d. 

 

 

Figure 10: Kaplan-Meier survival curve of all alive born DMDY/- pigs reared 

under four different nursing conditions. a, Survival of DMDY/- piglets in the 

artificial rearing unit (motherless rearing). Only 17% of all alive born DMDY/- 

piglets survived day 6 of life. b, Survival of alive born DMDY/- piglets under 

conditions of 48 h supervised suckling at the sows’ teats with 44% surviving day 6 

of life. c, 5 days intense nursing, approach 1, shows similar effectiveness as 48 h 

supervised suckling at the sows’ teats. 35% survived day 6 of life. d, 5 days intense 

nursing, approach 2, was the most successful rearing condition with 70% of alive 

born DMDY/- piglets surviving day 6 of life. 

 

Survival of DMDY/- piglets severely increased within the improvement of rearing 

conditions, highlighting the importance of specially adapted nursing in the DMD 

pig model. 



IV. Results   67 

The impact of supplementary milk substitute feeding 24 h after birth on the 

body weight of DMDY/- piglets 

The severe loss of body weight in DMDY/- piglets within the first 24 h of life could 

be compensated by the supportive administration of milk substitute from 24 h after 

birth onwards. The effect of this milk supply on body weight of DMDY/- piglets is 

shown in Figure 11. The data is generated from the husbandry system “5 d intense 

nursing” only. Due to insufficient breast milk intake resulting of an inability to 

suckle well at the sows’s teats, as shown above, nearly none of the DMDY/- piglets 

which did not learn to drink milk substitute out of a piglet drinking trough were 

able to survive. This indicates, that for affected DMDY/- piglets suckling at the 

sows’s teats is not sufficient for generating and maintaining sufficient energy 

reserves. 

 

Figure 11: Impact of supplementary milk substitute feeding 24 h after birth on 

the body weight of DMDY/- piglets. Newborn DMDY/- piglets show a significantly 

reduced birth weight when compared to male WT littermates. A further severe loss 

of body weight within the first 24 h, as observed in most DMDY/- piglets, can be 

partly compensated the supplementary feeding of milk substitute. 
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3. Phenotypic characteristics of DMDY/- pigs generated by 

breeding 

3.1. Immunohistochemical staining of dystrophin 

Skeletal muscle of WT animals exhibited a clear dystrophin staining (Figure 12). 

In contrast, no dystrophin signal was detected in skeletal muscle sections of DMDY/- 

pigs, with exception of single isolated revertant (dystrophin positive) fibers (not 

shown). 

 

Figure 12: Representative skeletal muscle samples of a WT and a DMDY/- pig 

stained immunohistochemically for dystrophin. Compared to WT controls no 

dystrophin is detectable in the skeletal muscle sections of DMDY/- pigs. This finding 

reflects the situation found in human DMD patients. Dystrophin: brown color. 

 

3.2. Creatine kinase levels 

CK levels of a total of n = 89 pigs (n = 25 WT, n = 35 DMD+/- and n = 29 DMDY/-) 

were measured at different timepoints. A CK level ≤ 2000 U/l was considered to be 

normal. As shown in Figure 13, CK levels in week 1 of life were already severely 

elevated in DMDY/- piglets compared to their WT littermates (42956±29020 U/l 

versus 274±59 U/l). Female DMD+/- carrier did not show an elevation of CK in 

week 1 of life (602±273 U/l), whereas between week 2 and 11 of life a mild 

elevation of CK (3771±1080 U/l) was observed for this group. CK levels of DMDY/- 

piglets compared to their WT littermates continued to be severely elevated between 

week 2 and week 11 of life (54041±9058 U/l versus 1513±259 U/l). 
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Figure 13: Comparison of creatine kinase levels. CK measuements of n = 89 pigs 

(n = 25 WT, n = 35 DMD+/- and n = 29 DMDY/-) are shown. Threshold: CK ≤ 2000 

U/l is considered as normal. 

 

3.3. Body weight of DMDY/- compared to WT pigs 

Newborn DMDY/- piglets (n = 51) showed a significantly (p = 0.0091) lower 

birthweight, compared to male WT littermates (n = 54), however with a large 

variance of values ranging between 612 and 1766 g for DMDY/- piglets and between 

640 and 2240 g for male WT littermates (Figure 11). Subsequently, nearly all 

newborn DMDY/- piglets showed a severe loss of body weight within the first 24 h 

of life, with a mean loss of 69.8±10.5 g (n = 47 DMDY/- piglets). In comparison to 

male WT piglets (n = 45) that gained 90.9±12.9 g within the first 24 h of life, the 

loss of body weight in DMDY/- piglets was highly significant (Figure 14, Insert). 

Figure 14 exemplarily shows the external appearance of 4-day-old DMDY/- piglets 

(marked in blue) compared to male WT littermates. In Figure 16 an adolescent 

DMDY/- pig compared to an age-matched female DMD+/- littermate is shown. 

DMDY/- pigs show a reduced body size as well as generalized muscle atrophy 

compared to WT or DMD+/- littermates. 
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Figure 14: Representative pictures of 4-day-old DMDY/- piglets (blue marked) 

and a male WT littermate. DMDY/- piglets appear thinner and weaker, compared 

to age-matched WT animals. 

 

From day 2 onwards, DMDY/- piglets started to gain body weight (as displayed in 

detail in Fig. 11). However, body weight increase always stayed below the body 

weight levels of male WT littermates, as shown in Figure 15. 

 

 

Figure 15: Comparison of body weight of DMDY/- and male WT littermates in 

the first 27 days of life. The first 5 time points display body weight values of n ≥ 

16 pigs for each genotype (max. n = 48, min. n = 16). From day 5 onwards time 

points display body weight values of n ≥ 5 for each genotype. Not all animals could 

be weighed at exactly the same time points, therefore raw data were adjusted to 

defined ages by linear interpolation. Insert shows the change in body weight from 

birth to 24 h after birth of DMDY/- (n = 47) and male WT littermates (n = 39). 

Compared to male WT littermates, DMDY/- piglets show a highly significant weight 

loss within the first 24 hours of life. 
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Figure 16: Representative picture of an adolecent male DMDY/- pig and a 

female DMD+/- littermate. DMDY/- pigs show a reduced body size as well as 

generalized muscle atrophy compared to WT or DMD+/- littermates. Foreground: 

DMDY/- pig (black asterisk); background: DMD+/- pig; age of pigs shown: 126 days 

of life. 

 

3.4. High mortality of DMDY/- pigs generated by breeding 

As indicated above, DMDY/- pigs generated by breeding displayed a high mortality. 

Of a total of n = 97 DMDY/- animals, n = 44 animals died within the first week of 

life (d 0-6), in the further referred to as “short-term surviving DMDY/- piglets”. 51% 

of all DMDY/- pigs survived day 6 of life (in the further referred to as “long-term 

surviving DMDY/- piglets”). 36% of all DMDY/- piglets survived day 50 of life. 

Results are presented in a Kaplan-Meier survival curve, Figure 17. To prevent 

competition at the sows’ teats between affected DMDY/- and WT piglets, WT 

littermates were removed from the individual litters as soon as possible. Therefore, 

a Kaplan-Meier survival curve comparing survival of DMDY/- and WT pigs was 

only feasible for the first 7 days of life (Insert Fig. 17). 



IV. Results   72 

 

Figure 17: Kaplan-Meier survival curve for all n = 91 alive born DMDY/- 

piglets, produced by breeding. Only one animal survived 173 days of life (#6790). 

Insert shows the neonatal death rate in week 1 of life of DMDY/- piglets compared 

to male wild-type littermates (WT) (n = 61 DMDY/-, n = 56 male WT). 

 

In week 1 of life, DMDY/- piglets mainly had to be euthanized due to hypoglycemia, 

severely reduced general condition, the inability to drink independently, severe 

contractures and/ or muscle alterations or gastrointestinal symptoms. Adolescent 

DMDY/- pigs died either due to sudden cardiac death, observed in several DMDY/- 

pigs by analysing 24 h video surveillance data of the animals, or had to be 

euthanized due to severe physical deterioration (exhaustion, stridor or tachypnea) 

following the animal protection regulation. 

3.5. Gross anatomical findings in short-term surviving DMDY/- piglets 

The majority, but not all short-term surviving DMDY/- piglets (death during day 0 

to day 6 of life) showed macroscopic muscle alterations in form of white 

discoloration at least in some muscle bundles of the intercostal muscles (Fig. 18), 

the neck muscles or the fore limb muscles, with the triceps brachii muscle being 

most frequently affected. Long-term surviving DMDY/- pigs (surviving week 1 of 

life and longer) only rarely showed macroscopic muscle alterations, with the 

masseter being most frequently affected in these animals. 
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Figure 18: Macroscopic alterations of striated muscles in a 2-day-old DMDY/- 

piglet. The picture section shows the white striped pattern observed in different 

muscle groups, here shown for the intercostal respiratory musculature. 

 

3.6. Muscle histology of short- and long-term surviving DMDY/- pigs 

Histological findings in skeletal muscle of short-term surviving DMDY/- piglets 

Histology of skeletal muscles was performed at the paraffin laboratory of the 

Institute for Veterinary Pathology, LMU Munich. As shown in Figure 19a, skeletal 

muscle of 3-day-old WT pigles exhibited healthy striated muscle fibers with 

peripherically located nuclei and homogeneously stained cytoplasm. In contrast, in 

skeletal muscle of short-term surviving 3-day-old DMDY/- piglets some muscle 

fibers had centrally located nuclei (Fig. 19b-c). In addition, skeletal muscles 

exhibited increased interstitial fibrosis and numerous foci with lymphohistiocytic 

infiltrations (Fig. 19b and d). Furthermore, several local foci with calcifications 

were observed in skeletal muscles of 3-day-old DMDY/- piglets, which might 

explain the above mentioned macroscopic white striated pattern (Fig. 19b, e, f). 
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Figure 19: Histomorphological analysis of the triceps brachii muscle of a 3-

day-old WT control pig (a) and a 3-day-old DMDY/- littermate (b-f). Short-term 

surviving DMDY/- pig shows local foci with calcifications (black arrows), 

centralized nuclei (red arrows) and lymphohistiocytic infiltrates (asterisks). 

Staining: a-e: H.E., f: Von Kossa. 

 

An increased amount of collagenous connective tissue fibers was found in skeletal 

muscle tissue of short-term surviving DMDY/- piglets compared to WT littermates 

(Fig. 20). 

 

Figure 20: Representative images of skeletal muscle (triceps brachii) of 3-day-

old WT and DMDY/- piglets. Skeletal muscles of short-term surviving DMDY/- 

piglets exhibited increased interstitial fibrosis. Staining: Masson Trichrome. 

 

Histological findings in skeletal muscle of long-term surviving DMDY/- piglets 

Long-term surviving DMDY/- pigs did not exhibit the macroscopic white striated 

muscle alterations as seen in young DMDY/- piglets, except for mild to moderate 

white striping of masseter muscle found in some long-term surviving animals. 

Histologic examinations of triceps brachii muscle of long-surviving DMDY/- pigs 

(> 84 d) revealed muscle fibers of varying diameters, in part angular shaped fibers. 

Several muscle fibers contained centralized nuclei or were round shaped and 

hypereosinophilic stained in H.E. staining, consistent with muscle fiber 

hypertrophy and degeneration. Endo- and perimysial tissue focally appeared with 
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moderate to marked lymphohistiocytic infiltrates occasionally surrounding and 

invading athrophic and necrotic myofibers, indicating myophagocytosis (Fig. 21). 

Interstitial fibrosis was highly apparent (Fig. 22a), whereas fatty replacement (Fig. 

21d) was only occasionally present. Focal calcifications as seen in newborn DMDY/- 

piglets were not observed (Fig. 22b). 

 

Figure 21: Histomorphology of triceps brachii muscle of long-term surviving 

DMDY/- pigs. a, Overview of transverse sections reveal muscle fibers of varying 

diameters, hypercellularity with lymphohistiocytic infiltrates, muscle fiber 

hypertrophy and cell degeneration. b, Hypertrophic rounded fibers (black asteriks), 

angular shaped fibers (white asterisks), lymphohistiocytic infiltrates in endo- and 

perimysial tissue (arrows). c, Centrally located nuclei (arrows). d, Focal fatty 

replacement (arrows). Staining: H.E., scale bars: a: 250 µm, b-d: 100 µm. Age of 

pigs shown: 15th week of life. 

 

In skeletal muscle of long-term surviving DMDY/- piglets collagenous connective 

tissue was highly increased (Fig. 22a), whereas no calcium deposits were detected 

(Fig. 22b). 
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Figure 22: Representative histological sections of triceps brachii muscle of 

long-term surviving DMDY/- pigs. Staining: a: Masson Trichrome, b: Von Kossa 

(brown color: calcium deposits). Age of pigs shown: 15th week of life. 

 

In conclusion, the observed alterations in skeletal muscle of newborn and adolecent 

DMDY/- pigs both illustrate severe muscular dystrophy, including muscle 

degeneration and regeneration processes. However, skeletal muscles of DMDY/- 

piglets which died during week one (d 0-6) of life, in general appeared to be more 

severily affected by focal calcium deposits, whereas in skeletal muscle of adolecent 

DMDY/- pigs the subsequent replacement of muscle tissue by fatty and connective 

tissue, reflecting the conditions in human DMD patients, was more prominent. 

3.7. Gastrointestinal alterations in DMDY/- piglets 

DMDY/- pigs of the short-surviving group died or where euthanized due to different 

reasons, as described above. A severely reduced general condition of newborn 

DMDY/- piglets was often consistent with reduced blood glucose levels (a glucose 

level below 50 mmol/l was set as threshold to induce supplementary gastric tube 

feeding). Therefore, within the last applied rearing approach glucose levels were 

measured in all weak appearing newborn DMDY/- piglets (n = 24 analyzed). 

However, few newborn DMDY/- piglets (n = 2; 8% of newborn DMDY/- piglets 

analyzed) exhibited acute poor general condition in combination with an 

abnormally high blood glucose level (up to 237 mmol/l). Other DMDY/- animals 

were registered with difficulties in defecation (repeated strain to eliminate feaces) 

and increasing abdominal girth and, at later stages, anorexia. One DMDY/- animal 

had to be euthanized due to increased abdominal girth combined with abdominal 

edema and ascites (detected by ultrasound scan). In total n = 11 DMDY/- piglets (out 

of 28 DMDY/- piglets resulting of n = 9 litters) were registered presenting at least 

one of the described symptoms. Therefore, necropsy of animals euthanized after 

showing either one or more of the described conditions, was extended by 

macroscopic evaluation of the entire gastrointestinal tract. Accumulation of gas and 

ingesta in the jejunum and large intestine, consistent with an obstipation, and dark 

coloration of the intestinal wall, consistent with an infarction of the intestinal wall, 

were observed, as exemplarily shown in Figure 23. In case of complete ileus, 

present in n = 2 animals, the intestinal wall already showed porosity, and the 

subsequent part of the intestine was empty. A submucosal rupture site was mainly 

found at the peak of the ascending large intestine (colon ascendens), anatomically 

presenting a 180° curve (Fig. 23c). 
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Figure 23: Macroscopic findings in a 6-day-old DMDY/- piglet, presenting 

symptoms of a gastrointestinal phenotype. DMDY/- piglet #6836 was found lying 

in lateral position with the legs tightened to the body and an increased abdominal 

girth. The animal was immediately euthanized and examined. a, Opening of the 

abdominal cavity shows dilated intestinal loops. b, Extracted intestine. c, Peak of 

the ascending large intestine with porous site. d, Descending large intestine 

subsequent to the obstructed part of the intestine, presenting as empty intestine 

section. White arrows: accumulation of gas; red arrows: infarction of the intestinal 

wall; black arrows: completely empty intestine, subsequent to ileus site; orange 

arrow: porous intestine site. Scale bars: a-d: 1 cm. 

 

In some few animals, ascites and fibrinous layers in the abdominal cavity consistent 

with a peritonitis were present, indicating an already longer-lasting, clinically 

undetected, process. 

Initial histologial studies of DMDY/- piglets with gastrointestinal phenotype, 

performed by Christian Loch at the Institute for Veterinary Pathology, LMU 

Munich, indicate a putative increased amount of Type I collagen fibers, exemplarily 

shown in Figure 24. However, more research on this topic is needed and currently 

in work. 
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Figure 24: Representative histological images of colon ascendens of a 3-day-

old DMDY/- compared to an age-matched WT littermate. Staining: Masson 

Trichrome. 

 

On the basis of the gastrointestinal findings, all DMDY/-piglets of litters, in which 

one or more animals showed gastrointestinal symptoms, received laxatives and 

digestion-aiding nutritional supplements from day 1 after birth onwards. In total, 

this medication was applied for n = 7 DMDY/- piglets (out of 2 litters, colored in 

light blue in VI.2. Table 8). Of these, 86% (equivalent to n = 6 DMDY/- animals) 

survived day 62 of life, indicating an effect of laxatives and digestion-aiding 

nutrients on the DMD phenotype in DMDY/- pigs. 

4. Identification of potential modifier loci in the DMDY/- pig 

It is known that the severity and manifestation of the DMD phenotype in human 

DMD patients can be strongly influenced by modifier genes. In human individuals 

with DMD, the most common phenotypic variation is the age at loss of ambulation 

(Bello et al., 2016). However, most studies rely on hypothesis, thus investigate only 

pre-specified candidate genes of interest. As already implied in the previous 

sections, the phenotypic characteristics in our DMDY/- pigs generated by breeding 

varied. Therefore, modifier genes, which might influence the manifestation and 

severity of the phenotype in the DMDY/- pig were studied. To identify candidate 

loci influencing the DMD phenotype, a genome wide combined linkage 

disequilibrium and linkage analysis (cLDLA) mapping study, scanning the entire 

genome for common genetic variations by detecting known single nucleotide 

polimorphisms (SNPs), was commenced. 

4.1. Selection of survival time as study criteria for SNP genotyping 

In total n = 97 DMDY/- pigs were generated by breeding. As as shown in Table 9, 

all genotypes (WT male, WT female, DMDY/- and DMD+/-) were inherited equally 

following Mendelian segregation. 
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Table 9: Overview of all animals generated by breeding. 

 

 

Among the phenotypic parameters determined in DMDY/- pigs, survival time 

appeared to be the best defined and unbiased parameter for a genome-wide cLDLA 

mapping study. To avoid assignment erros, all still births and short-term survivors, 

which were crushed or possibly crushed by the sow or died due to an uncertain 

reason (e.g. infection), had to be excluded from the genome-wide cLDLA mapping 

study. Consequently, only a subset of n = 52 male DMDY/- animals could be 

integrated. 

Partial pedigrees of all DMD litters were created, showing only the DMDY/- 

decendants. A color-coding helped to distinguish at first sight between short-term 

survivors (death within day 0-9 of life) and a long-term survivors (death after ≥ 10 

days of life; Fig. 25-31). 
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Figure 25: Partial pedigree of founder sow #3040 (black semi-marked circle, 

middle). Breeding boars are indicated in blank black squares. For each litter only 

DMDY/- decendants (colored squares) and DMD+/- pigs used to expand the breeding 

herd (black semi-marked circles) are shown. Symbols: Light blue squares: either 

still born, crushed or possibly crushed short-term survivors (d 0-9 of life) excluded 

from the GWAS; dark blue squares: short-term survivers (d 0-9 of life) included 

in the GWAS, which most likely died due to a severe DMD phenotype; Light 

orange squares: long-term survivors (≥ 10 d of life) excluded from the GWAS 

(here: no DNA available); dark orange squares: long-term survivors (≥ 10 days 

of life) included in the GWAS. 
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Figure 26: Partial pedigree of F1 sow #5153 (black semi-marked circle). 

Symbols: light blue squares: either still born, crushed or possibly crushed short-

term survivors (d 0-9 of life) excluded from the GWAS; dark blue squares: short-

term survivers (d 0-9 of life) included in the GWAS, which most likely died due to 

a severe DMD phenotype; light orange squares: long-term survivors (≥ 10 d of 

life) excluded from the GWAS (here: no DNA availible); dark orange squares: 

long-term survivors (≥ 10 days of life) included in the GWAS; II: macroscopic 

white striated muscle bundles (if “Masseter”: only masseter muscle was white 

striated); II: no macroscopic white striated muscle bundles found; complex of 

symtoms: in part observed lateral positioning, rowing with the four limbs, 

salivation and, nystagmus (described in IV.2.). 

 

 

Figure 27: Partial pedigree of F1 sow #5381 (black semi-marked circle). 

Symbols: dark blue squares: short-term survivers (d 0-9 of life) included in the 

GWAS, which most likely died due to a severe DMD phenotype; dark orange 

squares: long-term survivors (≥ 10 days of life) included in the GWAS; complex 

of symtoms: in part observed lateral positioning, rowing with the four limbs, 

salivation and nystagmus (described in IV.2.). 
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Figure 28: Partial pedigree of F1 sow #5382 (black semi-marked circle). 

Symbols: Light blue squares: either still born, crushed or possibly crushed short-

term survivors (d 0-9 of life) excluded from the GWAS; dark blue squares: short-

term survivers (d 0-9 of life) included in the GWAS, which most likely died due to 

a severe DMD phenotype; Light orange squares: long-term survivors (≥ 10 d of 

life) excluded from the GWAS (here: crushed at 12 days of life, or infection); dark 

orange squares: long-term survivors (≥ 10 days of life) included in the GWAS; II: 

macroscopic white striated muscle bundles (if “Masseter”: only masseter muscle 

was white striated); II: no macroscopic white striated muscle bundles found. 
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Figure 29: Partial pedigree of F1 sow #5383 (black semi-marked circle). 

Symbols: Light blue squares: either still born, crushed or possibly crushed short-

term survivors (d 0-9 of life) excluded from the GWAS; dark blue squares: short-

term survivers (d 0-9 of life) included in the GWAS, which most likely died due to 

a severe DMD phenotype; Light orange squares: long-term survivors (≥ 10 d of 

life) excluded from the GWAS (here: crushed at 12 days of life, or infection); dark 

orange squares: long-term survivors (≥ 10 days of life) included in the GWAS; II: 

macroscopic white striated muscle bundles; II: no macroscopic white striated 

muscle bundles found. Gray shaded litter: excluded from SNP genotyping, due to 

the questionable effect of laxatives on survival of DMDY/- pigs. 

 

 

Figure 30: Partial pedigree of F1 sow #6314 (black semi-marked circle). 

Symbols: dark blue squares: short-term survivers (d 0-9 of life) included in the 

GWAS, which most likely died due to a severe DMD phenotype; dark orange 

squares: long-term survivors (≥ 10 days of life) included in the GWAS. 
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Figure 31: Partial pedigree of F2 sows #6225, #6243 and #6245 (black semi-

marked circles Symbols: Light blue squares: either still born, crushed or possibly 

crushed short-term survivors (d 0-9 of life) excluded from the GWAS; dark blue 

squares: short-term survivers (d 0-9 of life) included in the GWAS, which most 

likely died due to a severe DMD phenotype; dark orange squares: long-term 

survivors (≥ 10 days of life) included in the GWAS; gray shaded litter: excluded 

from SNP genotyping, due to the questionable effect of laxatives on survival of 

DMDY/- pigs. 

 

4.2. Identification of candidate regions within the genome of DMDY/- pigs 

DNA was isolated from all DMD+/- sows and male DMDY/- offspring. The purified 

DNA was subsequently employed for a genome wide cLDLA mapping. SNP-

genotypes of the WT sires were provided. 

Male DMDY/- animals were analysed according to two different criteria: 

PhContinous categorized “length of life in days”, and PhDiscrete categorized 

phenotype 1 as short-term survivors (death within 2-9 days of life) and phenotype 

2 as long-term survivors (death within ≥ 10 days of life). Using PhDiscrete as 

cirterion, n = 19 animals were rated as short-term survivors and n = 33 as long-term 

survivors. 

Positions with significant likelihood ratio test (LRT)-values 

A likelihood ratio test (LRT) was calculated at each SNP interval midpoint. Using 

PhDiscrete phenotype coding, an LRT peak suggesting linkage between underlying 

haplotypes and observed phenotype, was estimated on chromosome 7 (19.8 Mb) 

with estimated LRT-value of 12.0. Using PhContinous phenotype coding, a QTL 

was estimated on chromosome 1 (at 46.6 Mb) with an indicative LRT peak of 12.2. 

Nevertheless, chromosome 1 in total revealed a noisy LRT pattern, relativizing the 

probability of this locus. Another QTL was estimated on chromosome 8 (109.7 Mb) 

with an estimated LRT-value of 12.6. For both criterions further indicative LRT-

values have been found on other chromosomes, however, not revealing marked 

peaks. On 17 chromosomes (chrom. 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20) an evenly low, homogeneous pattern of LRT values was observable, making 

these chromosomes unlikely to contain modifying loci influencing the survival 

phenotype of DMDY/- pigs. The results for all chromosomes are shown in Figure 

32, with chromosome 8 selected as example to illustrate a candidate for a potential 

modifying locus. 

Summarizing, using PhContinous and PhDiscrete as criteria, so far no genome-wide 

significant QTL responsible for the variable survival phenotype of DMDY/- pigs 

could be identified. However, with a continously increasing number of animals 
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included in the study, the LRT curves became smoother and less peaked. On some 

chromosomes indicative values were observed. Thus, a higher number of animals 

and, eventually, a more explicit classification system, might reveal a clearer picture. 
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Figure 32: Manhattan plot used to display candidate regions 

suggesting modifying loci with influence on survival time of 

DMDY/- pigs. Results of the cLDLA for DMDY/- pigs with sliding 

window of 40 SNPs are displayed. The pig chromosomes are 

presented on the x-axis. On the y-axis, the calculated likelihood 

ratio test (LRT)-values are shown. The blue horizontal line marks 

the chromosome-wide (i.e. indicative), the red horizontal line the 

genome-wide significance threshold. PhDiscrete categories 

phenotype 1 as short-term survivors (death within 2-9 days of life) 

and phenotype 2 as long-term survivors (death within ≥ 10 days 

of life). PhContinous categories “length of life in days”. In total, 

n = 52 DMDY/- decendants were included in the GWAS. For 

PhDiscrete n = 19 DMDY/- animals were rated as phenotype 1 and 

n = 33 as phenotype 2. Insert: Chromosome 8 was selected as 

example to illustrate a candidate for a potential modifying locus.
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5. Somatic gene editing ameliorates muscle failure in the 

DMD pig 

In a therapeutic trial in DMDY/- pigs, somatic gene editing to restore the open 

reading frame (ORF) of the DMD gene was performed, analysed and validated. The 

aim of the therapeutic approach was to excise exon 51 in DMDΔ52 pigs after self-

assembly of both intein-carrying Cas9 halves, and thereby to restore the ORF, 

which leads to the expression of an internally truncated but largely functional 

dystrophin protein. It thus aims at converting Duchenne muscular dystrophy into 

the milder Becker muscular dystrophy. The complete results are published in 

Moretti et al. (2020). 

Transduction of DMDY/- pigs with G2-AAV9-Cas9-gE51 

For the therapeutic trial, a total of n = 25 DMDY/- pigs were used. Of these, n = 6 

animals served as untreated controls, n = 6 animals received local i.m. injections in 

the fore- and hindlimb of the right side of the body and n = 13 animals received 

systemic i.v. injection of G2-AAV9-Cas9-gE51. Of the i.v. injected DMDY/- pigs n 

= 6 animals received a low dose (1-5 × 1013 vp/kg BW), wheras n = 7 animals 

received a high dose (2 × 1014 vp/kg BW) of G2-AAV9-Cas9-gE51. 

5.1. Dystrophin expression in skeletal muscle of treated DMDY/- pigs 

In a first in vivo approach in the DMDY/- pig, the expression of internally truncated 

stable dystrophin was assessed after local application of AAV9-Cas9-gE51Cas9. 

Therefore, 10- to 14-day-old DMDY/- pigs were injected unilaterally into their fore- 

and hindlimb muscles with AAV9-Cas9-gE51 in doses of 2 × 1013 viral particles 

(vp) per kg BW. 6 weeks after AAV9-Cas9-gE51 transduction, pigs were 

euthanized and histologic analysis was performed, revealing the restoration of 

membrane-localized dystrophin in the treated muscle sites. Low dystrophin levels 

at the contralateral limbs could be detected. As might be expected, vital organs such 

as diaphragm and heart were not affected by i.m. limb injection. Therefore, 

dystrophin expression in these organs was aimed at by systemic application of 

AAV9-Cas9-gE51. For this approach, AAV9-Cas9-gE51 was coated with G2-

PAMAM nanoparticles for the enhancement of myotropism of the viral vectors. A 

first low-dose approach (1-5 × 1013 vp/kg BW) with G2-AAV9-Cas9-gE51 

revealed only sporadic transduction of skeletal muscle specimens. A second 

approach using high-doses (2 × 1014 vp/kg BW) of G2-AAV9-Cas9-gE51 enabled 

the expression of dystrophin in skeletal muscles, as well as in diaphragm and heart. 

All results were confirmed at the genomic (successful elimination of exon 51) and 

transcript level (the expression of a DMDΔ51-52 transcript) (not shown). 

Immunofluorescence analysis visualized the expression of dystrophin in striated 

muscles. Targeted absolute quantification of dystrophin in skeletal muscle of 

treated DMDY/- pigs by selected reaction monitoring (SRM) likewise proved the 

expression of dystrophin. In a holistic proteome analysis, an insight on the effect of 

DMD treatment on the skeletal muscle proteome of DMDY/- pigs was provided. 

Analyses of 24 h behavioral observations of WT, treated and untreated DMDY/- pigs 

substantiated the effectiveness of DMD treatment. Furthermore, two different 

approaches to analyze potential intracellular off-target effects were applied. 
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Immunofluorescence analysis for the visualization of dystrophin expression in 

skeletal muscle 

Immunofluorescent staining, performed by Tarik Bozoglu of the Clinic and 

Policlinic for Internal Medicine I, Klinikum Rechts der Isar, TU Munich, visualized 

the results explained above. Dystrophin expression was observed in the locally 

treated muscle sites of i.m. injected DMDY/- pigs. A wide spread expression of 

dystrophin was visible in all considered muscles of systemically high-dose treated 

DMDY/- pigs. In muscles of systemically low-dose treated DMDY/- animals nearly 

no dystrophin expression was detectable (Figure 33). 

 

Figure 33: Representative immunofluorescence (IF) analysis. IF staining was 

applied for the visualization of dystrophin in striated muscles (quadriceps muscle, 

diaphragm and masseter) of WT, i.m. treated DMDY/- (Quadriceps right = treated 

side, Quadriceps left = non-treated side) and i.v. treated DMDY/- pigs (low- and 

high-dose). Scale bars indicate 200 µm (adapted from Moretti et al., 2020). 

 

Targeted absolute quantification of dystrophin in skeletal muscle of treated 

DMDY/- pigs by selected reaction monitoring analysis 

Targeted absolute quantification of dystrophin in skeletal muscle by selected 

reaction monitoring (SRM) analysis likewise confirmed the expression of 

dystrophin. The approach was performed in cooperation with Thomas Fröhlich and 
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Florian Flenkenthaler, Gene Center - LAFUGA, LMU Munich. 

SRM analysis of representative samples from indicated skeletal muscles of i.m. 

treated or high-dose i.v. treated DMDY/- pigs confirmed the expression of 

dystrophin in either the injected muscle sites (i.m. treated) or analyzed muscle sites 

(high-dose i.v. treated). As shown in Figure 34, the quantification of dystrophin 

expression revealed highly variable dystrophin levels between different muscle 

specimens, varying from < 1% up to 62% (of WT dystrophin level) in i.m. treated 

and from < 1% up to 38% (of WT dystrophin level) in high-dose i.v. treated DMDY/- 

pigs. However, different analytical methods (genomic analysis, transcriptomic 

analysis) of the same muscle specimens revealed similar results, indicating varying 

distribution of the pair of intein-split Cas9 and gRNA-encoding virus particles from 

the application site. 

 

Figure 34: Representative results of mass spectrometry-based (SRM) 

dystrophin quantification. Dystrophin quantity of samples of indicated skeletal 

muscles of i.m. treated (n = 2) and high-dose i.v. treated (n = 3) DMDY/- pigs are 

shown. Dystrophin expression levels are shown in % of WT. Expression data of 

i.m. treated DMDY/- pigs reveals highly variable dystrophin expression in different 

muscle specimens of locally treated quadriceps muscle, whereas untreated muscle 

shows a total lack of dystrophin. Variable levels of dystrophin expression can also 

be observed in different muscle samples of i.v. high-dose treated DMDY/- animals, 

in part reaching nearly 40% of WT (adapted from Moretti et al., 2020). 

 

Holistic proteome analysis provides insights into the effect of DMD treatment 

on the skeletal muscle proteome of DMDY/- pigs  

Holistic proteome analysis was performed in cooperation with Thomas Fröhlich 

and Florian Flenkenthaler, Gene Center - LAFUGA, LMU Munich. In total 2414 

different proteins were identified. Of label-free, normalized quantification intensity 

values for skeletal muscle specimens of WT, i.m. treated and untreated DMDY/- 

pigs, unsupervised hierarchical clustering (Fig. 35a) and a principal component 

analysis (Fig. 35b) were performed. Except for triceps #1 (i.m. treated DMDY/-), the 

samples clustered into 3 groups according to genotype (WT vs. DMD) and 

treatment (DMD i.m. treated vs. DMD untreated). The proteome pattern of 

triceps#1 (i.m. treated DMDY/-), which was the sample showing the highest 

dystrophin recovery, was even more shifted towards the WT proteome, indicating 

that DMD treatment had a clear effect to normalise the skeletal muscle proteome of 
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DMDY/- pigs. 

 

Figure 35: Holistic proteome analysis to validate the effect of DMD treatment 

on the skeletal muscle proteome of DMDY/- pigs. a, Unsupervised hierarchical 

clustering of label-free quantification (LFQ) values for skeletal muscle specimens 

of WT, i.m. treated and untreated DMDY/- pigs. Z-score-normalized expression 

values for the different proteins are color coded. b, For principal component 

analysis, proteins were isolated from the same triceps and biceps muscle samples 

from WT, i.m. treated and untreated DMDY/- pigs (n = 2 per group) as used in a. 

Each symbol is equivalent to an individual sample (n = 4 samples per group). The 

proportion of variance explained by each component is shown (adapted from 

Moretti et al., 2020). 

 

5.2. Creatine kinase levels decreased in high-dose treated DMDY/- pigs 

Serum creatine kinase (CK) levels of DMDY/- animals were measured at two 

timepoints: between week 1-3 of life (before treatment), and at the day of 

termination of the experiment. However, blood collection before treatment was not 

possible in all DMDY/- animals due to individual high suspectibility to stress. 

Concerning CK values at termination of the experiment, only plausible values could 

be used for analysis. Implausbility of values included for example death due to 

external stressors (e.g. transportation, harrassment by littermates), unobserved 

death and a resulting long timespan between death and blood collection, or obvious 

severe hemolysis. Consequently, only selected CK values were analyzable, 

reducing the statistic validity. However, of n = 4 WT, n = 3 untreated DMDY/-, n = 

4 i.m. injected DMDY/- and n = 3 i.v. high-dose i.v. treated DMDY/- pigs the 

evaluation of CK values was feasible. CK levels of WT animals were low as 

expected (below the threshold of 2000 U/l). A derease of CK levels in i.v. high-

dose treated DMDY/- compared to untreated or i.m. treated DMDY/- animals was 

observable. The results are shown in Figure 36. 
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Figure 36: Serum creatine kinase (CK) values. CK levels of n = 4 WT, n = 3 

untreated DMDY/-, n = 4 i.m. injected DMDY/- and n = 3 i.v. high-dose i.v. treated 

DMDY/- pigs are shown. Statistics: one-way ANOVA with Bonferroni’s multiple 

comparison test, results are presented as mean±s.e.m. (adapted from Moretti et al., 

2020). 

 

5.3. Functional muscle improvement due to somatic gene editing 

To validate the effect of DMD treatment on muscle function as biomarker for the 

clinical course of the disease, locomotion had to be assessed in WT, treated and 

untreated DMDY/- pigs. Therefore, different approaches, such as treadmill tests and 

supervision with step counters, were examined. Due to the occurrence of sudden 

arrhythmia-induced death of DMDY/- pigs in low stress situations (e.g. handling 

such as weighing and blood taking, veterinary accompanied transportation, or 

ranking order fights between littermates), the performance of treadmill tests was 

not feasible. Step-counters to objectively monitor activity and resting periods and 

to compare the numbers of steps were likewise figured out to be inappropriate when 

used for pigs kept in groups, as littermates damaged the detectors affixed to the hind 

limbs. 

Therefore, a video surveillance system was installed monitoring the animals 24 

hours on seven days a week (24/7) and the obtained video data was analysed with 

regard to motion patterns and activity. As major advantage when compared to 

treadmill tests, video surveillance did not require interaction with the animals, 

facilitating a random and objective evaluation. Furthermore, a current lack of 

motivation of the individual animal or a reluctance to move did not influence 

analyses, as always 24 hours at a time were evaluated. As further benefit, errors of 

assessment due to interaction triggered behavioral changes were avoided. 

Furthermore, analyses could be repeated to avoid errors of observation. 

As stated in Klymiuk et al. (2013), dystrophin-deficient pigs exhibit striking muscle 

weakness, occurring as reduced mobility in comparison with age-matched WT 

controls. To validate the effect of DMD treatment by somatic gene editing on 

muscle function, the activity of age-matched WT, treated and untreated DMDY/- 

pigs was evaluated and compared. Therefore, a total of n = 12 animals (n = 4 male 



IV. Results   92 

WT pigs, n = 2 untreated DMDY/-, n = 2 i.m. injected DMDY/- pigs, n = 4 high dose 

i.v. injected DMDY/- pigs), were analyzed due to their behavior and activity on day 

64 of life (64.4±3.5 days). As i.m. injection of G2-AAV9-Cas9-gE51 was attributed 

exclusively to the muscles of one side of the body, and no behavioral changes or 

functional impairment was expected in these animals when compared to untreated 

DMDY/- pigs, all i.m. treated DMDY/- and untreated DMDY/- animals were 

considered as one group, in the further designated as DMDY/- untreated. 

As shown in Figure 37a, untreated DMDY/- pigs showed a significantly decreased 

standing time (270±29 min/24 h) when compared to male age-matched WT 

littermates (429.3±33.5 min/24 h), consistent with premature fatigue. In high dose 

i.v. treated DMDY/- pigs, the total duration of standing events was significantly 

(p<0.05) increased (388.8±20.7 min/24 h). Additionally, the average duration of 

standing events in untreated DMDY/- pigs (3.05±0.69 min) was as a trend shorter 

than in WT pigs (5.97±1.19 min), but increased after high dose i.v. treatment 

(5.89±1.08 min). However, these differences were not statistically significant (Fig. 

37b). 

 

Figure 37: Continuous recording of motion patterns. Quantification of a, total 

and b, average duration of standing events per pig, performed for n = 4 WT, n = 4 

DMDY/- untreated and n = 4 DMDY/- high dose i.v. treated pigs on day 64.4±3.5 of 

life. Statistics: one-way ANOVA with Bonferroni’s multiple comparison test, 

results are presented as mean±s.e.m. 

 

To highlight the above described impression of an increased duration of standing 

periods observed in high dose i.v. treated DMDY/- animals, timelines of the 24 h 

video monitoring were generated, showing the frequency of adopting an upright 

posture. Figure 38 exemplarily shows timelines for a WT, an untreated and a high 

dose i.v. treated DMDY/- pig. 
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Figure 38: Representative timelines for 24 h video monitoring. 24-hour timelines of n = 1 WT, n = 1 untreated DMDY/- and n = 1 high dose i.v. 

treated DMDY/- pig are shown. Standing in upright posture is marked in blue color compared to lying or sitting posture. Generated timelines stress the 

impression of an increased standing duration in high dose i.v. treated DMDY/- compared to untreated DMDY/- pigs. However, no significant differences 

were found between WT, untreated DMDY/- and high dose i.v. treated DMDY/- pigs. 
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With instantaneous sampling the instant picture of every fifth minute (measured 

down to the centisecond) within 24 hours was evaluated in regards to activity versus 

lying or sitting posture. The number of activity events within 24 h significantly (p 

<0.05) decreased in untreated DMDY/- pigs (54.3±7.5 activity events/24 h) 

compared to WT pigs (82.8±7.7 activity events/24 h). High dose i.v. treatment 

increased the activity of DMDY/- pigs almost to WT levels (76.5±4.0 activity 

events/24 h). In Figure 39 data for all n = 12 animals (n = 4 WT, n = 2 DMDY/- i.m., 

n = 2 DMDY/- untreated, n = 4 DMDY/- high dose i.v. treated) is shown. Here, 

DMDY/- untreated and DMDY/- i.m. treated pigs are again splitted into two groups, 

as a difference in the number of activity events between these two groups was 

observed. 

 

Figure 39: Instantaneous sampling of activity profiles. n = 12 pigs ( n = 4 WT, 

n = 2 DMDY/- i.m., n = 2 DMDY/- untreated, n = 4 DMDY/- high dose i.v. treated) 

were analysed. Activity versus lying or sitting posture was evaluated at every fith 

minute in 24 hours. Every box shows the activity pattern of one animal in 24 hours. 

Activity is coloured in orange, lying or sitting posture is colored in blue. White 

numbers in the boxes represent the sum of activity events counted for each box (i.e. 

animal). 

 

During evaluation of the surveillance material, several additional individual 

behavior patterns were detected, such as pattering of the hind limbs, maintaining a 

sitting posture over an extended period, getting up over a sitting posture instead of 

immediate rising or eating in lying posture. Pattering of the hind limbs was observed 

for n = 2 animals (n = 1 i.m. treated DMDY/- and n = 1 high dose i.v. treated DMDY/- 

pig). However, for the high dose i.v. treated DMDY/- animal the behavior was 

observed only one time in 24 h, compared to 7 times in 24 h for the i.m. treated 

DMDY/- animal. n = 1 i.m. treated DMDY/- pig showed positioning of the hind limbs 

in cranial direction during standing, leading to a frequent sliding away of the hind 

limbs. The same animal showed pattering of the hind limbs and eating in lying 

posture. For n = 7 animals (n = 2 WT, n = 1 untreated DMDY/-, n = 2 i.m. treated 
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DMDY/- and n = 2 high dose i.v. DMDY/-) getting up over a sitting posture or the 

maintainance of a sitting posture over an extended period was observed. As animals 

of all groups showed this behavior it was approved as normal individual behavior. 

However, one untreated and one i.m. treated DMDY/- pig showed severely 

prolonged sitting periods at nearly every getting up. n = 1 untreated DMDY/- animal 

showed breathing through the mouth, consistent with stenotic breathing or limited 

respiratory function. For n = 3 pigs (n = 1 untreated, n = 1 i.m. treated and n = 1 

high dose i.v. treated DMDY/-) eating in lying posture was observed. 

5.4. Off-target analysis 

As described in Moretti et al. (2020), two approaches were used to detect possible 

off-target effects triggered by the treatment with G2-AAV9-Cas9-gE51. First, 

targeted sequencing was used to detect mutations at the most likely predicted off-

targets. Second, whole genome sequencing was performed as holistic approach to 

detect further potential off-target mutations. 

Regarding the first approach, no mutations were found in the five most likely 

predicted sites for off-target effects. In the treated samples, no concordant 

alterations were found for the insertions or deletions of bases (INDELs) in the target 

regions. The observed mean alteration frequency of 0.01% (SD±0.3) ranged within 

the background error level of the DNA sequencer (0.1%). 

By whole-genome sequencing in isogenic human DMDΔ51-52 iPSCs compared to 

the parental human DMDΔ52 iPSC line, a total of 88 INDELs and 769 single 

nucleotide variants (SNVs) were identified. The performed minimal Levenshtein 

distance analysis, calculating the smallest number of mismatches between one of 

the two DMD-E51 gRNAs and a putative off-target mutation site revealed that at 

least 7 operations (insertions, deletions or base exchanges) around a variant were 

required to match a gRNA (Figure 40), indicating that the identified INDELS and 

SNVs do not represent off-target effects of CRISPR-Cas treatment. 
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Figure 40: Minimal Levenshtein distance. The Levenshtein distance is the 

minimum number of mismatches (here: 7 mismatches) between a gRNA and a 

putative off-target mutation site. As no variants with <7 mismatches were found, 

the identified INDELS and SNVs cannot be considered as off-target effects of G2-

AAV9-Cas9-gE51 treatment. 

 

6. Multispectral optoacoustic tomography detects collagens 

in skeletal muscle 

As dystrophic muscle tissue is gradually replaced by connective and fatty tissue, 

MSOT was validated as new noninvasive in vivo diagnostic imaging biomarker to 

assess the degree of muscle deterioration, apparent as fibrotic muscular 

transformation in DMD patients (Klingler et al., 2012). Therefore, the feasibility of 

the MSOT technology was first demonstrated in the DMD pig model, and later 

applied to pediatric patients. The complete results are published in Regensburger et 

al. (2019). 

In the proof-of-concept study MSOT imaging of n = 17 piglets (n = 10 WT and n = 

7 DMDY/-) was performed within 1-3 days after birth. In the longitudinal study, n = 

11 piglets (n = 6 WT and n = 5 DMDY/-) underwent MSOT imaging at 4 time-points 

(week 1, week 2, week 3, week 4). 

In the second step, applying the approach to pediatric patients (not shown), MSOT 

collagen signal was shown to highly correlate to the patients’ functional status. 

When comparing MSOT imaging to magnetic resonance imaging, MSOT was 

found to provide additional information on molecular features. 

All analysis of MSOT signals, as well as the bioanalytical analyses of collagen and 

protein content of individual muscle specimens and analysis of stained histologic 

slices of individual skeletal muscles were performed by the Department of 

Pediatrics and Adolescent Medicine, University Hospital Erlangen, FAU Erlangen 

Nuremberg, Erlangen. 
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6.1. Proof-of-principle study for collagen detection in DMDY/- pigs 

Collagen detection in DMDY/- pigs by MSOT in single measurement 

As described in Regensburger et al. (2019), in the proof-of-concept study a total of 

n = 58 scans (n = 34 in WT and n = 24 in DMDY/- piglets) were acquired from 

independent muscle regions of n = 17 animals (n = 10 WT and n = 7 DMDY/-piglets) 

within day 1-3 of life. For every scan, a region of interest (ROI) was drawn within 

the assessed muscle, using ultra-sound guidance, exemplarily shown in Figure 41. 

 

 

Figure 41: Representative presentation of skeletal muscle images from WT 

and DMDY/- piglets, generated by MSOT imaging. ROIs are determined in the 

reflective ultrasound computed tomography (RUCT) image, which is used to 

anatomically guide the investigator. After spectral unmixing of the optoacoustic 

signals, qualitative differences of collagen signals between WT and DMDY/- are 

visible (turquoise). In the merged RUCT/MSOT image, the collagen distribution 

within the muscle is visualized (adapted from Regensburger et al., 2019). 

 

For the collagenmean/max signal, a significant difference was observed, when all 

independent muscle regions were compared between the two groups (n = 34 WT / 

n = 24 DMDY/-), as shown in Figure 42a-b (collagenmean = 14.41±2.66 a.u. versus 

23.14±3.87 a.u. and collagenmax = 27.68±2.72 a.u. compared to 41.05±7.43 a.u). 

When comparing 2d MSOT collagenmean/max signal per animal between groups (n = 

10 WT and n = 7 DMDY/- piglets), likewise a highly significant difference was 

observed between MSOT signals of the two groups, as shown in Figue 42c-d 

(collagenmean = 14.23±1.96 a.u. compared to 22.67±3.59 a.u. and collagenmax = 

27.70±1.67 a.u. versus 41.01±5.16 a.u.). For oxygenated, deoxygenated and total 

hemoglobin no differences in MSOT signal levels were observed (P > 0.05) (not 

shown). 



IV. Results   98 

 

Figure 42: Diagrams represent the MSOT collagen signals from WT and 

DMDY/- piglets generated within the proof-of-concept study. MSOT collagen 

signals are shown in arbitrary units (a.u.). a-b, 2D MSOT collagenmean/max signal, 

with each filled circle representing one MSOT signal per independet skeletal 

muscle region (n = 34 scans in WT and n = 24 scans in DMDY/- piglets). c-d, 

Comparison of 2D MSOT collagenmean/max signal per animal between groups (n = 

10 WT and n = 7 DMDY/- piglets). Each filled circle represents the mean MSOT 

signal of an independent animal. Statistics: Two-tailed independent samples t-test, 

Welch’s correction in cases of unequal variances, Mann-Whitney U-test if 

assumption of normal distribution was violated. Data are shown as mean±s.d. 

(adapted from Regensburger et al., 2019). 

 

Receiver operator characteristic analysis 

To distinguish between muscles from WT and DMDY/- piglets, an exploratory 

receiver operator characteristic (ROC) analysis was performed (Figure 43), plotting 

the true-positive rate (sensitivity) against the false-positive rate (specificity). For 

the obtained 2D collagenmean/max signals the area under the curve (AUC), giving the 

discriminatory abilities of the method, with the respective 95% CI were calculated. 

MSOT-derived imaging parameters showed an excellent ability to distinguish 

healthy (WT) from diseased muscles (DMDY/-). 
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Figure 43: Receiver operating characteristic (ROC) curve. The area under the 

curve (AUC) and 95% confidence inerval (CI) show the ability of MSOT collagen 

signals to distinguish between healty (WT) and diseased muscles (DMDY/-). 

Analyses were performed using data from n = 58 independent muscle regions (n 

=34 WT, n = 24 DMDY/-) of n = 17 independent animals (n = 10 WT and n = 7 

DMDY/- piglets). ROC analysis showed a high specificity and a high sensitivity for 

collagenmean/max, indicating that the collagen signals detected by the MSOT 

technology show a high ability to distinguish between muscles of WT and DMDY/- 

pigs (adapted from Regensburger et al., 2019). 

 

Histologic examination reveals severly increased collagen content in skeletal 

muscle of DMDY/- piglets 

By H.E. staining, disrupted muscular structure was observed in the previously 

scanned muscle regions of DMDY/- piglets. DYS1 immunohistochemistry 

confirmed the total loss of dystrophin in DMDY/- piglets. Masson Trichrome (MT) 

and Sirius red (SR) staining revealed an increased collagen content in skeletal 

muscle of DMDY/- compared to WT piglets (Figure 44a). Quantitation of collagen 

in MT and SR stained histological sections of skeletal muscle of WT and DMDY/- 

piglets confirmed the increased collagen content in skeletal muscle of DMDY/- 

piglets (Figure 44b). 
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Figure 44: Histological examinations reflect the increase of collagen in skeletal 

muscle of DMDY/- piglets. a, Representative skeletal muscle samples of the 

previously imaged regions from WT (upper row) and DMDY/- piglets stained with 

HE, DYS1 immunohistochemistry, MT and SR. Scale bars: 100 µm in main 

micrographs, 50 µm in inserts. b, Quantitation of collagen in MT and SR stained 

histological sections of skeletal muscle of WT and DMDY/- piglets and correlations 

between the MSOT collagen signals and positively stained collagen areas (MT: rs= 

0.58; SR: rs=0.65) are shown. Statistics: Two-tailed independent samples t-test, 

Welch’s correction in cases of unequal variances, Mann-Whitney U-test if 

assumption of normal distribution was violated. Data are shown as mean±s.d. 

Correlations are given by the Spearman correlation coefficient (rs), two-tailed test. 

Black lines display linear regression (adapted from Regensburger et al., 2019). 

 

6.2. Quantitative visualization of disease progression in DMDY/- pigs 

In a subsequent longitudinal study in the DMDY/- pig, the feasibility of MSOT for 

the in vivo monitoring of disease progression was conducted as described in 

(Regensburger et al., 2019). Therefore, n = 11 male piglets (n = 6 WT and n = 5 

DMDY/-) were used, of which n = 1 WT piglet was excluded after the first imaging, 

to generate an identical group size. The imaging was performed in week 1 (days 1 

or 2), week 2 (days 8 or 9), week 3 (day 15 or 16) and week 4 (days 22 or 23) of 

life to quantitatively visualize the early-stage progression of the disease. n = 5 

animals (n = 3 WT and n = 2 DMDY/-) completed the full experimental protocol and 

were euthanized after fulfillment of all four MSOT imaging sessions (at day 24 and 

day 26 of life). n = 3 DMDY/- piglets died or had to be euthanized prematurely (at 

day 5, day 6 and day 7 of life), and thus n = 2 corresponding age-matched WT 

piglets were sacrificed (at day 5 and 6 of life). 
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Figure 45: Longitudinal MSOT study to quantitatively visualize early-stage 

disease progression in DMDY/- piglets. Imaging sessions were performed in week 

1, 2, 3 and 4 of life. Initially, n = 11 animals (n = 6 WT and n = 5 DMDY/-) were 

used for MSOT imaging. N = 3 DMDY/- died or were euthanized in week 1 of life, 

thus n = 2 age-matched WT piglets were sacrificed as controls. N = 5 piglets (n = 3 

WT and n = 2 DMDY/-) completed the full experimental protocol (adapted from 

Regensburger et al., 2019). 

 

In week 1, n = 44 independent muscles (biceps femoris and triceps muscle, both 

bilaterally; equivalent to n = 24 WT and n = 20 DMDY/-) were imaged. Throughout 

the whole 4-week experiment, n = 20 independent muscles (n = 12 WT and n = 8 

DMDY/-) were investigated. 

By in vivo MSOT imaging over time visible tissue changes consistent with 

increased fibrotic transformation of the skeletal muscle tissue were observed in the 

DMDY/- cohort, as exemplarily shown in Figure 46a. Likewise as in the previous 

proof-of-principle study, a significant MSOT collagenmean/max signal difference was 

found for both, 2D and 3D MSOT imaging, in all independent muscle regions of 

WT and DMDY/- for all imaging timepoints of the study. For the remaining n = 5 

animals (n = 3 WT and n = 2 DMDY/-), imaged at every time point of the 4-week 

experiment, a steady increase in collagen signals (2D and 3D MSOT) over the time 

was observed only in independent muscle regions of DMDY/- piglets (Figure 46b). 
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Figure 46: Early-stage disease progression quantitatively visualized over time 

by MSOT imaging. a, Representative 3D MSOT images of one DMDY/- piglet for 

all 4 imaging timepoints. Color coded maps show mean collagen in turquoise, total 

hemoglobin in red and lipid in yellow. b-c, 2D and 3D MSOT collagenmean signals 

in muscles of WT and DMDY/- are quantified over time. b, MSOT signals of 

independent muscles of all WT and DMDY/- animals were compared to each other 

at all four time points (w1-w4), with each filled circle representing one MSOT 

signal per independent muscle region. Data are shown as mean±s.d. c, MSOT 

signals of independent muscles of the WT and DMDY/- animals surviving over the 

whole 4-week experiment were compared to each other at all four time points (w1-

w4), with each filled circle/ square representing mean±s.d. MSOT signals of 

independent muscle regions over the course of the study. Statistics: Two-tailed 

independent samples t-test (Welch’s correction in case of unequal variance), Mann-

Whitney U-test if the assumption of normal distribution was violated, Bonferroni-

Holm adjustment to control type I error due to four comparisons (w1-4) for each 

parameter (adapted from Regensburger et al., 2019). 

 

At the time of the last imaging (week 4), clearly evident differences between the 

WT and the DMDY/- cohort were found in vivo and ex vivo, both macroscopically 

and histologically, as exemplarily shown in Figure 47a. Using histological and 

bioanalytical collagen quantification, within 4 weeks increased collagen deposition 

of up to 248% (from baseline) for MT staining (10.40±5.41 in week 1 to 25.80±7.93 

in week 4, p = 4.94 × 10-5) and 170% (from baseline) for SR staining (19.59±5.40 

in week 1 to 33.30±5.71 in week 4, p = 3.63 × 10-5) were observed in the DMDY/- 

cohort (Fig. 47b). The content of total collagen (TC) per total protein (TP) increased 

by up to 139% (77.57±38.80 TC/TP µl/mg in week 1 to 107.80±42.02 TC/TP µl/mg 

in week 4, p = 0.12) (Figure 47c). 
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Figure 47: Histologic examinations reflect the increase of collagen in skeletal 

muscle of DMDY/- piglets visualized over time by MSOT imaging. a, 

Macroscopic and histologic alterations in skeletal muscle of 4-week-old WT (upper 

row) and DMDY/- pigs. Scale bars: 1 cm in macroscopic images, 100 µm in main 

histological images, and 50 µm in inserts. b, Quantification of areas stained positive 

for collagen by MT and SR staining of muscles of 1-week and 4-week-old WT and 

DMDY/- piglets. c, Quantitation of total collagen abundance in WT and DMDY/- 

piglets. Statistics: Two-tailed independent samples t-test, Welch’s correction in 

cases of unequal variances, Mann-Whitney U-test if assumption of normal 

distribution was violated. Data are shown as mean±s.d. (adapted from 

Regensburger et al., 2019). 
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6.3. Quantitative proteome analysis confirms muscular fibrosis and the 

potential origin of MSOT signals 

To confirm muscular fibrosis in DMDY/- pigs as the potential origin of MSOT 

signals, quantitative proteome analysis was performed in cooperation with Thomas 

Fröhlich and Florian Flenkenthaler of the Gene Center - LAFUGA, LMU Munich. 

Therefore, n = 16 shock-frozen independent muscle samples (n = 8 WT, n = 8 

DMDY/-) of n = 8 independent piglets (n = 4 WT and n = 4 DMDY/-) were analyzed. 

Thereby, a total of 2820 different proteins was identified. 

In a principal component analysis and an unsupervised hierarchical clustering of 

LFQ values for biceps femoris and triceps brachii muscle specimens of 1-week and 

4-week-old WT and DMDY/- piglets the proteomes separated exactly according to 

the genotype and the age (Fig. 48). When comparing the collagens of of the both 

genotypes, collagen VI was found to be already enriched in 1-week-old DMDY/- 

piglets, whereas in 4-week-old DMDY/- piglets, besides the most abundant collagen 

VI, also the collagens III and XIV were increased. 

 

Figure 48: Holistic proteome analysis of skeletal muscle tissue from 1- and 4-

week-old WT and DMDY/- piglets, previously imaged by MSOT. a, 

Unsupervised hierarchical clustering of LFQ values for previously imaged triceps 

brachii and biceps femoris muscle specimens of 1- and 4-week-old WT and DMDY/- 

piglets. Z-score-normalized expression values for the different proteins are color 

coded. b, Principal component anaysis, with each symbol equivalent to an 

individual sample (n = 4 samples per group) (adapted from Regensburger et al., 

2019). 
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V. DISCUSSION 

DMD is a severe progressive muscular wasting disease, which leads to premature 

death of the affected patients (Blake et al., 2002). Even though there is considerable 

progress concerning the therapy of DMD and many genetic approaches have been 

tested in the past few years (reviewed in Birnkrant et al., 2018b) there is no cure for 

the most frequent mutations triggering the disease. Moreover, diagnostic tools to 

assess disease progression in DMD are still initial. Most clinical trials rely on 

measures of muscle function and strength only (Zaidman et al., 2017). Especially 

in young pediatric DMD patients, noninvasive in vivo imaging modalities to 

monitor disease progression are of need. Animal models play a major role in the 

establishment of new treatments and the discovery and validation of new 

biomarkers (Aigner et al., 2010). However, in the case of DMD, the existing animal 

models display advantages but also several limitations, depending on the study 

question (McGreevy et al., 2015). Pigs as animal models have been proven to be 

appropriate with regard to various applications in the field of biomedical research 

(Aigner et al., 2010). Therefore, a tailored DMD pig model, lacking exon 52 in the 

DMD gene (DMDΔ52), has been generated at our institute (Klymiuk et al., 2013). 

In this work we aimed to establish a stable DMD breeding herd to obtain large 

animal numbers, first for the development of a new therapeutic approach aiming at 

somatic gene editing, and second for the validation of a new noninvasive in vivo 

imaging biomarker for DMD. 

The DMD pig generated by breeding as adequate animal model for DMD 

In this work, a total of n = 97 affected DMDY/- piglets were produced by breeding 

over a period of approximately four years. The DMDY/- genotype was confirmed by 

PCR analysis of DNA isolated from individual tail biopsies, with one primer pair 

detecting the intact DMD allele and a second primer pair detecting the mutated 

(DMDΔ52) allele by neomycin selection cassette. All genotypes (WT male, WT 

female, DMDY/- and DMD+/-) were inherited equally following Mendelian laws. 

As rearing of DMDY/- piglets was highly complicated by a reduced general conditon 

of newborn affected animals, different rearing conditions for the period of suckling 

were established and evaluated. Moreover we took a closer look at the cause of the 

reduced general condition present in most of the newborn DMDY/- piglets. DMDY/- 

pigs generated by breeding were characterized with regard to expression of 

dystrophin, creatine kinase levels, body weight, mortality, macroscopic and 

histologic phenotypic characteristics of skeletal muscle, macroscopic and histologic 

gastrointestinal alterations and muscle function. 

All DMD models which are severely affected by the disease, such as double-

knockout mice (either utrophin/dystrophin or integrin/dystrophin) or different 

dystrophin-deficient dog breeds, are difficult to generate and to care for (Ambrosio 

et al., 2009; McGreevy et al., 2015). Therefore, in our DMD pig breeding herd, we 

evaluated different rearing conditions with regard to survival chances. In all cases, 

rearing of affected DMDY/- piglets required birth monitoring and intense nursing 

during the first days of life. A reduced general condition of newborn DMDY/- piglets 

by reason of a severe premature expression of the DMD phenotype, led to increased 

losses of animals due to severe energy deficit and/or crushing by the sow. To reduce 

losses caused by crushing, the separation of the piglets from the sow after 12 h of 
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supervised suckling at the sows’ teats and subsequent motherless rearing in an 

artificial rearing unit was evaluated. With 83% the mortality in this approach was 

quite high. As the preweaning mortality is highly associated with colostrum intake 

even in healthy newborn piglets (Declerck et al., 2016), the colostrum intake was 

seen as crucial factor and suckling at the sows’ teats was prolonged in subsequent 

rearing approaches. Thus, in a second approach “48 h of supervised suckling at the 

sows’ teats” was evaluated. With 56% DMDY/- piglets surviving this approach, a 

definite advance was achieved. In a third and fourth approach, rearing conditions 

were further improved step by step, with the main focus on supervision of the 

individual energy demand and individual colostrum supplementation. A generally 

satisfactory decrease of mortality down to 30% was achieved within the last rearing 

approach. 

When characterizing DMDY/- pigs generated by breeding, a high accordance of 

phenotypic characteristics compared to human DMD patients was found. A 

comparison of disease severity and development and expression of the phenotype 

in dystrophin deficient mice, dogs, pigs and humans is shown in Table 10. 

Table 10: Comparison of phenotypic characteristics and disease severity in 

dystrophin deficient mice, dogs, pigs and humans (adapted from Duan, 2015; 

and McGreevy et al., 2015). 

Disease Phenotype 

 mdx-Mice Dogs Pigs Humans 

Body weight at 

birth 
= normal = normal < normal = normal 

Grown-up body 

weight 
≥ normal < normal < normal < normal 

Disease 

progression 

mild, non-

progressive 

severe, 

progressive 

severe, 

progressive 

severe, 

progressive 

“Honeymoon” 

Period 

no (mild, 

non-

progressive 

phenotype) 

at 6-10 months 

of age 
n.d. 

between 5-8 

years of 

age, 

symptoms 

are often 

stabilized or 

even 

slightly 

improved 
Loss in 

ambulation 
rare rare 

no, but 

progressive 

activity 

decrease 

Wheelchair-

bound by 

early 

teenage 

Life span 

= 75% of 

normal (≈ 22 

months of 

age) 

= 25% of 

normal (≈ 3 

years of age) 

see Kaplan-

Meier 

curve (≈ 4 

month of 

age) 

= 25% of 

normal (≈ 

20 years of 

age) 
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Neonatal death rare 

15-30% within 

2 weeks after 

birth (likely due 

to diaphragm 

failure) 

49.45% 

within 1 

week after 

birth 

rare 

Age at first 

symptoms 
≥ 15 months 

birth to 3 

months 

birth 

(reduced 

general 

condition) 

to latest 1 

month 

(reduced 

weight 

gain) 

2-4 years 

Muscle wasting minimal until 

≥ 15 months 
progressive progressive progressive  

Limb weakness n.d. 
2 to 3 months of 

age 

yes, partly 

(see 

IV.5.3.) 

≈ 3 years 

Creatine kinase 

(CK) 

severely 

elevated 4 

severely 

elevated 5 

severely 

elevated 

severely 

elevated 

Respiratory 

Dysfunction 
no7 

severe, 

progressive3 

partly, 

severe & 

progressive 

(see IV.5.3) 

moderate to 

severe, 

progressive 

Gastrointestinal 

impairment 

decreased 

intestinal 

transit and 

fecal output1 

detected 

(dysphagia, 

salivation and 

mega-

esophagus)2 

partly 

detected 

(severe & 

progressive 

obstipation) 

markedly 

disturbed in 

several 

individuals8 

ECG 

abnormalities 
frequent frequent n.d. (work 

in progress) 
frequent 

Cardiomyopathy 

≥ 20 months; 

DCM in 

female and 

HCM in 

male mice 

detectable at 6 

months via 

ECG 

detectable 
6; sudden 

cardiac 

death due 

to mild 

stressors 

evident at 

16 years 

Cognitive & 

CNS defects 
mild n.d. n.d. (work 

in progress) 

1/3 of 

DMD 

patients Histopathology & Biomolecular Changes 

 mdx-Mice Dogs Pigs Humans 

At birth minimal minimal severe minimal 

Acute necrosis 

of muscle fibers 
2-6 weeks none 1st week of 

life 
none 
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Limb muscle 

fibrosis 

minimum in 

adult 

extensive and 

progressive 

extensive 

and 

progressive 

extensive 

and 

progressive 

Skeletal muscle 

regeneration 
robust poor poor n.a. 

Alterations in 

the 

gastrointestinal 

tract 

increased 

concentration 

of collagen 

fibers in 

submucosal 

region1 

Not reported 

Colon: 

putative 

increase of 

Type I 

collagene 

fibers 

Esophagus: 

marked 

fibrosis, 

loss of 

circular and 

longitud. 

Muscle9; 

stomach: 

loss of 

smooth 

muscle, 

marked 

fibrosis10 
1(Feder et al., 2018; Mulè et al., 2010), 2(Ambrosio et al., 2009), 3(DeVanna et al., 

2014; Kornegay, 2017), 4(Spurney et al., 2009), 5 (Sharp et al., 1992), 6(Moretti et 

al., 2020), 7 (Burns et al., 2019), 8 (Kraus et al., 2016), 9 (Leon et al., 1986), 10 

(Barohn et al., 1988) 

 

Tabe 10 highlights the limitations of the mdx-mice, compared to dogs and pigs as 

model of DMD. There are several different mouse models of DMD. However, none 

of them appropriately mirrors the phenotype of DMD patients. Furthermore, the 

mouse as animal model imposes limitations on analysis, such as dose-finding in 

therapeutic trials of new treatments, due to its small body size. With regard to the 

body size, the dog model of DMD is a more appropriate animal model for DMD. It 

furthermore reflects most of the phenotypic characteristics of DMD (Brinkmeyer-

Langford and N Kornegay, 2013). Nevertheless, the big disadvantage of all DMD 

dog models is the high phenotypic dog-to-dog diversity. Great individual variations 

result in difficulties of reaching the size of an experimental group and in showing 

clear statistically significant results (reviewed in Wells, 2018). In our DMD pig 

breeding herd, likewise a variation in phenotype was observed. Several newborn 

DMDY/- piglets needed to be euthanized due to a severely reduced general 

condition. In part, these animals showed gross anatomic muscle alterations. 

Concerning histological findings, in the examined short-term surviving DMDY/- 

piglets local calcium deposits were observed in the striated muscles, whereas no 

foci with calcifications were found in muscles of examined long-term surviving 

DMDY/- piglets. Apart from this, some DMDY/- piglets were observed with 

gastrointestinal impairment. 

Similar to the DMD dog models there is also a variability in phenotype in the short-

term surviving DMDY/- cohort, which might potentially influence the results of 

studies. However, a stable phenotype can be ensured by selecting only the long-

term surviving DMDY/- animals as experimental cohort, as it was done for the 

therapeutic trial which is part of this work. Statistically relevant experimental group 

sizes could be obtained. 
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In human DMD patients the first clinical manifestations of the disease appear in the 

early childhood (average at 2.5 years) (Ciafaloni et al., 2009). Compared to human 

DMD patients, DMD pigs show an accelerated course of the disease. The weight at 

birth of affected piglets was already reduced in comparison to WT littermates. Body 

weight increase was delayed and always stayed below the mean body weight of 

male WT littermates. Severe histologic alterations consistent with the DMD 

phenotype were observable already in newborn DMDY/- animals. In adolescent 

DMDY/- pigs, histologic samples showed a severe DMD phenotype as well. An 

increase of connective tissue was highly apparent in newborn as well as in adolecent 

DMDY/- pigs, whereas fatty infiltration, which was expected to be likewise 

increased in adolecent DMDY/- animals, was putatively low. These observations are 

in line with previous reports about findings in human DMD patients: the 

intramuscular fat content in biceps and quadriceps femoris muscles of DMD 

patients ranged from 0.89±0.70% (Bettica et al., 2016) to 3.4±4.1%, whereas 

fibrosis (peri- and endomysial) exceeded 30% (Desguerre et al., 2009). The 

accelerated appearance of the phenotype can be beneficial with regards to 

therapeutic trials, as ameliorations of the phenotype due to a therapeutic agent can 

be validated prematurely, compared to other DMD animal models (see Table 10), 

reducing the total experimental duration. 

Concerning the gastrointestinal impairment found in some DMDY/- piglets, a more 

detailed examination of the abdominal symptoms and correlating pathologic 

alterations is in progress. However, impairment of the gastrointestinal function, 

mainly occuring in the form of constipation, is described as very frequent 

complication in DMD patients (Kraus et al., 2016). Therefore, the examination of 

the underlying cause of gastrointestinal impairment in DMD is of need. First 

investigations in DMDY/- piglets showed an increased survival rate after therapeutic 

measures (treatment with laxatives and digestion-aiding nutritional supplements of 

all n = 7 DMDY/- piglets of 2 litters, of which one or more animals showed 

gastrointestinal symptoms). This supports the in Birnkrant et al. (2018b) indicated 

importance of gastrointestinal and nutritional management. As possible reason for 

gastrointestinal problems in DMDY/- piglets, hypomotility or atonia, caused by a 

reduced innervation, is discussed. As second hypothesis, an increase of fibrotic 

tissue in the intestinal wall might lead to strictures, disturbing the intestinal passage 

and leading to obstruction, as found in human patients with ulcerative colitis (Parray 

et al., 2012). As the DMD pig model seems to mirror DMD in regards to 

gastrointestinal impairment, investigations of this aspect in the DMD pig can 

promote the research in this area. 

Identification of potential modifier genes in the DMDY/- pig 

The manifestation and severity of the DMD phenotype in human DMD patients can 

be strongly influenced by modifier genes. Several modifying loci have already been 

identified, but the overall knowledge in this field still is initial and incomplete. As 

individual differences in disease progression highly complicate the interpretation 

of results of clinical trials, a more detailed knowledge about modifier genes in DMD 

is of need (reviewed in Aartsma-Rus and Spitali, 2015). In human DMD patients, 

as well as in the mdx mouse, most studies investigating potential genetic modifiers 

rely on previously drawn up hypotheses. Thus, most of the discovered candidate 

genes are pre-specified genes of interest, which are already known to play a role in 

muscle health and with their pathways beeing already well understood. 
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Instead of investigating only putative mutations, genome-wide combined linkage 

disequilibrium and linkage analyses (cLDLA) scan the whole genome for common 

genetic variations. As hypothesis-free, unbiased approach, cLDLA is able to 

identify also unexpected associations in DMD. To investigate the origin of the 

variable survival time observed in our DMDY/- pigs generated by breeding, cLDLA 

was applied for a selected subset of animals. 

A scoring system, to accurately identify subgroups which share the same potential 

modifiers was developed. In human individuals with DMD, the the age at loss of 

ambulation (LoA) is used to determine subgroups with potential common genetic 

modifiers (Bello et al., 2016). As the DMDY/- animals only show an activity 

decrease but no LoA, and all other detected phenotypic variations in DMDY/- pigs 

were only imprecisely determinable, the survival time was chosen as a most reliable 

categorizing parameter. Color-coded partial pedigrees were created to illustrate the 

survival time of the individual animals at first sight. The SNP-genotypes were 

analysed using two different aspects of survival as criterion: PhContinous 

categorized “length of life in days”; and PhDiscrete, categorized phenotype 1 as 

short-term survivors (death within 2-9 days of life) and phenotype 2 as long-term 

survivors (death within ≥ 10 days of life). Using PhDiscrete, a splitting in these two 

subgroups of 1:1.7 (equivalent to n = 19 short-term survivors and n = 33 long-term 

survivors) was shown. The uneven distribution of the two subgroups is explainable 

by a lower number of short-term survivors due to an exlcusion of all short-term 

survivors which were crushed or possibly crushed by the sow or died due to an 

uncertain reason (e.g. infection). 

Using PhContinous and PhDiscrete as criteria, so far no genome-wide significant 

quantitative trait loci (QTL) responsible for the variable phenotype in DMDY/- pigs 

could be identified. However, with a continously increasing number of animals 

included in the study, the likelihood ratio test (LRT) curves became smoother and 

less peaked. On some chromosomes highly indicative values were observable. On 

other chromosomes indicative, but no marked peaks were found. On most 

chromosomes an evenly low, homogenous pattern of LRT-values was observed.  

One of the most researched genetic modifieres in human DMD patients is SPP1, 

encoding SPP1 or Osteopontin. According to the Sus scrofa reference genome 

assembly Sscrofa11.1 (Genome - Assembly - NCBI) SPP1 is located on pig 

chromosome 8 (131,077,787-131,085,264 bp). Here used cLDLA mapping 

procedure mapped an indicative QTL on pig chromosome 8 at 109.7 Mb (LRT = 

12.6). However, this indicative QTL is far (21.4 Mb) from candidate modifier 

SPP1. 

LTBP4, encoding latent TGFB binding protein 4, is another frequently researched 

genetic modifier in DMD. It is located at pig chromosome 6 (48,833,008-

48,861,246). In our study pig chromosome 6 displayed an evenly low, homogenous 

pattern of LRT values. No significant LRT value was observable at the LTBP4 

locus. 

For the less researched genetic modifiers ACTN3 (encoding α-actinin-3), CD40 

(encoding CD40 or tumor necrosis factor receptor superfamily member 5, 

TNFRSF5) and THBS1 (encoding thrombospondin-1, THBS1), likewise no 

significant LRT values were observable on the corresponding pig chromosomes. 

Due to these results, the described known modifiers in human DMD patients are 

unlikely to be also responsible for a variable phenotype in our DMDY/- pigs. 
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Supposing monogenic inheritance of underlying modifier, and according to 

previous experiences with cLDLA mapping applied to monogenic traits (Kunz et 

al., 2016), we would expect clear and significant mapping in the here presented 

design. The absence of such clear signal strengthens our presumption, that not only 

one, but several modifying loci reveal the observed phenotypic variation in DMDY/- 

pigs. Therefore, a higher number of animals and, eventually, a more explicit 

classification system, are necesscary for further investigations. According to 

mapping results at this stage we decided not to perform any further candidate gene 

analyses at only indicative regions. 

The DMDΔ52-pig is a suitable animal model for the establishment of new 

treatments 

Animal models play a substantial role in the establishment of new treatments in 

clinical application (Aigner et al., 2010). In this therapeutic trial we showed that the 

DMD pig represents an ideal model for the establishment and validation of a new 

therapeutic approach aiming at somatic gene editing by sequence-specific 

nucleases. 

In human DMD patients 60 - 72% of the disease causing mutations are exon 

deletions (Aartsma‐Rus et al., 2006; Muntoni et al., 2003), located in two 

mutational hot spots: one minor hot spot spanning from exons 2 to 20 and one major 

hot spot between exons 47 and 53 (Den Dunnen et al., 1989; Koenig et al., 1987). 

Exon deletions can lead to a shift of the open reading frame resulting in unstable 

mRNA products, which are subsequently eliminated by nonsense-mediated mRNA 

decay. The consequence is a total loss of the muscle structure protein dystrophin, 

resulting in the typical DMD phenotype. The DMD pig established at our institute 

lacks exon 52 of the DMD gene (DMDΔ52) (Klymiuk et al., 2013). This mutation 

leads to the above described pathway, resulting in a total absence of dystrophin. As 

the deletion of exon 52 is one of the more frequent mutations in DMD patients, the 

generation of DMDΔ52 pigs was considered as appropriate in therapeutical 

research. 

Somatic gene editing restores dystrophin expression and ameliorates muscle 

function in DMDY/- pigs 

The therapeutic approach used in this study is described in detail in Moretti et al. 

(2020). In brief, adeno-associated viral vectors, serotype 9, coated with PAMAM-

G2 nanoparticles and carrying an intein-split Cas9 and a pair of guide RNAs, 

targeting exon 51 flanking sequences (G2-AAV9-Cas9-gE51), were used. G2-

AAV9-Cas9-gE51 was aimed to restore the open reading frame, introducing the 

expession of an internally truncated (DMDΔ51-52), but partially functional, 

dystophin protein, thus converting Duchenne muscular dystrophy into the milder 

Becker muscular dystrophy. 

This principle approach of exon skipping to reframe DMD transcripts has already 

been established using antisense-oligonucleotides (AONs) (Sharp et al., 2011) and 

has been successfully translated into clinical trials (Goemans et al., 2011; Van 

Deutekom et al., 2007). However, the AON-mediated exon skipping only shows a 

limited expression of dystrophin and has solely a temporary effect (Verhaart et al., 

2014). In contrast, somatic gene editing by sequence specific nucleases is able to 

permanently correct the open reading frame and is already confirmed to be more 

effective, as demonstrated in the mdx mouse (Long et al., 2016; Xu et al., 2016). 
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The success of this approach was recently confirmed in a dog model of DMD, 

demonstrating a restored expression of a shortened dystrophin in several muscles 

after i.v. application of AAV9 delivering CRISPR-Cas9 components (Amoasii et 

al., 2018). However, as yet, data demonstrating an improved muscle function due 

to somatic gene editing is still missing. 

Only long term surviving DMDY/- animals were used for the therapeutic trial to 

avoid incorrect interpretation of the results due to phenotypic variations. The results 

show, that G2-AAV9-Cas9-gE51 is capable to restore the disrupted reading frame 

of DMDΔ52 pigs by skipping exon 51. In intramuscularly treated DMDY/- pigs a 

robust expression of internally truncated but partially functional dystrophin was 

detectable in the injected muscle regions. Minimal editing of non-injected muscles 

(contralateral side, diaphragm, heart) due to leakage of the vector into blood-

vessels, was observable. In high-dose systemically treated DMDY/- pigs a broad 

transduction in muscles, including the vital organs such as diaphragm and heart, 

was achieved. 

The expression of dystrophin was confirmed by immunofluorescence staining. 

Among other methods, selected reaction monitoring (SRM) was used to detect 

dystrophin. There are several advantages concerning this method. First, SRM 

allows the sensitive and targeted absolute quantification of proteins out of highly 

complex protein mixtures, such as cell lysates. Second, when compared to classical 

techniques like ELISA/RIA or Western Blot, antibodies, which often have a limited 

specificity and selectivity, are not needed for the SRM approach. Beside the high 

specificity and sensitivity of the technique, a large dynamic range of quantification 

of at least three orders of magnitude is a further benefit. SRM allowed the exact 

quantification of dystrophin, given as “% of normal”. As even low levels of 

dystrophin (>4%) have been estimated to improve muscle function and prolong 

survival, and dystrophin levels approaching 20% were found to prevent the 

development of dystrophic symptoms (Godfrey et al., 2015), the detected 

dystrophin levels of up to 62% (of WT dystrophin level) in i.m. treated and up to 

38% (of WT dystrophin level) in high-dose i.v. treated DMDY/- pigs were counted 

as success of the therapeutic approach. The effective elimination of exon 51 was 

confirmed at the genomic and transcript level. To examine whether the dystrophin 

expression and the maintained muscle integrity are sustained, prolonged studies are 

of need. Likewise, as an irregular distribution of dystrophin expression was 

observable in different analyzed muscle specimens of systemically treated DMDY/- 

pigs, there is still optimization-potential to achieve a more homogeny dystrophin 

coverage. 

The results of the holistic proteome analysis of muscle specimens of high dose i.v. 

treated DMDY/- pigs indicated a partial normalization of proteins, which are 

normally dysregulated in DMD. A principal component analysis revealed, that the 

global protein profile of G2-AAV9-Cas9-gE51-treated muscles resided closer to 

WT than to untreated DMDY/- animals. These results likewise confirmed the 

therapeutic effect of G2-AAV9-Cas9-gE51-mediated somatic gene editing. 

Furthermore, the muscle-damage indicating enzyme creatine kinase was measured 

in serum of all animals. However, only plausible values were used for 

interpretation, whereas implausible values (e.g. blood sample was taken several 

hours after death, or animal died under conditions of severe stress) were excluded 

from analysis. The creatine kinase (CK) levels in high-dose i.v. treated DMDY/- pigs 

decreased in comparison to CK levels measured in untreated DMDY/- pigs. The 

parameter was used as biomarker in evaluating the tested somatic gene editing 
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approach. The decrease of CK levels was interpreted as a reduction of muscle 

damage in high-dose i.v. treated DMDY/- pigs. Elevated CK levels indicate a floride, 

i.e. active, state of the disease. As CK elevation is directly associated with muscle 

damage, the parameter is seen as useful biomarker the evaluation of new therapeutic 

approaches. However, it is discussed that a decline of CK can stand for both, a 

reduced CK-leakage and hence the success of a therapeutic approach or a further 

progressed muscle quality decrease (reviewed in Aartsma-Rus and Spitali, 2015; 

Jensen et al., 2017). As shown in chapter IV.3.2., CK levels measured in our 

DMDY/- pigs did not decrease over time but stayed highly elevated above the 

threshold of 2000 U/l. Thus, in the case of our DMD pig model the use of CK as 

biomarker to validate the efficiency of the applied therapeutic approach was 

reasonable. 

In human DMD patients the 6-minute walk test (6-MWT) is the one of the primary 

used outcome measures for the assessment of physical capacity and the validation 

of therapeutic interventions (Bushby et al., 2014; McDonald et al., 2010; Mendell 

et al., 2016). In DMD animal models treadmill tests are performed to evaluate 

functional muscle parameters, as they are thought to most precisely mirror the 

assessment criteria used in human DMD patients (Capogrosso et al., 2018; Xu et 

al., 2016). However, physical examinations in humans as well as in animals 

normally rely on the individual performance of the day and on an active 

cooperation. This highly limits their diagnostic validity in DMD patients as well as 

in DMD animal models. Nevertheless, the assessment of functional muscle 

parameters in our DMDY/- pigs as biomarker for the clinical course of the disease 

was indispensible for the evaluation of the somatic gene editing approach achieved 

by G2-AAV9-Cas9-gE51. Since some DMDY/- individuals died due to sudden 

arrhythmia-induced death following mild environmental stressors such as 

weighing, taking blood samples or transportation, performing treadmill tests to 

assess muscle strength and endurance was decided to be not feasible. Therefore, to 

overcome the obstacles of the above explained limited diagnostic validity of 

physical examinations and the possiblity of sudden cardiac death in DMDY/- pigs, a 

video surveillance system was installed, allowing to observe the animals at any time 

of a day, on seven days a week (24/7). Video surveillance does not require 

interaction with the animals and thus facilitates random objective evaluation, 

preventing assessment errors due to interaction triggered behavioral changes. 

Furthermore, it allows repeated analysis, which avoids analysis errors. Thus, video 

surveillance was the most objective, stressfree and closest-to-reality method to 

assess physical capacity in WT, high-dose i.v. treated and untreated DMDY/- pigs. 

Analyses were performed with regards to activity- versus resting-phases and 

individual behavior. For all animals one whole day (24 hours) was viewed, analyzed 

and interpreted. On average day 64 of life was choosen for analysis, as at this 

timepoint the therapy was expected to already be fully effective and most animals 

included in the study were still alive. As i.m. injection of G2-AAV9-Cas9-gE51 

was attributed exclusively to the muscles of one side of the body, and no behavioral 

changes or functional impairment was expected in these animals when compared to 

untreated DMDY/- pigs, all i.m. treated DMDY/- and untreated DMDY/- animals were 

considered as one group, designated as DMDY/- untreated. All DMDY/- animals were 

analysed blinded for the treatment status, whenever possible. 

Already during review of the videosurveillance material, several individuals 

showed obviously increased resting-phases. Analysing the total standing time in 24 

hours, untreated DMDY/- pigs showed a significantly decreased total standing time 
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when compared to male age matched WT littermates, whereas for high-dose i.v. 

treated DMDY/- pigs a significant increase in total duration of standing events was 

observed. In addition, the average duration of standing events was as a tendency 

decreased in untreated DMDY/- pigs. However, no significant difference could be 

shown here. Using instantaneous sampling, a randomized analytical method, the 

increased activity in high-dose i.v. treated DMDY/- compared to untreated DMDY/- 

pigs could be visualized. Interestingly, here a difference between untreated and i.m. 

treated DMDY/- animals was observable, with a mild but obvious activity increase 

in i.m. treated compared to untreated DMDY/- animals. However, as animal numbers 

of the individual treatment groups were low, no statistical analysis was possible. 

Increased resting-phases were interpreted as premature fatigue, most probable due 

to muscle weakness. This interpretation was supported by observed individual 

behaviors, consistent with signs of fatigue, such as pattering of the hind limbs, or 

eating in lying posture. 

Concerning the detection of possible off-target effects triggered by the treatment 

with G2-AAV9-Cas9-gE51 two different approaches were used to ensure the 

generation of reliable results: targeted sequencing was used to detect the most likely 

predicted off-targets and whole genome sequencing was performed as holistic 

approach to detect further potential off-targets. Results showed, that even in highly 

transduced peripheral muscle tissue no intracellular off-targets were detected.  

Just recently, vector-dose-dependent toxicity of AAV vectors in non-human 

primates and piglets was reported (Hinderer et al., 2018). To achieve a sufficiently 

effective muscle transduction, including transduction of vital organs such as 

diaphragm and heart, the utilized virus particles in our therapeutic approach were 

dendrimer coated with G2-PAMAMs. Thereby, the need of higher virus doses, 

potentially exceeding levels of toxicity, could be avoided. Concerning efficacy and 

safety of new drugs, the evaluation of therapeutic approaches in animal models is 

indispensable. The pig as animal model resembles in body size and several 

similarities in physiology, anatomy, metabolism and pathology in comparison to 

humans (Aigner et al., 2010). Concerning dose finding, this model allows a cautious 

approach towards non-toxic but effective doses.  

Evaluation of MSOT, a new noninvasive in vivo molecular imaging technique 

to detect muscle degeneration, in the DMD pig 

Several new treatments for DMD are in focus of intense research. However, there 

is an unmet need of fast and sensitive methods to accurately measure symptom 

progression and the success of pharmaceutical interventions (Hrach and Mangone, 

2019). So far, manual (Brooke et al., 1983) and quantitative investigation of the 

muscles (Escolar et al., 2011) as well as timed function tests form the primary 

outcome measures in DMD. The 6-MWT to date presents the most frequently used 

primary endpoint to evaluate disease progression in DMD patients. This test and 

other muscular function tests do not require special equipment. However, they are 

dependent on the patients’ understanding (especially important for young DMD 

patients with congnitive impairment), active compliance and the individual 

performance of the day (Geiger et al., 2007; McDonald et al., 2010). These 

parameters may vary substantially between different measurement dates and thus 

can influcence the interpretation of results. Furthermore, these biomarkers for the 

evaluation of disease progression are only of use in ambulatory patients, thereby 

excluding very young (approximately 0-3 years of age) and wheelchairbound 

individuals (which build the majority of DMD patients (Straub et al., 2016)). 
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Objective monitoring techniques, such as ultrasound imaging and MRI, either 

necessitate long scan times or require immobilization, and in young pediatric 

patients, sedation. Thus, these procedures are typically avoided in early life periods, 

when they are not well tolerated (Birnkrant et al., 2018a). Additionally, MRI 

imaging protocols are limited regarding the detection of fibrosis, which however is 

a frequent finding in DMD and an informative biomarker for the progression of the 

disease. Due to sensitivity to edema, inflammation, fibrosis and necrosis, as well as 

the influence of glucocorticoid treatment, signals in T2-weighted, water sensitive 

MRI images are non-specific in this case (Arpan et al., 2014). 

To overcome this lack of noninvasive, age-independent, fast to apply, specific and 

sensitive biomarkers, we examined the feasability of a new noninvasive in vivo 

molecular imaging technique, called multispectral optoacoustic tomography 

(MSOT), in DMD. MSOT is based on a photoacoustic effect: using pulsed laser 

light, the system induces thermoelastic expansion of endogenous absorbers in the 

examined tissue, resulting in detectable acoustic pressure waves. By spectral 

unmixing, based on the specific absorption and reflection spectra of the emitted 

light of each chromophore, the different endogenous absorbers can be identified. 

This enables the visualization of endogenous molecular chromophores, such as 

hemoglobin (oxygenated or deoxygenated), oxygen saturation or melanin. The 

feasibility and clinical usability of this technique has already been demonstrated in 

breast cancer (Diot et al., 2017), skin cancer (Rey-Barroso et al., 2018), melanoma 

lymph nodes (Stoffels et al., 2015) and Crohn’s disease (Knieling et al., 2017; 

Waldner et al., 2016). We could demonstrate, that the illumination in the near- and 

extended near-infrared range (exNIR, from 680 to 1.100 nm) enables the 

visualization and quantification of collagens in affected muscles of DMDY/- pigs, as 

well as in human DMD patients (not shown). The complete results of this study are 

published in Regensburger et al. (2019). The increase of fibrotic proportions in 

muscles of DMD patients is an early aspect of the disease. The average proportion 

of connective tissue is already increased (16.5%) at young age (1-6 years of age), 

and rapidly peaks to 30% and more in subsequent years (Peverelli et al., 2015). 

Therefore, fibrosis is discussed as a useful imaging target in DMD. As DMDY/- pigs 

show an accelerated disease progression, with histologic muscle alterations  

including a severe increase of fibrotic tissue  already observable in newborn piglets, 

the animal was an optimal model for the detection of collagen by MSOT. 

Before imaging, all animals were shaved at the regions to be examined. For MSOT 

imaging, sedation of most of the animals was not necessary, as the method is 

painless and requires only short acquisition times. Only at older ages (4 weeks of 

age), some highly active WT pigs received mild sedation via noninvasive mucosal 

(intranasal) application. During imaging, a reflective ultrasound computed 

tomography (RUCT) image helped to anatomically guide the investigator. At the 

time point of imaging, genotypes of all animals were already determined. The 

investigator and persons carrying out analysis, however, were blinded to the 

genotypes. Genotypes were correctly classified by the investigators after analyzing 

MSOT collagen signals. This allowed a first conclusion in respect to the sensitivity 

of MSOT. 

In a first proof-of-principle study, newborn DMDY/- piglets and WT littermates 

were scanned by MSOT at days 1-3 of life. In a subsequent approach, muscles of 

DMDY/- and WT pigs at week 1, 2, 3 and 4 of life were imaged in a longitudinal 

study. Thereby, the quantitative visualization of disease progression at an early 

stage could be demonstrated by MSOT. In all individual muscle regions, the 
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visualization and quantification of collagen was feasible. Significant MSOT 

collagenmean/max signal differences between DMDY/- and WT animals were observed 

for all individually imaged muscle regions. In the proof-of principle study, n = 9 

animals (n = 6 WT and n = 3 DMDY/-) were euthanized after imaging. In the 

longitudinal study, n = 3 DMDY/- piglets had to be euthanized after the first scanning 

session, due to deterioration of the general condition. n = 2 WT littermates were 

euthanized in parallel, serving as controls. The remaining n = 5 animals (n = 3 WT 

and n =2 DMDY/-) were euthanized after the last scanning session (week 4 of life). 

Of all these animals muscle samples of the previously imaged anatomical regions 

were harvested and subsequently examined. 

Immunohistochemical staining was performed to representatively visualize the 

absolute loss of dystrophin in DMDY/- pigs. Hematoxylin and Eosin (H.E.) staining 

was used to assess cellular and tissue structure. Muscle tissue of all examined 

DMDY/- pigs showed the typical signs of severe dystrophy. With Masson Trichrome 

(MT) and Sirius Red (SR) staining intense fibrotic infiltrations in the muscle tissue 

of DMDY/- animals was visualized. In the MT and SR stained tissue sections, 

quantitative analyzes of positive-stained areas revealed a significantly increased 

collagen content in the DMDY/- compared to WT cohort. Performed assays for total 

collagen (hydroxyproline) and total protein quantification likewise confirmed the 

increase of collagens in DMDY/- animals. In the longitudinal study the progressive 

increase of MSOT collagenmean/max signal in accordance with an actual increasing 

collagen amount in the muscle tissue was demonstrated using the described 

methods. A receiver operator characteristics (ROC) analysis was applied to 

determine the ability of MSOT derived collagen signals to distinguish between 

muscles of affected and healthy animals and an excellent capacity of the MSOT 

technique was revealed. Additional performance of a holistic proteome analysis 

likewise confirmed muscular fibrosis in DMDY/- pigs as the potential origin of 

MSOT signals. When comparing the collagens in skeletal muscle tissue of both 

genotypes, collagen VI was found to be already enriched in 1-week-old DMDY/- 

piglets, whereas in 4-week-old DMDY/- piglets, besides the most abundant collagen 

VI, also the collagens III and XIV were increased. In a principal component analysis 

and an unsupervised hierarchical clustering of LFQ values the proteomes of 

examined muscle specimens separated exactly according to the genotype and the 

age. 

Premature phenotypic characteristics of DMD and an accelerated disease 

progression in DMDY/- animals allowed the detection of early-stage fibrotic 

muscular transformation and follow-up of the clinical course by MSOT. Thus, the 

DMD pig was highly appropriate for the evaluation of MSOT as new diagnostic 

biomarker in DMD. The ease of use of MSOT as noninvasive bedside imaging 

modality was highlighted by the fact, that sedation in most of the animals was not 

necessary, as the technique is painless and requires only short acquisition times. 

The exact scan times of the technique were evaluated in the MSOT study performed 

in pediatric DMD patients and healthy volunteers (not shown). The MSOT 

technique was shown to be suitable for the in vivo monitoring of muscle 

degeneration involving fibrotic processes. Especially for new therapeutic 

approaches which aim at an ultrastructural restoration of damaged muscle, such as 

the somatic gene editing approach also shown in this work (Moretti et al., 2020), 

direct visualization by MSOT might be a helpful tool to validate the therapeutic 

efficacy. 
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VI. SUMMARY 

Evaluation of emerging diagnostic and therapeutic strategies in a tailored pig 

model for Duchenne muscular dystrophy 

DMD is a severe and progressive neuromuscular disease, leading to premature 

death of affected patients. The reason lies in a loss of function of the muscle 

structure protein dystrophin. The most important therapeutic measures are 

treatment with glucocorticoids aiming to relieve the symptoms and to slow down 

disease progression, and multidisciplinary care. For the most frequent underlying 

genetic defects there is no cure. However, in the past few years considerable 

progress has been made concerning mutation-specific therapies intending to restore 

dystrophin expression. The most recent molecular therapy approaches under 

investigation aim to restore dystrophin expression permanently by editing the 

genome. Furthermore, diagnostic tools to accurately assess disease progression and, 

in particular, to reliably allow the validation of new therapeutic approaches, are of 

need. In a former work, a tailored DMD pig, mirroring one of the most frequent 

DMD causing mutations (lack of exon 52 of the DMD gene) has been generated by 

somatic cell nuclear transfer (SCNT) and characterized at our institute. 

One aim of this work was to establish a stable DMD pig breeding herd, allowing to 

generate high numbers of affected DMD knockout animals to provide statistically 

relevant experimental group sizes. Moreover, phenotypic characteristics of the 

DMD knockout pigs generated by breeding were investigated. Over a period of 

approximately four years, altogether n = 97 DMD knockout pigs were produced. 

Within this DMD cohort, a high mortality rate was observed (about 50% within 

week 1 of life). However, by a steady improvement of the parameters influencing 

rearing, the survival rate was increased from 17% up to 70%. The enzyme creatine 

kinase (CK) was already severely elevated in 1-week-old affected DMD piglets. No 

decrease of CK levels in adolecent DMD knockout pigs could be observed. 

Moreover, DMD knockout pigs showed a reduced birth weight, a severe weight-

loss within the fist 24 hours after birth, as well as a reduced body weight gain over 

time. Gross anatomical and histological findings of short- and long-term surviving 

DMD knockout animals revealed divergent findings between these two cohorts. 

Nearly exclusively in short-term surviving DMD piglets, macroscopically visible 

white bundels of muscles were observed, histologically, local calcium foci were 

prominent. Moreover, some DMD animals exhibited gastrointestinal impairment. 

As possible reason for the phenotypic variations genetic modifiers were discussed. 

Therefore, one further approach of this work was to identify potential genetic 

modifier loci in the DMD knockout pig. The application of a genome wide 

combined linkage disequilibrium and linkage analysis (cLDLA), using the survival 

time as objective study criteria for single nucleotide polymorphism (SNP) 

genotyping, was commenced. So far, three potential but not genome-wide 

significant quantitative trait loci (QTL) on chromosomes 1, 7, and 8 were identified. 

However, the results are still initial and might change with a higher number of 

animals. Thus, further investigations with a larger group size, and eventually an 

improved categorization system, are of need. 

Another item of this work was the validation of a new therapeutic approach, using 

somatic gene editing to permanently restore an internally truncated but partially 

functional dystrophin protein, in the DMDΔ52 pig. The correction of the open 
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reading frame (DMDΔE51-52) was achieved by Cas9-mediated excision of exon 

51. The therapeutic agent was transmitted by adeno-associated viral (AAV) vectors. 

The successful restoration of dystrophin expression in skeletal muscle was 

demonstrated using different analytical methods. Furthermore, CK levels were 

observed to improve under treatment. As a further important aspect, functional 

improvement of the muscles was assessed by analysing video recordings of a 24-

hour surveillance audit with regards to individual activity patterns. The main 

outcome was a significant increase of activity of systemically (high-dose) treated 

animals, indicating a decrease of muscle weakness. Summarizing, in this study, the 

therapeutic approach was shown to ameliorate skeletal and cardiac muscle failure 

in DMD knockout pigs. 

The last aspect of this work was the validation of multispectral optoacoustic 

tomography (MSOT), a new noninvasive diagnostic imaging biomarker to assess 

the state of muscle degeneration in the DMD knockout pig. Illuminations in the 

near- and extended near-infrared ranges allowed the visualization and 

quantification of the endogenous absorber collagen in skeletal muscle. The 

feasibility of the approach to distinguish between healthy (WT) and diseased (DMD 

knockout) muscle was evaluated in a first proof-of-principle study. The ability of 

MSOT to also quantitatively visualize early-stage disease progression was 

confirmed in a second longitudinal study. A highly significant elevation of MSOT 

collagen signal was detected in skeletal muscle of DMD knockout piglets compared 

to WT littermates. A significant increase of MSOT collagen signal over time in 

affected DMD pigs could be shown. The increased collagen content was confirmed 

by the quantitation of positive-stained areas of Masson Trichrome and Sirius Red 

stained muscle slices, by total collagen and total protein quantification, and by a 

holistic proteome analysis. A study in pediatric DMD patients likewise confirmed 

an increased MSOT collagen signal in skeletal muscle of affected boys. Thus, 

MSOT was shown to be a feasible noninvasive imaging tool for the visualisation 

and quantification of collagens as biomarker in DMD. 

Summarizing, in this work the applicability of the DMD pig as adequate animal 

model for DMD was demonstrated. 
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VII.  ZUSAMMENFASSUNG 

Evaluierung neuer Strategien zur Diagnostik und Therapie der Duchenne 

Muskeldystrophie anhand eines maßgeschneiderten Schweinemodells 

Die Duchenne Muskeldystrophie (DMD) ist eine schwerwiegende, progressiv 

verlaufende und letztendlich letale neuromuskuläre Erkrankung. Ursächlich sind 

verschiedene Mutationen im DMD Gen, welche eine Synthesestörung des 

Muskelstrukturproteins Dystrophin bewirken. Dies führt nachfolgend zu einem 

Untergang von Muskelfasern. Die Behandlung der Erkrankung beschränkt sich 

bisher auf die multidisziplinäre Versorgung betroffener Patienten. Weiterhin kann 

mit Glukokortikoiden eine Linderung der Krankheitssymptome und eine 

geringgradige Verlangsamung des Krankheitsverlaufs bewirkt werden. Für die 

meisten zugrunde liegenden genetischen Defekte gibt es dennoch keine effektiven 

Heilungsmöglichkeiten. Allerdings wurde in den letzten Jahren ein erheblicher 

Fortschritt im Hinblick auf die Entwicklung mutationsspezifischer Therapien 

gemacht, welche darauf abzielen die Dystrophin-Synthese wiederherzustellen. Die 

neusten molekularen Therapieansätze sind zudem darauf ausgerichtet, durch 

Veränderungen auf Genom-Ebene eine dauerhafte Wiederherstellung der 

Dystrophin-Expression zu ermöglichen. Für die Erforschung und Beurteilung neuer 

Therapiemöglichkeiten ist die Entwicklung diagnostischer Hilfsmittel wichtig, 

welche die präzise Beurteilung des Krankheitsverlaufs ermöglichen. In einer 

vorhergehenden Arbeit an unserem Institut wurde mittels somatischem 

Zellkerntransfer ein maßgeschneidertes DMD Schweinemodell erstellt, welches 

eine der häufigsten zugrunde liegenden Mutationen (nämlich das Fehlen von Exon 

52 im DMD Gen) widerspiegelt. 

Ein Hauptziel dieser Arbeit war der Aufbau einer stabilen Zuchtherde des DMD 

Schweinemodells, um die Bereitstellung statistisch relevanter Tierzahlen für 

experimentelle Versuchsgruppen zu ermöglichen. Weiterhin wurden die 

phänotypischen Eigenschaften der durch Zucht erzeugten DMD-Knockout Tiere 

untersucht. Innerhalb eines Zeitraums von etwa 4 Jahren wurden insgesamt 97 

DMD-Knockout Tiere erzeugt. Die DMD-Tiere zeigten insgesamt eine stark 

erhöhte Mortalitätsrate (ca. 50% innerhalb der ersten Lebenswoche). Durch eine 

stetige Verbesserung der Aufzuchtsbedingungen konnte jedoch eine Steigerung der 

Überlebensrate von anfänglichen 17% auf 70% erzielt werden. Erhöhte 

Kreatinkinase-Werte wurde bereits bei 1-Woche alten Ferkeln gemessen. Ein 

Absinken des CK-Wertes bei heranwachsenden DMD-Tieren wurde nicht 

beobachtet. Weiterhin wiesen DMD-Schweine ein reduziertes Geburtsgewicht auf, 

mit einer nachfolgend starken Gewichtsabnahme innerhalb der ersten 24 Stunden 

nach der Geburt. Die anschließende Gewichtszunahme überlebender Tiere lag stets 

unter der der Wildtyp-Wurfgeschwister. Bei der Sektion der DMD-Tiere wurden 

makroskopisch sowie histologisch unterschiedliche Befunde zwischen den 

Kurzzeit-Überlebern (≤ 1 Woche) und den Langzeit-Überlebern beobachtet. Unter 

anderem zeigten Kurzzeit-Überleber makroskopisch eine weiße Streifung der 

Muskulatur, histologisch wurden Kalkablagerungen in der Muskulatur 

nachgewiesen. Außerdem wiesen manche DMD-Tiere eine Beeinträchtigung der 

gastrointestinalen Funktion auf. Als mögliche Ursache für diese phänotypische 

Varianz wurden Modifier-Gene diskutiert. Deshalb wurde, mit Hilfe einer 

Kartierung per kombinierter Kopplungsungleichgewichts- und Kopplungsanalyse 
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(cLDLA), die Identifizierung möglicher modifizierender Genloci im DMD-

Schweinemodell untersucht. Als weitestgehend objektives Kriterium, zur 

Erfassung möglicher genetischer Varianten (Einzelnukleotid-Polymorphismen 

(SNP)) innerhalb der DMD-Knockout-Tiere wurde die „Überlebensdauer“ 

verwendet. Bisher wurden somit insgesamt drei potenziell modifizierte Genloci auf 

den Chromosomen 1, 7 und 8 eruiert, welche jedoch nicht genomweit signifikant 

sind. Diese Ergebnisse könnten sich folglich, unter Einbeziehung weiterer Tiere, 

verändern. Eine Weiterführung des Projekts mit höheren Tierzahlen und 

möglicherweise ein verbessertes Kategorisierungs-System sind nötig. 

Ein weiteres Thema der vorliegenden Arbeit war die Validierung einer neuen 

somatischen Gentherapie: Im DMD-Schwein (DMDΔ52) sollte die dauerhafte 

Wiederherstellung der Expression eines verkürzten aber funktionellen Dystrophin-

Proteins durch Korrektur des DNA-Leserahmens mittels CRISPR/Cas9 bewirkt 

werden (DMDΔ51-52). Zum Transfer des CRISPR/Cas9-Systems in die Zellen 

wurden Adenoassozierte Virale Vektoren (AAV) verwendet. Die erfolgreiche 

Wiederherstellung der Dystrophin-Synthese in Skelettmuskel (u.a. Zwerchfell) und 

Herz konnte mittels verschiedener Analyseverfahren nachgewiesen werden. Zudem 

wurde eine Absinken der CK-Werte in systemisch therapierten DMD-Tieren 

beobachtet. Als weiterer wichtiger Aspekt der Validierung des Therapieerfolges 

wurde die Muskelfunktion beurteilt. Hierfür wurde Filmmaterial eines 24-Stunden 

Videoüberwachungssystems, hinsichtlich der Aktivitätsmuster der individuellen 

Tiere, ausgewertet. Ein signifikanter Anstieg der Aktivität bei systemisch 

behandelten Tieren (hohe Dosis) wurde beobachtet, vereinbar mit einem Rückgang 

der Muskelschwäche. Zusammenfassend konnten eine Verbesserung der Muskel- 

sowie Herzfunktion durch die angewandte Gentherapie im maßgeschneiderten 

DMD Schweinemodell gezeigt werden. 

Als letzter Aspekt der vorliegenden Dissertation wurde im DMD Schweinemodell 

die multispektrale optoakustische Tomographie (MSOT), ein neues nicht-invasives 

bildgebendes Diagnoseverfahren zur Erfassung von Muskeldegeneration validiert. 

Bei dem Verfahren werden Pulse eines Nahinfrarot-Lasers in das zu untersuchende 

Muskelgewebe gesandt und die dabei entstehenden optoakustischen Druckwellen, 

welche spezifisch für jeweilige körpereigene Chromophore (Farbstoffe wie z.B. 

Kollagene im Skelettmuskel) sind, visualisiert und quantifiziert. Die 

Anwendbarkeit dieser Diagnostikmethode zur Unterscheidung zwischen gesundem 

(WT) und erkranktem (DMD-Knockout) Muskel wurde in einer ersten 

Machbarkeitsstudie untersucht. In einer nachfolgenden Längsschnittstudie wurde 

auch die Fähigkeit von MSOT, das Fortschreiten der Erkrankung im Frühstadium 

quantitativ zu visualisieren, bestätigt. Im Skelettmuskel von DMD-Knockout-

Ferkeln im Vergleich zu WT-Wurfgeschwistern wurde eine hoch signifikante 

Erhöhung des MSOT-Kollagensignals festgestellt. Weiterhin konnte ein 

signifikanter Anstieg des MSOT-Kollagensignals im Laufe der Zeit bei betroffenen 

DMD-Schweinen gezeigt werden. Der erhöhte Kollagengehalt wurde durch 

Anwendung verschiedener Methoden bestätigt. So wurden zum einen auf den mit 

Masson-Trichrom- und Siriusrot-Färbung angefärbten Muskelschnitten die positiv 

gefärbter Bereiche quantifiziert. Weiterhin wurden der Gesamtkollagengehalt in 

entsprechenden Muskelproben (Nachweis von Hydroxyprolin aus Kollagen) sowie 

der Gesamtproteingehalt ermittelt. Zudem wurde eine ganzheitliche 

Proteomanalyse durchgeführt. Eine Studie an pädiatrischen DMD-Patienten 

bestätigte ebenfalls ein erhöhtes MSOT-Kollagensignal im Skelettmuskel 

betroffener Jungen. Die MSOT-Methode wurde also als praktikables, nicht-

invasives Bildgebungsverfahren zur Visualisierung und Quantifizierung von 
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Kollagen als Biomarker bei der DMD vorgestellt. 

Zusammenfassend wurde in der vorliegenden Dissertation die Anwendung des 

DMD-Schweins als adäquates Tiermodell für die Duchenne Muskeldystrophie 

demonstiert. 

 



VIII. Index of Figures   122 

 

VIII. INDEX OF FIGURES 

Figure 1: Gowers’ sign.                                                                                              4 

Figure 2: Schematic representation of the human DMD gene and the localization 

of the different promoter regions within the gene.                          7 

Figure 3: Schematic representation of the dystrophin glycoprotein complex (DGC).

                                   7 

Figure 4: Schematic description of an out-of-frame mutation and its consequence 

on dystrophin expression.                                       9 

Figure 5: Exemplary presentation of macroscopically striated muscle phenotpye of 

short-term surviving DMDY/- piglets.                          47 

Figure 6: Schematic overview over the tissue specimens taken at MSOT necropsy. 

                             48 

Figure 7: Schematic description of the somatic gene editing approach in DMDΔ52 

pigs.                                         56 

Figure 8: Schematic representation of the monitoring unit for 24/7 video 

surveillance of pigs.                          59 

Figure 9: Representative pictures of muscles of short-term surviving DMDY/- 

piglets.                  65 

Figure10: Kaplan-Meier survival curve of all alive born DMDY/- pigs reared under 

four different nursing conditions.                          66 

Figure 11: Impact of supplementary milk substitute feeding 24 h after birth on the 

body weight of DMDY/- piglets.               67 

Figure 12: Representative skeletal muscle samples of a WT and a DMDY/- pig 

stained immunohistochemically for dystropin.             68 

Figure 13: Comparison of creatine kinase levels.             69 

Figure 14: Representative pictures of 4-day-old DMDY/- piglets (blue marked) and 

a male WT littermate.                            70 

Figure 15: Comparison of body weight of DMDY/- and male WT littermates in the 

first 27 days of life.                70 

Figure 16: Representative picture of an adolecent male DMDY/- pig and a female 

DMD+/- littermate.                71 

Figure 17: Kaplan-Meier survival curve for all n = 91 alive born DMDY/- piglets, 

produced by breeding.                72 

Figure 18: Macroscopic alterations of striated muscles in a 2-day-old DMDY/- 

piglet.                   73 

Figure 19: Histomorphological analysis of the triceps brachii muscle of a 3-day-

old WT control pig (a) and a 3-day-old DMDY/- littermate (b-f).           74 



VIII. Index of Figures   123 

 

Figure 20: Representative images of skeletal muscle (triceps brachii) of 3-day-old 

WT and DMDY/- piglets.                74 

Figure 21: Histomorphology of triceps brachii muscle of long-term surviving 

DMDY/- pigs.                  75 

Figure 22: Representative histological slices of triceps brachii muscle of long-term 

surviving DMDY/- pigs.                76 

Figure 23: Macroscopic findings in a 6-day-old DMDY/- piglet, presenting 

symptoms of a gastrointestinal phenotype.              77 

Figure 24: Representative histological images of colon ascendens of a 3-day-old 

DMDY/- compared to an age-matched WT littermate.            78 

Figure 25: Partial pedigree of founder sow #3040             80 

Figure 26: Partial pedigree of F1 sow #5153             81 

Figure 27: Partial pedigree of F1 sow #5381             81 

Figure 28: Partial pedigree of F1 sow #5382             82 

Figure 29: Partial pedigree of F1 sow #5383             83 

Figure 30: Partial pedigree of F1 sow #6314             83 

Figure 31: Partial pedigree of F2 sows #6225, #6243 and #6245          84 

Figure 32: Manhattan plot used to display candidate regions suggesting modifying 

loci with influence on survival time of DMDY/- pigs.                                  86 

Figure 33: Representative immunofluorescence (IF) analysis.          88 

Figure 34: Representative results of mass spectrometry-based (SRM) dystrophin 

quantification.                 89 

Figure 35: Holistic proteome analysis to validate the effect of DMD treatment on 

the skeletal muscle proteome of DMDY/- pigs.            90 

Figure 36: Serum creatine kinase (CK) values.            91 

Figure 37: Continous recording of motion patterns.                       92 

Figure 38: Representative timelines for 24 h video monitoring.          93 

Figure 39: Instantaneous sampling of activity profiles.           94 

Figure 40: Minimal Levenstein distance.             96 

Figure 41: Representative presentation of skeletal muscle images from WT and 

DMDY/- piglets, generated by MSOT imaging.            97 

Figure 42: Diagrams represent the MSOT collagen signals from WT and DMDY/- 

piglets generated within the proof-of-concept study.                       98 

Figure 43: Receiver operating characteristic (ROC) curve.           99 

Figure 44: Histological examinations reflect the increase of collagen in skeletal 

muscle of DMDY/- piglets.             100 

  



VIII. Index of Figures   124 

 

Figure 45: Longitudinal MSOT study to quantitatively visualize early-stage disease 

progression in DMDY/- piglets.                       101 

Figure 46: Early-stage disease progression quantitatively visualized over time by 

MSOT imaging.              102 

Figure 47: Histologic examinations reflect the increase of collagen in skeletal 

muscle of DMDY/- piglets visualized over time by MSOT imaging.        103 

Figure 48: Holistic proteome analysis of skeletal muscle tissue from 1- and 4-week-

old WT and DMDY/- piglets, previously imaged by MSOT.                    104 

 



IX. Index of Tables   125 

 

IX. INDEX OF TABLES 

Table 1: Master mix composition for genotyping PCR.           43 

Table 2: Cycler protocol for genotyping PCR.            44 

Table 3: Tissue processing in Scientific Excelsior.            49 

Table 4: Standard H.E. protocol.              50 

Table 5: Dewaxing and rehydration of FFPE tissue sections.          51 

Table 6: IHC protocol for dystrophin detection.            51 

Table 7: DMDY/- pigs generated breeding.             62 

Table 8: Color coding for the 4 different husbandry conditions applied for a total 

of 27 litters.                 63 

Table 9: Overview of all animals generated by breeding.           79 

Table 10: Comparison of phenotypic characteristics and disease severity in 

dystrophin deficient mice, dogs, pigs and humans.          106 

 



X. References   126 

 

X. REFERENCES 

(2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual 

framework. Clin Pharmacol Ther 69, 89-95. 

(2002). ATS statement: guidelines for the six-minute walk test. Am J Respir Crit 

Care Med 166, 111-117. 

Aartsma-Rus, A., Ginjaar, I.B., and Bushby, K. (2016). The importance of genetic 

diagnosis for Duchenne muscular dystrophy. J Med Genet 53, 145-151. 

Aartsma-Rus, A., and Spitali, P. (2015). Circulating Biomarkers for Duchenne 

Muscular Dystrophy. J Neuromuscul Dis 2, S49-s58. 

Aartsma‐Rus, A., Fokkema, I., Verschuuren, J., Ginjaar, I., Van Deutekom, J., van 

Ommen, G.J., and Den Dunnen, J.T. (2009). Theoretic applicability of antisense‐

mediated exon skipping for Duchenne muscular dystrophy mutations. Human 

mutation 30, 293-299. 

Aartsma‐Rus, A., Van Deutekom, J.C., Fokkema, I.F., Van Ommen, G.J.B., and 

Den Dunnen, J.T. (2006). Entries in the Leiden Duchenne muscular dystrophy 

mutation database: an overview of mutation types and paradoxical cases that 

confirm the reading‐frame rule. Muscle & Nerve: Official Journal of the American 

Association of Electrodiagnostic Medicine 34, 135-144. 

Abbs, S., and Bobrow, M. (1992). Analysis of quantitative PCR for the diagnosis 

of deletion and duplication carriers in the dystrophin gene. J Med Genet 29, 191-

196. 

Abdallah, C., Dumas-Gaudot, E., Renaut, J., and Sergeant, K. (2012). Gel-based 

and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics 

2012, 494572. 

Aigner, B., Renner, S., Kessler, B., Klymiuk, N., Kurome, M., Wünsch, A., and 

Wolf, E. (2010). Transgenic pigs as models for translational biomedical research. 

Journal of molecular medicine 88, 653-664. 

Alagaratnam, S., Mertens, B.J., Dalebout, J.C., Deelder, A.M., van Ommen, G.J., 

den Dunnen, J.T., and t Hoen, P.A. (2008). Serum protein profiling in mice: 

identification of Factor XIIIa as a potential biomarker for muscular dystrophy. 

Proteomics 8, 1552-1563. 

Ambrosio, C.E., Fadel, L., Gaiad, T.P., Martins, D.S., Araujo, K.P., Zucconi, E., 



X. References   127 

 

Brolio, M.P., Giglio, R.F., Morini, A.C., Jazedje, T., et al. (2009). Identification of 

three distinguishable phenotypes in golden retriever muscular dystrophy. Genet 

Mol Res 8, 389-396. 

Amoasii, L., Hildyard, J.C., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., 

Harron, R., Stathopoulou, T.-R., Massey, C., and Shelton, J.M. (2018). Gene editing 

restores dystrophin expression in a canine model of Duchenne muscular dystrophy. 

Science 362, 86-91. 

Aoki, Y., Yokota, T., Nagata, T., Nakamura, A., Tanihata, J., Saito, T., Duguez, 

S.M., Nagaraju, K., Hoffman, E.P., and Partridge, T. (2012). Bodywide skipping of 

exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proceedings 

of the National Academy of Sciences 109, 13763-13768. 

Arahata, K., Ishihara, T., Kamakura, K., Tsukahara, T., Ishiura, S., Baba, C., 

Matsumoto, T., Nonaka, I., and Sugita, H. (1989). Mosaic expression of dystrophin 

in symptomatic carriers of Duchenne's muscular dystrophy. New England Journal 

of Medicine 320, 138-142. 

Araki, E., Nakamura, K., Nakao, K., Kameya, S., Kobayashi, O., Nonaka, I., 

Kobayashi, T., and Katsuki, M. (1997). Targeted disruption of exon 52 in the mouse 

dystrophin gene induced muscle degeneration similar to that observed in Duchenne 

muscular dystrophy. Biochemical and biophysical research communications 238, 

492-497. 

Arikawa-Hirasawa, E., Koga, R., Tsukahara, T., Nonaka, I., Mitsudome, A., Goto, 

K., Beggs, A.H., and Arahata, K. (1995). A severe muscular dystrophy patient with 

an internally deleted very short (110 kD) dystrophin: presence of the binding site 

for dystrophin-associated glycoprotein (DAG) may not be enough for physiological 

function of dystrophin. Neuromuscul Disord 5, 429-438. 

Arpan, I., Willcocks, R.J., Forbes, S.C., Finkel, R.S., Lott, D.J., Rooney, W.D., 

Triplett, W.T., Senesac, C.R., Daniels, M.J., and Byrne, B.J. (2014). Examination 

of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and 

MRS. Neurology 83, 974-980. 

Asadi, S. (2017). Assessment of Genetic Mutations DMD, DYSF, EMD, LMNA, 

DUX4, DMPK, ZNF9, PABPN1 Genes Induction Duchenne Muscular Dystrophy. 

SOJ Immunol 5, 1-8. 

Athanasopoulos, T., Fabb, S., and Dickson, G. (2000). Gene therapy vectors based 

on adeno-associated virus: characteristics and applications to acquired and inherited 

diseases (review). Int J Mol Med 6, 363-375. 

Athanasopoulos, T., Graham, I., Foster, H., and Dickson, G. (2004). Recombinant 



X. References   128 

 

adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular 

dystrophy (DMD). Gene therapy 11, S109-121. 

Austin, R.C., Howard, P.L., D'Souza, V.N., Klamut, H.J., and Ray, P.N. (1995). 

Cloning and characterization of alternatively spliced isoforms of Dp71. Hum Mol 

Genet 4, 1475-1483. 

Bajek, A., Porowinska, D., Kloskowski, T., Brzoska, E., Ciemerych, M.A., and 

Drewa, T. (2015). Cell therapy in Duchenne muscular dystrophy treatment: clinical 

trials overview. Crit Rev Eukaryot Gene Expr 25, 1-11. 

Bakay, M., Zhao, P., Chen, J., and Hoffman, E.P. (2002). A web-accessible 

complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 

12 Suppl 1, S125-141. 

Barison, A., Aquaro, G.D., Passino, C., Falorni, M., Balbarini, A., Lombardi, M., 

Pasquali, L., Emdin, M., and Siciliano, G. (2009). Cardiac magnetic resonance 

imaging and management of dilated cardiomyopathy in a Duchenne muscular 

dystrophy manifesting carrier. J Neurol 256, 283-284. 

Barnard, A.M., Willcocks, R.J., Finanger, E.L., Daniels, M.J., Triplett, W.T., 

Rooney, W.D., Lott, D.J., Forbes, S.C., Wang, D.J., Senesac, C.R., et al. (2018). 

Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel 

events in Duchenne muscular dystrophy. PLoS One 13, e0194283. 

Barohn, R.J., Levine, E.J., Olson, J.O., and Mendell, J.R. (1988). Gastric 

hypomotility in Duchenne's muscular dystrophy. N Engl J Med 319, 15-18. 

Becker, S., Florian, A., Patrascu, A., Rosch, S., Waltenberger, J., Sechtem, U., 

Schwab, M., Schaeffeler, E., and Yilmaz, A. (2016). Identification of 

cardiomyopathy associated circulating miRNA biomarkers in patients with 

muscular dystrophy using a complementary cardiovascular magnetic resonance and 

plasma profiling approach. J Cardiovasc Magn Reson 18, 25. 

Beggs, A.H., Hoffman, E.P., Snyder, J.R., Arahata, K., Specht, L., Shapiro, F., 

Angelini, C., Sugita, H., and Kunkel, L.M. (1991). Exploring the molecular basis 

for variability among patients with Becker muscular dystrophy: dystrophin gene 

and protein studies. Am J Hum Genet 49, 54-67. 

Beggs, A.H., Koenig, M., Boyce, F.M., and Kunkel, L.M. (1990). Detection of 98% 

of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet 86, 45-48. 

Bell, C.D., and Conen, P.E. (1968). Histopathological changes in Duchenne 

muscular dystrophy. J Neurol Sci 7, 529-544. 



X. References   129 

 

Bell, J.D., and Jones, J. T1 weighted image. 

Bello, L., Flanigan, K.M., Weiss, R.B., Spitali, P., Aartsma-Rus, A., Muntoni, F., 

Zaharieva, I., Ferlini, A., Mercuri, E., Tuffery-Giraud, S., et al. (2016). Association 

Study of Exon Variants in the NF-kappaB and TGFbeta Pathways Identifies CD40 

as a Modifier of Duchenne Muscular Dystrophy. Am J Hum Genet 99, 1163-1171. 

Bello, L., Gordish-Dressman, H., Morgenroth, L.P., Henricson, E.K., Duong, T., 

Hoffman, E.P., Cnaan, A., and McDonald, C.M. (2015a). Prednisone/prednisolone 

and deflazacort regimens in the CINRG Duchenne Natural History Study. 

Neurology 85, 1048-1055. 

Bello, L., Kesari, A., Gordish‐Dressman, H., Cnaan, A., Morgenroth, L.P., Punetha, 

J., Duong, T., Henricson, E.K., Pegoraro, E., and McDonald, C.M. (2015b). Genetic 

modifiers of ambulation in the cooperative international Neuromuscular research 

group Duchenne natural history study. Annals of neurology 77, 684-696. 

Bello, L., and Pegoraro, E. (2019). The "Usual Suspects": Genes for Inflammation, 

Fibrosis, Regeneration, and Muscle Strength Modify Duchenne Muscular 

Dystrophy. J Clin Med 8, E649. 

Berard, C., Payan, C., Hodgkinson, I., and Fermanian, J. (2005). A motor function 

measure for neuromuscular diseases. Construction and validation study. 

Neuromuscul Disord 15, 463-470. 

Bettica, P., Petrini, S., D'Oria, V., D'Amico, A., Catteruccia, M., Pane, M., Sivo, S., 

Magri, F., Brajkovic, S., Messina, S., et al. (2016). Histological effects of givinostat 

in boys with Duchenne muscular dystrophy. Neuromuscul Disord 26, 643-649. 

Birnkrant, D.J., Bushby, K., Bann, C.M., Alman, B.A., Apkon, S.D., Blackwell, A., 

Case, L.E., Cripe, L., Hadjiyannakis, S., and Olson, A.K. (2018a). Diagnosis and 

management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone 

health, and orthopaedic management. The Lancet Neurology 17, 347-361. 

Birnkrant, D.J., Bushby, K., Bann, C.M., Apkon, S.D., Blackwell, A., Brumbaugh, 

D., Case, L.E., Clemens, P.R., Hadjiyannakis, S., and Pandya, S. (2018b). 

Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and 

neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional 

management. The Lancet Neurology 17, 251-267. 

Bladen, C.L., Salgado, D., Monges, S., Foncuberta, M.E., Kekou, K., Kosma, K., 

Dawkins, H., Lamont, L., Roy, A.J., and Chamova, T. (2015). The TREAT‐NMD 

DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy 

mutations. Human mutation 36, 395-402. 



X. References   130 

 

Blake, D.J., and Kroger, S. (2000). The neurobiology of duchenne muscular 

dystrophy: learning lessons from muscle? Trends Neurosci 23, 92-99. 

Blake, D.J., Weir, A., Newey, S.E., and Davies, K.E. (2002). Function and genetics 

of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82, 291-329. 

Bodensteiner, J.B., and Engel, A.G. (1978). Intracellular calcium accumulation in 

Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 

biopsies. Neurology 28, 439-446. 

Bottomley, P.A., Foster, T.H., Argersinger, R.E., and Pfeifer, L.M. (1984). A 

review of normal tissue hydrogen NMR relaxation times and relaxation 

mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, 

temperature, species, excision, and age. Med Phys 11, 425-448. 

Bradley, W.G., Hudgson, P., Larson, P.F., Papapetropoulos, T.A., and Jenkison, M. 

(1972). Structural changes in the early stages of Duchenne muscular dystrophy. J 

Neurol Neurosurg Psychiatry 35, 451-455. 

Brinkmeyer-Langford, C., and N Kornegay, J. (2013). Comparative genomics of 

X-linked muscular dystrophies: the golden retriever model. Current genomics 14, 

330-342. 

Brooke, M.H., Fenichel, G.M., Griggs, R.C., Mendell, J.R., Moxley, R., Miller, 

J.P., and Province, M.A. (1983). Clinical investigation in Duchenne dystrophy: 2. 

Determination of the “power” of therapeutic trials based on the natural history. 

Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic 

Medicine 6, 91-103. 

Brooke, M.H., Griggs, R.C., Mendell, J.R., Fenichel, G.M., Shumate, J.B., and 

Pellegrino, R.J. (1981). Clinical trial in Duchenne dystrophy. I. The design of the 

protocol. Muscle Nerve 4, 186-197. 

Browning, B.L., Zhou, Y., and Browning, S.R. (2018). A One-Penny Imputed 

Genome from Next-Generation Reference Panels. Am J Hum Genet 103, 338-348. 

Buddhe, S., Lewin, M., Olson, A., Ferguson, M., and Soriano, B.D. (2016). 

Comparison of left ventricular function assessment between echocardiography and 

MRI in Duchenne muscular dystrophy. Pediatr Radiol 46, 1399-1408. 

Bulfield, G., Siller, W.G., Wight, P.A., and Moore, K.J. (1984). X chromosome-

linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81, 1189-

1192. 



X. References   131 

 

Burns, D.P., Murphy, K.H., Lucking, E.F., and O'Halloran, K.D. (2019). Inspiratory 

pressure-generating capacity is preserved during ventilatory and non-ventilatory 

behaviours in young dystrophic mdx mice despite profound diaphragm muscle 

weakness. J Physiol 597, 831-848. 

Bushby, K., Finkel, R., Wong, B., Barohn, R., Campbell, C., Comi, G.P., Connolly, 

A.M., Day, J.W., Flanigan, K.M., and Goemans, N. (2014). Ataluren treatment of 

patients with nonsense mutation dystrophinopathy. Muscle & nerve 50, 477-487. 

Bushby, K., Goodship, J., Nicholson, L., Johnson, M., Haggerty, I., and Gardner-

Medwin, D. (1993). Variability in clinical, genetic and protein abnormalities in 

manifesting carriers of Duchenne and Becker muscular dystrophy. Neuromuscular 

Disorders 3, 57-64. 

Cacchiarelli, D., Legnini, I., Martone, J., Cazzella, V., d'Amico, A., Bertini, E., and 

Bozzoni, I. (2011). miRNAs as serum biomarkers for Duchenne muscular 

dystrophy. EMBO molecular medicine 3, 258-265. 

Campbell, K.P., and Kahl, S.D. (1989). Association of dystrophin and an integral 

membrane glycoprotein. Nature 338, 259-262. 

Capogrosso, R.F., Mantuano, P., Uaesoontrachoon, K., Cozzoli, A., Giustino, A., 

Dow, T., Srinivassane, S., Filipovic, M., Bell, C., Vandermeulen, J., et al. (2018). 

Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease 

modifier in dystrophin-deficient mdx mice: proof-of-concept study and 

independent validation of efficacy. Faseb j 32, 1025-1043. 

Carberry, S., Brinkmeier, H., Zhang, Y., Winkler, C.K., and Ohlendieck, K. (2013). 

Comparative proteomic profiling of soleus, extensor digitorum longus, flexor 

digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne 

muscular dystrophy. Int J Mol Med 32, 544-556. 

Carberry, S., Zweyer, M., Swandulla, D., and Ohlendieck, K. (2012a). Profiling of 

age-related changes in the tibialis anterior muscle proteome of the mdx mouse 

model of dystrophinopathy. J Biomed Biotechnol 2012, 691641. 

Carberry, S., Zweyer, M., Swandulla, D., and Ohlendieck, K. (2012b). Proteomics 

reveals drastic increase of extracellular matrix proteins collagen and dermatopontin 

in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int J Mol Med 

30, 229-234. 

Carpenter, J.L., Hoffman, E.P., Romanul, F.C., Kunkel, L.M., Rosales, R.K., Ma, 

N.S., Dasbach, J.J., Rae, J.F., Moore, F.M., McAfee, M.B., et al. (1989). Feline 

muscular dystrophy with dystrophin deficiency. Am J Pathol 135, 909-919. 



X. References   132 

 

Carr, S.J., Zahedi, R.P., Lochmüller, H., and Roos, A. (2017). Mass‐Spectrometry 

based protein analytics to unravel the tissue pathophysiology in Duchenne 

Muscular Dystrophy. Proteomics Clin Appl 12, Epub, doi: 

10.1002/prca.201700071. 

Catapano, F., Domingos, J., Perry, M., Ricotti, V., Phillips, L., Servais, L., Seferian, 

A., Groot, I., Krom, Y.D., Niks, E.H., et al. (2018). Downregulation of miRNA-29, 

-23 and -21 in urine of Duchenne muscular dystrophy patients. Epigenomics 10, 

875-889. 

Ceco, E., Bogdanovich, S., Gardner, B., Miller, T., DeJesus, A., Earley, J.U., 

Hadhazy, M., Smith, L.R., Barton, E.R., Molkentin, J.D., et al. (2014). Targeting 

latent TGFbeta release in muscular dystrophy. Sci Transl Med 6, 259ra144. 

Chamberlain, J.S., Gibbs, R.A., Ranier, J.E., Nguyen, P.N., and Caskey, C.T. 

(1988). Deletion screening of the Duchenne muscular dystrophy locus via multiplex 

DNA amplification. Nucleic Acids Res 16, 11141-11156. 

Chamberlain, J.S., Metzger, J., Reyes, M., Townsend, D., and Faulkner, J.A. 

(2007). Dystrophin-deficient mdx mice display a reduced life span and are 

susceptible to spontaneous rhabdomyosarcoma. Faseb j 21, 2195-2204. 

Cheeran, D., Khan, S., Khera, R., Bhatt, A., Garg, S., Grodin, J.L., Morlend, R., 

Araj, F.G., Amin, A.A., Thibodeau, J.T., et al. (2017). Predictors of Death in Adults 

With Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart 

Assoc 6, e006340. 

Chen, Y., Zheng, Y., Kang, Y., Yang, W., Niu, Y., Guo, X., Tu, Z., Si, C., Wang, 

H., Xing, R., et al. (2015). Functional disruption of the dystrophin gene in rhesus 

monkey using CRISPR/Cas9. Hum Mol Genet 24, 3764-3774. 

Chrzanowski, S.M., Baligand, C., Willcocks, R.J., Deol, J., Schmalfuss, I., Lott, 

D.J., Daniels, M.J., Senesac, C., Walter, G.A., and Vandenborne, K. (2017). Multi-

slice MRI reveals heterogeneity in disease distribution along the length of muscle 

in Duchenne muscular dystrophy. Acta Myologica 36, 151-162. 

Ciafaloni, E., Fox, D.J., Pandya, S., Westfield, C.P., Puzhankara, S., Romitti, P.A., 

Mathews, K.D., Miller, T.M., Matthews, D.J., and Miller, L.A. (2009). Delayed 

diagnosis in duchenne muscular dystrophy: data from the Muscular Dystrophy 

Surveillance, Tracking, and Research Network (MD STARnet). The Journal of 

pediatrics 155, 380-385. 

Clarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, 

M.J., Urso, M., Price, T.B., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., et al. 

(2005). ACTN3 genotype is associated with increases in muscle strength in 



X. References   133 

 

response to resistance training in women. J Appl Physiol (1985) 99, 154-163. 

Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T.A., and 

Morgan, J.E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity 

of cells from the adult muscle satellite cell niche. Cell 122, 289-301. 

Colussi, C., Banfi, C., Brioschi, M., Tremoli, E., Straino, S., Spallotta, F., Mai, A., 

Rotili, D., Capogrossi, M.C., and Gaetano, C. (2010). Proteomic profile of 

differentially expressed plasma proteins from dystrophic mice and following 

suberoylanilide hydroxamic acid treatment. Proteomics Clin Appl 4, 71-83. 

Connolly, A.M., Florence, J.M., Cradock, M.M., Malkus, E.C., Schierbecker, J.R., 

Siener, C.A., Wulf, C.O., Anand, P., Golumbek, P.T., Zaidman, C.M., et al. (2013). 

Motor and cognitive assessment of infants and young boys with Duchenne 

Muscular Dystrophy: results from the Muscular Dystrophy Association DMD 

Clinical Research Network. Neuromuscul Disord 23, 529-539. 

Cynthia Martin, F., Hiller, M., Spitali, P., Oonk, S., Dalebout, H., Palmblad, M., 

Chaouch, A., Guglieri, M., Straub, V., Lochmuller, H., et al. (2014). Fibronectin is 

a serum biomarker for Duchenne muscular dystrophy. Proteomics Clin Appl 8, 269-

278. 

Davis, D.B., Delmonte, A.J., Ly, C.T., and McNally, E.M. (2000). Myoferlin, a 

candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet 9, 

217-226. 

De Sanctis, R., Pane, M., Sivo, S., Ricotti, V., Baranello, G., Frosini, S., Mazzone, 

E., Bianco, F., Fanelli, L., Main, M., et al. (2015). Suitability of North Star 

Ambulatory Assessment in young boys with Duchenne muscular dystrophy. 

Neuromuscul Disord 25, 14-18. 

Declerck, I., Dewulf, J., Sarrazin, S., and Maes, D. (2016). Long-term effects of 

colostrum intake in piglet mortality and performance. J Anim Sci 94, 1633-1643. 

Deconinck, A.E., Rafael, J.A., Skinner, J.A., Brown, S.C., Potter, A.C., Metzinger, 

L., Watt, D.J., Dickson, J.G., Tinsley, J.M., and Davies, K.E. (1997). Utrophin-

dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 

717-727. 

Deconinck, N., and Dan, B. (2007). Pathophysiology of duchenne muscular 

dystrophy: current hypotheses. Pediatric neurology 36, 1-7. 

Den Dunnen, J.T., Grootscholten, P.M., Bakker, E., Blonden, L.A., Ginjaar, H.B., 

Wapenaar, M.C., van Paassen, H.M., van Broeckhoven, C., Pearson, P.L., and van 



X. References   134 

 

Ommen, G.J. (1989). Topography of the Duchenne muscular dystrophy (DMD) 

gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 

duplications. Am J Hum Genet 45, 835-847. 

Desguerre, I., Mayer, M., Leturcq, F., Barbet, J.P., Gherardi, R.K., and Christov, C. 

(2009). Endomysial fibrosis in Duchenne muscular dystrophy: a marker of poor 

outcome associated with macrophage alternative activation. J Neuropathol Exp 

Neurol 68, 762-773. 

Deutsche Duchenne Stiftung (2017). Es nimmt seinen Lauf (Aktion Benni & Co 

e.V., kleine GROßE Helden e.V.). 

DeVanna, J.C., Kornegay, J.N., Bogan, D.J., Bogan, J.R., Dow, J.L., and Hawkins, 

E.C. (2014). Respiratory dysfunction in unsedated dogs with golden retriever 

muscular dystrophy. Neuromuscular Disorders 24, 63-73. 

Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S.-i., 

Ide, C., and Nabeshima, Y.-i. (2005). Bone marrow stromal cells generate muscle 

cells and repair muscle degeneration. Science 309, 314-317. 

Diot, G., Metz, S., Noske, A., Liapis, E., Schroeder, B., Ovsepian, S.V., Meier, R., 

Rummeny, E., and Ntziachristos, V. (2017). Multispectral optoacoustic 

tomography (MSOT) of human breast cancer. Clinical Cancer Research 23, 6912-

6922. 

Dorn, T., Kornherr, J., Parrotta, E.I., Zawada, D., Ayetey, H., Santamaria, G., Iop, 

L., Mastantuono, E., Sinnecker, D., Goedel, A., et al. (2018). Interplay of cell-cell 

contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity. Embo j 

37, e98133. 

Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering 

with CRISPR-Cas9. Science 346, 1258096. 

Dowling, P., Murphy, S., Zweyer, M., Raucamp, M., Swandulla, D., and 

Ohlendieck, K. (2019). Emerging proteomic biomarkers of X-linked muscular 

dystrophy. Expert Rev Mol Diagn 19, 739-755. 

Duan, D. (2015). Duchenne muscular dystrophy gene therapy in the canine model. 

Hum Gene Ther Clin Dev 26, 57-69. 

Duan, D. (2018). Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne 

Muscular Dystrophy Patients. Hum Gene Ther 29, 733-736. 

Eagle, M., Baudouin, S.V., Chandler, C., Giddings, D.R., Bullock, R., and Bushby, 



X. References   135 

 

K. (2002). Survival in Duchenne muscular dystrophy: improvements in life 

expectancy since 1967 and the impact of home nocturnal ventilation. 

Neuromuscular disorders 12, 926-929. 

Eagle, M., Bourke, J., Bullock, R., Gibson, M., Mehta, J., Giddings, D., Straub, V., 

and Bushby, K. (2007). Managing Duchenne muscular dystrophy--the additive 

effect of spinal surgery and home nocturnal ventilation in improving survival. 

Neuromuscul Disord 17, 470-475. 

Ebashi, S., Toyokura, Y., Momoi, H., and Sugita, H. (1959). High creatine 

phosphokinase activity of sera of progressive muscular dystrophy. The Journal of 

Biochemistry 46, 103-104. 

Echigoya, Y., Trieu, N., Hosoki, K., Duddy, W., Partridge, T., Hoffman, E., 

Kornegay, J., Rogers, C., and Yokota, T. (2016). 623. Dystrophin Exon 52-Deleted 

Pigs as a New Animal Model of Duchenne Muscular Dystrophy: Its 

Characterization and Potential as a Tool for Developing Exon Skipping Therapy. 

Molecular Therapy 24, S247. 

Emery, A.E. (1991). Population frequencies of inherited neuromuscular diseases—

a world survey. Neuromuscular disorders 1, 19-29. 

Ervasti, J.M., and Campbell, K.P. (1993). A role for the dystrophin-glycoprotein 

complex as a transmembrane linker between laminin and actin. J Cell Biol 122, 

809-823. 

Escolar, D., Hache, L., Clemens, P., Cnaan, A., McDonald, C.M., Viswanathan, V., 

Kornberg, A., Bertorini, T., Nevo, Y., and Lotze, T. (2011). Randomized, blinded 

trial of weekend vs daily prednisone in Duchenne muscular dystrophy. Neurology 

77, 444-452. 

Eynon, N., Hanson, E.D., Lucia, A., Houweling, P.J., Garton, F., North, K.N., and 

Bishop, D.J. (2013). Genes for elite power and sprint performance: ACTN3 leads 

the way. Sports Med 43, 803-817. 

Fanin, M., Freda, M.P., Vitiello, L., Danieli, G.A., Pegoraro, E., and Angelini, C. 

(1996). Duchenne phenotype with in-frame deletion removing major portion of 

dystrophin rod: threshold effect for deletion size? Muscle Nerve 19, 1154-1160. 

Farnir, F., Grisart, B., Coppieters, W., Riquet, J., Berzi, P., Cambisano, N., Karim, 

L., Mni, M., Moisio, S., Simon, P., et al. (2002). Simultaneous mining of linkage 

and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib 

pedigrees: revisiting the location of a quantitative trait locus with major effect on 

milk production on bovine chromosome 14. Genetics 161, 275-287. 



X. References   136 

 

Feder, D., Ierardi, M., Covre, A.L., Petri, G., Carvalho, A.A.S., Fonseca, F.L.A., 

and Bertassoli, B.M. (2018). Evaluation of the gastrointestinal tract in mdx mice: 

an experimental model of Duchenne muscular dystrophy. Apmis 126, 693-699. 

Feener, C.A., Koenig, M., and Kunkel, L.M. (1989). Alternative splicing of human 

dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509-

511. 

Fisher, K.J., Jooss, K., Alston, J., Yang, Y., Haecker, S.E., High, K., Pathak, R., 

Raper, S.E., and Wilson, J.M. (1997). Recombinant adeno-associated virus for 

muscle directed gene therapy. Nat Med 3, 306-312. 

Flanigan, K.M., Ceco, E., Lamar, K.M., Kaminoh, Y., Dunn, D.M., Mendell, J.R., 

King, W.M., Pestronk, A., Florence, J.M., Mathews, K.D., et al. (2013). LTBP4 

genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann 

Neurol 73, 481-488. 

Forbes, S.C., Walter, G.A., Rooney, W.D., Wang, D.J., DeVos, S., Pollaro, J., 

Triplett, W., Lott, D.J., Willcocks, R.J., Senesac, C., et al. (2013). Skeletal muscles 

of ambulant children with Duchenne muscular dystrophy: validation of multicenter 

study of evaluation with MR imaging and MR spectroscopy. Radiology 269, 198-

207. 

Forbes, S.C., Willcocks, R.J., Triplett, W.T., Rooney, W.D., Lott, D.J., Wang, D.-

J., Pollaro, J., Senesac, C.R., Daniels, M.J., and Finkel, R.S. (2014). Magnetic 

resonance imaging and spectroscopy assessment of lower extremity skeletal 

muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional 

study. PloS one 9, e106435. 

Frohlich, T., Kemter, E., Flenkenthaler, F., Klymiuk, N., Otte, K.A., Blutke, A., 

Krause, S., Walter, M.C., Wanke, R., Wolf, E., et al. (2016). Progressive muscle 

proteome changes in a clinically relevant pig model of Duchenne muscular 

dystrophy. Sci Rep 6, 33362. 

Fukada, S., Morikawa, D., Yamamoto, Y., Yoshida, T., Sumie, N., Yamaguchi, M., 

Ito, T., Miyagoe-Suzuki, Y., Takeda, S., Tsujikawa, K., et al. (2010). Genetic 

background affects properties of satellite cells and mdx phenotypes. Am J Pathol 

176, 2414-2424. 

Gaj, T., Gersbach, C.A., and Barbas, C.F., 3rd (2013). ZFN, TALEN, and 

CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-

405. 

Garcia, S.M., Tamaki, S., Lee, S., Wong, A., Jose, A., Dreux, J., Kouklis, G., 

Sbitany, H., Seth, R., Knott, P.D., et al. (2018). High-Yield Purification, 



X. References   137 

 

Preservation, and Serial Transplantation of Human Satellite Cells. Stem Cell 

Reports 10, 1160-1174. 

Gaschen, L., Lang, J., Lin, S., Ade-Damilano, M., Busato, A., Lombard, C.W., and 

Gaschen, F.P. (1999). Cardiomyopathy in dystrophin-deficient hypertrophic feline 

muscular dystrophy. J Vet Intern Med 13, 346-356. 

Ge, Y., Molloy, M.P., Chamberlain, J.S., and Andrews, P.C. (2003). Proteomic 

analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression 

and enzymatic activity. Proteomics 3, 1895-1903. 

Ge, Y., Molloy, M.P., Chamberlain, J.S., and Andrews, P.C. (2004). Differential 

expression of the skeletal muscle proteome in mdx mice at different ages. 

Electrophoresis 25, 2576-2585. 

Gehrke, L.J., Capitan, A., Scheper, C., König, S., Upadhyay, M., Heidrich, K., 

Russ, I., Seichter, D., Tetens, J., and Medugorac, I. (2020). Are scurs in 

heterozygous polled (Pp) cattle a complex quantitative trait? Genetics Selection 

Evolution 52, 1-13. 

Geiger, R., Strasak, A., Treml, B., Gasser, K., Kleinsasser, A., Fischer, V., Geiger, 

H., Loeckinger, A., and Stein, J.I. (2007). Six-minute walk test in children and 

adolescents. J Pediatr 150, 395-399, 399.e391-392. 

Genome - Assembly - NCBI, International Swine Genome Sequencing Consortium 

Sscrofa11.1. 

Gerhalter, T., Gast, L.V., Marty, B., Martin, J., Trollmann, R., Schussler, S., 

Roemer, F., Laun, F.B., Uder, M., Schroder, R., et al. (2019). (23) Na MRI depicts 

early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne 

muscular dystrophy. J Magn Reson Imaging 50, 1103-1113. 

Giacopelli, F., Marciano, R., Pistorio, A., Catarsi, P., Canini, S., Karsenty, G., and 

Ravazzolo, R. (2004). Polymorphisms in the osteopontin promoter affect its 

transcriptional activity. Physiol Genomics 20, 87-96. 

Giltay, R., Kostka, G., and Timpl, R. (1997). Sequence and expression of a novel 

member (LTBP-4) of the family of latent transforming growth factor-beta binding 

proteins. FEBS Lett 411, 164-168. 

Glemser, P.A., Jaeger, H., Nagel, A.M., Ziegler, A.E., Simons, D., Schlemmer, 

H.P., Lehmann-Horn, F., Jurkat-Rott, K., and Weber, M.A. (2017). (23)Na MRI 

and myometry to compare eplerenone vs. glucocorticoid treatment in Duchenne 

dystrophy. Acta Myol 36, 2-13. 



X. References   138 

 

Godfrey, C., Muses, S., McClorey, G., Wells, K.E., Coursindel, T., Terry, R.L., 

Betts, C., Hammond, S., O'Donovan, L., and Hildyard, J. (2015). How much 

dystrophin is enough: the physiological consequences of different levels of 

dystrophin in the mdx mouse. Human molecular genetics 24, 4225-4237. 

Goemans, N.M., Tulinius, M., van den Akker, J.T., Burm, B.E., Ekhart, P.F., 

Heuvelmans, N., Holling, T., Janson, A.A., Platenburg, G.J., Sipkens, J.A., et al. 

(2011). Systemic administration of PRO051 in Duchenne's muscular dystrophy. N 

Engl J Med 364, 1513-1522. 

Gowers, W.R. (1879). Pseudo-hypertrophic muscular paralysis: a clinical lecture 

(J. & A. Churchill). 

Goyenvalle, A., Seto, J.T., Davies, K.E., and Chamberlain, J. (2011). Therapeutic 

approaches to muscular dystrophy. Human molecular genetics 20, R69-R78. 

Guevel, L., Lavoie, J.R., Perez-Iratxeta, C., Rouger, K., Dubreil, L., Feron, M., 

Talon, S., Brand, M., and Megeney, L.A. (2011). Quantitative proteomic analysis 

of dystrophic dog muscle. J Proteome Res 10, 2465-2478. 

Guiraud, S., and Davies, K.E. (2017). Pharmacological advances for treatment in 

Duchenne muscular dystrophy. Current opinion in pharmacology 34, 36-48. 

Guiraud, S., Squire, S.E., Edwards, B., Chen, H., Burns, D.T., Shah, N., Babbs, A., 

Davies, S.G., Wynne, G.M., Russell, A.J., et al. (2015). Second-generation 

compound for the modulation of utrophin in the therapy of DMD. Hum Mol Genet 

24, 4212-4224. 

Hakim, C.H., Wasala, N.B., Pan, X., Kodippili, K., Yue, Y., Zhang, K., Yao, G., 

Haffner, B., Duan, S.X., Ramos, J., et al. (2017). A Five-Repeat Micro-Dystrophin 

Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of 

Duchenne Muscular Dystrophy. Mol Ther Methods Clin Dev 6, 216-230. 

Haslett, J.N., Sanoudou, D., Kho, A.T., Han, M., Bennett, R.R., Kohane, I.S., 

Beggs, A.H., and Kunkel, L.M. (2003). Gene expression profiling of Duchenne 

muscular dystrophy skeletal muscle. Neurogenetics 4, 163-171. 

Hathout, Y., Liang, C., Ogundele, M., Xu, G., Tawalbeh, S.M., Dang, U.J., 

Hoffman, E.P., Gordish-Dressman, H., Conklin, L.S., van den Anker, J.N., et al. 

(2019). Disease-specific and glucocorticoid-responsive serum biomarkers for 

Duchenne Muscular Dystrophy. Sci Rep 9, 12167. 

Hathout, Y., Marathi, R.L., Rayavarapu, S., Zhang, A., Brown, K.J., Seol, H., 

Gordish-Dressman, H., Cirak, S., Bello, L., Nagaraju, K., et al. (2014). Discovery 



X. References   139 

 

of serum protein biomarkers in the mdx mouse model and cross-species comparison 

to Duchenne muscular dystrophy patients. Hum Mol Genet 23, 6458-6469. 

Hayes, J., Veyckemans, F., and Bissonnette, B. (2008). Duchenne muscular 

dystrophy: an old anesthesia problem revisited. Paediatr Anaesth 18, 100-106. 

Heckmatt, J., Leeman, S., and Dubowitz, V. (1982). Ultrasound imaging in the 

diagnosis of muscle disease. The Journal of pediatrics 101, 656-660. 

Heydemann, A., Ceco, E., Lim, J.E., Hadhazy, M., Ryder, P., Moran, J.L., Beier, 

D.R., Palmer, A.A., and McNally, E.M. (2009). Latent TGF-beta-binding protein 4 

modifies muscular dystrophy in mice. J Clin Invest 119, 3703-3712. 

Hinderer, C., Katz, N., Buza, E.L., Dyer, C., Goode, T., Bell, P., Richman, L.K., 

and Wilson, J.M. (2018). Severe Toxicity in Nonhuman Primates and Piglets 

Following High-Dose Intravenous Administration of an Adeno-Associated Virus 

Vector Expressing Human SMN. Hum Gene Ther 29, 285-298. 

Hinton, V.J., Fee, R.J., Goldstein, E.M., and De Vivo, D.C. (2007). Verbal and 

memory skills in males with Duchenne muscular dystrophy. Dev Med Child Neurol 

49, 123-128. 

Hoffman, E.P., Schwartz, B.D., Mengle-Gaw, L.J., Smith, E.C., Castro, D., Mah, 

J.K., McDonald, C.M., Kuntz, N.L., Finkel, R.S., Guglieri, M., et al. (2019). 

Vamorolone trial in Duchenne muscular dystrophy shows dose-related 

improvement of muscle function. Neurology 93, e1312-e1323. 

Hogarth, M.W., Houweling, P.J., Thomas, K.C., Gordish-Dressman, H., Bello, L., 

Pegoraro, E., Hoffman, E.P., Head, S.I., and North, K.N. (2017). Evidence for 

ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun 8, 

14143. 

Hoogerwaard, E., Bakker, E., Ippel, P., Oosterwijk, J., Majoor-Krakauer, D., 

Leschot, N., Van, A.E., Brunner, H., and Wilde, A. (1999). Signs and symptoms of 

Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in 

The Netherlands: a cohort study. Lancet (London, England) 353, 2116-2119. 

Hooijmans, M.T., Niks, E.H., Burakiewicz, J., Anastasopoulos, C., van den Berg, 

S.I., van Zwet, E., Webb, A.G., Verschuuren, J., and Kan, H.E. (2017). Non-

uniform muscle fat replacement along the proximodistal axis in Duchenne muscular 

dystrophy. Neuromuscul Disord 27, 458-464. 

Horster, I., Weigt-Usinger, K., Carmann, C., Chobanyan-Jurgens, K., Kohler, C., 

Schara, U., Kayacelebi, A.A., Beckmann, B., Tsikas, D., and Lucke, T. (2015). The 



X. References   140 

 

L-arginine/NO pathway and homoarginine are altered in Duchenne muscular 

dystrophy and improved by glucocorticoids. Amino Acids 47, 1853-1863. 

Hrach, H.C., and Mangone, M. (2019). miRNA Profiling for Early Detection and 

Treatment of Duchenne Muscular Dystrophy. Int J Mol Sci 20, E4638. 

Huard, J., Bouchard, J., Roy, R., Malouin, F., Dansereau, G., Labrecque, C., Albert, 

N., Richards, C., Lemieux, B., and Tremblay, J. (1992). Human myoblast 

transplantation: preliminary results of 4 cases. Muscle & Nerve: Official Journal of 

the American Association of Electrodiagnostic Medicine 15, 550-560. 

Ikemoto, M., Fukada, S.-i., Uezumi, A., Masuda, S., Miyoshi, H., Yamamoto, H., 

Wada, M.R., Masubuchi, N., Miyagoe-Suzuki, Y., and Takeda, S.i. (2007). 

Autologous transplantation of SM/C-2.6+ satellite cells transduced with micro-

dystrophin CS1 cDNA by lentiviral vector into mdx mice. Molecular Therapy 15, 

2178-2185. 

Jensen, L., Petersson, S.J., Illum, N.O., Laugaard-Jacobsen, H.C., Thelle, T., 

Jorgensen, L.H., and Schroder, H.D. (2017). Muscular response to the first three 

months of deflazacort treatment in boys with Duchenne muscular dystrophy. J 

Musculoskelet Neuronal Interact 17, 8-18. 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. 

(2012). A programmable dual-RNA–guided DNA endonuclease in adaptive 

bacterial immunity. science 337, 816-821. 

Kamdar, F., and Garry, D.J. (2016). Dystrophin-Deficient Cardiomyopathy. J Am 

Coll Cardiol 67, 2533-2546. 

Karpati, G. (1991). Myoblast transfer in Duchenne muscular dystrophy. A 

perspective. Muscular Dystrophy Research: From Molecular Diagnosis Towards 

Therapy, 101-108. 

Kemper, A.R., and Wake, M.A. (2007). Duchenne muscular dystrophy: issues in 

expanding newborn screening. Curr Opin Pediatr 19, 700-704. 

Kim, J., Jung, I.Y., Kim, S.J., Lee, J.Y., Park, S.K., Shin, H.I., and Bang, M.S. 

(2018). A New Functional Scale and Ambulatory Functional Classification of 

Duchenne Muscular Dystrophy: Scale Development and Preliminary Analyses of 

Reliability and Validity. Ann Rehabil Med 42, 690-701. 

Klingler, W., Jurkat-Rott, K., Lehmann-Horn, F., and Schleip, R. (2012). The role 

of fibrosis in Duchenne muscular dystrophy. Acta Myologica 31, 184. 



X. References   141 

 

Klymiuk, N., Blutke, A., Graf, A., Krause, S., Burkhardt, K., Wuensch, A., Krebs, 

S., Kessler, B., Zakhartchenko, V., Kurome, M., et al. (2013). Dystrophin-deficient 

pigs provide new insights into the hierarchy of physiological derangements of 

dystrophic muscle. Human Molecular Genetics 22, 4368-4382. 

Klymiuk, N., Seeliger, F., Bohlooly-Y, M., Blutke, A., Rudmann, D.G., and Wolf, 

E. (2016). Tailored pig models for preclinical efficacy and safety testing of targeted 

therapies. Toxicologic pathology 44, 346-357. 

Knieling, F., Hartmann, A., Uter, W., Urich, A., Claussen, J., Atreya, R., Rascher, 

W., and Waldner, M. (2017). Multispectral Optoacoustic Tomography in Crohn’s 

disease-A First-in-human Diagnostic Clinical Trial. Journal of Nuclear Medicine 

58, 379-379. 

Koch, A.J., Pereira, R., and Machado, M. (2014). The creatine kinase response to 

resistance exercise. J Musculoskelet Neuronal Interact 14, 68-77. 

Koenig, M., Beggs, A.H., Moyer, M., Scherpf, S., Heindrich, K., Bettecken, T., 

Meng, G., Muller, C.R., Lindlof, M., Kaariainen, H., et al. (1989). The molecular 

basis for Duchenne versus Becker muscular dystrophy: correlation of severity with 

type of deletion. Am J Hum Genet 45, 498-506. 

Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, 

L.M. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA 

and preliminary genomic organization of the DMD gene in normal and affected 

individuals. Cell 50, 509-517. 

Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of 

dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219-228. 

Koppanati, B.M., Li, J., Reay, D.P., Wang, B., Daood, M., Zheng, H., Xiao, X., 

Watchko, J.F., and Clemens, P.R. (2010). Improvement of the mdx mouse 

dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin 

gene. Gene therapy 17, 1355. 

Kornegay, J.N. (2017). The golden retriever model of Duchenne muscular 

dystrophy. Skelet Muscle 7, 9. 

Kraus, D., Wong, B., Hu, S., and Kaul, A. (2018). Gut Transit in Duchenne 

Muscular Dystrophy Is Not Impaired: A Study Utilizing Wireless Motility 

Capsules. J Pediatr 194, 238-240. 

Kraus, D., Wong, B.L., Horn, P.S., and Kaul, A. (2016). Constipation in Duchenne 

muscular dystrophy: prevalence, diagnosis, and treatment. The Journal of pediatrics 



X. References   142 

 

171, 183-188. 

Krosschell, K.J., Maczulski, J.A., Crawford, T.O., Scott, C., and Swoboda, K.J. 

(2006). A modified Hammersmith functional motor scale for use in multi-center 

research on spinal muscular atrophy. Neuromuscul Disord 16, 417-426. 

Krosschell, K.J., Scott, C.B., Maczulski, J.A., Lewelt, A.J., Reyna, S.P., and 

Swoboda, K.J. (2011). Reliability of the Modified Hammersmith Functional Motor 

Scale in young children with spinal muscular atrophy. Muscle Nerve 44, 246-251. 

Kunz, E., Rothammer, S., Pausch, H., Schwarzenbacher, H., Seefried, F.R., 

Matiasek, K., Seichter, D., Russ, I., Fries, R., and Medugorac, I. (2016). 

Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation 

for Weaver syndrome in Brown Swiss cattle. Genetics Selection Evolution 48, 21. 

Labun, K., Montague, T.G., Krause, M., Torres Cleuren, Y.N., Tjeldnes, H., and 

Valen, E. (2019). CHOPCHOP v3: expanding the CRISPR web toolbox beyond 

genome editing. Nucleic Acids Res 47, W171-w174. 

Lalic, T., Vossen, R.H., Coffa, J., Schouten, J.P., Guc-Scekic, M., Radivojevic, D., 

Djurisic, M., Breuning, M.H., White, S.J., and den Dunnen, J.T. (2005). Deletion 

and duplication screening in the DMD gene using MLPA. Eur J Hum Genet 13, 

1231-1234. 

Lamar, K.M., Bogdanovich, S., Gardner, B.B., Gao, Q.Q., Miller, T., Earley, J.U., 

Hadhazy, M., Vo, A.H., Wren, L., Molkentin, J.D., et al. (2016). Overexpression 

of Latent TGFbeta Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy 

through Myostatin and TGFbeta. PLoS Genet 12, e1006019. 

Larcher, T., Lafoux, A., Tesson, L., Remy, S., Thepenier, V., Francois, V., Le 

Guiner, C., Goubin, H., Dutilleul, M., Guigand, L., et al. (2014). Characterization 

of dystrophin deficient rats: a new model for Duchenne muscular dystrophy. PLoS 

One 9, e110371. 

Le Guiner, C., Servais, L., Montus, M., Larcher, T., Fraysse, B., Moullec, S., Allais, 

M., François, V., Dutilleul, M., and Malerba, A. (2017). Long-term 

microdystrophin gene therapy is effective in a canine model of Duchenne muscular 

dystrophy. Nature Communications 8, 16105. 

Lederfein, D., Levy, Z., Augier, N., Mornet, D., Morris, G., Fuchs, O., Yaffe, D., 

and Nudel, U. (1992). A 71-kilodalton protein is a major product of the Duchenne 

muscular dystrophy gene in brain and other nonmuscle tissues. Proc Natl Acad Sci 

U S A 89, 5346-5350. 



X. References   143 

 

Lee, S.H., and Van der Werf, J.H. (2006). Using dominance relationship 

coefficients based on linkage disequilibrium and linkage with a general complex 

pedigree to increase mapping resolution. Genetics 174, 1009-1016. 

Leon, S.H., Schuffler, M.D., Kettler, M., and Rohrmann, C.A. (1986). Chronic 

intestinal pseudoobstruction as a complication of Duchenne's muscular dystrophy. 

Gastroenterology 90, 455-459. 

Linde, L., and Kerem, B. (2008). Introducing sense into nonsense in treatments of 

human genetic diseases. Trends in genetics 24, 552-563. 

Lindsay, H., Burger, A., Biyong, B., Felker, A., Hess, C., Zaugg, J., Chiavacci, E., 

Anders, C., Jinek, M., and Mosimann, C. (2016). CrispRVariants charts the 

mutation spectrum of genome engineering experiments. Nature biotechnology 34, 

701-702. 

Llano-Diez, M., Ortez, C.I., Gay, J.A., Alvarez-Cabado, L., Jou, C., Medina, J., 

Nascimento, A., and Jimenez-Mallebrera, C. (2017). Digital PCR quantification of 

miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. 

Neuromuscul Disord 27, 15-23. 

Lo Cascio, C.M., Goetze, O., Latshang, T.D., Bluemel, S., Frauenfelder, T., and 

Bloch, K.E. (2016). Gastrointestinal Dysfunction in Patients with Duchenne 

Muscular Dystrophy. PLoS One 11, e0163779. 

Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., 

Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016). 

Postnatal genome editing partially restores dystrophin expression in a mouse model 

of muscular dystrophy. Science 351, 400-403. 

Lu, Q.L., Mann, C.J., Lou, F., Bou-Gharios, G., Morris, G.E., Xue, S.-a., Fletcher, 

S., Partridge, T.A., and Wilton, S.D. (2003). Functional amounts of dystrophin 

produced by skipping the mutated exon in the mdx dystrophic mouse. Nature 

medicine 9, 1009. 

Magrath, P., Maforo, N., Renella, P., Nelson, S.F., Halnon, N., and Ennis, D.B. 

(2018). Cardiac MRI biomarkers for Duchenne muscular dystrophy. Biomark Med 

12, 1271-1289. 

Main, M., Kairon, H., Mercuri, E., and Muntoni, F. (2003). The Hammersmith 

functional motor scale for children with spinal muscular atrophy: a scale to test 

ability and monitor progress in children with limited ambulation. Eur J Paediatr 

Neurol 7, 155-159. 



X. References   144 

 

Martin, P., Bateson, P.P.G., and Bateson, P. (1993). Measuring behaviour: an 

introductory guide (Cambridge University Press). 

Mathur, S., Lott, D.J., Senesac, C., Germain, S.A., Vohra, R.S., Sweeney, H.L., 

Walter, G.A., and Vandenborne, K. (2010). Age-related differences in lower-limb 

muscle cross-sectional area and torque production in boys with Duchenne muscular 

dystrophy. Arch Phys Med Rehabil 91, 1051-1058. 

Matsunari, H., Watanabe, M., Nakano, K., Enosawa, S., Umeyama, K., Uchikura, 

A., Yashima, S., Fukuda, T., Klymiuk, N., Kurome, M., et al. (2018). Modeling 

lethal X-linked genetic disorders in pigs with ensured fertility. Proc Natl Acad Sci 

U S A 115, 708-713. 

Matsuo, M., Awano, H., Maruyama, N., and Nishio, H. (2019). Titin fragment in 

urine: A noninvasive biomarker of muscle degradation. Adv Clin Chem 90, 1-23. 

Mazzone, E., Martinelli, D., Berardinelli, A., Messina, S., D’Amico, A., Vasco, G., 

Main, M., Doglio, L., Politano, L., and Cavallaro, F. (2010). North Star Ambulatory 

Assessment, 6-minute walk test and timed items in ambulant boys with Duchenne 

muscular dystrophy. Neuromuscular Disorders 20, 712-716. 

Mcclorey, G., Moulton, H., Iversen, P., Fletcher, S., and Wilton, S. (2006). 

Antisense oligonucleotide-induced exon skipping restores dystrophin expression in 

vitro in a canine model of DMD. Gene therapy 13, 1373. 

McDonald, C.M., Campbell, C., Torricelli, R.E., Finkel, R.S., Flanigan, K.M., 

Goemans, N., Heydemann, P., Kaminska, A., Kirschner, J., and Muntoni, F. (2017). 

Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT 

DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. 

The Lancet 390, 1489-1498. 

McDonald, C.M., Henricson, E.K., Han, J.J., Abresch, R.T., Nicorici, A., Elfring, 

G.L., Atkinson, L., Reha, A., Hirawat, S., and Miller, L.L. (2010). The 6-minute 

walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle 

Nerve 41, 500-510. 

McGreevy, J.W., Hakim, C.H., McIntosh, M.A., and Duan, D. (2015). Animal 

models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. 

Disease models & mechanisms 8, 195-213. 

McKusick, V.A. (2002). DYSTROPHIN; DMD  * 300377  

McLeish, M.J., and Kenyon, G.L. (2005). Relating structure to mechanism in 

creatine kinase. Crit Rev Biochem Mol Biol 40, 1-20. 



X. References   145 

 

Medugorac, I., Graf, A., Grohs, C., Rothammer, S., Zagdsuren, Y., Gladyr, E., 

Zinovieva, N., Barbieri, J., Seichter, D., Russ, I., et al. (2017). Whole-genome 

analysis of introgressive hybridization and characterization of the bovine legacy of 

Mongolian yaks. Nat Genet 49, 470-475. 

Mendell, J.R., Goemans, N., Lowes, L.P., Alfano, L.N., Berry, K., Shao, J., Kaye, 

E.M., Mercuri, E., Group, E.S., Network, T.F.D.I., et al. (2016). Longitudinal effect 

of eteplirsen versus historical control on ambulation in D uchenne muscular 

dystrophy. Annals of neurology 79, 257-271. 

Mendell, J.R., Kissel, J.T., Amato, A.A., King, W., Signore, L., Prior, T.W., 

Sahenk, Z., Benson, S., McAndrew, P.E., and Rice, R. (1995). Myoblast transfer in 

the treatment of Duchenne's muscular dystrophy. New England Journal of Medicine 

333, 832-838. 

Mendell, J.R., and Lloyd‐Puryear, M. (2013). Report of MDA muscle disease 

symposium on newborn screening for Duchenne muscular dystrophy. Muscle & 

nerve 48, 21-26. 

Merlini, L., Gennari, M., Malaspina, E., Cecconi, I., Armaroli, A., Gnudi, S., Talim, 

B., Ferlini, A., Cicognani, A., and Franzoni, E. (2012). Early corticosteroid 

treatment in 4 Duchenne muscular dystrophy patients: 14‐year follow‐up. Muscle 

& nerve 45, 796-802. 

Messroghli, D.R., Moon, J.C., Ferreira, V.M., Grosse-Wortmann, L., He, T., 

Kellman, P., Mascherbauer, J., Nezafat, R., Salerno, M., Schelbert, E.B., et al. 

(2017). Clinical recommendations for cardiovascular magnetic resonance mapping 

of T1, T2, T2* and extracellular volume: A consensus statement by the Society for 

Cardiovascular Magnetic Resonance (SCMR) endorsed by the European 

Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19, 

75. 

Meuwissen, T.H., and Goddard, M.E. (2001). Prediction of identity by descent 

probabilities from marker-haplotypes. Genet Sel Evol 33, 605-634. 

Meuwissen, T.H., Karlsen, A., Lien, S., Olsaker, I., and Goddard, M.E. (2002). Fine 

mapping of a quantitative trait locus for twinning rate using combined linkage and 

linkage disequilibrium mapping. Genetics 161, 373-379. 

Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-

Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., et al. 

(2008). Circulating microRNAs as stable blood-based markers for cancer detection. 

Proc Natl Acad Sci U S A 105, 10513-10518. 

Monaco, A.P., Bertelson, C.J., Liechti-Gallati, S., Moser, H., and Kunkel, L.M. 



X. References   146 

 

(1988). An explanation for the phenotypic differences between patients bearing 

partial deletions of the DMD locus. Genomics 2, 90-95. 

Monaco, A.P., Neve, R.L., Colletti-Feener, C., Bertelson, C.J., Kurnit, D.M., and 

Kunkel, L.M. (1986). Isolation of candidate cDNAs for portions of the Duchenne 

muscular dystrophy gene. Nature 323, 646-650. 

Moore, C.J., Caughey, M.C., Meyer, D.O., Emmett, R., Jacobs, C., Chopra, M., 

Howard, J.F., Jr., and Gallippi, C.M. (2018). In Vivo Viscoelastic Response (VisR) 

Ultrasound for Characterizing Mechanical Anisotropy in Lower-Limb Skeletal 

Muscles of Boys with and without Duchenne Muscular Dystrophy. Ultrasound Med 

Biol 44, 2519-2530. 

Moorwood, C., Lozynska, O., Suri, N., Napper, A.D., Diamond, S.L., and Khurana, 

T.S. (2011). Drug discovery for Duchenne muscular dystrophy via utrophin 

promoter activation screening. PloS one 6, e26169. 

Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, 

D.G., North, K., Pitsiladis, Y.P., and Wilson, R.H. (2007). Association analysis of 

the ACTN3 R577X polymorphism and complex quantitative body composition and 

performance phenotypes in adolescent Greeks. Eur J Hum Genet 15, 88-93. 

Moretti, A., Fonteyne, L., Giesert, F., Hoppmann, P., Meier, A.B., Bozoglu, T., 

Baehr, A., Schneider, C.M., Sinnecker, D., Klett, K., et al. (2020). Somatic gene 

editing ameliorates skeletal and cardiac muscle failure in pig and human models of 

Duchenne muscular dystrophy. Nature Medicine 26, 207-214. 

Moser, H.v., and Emery, A. (1974). The manifesting carrier in Duchenne muscular 

dystrophy. Clinical genetics 5, 271-284. 

Mulè, F., Amato, A., and Serio, R. (2010). Gastric emptying, small intestinal transit 

and fecal output in dystrophic (mdx) mice. The Journal of Physiological Sciences 

60, 75-79. 

Muller, M.P., Rothammer, S., Seichter, D., Russ, I., Hinrichs, D., Tetens, J., 

Thaller, G., and Medugorac, I. (2017). Genome-wide mapping of 10 calving and 

fertility traits in Holstein dairy cattle with special regard to chromosome 18. J Dairy 

Sci 100, 1987-2006. 

Muntoni, F., Torelli, S., and Ferlini, A. (2003). Dystrophin and mutations: one gene, 

several proteins, multiple phenotypes. The Lancet Neurology 2, 731-740. 

Muntoni, F., and Wood, M.J. (2011). Targeting RNA to treat neuromuscular 

disease. Nature reviews Drug discovery 10, 621. 



X. References   147 

 

Nadarajah, V., Mertens, B., Dalebout, H., Bladergroen, M., Alagaratnam, S., and 

Bushby, K. (2012). Serum peptide profiles of Duchenne Muscular Dystrophy 

(DMD) patients evaluated by data handling strategies for high resolution content. J 

Proteomics Bioinf 5, 96-103. 

Nadarajah, V.D., van Putten, M., Chaouch, A., Garrood, P., Straub, V., Lochmuller, 

H., Ginjaar, H.B., Aartsma-Rus, A.M., van Ommen, G.J., den Dunnen, J.T., et al. 

(2011). Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring 

disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 

21, 569-578. 

Nakagawa, T., Takeuchi, A., Kakiuchi, R., Lee, T., Yagi, M., Awano, H., Iijima, 

K., Takeshima, Y., Urade, Y., and Matsuo, M. (2013). A prostaglandin D2 

metabolite is elevated in the urine of Duchenne muscular dystrophy patients and 

increases further from 8 years old. Clin Chim Acta 423, 10-14. 

Nakamura, A., and Takeda, S.i. (2009). Exon‐skipping therapy for Duchenne 

muscular dystrophy. Neuropathology 29, 494-501. 

Nakamura, A., and Takeda, S.i. (2011). Mammalian models of Duchenne Muscular 

Dystrophy: pathological characteristics and therapeutic applications. BioMed 

Research International 2011, 184393. 

Nakamura, K., Fujii, W., Tsuboi, M., Tanihata, J., Teramoto, N., Takeuchi, S., 

Naito, K., Yamanouchi, K., and Nishihara, M. (2014). Generation of muscular 

dystrophy model rats with a CRISPR/Cas system. Sci Rep 4, 5635. 

National Library of Medicine (2019) (National Institutes of Health (NIH)). 

Nicholson, G., Morgan, G., Meerkin, M., Strauss, E., and McLeod, J. (1985). The 

creatine kinase reference interval: An assessment of intra-and inter-individual 

Variation. Journal of the neurological sciences 71, 225-231. 

Nigro, G., Comi, L., Politano, L., and Bain, R. (1990). The incidence and evolution 

of cardiomyopathy in Duchenne muscular dystrophy. International journal of 

cardiology 26, 271-277. 

Nigro, G., Comi, L.I., Politano, L., and Nigro, V. (1995). Dilated cardiomyopathy 

of muscular dystrophy: a multifaceted approach to management. Seminars in 

neurology 15, 90-92. 

Nowak, K.J., and Davies, K.E. (2004). Duchenne muscular dystrophy and 

dystrophin: pathogenesis and opportunities for treatment. EMBO reports 5, 872-

876. 



X. References   148 

 

O'Hagen, J.M., Glanzman, A.M., McDermott, M.P., Ryan, P.A., Flickinger, J., 

Quigley, J., Riley, S., Sanborn, E., Irvine, C., Martens, W.B., et al. (2007). An 

expanded version of the Hammersmith Functional Motor Scale for SMA II and III 

patients. Neuromuscul Disord 17, 693-697. 

Okizuka, Y., Takeshima, Y., Awano, H., Zhang, Z., Yagi, M., and Matsuo, M. 

(2009). Small mutations detected by multiplex ligation-dependent probe 

amplification of the dystrophin gene. Genet Test Mol Biomarkers 13, 427-431. 

Okubo, M., Minami, N., Goto, K., Goto, Y., Noguchi, S., Mitsuhashi, S., and 

Nishino, I. (2016). Genetic diagnosis of Duchenne/Becker muscular dystrophy 

using next-generation sequencing: validation analysis of DMD mutations. J Hum 

Genet 61, 483-489. 

Pane, M., Mazzone, E.S., Sivo, S., Sormani, M.P., Messina, S., D'Amico, A., 

Carlesi, A., Vita, G., Fanelli, L., Berardinelli, A., et al. (2014). Long term natural 

history data in ambulant boys with Duchenne muscular dystrophy: 36-month 

changes. PLoS One 9, e108205. 

Parray, F.Q., Wani, M.L., Malik, A.A., Wani, S.N., Bijli, A.H., and Irshad, I. 

(2012). Ulcerative colitis: a challenge to surgeons. International journal of 

preventive medicine 3, 749-763. 

Partridge, T.A., Morgan, J., Coulton, G., Hoffman, E., and Kunkel, L. (1989). 

Conversion of mdx myofibres from dystrophin-negative to-positive by injection of 

normal myoblasts. Nature 337, 176-179. 

Passamano, L., Taglia, A., Palladino, A., Viggiano, E., D'Ambrosio, P., Scutifero, 

M., Rosaria Cecio, M., Torre, V., F, D.E.L., Picillo, E., et al. (2012). Improvement 

of survival in Duchenne Muscular Dystrophy: retrospective analysis of 835 

patients. Acta Myol 31, 121-125. 

Pegoraro, E., Hoffman, E.P., Piva, L., Gavassini, B.F., Cagnin, S., Ermani, M., 

Bello, L., Soraru, G., Pacchioni, B., Bonifati, M.D., et al. (2011). SPP1 genotype is 

a determinant of disease severity in Duchenne muscular dystrophy. Neurology 76, 

219-226. 

Percy, M.E., Andrews, D.F., and Thompson, M.W. (1982). Serum creatine kinase 

in the detection of Duchenne muscular dystrophy carriers: effects of season and 

multiple testing. Muscle Nerve 5, 58-64. 

Perkins, K.J., and Davies, K.E. (2002). The role of utrophin in the potential therapy 

of Duchenne muscular dystrophy. Neuromuscul Disord 12 Suppl 1, S78-89. 



X. References   149 

 

Perovic, A., and Dolcic, M. (2019). Influence of hemolysis on clinical chemistry 

parameters determined with Beckman Coulter tests - detection of clinically 

significant interference. Scand J Clin Lab Invest 79, 154-159. 

Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M., and Sweeney, H.L. (1993). 

Dystrophin protects the sarcolemma from stresses developed during muscle 

contraction. Proceedings of the National Academy of Sciences 90, 3710-3714. 

Peverelli, L., Testolin, S., Villa, L., D'Amico, A., Petrini, S., Favero, C., Magri, F., 

Morandi, L., Mora, M., Mongini, T., et al. (2015). Histologic muscular history in 

steroid-treated and untreated patients with Duchenne dystrophy. Neurology 85, 

1886-1893. 

Pillen, S., Tak, R.O., Zwarts, M.J., Lammens, M.M., Verrijp, K.N., Arts, I.M., van 

der Laak, J.A., Hoogerbrugge, P.M., van Engelen, B.G., and Verrips, A. (2009). 

Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. 

Ultrasound Med Biol 35, 443-446. 

Powell, J.E., Visscher, P.M., and Goddard, M.E. (2010). Reconciling the analysis 

of IBD and IBS in complex trait studies. Nat Rev Genet 11, 800-805. 

Prior, T.W., and Bridgeman, S.J. (2005). Experience and strategy for the molecular 

testing of Duchenne muscular dystrophy. J Mol Diagn 7, 317-326. 

Rando, T.A. (2001). The dystrophin-glycoprotein complex, cellular signaling, and 

the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24, 1575-

1594. 

Regensburger, A.P., Fonteyne, L.M., Jungert, J., Wagner, A.L., Gerhalter, T., 

Nagel, A.M., Heiss, R., Flenkenthaler, F., Qurashi, M., Neurath, M.F., et al. (2019). 

Detection of collagens by multispectral optoacoustic tomography as an imaging 

biomarker for Duchenne muscular dystrophy. Nat Med 25, 1905-1915. 

Reimers, K., Reimers, C.D., Wagner, S., Paetzke, I., and Pongratz, D.E. (1993). 

Skeletal muscle sonography: a correlative study of echogenicity and morphology. J 

Ultrasound Med 12, 73-77. 

Rey-Barroso, L., Burgos-Fernández, F.J., Delpueyo, X., Ares, M., Royo, S., 

Malvehy, J., Puig, S., and Vilaseca, M. (2018). Visible and extended near-infrared 

multispectral imaging for skin cancer diagnosis. Sensors 18, 1441. 

Richter, A., Kurome, M., Kessler, B., Zakhartchenko, V., Klymiuk, N., Nagashima, 

H., Wolf, E., and Wuensch, A. (2012). Potential of primary kidney cells for somatic 

cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol 12, 84. 



X. References   150 

 

Ricotti, V., Spinty, S., Roper, H., Hughes, I., Tejura, B., Robinson, N., Layton, G., 

Davies, K., Muntoni, F., and Tinsley, J. (2016). Safety, Tolerability, and 

Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, 

following Single- and Multiple-Dose Administration to Pediatric Patients with 

Duchenne Muscular Dystrophy. PLoS One 11, e0152840. 

Roberts, R.G., Coffey, A.J., Bobrow, M., and Bentley, D.R. (1993). Exon structure 

of the human dystrophin gene. Genomics 16, 536-538. 

Roberts, R.G., Gardner, R.J., and Bobrow, M. (1994). Searching for the 1 in 

2,400,000: a review of dystrophin gene point mutations. Hum Mutat 4, 1-11. 

Rouillon, J., Lefebvre, T., Denard, J., Puy, V., Daher, R., Ausseil, J., Zocevic, A., 

Fogel, P., Peoc'h, K., Wong, B., et al. (2018). High urinary ferritin reflects 

myoglobin iron evacuation in DMD patients. Neuromuscul Disord 28, 564-571. 

Rouillon, J., Zocevic, A., Leger, T., Garcia, C., Camadro, J.M., Udd, B., Wong, B., 

Servais, L., Voit, T., and Svinartchouk, F. (2014). Proteomics profiling of urine 

reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy. 

Neuromuscul Disord 24, 563-573. 

Russell, D.J., Rosenbaum, P.L., Cadman, D.T., Gowland, C., Hardy, S., and Jarvis, 

S. (1989). The gross motor function measure: a means to evaluate the effects of 

physical therapy. Dev Med Child Neurol 31, 341-352. 

Rutkove, S.B. (2009). Electrical impedance myography: Background, current state, 

and future directions. Muscle Nerve 40, 936-946. 

Rutkove, S.B., Geisbush, T.R., Mijailovic, A., Shklyar, I., Pasternak, A., Visyak, 

N., Wu, J.S., Zaidman, C., and Darras, B.T. (2014). Cross-sectional evaluation of 

electrical impedance myography and quantitative ultrasound for the assessment of 

Duchenne muscular dystrophy in a clinical trial setting. Pediatr Neurol 51, 88-92. 

Ryan, N.J. (2014). Ataluren: first global approval. Drugs 74, 1709-1714. 

Rybakova, I.N., Patel, J.R., and Ervasti, J.M. (2000). The dystrophin complex forms 

a mechanically strong link between the sarcolemma and costameric actin. J Cell 

Biol 150, 1209-1214. 

Ryder, S., Leadley, R., Armstrong, N., Westwood, M., De Kock, S., Butt, T., Jain, 

M., and Kleijnen, J. (2017). The burden, epidemiology, costs and treatment for 

Duchenne muscular dystrophy: an evidence review. Orphanet journal of rare 

diseases 12, 79. 



X. References   151 

 

Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., and Blau, H.M. (2008). Self-

renewal and expansion of single transplanted muscle stem cells. Nature 456, 502-

506. 

Sakamoto, M., Yuasa, K., Yoshimura, M., Yokota, T., Ikemoto, T., Suzuki, M., 

Dickson, G., Miyagoe-Suzuki, Y., and Takeda, S. (2002). Micro-dystrophin cDNA 

ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. 

Biochem Biophys Res Commun 293, 1265-1272. 

Sansovic, I., Barisic, I., and Dumic, K. (2013). Improved detection of deletions and 

duplications in the DMD gene using the multiplex ligation-dependent probe 

amplification (MLPA) method. Biochem Genet 51, 189-201. 

Sarig, R., Mezger-Lallemand, V., Gitelman, I., Davis, C., Fuchs, O., Yaffe, D., and 

Nudel, U. (1999). Targeted inactivation of Dp71, the major non-muscle product of 

the DMD gene: differential activity of the Dp71 promoter during development. 

Human molecular genetics 8, 1-10. 

Schlattner, U., Tokarska-Schlattner, M., and Wallimann, T. (2006). Mitochondrial 

creatine kinase in human health and disease. Biochim Biophys Acta 1762, 164-180. 

Schmalbruch, H. (1984). Regenerated muscle fibers in Duchenne muscular 

dystrophy: a serial section study. Neurology 34, 60-65. 

Scott, E., Eagle, M., Mayhew, A., Freeman, J., Main, M., Sheehan, J., Manzur, A., 

and Muntoni, F. (2012). Development of a functional assessment scale for 

ambulatory boys with Duchenne muscular dystrophy. Physiother Res Int 17, 101-

109. 

Scott, O., Hyde, S., Goddard, C., and Dubowitz, V. (1982). Quantitation of muscle 

function in children: a prospective study in Duchenne muscular dystrophy. Muscle 

& Nerve: Official Journal of the American Association of Electrodiagnostic 

Medicine 5, 291-301. 

Sharp, N., Kornegay, J., Van Camp, S., Herbstreith, M., Secore, S., Kettle, S.a., 

Hung, W.-Y., Constantinou, C., Dykstra, M., and Roses, A. (1992). An error in 

dystrophin mRNA processing in golden retriever muscular dystrophy, an animal 

homologue of Duchenne muscular dystrophy. Genomics 13, 115-121. 

Sharp, P.S., Bye-a-Jee, H., and Wells, D.J. (2011). Physiological characterization 

of muscle strength with variable levels of dystrophin restoration in mdx mice 

following local antisense therapy. Molecular Therapy 19, 165-171. 

Shimatsu, Y., Yoshimura, M., Yuasa, K., Urasawa, N., Tomohiro, M., Nakura, M., 



X. References   152 

 

Tanigawa, M., Nakamura, A., and Takeda, S. (2005). Major clinical and 

histopathological characteristics of canine X-linked muscular dystrophy in Japan, 

CXMDJ. Acta Myol 24, 145-154. 

Shklyar, I., Geisbush, T.R., Mijialovic, A.S., Pasternak, A., Darras, B.T., Wu, J.S., 

Rutkove, S.B., and Zaidman, C.M. (2015). Quantitative muscle ultrasound in 

Duchenne muscular dystrophy: a comparison of techniques. Muscle Nerve 51, 207-

213. 

Sicinski, P., Geng, Y., Ryder-Cook, A.S., Barnard, E.A., Darlison, M.G., and 

Barnard, P.J. (1989). The molecular basis of muscular dystrophy in the mdx mouse: 

a point mutation. Science 244, 1578-1580. 

Silva, M.C., Magalhaes, T.A., Meira, Z.M., Rassi, C.H., Andrade, A.C., Gutierrez, 

P.S., Azevedo, C.F., Gurgel-Giannetti, J., Vainzof, M., Zatz, M., et al. (2017). 

Myocardial Fibrosis Progression in Duchenne and Becker Muscular Dystrophy: A 

Randomized Clinical Trial. JAMA Cardiol 2, 190-199. 

Silva, M.C., Meira, Z.M., Gurgel Giannetti, J., da Silva, M.M., Campos, A.F., 

Barbosa Mde, M., Starling Filho, G.M., Ferreira Rde, A., Zatz, M., and Rochitte, 

C.E. (2007). Myocardial delayed enhancement by magnetic resonance imaging in 

patients with muscular dystrophy. J Am Coll Cardiol 49, 1874-1879. 

Skuk, D., Goulet, M., Roy, B., Piette, V., Côté, C.H., Chapdelaine, P., Hogrel, J.-

Y., Paradis, M., Bouchard, J.-P., and Sylvain, M. (2007). First test of a “high-

density injection” protocol for myogenic cell transplantation throughout large 

volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months 

follow-up. Neuromuscular Disorders 17, 38-46. 

Soltanzadeh, P., Friez, M.J., Dunn, D., von Niederhausern, A., Gurvich, O.L., 

Swoboda, K.J., Sampson, J.B., Pestronk, A., Connolly, A.M., and Florence, J.M. 

(2010). Clinical and genetic characterization of manifesting carriers of DMD 

mutations. Neuromuscular Disorders 20, 499-504. 

Song, Y., Morales, L., Malik, A.S., Mead, A.F., Greer, C.D., Mitchell, M.A., 

Petrov, M.T., Su, L.T., Choi, M.E., Rosenblum, S.T., et al. (2019). Non-

immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal 

models. Nat Med 25, 1505-1511. 

Spurney, C.F., Gordish-Dressman, H., Guerron, A.D., Sali, A., Pandey, G.S., 

Rawat, R., Van Der Meulen, J.H., Cha, H.J., Pistilli, E.E., Partridge, T.A., et al. 

(2009). Preclinical drug trials in the mdx mouse: assessment of reliable and 

sensitive outcome measures. Muscle Nerve 39, 591-602. 

Srivastava, N.K., Pradhan, S., Mittal, B., and Gowda, G.A. (2010). High resolution 



X. References   153 

 

NMR based analysis of serum lipids in Duchenne muscular dystrophy patients and 

its possible diagnostic significance. NMR Biomed 23, 13-22. 

Stoffels, I., Morscher, S., Helfrich, I., Hillen, U., Leyh, J., Burton, N.C., Sardella, 

T.C., Claussen, J., Poeppel, T.D., and Bachmann, H.S. (2015). Metastatic status of 

sentinel lymph nodes in melanoma determined noninvasively with multispectral 

optoacoustic imaging. Science translational medicine 7, 317ra199-317ra199. 

Straub, V., Balabanov, P., Bushby, K., Ensini, M., Goemans, N., De Luca, A., 

Pereda, A., Hemmings, R., Campion, G., Kaye, E., et al. (2016). Stakeholder 

cooperation to overcome challenges in orphan medicine development: the example 

of Duchenne muscular dystrophy. Lancet Neurol 15, 882-890. 

Straub, V., Bittner, R.E., Leger, J.J., and Voit, T. (1992). Direct visualization of the 

dystrophin network on skeletal muscle fiber membrane. J Cell Biol 119, 1183-1191. 

Straub, V., and Campbell, K.P. (1997). Muscular dystrophies and the dystrophin-

glycoprotein complex. Current opinion in neurology 10, 168-175. 

Stuberg, W.A., and Metcalf, W.K. (1988). Reliability of quantitative muscle testing 

in healthy children and in children with Duchenne muscular dystrophy using a 

hand-held dynamometer. Phys Ther 68, 977-982. 

Sui, T., Lau, Y.S., Liu, D., Liu, T., Xu, L., Gao, Y., Lai, L., Li, Z., and Han, R. 

(2018). A novel rabbit model of Duchenne muscular dystrophy generated by 

CRISPR/Cas9. Disease models & mechanisms 11, dmm032201. 

Sun, C., Serra, C., Lee, G., and Wagner, K.R. (2019). Stem cell-based therapies for 

Duchenne muscular dystrophy. Exp Neurol 323, 113086. 

Syed, Y.Y. (2016). Eteplirsen: first global approval. Drugs 76, 1699-1704. 

Taipale, J., Miyazono, K., Heldin, C.H., and Keski-Oja, J. (1994). Latent 

transforming growth factor-beta 1 associates to fibroblast extracellular matrix via 

latent TGF-beta binding protein. J Cell Biol 124, 171-181. 

Takeshita, E., Komaki, H., Tachimori, H., Miyoshi, K., Yamamiya, I., Shimizu-

Motohashi, Y., Ishiyama, A., Saito, T., Nakagawa, E., Sugai, K., et al. (2018). 

Urinary prostaglandin metabolites as Duchenne muscular dystrophy progression 

markers. Brain Dev 40, 918-925. 

Taylor, M., Jefferies, J., Byrne, B., Lima, J., Ambale-Venkatesh, B., Ostovaneh, 

M.R., Makkar, R., Goldstein, B., Smith, R.R., Fudge, J., et al. (2019). Cardiac and 

skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology 92, 



X. References   154 

 

e866-e878. 

Thangarajh, M., Zhang, A., Gill, K., Ressom, H.W., Li, Z., Varghese, R.S., 

Hoffman, E.P., Nagaraju, K., Hathout, Y., and Boca, S.M. (2019). Discovery of 

potential urine-accessible metabolite biomarkers associated with muscle disease 

and corticosteroid response in the mdx mouse model for Duchenne. PLoS One 14, 

e0219507. 

Urban, Z., Hucthagowder, V., Schurmann, N., Todorovic, V., Zilberberg, L., Choi, 

J., Sens, C., Brown, C.W., Clark, R.D., Holland, K.E., et al. (2009). Mutations in 

LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, 

musculoskeletal, and dermal development. Am J Hum Genet 85, 593-605. 

Valentine, B.A., Cooper, B.J., de Lahunta, A., O'Quinn, R., and Blue, J.T. (1988). 

Canine X-linked muscular dystrophy. An animal model of Duchenne muscular 

dystrophy: clinical studies. J Neurol Sci 88, 69-81. 

van den Bergen, J.C., Hiller, M., Bohringer, S., Vijfhuizen, L., Ginjaar, H.B., 

Chaouch, A., Bushby, K., Straub, V., Scoto, M., Cirak, S., et al. (2015). Validation 

of genetic modifiers for Duchenne muscular dystrophy: a multicentre study 

assessing SPP1 and LTBP4 variants. J Neurol Neurosurg Psychiatry 86, 1060-1065. 

Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-

Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From 

FastQ data to high confidence variant calls: the Genome Analysis Toolkit best 

practices pipeline. Curr Protoc Bioinformatics 43, 11.10.11-11.10.33. 

Van Deutekom, J.C., Janson, A.A., Ginjaar, I.B., Frankhuizen, W.S., Aartsma-Rus, 

A., Bremmer-Bout, M., den Dunnen, J.T., Koop, K., van der Kooi, A.J., and 

Goemans, N.M. (2007). Local dystrophin restoration with antisense oligonucleotide 

PRO051. New England Journal of Medicine 357, 2677-2686. 

Van Ruiten, H., Bushby, K., and Guglieri, M. (2017). State of the art advances in 

Duchenne muscular dystrophy. EMJ 2, 90-99. 

Verhaart, I.E., van Vliet-van den Dool, L., Sipkens, J.A., de Kimpe, S.J., 

Kolfschoten, I.G., van Deutekom, J.C., Liefaard, L., Ridings, J.E., Hood, S.R., and 

Aartsma-Rus, A. (2014). The Dynamics of Compound, Transcript, and Protein 

Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice. 

Mol Ther Nucleic Acids 3, e148. 

Verhaart, I.E.C., Johnson, A., Thakrar, S., Vroom, E., De Angelis, F., Muntoni, F., 

Aartsma-Rus, A.M., and Niks, E.H. (2019). Muscle biopsies in clinical trials for 

Duchenne muscular dystrophy - Patients' and caregivers' perspective. Neuromuscul 

Disord 29, 576-584. 



X. References   155 

 

Verma, S., Anziska, Y., and Cracco, J. (2010). Review of Duchenne muscular 

dystrophy (DMD) for the pediatricians in the community. Clinical pediatrics 49, 

1011-1017. 

Vetrone, S.A., Montecino-Rodriguez, E., Kudryashova, E., Kramerova, I., 

Hoffman, E.P., Liu, S.D., Miceli, M.C., and Spencer, M.J. (2009). Osteopontin 

promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets 

and intramuscular TGF-beta. J Clin Invest 119, 1583-1594. 

Vidal, B., Serrano, A.L., Tjwa, M., Suelves, M., Ardite, E., De Mori, R., Baeza-

Raja, B., Martinez de Lagran, M., Lafuste, P., Ruiz-Bonilla, V., et al. (2008). 

Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage 

activation pathway. Genes Dev 22, 1747-1752. 

Vieira, N.M., Spinazzola, J.M., Alexander, M.S., Moreira, Y.B., Kawahara, G., 

Gibbs, D.E., Mead, L.C., Verjovski-Almeida, S., Zatz, M., and Kunkel, L.M. 

(2017). Repression of phosphatidylinositol transfer protein alpha ameliorates the 

pathology of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114, 6080-

6085. 

Vo, A.H., and McNally, E.M. (2015). Modifier genes and their effect on Duchenne 

muscular dystrophy. Current opinion in neurology 28, 528. 

Waldner, M.J., Knieling, F., Egger, C., Morscher, S., Claussen, J., Vetter, M., 

Kielisch, C., Fischer, S., Pfeifer, L., and Hagel, A. (2016). Multispectral 

optoacoustic tomography in Crohn’s disease: noninvasive imaging of disease 

activity. Gastroenterology 151, 238-240. 

Wallace, G., and Newton, R. (1989). Gowers' sign revisited. Archives of disease in 

childhood 64, 1317-1319. 

Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M. 

(1992). Intracellular compartmentation, structure and function of creatine kinase 

isoenzymes in tissues with high and fluctuating energy demands: the 

'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 281 ( Pt 1), 21-

40. 

Walmsley, G.L., Arechavala-Gomeza, V., Fernandez-Fuente, M., Burke, M.M., 

Nagel, N., Holder, A., Stanley, R., Chandler, K., Marks, S.L., and Muntoni, F. 

(2010). A duchenne muscular dystrophy gene hot spot mutation in dystrophin-

deficient cavalier king charles spaniels is amenable to exon 51 skipping. PloS one 

5, e8647. 

Wang, Y., Yang, Y., Liu, J., Chen, X.C., Liu, X., Wang, C.Z., and He, X.Y. (2014). 

Whole dystrophin gene analysis by next-generation sequencing: a comprehensive 



X. References   156 

 

genetic diagnosis of Duchenne and Becker muscular dystrophy. Mol Genet 

Genomics 289, 1013-1021. 

Wei, X., Dai, Y., Yu, P., Qu, N., Lan, Z., Hong, X., Sun, Y., Yang, G., Xie, S., Shi, 

Q., et al. (2014). Targeted next-generation sequencing as a comprehensive test for 

patients with and female carriers of DMD/BMD: a multi-population diagnostic 

study. Eur J Hum Genet 22, 110-118. 

Weiss, R.B., Vieland, V.J., Dunn, D.M., Kaminoh, Y., and Flanigan, K.M. (2018). 

Long-range genomic regulators of THBS1 and LTBP4 modify disease severity in 

duchenne muscular dystrophy. Ann Neurol 84, 234-245. 

Wells, D.J. (2018). Tracking progress: an update on animal models for Duchenne 

muscular dystrophy. Dis Model Mech 11, dmm035774. 

Willcocks, R.J., Rooney, W.D., Triplett, W.T., Forbes, S.C., Lott, D.J., Senesac, 

C.R., Daniels, M.J., Wang, D.J., Harrington, A.T., Tennekoon, G.I., et al. (2016). 

Multicenter prospective longitudinal study of magnetic resonance biomarkers in a 

large duchenne muscular dystrophy cohort. Ann Neurol 79, 535-547. 

Willmann, R., Possekel, S., Dubach-Powell, J., Meier, T., and Ruegg, M.A. (2009). 

Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul 

Disord 19, 241-249. 

Wokke, B., Van Den Bergen, J., Versluis, M., Niks, E., Milles, J., Webb, A., van 

Zwet, E., Aartsma-Rus, A., Verschuuren, J., and Kan, H. (2014). Quantitative MRI 

and strength measurements in the assessment of muscle quality in Duchenne 

muscular dystrophy. Neuromuscular Disorders 24, 409-416. 

Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and 

Han, R. (2016). CRISPR-mediated Genome Editing Restores Dystrophin 

Expression and Function in mdx Mice. Mol Ther 24, 564-569. 

Yeung, E.W., Whitehead, N.P., Suchyna, T.M., Gottlieb, P.A., Sachs, F., and Allen, 

D.G. (2005). Effects of stretch-activated channel blockers on [Ca2+]i and muscle 

damage in the mdx mouse. J Physiol 562, 367-380. 

Yiu, E.M., and Kornberg, A.J. (2015). Duchenne muscular dystrophy. J Paediatr 

Child Health 51, 759-764. 

Yokota, T., Lu, Q.l., Partridge, T., Kobayashi, M., Nakamura, A., Takeda, S., and 

Hoffman, E. (2009). Efficacy of systemic morpholino exon‐skipping in Duchenne 

dystrophy dogs. Annals of Neurology: Official Journal of the American 

Neurological Association and the Child Neurology Society 65, 667-676. 



X. References   157 

 

Yoshimura, M., Sakamoto, M., Ikemoto, M., Mochizuki, Y., Yuasa, K., Miyagoe-

Suzuki, Y., and Takeda, S. (2004). AAV vector-mediated microdystrophin 

expression in a relatively small percentage of mdx myofibers improved the mdx 

phenotype. Mol Ther 10, 821-828. 

Zaharieva, I.T., Calissano, M., Scoto, M., Preston, M., Cirak, S., Feng, L., Collins, 

J., Kole, R., Guglieri, M., Straub, V., et al. (2013). Dystromirs as serum biomarkers 

for monitoring the disease severity in Duchenne muscular Dystrophy. PLoS One 8, 

e80263. 

Zaidman, C.M., Wu, J.S., Kapur, K., Pasternak, A., Madabusi, L., Yim, S., Pacheck, 

A., Szelag, H., Harrington, T., Darras, B.T., et al. (2017). Quantitative muscle 

ultrasound detects disease progression in Duchenne muscular dystrophy. Ann 

Neurol 81, 633-640. 

Zatz, M., Rapaport, D., Vainzof, M., Passos-Bueno, M.R., Bortolini, E.R., 

Pavanello Rde, C., and Peres, C.A. (1991). Serum creatine-kinase (CK) and 

pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker 

(BMD) muscular dystrophy. J Neurol Sci 102, 190-196. 

Zellweger, H., and Antonik, A. (1975). Newborn screening for Duchenne muscular 

dystrophy. Pediatrics 55, 30-34. 

Zocevic, A., Rouillon, J., Wong, B., Servais, L., Voit, T., and Svinartchouk, F. 

(2015). Evaluation of the serum matrix metalloproteinase-9 as a biomarker for 

monitoring disease progression in Duchenne muscular dystrophy. Neuromuscular 

Disorders 25, 444-446. 



XI. Acknowledgements   158 

 

XI. ACKNOWLEDGEMENTS 

I would like to start by thanking Prof. Dr. Eckhard Wolf for giving me this great 

opportunity to do my doctoral thesis at the Chair for Molecular Animal Breeding 

and Biotechnology, LMU Munich. Thank you very much for your trust in my work 

and ideas, your honesty and understanding and your continuous support. I really 

appreciate the work on my topic, and sincerely hope to support the progress on 

fighting Duchenne muscular dystrophy. 

I am thankful to all my colleagues at the Moorversuchsgut, who helped and 

supported me at many different situations. Particularly, I want to thank to my 

mentor Dr. Barbara Kessler for assisting me at every time, wherever possible. 

Special thanks also to Dr. Elisabeth Kemter for giving me important advices, and 

Christina Blechinger for keeping my back free whenever necessary. I would also 

like to acknowledge the work of all animal caretakers, especially Harald Paul and 

Sylvia Hering. 

My special thanks and appreciation go to the team of the Department of Pediatrics 

and Adolescent Medicine, University Hospital Erlangen, FAU Erlangen 

Nuremberg, Erlangen. Dr, Ferdinand Knieling, thank you very much for your 

advice and support in every respect. Special thanks also to Dr. Adrian Regensburger 

and Alexandra Wagner, I really appreciated working with you. My special thanks 

also go to Dr. Jing Claussen from iThera Medical GmbH. 

I would like to acknowledge our collaboration with the team of the Clinic and 

Policlinic for Internal Medicine I, Klinikum Rechts der Isar, TU Munich, and the 

team of the Institute of Developmental Genetics, Helmholtz-Centre and Munich 

School of Life Sciences Weihenstephan, TU Munich, Freising. Particularly, I would 

like to thank Prof. Dr. Christian Kupatt for his trust and recognition of my work and 

Dr. Andrea Bähr for her support. Many thanks also to Dr. Florian Giesert for his 

help and supporting ideas. 

Thank you to our colleagues of the Gene Center Munich, Institute for Molecular 

Animal Breeding and Biotechnology, LMU Munich. Especially I would like to 

thank Dr. Maik Dahlhoff for preparing me for a doctoral thesis during my practical 

course, Dr. Thomas Fröhlich and his team for their collaboration, constant support 

and advices, and Dr. Stefan Krebs, for his detailed explanations. 

I show my gratitude also to Priv.-Doz. Dr. habil. Ivica Međugorac and his team of 

the Population Genomics Group, Department of Veterinary Science, Faculty of 

Veterinary Medicine, LMU Munich, Martinsried. 

Special thanks to the members of the Chair for Veterinary Pathology, especially to 

Dr. Christian Loch, for his interest in the subject and cooperation. 

I would also like to thank the team of the Friedrich Baur Institute, especially Priv.-

Doz. Dr. Dr. Sabine Krause, Tina Donandt and Maria Schmuck for their personal 

advice. 

Particularly I thank all sacrificed and alive animals used for this work, especially 

my first DMD knockout Kaspar, may God rest his soul, and founder sow #3040 

who donated 11 litters. Without animals, research on this level would not be 

possible. 



XI. Acknowledgements   159 

 

Finally, I want to thank my boyfriend Michael Saller, whom I got to know working 

on my doctoral thesis. You give me strength, humor and patiently support me 

throughout all my work. Special thanks also to my beloved family for always 

keeping their faith in me. 

Moreover, I would like to acknowledge the Else Kröner-Fresenius Foundation for 

supporting my work financially. 

 


