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Abstract

The phenomenon of Brownian motion, the erratic movement of a microscopically-visible
sized particle in a fluid, was first studied in detail around 1830 by the biologist Robert
Brown (see [Bro28], [Bro29]). At the beginning of the last century Einstein (see [Ein05],
[Ein06]) and v. Smoluchowski (see [vS06]) gave a physical explanation of Brownian motion.
A good survey can be found in [Nel67]. However, in a common mathematical model the
rigorous mathematical proof that the Brownian particle, which is embedded in an ideal
gas, shows diffusive behavior could not be provided so far. It has to be shown that the
trajectory of the Brownian particle converges in the diffusive scaling in distribution against
a Brownian motion (Wiener process). One of the mathematical difficulties is the fact that
the process of the motion of the molecule is not Markovian due to recollisions. In this work
we show an analogous result in a simplified model.

We consider a one-dimensional system in equilibrium at temperature 7' and density p
consisting of a molecule of mass M > 0 embedded in an ideal gas of atoms of mass m > 0
(m < M). The molecule is confined in the interval A C R (with elastic reflections at
the boundary), whereas the atoms are not confined by the interval and can freely pass
the boundary without beeing affected in any way. Since the position of the molecule is
bounded, the position in the diffusive scaling converges to zero. Therefore, a process R,
is constructed which is unbounded and measures in an appropriate sense the distance
the molecule would have travelled if it moved without a confinement. We show diffusive
behavior for R, in diffusive scaling. To prove this, we show that the velocity process of
R, fulfills the requirements of the functional Central Limit Theorem (fCLT) of [Dav68§]
improved by results of [McL75] and [DG86]. An important requirement of the fCLT is
that the velocity process is a-mixing. If this property is shown for a Markov process which
contains the velocity process, the latter inherits this property. In our case, the Markov
process essentially describes the positions and velocities of all particles in A.

Making use of a result from [DG86], we show that the diffusion constant is positive.






Zusammenfassung

Das Phanomen der Brownschen Bewegung, die erratische Bewegung mikroskopisch sicht-
barer Teilchen in einer Fliissigkeit, wurde erstmals um 1830 von dem Biologen Robert
Brown naher untersucht (vgl. [Bro28], [Bro29]). Anfang des letzten Jahrhunderts konnte
die Brownsche Bewegung durch Einstein ([Ein05], [Ein06]) und v. Smoluchowski ([vS06])
physikalisch erklirt werden. Eine gute Ubersicht findet man in [Nel67]. Jedoch konnte
in einem gangigen mathematischen Modell der rigorose mathematische Beweis, dass das
Brownsche Teilchen, das in ein ideales Gas eingebettet ist, bisher nicht erbracht werden.
Zu zeigen ist, dass die Trajektorie des Brownschen Teilchens in der diffusiven Skalierung in
Verteilung gegen eine Brownsche Bewegung (Wiener Prozess) konvergiert. Da der Prozess
der Bewegung des Molekiils aufgrund von Rekollisionen kein Markovscher Prozess ist und
deswegen mathematisch schwer zu handhaben ist, betrachten wir folgendes Modell, das
zwar abgedndert ist, aber durch das dennoch ein analoges Resultat gezeigt werden kann.

Wir betrachten ein eindimensionales System im Equilibrium, bestehend aus einem Molekiil
der Masse M > 0, eingebettet in einem idealen Gas aus Atomen der Massen m > 0
(m < M). Das Brownsche Teilchen soll sich nur im Intervall A C R aufhalten kénnen (mit
elastischen Reflexionen am Rand), wobei die Rdnder des Intervalls fir die Gasteilchen
durchléssig sind, so dass die Atome durch die Wande in keinster Weise beeinflusst wer-
den. Da nun der Ort des Brownschen Teilchens beschrankt ist, konvergiert der Prozess
des Ortes in der diffusiven Skalierung gegen null. Daher wird ein Prozess R; konstruiert,
der unbeschréankt ist und gewissermaflen die Distanz misst, die das Molekil zuriickle-
gen wiirde, ware es nicht im Intervall gefangen. Ziel ist es, fiir den diffusiv skalierten
Prozess R, diffusives Verhalten zu zeigen. Um dies zu beweisen, zeigen wir, dass der
Geschwindigkeitsprozess von R; die Voraussetzungen des funktionalen Zentralen Grenzw-
ertsatzes (fCLT) von [Dav68], [McL75] erfullt. Eine wichtige Forderung des fCLTS ist, dass
der Geschwindigkeitsprozess a-mischend ist. Zeigt man diese Eigenschaft fiir einen Markov
Prozess, der den Geschwindigkeitsprozess enthélt, ,,erbt” letzterer diese Eigenschaft. In un-
serem Fall beschreibt der Markov Prozess im Wesentlichen die Orte und Geschwindigkeiten
aller Teilchen in A.

Die Positivitédt der Diffusionskonstanten zeigen wir mit Hilfe eines Resultats von [DGS86].
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1 Introduction

Consider the following classical system - a model for a simple non-equilibrium situation in
statistical mechanics: Point particles of mass m > 0 (atoms) are distributed on the real
line according to a Poisson distribution and each atom is initially given a random velocity
independent of its position and the other atoms, where we may think of the velocity
distribution as being Maxwellian. The atoms interact via elastic collision with a point
particle of mass M > 0, hereinafter referred as the molecule, whose motion we wish to
observe. Let Q(t) denote its position at time t. If the molecule is placed at time zero at
the origin, i.e. Q(0) =0, Q; = {Q(t) }1er+ is a stochastic process on the probability space
of the random initial conditions of the atoms and the initial velocity of the molecule.

A difficult and in general still unsolved problem is then to prove the following conjecture:
For any T' < oo, the process

1
=< —=Q (At
s, {mQ( )}tem

converges in distribution to the Wiener process
v DW,

with diffusion constant
D= 2/°° E(V()V(0))dt
0

as A — oo, where V(t) denotes the velocity of the molecule at time ¢ and E(-) denotes the
expectation w.r.t. the equilibrium measure of the system. For the definition of a Wiener
process see e.g. [Bre68].

This conjecture has been proved for the special case M = m by [Spi69]. Spitzer used
methods which essentially rely on the equal mass of molecule and atoms and which were
previously employed by [Har65] to prove that the finite dimensional distributions of the
process ( 4+ converge as A — oo to those of a Gaussian process. Further results concerning
diffusive behavior of the molecule in the model described above all have in common that
they use normalizations where the mass of the molecule or of the atoms tend to infinity
resp. to zero with an appropriate speed. [ST87] and [ET92| give a good overview of the
results of the 80’s and early 90’s, when the most work was done on this topic. There
are some more actual results like [BTTO07], [KL10], [Lial4], where the normalization again
depends on the masses.



The motivation for the work described here, was to use methods which do not depend on
the choice of the masses for proving the conjecture.

For simplicity let us assume that V; = {V (¢) };cr+ is a stationary process and let us write

Qult) = \}Z/OAtV(s)ds. (1.1)

Here it becomes more evident that we conjecture that ()4, satisfies an invariance principle
(or a functional Central Limit Theorem (fCLT)). Since the molecule can recollide over
arbitrary long times with atoms it has previously collided with, the r.h.s. of (1.1) cannot
be written as a sum over independent increments. Thus, if a fCLT applies, it necessary will
be one for dependent variables. Apart from the problem of finding an appropriate version
of a fCLT for dependent variables, one then need to check whether the velocity process V;
fulfills the conditions under which the fCLT holds.

The purpose of this thesis is to explore this possible approach by studying a much simpler
model: To gain better control over the recollisions, we consider the molecule to be confined
in the interval A = [—L, L], L > 0, with walls at —L and L. Hence, any recollision
takes place in A. The atoms remain unaffected by the walls, but the walls elastically
reflect the molecule. The ergodic properties of such a system are studied in [GLR82] in
one dimension and in [ET90]| in multidimensions, where in particular it is shown that
the molecule approaches its equilibrium state starting from almost all (w.r.t. Lebesgue
measure) initial values @, V.

Mind that in this model |Q(¢)| < L, i.e. the scaling in (1.1) gives ﬁQ(At) — 0 as
A — oo. Therefore, one has to define a new quantity which is unbounded and which can
be interpreted as the distance the molecule would have travelled if it wasn’t confined in
the interval. In [ET92] the quantity

QM) = [ 1Vis)ias (1.2

was investigated and diffusive behavior for (1.2) in the usual scaling was shown for M > m.
In the presented work we define a different quantity R(¢) hoping to obtain a fCLT for
M > m. It turns out that we can prove a fCLT for M > m. However, these methods fail
for M = m.

One goal of the thesis is to give an explicit bound for the rate of dependency, which allows
to analyze the bound for M — m and L — co. As discussed before, confining the molecule
to the finite region [—L, L] gives control over recollisions. It turns out that our model does
not allow to remove the cut off in the recollisions to obtain the unrestricted motion, i.e.
we cannot proceed from the theorem proven here to the conjecture.

In the next chapter, Chapter 2, we describe the model in detail and give the main result.
In Chapter 3 we introduce a notion of weak dependence of random variables in the form
of a-mixing and state a general fCLT. In Chapter 4, Chapter 5 and Chapter 6 we show



that the conditions of the fCLT are satisfied by our model, thereby proving the result. In
doing so we deepen also the results of [GLR82| in that we obtain estimates on the rates
of convergence to equilibrium in the sense of S-mixing. In the last two chapters, Chap-
ter 7 and Chapter 8, we discuss our results and give some ideas for future research projects.

For reasons of clarity, we now name the crucial theorems and propositions proven in
Chapter 5 and Chapter 6.

Our main result is formulated in Theorem 2.1, which we prove by a fCLT (Theorem 3.1).
There are mainly two conditions in the fCLT which have to be proved for our model to
obtain Theorem 2.1. These follow by Proposition 5.1 (see Chapter 5) and by Proposition
6.1 (see Chapter 6).

The crucial Lemma in Chapter 5 for showing Proposition 5.1 is the Overlap-Lemma 5.2.
To prove this, we give Lemma 5.4, Lemma 5.5, Lemma 5.6 and the overlap size in Lemma
5.7; these together give Lemma 5.8. The Overlap-Lemma follows then by Lemma 5.3 and
Lemma 5.8. By Corollary 5.1 and Corollary 5.2, which are implications of the Overlap-
Lemma 5.2, and by Lemma 5.9 we obtain finally Proposition 5.1.

Proposition 6.1 in Chapter 6 follows by Lemma 6.7. The crucial lemmata for proving
Lemma 6.7 are Lemma 6.1 (which is proved by several assertions) with its implication
Corollary 6.1, as well as Lemma 6.2 and Lemma 6.3. The latter follows by Lemma 6.4,
Lemma 6.5 and Lemma 6.6.






2 The model and the main result

Consider the following infinite particle system in one dimension. The underlying dynamics
is governed by classical mechanics. A point particle with mass M > 0 (“molecule”) moves
in the interval A = [—L, L] C R, L > 0. It is in contact with an ideal gas of point particles
of mass m > 0 (“atoms”), which are distributed on the real line. The atoms interact with
the molecule via elastic collisions, but do not interact with each other. Let ¢,v denote
the position and velocity of the atoms, while (), V' denote the position and velocity of the
molecule. The post collision velocities V', v" are determined by energy and momentum
conservation which lead to the following equations.

M —m 2m

V/: 2].
Mtm Tarrm’ (2.1)
M—-—m 2M

[— 2.2

v M+mv+M+m (2:2)

Between the collisions all particles move with constant velocity. Let Q(t), V(¢) denote the
position and velocity of the molecule at time ¢. At the walls —L and L the molecule is
reflected elastically, i.e. the velocity is reversed with

V(r)=-V(r)

where 7 € {t € RT : Q(t) € {—L, L}} is a reflection time and 7_ denotes the time right
before the molecule is reflected by one of the walls. The walls are permeable for the atoms.
Let

Q=AxRxQ (2.3)

denote the phase space of the system with o-algebra F, where 2 = R?" is the phase space
of the ideal gas. For & € Q we have & = ((Q,V), X), where (Q,V) € A xR and X € Q
stands for the configuration of the ideal gas particles, i.e. X = (¢, Vn)nen, Gn € R,v, € R.
The stationary measure for the evolution of the system is the infinite volume Gibbs state
at some temperature 7' > 0 and gas density p > 0. We denote this measure by p. Then,
the ideal gas is distributed in phase space according to the Poisson distribution P with the
one-particle phase space measure v given by

dv = pf(v)dvdg, (2.4)



where dvdg denotes the Lebesgue measure on R? and f(v) is the Maxwellian, i.e.
fR—=R (2.5)

1
Km\2 _km,»
v | —— ) e 2",
2m

with K = (kgT)~! and where kg is the Boltzmann constant. Hence, for measurable A C R?

we have that the number of atoms in A4 is a random variable A4 with distribution

k
PNs=k) = e—”<A>”(lj) k€ Ny (2.6)

and for measurable A, B C R?
AN B =0= N, and Np are independent. (2.7)
The distribution of the position and velocity of the molecule is

KM

%7£MV2 1
Qﬂ) e BV, (2.8)

par(dQ, V) = (
since Q € A. The stationary measure p of the system is given by
1((dQ, dV), dX) = iy (dQ, dV) x P(dX). (2.9)

Note that p is finite, since P is normalized and the molecule is confined in A.
Denote by @, the time evolution of this system. For @ € €, ®,(®) is the phase space point
(configuration) to which & evolves in time ¢!, i.e.

P, : Q-0
O ((Qw,t), V(e ), X (1)), (2.10)

where Q(-,t),V(-,t), X(-,t) are random variables on (€2, F, ). In the following we will
write Q(t) instead of Q(&,t) (etc.) whenever it is unambiguous.

As discussed in Chapter 1, we introduce the random variable R(¢), which is unbounded
and which in some appropriate sense measures the distance the molecule would travel
without confinement. To define R(t) we use an extra random function o(t) which is defined
on a trivially enlarged sample space Q x {—1,1}, and we obtain the probability space

Y= (Qx {-1,11, Fx P{—=1,1}), u x p), (2.11)

!The time evolution is almost surely w.r.t. the stationary measure (defined in (2.9)) well defined, i.e.
multiple simultaneous collisions and infinitely many collisions in a finite amount of time are atypical.
For a proof in a very similar system see for example [GLR82].



where P denotes the power set and p is a discrete measure, which weights the initial value

a(0). We set

R(t) = | " U(s)ds (2.12)

U(t) == o)V (1) (2.13)

is a random variable on ¥ (cf. (2.11)) and o(¢) is defined now as follows. Let P(t) =
(P,(t), P,(t)) denote the point on a circle of radius L centered in the origin. Note that the
r-axis is the real line on which the motion takes place. Let

P (t) = Q(t)
and we define
o(t) :== sign(P,(t)), (2.14)

whereby the y-coordinate P,(t) shall change sign whenever () € {—L, L}. Moreover, for
all t € R Q(t) € {—L,L}, o(t) = +1 means that P(t) moves in positive y direction and
o(t) = —1 means P(t) moves in negative direction.

Hence, R(t) only changes direction due to the collisions with atoms and not because of the
presence of the walls. R(t) can be seen as the distance the molecule would move without
confinement. We find R(t) € R.

Note, for given o(0), {o(t)}1s0 is a stochastic process on (Q, F, ).

Let
Uy == {U(t) her+ (2.15)

be the stochastic process defined on ¥ (cf. (2.11)) with U(t) given in (2.13). Denote by
1 the discrete measure with

(0) = 2.0 € {11}, (2.16)

p 2

=

We show in Chapter 4 that choosing

pP=p

[

in ¥ (cf. (2.11)) U; is a stationary process, and we define

$yi= (@ x {=1,1} F x P{=1,1}), 1 x p1) (2.17)



with g given in (2.9) and p1 given in (2.16).
To state our main result define for any A >0

Ra(t) = —— R(At) ®2?

VA \/_/

Then,
RA,t = {RA(t)}teR“' (2.18)

is by definition a continuous process. Let I = [0,7] for some 0 < T' < 0o. By R4 we de-
note the path measure generated by the process R4, on C(I), the space of the continuous
functions on I, equipped with the uniform topology. Let Wp denote the Wiener measure
with diffusion constant D. For the definition of the Wiener measure see [Bil99].

Our main result is:

Theorem 2.1. Let M > m > 0. Consider the stochastic process R4, as defined in (2.18)
and U(t) as given in (2.13) on DS (cf. (2.17)).
Then,
0<D= 2/ E(U0)U(1))dt < oo, (2.19)
0
where E(-) denotes the expectation w.r.t. u X pL (cf. (2.17)), and for any 0 < T' < o0

{RA(t>}t€[O,T] = \/Bth[(),T] , a8 A — o0

in the sense of weak convergence of the measures R4 to Wp defined on C([0,TY).

For the notation of weak convergence see [Bil99].



3 A functional Central Limit
Theorem

To prove our main result (Theorem 2.1), we use a fCLT which is originated in [Dav68] and
was improved by [McL75]. To show the positivity of the diffusion constant D (cf. (2.19))
we use a result of [DG86]. To state the fCLT, we need to introduce the notion of a-mixing.
Let Xy = {X(t) }+er+ be a stationary sequence of random variables on the probability space

(Q, F, P). Denote by
Foo=0(X(u),s <u<t)
the o-algebra generated by {X(u),s <wu <t} and let

ax(t) == a(FX o Fiu) i= sup |P(AB) — P(A)P(B)]. (3.1)

—00,07 X X
AeF2  0:BEFT

X is called a-mizing (or strong mizing) if ax(t) — 0 with ¢ — co. Note that “mixing in
the ergodic-theoretic sense” is weaker than a-mixing (see e.g. [Bra05]).

We now state the fCLT of [Dav68]| (Theorem 5.2) and [McL75] (Corollary 3.9) supple-
mented by a result of [DG86] (Corollary 3.17).

Theorem 3.1. Let (X;,Q, F,P) be a stationary process with

E(X(0)) =0 (3.2)
and

0 < E(X(0)*) < 00, (3.3)
Suppose there exists o > 0 such that

E(IX(0)P*) < oo, (3.4)
and that X; is a-mixing with

/°° ax()75dt < oo, (3.5)
0



then

D= 2/0°° E(X(0)X(1))dt < 0o
and

(Sa(®) e = {\/IZ/OAtX(s)ds} = (VDW()) s A oo

te[0,1] te(0.1]

in the sense that S,, the measure on C([0, 1]) generated by S, := {Sa(t)}icp,1), converges
weakly to the Wiener measure Wp'.
Furthermore, if

SLtlp]E(|Sl(t)|) = sng ( /OtX(s)ds

) — o0, (3.6)

where E is the expectation w.r.t. the measure P, it follows from Corollary (3.17) in [DG86]
that

D >0.

See [Pel86] or [Dou94] for a good survey about sufficient and necessary conditions for
(f)CLTs for mixing sequences.

To prove our main result (Theorem 2.1), we show that the process U; (cf. (2.15)) defined
on ¥ (cf. (2.17)) fulfills the conditions of the fCLT (Theorem 3.1). In the next chapter
we prove that the process Uy on (2.17) is stationary w.r.t. the measure p x p1 (cf. (2.17))
and consequently E(U(0)) = 0, 0 < E(U(0)?) < oo as well as Condition (3.4) is fulfilled
for any § > 0. In Chapter 5 we show that the stationary process U, is a-mixing with (3.5)
for some § > 0, and in Chapter 6, we will prove that U, satisfies Condition (3.6).

f D =0, Sa, converges in distribution to the zero-function as A — oc.

10



4 A stationary distribution of the
stochastic process Uy

In this chapter, we show that the stochastic process U; (cf. (2.15)) is stationary w.r.t. the
measure ji X pi (cf. (2.17)). The stationarity of U; is one of the requirements of the f{CLT

(Theorem 3.1) from which we obtain our main result.

Lemma 4.1. Consider the stochastic process U; as given in (2.15) defined on X 1 (cf.
(2.17)). Then, U, is a stationary stochastic process.

Proof of Lemma 4.1. To prove Lemma 4.1 we make use of the Skew-Product-Lemma [Pet83]:

Lemma 4.2 (Skew-Product-Lemma). Let p; be a measure preserving map on the measure
space (X, &), with state space X' and measure £, and let for z € X h¥ be a map on (), )
such that hf preserves §. Denote by (Z,v) the direct product measure space of (X, §) and
(V,0), i.e.

Z=Xx%xY, z=(r,y), e X, ye)y
and

v=£&x0.
Then, the evolution

Vi(z,y) = (pu(@), hi (y))

is a measure preserving function on (Z,v).

We apply the Skew-Product-Lemma 4.2 to the following situation. We consider X to be
the phase space of the system of all particles (ideal gas and the molecule), i.e.

X =0

11



(cf. (2.3)). The measure £ is then the product of ideal gas measure with Gibbs measure of
the molecule, i.e.

§=p

(cf. (2.9)). Let
y={-11}.

We consider the evolution

Dy (D, 0) := (D), K2 (0)) (4.1)

on X x Y where ®, is the dynamical evolution of the system of all particles (cf. (2.10)),
and

kY {=1,1} — {-1,1}
a(0) — o(t).

Now we show that % preserves p1, ie. that for any B € PH{-1,1})

p1((ry)"H(B)) = ps(B).

=

Let
Aeven := {The molecule is reflected an even number of times during [0,#]} c O

Aoaa := {The molecule is reflected an odd number of times during [0,#]} c .

Note that Aeyen N Aggg = 0 and Apyen, U Apgg = Q. For o € {—=1,1} and & € Acpen, We have
that

(k7) (o) =0, (4.2)
and for @ € A,4q that
(k) (o) = —0 . (4.3)
Then, we obtain for o € {—1,1} and & € Ay, that
oy — (4.
(k) Ho)) = p

and for @ € Aygq

p

=

o~
w
N/

(k) (o)) &

I
™

[V

12



Thus, K} preserves p 1.
Considering

0=p

Y

N

we obtain by the Skew-Product-Lemma that ®, (cf. (4.1)) is a measure preserving function
on

5, &Y (Q x {=1,1}, F x P({—1,1}), pu x p%) :

1
2
Since U(t) (cf. (2.13)) is a function of ®;, Lemma 4.1 follows. O

From now on denote by U; the stationary process
(U Q@ x {=1,1}, F x P({=1,1}), p x p1 ) - (4.4)

Then, U, fulfills Condition (3.2) and Condition (3.3) of the f{CLT (Theorem 3.1), since V' (0)
and o(0) are independent, and since by Lemma 4.1 V(0) is distributed according to the
Maxwellian given in (2.8) and o(0) is distributed according to Py (cf. (2.16)). We have
that

and
0 < E(U(0)*) =" E(a(0)>)E(V(0)%) < co. (4.5)

(4.5) follows, since it is well known that for a random variable which is distributed accord-
ing to the Maxwellian all moments of arbitrary order exist. By this argument and as a
consequence of the independency of V(0) and ¢(0) all moments of arbitrary order of U(0)
exist, such that Condition (3.4) is fulfilled for any ¢ > 0.

13






5 U; is rapidly a-mixing

In this chapter, we prove that U, is a-mixing with (3.5) for some 6 > 0. First, we give the
general idea of the proof by introducing a stronger form of mixing (-mizing), followed by
the presentation of the proof.

5.1 General idea of the proof

Consider the stationary process U; as given in (4.4). To show our main result (Theorem
2.1), by the fCLT (Theorem 3.1) we have to prove that U, is rapidly a-mixing. By that we
mean, U, is a-mixing and Condition (3.5) is satisfied.

Establishing rapid a-mixing is in general a difficult task, except if U, is a function on
the state space of a stationary good Harris mizing Markov process (see [DGL83]): Let
M = {M(t) }+er+ be a Markov process with state space (X, B(X)), transition probability
II!, x € X and stationary measure II, i.e. TI(-) = [TI(dz)ITL(-). If U(¢) is a function of

x?

M(t), then for any s,v € RT
oU(t),s <t<w)Co(M(t),s <t <)
and by the definition of ax(t) (cf. (3.1)) it follows that
ap(t) < am(t). (5.1)

Hence, the process U, inherits the property of a-mixing of the Markov process M,.
Furthermore, the Markov process M, is rapidly a-mixing if it is good Harris mizing. To
define the property of Harris mixing, we introduce the total variation distance. Let u,v
be probability measures defined on the same measurable space (€2, F). Then, the total
variation distance of p and v is defined by

|l = vl := 2 sup |u(A) —v(A)].
ACF
Note that for probability measures
o= vl <2. (5.2)
The stationary process M, is called Harris mizing if for Il a.e. =

||TTY, — T1|| — 0, for t — oo.
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From the Markov property it follows that
a(t) < [ T(da)||ITE - T1]. (5.3)

The r.h.s. of (5.3) is known as the S-coefficient for stationary Markov processes. For a
stationary Markov process X; with transition II% and stationary measure I, we write

Bx(t) == [ ()T, — 11 (5.4)
If
Bx(t) = 0, ast — oo

the process X; is called B-mizing (or absolute reqular) (see e.g. [Dav73] or [Dou94| for a
good survey about S-mixing).
Since by (5.1) and (5.3) it follows that

ay(t) < Pul(t)

we obtain rapid a-mixing of the process U; by rapid S-mixing (or: by good Harris mixing)
of the stationary process M,.

Some remarks on the g-coefficient

The property of S-mixing of a process expresses, as any mixing does, that for large enough
separation of future and past, the evolution of the process become independent. To see that,
we follow [Dou94| to provide a more intuitive definition of the f-coefficient for a stationary
(not necessary Markov) process (X, Q, F,P). Let P| denote the measure restricted to
the o-algebra F, and we write

]P)() = P‘ffoo . 5
P! .= P‘ftxw )

Let Py, denote the conditional measure on F;° given FY__. Then, one defines
Bx(t) = ||]P)0}P)Q,t — IEDO X ]P)tH . (55)

Note that if X; is Markov, Definition (5.4) and Definition (5.5) are equivalent (see [Dou94]
and [Dav73]). It becomes clearer now that g quantifies the degree of dependence of the
past and the future of the process: Roughly speaking, Py x P* would be the measure which
arises if {X(s),s < 0} and {X(s),s > t},t > 0 were independent, whereas PyPy; is the
true measure for events C' € F i(oo,O X ftho

2-Bx(t)

To be precise, =5~ measures the overlap of Py X P* and PoPy;: Two measures p and v
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on the same measurable space (€2, F) are overlapping if i and v are not mutually singular,
ie. forany A,B € F

(u(A) =) AWB)=1)= ANB#£0.

Note that p has an absolutely continuous component with respect to v if and only if © and
v are overlapping ([GLR82]). Using an equivalent definition of the total variation distance,
namely

lp—=v|[=2=-2(pAv)(Q)
where

(1 Av)(A) = [ minD, (@), D)} + v)(dw)

and D,(w), D,(w) denote the Radon-Nikodym-derivatives with respect to (¢ + v), it is
quite intuitive that one may quantify the overlap of two measures p and v by

2~ ||u—vl]

(nv)(©) = =11

Having (5.4) in mind, it becomes clear that with

Bxlt) = [ Ta@)|II, ~ 1] < [ i(de) [ T(da)][TT, ~ T

an appropriate control over the overlap of the transition probabilities IT., ITt, when varying
over ¢t and x, 2, gives a good mixing rate, since then ||IT}, — TI%, || decays fast enough (see
[DGLS3)).

5.2 Proof: U, is rapidly a-mixing

According to the statements made in the previous section, a-mixing of U; (cf. (4.4)) follows
as soon as we show [-mixing for a stationary Markov process which contains U;. Due to
the confinement of the molecule to A, there exists a “natural” Markov process M; which
is intermediate between the non-Markovian process U; and the deterministic evolution of
the infinite dynamical system (see [GLR82]). Let Y (¢) be the configuration of all particles
in A and the value of ¢ at time ¢. Let ¢;(t),v;(t), i € N, denote the positions and velocities
of the atoms which are in A at time ¢, then

Y(t) = (Q(t), V(t),qi(t), vi(t), o (t)). (5.6)
We define the process

M, = {Y(t)}teRJr (5-7)
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on X1 (cf. (2.17)) with state space Q‘A x {—1,1}, where Q‘A is the set of all configurations
in A. To show that the process thus defined is indeed well defined in the sense of being
measurable, we refer the reader to a rather general result of [KL10] where measurability of
collision processes was established.

We now show that M; is a stationary Markov process.

Lemma 5.1. The process M, defined in (5.7) is Markov and stationary w.r.t. the measure
I(dy) = p x p1(Y(0) € dy), (5.8)

where p x py is given in (4.4).

Proof of Lemma 5.1. We first show the Markov property of M;. Let 7 > 0. The knowledge
of {Y(t)}i<- is equivalent to the knowledge of Y (7) and of all atoms, which have left A
until 7, since apart from the incoming atoms the evolution of o(t) is deterministic. The
evolution after time 7 is determined by Y (7) and the atoms which enter the interval after
7. This follows inter alia from the fact that given o(7), {o(t),t > 7} is determined by Y'(7)
and all atoms entering A after time 7. Since an atom which enters A after 7 is dynamically
independent of the evolution of the process before 7 (an atom which leaves the interval,
never returns, i.e. atoms which enter the interval are “fresh”), the Markov property of M,
follows.

Since Y (t) is a function of ®; (cf. (4.1)), M, inherits its stationary distribution from p x pLs
ie.

II(dy) = pu x py (Y(0) € dy).
O

As we pointed out in Section 5.1, rapid a-mixing of the process U; (Condition (3.5) of
the fCLT (Theorem 3.1)) follows if M; = {Y (¢) };er+ is rapid S-mixing, since U(t) (cf.
(2.13)) is a function of Y'(¢) (cf. (5.6)), i.e. Condition (3.5) follows as soon as we show
following proposition.

Proposition 5.1. Consider the process M, as defined in (5.7). Then, there exists a 6 > 0
such that M; is S-mixing with

/OO Bu(t)7Hdt < oo
0
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Note that we proved in Chapter 4 that Condition (3.4) of the f{CLT (Theorem 3.1) is
fulfilled for any 6 > 0.

Hereinafter, we neglect the index M on S, and write only .
The idea of proving Proposition 5.1 is the following. Having in mind that M, is a Markov
process with stationary measure IT (cf. (5.8)) such that

CORS R CE A}

we proof overlap of II7 and II (transition and stationary measure of M;) for z in a “good”
set G (7 is a fixed time and depends on G). By the existence of an overlap by time 7, one
obtains by induction an estimate for 5(n7) which depends on the measure of the overlap
and of the measure of G¢, the complement of G. Then, we show that G can be chosen so
large that the “bad” set G¢ has very small measure. In fact, we choose G as depending on
n, such that the measure of G¢ approaches zero fast enough as n — oo and such that the
overlap doesn’t shrink too fast (if G grows, the overlap becomes small), which gives a good
estimate for the [-coefficient.

We begin now by proving first the existence of an overlap set by the following lemma.
Denote by H; the transition probability of M; at time ¢ starting in Y (0) = y € Q‘A X

{~1,1}.

Lemma 5.2. Qverlap-Lemma A
There exist a measurable set G C Q| X {=1,1}, a time ¢(G) and v(G) < 2, which all will
be specified later, such that

I — 7] < %(G) (5.9)

for any y1,y2 € G.

To show the Overlap-Lemma 5.2, we prove the existence of an overlap set, i.e. loosely
speaking a set of states, where any state can be reached at a certain time with probability
bounded away from zero if starting in G. For that we show first that any state in G can
reach a state where the molecule is alone and its velocity is in a certain interval at a certain
time (see Lemma 5.6). Having that, we can control the evolution of the process, especially
the value of o, by sending in atoms such that the process may reach at a given time a set
of certain states with positive probability (see Lemma 5.7).

This gives us a hint how to choose G, since there are two kind of states, which could be
problematic as starting states: If the molecule is very fast, it may be impossible to slow it
down to a given velocity in a given time with a probability large enough. Also many slow
atoms in the interval could be a problem, since they may not be kicked out before a given
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time with a large enough probability. Therefore, we will choose G such that these states
are excluded i.e. the number of atoms in A and their velocity, as well as the velocity of the
molecule is bounded.

Since the proof of the Overlap-Lemma 5.2 needs several preliminary lemmata, we first
provide these and give the proof of Overlap-Lemma 5.2 afterwards.

Let 0 < V < 00, N € N and let
Gyx ={l|<V,[V|<V,N <N} (5.10)

where {|v| < V,|V| < V,N < N} C Q‘A x {—1,1} denotes the set of configurations for

which the molecule and the atoms in A have speed less than Y/ and the number of atoms
in A is less or equal N. Let B and C be constants with B < V and

9M?

Recall that M is the mass of the molecule and m the mass of any atom. We first proceed
from Gy gz to

GB,C;O = {B < ’V’ < CaN = 0} C Q‘A X {_17 1}7 (512)

which is the set of configurations for which the molecule has speed faster than B but slower
than C' and is alone in A. Since this procedure is rather lengthy, we proceed in several steps.

By the collision equations (2.1) and (2.2) we get following assertion.

Assertion 5.1. Let

2L

tp = 5 (5.13)

Then, an atom which is in A at time ¢ cannot make the molecule faster than B after time
t+1tp.

Proof of Assertion 5.1. To make the molecule faster than B, the atom has to move towards
the molecule and it is necessary (but not sufficient), that |v| > B. Let v; denote the velocity
at time ¢ of an atom in A. Then,

(i) if |v;] < B: The atom can only achieve |v| > B by a collision with the molecule. But
that leads to a velocity directed in the opposite direction of the molecule. Once an
atom moves away from the molecule, it will keep that direction. Hence, the atom
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never moves towards the molecule with |v| > B, i.e. an atom with |v;| < B cannot
make the molecule faster than B at all.

(ii) if |ve] > B: Let 7 > t denote the first collision time of an atom with the molecule
after time ¢. If |v;| > B, then either the atom doesn’t collide with the molecule after
time ¢ at all or 7 < ¢ + tp. If in the latter case after the collision still |v| > B, the
atom either moves in opposite direction of the molecule and hence cannot make it
faster than B anymore, or it moves towards the molecule and collides with it before
t+tp again. As long as the atom has |v| > B, it will either recollide before t +tp (if
it moves towards the molecule) or it moves in the opposite direction of the molecule
and cannot make it faster than B anymore.

Once the atom is slowed down to a speed less than B, it cannot make the molecule
faster than B anymore (see (i)).
Thus, if an atom with |v;] > B makes the molecule faster than B, it happens before

t+1p.
Taking (i) and (ii) together, Assertion 5.1 follows.
[
Consider Y (0) = y € Gy y. We define the event &, C Q with
Eu, = {No atom enters A during [0,4tg|} (5.14)

The following holds on &y,,.

(a) If |V(3tg)| < B: Since no atom which is at ¢ = 0 in A, can make the molecule faster
than B after tg (cf. Assertion 5.1), |V (t)| < B for all t € [3tg,4tp]|. All atoms with
|v(3tg)| > B must have been slower than B for some time before 3tp (otherwise they
would have left the interval by time 2¢p), and then achieved |v| > B by a collision
with the molecule, i.e. these atoms are moving at time 3tp in opposite direction
of the molecule and leave A by time 4z, without colliding with the molecule, since
|V (t)| < B for all t € [3tp,4tp]. Hence, the molecule collides during [3tg, 4tg] only
with atoms with |v(3tg)| < B. Using (2.2) with pre collision velocities |V| < B, |v| <

B gives
v M —m n 2M
V'] =|— v
M+m M+m
m 2M
Vv
_M+m|v| M + Vi

< +
M +m M+m

3M —m
=— 2B 5.15
M+m ( )

3M—m
M+m B

i.e. the atoms left in A by time 4t cannot be faster than
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(b) If|V(3tp)| > B: Then, by Assertion 5.1 and by argument (i) in the proof of Assertion
5.1 (taking V instead of B), we have that

B<|V(t) <V

for all t € [tg,3tp] and all atoms are pushed out of A by the molecule by time 3tp
i.e. the molecule is alone in A by 3tg.

With that, the following lemma can be shown.

Lemma 5.3. Consider G 5.5, Gp .0, C Q‘A x {—1,1} where we for ease of notation write

Gp.n.5 :={|V| < B, the number of atoms in A is less or equal N,

3M — 5.16
the speed of each atom is less than v := JB} , ( )
M+m
Gp .0 = {The molecule is alone in A and B < [V| <V } (5.17)
Let tp be given by (5.13). Then, with
1 Sth
Cp=—-exp| ——F—= 5.18
PP ( V 27r/Cm> (5.18)
we have that for any y € Gy y either
HgtB (GB;]\_I;T)) > (4 (519)
or
142 (G r0) > Ci (5.20)

Proof of Lemma 5.5. By facts (a) and (b) from above we have shown that for Y(0) =y €
Gy it follows that Y (4tp) € G0 U Gy y.; if no atom enters A during [0, 4¢p]. Hence,
for y € Gy y we have that

H;th(GB7V;O U GB;N;@) > #(84153) (521)
with &, given in (5.14).

Denote by N (]A|) the number of atoms entering A during a time interval A with length
|A], then N'(|A]) is a Poisson random variable with parameter

|A|2p (\/ 27rlCm>_1, KC given in (2.5)
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i.e.

(1a12p(v2rKm) )"
H({N(|A|) — k}) — e_|A|2P(V27rICm)_ (| ‘ p( kj'T m) ) ’ ke N(), (522)
with

EW(|A]) = [A[2o (vV2rKkm) .

Hence, the probability that no atom enters A in a time interval of length 4tg is

8t
((Extp) = exp (‘%) : (5.23)
Now
HgtB(GB,V;O U GB;N;?)) < 2max {HgtB (GB,V;O>7 HitB (GB;N;E)} ) (524)

and we obtain Lemma 5.3 since by (5.21) and the estimates (5.23) and (5.24) we obtain
that

max {H;tB (Gpyo) 10,7 (GB;]V;fF))} =

1 1 8t
= 5#(54@3) = $€xXp <—Bp> =0,

i.e. either

HitB (GB;]\_T;T)) > Cl
or

HitB (GB,\‘/;O) > Ch.

O

Recall that we want to prove that any state in Gy 5 (cf. (5.10)) can reach a state in
Gpco (cf. (5.12)) at a certain time with a certain positive probability. Since we know
by Lemma 5.3 that all states in Gy, i can either reach Gp.y.; (cf. (5.16)) or Gpy (cf.
(5.17)) by time 4tg, we now proceed from the sets Gz.5.; and G 7, to Gy (cf. (5.12)).
For that we let atoms enter A either to push out the atoms, which are still in A or to slow
down the molecule.

To handle G, y.;, we use the following assertions. Let

4M> M +m M —m
Dy:=——FB d D.:= C — B 5.2
’ m(M —m) o 2m 2m (5:25)

with C' given in (5.11).

23



Assertion 5.2. If the molecule with |V| < B collides with an atom with

Dy, <v < D, (5.26)

(resp. —D. < v < —Dy), with Dy, D.. given in (5.25), then

- TM? +2Mm —m

2
FYER B<V <(C

B

(resp. —C < V' < —TIMZ2Mmom g B,

M?—m?

Proof of Assertion 5.2. Consider —B <V < B and v as given in (5.26). Then, we obtain

the following upper and lower bound for the post collision velocity V' from (2.1).

_ M-m
 M+m
(526) M —m
<

v/

2m
M+ m

v

M+m

M—-—m

n 2m (M+mC_M—mB>
M+m
M —m
M+m

2m

B

2m

!
V:M+m v
(5i6) _M—m n 2m AM?

M+m M +mm(M —m)
B —(M—m)Q—i—SMQB
- M2 — m?2
B TM? + 2Mm — m?

M? —m?

M+m

B

B
> B

The second case follows analogously. [

Assertion 5.3. If an atom with

D, <v < D, (5.27)
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(resp. —D, < v < —Dy), with Dy, D, given in (5.25) collides with the molecule with
V| < B, then v/ < —B (resp. v' > B).

Proof of Assertion 5.3. Consider (5.27). We obtain the upper bound for the post collision
velocity of the atom from (2.2), namely

v’*—M_mv+ 2M Vv
- M+m  M+m
(627) M —m  4M? 2M
— B B
M +mm(M —m) +M—l—m
_ —4M?*+2Mm
— m(M +m)
_AN2 2
< 4M=+2M B
- 2m?
<-B.
The second case follows analogously.
O
Assertion 5.4. If an atom enters A from the left with
Dy, <v < D, (5.28)

resp. from the right with
—D.<v<—=Dy

with Dy, D, given in (5.25), and the molecule has pre collision velocity |V| < B, then the
atom stays in A no longer than 2tp with tg given in (5.13).

Proof of Assertion 5.4. Consider the atom entering A from the left with (5.28). Note that
the proof for atoms entering from the right is analogous.
Since

40> 4M*?

Dy=——B2>
T m(M —m)” T M?

B>B,

the atom has velocity v > B until the collision, i.e. the time it takes from entering to the
collision is less than tg. From Assertion 5.3 we obtain for the post collision velocity of the
atom that v < —B, i.e. the atom is in the interval no longer than tg after this collision.
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So all in all the atom stays in A no longer than 2¢p.

Assertion 5.5. If an atom on the right side (resp. on the left side) of the molecule collides
with

3M —m
<—B 5.29
ol < S (529)
with the molecule with
TM? +2Mm — m?
y o MM o g (5.30)

M? —m?

(resp. V < —IMZL2Mmom?® By ' thep

M?2—m?2

v > B (resp. v < —B).

Proof of Assertion 5.5. Consider an atom with (5.29) to the right side of the molecule with
(5.30). We obtain the lower bound on the post collision velocity of the atom from (2.2),
namely

(5-29)§(5-30)_M—m3M—mB+ 2M  TM? +2Mm — m?
M+m M+m M+m M? —m?
11M? + 11M?*m — TMm? + m3
(M? —m?2)(M +m)
_ 10M? 4 10M?*m — 6 Mm? + 2m? + (M? —mZ)(M+m)B
(2 — m2) (M +m)
4M? + 10M*m + 2m? + (M? — m?)(M + m)
(2 — ) (M + m)

B

B

> B.

The second case follows analogously.
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Assertion 5.6. If an atom on the left side of the molecule collides with
v< —-B (5.31)

with the molecule with

TM? +2Mm — m?

V< V2 B, (5.32)
then
TM? + AMm + m?
< — B< —-B .
Vi< (T +m) < (5.33)
and
v < —B.

Proof of Assertion 5.6. Consider an atom with (5.31) an the molecule with (5.32). By
(2.1) it follows that

M —m n 2m
= v
M +m M+m
M —mTM? +2Mm — m? 2m
< — B B
M+m M2 —m?2 M+m
—TM? — AMm — m?
(M +m)?
—5M?% —2Mm — (M + m)?

- (M 4+ m)? B

V/

< —-B.

Since both, the molecule and the atom, move to the left and the molecule is to the right
of the atom, by future collisions the molecule can only (absolutely) speed up the atom, i.e.
v < —B. O

Assertion 5.7. If an atom on the left side of the molecule collides with

v<—B (5.34)
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with the molecule with

TM? + 4Mm + m?

V' < B 5.35
(M 4+ m)? ( )
then
—TM3 + M?*m — Mm? —m?3
V' < B < -B 5.36
(M +m)3 ( )
and
v < —B.

Proof of Assertion 5.7. Consider the atom with (5.34) and the molecule with (5.35). Then,
with (2.1) we obtain that

:M—mV+ 2m
M +m M +m
<_]\4—m7]\42—|—4]\/[77”L—i-m2 B 2m B
M+m (M +m)? M+m
—TM? 4+ M?*m — Mm? —m?
(M + m)?
—6M3 + 4AM*m + 2Mm?* — (M + m)?

- (M 4+ m)3 B

vl

v

< —-B.

Since both, the molecule and the atom, move to the left and the molecule is to the right
of the atom, the molecule can only (absolutely) speed up the atom, i.e. v' < —B.

O

Assertion 5.8. If an atom on the left side of the molecule collides with

3M —m
< 5.37
ol < 2 (5.37)
with the molecule with
TM? + 4M 2

o T AMm (5.38)

(M +m)?
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then

v < —B.

Proof of Assertion 5.8. Consider an atom on the left side with (5.37) and the molecule
with (5.38). Then, by (2.2) we have that

., M-m oM
K Vsl y e
<M—m3M—m _2M TMP +4AMm 4+ m?
M+m M+m M+m (M +m)?
B —11M3—9M2m—5Mm2—|—m3B
(M +m)?
—8M?3 — 6M*m — 2Mm?* — (M +m)?
(0 + m)?

< B

< —-B.

Assertion 5.9. If an atom on the left side of the molecule collides with
(5.39)

with the molecule with

—TM? + M?*m — Mm? —m?3
V' < B 5.40
(M 4+ m)3 ( )

then

v < —B.

Proof of Assertion 5.9. Consider an atom with (5.39) and the molecule with (5.40). Then,
by (2.2) it follows that

o M—-—m n 2M v
= — v
M+m M+m

29



M—mSM—mB 2M  —TM? 4+ M?*m — Mm? —m3

<M—|—mM+m +M—|—m (M +m)3 B
B —11M4+4M3m—6M2m2—4Mm3+m4B
(M 4+ m)*
B —10M4+8M3m+2m4—(M+m)4B
(M 4+ m)4
< —B.

With these assertions we can show the following.

Lemma 5.4. Let

Dy

t(N) := (]\7 + 1) ((p /DC vf(v)dv) h +t3) +3tp (5.41)

with Dy, D, given in (5.25) and tp given in (5.13), then for any y € G55 (cf. (5.16))

N (G o) > Coe™@N (5.42)
with
Cy :=exp (—Qp ((p /DDC vf(v)dv) + 4t3) (\/ 27rlCm)1) (5.43)

Dy

Cy = 2p <<p /DC vf(v)dv) B +t3) (Vrkm) . (5.44)

Proof of Lemma 5.4. Recall that G 5.; are the configurations where [V| < B, the number
of atoms in A is less or equal N and the speed of the atoms is less than & = %B. For
ease of notation we set t = 0 for the time of the following situation. Note that throughout
this section, whenever we set ¢ = 0, it is the time of a situation and not the beginning of

the process. Consider Y'(0) =y € G55 Denote by NY and N} the number of atoms to
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the right resp. to the left of the molecule at time ¢t = 0. Note that
NY+ N/ <N.

First, we let atoms enter A from the left to let the molecule push out the atoms, which are
to the right of it. The entering atoms have velocity

Dy <v<D,, (5.45)

with Dy, D, given in (5.25), and shall enter A according to the following prescription. Note
that no other atom shall enter the interval during this procedure.

Let A > 0. The first atom enters A during [0, A] and no atom enters during [A, A + t5].
By time A 4t the molecule has either reached L (and has velocity [V| < C (cf. Assertion
5.2)) or if not, it was slowed down to a speed less than B by some atoms of the right side.
At least one of the VY atoms will have left A by time A +tp: In the first case it is trivial,
since then all atoms from the right have left A. In the latter case at least the atom, which
collided at first with the molecule on the r.h.s. will be kicked out, since this atom has

pre collision velocity |v| < 3]\]\44;7;”3 (by definition of G'p.5.;) and the molecule collides with

V > IM2Mmom® B (gee Assertion 5.2), such that by Assertion 5.5 it follows that v/ > B.

M2_m2

Note that the atom which we have send in may enter the interval latest at time A and has
velocity v > D, > B. This atom then collides with the molecule, which gain post collision
velocity V' > B. Since the molecule causes a post collision velocity v' > B of the atom to
its right, it doesn‘t take longer than tg from the entering of the atom, which we have send
in to the leaving time of the atom to the right of the molecule. Hence, by time A + tp at
least one atom of the r.h.s. of the molecule has left A.

If there are still atoms to the right of the molecule, another atom with (5.45) enters during
[A +tp,2A + tp] and no atom during [2A + 5, 2(A + t5)], etc. until all N¥ atoms are
pushed out, i.e.

tY:= NY(A +tp) (5.46)

is an upper bound on the time it takes with this procedure to reach a state where no atom
is to the right of the molecule and |V| < C. The latter follows by Assertion 5.2. Note that
as soon as by a time m(A +tg),m € {1,..., NY — 1} there are no atoms to the right of the
molecule, we consider the event, that no atom enters during [m(A + tp), t¥].

If |V (t¥)| < B, we send in one additional atom from the left during [t¥,t¥ + A] with (5.45)
(so that B < V' < C (cf. Assertion 5.2)), and no atom during [t/ + A, t¥ + A + 2tg]. If
B < |V(#)| < C, no atom enters during [t¥,t¥ + A + 2tp]. Then, in both cases by time

tY+ A4 2tg = (NY 4+ 1)(A+tp) + 3 (5.47)

the molecule was reflected at L, latest at time

tV+ Attp, (5.48)

31



and has either reached —L (and has velocity |V| < C), or if not, it was slowed down to
a speed less than B by some of the atoms on the left. Note that at time (5.48) there are
N/ + 2 atoms or less on the L.h.s. of the molecule in A, since an atom which is send in
during [(NY — 1)(A +tg), (NY — 1)(A +tp) + A] or [t%,#¥ + A] may be still in the interval
(with v < —B (cf. Assertion 5.3)). But in any case these two atoms and at least one of
the N/ atoms on the left have left A by time (5.47). This follows by similar arguments
as before: If the molecule has reached —L, all atoms on the left were pushed out. If the
molecule didn’t reach —L, it must have been slowed down to a speed less than B by at
least one atom of the Lh.s.. In the latter case there are three possible situations which may
occur: After the reflection of the molecule at L (i) the first two collisions of the molecule are
with the two atoms which were send in during the procedure. Note that the pre collision
velocity of both atoms is v < —B; (ii) the molecule first collides with one of the atoms
which were send in during the procedure and second with one of the N/ atoms; (iii) the
first collision of the molecule is with one of the N/ atoms.

To prove that at least the three atoms will have left A by time (5.47), it is enough to show
that V' < —B from the time of reflection at L (latest at time (5.48)) until the time where
all three atoms have v < — B, since then it takes no longer than ¢z from the reflection until
all three atoms will have left the interval, i.e. all three atoms will have left the interval by
time (5.47). We show that now.

By Assertion 5.6 and Assertion 5.7 it follows that in (i) the post collision velocity of the
atoms of the first and second collision is v < —B. Furthermore the upper bound of the
post collision velocity of the molecule after the first two collisions is given by (5.36) and in
particular V' < —B from the time of reflection at L on. By Assertion 5.9 it follows that the
post collision velocity of the atom of the third collision is v" < —B. i.e. all three atoms with
which the molecule collided with have v < —B. Hence, all three atoms leave the interval
by time (5.47). In (ii) the atom of the first collision has v < —B and the upper bound
of the post collision velocity of the molecule is given in (5.33) in particular V' < —B (cf.
Assertion 5.6). By Assertion 5.8 the atom of the second collision has also v" < —B. Since
the second atom we have send in during the procedure has already v < —B after the first
collision with the molecule and will keep v < —B no matter if it collides with the molecule
again or not, all in all we have that V' < —B until all three atoms have v < —B, i.e. these
atoms will have left the interval before (5.47). In (iii) the atom of the first collision obtains
by the collision with the molecule v < —B (cf. Assertion 5.5). Since both atoms which
were send in during the procedure have already v < —B (by the first collision), all three
atoms leave the interval before (5.47). This gives the conjecture, namely by time (5.47) at
least one of the N/ atoms and both atoms which were send in during the procedure have
left the interval by (5.47).

We now continue in a similar way as before: If by time (5.47) there are still atoms to the
left (not more than N/ — 1), we push out the remaining atoms, but now by atoms entering
A from the right with —D. < v < —D,,. Hence, by time

(NY +1)(A+tg) +tp+ (N! —1)(A +tp) +tp
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= (NY 4+ N/)(A +tg) + 2t (5.49)

the molecule is alone in A with |V| < C| since then also the last incoming atom has left A
again.

If [V(t)] < B with ¢t given in (5.49) we send in one additional atom from the left with
Dy, < v < D, during

[(NY + N/)(A +tg) + 2tp, (NY + N} + 1)(A + t5) + t5]
and no atom during
[(NY + NP+ 1) (A + tp) +tp, (NY + NV + 1)(A + tp) + 3tp).
If B<|V(t)] < C fort given in (5.49) we consider the event that no atoms enter during

[(NY + N)(A +tg) +2tp, (NY + N/ + 1) (A +tg) + 3t5).
It follows by Assertion 5.2 that by time

(NY 4+ N/ +1)(A +tp) + 3tp (5.50)

the molecule is alone in A with velocity B < |V| < C.
Since NY + N/ < N for any y € Gp.y 5, it follows from (5.50) that

Ag = (N +1)(A+tp) + 3tp, (5.51)

is an upper bound on the time it takes with the above procedure to reach a state where
the molecule is alone in A with velocity B < [V| < C for any y € Gp.5.5-

By the above procedure we can estimate HyAN (GB,cyp) for y € Gp.y.; with Ay given in
(5.51), and we obtain Lemma 5.4: Since M is a stationary Markov process

2% (G g o) (5.52)
(5 51) H(N+1)(A+tB +3tg (Gp.co)

H(N9+Ny+1)(A+tB)+3tB+(N (N’y—i_le))(AHB)(GB,C;O)

_ /H(N FNY41)( A+tB)+3tB<d /)H;{V_(N3+N?))(A+tB)(GB,C;O)
> /G Hl(/Ny+Ny+1)(A+tB)+3tB(dy/)Hl(/]/V—(Nﬁ-i—le))(A-i-tB)(GB o0) (5.53)
B,C;0

Any Y(0) = y € G will stay in Gp o until time (N — (NY + N/))(A +tp) if no atom
enters A during [0, (N — (NY + N/))(A 4 tp)], so that we can estimate

(5.53) Z/G HéN%+Nﬁ+1)(A+tB)+3tB(dy/).
B,C;0

WUN (N — (N2 4 N)(A + 1) = 0))
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NY4+N/+1)(A+tp)+3t
—H( + + )( +B)+ B(GB’C;()>'

_ > (5.54)
p{N(N = (NY + N))(A + tp) = 0})

To estimate further we start with

H(Ny+Ny+1)(A+tB)+3tB (GB,C;O) _

_ /H(N +NY) A+tB)+2tB(d ,)HA/JrgtB(GB’C;O)

/ H(Ny+Ny)(A+tB)+2tB (dy,)H§+2tB(GB,C;O>a (5.55)
GB;0UGB,c50

where Gp,o C Q‘A x {—1,1} is the set of configurations where the molecule is alone with
|V| < B, i.e. with ease of notation

Gpo={|V| < B,N =0}.

Since for y' € G resp. y € Gp oy different procedures are necessary to reach by time
A+2tp astate in Gp oy, we treat these cases separately when estimating the second factor
of (5.55). Note since Lemma 5.4 requires a uniform lower bound for the transitions, we
need the same estimate in both cases. We will get that by making an explicit choice for A
later on. We can make this choice, since until now the only condition on A is its positivity.
If Y(0) =% € Gp.coyo and no atom enters during [0, A 4 2t5], then Y/(A + 2tp) € Gp.cuo.
So it follows for ¢y € Gp ¢ that

I (G c0) > ({N(A + 2t5) = 0}). (5.56)

Now we show that also transitions starting at Y (0) = ¢ € Gpo can be estimated by
the same bound as given in (5.56). We know from the above, sending in one atom from
the left with D, < v < D, during [0, A] and no atom during [A, A + 2tp] yields to
Y (A +2tz) € Gpeo. So denote by Q C Q‘A x {—1,1} the set of configurations which are

possible for the system at time A if it starts at t = 0 in G,y and one atom from the left
enters with D, < v < D, during [0, A], i.e. with ease of notation

= {There is no or one atom in A.
If there is one atom, it is on the L.h.s. of the molecule
with velocity Dy, < v < D. or v < —B.
If Dy < v < D,, then |V| < B;
if v < =B, then B < |V| < C.
If there’s no atom in A, B < |V| < C}.

Since any Y (0) = y” € @ reaches a state in Gp ¢ at time 2¢p if no atom enters during
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[0, 2t 5] we have that
5% (G.c0) = [ T3 Ay )P (G o) (5.57)
> [ AT (G o)
> [ I3y )n(N @) = 0))
= I3(Q)u({N (2t5) = 0}). (5.58)

To estimate the first factor in (5.58) we note that for y' € Gpy

(@) = n({Np,p. () = 1Hu({Np,0o(A) = 0)i({N s, (A) = 0}), (5.59)

since Y (0) = ¢/ € Gy is in Q by time A if exactly one atom enters during [0, A] and has
Dy < v < D.. Having in mind that (5.57) shall be estimated such that it has the same
lower bound as (5.56), we make an explicit choice for A. Note that (5.56) is valid for any
A > 0. Let

Ay = (p/DC vf(v)dv) h , (5.60)

Dy,

where p is the density of the ideal gas and f(v) is the Maxwellian (cf. (2.5)). Then, the
expected number of atoms entering A during a time interval of length A,. with velocity
Dy, <v<D,is

5.60)

_ _ D, (
E(No,0.(B) = Buep [ 0f(@)av *2 1.

If we choose
A=Ay, (5.61)

for estimating (5.59) we can use the monotonicity of Poisson random variables: If the
random variable X is Poisson-distributed with mean A, then for any j,k € Nwith j < k < A

P(X =j) <P(X =k) <P(X =)\). (5.62)
With (5.61) it follows that
(5.59) = u({Npy,.(Ase) = O} ({Np, 00 (D) = 0NN s, 5, (Ase) = 0}) . (5.63)

Since N, p.(Ave), Np,.oo(Ape) and N p, (Ape) are independent (cf. (2.7))

5% (Q) > u({N'(As) = 0}). (5.64)
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By (5.58) and (5.64) we get for the second factor of (5.55) for ¢’ € Gp,

M5 (G o) > (N (Do) = O)p({N (t5) = 0}). (5.65)

To continue estimating the r.h.s. of (5.65), note following fact. Denote by |[a, b]| the length
of the time interval [a, b], then

PN (e, b]))}) = (N (1L, +[[a, BlID}) - (5.66)
Using (5.66), we obtain for the r.h.s. of (5.65) that
PN (Age) = 0} p({N (t5) = 0})
2 N (10, Au) = 0NN ([Buc, Aue + t5]]) = 0))
2 WAN Dy + t5) = 0}), (5.67)

and altogether for (5.65) with ¢ € Gp, by (5.67) that
22 (Gpc0) = N (Do + ) = 0}).

Choosing (5.61), we obtain also for (5.56) with ¢’ € Gp .0 the same estimate, namely
T % (Gp.c0) > p({N (Dye + 2t5) = 0}).

Plugging this into (5.55), we get

NY+NY)(Ape ~
G5z [ MO Gy (N (A + 20) = 0)
B;0 B,C;0
= VNS (G G o) (N (Bre + 205) = 0}). (5.68)

We continue with

(Nry“l‘le)(Abc"FtB)"l‘?tB(

IL, GpoUGpeyo)

v Y
H(N Y1) (Dpettp)+tp+H(NY —1)(Ape+t5) +tB(GB 0 UGBcpo)

_/H(Ny+1 (Apettp)+tp+H(N] 1)(Abc+tB)(dy)th§(GB;0UGB@O). (5.69)

Denote by R C Q‘A x {—1,1} the set of configurations which are possible for the system
at time

(NY 4+ 1)(Ape + tg) +tp + (N/ —1)(Aye + tg),

starting at ¢ = 0 in G, y,; and undergoing the procedure which was described underneath
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(5.45), i.e. we have that

R = {There is no or one atom in the interval.
If there is one atom, it is to the right of the molecule
and has velocity v > B.
The molecule has velocity |V| < C.}.

Hence,
(NY+1) (A N/ =1)(Ape
(5.69) / IV Goe o b VT D0t 0) (48 (G U G ) - (5.70)
Since for Y(0) = ¢ € R, if no atom enters during [0,¢p] then Y (t5) € GpoU Gp oy, ic.

(5 70 > / H (NY+1 (Abc+tB)+tB+(Ny_1)(Abc+tB ( yl)ﬂ<{N<tB) _ 0})
_ H(N +1)(Abc+tB)+tB+(Ny 1)(Ab('+tB)( )N({N(tB) _ 0}) . (571)

Now we start with

(NY+1)(Dpettp)+tp+(NY —1)(Apcttp)

I} l (R) (5.72)
H(Ny+1)(Abc+tB)+tB+(Ny 2)(Abc+tB)+(Abc+tB) (R)

_/H(N 1) (Apettp)+tp+(NY— 2)(Abc+tB)(dy/)H§bc+tB(R)' (5.73)

Starting at ¢ = 0 in G'p.5; and undergoing the procedure as described underneath (5.45),
at time (NY + 1)(Ape + t5) +tp + (NY — 2)(Aye + tp) cither the molecule is alone with
V| < C, or there is one atom to the the left (with |v| < 0) and |V| < B. To estimate
(5.73) we denote by G¢ o C Q‘A x {—1,1} the set of configurations where the molecule is
alone in the interval with |V| < C, i.e. with ease of notation

GC70 = {lV’ < C,N = O},

and by G056 C Q‘A x {—1, 1} the set of configurations where |V| < B, no more than n

atoms are to the left of the molecule, each with |v| < o, and no atom to the right, i.e. with
ease of notation

Gmos = {|V] < B; Ny <n; N, = 0; o] <0} .
Then, we have for (5.73) that

/H (N +1)( Abc+tB)+tB+(le*2)(Abc+tB)(dy/)H§b0+tB (R)
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> H§N£+1)(Abc+tB)+tB+(le72)(Abc+tB) (dy/>H§bc+tB (R) ) (574)

Gc,0UGB:1,0:5

If no atom enters A during [0, Ay, +t5], Y (0) = i € G stays in Gep until time Ay + 5.
Since G¢p C R, we have

% (R) = p({N (Bye + t5) = 0}) (5.75)

for y' € Geyp.

Since Y (0) = v’ € Gp.10.5 reaches by time Ay + tp a state in R if exactly one atom with
—D. < v < —D, enters during [0, Abc] and no atom during [Abc, Ay + tp], we get by the
same arguments which gave (5.63), (5.65) resp. (5.67), for ¥ € Gp.104

HAbc-l-tB(R)
> WM b0y (Bse) = TN s (Buc) = 0})
N Dy e (Bae) = 0N (N () = 0})
2 N ey (Bae) = ONN e, (Aue) = 0}).
BN pyoe(Boe) = 0N (N () = 0})
u({N(Aba — O u({N(ts) = 0)
GO AN (A + tg) = 0}) . (5.76)

We then have with (5.75) and (5.76) for ¥’ € Go o U Gpa 0.5 that

7 (R) = p({N (Bye + t5) = 0}). (5.77)

which we use to continue estimating (5.74):

(5.74) = / H§N£’+1)(Abc+tB)+tB+(le,2)(AbcﬂB)(dy,m%bCHB(R)
Gc,0UGB;1,08 Yy

&) VD et 4+ (V=D (Boctta) g, 1y,
Gc,0UGB;1,055

({N(Abc +tg) =0})

Y
=™ FD(Rsettn) s+ =2)(Auettn) (GeoUGBaos):

" (5.78)
p({N (Ape +tg) = 0}).
Estimating
HéN£+1)(Abc+tB)+tB+( Y_2)(Apettn) (Geo U Gpon) (5.79)
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in a similar way as (5.72), we obtain that

NY4+1)(Ape+tp)+tp+(NY —2) (Ap+t
Hé ) (Ape+tp)+tp+(N —2)(Ay B)<GC,0UGB;1,0;@)

y A y_ A ~
_ /H;Nr+1)(Abc+tB)+tB+(Nl 3)(Abc+ts)(dy/)nﬁbc+t3(GC’O U GB;I,O;{;)
> HZ(!N?H)(AI,CHB)HBHW73)(Abc+t3) (dy)-
Gc,0UGB;2,0:5
: HﬁbCHB(Gao U GBi100)
y A y_ A _
> HéN7'+l)(Abc+tB)+tB+(Nl 3)(Abc+tB)(GC’0 U GB;2,0;17),U({N(Abc + tB) _ O})
Repeating the splitting on

y A Y_3)(A
H?(JN’V‘ +1)(Abc+tB)+tB+(Nl 3)(Ab6+tB)<GC7O U GB;Q,O;T)) )

we finally obtain for (5.79) by (2.7) and using (5.66) that

y A Y_2)(A
VD Gt 2><Abc+tB)(GqO UGBi00)

> TN Bt te) 4o (G U G -1 N (N} = 2)(Ape + ) = 0}) . (5.80)
Now we estimate

HéNf-“rl)(AchrtB)thB (GC,O U GB;N}’—l,o;ﬁ)

= /Hévry(AbCthB)(dy/)HﬁbCHtB(GC,O U GB;le—l,O;ﬂ)

> Hévg(AbCHB) (dy/)H§b6+2tB (GooUGany—100)

= P H:{/Vg(Abc-FtB)(dy/)Hﬁbc'i‘QtB (GeoU GB;N}—LO;@) . (5.81)

B;le,o;a,z,—B B,C;le,o;f),z,—B

where Gony 02,8 C Q‘A x {—1,1} denotes the set where |V| < C, no more than N/
atoms with [v| < © and no more than 2 atoms with v < —B are to the left of the molecule.
If Y(0) =y € Gponyope-p and no atom enters A during [0, Ay + 2tg], then either

Y (Aye + 2tg) € Gep or Y (Aye + 2tg) € GB;N;/_LO;@. This follows by arguments we gave
underneath (5.46). We then have that

IS (G U G 1.0) = N (A + 2t5) = 0}) (5.82)

for y' € GB.C.NY 0552, B- B
IfY(0) =y" € Gy 02,5 and exactly one atom with Dy, < v < D, enters during [0, Ay ]
from the left, and no atom during [Ay., Ay + 2tg], then either Y(A,, + 2tp) € Gey or
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Y (Ape +2tp) € Gp.nv 1,0, 50 that for y' € Gy o0,
T8 (Gog U Gy —1,00) = N (Ape + 2t5) = 0}). (5.83)

Inequalities (5.82) and (5.83) yield that

(5.81) = / Hévg(AbCHB) (dy/)HibCHtB (GeoUGpnr-104)
B Ny ,055;2, _pYGp C;le,o;a;sz
2, Gt 9) Ay (A (D + 2t) = 0})
Ny 0;9;2, _pYGp C;le,O;'D;Q,fB
= I G0t (G o .0 (TN (Dge + 2t5) = 0}). (5.84)

By the similar splitting which yielded (5.80), we can estimate

T Bt (G o) = N (NY (Dye + ts)) = 0}). (5.85)

Finally, we obtain for (5.52) for any y € G y.; that

2% (Gp.c0) (5.86)

551 Y
(5.51) H?(JN—H)(Abp—I—tB )+3tp (GB o 0)

Y Y 3 / :
H(N +N] +1)(Abc+tB)+3tB+(N (NY +N; ))(Abc+tB)(GB,C;O>

(5.54) y y
> H?(JN +N +1)(Abc+tB)+3tB(GB7C;O) .

PAN (N = (NY + NP)) (D + t) = 03)

(5:68) _(N¥+NY)(Ape+tn)+2ts

I, " (G UGpco)u({N (D + 2tp) = 0})
p({N(N — (N? + NY))(Ape + tg) = 0})

Yy Y
_ H(N +NY) (Bpettp)+2tp (GpoUGBco)-

_ _ (5.87)
PN ((Dpe + 2t5) + (N = (NY + NY))(Dee + tp) = 0})
(5;1) HZ(/Ng+1)(Abc+tB)+tB+(le_1)(5bc+t3)(R)u({N(tB) _ O}) .
PN (Dpe + 2t + (N = (NY + N/)) (A + ) = 0})
(NY+1)(Apettp)+tp+(N/—1)(Dpe+tp)
= ) (7). (5.88)
({N(Abc + 375B + (N - (Ny + Ny))(Abc + tB) = O})
el [V +DGactt) +t (=2 Bactn) (2 G Y.

i({N(Ape + t5) = 0}) -
(AN (Ape + 3tg 4+ (N — (NY + N?))(Ape + tg) = 0})
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y A Y _2)(A
= NGttt N Bt B) (G G G )

_ ) ) (5.89)
(N (2(Ape +tg) + 2tp + (N — (N + NY))(Ape + t5) = 0})
(5§0) H?(JNE‘H)(Abc-ﬁ-tBH-tB (GC,O U GB;lefl;f)) .
(N (N = 2)(Aye + tp)) = 0}) -
. H({N(Q(Abc + tB) + 2tg + (N — (fo + le))(Abc + tB) = 0})
— H?(JNTy‘+1)(Abc+tB)+tB (GC,O U GB;NLy—l;fz) . (5 90)
(N (NY(Dye + 1) + 2t + (N = (NY + NY))(Dpe + 5) = 0}) |
(5;4) Hg]ng(Abc'f‘tB)(GC;le’O;f);Z_B)M({N(Abc +2tp) =0})-
- {N(Ni(Ape + t5) + 2t + (N = (N + N))(Ape + ) = 0})
— Hévfy(Abc‘f'tB)(GC;le’O;ﬁ;Z’iB) . (5 91)
(N (N, + D) (Ape + t5) + 3t + (N — (NY + N (Ape + t5) = 0}) '
S AN (NI (B + 1)) = 0)-
. M({N((Nl + 1)(Abc —+ tB) + 3t + (N — (N;o/ —+ le))(Abc + tB) = 0})
= M({N((N + ]-)(Abc + tB) + StB) = 0}) . (592)

Equalities (5.87), (5.88), (5.89), (5.90), (5.91), (5.92) follow by (2.7) and using (5.66) in a
similar way which gave (5.67).

With that we can now end the proof of Lemma 5.4, since we have for the time in (5.86)
that

Ay 2V (N 4 1)(Ape + t5) + 3tp

(5.60) (N+ 1) ((l)/[ic Uf(y)dv) B +tB) +3tp

(5.41) ,, =

=" t(N)
and for (5.92)

PN (N +1)(Ay + tp) + 3tp) = 0})
(5.22

22 exp (—2p ((]\_f + 1)(Ape +tp) + 3tB> (V 27rlCm)_1)
= exp (—2p(Abc + 4tp)(V 27rICm)_1> exp (—Qp(Abc +1ip)(V QWICm)_lN)

CARLEO) (—2/) ((P /DDC vf(v)dv> B + 4t3) (W)_l) :
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- exp (—Qp (<p/D’ic vf(v)(h))_l _|_tB) (W)‘l N)
= Cho OGN

with Cy, C5 given in (5.43) resp. (5.44). O

Recall that by Lemma 5.3 all states in Gy (cf. (5.10)) can reach a state in Gp.5.;
(cf. (5.16)) or in Gpy., (cf. (5.17)) by a certain time. If we now show how to pro-
ceed from Gy to Gpeo (cf. (5.12)), we can proceed from any state in Gy y to
G'B,cy0, since in Lemma 5.4 we have already shown how to proceed from Gp.5.; to G cyo-

Lemma 5.5. Let

t(V) izsz ((2/) /OB vf(v)dv> ) + (p /D D vf(v)dv> R + tB) +

(5.93)
D -1
+ Ttp + (p/ vf(v)dv)
Dy
with
_ 2m  2(M —m)
Dy = 5.94
M m1n{M+m M Em } (5.94)
and Dy, D, given in (5.25), tp given in (5.13), then for any y € Gy
Y (Gp o) > Cue™ Y (5.95)

with

Cy = exp ( m <7tB + <p /Dl: vf(v)dv) _1)) (5.96)

Cs = 27rIC (<2p/OB vf U)d?})_ + <p/D'ic Uf(v)dv>_ —I—tB> l)]\l/[B (5.97)

Proof of Lemma 5.5. Recall that Gy are all states where the molecule is alone in A

with B < |V| < V. Consider V < C (C given in (5.11)). Then,
GB,‘_/;O C GB7C;0 . (598)

Since the process starting in G 7o stays in Gy, as long as no atom enters A, we have
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fort >0 and y € Gy, by (5.98) that

I, (G.co) > n({N(t) = 0}). (5.99)

Lemma 5.5 then follows, since (5.99) holds for any ¢ > 0, especially for ¢(V') given in (5.93),
and since

pAN (V) = 0})

. . 2 DC B
(5.22),(5.93) exp (_2€C (7253 + (l)/D vf(v)dv) )) .
V2rKm b

o) () ) )

(5.96),(5.97) C4e‘C5V ' (5.100)

Let now V > C. We can write
Gpy.o=GBcoUGeyo, (5.101)
where
Geyo={C<|VI<V,N=0}CQ| x{-1,1} (5.102)
is the set of configurations, where the molecule is alone in A with
C<|V]|<V.

To proceed from (5.101) to G .0, we distinguish in the following if the process starts in
Gp,co or in Ge .

First, consider y € G ¢, . Since the process stays in Gp ¢, as long as no atom enters A,
we can estimate for any ¢t > 0

I1(Cp.c0) > (N (1) = 0). (5.103)

Now consider Y(0) =y € G- To obtain Y(t) € Gy for a time ¢, we have to slow
down the molecule to B < |V| < C. There are various ways to slow down the molecule:
If one sends in exactly one atom, then the velocity of this atom has to depend on Vj, the
velocity of the molecule at time ¢t = 0, to cause B < |V'| < C, while if one sends in more
than one atom, there are procedures where the number of atoms depends on Vj but the
velocities of the atoms may be chosen independent of it. The latter gives in Lemma 5.5 a
time ¢(V), which depends linearly on V, while sending in one atom gives an exponential
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dependency. The latter is based on the fact that the velocity of the atom is distributed
according to the Maxwellian (cf. (2.5)). Since a time, which grows too fast with V, may
lead to a rate 8 (cf. (5.4)), which is not integrable, but integrability is one of the conditions
of the fCLT (cf. (3.5)), we proceed from G y., to Gy by sending in a certain amount
of atoms, whose velocities don’t depend on V4.

Note, if one sends in atoms to slow down the molecule, some of these atoms may need to
be pushed out afterwards so that the molecule is alone in A and the process reaches a state
in Gp . Therefore, we proceed from G 5 to G oy in several steps. In Step 1 we will
slow down the molecule even to |V| < B, since then in Step 2 we can use the procedure
described in the poof of Lemma 5.4 to push out the atoms and achieve the molecule alone
in A with B < |V] < C.

Step 1: Let the molecule be alone in A with
C<|Vo| <V. (5.104)
To slow down the molecule to |V| < B, we send in atoms with
0<|v]<B (5.105)

and no others. Note following facts: If |v| < |V|, the velocity of the molecule and the atom
have different signs when colliding. Further, as long as atoms with (5.105) collide with
the molecule with |V| > B, they leave the interval without an additional collision, since
|v'| > |V’|. The latter follows since M > m. If after some collisions the molecule is slowed
down to |V| < B, but the molecule still collides with atoms with (5.105), the molecule
stays slower than B, since M > m.

The larger |V, the more atoms with (5.105) may be necessary to obtain |V| < B. Since
Vo] is bounded by V, there is an upper bound on the number of atoms with (5.105), which
are needed to slow down the molecule to |V| < B. To specify this bound, we estimate
how much the molecule is slowed down at least by a collision with an atom with velocity
(5.105).

Let V;,2 = 1,2, ... denote the velocity of the molecule after the collision with the i-th atom
with pre collision velocity v;, where the numbering is in respect to the order of collision.

Assertion 5.10. Let V;_; > Band —B <v; <0orV,_; < —Band 0 < v; < B. Then,
\Vical = Vil > Du B

with Dy, given in (5.94).

Poof of Assertion 5.10. First, we determine an upper bound for |V;| depending on |V;_4].
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From the collision equation (2.1) we obtain the following

then

M —3 M —
ZTMp oy« m
M +m

If V,_y < —B and 0 < v; < B, then

Vit
M+m !

M — M—-3
m m o

Viil<Vi< ———
| 1| M+m

_M+m
For 3m < M we have that
M —3m

B>0
M+m
and it follows that

M — 3m M—-—m
— B < |V <
M +m Vi M +m

Vil

For 2m < M < 3m we obtain

M—m
Vil < Vicil s
Vil < StV
since
M —3m
— B <0
M+m —
but

M —3m M—-—m
— B < Vil .
M+m M—l—m| 1|

L IfViy>Band —B <wv; <0,

Hence, for 2m < M we may estimate the difference between |V;_1| and |V;| by

M —m
M+m

Vial = [Vil > [Viea| =

For m < M < 2m there are values of V;_, namely

M —3m
B Vi —-———B,
<[Vial < M —m
for which
M — M
_ SmB

> =y
M+m M+m 1—11 >

Viea| = Viea| >

(5.106)
(5.107)

2m
T +m (5.108)
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and values, namely

M — 3m
Vi >-———"-B8
Virl 2 =30

for which

M —3m M—m
- B < ‘/if )
M+m _M+m| 2

so that with (5.106) and (5.107)

M —3 M —
\4 <max{— o m|%_1|}

M+m "M+m

and furthermore,

M—-3m _ M-—m
Viea| = Vil > [Viea| = max { - Vil

M+m "M+m

M —3m 2m
= min | |V;- ; Vie
M<2m 2(M — m)
B 5.109
> M Tm (5.109)
All in all we have by (5.108) and (5.109) that
_ 2m  2(M —m)
Vieal = Vi ; B
Vil = W i {2 20T =0
Assertion 5.10 follows with (5.94).
[

By Assertion 5.10 we can determine an upper bound on the number of atoms which are
needed to obtain |V| < B: Let n such that |V,_4| > B. Then, |V;_1| > B for any
i€ {l,..,n} and by Assertion 5.10 we get that

Vol = [Val = S2 Vi = [Vil > 32 DasB = nDys B
i=1 i=1
and further,

[Vol<
<

\% _
V.| < —=nDuyB + Vi —nDyB+V .

Since

—nDyB+V < B
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& —— - —<n, (5.110)

for any n € N with (5.110) it holds that |V,,| < B. Furthermore, there is exactly one n € N
with (5.110) such that

—— —1<n< =Ny, (5.111)

with Dy, given in (5.94). Note, since Dy, < 1, 7 with (5.111) fulfills indeed (5.110). That
means if the molecule with (5.104) collides with 7 (or more) atoms with (5.105) (and no
others) it will achieve |V| < B.

Now we specify the states in which the process is at a certain time if it starts in Gy
and if one sends in 7 atoms with (5.105) (and no others).
Consider Y(0) =y € Go o and let

A>0. (5.112)

Consider the event that 72 (cf. (5.111)) atoms with (5.105) (and no others) enter A during
[0, A] and no atom during [A, A + 2tg|. Then, by time A + 2tg |V| < B. This follows
since

(i) if [V(A)] < B: Once there is a j such that |V}| < B, it follows that |Vj| < B for
i > j, since the remaining colliding atoms have velocity 0 < |v| < B and cannot

make the molecule faster than B. Since [V(A)| < B it follows that [V (¢)| < B for
t € [A, A + 2tB]>

(ii) if |V (A)| > B: Since n is a uniform upper bound on the number of atoms which are
needed to achieve |V| < B, for any y € Gy there is a n < 7 such that |V;| > B
for i <mn—1and |V,| < B. Once |V,| < B, it follows that |V;| < B for i > n,
since the remaining colliding atoms have velocity 0 < |v| < B and cannot make the
molecule faster than B. By time A all 72 atoms have entered A. We know that by
a collision with one of these atoms the molecule is slowed down from |V| > B to a
speed less than B. Let 7 denote the time of this collision. Since |V (¢)| > B for all
t € [A, A + 7], the collision takes place before A + 2t .

Now we consider the event, that no atom enters A during [A 4 2t5, A + 3tg]. We can
conclude by a similar argumentation as in (a) underneath (5.14), that by time

A+ 3tg

there are no more than n atoms in A, each with

3M —
< 22— "By (5.113)
m
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(ct. (5.15)).

By the above we can estimate transitions starting in G o and being at a certain time
in G By .5, Where

Gpags={IV| < B,N <7y, o] <0} C Q| x{-1,1} (5.114)

is the set of configurations, where |V'| < B, there are no more than ny (cf. (5.111)) atoms
in A and each atom has velocity [v| < v (cf. (5.113)). We shall show that for any y € Gy g
and

SN ﬁ‘—/
W)= e

with t5 given in (5.13), we have that

+3tp (5.115)

15 Gy ) > p((N(0(V) = 0)}). (5.116)

To prove (5.116) consider Y (0) = y € Gy, i-e. the molecule is alone in A with C' <
V| < V. Let A as given in (5.112). Since M, is a stationary Markov process

T8 (Gpng) = [ T (AT (G o) (5.117)

To continue estimating (5.117), denote by H C Q‘A x {—1,1} the set of configurations,

which are possible for the system at time A, starting in G¢,yo and undergoing the proce-
dure we described underneath (5.112), i.e. with ease of notation

H = {|V| < B and there are no more than n atoms in A.
If for an atom |v| > B,
then it moves in opposite direction of the molecule.}
U{|V] > B, and there are no more than n atoms in A.
If for an atom |v| > B,
then it moves in opposite direction of the molecule.
If 0 < |v| < B, the atom moves towards the molecule.
By at least one of the collision with these atoms, |V'| < B.}

with 72 given in (5.111). We then have
(5.117) > /H T2 (dy/ ) T8 (G o ) - (5.118)

By arguments (i) and (ii) we gave above and by similar argumentation as in (a) underneath
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(5.14), for any Y (0) =y € H we have that Y (3tp) € Gpa, s if no atom enters A during
0,3tg]. With that we get that

(5.118) > [ T (dy)u({N (3t5) = 0})
= I (H)u({N (3t5) = 0}). (5.119)

By definition of H, for Y (0) = y € G¢y o we have that Y(A) = y € H if 71 atoms with
(5.105) (and no others) enter A during [0, A]. Hence, it follows that

I (H) = p({Njo,s/(8) = i} u({Njpi(A) = 0}). (5.120)

)

Until now A can be any time > 0 (cf. (5.112)). To estimate the r.h.s. of (5.120) by
p({N(A) = 0})), so that we obtain at the end an estimation similar to (5.116), we need
to specify A. Since NV p|(A), the number of atoms with 0 < [v| < B entering A in a time
interval of length A, is a Poisson random variable with

E (Mo (3)) = 20 [ f (o),

it follows that in a time interval of length

ny

Ay = ——5F 5.121
P el ) 12
(ny given in (5.111)) the expected number of atoms entering with 0 < |v| < B is
E(No.51(Ap)) = iy (5.122)
Choosing
A=A,

and using the monotonicity of Poisson random variables (cf. (5.62)) for the random variable
No.5|(Ay) with mean iy (cf. (5.122)), we can estimate since ny > n > 0

(5.120) > u(tNos (Ap) = 01)p((Nig o (Ap) = 1)
2 N (Ap) = 0}). (5.123)

Finally, (5.116) follows since for (5.117) from (5.118), (5.119), (5.120) and (5.123) we
have for y € Gy that

238 (G 5) > p({N(Ap + 3tp) = 0}),
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with

5.115),(5.121) =

Ag +3ts (V).

Step 2: Recall that in Lemma 5.5 we have as target set G o (cf. (5.12)), so now we
need to proceed from Gpg. 5 (cf. (5.114)) to G co. We immediately obtain an estimate
for the transitions starting in Gps_ 5 since we can use Lemma 5.4. (Note that o = v (cf.
(5.16), (5.113))): For

Dy

ta(fip) == (7ip + 1) (<p/DC vf(v)dv>_ +t3) + 3tp (5.124)

with ny given in (5.111), Dy, D, given in (5.25), tp given in (5.13),
I 0(Gp o) 2 (N (t2(7p) = 0}) (5.125)

for any y € Gpay -

In Step 1 and Step 2 we have shown how to proceed from G y.q (cf. (5.102)) to Gpa, s
(cf. (5.114)) and from Gy, 5 to Gpcyp (cf. (5.12)) and we obtain by these steps, since
M, is a stationary Markov process, for y € Gy that

thl(V)—i_tQ(ﬁV)(GB,C;O) _ /HZI(V)(dy,)HZQI(ﬁV)(GB7C;O) (5.126)
Z/ Hzl(v)(dy/)nfﬁ(ﬁw(GB,C;O)
GB,ﬁV o
(5.125) 7Y/ 4 B
> Iy )u(iN(t(rg)) = 0})
Bag,0

= 14V)(G gy o) ({N (t2(7g)) = 0})

U3 LN (B(T) = O (N (1a(iig)) = O})
D LN (1 (V) + () = 0}) (5.127)

with #;(V) given in (5.115), ta(ny) given in (5.124). With that we can end the proof of
Lemma 5.5 for V > (' Since

t1(V) + ta(ny) =

_ -1
(5.115),(5.124) ni _ De
= —————— + 3tg+ (nv +1 / d +1 + 3t
20 [P vf(v)dv 5+ (v +1) ((p Dy vfv) U) B) ’

Giy V 1 1% De -
11 n 41 / dv) +tp|+6t
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()

it follows for (5.126) with (5.127) that

1 V2000 (G ) = TV (G ) > p({N(H(V)) = 0) (5.128)

for any y € Gy -

Since (5.103) is valid for y € G and any t > 0, especially for ¢(V) (cf. (5.93)), we

obtain by (5.103) and (5.128) with (5.100) that for any y € Gp,c,o U Gy (G100 Gpyo

that
T (Gpep) > Cre Y

[

Taking Lemma 5.3, Lemma 5.4 and Lemma 5.5 together, we get estimates for transitions,
which start in Gy 5 (cf. (5.10)) and reach states in G ey (cf. (5.12)) at a certain time.
We can show now the following lemma, which we need for the proof of the Overlap-Lemma
5.2.

Lemma 5.6. Let

t(V,N) := max{4tg + t(V), 4tz + t(N)} (5.129)

with tp given in (5.13), (V') given in (5.93) and ¢(N) given in (5.41),
then for any y € Gy y

<

TN (G p o) > e(V, N) (5.130)
with
5(\_/, N) := min {01046_05‘7, CIC’ge_Q’N} - min {C’loe_cnv, 0128_013N} (5.131)

with C; given in (5.18), Cy, C5 given in (5.43) resp. (5.44), Cy4, C5 given in (5.96) resp.
(5.97) and

Cio :=exp (—4p (11253 + (p /DDC vf(v)dv>_ ) (v QWICm)_l) , (5.132)
Cyy = DL]L;B (tB + <2p/DB vf(v)dv>_ + (p/D[:c vf(v)dv>_ ) (\/27T1Cm)_1
(5.133)
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Cg = exp (—4p (StB + (p /DZZ Uf(v)dv) _1) (\/M)_l) , (5.134)

Chs == 4p (tB + (p/D[:C vf(v)dv)l) (\/M)_l (5.135)

with Dy, D, given in (5.25) and D), given in (5.94).

Proof of Lemma 5.6. Note, since M, is a stationary Markov process, we obtain by Lemma
5.3 and Lemma 5.4 resp. Lemma 5.5, for y € Gy 5 (cf. (5.10)) that either

(i) if I1}'" (Gp.5.5) > Ch, then

H4tB+t (GB CO) /Hgts (dyl>HZ(/N)(GB,C;O)

> I, (dy )L™ (G, c0)
GB;N;T)
(5:42) 4t / —C3N
2 Hy B (dy )Cge 3
GB;N;I")
= H;ltB (GB;N;'D)CEeiCSN

(5.19) -
> 010y N (5.136)

with G y.; given in (5.16), t(N) given in (5.41), C; given in (5.18) and Cs, C5 given
n (5.43) resp. (5.44),

or

(i) if IT}'" (G g 57.9) > C1, then

2+ (G ca) = [T @)1 “”(GBco)

> / H4t3 (/V)(GB,C;(J)
B V 0
(5.95)
> I (dy')Cye™ Y
GB,\? 0

=11, (Gp, \7-0)046_05‘7

(5.20)
> 01 048 (5137)

with G o given in (5.17), ¢(V) given in (5.93), C; given in (5.18), Cy, C5 given in
(5.96) resp. (5.97).

52



We now estimate

<

TN (G p )

to show Lemma 5.6 by using estimates (5.136) and (5.137). Recall that

(5.129) _ _

t(V,N) "=" max{4tp +t(V),4tp +t(N)}.

We first give separate estimates depending on the value of t(‘_/,]\_f ), i.e. we distinguish
if t(V,N) =4tg +t(N) or if t(V,N) = 4tp + t(V). Within these cases we distinguish a
second time, namely as in (5.136) and (5.137).

Set
ty o =4t +t(V) (5.138)
(5.93) 1% B - De -
= 5. B (<2p/0 vf(v)dv) + <p/Db vf(v)dv) +ip |+
D -1
+ 11tp + <p/D vf(v)dv)
=Ce + C;V (5.139)
with
De -1
Cs = 11tp + <p/D vf(v)dv) : (5.140)
and

-1

Cr:= D;[B (<2p/oB Uf(U)dU) + (p/Dl:c vf(v)dv>_ + tB) (5.141)

with Dy, D, given in (5.25) and D, given in (5.94), and set

ty = A4tp + (V) (5.142)
_ De -1
(5.41) (N+ 1) ((p/Db vf(v)dv) —i—tB) + Ttp
— O+ CoN (5.143)
with
De. -1
Cy :=8tg + (,O/D vf(v)dv) ) (5.144)
b
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and

-1

D.
Cy:=tp+ (p/ vf(v)dv) (5.145)

Dy

with Dy, D, given in (5.25).

Assume ¢(V, N) = ty, then

(i) if I1}'? (G p.5.5) > C1, we have
VNG e0) = TV (G o0)
(5. 142) H4t3+t (GB o 0)

(5.136)

> 01 Che N | (5.146)
(i) if IT}'" (G p.y0) > C1, we have that

HZ(V’N)(GB,C;O) =, (Gp.c0)
- Htf/*(tﬁ*t"/) (GB,co)

_ /Ht tN_tV(GBC’O)
> % (dy )ILY 7 (Gp.co) - (5.147)
Gg,c:0

Since Y(O) =y € Gpoyp stays in Gp o until t5 — ¢y if no atom enters A during
[0,t5y — ti7], we can estimate (5.147) as follows.

. T O™ G

= o LY (dy ) u({N (ty — ty) = 0})
P O (G ) (N (b5 — 1) = 0])
(53 ) C1Cye GV ({N(tﬁ - tf/) = 0}) . (5'148)

Assume now ¢(V, N) = t, then

(i) if I1}'" (G p.5.5) > C1, we have

HZ(V’N)(GB,C;()) = H;}V (GB,C;O)
— HtN+(tV_tN)<GB c0)

—/HtN Hv tN(GBCO>
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> Y (dy)ILY ¥ (G p.co) -

GB,c0

(5.149)

Since Y(O) =y € Gpoyp stays in Gp oy until ¢y — t5 if no atom enters A during

0,ty — ty], we get for (5.149)

/G 19 (dy/ )TV (G cr0)
B,C;0

> LN (dy ) u({N (ty — ty) = 0})

GB,c;o

(5.142) H4tB+t NGp.eo)p({N(ty —tg) = 0})
(5.136)

> CCoe” N u({N (ty — ty) = 0})

(i) if II}'2 (G p.5.0) > C1, we have that

YN (Gp.c0) = I (Gp.cv0)
5.138
( e ) H4t5+t (GBCO)

(5.137)

> C’lCe OV

Combining all four estimates (5.146), (5.148), (5.150), (5.151) we obtain, since
p{N(|ty —tvl) = 0}) <1
that
Hyv ) (GB CO) > min {01026 s 01046_05‘7} .
pN(ty —tx]) = 0})

with

_ 0}) 2 g (2Pt — tal
W{N (It — t]) = 0)) p( m)

Since |ty — ty| < 2-max {ty,ty} it follows for (5.153) that
pN(lty —txl) = 0}) =

2p|ty — tyl
—= X —_——
P ( V2rKm

> min {exp <_\/‘;PtTv> , €Xp (_\/ép%)}
TIkm TIkm

(5.150)

(5.151)

(5.152)

(5.153)

(5.154)
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(5.139)(5.143) . { ( 4p(Cs + C7V) 4p(Cs + CyN)
= min{exp | ——————= | ,exp | — : (5.155)
\V2rKm V2TKm

We now show that (5.155) is an equivalent expression of the second factor in (5.131). With

4p (11 Dy f(v)dv)
( 4pCj ) (5.140) p( tp+ (’0 Jp; vf(v) v) ) (5.132)
exp| ———] ="exp| — =

="C
V2rKm V2rKm 1
and
4pC7 (5141 1 1 N 1 41 4p
V2rKm DuB \2p [l vf(v)dv  p[hrvf(v)dy P V2rkm
133
(5£ ) Cll )
we have that
4p(Cs + C7V) —onv
- | =C He 5.156
P ( VarKm ¢ (3:150)
and with
D, -1
N <_ 4pCs ) st _4/) (8tB + (p Joe vf (v)dv) ) s,
P V 27T1Cm P \/ 27{']Cm 12
and
D, -1
4pCy  (5.145) p (tB T (p Ip, vf(v)dv) ) (5135)
V2TKm V2TKm e
we have that
4p(Cs + CyN) —C1sN
e — = (e 713, 5.157
Xp < \/m 12 ( )
Plugging (5.156) and (5.157) into (5.155) we obtain for (5.154) that
pUN |ty — ty]) = 0}) > min {Croe Y, Crpe™ sV} (5.158)

Finally, Lemma 5.6 follows, since with (5.158) we obtain for (5.152) that

HZ(V’N)(GB@v;O) 2 min {O1C4Q_C5V, 01026_03N} min {0108_011‘7, 0126_013N}
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for any y € Gy y. ]

The last remaining step we need for the proof of the Overlap-Lemma 5.2, is to establish
overlap of transitions starting in Gp o (cf. (5.12)). We specify an explicit set, the over-
lap set, where loosely speaking any state can be reached at a certain time by a positive
probability starting in any state in G ¢,. Proving that, we let atoms enter A depending
on the molecular velocity and position as well as the value of o (cf. (2.14)). To keep it
simple, we choose the overlap set such, that the molecule is alone, and that any state in
the overlap set can be reached by any starting state in Gp ¢, by sending in exactly one
atom, which leaves by time the interval again. By identifying the overlap set one has to
take care of “virtual collisions”. These are collisions which are impossible if one knows the
past trajectory of the molecule. Since these depend on the mass of the molecule M and
hence, on the overlap set as well, we distinguish in the following different cases depending
on M, namely if M > 3m,3m > M > 2m or 2m > M > m.

Denote by P the path measure induced by M, and let P, denote the conditional path
measure given Y (0) =y, y € Q) x {=1,1}. Consider Y (0) =y € Gp,c.

Case M > 3m

Denote by 71 the time when the molecule hits the wall at L the first time after ¢ = 0,
and by 75 the time when the molecule hits the wall at L the next time after 7;. Define

Vii=V(n),01:=0(n) and V2 := V(12), 02 1= 0(72).

Lemma 5.7. Let Y(0) = y € Gp,cy0. Denote by O the set of paths with

O .= {Molecule is alone at time 79, (5.159)
B )
€ Tei= (123LM]143m’ 123LJ\]\44:L3T;1>’ (5.161)
Oy = 1} .
Then, there is a function h, : Vo X T3 — R* such that
P,(dY) > hy(Va, 72)dVadr (5.162)

for dY C O with Y (7)) = (L, V2, 03).
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Furthermore there is a constant g > 0, which will be specified later, such that
hy > g (5.163)

for any y € G cy0.

Proof of Lemma 5.7. Consider Y (0) =y € Gy, i.e.

y = (Qo, Vo, 00) (5.164)

with B < |Vp| < C. Denote by 7 (y) the value of 7; for the process with Y (0) = y. If the
molecule moves freely in A, then 71 (y) with (5.164) is given by

=% V>0
T1(y) = { AT R (5.165)
Vol » VO
with
0<mi(y) < 2p, (5.166)

and tp given in (5.13). Inequality (5.166) follows, since B < |V| < C. Consider the event
o ) C Q) with

Er(y) = {No atom enters A during [0, 7 (y)]} . (5.167)

Then, at time 71(y) the molecule is alone in the interval and

Y(n(y)) = (L, V1,01), (5.168)
with
_ _Vb 7% >0
_ —0o )‘/b >0
o1 = { - V<0 (5.170)
Note that
—-C<V<-B, (5.171)

with C' given in (5.11).
Denote by Cy(&;,(y)) the corresponding set of paths of M; to {Y'(0) = y,&;, ()}, i-e. the
set of all paths of M, for which Y (0) = y and &,,(,) is possible. Then, we have for y given
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n (5.164) that

Py (dY' (- +7(y))) = Py(dY (- +7(y)) N Cy(Eny))) (5.172)
)

= PAY (- + 11(1)) | Cy(En )Py (Cy (Eniy)) -
(5.173)

Note that Cy(&-,(y)) exists of exactly one path, and the trajectory of this path is determined
until time 7'1( ). Denote by {Y(0) = y; Y(t),t < 7i(y)} the trajectory of this path, then
we obtain that

PAY (- +71(y)) [ Cy(Ery)))
=PAY (- +7(y){Y(0) =y; Y(t),t <71(y)})
=PAY (- + 1) Y (n(y)) (5.174)

with Y (71(y)) given in (5.168). Note that (5.174) follows by the Markov property. With

Py(Cy(Er ) ) = (& (v) )

62 <_ 2/;1’(51) ) ’ (5.175)
V21Km

we obtain for the Lh.s. of (5.172) that

ByAY (- +m) 2 B@Y (- +71(1))|CyEnin)By(ColEnin))

PAY (- +7m1(y)| Y (m1(y)) exp <— j{%) (5.176)

(5.174),(5.175)

where Y (71(y)) is given by (5.168) with (5.169) and (5.170).

To give a lower bound for the Lh.s. of (5.162), namely for P, (dY’) with dY C O, we now
define events on which the process starting in Y (r) = (L, Vi,0q) with —C <V} < —B
reaches a state in the overlap set O defined in (5.159). With that we obtain an estimate
for

P(AY|Y (1)) (5.177)

for dY' C O, which gives together with (5.176) a lower bound for (5.162).
Consider 7; with

0<7 <2p (5.178)
and

Y(n) = (L,V1,01) (5.179)
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with
-C<Vi<-B. (5.180)

Note that these are the conditions on 7 and Y () for which (5.176) holds.
If oy = 1, consider the event &, . C Q with

E‘Z}Nl := {Exactly one atom enters A during 7 and 7 with velocity (5.181)
. M —3m M + mB M—-—m
ve V= Vil,
M+3m 2m 5  2m (5 182)
M —3m B M — m‘v ‘> ’
om 5  2m !
such that it collides with the molecule at collision time
AL + Vi |(1q — 10L M=om —|—M 2m_\y)
TeTxZ/m()‘—< Vil 5 arsm) M?’mH,
2 Vil + [o]) s
4L+H/1‘<Tl 1%LMM€3771%+W>—i_M MgmM—i-m’v|)}
e (V] + o))
and if oy = —1 consider the event &ff . C Q with
&Y ., = {Exactly one atom enters A during 71 and 7, with velocity (5.184)
g M-3mM+mB M-m
e Vi = ( V;
eV =\ 3m am 5 T am VI (5.185)
M —-3mB . M — m|V |> ’
om 5 om
such that it collides with the molecule at collision time
10LM-m M 0L 2m M
T e T‘ifi n(”) = (|V1|(71 ~ "B M+m M- 3m) + B im0 3mv’
| v (V4] +0) (5.186)
it = ) + i) |
= (Vi) + v)

Note that 75 is determined by Vi, 7, v and 7 and since these values are bounded, 75 is

bounded.

First, we show that 5{/ -, and &y 4 . -, are well defined. To be precise, we show more, namely
that any collision time 7' €Ty, n( v) resp. Ty . (v) is possible, given that the atom enters
A between 7 and 71 + | (Whlch is the time when the molecule would reach the wall at L

if it moved freely) with Velomty v e Vi resp. V4. For this proof, we first show from which
direction the atom in &, . resp. £ . enters the interval (Assertion 5.11 resp. Assertion
5.12). Then, we give bounds for the collision time 7, from which we can make conclusions
about the direction the molecule travels right before the collision takes place (Assertion
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5.13 resp. Assertion 5.14). Finally, by these assertions we prove that 5{}1771 and 8{}'1’T1 are
well defined.
Note that these assertions follow by elementary algebra.

Assertion 5.11. Consider V{. as defined in (5.182), then
vE V‘ﬁl =v<0,

i.e. on & . the atom enters from the right.

Proof of Assertion 5.11. Consider v € V‘ﬁl. Since then

618 M — 3m B M—m‘ ‘(5-§O)M—3m§ M—m
on 5 om ! on 5 om

v B <0,

the atom enters from the right. ]

Assertion 5.12. Consider Vi as defined in (5.185), then
veEVE =v>0,

i.e. on & _ the atom enters from the left.

)
1,71

Proof of Assertion 5.12. Since M > 3m we have for v € V{ that

(5.185) M—3mM+mB+M—m
M+3m 2m 5 2m

V1| >0,

v

i.e. on & . the atom enters from the left.

?
1,71

Assertion 5.13. If 7 € Ty, . (v) (cf. (5.183)) with v € V{, (cf. (5.182)), then

+2L< < +4L
nm+—— <7<7+ 7.
A A
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Proof of Assertion 5.13. By Assertion 5.11 it follows on V7, that

M 3ImB M—m M-3mM+mB M m
Vil < < — Vi 5.187
om 5 " om Wil<Pl<-3rmr o5t Vil (5.187)
and we obtain that
7_(5.1>83) AL + |Vi|(m1 — %Aj‘f}%)jLﬂ 2m —|v|
e ([VA] + [v])
(5.187) 4L + |Vi|(ry — 1%L Mmoo @MQ’” |v]
(V] = S igie 2 )
AL Vi e e
Vi - e
M2 3m 4L 10L M—m+1OL 2m v
R T_
Vil "' B M—-3m B M-3m|V
AL 10L ]
= (M= — O
AR B(M—3m><( ™) m|v1|>
(5.187) 4L 10L M—-—3m B
_ - = (M= - v (M-
AR B(M—:am)(( Mt ””)
+2L
= T
Ll
and that
(5.1<83) AL 4+ Vi|(m — 1%LM]\43m%+m)+& M3mM+m‘U|
T (V4] + [v])
_ AL+ iIm — S e G VAl — w7 o) (5.188)
e ([VA] + [v]) ' '
Since
M—m 2m
V _
M+m| 8 M + [V
>M—m‘v‘ 2m (M—m’ | M—SmM—l—mB)
Mam' " Mt om Y M+3m 2m 5
_M—3mB
- M+3mb5
>0
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and

10L M M>3m 8L (5:171),(5.166) AL

—_— > — > — 5.189
B M —3m B - Tt Vi|’ ( )
we can estimate
L_M
M+m(|V1| + [v])
(5.1<89) AL + |Vi|m — (7'1 + m) (M+m|V1| ]\ffm|v|)
s (VA + [vl)
4L+ e (Val + [vl) — 4L%£ + \L\l/ﬁ el
M+m(|V1| + [v])
= AL(1 - §i + \vll Wi VD) + wrem (VA + o))
arpm VAl + [0])
_AaLgps (MR + arran(Val + o))
wrm VAl + [0])
n AL
il
so that
T<T+ 57
Ll
[
Assertion 5.14. If 7 € Ty} _ (v) (cf. (5.186)) with v € Vi (cf. (5.185)), then
L <T<T+ 5 2L
T<T
T mal
Proof of Assertion 5.14. Consider T € T{% _ (v), then we have that
Vil(rs — 5 Ao 5ream) B it g |V
wrm VAl + [0])
Vilm + 10L M v Vi
| 1|71 M—3m <M+m| |- M+m| 1)) (5.190)

i (V] + [0])
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Since by Assertion 5.12, on V‘Z v >0, ie.

M-3mM+mB M-m M-3mB M-m
Vi _ Vi 191
Mi3m am 5t am W<kl Tl (5.191)
it follows for M > 3m that
2m v M — m’ ’5191)M—3m§>
M +m Mim ! M+3m5
and since
10L M _4L(M—3m)+L(M—3m)+5L(M—I—3m)
B M—3m B(M — 3m)
_4L+L+5LM+3m
B B BM-3m
5.171),(5.166 L 5LM+3
eamyeien o Loy on M om (5.192)

Vil © B M —3m

we can estimate

Vilr + 5 5 (5ol = AsmlviD)

(5.190) = m—
e (V] +v)
(5. 191)>(5 192) |V1|7'1 + (7'1 + ‘V1| + BBL%%ZQ) (M+m|v| M+m|V1|))
2 (Val+ o)
v|L 2m m
= M+m7'1<‘vl‘ + [v]) + l\v‘ | J\/12+m + 1\/12+mL
e Vil +v)
(VAL Jol) + (V] o))
Vi| + |v]
+7a
V|
and thus
T>T + 7+
ol
Furthermore, we have that
(5.186) [Vi|(m1 — S T ) + 10F e S [y
wite VAl =+ Jv])
(5.191) |V1|(T1 i) + 2L + 10L1\A44 Vil

(|V1|+M n i St al)

Mer M+3m 2m 5
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. |‘/1|T1+2L
|V1| + M-3m B

M+m 5
M><3m i 2L
T —_— .
A

]

We have shown that on £, . the atom enters from the right (cf. Assertion 5.11) and collides
with the molecule during (T 1+ %, T+ %) (cf. Assertion 5.13), whereas on & _ the

Vi,m1
atom enters from the left (cf. Assertion 5.12) and collides during (71 + ﬁ, 71+ %) with
the molecule (cf. Assertion 5.14). Using these results, we can show that an atom which
collides with pre collision velocity v € Vi (cf. (5.182)) resp. Vi (cf. (5.185)) coming
from the right resp. from the left with the molecule at any time 7 € Ty, . (v) (cf. (5.183))

resp. T _ (v) (cf. (5.186)), has entered the interval between 7, and 7 + %, given that

V1,11
Y(m) = (L, Vi,01) with —C <V} < —B, and that no other atom enters the interval during
71 and 7 + %. Recall that = + % is the time when the molecule would reach the wall

at L if it moved freely.

Denote by 7. the entering time of the atom and recall that 7; is the time, when the molecule
is at L the first time after ¢ = 0, and that 7 is the time when the molecule and the atom
collide.

Consider Y (71) as given in (5.179) with (5.180), v € Vi (i.e. the atom is entering from
the right) and 7 € Ty,  (v). Since then by Assertion 5.13 the collision takes place after

T+ %, which is the time the molecule was reflected at —L, but before 71 + |47f‘ (which is
the time the molecule would reach L again if it moved freely), the sum of the distance the
molecule travels between 71 and 7, and of the distance the atom travels between 7. and 7

is 4L. Hence, 7, is determined by
Vil(T — 7)) + |of (7 — 7e) = 4L,
which gives

V4 4L
7-8:||1||(7'—7'1)—}—7'—, (5193)
v

We then obtain by Assertion 5.13 that

. 1% 4L
Te (5.199) m(7' —T)+T—
|v] |v]
S 2L P 2L AL
2
|v] Vil ol
n 2L 2L
=T+~ T
Vil ol
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and since

| |(5~1>82)M—m|v| M—-3mB
v ! 2m b5
Vil>2 M —m M —3m
> V; — W
- =
= [V

we have that
Te > Ty . (5.194)

For the upper bound of 7, we estimate by Assertion 5.13 that

. (5.193) M(7‘ —1)+T— L
|v] |v]
4L T 4L 4L
) i
= Jof AN
4L
it (5.195)

Consider now Y'(71) as given in (5.179) with (5.180), v € Vi (i.e. the atom enters from
the left) and 7 € Ty _ (v). Since then by Assertion 5.14 the collision takes place after
1+ IV% and before 7, + ‘27?, which is the time the molecule would reach —L if it moved
freely, the sum of the distance the molecule travels between 7 and 7, and of the distance
the atom travels between 7, and 7 is 2L. Hence, 7. is determined by

Vil(m — 7)) + |v[(7e —7) = 2L,
which gives

V, 2L
) ||Ul||(7__7_1)+7__. (5.196)

We then obtain by Assertion 5.14 that

1% 2L
6(5196 | 1|(7__7_1)+7__7
|v] |v]
g L 2L
1 —_—
Tl Vil ol
L L
Vil vl

66



and since for v € V{/

M — 3mM+mB+M m‘v‘
M+3m 2m 5 2m !
- M-3mM+mB M-—3m
M+3m 2m 5+ 2m

M>3m

Wl

o] >

Va| + [VA]

we have that
Te > T1- (5.197)

For the upper bound of 7, we obtain by Assertion 5.14 that

(5.196) |V1|( )= 2L
e = —(1T—7)—T—+—
v v
- 2L n 2L 2L
v Vil vl
2L
A (5-158)

With (5.194) and (5.195) resp. (5.197) and (5.198) we have shown that &}

Vi,m and 8‘1}1 )Tl
are well defined and any collision time 7 € T} "/1 - (V) resp. Tf}l - (v) is possible, given that
the atom enters A between 7 and 7.

Before we show that on &, _ and &} _ the process reaches a state in O (cf. (5.159)),
we identify the corresponding (U q)-set of 5\/1 5, and Svl +» Where ¢ is the position of the
atom at time ¢ = 0.

On &, ., (cf. (5.181)), the atom which collides with the molecule at time 7 with velocity
v was at time ¢t = 0 at position

2L
q=—L+ |V (7’— (7’1—1— |V|>> + |v|T

= =3L+ ([Vi| + [o)r = [Vi] 7. (5.199)

With 7 € Ty, ., (v) (cf. (5.183)) we obtain that the (v, ¢)-set described in &, . is

VOl = {(v.q) v € Vi q € Qi (1)} (5.200)
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with V}. as given in (5.182) and

Qi/l,‘ﬁ(v) =
M+m M—m 10L M +m M—m
— (3L AL _n a2 m
( s+ = T om Vilm B M —3m (’Vl’ om ‘”')’ (5.201)
M+m M—m 0L M M—m
_3L AL _b M _ .
SLt — AL+ — = Wiln = e <| =5 |“|)>

Note that (5.201) follows by plugging in the bounds of T, .. (v) (cf. (5.183)) in (5.199).
On &} . (cf. (5.184)), the atom which collides with the molecule at time 7 with velocity
v was at time ¢ = 0 at position

q¢=L—=MW[(r—7)—[olr
=L — (] + [v])7 + [Vi|m. (5.202)

With 7 € Ty} _ (v) (cf. (5.186)), we obtain that the (v, q)-set described in £} _ is given by

VOl = {(v.g) sv € Vg € @, (1)} (5.203)

with V4 given in (5.185) and

M—m 10L M +m M —m
Qi) = (L= 25 Wl = i (lel = =0 W)
2m B M —3m (5204)
L—M_m\V\ _10L M (H M—m|V|)> ’
om U B M —3m !

Note that (5.204) follows by plugging in the bounds of T{} _ (v) (cf. (5.186)) in (5.202).

Finally, we show if Y'(7q) is given by (5.179) with (5.180) and 7, as given in (5.178), then
on &, . (cf. (5.181)) resp. &% ., (cf. (5.184)) the molecule is alone in A at time 75, and

Vi,m1

7 € To (cf. (5.161)), Vo € Vo, (cf. (5.160)), 0o = 1, i.e.
Y € O (cf. (5.159)). (5.205)

Recall, if o1 = 1, we consider &, . and if o0y = —1, we consider &} _ .
Denote by V,_ the pre collision velocity of the molecule Note that on 8"'/1 .

Voo =W, (5.206)

since the atom meets the molecule, when the molecule moves in positive direction (cf.
Assertion 5.13). On &f}

Ve =—-W], (5.207)

since the atom meets the molecule, when the molecule moves in negative direction (cf.
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Assertion 5.14). The post collision velocity V' of the molecule is then given by

M—-—m 2m

= g
Mim ™~ Mim

v (5.208)

(cf. (2.1)). Since on &}

Vi,m
, (5.208),(5.206) M —m 2m
o 2
v Tl Ve (5.209)
5§2M m‘ i+ 2m (M 3mM+mB M — m’V’)
M+m'" " " Mrm\M+3m 2m 5 2m !
_M—3mB
- M+3m5
>0, (5.210)

and on &L

(5.208),(5.207)

V! 5.211
M+m| Vil+ ( )
(5.1>85) M — m| I+ 2m (M 3mM+mB+M m|v|)
M+m ! M+m\M+3m 2m 5 2m !
_M—BmB
- M4+3m5
>0 (5.212)

and the molecule reaches L without an additional collision on both events, we have that
Vo=-V". (5.213)

Since (5.208) is a linear function of v if V,_ is given, we obtain on &}, . with v € V{, (cf.
(5.182)) by (5.209) and (5.213) for V4 any value with

Vo M—m‘ ‘ 2m
2T T MmN T M+ m®
M—m 2m M 3mB M m
— Vil — Vi
- M+m‘”_M+m(2m 5 |®
M —-3mB
= — 5.214
M4+m 5 ( )
and
M —m 2m
Vo =— —
2 M+m| i Mim'
- M—m‘v‘ 2m <M 3mM+mB M — m’V’)
M4+m ! M+m\M+3m 2m b5 2m !
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M —-3mB
= 5.215
M+3m5’ ( )

and since on &{} _ v € Vi (cf. (5.185)) we obtain by (5.211) and (5.213) for V5 any value
with

Ve M—m| | 2m
2T T+ T M m”
M—-—m 2m M—-3mB M-m
> — Vil — — - \%
M+m| i M + < om 5 2 |1|>
M —-3mB
= 5.216
M+m 5 ( )
and
M—-—m 2m
— Vil —
2 M—i—m‘ i M+m'
- M—m|v| 2m (M 3mM+mB M — m’V’)
M+m ! M+m\M+3m 2m 5 2m !
M —-3mB
= 5.217
M+3m b ( )
Hence, by (5.214), (5.215), (5.216) and (5.217) we have on &, . and on &£} _ that
Vs €V (5.218)

(ct. (5.160)).

To show (5.205) we also have to specify the possible values of 7 on &f, . (cf. (5.181))
and £t _ (cf. (5.184)).
The Value of 5 on &y, . is given as follows. By Assertion 5.13 the collision takes place after
1+ V W where the molecule was reflected at —L, but before 7 + \V , where the molecule
Would reach L again if it moved freely. Hence, after the molecule is reflected at L at time
71, it reaches —L and collides afterwards with the atom. Since V' > 0 (cf. (5.210)) the
molecule reaches again L. That means that the molecule covers a length of 4L during 7
and 7. Since it has speed V] during 71 and 7, and speed V' during 7 and 75, we have that

Vil(t — 1) + V(s — 7) = 4L,
which determines 7, by

_ AL — |\Vi|(1 — )

v T
(5.209) 4L — |V1|(T—Tl)
M—&—m“/l M+m
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AL+ Vil = g (il )T

) (5.219)
M+m|v1| M+m|v|
Plugging in
— , 5.220
AR (0:220)

(which we obtain by (5.199)) into (5.219) yields

o ALl = g2 (V] + )
2 pr—

|‘/1| - M+m
(5.220) 4L + Vilm — M+m (q+ 3L+ [Vi|m)

M+m ”U|

M+m|‘/1| M+m|v|
AL+ Vil — + 3L
M+m| 17 M+m(q ) (5.221)
Vil = i [v]

M+m M+m

Since (5.221) is a linear function of ¢ if V4,71, v are given, we obtain for 7, on &, . all
values with

22 4L + 45 A= Vil — 2m —(q+3L)
2 p—

M+m|v1| M+m|v|

(5201) AL+ M= Vil
>
M+m|vl| M+m|v|
_J.Tm(M+m4L+Mm|v1|n W (IVi15 = Jol))
M+m|vl| M+m|v|
AL+ g iln - R G AL + 25 Vilm) 100 M
M+m|v1| M+m|v| B M —3m
10L M
= T s e 5.222
B M —3m ( )
and
(s.221) 4L + J[Vilm — 37 (g + 3L)
T2 =
M+m|v1| M+m‘“|
(5.?1) 4L + %+Z|V1|7'1
M-&-m“/l‘ M+m|v‘
s (Mmar + Memivigr - 1 fram ((vitton — )
M+m|v1| M+m‘“|
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AL+ SEmViln - s (o Mo V| ) 100 M4m
M+m|v1| M+m|v| B M —3m
10L M +m
= .22
B M —3m (5.223)

since ¢ € QY ,,(v) (cf. (5.201)). Note that the bounds (5.222) and (5.223) are independent
of v, i.e. for any given v one obtains the same range for the values of 7.

On & , 7 is determined by the following. By Assertion 5.14 the collision takes place
before 4 + %, where the molecule would reach —L if it moved freely. Hence, before the

molecule may reach —L after 7, it collides with the atom and since V' > 0 (cf. (5.212))
the molecule reaches again L without having been at —L. That means that the molecule
travels the same distance during 7, and 7 (with speed |V;]) as during 7 and 7, (with speed

V'), ie
Vil(r =) =V'(ra = 7),
which gives

_ Il =)
— o
(5.211) |V1|(7'—7'1)
a M+m|vl| +
(\Vl\ + IUI)T— |V|m
141

+ 7

—l—T

o M+m

(5.224)

M+m M+m

For an equivalent expression for 7, we use equation (5.202), which gives

g+ L+ Wn
VA] + [v]

(5.225)

Plugging this into (5.224) we obtain that

=04 +|U|)T— Vi

eIl s

(5.225) ]\ffm(— +L+|V1|7'1)_|V|17'1
B M—&-m‘v1

_ M+m( Q+L> M+m|V1|7_1
VAl + 57

M+m

(5.226)

M+m M+m

Since (5.226) is a linear function of ¢ if Vi, 7, v are given, we obtain for 7, on &% _ all

Vi,m1

72



values with

(5.226) M+m( q+L)— M+m|V1|Tl

T2

— 4=V + M+m!v|

e WL M (ol = 22 l)) + L)
M+m|vll + 5ol
B Vil

— IRV | + 2o
iVl M (ol — AEmIVil) - Vil
a — s Vil + 7ol

10L M
_ Y (5.227)
and
- _ a4+ D) = 3eniViln
M+m|V1| + M+m|v|
o0 st (L= — i (vl = 25l + 1)
M+m|V1| + oo
B M+m|V1|T1

— V| + oo
Moy MM (] Moy ) Mom gy
B —E=V) | + 2|

10L M+ m

-t (5.228)

since ¢ € QY ,,(v) (cf. (5.204). Since the interval with bounds (5.222) and (5.223) resp.
(5.227) and (5.228) is T3 (cf. (5.161)), it follows that on &l 7, and on &

€Ty (5.229)

At last we show that 09 = 1. Recall that the value of o changes as soon as the molecule
is reflected at —L or L, and that oy = (7).
Recall, that if oy = 1, we consider &{; ., (cf. (5.181)). Then, by Assertion 5.13 the molecule
reaches, after it was reflected at L at time 71, the wall at —L and collides then with the
atom and V' > 0 (cf. (5.210)), i.e. the molecule reaches again L, which gives

0'220'1:1.

If o = —1, we consider Eglﬂ. Then, by Assertion 5.14, before the molecule may reach —L
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after 7, it collides with the atom and V' > 0 (cf. (5.212)). Hence, the molecule reaches
again L without having been at —L after 71, which gives

09 = —01 = 1. (5230)

Altogether, we have shown by (5.218), (5.229) and (5.230) that for Y (1) given in (5.179)
with (5.180) and with 7, as given in (5.178) on &, ,, (cf. (5.181)) resp. &£, (cf. (5.184)),
the molecule reaches the wall at L the second time at time 7, € T3 (cf. (5.161)) with
Vo € Vs, (cf. (5.160)) and o9 = 1. To obtain (5.205), namely

YeO,

we still have to show that the molecule is alone in A at time 75.

On both events, £}, . and £ _, there is exactly one atom which enters A between 7, and
5. On &, this atom enters A from the right (cf. Assertion 5.11), i.e. it is to the right
of the molecule. Since the molecule is at the right bound of A at time 75, the atom must
have left the interval before 7. Hence, the molecule is alone at time 7 on 5"',1771.

On &, the atom is to the left of the molecule, i.e. if the atom leaves the interval, it
will leave the interval on the left side, i.e. at —L. Note that the atom collides after time
71+ ﬁ but before 7 + % (cf. Assertion 5.14), i.e. the molecule gets hit between — L and

0. By (2.2)

M—-—m 2M
_ _ 231
M—i—mM M+m|v1|<0 (5.231)

/

and we have that V' > 0 (cf. (5.212)). Furthermore,

, (5.231) M —m 2M (5.180) _ (5.218) (5.213) .,
= Vil >|W| > B > W ="|V
020 T > W vl O v

lv
i.e. the atom is faster than the molecule and has to travel a shorter distance to —L than
the molecule to L: The atom leaves A before the molecule reaches L, i.e. before 7. Since
no other atom enters the interval until 7, on S‘i}'lm the molecule is alone at time 7.

Until now we have shown that given 71 with (5.178) and Y (1) as given in (5.179) with
(5.180), then on &, ., (cf. (5.181)) resp. on &% (cf. (5.184))

1,71

Y €0 (cf. (5.159)).

The exact value of Y is determined by the velocity v and the position ¢ of the incoming
atom at time ¢ = 0 by the following function. Note that the latter event is controlled
by the Poisson field and that (v,q) € VQ%}MI resp. V @17717 which is the corresponding
(v, q)-set of &, . resp. £}, i.e. the set in which the atom in &, . resp. £t  must lie
at time t = 0. Equations (5.209) and (5.221) resp. (5.211) and (5.226) define the following
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1-1-map from VQi, . resp. VOY. _ to the (Va,72)-set Vo x Ty:

VO, Ve X T (5.232)
(v,q) = (Va, 72)
(5.209),(5.221) (_M —m|V1| _ 2m N AL + %ervﬂﬁ M+m(q+3L)>

M+m M+m M+m]V1] M+m|y]

where VO, . is given in (5.200), V» in (5.160), 75 in (5.161), and

VOl Vi T o230
(v,q) = (V2, 72)
(5.211),(5.226) (M—m| - 2m y M+m( g+ L) — M+m|V1|7'1>

M+m M+m"’ M+m|V1|+M+m

where VO, _ is given in (5.203).

Assertion 5.15. &!

V1,71

(cf. (5.232)) and @Y, . (cf. (5.233)) are bijections.

Proof of Assertion 5.15. To show that ®{, _ resp. ®{, _ maps
VQ"'/MI ={(v,q) :v € V‘Z,q € Dé(v)}

(cf. (5.200)) resp.
VY, ., = {(v,q) 1 v € Vi, q € Dj(v)}

(cf. (5.203)) bijectively to

Vo X Ty =
(5.160),(5.161) (_M—?)mB _M—3mB)X<10L M 10L M+m)
N M+m 5 M+3m5 B M —3m’ B M —3m

we first show the surjectivity of ®f, 1 Tesp. Y.

In (5.218) we have shown that on &,  (cf. (5.181)) resp. on &} . (cf. (5.184)) V5 may
take any value of V5 and no other. Since V;. (cf. (5.182)) resp. Vi (cf. (5.185)) is the
corresponding set of &, . resp. &y . in respect to v and since the first components of
®Y, - and @Y map v € V{, resp. v € V! to V4, it follows by (5.218), that the target set
of the first component of ®}, _ resp. Y, _ is V.

In (5.229) we have shown that on &, o resp. on &
no other. Recall that VQi, .. resp. V

Vi T2 may take any value in 7, and

Vi is the set of (v,q) which corresponds to &,
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resp. & .. Smce the second component of ®}. _ resp. ®f. _ maps (v,q) € VQZ{,MI resp.
(v.q) € VQy, ;, to T2, we obtain by (5.229) that the target set of the second component of
®Y, - resp. O _is 7. Allin all it follows that &, _ and @}, _ are surjective functions.

Now we show injectivity of ®, _, i.e.
B, 1, (v,9) = B, (V. 4) = (v,9) = (v, ¢). (5.234)
Let
©,€/177'1 (U, q) = ®1‘;/1,T1 (/0/7 q/) *
Then,
M—m 2m M—-—m 2m
N - =~ - 5.235
Vel yarut iy vt Ll Rl y arapertl (5.235)
and
AL+ {52V m — 572 (g +3L) AL+ {72 Vilm — 572 (¢' + 3L
T Vilm — yrem (g +3L) e Vilm — (fl ) (5.236)
M+m|‘/1| M+m|v| M+m|‘/1| M+m|v |

From (5.235) we obtain immediately that v = v/. Plugging this into (5.236) yields to

M— ml‘/llTl 2m <q+3L)

Vil — s+ 30)

M+m | M+m|v| M+m | M+m|v|

Since this is only valid for ¢ = ¢/, the r.h.s. of (5.234) follows.

To show injectivity of (I)% ., we proceed analogously to the previous case. Let

¢1‘:}'1,T1 (U7 q) = ®1‘:}'1,T1 (UI? ql> Y

then
M —m 2m M —m 2m
Vil — — — ! 5.237
]\/[+m| i M+m" M+m‘ 1 M+m' | )
and
]\42+m( q+L) M+m|‘/1|7—1 _ M+m( q +L) M+m“/1‘7-1 . (5238)
M+m“/1‘+ M+m"/1’+M+m

From (5.237) it follows that v = ¢’. Plugging this into (5.238) yields to

A}Tm(_q—'—[’) M+m|v'1|7—1 o M+m( C] +L) M—&-m|‘/1|7-1
mval+ mvil+ ’

M+m

M+m M—l—m M+m
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which gives ¢ = ¢/, and the r.h.s. of (5.234) follows.
Altogether, it follows that ®!. _ (cf. (5.232)) and ®%

Vi, Vi,m

VQ’{ZM bijectively onto the (Va, 12)-set Vo X Ts.

(cf. (5.233)) map VQ@MI resp.

O

Finally, using the results of above, we can estimate (5.177), i.e.
PAY|Y(m)) (5.239)

for dY C O, Y(r) as given in (5.179) with (5.180) and 7; as given in (5.178), since we
have shown that for any Y (7) as given in (5.179) with (5.180), 7 as given in (5.178) and
any dY C O there are events where exactly one atom with a certain velocity v starts at
time ¢t = 0 at ¢ and causes “the right” molecular post velocity as well as “the right” 7 and
09.

Since different events are necessary for different values of o; such that Y € O, namely
Ely 7y (cf. (5.181)) for oy = 1 and &} . (cf. (5.184)) for oy = —1, we have to distinguish
if 0y = 1 or 0y = —1 when estimating (5.239). Thereby, we make use of the distribution
of (v,q) (cf. (2.9)) and the transformation of (v, q) to (Vz,7) given by ®{, _ (cf. (5.232))
resp. ®f _ (cf. (5.233)).

Consider 7 as given in (5.178) and Y (71) as given in (5.179) with (5.180). Consider oy = 1
and dY C O with dY = (dV,,dm, 00 = 1).! Denote by Cy(r)(&f, ,,) the set of paths for
which Y'(7y) is as given in (5.178) with oy = 1 and with 7, as given in (5.178) and &},
occurs. Then, we have that

P(AY]Y (7)) 2 B(AY 1 Cyeny (€], 1) | V(7)) (5.240)

By the results from above, if Y(7) is as given in (5.179) with (5.180), oy = 1 and there

is one atom (and no other) with (v,q) € @i‘;ll’q_l(d%,dTQ), then dY = (dV5,dm, 00 = 1).

To estimate the r.h.s. of (5.240), denote by Xy? | the (v,q)-set, such that the atom with
velocity v and position ¢ (at time ¢ = 0) enters A between 7 and 7y, i.e.

X‘T/?,Tl ={(v,q) :v>0Aq € (—L—v1,—L—v7y) or
v<O0Aq€E (L+vfm, L+v]m)}.

We then obtain for the r.h.s. of (5.240) that

P(dY N Cy(ry)(EY, )Y (1)) >
> n({ N, e (@Vadr2) T 1})N({NX‘T,§’TI\@;§H(dvg,d@) =0}). (5.241)

INote that the notation “dY = (dVa,dme, 09 = 1)” is of course an abuse of notation, since o is a discrete
variable. We could easily make this by introducing a delta function for o, but for ease of notation we
will not detail that and keep the notation, which will be however not harmful.
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Since on O

10L M +m _
Ty < ?m =T, (5242)

it follows that

X7

Vi,m1

- XV1 .
for any 75 € 75. Since the entrance times are exponentially distributed, we obtain that
(5.241) > pu({N, ) (dVadre) T = 1}H)u({Nx;

(2.4),(5.22)

i,1—1 2(7_— — Tl)p
pf (2 y, -, (V2))] det J, i;ll,rl(v2772)| exXp (‘\/m> dVadm

(5.243)
where f is the Maxwellian (cf. (2.5)), @i‘;llm is given by
cbi;ﬁl,n = ((I)iyl;ﬁlﬂ'l’ (I)i72‘;11,71) Vo X 75 — VQZ‘A,‘H (5244)
(‘/27 TQ) (U Q>
M — M M M M —
:< m]Vﬂ +mV2, +mV27'2+ +m4L+ m\Vl\Tl—?)L)
2m 2m 2m 2m 2m
with Jacobian
M +m\?
et Ty, 1(1ym| = < - ) V3. (5.245)
Before we continue estimating (5.243), we estimate (5.239) also for oy = —1.

Denote by Cy(-) (&7, ,,) the set of paths corresponding to £{ _ (cf. (5.184)) with Y (1) as
given in (5.178) with 01 = —1. By transforming (v,q) to (V,72) by ®f, ., we obtain for
dY C O with dY = (dVs,dm, 09 = 1) that

P(dY|Y(r))

> P(dY N Cy ) (EF ﬁ) |Y(11)))

= 1{Noi1@vary = IINYE (oot @vsamy = 0})
> N({N@i;llﬂ(dvz,drg) })M({NXT =0})

1

i1 -1 2(T —m)p
=pf(® ,1V1’T1(V2))| det J@i;llﬂ (Vo) | €XP (— ) dVadr, (5.246)

V2T Km
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with inverse

(Dii‘jil,n _ (@i’lx_/il,n’ q)i,2‘_/11m) Vo xTo =V 7{2771 (5.247)
(Va, 72) = (v, q)
M—-—m M+m M+m M—-—m
~( V| — v, Vors 4 L - Vilm )
2m 2m 2m 2m

and Jacobian

M 4+ m\?
]detjii;iTl(VZ’TQ)]:< o ) Vi (5.248)

Altogether we obtain by (5.172), (5.175), (5.176), (5.241), (5.243) and (5.246) that for
Yy < GB,C;O and dY = (d‘/g,dTQ,O'Q) C O either

]P)y(dy) = ]P)y(dv% d7—27 0-2)

(5.176) 2p71(y)
> P(AVh, dry, 0oV _Zpmy)
2 B(dVy, dry, o) (ﬁ(y)))exp< il

CZ i (Vas 72)dVadrs
with
A -1 27p
M) (Vo 72) 1= pf (P v 1 (V2)) | det J z’;llﬂw)(vwzﬂ exp (‘\/m> (5.249)
or

Py(dy) = ]Py(d‘/g, d7-27 02)

(5.176) 2
> P(dVQ, drs, O'2|Y(7'1(3/)>> exXp <_\/p2:il(éi?>l>

5.246 ii
( — ) th,Tl(y)(‘/z7T2)d‘/2dT2
with
h'%l,Tl(y) (‘/27 T2) =

o ii,1 -1 27p
= pf<(I)V1771(y) (‘/2))| det J %}177—1@)_1(‘/2’7—2)’ exp <—\/m> . (5250)

Since p, the Maxwellian f (cf. (2.5)) and the exponential function are positive functions
and

V1,71 ()

-1
V1,71 () (Vz’TQ) |

71(V2,7’2)| =
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5.245).(5.248) / M + m\?2
b ( )

2m
VagVa <M —|—m>2 M —3m B

5.251
M+ 3m 5 ( )

M>3m
Y

it follows that
hZVl 7’1 )(‘/277—2) > O
and

hz‘}l 7’1 )(‘/277-2) > 07

for any (V5,75) € Vo x Ts (cf. (5.160), (5.161)) and any 71(y), V; as defined in (5.165) resp.
(5.171). This gives (5.162) of Lemma 5.7

To prove (5.163) of Lemma 5.7, we give a uniform positive lower bound for hﬁ}hnM (cf.

(5.249)) and Ry, .,y (cf. (5.250)). In the following we write 71 instead of 71(y). For given
Vi, 71 we have for (5.249) that

i in—1 M +m\? 27p
V7 = (@5 02 (V) e (- 22

V2TKm
(2.4),(5.244) M—m M+m ) <M+m>2 27p
= Vil — \% Vs e
Z ( om Wil= 5 ) (5, ) Vel | = s
25),ve<0  |[Km g (Mom |y Ay )2 (M+m)2 270
= 50 © 2 ? — ) Walexp | ———=
P om [Va| exp ok
2 —
) <M+m) Vol excoy [ — 2P
7 v T o o
2 —
M m|V ‘+]W+m|v‘)2 (M+m) 27’0
> \/ Volexp | ——— 5.252
P 2m [Vl exp 2mKCm ( )
2 —
(5.247) i1 (M+m> 27p
f(o™ Vz Vale e
P %1 7'1( 2)) om | 2| Xp \/m
( hiﬁl T1<‘/27T2) :
Note that equation (5.252) follows since
M—m M +m M —-—m M+m

0< Vil - V2l < Vil + |Val.

2m 2m

Since for Vi, 7 as defined in (5.171) resp. (5.166), and (Va,72) € Vo x Ty (cf. (5.160),
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(5.161))

i (5.250) 35,11 <M + TTL>2 27p
V, = [OR - V- Vol e - -
V17Tl( 2 7-2) pf( V17 1( 2)) 2m | 2| Xp 27T1Cm

| 2 _
(2:4) P I;melcgn(MQmmVﬂ*‘kéjanQDQ (M+m> |‘/2|eix/%
™

2m

(5.251) Km zcm(fv;;mmCJFNI—sm%)? (M+m>2 M—-—3mB __2%

> p 76_7 2m —e V2rKkm R

2m

we obtain (5.163) by choosing

2 -
9= oo o)t (M myTM = Sm B e (5.259)
™

2m M+3m b

with C given in (2.5), C given in (5.11) and 7 given in (5.242). Note that 7 depends on
L. ]

In Lemma 5.7 we proved the existence of an overlap set for M > 3m. To understand
which facts cause the necessity to distinguish the different cases M > 3m, M = 3m,
3m > M > 2m and 2m > M > m when establishing overlap, it may be useful to see
how one proceed when identifying an overlap set. Note that we will give a rather rough
overview and don’t go into detail.

For all states starting in G ¢,o an overlap shall be established. The simplest way to define
an overlap set may be such that the molecule is alone in A. Then, the overlap set may
be defined by a certain interval of molecular velocity and an interval of time, where the
molecule is at L the second time after ¢ = 0, and oo = 1, which is the value of ¢ when
the molecule is the second time at L. We follow that and for simplicity we define the
overlap set such, that any starting state can reach any state in the overlap set by exactly
one collision with an atom.

To control the molecule such that it is at a certain time at a certain position, we have to
know the position of the molecule at some time before. Therefore, we introduce 71, 79, the
time when the molecule is the first resp. the second time after t = 0 at L. To control the
value of gy, we treat states with different values of oy = o(m) differently: If oy = 1, we
send in an atom between 7, and 75 such that the molecule is reflected at —L exactly one

time between 7 and 79, which gives 05 = 07 = 1 (Scenario I). If 07 = —1, we send in an
atom between 7 and 7 such that the molecule does not touch the wall at —L between 7
and 7o. This gives 09 = —o1 = 1 (Scenario II).

Now, one has to identify an interval of molecular velocity V5 and an interval of arrival time
Ty, which can be reached by any y € Gp . Doing so, one has to take care of “virtual
collisions”. This is the case if the molecular post collision velocity V5 is such that the atom,
which causes this velocity, enters A after 7y (in any scenario). Let 7 be the time of collision.
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If in Scenario 1

L
T+ <7<T1+

] Vil (5254)
then
Vil(T — ) + |v|(T — 1) > 2L (5.255)
expresses that the atom enters after 71, whereas if
2
|V1| <T <7+ T Vi (5.256)
it has to be satisfied that
Vil(T — 1) + Jv|(T —71) > 4L. (5.257)
If in Scenario 11
|V1| <T<T1+|V1| (5.258)
and
\Vil(T — 1) + |v|(T — 1) > 2L, (5.259)

then the incoming atom enters after 7;. Hence, to exclude virtual collisions either the
interval of V5 has to be such that the corresponding atom is fast enough, namely |v| > |Vi],
or the collision time in (5.254), (5.256) and (5.258) has to be restricted. If the overlap
set is such, that |V5| > |V4|, the atom which is send in must have speed |v| > |V4], i.e
condition (5.255), (5.257) and (5.259) would be satisfied, but the atom may be still in A
at time 7o. Therefore, we choose |V,| < B (such that the molecule has to be slowed down
for any B < |Vi| < ('), because it can be shown that in this case the atom which is send
in has left the interval until /. Note that then the collision time 7 in Scenario I has to
satisfy (5.256) to get an overlap respectively to the arrival time 7.

The interval of V5, where (5.257) and (5.259) are satisfied and |V5| < B, can be chosen as
follows. Using (2.1), in Scenario I we have that

M—m M+m

y
ol = 25wl -

Val

Plugging this into (5.257) gives

M — M+m
A

(il + ) (7 =) > 4L
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M+m
2m

With (5.256) we obtain that (5.260) holds for any 7 if

(Vi =Val) (7 = 7) > 4L. (5.260)

M4+m L
Vil — | V5 > 4L
M —3m
Vs — |V 5.261
& [Val < SVl (5.261)

In Scenario II we have with (2.1) that

M —m M+m
V;
om Vil + om

Val

ol =

We obtain by plugging this into (5.259) that

M — M
(Vil+ =Ml + =5 220G (7 = m) > 20
M +m
5m (IVi] + |Va]) (T — 1) > 2L. (5.262)

If (5.258) we have that (5.262) holds for any 7 if

M4+m L
Vi Vs > 2L
o (VAL 1] >
M — 3m
Vs — V. 5.263
& Vo] > M+m| 1 ( )

If M > 3m and if the interval of V5 is chosen such that

M—SmB

W< —
Vel M+m

(5.264)
in both scenarios the virtual collisions are excluded, since (5.261) and (5.263) are satisfied
and with that (5.257) and (5.259). Since for some V, € (— J‘]@EmB 0) there are (Vi,71,01)
such that the intervals of arrival times 75 are disjoint, the interval of molecular velocity for
V5 has to be restricted in an appropriate manner to obtain overlap. Since M > 3m is the
simplest case, Lemma 5.7 is formulated and proved for this case.

If M < 3m there are no values for V3 such that inequality (5.261) is satisfied. Heuristically
this is because if M < 3m and the values for 7 as given in (5.256) aren’t restricted, some
of the corresponding atoms need to be in A before 71 to reach the molecule in time, i.e. the
collision with these atoms are virtual collisions. Note, the heavier the molecule, the faster
the atom has to be to cause the same V5. The faster the atom is, the longer is the distance
the atom travels until the collision at time 7. It turns out that 3m is the lower bound
for M such that any atom which collides at time 7 as given in (5.256) resp. (5.258) and
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causes V5 as given in (5.264) enters the interval after 7, i.e. there are no virtual collisions.
Therefore, if M < 3m, the interval of 7 in Scenario I (cf. (5.256)) has to be restricted,
which gives a weaker requirement as (5.261) and one finds values for V5 where no virtual
collisions occur. But if m < M < 2m, reducing the values of the collision time 7 leads
to disjoint intervals of arrival times 7, for some (V;, 71, 01), i.e. one cannot find a set of a
common arrival time and V3, which can be reached by every initial condition (V;,1,071),
given that one atom enters the interval between 71 and 75. Therefore, we distinguish if
2m < M <3morm < M < 2m.

Case 2m < M < 3m

As stated before, in this case in Scenario I the interval of 7 (5.256) has to be restricted,
such that there are values for V5 where no virtual collisions occur. It turns out that

O = {Molecule is alone at time 7, (5.265)
3m —-MB M 3m —M B
— (- 2 - 2
V2l < M+m 2" 2(M—m) M+m 2)’ (5.266)
AL  8L2m M —m 4L 8L M —m
— |2 Seam A mm A S0 T 2
R T e T e iR (5:267)
0'2:1}

is an overlap set for 2m < M < 3m and Lemma 5.7 can be proven with

4, 8L M —m
e 2
T B+B3m—M (5.268)
and

Km s (s am-n py? (M+m)2 M  3m—MB __2p_
— R 2 2m 2m 2 J— V2rKm | 5269
I=P\ ¢ om ) 20T M m 2C T (5:269)

Note that then also the values for 7 in Scenario II (cf. (5.258)) has to be restricted for any
|V1], since then
3m — M 3m — M

Val < M+mB< M+m|v1|

and (5.263) isn’t satisfied.
If M = 3m only the collision times in Scenario I has to be restricted and Lemma 5.7 can
be shown with redefined

O = {Molecule is alone at time 7y, (5.270)
B B

% =|(——,— 5.271

2 € Vs ( 3’ 10) ) ( )
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15L 16L
nehi=5 5 5272)
09 = 1}
with
16L
T = — 2
=5 (5.273)
and

2 _
g = pi| P Sp (Mmortgm 2)’ (M +m) B v (5.274)

Case m < M <2m

For m < M < 2m, in both scenarios the collision time 7 in (5.256) and (5.258) has to be
restricted: Since in Scenario I the atom has to enter the interval from the right, we obtain
with

21)  2m , M—m

v M+mV+M+m|V1|

and V' = —V5 > 0 the condition
2m M—m
V/
M+m +M+m
M—-—m
M+m

Vil <0

< [Vaf < Wl

such that v < 0. With m < M < 2m we have that

M—m<3m—M
M+m M+m

)

i.e. if we choose

M—-—m
M+ m

V| < B,
we have to reduce 7 in Scenario II, since (5.263) is not satisfied. As we outlined before,
we have to restrict also the values for 7 in Scenario I (cf. (5.256)). The restriction of 7 in
both scenarios leads to following arrival times 7o, which depend on V;, 7. In Scenario I we
obtain that

AL M —m

AL
—<n< — :
A R AT Y

(5.275)
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whereas in Scenario II we have that

AL m 2L 2L

e < T < T+ e 5.276
SR A (5:270)

To establish overlap, the r.h.s. of (5.275) has to be larger than the Lh.s. (5.276), i.e. for

any T,

LA m o AL M (5.277)
R G - ‘
PUVA M A m T Vo[ M m
Since 0 < 7 < 2£, condition (5.277) is satisfied if
4L n AL m - AL M —m
B |Vo|M+m ~ |Vo| M+m
AL _ AL M —2m
B Vo M +m
M —2m
& V| < — 5.278
vl < (5.278)

Since m < M < 2m, there are no values for V5 such that (5.278) is satisfied, i.e. there is
no overlap in respect to the arrival times 7 if we proceed as we just described.

We solve the difficulty of disjoint arrival times by redefining 7 as follows. Consider Y (0) =
y € Gpcyo. If on &, () (cf. (5.167)) 01 = 1, then denote by 7, the time the molecule is at
L the second time after time z = % Sy If 0y = —1 7, is the time the molecule is at L
the second time after t = 0. By that, the values of 7, are shifted to the future if oy = 1,
such that similar arrival times as in Scenario II occur. Then, one can show that Lemma
5.7 holds for the redefined overlap set

O = {Molecule is alone at time 7y, (5.279)
BM—-m BM-m M+7Tm
V = |- —— 2
2 €V <4M+m’4M+m%M+%Q’ (5.280)
SLM+m 2L 8L M+m
09 — 1}
with
2L 8L M +m
T=—+— 5.282
"TCTBM-m (5.282)
and

g= p,/@e—%(%;’”c+%;m’"%)2 (M>23M_m M +Tm e~ Varkm
27 2m 4 M +m2(M+3m)
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(5.283)

with C' given in (5.11).

The proof of Lemma 5.7 with the redefined sets O follow by similar arguments as Lemma
5.7 for M > 3m.

By the existence of an overlap set, which follows by (the redefined) Lemma 5.7, we can
follow that transitions starting in y1,y2 € Gp 0 are overlapping at time 7, which we show
by the following lemma.

Lemma 5.8. Consider the Markov process M, (cf. (5.7)) with transition probabilty II,
Y€ Q‘A x {—1,1}. Then, there exists a ¢ > 0, which will be specified later, such that for
7 given in (5.242), (5.268), (5.273), (5.282) respectively,

T, — 117, || < 2(1 —9) (5.284)

for any y1,y2 € Gpcoo (cf. (5.12)).

Proof of Lemma 5.8. Note that the choice of 7 depends on % Denote by
Fz=o(Y(7))

the o-Algebra generated by Y (7) and by P,|~ the restriction of the path measure P, on
Fr. Let C € Q] X {—1,1} be measurable, and denote by

Are = {Y(w) : Y(w,7) € C}
the set of paths which are at time 7 in C. Then,

Py(Azc) =10 (C) (5.285)
and for the Lh.s. of (5.284) it follows that

115, = 11| = 2sup 115, (€) ~ T, (C) (5.286)

5.285
27 25up By, (4r.0) — By (Ar )]

= 2 sup |]Py1 (A) - Pyz (A)‘
AeFF
- ||Py1|-7'—% - Py2|}'%|| . (5287)
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To estimate (5.287) denote by

I@?41,312 |]:? = min{Pyl |.7-';a Pyz |]";} (5288)

the overlap measure of Py, |z and Py,|z with

00 1= [ Pl (@) (5.280)
Then,

Py ol = Pyl — Pyl (5.200)
and

Py l7 = Pualr — Pyl 7 (5.201)

is the part of the measure P, |z resp. P,,|r without overlap, i.e.

/Eyl(y2)|f? (dY)=1- a;,w - /Ey2(y1)|f?(dy> (5.292)

and Py, )7, Byl 7 are singular w.r.t. to each other. By that, (5.287) becomes

[Py, |7 — Py |7 || = 2 sup Py, (A) — Py, A) (5.293)
5.290),(5.291
(5:200),(5.291) sup ‘Eyl (A) — EyQ(A)’
AeFr

Since Lemma 5.8 requires a uniform upper bound, we now give a uniform lower bound for

ay, . (cf. (5.289)), where we use (the redefined) Lemma 5.7. Note that 7, is a stopping

time. Since the entrance of atoms into A may be described by a pure jump Markov
process, which is a strong Markov process, M, has the strong Markov property, i.e. if 7,
is a stopping time, then

B,(dY (- + 7)Y (0), £ < 7) = By () (dY).

Applying the strong Markov property to the stopping time 72, we obtain for any y € Gz ¢y
that

Py, (dY) = P, (dY (7))
_ / P, (A7, dY (12)) P(AY (7)|72, Y (12))

ZA%MmW@W%ﬂWmWM) (5.295)
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with O given in (5.159), (5.265), (5.270), (5.279) respectively. Note that
Ty < T

on O since 75 € T5. By (the redefined) Lemma 5.7 we have that

(5.163)
(5.295) > g- | dVadry P(AY (7)|72, Y () = (L, V3, 1)) (5.296)
2% Vs

with g given in (5.253), (5.269), (5.274), (5.283) respectively, Vs, given in (5.160), (5.266),
(5.271), (5.280) respectively, and 75 given in (5.161), (5.267), (5.272), (5.281) respectively.
Since the r.h.s. of (5.296) is independent of y, we obtain for (5.289) by (5.295) and (5.296)
that for any y1,v2 € Gp ey

5.288 .
0 "2 [min{Py, |5, Pyl (V) (5.297)

Y1,Y2
> /g - / AVadry P(AY (7|72, Y (72) = (L, V2, 1)) . (5.208)
T2 xV2
To continue estimating, we define &, » C Q) with
& 7 = {No atom enters A during [7, 7]},

and let C(&,, 7) denote the corresponding set of paths, i.e. all paths for which Y (7) is such
as &, 7 has happened. Then,

(5.298) > g - dVydr / P(AY (7|73, Y (r2) = (L, V5, 1))
EXVQ T, T
>g- / dVadry (&, 7) (5.299)
Tax Vo
(5.22) / 2(T —7m)p
2 g AVydry exp | — 2T _T2)P
g ToxVs 2P < V2rKm
27p
>q- dVodrs e — . 5.300
T Jrae, 2 Xp( JM) (5.300)
Note that (5.299) follows, since on &, 7 the paths starting at 7 in Y (1) = (L, V5,1) are
in.C(é;?f).

Since the set of V5, and 75 differ dependent on the mass of the molecule M, namely if
M > 3m, M =3m,3m > M > 2m or 2m > M > m, we continue estimating (5.300)
depending on M.

If M > 3m, then V; is given in (5.160) and 75 is given in (5.161). With that we obtain
that

dV_M—3m§_M—3m§
Ve 2 M4+m5b5 M4+3mb5
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2m M —3m B

- Z_.c 5.301
M+mM+3mb V2 ( )
and
10L M+m 10L M 10L m
dry = _ — —.C,. 5.302
2T B M—3n B M-3m B M-3m 2 (5.302)

If M =3m, Vs, is given in (5.271) and 7 is given in (5.272), which gives

B B B
A== -2 -2 _.C 5.303
v 28 10 40 Ve ( )
and
16L 15L L
dn=-—_-""=Z_=C,. (5.304)

Ta B B B

If 3m > M > 2m, then V), is given in (5.266) and 73 is given in (5.267). With that it
follows that

3m—MDB M 3m—-—MB
dV, = — — —
Vo M+m 2 2(M—m) M+m 2
M—-2m 3m—-—MB
— =:Cy,
2(M —m) M+m 2

(5.305)

and

p AL 8L M —m GL+%%nM—m>
22" B " B3m—M \B B M3m—-M
SL M —m M —2m

- T T =i O (5.306)

If 2m > M > m, then V; is given in (5.280) and 75 is given in (5.281). This gives

dngM_mE— M+7Tm M-mB
Vs M+m4 2(M+3m)M+m4

M—-m M-mB
2M+3m)M+ma

(5.307)

and

oL S8LM+m SLM+m 2L
Lgﬁ CtYBM—m BM-m C : (5.308)
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With these constants we have for (5.300) that

_21p
V2TKm

with the appropriate choice of g given in (5.253), (5.269), (5.274), (5.283) respectively, Cy,
given in (5.301), (5.303), (5.305), (5.307), respectively, and of C, given in (5.302), (5.304),
(5.306), (5.308), respectively.

Altogether we have for (5.297) by (5.298), (5.300) and (5.309) that

(5.300) = g - exp (— ) -Cy, - O, (5.309)

- 27p
R T
Finally, by (5.310) and (5.294) we obtain for (5.293) that

) - Cy, - Chy . (5.310)

27
H]P)ylb'—? - Pyzl]—'—;” <2 <1 — g exXp (_\/%> : CVQ ' O‘rz) ) (5311)

and by (5.311) and (5.287) for (5.286) that

_ _ 2T
I, 1 <2 (1= e (2 ) i)

V2rKm
Choosing
5 = 2 Co. - C
=g-exp | v Cn (5.312)

Lemma 5.8 follows. Note that g > 0 (cf. (5.253), (5.269), (5.274), (5.283) respectively),
Cy, > 0 (cf. (5.301), (5.303), (5.305), (5.307), respectively) and C,, > 0 (cf. (5.302),
(5.304), (5.306), (5.308), respectively). O

Finally, we prove the Overlap-Lemma 5.2 making use of Lemma 5.6 and Lemma 5.8.

Proof of Lemma 5.2. Let y1,y» € Gy i with Gy 5 given in (5.10). Since M, is a stationary
Markov process, we have that

t(V,N)+7 t(V,N)+7|| _ t(V,N 7 t(V, 7
HHy(l ) _Hy(z : | = H/ Hy(l )<dy)Hy_/Hy(2 )(dy)Hy

(5.313)

with ¢(V, N) given in (5.129) and 7 in (5.242), (5.268), (5.273), (5.282) respectively. To
make use of Lemma 5.8 it is useful to rename the integration variable y in (5.313) to ¢/ in
the subtrahend. With that and

/ N (dy) = 1 for § € Gy, (5.314)
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it follows that

(5.313)

(5.314) t(V,N 7
/H )(dy) /H (dy') (I, — 117,

/HtVN /Ht(VN)<dy)||HT—HZ/||

GB,cio o
GB,c0 GB,C;O
GCB C;0 Gp.cio
+ f W) [ )| - 1),
GB C;0 GB,C;O

where G ¢ 1s the complement of Gpc,. To continue estimating, we use Lemma 5.8,
which gives in (5.315)

7 — T3 < 2(1 - ),
since v,y € Gp,c,o. Note that
0>0.

To estimate ||II] —1II7,|| in the remaining summands we use the fact that the total variation
distance of two probability measures is by definition bounded by 2 (cf. (5.2)). Altogether
we obtain for (5.313) that

HHZ(IV’NHT Ht( N < 2(1 - §) Ht (G, CO)H M(Gp.c0)+

+ QHZSV N)(G )Ht(v N)( B.co0)
+ 2Ht(\7,N)(Gc co )Ht(v N)(GB C;O)
+ QHt(V N)( Bco)Ht(V N)( B.co)

=2(1 — &) VNG 00) TN (G e0) +
+ 2HZ(1V N)(GB,C;O)(l - HZ(;/ N)(GB,C;O)>+
+2(1 = VN (G 0 )TN (G 0)+
+2(1 = VMG 00)) (1 = TN (G c0))

= TV (G 00) TV (G 00) (2(1 — §) — 2) +2

=2 21" N>(GB cio) TN (GB c0)d . (5.316)

+
+
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Since by Lemma 5.6 for y € Gy y

_ (5.130)
VN (G o) >

Y

5(1_/, N ),
it follows that

(5.316) =2 — 2N (G p o) TN (G 00)0

(5.130) _
< 2(1—¢(V,N)%)

<2. (5.317)

Note that (5.317) follows since e(V, N) > 0 (cf. (5.131)) and § > 0 (cf. Lemma 5.8).
The Overlap-Lemma 5.2 follows by choosing

G=Gyx (5.318)
with Gy 5 given in (5.10),

t(G) =t(V,N) + 7, (5.319)
with ¢(V, N) given in (5.129) and 7 in (5.242), (5.268), (5.273) resp. (5.282) and

Y(G) = 2(1 — (V, N)?5) (5.320)
with (V, N) > 0 given in (5.131) and § given in (5.312). O

Using the overlap at time #(G) of transitions starting in G (cf. Overlap-Lemma 5.2), we
get an estimate for the total variation distance for these transitions after multiples of ¢(G).
Since states of G may leave this set, the distance will depend inter alia on the size of the
complement of G.

Corollary 5.1. Let G, ¢(G) and v(G) be from Overlap-Lemma 5.2. Then, for any y;,y2 € G
and n € Ny

TG 049 — TGO < y040(G), (5.321)

with
Ynt1(G) = 2 (7(2§)> +4 Z ( ) ( (’1‘ U9 (G) + ngfi)t(g)(gc» . (5.322)

where G€ is the complement of G. For n = 0 the sum taken over ¢ in (5.322) is defined as
Z€ro.
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Proof of Corollary 5.1. We prove Corollary 5.1 by induction. Let G, ¢(G) and v(G) be from
Overlap-Lemma 5.2. Let n = 0, then (5.321) with (5.322) follows by the Overlap-Lemma
5.2.

In the induction step we show that for y;,y, € G
IO — O] <, (G) = ||THDHO) — I+ DUO) | < 4 () (5.323)

with 7,4+1(G) given in (5.322). We write in the following ¢ for ¢(G) and v for y(G). To
estimate

n+1)t (n+1)t nt nt t
[T+ prineD) H/ (T — 112 (dy)1, (5.324)

nt

e < 1 the overlap of

we make use of the overlap at time nt. Denote by ay Ly, With 0 <«
I, 117 and by

y1?

| - = min{II"" H"t

Y1,y2 ° y1?

the overlap measure of II7* and IIp?, i

Y27 T
y1 yz' /Hylyz

Then,
nt 1Tt rynt
Hyl(yQ) T Hyl - Hyhyz (5'325)
resp.
nt _ t nt
Hyz(yl) T H Hyl Y2 (5'326)

. t t . .
is the part of the measure I resp. II}} without overlap, i.e.

/Hyl(y2 (dy> =1- Oéy1 Y2 /Hyz(y1) (5327)
and HZf (y2)? Hg(yl) are singular w.r.t. to each other. By (5.325) and (5.326) we have that

nt nt nt
Hyl B H Hyl (y2) — I,

(5.328)

y2(y1)

and using (5.328) and (5.327) it follows that

| |Hnt Hnt | | | |Hnt Hnt(yl) | |

22y1(y2) Y2

/Hyl(y2 dy /Hy2 yl) ’

= 28up
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=2(1- aZiyZ) .

Note that by induction hypotheses for any y;,y2 € G

nt < " ,Yn

1 - Oéyly2 — 2

For (5.324) and y;,y> € G we obtain by (5.328) that

||H (n1)t n+1 | = H/ Hyl(y2 HZ; (1) ) (dy)H

= H/H?Jl y2)(dy H _/Hyz (y1) dy)Hz H :

(5.329)

(5.330)

(5.331)

To make use of (5.329) with (5.330) it is useful to rename the integration variable y in the

subtrahend in (5.331) to 4. Now consider aj!

1 mn mn
/Hyl(yz <dy>HZ = 1 — qnt /Hy; yl)(dy ) /H ' y2)(dy)H

Y1,Y2

and similarly with interchanged yy, .. With that, (5.331) becomes

H/Hyl(yz dy H _/HZ; (y1) (dy )Ht

(5.332) 1
‘1_@ / 10 (dY) / 105 ) (dy)IT, —
Y1,Y2
1 t
Tl / I3 ) (dy) / I3 ) (dy)IT,
Y1,Y2
1 . :
< [ () [T, ()T — T
Y1,Y2

Writing Q‘A x {—1,1} = G UG we obtain that

1 t t
(5:333) = ———— / . (dy) /Hm ()| [TT =TT ||+
Y1,Y2
1 nt t t
S el MR LACT) /Hy2 o ()T =TT ||+
y1 Y2
1_ant /*y1(y2) dy / Hyz (y1) dy ||Ht H?Z’||+
Y1,Yy2
1 ¢ t
o 1 — ant / —yl (y2) dy / Hyz (y1) dy |H Hy/“'
Y1,Y2

< 1. With (5.327) it follows that

(5.332)

(5.333)

(5.334)

For the first summand in (5.334) we get by the Overlap-Lemma 5.2 and the monotonicity
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of ﬂzt that

1 —ant

]' n n
T () [ 0 ()1 — 11

Y1,y2

(5.9) 1 nt

< anyl(yzx(j)Hw(yl)(g)

Y1,Y2
1 nt

= 71 —ayt, /Hyl (v2) (dy) /Hy2 (1)
(5.327) »

S 7(1 - ay1>y2)
(5.330)

< g (5.335)

Since the total variation distance is by definition bounded by 2 (cf. (5.2)), the second term
in (5.334) is bounded by

1 nt t t
1 — Oz”t Hw (y2) dy / Hy2 (y1) dy ||H Hy’”
Y1,Y2

< 27*@/1 (y2) (gc)n 2(y1)<g)

<2 10 (G) [ I (dy)

<7 arrm(ge). (5.336)

Similarly for the third term

nt nt t t
1—a"t /Hw (y2) dy / Hy2 (y1) dy |H Hy’”

Y1,Y2

<21y (G°) (5.337)

while the forth term can be estimated by

1
T W (d9) [ 105, ()] 11— T2 |
1—C¥yfy2 ge vilvz) vaur) Y
2 nt c
< T W (95, (9°)
Y1,Y2
2 nt nt c
1 — qnt Hyl (y2) (dy)H (y1) (g )
Y1,Y2
(5.321) .
= 2Hy2(y1)(g)
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(5.326)
< 2I(Ge) . (5.338)

Summing the upper bounds (5.335), (5.336), (5.337) and (5.338) of the summands in
(5.334) it follows in total for (5.324) by (5.331), (5.333) and (5.334) that

HH (n+1)t n+1 || < f}/ 5 + 2Hnt(gc) + 2Hnt(gc) + 2H;L;€<gc)

< 7% +A(IN(GE) + T(G°)) (5.339)
with
5+ AIT(G) + TT34(G)

(5.3:22)’2y< <> +4Z< > ( n—i—1)t (QC)+H(” i—1)t (QC))>
+A(IIN(GE) + 1124(G9))

v s = c n—i c n c n c
—2(3)" X (3) e+ @) + ATHE) + ()
5.322
G2 (5.340)
Note that we considered underneath (5.331) that aj! < 1. Let now ap! = 1. This

yields in (5.331) that

e =i = | gt - [t || 270, (5:341)

==y1(y2) 22y2(y1)

By (5.339), (5.340) and (5.341) we obtain (5.323) which ends the proof of Corollary 5.1.
[

By the Overlap-Lemma 5.2 and Corollary 5.1 we obtain an estimate for 5(t) (cf. (5.4)).

Corollary 5.2. Let G,t(G) and v(G) be from Overlap-Lemma 5.2 and [(t) as given in
(5.4). Then,

1(9)
2

Bl(n+1)t(G)) <2 < )” + 8(n + DII(G®) . (5.342)

Proof of Corollary 5.2. By Corollary 5.1 and using that for the stationary distribution

m— /H(dy)H;, for any ¢, (5.343)
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we estimate the L.h.s. of (5.342).

B(n+1)1G) = [ M(dy)| g+ - 1 (5.344)
(5:343) / TI(dy) HH<n+1>t<g> _ / T1( dy)H?(JnJrl)t(g)H
_ /H dy) H/H dy) (TI+DH9) H?(;lwl)t(g))H
< [nay) [ may Hny”“ HG) _ o)) (5.345)

Since Corollary 5.1 applies to transitions starting in G, we again write ) ‘A x{—1,1} = gug*
and split the integrals. Hence,

n n g
(5.345) < /g T1(dy) /g [I(dy') | TIC+9) _ T
T /gH(dy) /g TI(dy!)| | 0O) - )
—I—/ [I(dy) / II dy/)HH?(Jn-i-l)t(g) _ H:f]/l-‘rl t(g)||+

+ / dy/ (dy)|[TI+DH9) _ [ Di@)

(5.346)

To continue estimating we use

[JH(dy) <1

and for the first term in (5.346) we use Corollary 5.1, while for the second, third and fourth
term we use that the total variation distance is bounded by 2 (cf. (5.2)). This yields

n+1
(5.346) "2V, (v(f)) +

() a5 17
GI(G®) + 21(G)TL(G) + 21L(G)TI(G°)

+ 211(
<2<’Y( ))"+ +4”§ ( ) Z(/de /de ) (ILr=D49) (Go) 1

<<>> - z (”f) o) s
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Since @ < 1, it follows that

g (7(5)) < nil =n. (5.348)

1=0

We finally have for (5.344) by (5.345), (5.346), (5.347) and (5.348) that

n+1
(2g)> +8(n + DII(GY).

B((n + DHG)) < 2 (’Y
]

Since in the proof of Overlap-Lemma 5.2 we showed that the set Gy 5 (cf. (5.10))
with ¢(Gy x) (cf. (5.319)) and y(Gy x) (cf. (5.320)) fulfills the condition of the Overlap-
Lemma 5.2, we obtain by Corollary 5.2 the estimate (5.342) for 3((n + 1)t(Gy y)). To

prove Proposition 5.1, we have to set Gy g, i.e. V, N, in dependence of n, and show that
there is a choice of V(n) and N(n), such that for n — oo II (G%,(n) N(n)) approaches zero

G’, —
fast enough and W approaches one slow enough. If there is such a choice, we

obtain at the end a good estimate for §(t), which means that by the estimate we can show
that 3(t) — 0 fast enough with ¢ — oo such that Proposition 5.1 can be proven. The
following lemma is about a “good choice” of V'(n) and N(n).

Lemma 5.9. Let n € N. Consider the set Gy, y(n) C Q‘A x {—1,1}, which is Gy 5 as
defined in (5.10), but where V, N are functions of n. Let Gy 8m)s VGV ) Nm) a8
given in (5.319) resp. (5.320), but with V(n), N(n) instead of V,N.

Then, there exist N € N, and increasing unbounded functions N(n), V' (n),i(n), which will
be specified later, and constants Ay, As such that for all n > N

B(i(n)) < B((n + DGy nm)) (5.349)

n+1
7 (Gy n),N(n ) : ]
9 ((V()N())) +8(n—+1)II (G%/(n),]v(n)) < 2exp(—Aji(n)5)+ Axi(n) . (5.350)

Note since Gy, §(n) satisfies the conditions of the Overlap-Lemma 5.2 (see (5.318)), by
Corollary 5.2 inequality (5.342) holds for G = Gy(,) n@n, S0 that the rhus. of (5.349) is
smaller than the Lh.s. of (5.350).

n)o

Proof of Lemma 5.9. We first show that there exist N € N, increasing unbounded func-
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tions V(n) and N(n) and a constant Cy4 such that for all n > N
c 014 —6
I (GV(n),N(n)> < ?(n +1)77, (5.351)

where G%(n)’ N(n) is the complement of G\?(n), N(n)-
Since

Gomymm =UVI>V(n)} U{N > N(n)}U
U{1<N<N®),Jje{l,..,N}:|vy|>V(n)},

we can estimate the Lh.s. of (5.351) by

(G ) STEN > ND) +TI{|V] > VH+
+TM{1<N<N,Jje{l,..N}:|v| >V}).

Inequality (5.351) follows as soon as we can find N, V(n), N (n), Cy4 such that for all n > N
— 1 014 _6
II({N > N(n)}) < 5?(71 +1) (5.352)

and

MUV| > V) +TI{1 < N < N(n),3j € {1, ., N} : oy > V) < (5.353)
1Ch

< 2?(71 +1)7¢. (5.354)

First, we determine N(n) and make demands on Cy4 and N such that (5.352) is satisfied
for all n > N. The equilibrium distribution for the atoms in A is Poisson with parameter
p (cf. (2.6)), hence, by Stirling’s formular (N! > /2re VTN )

NN >N} = > e—QLP@L]\f!) (5.355)

N—NIn(N)+N In(2Lp)

IA

_ N
G CEN (5.356)

There exists N; € N such that for all n > N; N(n) (which is by definition an increasing
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unbounded function) is large enough, such that
1 —In(N(n)) +1In(2Lp) < —1,

i.e.

el—ln(N(n))—Hn(QLp) <1

7 (5.357)

Hence, for n > N; (5.356) is a geometric series and

3 <e1—1n(N(n))+1n(2Lp)) N _
N=N(n)

_ (el In(N(n))+1In( 2Lp) i (el In(N(n) +ln(2Lp))

N=0

N

=0

(5.357) 1 (el “In(N )+ln(2Lp)> N(n)
= 1 — el-In(N N (n ))+1n(2Lp) —el- In(N(n))+In(2Lp)
oV (n)=N(n) In(N(n))+N(n) In(2Lp)

1 — el=In(N(n))+In(2Lp)
(5.357) eN (n)=N(n) In(N(n))+N(n) In(2Lp)
< I
1—3
— QeN(n)—N(n) In(N(n))+N(n) In(2Lp)

_ 9e—N)(In(N(n)~1-In(2Lp)) ’ (5.358)

and for (5.355) it follows by (5.356) and (5.358) that

—2L

_ P _
I({N > N(n)}) < 2;%e—NW(1“<N<”>>—1—1“<2LP>> . (5.359)

Choose now

- In(n+ 1)

N0 =1t (5.360)

with C3, Ci3 given in (5.44) resp. (5.135). Note that C5 + Ci3 will occur in (5.377).
Plugging (5.360) into the exponent in (5.359) gives for the exponent that

~ N(n) (In(N(n)) = 1 = In(2Lp)) =

(5.360) In(n+1) In(n + 1)
- 4(Cs + Cuy) <1n (4(03 + Cw)) —1- ln(2LP)> ' (5.361)
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Since there exists Ny € N such that for all n > Ny
(5.361) < =6In(n+1) ,

we obtain for (5.359) by the choice (5.360) and n > N, that

72Lp

II({N > N(n)}) < \/_ o~ N (In(N(n)~1-In2Lp))

—2Lp
e —61n(n+1)

\/_

e—ZLp
v 2T

(5.352) follows for any Cy4 > 32&— \ﬁ ’ and any N > max{ Ny, No}.

=2 (n+1)7°

Second, we determine the function V' (n) and make demands on Cy, and N such that with
the choice (5.360) inequality (5.354) is satisfied for all n > N. The equilibrium distribution
for the velocity of the atoms and the molecule is the Maxwellian given in (2.5) resp. (2.8).
Since V'(n) is by definition an increasing unbounded function, there exists N3 € N such
that for all n > N3 V(n) is large enough such that

M (n)?

(’CM)/ VY < (KM) [Cvetvav=t— (5302)
2n ) Jow© am /v s

and similar for m instead of M. Then, for first summand in (5.353) we get for n > N3 that

_ CMN 3 (5.362) =g V(n)?
nqvi > vy =2 (5 ) [ ey T et 5.363
@vi=vp-2(55) [~ o — (5.369)
The second summand in (5.353) we estimate as follows.
({1 < N < N(n),3j € {1, N} < o] > V(n)}) (5.364)

N(n) )
= lZ ({37 € {1, ..., N} : [v;| = V(n)}{N = IDI{N = 1})
E

l
ZH(“’UM‘ >V(n),..|on| >V(n),n €{1,...,1}}). (5.365)
k=1
Since each atom is given initially a random velocity according to the Maxwell distribution
independently of its position and the other atoms, it follows that
V(n) 1

(5.365) zz() ({orl 2 V() s ] = V()})

=1 k=1
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I
N\
TN o~
N———
’,:I
o
&
V
=
E

. N( (,i) H({Ju] > ()}

_ fﬁ?(le J({on] > V()})

- i?)@fw )= DTl > V()

"< N ()@ — 1)2(2mm)d e EVOF (5.366)

By (5.363) and (5.366), which is the estimate for (5.364), we obtain for (5.353) that

OV >V(m)}) +T{1 <N < N(n),3j € {1,... N} : [o;] > V(n)}) < (5.367)
< Q(QWICM)*l — KM ()2 + N(n)Q(QN(n) _ 1)(27T/Cm)*%e*%‘7(n)2

YT N )@Y — 1))2(2nkom) e VO

< 2N (n)(2¥™ — 1)2(2rKm) 23V’

< 2N (n)2VM2(2rkCm) 2 5V -

(5.360) In(n+1) __nGtn L1 Emye
= ————— 240G+ 427 Cm) " 2e” 2 V"
4(C5 + C13) ( )

In(n+1) S L _Km ()2

<Gt Clg)(n+ 1)@+ (27Km) " 2e” 2V ( (5.369)

Since there exists N4 € N such that for all n > Ny

In(n+ 1)

1
— L < (n+1 m7
(03+013> ( )

(5.369) can be estimated by
(5.369) < (n + 1)@ (27 Km) ~te~FV0* (5.370)

Choosing

1
2

() (4 (12+ 5er) In(n + 1)) (5.371)
Km .
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we have that

Km_- 6 ., (5.371) ( 1 >
—_ =" 2124+ ——1 1
5 V(n) + Cit O n(n+1)
1
<—(6+=————<|Inn+1). 5.372
( 2(Cs + C13)) ( ) ( )

This gives for (5.370) that

(5.370) = (n + 1)m(2ﬂme)7%e*T (n)

5.372 B T
L (4 1)t 2nkom) (4 1) ()
1
-2

= (2nKm)"2(n+1)7°. (5.373)

Altogether we have for (5.367) with (5.371) by (5.369), (5.370), (5.372) and (5.373) for all
n > max{ N3, N,} that

O{[V]>V(n)}) + I{1 < N < N(n),3j € {1,... N} : [o;] = V(n)}) <

< (2rKm) "2 (n+1)75.

Hence, choosing (5.371), inequality (5.354) is satisfied if C14 > 16(27rlCm)’% and N >
max{Ns, Ny}.

All in all (5.351) follows by choosing N (n) as given in (5.360), V(n) as given in (5.371),

for all n > N with

N = max{Ny, Ny, N3, N,} (5.374)

and
Cou=32 (2 L (oK) 5.375
14 = (ﬁ + (V27Km) ) ) (5.375)

~ To obtain Lemma 5.9 we now show, using (5.351), that the choice we made for N(n) and
V(n), namely (5.360) resp. (5.371), gives v(Gy ) n(n)) and (G () (ny) Such that there is
a i(n) for which the inequalities in Lemma 5.9 holds for n large enough.

First, we determine y(Gy () nm)) and t(Gy ) xn))- By the definition of v(Gy () nin)
(cf. (5.320)) we have that

W =1—¢(V(n), N(n))*. (5.376)
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Recall that

(V(n), N(w)) "=
= min{Cme_C“V("), 0126—013N(n)} - min {ClC4e_C5‘7("), ClCQe_C3N(")} )
With the choices (5.360) and (5.371) there exists N5 € N such that for any n > Nj
i {70, O _ GO
and
min {C1 Cye™ @V, Oy Che N | = Oy eV,
and we obtain that for n > Nj
(7 (0), N(n)) = C1C,Crae CHHOT).

Plugging that into (5.376) gives for n > Nj

7 (G5

5 -1 (C’102012)26_2(C3+013)N(”)5 (5.377)
(5.20) 1— (5(0102012)201 + 1)7%
=1-Cis(n+1)72 (5.378)

with

015 = 5(0102012)2

24L De !
(5.18),(5.43),(5.134) éex _4p (B +3 ('0 Iy vf(v)dv) ) (5.379)
4 P V2rKm 7 '

and Dy, D, given in (5.25), 6 > 0 (cf. Lemma 5.8).

Now we determine t(Gy () n@n) (cf. (5.319)) for the choices (5.360) and (5.371) and give
an estimate. Recall that

(5.319) "

G () 5 (m)) (V(n),N(n)) + 7 (5.380)

and that

1V (n), N(n)) "2 max{dtp + +(V), 4t + t(N)}
(5.139),(5.143

1(5-143) max{Cgs + 07‘_/(71), Cs + CgN(”>} : (5.381)
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Since (5.360) and (5.371), there exists Ng € N such that for any n > Ng

(5.360) Cy

5.381) = Cs + CyN =0+ ——r 1 1),
( ) s + CoN(n) 8+4(C’3+013) n(n +1)
so that we obtain for (5.380) for n > Ng that
t(Gyynm) = Ca+ G In(n41) +7 (5.382)
), 4(03 + 013)
Cy _
<|Cs+ ————— | 1 5.383
—( 8*4(03+013)+T> ne 1) (5.8

with 7 given in (5.242), (5.268), (5.273), (5.282), respectively.
Since for the first factor in (5.383) we have by (5.44), (5.135), (5.144) and (5.145) that

Cy _16L De - V2rKm
Cot—no0 — 47=— / d varkm
8+4(C3+013)+T 5 —f—(,o b, vf(v) v) + 2 +7
(Dy, D.. given in (5.25)), it follows for (5.382) that
UGy, Nmy) < Cieln(n+ 1) (5.384)
with
16L 2 - V2rKm
C116 = ? + (p/Db Uf(U)dU) + W + 7

for any n > Ng.

So far, we made a choice on N(n) and V(n) (cf. (5.360), (5.371)) such that (5.351) for
Cy4 given in (5.375) is satisfied for n > N (cf. (5.374)), and which determines Gy ()8 (n))
and gives an estimate for t(Gy () 5(n)) (cf. (5.378) resp. (5.384)). To obtain the inequalities
in Lemma 5.9, we now give a lower bound for the r.h.s. of (5.349), namely for

B ((n+ Dt (Grguy.xm)) (5.385)

and an upper bound for the Lh.s. of (5.350), namely for

(Grensw)\™
2 (WQW) +8(n+ DI (GS () 5 - (5.386)

To estimate (5.385) we use the fact that 5(t) (cf. (5.5)) is non-increasing. This follows since
for ¢; < ty the supremum in (5.5) for 5(t2) is taken over F_o g X Fiyo0 C Fooo0 X Fiy.00-
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Let n > Ng. By (5.384) and since § is non-increasing we estimate (5.385) with

B((n+ Dt (Gogmson) 2 B(Crsln+ln(n+1)). (5.387)

Since any root grows faster than the In-function there exists N; € N such that for any
n > Ny it follows for the r.h.s. of (5.387) that

),

ot

B(Cis(n+1)In(n+1)) > B((n+1)
i.e. we have for (5.387) that
B((n + )t (Gopmy i) = B((n+1)F). (5.388)

For (5.386) we obtain by (5.378) and (5.351) that for n > max{N, N5} (cf. (5.374))

(Gonme) |
2(vammo) +8(n+ DI (GS ) 5w (5.389)

<2(1 = Cis(n+1)"2)" 4 Cy(n+1)75. (5.390)
Observe that

In(1 — Cys(n+1)72) < —Chs(n+1)77
so that for (5.390) we have that

(1 = Chs(n +1)"2)™ + Cra(n + 1) < 2050 L 0y (0 1), (5.391)

and altogether for (5.389) by (5.390) and (5.391)

(S

n+1
TGV, 8
2 ((V()N())) +8(n+ DI (G ) < 26700 4 Cra(n+1)7° . (5.392)

5 =

Choosing

IN[ey

i(n) =(n+1) (5.393)
yields in (5.388) to

B((n+ V)t (G ynm) = Bli(n)),

107



and in (5.392) to

n+1
7 Gy n),N(n ()& ) B
2 <(V(2)N())) + 8(n + 1II (G%/(n),]v(n)) < 2e” i)Y 4 Cuai(n)~*.

Lemma 5.9 follows by choosing

A =Ch5 (5.394)
with Ci5 given in (5.379),

Ay = Chy (5.395)
with Cy4 given in (5.375) and

N = max{N, N5, N, N7} . (5.396)

]

Since Gy, N(n) Satisfies the conditions of the Overlap-Lemma 5.2 (see (5.318)), and
Corollary 5.2 is about sets which satisfy the Overlap-Lemma 5.2, taking Corollary 5.2 and
Lemma 5.9 together we obtain that for A, Ay as chosen in (5.394) resp. (5.395), N as

given in (5.396), N(n),V(n),i(n) as defined in (5.360), (5.371) (5.393) respectively,

(5.349

B(i(n)) “E” B((n + DGy 50m))

(Grnn) )™
(5.3<42) 9 (W;)]V(n)) +8(n + 1II (G%(n),N(n))

(5.350) o2 4
< 2exp(—Ayi(n)s) + Asi(n) (5.397)

for all n > N. By this estimate for the f-coefficient (cf. (5.4)) of the process M, (cf. (5.7))
we finally can prove Proposition 5.1.

Proof of Proposition 5.1. Recall that E(|U(0)[>™°) < oo is true for any § > 0 (cf. Chapter
4). By the integral criterion we have that

/wﬁ(t)%dmoo & iﬁ(i)f? <00,§>0, (5.398)

0 =

i.e. we obtain Proposition 5.1 as soon as we can show that there exists 6 > 0 such that

S B(j)7 < oo.
§=0
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By (5.397) there exist constants A;, A2, a N € N such that for any n > N and i(n) =
(n+1)

B(i(n)) < 2exp (—Avi(n)?) + Agi(n) ™, (5.399)

and since 3(t) is non-decreasing, we have that for all n > N + 1

B(Litm)] +1) < Ali(m) "L 2exp (—Ari(n)?) + Asi(n) ™
< 2exp (—Ai]i(n)]7) + Asli(n) ] 7. (5.400)

Therefore, it is useful to write

00 s [{(N+1)] s o s
MBI = >, BT+ Y, BT (5.401)
=0 =0 N+

J=Li(N+1)]+1

Since the first sum on the r.h.s. in (5.401) is finite, we continue with the second sum in
(5.401) and obtain by (5.400) that

[e.9] o0

5
Z ﬂ(])% < Z <2exp (—Aljg) +A2j*4)2+5
j=li(N+1)]+1 j=li(N+1)]

< 3 (2ew(~AF) T+ (A r
J=LiN+1))

— 9345 Z (exp <— 25—?15 H ) Z j*% )

J=Li(N+1)]

(5.402)

Note that A; > 0 and %5 > 0, i.e. the first sum in (5.402) converges. The convergence of
the second sum in (5. 402) follows if

which is satisfied for § > 2. Hence, we obtain by (5.401) and (5.402) that for any 6 > 2

)

§+

Proposition 5.1 follows immediately by (5.398).
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6 Proof: D>0

In this chapter, we prove that
D= 2/°° E(UO)U(1))dt > 0. (6.1)
0

Together with the proof that U, is a-mixing with (3.5) (see Section 5.2), we then obtain
our main result, since then we showed that our model satisfies all conditions of the fCLT
(Theorem 3.1), which gives Theorem 2.1, our main result. Note that

2 /0 TEUO)U()dt < 0o

follows by Theorem 3.1 from Proposition 5.1 (which is proved in Section 5.2).

The positivity of the diffusion constant (cf. (6.1)) follows as soon as we prove Condition
(3.6) of Theorem 3.1, namely that

2.12)

SLtlp]E(|R(t)|) (L SL:pIE(/OtU(s)ds

) — o (6.2)

with R(t) given in (2.12) and E denotes the expectation w.r.t. the stationary measure of
U, given in (4.4). Since by the Markov inequality for any C' > 0

E(R()]) = Cu x py(RE)] > C)

t
(212) Cu x Py (

; U(s)ds

> C) ,
we may estimate the Lh.s. of (6.2) by

¢
supE (|R(t)]) > C'sup pu x p1 (‘/ U(s)ds
t t 2 0

> 0) | (6.3)
Now assume we can show that there exists € > 0 such that for any C' > 0

t
Sup 1 X p1 (‘/ U(s)ds >C’> > e,
¢ 0
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then we obtain by (6.3) that

supE(|R(t)]) > Ce.

Since C' can be chosen arbitrarily large, (6.2) follows, which is Condition (3.6) of Theorem
3.1, and with that we obtain (6.1).
Hence, (6.1) follows as soon we can prove following proposition.

Proposition 6.1. There exists € > 0 such that for any C' > 0

t
Sup ju X p1 (‘/ U(s)ds| > C’) >c. (6.4)
¢ 0

Heuristically Proposition 6.1 says that R, = {f; U(s)ds}cr+ spreads unboundedly.
The idea of proving Proposition 6.1 is roughly the following. First, we add Q(0) to
f3 U(s)ds, and we define

(2.13)

S(t) = /OtU(s)ds+Q(O) & /Ota(s)V(s)ds—i—Q(O) (6.5)

and, for reasons that become clear later, we define S(t) with ¢(0) = 1. Note that S(t) is
a random variable on (€, F, 1) with Q given in (2.3) and p given in (2.9), since for given
a(0), {o(t)}1s0 is a process on (Q, F, 1). We first show that S, := {S(t) },ep+ spreads over
R. Since in this case no probability distribution exits, we observe S(t) on a torus Iy, intro-
ducing Si(t). Sk(t) is a function of Q(t) and j(t), where ji(t) is a new random variable we
introduce to describe Si(t). Note that Si(t) depends on Q(t), because by adding Q(0) we
linked S(t) to the position of the molecule. Then, we use a Markov process which contains
Q(t), jr(t) from which we can make conclusions about the distribution of Sy ; = {Sk(t) her+
for t — oo and by that we show that S; spreads unboundedly. Since S(t) is given by (6.5),
the spreading of [i U(s)ds follows and we obtain Proposition 6.1.

We start now by observing S(t) on a torus I, introducing by that Si(t). Let
Iy := (=2kL,2kL] for k =1,2, ... (6.6)
and consider the process
Skt = {Sk(t) her+ (6.7)
with

Sk(t) :== S(t) mod I, (6.8)
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where

zmod (a,b] :=z — (b—a) ﬁ : ZJ (6.9)
with
ly| =max{k € Z : k < y}. (6.10)

Note for later use that for z € Z

, r—a ' —a
, T € (2b— (2 —1)a, 1)b— :>{ J: . 6.11
0,2’ € (b~ (2= D, (s 4 Db — 2] = | 5| = | T2 (6.11)
We now prove that for any k£ € N S, uniformly spreads over the torus as ¢ approaches
infinity. Therefore, it is useful to encode Sk(t) in a more appropriate manner. Separate
the interval [ into 2k intervals and numbering them, such that

(—(2k—=1)L+2(j —1)L,—(2k — 1)L + 2jL) (6.12)
is the j-th interval with j € {1,2,...,2k — 1}, where

(=2kL,—2kL + L) U (2kL — L,2kL) (6.13)
is the interval with number 0. Denote by

Jr(t) € {0,1,2,....2k — 1} =: Jj (6.14)

the number of the interval in which Si(¢) is at time ¢ whereby ji(¢) changes its value as
soon as

t)e U{-@2k—-1)L+2(j —1)L}N I, (6.15)

JEZ

such that Si(t) = —(2k — 1)L + 2(j — 1)L and jx(t) = j means that Sy goes through
—(2k — 1)L + 2(j — 1)L from left to right, and Si(t) = —(2k — 1)L + 2(j — 1)L and
Jk(t) = j — 1 means that Sy goes through —(2k — 1)L + 2(j — 1)L from right to left. Note
that by definition of Si(t) (cf. (6.8)) and S(t) (cf. (6.5)) we have that j.(0) = k, since
51(0) = Q(0) € [~ L, 1.

We now show that Si(t) is determined by Q(t) and ji(t), i.e. that Si(¢) is a function of
Q(t) and ji(t). This circumstance is based on the facts that Si(t) is defined with ¢(0) = 1
and that the modulus I is such that ji(¢) determines the value of o(t). With that, the
values of Q(t) and ji(t) give a good enough restriction for the possible values for Sk(t)
such that Si(t) is fully determined.!

1f one defined Sy, ; such that o(0) = —1, Si(t) would not be fully determined by Q(t) and ji(¢) (also Q(0)
is necessary). Since in addition jx(¢) would not determine o(t), the methods we use in the presented
proof cannot be transferred to this case.
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For the proof we use various assertions which follow by elementary algebra. Let us give
a short overview about the content of these assertions. First, we show by Assertion 6.1,
Assertion 6.2 and Assertion 6.3 how S(t) resp. Si(t) depends on o(t), whereas Assertion
6.4 is about the dependence between S(t) and certain values of Q(t). Assertion 6.5 and
Assertion 6.6 are about ji(t). The first is about the relation to o(t), the latter shows how
Jk(t) changes its value dependent on Q(t). By these assertions it becomes clear that ji(t)
changes its value iff o(t) changes its value, namely when the molecule is reflected at one
of the walls, and moreover we show that the value of o(t) can be derived by the value of
Ji(t), such that in Lemma 6.1 we can prove that Sk(t) is fully determined by Q(t) and jx ().

Before we show how Si(t) (cf. (6.8)) depends on o(t), we have to show how S(t) (cf.
(6.5)) depends on o(t).

Assertion 6.1. Consider S(t) as defined in (6.5). If for some ¢ > 0

c(0)=1lando(t)=1= S(t) € U[(4¢ — 1)L, (4i +1)L] (6.16)
and if
o(0)=1and o(t) = -1 = S(t) € U[(4¢ —3)L, (41 — 1)L). (6.17)

Proof of Assertion 6.1. Let 0(0) = 1. Since by definition o(t) changes its value, when
Q(t) € {—L,L}, we can follow from o(t) = 1 that the molecule is reflected at the walls
of A an even number of times during the time interval [0,¢], and from o(t) = —1 that the
molecule is reflected during [0, ¢] an odd number of times.

Before we prove (6.16) and (6.17), we express S(t) in a more appropriate manner. Consider
the molecule is reflected during [0,¢] n; > 1 times and denote by 7, i € {1,...,n;} the time
of the i-th reflection, i.e.

Q(ri) e {—L,L},ie{1,...,n}. (6.18)
Then, we can write
5 QW) + [ a(s)V ()ds

ng—1

— Q(0) +/Oﬁ V(s)ds + ;(—1)1‘/:”1 V(s)ds + (—1)™ /t V(s)ds.  (6.19)

z t
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Q(0) + ; V(s)ds = Q(m), (6.20)

[ Vs = Qi) - Q) (6:21)
and

[ Vs = e - ), (6:22)

we obtain for (6.19) that

ne—1 Ti+1 t
Ti

S(t) = Q(0) + /0 " Vis)ds + > (1) [ Vs + (=0 [ visyds

(6.20)7(621)»(6-22) Q(Tl) + ntZ: (—1)i(Q(Ti+1) _ Q(Tz)) + (_1)nt(Q(t) _ Q(Tnt))

ng

= > (=1)"2Q(n) + (=1)Q(1). (6.23)

i=1

Now consider o(t) = 1, i.e. the molecule is reflected n; € 2N times during [0,¢]. Then,
from (6.23) it follows that

ng

S(t) = _(-1)"12Q(7) + Q(1). (6.24)

=1

With (6.18) it follows for the sum in (6.24) that

i(—l)HlQQ(Ti) € n‘[_jl{—ZntL +4L(GE—1)}. (6.25)

Since Q(t) € [—L, L], we have for (6.24) with (6.25) that

ne+1
Sit)e |J[-2mL+4L(i —1)— L, —2n,L +4L(i — 1) + L] . (6.26)
=1

Since for any n; € 2N for the r.h.s. of (6.26) we have that

nt+1

U [-2nL +4L(i —1) — L, —2n,L + 4L(i — 1) + L]
= RU[(—Qnt +4(—1) = 1)L, (—2n; +4(i — 1)+ 1)L]
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c Ul4i—1)L, (4i+1)L], (6.27)

€7
it follows by (6.26) and (6.27) that

)€ Ui —1)L, (4 + 1)L] (6.28)

€L

Consider now n; = 0. Then,

St) @ Q) e [~L, L) ¢ |J[(4i — 1)L, (4i + 1)L (6.29)

1€EL

(6.16) follows by (6.28) and (6.29).

Since (6.17) can be proven analogously, Assertion 6.1 follows.
O

By Assertion 6.1 we can make a statement about how Si(t) (cf. (6.8)) depends on o(t).

Assertion 6.2. Let k € N. Consider Sk(t) as given in (6.8). Then, if for some ¢ > 0

o(0) =1and o(t) =1 = Si(t) € [J[(4i — 1)L, (4i + 1)L N I, (6.30)
1€Z
and if
0(0) =1and o(t) = =1 = Si(t) € [J[(4i — 3)L, (4i — 1) L] N . (6.31)
1EL

Proof of Assertion 6.2. Consider 0(0) =1 and o(t) = 1. Then, by Assertion 6.1

) e UlM4i — 1)L, (4i +1)L]. (6.32)

€L

To prove (6.30) we have to show that the modulus I, just restrict the range of values given
by (6.32), i.e. such that with (6.32)

S(t)mod I}, = S(t) € | J[(4é — 1)L, (4i+ 1)L] N I.

€L

To begin we define

MOdk ‘R — [k,

6.33
z — xmod [, ( )
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with I, given in (6.6). We first show that for any boundary point of the subintervals in
(6.32), i.e. for any i € Z 3ly,ls € Z such that
Mody((4i —1)L) = (4l — 1)L, (6.34)
Mody((4i+1)L) = (4l + 1)L. (6.35)

Let i € Z. For the Lh.s. of (6.34) we have that

(6.33)

Mody((4i — 1)L) (4i — 1) Lmod I}

(6:6),(6.9) . B (41 — 1)L — (—2kL)
LOD (g 1)L — 4kL { o (6.36)
Since by the definition of |-| (cf. (6.10)) Jy; € Z such that
| (4i — 1)L — (~2kL)
Y1 = L : (6.37)
we obtain for (6.36) that
Mody((4i — 1)L) = 4iL — L — 4kLy,
=(4(i — ky) — 1)L
— (4, —1)L. (6.38)
with
i i =1 — k?yl eZ. (639)
For the Lh.s. of (6.35) we have that
: (6.33) .
Mody((4i+1)L) =" (4i+ 1)L mod I,
(6.6),(6.9) , . (4i + 1)L — (—2kL)
= 4i 4+ 1)L — 4k L
(4i+1) k a7
= (4i + 1)L — 4kLys (6.40)
= (4l + 1)L (6.41)
with
ly =1 — ]{Zyg ez. (642)
Since (6.32) there is a ¢ € N such that
S(t)y=se€[(4i—1)L,(4i+1)L]. (6.43)
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Having (6.11) in mind, we now distinguish if there is a z € Z such that

(46 — 1)L, (46 + 1)L] C ((22 — 1)2kL, (22 + 1)2kL] = Iy (6.44)
or if there is no such z, i.e.

B2eZ:[(4i— 1)L, (4 +1)L) C I (6.45)
If (6.44), then by (6.11) we have that

Y1 =192
with y; given in (6.37) and y, given in (6.40) and with that

=1 (6.46)

with /[ given in (6.39) and Iy given in (6.42). With (6.43) it follows by the monotonicity
of Mody, (cf. (6.33)) that

(4l — DL Y Mod,((4i — 1)L) < Mody(s) < Mody,((4i + 1)L) “*"2** (41, 4 1)L

i.e. with (6.43)

L5 Mody(s) € [(41 — 1)L, (41 + 1)L € |J[(4i — 1)L, (4i + 1) L] N I .

1€Z

Si(t) '

Now if (6.45), then by definition of I, (cf. (6.44)) there is a z € Z such that
(46 — 1)L, 4iL] € Iy, and (4iL, (4i+ 1)L] € I .41 .
We have then that if

s€([(4i—-1)L,4iL] =

(4l — DL 2 Mody((4i — 1)L) < Mody(s) < (41, — )L + L

and if

s € (4iL, (4i+1)L] = (4ls + 1)L — L < Mody,(s) < Mody((4i +1)L) *2Y (4, + 1)L,

i.e. with (6.43) we have that

OIS N ody(s) €](4ly — 1)L, 41, L) U (415 L, (415 + 1)L)

c YlM4i - 1)L, (4i+1)L]N .

1€Z

Sk(t)
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Since (6.31) can be proven analogously, Assertion 6.2 follows.

O
By Assertion 6.2 following assertion follows immediately.
Assertion 6.3. Let k € N. Consider Sk(t) as given in (6.8). Then, if for some ¢ > 0
o(0) =1and Si(t) € (J((4i — 1)L, (4i+ 1)L)N I, = o(t) =1 (6.47)
1€EZ
and if
0(0) =1 and Si(t) € |J((4i —3)L,(4i —1)L)N I, = o(t) = —1.
1€EZ

Proof of Assertion 6.3. We show (6.47). Consider ¢(0) = 1. Then, (6.47) follows as soon
as we prove that if

ot) # 1= S(t) ¢ (J((4i — 1)L, (4i+ 1)L) N Iy (6.48)

€L

The Lh.s. of (6.48) is equivalent to o(t) = —1 and by Assertion 6.2 we have that

o(t)=—1= Si(t) € [J[(4i —3)L, (4 — 1) L] N L. (6.49)

Y/
Since
I\ [ Ui =3)L, (4i —)LIN I, | = (J((4i — 1)L, (4 + 1)L) N I,
i€z i€Z
for the r.h.s. of (6.49) it follows that

(t) e Ul4i=3)L, (4i — 1)L] NI, < S(t) ¢ | J((4i — 1)L, (4i + 1)L) N I, (6.50)

€L i€EZ

and all in all (6.48) follows since we have for the Lh.s. of (6.48) that

ot) £#1eo(t)=—1
Y Su(t) € (i — 3)L, (4i — DL N Iy

1€EL
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) Su(t) ¢ |J((4i — 1)L, (4i + 1)L) N I .

€L

(6.47) follows by similar arguments but using (6.30) of Assertion 6.2. O

It turns out, if Q(t) is given, the set of possible values of Si(t) differ dependent on
the value of ji(t) except if Q(t) € {—L,0,L}. In the latter case the set of possible values
for Sk(t) are the same no matter which value ji () is. We can prove the following assertion.

Assertion 6.4. Let k£ € N. Consider Sk(t) as defined in (6.8). Then, for t > 0

Q(t) =0 & Si(t) € U{QzL} N1, (6.51)
and

Q(t) € L & Si(t) EU{4z+1)L}ﬂIk, (6.52)
and

Q(t) € —L & Si(t) EU{ 4i — 1)Ly N I, (6.53)

Proof of Assertion 6.4. We show (6.51). First, we handle “=". Let

Qt) =0. (6.54)

Consider the molecule is reflected n; > 1 times during [0,¢] and denote by 7; the time of
the i-th reflection, i.e. Q(7;) € {—L,L},i € {1,...,n;}. Hence, we can write S(t) as given
n (6.23) and with (6.54) it follows that

S(t) = i(—n”le(n). (6.55)
Since for any i € {1,...,n:}
(—1)"2Q(r;) € {—2L, 2L},

we have for (6.55) that

S(t) = i(q)"“z@(n) € 6{—nt2L +4Li}. (6.56)
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Now consider n; = 0, i.e. the molecule hasn’t been reflected during [0,¢]. Then,

(6:54)

s Q) (6.57)
Altogether we obtain with (6.56) and (6.57) that
Q) =0=5(t) € U U{ 2neL + 4Li}
nt=01=0
= |J{2iL}. (6.58)
i€z

To prove “=" of (6.51), we have to show that the modulus restrict the range of values
given by (6.58) in an appropriate way, i.e. such that if

)€ (J{2iL} = Si(t) € J{2iL} N I, (6.59)
i€Z iE€EZ
Consider
S(t) = 2iL. (6.60)

If 2¢L € I;, then

Modk(2zL) 9L . (6.61)
With

Se(t) 2 5(#) mod 1, “FE aody2in) LV 9L € 1,
the r.h.s. of (6.59) follows.
If 2iL ¢ I), we have that

MOdk(2LZ) Y 9Limod Ik %9 %L — AkL {WJ

Since |-] € Z by definition (cf. (6.10)), there is a y € Z such that
Mody(2Li) = 2iL — 4kLy = 2L(i — 2ky) € Iy i — 2ky € Z (6.62)
By (6.62) we obtain that

(6.33),(6.60)

Sk(t) =" S(t) mod Iy Modk(QzL e J{2iL} n I,

1€EZ

and the r.h.s. of (6.59) follows.
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Altogether, by (6.58) and (6.59) we have shown “=" of (6.51).

Now we show “<" of (6.51).
Consider

Si(t) € J{2L} N I,

1EL

We have to show that then @Q(¢) = 0 follows. Since for some appropriate constant y € Z
we have that

Su(®) T L 51y — 4kL {WJ = S(t) — 4kLy,
4kL
we obtain that if
S(t) € J{2eL} NI, = S(t) € [ J{2:L}. (6.63)
1€Z €7

Assume the molecule collides n; > 1 times with —L or L during [0, ], then we can use
(6.23) and write

ne

S(t) =D (=1)"2Q(n) + (=1)"Q(t) (6.64)

i=1
Since for any i € {1,...,n:}
(—=1)""'2Q(m) € {-2L,2L},

we have for the sum in (6.64) that

e

> (=1)"2Q(n) € @{—Qnt[/ +4Li}.

i=1 =0
Let 7 such that

ne

> (=1)"12Q(r;) = —2n, L + 4jL . (6.65)

i=1
Plugging (6.65) into (6.64) we obtain that

S(t) = i(—l)iﬂzmm IS

O _oneL + 451 + (~1)"Q(t) . (6.66)
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In addition by the r.h.s. of (6.63) we know that there is a m € Z such that
S(t) = 2mL. (6.67)
Since Q(t) in (6.66) and m in (6.67) have to be such that

— 2L +4jL + (—1)"Q(t) = 2mL
< (=D)™Q(t) = 2mL + 2ny L — 45 L
& (—=1)"Q(t) = 2L(m + ny — 4j) . (6.68)

Since m+n; —4j € Z and Q(t) € [—L, L] it follows from (6.68) that m = 4j —n; = 0 and

Q) =0. (6.69)
Now consider n; = 0, i.e. the molecule hasn’t been reflected during [0, ¢]. Then,
(6.5)
S(t) = Q(t). (6.70)

By the r.h.s. of (6.63) there exists a m € Z such that

S(t) =2mlL,
and with (6.70) it follows that

2mL =Q(t) & m=0,Q(t) =0. (6.71)
All in all we obtain by (6.69) and (6.71) that

Sp(t) e [ J{2iL}n Iy = Q) =0,

1EL

which gives (6.51).

Since (6.52) and (6.53) follow by the arguments we used to prove (6.51), Assertion 6.4
follows.

O

The following assertion, which can be proved by Assertion 6.3 and Assertion 6.4, is about
the relation of ji(t) and o(t).

Assertion 6.5. Let k € N and 0(0) = 1. Consider t > 0 and ji(t) = j € Ji (cf. (6.14)).
Denote by 7, the last time before time ¢, when the molecule was at —L or L. Then, if
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Te # t,ie. 7. < t, and

jJE2ZL+k=0ct)=1,7.<t' <t (6.72)
and if
JE2W+k+1=0()=-1,7. <t <t. (6.73)

Note that Assertion 6.5 says that ji(t) and o(t) change their values at the same time
namely when Q(t) € {—L,L}.

Proof of Assertion 6.5. Let 0(0) = 1 and 7. < t. Consider
) =j €L+ k.
Then, by definition of ji(t) with (6.12), it follows that

Skt)e |J [-2k—1)L+2(j —1)L,—(2k — 1)L+ 2jL] N I, (6.74)
JE2Z+kK

and by definition of 7, it holds that

Q) ¢ {-L,L}.

By Assertion 6.4 we have that

Q(t) ¢ {—L,L} & Si(t) ¢ (J{2L} N I,

€L

which yields with (6.74) to

Se)e U (—@k—1)L+2(—1)L,—(2k—1)L+2jL) N Ij. (6.75)

JjE2Z+kK

Since for the r.h.s. of (6.75) we have that

U (—=@k—1)L+2(j—1)L,—(2k—1)L+2jL)NI, = | J((4i—1)L, (4i+1)L)NI}, (6.76)

jE2T+k i€z
by Assertion 6.3 we can follow from (6.75) and (6.76) that
o(t)=1.

Since o(t) changes its value iff the molecule is at L or —L, we have that o(7.) = 1, and
(6.72) follows.
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Since (6.73) follows by similar reasoning, we obtain Assertion 6.5.

Now we show how ji(¢) changes its value dependent on Q(t).

Assertion 6.6. Let £ € N. Consider j,(t) as defined in (6.14) and underneath. Denote
by 7. the last time before time ¢, when the molecule was at —L or L, i.e. Q(7.) € {—L,L}
and by 7,— the time right before 7.. Then, if

k@) =7 = gt') =4, 7 <t <t and jy(r.—) # J.

Proof of Assertion 6.6. Since by definition, j(¢) changes its value if and only if

) € U{ 2k —1)L+2(j —1)LYN I

(cf. (6.15)) and since with
U{ (2k—1)L+2(j—1)L}NI = (U{(zu' —1)L}u U{(4z‘ + 1)L}) N Iy

we obtain by Assertion 6.4 that

ye U{-@Ck-1)L+2(j-1)L}nI, < Q) e {-L,L},

JEZ

and Assertion 6.6 follows.
O

Finally, by Assertion 6.4, Assertion 6.5 and Assertion 6.6 we can prove that Si(t) (cf.
(6.8)) is determined by Q(t) and ji(t), i.e. Sk(t) is a function of Q(t), jx(t).

Lemma 6.1. Let k € N. Consider 0(0) = 1. For any t > 0, Sg(t) (cf. (6.8)) is determined
by Q(t) and ji(t) (cf. (6.14)) with

f :[—L, L] X T — Iy,
(Q(1), k(1)) = Sk(t)
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where

Q(t) +2L(ju(t) — k), if ji(t) € (2Z + k)\{0}
—Q(t) + 2L(j(t) — k), if ju(t) € (2Z + k + 1)\{0}.

S (f) = Q(t) — 2kL , if Je(t) =0 € 2Z + k,Q(¢) € [0, L] 6.77
KD =93 O) + 2kL i) =0e2Z+ kO e[-L.0)  E7TD)
—Q(t) +2kL Cif () =0€2Z+k+1,Q(t) € [0, L]

—Q(t) — 2kL i ge(t) =0€2Z+k+1,Q(t) € [-L,0)

Proof of Lemma 6.1. Consider o(0) = 1 and ji(t) = 7 € Ji \ {0}. Then, by definition of
Jr(t) (cf. (6.14)) with (6.12) we have that

Ju(t) = j = Su(t) € [~(2k — 1)L +2(j — 1)L, —(2k — 1)L + 2jL] . (6.78)

Denote by 7, the last time at which the molecule was reflected at one of the walls before
t,i.e. Q(1.) = L or Q(1.) = —L. Assume that

T, At
ie.

T, <t (6.79)
Consider

Q(te) = L. (6.80)

Then, by Assertion 6.4

Si(re) € J{(Ai+ 1)L} N I, (6.81)

i€z
and by Assertion 6.6
Jk(Te) =7 (6.82)
Consider j € 2Z + k. With (6.82) we have by (6.78) and (6.81) that
Si(7.) €[—(2k — 1)L +2(j — 1)L, —(2k — )L + 25 L] n | J{(4i + 1)L} N Iy
={-(2k—-1)L+2jL} -
={L+2L(G —k)}. (6.83)

Further, by definition of 7. and Assertion 6.5 we have that o(t') = 1 for 7. <t <t. Since
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then
Su(t) Y sy, +/ s)ds = Sy(r +/ , (6.84)
we obtain with

= QUr)+ [ Vis)ds, (6.55)
that
Sy () (684 Sk(1e) + /tV (s)ds
O 1 4 on(i -k +/ ds
(620 Te+/ s)ds + 2L(j — k)
="Q(t) +2L(j — k),

which gives the first line of (6.77).
If j € 2Z + k+ 1 by Assertion 6.4 and (6.78) it follows that

Si(te) €[—(2k — 1)L +2(j — 1)L, —(2k — 1)L + 25 L] N U{(4¢ + 1)L} NI,
= {—(2k—1)L+2(j — 1)L}
={-L+2L(j —k)}. (6.86)

By Assertion 6.5 we have that o(t') = —1 for 7. <t <t. By
¢
Sk(t) = Sk(r) + / s)ds = Si(7.) — / V(s)ds (6.87)

and (6.85) we obtain that

-87) Sk(Te) — /Tt V(s)ds

t
2 _L42L(j — k) —/ V(s)ds

Te

(6.85)

= —Qt)+2L(G — k),

which gives the second line of (6.77).
Using the same method, (6.77) follows for j = 0.
If Q(7.) = —L we obtain (6.77) by the same arguments.
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We considered in (6.79) that 7. < t. Now assume that

Te=1. (6.88)
Consider
Q(re) = L. (6.89)

If j € 2Z + k\ {0} we have by (6.78) and Assertion 6.4 that

Si(t) = Sk(re) €[—(2k — 1)L +2(j — 1)L, —(2k — 1)L + 25 L] N J{(4i + 1)L} N I
= {—(2k — 1)L + 2jL} -
={L+2L(j —k)}, (6.90)
ie.
Sk(t) = Se(r) CTE Q(r) + 200G - k) Q) + 2L — k).
If j€2Z+k+ 1\ {0} by Assertion 6.4 and (6.78) it follows that

Si(t) = Sk(re) €[—(2k — 1)L +2(j — 1)L, —(2k — 1)L + 25 L] N J{(4i + 1)L} N I

1E€EL

{—=(2k — DL +2(j — 1)L}
{—=L+2L(G —k)}, (6.91)

which gives

(6.88) (6.91),(6.89)

Su(t) = Sp(re) CTE —Q(r) + 2L — k) 2

—Q(t) +2L(j — k).
We proceed similar if j = 0 or Q(7.) = —L, and all in all Lemma 6.1 follows.
O]

As mentioned before, we may determine the distribution of S, for ¢ — oo, if we find a
stationary Markov process which contains Si(t) - or by Lemma 6.1: which contains Q(t)
and ji(t). But since the value of ji(0) is determined, to obtain a Markov process with

2

stationary measure we have to introduce a more general process such that “j;(0)” may
take any j € Jj (cf. (6.14)).
Denote by

Jk(t) € T
the random variable which is the number of the subinterval (cf. (6.12)) in which

Sp(t) = (=)' S(t) + 2L1) mod Iy, 1 € {~k, —k +1,...k — 1} (6.92)
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is at time ¢. Note that jL(0) = k + [ by definition of SL(¢) and for [ = 0, Si(t) = Si(t) (cf.
(6.8)), i.e. j2(t) = jx(t) with ji(¢) defined in (6.14).

Further we introduce the process Si(t), where j,(t) € Ji is the number of the subinterval
(cf. (6.12)) where S(t) is at time t. Si(t) is defined as (6.92) but the value of j;(0) is
distributed according to some initial distribution (counting measure) g.

We now prove that S (t) is a function of Q(t) and Jji(t).

Corollary 6.1. For any ¢t > 0, Si(t) is determined by Q(t) and ji(t) by the function

f Z[—L, L] X jk — Ik;
(Q(1), ji(t)) = Sk(t) (6.93)

where f is given in Lemma 6.1.

Proof of Corollary 6.1. We show that S.(t) as defined in (6.92) is determined by ji(¢) and
Q(t) by the function f as given in Lemma 6.1, i.e.

Q(t) +2L(ji(t) — k), if ji(t) € (2Z + k) \ {0}
—Q(t) + 2L(ji(t) — k) , if ji(t) € (2Z + Kk + 1) \ {0}.
Si(t) = Q(t) — 2kL , if ji(t) =0 € 2Z 4 k,Q(t) € [0, L] (6.94)
k Q(t) + 2kL ,if ji(t) =0 € 2Z + k,Q(t) € [-L,0) '
—Q(t) + 2kL Lif i) =0€2Z+k+1,Q(t) € [0, L]
—Q(t) — 2kL L ifjL(t)=0€2Z+k+1,Q(t) € [-L,0).

By that, Corollary 6.1 follows immediately, since f doesn’t differ in (.
We consider in the following that

J() £ 0. (6.95)

The proof for the cases where ji(t) = 0 follow analogously.

Consider
le?2Z. (6.96)

Then, we obtain for SL(¢) that

Sty °2 (8,(¢) + 2L1) modl, . (6.97)

Since SL(¢) moves at any time in the same direction as Si,(t) but with a distance of 2IL,
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we have that
Jb(t) = (jr(t) + 1) mod 2k . (6.98)
By Lemma 6.1 we obtain for (6.97) that

Sty L) (£(QUt), ju(t)) + 2L1) mod, (6.99)

We now show that

Gi(t) €E2Z + k < ji(t) €2Z + k (6.100)
and

Gt €E2Z+k+1 s g (t) €2Z+k+1. (6.101)
We start with “=" of (6.100). Since (6.96), there is a n € Z such that

l=2n (6.102)

and we have that for some p € Z

A1) 2 (Ge(#) + 1) mod 2k L (ju(t) + 2n) mod 2k = jiu(t) + 2n — p2k. (6.103)

If ji(t) € 2Z + k, i.e. there is a m € Z such that
Ju(t) =2m + k.
we obtain by (6.103) that
Je(t) +2n —p2k =2m+k & ji(t) =2(m—n+p) + k. (6.104)

Since m — n + p € Z the r.h.s. of (6.100) follows.
Now we show “<" of (6.100). Consider ji(t) € 2Z + k, i.e. there is a m € Z such that

Je(t) = 2m + k. (6.105)
We use again (6.103) and we obtain that
(6.103)

gt) =" gi(t) + 2n — p2k

©1%) 9m + k + 2n — p2k

=2(m+n—pk)+k, (6.106)
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which gives that
ge(t) €2Z + k.

(6.104) and (6.106) give (6.100). (6.101) follows by the same arguments.
All in all we obtain for (6.99) by (6.100) and (6.101) that with (6.96)

g (Q(t) + 2L(jx(t) — k) 4+ 21L) modI}, , if jx(t) € 2Z + k
K0 = ( Q(t) + 2L(jp(t) — k) + 21L) modl, , if j,(t) € 2Z + k+1.
Q

(t) + 2L (5L (t) — ) ,if jL(t) € 2Z + k
Q) +2L(jL(t) +1—k) ,ifji(t) €e2Z+k+1.

Now let
le2Z+1, (6.107)
i.e. there is a n € Z such that
l=2n+1. (6.108)

With (6.108) we have that

SLt) 2 (S, (t) + 2L1) modl,,, (6.109)

i.e. since S.(t) moves in opposite direction as Si(t) and S.(¢) starts in ji(0) = k + [ with
distance 21L to Sk(0), we have that

GE(t) = (k + 1 — (ji(t) — k) mod 2k = (2k — ji(t) + 1) mod 2k . (6.110)

By Lemma 6.1 we have for (6.109) that

St "= — (F(Q(1). (1)) + 2L1) mody
—(Q(t) + 2L(ji(t) — k) 4+ 21L) modl, , if ju(t) € 2Z+ k
—(—Q(t) + 2L(jr(t) — k) + 21L) modl;, , if jx(t) € 2Z 4k +1
+ k(
k(1)

) —
t) + k )) modl, , if jk(t) €27+ k

_ ] (=Q() 2L(
Now we show that
JL(t) €2Z 4+ k& jut) € 2Z+ K+ 1 6.112)
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and
) EZ+k+1e jiu(t)EZ + k. (6.113)

We show “=-" of (6.112). We have that

@) 2V 2k — ju(t) + 1) mod 2k

CL% 9k — ju(t) + 2n + 1) mod 2k
=2k — ji(t) +2n + 1 — p2k, (6.114)
for some appropriate p € Z. Consider j!(t) € 2Z + k, i.e. there is a m € Z such that
Jrt) =2m+ k. (6.115)
By (6.114) and (6.115) jx(¢) has to be such that

2k — ju(t) +2n 41 — p2k = 2m + k
S gt)=k+2n—2m+1.

ie.
Jr(t) €2Z+k+1.
We show “<«<=" of (6.112). Consider
Jrt) €22+ k+ 1,
i.e. there is a m € Z such that
gty e2m+k+1. (6.116)

Plugging (6.116) into (6.114) gives

L) 2 ok — () + 20+ 1 — p2k

CUY ok _om 4 k+1+2n+1— p2k
=2k—m+14+n—pk)+k,
which gives

Jr(t) €2Z + k.

This ends the proof of (6.112). (6.113) follows by the same arguments.
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By (6.112) and (6.113) we finally obtain for (6.111) with (6.107) that

S — (—Q(t) + 2L(—jx(t) + k = 1)) modly , if jx(t) € 2Z + k
W) = (Q(t) +2L(—j (t)+k—l)) modl, , if jr(t) €2Z+k+1.

<6.1:10>{ Q(t) +2L(ji(t) — k), if ji(t) € 2Z + k

(t) t
—Q(t)+2L(jL(t) — k) , ifjL(t) €2Z+k+1.

This gives (6.94) for the case (6.95). Recall that the remaining cases can be proven by
similar arguments.

We have shown in (6.94) that for any [ € {—k,—k+1,....k — 1}

Si(t) = F(Q(1), 5i(1))

where f is given in Lemma 6.1.

]

We now define the process M ».+ which contains Q(t) and j;,(t) and by which we determine
the distribution of Sy, (cf. (6.7)) for t — oo.
We consider the process

Mis: = {Zp(t) hier+ (6.117)
with
Zi(t) = (Q1), V(1) a(t), vi(t), jr (1)) (6.118)

where Ji(t) is defined underneath (6.92). The process is defined on Q x J;, (cf. (2.3),
(6.14)) with state space €| X Tk, where Q] s the set of all configurations of the particles
in A.

Lemma 6.2. The process Mk,t as defined in (6.117) is a Markov process with stationary
measure

I (dz) = pu x pj, (Zx(0) € dz), (6.119)

where (1 is given in (2.9) and p;, is the counting measure with equal weight for any j € Jj
(cf. (6.14)).

Proof of Lemma 6.2. The Markov property of ./\;lk,t follows by the same reasoning which
we used to prove Lemma 5.1. Note that the evolution of ji(¢) is apart from the incoming
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atoms deterministic. Further, {ji(t),t > 7} is determined by

Zi(r) = (Q(7), V(7), ¢i(7), vi(7), ji(7))

and all atoms entering A after time 7: {j(t),t > 7} is determined by {Sk(t),t > 7}.
{Sk(t),t > 7} is determined by Si(7) and the incoming atoms after time 7. Since Si(7)
is a function of Zy(7) (cf. Corollary 6.1) , {ji(t),t > 7} is determined by Z(7) and all
atoms entering after time 7.

To show the stationarity we make use of the Skew-Product-Lemma 4.2. We consider X
to be the phase space of the system of all particles, i.e.

X =0

(cf. (2.3)). The measure ¢ is the product of ideal gas measure with Gibbs measure of the
molecule, i.e.

§=p
given in (2.9). Let
Y =Tk

with J, given in (6.14).
We consider the evolution

Ui(@,5) = (2u@), 47 (7)), @ € Q5 € Tk, (6.120)
where @, is the dynamical evolution of the system of all particles (cf. (2.10)), and

X9 T = Fi,
3r(0) = Ji(t) .

To prove the stationarity of M kt W.r.t. the measure given in (6.119), by the Skew-Product-

Lemma it is enough to show that xgm preserves pj,, what we show now. Define A;;, C O

with
I PR & N Cifi<2%k—1—j
Ajyz.{w.jk((])]i]k(t){j+i_2]{;,ifz‘>2k‘—1—j

with ¢ € {0,1,...,2k—1}. The set A;; includes all the initial conditions for which the value
of ji “grows” (in mod 2k) by i steps during [0, ] if j.(0) = j. Since the value of ji. has no
affect on the evolution of the particles, it follows by the dynamics of ji(¢) that

Aji= Ay (6.121)
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if j/ € j + 27 and
Aji= Ay (6.122)
if 7/ € j+ (2Z + 1). Note that for given j € Jj
2%k—1 A
AjiNAjy=0fori#d, and [J A4;, =Q.
i=0

Consider now & € A;; for some given ¢ € {0,...,2k — 1},j € J;, then with (6.121) and
(6.122) either

() )

j/l_Z' ,lfj”ZZ
{ ik if T < (6.123)

or

@\ J i Lif " <2k —1—1

i.e. if (6.123) and j” > i we obtain that

i ()7 G0M) 2 007 = i) = el (6.125)
and if j” < 7 that

pi (6) 7 0") BV g7 =i+ 20) = 7). (6.126)
Note that the last equation in (6.125) resp. in (6.126) follows since p;, is the counting

measure with equal weight to any j € J,. By the same arguments we obtain that if
(6.124) and j” < 2k — 1 — i that

oL, .

Pi ((X§ ') (J”)) = p(j") (6.127)

and if j” > 2k — 1 — i that
oL, .

Pi ((X§ ) (J”)) = pe(J") .- (6.128)
Since (6.123), (6.124), (6.125), (6.126), (6.127) and (6.128) hold for any j € J; and any
i€{0,1,...,2k — 1} it follows that ') preserves Dje-

Finally, we consider

szjka
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and we obtain by the Skew-Product-Lemma that W, (cf. (6.120)) preserves the measure
HX P, -
Now consider the extended probability space
%, = (Q X Tios F X P(Ti), o ¥ pjk) .

Since Z,(t) (cf. (6.118)) is a function of ¥, (cf. (6.120)), which is a measure preserving
transformation on ¥;,, the stationary measure of My (cf. (6.117)) is

i(dz) = p % p;, (Z,(0) € dz) .
With that Lemma 6.2 follows.

O

To determine the distribution of Sy, for ¢ — oo we use following Lemma. Denote by
I, ., z € €2, x Jy the transition probability of the process My (cf. (6.117)). Let ¢ be
an initial distribution, then ¢IT(-) = [ $(d2)II} .(-) is the distribution at time t of M,
starting in ¢.

Lemma 6.3. Consider the process M, as defined in (6.117). Then,
61T, — o x || = 0 as ¢ = oo,

where ¢ is an initial distribution and p x pj, is given in (6.119).

Note, since Sy(t) is a function of Q(t) and j,(t) (given j;(0) = k) (cf. Assertion 6.1) and
since M k+ contains these variables, by Lemma 6.3 we then obtain the distribution of Sy,
for t — oo by choosing the appropriate initial measure ¢. Before we show this, we prove
Lemma 6.3.

The idea of proving Lemma 6.3 is the following: We make use of the Harris Theorem

(see [GLRS&2)):

Let (T, 7, P) be an ergodic, aperiodic Harris chain with stationary distribution w. Then,
forneNand rae €T

|P¢ —7|[ =0, asn — 00, (6.129)
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For the definition of ergodicity, aperiodicity and Harris see [GLR82]. To make use of
the Harris Theorem we consider ./\;lk,t in discrete time: Let 7 > 0. Then, ./\;lk,t is ob-
served only at times which are integer multiples of 7, which defines the Markov process
M kmr = {Zk(nT) }nen for any 7 > 0 with transition probability H’,‘/w, t € 7N and stationary
measure y X p;, (cf. (6.119)). Proving that My, . is an ergodic, aperiodic Harris chain for
any 7 > 0, we follow essentially the arguments in [GLR82|, who showed Harris mixing, i.e.
(6.129), of a related Markov process.

To show that /\;lkvm is an ergodic, aperiodic Harris chain for any 7 > 0, it is enough
to establish following lemma, which is about the continuous Markov process Mk,t (cf.
(6.117)).

Let ]f”k denote the path measure induced by M k.t and let ]f”,m denote the conditional path
measure given Z;(0) = z,z € Q‘A X T

Lemma 6.4. There exists a set Q C Q‘A x Ji, with p x p;, () = 1, such that the family

of measures {th(dvg,dfz),]P’k,Z/(dVg,dfg); 2,2 € Q} are overlapping, where 7; is a time
where the molecule is alone and Q(73) = L and ji(72) = k, V(1) = Va.

See [GLR82]| for the definition of overlap of a family of measures.

Since the strategy of the proof is the same as in Section 5.2, we shall only point out some
essential changes which arise from observing the process on the torus Iy, k € N (which is
arbitrary large with growing k), followed by some ideas how to establish overlap.

Proof of Lemma 6.4. Let Q = {z € Q‘ X T 11 < oo P, a.s.}, where 7 is the time, when
for the first time the molecule hits the wall at L and is alone in the interval. From Theorem
A in Appendix A in [GLRS&2], it follows that

X p;, (Q)=1. (6.130)

Note since in our model the atoms lie to both sides of the molecule, we have to modify
set A in the proof of Theorem A in [GLRS&2| slightly as follows. First, we send in one
sufficiently large atom from the right, such that the molecule pushes all atoms to its left
out of the interval. Then, we are in the same situation as in [GLR82], and continue as in
[GLR82], to show (6.130).

The arguments that the family of measures

{Py.(AVa, A7), Py (dVa, A7), 2, 2" € Q}
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are overlapping, are similar as in the proof of Overlap-Lemma 5.2: Besides the particles in
the interval, one now has to control the value of ji(¢) instead of the value of o(¢). On the
one hand the argumentation is even simpler, since only pairwise overlapping is required
(we don’t need an explicit overlap set, which in Overlap-Lemma 5.2 is necessary to give
an explicit rate). The requirement of pairwise overlapping allows to choose Vs, the set
of molecular velocity at time 75, dependent on 7y, Vi, 7{, V/, which makes it easier to find
an overlap set for Py (dVad7,) and Py (dVad7,). On the other hand there is one more
difficulty, since we have to control the value of jj, which is the number of the subinterval
where S “is” at a certain time. The larger k, the larger the torus I (cf. (6.6)), i.e. the
more possibilities for the position of Sy, i.e. the larger k, the later the overlap may occur.
But since Sy, i.e. j; is periodic on the torus I, one can show that overlap occurs in finite
time.

We give some ideas how to construct an overlap set. Consider Z,(0) = z € Q. Denote
by 7; the time, when the molecule is alone in A, Q(71) = L and j(71) € {k,k+ 1} (i.e. by
Corollary 6.1 Si(t) = L) for the first time after ¢ = 0 and recall that 7; is the time when
the molecule is alone with Q(7,) = L (no requirement on j(71)). Then, either

7'1:7:1
or
T >T.

In the latter case, i.e. if jp(m) & {k,k + 1}, we consider the event that no atom enters A
between 71 and 71. Let Vj := V(7y). Then, since Si(t) is periodic on I, latest at time

(2k — 1)4L
14

T1+

Sk(t) is in [—L, L], i.e.

o @k—1ar
T T —_— 0.

the latter follows since |Vi| > 0. Denote by ‘71, o7 the value of V resp. o at time 77. Now
we distinguish two scenarios.

Scenario I: If jp(71) = k + 1 (i.e. Sk “goes through L from left to right”), we send in an
atom from the left such that the molecular post collision velocity V' > 0. The collision
shall take place after the molecule was at L, but before the molecule reaches —L the first
time after 7. Let 75 be the time, when the molecule reaches L again.

Scenario II: If j4(7) = k (i.e. Sy “goes through L from right to left”), we send in a very
fast atom from the left, such that V' > § > 0 where § is some positive constant, and before
the molecule reaches —L the first time after 77. Then, we send in a second atom from the
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left, such that the collision takes place after the molecule is reflected at L and before it
reaches —L, and such that V' > 0. Let 75 be the time, when the molecule reaches L the
first time after the second collision.

Note that in Scenario I one has to pay attention to virtual collisions. Let v be the velocity
of the incoming atom. If |v| < |V4|, the interval of collision time described above (collision
takes place after the molecule was at L, but before it reaches —L) has to be limited,
otherwise the atom has to be in A before 77 to reach the molecule in time, which is not
possible. Since in Scenario II the necessary atoms are both very fast (one chooses ¢ large
enough), virtual collisions doesn’t play any role here.

Choosing ¢ large enough, by elementary calculations one obtains that one can send in the
atoms in both scenarios such that for equal V4, 7 the molecule is alone in A and reaches L
at equal time

~€< {~+L+L~+2L 2m}~+2L+2L> (6.131)
T maxXam+ =, T 5T o5 2, (T 5 T | :
i Tl Wl M ] v
with equal V3 where V3 may take any value with
Vo <0. (6.132)

To establish pairwise overlap, the (V5, 7)-sets defined by (6.131) and (6.132) with [V;] >
0,71 < oo, have to be pairwise non-disjoint for any Vi, Vi’ <0 and any finite 77, 71’. This
is the case if there is a V,-set

Vs = (a,b) C (—o0,0) (6.133)
such that
{~+ L N L ~_1_2L 2m } o 2L 2L
max 71 T =71 T T — —
V| [Val Va| M +m V) Vel
and
{~,+ L —I—L ~,+2L 2m }<~+2L+2L
max 7-1 — 777—1 _— 7’1 _ R
V| Val [Va| M +m Vil Vs

for any Vy € V,. This is true for |Va| small enough, and since a,b in (6.133) can be chosen
arbitrary close to zero, Lemma 6.4 follows by an appropriate choice of Vs.
O

From the overlap in the path measures we obtain overlap for the transition probabilities.
Refering to [GLR82] we formulate

Lemma 6.5. (i) For any 21, 2, € Q H%Zl,ﬂ’,;zz are overlapping for ¢ sufficiently large.
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(ii) For any z € Q H};’Z and Il are overlapping for ¢ sufficiently large.

For the proof of Lemma 6.5 we can refer to the proof given in [GLR82] or to the arguments
we used in the proof of Lemma 5.8.

By the same reference we have the following lemma, which follows from Lemma 6.5 (see
[GLRS82]).

Lemma 6.6. For any 7 > 0 the process j\;lkm as defined underneath (6.129) is an aperi-
odic, ergodic Harris chain.

Finally, by Lemma 6.6 we can prove Lemma 6.3.

Proof of Lemma 6.3. By Lemma 6.6 and the Harris Theorem we obtain for n € N that
[II7, — X pji || = 0 as n — oo

for px p;, a. e z€ Q‘A X Ji. By Corollary 1 in [GLR82] it follows for ¢t € R that
||¢H2—,u><pjk|| —0ast— o0,

where ¢ is a initial distribution of the process.
O

Now we can determine the distribution of Sy, (cf. (6.7)) for t — oo, using Lemma 6.3.
Denote by Py, the image measure of Si(¢). Then, since Si(t) is a function of Q(%), jx(t)
with 7x(0) = k (cf. Lemma 6.1) choosing

G5, = 1 X Pery

where pg;y is the counting measure such that J%(0) = k with probability 1, we have that

Pre((a,b)) = o IL(f(Q(1), Jx(?)) € (a,b)) (6.134)
with f given in (6.93). By Lemma 6.3 it follows with (6.134) that
Jim Pro((a,8)) = 1 % Q) € (a.1)). (6.135)
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We now show that with (6.135) Sy, is distributed uniformly on I}, for ¢ — oo for any
k € N.

Assertion 6.7. Let £ € N. Consider f as defined in (6.93), I} as given in (6.6) and u X pj,
given in (6.119). Let F € R, then

EA2hL - if — 2kL < E < 2kL
o py, (F(Q,5) < E) =4 0 , i E < —2kL (6.136)
1 ,if B> 2kL.

Proof of Assertion 6.7. Consider —2kL < E < 2kL. To determine p x p;, (f(Q,7) < E),
we first determine

A<p ={(Q.4): f(Q,j) < E}. (6.137)

Note that the case where 7 = 0 is a special case, since this subinterval with number 0 is
splitted (cf. (6.13)). Therefore, we distinguish the following cases.
If 2kL < E < —2kL + L, then

Acp={Q € [0, E+2kL]Aj =0 ,if k € 27;Q € [—(E+2kL),0|Aj =0 , if k € 2Z+1}

and

E+2kL 1  E+2kL

X pj, (A<p) = T 9L ok AkL (6.138)

If —2kL + L < FE < 2kL, then
{(Q,7): Q€ [0,L]nj =0 ,if k€ 2Z;Q € [-L,0)|Aj =0, if k € 2Z+1} C A<p (6.139)

To determine the remaining (Q, j)-subsets of A<g, note that for given j € J, with @ €
[_L7 L]

f(Q,5) <L +2L( — k).
Denote by j the largest j € {0,...,2k — 1} such that
L4+2L(—k) <E. (6.140)

That means that for the j-th subinterval any value @ € [—L, L] fulfills that f (Q,]) < E.
This is also the case for the j-th subinterval where 0 < j < 7, but not for 5 =0 or 5 > j.
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From (6.140) it follows that

‘_{E—L
A Y3

J tk. (6.141)
Then, for any Q(t) € [-L,L] and 0 < j < j

f(Q, ) <L+2L(j —k) < E,
le.

{(Q4):Qe[-L,LIN0<j<j} C Acp. (6.142)

Since for j + 1 not any Q € [~ L, L] is such that f(Q,j+1) < E is fulfilled, we determine
the values of @) now. Note that if j + 1 = 2k, then

Assume that
JH+1<2k.

Consider j + 1 € 2Z + k. Then, we have that

(6.93)

FQJ+1)"="Q(t) +2L(j + 1 - k)
OV Q) + 2L QEQ_LLJ + 1> (6.143)
and
F@Q+1)<E S Q) +2L QE;LLJ + 1) <E
= Q) gE—QLQEQ_LL +1> ,
{(Q,j) Qe [—L,E —2L QEQ_LLJ + 1)} Nj=]+ 1} C Acp. (6.144)

Hence, if j +1 € 2Z + k,j + 1 < 2k we obtain for the set A<g (cf. (6.137)) by (6.139),
(6.142) and (6.144) that

Acp ={(Q,7):Q €0, L]Aj=0,if k€2Z:Q € [-L,0]Aj =0, if k € 2Z + 1}U
U{(Q.j): Q€ [-L, LI} A0 <j<j}U
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u{(Q,j):Qe [—L,E—QLQE;LLJ +1>} /\j+1} (6.145)

With (6.145) we have that

L J E—2L(
nx pi(Asp) = o+ op LEQ Zk/ T‘Q
L |BE|+k B-2n([BE|+1)+L
= WL ok AL
E +2kL
el 14
s (6.146)

We proceed similar if j + 1 € 2Z + k + 1 and obtain that

Acp ={(Q,));Q € [0,L]Nj=0,iftke€2Z;Q € [-L,0)JANj=0, if k € 2Z + 1}U

{(Q.)): Qe [-L, L} A0<j < j}U
U {(Q,j) Q€ [2L QEQLLJ + 1) —E,L} ANj+ 1} (6.147)

and

o L |5 ek L= (L([5E] 1) - B))
= wr T kL

B+ 2kL

- 4kL

wx pj (A<k)

(6.148)

We obtain by the same methods as used above if j+1€2Z+k,j+1=2korj+1¢
27 + k +1,j + 1 = 2k that

E +2kL

Consider now E < —2kL. Then, it follows immediately that
Acg =10,
i.e.
X p(A<p) =0. (6.149)
Consider £ > 2kL. Then, we have that

ASE = {(Q ]) Q € [ L7L]aj € {O""72k_ 1}}7
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ie.

Assertion 6.7 follows by (6.138), (6.146), (6.148), (6.149) and (6.150).

Since Sk(t) (cf. (6.8))is S(t) (cf. (6.5)) observed on the torus I (cf. (6.6)), we can prove,
using the distribution of Si(t) for t — oo given in (6.135), that S; spreads unboundedly.
This is content of the following lemma.

Lemma 6.7. Consider S(t) as defined in (6.5) (with 0(0) = 1). Then, there exists £ > 0
such that for any £ > 0

sup o (|S(1)] > E) > €. (6.151)

Proof of Lemma 6.7. Let E > 0. Recall that S(t) (cf. (6.5)) and with that Sy (t) (cf. (6.8))
are by definition random variables on (§2, F, 1) with Q given in (2.3) and p given in (2.9)
(see underneath (6.5)). To estimate the Lh.s. of (6.151), note that for E > 0

(©:1S@,8)] > B} 2 {&: [S(@, t)mod [,| > E} € (& |S,(@, )| > B}, (6.152)

i.e. for any k£ € N it follows that

w50 > E) 2 1(Su0) > E). (6.153)
Note that
1) > E) = Pea((—00, —E] U [E, 00)) (6.154)

By (6.135) and Assertion 6.7 we have that

lim P, ((—o00, =EJU [E, 00)) = 11 % p;,(f(Q,7) € (=00, —E]U[E, 00))

t—o00
6.136) [ 1 — % , if B < 2kL
- 0 , if B> 2kL.

(6.155)

Let £ > 0 be given. Let k > £ := K,(E), then by (6.155) for any € > 0 there exists 7.
2L

144



such that for ¢ > T,
E
Pes((—00, —E] U [E, 00)) — (1 - )’ <c

E E
S-et+l-o7 < Pr+((—00, —E]U[E, 00)) <etl-g— (6.156)

Let 0 < § < 1. Since

Jim o =0,

there exists Ky(FE) such that for k > Ky(F)
E 1-9¢

%L < 3 (6.157)

Then, we obtain by (6.156) with & = 152 that for k > max{K;(E), K»(E)} and ¢ > Tis

1—96 E
Pri((—00, —E] U [E,00)) > - t1- ST
(6.1>57) _17_5 +1— 1;5
2 2
=0 (6.158)

From (6.158) we can follow that there exists 0 < § < 1 such that for any £ > 0 and
k> max{K,(F), Ks(E)}

sup Pr+((—o0, —E|U[E,00)) > 0. (6.159)
t
By (6.153) (which holds for any k), (6.154) and (6.159) we obtain that there exists 0 < § < 1
such that for any £ > 0 and k& > max{K;(F), Ky(F)}

(6.153) (6.159)
sup (SO > B) = sup Pral(—o0, ~F] U[F,00)) >

Choosing
£€=19

we obtain Lemma 6.7.

By Lemma 6.7 we finally can prove Proposition 6.1.

Proof of Proposition 6.1. Let C' > 0. We estimate the Lh.s. of (6.4). Recall that S(t) (cf.
(6.5)) differs from [ U(s)ds in regard to Q(0) (which is contained in S(¢)) and in respect
to 0(0) (S(¢) is defined with o(0) = 1, whereas U(s) is the stationary process where o(0)
is distributed according to p%). To make use of Lemma 6.7 we write
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¢
:/U(UO,@,S)V W, s)ds
0

(
: /Ota(ag,c?),s)V(d),s)ds

> (J})

{o
v /Ota(ao =1,0,s5)V(@,s)ds

Note that (6.161) follows, since

[

We now estimate (6.162). Since

and

(e
-

{o:

t
/ (00 = 1,0, 8)V (@, 5)ds

-c)-

/ta(ao — 1,0, )V (@, 5)ds + Q@

we estimate (6.162) by
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0

(6.163) A
= n({e:

(6.5)

t
/ o(00 = 1,0, )V (@, 5)ds

> c})

/Ota(cro =1,0,5)V(@,s)ds + Q@

p(S(@)] = Q) > )
p(S@)] > C+1Q0)]) -

V(®,s)ds

> C})

>C}ﬁ{00— 1})
>C}ﬂ{00 —1})

> c} M {oo = 1})

{o0

>(J}

0)| - 1@,

0) - le@.

).

¢
o(op=1,0,5)V(®,s)ds = —/ o(og=—1,0,5)V (D, s)ds.
0

/ta(ao — 1,6, 8)V(@, 5)ds + Q@,0) — Q(@,O)’ > c})

/Ota(aozl,d),s)V(dJ $)ds + Q(&,0) — Q(&, )‘>c}

2{&):
0

\>c}

0l >c})

(6.160)

(6.161)

(6.162)

(6.163)

(6.164)



Altogether we have by (6.160), (6.162), (6.164) and Lemma 6.7 for the Lh.s. of (6.4) and
any C' > 0 that

SUp 41 X py (‘/ot Ul(s)ds| > C’) = sup u(|S(t)] > C +Q(0)]) > €.

Choosing
e=¢€

Proposition 6.1 follows. O

147






7 Discussion

In this chapter, we investigate whether the estimate of the rate given in (5.397) can further
improved. Furthermore, we examine the approximate behavior of the estimate given in
(5.400) for L — oo or M — m. We conclude the chapter with a discussion why the
methods we used in the case M > m fail for M = m.

7.1 Rate

7.1.1 Optimizing the rate estimate

The question rises whether the rate estimate given in (5.397) could be further improved.
The second summand on the r.h.s of (5.397) prevents that the estimate has an exponential
decay. Note that the estimate in (5.397) is based on the inequality of Corollary 5.2, i.e. on

g n+1
s+ oy <2 (T s @, )

where G C Q‘A x {—1,1}, t(G),~(G) fulfill Overlap-Lemma 5.2. The second summand in

(5.397) is the result of the estimation of the second summand of the r.h.s. in (7.1).

First of all, note that G has to be a proper subset of Q‘A x {—1,1}, which is such that

I1(G¢) = 0 is not possible (see argumentation underneath Lemma 5.2). B
In the derivation of (5.397), we have chosen G = Gy, i (cf. (5.10)) and V and N dependent
on n such that

(G () < Ut 41y

(cf. (5.351)). It turns out that with this choice of V(n) and N(n), w doesn’t
approach one too fast, and we obtain the estimate in (5.397).

The question whether the bound in (5.397) can be optimized or not is closely tied to
whether V and N can be chosen dependent on n such that there exist N € N and constants
Ch4,a > 0 such that for all n > N

c Cua a
I (G\‘/(n),N(n)> < ?GXP(—" ) (7.2)
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where at the same time v(Gy () §(n))/2 doesn’t approach one too fast. By (5.359) and
(5.368) we obtain that (7.2) is satisfied if

N(n) oc n®
and

V(n) o n?
This gives

G7 \ a
W (62200 | 4 2dom (7.3)

with some appropriate positive constants di,ds. Since (1 — ﬁ)” — 0 as n — oo, but
(1 —2)" = e ! as n — oo, a necessary condition to obtain a useful estimate having (7.1)

in mind is that

a 1
dle_2d2n 2 ﬁ (74)

for n large enough, since

n+1 n+1
’}/(Gv(n)’N(n)) — (1 o dle—2d2n“)n+1 < 1 _ i
2 - Vn

follows according to (7.3). However, (7.4) is equivalent to

n® < In(v/n)

for n large enough, and since any root grows faster than the In-function, (7.4) can not
be satisfied. Thus, there is no choice for V(n) and N(n) that satisfy (7.2) and such that
@ doesn’t approach 1 too fast, i.e. a bound for 3(i) with an exponential decay is not
achievable.

7.1.2 Analyzing the estimate of the rate for L — co and M — m

In this section, we analyze the bound of the rate given by (5.400) in order to gain insight
whether the confinement of the molecule is necessary (see L — oo) and to obtain a good
estimate for § if M — m.

Here, the explicit description of the bound is given to highlight the dependency on L, M
and m. We have by (5.400) with (5.394) and (5.395) for i € N large enough that

—2Lp

2
B(i+ 1) < 2e=C1si® (32 (e

= (\/M)_l» i (7.5)
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with

4p (MBL +3 (p f,% vf(v)dv)_1>

s OF) je _ Nor , (7.6)
where

D, "2 ———— (;\‘4]\4_2 B and D, " (;41\4_2 B 2?% - :Z)
and

5 02 g - exp <—\/%> -Cy, - O, (7.7)

with g, 7, Cy, and C,, given in (5.253), (5.242), (5.301), (5.302) if M > 3m, in (5.269),
(5.268), (5.303), (5.304) if M = 3m, in (5.274), (5.273), (5.305), (5.306) if 3m > M > 2m
and in (5.283), (5.282), (5.307), (5.308) if 2m > M > m.

Analyzing the estimate of the rate for L — oo

First, we analyze the r.h.s. of (7.5) for L — oo, which means that the interval in which
the molecule is confined, grows larger and larger. For that we express (7.6) in such a form

that the dependence of L in (7.5) becomes more transparent. We begin with the factors
in § (cf. (7.7)). We write

27p (7.8)
=crexp | ——F——— .
g=asp V21 Km
with appropriate constant ¢; > 0. Note that 7 depends on L such that
<L (~eal) (1.9
exp | —————= | = exp(—c .
P V2rtKm pime

for some appropriate co > 0, and let ¢4 > 0 be an appropriate constant such that

Cr, =c4L. (7.10)
Since CYy, doesn’t depend on L, we can express (7.7) as

d = c1CyyeqLexp(—2co L) (7.11)

with (7.8), (7.9) and (7.10). Note that the constants ¢y, co, ¢4 and Cy, differ for the cases
M >3m,M = 3m,3m > M > 2m and 2m > M > m.
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Expressing the exponential function in (7.6) by

4p (MBL +3 (pfg; vf(v)dv)il
exp | — = ¢5 exp(—cgL) (7.12)

V2TKm

with appropriate positive constants ¢; and cg, we obtain for (7.6) by (7.11) and (7.12) the
expression

Ci5(L) = (chV2c4c5i exp(—(2¢co + cG)L)> . (7.13)

Writing the second summand in (7.5) as

(32 <e\;;_j: + (\/ 27T1Cm>_1>> it = crexp(—cgL)i™* + cgi? (7.14)

with appropriate positive constants ¢z, cs and ¢g, we obtain together with (7.13) and (7.14)
for (7.5) that

Bli+1) < 90 Cisit 4 (32 (e\/;_;p + (\/27T/Cm>l>> i =

L
= 2exp (— (Clcv204054 exp(—(2¢ce + Cﬁ)L)) z§> + crexp(—cgL)i™* 4 coi ™

— 2+ coi (7.15)

as L — oo, i.e. the bound for § becomes unfeasible, since we cannot follow from (7.15)
that ((t) is integrable.

Heuristically, the bound becomes unfeasible for L — oo, since the derivation of the bound
is based on the fact that the time when overlap occurs is finite (see Overlap-Lemma 5.2).
To establish overlap, we first pushed atoms in A to obtain the molecule alone in the interval.
The larger A, i.e. the larger L, the longer it takes to obtain a state, where the molecule is
alone in the interval. Hence, if L — 00, the time where overlap occurs is not finite anymore
and the estimate becomes unfeasible.

Analyzing the estimate of the rate for M — m

Now we analyze the r.h.s. of (7.5) for M — m. Since only M near to m is of interest, we

use g,7,Cy, and C, as given in (5.283), (5.282), (5.307) and (5.308), since these are the

choices for g, 7, Cy, and C, if m < M < 2m.

As M — m we have that
_(5282) 2L 8L M +m

T = — 4+ —

C B M—m

0. (7.16)
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This gives that

Km 2 M—m 2 _ 7
g (5'2:83) IO Kﬂe_ 2 (21n EIJKMB—F 2m f) (M + m) EM m M + 7m e_ 227r)2m _) O
\ 2m 4 M+m2(M+3m)

(7.17)

Since for M — m

30y M—m M-—-—mB
Cy, = — =0 7.18
" 2(M +3m) M +m 4 (7.18)

and C., is a constant independent of M, we obtain with (7.16), (7.17) and (7.18) for (7.7)
that

27p

P (‘\/m

) - Cyy - Cry = 0 (7.19)

as M — m.
To analyze the behavior of the exponential function in (7.6), note that

b | oty kmyp
/lef(v)dv:\/m(e 5ra® _ g K2b>.

With that and introducing the constant c¢;y we have that

4p(24L+3(pf “vf(v)d )1>

24L
= exp (—

ok )exp< Vorkm fD vf(0)d )

— Cloexp | K 4M2 ? K aMm? oM — 2
a m m
_Tn(m(M—m)B> T2 <m(M—m)B+2(M m)B)
e — €
12
= C1p €X —
10 P _Km aM? _ _p ? _Km(g_4aM?2 p 2M-m B+( 2M—m B)
e 2 m(M—m) (1 —e 2 m(M—m) " 2(M—m) 2(M—m)
12
= C1p X —
P ,@(%3)2 _Km @M=—m)(A16M2+(M—m)m) po
e 2 m(M—m) 1 —e 2 Am(M— m)2
— 0 (7.20)
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as M — m. By (7.19) and (7.20) we obtain for (7.6) that
015 —0

as M — m. This gives for (7.5) that

—2Lp

2 e
i+ 1) <2795 4 (32
plt1) < ( (m

24 (32 (e\z_i: + (\/M)_l>> it

as M — m. Hence, for M — m the r.h.s. of (7.5) becomes an unfeasible bound for 5.
Heuristically, the estimate becomes unfeasible, because, like in the previous case where
L — oo, the time where overlap occurs, approaches oo if M — m (cf. Overlap-Lemma
5.2). However, having the proof of the Overlap-Lemma 5.2 in mind, it becomes clear that
the “good set” G should be chosen anyhow differently in the equal mass case. We discuss
the proof for M = m with a different set G in the following section.

+ (\/M)_l» i

7.2 Why the methods we used for M > m fail for
M=m

Recall that the first part of our main result, Theorem 2.1 excl. D > 0, follows by Propo-
sition 5.1. Proposition 5.1 can be proven by establishing overlap of II!, and II for y in a
“good” set G (see Overlap-Lemma 5.2). By the existence of an overlap at time #(G) one
obtains that

Bl(n+ 1)t(G)) <2 <7(2g)>n + 8(n + 1II(G°)

(cf. Corollary 5.2). For M > m we chose G = Gy y as given in (5.10). Then, we chose
Gy n as depending on time and showed that H(G‘{—A &) tends to zero fast enough as t — oo,
where at the same time v(Gy 5)/2 doesn’t tends too fast to one.

If M = m we have to choose another good set G: The problematic starting states are
now these where at least one particle in A has velocity 0. Since the particles exchange
velocities, there will be at any time a particle with v = 0 resp. V' = 0. It’s impossible to
reach a state, where the molecule is alone in the interval with velocity V' > 0. On the other
hand, states where all particles in the interval have non-zero velocities will never reach a
state where the molecule is alone in A with V' = 0. Hence, if M = m the states where at
least one particle in the interval has velocity zero need to be excluded from G, otherwise
no overlap set can be established. Denote by Gy C QO x {—1,1} the set of configurations
where no particle has speed lower than V > 0, i.e. with ease of notation

Gy = {Jol,[V| >V},
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One can show that Gy fulfills Overlap-Lemma 5.2, which means that we obtain by Corollary
5.2 that

(n+1)
i+ ) <2 (2] 4 st nmGy)

where GY, is the complement of Gy, i.e. the set of all configurations where at least one
particle in A has speed less than V. To show Proposition 5.1, we have to choose Gy, i.e.
V., dependent on n such that on the one hand

(GY,y) < (n+1)7% (7.21)
for n large enough and an appropriate K > 2, but on the other hand

V(VQ(”)) (7.22)

doesn’t tend too fast to one with n — oo. (7.21) holds if V(n) approaches zero fast
enough, on the other hand (7.22) requires that V(n) doesn’t tend too fast to zero. Since
the velocities are distributed according to the Maxwell distribution, i.e. small velocities
are likely, V(n) has to tend to zero quite fast to obtain (7.21). As it turns out, there is no
choice of V(n), such that (7.21) and (7.22) can be fulfilled.

The difference to the case where M > m is the following. If M > m, V(n) and N(n)
shouldn’t approach oo too fast, such that y(Gy )/2 doesn’t tend too fast to one, and on the
other hand V'(n) and N (n) have to grow fast enough, such that IT( o5 < (n+1)~%. Since
the Maxwell distribution helps that II(GY, ) is small (many particles in A are unlikely,

such as very fast atoms), one can find V(n), N(n) such that both conditions are fulfilled.
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8 Outlook

8.1 A model without confinement of the molecule

We would like to point out an observation, the meaning of which should be further scruti-
nized. We can set L dependent on time such that we keep a good mixing rate. This is our
point towards another Markovian model, which (i) is perhaps closer to the physical model
of a mass moving in an ideal gas in one dimension and (ii) allows showing diffusion.

For this we choose L dependent on time i € N such that L(i) — oo with i — co. To keep
(7.5) a good estimate for 5(i + 1), it is necessary that for the first summand of the r.h.s.
of (7.5) for i large enough

o-Cisznit _ 1
2'2
& — Os5(L())it < —1In(i?)
& Cis(L(i) > In(i%)i 5 . (8.1)

with Cj5 given in (7.6). Inequality (8.1) is satisfied if L(7) is for example such that for
large enough

Cis(L(i)) > i1 (8.2)

Since

Cus(L(3)) "2 dy L(3) exp(—daL (7))

with
1
d1 = 1010‘/20405
and
d2 = 262 + Cg s (83)

(8.2) is equivalent to

Cis(L(0)) > i
< di L(7) exp(—do L(i)) > i~ 16
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& exp(In(dy L(i)) — da L(7)) > i
< In(diL(i)) — do L(3) > —1301n(i)

& dyL(i) — In(d, L(i)) < 130 In(4). (8.4)

If we choose for example

3
L2 —1 8.5
() = 1o () (85)
we obtain (8.2) for ¢ large enough, since with the choice (8.5) inequality (8.4) is satisfied
for 4 large enough.
Altogether, we obtain for (7.5) by (8.2) and (8.5) that

e~ 2L@)p

ﬁ(¢+1)§2e015i§+<32( \/_ + (V2rKm) ))

In(4)
3 2 e 10d2 _1
< et 05 (32 ( — (\/27T1Cm) i
— 2% —iTo i . <1g§2+4) T

\/2_ V 27rlCm

with the positive constant ds given in (8.3).

8.2 A multidimensional model

We expect that the method employed for the presented model can also be applied to provide
a fCLT for the multidimensional case. Consider the following model: The molecule, with
radius R, confined in a convex compact domain and is surrounded by an ideal gas of point
particles, which are not directly affected by the barrier. Ergodic properties of this model
were investigated in [ET90]. General ideas how to prove diffusive behavior for

= [ vis)as

in the usual scaling in this multidimensional model are outlined in [ET92] based on a
theorem of [Ore59]. They mentioned a difficulty which also occurs when proving diffusive
behavior for

Rt = [ " o(s)V(s)ds
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in the usual scaling with the methods we used in the presented one dimensional model:
Consider for simplicity the molecule is confined in a ball. Having our proof for the one
dimensional model in mind, to obtain overlap, it is useful to show that the system reaches
a state where the molecule is alone in the ball with a certain range of speed with positive
probability. Once the system is in such a state, one can control the molecule by sending in
atoms to establish overlap. To obtain a state where the molecule is alone in the ball, we
control the molecule by sending in other atoms, such that the molecule kicks out all atoms
which are in the ball. But atoms which are close to the boundary cannot be kicked out:
Before the molecule collides with these to kick them out, the molecule is reflected at the
boundary. Hence, states where very slow atoms are near to the boundary are problematic
states. This problem should be solvable by reducing G, the set of good starting states for
which overlap shall be established, by states which include these problematic situations.
Using a similar procedure as in the proof of Lemma 1 of [ET90], where atoms are send in
to obtain a state where the molecule is alone in the domain, one should be able to obtain
a Lemma analogue to Lemma 5.6 in Chapter 5. The analogue to the Overlap-Lemma 5.2
should follow easily.

Therefore, we expect that the methods presented within the scope of this work can be
applied to the multidimensional model without any major difficulties.
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