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Abstract
The phenomenon of Brownian motion, the erratic movement of a microscopically-visible
sized particle in a fluid, was first studied in detail around 1830 by the biologist Robert
Brown (see [Bro28], [Bro29]). At the beginning of the last century Einstein (see [Ein05],
[Ein06]) and v. Smoluchowski (see [vS06]) gave a physical explanation of Brownian motion.
A good survey can be found in [Nel67]. However, in a common mathematical model the
rigorous mathematical proof that the Brownian particle, which is embedded in an ideal
gas, shows di�usive behavior could not be provided so far. It has to be shown that the
trajectory of the Brownian particle converges in the di�usive scaling in distribution against
a Brownian motion (Wiener process). One of the mathematical di�culties is the fact that
the process of the motion of the molecule is not Markovian due to recollisions. In this work
we show an analogous result in a simplified model.
We consider a one-dimensional system in equilibrium at temperature T and density fl
consisting of a molecule of mass M > 0 embedded in an ideal gas of atoms of mass m > 0
(m < M). The molecule is confined in the interval � µ R (with elastic reflections at
the boundary), whereas the atoms are not confined by the interval and can freely pass
the boundary without beeing a�ected in any way. Since the position of the molecule is
bounded, the position in the di�usive scaling converges to zero. Therefore, a process Rt

is constructed which is unbounded and measures in an appropriate sense the distance
the molecule would have travelled if it moved without a confinement. We show di�usive
behavior for Rt in di�usive scaling. To prove this, we show that the velocity process of
Rt fulfills the requirements of the functional Central Limit Theorem (fCLT) of [Dav68]
improved by results of [McL75] and [DG86]. An important requirement of the fCLT is
that the velocity process is –-mixing. If this property is shown for a Markov process which
contains the velocity process, the latter inherits this property. In our case, the Markov
process essentially describes the positions and velocities of all particles in �.
Making use of a result from [DG86], we show that the di�usion constant is positive.
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Zusammenfassung
Das Phänomen der Brownschen Bewegung, die erratische Bewegung mikroskopisch sicht-
barer Teilchen in einer Flüssigkeit, wurde erstmals um 1830 von dem Biologen Robert
Brown näher untersucht (vgl. [Bro28], [Bro29]). Anfang des letzten Jahrhunderts konnte
die Brownsche Bewegung durch Einstein ([Ein05], [Ein06]) und v. Smoluchowski ([vS06])
physikalisch erklärt werden. Eine gute Übersicht findet man in [Nel67]. Jedoch konnte
in einem gängigen mathematischen Modell der rigorose mathematische Beweis, dass das
Brownsche Teilchen, das in ein ideales Gas eingebettet ist, bisher nicht erbracht werden.
Zu zeigen ist, dass die Trajektorie des Brownschen Teilchens in der di�usiven Skalierung in
Verteilung gegen eine Brownsche Bewegung (Wiener Prozess) konvergiert. Da der Prozess
der Bewegung des Moleküls aufgrund von Rekollisionen kein Markovscher Prozess ist und
deswegen mathematisch schwer zu handhaben ist, betrachten wir folgendes Modell, das
zwar abgeändert ist, aber durch das dennoch ein analoges Resultat gezeigt werden kann.
Wir betrachten ein eindimensionales System im Equilibrium, bestehend aus einem Molekül
der Masse M > 0, eingebettet in einem idealen Gas aus Atomen der Massen m > 0
(m < M). Das Brownsche Teilchen soll sich nur im Intervall � µ R aufhalten können (mit
elastischen Reflexionen am Rand), wobei die Ränder des Intervalls für die Gasteilchen
durchlässig sind, so dass die Atome durch die Wände in keinster Weise beeinflusst wer-
den. Da nun der Ort des Brownschen Teilchens beschränkt ist, konvergiert der Prozess
des Ortes in der di�usiven Skalierung gegen null. Daher wird ein Prozess Rt konstruiert,
der unbeschränkt ist und gewissermaßen die Distanz misst, die das Molekül zurückle-
gen würde, wäre es nicht im Intervall gefangen. Ziel ist es, für den di�usiv skalierten
Prozess Rt di�usives Verhalten zu zeigen. Um dies zu beweisen, zeigen wir, dass der
Geschwindigkeitsprozess von Rt die Voraussetzungen des funktionalen Zentralen Grenzw-
ertsatzes (fCLT) von [Dav68], [McL75] erfüllt. Eine wichtige Forderung des fCLTs ist, dass
der Geschwindigkeitsprozess –-mischend ist. Zeigt man diese Eigenschaft für einen Markov
Prozess, der den Geschwindigkeitsprozess enthält, „erbt” letzterer diese Eigenschaft. In un-
serem Fall beschreibt der Markov Prozess im Wesentlichen die Orte und Geschwindigkeiten
aller Teilchen in �.
Die Positivität der Di�usionskonstanten zeigen wir mit Hilfe eines Resultats von [DG86].
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1 Introduction

Consider the following classical system - a model for a simple non-equilibrium situation in
statistical mechanics: Point particles of mass m > 0 (atoms) are distributed on the real
line according to a Poisson distribution and each atom is initially given a random velocity
independent of its position and the other atoms, where we may think of the velocity
distribution as being Maxwellian. The atoms interact via elastic collision with a point
particle of mass M > 0, hereinafter referred as the molecule, whose motion we wish to
observe. Let Q(t) denote its position at time t. If the molecule is placed at time zero at
the origin, i.e. Q(0) = 0, Qt = {Q(t)}tœR+ is a stochastic process on the probability space
of the random initial conditions of the atoms and the initial velocity of the molecule.
A di�cult and in general still unsolved problem is then to prove the following conjecture:
For any T < Œ, the process

QA,t :=
I

1Ô
A

Q(At)
J

tœ[0,T ]

converges in distribution to the Wiener process
Ô

DWt

with di�usion constant

D = 2
⁄ Œ

0
E(V (t)V (0))dt

as A æ Œ, where V (t) denotes the velocity of the molecule at time t and E(·) denotes the
expectation w.r.t. the equilibrium measure of the system. For the definition of a Wiener
process see e.g. [Bre68].
This conjecture has been proved for the special case M = m by [Spi69]. Spitzer used
methods which essentially rely on the equal mass of molecule and atoms and which were
previously employed by [Har65] to prove that the finite dimensional distributions of the
process QA,t converge as A æ Œ to those of a Gaussian process. Further results concerning
di�usive behavior of the molecule in the model described above all have in common that
they use normalizations where the mass of the molecule or of the atoms tend to infinity
resp. to zero with an appropriate speed. [ST87] and [ET92] give a good overview of the
results of the 80’s and early 90’s, when the most work was done on this topic. There
are some more actual results like [BTT07], [KL10], [Lia14], where the normalization again
depends on the masses.
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The motivation for the work described here, was to use methods which do not depend on
the choice of the masses for proving the conjecture.

For simplicity let us assume that Vt = {V (t)}tœR+ is a stationary process and let us write

QA(t) = 1Ô
A

⁄ At

0
V (s)ds . (1.1)

Here it becomes more evident that we conjecture that QA,t satisfies an invariance principle
(or a functional Central Limit Theorem (fCLT)). Since the molecule can recollide over
arbitrary long times with atoms it has previously collided with, the r.h.s. of (1.1) cannot
be written as a sum over independent increments. Thus, if a fCLT applies, it necessary will
be one for dependent variables. Apart from the problem of finding an appropriate version
of a fCLT for dependent variables, one then need to check whether the velocity process Vt

fulfills the conditions under which the fCLT holds.
The purpose of this thesis is to explore this possible approach by studying a much simpler
model: To gain better control over the recollisions, we consider the molecule to be confined
in the interval � = [≠L, L], L > 0, with walls at ≠L and L. Hence, any recollision
takes place in �. The atoms remain una�ected by the walls, but the walls elastically
reflect the molecule. The ergodic properties of such a system are studied in [GLR82] in
one dimension and in [ET90] in multidimensions, where in particular it is shown that
the molecule approaches its equilibrium state starting from almost all (w.r.t. Lebesgue
measure) initial values Q, V .
Mind that in this model |Q(t)| < L, i.e. the scaling in (1.1) gives 1Ô

A
Q(At) æ 0 as

A æ Œ. Therefore, one has to define a new quantity which is unbounded and which can
be interpreted as the distance the molecule would have travelled if it wasn’t confined in
the interval. In [ET92] the quantity

Q(t) :=
⁄ t

0
|V (s)|ds (1.2)

was investigated and di�usive behavior for (1.2) in the usual scaling was shown for M > m.
In the presented work we define a di�erent quantity R(t) hoping to obtain a fCLT for
M Ø m. It turns out that we can prove a fCLT for M > m. However, these methods fail
for M = m.
One goal of the thesis is to give an explicit bound for the rate of dependency, which allows
to analyze the bound for M æ m and L æ Œ. As discussed before, confining the molecule
to the finite region [≠L, L] gives control over recollisions. It turns out that our model does
not allow to remove the cut o� in the recollisions to obtain the unrestricted motion, i.e.
we cannot proceed from the theorem proven here to the conjecture.

In the next chapter, Chapter 2, we describe the model in detail and give the main result.
In Chapter 3 we introduce a notion of weak dependence of random variables in the form
of –-mixing and state a general fCLT. In Chapter 4, Chapter 5 and Chapter 6 we show

2



that the conditions of the fCLT are satisfied by our model, thereby proving the result. In
doing so we deepen also the results of [GLR82] in that we obtain estimates on the rates
of convergence to equilibrium in the sense of —-mixing. In the last two chapters, Chap-
ter 7 and Chapter 8, we discuss our results and give some ideas for future research projects.

For reasons of clarity, we now name the crucial theorems and propositions proven in
Chapter 5 and Chapter 6.

Our main result is formulated in Theorem 2.1, which we prove by a fCLT (Theorem 3.1).
There are mainly two conditions in the fCLT which have to be proved for our model to
obtain Theorem 2.1. These follow by Proposition 5.1 (see Chapter 5) and by Proposition
6.1 (see Chapter 6).
The crucial Lemma in Chapter 5 for showing Proposition 5.1 is the Overlap-Lemma 5.2.
To prove this, we give Lemma 5.4, Lemma 5.5, Lemma 5.6 and the overlap size in Lemma
5.7; these together give Lemma 5.8. The Overlap-Lemma follows then by Lemma 5.3 and
Lemma 5.8. By Corollary 5.1 and Corollary 5.2, which are implications of the Overlap-
Lemma 5.2, and by Lemma 5.9 we obtain finally Proposition 5.1.
Proposition 6.1 in Chapter 6 follows by Lemma 6.7. The crucial lemmata for proving
Lemma 6.7 are Lemma 6.1 (which is proved by several assertions) with its implication
Corollary 6.1, as well as Lemma 6.2 and Lemma 6.3. The latter follows by Lemma 6.4,
Lemma 6.5 and Lemma 6.6.
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2 The model and the main result

Consider the following infinite particle system in one dimension. The underlying dynamics
is governed by classical mechanics. A point particle with mass M > 0 (“molecule”) moves
in the interval � = [≠L, L] µ R, L > 0. It is in contact with an ideal gas of point particles
of mass m > 0 (“atoms”), which are distributed on the real line. The atoms interact with
the molecule via elastic collisions, but do not interact with each other. Let q, v denote
the position and velocity of the atoms, while Q, V denote the position and velocity of the
molecule. The post collision velocities V Õ, vÕ are determined by energy and momentum
conservation which lead to the following equations.

V Õ = M ≠ m

M + m
V + 2m

M + m
v , (2.1)

vÕ = ≠M ≠ m

M + m
v + 2M

M + m
V . (2.2)

Between the collisions all particles move with constant velocity. Let Q(t), V (t) denote the
position and velocity of the molecule at time t. At the walls ≠L and L the molecule is
reflected elastically, i.e. the velocity is reversed with

V (·) = ≠V (·≠)

where · œ {t œ R+ : Q(t) œ {≠L, L}} is a reflection time and ·≠ denotes the time right
before the molecule is reflected by one of the walls. The walls are permeable for the atoms.
Let

�̂ = � ◊ R ◊ � (2.3)

denote the phase space of the system with ‡-algebra F , where � = R2N is the phase space
of the ideal gas. For Ê̂ œ �̂ we have Ê̂ = ((Q, V ), X), where (Q, V ) œ � ◊ R and X œ �
stands for the configuration of the ideal gas particles, i.e. X = (qn, vn)nœN, qn œ R, vn œ R.
The stationary measure for the evolution of the system is the infinite volume Gibbs state
at some temperature T > 0 and gas density fl > 0. We denote this measure by µ. Then,
the ideal gas is distributed in phase space according to the Poisson distribution P with the
one-particle phase space measure ‹ given by

d‹ = flf(v)dvdq, (2.4)
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where dvdq denotes the Lebesgue measure on R2 and f(v) is the Maxwellian, i.e.

f :R æ R (2.5)

v ‘æ
3Km

2fi

4 1
2

e≠ Km
2 v2

,

with K = (kBT )≠1 and where kB is the Boltzmann constant. Hence, for measurable A µ R2

we have that the number of atoms in A is a random variable NA with distribution

P(NA = k) = e≠‹(A) ‹(A)k

k! , k œ N0 (2.6)

and for measurable A, B µ R2

A fl B = ÿ ∆ NA and NB are independent. (2.7)

The distribution of the position and velocity of the molecule is

µM(dQ, dV ) :=
3KM

2fi

4 1
2

e≠ K
2 MV 2dV

1
2L

dQ , (2.8)

since Q œ �. The stationary measure µ of the system is given by

µ((dQ, dV ), dX) = µM(dQ, dV ) ◊ P(dX) . (2.9)

Note that µ is finite, since P is normalized and the molecule is confined in �.
Denote by �t the time evolution of this system. For Ê̂ œ �̂, �t(Ê̂) is the phase space point
(configuration) to which Ê̂ evolves in time t1, i.e.

�t : �̂ æ �̂
Ê̂ ‘æ ((Q(Ê̂, t), V (Ê̂, t)), X(Ê̂, t)) , (2.10)

where Q(·, t), V (·, t), X(·, t) are random variables on (�̂, F , µ). In the following we will
write Q(t) instead of Q(Ê̂, t) (etc.) whenever it is unambiguous.

As discussed in Chapter 1, we introduce the random variable R(t), which is unbounded
and which in some appropriate sense measures the distance the molecule would travel
without confinement. To define R(t) we use an extra random function ‡(t) which is defined
on a trivially enlarged sample space �̂ ◊ {≠1, 1}, and we obtain the probability space

� := (�̂ ◊ {≠1, 1}, F ◊ P({≠1, 1}), µ ◊ fl) , (2.11)

1
The time evolution is almost surely w.r.t. the stationary measure (defined in (2.9)) well defined, i.e.

multiple simultaneous collisions and infinitely many collisions in a finite amount of time are atypical.

For a proof in a very similar system see for example [GLR82].
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where P denotes the power set and fl is a discrete measure, which weights the initial value
‡(0). We set

R(t) :=
⁄ t

0
U(s)ds (2.12)

where

U(t) := ‡(t)V (t) (2.13)

is a random variable on � (cf. (2.11)) and ‡(t) is defined now as follows. Let P (t) =
(Px(t), Py(t)) denote the point on a circle of radius L centered in the origin. Note that the
x-axis is the real line on which the motion takes place. Let

Px(t) = Q(t)

and we define

‡(t) := sign(Py(t)) , (2.14)

whereby the y-coordinate Py(t) shall change sign whenever Q œ {≠L, L}. Moreover, for
all t œ R Q(t) œ {≠L, L}, ‡(t) = +1 means that P (t) moves in positive y direction and
‡(t) = ≠1 means P (t) moves in negative direction.
Hence, R(t) only changes direction due to the collisions with atoms and not because of the
presence of the walls. R(t) can be seen as the distance the molecule would move without
confinement. We find R(t) œ R.
Note, for given ‡(0), {‡(t)}t>0 is a stochastic process on (�̂, F , µ).

Let

Ut := {U(t)}tœR+ (2.15)

be the stochastic process defined on � (cf. (2.11)) with U(t) given in (2.13). Denote by
fl 1

2
the discrete measure with

fl 1
2
(‡) = 1

2 , ‡ œ {≠1, 1} . (2.16)

We show in Chapter 4 that choosing

fl = fl 1
2

in � (cf. (2.11)) Ut is a stationary process, and we define

� 1
2

:=
1
�̂ ◊ {≠1, 1}, F ◊ P({≠1, 1}), µ ◊ fl 1

2

2
(2.17)
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with µ given in (2.9) and fl 1
2

given in (2.16).
To state our main result define for any A > 0

RA(t) := 1Ô
A

R(At) (2.12)= 1Ô
A

⁄ At

0
U(s)ds .

Then,

RA,t := {RA(t)}tœR+ (2.18)

is by definition a continuous process. Let I = [0, T ] for some 0 < T < Œ. By RA we de-
note the path measure generated by the process RA,t on C(I), the space of the continuous
functions on I, equipped with the uniform topology. Let WD denote the Wiener measure
with di�usion constant D. For the definition of the Wiener measure see [Bil99].

Our main result is:

Theorem 2.1. Let M > m > 0. Consider the stochastic process RA,t as defined in (2.18)
and U(t) as given in (2.13) on � 1

2
(cf. (2.17)).

Then,

0 < D = 2
⁄ Œ

0
E(U(0)U(t))dt < Œ , (2.19)

where E(·) denotes the expectation w.r.t. µ ◊ fl 1
2

(cf. (2.17)), and for any 0 < T < Œ

{RA(t)}tœ[0,T ] ∆
Ô

DWtœ[0,T ] , as A æ Œ

in the sense of weak convergence of the measures RA to WD defined on C([0, T ]).

For the notation of weak convergence see [Bil99].
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3 A functional Central Limit
Theorem

To prove our main result (Theorem 2.1), we use a fCLT which is originated in [Dav68] and
was improved by [McL75]. To show the positivity of the di�usion constant D (cf. (2.19))
we use a result of [DG86]. To state the fCLT, we need to introduce the notion of –-mixing.
Let Xt = {X(t)}tœR+ be a stationary sequence of random variables on the probability space
(�, F , P ). Denote by

FX
s,t := ‡(X(u), s Æ u Æ t)

the ‡-algebra generated by {X(u), s Æ u Æ t} and let

–X(t) := –(FX
≠Œ,0, FX

t,Œ) := sup
AœFX

≠Œ,0,BœFX
t,Œ

|P (AB) ≠ P (A)P (B)| . (3.1)

Xt is called –-mixing (or strong mixing) if –X(t) æ 0 with t æ Œ. Note that “mixing in
the ergodic-theoretic sense” is weaker than –-mixing (see e.g. [Bra05]).

We now state the fCLT of [Dav68] (Theorem 5.2) and [McL75] (Corollary 3.9) supple-
mented by a result of [DG86] (Corollary 3.17).

Theorem 3.1. Let (Xt, �, F ,P) be a stationary process with

E(X(0)) = 0 (3.2)

and

0 < E(X(0)2) < Œ . (3.3)

Suppose there exists ” > 0 such that

E(|X(0)|2+”) < Œ, (3.4)

and that Xt is –-mixing with
⁄ Œ

0
–X(t)

”
2+” dt < Œ , (3.5)
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then

D = 2
⁄ Œ

0
E(X(0)X(t))dt < Œ

and

{SA(t)}tœ[0,1] :=
I

1Ô
A

⁄ At

0
X(s)ds

J

tœ[0,1]
∆

ÓÔ
DW (t)

Ô

tœ[0,1]
, as A æ Œ

in the sense that SA, the measure on C([0, 1]) generated by SA,t := {SA(t)}tœ[0,1], converges
weakly to the Wiener measure WD

1.
Furthermore, if

sup
t

E(|S1(t)|) = sup
t

E
3----

⁄ t

0
X(s)ds

----

4
= Œ , (3.6)

where E is the expectation w.r.t. the measure P, it follows from Corollary (3.17) in [DG86]
that

D > 0 .

See [Pel86] or [Dou94] for a good survey about su�cient and necessary conditions for
(f)CLTs for mixing sequences.

To prove our main result (Theorem 2.1), we show that the process Ut (cf. (2.15)) defined
on � 1

2
(cf. (2.17)) fulfills the conditions of the fCLT (Theorem 3.1). In the next chapter

we prove that the process Ut on (2.17) is stationary w.r.t. the measure µ ◊ fl 1
2

(cf. (2.17))
and consequently E(U(0)) = 0, 0 < E(U(0)2) < Œ as well as Condition (3.4) is fulfilled
for any ” > 0. In Chapter 5 we show that the stationary process Ut is –-mixing with (3.5)
for some ” > 0, and in Chapter 6, we will prove that Ut satisfies Condition (3.6).

1
If D = 0, SA,t converges in distribution to the zero-function as A æ Œ.
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4 A stationary distribution of the
stochastic process Ut

In this chapter, we show that the stochastic process Ut (cf. (2.15)) is stationary w.r.t. the
measure µ ◊ fl 1

2
(cf. (2.17)). The stationarity of Ut is one of the requirements of the fCLT

(Theorem 3.1) from which we obtain our main result.

Lemma 4.1. Consider the stochastic process Ut as given in (2.15) defined on � 1
2

(cf.
(2.17)). Then, Ut is a stationary stochastic process.

Proof of Lemma 4.1. To prove Lemma 4.1 we make use of the Skew-Product-Lemma [Pet83]:

Lemma 4.2 (Skew-Product-Lemma). Let flt be a measure preserving map on the measure
space (X , ›), with state space X and measure ›, and let for x œ X hx

t be a map on (Y , ◊)
such that hx

t preserves ◊. Denote by (Z, ‹) the direct product measure space of (X , ›) and
(Y , ◊), i.e.

Z = X ◊ Y , z = (x, y), x œ X , y œ Y

and

‹ = › ◊ ◊ .

Then, the evolution

�t(x, y) = (flt(x), hx
t (y))

is a measure preserving function on (Z, ‹).

We apply the Skew-Product-Lemma 4.2 to the following situation. We consider X to be
the phase space of the system of all particles (ideal gas and the molecule), i.e.

X = �̂

11



(cf. (2.3)). The measure › is then the product of ideal gas measure with Gibbs measure of
the molecule, i.e.

› = µ

(cf. (2.9)). Let

Y = {≠1, 1} .

We consider the evolution

�̃t(Ê̂, ‡) := (�t(Ê̂), ŸÊ̂
t (‡)) (4.1)

on X ◊ Y where �t is the dynamical evolution of the system of all particles (cf. (2.10)),
and

ŸÊ̂
t : {≠1, 1} æ {≠1, 1}

‡(0) ‘æ ‡(t) .

Now we show that ŸÊ̂
t preserves fl 1

2
, i.e. that for any B œ P({≠1, 1})

fl 1
2
((ŸÊ̂

t )≠1(B)) = fl 1
2
(B) .

Let

Aeven := {The molecule is reflected an even number of times during [0, t]} µ �̂

Aodd := {The molecule is reflected an odd number of times during [0, t]} µ �̂ .

Note that Aeven fl Aodd = ÿ and Aeven fi Aodd = �̂. For ‡ œ {≠1, 1} and Ê̂ œ Aeven we have
that

(ŸÊ̂
t )≠1(‡) = ‡ , (4.2)

and for Ê̂ œ Aodd that

(ŸÊ̂
t )≠1(‡) = ≠‡ . (4.3)

Then, we obtain for ‡ œ {≠1, 1} and Ê̂ œ Aeven that

fl 1
2
((ŸÊ̂

t )≠1(‡)) (4.2)= fl 1
2
(‡)

and for Ê̂ œ Aodd

fl 1
2
((ŸÊ̂

1,t)≠1(‡)) (4.3)= fl 1
2
(≠‡) = fl 1

2
(‡) .
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Thus, ŸÊ̂
t preserves fl 1

2
.

Considering

◊ = fl 1
2

,

we obtain by the Skew-Product-Lemma that �̃t (cf. (4.1)) is a measure preserving function
on

� 1
2

(2.11)=
1
�̂ ◊ {≠1, 1}, F ◊ P({≠1, 1}), µ ◊ fl 1

2

2
.

Since U(t) (cf. (2.13)) is a function of �̃t, Lemma 4.1 follows.

From now on denote by Ut the stationary process
1
Ut, �̂ ◊ {≠1, 1}, F ◊ P({≠1, 1}), µ ◊ fl 1

2

2
. (4.4)

Then, Ut fulfills Condition (3.2) and Condition (3.3) of the fCLT (Theorem 3.1), since V (0)
and ‡(0) are independent, and since by Lemma 4.1 V (0) is distributed according to the
Maxwellian given in (2.8) and ‡(0) is distributed according to fl 1

2
(cf. (2.16)). We have

that

E(U(0)) (2.13)= E(‡(0)V (0)) = E(‡(0))E(V (0)) = 0

and

0 < E(U(0)2) (2.13)= E(‡(0)2)E(V (0)2) < Œ . (4.5)

(4.5) follows, since it is well known that for a random variable which is distributed accord-
ing to the Maxwellian all moments of arbitrary order exist. By this argument and as a
consequence of the independency of V (0) and ‡(0) all moments of arbitrary order of U(0)
exist, such that Condition (3.4) is fulfilled for any ” > 0.
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5 Ut is rapidly –-mixing
In this chapter, we prove that Ut is –-mixing with (3.5) for some ” > 0. First, we give the
general idea of the proof by introducing a stronger form of mixing (—-mixing), followed by
the presentation of the proof.

5.1 General idea of the proof
Consider the stationary process Ut as given in (4.4). To show our main result (Theorem
2.1), by the fCLT (Theorem 3.1) we have to prove that Ut is rapidly –-mixing. By that we
mean, Ut is –-mixing and Condition (3.5) is satisfied.
Establishing rapid –-mixing is in general a di�cult task, except if Ut is a function on
the state space of a stationary good Harris mixing Markov process (see [DGL83]): Let
Mt = {M(t)}tœR+ be a Markov process with state space (X , B(X )), transition probability
�t

x, x œ X and stationary measure �, i.e. �(·) =
s

�(dx)�t
x(·). If U(t) is a function of

M(t), then for any s, v œ R+

‡(U(t), s Æ t Æ v) µ ‡(M(t), s Æ t Æ v)

and by the definition of –X(t) (cf. (3.1)) it follows that

–U(t) Æ –M(t) . (5.1)

Hence, the process Ut inherits the property of –-mixing of the Markov process Mt.
Furthermore, the Markov process Mt is rapidly –-mixing if it is good Harris mixing. To
define the property of Harris mixing, we introduce the total variation distance. Let µ, ‹
be probability measures defined on the same measurable space (�, F). Then, the total
variation distance of µ and ‹ is defined by

||µ ≠ ‹|| := 2 sup
AµF

|µ(A) ≠ ‹(A)| .

Note that for probability measures

||µ ≠ ‹|| Æ 2 . (5.2)

The stationary process Mt is called Harris mixing if for � a.e. x

||�t
x ≠ �|| æ 0, for t æ Œ .
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From the Markov property it follows that

–M(t) Æ
⁄

�(dx)||�t
x ≠ �|| . (5.3)

The r.h.s. of (5.3) is known as the —-coe�cient for stationary Markov processes. For a
stationary Markov process Xt with transition �t

x and stationary measure �, we write

—X(t) :=
⁄

�(dx)||�t
x ≠ �|| . (5.4)

If

—X(t) æ 0, as t æ Œ

the process Xt is called —-mixing (or absolute regular) (see e.g. [Dav73] or [Dou94] for a
good survey about —-mixing).
Since by (5.1) and (5.3) it follows that

–U(t) Æ —M(t) ,

we obtain rapid –-mixing of the process Ut by rapid —-mixing (or: by good Harris mixing)
of the stationary process Mt.

Some remarks on the —-coe�cient

The property of —-mixing of a process expresses, as any mixing does, that for large enough
separation of future and past, the evolution of the process become independent. To see that,
we follow [Dou94] to provide a more intuitive definition of the —-coe�cient for a stationary
(not necessary Markov) process (Xt, �, F ,P). Let P

F
denote the measure restricted to

the ‡-algebra F , and we write

P0 := P
FX

≠Œ,0
,

Pt := P
FX

t,Œ
.

Let P0,t denote the conditional measure on FŒ
t given F0

≠Œ. Then, one defines

—X(t) := ||P0P0,t ≠ P0 ◊ Pt|| . (5.5)

Note that if Xt is Markov, Definition (5.4) and Definition (5.5) are equivalent (see [Dou94]
and [Dav73]). It becomes clearer now that — quantifies the degree of dependence of the
past and the future of the process: Roughly speaking, P0 ◊Pt would be the measure which
arises if {X(s), s Æ 0} and {X(s), s Ø t}, t > 0 were independent, whereas P0P0,t is the
true measure for events C œ FX

≠Œ,0 ◊ FX
t,Œ.

To be precise, 2≠—X(t)
2 measures the overlap of P0 ◊ Pt and P0P0,t: Two measures µ and ‹

16



on the same measurable space (�, F) are overlapping if µ and ‹ are not mutually singular,
i.e. for any A, B œ F

(µ(A) = 1) · (‹(B) = 1) ∆ A fl B ”= ÿ .

Note that µ has an absolutely continuous component with respect to ‹ if and only if µ and
‹ are overlapping ([GLR82]). Using an equivalent definition of the total variation distance,
namely

||µ ≠ ‹|| = 2 ≠ 2(µ · ‹)(�)

where

(µ · ‹)(A) :=
⁄

A
min{Dµ(Ê), D‹(Ê)}(µ + ‹)(dÊ)

and Dµ(Ê), D‹(Ê) denote the Radon-Nikodym-derivatives with respect to (µ + ‹), it is
quite intuitive that one may quantify the overlap of two measures µ and ‹ by

(µ · ‹)(�) = 2 ≠ ||µ ≠ v||
2 .

Having (5.4) in mind, it becomes clear that with

—X(t) =
⁄

�(dx)||�t
x ≠ �|| Æ

⁄
�(dx)

⁄
�(dxÕ)||�t

x ≠ �t
xÕ||

an appropriate control over the overlap of the transition probabilities �t
x, �t

xÕ when varying
over t and x, xÕ, gives a good mixing rate, since then ||�t

x ≠ �t
xÕ|| decays fast enough (see

[DGL83]).

5.2 Proof: Ut is rapidly –-mixing
According to the statements made in the previous section, –-mixing of Ut (cf. (4.4)) follows
as soon as we show —-mixing for a stationary Markov process which contains Ut. Due to
the confinement of the molecule to �, there exists a “natural” Markov process Mt which
is intermediate between the non-Markovian process Ut and the deterministic evolution of
the infinite dynamical system (see [GLR82]). Let Y (t) be the configuration of all particles
in � and the value of ‡ at time t. Let qi(t), vi(t), i œ N, denote the positions and velocities
of the atoms which are in � at time t, then

Y (t) = (Q(t), V (t), qi(t), vi(t), ‡(t)) . (5.6)

We define the process

Mt := {Y (t)}tœR+ (5.7)
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on � 1
2

(cf. (2.17)) with state space �̂
�

◊{≠1, 1}, where �̂
�

is the set of all configurations
in �. To show that the process thus defined is indeed well defined in the sense of being
measurable, we refer the reader to a rather general result of [KL10] where measurability of
collision processes was established.
We now show that Mt is a stationary Markov process.

Lemma 5.1. The process Mt defined in (5.7) is Markov and stationary w.r.t. the measure

�(dy) = µ ◊ fl 1
2
(Y (0) œ dy) , (5.8)

where µ ◊ fl 1
2

is given in (4.4).

Proof of Lemma 5.1. We first show the Markov property of Mt. Let · > 0. The knowledge
of {Y (t)}tÆ· is equivalent to the knowledge of Y (·) and of all atoms, which have left �
until · , since apart from the incoming atoms the evolution of ‡(t) is deterministic. The
evolution after time · is determined by Y (·) and the atoms which enter the interval after
· . This follows inter alia from the fact that given ‡(·), {‡(t), t > ·} is determined by Y (·)
and all atoms entering � after time · . Since an atom which enters � after · is dynamically
independent of the evolution of the process before · (an atom which leaves the interval,
never returns, i.e. atoms which enter the interval are “fresh”), the Markov property of Mt

follows.
Since Y (t) is a function of �̃t (cf. (4.1)), Mt inherits its stationary distribution from µ◊fl 1

2
,

i.e.

�(dy) = µ ◊ fl 1
2

(Y (0) œ dy) .

As we pointed out in Section 5.1, rapid –-mixing of the process Ut (Condition (3.5) of
the fCLT (Theorem 3.1)) follows if Mt = {Y (t)}tœR+ is rapid —-mixing, since U(t) (cf.
(2.13)) is a function of Y (t) (cf. (5.6)), i.e. Condition (3.5) follows as soon as we show
following proposition.

Proposition 5.1. Consider the process Mt as defined in (5.7). Then, there exists a ” > 0
such that Mt is —-mixing with

⁄ Œ

0
—M(t)

”
2+” dt < Œ .
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Note that we proved in Chapter 4 that Condition (3.4) of the fCLT (Theorem 3.1) is
fulfilled for any ” > 0.

Hereinafter, we neglect the index M on —M and write only —.
The idea of proving Proposition 5.1 is the following. Having in mind that Mt is a Markov
process with stationary measure � (cf. (5.8)) such that

—(t) (5.4)=
⁄

�(dx)||�t
x ≠ �|| ,

we proof overlap of �·
x and � (transition and stationary measure of Mt) for x in a “good”

set G (· is a fixed time and depends on G). By the existence of an overlap by time · , one
obtains by induction an estimate for —(n·) which depends on the measure of the overlap
and of the measure of Gc, the complement of G. Then, we show that G can be chosen so
large that the “bad” set Gc has very small measure. In fact, we choose G as depending on
n, such that the measure of Gc approaches zero fast enough as n æ Œ and such that the
overlap doesn’t shrink too fast (if G grows, the overlap becomes small), which gives a good
estimate for the —-coe�cient.

We begin now by proving first the existence of an overlap set by the following lemma.
Denote by �t

y the transition probability of Mt at time t starting in Y (0) = y œ �̂
�

◊
{≠1, 1}.

Lemma 5.2. Overlap-Lemma
There exist a measurable set G µ �̂

�
◊ {≠1, 1}, a time t(G) and “(G) < 2, which all will

be specified later, such that

||�t(G)
y1 ≠ �t(G)

y2 || Æ “(G) (5.9)

for any y1, y2 œ G.

To show the Overlap-Lemma 5.2, we prove the existence of an overlap set, i.e. loosely
speaking a set of states, where any state can be reached at a certain time with probability
bounded away from zero if starting in G. For that we show first that any state in G can
reach a state where the molecule is alone and its velocity is in a certain interval at a certain
time (see Lemma 5.6). Having that, we can control the evolution of the process, especially
the value of ‡, by sending in atoms such that the process may reach at a given time a set
of certain states with positive probability (see Lemma 5.7).
This gives us a hint how to choose G, since there are two kind of states, which could be
problematic as starting states: If the molecule is very fast, it may be impossible to slow it
down to a given velocity in a given time with a probability large enough. Also many slow
atoms in the interval could be a problem, since they may not be kicked out before a given
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time with a large enough probability. Therefore, we will choose G such that these states
are excluded i.e. the number of atoms in � and their velocity, as well as the velocity of the
molecule is bounded.

Since the proof of the Overlap-Lemma 5.2 needs several preliminary lemmata, we first
provide these and give the proof of Overlap-Lemma 5.2 afterwards.

Let 0 < V̄ < Œ, N̄ œ N and let

GV̄ ,N̄ := {|v| < V̄ , |V | < V̄ , N Æ N̄} (5.10)

where {|v| < V̄ , |V | < V̄ , N Æ N̄} µ �̂
�

◊ {≠1, 1} denotes the set of configurations for
which the molecule and the atoms in � have speed less than V̄ and the number of atoms
in � is less or equal N̄ . Let B and C be constants with B < V̄ and

C := 9M2

M2 ≠ m2 B . (5.11)

Recall that M is the mass of the molecule and m the mass of any atom. We first proceed
from GV̄ ,N̄ to

GB,C;0 := {B < |V | < C, N = 0} µ �̂
�

◊ {≠1, 1} , (5.12)

which is the set of configurations for which the molecule has speed faster than B but slower
than C and is alone in �. Since this procedure is rather lengthy, we proceed in several steps.

By the collision equations (2.1) and (2.2) we get following assertion.

Assertion 5.1. Let

tB := 2L

B
. (5.13)

Then, an atom which is in � at time t cannot make the molecule faster than B after time
t + tB.

Proof of Assertion 5.1. To make the molecule faster than B, the atom has to move towards
the molecule and it is necessary (but not su�cient), that |v| > B. Let vt denote the velocity
at time t of an atom in �. Then,

(i) if |vt| < B: The atom can only achieve |v| > B by a collision with the molecule. But
that leads to a velocity directed in the opposite direction of the molecule. Once an
atom moves away from the molecule, it will keep that direction. Hence, the atom
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never moves towards the molecule with |v| > B, i.e. an atom with |vt| < B cannot
make the molecule faster than B at all.

(ii) if |vt| Ø B: Let · > t denote the first collision time of an atom with the molecule
after time t. If |vt| Ø B, then either the atom doesn’t collide with the molecule after
time t at all or · < t + tB. If in the latter case after the collision still |v| Ø B, the
atom either moves in opposite direction of the molecule and hence cannot make it
faster than B anymore, or it moves towards the molecule and collides with it before
t + tB again. As long as the atom has |v| Ø B, it will either recollide before t + tB (if
it moves towards the molecule) or it moves in the opposite direction of the molecule
and cannot make it faster than B anymore.
Once the atom is slowed down to a speed less than B, it cannot make the molecule
faster than B anymore (see (i)).
Thus, if an atom with |vt| Ø B makes the molecule faster than B, it happens before
t + tB.

Taking (i) and (ii) together, Assertion 5.1 follows.

Consider Y (0) = y œ GV̄ ,N̄ . We define the event E4tB µ �̂ with

E4tB = {No atom enters � during [0, 4tB]} (5.14)

The following holds on E4tB .

(a) If |V (3tB)| < B: Since no atom which is at t = 0 in �, can make the molecule faster
than B after tB (cf. Assertion 5.1), |V (t)| < B for all t œ [3tB, 4tB]. All atoms with
|v(3tB)| > B must have been slower than B for some time before 3tB (otherwise they
would have left the interval by time 2tB), and then achieved |v| > B by a collision
with the molecule, i.e. these atoms are moving at time 3tB in opposite direction
of the molecule and leave � by time 4tB, without colliding with the molecule, since
|V (t)| < B for all t œ [3tB, 4tB]. Hence, the molecule collides during [3tB, 4tB] only
with atoms with |v(3tB)| < B. Using (2.2) with pre collision velocities |V | < B, |v| <
B gives

|vÕ| =
----≠

M ≠ m

M + m
v + 2M

M + m
V

----

Æ M ≠ m

M + m
|v| + 2M

M + m
|V |

<
M ≠ m

M + m
B + 2M

M + m
B

= 3M ≠ m

M + m
B , (5.15)

i.e. the atoms left in � by time 4tB cannot be faster than 3M≠m
M+m B.
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(b) If |V (3tB)| > B: Then, by Assertion 5.1 and by argument (i) in the proof of Assertion
5.1 (taking V̄ instead of B), we have that

B < |V (t)| < V̄

for all t œ [tB, 3tB] and all atoms are pushed out of � by the molecule by time 3tB

i.e. the molecule is alone in � by 3tB.

With that, the following lemma can be shown.

Lemma 5.3. Consider GB;N̄ ;ṽ, GB,V̄ ;0, µ �̂
�

◊{≠1, 1} where we for ease of notation write

GB;N̄ ;ṽ :={|V | < B, the number of atoms in � is less or equal N̄ ,

the speed of each atom is less than ṽ := 3M ≠ m

M + m
B} ,

(5.16)

GB,V̄ ;0 := {The molecule is alone in � and B < |V | < V̄ } (5.17)

Let tB be given by (5.13). Then, with

C1 := 1
2 exp

A

≠ 8tBflÔ
2fiKm

B

(5.18)

we have that for any y œ GV̄ ,N̄ either

�4tB
y (GB;N̄ ;ṽ) Ø C1 (5.19)

or
�4tB

y (GB,V̄ ;0) Ø C1 . (5.20)

Proof of Lemma 5.3. By facts (a) and (b) from above we have shown that for Y (0) = y œ
GV̄ ,N̄ it follows that Y (4tB) œ GB,V̄ ;0 fi GB;N̄ ;ṽ if no atom enters � during [0, 4tB]. Hence,
for y œ GV̄ ,N̄ we have that

�4tB
y (GB,V̄ ;0 fi GB;N̄ ;ṽ) Ø µ(E4tB ) (5.21)

with E4tB given in (5.14).
Denote by N (|�|) the number of atoms entering � during a time interval � with length
|�|, then N (|�|) is a Poisson random variable with parameter

|�|2fl
1Ô

2fiKm
2≠1

, K given in (2.5)
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i.e.

µ({N (|�|) = k}) = e≠|�|2fl(
Ô

2fiKm)≠1

1
|�|2fl(

Ô
2fiKm)≠1

2k

k! , k œ N0, (5.22)

with

(N (|�|)) = |�|2fl
1Ô

2fiKm
2≠1

.

Hence, the probability that no atom enters � in a time interval of length 4tB is

µ(E4tB ) = exp
A

≠ 8tBflÔ
2fiKm

B

. (5.23)

Now

�4tB
y (GB,V̄ ;0 fi GB;N̄ ;ṽ) Æ 2 max

Ó
�4tB

y (GB,V̄ ;0), �4tB
y (GB;N̄ ;ṽ)

Ô
, (5.24)

and we obtain Lemma 5.3 since by (5.21) and the estimates (5.23) and (5.24) we obtain
that

max
Ó
�4tB

y (GB,V̄ ;0), �4tB
y (GB;N̄ ;ṽ)

Ô
Ø 1

2µ(E4tB ) = 1
2 exp

A

≠ 8tBflÔ
2fiKm

B

= C1 ,

i.e. either

�4tB
y (GB;N̄ ;ṽ) Ø C1

or
�4tB

y (GB,V̄ ;0) Ø C1 .

Recall that we want to prove that any state in GV̄ ,N̄ (cf. (5.10)) can reach a state in
GB,C;0 (cf. (5.12)) at a certain time with a certain positive probability. Since we know
by Lemma 5.3 that all states in GV̄ ,N̄ can either reach GB;N̄ ;ṽ (cf. (5.16)) or GB,V̄ ;0 (cf.
(5.17)) by time 4tB, we now proceed from the sets GB;N̄ ;ṽ and GB,V̄ ;0 to GB,C;0 (cf. (5.12)).
For that we let atoms enter � either to push out the atoms, which are still in � or to slow
down the molecule.

To handle GB;N̄ ;ṽ, we use the following assertions. Let

Db := 4M2

m(M ≠ m)B and Dc := M + m

2m
C ≠ M ≠ m

2m
B (5.25)

with C given in (5.11).
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Assertion 5.2. If the molecule with |V | < B collides with an atom with

Db < v < Dc (5.26)

(resp. ≠Dc < v < ≠Db), with Db, Dc given in (5.25), then

B <
7M2 + 2Mm ≠ m2

M2 ≠ m2 B < V Õ < C

(resp. ≠C < V Õ < ≠7M2+2Mm≠m2

M2≠m2 B < ≠B).

Proof of Assertion 5.2. Consider ≠B < V < B and v as given in (5.26). Then, we obtain
the following upper and lower bound for the post collision velocity V Õ from (2.1).

V Õ = M ≠ m

M + m
V + 2m

M + m
v

(5.26)
<

M ≠ m

M + m
B + 2m

M + m

3
M + m

2m
C ≠ M ≠ m

2m
B

4

= M ≠ m

M + m
B + C ≠ M ≠ m

M + m
B

= C ,

V Õ = M ≠ m

M + m
V + 2m

M + m
v

(5.26)
> ≠M ≠ m

M + m
B + 2m

M + m

4M2

m(M ≠ m)B

= ≠(M ≠ m)2 + 8M2

M2 ≠ m2 B

= 7M2 + 2Mm ≠ m2

M2 ≠ m2 B

> B

The second case follows analogously.

Assertion 5.3. If an atom with

Db < v < Dc (5.27)
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(resp. ≠Dc < v < ≠Db), with Db, Dc given in (5.25) collides with the molecule with
|V | < B, then vÕ < ≠B (resp. vÕ > B).

Proof of Assertion 5.3. Consider (5.27). We obtain the upper bound for the post collision
velocity of the atom from (2.2), namely

vÕ = ≠M ≠ m

M + m
v + 2M

M + m
V

(5.27)
< ≠M ≠ m

M + m

4M2

m(M ≠ m)B + 2M

M + m
B

= ≠4M2 + 2Mm

m(M + m) B

Æ ≠4M2 + 2M2

2m2 B

< ≠B .

The second case follows analogously.

Assertion 5.4. If an atom enters � from the left with

Db < v < Dc (5.28)

resp. from the right with

≠Dc < v < ≠Db

with Db, Dc given in (5.25), and the molecule has pre collision velocity |V | < B, then the
atom stays in � no longer than 2tB with tB given in (5.13).

Proof of Assertion 5.4. Consider the atom entering � from the left with (5.28). Note that
the proof for atoms entering from the right is analogous.
Since

Db = 4M2

m(M ≠ m)B Ø 4M2

M2 B > B ,

the atom has velocity v > B until the collision, i.e. the time it takes from entering to the
collision is less than tB. From Assertion 5.3 we obtain for the post collision velocity of the
atom that vÕ < ≠B, i.e. the atom is in the interval no longer than tB after this collision.
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So all in all the atom stays in � no longer than 2tB.

Assertion 5.5. If an atom on the right side (resp. on the left side) of the molecule collides
with

|v| <
3M ≠ m

M + m
B (5.29)

with the molecule with

V >
7M2 + 2Mm ≠ m2

M2 ≠ m2 B (5.30)

(resp. V < ≠7M2+2Mm≠m2

M2≠m2 B), then

vÕ > B (resp. vÕ < ≠B) .

Proof of Assertion 5.5. Consider an atom with (5.29) to the right side of the molecule with
(5.30). We obtain the lower bound on the post collision velocity of the atom from (2.2),
namely

vÕ = ≠M ≠ m

M + m
v + 2M

M + m
V

(5.29),(5.30)
> ≠M ≠ m

M + m

3M ≠ m

M + m
B + 2M

M + m

7M2 + 2Mm ≠ m2

M2 ≠ m2 B

= 11M2 + 11M2m ≠ 7Mm2 + m3

(M2 ≠ m2)(M + m) B

= 10M2 + 10M2m ≠ 6Mm2 + 2m3 + (M2 ≠ m2)(M + m)
(M2 ≠ m2)(M + m) B

>
4M2 + 10M2m + 2m3 + (M2 ≠ m2)(M + m)

(M2 ≠ m2)(M + m) B

> B .

The second case follows analogously.
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Assertion 5.6. If an atom on the left side of the molecule collides with

v < ≠B (5.31)

with the molecule with

V < ≠7M2 + 2Mm ≠ m2

M2 ≠ m2 B , (5.32)

then

V Õ < ≠7M2 + 4Mm + m2

(M + m)2 B < ≠B (5.33)

and

vÕ < ≠B .

Proof of Assertion 5.6. Consider an atom with (5.31) an the molecule with (5.32). By
(2.1) it follows that

V Õ = M ≠ m

M + m
V + 2m

M + m
v

< ≠M ≠ m

M + m

7M2 + 2Mm ≠ m2

M2 ≠ m2 B ≠ 2m

M + m
B

= ≠7M2 ≠ 4Mm ≠ m2

(M + m)2

= ≠5M2 ≠ 2Mm ≠ (M + m)2

(M + m)2 B

< ≠B .

Since both, the molecule and the atom, move to the left and the molecule is to the right
of the atom, by future collisions the molecule can only (absolutely) speed up the atom, i.e.
vÕ < ≠B.

Assertion 5.7. If an atom on the left side of the molecule collides with

v < ≠B (5.34)
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with the molecule with

V Õ < ≠7M2 + 4Mm + m2

(M + m)2 B (5.35)

then

V Õ <
≠7M3 + M2m ≠ Mm2 ≠ m3

(M + m)3 B < ≠B (5.36)

and

vÕ < ≠B .

Proof of Assertion 5.7. Consider the atom with (5.34) and the molecule with (5.35). Then,
with (2.1) we obtain that

V Õ = M ≠ m

M + m
V + 2m

M + m
v

< ≠M ≠ m

M + m

7M2 + 4Mm + m2

(M + m)2 B ≠ 2m

M + m
B

= ≠7M3 + M2m ≠ Mm2 ≠ m3

(M + m)3

= ≠6M3 + 4M2m + 2Mm2 ≠ (M + m)3

(M + m)3 B

< ≠B .

Since both, the molecule and the atom, move to the left and the molecule is to the right
of the atom, the molecule can only (absolutely) speed up the atom, i.e. vÕ < ≠B.

Assertion 5.8. If an atom on the left side of the molecule collides with

|v| <
3M ≠ m

M + m
B (5.37)

with the molecule with

V Õ < ≠7M2 + 4Mm + m2

(M + m)2 B (5.38)
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then

vÕ < ≠B .

Proof of Assertion 5.8. Consider an atom on the left side with (5.37) and the molecule
with (5.38). Then, by (2.2) we have that

vÕ = ≠M ≠ m

M + m
v + 2M

M + m
V

<
M ≠ m

M + m

3M ≠ m

M + m
B ≠ 2M

M + m

7M2 + 4Mm + m2

(M + m)2 B

= ≠11M3 ≠ 9M2m ≠ 5Mm2 + m3

(M + m)3 B

<
≠8M3 ≠ 6M2m ≠ 2Mm2 ≠ (M + m)3

(M + m)3 B

< ≠B .

Assertion 5.9. If an atom on the left side of the molecule collides with

|v| <
3M ≠ m

M + m
B (5.39)

with the molecule with

V Õ <
≠7M3 + M2m ≠ Mm2 ≠ m3

(M + m)3 B (5.40)

then

vÕ < ≠B .

Proof of Assertion 5.9. Consider an atom with (5.39) and the molecule with (5.40). Then,
by (2.2) it follows that

vÕ = ≠M ≠ m

M + m
v + 2M

M + m
V
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<
M ≠ m

M + m

3M ≠ m

M + m
B + 2M

M + m

≠7M3 + M2m ≠ Mm2 ≠ m3

(M + m)3 B

= ≠11M4 + 4M3m ≠ 6M2m2 ≠ 4Mm3 + m4

(M + m)4 B

= ≠10M4 + 8M3m + 2m4 ≠ (M + m)4

(M + m)4 B

< ≠B .

With these assertions we can show the following.

Lemma 5.4. Let

t(N̄) :=
1
N̄ + 1

2
Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 3tB (5.41)

with Db, Dc given in (5.25) and tB given in (5.13), then for any y œ GB;N̄ ;ṽ (cf. (5.16))

�t(N̄)
y (GB,C;0) Ø C2e≠C3N̄ (5.42)

with

C2 := exp
Q

a≠2fl

Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ 4tB

R

b
1Ô

2fiKm
2≠1

R

b (5.43)

C3 := 2fl

Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b
1Ô

2fiKm
2≠1

. (5.44)

Proof of Lemma 5.4. Recall that GB;N̄ ;ṽ are the configurations where |V | < B, the number
of atoms in � is less or equal N̄ and the speed of the atoms is less than ṽ = 3M≠m

M+m B. For
ease of notation we set t = 0 for the time of the following situation. Note that throughout
this section, whenever we set t = 0, it is the time of a situation and not the beginning of
the process. Consider Y (0) = y œ GB;N̄ ;ṽ. Denote by Ny

r and Ny
l the number of atoms to
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the right resp. to the left of the molecule at time t = 0. Note that

Ny
r + Ny

l Æ N̄ .

First, we let atoms enter � from the left to let the molecule push out the atoms, which are
to the right of it. The entering atoms have velocity

Db < v < Dc, (5.45)

with Db, Dc given in (5.25), and shall enter � according to the following prescription. Note
that no other atom shall enter the interval during this procedure.
Let �̄ > 0. The first atom enters � during [0, �̄] and no atom enters during [�̄, �̄ + tB].
By time �̄+ tB the molecule has either reached L (and has velocity |V | < C (cf. Assertion
5.2)) or if not, it was slowed down to a speed less than B by some atoms of the right side.
At least one of the Ny

r atoms will have left � by time �̄ + tB: In the first case it is trivial,
since then all atoms from the right have left �. In the latter case at least the atom, which
collided at first with the molecule on the r.h.s. will be kicked out, since this atom has
pre collision velocity |v| < 3M≠m

M+m B (by definition of GB;N̄ ;ṽ) and the molecule collides with
V > 7M2+2Mm≠m2

M2≠m2 B (see Assertion 5.2), such that by Assertion 5.5 it follows that vÕ > B.
Note that the atom which we have send in may enter the interval latest at time �̄ and has
velocity v > Db > B. This atom then collides with the molecule, which gain post collision
velocity V > B. Since the molecule causes a post collision velocity vÕ > B of the atom to
its right, it doesn‘t take longer than tB from the entering of the atom, which we have send
in to the leaving time of the atom to the right of the molecule. Hence, by time �̄ + tB at
least one atom of the r.h.s. of the molecule has left �.
If there are still atoms to the right of the molecule, another atom with (5.45) enters during
[�̄ + tB, 2�̄ + tB] and no atom during [2�̄ + tB, 2(�̄ + tB)], etc. until all Ny

r atoms are
pushed out, i.e.

ty
r := Ny

r (�̄ + tB) (5.46)

is an upper bound on the time it takes with this procedure to reach a state where no atom
is to the right of the molecule and |V | < C. The latter follows by Assertion 5.2. Note that
as soon as by a time m(�̄ + tB), m œ {1, ..., Ny

r ≠ 1} there are no atoms to the right of the
molecule, we consider the event, that no atom enters during [m(�̄ + tB), ty

r ].
If |V (ty

r)| < B, we send in one additional atom from the left during [ty
r , ty

r + �̄] with (5.45)
(so that B < V Õ < C (cf. Assertion 5.2)), and no atom during [ty

r + �̄, ty
r + �̄ + 2tB]. If

B < |V (ty
r)| < C, no atom enters during [ty

r , ty
r + �̄ + 2tB]. Then, in both cases by time

ty
r + �̄ + 2tB = (Ny

r + 1)(�̄ + tB) + tB (5.47)

the molecule was reflected at L, latest at time

ty
r + �̄ + tB , (5.48)
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and has either reached ≠L (and has velocity |V | < C), or if not, it was slowed down to
a speed less than B by some of the atoms on the left. Note that at time (5.48) there are
Ny

l + 2 atoms or less on the l.h.s. of the molecule in �, since an atom which is send in
during [(Ny

r ≠ 1)(�̄ + tB), (Ny
r ≠ 1)(�̄ + tB) + �̄] or [ty

r , ty
r + �̄] may be still in the interval

(with v < ≠B (cf. Assertion 5.3)). But in any case these two atoms and at least one of
the Ny

l atoms on the left have left � by time (5.47). This follows by similar arguments
as before: If the molecule has reached ≠L, all atoms on the left were pushed out. If the
molecule didn’t reach ≠L, it must have been slowed down to a speed less than B by at
least one atom of the l.h.s.. In the latter case there are three possible situations which may
occur: After the reflection of the molecule at L (i) the first two collisions of the molecule are
with the two atoms which were send in during the procedure. Note that the pre collision
velocity of both atoms is v < ≠B; (ii) the molecule first collides with one of the atoms
which were send in during the procedure and second with one of the Ny

l atoms; (iii) the
first collision of the molecule is with one of the Ny

l atoms.
To prove that at least the three atoms will have left � by time (5.47), it is enough to show
that V < ≠B from the time of reflection at L (latest at time (5.48)) until the time where
all three atoms have v < ≠B, since then it takes no longer than tB from the reflection until
all three atoms will have left the interval, i.e. all three atoms will have left the interval by
time (5.47). We show that now.
By Assertion 5.6 and Assertion 5.7 it follows that in (i) the post collision velocity of the
atoms of the first and second collision is vÕ < ≠B. Furthermore the upper bound of the
post collision velocity of the molecule after the first two collisions is given by (5.36) and in
particular V < ≠B from the time of reflection at L on. By Assertion 5.9 it follows that the
post collision velocity of the atom of the third collision is vÕ < ≠B. i.e. all three atoms with
which the molecule collided with have vÕ < ≠B. Hence, all three atoms leave the interval
by time (5.47). In (ii) the atom of the first collision has vÕ < ≠B and the upper bound
of the post collision velocity of the molecule is given in (5.33) in particular V < ≠B (cf.
Assertion 5.6). By Assertion 5.8 the atom of the second collision has also vÕ < ≠B. Since
the second atom we have send in during the procedure has already v < ≠B after the first
collision with the molecule and will keep v < ≠B no matter if it collides with the molecule
again or not, all in all we have that V < ≠B until all three atoms have v < ≠B, i.e. these
atoms will have left the interval before (5.47). In (iii) the atom of the first collision obtains
by the collision with the molecule vÕ < ≠B (cf. Assertion 5.5). Since both atoms which
were send in during the procedure have already v < ≠B (by the first collision), all three
atoms leave the interval before (5.47). This gives the conjecture, namely by time (5.47) at
least one of the Ny

l atoms and both atoms which were send in during the procedure have
left the interval by (5.47).
We now continue in a similar way as before: If by time (5.47) there are still atoms to the
left (not more than Ny

l ≠ 1), we push out the remaining atoms, but now by atoms entering
� from the right with ≠Dc < v < ≠Db. Hence, by time

(Ny
r + 1)(�̄ + tB) + tB + (Ny

l ≠ 1)(�̄ + tB) + tB
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= (Ny
r + Ny

l )(�̄ + tB) + 2tB (5.49)

the molecule is alone in � with |V | < C, since then also the last incoming atom has left �
again.
If |V (t)| < B with t given in (5.49) we send in one additional atom from the left with
Db < v < Dc during

[(Ny
r + Ny

l )(�̄ + tB) + 2tB, (Ny
r + Ny

l + 1)(�̄ + tB) + tB]

and no atom during

[(Ny
r + Ny

l + 1)(�̄ + tB) + tB, (Ny
r + Ny

l + 1)(�̄ + tB) + 3tB] .

If B < |V (t)| < C for t given in (5.49) we consider the event that no atoms enter during
[(Ny

r + Ny
l )(�̄ + tB) + 2tB, (Ny

r + Ny
l + 1)(�̄ + tB) + 3tB].

It follows by Assertion 5.2 that by time

(Ny
r + Ny

l + 1)(�̄ + tB) + 3tB (5.50)

the molecule is alone in � with velocity B < |V | < C.
Since Ny

r + Ny
l Æ N̄ for any y œ GB;N̄,ṽ, it follows from (5.50) that

�̄N̄ := (N̄ + 1)(�̄ + tB) + 3tB, (5.51)

is an upper bound on the time it takes with the above procedure to reach a state where
the molecule is alone in � with velocity B < |V | < C for any y œ GB;N̄ ;ṽ.
By the above procedure we can estimate ��̄N̄

y (GB,C;0) for y œ GB;N̄ ;ṽ with �̄N̄ given in
(5.51), and we obtain Lemma 5.4: Since Mt is a stationary Markov process

��̄N̄
y (GB,C;0) (5.52)

(5.51)= �(N̄+1)(�̄+tB)+3tB
y (GB,C;0)

= �(Ny
r +Ny

l +1)(�̄+tB)+3tB+(N̄≠(Ny
r +Ny

l ))(�̄+tB)
y (GB,C;0)

=
⁄

�(Ny
r +Ny

l +1)(�̄+tB)+3tB
y (dyÕ)�(N̄≠(Ny

r +Ny
l ))(�̄+tB)

yÕ (GB,C;0)

Ø
⁄

GB,C;0
�(Ny

r +Ny
l +1)(�̄+tB)+3tB

y (dyÕ)�(N̄≠(Ny
r +Ny

l ))(�̄+tB)
yÕ (GB,C;0) . (5.53)

Any Y (0) = y œ GB,C;0 will stay in GB,C;0 until time (N̄ ≠ (Ny
r + Ny

l ))(�̄ + tB) if no atom
enters � during [0, (N̄ ≠ (Ny

r + Ny
l ))(�̄ + tB)], so that we can estimate

(5.53) Ø
⁄

GB,C;0
�(Ny

r +Ny
l +1)(�̄+tB)+3tB

y (dyÕ) ·

· µ({N (N̄ ≠ (Ny
r + Ny

l ))(�̄ + tB) = 0})
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= �(Ny
r +Ny

l +1)(�̄+tB)+3tB
y (GB,C;0) ·

· µ({N (N̄ ≠ (Ny
r + Ny

l ))(�̄ + tB) = 0})
(5.54)

To estimate further we start with

�(Ny
r +Ny

l +1)(�̄+tB)+3tB
y (GB,C;0) =

=
⁄

�(Ny
r +Ny

l )(�̄+tB)+2tB
y (dyÕ)��̄+2tB

yÕ (GB,C;0)

Ø
⁄

GB;0fiGB,C;0
�(Ny

r +Ny
l )(�̄+tB)+2tB

y (dyÕ)��̄+2tB
yÕ (GB,C;0), (5.55)

where GB;0 µ �̂
�

◊ {≠1, 1} is the set of configurations where the molecule is alone with
|V | < B, i.e. with ease of notation

GB;0 = {|V | < B, N = 0} .

Since for yÕ œ GB;0 resp. yÕ œ GB,C;0 di�erent procedures are necessary to reach by time
�̄+2tB a state in GB,C;0, we treat these cases separately when estimating the second factor
of (5.55). Note since Lemma 5.4 requires a uniform lower bound for the transitions, we
need the same estimate in both cases. We will get that by making an explicit choice for �̄
later on. We can make this choice, since until now the only condition on �̄ is its positivity.
If Y (0) = yÕ œ GB,C;0 and no atom enters during [0, �̄ + 2tB], then Y (�̄ + 2tB) œ GB,C;0.
So it follows for yÕ œ GB,C;0 that

��̄+2tB
yÕ (GB,C;0) Ø µ({N (�̄ + 2tB) = 0}) . (5.56)

Now we show that also transitions starting at Y (0) = yÕ œ GB;0 can be estimated by
the same bound as given in (5.56). We know from the above, sending in one atom from
the left with Db < v < Dc during [0, �̄] and no atom during [�̄, �̄ + 2tB] yields to
Y (�̄ + 2tB) œ GB,C;0. So denote by Q µ �̂

�
◊ {≠1, 1} the set of configurations which are

possible for the system at time �̄ if it starts at t = 0 in GB;0 and one atom from the left
enters with Db < v < Dc during [0, �̄], i.e. with ease of notation

Q = {There is no or one atom in �.
If there is one atom, it is on the l.h.s. of the molecule
with velocity Db < v < Dc or v < ≠B.

If Db < v < Dc, then |V | < B;
if v < ≠B, then B < |V | < C.

If there’s no atom in �, B < |V | < C} .

Since any Y (0) = yÕÕ œ Q reaches a state in GB,C;0 at time 2tB if no atom enters during
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[0, 2tB] we have that

��̄+2tB
yÕ (GB,C;0) =

⁄
��̄

yÕ(dyÕÕ)�2tB
yÕÕ (GB,C;0) (5.57)

Ø
⁄

Q
��̄

yÕ(dyÕÕ)�2tB
yÕÕ (GB,C;0)

Ø
⁄

Q
��̄

yÕ(dyÕÕ)µ({N (2tB) = 0})

= ��̄
yÕ(Q)µ({N (2tB) = 0}) . (5.58)

To estimate the first factor in (5.58) we note that for yÕ œ GB;0

��̄
yÕ(Q) Ø µ({NDb,Dc(�̄) = 1})µ({NDc,Œ(�̄) = 0})µ({N≠Œ,Db

(�̄) = 0}) , (5.59)

since Y (0) = yÕ œ GB;0 is in Q by time �̄ if exactly one atom enters during [0, �̄] and has
Db < v < Dc. Having in mind that (5.57) shall be estimated such that it has the same
lower bound as (5.56), we make an explicit choice for �̄. Note that (5.56) is valid for any
�̄ > 0. Let

�̄bc :=
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

, (5.60)

where fl is the density of the ideal gas and f(v) is the Maxwellian (cf. (2.5)). Then, the
expected number of atoms entering � during a time interval of length �̄bc with velocity
Db < v < Dc is

E(NDb,Dc(�̄bc)) = �̄bcfl
⁄ Dc

Db

vf(v)dv
(5.60)= 1 .

If we choose

�̄ = �̄bc , (5.61)

for estimating (5.59) we can use the monotonicity of Poisson random variables: If the
random variable X is Poisson-distributed with mean ⁄, then for any j, k œ N with j Æ k Æ ⁄

P(X = j) Æ P(X = k) Æ P(X = ⁄). (5.62)

With (5.61) it follows that

(5.59) Ø µ({NDb,Dc(�̄bc) = 0})µ({NDc,Œ(�̄bc) = 0})µ({N≠Œ,Db
(�̄bc) = 0}) . (5.63)

Since NDb,Dc(�̄bc), NDc,Œ(�̄bc) and N≠Œ,Db
(�̄bc) are independent (cf. (2.7))

��̄bc
yÕ (Q) Ø µ({N (�̄bc) = 0}). (5.64)
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By (5.58) and (5.64) we get for the second factor of (5.55) for yÕ œ GB;0

��̄bc+2tB
yÕ (GB,C;0) Ø µ({N (�̄bc) = 0})µ({N (tB) = 0}) . (5.65)

To continue estimating the r.h.s. of (5.65), note following fact. Denote by |[a, b]| the length
of the time interval [a, b], then

µ({N (|[a, b]|)}) = µ({N (|[t, t + |[a, b]]|)}) . (5.66)

Using (5.66), we obtain for the r.h.s. of (5.65) that

µ({N (�̄bc) = 0})µ({N (tB) = 0})
(5.66)= µ({N (|[0, �̄bc]|) = 0})µ({N (|[�̄bc, �̄bc + tB]|) = 0})
(2.7)= µ({N (�̄bc + tB) = 0}) , (5.67)

and altogether for (5.65) with yÕ œ GB;0 by (5.67) that

��̄bc+2tB
yÕ (GB,C;0) Ø µ({N (�̄bc + tB) = 0}) .

Choosing (5.61), we obtain also for (5.56) with yÕ œ GB,C;0 the same estimate, namely

��̄bc+2tB
yÕ (GB,C;0) Ø µ({N (�̄bc + 2tB) = 0}) .

Plugging this into (5.55), we get

(5.55) Ø
⁄

GB;0fiGB,C;0
�(Ny

r +Ny
l )(�̄bc+tB)+2tB

y (dyÕ)µ({N (�̄bc + 2tB) = 0})

= �(Ny
r +Ny

l )(�̄bc+tB)+2tB
y (GB;0 fi GB,C;0)µ({N (�̄bc + 2tB) = 0}) . (5.68)

We continue with

�(Ny
r +Ny

l )(�̄bc+tB)+2tB
y (GB;0 fi GB,C;0)

= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠1)(�̄bc+tB)+tB
y (GB;0 fi GB,C;0)

=
⁄

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠1)(�̄bc+tB)
y (dyÕ)�tB

yÕ (GB;0 fi GB,C;0) . (5.69)

Denote by R µ �̂
�

◊ {≠1, 1} the set of configurations which are possible for the system
at time

(Ny
r + 1)(�̄bc + tB) + tB + (Ny

l ≠ 1)(�̄bc + tB) ,

starting at t = 0 in GB;N̄ ;ṽ and undergoing the procedure which was described underneath
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(5.45), i.e. we have that

R = {There is no or one atom in the interval.
If there is one atom, it is to the right of the molecule
and has velocity v > B.
The molecule has velocity |V | < C.} .

Hence,

(5.69) Ø
⁄

R
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠1)(�̄bc+tB)

y (dyÕ)�tB
yÕ (GB;0 fi GB,C;0) . (5.70)

Since for Y (0) = yÕ œ R, if no atom enters during [0, tB] then Y (tB) œ GB;0 fi GB,C;0, i.e.

(5.70) Ø
⁄

R
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠1)(�̄bc+tB)

y (dyÕ)µ({N (tB) = 0})

= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠1)(�̄bc+tB)
y (R)µ({N (tB) = 0}) . (5.71)

Now we start with

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠1)(�̄bc+tB)
y (R) (5.72)

= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)+(�̄bc+tB)
y (R)

=
⁄

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (dyÕ)��̄bc+tB

yÕ (R) . (5.73)

Starting at t = 0 in GB;N̄ ;ṽ and undergoing the procedure as described underneath (5.45),
at time (Ny

r + 1)(�̄bc + tB) + tB + (Ny
l ≠ 2)(�̄bc + tB) either the molecule is alone with

|V | < C, or there is one atom to the the left (with |v| < ṽ) and |V | < B. To estimate
(5.73) we denote by GC,0 µ �̂

�
◊ {≠1, 1} the set of configurations where the molecule is

alone in the interval with |V | < C, i.e. with ease of notation

GC,0 := {|V | < C, N = 0} ,

and by GB;n,0;ṽ µ �̂
�

◊ {≠1, 1} the set of configurations where |V | < B, no more than n

atoms are to the left of the molecule, each with |v| < ṽ, and no atom to the right, i.e. with
ease of notation

GB;n,0;ṽ := {|V | < B; Nl Æ n; Nr = 0; |v| < ṽ} .

Then, we have for (5.73) that
⁄

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (dyÕ)��̄bc+tB

yÕ (R)
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Ø
⁄

GC,0fiGB;1,0;ṽ
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠2)(�̄bc+tB)

y (dyÕ)��̄bc+tB
yÕ (R) . (5.74)

If no atom enters � during [0, �̄bc + tB], Y (0) = yÕ œ GC,0 stays in GC,0 until time �̄bc + tB.
Since GC,0 µ R, we have

��̄bc+tB
yÕ (R) Ø µ({N (�̄bc + tB) = 0}) (5.75)

for yÕ œ GC,0.
Since Y (0) = yÕ œ GB;1,0;ṽ reaches by time �̄bc + tB a state in R if exactly one atom with
≠Dc < v < ≠Db enters during [0, �̄bc] and no atom during [�̄bc, �̄bc + tB], we get by the
same arguments which gave (5.63), (5.65) resp. (5.67), for yÕ œ GB;1,0;ṽ

��̄bc+tB
yÕ (R)

Ø µ({N≠Dc,≠Db
(�̄bc) = 1})µ({N≠Œ,≠Dc(�̄bc) = 0})·

· µ({N≠Db,Œ(�̄bc) = 0})µ({N (tB) = 0})
(5.62)
Ø µ({N≠Dc,≠Db

(�̄bc) = 0})µ({N≠Œ,≠Dc(�̄bc) = 0})·
· µ({N≠Db,Œ(�̄bc) = 0})µ({N (tB) = 0})

Ø µ({N (�̄bc) = 0})µ({N (tB) = 0})
(5.66),(2.7)= µ({N (�̄bc + tB) = 0}) . (5.76)

We then have with (5.75) and (5.76) for yÕ œ GC,0 fi GB;1,0;ṽ that

��̄bc+tB
yÕ (R) Ø µ({N (�̄bc + tB) = 0}) , (5.77)

which we use to continue estimating (5.74):

(5.74) =
⁄

GC,0fiGB;1,0;ṽ
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠2)(�̄bc+tB)

y (dyÕ)��̄bc+tB
yÕ (R)

(5.77)
Ø

⁄

GC,0fiGB;1,0;ṽ
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠2)(�̄bc+tB)

y (dyÕ)·

· µ({N (�̄bc + tB) = 0})

= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (GC,0 fi GB;1,0;ṽ)·
· µ({N (�̄bc + tB) = 0}) .

(5.78)

Estimating

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (GC,0 fi GB;1,0;ṽ) (5.79)
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in a similar way as (5.72), we obtain that

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (GC,0 fi GB;1,0;ṽ)

=
⁄

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠3)(�̄bc+tB)
y (dyÕ)��̄bc+tB

yÕ (GC,0 fi GB;1,0;ṽ)

Ø
⁄

GC,0fiGB;2,0;ṽ
�(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠3)(�̄bc+tB)

y (dyÕ)·

· ��̄bc+tB
yÕ (GC,0 fi GB;1,0;ṽ)

Ø �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠3)(�̄bc+tB)
y (GC,0 fi GB;2,0;ṽ)µ({N (�̄bc + tB) = 0}).

Repeating the splitting on

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠3)(�̄bc+tB)
y (GC,0 fi GB;2,0;ṽ) ,

we finally obtain for (5.79) by (2.7) and using (5.66) that

�(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (GC,0 fi GB;1,0;ṽ)

Ø �(Ny
r +1)(�̄bc+tB)+tB

y (GC,0 fi GB;Ny
l ≠1;ṽ)µ({N ((Ny

l ≠ 2)(�̄bc + tB)) = 0}) . (5.80)

Now we estimate

�(Ny
r +1)(�̄bc+tB)+tB

y (GC,0 fi GB;Ny
l ≠1,0;ṽ)

=
⁄

�Ny
r (�̄bc+tB)

y (dyÕ)��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ)

Ø
⁄

GC;Ny
l

,0;ṽ;2,≠B

�Ny
r (�̄bc+tB)

y (dyÕ)��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ)

=
⁄

GB;Ny
l

,0;ṽ,2,≠BfiGB,C;Ny
l

,0;ṽ,2,≠B

�Ny
r (�̄bc+tB)

y (dyÕ)��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ) , (5.81)

where GC;Ny
l ,0;ṽ;2,≠B µ �̂

�
◊ {≠1, 1} denotes the set where |V | < C, no more than Ny

l

atoms with |v| < ṽ and no more than 2 atoms with v < ≠B are to the left of the molecule.
If Y (0) = yÕ œ GB,C;Ny

l ,0;ṽ;2,≠B and no atom enters � during [0, �̄bc + 2tB], then either
Y (�̄bc + 2tB) œ GC,0 or Y (�̄bc + 2tB) œ GB;Ny

l ≠1,0;ṽ. This follows by arguments we gave
underneath (5.46). We then have that

��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ) Ø µ({N (�̄bc + 2tB) = 0}) (5.82)

for yÕ œ GB,C;Ny
l ,0;ṽ;2,≠B.

If Y (0) = yÕ œ GB;Ny
l ,0;ṽ;2,≠B and exactly one atom with Db < v < Dc enters during [0, �̄bc]

from the left, and no atom during [�̄bc, �̄bc + 2tB], then either Y (�̄bc + 2tB) œ GC,0 or
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Y (�̄bc + 2tB) œ GB;Ny
l ≠1,0;ṽ, so that for yÕ œ GB;Ny

l ,0;ṽ;2,≠B

��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ) Ø µ({N (�̄bc + 2tB) = 0}) . (5.83)

Inequalities (5.82) and (5.83) yield that

(5.81) =
⁄

GB;Ny
l

,0;ṽ;2,≠BfiGB,C;Ny
l

,0;ṽ;2,≠B

�Ny
r (�̄bc+tB)

y (dyÕ)��̄bc+2tB
yÕ (GC,0 fi GB;Ny

l ≠1,0;ṽ)

Ø
⁄

GB;Ny
l

,0;ṽ;2,≠BfiGB,C;Ny
l

,0;ṽ;2,≠B

�Ny
r (�̄bc+tB)

y (dyÕ)µ({N (�̄bc + 2tB) = 0})

= �Ny
r (�̄bc+tB)

y (GC;Ny
l ,0;ṽ)µ({N (�̄bc + 2tB) = 0}) . (5.84)

By the similar splitting which yielded (5.80), we can estimate

�Ny
r (�̄bc+tB)

y (GC;Ny
l ,0;ṽ;2,≠B) Ø µ({N (Ny

r (�̄bc + tB)) = 0}) . (5.85)

Finally, we obtain for (5.52) for any y œ GB;N̄ ;ṽ that

��̄N̄
y (GB,C;0) (5.86)

(5.51)= �(N̄+1)(�̄bc+tB)+3tB
y (GB,C;0)

= �(Ny
r +Ny

l +1)(�̄bc+tB)+3tB+(N̄≠(Ny
r +Ny

l ))(�̄bc+tB)
y (GB,C;0)

(5.54)
Ø �(Ny

r +Ny
l +1)(�̄bc+tB)+3tB

y (GB,C;0) ·
· µ({N (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

(5.68)
Ø �(Ny

r +Ny
l )(�̄bc+tB)+2tB

y (GB;0 fi GB,C;0)µ({N (�̄bc + 2tB) = 0})
· µ({N (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

= �(Ny
r +Ny

l )(�̄bc+tB)+2tB
y (GB;0 fi GB,C;0) ·

· µ({N ((�̄bc + 2tB) + (N̄ ≠ (Ny
r + Ny

l ))(�̄bc + tB) = 0})
(5.87)

(5.71)
Ø �(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠1)(�̄bc+tB)

y (R)µ({N (tB) = 0}) ·
· µ({N (�̄bc + 2tB + (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠1)(�̄bc+tB)
y (R) ·

· µ({N (�̄bc + 3tB + (N̄ ≠ (Ny
r + Ny

l ))(�̄bc + tB) = 0})
(5.88)

(5.78)
Ø �(Ny

r +1)(�̄bc+tB)+tB+(Ny
l ≠2)(�̄bc+tB)

y (GC,0 fi GB;1,0;ṽ) ·
· µ({N (�̄bc + tB) = 0}) ·
· µ({N (�̄bc + 3tB + (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})
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= �(Ny
r +1)(�̄bc+tB)+tB+(Ny

l ≠2)(�̄bc+tB)
y (GC,0 fi GB;1,0;ṽ)·

· µ({N (2(�̄bc + tB) + 2tB + (N̄ ≠ (Ny
r + Ny

l ))(�̄bc + tB) = 0})
(5.89)

(5.80)
Ø �(Ny

r +1)(�̄bc+tB)+tB
y (GC,0 fi GB;Ny

l ≠1;ṽ) ·
· µ({N ((Ny

l ≠ 2)(�̄bc + tB)) = 0}) ·
· µ({N (2(�̄bc + tB) + 2tB + (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

= �(Ny
r +1)(�̄bc+tB)+tB

y (GC,0 fi GB;Ny
l ≠1;ṽ) ·

· µ({N (Nl(�̄bc + tB) + 2tB + (N̄ ≠ (Ny
r + Ny

l ))(�̄bc + tB) = 0})
(5.90)

(5.84)
Ø �Ny

r (�̄bc+tB)
y (GC;Ny

l ,0;ṽ;2,≠B)µ({N (�̄bc + 2tB) = 0}) ·
· µ({N (Nl(�̄bc + tB) + 2tB + (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

= �Ny
r (�̄bc+tB)

y (GC;Ny
l ,0;ṽ;2,≠B) ·

· µ({N ((Nl + 1)(�̄bc + tB) + 3tB + (N̄ ≠ (Ny
r + Ny

l ))(�̄bc + tB) = 0})
(5.91)

(5.85)
Ø µ({N (Ny

r (�̄bc + tB)) = 0}) ·
· µ({N ((Nl + 1)(�̄bc + tB) + 3tB + (N̄ ≠ (Ny

r + Ny
l ))(�̄bc + tB) = 0})

= µ({N ((N̄ + 1)(�̄bc + tB) + 3tB) = 0}) . (5.92)

Equalities (5.87), (5.88), (5.89), (5.90), (5.91), (5.92) follow by (2.7) and using (5.66) in a
similar way which gave (5.67).
With that we can now end the proof of Lemma 5.4, since we have for the time in (5.86)
that

�̄N̄
(5.51)= (N̄ + 1)(�̄bc + tB) + 3tB

(5.60)=
1
N̄ + 1

2
Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 3tB

(5.41)= t(N̄)

and for (5.92)

µ({N ((N̄ + 1)(�̄bc + tB) + 3tB) = 0})
(5.22)= exp

1
≠2fl

1
(N̄ + 1)(�̄bc + tB) + 3tB

2
(
Ô

2fiKm)≠1
2

= exp
1
≠2fl(�̄bc + 4tB)(

Ô
2fiKm)≠1

2
exp

1
≠2fl(�̄bc + tB)(

Ô
2fiKm)≠1N̄

2

(5.13),(5.60)= exp
Q

a≠2fl

Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ 4tB

R

b
1Ô

2fiKm
2≠1

R

b ·
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· exp
Q

a≠2fl

Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b
1Ô

2fiKm
2≠1

N̄

R

b

= C2e≠C3N̄

with C2, C3 given in (5.43) resp. (5.44).

Recall that by Lemma 5.3 all states in GV̄ ,N̄ (cf. (5.10)) can reach a state in GB;N̄ ;ṽ
(cf. (5.16)) or in GB,V̄ ;0 (cf. (5.17)) by a certain time. If we now show how to pro-
ceed from GB,V̄ ;0 to GB,C;0 (cf. (5.12)), we can proceed from any state in GV̄ ,N̄ to
GB,C;0, since in Lemma 5.4 we have already shown how to proceed from GB;N̄ ;ṽ to GB,C;0.

Lemma 5.5. Let

t(V̄ ) := V̄

DMB

Q

a
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b +

+ 7tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1
(5.93)

with

DM = min
I

2m

M + m
,
2(M ≠ m)

M + m

J

(5.94)

and Db, Dc given in (5.25), tB given in (5.13), then for any y œ GB,V̄ ;0

�t(V̄ )
y (GB,C;0) Ø C4e≠C5V̄ (5.95)

with

C4 := exp
Q

a≠ 2flÔ
2fiKm

Q

a7tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b

R

b (5.96)

C5 := 2flÔ
2fiKm

Q

a
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b 1
DMB

. (5.97)

Proof of Lemma 5.5. Recall that GB,V̄ ;0 are all states where the molecule is alone in �
with B < |V | < V̄ . Consider V̄ Æ C (C given in (5.11)). Then,

GB,V̄ ;0 µ GB,C;0 . (5.98)

Since the process starting in GB,V̄ ;0 stays in GB,V̄ ;0 as long as no atom enters �, we have
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for t > 0 and y œ GB,V̄ ;0 by (5.98) that

�t
y(GB,C;0) Ø µ({N (t) = 0}) . (5.99)

Lemma 5.5 then follows, since (5.99) holds for any t > 0, especially for t(V̄ ) given in (5.93),
and since

µ({N (t(V̄ )) = 0})

(5.22),(5.93)= exp
Q

a≠ 2flÔ
2fiKm

Q

a7tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b

R

b ·

· exp
Q

a≠ 2flÔ
2fiKm

Q

a
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b V̄

DMB

R

b

(5.96),(5.97)= C4e≠C5V̄ . (5.100)

Let now V̄ > C. We can write

GB,V̄ ;0 = GB,C;0 fi GC,V̄ ;0, (5.101)

where

GC,V̄ ;0 := {C < |V | < V̄ , N = 0} µ �̂
�

◊ {≠1, 1} (5.102)

is the set of configurations, where the molecule is alone in � with

C < |V | < V̄ .

To proceed from (5.101) to GB,C;0, we distinguish in the following if the process starts in
GB,C;0 or in GC,V̄ ;0.
First, consider y œ GB,C;0. Since the process stays in GB,C;0 as long as no atom enters �,
we can estimate for any t > 0

�t
y(GB,C;0) > µ({N (t) = 0}) . (5.103)

Now consider Y (0) = y œ GC,V̄ ;0. To obtain Y (t) œ GB,C;0 for a time t, we have to slow
down the molecule to B < |V | < C. There are various ways to slow down the molecule:
If one sends in exactly one atom, then the velocity of this atom has to depend on V0, the
velocity of the molecule at time t = 0, to cause B < |V Õ| < C, while if one sends in more
than one atom, there are procedures where the number of atoms depends on V0 but the
velocities of the atoms may be chosen independent of it. The latter gives in Lemma 5.5 a
time t(V̄ ), which depends linearly on V̄ , while sending in one atom gives an exponential
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dependency. The latter is based on the fact that the velocity of the atom is distributed
according to the Maxwellian (cf. (2.5)). Since a time, which grows too fast with V̄ , may
lead to a rate — (cf. (5.4)), which is not integrable, but integrability is one of the conditions
of the fCLT (cf. (3.5)), we proceed from GC,V̄ ;0 to GB,C;0 by sending in a certain amount
of atoms, whose velocities don’t depend on V0.
Note, if one sends in atoms to slow down the molecule, some of these atoms may need to
be pushed out afterwards so that the molecule is alone in � and the process reaches a state
in GB,C;0. Therefore, we proceed from GC,V̄ ;0 to GB,C;0 in several steps. In Step 1 we will
slow down the molecule even to |V | < B, since then in Step 2 we can use the procedure
described in the poof of Lemma 5.4 to push out the atoms and achieve the molecule alone
in � with B < |V | < C.

Step 1: Let the molecule be alone in � with

C < |V0| < V̄ . (5.104)

To slow down the molecule to |V | < B, we send in atoms with

0 < |v| < B (5.105)

and no others. Note following facts: If |v| < |V |, the velocity of the molecule and the atom
have di�erent signs when colliding. Further, as long as atoms with (5.105) collide with
the molecule with |V | > B, they leave the interval without an additional collision, since
|vÕ| > |V Õ|. The latter follows since M > m. If after some collisions the molecule is slowed
down to |V | < B, but the molecule still collides with atoms with (5.105), the molecule
stays slower than B, since M > m.
The larger |V0|, the more atoms with (5.105) may be necessary to obtain |V | < B. Since
|V0| is bounded by V̄ , there is an upper bound on the number of atoms with (5.105), which
are needed to slow down the molecule to |V | < B. To specify this bound, we estimate
how much the molecule is slowed down at least by a collision with an atom with velocity
(5.105).
Let Vi, i = 1, 2, ... denote the velocity of the molecule after the collision with the i-th atom
with pre collision velocity vi, where the numbering is in respect to the order of collision.

Assertion 5.10. Let Vi≠1 > B and ≠B < vi < 0 or Vi≠1 < ≠B and 0 < vi < B. Then,

|Vi≠1| ≠ |Vi| > DMB

with DM given in (5.94).

Poof of Assertion 5.10. First, we determine an upper bound for |Vi| depending on |Vi≠1|.
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From the collision equation (2.1) we obtain the following. If Vi≠1 > B and ≠B < vi < 0,
then

M ≠ 3m

M + m
B < Vi <

M ≠ m

M + m
Vi≠1 . (5.106)

If Vi≠1 < ≠B and 0 < vi < B, then

≠M ≠ m

M + m
|Vi≠1| < Vi < ≠M ≠ 3m

M + m
B . (5.107)

For 3m < M we have that

M ≠ 3m

M + m
B > 0

and it follows that

M ≠ 3m

M + m
B < |Vi| <

M ≠ m

M + m
|Vi≠1| .

For 2m < M Æ 3m we obtain

|Vi| <
M ≠ m

M + m
|Vi≠1| ,

since

M ≠ 3m

M + m
B Æ 0

but

≠M ≠ 3m

M + m
B <

M ≠ m

M + m
|Vi≠1| .

Hence, for 2m < M we may estimate the di�erence between |Vi≠1| and |Vi| by

|Vi≠1| ≠ |Vi| > |Vi≠1| ≠ M ≠ m

M + m
|Vi≠1| = 2m

M + m
|Vi≠1| >

2m

M + m
B. (5.108)

For m < M Æ 2m there are values of Vi≠1, namely

B < |Vi≠1| < ≠M ≠ 3m

M ≠ m
B ,

for which

≠M ≠ 3m

M + m
B >

M ≠ m

M + m
|Vi≠1| ,
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and values, namely

|Vi≠1| Ø ≠M ≠ 3m

M ≠ m
B

for which

≠M ≠ 3m

M + m
B Æ M ≠ m

M + m
|Vi≠1| ,

so that with (5.106) and (5.107)

|Vi| < max
;

≠M ≠ 3m

M + m
B,

M ≠ m

M + m
|Vi≠1|

<

and furthermore,

|Vi≠1| ≠ |Vi| > |Vi≠1| ≠ max
;

≠M ≠ 3m

M + m
B,

M ≠ m

M + m
|Vi≠1|

<

= min
;

|Vi≠1| + M ≠ 3m

M + m
B,

2m

M + m
|Vi≠1|

<

MÆ2m
>

2(M ≠ m)
M + m

B . (5.109)

All in all we have by (5.108) and (5.109) that

|Vi≠1| ≠ |Vi| > min
I

2m

M + m
,
2(M ≠ m)

M + m

J

B .

Assertion 5.10 follows with (5.94).

By Assertion 5.10 we can determine an upper bound on the number of atoms which are
needed to obtain |V | < B: Let n such that |Vn≠1| > B. Then, |Vi≠1| > B for any
i œ {1, ...., n} and by Assertion 5.10 we get that

|V0| ≠ |Vn| =
nÿ

i=1
|Vi≠1| ≠ |Vi| >

nÿ

i=1
DMB = nDMB

and further,

|Vn| < ≠nDMB + |V0|
|V0|<V̄

< ≠nDMB + V̄ .

Since

≠ nDMB + V̄ < B
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… V̄

DMB
≠ 1

DM
< n , (5.110)

for any n œ N with (5.110) it holds that |Vn| < B. Furthermore, there is exactly one ñ œ N
with (5.110) such that

V̄

DMB
≠ 1 < ñ Æ V̄

DMB
=: n̄V̄ , (5.111)

with DM given in (5.94). Note, since DM < 1, ñ with (5.111) fulfills indeed (5.110). That
means if the molecule with (5.104) collides with ñ (or more) atoms with (5.105) (and no
others) it will achieve |V | < B.

Now we specify the states in which the process is at a certain time if it starts in GC,V̄ ,0
and if one sends in ñ atoms with (5.105) (and no others).
Consider Y (0) = y œ GC,V̄ ,0 and let

�̄ > 0 . (5.112)

Consider the event that ñ (cf. (5.111)) atoms with (5.105) (and no others) enter � during
[0, �̄] and no atom during [�̄, �̄ + 2tB]. Then, by time �̄ + 2tB |V | < B. This follows
since

(i) if |V (�̄)| < B: Once there is a j such that |Vj| < B, it follows that |Vi| < B for
i Ø j, since the remaining colliding atoms have velocity 0 < |v| < B and cannot
make the molecule faster than B. Since |V (�̄)| < B it follows that |V (t)| < B for
t œ [�̄, �̄ + 2tB];

(ii) if |V (�̄)| Ø B: Since ñ is a uniform upper bound on the number of atoms which are
needed to achieve |V | < B, for any y œ GC,V̄ ,0 there is a n Æ ñ such that |Vi| > B
for i Æ n ≠ 1 and |Vn| < B. Once |Vn| < B, it follows that |Vi| < B for i Ø n,
since the remaining colliding atoms have velocity 0 < |v| < B and cannot make the
molecule faster than B. By time �̄ all ñ atoms have entered �. We know that by
a collision with one of these atoms the molecule is slowed down from |V | > B to a
speed less than B. Let · denote the time of this collision. Since |V (t)| Ø B for all
t œ [�̄, �̄ + · ], the collision takes place before �̄ + 2tB.

Now we consider the event, that no atom enters � during [�̄ + 2tB, �̄ + 3tB]. We can
conclude by a similar argumentation as in (a) underneath (5.14), that by time

�̄ + 3tB

there are no more than ñ atoms in �, each with

|v| <
3M ≠ m

M + m
B =: v̄ (5.113)
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(cf. (5.15)).

By the above we can estimate transitions starting in GC,V̄ ,0 and being at a certain time
in GB,n̄V̄ ,v̄, where

GB,n̄V̄ ,v̄ := {|V | < B, N Æ n̄V̄ , |v| < v̄} µ �̂
�

◊ {≠1, 1} (5.114)

is the set of configurations, where |V | < B, there are no more than n̄V̄ (cf. (5.111)) atoms
in � and each atom has velocity |v| < v̄ (cf. (5.113)). We shall show that for any y œ GC,V̄ ,0
and

t1(V̄ ) := n̄V̄

2fl
s B

0 vf(v)dv
+ 3tB (5.115)

with tB given in (5.13), we have that

�t1(V̄ )
y (GB,n̄V̄ ,v̄) Ø µ({N (t1(V̄ ) = 0)}) . (5.116)

To prove (5.116) consider Y (0) = y œ GC,V̄ ,0, i.e. the molecule is alone in � with C <

|V | < V̄ . Let �̄ as given in (5.112). Since Mt is a stationary Markov process

��̄+3tB
y (GB,n̄V̄ ,v̄) =

⁄
��̄

y (dyÕ)�3tB
yÕ (GB,n̄V̄ ,v̄) . (5.117)

To continue estimating (5.117), denote by H µ �̂
�

◊ {≠1, 1} the set of configurations,
which are possible for the system at time �̄, starting in GC,V̄ ;0 and undergoing the proce-
dure we described underneath (5.112), i.e. with ease of notation

H = {|V | < B and there are no more than ñ atoms in �.

If for an atom |v| > B,

then it moves in opposite direction of the molecule.}
fi {|V | > B, and there are no more than ñ atoms in �.

If for an atom |v| > B,

then it moves in opposite direction of the molecule.
If 0 < |v| < B, the atom moves towards the molecule.
By at least one of the collision with these atoms, |V Õ| < B.}

with ñ given in (5.111). We then have

(5.117) Ø
⁄

H
��̄

y (dyÕ)�3tB
yÕ (GB,n̄V̄ ,v̄) . (5.118)

By arguments (i) and (ii) we gave above and by similar argumentation as in (a) underneath
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(5.14), for any Y (0) = yÕ œ H we have that Y (3tB) œ GB,n̄V̄ ,v̄ if no atom enters � during
[0, 3tB]. With that we get that

(5.118) Ø
⁄

H
��̄

y (dyÕ)µ({N (3tB) = 0})

= ��̄
y (H)µ({N (3tB) = 0}) . (5.119)

By definition of H, for Y (0) = y œ GC,V̄ ,0 we have that Y (�̄) = y œ H if ñ atoms with
(5.105) (and no others) enter � during [0, �̄]. Hence, it follows that

��̄
y (H) Ø µ({N|0,B|(�̄) = ñ})µ({N|B,Œ|(�̄) = 0}) . (5.120)

Until now �̄ can be any time > 0 (cf. (5.112)). To estimate the r.h.s. of (5.120) by
µ({N (�̄) = 0})), so that we obtain at the end an estimation similar to (5.116), we need
to specify �̄. Since N|0,B|(�̄), the number of atoms with 0 < |v| < B entering � in a time
interval of length �̄, is a Poisson random variable with

E(N|0,B|(�̄)) = �̄2fl
⁄ B

0
vf(v)dv ,

it follows that in a time interval of length

�̄V̄ := n̄V̄

2fl
s B

0 vf(v)dv
(5.121)

(n̄V̄ given in (5.111)) the expected number of atoms entering with 0 < |v| < B is

E(N|0,B|(�̄V̄ )) = n̄V̄ . (5.122)

Choosing

�̄ = �̄V̄

and using the monotonicity of Poisson random variables (cf. (5.62)) for the random variable
N|0,B|(�̄V̄ ) with mean n̄V̄ (cf. (5.122)), we can estimate since n̄V̄ Ø ñ > 0

(5.120)
(5.62)
Ø µ({N|0,B|(�̄V̄ ) = 0})µ({N|B,Œ|(�̄V̄ ) = 0})

(2.7)= µ({N (�̄V̄ ) = 0}) . (5.123)

Finally, (5.116) follows since for (5.117) from (5.118), (5.119), (5.120) and (5.123) we
have for y œ GC,V̄ ;0 that

��̄V̄ +3tB
y (GB,n̄V̄ ,v̄) Ø µ({N (�̄V̄ + 3tB) = 0}) ,
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with

�̄V̄ + 3tB
(5.115),(5.121)= t1(V̄ ) .

Step 2: Recall that in Lemma 5.5 we have as target set GB,C;0 (cf. (5.12)), so now we
need to proceed from GB,n̄V̄ ,v̄ (cf. (5.114)) to GB,C;0. We immediately obtain an estimate
for the transitions starting in GB,n̄V̄ ,v̄ since we can use Lemma 5.4. (Note that ṽ = v̄ (cf.
(5.16), (5.113))): For

t2(n̄V̄ ) := (n̄V̄ + 1)
Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 3tB (5.124)

with n̄V̄ given in (5.111), Db, Dc given in (5.25), tB given in (5.13),

�t2(n̄V̄ )
y (GB,C;0) Ø µ({N (t2(n̄V̄ ) = 0}) (5.125)

for any y œ GB,n̄V̄ ,v̄.

In Step 1 and Step 2 we have shown how to proceed from GC,V̄ ;0 (cf. (5.102)) to GB,n̄V̄ ,v̄

(cf. (5.114)) and from GB,n̄V̄ ,v̄ to GB,C;0 (cf. (5.12)) and we obtain by these steps, since
Mt is a stationary Markov process, for y œ GC,V̄ ;0 that

�t1(V̄ )+t2(n̄V̄ )
y (GB,C;0) =

⁄
�t1(V̄ )

y (dyÕ)�t2(n̄V̄ )
yÕ (GB,C;0) (5.126)

Ø
⁄

GB,n̄V̄ ,v̄

�t1(V̄ )
y (dyÕ)�t2(n̄V̄ )

yÕ (GB,C;0)

(5.125)
Ø

⁄

GB,n̄V̄ ,v̄

�t1(V̄ )
y (dyÕ)µ({N (t2(n̄V̄ )) = 0})

= �t1(V̄ )
y (GB,n̄V̄ ,v̄)µ({N (t2(n̄V̄ )) = 0})

(5.116)
Ø µ({N (t1(V̄ ) = 0)})µ({N (t2(n̄V̄ )) = 0})

(2.7)= µ({N (t1(V̄ ) + t2(n̄V̄ )) = 0}) (5.127)

with t1(V̄ ) given in (5.115), t2(n̄V̄ ) given in (5.124). With that we can end the proof of
Lemma 5.5 for V̄ > C: Since

t1(V̄ ) + t2(n̄V̄ ) =

(5.115),(5.124)= n̄V̄

2fl
s B

0 vf(v)dv
+ 3tB + (n̄V̄ + 1)

Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 3tB

(5.111)= V̄

DMB

1
2fl

s B
0 vf(v)dv

+
A

V̄

DMB
+ 1

B Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 6tB
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(5.93)= t(V̄ )

it follows for (5.126) with (5.127) that

�t1(V̄ )+t2(n̄V̄ )
y (GB,C;0) = �t(V̄ )

y (GB,C;0) Ø µ({N (t(V̄ )) = 0}) (5.128)

for any y œ GC,V̄ ;0.
Since (5.103) is valid for y œ GB,C;0 and any t > 0, especially for t(V̄ ) (cf. (5.93)), we
obtain by (5.103) and (5.128) with (5.100) that for any y œ GB,C;0 fi GC,V̄ ;0

(5.101)= GB,V̄ ;0
that

�t(V̄ )
y (GB,C;0) Ø C4e≠C5V̄ .

Taking Lemma 5.3, Lemma 5.4 and Lemma 5.5 together, we get estimates for transitions,
which start in GV̄ ,N̄ (cf. (5.10)) and reach states in GB,C;0 (cf. (5.12)) at a certain time.
We can show now the following lemma, which we need for the proof of the Overlap-Lemma
5.2.

Lemma 5.6. Let

t(V̄ , N̄) := max{4tB + t(V̄ ), 4tB + t(N̄)} (5.129)

with tB given in (5.13), t(V̄ ) given in (5.93) and t(N̄) given in (5.41),
then for any y œ GV̄ ,N̄

�t(V̄ ,N̄)
y (GB,C;0) Ø Á(V̄ , N̄) (5.130)

with

Á(V̄ , N̄) := min
Ó
C1C4e≠C5V̄ , C1C2e≠C3N̄

Ô
· min

Ó
C10e≠C11V̄ , C12e≠C13N̄

Ô
(5.131)

with C1 given in (5.18), C2, C3 given in (5.43) resp. (5.44), C4, C5 given in (5.96) resp.
(5.97) and

C10 := exp
Q

a≠4fl

Q

a11tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b
1Ô

2fiKm
2≠1

R

b , (5.132)

C11 := 4fl

DMB

Q

atB +
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b
1Ô

2fiKm
2≠1

(5.133)
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C12 := exp
Q

a≠4fl

Q

a8tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b
1Ô

2fiKm
2≠1

R

b , (5.134)

C13 := 4fl

Q

atB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1R

b
1Ô

2fiKm
2≠1

(5.135)

with Db, Dc given in (5.25) and DM given in (5.94).

Proof of Lemma 5.6. Note, since Mt is a stationary Markov process, we obtain by Lemma
5.3 and Lemma 5.4 resp. Lemma 5.5, for y œ GV̄ ,N̄ (cf. (5.10)) that either

(i) if �4tB
y (GB;N̄ ;ṽ) Ø C1 , then

�4tB+t(N̄)
y (GB,C;0) =

⁄
�4tB

y (dyÕ)�t(N̄)
yÕ (GB,C;0)

Ø
⁄

GB;N̄ ;ṽ
�4tB

y (dyÕ)�t(N̄)
yÕ (GB,C;0)

(5.42)
Ø

⁄

GB;N̄ ;ṽ
�4tB

y (dyÕ)C2e≠C3N̄

= �4tB
y (GB;N̄ ;ṽ)C2e≠C3N̄

(5.19)
Ø C1C2e≠C3N̄ (5.136)

with GB;N̄ ;ṽ given in (5.16), t(N̄) given in (5.41), C1 given in (5.18) and C2, C3 given
in (5.43) resp. (5.44),

or

(ii) if �4tB
y (GB,V̄ ;0) Ø C1 , then

�4tB+t(V̄ )
y (GB,C;0) =

⁄
�4tB

y (dyÕ)�t(V̄ )
yÕ (GB,C;0)

Ø
⁄

GB,V̄ ;0
�4tB

y (dyÕ)�t(V̄ )
yÕ (GB,C;0)

(5.95)
Ø

⁄

GB,V̄ ;0
�4tB

y (dyÕ)C4e≠C5V̄

= �4tB
y (GB,V̄ ;0)C4e≠C5V̄

(5.20)
Ø C1 C4e≠C5V̄ (5.137)

with GB,V̄ ;0 given in (5.17), t(V̄ ) given in (5.93), C1 given in (5.18), C4, C5 given in
(5.96) resp. (5.97).
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We now estimate

�t(V̄ ,N̄)
y (GB,C;0)

to show Lemma 5.6 by using estimates (5.136) and (5.137). Recall that

t(V̄ , N̄) (5.129)= max{4tB + t(V̄ ), 4tB + t(N̄)} .

We first give separate estimates depending on the value of t(V̄ , N̄), i.e. we distinguish
if t(V̄ , N̄) = 4tB + t(N̄) or if t(V̄ , N̄) = 4tB + t(V̄ ). Within these cases we distinguish a
second time, namely as in (5.136) and (5.137).
Set

tV̄ : = 4tB + t(V̄ ) (5.138)

(5.93)= V̄

DMB

Q

a
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b +

+ 11tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

= C6 + C7V̄ (5.139)

with

C6 := 11tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

, (5.140)

and

C7 := 1
DMB

Q

a
A

2fl
⁄ B

0
vf(v)dv

B≠1

+
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b (5.141)

with Db, Dc given in (5.25) and DM given in (5.94), and set

tN̄ : = 4tB + t(N̄) (5.142)

(5.41)=
1
N̄ + 1

2
Q

a
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+ tB

R

b + 7tB

= C8 + C9N̄ (5.143)

with

C8 := 8tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

, (5.144)
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and

C9 := tB +
A

fl
⁄ Dc

Db

vf(v)dv

B≠1

(5.145)

with Db, Dc given in (5.25).
Assume t(V̄ , N̄) = tN̄ , then

(i) if �4tB
y (GB;N̄ ;ṽ) Ø C1 , we have

�t(V̄ ,N̄)
y (GB,C;0) = �tN̄

y (GB,C;0)
(5.142)= �4tB+t(N̄)

y (GB,C;0)
(5.136)

Ø C1C2e≠C3N̄ , (5.146)

(ii) if �4tB
y (GB;V̄ ;0) Ø C1 , we have that

�t(V̄ ,N̄)
y (GB,C;0) = �tN̄

y (GB,C;0)
= �tV̄ +(tN̄ ≠tV̄ )

y (GB,C;0)

=
⁄

�tV̄
y (dyÕ)�tN̄ ≠tV̄

yÕ (GB,C;0)

Ø
⁄

GB,C;0
�tV̄

y (dyÕ)�tN̄ ≠tV̄
yÕ (GB,C;0) . (5.147)

Since Y (0) = yÕ œ GB,C;0 stays in GB,C;0 until tN̄ ≠ tV̄ if no atom enters � during
[0, tN̄ ≠ tV̄ ], we can estimate (5.147) as follows.

⁄

GB,C;0
�tV̄

y (dyÕ)�tN̄ ≠tV̄
yÕ (GB,C;0)

Ø
⁄

GB,C;0
�tV̄

y (dyÕ)µ({N (tN̄ ≠ tV̄ ) = 0})

(5.138)= �4tB+t(V̄ )
y (GB,C;0)µ({N (tN̄ ≠ tV̄ ) = 0})

(5.137)
Ø C1C4e≠C5V̄ µ({N (tN̄ ≠ tV̄ ) = 0}) . (5.148)

Assume now t(V̄ , N̄) = tV̄ , then

(i) if �4tB
y (GB;N̄ ;ṽ) Ø C1 , we have

�t(V̄ ,N̄)
y (GB,C;0) = �tV̄

y (GB,C;0)
= �tN̄ +(tV̄ ≠tN̄ )

y (GB,C;0)

=
⁄

�tN̄
y (dyÕ)�tV̄ ≠tN̄

yÕ (GB,C;0)
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Ø
⁄

GB,C;0
�tN̄

y (dyÕ)�tV̄ ≠tN̄
yÕ (GB,C;0) . (5.149)

Since Y (0) = yÕ œ GB,C;0 stays in GB,C;0 until tV̄ ≠ tN̄ if no atom enters � during
[0, tV̄ ≠ tN̄ ], we get for (5.149)

⁄

GB,C;0
�tN̄

y (dyÕ)�tV̄ ≠tN̄
yÕ (GB,C;0)

Ø
⁄

GB,C;0
�tN̄

y (dyÕ)µ({N (tV̄ ≠ tN̄) = 0})

(5.142)= �4tB+t(N̄)
y (GB,C;0)µ({N (tV̄ ≠ tN̄) = 0})

(5.136)
Ø C1C2e≠C3N̄µ({N (tV̄ ≠ tN̄) = 0}) (5.150)

(ii) if �4tB
y (GB;V̄ ;0) Ø C1 , we have that

�t(V̄ ,N̄)
y (GB,C;0) = �tV̄

y (GB,C;0)
(5.138)= �4tB+t(V̄ )

y (GB,C;0)
(5.137)

Ø C1C4e≠C5V̄ . (5.151)

Combining all four estimates (5.146), (5.148), (5.150), (5.151) we obtain, since

µ({N (|tN̄ ≠ tV̄ |) = 0}) < 1 ,

that

�t(V̄ ,N̄)
y (GB,C;0) Ø min

Ó
C1C2e≠C3N̄ , C1C4e≠C5V̄

Ô
·

· µ({N (|tV̄ ≠ tN̄ |) = 0})
(5.152)

with

µ({N (|tV̄ ≠ tN̄ |) = 0}) (5.22)= exp
A

≠2fl|tV̄ ≠ tN̄ |Ô
2fiKm

B

. (5.153)

Since |tV̄ ≠ tN̄ | Æ 2 · max {tV̄ , tN̄} it follows for (5.153) that

µ({N (|tV̄ ≠ tN̄ |) = 0}) = (5.154)

= exp
A

≠2fl|tV̄ ≠ tN̄ |Ô
2fiKm

B

Ø min
I

exp
A

≠ 4fltV̄Ô
2fiKm

B

, exp
A

≠ 4fltN̄Ô
2fiKm

BJ
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(5.139)(5.143)= min
I

exp
A

≠4fl(C6 + C7V̄ )Ô
2fiKm

B

, exp
A

≠4fl(C8 + C9N̄)Ô
2fiKm

BJ

. (5.155)

We now show that (5.155) is an equivalent expression of the second factor in (5.131). With

exp
A

≠ 4flC6Ô
2fiKm

B
(5.140)= exp

Q

cca≠
4fl

3
11tB +

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb
(5.132)= C10

and

4flC7Ô
2fiKm

(5.141)= 1
DMB

Q

a 1
2fl

s B
0 vf(v)dv

+ 1
fl

s Dc
Db

vf(v)dv
+ tB

R

b 4flÔ
2fiKm

(5.133)= C11 ,

we have that

exp
A

≠4fl(C6 + C7V̄ )Ô
2fiKm

B

= C10e≠C11V̄ , (5.156)

and with

exp
A

≠ 4flC8Ô
2fiKm

B
(5.144)= exp

Q

cca≠
4fl

3
8tB +

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb
(5.134)= C12

and

4flC9Ô
2fiKm

(5.145)=
4fl

3
tB +

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

(5.135)= C13 ,

we have that

exp
A

≠4fl(C8 + C9N̄)Ô
2fiKm

B

= C12e≠C13N̄ . (5.157)

Plugging (5.156) and (5.157) into (5.155) we obtain for (5.154) that

µ({N (|tV̄ ≠ tN̄ |) = 0}) Ø min
Ó
C10e≠C11V̄ , C12e≠C13N̄

Ô
. (5.158)

Finally, Lemma 5.6 follows, since with (5.158) we obtain for (5.152) that

�t(V̄ ,N̄)
y (GB,C;0) Ø min

Ó
C1C4e≠C5V̄ , C1C2e≠C3N̄

Ô
min

Ó
C10e≠C11V̄ , C12e≠C13N̄

Ô
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(5.131)= Á(V̄ , N̄)

for any y œ GV̄ ,N̄ .

The last remaining step we need for the proof of the Overlap-Lemma 5.2, is to establish
overlap of transitions starting in GB,C;0 (cf. (5.12)). We specify an explicit set, the over-
lap set, where loosely speaking any state can be reached at a certain time by a positive
probability starting in any state in GB,C;0. Proving that, we let atoms enter � depending
on the molecular velocity and position as well as the value of ‡ (cf. (2.14)). To keep it
simple, we choose the overlap set such, that the molecule is alone, and that any state in
the overlap set can be reached by any starting state in GB,C;0 by sending in exactly one
atom, which leaves by time the interval again. By identifying the overlap set one has to
take care of “virtual collisions”. These are collisions which are impossible if one knows the
past trajectory of the molecule. Since these depend on the mass of the molecule M and
hence, on the overlap set as well, we distinguish in the following di�erent cases depending
on M , namely if M > 3m, 3m Ø M > 2m or 2m Ø M > m.

Denote by P the path measure induced by Mt and let Py denote the conditional path
measure given Y (0) = y, y œ �̂

�
◊ {≠1, 1}. Consider Y (0) = y œ GB,C;0.

Case M > 3m

Denote by ·1 the time when the molecule hits the wall at L the first time after t = 0,
and by ·2 the time when the molecule hits the wall at L the next time after ·1. Define
V1 := V (·1), ‡1 := ‡(·1) and V2 := V (·2), ‡2 := ‡(·2).

Lemma 5.7. Let Y (0) = y œ GB,C;0. Denote by O the set of paths with

O :=
Ó
Molecule is alone at time ·2, (5.159)

V2 œ V2 :=
3

≠M ≠ 3m

M + m

B

5 , ≠M ≠ 3m

M + 3m

B

5

4
, (5.160)

·2 œ T2 :=
310L

B

M

M ≠ 3m
,
10L

B

M + m

M ≠ 3m

4
, (5.161)

‡2 = 1
Ô

.

Then, there is a function hy : V2 ◊ T2 æ R+ such that

Py(dY ) Ø hy(V2, ·2)dV2d·2 (5.162)

for dY µ O with Y (·2) = (L, V2, ‡2).
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Furthermore there is a constant g > 0, which will be specified later, such that

hy Ø g (5.163)

for any y œ GB,C;0.

Proof of Lemma 5.7. Consider Y (0) = y œ GB,C;0, i.e.

y = (Q0, V0, ‡0) (5.164)

with B < |V0| < C. Denote by ·1(y) the value of ·1 for the process with Y (0) = y. If the
molecule moves freely in �, then ·1(y) with (5.164) is given by

·1(y) =
I L≠Q0

V0
, V0 > 0

3L+Q0
|V0| , V0 < 0 (5.165)

with

0 < ·1(y) Æ 2tB , (5.166)

and tB given in (5.13). Inequality (5.166) follows, since B < |V0| < C. Consider the event
E·1(y) µ �̂ with

E·1(y) := {No atom enters � during [0, ·1(y)]} . (5.167)

Then, at time ·1(y) the molecule is alone in the interval and

Y (·1(y)) = (L, V1, ‡1) , (5.168)

with

V1 =
I

≠V0 , V0 > 0
V0 , V0 < 0 , (5.169)

‡1 =
I

≠‡0 , V0 > 0
‡0 , V0 < 0 . (5.170)

Note that

≠C Æ V1 Æ ≠B , (5.171)

with C given in (5.11).
Denote by Cy(E·1(y)) the corresponding set of paths of Mt to {Y (0) = y, E·1(y)}, i.e. the
set of all paths of Mt for which Y (0) = y and E·1(y) is possible. Then, we have for y given
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in (5.164) that

Py(dY ( · + ·1(y))) Ø Py(dY ( · + ·1(y)) fl Cy(E·1(y))) (5.172)
= P(dY ( · + ·1(y)) | Cy(E·1(y)))Py(Cy(E·1(y))) .

(5.173)

Note that Cy(E·1(y)) exists of exactly one path, and the trajectory of this path is determined
until time ·1(y). Denote by { Y (0) = y; Y (t), t Æ ·1(y)} the trajectory of this path, then
we obtain that

P(dY ( · + ·1(y)) | Cy(E·1(y)))
= P(dY ( · + ·1(y))|{ Y (0) = y; Y (t), t Æ ·1(y)})
= P(dY ( · + ·1(y))| Y (·1(y)) (5.174)

with Y (·1(y)) given in (5.168). Note that (5.174) follows by the Markov property. With

Py(Cy(E·1(y))) = µ(E·1(y))
(5.22)= exp

A

≠ 2fl·1(y)Ô
2fiKm

B

, (5.175)

we obtain for the l.h.s. of (5.172) that

Py(dY ( · + ·1(y)))
(5.173)

Ø P(dY ( · + ·1(y)) | Cy(E·1(y)))Py(Cy(E·1(y)))
(5.174),(5.175)= P(dY ( · + ·1(y))| Y (·1(y)) exp

A

≠ 2fl·1(y)Ô
2fiKm

B

(5.176)

where Y (·1(y)) is given by (5.168) with (5.169) and (5.170).

To give a lower bound for the l.h.s. of (5.162), namely for Py(dY ) with dY µ O, we now
define events on which the process starting in Y (·1) = (L, V1, ‡1) with ≠C Æ V1 Æ ≠B
reaches a state in the overlap set O defined in (5.159). With that we obtain an estimate
for

P(dY | Y (·1)) . (5.177)

for dY µ O, which gives together with (5.176) a lower bound for (5.162).
Consider ·1 with

0 Æ ·1 Æ 2tB (5.178)

and

Y (·1) = (L, V1, ‡1) (5.179)
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with

≠C Æ V1 Æ ≠B . (5.180)

Note that these are the conditions on ·1 and Y (·1) for which (5.176) holds.
If ‡1 = 1, consider the event E i

V1,·1 µ �̂ with

E i
V1,·1 := {Exactly one atom enters � during ·1 and ·2 with velocity (5.181)

v œ V i
V1 :=

3
M ≠ 3m

M + 3m

M + m

2m

B

5 ≠ M ≠ m

2m
|V1|,

M ≠ 3m

2m

B

5 ≠ M ≠ m

2m
|V1|

4 (5.182)

such that it collides with the molecule at collision time

· œ T i
V1,·1(v) :=

A4L + |V1|(·1 ≠ 10L
B

M≠m
M≠3m) + 10L

B
2m

M≠3m |v|
2m

M+m(|V1| + |v|) ,

4L + |V1|(·1 ≠ 10L
B

M
M≠3m

M≠m
M+m) + 10L

B
M

M≠3m
2m

M+m |v|
2m

M+m(|V1| + |v|)

BJ (5.183)

and if ‡1 = ≠1 consider the event E ii
V1,·1 µ �̂ with

E ii
V1,·1 := {Exactly one atom enters � during ·1 and ·2 with velocity (5.184)

v œ V ii
V1 :=

3
M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1|,

M ≠ 3m

2m

B

5 + M ≠ m

2m
|V1|

4 (5.185)

such that it collides with the molecule at collision time

· œ T ii
V1,·1(v) :=

A |V1|(·1 ≠ 10L
B

M≠m
M+m

M
M≠3m) + 10L

B
2m

M+m
M

M≠3mv
2m

M+m(|V1| + v) ,

|V1|(·1 ≠ 10L
B

M≠m
M≠3m) + 10L

B
2m

M≠3mv
2m

M+m(|V1| + v)

BJ

.

(5.186)

Note that ·2 is determined by V1, ·1, v and · and since these values are bounded, ·2 is
bounded.
First, we show that E i

V1,·1 and E ii
V1,·1 are well defined. To be precise, we show more, namely

that any collision time · œ T i
V1,·1(v) resp. T ii

V1,·1(v) is possible, given that the atom enters
� between ·1 and ·1 + 4L

|V1| (which is the time when the molecule would reach the wall at L

if it moved freely) with velocity v œ V i
V1 resp. V ii

V1 . For this proof, we first show from which
direction the atom in E i

V1,·1 resp. E ii
V1,·1 enters the interval (Assertion 5.11 resp. Assertion

5.12). Then, we give bounds for the collision time · , from which we can make conclusions
about the direction the molecule travels right before the collision takes place (Assertion
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5.13 resp. Assertion 5.14). Finally, by these assertions we prove that E i
V1,·1 and E ii

V1,·1 are
well defined.
Note that these assertions follow by elementary algebra.

Assertion 5.11. Consider V i
V1 as defined in (5.182), then

v œ V i
V1 ∆ v < 0 ,

i.e. on E i
V1,·1 the atom enters from the right.

Proof of Assertion 5.11. Consider v œ V i
V1 . Since then

v
(5.182)

<
M ≠ 3m

2m

B

5 ≠ M ≠ m

2m
|V1|

(5.180)
<

M ≠ 3m

2m

B

5 ≠ M ≠ m

2m
B < 0 ,

the atom enters from the right.

Assertion 5.12. Consider V ii
V1 as defined in (5.185), then

v œ V ii
V1 ∆ v > 0 ,

i.e. on E ii
V1,·1 the atom enters from the left.

Proof of Assertion 5.12. Since M > 3m we have for v œ V ii
V1 that

v
(5.185)

>
M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1| > 0 ,

i.e. on E ii
V1,·1 the atom enters from the left.

Assertion 5.13. If · œ T i
V1,·1(v) (cf. (5.183)) with v œ V i

V1 (cf. (5.182)), then

·1 + 2L

|V1|
< · < ·1 + 4L

|V1|
.

61



Proof of Assertion 5.13. By Assertion 5.11 it follows on V i
V1 that

≠M ≠ 3m

2m

B

5 + M ≠ m

2m
|V1| < |v| < ≠M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1| (5.187)

and we obtain that

·
(5.183)

>
4L + |V1|(·1 ≠ 10L

B
M≠m
M≠3m) + 10L

B
2m

M≠3m |v|
2m

M+m(|V1| + |v|)
(5.187)

>
4L + |V1|(·1 ≠ 10L

B
M≠m
M≠3m) + 10L

B
2m

M≠3m |v|
2m

M+m(|V1| ≠ M≠3m
M+3m

M+m
2m

B
5 + M≠m

2m |V1|)

=
4L + |V1|(·1 ≠ 10L

B
M≠m
M≠3m) + 10L

B
2m

M≠3m |v|
|V1| ≠ M≠3m

M+3m
B
5

M>3m
>

4L

|V1|
+ ·1 ≠ 10L

B

M ≠ m

M ≠ 3m
+ 10L

B

2m

M ≠ 3m

|v|
|V1|

= 4L

|V1|
+ ·1 ≠ 10L

B(M ≠ 3m)

A

(M ≠ m) ≠ 2m
|v|
|V1|

B

(5.187)
>

4L

|V1|
+ ·1 ≠ 10L

B(M ≠ 3m)

A

(M ≠ m) + M ≠ 3m

5
B

|V1|
≠ (M ≠ m)

B

= ·1 + 2L

|V1|

and that

·
(5.183)

<
4L + |V1|(·1 ≠ 10L

B
M

M≠3m
M≠m
M+m) + 10L

B
M

M≠3m
2m

M+m |v|
2m

M+m(|V1| + |v|)

=
4L + |V1|·1 ≠ 10L

B
M

M≠3m(M≠m
M+m |V1| ≠ 2m

M+m |v|)
2m

M+m(|V1| + |v|) . (5.188)

Since

M ≠ m

M + m
|V1| ≠ 2m

M + m
|v|

>
M ≠ m

M + m
|V1| ≠ 2m

M + m

3
M ≠ m

2m
|V1| ≠ M ≠ 3m

M + 3m

M + m

2m

B

5

4

= M ≠ 3m

M + 3m

B

5
> 0
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and

10L

B

M

M ≠ 3m

M>3m
>

8L

B

(5.171),(5.166)
Ø ·1 + 4L

|V1|
, (5.189)

we can estimate

(5.188) =
4L + |V1|·1 ≠ 10L

B
M

M≠3m(M≠m
M+m |V1| ≠ 2m

M+m |v|)
2m

M+m(|V1| + |v|)

(5.189)
<

4L + |V1|·1 ≠
1
·1 + 4L

|V1|

2
(M≠m

M+m |V1| ≠ 2m
M+m |v|)

2m
M+m(|V1| + |v|)

=
4L + 2m

M+m·1(|V1| + |v|) ≠ 4LM≠m
M+m + 4L

|V1|
2m

M+m |v|
2m

M+m(|V1| + |v|)

=
4L(1 ≠ M≠m

M+m + 1
|V1|

2m
M+m |v|) + 2m

M+m·1(|V1| + |v|)
2m

M+m(|V1| + |v|)

=
4L 2m

M+m

1
|V1|+|v|

|V1|

2
+ 2m

M+m·1(|V1| + |v|)
2m

M+m(|V1| + |v|)

= ·1 + 4L

|V1|
,

so that

· < ·1 + 4L

|V1|
.

Assertion 5.14. If · œ T ii
V1,·1(v) (cf. (5.186)) with v œ V ii

V1 (cf. (5.185)), then

·1 + L

|V1|
< · < ·1 + 2L

|V1|
.

Proof of Assertion 5.14. Consider · œ T ii
V1,·1(v), then we have that

· >
|V1|(·1 ≠ 10L

B
M≠m
M+m

M
M≠3m) + 10L

B
2m

M+m
M

M≠3m |v|
2m

M+m(|V1| + |v|)

=
|V1|·1 + 10L

B
M

M≠3m

1
2m

M+m |v| ≠ M≠m
M+m |V1)

2

2m
M+m(|V1| + |v|) . (5.190)
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Since by Assertion 5.12, on V ii
V1 v > 0, i.e.

M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1| < |v| <

M ≠ 3m

2m

B

5 + M ≠ m

2m
|V1| , (5.191)

it follows for M > 3m that

2m

M + m
|v| ≠ M ≠ m

M + m
|V1|

(5.191)
>

M ≠ 3m

M + 3m

B

5 > 0

and since

10L

B

M

M ≠ 3m
= 4L(M ≠ 3m) + L(M ≠ 3m) + 5L(M + 3m)

B(M ≠ 3m)

= 4L

B
+ L

B
+ 5L

B

M + 3m

M ≠ 3m
(5.171),(5.166)

> ·1 + L

|V1|
+ 5L

B

M + 3m

M ≠ 3m
(5.192)

we can estimate

(5.190) =
|V1|·1 + 10L

B
M

M≠3m

1
2m

M+m |v| ≠ M≠m
M+m |V1|)

2

2m
M+m(|V1| + v)

(5.191),(5.192)
>

|V1|·1 + (·1 + L
|V1| + 5L

B
M+3m
M≠3m)

1
2m

M+m |v| ≠ M≠m
M+m |V1|)

2

2m
M+m(|V1| + v)

=
2m

M+m·1(|V1| + |v|) + |v|L
|V1|

2m
M+m + 2m

M+mL
2m

M+m(|V1| + v)

=
·1(|V1| + |v|) + L

|V1|(|V1| + |v|)
|V1| + |v|

= ·1 + L

|V1|
,

and thus

· > ·1 + L

|V1|
.

Furthermore, we have that

·
(5.186)

<
|V1|(·1 ≠ 10L

B
M≠m
M+m

M+m
M≠3m) + 10L

B
2m

M+m
M+m
M≠3m |v|

2m
M+m(|V1| + |v|)

(5.191)
<

|V1|(·1 ≠ 10L
B

M≠m
M≠3m) + 2L + 10L

B
M≠m
M≠3m |V1|

2m
M+m(|V1| + M≠3m

M+3m
M+m

2m
B
5 + M≠m

2m |V1|)
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= |V1|·1 + 2L

|V1| + M≠3m
M+m

B
5

M>3m
< ·1 + 2L

|V1|
.

We have shown that on E i
V1,·1 the atom enters from the right (cf. Assertion 5.11) and collides

with the molecule during
1
·1 + 2L

|V1| , ·1 + 4L
|V1|

2
(cf. Assertion 5.13), whereas on E ii

V1,·1 the
atom enters from the left (cf. Assertion 5.12) and collides during

1
·1 + L

|V1| , ·1 + 2L
|V1|

2
with

the molecule (cf. Assertion 5.14). Using these results, we can show that an atom which
collides with pre collision velocity v œ V i

V1 (cf. (5.182)) resp. V ii
V1 (cf. (5.185)) coming

from the right resp. from the left with the molecule at any time · œ T i
V1,·1(v) (cf. (5.183))

resp. T ii
V1,·1(v) (cf. (5.186)), has entered the interval between ·1 and ·1 + 4L

|V1| , given that
Y (·1) = (L, V1, ‡1) with ≠C Æ V1 Æ ≠B, and that no other atom enters the interval during
·1 and ·1 + 4L

|V1| . Recall that ·1 + 4L
|V1| is the time when the molecule would reach the wall

at L if it moved freely.
Denote by ·e the entering time of the atom and recall that ·1 is the time, when the molecule
is at L the first time after t = 0, and that · is the time when the molecule and the atom
collide.
Consider Y (·1) as given in (5.179) with (5.180), v œ V i

V1 (i.e. the atom is entering from
the right) and · œ T i

V1,·1(v). Since then by Assertion 5.13 the collision takes place after
·1 + 2L

|V1| , which is the time the molecule was reflected at ≠L, but before ·1 + 4L
|V1| (which is

the time the molecule would reach L again if it moved freely), the sum of the distance the
molecule travels between ·1 and · , and of the distance the atom travels between ·e and ·
is 4L. Hence, ·e is determined by

|V1|(· ≠ ·1) + |v|(· ≠ ·e) = 4L ,

which gives

·e = |V1|
|v| (· ≠ ·1) + · ≠ 4L

|v| . (5.193)

We then obtain by Assertion 5.13 that

·e
(5.193)= |V1|

|v| (· ≠ ·1) + · ≠ 4L

|v|

>
2L

|v| + ·1 + 2L

|V1|
≠ 4L

|v|

= ·1 + 2L

|V1|
≠ 2L

|v| ,
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and since

|v|
(5.182)

>
M ≠ m

2m
|V1| ≠ M ≠ 3m

2m

B

5
|V1|> B

5
>

M ≠ m

2m
|V1| ≠ M ≠ 3m

2m
|V1|

= |V1|

we have that

·e > ·1 . (5.194)

For the upper bound of ·e we estimate by Assertion 5.13 that

·e
(5.193)= |V1|

|v| (· ≠ ·1) + · ≠ 4L

|v|

<
4L

|v| + ·1 + 4L

|V1|
≠ 4L

|v|

= ·1 + 4L

|V1|
. (5.195)

Consider now Y (·1) as given in (5.179) with (5.180), v œ V ii
V1 (i.e. the atom enters from

the left) and · œ T ii
V1,·1(v). Since then by Assertion 5.14 the collision takes place after

·1 + L
|V1| and before ·1 + 2L

|V1| , which is the time the molecule would reach ≠L if it moved
freely, the sum of the distance the molecule travels between ·1 and · , and of the distance
the atom travels between ·e and · is 2L. Hence, ·e is determined by

|V1|(· ≠ ·1) + |v|(·e ≠ ·) = 2L ,

which gives

·e = |V1|
|v| (· ≠ ·1) + · ≠ 2L

|v| . (5.196)

We then obtain by Assertion 5.14 that

·e
(5.196)= |V1|

|v| (· ≠ ·1) + · ≠ 2L

|v|

>
L

|v| + ·1 + L

|V1|
≠ 2L

|v|

= ·1 + L

|V1|
≠ L

|v|
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and since for v œ V ii
V1

|v| >
M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1|

= M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ 3m

2m
|V1| + |V1|

M>3m
> |V1| ,

we have that

·e > ·1 . (5.197)

For the upper bound of ·e we obtain by Assertion 5.14 that

·e
(5.196)= |V1|

|v| (· ≠ ·1) ≠ · ≠ 2L

|v|

<
2L

|v| + ·1 + 2L

|V1|
≠ 2L

|v|

= ·1 + 2L

|V1|
. (5.198)

With (5.194) and (5.195) resp. (5.197) and (5.198) we have shown that E i
V1,·1 and E ii

V1,·1
are well defined and any collision time · œ T i

V1,·1(v) resp. T ii
V1,·1(v) is possible, given that

the atom enters � between ·1 and ·2.

Before we show that on E i
V1,·1 and E ii

V1,·1 the process reaches a state in O (cf. (5.159)),
we identify the corresponding (v, q)-set of E i

V1,·1 and E ii
V1,·1 , where q is the position of the

atom at time t = 0.
On E i

V1,·1 (cf. (5.181)), the atom which collides with the molecule at time · with velocity
v was at time t = 0 at position

q = ≠L + |V1|
A

· ≠
A

·1 + 2L

|V1|

BB

+ |v|·

= ≠3L + (|V1| + |v|)· ≠ |V1|·1 . (5.199)

With · œ T i
V1,·1(v) (cf. (5.183)) we obtain that the (v, q)-set described in E i

V1,·1 is

VQi
V1,·1 := {(v, q) : v œ V i

V1 , q œ Qi
V1,·1(v)} (5.200)
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with V i
V1 as given in (5.182) and

Qi
V1,·1(v) :=

=
3

≠3L + M + m

2m
4L + M ≠ m

2m
|V1|·1 ≠ 10L

B

M + m

M ≠ 3m

3
|V1|

M ≠ m

2m
≠ |v|

4
,

≠3L + M + m

2m
4L + M ≠ m

2m
|V1|·1 ≠ 10L

B

M

M ≠ 3m

3
|V1|

M ≠ m

2m
≠ |v|

44
.

(5.201)

Note that (5.201) follows by plugging in the bounds of T i
V1,·1(v) (cf. (5.183)) in (5.199).

On E ii
V1,·1 (cf. (5.184)), the atom which collides with the molecule at time · with velocity

v was at time t = 0 at position

q = L ≠ |V1| (· ≠ ·1) ≠ |v|·
= L ≠ (|V1| + |v|)· + |V1|·1 . (5.202)

With · œ T ii
V1,·1(v) (cf. (5.186)), we obtain that the (v, q)-set described in E ii

V1,·1 is given by

VQii
V1,·1 := {(v, q) : v œ V ii

V1 , q œ Qii
V1,·1(v)} (5.203)

with V ii
V1 given in (5.185) and

Qii
V1,·1(v) :=

3
L ≠ M ≠ m

2m
|V1|·1 ≠ 10L

B

M + m

M ≠ 3m

3
|v| ≠ M ≠ m

2m
|V1|

4
,

L ≠ M ≠ m

2m
|V1|·1 ≠ 10L

B

M

M ≠ 3m

3
|v| ≠ M ≠ m

2m
|V1|

44
.

(5.204)

Note that (5.204) follows by plugging in the bounds of T ii
V1,·1(v) (cf. (5.186)) in (5.202).

Finally, we show if Y (·1) is given by (5.179) with (5.180) and ·1 as given in (5.178), then
on E i

V1,·1 (cf. (5.181)) resp. E ii
V1,·1 (cf. (5.184)) the molecule is alone in � at time ·2, and

·2 œ T2 (cf. (5.161)), V2 œ V2, (cf. (5.160)), ‡2 = 1, i.e.

Y œ O (cf. (5.159)) . (5.205)

Recall, if ‡1 = 1, we consider E i
V1,·1 and if ‡1 = ≠1, we consider E ii

V1,·1 .
Denote by V·≠ the pre collision velocity of the molecule. Note that on E i

V1,·1

V·≠ = |V1| , (5.206)

since the atom meets the molecule, when the molecule moves in positive direction (cf.
Assertion 5.13). On E ii

V1,·1

V·≠ = ≠|V1| , (5.207)

since the atom meets the molecule, when the molecule moves in negative direction (cf.
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Assertion 5.14). The post collision velocity V Õ of the molecule is then given by

V Õ = M ≠ m

M + m
V·≠ + 2m

M + m
v (5.208)

(cf. (2.1)). Since on E i
V1,·1

V Õ (5.208),(5.206)= M ≠ m

M + m
|V1| + 2m

M + m
v (5.209)

(5.182)
>

M ≠ m

M + m
|V1| + 2m

M + m

3
M ≠ 3m

M + 3m

M + m

2m

B

5 ≠ M ≠ m

2m
|V1|

4

= M ≠ 3m

M + 3m

B

5
> 0 , (5.210)

and on E ii
V1,·1

V Õ (5.208),(5.207)= ≠M ≠ m

M + m
|V1| + 2m

M + m
v (5.211)

(5.185)
> ≠M ≠ m

M + m
|V1| + 2m

M + m

3
M ≠ 3m

M + 3m

M + m

2m

B

5 + M ≠ m

2m
|V1|

4

= M ≠ 3m

M + 3m

B

5
> 0 (5.212)

and the molecule reaches L without an additional collision on both events, we have that

V2 = ≠V Õ . (5.213)

Since (5.208) is a linear function of v if V·≠ is given, we obtain on E i
V1,·1 with v œ V i

V1 (cf.
(5.182)) by (5.209) and (5.213) for V2 any value with

V2 = ≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v

> ≠M ≠ m

M + m
|V1| ≠ 2m

M + m

3
M ≠ 3m

2m

B

5 ≠ M ≠ m

2m
|V1|

4

= ≠M ≠ 3m

M + m

B

5 (5.214)

and

V2 = ≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v

< ≠M ≠ m

M + m
|V1| ≠ 2m

M + m

3
M ≠ 3m

M + 3m

M + m

2m

B

5 ≠ M ≠ m

2m
|V1|

4
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= ≠M ≠ 3m

M + 3m

B

5 , (5.215)

and since on E ii
V1,·1 v œ V ii

V1 (cf. (5.185)) we obtain by (5.211) and (5.213) for V2 any value
with

V2 = ≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v

> ≠M ≠ m

M + m
|V1| ≠ 2m

M + m

3
M ≠ 3m

2m

B

5 ≠ M ≠ m

2m
|V1|

4

= ≠M ≠ 3m

M + m

B

5 (5.216)

and

V2 = ≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v

< ≠M ≠ m

M + m
|V1| ≠ 2m

M + m

3
M ≠ 3m

M + 3m

M + m

2m

B

5 ≠ M ≠ m

2m
|V1|

4

= ≠M ≠ 3m

M + 3m

B

5 . (5.217)

Hence, by (5.214), (5.215), (5.216) and (5.217) we have on E i
V1,·1 and on E ii

V1,·1 that

V2 œ V2 (5.218)

(cf. (5.160)).

To show (5.205) we also have to specify the possible values of ·2 on E i
V1,·1 (cf. (5.181))

and E ii
V1,·1 (cf. (5.184)).

The value of ·2 on E i
V1,·1 is given as follows. By Assertion 5.13 the collision takes place after

·1 + 2L
|V1| , where the molecule was reflected at ≠L, but before ·1 + 4L

|V1| , where the molecule
would reach L again if it moved freely. Hence, after the molecule is reflected at L at time
·1, it reaches ≠L and collides afterwards with the atom. Since V Õ > 0 (cf. (5.210)) the
molecule reaches again L. That means that the molecule covers a length of 4L during ·1
and ·2. Since it has speed V1 during ·1 and · , and speed V Õ during · and ·2, we have that

|V1|(· ≠ ·1) + V Õ(·2 ≠ ·) = 4L ,

which determines ·2 by

·2 = 4L ≠ |V1|(· ≠ ·1)
V Õ + ·

(5.209)= 4L ≠ |V1|(· ≠ ·1)
M≠m
M+m |V1| + 2m

M+mv
+ ·
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=
4L + |V1|·1 ≠ 2m

M+m(|V1| + |v|)·
M≠m
M+m |V1| ≠ 2m

M+m |v|
. (5.219)

Plugging in

· = q + 3L + |V1|·1
|V1| + |v| , (5.220)

(which we obtain by (5.199)) into (5.219) yields

·2 =
4L + |V1|·1 ≠ 2m

M+m(|V1| + |v|)·
M≠m
M+m |V1| ≠ 2m

M+m |v|
(5.220)=

4L + |V1|·1 ≠ 2m
M+m(q + 3L + |V1|·1)

M≠m
M+m |V1| ≠ 2m

M+m |v|

=
4L + M≠m

M+m |V1|·1 ≠ 2m
M+m(q + 3L)

M≠m
M+m |V1| ≠ 2m

M+m |v|
. (5.221)

Since (5.221) is a linear function of q if V1, ·1, v are given, we obtain for ·2 on E i
V1,·1 all

values with

·2
(5.221)=

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(q + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|
(5.201)

>
4L + M≠m

M+m |V1|·1
M≠m
M+m |V1| ≠ 2m

M+m |v|
≠

≠
2m

M+m

1
M+m

2m 4L + M≠m
2m |V1|·1 ≠ 10L

B
M

M≠3m

1
|V1|M≠m

2m ≠ |v|
22

M≠m
M+m |V1| ≠ 2m

M+m |v|

=
4L + M≠m

M+m |V1|·1 ≠ 2m
M+m(M+m

2m 4L + M≠m
2m |V1|·1)

M≠m
M+m |V1| ≠ 2m

M+m |v|
+ 10L

B

M

M ≠ 3m

= 10L

B

M

M ≠ 3m
(5.222)

and

·2
(5.221)=

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(q + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|
(5.201)

<
4L + M≠m

M+m |V1|·1
M≠m
M+m |V1| ≠ 2m

M+m |v|
≠

≠
2m

M+m

1
M+m

2m 4L + M≠m
2m |V1|·1 ≠ 10L

B
M+m
M≠3m

1
|V1|M≠m

2m ≠ |v|
22

M≠m
M+m |V1| ≠ 2m

M+m |v|
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=
4L + M≠m

M+m |V1|·1 ≠ 2m
M+m

1
M+m

2m 4L + M≠m
2m |V1|·1

2

M≠m
M+m |V1| ≠ 2m

M+m |v|
+ 10L

B

M + m

M ≠ 3m

= 10L

B

M + m

M ≠ 3m
(5.223)

since q œ Qi
V1,·1(v) (cf. (5.201)). Note that the bounds (5.222) and (5.223) are independent

of v, i.e. for any given v one obtains the same range for the values of ·2.
On E ii

V1,·1 ·2 is determined by the following. By Assertion 5.14 the collision takes place
before ·1 + 2L

|V1| , where the molecule would reach ≠L if it moved freely. Hence, before the
molecule may reach ≠L after ·1, it collides with the atom and since V Õ > 0 (cf. (5.212))
the molecule reaches again L without having been at ≠L. That means that the molecule
travels the same distance during ·1 and · (with speed |V1|) as during · and ·2 (with speed
V Õ), i.e.

|V1|(· ≠ ·1) = V Õ(·2 ≠ ·) ,

which gives

·2 = |V1|(· ≠ ·1)
V Õ + ·

(5.211)= |V1|(· ≠ ·1)
≠M≠m

M+m |V1| + 2m
M+mv

+ ·

=
2m

M+m(|V1| + |v|)· ≠ |V |1·1

≠M≠m
M+m |V1| + 2m

M+mv
. (5.224)

For an equivalent expression for · , we use equation (5.202), which gives

· = ≠q + L + |V1|·1
|V1| + |v| . (5.225)

Plugging this into (5.224) we obtain that

·2 =
2m

M+m(|V1| + |v|)· ≠ |V |1·1

≠M≠m
M+m |V1| + 2m

M+mv

(5.225)=
2m

M+m(≠q + L + |V1|·1) ≠ |V |1·1

≠M≠m
M+m |V1| + 2m

M+mv

=
2m

M+m(≠q + L) ≠ M≠m
M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mv
. (5.226)

Since (5.226) is a linear function of q if V1, ·1, v are given, we obtain for ·2 on E ii
V1,·1 all
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values with

·2
(5.226)=

2m
M+m(≠q + L) ≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

(5.204)
>

2m
M+m

1
≠

1
L ≠ M≠m

2m |V1|·1 ≠ 10L
B

M
M≠3m

1
|v| ≠ M≠m

2m |V1|
22

+ L
2

≠M≠m
M+m |V1| + 2m

M+m |v|
≠

≠
M≠m
M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

=
M≠m
M+m |V1|·1 + 10L

B
M

M≠3m

1
2m

M+m |v| ≠ M≠m
M+m |V1|

2
≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

= 10L

B

M

M ≠ 3m
(5.227)

and

·2 =
2m

M+m(≠q + L) ≠ M≠m
M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

(5.204)
<

2m
M+m

1
≠(L ≠ M≠m

2m |V1|·1 ≠ 10L
B

M+m
M≠3m

1
|v| ≠ M≠m

2m |V1|
2

+ L
2

≠M≠m
M+m |V1| + 2m

M+m |v|
≠

≠
M≠m
M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

=
M≠m
M+m |V1|·1 + 10L

B
M+m
M≠3m

1
2m

M+m(|v| ≠ M≠m
M+m |V1|

2
≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+m |v|

= 10L

B

M + m

M ≠ 3m
, (5.228)

since q œ Qii
V1,·1(v) (cf. (5.204). Since the interval with bounds (5.222) and (5.223) resp.

(5.227) and (5.228) is T2 (cf. (5.161)), it follows that on E i
V1,·1 and on E ii

V1,·1

·2 œ T2 . (5.229)

At last we show that ‡2 = 1. Recall that the value of ‡ changes as soon as the molecule
is reflected at ≠L or L, and that ‡1 = ‡(·1).
Recall, that if ‡1 = 1, we consider E i

V1,·1 (cf. (5.181)). Then, by Assertion 5.13 the molecule
reaches, after it was reflected at L at time ·1, the wall at ≠L and collides then with the
atom and V Õ > 0 (cf. (5.210)), i.e. the molecule reaches again L, which gives

‡2 = ‡1 = 1 .

If ‡1 = ≠1, we consider E ii
V1,·1 . Then, by Assertion 5.14, before the molecule may reach ≠L
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after ·1, it collides with the atom and V Õ > 0 (cf. (5.212)). Hence, the molecule reaches
again L without having been at ≠L after ·1, which gives

‡2 = ≠‡1 = 1 . (5.230)

Altogether, we have shown by (5.218), (5.229) and (5.230) that for Y (·1) given in (5.179)
with (5.180) and with ·1 as given in (5.178) on E i

V1,·1 (cf. (5.181)) resp. E ii
V1,·1 (cf. (5.184)),

the molecule reaches the wall at L the second time at time ·2 œ T2 (cf. (5.161)) with
V2 œ V2, (cf. (5.160)) and ‡2 = 1. To obtain (5.205), namely

Y œ O ,

we still have to show that the molecule is alone in � at time ·2.
On both events, E i

V1,·1 and E ii
V1,·1 , there is exactly one atom which enters � between ·1 and

·2. On E i
V1,·1 this atom enters � from the right (cf. Assertion 5.11), i.e. it is to the right

of the molecule. Since the molecule is at the right bound of � at time ·2, the atom must
have left the interval before ·2. Hence, the molecule is alone at time ·2 on E i

V1,·1 .
On E ii

V1,·1 , the atom is to the left of the molecule, i.e. if the atom leaves the interval, it
will leave the interval on the left side, i.e. at ≠L. Note that the atom collides after time
·1 + L

|V1| but before ·1 + 2L
|V1| (cf. Assertion 5.14), i.e. the molecule gets hit between ≠L and

0. By (2.2)

vÕ = ≠M ≠ m

M + m
|v| ≠ 2M

M + m
|V1| < 0 (5.231)

and we have that V Õ > 0 (cf. (5.212)). Furthermore,

|vÕ| (5.231)= M ≠ m

M + m
|v| + 2M

M + m
|V1| > |V1|

(5.180)
> B

(5.218)
> |V2|

(5.213)= |V Õ| ,

i.e. the atom is faster than the molecule and has to travel a shorter distance to ≠L than
the molecule to L: The atom leaves � before the molecule reaches L, i.e. before ·2. Since
no other atom enters the interval until ·2, on E ii

V1,·1 the molecule is alone at time ·2.

Until now we have shown that given ·1 with (5.178) and Y (·1) as given in (5.179) with
(5.180), then on E i

V1,·1 (cf. (5.181)) resp. on E ii
V1,·1 (cf. (5.184))

Y œ O (cf. (5.159)) .

The exact value of Y is determined by the velocity v and the position q of the incoming
atom at time t = 0 by the following function. Note that the latter event is controlled
by the Poisson field and that (v, q) œ VQi

V1,·1 resp. VQii
V1,·1 , which is the corresponding

(v, q)-set of E i
V1,·1 resp. E ii

V1,·1 , i.e. the set in which the atom in E i
V1,·1 resp. E ii

V1,·1 must lie
at time t = 0. Equations (5.209) and (5.221) resp. (5.211) and (5.226) define the following
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1-1-map from VQi
V1,·1 resp. VQii

V1,·1 to the (V2, ·2)-set V2 ◊ T2:

�i
V1,·1 : VQi

V1,·1 æ V2 ◊ T2 (5.232)
(v, q) ‘æ (V2, ·2)
(5.209),(5.221)=

A

≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v,

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(q + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|

B

where VQi
V1,·1 is given in (5.200), V2 in (5.160), T2 in (5.161), and

�ii
V1,·1 : VQii

V1,·1 æ V2 ◊ T2 (5.233)
(v, q) ‘æ (V2, ·2)
(5.211),(5.226)=

A
M ≠ m

M + m
|V1| ≠ 2m

M + m
v,

2m
M+m(≠q + L) ≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mv

B

where VQii
V1,·1 is given in (5.203).

Assertion 5.15. �i
V1,·1 (cf. (5.232)) and �ii

V1,·1 (cf. (5.233)) are bijections.

Proof of Assertion 5.15. To show that �i
V1,·1 resp. �ii

V1,·1 maps

VQi
V1,·1 = {(v, q) : v œ V i

V1 , q œ Di
q(v)}

(cf. (5.200)) resp.

VQii
V1,·1 = {(v, q) : v œ V ii

V1 , q œ Dii
q (v)}

(cf. (5.203)) bijectively to

V2 ◊ T2 =
(5.160),(5.161)=

3
≠M ≠ 3m

M + m

B

5 , ≠M ≠ 3m

M + 3m

B

5

4
◊

310L

B

M

M ≠ 3m
,
10L

B

M + m

M ≠ 3m

4
,

we first show the surjectivity of �i
V1,·1 resp. �ii

V1,·1 .
In (5.218) we have shown that on E i

V1,·1 (cf. (5.181)) resp. on E ii
V1,·1 (cf. (5.184)) V2 may

take any value of V2 and no other. Since V i
V1 (cf. (5.182)) resp. V ii

V1 (cf. (5.185)) is the
corresponding set of E i

V1,·1 resp. E ii
V1,·1 in respect to v and since the first components of

�i
V1,·1 and �ii

V1,·1 map v œ V i
V1 resp. v œ V ii

V1 to V2, it follows by (5.218), that the target set
of the first component of �i

V1,·1 resp. �ii
V1,·1 is V2.

In (5.229) we have shown that on E i
V1,·1 resp. on E ii

V1,·1 ·2 may take any value in T2 and
no other. Recall that VQi

V1,·1 resp. VQii
V1,·1 is the set of (v, q) which corresponds to E i

V1,·1
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resp. E ii
V1,·1 . Since the second component of �i

V1,·1 resp. �ii
V1,·1 maps (v, q) œ VQi

V1,·1 resp.
(v, q) œ VQii

V1,·1 to ·2, we obtain by (5.229) that the target set of the second component of
�i

V1,·1 resp. �ii
V1,·1 is T2. All in all it follows that �i

V1,·1 and �ii
V1,·1 are surjective functions.

Now we show injectivity of �i
V1,·1 , i.e.

�i
V1,·1(v, q) = �i

V1,·1(vÕ, qÕ) ∆ (v, q) = (vÕ, qÕ) . (5.234)

Let

�i
V1,·1(v, q) = �i

V1,·1(vÕ, qÕ) .

Then,

≠M ≠ m

M + m
|V1| ≠ 2m

M + m
v = ≠M ≠ m

M + m
|V1| ≠ 2m

M + m
vÕ (5.235)

and

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(q + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|
=

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(qÕ + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |vÕ|
. (5.236)

From (5.235) we obtain immediately that v = vÕ. Plugging this into (5.236) yields to

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(q + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|
=

4L + M≠m
M+m |V1|·1 ≠ 2m

M+m(qÕ + 3L)
M≠m
M+m |V1| ≠ 2m

M+m |v|

Since this is only valid for q = qÕ, the r.h.s. of (5.234) follows.
To show injectivity of �ii

V1,·1 we proceed analogously to the previous case. Let

�ii
V1,·1(v, q) = �ii

V1,·1(vÕ, qÕ) ,

then

M ≠ m

M + m
|V1| ≠ 2m

M + m
v = M ≠ m

M + m
|V1| ≠ 2m

M + m
vÕ (5.237)

and
2m

M+m(≠q + L) ≠ M≠m
M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mv
=

2m
M+m(≠qÕ + L) ≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mvÕ . (5.238)

From (5.237) it follows that v = vÕ. Plugging this into (5.238) yields to

2m
M+m(≠q + L) ≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mv
=

2m
M+m(≠qÕ + L) ≠ M≠m

M+m |V1|·1

≠M≠m
M+m |V1| + 2m

M+mv
,
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which gives q = qÕ, and the r.h.s. of (5.234) follows.
Altogether, it follows that �i

V1,·1 (cf. (5.232)) and �ii
V1,·1 (cf. (5.233)) map VQi

V1,·1 resp.
VQii

V1,·1 bijectively onto the (V2, ·2)-set V2 ◊ T2.

Finally, using the results of above, we can estimate (5.177), i.e.

P(dY | Y (·1)) (5.239)

for dY µ O, Y (·1) as given in (5.179) with (5.180) and ·1 as given in (5.178), since we
have shown that for any Y (·1) as given in (5.179) with (5.180), ·1 as given in (5.178) and
any dY µ O there are events where exactly one atom with a certain velocity v starts at
time t = 0 at q and causes “the right” molecular post velocity as well as “the right” ·2 and
‡2.
Since di�erent events are necessary for di�erent values of ‡1 such that Y œ O, namely
E i

V1,·1 (cf. (5.181)) for ‡1 = 1 and E ii
V1,·1 (cf. (5.184)) for ‡1 = ≠1, we have to distinguish

if ‡1 = 1 or ‡1 = ≠1 when estimating (5.239). Thereby, we make use of the distribution
of (v, q) (cf. (2.9)) and the transformation of (v, q) to (V2, ·2) given by �i

V1,·1 (cf. (5.232))
resp. �ii

V1,·1 (cf. (5.233)).
Consider ·1 as given in (5.178) and Y (·1) as given in (5.179) with (5.180). Consider ‡1 = 1
and dY µ O with dY = (dV2, d·2, ‡2 = 1).1 Denote by CY (·1)(E i

V1,·1) the set of paths for
which Y (·1) is as given in (5.178) with ‡1 = 1 and with ·1 as given in (5.178) and E i

V1,·1
occurs. Then, we have that

P(dY | Y (·1)) Ø P(dY fl CY (·1)(E i
V1,·1)| Y (·1)) . (5.240)

By the results from above, if Y (·1) is as given in (5.179) with (5.180), ‡1 = 1 and there
is one atom (and no other) with (v, q) œ �i≠1

V1,·1(dV2, d·2), then dY = (dV2, d·2, ‡2 = 1).
To estimate the r.h.s. of (5.240), denote by X·2

V1,·1 the (v, q)-set, such that the atom with
velocity v and position q (at time t = 0) enters � between ·1 and ·2, i.e.

X·2
V1,·1 = {(v, q) : v > 0 · q œ (≠L ≠ v·2, ≠L ≠ v·1) or

v < 0 · q œ (L + |v|·1, L + |v|·2)} .

We then obtain for the r.h.s. of (5.240) that

P(dY fl CY (·1)(E i
V1,·1)| Y (·1)) Ø

Ø µ({N�i≠1
V1,·1

(dV2,d·2) = 1})µ({NX
·2
V1,·1

\�i≠1
V1,·1

(dV2,d·2) = 0}) . (5.241)

1
Note that the notation “dY = (dV2, d·2, ‡2 = 1)” is of course an abuse of notation, since ‡ is a discrete

variable. We could easily make this by introducing a delta function for ‡, but for ease of notation we

will not detail that and keep the notation, which will be however not harmful.
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Since on O

·2 <
10L

B

M + m

M ≠ 3m
=: ·̄ , (5.242)

it follows that

X·2
V1,·1 µ X ·̄

V1,·1

for any ·2 œ T2. Since the entrance times are exponentially distributed, we obtain that

(5.241) Ø µ({N�i≠1
V1,·1

(dV2,d·2) = 1})µ({NX ·̄
V1,·1

= 0})

(2.4),(5.22)= flf(�i,1≠1
V1,·1(V2))| det J�i≠1

V1,·1
(V2,·2)| exp

A

≠2(·̄ ≠ ·1)flÔ
2fiKm

B

dV2d·2

(5.243)

where f is the Maxwellian (cf. (2.5)), �i≠1
V1,·1 is given by

�i≠1
V1,·1 = (�i,1≠1

V1,·1 , �i,2≠1
V1,·1) : V2 ◊ T2 æ VQi

V1,·1 (5.244)
(V2, ·2) ‘æ (v, q)

=
3

≠M ≠ m

2m
|V1| ≠ M + m

2m
V2,

M + m

2m
V2·2 + M + m

2m
4L + M ≠ m

2m
|V1|·1 ≠ 3L

4

with Jacobian

| det J�i
V1,·1

≠1(V2,·2)| =
3

M + m

2m

42
|V2| . (5.245)

Before we continue estimating (5.243), we estimate (5.239) also for ‡1 = ≠1.
Denote by CY (·1)(E ii

V1,·1) the set of paths corresponding to E ii
V1,·1 (cf. (5.184)) with Y (·1) as

given in (5.178) with ‡1 = ≠1. By transforming (v, q) to (V2, ·2) by �ii
V1,·1 , we obtain for

dY µ O with dY = (dV2, d·2, ‡2 = 1) that

P(dY | Y (·1))
Ø P(dY fl CY (·1)(E ii

V1,·1) | Y (·1)))
= µ({N�ii≠1

V1,·1
(dV2,d·2) = 1})µ({NX

·2
V1,·1

\�ii≠1
V1,·1

(dV2,d·2) = 0})

Ø µ({N�ii≠1
V1,·1

(dV2,d·2) = 1})µ({NX ·̄
V1,·1

= 0})

= flf(�ii,1≠1
V1,·1(V2))| det J�ii≠1

V1,·1
(V2,·2)| exp

A

≠2(·̄ ≠ ·1)flÔ
2fiKm

B

dV2d·2 (5.246)
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with inverse

�ii≠1
V1,·1 = (�i,1≠1

V1,·1 , �i,2≠1
V1,·1) : V2 ◊ T2 æ VQii

V1,·1 (5.247)
(V2, ·2) ‘æ (v, q)

=
3

M ≠ m

2m
|V1| ≠ M + m

2m
V2,

M + m

2m
V2·2 + L ≠ M ≠ m

2m
|V1|·1

4
,

and Jacobian

| det J�ii≠1
V1,·1

(V2,·2)| =
3

M + m

2m

42
|V2| . (5.248)

Altogether we obtain by (5.172), (5.175), (5.176), (5.241), (5.243) and (5.246) that for
y œ GB,C;0 and dY = (dV2, d·2, ‡2) µ O either

Py(dY ) = Py(dV2, d·2, ‡2)
(5.176)

Ø P(dV2, d·2, ‡2|Y (·1(y))) exp
A

≠ 2fl·1(y)Ô
2fiKm

B

(5.243)= hi
V1,·1(y)(V2, ·2)dV2d·2

with

hi
V1,·1(y)(V2, ·2) := flf(�i,1≠1

V1,·1(y)(V2))| det J�i≠1
V1,·1(y)(V2,·2)| exp

A

≠ 2·̄ flÔ
2fiKm

B

(5.249)

or

Py(dY ) = Py(dV2, d·2, ‡2)
(5.176)

Ø P(dV2, d·2, ‡2|Y (·1(y))) exp
A

≠ 2fl·1(y)Ô
2fiKm

B

(5.246)= hii
V1,·1(y)(V2, ·2)dV2d·2

with

hii
V1,·1(y)(V2, ·2) :=

= flf(�ii,1
V1,·1(y)

≠1(V2))| det J�ii
V1,·1(y)

≠1(V2,·2)| exp
A

≠ 2·̄ flÔ
2fiKm

B

. (5.250)

Since fl, the Maxwellian f (cf. (2.5)) and the exponential function are positive functions
and

| det J�i
V1,·1(y)

≠1(V2,·2)| = | det J�ii
V1,·1(y)

≠1(V2,·2)|
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(5.245),(5.248)=
3

M + m

2m

42
|V2|

V2œV2
>

3
M + m

2m

42 M ≠ 3m

M + 3m

B

5 (5.251)
M>3m

> 0 ,

it follows that

hi
V1,·1(y)(V2, ·2) > 0

and

hii
V1,·1(y)(V2, ·2) > 0 ,

for any (V2, ·2) œ V2 ◊ T2 (cf. (5.160), (5.161)) and any ·1(y), V1 as defined in (5.165) resp.
(5.171). This gives (5.162) of Lemma 5.7

To prove (5.163) of Lemma 5.7, we give a uniform positive lower bound for hi
V1,·1(y) (cf.

(5.249)) and hii
V1,·1(y) (cf. (5.250)). In the following we write ·1 instead of ·1(y). For given

V1, ·1 we have for (5.249) that

hi
V1,·1(V2, ·2) = flf(�i,1≠1

V1,·1(V2))
3

M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

(2.4),(5.244)= flf
3

≠M ≠ m

2m
|V1| ≠ M + m

2m
V2

4 3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

(2.5),V2<0= fl

Û
Km

2fi
e≠ Km

2 (≠ M≠m
2m |V1|+ M+m

2m |V2|)2 3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

= fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m |V1|≠ M+m

2m |V2|)2 3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

> fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m |V1|+ M+m

2m |V2|)2 3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

(5.252)

(5.247)= flf(�ii,1≠1
V1,·1(V2))

3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

(5.250)= hii
V1,·1(V2, ·2) .

Note that equation (5.252) follows since

0 <
M ≠ m

2m
|V1| ≠ M + m

2m
|V2| <

M ≠ m

2m
|V1| + M + m

2m
|V2| .

Since for V1, ·1 as defined in (5.171) resp. (5.166), and (V2, ·2) œ V2 ◊ T2 (cf. (5.160),
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(5.161))

hii
V1,·1(V2, ·2)

(5.250)= flf(�ii,1≠1
V1,·1(V2))

3
M + m

2m

42
|V2| exp

A

≠ 2·̄ flÔ
2fiKm

B

(2.4)= fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m |V1|+ M+m

2m |V2|)2 3
M + m

2m

42
|V2|e≠ 2·̄flÔ

2fiKm

(5.251)
Ø fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m C+ M≠3m

2m
B
5 )2 3

M + m

2m

42 M ≠ 3m

M + 3m

B

5 e≠ 2·̄flÔ
2fiKm ,

we obtain (5.163) by choosing

g = fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m C+ M≠3m

2m
B
5 )2 3

M + m

2m

42 M ≠ 3m

M + 3m

B

5 e≠ 2·̄flÔ
2fiKm (5.253)

with K given in (2.5), C given in (5.11) and ·̄ given in (5.242). Note that ·̄ depends on
L.

In Lemma 5.7 we proved the existence of an overlap set for M > 3m. To understand
which facts cause the necessity to distinguish the di�erent cases M > 3m, M = 3m,
3m > M > 2m and 2m Ø M > m when establishing overlap, it may be useful to see
how one proceed when identifying an overlap set. Note that we will give a rather rough
overview and don’t go into detail.
For all states starting in GB,C;0 an overlap shall be established. The simplest way to define
an overlap set may be such that the molecule is alone in �. Then, the overlap set may
be defined by a certain interval of molecular velocity and an interval of time, where the
molecule is at L the second time after t = 0, and ‡2 = 1, which is the value of ‡ when
the molecule is the second time at L. We follow that and for simplicity we define the
overlap set such, that any starting state can reach any state in the overlap set by exactly
one collision with an atom.
To control the molecule such that it is at a certain time at a certain position, we have to
know the position of the molecule at some time before. Therefore, we introduce ·1, ·2, the
time when the molecule is the first resp. the second time after t = 0 at L. To control the
value of ‡2, we treat states with di�erent values of ‡1 = ‡(·1) di�erently: If ‡1 = 1, we
send in an atom between ·1 and ·2 such that the molecule is reflected at ≠L exactly one
time between ·1 and ·2, which gives ‡2 = ‡1 = 1 (Scenario I). If ‡1 = ≠1, we send in an
atom between ·1 and ·2 such that the molecule does not touch the wall at ≠L between ·1
and ·2. This gives ‡2 = ≠‡1 = 1 (Scenario II).
Now, one has to identify an interval of molecular velocity V2 and an interval of arrival time
·2, which can be reached by any y œ GB,C;0. Doing so, one has to take care of “virtual
collisions”. This is the case if the molecular post collision velocity V2 is such that the atom,
which causes this velocity, enters � after ·1 (in any scenario). Let · be the time of collision.
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If in Scenario I

·1 + L

|V1|
< · < ·1 + 2L

|V1|
, (5.254)

then

|V1|(· ≠ ·1) + |v|(· ≠ ·1) > 2L (5.255)

expresses that the atom enters after ·1, whereas if

·1 + 2L

|V1|
< · < ·1 + 4L

|V1|
(5.256)

it has to be satisfied that

|V1|(· ≠ ·1) + |v|(· ≠ ·1) > 4L . (5.257)

If in Scenario II

·1 + L

|V1|
< · < ·1 + 2L

|V1|
, (5.258)

and

|V1|(· ≠ ·1) + |v|(· ≠ ·1) > 2L , (5.259)

then the incoming atom enters after ·1. Hence, to exclude virtual collisions either the
interval of V2 has to be such that the corresponding atom is fast enough, namely |v| > |V1|,
or the collision time in (5.254), (5.256) and (5.258) has to be restricted. If the overlap
set is such, that |V2| > |V1|, the atom which is send in must have speed |v| > |V1|, i.e.
condition (5.255), (5.257) and (5.259) would be satisfied, but the atom may be still in �
at time ·2. Therefore, we choose |V2| < B (such that the molecule has to be slowed down
for any B < |V1| < C), because it can be shown that in this case the atom which is send
in has left the interval until ·2. Note that then the collision time · in Scenario I has to
satisfy (5.256) to get an overlap respectively to the arrival time ·2.
The interval of V2, where (5.257) and (5.259) are satisfied and |V2| < B, can be chosen as
follows. Using (2.1), in Scenario I we have that

|v| = M ≠ m

2m
|V1| ≠ M + m

2m
|V2| .

Plugging this into (5.257) gives
3

|V1| + M ≠ m

2m
|V1| ≠ M + m

2m
|V2|

4
(· ≠ ·1) > 4L
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… M + m

2m
(|V1| ≠ |V2|) (· ≠ ·1) > 4L . (5.260)

With (5.256) we obtain that (5.260) holds for any · if

M + m

2m
(|V1| ≠ |V2|)

2L

|V1|
> 4L

… |V2| <
M ≠ 3m

M + m
|V1| . (5.261)

In Scenario II we have with (2.1) that

|v| = M ≠ m

2m
|V1| + M + m

2m
|V2| .

We obtain by plugging this into (5.259) that
3

|V1| + M ≠ m

2m
|V1| + M + m

2m
|V2|

4
(· ≠ ·1) > 2L

… M + m

2m
(|V1| + |V2|)(· ≠ ·1) > 2L . (5.262)

If (5.258) we have that (5.262) holds for any · if

M + m

2m
(|V1| + |V2|)

L

|V1|
> 2L

… |V2| > ≠M ≠ 3m

M + m
|V1| . (5.263)

If M > 3m and if the interval of V2 is chosen such that

|V2| <
M ≠ 3m

M + m
B , (5.264)

in both scenarios the virtual collisions are excluded, since (5.261) and (5.263) are satisfied
and with that (5.257) and (5.259). Since for some V2 œ (≠M≠3m

M+m B, 0) there are (V1, ·1, ‡1)
such that the intervals of arrival times ·2 are disjoint, the interval of molecular velocity for
V2 has to be restricted in an appropriate manner to obtain overlap. Since M > 3m is the
simplest case, Lemma 5.7 is formulated and proved for this case.
If M Æ 3m there are no values for V2 such that inequality (5.261) is satisfied. Heuristically
this is because if M Æ 3m and the values for · as given in (5.256) aren’t restricted, some
of the corresponding atoms need to be in � before ·1 to reach the molecule in time, i.e. the
collision with these atoms are virtual collisions. Note, the heavier the molecule, the faster
the atom has to be to cause the same V2. The faster the atom is, the longer is the distance
the atom travels until the collision at time · . It turns out that 3m is the lower bound
for M such that any atom which collides at time · as given in (5.256) resp. (5.258) and
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causes V2 as given in (5.264) enters the interval after ·1, i.e. there are no virtual collisions.
Therefore, if M Æ 3m, the interval of · in Scenario I (cf. (5.256)) has to be restricted,
which gives a weaker requirement as (5.261) and one finds values for V2 where no virtual
collisions occur. But if m < M Æ 2m, reducing the values of the collision time · leads
to disjoint intervals of arrival times ·2 for some (V1, ·1, ‡1), i.e. one cannot find a set of a
common arrival time and V2, which can be reached by every initial condition (V1, ·1, ‡1),
given that one atom enters the interval between ·1 and ·2. Therefore, we distinguish if
2m < M Æ 3m or m < M Æ 2m.

Case 2m < M Æ 3m

As stated before, in this case in Scenario I the interval of · (5.256) has to be restricted,
such that there are values for V2 where no virtual collisions occur. It turns out that

O = {Molecule is alone at time ·2, (5.265)

V2 œ V2 =
A

≠3m ≠ M

M + m

B

2 , ≠ M

2(M ≠ m)
3m ≠ M

M + m

B

2

B

, (5.266)

·2 œ T2 =
54L

B
+ 8L

B

2m

M

M ≠ m

3m ≠ M
,
4L

B
+ 8L

B

M ≠ m

3m ≠ M

6
, (5.267)

‡2 = 1}

is an overlap set for 2m < M Æ 3m and Lemma 5.7 can be proven with

·̄ = 4L

B
+ 8L

B

M ≠ m

3m ≠ M
(5.268)

and

g = fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m C+ 3m≠M

2m
B
2 )2 3

M + m

2m

42 M

2(M ≠ m)
3m ≠ M

M + m

B

2 e≠ 2·̄flÔ
2fiKm . (5.269)

Note that then also the values for · in Scenario II (cf. (5.258)) has to be restricted for any
|V1|, since then

|V2| <
3m ≠ M

M + m
B <

3m ≠ M

M + m
|V1|

and (5.263) isn’t satisfied.
If M = 3m only the collision times in Scenario I has to be restricted and Lemma 5.7 can

be shown with redefined

O = {Molecule is alone at time ·2, (5.270)

V2 œ V2 =
3

≠B

8 , ≠ B

10

4
, (5.271)
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·2 œ T2 =
515L

B
,
16L

B

6
, (5.272)

‡2 = 1}

with

·̄ = 16L

B
(5.273)

and

g = fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m C+ M+m

2m
B
8 )2 3

M + m

2m

42 B

10e≠ 2·̄flÔ
2fiKm . (5.274)

Case m < M Æ 2m

For m < M Æ 2m, in both scenarios the collision time · in (5.256) and (5.258) has to be
restricted: Since in Scenario I the atom has to enter the interval from the right, we obtain
with

v
(2.1)= 2m

M + m
V Õ + M ≠ m

M + m
|V1|

and V Õ = ≠V2 > 0 the condition

2m

M + m
V Õ + M ≠ m

M + m
|V1| < 0

… |V2| <
M ≠ m

M + m
|V1| ,

such that v < 0. With m < M Æ 2m we have that

M ≠ m

M + m
<

3m ≠ M

M + m
,

i.e. if we choose

|V2| <
M ≠ m

M + m
B ,

we have to reduce · in Scenario II, since (5.263) is not satisfied. As we outlined before,
we have to restrict also the values for · in Scenario I (cf. (5.256)). The restriction of · in
both scenarios leads to following arrival times ·2, which depend on V1, ·1. In Scenario I we
obtain that

·1 + 4L

|V1|
< ·2 < ·1 + 4L

|V2|
M ≠ m

M + m
, (5.275)
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whereas in Scenario II we have that

·1 + 4L

|V2|
m

M + m
< ·2 < ·1 + 2L

|V1|
+ 2L

|V2|
. (5.276)

To establish overlap, the r.h.s. of (5.275) has to be larger than the l.h.s. (5.276), i.e. for
any ·1, · Õ

1

·1 + 4L

|V2|
m

M + m
< · Õ

1 + 4L

|V2|
M ≠ m

M + m
. (5.277)

Since 0 Æ ·1 Æ 4L
B , condition (5.277) is satisfied if

4L

B
+ 4L

|V2|
m

M + m
<

4L

|V2|
M ≠ m

M + m

… 4L

B
<

4L

|V2|
M ≠ 2m

M + m

… |V2| <
M ≠ 2m

M + m
B . (5.278)

Since m < M Æ 2m, there are no values for V2 such that (5.278) is satisfied, i.e. there is
no overlap in respect to the arrival times ·2 if we proceed as we just described.
We solve the di�culty of disjoint arrival times by redefining ·2 as follows. Consider Y (0) =
y œ GB,C;0. If on E·1(y) (cf. (5.167)) ‡1 = 1, then denote by ·2 the time the molecule is at
L the second time after time x = 16L

B
m

M≠m . If ‡1 = ≠1 ·2 is the time the molecule is at L
the second time after t = 0. By that, the values of ·2 are shifted to the future if ‡1 = 1,
such that similar arrival times as in Scenario II occur. Then, one can show that Lemma
5.7 holds for the redefined overlap set

O = {Molecule is alone at time ·2, (5.279)

V2 œ V2 :=
A

≠B

4
M ≠ m

M + m
, ≠B

4
M ≠ m

M + m

M + 7m

2(M + 3m)

B

, (5.280)

·2 œ T2 :=
58L

B

M + m

M ≠ m
,
2L

C
+ 8L

B

M + m

M ≠ m

6
, (5.281)

‡2 = 1}

with

·̄ = 2L

C
+ 8L

B

M + m

M ≠ m
(5.282)

and

g = fl

Û
Km

2fi
e≠ Km

2 (M≠m
2m C+ M≠m

2m
B
4 )2 3

M + m

2m

42 B

4
M ≠ m

M + m

M + 7m

2(M + 3m)e≠ 2·̄flÔ
2fiKm
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(5.283)

with C given in (5.11).

The proof of Lemma 5.7 with the redefined sets O follow by similar arguments as Lemma
5.7 for M > 3m.

By the existence of an overlap set, which follows by (the redefined) Lemma 5.7, we can
follow that transitions starting in y1, y2 œ GB,C;0 are overlapping at time ·̄ , which we show
by the following lemma.

Lemma 5.8. Consider the Markov process Mt (cf. (5.7)) with transition probabilty �t
y,

y œ �̂
�

◊ {≠1, 1}. Then, there exists a ” > 0, which will be specified later, such that for
·̄ given in (5.242), (5.268), (5.273), (5.282) respectively,

||�·̄
y1 ≠ �·̄

y2 || < 2(1 ≠ ”) (5.284)

for any y1, y2 œ GB,C;0 (cf. (5.12)).

Proof of Lemma 5.8. Note that the choice of ·̄ depends on M
m . Denote by

F·̄ := ‡(Y (·̄))

the ‡-Algebra generated by Y (·̄) and by Py|F·̄ the restriction of the path measure Py on
F·̄ . Let C œ �̂

�
◊ {≠1, 1} be measurable, and denote by

A·̄ ,C := {Y (Ê) : Y (Ê, ·̄) œ C}

the set of paths which are at time ·̄ in C. Then,

Py(A·̄ ,C) = �·̄
y(C) (5.285)

and for the l.h.s. of (5.284) it follows that

||�·̄
y1 ≠ �·̄

y2|| = 2 sup
C

|�·̄
y1(C) ≠ �·̄

y2(C)| (5.286)

(5.285)= 2 sup
C

|Py1(A·̄ ,C) ≠ Py2(A·̄ ,C)|

= 2 sup
AœF·̄

|Py1(A) ≠ Py2(A)|

= ||Py1|F·̄ ≠ Py2|F·̄ || . (5.287)
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To estimate (5.287) denote by

P̄y1,y2|F·̄ := min{Py1|F·̄ ,Py2 |F·̄ } (5.288)

the overlap measure of Py1|F·̄ and Py2|F·̄ with

–·̄
y1,y2 :=

⁄
P̄y1,y2|F·̄ (dY ) . (5.289)

Then,

Py1(y2)|F·̄ := Py1|F·̄ ≠ P̄y1,y2|F·̄ (5.290)

and

Py2(y1)|F·̄ := Py2|F·̄ ≠ P̄y1,y2|F·̄ (5.291)

is the part of the measure Py1|F·̄ resp. Py2 |F·̄ without overlap, i.e.
⁄

Py1(y2)|F·̄ (dY ) = 1 ≠ –·̄
y1,y2 =

⁄
Py2(y1)|F·̄ (dY ) (5.292)

and Py1(y2)|F·̄ , Py2(y1)|F·̄ are singular w.r.t. to each other. By that, (5.287) becomes

||Py1 |F·̄ ≠ Py2|F·̄ || = 2 sup
AœF·̄

|Py1(A) ≠ Py2A)| (5.293)

(5.290),(5.291)= 2 sup
AœF·̄

---Py1(A) ≠ Py2(A)
---

(5.292)= 2(1 ≠ –·̄
y1,y2) . (5.294)

Since Lemma 5.8 requires a uniform upper bound, we now give a uniform lower bound for
–·̄

y1,y2 (cf. (5.289)), where we use (the redefined) Lemma 5.7. Note that ·2 is a stopping
time. Since the entrance of atoms into � may be described by a pure jump Markov
process, which is a strong Markov process, Mt has the strong Markov property, i.e. if ·n

is a stopping time, then

Py(dY ( · + ·n)| Y (t), t Æ ·n) = PY (·n)(dY ) .

Applying the strong Markov property to the stopping time ·2, we obtain for any y œ GB,C;0
that

Py|F·̄ (dY ) = Py(dY (·̄))

=
⁄

Py (d·2, dY (·2))P(dY (·̄)|·2, Y (·2))

Ø
⁄

O
Py (d·2, dY (·2))P(dY (·̄)|·2, Y (·2)) (5.295)
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with O given in (5.159), (5.265), (5.270), (5.279) respectively. Note that

·2 < ·̄

on O since ·2 œ T2. By (the redefined) Lemma 5.7 we have that

(5.295)
(5.163)

Ø g ·
⁄

T2◊V2
dV2d·2 P

1
dY (·̄)|·2, Y (·2) = (L, V2, 1)

2
, (5.296)

with g given in (5.253), (5.269), (5.274), (5.283) respectively, V2 given in (5.160), (5.266),
(5.271), (5.280) respectively, and T2 given in (5.161), (5.267), (5.272), (5.281) respectively.
Since the r.h.s. of (5.296) is independent of y, we obtain for (5.289) by (5.295) and (5.296)
that for any y1, y2 œ GB,C;0

–·̄
y1,y2

(5.288)=
⁄

min{Py1|F·̄ ,Py2|F·̄ }(dY ) (5.297)

Ø
⁄

g ·
⁄

T2◊V2
dV2d·2 P

1
dY (·̄)|·2, Y (·2) = (L, V2, 1)

2
. (5.298)

To continue estimating, we define E·2,·̄ µ �̂ with

E·2,·̄ := {No atom enters � during [·2, ·̄ ]} ,

and let C(E·2,·̄ ) denote the corresponding set of paths, i.e. all paths for which Y (·̄) is such
as E·2,·̄ has happened. Then,

(5.298) Ø g ·
⁄

T2◊V2
dV2d·2

⁄

C(E·2,·̄ )
P

1
dY (·̄)|·2, Y (·2) = (L, V2, 1)

2

Ø g ·
⁄

T2◊V2
dV2d·2 µ(E·2,·̄ ) (5.299)

(5.22)= g ·
⁄

T2◊V2
dV2d·2 exp

A

≠2(·̄ ≠ ·2)flÔ
2fiKm

B

> g ·
⁄

T2◊V2
dV2d·2 exp

A

≠ 2·̄ flÔ
2fiKm

B

. (5.300)

Note that (5.299) follows, since on E·2,·̄ the paths starting at ·2 in Y (·2) = (L, V2, 1) are
in C(E·2,·̄ ).
Since the set of V2 and T2 di�er dependent on the mass of the molecule M , namely if
M > 3m, M = 3m, 3m > M > 2m or 2m Ø M > m, we continue estimating (5.300)
depending on M .
If M > 3m, then V2 is given in (5.160) and T2 is given in (5.161). With that we obtain
that

⁄

V2
dV2 = M ≠ 3m

M + m

B

5 ≠ M ≠ 3m

M + 3m

B

5
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= 2m

M + m

M ≠ 3m

M + 3m

B

5 =: CV2 (5.301)

and
⁄

T2
d·2 = 10L

B

M + m

M ≠ 3m
≠ 10L

B

M

M ≠ 3m
= 10L

B

m

M ≠ 3m
=: C·2 . (5.302)

If M = 3m, V2 is given in (5.271) and T2 is given in (5.272), which gives
⁄

V2
dV2 = B

8 ≠ B

10 = B

40 =: CV2 (5.303)

and
⁄

T2
d·2 = 16L

B
≠ 15L

B
= L

B
=: C·2 . (5.304)

If 3m > M > 2m, then V2 is given in (5.266) and T2 is given in (5.267). With that it
follows that

⁄

V2
dV2 = 3m ≠ M

M + m

B

2 ≠ M

2(M ≠ m)
3m ≠ M

M + m

B

2

= M ≠ 2m

2(M ≠ m)
3m ≠ M

M + m

B

2 =: CV2 (5.305)

and
⁄

T2
d·2 = 4L

B
+ 8L

B

M ≠ m

3m ≠ M
≠

34L

B
+ 8L

B

2m

M

M ≠ m

3m ≠ M

4

= 8L

B

M ≠ m

3m ≠ M

M ≠ 2m

M
=: C·2 . (5.306)

If 2m Ø M > m, then V2 is given in (5.280) and T2 is given in (5.281). This gives
⁄

V2
dV2 = M ≠ m

M + m

B

4 ≠ M + 7m

2(M + 3m)
M ≠ m

M + m

B

4

= M ≠ m

2(M + 3m)
M ≠ m

M + m

B

4 =: CV2 (5.307)

and
⁄

T2
d·2 = 2L

C
+ 8L

B

M + m

M ≠ m
≠ 8L

B

M + m

M ≠ m
= 2L

C
=: C·2 . (5.308)

90



With these constants we have for (5.300) that

(5.300) = g · exp
A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2 (5.309)

with the appropriate choice of g given in (5.253), (5.269), (5.274), (5.283) respectively, CV2

given in (5.301), (5.303), (5.305), (5.307), respectively, and of C·2 given in (5.302), (5.304),
(5.306), (5.308), respectively.
Altogether we have for (5.297) by (5.298), (5.300) and (5.309) that

–·̄
y1,y2 > g · exp

A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2 . (5.310)

Finally, by (5.310) and (5.294) we obtain for (5.293) that

||Py1 |F·̄ ≠ Py2|F·̄ || < 2
A

1 ≠ g · exp
A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2

B

, (5.311)

and by (5.311) and (5.287) for (5.286) that

||�·̄
y1 ≠ �·̄

y2 || < 2
A

1 ≠ g · exp
A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2

B

.

Choosing

” = g · exp
A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2 (5.312)

Lemma 5.8 follows. Note that g > 0 (cf. (5.253), (5.269), (5.274), (5.283) respectively),
CV2 > 0 (cf. (5.301), (5.303), (5.305), (5.307), respectively) and C·2 > 0 (cf. (5.302),
(5.304), (5.306), (5.308), respectively).

Finally, we prove the Overlap-Lemma 5.2 making use of Lemma 5.6 and Lemma 5.8.

Proof of Lemma 5.2. Let y1, y2 œ GV̄ ,N̄ with GV̄ ,N̄ given in (5.10). Since Mt is a stationary
Markov process, we have that

||�t(V̄ ,N̄)+·̄
y1 ≠ �t(V̄ ,N̄)+·̄

y2 || =
----

----
⁄

�t(V̄ ,N̄)
y1 (dy)�·̄

y ≠
⁄

�t(V̄ ,N̄)
y2 (dy) �·̄

y

----

---- , (5.313)

with t(V̄ , N̄) given in (5.129) and ·̄ in (5.242), (5.268), (5.273), (5.282) respectively. To
make use of Lemma 5.8 it is useful to rename the integration variable y in (5.313) to yÕ in
the subtrahend. With that and

⁄
�t(V̄ ,N̄)

ỹ (dy) = 1 for ỹ œ GV̄ ,N̄ , (5.314)
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it follows that

(5.313) =
----

----
⁄

�t(V̄ ,N̄)
y1 (dy)�·̄

y ≠
⁄

�t(V̄ ,N̄)
y2 (dyÕ) �·̄

yÕ

----

----

(5.314)=
----

----
⁄

�t(V̄ ,N̄)
y1 (dy)

⁄
�t(V̄ ,N̄)

y2 (dyÕ) (�·̄
y ≠ �·̄

yÕ)
----

----

Æ
⁄

�t(V̄ ,N̄)
y1 (dy)

⁄
�t(V̄ ,N̄)

y2 (dyÕ) ||�·̄
y ≠ �·̄

yÕ||

=
⁄

GB,C;0
�t(V̄ ,N̄)

y1 (dy)
⁄

GB,C;0
�t(V̄ ,N̄)

y2 (dyÕ) ||�·̄
y ≠ �·̄

yÕ|| + (5.315)

+
⁄

GB,C;0
�t(V̄ ,N̄)

y1 (dy)
⁄

Gc
B,C;0

�t(V̄ ,N̄)
y2 (dyÕ)||�·̄

y ≠ �·̄
yÕ|| +

+
⁄

Gc
B,C;0

�t(V̄ ,N̄)
y1 (dy)

⁄

GB,C;0
�t(V̄ ,N̄)

y2 (dyÕ)||�·̄
y ≠ �·̄

yÕ|| +

+
⁄

Gc
B,C;0

�t(V̄ ,N̄)
y1 (dy)

⁄

Gc
B,C;0

�t(V̄ ,N̄)
y2 (dyÕ)||�·̄

y ≠ �·̄
yÕ|| ,

where Gc
B,C;0 is the complement of GB,C;0. To continue estimating, we use Lemma 5.8,

which gives in (5.315)

||�·̄
y ≠ �·̄

yÕ|| < 2(1 ≠ ”) ,

since y, yÕ œ GB,C;0. Note that

” > 0 .

To estimate ||�·̄
y ≠�·̄

yÕ|| in the remaining summands we use the fact that the total variation
distance of two probability measures is by definition bounded by 2 (cf. (5.2)). Altogether
we obtain for (5.313) that

||�t(V̄ ,N̄)+·̄
y1 ≠ �t(V̄ ,N̄)+·̄

y2 || < 2(1 ≠ ”) �t(V̄ ,N̄)
y1 (GB,C;0)�t(V̄ ,N̄)

y2 (GB,C;0)+
+ 2�t(V̄ ,N̄)

y1 (GB,C;0)�t(V̄ ,N̄)
y2 (Gc

B,C;0)+
+ 2�t(V̄ ,N̄)

y1 (Gc
B,C;0)�t(V̄ ,N̄)

y2 (GB,C;0)+
+ 2�t(V̄ ,N̄)

y1 (Gc
B,C;0)�t(V̄ ,N̄)

y2 (Gc
B,C;0)

= 2(1 ≠ ”) �t(V̄ ,N̄)
y1 (GB,C;0)�t(V̄ ,N̄)

y2 (GB,C;0)+
+ 2�t(V̄ ,N̄)

y1 (GB,C;0)(1 ≠ �t(V̄ ,N̄)
y2 (GB,C;0))+

+ 2(1 ≠ �t(V̄ ,N̄)
y1 (GB,C;0))�t(V̄ ,N̄)

y2 (GB,C;0)+
+ 2(1 ≠ �t(V̄ ,N̄)

y1 (GB,C;0))(1 ≠ �t(V̄ ,N̄)
y2 (GB,C;0))

= �t(V̄ ,N̄)
y1 (GB,C;0)�t(V̄ ,N̄)

y2 (GB,C;0)(2(1 ≠ ”) ≠ 2) + 2
= 2 ≠ 2�t(V̄ ,N̄)

y1 (GB,C;0)�t(V̄ ,N̄)
y2 (GB,C;0)” . (5.316)
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Since by Lemma 5.6 for y œ GV̄ ,N̄

�t(V̄ ,N̄)
y (GB,C;0)

(5.130)
Ø Á(V̄ , N̄) ,

it follows that

(5.316) = 2 ≠ 2�t(V̄ ,N̄)
y1 (GB,C;0)�t(V̄ ,N̄)

y2 (GB,C;0)”
(5.130)

Æ 2(1 ≠ Á(V̄ , N̄)2”)
< 2 . (5.317)

Note that (5.317) follows since Á(V̄ , N̄) > 0 (cf. (5.131)) and ” > 0 (cf. Lemma 5.8).
The Overlap-Lemma 5.2 follows by choosing

G = GV̄ ,N̄ (5.318)

with GV̄ ,N̄ given in (5.10),

t(G) = t(V̄ , N̄) + ·̄ , (5.319)

with t(V̄ , N̄) given in (5.129) and ·̄ in (5.242), (5.268), (5.273) resp. (5.282) and

“(G) = 2(1 ≠ Á(V̄ , N̄)2”) (5.320)

with Á(V̄ , N̄) > 0 given in (5.131) and ” given in (5.312).

Using the overlap at time t(G) of transitions starting in G (cf. Overlap-Lemma 5.2), we
get an estimate for the total variation distance for these transitions after multiples of t(G).
Since states of G may leave this set, the distance will depend inter alia on the size of the
complement of G.

Corollary 5.1. Let G, t(G) and “(G) be from Overlap-Lemma 5.2. Then, for any y1, y2 œ G
and n œ N0

||�(n+1)t(G)
y1 ≠ �(n+1)t(G)

y2 || Æ “n+1(G), (5.321)

with

“n+1(G) = 2
A

“(G)
2

Bn+1

+ 4
n≠1ÿ

i=0

A
“(G)

2

Bi 1
�(n≠i)t(G)

y1 (Gc) + �(n≠i)t(G)
y2 (Gc)

2
, (5.322)

where Gc is the complement of G. For n = 0 the sum taken over i in (5.322) is defined as
zero.
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Proof of Corollary 5.1. We prove Corollary 5.1 by induction. Let G, t(G) and “(G) be from
Overlap-Lemma 5.2. Let n = 0, then (5.321) with (5.322) follows by the Overlap-Lemma
5.2.

In the induction step we show that for y1, y2 œ G

||�nt(G)
y1 ≠ �nt(G)

y2 || Æ “n(G) ∆ ||�(n+1)t(G)
y1 ≠ �(n+1)t(G)

y2 || Æ “n+1(G) (5.323)

with “n+1(G) given in (5.322). We write in the following t for t(G) and “ for “(G). To
estimate

||�(n+1)t
y1 ≠ �(n+1)t

y2 || =
----

----
⁄ 1

�nt
y1 ≠ �nt

y2

2
(dy)�t

y

----

---- , (5.324)

we make use of the overlap at time nt. Denote by –nt
y1,y2 with 0 Æ –nt

y1,y2 Æ 1 the overlap of
�nt

y1 , �nt
y2 and by

�̄nt
y1,y2 := min{�nt

y1 , �nt
y2}

the overlap measure of �nt
y1 and �nt

y2 , i.e.

–nt
y1,y2 :=

⁄
�̄nt

y1,y2(dy).

Then,

�nt
y1(y2) := �t

y1 ≠ �̄nt
y1,y2 (5.325)

resp.

�nt
y2(y1) := �t

y2 ≠ �̄nt
y1,y2 (5.326)

is the part of the measure �nt
y1 resp. �nt

y2 without overlap, i.e.
⁄

�nt
y1(y2)(dy) = 1 ≠ –nt

y1,y2 =
⁄

�nt
y2(y1)(dy) (5.327)

and �nt
y1(y2), �nt

y2(y1) are singular w.r.t. to each other. By (5.325) and (5.326) we have that

�nt
y1 ≠ �nt

y2 = �nt
y1(y2) ≠ �nt

y2(y1) , (5.328)

and using (5.328) and (5.327) it follows that

||�nt
y1 ≠ �nt

y2|| = ||�nt
y1(y2) ≠ �nt

y2(y1)||

= 2 sup
A

----
⁄

A
�nt

y1(y2)(dy) ≠
⁄

A
�nt

y2(y1)(dy)
----
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= 2(1 ≠ –nt
y1,y2) . (5.329)

Note that by induction hypotheses for any y1, y2 œ G

1 ≠ –nt
y1,y2 Æ “n

2 . (5.330)

For (5.324) and y1, y2 œ G we obtain by (5.328) that

||�(n+1)t
y1 ≠ �(n+1)t

y2 || =
----

----
⁄ 1

�nt
y1(y2) ≠ �nt

y2(y1)
2

(dy)�t
y

----

----

=
----

----
⁄

�nt
y1(y2)(dy)�t

y ≠
⁄

�nt
y2(y1)(dy)�t

y

----

---- . (5.331)

To make use of (5.329) with (5.330) it is useful to rename the integration variable y in the
subtrahend in (5.331) to yÕ. Now consider –nt

y1,y2 < 1. With (5.327) it follows that
⁄

�nt
y1(y2)(dy)�t

y = 1
1 ≠ –nt

y1,y2

⁄
�nt

y2(y1)(dyÕ)
⁄

�nt
y1(y2)(dy)�t

y (5.332)

and similarly with interchanged y1, y2. With that, (5.331) becomes
----

----
⁄

�nt
y1(y2)(dy)�t

y ≠
⁄

�nt
y2(y1)(dyÕ)�t

yÕ

----

----

(5.332)=
----

----
1

1 ≠ –nt
y1,y2

⁄
�nt

y2(y1)(dyÕ)
⁄

�nt
y1(y2)(dy)�t

y≠

≠ 1
1 ≠ –nt

y1,y2

⁄
�nt

y1(y2)(dy)
⁄

�nt
y2(y1)(dyÕ)�t

yÕ

----

----

Æ 1
1 ≠ –nt

y1,y2

⁄
�nt

y1(y2)(dy)
⁄

�nt
y2(y1)(dyÕ)||�t

y ≠ �t
yÕ|| . (5.333)

Writing �̂
�

◊ {≠1, 1} = G fi Gc we obtain that

(5.333) = 1
1 ≠ –nt

y1,y2

⁄

G
�nt

y1(y2)(dy)
⁄

G
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||+

+ 1
1 ≠ –nt

y1,y2

⁄

Gc
�nt

y1(y2)(dy)
⁄

G
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||+

+ 1
1 ≠ –nt

y1,y2

⁄

G
�nt

y1(y2)(dy)
⁄

Gc
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||+

+ 1
1 ≠ –nt

y1,y2

⁄

Gc
�nt

y1(y2)(dy)
⁄

Gc
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ|| .

(5.334)

For the first summand in (5.334) we get by the Overlap-Lemma 5.2 and the monotonicity
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of �nt
y that

1
1 ≠ –nt

y1,y2

⁄

G
�nt

y1(y2)(dy)
⁄

G
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||

(5.9)
Æ “

1
1 ≠ –nt

y1,y2

�nt
y1(y2)(G)�nt

y2(y1)(G)

Æ “
1

1 ≠ –nt
y1,y2

⁄
�nt

y1(y2)(dy)
⁄

�nt
y2(y1)(dy)

(5.327)
Æ “(1 ≠ –nt

y1,y2)
(5.330)

Æ “
“n

2 . (5.335)

Since the total variation distance is by definition bounded by 2 (cf. (5.2)), the second term
in (5.334) is bounded by

1
1 ≠ –nt

y1,y2

⁄

Gc
�nt

y1(y2)(dy)
⁄

G
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||

Æ 2 1
1 ≠ –nt

y1,y2

�nt
y1(y2)(Gc)�nt

y2(y1)(G)

Æ 2 1
1 ≠ –nt

y1,y2

�nt
y1(y2)(Gc)

⁄
�nt

y2(y1)(dy)

(5.327)
Æ 2�nt

y1(y2)(Gc)
(5.325)

Æ 2�nt
y1(Gc) . (5.336)

Similarly for the third term

1
1 ≠ –nt

y1,y2

⁄

G
�nt

y1(y2)(dy)
⁄

Gc
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||

Æ 2�nt
y2(Gc) , (5.337)

while the forth term can be estimated by

1
1 ≠ –nt

y1,y2

⁄

Gc
�nt

y1(y2)(dy)
⁄

Gc
�nt

y2(y1)(dyÕ)||�t
y ≠ �t

yÕ||

Æ 2
1 ≠ –nt

y1,y2

�nt
y1(y2)(Gc)�nt

y2(y1)(Gc)

Æ 2
1 ≠ –nt

y1,y2

⁄
�nt

y1(y2)(dy)�nt
y2(y1)(Gc)

(5.327)
Æ 2�nt

y2(y1)(Gc)
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(5.326)
Æ 2�nt

y2(Gc) . (5.338)

Summing the upper bounds (5.335), (5.336), (5.337) and (5.338) of the summands in
(5.334) it follows in total for (5.324) by (5.331), (5.333) and (5.334) that

||�(n+1)t
y1 ≠ �(n+1)t

y2 || Æ “
“n

2 + 2�nt
y1(Gc) + 2�nt

y2(Gc) + 2�nt
y2(Gc)

Æ “
“n

2 + 4(�nt
y1(Gc) + �nt

y2(Gc)) (5.339)

with
“

2“n + 4(�nt
y1(Gc) + �nt

y2(Gc))

(5.322)= “

2

A

2
3

“

2

4n

+ 4
n≠2ÿ

i=0

3
“

2

4i 1
�(n≠i≠1)t

y1 (Gc) + �(n≠i≠1)t
y2 (Gc)

2B

+

+ 4(�nt
y1(Gc) + �nt

y2(Gc))

= 2
3

“

2

4n+1
+ 4

n≠1ÿ

i=1

3
“

2

4i

(�(n≠i)t
y1 (Gc) + �(n≠i)t

y2 (Gc)) + 4(�nt
y1(Gc) + �nt

y2(Gc))

(5.322)= “n+1 . (5.340)

Note that we considered underneath (5.331) that –nt
y1,y2 < 1. Let now –nt

y1,y2 = 1. This
yields in (5.331) that

||�(n+1)t
y1 ≠ �(n+1)t

y2 || =
----

----
⁄

�nt
y1(y2)(dy)�t

y ≠
⁄

�nt
y2(y1)(dy)�t

y

----

----
(5.327)= 0 . (5.341)

By (5.339), (5.340) and (5.341) we obtain (5.323) which ends the proof of Corollary 5.1.

By the Overlap-Lemma 5.2 and Corollary 5.1 we obtain an estimate for —(t) (cf. (5.4)).

Corollary 5.2. Let G, t(G) and “(G) be from Overlap-Lemma 5.2 and —(t) as given in
(5.4). Then,

—((n + 1)t(G)) Æ 2
A

“(G)
2

Bn+1

+ 8(n + 1)�(Gc) . (5.342)

Proof of Corollary 5.2. By Corollary 5.1 and using that for the stationary distribution

� =
⁄

�(dy)�t
y, for any t , (5.343)
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we estimate the l.h.s. of (5.342).

—((n + 1)t(G)) (5.4)=
⁄

�(dy)||�(n+1)t(G)
y ≠ �|| (5.344)

(5.343)=
⁄

�(dy)
----

----�(n+1)t(G)
y ≠

⁄
�(dy)�(n+1)t(G)

y

----

----

=
⁄

�(dy)
----

----
⁄

�(dyÕ)
1
�(n+1)t(G)

y ≠ �(n+1)t(G)
yÕ

2----

----

Æ
⁄

�(dy)
⁄

�(dyÕ)||�(n+1)t(G)
y ≠ �(n+1)t(G)

yÕ || . (5.345)

Since Corollary 5.1 applies to transitions starting in G, we again write �̂
�
◊{≠1, 1} = GfiGc

and split the integrals. Hence,

(5.345) Æ
⁄

G
�(dy)

⁄

G
�(dyÕ)||�(n+1)t(G)

y ≠ �(n+1)t(G)
yÕ ||+

+
⁄

G
�(dy)

⁄

Gc
�(dyÕ)||�(n+1)t(G)

y ≠ �(n+1)t(G)
yÕ ||+

+
⁄

Gc
�(dy)

⁄

G
�(dyÕ)||�(n+1)t(G)

y ≠ �(n+1)t(G)
yÕ ||+

+
⁄

Gc
�(dy)

⁄

Gc
�(dyÕ)||�(n+1)t(G)

y ≠ �(n+1)t(G)
yÕ || .

(5.346)

To continue estimating we use
⁄

G
�(dy) Æ 1

and for the first term in (5.346) we use Corollary 5.1, while for the second, third and fourth
term we use that the total variation distance is bounded by 2 (cf. (5.2)). This yields

(5.346)
(5.321)

Æ 2
A

“(G)
2

Bn+1

+

+ 4
n≠1ÿ

i=0

A
“(G)

2

Bi ⁄
�(dy)

⁄
�(dyÕ)

1
�(n≠i)t(G)

y (Gc) + �(n≠i)t(G)
yÕ (Gc)

2
+

+ 2�(G)�(Gc) + 2�(Gc)�(G) + 2�(Gc)�(Gc)

Æ 2
A

“(G)
2

Bn+1

+ 4
n≠1ÿ

i=0

A
“(G)

2

Bi 3 ⁄
�(dyÕ)

⁄
�(dy)(�(n≠i)t(G)

y (Gc)+

+
⁄

�(dy)
⁄

�(dyÕ)�(n≠i)t(G)
yÕ (Gc)

4
+ 6�(Gc)

(5.343)= 2
A

“(G)
2

Bn+1

+ 8�(Gc)
n≠1ÿ

i=0

A
“(G)

2

Bi

+ 6�(Gc) . (5.347)
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Since “(G)
2 < 1, it follows that

n≠1ÿ

i=0

3
“(G)

2

4i

<
n≠1ÿ

i=0
1 = n . (5.348)

We finally have for (5.344) by (5.345), (5.346), (5.347) and (5.348) that

—((n + 1)t(G)) Æ 2
A

“(G)
2

Bn+1

+ 8(n + 1)�(Gc).

Since in the proof of Overlap-Lemma 5.2 we showed that the set GV̄ ,N̄ (cf. (5.10))
with t(GV̄ ,N̄) (cf. (5.319)) and “(GV̄ ,N̄) (cf. (5.320)) fulfills the condition of the Overlap-
Lemma 5.2, we obtain by Corollary 5.2 the estimate (5.342) for —((n + 1)t(GV̄ ,N̄)). To
prove Proposition 5.1, we have to set GV̄ ,N̄ , i.e. V̄ , N̄ , in dependence of n, and show that
there is a choice of V̄ (n) and N̄(n), such that for n æ Œ �

1
Gc

V̄ (n),N̄(n)

2
approaches zero

fast enough and “(GV̄ (n),N̄(n))
2 approaches one slow enough. If there is such a choice, we

obtain at the end a good estimate for —(t), which means that by the estimate we can show
that —(t) æ 0 fast enough with t æ Œ such that Proposition 5.1 can be proven. The
following lemma is about a “good choice” of V̄ (n) and N̄(n).

Lemma 5.9. Let n œ N. Consider the set GV̄ (n),N̄(n) µ �̂
�

◊ {≠1, 1}, which is GV̄ ,N̄ as
defined in (5.10), but where V̄ , N̄ are functions of n. Let t(GV̄ (n),N̄(n)), “(GV̄ (n),N̄(n)) as
given in (5.319) resp. (5.320), but with V̄ (n), N̄(n) instead of V̄ , N̄ .
Then, there exist N œ N, and increasing unbounded functions N̄(n), V̄ (n), i(n), which will
be specified later, and constants A1, A2 such that for all n > N

—(i(n)) < —((n + 1)t(GV̄ (n),N̄(n))) (5.349)

and

2
Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+8(n+1)�
1
Gc

V̄ (n),N̄(n)

2
< 2 exp(≠A1i(n) 2

5 )+A2i(n)≠4 . (5.350)

Note since GV̄ (n),N̄(n) satisfies the conditions of the Overlap-Lemma 5.2 (see (5.318)), by
Corollary 5.2 inequality (5.342) holds for G = GV̄ (n),N̄(n), so that the r.h.s. of (5.349) is
smaller than the l.h.s. of (5.350).

Proof of Lemma 5.9. We first show that there exist Ñ œ N, increasing unbounded func-
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tions V̄ (n) and N̄(n) and a constant C14 such that for all n > Ñ

�
1
Gc

V̄ (n),N̄(n)

2
Æ C14

8 (n + 1)≠6, (5.351)

where Gc
V̄ (n),N̄(n) is the complement of GV̄ (n),N̄(n).

Since

Gc
V̄ (n),N̄(n) ={|V | > V̄ (n)} fi {N > N̄(n)}fi

fi {1 Æ N Æ N̄(n)), ÷j œ {1, ..., N} : |vj| Ø V̄ (n)} ,

we can estimate the l.h.s. of (5.351) by

�
1
Gc

V̄ (n),N̄(n)

2
Æ �({N > N̄}) + �({|V | > V̄ })+

+ �({1 Æ N Æ N̄ , ÷j œ {1, ..., N} : |vj| Ø V̄ }) .

Inequality (5.351) follows as soon as we can find Ñ , V̄ (n), N̄(n), C14 such that for all n > Ñ

�({N > N̄(n)}) Æ 1
2

C14
8 (n + 1)≠6 (5.352)

and

�({|V | > V̄ (n)}) + �({1 Æ N Æ N̄(n), ÷j œ {1, ..., N} : |vj| Ø V̄ (n)}) Æ (5.353)

Æ 1
2

C14
8 (n + 1)≠6 . (5.354)

First, we determine N̄(n) and make demands on C14 and Ñ such that (5.352) is satisfied
for all n > Ñ . The equilibrium distribution for the atoms in � is Poisson with parameter
fl (cf. (2.6)), hence, by Stirling’s formular (N ! >

Ô
2fie≠N+N ln N)

�({N > N̄(n)}) =
ÿ

N=N̄(n)+1
e≠2Lfl (2Lfl)N

N ! (5.355)

Æ
ÿ

N=N̄(n)

e≠2Lfl

Ô
2fi

eN≠N ln(N)+N ln(2Lfl)

= e≠2Lfl

Ô
2fi

ÿ

N=N̄(n)

1
e1≠ln(N)+ln(2Lfl)

2N

<
e≠2Lfl

Ô
2fi

ÿ

N=N̄(n)

1
e1≠ln(N̄(n))+ln(2Lfl)

2N
. (5.356)

There exists N1 œ N such that for all n > N1 N̄(n) (which is by definition an increasing
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unbounded function) is large enough, such that

1 ≠ ln(N̄(n)) + ln(2Lfl) < ≠1 ,

i.e.

e1≠ln(N̄(n))+ln(2Lfl) <
1
2 . (5.357)

Hence, for n > N1 (5.356) is a geometric series and
ÿ

N=N̄(n)

1
e1≠ln(N̄(n))+ln(2Lfl)

2N
=

=
ÿ

N=0

1
e1≠ln(N̄(n))+ln(2Lfl)

2N
≠

N̄(n)≠1ÿ

N=0

1
e1≠ln(N̄(n))+ln(2Lfl)

2N

(5.357)= 1
1 ≠ e1≠ln(N̄(n))+ln(2Lfl) ≠

1 ≠
1
e1≠ln(N̄(n))+ln(2Lfl)

2N̄(n)

1 ≠ e1≠ln(N̄(n))+ln(2Lfl)

= eN̄(n)≠N̄(n) ln(N̄(n))+N̄(n) ln(2Lfl)

1 ≠ e1≠ln(N̄(n))+ln(2Lfl)

(5.357)
Æ eN̄(n)≠N̄(n) ln(N̄(n))+N̄(n) ln(2Lfl)

1 ≠ 1
2

= 2eN̄(n)≠N̄(n) ln(N̄(n))+N̄(n) ln(2Lfl)

= 2e≠N̄(n)(ln(N̄(n))≠1≠ln(2Lfl)) , (5.358)

and for (5.355) it follows by (5.356) and (5.358) that

�({N > N̄(n)}) Æ 2e≠2Lfl

Ô
2fi

e≠N̄(n)(ln(N̄(n))≠1≠ln(2Lfl)) . (5.359)

Choose now

N̄(n) = ln(n + 1)
4(C3 + C13)

(5.360)

with C3, C13 given in (5.44) resp. (5.135). Note that C3 + C13 will occur in (5.377).
Plugging (5.360) into the exponent in (5.359) gives for the exponent that

≠ N̄(n)
1
ln(N̄(n)) ≠ 1 ≠ ln(2Lfl)

2
=

(5.360)= ≠ ln(n + 1)
4(C3 + C13)

A

ln
A

ln(n + 1)
4(C3 + C13)

B

≠ 1 ≠ ln(2Lfl)
B

. (5.361)
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Since there exists N2 œ N such that for all n > N2

(5.361) < ≠6 ln(n + 1) ,

we obtain for (5.359) by the choice (5.360) and n > N2 that

�({N > N̄(n)}) Æ 2e≠2Lfl

Ô
2fi

e≠N̄(n)(ln(N̄(n))≠1≠ln(2Lfl))

< 2e≠2Lfl

Ô
2fi

e≠6 ln(n+1)

= 2e≠2Lfl

Ô
2fi

(n + 1)≠6 .

(5.352) follows for any C14 > 32 e≠2Lfl
Ô

2fi
and any Ñ > max{N1, N2}.

Second, we determine the function V̄ (n) and make demands on C14 and Ñ such that with
the choice (5.360) inequality (5.354) is satisfied for all n > Ñ . The equilibrium distribution
for the velocity of the atoms and the molecule is the Maxwellian given in (2.5) resp. (2.8).
Since V̄ (n) is by definition an increasing unbounded function, there exists N3 œ N such
that for all n > N3 V̄ (n) is large enough such that

3KM

2fi

4 1
2 ⁄ Œ

V̄ (n)
e≠ KM

2 V 2dV Æ
3KM

2fi

4 1
2 ⁄ Œ

V̄ (n)
V e≠ KM

2 V 2dV = e≠ KM
2 V̄ (n)2

Ô
2fiKM

, (5.362)

and similar for m instead of M . Then, for first summand in (5.353) we get for n > N3 that

�({|V | > V̄ (n)}) = 2
3KM

2fi

4 1
2 ⁄ Œ

V̄ (n)
e≠ KM

2 V 2dV
(5.362)

Æ 2e≠ KM
2 V̄ (n)2

Ô
2fiKM

. (5.363)

The second summand in (5.353) we estimate as follows.

�({1 Æ N Æ N̄(n), ÷j œ {1, ..., N} : |vj| Ø V̄ (n)}) (5.364)

=
N̄(n)ÿ

l=1
�({÷j œ {1, ..., N} : |vj| Ø V̄ (n)}|{N = l})�({N = l})

Æ
N̄(n)ÿ

l=1

lÿ

k=1
�({|vn1| Ø V̄ (n), ..., |vnk

| Ø V̄ (n), ni œ {1, ..., l}}) . (5.365)

Since each atom is given initially a random velocity according to the Maxwell distribution
independently of its position and the other atoms, it follows that

(5.365) =
N̄(n)ÿ

l=1

lÿ

k=1

A
l

k

B

�({|v1| Ø V̄ (n), ..., |vk| Ø V̄ (n)})
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=
N̄(n)ÿ

l=1

lÿ

k=1

A
l

k

B

�({|v1| > V̄ (n)})k

Æ
N̄(n)ÿ

l=1

lÿ

k=1

A
l

k

B

�({|v1| > V̄ (n)})

=
N̄(n)ÿ

l=1
(2l ≠ 1) �({|v1| > V̄ (n)})

<
N̄(n)ÿ

l=1
(2N̄(n) ≠ 1) �({|v1| > V̄ (n)})

(5.362)
Æ N̄(n)(2N̄(n) ≠ 1)2(2fiKm)≠ 1

2 e≠ Km
2 V̄ (n)2

. (5.366)

By (5.363) and (5.366), which is the estimate for (5.364), we obtain for (5.353) that

�({|V | > V̄ (n)}) + �({1 Æ N Æ N̄(n), ÷j œ {1, ..., N} : |vj| Ø V̄ (n)}) < (5.367)
< 2(2fiKM)≠ 1

2 e≠ KM
2 V̄ (n)2 + N̄(n)2(2N̄(n) ≠ 1)(2fiKm)≠ 1

2 e≠ Km
2 V̄ (n)2

M>m
< (1 + N̄(n)(2N̄(n) ≠ 1))2(2fiKm)≠ 1

2 e≠ Km
2 V̄ (n)2

Æ 2N̄(n)(2N̄(n) ≠ 1)2(2fiKm)≠ 1
2 e≠ Km

2 V̄ (n)2

Æ 2N̄(n)2N̄(n)2(2fiKm)≠ 1
2 e≠ Km

2 V̄ (n)2 (5.368)
(5.360)= ln(n + 1)

4(C3 + C13)
2

ln(n+1)
4(C3+C13) 4(2fiKm)≠ 1

2 e≠ Km
2 V̄ (n)2

Æ ln(n + 1)
(C3 + C13)

(n + 1)
1

4(C3+C13) (2fiKm)≠ 1
2 e≠ Km

2 V̄ (n)2
. (5.369)

Since there exists N4 œ N such that for all n > N4

ln(n + 1)
(C3 + C13)

< (n + 1)
1

4(C3+C13) ,

(5.369) can be estimated by

(5.369) Æ (n + 1)
2

4(C3+C13) (2fiKm)≠ 1
2 e≠ Km

2 V̄ (n)2
. (5.370)

Choosing

V̄ (n) =
Q

a
4

1
12 + 1

C3+C13

2

Km
ln(n + 1)

R

b

1
2

(5.371)
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we have that

≠Km

2 V̄ (n)2 (5.371)= ≠2
3

12 + 1
C3 + C13

4
ln(n + 1)

< ≠
A

6 + 1
2(C3 + C13)

B

ln(n + 1) . (5.372)

This gives for (5.370) that

(5.370) = (n + 1)
2

4(C3+C13) (2fiKm)≠ 1
2 e≠ Km

2 V̄ (n)2

(5.372)
Æ (n + 1)

2
4(C3+C13) (2fiKm)≠ 1

2 (n + 1)≠
1

6+ 1
2(C3+C13)

2

= (2fiKm)≠ 1
2 (n + 1)≠6 . (5.373)

Altogether we have for (5.367) with (5.371) by (5.369), (5.370), (5.372) and (5.373) for all
n > max{N3, N4} that

�({|V | > V̄ (n)}) + �({1 Æ N Æ N̄(n), ÷j œ {1, ..., N} : |vj| Ø V̄ (n)}) <

< (2fiKm)≠ 1
2 (n + 1)≠6 .

Hence, choosing (5.371), inequality (5.354) is satisfied if C14 > 16(2fiKm)≠ 1
2 and Ñ >

max{N3, N4}.

All in all (5.351) follows by choosing N̄(n) as given in (5.360), V̄ (n) as given in (5.371),
for all n > Ñ with

Ñ = max{N1, N2, N3, N4} (5.374)

and

C14 = 32
A

e≠2Lfl

Ô
2fi

+ (
Ô

2fiKm)≠1
B

. (5.375)

To obtain Lemma 5.9 we now show, using (5.351), that the choice we made for N̄(n) and
V̄ (n), namely (5.360) resp. (5.371), gives “(GV̄ (n),N̄(n)) and t(GV̄ (n),N̄(n)) such that there is
a i(n) for which the inequalities in Lemma 5.9 holds for n large enough.

First, we determine “(GV̄ (n),N̄(n)) and t(GV̄ (n),N̄(n)). By the definition of “(GV̄ (n),N̄(n))
(cf. (5.320)) we have that

“
1
GV̄ (n),N̄(n)

2

2 = 1 ≠ Á(V̄ (n), N̄(n))2” . (5.376)
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Recall that

Á(V̄ (n), N̄(n)) (5.131)=
= min{C10e≠C11V̄ (n), C12e≠C13N̄(n)} · min

Ó
C1C4e≠C5V̄ (n), C1C2e≠C3N̄(n)

Ô
.

With the choices (5.360) and (5.371) there exists N5 œ N such that for any n > N5

min
Ó
C10e≠C11V̄ (n), C12e≠C13N̄(n)

Ô
= C12e≠C13N̄(n)

and

min
Ó
C1C4e≠C5V̄ (n), C1C2e≠C3N̄(n)

Ô
= C1C2e≠C3N̄(n) ,

and we obtain that for n > N5

Á(V̄ (n), N̄(n)) = C1C2C12e≠(C3+C13)N̄(n) .

Plugging that into (5.376) gives for n > N5

“
1
GV̄ (n),N̄(n)

2

2 = 1 ≠ (C1C2C12)2e≠2(C3+C13)N̄(n)” (5.377)
(5.360)= 1 ≠ ”(C1C2C12)2(n + 1)≠ 1

2

= 1 ≠ C15(n + 1)≠ 1
2 (5.378)

with

C15 := ”(C1C2C12)2

(5.18),(5.43),(5.134)= ”

4 exp

Q

cca≠
4fl

3
24L
B + 3

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb , (5.379)

and Db, Dc given in (5.25), ” > 0 (cf. Lemma 5.8).

Now we determine t(GV̄ (n),N̄(n)) (cf. (5.319)) for the choices (5.360) and (5.371) and give
an estimate. Recall that

t(GV̄ (n),N̄(n))
(5.319)= t(V̄ (n), N̄(n)) + ·̄ (5.380)

and that

t(V̄ (n), N̄(n)) (5.129)= max{4tB + t(V̄ ), 4tB + t(N̄)}
(5.139),(5.143)= max{C6 + C7V̄ (n), C8 + C9N̄(n)} . (5.381)
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Since (5.360) and (5.371), there exists N6 œ N such that for any n > N6

(5.381) = C8 + C9N̄(n) (5.360)= C8 + C9
4(C3 + C13)

ln(n + 1) ,

so that we obtain for (5.380) for n > N6 that

t
1
GV̄ (n),N̄(n)

2
= C8 + C9

4(C3 + C13)
ln(n + 1) + ·̄ (5.382)

Æ
A

C8 + C9
4(C3 + C13)

+ ·̄

B

ln(n + 1) (5.383)

with ·̄ given in (5.242), (5.268), (5.273), (5.282), respectively.
Since for the first factor in (5.383) we have by (5.44), (5.135), (5.144) and (5.145) that

C8 + C9
4(C3 + C13)

+ ·̄ = 16L

B
+

A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+
Ô

2fiKm

24fl
+ ·̄

(Db, Dc given in (5.25)), it follows for (5.382) that

t(GV̄ (n),N̄(n)) Æ C16 ln(n + 1) (5.384)

with

C16 := 16L

B
+

A

fl
⁄ Dc

Db

vf(v)dv

B≠1

+
Ô

2fiKm

24fl
+ ·̄

for any n > N6.

So far, we made a choice on N̄(n) and V̄ (n) (cf. (5.360), (5.371)) such that (5.351) for
C14 given in (5.375) is satisfied for n > Ñ (cf. (5.374)), and which determines “(GV̄ (n),N̄(n))
and gives an estimate for t(GV̄ (n),N̄(n)) (cf. (5.378) resp. (5.384)). To obtain the inequalities
in Lemma 5.9, we now give a lower bound for the r.h.s. of (5.349), namely for

—
1
(n + 1)t

1
GV̄ (n),N̄(n)

22
(5.385)

and an upper bound for the l.h.s. of (5.350), namely for

2
Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+ 8(n + 1)�
1
Gc

V̄ (n),N̄(n)

2
. (5.386)

To estimate (5.385) we use the fact that —(t) (cf. (5.5)) is non-increasing. This follows since
for t1 < t2 the supremum in (5.5) for —(t2) is taken over F≠Œ,0 ◊ Ft2,Œ ™ F≠Œ,0 ◊ Ft1,Œ.
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Let n > N6. By (5.384) and since — is non-increasing we estimate (5.385) with

—((n + 1)t
1
GV̄ (n),N̄(n)

2 (5.384)
Ø —(C16(n + 1) ln(n + 1)) . (5.387)

Since any root grows faster than the ln-function there exists N7 œ N such that for any
n > N7 it follows for the r.h.s. of (5.387) that

—(C16(n + 1) ln(n + 1)) Ø —((n + 1) 5
4 ) ,

i.e. we have for (5.387) that

—((n + 1)t
1
GV̄ (n),N̄(n)

2
Ø —((n + 1) 5

4 ) . (5.388)

For (5.386) we obtain by (5.378) and (5.351) that for n > max{Ñ , N5} (cf. (5.374))

2
Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+ 8(n + 1)�
1
Gc

V̄ (n),N̄(n)

2
(5.389)

Æ 2(1 ≠ C15(n + 1)≠ 1
2 )n+1 + C14(n + 1)≠5 . (5.390)

Observe that

ln(1 ≠ C15(n + 1)≠ 1
2 ) Æ ≠C15(n + 1)≠ 1

2 ,

so that for (5.390) we have that

2(1 ≠ C15(n + 1)≠ 1
2 )n+1 + C14(n + 1)≠5 Æ 2e≠C15(n+1)

1
2 + C14(n + 1)≠5, (5.391)

and altogether for (5.389) by (5.390) and (5.391)

2
Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+ 8(n + 1)�
1
Gc

V̄ (n),N̄(n)

2
Æ 2e≠C15(n+1)

1
2 + C14(n + 1)≠5 . (5.392)

Choosing

i(n) = (n + 1) 5
4 (5.393)

yields in (5.388) to

—((n + 1)t
1
GV̄ (n),N̄(n)

2
Ø —(i(n)) ,
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and in (5.392) to

2
Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+ 8(n + 1)�
1
Gc

V̄ (n),N̄(n)

2
Æ 2e≠C15i(n)

2
5 + C14i(n)≠4 .

Lemma 5.9 follows by choosing

A1 = C15 (5.394)

with C15 given in (5.379),

A2 = C14 (5.395)

with C14 given in (5.375) and

N = max{Ñ , N5, N6, N7} . (5.396)

Since GV̄ (n),N̄(n) satisfies the conditions of the Overlap-Lemma 5.2 (see (5.318)), and
Corollary 5.2 is about sets which satisfy the Overlap-Lemma 5.2, taking Corollary 5.2 and
Lemma 5.9 together we obtain that for A1, A2 as chosen in (5.394) resp. (5.395), N as
given in (5.396), N̄(n), V̄ (n), i(n) as defined in (5.360), (5.371) (5.393) respectively,

—(i(n))
(5.349)

< —((n + 1)t(GV̄ (n),N̄(n)))

(5.342)
< 2

Q

a
“

1
GV̄ (n),N̄(n)

2

2

R

b
n+1

+ 8(n + 1)�
1
Gc

V̄ (n),N̄(n)

2

(5.350)
< 2 exp(≠A1i(n) 2

5 ) + A2i(n)≠4 (5.397)

for all n > N . By this estimate for the —-coe�cient (cf. (5.4)) of the process Mt (cf. (5.7))
we finally can prove Proposition 5.1.

Proof of Proposition 5.1. Recall that E(|U(0)|2+”) < Œ is true for any ” > 0 (cf. Chapter
4). By the integral criterion we have that

⁄ Œ

0
—(t)

”
2+” dt < Œ …

Œÿ

j=0
—(j)

”
2+” < Œ , ” > 0 , (5.398)

i.e. we obtain Proposition 5.1 as soon as we can show that there exists ” > 0 such that
Œÿ

j=0
—(j)

”
2+” < Œ .
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By (5.397) there exist constants A1, A2, a N œ N such that for any n > N and i(n) =
(n + 1) 5

4

—(i(n)) < 2 exp
1
≠A1i(n) 2

5
2

+ A2i(n)≠4 , (5.399)

and since —(t) is non-decreasing, we have that for all n Ø N + 1

—(Âi(n)Ê + 1) Æ —(i(n))
(5.399)

< 2 exp
1
≠A1i(n) 2

5
2

+ A2i(n)≠4

Æ 2 exp
1
≠A1Âi(n)Ê 2

5
2

+ A2Âi(n)Ê≠4 . (5.400)

Therefore, it is useful to write

Œÿ

j=0
—(j)

”
2+” =

Âi(N+1)Êÿ

j=0
—(j)

”
2+” +

Œÿ

j=Âi(N+1)Ê+1
—(j)

”
2+” . (5.401)

Since the first sum on the r.h.s. in (5.401) is finite, we continue with the second sum in
(5.401) and obtain by (5.400) that

Œÿ

j=Âi(N+1)Ê+1
—(j)

”
2+” <

Œÿ

j=Âi(N+1)Ê

1
2 exp

1
≠A1j

2
5
2

+ A2j
≠4

2 ”
2+”

Æ
Œÿ

j=Âi(N+1)Ê

1
2 exp

1
≠A1j

2
5
22 ”

2+” +
1
A2j

≠4
2 ”

2+”

= 2
”

2+”

Œÿ

j=Âi(N+1)Ê

A

exp
A

≠ ”A1
2 + ”

j
2
5

BB

+ A
”

2+”
2

Œÿ

j=Âi(N+1)Ê
j≠ 4”

2+” .

(5.402)

Note that A1 > 0 and ”
2+” > 0, i.e. the first sum in (5.402) converges. The convergence of

the second sum in (5.402) follows if

j≠ 4”
2+” Æ j≠2 ,

which is satisfied for ” Ø 2. Hence, we obtain by (5.401) and (5.402) that for any ” Ø 2
Œÿ

j=0
—(j)

”
2+” < Œ .

Proposition 5.1 follows immediately by (5.398).
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6 Proof: D>0

In this chapter, we prove that

D = 2
⁄ Œ

0
E(U(0)U(t))dt > 0 . (6.1)

Together with the proof that Ut is –-mixing with (3.5) (see Section 5.2), we then obtain
our main result, since then we showed that our model satisfies all conditions of the fCLT
(Theorem 3.1), which gives Theorem 2.1, our main result. Note that

2
⁄ Œ

0
E(U(0)U(t))dt < Œ

follows by Theorem 3.1 from Proposition 5.1 (which is proved in Section 5.2).

The positivity of the di�usion constant (cf. (6.1)) follows as soon as we prove Condition
(3.6) of Theorem 3.1, namely that

sup
t

E(|R(t)|) (2.12)= sup
t

E
3----

⁄ t

0
U(s)ds

----

4
= Œ (6.2)

with R(t) given in (2.12) and E denotes the expectation w.r.t. the stationary measure of
Ut given in (4.4). Since by the Markov inequality for any C > 0

E(|R(t)|) Ø Cµ ◊ fl 1
2
(|R(t)| > C)

(2.12)= Cµ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

,

we may estimate the l.h.s. of (6.2) by

sup
t

E (|R(t)|) Ø C sup
t

µ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

. (6.3)

Now assume we can show that there exists Á > 0 such that for any C > 0

sup
t

µ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

> Á ,
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then we obtain by (6.3) that

sup
t

E(|R(t)|) Ø CÁ .

Since C can be chosen arbitrarily large, (6.2) follows, which is Condition (3.6) of Theorem
3.1, and with that we obtain (6.1).
Hence, (6.1) follows as soon we can prove following proposition.

Proposition 6.1. There exists Á > 0 such that for any C > 0

sup
t

µ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

> Á . (6.4)

Heuristically Proposition 6.1 says that Rt = {
s t

0 U(s)ds}tœR+ spreads unboundedly.
The idea of proving Proposition 6.1 is roughly the following. First, we add Q(0) tos t

0 U(s)ds, and we define

S(t) :=
⁄ t

0
U(s)ds + Q(0) (2.13)=

⁄ t

0
‡(s)V (s)ds + Q(0) (6.5)

and, for reasons that become clear later, we define S(t) with ‡(0) = 1. Note that S(t) is
a random variable on (�̂, F , µ) with �̂ given in (2.3) and µ given in (2.9), since for given
‡(0), {‡(t)}t>0 is a process on (�̂, F , µ). We first show that St := {S(t)}tœR+ spreads over
R. Since in this case no probability distribution exits, we observe S(t) on a torus Ik, intro-
ducing Sk(t). Sk(t) is a function of Q(t) and jk(t), where jk(t) is a new random variable we
introduce to describe Sk(t). Note that Sk(t) depends on Q(t), because by adding Q(0) we
linked S(t) to the position of the molecule. Then, we use a Markov process which contains
Q(t), jk(t) from which we can make conclusions about the distribution of Sk,t = {Sk(t)}tœR+
for t æ Œ and by that we show that St spreads unboundedly. Since S(t) is given by (6.5),
the spreading of

s t
0 U(s)ds follows and we obtain Proposition 6.1.

We start now by observing S(t) on a torus Ik, introducing by that Sk(t). Let

Ik := (≠2kL, 2kL] for k = 1, 2, ... (6.6)

and consider the process

Sk,t := {Sk(t)}tœR+ (6.7)

with

Sk(t) := S(t) mod Ik , (6.8)
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where

x mod (a, b] := x ≠ (b ≠ a)
7

x ≠ a

b ≠ a

8
(6.9)

with

ÂyÊ := max{k œ Z : k Æ y} . (6.10)

Note for later use that for z œ Z

x, xÕ œ (zb ≠ (z ≠ 1)a, (z + 1)b ≠ za] ∆
7

x ≠ a

b ≠ a

8
=

E
xÕ ≠ a

b ≠ a

F

. (6.11)

We now prove that for any k œ N Sk,t uniformly spreads over the torus as t approaches
infinity. Therefore, it is useful to encode Sk(t) in a more appropriate manner. Separate
the interval Ik into 2k intervals and numbering them, such that

(≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL) (6.12)

is the j-th interval with j œ {1, 2, ..., 2k ≠ 1}, where

(≠2kL, ≠2kL + L) fi (2kL ≠ L, 2kL) (6.13)

is the interval with number 0. Denote by

jk(t) œ {0, 1, 2, ..., 2k ≠ 1} =: Jk (6.14)

the number of the interval in which Sk(t) is at time t whereby jk(t) changes its value as
soon as

Sk(t) œ
€

jœZ
{≠(2k ≠ 1)L + 2(j ≠ 1)L} fl Ik , (6.15)

such that Sk(t) = ≠(2k ≠ 1)L + 2(j ≠ 1)L and jk(t) = j means that Sk goes through
≠(2k ≠ 1)L + 2(j ≠ 1)L from left to right, and Sk(t) = ≠(2k ≠ 1)L + 2(j ≠ 1)L and
jk(t) = j ≠ 1 means that Sk goes through ≠(2k ≠ 1)L + 2(j ≠ 1)L from right to left. Note
that by definition of Sk(t) (cf. (6.8)) and S(t) (cf. (6.5)) we have that jk(0) = k, since
Sk(0) = Q(0) œ [≠L, L].
We now show that Sk(t) is determined by Q(t) and jk(t), i.e. that Sk(t) is a function of
Q(t) and jk(t). This circumstance is based on the facts that Sk(t) is defined with ‡(0) = 1
and that the modulus Ik is such that jk(t) determines the value of ‡(t). With that, the
values of Q(t) and jk(t) give a good enough restriction for the possible values for Sk(t)
such that Sk(t) is fully determined.1

1
If one defined Sk,t such that ‡(0) = ≠1, Sk(t) would not be fully determined by Q(t) and jk(t) (also Q(0)

is necessary). Since in addition jk(t) would not determine ‡(t), the methods we use in the presented

proof cannot be transferred to this case.
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For the proof we use various assertions which follow by elementary algebra. Let us give
a short overview about the content of these assertions. First, we show by Assertion 6.1,
Assertion 6.2 and Assertion 6.3 how S(t) resp. Sk(t) depends on ‡(t), whereas Assertion
6.4 is about the dependence between Sk(t) and certain values of Q(t). Assertion 6.5 and
Assertion 6.6 are about jk(t). The first is about the relation to ‡(t), the latter shows how
jk(t) changes its value dependent on Q(t). By these assertions it becomes clear that jk(t)
changes its value i� ‡(t) changes its value, namely when the molecule is reflected at one
of the walls, and moreover we show that the value of ‡(t) can be derived by the value of
jk(t), such that in Lemma 6.1 we can prove that Sk(t) is fully determined by Q(t) and jk(t).

Before we show how Sk(t) (cf. (6.8)) depends on ‡(t), we have to show how S(t) (cf.
(6.5)) depends on ‡(t).

Assertion 6.1. Consider S(t) as defined in (6.5). If for some t > 0

‡(0) = 1 and ‡(t) = 1 ∆ S(t) œ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] (6.16)

and if

‡(0) = 1 and ‡(t) = ≠1 ∆ S(t) œ
€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] . (6.17)

Proof of Assertion 6.1. Let ‡(0) = 1. Since by definition ‡(t) changes its value, when
Q(t) œ {≠L, L}, we can follow from ‡(t) = 1 that the molecule is reflected at the walls
of � an even number of times during the time interval [0, t], and from ‡(t) = ≠1 that the
molecule is reflected during [0, t] an odd number of times.
Before we prove (6.16) and (6.17), we express S(t) in a more appropriate manner. Consider
the molecule is reflected during [0, t] nt Ø 1 times and denote by ·i, i œ {1, ..., nt} the time
of the i-th reflection, i.e.

Q(·i) œ {≠L, L} , i œ {1, ..., nt} . (6.18)

Then, we can write

S(t) (6.5)= Q(0) +
⁄ t

0
‡(s)V (s)ds

= Q(0) +
⁄ ·1

0
V (s)ds +

nt≠1ÿ

i=1
(≠1)i

⁄ ·i+1

·i

V (s)ds + (≠1)nt

⁄ t

·nt

V (s)ds . (6.19)
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Since

Q(0) +
⁄ ·1

0
V (s)ds = Q(·1) , (6.20)

⁄ ·i+1

·i

V (s)ds = Q(·i+1) ≠ Q(·i) (6.21)

and
⁄ t

·nt

V (s)ds = Q(t) ≠ Q(·nt) , (6.22)

we obtain for (6.19) that

S(t) = Q(0) +
⁄ ·1

0
V (s)ds +

nt≠1ÿ

i=1
(≠1)i

⁄ ·i+1

·i

V (s)ds + (≠1)nt

⁄ t

·nt

V (s)ds

(6.20),(6.21),(6.22)= Q(·1) +
nt≠1ÿ

i=1
(≠1)i(Q(·i+1) ≠ Q(·i)) + (≠1)nt(Q(t) ≠ Q(·nt))

=
ntÿ

i=1
(≠1)i+12Q(·i) + (≠1)ntQ(t) . (6.23)

Now consider ‡(t) = 1, i.e. the molecule is reflected nt œ 2N times during [0, t]. Then,
from (6.23) it follows that

S(t) =
ntÿ

i=1
(≠1)i+12Q(·i) + Q(t) . (6.24)

With (6.18) it follows for the sum in (6.24) that

ntÿ

i=1
(≠1)i+12Q(·i) œ

nt+1€

i=1
{≠2ntL + 4L(i ≠ 1)} . (6.25)

Since Q(t) œ [≠L, L], we have for (6.24) with (6.25) that

S(t) œ
nt+1€

i=1
[≠2ntL + 4L(i ≠ 1) ≠ L, ≠2ntL + 4L(i ≠ 1) + L] . (6.26)

Since for any nt œ 2N for the r.h.s. of (6.26) we have that

nt+1€

i=1
[≠2ntL + 4L(i ≠ 1) ≠ L, ≠2ntL + 4L(i ≠ 1) + L]

=
nt+1€

i=1
[(≠2nt + 4(i ≠ 1) ≠ 1)L, (≠2nt + 4(i ≠ 1) + 1)L]
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µ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] , (6.27)

it follows by (6.26) and (6.27) that

S(t) œ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] (6.28)

Consider now nt = 0. Then,

S(t) (6.5)= Q(t) œ [≠L, L] µ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] . (6.29)

(6.16) follows by (6.28) and (6.29).

Since (6.17) can be proven analogously, Assertion 6.1 follows.

By Assertion 6.1 we can make a statement about how Sk(t) (cf. (6.8)) depends on ‡(t).

Assertion 6.2. Let k œ N. Consider Sk(t) as given in (6.8). Then, if for some t > 0

‡(0) = 1 and ‡(t) = 1 ∆ Sk(t) œ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] fl Ik (6.30)

and if

‡(0) = 1 and ‡(t) = ≠1 ∆ Sk(t) œ
€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] fl Ik . (6.31)

Proof of Assertion 6.2. Consider ‡(0) = 1 and ‡(t) = 1. Then, by Assertion 6.1

S(t) œ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] . (6.32)

To prove (6.30) we have to show that the modulus Ik just restrict the range of values given
by (6.32), i.e. such that with (6.32)

S(t) mod Ik = Sk(t) œ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] fl Ik .

To begin we define

Modk :R æ Ik,

x ‘æ x mod Ik
(6.33)
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with Ik given in (6.6). We first show that for any boundary point of the subintervals in
(6.32), i.e. for any i œ Z ÷ l1, l2 œ Z such that

Modk((4i ≠ 1)L) = (4l1 ≠ 1)L , (6.34)
Modk((4i + 1)L) = (4l2 + 1)L . (6.35)

Let i œ Z. For the l.h.s. of (6.34) we have that

Modk((4i ≠ 1)L) (6.33)= (4i ≠ 1)L mod Ik

(6.6),(6.9)= (4i ≠ 1)L ≠ 4kL

E
(4i ≠ 1)L ≠ (≠2kL)

4kL

F

. (6.36)

Since by the definition of Â·Ê (cf. (6.10)) ÷ y1 œ Z such that

y1 =
E

(4i ≠ 1)L ≠ (≠2kL)
4kL

F

, (6.37)

we obtain for (6.36) that

Modk((4i ≠ 1)L) = 4iL ≠ L ≠ 4kLy1

= (4(i ≠ ky1) ≠ 1)L
= (4l1 ≠ 1)L . (6.38)

with

l1 := i ≠ ky1 œ Z . (6.39)

For the l.h.s. of (6.35) we have that

Modk((4i + 1)L) (6.33)= (4i + 1)L mod Ik

(6.6),(6.9)= (4i + 1)L ≠ 4kL

E
(4i + 1)L ≠ (≠2kL)

4kL

F

= (4i + 1)L ≠ 4kLy2 (6.40)
= (4l2 + 1)L (6.41)

with

l2 := i ≠ ky2 œ Z . (6.42)

Since (6.32) there is a i œ N such that

S(t) = s œ [(4i ≠ 1)L, (4i + 1)L] . (6.43)
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Having (6.11) in mind, we now distinguish if there is a z œ Z such that

[(4i ≠ 1)L, (4i + 1)L] ™ ((2z ≠ 1)2kL, (2z + 1)2kL] := Ik,z (6.44)

or if there is no such z, i.e.

@ z œ Z : [(4i ≠ 1)L, (4i + 1)L] ™ Ik,z . (6.45)

If (6.44), then by (6.11) we have that

y1 = y2

with y1 given in (6.37) and y2 given in (6.40) and with that

l1 = l2 (6.46)

with l1 given in (6.39) and l2 given in (6.42). With (6.43) it follows by the monotonicity
of Modk (cf. (6.33)) that

(4l1 ≠ 1)L (6.38)= Modk((4i ≠ 1)L) Æ Modk(s) Æ Modk((4i + 1)L) (6.41),(6.46)= (4l1 + 1)L .

i.e. with (6.43)

Sk(t) (6.8),(6.33)= Modk(s) œ [(4l1 ≠ 1)L, (4l1 + 1)L] µ
€

iœZ
[(4i ≠ 1)L, (4i + 1)L] fl Ik .

Now if (6.45), then by definition of Ik,z (cf. (6.44)) there is a z œ Z such that

[(4i ≠ 1)L, 4iL] œ Ik,z and (4iL, (4i + 1)L] œ Ik,z+1 .

We have then that if

s œ [(4i ≠ 1)L, 4iL] ∆

(4l1 ≠ 1)L (6.38)= Modk((4i ≠ 1)L) Æ Modk(s) Æ (4l1 ≠ 1)L + L

and if

s œ (4iL, (4i + 1)L] ∆ (4l2 + 1)L ≠ L < Modk(s) Æ Modk((4i + 1)L) (6.41)= (4l2 + 1)L ,

i.e. with (6.43) we have that

Sk(t) (6.8),(6.33)= Modk(s) œ[(4l1 ≠ 1)L, 4l1L] fi (4l2L, (4l2 + 1)L)
µ

€

iœZ
[(4i ≠ 1)L, (4i + 1)L] fl Ik .
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Since (6.31) can be proven analogously, Assertion 6.2 follows.

By Assertion 6.2 following assertion follows immediately.

Assertion 6.3. Let k œ N. Consider Sk(t) as given in (6.8). Then, if for some t > 0

‡(0) = 1 and Sk(t) œ
€

iœZ
((4i ≠ 1)L, (4i + 1)L) fl Ik ∆ ‡(t) = 1 (6.47)

and if

‡(0) = 1 and Sk(t) œ
€

iœZ
((4i ≠ 3)L, (4i ≠ 1)L) fl Ik ∆ ‡(t) = ≠1 .

Proof of Assertion 6.3. We show (6.47). Consider ‡(0) = 1. Then, (6.47) follows as soon
as we prove that if

‡(t) ”= 1 ∆ Sk(t) /œ
€

iœZ
((4i ≠ 1)L, (4i + 1)L) fl Ik . (6.48)

The l.h.s. of (6.48) is equivalent to ‡(t) = ≠1 and by Assertion 6.2 we have that

‡(t) = ≠1 ∆ Sk(t) œ
€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] fl Ik . (6.49)

Since

Ik \
Q

a
€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] fl Ik

R

b =
€

iœZ
((4i ≠ 1)L, (4i + 1)L) fl Ik

for the r.h.s. of (6.49) it follows that

Sk(t) œ
€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] fl Ik … Sk(t) /œ

€

iœZ
((4i ≠ 1)L, (4i + 1)L) fl Ik , (6.50)

and all in all (6.48) follows since we have for the l.h.s. of (6.48) that

‡(t) ”= 1 … ‡(t) = ≠1
(6.49)∆ Sk(t) œ

€

iœZ
[(4i ≠ 3)L, (4i ≠ 1)L] fl Ik
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(6.50)… Sk(t) /œ
€

iœZ
((4i ≠ 1)L, (4i + 1)L) fl Ik .

(6.47) follows by similar arguments but using (6.30) of Assertion 6.2.

It turns out, if Q(t) is given, the set of possible values of Sk(t) di�er dependent on
the value of jk(t) except if Q(t) œ {≠L, 0, L}. In the latter case the set of possible values
for Sk(t) are the same no matter which value jk(t) is. We can prove the following assertion.

Assertion 6.4. Let k œ N. Consider Sk(t) as defined in (6.8). Then, for t Ø 0

Q(t) = 0 … Sk(t) œ
€

iœZ
{2iL} fl Ik , (6.51)

and

Q(t) œ L … Sk(t) œ
€

iœZ
{(4i + 1)L} fl Ik , (6.52)

and

Q(t) œ ≠L … Sk(t) œ
€

iœZ
{(4i ≠ 1)L} fl Ik , (6.53)

Proof of Assertion 6.4. We show (6.51). First, we handle “∆”. Let

Q(t) = 0 . (6.54)

Consider the molecule is reflected nt Ø 1 times during [0, t] and denote by ·i the time of
the i-th reflection, i.e. Q(·i) œ {≠L, L} , i œ {1, ..., nt}. Hence, we can write S(t) as given
in (6.23) and with (6.54) it follows that

S(t) =
ntÿ

i=1
(≠1)i+12Q(·i) . (6.55)

Since for any i œ {1, ..., nt}

(≠1)i+12Q(·i) œ {≠2L, 2L} ,

we have for (6.55) that

S(t) =
ntÿ

i=1
(≠1)i+12Q(·i) œ

nt€

i=0
{≠nt2L + 4Li} . (6.56)

120



Now consider nt = 0, i.e. the molecule hasn’t been reflected during [0, t]. Then,

S(t) (6.5)= Q(t) (6.54)= 0 . (6.57)

Altogether we obtain with (6.56) and (6.57) that

Q(t) = 0 ∆ S(t) œ
Œ€

nt=0

nt€

i=0
{≠2ntL + 4Li}

=
€

iœZ
{2iL} . (6.58)

To prove “∆” of (6.51), we have to show that the modulus restrict the range of values
given by (6.58) in an appropriate way, i.e. such that if

S(t) œ
€

iœZ
{2iL} ∆ Sk(t) œ

€

iœZ
{2iL} fl Ik . (6.59)

Consider

S(t) = 2iL . (6.60)

If 2iL œ Ik then

Modk(2iL) (6.9)= 2iL . (6.61)

With

Sk(t) (6.8)= S(t) mod Ik
(6.33),(6.60)= Modk(2iL) (6.61)= 2iL œ Ik

the r.h.s. of (6.59) follows.
If 2iL /œ Ik we have that

Modk(2Li) (6.33)= 2Li mod Ik
(6.9)= 2iL ≠ 4kL

E
2iL + 2kL

4kL

F

.

Since Â·Ê œ Z by definition (cf. (6.10)), there is a y œ Z such that

Modk(2Li) = 2iL ≠ 4kLy = 2L(i ≠ 2ky) œ Ik , i ≠ 2ky œ Z (6.62)

By (6.62) we obtain that

Sk(t) (6.8)= S(t) mod Ik
(6.33),(6.60)= Modk(2iL) œ

€

iœZ
{2iL} fl Ik ,

and the r.h.s. of (6.59) follows.
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Altogether, by (6.58) and (6.59) we have shown “∆” of (6.51).

Now we show “≈” of (6.51).
Consider

Sk(t) œ
€

iœZ
{2iL} fl Ik .

We have to show that then Q(t) = 0 follows. Since for some appropriate constant y œ Z
we have that

Sk(t) (6.8)(6.9)= S(t) ≠ 4kL

E
S(t) + 2kL

4kL

F

= S(t) ≠ 4kLy ,

we obtain that if

Sk(t) œ
€

iœZ
{2iL} fl Ik ∆ S(t) œ

€

iœZ
{2iL} . (6.63)

Assume the molecule collides nt Ø 1 times with ≠L or L during [0, t], then we can use
(6.23) and write

S(t) =
ntÿ

i=1
(≠1)i+12Q(·i) + (≠1)ntQ(t) (6.64)

Since for any i œ {1, ..., nt}

(≠1)i+12Q(·i) œ {≠2L, 2L} ,

we have for the sum in (6.64) that
ntÿ

i=1
(≠1)i+12Q(·i) œ

nt€

i=0
{≠2ntL + 4Li} .

Let j such that
ntÿ

i=1
(≠1)i+12Q(·i) = ≠2ntL + 4jL . (6.65)

Plugging (6.65) into (6.64) we obtain that

S(t) =
ntÿ

i=1
(≠1)i+12Q(·i) + (≠1)ntQ(t)

(6.65)= ≠2ntL + 4jL + (≠1)ntQ(t) . (6.66)
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In addition by the r.h.s. of (6.63) we know that there is a m œ Z such that

S(t) = 2mL . (6.67)

Since Q(t) in (6.66) and m in (6.67) have to be such that

≠ 2ntL + 4jL + (≠1)ntQ(t) = 2mL

… (≠1)ntQ(t) = 2mL + 2ntL ≠ 4jL

… (≠1)ntQ(t) = 2L(m + nt ≠ 4j) . (6.68)

Since m + nt ≠ 4j œ Z and Q(t) œ [≠L, L] it follows from (6.68) that m = 4j ≠ nt = 0 and

Q(t) = 0 . (6.69)

Now consider nt = 0, i.e. the molecule hasn’t been reflected during [0, t]. Then,

S(t) (6.5)= Q(t) . (6.70)

By the r.h.s. of (6.63) there exists a m œ Z such that

S(t) = 2mL ,

and with (6.70) it follows that

2mL = Q(t) … m = 0, Q(t) = 0 . (6.71)

All in all we obtain by (6.69) and (6.71) that

Sk(t) œ
€

iœZ
{2iL} fl Ik ∆ Q(t) = 0 ,

which gives (6.51).

Since (6.52) and (6.53) follow by the arguments we used to prove (6.51), Assertion 6.4
follows.

The following assertion, which can be proved by Assertion 6.3 and Assertion 6.4, is about
the relation of jk(t) and ‡(t).

Assertion 6.5. Let k œ N and ‡(0) = 1. Consider t > 0 and jk(t) = j œ Jk (cf. (6.14)).
Denote by ·e the last time before time t, when the molecule was at ≠L or L. Then, if
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·e ”= t, i.e. ·e < t, and

j œ 2Z + k ∆ ‡(tÕ) = 1 , ·e Æ tÕ Æ t (6.72)

and if

j œ 2Z + k + 1 ∆ ‡(tÕ) = ≠1 , ·e Æ tÕ Æ t . (6.73)

Note that Assertion 6.5 says that jk(t) and ‡(t) change their values at the same time
namely when Q(t) œ {≠L, L}.

Proof of Assertion 6.5. Let ‡(0) = 1 and ·e < t. Consider

jk(t) = j œ 2Z + k .

Then, by definition of jk(t) with (6.12), it follows that

Sk(t) œ
€

jœ2Z+k

[≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] fl Ik , (6.74)

and by definition of ·e it holds that

Q(t) /œ {≠L, L} .

By Assertion 6.4 we have that

Q(t) /œ {≠L, L} … Sk(t) /œ
€

iœZ
{2iL} fl Ik

which yields with (6.74) to

Sk(t) œ
€

jœ2Z+k

(≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL) fl Ik . (6.75)

Since for the r.h.s. of (6.75) we have that
€

jœ2Z+k

(≠(2k≠1)L+2(j≠1)L, ≠(2k≠1)L+2jL)flIk =
€

iœZ
((4i≠1)L, (4i+1)L)flIk (6.76)

by Assertion 6.3 we can follow from (6.75) and (6.76) that

‡(t) = 1 .

Since ‡(t) changes its value i� the molecule is at L or ≠L, we have that ‡(·e) = 1, and
(6.72) follows.
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Since (6.73) follows by similar reasoning, we obtain Assertion 6.5.

Now we show how jk(t) changes its value dependent on Q(t).

Assertion 6.6. Let k œ N. Consider jk(t) as defined in (6.14) and underneath. Denote
by ·e the last time before time t, when the molecule was at ≠L or L, i.e. Q(·e) œ {≠L, L}
and by ·e≠ the time right before ·e. Then, if

jk(t) = j ∆ jk(tÕ) = j, ·e Æ tÕ Æ t and jk(·e≠) ”= j .

Proof of Assertion 6.6. Since by definition, jk(t) changes its value if and only if

Sk(t) œ
€

jœZ
{≠(2k ≠ 1)L + 2(j ≠ 1)L} fl Ik

(cf. (6.15)) and since with

€

jœZ
{≠(2k ≠ 1)L + 2(j ≠ 1)L} fl Ik =

Q

a
€

iœZ
{(4i ≠ 1)L} fi

€

iœZ
{(4i + 1)L}

R

b fl Ik

we obtain by Assertion 6.4 that

Sk(t) œ
€

jœZ
{≠(2k ≠ 1)L + 2(j ≠ 1)L} fl Ik … Q(t) œ {≠L, L} ,

and Assertion 6.6 follows.

Finally, by Assertion 6.4, Assertion 6.5 and Assertion 6.6 we can prove that Sk(t) (cf.
(6.8)) is determined by Q(t) and jk(t), i.e. Sk(t) is a function of Q(t), jk(t).

Lemma 6.1. Let k œ N. Consider ‡(0) = 1. For any t Ø 0, Sk(t) (cf. (6.8)) is determined
by Q(t) and jk(t) (cf. (6.14)) with

f :[≠L, L] ◊ Jk æ Ik,

(Q(t), jk(t)) ‘æ Sk(t)
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where

Sk(t) =

Y
________]

________[

Q(t) + 2L(jk(t) ≠ k) , if jk(t) œ (2Z + k)\{0}
≠Q(t) + 2L(jk(t) ≠ k) , if jk(t) œ (2Z + k + 1)\{0} .
Q(t) ≠ 2kL , if jk(t) = 0 œ 2Z + k, Q(t) œ [0, L]
Q(t) + 2kL , if jk(t) = 0 œ 2Z + k, Q(t) œ [≠L, 0)
≠Q(t) + 2kL , if jk(t) = 0 œ 2Z + k + 1, Q(t) œ [0, L]
≠Q(t) ≠ 2kL , if jk(t) = 0 œ 2Z + k + 1, Q(t) œ [≠L, 0)

(6.77)

Proof of Lemma 6.1. Consider ‡(0) = 1 and jk(t) = j œ Jk \ {0}. Then, by definition of
jk(t) (cf. (6.14)) with (6.12) we have that

jk(t) = j ∆ Sk(t) œ [≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] . (6.78)

Denote by ·e the last time at which the molecule was reflected at one of the walls before
t, i.e. Q(·e) = L or Q(·e) = ≠L. Assume that

·e ”= t

i.e.

·e < t (6.79)

Consider

Q(·e) = L . (6.80)

Then, by Assertion 6.4

Sk(·e) œ
€

iœZ
{(4i + 1)L} fl Ik , (6.81)

and by Assertion 6.6

jk(·e) = j . (6.82)

Consider j œ 2Z + k. With (6.82) we have by (6.78) and (6.81) that

Sk(·e) œ[≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] fl
€

iœZ
{(4i + 1)L} fl Ik

= {≠(2k ≠ 1)L + 2jL}
= {L + 2L(j ≠ k)} . (6.83)

Further, by definition of ·e and Assertion 6.5 we have that ‡(tÕ) = 1 for ·e Æ tÕ Æ t. Since

126



then

Sk(t) (6.8)= Sk(·e) +
⁄ t

·e

‡(s)V (s)ds = Sk(·e) +
⁄ t

·e

V (s)ds , (6.84)

we obtain with

Q(t) = Q(·e) +
⁄ t

·e

V (s)ds , (6.85)

that

Sk(t) (6.84)= Sk(·e) +
⁄ t

·e

V (s)ds

(6.83)= L + 2L(j ≠ k) +
⁄ t

·e

V (s)ds

(6.80)= Q(·e) +
⁄ t

·e

V (s)ds + 2L(j ≠ k)
(6.85)= Q(t) + 2L(j ≠ k) ,

which gives the first line of (6.77).
If j œ 2Z + k + 1 by Assertion 6.4 and (6.78) it follows that

Sk(·e) œ[≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] fl
€

iœZ
{(4i + 1)L} fl Ik

= {≠(2k ≠ 1)L + 2(j ≠ 1)L}
= {≠L + 2L(j ≠ k)} . (6.86)

By Assertion 6.5 we have that ‡(tÕ) = ≠1 for ·e Æ tÕ Æ t. By

Sk(t) = Sk(·e) +
⁄ t

·e

‡(s)V (s)ds = Sk(·e) ≠
⁄ t

·e

V (s)ds (6.87)

and (6.85) we obtain that

Sk(t) (6.87)= Sk(·e) ≠
⁄ t

·e

V (s)ds

(6.86)= ≠L + 2L(j ≠ k) ≠
⁄ t

·e

V (s)ds

(6.85)= ≠Q(t) + 2L(j ≠ k) ,

which gives the second line of (6.77).
Using the same method, (6.77) follows for j = 0.
If Q(·e) = ≠L we obtain (6.77) by the same arguments.
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We considered in (6.79) that ·e < t. Now assume that

·e = t . (6.88)

Consider

Q(·e) = L . (6.89)

If j œ 2Z + k \ {0} we have by (6.78) and Assertion 6.4 that

Sk(t) = Sk(·e) œ[≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] fl
€

iœZ
{(4i + 1)L} fl Ik

= {≠(2k ≠ 1)L + 2jL}
= {L + 2L(j ≠ k)} , (6.90)

i.e.

Sk(t) (6.88)= Sk(·e)
(6.89),(6.90)= Q(·e) + 2L(j ≠ k) (6.88)= Q(t) + 2L(j ≠ k) .

If j œ 2Z + k + 1 \ {0} by Assertion 6.4 and (6.78) it follows that

Sk(t) = Sk(·e) œ[≠(2k ≠ 1)L + 2(j ≠ 1)L, ≠(2k ≠ 1)L + 2jL] fl
€

iœZ
{(4i + 1)L} fl Ik

= {≠(2k ≠ 1)L + 2(j ≠ 1)L}
= {≠L + 2L(j ≠ k)} , (6.91)

which gives

Sk(t) (6.88)= Sk(·e)
(6.91),(6.89)= ≠Q(·e) + 2L(j ≠ k) (6.88)= ≠Q(t) + 2L(j ≠ k) .

We proceed similar if j = 0 or Q(·e) = ≠L, and all in all Lemma 6.1 follows.

As mentioned before, we may determine the distribution of Sk,t for t æ Œ, if we find a
stationary Markov process which contains Sk(t) - or by Lemma 6.1: which contains Q(t)
and jk(t). But since the value of jk(0) is determined, to obtain a Markov process with
stationary measure we have to introduce a more general process such that “jk(0)” may
take any j œ Jk (cf. (6.14)).
Denote by

jl
k(t) œ Jk

the random variable which is the number of the subinterval (cf. (6.12)) in which

Sl
k(t) :=

1
(≠1)2k+lSk(t) + 2Ll

2
modIk , l œ {≠k, ≠k + 1, ..., k ≠ 1} (6.92)
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is at time t. Note that jl
k(0) = k + l by definition of Sl

k(t) and for l = 0, Sl
k(t) = Sk(t) (cf.

(6.8)), i.e. j0
k(t) = jk(t) with jk(t) defined in (6.14).

Further we introduce the process S̃k(t), where j̃k(t) œ Jk is the number of the subinterval
(cf. (6.12)) where S̃k(t) is at time t. S̃k(t) is defined as (6.92) but the value of j̃k(0) is
distributed according to some initial distribution (counting measure) fl̃l.
We now prove that S̃k(t) is a function of Q(t) and j̃k(t).

Corollary 6.1. For any t Ø 0, S̃k(t) is determined by Q(t) and j̃k(t) by the function

f :[≠L, L] ◊ Jk æ Ik,

(Q(t), j̃k(t)) ‘æ S̃k(t) (6.93)

where f is given in Lemma 6.1.

Proof of Corollary 6.1. We show that Sl
k(t) as defined in (6.92) is determined by jl

k(t) and
Q(t) by the function f as given in Lemma 6.1, i.e.

Sl
k(t) =

Y
________]

________[

Q(t) + 2L(jl
k(t) ≠ k) , if jl

k(t) œ (2Z + k) \ {0}
≠Q(t) + 2L(jl

k(t) ≠ k) , if jl
k(t) œ (2Z + k + 1) \ {0} .

Q(t) ≠ 2kL , if jl
k(t) = 0 œ 2Z + k, Q(t) œ [0, L]

Q(t) + 2kL , if jl
k(t) = 0 œ 2Z + k, Q(t) œ [≠L, 0)

≠Q(t) + 2kL , if jl
k(t) = 0 œ 2Z + k + 1, Q(t) œ [0, L]

≠Q(t) ≠ 2kL , if jl
k(t) = 0 œ 2Z + k + 1, Q(t) œ [≠L, 0) .

(6.94)

By that, Corollary 6.1 follows immediately, since f doesn’t di�er in l.
We consider in the following that

jl
k(t) ”= 0 . (6.95)

The proof for the cases where jl
k(t) = 0 follow analogously.

Consider

l œ 2Z . (6.96)

Then, we obtain for Sl
k(t) that

Sl
k(t) (6.92)= (Sk(t) + 2Ll) modIk . (6.97)

Since Sl
k(t) moves at any time in the same direction as Sk(t) but with a distance of 2lL,
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we have that

jl
k(t) = (jk(t) + l) mod 2k . (6.98)

By Lemma 6.1 we obtain for (6.97) that

Sl
k(t) (6.92)= (f(Q(t), jk(t)) + 2Ll) modIk . (6.99)

We now show that

jl
k(t) œ 2Z + k … jk(t) œ 2Z + k (6.100)

and

jl
k(t) œ 2Z + k + 1 … jk(t) œ 2Z + k + 1 . (6.101)

We start with “∆” of (6.100). Since (6.96), there is a n œ Z such that

l = 2n (6.102)

and we have that for some p œ Z

jl
k(t) (6.98)= (jk(t) + l) mod 2k

(6.102)= (jk(t) + 2n) mod 2k = jk(t) + 2n ≠ p2k . (6.103)

If jl
k(t) œ 2Z + k, i.e. there is a m œ Z such that

jl
k(t) = 2m + k ,

we obtain by (6.103) that

jk(t) + 2n ≠ p2k = 2m + k … jk(t) = 2(m ≠ n + p) + k . (6.104)

Since m ≠ n + p œ Z the r.h.s. of (6.100) follows.
Now we show “≈” of (6.100). Consider jk(t) œ 2Z + k, i.e. there is a m œ Z such that

jk(t) = 2m + k . (6.105)

We use again (6.103) and we obtain that

jl
k(t) (6.103)= jk(t) + 2n ≠ p2k

(6.105)= 2m + k + 2n ≠ p2k

= 2(m + n ≠ pk) + k , (6.106)
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which gives that

jl
k(t) œ 2Z + k .

(6.104) and (6.106) give (6.100). (6.101) follows by the same arguments.
All in all we obtain for (6.99) by (6.100) and (6.101) that with (6.96)

Sl
k(t) =

I
(Q(t) + 2L(jk(t) ≠ k) + 2lL) modIk , if jk(t) œ 2Z + k
(≠Q(t) + 2L(jk(t) ≠ k) + 2lL) modIk , if jk(t) œ 2Z + k + 1 .

(6.98)=
I

Q(t) + 2L(jl
k(t) ≠ k) , if jl

k(t) œ 2Z + k
≠Q(t) + 2L(jl

k(t) + l ≠ k) , if jl
k(t) œ 2Z + k + 1 .

Now let

l œ 2Z + 1 , (6.107)

i.e. there is a n œ Z such that

l = 2n + 1 . (6.108)

With (6.108) we have that

Sl
k(t) (6.92)= (≠Sk(t) + 2Ll) modIk , (6.109)

i.e. since Sl
k(t) moves in opposite direction as Sk(t) and Sl

k(t) starts in jl
k(0) = k + l with

distance 2lL to Sk(0), we have that

jl
k(t) = (k + l ≠ (jk(t) ≠ k)) mod 2k = (2k ≠ jk(t) + l) mod 2k . (6.110)

By Lemma 6.1 we have for (6.109) that

Sl
k(t) (6.92)= ≠ (f(Q(t), jk(t)) + 2Ll) modIk

=
I

≠(Q(t) + 2L(jk(t) ≠ k) + 2lL) modIk , if jk(t) œ 2Z + k
≠(≠Q(t) + 2L(jk(t) ≠ k) + 2lL) modIk , if jk(t) œ 2Z + k + 1

=
I

(≠Q(t) + 2L(≠jk(t) + k ≠ l)) modIk , if jk(t) œ 2Z + k
(Q(t) + 2L(≠jk(t) + k ≠ l)) modIk , if jk(t) œ 2Z + k + 1 .

(6.111)

Now we show that

jl
k(t) œ 2Z + k … jk(t) œ 2Z + k + 1 (6.112)
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and

jl
k(t) œ 2Z + k + 1 … jk(t) œ 2Z + k . (6.113)

We show “∆” of (6.112). We have that

jl
k(t) (6.110)= (2k ≠ jk(t) + l) mod 2k

(6.108)= (2k ≠ jk(t) + 2n + 1) mod 2k

= 2k ≠ jk(t) + 2n + 1 ≠ p2k , (6.114)

for some appropriate p œ Z. Consider jl
k(t) œ 2Z + k, i.e. there is a m œ Z such that

jl
k(t) = 2m + k . (6.115)

By (6.114) and (6.115) jk(t) has to be such that

2k ≠ jk(t) + 2n + 1 ≠ p2k = 2m + k

… jk(t) = k + 2n ≠ 2m + 1 .

i.e.

jk(t) œ 2Z + k + 1 .

We show “≈” of (6.112). Consider

jk(t) œ 2Z + k + 1 ,

i.e. there is a m œ Z such that

jk(t) œ 2m + k + 1 . (6.116)

Plugging (6.116) into (6.114) gives

jl
k(t) (6.114)= 2k ≠ jk(t) + 2n + 1 ≠ p2k

(6.116)= 2k ≠ 2m + k + 1 + 2n + 1 ≠ p2k

= 2(k ≠ m + 1 + n ≠ pk) + k ,

which gives

jl
k(t) œ 2Z + k .

This ends the proof of (6.112). (6.113) follows by the same arguments.
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By (6.112) and (6.113) we finally obtain for (6.111) with (6.107) that

Sl
k(t) =

I
(≠Q(t) + 2L(≠jk(t) + k ≠ l)) modIk , if jk(t) œ 2Z + k
(Q(t) + 2L(≠jk(t) + k ≠ l)) modIk , if jk(t) œ 2Z + k + 1 .

(6.110)=
I

Q(t) + 2L(jl
k(t) ≠ k) , if jl

k(t) œ 2Z + k
≠Q(t) + 2L(jl

k(t) ≠ k) , if jl
k(t) œ 2Z + k + 1 .

This gives (6.94) for the case (6.95). Recall that the remaining cases can be proven by
similar arguments.

We have shown in (6.94) that for any l œ {≠k, ≠k + 1, ..., k ≠ 1}

Sl
k(t) = f(Q(t), jl

k(t))

where f is given in Lemma 6.1.

We now define the process M̃k,t which contains Q(t) and j̃k(t) and by which we determine
the distribution of Sk,t (cf. (6.7)) for t æ Œ.
We consider the process

M̃k,t : = {Zk(t)}tœR+ (6.117)

with

Zk(t) :=
1
Q(t), V (t), qi(t), vi(t), j̃k(t)

2
, (6.118)

where j̃k(t) is defined underneath (6.92). The process is defined on �̂ ◊ Jk (cf. (2.3),
(6.14)) with state space �̂

�
◊ Jk, where �̂

�
is the set of all configurations of the particles

in �.

Lemma 6.2. The process M̃k,t as defined in (6.117) is a Markov process with stationary
measure

�k(dz) = µ ◊ fljk
(Zk(0) œ dz) , (6.119)

where µ is given in (2.9) and fljk
is the counting measure with equal weight for any j œ Jk

(cf. (6.14)).

Proof of Lemma 6.2. The Markov property of M̃k,t follows by the same reasoning which
we used to prove Lemma 5.1. Note that the evolution of j̃k(t) is apart from the incoming
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atoms deterministic. Further, {j̃k(t), t > ·} is determined by

Zk(·) = (Q(·), V (·), qi(·), vi(·), j̃k(·))

and all atoms entering � after time · : {j̃k(t), t > ·} is determined by {S̃k(t), t > ·}.
{S̃k(t), t > ·} is determined by S̃k(·) and the incoming atoms after time · . Since S̃k(·)
is a function of Zk(·) (cf. Corollary 6.1) , {j̃k(t), t > ·} is determined by Zk(·) and all
atoms entering after time · .

To show the stationarity we make use of the Skew-Product-Lemma 4.2. We consider X
to be the phase space of the system of all particles, i.e.

X = �̂

(cf. (2.3)). The measure › is the product of ideal gas measure with Gibbs measure of the
molecule, i.e.

› = µ

given in (2.9). Let

Y = Jk

with Jk given in (6.14).
We consider the evolution

�̃t(Ê̂, j) :=
1
�t(Ê̂), ‰(Ê̂)

t (j)
2

, Ê̂ œ �̂, j œ Jk , (6.120)

where �t is the dynamical evolution of the system of all particles (cf. (2.10)), and

‰(Ê̂)
t : Jk æ Jk,

j̃k(0) ‘æ j̃k(t) .

To prove the stationarity of M̃k,t w.r.t. the measure given in (6.119), by the Skew-Product-
Lemma it is enough to show that ‰(Ê̂)

t preserves fljk
, what we show now. Define Aj,i µ �̂

with

Aj,i :=
I

Ê̂ : j̃k(0) = j ∆ j̃k(t) =
I

j + i , if i Æ 2k ≠ 1 ≠ j
j + i ≠ 2k , if i > 2k ≠ 1 ≠ j

J

with i œ {0, 1, ..., 2k ≠1}. The set Aj,i includes all the initial conditions for which the value
of j̃k “grows” (in mod 2k) by i steps during [0, t] if j̃k(0) = j. Since the value of j̃k has no
a�ect on the evolution of the particles, it follows by the dynamics of j̃k(t) that

Aj,i = AjÕ,i (6.121)
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if jÕ œ j + 2Z and

Aj,i = AjÕ,≠i (6.122)

if jÕ œ j + (2Z + 1). Note that for given j œ Jk

Aj,i fl Aj,iÕ = ÿ for i ”= iÕ, and
2k≠1€

i=0
Aj,i = �̂ .

Consider now Ê̂ œ Aj,i for some given i œ {0, ..., 2k ≠ 1}, j œ Jk, then with (6.121) and
(6.122) either

1
‰(Ê̂)

t

2≠1
(jÕÕ) =

I
jÕÕ ≠ i , if jÕÕ Ø i
jÕÕ ≠ i + 2k , if jÕÕ < i

(6.123)

or
1
‰(Ê̂)

t

2≠1
(jÕÕ) =

I
jÕÕ + i , if jÕÕ Æ 2k ≠ 1 ≠ i
jÕÕ + i ≠ 2k , if jÕÕ > 2k ≠ 1 ≠ i

, (6.124)

i.e. if (6.123) and jÕÕ Ø i we obtain that

fljk

31
‰(Ê̂)

t

2≠1
(jÕÕ)

4
(6.123)= fljk

(jÕÕ ≠ i) = flk(jÕÕ) (6.125)

and if jÕÕ < i that

fljk

31
‰(Ê̂)

t

2≠1
(jÕÕ)

4
(6.123)= fljk

(jÕÕ ≠ i + 2k) = flk(jÕÕ) . (6.126)

Note that the last equation in (6.125) resp. in (6.126) follows since fljk
is the counting

measure with equal weight to any j œ Jk. By the same arguments we obtain that if
(6.124) and jÕÕ Æ 2k ≠ 1 ≠ i that

fljk

31
‰(Ê̂)

t

2≠1
(jÕÕ)

4
= flk(jÕÕ) (6.127)

and if jÕÕ > 2k ≠ 1 ≠ i that

fljk

31
‰(Ê̂)

t

2≠1
(jÕÕ)

4
= flk(jÕÕ) . (6.128)

Since (6.123), (6.124), (6.125), (6.126), (6.127) and (6.128) hold for any j œ Jk and any
i œ {0, 1, ..., 2k ≠ 1} it follows that ‰(Ê̂)

t preserves fljk
.

Finally, we consider

◊ = fljk
,
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and we obtain by the Skew-Product-Lemma that �̃t (cf. (6.120)) preserves the measure

µ ◊ fljk
.

Now consider the extended probability space

�jk
:=

1
�̂ ◊ Jk, F ◊ P(Jk), µ ◊ fljk

2
.

Since Zk(t) (cf. (6.118)) is a function of �̃t (cf. (6.120)), which is a measure preserving
transformation on �jk

, the stationary measure of M̃k,t (cf. (6.117)) is

�k(dz) = µ ◊ fljk
(Zk(0) œ dz) .

With that Lemma 6.2 follows.

To determine the distribution of Sk,t for t æ Œ we use following Lemma. Denote by
�t

k,z, z œ �̂
�

◊ Jk the transition probability of the process M̃k,t (cf. (6.117)). Let „ be
an initial distribution, then „�t

k(·) =
s

„(dz)�t
k,z(·) is the distribution at time t of M̃k,t

starting in „.

Lemma 6.3. Consider the process M̃k,t as defined in (6.117). Then,

||„�t
k ≠ µ ◊ fljk

|| æ 0 as t æ Œ ,

where „ is an initial distribution and µ ◊ fljk
is given in (6.119).

Note, since Sk(t) is a function of Q(t) and j̃k(t) (given j̃k(0) = k) (cf. Assertion 6.1) and
since M̃k,t contains these variables, by Lemma 6.3 we then obtain the distribution of Sk,t

for t æ Œ by choosing the appropriate initial measure „. Before we show this, we prove
Lemma 6.3.

The idea of proving Lemma 6.3 is the following: We make use of the Harris Theorem
(see [GLR82]):

Let (�, fi, P ) be an ergodic, aperiodic Harris chain with stationary distribution fi. Then,
for n œ N and fi a.e. › œ �

||P n
› ≠ fi|| æ 0, as n æ Œ . (6.129)

136



For the definition of ergodicity, aperiodicity and Harris see [GLR82]. To make use of
the Harris Theorem we consider M̃k,t in discrete time: Let · > 0. Then, M̃k,t is ob-
served only at times which are integer multiples of · , which defines the Markov process
M̃k,n· = {Zk(n·)}nœN for any · > 0 with transition probability �t

k,z, t œ ·N and stationary
measure µ ◊ fljk

(cf. (6.119)). Proving that M̃k,n· is an ergodic, aperiodic Harris chain for
any · > 0, we follow essentially the arguments in [GLR82], who showed Harris mixing, i.e.
(6.129), of a related Markov process.

To show that M̃k,n· is an ergodic, aperiodic Harris chain for any · > 0, it is enough
to establish following lemma, which is about the continuous Markov process M̃k,t (cf.
(6.117)).
Let P̃k denote the path measure induced by M̃k,t and let P̃k,z denote the conditional path
measure given Zk(0) = z, z œ �̂

�
◊ Jk.

Lemma 6.4. There exists a set �̄ µ �̂
�

◊ Jk with µ ◊ fljk
(�̄) = 1, such that the family

of measures {Pk,z(dṼ2, d·̃2),Pk,zÕ(dṼ2, d·̃2); z, zÕ œ �̄} are overlapping, where ·̃2 is a time
where the molecule is alone and Q(·̃2) = L and j̃k(·̃2) = k, V (·̃2) = Ṽ2.

See [GLR82] for the definition of overlap of a family of measures.

Since the strategy of the proof is the same as in Section 5.2, we shall only point out some
essential changes which arise from observing the process on the torus Ik, k œ N (which is
arbitrary large with growing k), followed by some ideas how to establish overlap.

Proof of Lemma 6.4. Let �̄ = {z œ �̂
�

◊ Jk : ·1 < Œ Pz a.s.}, where ·1 is the time, when
for the first time the molecule hits the wall at L and is alone in the interval. From Theorem
A in Appendix A in [GLR82], it follows that

µ ◊ fljk
(�̄) = 1 . (6.130)

Note since in our model the atoms lie to both sides of the molecule, we have to modify
set A in the proof of Theorem A in [GLR82] slightly as follows. First, we send in one
su�ciently large atom from the right, such that the molecule pushes all atoms to its left
out of the interval. Then, we are in the same situation as in [GLR82], and continue as in
[GLR82], to show (6.130).
The arguments that the family of measures

{Pk,z(dṼ2, d·̃2),Pk,zÕ(dṼ2, d·̃2), z, zÕ œ �̄}
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are overlapping, are similar as in the proof of Overlap-Lemma 5.2: Besides the particles in
the interval, one now has to control the value of jk(t) instead of the value of ‡(t). On the
one hand the argumentation is even simpler, since only pairwise overlapping is required
(we don’t need an explicit overlap set, which in Overlap-Lemma 5.2 is necessary to give
an explicit rate). The requirement of pairwise overlapping allows to choose V2, the set
of molecular velocity at time ·2, dependent on ·1, V1, · Õ

1, V Õ
1 , which makes it easier to find

an overlap set for Pk,z(dṼ2d·̃2) and Pk,zÕ(dṼ2d·̃2). On the other hand there is one more
di�culty, since we have to control the value of j̃k, which is the number of the subinterval
where S̃k “is” at a certain time. The larger k, the larger the torus Ik (cf. (6.6)), i.e. the
more possibilities for the position of S̃k, i.e. the larger k, the later the overlap may occur.
But since S̃k, i.e. j̃k is periodic on the torus Ik, one can show that overlap occurs in finite
time.

We give some ideas how to construct an overlap set. Consider Zk(0) = z œ �̄. Denote
by ·̃1 the time, when the molecule is alone in �, Q(·̃1) = L and j̃k(·̃1) œ {k, k + 1} (i.e. by
Corollary 6.1 S̃k(t) = L) for the first time after t = 0 and recall that ·1 is the time when
the molecule is alone with Q(·1) = L (no requirement on j̃k(·1)). Then, either

·1 = ·̃1

or

·̃1 > ·1 .

In the latter case, i.e. if j̃k(·1) /œ {k, k + 1}, we consider the event that no atom enters �
between ·1 and ·̃1. Let V1 := V (·1). Then, since S̃k(t) is periodic on Ik, latest at time

·1 + (2k ≠ 1)4L

|V1|

S̃k(t) is in [≠L, L], i.e.

·̃1 < ·1 + (2k ≠ 1)4L

|V1|
< Œ .

the latter follows since |V1| > 0. Denote by Ṽ1, ‡̃1 the value of V resp. ‡ at time ·̃1. Now
we distinguish two scenarios.
Scenario I: If j̃k(·̃1) = k + 1 (i.e. S̃k “goes through L from left to right”), we send in an
atom from the left such that the molecular post collision velocity V Õ > 0. The collision
shall take place after the molecule was at L, but before the molecule reaches ≠L the first
time after ·̃1. Let ·̃2 be the time, when the molecule reaches L again.
Scenario II: If j̃k(·̃1) = k (i.e. S̃k “goes through L from right to left”), we send in a very
fast atom from the left, such that V Õ > ” > 0 where ” is some positive constant, and before
the molecule reaches ≠L the first time after ·̃1. Then, we send in a second atom from the
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left, such that the collision takes place after the molecule is reflected at L and before it
reaches ≠L, and such that V Õ > 0. Let ·̃2 be the time, when the molecule reaches L the
first time after the second collision.
Note that in Scenario I one has to pay attention to virtual collisions. Let v be the velocity
of the incoming atom. If |v| < |Ṽ1|, the interval of collision time described above (collision
takes place after the molecule was at L, but before it reaches ≠L) has to be limited,
otherwise the atom has to be in � before ·̃1 to reach the molecule in time, which is not
possible. Since in Scenario II the necessary atoms are both very fast (one chooses ” large
enough), virtual collisions doesn’t play any role here.
Choosing ” large enough, by elementary calculations one obtains that one can send in the
atoms in both scenarios such that for equal Ṽ1, ·̃1 the molecule is alone in � and reaches L
at equal time

·̃2 œ
A

max
I

·̃1 + L

|Ṽ1|
+ L

|Ṽ2|
, ·̃1 + 2L

|Ṽ2|
2m

M + m

J

, ·̃1 + 2L

|Ṽ1|
+ 2L

|Ṽ2|

B

, (6.131)

with equal Ṽ2 where Ṽ2 may take any value with

Ṽ2 < 0 . (6.132)

To establish pairwise overlap, the (Ṽ2, ·̃2)-sets defined by (6.131) and (6.132) with |Ṽ1| >
0, ·̃1 < Œ, have to be pairwise non-disjoint for any Ṽ1, Ṽ1

Õ
< 0 and any finite ·̃1, ·̃1

Õ. This
is the case if there is a Ṽ2-set

V2 := (a, b) µ (≠Œ, 0) (6.133)

such that

max
I

·̃1 + L

|Ṽ1|
+ L

|Ṽ2|
, ·̃1 + 2L

|Ṽ2|
2m

M + m

J

< ·̃1
Õ + 2L

|Ṽ1
Õ|

+ 2L

|Ṽ2|

and

max
I

·̃1
Õ + L

|Ṽ1
Õ|

+ L

|Ṽ2|
, ·̃1

Õ + 2L

|Ṽ2|
2m

M + m

J

< ·̃1 + 2L

|Ṽ1|
+ 2L

|Ṽ2|

for any Ṽ2 œ V2. This is true for |Ṽ2| small enough, and since a, b in (6.133) can be chosen
arbitrary close to zero, Lemma 6.4 follows by an appropriate choice of V2.

From the overlap in the path measures we obtain overlap for the transition probabilities.
Refering to [GLR82] we formulate

Lemma 6.5. (i) For any z1, z2 œ �̄ �t
k,z1 , �t

k,z2 are overlapping for t su�ciently large.
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(ii) For any z œ �̄ �t
k,z and �k are overlapping for t su�ciently large.

For the proof of Lemma 6.5 we can refer to the proof given in [GLR82] or to the arguments
we used in the proof of Lemma 5.8.
By the same reference we have the following lemma, which follows from Lemma 6.5 (see
[GLR82]).

Lemma 6.6. For any · > 0 the process M̃k,n· as defined underneath (6.129) is an aperi-
odic, ergodic Harris chain.

Finally, by Lemma 6.6 we can prove Lemma 6.3.

Proof of Lemma 6.3. By Lemma 6.6 and the Harris Theorem we obtain for n œ N that

||�n·
k,z ≠ µ ◊ fljk

|| æ 0 as n æ Œ

for µ ◊ fljk
a. e. z œ �̂

�
◊ Jk. By Corollary 1 in [GLR82] it follows for t œ R+ that

||„�t
k ≠ µ ◊ fljk

|| æ 0 as t æ Œ ,

where „ is a initial distribution of the process.

Now we can determine the distribution of Sk,t (cf. (6.7)) for t æ Œ, using Lemma 6.3.
Denote by Pk,t the image measure of Sk(t). Then, since Sk(t) is a function of Q(t), j̃k(t)
with j̃k(0) = k (cf. Lemma 6.1) choosing

„Sk
:= µ ◊ fl{k} ,

where fl{k} is the counting measure such that j̃k(0) = k with probability 1, we have that

Pk,t((a, b)) = „Sk
�t

k(f(Q(t), j̃k(t)) œ (a, b)) (6.134)

with f given in (6.93). By Lemma 6.3 it follows with (6.134) that

lim
tæŒ

Pk,t((a, b)) = µ ◊ fljk
(f(Q, j) œ (a, b)) . (6.135)
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We now show that with (6.135) Sk,t is distributed uniformly on Ik for t æ Œ for any
k œ N.

Assertion 6.7. Let k œ N. Consider f as defined in (6.93), Ik as given in (6.6) and µ◊fljk

given in (6.119). Let E œ R, then

µ ◊ fljk
(f(Q, j) Æ E) =

Y
_]

_[

E+2kL
4kL , if ≠ 2kL Æ E Æ 2kL

0 , if E < ≠2kL
1 , if E > 2kL .

(6.136)

Proof of Assertion 6.7. Consider ≠2kL Æ E Æ 2kL. To determine µ ◊ fljk
(f(Q, j) Æ E),

we first determine

AÆE := {(Q, j) : f(Q, j) Æ E} . (6.137)

Note that the case where j = 0 is a special case, since this subinterval with number 0 is
splitted (cf. (6.13)). Therefore, we distinguish the following cases.
If ≠2kL Æ E Æ ≠2kL + L, then

AÆE = {Q œ [0, E+2kL]·j = 0 , if k œ 2Z; Q œ [≠(E+2kL), 0]·j = 0 , if k œ 2Z+1}

and

µ ◊ fljk
(AÆE) = E + 2kL

2L

1
2k

= E + 2kL

4kL
. (6.138)

If ≠2kL + L < E Æ 2kL, then

{(Q, j) : Q œ [0, L]·j = 0 , if k œ 2Z; Q œ [≠L, 0]·j = 0 , if k œ 2Z+1} µ AÆE (6.139)

To determine the remaining (Q, j)-subsets of AÆE, note that for given j œ Jk with Q œ
[≠L, L]

f(Q, j) Æ L + 2L(j ≠ k) .

Denote by j̄ the largest j œ {0, ..., 2k ≠ 1} such that

L + 2L(j ≠ k) Æ E . (6.140)

That means that for the j̄-th subinterval any value Q œ [≠L, L] fulfills that f(Q, j̄) Æ E.
This is also the case for the j-th subinterval where 0 < j Æ j̄, but not for j = 0 or j > j̄.
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From (6.140) it follows that

j̄ =
7

E ≠ L

2L

8
+ k . (6.141)

Then, for any Q(t) œ [≠L, L] and 0 < j Æ j̄

f(Q, j) Æ L + 2L(j̄ ≠ k) Æ E ,

i.e.

{(Q, j) : Q œ [≠L, L] · 0 < j Æ j̄} µ AÆE. (6.142)

Since for j̄ + 1 not any Q œ [≠L, L] is such that f(Q, j̄ + 1) Æ E is fulfilled, we determine
the values of Q now. Note that if j̄ + 1 = 2k, then

j̄ + 1 © 0 .

Assume that

j̄ + 1 < 2k .

Consider j̄ + 1 œ 2Z + k. Then, we have that

f(Q, j̄ + 1) (6.93)= Q(t) + 2L(j̄ + 1 ≠ k)
(6.141)= Q(t) + 2L

37
E ≠ L

2L

8
+ 1

4
(6.143)

and

f(Q, j̄ + 1) Æ E
(6.143)… Q(t) + 2L

37
E ≠ L

2L

8
+ 1

4
Æ E

… Q(t) Æ E ≠ 2L
37

E ≠ L

2L

8
+ 1

4
,

i.e.
;

(Q, j) : Q œ
5
≠L, E ≠ 2L

37
E ≠ L

2L

8
+ 1

46
· j = j̄ + 1

<
µ AÆE . (6.144)

Hence, if j̄ + 1 œ 2Z + k, j̄ + 1 < 2k we obtain for the set AÆE (cf. (6.137)) by (6.139),
(6.142) and (6.144) that

AÆE ={(Q, j); Q œ [0, L] · j = 0 , if k œ 2Z; Q œ [≠L, 0] · j = 0 , if k œ 2Z + 1}fi
fi {(Q, j) : Q œ [≠L, L]} · 0 < j Æ j̄}fi
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fi
;

(Q, j) : Q œ
5
≠L, E ≠ 2L

37
E ≠ L

2L

8
+ 1

46
· j̄ + 1

<
(6.145)

With (6.145) we have that

µ ◊ fljk
(AÆE) = L

4kL
+ j̄

2k

⁄ L

≠L

1
2L

dQ + 1
2k

⁄ E≠2L(ÂE≠L
2L Ê+1)

≠L

1
2L

dQ

= L

4kL
+

Í
E≠L

2L

Î
+ k

2k
+

E ≠ 2L
1Í

E≠L
2L

Î
+ 1

2
+ L

4kL

= E + 2kL

4kL
. (6.146)

We proceed similar if j̄ + 1 œ 2Z + k + 1 and obtain that

AÆE ={(Q, j); Q œ [0, L] · j = 0 , if k œ 2Z; Q œ [≠L, 0] · j = 0 , if k œ 2Z + 1}fi
{(Q, j) : Q œ [≠L, L]} · 0 < j Æ j̄}fi

fi
;

(Q, j) : Q œ
5
2L

37
E ≠ L

2L

8
+ 1

4
≠ E, L

6
· j̄ + 1

<
(6.147)

and

µ ◊ fljk
(AÆE) (6.147)= L

4kL
+

Í
E≠L

2L

Î
+ k

2k
+

L ≠
1
2L

1Í
E≠L

2L

Î
+ 1) ≠ E

22

4kL

= E + 2kL

4kL
. (6.148)

We obtain by the same methods as used above if j̄ + 1 œ 2Z + k, j̄ + 1 = 2k or j̄ + 1 œ
2Z + k + 1, j̄ + 1 = 2k that

µ ◊ fljk
(AÆE) = E + 2kL

4kL
.

Consider now E < ≠2kL. Then, it follows immediately that

AÆE = ÿ ,

i.e.

µ ◊ fljk
(AÆE) = 0 . (6.149)

Consider E > 2kL. Then, we have that

AÆE = {(Q, j) : Q œ [≠L, L], j œ {0, ..., 2k ≠ 1}} ,
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i.e.

µ ◊ fljk
(AÆE) = 1 . (6.150)

Assertion 6.7 follows by (6.138), (6.146), (6.148), (6.149) and (6.150).

Since Sk(t) (cf. (6.8)) is S(t) (cf. (6.5)) observed on the torus Ik (cf. (6.6)), we can prove,
using the distribution of Sk(t) for t æ Œ given in (6.135), that St spreads unboundedly.
This is content of the following lemma.

Lemma 6.7. Consider S(t) as defined in (6.5) (with ‡(0) = 1). Then, there exists Á̂ > 0
such that for any E > 0

sup
t

µ (|S(t)| > E) > Á̂ . (6.151)

Proof of Lemma 6.7. Let E > 0. Recall that S(t) (cf. (6.5)) and with that Sk(t) (cf. (6.8))
are by definition random variables on (�̂, F , µ) with �̂ given in (2.3) and µ given in (2.9)
(see underneath (6.5)). To estimate the l.h.s. of (6.151), note that for E > 0

{Ê̂ : |S(Ê̂, t)| > E} ´ {Ê̂ : |S(Ê̂, t) mod Ik| > E} (6.8)= {Ê̂ : |Sk(Ê̂, t)| > E} , (6.152)

i.e. for any k œ N it follows that

µ (|S(t)| > E)
(6.152)

Ø µ(|Sk(t)| > E) . (6.153)

Note that

µ(|Sk(t)| > E) = Pk,t((≠Œ, ≠E] fi [E, Œ)) . (6.154)

By (6.135) and Assertion 6.7 we have that

lim
tæŒ

Pk,t((≠Œ, ≠E] fi [E, Œ)) = µ ◊ fljk
(f(Q, j) œ (≠Œ, ≠E] fi [E, Œ))

(6.136)=
I

1 ≠ E
2kL , if E < 2kL

0 , if E Ø 2kL .
(6.155)

Let E > 0 be given. Let k > E
2L := K1(E), then by (6.155) for any Á > 0 there exists TÁ

144



such that for t > TÁ

----Pk,t((≠Œ, ≠E] fi [E, Œ)) ≠
3

1 ≠ E

2kL

4---- < Á

… ≠ Á + 1 ≠ E

2kL
< Pk,t((≠Œ, ≠E] fi [E, Œ)) < Á + 1 ≠ E

2kL
. (6.156)

Let 0 < ” < 1. Since

lim
kæŒ

E

2kL
= 0 ,

there exists K2(E) such that for k > K2(E)

E

2kL
<

1 ≠ ”

2 . (6.157)

Then, we obtain by (6.156) with Á = 1≠”
2 that for k > max{K1(E), K2(E)} and t > T 1≠”

2

Pk,t((≠Œ, ≠E] fi [E, Œ)) > ≠1 ≠ ”

2 + 1 ≠ E

2kL
(6.157)

> ≠1 ≠ ”

2 + 1 ≠ 1 ≠ ”

2
= ” . (6.158)

From (6.158) we can follow that there exists 0 < ” < 1 such that for any E > 0 and
k > max{K1(E), K2(E)}

sup
t

Pk,t((≠Œ, ≠E] fi [E, Œ)) > ” . (6.159)

By (6.153) (which holds for any k), (6.154) and (6.159) we obtain that there exists 0 < ” < 1
such that for any E > 0 and k > max{K1(E), K2(E)}

sup
t

µ(|S(t)| > E)
(6.153)

Ø sup
t

Pk,t((≠Œ, ≠E] fi [E, Œ))
(6.159)

> ” .

Choosing

Á̂ = ”

we obtain Lemma 6.7.

By Lemma 6.7 we finally can prove Proposition 6.1.

Proof of Proposition 6.1. Let C > 0. We estimate the l.h.s. of (6.4). Recall that S(t) (cf.
(6.5)) di�ers from

s t
0 U(s)ds in regard to Q(0) (which is contained in S(t)) and in respect

to ‡(0) (S(t) is defined with ‡(0) = 1, whereas U(s) is the stationary process where ‡(0)
is distributed according to fl 1

2
). To make use of Lemma 6.7 we write
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µ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

(6.160)

= µ ◊ fl 1
2

3;
(Ê̂, ‡0) :

----
⁄ t

0
‡(‡0, Ê̂, s)V (Ê̂, s)ds

---- > C
<4

= µ ◊ fl 1
2

3;
(Ê̂, ‡0) :

----
⁄ t

0
‡(‡0, Ê̂, s)V (Ê̂, s)ds

---- > C
<

fl {‡0 = 1}
4

+ µ ◊ fl 1
2

3;
(Ê̂, ‡0) :

----
⁄ t

0
‡(‡0, Ê̂, s)V (Ê̂, s)ds

---- > C
<

fl {‡0 = ≠1}
4

= 2µ ◊ fl 1
2

3;
(Ê̂, ‡0) :

----
⁄ t

0
‡(‡0, Ê̂, s)V (Ê̂, s)ds

---- > C
<

fl {‡0 = 1}
4

(6.161)

= 2µ ◊ fl 1
2

3;
(Ê̂, ‡0) :

----
⁄ t

0
‡(‡0, Ê̂, s)V (Ê̂, s)ds

---- > C
< ----{‡0 = 1}

4
·

· µ ◊ fl 1
2
({‡0 = 1})

= µ
3;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds

---- > C
<4

. (6.162)

Note that (6.161) follows, since
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds = ≠

⁄ t

0
‡(‡0 = ≠1, Ê̂, s)V (Ê̂, s)ds .

We now estimate (6.162). Since

µ
3;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds

---- > C
<4

=

= µ
3;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds + Q(Ê̂, 0) ≠ Q(Ê̂, 0)

---- > C
<4

and
;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds + Q(Ê̂, 0) ≠ Q(Ê̂, 0)

---- > C
<

´

´
;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds + Q(Ê̂, 0)

---- ≠ |Q(Ê̂, 0)| > C
<

, (6.163)

we estimate (6.162) by

µ
3;

Ê̂ :
----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds

---- > C
<4

(6.163)
Ø µ

3;
Ê̂ :

----
⁄ t

0
‡(‡0 = 1, Ê̂, s)V (Ê̂, s)ds + Q(Ê̂, 0)

---- ≠ |Q(Ê̂, 0)| > C
<4

(6.5)= µ(|S(t)| ≠ |Q(0)| > C)
= µ(|S(t)| > C + |Q(0)|) . (6.164)
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Altogether we have by (6.160), (6.162), (6.164) and Lemma 6.7 for the l.h.s. of (6.4) and
any C > 0 that

sup
t

µ ◊ fl 1
2

3----
⁄ t

0
U(s)ds

---- > C
4

Ø sup
t

µ(|S(t)| > C + |Q(0)|) > Á̂ .

Choosing

Á = Á̂

Proposition 6.1 follows.

147





7 Discussion

In this chapter, we investigate whether the estimate of the rate given in (5.397) can further
improved. Furthermore, we examine the approximate behavior of the estimate given in
(5.400) for L æ Œ or M æ m. We conclude the chapter with a discussion why the
methods we used in the case M > m fail for M = m.

7.1 Rate

7.1.1 Optimizing the rate estimate

The question rises whether the rate estimate given in (5.397) could be further improved.
The second summand on the r.h.s of (5.397) prevents that the estimate has an exponential
decay. Note that the estimate in (5.397) is based on the inequality of Corollary 5.2, i.e. on

—((n + 1)t(G)) Æ 2
A

“(G)
2

Bn+1

+ 8(n + 1)�(Gc) , (7.1)

where G µ �̂
�

◊ {≠1, 1}, t(G), “(G) fulfill Overlap-Lemma 5.2. The second summand in
(5.397) is the result of the estimation of the second summand of the r.h.s. in (7.1).
First of all, note that G has to be a proper subset of �̂

�
◊ {≠1, 1}, which is such that

�(Gc) = 0 is not possible (see argumentation underneath Lemma 5.2).
In the derivation of (5.397), we have chosen G = GV̄ ,N̄ (cf. (5.10)) and V̄ and N̄ dependent
on n such that

�
1
Gc

V̄ (n),N̄(n)

2
Æ C14

8 (n + 1)≠6

(cf. (5.351)). It turns out that with this choice of V̄ (n) and N̄(n), “(GV̄ (n),N̄ )
2 doesn’t

approach one too fast, and we obtain the estimate in (5.397).
The question whether the bound in (5.397) can be optimized or not is closely tied to
whether V̄ and N̄ can be chosen dependent on n such that there exist Ñ œ N and constants
C14, a > 0 such that for all n > Ñ

�
1
Gc

V̄ (n),N̄(n)

2
Æ C14

8 exp(≠na) , (7.2)
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where at the same time “(GV̄ (n),N̄(n))/2 doesn’t approach one too fast. By (5.359) and
(5.368) we obtain that (7.2) is satisfied if

N̄(n) _ na

and

V̄ (n) _ n
a
2 .

This gives

“(GV̄ (n),N̄(n))
2

(5.320)= 1 ≠ d1e≠2d2na (7.3)

with some appropriate positive constants d1, d2. Since (1 ≠ 1Ô
n)n æ 0 as n æ Œ, but

(1 ≠ 1
n)n æ e≠1 as n æ Œ, a necessary condition to obtain a useful estimate having (7.1)

in mind is that

d1e≠2d2na Ø 1Ô
n

(7.4)

for n large enough, since
A

“(GV̄ (n),N̄(n))
2

Bn+1

= (1 ≠ d1e≠2d2na)n+1 Æ
A

1 ≠ 1Ô
n

Bn+1

follows according to (7.3). However, (7.4) is equivalent to

na Æ ln(
Ô

n)

for n large enough, and since any root grows faster than the ln-function, (7.4) can not
be satisfied. Thus, there is no choice for V̄ (n) and N̄(n) that satisfy (7.2) and such that
“(G)

2 doesn’t approach 1 too fast, i.e. a bound for —(i) with an exponential decay is not
achievable.

7.1.2 Analyzing the estimate of the rate for L æ Œ and M æ m

In this section, we analyze the bound of the rate given by (5.400) in order to gain insight
whether the confinement of the molecule is necessary (see L æ Œ) and to obtain a good
estimate for — if M æ m.
Here, the explicit description of the bound is given to highlight the dependency on L, M
and m. We have by (5.400) with (5.394) and (5.395) for i œ N large enough that

—(i + 1) Æ 2e≠C15i
2
5 +

A

32
A

e≠2Lfl

Ô
2fi

+
1Ô

2fiKm
2≠1

BB

i≠4 (7.5)
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with

C15
(5.379)= ”

4 exp

Q

cca≠
4fl

3
24L
B + 3

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb , (7.6)

where

Db
(5.25)= 4M2

m(M ≠ m)B and Dc
(5.25)= 4M2

m(M ≠ m)B + 2M ≠ m

2(M ≠ m)

and

”
(5.312)= g · exp

A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2 (7.7)

with g, ·̄ , CV2 and C·2 given in (5.253), (5.242), (5.301), (5.302) if M > 3m, in (5.269),
(5.268), (5.303), (5.304) if M = 3m, in (5.274), (5.273), (5.305), (5.306) if 3m > M > 2m
and in (5.283), (5.282), (5.307), (5.308) if 2m Ø M > m.

Analyzing the estimate of the rate for L æ Œ

First, we analyze the r.h.s. of (7.5) for L æ Œ, which means that the interval in which
the molecule is confined, grows larger and larger. For that we express (7.6) in such a form
that the dependence of L in (7.5) becomes more transparent. We begin with the factors
in ” (cf. (7.7)). We write

g = c1 exp
A

≠ 2·̄ flÔ
2fiKm

B

(7.8)

with appropriate constant c1 > 0. Note that ·̄ depends on L such that

exp
A

≠ 2·̄ flÔ
2fiKm

B

= exp(≠c2L) (7.9)

for some appropriate c2 > 0, and let c4 > 0 be an appropriate constant such that

C·2 = c4L . (7.10)

Since CV2 doesn’t depend on L, we can express (7.7) as

” = c1CV2c4L exp(≠2c2L) (7.11)

with (7.8), (7.9) and (7.10). Note that the constants c1, c2, c4 and CV2 di�er for the cases
M > 3m, M = 3m, 3m > M > 2m and 2m Ø M > m.
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Expressing the exponential function in (7.6) by

exp

Q

cca≠
4fl

3
24L
B + 3

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb = c5 exp(≠c6L) (7.12)

with appropriate positive constants c5 and c6, we obtain for (7.6) by (7.11) and (7.12) the
expression

C15(L) =
3

c1CV2c4c5
L

4 exp(≠(2c2 + c6)L)
4

. (7.13)

Writing the second summand in (7.5) as
A

32
A

e≠2Lfl

Ô
2fi

+
1Ô

2fiKm
2≠1

BB

i≠4 = c7 exp(≠c8L)i≠4 + c9i
≠4 (7.14)

with appropriate positive constants c7, c8 and c9, we obtain together with (7.13) and (7.14)
for (7.5) that

—(i + 1) Æ 2e≠C15i
2
5 +

A

32
A

e≠2Lfl

Ô
2fi

+
1Ô

2fiKm
2≠1

BB

i≠4 =

= 2 exp
3

≠
3

c1CV2c4c5
L

4 exp(≠(2c2 + c6)L)
4

i
2
5

4
+ c7 exp(≠c8L)i≠4 + c9i

≠4

æ 2 + c9i
≠4 (7.15)

as L æ Œ, i.e. the bound for — becomes unfeasible, since we cannot follow from (7.15)
that —(t) is integrable.
Heuristically, the bound becomes unfeasible for L æ Œ, since the derivation of the bound
is based on the fact that the time when overlap occurs is finite (see Overlap-Lemma 5.2).
To establish overlap, we first pushed atoms in � to obtain the molecule alone in the interval.
The larger �, i.e. the larger L, the longer it takes to obtain a state, where the molecule is
alone in the interval. Hence, if L æ Œ, the time where overlap occurs is not finite anymore
and the estimate becomes unfeasible.

Analyzing the estimate of the rate for M æ m

Now we analyze the r.h.s. of (7.5) for M æ m. Since only M near to m is of interest, we
use g, ·̄ , CV2 and C·2 as given in (5.283), (5.282), (5.307) and (5.308), since these are the
choices for g, ·̄ , CV2 and C·2 if m < M Æ 2m.
As M æ m we have that

·̄
(5.282)= 2L

C
+ 8L

B

M + m

M ≠ m
æ Œ . (7.16)
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This gives that

g
(5.283)= fl

Û
Km

2fi
e≠ Km

2

1
1

2m
9M2

M+m B+ M≠m
2m

B
4

22 3
M + m

2m

42 B

4
M ≠ m

M + m

M + 7m

2(M + 3m)e≠ 2·̄flÔ
2fiKm æ 0 .

(7.17)

Since for M æ m

CV2
(5.307)= M ≠ m

2(M + 3m)
M ≠ m

M + m

B

4 æ 0 (7.18)

and C·2 is a constant independent of M , we obtain with (7.16), (7.17) and (7.18) for (7.7)
that

” = g · exp
A

≠ 2·̄ flÔ
2fiKm

B

· CV2 · C·2 æ 0 (7.19)

as M æ m.
To analyze the behavior of the exponential function in (7.6), note that

⁄ b

a
vf(v)dv = 1Ô

2fiKm

1
e≠ Km

2 a2 ≠ e≠ Km
2 b22

.

With that and introducing the constant c10 we have that

exp

Q

cca≠
4fl

3
24L
B + 3

1
fl

s Dc
Db

vf(v)dv
2≠14

Ô
2fiKm

R

ddb

= exp
A

≠
4fl24L

BÔ
2fiKm

B

exp
Q

a≠ 12Ô
2fiKm

s Dc
Db

vf(v)dv

R

b

= c10 exp

Q

ca≠ 12

e≠ Km
2

1
4M2

m(M≠m) B
22

≠ e≠ Km
2

1
4M2

m(M≠m) B+ 2M≠m
2(M≠m) B

22

R

db

= c10 exp

Q

cca≠ 12

e≠ Km
2

1
4M2

m(M≠m) B
22

(1 ≠ e≠ Km
2

1
2 4M2

m(M≠m) B 2M≠m
2(M≠m) B+( 2M≠m

2(M≠m) B)2
2

R

ddb

= c10 exp

Q

ccccca
≠ 12

e≠ Km
2

1
4M2

m(M≠m) B
22 A

1 ≠ e≠ Km
2

(2M≠m)(16M2+(M≠m)m)
4m(M≠m)2 B2

B

R

dddddb

æ 0 (7.20)
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as M æ m. By (7.19) and (7.20) we obtain for (7.6) that

C15 æ 0

as M æ m. This gives for (7.5) that

—(i + 1) Æ 2e≠C15i
2
5 +

A

32
A

e≠2Lfl

Ô
2fi

+
1Ô

2fiKm
2≠1

BB

i≠4

æ 2 +
A

32
A

e≠2Lfl

Ô
2fi

+
1Ô

2fiKm
2≠1

BB

i≠4

as M æ m. Hence, for M æ m the r.h.s. of (7.5) becomes an unfeasible bound for —.
Heuristically, the estimate becomes unfeasible, because, like in the previous case where
L æ Œ, the time where overlap occurs, approaches Œ if M æ m (cf. Overlap-Lemma
5.2). However, having the proof of the Overlap-Lemma 5.2 in mind, it becomes clear that
the “good set” G should be chosen anyhow di�erently in the equal mass case. We discuss
the proof for M = m with a di�erent set G in the following section.

7.2 Why the methods we used for M > m fail for
M = m

Recall that the first part of our main result, Theorem 2.1 excl. D > 0, follows by Propo-
sition 5.1. Proposition 5.1 can be proven by establishing overlap of �t

y and � for y in a
“good” set G (see Overlap-Lemma 5.2). By the existence of an overlap at time t(G) one
obtains that

—((n + 1)t(G)) Æ 2
A

“(G)
2

Bn+1

+ 8(n + 1)�(Gc)

(cf. Corollary 5.2). For M > m we chose G = GV̄ ,N̄ as given in (5.10). Then, we chose
GV̄ ,N̄ as depending on time and showed that �(Gc

V̄ ,N̄) tends to zero fast enough as t æ Œ,
where at the same time “(GV̄ ,N̄)/2 doesn’t tends too fast to one.
If M = m we have to choose another good set G: The problematic starting states are
now these where at least one particle in � has velocity 0. Since the particles exchange
velocities, there will be at any time a particle with v = 0 resp. V = 0. It’s impossible to
reach a state, where the molecule is alone in the interval with velocity V > 0. On the other
hand, states where all particles in the interval have non-zero velocities will never reach a
state where the molecule is alone in � with V = 0. Hence, if M = m the states where at
least one particle in the interval has velocity zero need to be excluded from G, otherwise
no overlap set can be established. Denote by GV µ �̂ ◊ {≠1, 1} the set of configurations
where no particle has speed lower than V > 0, i.e. with ease of notation

GV := {|v|, |V | > V } .
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One can show that GV fulfills Overlap-Lemma 5.2, which means that we obtain by Corollary
5.2 that

—((n + 1)t(V )) Æ 2
A

“(V )
2

B(n+1)

+ 8(n + 1)�(Gc
V )

where Gc
V is the complement of GV , i.e. the set of all configurations where at least one

particle in � has speed less than V . To show Proposition 5.1, we have to choose GV , i.e.
V , dependent on n such that on the one hand

�(Gc
V (n)) < (n + 1)≠K (7.21)

for n large enough and an appropriate K > 2, but on the other hand

“(V (n))
2 (7.22)

doesn’t tend too fast to one with n æ Œ. (7.21) holds if V (n) approaches zero fast
enough, on the other hand (7.22) requires that V (n) doesn’t tend too fast to zero. Since
the velocities are distributed according to the Maxwell distribution, i.e. small velocities
are likely, V (n) has to tend to zero quite fast to obtain (7.21). As it turns out, there is no
choice of V (n), such that (7.21) and (7.22) can be fulfilled.
The di�erence to the case where M > m is the following. If M > m, V̄ (n) and N̄(n)
shouldn’t approach Œ too fast, such that “(GV̄ ,N̄)/2 doesn’t tend too fast to one, and on the
other hand V̄ (n) and N̄(n) have to grow fast enough, such that �(Gc

V̄ ,N̄) < (n+1)≠K . Since
the Maxwell distribution helps that �(Gc

V̄ ,N̄) is small (many particles in � are unlikely,
such as very fast atoms), one can find V̄ (n), N̄(n) such that both conditions are fulfilled.
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8 Outlook

8.1 A model without confinement of the molecule
We would like to point out an observation, the meaning of which should be further scruti-
nized. We can set L dependent on time such that we keep a good mixing rate. This is our
point towards another Markovian model, which (i) is perhaps closer to the physical model
of a mass moving in an ideal gas in one dimension and (ii) allows showing di�usion.
For this we choose L dependent on time i œ N such that L(i) æ Œ with i æ Œ. To keep
(7.5) a good estimate for —(i + 1), it is necessary that for the first summand of the r.h.s.
of (7.5) for i large enough

e≠C15(L(i))i
2
5 <

1
i2

… ≠ C15(L(i))i 2
5 < ≠ ln(i2)

… C15(L(i)) > ln(i2)i≠ 2
5 . (8.1)

with C15 given in (7.6). Inequality (8.1) is satisfied if L(i) is for example such that for i
large enough

C15(L(i)) > i≠ 3
10 . (8.2)

Since

C15(L(i)) (7.13)= d1L(i) exp(≠d2L(i))

with

d1 := 1
4c1CV2c4c5

and

d2 := 2c2 + c6 , (8.3)

(8.2) is equivalent to

C15(L(i)) > i≠ 3
10

… d1L(i) exp(≠d2L(i)) > i≠ 3
10
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… exp(ln(d1L(i)) ≠ d2L(i)) > i≠ 3
10

… ln(d1L(i)) ≠ d2L(i) > ≠ 3
10 ln(i)

… d2L(i) ≠ ln(d1L(i)) <
3
10 ln(i) . (8.4)

If we choose for example

L(i) = 3
10d2

ln(i) (8.5)

we obtain (8.2) for i large enough, since with the choice (8.5) inequality (8.4) is satisfied
for i large enough.
Altogether, we obtain for (7.5) by (8.2) and (8.5) that

—(i + 1) Æ 2e≠C15i
2
5 +

A

32
A

e≠2L(i)fl
Ô

2fi
+

1Ô
2fiKm

2≠1
BB

i≠4

< 2e≠i≠ 3
10 i

2
5 +

Q

a32
Q

ae≠ 6fl
10d2

ln(i)
Ô

2fi
+

1Ô
2fiKm

2≠1
R

b

R

b i≠4

= 2e≠i
1

10 + 32Ô
2fi

i
≠

1
6fl

10d2
+4

2

+ 32Ô
2fiKm

i≠4

with the positive constant d2 given in (8.3).

8.2 A multidimensional model

We expect that the method employed for the presented model can also be applied to provide
a fCLT for the multidimensional case. Consider the following model: The molecule, with
radius R, confined in a convex compact domain and is surrounded by an ideal gas of point
particles, which are not directly a�ected by the barrier. Ergodic properties of this model
were investigated in [ET90]. General ideas how to prove di�usive behavior for

Q(t) =
⁄ t

0
|V (s)|ds

in the usual scaling in this multidimensional model are outlined in [ET92] based on a
theorem of [Ore59]. They mentioned a di�culty which also occurs when proving di�usive
behavior for

R(t) =
⁄ t

0
‡(s)V (s)ds
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in the usual scaling with the methods we used in the presented one dimensional model:
Consider for simplicity the molecule is confined in a ball. Having our proof for the one
dimensional model in mind, to obtain overlap, it is useful to show that the system reaches
a state where the molecule is alone in the ball with a certain range of speed with positive
probability. Once the system is in such a state, one can control the molecule by sending in
atoms to establish overlap. To obtain a state where the molecule is alone in the ball, we
control the molecule by sending in other atoms, such that the molecule kicks out all atoms
which are in the ball. But atoms which are close to the boundary cannot be kicked out:
Before the molecule collides with these to kick them out, the molecule is reflected at the
boundary. Hence, states where very slow atoms are near to the boundary are problematic
states. This problem should be solvable by reducing G, the set of good starting states for
which overlap shall be established, by states which include these problematic situations.
Using a similar procedure as in the proof of Lemma 1 of [ET90], where atoms are send in
to obtain a state where the molecule is alone in the domain, one should be able to obtain
a Lemma analogue to Lemma 5.6 in Chapter 5. The analogue to the Overlap-Lemma 5.2
should follow easily.
Therefore, we expect that the methods presented within the scope of this work can be
applied to the multidimensional model without any major di�culties.
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