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Zusammenfassung

Der Mangel an Replizierbarkeit von wissenschaftlichen Ergebnissen in unterschiedlichen
Forschungsdisziplinen hat in der jüngeren Vergangenheit an Aufmerksamkeit gewon-
nen und umfassende Diskussionen ausgelöst. Eine große Rolle in dieser „replication
crisis“ spielen verschiedene Arten von Unsicherheiten, die an unterschiedlichen Punk-
ten der Datenerhebung und statistischen Analyse auftreten. Nichtsdestotrotz werden
diesen Unsicherheiten und den daraus resultierenden Folgen auch in der derzeitigen
Forschungspraxis oft nur wenig Beachtung geschenkt – mit der Gefahr geringer Zuver-
lässigkeit und Glaubwürdigkeit von wissenschaftlichen Entdeckungen.

Zur Analyse dieses Umstands und der Entwicklung von Lösungsansätzen für das
Problem, werden in dieser Arbeit Messunsicherheit, Datenaufbereitungs-Unsicherheit,
Stichproben-Unsicherheit, Methoden-Unsicherheit und Modellunsicherheit de�niert,
und insbesondere im Kontext von Regressionsmodellen untersucht. Dazu werden Daten-
sätze von Beobachtungsstudien mit einem Fokus auf die Merkmale der Hochdimen-
sionalität und heterogener Variablen herangezogen, die zunehmend an Bedeutung
gewinnen. Hochdimensionale Daten, d.h. Daten, die eine größere Anzahl an Variablen
als Beobachtungen aufweisen, spielen im Bereich der medizinischen Forschung eine
wesentliche Rolle, wo große Mengen an molekularen Daten eines Patienten zunehmend
ressourcengünstig erhoben werden können. Liegen verschiedene Arten von molekularen
Daten (omics-Daten) vor, ist man außerdem mit dem Umstand der Heterogenität kon-
frontiert. Darüber hinaus �nden sich heterogene Daten in vielen Beobachtungsstudien
wieder, in denen Variablen verschiedener Art erhoben werden, oder unterschiedlichen
Quellen entstammen.

Die Arbeit besteht im Wesentlichen aus vier Beiträgen, die auf verschiedenen Herange-
hensweisen an die Thematik basieren und unterschiedliche Schwerpunkte der Unter-
suchungen setzen.

Der erste Beitrag kann als praktisches Beispiel zur Veranschaulichung von Datenauf-
bereitungs- und Methoden-Unsicherheit im Kontext der Prädiktion und Variablenselek-
tion anhand sowohl hochdimensionaler als auch heterogener Daten angesehen werden.
Zunächst beschäftigt sich dieser Beitrag intensiv mit der Entwicklung der Methode
priority-Lasso, einem hierarchischen Verfahren zur Prädiktion mit multiplen omics-
Daten. Auf standard Lasso basierend, geht priority-Lasso auf die verschiedenen Daten-
blöcke ein, indem nach festgelegter Priorität der Blöcke sukzessive Lasso-Modelle auf
jedem dieser Blöcke ge�ttet werden, und der lineare Prädiktor des jeweiligen Fits als
O�set im darau�olgenden Fit verwendet wird. In einem zweiten Teil wird diese Me-
thode in einer aktuellen Studie zur akuten myeloischen Leukämie (AML) eingesetzt
und einem Vergleich zu standard Lasso unterzogen. Durch verschiedene Möglichkeiten
der Variablende�nition und Spezi�kation von Einstellungen im Zuge der Methoden-
Durchführung werden Datenaufbereitungs- und Methoden-Unsicherheit verdeutlicht,
die sich in der Schätzung der E�ekte und somit in der Prädiktionsgüte und der Variablen-
auswahl widerspiegeln.

In einem zweiten Beitrag wird Methoden-Unsicherheit mit Stichproben-Unsicherheit
im Kontext der Variablenselektion und des Rankings von „omics“-Biomarkern verglichen.



Dazu wird ein anwenderfreundliches und vielschichtig einsetzbares resampling-basiertes
Framework entwickelt. Dieses Framework wird auf Basis hochdimensionaler und teil-
weise heterogener omics-Datensätze von AML-Patienten angewendet. Dazu werden
drei statistische Szenarien beleuchtet: Variablenselektion in multivariabler Regression
auf Basis unterschiedlicher Typen von omics-Biomarkern, Ranking von Biomarkern auf
Basis ihrer Variablenwichtigkeit in random forests, und Identi�kation von Genen auf
Basis von Tests auf di�erentielle Genexpression.

In den Beiträgen 3 und 4 wird zur Veranschaulichung und zum Vergleich von Un-
sicherheiten unter anderem das „Vibration of E�ects“-Framework verwendet, mit dem
ursprünglich die Modellunsicherheit in einer umfangreichen epidemiologischen Studie
(NHANES) analysiert wurde. Diese Beiträge beschäftigen sich intensiv mit der metho-
dischen Erweiterung des Frameworks auf zusätzliche Unsicherheitstypen.

Zunächst wird diese Erweiterung in Beitrag 3 für Stichproben- und Datenaufberei-
tungs-Unsicherheit vorgestellt. Zur praktischen Veranschaulichung wird dann ein
umfangreicher Datensatz mit heterogener Variablenstruktur aus der psychologischen
Forschung herangezogen (SAPA-Project), auf dem Modell-, Stichproben-, und Daten-
aufbereitungs-Unsicherheit im Kontext von logistischen Regressionsmodellen für un-
terschiedliche Stichprobengrößen untersucht werden. Neben dem Vergleich dieser
einzelnen Unsicherheitstypen wird ein Verfahren vorgestellt, das es erlaubt, die kumula-
tive Modell- und Datenaufbereitungs-Unsicherheit zu quanti�zieren und mittels einer
Varianzzerlegung ihre relativen Anteile an der Gesamtunsicherheit zu analysieren.

In Beitrag 4 wird das Vibration of E�ects Framework zusätzlich auf Messunsicherheit
erweitert. Darauf basierend wird auf dem NHANES-Datensatz eine Vergleichsstudie zwi-
schen Modell-, Stichproben- und Messunsicherheit im Kontext der Überlebenszeitanalyse
durchgeführt. Dabei wird ein Fokus auf verschiedene Szenarien von Messunsicherheit
gelegt, die sich dahingehend unterscheiden, für welche der Variablen im Regressionsmod-
ell ein Messfehler angenommen wird. Mit Hilfe einer umfassenden Simulationsstudie auf
Basis der NHANES-Daten wird außerdem das Verhalten verschiedener Unsicherheits-
quellen bei steigender Stichprobengröße analysiert.



Summary

The lack of replicability in research �ndings from di�erent scienti�c disciplines has
gained wide attention in the last few years and led to extensive discussions. In this
‘replication crisis’, di�erent types of uncertainty play an important role, which occur at
di�erent points of data collection and statistical analysis. Nevertheless, the consequences
are often ignored in current research practices with the risk of low credibility and
reliability of research �ndings.

For the analysis and the development of solutions to this problem, we de�ne mea-
surement uncertainty, sampling uncertainty, data pre-processing uncertainty, method
uncertainty, and model uncertainty, and investigate them in particular in the context
of regression analyses. Therefore, we consider data from observational studies with
the focus on high dimensionality and heterogeneous variables, which are character-
istics of growing importance. High dimensional data, i.e., data with more variables
than observations, play an important role in the area of medical research, where large
amounts of molecular data (omics data) can be collected with ever decreasing expense
and e�ort. Where several types of omics data are available, we are additionally faced
with heterogeneity. Moreover, heterogeneous data can be found in many observational
studies, where data originate from di�erent sources, or where variables of di�erent types
are collected.

This work comprises four contributions with di�erent approaches to this topic and a
di�erent focus of investigation.

Contribution 1 can be considered as a practical example to illustrate data pre-
processing and method uncertainty in the context of prediction and variable selection
from high dimensional and heterogeneous data. In the �rst part of this paper, we in-
troduce the development of priority-Lasso, a hierarchical method for prediction using
multi-omics data. Priority-Lasso is based on standard Lasso and assumes a pre-speci�ed
priority order of blocks of data. The idea is to successively �t Lasso models on these
blocks of data and to take the linear predictor from every �t as an o�set in the �t of the
block with next lowest priority. In the second part, we apply this method in a current
study of acute myeloid leukemia (AML) and compare its performance to standard Lasso.
We illustrate data pre-processing and method uncertainty, caused by di�erent choices of
variable de�nitions and speci�cations of settings in the application of the method. These
choices result in di�erent e�ect estimates and thus di�erent prediction performances
and selected variables.

In the second contribution, we compare method uncertainty with sampling uncer-
tainty in the context of variable selection and ranking of omics biomarkers. For this
purpose, we develop a user-friendly and versatile framework. We apply this framework
on data from AML patients with high dimensional and heterogeneous characteristics
and explore three di�erent scenarios: First, variable selection in multivariable regression
based on multi-omics data, second, variable ranking based on variable importance mea-
sures from random forests, and, third, identi�cation of genes based on di�erential gene
expression analysis.



In contributions 3 and 4, we apply the vibration of e�ects framework, which was
initially used to analyze model uncertainty in a large epidemiological study (NHANES),
to assess and compare di�erent types of uncertainty. The two contributions intensively
address the methodological extension of this framework to di�erent types of uncertainty.

In contribution 3, we describe the extension of the vibration of e�ects framework
to sampling and data pre-processing uncertainty. As a practical illustration, we take
a large data set from psychological research with heterogeneous variable structure
(SAPA-project), and examine sampling, model and data pre-processing uncertainty in
the context of logistic regression for varying sample sizes. Beyond the comparison of
single types of uncertainty, we introduce a strategy which allows quantifying cumulative
model and data pre-processing uncertainty and analyzing their relative contributions to
the total uncertainty with a variance decomposition.

Finally, we extend the vibration of e�ects framework to measurement uncertainty in
contribution 4. In a practical example, we conduct a comparison study between sampling,
model and measurement uncertainty on the NHANES data set in the context of survival
analysis. We focus on di�erent scenarios of measurement uncertainty which di�er in
the choice of variables considered to be measured with error. Moreover, we analyze
the behavior of di�erent types of uncertainty with increasing sample sizes in a large
simulation study.
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Chapter 1

Introduction and motivation

In 2015, Raphael Silberzahn and Eric L. Uhlmann reported an experiment in which
they asked 29 teams of researchers with strong statistical backgrounds to answer the
same research question of interest with the same data set: ‘Are football (soccer) referees
more likely to give red cards to players with dark skin than to players with light skin?’
(Silberzahn and Uhlman, 2015). The results were alarming, but not because they revealed
a scandal of racism: In fact, while some teams of researchers found that players with dark
skin are signi�cantly more likely to receive red cards, others found that they were less
likely to receive them. The reason for this variety of results was the multitude of possible
analysis strategies, among which the researchers were free to choose. These researcher
degrees of freedom (Simmons et al., 2011) play an important role in the replication crisis
in science, which this simple experiment illustrates.

Indeed, the scienti�c community was confronted with the non-replicability of many
studies in the last decade. Although problems of non-replicability were realized in
individual cases and appeals for replication were formulated occasionally (Ahlgren,
1969; Smith, 1970; Gliner et al., 2002), it remained a topic of limited in�uence for a long
time. The controversial article of Ioannidis (2005), in which the author argued that most
published research �ndings are false, can be seen as one of the initial sparks provoking
attention to the replication crisis. Moreover, the publication of Daryl Bem’s article
‘feeling the future’ (Bem, 2011) lead to a wide discussion among scientists beyond the
�eld of parapsychology. Thenceforth, the replication crisis received increasing atten-
tion, especially in social science with a focus on psychological research (Open Science
Collaboration, 2015; Gelman, 2015), as well as in di�erent �elds of biomedical research
including epidemiology (Lash, 2017), genetics (Ioannidis et al., 2001), and neuroscience
(Gilmore et al., 2017). However, the replication crisis is not limited to these disciplines
and present in a variety of scienti�c �elds including chemistry (Gibb, 2014), climatology
(Benestad et al., 2016), and economics (Herndon et al., 2013).

The replication crisis can be partly traced back to di�erent types of uncertainty in the
process of a statistical analysis, or more generally, in a scienti�c study. First of all, it is
usually impossible to collect data without error, regardless of the type and amount, which
confronts researchers with measurement uncertainty. Furthermore, there is sampling
uncertainty, since a data set is typically assumed to be obtained from a larger underlying
population. This type of uncertainty is also denoted as statistical uncertainty, as standard
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concepts in statistical inference account for it. Finally, epistemic uncertainty is related to
all choices concerning the analysis strategy and will in this work be denoted as method
uncertainty. Here, I will further distinguish between data pre-processing and model
uncertainty. While the former addresses the researcher degrees of freedom which are
relevant before being able to �t a model to the data, model uncertainty comprises all
choices related to the model �t.

These types of uncertainty are expected to a�ect scienti�c results di�erently, depend-
ing on a number of issues including the scienti�c discipline, the research question of
interest, the type of study, and characteristics of the data. Di�erent types of uncertainty
have gained di�erent amounts of attention in the scienti�c community so far, which is
not necessarily associated with their importance in practice.

In the statistical analysis, regression is an approach used to assess the association
between one or more predictors and an outcome of interest. Up to now, there are
innumerable types of regression which di�er, for example, in the type of the outcome, the
speci�c functional form, or distributional assumptions. Originally, regression methods
were developed for data with more observations than variables, i.e., low dimensional
data. In contrast, when more variables than observations are available, i.e., the data
set is high dimensional, regression methods require more elaborate approaches. In this
thesis, regression analysis is chosen as a speci�c statistical context, which is in itself,
however, widely addressed: For low dimensional data, regression analysis for continuous
and binary outcomes, count data, and survival outcomes is covered. Moreover, di�erent
approaches of regression for high dimensional data are applied in this thesis. In this
context, my research group and I also develop a new approach for regression analysis
when several types of omics data are available for the same patient (multi-omics data).
In general, regression models can be used for prediction or explanation, but we do not
focus on one of these points, nor do we restrict ourselves strictly to regression analysis
in our work: In some situations, machine learning algorithms will be considered as
alternatives to regression analysis (e.g., in the context of variable selection), in other
situations, a regression analysis will be the basis for an analysis of variance. Nevertheless,
our analyses will always be in the context of supervised learning.

When investigating uncertainties in regression analysis, di�erent types of data can be
considered. As the amount of available data increases, it becomes even more important
to understand and account for the characteristics of these data correctly (Manzoni et al.,
2016). On the one hand, high-dimensional data has gained increasing attention in
medical statistics in the past few years. For these data, more variables are available than
observations, which makes the application of standard statistical methods impossible.
Despite this challenge, it would be incredibly bene�cial to be able to use these data
as best as possible and to establish some guidelines and standards in their analysis.
On the other hand, I de�ne heterogeneous data as data consisting of variables from
di�erent sources. From a merely statistical point of view, the inclusion of heterogeneous
variables is straightforward. However, variables from di�erent sources often induce
further �exibility in data pre-processing or modeling decisions. High dimensional and
heterogeneous data can also occur in the same setting, for instance in the form of
multi-omics data.
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In the �rst part of this thesis, I will introduce the concepts and methods underlying
this work in more detail, starting with di�erent types of uncertainty in section 2.1. In
sections 2.2 and 2.3, I will introduce the characteristics of data and types of regression
that will be used for the practical applications in our contributing papers. Furthermore, I
will address some more general aspects related to this work in section 2.4. In this brief
look beyond the horizon, I will discuss some aspects about the replication crisis and how
to deal with uncertainties in general. It also comprises short sections about methods of
reporting the results of di�erent analysis strategies, uncertainty quanti�cation through
precise and imprecise probabilities, and uncertainties from a Bayesian point of view. In
chapter 3, I will brie�y summarize the papers contributing to this thesis and explain
how the challenges introduced in chapter 2 are addressed. The �rst part ends with some
aspects worth investigating based on this work.

The second part of this thesis comprises the four di�erent papers, which have been,
or will be published in scienti�c journals. The �rst of these papers is an extension of
my master thesis and introduces some important methodological basics for some of the
other papers, while addressing the challenges of uncertainty only as a subsidiary. For
ease of readability, I will denote the papers as contribution 1, contribution 2, contribution
3 and contribution 4 in the following, which refer to the publications Klau et al. (2018),
Klau et al. (2020a), Klau et al. (2020b) and Klau et al. (2020c) respectively.
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Chapter 2

Topics considered in this work

2.1 Types of uncertainty

In the scienti�c literature, a variety of philosophical concepts to de�ne uncertainty
can be found. One of the most prevailing concepts is the distinction between aleatoric
and epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009). Epistemic uncertainty
refers to uncertainty due to a lack of knowledge, and is in general reducible by gaining
further information. In contrast, aleatoric uncertainty occurs in random processes like
�ipping a coin. In the following, I will introduce measurement uncertainty and sampling
uncertainty, which can be classi�ed as aleatoric types of uncertainty. In contrast, model
uncertainty, data pre-processing uncertainty and method uncertainty are epistemic types
of uncertainty. Although the broad terms of aleatoric and epistemic uncertainty will only
be scarcely used in this work, they should serve as rough pre-interpretative guidance at
this point.

2.1.1 Measurement uncertainty
With measurement uncertainty, we denote uncertainty that is caused by measurement
error in the data. This measurement error occurs before performing a statistical analysis,
when collecting the data. Ideally, measurements should have the two properties of
accuracy and precision: Accurate measurements are measurements without systematic
deviation from the true value (that is unbiasedness), while precise measurements are
close to each other (Ulijaszek and Kerr, 1999). Indeed, it is almost impossible to collect
data with perfect accuracy and precision − no matter what kind of study is conducted
and which type of data is collected. Depending on the research question of interest,
the data can be gathered through questionnaires, laboratory measures, measurement
devices and experimental protocols, which are all error-prone (Ho�mann et al., 2020).
Moreover, the type and strength of measurement error depends on the scienti�c discipline
and its sub-branches. In epidemiology, which this brief overview will focus on, the
presence of measurement error is indicated in many cases, nevertheless its impact on
scienti�c �ndings is often neglected (Brakenho� et al., 2018). In contrast, few mentions
of measurement error in omics data can be found in the scienti�c literature.
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In epidemiology, many di�erent types and characteristics of measurement error can
be distinguished and di�erent theoretical concepts exist. For instance, measurement
error is assumed to occur either in the exposure or the outcome variable of interest,
additive and multiplicative models can be distinguished, and errors have to be modeled
di�erently depending on the type of the variable, e.g., continuous or binary. Here, I refer
to Gustafson (2003) for more details on measurement uncertainty in epidemiology, since
it is beyond the scope of this work to provide a detailed overview.

A short summary of four types of measurement error in epidemiology is provided
by Brakenho� et al. (2018), for the situation where the association of two continuous
variables is studied. For a true variableX , an observed variableZ , and measurement error
U , classical measurement error can be expressed by adding random values with mean
zero and constant variance to the true variable, i.e., Z = X+U , with U iid∼N(0,Var(U)).
Thus, classical measurement error is independent of the true variableX and the outcome
variable. In a similar situation, measurement error is called systematic when the error
introduces a bias to the true variable, and di�erential error occurs when the error term
depends on the outcome. According to Brakenho� et al. (2018), the latter can be relevant
when the outcome was observed before the covariates, e.g., in case-control studies. Finally,
Berkson measurement error can be expressed, conversely to classical measurement error,
by obtaining the true variable through adding a random component to the observed
variable, i.e., X = Z + U , where U is independent of Z .

There are di�erent methods of accounting for measurement error, for instance regres-
sion calibration and simulation extrapolation (see the early references (Rosner et al., 1989)
and (Cook and Stefanski, 1994), respectively), as well as approaches from a Bayesian
perspective (Richardson and Gilks, 1993). However, these and other approaches are
rarely used in practice (Brakenho� et al., 2018).

In contribution 4 of this thesis, we suggest a framework that provides easy quanti�-
cation and visualization of measurement uncertainty, and practically apply it on data
from health and nutritional epidemiology. For this data set, we assume classical non-
di�erential measurement error and base our practical assessment on general magnitudes
of measurement error we found in the literature. In this contribution, we study the
e�ect of a variable of interest on a survival outcome, while taking several adjustment
variables into account. To assess measurement error, we focus on three scenarios: In a
�rst scenario, we add measurement error only to the variables of interest, and in a second
scenario only to the adjustment variables. In a third scenario, we combine scenario
1 and 2, and assume both the variable of interest and the adjustment variables to be
measured with error. Finally, we compare measurement uncertainty to sampling and
model uncertainty (see sections 2.1.2 and 2.1.3 for more details on sampling and model
uncertainty, respectively) and study the e�ect of the sample size on all these types of
uncertainty on simulated data.

2.1.2 Sampling uncertainty
It is usually assumed that a data set which is collected for a scienti�c study is only a
sample from a larger underlying population. Uncertainty that occurs in this context
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is referred to as sampling uncertainty in the following, and is clearly the most well-
investigated type of uncertainty in statistical modeling. Basic concepts like standard
errors address sampling uncertainty, and standard statistical inference widely accounts
for it, e.g., through con�dence intervals and hypotheses tests (Altman and Bland, 2014).
It is well-known that sampling uncertainty decreases with increasing sample size, i.e.,
con�dence intervals become narrower and testing procedures are associated with more
power.

Beyond these basic concepts, sampling uncertainty can for instance be assessed
through resampling procedures like subsampling or bootstrapping. Several further
approaches have been developed for stability investigations in speci�c situations, e.g.,
in variable selection (Meinshausen and Bühlmann, 2010) or multivariable regression
(Sauerbrei et al., 2011), which can both be applied in potentially high dimensional settings.
A speci�c example of a procedure addressing sampling uncertainty that is used in many
statistical applications is cross-validation, where random splits of the data are used for
training and validation purposes. Depending on these random subsets, di�erent results
can be obtained.

Although sampling uncertainty is well-investigated and well-understood, problems
of studies with low power remain present and are often unavoidable, e.g., when a rare
disease is analyzed or in high dimensional settings. Furthermore, a tradeo� between
small and large samples is often hard to achieve as there are ethical issues that argue
for a low sample size. Finally, the relationship between sampling uncertainty and other
types of uncertainty is not clear.

In this work, we will directly address sampling uncertainty in contributions 2, 3,
and 4. In contribution 2, we will assess sampling uncertainty in the context of di�erent
statistical approaches to perform variable selection and ranking in high dimensional
settings, and compare it to method uncertainty. For this purpose, we suggest a framework
that allows direct comparison of method and sampling uncertainty by splitting the data
into two equal-sized parts and applying at least two methods on each of the halves a large
number of times. Furthermore, we compare sampling uncertainty to data pre-processing
and model uncertainty in contribution 3, and to measurement and model uncertainty in
contribution 4. Here, we assess sampling uncertainty by randomly subsampling the data
many times. In addition, we are interested in the in�uence of the sample size on these
types of uncertainty in these two contributions.

2.1.3 Model uncertainty
When specifying a probability model, many choices can be made, comprising, for instance,
the inclusion and exclusion of covariates, their functional form, or interaction terms.
We de�ne the uncertainty that arises through all these choices in the speci�cation of a
probability model as model uncertainty. Early work on this topic was provided by Leamer
(1983) in the �eld of econometrics. The so called ‘extreme bounds analysis’ was motivated
from Bayesian statistics and aims to determine the most extreme coe�cient estimates
in a probability model by taking di�erent model choices into account. Extreme bounds
analysis was further developed by Breusch (1990) and Granger and Uhlig (1990), who
suggest reasonable speci�cations of the model space in ordinary least squares analysis.
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Recent important works focusing on the practical assessment of model uncertainty
comprise Patel et al. (2015), Muñoz and Young (2018) and Young (2018). While Patel et al.
(2015) investigate model uncertainty in health and nutritional epidemiology through
the inclusion and exclusion of covariates, Muñoz and Young (2018) and Young (2018)
provide more theoretical contributions which address the question of how to de�ne a
model space in practice. Since the latter two papers assume that these de�nitions of a
model space go beyond the choices concerning a probability model, their work could
also be mentioned in the context of method uncertainty in section 2.1.5.

Another common way to address model uncertainty is model selection, e.g., by using
information criteria like the Akaike information criterion (Akaike, 1974) or the Bayesian
information criterion (Schwarz, 1978). However, as there are many di�erent model
selection criteria, the choice of a speci�c one introduces further uncertainty. Moreover,
Bayesian model averaging (Hoeting et al., 1999) approaches model uncertainty from a
Bayesian perspective, which I will discuss in more detail in section 2.4.5.

In this work, only inclusion and exclusion of variables in a regression model are
practically investigated as part of the concept of model uncertainty. In contribution 3, we
compare model uncertainty to sampling uncertainty and data pre-processing uncertainty
in the context of logistic regressions for varying sample sizes of data from the SAPA
project personality test (Condon et al., 2017). In contribution 4, a comparison of model
uncertainty to sampling and measurement uncertainty is conducted in the context of
survival analysis on data from the National Health and Nutrition Examination Survey
(NHANES) and on simulated data of varying sample sizes.

2.1.4 Data pre-processing uncertainty
Another type of uncertainty occurs due to choices of pre-processing steps concerning
the data used for a statistical analysis. For instance, for a su�ciently large data set
comprising the demographic characteristics of a cohort, subgroups of observations
based on variables like age or sex can be excluded, depending on the research question
of interest. Furthermore, variable de�nitions are often not clear, which concerns both
dependent and independent variables in prediction modeling. Other examples of data pre-
processing comprise the handling of outliers, data imputation, cleaning, normalization
and transformation, but the list could be extended far further.

The choices of pre-processing critically depend on the type of data and the speci�c
statistical application. Wicherts et al. (2016) provide a list of researcher degrees of
freedom when conducting a psychological study, which includes some aspects of data
pre-processing. The work of Steegen et al. (2016) is a further practical example of data
pre-processing uncertainty in psychology. Aside from this, this type of uncertainty has
not gained much direct attention in the statistical literature up to now.

However, data pre-processing uncertainty plays an important role in statistics, espe-
cially for studies with poor research design or without accurate analysis plans. For these
types of studies, the �exibility in pre-processing choices is even greater than in data
from other types of studies. In a randomized controlled trial, for instance, the outcome
variable is usually clearly de�ned in advance. In contrast, data sets from retrospective
observational studies often consist of several variables that could be suitable for the
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speci�c research purpose, e.g., ‘relationship status’ or ‘marital status’ could both be used
to study the characteristics of partnerships in psychological research (an example we are
actually confronted with when analyzing data from the SAPA project in contribution 3).
Furthermore, this type of uncertainty is important when the data set comprises heteroge-
neous variables, as overlapping or similar information are expected more often in these
situations. For instance, the body mass index could be gathered from a questionnaire, as
well as from measurements of height and weight conducted by a second person, and it is
not clear which of these variables to choose when they are available in the same data
set. Since the choices of pre-processing critically depend on the speci�c data and the
research question of interest, a detailed explanation of these choices can only be done
on a case-by-case basis.

In this work, data pre-processing uncertainty is mainly considered in contribution 3,
where it is illustrated and quanti�ed on a large data set from personality psychology, the
SAPA data set. We extensively explain and discuss the speci�c choices of pre-processing
in this contribution. Moreover, we provide tools to compare data pre-processing un-
certainty to sampling and model uncertainty, and to quantify and compare the relative
impact of model and data pre-processing uncertainty with sampling uncertainty. This
combined uncertainty, which is also referred to as uncertainty due to the analysis strat-
egy in contribution 3, is further explained in section 2.1.5 under the term ‘method
uncertainty’.

Another application of data pre-processing uncertainty is provided in contribution
1, where priority-Lasso is applied to data from acute myeloid leukemia (AML) patients.
Here, results from two choices of data pre-processing approaches are reported. For the
�rst choice, we consider the European Leukemia Net (ELN) risk score as a �rst block
of data for prediction. For the second choice, we replace this score with all variables
that were used for its de�nition, without further pre-processing of these variables.
However, the main focus in this contribution is the method priority-Lasso itself and
its prediction performance, and we do not illustrate or quantify data pre-processing
uncertainty directly.

2.1.5 Method uncertainty
As a general type of epistemic uncertainty, we de�ne method uncertainty as uncertainty
due to the analysis strategy which comprises all operationalization decisions (Simonsohn
et al., 2015). Therefore, model choices (section 2.1.3) and data pre-processing choices
(section 2.1.4) are considered to be part of the concept of method uncertainty. Further-
more, a researcher may be faced with a large number of additional method choices:
For instance, in the simple situation where a continuous variable was measured in two
groups that should be compared with a statistical test, a common decision is whether to
apply a parametric or nonparametric test. If several statistical tests are performed, the
method to adjust for multiple testing is another choice referring to method uncertainty.
In prediction modeling using high-dimensional data, a method choice could be whether
to run a machine learning algorithm or a penalized regression method. In addition, less
crucial choices fall under our de�nition of method uncertainty, like the number of folds
when performing cross-validation for hyperparameter tuning.
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Similar to model and data pre-processing uncertainty, various other choices could be
listed that refer to method uncertainty, depending on the speci�c research question of
interest. At the same time, it is important to note that clear distinction between these
three types of uncertainty is di�cult. A simple example of this is the choice of the
variable sex in a probability model: Excluding either female or male participants from
the study is a data pre-processing choice which also a�ects the selection of the covariate
sex, as it necessarily has to be excluded from the model. A strict de�nition of these types
of uncertainty, however, is outside the scope of this work.

Some practical examples focusing on method uncertainty in the scienti�c literature
are for instance provided by Silberzahn and Uhlman (2015), Simonsohn et al. (2015),
Palpacuer et al. (2019), and Chu et al. (2020). In this thesis, we address method uncer-
tainty mainly in contribution 2, where it is compared to sampling uncertainty for three
di�erent scenarios in the context of omics biomarker selection and ranking. In the �rst
scenario, method uncertainty is assessed between three di�erent approaches of penalized
regression. In the second scenario, we compare the results obtained from running the
machine learning algorithm random forest with di�erent parameter settings. In the last
scenario, we perform variable selection in the context of di�erential expression analysis
with �ve di�erent analysis strategies.

Furthermore, contribution 1 provides a practical illustration of method uncertainty,
where priority-Lasso and standard Lasso are applied to AML data. Several additional
choices for both of the methods could be made and some of these are conducted and
reported in our example. For instance, we analyze the performance of priority-Lasso
with and without cross-validated o�sets. Finally, we compare method and sampling
uncertainty in contribution 4 on the SAPA data with the vibration of e�ects framework.
The investigation of method uncertainty is conducted as a joint investigation of model
and data pre-processing uncertainty for varying sample sizes.

2.2 Types of data

2.2.1 Data from observational studies
In biomedical research, there is often a distinction between two major study types, the
observational and the experimental study. In an observational study, the researcher does
not intervene in the study design, and does not in�uence the data generating process. In
contrast, in an experimental (or interventional) study, the researcher intervenes at some
point throughout the study (Thiese, 2014). For both types of studies, there are several
design types. Observational studies comprise, for instance, cohort studies, case-control
studies and cross-sectional studies (for more information on these types of studies, I
refer to McNeil (1996)). These study designs mainly di�er in the method of selecting
participants and the extend of follow-up over time.

Retrospective studies − a common class of observational studies − are prone to bias
(Thiese, 2014), and therefore it could follow that they su�er from low quality data and
high measurement uncertainty. For an experimental study, there is often an analysis
plan available before the data is collected, and the protocols are in�exible compared
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to those of observational studies (Ioannidis, 2008). Thus, we can assume less method
uncertainty in experimental studies. As both observational and experimental studies
have their speci�c challenges, we could conclude that the challenges of uncertainty seem
to be more prominent for observational studies, on which our work focuses.

2.2.2 High dimensional data
In the situation where data is available with many more variables p than observations n,
i.e., n << p, the data set is called high dimensional. Similar to big data, high dimensional
data underwent a striking boom in recent years, as shown in Figure 2.1. Although high
dimensional data is sometimes referred to as big data (Boulesteix et al., 2017b), big data
is in most situations characterized only by a large number of observations and hence
often encompasses many more observations than variables (n >> p). The computational
e�ort of analyzing big data or high dimensional data is higher than in a conventional
situation, but the approach to analyze the two types of data di�ers remarkably.

The property of high dimensionality is typical for molecular data in medical statistics,
where several hundreds or thousands of variables are generated through high throughput
experiments. This type of data is often denoted to as ‘omics’ data, as it comprises for
instance genomics, proteomics, transcriptomics, or metabolomics, which refer to the
investigation of the genome, proteome, transcriptome, or metabolome, respectively.
Research questions and goals related to high dimensional data analysis comprise cluster-
ing (Steinbach et al., 2004), interaction analysis of variables (Li et al., 2003), di�erential
expression analysis (Anders et al., 2013), variable selection and ranking procedures
(Wasserman and Roeder, 2009; Boulesteix and Slawski, 2009), or prediction (Golub et al.,
1999), among others. When it comes to the analysis of high dimensional data, a general
�rst decision is whether to reduce the dimension beforehand (e.g., through principal
component analysis (Pearson, 1901) or related methods) or to apply methods that account
for the high dimensionality directly. In the context of regression analysis, methods are
available that address the high dimensionality through shrinkage or internal variable
selection procedures.

2.2.3 Heterogeneous data
With regard to heterogeneous data, this work refers to data which consists of variables
from di�erent sources. Hence, we attribute the property of heterogeneity to data sets
comprising several types of omics data for the same patient, e.g., gene expression data,
miRNA data, and copy number variations. In this vein, the methods priority-Lasso and
IPF-Lasso (section 2.3.6 and 2.3.7) do not only account for high dimensionality, but also
for heterogeneity of omics data, as they incorporate a block structure in their algorithm,
which is usually de�ned by variables from di�erent types of data.

Researchers are faced with heterogeneous data in many other situations. In these
situations, the data set sometimes comprises variables that measure the same feature.
For instance, in an observational study, a patient’s hypertension status could be collected
through answering a question in a questionnaire. On the other hand, the same data set
might also contain information about the patient’s blood pressure which was measured by
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Figure 2.1: Number of results on PubMed when searching for the terms ‘big data’ and
‘high dimensional data’

a clinician. Hence, heterogeneity can introduce further uncertainty, as it allows (or even
requires) more data pre-processing and model choices. In contrast to high dimensionality,
it is technically not necessary to account for heterogeneity in regression analysis. Usually,
variables are made technically comparable, e.g., through standardization of continuous
variables, but beyond that, the source of the variables is not directly addressed.

2.2.4 High dimensional and heterogeneous data in our work
In contribution 1, we focus on high dimensional and heterogeneous data from AML
patients. This data set comprises clinical, gene mutation and gene expression variables,
the latter consisting of many more variables than observations (15809 variables versus
447 and 250 observations for the training and test data set, respectively). More speci�cally,
the clinical variables are themselves heterogeneous as they encompass demographic
variables like age and sex, but also laboratory measures like white blood cell count, or a
performance status assigned after evaluating di�erent health criteria. This heterogeneity,
however, will remain disregarded in our application. In this �rst contribution, we develop
the method priority-Lasso which can take high dimensional and heterogeneous data into
account. Priority-Lasso addresses the high dimensionality through the Lasso method
(section 2.3.5) and the heterogeneity through a hierarchical procedure, where the blocks
of data are analyzed successively according to their priority.

In contribution 2, we compare method and sampling uncertainty in the context of
omics biomarker selection, where we illustrate our framework in three scenarios. All
of these scenarios are exempli�ed on high dimensional data of AML patients. Two
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of these data sets are similar to the gene expression data from contribution 1, with
slight di�erences due to pre-processing. For the second scenario, where we compare the
uncertainty between variable rankings obtained by running the random forest method
with di�erent tuning parameters and on di�erent subsets of the data, this AML data is
gathered by A�ymetrix Arrays and consists of 488 patients and 17389 variables. For
the third scenario, RNA-Seq data of AML patients is used in the context of di�erential
expression analysis. Furthermore, we consider a data set from the Cancer Genome Atlas
(TCGA) for the �rst scenario, which consists of high dimensional and heterogeneous
data. For this data set, clinical data as well as two types of omics data are available
(gene expression data and copy number variations), and we analyze method uncertainty
between di�erent Lasso-based methods which we apply for the purpose of variable
selection.

For the other two contributions, the focus of investigation lies on heterogeneous,
but not high dimensional data. In contribution 3, we use data from the SAPA project.
Although these data were gathered by the same (or similar) questionnaires, it consists
of di�erent types of variables: On the one hand, standard demographic variables are
available. On the other hand, variables were gathered that assess the participants person-
ality. In order to obtain valid and interpretable personality scores, these latter variables
are analyzed through a factor analysis. Thus, they are accounted for statistically in a
di�erent way to the demographic variables.

Another example of heterogeneity is provided by the NHANES data, which explicitly
claim to comprise data of di�erent types (Zipf et al., 2013). The sources of data encompass
for instance interviews, health examinations, and laboratory tests, but we do not account
for these di�erent sources in our application. An overview of all data sets and their basic
properties can be found in Table 2.1.
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Table 2.1: Overview of data sets from observational studies in this work
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2.3 Types of regression

In this overview of regression methods, which are used in the four contributions, I will
brie�y describe the theory, as well as the role these methods play in this work. For the
sake of completeness, I will start with linear regression and logistic regression, and will
proceed with the negative binomial regression and Cox regression. Finally, I introduce
the basic concepts of the three methods for high dimensional data analysis, standard
Lasso, priority-Lasso, and IPF-Lasso. More details and further information on all these
regression methods can be found in the corresponding references and an overview of
their practical use in this thesis is available in Table 2.2.

For consistent notation in this section, xij refers to the value of covariate j for
observation i, where j = 1, ..., p and i = 1, ..., n. Thus, p covariates as well as n
observations are available. The case where p > 1 describes multivariable regressions,
on which we will focus in this work. For all types of regression, a covariate can take
continuous or binary values. Moreover, categorical covariates can be included as several
binary covariates by dummy coding. The outcome variable is denoted by yi, which
can refer to count data, survival times, continuous variables or binary variables. The
question of which regression method to apply strongly depends on this property of the
outcome. Throughout this section, bold symbols will be used to denote vectors, e.g., y
refers to the vector of outcome values.

2.3.1 Linear regression
In a linear regression analysis, a continuous outcome is modeled through a linear rela-
tionship of one or more predictor variables. For i = 1, ..., n observations and j = 1, ..., p
predictor variables, the linear model is described by

yi = β0 + β1xi1 + ...+ βpxip + εi,

with the assumption of independent and identically distributed errors εi, which satisfy
E(εi) = 0 and Var(εi) = σ2. In addition, the errors εi are often assumed to be normally
distributed for the purpose of inference. As a result, p + 1 regression coe�cients are
obtained, encompassing the intercept β0 and slopes βj , which describe the in�uence
of the variable xj on the outcome y. The predictor variables can be of di�erent type,
e.g., binary, continuous or categorical, the latter being typically dummy coded as several
binary variables. More details on a linear regression analysis can be found in Fahrmeir
et al. (2007).

In contribution 2, limma-voom (Smyth, 2004; Law et al., 2014; Ritchie et al., 2015),
which is applied in scenario 3 as one of the methods for di�erential expression analysis, is
based on linear regression. After transforming the data to obtain normalized log-counts,
each variable is modeled through a linear regression. When testing for contrasts, the
method uses an empirical Bayes approach borrowing information from other variables,
which yields a stabilized variance estimation.

In order to conduct an analysis of variance (ANOVA), a special type of a linear
regression can be used, where the continuous outcome is modeled through one or more
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categorical variables (factors). In the case of two factors, without considering interactions,
the model can be expressed as yijk = µ + αi + βj + εijk, with the assumptions that∑I

i=1 αi = 0,
∑J

j=1 βj = 0, and εijk
iid∼ N(0, σ2). This model will be considered in

contribution 3, in the analysis of the relative impact of model and data pre-processing
vibration. In this application, estimates describing the in�uence of a covariate on a binary
outcome in a logistic regression for di�erent model- and data pre-processing choices are
used as the outcome yijk, and the two factors indicate the corresponding model and data
pre-processing choices.

2.3.2 Logistic regression
Similar to a linear regression, the association between an outcome and one or more
predictor variables is modeled through a linear relationship in a generalized linear
model (GLM). However, the outcome variable considered in a linear regression is usually
assumed to be continuous. In contrast, for a generalized linear model, the outcome
variable is assumed to follow a distribution from the exponential family (Fahrmeir et al.,
2007). Here, I describe the generalized linear model for a binary outcome variable, which
has to be modeled with a restriction to an interval between 0 and 1. In this case, the
outcome is assumed to be conditionally Bernoulli distributed, i.e., yi|xi ∼ Bernoulli(πi).

To model the probability that the outcome takes the value 1, πi = P (yi = 1), the
logit link function can be used:

g(πi) = ηi = log

(
πi

1− πi

)
.

Thus, πi can be obtained by

πi = P (yi = 1) =
exp(ηi)

1 + exp(ηi)
,

with the linear predictor

ηi = β0 + β1xi1 + ...+ βpxip.

Accordingly, the odds πi/(1− πi) can be formalized through the multiplicative model

πi
1− πi

=
P (yi = 1)

P (yi = 0)
= exp(β0) · exp(β1xi1) · ... · exp(βpxip),

which can also be logarithmized in order to obtain an additive model and simplify
interpretation. The generalized linear model with a logit link is also denoted as ‘logistic
regression’, and a detailed explanation is provided by Kleinbaum and Klein (2002),
for instance. For outcomes following other distributions from the exponential family,
generalized linear models can be applied using other link functions.

In this work, logistic regressions are used in contribution 3, where we assess associ-
ations between several binary outcomes of interest and the Big Five personality traits
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(John et al., 1999) on the SAPA data in order to explore di�erent types of uncertainty.
The binary outcomes comprise the smoking status (smoker vs. non-smoker), levels of
education and physical activity (high vs. low), the relationship status (committed vs.
non-committed) and obesity (yes or no). In addition to the personality traits, several
other adjustment variables are included in the model.

2.3.3 Negative binomial regression
Another generalized linear model is the poisson model, which assumes the outcome
to be poisson-distributed and is in practice often used to model count data. However,
in many situations the restriction that the mean and the variance are equal does not
hold, which makes generalizations of the poisson model more appropriate. One of these
generalizations is the negative binomial regression, which can be derived and presented
with di�erent parameterizations (Hilbe, 2011). The negative binomial distribution can
also be expressed in terms of the exponential family. Following the work of Tutz (2011),
the model can be derived as a mixture of poisson distributions and expressed by

yi|xi ∼ NB(ν, µi),

with the assumptions that yi|λi ∼ Poisson(λi), bi ∼ Γ(ν, ν) and λi = biµi. The density
function of the distribution is given by

f(yi|ν, µi) =
Γ(yi + ν)

Γ(ν) + Γ(yi + 1)

(
µi

µi + ν

)yi(
ν

µi + ν

)ν

,

with mean E(yi) = µi = exp(xTi β) and variance V ar(yi) = µi +
µ2i
ν

.
In contrast to the poisson model, the negative binomial model is a two-parameter

model and can cope with overdispersion. While ν → 0 indicates strong overdispersion,
it approximates the poisson distribution for ν →∞. Thus, the negative binomial model
cannot handle underdispersion.

The negative binomial model is used in some of the methods for di�erential expression
analysis applied in scenario 3 of contribution 2. In this scenario, we consider �ve di�erent
analysis strategies (‘methods’) to investigate sampling and method uncertainty on RNA-
Seq counts of AML patients. Four of these methods are based on negative binomial
regression, namely DESeq (Anders and Huber, 2010), DESeq2 (Love et al., 2014), edgeR
and glm.edgeR (McCarthy et al., 2012; Robinson et al., 2010). The choice of these methods
was motivated by Rigaill et al. (2016). For more details on how the negative binomial
model is integrated in these methods, I refer to the original work. In the �fth case,
limma-voom, the raw data is log-transformed and the analysis can be based on a linear
regression (section 2.3.1).

2.3.4 Cox regression
When the aim is to model survival data, the Cox proportional hazards model (Cox, 1972)
can be used as a regression method. This type of data typically consists of survival times
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Ti and censoring times Ci, where only the minimum of these two times is observed,
i.e., T ∗

i = min(Ti, Ci). Furthermore, δi = I{Ti ≤ Ci} indicates the status of subject
i. The Cox model is one of the most frequently used models for survival analysis and
estimates the in�uence of covariates xi on the hazard rate λ(t). With f(t) and F (t) as
the density function and cumulative distribution function, respectively, this hazard rate
can be expressed through λ(t) = f(t)/S(t), where S(t) = 1−F (t) denotes the survival
function. In the Cox regression, the hazard rate is modeled as a product of exp(xTi β)
and a time-dependent baseline hazard function λ0(t):

λ(t,xi) = λ0(t) exp(xTi β).

The baseline hazard function corresponds to the hazard in the case where all variables are
zero and is estimated non-parametrically− hence, the model is often referred to be semi-
parametric. Since the hazard ratio for two subjects 1 and 2, λ(t,x1)

λ(t,x2)
= exp((x1−x2)T )β),

does not depend on time t, the Cox model satis�es the proportional hazards assumption.
In order to estimate survival functions non-parametrically, the Kaplan-Meier estimator
can be used, for instance. Moreover, alternatives to the Cox model include parametric
models, for which a survival distribution has to be speci�ed. This choice is, however,
not straightforward (Bradburn et al., 2003). In comparison to the Cox model, parametric
alternatives are only rarely used in practice (Nardi and Schemper, 2003).

The Cox regression will be applied in contribution 4, where we consider the right-
censored survival times of participants of the NHANES as an outcome. We use the
package survival (Therneau, 2015) in order to �t the Cox model in R. Furthermore,
the penalized regression methods used in contribution 1 and scenario 1 of contribution 2
are based on a Cox regression, as survival times of AML patients are considered as an
outcome in the situation where more variables than observations are available. More
details on the regression methods for this high dimensional data setting can be found in
the following subsections.

2.3.5 Lasso regression
In extension to the types of regression introduced in sections 2.3.1− 2.3.4, which assume
that the data consists of more observations than variables, the least absolute shrinkage
and selection operator (Tibshirani, 1996), also denoted as ‘Lasso’, can deal with high
dimensional covariate data. In the following, standard regression methods based on this
technique are referred to as ‘standard Lasso’, to contrast them clearly from other Lasso-
based regression methods, in particular priority-Lasso and IPF-Lasso. Standard Lasso
can be used with di�erent types of outcomes, which include for instance continuous
and binary variables, as well as survival times. Here, the principles of standard Lasso
are brie�y explained in terms of a continuous and centered outcome y. To obtain the
regression coe�cients β, the standard Lasso is de�ned by

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj| → min
β
,

where λ > 0 denotes a penalty parameter, which determines the amount of penalization
and is usually chosen through cross-validation. The penalization of the coe�cients with
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the L1-norm ensures a shrinkage towards zero, where some coe�cients are estimated
to be exactly zero. Therefore, standard Lasso provides intrinsic variable selection, in
contrast to similar regression methods like ridge regression (Hoerl and Kennard, 1970),
which utilizes the L2-norm.

In the context of survival analysis, Tibshirani (1997) proposed the Cox-Lasso, where
the coe�cients can be estimated through

−l(β) + λ

p∑
j=1

|βj| → min
β
,

with l(β) as the log partial likelihood. Based on these standard Lasso regressions, a large
variety of extensions have been proposed for speci�c purposes, including group Lasso
(Yuan and Lin, 2006) and sparse group Lasso (Simon et al., 2013), elastic net regression
(Zou and Hastie, 2005), fused Lasso (Tibshirani et al., 2005), and adaptive Lasso (Zou, 2006).
In addition, priority-Lasso and IPF-Lasso are based on standard Lasso and can take several
blocks of data, such as multi-omics data, into account. The development of priority-Lasso
is part of this thesis, and the method is extensively discussed in contribution 1 (Klau
et al., 2018) and summarized in section 2.3.6. IPF-Lasso was suggested by Boulesteix et al.
(2017a) and its idea will brie�y be introduced in section 2.3.7.

Standard Lasso is applied in the context of survival analysis in contribution 1 in
comparison to priority-Lasso. Furthermore, method uncertainty in the �rst scenario of
contribution 2 is assessed for the three Lasso-based methods standard Lasso, priority-
Lasso and IPF-Lasso. For these applications, we use the implementation from the R-
package glmnet (Friedman et al., 2010; Simon et al., 2011).

2.3.6 Priority-Lasso
As part of this thesis, priority-Lasso is developed as a regression approach based on
standard Lasso that can take di�erent blocks of data into account (Klau et al., 2018). Here,
I provide a short summary of this method.

Priority-Lasso is motivated by the situation where prior knowledge about these
di�erent blocks of data is available, such that they can be ordered according to their
priority. In medical research, applications of priority-Lasso can be useful when the data
consists of several types of omics markers, but its use is not limited to such multi-omics
data. In this and many other examples, the block structure of the data is given implicitly.
When the blocks of data are speci�ed, the priority order of these blocks can be de�ned.
This can be done from a practical point of view, for instance according to cost of data
collection or whether data are routinely collected in clinical practice, or alternatively,
using knowledge about prediction performance, e.g., from earlier research.

The algorithm to obtain the coe�cient estimates follows a hierarchical procedure,
where every step is based on a standard Lasso regression. With m = 1, ...,M blocks of
data and a permutation π = (π1, ..., πM) of these blocks, the coe�cients of the block of
data with highest priority π1 can be obtained by

n∑
i=1

(
yi −

pπ1∑
j=1

x
(π1)
ij β

(π1)
j

)2

+ λ(π1)
pπ1∑
j=1

|β(π1)
j | → min

β
,
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for a continuous and centered outcome y. Similar to standard Lasso, λ(π1) is a tuning
parameter which is usually obtained by cross-validation. In the second step, the resulting
linear predictor

η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + ...+ β̂(π1)

pπ1
x
(π1)
ipπ1

can be used as an o�set in the estimation of the coe�cients for the block with next
lowest priority. Thus, the second Lasso model, which considers all variables in the block
of priority 2, π2, is estimated through

n∑
i=1

(
yi − η̂1,i(π)− x(π2)T

i β(π2)

)2

+ λ(π2)
pπ2∑
j=1

|β(π2)
j | → min

β
.

Hence, variables from this block are only included in the model, when they provide
additional predictive information to that of variables from the block of highest prior-
ity. However, since the linear predictor η̂1,i(π) is overoptimistic with respect to the
information contained in block π1, as we explain in contribution 1, we recommend
cross-validating the o�sets as well. In the third step, a Lasso regression is �tted to the
block of data with third highest priority and the linear predictor from the second �t is
used as an o�set. This procedure is similarly applied to all blocks of data with lower
priority. This ensures that variables from blocks of low priority are only included in the
prediction rule when they provide additional information to variables from blocks of
higher priority.

Contribution 1 addresses the development of priority-Lasso and compares it to stan-
dard Lasso in terms of selected variables and prediction accuracy. Detailed information
about the background and motivation are provided as well as a discussion regarding the
method and its application. In the practical application, where we aim to predict the
survival times of AML patients, we de�ne four blocks of data based on clinical data, gene
mutation data and gene expression data, and determine the block order in consultation
with a medical expert. Furthermore, priority-Lasso serves as one of the Lasso-based
methods used to quantify method uncertainty in scenario 1 of contribution 2. Again,
priority-Lasso is applied to AML data in the context of survival analysis. Here, we apply
a more objective variant of priority-Lasso, where we run the method for several block
orders, and �nally choose the best according to cross-validated prediction performance.
In both contributions, we use the implementation from the R-package prioritylasso
(Klau et al., 2019) for the practical applications.

2.3.7 IPF-Lasso
Another extension of standard Lasso that can take heterogeneous data into account is
IPF-Lasso (Boulesteix et al., 2017a). Similar to priority-Lasso, it was motivated by the
situation where di�erent types of omics markers are available for the same patient in a
high dimensional setting. The idea is to assign multiplicative factors to the penalty terms
(the so-called penalty factors) for each block of data. For a continuous and centered
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outcome, the coe�cients are estimated by

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+
M∑
m=1

λm

pm∑
j=1

|β(m)
j | → min

β
,

withm = 1, ...,M indicating the block of data, and pm the number of variables contained
in this block. λm refers to the penalty parameters that can be di�erent for each block
of data and are chosen in relation to a reference penalty λ1 as λm/λ1 for block m. The
penalty factors can be speci�ed either by practical considerations or determined through
cross-validation procedures out of a number of candidate vectors.

Another option is to use an adaptive variant, where the tuning parameters are
determined in two steps based on the data. In the �rst step, a single candidate vector of
penalty factors is determined by using average values of absolute coe�cient estimates
of a single block of data obtained by standard Lasso or ridge regression. In the second
step, the candidate vector is used to calculate λ1 in order to obtain optimal prediction
performance. The IPF-Lasso method and its adaptive variant are implemented in the
R-package ipflasso (Boulesteix et al., 2019), which can deal with continuous, binary
and survival outcomes.

In this work, IPF-Lasso is used as one of the methods in scenario 1 of contribution 2,
where di�erent methods for penalized Cox regression are compared in a high dimensional
and heterogeneous data setting. In this application, the penalty factors are speci�ed
through candidate vectors. For instance, in the case of two blocks of data, a candidate
vector k = (2, 1)T refers to a penalty parameter λ2, which is two times smaller than
the penalty factor for the �rst block of data (λ1). Conversely, k = (1, 2)T indicates a λ2
which is twice λ1, i.e., λ2/λ1 = 2. We speci�ed three and seven candidate vectors for two
and three blocks of data, respectively, where one block is always penalized twice or half
as much as the other blocks. In the end, the best candidate vector is chosen according to
cross-validated prediction error.
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Table 2.2: Overview of the regression methods used in this work
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2.4 Further issues related to this work

In this section, I will describe and discuss selected aspects related to this work. As this
work is partly motivated by the non-replicability of observational research �ndings, I
will start by discussing some of the causes and solutions related to the replication crisis
in section 2.4.1. Section 2.4.2 addresses some general considerations on how to deal
with uncertainty. In section 2.4.3, I will introduce some methods which can be used to
report the results obtained with di�erent analysis strategies. In section 2.4.4, precise and
imprecise probabilities as concepts to quantify uncertainty will be brie�y explained and
contrasted with our view of uncertainty. Finally, section 2.4.5 goes beyond the frequentist
perspective and provides a glimpse at Bayesian statistics.

2.4.1 Some causes and solutions for the replication crisis
Although many contributions to the replication crisis in the scienti�c literature exist,
their causes and solutions are extremely broad and complex − hence, this overview will
not be exhaustive. Nevertheless, I will try to summarize a few important points.

One of the most obvious explanations for the non-replicability of research �ndings is
scienti�c misconduct; however, examples of fraud are in fact rare in practice (Ioannidis
et al., 2014). Instead, the problems causing the crisis are more intricate and aspects are
di�erently pronounced depending on the scienti�c �eld and the type of study.

First of all, measurement error is largely present in epidemiology and medical research
(Brakenho� et al., 2018), and is, according to Loken and Gelman (2017), one of the
contributions to the non-replicability of research �ndings. Secondly, scienti�c studies
are often of low statistical power, as for instance shown by Szucs and Ioannidis (2017) or
Button et al. (2013) in psychological research and neuroscience. Maxwell (2004) directly
exempli�es the connection to the non-replicability of research results.

As a third point, the multiplicity of analysis strategies plays an important role in
the replication crisis (Simmons et al., 2011). Indeed, the choice of the analysis strategy
is often not straightforward and can resemble a ‘garden of forking paths’ (Gelman
and Loken, 2013). In this context, there are some underlying aspects which further
contribute to the multiplicity of analysis strategies: In high dimensional settings, for
instance, few comparison studies are conducted (Boulesteix et al., 2017c) compared to the
overabundance of methods, the latter being at least partly caused by the demand for new
methodological developments (Boulesteix et al., 2018). Together with few guidelines and
standards in this area of research (Boulesteix et al., 2017b), this exacerbates the choice of
an appropriate analysis strategy. Furthermore, an increasing amount of data that was not
initially collected for research purposes, e.g., from twitter accounts (Barberá et al., 2015)
or transaction data (Gladstone et al., 2019), leads to a huge number of researcher degrees
of freedom. Finally, due to greater computational power, it is possible to run multiple
analysis strategies on a single computer (Young and Holsteen, 2017; Young, 2018).

Although these aspects introduce substantial uncertainty, they are in and of them-
selves nothing evil. In this regard, Gelman and Hennig (2017) underline the importance
of the multiplicity of perspectives for the scienti�c process. However, the question of
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how these aspects are handled in practice uncovers some inadequacy. Measurement
error, for instance, is often disregarded in medical research (Brakenho� et al., 2018), and
neither reported nor integrated or reduced in such a scienti�c study (see section 2.4.2
for more details on di�erent strategies to handle uncertainty). When acknowledging
the presence of measurement error, there is a tendency for researchers to consider their
results as evidence under challenging conditions and to claim even more impressive
results in the absence of measurement error. This conclusion is explicitly pointed out as
fallacious by Loken and Gelman (2017).

Moreover, p-values are often misinterpreted, and general concern about the con-
cept of signi�cance testing exists (Goodman, 2008; McShane et al., 2019). Beyond that,
researchers tend to choose analysis strategies which yield signi�cant p-values, a prac-
tice that is called ‘p-hacking’ (Head et al., 2015) or ‘�shing for signi�cance’ (Boulesteix
et al., 2017b). Other questionable research practices in psychological research have been
collected by John et al. (2012).

These practices are encouraged by two factors: On the one hand, publication bias, i.e.,
the tendency to publish only research �ndings with signi�cant results, is widely present
in science (Easterbrook et al., 1991; Ferguson and Brannick, 2012). On the other hand,
there is a strong need for researchers to publish their work (Fanelli, 2010), a circumstance
that is widely known under the slogan ‘publish or perish’. As a consequence, researchers
have pressure to obtain signi�cant results, which can be enforced through �shing for
signi�cance or other questionable research practices.

Addressing these issues is a problem with multiple dimensions which does not only
a�ect the researcher, but also journals and funding agencies. Here, I will brie�y outline
a few possible solutions; however, this list is not exhaustive and a full discussion is
beyond the scope of this work. The �rst solution is for journals to encourage researchers
to pre-register their papers (Wagenmakers et al., 2012) or to submit registered reports
(Chambers, 2013). The idea behind this is to evaluate a study’s methods and analysis,
and decide whether it will be published, before the results are known. More generally,
the researchers raise their voices for open research and open data (Nosek et al., 2015) in
order to increase transparency.

The approach of banning (Amrhein et al., 2019) or abandoning p-values (McShane
et al., 2019) is a radical but widely supported solution for the problems related to p-
values and signi�cance testing (Goodman, 2008). Moreover, lowering the signi�cance
threshold has been suggested, in order to publish only results with strong scienti�c
evidence (Benjamin et al., 2018). More guidelines and standards (Klau et al., 2020a)
could shed some light on the darkness that is the multiplicity of analysis strategies,
along with comparison or benchmarking studies (Boulesteix et al., 2018). Furthermore,
Schooler (2014) claims that metascience and replication studies could counteract the
replication crisis. Finally, more radical solutions have been proposed, e.g., to rearrange
the whole scienti�c system involving multiple parties (Knuteson, 2016; Romero, 2019).
These solutions also include the creation of new incentives for researchers with the aim
of discouraging questionable research practices.
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2.4.2 Di�erent ways to deal with uncertainty
The following aspects on how to deal with uncertainty are based on the work of Ho�mann
et al. (2020). One motivation for these actions is the non-replicability of research �ndings,
which was addressed in section 2.4.1 − nonetheless, there is no direct relation and the
following considerations also hold true in general.

First of all, it is important to acknowledge that there is uncertainty as part of a
scienti�c study, and that this usually goes beyond sampling uncertainty which most
researchers are familiar with. In fact, uncertainties are associated with various other
sources which can have important consequences on the results. Acknowledging these
uncertainties can be seen as a minimum requirement for statisticians, whose whole
work is based on the concept of uncertainty. Moreover, all other aspects discussed in
this section will be based on this �rst and essential point. The acknowledgement of
uncertainties is crucial for cautious interpretation of results and can help researchers to
avoid overcon�dence. In addition, it prevents them from generalizing their conclusions
to other data or other methods without a �rm basis.

Another aspect in dealing with uncertainties is to reduce them as much as possible.
The approaches to reduce uncertainty and their feasibility strongly di�er depending
on the type of uncertainty. For sampling and measurement uncertainty resulting from
random errors, a straightforward way is to increase the sample size of the study (Button
et al., 2013). Moreover, measurement devices, questionnaires, interview techniques, and
data entry processes can be improved to reduce measurement uncertainty (Ho�mann
et al., 2020). On the other hand, aspects to reduce epistemic uncertainty comprise, for
instance, benchmarking studies (Boulesteix et al., 2017c) and pre-registration practices
(Wagenmakers et al., 2012).

Furthermore, uncertainties should be integrated into the statistical analysis, as typi-
cally done with sampling uncertainty when conducting statistical inference. However,
the integration of other types of uncertainty in the analysis should not be neglected.
For example, model uncertainty could be addressed by Bayesian model averaging (Hoet-
ing et al., 1999) or multimodel inference (Burnham and Anderson, 2004). To integrate
measurement uncertainty in the statistical analysis, regression calibration (Rosner et al.,
1989) or simulation extrapolation (Cook and Stefanski, 1994) can be applied. For other
types of uncertainty or speci�c applications, it is not clear how to account for uncer-
tainties, which necessitates the improvement or development of appropriate tools. This
is, for instance, relevant in the context of data pre-processing uncertainty, which is not
straightforward to integrate in the statistical analysis.

Finally, uncertainties should be systematically reported. We believe that researchers
should seek visual or quantitative impressions of uncertainties, and share this information
with reviewers and readers of their articles. This helps the corresponding researchers
to assess their work with regard to uncertainties, and also increases transparency and
promotes open research practices. Therefore, there is need for tools to visualize, quantify
and compare di�erent types of uncertainty.

Although it is not always feasible to integrate or reduce uncertainty, it is, in summary,
important for all members of the statistical community to understand the roles di�erent
types of uncertainty play in a scienti�c study, and to deal with them appropriately.
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2.4.3 Methods to report the results of di�erent analysis strate-
gies

One of the challenges of dealing with uncertainty, discussed in section 2.4.2, is the
reporting of di�erent types of uncertainty. Therefore, straightforward methods to
quantify and illustrate uncertainty are needed. In this short overview, I will outline some
of the methods suggested to report epistemic uncertainty, including the vibration of
e�ects approach, which is extended and used in contributions 3 and 4. I will also brie�y
discuss some advantages and disadvantages of these approaches.

Computational model robustness Computational model robustness was developed
to estimate all possible models from a theoretically informed model space (Muñoz and
Young, 2018; Young, 2018). As a model space, the authors do not only consider speci�c
choices in a probability model, but suggest extending the model space for instance to
variable de�nitions or software implementations. Therefore, they address what we
denote as method uncertainty in their work. Young (2018) extensively discusses how to
de�ne such a model space and presents three approaches. The �rst approach is motivated
by the idea that all models an analyst considered as worth running during the study
are worth reporting. An ‘uber log �le’ could theoretically save all these models. The
second approach, denoted as the ‘task force approach’, combines a wide range of expert
opinions, which is close to the crowdsourcing approach of Silberzahn and Uhlman (2015).
As a third strategy, the authors suggest combining the uber log �le and the task force
approach. Taking all the models into account, a ‘modeling distribution’ can be calculated
and visualized with kernel density graphs. In such a �gure, a favorite model can be
indicated.

Speci�cation Curve The speci�cation curve analysis was proposed and practically
illustrated by Simonsohn et al. (2015) in the �eld of social science. It considers all
operationalization decisions in the data analysis as speci�cations, and thus addresses
what we denote as method uncertainty. Conducting a speci�cation curve analysis can be
summarized in three steps: First, all reasonable speci�cations have to be found, second,
all of these speci�cations have to be calculated, and third, a joint permutation test is
performed to test the null hypothesis of no e�ect. For illustration, Simonsohn et al.
(2015) suggest a two-paneled �gure, with an upper part showing a ‘curve’ of estimated
e�ects and speci�cation numbers. In this curve, a clear distinction between negative
and positive estimates can be made, and signi�cant estimates can be highlighted. In the
lower panel, information about the decisions that produce the estimates can be found. A
practical application of speci�cation curve analysis was provided by Rohrer et al. (2017)
in psychological research, who investigated birth-order e�ects on personality traits.

Multiverse analysis The multiverse analysis was suggested by Steegen et al. (2016)
in psychological research with the aim of performing a statistical analysis for di�erent
data pre-processing steps. To ensure that the alternative data sets cover reasonable
choices, they base their practical application on previously published studies, where

26



these choices have actually been considered. In order to visualize the results, they
suggest showing a histogram of raw p-values. The distribution of p-values obtained by
di�erent data pre-processing choices can give information on the robustness of �ndings
due to alternative choices: p-values which are nearly uniformly distributed are not as
robust as p-values that indicate increased signi�cance. Furthermore, for a more detailed
investigation, results can be reported in grids of p-values, where a p-value can be traced
back to the analysis strategy that yielded it. In addition to the practical illustration of
Steegen et al. (2016), applications of a multiverse analysis can for instance be found in
McBee et al. (2019), Stern et al. (2019), or Credé and Phillips (2017).

Vibration of e�ects The concept of vibration of e�ects was initially proposed by
Ioannidis (2008) and extended by Patel et al. (2015), who used it to practically examine
model uncertainty in a large epidemiological study. The developers suggest visualizing
results obtained from di�erent analysis strategies with volcano plots. These plots typically
show p-values on the y-axis and e�ect estimates on the x-axis. Moreover, the variability
of p-values and e�ect estimates can be quanti�ed through summary measures. As such,
Patel et al. (2015) suggest relative e�ect estimates and relative p-values, de�ned as the
ratio of the 99th and 1st percentile of e�ect estimates and the di�erence between the
99th and 1st percentile of -log10(p-value), respectively. Apart from these primal works,
applications of the framework can be found in Palpacuer et al. (2019) and Chu et al.
(2020) for di�erent method choices. In our work, we will use and extend the vibration
of e�ects framework in order to assess and compare measurement, sampling, model
and data pre-processing uncertainty. Moreover, we will apply it for di�erent types of
regression (logistic regression (section 2.3.2) and Cox regression (section 2.3.4)), which
results in relative odds ratios and relative hazard ratios as summary measures in order
to quantify the variability of e�ect estimates.

Discussion of advantages and disadvantages In contrast to computational model
robustness and the vibration of e�ects, speci�cation curve analysis and multiverse
analysis allow easy tracing back of results to the corresponding analytical choices. This,
however, results in the disadvantage of there being a limited number of models that can
be considered for the visualization. For a large number of analytical choices, this can for
instance be accounted for by visualizing only a subset of these decisions. Furthermore,
when conducting a multiverse analysis, the focus of visualization can be the histogram
rather than the grid of p-values. Similarly, for a speci�cation curve analysis, only the
upper panel of the suggested �gure can be shown.

With regard to the other approaches, the speci�cation curve analysis implicates a
permutation test, which provides a decision over all speci�cations. However, performing
such a test is very computationally demanding and its application has not yet gained ac-
ceptance in practice. On the other hand, the vibration of e�ects framework encompasses
relative e�ect estimates and relative p-values as summary measures of the variability of
results. Yet, neither these summary measures nor the permutation test are in principle
limited to their speci�c framework of visualization.

27



In general, none of the approaches are limited to the type of uncertainty for which
they were originally suggested. Using the speci�cation curve only for data pre-processing
or model choices is straightforward, and in a multiverse analysis, decisions on model
speci�cation can be similarly included to data pre-processing choices. Finally, the
vibration of e�ects framework can be extended to sampling, data pre-processing and
measurement uncertainty, as we demonstrate in contributions 3 and 4. In contrast to the
other approaches, this framework provides visualization of e�ect estimates and p-values
simultaneously. Moreover, for epistemic uncertainty, it allows the highlighting of points
in volcano plots in order to visualize the impact of particular choices. Thus, key choices
can be identi�ed.

2.4.4 Quantifying uncertainties through precise and imprecise
probabilities

The most established concept to quantify uncertainty, from both a theoretical and a
practical perspective, is probability. There are many contributions to probability theory,
e.g., by Laplace (Laplace, 1820) and Kolmogorov (Kolmogorov, 1933). The work of these
two celebrated scientists on probability is associated with the de�nitions of classical
and axiomatic probabilities, respectively. Moreover, there are objective and subjective
perspectives on probability (De Finetti, 1970), from which the frequentist and Bayesian
inference can be derived, respectively. Some researchers argue that probability is the only
concept needed to quantify uncertainty, while other representations are inadmissible
(Lindley, 1982). In contrast, other researchers question whether using a single value to
express probability is unrealistically precise (Augustin et al., 2014; Hall et al., 2007).

A generalized version of probability theory that aims to account for this latter issue
is imprecise probability. Early contributions on this theory are given by George Boole,
who was one of the �rst to recognize the problem of unrealistic precision in probabilities
(Boole, 1854). The basic idea of imprecise probabilities is to provide upper and lower
bounds of probability. In particular, when the aim is to quantify the probability of
an event A, the precise probability of A can be denoted by P (A). Upper and lower
probabilities of A can be expressed by P (A) and P (A), where 0 ≤ P (A) ≤ P (A) ≤ 1.
The extreme case where P (A) = P (A) refers to precise probability. In contrast, in the
situation where P (A) = 0 and P (A) = 1, no information at all can be given on A.

Based on this idea, the term imprecise probability comprises many theoretical contri-
butions and extensions of formulations of probability. Walley (2000) intended to unify
some of these contributions and to provide a general theory of imprecise probabilities.
For more details and a comprehensive overview of imprecise probability theory, I refer
to Augustin et al. (2014).

Applications of imprecise probability can be mainly found in climatology, where
evidence is gathered from a variety of di�erent sources in a range of formats, which
are not necessarily numerical (Hall et al., 2007). Kriegler et al. (2009) create subjective
probability intervals on the basis of expert elicitation on the occurrence of major changes
in the climate system. Hall et al. (2007) combine imprecise probabilities and fuzzy
linguistic uncertainties to show upper and lower bounds of global mean temperature.
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Ghosh and Mujumdar (2009) downscale multiple general circulation models in order
to derive imprecise cumulative distribution functions for monsoon rainfall by applying
interval regression. Besides climatology, an important area of application for imprecise
probability is engineering (Augustin and Hable, 2010; Oberguggenberger et al., 2009).
Especially when it comes to questions of structural safety, imprecise probabilities can
be of exceptional importance (Zhang et al., 2017), as wrong decisions can have severe
negative consequences.

Together with imprecise probabilities, Aven (2011) lists some other alternative repre-
sentations of uncertainty, including possibility theory (Dubois and Prade, 1988), evidence-
theory by Dempster and Shafer (Dempster, 2008) and fuzzy probabilities (Zadeh, 1968).
Ghosh and Mujumdar (2009) consider imprecise probabilities as a generalized form of
possibility theory and Dempster-Shafer theory. All these theories are fundamentally
di�erent from our practical view on uncertainty, nevertheless it is important to ac-
knowledge them, as they provide important contributions from di�erent perspectives
on uncertainty.

2.4.5 A glimpse at Bayesian statistics
All aspects of uncertainty addressed in this work are made from a frequentist perspec-
tive, which is based on the assumption of the theoretically in�nite repeatability of an
experiment. Another approach to statistical inference is the Bayesian approach, which
allows expression of epistemic uncertainty in terms of probabilities and inclusion of
external information in the inference process. The basic concept of Bayesian statistics is
to combine prior probabilities, which can be speci�ed according to external information,
with a likelihood function with the goal of obtaining posterior probabilities.

The Bayesian approach allows more �exible modeling of uncertainties than the fre-
quentist approach. For instance, an established method to account for model uncertainty
is Bayesian model averaging (Hoeting et al., 1999). For a given set of models M1, ...,MK

and data D, the posterior model probability π(Mk|D) can be obtained by

π(Mk|D) =
π(D|Mk)π(Mk)∑K
l=1 π(D|Ml)π(Ml)

.

Here, π(D|Mk) describes the integrated likelihood of model Mk and π(Mk) the prior
probabilities which have been speci�ed in advance. On the one hand, the results can be
used with a focus on single models, e.g., two models can be compared with Bayes factors.
Alternatively, a single model can be selected based on posterior model probabilities.
Models can also be averaged and weighted by posterior model probabilities. Hoeting
et al. (1999) argue that the average estimates over all models are robust to model choice
and show that the average predictive performance is better than any single model.
However, Bayesian model averaging is not without challenges in practice, since the
choice of models and the speci�cation of prior distributions is not straightforward. For
the latter, a simple solution is to assign the same prior probability to each model.

Moreover, the Bayesian framework allows easily integration of measurement uncer-
tainty in the inference process. A detailed overview on Bayesian measurement error
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modeling can be found in Gustafson (2003), and practical examples are for instance
provided by Richardson and Gilks (1993) and Ho�mann et al. (2017). Data pre-processing
choices, however, can address di�erent research questions of interest. As these choices
refer to truly di�erent associations, the integration of data pre-processing uncertainty in
the Bayesian framework is connected with some di�culties. Apart from this, uncertain-
ties can be �exibly integrated and di�erent types of uncertainty can be combined using
Bayesian approaches. The sometimes high computational challenges of these models are
usually addressed with Markov chain Monte Carlo algorithms (Carlin and Chib, 1995).

Nevertheless, Bayesian inference is still underrepresented in practical applications
in comparison to frequentist approaches. A conceivable explanation could be that the
practical implementation is often very complex and the computational challenges are
high. Furthermore, this may be a philosophical issue, because many researchers do not
feel comfortable with the subjectivity underlying the Bayesian point of view (Gelman,
2008).
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Chapter 3

Structure and overview of this thesis

3.1 Summary of the contributions

In this work, the challenges of uncertainty in regression models for high dimensional
and heterogeneous data from observational studies are addressed in four di�erent con-
tributions. I will start the following overview of these contributions with our earliest
work (contribution 1), which is an extension of my master thesis and introduces the
methodological basics for some of the other contributions. Although there is no direct
connection to uncertainties, it can be seen as a practical illustration of data pre-processing
and method uncertainty.

In particular, we focus on the development of priority-Lasso (section 2.3.6), a regres-
sion method for high-dimensional and heterogeneous data (sections 2.2.2 and 2.2.3) in
the �rst part of this contribution. In the second part, where we practically apply priority-
Lasso to AML data, we deal with uncertainties due to data pre-processing and method
choices. Here, we illustrate data pre-processing uncertainty (section 2.1.4) through the
choice of pre-processing the variables included in the block of priority 1. Furthermore,
method uncertainty (section 2.1.5) arises through the choice of whether o�sets are cross-
validated or not. We compare these di�erent approaches with standard Lasso (section
2.3.5) in terms of included variables and prediction accuracy. In addition, there exist a
magnitude of other reasonable data pre-processing and method choices for this research
question of interest in general: These choices include decisions on whether to apply
standard Lasso or priority-Lasso, how many blocks to specify, which variables to include,
how to de�ne the variables, which method settings to use, and many more. Other types
of uncertainty, like measurement and sampling uncertainty (sections 2.1.1 and 2.1.2) may
also play an important role as they are ubiquitous in biomedical research. However, since
the focus of this contribution is the method priority-Lasso itself, we merely acknowledge
these further choices and uncertainties without systematically examining them. This
contribution was written by me, Vindi Jurinovic, Roman Hornung, Tobias Herold and
Anne-Laure Boulesteix, and published as ‘Priority-Lasso: A simple hierarchical approach
to the prediction of clinical outcome using multi-omics data’ in BMC Bioinformatics in
2018 (Klau et al., 2018).
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In contribution 2, we develop a framework for the comparison of sampling and
method uncertainty (sections 2.1.2 and 2.1.5, respectively). The idea of this framework is,
for a given data set, to split this data set in two halves of equal size and run two or more
methods on each of these halves. By repeating this procedure with several random splits
of the data, sampling and method uncertainty can be assessed by intuitive summary
measures. Here, the framework is practically illustrated through three representative
examples in the context of variable selection and ranking for high dimensional data
(section 2.2.2). In the �rst example, we select variables from high dimensional and
heterogeneous data (section 2.2.3) by using the three penalized regression methods
standard Lasso, priority-Lasso and IPF-Lasso (sections 2.3.5 -2.3.7). In the second example,
we rank variables from a high dimensional data set through random forest variable
importance measures and assess method uncertainty between di�erent tuning parameter
settings. Finally, we identify di�erentially expressed genes from a high dimensional data
set with �ve di�erent approaches of di�erential expression analysis. These approaches
are either based on linear regression (section 2.3.1, limma-voom) or negative binomial
regression (section 2.3.3, DESeq, DESeq2, edgeR and glm.edgeR). Beyond these examples,
it is straightforward to apply this framework to other statistical scenarios and other types
of uncertainty. This contribution was created by me, Marie-Laure Martin-Magniette,
Anne-Laure Boulesteix and Sabine Ho�mann, and published with the title ‘Sampling
uncertainty versus method uncertainty: A general framework with applications to omics
biomarker selection’ in Biometrical Journal in 2019 (Klau et al., 2020a).

In contribution 3, we focus on sampling, model and data pre-processing uncertainty
(sections 2.1.2, 2.1.3 and 2.1.4), and compare these three types of uncertainty on a data
set from psychology encompassing heterogeneous variables (section 2.2.3) in a common
framework. Therefore, we extend the vibration of e�ects framework (Ioannidis, 2008;
Patel et al., 2015) to sampling and data pre-processing uncertainty and recommend
using it as a tool for researchers and readers to systematically examine and report these
di�erent types of uncertainty. In our practical application, we study several associations
of interests between a binary outcome and one of the Big Five personality traits with
logistic regression models (section 2.3.2), where we consider 12 additional variables as
adjustment variables in each model. We pre-process the variables in di�erent ways, and
run the model with every possible combination of the adjustment variables to study data
pre-processing and model uncertainty, respectively. Finally, we subsample the data a
large number of times to assess sampling vibration. The large data set from the SAPA
personality project with more than 80000 observations allows investigation of these
types of uncertainty for varying sample sizes. Furthermore, we assess the relative impact
of model and data pre-processing vibration on the total vibration due to the analysis
strategy. This contribution was published as a Technical Report on the homepage of
the Ludwig-Maximilians-Universität München in 2020 (Klau et al., 2020b). Me, Felix
Schönbrodt, Chirag Patel, John Ioannidis, Anne-Laure Boulesteix and Sabine Ho�mann
entitled it ‘Comparing the vibration of e�ects due to model, data pre-processing and
sampling uncertainty on a large data set in personality psychology’.
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Similarly to contribution 3, we use the vibration of e�ects framework to study
three types of uncertainty in contribution 4. Here, we develop a strategy to examine
measurement uncertainty (section 2.1.1) and compare this type of uncertainty to sampling
and model uncertainty (sections 2.1.2 and 2.1.3, respectively) in a practical application
with the vibration of e�ects framework. We perform this application on data from the
NHANES, which is a data set from epidemiology consisting of heterogeneous variables
(section 2.2.3). The data set comprises variables, for instance, from questionnaires,
health examinations, or laboratory tests. In this application, we successively study
the association between several variables of interest and mortality in a Cox regression
(section 2.3.4). Furthermore, we consider 15 additional adjustment variables for each
regression model, which we combine in di�erent ways in order to examine model
uncertainty. In our assessment of measurement uncertainty, we vary our strategy to
which variables measurement error is added. In addition to the real data analysis, a large
simulation study is provided in order to compare these three types of uncertainty for
di�erent sample sizes. This contribution was written by me, Sabine Ho�mann, Chirag
Patel, John Ioannidis and Anne-Laure Boulesteix. It is available at the homepage of
the Ludwig-Maximilians-Universität München (Klau et al., 2020c) and currently under
review at the International Journal of Epidemiology.

3.2 Further steps

As we show in our contributions, the types of uncertainty we de�ned in this work
strongly depend on the type of analysis and characteristics of the data. Therefore,
general conclusions, e.g., of the form ‘data pre-processing uncertainty is always higher
than model uncertainty’, or ‘sampling uncertainty is higher than method uncertainty’
cannot be made. Instead, it is essential to study di�erent types of uncertainty in di�erent
settings. On the one hand, this should be done by methodological researchers in further
comparison studies for the purpose of assessing and understanding uncertainties. This
is in line with the need for more comparison studies relative to the vast amount of
methodological developments (Boulesteix et al., 2018). On the other hand, as we claim
in our contributions, the examination and comparison of di�erent types of uncertainty
should be conducted as a standard procedure in practical research.

With our framework to compare sampling and method uncertainty (Klau et al.,
2020a) and the extension of the vibration of e�ects (Klau et al., 2020b,c), we provide such
tools that allow easy quanti�cation, visualization and comparison of di�erent types of
uncertainty. Furthermore, while computational resources are increasing, researchers
often run their analyses with many di�erent analytical choices, like slightly modi�ed
data sets or di�erent combinations of covariates. Hence, reporting additional results
should cease to be an obstacle from both a methodological (e.g., by using our tools) and
practical point of view.

However, these additional analyses are usually not systematically conducted. There-
fore, not only the methodological tools should be provided, but the practical implemen-
tation to systematically investigate and report di�erent types of uncertainty should be
simpli�ed. Hence, there is need for extending our work with a user-friendly software
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implementation of this or a similar general framework. Although it is impossible to
cover all types of analysis and all choices that can theoretically be made, some basics
that are commonly relevant can be implemented. A shiny app could, for instance, be
suitable for this purpose. In this implementation, not only a single framework like the
vibration of e�ects can be used for the purpose of illustration. In fact, frameworks like
the speci�cation curve analysis or the multiverse analysis have other advantages (see
section 2.4.3), and could additionally be utilized to provide more �exibility for the users.

Moreover, future work should focus on methods that not only acknowledge and
report, but also integrate and reduce uncertainty. In this regard, it is important to work
in an interdisciplinary manner and learn from other �elds of research (Rigdon et al.,
2020).

The further steps described above are related to this thesis and our view of uncertainty.
In addition, it should be the aim of every researcher to contribute to better research and
to a solution to the replication crisis by following the suggestions partly introduced in
section 2.4.1 as well as possible and good research practices in general.
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Priority-Lasso: a simple hierarchical
approach to the prediction of clinical outcome
using multi-omics data
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Abstract

Background: The inclusion of high-dimensional omics data in prediction models has become a well-studied topic in
the last decades. Although most of these methods do not account for possibly different types of variables in the set of
covariates available in the same dataset, there are many such scenarios where the variables can be structured in
blocks of different types, e.g., clinical, transcriptomic, and methylation data. To date, there exist a few computationally
intensive approaches that make use of block structures of this kind.

Results: In this paper we present priority-Lasso, an intuitive and practical analysis strategy for building prediction
models based on Lasso that takes such block structures into account. It requires the definition of a priority order of
blocks of data. Lasso models are calculated successively for every block and the fitted values of every step are included
as an offset in the fit of the next step. We apply priority-Lasso in different settings on an acute myeloid leukemia (AML)
dataset consisting of clinical variables, cytogenetics, gene mutations and expression variables, and compare its
performance on an independent validation dataset to the performance of standard Lasso models.

Conclusion: The results show that priority-Lasso is able to keep pace with Lasso in terms of prediction accuracy.
Variables of blocks with higher priorities are favored over variables of blocks with lower priority, which results in easily
usable and transportable models for clinical practice.

Keywords: Cox regression, Lasso, Multi-omics data, Penalized regression, Prediction model, Priority-lasso

Background
Many cancers are heterogeneous diseases regarding biol-
ogy, treatment response and outcome. For example, in
the context of acute myeloid leukemia (AML), a vari-
ety of classifiers and recommendations were published to
guide treatment decisions [1].We and others have recently
shown that gene expression markers as well as mutational
profiling are able to improve risk prediction based on
standard clinical markers [2–5]. Other types of biomark-
ers such as copy number variation data or methylation
data may also be used for this purpose in the future.
However, irrespective of the considered specific end point
(e.g., overall survival, resistant disease, early death) no
model is currently able to precisely predict the outcome

*Correspondence: simonklau@ibe.med.uni-muenchen.de
1Institute for Medical Information Processing, Biometry and Epidemiology,
University of Munich, Munich, Germany
Full list of author information is available at the end of the article

of AML patients. To date, the most powerful prognos-
tic models are based on cytogenetics and gene expression
markers [6].
In the present paper, we use the term omics to

denote molecular biomarkers measured through high-
throughput experiments. Beyond the example of AML
mentioned above, the integration of multiple types of
omics biomarkers with the aim of improved prediction
accuracy has been a focus of much attention in the past
years, see for example [7] and references therein. While
prediction modelling using a single type of omics markers
is a well-studied topic, it is not clear how different types
of biomarkers should be handled simultaneously when
deriving a prediction model.
In addition to the highly important topic of predic-

tion accuracy, encompassing both discrimination ability
and calibration, clinical reality requires analysts to take
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aspects related to usability into account when devel-
oping prediction models for clinical practice. Firstly, a
model including several hundreds/thousands of variables
is much more difficult to implement in clinical practice
than a model including only a handful of variables. Spar-
sity is thus an important aspect of the model which con-
tributes to its practical utility in clinical settings. Secondly,
a model including variables that are already included in
routine diagnostics — such as genetic alterations as rec-
ommended by the European LeukemiaNet (ELN) in the
case of AML [1], or variables that can be easily assessed
such as age or common clinical variables— aremore likely
to be accepted by physicians than a model including vari-
ables measured with new and/or expensive technologies,
maybe even at the expense of a slightly lower prediction
accuracy. These two points are arguments in favor ofmod-
els that (preferably) include a small number of variables
selected from particular “favorite” sets of variables — as
opposed to, say, a large number of variables selected from
genome-wide data.
Another aspect related to practical usability is the trans-

portability of a prediction model, i.e. the possibility for
potential users to apply the prediction model to their own
data based on information provided by the model devel-
opers [8]. Penalized regression methods yielding sparse
models typically yield better transportable models than
black-box machine learning algorithms [8, 9]. For exam-
ple, to apply a Lasso logistic regression model [10] for
making predictions for their own patients, users only
need the fitted regression coefficients and names of the
selected variables to compute the score and, if they want
to compute predicted probabilities, the fitted intercept. In
contrast, a prediction tool constructed using, for exam-
ple, the random forest algorithm, can be applied by other
researchers or clinicians only if they have access to a
software object (such as the output of the R function ‘ran-
domForest’ if the package of the same name is used) or
the dataset and the code used to construct it — which
may become obsolete after a few years. In this sense, Lasso
logistic regression is preferable to random forest as far
as transportability and sustainability are concerned. Note
that model interpretation is also particularly easy with
sparse penalized regression methods.
Finally, coming back to prediction accuracy, we note

that medical experts often have some kind of prior knowl-
edge regarding the information content of different sets
of variables. For example, they often expect (a particular
set of ) the clinical variables to have high prediction abil-
ity and a large proportion of the gene expression variables
to be less relevant. Such prior knowledge should ideally be
taken into account while constructing a prediction model.
Motivated by the need, in the context of AML research

and other fields, for sparse transportable models selecting
preferably variables that are easy to collect or expected to

yield good prediction accuracy, we suggest priority-Lasso,
a simple Lasso-based approach. Priority-Lasso is a hier-
archical regression method which builds prediction rules
for patient outcomes (e.g., a time-to-event, a response sta-
tus or a continuous outcome) from different blocks of
variables including high-throughput molecular data while
taking clinicians’ preference into account. More precisely,
clinicians define “blocks” of variables (which may simply
correspond to the type of data, e.g., the block of methy-
lation variables or the block of gene expression variables)
and order these blocks according to their level of priority.
The prediction model is then fitted in a stepwise manner:
In turn, each block of variables is considered as a covari-
ate matrix in Lasso regression, in the sequence of priority
specified by the clinician; see the “Methods” section for
more details.
The priority-Lasso procedure is fast and simple. It can

cope with all the types of outcome variables accepted by
Lasso and, more generally, inherits its properties. The
hierarchical principle of priority-Lasso can essentially also
be applied to extensions of Lasso, including but not lim-
ited to elastic net [11], adaptive Lasso [12] or stability
selection [13], but also, more generally, to other predic-
tion methods applicable to high-dimensional covariate
data. Last but not least, note that the priority sequence
imposed by the clinician merely determines which blocks
are prioritized over other blocks with respect to rendering
predictive information that is contained in several blocks.
Predictive information of blocks with low priority that is not
contained in blocks with high priority is still exploited by
priority-Lasso (see “Principles of priority-Lasso” section
for details).
The rest of this paper is structured as follows. Section

“Methods” presents the priority-Lasso method and its
implementation in detail. In “Results” section, the method
is illustrated with different settings through an application
to AML data and compared to standard Lasso in terms
of accuracy and included variables. The considered out-
come is the survival time and the considered types of data
are comprised of clinical data, the mutation status of sev-
eral genes and gene expression data. Most importantly,
prediction models are fitted on a training dataset and sub-
sequently validated on an independent dataset following
the recommendations by Royston and Altman [14].

Methods
We first provide a non-technical introduction into the
principles of priority-Lasso in “Principles of priority-Lasso”
section to make these concepts accessible to readers
without strong statistical background and to give a suc-
cinct overview. We present the method formally in
“Formalization of priority-Lasso” section, treat its imple-
mentation in “R package prioritylasso” section, and
describe in “Validation” section the validation strategy
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inspired from Royston and Altman [14] adopted in our
illustrative example.

Principles of priority-Lasso
Priority-Lasso is a method that can construct a prediction
model for a clinical outcome of interest (e.g., a time to
event or a response status and continuous outcome) based
on candidate variables, using an available training dataset.
Before running priority-Lasso, the user is required to first
specify a block structure for the covariates where each
covariate belongs to exactly one of M blocks and, second,
a priority order of these blocks.
A block may be of a particular data type, for example

“clinical data”, “gene expression data” or “methylation data”,
but the classification of variables into blocks may also be
finer. For example, clinical data may be divided into two
blocks, e.g., the demographic data (e.g., age or sex) in a
first block and clinical data related to the tumor in the
second block. Once the blocks of variables are defined,
the clinician orders them according to their level of pri-
ority. High priority should be given to blocks which are
easy and/or inexpensive to collect or are already routinely
collected in clinical practice.
After this definition, the prediction model is fitted in a

stepwise manner. In the first step, a Lasso model is fitted
to the block with highest priority. The goal of this step is
simply to explain the largest possible part of the variability
in the outcome variable by the covariates from the block
with highest priority. In the second step, a Lasso model is
fitted to the block with second highest priority using the
linear score from the first step as an offset, i.e., this linear
score is forced into the model with coefficient fixed to 1.
In the special case of a metric outcome, this corresponds
to fitting a second Lasso model (without the offset) to the
residuals from the first Lasso model using the block with
second highest priority as covariate matrix. The goal of
this second step is thus to use the variables from the sec-
ond block to explain remaining variability in the outcome
variable that could not be explained by covariates from the
first block.
In the third step, a Lasso regression is fitted to the

block with third highest priority using the linear score
from the second step as offset. The special case of a
metric outcome is correspondingly equivalent to fitting
a Lasso model to the residuals from the second Lasso
model using the block with third highest priority. This
procedure is iterated until all blocks have been consid-
ered in turn. Thus, in the case of a metric outcome, at
each step the current block is fitted to the residuals of
the previous step. Generalizing to other types of out-
come variables, in each step the current block is fitted
to the outcome conditional on all blocks with higher pri-
ority that were considered in the previous steps. In this
way, blocks of variables with low priority enter the model

only if they explain variability that is not explainable by
blocks with higher priority. Compared to non-hierarchical
approaches, priority-Lasso tends to yield models in which
variables from the most prioritized blocks play a more
important role.
This procedure was motivated by the fact that there

is frequently a strong overlap of predictive information
across the considered blocks. For example, some gene
expression and gene mutation variables can be associ-
ated with the same phenotype, which is why these two
different types of omics data may contain similar predic-
tive information. Moreover, clinical covariates and omics
covariates often carry similar predictive information. If, in
priority-Lasso, a block A is given a higher priority than a
block B, this means that the part of the predictive informa-
tion contained in A and B that is common to both blocks
will be obtained from block A. The larger the number
of blocks, the lower the information contained in indi-
vidual blocks, that is not contained in any other block.
Thus, in the presence of a large number of blocks there
is a high chance that priority-Lasso will exclude variables
from blocks of low priority, because the predictive infor-
mation contained therein may also be contained in the
data of blocks of higher priority. Therefore, by providing
a priority sequence, the analyst can decide which blocks
should be prioritized over others with respect to providing
predictive information redundant among blocks. The cho-
sen priority sequence can, however, be expected to have
a limited impact on the prediction error for the follow-
ing reason: If a block A with strong predictive power is
attributed a low priority, its predictive power will never-
theless be exploited in the prediction rule. This is because
the proportion of the variability of the outcome variable
that is only explainable by block A will still be unexplained
before block A is considered as a covariate block in the
iterative procedure.

Formalization of priority-Lasso
In the following description, we considerM blocks of con-
tinuous or binary variables that are all to be penalized,
and a continuous outcome variable for the sake of sim-
plicity. Extensions to time-to-event and binary outcomes
are straightforward using the corresponding variants of
Lasso (Cox Lasso and logistic Lasso, respectively, see [15]
and [10, 16]). The extension to multicategorical variables
is also straightforward using an appropriate coding of the
variables.
Let xij denote the observed value of the jth variable (j =

1, . . . , p) for the ith subject (i = 1, . . . , n) and yi denote the
observed outcome of subject i. For simplicity it is assumed
that each variable is centered to have mean zero over the n
observations. The standard Lasso method [10] estimates
the regression coefficients β1, . . . ,βp of the p variables by
minimizing the expression
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n∑

i=1

⎛

⎝yi −
p∑

j=1
xijβj

⎞

⎠
2

+ λ

p∑

j=1
|βj|

with respect to β1, . . . ,βp, where λ is a so-called penalty
parameter. This method performs both regularization
(shrinkage of the estimates) and variable selection (i.e.,
some of the estimates are shrunken to zero, meaning that
the variable is excluded from the model). The amount of
shrinkage is determined by the parameter λ, which is con-
sidered as a tuning parameter of the method and is in
practice most often chosen using cross-validation.
We now adapt our notation to the case of variables

forming groups that is considered in this paper. From now
on, the observations of the pm variables from block m for
subject i are denoted as x(m)

i1 , . . . , x(m)
ipm , for i = 1, . . . , n

and m = 1, . . . ,M. The number of blocks M usually
ranges from 2 to, say, 10 in practice, while the number
pm of variables often varies strongly across the blocks.
For example, blocks of clinical variables typically include a
very small number of variables, say, pm ≈ 10, while blocks
of molecular variables from high-throughput experiments
may include several tens or hundreds of thousands of
variables.
Similarly to the definition of x(m)

ij , β
(m)
j denotes the

regression coefficient of the jth variable from block m,
for j = 1, . . . , pm, while β̂

(m)
j stands for its estimated

counterpart.
Let us further denote as π = (π1, . . . ,πM) the permu-

tation of (1, . . . ,M) that indicates the priority order: π1
denotes the index of the block with highest priority, while
πM is the index of the block with the lowest priority. For
example, if M = 4, π = (3, 1, 4, 2) means that the third
block has highest priority, the first block has second high-
est priority, and so on. Conversely, the priority level of a
given block is indicated by the position of its index in the
vector π .
In the first step of priority-Lasso, the variables from

block π1 are used to fit a Lasso regression model. The
coefficients β

(π1)
1 , . . . ,β(π1)

pπ1
are estimated by minimizing

n∑

i=1

⎛

⎝yi −
pπ1∑

j=1
x(π1)
ij β

(π1)
j

⎞

⎠
2

+ λ(π1)

pπ1∑

j=1

∣∣∣β(π1)
j

∣∣∣ .

The linear predictor fitted in step 1 is given as

η̂1,i(π) = β̂
(π1)
1 x(π1)

i1 + . . . + β̂(π1)
pπ1

x(π1)
ipπ1

.

In “Principles of priority-Lasso” section we noted that
this linear predictor is used as an offset in the second
step in which we fit a Lasso model to block π2. However,
the linear score η̂1,i(π) tends to be over-optimistic with
respect to the information usable for predicting yi that is
contained in block π1. The reason for the latter is that
yi was part of the data used for obtaining the estimates

β̂
(π1)
1 , . . . , β̂(π1)

pπ1
, which are then used to calculate η̂1,i(π).

This overoptimism is essentially similar to the well-known
overoptimism that results from estimating the prediction
error of a prediction rule using the observations in the
training dataset.When using this over-optimistic estimate
η̂1,i(π) as an offset in the second step, the influence of
block π2 conditional on the influence of block π1 will
tend to be underestimated. The reason for this is that
by considering the over-optimistic estimate η̂1,i(π) as an
offset, a part of the variability in yi is removed that is
actually not explainable by block π1 but would possibly
be explainable by block π2. As noted above, this problem
results from the fact that yi is contained in the train-
ing data used for estimating β

(π1)
1 , . . . ,β(π1)

pπ1
. As a solution

to this problem we suggest estimating the offsets η1,i(π)

using cross-validation in the following way: 1) Split the
dataset S randomly into K approximately equally sized
parts S1, . . . , SK ; 2) For k = 1, . . . ,K : obtain estimates
β̂

(π1)
S\Sk ,1, . . . , β̂

(π1)
S\Sk ,pπ1

of the Lasso coefficients using the
training data S \ Sk and for all i ∈ Sk (k = 1, . . . ,K),
calculate the cross-validated offsets as

η̂1,i(π)CV = β̂
(π1)
S\Sk ,1x

(π1)
i1 + . . . + β̂

(π1)
S\Sk ,pπ1

x(π1)
ipπ1

.

In the second step the coefficients of the variables in
block π2 are thus estimated by minimizing

n∑

i=1

⎛

⎝yi−η̂1,i(π)CV−
pπ2∑

j=1
x(π2)
ij β

(π2)
j

⎞

⎠
2

+λ(π2)

pπ2∑

j=1

∣∣∣β(π2)
j

∣∣∣ .

Using η̂2,i(π) = η̂1,i(π)CV+ β̂
(π2)
1 x(π2)

i1 + . . .+ β̂
(π2)
pπ2

x(π2)
ipπ2

as
an offset in the third step in which we fit a Lasso model to
block π3 could again lead to underestimating the influence
of block π3 conditional on the influences of blocks π1 and
π2. This is because, analogously to the first step, the esti-
mates β̂

(π2)
1 , . . . , β̂(π2)

pπ2
used to calculate η̂2,i(π) are overly

well adapted to the residuals yi − η̂1,i(π)CV. Therefore,
we again suggest to calculate cross-validated estimates,
η̂2,i(π)CV, of the offsets analogously to the first step.
Priority-Lasso proceeds analogously for the remaining

groups until the final (Mth) fit, where the following linear
predictor is obtained:

η̂M,i(π) =
M∑

m=1

pπm∑

j=1
β̂

(πm)
j x(πm)

ij .

Note that when the offsets are not estimated by cross-
validation but the estimates η̂1,i(π), . . . , η̂M−1,i(π) are
used, the effects described above of underestimating the
conditional influences of the individual blocks accumu-
late. Thus, the influences of blocks with higher priority are
underestimated to a less stronger degree than are blocks
with low priority. This could eventually lead to the exclu-
sion of blocks with lower priority that are valuable for
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prediction. This is particularly problematic in cases in
which low priorities are attributed to blocks with high pre-
dictive information. Thus, cross-validated offsets may be
used to avoid suboptimal models that may result in cases
in which the priority sequence does not attribute high
priority to blocks with high predictive power. Note, how-
ever, that we are not interested in determining priority
sequences that perform optimally from a statistical point
of view. Instead, the priority sequence reflects the specific
needs of the user, who particularly cares about practicabil-
ity. Notwithstanding the above mentioned advantages of
using cross-validated offsets, we nevertheless also include
the version of priority-Lasso without cross-validated off-
sets in our application study (see “Results” section) for
several reasons. Firstly, because the version with cross-
validated offsets is more computationally intensive, and
thus might not be easily applicable in all situations. Sec-
ondly, we aim to illustrate that this version tends to
accredit more influence to the blocks with lower priority
than does the version without cross-validated offsets. In
addition, the suspected tendency of the version without
cross-validated offsets to exclude blocks with lower prior-
ity might be advantageous in applications in which these
blocks contain data types that are expensive to collect or
not well established.

R package prioritylasso
The priority-Lasso method (for continuous, binary, and
survival outcomes) is implemented in the function ‘pri-
oritylasso’ from our new R package of the same name
(version 0.2), which is publicly available from the “Com-
prehensive R Archive Network” repository. This package
uses the implementation of Lasso regression provided by
the R package ‘glmnet’ (see [17], and for the special case of
Cox-Lasso, see [18]).
The M penalty parameters λ(π1), . . . , λ(πM) are chosen

via cross-validation in the corresponding steps. As in ‘glm-
net’, two variants are implemented: The penalty parameter
can be chosen either in such a way that the mean cross-
validated error is minimal (denoted as ‘lambda.min’), or
in such a way that it yields the sparsest model with error
within one standard error of the minimum (denoted as
‘lambda.1se’). The latter option yields sparser models. In
order to further enforce sparsity at the convenience of
the clinician, our package allows to specify a maximum
number of non-zero coefficients for each block.
Furthermore, the function ‘prioritylasso’ offers the

option to leave the block with highest priority unpenalized
(i.e., to set λ(π1) to 0), provided the number of variables pπ1
in this group is smaller than the sample size n. Depend-
ing on the outcome, the estimation is then performed via
generalized linear regression or via Cox regression [19].
Another variant of the priority-Lasso method is imple-
mented in the function ‘cvm_prioritylasso’, which makes

it possible to take more than one vector π as the input
and choose the best one through minimizing the cross-
validation error. This variant is useful in cases where it
makes sense to take the group structure into account but
the clinician does not feel comfortable assigning clear-cut
priorities to each of the groups.
Note that our package solely aims at building predic-

tionmodels with different types of already prepared omics
data available as an n × p data matrix. However, generat-
ing such multi-omics data matrices from several types of
raw data files requires considerable effort.We refer to Bio-
conductor software packages [20] that allow convenient
annotation and organization of multi omics data. As an
important example, the ‘MultiAssayExperiment’ data class
[21] can be used for data preparation prior to running
‘prioritylasso’.

Validation
In “Results” section, we apply the priority-Lasso method
as well as the classical Lasso to fit prediction models for a
time-to-event on a training dataset and subsequently eval-
uate these models on a validation dataset; see “AML data”
section for a description of the data used in this analysis.
The present section briefly describes the criteria consid-
ered to assess prediction accuracy and the procedures
used for validation of the considered models, following
the recommendations of Royston and Altman [14]. These
authors emphasize in their paper that validation com-
prises both discrimination and calibration. Hence, we
perform both in our analysis and focus on the methods
denoted as methods 3, 4, 6, and 7 in their paper.
Firstly, following method 3, we present some measures

of discrimination. Instead of Harrell’s C-index, a com-
mon measure to quantify the goodness of fit, we show
the results of the Uno’s C-index [22], an adapted version
of Harrell’s C-index that accounts for censored data and
is thus more appropriate in our context. Another useful
measure is the integrated Brier score [23] assessing both
calibration and discrimination simultaneously, which we
calculate over two different time spans: up to two years
and up to the time of the last event. To visualize the
results, we also show the corresponding prediction error
curves obtained using the R package ‘pec’ [24].
Secondly, following method 4 of Royston and Altman

[14], we display Kaplan-Meier curves that can be useful
for both discrimination and calibration. For each consid-
ered prediction model, we define three risk groups, which
corresponds to standard practice in the AML context. See
for example the newest European Leukemia Net (ELN)
genetic risk stratification of AML, which classifies patients
into a low-, intermediate-, and a high-risk group [1] and
will be referred to as ELN2017 score in the sequel. To build
three groups based on a considered score, we choose the
two cutpoints that yield the highest logrank statistic in the
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training data. We then present the Kaplan-Meier curves
of the three risk groups for both training and validation
sets. Good separation of the three curves in the validation
dataset indicates good discrimination.
These three Kaplan-Meier curves observed for the val-

idation dataset can also be compared to the predicted
curves for the three risk groups in the validation dataset
(Royston and Altman’s method 7). By “predicted curve
for a risk group”, we mean the average of the individual
predicted curves of the patients within this risk group.
Good agreement between observed and predicted curves
suggests good calibration. Thirdly, as an extension of the
graphical check for discrimination, we also examine the
hazard ratios across risk groups (Royston and Altman’s
method 6).
Beyond these methods, we report the AUC, the true

positive rate (TPR, also known as sensitivity) and the true
negative rate (TNR, also known as specificity) of each
score at two years after the diagnosis. This time point
was chosen because its ratio of cases to survivors is the
closest to 1. The true positive and the true negative rate
are calculated with the median of each score as a cutoff
for categorizing the scores into two groups. Furthermore,
we consider a modified version of Royston and Altman’s
method 1. They suggest performing a regression with the
linear predictor from the model as the only covariate. For
a standard Cox model the resulting coefficient is exactly
1 in the training data and should be approximately 1 in
the validation data to indicate a good model fit. How-
ever, since we perform penalized regression this method
is not applicable to our model. Therefore, we modify this
criterion in calculating the calibration slopes in both train-
ing and validation data. The difference between the slope
obtained using the training data and the one obtained
using the validation data is a measure for the extent of the
overoptimistic assessment of discrimination ability that is
obtained using the training data.

Results
The section starts with a brief description of the
AML example dataset (“AML data” section). Then
we present four models fitted using priority-Lasso
(“Results of priority-Lasso” section) and compare them
with the current clinical standard model and with
two models fitted through standard Lasso (i.e., with-
out taking the block structure into account) in terms of
included variables (“Assessing included variables” section)
and performance in the independent validation data
(“Assessing prediction accuracy” section). These models
are all fitted with a restricted number of selected variables.
The same models without restrictions to the number of
variables are presented in Additional file 1 for further
comparisons. The complete R code written to perform the
analyses is available from Additional file 2.

AML data
In this study we use two independent datasets, denoted
training set and validation set hereafter, including vari-
ables belonging to different blocks (see details below).
All patients included in the analysis received cytarabine
and anthracycline based induction treatment. The train-
ing set consists of 447 patients randomized and treated
in the multicenter phase III AMLCG-1999 trial (clini-
caltrials.gov identifier NCT00266136) between 1999 and
2005 [25, 26]. The patients are part of a previously
published gene expression dataset (GSE37642) analyzed
with Affymetrix arrays [27]. All patients with a t(15;17)
or myelodysplastic syndrome are excluded, as well as
patients with missing data.
The validation set consists of all patients with

available material treated in the AMLCG-2008 study
(NCT01382147) [28], a randomized, multicenter phase III
trial (n = 210) and additional n = 40 patients that had
resistant disease and were treated in the AMLCG-1999
trial. The dataset is publicly available at the Gene Expres-
sion Omnibus repository (GSE106291). The detailed
inclusion and exclusion criteria were described previously
[29]. The patients of the validation set were analyzed
by RNAseq. For comparability, all continuous variables
are standardized to a mean zero and variance one. All
study protocols are in accordance with the Declaration of
Helsinki and approved by the institutional review boards
of the participating centers. All patients provided written
informed consent for inclusion on the clinical trial and
genetic analyses.

Results of priority-Lasso
We apply priority-Lasso on the training dataset (n = 447,
described in “AML data” section), considering four
different scenarios. These scenarios differ in the way
the score ELN2017 is included in the analysis and
whether or not the offsets are cross-validated (see
“Formalization of priority-Lasso” section). Furthermore,
we always apply the ‘lambda.min’ procedure and 10-fold-
cross-validation for the choice of the penalty parameter
in each step. However, since prediction performance is
not the main concern in our analyses, the ‘lambda.1se’
approach would also be a reasonable option. In
“Sensitivity analysis” section we show some results with
‘lambda.1se’ in addition to our main analyses. Further-
more, we allow for a maximum of 10 gene expression
variables for each scenario as we want to keep the
resulting model as simple as possible and experience
has shown that in survival prediction for AML patients
only a few gene expression values have a considerable
influence on the outcome. Moreover, gene expression
values are not easy to implement in clinical routine.
We define the following blocks and corresponding
priorities:
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• Block of priority 1: the score ELN2017 [1]. It can be
represented in different ways which are explained in
the definition of the scenarios.

• Block of priority 2: 8 clinical variables measured at
different scales

• Block of priority 3: 40 binary variables, each of which
represents the mutation status for a certain gene

• Block of priority 4: 15809 continuous variables, each
of which is the expression value of a certain gene

The order of these blocks have been determined by a
physician involved in the project, who has many years
of experience in the treatment of patients with AML,
as well as experience with AML outcome prediction.
These choices are based on practical considerations.
However, alternative block orders could be reasonable
from other points of view. For example, if the focus is
solely on the maximization of prediction performance
without any practical constraints, we refer to the func-
tion ‘cvm_prioritylasso’ from our R package ’prioritylasso’
which chooses the best order of blocks from two or more
priority options according to the mean cross-validated
performance. In addition to our main analyses that are
based on an ordering that takes practical aspects into
account as outlined above, we present additional results
obtained for other block orders in “Sensitivity analysis”
section.

Scenario pl1A
In the first scenario, the block of priority 1 consists
of the three-categorical ELN2017 score represented by
two dummy variables. We do not penalize this block
and do not use cross-validated offsets. In this scenario
the selected model includes only 7 variables represented
by 8 coefficients: the dummy variables ELN2017_2 and
ELN2017_3, equaling 1 for the intermediate and the high-
risk category, respectively, and 0 otherwise, are selected
by definition, because they result from a fit of a stan-
dard Cox model without penalization. Moreover, age, the
Eastern Cooperative Oncology Group performance sta-
tus (ECOG) [30], white blood cell count (WBC), lactate
dehydrogenase serum level (LDH), hemoglobin level (Hb)
and platelet count (PLT) are selected. The selected vari-
ables and their coefficients are displayed in the second and
third column of Table 1. Variables from blocks with prior-
ity 3 (mutation status of 40 genes) and 4 (gene expression)
are absent from the model, yielding a particularly sparse
model based on variables which are easy to access.

Scenario pl1B
This scenario is very similar to pl1A with the differ-
ence that the offsets are cross-validated as described in
“Formalization of priority-Lasso” section. Because there
are no offsets in the first step of the model fit, the

Table 1 Variables selected by priority-Lasso in scenarios pl1A
and pl1B

Block Variable Coef. pl1A Coef. pl1B

1 ELN2017_2 0.8552 0.8552

ELN2017_3 1.4324 1.4324

2 Age 0.3540 0.3556

ECOG (>1) 0.2794 0.2768

WBC 0.1029 0.1019

LDH 0.1744 0.1763

Hb 0.0529 0.0532

PLT -0.0788 -0.0800

4 PHGDH 0.1242

FAM171B 0.0726

SH3PXD2B 0.0192

F12 0.0097

CD109 0.0599

FAM92A1 0.0193

LAPTM4B 0.0079

FAM24B 0.0378

DDIT4 0.0424

DOCK1 0.0295

Column 1: priority of the block the variables are included in. Column 2: variable
name. Column 3 and 4: coefficient of the variable in the Cox Lasso model

coefficients of pl1A and pl1B are the same for the block
of priority 1 (see Table 1, column 4). For the block of
priority 2, the same variables are selected with small
differences in their coefficients. While both models do
not select variables from the block of priority 3, model
pl1B additionally includes 10 gene expression markers—
all with only small influence though. Nevertheless, the fact
that gene expression markers are included in the model
with cross-validated offsets, but not in the model without
cross-validated offsets, illustrates the conjecture made in
“Formalization of priority-Lasso” section: When using the
priority-Lasso version with cross-validated offsets, more
influence tends to be accredited to the blocks with lower
priority compared to when using the version without
cross-validated offsets.

Scenario pl2A
As an alternative approach, considered as sensitivity anal-
ysis in the present paper, one may also replace ELN2017
with the 19 variables that are used for its calculation.
Because of the far higher number of variables, we penal-
ize this block of priority 1. The results of the scenario
without cross-validated offsets (scenario pl2A) are dis-
played in the third column of Table 2, showing that 14
of these 19 variables are selected. While the selected
variables from block 2 are almost the same as in sce-
nario pl1A (except the additional inclusion of sex), now
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Table 2 Variables selected by priority-Lasso in scenarios pl2A
and pl2B

Block Variable Coef. pl2A Coef. pl2B

1 t(8;21)(q22;q22) -1.0289 -1.0289

inv(16)(p13.1q22) -1.5444 -1.5444

NPM1 mut/FLT3-ITD neg or low -1.0181 -1.0181

biCEBPA -1.2240 -1.2240

NPM1 wt/FLT3-ITD pos or low -0.4358 -0.4358

t(9;11)(p21;q23) 0.4635 0.4635

Other aberrations -0.4376 -0.4376

KMT2A rearrangements -0.5440 -0.5440

Complex karyotype 0.2970 0.2970

Monosomal karyotype 0.0313 0.0313

NPM1 wt/FLT3-ITD pos 0.1712 0.1712

RUNX1 mutations 0.3065 0.3065

ASXL mutations -0.1224 -0.1224

TP53 mutations 0.4306 0.4306

2 Age 0.2957 0.2617

Sex -0.1011

ECOG (>1) 0.3147 0.3206

WBC 0.0990 0.0589

LDH 0.1681 0.2371

Hb 0.0700 0.0671

PLT -0.0960 -0.0578

4 ZBTB37 0.0047 0.0025

MFI2 0.0090

SH3PXD2B 0.0013 0.0418

PDK3 -0.0187

FAM24B 0.0248

SIK3 -0.0063

OR7A17 0.0039

TBC1D17 -0.0172

PHGDH 0.0488

FAM171B 0.0134

FGD5 0.0359

F12 0.0238

IRX1 -0.0090

FAM92A1 0.0239

DDIT4 0.0769

HSPA2 0.0169

Column 1: priority of the block the variable is included in. Column 2: variable name.
Column 3 and 4: coefficient of the variable in the Cox Lasso model. Variables from
the block of priority 4 also appearing in Table 1 are marked in bold

there are 8 gene expression variables selected from
the block of priority 4. We can see that these gene
expression variables are not necessarily the same as in
scenario pl1B.

Scenario pl2B
Analogously to scenarios pl1A and pl1B, scenario pl2B is
the same as pl2A, except that the offsets are calculated
with cross-validation. Column 4 of Table 2 contains the
results from this model, showing only small differences in
the block of priority 2, but again large differences in the
selected gene expression markers.

Assessing included variables
For assessing the fittedmodels with respect to the selected
variables, we consider as a reference two standard Lasso
models fitted to the training data using the whole set of
variables without taking any block structure into account.
The two models differ in the way ELN2017 is treated.
In the first Lasso model (variant ‘Lasso1’) it is consid-
ered as the score represented by two dummy variables. In
the second Lasso model it is represented by the 19 vari-
ables which are used for its definition (variant ‘Lasso2’).
In order to allow for a fair comparison, we again use
the ‘lambda.min’ procedure and 10-fold-cross-validation
to choose the penalty λ. Moreover, we allow the selection
of a maximum number of variables equal to the number
of all variables in blocks 1-3 for priority-Lasso plus 10.
This corresponds to the fact that we did not restrict the
number of variables of blocks 1-3 for priority-Lasso, but
set the maximum number of gene expression variables
to 10. The resulting models (not shown) clearly select
more variables than the models obtained with priority-
Lasso. Especially the number of gene expression variables
is much higher (43 for Lasso1 and 52 for Lasso2), whereas
only age for both models and ELN2017_3 for Lasso1
are selected variables from other types of data. Hence,
priority-Lasso favors variables from blocks with high pri-
ority compared to standard Lasso and yields models that
include considerably less variables.

Assessing prediction accuracy
In order to compare the different approaches we follow
the procedures described in “Validation” section − the
results are shown in Table 3. It can be seen that pl1A
and pl1B reach the highest sensitivity among the scenar-
ios (0.672), whereas especially the raw ELN2017 score is
associated with a far lower value (0.556). In contrast, the
specificity is 0.723 for ELN2017, whereas all other scenar-
ios are associated with a specificity between 0.64 and 0.67.
However, these results represent only one of many possi-
ble time points and cutoffs, so their use is doubtful in our
context. The other measures − the AUC, the C-indices,
and the integrated Brier score − do not show great dif-
ferences across the scenarios either. Only ELN2017 is an
exception with considerably poorer results. For the AUC,
pl1B yields the best result with a value of 0.731, but scenar-
ios pl2B, Lasso1 and Lasso2 are not far worse. For CUno,
the highest value is 0.664, which is reached by pl2B. The
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Table 3 Validation results for the model scenarios with restrictions to the number of selected variables

pl1A pl1B Lasso1 pl2A pl2B Lasso2 ELN2017

TPR 0.672 0.672 0.651 0.640 0.658 0.643 0.556

TNR 0.667 0.658 0.661 0.647 0.664 0.653 0.723

AUC 0.711 0.731 0.726 0.713 0.727 0.725 0.663

CUno 0.653 0.660 0.658 0.658 0.664 0.656 0.619

IBS2 0.175 0.172 0.176 0.175 0.172 0.177 0.181

IBS4.4 0.197 0.192 0.191 0.197 0.191 0.193 0.204

Optimism 0.393 0.289 0.920 0.377 0.243 0.984

CILlower 0.339 0.304 0.247 0.387 0.327 0.177 0.418

HRL 0.536 0.455 0.363 0.605 0.566 0.286 0.669

CILupper 0.849 0.652 0.535 0.946 0.981 0.461 1.074

CIHlower 1.175 1.098 0.948 1.515 1.534 0.974 1.314

HRH 1.751 1.651 1.385 2.208 2.199 1.386 1.954

CIHupper 2.612 2.483 2.022 3.216 3.151 1.972 2.907

p-valueLR 1.11e-08 1.05e-8 2.22e-10 1.07e-08 1.74e-08 4.99e-11 1.36e-07

The acronyms in the first column are: TPR: True positive rate; TNR: True negative rate; AUC: Area under the curve, CUno : Uno’s C-index, IBS2: Integrated Brier score up to 2 years,
IBS4.4: Integrated Brier score up to 4.4 years, Optimism: difference between calibration slopes of training and validation data, CILlower : lower bound of the 95% confidence
interval for the hazard ratio of the low risk group, HRL : hazard ratio of the low risk group, CILupper : upper bound of the 95% confidence interval for the hazard ratio of the low

risk group, CIHlower : lower bound of the 95% confidence interval for the hazard ratio of the high risk group, HRH : hazard ratio of the high risk group, CIHupper : upper bound of the
95% confidence interval for the hazard ratio of the high risk group, p-value: p-value of the likelihood ratio test

integrated Brier score is calculated over two different time
spans (up to 2 years and up to 4.4 years, the latter being
the time to the last event). After two years, the priority-
Lasso fit with cross-validated offsets is better than the
other models − no matter how ELN2017 is treated. Over
the whole time period, Lasso1 and pl2B give the low-
est IBS, followed by Lasso2, indicating a lower prediction
error for the Lasso models in the second half of the whole
time period. This can also be observed in Fig. 1. Scenar-
ios pl1B and pl2B perform best in the first two years but
they are outperformed by Lasso afterwards. As expected,
priority-Lasso with cross-validated offsets is always better
than without. All fitted models are associated with a much
lower prediction error than ELN2017 alone. The results
from the prediction error curves do not differ substan-
tially between the two panels of Fig. 1, that is, they are
robust with regard to the handling of ELN2017.
The Kaplan-Meier curves for training and validation

data are shown in Fig. 2. The discrimination by Lasso
is obviously very good in the training data, but worse
in the validation data. Especially the difference in sur-
vival between intermediate and high risk is not very
clear. For both representations of ELN2017, the priority-
Lassomodels with andwithout cross-validated offsets fea-
ture a similar discrimination, where, however, the results
obtained using the version with cross-validated offsets are
slightly better. For the scenario with all ELN2017 vari-
ables, the priority-Lassomodels give the best results in the
validation data among all scenarios. In contrast, ELN2017
discriminates less well between the three risk groups. The

results concerning Lasso indicate systematic overfitting
in the training data. This is consistent with the results
seen in “Assessing included variables” sectionwhere Lasso
included much more variables than the other methods. It
can also be seen from the row ‘optimism’ of Table 3. The
difference of the slopes between training and validation
data is the largest for the Lassomodels, indicating that this
method is associated with the highest overoptimism.
A possible way of quantifying the results seen in Fig. 2

is to consider the hazard ratios across risk groups in the
validation set as shown in the lower half of Table 3. The
intermediate group serves as a baseline here. The result of
the likelihood ratio test is significant for all models. The
discrimination between low and intermediate group is
worst for the ELN2017 score. As already seen in Fig. 2, the
discrimination between the low and intermediate group is
better for Lasso than priority-Lasso. In contrast, priority-
Lasso has a higher hazard ratio for the high risk group, in
particular when using all ELN variables. These observa-
tions are also consistent with the results shown in Fig. 1,
where the prediction was better for priority-Lasso than for
Lasso in the earlier years, but worse in the later years. This
corresponds to better prediction for shorter survival times
and worse prediction for longer survival times, respec-
tively. The fact that ELN2017 is included in the results of
priority-Lasso, but not standard Lasso except ELN2017_3
in Lasso1, also seems to play a role for this issue. Both
Fig. 2 and the hazard ratios clearly show that the predic-
tion is better for high risk groups than for low risk groups
with the raw ELN2017 score.
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Fig. 1 Prediction error curves. The curves show the Brier scores calculated in the validation data for the different scenarios and for different time
points. The left panel contains the models considering ELN2017 as categories. The right panel contains the models considering all ELN variables. The
Reference scenario results from the Kaplan-Meier estimation and is the same in both panels. Furthermore, curves for ELN2017, for priority-Lasso with
and without cross-validated offsets, and for standard Lasso are shown

Finally, we present the Kaplan-Meier curves for calibra-
tion in Fig. 3. For all the scenarios there are groups that
reveal some miscalibration. For the Lasso models, espe-
cially the high risk groups differ between predicted and
observed validation curves. The scenarios pl2A and pl2B
show more differences between predictions and observa-
tions in the low risk groups than the other scenarios—the
same fact applies to pl1A and pl1B in the intermediate risk
group.

Sensitivity analysis
In order to investigate the influence of different block
orders on the selected variables, we run the four different
scenarios of priority-Lasso with every possible block order
(data not shown). The results show that the block order
can have substantial influence on the number of selected
variables. For the scenarios pl1A and pl1B, sparsest mod-
els are obtained with our priority definition, illustrating
that priority-Lasso takes advantage of prior knowledge.
Higher numbers of variables are obtained for other block
orders with maximum values of 45 (pl2A, π = (4, 3, 1, 2)
and π = (4, 3, 2, 1)). Seven of the eight selected variables
in pl1A are chosen for almost every scenario of priority-
Lasso and block orders, demonstrating their importance
even in blocks of low priority. Remarkably, only a small
part of them are found in the standard Lasso models (age

in Lasso1 and Lasso2, as well as ELN2017_3 in Lasso1).
It can be further observed that many of the selected gene
expression variables are selected for only a small fraction
of models.
In additional sensitivity analyses we consider the four

scenarios with the ‘lambda.1se’ setting in order to
choose the M values λ(π1), . . . , λ(πM) as discussed in
“R package prioritylasso” section. As expected, the
‘lambda.1se’ setting leads to a smaller number of selected
variables for all scenarios. In total, the number of variables
is 4, 10, and 15 for priority-Lasso with ELN categories,
priority-Lasso with ELN variables (both with and with-
out cross-validated offsets), and Lasso, respectively. The
four different priority-Lasso models solely select variables
from blocks 1 and 2. On the other hand, apart from age,
Lasso selects only gene expression variables.

Discussion
We introduced priority-Lasso, a simple Lasso-based intu-
itive procedure for patient outcome modelling based on
blocks of multiple omics data that incorporates practical
constraints and/or prior knowledge on the relevance of
the blocks. The procedure essentially inherits most prop-
erties of Lasso. Its basic principle is however not limited
to Lasso and could be easily adapted to recently developed
variants of penalized regression.
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Fig. 2 Kaplan-Meier curves for training and validation data in three risk groups. The three risk groups were built according to the highest logrank
statistic in the training data. The left panel contains the results for the standard Lasso models and the raw ELN2017 score. The middle and right
panels contain the plots of priority-Lasso with and without cross-validated offsets, respectively. The top and middle panels show the results
considering ELN2017 as categories and using all ELN variables, respectively

An important feature of priority-Lasso is that it
directly addresses the problem of redundancies in the
predictive information across different blocks: Predic-
tive information contained in the data from specific
blocks is incorporated only if it is not contained in
data from blocks of higher priority. To date, this idea
seems to have been considered only in the TANDEM
approach [31], that is, however, restricted to the case of
two blocks.
In our illustrative example from leukemia research

priority-Lasso was able to reach better prediction accu-
racy than Lasso. This applies especially to the version
of priority-Lasso with cross-validated offsets, however, at

the cost of more computation time and more selected
variables than without cross-validated offsets. But even
without cross-validated offsets, the models are not sub-
stantially worse than Lasso as far as accuracy is con-
cerned. Moreover, they offer considerable advantages in
terms of increased sparsity and composition of the mod-
els: they include less variables that are currently not
included in the recommended diagnostic workup at initial
diagnosis, which is an advantage from a practical per-
spective. Priority-Lasso offers more flexibility than Lasso:
it allows the user to define block structures, where for
each block a maximum number of selected variables can
be specified.
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Fig. 3 Observed and predicted Kaplan-Meier curves for the validation data in three risk groups. The three risk groups were built according to the
highest logrank statistic in the training data. The left panel contains the results for the standard Lasso models and the raw ELN2017 score. The
middle and right panels contain the plots of priority-Lasso with and without cross-validated offsets, respectively. The top and middle panels show
the results considering ELN2017 as categories and using all ELN variables, respectively

The obtained models can be seen as compromises
between “what the data tells us” and what is more realistic
and easy to implement in clinical routine. As an extreme
variant of priority-Lasso, one could imagine the case
of a practitioner fixing the ordering of the variables
completely, which amounts to considering blocks of size
1 (each variable forms one block). The other extreme
consists of ignoring the block structure and simply fit-
ting a model using Lasso to all variables. The finer the
block structure, the less data-driven is the model selec-
tion. The number of blocks also influences the maximum
possible number of selected variables in the final model.
Since a maximum of n variables can be selected in a Lasso

regression, a selection of n variables is the maximum
for every block in priority-Lasso − hence the maximum
possible number of variables selected by priority-Lasso
depends on the number of blocks.
Unlike with Bayesian methods, prior knowledge is taken

into account only through the definition and ordering
of blocks. This feature makes the method less flexible,
but also easy to use and interpret for scientists with-
out strong background in statistics. The user does not
have to perform any complicated choices in order to
apply the method: The first choice to be made is whether
or not the offset should be cross-validated — the vari-
ant without cross-validation gives more weight to blocks
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with high priority, but is prone to overfitting. More-
over, the user may decide to leave the block with high-
est priority unpenalized in case it satisfies pπ1 < n.
By default it is treated like the other blocks of data
and is thus penalized. As for all penalized regression
methods, one can choose the procedure used for opti-
mizing λ (in ‘glmnet’: λmin or λ1se), which amounts to
deciding between a more complex model with poten-
tially slightly better accuracy and a sparser model. The
default is λmin, that is, the λ associated with the min-
imum cross-validation error in each step. Of course
there are additional parameters like the number of folds
in the cross-validation procedures that could be modi-
fied as well, but are not expected to strongly affect the
results.
Note that when working with multi-omics data other,

more technical analysis steps are required before build-
ing prediction models. The package ‘prioritylasso’ itself
was designed solely to build prediction models and
takes the already formatted multi-omics data matrix
as input. Fortunately, there are other tools available
in Bioconductor that are of great value for the pur-
pose of preparing multi-omics data. For example, the
‘MultiAssayExperiment’ software package [21] provides
useful functions to represent, store, and operate on
multi-omics data. It builds a bridge from standard
R to Bioconductor and its classes for data repre-
sentation that cannot be ignored in the context of
omics data.
Finally, priority-Lasso offers further practical advan-

tages for clinical practice. Suppose there are (blocks of )
variables available only for a subset of patients and miss-
ing for the other. A potential approach to efficiently handle
such data consists of assigning them a low priority in
priority-Lasso. In this way, one can first fit a “basic” model
to the blocks that are available for all patients, using all
patients. This basic model can then be complemented by
variables from the low priority blocks that are missing
for a subset of the patients. Importantly, this is also rele-
vant for prediction: Blocks which are not available for all
patients in the training data will not be frequently avail-
able for new data for the purpose of prediction. In such
cases, the basic prediction model can be used to obtain
predictions.

Conclusion
Our results show that priority-Lasso is a flexible and
user-friendly prediction method that can reach a sim-
ilar or even better prediction accuracy compared to
standard Lasso. The feature which favors variables of
blocks with higher priorities over variables of blocks
with lower priority offers a practical advantage and
makes the resulting prediction rules easy to use and
interpret.
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Abstract
Uncertainty is a crucial issue in statistics which can be considered from different
points of view. One type of uncertainty, typically referred to as sampling uncertainty,
arises through the variability of results obtained when the same analysis strategy is
applied to different samples. Another type of uncertainty arises through the variabil-
ity of results obtained when using the same sample but different analysis strategies
addressing the same research question. We denote this latter type of uncertainty as
method uncertainty. It results from all the choices to be made for an analysis, for
example, decisions related to data preparation, method choice, or model selection. In
medical sciences, a large part of omics research is focused on the identification of
molecular biomarkers, which can either be performed through ranking or by selec-
tion from among a large number of candidates. In this paper, we introduce a general
resampling-based framework to quantify and compare sampling and method uncer-
tainty. For illustration, we apply this framework to different scenarios related to the
selection and ranking of omics biomarkers in the context of acute myeloid leukemia:
variable selection in multivariable regression using different types of omics markers,
the ranking of biomarkers according to their predictive performance, and the iden-
tification of differentially expressed genes from RNA-seq data. For all three scenar-
ios, our findings suggest highly unstable results when the same analysis strategy is
applied to two independent samples, indicating high sampling uncertainty and a com-
paratively smaller, but non-negligible method uncertainty, which strongly depends on
the methods being compared.

K E Y W O R D S
high-dimensional data, resampling, stability, variable ranking, variable selection

1 INTRODUCTION

Statistical results are variable. On the one hand, results are affected by sampling uncertainty: if we draw different samples from
a considered distribution, we obtain different results on each of these samples. Most researchers are familiar with this kind of
variability and classical probability models account for it.

On the other hand, one also obtains different results when applying different analysis strategies to address the same research
question. These possible analysis strategies result from the combination of every choice that has to be made for an analysis,
Biometrical Journal. 2019;1–18. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1www.biometrical-journal.com
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for instance, which statistical model to adopt, how to do data preparation and cleaning, how to choose tuning parameters, or
how to perform statistical tests. These choices, which have received increasing attention in recent years, are also referred to
as researcher degrees of freedom (Simmons, Nelson, & Simonsohn, 2011; Wicherts et al., 2016). As there are usually a great
number of possible analysis strategies which can be justified both from a theoretical perspective and from a substantive point of
view, these researcher degrees of freedom may give rise to a considerable variability in statistical results. We denote this latter
type of variability related to the possibility of different analysis strategies as method uncertainty. The term “method” should be
understood in a broad sense, including not only the statistical testing or modeling approach but also, for instance, data preparation
procedures or parameter values.

It has long been recognized that the results of studies on high-dimensional data can be highly unstable (Michiels, Koscielny, &
Hill, 2005; Sauerbrei, Boulesteix, & Binder, 2011). In particular, in the context of variable selection, which is an important task
in omics research, there is often very little overlap between biomarkers that are identified by different research groups (Ein-Dor,
Kela, Getz, Givol, & Domany, 2005; Ein-Dor, Zuk, & Domany, 2006). On the one hand, this finding can be explained by the fact
that in a so-called “𝑛 ≪ 𝑝” setting, where there are many more variables than observations, there is a great risk of overfitting
(Dernoncourt, Hanczar, & Zucker, 2014; Schumacher, Binder, & Gerds, 2007), resulting in very high sampling uncertainty.
The problem of sampling uncertainty can be, for instance, addressed by combining selection algorithms with subsampling in
stability selection (Meinshausen & Bühlmann, 2010; Shah & Samworth, 2013). On the other hand, method uncertainty can also
be expected to be high due to the multitude of methods and the lack of guidance and standards in the omics field (Boulesteix,
Hornung, & Sauerbrei, 2017b).

Unlike sampling uncertainty, researchers are often not familiar with method uncertainty and perceive it as disquieting and
bothersome. Indeed, method uncertainty may question the validity of the presented results as it is common to base these results on
only one among many possible analysis strategies. In order to illustrate this problem, Silberzahn and Uhlman (2015) performed
an experiment in giving a data set to 29 independent teams of researchers with strong statistical background with the task of
answering the same research question (“are football (soccer) referees more likely to give red cards to players with dark skin
than to players with light skin?”). Due to different analysis strategies, the researchers obtained highly varied results, thereby
illustrating method uncertainty in this context. This strategy, termed “crowdsourcing,” by Silberzahn and Uhlman (2015) that
consists of having the analyses done by several teams can be seen as a possible approach to handle method uncertainty. However,
there is no general consent about the best way to do so and several approaches focusing on different types of method uncertainty
have been proposed recently. In the multiverse analysis framework (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016), for
example, the authors consider different ways of preprocessing the data and report the results for all considered choices. Patel,
Burford, and Ioannidis (2015), on the other hand, investigate the effect of different combinations of adjustment variables to be
included in a multivariable Cox regression and propose simple summary measures to quantify the resulting variability. Finally,
Simonsohn, Simmons, and Nelson (2015) propose a specification curve analysis, which does not only allow the visualization
of the results obtained with different analysis strategies, but additionally provides a joint permutation-based procedure to test a
specific null-hypothesis while accounting for method uncertainty.

In the bioinformatics literature, many studies address the comparison of top lists of biomarkers obtained using different
ranking criteria; see, for example, Boulesteix and Slawski (2009) for an early review and Lausser, Müssel, Maucher, and Kestler
(2013), Dessì, Pascariello, and Pes (2013) and references therein for illustrations based on high-dimensional gene expression
data. Consensus biomarker selection integrating the results of several ranking approaches into a single ranking was proposed
in its first variants more than ten years ago (Boulesteix & Slawski, 2009; Dutkowski & Gambin, 2007). It can be seen as the
bioinformatics counterpart of the approaches discussed in the previous paragraph as far as the choice of the ranking criterion—a
specific type of method uncertainty—is concerned.

While all these approaches are arguably an important step toward making research more transparent, they solely address
method uncertainty. Sampling uncertainty is briefly considered along the way in the article by Dessì et al. (2013) mentioned
above addressing the comparison between ranking criteria. However, these procedures do not allow (and do not aim at) com-
paring sampling and method uncertainty. We claim that such a comparison is important in general, particularly in the con-
text of high-dimensional data. Indeed, high-dimensional data analyses are known to be particularly affected both by sampling
uncertainty (because of the 𝑛 ≪ 𝑝 issue) and method uncertainty (because of the increased researcher degrees of freedom); see
Boulesteix et al. (2017b). A better understanding of the sources and extent of uncertainties is desirable both for methodological
researchers developing methods (to help them focus their attention on the most critical problems) and for applied scientists
applying them in biomedical research projects (to support them in their interpretation of the results).

In this paper, we propose a general resampling-based framework to quantify and compare sampling and method uncertainty
and apply it in the context of the ranking and selection of omics markers out of a large number of candidates. The data we
consider consist of a phenotype variable of interest as well as the values of 𝑝 omics markers collected for 𝑛 independent patients
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(where 𝑝 is typically much larger than 𝑛). We suggest a simple approach to evaluate the results that allows a straightforward
comparison and visualization of these two types of uncertainty. In a nutshell, our approach consists of randomly splitting the
given data set in two independent data set halves and applying the same analysis strategy on each of the halves. A comparison
of the results obtained on the two data set halves can be used to derive a measure for sampling uncertainty. In the same way,
a comparison of the results obtained by two alternative methods on the same data set half can be used to derive a measure for
method uncertainty. These steps are repeated a number of times, 𝐵, and the results are analyzed either in terms of the Jaccard
index or a rank correlation coefficient for the selection and the ranking of genes, depending on the statistical scenario.

To illustrate our approach and to demonstrate its versatility, we consider three different scenarios when it comes to the selection
and ranking of biomarkers. In the first scenario, we focus on the situation where the aim is to perform variable selection in the
context of multivariable regression modeling using different types of omics variables. In this context, Lasso-based methods can
perform intrinsic variable selection. In the second scenario, we are concerned with the ranking of biomarkers when the aim is the
prediction of a binary outcome. In this situation, variable importance measures in random forests can be used to rank biomarkers
according to their predictive performance. Finally, in the third scenario, we consider the selection of differentially expressed
genes from RNA-seq data using methods for count variables. Following Rigaill et al. (2016), the methods in this third scenario
comprise DESeq, DESeq2, edgeR, glm.edgeR, and limma-voom. In each of the three scenarios, the objective is either to obtain
a set of selected variables or a ranking of variables (here omics markers). More details on the statistical methods considered
in the three scenarios are given in Section 3.1. We introduce the proposed framework in Section 2 and describe the data sets
used for application in Section 3.2. Finally, we present the results, consisting of main results, sensitivity analyses, and a simple
example of our framework on low dimensional data in Section 4 and end with a discussion in Section 5.

2 FRAMEWORK FOR THE QUANTIFICATION OF SAMPLING AND
METHOD UNCERTAINTY

2.1 Principle
We propose a resampling-based framework to assess sampling and method uncertainty in variable selection and ranking, which
is based on the comparison of the results obtained for two different data set halves as well as for at least two different method
variants or settings. As a consequence, we are not only able to quantify different types of uncertainty, but also to compare them
directly in a common framework. For the sake of simplicity, we describe our framework for two method variants or settings—
simply denoted as “method settings” from now on. If there are more than two method settings of interest, different pairs of them
can be investigated successively.

In order to quantify sampling and method uncertainty, the 𝑛 patients are first randomly split in two halves for a number 𝐵 of
times. For each iteration 𝑏, 𝑏 = 1,… , 𝐵, the two method settings under investigation are applied on each of the data set halves
and a subset of selected variables or a ranking of candidate variables is obtained for the 2 × 2 = 4 possible combinations of data
set halves and method settings. More formally, for each iteration 𝑏, four vectors 𝒔(𝑚,𝑑)𝑏 of length 𝑝 containing the results of the
variable selection or ranking are obtained with 𝑚 ∈ {𝑚1, 𝑚2} indicating the method setting and 𝑑 ∈ {1, 2} indicating the data
set half. In the definition of 𝒔(𝑚,𝑑)𝑏 , we distinguish the two cases of

1. Variable selection: 𝑠(𝑚,𝑑)𝑗,𝑏 = 1 if variable 𝑗 is selected and 𝑠(𝑚,𝑑)𝑗,𝑏 = 0 otherwise,
2. Variable ranking: 𝑠(𝑚,𝑑)𝑗,𝑏 = 𝑟 if variable 𝑗 received rank 𝑟, where 𝑟 = 1 is the rank of the “best” variable,

for 𝑗 = 1,… , 𝑝. The four vectors 𝒔(𝑚,𝑑)𝑏 are then used to assess and compare the different types of uncertainty as outlined in the
sequel of this section. We suggest to assess sampling uncertainty through the comparison of the results 𝒔(𝑚,1)𝑏 and 𝒔(𝑚,2)𝑏 obtained
with method settings 𝑚 (for 𝑚 ∈ {𝑚1, 𝑚2}) with the two data set halves. Similarly, we suggest to assess method uncertainty
through the comparison of the results 𝒔(𝑚1,1)

𝑏 and 𝒔(𝑚2,1)
𝑏 (resp. 𝒔(𝑚1,2)

𝑏 and 𝒔(𝑚2,2)
𝑏 ) obtained with method settings 𝑚1 and 𝑚2 on

the first (resp. the second) data set half.
More precisely, with ℎ(⋅, ⋅) being a suitable stability measure, which could for instance be the Jaccard index in the case of

variable selection or a type of correlation coefficient in the case of variable ranking (see Section 2.2 for more details on the
stability measures we chose in the context of the selection and ranking of biomarkers), we consider

ℎ
(
𝒔(𝑚,1)𝑏 , 𝒔(𝑚,2)𝑏

)
(1)
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F I G U R E 1 Framework for the comparison
of sampling uncertainty and method uncertainty

to address sampling uncertainty for method setting 𝑚 and the average
1
2

(
ℎ
(
𝒔(𝑚1,1)
𝑏 , 𝒔(𝑚2,1)

𝑏

)
+ ℎ

(
𝒔(𝑚1,2)
𝑏 , 𝒔(𝑚2,2)

𝑏

))
(2)

over the two data set halves to address method uncertainty, where 𝑏 = 1,… , 𝐵. The lower (1), the higher the sampling uncertainty
of method setting 𝑚. The lower (2), the higher the method uncertainty between method setting 𝑚1 and 𝑚2. Contrasting (1) and
(2) provides a convenient comparison of sampling and method uncertainty for a sample size of 𝑛∕2 where 𝑛 is the size of the
initial data set. To give a better overview of the procedure, the framework is illustrated in Figure 1.

We calculate stability measures for sampling and method uncertainty for each run 𝑏 = 1,… , 𝐵. To illustrate the results, we
show boxplots that allow to visualize their variability over all 𝐵 runs, and compute average results over all 𝐵 runs. Finally,
for additional illustration, dendrograms based on the Ward algorithm for hierarchical clustering, which are based on 1 − ℎ as
distance, can be produced.

2.2 Stability measures for variable selection and variable ranking
When the aim is to perform variable selection, we use the Jaccard index as stability measure ℎ to address sampling and method
uncertainty for each iteration 𝑏. For two vectors 𝒔 and 𝒔′, ℎ(𝒔, 𝒔′) is defined by

ℎ(𝒔, 𝒔′) =

∑𝑝
𝑗=1 𝑠𝑗𝑠

′
𝑗∑𝑝

𝑗=1(𝑠𝑗 + 𝑠′𝑗 − 𝑠𝑗𝑠′𝑗)

i.e., as the proportion of variables selected in both 𝒔 and 𝒔′ among variables selected in at least one of them. The Jaccard index
can take values between 0 and 1, with higher values indicating more overlap between the sets of selected variables. A Jaccard
index of 0 means that completely different variables are selected and hence indicates maximal uncertainty.

To assess the similarity of ranked lists of variables, it is common to use rank correlation coefficients (Boulesteix & Slawski,
2009). Here, we propose to use the Spearman correlation coefficient between the two considered vectors of ranks 𝒔 and 𝒔′. Since
it makes sense to focus on the best ranked variables, we set all ranks that are larger than 𝑘 (where 𝑘 is a parameter) to a value of
(𝑝 + 𝑘 + 1)∕2, following Critchlow (1985). We will denote this stability measure as the Spearman top-𝑘 correlation coefficient
in the following. In principle, the Spearman correlation coefficient can take values between −1 and 1, where higher values
indicate closer agreement in the two rankings produced on two independent data set halves or for two different method settings.
However, the interpretation of this coefficient becomes more difficult when we focus only on the 𝑘 best ranked variables, in
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particular when 𝑝 is much larger than 𝑘. In this situation, the Spearman correlation will be strongly influenced by the number of
variables that are included in the 𝑘 best ranked variables for the two rankings. We conducted a small simulation study in order
to investigate the properties of the Spearman top-𝑘 correlation coefficient with 𝑝 = 20,000; we found that this coefficient will
only take values greater than −0.11 for 𝑘 = 2000, −0.026 for 𝑘 = 500, and −0.005 for 𝑘 = 100. Additionally, the interpretation
of the Spearman top-𝑘 correlation becomes more similar to the interpretation of the Jaccard index in situations where 𝑝 is much
larger than 𝑘. Nonetheless, the values of the two measures are not directly comparable, because the Spearman top-𝑘 correlation
will, in general, take larger values for the same number of variables that are included in both rankings.

3 QUANTIFYING UNCERTAINTY IN OMICS BIOMARKER SELECTION
AND RANKING

3.1 The three scenarios
To illustrate our framework for the quantification of sampling and method uncertainty, we apply it in the context of the selection
and ranking of molecular biomarkers. In this work, we consider three scenarios: (a) variable selection when predicting a survival
outcome based on different types of omics variables, (b) ranking biomarkers based on their performance in predicting a binary
outcome and (c) the identification of differentially expressed genes from RNA-seq data yielding a set of selected genes. In
each scenario, we use well-known statistical methods that allow the analysis of high-dimensional data. These methods comprise
penalized regression via Lasso (scenario 1), random forests (scenario 2), and statistical tests for differential expression analysis
from RNA-seq data (scenario 3).

We quantify sampling and method uncertainty for the variable selection procedures performed in scenarios 1 and 3 through the
Jaccard index. In scenario 2, where we use random forest variable importance measures to establish a ranking of the considered
variables, sampling and method uncertainty is quantified through the Spearman top-𝑘 correlation coefficient as described in
Section 2.2. We choose 𝑘 = 500 as a compromise between including a sufficient number of biomarkers and excluding those that
may be irrelevant in the ranking. To maintain comparability with the results of scenarios 1 and 3, we also include the results
of scenario 2 quantified by using the Jaccard index after a selection of the 20 highest ranking genes in Supporting Information.
Note that the purpose of these methods is not necessarily variable selection or variable ranking in the first place. The main aim
of the Lasso is to derive prediction rules. In this context, Lasso performs an intrinsic variable selection where the number of
selected variables is determined indirectly through the optimization of prediction performance as estimated by cross-validation,
i.e., cross-validated Lasso regression automatically produces a set of selected variables. Similar to the Lasso, the main aim of
random forests is to derive prediction rules and not to perform variable ranking. In contrast, differential expression analysis is
not related to prediction: genes are selected that have significantly different means in the (two) considered groups, i.e., we select
all variables considered as significant at the 0.05 level after adjusting the p-values in order to control the false discovery rate
(FDR).

While differential expression analysis merely accounts for univariate associations between the outcome and the predictor
variables, both Lasso and random forests consider these associations in a multivariable context, where both the correlation
structure and (in the case of random forests) interactions between predictor variables can in principle be accounted for. Note that
it is also possible to analyze RNA-seq data with multivariate methods (for instance Lasso-based methods or random forests that
are used in scenarios 1 and 2), but here we focus on the case where the aim is to use these data to identify differentially expressed
genes. As differential expression analysis considers every gene independently without accounting for the correlation structure
between different genes, it can be expected that it will in general identify a larger number of candidate genes than would be
selected by a multivariable method. We now present the methods used in the three scenarios in more detail.

3.1.1 Scenario 1: Variable selection in multivariable regression using different types of omics
markers
In scenario 1, the aim is to perform variable selection in a multivariable regression model using different types of omics mark-
ers. These analyses can be performed via standard Lasso (Tibshirani, 1996), priority-Lasso (Klau et al., 2018), and IPF-Lasso
(Boulesteix, De Bin, Jiang, & Fuchs, 2017a), which is short for “integrative Lasso with penalty factors.” Both priority-Lasso and
IPF-Lasso have the advantage of being able to take the different types of variables into account, i.e., different blocks of omics
data can be included in an appropriate way. Here, we define each type of data as a block, resulting in three or two blocks, when
clinical data are included or excluded, respectively. The other two blocks consist of gene expression and gene deletion data as
described in Section 3.2.
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In IPF-Lasso, the user has to choose candidate values for the ratios of penalty factors, and the best model is chosen as the one
with the smallest cross-validation error. This method is implemented in the R package ipflasso (Boulesteix & Fuchs, 2015).
Priority-Lasso is a hierarchical approach, where the different blocks of data are considered successively in a Lasso model. The
residuals from every fit are used as an offset in the fit of the block with next lowest priority. Therefore, predictive information
that is included in several blocks will be obtained from the block with higher priority. The idea is to include prior knowledge in
the definition of the order (e.g., by a well-experienced medical researcher) to get a usable model for clinical practice with good
prediction accuracy. However, the method can also be used in an impartial way, where the block order corresponding to the best
cross-validated error is chosen out of several specifications. Priority-Lasso is implemented in the R package prioritylasso
(Klau & Hornung, 2017).

Standard Lasso is performed via the R package glmnet (see Friedman, Hastie, and Tibshirani (2010), and for the special case
of Cox-Lasso Simon, Friedman, Hastie, and Tibshirani (2011)). The different types of data are treated equally and are included
together in a Lasso regression. In summary, our analyses concerning variable selection in multivariable regression using different
types of omics markers consist of:

Scenario 1A: Variable selection without clinical data

1. Priority-Lasso, considering all possible orders of blocks as candidates and choosing the best one by cross-validation
2. IPF-Lasso, considering candidate vectors for penalty factors 𝒌(1) = (1, 1)⊤, 𝒌(2) = (1, 2)⊤, and 𝒌(3) = (2, 1)⊤ and choosing

the best one by cross-validation
3. Standard Lasso

Scenario 1B: Variable selection with clinical data

4. Priority-Lasso, considering all possible orders of blocks as candidates and choosing the best one by cross-validation
5. IPF-Lasso, considering candidate vectors for penalty factors 𝒌(1) = (1, 1, 1)⊤, 𝒌(2) = (2, 1, 1)⊤, 𝒌(3) = (1, 2, 1)⊤, 𝒌(4) =

(1, 1, 2)⊤, 𝒌(5) = (2, 2, 1)⊤, 𝒌(6) = (2, 1, 2)⊤, and 𝒌(7) = (1, 2, 2)⊤ and choosing the best one by cross-validation
6. Standard Lasso

We consistently use a five-fold cross-validation procedure and the tuning parameter 𝜆 is chosen according to the minimum
mean cross-validated error. For ease of computation, priority-Lasso is run without cross-validated offsets (see Klau et al., 2018,
for more details). Similarly, it was beyond the scope of this work to consider a broader range of candidate vectors for the penalty
factors in IPF-Lasso.

3.1.2 Scenario 2: Ranking biomarkers according to their predictive performance
In scenario 2, we are concerned with the ranking of biomarkers according to their performance when predicting a binary outcome.
In this context, we use a variable importance measure based on the Gini index in random forests (Breiman, 2001) to establish
a ranking of the candidate biomarkers. In order to quantify method uncertainty in this scenario, we focus on investigations
concerning different algorithmic settings rather than considering different methods for classification. Parameters considered for
our random forest settings are the number of predictors that are sampled for splitting at each node (called “mtry”), the minimal
node size (“min.node.size”), and the fraction of observations to sample (“sample.fraction”). In order to be able to perform
variable ranking in a high-dimensional context, we choose to perform the analyses with a number of 10,000 trees for one forest
for all our parameter settings. The analysis is done with the R package ranger (Wright & Ziegler, 2017). The authors suggest
default values for classification of mtry =

√
𝑝, where 𝑝 is the total number of variables, a min.node.size of 1, and a sample

fraction of 1 since we sample with replacement. These default values provide our first setting. In settings 2 and 3, we change
mtry to 𝑝∕10 and 𝑝∕5, respectively, which results in more appropriate values for the high-dimensional context (Goldstein, Polley,
& Briggs, 2011). In setting 4, we tune mtry, min.node.size, and sample.fraction with respect to the Brier score. We perform 100
iterations, from which we take 5% of the iterations with the lowest Brier scores and obtain the final tuning parameters as an
average of these results. The tuning is performed with the R package tuneRanger (Probst, 2018) and the underlying procedure
is described in more detail in Probst, Wright, and Boulesteix (2018). In summary, the four settings for the random forests applied
in this scenario are:

1. mtry =
√
𝑝 = 132, min.node.size = 1, sample.fraction = 1.00

2. mtry = 𝑝∕10 = 1739, min.node.size = 1, sample.fraction = 1.00
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3. mtry = 𝑝∕5 = 3478, min.node.size = 1, sample.fraction = 1.00
4. mtry = 2235, min.node.size = 9, sample.fraction = 0.85

3.1.3 Scenario 3: Identifying differentially expressed genes from RNA-seq data
In the context of differential expression analysis with RNA-seq data, we aim to find differentially expressed genes. Among
the many possible methods that are available in this context, we focus on those used in Rigaill et al. (2016) where the authors
compared methods for differential expression analysis in the presence of few biological replicates with synthetic data sets. We
thus consider DESeq (Anders & Huber, 2010), DESeq2 (Love, Huber, & Anders, 2014), edgeR and glm.edgeR (McCarthy,
Chen, & Smyth, 2012; Robinson, McCarthy, & Smyth, 2010), and limma-voom (Law, Chen, Shi, & Smyth, 2014; Ritchie et al.,
2015). These methods differ primarily in the choice of the probability distribution, the strategy used to estimate the mean and
variance parameters, and the prefiltering approach. Following Rigaill et al. (2016), we apply DESeq without the filtering of
genes with low counts beforehand. All other methods are consistently used with the filtering strategy recommended by their
authors. Apart from limma-voom, all methods are based on the negative binomial distribution. The analysis with limma-voom,
on the other hand, is based on a normal distribution after conducting a voom-transformation of the data. For details concerning
the specific estimation and modeling of the mean–variance relationship and the specific test procedures, we refer to the
explanations of the authors of the methods. The genes are finally selected if their corresponding p-values are below a predefined
threshold chosen consistently as 0.05 after adjusting for multiple testing with the Benjamini–Hochberg procedure to control
the FDR.

3.2 Application to acute myeloid leukemia data sets
For all our analyses, we use data from acute myeloid leukemia (AML) patients. Since different situations are addressed in the
three scenarios, different AML data sets are used for each of them.

3.2.1 AML data from TCGA
In scenario 1 (see Section 3.1), our aim is to build a prediction model based on different types of omics data. Hence, we choose
a data set including different types of variables (blocks of data) for this scenario. We consider an AML data set from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and work with gene expression variables, copy number variations
(CNVs), as well as clinical variables as predictors. The censored outcome variable of interest is overall survival. In order to
allow for a fair comparison of variables in our models, we standardize all continuous variables to mean zero and variance one.
The 15 clinical variables, which are only used for part of the investigations, include sex, age at initial pathologic diagnosis,
leukocyte level, hemoglobin level, platelet count, percent value of blast cells in bone marrow, as well as eight binary variables,
representing the mutation status for certain genes. Furthermore, we include the three-categorical variable cytogenetic risk. We
exclude patients with missing values on at least one of the variables, resulting in a total of 176 patients of which 125 experienced
the event of interest for the analyses without clinical data. For the analyses including clinical variables, there are 149 patients
(of which 89 died), as there are more missing values. The gene expression and CNV data consist of 19,204 and 18,354 genes,
respectively.

3.2.2 AMLCG-1999 trial data
In order to perform the analyses for the random forests scenario (scenario 2), we consider a data set consisting of patients
who were randomized and treated in the multicenter phase III AMLCG-1999 trial (clinicaltrials.gov identifier NCT00266136)
between 1999 and 2005 (Büchner et al., 2016, 2006). It consists of gene expression data analyzed with Affymetrix arrays (Herold
et al., 2014). As outcome variable, we consider the resistance to induction treatment. The data set consists of 488 patients of which
119 are resistant and 17,389 gene expression variables. It is publicly available from the Gene Expression Omnibus repository
(GSE37642).

3.2.3 AMLCG-2008 study
For the differential expression analysis scenario (scenario 3), we use a data set of 218 AML patients treated in the AMLCG-
2008 study (NCT01382147) (Kreuzer et al., 2013), a randomized, multicenter phase III trial. Additionally, 40 patients who had
resistant disease and were treated in the AMLCG-1999 trial are included. The final data set consists of 𝑛 = 241 patients after
excluding those with missing values. They are described by their transcriptome comprising 𝑝 = 23,368 genes measured by the
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T A B L E 1 Stability measures for the main results averaged over 100 runs. The values for sampling uncertainty, obtained by comparing two
different data set halves, are shown on the diagonal. The values for method uncertainty, obtained by averaging over the results obtained with data set
half 1 and data set half 2, are shown on the off-diagonal. In scenarios 1 and 3, uncertainty is quantified by Jaccard indices and in scenario 2 by the
Spearman top-𝑘 correlation with 𝑘 = 500, as described in Section 2.2. The acronyms “Lasso,” “PL,” and “IPF” represent standard Lasso,
priority-Lasso, and the IPF-Lasso, respectively. “sqrt(p),” “p/5,” “p/10” indicate the different values for the number of covariates to possibly split at
each node (mtry), with p as the number of covariates. “tuning” refers to the scenario in which mtry, min.node.size, and sample.fraction were tuned

Scenario 1A Lasso PL IPF
Lasso 0.00 0.50 0.35
PL 0.00 0.35
IPF 0.00
Scenario 1B clin: Lasso clin: PL clin: IPF
clin: Lasso 0.00 0.19 0.17
clin: PL 0.10 0.27
clin: IPF 0.12
Scenario 2 sqrt(p) p/10 p/5 tuning
sqrt(p) 0.06 0.78 0.77 0.78
p/10 0.05 0.87 0.84
p/5 0.05 0.84
tuning 0.05
Scenario 3 DESeq DESeq2 edgeR glm.edgeR limma-voom
DESeq 0.00 0.01 0.01 0.01 0.01
DESeq2 0.01 0.53 0.55 0.17
edgeR 0.02 0.95 0.17
glm.edgeR 0.02 0.17
limma-voom 0.02

RNA-seq technology. For more detailed information, we refer to Herold et al. (2017), where the data set was used to predict the
resistance to induction treatment. In our study, the resistance to induction treatment serves as a binary condition for differential
expression analysis: 73 patients are resistant and 168 non-resistant.

4 RESULTS

4.1 Main analyses
All methods and scenarios that we described in Section 3.1 are conducted with a number of 𝐵 = 100 runs, i.e., the data set is
split 100 times in two halves and each method setting is applied on both data set halves. For each run, stability measures are
calculated to quantify both sampling and method uncertainty, as described in Section 2. The mean stability measures for the
three scenarios, averaged over the 100 repetitions, are shown in Table 1. The boxplots, visualizing the distribution of the results
over the 100 runs, are shown in Figures 2 and 3.

First of all, the most obvious results are the remarkably low stability measures, i.e., Jaccard indices and rank correlation
coefficients, when comparing the same method or method setting on two data set halves, indicating high sampling uncertainty
in general. In scenario 3, where we were concerned with the identification of differentially expressed genes from RNA-seq data,
we observe only a small fraction of runs where selected genes from the two data set halves overlap, resulting in very low Jaccard
indices between 0.01 and 0.02 for most methods and even in a Jaccard index of 0.00 for DESeq. The ranking of biomarkers
according to their predictive performance in random forests in scenario 2 results in values for the Spearman top-𝑘 correlation
around 0.05, indicating high sampling uncertainty in this situation. The results quantifying the uncertainty for scenario 2 with the
Jaccard index are shown in Supporting Information. They confirm the high sampling uncertainty with values comparable to those
obtained in scenario 3. Similarly, for scenario 1A, where variable selection in multivariable regression using different types of
omics markers is performed without clinical data, we observe low values for the Jaccard index measuring sampling uncertainty.
In scenario 1B, however, where clinical data is included in the variable selection process, priority-Lasso and IPF-Lasso identify
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F I G U R E 2 Boxplots visualizing the distribution of the stability measures (Jaccard indices for scenarios 1 and 3, and Spearman top-𝑘
correlations with 𝑘 = 500, as described in Section 2.2, for scenario 2) measuring sampling uncertainty for 100 runs. For each run, the data set was
split in two halves and the corresponding method was applied on both halves. Boxplots for random forest method settings (scenario 2) contain the
abbreviations “sqrt(p),” “p/10,” “p/5,” and “tuning.” The first three indicate the different values for the number of covariates to possibly split at each
node (mtry), with p as the number of covariates. “tuning” refers to the scenario in which mtry, min.node.size, and sample.fraction were tuned

more stable sets of selected variables and therefore show lower sampling uncertainty. This finding can be explained by the
fact that these two methods account for the block structure and therefore have a higher chance of including important clinical
variables in the final model. However, mean Jaccard indices of 0.10 and 0.12 for priority-Lasso and IPF-Lasso, respectively,
still indicate unstable sets of selected variables and therefore high sampling uncertainty.

The comparison of two alternative methods on the same data set half results in more stable results than the comparison of
the same method on two data set halves, i.e., method uncertainty was lower than sampling uncertainty in all three scenarios. In
scenario 1, where the aim is to perform variable selection in a multivariable regression using different types of omics markers,
we observe Jaccard indices that indicate moderate to high method uncertainty. When comparing the values of scenarios 1A
and 1B, however, it can be noticed that method uncertainty is actually higher in scenario 1B when clinical data is taken into
consideration. In this situation, the difference between the set of variables selected by Lasso on the one side and priority-Lasso
and IPF-Lasso on the other side might again be explained by the fact that the two latter methods are able to select important
clinical variables in the final model as they account for the block structure in the data. However, while one might expect high
overlap between priority-Lasso and IPF-Lasso in scenario 1B, there is a slight increase in method uncertainty between these
two methods when clinical data is included in the variable selection process. This finding might be explained by the fact that
IPF-Lasso is more conservative than priority-Lasso in our analyses. Indeed, as can be seen in Table S1, the number of selected
variables is higher for priority-Lasso than for IPF-Lasso, in particular for scenario 1B when clinical data is included in the
analyses. The boxplots presented in Figures 2 and 3 show that the variability in the 100 Jaccard indices for scenario 1 is very
high, especially without clinical data, which might be related to the small number of selected variables, which is particularly
low for scenario 1A (see Table S1).

In scenario 2, where we performed a ranking of biomarkers according to their predictive performance, the Spearman top-𝑘
correlation coefficients comparing the results of different method settings are high and show little variability, indicating low
method uncertainty in this situation (see Figure 3). The low method uncertainty between the settings is even more noticeable for
comparisons including the settings 2, 3, and 4 with larger values of mtry. The corresponding Jaccard indices are similar but due
to the properties explained in Section 2.2 slightly lower than the correlations (see Table S2). The cluster dendrogram visualizing
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F I G U R E 3 Boxplots visualizing the distribution of the stability measures (Jaccard indices for scenarios 1 and 3, and Spearman top-𝑘
correlations with 𝑘 = 500, as described in Section 2.2, for scenario 2) measuring method uncertainty for 100 runs. For each run, the different
methods or method settings were applied on both data set halves and results are analyzed in terms of the stability measures. The abbreviations
“Lasso,” “PL,” and “IPF” represent standard Lasso, priority-Lasso and IPF-Lasso, respectively. “sqrt(p),” “p/10,” and “p/5” indicate the different
values for the number of covariates to possibly split at each node (mtry), with p as the number of covariates. “tun” refers to the scenario in which
mtry, min.node.size, and sample.fraction were tuned. Furthermore, “LV” stands for the limma-voom method

the results concerning method uncertainty in scenario 2 is shown in the left panel of Figure 4. It confirms the results observed
in Table 1 and Figure 3.

However, the findings concerning method uncertainty in scenarios 1 and 2 have to be interpreted with great caution. Indeed,
both the Lasso-based methods and the random forest method are based on resampling, i.e., there is already an inherent variability:
the results are dependent on the chosen seed values. When conducting the same analysis for two subsequent runs on the same
data set half with different seed values and comparing the results, we also observe average values for the Jaccard index between
0.43 and 0.52 in scenario 1A. For scenario 2, we observe values of the Spearman top-𝑘 correlation between 0.77 and 0.86 which
is very close to the values obtained by comparing different method settings. This finding suggests that the stability measures
observed concerning method uncertainty in scenario 2 do not reflect the variability due to the parameter settings, but rather the
randomness which is inherent in the random forest method itself.

Finally, in scenario 3, which was concerned with the identification of differentially expressed genes from RNA-seq data,
the results quantifying method uncertainty are highly dependent on the methods that are being compared. In particular, when
DESeq is compared to the other methods, high uncertainty can be observed with mean Jaccard indices of 0.01. This finding
might be related to the fact that DESeq identifies only a very small number of differentially expressed genes. While all other
methods identify more than 192 variables as differentially expressed, DESeq only selects 2.5 variables on average as can be seen
in Table 2. The methods edgeR and glm.edgeR, on the other hand, share similar properties, resulting in low method uncertainty
when comparing these methods as indicated by a Jaccard index of 0.95. The comparisons between the latter two methods and
DESeq2, which is also based on negative binomial counts, leads to slightly less stable sets of identified variables with Jaccard
indices of 0.53 and 0.55, indicating moderate method uncertainty. Finally, comparing limma-voom to edgeR, glm.edgeR, and
DESeq2 yields Jaccard indices of 0.17, indicating moderate to high method uncertainty. While this method is less conservative
than DESeq and therefore results in a comparable number of identified variables as DESeq2, edgeR, and glm.edgeR, it is the
only method based on a normal distribution, thereby leading to less overlap and lower Jaccard indices than are observed in the
comparisons involving only DESeq2, edgeR, and glm.edgeR. In the same manner as for the random forest scenario, the method
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F I G U R E 4 Dendrograms for scenarios 2 and 3. “sqrt(p),” “p/10,” and “p/5” indicate the different values for the number of covariates to
possibly split at each node (mtry), with p as the number of covariates

T A B L E 2 Numbers of variables selected in scenario 3 and the corresponding sensitivity analyses. The results for two data set halves are
averaged across these halves. All results, except those obtained with the full data set, contain the results averaged across 100 runs. A balanced split
means that a constant resistant/non-resistant ratio is maintained

Full data (n = 241) DESeq DESeq2 edgeR glm.edgeR limma-voom
Unfiltered 107 1147 2313 1526 1512
Filtered 1431 1144 1181 1423
Data set halves (n = 120)
Unfiltered 2.5 252.2 749.6 319.7 206.8
Filtered 322.1 280.4 285.6 192.2
Balanced split (n = 146)
Unfiltered 41.2 611.6 1383.4 758.7 740.0
Filtered 765.7 586.3 596.3 636.9
Equal library sizes (n = 53)
Unfiltered 0.4 72.2 108.6 83.2 20.4
Filtered 98.8 76.7 77.0 28.4

uncertainty in the differential expression analysis scenario is visualized with a cluster dendrogram in the right panel of Figure 4.
Unsurprisingly, DESeq and limma-voom form single clusters. In contrast, edgeR and glm.edgeR group together very early and
melt with DESeq2 at a later point.

4.2 Sensitivity analyses
In a second step, we perform several sensitivity analyses to investigate possible factors that could have an influence on the results
of our main analyses presented in Section 4.1. In scenario 1, we explore the correlation structure of the variables selected on
the two different data set halves in order to assess whether the small overlap between the selected subsets of variables can be
explained by the fact that these subsets of variables carry the same information. In scenario 2, we investigate the impact of
different values for 𝑛 on sampling and method uncertainty and use two data sets with higher signal-to-noise ratio. Moreover, we
study the sensitivity of results when changing the value 𝑘 for the Spearman top-𝑘 correlation in this scenario. Finally, we study
the impact of filtering and a limitation to a balanced sample and patients with equal library sizes in the differential expression
analysis (scenario 3). All analyses of this section were conducted with 𝐵 = 100.
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4.2.1 Exploring the correlation structure of the selected variables
One possible explanation for the small overlap in the genes that are selected by Lasso-based methods on two data set halves
observed in scenario 1A could be that there are highly correlated groups of biomarkers that carry the same information (De
Bin & Sauerbrei, 2018). In this vein, one may imagine that, while there is not an exact overlap between the biomarkers selected
on the data set halves, the selected biomarkers are at least highly correlated. However, further examination of the correlation
between the variables (not shown), selected by a method from the two independent data sets in scenario 1, does not back up the
presumption that genes selected from one data set half might be highly correlated to the genes selected from the other data set
half. Indeed, the correlation is consistently low or at most medium. Correspondingly, when using elastic net regression (Zou &
Hastie, 2005), which is especially recommended to address the problem of groups of variables with high pairwise correlation,
sampling uncertainty does not decrease (data not shown). Here, it yields similar results to standard Lasso even when trying
different mixing parameters.

4.2.2 Exploring the choice of 𝒌 for the Spearman top-𝒌 correlation
For scenario 2, where we perform a ranking of biomarkers according to their predictive performance and analyze the results
with the Spearman top-𝑘 correlation, the choice of 𝑘 = 500 is somewhat arbitrary. In order to gain additional insight concerning
the impact of this choice, we perform our analyses with 𝑘 ∈ {100, 200, 1000, 2000}. While 𝑘 only modestly impacts the results,
we observe slightly lower sampling uncertainty, expressed through higher correlations for higher values of 𝑘. Conversely, the
correlations quantifying method uncertainty slightly decrease for higher 𝑘, indicating higher uncertainty in this context.

4.2.3 Investigations with other data sets
In a third sensitivity analysis, we investigate the influence of the signal-to-noise ratio and the number of observations 𝑛 by
considering two additional high-dimensional data sets with other outcome variables: one that merely has a higher signal-to-noise
ratio and a second one that has both a higher signal-to-noise ratio and a larger sample size. First, a data set of AML patients from
the Gene Expression Omnibus repository (GSE61804) is considered. The data set consists of 54,675 gene expression variables
and 323 patients. When the outcome to be predicted is gender, we observe an AUC of 0.99 for a random forest, specified with
10,000 trees and default values for the other parameters, i.e., gender is an outcome that can be predicted with high accuracy. For
comparison, the prediction of resistant patients with the data initially used for the random forest scenario (scenario 2) yields a
considerably lower AUC of 0.64. Unsurprisingly, we find higher correlations between two rankings of genes selected on two data
set halves compared to the results of our main analyses, i.e., sampling uncertainty is lower for this data set with higher signal-to-
noise ratio. However, correlation coefficients between 0.11 and 0.17 still indicate moderate to high uncertainty. The second data
set we consider in our sensitivity analyses is a gene expression data set consisting of different cancer types with 1,545 patients
in total and 10,936 variables that is available on the OpenML platform (Vanschoren, van Rijn, Bischl, & Torgo, 2013) (data
set ID 1128). We predict whether the tissue is a breast tissue or another tissue type and obtain an AUC of 0.98 for a standard
random forest with 10,000 trees. Conducting our analyses with 𝐵 = 100 runs yields a mean correlation coefficient of 0.53 for
method uncertainty and values between 0.40 and 0.77 for sampling uncertainty, depending on the method setting. The relatively
high number of observations also allows us to perform the same analysis on subsets of the data. Here we consider subsets
of sizes 𝑛 ∈ {100, 200, 500, 800, 1200}. The results, which are visualized in Figure S2, reveal on the one hand a decreasing
sampling uncertainty for higher sample sizes, indicated by higher correlations. On the other hand, the correlations quantifying
method uncertainty are less affected by 𝑛 and we observe even a slight increase in method uncertainty for higher sample sizes.
In conclusion, the sensitivity analyses performed on other data sets support the hypothesis that the high sampling uncertainty,
observed in our main analyses, is at least partly due to the relatively low signal-to-noise ratio and the relatively small sample size.

4.2.4 Sensitivity analyses for the differential expression scenario
In order to investigate how method uncertainty is influenced by filtering in the differential expression scenario, we rerun the
methods where filtering of genes with low counts was part of the analysis, i.e., all methods except DESeq, without this filtering
step. As shown in Table 2, when averaging the 𝐵 = 100 runs, more genes are detected as differentially expressed by most of the
methods. Here, DESeq2 is the only exception with a decrease from 322.1 to 252.2 detected genes when the data is unfiltered.
Correspondingly, method uncertainty for the comparisons involving DESeq remains very high as DESeq only identifies a small
number of differentially expressed genes. For method comparisons in which DESeq is not involved, the Jaccard indices are
slightly lower for the filtered analyses.

Furthermore, we slightly modify our data set in order to obtain a balanced ratio of resistant and non-resistant patients. Since
we are only interested in method uncertainty here, we do not split the data set in two halves. Instead, we randomly draw samples
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of non-resistant patients with a sample size that is equal to the number of resistant patients a number of 100 times. We perform
the analyses on each of the data sets that are obtained by combining the random subset with the set of resistant patients. More
genes are selected than in the original analysis (see Table 2), and method uncertainty is lower for all comparisons. Here, on
average, 41.2 genes are considered as differentially expressed by the DESeq method. Nevertheless, the general structure of the
results does not change.

Finally, Law et al. (2014) show that DESeq can have low power to detect differentially expressed genes when library sizes are
unequal. Therefore, we conduct a further sensitivity analysis where we consider only patients with a total number of mapped
reads between 10 and 15 million. This reduced our original data set to 106 patients. In contrast to the observations made by
Law et al. (2014), that higher power can be obtained with equal library sizes, our results do not markedly change. Instead, the
number of selected genes and the Jaccard indices quantifying method uncertainty decrease—not only for DESeq but for all of the
methods. Altogether, the additional analyses presented in this paragraph provide an indication that the results are not substantially
affected by changes in our data set composition. Instead, they seem to be affected by the sample size as well as characteristics
whose detailed comprehension is beyond the scope of this paper, but should be further investigated in future analyses.

4.3 Example on low dimensional data
In order to illustrate the versatility of our framework, we complement our analyses concerning the variable selection and ranking
on high-dimensional data by a simple example where we apply the framework to low-dimensional data. In this example, we
quantify method and sampling uncertainty when predicting the percentage of body fat in the body fat data set (data set ID 560,
n = 252) that is available on the OpenML platform (Vanschoren et al., 2013). The different methods we consider here consist
of (a) a linear regression model with age and height as predictors (model 1) and (b) a linear regression model with age, height,
and weight as predictors (model 2). We use the correlation between the outcome predictions on independent test data (1∕3
of the original data set, i.e., 84 observations) as stability measure. We run our framework with 𝐵 = 100 and observe average
correlations of 0.75 and 0.97 when fitting models 1 and 2 to two different data set halves, respectively, indicating that contrary
to the results on high-dimensional data, sampling uncertainty is very low in this example. On the other hand, we observe an
average correlation of 0.20 when comparing the predictions of the two models on the same data set half. However, similar to the
main results of our work, it has to be noted that method uncertainty strongly depends on the methods being compared, i.e., we
would expect it to be lower when the two models differ with respect to the inclusion of a less influential predictor than weight.

5 DISCUSSION

5.1 Summary
In this paper, we proposed a general resampling-based framework to quantify sampling and method uncertainty which makes it
possible to compare these two types of uncertainty in a simple and comprehensive way. In this framework, the random splitting
of a data set allows quantification of sampling uncertainty by comparing the results when performing the same analysis strategy
on each of the data set halves. A comparison of the results obtained when applying two alternative analysis strategies on the
same data set half, on the other hand, can be used to derive a measure of method uncertainty. We applied our framework in
the selection and ranking of omics markers in the context of AML and considered three different scenarios: variable selection
in multivariable regression using different types of omics markers (scenario 1), the ranking of biomarkers according to their
predictive performance as estimated by random forest variable importance measures (scenario 2), and the identification of
differentially expressed genes from RNA-seq data (scenario 3).

In scenario 2, where sampling uncertainty is quantified through the Spearman top-𝑘 correlation coefficient with 𝑘 = 500, we
observe high sampling uncertainty with values around 0.05. For the differential expression analyses in scenario 3, we observed
very high sampling uncertainty with Jaccard indices that imply almost no overlap between the biomarkers selected on the two
data set halves. In contrast, in scenario 1B, where variable selection in multivariable regression using different types of omics
markers and clinical data was performed using Lasso-based methods, sampling uncertainty was slightly lower for priority-Lasso
and IPF-Lasso that take the block structure in the data set into account. However, this is also related to the special composition
of the data set itself. Indeed, when clinical data was incorporated in the analyses, these two methods, which can properly account
for this external information, selected more stable sets of variables. Accordingly, Binder and Schumacher (2008, 2009) show that
the proper incorporation of clinical and pathway information, respectively, can both yield more convincing results and improve
predictive performance when analyzing high-dimensional microarray data.
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As might be expected, method uncertainty was strongly affected by the methods being compared. For example, in scenario
1, high method uncertainty was observed for a comparison of standard Lasso and IPF-Lasso with clinical data. In contrast,
in scenario 2, we found low method uncertainty for a comparison of random forest settings 2 and 3 where only mtry was
changed from 𝑝∕10 to 𝑝∕5. Extremely heterogeneous results concerning method uncertainty could be observed in the differential
expression scenario (scenario 3). Here, comparisons where DESeq was involved led to very high method uncertainty. In contrast,
for a comparison of edgeR and glm.edgeR, a very high Jaccard index, indicating low method uncertainty, could be observed.
We performed a number of sensitivity analyses where we studied the impact of filtering and a limitation to patients with equal
library sizes and to a balanced sample, which essentially led to the same results.

Rather than being mock examples with extraordinary low sample size or signal-to-noise ratio, the data sets considered here
have been used in actual research projects for AML (Herold et al., 2017; Klau et al., 2018) and can be seen as typical for data
sets that are used for the identification of omics markers. The extremely high sampling uncertainty we observed is therefore
alarming as this finding suggests that the omics markers identified in typical studies are very sensitive to random variations
in the data set, raising concerns about the replicability of the results of these studies. While this observation is in accordance
with many previous studies that were concerned with the stability of variable selection procedures based on high-dimensional
data (see for instance Michiels et al. (2005) and Ein-Dor et al. (2005, 2006)), we found such an extremely poor overlap between
markers selected on two data set halves disconcerting on samples including several hundreds of patients.

5.2 Strengths and limitations
The aim of the framework we proposed in this work is to quantify sampling and method uncertainty and to allow direct com-
parisons between these two sources of uncertainty. A deeper understanding of the different sources of uncertainty is not only
useful for methodological researchers developing new methods to help them focus their attention on the most critical problems,
but also for applied scientists in the interpretation of their results. In particular, the framework can be useful as a complement of
standard sensitivity analysis where the latter typically allows consideration of the results of only a very limited number of alter-
native analysis strategies while the former can give a more general idea on the variability of results which can arise from these
strategies. As the variability resulting from a single source of uncertainty is typically very difficult to interpret, it is important
in this context to be able to quantify sampling and method uncertainty on a common scale in order to allow a direct comparison
between the two. Finally, the resampling-based framework we propose here can be seen as a flexible tool to give an idea on
how likely it is that a research finding will replicate with an independent sample or with the same sample when an alternative
analysis strategy is chosen. Considering the very high values of sampling uncertainty we observed in the three scenarios, it is
unlikely that a selection or a ranking of biomarkers on an independent sample of AML patients would yield the same results. In
this situation, it might be sensible to conclude that more patients have to be recruited before valid conclusions can be drawn. If
we had observed higher values for method uncertainty, we might on the other hand have concluded that further efforts should be
directed to the selection of the most suitable method, for instance by comparing the results of several methods in a simulation
study that specifically reflects the properties of our data. In this vein, sampling uncertainty and method uncertainty as quantified
by our framework can be used to judge the stability of research findings. Achieving values of sampling and method uncertainty
that indicate a certain stability may be seen as a minimum requirement that has to be fulfilled in order to assure the credibility
and reproducibility of results.

In the three scenarios considered in this work, we observed high sampling uncertainty and a comparatively smaller, but non-
negligible method uncertainty. However, when comparing the values we observed for method uncertainty between the different
scenarios, one has to keep in mind that the stability measures that we used in these scenarios are not directly comparable. Addi-
tionally, the concept of method uncertainty is somewhat elusive. Indeed, method uncertainty strongly depends on the methods
being compared and it is in general neither feasible nor reasonable to consider all possible methods and method settings, but
only those that are justified both from a theoretical and a substantive point of view. In this vein, we restricted the possible
method settings in this work. For instance, we only used a set of possible candidate vectors for the penalty factors in IPF-Lasso
in scenario 1. Moreover, another possibility would have been to include the clinical covariates as mandatory in this scenario.
We investigated how this choice would have changed the results in an additional analysis (results not shown) and found in this
case that no other covariates were chosen by standard Lasso, which results in very low sampling uncertainty, but that the non-
clinical variables that were selected by priority-Lasso are highly unstable among different data set halves. Similarly, we based
all analyses in scenario 3 on a threshold for the p-value of 0.05, although alternative thresholds could lead to other results. In a
second additional analysis (results not shown), we investigated how the results would have changed with an alternative threshold
of 0.157 (Sauerbrei et al., 2011) in scenario 3. In this additional analysis, more variables were chosen and slight changes could
be observed in the values of the stability measures.
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In addition to the limited number of analytical decisions, it has to be noted that the resampling-based framework we propose
does not allow to quantify sampling and method uncertainty for the total sample size 𝑛 of the original data set, but merely for 𝑛∕2.
It can be argued that this decreased sample size leads to a loss in statistical power and therefore to an overestimation of sampling
and method uncertainty for the original data set. Using bootstrap resampling (i.e., drawing 𝑛 observations with replacement)
instead of subsampling could be an alternative solution, but there is evidence that the bootstrap leads to an inflation of type 1
error and to a high inclusion frequency of noise variables (De Bin, Janitza, Sauerbrei, & Boulesteix, 2016; Janitza, Binder, &
Boulesteix, 2016). Moreover, outliers may have a devastating effect in 𝑛 ≪ 𝑝 settings when drawn several times in the same
bootstrap sample (De Bin et al., 2016). Most importantly, bootstrap samples partially overlap with each other, making a direct
comparison of sampling and method uncertainty (as performed in our framework) impossible. For these reasons, the use of
bootstrap sampling in place of 𝑛∕2-subsampling does not appear to be recommended in our context. The decrease in sample
size in the latter resampling approach is arguably the price one has to pay in order to avoid any overlap between the two data
halves, thereby allowing the derivation of an unbiased stability measure for 𝑛∕2. Moreover, when the ultimate aim is to translate
research findings into clinical practice, it is important to not only validate results on the considered data set but also to use
external validation in order to show that the results can be generalized to other samples and even to samples drawn under
different conditions (Gerds, Cai, & Schumacher, 2008). The stability of selected genes is likely to be higher on the considered
data set than on an independent data set. Therefore, it may be preferable to choose a pessimistic measure of stability performance
as this measure will probably give a more accurate picture of the stability that can be expected when one aims at generalizing
the results.

5.3 Extensions
In this work, we focused on sampling and method uncertainty, where method uncertainty was either defined as the variability
in results when applying different methods (scenario 1), different parameter settings (scenario 2), or different analysis strategies
(scenario 3). However, the framework can be applied to many other issues beyond the selection of omics biomarkers and the
different types of uncertainty addressed in this paper are of course not the only sources of variability in statistical results. A
further aspect worth mentioning is, for instance, related to imprecise methods of data collection, which could be denoted as
“measurement uncertainty.” Similarly, data preprocessing uncertainty is not particularly addressed in our application, but, in
contrast to measurement uncertainty, it could be easily incorporated in our framework. Finally, it is straightforward to extend
future analyses to stability measures other than the Jaccard index and the Spearman top-𝑘 correlation coefficient to quantify
different sources of uncertainty in the analysis of high- and low-dimensional data, as we have already demonstrated with a
simple example in Section 4.3.

5.4 Outlook
The importance of investigations concerning the stability of variable selection procedures and the role of resampling-based
approaches in these investigations have long been recognized (Baty, Jaeger, Preiswerk, Schumacher, & Brutsche, 2008; Sauerbrei
& Schumacher, 1992; Sauerbrei et al., 2011). However, even today, evaluations of the stability of research findings are rarely
carried out in a systematic way. While the instability of variable selection procedures is an important topic in general, it becomes
even more fundamental in the analysis of high-dimensional molecular data. Indeed, the high-dimensionality of this data leads
to high sampling uncertainty as analyses are prone to overfitting and may be sensitive to the inclusion or exclusion of a few
patients. Additionally, the complexity of high-dimensional molecular data leads to higher method uncertainty than might be
expected in low-dimensional data as there are a great number of researcher degrees of freedom (Boulesteix et al., 2017b).

Moreover, in biometrical research, there are strong incentives for presenting work that entails new methods (Boulesteix,
Binder, Abrahamowicz, & Sauerbrei, 2018). As a consequence, it is impossible for a researcher to keep pace with the multitude
of methods being published every month in statistical journals (Sauerbrei et al., 2014). In contrast, the evaluation and the
comparison of alternative methods is usually only given very little attention (Boulesteix, Wilson, & Hapfelmeier, 2017c). Given
the multitude of methods and the lack of guidance based on evidence from neutral comparison studies, method uncertainty in
the omics field is already very large and likely to further increase in the future. It can therefore be argued that we have to raise
awareness of method uncertainty, which, in contrast to sampling uncertainty, has so far received only very limited attention
from the statistical community. First of all, it seems to be essential to establish guidance based on neutral simulation studies,
which may ultimately lead to a reduction in method uncertainty. As it is difficult to establish high-dimensional simulations
that realistically reflect real data situations, simulation studies using real data sets as a basis (Rigaill et al., 2016) as well as
illustrations with real data are other important options for developing guidance.
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Furthermore, it is important to develop and to promote approaches that handle the multiplicity of results from possible analysis
strategies to enable researchers to systematically report method uncertainty in a given study. In this context, one can distinguish
approaches that merely acknowledge method uncertainty, i.e., that measure the variability of results obtained when applying
alternative analysis strategies, and approaches that can also account for method uncertainty: To acknowledge method uncertainty
is a first step, but it is difficult to interpret results that merely acknowledge method uncertainty when the aim is to answer the
initial question of interest. The next step is therefore to account for method uncertainty, i.e., to a method that allows the answering
of the initial research question while considering the results of a set of reasonable analysis strategies. Consensus clustering, for
instance, accounts for method uncertainty in clustering by combining the results of different clustering techniques. Additionally,
it can be used to assess the stability of the discovered cluster solution. Similarly, model averaging approaches can be used to
summarize the results of alternative models with weighting approaches that range from the use of posterior model probabilities
in the context of Bayesian model averaging (Hoeting, Madigan, Raftery, & Volinsky, 1999) to more pragmatic approaches
where weights can be derived through bootstrap resampling (Augustin, Sauerbrei, & Schumacher, 2005; Holländer, Augustin,
& Sauerbrei, 2006).

While these approaches might be somewhat difficult to implement and more resource intensive than classical approaches,
ignoring method uncertainty and researcher degrees of freedom can lead to inflated effect sizes and type 1 error probabilities
(Simmons et al., 2011). In contrast, approaches that adequately account for method uncertainty are more likely to produce
findings that can be replicated in independent studies. In a “Post-Truth Era” (Mann, 2018; Vernon, 2017), where the research
community and the general public have recently been rocked with the recognition that many research findings do not replicate
on independent data sets (Begley & Ellis, 2012; Ioannidis et al., 2009; Open Science Collaboration, 2015), acknowledging and
accounting for method uncertainty thus seem like important steps to reestablish the credibility of biomedical research, and of
scientific evidence in general.
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Assessing uncertainty through the vibration of effects

Abstract

Researchers have great flexibility in the analysis of observational data. If combined with selec-

tive reporting and pressure to publish, this flexibility can have devastating consequences on the

validity of research findings. We extend the recently proposed vibration of effects approach to

provide a framework comparing three main sources of uncertainty which lead to instability in

observational associations, namely data pre-processing, model and sampling uncertainty. We

analyze their behavior for varying sample sizes for two associations in personality psychology.

While all types of vibration show a decrease for increasing sample sizes, data pre-processing

and model vibration remain non-negligible, even for a sample of over 80000 participants. The

increasing availability of large data sets that are not initially recorded for research purposes

can make data pre-processing and model choices very influential. We therefore recommend the

framework as a tool for the transparent reporting of the stability of research findings.

Keywords— metascience, researcher degrees of freedom, stability, replicability, Big Five

1 Introduction

In recent years, a series of attempts to replicate results of published research findings on independent

data have shown that these replications tend to produce much weaker evidence than the original study

(Open Science Collaboration, 2015), leading to what has been referred to as a ‘replication crisis’. While

there have been a number of widely publicized examples of fraud and scientific misconduct (Ince, 2011;

van der Zee, Anaya, & Brown, 2017), many researchers agree that this is not the major problem caus-

ing the crisis (Gelman & Loken, 2014; Ioannidis, Munafo, Fusar-Poli, Nosek, & David, 2014). Instead,

the problems seem to be more subtle and partly due to the multiplicity of possible analysis strategies

(Goodman, Fanelli, & Ioannidis, 2016; Open Science Collaboration, 2015). In this vein, there is evidence

that the instability of observational associations can partly be explained by the fact that researchers tend

to run several analysis strategies on a given data set, but to report only one of them selected post-hoc

(Simmons, Nelson, & Simonsohn, 2011).

Indeed, there are a great number of implicit and explicit choices that have to be made when analyzing

observational data. It is necessary to make various decisions when specifying a probability model to

study the association between possible predictor variables and an outcome of interest. In addition to

possible choices involved in the specification of a probability model, denoted as ‘model uncertainty’ in

the following, there are numerous judgments and decisions that are required even before being able to fit

the model to the data. When pre-processing the data, there are many possibilities regarding, not only
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Assessing uncertainty through the vibration of effects

the definition of predictor and outcome variables, but also data inclusion and exclusion criteria, and the

treatment of outliers (Wicherts et al., 2016). We denote this type of uncertainty as ‘data pre-processing

uncertainty’.

Apart from the problems arising through the multiplicity of possible analysis strategies, there seem to be

more fundamental issues in the analysis of observational data that originate from the low statistical power

which characterizes many psychological studies (Maxwell, 2004; Szucs & Ioannidis, 2017). In psychology,

effect sizes tend to be small and sample sizes are typically small to moderate. This combination leads

to studies with low statistical power and therefore high sampling uncertainty when the same analysis

strategies are applied to different samples with the aim of answering the same research question. High

sampling uncertainty increases the false positive rate while simultaneously decreasing the chances of being

able to replicate the results of studies that detect a true effect.

In recent years, a plethora of solutions to the replication crisis have been proposed in different disciplines.

There are several approaches that allow the reporting of the results of a large number of possible analysis

strategies (Muñoz & Young, 2018; Simonsohn, Simmons, & Nelson, 2015; Steegen, Tuerlinckx, Gelman,

& Vanpaemel, 2016; Young, 2018), including the vibration of effects, proposed by Ioannidis (2008) and

further developed by Patel, Burford, and Ioannidis (2015), and Palpacuer et al. (2019). Alternatively,

the flexibility in the choice of analysis strategies can be reduced before analyzing the data through pre-

registration and registered reports (Chambers, 2013; Wagenmakers, Wetzels, Borsboom, van der Maas,

& Kievit, 2012). Similarly, the instability of observational findings arising from sampling uncertainty can

be assessed through resampling (Meinshausen & Bühlmann, 2010; Sauerbrei, Boulesteix, & Binder, 2011)

or sampling uncertainty can be reduced by increasing the sample size (Button et al., 2013; Maxwell, 2004;

Schönbrodt & Perugini, 2013). While the solutions which have been proposed so far address important

pieces of the problem by either focusing on the multiplicity of analysis strategies or on sampling uncer-

tainty, it is important to be able to investigate sampling, model and data pre-processing uncertainty in a

common framework to understand the full picture. Klau, Martin-Magniette, Boulesteix, and Hoffmann

(2019) rely on a resampling procedure to compare method and sampling uncertainty, but focus their

application on the selection and ranking of molecular biomarkers.

In this work, we use the vibration of effects approach (Ioannidis, 2008) to assess model, data pre-processing

and sampling uncertainty in order to provide a tool for applied researchers to quantify and compare the

instability of research findings arising from all three sources of uncertainty. We study this instability

for varying sample sizes for two associations in personality psychology, namely between neuroticism and

relationship status, and extraversion and physical activity, by analyzing a large and publicly available

data set.
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2 Methods

2.1 The data and research questions of interest

We use a large data set from the SAPA project personality test (Condon, Roney, & Revelle, 2017)

which is publicly available at the Dataverse repository (https://dataverse.harvard.edu/dataverse/

SAPA-Project). The sample consists of 126884 participants who were invited to complete an online survey

between 2013 and 2017 in order to evaluate the structure of personality traits. The data set comprises

information about a large pool of 696 personality items which were completed by the participants on

a 6-point scale ranging from 1 (very inaccurate) to 6 (very accurate) and a set of additional variables

including gender, age, country, job status, educational attainment level, physical activity, smoking status,

relationship status and body mass index (BMI) of participants.

In this work, we use these data to assess the extent to which observational associations between the

Big Five (agreeableness, conscientiousness, extraversion, neuroticism, openness to experience) and the

variables physical activity, educational achievement, relationship status, smoking habits and obesity are

influenced by data pre-processing, model and sampling uncertainty. In order to investigate the behavior

of the three types of vibration with increasing sample size, we consider different subsets of the original

data with subset sizes n ∈ {500, 5000, 15000, 50000, 84543}, where 84543 is the size of the complete data

set after excluding participants with missing observations. Lower sample sizes than the original sample

size were obtained by generating random subsamples from the original data set, without replacement. In

the application of our framework, we consider six associations of interest, comprising five for which we

found empirical evidence in the psychological literature. In the presentation of our results, we focus on

the association between neuroticism and relationship status (Malouff, Thorsteinsson, Schutte, Bhullar,

& Rooke, 2010) and between extraversion and physical activity (Rhodes & Smith, 2006). Additional

results on the association between agreeableness and smoking (Malouff, Thorsteinsson, & Schutte, 2006),

neuroticism and obesity (Gerlach, Herpertz, & Loeber, 2015), and conscientiousness and education (Sorić,

Penezić, & Burić, 2017) can be found in the Supplementary Material, together with results on openness

and physical activity, for which no evidence for an association could be found (Rhodes & Smith, 2006).

2.2 Quantifying the instability of observational associations due to different

sources of uncertainty through the vibration of effects framework

We describe each association of interest through a logistic regression model in which we estimate the

effect of the predictor of interest (e.g., neuroticism or extraversion) on the binary outcome of interest

(e.g., relationship status or physical activity) to obtain odds ratios (OR) and corresponding p-values, while

controlling for the effect of several covariates. As potential control variables, we consider all variables

introduced in section 2.1 that are not part of the association of interest. For instance, the association

between neuroticism and relationship status comprises the control variables age, gender, continent, job
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status, BMI, smoking, education, physical activity, conscientiousness, agreeableness, extraversion and

openness. For the association between physical activity and extraversion, we replace these two variables

in the list of potential control variables with neuroticism and relationship status. This results in a total

number of 12 control variables for each associations of interest.

We quantify the instability of these observational associations through the vibration of effects framework

proposed by Ioannidis (2008). In the application of the framework by Patel et al. (2015), the authors

consider the association between a predictor of interest and a survival outcome, and assess the vibration

by defining a large number of models, resulting from the inclusion or exclusion of a number of potential

control variables. To quantify the variability in these results, they calculate two summary measures,

namely relative hazard ratios and relative p-values (RP). These summary measures are defined as the

ratio of the 99th and 1st percentile of hazard ratios and the difference between the 99th and 1st percentile

of -log10(p-value), respectively. Furthermore, the authors propose visualizing -log10(p-values) and hazard

ratios with volcano plots. These plots allow easy detection of a Janus effect, which is characterized by

significant results in both positive and negative directions.

In this work, we will refer to the type of vibration investigated by Patel et al. (2015) as ‘model vibration’

and extend the framework to subsamples of the data and data pre-processing choices in order to compare

model vibration to ‘sampling vibration’ and ‘data pre-processing vibration’, which we will introduce in

more detail in sections 2.2.2 and 2.2.3. Following the proposal of Patel et al. (2015), we define the relative

odds ratio (ROR) as the ratio of the 99th percentile and 1st percentile of the OR. The ROR provides a

more robust and intuitive measure of variability than the variance. The minimal possible value of ROR

is 1, indicating no vibration of effects at all, while larger ROR values indicate larger vibration.

2.2.1 Model vibration

In order to assess model vibration for a given association of interest, we will consider a logistic regression

model for which we take any possible combination of control variables into account. Following Patel et al.

(2015), we will consider age and gender as baseline variables which are included in every model, resulting

in a total number of 210 = 1024 possible models for a given association of interest.

2.2.2 Sampling vibration

To quantify sampling vibration, we use a resampling-based framework where we draw a large number of

random subsets from our data set and fit the same logistic regression model on each of these subsets.

In particular, we draw 1000 subsets of size 0.5n, with n as the number of observations from the data

sets defined in section 2.2, which comprise different numbers of observations themselves. Although each

subset is drawn without replacement, the observations of subsets overlap between repetitions.
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2.2.3 Data pre-processing vibration

The data pre-processing choices we are considering include the handling of outliers, eligibility criteria

and the definition of predictor and outcome variables. These data pre-processing choices are based on

studies found in the literature. For a given association of interest, we fit a logistic regression model for

each data pre-processing strategy.

Eligibility criteria The eligibility criteria are based on the variables age, gender and the country

of participants. For age, either the full group of participants is included in the analyses (definition 1)

or a subgroup is defined by excluding participants who are younger than 18 (definition 2), which can be

justified by their inability to legally provide consent (Barchard & Williams, 2008). Furthermore, studies

about associations involving the Big Five personality traits are often carried out on subgroups of gender

or countries, as was for instance shown by Malouff et al. (2006) and Malouff et al. (2010) for the variables

smoking and physical activity. Therefore, with regards to the gender of participants, we either perform

the analyses with all participants (definition 1), only with male participants (definition 2), or only with

female participants (definition 3). Finally, we distinguish two alternative study populations based on the

participants’ country. Either all participants are included in the analyses and continent is considered

as a categorical control variable (definition 1), or we include only participants from the United States,

which presents the single largest country in the data set. In this case (definition 2), we exclude the

control variable specifying the continent from the analyses. In total, this results in 3 · 2 · 2 = 12 possible

combinations for the definition of eligibility criteria.

Handling of outliers A further data pre-processing choice is the handling of outliers. A variety

of different outlier definitions can be found in the literature. Bakker and Wicherts (2014), for instance,

provide a large range of z-values that are used to define outliers. Furthermore, it is either possible

to remove or winsorize outlier values (Osborne & Overbay, 2004). Here, we focus on three different

choices concerning all continuous covariates, comprising the five personality dimensions, as well as age

and BMI: Firstly, we perform no further pre-processing with these covariates (definition 1). As a second

option, we delete observations with absolute z-values greater than 2.5 (definition 2). Finally, we perform

winsorization to achieve absolute z-values less than or equal 2.5 (definition 3). Thereby we replace values

with z > 2.5 by 2.5, and values with z < −2.5 by −2.5.

Dichotomization of outcome and covariates In the definition of the outcome and covariates,

we only consider the influence of different pre-processing choices for the three variables smoking, phys-

ical activity and education. All three variables are recorded with a certain number of categories (nine

categories for smoking, six categories for physical activity and seven categories for education) and have

to be dichotomized in order to be able to model them as a binary outcome in a logistic regression model.

For all three variables, literature search revealed a lack of common definitions. For smoking and physical
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activity for instance, summaries of these definitions are provided by Malouff et al. (2006) and Rhodes and

Smith (2006), respectively. Similarly, the term education is very ambiguous, and even the more specific

phrase of academic achievement exhibits a large variety of definitions (Fan & Chen, 2001). Therefore, we

aim at reasonable dichotomizations of our given categories. For smoking, we either consider a definition

based on never smokers vs. all other categories of smoking (definition 1) or based on non-smokers (never

smokers and study participants who did not smoke the previous year) versus all other study participants

(definition 2). For physical activity, we either assume a definition based on the two categories ‘less than

once per week’ versus ‘once per week or more’ (definition 1) or, alternatively, ‘less than once per month’

versus ‘less than once per week or more’ (definition 2). Finally, in the definition of education we distin-

guish between study participants with a high level of education and study participants with a low level

of education. In this distinction, we either assign current university students to the group with a high

level of education (definition 1), because they will soon obtain a university degree or to the group with a

low level of education (definition 2), as they have not obtained a degree yet. All other variables (job sta-

tus, relationship status, BMI) are included in the analyses without considering alternative pre-processing

choices. Therefore, we should acknowledge that the vibration of effects due to pre-processing choices can

be larger than what is illustrated here. For more details on the variables which were collected in the

SAPA project, we refer to Condon et al. (2017).

Personality scores The definitions of the five personality dimensions, i.e., openness to experience,

conscientiousness, extraversion, agreeableness, and neuroticism, are based on the corresponding person-

ality items. There are a large number of different strategies to combine several items to a scale value.

Indeed, the SAPA data set contains almost 700 items that were designed to assess personality, but each

participant only completed a subset of these items. In order to determine a score on each of the per-

sonality dimensions, a correlation matrix, which is based on pairwise complete cases can be analyzed

through factor analysis. As the Big Five personality traits were initially constructed as orthogonal fac-

tors (Saucier, 2002), we consider orthogonal rotation techniques as a first option (definition 1) for the

factor analysis. However, Saucier (2002) argues that the scales used to measure the Big Five are not

orthogonal in practice. In fact, a more common option in factor analysis of the personality traits is the use

of oblique rotation techniques (definition 2). The assignment of items to the five personality dimensions

can be realized by determining a minimal factor loading that has to be achieved to assign an item to a

factor. Here, we either choose a minimal factor loading of 0.3 (definition 1) or of 0.4 (definition 2). The

score of a participant can then be calculated by taking the mean score of all items that were assigned

to a given factor. This strategy might lead to missing values for some participants on the personality

dimensions as it is only reasonable to calculate such a score if there is a minimum number of completed

items. Here, we use a required minimum value of 5 completed items.

While there are numerous analysis strategies to determine the personality score of a participant, it is not
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in the scope of this study to consider all possible analysis strategies. Therefore, we limit the number

of possible data pre-processing strategies by only considering the two choices: orthogonal vs. oblique

rotation, and mean scores on items assigned to a factor with loadings greater than 0.3 or 0.4. While these

variable definitions are based on the raw data set with all observations, the other data pre-processing

choices are subsequently implemented on the data sets of different sizes.

The combination of the definition of personality scores with all other data pre-processing choices results

in 1152 different data pre-processing strategies in total. These represent only a subset of a larger number

of choices that may be made, in theory. However, in practical terms, they represent the main choices

that are likely to be considered.

2.3 Comparing the vibration of effects due to different types of uncertainty

For each association of interest, we quantify and compare model, data pre-processing and sampling un-

certainty through the vibration of effects framework for varying sample sizes. In order to assess the

variability in effect estimates and p-values for one type of vibration, the other types of vibration have

to be fixed to a ‘favorite’ specification. For instance, if we focus on sampling vibration only, we need to

decide on a favorite model as well as a favorite data pre-processing choice. As favorite data pre-processing

choice, we consider data pre-processing without any subgroup analysis, without special handling of out-

liers, and with variable definition 1 for education, smoking and physical activity. Additionally, the favorite

definition of the personality traits is performed with the oblique rotation technique and factor loadings

greater than 0.3. Our favorite model choice simply consists in the model that contains all potential

control variables. Furthermore, if the aim is to assess data pre-processing vibration or model vibration,

we define the full data set as our favorite sample.

2.4 Comparing the vibration due to the choice of the analysis strategy with

sampling vibration

In addition to the investigation of individual types of vibration, we aim at quantifying the joint impact

of model and data pre-processing choices on the variability of results. For simplicity, we will refer to

the combination of a model and all necessary data pre-processing choices as analysis strategy. Corre-

spondingly, this combination of choices results in 1024 × 1152 = 1179648 analysis strategies. However,

not every possible combination yields useful and valid results. For instance, when we consider the data

pre-processing choice where the association of interest is only explored for participants from the US, the

model including continent as a control variable is not valid. Thus, the total amount of feasible analysis

strategies falls to 884736.

In the joint investigation of model and data pre-processing choices, the calculation of ROR is straight-

forward and can give an estimate for the absolute amount of vibration caused by the analysis strategy.
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Figure 1: Data pre-processing, model, and sampling vibration for different sample sizes (top
panel), and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association between neuroticism and relationship status.

Additionally, we quantify the relative impact of data pre-processing and model choices on the vibration

that is caused by the choice of the analysis strategy. This is done by modelling log(OR), corresponding

to the regression coefficient of the predictor of interest, with two categorical covariates, indicating data

pre-processing and model choices, in a linear model and by performing a variance decomposition through

an analysis of variance (ANOVA).

3 Results

3.1 The variability in effect estimates for one type of vibration

For more stable results, we repeat the analyses of all types of vibration for sample sizes of 500, 5000 and

15000 ten times and average the results across the obtained RORs. For the visualization of vibration

patterns, however, we choose one representative plot out of the total number of ten. For a sample size of

50000, we consider the variability between RORs as negligible and run the analyses on only one sampled

data set.

For the association between neuroticism and relationship status and the association between extraversion

and physical activity, results of measures quantifying the variability in effect estimates for one type of

vibration are visualized in Figures 1 and 2, respectively.
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Figure 2: Data pre-processing, model, and sampling vibration for different sample sizes (top
panel), and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association between extraversion and physical activity.

Corresponding figures for the other associations are provided in the Supplementary Material. In

the upper panels, RORs are displayed against the sample size n for the three types of vibration (data

pre-processing, model and sampling). For all investigated sample sizes, data pre-processing vibration

is higher than model and sampling vibration for both associations of interest. For the lowest sample

size of 500, high RORs can be observed, for instance of 2.26 for the association between neuroticism

and relationship status. For larger sample sizes, data pre-processing vibration decreases and tends to a

value of 1.24 for both associations of interest. A similar behavior can be observed for sampling vibration,

but with consistently lower RORs. These tend to 1 for large sample sizes, in contrast to those RORs

quantifying data pre-processing vibration. Therefore, the influence of a specific sample can be expected to

be negligible for sufficiently large sample sizes. Compared to data pre-processing and sampling vibration,

model vibration is less influenced by the sample size. Although we observe a slight decrease for RORs

quantifying model vibration for increasing sample sizes, it is lower than sampling and data pre-processing

vibration for small sample sizes and does not tend to a value of 1 for larger sample sizes.

In the lower panels of Figures 1 and 2, bar plots provide information about the percentage of signifi-

cant results for each sample size and each type of vibration for the three categories: ”negative significant“,

”non-significant“, and ”positive significant“. For all three types of vibration, most results are not signif-

icant for a sample size of 500 while for the larger sample sizes the results are mostly significant: Here,
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the association between neuroticism and relationship status shows a Janus effect with both negative and

positive significant results for model and data pre-processing vibration. For sampling vibration, on the

other hand, only negative-significant or non-significant effects can be observed for large sample sizes. For

the association between extraversion and physical activity, all types of vibration yield positive signifi-

cant effects for sample sizes larger than 5000, which is in accordance with the results from the literature

(Rhodes & Smith, 2006). Hence, a Janus effect cannot be observed for this association.

These results are underlined by volcano plots (Figures 3 and 4), which contain exact patterns of

-log10(p-value) and ORs for three different sample sizes. Here, irregular patterns in data pre-processing

vibration can be detected, which contrasts with the more consistent patterns of sampling and model

vibration. A closer look at the data pre-processing vibration reveals that three clusters can be clearly

distinguished, resulting from the pre-processing choice for the control variable gender. For male par-

ticipants, neuroticism is associated with a committed relationship. On the other hand, there are two

clusters with the opposite sign: Both female participants as well as the full data without subgroups for

the variable gender are associated with a predominantly negative association between neuroticism and

relationship status. The larger the sample size, the more clearly the clusters can be distinguished.

3.2 The relative impact of model and data pre-processing choices and the

cumulative impact of both

Results for the total amount of vibration caused by model- and data pre-processing choices are visualized

in Figure 5 for the association between neuroticism and relationship status, and Figure 6 for the associ-

ation between extraversion and physical activity. In these figures, the top panels allow for a comparison

of this joint vibration, also referred to as vibration due to the analysis strategy, and sampling vibration.

The vibration caused by the analysis strategy is higher than sampling vibration for both associations.

For a low sample size of n = 500, it is considerably higher than for larger sample sizes with RORs of 2.02

and 2.00 for the association between neuroticism and relationship status, and extraversion and physical

activity, respectively. For a sample size of 5000, ROR values of 1.39 and 1.36 can be observed for these

associations, which indicate lower vibration. For larger sample sizes, however, RORs do not show any

further obvious decrease. For sample sizes greater than 500, the vibration remains in the range of ROR

values of 1.34 and 1.40 for the association between neuroticism and relationship status. Similarly, the

RORs for sample sizes greater than 500 are in the range of 1.27 and 1.36 for the association between

extraversion and physical activity.

Pie charts in the bottom panels illustrate the relative impact of model and data pre-processing choices

on the total vibration caused by the choice of the analysis strategy. Due to the high computational burden

of the variance decomposition, we randomly select three of the ten data sets for low sample sizes of 500,

5000 and 15000 to estimate the relative impact of data pre-processing and model choices and average the

results over the three selected data sets. For both associations, the relative impact of data pre-processing
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Figure 3: Volcano plots for different types of vibration and different sample sizes (n) for the
association between neuroticism and relationship status. The summary measures ROR and RP

indicate relative odds ratios and relative p-values, respectively. Green dots indicate results
obtained with favorite model choices (middle row) and favorite data pre-processing choices

(bottom row).
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Figure 4: Volcano plots for different types of vibration and different sample sizes (n) for the
association between extraversion and physical activity. The summary measures ROR and RP

indicate relative odds ratios and relative p-values, respectively. Green dots indicate results
obtained with favorite model choices (middle row) and favorite data pre-processing choices

(bottom row).
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Figure 5: Cumulative model and data pre-processing vibration (‘analysis strategy’) compared
to sampling vibration (top panel), and relative impact of model and data pre-processing

vibration for different sample sizes (bottom panel) for the association between neuroticism and
relationship status.

choices by far exceeds the impact of model vibration. Indeed, at most 22.2% of the total vibration due

to the analysis strategy can be explained by model choices for the association between extraversion and

physical activity. For the association between neuroticism and relationship status, the relative model

impact is even lower, with a maximum value of 17%.

A more detailed investigation of data pre-processing vibration as part of the total vibration shows that

the variable gender has the largest impact of the data pre-processing choices on the vibration of effects

for the both associations of interest. Indeed, for the association between neuroticism and relationship

status, 86% of data pre-processing vibration can be explained by the impact of gender for the largest

sample size, which is in accordance with Figure 5. For the association between extraversion and physical

activity, the relative impact of gender on data pre-processing vibration is 59.2% for the full data set.

4 Discussion

4.1 Summary

Researchers have great flexibility in the analysis of observational data. If this flexibility is combined with

selective reporting and pressure to publish significant results, it can have devastating consequences on the

replicability of research findings. In this work, we extended the vibration of effects approach, proposed
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Figure 6: Cumulative model and data pre-processing vibration (‘analysis strategy’) compared
to sampling vibration (top panel), and relative impact of model and data pre-processing

vibration for different sample sizes (bottom panel) for the association between extraversion
and physical activity.
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by Ioannidis (2008), to quantify and compare the impact of model and data pre-processing choices on

the stability of observational associations. Through this extension, the vibration of effects framework

allows assessment of the extent to which the instability of research findings in observational studies can

be explained by the choice of analysis strategy and enables comparison of the relative impact of different

choices with sampling uncertainty.

We illustrated three different types of vibration on the SAPA data set, considering reasonable data

pre-processing choices and modeling strategies based on a logistic regression model, focusing on two asso-

ciations of interest in personality psychology. In addition, we quantified sampling vibration by considering

the results obtained from random subsets of the data set in use. We found that data pre-processing vi-

bration was higher than model and sampling vibration for all sample sizes considered in our analyses.

For high sample sizes, sampling vibration decreased and became negligible, while model and data pre-

processing vibration showed an initial decrease with increasing sample size and then remained constantly

non-negligible. When considering all possible combinations of model and data pre-processing choices to

compare the relative impact of each source of uncertainty, we found that data pre-processing choices

explained by far more variability in results than model choices.

4.2 Limitations

When interpreting our results, it is important to keep in mind that both model vibration and data pre-

processing vibration are in reality rather elusive concepts as they critically depend on the number and

the type of analysis strategies under consideration. In theory, there are an infinite number of models and

an infinite number of possible data pre-processing strategies, so any attempt to quantify the variability

in an effect estimate resulting from every possible analysis strategy is doomed to fail. As it is futile to

quantify the vibration in results arising from every possible strategy, we decided to focus on reasonable

analysis strategies, i.e., those that could have been selected in an actual research project. Following Patel

et al. (2015), we merely focused on a special type of model vibration, namely the vibration of effects

that is due to the inclusion or exclusion of all potential control variables. Vibration of effects may be

larger in situations where very complex models are involved, encompassing a very large number of control

variables. Conversely, it may have less of an impact in data-poor studies with few variables measured

and considered. Furthermore, we only considered linear effects and did not examine interaction terms,

which may be essential in some settings.

Finally, we considered a number of possible data pre-processing strategies that is comparable to the

number of models in order to allow a fair comparison of data pre-processing uncertainty and model un-

certainty. As the combination of model and data pre-processing choices was in the order of magnitude

of one million, it would not have been feasible from a computational point of view to consider a larger

combination of models and data pre-processing strategies. As a consequence, we have to be careful when

generalizing the findings of our study to other data sets and applications. While there is a firm theoretical
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basis to predict sampling vibration, the behavior of model and data pre-processing vibration critically

depends on the particular data set and the number of possible choices under consideration. Efforts to

standardize analytical options are underway in some scientific fields building consensus among investiga-

tors and these efforts may result in diminishing the space for potential vibration of effects.

While the number of analysis strategies we considered in this work was limited by the computational

feasibility of our analyses, it has to be noted that this number might in principle be reduced by only

selecting those models that show a reasonable fit to the data. In the vibration of effects framework,

the results of all possible models are reported, regardless of the fit of these models. In this respect, the

vibration of effects framework differs from other approaches like Bayesian Model Averaging (Hoeting,

Madigan, Raftery, & Volinsky, 1999), where a single summary measure is obtained that accounts for

model uncertainty by weighting every model under consideration by its probability of being the true

model. On the other hand, the vibration of effects framework shows greater flexibility than Bayesian

Model Averaging as it can report the results of not only different models, but also different data pre-

processing choices. Contrary to the choice of a model, data pre-processing choices may often be based on

untestable assumptions, concerning for instance the nature of outlying observations, or they may arise

because scientific theories are generally not precise enough to allow for a one-to-one mapping to statis-

tical hypotheses (Steegen et al., 2016). Contrary to model uncertainty, data pre-processing uncertainty

therefore cannot be reduced by comparing the fit of different data pre-processing strategies to the data,

but only through conceptual rigor (Schaller, 2016) and the standardization of experimental conditions

(Elson, Mohseni, Breuer, Scharkow, & Quandt, 2014).

4.3 Conclusion and Outlook

When analyzing observational data, it is necessary to make model and data pre-processing choices which

rely on many explicit and implicit assumptions. The vibration of effects framework provides investigators

with a tool to quantify the impact of these choices on the stability of observational associations, helping

them focus their attention on the choices that have the most influence and are therefore worth further

investigation or discussion. To establish it as a tool, we recommend visualizing data pre-processing, model

and sampling vibration with volcano plots as we have demonstrated in the Supplementary Material for the

association between neuroticism and relationship status. The corresponding analysis took 21.6 minutes

on a 64-bit Debian GNU/Linux 10 system with Intel Xeon CPU E5-2640. Moreover, the systematic

reporting of RORs and p-value characteristics for these types of vibration is a simple but informative

guideline for quantifying the stability of published results. The framework can also be useful for readers

in the interpretation of these results: When used as a tool to report the robustness of observational

associations, it helps readers (including reviewers) to interpret these results in the context of all the

possible results that could have been obtained with alternative, equally justified analysis strategies.

When the research data of a publication are made publicly available, which is more and more common to
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enhance transparency, a reader can use the vibration of effects framework to assess the extent to which

the originally reported results are fragile or incredible because they depend on very specific analytical

decisions. In this vein, it is possible to specify a number of model and data pre-processing choices and

to apply the framework to assess the variability in effect estimates arising from these possible analysis

strategies. In our application of the framework in personality psychology, we observed many cases in

which both significant and non-significant results could be obtained, depending on the choice of the

analysis strategy. In extreme cases, it was even possible to obtain both positive and negative significant

associations and this phenomenon persisted for a very large sample size of over 80000 participants.

The number of decisions which have to be made in the analysis of observational data becomes even

more important when analyzing data that are not initially recorded for research purposes. While the

increasing availability of large data sets, for instance in the form of Twitter accounts (Barberá, Jost,

Nagler, Tucker, & Bonneau, 2015) or transaction data (Gladstone, Matz, & Lemaire, 2019), offer un-

precedented opportunities to study complex phenomena of interest, they also increase the number of

untestable assumptions which must be made in the data pre-processing and choice of model used to

describe the data. In light of our results, we suggest using the vibration of effects framework as a tool to

assess the robustness of conclusions from observational data.
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Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability

18



Assessing uncertainty through the vibration of effects

of neuroscience. Nature Reviews Neuroscience, 14 (5), 365–376. doi: 10.1038/nrn3475

Chambers, C. D. (2013). Registered reports: A new publishing initiative at cortex. Cortex ,

49 (3), 609–610. doi: 10.1016/j.cortex.2012.12.016

Condon, D., Roney, E., & Revelle, E. (2017). A SAPA project update: On the structure of

phrased self-report personality items. Journal of Open Psychology Data, 5 (1), 3. doi:

10.5334/jopd.32

Elson, M., Mohseni, M. R., Breuer, J., Scharkow, M., & Quandt, T. (2014). Press CRTT to

measure aggressive behavior: The unstandardized use of the competitive reaction time task

in aggression research. Psychological Assessment , 26 (2), 419–432. doi: 10.1037/a0035569

Fan, X., & Chen, M. (2001). Parental involvement and students’ academic achievement: A meta-

analysis. Educational Psychology Review , 13 (1), 1–22. doi: 10.1023/A:1009048817385

Gelman, A., & Loken, E. (2014). The statistical crisis in science. American Scientist , 102 (6),

460–465.

Gerlach, G., Herpertz, S., & Loeber, S. (2015). Personality traits and obesity: A systematic

review. Obesity Reviews, 16 (1), 32–63. doi: 10.1111/obr.12235

Gladstone, J. J., Matz, S. C., & Lemaire, A. (2019). Can psychological traits be inferred from

spending? Evidence from transaction data. Psychological Science, 30 (7), 1087–1096. doi:

10.1177/0956797619849435

Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibil-

ity mean? Science Translational Medicine, 8 (341), 341ps12–341ps12. doi: 10.1126/

scitranslmed.aaf5027

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging:

A tutorial. Statistical Science, 14 (4), 382–401.

Ince, D. (2011). The duke university scandal – what can be done? Significance, 8 (3), 113–115.

doi: 10.1111/j.1740-9713.2011.00505.x

Ioannidis, J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology ,

19 (5), 640–648. doi: 10.1097/EDE.0b013e31818131e7

Ioannidis, J. P. A., Munafo, M. R., Fusar-Poli, P., Nosek, B. A., & David, S. P. (2014).

Publication and other reporting biases in cognitive sciences: Detection, prevalence, and

prevention. Trends in Cognitive Sciences, 18 (5), 235–241. doi: 10.1016/j.tics.2014.02.010

Klau, S., Martin-Magniette, M.-L., Boulesteix, A.-L., & Hoffmann, S. (2019). Sampling un-

certainty versus method uncertainty: A general framework with applications to omics

19



Assessing uncertainty through the vibration of effects

biomarker selection. Biometrical Journal , 1–18. doi: 10.1002/bimj.201800309

Malouff, J. M., Thorsteinsson, E. B., & Schutte, N. S. (2006). The five-factor model of personality

and smoking: A meta-analysis. Journal of Drug Education, 36 (1), 47–58. doi: 10.2190/

9EP8-17P8-EKG7-66AD

Malouff, J. M., Thorsteinsson, E. B., Schutte, N. S., Bhullar, N., & Rooke, S. E. (2010).

The five-factor model of personality and relationship satisfaction of intimate partners:

A meta-analysis. Journal of Research in Personality , 44 (1), 124–127. doi: 10.1016/

j.jrp.2009.09.004

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research:

Causes, consequences, and remedies. Psychological Methods, 9 (2), 147–163. doi: 10.1037/

1082-989X.9.2.147
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Abstract

Background: The results of studies on observational associations may vary depending on the

study design and analysis choices as well as due to measurement error. It is important to under-

stand the relative contribution of different factors towards generating variable results, including

low sample sizes, researchers’ flexibility in model choices, and measurement error in variables of

interest and adjustment variables.

Methods: We define sampling, model and measurement uncertainty, and extend the concept of

vibration of effects in order to study these three types of uncertainty in a common framework.

In a practical application, we examine these types of uncertainty in a Cox model using data from

the National Health and Nutrition Examination Survey. In addition, we analyze the behavior of

sampling, model and measurement uncertainty for varying sample sizes in a simulation study.

Results: All types of uncertainty are associated with a potentially large variability in effect es-

timates. Measurement error in the variable of interest attenuates the true effect in most cases,

but can occasionally lead to overestimation. When we consider measurement error in both the

variable of interest and adjustment variables, the vibration of effects are even less predictable

as both systematic under- and overestimation of the true effect can be observed. The results

on simulated data show that measurement and model vibration remain non-negligible even for

large sample sizes.

Conclusion: Sampling, model and measurement uncertainty can have important consequences

on the stability of observational associations. We recommend systematically studying and re-

porting these types of uncertainty, and comparing them in a common framework.

Keywords— measurement error, metascience, observational study, replicability, researcher degrees

of freedom, stability

2



1 Introduction

Observational associations in epidemiology can be unstable and occasionally difficult to replicate in

subsequent studies [1, 2, 3, 4]. The instability sometimes leads to contradictory findings from similar epi-

demiological studies, raising challenges to the interpretation and credibility of epidemiological evidence

[5].

There are many factors which contribute to this instability: Small sample sizes may lead to high insta-

bility in the estimates of the magnitude of an association and its statistical significance. Another key

factor which may play an important role in the instability of research findings in epidemiology includes

diverse model specification choices, such as which variables are adjusted for. As we have shown in earlier

research, the inclusion and exclusion of potential adjustment variables, can cause a large variability in

results when estimating the association between an exposure and an outcome variable of interest using a

given data set [6]. Finally, measurement error in exposure and outcome variables may further exacerbate

the instability of observational associations.

While sampling uncertainty is classically accounted for when deriving p-values and confidence intervals to

report the results of epidemiological studies, methods to account for model and measurement uncertainty

are not commonly used when analyzing observational data. Instead, results are usually presented as if the

chosen model were the only possible model, even though different authors may consider very different sets

of adjustment variables when analyzing the same research question of interest [6, 7]. The large majority

of observational analyses are not pre-registered and do not have explicitly pre-specified analysis plans [8].

Concerning measurement error, there is a widespread and persistent belief that the effects of exposure

measurement error and exposure misclassification are relatively benign, as they will merely result in a

bias in parameter estimates towards the null and loss in statistical power [9, 10, 11]. However, these

presumed consequences of exposure measurement error and exposure misclassification, which are some-

times mentioned in the discussion of epidemiological findings to argue that an observed association may

potentially have been underestimated, only hold in cases where the variable of interest is the only co-

variate in the model which is measured with error. If the included adjustment variables are also subject

to measurement error, which is almost always the case in epidemiological studies, it is more difficult to

predict whether measurement error will attenuate or inflate risk estimates [12, 13, 14, 15].

Due to the multiplicity of possible analysis strategies, the relatively small sample sizes of many epidemi-

ological studies and the ubiquity of measurement error, model, sampling and measurement uncertainty

all appear to play important roles in the instability of observational associations and may contribute to

the non-replicability of research findings. It would be interesting to quantify and compare these different

sources of uncertainty in a common framework.

The aim of this work is to extend the vibration of effects approach [7], which we previously used to

assess model and sampling uncertainty [6, 16], to measurement uncertainty in order to provide a tool to

investigate the robustness of observational associations to these three types of uncertainty.
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We will illustrate this approach with data from the National Health and Nutrition Examination Survey

(NHANES) and consider three different scenarios for measurement vibration. In the first scenario, we

introduce measurement error only in the exposure of interest. This type of error is expected to reduce the

strength of the association. Secondly, we introduce measurement error only in the adjustment variables.

This second scenario occurs in practice when there are special efforts being made to reduce measurement

error to a minimum for the exposure of interest or if a method for measurement error correction has been

applied to account for measurement error in this variable. Finally, we consider a more realistic scenario

for measurement error where error is present both in the variable of interest and in the adjustment vari-

ables. Additionally, we compare measurement vibration with model vibration and sampling vibration.

We complement the analyses on real data with results on simulated data to investigate the behavior of

the three types of vibration for increasing sample sizes.

2 Methods

2.1 Model and sampling vibration

We previously introduced the concept of vibration of effects to quantify the variability in results when

studying an association of interest under a broad range of model specifications [7]. The idea of this

approach is to quantify the variability of results through a vibration ratio, which we defined as the

ratio of the largest versus smallest effect estimate for the same association of interest under different

analysis choices. Moreover, we applied this framework to assess the vibration of effects arising through

the specification of the probability model to data from the NHANES [6]. We showed that this type of

vibration, which we obtained through the inclusion or exclusion of all potential adjustment variables,

can have important consequences on the estimation of the effect of the variable of interest on all-cause

mortality in a Cox regression. The vibration ratios used were the relative hazard ratio (RHR) and the

relative p-value (RP). In this second study, these vibration ratios describe the ratio of the 99th and

1st percentile of hazard ratios and the difference between the 99th and 1st percentile of -log10(p-value),

respectively. In addition, we suggested showing volcano plots with p-values at the y-axis and effect

estimates at the x-axis. These volcano plots allow easy detection of patterns like the Janus pattern,

which is characterized by significant estimates in both a positive and negative direction.

Furthermore, we previously applied the vibration of effects framework when fitting the same model

on different subsamples of the data [16], and compared this type of vibration, denoted as ‘sampling

vibration’ in the following, with ‘model vibration’ as assessed in [6]. When studying sampling vibration,

a favorite model has to be chosen from all models considered in the assessment of model vibration. For

this model, we suggested drawing a large number of B random subsets of the data and fitting the same

statistical model on each of these subsets [16]. Similar to model vibration, vibration ratios and volcano
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plots can be used to illustrate sampling vibration.

2.2 Measurement vibration

In this work, we suggest further extending the vibration of effects framework to illustrate measurement

uncertainty. For continuous variables, we focus on an additive classical non-differential measurement error

model Z = X + U , where Z is the observed exposure, X is the true exposure, and U is a measurement

error term, which is independent of the true exposure X. Measurement error for a continuous variable

can be assessed by quantifying the correlation ρXZ between true exposure X and observed exposure Z in

a calibration sample. For binary variables, the magnitude of misclassification can be quantified through

sensitivity and specificity values.

Following [11], we consider the observed values for a given variable to be the true exposure values

X. We can generate virtual error-prone observed values Z for continuous variables based on a given

correlation ρXZ as follows. As shown in the Supplement, we first calculate the variance of observed

exposure Z as the variance of true exposure X divided by ρ2XZ . We can then determine the measurement

error variance by subtracting the variance of X from the variance of Z:

Var(U) =
Var(X)

ρ2XZ

−Var(X). (1)

As a final step, to obtain observed exposure Z, measurement error values U can be generated from a

normal distribution with mean zero and variance Var(U), and added to the true exposure X.

Furthermore, we suggest adding exposure misclassification to binary variables by using values for

sensitivity and specificity. In particular, for a binary variable with observed values 0 or 1, all values of 1

can be replaced by random values from a binomial distribution with a probability of success that is equal

to the sensitivity. Similarly, all values of 0 can be replaced by random values from a binomial distribution

with a probability of success equal to 1− specificity. As shown in the Supplement, for ordinal variables,

we follow a strategy which is similar to the simulation strategy for continuous variables by assuming

latent variables which follow a normal distribution.

Similarly to sampling vibration, we have to choose a favorite model among the models that are con-

sidered in the assessment of model vibration. For this model, we repeat the procedure of adding random

measurement error a number of B times. With B different results obtained by adding measurement error

to the variables, the vibration of effects framework can be used. To quantify the results, we suggest using

the 99th and 1st percentiles of effect estimates and p-values as vibration ratios to define relative effect

estimates and relative p-values, similar to model and sampling vibration. Moreover, these results can be

visualized with volcano plots.
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2.3 The National Health and Nutrition Examination Survey cohort data

2.3.1 Data set description

We analyze cohorts from the NHANES, modeling all-cause mortality with a variable of interest and 15

adjustment variables (for more details on data collection and pre-processing see [6]). For this work,

we run the analyses successively with 30 variables of interest, which were chosen from a pool of 417

variables. We selected these 30 variables due to a small amount of missing values (< 15%), and, for ease

of interpretation, ensured that they were either binary or continuous. For illustrative purposes, out of

these thirty variables, we will limit the presentation of results to two continuous variables of interest (thigh

circumference and HDL-cholesterol), as well as the two binary variables diabetes (defined as self-reported

doctor diagnosed diabetes and fasting glucose > 125 mg/dl) and heart disease (defined as self-reported

doctor diagnosed heart attack or coronary disease). Results for the other 26 variables of interest can be

found in the Supplementary Material. The 15 adjustment variables used were selected in line with our

recent work [6]. They comprise variables of continuous, binary and ordinal type.

2.3.2 Assessing model and sampling vibration

In order to assess model vibration for the NHANES data, we follow [6], where we focused on the particular

type of model vibration that is due to the inclusion or exclusion of all potential adjustment variables in a

Cox regression. Furthermore, we include the variables age and sex as baseline variables in every model.

The combination of the 13 remaining adjustment variables yields 213 = 8192 different models. For the

investigation of sampling vibration, we consider B = 1000 subsets of size 0.5n, where n is the number of

observations. Moreover, we use the model with all 15 adjustment variables as favorite model.

2.3.3 Assessing measurement vibration

In order to assess the vibration of effects due to measurement uncertainty in the NHANES data, we

first have to get an idea of the magnitude of measurement error that we can expect in this study. In

the absence of a calibration sample specific to the NHANES data, which would allow quantification

of the exact magnitude of measurement error in this study, we decided to search in the literature for

information on the precision with which the variables of interest and adjustment variables used in our

analyses are typically measured. To obtain a representative range of measurement error, we aimed to

collect high and low values of sensitivity, specificity and correlations for each variable. As we found only

scarce information for most variables, we decided to calculate average values for sensitivity, specificity

and correlations for high and low measurement error to obtain representative values which we applied

to all error-prone variables. For more detailed information for the different variables and references see

Supplementary Tables 2 and 3. Using the average values for high and low measurement error as limits

in a uniform distribution, we randomly draw a correlation and values for sensitivity and specificity for
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each iteration b = 1, ..., B. In the case of continuous variables, this strategy resulted in correlation

coefficients between observed exposure and true exposure uniformly distributed between 0.73 to 0.9. For

binary variables, we draw values for sensitivity and specificity from a uniform distribution between 0.56

and 0.85, and between 0.73 and 0.98, respectively. Finally, we generate measurement error for different

types of variables following the procedure described in section 2.2. Similar to the assessment of sampling

vibration, we use the model with all 15 adjustment variables as a favorite model and repeat the procedure

B = 1000 times. In accordance with [11], we assume the variables age and sex to be without measurement

error, and the same is assumed to apply to race/ethnicity.

2.3.4 Comparing different scenarios of measurement vibration with sampling and

model vibration

In the assessment of measurement vibration for the NHANES data, we distinguish between three different

scenarios: 1) We add measurement error to the variable of interest but not to the adjustment variables, or,

conversely, 2) we add measurement error to all adjustment variables except age, sex, and race/ethnicity,

and consider the variable of interest to be measured without error, and 3) we add measurement error to

both the variable of interest and the adjustment variables (expect age, sex and race/ethnicity). For all

scenarios, we assume that information on the outcome has no measurement error, an assumption that

is justifiable given the completeness and accuracy of NHANES data on death ascertainment. Finally,

we compare these three scenarios, which illustrate measurement vibration, with model and sampling

vibration, and focus in the interpretation of results on relative hazard ratios and volcano plots. In these

volcano plots, we consider a p-value < 0.05 as significant. For all analyses on the NHANES data, we use

the coxph function from the R-package survival. Due to the complex sampling structure of the NHANES

data, we account for participant weights, as well as for the clusters pseudostrata and pseudosampling

units by using a robust sandwich variance estimator. For all types of vibration, we standardize the

continuous variables of interest to ensure comparability.

2.4 Simulation study

In addition to the analyses on real data, we conduct a simulation study with the aim of comparing

measurement, sampling and model vibration for sample sizes that can both be smaller and larger than

the initial sample size of the NHANES data. In this simulation study, we generate data with sample sizes

n ∈ {500, 1000, 5000, 10 000, 50 000, 100 000, 200 000}. The simulated data is based on the NHANES

data in the sense that we adopt the correlation structure as well as the effect sizes of the variables on the

real data. More details about the data generation are described in the Supplement. Finally, we assess

the three types of vibration in the same way as introduced in section 2.3. For measurement vibration, we

consider only the scenario with measurement error in both the variable of interest and the adjustment

variables.
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3 Results

3.1 Results on the NHANES data

Figures 1 − 4 show volcano plots of model, sampling and measurement vibration for the three different

scenarios of measurement error introduced in section 2.3.4 for the four selected variables of interest, i.e.,

diabetes, heart disease, thigh circumference and HDL-cholesterol. In these figures, we provide additional

quantitative information about RHRs and RPs.

In the most realistic scenario for measurement error, i.e., when there is measurement error in the variable

of interest and the adjustment variables, both significant and non-significant results can be observed for

all variables of interest. Measurement vibration in this scenario is higher than model and sampling vibra-

tion in terms of RHRs for three of four variables of interest (diabetes, heart disease and HDL-cholesterol).

In the assessment of sampling vibration, both significant and non-significant results are obtained for all

variables of interest and sampling vibration is higher than model vibration for diabetes, heart disease and

thigh circumference. In contrast to measurement and sampling uncertainty, model uncertainty does not

change the significance of results for diabetes, heart disease and thigh circumference, where all results are

significant. Only for HDL-cholesterol does model uncertainty change the significance of results. While we

observe a Janus pattern for HDL-cholesterol in the case of sampling vibration, we can clearly distinguish

two clusters for thigh circumference in the case of model vibration. These clusters result from the choice

of whether BMI was included or excluded as an adjustment variable.

Despite a general tendency of measurement error to lead to an attenuation in effect estimates and loss

of statistical power when present only in the variable of interest, we can also observe cases where mea-

surement error leads to an inflated effect estimate and a smaller p-value compared to the results without

measurement error in this scenario. This tendency is particularly evident for HDL-cholesterol and di-

abetes and can also be observed for the large majority of the variables of interest illustrated in the

Supplement. When measurement error is only present in the adjustment variables, we can observe a clear

bias towards the null for thigh circumference, while there is a substantial bias away from the null for

diabetes and HDL-cholesterol. Finally, in the more realistic scenario when measurement error is present

both in the variable of interest and in the adjustment variables, the effects of measurement error are

more difficult to summarize as they seem to combine the effects of a general attenuation towards the

null, which occurs due to the measurement error in the variable of interest, and the effect attenuation or

inflation which occurs due to measurement error in the adjustment variables.

3.2 Results on simulated data

Figures 5 − 8 provide RHRs quantifying the variability in effect estimates for simulated data of varying

sample sizes. In the lower panels of these figures, bar plots visualize the percentage of significant results for

each sample size and each type of vibration for the three categories: negative significant, non-significant,
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and positive significant.

For all variables of interest, RHRs decrease with increasing sample size. This is most obvious for sampling

vibration, which is larger than model and measurement vibration for small sample sizes and tends to 1

with increasing sample size. Model and measurement vibration, on the other hand, remain non-negligible

even for a sample size of 200 000: For diabetes, heart disease and thigh circumference RHRs > 1.1

can be observed. For HDL-cholesterol, model vibration decreases to 1.1 and measurement vibration to

1.02 for the largest sample size. In the comparison of model and measurement vibration, measurement

vibration is lower for thigh circumference and higher for diabetes and heart disease for all sample sizes.

For HDL-cholesterol, measurement vibration is higher than model vibration for small sample sizes, and

lower for large sample sizes.

When focusing on the results with regard to the type of significance, both significant and non-

significant results are present for small sample sizes and all types of vibration for the three variables dia-

betes, heart disease and thigh circumference. For large sample sizes, the results indicate significance with

either only positive sign or only negative sign (without showing a Janus pattern). For HDL-cholesterol,

in contrast, a Janus pattern can be observed for measurement and model vibration for both small and

large sample sizes. For sampling vibration, most of the results are significant with positive sign for the

largest sample size, but non-significant results occur as well. As shown in the Supplement, eight of the

other 26 variables of interest can be associated with a Janus pattern for at least one type of vibration for

the largest sample size.

4 Discussion

In this work, the vibration of effects approach [7], which we previously used to assess the variability in

observational associations for different model specifications [6], and applied to different subsamples of

the data [16], was extended to exposure measurement uncertainty. Through this extension, it is possible

to quantify and compare model, sampling and measurement uncertainty in a common framework when

investigating the stability of research findings in observational studies. We studied these three sources of

uncertainty on real data for different scenarios of measurement vibration and on simulated data for varying

sample sizes. In accordance with [17] and in contrast to what is commonly assumed in the literature [9, 10],

we found in our analyses on the NHANES data set that even in the simple situation where there is only

measurement error in the variable of interest, measurement error can lead to occasional overestimations

of parameter estimates. This phenomenon is well-illustrated in [17] and especially occurs in the situation

of low sample sizes. Yet, even for larger sample sizes, the additional variance in the estimator, which is

introduced by measurement error, can induce overestimations of parameter estimates.

For the more realistic scenario of measurement error, where both the variable of interest and the

adjustment variables were assumed to be prone to measurement error, measurement vibration was even
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less predictable as both bias towards the null and systematic inflations of effect estimates occurred in

this situation. For this latter scenario, measurement vibration, as quantified through RHRs, exceeded

model vibration and sampling vibration for 27 and 12 of the 30 associations of interest that we studied,

respectively. In our simulation study we found that, while all types of uncertainty decreased for increasing

sample sizes, model and measurement vibration persisted non-negligibly for large sample sizes in contrast

to sampling vibration.

For most probability models, there are theoretical results on the behavior of sampling uncertainty. In

contrast, the consequences of model and measurement uncertainty on parameter estimates in observa-

tional studies in epidemiology are very difficult to predict. Model uncertainty is, in principle, reducible

by considering the fit of the different candidate models to the data (note, however, that there are different

possible ways to do that, implying some sort of method uncertainty). In contrast, a reduction in sampling

uncertainty and measurement uncertainty requires more effort as it can only be achieved by increasing

the sample size or by using more precise measurement tools, respectively. Finally, in the comparison

between the different types of vibration, one must keep in mind that measurement uncertainty does not

only lead to a variability in effect estimates, but also to bias.

Measurement error may also be a prominent feature for outcomes assessed in observational studies. This

was not an issue for the mortality outcome that we used in the NHANES analyses, but measurement

error in the outcome may be as large as or even larger than measurement error in the exposure and

adjustment variables in many other circumstances. In these cases, a similar approach can be used to

investigate the vibration of effects due to outcome measurement error.

Currently, statistical inference that is commonly applied to analyze epidemiological studies only accounts

for sampling uncertainty. Neglecting model and measurement uncertainty can lead to an underestima-

tion of uncertainty and overconfidence in results, and therefore to contradictory findings when studying

the same association of interest in different epidemiological studies. To improve the replicability and

credibility of epidemiological findings, it is therefore vital to either pre-emptively reduce these sources of

uncertainty during the planning of epidemiological studies, to integrate them when deriving statistical

results, or to systematically report their consequences on parameter estimation. While there are a num-

ber of methods to account for model and measurement uncertainty in epidemiological studies, including

Bayesian model averaging [18], multimodel inference [19], simulation extrapolation, regression calibration

[20] and Bayesian hierarchical approaches [21], these methods are only rarely applied in practice. More-

over, to our knowledge there are currently no methods which can simultaneously account for measurement

error in the exposure of interest and all adjustment variables, or methods that can account for sampling,

model and measurement uncertainty in a common framework. In cases where we can neither reduce

nor integrate the uncertainty when deriving statistical results, it is important to study the robustness of

results by systematically assessing the impact of all three types of uncertainty on parameter estimation.

Some caveats need to be discussed regarding our vibration of effects approach. Firstly, there may be a lack
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of consensus among experts about which variables can legitimately be considered adjustment variables

in a model, and which combinations of adjustments are acceptable and most plausible. The plausible

set may be a reduced subset of the full set of all theoretical combinations. However, even experts will

often have difficulties agreeing which variables are indispensable. Empirical studies suggest that most

observational studies do not include the majority of those variables for which there is a theoretical con-

sensus that they should be considered as adjustment variables [22]. Other empirical work shows that,

even within the same publication, estimates of reported associations for the same exposure-outcome pair

under different analyses and models can yield large differences in effect estimates [23]. Therefore, we ar-

gue that considering a substantial number of variables and all their combinations is a legitimate exercise.

Secondly, data on the extent of measurement error for exposures, outcomes, and adjustment variables

may be missing entirely, or existing data from other datasets may not be representative of the respective

measurement errors in a new dataset. In these cases, investigators should meticulously record what is

known and what is unknown about these measurement errors. Using the proposed vibration of effects

framework will allow them to show what influence different sizes of measurement error could have on the

stability of the results.

Acknowledging these caveats, the vibration of effects approach provides a flexible tool to systematically

assess and compare sampling, model and measurement uncertainty in a common framework. Finally,

encouraging the wider use of the vibration of effects concept for understanding model, sampling, and

measurement uncertainty may further sensitize researchers to the need to think more carefully about

these sources of instability. For example, studies rarely report the extent of measurement error for the

exposures of interest, and don’t make a systematic effort to summarize the existing evidence about these

measurement errors. It is possible that, in many studies, such evidence does not even exist. Similarly,

consideration of confounding and choice of adjustment variables is often sketchy and not well-documented

[24, 25]. In the current illustrative simulations we used a broad range of possible error, but in specific

future studies investigators may be able to have a better sense, even at the design phase, of what mag-

nitude of errors need to be anticipated. Moreover, the set of candidate adjustment variables would best

be pre-emptively defined. Regardless, the vibration of effects estimations may help place the instability

or robustness of study results into better context.
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Figure 1: Volcano plots for different types of vibration and different scenarios of measurement
vibration when diabetes is the variable of interest. The summary measures RHR and RP

indicate relative hazard ratios and relative p-values, respectively. The black cross in the top
panel indicates the model without measurement error.
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Figure 2: Volcano plots for different types of vibration and different scenarios of measurement
vibration when heart disease is the variable of interest. The summary measures RHR and
RP indicate relative hazard ratios and relative p-values, respectively. The black cross in the

top panel indicates the model without measurement error.
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Figure 3: Volcano plots for different types of vibration and different scenarios of measurement
vibration when thigh circumference is the variable of interest. The summary measures RHR

and RP indicate relative hazard ratios and relative p-values, respectively. The black cross in
the top panel indicates the model without measurement error.
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Figure 4: Volcano plots for different types of vibration and different scenarios of measurement
vibration when HDL-cholesterol is the variable of interest. The summary measures RHR
and RP indicate relative hazard ratios and relative p-values, respectively. The black cross in

the top panel indicates the model without measurement error.
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Figure 5: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of diabetes with mortality.
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Figure 6: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of heart disease with mortality.
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Figure 7: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of thigh circumference with mortality.
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Figure 8: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of HDL-cholesterol with mortality.
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