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Zusammenfassung

Die Entdeckung einer mit dem Higgs-Boson des Standard Modells (SM) konsistenten
Resonanz am Large Hadron Collider (LHC) im Jahre 2012 markierte das Ende der
Suche nach dem letzten vom SM vorhergesagten Teilchen. Dadurch wurde der Mech-
anismus der elektroschwachen spontanen Symmetriebrechung experimentell bestätigt.
Zurzeit existiert kein Hinweis, der dem SM widerspricht und die Präsenz ”neuer Physik”
attestieren würde. Neue Teilchen könnten theoretisch im TeV-Bereich auftreten: Üblicher-
weise erfolgt die Parametrisierung von neuen, über das Standardmodell hinausführen-
den (BSM) Effekten durch eine effektive Feldtheorie (EFT). Dabei werden solche BSM
Effekte in anomalen Kopplungen codiert.

Momentan ist der Higgs-Sektor wenig untersucht worden, und lässt einigermaßen
Abweichungen von SM-Vorhersagen zu. Wir präsentieren Resultate für zwei Prozesse,
die grosse Beudeutung am LHC haben: Die Produktion von Higgs-Boson-Paaren (hh),
sowie die Produktion eines Higgs-Bosons assoziiert mit einem Jet (h + 1j). In beiden
Fällen werden Wirkungsquerschnitte und differentielle Verteilungen bis zur nächstführen-
den Ordnung (NLO) in QCD gezeigt. Diese werden mit voller Top-Massenabhängigkeit
im Rahmen einer im Higgs-Sektor nicht-linear realisierten EFT erzeugt. Mithilfe dieser
Rechnungen wird der Raum der anomalen Kopplungen untersucht, sowie deren Effekte
auf physikalische Observablen.

Die NLO QCD Korrekturen zur Produktion von Higgs-Boson-Paaren, die durch
fünf anomale Kopplungen charakterisiert ist, werden präsentiert. Wir analysieren die
Auswirkung der NLO Korrekturen auf Verteilungen der invarianten Masse des Di-
Higgs-Systems, sowie des transversalen Impulses eines der Higgs-Bosonen. Wir ex-
trahieren eine Parametrisierung des inklusiven Produktionswirkungsquerschnitts und
der mhh-Verteilung als Funktion der anomalen Higgs-Kopplungen samt NLO Korrek-
turen.

Ausserdem präsentieren wir eine Klassifizierung von möglichen Profilen, die in der
Verteilung der invarianten Massemhh vorkommen. Hierfür verwenden wir zwei Ansätze:
Eine Analyse, die auf prädefinierten Profiltypen basiert, und eine Klassifizierung, die
durch unüberwachtes Lernen erzielt wird. Wir beobachten im Fall von Higgs + Jet,
dass, im Vergleich zur konventionellen Profilanalyse, unsere auf unüberwachtem Lernen
basierende Methode eine detaillierte Studie der Effekte erlaubt, die von den anomalen
Higgskopplungen erzeugt werden.

Schließlich präsentieren wir die Berechnung von NLO QCD Korrekturen zur Higgs-
Bosons assoziiert mit einem Jet Produktion. Die Berechnung ist in einem Code für
Monte-Carlo Event-Erzeugung implementiert, welcher öffentlich zugänglich sein wird.
Die Streuamplitude des Prozesses ist eine Funktion von zwei anomalen Kopplungen.
Bestimmte Konfigurationen der Kopplungen erzeugen einen ähnlichen Wirkungsquer-
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Zusammenfassung

schnitt. Wir analysieren zwei dieser Konfigurationen und zeigen, wie sie unterschieden
werden können.
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Abstract

The discovery of a boson consistent with the Standard Model (SM) Higgs boson in
2012 at the Large Hadron Collider (LHC) finally closed the hunting for the last unob-
served SM particle and experimentally confirmed the electroweak symmetry breaking
mechanism. Nevertheless there are still open questions suggesting extensions of the
SM. At the moment there is no evidence contradicting the SM and proving the pres-
ence of New Physics. New Particles could likely show up in the TeV range, if it is the
case a good choice is to parametrise the Beyond Standard Model (BSM) effects in an
Effective Field Theory framework. The New Physics effects are encoded in anomalous
couplings. At the moment the Higgs sector is least explored and allows deviations from
SM predictions, giving hints to extend this sector.

We present the study of two processes of particular interest at the LHC: Higgs boson
pair production and Higgs plus one jet production. In both cases we present the next-
to-leading order (NLO) QCD cross section and differential distributions with full top
mass dependence within the framework of a non-linearly realised Effective Field Theory
in the Higgs sector. In these calculations we explore the anomalous couplings parameter
space probing the effects of these parameters on the observables.

Concerning the Higgs boson pair production in the gluon fusion channel, character-
ized by five anomalous couplings, we present a calculation of the NLO QCD corrections
where we analyse the impact of modifications of the anomalous couplings on the distri-
butions in the Higgs boson pair invariant mass and the transverse momentum of one of
the Higgs bosons. We provide an analytical parametrisation for the total cross-section
and the mhh distribution as a function of the anomalous Higgs couplings that includes
NLO corrections.

We further present our shapes classification of Higgs boson pair invariant mass dis-
tributions mhh. We use two approaches: an analysis based on predefined shape types
and a classification into shape clusters based on unsupervised learning. We find that
our method based on unsupervised learning allows a more detailed study of the impact
of anomalous couplings on the mhh shape compared to more conventional approaches
to a shape analysis. Higgs jet.

At last we present the calculation of NLO QCD corrections for the Higgs plus one jet
production. The computation is implemented in a Monte Carlo event generator code
which will be publicly available. The scattering amplitude of the process is function of
two anomalous couplings. Certain configurations of the couplings produce total cross
sections which are almost the same. We study two of these configurations, and we show
how to disentangle them.
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1 Introduction

The Standard Model (of particle physics) (SM) is the theory describing electroweak
and strong interactions. SM parameters have been measured with excellent precision
during the last decades. In 2012 at the Large Hadron Collider (LHC) two experiments,
ATLAS and CMS, discovered a boson consistent with the SM Higgs boson [1, 2] and in
2015 its mass has been measured with high precision mH = 125.10±0.14 GeV [3]. The
Higgs discovery was the final consecration of the SM framework developed at the end of
the 1970s. Nevertheless there are hints suggesting that the SM is not a complete theory
such as neutrinos oscillation, dark matter and strong CP problem. In the last years
several theories tried to extend the SM and to embed it in a more general framework.
These theories are referred to as beyond Standard Model (BSM) theories. All of them
involved new particles but at the moment there is no evidence of them. The LHC runs
or other experiments have not found yet proof of new particles indeed. By the way
recently a discrepancy with the SM predictions has been observed in the B-meson decay
[4] which if confirmed could lead to the lepton flavor universality (LFU) violation. The
absence of New Physics particles modified the strategy of the LHC, experiments are
focusing more on precision measurements of the SM parameters than searches for new
resonances. At date one of the LHC main goal is to explore the Higgs sector. Some
properties of the Higgs boson have been measured with amazing precision, but others
as the couplings to fermions and Higgs boson self couplings still allow deviations from
SM predictions. Fig. 1.1 shows the total cross section for the Higgs boson production in
association with a top quark-antiquark pair pp→ tt̄H, where the top Yukawa coupling
can be observed directly, as function of the invariant mass. The measured total cross
section is 670± 90 (stat.)+110

−100(syst.) fb [5], which is consistent with the SM prediction

of 507+35
−50 fb but it leaves room for possible new Physics contributions.

Another parameter the experimental community is trying to constrain is the triple
Higgs self coupling, directly related to the Higgs potential but the cross sections of the
processes where this parameter shows up are very small, leading to a loose constrain
on it. We discuss this point more in detail in Sec. 2.4.

The actual status of experimental measurements shows that there is no evidence of
New Physics but there is still space for deviations from SM in the Higgs sector which
if firmly confirmed would be a sign of New Physics. The situation can be seen as new
particles are hiding at energies higher of the ones reachable at the LHC, but the pres-
ence of these particles influences the scattering cross sections and so the experimental
readouts. The New Physics could hide in TeV or higher scale, and an Effective Field
Theory (EFT) framework can be the tool to parametrise New Physics effects with-
out including the unknown new particles. Within an EFT framework their effects are
represented by anomalous couplings whose magnitude has to be defined. The values

1



1 Introduction

Figure 1.1: pp→ tt̄H total cross sections in proton-proton collisions at centre-mass energy of
8 and 13 TeV. The black dots represent the experimental data including uncer-
tainties. The SM prediction as function of the energy

√
s is represented by the

dashed line, where the band enveloping this line is the theoretical uncertainty [5].

they can assume are limited by theoretical and experimental constrains defining ranges
where these couplings can be tuned and varied in order to study the impact of the de-
viations with respect to the SM predictions arising from the EFT parametrisation. If
enough statistic is present the anomalous couplings can be fitted against experimental
data.

Calculations within an EFT framework can help to explore the anomalous couplings
space and show the possible deviations arising from New Physics effects, but to improve
the sensitivity to them, next-to leading order and higher-order QCD corrections are
crucial. The Higgs boson pair production in gluon fusion is an excellent process to
study within an EFT framework, where the Higgs boson self coupling shows up at
leading order. This process is very promising to find out whether the Higgs boson
self-coupling is Standard-Model-like, but its cross section is very small therefore it is
very hard to observe at the current energies. Within an EFT framework, the Feynman
amplitude of the process depends on five anomalous couplings. The couplings can
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change drastically the value of the total cross section or yield a degeneracy with the
SM prediction. The differential distributions instead, change in magnitude and shape
in response of the anomalous couplings modification. The shape analysis is a good
opportunity to understand how each coupling affects the distributions. To achieve this
task machine learning approaches come out to be very useful since they allow to select
certain features minimizing the human bias.

There are other processes of interest in the Higgs sector which can be observed ex-
perimentally, such as single Higgs production, inclusive or with jets. The high statistic
of single Higgs events allow to match theoretical predictions to experimental observa-
tions. Concerning the Higgs plus one jet production within an effective field theory
framework, the process at LO depends on two anomalous couplings: the rescaling of
the top Yukawa and the gluon-gluon Higgs effective coupling. This process is a window
to observe deviation due to New Physics effect analyzing its total cross section and dif-
ferential distributions and compare these observables to the experimental observations.

This thesis is organised as follows. The theoretical formulation and experimental
confirmation of the SM is reviewed in Chapter 2. In Chapter 3 we present the tech-
niques needed to carry out the theoretical predictions: the factorization theorem for
hadron-hadron collisions, the QCD perturbative expansion and the treatment of the di-
vergencies arising in next-to-leading order calculations. We present the EFT formalism
in Chapter 4 giving an overview of the two possible realisations: linear and non-linear.
In Chapter 5 we introduce machine learning techniques, reviewing the applications to
physics problems and giving a general explanation of the algorithms we used in our cal-
culations. In Chapter 6 we present a calculation of the NLO QCD corrections to Higgs
boson pair production within the framework of a non-linearly realised Effective Field
Theory in the Higgs sector. We analyze how the NLO corrections affect distributions
in the Higgs boson pair invariant mass and the transverse momentum of one of the
Higgs bosons. In Chapter 7 we investigate further the Higgs boson pair invariant mass
distributions mhh, we present our analysis where we classify distinct classes of shapes
and visualise how they are related to the underlying coupling parameter space. We use
two approaches: an analysis based on predefined shape types and a classification into
shape clusters based on unsupervised learning. We show our calculation of Higgs plus
one jet production at NLO QCD within the framework of a non-linearly realised EFT
in Chapter 8. We analyze the impact of the modified top Yukawa coupling and the ef-
fective coupling on the total cross section and distribution in the transverse momentum
of the Higgs boson.
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2 The Standard Model

The SM is the theoretical framework describing the fundamental particles and their in-
teractions, through the three fundamental forces: electromagnetism, weak interactions
and strong interactions. The SM is a gauge invariant and renormalisable quantum field
theory based on the symmetry group

SU(3)C × SU(2)L × U(1)Y . (2.1)

SU(3)C is the quantum chromodynamics (QCD) group of strong interactions while
SU(2)L × U(1)Y is the chiral group of the electroweak interactions. The quantum
numbers of this group are weak isospin I3 and hypercharge Y for SU(2)L and U(1)Y
respectively. The predictive power of SM has been extensively tested computing cross
sections and differential distributions of a large variety of processes. The predictions
yielded resulted always in agreement with the experiments and at date there are no sig-
nificant deviation contradicting the SM. Because of this reliability it is widely accepted
as the correct framework to describe the three fundamental forces and the microscopic
world of matter.

2.1 SU(3)C

SU(3)C is the QCD group, the theory describing the strong interactions among quarks
and gluons. The group has eight generators T a forming the Lie algebra:

[T a, T b] = ifabcT c (2.2)

where fabc, the structure constants of SU(3), are represented by an anti-symmetric
tensor. The generators T a in the fundamental and anti-fundamental representation are
3× 3 matrices while in the adjoint representation are 8× 8 matrices.

In 1954 Yang and Mills [6] formulated a non-Abelian Lagrangian symmetric under
SU(N). Its generalization for N = 3, summed over the quarks flavour, gives the
Lagrangian specifying the QCD

LQCD =
∑
q

q̄(iγµDµ)q − 1

4

8∑
a=1

GaµνG
µν
a

Dµ = ∂µ − igsT aAaµ. (2.3)

5



2 The Standard Model

q, transforming under the fundamental representation, is a triplet of quarks fields,
containing the three colored quarks:

q =

qrqg
qb

 , (2.4)

Dµ is the covariant derivative and gs is the strong coupling. The tensor Gaµν can be
expressed as

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν (2.5)

where Aaµ, with a = 1, . . . , 8, is the gluon vectorial field, which appears as the adjoint
representation of SU(3)C . Loosely speaking LQCD specifies a theory where the colored
quarks, fermions of spin 1

2 , interacting each others with the mediation of the gluons.
The vector bosons, the gluons, are spin 0 particle carrying eight possible color charge
and in contrast to the photons they can also interact among themselves.
The Lagrangian of eq. (2.3) does not contain mass terms for the quarks. We will see
in sec. 2.3 how these particles obtain their masses.
The up (u), down (d) and strange (s), quarks have been introduced for the first time
by Gell-Mann and Zweig [7, 8] as the fundamental components of hadrons: baryons are
composed of three quarks and mesons of one quark and one anti-quark.
Within the GIM mechanism [9], which describes the flavour-changing neutral currents,
the charm (c) quark has been predicted. Then with the extension of the Cabibbo ma-
trix [10] into the Cabibbo-Kobayashi-Maskawa (CKM) matrix [11], which explains the
CP violation and the down-type quarks eigenstates mixing to give the mass eigenstates,
the top(t) and bottom (b) quarks have been introduced. The QCD particles content
is composed of six quarks, grouped in three generations, and the gluon. All the QCD
particles have been observed by experiments [12–19]. Table 2.1 show the quarks prop-
erties and quantum numbers, all the values are taken from Ref. [3].

Particle Mass J B Q I3 Generation

up 2.16+0.49
−0.26 MeV 1

2
1
3 +2

3 +1
2 First

down 4.67+0.48
−0.17 MeV 1

2
1
3 −1

3 −1
2 First

charm 1.27± 0.02 GeV 1
2

1
3 +2

3 +1
2 Second

strange 93+11
−5 MeV 1

2
1
3 −1

3 −1
2 Second

top 172.9± 0.4 GeV 1
2

1
3 +2

3 +1
2 Third

bottom 4.18+0.03
−0.02 GeV 1

2
1
3 −1

3 −1
2 Third

Table 2.1: Table reassuming the quarks properties. J is the total angular momenta, B the
baryon number, Q the electric charge and I3 the isospin.

The QCD coupling g2
s , as explained more in details in Sec. 3, is energy dependent,

therefore its magnitude changes depending on the energy of the interaction. The QCD
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2.2 SU(2)L × U(1)Y

coupling constant αs = g2
s

4π is commonly used instead of gs. At high energies (short dis-
tances) αs is weak, this feature is called asymptotic freedom because in the asymptotic
limit of infinite energy the particles behave as free particles, thus the strong interaction
vanishes. On the other way round at low energy (large distances) αs is very strong
and the quarks are bounded together. An interesting characteristic of QCD is the color
confinement: even at high energies quarks can not be isolated, they will combine in
mesons or baryons to form a neutral color state and a quark carrying a color charge
can not be observed. The physical explanation of color confinement is related to the
self interaction of gluons, but there is no analytical explanation of this phenomenon.

2.2 SU(2)L × U(1)Y

SU(2)L × U(1)Y is the symmetry group of the electroweak interactions, it has four
generators, Ia with a = 1, 2, 3 for SU(2)L and Y for U(1)Y , forming the algebra:

[Ia, Ib] = iεabcIc, [Ia, Y ] = 0 (2.6)

where εabc, the structure constants of SU(2), are represented by the Levi-Civita anti-
symmetric tensor. In the fundamental representation the generators Ia = σa

2 are the
Pauli matrices.

Left-handed fermions appear as the fundamental representation of the group, right-
handed fermion fields are invariant under Ia. The fermions having left chirality have
weak isospin 1

2 and form doublets while the right handed fermions have I3 = 0⇒ I = 0
and are in singlets. For example for leptons:(

νl
l

)
L

, lR l = e, µ, τ. (2.7)

All the fermions carry the hypercharge Y coming from the Abelian group U(1)Y .
This theory contains two different couplings, g′ associated to the gauge group U(1)Y
and g related to the gauge group SU(2)L. The gauge invariant Lagrangian of the
electroweak gauge fields reads:

LEW = −1

4
W a
µνW

µν
a −

1

4
BµνB

µν (2.8)

where

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ. (2.9)

W a
µ appears as the adjoint representation of SU(2)L and is a triplet of vector fields. Bµ

invariant under U(1)Y has the same structure as the photon field. The fermion-gauge

7



2 The Standard Model

field interaction is specified by

LF =
∑
ψL

ψ̄Liγ
µDL

µψL +
∑
ψR

ψ̄Riγ
µDR

µ ψ
R,

DL,R
µ = ∂µ − igIL,Ra W a

µ + ig′
Y

2
Bµ,

ILa =
1

2
σa, I

R
a = 0 (2.10)

where ψL and ψR, the left-handed and right-handed fermion fields, are a doublet and
a singlet respectively. IR,L and Y are the weak isospin and hypercharge operators.
The covariant derivative DL,R takes account the kinematic part of the fields and the
interaction with the two vector fields.
The Lagrangian in eq. (2.8) unifies electromagnetic and weak interactions, it was
proposed for the first time by Weinberg [20] and Salam [21] . Its power is to be gauge
invariant in contrast to the one proposed by Glashow [22], due to the fact that it does
not contain mass terms, which will arise after the spontaneous break of SU(2)L×U(1)Y
through the Higgs mechanism. The fundamental fermions of the SM can be grouped
as multiplets of SU(3)× SU(2)L × U(1)Y as follows(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, eR, µR, τR

urug
ub


drdg
db




L

,



crcg
cb


srsg
sb




L

,



trtg
tb


brbg
bb




L

,

urug
ub


R

,

drdg
db


R

,

crcg
cb


R

,

srsg
sb


R

,

trtg
tb


R

,

brbg
bb


R

(2.11)

In the SM particle content the neutrinos are not obtaining mass after the symmetry
breaking and therefore they are massless. Moreover, only left-handed neutrinos are
predicted by the theory.

2.3 Symmetry breaking mechanism

In this section we introduce the spontaneous breaking of SU(2)L×U(1)Y , which leaves
the U(1)EM (electromagnetic Abelian subgroup) unbroken and gives masses to the
weak vector bosons Z0 and W±. Quarks and leptons get their masses via Yukawa
interactions. This mechanism, often referred as the Higgs mechanism or electroweak
symmetry breaking mechanism, was developed by Englert and Brout [23], Higgs [24]
and Guralnik et al.[25] independently in the same year. The mechanism explains how
the particles get their masses after the spontaneous breaking of a symmetry. Let us
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review briefly the mechanism. The Higgs Lagrangian reads:

Lh = (DµΦ)†(DµΦ)− V (Φ),

Dµ = ∂µ − ig
σa
2
W a
µ + i

g′

2
Bµ (2.12)

where:

Φ(x) =

(
Φ+(x)
Φ0(x)

)
(2.13)

is a doublet of complex scalar fields with Y = 1 and four degrees of freedom. The
covariant derivative Dµ takes into account the kinetic part of the field and its interaction
with the gauge bosons, while V (Φ) is the potential developing a vacuum expectation
value:

V (Φ) = −µ2Φ†Φ +
λ

4
(Φ†Φ)2, (λ, µ2 > 0) (2.14)

where λ is the Higgs self coupling. The Lagrangian Lh is symmetric under SU(2)L ×
U(1)R but the vacuum is not. The vacuum expectation value is not zero indeed:

〈0|Φ|0〉 =
1√
2

(
0
v

)
, v =

2µ√
λ

(2.15)

which leads to the spontaneous breaking of the symmetry. Nevertheless the vacuum is
symmetric under transformation of U(1)EM preserving the electromagnetic symmetry.
In polar coordinates the Higgs doublet reads

Φ(x) =
1√
2
e

i
v
χa(x)σa

(
0

v + h(x)

)
(2.16)

where χa(x), with a = 1, 2, 3, are three Goldstone boson fields. After the SU(2)L ×
U(1)Y symmetry breaking, the Goldstone bosons degrees of freedom mix with the W±

and Z0 bosons and disappear, therefore the scalar doublet can be expressed as

Φ(x) =
1√
2

(
0

v + h(x)

)
(2.17)

where h(x) is the physical Higgs scalar field. The vector bosons W± and Z and Higgs
boson masses arise after the breaking and can be expressed as:

mh =
√

2λv = µ
√

2, mZ =

√
g2 + g′2

2
,

mW = mZ cos(θW ) =
gv

2
, cos(θW ) =

g√
g2 + g′2

(2.18)

where cos(θW ) is the cosine of the electroweak mixing angle θW . Z0 and W± bosons
were observed experimentally for the first time in 1983 [26–29] while for the Higgs boson
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2 The Standard Model

the physics community had to wait until 2012 [1, 2]. The experimental measurements
of their masses yields the values [3]

mH = 125.10± 0.14 GeV, mZ = 91.1876± 0.0021 GeV, mZ = 80.379± 0.012 GeV
(2.19)

The Higgs potential in unitarity gauge can be rewritten as:

V (h) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4. (2.20)

The second and third terms on the r.h.s. of eq. (2.20) describe the Higgs triple and
quartic self interactions. Quarks and leptons (with the exception of the neutrinos)
get their masses after the symmetry breaking as well. Within the unitarity gauge the
Yukawa Lagrangian stands:

LY = −
∑
f

mf ψ̄fψf −
∑
f

mf

v
ψ̄fψfh (2.21)

where the index f runs over quarks and leptons. The first term on the r.h.s. is related
to the fermion mass obtained after the symmetry breaking while the second term on
the r.h.s. describes the interactions of the Higgs boson with fermions. The coupling
of this interaction is yf = mf/v , considering the vacuum expectation value v = 256
GeV the only fermion whose interaction is not suppressed is the top quark. The top
Yukawa coupling yt measurement, normalised to SM value yields 1.26+0.31

−0.26 [30]. The
measurement within the error is in agreement with the SM but the main value deviates
from the SM prediction leaving room for New Physics extension.

2.4 The Higgs boson self couplings

In this Section we discuss the trilinear λ and quartic λ4 Higgs boson self couplings.
Part of the Section is adapted from [31] where the author of this thesis is a coauthor.

The trilinear Higgs boson coupling λ is of particular interest because it is directly
connected to the Higgs potential. Deviations from the SM prediction would mean New
Physics effects and give hints to extend the SM. The cross sections of the processes
this coupling is involved in are indeed very small, for example the SM next-to-leading
order (NLO) QCD cross section for Higgs boson pair production at 14 TeV is 32.95
fb. Therefore there is not a direct measurement of it but only constraints. The trilin-
ear Higgs boson coupling λ can be constrained by measurements of Higgs boson pair
production [32, 33], where the gluon fusion channel yields the largest cross section,
and the ATLAS 95% confidence level (CL) limits on the total gg → HH cross section
at
√
s = 13 TeV are currently σhhmax = 6.9 × σhhSM ,where σhhSM is the SM prediction,

constraining trilinear coupling modifications to the range [32]

− 5.0 ≤ λ/λSM ≤ 12.0 (2.22)
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2.4 The Higgs boson self couplings

where λSM =
m2

h
2v . The CMS 95% CL limits on the total cross section at

√
s = 13 TeV

are looser than the ATLAS ones, σHHmax = 22.2 × σSM , constraining trilinear coupling
modifications to the range [33]

− 11.8 ≤ λ/λSM ≤ 18.8. (2.23)

The trilinear Higgs couplings can also be constrained in an indirect way, through
measurements of processes which are sensitive to these couplings via electroweak loop
corrections [34–45]. Such processes offer important complementary information, how-
ever they are susceptible to other BSM couplings entering the loop corrections at the
same level, and therefore the limits on chhh = λ/λSM extracted this way may be more
model dependent than the ones extracted from the direct production of Higgs boson
pairs. A corresponding experimental analysis based on single Higgs boson production
processes has been performed [46], and recently combined constraints from single and
double Higgs boson production became available [47]. Under the assumption that all
deviations from the SM expectation are stemming from a modification of the trilin-
ear coupling, the derived bounds on chhh at 95% CL from the combined analysis are
−2.3 ≤ chhh ≤ 10.3 [47]. However once the couplings to vector bosons and/or fermions
are allowed to vary as well, these bounds are diluted.

The idea of indirect constraints through loop corrections also has been employed
trying to constrain the quartic Higgs boson self-coupling from (partial) EW corrections
to Higgs boson pair production [48, 49].

Theoretical constraints on chhh are rather loose if derived in a largely model indepen-
dent way. Recent work based on general concepts like vacuum stability and perturbative
unitarity suggests that |chhh| . 4 for a new physics scale in the few TeV range [50–53].
More specific models can lead to more stringent bounds, see e.g. Refs. [54–58]. Recent
phenomenological studies about the precision that could be reached for the trilinear
coupling at the (HL-)LHC and future hadron colliders are summarised in Refs. [59–61].

The Higgs quartic coupling λ4, the other leading term of the Higgs potential, in
the SM formulation is connected to the trilinear one by the relation λSM/λ4,SM = v.
This coupling appears at LO in the production of three Higgs bosons. The leading
order cross section of the process, for mH = 125 GeV is 0.040 fb at 14 TeV [62], too
small to be observed at current particles colliders. Therefore there are no constraints
on the quartic Higgs coupling. The Higgs potential and the Higgs mass are related
to vacuum stability. The running of the quartic coupling gives information about the
nature of the electroweak vacuum. If λ4 becomes negative at scales much below the
Plank scale MP = 1.220910 × 1019 GeV, the Higgs field could tunnel from the actual
metastable vacuum to a true vacuum. By the way, the beta function of the Higgs
quartic coupling βλ4(λ4, yt, gs) is very sensitive of variation of its arguments, and the
actual measurements of the Higgs boson mass and in particular the top quark mass,
do not allow to answer the question wether the SM vacuum is stable or not [63].
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3 Higher order perturbation theory

In this Chapter we review the fundamental concepts to carry out the theoretical compu-
tations used to describe phenomena at particles colliders, focusing on hadron collisions.
The content of this section is adapted from [64–68].

3.1 Factorization theorem

The Large Hadron Collider (LHC) is a proton-proton collider. The energies are so high
that the interactions are no more between the two protons, but among partons i.e.
gluons and quarks. The factorization theorem [69] allows to write the cross section for
the scattering of two hadrons h1, h2 producing the final state X in the following way

σh1h2→X =
∑
i,j

∫ 1

0
dx1

∫ 1

0
dx2fh1,i(x1, µF )fh2,j(x2, µF ) · σ̂ij→X(ŝ, αS(µR), µF , µR).

(3.1)

h1 and h2 are the two interacting hadrons, i, j are the partons indices and the inte-
gration variables x1, x2 represent the hadrons’ momenta fractions of the two partons.
fh1,i(x1, µF ), fh2,j(x2, µF ) are the partonic distribution functions (PDFs) and are re-
lated to the probability to find two partons i, j with momenta fractions x1, x2 at the
energy µF inside the protons. PDFs can not be computed theoretically, they are deter-
mined by fits of experimental data. They are the universal part of the formula in the
sense that do not depend on the specific process. Even though PDFs are non pertur-
bative objects, their evolution with scale µF can be computed perturbatively according
to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [70–72]. In fig.
3.1 the comparison among PDFs fits is shown, for gluons on the left and up quarks on
the right. In the plots are represented three sets of PDFs CT14 [73], MMHT [74] and
NNPDF [75], normalised to the central value of the CT14 distribution, as functions of
x , the momentum fraction carried out by the partons, at next-to-next to leading order
(NNLO) in the DGLAP expansion. The energy scale is Q2 = 100GeV . These three
sets are combined by the PDF4LHC Working Group, providing the PDF4LHC15 set
[76] which is suitable for LHC simulations.
σ̂ij is the partonic cross section for the partons i, j, the process dependent part of (3.1),
with

√
ŝ =

√
(x1x2s) partonic centre of mass energy. Eq. (3.1) can be interpreted

as the sum over all the possible partons, integrated over all the possible momentum
fractions of the partonic cross sections weighted by the PDFs. Once the partonic cross
sections are known eq. (3.1) allows to calculate the total cross section for the final state
X.
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Figure 3.1: Comparison of the gluon and up quark PDFs at energy scale Q2 = 100 GeV,
normalized to the central value of CT14 [76].

3.2 QCD perturbative expansion

The partonic cross section is calculated by the perturbative expansion in the strong
coupling constant,

σ̂ = αnS(σ̂(0) + αS σ̂
(1) + α2

S σ̂
(2) + ...) (3.2)

where the first term in brackets represents the leading order (LO), the second the next-
to-leading order(NLO), the third the next-to-next to leading order (NNLO) and so on.
n is the strong coupling power of the LO cross section. We are allowed to take the
expansion in eq. (3.2) when αS << 1, which ensures that higher order terms of the
expansion can be neglected when sufficiently small. ΛQCD is the QCD scale parameter,
defining the value of energy scale at which the coupling constant diverges. The QCD
perturbative expansion can be performed when computing σ̂ at energies much larger
than ΛQCD ∼ 200 MeV roughly the pion mass. NLO and NNLO corrections are often
very important to reach the theoretical precision needed to match the experimental
results.

Fig. 3.2 shows the cross section for tt̄ production as function of the partonic invariant
mass

√
ŝ, highlighting the importance of NNLO corrections. The LO and NLO error

bars are too large and do not allow to make reliable predictions, while the NNLO one
is thiner with magnitude of the uncertainty of the same order of the experimental data.
In general the cross section calculation has to be performed at orders higher than LO,
in order to provide precise predictions.

We can write the partonic cross section as

σ̂ =

∫
Φ
dΦ|M|2 (3.3)

thus the integral over the phase space dΦ of the scattering amplitude squared and study
the perturbative expansion of |M|2 itself:

|M|2 = αnS(|M0|2 + αS |M1|2 + α2
S |M2|2 + ...). (3.4)
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Figure 3.2: tt̄ total cross section as function of the invariant mass. The picture shows the
experimental data (black vertical lines) and the theoretical predictions (color bars)
at different orders [77].

3.3 Differential cross section distributions

An important observable in the study of a process is the differential cross section
distribution, defined as the derivative of the cross section with respect to a physical
quantity. For example considering a two-to-two partonic process i1i2 → f1f2, where i1
and i2 represent the initial state particles and f1 and f2 the final state particles, an
interesting distribution for phenomenological studies is

dσ̂

dmf1f2

, (3.5)

where m2
f1f2

= (pf1 +pf2)2 = ŝ is the invariant mass squared of the finale state. Recall-

ing the momentum conservation (pf1 + pf2)2 = (pi1 + pi2)2, where pk the momentum
of the particle k, m2

f1f2
is equal to the the invariant mass squared of the initial state

m2
i1i2

. The mf1f2 differential distribution allows to study the partonic cross section as
function of the invariant mass and roughly speaking it gives the value of the partonic
cross section at the energy mf1f2 . Another important differential distribution is the
transverse momentum distribution

dσ̂

dpT,f1

. (3.6)

where pT,f1 =
√
p2
f1,x

+ p2
F1,y

is the transverse momentum of the particle f1, i.e. the

component of the three-momentum perpendicular to the beam axis. Differential dis-
tributions can be studied at different orders of the perturbative expansion analogously
to the total cross section.

Considering hadronic initial states, the differential cross section distribution in the
quantity Y can be obtained from the partonic ones using the factorization theorem
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similarly to eq. (3.1)

dσh1h2→X
dY

=
∑
i,j

∫ 1

0
dx1

∫ 1

0
dx2fh1,i(x1, µF )fh2,j(x2, µF ) ·

dσ̂ij→X(ŝ, αS(µR), µFµR)

dY
.

(3.7)

3.4 Regularization and renormalisation

The LO scattering amplitudes are usually given by Feynman tree diagrams, but as
discussed in the previous section the LO calculations are not enough to provide reliable
predictions and higher accuracy is needed. This leads to the computation of higher
order diagrams. These involve loop integrals which, as we are going to show, can
present two kinds of divergencies. Let us consider the simplest loop integral, the so
called bubble integral, shown in Fig. 3.3

B0 =

∫
d4k

(2π)4

1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
(3.8)

where p is the momentum entering the bubble, m the mass of the two particles in the
loop and k the loop momentum, the variable we are integrating over.

Figure 3.3: The bubble integral diagram, where p is the momentum entering and exiting the
loop and k the loop momentum.

At the upper integration limit, the integral behaves as

B0 ∼
∫ ∞ d|k||k|3

|k|4
=

∫ ∞ d|k|
|k|

(3.9)

which means the integral diverges logarithmically. |k| is the euclidian module of the
loop momentum. The divergence in the high energy limit is called ultraviolet (UV)
divergence. At the lower integration limit |k| → 0 when m = 0 a divergence occurs as
well, in this case we are talking of infrared (IR) divergences.

In general loop integrals have these two kinds of divergencies which need to be fixed in
order to give physical meaning to the high order terms of the perturbative expansion.
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The loop-integral divergencies are treated by the dimensional regularization, where
the integral is regularized in D dimension and the divergences become poles in ε =
(4−D)/2. In the case of UV divergencies the poles are absorbed in the redefinition of
the Lagrangian, while one can see that the IR poles cancel at cross section level when
they are averaged over all the degenerate initial and final states, except for initial state
collinear divergencies which are absorbed in the PDFs redefinition.

3.4.1 Dimensional regularization

Dimensional regularization (DR) [78] consists in an analytical continuation in the space-
time dimension. The integrals are not evaluated in 4 dimensions but in D = 4 −
2ε dimensions. For ε > 0 the loop integrals do not have UV divergencies and the
integration can be carried out. The dimensional regularization keeps the integrals
gauge and Lorentz invariant and so does not modify properties as the Ward identities.
Even more this approach is the only one which allowed to prove the renormalisability of
non-abelian gauge theories as QCD maintaining the gauge symmetry. The DR implies
the coupling rescaling g → gµεR, to ensure that all the terms in the Lagrangian have
the right mass dimension. Working in D dimensions, gµνg

µν = D, and the Clifford
algebra of the Dirac matrices has to be modified consistently:

{γµ, γν} = 2gµν with gµνg
µν = D. (3.10)

The matrix γ5 = iγ0γ1γ2γ3 is not obvious and uniquely defined to continue in D dimen-
sions. The way to treat γ5 and the helicities of external and internal particle fields leads
to the choice of a different regularization scheme. The scheme used in the calculations
of Chapters 6 and 8 is ”conventional dimensional regularization” (CDR), where both
the internal and external fields are treated as D-dimensional.

Coming back to the bubble example, the integral after dimensional regularization
can be solved as

B0 =

∫
dDk

(2π)D
1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
=

1

ε
Bdiv +Bfinite +O(ε) (3.11)

where the pole term 1
εBdiv is the piece containing the divergence and Bfinite the finite

part of the integral. The analytical expression of the integral has been calculated in
[79].

3.4.2 Renormalisation

Here we describe the procedure to absorb the UV poles redefining the Lagrangian
parameters, the so-called renormalization. Let us define three Lagrangians:

L0(A0, q0,m0, g0), LP (A, q,m, gµεR), LC(A, q,m, gµεR) (3.12)

where L0,LP and Lc are the bare, physical and counterterm Lagrangians. All of them
specify a general theory with coupling g, vector boson fields A and fermion fields q of
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mass m. After defining the counter terms relating the bare and physical quantities via

g0 = µεRZgg = g + δg, m0 = Zmm = m+ δm, q0 = Z
1
2
q q, A

µ
0 = Z

1
2
AA (3.13)

where ZX = 1 + δZX are the renormalisation constants, the bare Lagrangian can be
written as a combination of the other two

L0(A0, q0,m0, g0) = LP (A, q,m, gµεR) + LC(A, q,m, gµεR). (3.14)

The coupling g is now dependent on the renormalization scale µR, and it can be
shown that this yields the coupling to be energy dependent [80, 81]; its running with
the energy is described by the β function.

The renormalization concept is related to the fact that the parameters of the bare
Lagrangian are not the one described by the fields, they are not observable and thus
unphysical. The relation between bare and physical parameters is given by the coun-
terterms. In other words only combining the bare and counterterms Lagrangians one
can obtain the physical and observable Lagrangian LP and in the combination of the
two the UV poles are canceled.

3.4.3 Infrared divergencies

The KLN(Kinoshita-Lee-Nauenberg) theorem [82, 83] states that at cross section level
the IR divergencies of a Feynman diagram cancel when summing it with all its degener-
ate diagrams, the so-called real radiation. At NLO degenerate diagrams are diagrams
with an extra state yielding a cross section indistinguishable from the LO cross sec-
tion in experiments. The extra state can be a massless particle with momentum close
to zero (soft divergencies) or collinear with the momentum of one of the initial/final
state particles (collinear divergencies). The cross section becomes finite, i.e. the IR
divergences cancel, only when summing over all the possible final state multiplicities.
Considering the UV divergencies renormalized, the NLO cross section of a given process
can be written as

σNLO =

∫
n+1

dσR +

∫
n
dσV (3.15)

where the first term on the r.h.s , integrated over the n+ 1 particles phase space, is the
piece related to the degenerate diagrams indistinguishable from LO kinematics, which
yields divergencies after the integration. The second term on the r.h.s., integrated over
the n particles phase space, is the virtual correction presenting the IR divergencies and
it needs to be regularized to carry out the integration. One can see that, if the procedure
is performed correctly, the poles cancel each other with the exception of remaining
initial state collinear singularities. They are absorbed by renormalizing the bare PDFs
presented in eq. (3.1) in the redefinition f0

hk,i
(x1) → fhk,i(x1, µF ). Similarly to the

renormalization of g, where the coupling develops a dependence on the renormalization
scale µR, the PDFs develop a dependence on the factorization scale µF .
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A good technique used to deal with the IR divergencies at NLO is the Catani-Seymour
method [84]. The first step is to add and subtract a subtraction term:

σNLO =

∫
n+1

[dσR − dσA] +

∫
n

[
dσV +

∫
1
dσA

]
(3.16)

where dσA approximates in D dimensions the singular behavior of dσR. In the first
term on the r.h.s., one can perform the limit ε → 0 in the integrand removing the
poles of the quantity [dσR − dσA] which now is finite and the integration can be carried
out in 4 dimensions. In the second term on the r.h.s., the integration of dσA over the
one-parton subspace yields the IR poles in ε which cancel the ones of dσV , then the
limit ε → 0 can be taken and the integration over the n partons phase space can be
carried out. The general form of the subtraction term is given by

dσA =
∑
dipoles

dσB ⊗ dVdipole (3.17)

where dVdipole representing the dipole factors are universal and independent on the
process, while dσB is the the color and spin projection of the Born-level exclusive cross
section, so process dependent. ⊗ stands for properly defined phase space convolutions
and sums over colour and spin indices. We can then rewrite eq. (3.16) as

σNLO =

∫
n+1

(dσR)ε=0 −

 ∑
dipoles

dσB ⊗ dVdipole


ε=0

+

∫
n

[dσV + dσB ⊗ I]ε=0

(3.18)

where I =
∑

dipoles

∫
1 dVdipole, the summed integration of the dipole factors over the

one-parton phase space, contains the ε poles canceling those of dσV . The NLO Catani
Seymours subtraction terms can be computed following the procedure described in [84].
This section conclude the Chapter where we reviewed the main concepts regarding the
high energy calculations, focusing on QCD processes.
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An Effective Field Theory (EFT) is an approximate theory used to parametrise phe-
nomena at a chosen energy scale, ignoring the fundamental structure and the degrees
of freedom at higher energies. The predictions of such kind of theory are more accurate
far from the underlying dynamics scale Λ. One example is the Higgs Effective Field
Theory (HEFT) where the energy scale Λ = mt is the top quark mass. The HEFT
approximation, where the mt →∞ limit is taken, integrates out the top quark depen-
dence in the loop integrals. It provides a good description of the SM and Higgs Physics
for energies below mt. An example of HEFT diagram for Higgs boson pair production
is shown in Fig. 4.1, where the top loop is shrunk resulting in an effective gluon-Higgs
interaction specified at LO by the Lagrangian :

Leffective ⊃
αS
12π

h2

v2
GaµνG

µν
a . (4.1)

Several models aiming to extend the physics beyond the SM, parametrise the New
Physics using an EFT where Λ is related to the masses of new particles.

Such a framework can be formulated in various ways, where we can distinguish
two main categories, often called “linear EFT” and “non-linear EFT”. The linear
EFTs [85, 86], also known as “SMEFT” [87–91], are organised by canonical dimen-
sions, formulated as power series in the dimensionful parameter 1/Λ. The non-linear
EFTs are organised by chiral dimensions. The corresponding formalism, including a
light Higgs boson, has been developed in Refs. [92–105] and usually goes by the name
“Electroweak Chiral Lagrangian” (EWChL). The calculations presented in Chapters
6,8 and 7 are preformed within the “non-linear EFT” framework, where the Higgs field
is an electroweak singlet. The main benefit of this approach is that the anomalous

Figure 4.1: Higgs boson pair production LO diagrams. On the left the diagram of the full
theory, on the right the same diagram in the HEFT approximation where the top
loop is shrunk.
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Higgs couplings are singled out, in a systematic way, as the dominant New Physics
effects in the electroweak sector. Sometimes the electroweak chiral Lagrangian with
a light Higgs boson is also referred to as Higgs Effective Field Theory (HEFT) in the
literature. The two EFTs are unrelated and should be carefully distinguished. Here
we employ the term electroweak chiral Lagrangian for the non-linear EFT of physics
beyond the SM, and reserve the expression HEFT for the heavy-top limit in Higgs
interactions. In this chapter we describe the two possible realisations of an EFT. We
focus on the non-linear realisation but first we give a general overview on the linear
one.

4.1 Linear EFT

The linear EFT framework parametrising New Physics is the so called SM Effec-
tive Field Theory (SMEFT), where to the SM Lagrangian are added new opera-
tors with canonical dimension larger than 4. The new Lagrangian has the same
SU(3)C × SU(2)L × U(1)Y symmetry of the SM. Generally the SMEFT Lagrangian
reads [106]:

L = LSM +
∑
i

c
(5)
i

Λ
O(5)
i +

∑
i

c
(6)
i

Λ2
O(6)
i +

∑
i

c
(7)
i

Λ3
O(7)
i +

∑
i

c
(8)
i

Λ4
O(8)
i + ..., (4.2)

whereO(D)
i is the SU(3)C×SU(2)L×U(1)Y operator of canonical dimension D and c

(D)
i

the related Wilson coefficient containing the information about New Physics. SMEFT
aims to parametrise BSM theory effects at energies much lower than Λ, the scale where
the BSM particles can be produced. Given v, the vacuum expectation value, the con-

tribution of each O(D)
i scales as (v/Λ)(D−4) when the energy scale is about the order

of v. By construction v/Λ << 1 therefore SMEFT corrections can only yield small
deviations from SM predictions.
All D=5 operators violate lepton number [107] and in general all odd-D operators vi-
olate baryon number minus lepton number (B-L) [108] and experimental constrains
oblige their Wilson coefficients to be suppressed at a level which makes them unob-
servable at the LHC [109]. For this reason they usually are not taken into account.
Moreover considering that D=8 operators are suppressed by (v/Λ)4 in several works
only the dominant dimension 6 operators are considered.

4.2 Non-linear EFT

In this Section we review the non-linearly realised Effective Field Theory, the EWChL
including a light Higgs boson [101, 103, 110]. The Section is adapted from Ref. [111]
where the author of this thesis is a coauthor.

This framework provides us with a consistent EFT for New Physics in the Higgs
sector, as we will summarize in the following.

22



4.2 Non-linear EFT

To leading order the Lagrangian is given by

L2 = −1

2
〈GµνGµν〉 −

1

2
〈WµνW

µν〉 − 1

4
BµνB

µν +
∑

ψ=qL,lL,uR,dR,eR

ψ̄i 6Dψ

+
v2

4
〈DµU

†DµU〉 (1 + FU (h)) +
1

2
∂µh∂

µh− V (h)

−v

[
q̄L

(
Yu +

∞∑
n=1

Y (n)
u

(
h

v

)n)
UP+qR + q̄L

(
Yd +

∞∑
n=1

Y
(n)
d

(
h

v

)n)
UP−qR

+l̄L

(
Ye +

∞∑
n=1

Y (n)
e

(
h

v

)n)
UP−lR + h.c.

]
. (4.3)

The first line is the unbroken SM written with different notation with respect of Chap.
2, the remainder represents the Higgs sector. Here h is the Higgs field and U =
exp(2iϕaIa/v) encodes the electroweak Goldstone fields ϕa, with Ia the generators of
SU(2). v is the electroweak vacuum expectation value, P± = 1/2± I3, and

DµU = ∂µU + igWµU − ig′BµUI3 . (4.4)

The trace of a matrix A is denoted by 〈A〉. The left-handed doublets of quarks and
leptons are written as qL and lL, the right-handed singlets as uR, dR, eR. Generation
indices are omitted. In the Yukawa terms the right-handed quark and lepton fields
are collected into qR = (uR, dR)T and lR = (0, eR)T , respectively. In general, different

flavour couplings Y
(n)
u,d,e can arise at every order in the Higgs field hn, in addition to the

usual Yukawa matrices Yu,d,e. The h-dependent functions are

FU (h) =
∞∑
n=1

fU,n

(
h

v

)n
, V (h) = v4

∞∑
n=2

fV,n

(
h

v

)n
. (4.5)

In the limit where

fU,1 = 2, fU,2 = 1, fV,2 = fV,3 =
m2
h

2v2
, fV,4 =

m2
h

8v2
, Y

(1)
f = Yf , (4.6)

and all other couplings fU,n, fV,n, Y
(n)
f equal to zero, the Lagrangian in (4.3) reduces

to the usual SM. For generic values of those parameters, the Lagrangian describes the
SM with arbitrary modifications in the Higgs couplings. While the deviations of these
couplings from their SM values could, in principle, be of order unity, the parametrisation
in (4.3) remains relevant as long as the anomalous Higgs couplings are the dominant
New Physics effects at electroweak energies. Employing (4.3), makes the assumption
that this is the case. A useful property of the Lagrangian (4.3) is therefore that it
allows to concentrate on anomalous Higgs couplings in a systematic way [104, 112].

In fact, the intuitive picture of introducing (4.3) as the SM with modified Higgs
couplings can be formulated as a consistent EFT. Because of the need to write the
modified Higgs couplings in a gauge-invariant way, the Higgs field has to be represented
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4 Effective Field Theories formalism

as an electroweak singlet h, independent of the Goldstone matrix U = exp(2iϕaIa/v).

The latter transforms as U → gLUg
†
Y under the SM gauge group. The symmetry is

non-linearly realised on the Goldstone fields ϕa. The Lagrangian (4.3) is then non-
renormalisable (in the traditional sense) as it contains interaction terms of arbitrary
canonical dimension. The EFT is therefore not organised by the canonical dimension of
operators, but rather by chiral counting in analogy to the chiral perturbation of pions
in QCD. Chiral counting is equivalent to an expansion in loop orders L, which can be
conveniently counted by assigning chiral dimensions dχ ≡ 2L + 2 to fields and weak
couplings. This assignment is simply 0 for bosons, and 1 for each derivative, fermion
bilinear and weak coupling:

dχ(Aµ, ϕ, h) = 0 , dχ(∂, ψ̄ψ, g, y) = 1 . (4.7)

Here Aµ represents a generic gauge field, ϕ the Goldstone bosons, and h the Higgs
scalar. g denotes any of the SM gauge couplings g, g′, gs, and y any other weak
coupling, such as the Yukawa couplings or the square-roots of the parameters fV,n in
the Higgs potential.

Based on this counting, the leading-order expression (4.3) can be constructed from
the SM field content and symmetries as the most general Lagrangian of chiral dimension
2. Leading processes are described by tree-level amplitudes from (4.3). Next-to-leading
order effects come from one-loop contributions of (4.3) and from tree-level terms of the
NLO Lagrangian L4. Both are considered to be of ‘one-loop order’, or chiral dimension
dχ = 4.
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5 Machine Learning tools

Machine learning (ML) is a subfield of artificial intelligence (AI) where the algorithms
aim to learn automatically from the data and to fit the data into models able to make
predictions. In traditional computer science approaches the algorithms yielding the
predictions are explicitly programmed, the coder writes the instructions and rules the
algorithm has to follow to fit the data.
In ML the algorithms make the machine train on data sets and through statistical
analysis find the best model fitting the data. These features of machine learning allow
to build models in an easier way than using traditional computer science and are very
powerful tools when the data are described by complex or unknown distributions. The
machine learning algorithms are used for two tasks: regression (interpolation of an
unknown function) and classification (collecting the outputs in two or more classes).
Classification algorithms can be divided in two main types according to the learning
method: supervised and unsupervised learning. In supervised learning the algorithms
are trained on datasets labelled by humans, while in unsupervised learning the algo-
rithms are fed by unlabelled data.
There are several algorithms available on the machine learning market such as Decision
trees, K-nearest-neighbors, Support Vector Machine, K-Means, Principal Component
Analysis, RandomForest, GradientBoosting and Neural Networks (NN). ML techniques
are widely used by companies providing services for the every day life. Examples of
ML based applications are: facial and voice recognition, virtual assistants, traffic pre-
dictions, social media services, search engines, product recommendations and so on.
Problems related to the analysis of big datasets are optimal to be approached by ma-
chine learning techniques and because of this ML plays an important role in Physics
as well. In the last years ML applications to physics have become trending and
the number of related papers has grown considerably. The machine learning tech-
niques in high energy physics have been applied to constrain the EFT/new physics
parameter space, [113–116], in jet and top quark identification [117–126], new physics
searches [115, 116, 127–136] and PDFs [137]. In this Chapter we are presenting in more
detail the machine learning tools we used in the calculation of Chapter 7.

5.1 Perceptron and Fully Connected Network

Neural Networks are a set of algorithms modeled after the human brain, designed to
recognize patterns. The easiest and first application of a NN is the perceptron, a
network where input and output are directly connected, and the output layer consists
of only one neuron (or node). The perceptron is built up for a classification task. The
network is shown in Fig. 5.1.
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5 Machine Learning tools

Figure 5.1: Perceptron architecture [138].

The input array x
¯

is multiplied by the weights array w
¯

, then a constant, the bias b,
is added to the scalar product and passed through the activation function f in order
to break the linearity. The output is y = f(w

¯
· x
¯

+ b). The result of this operations
is compared to a defined threshold value. If the activation function output is below
threshold the input is of class ”0” otherwise it is of class ”1”. If we consider the
same model but without a threshold, we obtain a network where the output assumes
continuous values, therefore a model for regression.

The most common used activation functions are:

• Linear function: f(x) = x → f(x) ∈ (−∞,∞)

• Sigmoid function: f(x) = 1/(1 + e−x) → f(x) ∈ [0, 1]

• Hyperbolic tangent function: f(x) = (ex − e−x)/(ex + e−x) → f(x) ∈ [−1, 1]

• Rectified Linear Unit (ReLU) function : f(x) = max(0, x) → f(x) ∈ [0,∞).

Sigmoid and hyperbolic tangent functions are mainly used for binary classification.
The linear function is barely used because it is not helpful when the complexity of
the problem increases. The ReLU is the most used activation function because of its
simplicity and it is very easy to compute its derivative. The activation function has
to be differentiable because its gradient is used to update the weights via the gradient
descendent procedure.

The loss function (or cost function) is used to estimate how correctly the model
predicts the inputs. It measures the distance between the predicted and expected
outputs. The loss is then used to update the weights in order to improve the model
performance. There are several candidates to pick as loss function, the choice depends
on the problem and the feature we want to focus on. Usually Mean Squared Error
(MSE) and Mean Absolute Error (MAE) functions are chosen for regression while
Cross-Entropy is the most used for classification problems.

To obtain a model describing correctly the data the goal is to minimize the loss
function reaching its global minimum. This results is achieved updating the weights
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5.2 Autoencoders

according to:

w′i = wi − α
∂

∂wi
Loss (5.1)

where wi is the ith component of the weight array w
¯

. α is the learning rate, an hyperpa-
rameter the coder has to tune. A value too large can lead to miss the global minimum
of the loss function, while a value too small can over increase the computational time.
At time zero the weights are randomly initialized, then when the training starts this
procedure is iteratively repeated until the asked precision is reached.

In order to avoid the overfitting of the model the loss function can be regularized.
There are 3 kinds of regularizations:

• L1 or Lasso Regression: Loss→ Loss + λ1||w
¯
||

• L2 or Ridge Regression: Loss→ Loss + λ2||w
¯
||2

• Elastic Regression: Loss→ Loss + λ1||w
¯
||+ λ2||w

¯
||2

where λ1 and λ2 are the hyperparameters used to regularize the weights. Within all
the three kinds of regressions the weights are minimized along with the loss function.
Regularization assumes that smaller weights generate simpler models and therefore it
decreases the probability of overfiting.

The perceptron model can be extended using more neurons and adding more layers
between the input and output, called hidden layers. This generalization is called Fully
Connected Neural Network (FCNN) where all the neurons of a layer are connected
to the neurons of the following layer. In Fig 5.2 is shown an example of FCNN with
two layers. The input has 5 nodes (the dimension of the input array), the hidden
layer has 4 nodes and the output 1 node. Each output aj of the hidden layer’s nodes
is a linear transformation of the input array composed with the activation function.
The procedure is reiterated and the aj are linearly transformed and composed with
the activation function to yield the output. The activation function, f and g in the
example, can differ for the two layers.

This example shows that the working flow of the FCNN is the same of the perceptron,
repeated layer by layer. Because of this, the back-propagation of the error has to be
taken into account in order to update each weight according to its contribute to the
error. Other types of Neural Networks are: Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN) and Recursive Neural Network (RNN). In all these
networks the connections between the neurons are realized in more complex ways.
When the hidden layers are more than one we talk of deep learning, otherwise the
network is referred to as shallow network.

5.2 Autoencoders

NN models can be combined to achieve more sophisticated results, one particular case
is the autoencoder. The autoencoder goal is to replicate the inputs, compressing them
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5 Machine Learning tools

Figure 5.2: Architecture of a Fully Connected Network [139, 140].

in a latent-space representation and then reconstructing the outputs from this repre-
sentation. The autoencoder architecture is shown in Fig. 5.3.

The network is divided in two parts: the encoder, compressing the data and the
decoder decompressing it. The power of the autoencoder is not to copy the inputs
into outputs, pretty useless task, but to obtain the latent representation. If the latent
representation has smaller dimension of the input the autoencoder is called under-
complete, while on the other way round is called overcomplete. In the undercomplete
configuration the algorithm is forced to learn the most important features of the data
distribution. The autoencoder undercomplete, along with Principal Component Analy-
sis, is the best tool for dimensionality reduction, allowing to isolate and focus on the the
crucial information of the data. There are four types of autoencoders: Vanilla, Multi-
layer, Variational and Regularized. The Vanilla autoencoder is the simplest type, where
the encoder and decoder are composed by one layer each. The Multilayer autoencoder
is the extension of the Vanilla one, where encoder and decoder are composed by more
than one layer. In both the previous types the network is a FCNN. The Variational
autoencoder architecture is composed by a multilayer CNN, while the Regularized type
is a Vanilla or Multilayer where a regularization is added to the Loss function. In our
study presented in Chapter 7 we use a Multilayer autoencoder to compress the inputs
and study them in a latent space of reduced dimensionality.
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5.3 Unsupervised Learning through K-Means

Figure 5.3: Autoencoder architecture [138].

5.3 Unsupervised Learning through K-Means

Unsupervised learning is a subset of the classification algorithms where the goal of
the evaluation is to classify the inputs giving no labelled outputs during the training
and leaving the algorithm to find a pattern in the data. This procedure is called
clustering and the inputs are collected in the defined number of clusters. An example
of unsupervised classification in three clusters is displayed in Fig. 5.4.

Figure 5.4: Clustering procedure example. The data set is classified in three clusters according
to the K-Means criteria [138].

There are several algorithms achieving this task, in the following we describe K-
Means, one of the simplest and most popular unsupervised machine learning algorithms.
The first step of the K-Means clustering is to define K the number of centroids. The
centroids are the points representing the centers of the clusters. They are initialized
randomly, selecting K data points without replacement from the shuffled dataset. The
distance of all data points from the centroids is computed and each point is assigned
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to the closest cluster. The loss function of the problem is:

J =
m∑
i=1

K∑
k=1

wik||xi − µk||2 (5.2)

where m is the number of points in the dataset, xi is the ith point of the dataset, µk
the kth centroid and wik the weight of each point. wik=1 if xi belongs to the kth cluster
or 0 otherwise. The loss function tells us about the quality of the clustering and its
minimization is used to optimize the model in a two steps procedure where the weights
are updated and the centroids redefined. The first step is to update the weights taking
the derivative with respect to wik:

∂J

∂wik
=

m∑
i=1

K∑
k=1

||xi − µk||2 → wik =

{
1, if k = argminj ||xi − µj ||2

0, otherwise
(5.3)

where the weight wik = 1 if it minimizes the Loss function, otherwise wik = 0.
The second step is to take the derivative with respect to µk:

∂J

∂µk
= 2

m∑
i=1

wik(x
i − µk) = 0→ µk =

∑m
i=1wikx

i∑m
i=1wik

, (5.4)

therefore the centroids are redefined according to the updated weights.
The procedure is repeated until there is no more variation of the centroids within

a given tolerance. The inertia is an estimator of the clustering quality, representing
the distance of the points within a cluster from the cluster center. In order to obtain
a good model a small value of inertia is aimed for. When the dimension of the input
arrays is too large K-Means can provide a bad clustering. The algorithm can suffer
from the complexity of the data and misclassify some of the points. In these cases to
feed the algorithm with encoded inputs can help the classification, allowing K-Means
to focus on the salient features of the dataset.

The machine learning techniques described in this Chapter are adopted in our study
of shape classification of Higgs boson pair invariant mass distributions presented in
Chapter 7.
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6 Higgs boson pair production

In this chapter we present our calculation of Higgs boson pair production at NLO
QCD with full top mass dependence. The chapter is adapted from Ref. [111] where
the author of this thesis is a coauthor.

Exploring the Higgs sector and the mechanism of electroweak symmetry breaking
is one of the primary goals for the current and future LHC program as well as other
planned experiments. While some of the properties of the Higgs boson, like its mass,
spin and couplings to electroweak bosons, have been measured meanwhile impressively
well [141], other parameters, like the couplings to (light) fermions, and in particular
the self-coupling, are still largely unconstrained as shown in Sec. 2.4.

In the SM the strength of all Higgs boson couplings is predicted; however, effects of
physics BSM may lead to deviations which, once firmly established, are a clear sign
of New Physics. Since higher-order QCD corrections are known to be important in
Higgs boson production processes, they need to be taken into account to improve the
sensitivity to New Physics effects.

Given the energy gap between the electroweak scale at v ' 250 GeV and a New
Physics scale Λ which could be in the TeV range, it is natural to parametrise the BSM
effects in a model-independent way in an EFT framework.

Higgs boson pair production in gluon fusion is the most promising process to find
out whether the Higgs boson self-coupling is Standard-Model-like. The scattering am-
plitude of the process is function of five anomalous couplings.

In order to quantify the different effects of the five couplings that can lead to devia-
tions from the SM in the Higgs sector, we give results for the total NLO cross section
parametrised in terms of 23 coefficients of all possible combinations of these couplings,
as introduced at LO in Refs. [142, 143]. We also show differential distributions for 12
benchmarks points which should be characteristic for clusters of BSM scenarios. Such
clusters were identified in Refs. [143–145] at leading order and represent partitions of
the BSM parameter space according to the shape of the differential distributions.

This chapter is organised as follows. Section 6.1 reviews the state of art of Higgs boson
pair production. In Section 6.2, we introduce the Higgs-electroweak chiral Lagrangian
applied to Higgs boson pair production at LO, including the NLO QCD corrections in
Section 6.3. Section 6.4 is dedicated to the phenomenological results. We provide a
parametrisation of the NLO cross section in terms of coefficients of all combinations
of couplings occurring in the NLO cross section. Based on this parametrisation we
show heat maps both at LO and at NLO, where we vary two couplings while keeping
the others fixed to the SM values. Then we give results for total cross sections and
differential distributions at twelve benchmark points and discuss their implications
before we conclude.
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6 Higgs boson pair production

6.1 Higgs boson pair production state of art

Early studies of Higgs boson pair production within an EFT framework can be found
in Refs. [146–149]. Many phenomenological investigations about the potential of this
process to reveal New Physics have been performed since, see e.g. Refs. [52, 53, 57,
142, 150–162]. In the SM, Higgs boson pair production has been calculated at leading
order in Refs. [163–165]. As it is a loop-induced process, higher order calculations
with full top quark mass dependence involve multi-scale two-loop integrals. Therefore,
the NLO calculations until recently have been performed in the mt → ∞ limit [166],
the HEFT approximation, and then rescaled by a factor BFT /BHEFT , BFT denoting
the leading order matrix element squared in the full theory. This procedure is called
“Born-improved HEFT” in the following. In Refs. [167, 168], an approximation called
“FTapprox” was introduced, which contains the full top quark mass dependence in the
real radiation, while the virtual part is calculated in the HEFT approximation and
rescaled at the event level by the re-weighting factor BFT /BHEFT .

In addition, the HEFT results at NLO and NNLO have been improved by an expan-
sion in 1/m2

t in Refs. [169–172]. The NNLO QCD corrections in the heavy-top limit
have been computed in Refs. [170, 173–175], and they have been supplemented by an
expansion in 1/m2

t in Ref. [171] and by threshold resummation, at NLO+NNLL in
Ref. [176] and at NNLO+NNLL in Ref. [177], leading to K-factors of about 1.2 relative
to the Born-improved HEFT result. The N3LO QCD corrections within the HEFT
approximation combined to the full NLO calculation have been computed in [178].

The full NLO corrections, including the top quark mass dependence also in the
virtual two-loop amplitudes, have been calculated in Ref. [179]. Phenomenological
studies at 14 TeV and 100 TeV, including variations of the Higgs boson self-coupling,
have been presented in Ref. [180]. The full NLO calculation was supplemented by NLL
transverse momentum resummation in Ref. [181]. It also has been matched to parton
shower Monte Carlo programs [182–184], where the matched result of Ref. [182, 184] is
publicly available within the POWHEG-BOX-V2 framework. The full NLO combining the
exact numerical result and high-energy expansion has been calculated in Ref. [185],
while a full NLO study of the uncertainty due to the scheme and scale choice for the
top mass in the loops has been presented in Ref. [186]. Recent work also includes a
combination of an analytic threshold expansion and a large-mt expansion together with
a Padé approximation framework [187], the expansion of the amplitudes in terms of a
small Higgs transverse momentum [188], and analytic results based on a high energy
expansion for the planar part of the two-loop amplitude [189].

Very recently, top quark mass effects have been incorporated in the NNLO HEFT cal-
culation, including the full NLO result and combining one-loop double-real corrections
with full top mass dependence with suitably reweighted real-virtual and double-virtual
contributions evaluated in the large-mt approximation [190].

Within a non-linear EFT framework, higher order QCD corrections have been per-
formed in the mt → ∞ limit. The NLO QCD corrections have been calculated in
Ref. [191], recently also supplemented with the case of CP-violating Higgs sectors [192].
The NNLO QCD corrections in the mt →∞ limit including dimension 6 operators have
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been presented in Ref. [193]. These calculations found rather flat K-factors, which how-
ever could be an artefact of the mt → ∞ limit. One of the main goals of this chapter
is to investigate whether this feature is preserved once the full top quark mass depen-
dence is taken into account. We calculate the NLO QCD corrections to Higgs boson
pair production in gluon fusion within the non-linear EFT framework, retaining the full
top quark mass dependence, based on the numerical approach developed in Ref. [179].

6.2 Non-Linear EFT for di-Higgs production

Since this process is loop-induced, at leading order both one-loop diagrams built from
the LO interactions L2, as well as tree contributions from the NLO (in the chiral
expansion) Lagrangian L4 have to be taken into account. The relevant terms from the
effective Lagrangian L2 + L4 (see Sec. 4.2) are given by [106]

L ⊃ −mt

(
ct
h

v
+ ctt

h2

v2

)
t̄ t− chhh

m2
h

2v
h3 +

αs
8π

(
cggh

h

v
+ cgghh

h2

v2

)
GaµνG

a,µν . (6.1)

The first three couplings, ct, ctt, chhh, are from L2, the Higgs-gluon couplings cggh and
cgghh from L4 [101, 112]. To lowest order in the SM ct = chhh = 1 and ctt = cggh =
cgghh = 0. In general, all couplings may have arbitrary values of O(1). Note that we
have extracted a loop factor from the definition of the Higgs-gluon couplings.

The leading-order diagrams are shown in Fig. 6.1. All diagrams are at the same order

Figure 6.1: Higgs-pair production in gluon fusion at leading order in the chiral Lagrangian.
The black dots indicate vertices from L2, the black squares denote local terms
from L4.

in the chiral counting (chiral dimension 4, equivalent to one-loop order). They illustrate
the interplay between leading order anomalous couplings (black dots) within loops, and
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next-to-leading order terms (black squares) at tree level. All the five couplings defined
in (7.1) appear in Fig. 6.1. In the following section we discuss the extension of this
analysis to the next order in QCD.

6.3 Calculation of the NLO QCD corrections

Within the framework of the electroweak chiral Lagrangian, the calculation of the
gg → hh amplitude can be extended to the next order in the loop expansion, that is
to two-loop order, or chiral dimension 6. In full generality, this would require to also
include two-loop electroweak corrections and local terms from the Lagrangian at chiral
dimension 6. The latter introduce additional couplings, parametrising subleading new-
physics effects. Such effects are beyond the experimental sensitivity in the foreseeable
future, given that even the determination of the LO couplings in (7.1) remains a sub-
stantial challenge. On the other hand, radiative corrections from QCD are known to
be very important for gg → hh and similar processes.

For this reason, we extend the calculation of gg → hh to the next order in the
non-linear EFT, but restrict the NLO corrections to the effects from QCD. Within the
systematics of the EWChL this approximation corresponds to including those correc-
tions at chiral dimension 6 that come with a relative factor of the QCD coupling g2

s .
This procedure is consistent without introducing further anomalous couplings, beyond
the ones in (7.1), because this effective Lagrangian is renormalisable with respect to
QCD [104]. Since the LO amplitude for gg → hh scales as ∼ g2

s , the NLO virtual cor-
rections of interest to us comprise all the diagrams at two-loop order carrying a factor
of g4

s . They exist as two-loop, one-loop and tree topologies, as illustrated in Figs. 6.2,
6.3 and 6.4, respectively.

In addition, real emission diagrams at O(g3
s) have to be included as shown in Fig.

6.5.

To further clarify our approximation with respect to the full chiral expansion at
NLO, we give in Fig. 6.6 a few examples of higher-order effects that are consistently
neglected in our scheme:

Example (a) shows a correction from electroweak-boson exchange. It is of two-loop
order, but scales as g2

sg
2, rather than g4

s . It is not a NLO QCD effect and we neglect
it here.

Similarly, the one-loop topology in (b) counts as two-loop order, but scales only as
g2
schhhh, with chhhh the (anomalous) quartic Higgs coupling.

In example (c) we consider an anomalous top-gluon coupling of the form QttG =
ytgst̄LσµνG

µνtR, where the top Yukawa coupling reflects the change in chirality. This
operator is therefore (at least) of chiral dimension 4 (one-loop order) and the diagram
in Fig. 6.6 (c) of two-loop order, but again not of order g4

s . Since (4.3) assumes that the
top quark is weakly coupled to the (possibly strongly interacting) new-physics sector,
it is more likely that the operator comes with further weak couplings from tL and tR
and thus carries chiral dimension 6. In this case, diagram (c) is of three-loop order and
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Figure 6.2: Higgs-pair production in gluon fusion at NLO: Examples for virtual two-loop
diagrams at order g4s .

clearly negligible. The effect of the chromomagnetic operator on single Higgs boson
production has been calculated recently in the context of SMEFT in Ref. [194].

Example (d) illustrates the effect of a local Higgs-gluon interaction of chiral dimen-
sion 6, which enters at two-loop order as a tree-level topology. A possible operator
would be g2

sG
a
µνG

a,µν∂λh∂
λh. However, this effect, although of two-loop order, does

not scale as g4
s .

Finally, we may have an operator g3
sf

abcGaµνG
b,ν
λG

c,λµh, also of chiral dimension 6.
Diagram (e) then amounts to a two-loop order interaction with real emission, which is
beyond our approximation.

At the technical level, the NLO QCD corrections have been calculated building on
the setup described in Refs. [179, 180], summarised briefly below.
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Figure 6.3: Higgs-pair production in gluon fusion at NLO: Examples for virtual one-loop di-
agrams at order g4s .

Figure 6.4: Higgs-pair production in gluon fusion at NLO: Tree diagram at order g4s .

6.3.1 Virtual corrections

The virtual part of order α3
s consists of genuine two-loop diagrams as well as one-loop

and tree-level diagrams, see Figs. 6.2, 6.3 and 6.4.

For the two-loop part, we made use of the numerical results for the two-loop virtual
diagrams in the Standard Model (SM) by dividing them into two classes: diagrams con-
taining the Higgs-boson self-coupling (“triangle-type”), and diagrams without (“box-
type”). The tt̄hh coupling generates new two-loop topologies, see e.g. the second line
of Fig. 6.2. The results for these diagrams however can be obtained from the SM
triangle-type diagrams by multiplying them with the inverse Higgs boson propagator
and rescaling the couplings, i.e. multiplying with ctt/chhh. The other two-loop dia-
grams occurring in our calculation have the same topologies as in the SM and therefore
can be derived from the SM results by rescaling of the couplings ct and chhh.

The one-loop part containing the Higgs-gluon contact interactions has been calcu-
lated in two ways: first, using GoSam [195, 196] in combination with a model file in
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Figure 6.5: Higgs-pair production in gluon fusion at NLO: Examples for real-emission dia-
grams at order g3s .

Universal FeynRules Output (ufo) format [197], derived from an effective Lagrangian
using FeynRules [198], and second analytically as a cross-check. GoSam is a software
for automated one-loop calculations which is able to automatically compute one-loop
QCD and/or electroweak corrections to user-defined processes. The software can be use
standalone or interfaced to Monte Carlo programs via the Binoth-Les-Houches-Accord
(BLHA). This tool allows to pursue phenomenological studies within and beyond the
SM. The software identifies tree-level diagram as LO and one-loop diagrams as NLO,
while when only the loop level is provided by the user, it recognizes the process as
loop-induced. When GoSam is used to study processes within an EFT framework,
the user needs to be very carefully because of the mixing of tree level and one-loop
diagrams at each order of the QCD or electroweak perturbative expansion.

As we are only considering QCD corrections, the renormalisation procedure is the
same as in the SM and is described in Ref. [180].

6.3.2 Real radiation

The real corrections consist of 5-point one-loop topologies with closed top quark loops
as well as tree-level diagrams, see Fig. 6.5. Both classes of diagrams have been generated
with GoSam and arranged such that interferences between the two classes are properly
taken into account.
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(a) (b)

(d) (e)

(c)

Figure 6.6: Higgs-pair production in gluon fusion at NLO: Examples for contributions that are
consistently neglected within our approximation. The dotted square indicates a
local term at chiral dimension 6 (two-loop order). See text for further explanation.

In order to isolate the singularities due to unresolved radiation, we use the same
framework as in Ref. [180], i.e. we use the Catani-Seymour dipole formalism [84],
combined with a phase space restriction parameter α as suggested in Ref. [199].

The various building blocks are assembled in a C++ program and integrated over the
phase space using the Vegas algorithm [200] as implemented in the Cuba library [201].

6.3.3 Parametrisation of the total cross section

To parametrise the deviations of the total cross section from the one in the SM, we write
the LO cross section in terms of the 15 coefficients A1, . . . , A15, following Refs. [142, 143]
in the following way

σ/σSM = A1 c
4
t +A2 c

2
tt +A3 c

2
t c

2
hhh +A4 c

2
gghc

2
hhh +A5 c

2
gghh +A6 cttc

2
t +A7 c

3
t chhhs

+A8 cttct chhh +A9 cttcgghchhh +A10 cttcgghh +A11 c
2
t cgghchhh +A12 c

2
t cgghh

+A13 ctc
2
hhhcggh +A14 ctchhhcgghh +A15 cgghchhhcgghh . (6.2)

At NLO the coefficients A1, . . . , A15 are modified and new terms appear. We find:

∆σ/σSM = A16 c
3
t cggh +A17 ctcttcggh +A18 ctc

2
gghchhh +A19 ctcgghcgghh

+A20 c
2
t c

2
ggh +A21 cttc

2
ggh +A22 c

3
gghchhh +A23 c

2
gghcgghh . (6.3)

6.3.4 Validation of the calculation

To validate our results, we have compared the Born-improved NLO HEFT results
calculated with our setup with the ones from Ref. [191], where we find agreement if we
use µr = µf = mhh = (ph1 + ph2)2, with ph1 and ph2 the momenta of the two Higgs

38



6.4 Phenomenological results

bosons, and MSTW2008 [202] PDFs at LO/NLO for the LO/NLO calculation, along
with the corresponding αs value.1

We also have cross-checked the results by using two independent codes, where the
only common parts are the ufo model files and the SM virtual two-loop corrections.

In addition, we have compared the leading order distributions, benchmark points and
fits of the coupling coefficients in the total cross section (see Eq. (6.2)) with the ones
given in Refs. [142–144]. We find agreement with Ref. [142] for all Ai coefficients at the
1% level. Comparing to Refs. [143, 144], we systematically find values that differ by
15-20% for coefficients linear in cggh and by ∼ 40% for the coefficient quadratic in cggh.
We also compared our results with the mhh distributions shown in Refs. [143, 144],
finding agreement for all benchmark points except for benchmark point 8. While in
Refs. [143, 144] a dip in the leading order distribution is found for benchmark point
8, we find no such dip. This is why we chose a different point of cluster 8 which does
show a dip, and which we call 8a.

6.4 Phenomenological results

In this section we present numerical results for benchmark points which were identified
in Ref. [143] to represent partitions of the BSM parameter space according to charac-
teristic shapes of differential distributions, in particular the Higgs boson pair invariant
mass distributions. All our results are for a centre-of-mass energy of

√
s = 14 TeV.

The results were computed using the PDF4LHC15 nlo 100 pdfas [73–76] parton dis-
tribution functions interfaced via LHAPDF [203], along with the corresponding value
for αs(µ), with αs(MZ) = 0.118. The masses of the Higgs boson and the top quark have
been set to mh = 125 GeV and mt = 173 GeV (pole mass), respectively. The widths of
the top quark (and the Higgs boson) have been set to zero. Bottom quarks are treated
as massless and therefore are not included in the fermion loops. The scale uncertainties
are estimated by varying the factorisation scale µF and the renormalisation scale µR
around the central scale µ0 = mhh/2, using the envelope of a 7-point scale variation.
The latter means that we use µR,F = cR,F µ0, where cR, cF ∈ {2, 1, 0.5}, and consider
each combination except the two extreme ones cR = 0.5, cF = 2 and cR = 2, cF = 0.5.
In the SM case, the combinations cR = cF = 0.5 and cR = cF = 2 always coincided
with the envelope of the 7 combinations to vary cR, cF .

1Our default settings are to use PDF4LHC15 [76] partonic distribution functions for both the LO and
the NLO results.

39



6 Higgs boson pair production

6.4.1 NLO cross sections and heat maps

In this subsection we will provide results for the coefficients defined in Eqs. (6.2) and
(6.3), i.e. for the expression

σNLO/σNLO
SM = A1 c

4
t +A2 c

2
tt +A3 c

2
t c

2
hhh +A4 c

2
gghc

2
hhh +A5 c

2
gghh +A6 cttc

2
t +A7 c

3
t chhh

+A8 cttct chhh +A9 cttcgghchhh +A10 cttcgghh +A11 c
2
t cgghchhh +A12 c

2
t cgghh

+A13 ctc
2
hhhcggh +A14 ctchhhcgghh +A15 cgghchhhcgghh

+A16 c
3
t cggh +A17 ctcttcggh +A18 ctc

2
gghchhh +A19 ctcgghcgghh

+A20 c
2
t c

2
ggh +A21 cttc

2
ggh +A22 c

3
gghchhh +A23 c

2
gghcgghh . (6.4)

We evaluated the coefficients in two different ways: determination via projections
and performing a fit, finding agreement of the results within their uncertainties. The
results of the projection method, including uncertainties, are summarised in Table 6.1.

In the following we show heat maps for the ratio σ/σSM , based on the results for
A1, . . . , A23. For the fixed parameters the SM values are used. Further we use σLO

SM =
19.85 fb, σNLO

SM = 32.95 fb.

The couplings are varied in a range which seems reasonable when taking into account
the current constraints on the Higgs coupling measurements [141, 204, 205], as well as
recent limits on the di-Higgs production cross section [206, 206–208].
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Figure 6.7: Iso-contours of σ/σSM : (a) cgghh and (b) cggh versus ctt.

In Fig. 6.7 we display iso-contours where the anomalous coupling ctt is varied in
combination with the Higgs-gluon contact interactions cgghh and cggh. We show the
ratio to the SM total cross section both at LO and at NLO. We can see that the NLO
corrections can lead to a significant shift in the iso-contours. It also becomes apparent
that the cross sections are more sensitive to variations of ctt than to variations of the
contact interaction cggh.
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A coeff LO value LO uncertainty NLO value NLO uncertainty

A1 2.08059 0.00163127 2.23389 0.0100989

A2 10.2011 0.00809032 12.4598 0.0424131

A3 0.27814 0.00187658 0.342248 0.0153637

A4 0.314043 0.000312416 0.346822 0.00327358

A5 12.2731 0.0101351 13.0087 0.0962361

A6 −8.49307 0.00885261 −9.6455 0.0503776

A7 −1.35873 0.00148022 −1.57553 0.0136033

A8 2.80251 0.0130855 3.43849 0.0771694

A9 2.48018 0.0127927 2.86694 0.0772341

A10 14.6908 0.0311171 16.6912 0.178501

A11 −1.15916 0.00307598 −1.25293 0.0291153

A12 −5.51183 0.0131254 −5.81216 0.134029

A13 0.560503 0.00339209 0.649714 0.0287388

A14 2.47982 0.0190299 2.85933 0.193023

A15 2.89431 0.0157818 3.14475 0.148658

A16 −0.00816241 0.000224985

A17 0.0208652 0.000398929

A18 0.0168157 0.00078306

A19 0.0298576 0.000829474

A20 −0.0270253 0.000701919

A21 0.0726921 0.0012875

A22 0.0145232 0.000703893

A23 0.123291 0.00650551

Table 6.1: Results for the coefficients defined in Eq. (6.4). The uncertainties are obtained
from the uncertainties on the total cross sections entering the projections, using
error propagation which neglects correlations between these cross sections.

Fig. 6.8 shows variations of the triple Higgs coupling chhh in combination with cggh
and ctt. We observe that the deviations from the SM cross section can be substantial,
and again we see a rapid variation of the cross section when changing ctt.

In Fig. 6.9 we display variations of ct versus chhh, and variations of ct versus ctt.
We see that values of ct around 2.0 in combination with large negative values of chhh
can enhance the cross section by two orders of magnitude. Current experimental limits
suggest that the total cross section for Higgs boson pair production does not exceed
about 13–24 times the SM value, assuming a SM-like shape in the distributions [206,
207]. Together with the prospects that ct will be increasingly well constrained in the
future, e.g. from measurements of tt̄H production [5, 30], this should allow to constrain
some of the parameter space for chhh.2 Fig. 6.10 shows variations of cgghh versus cggh

2Note that ct and cggh already receive indirect constraints from single Higgs boson processes, as they
enter in gg → h and h→ γγ.
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Figure 6.8: Iso-contours of σ/σSM : (a) cggh versus chhh and (b) ctt versus chhh.

and ct. We observe that the impact on the NLO corrections is milder in this case.

In Fig. 6.11 we show the K-factors, i.e. the ratio of the NLO cross section yield to the
LO cross section, as a function of the coupling parameters, with the others fixed to their
SM values. It shows that the rather flat K-factors which have been found [191, 193] in
the mt → ∞ limit (flat with respect to variations of one of the coupling parameters)
show a much stronger dependence on the coupling parameters once the full top quark
mass dependence is taken into account.

6.4.2 Cross sections and distributions at several benchmark points

In the following we will show results for the benchmark points defined in Ref. [143],
except for benchmark point 8, where we choose a different one (denoted as “outlier”
number 5 for cluster 8 in Ref. [144]) which has a more characteristic shape, and which
we call 8a. The benchmark points translated to our conventions are listed in Table 6.2.

The conventions for the definition of the couplings between our Lagrangian, given
in Eq. (7.1), and the one of Ref. [143] are slightly different. In Table 6.3 we list the
conversion factors to translate between the conventions.

6.4.2.1 Total cross sections

We first show the values for the total cross sections, together with their statistical
uncertainties and the uncertainties from scale variations. We should point out that the
cross sections for benchmark points B3, B4 and B12 are larger than the limits measured
in the bb̄γγ decay channel [206, 208]. However, within the same cluster [144], i.e. the
set of couplings which lead to a similar shape of the mhh distribution, one can easily
find combinations of couplings where the value of the total cross section is below the
experimental exclusion bound. For example, taking the point chhh = 1, ct = 1, ctt =
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Figure 6.9: Iso-contours of σ/σSM : (a) ct versus chhh and (b) ct versus ctt.

0, cggh = 4/15, cgghh = −0.2 in cluster 4 leads to a cross section of about 1.8 times the
SM cross section, still far from being excluded, see Fig. 6.16.

The large differences in the statistical uncertainties for the different benchmark points
are due to the fact that the results for the virtual two-loop part are based on rescal-
ing of the SM numerical results, which are distributed differently in the phase space.
Therefore the statistical uncertainties are largest for benchmark points where the dis-
tribution in phase space is very different from the SM case. For example, benchmark
10 has a large differential cross section at low mhh values, where the SM statistics is
very low. This translates into the large statistical uncertainty for benchmark 10.

6.4.2.2 mhh and pT,h distributions

Now we consider differential cross sections for the 12 benchmark points. We show the
Higgs boson pair invariant mass mhh distribution and the transverse momentum pT,h
distribution of one (any) of the Higgs bosons (see Sec. 3.3). For each benchmark point
we show the full NLO result in red, and compare it to the two approximations “Born-
improved NLO HEFT” (purple) and FTapprox (green). In the FTapprox everything
but the virtual contribution is computed in the full theory. The virtual amplitudes
are treated in the same way of the ”Born-improved” approximation. The leading order
(yellow) as well as the SM results are also shown (blue NLO, black LO). The lower ratio
plot shows the ratio of the two approximate results to the full NLO result. The upper
ratio plot shows the differential BSM K-factor, i.e. NLOBSM/LOBSM, both evaluated
with the same PDFs.

Fig. 6.12 corresponds to a benchmark point with no Higgs-gluon contact interactions,
but an enhanced triple Higgs coupling and a nonzero tt̄hh interaction with ctt < 0. The
total cross section is about 6 times the SM cross section, and the shape of the mhh

distribution is completely different from the SM. In fact, one can show analytically that
the LO cross section in the mt →∞ limit exactly vanishes near mhh = 364 GeV, which
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Figure 6.10: Iso-contours of σ/σSM : (a) cgghh versus cggh and (b) cgghh versus ct.

relates to the dip in the distribution. The huge enhancement at low mhh values is due
to the large value of chhh.

Fig. 6.13, corresponding to benchmark 2, shows a very different behaviour. The result
is very much suppressed in the region where the SM shows a peak, while there is a large
enhancement in the tail of both the mhh and the pT,h distributions. The enhancement
in the tail is mainly due to the nonzero cgghh value, as the amplitude proportional to
cgghh grows like ŝ [142]. We also notice that the approximations “Born-improved NLO
HEFT” and FTapprox cannot describe the pattern around the 2mt threshold, where the
nonzero value of ctt seems to play a significant role. The K-factor for benchmark 2 is
very non-homogeneous around the dip in the mhh distribution, and can reach up to a
factor of three. This is a clear example where rescaling the LO result with a K-factor
obtained from higher order calculations in the HEFT approximation would lead to very
different results.

Benchmark point 3, shown in Fig. 6.14, has the same values for chhh and ct as bench-
mark point 2 (the SM values), but the distributions show a very different behaviour.
As in the SM, there is a peak around the 2mt threshold, but the cross section is largely
enhanced, not only in the peak region. As mentioned above, with a total cross section
of about 32 times the SM NLO cross section, this parameter point is above the current
limit deduced at 95% CL from the measured pp→ HH → γγbb̄ cross section [206, 208].

Benchmark point 4, shown in Fig. 6.15, has negative values for chhh and ctt, a slightly
encreased Yukawa coupling ct, and no Higgs-gluon contact interactions. This combina-
tion removes the destructive interference between different types of diagrams present
in the SM, and therefore leads to a very large cross section. The differential K-factor
is about 2, as for the other benchmarks, and rather constant over the whole mhh range
(whereas for benchmark 2, the differential K-factor is far from being homogeneous).
Benchmark 4 is the one with the largest cross section of all the considered benchmark
points, with a total cross section of about 270 times the SM one. This point in param-
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Figure 6.12: Higgs boson pair invariant mass distribution and transverse momentum distri-
bution of one of the Higgs bosons for benchmark point 1, chhh = 7.5, ct = 1, ctt =
−1, cggh = cgghh = 0. The ratio plot with the K-factor shows NLOBSM/LOBSM.
The lower ratio plot shows the ratios (Born-improved NLO HEFT)/NLOBSM

(purple) and FTapprox/NLOBSM (green).

eter space is excluded already. Therefore, in Fig. 6.16, we also show results for another
point from cluster 4, defined by chhh = 1, ct = 1, ctt = 0, cggh = 4/15, cgghh = −0.2,
which leads to a similar shape as benchmark point 4, but to σ/σSM = 1.8, and hence
is not yet excluded. This parameter point also has the interesting feature that the dis-
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Benchmark chhh ct ctt cggh cgghh
1 7.5 1.0 −1.0 0.0 0.0

2 1.0 1.0 0.5 −1.6
3 −0.2

3 1.0 1.0 −1.5 0.0 0.8
3

4 −3.5 1.5 −3.0 0.0 0.0

5 1.0 1.0 0.0 1.6
3

1.0
3

6 2.4 1.0 0.0 0.4
3

0.2
3

7 5.0 1.0 0.0 0.4
3

0.2
3

8a 1.0 1.0 0.5 0.8
3 0.0

9 1.0 1.0 1.0 −0.4 −0.2

10 10.0 1.5 −1.0 0.0 0.0

11 2.4 1.0 0.0 2.0
3

1.0
3

12 15.0 1.0 1.0 0.0 0.0

SM 1.0 1.0 0.0 0.0 0.0

Table 6.2: Benchmark points used for the distributions shown below.

EWChL Eq. (7.1) Ref. [143]

chhh κλ
ct κt
ctt c2

cggh
2
3cg

cgghh −1
3c2g

Table 6.3: Translation between the conventions for the definition of the anomalous couplings.

tributions for NLO SM and LO BSM almost coincide. However, there is no degeneracy
with the SM distribution once the NLO corrections are taken into account.

Fig. 6.17 shows distributions for benchmark point 5, where ctt is zero and chhh and ct
are as in the SM, while the Higgs-gluon interactions are nonzero. Similar to benchmark
point 2, we observe a dip near mhh = 350 GeV, but the LO HEFT amplitude does not
vanish there. The total cross section for benchmark point 5 is very similar to the SM
one. This is an example where differential measurements are crucial to establish a
clear BSM signal. The pT,h distribution shows the rather unexpected behaviour that
FTapprox and Born-improved HEFT drop very rapidly at large values of pT,h. The
reason is that the rescaling factor BFT /BHEFT becomes very large as the energy
increases, because BHEFT does not grow with ŝ for this combination of couplings, but
becomes very small. Therefore the negative virtual corrections are multiplied by a very
large factor, leading to the fall-off of the green and purple curves in the tail of the pT,h
distribution.

Benchmark point 6, shown in Fig. 6.18, also shows a dip, related to the fact that the
LO HEFT amplitude exactly vanishes at mhh = 429 GeV. In addition it has a large
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Benchmark σNLO [fb] K-factor scale uncert. [%] stat. uncert. [%] σNLO
σNLO,SM

B1 194.89 1.88 +19
−15 1.6 5.915

B2 14.55 1.88 +5
−13 0.56 0.4416

B3 1047.37 1.98 +21
−16 0.15 31.79

B4 8922.75 1.98 +19
−16 0.39 270.8

B5 59.325 1.83 +4
−15 0.36 1.801

B6 24.69 1.89 +2
−11 2.1 0.7495

B7 169.41 2.07 +9
−12 2.2 5.142

B8a 41.70 2.34 +6
−9 0.63 1.266

B9 146.00 2.30 +22
−16 0.31 4.431

B10 575.86 2.00 +17
−14 3.2 17.48

B11 174.70 1.92 +24
−8 1.2 5.303

B12 3618.53 2.07 +16
−15 1.2 109.83

SM 32.95 1.66 +14
−13 0.1 1

Table 6.4: Total cross sections at NLO (second column) including the K-factor (third column),
scale uncertainties (4th column) and statistical uncertainties (5th column) and the
ratio to the SM total NLO cross section (6th column).

enhancement of the low mhh region due to the value chhh = 2.4. Note that this value
for chhh is very close to the point where the total cross section as a function of chhh
goes through a minimum if all other couplings are kept SM-like.

Benchmark point 7, shown in Fig. 6.19, has the same values for cggh, cgghh, ct and ctt
as benchmark point 6, but a different value for chhh (chhh = 5). This makes the dip
disappear completely, leading to a total cross section which is about 6.7 times larger
than the one for benchmark 6, and a large enhancement of the low mhh and low pT,h
regions. The distributions also show that the full top quark mass dependence in the
“triangle-type” diagrams containing chhh, which dominate the low mhh region, seems
to play a significant role, as the full NLO result is quite different from the approximate
results.

Benchmark point 8a, displayed in Fig. 6.20, again shows a characteristic dip just
before the 2mt threshold. It is also an example where the total cross section is very
similar to the SM one, but the shape of both the mhh and the pT,h distributions clearly
discriminates the SM from the BSM case.

Benchmark point 9, displayed in Fig. 6.21, shows a large enhancement in the tails
of the distributions, similar to benchmarks 2 and 3, which can be attributed mainly to
the rather large value of cgghh, in combination with a non-zero value of ctt.

For benchmark point 10, shown in Fig. 6.22, the large value of chhh = 10 completely
dominates the shape, leading to a large enhancement in the low mhh and pT,h regions.
With a value for the total cross section which is about 17 times larger than the SM
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Figure 6.13: Same as Fig. 6.12 but for benchmark point 2, chhh = 1, ct = 1, ctt = 0.5, cggh =
−8/15, cgghh = −0.2.
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Figure 6.14: Same as Fig. 6.12 but for benchmark point 3, chhh = 1, ct = 1, ctt = −1.5, cggh =
0, cgghh = 4/15.

cross section, benchmark point 10 is still allowed by the limits given by CMS [206],
where separate limits for the various benchmark points are given.

Benchmark point 11, displayed in Fig. 6.23, has the same value for chhh as benchmark
6, which is the one where the destructive interference would be maximal if all other
couplings are kept SM-like. However, the destructive interference is compensated by
the large and non-zero values of cggh and cgghh, such that the total cross section for
benchmark 11 is about 5 times larger than the SM cross section. In view of the
fact that this benchmark point is dominated by the Higgs-gluon contact interactions
parametrised by cggh and cgghh, it is not a surprise that the approximations FTapprox

and Born-improved HEFT agree quite well with the full calculation, as all three curves
have these contributions in common, while the part which differs is damped by the
destructive interference.
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Figure 6.15: Same as Fig. 6.12 but for benchmark point 4, chhh = −3.5, ct = 1.5, ctt =
−3, cggh = cgghh = 0.

Benchmark point 12, shown in Fig. 6.24, has all couplings SM-like except ctt = 1 and
chhh, where for the latter an extreme value of chhh = 15 is chosen, leading to a cross
section about 100 times larger than the SM cross section. This scenario is already ruled
out by current LHC measurements.

All the distributions show that the NLO K-factors are large, being about a factor
of two or larger. Therefore it is essential to take NLO corrections into account. The
approximations where the top quark mass dependence is only partly taken into account
also differ substantially in the shape from the full result for some of the benchmark
points, which emphasises the importance of including the full top quark mass depen-
dence.

In Fig. 6.25, we show the LO and NLO scale variation bands for benchmark point
5. This benchmark point is an example where the scale variation band of the 7-point
scale variation mainly decreases the differential cross section over almost the whole
mhh range, where the upper limit of the scale variation band is mostly given by the
combination µF = µ0/2, µR = µ0, for some of the bins also by µF = µ0, µR = 2µ0. In
the SM, the upper limit of the 7-point scale variation band is given by µF = µR = µ0

for all bins of the mhh distribution. We further notice that LO and NLO scale variation
bands do not overlap for the mhh distribution. However, this feature is also present in
the SM.

6.4.2.3 Discussion of the benchmark points

Attempting a more global view of the behaviour of the mhh distribution as a function
of the five BSM parameters, we can identify the following patterns: a dip in the mhh

distributions is present for benchmark points 1, 2, 5, 6 and 8a. The presence of a
non-zero value for ctt or cggh is a characteristic feature of many parameter space points
that show a dip in the mhh distribution, but this is not a necessary condition for the
presence of the dip. For instance, points with chhh ' 2.5ct and the other couplings
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Figure 6.16: A point from cluster 4, chhh = 1, ct = 1, ctt = 0, cggh = 4/15, cgghh = −0.2,
which leads to a similar shape as benchmark point 4, but to a much smaller
cross section.

vanishing also show such a dip. For the subset (1, 2, 6) of the above points there is
a mhh value where the LO amplitude in the mt → ∞ limit exactly vanishes, which
is a feature that can cause the dip. The low mhh region is enhanced for benchmark
points 1, 6, 7, 10, 11, 12, which is mainly due to the large value of chhh, as the matrix
element squared proportional to c2

hhh for large ŝ behaves like m2
h/ŝ log2

(
m2
t /ŝ
)

[142]
and therefore dominates at low values of ŝ. The term proportional to c2

tt for large ŝ
behaves like log2

(
m2
t /ŝ
)

and seems to partially cancel the logarithmic terms from chhh,
such that benchmark 4 has a SM-like shape even though the absolute value for chhh is
large. The matrix element squared proportional to cgghh grows like ŝ, this is why for
benchmark points which have large values of cgghh, the tail of the mhh distribution is
enhanced.

In order to assess the effect of a variation of ctt while the other couplings are fixed
to their SM values, we show mhh distributions for the ctt values ctt = −2,−1, 0, 1, 2
in Fig. 6.26. The minimum of the cross section is at ctt ∼ 0.25. We observe that the
enhancement of the cross section as |ctt| increases is growing more rapidly for negative
values of ctt, see also Fig. 6.8b. The shape changes compared to the SM are most
pronounced in the low mhh region.

6.5 Conclusions

We have calculated the NLO QCD corrections with full mt dependence to Higgs boson
pair production within the framework of the electroweak chiral Lagrangian, a non-
linearly realised Effective Field Theory in the Higgs sector, which allows to focus on
anomalous Higgs boson properties. This restricts the BSM parameter space to five
possibly anomalous couplings, chhh, ct, ctt, cggh and cgghh.
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Figure 6.17: Same as Fig. 6.12 but for benchmark point 5, chhh = 1, ct = 1, ctt = 0, cggh =
8/15, cgghh = 1/3.
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Figure 6.18: Same as Fig. 6.12 but for benchmark point 6, chhh = 2.4, ct = 1, ctt = 0, cggh =
2/15, cgghh = 1/15.

We gave a parametrisation of the total NLO cross section and of the mhh distribution
in terms of 23 coefficients of all combinations of these couplings, and also showed iso-
contours of LO and NLO cross section ratios σ/σSM for two-dimensional projections
of the parameter space. These studies showed that the cross sections are very sensitive
to variations of ctt, the effective tt̄hh coupling, and that the K-factors can be large and
non-uniform as the anomalous couplings are varied.

We have also shown differential cross sections for mhh and pT,h at several benchmark
points which exhibit characteristic shapes of the distributions. The differential K-
factors for the mhh distributions are of the order of two, but can reach up to three and
can be very non-uniform over the mhh range. This means that a rescaling of the LO
distribution with a global K-factor can be rather misleading.
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Figure 6.19: Same as Fig. 6.12 but for benchmark point 7, chhh = 5, ct = 1, ctt = 0, cggh =
2/15, cgghh = 1/15.
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Figure 6.20: Same as Fig. 6.12 but for benchmark point 8a, chhh = 1, ct = 1, ctt = 0.5, cggh =
4/15, cgghh = 0.

Some combinations of couplings lead to a huge enhancement of the cross section,
others lead to a total cross section which is nearly degenerate to the SM one, but the
corresponding mhh and pT,h distributions have a shape which is very different from the
SM one, and therefore should have discriminating power even with low statistics, which
emphasises the importance of measuring distributions.

Our analytical parametrisation of the total NLO cross section and of the mhh distri-
bution in terms of all possible combinations of anomalous couplings should open the
door to further studies of the considered BSM parameter space and lead to refined
limits on anomalous Higgs boson couplings in the not too distant future.
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Figure 6.21: Same as Fig. 6.12 but for benchmark point 9, chhh = 1, ct = 1, ctt = 1, cggh =
−0.4, cgghh = −0.2.
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Figure 6.22: Same as Fig. 6.12 but for benchmark point 10, chhh = 10, ct = 1.5, ctt =
−1, cggh = cgghh = 0.
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Figure 6.23: Same as Fig. 6.12 but for benchmark point 11, chhh = 2.4, ct = 1, ctt = 0, cggh =
2/3, cgghh = 1/3.

0

5

10

15

20

d
/d

m
hh

 [f
b/

Ge
V]

NLO 
B-i. NLO HEFT
NLO FTapprox
LO
NLO SM
LO SM

1.0
1.5
2.0
2.5

K f
ac

  

300 400 500 600 700 800
mhh[GeV]

0.8

1.0

ra
tio

N
LO

BS
M

(a)

0

5

10

15

20

d
/d

p T
,h

 [f
b/

Ge
V]

NLO 
B-i. NLO HEFT
NLO FTapprox
LO
NLO SM
LO SM

1
2
3

K f
ac

  

0 50 100 150 200 250 300 350 400 450 500 550 600
pT, h[GeV]

0.6
0.8
1.0
1.2
1.4

ra
tio

N
LO

BS
M

(b)

Figure 6.24: Same as Fig. 6.12 but for benchmark point 12, chhh = 15, ct = 1, ctt = 1, cggh =
cgghh = 0.
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Figure 6.25: Scale variations for benchmark point 5.

54



6.5 Conclusions

300 400 500 600 700 8000

1

2

3

4

5

6

7

8

d
/d

m
hh

 [f
b/

Ge
V]

NLO ctt = 2.0 
NLO ctt = 1.0 
NLO ctt = 1.0 
NLO ctt = 2.0 
NLO SM 

300 400 500 600 700 800
mhh[GeV]

101

102

Ra
tio

 to
 S

M
 

Figure 6.26: Higgs boson pair invariant mass distributions for various values of ctt.
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7 Higgs boson pair production and mhh

distribution shape analysis

We have shown in the previous Chapter that even small anomalous couplings can lead
to characteristic shape changes of the invariant mass distribution mhh of Higgs boson
pair production production. Therefore it is important to investigate in which way the
shapes are influenced by a certain configuration in the coupling parameter space. The
chapter is adapted from [31] where the author of this thesis is a coauthor.

The idea of a shape analysis has been pursued already in various ways based on LO
studies, see e.g. Refs. [142–145, 209, 210]. In Ref. [143], a cluster analysis is proposed
to define 12 benchmark points ( presented in Chapter 6) in a 5-dimensional non-linear
EFT parameter space, which result from clusters of “similar” shapes. The similarity
measure in this case is based on a binned likelihood ratio using LO predictions for the
observables mhh, pT,h and the cosine of the polar angle of one Higgs boson with respect
to the beam axis cos θ∗ .

As a function of the 5-dimensional coupling parameter space, the mhh distribution
can have a few characterising features, such as an enhanced low-mhh region, a double
peak, a single peak or an enhanced tail. Some of these features can be attributed
rather easily to a certain anomalous coupling. For example, an enhanced low-mhh

region is naturally produced by values of |chhh| > 3, as this leads to a dominance of the
triangle-type contributions, which are suppressed by 1/ŝ and therefore die out quickly
for larger mhh values. Other features of the mhh-shape, like a double peak or a SM-like
distribution, are harder to attribute to a certain coupling configuration, as there are a
multitude of configurations leading to such shapes. This is also reflected in the cluster
analysis proposed in Ref. [144], where (a) very different coupling configurations can end
up in the same cluster, and (b) the same cluster can contain shapes which “by eye”
look quite different (for example “double peak” and “single peak”).

Therefore it is desirable to seek for alternative methods to extract information about
the underlying parameter space from the shape of distributions in Higgs boson pair
production. In this Chapter we first classify the shapes of Higgs boson pair invariant
mass distributions, calculated at full NLO, into four characteristic types. We visu-
alise the underlying 5-dimensional EFT parameter space producing these shape types,
projecting onto 2-dimensional subspaces. We also comment on the shape of the pT,h
distribution. Then we refine the shape analysis, applying an unsupervised learning
algorithm based on an autoencoder to identify patterns in the shapes of the mhh dis-
tribution. We use the KMeans clustering algorithm from scikit-learn [211] and ask
for a classification of the shapes into four to eight clusters. The unsupervised classi-
fication into four clusters is compared to the analysis based on predefined clusters for
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validation. Then the number of clusters is increased with the aim to find an “optimal”
number of clusters, in the sense that it captures distinct shape features, but does not
focus on minor details. One aim of this study is to offer an alternative to the cluster
analysis proposed in Refs. [143–145] and earlier work. While the benchmark points
representing a cluster are isolated points in the parameter space, the procedure we
propose here allows us to associate certain shapes more straightforwardly with distinct
regions in the parameter space.

Shape analysis with machine learning has been applied already to constrain anoma-
lous Higgs-vector boson couplings in HZ production [212].

This chapter is structured as follows: In Section 7.1 we explain the framework our
data samples are based on. We define four different shape types for the mhh distribution
and visualise the parameter space underlying the predefined shape types. In Section
7.2.1 we describe our cluster analysis based on unsupervised learning and show how
the clusters found by this procedure relate to the underlying parameter space, before
we conclude.

7.1 Classification through predefined shape types

As a starting point we use the effective Lagrangian in a the EWChL framework relevant
for Higgs boson pair production [112] already presented in Chapter 6:

L ⊃ −mt

(
ct
h

v
+ ctt

h2

v2

)
t̄ t− chhh

m2
h

2v
h3 +

αs
8π

(
cggh

h

v
+ cgghh

h2

v2

)
GaµνG

a,µν . (7.1)

In the SM ct = chhh = 1 and ctt = cggh = cgghh = 0.
We produce our data using the differential NLO mhh parametrised in terms of co-

efficients Ai for each coupling combination occurring in the (differential) NLO cross
section, which allows for a fast evaluation:

dσ

dmhh
=A1c

4
t +A2c

2
tt +A3c

2
t c

2
hhh +A4c

2
ghhc

2
hhh +A5c

2
gghh +A6cttc

2
t +A7c

3
t chhh

+A8cttctchhh +A9cttcgghchhh +A10cttccgghh +A11c
2
t cgghchhh +A12c

2
t cgghh

+A13ctc
2
hhhcghh +A14ctchhhcgghh +A15cgghchhhcgghh +A16c

3
t cggh +A17ctcttcggh

+A18ctc
2
gghchhh +A19ctcgghcgghh +A20c

2
t c

2
ggh +A21cttc

2
ggh +A22c

3
gghchhh

+A23c
2
gghcgghh . (7.2)

The coefficients Ai are evaluated in bins of width 20 GeV from 250 GeV to 1050 GeV,
i.e. for 40 bins. The median of the statistical uncertainties of the differential coefficients
Ai does not exceed 3%, however in the bins beyond mhh & 650 GeV some Ai coefficients
have uncertainties in the 20-30% range.

7.1.1 Definition of shape types

We distinguish four types of characteristic shapes for the Higgs boson invariant mass
distribution mhh:

58



7.1 Classification through predefined shape types

Figure 7.1: The four kinds of shapes defined in our analyzer to classify the mhh distributions.
The colours correspond to the colours shown in Figs. 7.2 to 7.6.

1. Enhanced low mhh region, constantly falling distribution as mhh increases.

2. Double peak with peaks separated by more than 100 GeV.

3. Single peak near the tt̄ production threshold at mhh ∼ 346 GeV.

4. Double peak with peaks separated by less than 100 GeV.

Examples of the four shape types are shown in Fig. 7.1. According to our classification
the Standard Model shape is contained in distributions of kind 3. Certainly there is
some arbitrariness in the definition of these shapes. For example, shapes of kind 4
would move to kind 1 or 3 for bin widths ≥ 100 GeV. However, the other three shape
types are quite robust and would be clearly distinguishable experimentally.

Based on the parametrisation in Eq. (7.2), the normalised differential cross section
is computed for a 5-dimensional grid in the coupling parameter space and according
to its behaviour is classified into one of the four shape types. For this purpose we
wrote a function, called “analyzer” in the following, that checks the slopes of the
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distribution and puts it into the corresponding class. At this stage the shape classes
are mutually exclusive. For each point in the coupling parameter space, we also consider
the variations of the result in each bin due to inclusion of the statistical uncertainties
on the coefficients Ai. If the shape obtained after these variations belongs to a different
kind, we exclude that point from the data set. We find that for shape type 4 about
20% of points fall into this category and are therefore excluded, while for shape type
2 it is about 8%, and for types 1 and 3 it is less than 5%. Scale variations have not
been included, as they tend to be rather uniform over the whole mhh range [184] and
therefore would not significantly modify our shape analysis.

7.1.2 Classification of mhh distributions

Our results for the gg → hh cross sections at NLO are produced for a centre-of-mass
energy of

√
s = 13 TeV, using PDF4LHC15 nlo 100 pdfas parton distribution functions

interfaced via LHAPDF, along with the corresponding value for αs. The masses have
been set to mh = 125 GeV, mt = 173 GeV and the top quark width has been set to
zero.

We study the differential cross section as a function of five anomalous couplings,
varying them in the ranges specified below,

ct ∈ [0.5, 1.5], chhh ∈ [−3, 8], ctt ∈ [−3, 3], cggh, cgghh ∈ [−0.5, 0.5] . (7.3)

The ranges are motivated by current experimental constraints. For chhh we use a
smaller range than suggested by experiment in order to focus more on the range where
interesting shape features are present. In order to visualise the results, we project
out 2-dimensional slices of the 5-dimensional parameter space, fixing the other three
couplings to their SM values. This leads to a total of ten configurations. For each of
these ten projections we generated a set of 106 parameter pairs. Feeding them through
our analyzer we obtain the shape type produced by the given point in the coupling
parameter space. The results are shown in Figs. 7.2–7.6. The white diamonds denote
the Standard Model point in the parameter space.

In Fig. 7.2 we display variations of the top quark Yukawa coupling ct versus the
trilinear Higgs coupling chhh (left) and the effective gluon-Higgs couplings, cggh versus
cgghh (right). In all the figures where two couplings are varied, the other three couplings
are set to their SM values. It can be clearly seen that the shapes of kind 1, i.e. shapes
with an enhanced low mhh region (marked in black), are resulting from larger chhh
values. The total cross section as a function of chhh is a parabola with a minimum
around chhh ≈ 2.4, while for |chhh| & 3 and ct = 1 the distribution is enhanced in
the low mhh region, where the triangle-type contributions dominate. Larger/smaller
values of ct shift this behaviour towards larger/smaller values of chhh because they
enhance/decrease the box-type contributions. For shapes of kind 2, i.e double peaks
with a separation of more than 100 GeV (green), we find that such a shape can be
produced for coupling values which are rather close to the SM values. Shapes of kind
3 (red) are SM-like. They only cover about one quarter of the ct − chhh plane. Shapes
of kind 4 (blue) have a double peak separated by less than 100 GeV. For ctt = cggh =
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7.1 Classification through predefined shape types

Figure 7.2: The parameter regions leading to each predefined shape type in the ct−chhh (left)
and cggh − cgghh (right) parameter spaces. The black area denotes shapes of kind
1 (enhanced low mhh region; green: kind 2 (well separated double peaks), red:
kind 3 (SM-like), blue: kind 4 (close-by double peaks). The white diamonds mark
the Standard Model point.

cgghh = 0, such structures only occur for negative values of chhh, over the whole allowed
ct range.

Considering variations of cggh versus cgghh, shown in the right-hand panel of Fig. 7.2,
we find only shapes of kind 2 (green) and SM-like shapes (red). The existence of kind
2 shapes means that a double peak structure could be produced solely by effective
Higgs-gluon couplings, while keeping chhh, ct and ctt at their SM values. However, for
the more likely case that cggh deviates only slightly from zero [213], and so does cgghh,
these couplings do not distort the SM shape significantly.

Figure 7.3: The parameter regions associated to each shape type in the ct − ctt (left) and
chhh − ctt (right) parameter spaces. For the colour code we refer to Fig. 7.1.

Variations of ct versus ctt and chhh versus ctt are shown in Fig. 7.3. Varying only ct
and ctt, the shapes remain mainly SM-like. A small area in the ct − ctt plane however
contains doubly peaked mhh distributions, which thus can originate from anomalous
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top-Higgs couplings only, while the trilinear Higgs coupling remains fixed at its SM
value.

Turning to chhh versus ctt, displayed in the right-hand panel of Fig. 7.3, we find that
for kind 1 and kind 4 shapes the parameter regions are split into two disconnected
parts. While shapes of kind 1 are favoured by large values of chhh, it becomes clear
that large values of ctt, also related to triangle-type diagrams, can counterbalance this
effect, because the top right corner is not a parameter region producing shapes of kind
1. If both chhh and ctt are large, it is more likely to produce a double peak structure
with close-by peaks (kind 4, blue). Further we see that shapes of kind 2 (well separated
double peak structure, green) can be produced by values of ctt and chhh which are rather
close to the SM values.

Figure 7.4: The parameter regions associated to each shape type in the ct − cggh (left) and
ct − cgghh (right) planes.

Figure 7.5: The parameter regions associated to each shape type in the chhh− cggh (left) and
chhh − cgghh (right) planes.

Fig. 7.4 shows variations of ct versus cggh (left) and ct versus cgghh (right). The
parameter space is dominated by SM-like shapes (red), however double peaks can occur
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as well (green). We also see that cgghh acts similarly to cggh in what concerns the shape.

Figure 7.6: The parameter regions associated to each shape type in the ctt − cggh (left) and
ctt − cgghh (right) planes.

For variations of chhh versus cggh, shown in Fig. 7.5 (left), all four shape types can
occur. The parameter region related to kind 1 (enhanced low mhh, black) is at high
values of chhh as expected, and the kind 2 shapes (well separated double peak, green)
can be seen as a transition from kind 1 to kind 3. Close-by double peaks (kind 4, blue)
however are mostly associated to negative chhh values. Note that a similar pattern can
be found in Fig. 7.2 (left). Variations of chhh versus cgghh, shown in Fig. 7.5 (right),
are similar in the overall behaviour, and again show that cgghh and cggh have a similar
impact on the shape.

Fig. 7.6 shows variations of ctt versus cggh (left) and ctt versus cgghh (right). We
observe that SM-like shapes (red) are preferred. However, doubly peaked structures
are also possible for ctt values not too far from the SM value (ctt = 0). We also notice
the similarity to Fig. 7.3 (left). The behaviour with respect to cgghh is again similar.

Note that in SMEFT, cggh and cgghh are related, so this behaviour would necessarily
be the case. However we will see later that a shape classification algorithm based on
unsupervised learning is able to detect shape differences which distinguish effects of
cggh and cgghh. An interesting feature is also that kind 1 (black) and kind 4 (blue)
shapes appear only when we modify the value of chhh: for chhh = 1 shapes of kind 1
never occur, and shapes of kind 4 are very unlikely. Further, the kind 4 shapes tend to
point to (moderately) negative values of chhh as long as ctt is close to zero, as can be
seen from Figs. 7.2, 7.3 and 7.5.

7.1.3 Classification of pT,h distributions

So far we have studied mhh distributions, assuming that they are very well suited
to study the sensitivity to shape changes induced by anomalous couplings. In order
to verify that we do not miss out interesting features in the transverse momentum
distributions, we also present a study of the pT,h distributions, but only at LO, to
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assess the salient features. The main difference with respect to the mhh case is that in
the pT,h analysis we could identify only two kinds of clearly distinct shapes: single peak
(SM-like, which we denote as ‘pT,h kind 3’) and double peak, with peaks separated by
at least 30 GeV (denoted as ‘pT,h kind 2’). Examples of such pT,h shapes are shown in
Fig. 7.7.

Figure 7.7: Examples of pT,h distributions with a single or double peak.

Figure 7.8: The parameter space associated to each shape type in the ct− chhh and chhh− ctt
planes for the pT,h distribution.

The parameter spaces leading to singly or doubly peaked shapes are shown in Fig. 7.8
for the ct − chhh and chhh − ctt configurations. The parameter region related to shapes
with a well separated double peak (green) is similar to the mhh case, as one can see
comparing with Figs. 7.2 and 7.3. This indicates that the underlying parameter space
leads to similar characteristics for the distributions differential in pT,h and mhh, however
the pT,h distribution is less sensitive than the mhh distribution.
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7.2 Classification and clustering by unsupervised learning

7.2.1 Unsupervised learning procedure

To assess the bias introduced by the definition of the four shape types, and to find
a more flexible classification which can be extended easily to more than four shape
types, we approach the classification problem using unsupervised learning techniques.
We construct a classification of the shapes of the mhh distribution into distinct types,
where we do not predefine what the types should look like. For this purpose we use a
Multilayer autoencoder to find common patterns in the data and thus achieve a com-
pressed latent space representation. The setup is implemented using Keras [214] and
TensorFlow [215]. As input data we use 30 bins of width 20 GeV for the normalised
mhh distributions. We train the network based on a set of 105 distributions, retain-
ing 10% for the validation. The encoder architecture, i.e. the part compressing the
array information, is composed of two dense layers with 20 nodes and a middle layer
with 4 nodes, the latter defining the length of the array containing the compressed
information. The decoder architecture, which reconstructs the original array from the
compressed one, is composed of two dense layers of 20 nodes and an output layer of
the length of the input array.

To test how stable our results are against variations of the training data set and
the encoding procedure, and to reduce uncertainties, for example due to overfitting,
we produced ten different autoencoder models. For each model we picked 104 random
points from the training set for validation to start from different training and validation
sets and a different initialization of the weights. We trained the autoencoder for each
model over 10000 epochs using Adam [216] as optimizer and the root mean square error
to define the loss function. Based on the trained autoencoder we applied the encoder
models to the training and validation data to obtain two sets of compressed arrays for
each of the ten models. The ten different encoded training data sets are then fed to
a classification algorithm, where we employed the KMeans clustering algorithm from
scikit-learn [211], asking for a classification into a given number of clusters. We
tested classifications into four to eight clusters.

Asking the KMeans algorithm to find four clusters yielded the shape types shown in
Fig. 7.9, the result of asking for seven clusters is shown in Fig. 7.10. The curves denote
the cluster centres determined by the KMeans algorithm, for each of the ten encoder
models, with a colour code as defined in Table 7.1.

One can see from Figs. 7.9 and 7.10 that in the case of clustering into four shape
types, cluster 2 contains shapes which vary substantially. In contrast, for seven shape
types, the cluster centers obtained from the ten different encoder models are quite
similar. Asking for 5–8 clusters we found that seven clusters seemed to be the optimal
number to capture distinct shape features, while defining eight clusters did not lead to
useful additional features but rather to the tendency to focus on local minima in the
clustering space, while neglecting more gobal shape features.

The four clusters shown in Fig. 7.9 do only partly coincide with the ones defined in
Section 7.1.1. Shapes of kind 1, showing an enhanced mhh region, as well as shapes of
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Figure 7.9: The clusters obtained by asking for a classification into four shape types. We show
the cluster centres obtained from 10 different encoder models, in the colour code
defined in Table 7.1.

kind 3 (SM-like), were clearly identified. Shapes having a double peak were clustered
together with shapes showing a shoulder. However, a cluster was formed which was
not considered in the predefined types, containing shapes with an enhanced tail.

To combine the results from the ten clustering procedures, we adopted the “majority
vote” method, i.e. for each of the ten clustering procedures a given point in the coupling
parameter space gets a label (“vote”) corresponding to the cluster it belongs to. The
final cluster assigned to that point is the one which collected the largest number of
votes.

7.2.2 Parameter space underlying the clusters

In this section we show how the parameter space relates to the clusters if we ask for
four or seven clusters. For each parameter configuration of our 5-dimensional grid, we
plot the corresponding cluster type in Fig. 7.11 and Figs. 7.13 to 7.16. The colour codes
are shown in Figs. 7.9 and 7.10, and are also listed in Table 7.1. For clusters which are
similar to the shape types defined in Section 7.1.1, we should also find patterns similar
to the ones shown in Figs. 7.2 to 7.6.

Comparing Fig. 7.11 (top row) with Fig. 7.2 (left), both showing variations of ct
versus chhh, we see that kind 1 shapes (black) are clearly identified. However, for
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Figure 7.10: The clusters obtained by asking for a classification into seven shape types. The
cluster centres obtained from 10 different encoder models are shown in the colour
code defined in Table 7.1.

both four and seven clusters the area for SM-like shapes got smaller, as the clustering
algorithm also identifies features which were not considered in the predefined shapes.
For example, the clustering into four clusters identifies shapes which are almost SM-like
but have an enhanced tail (magenta), and the clustering into seven clusters in addition
identifies shapes which are almost SM-like but have a shoulder (blue). Certainly we
could have defined such features in our analyzer as well, but it is not that easy to define
where the tail starts and what exactly should be considered as “enhanced”. Further, the
figure clearly shows that small variations of chhh can easily distort the SM-like shape,
while the shape is more robust against variations of ct. Fig. 7.11 (bottom row) shows
ct versus ctt. We again see that variations ct and ctt mostly produce SM-like shapes.
Why this is so can be understood from the behaviour of the coefficients Ai in eq. (7.2)
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Cluster closest predefined type colour

4 clusters

1 kind 1 (enhanced low mhh) black
2 double peak/enhanced tail magenta
3 kind 3 (SM-like) red
4 kind 4 (close-by double peaks)/shoulder blue

7 clusters

1 enhanced low mhh black
2 enhanced low mhh, slowly falling or shoulder cyan
3 enhanced low mhh, second local maximum above mhh ' 2mt green
4 SM-like red
5 SM-like with enhanced tail yellow
6 close-by double peaks or shoulder left blue
7 no steep slope at low mhh, enhanced tail magenta

Table 7.1: Clusters and shape types with corresponding colour codes for the classification into
four and seven clusters.

which are relevant in these cases. For Fig. 7.11 (top row), only the coefficients A1, A3

and A7 are relevant. As A1 and A7 have opposite signs and a different peak location,
this can generate a rich shape structure. For Fig. 7.11 (bottom row), the coefficients
A2, A6 and A8 are relevant in addition to A1, A3 and A7. A2 being the coefficient of c2

tt,
it is dominant except for very small values of ctt and leads to a SM-like shape. We also
observe that ctt has the tendency to enhance the total cross section, such that only a
relatively small slice in ctt is left after considering the bounds on the total cross section.

Fig. 7.13 (top row) shows chhh versus ctt, where we see that the interplay between
chhh and ctt can lead to all shape types. Comparing Fig. 7.13 (bottom row) with
Fig. 7.2 (right), showing variations of cggh versus cgghh, we observe that the unsuper-
vised learning algorithm with seven clusters distinguishes four shape types, showing
that large values of cggh and cgghh favour shapes with an enhanced tail (magenta)
or/and a double peak (green), while negative values favour a shoulder on the left of the
peak (blue). The limits on the total cross section do not exclude any parameter range
in this panel.

A behaviour similar to the one in Fig. 7.11 can be seen in Fig. 7.14: as chhh varies
the disribution goes through various shape types, while variations of cggh and cgghh
affect the shapes to less extent. Fig. 7.14 also shows that a positive cgghh value has the
tendency to enhance the tail of the distribution.

Fig. 7.15 shows ctt versus cggh (top) and ctt versus cgghh (bottom). Compared to
Fig. 7.6, the clustering into both four and seven clusters shows a better discrimination
power between SM-like shapes and small deviations, for example due to an enhanced
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Figure 7.11: Shape types produced by variations of ct versus chhh (top) and ct versus ctt
(bottom). Left: 4 clusters, right: 7 clusters. The areas outside the silver and
white curves are regions where the total cross section exceeds 6.9×σSM and 22.2×
σSM , respectively. These values are motivated by the current ATLAS/CMS
limits at

√
s = 13 TeV [32, 33]. The red areas denote SM-like shapes. The full

colour code is given in Table 7.1.

Figure 7.12: Contributions of the coefficients Ai in eq. (7.2) which are relevant for Fig. 7.11.

tail. We again see that ctt has a larger impact on the total cross section than cggh or
cgghh.
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Figure 7.13: Shape types produced by variations of chhh versus ctt (top) and cggh versus cgghh
(bottom). Left: 4 clusters, right: 7 clusters. The areas outside the silver and
white curves are regions where the total cross section exceeds 6.9×σSM and 22.2×
σSM , respectively. These values are motivated by the current ATLAS/CMS
limits at

√
s = 13 TeV [32, 33]. The red areas denote SM-like shapes. The full

colour code is given in Table 7.1.

Fig. 7.16, showing the ct − cggh and ct − cgghh parameter planes, can be compared
to Fig. 7.4. Again, both the case of four and of seven clusters indicates that the
unsupervised learning algorithm is able to distinguish better subtle influences on the
shape than our method based on humanly classified shapes.

In Fig. 7.17, we compare results of our shape analysis produced with LO and NLO
input data. We observe that NLO corrections can change the shape considerably and
therefore are important for a shape analysis.

The results above have shown that the parameters chhh and ctt have the largest
influence on the shape. In SMEFT, ctt is suppressed compared to ct by one order of the
large new physics scale [61]. Furthermore, SMEFT imposes the relation cgghh = cggh/2.
Using this relation and imposing that ctt amounts to 5% of ct, we obtain a 3-dimensional
parameter space simulating the SMEFT situation, which is visualized in Fig. 7.18.
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Figure 7.14: Shape types produced by variations of chhh versus cggh (top) and cgghh (bottom).
Left: 4 clusters, right: 7 clusters. The areas outside the silver and white curves
are regions where the total cross section exceeds 6.9 × σSM and 22.2 × σSM ,
respectively. These values are motivated by the current ATLAS/CMS limits at√
s = 13 TeV [32, 33]. The red areas denote SM-like shapes. The full colour code

is given in Table 7.1.

7.3 Conclusions

The aim of this work was to provide more insight how certain configurations of anoma-
lous couplings in the Higgs sector lead to a corresponding characteristic shape of the
Higgs boson pair invariant mass distribution. For this purpose we employed the La-
grangian relevant to Higgs boson pair production as given in a non-linear Effective
Field Theory framework, which contains five (potentially) anomalous couplings [111].
We produced data for the Higgs boson pair invariant mass distribution, based on a
calculation which includes the NLO QCD corrections with full top quark mass depen-
dence, varying all five coupling parameters by finite steps, thus producing a dense grid
of data. Then we defined four characteristic shape types for the mhh distribution and
visualised the parameter space leading to these shape types. To this aim we projected
onto all possible two-dimensional slices of the parameter space, keeping the remaining
parameters at their Standard Model values. We also considered pT,h distributions for a
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Figure 7.15: Shape types produced by variations of ctt versus cggh (top) and cgghh (bottom).
Left: 4 clusters, right: 7 clusters. The areas outside the silver and white curves
are regions where the total cross section exceeds 6.9 × σSM and 22.2 × σSM ,
respectively. These values are motivated by the current ATLAS/CMS limits at√
s = 13 TeV [32, 33]. The red areas denote SM-like shapes.

shape analysis, however we found that the mhh distribution is more sensitive to shape
changes induced by anomalous couplings.

Further, we tested an unsupervised learning approach to classify shapes. We pro-
duced 105 distributions, trained a neural network based on an autoencoder to extract
common shape features and tried to find the number of shape clusters which optimally
catches different shape characteristics. Our study demonstrated that some shape fea-
tures, like an enhanced tail or a shoulder in the mhh distribution, were caught very
well by this procedure, and provided more insight about the underlying parameter
space leading to such features than the analysis based on predefined shape classes.
While machine learning is not essential to define shape clusters, it has the advantage
of being easily extendible to a different number of shape types, different binnings or
other observables, and of minimising the human bias compared to other shape analysis
methods.
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Figure 7.16: Shape types produced by variations of ct versus cggh (top) and cgghh (bottom).
Left: 4 clusters, right: 7 clusters. The areas outside the silver and white curves
are regions where the total cross section exceeds 6.9 × σSM and 22.2 × σSM ,
respectively. These values are motivated by the current ATLAS/CMS limits at√
s = 13 TeV [32, 33]. The red areas denote SM-like shapes.

The shape analysis revealed that the Standard-Model-like shape is quite stable against
variations of ct, cggh and cgghh, as long as chhh = 1, while deviations of chhh from the SM
value show a rich shape changing pattern. We also found that small deviations of ctt
from zero are very likely to produce a doubly peaked structure in the mhh distribution,
while SM-like shapes dominate again as ctt moves further away from zero. However, as
ctt leads to a rather fast increase of the total cross section, the shape analysis in com-
bination with the limits on the total cross section allows to put constraints on ctt. This
is an interesting feature because, in contrast to ct and cggh, ctt cannot be constrained
directly from single Higgs boson processes. Further, an enhanced tail or a shoulder of
the mhh distribution are likely to be produced by nonzero values of cgghh, however the
influence of the effective Higgs-gluon couplings on the shape is milder than the one of
chhh and ctt.

Our approach associates 2-dimensional slices of a 5-dimensional parameter space to
a given shape cluster and identifies the directions which are rather flat in parameter
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Figure 7.17: Comparison of LO and NLO results for shape types produced by variations of ct
versus chhh Left: LO, right: NLO.

space. Therefore it is going beyond a benchmark point analysis, which only provides
pointwise snapshots of the 5-dimensional parameter space. The method can also be
applied to other processes where anomalous couplings introduce characteristic shape
changes to differential cross sections, and it can be extended to consider more than one
distribution simultaneously.
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Figure 7.18: Three-dimensional visualisation of shape types produced by variations of ct, chhh
and cggh simulating the SMEFT situation. For ctt we used ctt = 0.05ct, while
cgghh = cggh/2.
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8 Higgs plus one jet production

In this Chapter we present our calculation of the Higgs plus one jet production at
NLO QCD with full top mass dependence in the gluon fusion channel. Higgs plus
one jet production is an excellent process to study the top Yukawa coupling. As in
Chapter 6 the calculation is carried out within the EWChL framework which allows to
include EFT effects. The process is characterized by two anomalous couplings ct and
cggh already presented in Chapter 6. ct modifies the top Yukawa coupling, responsible
of the the top-loop contribution in the gluon fusion channel. The correction includes
possible contributions due to top partners. The coupling cggh instead is parametrizing
New Physics heavy colored particles which couple in loops to the gluons and the Higgs
boson. The new particles are supposed to be too heavy to be observed at current energy
scale. The loop is treated within an effective description resulting in an effective vertex
which is weighted by cggh a coupling that embodies the information about the mass of
the new particles.

Direct access to the top Yukawa coupling is given by the tt̄h production, but this
process is difficult because its high threshold and the many possible final states. Ex-
perimental measurements by the ATLAS and CMS experiments report [5]

σobs
tt̄h = 670± 90(stat.)+110

−100(syst.) (8.1)

and [30]

σobs
tt̄h

σSM
tt̄h

= 1.26+0.31
−0.26 (8.2)

respectively, where
σobs.
tt̄h

σSM
tt̄h

is the observed total cross section normalised to the SM pre-

diction. The experimental readouts are in agreement with the SM but the uncertainties
are too big to constrain the top Yukawa coupling properly. More precise measurements
will be obtained only after the LHC high luminosity update. The tt̄h experimental
status enforces the importance of the Higgs plus one jet production as complemen-
tary approach to study the top Yukawa coupling. Even more this process gives an
outstanding opportunity to study the nature of the effective Higgs boson coupling to
gluons.

Inclusive Higgs production measurements suggest the total cross section of the pro-
cess to be consistent with the SM prediction [217, 218], in particular the ratio of the
total observed Higgs boson signal in gluon fusion yield to the SM predictions is [218]

σobs
incl

σSM
incl

= 1.11+0.09
−0.08. (8.3)
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The total cross section of the process including EFT contributions, according to the
Higgs low energy theorem [219] can be approximated as [220]

σincl(ct, cggh) = (ct +
3

2
cggh)2σSMincl +O(

1

m2
t

) (8.4)

where mt is top quark mass.

Given the experimental measurements roughly constraining (ct + 3
2cggh) = 1, even if

new physics effects are present, they are hard to be observed from the inclusive Higgs
production. Modification of the top Yukawa coupling can be compensated by effective
ggH contributions and a SM-like inclusive cross section can be obtained even if new
physics effects are contributing to the process.

Higgs boson production in association with extra gluon radiation, namely Higgs
plus one jet, is a good option to disentangle configuration of the couplings yielding
similar total cross sections. It has been shown at LO and NLO HEFT approximation
[220, 221] how in the high pT,h region different distributions satisfying (ct + 3

2cggh) = 1
separate and effects due to non SM values of the anomalous couplings ct and cggh can
be observed. Then the study of the pT,h distribution is an excellent way to observe if
there are deviations from the SM due to New Physics contributions. By the way the
pT,h value can not be too high, in order to keep valid the effective description of the
New Physics.

In this Chapter we present our results where we calculate the total cross section and
pT,h distribution for a point on the slice (ct + 3

2cggh) = 1 of the anomalous coupling
space, including NLO QCD corrections with full top mass dependence and compare
these results to the SM predictions.

Our calculation is implemented within the POWHEG-BOX-V2 [222–224]. The code
will be publicly available, allowing the user to choose the values of the anomalous cou-
plings and to match the NLO calculation to a parton shower. The chapter is organized
as follows. In Section 8.1 we review the theoretical calculation of Higgs boson produc-
tion. The Higgs plus one jet production within the EWChL is shown in Section 8.2
including NLO corrections in Section 8.3. Section 8.4 shows phenomenological results.
For a point satisfying the condition ct + 3

2cggh = 1, we present the NLO QCD total
cross sections normalised to the SM predictions for different values of the cut on pT,h
along with its Higgs boson transverse momentum distribution.

8.1 Higgs boson production state of art

Corrections to inclusive Higgs boson production are known up to N3LO QCD accuracy
within the HEFT approximation [225]. Full theory corrections are known at LO for
H plus one jet [226, 227], Higgs plus 2 jets [228, 229] and Higgs plus three jets [230,
231]. H+1j production fully differential correction within the HEFT approximation
are known at NNLO QCD accuracy [232–235], supplemented by the 1/m2

t expansion at
NLO QCD accuracy [236, 237] and combined with the exact Born and real corrections
[238]. The full theory NLO CQD cross section for H plus 1 jet along with the Higgs
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8.2 Non-Linear EFT for Higgs plus one jet production

pT,h distribution have been computed in [239] based on a semi-numerical approach.
Recently the full set of master integrals relevant for the two-loop NLO QCD virtual
corrections have been calculated in [240–243].

Within theories including extra scalars the inclusive Higgs cross section is known to
N3LO QCD accuracy in the HEFT approximation [244, 245]. Concerning Higgs plus
one jet production, the study of the pT,h spectrum including dimension six and eight
operators has been considered in [220, 221, 246–251].

8.2 Non-Linear EFT for Higgs plus one jet production

In the SM model the process is loop-induced, therefore at LO diagrams coming from
L2 and L4, the LO and NLO Lagrangians in the chiral expansion, have to be taken in
account. The relevant terms from the effective Lagrangian L2 + L4 (see Sec. 4.2) are
given by:

L ⊃ −mtct
h

v
t̄t+

αs
8π
cggh

h

v
GaµνG

µν
a (8.5)

The coupling ct is from L2, the Higgs-gluon couplings cggh from L4 and are the same of

Figure 8.1: Higgs plus one gluon production at leading order in the chiral Lagrangian. The
black dots indicate vertices from L2, the black squares denote local terms from
L4. We distinguish the light quark and the top quark lines specified by q and t
respectively.

Sec. 6.2. We neglect CP-violating effects. The SM is obtained setting ct = 1, cggh = 0.
As for Higgs boson pair production all the diagrams are at the same order in the chiral
counting (chiral dimension 4, equivalent to one-loop order). The process is mediated by
gg, gq and q̄q initial states. Some of the LO diagrams are shown in Fig. 8.1. Defining
κg = 3

2cggh according to the notation of [220] the squared amplitude of the process
reads:

|M(ct, κg)|2 = |ctMloop + κgMtree|2 (8.6)
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8 Higgs plus one jet production

where Mloop is the loop-induced SM-like amplitude and Mtree the effective amplitude.
The total cross section of the process normalized to the SM can be written as

RpcutT,h(ct, κg) =
σpcutT,h

(ct, κg)

σSM
pcutT,h

=
[
(ct + κg)

2 + δctκg + εκ2
g

]
=
[
(ct + κg)

2 + ∆(ct, κg)
]

(8.7)
where

δ =
2
∫∞
pcutT,h

dpT,hdΩRe(MloopM∗tree)∫∞
pcutT,h

dpT,hdΩ|Mloop|2
− 2, (8.8)

ε =

∫∞
pcutT,h

dpT,hdΩ|Mtree|2∫∞
pcutT,h

dpT,hdΩ|Mloop|2
− 1 (8.9)

∆(ct, κg) = δctκg + εκ2
g (8.10)

and pcutT,h is the cut on the Higgs boson transverse momentum, i.e. the minimum value
required for the Higgs boson transverse momentum pT,h. At LO δ and ε have been

shown [220] to be very small at low pT,h thus R
pcutT,h

(ct+κg)=1 ∼ 1 for the points belonging to

the slice (ct + κg) = (ct + 3
2cggh) = 1. δ and ε increase with pT,h to become of O(1) for

pcutT,h > 300 GeV. This implies that measuring the transverse momentum distribution of
the Higgs boson allows to observe effects due to New Physics in contrast to the analysis
of the inclusive cross section.

8.3 NLO QCD corrections

We calculate the Higgs plus one jet production in non-linear EFT restricting the NLO
corrections to QCD effects. Working within the EWChL framework we include the
chiral dimension 6 corrections with QCD coupling g3

s . As for the Higgs boson pair pro-
duction, this procedure is consistent without introducing further anomalous couplings
because this effective Lagrangian is renormalisable with respect to QCD.

The leading order amplitude scales as ∼ g3
s therefore the virtual corrections relevant

to us are all the diagrams of chiral dimension 6 (loop order two) carrying a factor g5
s .

They exist as two-loop and one-loop.
The real radiation diagrams proportional to g4

s have to be taken in account. As
at LO, they can be tree level or one-loop diagrams. In the following we describe the
computational setup we used to carry out the calculation.

8.3.1 Leading order

The leading order amplitude has been implemented analytically, the loop-induced SM-
like part was adapted from [227] and rescaled by the anomalous coupling ct, while
we computed the tree level EFT part analytically using FORM[252]. As cross check we
generated the Born amplitude with GoSam using the UFO model described in [111]
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8.3 NLO QCD corrections

finding agreement between the two implementation at the amplitude and cross section
level.

8.3.2 Virtual corrections

The virtual amplitude of order g5
s is composed of the interference of the Born diagrams

with two-loop and one-loop diagrams.
The one-loop virtual amplitude has been implemented using the interface between

GoSam and the POWHEG-BOX-V2. At runtime the scalar one-loop integrals involved
in the amplitudes were computed using the programs Ninja[253], golem95[254, 255] and
OneLoop [256] for the evaluation of the scalar one-loop integrals. For each initial and
final state configuration two amplitudes are returned by GoSam, the first representing
the interference of Born tree and virtual one-loop diagrams and the second specifying
the interference of Born one-loop and virtual one-loop diagrams. Moreover in the latter
case, because of the GoSam structure we inserted by hand the renormalisation terms,
while the in the first case the diagrams are renormalised by the software.

The two-loop amplitude can be decomposed in terms of tensor structures. The
g(p1)g(p2) → g(p3)H(p4) amplitude after imposing parity conservation, transversality
of the gluon polarization vectors and the Ward identity can be written as the combi-
nation of four form factors Fijk multiplying the tensor structures Tµντijk [257]:

Mµντ = F212T
µντ
212 + F332T

µντ
332 + F311T

µντ
311 + F312T

µντ
312 (8.11)

where:

Tµντ212 = (s12g
µν − 2pµ2p

ν
1)(s23p

τ
1 − s13p

τ
2)/(2s13)

Tµντ332 = (s23g
ντ − 2pν3p

τ
2)(s13p

µ
2 − s12p

µ
2 )/(2s12)

Tµντ311 = (s13g
τµ − 2pτ1p

µ
3 )(s12p

ν
3 − s23p

ν
1)/(2s23)

Tµντ312 = (gµν(s23p
τ
1 − s13p

τ
2) + gντ (s23p

µ
2 − s12p

ν
3) + gτµ(s12p

ν
3 − s23p

ν
1)

+ 2pµ3p
ν
1p
τ
2 − 2pµ2p

ν
3p
τ
1)/2 (8.12)

with sij = (pi + pj)
2. Three of the form factors are related by cyclic permutations

of the external gluon momenta while the fourth is invariant under such permutations.
The q(p1)q̄(p2) → g(p3)H(p4) amplitude similarly can be decomposed in terms of two
tensor structures as follows [258]

Mρε
ρ = F1T1 + F2T2 (8.13)

where

T1 = (ū(p1) /p3v(p2)p2 · ε3 − ū(p1) /ε3v(p2)p2 · p3),

T2 = (ū(p1) /p3v(p2)p1 · ε3 − ū(p1) /ε3v(p2)p1 · p3) (8.14)

In this case the form factors are related by interchanging the external quark and anti-
quark momenta. The form factors can be extracted introducing projectors P ijkµντ . The
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four projectors for the gg → gH amplitude in the D-dimensional space-time are:

Pµντ212 =
1

(D − 3)s23

(
− Ds13

s2
12s23

Tµντ212 +
D − 4

s2
23

Tµντ332 +
D − 4

s12s13
Tµντ311 +

D − 2

s12s23
Tµντ312

)
Pµντ332 =

1

(D − 3)s12

(
D − 4

s12s23
Tµντ212 −

Ds12

s13s2
23

Tµντ332 +
D − 4

s2
13

Tµντ311 +
D − 2

s13s23
Tµντ312

)
Pµντ311 =

1

(D − 3)s13

(
D − 4

s2
12

Tµντ212 +
D − 4

s13s23
Tµντ332 −

Ds23

s12s2
13

Tµντ311 +
D − 2

s12s13
Tµντ312

)
Pµντ312 =

D − 2

(D − 3)s12s13s23

(
s13

s12
Tµντ212 +

s12

s23
Tµντ332 +

s23

s13
Tµντ311 +

D

D − 2
Tµντ312

)
(8.15)

where P ijkµντMµντ = Fijk. For the qq̄ → gH amplitude the projectors are:

P1 =
D − 2

2(D − 3)s12s2
13

T †1 −
D − 4

2(D − 3)s12s13s23
T †2

P2 = − D − 4

2(D − 3)s12s13s23
T †1 +

D − 2

2(D − 3)s12s2
23

T †2 (8.16)

where P1 and P2 satisfy
∑

spins PiMρε
ρ = Fi. Contracting the projectors with the

amplitude and omitting external spinors, allows to write the amplitude in terms of
scalar integrals. The six SM NLO QCD form factors have been computed in [239]. The
integrals involved in the form factors have been calculated numerically for a number
of phase space points setting mH = 125 GeV and mt = 173.055 GeV. The IR soft and
collinear poles of the resulting amplitude have been subtracted to obtain the finite part
of the virtual amplitude required in the POWHEG-BOX-V2.

The basis of our calculation are the form factors of [239]. We rescaled the SM form
factors by the anomalous coupling ct. Then using the projectors of eq.s (8.15) and
(8.16) we calculated the Born form factors arising from the tree level EFT diagrams
and added them to the SM-like Born form factors. This setup gives the virtual two-loop
amplitude for a set of precomputed phase space points. In order to call this contribution
directly in the POWHEG-BOX-V2 for the 4 channels we created a grid where we stored

β =
s−m2

H

s+m2
H

, cos θ =
t− u
s−m2

H

, Amplitude(β, cos θ) (8.17)

for all the precomputed points, obtaining 4 grids of roughly 2000 points. To interpolate
the amplitudes for each channel we used a combination of 10 neural networks trained
on bootstrap samples, i.e. subsamples of the initial dataset which can be considered in-
dependent and representative of the original dataset. The architecture of each network
is composed by three dense layers of nodes 100,10 and 10 respectively. The setup is
implemented using Keras to produce the models and a modified version of Keras2cpp
[259] to save them such that they can be loaded in C++. We built a C++ function
where, for each channel the 10 models are loaded and the outputs are averaged. This
function is called in the POWHEG-BOX-V2 to obtain the two-loop virtual amplitude
of any given phase space point. The two-loop virtual amplitude combined with the
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8.4 Phenomenological results

one-loop virtual one gives the total virtual amplitude for the process within the EFT
framework.

Figure 8.2: Higgs plus one jet production at NLO: Examples for virtual one-loop and two-loop
diagrams in the gluon fusion channel.

8.3.3 Real radiation

The real radiation consists of 5-point one-loop topologies with closed top quark loops
and tree-level diagrams. Examples of diagrams are shown in Fig. 8.3. The real ampli-
tude squared can be written as

|MREAL|2 = |M5−point
one−loop|

2 + |M5−point
tree |2 +M5−point

interference. (8.18)

The two contributions |M5−point
one−loop|

2 and (|M5−point
tree |2+M5−point

interference) have been generated

separately with GoSam and combined in the POWHEG-BOX-V2. For (|M5−point
tree |2 +

M5−point
interference) we modified the rescue system to allow the software to rescue amplitudes

which are numerically unstable recomputing them in quadruple precision. The ampli-
tudes are computed at run time with Ninja using the quadninja feature for the rescue
system. The subtraction of the IR divergences is performed using the FKS method
[260].

8.4 Phenomenological results

In this section we present preliminary results produced with the setup described in the
previous sections. We produced the NLO QCD total cross section and pT,h differential
distribution for the point (ct = 0.9, cggh = 2

30) or equivalently (ct = 0.9, κg = 0.1) lying
on the slice (ct + 3

2cggh) = (ct + κg) = 1 which leads to a degeneracy of the inclusive
cross section in the low energy approximation according to equation (8.4).

The top and Higgs masses are set to mt = 173.055 GeV and mH = 125 GeV respec-
tively, to be consistent with the values of the two-loop virtual interpolation, and both
the widths are set to zero. The results were computed using PDF4LHC nlo 30 pdfas
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8 Higgs plus one jet production

Figure 8.3: Higgs plus one jet production at NLO: Examples for real tree-level and one-loop
diagrams in the gluon fusion channel.

LO [pb] NLO [pb] K-factor

ct = 0.9, cggh = 2
30 8.527 ± 0.004 15.690 ± 0.129 1.84 ± 0.01

ct = 1, cggh = 0 (SM) 8.566± 0.001 15.989± 0.221 1.87± 0.02

Table 8.1: LO and NLO total cross section with statistical error for ct = 0.9, cggh = 2
30 and

the SM for pT,h > 30 GeV. The upper and lower values due to scale variation are
shown.

set interfaced via LHAPDF. Jets were clustered using the anti-kt jet algorithm im-
plemented in FastJet [261–263] with a radial distance of R = 0.4. We used as scales:

µF = µR =
HT

2
=

1

2

(√
m2
H + p2

T,h +
∑
i

pT,i

)
(8.19)

where the sum runs over all the final state partons. All the quarks but the top are
treated as massless.

The total cross sections for (ct = 0.9, cggh = 2
30) and the SM at LO and NLO

QCD are reported in Table 8.1 along with the K-factor, i.e. the ratio NLO/LO. The
table displays how the total cross sections are close, thus also at higher order of the
perturbative expansion the pT,h analysis is needed to disentangle possible new physics
effects from the SM predictions. As a reflection of the values of the total cross sections
also the K-factors are very similar.

The differential transverse momentum distributions of the Higgs boson, for the SM
(ct = 1, cggh = 0) and the BSM configuration (ct = 0.9, cggh = 2

30) are shown in Fig.
8.4.

The red and black curves represent (ct = 0.9, cggh = 2
30) and (ct = 1, cggh = 0)

respectively where the solid lines are for the NLO QCD distributions while the dotted
lines are for the LO ones. At both LO and NLO QCD, in the low pT,H region the two
differential cross sections are very close with the BSM curve slightly below the SM one,
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Figure 8.4: Higgs boson transverse momentum spectrum at LO and NLO in QCD. The upper
panel shows the differential cross sections, in the middle panel we normalize the
BSM distributions to the SM predictions and in the lower panel we show the
K-factors (the ratio NLO/LO) for both of the distributions.

they then overlap, they switch around 300 GeV and at high pT,h the BSM distribution
is clearly above the SM prediction and the two distributions are disentangled. At LO
this trend has been shown already in Refs. [220, 221] and our results are in agreement
with them. Even more the middle panel of Fig. 8.4 shows how the ratio BSM/SM is
very similar at LO and NLO. The differential K-factors for the two differential cross
sections are displayed in the bottom panel of Fig. 8.4. From Ref. [239] it was already
known that the SM K-factor is approximately flat for pT,h & 100 GeV. This peculiar
characteristic holds on also including effective deviations from the SM and as already
showed at total cross section level, the BSM K-factor is almost degenerate with the SM
one. The two K-factors show the large enhancements due to full top mass dependent
NLO QCD corrections and how important they are in order to make reliable predictions.

Recalling

RpcutT,h(ct, cggh) =
σpcutT,h

(ct, cggh)

σSM
pcutT,h

=

[
(ct +

3

2
cggh)2 + ∆(ct, cggh)

]
(8.20)
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pcutT,h [GeV] RpcutT,h,LO(0.9, 2
30) RpcutT,h,NLO(0.9, 2

30)

30 0.9954 ± 0.0005 0.9837 ± 0.0109

100 1.0004 ± 0.0005 0.9839 ± 0.0013

200 1.0208 ± 0.0011 1.0080 ± 0.0027

300 1.0616 ± 0.0023 1.0419 ± 0.0054

400 1.1131 ± 0.0041 1.0822 ± 0.0093

500 1.1710 ± 0.0048 1.1339 ± 0.0109

Table 8.2: LO and NLO total cross section for (ct = 0.9, cggh = 2
30 ) normalised to the SM

value for different pcutT,h, including the statistical error.

the value of the total cross section normalized to the SM prediction, for a point lying
on the slice (ct + 3

2cggh) = 1 it reduces to

R
pcutT,h

(ct+
3
2
cggh)=1

(ct, cggh) = [1 + ∆(ct, cggh)] . (8.21)

We present in Table 8.2, for different cuts on the Higgs boson transverse momentum,
R(0.9, 2

30) at LO and NLO QCD.

Once again we find at LO agreement with [221]. Our analysis displays that, also at
NLO QCD, for pcutT,h = 30GeV within the error, the ratio of the total cross sections is
compatible with 1, i.e. the total cross section of the BSM configuration is the same as
the SM prediction. Increasing pT,h the ratios are moving away from 1. Even tough the

behaviour of RpcutT,h(0.9, 2
30) is the same at LO and NLO, RpcutT,h,NLO(0.9, 2

30) is always

smaller than RpcutT,h,LO(0.9, 2
30) for each choice of the cut. Focusing on RpcutT,h,NLO(0.9, 2

30)
when pcutT,h ≥ 300GeV the BSM and SM cross sections can be distinguished. Our NLO
QCD results confirmed the importance of the high pT,h analysis in order to observe
possible New Physics effects, already known from the LO.

We also present the comparison of NLO QCD full top mass dependent and NLO
HEFT pT,h distribution for the point (ct = 0.9, cggh = 2

30). According to eq. (8.4) for
all the points on the slice (ct+

3
2cggh) = 1 the HEFT approximation does not distinguish

among different configurations of the couplings. The low energy expansion including
terms proportional to 1/m2

t reads [219]

σ(ct, cggh) = (ct +
3

2
cggh)2

(
1− 7

15

3
2cggh

ct + 3
2cggh

m2
h

4m2
t

)
σSM +O(

1

m4
t

) (8.22)

which allows to take in account deviations due to the anomalous couplings. For a point
on the slice (ct + 3

2cggh) = 1 eq. (8.22) reduces to

σ(ct+ 3
2
cggh)=1(ct, cggh) = (ct +

3

2
cggh)2

(
1− 7

15

3

2
cggh

m2
h

4m2
t

)
σSM +O(

1

m4
t

). (8.23)

In Fig. 8.5 we show our results.
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Figure 8.5: Higgs boson transverse momentum spectrum at NLO in QCD with full top mass
dependence and in the HEFT approximation. The upper panel shows the differ-
ential cross sections, in the middle panel we normalize the BSM distributions to
the HEFT predictions and in the lower panel we show the K-factors (the ratio
NLO/LO) for both the distributions.

The red and blue curves represent respectively the full theory and HEFT predic-
tions where the solid lines are for the NLO QCD distributions while the dotted lines
are for the LO ones. In the middle panel the ratio of the full theory over HEFT is
displayed. Both at LO and NLO, for pT,h > 300 GeV, the crucial region where the
BSM distribution separates from the SM, the HEFT approximation overestimates the
full theory prediction. Given dσHEFT

dpT,h
/dσ

full

dpT,h
, the ratio of the full theory distribution

over the distribution in the HEFT approximation, at 500 GeV dσHEFT

dpT,h
/dσ

full

dpT,h
∼ 2, i.e.

the magnitude of the HEFT differential cross section is twice the magnitude of the full
theory and the ratio increases with pT,h. This proves the vital importance of the top
quark mass contribution and of the full mt dependent predictions to study properly
new Physics effects in this process.
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8.5 Conclusions

We have presented the first NLO QCD calculation with full mt dependence of Higgs
plus one jet production within the EWChL framework. The scattering amplitude of
the process depends on the two anomalous couplings ct and cggh. We focused on the
slice of the anomalous couplings space (ct + 3

2cggh) = 1; couplings belonging to such
slice produce total cross sections which are almost the same.

We have presented the total cross sections and differential pT,h distributions for the
BSM configuration (ct = 0.9, cggh = 2

30) at LO and NLO QCD and compared them to
the SM predictions. We showed that, as at LO, the BSM NLO QCD total cross section
with pcutT,h = 30GeV and the SM one are the extremely similar within the uncertainties.
Looking to the Higgs boson transverse momentum distributions, we showed that the
two differential cross sections are very close when the Higgs transverse momentum is
small and they start to split for pT,h > 300 GeV. This behaviour already known at LO
also holds on at NLO QCD. We observed that including BSM effects the differential
K-factor is still flat above the top quark threshold, as in the SM case, and its total value
is almost the same as the SM highlighting the importance of NLO QCD corrections.
We presented the ratio of this BSM total cross section to the SM prediction for different
cuts of the transverse momentum, also here finding the similar deviations at LO and
NLO QCD. Our analysis has shown that the NLO QCD total and differential cross
sections behave as at LO and the high pT,h analysis is crucial to observe New Physics
effects.

At last we compared the full top mass dependent and HEFT pT,h distributions at
LO and NLO QCD, showing how the HEFT fails to approximate the full theory in
the sensible region where SM and BSM contributions disentangle and highlighting the
importance of the NLO QCD predictions with full mt dependency to study correctly
this process.

The POWHEG version of the code allowing to vary ct and cggh will be publicly avail-
able in the POWHEG-BOX-V2 package. This Monte Carlo event generator program
could help the experimentalists to match theoretical prediction to observation.
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The Standard Model of particle physics is the theory describing the strong and elec-
troweak interactions of quarks, leptons and bosons. Its predictive power has been
intensively tested over the years achieving amazing results. The Higgs sector, the last
block of the SM that has been observed, is least explored and precision studies of Higgs
parameters are among the main goals of the LHC strategy. Experimental constraints
of the Higgs couplings to fermions and other Higgs bosons are still loose, allowing de-
viations from the SM predictions. Supposing New Particle Physics in the upper TeV
range, their effects can be parametrised within an EFT. The EFT can be use to study
possible deviations according to the experimental limits.

In this work we studied two processes of interest within such a framework: Higgs
boson pair production and Higgs plus one jet production. The former is the most
promising process to study the trilinear Higgs coupling but hard to observe at the
energy scale reached at colliders, while the latter, observable at current energies, allows
to analyze the impact of the anomalous couplings modifications and match them to
experimental data. We made our calculation within the framework of the electroweak
chiral Lagrangian, a non-linearly realized Effective Field Theory in the Higgs sector.

Regarding the Higgs boson pair production we have calculated the NLO QCD cor-
rections with full mt dependence where the scattering amplitude is function of five
possibly anomalous couplings, chhh, ct, ctt, cggh and cgghh. We gave a parametrisation of
the total NLO cross section for Higgs boson pair production in gluon fusion and Higgs
boson pair invariant mass distribution in terms of 23 coefficients of all combinations
of these couplings and we have shown differential cross sections for mhh and pT,h at
several benchmark points which exhibit characteristic shapes of the distributions. We
showed the effects of different combinations of the anomalous coupling on the total
cross section and on the magnitude and shape of the differential distributions

Using the parametrization of the total NLO invariant mass distribution, we inves-
tigated the possible shapes yielded by certain configurations of the couplings. We
visualised the parameter space leading to characteristic shape types following two ap-
proaches. In the first approach we defined four characteristic shapes while in the second
we used an unsupervised learning algorithm to determine representative shapes. The
latter approach resulted to be more efficient to catch the different shape characteristics.

We have calculated the Higgs plus one jet NLO QCD corrections with full mt depen-
dence. The amplitude of the process is function of the two anomalous couplings ct and
cggh. In our work we focused on the region ct + 3

2cggh = 1. It has been shown at LO
that points belonging to this region yield the same cross section when the cut to pT,h
is small. We presented the total cross section and Higgs boson transverse momentum
distribution for the SM and the BSM configuration (ct, cggh) = (0.9, 2

30) both lying on
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the slice ct + 3
2cggh = 1. Our analysis displayed how the behaviour, already known at

LO, persists when including NLO QCD corrections. We computed the ratios of the
BSM configuration to the SM predictions for different cuts of pT,h, showing that as at
LO as well as at NLO QCD the two cross sections disentangle for high values of pT,h,
enforcing even more the importance of the high pT,h analysis. The Monte Carlo event
generator code will be publicly available.

The last century was characterized by several astonishing discoveries which demon-
strated the validity of the SM as the correct framework to describe the fundamental
particles and their interactions. With the start of LHC New Physics particles were
expected to be found, but until now the only discovery has been the Higgs boson. Now
the physics community is wondering when New Physics will finally be observed and if
there are still hopes to detect some new particles at LHC. The HL-LHC update will
produce a large amount of data and the statistical uncertainty will reduce consider-
ably. This will improve the measurements of the Higgs couplings which are still loosely
constrained and maybe, if we are lucky, deviations from the SM predictions could be
observed. We hope that the tools we developed and discussed in this work, could help
the experimental collaborations in this process of discovery. The observation of New
Physics would bring us to a new era of knowledge and understanding of the world.
Even if at the moment the Physics community seems to be discouraged about new
discoveries the LHC RUN 3, the HL-LHC update and the new particle colliders which
will be built in the next years give a reason to hold on and to pursue the research. As
Dante wrote ”We were not made to live as brutes but to follow virtue and knowledge”.
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