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Summary 
 

This thesis describes a novel method for Fluorescence Recovery after Photobleaching 

(FRAP) analysis of chromatin proteins in pluripotent embryonic cells of the South African 

clawed frog X. laevis. This is the first application of this technique to nuclear proteins of native 

embryonic cells for this model organism. 

 
An initial experiment made us aware that FRAP is not feasible for Xenopus embryos due to 

rapid movements of the cell nuclei, probably as a result of cytoplasmic streaming. However, 

an almost complete immobility of the structure to be investigated is a basic prerequisite for a 

successful FRAP experiment. Thus other experimental paths had to be explored at this point. 

In principle, three methodological approaches are conceivable to enable FRAP in Xenopus: 

1. Cell nuclei are isolated from embryos or small embryonal dissections and attached to a 

microscopy slide by centrifugation. This method is already established but has conceptual 

shortcomings, as will be pointed out. 
2. Embryos are used and efforts are made to reduce nuclear motion by inhibition of the 

molecular mechanisms underlying cytoplasmic streaming. 

3. Cells are isolated from embryos or small embryonal dissections and nuclear motion is 

possibly reduced by adherence on a microscopy slide which is coated with a substrate 

yet to be found. It is conceivable that adherence leads to a change in the cell 

configuration in such a way that the range of motion of the cell nucleus within the cell is 

restricted and thus nuclear motion is reduced. 
We considered it most promising to pursue the last option employing embryonic cells which 

have been isolated from animal caps, small dissections of pluripotent embryonic cells. We 

discovered that isolated animal cap cells adhere to a poly-L-lysine coated surface. This novel 

methodological approach leads to a sufficiently reduced nuclear motion for FRAP analyses. 

 

The newly developed method was then used to characterize the two non-centromeric core 

histone H3 variants in Xenopus, H3.2 and H3.3, in pluripotent embryonic cells. The results 

obtained here contribute to a better understanding of the principles of core histone dynamics 
in early embryonic cells. 
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Zusammenfassung 
 

Die vorliegende Arbeit beschreibt eine neuartige Methode für die Fluorescence Recovery 

after Photobleaching (FRAP)-Analyse von Chromatinproteinen in pluripotenten embryonalen 

Zellen des südafrikanischen Krallenfrosches X. laevis. Dies ist die erstmalige Anwendung 

dieser Technik auf nukleäre Proteine nativer embryonaler Zellen für diesen 

Modellorganismus. 
 

Ein erstes Experiment führte uns vor Augen, dass FRAP an Xenopus-Embryonen aufgrund 

der schnellen Zellkernbewegungen, die am ehesten durch die zytoplasmatische Strömung 

bedingt sind, nicht möglich ist. Eine nahezu vollständige Immobilität der zu untersuchenden 

Struktur ist jedoch eine Grundvoraussetzung für ein gelingendes FRAP-Experiment. Daher 

müssen an diesem Punkt anderweitige experimentelle Pfade eingeschlagen werden. Im 

Prinzip sind drei methodische Ansätze vorstellbar, um FRAP an Xenopus zu ermöglichen: 

1. Zellkerne werden aus Embryonen oder kleinen embryonalen Dissektaten vereinzelt und 
auf einen Objektträger durch Zentrifugation aufgebracht. Diese Methodik ist bereits 

etabliert, weist jedoch konzeptionelle Beschränkungen auf, auf die einzugehen sein wird. 

2. Embryonen werden verwendet und es wird versucht, die Kernbewegung über eine 

Inhibition der der zytoplasmatischen Strömung zugrundeliegenden molekularen 

Mechanismen zu reduzieren. 

3. Zellen werden aus Embryonen oder kleinen embryonalen Dissektaten vereinzelt und 

adhärieren möglicherweise auf einem Objektträger, der mit einem noch zu findenden 
Substrat beschichtet ist. Die Zelladhärenz führt dann möglicherweise zu einer Änderung 

der Zellkonfiguration in der Weise, dass der Bewegungsumfang des Zellkerns innerhalb 

der Zelle eingeschränkt und damit die Kernbewegung vermindert wird. 

Wir hielten es für am vielversprechendsten, die letztgenannte Option weiterzuverfolgen und 

hierbei Animalkappen, kleine Dissektate pluripotenter embryonaler Zellen, zu verwenden. Wir 

stellten fest, dass Animalkappenzellen auf einer Poly-L-Lysin-beschichteten Oberfläche 

adhärieren. Dieser neuartige methodische Ansatz führt zu einer für FRAP-Analysen suffizient 

reduzierten Zellkernbewegung. 
 

Die neu entwickelte Methode wurde dann dazu verwendet, die beiden nicht zentromerischen 

Core-Histon H3-Varianten in Xenopus, H3.2 und H3.3, in pluripotenten embryonalen Zellen 

zu charakterisieren. Die hier erzielten Ergebnisse tragen zu einem besseren Verständnis der 

Prinzipien von Core-Histon-Dynamik in frühen embryonalen Zellen bei. 
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1) Introduction 
 

1.1) Chromatin plasticity and chromatin dynamics 
 

Chromatin is the “molecular ensemble” of “genomic DNA together with all directly or indirectly 

associated protein and RNA molecules”. To name just a few examples, this includes histones, 

non-histone chromatin proteins and the transcription, replication and repair “machines” as 
well as mRNAs and lncRNAs (van Steensel, 2011). 

 

Chromatin plasticity is the “diversity of properties for each cell type during development and 

also when cells face different environmental factors, genotoxic insults, metabolic changes, 

senescence, disease, and even death” (Yadav, Quivy and Almouzni, 2018; ➤ Figure 1.1). 

Hence, a plastic chromatin is a precondition for the capacity of the cell to adapt and for 

chromatin dynamics. Chromatin dynamics can be assessed by several approaches and 

techniques including, for instance, Fluorescence Recovery after Photobleaching (FRAP). 

 

 
 

Figure 1.1: The molecular correlate of chromatin plasticity (Yadav, Quivy and Almouzni, 

2018) 

The set of properties of a given cell type at a given point of differentiation within given 

environmental conditions is specified by DNA modifications (I), histone variants (➤ Chapter 

1.1.2) and histone chaperones (II), posttranslational modifications (PTMs) of histones (➤ 

Chapter 1.1.3), histone modifiers (III), histone readers (IV) and ATP-dependent remodeling 

factors (V). 
 

 

1.1.1) Primary chromatin structure 
 

Chromatin proteins are classified into a small group of histones on the one hand, and a large, 

heterogeneous group of non-histone chromatin proteins on the other hand. Histones are 
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subclassified into the four core histone groups (H2A, H2B, H3, H4) and one linker histone 

group (H1). 

 

The core histones build up the nucleosome, the primary chromatin structure. The nucleosome 
assembles as follows: Two H3-H4 heterodimers build up a tetramer which is wrapped up by a 

~70 bp DNA double strand. The nucleosome octamer is completed by association of two 

H2A-H2B heterodimers, around which another ~70 bp DNA-double strand is wrapped (Luger 

et al., 1997). Adjacent nucleosomes are linked by a 20-50 bp DNA double strand (“linker 

DNA”). Linker histones, which by definition are not part of the nucleosome, integrate into the 

linker DNA and thus stabilize the chromatin structure. Not every nucleosome is preceded by a 

linker histone. The ratio is slightly below 1.0 (van Holde, 1989) and even only ~0.5 in ES cells 

(Fan et al., 2003; Fan et al., 2005) (reviewed by Rupp and Becker, 2005). 
 

Chromatin-associated RNA molecules comprise both coding RNA (mRNA) and non-coding 

RNA (long (>200 nucleotides) non-coding RNA (lncRNA)). lncRNAs are assumed to 

represent a “molecular trafficking system” for the recruitment of chromatin modifiers within 

cellular programs such as X-inactivation or imprinting (Koziol and Rinn, 2010; Hung and 

Chang, 2010). 

 

 
1.1.2) Histone variants 
 

1.1.2.1) Classification 
 

Each histone group, with the exception of the H4 group, includes several histone variants 

which differ, to varying degrees, in base pair sequence, number of (non-allelic) genes, protein 

structure, post-translational modifications, time of deposition, chaperones and, last but not 
least, function. 

Some variants are deposited to DNA exclusively within S-phase (replication-dependent), 

others are deposited to chromatin independently from the cell cycle (replication-independent). 

The replication-dependent variants are encoded by highly repetitive, “canonical” genes, 

organized in clusters, whereas the replication-independent variants are encoded by a few 

singular, “non-canonical” genes (Zink and Hake, 2016; Buschbeck and Hake, 2017; Talbert 

and Henikoff, 2017). 

Deposition/eviction of histone variants into/from chromatin is governed by chaperones, 
protein complexes with the capacity for ATP-dependent chromatin remodeling. Sitbon et al. 

(2017) shaped the simplified but not inaccurate picture of histone variants as the “bricks” and 

chaperones as the “architects”. 
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1.1.2.2) Histone H3 variants in X. laevis 
 

The histone H3 group in X. laevis includes the replication-dependent, canonical variant H3.2, 

the replication-independent, non-canonical variant H3.3, as well as the centromere-specific, 
replication-dependent variant cenH3 (CENP-A) (Hake and Allis, 2006). Unlike mammals, X. 

laevis has only one replication-dependent H3 variant and thus, the individual contribution of a 

replication-dependent variant on the one hand, and a replication-independent variant on the 

other hand, to a given phenotype can be directly correlated (Sitbon et al., 2017). The genes 

or gene clusters coding for the H3 variants in X. laevis are listed in the following table. 

 

Histone H3 variant Gene* / Gene cluster* 
H3.2 (canonical) h3.2a (hist1h3g, hist2h3) 

H3.3 (non-canonical) h3f3a (h3.3, h3.3a) 
 h3f3b (h3.3b) 

cenH3 (CENP-A) cenp-a (cenpa) 

* according to xenbase.org 

 

We use murine H3.2 and H3.3 in this work, both highly conserved between X. laevis and M. 

musculus: as for H3.3, the amino acid sequence is identical (➤ Figure 1.3), as for H3.2, the 

amino acid sequences differ in one amino acid or one methyl-group (glycine instead of 

alanine at position 112) (➤ Figure 1.2). The amino acid sequences of mammalian H3.2 and 

H3.3 differ in four amino acids. 

 

 
 

Figure 1.2: H3.2 amino acid sequence alignment: mammalian (mam) vs. X. laevis (xen) 
H3.2 (by CLC sequence viewer) 
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Figure 1.3: H3.3 amino acid sequence alignment: mammalian (mam) vs. X. laevis (xen) 
H3.3 (by CLC sequence viewer) 

 

 

1.1.2.3) Histone H3 chaperones 
 
The histone H3 variants are deposited into/evicted from chromatin in dimerization with H4 by 

dedicated chaperones (➤ Figure 1.4). 
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Figure 1.4: Differential chromatin deposition of histone H3 variants by dedicated 
chaperones (Ray-Gallet et al., 2011) 

The replication-dependent variants H3.1 and H3.2 are deposited to newly replicated, “naked” 

DNA in a random, non-selective manner by the chaperone complex CAF-1 (chromatin 

assembly factor 1) (Tagami et al., 2004). 

The deposition of the replication-independent variant H3.3 is more complex: H3.3 is 

deposited to sites of active gene transcription by HIRA (Ray-Gallet et al., 2002; Tagami et al., 

2004; Ricketts et al., 2015; Ray-Gallet et al., 2018), although not exclusively, as deposition to 

a number of transcription factor binding sites is HIRA-independent (Goldberg et al., 2010). 

Also, H3.3 is deposited by the same chaperone in a non-selective manner to “naked” DNA 

after DNA double-strand break repair (Li and Tyler, 2016). In the case that the deposition of 

H3.1/H3.2 is halted due to inhibition of CAF-1, H3.3 is exceptionally deposited to newly 

replicated DNA by HIRA and thus, partially compensates for the absence of H3.1/H3.2 (Ray-

Gallet et al., 2011). 

And finally, H3.3 is deposited to repetitive heterochromatin by DAXX (death-domain 

associated protein) which is in complex with the ATP-dependent chromatin remodeler ATRX. 

This includes retrotransposons, pericentric heterochromatin and telomers. Specific mutations 

in ATRX cause the alpha-thalassemia, mental retardation, X-linked syndrome (for which it 

was named) as well as several adult and pediatric tumors (Drané et al., 2010; Goldberg et al., 

2010; Lewis et al., 2010; reviewed in Dyer et al., 2017). 

Thus, on the one hand, H3.3 is enriched at sites of active transcription, but on the other hand, 

H3.3 localizes as well to repetitive heterochromatic regions, reflecting the “double” or “Janus 

face” of H3.3 (Szenker et al., 2011). 

 

 

1.1.2.4) Excursion: H3.3 and its role as a prominent “oncohistone” 
 
According to a conservative estimate, about 4% of all tumors have a mutation in one of the 

core histones, although we are only just beginning to understand the prevalence and 

significance of “oncohistones” (Nacev et al., 2019). 

For example, mutations in one of the two non-allelic genes for H3.3 (H3F3A and H3F3B), 

occasionally combined with a mutation in DAXX/ATRX, have been identified in several 

malignant brain, bone and cartilage tumors. Figure 1.5 provides an overview of all neoplasia-

linked mutations in H3F3A and H3F3B identified so far. Notably, the H3.3K27M and 

H3.3G34R/V alterations have been the first alterations within the amino acid sequence of a 
core histone which could be linked to a malignant tumor (pediatric glioblastoma multiforme) 

(Schwartzentruber et al., 2012). 
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Figure 1.5: Neoplasia-associated mutations in H3F3A and H3F3B (Behjati et al., 2013) 
95% of chondroblastoma have a H3.3K36M alteration, encoded in first line by H3F3B (93%) 

and in second line by H3F3A (7%). Furthermore, 92% of giant cell tumor of bone have a 

H3.3G34W/L alteration, encoded exclusively by H3F3A. 

With regard to malignant brain tumors, 71% of pediatric diffuse intrinsic pontine glioma and 

20% of pediatric glioblastoma multiforme show a H3.3K27M alteration, exclusively encoded 

by H3F3A. 10% of pediatric glioblastoma multiforme alternatively have a H3.3G34R/V 

alteration, all of them additionally mutated in DAXX/ATRX. 7% of pediatric diffuse intrinsic 

pontine glioma with a H3.3K27M mutation additionally have an ATRX mutation (Behjati et al., 

2013; Khunong-Quang et al., 2012; Schwartzentruber et al., 2012). 

 
 

1.1.3) Posttranslational histone modifications 
 

All core histones can be posttranslationally diversified by chemical groups or small 

polypeptides on specific amino acid residues, preferably on the N-terminal histone tail. These 

posttranslational modifications (PTMs) are reversible. They include, but are by far not limited 

to, methylation, acetylation, SUMOylation, ubiquitination and ribosylation of lysine residues, 
as well as phosphorylation of serine and threonine residues (Cheung, Allis and Sassone-

Corsi, 2000; Jenuwein and Allis, 2001; Bhaumik et al., 2007; Kouzarides, 2007). 
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In addition to histone variants, PTMs represent another molecular basis of chromatin 

plasticity. PTMs interfere with virtually all cellular programs such as, to give just a few 

examples, transcription, replication and DNA-repair, as well as chromatin condensation and 

segregation (MacAlpine and Almouzni, 2013; Yadav, Quivy and Almouzni, 2018). PTMs 
fundamentally regulate the accessibility of genes for enhancer and other regulatory elements 

by direct (chromatin structure) and indirect (recruitment of chromatin remodelers) 

mechanisms. 

 

 

1.1.4) Higher order chromatin structure 
 

The chromatin structure beyond the nucleosome is not fully unraveled yet, however, both for 
the secondary and the tertiary chromatin structure, partly complementary, partly competing 

models exist. In particular, the decoding of the secondary chromatin structure poses a 

challenge due to methodological limitations (Risca and Greenleaf, 2015). The next figure 

provides an orientating view of the current idea of higher order chromatin structure. 

 

 
 

Figure 1.6: Primary and higher order chromatin structure (Risca and Greenleaf, 2015) 

The primary chromatin structure is the nucleosome, neighboring nucleosomes are connected 

by linker DNA, into which linker histones are scattered at irregular intervals. So far, it is 

assumed, that the secondary chromatin structure is defined, possibly beside other 

mechanisms yet to be identified, by nucleosome-nucleosome interactions which themselves 

are determined by DNA methylation (pink), DNA binding factors (DBFs, blue), histone 

variants and PTMs (multicolored). The tertiary chromatin structure has been recognized to be 

defined by DNA(red)-protein on DNA(blue)-loops across several to several hundreds of 

kilobases as well as by DNA(red)-DNA(red)-loops at megabase scale, even if possible further 

mechanisms could play a role here. 
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1.2) Dissecting chromatin dynamics by Fluorescence Recovery after Photobleaching 
(FRAP) 
 

Fluorescence Recovery after Photobleaching (FRAP) is a technique among the kinetic 
microscopy techniques (the “F-techniques”: FRAP, FLIP, FCS and others) which combine in 

vivo imaging and kinetic modelling approaches. These techniques allow one to analyze 

dynamic processes within the cell, the nucleus and other cell organelles such as mitochondria 

or the Golgi complex (Phair and Misteli, 2001; Lippincott-Schwartz et al., 2018). 

A FRAP experiment follows always the same course: Fluorescent (macro)molecules are 

irreversibly photobleached in a small area by an intense laser beam and the subsequent 

fluorescence recovery is recorded by the same but attenuated laser beam. Fluorescence 

recovery is the diffusion of fluorescent molecules from the non-bleached into the bleached 
area, which can then be specified with the aid of a kinetic model to be selected. 

 

The first application of FRAP (at that time Fluorescence photobleaching recovery, FPR) was 

reported by Axelrod et al. in 1976: A small spot within a thin aqueous layer of the fluorescent 

molecule rhodamine 6G had been bleached and, perhaps more importantly, a first kinetic 

model had been developed (see also Axelrod et al. 2018, a reminiscence on the “classic” 

FRAP article in 1976). 

The first cloning of the fluorophore of the jellyfish Aequorea victoria (“GFP”) (Prasher et al., 
1992), the first expression of GFP in a eukaryotic organism (Caenorhabditis elegans) (Chalfie 

et al., 1994), the development of the enhanced variant eGFP (Heim, Cubitt and Tsien, 1995) 

(O. Shimomura, M. Chalfie and R. Tsien, Nobel Prize in Chemistry 2008) as well as the 

advancement of confocal and in vivo microscopy has led to a renaissance of the FRAP 

technique in the mid-nineties (Misteli and Spector, 1997). 

Golgi membrane proteins were initially investigated by FRAP (Cole et al., 1996; Presley et al., 

1997), nuclear and chromatin proteins followed soon after (Phair and Misteli, 2000; Misteli et 
al., 2000). 

 

A molecule is fluorescent either by autofluorescence (fluorophores, e.g. rhodamine 6G, GFP, 

eGFP) or by coupling to a fluorophore. Each fluorophore contains a small subdomain called 

the chromophore, a conjugated π-electron resonance system which is the functional unit of 

fluorescence. For instance, eGFP has a p-hydroxybenzylideneimidazolinone chromophore 

which results from cyclization, dehydrogenation and oxidation of a short 3-aa-sequence 

(Thr65 – Tyr66 – Gly67) (Cubitt et al., 1995). The electrons within the conjugated π-electron 
resonance system are first excited by energy in the form of light at a distinct wavelength, 

before the electrons lose energy in the form of light at a distinct wavelength (“fluorescence”). 

This physical process is visualized by the Jablonski diagram (➤ Figure 1.7). 
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Figure 1.7: Jablonski diagram (Greb, 2012) 
Electrons within a chromophore are excited by energy in the form of light at a defined 

wavelength, the energy level is lifted from ground state S0 to the excited singlet state S1’ 

(excitation (1)). Once excited, electrons constantly lose energy, the energy level decreases 

from S1’ to S1. After 10-9-10-8 s (excited state lifetime (2)), electrons abruptly lose the 

remaining energy in the form of light at a defined wavelength, the energy level returns to 

ground state S0 (fluorescence emission (3)). The wavelength of the emitted light is longer than 

the wavelength of the exciting light (Stoke’s shift). 

 

An electron cannot be excited indefinitely: Upon a certain number of excitation cycles, the 

chromophore becomes irreversibly non-functional. The chromophore can be rendered non-

functional (i.e. the fluorescence is “bleached”) either by a sufficiently long or a sufficiently 

high-energetic electron excitation. 
 

 

1.3) Pluripotent embryonic cells in X. laevis 
 

The South African clawed frog Xenopus laevis (Daudin, 1802) has repeatedly and 

substantially contributed to our understanding of (embryonic) development, developmental 

epigenetics, pluripotency and reprogramming to pluripotency by nuclear transfer (nuclear 

transfer embryonic stem cells (NT-ES cells)) (J. Gurdon and S. Yamanaka, Nobel Prize in 
Physiology or Medicine 2012). 

This model organism has some outstanding qualities, two of which are pointed out here: First, 

the embryos are grown in a simple, additive-free saline solution. And second, the embryonic 

development is extrauterine and (pluripotent) embryonic cells can be dissected directly from 

the embryo (animal caps, see below) and can be used without further treatment. 

Animal caps are small dissections from the animal pole of the blastula embryo. Depending on 

time of dissection, animal cap cells represent either totipotency (early blastula, NF8, 5-7 hpf 
at 23°C) or pluripotency (late blastula, NF9, 7-9 hpf at 23°C). Animal caps have been 

repeatedly used in the fields of inductive differentiation and in vitro organogenesis (exemplary 

Okabayashi and Asashima, 2006). 
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Murine embryonic stem cells (mES cells) – the standard model for pluripotency 
A number of pluripotent embryonic cells cultured in vitro can be differentiated in mammals. 

"Classic" embryonic stem cells (ES cells) derive from the inner cell mass (embryoblast) of the 

blastocyst. Along with embryo implantation, the inner cell mass differentiates into a hypoblast 
part and an epiblast part, from which the three germ layers develop. Another embryonic stem 

cell type can be derived from this epiblast part, the so-called epiblast stem cells (epiSCs). At 

least in Germany, this type of stem cell derivation is currently restricted to rodents for ethical 

reasons. 

Both ES cells and epiSCs do not represent the "genuine" pluripotency of the original cells. 

Rather, the ES cells are ascribed a so-called "naive" pluripotency, the epiSCs a so-called 

"primed" pluripotency. These two “shades of pluripotency” are then further graduated 

depending on the culture medium used (➤ Figure 1.8). The individual culture media shift the 

pluripotency to a more naive or a more primed state (Weinberger et al., 2016). 

 

 
 

Figure 1.8: Graduation of naive and primed pluripotency depending on the culture 
medium used (Weinberger et al., 2016) 

“Naive pluripotency” is attributed to ES cells which derive from the inner cell mass of the 

blastocyst, “primed pluripotency” is ascribed to epiSCs which originate from the epiblast part 

of the post-implantation embryo. The distinction between these two “shades of pluripotency” 

can be made upon the effect of inhibition of the mitogen-activated protein kinase kinase 

(MEK) by a kinase inhibitor. 

Both serum-supplemented (FBS (fetal bovine serum)) and serum-free media (2i, 3i) are used 

for the cultivation of ES cells and epiSCs. Serum-free media differ in number and composition 

of small molecule kinase inhibitors and growth factors. The use of a FBS-containing medium 

shifts pluripotency towards a more primed state. 
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In summary, pluripotent embryonic stem cells have no direct counterpart in vivo (Surani et al., 

2007) and the “shade of pluripotency” depends on the culture medium used. 

 

 
1.4) Current application of FRAP to X. laevis 
 

FRAP has already been applied in various ways to X. laevis, for example to oocytes to 

characterize the diffusion properties of maternal mRNAs (Powrie et al., 2016; Ciocanel et al., 

2017). Moreover, Eroshkin et al. (2016) compared the diffusion characteristics of Noggin 

proteins within the intercellular space on embryos at gastrula stage, as well as Higashi et al. 

(2016), who characterized the diffusion kinetics of tight junctions and adherens junctions 

proteins of the interphase cell membrane, as well as of the M-phase cleavage furrow and 
polar region. 

However, nuclear or chromatin protein dynamics in native embryonic cells have not been 

analyzed so far. The underlying methodological difficulties are illustrated in Aoki et al (2010): 

The nuclei are described here as “dark and poorly outlined due to yolk-rich cytoplasm” and to 

be “in motion as a result of protoplasmic streaming” (see below). To bypass these problems, 

Aoki et al. developed a so-called “in vitro reconstitution system” (see below) which enables 

the assessment of chromatin protein mobility in cell nuclei isolated from embryonic cells. 

 
 

Protoplasmic streaming 
Protoplasmic streaming, cytoplasmic streaming or cyclosis has been first described for plant 

cells by B. Corti already in 1774 and is defined as continuous and directed motility of the 

cytoplasm that enables transportation of biomolecules and cell organelles. Cytoplasmic 

streaming has since been detected in a number of plant and metazoan cells and has been 

found to be associated with cytoskeleton-based intracellular transport processes. The 
cytoskeleton is a proteinaceous meshwork of actin and intermediate filaments as well as 

microtubules, along which cargo-carrying motorproteins, including myosin (on actin 

filaments), dynein and kinesin (both on microtubules), “walk” in a characteristic manner under 

ATP-hydrolysis. These motorproteins bind and transport vesicles, organelles and 

biomacromolecules, to name just a few. 

The actomyosin complex generates local hydrodynamic flows which align neighboring actin 

filaments. In this way, large-scale hydrodynamic flows, i.e. cytoplasmic streaming, is 

generated (Ueda et al., 2010; Woodhouse and Goldstein, 2012; Woodhouse and Goldstein, 
2013). The same mechanism applies to kinesin motorproteins on microtubules (Serbus et al., 

2005), but is complicated by mechanical interactions between microtubules (Suzuki et al., 

2017). 

Cytoplasmic streaming is particularly relevant for the accelerated transport of biomolecules 

over long intracellular distances in order to maintain the metabolic rate. This explains why 
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cyclosis is regularly found in exceptionally large cells. Since embryonic Xenopus cells are 

also unusually large (30-50 µm at mid-blastula, Williams et al., 2004), a pronounced 

cytoplasmic streaming can be assumed here. In addition, the remarkably consistent size of 

eukaryotic cells in the range of 1-100 µm could be related to cytoplasmic streaming: About 
100 µm seems to be the maximum distance over which timely transportation by cytoplasmic 

streaming is practicable (Goldstein and van de Meent, 2015). 

 

 

The “in vitro reconstitution system” by Aoki et al. 
This experimental setup allows the assessment of chromatin protein mobility in cell nuclei 

isolated from embryonic cells. This method proceeds as follows: Nuclei are isolated 

mechanically and cytoplasm is “extracted” enzymatically from embryos or embryonal 
dissections at various developmental stages. The nuclei and cytoplasmic extracts are then 

recombined in all possible combinations. The nuclei are attached to a glass slide by 

centrifugation. The measured fluorescence recoveries for H1 and HP1 are continuously up to 

50% below the values acquired in established systems. Thus, this is a method for the 

“assessment” of chromatin protein mobility, as the authors themselves say; however, the 

precise measurement of protein mobilities is not sufficiently achieved by this method. 

 

 
1.5) Objectives 
 

As pointed out in Chapter 1.3, (pluripotent) embryonic Xenopus cells have at least two major 

advantages compared to ES cells and are therefore particularly suited for chromatin 

characterization by FRAP and comparable techniques: 

1. Pluripotent embryonic Xenopus cells can be dissected directly from the embryo and can 

be used without further treatment. Hence, these cells represent genuine in vivo 
pluripotency. 

2. Pluripotent embryonic Xenopus cells are cultured in simple, additive-free saline solution 

and thus, genuine pluripotency is maintained. 

Therefore, it is a worthwhile goal to implement FRAP on (pluripotent) embryonic Xenopus 

cells. The experimental work is structured into two parts: 

1. Implementing FRAP on embryonic Xenopus cells 
The cell nuclear motion described above could be a challenge. 

2. Analyzing chromatin dynamics in embryonic Xenopus cells by FRAP 
We decided for H3.2 and H3.3, as these H3 variants are in an interesting interplay. In 

addition, FRAP analyses for these proteins have already been conducted in established 

systems. 
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2) Materials and Methods 
 

2.1) Special laboratory equipment 
 

Device Company 
ChemiDocTM Touch Imaging System Bio-Rad, Hercules, CA, USA 

Confocal Laser Scanning Microscope 
Leica TCS SP5 II 

Leica, Wetzlar, Germany 

Microscope Temperature Control System 

“The Cube & The Box” 

Live Imaging Services, Basel, Switzerland 

Incubator HeracellTM 240i Thermo Fisher Scientific, Waltham, MA, USA 

Incubator HettCube 400 R Hettich, Tuttlingen, Germany 

Micropipette Puller P-87 Sutter Instrument, Novato, CA, USA 

Picoliter Microinjector PLI-100A  Warner Instruments, Hamden, CT, USA 

Spectrophotometer DS-11 DeNovix, Wilmington, DE, USA 

Ultracentrifuge OptimaTM MAX-XP Beckman Coulter, Krefeld, Germany 

 

 

2.2) Molecular biology methods 
 

2.2.1) GatewayTM cloning 
 
DNA templates for murine H3.2-eGFP and H3.3-eGFP have been kindly provided by S. B. 

Hake (now University of Gießen, Germany) and have been cloned into a pCS2+GW-vector 

using the GatewayTM technique (Invitrogen, Carlsbad, CA, USA). 

In a first step, the DNA-templates are amplified by PCR. In view of the subsequent cloning of 

these templates into a donor vector exhibiting a specific recombinant sequence (attP), 

primers with a specific recombinant sequence (attB) are used (see following table). 

 

Primer 5’ à 3’ sequence 

attB1_H3.2 (for) 

(enzyme: XhoI) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACTATGGCG 

CGTACTAAGCAGACGGCTC 
attB2_H3.2 (rev) GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCCCTCTCCC 

CACGAATGC 

attB1_H3.3 (for) 

(enzyme: XhoI) 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACTATGGCCC 

GAACCAAGCAGAC 

attB2_H3.3 (rev) GGGGACCACTTTGTACAAGAAAGCTGGGTCAGCTCTCTCTC 

CCCGTATCCG 

 

The PCR was then run using the following protocols. 
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PCR Amount, Concentration Volume 
ddH2O  to 100 μl 

Advantage® 2 PCR Buffer* 10 x 10 μl 

DNA template 320 ng  

dNTP Mix 10 mM each 2 μl 

Primer (for) (attB1)  2 μl 

Primer (rev) (attB2)  2 μl 

Advantage® 2 Polymerase 

Mix* 

50 x 2 μl 

* Clontech, Mountain View, CA, USA 
 

Thermocycling Step Temperature Time Cycles 

Denaturation 94°C 2 min 1 x 

Denaturation 

Annealing 

Elongation 

94°C 

58°C* 

68°C 

15 s 

30 s 

30 s** 

 

{ 30 x 

 

Elongation 68°C 7 min 1 x 

Cooling 4°C ∞  

* The annealing temperature depends on the GC content of the primers. The primer-specific 

melting temperature Tm is calculated with the “NEB Tm Calculator” (tmcalculator.neb.com). 

** The elongation time depends on the size of the gene to be amplified. 

 

In a second step, the now amplified and attB-flanked DNA-templates are cloned into a donor 
vector by BP ClonaseTM II (BP reaction, see following table). The product is the entry clone 

with a recombinant attL sequence. 

 

BP reaction Amount Volume 
TE buffer  to 4 μl 

attB-flanked DNA template 150 ng  

Donor vector 150 ng 1 μl 

BP ClonaseTM II*  1 μl 

* Invitrogen, Carlsbad, CA, USA 

 

In a third step, the attL-flanked DNA template within the entry clone is cloned into a 

pCS2+GW-vector (destination vector) by LR ClonaseTM (LR reaction, see following table). 
The end product is the expression clone. 
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LR reaction Amount Volume 
TE buffer  to 4 μl 

attL-flanked DNA template 

(within the entry clone) 

150 ng  

Destination vector 150 ng 1 μl 

LR ClonaseTM*  1 μl 

* Invitrogen, Carlsbad, CA, USA 

 
 

2.2.2) Plasmid linearization 
 

Prior to the in vitro transcription, the DNA plasmids first have to be linearized. 

 

Reagent Amount, Concentration Volume 
ddH2O  to 40 μl 

Buffer B* 10 x 4 μl 

DNA plasmid 10 μg  

Asp718 I* 10 U/μl 3 μl 

* Roche, Basel, Switzerland 

 
 

2.2.3) In vitro transcription 
 

The in vitro transcription was conducted according to the following protocol. 

 

Reagent Amount, Concentration Volume 
DEPC H2O  to 50 μl 

Transcription buffer* 5 x 10 μl 

Linearized plasmid 2 μg  

NTP mix** 10 mM each 5 μl 

Cap analog*** 25 mM 5 μl 

DTT* 100 mM 5 μl 

RNAsin* 40 U/μl 0.5 μl 

SP6 RNA Polymerase* 20 U/μl 2 μl 

Incubation at 37°C for 2.5 h 
SP6 RNA Polymerase* 20 U/μl 1 μl 

Incubation at 37°C for 1 h 
DNAse I* 10 U/μl 1 μl 

Incubation at 37°C for 0.5 h and mRNA clean up (RNeasy Mini Kit****) 
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* Promega, Madison, WI, USA 

** Roche, Basel, Switzerland 

*** NEB, Ipswich, MA, USA 

**** Qiagen, Venlo, Netherlands 
 

 

2.2.4) Cell transfection 
 

A6 cells have been plated at a density of 2 x 104 cells/well in the four central wells of an 8 well 

μ-slide® (ibidi, Martinsried, Germany) about 24 hours prior to the transfection. The 

composition of the transfection complex is given in the following table. 

 

Reagent Amount per well 
1. DMEM* (w/o serum) 30 μl 

2. Plasmid DNA 0.3 μg  

3. X-tremeGENETM HP DNA Transfection 

Reagent** 

0.3 μl (1:1 DNA-to-reagent ratio) 

* Sigma-Aldrich, St. Louis, MO, USA 

** Roche, Basel, Switzerland 

 

The transfection complex first rests at room temperature for 15 minutes and then is trickled 

onto the cells. The FRAP experiments were conducted with a latency of 24 hours. 

 
 

2.2.5) Western-blot 
 

Biologicals and Chemicals Company 
Glycine VWR, Radnor, PA, USA 

ImmobilonTM Western Merck Millipore, Burlington, MA, USA 

SDS 20% Serva, Heidelberg, Germany 

TWEEN® 20 Sigma-Aldrich, St. Louis, MO, USA 

 

 

Buffers Component Amount, Conc. 

TBS-T(WEEN® 20) 

NaCl 150 mM 

TRIS 50 mM 

TWEEN® 20 0.05% 

HCl to pH 7.4 
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10 x Running buffer 

TRIS 30.2 g 

Glycine 188 g 

SDS 20% 50 ml 

 

10 x Blotting buffer 

TRIS 30.2 g 

Glycine 188 g 

1 x dilution: 70% ddH2O, 10% 10 x blotting 

buffer, 20% MeOH 

 

Primary antibodies 
Antigen Dilution Species Company Catalog # 
GFP 1:10,000 Mouse Roche, Basel, 

Switzerland 

11814460001 

panH3 1:20,000 Rabbit Abcam, 

Cambridge, UK 

ab1791 

Secondary antibodies 
Antigen Dilution Species Company Catalog # 
Mouse 1:10,000 Sheep VWR, Radnor, 

PA, USA 

NA931 

Rabbit 1:10,000 Donkey VWR, Radnor, 

PA, USA 

NA934 

 

 
2.3) Tissue culture 
 

Cell lines Company 
A6 cells (26°C, 5% CO2) American Type Culture Collection (ATCC), 

Manassas, VA, USA 

HeLaK cells (37°C, 5% CO2) S. B. Hake (now University of Gießen, 

Germany) 

 

Biologicals Company 
Dulbecco’s Modified Eagle’s Medium 

(DMEM) – high glucose 

Sigma-Aldrich, St. Louis, MO, USA 

Fetal calf serum (FCS) Sigma-Aldrich, St. Louis, MO, USA 

Geneticin (G418) Sigma-Aldrich, St. Louis, MO, USA 

Penicillin, Streptomycin (P/S) Life Technologies, Carlsbad, CA, USA 

Poly-L-lysine solution (0.1%) Sigma-Aldrich, St. Louis, MO, USA 
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Culture media Component Concentration 

DMEM 90% (HeLaK) 

DMEM 90% 

FCS 10% 

P/S 1% 

G418 1% 

 

DMEM 75% (A6) 

DMEM 75% 

ddH2O 15% 

FCS 10% 

P/S 1% 

 
 

2.4) X. laevis-specific methods and techniques 
 

2.4.1) Cultivation 
 

Biologicals and Chemicals Company 
Cysteine hydrochloride 1-hydrate AppliChem, Darmstadt, Germany 

Gentamicin Sigma-Aldrich, St. Louis, MO, USA 

 

Culture media Component Amount 

10 x MBS (Modified Barth’s saline) 

NaCl 880 mM 

KCl 10 mM 

MgSO4 10 mM 

HEPES 50 mM 

NaHCO3 25 mM 

NaOH to pH 7.8 

CaCl2 is added to 0.1 x MBS. The CaCl2-

concentration in 0.1 x MBS is 0.7 mM. 

 

10 x Steinberg’s solution, 
Ca2+- and Mg2+-free, EDTA-

supplemented 
(SS w/o) 

NaCl 580 mM 

KCl 6.7 mM 

HEPES 50 mM 

EDTA 0.1 mM 

HCl to pH 7.34-7.44 

 

X. laevis embryos have been grown in gentamicin-supplemented (0.1%) MBS (0.1 x) at 23°C. 

The developmental staging has been made according to the Normal Table of Xenopus laevis 

(Daudin) by Nieuwkoop and Faber (1994). 
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In vitro fertilization 
Eggs are obtained by gentle squeezing of b-HCG-ovulated females and collected in a Petri 

dish. A small piece of testis is fragmented within a few milliliters of 1 x MBS. The sperm 

suspension is then trickled onto the eggs which rest for about 10 minutes before the dish is 

filled with 0.1 x MBS. 

 

Removal of the jelly coat 
Eggs and embryos are engulfed by a jelly coat, which is a protective barrier to chemical 

absorption (Edginton et al., 2007). Embryos are transferred into an Erlenmeyer flask which is 

filled with cysteine-supplemented (2%) MBS (0.1 x). The flask is carefully swiveled until the 
jelly coat is detached after approx. 5 minutes. The embryos are then rinsed several times to 

remove any remaining cysteine. 

 

 

2.4.2) Micromanipulation techniques 
 

Microinjection 
Microneedles are made from glass tubes (Glass 1BBL W/FIL 1.0 mm, World Precision 

Instruments, Sarasota, FL, USA) by a micropipette puller (settings: Heat: 800, Pull: 35, 

Velocity: 140, Time: 139). The pulled end of the microneedle is broken back manually by 

tweezers to achieve delivery of approx. 5 nl-drops under defined microinjector settings 

(pressure: 30 psi, time: 40 ms). The final drop size is fine-tuned over the injection time. In 

case of higher deviations, the microneedle is discarded. 

 

Animal cap dissection 
Animal caps are dissected using two pairs of tweezers (Biology No. 5) (Dumont, Montignez, 

Switzerland). The embryo is first “unpacked” by stripping of the vitelline membrane. One tip of 

the first tweezers is then pierced into the embryo, 0.2-0.5 cm distant from the center of the 

animal pole. The pair of tweezers is closed and a second pair of tweezers detaches the tissue 

held by the first tweezers. This procedure is repeated several times until the animal cap is 

completely explanted. 
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2.4.3) Cell nuclei isolation and chromatin extraction 
 

Biologicals and Chemicals Company 
cOmpleteTM Protease Inhibitor Cocktail 

(tablets) 

Roche, Basel, Switzerland 

DTT Biomol, Hamburg, Germany 

Glycerol VWR, Radnor, PA, USA 

NP-40 Honeywell, Morris Plains, NJ, USA 

 

Buffers Component Amount, Conc. 

C complete 

NaCl 420 mM 

MgCl2 2 mM 

HEPES / KOH pH 7.9 20 mM 

Glycerol 20 Vol.-% 

Added immediately before use: 

DTT 0.5 mM 

cOmpleteTM 1 tablet 

NP-40 0.1% 

 

E1 complete w/o sucrose (B4) 

KCl 90 mM 

MgCl2 5 mM 

TRIS / HCl pH 7.4 50 mM 

EDTA 0.1 mM 

Added immediately before use: 

DTT 2 mM 

cOmpleteTM 1 tablet 

 

E1 complete + 0.25 M sucrose (B1) 
E1 complete 50 ml 

Sucrose 4.3 g 

 

E1 complete + 1.25 M sucrose (B3) 
E1 complete 50 ml 

Sucrose 21.6 g 

 

E1 complete + 0.25 M sucrose + 0.2% 

NP-40 (B2) 

E1 complete 50 ml 

Sucrose 4.3 g 

Added immediately before use: 

NP-40 0.1 ml 
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Cell nuclei isolation 
Nuclei have been isolated from blastula embryos applying the protocol of Schneider et al. 

(2011). The first steps are carried out at room temperature. About 100 embryos are 

transferred into a 1.5 ml-Eppendorf tube, filled with 1 ml B1 buffer. B1 is exchanged three 
times, always preceded by a centrifugation at 600 rpm for 1 min. Finally, the embryos rest in 

B1 for 20 min. Then the embryos are transferred into a glass tissue homogenizer (S) (Braun, 

Melsungen, Germany) after two more milliliters of B1 have been added. The embryos are 

lysed by 10 slow and gentle pushes. The embryo suspension is transferred into a 15 ml-

Falcon tube and centrifuged at 1,000 rpm for 10 min at 4°C. From this step on, all the 

following are carried out at 4°C. The pellet is resuspended in 3 ml B2, the suspension rests 

20 min, is transferred into a 50 ml-Falcon tube, filled with 5 ml B3, and centrifuged at 1,000 

rpm for 30 min. The supernatant (“sucrose supernatant”) is subjected to a protein precipitation 
according to Wessel and Flügge (1984), the pellet is resuspended in 1.5 ml B4. The 

suspension is transferred into a 1.5 ml-Eppendorf tube which is centrifuged at 5,000 rpm for 2 

min. The supernatant is discarded and the pellet, isolated nuclei, is submitted to the next step 

of chromatin extraction. 

 

Chromatin extraction 
Chromatin and histones, respectively, can be extracted from isolated cell nuclei by two 

methods, acid extraction and high salt extraction (reviewed in Shechter et al., 2007). The fact 
that histones can be purified relatively easily by acid extraction due to their basic character 

was already described in 1884 by Albrecht Kossel, the first describer of histones (A. Kossel, 

Nobel Prize in Physiology or Medicine 1910). The acid extraction in this work was conducted 

according to the protocol by H. Christian Eberl. 

Like the final steps of cell nuclei isolation, chromatin extraction is performed at 4°C. The 

nuclei isolation pellet is twice resuspended in 10 ml PBS and the suspension is centrifuged at 

3,900 rpm for 5 min. The pellet is resuspended in 3 ml C complete, the suspension is rotated 
for 1 h and ultracentrifuged at 55,000 rpm for 1 h. The ultracentrifugation pellet (“UZ pellet”) is 

pure chromatin and the ultracentrifugation supernatant (“UZ supernatant”) is chromatin-free 

extract. The UZ supernatant is subjected to a Wessel and Flügge-protein precipitation. 

 

 

2.4.4) Poly-L-lysine coating of µ-slides® 
 

We used 8 well µ-slides® (ibidi, Martinsried, Germany) for FRAP microscopy. These 
polymeric slides are refined by a standard tissue culture coating (ibiTreat®). To enable 

adhesion of animal cap cells, we added a poly-L-lysine coating according to the ibidi 

Application Note No. 8 (Coating procedures for ibidi µ-slides and µ-dishes). The positively 

charged polyamino acid poly-l-lysine enhances electrostatic interaction between the net 

negatively charged cell surface and the positively charged slide surface. 
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300 μl of diluted poly-L-lysine solution (15 µg/ml) are pipetted into each of the four central 

wells. The slide rests at room temperature for 1 hour before the solution is removed and each 

well is rinsed five times with 300 μl 1 x PBS. After the final PBS removal, the slide is kept in a 

vertical position for at least half an hour to allow even drying. 
 

 

2.5) Technical aspects of FRAP measurements 
 

2.5.1) Data acquisition 
 

The microscope settings used for FRAP measurements are listed in the following table. 

 

Parameter Setting 
AOTF 

- pre- and postbleach image recording 

(488 nm) 

- bleaching (all lines) 

 

 

2%  

100% 

Bidirectional scan ✓ 

Binary digit (bit) 12 bit 

Diameter of the bleached ROI (px) 40 px 

Format 256 x 256 px 

Frames (prebleach, bleaching, postbleach) 

- HeLaK cells 

- A6 cells 

- animal cap cells 

 

20, 2, 391 

20, 5, 391 

20, 5, 196 

Laser Argon laser 

Laser power 100% 

Laser lines 
- pre- and postbleach image recording 

- bleaching 

 
488 nm 

458 nm, 476 nm, 488 nm, 514 nm 

Pinhole aperture 2 AU 

Postbleach image recording time 

- HeLaK cells, A6 cells 

- animal cap cells 

 

60 s 

30 s 

Scan speed 870 Hz 

Smart gain 800 V 

Zoom 

- HeLaK cells, A6 cells 

- animal cap cells 

 

10 (except for eGFP (Zoom 8)) 

8 
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Zoom in ✗ 

 
Pixel size (depending on Zoom) 

- Zoom 8 

- Zoom 10 

 

120.6 x 120.6 nm 

96.48 x 96.48 nm 

Diameter of the bleached ROI (μm) 

(depending on number of pixels (40 px, see 

above) and pixel size) 

- 120.6 x 120.6 nm 

- 96.48 x 96.48 nm 

 

 

 

4.824 μm 

3.859 μm 

Time / frame (depending on scan speed and 

bidirectional scan) 

 

0.154 s 

 

Temperature (“The Cube & The Box”) 23°C 

 

 

2.5.2) Data evaluation 
 

Primary data analysis 
In a first step, the FRAP stack is imported into an R-macro which converts image data into 

numerical data. In each individual frame, a numerical value is assigned to the fluorescence 

intensity in the three regions of interest (➤ Figure 2.1). This R-macro has been developed in 

cooperation with Kathrin Schneider (Leonhardt group, LMU) and has been specially designed 

for our microscope. The entire script is provided in Appendix III. 

 

 
 

Figure 2.1: Regions of interest (ROIs) (Rapsomaniki et al., 2012) 
ROI1: bleached area 

ROI2: non-bleached area (here: non-bleached area of the nucleus) 

ROI3: background (here: cytoplasm) 
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Secondary data analysis 
In a second step, the Excel file with the fluorescence intensity values for the three regions of 

interest is imported into easyFRAP, an open-access, non-commercial software (Rapsomaniki 

et al., 2012). In the following, the individual processing steps of this software are presented. 
 

Background subtraction 

The background fluorescence intensity (ROI3) is subtracted from the fluorescence intensity in 

ROI1 and ROI2, respectively. 

 

I(t)%&'() = I(t)%&'( − I(t)%&', 

 

I(t)%&'-) = I(t)%&'- − I(t)%&', 

 

 

Bleaching depth 

Bleaching depth (bd), a measure for the bleaching efficacy, is the spread between the mean 
prebleach fluorescence intensity II (non-normalized) and the first postbleach fluorescence 

intensity Iα (non-normalized) in ROI1. 

 

Bd =
0 1
n345

⋅ ∑ I(t)%&'()	
9345
:;( < − I(t=>5?@A)%&'()	
1
nBCD

⋅ ∑ I(t)%&'()
9345
:;( 	

 

 

 
Gap ratio 

Gap ratio (gr), a measure for the loss of fluorescence intensity in the non-bleached area 

during postbleach time, is the spread between the mean prebleach fluorescence intensity II 

(non-normalized) and the mean postbleach fluorescence intensity (non-normalized) in ROI2. 

A high gap ratio means a small loss of fluorescence intensity. 

 

Gr =
1
10 ⋅ ∑ I(t)%&'-)

:=>5?@AHIJ∆L
:=>5?@A

1
n345

⋅ ∑ I(t)%&'-)
9345
:;(

 

 

 

Double normalization 

easyFRAP offers a double normalization and a full-scale normalization. Both types of 

normalization correct the gap ratio (first part of the equation). A full-scale normalization 

additionally corrects the bleaching depth. We decided for a double normalization. 
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I(t)MN4OPNQ=>5 = R

1
n345

⋅S I(t)%&'-)
9345
:;(

I(t)%&'-)
T ⋅ R

I(t)%&'()
1
n345

⋅ ∑ I(t)%&'()
9345
:;(

T 

 

 

Bi-exponential fit 

easyFRAP provides a mono-exponential (“single term”) and a bi-exponential (“double term”) 

fit. We tested both fits and decided on the basis of R2 for the bi-exponential fit. 
 

IUV:- = IW − aeZ[: − γeZ]: 

 

 

Mobility fractions 

Mobility fractions indicate the ratio of the soluble or loosely bound and the non-soluble, i.e. 

bound fraction of molecules of a given protein. The soluble fraction is indicated by the mobile 

fraction, the non-soluble fraction by the immobile fraction. 
The mobile fraction is the spread between the endpoint fluorescence intensity I∞ (normalized) 

and the first postbleach fluorescence intensity Iα (normalized). The immobile fraction is the 

spread between the mean prebleach fluorescence intensity II (normalized, hence II = 1) and 

the endpoint fluorescence intensity I∞ (normalized). 

 

Mf =
I` − Ia
1 − Ia

 

 

if = 1 − mf 

 

 

t-half (t/2) 

t/2 specifies the time at which the postbleach fluorescence intensity has recovered to 50% of 

the mean prebleach fluorescence intensity II. t/2 is calculated numerically. 

 

Coefficient of determination R2 

The coefficient of determination R2 is a measure for the goodness of the mathematical fit. An 
equation that perfectly fits the data predicts the dependent variable y at each x (R2 = 1). An 

equation that does not fit the data at all cannot predict y (R2 = 0). 
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3) Results 
 

3.1) Establishing the FRAP technique 
 

Before we started to work on methodological details of the application of FRAP to embryonic 

Xenopus cells, we first had to establish this technique in our laboratory. Besides learning the 

practical handling of the confocal microscope, the initial focus was on selecting appropriate 
programs for primary and secondary data analysis or, if necessary, developing new ones. As 

described in Chapter 2.5.2, we use a self-developed R-macro for primary data analysis and 

an open-access software for secondary data analysis (easyFRAP). 

In the course of my first two experimental series, FRAP data were to be reproduced on the 

locally available confocal microscope and using the selected analysis programs. To this end, 

we repeated in parts the FRAP analyses of Wiedemann et al. (2010), who characterized the 

then newly identified primate-specific histone variants H3.X and H3.Y in HeLaK cells, among 

other methods also by FRAP analysis. The FRAP experiments in Wiedemann et al. were 
conducted under the guidance of L. Schermelleh (now Advanced Bioimaging Unit, University 

of Oxford, UK). We selected a completely soluble, highly mobile protein (eGFP) and a mainly 

non-soluble, virtually immobile protein (eGFP-H3.3) to cover the entire range of protein 

mobility. Moreover, we adopted the microscope settings from Wiedemann et al.. The results 

of the FRAP analyses for these two proteins on stably transfected HeLaK cells are presented 

in the following two figures. 
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Figure 3.1: FRAP analysis for eGFP in HeLaK cells 
(A) Cell morphology (brightfield + GFP, scale bar: 10 µm). Completely soluble eGFP is 

distributed in the entire cytoplasm. 

(B) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (30 s) (b’’’) postbleach 3 (60 s) 

(C) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 81% • Gap Ratio: 94% 

(D) Mean normalized curves +/- SD • t/2: 0.17 s • Mobile Fraction: 100% • R2: 59% 

n = 33 cells from 3 independent experiments 

The bleaching event was effective, as can be read from the bleaching depth. Even before the 

first postbleach frame was taken, the initial concentration of eGFP in the bleached area was 

restored. eGFP is highly mobile as indicated by the mobile fraction and by t/2. Half of the 

mean initial fluorescence intensity of a completely soluble protein is recovered within 0,17 s. 
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Figure 3.2: FRAP analysis for eGFP-H3.3 in HeLaK cells 
(A) Cell and nuclear morphology (brightfield + GFP, scale bar: 10 µm) 

(B) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (30 s) (b’’’) postbleach 3 (60 s) 

(C) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 81% • Gap Ratio: 90% 

(D) Mean normalized curves +/- SD • t/2: not calculable* • R2: 98% 
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(E) Mobility Fractions (waffle chart) 

n = 42 cells from 3 independent experiments 

The vast majority of eGFP-H3.3 molecules are non-soluble, as indicated by the immobile 

fraction of 97%. 

* t/2 cannot be calculated because the fluorescence intensity in the selected postbleach time 

does not reach 50% of the mean prebleach fluorescence intensity. We will encounter a t/2 

that is not predictable for this reason also in the following experiments (*). 

 

These first two studies confirm that we can reproduce published FRAP data with our 

equipment. The microscope settings and the obtained values for bleaching depth and gap 

ratio serve as reference settings and reference values, respectively, for the following FRAP 

analyses. Accordingly, the bleaching depth should be around 80%, the gap ratio around 90%. 
 

 

3.2) FRAP analyses for H3.2 and H3.3 in epithelial Xenopus cells (A6 cells) 
 

The next step was to apply FRAP to epithelial Xenopus cells. To this end, we selected the A6 

cell line which has been derived from the kidney of an adult male X. laevis frog (Rafferty, 

1969). The transient transfection of the A6 cells with expression plasmids for eGFP-tagged 

histone variants was performed as described in Chapter 2.2.4. 
We used the reference microscope settings and found that the bleaching depth, unlike the 

gap ratio, is significantly below the reference level. The bleaching depth can be regulated by 

the laser power, the used laser lines for bleaching, the permeability of the AOTF filters during 

bleaching and the bleaching time. Since the first three parameters were already set at 

maximal levels, the bleaching depth could only be improved by the bleaching time. We 

extended the bleaching time from 308 ms to 770 ms and reached bleaching depths of 80% 

and 81%, respectively. With these modified settings, FRAP analyses have now been made 
for H3.2-eGFP and H3.3-eGFP, the results of which are shown in the next two figures. 
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Figure 3.3: FRAP analysis for H3.2-eGFP in A6 cells 
(A) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (30 s) (b’’’) postbleach 3 (60 s) 

(B) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 80% • Gap Ratio: 88% 

(C) Mean normalized curves +/- SD • t/2: not calculable* • R2: 98% 

(D) Mobility Fractions (waffle chart) 

n = 23 cells from 2 independent experiments 
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Figure 3.4: FRAP analysis for H3.3-eGFP in A6 cells 
(A) Cell and nuclear morphology (brightfield + GFP, scale bar: 10 µm) 

(B) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (30 s) (b’’’) postbleach 3 (60 s) 

(C) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 81% • Gap Ratio: 88% 

(D) Mean normalized curves +/- SD • t/2: not calculable* • R2: 97% 
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(E) Mobility Fractions (waffle chart) 

n = 25 cells from 2 independent experiments 

 

We see almost no fluorescence recovery for H3.2-eGFP and H3.3-eGFP within the first 60 s 
after bleaching, the immobile fractions are 95% and 94%, respectively. Thus, we do not find 

any significant dynamic behavior for the two core histone variants H3.2 and H3.3 in somatic 

A6 cells. This behavior equates to that of these core histone variants in mammalian somatic 

HeLaK cells. 

 

 

3.3) Applicability of embryos 
 
When we started this project, our initial goal was to use embryos for FRAP analysis. To this 

end, embryos at different stages of development could be embedded in low melting agarose 

on a microscope slide and surface-proximal regions could be subjected to FRAP microscopy. 

We tested this method for the animal pole region of an embryo at late blastula (➤ Figure 3.5). 

 

 
 

Figure 3.5: Animal pole region of a late blastula embryo (NF9) 
(time lapse over 5:12 min, scale bar: 10 µm) 
The cell membrane (memRFP, faint) can be followed-up continuously, whereas none of the 

nuclei (H3.2-eGFP) keeps its position, although to differing extents: Nucleus 1 is trackable 

during the whole time lapse, yet slightly moves as the captured chromatin structure changes, 

nucleus 2 disappears (D), nucleus 3 emerges (*). 

 

Analogous to Aoki et al., we see cell nuclei in motion, most likely due to cytoplasmic 
streaming. As a consequence, the registration of the image stack fails. Thus, these nuclei are 

inappropriate for FRAP experiments. This is line with the fact that cell membrane-associated 
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proteins have repeatedly been analyzed by FRAP (Eroshkin et al., 2016; Higashi et al., 2016) 

– in sharp contrast to nuclear or chromatin proteins in native embryonic cells. 

 

In principle, three methodological approaches are conceivable to enable FRAP in Xenopus: 
1. Cell nuclei are isolated from embryos or small embryonal dissections and attached to a 

microscopy slide by centrifugation. This method is already established (Aoki et al., 2010; 

Edens et al., 2017) but has conceptual shortcomings, as has been pointed out in Chapter 

1.4. 

2. Embryos are used and efforts are made to reduce nuclear motion by inhibition of the 

molecular mechanisms underlying cytoplasmic streaming. 

3. Cells are isolated from embryos or small embryonal dissections and nuclear motion is 

possibly reduced by adherence on a microscopy slide, coated with a matrix yet to be 
found. It is conceivable that adherence leads to a change in the cell configuration in such 

a way that the range of motion of the cell nucleus within the cell is restricted and thus 

nuclear motion is reduced. 

 

 

3.4) Novel method: Use of adherent animal cap cells 
 

We considered it most promising to pursue the third option employing embryonic cells which 
have been isolated from animal caps. This implied that we had to find a substrate on which 

isolated animal cap cells adhere. 

We discovered that animal cap cells adhere to a poly-L-lysine coated surface within the 

dissociation time (see experimental workflow). Whether cell adherence leads as well to a 

sufficient reduction of nuclear motion can be assessed only in the context of the first FRAP 

measurements. 

Animal caps can be dissociated and animal cap cells can be isolated, respectively, by the 
removal of calcium. This is a commonly applied and Xenopus-specific method. Since we use 

cells of the non-pigmented inner cell layer, the animal cap has to be kept in a calcium-free, 

dissociating medium for another reason: The animal cap contracts from the beginning of 

dissection on, with the pigmented outer cell layer enclosing the inner cell layers. The 

experimental workflow is depicted and described in detail in the next figure. 
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Figure 3.6: Experimental workflow 
(A) Part I: mRNA is injected radially into the four animal blastomeres of an 8-cell embryo 

(2.25 hpf). We injected 500 pg mRNA/embryo, i.e. 125 pg mRNA/blastomere. Animal cap 

dissection starts at mid blastula (7.5 hpf). 

(B) Part II: One embryo is selected and transferred to calcium- and magnesium-free, EDTA-

supplemented 1 x Steinberg’s solution. The embryos or animal caps are continuously kept in 

this medium from here on. The embryo is transferred two more times to reduce the calcium 

and magnesium ions transferred from the MBS solution. Residual calcium and magnesium 

ions are complexed by EDTA. The dissected animal cap is transferred three times to remove 

cell debris at the border zone of the animal cap. The cap then rests for approx. 5 minutes 

before being transferred into a well of a µ-slide®. A slightly “pre-dissociated”, flatter animal 
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cap is easier to transfer. The transfer of the animal cap into a well proceeds as follows: The 

animal cap is sucked approx. 5 mm into a glass capillary, which is then vertically immersed 

into the medium-filled well. The cap then descends slowly by gravity and usually orients itself 

"inner cell layer down". If the cap does not orient itself correctly, it is sucked up again and 

turned. This procedure is repeated for three more embryos. As a result, each of the four 

central wells of the 8 well µ-slide® is mounted with an animal cap. Dissection and mounting of 

four animal caps takes about 30 minutes. The mounted slide rests at room temperature for 30 

minutes before the FRAP measurements can begin. These 30 minutes can be used to mount 

another slide. The animal cap cells burst on contact with air which must therefore be avoided 

(Potential caveat: air bubbles in the capillary). 

(C) Single well of a µ-slide® with a mounted animal cap at (a) low (b) high magnification (c) 

border zone of an animal cap (brightfield, scale bar: 50 µm) 

(D) Injected embryos develop normally and show a regular phenotype (NF38). The usual 

mRNA-injection scheme has been applied (see above). The striking appearance of the 

somites (►) is due to the regular alignment of the nuclei in the center of the myocytes. (a) 

brightfield (b) H3.3-eGFP 

 

 

3.5) Ratio of soluble and chromatin-bound core histone molecules in blastula embryos 
 
For somatic cells, we know that the vast majority of molecules of an individual core histone is 

incorporated into chromatin and thus is not soluble (about 99%) (Loyola et al., 2006). As we 

intend to investigate core histone dynamics in embryonic cells by a novel method yet to be 

established, it is helpful to first resort to an established molecular biological method and to 

differentiate the soluble and the non-soluble fraction of the entirety of molecules of individual 

core histones in embryonic cells. This experiment is also important for another reason: Since 

an additional, eGFP-tagged variant of the H3-variants is expressed, a situation of histone 
overload may be generated. Excess histones would be recorded as mobile and thus we 

would attain a false high mobility. To rule out histone overload, we have to show that the 

production of histone proteins from microinjected mRNA does not artefactually increase the 

non-incorporated pool. The experimental proceeding and the results are presented in the next 

figure. 
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Figure 3.7: Western-blot 
dark green: H3.2-eGFP, light green: H3.3-eGFP, black: uninjected 

(x): number of embryo equivalents loaded on gel 

n = 3-5 independent experiments in each case 

(A) The same mRNA-injection scheme as for the following FRAP experiments has been 

applied (➤ Figure 3.6 A). We purified chromatin from isolated nuclei of blastula embryos 

according to the protocols detailed in Chapter 2.4.3. We then used a panH3-antibody to 

detect H3.2(-eGFP) and H3.3(-eGFP) in pure chromatin (UZ pellet), the nucleoplasm (UZ 

supernatant) and the cytoplasm (sucrose supernatant). Here we realized that the panH3 

antibody does not detect eGFP-tagged H3, possibly for structural reasons. Therefore, we had 

to use a separate GFP-antibody (➤ B). As a result, H3.2 and H3.3 (both ~15 kDa) are 

detected exclusively in the pure chromatin fraction in both uninjected and injected embryos. 
(B) We now applied a GFP-antibody to detect H3.2-eGFP and H3.3-eGFP in the three 

fractions. We see that H3.2-eGFP and H3.3-eGFP (both ~42 kDa) are detected again only in 

the pure chromatin fraction. 

 

Two important conclusions can be drawn from this experiment: First, virtually all molecules of 

H3.2 and H3.3 are chromatin-bound – as well in pluripotent embryonic cells. And second, 

even when up to 2.5-fold more material of supernatant than chromatin pellet was loaded on 

the gel, no histone proteins could be detected in the nucleoplasmic and cytoplasmic fractions 

of the injected embryos. Therefore, we do not generate histone overload from the dose of 
mRNA we inject. 

 

 

Line profile plot 
We additionally created a line profile plot, a Fiji application for the assessment of 

colocalization of two or more fluorescent proteins. This application extracts and plots relative 

values for the fluorescence intensity of the individual proteins along a defined line within a 

region of interest. Concordant curves are principally compatible with protein colocalization. 
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Figure 3.8: Line profile plot 
Nuclei of adherent animal cap cells, expressing H3.2-eGFP or H3.3-eGFP. The same mRNA-

injection scheme as for FRAP experiments has been applied (➤ Figure 3.6 A). DNA is 

stained with Hoechst 33342. The red curve represents the fluorescence intensity of Hoechst 

33342 (DNA), the green curve the fluorescence intensity of the eGFP-tagged histones. 

(a’+a’’) Hoechst 33342 (b’) H3.2-eGFP (b’’) H3.3-eGFP (c’+c’’) overlay (d’+d’’) line profile 

plots (scale bar: 10 µm) 

 

Since we see largely concordant curves (Figure 3.8), a high degree of colocalization can be 

assumed which, with reservations, speaks as well for a high level of histone incorporation. 
However, it should be considered that only eGFP-tagged histones are captured, endogenous 

histones are not included. Further statements on histone incorporation and possible histone 

overload are therefore not possible. 

The informative value of the Western-blot above is clearly higher. The line profile plot is 

introduced here nonetheless to provide a conceptual outline of this frequently used image 

analysis tool. 

 

 
3.6) FRAP analyses for H3.2 and H3.3 in animal cap cells 
 

We then applied our established protocol and were particularly interested in whether cell 

adherence also leads to a sufficient reduction of nuclear motion. The measurement settings 

used for the A6 cells have been adopted, except for the post bleaching time which has been 

halved in order to reduce the total laser exposure time. This parameter is relevant here 

insofar as the embryonic cells are relatively close to each other and possible scattering 
effects on neighboring cells have to therefore be considered. With these not substantially 
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altered settings we then conducted FRAP analyses for H3.2-eGFP and H3.3-eGFP (Figure 

3.9 and Figure 3.10). 

 

 
 
Figure 3.9: FRAP analysis for H3.2-eGFP in animal cap cells 
(A) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (15 s) (b’’’) postbleach 3 (30 s) 

(B) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 75% • Gap Ratio: 91% 

(C) Mean normalized curves +/- SD • t/2: not calculable* • R2: 94% 

(D) Mobility Fractions (waffle chart) 

n = 16 cells from 4 independent experiments 
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Figure 3.10: FRAP analysis for H3.3-eGFP in animal cap cells 
(A) Selected frames (scale bar: 10 µm) (a) prebleach (b’) postbleach 1 (0.154 s) (b’’) 
postbleach 2 (15 s) (b’’’) postbleach 3 (30 s) 

(B) Fluorescence Intensity (FI) in (1) ROI1 (2) ROI2 (3) ROI3 for individual cell measurements 

(arbitrary units) • Bleaching Depth: 76% • Gap Ratio: 91% 

(C) Mean normalized curves +/- SD • t/2: not calculable* • R2: 94% 

(D) Mobility Fractions (waffle chart) 

n = 15 cells from 3 independent experiments 

 

First, a brief glimpse at the nuclear architecture and chromatin structure is worthwhile: We 

see a lobed nucleus and a fine-granular chromatin (A). Both aspects differ from those of 

somatic cells and raise some questions to be discussed in Chapter 4.3: Are this nuclear 
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architecture and chromatin structure specific for pluripotent embryonic cells? How is the 

nuclear architecture structurally defined in these cells? 

 

But our main focus is on the nuclear motion: The R-macro can easily register the cell nucleus 
in each individual frame. This means that the nuclear motion is sufficiently reduced by our 

novel methodological approach. This gives us a novel, working method.	How the adherence 

leads to a reduction of the nuclear motion and whether the adherence is possibly 

accompanied by a change in the cell configuration, remains to be addressed separately. 

The values achieved for the bleaching depth are around 80%, those for the gap ratio around 

90%. Both values are within the reference range, which could not be predicted a priori, as the 

embryonic cells have a seminally different architecture compared to A6 cells. The satisfactory 

bleaching depth value can primarily be explained by the fact that cell nuclei were selected 
which are particularly close to the surface of the slide. It is also these nuclei which exhibit the 

highest degree of immobility. 

 

If we now look at the results of the FRAP analyses, we see almost no fluorescence recovery 

for H3.2-eGFP and H3.3-eGFP within the first 30 s after bleaching, the immobile fractions are 

97% and 98%, respectively. Thus, we do not register any significant dynamic behavior for the 

two core histone variants H3.2 and H3.3 in pluripotent embryonic cells. This behavior equates 

to that of these core histone variants in somatic A6 cells. 
 

We interpret our results primarily independently of the measurement and culture temperature, 

respectively, which is 37°C for the HeLaK cells, 26°C for the A6 cells and 23°C for the 

embryonic cells, and thus covers a range of 14°C. Sophisticated diffusion models usually 

include temperature. However, the characterization of the dynamic behavior of individual 

chromatin components by FRAP analysis does not primarily require such a complex model. 

The determination of the two basic parameters t-half and mobility fractions is sufficient and is 
practiced here and in comparable studies (Meshorer et al., 2006; Boskovic et al., 2014). The 

calculation of these two parameters does not include the measurement temperature. 
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4) Discussion 
 

If we recall the two objectives of this work formulated in Chapter 1.5, we recognize that both 

have been achieved: First, we have implemented the FRAP technique on pluripotent 

embryonic Xenopus cells. We use native, i.e. intact embryonic Xenopus cells – this is the key 

improvement over all previous approaches, for which Aoki et al. (2010) is representative (➤ 
Chapter 1.4). Secondly, we have used this novel method to characterize the two non-

centromeric core histone H3 variants in Xenopus, H3.2 and H3.3, in pluripotent embryonic 

cells. 
 

We have analyzed two core histone variants by FRAP, however, any other chromatin and 

nuclear component can be principally subjected to this technique and this method. The 

versatility of this system will allow to extent these observations throughout large parts of 

embryonic development (➤ Chapter 4.4), which promises interesting insights into the process 

of chromatin maturation. Some of the foundations of this process have already been 

deciphered using the model organism Xenopus (Akkers et al., 2009; Schneider et al., 2011; 

reviewed in Perino and Veenstra, 2016). 

 

 
4.1) Core histone mobility in somatic cells 
 

The soluble fraction of the entirety of molecules of an individual core histone variant in 

somatic mammalian HeLa S3 cells is approx. 1% (soluble nuclear: 0,6%, soluble cytosolic: 

0,4%, chromatin-bound: 99%) (Loyola et al., 2006). This slight proportion is reflected in small 

mobile fractions of around 5% for core histones, which were obtained from FRAP analyses 

repeatedly in somatic mammalian cells (exemplarily Wiedemann et al., 2010) and in the 
present work in somatic amphibian cells. 

 

Core histone provision in somatic cells has been recognized to be linear, “just in time” and 

precisely adapted to scheduled changes in demand. For replication-dependent core histone 

variants, this means that these histones are produced in near stochiometric abundance to the 

needs of the next S-phase (Gunjan et al., 2005; Marzluff et al., 2008). In addition, data from 

yeast provide evidence for the existence of regulated histone proteolysis (Gunjan et al., 

2006). Thus, a pool of soluble core histones is basically not intended. Only histones in transit 
are transiently soluble, for example on the way from the ribosome to the nucleosome, as well 

as histones which are evicted during transcription or DNA repair. 

 

However, this linearity between histone supply and demand can be perturbed: In the moment 

of a sudden and unanticipated increase of the mitosis rate and thus acute replication stress, 

the number of demanded histones transiently exceeds the amount of supplied histones. In the 
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case of mitosis inhibition, the reverse is true. Insufficient histone levels can trigger cell cycle 

arrest (Han et al., 1987; Kim et al., 1988; Nelson et al., 2002), whereas histone overload is 

linked to DNA damage and genome instability (Gunjan and Verreault, 2003). 

 
Not surprisingly, the somatic cell has strategies to cushion, at least partially, imbalances in 

histone supply or demand. Cook et al. (2011) deciphered one of these strategies: NASP 

(nuclear autoantigenic sperm protein), a histone chaperone upstream to ASF1 (anti silencing 

factor 1) and CAF-1, balances a reservoir of NASP-associated but soluble H3-H4-

heterodimers. NASP preserves H3-H4-dimers from being degraded. In case of histone 

shortage, the affinity of NASP towards H3-H4 is higher, so more H3-H4-dimers are preserved 

from degradation. In case of histone overload or perturbation of ASF1 activity, the affinity of 

NASP towards H3-H4 is lower and thus H3-H4-dimers are more likely to be degraded. 
 

 

4.2) Core histone mobility in totipotent and pluripotent embryonic cells 
 

We were able to show by Western-blot analysis that the "Loyola paradigm" (➤ Chapter 4.1) 

also applies to pluripotent embryonic Xenopus cells: The core histone variants H3.2 and H3.3 

are almost exclusively chromatin-bound. In addition, we were able to show by FRAP analysis 

that the non-soluble fraction of these two histones is more than 95% each. 

 

If we now look at which mobilities for H3 variants were measured in comparable studies in 
other model systems, the picture is not quite uniform: Meshorer et al. (2006) see no 

significant mobility for H3.3, but a moderately elevated mobile fraction of approx. 25% for 

canonical H3 in pluripotent ES cells. Boskovic, Torres-Padilla et al. (2014), which use 

totipotent embryonic mouse cells (see below), see a moderately increased mobile fraction of 

approx. 25% for the two canonical variants H3.1 and H3.2 in 2-cell embryos, which has fallen 

to approx. 5% already in 8-cell embryos. For H3.3, a mobile fraction of approx. 5% is seen 

throughout.	 The existing discrepancy regarding the mobility of canonical H3 cannot be 
resolved for now, however our analyses support the Boskovic results. 

 

The group around M.-E. Torres-Padilla were pioneers in using totipotent mouse pre-

implantation embryos for FRAP microscopy. The study just mentioned above is one of the 

studies using this novel method. Therein the three non-centromeric mammalian H3 variants 

H3.1, H3.2 and H3.3 are characterized in 2-cell and 8-cell embryos. H3.3, whose role is seen 

rather in the context of transcriptional gene activation, is the predominant H3 variant in the 

mouse zygote (Torres-Padilla et al., 2006; Santenard et al., 2010; Akiyama et al., 2011). 
Within the first three cell divisions, H3.3 is replaced “in a global wave of incorporation” 

(Boskovic et al., 2014) by the replication-dependent, canonical variants H3.1 and H3.2, which 
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are assigned a more repressive role. In this context, H3.3 is also referred to as a 

“placeholder” (Akiyama et al., 2011; Dunleavy et al., 2011). 

 

We do not yet know whether the situation in Xenopus is comparable to that in the mouse, i.e. 
whether H3.3 is the predominant H3 variant as well in totipotent Xenopus embryos and 

whether a global replacement by H3.2 follows. Besides, it is questionable whether FRAP 

measurements on totipotent embryonic Xenopus cells are feasible at all, as these have a 

different size and morphology compared to pluripotent embryonic cells. Nonetheless, from the 

synopsis of our results and those of Boskovic et al. we can draw two conclusions regarding 

chromatin dynamics in general and core histone dynamics in particular: 

 

1. The starting point is a developmental biological motif which here could be defined as 
follows: Cell differentiation is driven by a gradual repression of the genome by epigenetic 

mechanisms (Müller and Leutz, 2001; Eckfeldt et al., 2005). Besides an increasing DNA 

methylation and a gradual increase of repressive posttranslational histone modifications, 

for example, the replacement of “activating” by “repressive” histone variants plays a 

fundamental role here. This is exemplified by the global replacement of H3.3 by canonical 

H3 variants in totipotent 2-cell and 4-cell mouse embryos. 

In the setting of a histone variant replacement, at least two variants compete for one 

chromatin binding site, i.e. at least one variant is always (transiently) soluble in the sense 
of being non-incorporated and thus can be detected and quantified by FRAP. 

 

2. In totipotent embryonic mouse cells, the replacement of the initially predominant H3.3 by 

the two canonical H3 variants within the first three cell divisions is described as “wave-

like” (see above). The FRAP analyses by Boskovic et al. reveal a moderately increased 

soluble fraction of approx. 25% for the, one might say hyperdynamic, canonical variants 

in totipotent embryonic cells. 
In the context of mapping of posttranslational histone modifications during Xenopus 

development by mass spectrometry, Schneider et al. (2011) also determined the H3.2-to-

H3.3 ratio. From this work we know that H3.2 is the predominant H3 variant in pluripotent 

late blastula Xenopus embryos (H3.2/H3.3 ratio: 80/20%), the earliest stage examined 

here. H3.3 is then gradually and almost completely replaced over a long developmental 

period, a process which does not end before tadpole stage. Our FRAP analyses do not 

indicate an enhanced mobility for the canonical variant H3.2 in pluripotent embryonic 

cells. 
 

Thus, a global replacement of a core histone variant within few cell cycles is one of probably 

a number of cellular processes still to be identified which can be assumed to be fundamental 

for a (hyper)dynamic behavior of individual core histone variants in early embryonic cells. 
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4.3) Nuclear architecture and chromatin structure in pluripotent embryonic cells 
 

Nuclear architecture 
The lobed architecture of the nucleus in pluripotent embryonic Xenopus cells is reflected in 
the description of an “ill-defined” nuclear lamina in pluripotent ES cells which acquires a 

“round and distinct” character in lineage-committed NP cells (Meshorer and Misteli, 2006). 

Thus, this aspect of the nucleus seems to be specific for pluripotent embryonic cells. 

Metazoan cell nuclei are delimited by the nuclear envelope (NE) which is built up from two 

lipid membranes with integrated pore complexes, and a nuclear lamina that lies close to the 

inner lipid membrane. The nuclear lamina is a meshwork of type V intermediate filaments, the 

so-called nuclear lamins. Vertebrates express two types of lamins, lamin A and lamin B. 

Lamin A has been shown to be absent in mouse and human pluripotent ES cells. Moreover, 
lamin A is seen to be “indicative” for pluripotency (Constantinescu et al., 2006). Both lamin 

proteins directly associate with chromatin which is stabilized by the nuclear lamina (Taniura et 

al., 1995; Melcer et al., 2012; Mattout et al., 2007). 

Specific mutations in the gene for lamin A (LMNA) are associated with a group of rare, 

hereditary diseases, the laminopathies. These so-called “orphan-diseases” increasingly 

manifest after birth and often lead to premature death. This group includes, to name just a 

few examples, muscular dystrophy, cardiomyopathy, dyslipidemia and progeria, all to varying 

degrees and in varying combinations (Mattout et al., 2006; Hutchison and Worman, 2004; 
Gruenbaum et al., 2005; Rankin and Ellard, 2006). 

Schäpe et al. (2009) examined the contribution of prelamin A to the rigidity or “stiffness” of the 

nucleus. Therein, lamin A was ectopically expressed in X. laevis oocytes and the rigidity of 

the nuclear envelope was analyzed by atomic force microscopy. This experiment revealed 

that a high expression of prelamin A is concomitant with a more rigid nuclear envelope. 

Assuming that the lobed aspect of the cell nucleus is founded in structural-morphological 

causes, then this unique architecture might be explained by the absence of lamin A. 
 

Beyond that, we increasingly understand the mechanisms which control nuclear size in 

embryonic cells, not least in the light of two recent Xenopus studies: Brownlee and Heald 

(2019) postulate that nuclear size reduction before mid-blastula transition (MBT) is driven, at 

least partially, through palmitoylation of the nuclear transport factor importin a, subsequent 

sequestration of palmitoylated importin a into the plasma membrane, and thus, reduced 

levels of cytoplasmic importin a and reduced nuclear import kinetics. Nuclear size reduction 

from MBT on has also been connected to phosphorylation of a single serine residue of lamin 

B3 (S267) by conventional protein kinase C (cPKC) (Edens et al., 2017). 
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Chromatin structure 
With regard to the fine-granular chromatin structure in pluripotent embryonic Xenopus cells, 

this is in line with the observation of a “more diffuse” chromatin structure in pluripotent ES 

cells which changes to a “more compact” structure with “well defined foci” in lineage-
committed NP cells (Meshorer and Misteli, 2006). The intensity of heterochromatic histone 

modifications as well as the number of heterochromatic foci increases, whereas the size of 

heterochromatic foci decreases (Meshorer et al., 2006). This view is supported by the 

reduced levels of heterochromatic histone modifications found in pluripotent Xenopus blastula 

cells (Akkers et al., 2009; Schneider et al., 2011). Thus, in addition to the lobed aspect of the 

cell nucleus, the fine-granular chromatin structure appears to be another specific feature of 

pluripotent embryonic cells. 

 
 

4.4) Future directions 
 

4.4.1) Including further embryonic stages 
 

It would be preferable to include embryonic cells beyond the blastula stage into FRAP 

analyses. However, it should be considered that the dissociation efficiency decreases as 

embryonic development progresses. Optimized dissociation conditions would therefore be 
desirable. With this aim Briggs et al. (2018) tested partly already used, partly newly 

composed dissociation media. The highest dissociation efficiency is attributed to the so-called 

"Newport 2.0" buffer. 

“Newport 2.0” differs from the standard Newport buffer by the supplementation of the buffer 

reagent 3-(Cyclohexylamino)-1-propanesulfonic acid (CAPS) and raising of the pH from 9.0 to 

10.5. This allows complete dissociation of embryos from NF8 (blastula) up to and including 

NF22 (early tailbud) in less than half an hour. The authors suggest a possibly increased 
dissociation constant of the calcium ions as well as a possible non-specific surface protein 

denaturation as causal for this increased dissociation efficiency. 

With these improved dissociation conditions, it should be possible to create a close-meshed 

temporal map of histone protein mobility from pluripotent to differentiated somatic states. 

 

 

4.4.2) Using embryos 
 
As pointed out in Chapter 3.3, to our understanding, embryos can only be used for FRAP 

microscopy, if a reduction of nuclear motion is achieved by inhibition of the molecular 

mechanisms underlying cytoplasmic streaming. As described in Chapter 1.4, it is the motor 

proteins moving on the cytoskeleton which generate cytoplasmic streaming. An inhibition of 
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cytoplasmic streaming must therefore start at this point. The following study is informative in 

this context: 

Foissner and Wasteneys (2000) investigated the effect of cytochalasin D in ascending 

concentrations (0.1-8 µM) (-/+ 10 µM oryzalin or 5 µM colchicine) on the disassembly and 
reassembly of actin filaments and microtubules as well as on the reduction of cytoplasmic 

streaming in internode cells of Charophyceae (“chandelier algae”). The mycotoxin 

cytochalasin D inhibits actin filament polymerization, the herbicide oryzalin and the “mitosis-

inhibitor” colchicine disrupt microtubule formation. As a result, treatment with 8 µM 

cytochalasin D alone inhibits cytoplasmic streaming within a few minutes.	 In addition, the 

actin filaments reassemble within a short time after the removal of cytochalasin D. The 

cytoplasmic streaming is then restored. When cytochalasin D is combined with 10 µM oryzalin 

or 5 µM colchicine, a dose of 2.8 µM is sufficient to inhibit cytoplasmic streaming. In this case 
as well, cytoplasmic streaming is reestablished within a short time after the removal of the 

agents. 

Three aspects are remarkable here: the short incubation time, the fast and complete 

reversibility as well as the possibility to combine several agents and thus to reduce the toxicity 

of each individual agent. Should these inhibitors stop cytoplasmic streaming as well in cells of 

the Xenopus embryo, one might be able to subject surface-proximal regions to FRAP analysis 

at essentially each instant during development. 
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Appendix I: Abbreviations 
 

AOTF acousto-optical tunable filter 

ATP adenosine triphosphate 

au arbitrary unit 

AU airy unit 

bp base pair 
ddH2O double distilled H2O 

DEPC diethylpyrocarbonate 

DNA deoxyribonucleic acid 

dNTP deoxynucleoside 5’-triphosphate 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

epiSC epiblast stem cell 

ES cell embryonic stem cell 
for forward 

FRAP fluorescence recovery after photobleaching 

(e)GFP (enhanced) green fluorescent protein 

HeLaK HeLa Kyoto 

HEPES 2-(4-(2-Hydroxyethyl)-1-piperazinyl) ethanesulfonic acid 

hpf hours post fertilisationem 

Hz Hertz 
kDa kilo Dalton 

MBT mid-blastula transition 

me methylation 

MeOH methanol 

NF Nieuwkoop and Faber 

NP cell neural precursor cell 

NP-40 nonylphenol 40 

NTP nucleoside 5’-triphosphate 
PBS phosphate-buffered saline 

PCR polymerase chain reaction 

psi pound-force per square inch 

PTM posttranslational modification 

px pixel 

rev reverse 

(m)RNA (messenger) ribonucleic acid 

rpm revolutions per minute 
SD standard deviation 

SDS sodium dodecyl sulfate 
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TBS TRIS-buffered saline 

TE buffer TRIS-EDTA buffer 

TRIS tris(hydroxymethyl)-aminomethan (THAM) 

V Volt 
w/o without 
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Appendix III: R macro: FRAP evaluation for Leica TCS SP5 II 
 

// FRAP Evaluation for SP5 
 
 
//Spot or Half nucleus FRAP 
 
macro "empty   Action tool- C037T4d14 " { 
}  
 
macro "FRAP Evaluation SP5   Action Tool - C900T3e161"{ 
 
//select a directory 
 
 
 //dir=getDirectory("Select a Directory for import"); 
 dir=File.openDialog("Select the Lif file"); 
 //filenames=getFileList(dir); 
 //Array.sort(filenames); 
 
 function list(name, a) { 
        print(name); 
        for (i=0; i<a.length; i++) 
           print("   "+a[i]); 
   } 
 
 //list("filenames", filenames); 
 
 dir2=getDirectory("Select a Directory for export"); 
 //dir2=File.openDialog("Select the Lif file"); 
 //dir2=dir2+"/";  //###windows: change for mac to \ 
 print(dir2); 
 
 
 
 
 items =newArray("Spot", "Halfnucleus"); 
  
 
//Initial settings 
 
 Dialog.create("Initial settings"); 
 Dialog.addNumber("Cell to start with:", 1 ); 
 Dialog.addNumber("Number of prebleach frames:", 20 ); 
 Dialog.addNumber("Number of bleach frames:", 2 ); 
 Dialog.addNumber("Total number of cells:", 0 ); 
 Dialog.addNumber("Diameter of the bleach ROI in pixel:", 30 ); 
 Dialog.addCheckbox("Zoom in function for bleaching used", false); 
 Dialog.addChoice("FRAP", items, items[0]);  
  
 Dialog.show(); 
  
 u = Dialog.getNumber(); 
 prebleach = Dialog.getNumber(); 
 bleachf = Dialog.getNumber(); 
 numberofcells = Dialog.getNumber(); 
 diameter = Dialog.getNumber(); 
 regok= Dialog.getCheckbox(); 
 FRAPtype= Dialog.getChoice();  
 
 u=u-1 
; 
  
  
 
//Zoom in 
 if (regok==false) {  
  zoomin = "No"; 
 } 
 if (regok==true) {  
  zoomin = "Yes"; 
 }  
  
 
//count 
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 print("Total number of cells",numberofcells); 
  
//Evaluate single cells  
 
 do { 
  e=u+1; 
 
  
//Delete ROIs 
  r=roiManager("count"); 
  if(r >0) { 
   roiManager("Deselect"); 
   roiManager("Delete"); 
  } 
 
  
//Import dataset in alphabetic order 
  
  
  run("Bio-Formats Macro Extensions"); 
   
  //path = dir + filenames [u]; 
  //titlecell=filenames [u]; 
    
  run("Bio-Formats Importer", "open=[dir] autoscale color_mode=Default 
view=[Standard ImageJ] stack_order=Default series_"+e); 
 
    
  fulltitle=getTitle(); 
  indexslash= indexOf(fulltitle, "/"); 
  print(indexslash); 
  titlecell=substring(fulltitle, 0, indexslash); 
  print("Name", titlecell); 
  //print("Filename", filenames [u]); 
   
  if (nImages>1) { 
   selectImage(2); 
   close(); 
  }  
 
    
  
  if (isOpen("Exception")) { 
           selectWindow("Exception"); 
           run("Close");  
  } 
 
  skip=getBoolean("Would you like to skip this cell?");  
  
  if (skip==true) {  
   close();  
  }  
   
  else if (skip==false) {    
  
 //Get time interval 
    
   timeinterval= Stack.getFrameInterval(); 
   //timeinterval=timeinterval*1000; 
 //FRAP stack 
   
   
   frapstack=getImageID(); 
   setSlice(prebleach); 
   resetMinAndMax(); 
   
   
  
    
 //Save Prebleach Image   
  
   
   
   setSlice(prebleach); 
   resetMinAndMax(); 
   run("Select All"); 
   run("Copy"); 
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   run("Internal Clipboard"); 
   saveAs("Jpeg", dir2 + "Image" + titlecell); 
   close(); 
   
    
   
 //Save FRAP 
  
   saveAs("tiff", dir2 + titlecell); 
    
   
 //Filter Gaussian Blur 
  
   setSlice(1); 
   run("Select None"); 
   run("Gaussian Blur...", "sigma=2 stack"); 
  
 //BleachROI 
  
   if (zoomin =="No") { 
    setSlice(prebleach+1); 
    setAutoThreshold("Default dark"); 
    run("Create Selection"); 
    roiManager("Add"); 
    roiManager("Select", 0); 
    roiManager("Rename", 2); 
   } 
   if (zoomin =="Yes") { 
     
    setSlice(prebleach +3); 
     
 //Spot or half nucleus 
    if (FRAPtype ==items[0]){ 
     makeOval(100, 100, diameter, diameter); 
     roiManager("Add"); 
     roiManager("Select", 0); 
     title = "WaitForUser"; 
      msg = "Move the ROI to the bleached area and click 
\"OK\"."; 
      waitForUser(title, msg); 
      roiManager("Update"); 
    } 
    else { 
     makeRectangle(100, 100, 150, 100); 
     roiManager("Add"); 
     roiManager("Select", 0); 
     title = "WaitForUser"; 
      msg = "Ajust and move the ROI to the bleached area and 
click \"OK\"."; 
      waitForUser(title, msg); 
      roiManager("Update"); 
    } 
    roiManager("Select", 0); 
    roiManager("Rename", 2); 
  
   } 
  
  
 //Delete Bleach Images 
  
   for (i=0; i<bleachf; i++) { 
    setSlice(prebleach+1); 
    run("Delete Slice"); 
   } 
   
  
  
  
   
  
 //create Image to decide if registration is needed 
   
   selectImage(1);   
   setSlice(prebleach); 
   run("Select All"); 
   run("Copy"); 
   run("Internal Clipboard"); 
   run("Select None"); 
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   setAutoThreshold("Default dark"); 
   getThreshold(lower, upper); 
   setThreshold(lower +3, 16383); 
   run("Create Selection"); 
   roiManager("Add"); 
    
   selectImage(1);  
   setSlice(nSlices); 
   run("Select All"); 
   run("Copy"); 
   run("Internal Clipboard"); 
   setAutoThreshold("Default dark"); 
   getThreshold(lower, upper); 
   setThreshold(lower +3, 16383); 
   run("Create Selection"); 
   roiManager("Add"); 
    
   selectWindow("Clipboard"); 
   close(); 
   selectWindow("Clipboard-1"); 
   close(); 
   
   newImage("Untitled", "RGB Black", 256, 256, 1); 
   run("Colors...", "foreground=white background=black  selection=yellow"); 
   roiManager("Select", 1); 
   roiManager("Draw"); 
   roiManager("Select", 1); 
   roiManager("Delete"); 
   roiManager("Select", 1); 
   
   run("Colors...", "foreground=green background=black  selection=yellow"); 
   roiManager("Draw"); 
   roiManager("Select", 1); 
   roiManager("Delete"); 
   selectWindow("Untitled"); 
   
   
 // Registration? 
   
   reg=getBoolean("Does the stack has to be registered?"); 
    
   if (reg==false) {  
    selectWindow("Untitled"); 
    close();  
    registration = "No"; 
   } 
   
   if (reg==true) {  
    selectWindow("Untitled"); 
    close(); 
    registration = "Yes"; 
  
   
  
  
  
    if (FRAPtype ==items[0]) { 
   
     setSlice(1); 
     run("StackReg", "transformation=[Rigid Body]"); 
      
  
    } 
  
    else { 
    
     title = "WaitForUser"; 
      msg = "Set the timepoint at which the recovery is almost 
complete and click \"OK\"."; 
      waitForUser(title, msg); 
    
     splitAt=round(nSlices/2); 
     beforereg=getImageID(); 
     splitAt=getSliceNumber(); 
     if (splitAt >nSlices) {  
      exit("Error: split > nSlices"); 
     } 
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     run("Select All"); 
     titleimage=getTitle(); 
     run("Duplicate...", "title="+titleimage+" duplicate"); 
     part1=getImageID(); 
     rename(titleimage + "1-"+splitAt); 
     run("Duplicate...", "title="+titleimage+" duplicate"); 
     part2=getImageID(); 
     rename(titleimage +splitAt+1+"-"+ nSlices); 
     for (i=1; i<=splitAt; i++) {  
      setSlice(1);   
      run("Delete Slice");  
     } 
     selectImage(part1); 
     for (i=nSlices; i>splitAt; i--) {  
      setSlice(i);   
      run("Delete Slice");  
     } 
     selectImage(part1); 
     setSlice(1); 
     selectImage(part2);  
     setSlice(1); 
    
     //Register second stack 
   
      
    
   
     run("StackReg", "transformation=[Rigid Body]"); 
    
      
      
     //Concatenate 
      
     selectImage(part1); 
     rename(1); 
     selectImage(part2); 
     rename(2); 
    
     run("Concatenate...", "stack1=1 stack2=2 
title=Registered"); 
     selectImage("Registered");  
   
      
      
     regImage=getImageID();   
     rename("Registered"+titleimage); 
    }  
  
     
     
    saveAs("tiff", dir2 + titlecell +"_registered"); 
   
    
     
   } 
    
   
   /*if (nImages>1) { 
    selectImage(regImage); 
  
     
   
    title = "WaitForUser"; 
     msg = "Check if the registration was successful and click 
\"OK\"."; 
     waitForUser(title, msg); 
   
    regok=getBoolean("Was the registration successful? "); 
    
    if (regok==false) {  
     selectImage(regImage); 
     close(); 
     registration = "No"; 
    } 
   
    if (regok==true) {  
     selectImage(beforereg); 
     close(); 
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    } 
   } 
   */ 
   
 //Select total ROI  
   
   //additional cells? 
   
   selectImage(1); 
   resetMinAndMax();  
   cell=getBoolean("Does the image contain an additional cell?"); 
   if (cell==true) { 
    setTool("polygon");   
    title = "WaitForUser"; 
     msg = "Outline the area containing the additional cell to be 
removed and click \"OK\"."; 
     waitForUser(title, msg); 
   
    roiManager("Add"); 
    run("Select None"); 
    selectImage(1); 
    cells=getImageID(); 
    run("Duplicate...", "title=cell.tif duplicate"); 
    roiManager("Select", 1); 
    run("Colors...", "foreground=white background=black 
 selection=yellow"); 
    run("Clear", "stack"); 
    run("Select None"); 
    roiManager("Select", 1); 
    roiManager("Delete"); 
   } 
   
   
 //Adjust threshold for total ROI 
   
   r=roiManager("count"); 
   if(r < 1) { 
    exit("You need the ROI of the snapshot. Start from the 
beginning.") 
   } 
   
   if(r > 1) { 
    title = "WaitForUser"; 
     msg = "You have too much ROIs. Delete all ROI's but the 
Snapshot-ROI and click \"OK\"."; 
     waitForUser(title, msg); 
   } 
    
   
   i=0; 
   
   do { 
   //Prebleach ROI 
    
    cells=getImageID(); 
    selectImage(cells);   
    setSlice(prebleach); 
     
     
   
    run("Select All"); 
    run("Copy"); 
    run("Internal Clipboard"); 
    run("Select None"); 
     
    if (i>0) { 
     setThreshold(prelower, preupper); 
    } 
    else { 
     setAutoThreshold("Default dark"); 
    } 
   
   
    if (lower == 0) { 
     setTool("polygon"); 
     resetThreshold(); 
     resetMinAndMax();  
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     title = "WaitForUser"; 
      msg = "Draw total ROI by hand and click \"OK\"."; 
      waitForUser(title, msg); 
     roiManager("Add");  
     roiManager("Select", 1); 
     roiManager("Rename", 1); 
     roiManager("Sort"); 
     selectWindow("Clipboard"); 
     close(); 
     th = false; 
     th1 = 0; 
     th2 = 0; 
    } 
   
   
    if(lower > 0) { 
     run("Create Selection"); 
     roiManager("Add"); 
     if (i>0) { 
      th1 = prelower; 
     } 
     else { 
      th1 = lower; 
     } 
    
    //Last image  
     selectImage(cells); 
     setSlice(nSlices); 
     run("Select All"); 
     run("Copy"); 
     run("Internal Clipboard"); 
     if (i>0) { 
      setThreshold(lastlower, lastupper); 
     } 
     else { 
      setAutoThreshold("Default dark"); 
     } 
      
     if (i>0) { 
      th2=lastlower; 
     } 
     else { 
      th2= lower; 
     } 
    
     if (lower == 0) { 
      setTool("polygon"); 
      resetThreshold(); 
      resetMinAndMax();  
      title = "WaitForUser"; 
       msg = "Draw total ROI by hand and click \"OK\"."; 
      waitForUser(title, msg); 
      roiManager("Add");  
      roiManager("Select", 1); 
      roiManager("Delete"); 
      roiManager("Select", 1); 
      roiManager("Rename", 1); 
      roiManager("Sort"); 
      selectWindow("Clipboard"); 
      close(); 
      selectWindow("Clipboard-1"); 
      close(); 
      th = false; 
     } 
   
     if (lower > 0) { 
      run("Create Selection"); 
      roiManager("Add");  
      selectWindow("Clipboard"); 
      close(); 
      selectWindow("Clipboard-1"); 
      close(); 
   
    //Create minimal ROI 
     
      newImage("Untitled", "8-bit White", 256, 256, 1); 
      run("Colors...", "foreground=black 
background=white  selection=yellow"); 
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      nn=1+i; 
      mm=2+i; 
      roiManager("select", newArray(nn,mm)); 
         roiManager("AND");  
      run("Fill"); 
      run("Select None"); 
  
      //###Change of automatic ROIis not working 
      //run("Invert"); 
      run("Fill Holes"); 
      setAutoThreshold("Default"); 
      //setAutoThreshold("Default dark"); 
      run("Create Selection"); 
      roiManager("Add"); 
      selectWindow("Untitled"); 
      close(); 
      roiManager("Deselect"); 
      roiManager("Select", 1 + i); 
      roiManager("Delete"); 
      roiManager("Select", 1 + i); 
      roiManager("Delete"); 
      roiManager("Select", 1 + i); 
      resetThreshold(); 
      setTool("polygon"); 
      run("Select None"); 
      selectImage(cells); 
      setSlice(prebleach); 
      roiManager("Select", 1 +i); 
   
   //check threshold  
    
      selectImage(cells); 
      setSlice(nSlices); 
      run("Select None"); 
      resetMinAndMax();  
      roiManager("Select", 1 + i); 
      i=i+1; 
      th=getBoolean("Do you want to modify the ROI by 
changing the threshold (default: Autothreshold +3)"); 
   
      if(th==true){ 
       run("Threshold..."); 
       run("Select None");  
       setSlice(prebleach);  
       setAutoThreshold("Default dark"); 
       title = "WaitForUser"; 
       msg = "Use the upper\"Threshold\" tool to 
adjust the threshold, then click \"OK\"."; 
       waitForUser(title, msg); 
       getThreshold(lower, upper); 
       prelower=lower; 
       preupper=upper; 
   
       setSlice(nSlices);  
       setAutoThreshold("Default dark"); 
       title = "WaitForUser"; 
       msg = "Use the upper\"Threshold\" tool to 
adjust the threshold, then click \"OK\"."; 
       waitForUser(title, msg); 
       getThreshold(lower, upper); 
       lastlower=lower; 
       lastupper=upper; 
      } 
     } 
    } 
    
   } while (th == true); 
   
   
 //Delete dispensable ROIs 
   
   
   roiManager("Select", i); 
   roiManager("Rename", 1); 
   roiManager("Sort"); 
   while (i > 1) { 
    roiManager("Select", i -2); 
    roiManager("Delete"); 
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    i=i-1; 
   
   } 
   
   
   if (nImages>1) { 
    selectImage(cells); 
    close(); 
   } 
   
   
 //Possibility to draw the ROI by hand 
   
   roiManager("Select", 0); 
   tROI=getBoolean("Do you want to draw the total ROI by hand?"); 
   
   if(tROI==true){ 
   
    setTool("polygon"); 
   
    roiManager("Select", 0); 
    roiManager("Delete"); 
   
    setSlice(prebleach); 
   
   
    title = "WaitForUser"; 
     msg = "Draw the ROI and click \"OK\"."; 
    waitForUser(title, msg); 
   
   
     
    roiManager("Add"); 
   
    roiManager("Select", 1); 
    roiManager("Rename", 1); 
    roiManager("Sort"); 
    th1 = 0; 
    th2 = 0; 
   } 
   
 //background selection 
   
   i=0; 
   r=roiManager("count"); 
   
   if (r>2) { 
    title = "WaitForUser"; 
     msg = "You have more than two ROI's. Delete additional ROI's and 
click \"OK\"."; 
    waitForUser(title, msg); 
   } 
   
   resetMinAndMax(); 
   
   //if (snaprotate ==1) { 
   // run("Rotate 90 Degrees Right"); 
   //} 
   
   //Wrong image size? 
   
   x = getWidth(); 
   
   if (x > 256) { 
    makeRectangle(128, 128, 256, 256); 
    run("Crop"); 
    resetMinAndMax(); 
   } 
   
   //Draw background ROI 
   
   title = "WaitForUser"; 
    msg = "Draw the background ROI and click \"OK\"."; 
   waitForUser(title, msg); 
   
   
   
   roiManager("Add"); 
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   roiManager("Select", 2); 
   roiManager("Rename", 3); 
   resetThreshold(); 
   roiManager("Select",2); 
   resetMinAndMax(); 
   
   
 //Create Bleach and unbleach ROI 
   
   
   if (nImages >1) { 
           print("close all open clipboards"); 
   }  
    
   run("Colors...", "foreground=black background=white selection=yellow"); 
   
   frames=nSlices; 
   totalROI = 0; 
   bleachROI = 1; 
   backgroundROI = 2; 
   
    
   roiManager("select", newArray(totalROI,bleachROI)); 
      roiManager("AND");  
   roiManager("Add"); 
   bleachedArea = 3; 
  
  
   roiManager("select", newArray(totalROI,bleachedArea)); 
   roiManager("XOR"); 
   roiManager("Add"); 
   unbleachedArea = 4; 
   
  
   
   resetMinAndMax(); 
   roiManager("Select", backgroundROI); 
   roiManager("Rename", "4"); 
   roiManager("Select", totalROI); 
   roiManager("Rename", "1"); 
   roiManager("Select", bleachROI); 
   roiManager("Rename", "5"); 
   roiManager("Select", bleachedArea); 
   roiManager("Rename", "2"); 
   roiManager("Select", unbleachedArea); 
   roiManager("Rename", "3"); 
   roiManager("Sort"); 
   
   setTool("polygon"); 
   roiManager("save", dir2 + "RoiSet" + titlecell + ".zip"); 
   
    
 //Profile Plot 
   
   
 b=256; 
   n = nResults; 
     
   
 
   run("Set Measurements...", "  mean limit redirect=None decimal=3"); 
   run("Colors...", "foreground=black background=white selection=yellow");
  
    
run("Profile Plot Options...", "width=256 height=256 minimum=0 maximum=0 do vertical 
interpolate draw"); 
   
   
 //binary Image 
   
   newImage("Untitled", "RGB Black", 256, 256, 1); 
   roiManager("Select", totalROI); 
   run("Colors...", "foreground=white background=black selection=yellow"); 
   run("Fill"); 
   run("Select None"); 
   run("Specify...", "width=255 height=256 x=1 y=0"); 
   run("Crop"); 
   saveAs("tiff", dir2 + "binary" + titlecell); 
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   run("Select All"); 
   setKeyDown("alt"); //rotate 
   profile = getProfile(); 
   
   //tp prebleach 
    
   run("Colors...", "foreground=black background=white selection=yellow");
  
   selectImage(1); 
   setSlice(prebleach); 
   run("Select All"); 
   run("Copy"); 
   run("Internal Clipboard"); 
   roiManager("Select", totalROI); 
   run("Make Inverse"); 
   run("Fill"); 
   run("Select None"); 
   run("Reslice [/]...", "input=1.000 output=1.000 start=Top"); 
   setThreshold(1, 16383); 
   run("Plot Z-axis Profile"); 
   ppprebleach = newArray(b); 
   for (i=0; i<b; i++) { 
    ppprebleach[i] = getResult('Mean', i); 
   } 
   
   //tp postbleach 
   
   run("Colors...", "foreground=black background=white selection=yellow");
  
   selectImage(1); 
   run("Next Slice [>]"); 
   run("Select All"); 
   run("Copy"); 
   run("Internal Clipboard"); 
   roiManager("Select", totalROI); 
   run("Make Inverse"); 
   run("Fill"); 
   run("Select None"); 
   run("Reslice [/]...", "input=1.000 output=1.000 start=Top"); 
   setThreshold(1, 16383); 
   run("Plot Z-axis Profile"); 
   
   pppostbleach = newArray(b); 
    for (i=0; i<b; i++) { 
    pppostbleach[i] = getResult('Mean', i); 
   } 
   
   //tp last image  
   
   run("Colors...", "foreground=black background=white selection=yellow");
  
   selectImage(1); 
   setSlice(nSlices); 
   run("Select All"); 
   run("Copy"); 
   run("Internal Clipboard"); 
   roiManager("Select", totalROI); 
   run("Make Inverse"); 
   run("Fill"); 
   run("Select None"); 
   run("Reslice [/]...", "input=1.000 output=1.000 start=Top"); 
   setThreshold(1, 16383); 
   run("Plot Z-axis Profile"); 
   
   pplastframe = newArray(b); 
   
   for (i=0; i<b; i++) { 
    pplastframe[i] = getResult('Mean', i); 
   } 
   
   //close windows 
   
   selectWindow("Reslice of Clipboard"); 
   close(); 
   selectWindow("Reslice of Clipboard-1"); 
   close(); 
   selectWindow("Reslice of Clipboard-2"); 
   close(); 
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   selectWindow("Clipboard"); 
   close(); 
   selectWindow("Clipboard-1"); 
   close(); 
   selectWindow("Clipboard-2"); 
   close(); 
   selectWindow("Reslice of Clipboard-0-0"); 
   close(); 
   selectWindow("Reslice of Clipboard-1-0-0"); 
   close(); 
   selectWindow("Reslice of Clipboard-2-0-0"); 
   close(); 
   selectImage(2);  
   close(); 
   
   
   
   roiManager("Deselect"); 
    
    
 //Measure mean intensity over time 
   
   selectImage(1); 
   roiManager("Select", 0); 
   
   run("Plot Z-axis Profile"); 
   aa = newArray(frames); 
   for (i=0; i<frames; i++) { 
    aa[i] = getResult ('Mean', i); 
   } 
   
   roiManager("Deselect"); 
   selectImage(1); 
   roiManager("Select", 1); 
   
   run("Plot Z-axis Profile"); 
   bb = newArray(frames); 
   for (i=0; i<frames; i++) { 
    bb[i] = getResult ('Mean', i); 
   } 
   
   roiManager("Deselect"); 
   selectImage(1); 
   roiManager("Select", 2); 
   
   run("Plot Z-axis Profile"); 
   cc = newArray(frames); 
   for (i=0; i<frames; i++) { 
    cc[i]= getResult ('Mean', i); 
   } 
   
   roiManager("Deselect"); 
   selectImage(1); 
   roiManager("Select", 3); 
   
   run("Plot Z-axis Profile"); 
   dd = newArray(frames); 
   for (i=0; i<frames; i++) { 
    dd[i]= getResult ('Mean', i); 
   } 
  
   ee = newArray(frames); 
   for (i=0; i<frames; i++) { 
    if (i <prebleach +1) { 
     ee[i]= 0; 
    } 
    if (i >= prebleach +1) { 
     ee[i]= (i-prebleach)*timeinterval; 
    } 
   } 
  
  
    
   
   
   
 //print tables 
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   run("Clear Results"); 
   
   run("Select None"); 
   for (i=0; i<frames; i++) { 
    setResult("time", i, ee[i]); 
    setResult("total", i, aa[i]); 
    setResult("bleached", i, bb[i]); 
    setResult("unbleached", i, cc[i]); 
    setResult("background", i, dd[i]); 
   } 
      
    run("Select None"); 
   
   for (i=0; i<b; i++) { 
    setResult("tpprebleach", i, ppprebleach[i]); 
    setResult("tppostbleach", i, pppostbleach[i]); 
    setResult("last frame", i, pplastframe[i]); 
    setResult("pixel per line", i, profile[i]); 
   } 
  
  
    
   selectWindow("Results"); 
   close(); 
  
    
   updateResults(); 
   run("Input/Output...", "jpeg=85 gif=-1 file=.csv use_file copy_row 
save_column save_row"); 
   selectWindow("Results"); 
   saveAs("Results", dir2+ titlecell + ".csv"); 
  
   run("Clear Results"); 
  
     
   
 //Get bleach boundary 
   
   roiManager("Select", 1);  
   //getSelectionBounds(x, y, width, height); 
   //print(y, height); 
   
  
   run("Select None"); 
    setResult("number of frames", 0, frames); 
   //setResult("bleach line", 0, bleachborder); 
   setResult("threshold prepbleach", 0, th1); 
   setResult("threshold last frame", 0, th2); 
   setResult("prebleach images", 0, prebleach);  
   setResult("Registration", 0, registration); 
   setResult("Time interval", 0, timeinterval); 
   setResult("FRAP", 0, FRAPtype); 
  
    
    
       
   updateResults(); 
   run("Input/Output...", "jpeg=85 gif=-1 file=.txt use_file copy_row 
save_column save_row"); 
   selectWindow("Results"); 
   saveAs("Results", dir2+ titlecell + ".txt"); 
   run("Close"); 
  
   selectImage(2); 
   close(); 
   selectImage(2); 
   close(); 
   selectImage(2); 
   close(); 
   selectImage(1); 
   close(); 
  
  } //end of skip cell 
     
 u=u+1; 
 print("Done: cell ", u); 
 } while (u<numberofcells); 
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