
Symmetries & Tensor Networks in 
Two-Dimensional Quantum Physics 

H e n r i k  D r e y e r

München 2020





Dissertation 
an der Fakultät für Physik 

der Ludwig-Maximilians-Universität 
München

vorgelegt von 
Henrik Dreyer 

aus Wesel

München, den 13.08.2020

Symmetries & Tensor Networks in 
Two-Dimensional Quantum Physics 

H e n r i k  D r e y e r



Tag der mündlichen Prüfung: 28.09.2020
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Zusammenfassung

Die allgemeinste Beschreibung eines Quanten-Vielteilchensystems ergibt sich aus
einer Wellenfunktion, die in einem Hilbert-Raum lebt, dessen Dimension exponen-
tiell in der Anzahl der Teilchen ist. Dies macht es äußerst schwierig, stark korre-
lierte Phänomene wie den fraktionalen Quanten-Hall-Effekt und die Hochtemper-
atursupraleitung zu untersuchen. Wenn die Wechselwirkungen ausreichend lokal
sind und die Temperatur niedrig ist, steht dem System nicht der gesamte Hilbert-
Raum zur Verfügung. Sein Grundzustand befindet sich in der kleinen “Ecke” des
Hilbert-Raums, die durch das area law beschrieben wird. Mit wenig Verschränkung
können die Zustände dann als Tensornetzwerke ausgedrückt werden, eine Familie
von Wellenfunktionen mit einer polynomiellen Anzahl von Parametern.

Einerseits können Tensornetzwerke als variationelle Ansätze bei numerischen
Berechnungen verwendet werden. Auf der anderen Seite ermöglichen sie das Er-
stellen von Modellwellenfunktionen. Diese Modelle ermöglichen nicht nur eine ana-
lytische Behandlung, sondern gewähren auch Zugang zu den physikalischen und den
Verschränkungsfreiheitsgraden.

Dies ist besonders nützlich bei der Klassifizierung von Phasen der Materie. Eine
große Anzahl von Phasen kann mit Landaus Theorie der Symmetriebrechung erklärt
werden. Diese Beschreibung ist jedoch nicht vollständig, was durch die Existenz
von Phasen mit intrinsischer topologischer Ordnung in zwei Dimensionen veran-
schaulicht wird. Es war ein großer konzeptioneller Fortschritt, als Tensornetzwerke
(nicht-chirale) topologische Phasen als solche identifizieren konnten, bei denen die
Symmetrie in den Verschränkungsfreiheitsgraden liegt.

Die diesen topologischen Phasen entsprechenden Symmetrien wirken als diskrete,
endliche Gruppen auf den virtuellen Freiheitsgraden. Der Zweck dieser Arbeit
ist es, dieses Programm auf andere Symmetrien zu verallgemeinern. Wir unter-
suchen eine Klasse von Tensornetzwerken mit kontinuierlichen Symmetrien und
stellen fest, dass sie keine mit eindeutigen Grundzustand unter einer Energielücke
beschreiben können. Der abelsche Fall beschreibt einen nicht-Lorentz-invarianten
Phasenübergangspunkt in eine topologisch geordnete Phase. Die Physik des nicht-
abelschen Falls ist die eines Plaquette-Zustands, der spontan die Translationssym-
metrie des Gitters bricht. Der nicht-abelsche PEPS entsteht als Grundzustand eines
lokalen parent-Hamiltonians, dessen Grundzustandsunterraum vollständig durch das
Tensornetzwerk beschrieben wird. In beiden Fällen finden wir zwei Arten von Kor-
rekturen an der Verschränkungsentropie: Erstens gibt es eine Korrektur, die in der
Größe der Grenze logarithmisch und unabhängig von der Form ist. Eine weitere
Korrektur hängt nur von der Form des Schnitts ab ab, wodurch ausreichend dünne
Bereiche weiter eingeschränkt werden.

Schließlich untersuchen wir Symmetrien, die virtuelle und physikalische Frei-
heitsgraden mischen und darüber hinaus anisotrop sind. Ihre Physik wird durch
topologische Ordnung beschrieben, die stabil ist solange bestimmte Subsystem-
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Symmetrien nicht gebrochen werden. Insbesondere konzentrieren wir uns auf die
Verschränkungsentropie in der Clusterphase und zeigen, dass die Entropie in der
gesamten Phase universell eine konstante Korrektur erhält. Dies ist wichtig im Pro-
gramm zur Etablierung der Verschränkungsentropie als Detektionsmechanismus für
topologisch geordnete Phasen. Wir schlagen einen numerischen Algorithmus vor,
um die Korrektur zu berechnen und entdecken eine neue Phase der Materie, in die
die Clusterphase eingebettet ist.
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Abstract

The most general description of a quantum many-body system is given by a wave-
function that lives in a Hilbert space with dimension exponential in the number
of particles. This makes it extremely hard to study strongly correlated phenom-
ena like the fractional quantum Hall effect and high-temperature superconductivity.
Whenever interactions are sufficiently local and temperature is low, the system does
not explore the full Hilbert space, but its ground state resides in the small corner
of Hilbert space described by the area law. Containing little entanglement, the
states can then be expressed as tensor networks, a family of wavefunctions with a
polynomial number of parameters.

On the one hand, tensor networks can be used as a variational manifold in nu-
merical computations. On the other hand, they allow building model wavefunctions
much like locality allows writing down physically realistic Hamiltonians. Besides
allowing for an analytical treatment, these models grant access both to the physical
and the entanglement degrees of freedom.

This is particularly useful in classifying phases of matter. A large number of
phases can be explained in terms of Landau’s symmetry-breaking paradigm. This
framework, however, is not complete, as exemplified by the existence of phases with
intrinsic topological order in two dimensions. It was a major conceptual advance
when tensor networks could explain (non-chiral) topological phases as those where
the symmetry resides in the entanglement degrees of freedom.

The symmetries corresponding to those topological phases act as discrete, finite
groups on the virtual degrees of freedom. The purpose of this Thesis is to generalize
this program to include other symmetries. We investigate a class of tensor networks
with continuous symmetries and find that they cannot describe gapped physics with
a unique ground state. The abelian case is found to describe a non-Lorentz invariant
phase transition point into a topologically ordered phase. The physics of the non-
abelian case is that of a plaquette state that spontaneously breaks the translation
symmetry of the lattice. The non-abelian PEPS arises as the ground state of a local
parent Hamiltonian whose ground state manifold is completely characterized by the
tensor network. In both cases, we find two types of corrections to the entanglement
entropy: first there is a correction that is logarithmic in the size of the boundary
and independent of the shape. A further correction depends only on the shape of
the partition, imposing further restrictions on regions that are sufficiently thin.

Finally, we investigate symmetries that mix the virtual with the physical degrees
of freedom and are furthermore anisotropic. Their physics is described by subsystem
symmetry protected topological order. In particular, we focus on the entanglement
entropy in the cluster phase and show that there is a universal constant correction to
the entropy throughout the phase. This is important in the program of establishing
the entanglement entropy as a detection mechanism for topologically ordered phases.
We put forward a numerical algorithm to compute the correction and use it to
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discover a novel phase of matter in which the cluster phase is embedded.
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Chapter 1

Introduction

It is only slightly overstating the case to say that physics is
the study of symmetry.

Philip W. Anderson, [1]

When Schrodinger wrote down his famous equation 1925, the fundamental laws
of physics could have been considered complete. His equation equips us with a way
to compute the behaviour of the system if we know the underlying interactions,
taking into account the best theory we have for our universe, quantum mechanics.
As such, the equation gave birth to two diverging paths of scientific inquiry. On
the one hand, one may ask what are the fundamental interactions of our universe.
This reductionist viewpoint leads one down into the microcosmos of particle physics,
where few-body phenomena are understood up to high energies. On the other hand,
one may ask if one can reconstruct the world starting from a complete understanding
of the fundamental laws.

Magnetic
order

Fermi
liquid

Quantum
critical
region

Control parameter

Te
m

pe
ra

tu
re

S/C
QCP

Figure 1.1: Phase diagram of a strongly cor-
related material showing a variety of phases.
Reprinted with permission from Springer
Nature Customer Service Centre GmbH: Na-
ture Physics “What lies beneath the dome?”,
D. M. Broun, c©2008 [2]

This completionist approach fails spec-
tacularly across many scales even in the clas-
sical world: No single water molecule is wet,
no single bird flocks and no single neuron
can feel pride and joy.

The first layer at which collective be-
havior occurs is quantum many-body physics.
Classic examples in this field are antiferro-
magnetism, liquid crystals, superfluidity and
superconductivity. Clearly, even at this fun-
damental level, the study of emergent phe-
nomena is both rich and technologically use-
ful. It is also hard : It took 30 years to un-
derstand the mechanism of superconductiv-
ity even though the fundamental laws were
known all the while. It is hard because of
complexity and scale: A typical sample com-
prises 1023 particles, a number so large that
it is often easier to work in the thermody-
namic limit of infinite particle number. To make matters worse, interactions are
often sufficiently complex such that any attempt at divide-and-conquer strategies
is futile. Finally, a complete quantum mechanical description requires a vector in

11



CHAPTER 1. INTRODUCTION

a Hilbert space of a corresponding dimension e.g., 210
23
. To put this number into

perspective: the largest computer-simulated Hilbert space to date is of dimension
∼ 245[3].

Keeping track of every degree of freedom is thus a hopeless task. Fortunately,
achieving this task would also be useless: The goal must be a humanly intelligible
prediction for a macroscopic observable like whether the system has a magnetic
moment or how well it conducts electricity. Reducing a complex system into a small
number of macroscopic properties is the essence of the concept of phases. A trained
scientist can infer all relevant information by a single glance at a phase diagram
(Fig. 1.1), in which parameter regions are labeled by the kind of order that is
present. It is the basic goal of condensed matter physics to understand and classify
all possible types of orders and transitions between them.

It was realized by Landau in 1936 that order is intricately linked with symmetry
[4]. More concretely, the microscopic laws exhibit a number of symmetries that may
or may not be reflected by the macroscopic behavior of the system. This concept
of spontaneous symmetry breaking has firmly established symmetry as the main
protagonists across multiple branches of physics for many years to come.

There are two types of symmetries: Discrete and Continuous. They play rather
distinct roles in the classification of phases: Due to a theorem by Hohenberg, Mermin
and Wagner, continuous symmetries cannot spontaneously be broken at any finite
temperature [5, 6]. In Landau’s symmetry-breaking classification, therefore, there
can only be a single phase associated to such continuous symmetries. This is why it
was quite surprising, when Berezinskii, Kosterlitz and Thouless discovered a phase
transition in the two-dimensional classical XY-model [7, 8]. The symmetry of the
model is U(1), the simplest example of a continuous group. Nevertheless, the model
exhibits two distinct phases, separated by a transition at finite temperature.

If BKT’s discovery cast a shadow of doubt on the completeness of the symmetry-
breaking paradigm, then the lethal strike was delivered by von Klitzing’s experimen-
tal discovery of the Quantum Hall effect [9]. He observed signatures of sharp phase
transitions while varying the strength of a transverse magnetic field applied to an
electron gas confined to two dimensions at low temperature. Crucially, the tran-
sitions could not be attributed to any spontaneously broken symmetry. What’s
more, the transitions occur without any change in temperature, indicating a quan-
tum phase transition. Unlike thermal order-disorder transitions, in which entropy
and energy compete, a quantum phase transition embodies the competition between
different types of quantum order. These transitions happen at zero temperature, but
their presence can be felt in large regions of the finite temperature phase diagram.
The central object in the study of quantum phases is the ground state. If there
is a finite energy gap above the ground state, it completely dominates the physics
at sufficiently small temperatures. Furthermore, slight perturbations of the system
induce only small changes in the ground state as long as the gap does not close.

The key to understanding the new Quantum Hall phases is topology. It’s role
is most easily understood in the Fractional Quantum Hall effect: The ground state
manifold is degenerate and the number of ground states depends on the topol-
ogy of the surface on which the system lives. On the one hand, these topological
systems exhibit exotic emergent properties like fractionalized excitations that are
neither bosons nor fermions. These anyons could be used as the building blocks of
a topological quantum computer. On the other hand, such interacting topologically
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CHAPTER 1. INTRODUCTION

ordered systems are hard to control both from a theoretical as well as experimental
perspective: While many symmetry breaking phases can be described perturbatively
starting from a classical product state, no such luck is to be had in the presence of
strong interactions. The phase is disconnected from any product state and can in
principle explore the whole exponentially large Hilbert space.

But can it really? Consider for a moment describing the quantum system by
its interactions rather than its state. In principle the two must contain precisely
the same information. Realistic interactions, however, satisfy a severe constraint:
locality. For example, the dimension of the space of nearest-neighbour Hamiltonians
on a chain of d-level systems is d4N , while arbitrary interactions span a space of
dimension d2N . Ground states of such local Hamiltonians therefore only contain a
polynomial amount of information. How can we characterize those states?

The answer was provided by a separate scientific field. Quantum Information
Theory is the study of entanglement. In particular, it seeks to quantify the infor-
mation stored in a quantum mechanical state in terms of the entanglement entropy.
This quantity is defined in terms of a partition of the system into two subsystems
and quantifies the amount of information that can not be inferred from measuring
the subsystems alone. Ground states of local Hamiltonians turn out to be those that
have relatively little entanglement. More precisely, while random states possess en-
tanglement extensive in the size of the smaller subsytem, entanglement in ground
states only grows with the boundary of the partition. This atypical behavior, the
area law, has been rigorously proven in spatial dimension one and is widely believed
to hold in higher dimensions as well [10]. Strictly speaking, all of these results hold
away from phase transition points at which slight violations of the area law occur.

The novel, entanglement-based perspective led to the development of Tensor Net-
work States (TNS). They are constructed by introducing virtual degrees of freedom
in which the entanglement is explicit. The role of tensor networks

area law 
states

local 
Hamiltonians

wave function space

interaction space

in Hilbert space is roughly the same as that of local
Hamiltonians in interaction space: they occupy the
(tiny) corner of physically realistic systems. This re-
alization has been exploited in two ways: First, the
exponential reduction in complexity led to the devel-
opment of efficient numerical algorithms. In fact, the
success of the Density Matrix Renormalization Group
(DMRG) [11] relies on the fact that only a tiny cor-
ner of Hilbert space has to be explored variationally.
On the other hand, tensor networks allow for unprece-
dented analytical control on the level of the wave func-
tion. One particularly radical approach is the model

wave function. In this “wave function-first” approach, rather than variationally
minimizing the energy with respect to some model Hamiltonian, a ground state
candidate is simply written down in terms of a tensor network. This has four major
advantages: First, unlike the “Hamiltonian-first” approach, one has direct access
to the entanglement degrees of freedom. What’s more, symmetries can be directly
encoded. In some sense, this is the reason that the “Hamiltonian-first” approach has
been so powerful: as long as the correct symmetries are incorporated, it does not
matter so much if one gets the microscopic details wrong. The difference is that, in
a tensor network, not only the presence of a symmetry but also the way the entan-
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CHAPTER 1. INTRODUCTION

glement and physical degrees of freedom transform is important in the classification
of phases. We will have a lot more to say on that later. Third, observables in a
tensor network model can be extracted using efficient numerical methods. Last, if it
possesses a reasonable analytical structure, one can gain a deep understanding from
the wave function. This has been carried out with great success for the Laughlin
wave function of odd-filling fractional quantum Hall states [12] (although this is an
example of the wave function approach independent of tensor networks), and the
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [13].

The AKLT state is a Matrix Product State (MPS), i.e., a one-dimensional tensor
network that occpies a sweet spot in the world of model wave functions. Typically,
model wave functions are not exact ground states of simple Hamiltonians and there
is a tradeoff in the complexity of the state and the interactions. This is not the
case for the AKLT model. It is one of the rare non-integrable models where the
ground state physics of a realistic system can be understood perfectly. The AKLT
model is only slightly more complicated than (and adiabatically connected to) the
spin-1 Heisenberg antiferromagnet. Prior to AKLT’s work, Haldane had made the
surprising conjecture that integer spin antiferromagnets are gapped [14, 15] (it had
been known since Bethe’s work [16] that the spin-1/2 antiferromagnet is gapless).
The AKLT model did not only corroborate the conjecture, but it also clarified
why such a distinction exists: Unlike spin-1/2, spin-1 systems allow for non-trivial
gapped topological order, even in one dimension. A whole new class of phases
was discovered as a consequence: those with Symmetry Protected Topological (SPT)
order. This new type of order is manifestly characterized by entanglement: As long
as the protecting symmetry is not explicitly broken, no ground state in the phase
can be disentangled without crossing a phase transition. Furthermore, MPS enabled
to prove that the classification of phases in one dimension is now actually complete:
gapped phases either have symmetry-breaking, SPT or trivial order and that is all
there is [17, 18].

Much effort has been made to carry over the success of tensor networks to di-
mension greater than one. Higher-dimensional tensor networks are usually called
Projected Entangled Pair States (PEPS). Two-dimensional systems are particularly
interesting: quantum fluctuations (which are favored by low spatial dimension) are
still strong enough, while at the same time there is “enough space” for more inter-
esting topological phenomena to occurs. It is therefore not surprising that promi-
nent open problems in the field, like high-temperature superconductivity and the
fractional quantum Hall effect are effectively two-dimensional. A milestone in the
classification of topological order was the complete characterization of the Quantum
Double Models and, more generally, string-net models [19] in terms of PEPS [20–22].
The programme has been extended to include several examples of chiral topological
order [23–25].

The key ingredient in all of these constructions lies in the symmetry of the
entanglement degrees of freedom. These symmetries, as well as symmetry twists,
are locally undetectable yet show up in the global topological properties of the
systems. For discrete groups, they allow to parametrize the ground space manifold,
to study anyonic excitations and their statistics, and to determine the entanglement
properties of the system. Topological order can be understood in terms of the
symmetry breaking pattern in the virtual degrees of freedom [26].

With this, we have come full circle: Landau told us that order means breaking a
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CHAPTER 1. INTRODUCTION

symmetry. Topological order shows the shortcomings of Landau’s theory and pushes
symmetry to the sideline. Finally, the tensor network formalism reconciles the two
by reinterpreting topological order in terms of symmetry in the entanglement degrees
of freedom, putting symmetry back front and centre.

While there are decades of research concerning the breaking of various physical
symmetries, the study of symmetries in the entanglement is still in its infancy. For
example, there is no framework for the context of continuous symmetries. This
topic is particularly timely due to recent developments in Lattice Gauge Theory
that are now studied with PEPS [27–32]. Furthermore, one can investigate non-
trivial mixtures of physical and entanglement symmetries and even the effect of
anisotropic symmetries. The central question of this Thesis is therefore:

Which are the phases that correspond to symmetric PEPS?

We will restrict the discussion to tensor networks describing neither fermionic
nor bosonic, but spin degrees of freedom. On the one hand this description is
sufficient to describe the relevant low-temperature physics in various models, like
the Mott insulator phase of the Hubbard model which we discuss more concretely in
chapter 3. On the other hand, simple spin systems without any immediate relevance
to realistic systems can still show the same types of phases and phase transitions
that are realized in actual materials.

The outline of this Thesis is as follows: we introduce tensor networks more rigor-
ously in section 1.1 and establish some useful diagrammatic notation. In section 1.2
we showcase how symmetries are encoded in a model tensor network using the ex-
ample of the AKLT chain. The original contributions of this Thesis are chapters 2
through 5. Apart from using the notation introduced in this chapter as well as
a few cross-references, the following chapters are self-contained. In chapter 2, we
study the simplest continuous symmetry, U(1). Beyond its simplicity, the study
is also motivated by the fact that any other compact Lie group has a subgroup
isomorphic to U(1) which means that the results from this section hold more gen-
erally. U(1) is the relevant symmetry in Berezinskii-Kosterlitz-Thouless’ discovery
of phases beyond the symmetry-breaking paradigm and we will find the physics of
U(1)-PEPS to be closely related. Indeed, we will show that such PEPS generically
cannot be the unique ground states of gapped local Hamiltonians, indicating crit-
icality, symmetry-breaking or topologically ordered scenarios. The critical points
can describe transitions into topologically ordered phases with a characteristic dy-
namical critical exponent z = 2. We investigate the entanglement entropy and find
two separate mechanisms that lead to corrections to the area law. First, there is
a logarithmic correction corresponding to the dimension of the singlet space under
the U(1)-symmetry. Furthermore, there is a geometric correction arising from the
finite entanglement mediated through thin channels. We establish a connection with
vertex models of classical statistical mechanics.

In chapter 3, we study the Resonating Valence Bond (RVB) state. Relevant in
the theory of high-temperature superconductivity and quantum spin liquids, this
model wave function is also one of the simplest U(1)-PEPS. Physically, the state
corresponds to covering the square lattice with spin-1/2 nearest-neighbour singlet
pairs. A more realistic scenario is one in which pairings exist between more distant
spins. In terms of PEPS, long-range singlets correspond to an explicit breaking of
the U(1)-symmetry. Previous studies have observed critical behavior of the PEPS
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CHAPTER 1. INTRODUCTION

even when the symmetry is broken. In light of our findings in chapter 2, this comes
as a surprise: Is the presencce of U(1)-symmetry not essential, after all, for the exis-
tence of low-lying excitations? We reconcile these findings by showing that breaking
U(1) does induce a finite gap, albeit one which is so small that it can only be de-
tected on lattices with thousands spins in each direction. The required system sizes
are way beyond reach of the best currently existing numerical algorithms. To nev-
ertheless show the existence of a gap, we combine PEPS techniques with Conformal
Field Theory (CFT). Tailored to gapless critical points, CFT provides a useful com-
plimentary approach to tensor network methods. After translating key objects from
the PEPS into the CFT and vice-versa, we use this correspondence to establish a
scaling hypotesis for the gap which is then numerically corroborated. Furthermore,
we identify the perturbed PEPS with a symmetry broken phase of a Sine-Gordon
field theory, before proposing a PEPS with an emergent U(1)-symmetry.

In chapter 4, we shift our attention from U(1) to SU(2), as a first example of a
non-abelian continuous group. We have found the U(1)-PEPS to lie at the bound-
ary of a topological phase, on which one of the abelian anyons has condensed into
the ground state. In the context of topological quantum computation, non-abelian
anyons are much more attractive, since they enable universal quantum computa-
tion. We find, however, that an elementary class of SU(2)-PEPS does not describe
a topological phase transition, but instead has translation symmetry-breaking pla-
quette order. As opposed to the abelian case, we show that the classical model
corresponding to the non-abelian symmetry is a non-local loop model, due to the
fact that singlets of the non-abelian symmetry are necessarily entangled. The PEPS
is an exact ground state of a “loop surgery” Hamiltonian. The ground state mani-
fold consists of two types of states: the Hamiltonian decomposes into a polynomial
number of blocks which can be accessed by inserting topologically non-trivial string-
operators. On the other hand, there is an exponential number of “frozen” product
ground states. We investigate the entanglement entropy and find stricter logarithmic
and geometric restrictions than in the U(1) case.

In chapter 5, we take a step back from continuous symmetries. The anisotropic
symmetry we study gives rise to physical subsystem symmetries. These rigid lower-
dimensional symmetries are sufficient to protect a topological phase, the so-called
Cluster Phase. The presence of such subsystem symmetries induces a constant cor-
rection to the area law. Such corrections are important in the study of systems with
intrinsic topological order, where they are referred to as the topological entangle-
ment entropy γ [33, 34]. The value of γ derived from these subsystem-symmetries
can be precisely identical to that of systems with intrinsic topological order. This
is a problem when using the entanglement entropy in order to distinguish different
phases. There has been a recent debate about whether such coincidence is generic
or fine-tuned. We settle this argument by showing that the Cluster phase has a uni-
form correction to the entanglement entropy, the Symmetry-Protected Entanglement
Entropy (SPEE). While doing so, we develop a novel numerical tool and discover a
new, larger subsystem-symmetry protected topological phase in which the Cluster
phase is embedded.

We conclude in Chapter 6 and present an outlook for further research directions.
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CHAPTER 1. INTRODUCTION

1.1 Notation & Tensor Network Basics

The purpose of this section is to introduce basic notation, theorems and methods
that will be used throughout this Thesis.

1.1.1 Matrix Product States

Matrix Product States are defined by a collection n = 1, 2, . . . , L of three-legged
tensors A[n]ilr, depicted graphically by

(1.1)

where i = 1, 2, . . . , d and l, r = 1, 2, . . . , χ. Here, L is the number of sites, d is the
physical dimension and χ is the bond dimension. Identifying these labels with bases
{|i〉}, {|l〉},{|r〉} of the physical (Hilbert) space and the virtual space, respectively,
these tensors can be contracted :

|ψ({A[n]}n)〉 :=
∑

i1,i2,...,iL

Tr
[
A[1]i1A[2]i2 . . . A[L]iL

]
|i1, i2, . . . iL〉

= (1.2)

The number of parameters in (1.2) is χ2dL; exponentially less then the 2L coefficients
naively used to describe the wave function.

In all parts of this Thesis, we will deal with states that are translation invariant,
i.e. they do not change under i1 → i2 → i3 → . . . iL → i1. In this case, we may
restrict (1.2) to a single tensor that is repeated along the chain, A[n] ≡ A. This
elementary tensor defines both a tripartite fiducial state

|A〉 :=
∑
ilr

Ai
lr |i〉 |l〉 |r〉 (1.3)

as well as a fiducial map

MA :=
∑
ilr

Ai
lr |i〉 〈l| 〈r| (1.4)

that maps the virtual into the physical subspace. An MPS is called invertible if
there exists a left inverse M−1

A , such that M−1
A MA = 1virtual. This is only possible if
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CHAPTER 1. INTRODUCTION

χ2 < d. However, MPS tensors can be blocked

= (1.5)

to yield tensors with the same bond dimension, but larger physical dimension d′B =
d2A. An MPS is normal, if it is injective after blocking a finite number of times.

The map MA can be used to construct Hamiltonians that have the MPS as a
ground state. To this end, define the image of MA after blocking e.g., 2 tensors by

S2 = span

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣ X

⎫⎪⎬⎪⎭ . (1.6)

The parent Hamiltonian is then defined by local projectors onto the orthogonal
complement

h := 1− ΠS2 . (1.7)

Cleary, such Hamiltonians are hermitian, semi-positive and annihilate the MPS. Of
course, writing down such a Hamiltonian is easy; simply taking h = 0 would do the
trick. If the MPS is injective, however, the parent Hamiltonian has a unique ground
state which is given by the MPS. Furthermore, on open boundaries, the ground
space of the Hamiltonian is given precisely by the states that are generated from
the MPS with different boundary conditions.

A central element in the study of Matrix Product States is the transfer matrix

TA =
∑
i

Ai ⊗ Ai (1.8)

= (1.9)

For notational clarity, we will suppress the dependence of the transfer matrix on the
underlying tensor throughout this Thesis. The norm of the quantum state can be
expressed in terms of the transfer matrix

〈ψ(A)|ψ(A)〉 = Tr(TL). (1.10)

As we will discover later, the norm of a tensor network can sometimes be interpreted
as a partition function. On the other hand, we typically want to deal with normalized
quantum states. Therefore, unless otherwise stated, we will normalize our tensor
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CHAPTER 1. INTRODUCTION

networks in such a way that the magnitude of the largest eigenvalue of the transfer
matrix is 1.

The transfer matrix also carries all information about correlation functions. In-
deed, consider the connected two-point functions of a local operator σ

〈ψ(A)|σiσj|ψ(A)〉 = (1.11)

=: Tr
(
T (σ)T |i−j|−1T (σ)TL−|i−j|−1

)
(1.12)

In the thermodynamic limit L → ∞, we can replace TL−|i−j|−1 by the projector onto
its leading left and right eigenvectors 〈σL| and |σR〉. Assume for now that T has a
unique largest eigenvalue λ1 = 1. Denoting eigenvectors corresponding to smaller
eigenvalues by 〈Li| and 〈Ri| (for i = 2, . . . , χ2) and the distance by x := |i− j| − 1,
we have

. . . = 〈σL|T (σ)T |i−j|−1T (σ)|σR〉

= | 〈σL|T (σ)|σR〉 |2 +
χ2∑
i=2

λx
i 〈σL|T (σ) |Ri〉 〈Li|T (σ)|σR〉 (1.13)

Identifying | 〈σL|T (σ)|σR〉 |2 = 〈ψ(A)|σi|ψ(A)〉 〈ψ(A)|σj|ψ(A)〉, we can bound the
connected part

| 〈ψ(A)|σiσj|ψ(A)〉 − 〈ψ(A)|σi|ψ(A)〉 〈ψ(A)|σj|ψ(A)〉 | = O (
e−x/ξ

)
(1.14)

where we have defined ξ = −1/ log(|λ2|), or, more generally,

ξ = − 1

log(|λ2/λ1|) . (1.15)

Under general circumstances, we can therefore identify the maximum correlation
length of an MPS with the gap of its transfer matrix, where special care has to be
taken in the case of exact degeneracies.

In this Thesis, we are particularly interested in tensor networks with symmetries.
On-site symmetries are unitary representations Ug of a group G that act on an MPS
as

=

(1.16)
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A great virtue of tensor networks comes from the fact that such symmetries can be
encoded locally. Indeed, a tensor that fulfills

= (1.17)

also satisfies (1.16). On the other hand, the fundamental theorem of MPS states
that, as long as the MPS is normal, the reverse is also the case: Eq. (1.16) implies
the existence of Vg for which (1.17) holds [35, 36] and for which V −1

g = V †
g for unitary

representations [37].

1.1.2 Projected Entangled Pair States

Higher-dimensional generalization of Matrix Product States are generally called Pro-
jected Entangled Pair States (PEPS) and, owing to the richer geometry of lattices
in higher dimension, this name can refer to a multitude of constructions. In this
Thesis, we will work exclusively on the square lattice in two dimensions. While
being mainly a conceptual tool, the square lattice is actually an accurate effective
description of physical systems of interests like the cuprates. For our purposes, we
define a PEPS from an elementary five-legged tensor Ai

uldr

(1.18)

Translational invariant states are obtained by distributing such an elementary tensor
across the lattice (cf. 1.2)

=̂ (1.19)
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where we have introduced more economical notation. In terms of this notation, the
transfer matrix now reads

T = (1.20)

An elementary building block of the transfer matrix is the double tensor

= E
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until the corresponding map M from the virtual to physical degrees of freedom fails
to be surjective. Denote the image of M by

S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
A A

A A

X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (1.24)

and define the projector onto the orthogonal complement of S

h = 1− ΠS (1.25)

Setting H =
∑

p hp yields a local, hermitian and semipositive Hamiltonian that
annihilates the PEPS. The notion of injectivity carries over from matrix product
states and parent Hamiltonians of injective PEPS fulfil the intersection property,
i.e., their ground is completely characterized by the PEPS. The concept of injectivity
can be weakened such that the mapM is only injective on the symmetric subspace of
a finite group. In one dimension, such MPS correspond to cat states describing one
of the ground states in symmetry-breaking phases. In two dimensions, G-injective
PEPS have intrinsic topological order: their parent Hamiltonians do not have unique
ground states, but a finite topological ground states degeneracy. In spatial dimension
larger than one, more exotic behaviour then injectivity or G-injectivity is possible.
In chapters 2-5, we study some of those possibilities. Before doing so, we need to
introduce some final concepts. We will illustrate these using the ancestor of all
tensor network models.

1.2 Example of a model MPS: The AKLT model

There is a number of concepts that are relevant for the main discussion of this Thesis.
Rather than dealing with them abstractly, we review the paradigmatic AKLT model,
where these ideas are exemplified.

Consider the bilinear-biquadratic spin chain with local spin-1 degrees of freedom,
L sites and periodic boundary conditions described by the Hamiltonian

H =
L∑
i=1

�Si · �Si+1 + β(�Si · �Si+1)
2 (1.26)

For β = 0, the model becomes the spin-1 Heisenberg Antiferromagnet (AFM). Bethe
solved the spin-1/2 antiferrmagnet using his celebrated Bethe ansatz [16]. It is gap-
less and can be seen as a transition of Kosterless-Thouless type from the disordered,
critical phase of the XXZ chain into an antiferromagnetic ordered phase. The nature
of the spin-1 AFM remained unclear for a long time, until Haldane predicted the
existence of a unique ground state and a finite excitation gap implying exponential
decay of local correlation functions [14, 15]. We will prove this statement using the
modern approach and start with a model MPS wave function.
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1.2.1 Wave function and Symmetry

Since (1.26) is manifestly SU(2) and translational invariant, let us write down the
simplest MPS wave function respecting those symmetries. Define the MPS tensor
A, with bond dimension χ = 2 and physical dimension d = 3 (spin-1) by

A+ =

√
2

3

(
0 0
1 0

)
(1.27a)

A0 = −
√

1

3

(
1 0
0 −1

)
(1.27b)

A− = −
√

2

3

(
0 1
0 0

)
(1.27c)

The continuous SU(2)-symmetry is encoded in the local tensor in terms of the
generators:

A

Z

= AZ − A Z (1.28)

where Z is the spin-S representation of the generator of rotations around the z-axis
corresponding to the dimension of the link that it is acting on, i.e., the usual Pauli-Z
matrix in the virtual space and diag(1, 0,−1) in the physical space. For the global
wave function this implies that

Sz |ψ〉 =
∑
i

A A A

Z

ii-1 i+1

… …

= AZ

ii-1 i+1

A… A … − A

ii-1 i+1

A… A …Z

+ A

ii-1 i+1

A… A …Z + . . .

= 0 (1.29)

and similarly for Sx and Sy. Since each of the generators of SU(2) annihilates |ψ〉,
we have shown that (1.28) implies

U⊗L |ψ〉 = ei
�θ�S |ψ〉

= |ψ〉 (1.30)

for all U ∈ SU(2). Let us compute the parent Hamiltonian of the MPS. The AKLT
tensor is normal but it is only injective after blocking at least two sites. According
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to the last section, one would expect that we need to take more than two sites to set
up an appropriate parent Hamiltonian. As it turns out, the model is exceptional in
the sense that two sites already suffice. Let us calculate the span of the map from
the virtual to the physical degrees of freedom given by two single-site tensors:

M = AA (1.31)

Both the input and output spaces can be labelled by SU(2) quantum numbers. The
virtual space decomposes as 1/2 ⊗ 1/2 = 0 ⊕ 1, while the physical space can be
written as 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2. The map (1.31) preserves spin quantum numbers
by virtue of equation (1.28). The subspace of the physical space spanned by M2 is
therefore given by the orthogonal complement of the spin-2 space:

S2 = {|S, z〉} S=0,1
z=−S,...,S

(1.32)

The corresponding parent Hamiltonian is the projector onto the spin-2 space

hi,i+1 = 1− ΠS2 (1.33)

=
1

3
1+

1

2
�Si
�Si+1 +

1

6
(�Si

�Si+1)
2 (1.34)

where we have rewritten the projector onto the spin-2 space in terms of �Si
�Si+1

operators. The final Hamiltonian is simply the bilinear-biquadratic chain (1.26) at
β = 1/3.

1.2.2 Correlations

Using the explicit representation (1.27) of the AKLT tensors, we find that

T =
1

3

⎛⎜⎜⎝
1 2

−1
−1

2 1

⎞⎟⎟⎠ (1.35)

= 11 − 1

3

∑
α∈{x,y,z}

σασα , (1.36)

in which form

ξAKLT =
1

ln 3
(1.37)

is obvious due to (1.15).

1.2.3 Entanglement and the Bulk-Boundary Correspondence

Let us now focus on the entanglement properties of the AKLT state. Given a state
|ψ〉 and a bipartition into regions A and B, the α-Renyi entanglement entropy
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is given by

Sα(A) =
1

1− α
log Tr(ραA), (1.38)

where ρA = TrB(|ψ〉 〈ψ|) is the reduced density matrix of region A after tracing out
the complement. Three particular values are of special interest for the remainder of
this Thesis:

α = 0 : S0 = log rank(ρA) (max-entropy) (1.39)

α = 1 : S1 = −Tr(ρA log ρA) (von Neumann entropy) (1.40)

α = 2 : S2 = −Tr(ρ2A) (2-entropy) (1.41)

The entanglement entropy assigns a single number to a bipartition of a many-body
quantum state that contains surprisingly accurate information about the nature of
the underlying system. As we will see in later chapters, a single number extracted
from the entanglement entropy can be used to detect and characterize whole quan-
tum phases. Nevertheless, there is also a more fine-grained characterization of en-
tanglement given by the spectrum of the reduced density matrix ρA, also called the
entanglement spectrum. The entanglement spectrum is equal to the spectrum
of (squared) Schmidt coefficients.

The entanglement spectrum of the AKLT-chain is computed as follows. We
consider an open chain with L sites and a bipartition into regions A and B which
contain the left and right half-chain with L/2 spins, respectively. We choose to
terminate the open virtual legs of the MPS on the left and right with |0〉. The
following result is independent of the boundary conditions, so long as we take L →
∞ at some point. Making this particular choice of boundary conditions simply
streamlines the discussion. The reduced density matrix is now schematically given
by

ρA =

A

A̅A̅…

A…

A̅

A A

A̅ A̅ A̅…

A A…

〈0|

〈0|

|0〉

|0〉A

A̅ A̅ A̅…

A A…

|0〉

|0〉A

A̅A̅…

A…

A̅

A

〈0|

〈0|

A B

(1.42)

First consider the A-subregion. We can block all of the L/2 tensors to form one
large matrix

…
AL/2 := AA…A〈0| (1.43)

acting from Cχ → (Cd)L/2. We will now use the polar decomposition on AL/2. This
factorization is a direct consequence of the singular value decomposition. We may
write

AL/2 = WΣV † (1.44)

= (WΣW †)︸ ︷︷ ︸
=:P≥0

(WV †)︸ ︷︷ ︸
=:U

(1.45)
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since Σ ≥ 0 and U is an isometry U †U = 1χ×χ, since W †W = 1χ×χ = V †V .

Furthermore, P is the unique square root of A†
L/2AL/2, which is given by

A

A̅A̅…

A…

A̅

A

〈0|

〈0|

L→∞−−−→ (1.46)

Here, and in the following, we use |σL〉 when we mean the left fixed point vector of
the transfer matrix and σL when referring to the operator that is the left fixed point
of the transfer matrix seen as a superoperator. Since such operators are positive
[42], they possess a unique square root that we denote by

√
σL.

In the B-subregion we recognize the object TL/2 → |σR〉 〈σL|. Taking everything
together, we have

ρA = U
√
σLσR

√
σT
LU

† (1.47)

This result is the so-called bulk-boundary correspondence [43]. It tells us that the
spectrum of the physical reduced density matrix is equal to that of the virtual object
σ :=

√
σLσR

√
σT
L , padded with zeros. While ρA grows with system size, the latter

object is a χ×χ-matrix, regardless of system size. This has one important immediate
implication on the entanglement entropy of any Matrix Product State. The entropy
is maximal if the spectrum of σ is flat in which case all Renyi entropies are given
by S = logχ, which is therefore an upper bound on the entanglement entropy with
respect to any bipartition. The saturation of the entanglement entropy to a constant
value is remarkable: the entropy of random quantum state on L sites is typically on
the order of L [44], which is what we refer to as a volume law. In contrast, we have
just shown that MPS satisfy an area law of entanglement.

For the AKLT MPS considered before, we have that σL = σR = 1 and the
only two eigenvalues contributing to the entanglement spectrum are degenerate.
One could argue that this is a fine-tuned property of the AKLT point, but we are
now going to show that this degeneracy is indeed a hallmark of a much deeper
phenomenon.
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1.2.4 Symmetry-Protected Topological Order

The state (1.27) is invariant under global spin rotations (1.29) and therefore also
under 180◦ rotations about the x- and z-axes

Rx = e

πi√
2

⎛
⎜⎜⎜⎝
0 1 0
1 0 1
0 1 0

⎞
⎟⎟⎟⎠

=

⎛⎝ 0 0 −1
0 −1 0
−1 0 0

⎞⎠ (1.48a)

Rz = e

πi

⎛
⎜⎜⎜⎝
1

0
−1

⎞
⎟⎟⎟⎠

=

⎛⎝−1
1

−1

⎞⎠ . (1.48b)

Since R2
x = R2

z = 1 and RxRz = RzRx, the four elements {1, Rx, Rz, RxRz} form a
unitary representation {Ug} of the group Z2 × Z2. Using (1.17), we have that the
symmetry pushes through locally

A

Ug
=

A Vg-1Vg

(1.49)

Where the Vg also form a unitary representation of the same group. By direct
inspection, we find that {Vg} = {1, X, Z,XZ}. Being a representation implies that

VgVh = eiφ(g,h)Vgh (1.50)

The phases φ(g, h) are called the factor system of the representation. The trivial
factor system φ ≡ 1 corresponds to a linear representation. This is the case for the
physical spin-1 representation (1.48). On the other hand,

φ(Z,X) = π. (1.51)

Of course, (1.49) holds even if we redefine Vg → eiαgVg, since Vg and V †
g always

appear together. Can we use this freedom to make the factor system trivial? To
rectify (1.51), we might be tempted to set Z → −Z. But doing so sacrifices φ(X,Z).
Clearly, it is not possible to have both φ(Z,X) and φ(X,Z) be trivial. We say that
{Vg} forms a non-trivial projective representation.

The type of virtual representation has far-reaching physical consequences. Note
that a nontrivial factor system cannot be continuously deformed into a trivial one.
Indeed for the present case of Z2×Z2 there are only two discrete inequivalent classes
of projective representations, the trivial (i.e., linear) representation and the so-called
maximally non-commutative case. On the other hand, Matrix Product States cor-
respond precisely to the ground states of gapped local Hamiltonians. Therefore, as
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β1/3 1−1 0

Haldane phaseDimerized phase Critical phase

Heisenberg AKLTH(β) =
∑

�Si · �Sj + β(�Si · �Sj)
2

Figure 1.2: Phase Diagram of the bilinear-biquadratic chain (1.26). Having an exact MPS repre-
sentation at one point allows us to understand the entire adiabatically connected Haldane phase.

long as the Z2 × Z2-symmetry is preserved, the type of projective virtual represen-
tation cannot be changed without crossing a phase transition [17, 18]. We say that
the symmetry protects a topologically ordered phase.

Physically, the nontrivial projective representation implies the existence of both
edge modes as well as a degenerate entanglement spectrum. In a gapped phase, the
fixed point of the transfer matrix is unique and therefore inherits the commutation
properties of the transfer matrix, i.e., [σR, Vg ⊗ V †

g ] = 0. Assume that v is a non-
degenerate eigenvector of σR. Then, v must be invariant under VRx and VRz . But
then, as long as VRx and VRz anti-commute

v = VRzVRxv = −VRxVRzv = −v = 0. (1.52)

Therefore, as long as no phase transition is crossed and the nontrivial projective
symmetry prevails, there entire entanglement spectrum must necessarily be degen-
erate. A similar argument can be repeated for the Hamiltonian, leading to a robust
nontrivial ground space in which one can move around by applying operators that
are exponentially localized at the edge.
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Chapter 2

U(1)-symmetry

This chapter is devoted to the study of PEPS with the arguably simplest continu-
ous group, U(1). The motivation to investigate this setup is two-fold: The first is
practical, since a number of physically interesting PEPS naturally exhibit a U(1)-
symmetry, among them Resonating Valence Bond States [45, 46], Chiral Topological
States [47–49] and Lattice Gauge Theories [50]. The second motivation is fundamen-
tal : In spatial dimension one, studying the symmetries of Matrix Product States
has led to a complete classification of gapped phases of matter [17, 18]. Naturally,
phases in higher dimensions can be a lot richer and many open questions remain,
especially for D ≥ 3. Nonetheless, the success of the symmetry-based perspective
was carried over to two dimensions, where a wide class of topological phases, the
so-called Quantum Double Models, have been completely characterized in the PEPS
framework [51]. The key observation in this formalism is that the virtual legs of the
fundamental PEPS tensor are symmetric under the action of a finite group. We
seek to continue this program by initiating the study of continuous groups. The
circle group U(1) is a natural first candidate owing to its simplicity. At the same
time, the results derived here should apply to any compact Lie group (of non-zero
dimension), since every such group has a subgroup isomorphic to U(1).

The outline of this chapter is as follows: In section 2.1, we will establish the
general setup as well as some useful notation, before moving on to studying the
general ground state properties of a system defined by the PEPS. In order to gain
first insights into the physics of such systems, in section 2.2, we turn to the study
of the Six-Vertex PEPS. We will find that a key role is played by the existence of
low-lying excitations whose energy gap to the PEPS ground state (with respect to
a reasonable Hamiltonian) is vanishing in the thermodynamic limit. Turning again
to a more general perspective, we explain the origin of those states and give general
conditions for their existence in section 2.3.

2.1 Ground State Properties

Throughout the chapter, we consider a PEPS-tensors A with virtual symmetry

AZ Z

Z
Z

+ A

Z

Z

Z Z − A Z

Z

Z
Z

− A

Z

Z

ZZ = 0, (2.1)
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where Z is a Hermitian operator with an integer gap between each pair of eigenvalues
such that Uφ = exp(iφZ) forms a unitary representation of U(1). In the following,
we will use primed sums ∑′

Z |A〉 = 0 (2.2)

to mean +Z for bonds pointing up or left and −Z for bonds pointing down or
right. Without loss of generality, we can assume the eigenvalues of Z to be in Z≥0

since (2.2) is invariant under Z → αZ + β1. Note that (2.1) is the infinitesimal
version of and equivalent to

A

Uφ

U†
φ

Uφ U†
φ = A (2.3)

and we will use the two interchangeably. We can split the tensor into a projector
that enforces the virtual symmetry and the usual mapping from the virtual to the
physical degrees of freedom:

A =
1

2π

∫ 2π

0

dφ

Uφ

U†
φ

Uφ U†
φ

Γ

(2.4)

A further simplification arises if we choose Γ diagonal in the same basis as the
symmetry generator Z. Then, for the double tensor we have a single-leg U(1)-
symmetry

E Ubra
φ ⊗ U†ket

φ
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2.1.1 The Entanglement-Restricted Subspace

Equation (2.3) is useful because the invariance property of the local tensor concate-
nates and has implications on the global state:

A A = A

Uφ

U†
φ

Uφ U†
φ A

Uφ

U†
φ

Uφ U†
φ

= A

Uφ

U†
φ

Uφ A

Uφ

U†
φ

U†
φ (2.8)

This property restricts the boundary of the PEPS to the symmetric subspace. A
natural question is then whether the PEPS can explore the whole virtual space at its
boundary. This is equivalent to the existence of an inverse that, when applied to the
physical legs of the tensors yields a projector onto the full symmetric subspace at the
boundary. In the case of injective PEPS, or G-injective PEPS of finite groups, it can
be shown that, similar to the invariance property (2.8), the existence of a local inverse
implies the existence of a global one [51]; the concatenation of local inverses simply
yields the global one. We will show now that this is not the case in in the presence
of a U(1)-virtual symmetry. The boundary of the PEPS is not allowed to explore
the full charge-neutral space at the boundary, but only an entanglement-restricted
subspace. Intuitively, large charges on the boundary must be neutralised along every
cut in the bulk. For sufficiently “non-square” cuts, there are not enough Schmidt
vectors available for this information to propagate through. This is formalised in
the following

Claim 2.1. Consider a PEPS-tensor and a symmetry generator Z fulfilling (2.3)
and a bipartition of a patch of such tensors S = A ∪ B that cuts L bonds pointing
left or up and R bonds pointing right or down with respect to A. Let MS be the
corresponding matrix that maps virtual → physical. Denote by ∂A the virtual
bonds only contained in the A subsystem and let

∑′ Z |v〉∂A = Q |v〉∂A be a state
with fixed U(1) charge Q < λmin(Z)L − λmax(Z)R or Q > λmax(Z)L − λmin(Z)R.
Then M |v〉∂A |w〉∂B = 0 for any |w〉∂B.

Proof. For any state |j〉 along the cut with fixed charge q, we have q ∈ [λmin(Z)L−
λmax(Z)R, λmax(Z)L− λmin(Z)R]. By assumption, for each such q, there exists a φ,
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such that φ(Q− q) �∈ 2πZ. Thus we have

. . .

..
.

A

|v〉∂A

|j〉

=
. . .

..
.

eiφ
∑′ Z

eiφ
∑′ ZA

|v〉∂A

|j〉

(2.9)

= eiφ(Q+q)
. . .

..
.

A

|v〉∂A

|j〉

(2.10)

= 0. (2.11)

Inserting an orthogonal eigenbasis of the Hermitian operator
∑′ Z on the cut yields

the result

M |v〉∂A |w〉∂B =
∑
j

. . .

..
.

A

|v〉∂A

|j〉 〈j| ..
. B

|w〉∂B

. . .
(2.12)

= 0. (2.13)

A priori, the properties of the virtual space of a PEPS may not directly translate
to the properties of the state after contraction. This begs the following question:
Does the emergence of an entanglement-restricted subspace have any physical ram-
ifications? We will answer this question in the affirmative in the next section.

2.1.2 Entanglement Entropy

In this subsection, we study the effect of the symmetry (2.3) on the entanglement
of the physical state that is left after contraction. We will see that there are two
independent mechanisms at play: First, the restriction to the symmetric virtual
subspace induces a logarithmic correction to the area law. Second, the restriction to
the entanglement-restricted subspace yields further corrections that depend on the
geometry of the partition rather than the size of the cut.

Using the symmetry property (2.3), one can derive a bound on the Rényi zero-
entropy of a U(1)-symmetric PEPS (the zero-entropy is the maximal attainable en-
tropy that bounds from above all other Rényi entropies including the von-Neumann
entanglement entropy).

Claim 2.2. Let |ψ〉S be a state constructed from PEPS-tensors and a symmetry
generator Z with spectrum Ω in Z≥0 fulfilling (2.3). Consider a bipartition S = A∪B
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and let ρA be the reduced density matrix on A. Then

S0(ρA) ≤ log

|∂A|λmax(Z)/2∑
Q=|∂A|λmin(Z)/2

p2Q, (2.14)

where |∂A| is the size of the boundary of A and pQ is the number of partitions of Q
into |∂A|/2 integers drawn from Ω.

Proof. The rank of

ρA = TrB |ψ〉 〈ψ|

=

A B

BA

(2.15)

is bounded by the rank of A. Since the symmetry concatenates (2.8), A has to be
charge neutral. By assumption, the spectrum of Z is positive, so a given positive
charge +Q on the up- and left-pointing legs has to be exactly compensated by
the −Q on the down- and right-pointing legs. Since we can pick the positive and
negative configurations individually, for each Q, there are p2Q options to do this
and the maximal charge is |∂A|λmax(Z)/2, due to the fact that there are as many
up-/left-legs as down-/right-legs.

Claim 2.2 is not very illuminating with respect to the asymptotic behaviour of
the entropy for large cuts. Let us look at the simple case of spin-1/2 virtual particles,
Ω = {0, 1}. In this case

S0(ρA) = log

|∂A|/2∑
j=0

(|∂A|/2
j

)2

= log

( |∂A|
|∂A|/2

)
∼ log

2|∂A|√
π|∂A|/2

= |∂A| log 2− 1

2
log |∂A| − log

√
2

π
(2.16)

The first part corresponds to the area law of the bond dimension D = 2 PEPS.
Second, we observe a negative logarithmic correction to the area law and finally a
constant independent of the size of the boundary. While we have used a particular
representation of U(1), arguments from analytic combinatorics indicate that both
the existence of the logarithmic correction as well as its prefactor 1/2 is universal
for so-called “bridge” problems, which are loosely defined by counting the number
of charge neutral configurations [52, p. 539]. Logarithmic corrections to the entan-
glement entropy have first appeared in the study of Quantum Conformal Critical
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Points (CQCP) [53]. As we will see in section 2.2, the above counting corresponds
to an exact lattice regularization of such a field theory. For these models, a nega-
tive logarithmic correction was observed for non-smooth bipartitions: each corner
contributes a universal term to the von-Neumann entropy from which the central
charge of the underlying 2+0-dimensional CFT can be extracted [54]. For exam-
ple, the prefactor of the logarithmic correction to the von-Neumann entropy in the
Quantum Dimer Model [55] is consistent with a description of a c = 1 CFT [56].
For smooth boundaries, the logarithmic contribution in the field theory vanishes.
In this scenario, it is likely that there is some mechanism by which the logarithmic
contribution in (2.16) vanishes when shifting focus from the zero Renyi- to the von
Neumann-entropy. Finally, positive logarithmic corrections to the area law have
been observed in two-dimensional critical systems [57], in the presence of broken
continuous symmetry, where the prefactor is believed to be 1/2 times the number of
Goldstone Bosons, i.e., the number of generators of the symmetry that are broken.

Potentially more interesting regarding the discussion on universality is the effect
of the entanglement-restricted subspace introduced in the previous section. To study
its effect, we consider an Lx × Ly torus that is divided into a cylinder A of length
l and its complement B (Fig. 2.1a). Varying l keeps the size of the boundary |∂A|
in (2.14) constant. Nonetheless, we will now show that for thin enough cylinders,
the bound (2.14) can be tightened. We take again the simplest possible case of
spin-1/2 particles on the boundary of the PEPS, Ω = {0, 1}. Then, one may derive
the dimension of the entanglement-restricted subspace (which bounds S0(ρA)) as
follows. First consider l = 1. The set of charge neutral configurations decomposes
into allowed and forbidden configurations. Fig. 2.1c shows such a forbidden config-
uration: Each vertex along the cylinder is either a source ( −−+ ), a sink (−− +)
or neutral (+ + or −−−− ). Crucially, a configuration with two adjacent sources
or sinks (neglecting potentially intermediate neutral vertices) contracts to zero. Ap-
plying this rule for consecutive columns, we see that the presence of l+1 successive
sinks or sources result in the configuration being forbidden. Scanning the strip from
top to bottom, one can map each configuration to a bridge diagram, where each
step takes values in {+1, 0blue, 0red,−1} (as there are two species of neutral config-
urations). The entanglement restriction is tantamount to requiring the resulting
bridge to have no consecutive l + 1 up- or down-steps (ignoring intermediate flat
steps). Counting the number of such paths for a given l < Lx and Ly is a linear
problem: Given l, one may set up a counting vector v of size (2l+ 1)2 and a matrix
M such that (Mnv)(h,c) contains the number of allowed bridges of length n. Then,∑

c(M
Lyv)(0,c) is the dimension of the entanglement-restricted subspace. The result

for Lx = Ly = 60 is shown in Fig. 2.1b. In [58], different Rényi n-entropies for the
Quantum Dimer models have been obtained on the same geometry. We conjecture
that the curve we have obtained by our counting argument is the limiting case for
n → 0 (inset of 2.1b). As it turns out (cf. chapter 3), the Dimer model has an
exact U(1)-symmetric PEPS representation, so the agreement should may not be
too surprising. It is interesting to note however, that the behaviour we have discov-
ered persists when looking at other Rényi entropies and the von Neumann entropy.
Furthermore, the thin-cylinder limit is expected to contain featues of universality.
More explicitly, for the geometry considered, the Rényi n-entropy should generically
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inherits two copies of the same symmetry, for the bra- and ket-layer individually.

EUbra
φ

Ubra
φ

U†bra
φ

U†bra
φ

= EUket
φ

Uket
φ

U†ket
φ

U†ket
φ = E (2.18)

Putting the double-tensor on a cylinder, we may use (2.18) repeatedly to obtain

. . .E E E E

Uφ UφUφ Uφ

U†
φ U†

φ
U†
φU†

φ

= . . .E E E E (2.19)

for either bra- or ket-layer, resulting in a U(1) × U(1)-symmetry of the transfer
matrix

[T, (Uket
φ )⊗L] = [T, (Ubra

φ )⊗L] = 0 ∀φ ∈ U(1). (2.20)

In order to observe the implications of the entanglement-restricted subspace,
consider two states with fixed local charges on, say, the ket-level

∑j0+l
j=j0

Zket
j |vin〉 =

Qin |vin〉,∑j0+l
j=j0

Zket
j |vout〉 = Qout |vout〉. Assume further that |Qin−Qout| > λmax(Z)−

λmin(Z). Then

〈vout|T |vin〉 = 0 (2.21)

is an immediate consequence of claim 2.1. For a region of l consecutive spins, the
transfer matrix therefore only changes the charge density by O(1/l). In the simplest
case Z = diag(1/2,−1/2) it is also implied that, when expanding the transfer matrix
in terms of local operators, terms like

σ+ σ−σ+ σ− (2.22)

on either layer are forbidden despite respecting the U(1)-symmetry (σ+ and σ−

correspond precisely to up- and down-steps in the path-mapping in Fig. 2.1c).

2.2 Example: The Six-Vertex PEPS

We now turn to the study of the simplest non-trivial U(1)-invariant PEPS. The goal
of this section is to gain some insight into the physics that these states generically
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represent. For the parameters we consider, we will first show that there exists a
family of commuting transfer matrices that can be continuously connected to the
lattice shift operator. This is the basic prerequisite for integrability : An extensive
number of locally conserved charges exists and the phase diagram of the model can
be obtained by Bethe ansatz techniques. While useful in deriving these results,
we stress that U(1)-symmetry is not sufficient for integrability. By virtue of being
integrable, we can then access the physics of this PEPS in a wide parameter regime
and observe a phase diagram with both critical and symmetry-breaking phases. The
interpretation of the phase diagram will naturally guide us to the subsequent section,
where we both show how to understand such “anomalous” behaviour and tackle the
issue of its generecity.

The simplest non-trivial model fulfilling (2.3) is given by Z = diag(1/2,−1/2).
Let us introduce graphical notation for the computational basis of the D = 2-
dimensional Hilbert space on the links

Z
∣∣ 〉

= +1/2
∣∣ 〉

Z
∣∣ 〉

= −1/2
∣∣ 〉

Z

∣∣∣∣∣
〉

= +1/2

∣∣∣∣∣
〉

Z

∣∣∣∣∣
〉

= −1/2

∣∣∣∣∣
〉

(2.23)

For simplicity let us pick Γ diagonal with matrix elements given by

√
a

√
a

√
b

√
c

√
c

√
b

(2.24)

and all other configurations are trivially zero due to the U(1)-projector in (2.4)1.
Fortunately, assessing the physics of this PEPS is simple, since the spectrum of its
transfer matrix is - as we will now show - exactly solvable. To this end, we first
compress the double tensor via (2.6) and study for which triples E = E(a, b, c);E ′ =

1Note that this PEPS breaks the C4v-symmetry of the square lattice. In fact it can be checked
that the only bond dimension D = 2-PEPS with virtual U(1)-symmetry and complete lattice
symmetry is given by a = b = c, also called square ice.
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E(a′, b′, c′);E ′′ = E(a′′, b′′, c′′) the Yang-Baxter equation

E′

E

E′′ =

E′

E

E′′ (2.25)

is fulfilled. Here

E′′ = E′′ . (2.26)

This is a system of D6 equations that generically needs a fair amount of fine tuning
to be satisfied. The concatenated U(1)-symmetry combined with the arrow-reversal
symmetry of (2.24) implies that there are only three independent equations (instead
of the naive 64), corresponding to the boundary conditions

, and , (2.27)

which yield

ac′a′′ = bc′b′′ + ca′c′′ (2.28a)

ab′c′′ = ba′c′′ + cc′b′′ (2.28b)

cb′a′′ = ca′b′′ + bc′c′′ (2.28c)

respectively. The solution to (2.28) is written more succinctly if we reparamatrise

a = ρ sin(λ− u) (2.29a)

b = ρ sin(u) (2.29b)

c = ρ sin(λ). (2.29c)

Such a reparametrisation is possible if |a2 + b2 − c2/2ab| < 1|, otherwise one has
to modify the parametrisation to include hyperbolic instead of trigonometric func-
tions. For what follows, either parametrisation will yield the final result, so we will
assume (2.29). Furthermore, without loss of generality, we drop any dependence of
a, b, c on ρ from here on out. In these variables, (2.25) is true if and only if

λ = λ′ = λ′′ (2.30a)

u′′ = u− u′ (2.30b)
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Let us investigate the bearing of (2.25) on the PEPS’ transfer matrix. In particular,
fix λ and consider the product T (u)T (u′) on periodic boundary conditions. Since as
a matrix

E(u′′)

i1

i2 j2

j1

=

⎛⎜⎜⎝
sin(λ− u′′)

sin(λ) sin(u′′)
sin(u′′) sin(λ)

sin(λ− u′′)

⎞⎟⎟⎠ (2.31)

is invertible for u′′ < λ, we may insert an identity into the transfer matrix, which
lets us use (2.25) repeatedly to obtain

T (u)T (u′) = E−1(u′′) E(u′′)

E(u′)

E(u) E(u) . . . E(u)

E(u′) E(u′). . .

= E−1(u′′) E(u′′)

E(u) . . . E(u)

E(u′) E(u′). . .

E(u′)

E(u)

= E−1(u′′) E(u′′)

E(u′)

E(u) E(u)

. . .

E(u)

E(u′) E(u′)

. . .

= T (u′)T (u). (2.32)

In principle, having such a set of commuting transfer operators is not useful by itself,
since each of these operators is non-local. In this case, however, the double tensor
can be connected to the identity which allows us to build an extensive number of
local operators which all commute with the family of transfer matrices. To that end
observe that

E(0) = sin(λ) (2.33)

and consider

∂ log T

∂u

∣∣∣∣
u=0

= T−1(0)
∂T

∂u

∣∣∣∣
u=0

(2.34)

∝
∑
j

∂E

∂u

∣∣∣∣
u=0

. . .. . .

j j + 1

. (2.35)
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(a)

D

AF F

F

1

1

(b)

F AF

a/c

b/c

F

AF

Figure 2.2: Phase Diagram of the Six-Vertex PEPS. (a) Ferromagnetic phases are labeled F , AF
is an anti-ferromagnetic phase and D is a disordered phase with algebraically decaying correlations.
Deep in the ordered phases, the PEPS becomes an equal superposition cat state over the states
shown in (b) and their counterparts with all arrows reversed. The ferromagnet (F ) refers to the
lower right triangle (the corresponding state in the other ferromagnetic phase has all horizontal
arrows reversed.

More conserved quanitites can be constructed from considering higher order deriva-
tives in (2.34). The local operator appearing at first order is simply given by the
sum of

2 ∂E

∂u

∣∣∣∣
u=0

= XX + Y Y +Δ(ZZ + 1), (2.36)

where we have introduced

Δ = − cos(λ)

=
a2 + b2 − c2

2ab
. (2.37)

We conclude that the PEPS’ transfer matrix shares a set of eigenstates with the well-
known XXZ chain2. At this point it is not clear whether there is any relationship
between the eigenvalues of HXXZ and T . It has been the remarkable achievement of
[61–63] (for special cases) and [64] (for the general case) to show that the fixed point
of the transfer matrix is indeed equal to the ground state of HXXZ, whose phase di-
agram is well-known. The phase diagram of the Six-Vertex PEPS follows (Fig. 2.2).
We note the existence of three qualitatively different phases: A ferromagnetic U(1)-
breaking phase, an antiferromagntic phase that breaks translation symmetry and a
disordered, critical phase. At no point in the phase diagram do we find a state that
would be consistent with being the unique ground state of a local, gapped Hamilto-
nian. Indeed, one may try to construct a parent Hamiltonian for the PEPS defined
by (2.24) using the construction of (1.24) and (1.25). For the PEPS considered in

2Bearing in mind that we compressed the transfer matrix via (2.6), the eigenstates of T are
actually eigenstates of two coupled XXZ chains H = Hket

XXZ + Hbra
XXZ + Hcoupling, where Hcoupling

gives an infinite energy penalty for states with different U(1)-charges in bra- and ket-layer on any
site.
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this example, a 2× 2 plaquette is sufficient to set up a non-trivial Hamiltonian and
for a = b = c = 1 in (2.24), the Hamiltonian becomes the Rokhsar-Kivelson point
of the Quantum Six-Vertex model that has been studied in [65–67]

H =
∑

plaquettes

(∣∣∣∣∣
〉

−
∣∣∣∣∣

〉)(〈 ∣∣∣∣∣−
〈 ∣∣∣∣∣

)
. (2.38)

We now close the discussion of the Six-Vertex as an example of a U(1)-invariant
PEPS. The most striking feature is exposed in Fig. 2.2(a): The absence of regions
in the phase diagram with unique gapped ground states. Is this a fundamental
property of U(1)-symmetric PEPS? Or is this merely an artefact of the fine-tuned
integrability that we have used to study the example? After all, while the U(1)-
constraint severely reduced the number of Yang-Baxter equations, it is by no means
a sufficient criterion3. In the next section, we will answer this question in favor of
the former.

2.3 Low-Lying Excitations

In the previous section, we have studied an example of a U(1)-invariant PEPS that
described symmetry-breaking or critical phases in a wide parameter regime of its
phase diagram. The purpose of this section is to find conditions under which this
behaviour is generic. Both symmetry-breaking and critical phases feature low-lying
excitations above the ground state. Of course, in order to make a statement about
the energy of a state one has to specify the Hamiltonian of the system. Through-
out this section, we will use the natural parent Hamiltonian of the PEPS (1.24)
and (1.25). To streamline the graphical notation, we will assume the parent Hamil-
tonian to act on 2 × 2-plaquettes but we stress that this is not necessary for the
discussion. We mention again that such a 2 × 2 parent Hamiltonian captures rele-
vant models, such as the Quantum Six Vertex (cf. (2.38)) and the Quantum Dimer
Models [55].

First, we will derive a criterion for the system to be either symmetry-breaking,
critical or topologically ordered, by constructing one low-lying state. Second, we will
give requirements to distinguish symmetry-breaking scenarios from criticality. While
in the former case there typically is an exact finite degeneracy (up to exponential
splitting) and a finite gap to the excitations, critical systems have a full band of
excitations that touch the ground state as O(1/N). Under these requirements, we
will derive an explicit expression for these excitations.

Throughout this section, our goal is to set up criteria that are feasible to check in
practice. In particular, we wish to avoid any reference to a proper two-dimensional
contraction of the PEPS, especially when working with finite systems. The trial
states we construct will therefore be localized on the virtual space in one direction
of the torus. Note that this may not translate into localization on the physical
level of the PEPS. One might argue that these requirements are too stringent: In
a critical system, localizing a state close to the gapless point typically comes with
an energy cost proportional to the linear length L of the system. If the theory is
Lorentz invariant, we expect a dispersion E ∼ k, i.e., the lowest-lying state has

3Instead, there is a stricter quantum group symmetry underlying the solution to the Yang-
Baxter equation which does not generally follow from U(1)-invariance.
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energy ∼ 1/L. The localized wavepacket will therefore acquire a finite gap above
the ground state. The key observation is that all known examples of critical PEPS
at finite bond dimension are not Lorentz invariant [68, 69] and, in the particular
case of a virtual U(1)-symmetry, possess a dynamical critical exponent z = 2 [70].
The low-energy dispersion is E ∼ k2 and we can afford to localize the excitations
and still get a gapless band. Our construction both illuminates why the exponent
z = 2 is typical at U(1)-invariant points and establishes this behavior for a wide
range of systems.

2.3.1 A Virtual Lieb-Schultz-Mattis Theorem

We will use an argument first made by Lieb, Schultz and Mattis in the context of the
one-dimensional Heisenberg antiferromagnet [71]. The key ingredient is the fact that
continuous on-site symmetries allow for infinitesimally small twists of the symmetry
to be well-defined. While these states locally look like the ground state, certain
topological properties of the system nevertheless enforce the resulting global state
to be orthogonal. The advantage of using such an approach is that the Lieb-Schultz-
Mattis argument has since been shown to be remarkably stable: While initially
formulated for spin-1/2-particles and SU(2)-symmetry, the behaviour persist when
introducing an anisotropy that explicitly breaks SU(2) to U(1) [72, 73]. This result
might seem questionable at first, since it is clear that for very strong anisotropy a
trivial paramagnet must arise as the unique, gapped ground state of the system.
However, it was shown that criticality generically persists for an extended region
in the phase diagram, as long as the ground state magnetisation per spin is non-
integer [74]. An alternative route was taken in [75], where the U(1)-symmetry is
dropped altogether and replaced by a Z2×Z2 symmetry. The modern version of this
statement is sometimes informally referred to as the “projective-is-gapless-theorem”:
As an example, the one-dimensional XXZ chain is symmetric under both π-rotations
around the Z- and the X-axis, generated by the Pauli matrices. Crucially, Z and X
anticommute, meaning the onsite symmetry is a projective representation of Z2×Z2.
Assume that the ground state is a gapped, injective MPS. By the fundamental
theorem of Matrix Product States [36, 76], this symmetry must be represented on
the virtual level by Vg ⊗ V †

g . The representation on the virtual level, however, is
clearly always linear, leading to a contradiction. Carrying over the arguments of
Lieb, Schultz, Mattis, Oshikawa and co-workers to higher dimensions is of great
interest, since there is certainly a richer variety of possible phases on the one hand,
while general theorems are almost non-existent. One seminal contribution is the
generalisation of the spin-1/2 SU(2)-case to two dimensions [77]. The approach we
will take is inspired by the above results, it is, however, orthogonal in the sense that
no physical symmetry is required at all.

Our strategy is to carry over the original argument of Lieb-Schultz-Mattis to the
PEPS setting, with one modification: In the original setting, the symmetry twist acts
unitarily on the ground state such that the excitation is automatically normalized.
Special care has to be taken when inserting symmetry-strings on the virtual level
since those need not correspond to unitary actions on the physical state. Indeed con-
sider the Six-Vertex PEPS with Γij = 1 ∀i, j in (2.4). The fixed point of the transfer
matrix is then given by |F 〉 = |XXZ〉⊗|XXZ〉, where |XXZ〉 is the ground state of the
XXZ chain at Δ = 1/2. Thus the norm of the trial state (to be defined shortly (2.39))
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is 〈XXZ|symmetry string|XXZ〉2. But 〈XXZ|symmetry string|XXZ〉 = 0 is precisely
the statement of the original Lieb-Schultz-Mattis theorem, making our excitation ill-
defined. In the language of statistical mechanics, we require the norm of our PEPS
to correspond to the partition function of two copies of a model that are sufficiently
strongly coupled ([Γ, Zi] = 0 corresponds to infinite coupling).

Proposition 2.1. Let A be a tensor giving rise to a normalized square-lattice PEPS
|ψL〉 on an infinite cylinder of circumference L fulfilling (2.3) for some Z with half-
integer eigenvalues and denote Uφ = exp(iφZ). Let H be the parent Hamiltonian
as defined in (1.24) and (1.25). Let

|φL〉 :=

A A A . . .

A A . . .A

A

A

..
.

..
.

Uφ
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of the excitation:

〈φL|φL〉 =
〈 A A

A A

Uxφ
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symmetry strings can be deformed arbitrarily without changing the state (2.8).

〈φL|H|φL〉 =
L∑

x=1

〈 A A

A A

Uxφ
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half-integer spectrum, we may use exp(2πiZ) = −1 to arrive at

〈ψL|φL〉 =
〈 A A

A A

..
.

..
.

. . .. . . 1
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than sufficient coupling is

Tr
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These modes were named resonons by Rokhsar-Kivelson, since they introduce de-
phasing of the constituents of the ground state that lie in different topological sec-
tors. Later on, considering the U(1)-symmetry of the model as well as the transverse
nature of the excitations, the term photon gained popularity [79, 80].

A few observations are worth noting: We immediately note the soft dispersion
E ∼ k2, meaning that we can hope to identify fingerprints of such excitations in the
PEPS even after a localizing the photon along one direction of the lattice. By virtue
of dimensionality reduction, we may then reduce the existence of a gapless band
to the properties of the entanglement spectrum of the one-dimensional fixed point
of the transfer matrix. Second, we may focus our attention on particles of a fixed
polarization and create arbitrary polarizations by taking linear superpositions later
on. Throughout this subsection, we will focus on vertically polarized excitations.

Proposition 2.2. Let A be a tensor giving rise to a normalized square-lattice PEPS
|ψL〉 on an infinite cylinder of circumference L fulfilling (2.3) for some Z. Let H be
the parent Hamiltonian as defined in (1.24) and (1.25). Denote

|x, y〉 = . . .. . .

..
.

..
.

Zx,y (2.51)

and define a vertically polarized photon localized at an arbitrary y0

|k〉 = 1√
kL

L∑
x=1

eikx |x, y0〉 , (2.52)

If the fixed point of the transfer matrix is unique, we may define the channels

E := Ebra := Zbra Eket := Zket Emix := Zbra ⊗ Zket

(2.53)

and the structure factor

SL(k) :=
1

k

(
Tr

[
EmixEL−1

]
+ 2Re

L∑
x=1

eikxTr
[
EbraEx−1EketEL−x−1

])
. (2.54)

If, for sufficiently large L, the structure factor is uniformly bounded from zero on an
interval (0, k0], i.e., ∃c0, k0 > 0, s.t. ∃L0 > 0, s.t. SL(k) ≥ c0 ∀L > L0, k ∈ (0, k0],
then the Hamiltonian (1.25) has a band of excitations that are well-defined 〈k|k〉 > c0
for some c0 > 0 and have low energy

〈k|H|k〉
〈k|k〉 ≤ 2 〈h〉 1− cos(k)

k
(2.55)

for some constant 〈h〉 independent of L and k.
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Proof. Working with a unique fixed point on an infinite cylinder, we simply have

〈k|k〉 = SL(k) > c0, (2.56)

for some c0 that exists by assumption. We compute the energy of this state with
respect to (1.25):

〈k|H|k〉 = 1

kL

∑
x1,x2,p

eik(x1−x2) 〈x1, y0|hp|x2, y0〉

=
1

k

⎡⎢⎢⎢⎢⎢⎣
〈

. . .. . .

..
.

..
.

Z

∣∣∣∣∣∣h
∣∣∣∣∣∣ . . .. . .

..
.

..
.

Z

〉
︸ ︷︷ ︸

=:〈h〉

+

〈
. . .. . .

..
.

..
.

Z

∣∣∣∣∣∣h
∣∣∣∣∣∣ . . .. . .

..
.

..
.

Z

〉

+

⎛⎝eik

〈
. . .. . .

..
.

..
.

Z

∣∣∣∣∣∣h
∣∣∣∣∣∣ . . .. . .

..
.

..
.

Z

〉
+ h.c.

⎞⎠⎤⎦ (2.57)

Now we combine use symmetry (2.3) to move the generators underneath the Hamil-
tonian

h

∣∣∣∣∣∣∣ . . .. . .

..
.

..
.

Z

〉
= −h

∣∣∣∣∣∣∣ . . .. . .

..
.

..
.

Z

〉
(2.58)

and arrive at

〈k|H|k〉 = 2 〈h〉 1− cos k

k
(2.59)

We briefly discuss the assumptions and an extension of this proposition. First,
while it is easy to write down models that satisfy the prerequisites of Proposition 2.1
(e.g., all models with half-integer spin and Γ diagonal in the basis of the U(1)-
generators), the present theorem offers no such “free lunch”. This represents the
fact that rigorously distinguishing symmetry-breaking scenarios from criticality is
typically only feasible in the presence of exact (e.g., Bethe ansatz) solutions.

It is straightforward to further reduce the energy of the photon from E ∼ k to
E ∼ k2 by defining

|k〉 = 1√
LhLv

∑
x,y

ei(kxx+kyy) |x, y〉 . (2.60)

It is trivial to show that 〈k|H|k〉 ∝ (1 − cos k) remains true. Denoting |ktop〉 =∑
x e

ikxxZket
x |top fixed point〉 and |kbottom〉 = ∑

x e
ikxxZket

x |bottom fixed point〉, the
norm of this state becomes

1

Lv

〈
ktop

∣∣∣∣ 1− T 2

1− 2 cos kyT + T 2

∣∣∣∣kbottom

〉
, (2.61)

which contains information beyond just the fixed point of the transfer matrix. In
practice, one may compute the low-lying states of the transfer matrix using an
excitation ansatz [81, 82], since only eigenstates of the transfer matrix with λ =
1− O(1/L) contribute to (2.61).

49



CHAPTER 2. U(1)-SYMMETRY

2.4 Conclusion

In this chapter, we have introduced U(1)-symmetric PEPS and studied both their
ground state properties and natural candidates for their low-lying excitations. Strik-
ingly, as opposed to injective or G-injective PEPS, their ground state entanglement
entropy generally possesses both a logarithmic correction to the area law and a ge-
ometric contribution due to the existence of the entanglement-restricted subspace.
A natural follow-up question is to investigate whether the geometric contribution
persists to other Rényi- and the von Neumann-entroy. For example, S2 could be
evaluated numerically in an efficient way using PEPS techniques (cf. chapter 5).
In the exactly solvable Quantum Dimer and Six-Vertex Models, such computations
may even be accessible analytically, highlighting the value of connecting these PEPS
to integrable models. If answered affirmatively, this question can be useful as a step-
ping stone towards formulating measures of universality in the entanglement entropy
of two-dimensional quantum systems [60].

Connecting to ideas from integrability, we mapped out the phase diagram of
a family of U(1)-invariant PEPS and concluded that the corresponding family of
parent Hamiltonians must describe symmetry-breaking phases or critical behaviour.
We then put forward two propositions, a virtual Lieb-Schultz-Mattis theorem, that
we argue to be satisfied generically, and a more refined virtual photon theorem, that
provides an explicit representation of the excitations in critical systems.

A key assumption in the former is the fact that the fixed point of the transfer
matrix inherits its U(1)×U(1)-symmetry. While this is clear for any finite system, it
is interesting to study whether U(1)-symmetry breaking can occur in the thermody-
namic limit. On the one hand, the spectrum of transfer matrices is typically closely
related to the spectrum of some local Hamiltonian (cf. (2.34) for example). The
Hohenberg-Mermin-Wagner theorem [6, 83] precludes any continuous symmetry to
be spontaneously broken at any non-zero temperature for classical two-dimensional
models. The quantum-classical correspondence maps two-dimensional models at fi-
nite temperature to one-dimensional quantum models at a temperature proportional
to the inverse width of the system, i.e., T = 0 in the genuine 2D limit. It is therefore
unlikely that transfer matrices corresponding to such Hamiltonians can have U(1)-
breaking fixed points. On the other hand, the Hohenberg-Mermin-Wagner theorem
requires interactions to be local and indeed, U(1)-breaking phases have been ob-
served for sufficiently long-range interactions [84]. It is likely that such long-range
interactions are incompatible with transfer matrices of constant bond dimension.
However, to date no rigorous proof has been made.

The criteria we derived in the virtual photon theorem only detect gapless excita-
tions if they disperse (at least) quadratically. To date, no PEPS with U(1)-symmetry
is known with dynamical critical exponent z �= 2. This is because those wave func-
tions are generally described by the Quantum Lifshitz Model [85]

H =

∫
d2x

[
Π2

2
+

κ2

2
(∇2φ)2

]
. (2.62)

which manifestly has a dynamical critical exponent z = 2. The Quantum Lifshitz
Model has two remarkable features: It has been shown in [53] that ground state
expectation values of the two-dimensional quantum theory (2.62) are given by the
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two-dimensional Euclidean free boson

〈gs|σ|gs〉 =
∫

[Dφ]σe−κ
∫
d2x(∇φ)2 (2.63)

On the other hand, from the field theoretic perspective, the mechanism forbidding a
term like (∇φ)2 in the action is that, in the ground state of a Quantum Conformal
Critical Point, the resistance to shear stress must vanish. While we have used the
equivalence of the ground state correlators to map out the phase diagram Fig. 2.2(a),
it would be very interesting to define and measure the effect of such a shearing
operator in the PEPS framework. This would lead to a deeper understanding of
the universality classes that critical PEPS can represent. The latter is particularly
relevant when using such PEPS as a variational ansatz.

Finally, as noted in [86], the quadratic dispersion characterises a point that is
on the boundary of a phase with linearly dispersing gapless modes. This suggests
that such Lorentz-invariant phases might more generally be found in the vicinity of
critical PEPS with constant bond dimension.
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Chapter 3

Dimer & Resonating Valence
Bond models

In the last chapter, we studied general features of Projected Entangled Pair States
with U(1) virtual symmetry. It is the purpose of this chapter to investigate a
physically relevant U(1)-PEPS: The square lattice Resonating Valence-Bond (RVB)
model. The RVB state was first proposed by Anderson as a candidate for a Quantum
Spin Liquid (QSL) state [87]. At the time, it was believed that all spin models order
magnetically at zero temperature. The RVB was invented to be an exception. It is
defined in terms of spin-1/2 degrees of freedom living on the vertices of some lattice.
The state is defined as an equal superposition of nearest neighbour singlet pairings.

Figure 3.1: Schematic drawing of an
RVB configuration. The connecting
lines are spin-1/2-singlets |ψ−〉 = |↑↓〉−
|↓↑〉. The pairing breaks the lattice
symmetry, a so-called Valence Bond
Solid (VBS). To remedy this, one can
take an equal superposition
|nnRVB〉 = ∑

nearest neighbour
pairings P

|P 〉 .

As such, it has neither magnetic order (being
a superposition of SU(2)-invariant singlets), nor
crystalline order (as translation invariance gets
restored by taking the superposition). At the
time, the state was constructed as a candidate
for the ground state of the spin-1/2 square lattice
Heisenberg antiferromagnet. Today, we know
that its ground state has a non-vanishing magne-
tization, since it spontaneously breaks the SU(2)
symmetry. After enjoying a brief moment in the
sun, it was forgotten for about a decade until the
discovery of high-temperature superconductors.
It was again Anderson who proposed the ground
state of the cuprates to be a Mott insulator, in
which the charge degrees of freedom are frozen
and the remaining spin degrees of freedom of the
copper ions sit on the vertices of an effectively
two-dimensional square lattice. These would then interact antiferromagnetically to
form a translation- and SU(2)-invariant superposition of singlet coverings of the lat-
tice [88]. The key observation in the context of superconductivity was the fact that
the RVB state hosts spinon excitations, which carry the spin but not the charge of
the original electrons. Upon doping, these spinons could form bosonic bound states
with unpaired holes and condense [89]. The RVB state did not explain the rich
phase diagram of the cuprates (the understanding of which remains an important
problem to this day), but it has enjoyed considerable interest ever since.

Already in his initial paper, Anderson remarked that the expressive power of
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the nearest-neighbour RVB wave function (nnRVB) is severely restricted: While the
dimension of the total spin-0 subspace of 2N spin-1/2-particles grows as ∼ 4N/

√
N3,

there are only ∼ 1.791N nearest-neighbour pairing configurations [90]. A more
realistic scenario includes pairings that connect more distant spins on the lattice.
Such a variational ansatz has been shown to deliver good ground state energies for
the frustrated J1 − J2 Heisenberg model [91, 92]. There are of course many ways
in which long-range pairing can be introduced. While the nnRVB state has long
been shown to be gapless [93, 94], the nature of the some of these long-range RVB
states is unclear. Two long-range RVB (lrRVB) ansatzes have been proposed that
can be written directly in the language of PEPS [92, 95]. It has been argued that
these long-range RVB states are surrounded by a critical phase. According to this
hypothesis, a Z2 Quantum Spin Liquid phase is entered only when the amplitude of
long-range bonds is on the order of the nearest-neighbour coupling. The extent of
such a gapped spin liquid phase, as well as the size of the associated gap is important
in the context of anyonic excitations. Such excitations are the theoretical building
blocks of topological quantum computers, in which they are moved in such a way to
apply non-trivial unitary gates [96, 97]. In order for the computation to be robust,
there must be an energy gap, such that braiding can be carried out adiabatically.
The magnitude of the gap sets the time scale on which such a computation may
take place.

In light of the previous chapter, an extended critical phase beyond the U(1)-
symmetric nnRVB point comes as a surprise since we have identified the U(1) virtual
symmetry to be the key ingredient for the construction of gapless excitations. One
possible explanation is that the U(1)-symmetry reemerges in the low-energy sector
of the theory. In this chapter, we show that this is not the case, but the lrRVB state
is actually gapped. However, the methods we develop allow us to understand why
the gap has not been observed in previous studies: It is extremely small, even for
large densities of long-range valence bonds. Using arguments from Conformal Field
Theory (CFT), we place an estimate on the numerical value of the gap and show
that, for length scales of thousands of lattice sites, the description as a gapless Spin
Liquid is actually correct. We also elucidate the physical mechanism which causes
huge correlation lengths.

The outline of the chapter is as follows: We define both the nearest-neighbour as
well as long-range RVB in terms of a tensor network construction in section 3.1. We
then move on to describe the nnRVB state both in terms of its field theoretic content
(section 3.2) and on the lattice via its transfer matrix (section 3.3). This correspon-
dence allows us to extract the field operator associated with the perturbation from
a perturbed transfer matrix in section 3.4. The operator is relevant and a gap must
open for any finite density of long-range singlets. We use dimensional analysis in
section 3.5 to put forward a hypothesis for the scaling of the gap. This hypothesis is
subsequently shown to be correct for a family of models connecting the lrRVB to a
Dimer-Solidomer model. Close to the RVB point, however, substantial corrections
to our scaling hypothesis arise. In section 3.6, we explain these corrections by map-
ping the long-range RVB state to a Sine-Gordon model. Finally, in section 3.7, we
propose PEPS with an actual emergent U(1)-symmetry and conclude.
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3.1 The Resonating Valence PEPS

The nearest-neighbour RVB state shown in Fig. 3.1 has a simple representation in
terms of a PEPS. The wave function is built from a single tensor A1 that is repeated
in a translationally invariant fashion across the lattice. Its virtual degrees of freedom
carry a spin-1/2⊕ 0 degree of freedom, where we will refer to the 0-subspace as an
“empty” virtual site. An elementary configuration has one of the virtual spin-1/2s
maximally entangled with the local physical spin into a triplet state, while the other
three directions are empty (Fig. 3.2(a)). The tensor A1 is obtained by summing
over all such configuration in such a way that the complete C4v symmetry of the
square lattice is recovered. Technically this will give rise to an equal superposition of
triplet coverings. Due to the bipartiteness of the square lattice, however, the triplet
and singlet nnRVB states are equivalent up to a local Pauli-Y rotation of one the
sublattices.

|φ+〉 |φ+〉

|ψ−〉

(a) (b)

(c)

Figure 3.2: (a,b) Diagrammatic representation of one of the terms in the definition of the tensors.
The peripheral dots are the virtual degrees of freedom (which are later projected out) and the
physical degree of freedom sits in the middle of the tensor. Colorless dots depict empty spin 0
sites. Red wavy lines refer to triplets |φ+〉 = |00〉 + |11〉 while the oriented teal-colored bonds
denote singlets |ψ−〉 = |01〉 − |10〉. The tensor A1 (A2) is obtained by summing over all 90◦

rotations and reflections about the axes of the square lattice of diagram a (b), respectively. (c) A
typical configuration when inserting two test AA/BB-dimers into the classical Dimer model. The
intermediate region has maximal winding number in the y-direction.

To allow for longer-range singlets, we define a teleportation tensor A2, which dif-
fers from A1 by an additional singlet pairing between neighbouring virtual spin-1/2
degrees of freedom (Fig. 3.2(b)). Regarding the long-range bonds as a perturbation
to the nnRVB state, we define

A(λ) := A1 + λA2. (3.1)

and denote by |ψ(λ)〉 the state that results from contracting a translational invariant
network of A(λ). This family of states has been studied in [95] after a slight variation
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thereof has been introduced in [92]. A couple of comments are in order. We can
expand the wave function in orders of λ, |ψ(λ)〉 = |nnRVB〉+λ |δψ〉+λ2 |δ2ψ〉+ . . . .
Assuming an even number of sites in both directions, one may convince oneself that
all odd orders vanish, e.g., |δψ〉 = 0. One can further make the observation that
certain next-nearest neighbour singlets (“AA singlets”) cancel locally:

− = 0. (3.2)

Flipping one of the triplets in eq. (3.2), however, changes the nature of the inter-
ference from destructive to constructive. Note that the relative signs are uniquely
fixed by demanding both A1 and A2 to exhibit C4v symmetry. The case is slightly
different in the PEPS studied in [92], where the A2 tensor is antisymmetric under
reflections (which still leads to a fully symmetric wave function due to the cancel-
lation of odd powers mentioned before). There, indeed all next-nearest neighbour
singlets cancel. Going beyond next-nearest neighbours, AA singlets will exist in
either case, since the destructive-interference argument hinges on the fact that one
finds two teleportation paths while keeping the physical pairing pattern fixed. For
the family of states considered here, this has been confirmed through Marshall sign
computations [95]. Let us quickly address the current understanding of the physics
of the this one-parameter family of PEPS. The nnRVB state (λ = 0) is critical
with two types of operators: Singlet-singlet correlations decay algebraically with an
exponent αDD ≈ 1.2, while Spin-Spin correlators exhibit exponential clustering [93,
94, 98]. A previous study has found singlet-singlet correlations to remain critical

until λ
(1)
c ≈ 0.85 upon which a Z2 Spin Liquid phase is entered. The gap closes

again around λ
(2)
c ≈ 3.85 and remains zero for all λ > λ

(2)
c [95].

On the contrary, we claim that the gapped Z2 is entered immediately upon
introducing an infinitesimal amount of long-range singlets, but that the induced
correlation lengths are indeed on the order of thousands of sites or more for extended
regions in parameter space. Clearly, to make such a claim, numerical evidence alone
cannot suffice. In the absence of exact solutions, we instead turn to the continuum.

3.2 Field Theory of the RVB state

The study of RVB physics is complicated by the fact that the basis states of the
intuitive valence bond basis are not orthogonal. To understand the impact of this
feature, one may regard the nnRVB as a member of a more general family of SU(M)
nnRVB states, defined by〈 ∣∣∣∣∣∣∣

〉
=

1

M
. (3.3)

In the limit M → ∞, one recovers the Quantum Dimer Model (QDM) [55].

|QDM〉 =
∑
{σ}

e−
β
2
HClassical Dimer({σ}). (3.4)

The correlators in this Rokhsar-Kivelson wave function are clearly identical to ther-
mal correlators of the classical Dimer model.
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3.2.1 Interlude: The Classical Dimer Model

The classical Dimer model facilitates our goal of a continuum description. The
degrees of freedom are two-level systems living on the links of the square lattice.
There is a hard constraint, namely that around each vertex only one of the links can
be occupied by a dimer (see Fig. 3.3 for a typical configuration). Physically this can
arise from a quasi-infinite energy scale in the Hamiltonian. The partition function
of the model is equal to the number of allowed dimer configurations. This problem
has been solved exactly in [90, 99]. The correlation functions, i.e., the probability

of finding dimers on links separated by a distance �d has also been obtained [100].
They decay as

CDimer−Dimer(�d) ∼ 1

|�d|2 , (3.5a)

i.e., the system possesses critical power-law correlations. An interesting generaliza-
tion of the Dimer model consists in introducing other objects like monomer defects,
longer dimers, or even groupings of more than two sites (Figs. 3.2(c) and 3.9).
These models are generally not exactly solvable anymore. However, correlations of
test monomers in an otherwise dimerized background, for example, are known to
decay as

CMonomer−Monomer(�d) =
1√
|�d|

(3.5b)

Introducing objects other than nearest-neighbour dimers makes the model non-
integrable, but the physics can still be understood by going to the continuum.

Since the dimer problem is purely entropic, we look for a free energy that es-
sentially counts the number of microconfigurations corresponding to a corse-grained
variable.

To find this variable, we map the model onto a height model1. We follow [103–
105]. To each configuration, we can assign a landscape of heights according to the
following rule: we pick an arbitrary plaquette (the choice is arbitrary, but we have to
pick the same for each configuration) and assign it a height φ = 0. For the adjacent
heights, we add +1/4 when we go around the A-sublattice and do not encounter a
dimer and -3/4 if we cross a dimer and vice versa for the B-sublattice. For a given
region, we define a course-grained height as the average of the heights of all the
plaquettes contained within the region.

There are three desiderata: First, by locality, the entropy of a given region should
not depend on changes far away from the region. However, as we see in Fig. 3.3,
shifting dimers in a closed loop surrounding the region will transform φ → φ + 1.
Therefore, the free energy should not depend on φ itself, but only on derivatives
or periodic functions thereof. Second, the free energy should reflect the rotation
symmetry of the lattice. Indeed, as shown in Fig. 3.3, rotating a region by 90◦ maps
the local height φ → −φ. For this reason, we can exclude odd powers as well as
odd periodic functions (e.g., sin(φ)). Finally, we impose translation symmetry. As

1While this mapping has been proven rigorously [101, 102], we describe the mapping on an
intuitive level.
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circ 

shift

translationrotation

Figure 3.3: Typical configurations of the classical Dimer model. Red numbers indicate local heights
on the plaquettes (for better readability, they have been multiplied by a factor 4). Circular shift:
Shifting a ring of dimers outside the region of interest shifts the heights by +4/4. Rotation:
Rotating a patch of dimers by 90◦ maps the heights inside from z0 + d(r) → z0 − d(R(r)). The
reference plaquette with height z0 is marked in red. Translation: Shifting a patch of dimers by
90◦ maps the heights from z0 + d(r) → z0 − 1/4− d(r − 1) . The reference plaquette with height
z0 is again marked in red.
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shown in Fig. 3.3, moving the region by one lattice spacing, maps the heights to
φ → −φ − 1/4. Combining all these requirements, the simplest action compatible
with the symmetries is:

S =

∫
d2x

π

2K
|∇φ(x)|2 +

∑
p=4,8,12,...

Vp cos(2πpφ(x)) (3.6)

whereK is a constant and φ takes values in [0, 1] (it is compactified). In the following,
we will find it more convenient to work with fields that are 2π-periodic. We therefore
take φ → 2πφ.

For Vp = 0, (3.6) is a Conformal Field Theory (CFT). We will not attempt any
detailed review over this field, but merely mention some facts that are relevant to
the present discussion [106]. Furthermore, we restrict ourselves to two dimensions
(due to Lorentz invariance it does not matter whether these are space or space-time
dimensions). A CFT is characterized by a set of operators called primary fields
φ1, φ2, . . . and their scaling dimensions Δ1,Δ2, . . . . The correlation function of two
such operators is given by:

〈φi(x1)φj(x2)〉 = δij
|x1 − x2|2Δi

(3.7)

In particular, correlation functions generally decay as polynomials in the distance,
indicating critical behavior. The CFT also makes a prediction for when it is per-
turbed by one of its primary operators. We can group primary fields into irrelevant
(Δ > 2), marginal (Δ = 2) and relevant (Δ < 2) perturbations. Irrelevant and
marginal perturbations drive the system into either the same or a different critical
state, while relevant perturbations produce a gap and hence exponential decay of
correlations. Equation (3.6) permits two interpretations: In two-dimensional Eu-
clidean space, the model is typically referred to as the Coulomb Gas. Alternatively,
one can map one of the spatial dimensions into a time dimension by a Wick rotation
x → iτ . It is then called the Compactified Boson or Luttinger Liquid, which is why
we will refer to the parameter K as the Luttinger parameter. The operator content
of the CFT is as follows: There are three types of primary operators. First, there
is the derivative of the height field with scaling dimension [∇φ] = 1 (the field φ has
correlations that diverge with distance and is not a local operator). The operator
|∇φ|2 therefore has scaling dimension 2 and is marginal. Second, the height field
has vertex operators [cos(nφ)] = Kn2. Their relevance depends on the value of the
constant K in the action. In particular, cos(4φ) is relevant if

K < 1/8 (3.8)

and all higher order terms are less relevant. Finally, there are vertex operators
corresponding to the dual field [cos(mθ)] = m2/4K. Generally, when acting with
two or more operators on points that are close in space-time, some nontrivial fusion
can occur. Our case, however, is simple and the scaling dimension of an arbitrary
vertex operator is given by

[cos(nφ) cos(mθ)] = Kn2 +
m2

4K
. (3.9)
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In some instances, the operators of a CFT have a direct correspondence with
lattice operators, in the sense that their long-distance correlation functions decay
with the same exponent. For example, measuring the presence of a dimer on a given
link in the lattice has been shown to correspond to [107–109]

Dimer ∼ ∇φ+ cos(φ). (3.10)

A monomer, on the other hand, creates vortices in the height field and corresponds
to

Monomer ∼ cos(θ) (3.11)

Comparing (3.9) to (3.5) fixes the value of the constant

K = 1 (3.12)

in (3.6). The point K = 1 is also called the free fermion point of the Luttinger
Liquid. Since the condition for relevance of the height-locking potential (3.8) is not
met, the action (3.6) will flow towards

S0 =

∫
d2x

1

8πK
|∇φ(x)|2 (3.13)

under renormalization.

3.2.2 From Orthogonal Dimers to Resonating Valence Bonds

We are now ready to roll back the limit M → ∞ in (3.3). The exact Rokhsar-
Kivelson-correspondence (3.4) ceases to exist for finite M , but the norm of the
quantum states remains equal to the partition function of a classical model [110].
The key insight is that the norm is a sum over transition graphs, in which SU(M)
dimer patterns on the ket- and bra-layers form closed loops (Fig. 3.5). While the
classical Dimer model strictly precludes any finite amount of non-trivial loops, larger
loops become more and more likely for M → 2. These loops effectively introduce
an aligning interaction on the level of the classical Hamiltonian2. The interacting
model in turn has been found to be in the same critical phase as the pure Dimer
model [103]. This phase is characterized by a Coulomb Gas description (3.13)
where the parameter K decreases smoothly from the free fermionic Dimer point
(K = 1) to the SU(2)-RVB state (K ≈ 0.6). Note that the renormalization of
K due to long loops makes the RVB state more stable against monomer pertur-
bations than the Quantum Dimer model (cf. (3.9)). An intuitive picture of this
mechanism can be gained as follows: On periodic boundaries, the height field φ(x)
is allowed to differ by integer multiples when going around the torus, defining a
winding number (Wx,Wy). The total amplitude of a given winding sector is given
by exp(−S(Wx,Wy)). Separating the tilt from smaller fluctuations, one can derive
that P (Wx,Wy) = P (0, 0) exp(−8π(W 2

x + W 2
y )/K) [94], i.e., higher winding sec-

tors are more and more suppressed with decreasing K. In the pure Dimer model,
correlation functions of the operator cos(2θ) are computed by inserting two test

2Technically long loops induce an extra non-local potential that can be truncated to the leading
aligning term with small error.
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AA/BB-dimers and summing over the compatible configurations (Fig. 3.2(c)). The
resulting imbalance of available A vs. B sites entails that the region between the
test dimers must exhibit a large local winding number. Consequently, smaller values
of K leads to more rapidly decaying correlations. The RVB point in particular is
already relatively close to K = 1/2, at which this operator becomes marginal.

3.3 The Transfer Matrix

We would now like to recover the CFT operators discussed in the previous section
in our lattice model. The right place to look for them is the PEPS transfer matrix,
as it contains all information about the long-distance behaviour. To get a one-
dimensional object in the CFT, we employ the quantum-classical correspondence
[111]. This mapping simply amounts to performing a Wick rotation dy → idτ
followed by a Legendre transform from which a quantum Hamiltonian is obtained.

On the other hand, in cases where exact solutions are at hand, a one-dimensional
lattice Hamiltonian can be found which is the logarithmic derivative of the transfer
matrix (cf. (2.34)). This suggests the definition

H = − log(T ). (3.14)

Let us check the validity of this hypothesis in an exactly solvable example. For
the pure Dimer model (classical or quantum), we can expand − log(T ) numerically
on a finite cylinder3 and obtain the quasi-local free fermion Hamiltonian

HDimer =
N∑
i=1

N−1∑
d=0

e−d/ξ
(
a†iai+d + h.c.

)
(3.15)

after a Jordan-Wigner transformation. The model (3.15) realizes the free fermion
point of a Luttinger Liquid4.

For the nnRVB state, we consider the natural transfer matrix of the PEPS (3.1).
In this case, the expansion in terms of local operators is numerically unfeasible
due to the larger on-site Hilbert space and the double-layer nature of the state.
We conjecture that nevertheless an appropriate Hamiltonian HRVB exists where the
degrees of freedom are two chains of spinful fermions with exponentially decaying
hopping amplitudes, no double occupancy and an infinitely strong antiferromagnetic
Heisenberg coupling between the chains, leading to gapless charge and gapped spin
degrees of freedom.

Despite not being able to find the exact form of HRVB, we can still provide
evidence for eq. (3.14) by extracting CFT data from the finite size spectrum of
− log(T ). This is because the energy eigenvalues of H coincide with the eigenvalues
of the dilation operator in two-dimensional space-time [114]. If the hypothesis (3.14)
is correct, the finite-size spectrum of T should be given by

En(N) = E0(N) + a
Δn

N
, (3.16)

3Here and in the remainder of the chapter we regard T as the double row transfer matrix to
ensure positivity, as is customary in the study of Dimer models.

4There is a second, strictly local Hamiltonian which also commutes with T and has the same
ground state [112]. This latter model falls into the f(z)-classification in which its central charge
and U(1) symmetry can be read off directly [113].
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Figure 3.4: Finite-size spectrum of the nnRVB-PEPS transfer matrix on a cylinder of circumference
N = 4, 6, 8, 10. (a) Dispersion relation. Empty dots stand for eigenvectors with Δq = 0 and have
been labeled ‘CFT’. Among the diagonally neutral states, the first state with off-diagonal charge
|qket| = |qbra| = 1(0) has been labeled cos(θ) (cos(φ)) in accordance with the CFT prediction. (b)
Lowest lying states at momentum k = 0 for different cylinder sizes. The lowest lying Δq = 0 states
go to zero as 1/N , while the lowest gapped states cross over and saturate at a finite value.

where En = − log(λn) are the eigenenergies of T , a is a non-universal constant and
Δn are the scaling dimensions of the primary and descendant operators of the CFT.
Normalizing the PEPS amounts to shifting the ground state energy E0 = 0. In
the present regime K ∈ [0.5, 1], according to (3.9), the operator with the smallest
scaling dimension is [cos(θ)] = 1/4K, followed by [cos(φ)] = K. By taking the ratio
of the eigenvalues corresponding to those states one can get rid of the non-universal
constant and read off the Luttinger parameter

E[cos(φ)]

E[cos(θ)]
= 4K2. (3.17)

An analysis of the finite-size spectrum of the RVB transfer matrix is presented
in Fig. 3.4. We draw the following conclusions: First, due to the double-layer
structure of the transfer matrix possesses an enlarged U(1)× U(1) symmetry. The
diagonal charge Δq := qket − qbra splits the Hilbert space into two sectors. The
charge neutral sector becomes gapless as 1/N → 0 and is thus identified with the
CFT degrees of freedom. Within this sector, the single-layer charge specifies the
U(1) quantum number of the corresponding operator in the Luttinger Liquid, e.g.,
the lowest state which we identify with cos(θ) has charge |qket| = |qbra| = 1. The
diagonally charged sector is gapped and accounts for the exponentially decaying
spinon-spinon correlators. Seeing the Dimer and RVB states as extremes of a more
general SU(M)-RVB family, it seems plausible that the spinon gap is monotonically
diverging with vanishing local overlap M → ∞. In summary,

− log(T ) = HCFT︸ ︷︷ ︸
Δq=0

⊕Hgapped. (3.18)

As a side remark, let us mention that the CFT sector contains only a small frac-
tion (1/3)N

∑N/2
n=0

(
N
n

)(
N−n
n

)
(4/9)n of the overall 6N -dimensional Hilbert space, which

could potentially be used to target the gapless degrees of freedom numerically much
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more efficiently. Furthermore, the ratio of the first and second eigenvalues in the
CFT sector predicts K = 0.6170, which is in good agreement with the known value
K ≈ 0.6 [93, 94, 110].

3.4 Perturbing the Transfer Matrix

Now that we have given some evidence regarding the validity of our assumption for
the nnRVB state, we will broaden the discussion to include long-range singlets

T (λ) ∼ e−H+λV . (3.19)

Since the transfer matrix mediates correlations in the PEPS, |ψ(λ)〉 can only be
critical if −H + λV is. Now that we have shown that H is a Luttinger Liquid, we
will investigate whether V forms a relevant, irrelevant or marginal perturbation. To
this end, we assume that the potential is local V =

∑
vi. The relevance of V can then

be determined by computing the ground state correlator 〈vivj〉−〈vi〉 〈vj〉 ∼ |i−j|−α.
If α ≥ 4, the perturbation is irrelevant/marginal and the state remains critical. On
the other hand, a gap will necessarily open if α < 4. Remarkably, it is possible to
compute such a correlator in general, despite not having access to V directly. The
key is to introduce inhomogenous fields for each individual tensor:

e−H+
∑

λivi = . . .. . . E(λi+1)E(λi)E(λi−1) (3.20)

To obtain (connected) correlation functions, we take derivatives at zero with respect
to the local fields and compute the expectation value of the operator thus obtained
with respect to the fixed point |F 〉 of the unperturbed transfer matrix. A compli-
cation arises because [H,

∑
λivi] �= 0, so we have to use the Lie-Trotter formula to

arrive at

C(|i− j|) = ∂2T

∂λi∂λj

= 〈F |vi
(∫ 1

0

τe−τHdτ

)
vj|F 〉+ (i ↔ j)

= l r

|i− j|

. . .E
∂E

∂λi

∂E

∂λj
E . (3.21)

For the sake of readability, we have suppressed the evaluation of the derivative at
zero. In the last diagram, intersections of lines denote a translational invariant MPS
tensor that describes the fixed point of the transfer matrix. Boxes labeled E refer
to the unperturbed double tensor and l and r are the left and right fixed points of
the resulting zero-dimensional channel operator.

Eq. (3.21) differs from the pure correlation function by an intermediate relax-
ation that suppresses highly excited states by a factor 1/E2. More importantly,
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i

j

Figure 3.5: Part of the transition graph corresponding to the overlap of the red Dimer pattern in
the bra with the blue Dimer pattern in the ket. The presence of an A2 tensor at sites i and j
necessitates the existence of at least one long loop in the graph. The number associated to this
transition graph is 28 times the weight corresponding to the loops outside of this section. The
other A2 tensors are located far away.

the imaginary time evolution term possesses the U(1)-symmetry of the unperturbed
Hamiltonian. Therefore, if V has no overlap with a given cos(mθ) operator (which
has charge ±m under that symmetry), the time-evolved operator will also not con-
tain that operator. Any long-distance behaviour of (3.21) corresponding to a given
charged operator must therefore also be present in the pure correlator 〈F |vivj|F 〉.

Before moving on to the result, we should make a comment concerning the
double-layer structure of the PEPS. The double tensor has both a linear and quadratic
perturbation term E(λ) = E + λδE + λ2δ2E, corresponding to two independent po-
tentials, i.e., T (λ) ∼ exp(−H + λV (1) + λ2V (2)). In principle, we need to assess the
relevance of each perturbation individually. However, we will now adapt a topo-
logical argument from [115] to show that V (1) only affects the gapped degrees of
freedom, exhibits exponential decay of correlations and is therefore irrelevant. Ac-
cording to (3.21), we have to evaluate the overlap 〈ψi|ψj〉, where |ψj〉 has a single A2

tensor at site j and A1-tensors everywhere else (technically there must be a second
A2 tensor in each layer to avoid the PEPS to contract to zero. For the following
argument we can assume those to be very far from both i and j). This overlap can
be expanded in terms of transition graphs, where each term in the sum must be com-
patible with an AA-singlet around site i and a BB-singlet around site j (Fig. 3.5).
The contribution to the overlap of a given transition graph is simply 2nL , where nL

is the number of loops in the graph. Crucially, it is impossible to locally close the
loop opened up by e.g., the AA-singlet which must necessarily lie on the same loop
as the BB-singlet. Therefore, each term in the sum must have at least one loop of
size 2|i− j|. We can therefore bound the correlator by

〈ψi|ψj〉 ≤ e−|i−j| ln 2
∑

compatible transition
graphs T

Z(T ), (3.22)

where Z(T ) is the partition function after removal of the long loop. Since the
unperturbed partition function is dominated by configurations with short loops and
we have normalized the overall norm of the unperturbed PEPS, the sum should
evaluate to O(1). The crude estimate for the correlation length thus obtained ξ =
1/ ln 2 ≈ 1.4 is not far from the spin-spin correlation length ξSpin-Spin ≈ 1.3 [116, 117].
We remark that this argument would indicate a correlation length that vanishes as
ξ(M) ∼ 1/ lnM for SU(M) Dimer models on the square lattice and mention in
passing that this is similar to the asymptotic behaviour the correlation length in
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Figure 3.6: (a) The correlator (3.21) evaluated for the second order potential ∂2E/∂λ2
i = δ2E at

the RVB point λ = 0. To extract the exponent α, the odd-distance data was used. (b) The local
slope in the loglog-plot (a) obtained from numerical differentiation at λ = 0, χ = 306. There is a
pronounced dip at small distances.

Q-state Potts models at their first order transition ∼ 1/ log
√
Q. As we will discuss

in detail in chapter 4, such models can be seen as SU(
√
Q) loop models.

An alternative argument for the exponential decay of the V (1) potential is given
by the observation that, in the finite size spectrum, all low-lying states belonging
to the CFT sector are only affected at second order in perturbation theory when
turning on λ (which was confirmed numerically).

The second-order potential V (2), on the other hand, shows clear algebraic decay
over ∼ 500 sites (Fig. 3.6(a)). For the employed boundary bond dimensions, the
exponent of the decay has saturated to the value

α = 3.2 (3.23)

This is in good agreement with the operator cos(2θ) that is predicted to decay with
exponent 2/K ≈ 3.33.

There is a second way in which one can probe the field operator corresponding
to the perturbation. Applying cos(2θ) to the vacuum of the field theory breaks the
U(1)-symmetry generated by θ → θ + α to its Z2 subgroup. Since we have direct
access to the generator of the lattice U(1)-symmetry, we can extract the symmetry
properties of the fixed point by computing the Rayleigh quotient. The latter is
defined by inserting a candidate symmetry representation U between two fixed point
tensors and measuring the largest eigenvalue of the corresponding transfer matrix.
This eigenvalue corresponds to the norm 〈F |U⊗L|F 〉 = λL

max and should be 1 if and
only if the fixed point is symmetric (the Rayleigh quotient typically does not saturate
to 1 exactly, since it is advantageous for the algorithm to break the U(1)-symmetry).
In principle, we can probe either of the U(1)-symmetries of the transfer matrix. In
the previous section, we have identified the counter-rotating Zket − Zbra-symmetry
to be the relevant one for the low-energy subspace. The values of the corresponding
Rayleigh quotient are shown in Fig. 3.7. Even for small values of λ , it is maximal and
very close to 1 only for φ = 0, π. Hence, the lattice fixed point breaks U(1) → Z2,
providing further evidence for a relevant perturbing cos(2θ)-operator.

Equipped with this knowledge, we expect expect |ψ(λ)〉 to be gapped for any λ >
0. On the other hand, we can now use our theory to make quantitative predictions.
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Figure 3.7: The Reyleigh quotient per site R(λ, φ) := 〈F (λ)|U(φ,−φ)|F (λ)〉1/L measures how well
the initial diagonal U(1)-symmetry is preserved. For small perturbations, the symmetry is clearly
broken to Z2, indicating a perturbing operator cos(2θ). Figure courtesy of J.-Y. Chen.

3.5 Gap Scaling

For the present family of states, previous studies observed critical behaviour in a
regime of finite λ. We will now argue that a gap is present but indeed too small for
even high-precision numerics to detect. The key is that, at the nnRVB point, the
operator cos(2θ) is rendered almost irrelevant by the interplay of two mechanisms:
i) stabilization of the nnRVB state with respect to Classical Dimers due to the long-
loop renormalization of the Luttinger parameter and ii) the double-layer nature of
the state. A simple calculation will yield some quantitative understanding: We have
argued that the action is

S(λ) = S0 + λ2

∫
d2x cos(2θ(x)) (3.24)

Since the above expression has to be dimensionless, the dimension of λ has to be
[λ] = 1 − 1/2K. On the other hand, if a gap opens as Δ ∼ λu, in order for Δ to
have dimensions of energy, we need

u =
1

1− 1
2K

. (3.25)

In particular, at the Dimer point K = 1, the gap opens as λ2, while the RVB point
K ≈ 0.6 has Δ ≈ λ6. For the optimal parameter with respect to the Heisenberg
J1 − J2 model, λ = 0.26, eq. (3.25) entails a correlation length of ∼ 3200 sites,
which is hardly distinguishable from true criticality5.

The validity of this argument can be tested by considering a hole-doped RVB
state [118]. Doping completely breaks the U(1) symmetry of the PEPS tensor, which
is compatible with the cos(θ) operator. The above argument would predict the

5The cited value differs from the one found in [92] due to a different normalization of the tensors.
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Figure 3.9: A configuration of the Dimer-Solidomer model. Solidomer vertices have three edges.
The Boltzmann weight of the above configuration is λ6.

hand, we may not choose λ too large for two reasons: First, universality is lost as
we move deeper into the gapped phase (Fig. 3.10(b-d)). Second, we employ a δ− ε-
extrapolation to accurately measure the correlation length [119]. This procedure
relies on the fact that correlation functions typically follow an Ornstein-Zernike
form 〈vivj〉 ∼ c+ |i− j|−α exp(−|i− j|/ξ) with both an algebraic and an exponential
part. We have noticed that this extrapolation performs significantly worse both at
Dimer and the RVB points when we bring λ close to 1 (inset of Fig. 3.10(c)). In the
Dimer-Solidomer model, this is of course not surprising: Since the self-dual fixed
point is a symmetry-breaking product state, the subleading algebraic part is non-
existent. We therefore conjecture that an exact MPS solution, or at least a solution
with pure exponential decay, might also exist along the long-range RVB line.

The numerical results are shown in Fig. 3.10. We observe that the stiffness
parameter changes smoothly fromK = 1 toK ≈ 0.6 as expected, indicating that our
model realizes a line of Luttinger Liquid fixed points. Turning on the teleportation
perturbation is compatible with opening a gap of size given by (3.25) up to g ∼ 0.75.
Closer to the RVB point, we can neither confirm nor refute our scaling hypothesis:
ξ vs. λ is not a straight line (in the loglog-plot), indicating that there is no single
exponent that captures the opening of the gap. Can we still argue that there is a
non-vanishing gap at the RVB point? What is the nature of the floating exponent
in Fig. 3.10? We set out to answer these questions in the next section.

3.6 Floating K and the Sine-Gordon Model

For a large fraction of models connecting the Quantum Dimer Model to the Resonat-
ing Valence Bond state, we have gathered evidence that the teleportation pertur-
bation opens up a finite gap. Close to the RVB point, our simple scaling argument
is not sufficient: we need to assist it with more a detailed analysis. This section
will provide the two missing pieces. First, by identifying subleading operators in the
expansion of the teleportation tensor, we identify a marginal perturbation, which
accounts for the varying slope in Fig. 3.10. We postulate an action for the effective
field theory. In a second step, we map this field theory to the Sine-Gordon Model.
By virtue of being integrable, the model offers exact numerical values for the hy-
pothetical gaps which can be compared to numerical PEPS simulations. We find
that, in a regime where converged numerical data is available, the data confirms our
hypothesis.

In the analysis surrounding (3.23), we have used both symmetry analysis as well
as correlator scaling to infer that the leading field theory operator contained in δ2E
is cos(2θ). The key to understanding our numerical data is to look at the effect of
subleading operators. In particular, consider the operator (∇φ)2. Being a marginal
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Figure 3.10: (a) Extracted values for the Luttinger parameter. Finite-Size Scaling is done for
N = 6, 8, 10 and using 1/N extrapolation. The correlator exponents were fitted to the algebraic
decay over distances up to 100 sites. For the correlation length scaling we used a window of λ that
shifts up with increasing g. (b-d) Loglog plot of the extrapolated correlation length at a few points
along the interpolation. At the RVB point, there is no regime in which a linear fit is accurate and
the best guess deviates from the scaling prediction ξ ∼ λ−6. Inset: δ − ε-extrapolation at a few
values of λ.
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operator, its correlators decay as

〈(∇φ(x))2(∇φ(y))2〉 ∼ 1

|x− y|4 (3.27)

and are therefore invisible to our numerical approach (cf. Fig. 3.6(a)). Furthermore
a linear combination

δ2E ∼ (∇φ)2 + cos(2θ) (3.28)

transforms correctly under the U(1)-symmetry. Crucially, (3.28) implies that the
perturbed action (3.24) has to be modified

S(λ) =

∫
1

8πK(λ)
(∇φ(x))2 + λ2 cos(2θ(x))d2x. (3.29)

This action is compatible with the data in Fig. 3.10 since the local slope ξ ∼ λu(K)
depends on K which is allowed to float. Furthermore, it is expected that this effect
is much stronger close to the RVB point, because the dependence of u on K blows
up for K → 1/2. Equation (3.29) is therefore our refined hypothesis. The remainder
of this section is concerned with accumulating appropriate evidence.

A first confirmation of (3.29) is found by investigating the δ2E-δ2E correlation
function in more detail. If the component of (∇φ)2 is sufficiently large, there can
exist a regime in which correlators will seem to decay with a larger exponent |x−y|−4

before this contribution vanishes in the long-range asymptotics. Indeed we observe
two distinct regions in Fig. 3.6(b), corresponding to fast decay at short distances
and slower decay over intermediate length scales, which is compatible with our
hypothesis.

The second piece of evidence is that (3.29) delivers the correct quantitative pre-
diction for the correlation length of the PEPS. It is a useful duality of the Coulomb
Gas (also known as T-Duality) that perturbing the theory (3.6) at Luttinger pa-
rameter K with an operator cos(nθ) is equivalent to perturbing with cos(nφ) at a
value of K ′ = 1/4K. The correlation length of our model is therefore equal to the
one corresponding to

S ′(λ) =
∫

K(λ)

2π
(∇φ(x))2 + λ2 cos(2φ(x))d2x, (3.30)

The action (3.30) is known as the Sine-Gordon Model. Let us quickly state some
known facts about the model that will turn out to be useful for the discussion [120].
The Sine-Gordon model is integrable. The lightest particle in the theory is a Soli-
ton, a topological excitation that is created by acting with the non-local operator
cos(φ/2) on the vacuum. Its mass is given by

M =
2Γ(Ξ/2)√

πΓ(1/2 + Ξ/2)

(
Γ(1− β2)πμ

Γ(β2)

) 1
2−2β2

, (3.31)

where β2 = 1/2K, Ξ = β2/(1 − β2), μ = λ2/2 and Γ is the Gamma function. The
maximum correlation length in the Sine-Gordon model

ξ =
1

M
, (3.32)
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is a quantity that can be directly compared to numerical simulations of the PEPS.
Crucially, the correlation length (3.31) only depends on λ and K(λ) which can be
accessed through measurements of correlation functions.

Before we launch into the comparison of (3.31) with our PEPS data, it is im-
portant to fix the correct quantity to compare with. In fact, there is a multitude
of length scales that can be associated with the PEPS (corresponding to gaps in
the entanglement spectra); the correct one should reproduce the mass of the Soliton
operator cos(φ/2). Technically, cos(φ/2) is not well-defined but is instead shorthand
for

cos(φ/2) = eiπ
∫ x
−∞ ∇φ(x′)dx′

+ h.c.. (3.33)

The operator∇φ, is simply the generator of the U(1)-symmetry and can be identified
with the lattice operator Z = diag(3/4, 3/4,−1/4). The above equation can there-
fore be interpreted as a string of π-rotations

∏
j e

iπZj , i.e., a domain-wall excitation
of the transfer matrix. We therefore identify

〈cos(φ(x)/2) cos(φ(y)/2〉 ∼ . (3.34)

Note that this is compatible with

lim
y→x

cos(φ(x/2)) cos(φ(y/2)) ∼ cos(φ(x)) ∼ Z (3.35)

which is indeed the dominant contribution to the dimer operator. The correlation
length of the domain wall excitation (3.34) is given by the gap of the dressed channel
operator

(3.36)

In Fig. 3.11(a), we show the correlation length for both the trivial and the domain
wall excitation. In anticipation of classifying the finite-λ phase as a Z2 Spin Liquid,
we dub these particles Visons. As it turns out, this Vison correlation length is
indeed the largest length scale in the system.

Furthermore, the Vison-Vison correlator unlocks a new way of computing the
Luttinger parameter K: According to (3.9), the scaling dimension of cos(φ/2) is

[cos(φ/2)] = K/4. (3.37)

Thus, a correlator like (3.34) decays as |x−y|−K/2. ExtractingK from this correlator
agrees with the previously discussed means of obtaining K, but is more reliable since
the window of algebraic decay is largest for the vison.

We are now ready to compare the values on the correlation length in the PEPS
with the prediction from the Sign-Gordon model. To obtain correlation lengths in
the Sine-Gordon model, the value of K(λ) from the Vison correlator (Fig. 3.11(a))
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generically expect competing phases, e.g., Valence-Bond Solids, Topological Phases
and non-Fermi Liquids to live in close vicinity of one another in the phase diagrams of
such models. This may also explain why naturally occurring candidates for Quantum
Spin Liquids in which antiferromagnetic Heisenberg physics is relevant, tend to
have very small or vanishing excitation gaps [121]. This also points towards a
potential avenue for finding topological phases that are more stable than the long-
range RVB state. Since the gap depends sensitively on the Luttinger parameter,
which is in turn given by the local overlap of Dimer configurations, our findings
suggest that antiferromagnetic SU(M) models may be more stable than their SU(2)
counterparts. Recently, these models have been subject to both theoretical and
experimental interest [122–124]. Our results also reopen the issue whether there can
be a critical RVB-state without bipartiteness.

The major part of this chapter has been devoted to refuting the hypothesis of
an emergent U(1)-symmetry in the long-range RVB state. One might ask if such
a thing is possible in principle. We now put forward a candidate PEPS with an
emergent virtual U(1)-symmetry. To this end, we revisit a system we studied in
depth in section 2.2: The Six-Vertex Model. Like the RVB and Dimer states, the
model is described by a Coulomb Gas CFT. The difference is that the K-parameter
is very well under control: It is related via

K =
π

2(π − arccos(Δ))
(3.38)

to the anisotropy parameter, which can in turn be tuned by the vertex weights,
cf. (2.37). We have two choices for perturbing the Six-Vertex Model with an irrele-
vant, symmetry-breaking operator: One may choose a simple cos(θ) or cos(2θ) as in
the RVB case. This has the advantage that it is easily implemented on the level of
the local PEPS-tensor. On the other hand, for these operators to be irrelevant we
would need K < 1/2, which is manifestly impossible in (3.38). Alternatively, one
could circumvent this problem by choosing a less relevant primary like cos(3θ). This
perturbation, however, consists of large clusters of same-sublattice defects, which
increase the size of the unit cell and make our numerical algorithms unfeasible. The
trick is to introduce an external field, which allows to break the K = 1/2-barrier.

Perturbing the system at K < 1/2 with an “all-in”- or “all-out”-vertex (rather
than “2-in-2-out”) results in an explicit breaking of the U(1)-symmetry, that should
reemerge in the long-distance limit. More explicitly, we set up a tensor A(λ, h) =
ASix−Vertex(h) + λAall−in/all−out, where ASix−Vertex(h) is the Six-Vertex tensor from
chapter 2 at a = b = 1, c = 3 and each up-pointing (down-pointing) arrow receives
an additional multiplicative weight e−h (eh). Aall−in/all−out is the U(1) → Z2-breaking
tensor that is the equal superposition of all arrows pointing in and all arrows pointing
out and the transfer matrix acts from bottom to top.

Probing an emergent symmetry on the lattice is subtle: the ground state will
generally not be symmetric under the unperturbed U(1)-symmetry. Instead, emer-
gent symmetries in field theories are typically identified by correlation functions. A
correlator that transforms non-trivially under the symmetry is given by

〈F |Xket
i Xbra

i Xket
j Xbra

j |F 〉 . (3.39a)

Out of the two U(1)-symmetries, the double-layer symmetry is trivially present in
the classical model. Under a π/2-rotation of the single-layer symmetry, the above
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Chapter 4

SU(2)-symmetry

In the previous chapters, we have focused on U(1)-symmetric PEPS and found that
these corresponds to critical systems in a number of examples. This chapter is
devoted to the symmetry group SU(2). On the one hand, we expect to find critical
or symmetry-breaking behaviour, since U(1) is a subgroup of SU(2) and proposition
2.1 should hold. On the other hand, due to its non-abelian nature, SU(2) may also
exhibit distinctive features.

In section 4.1, we set up the most general PEPS with virtual SU(2)-symmetry
for the fundamental representation. Singlets of the non-abelian group are necessar-
ily maximally entangled which leads to a natural description of the wave function
in terms of a loop picture. The combinatorics of these loop patterns places stricter
bounds on the entanglement entropy and the size of the entanglement-restricted
subspace than in the U(1)-case: the counting problem now belongs to the universal-
ity class of mountain diagrams. Physically, we show that the PEPS spontaneously
breaks the lattice symmetry and orders in a plaquette phase. To arrive at this result,
we map the norm of the PEPS to a classical Delta Potts model with Q = 16 states.

In section 4.2 we turn our attention to the natural parent Hamiltonian of the
PEPS. This loop surgery Hamiltonian acts on a 2× 2 patch, and the PEPS exactly
parametrizes its ground space manifold on any region with open boundary conditions
(the intersection property). Subsequently, we show that by a suitable choice of
boundary terms, the parent Hamiltonian can be modified such as to exhibit a unique
ground state in any finite volume. While this behavior is closely resemblant to that
of PEPS with finite virtual symmetry group, we find that with periodic boundaries,
the ground states cannot be parametrized purely in terms of symmetry twists, and
the system keeps a ground space degeneracy which is exponential in the size of the
boundary. A closer analysis reveals that there are at least two types of ground
states: Those which can be parameterized through symmetry twists and which span
a space of linear dimension in the system size, and a distinct class of ground states
which correspond to extremal “frozen” spin configurations which are not coupled
to other configurations by the Hamiltonian, and which contribute an exponential
number of states. Closing remarks are given in section 4.3.

4.1 The wave function

In this section, we define the PEPS, introduce the formalism used for its analysis,
and analyse the entanglement properties. We will focus on the case where the
bond dimension D = 2, and Ug ≡ g is the fundamental representation of g ∈
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SU(2). A basis for the two-dimensional subspace of (C2)⊗4 that is invariant under
Ug⊗Ug⊗Ug⊗Ug is given by {|ψ−〉ul |ψ−〉dr , |φ+〉ur |φ+〉dl}, where |ψ−〉 = |01〉−|10〉.
Therefore, up to a constant factor the most general fiducial state Ã is of the form

Ã = λ |0〉p |ψ−〉ul |ψ−〉dr + |1〉p |φ+〉ur |φ+〉dl (4.1)

where λ ∈ C, and |0〉 and |1〉 are normalized and linearly independent, but not
necessarily orthogonal. Throughout this chapter, we will denote fiducial states by
|ψNh×Nv(A)〉, e.g.,

|ψ2×1(A)〉 = A A

= 〈φ+|r1,l2 |ψ1×1(A)〉 ⊗ |ψ1×1(A)〉
(4.2)

where |φ+〉 = ∑D
i=1 |ii〉. Physical states obtained by imposing boundary conditions

|X〉 ∈ (
CD

)⊗(2Nh+2Nv)
are denoted

|ψ2×1(A,X)〉 = AA

XXX

∂l1

∂u1 ∂u2

∂r2

∂d2∂d1

A∂l1∂l AAl1 A

∂d1

A

∂d1

d1

A

∂u1

A

∂u1

u1

A

∂u2

A

∂u2

u2

A

∂d2

A

∂d2

d2

A ∂∂A
r2

= 〈φ+|∂u1,u1
〈φ+|∂u2,u2

. . . |ψ2×1(A)〉 |X〉 ,

(4.3)

where ∂u1, ∂u2, . . . are the indices of |X〉, u1, u2, . . . are the indices of |ψ2×1(A)〉 and
the 〈φ+| contract them. For the particular choice of periodic boundary conditions
we write

|X = PBC〉 = |φ+〉∂u1,∂d1
|φ+〉∂u2,∂d2

. . . (4.4)

A complication of the tensor Ã is that it involves different entangled states and
is not rotationally invariant. We will now introduce another tensor A which only
requires one kind of entangled state, is rotationally invariant for λ = 1, yet generates
the same family of states. Specifically, we will show that for any region, there exists
an invertible operator B acting on the virtual indices at the boundary such that

|ψNh×Nv(A,X)〉 = |ψNh×Nv(Ã, BX)〉 . (4.5)

In the special case of even Nh and Nv and periodic boundary conditions (PBC),
B |X = PBC〉 = |X = PBC〉. The price we pay is that A will no longer be explicitly
SU(2)-invariant. Yet, we will see that using A instead of Ã simplifies the majority
of the derivations in this paper. Specifically, define

A = λ |0〉p |φ+〉ul |φ+〉dr + |1〉p |φ+〉ur |φ+〉dl (4.6)

The tensor A is clearly rotationally invariant for λ = 1.
To show Eq. (4.5), note that

A =
Ã

Y

Y T
= ÃY

Y T

(4.7)
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Figure 4.1: Connectivity patterns and classes. (a) shows a connectivity pattern, here {(1, 12),
(2, 3), (4, 5), (6, 7), (8, 11), (9, 10)}. (b) and (c) show two loop patterns which are compatible with
the connectivity pattern in (a). All compatible patters form the connectivity class corresponding
to (a). For the loop pattern shown in (b), nL = 1 and bL = 3.

where Y = ( 0 1−1 0 ) and all matrices act from left to right and from top to bottom.
Inserting now the middle form of (4.7) into the even and the right-hand side into
the odd sublattice of the square lattice, we obtain

A A

AA

=

Ã Ã

ÃÃ

Y T

Y

Y

Y T

Y

Y TY

Y T

=
Ã Ã

ÃÃ

Y

Y TY

Y T

(4.8)

which proves (4.5) with

B = Y ⊗ 1⊗ Y ⊗ 1 · · · ⊗ Y T ⊗ 1⊗ · · · (4.9)

The states generated by A are therefore equivalent to those generated by the SU(2)-
invariant tensor Ã up to invertible boundary terms which can be absorbed into the
boundary conditions X. In the following, we will therefore work with the tensor A,
and thus restrict to Nh, Nv even on PBC.

4.1.1 The Loop Picture

We will now introduce graphical notation that will provide a convenient way of ex-
pressing configurations of the PEPS through loop patterns. To this end we introduce
the rule

|0〉 → ∣∣ 〉
|1〉 → ∣∣ 〉 (4.10)
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This prescription leads to e.g.,∣∣∣∣∣∣∣
1 0 1 0
0 1 1 1
1 0 0 0
1 1 0 1

〉
→ (4.11)

To each such physical configuration corresponds a configuration of virtual states,
obtained by contracting the tensors with the corresponding physical states on that
patch with open boundaries (note that for 〈0 |1〉 �= 0, this requires projecting the
physical state onto the dual basis vector). Since the virtual |φ+〉 form the same
pattern as the and , and are connected by projecting onto 〈φ+|, which yet again
yields |φ+〉, each open loop corresponds to a virtual state |φ+〉 at the corresponding
virtual indices at the boundary, while each closed loop contributes a factor of 2 (due
to our choice of normalization).

Let us now rigorously establish such a framework. In the following, we always
consider an Nh ×Nv patch. The degrees of freedom at the boundary are numbered
from 1, . . . , 2N , N = Nh +Nv, as shown in Fig. 4.1(a).

A connectivity pattern p on the boundary of the patch is a pairing of the num-
bers 1, . . . , 2N , N = Nh + Nv, into non-crossing tuples {(a1, b1), . . . , (aN , bN)}, see
Fig. 4.1(a).

A loop pattern L is a tiling of the patch with tiles and , such as in Fig. 4.1(b,c).
To each loop pattern L, there is a corresponding loop state |L〉 of the physical sys-
tem, namely the product state that is obtained by replacing with |0〉 and
with |1〉. For a loop pattern L, we denote by nL the number of closed loops in L
and bL is the number of -tiles in L. Each loop pattern L is compatible with a
single connectivity pattern, p(L), namely the one which is obtained by reading off
the boundary pairs which are connected by L. A connectivity class Cp for a given
connectivity pattern is the set of all loop patterns which are compatible with p. We
will denote the vector space spanned by all loop states |L〉 in the connectivity class
Cp by V (Cp).

A boundary matching is a state on the virtual degrees of freedom at the boundary
corresponding to a connectivity pattern p = {(a1, b1), . . . , (aN , bN)}, this is,

|m(p)〉 = |φ+〉a1,b1 ⊗ · · · ⊗ |φ+〉aN ,bN
. (4.12)

This terminology permits us to write down the wave function of our PEPS in a
concise way:

|ψNh×Nv(A)〉 =
∑

connectivity
patterns

p

|m(p)〉 ⊗
∑
L∈Cp

|L〉 2nLλbL

(4.13)

The proof is immediate from the definition of the tensors, and the fact that each
closed loop contributes a factor of 2, as discussed above.

The set of all boundary matchings |m(p)〉 is linearly independent and forms a
basis of the space of all staggered spin-0 states (i.e., spin-0 up to an action of Y
on every second site). This can be seen as follows: Different |m(p)〉 correspond
to different non-crossing partitions of the boundary points into pairs which form
maximally entangled states. Application of Y on every other boundary site turns
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such a matching of |φ+〉 into a matching of singlets, i.e.

Y ⊗ 1⊗ · · · ⊗ Y ⊗ 1 |φ+〉a1,b1 ⊗ · · · ⊗ |φ+〉aN ,bN

= |ψ−〉a1,b1 ⊗ · · · ⊗ |ψ−〉aN ,bN

(4.14)

The set of non-crossing singlet matchings is a minimal basis for the spin-0 space,
in particular, the matchings are mutually linearly independent as shown in [125–
127]. There this is proven as follows: First, all singlet matchings, non-crossing or
otherwise, form an overcomplete basis of the spin-0 space. However, each crossing
matching can be ‘uncrossed’ using the relation

=
1

2
+

1

2
(4.15)

where the points are spin-1/2 particles and the lines indicate singlet pairings with
a suitably chosen orientation. Using this relation iteratively, one can express every
spin-0 state as a superposition of crossing-free singlet pairings. Since there are

1
N+1

(
2N
N

)
non-crossing matchings which coincides with the dimension of the spin-0

subspace of 2N qubits, these form a minimal basis. Since Y ⊗ 1⊗ · · · ⊗ Y ⊗ 1 is an
invertible operator, the |m(p)〉 form a minimal basis of the staggered spin-0 space.

This implies two things: First, we can restrict any boundary condition X to the
staggered spin 0 space. Second, there exists a dual basis {〈m∗(p)|}p of that space
such that 〈m∗(p)|m(q)〉 = δpq.

Using the dual basis, we can construct states which are superpositions of all loop
patterns in the same connectivity class,

|ψNh×Nv(A,X = |m∗(p)〉)〉 =
∑
L∈Cp

|L〉 2nLλbL
(4.16)

For instance, for p = and λ = 1,

|ψ3×3(A,X = |m∗(p)〉)〉 = 2 + + . . . . (4.17)

Moreover, since {|m∗(p)〉p} forms a basis of the space of staggered singlets (and thus
of all relevant boundary conditions), we can express the PEPS obtained from any
boundary condition X as

|ψNh×Nv(A,X)〉 =
∑
p

〈X|m(p)〉
∑
L∈Cp

|L〉 2nLλbL

=
∑
p

〈X|m(p)〉 |ψNh×Nv(A, |m∗(p)〉)〉 .
(4.18)

4.1.2 Combinatorics of Loop Configurations

In the following, we will determine the dimension of the space

SNh×Nv := span{|ψNh×Nv(A,X)〉 |X ∈ C2Nh+2Nv} (4.19)

of all physical configurations accessible with our tensor network. This will on the one
hand be relevant when computing the entanglement entropy in Sec. 4.1.3, and on the
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other hand when determining the ground space degeneracy with open boundaries
in Sec. 4.2. As we have just seen in Eq. (4.18), SNh×Nv is spanned exactly by the
states given in (4.16).

These states are linearly independent – unless they are zero – due to the linear
independence of different |L〉 which follows from the linear independence of |0〉 and
|1〉. In order for Eq. (4.16) to be non-zero for a given connectivity pattern p, it
must hold that Cp is non-empty. We will call connectivity patterns p for which Cp

is empty forbidden, otherwise we call p allowed.

An example of a forbidden connectivity pattern on a 2× 2 patch is

222 33322
1111111111111111

66666666666666
121221111111111111111 1111111111111111111

7777777777777

33
5555555555555555

(4.20)

The intuitive reason for this connectivity class to be empty is the fact that it requests
too large amounts of entanglement between the upper and lower boundary of the
system, more than can be mediated by the bulk: The connectivity pattern requires
four maximally entangled states between top and bottom half, while the PEPS only
has two bonds along that cut. If we tried to find a loop pattern that matches the
connectivity pattern, we would see that the first two north-south connections fill up
all available space:

(4.21)

In particular, notice that this entanglement restriction is more severe than for U(1),
cf. section 2.1.1.

In order to compute the dimension of SNh×Nv , we therefore need to determine the
number of allowed connectivity patterns for that given system size, which we denote
by N (Nh, Nv). It is the purpose of the remainder of this section to compute this
number rigorously. Before diving into the computation, we first give the end result
for its asymptotic behaviour: If we take Nh and Nv to the thermodynamic limit in
a fixed aspect ratio Nv/Nh =: α − 1, then the asymptotic behaviour is essentially
that of the Catalan numbers1. Specifically, denoting the size of the boundary by
N = Nh +Nv, we find that N scales asymptotically as

N (α,N) =
4N

N3/2

[
k(α) +O

(
1

N

)]
(4.22)

with k(α) a function of the aspect ratio that is independent of N .

Allowed Connectivity Patterns and the Canonical Loop Pattern

In this section, we give a more formal definition of what we have previously called
allowed and forbidden connectivity patterns. This will set us up to rigorously count
their number in the next section. The central object is the flow of entanglement
through subsystems. We start by introducing some definitions:

1This remains true as long as one of the dimensions does not grow faster then the other dimen-
sion squared, i.e., if the patch is “square enough”.
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Definition 4.1. (Lattice & Boundary)
Define

X := {1
2
,
3

2
, . . . ,

2Nh − 1

2
} × {0, 1, . . . , Nv} (4.23)

Y := {0, 1, . . . , Nh} × {1
2
,
3

2
, . . . ,

2Nv − 1

2
} (4.24)

The (Nh, Nv)-Lattice is defined as

LNh,Nv = X ∪ Y (4.25)

The boundary BNh,Nv ⊂ LNh,Nv is

BNh,Nv =

{
(x, y) ∈ LNh,Nv | x ∈ {0, Nh} or y ∈ {0, Nv}

}
(4.26)

Definition 4.2. (Tuple Distance)
Let a, b ∈ LNh,Nv , a �= b and writing a = (ax, ay), b = (bx, by), the x-distance (y-
distance) of the tuple (a, b) is

Δx(a, b) = bx − ax

Δy(a, b) = by − ay
(4.27)

A tuple (a, b) is

horizontal, if |Δx(a, b)| > |Δy(a, b)|,
vertical, if |Δx(a, b)| < |Δy(a, b)| and
diagonal, if |Δx(a, b)| = |Δy(a, b)|.

(4.28)

A horizontal tuple (a, b) is upper if ay + by ≤ Nv, otherwise it is lower. A vertical
tuple (a, b) is left if ax + bx ≤ Nh, otherwise it is right.

We previously defined allowed and forbidden matchings by the existence of at
least one compatible loop pattern. We will now give a more useful definition in
terms of Flow and then show that the definitions are equivalent, i.e. show that
for each allowed connectivity pattern as defined here there exists at least one loop
pattern: the canonical loop pattern. The fact that there cannot exist a loop pattern
for forbidden matchings will easy to see with this new definition.

Definition 4.3. (Flow)
For i ∈ {1, Nh − 1} (i ∈ {1, Nv − 1}) and a, b ∈ LNh,Nv , the tuple (a, b) goes through
vertical (horizontal) cut i if (a, b) is horizontal (vertical) and

ax < i and bx > i

(ay < i and by > i)
(4.29)

For p a connectivity pattern, the flow through vertical (horizontal) cut i, denoted
by Flow(p, i, vert) (Flow(p, i, hor)) is the number of bonds t ∈ p that go through
vertical (horizontal) cut i.
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Definition 4.4. (Forbidden Matchings)
We call a connectivity pattern p vertically forbidden if there exists i ∈ {1, 2, . . . , Nh−
1} such that

Flow(p, i, vert) ≥ Nv + 1 (4.30)

or horizontally forbidden if there exists i ∈ {1, 2, . . . , Nv − 1} such that

Flow(p, i, hor) ≥ Nh + 1 (4.31)

A connectivity pattern which is not forbidden, is allowed.

Definition 4.5. (The Canonical Loop Pattern)
Given an allowed connectivity pattern p = {(a1, b1), . . . , (aN , bN)}, we construct the
loop pattern explicitly:

1. We start with the empty loop pattern L = {}.
2. (Initial and final pieces) For each ti = (ai, bi), determine whether it is hori-

zontal, diagonal or vertical. If ti is horizontal or diagonal and ai(bi) ∈ X then
define āi = ai + (1/2,±1/2) and b̄i = bi + (−1/2,±1/2), depending on whether
ai(bi) are located on the top or bottom boundary. Similarly, if ti is vertical
and ai(bi) ∈ Y , define āi = ai + (±1/2, 1/2) and b̄i = bi + (±1/2,−1/2). Else,
just set āi = ai and b̄i = bi. This causes all horizontal and diagonal bonds
effectively go from Y to Y and all vertical bonds to go from X to X .

3. (Choosing a bond) Pick a bond t = (a, b) ∈ p, such that all bonds inside
t have been picked already. Since two path cannot be mutually inside each
other, there always exists such a path, except if all bonds have been chosen.
In that case, continue with step 8. Define a new partial path m = {(a), ā}
(the brackets indicate to only add a if a �= ā).

4. Set j = 1 and v1 = ā.

5. If vj = b̄, add the completed path m = {(a), ā, v2, . . . , b̄, (b)} to L and go back
to step 3. Otherwise continue with the step 6.

6. (Diagonal partial paths) If the pair (vj, b̄) is diagonal, consider without loss of
generality the case where x(b̄) > x(vj) and y(b̄) > y(vj). Then, set vj+1 =
vj + (1/2, 1/2). In the other cases, extend the path towards b̄ analogously.
In principle, vj+1 could already be occupied by a path q. However, as will
become clear in the next step, all paths are constructed monotonously, i.e.
horizontal paths advance towards the right in each step and vertical paths
advance towards the bottom. Therefore one can draw a horizontal (vertical)
cone if q is horizontal (vertical) and the endpoints, lets call them aq and bq
must lie inside the cone as well, one to the right (top) of vj+1 and one to the
left (bottom). It is easy to see that the bonds (aq, bq) and (a, b) are crossing,
violating the assumption that m is a valid matching.
Add vj+1 to p, set j ← j + 1 and go back to step 5.

7. (All other types of partial paths) If (vj, b̄) is not diagonal, consider without loss
of generality (a, b) to be a lower horizontal bond (all other cases follow analo-
gously). By construction (see below), at any point (vj, b̄) remains horizontal.
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Define
sin1 = vj + (1/2, 1/2)

sout1 = vj + (1/2,−1/2)

sin2 = sin1 + (1/2, 1/2)

sout2 = sout1 + (1/2,−1/2)

(4.32)

If neither of sin1 and sin2 is occupied or in the boundary, set vj+1 = sin1 and
vj+2 = sin2 . Otherwise, set vj+1 = sout1 and vj+2 = sout2 . Add vj+1 and vj+2 to
p, set j ← j + 1 and go back to step 5.
Again, in principle one of sin1 and sin2 and one of sout1 and sout2 could be occupied
or in the boundary. We are now going to show that in this case p is forbidden,
i.e. there is too much flow going through a horizontal/vertical line.
First, let us assume that sin2 is occupied. Denote by q the path that contains
sin2 and call its endpoints (aq, bq). Then q must be horizontal, which can be
verified using the fact that (vj, b) is horizontal. As such, vj + (1/2, 3/2) ∈ q,
since vj is still free. Now we have two horizontal paths, p and q, both go
through x(vj) and their vertical distance at that point is 2. By construction,
the vertical distance must remain even all the way through to the initial and
final points of paths q and m, which implies that there is an odd number of
boundary points between am and aq and between bm and bq. Hence, there is
one horizontal bond (ar, br) that goes through x(sin2 ) and (aq, bq) lies inside it.
Consider now sin

′
1 = sin1 + (0, 1) and sin

′
2 = sin2 + (0, 1). If either of them are in

the boundary, the situation is depicted as

vj sin1

sin2

sin1
inin

vj . (4.33)

Otherwise, consider the progression from vj +(1/2, 3/2) to sin2 : It is an up-move

and it is occurring in a lower horizontal path. Hence, either of sin
′

1 or sin
′

2 must

be occupied. If sin
′

2 is occupied, the above argument can be repeated until one
reaches the boundary to find Nv−y(vj)+ 1/2 horizontal bonds that go through
x(sin2 ). If sin

′
1 is occupied, its path must be horizontal and running parallel to

q, in particular making an up-step around sin
′

1 . Again, we can continue the
argument until we arrive at the boundary. The same argument can be used if
initially sin1 is occupied instead of sin2 . In either case, we find Nv − y(vj) + 1/2
horizontal bonds that go through x(sin2 ).
Now, by assumption, also either sout1 or sout2 is occupied. We can reverse top
and bottom in the argument above to find another y(vj)+ 1/2 horizontal bonds
which go through x(sin2 ). Note, that the path that contains sout2 is necessarily
upper, since otherwise, m would be inside it and it could not exist yet by
construction.
We have hence found Nv + 1 bonds in p that go through a single vertical cut,
contradicting the assumption that p is allowed.

8. (Adding bubbles) Now for each bond, we have created a connecting path. It is
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possible, however, that not all points in LNh,Nv are occupied. In this case we
add small bubbles to the pattern.

It remains to show that the loop pattern thus created is is compatible with p,
i.e. that the boundary points of all paths correspond to tuples in the connectivity
pattern, or - differently phrased - for a tuple (a, b) ∈ p, whether the corresponding
path in L starting with a can end at a point b′ �= b. By construction, once (vj, b)
becomes diagonal, it will surely have the correct ending point. Again, let us consider
without loss of generality a horizontal path. Then, after Δx steps, the horizontal
distance to the target is zero. Hence, either we have arrived at the correct ending
point, or the partial path has become vertical during the construction. To become
vertical, however, the path must have gone through a point where its remainder was
diagonal, hence ensuring that the correct ending point was reached.
The resulting loop pattern is the canonical loop pattern of p.

The number N (Nh, Nv)

Now that we have seen that there is at least one loop pattern for each allowed
connectivity pattern, we can count the forbidden connectivity patterns. We will
proceed in three steps: first, we show that the problem of counting a forbidden
connectivity patterns can be broken down into individually counting horizontally
and vertically forbidden ones. Each of those is subsequently mapped to a height-
restricted Dyck path. Finally, we find expressions for these combinatorial objects.

Claim 4.1. A connectivity pattern cannot be both horizontally and vertically for-
bidden.

Proof. Let p be a connectivity pattern and assume it is both horizontally and ver-
tically forbidden. Then denote the vertical lines at which there is an oversaturated
cut by x and y, respectively. These lines cut the patch into four areas, A,B,C and
D:

x

y

A B

DC

(4.34)

Now if each of the bonds cuts only either the horizontal or vertical line, then
there would need to be at least Nh+Nv+2 bonds in total, hence at least two bonds
cut both lines, without loss of generality going from boundary A to boundary D
in the figure. There could be more than two bonds crossing from A to D - let us
denote the total number by κ, the lowest one by a and the highest one by b. These
bonds partition the areas A and D into AL, AR and DL, DR, respectively. For their
size, clearly

|AL|+ |AR|+ κ ≤ |A|
|DL|+ |DR|+ κ ≤ |D| (4.35)

holds. There remain Nh − κ + 1 bonds to be found for the horizontal violation
and all of these must have boundary points in AR and DR. Similarly, there remain
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Figure 4.2: The mapping φh for an allowed connectivity pattern
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Nv − κ + 1 bonds to be found for the vertical violation and all of these must have
boundary points in AL and DL. Hence we have the inequalities

|AL|+ |DL| ≥ Nv − κ+ 1

|AR|+ |DR| ≥ Nh − κ+ 1.
(4.36)

Adding the two inequalities and inserting inequalities (4.35), we obtain

|A|+ |D| ≥ Nv +Nh + 2 (4.37)

and since |A|+ |D| = Nv +Nh, we arrive at a contradiction.

Definition 4.6. (Dyck paths)
A Dyck path or mountain diagram of size n is a lattice path in Z2 from (0, 0) to
(2n, 0) consisting of n up steps of the form (1, 1) and n down steps of the form
(1,−1) which never goes below the x-axis y = 0. The maximal height of a Dyck
path is the maximum y-coordinate of the path. Denote all Dyck paths of size n by
Dn.

Definition 4.7. (Bijection between connectivity patterns and Dyck paths)

We define two maps

φh : (Nh, Nv)-connectivity patterns �→ DNh+Nv

φv : (Nh, Nv)-connectivity patterns �→ DNh+Nv

The image of a given connectivity patterns p under the map φh is given as follows.
We start with the empty Dyck path and sequentially look at the boundary points in
the order given in figure 4.2. Then, we add an up-step to the Dyck path if the partner
of the boundary point we are currently reading has not been read yet. Otherwise
we add a down-step. For φv, we follow the same procedure with the labelling given
by figure 4.3 instead.

A couple of remarks are in order:
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Figure 4.3: The mapping φv for a forbidden connectivity pattern

84



CHAPTER 4. SU(2)-SYMMETRY

• The resulting path is a Dyck path: For it to pierce through the x-axis, one
would need to read more second halves than first halves up to a given point
which is clearly impossible. Also, there is an equal number of second halves
and first halves in total, so the final step ends up on the x-axis again.

• The maps φh and φv are bijective. The map φ−1
h reads the Dyck path sequen-

tially from start to end, while scanning through the boundary points in the
order given in figure 4.2. Whenever a down-step is encountered, a bond is
added to the connectivity pattern by matching the currently active boundary
point with the last open one. Again, φ−1

v works analogously with the labelling
given in figure 4.3.

• For i ∈ {1, 2, . . . Nh − 1}, Flow(p, i, vert) is given by the height of φh(p) after
Nv+2i steps. Similarly, for j ∈ {1, 2, . . . Nv−1}, Flow(p, j, hor) is given by the
height of φv(p) after Nh + 2i steps. In particular, p is horizontally (vertically)
forbidden if the maximal height of φh(p) (φv(p)) is greater than Nh (Nv).

We are now ready to give three expressions for the number of allowed matchings.

Claim 4.2. (Number of allowed matchings) Let Cn = 1
n+1

(
2n
n

)
be the regular

Catalan number. For a given Nh, Nv ∈ N, the number of horizontally (vertically)
forbidden connectivity pattern is given by CNh+Nv−f(Nh, Nv) (CNh+Nv−f(Nv, Nh)),
where we can give three expressions for the numbers f(Nh, Nv):

f(Nh, Nv) =
4N

1 + Nh

2

Nh+2∑
j=1

sin

(
πj

Nh + 2

)(
cos

(
πj

Nh + 2

))2N

=
∑
k≥1

(
2N

N − k(Nh + 2)− 1

)
− 2

(
2N

N − k(Nh + 2)

)
+

(
2N

N − k(Nh + 2) + 1

)

=

(
d

dz

)2N
∣∣∣∣∣
z=0

1

1− z2

. . . − 1

z2
(4.38)

where the continued fraction has Nh instances of z2 and N = Nh +Nv. As a direct
corollary, since forbidden matchings are either horizontally or vertically forbidden
and the number of all matchings is CNh+Nv , we obtain the total number of allowed
matchings:

N (Nh, Nv) = f(Nh, Nv) + f(Nv, Nh)− CNh+Nv . (4.39)

For later convenience, we will introduce f(Nh, α), with the aspect ratio αNv =
N = Nh + Nv. Since the number of vertically forbidden matchings is equal to
the number of horizontally forbidden matchings on a 90◦ rotated patch and a 90◦

rotation corresponds to α → α
α−1

, we can rewrite equation (4.39) as

N (Nh, α) = f(Nh, α) + f

(
Nh,

α

α− 1

)
− CαNh

. (4.40)

Proof. Let Nh, Nv ∈ N. We are going to count the horizontally allowed connectivity
pattern and show that they are equal to CNh+Nv −f(Nh, Nv). From the definition of
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Dyck paths, we need to count all mountain diagrams of half-length Nh +Nv whose
maximum height exceeds Nh. To this end, we set up a sequence of counting vectors
vi ∈ NNh+1. After n steps, we would like the number of paths with height h that
never exceed Nh in height to be given by (vn)h. Hence, set v0 = (1, 0, . . . , 0), indicat-
ing a single path with height 0, the empty path. Now we are going to sequentially
apply linear operations

vi+1 = Mvi, (4.41)

for i ∈ {1, . . . , 2N}, where M is an Nh+1 ×Nh+1-matrix, defined as

M =

⎡⎢⎢⎢⎣
0 1

1
. . . . . .
. . . . . . 1

1 0

⎤⎥⎥⎥⎦ (4.42)

For each existing path of length n and height h, the matrix M has the effect of
creating two new paths of height h + 1 and h − 1, while automatically cutting off
paths with height greater than Nh and smaller than 0.
Finally, the vector v2Nh+2Nv contains the number of paths of all heights after 2Nh +
2Nv steps, out of which we are only interested in proper Dyck paths, the number of
which is stored in (v2N)1 = (M2Nv0)1. The matrixM is a tridiagonal Toeplitz matrix

with eigenvaluesDj = 2 cos
(

πj
Nh+2

)
and eigenvectors Sij =

1√
1+

Nh
2

sin
(

πij
Nh+2

)
. Since

S is orthogonal,

(M2Nv0)1 =

Nh+2∑
j=1

S1jD
2N
j (S−1)j1

=

Nh+2∑
j=1

(S1j)
2D2N

j

= f(Nh, Nv)

(4.43)

The second form is an application of the combinatorics of watermelons [128]. For
the last expression, we allude to a tool from analytical combinatorics, the symbolic
method [52]. Assume that we want to calculate the number bn of binary words of
length n. Then we can write down a combinatorial equation

B = ε︸︷︷︸
empty word

∪ B × 0︸ ︷︷ ︸
append a zero

∪ B × 1︸ ︷︷ ︸
append a one

(4.44)

meaning “A binary word is either the empty word or a binary word ending on zero
or a binary word ending on one”. The machinery of the symbolic method teaches
us to translate this equation into a generating function

B(z) = 1 + zB(z) + zB(z) ⇒
B(z) =

1

1− 2z

=
∑
n≥0

2nzn
(4.45)

such that we can extract the numbers bn = (d/dz)2NB(z)|z=0 from the coefficients
of the Taylor series. To calculate the number D2n of Dyck paths of length 2n, we
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use the first passage decomposition:

D = ε︸︷︷︸
empty path

∪ ↑ ×D× ↓ D︸ ︷︷ ︸
an up-step followed by a Dyck path,
a down-step and another Dyck path

(4.46)

meaning “A Dyck path is either empty or an up-step follwed by a Dyck path, a
down-step and another (possibly empty) Dyck path”. Similarly, this translates to

D(z) = 1 + zD(z)zD(z) ⇒

D(z) =
1− √

1− 4z

2z

=
∑
n≥0

Cnz
2n

(4.47)

where Cn is the n-th Catalan number. Finally, to obtain a generating function Dh(z)
for the number of Dyck paths with maximal height h, we start with D0(z) = 1, since
there is exactly one path with length zero: the empty path. Again, we decompose
the path to the left and right of its first passage of zero:

Dh(z) = 1 + zDh−1(z)zDh(z) ⇒

Dh(z) =
1

1− z2

. . . − 1

z2

=
∑
Nv≥0

f(h,Nv)z
2(h+Nv)

(4.48)

Finally, we determine the asymptotic number of allowed matchings, if the system
grows to the thermodynamic limit in a fixed aspect ratio. Namely, we want to show
that

N (N,α) =
4N

N3/2

[
k(α) +O

(
1

N

)]
(4.49)

cf. equation (4.40) with the function k(α) given by

k(α) =

√
π

2
+

√
π

2
(α− 1)3/2 − π−1/2 (4.50)

In order to calculate N (Nh, α), it is sufficient to compute the asymptotic be-
haviour of f(N,α) since the vertically forbidden loop patterns can be transformed
into horizontally forbidden ones under the 90◦ rotation α → α

α−1
. The asymptotic

behaviour of the Catalan numbers is known to be 4N/N3/2
√
π. It remains to calcu-

late the expression

g(Nh, α) :=
√

Nh

Nh+2∑
j=1

sin

(
πj

Nh + 2

)
cos

(
πj

Nh + 2

)2N

(4.51)
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First observe that the summand is symmetric around j = Nh+2
2

(if Nh is odd, we

can omit the
(�Nh+2

2
�)th from the sum as this term is exponentially small in Nh).

Therefore

g(Nh, α) := 2
√

Nh

Nh+2/2∑
j=1

sin

(
πj

Nh + 2

)
cos

(
πj

Nh + 2

)2αNh

(4.52)

We will proceed with the computation of the sum in four steps. First, we will
truncate the sum, using the exponential suppression of terms with j on the order of
Nh. Second, we will replace the cosine by a Gaussian. Third, we Taylor expand the
sine and finally, we replace the sum by an integral that we can compute analytically.
All of these approximations induce an error O(1/N).

Let us now establish the relevant claims:

Claim 4.3. (Truncation of the sum)

√
N

N/2∑
j=N/π�

sin2

(
πj

N

)
cos2αN

(
πj

N

)
= O (

N3/22−αN
)

(4.53)

Proof. For j in the interval [�N/π , N/2], for N large enough we have that jπ/N ≥
π/4 and therefore

√
N

N/2∑
j=N/π�

sin2

(
πj

N

)
cos2αN

(
πj

N

)
≤

√
N

N/2∑
j=N/π�

sin2

(
πj

N

)
cos2αN (π/4)

=
√
N

N/2∑
j=N/π�

sin2

(
πj

N

)
2−αN

≤ N3/22−αN (4.54)

To clean up notation in preparation for the next step, we define

e2(N) :=
√
N

N/π�∑
j=1

sin2

(
πj

N

)[
e−αN(πj

N )
2

− cos2αN
(
πj

N

)]
(4.55)

Claim 4.4. (A cosine raised to a high power becomes a Gaussian)

e2(N) = O
(

1

N

)
(4.56)

Proof. For simplicity, define xj =
πj
N

and M = 2αN . Using cos(x) ≥ 1− 1
2
x2 > 0 in

the interval x ∈ [0, 1] and the fact that each term in the sum is positive, we have:

e2(N) ≤
√
N

N/π�∑
j=1

sin2(xj)

[
e−

x2j
2
M −

(
1− 1

2
x2
j

)M
]

=
√
N

N/π�∑
j=1

sin2(xj)

⎡⎣e−x2j
2
M −

(
1−

1
2
x2
jM

M

)M
⎤⎦ (4.57)
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Since 1
2
x2
j < 1, we can use the inequality

(
1−

1
2
x2
jM

M

)M

≥ e
−x2j

2
M

⎛
⎝1− 1

1−
x2
j
2

⎞
⎠
, combined

with 0 < sin(xj) < xj and e−y ≥ 1− y to arrive at

e2(N) ≤
√
N

N/π�∑
j=1

x2
j

⎡⎢⎣e−x2jM

2 − e
−x2j

2
M 1

1−
x2
j
2

⎤⎥⎦

=
√
N

N/π�∑
j=1

x2
je

−x2jM

2

⎡⎢⎢⎣1− e

x2j
2
M

⎛
⎝1− 1

1−
x2
j
2

⎞
⎠
⎤⎥⎥⎦

≤
√
N

N/π�∑
j=1

x2
je

−x2jM

2

⎛⎝−x2
j

2
M

⎛⎝1− 1

1− x2
j

2

⎞⎠⎞⎠
≤

√
NM

2

N/π�∑
j=1

x6
je

−x2jM

2
1

1− x2
j

2︸ ︷︷ ︸
≤2

≤ N5/22α

π

1

�N/π 
N/π�∑
j=1

x6
je

−x2jM

2 (4.58)

The sum is the right Riemann sum of the function f(x) = π2x6e−x2αNπ2
, with an

error given by∣∣∣∣∣∣ 1

�N/π 
N/π�∑
j=1

x6
je

−x2jM

2 −
∫ 1

0

π2x6e−x2αNπ2

dx

∣∣∣∣∣∣ ≤ dmax

2�N/π , (4.59)

where dmax is the maximum of the derivative f ′(x) in the interval [0, 1]. A direct
calculation reveals that

dmax = c(Nα)−5/2 (4.60)

for some constant c. Plugging (4.60) and (4.59) into (4.58) yields

e2(N) = N5/22απ

∫ 1

0

x6e−x2αNdx+O
(

1

N

)
≤ N5/22απ

∫ ∞

0

x6e−x2αNdx+O
(

1

N

)
= N5/22απ

15
√
π

16
(Nαπ2)−7/2 +O

(
1

N

)
= O

(
1

N

)
(4.61)

Claim 4.5. (Replacing the sine)

√
N

N/π�∑
j=1

e−αN(πj
N )

2

[
sin2

(
πj

N

)
−
(
πj

N

)2
]
= O

(
1

N

)
(4.62)
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Proof. Taylor expanding the sine yields

sin2(x) = x2 − 1

3
cos(2ξ)x4 (4.63)

for some ξ ∈ [0, x]. Plugging (4.63) into (4.62) and using a Riemann sum bound
akin to (4.59) leads to

√
N

N/π�∑
j=1

e−αN(πj
N )

2

[
sin2

(
πj

N

)
−
(
πj

N

)2
]
≤

√
N

N/π�∑
j=1

e−αN(πj
N )

2
(
πj

N

)4

≤ N3/2π2

∫ 1

0

x4e−αNx2π2

dx

≤ N3/2π2

∫ ∞

0

x4e−αNx2π2

dx

≤ N3/2π23

8

√
π(απ2N)−5/2

= O
(

1

N

)
(4.64)

Claim 4.6. (Computation of the integral)

√
N

N/π�∑
j=1

x2
je

−αNx2
j :=

√
π

4α3/2
+O

(
1

N

)
(4.65)

Proof. The usual bound for the Riemann sum (4.59) implies

√
N

N/π�∑
j=1

x2
je

−αNx2
j =

√
N�N/π 1

�N/π 
N/π�∑
j=1

x2
je

−αNx2
j

=
√
N�N/π π2

∫ 1

0

x2e−αNx2π2

dx+O
(

1

N

)
(4.66)

We can extend the integral to infinity by noting that x2 ≤ xex
2
:∫ ∞

1

x2e−αNx2

dx ≤
∫ ∞

1

xe1−αNx2

=
e−αN+1

2(αN − 1)

= O(e−N), (4.67)

implying that

√
N

N/π�∑
j=1

x2
je

−αNx2
j =

√
N�N/π π2

∫ ∞

0

x2e−αNx2π2

dx+O
(

1

N

)
=

√
N�N/π π2

√
π

4(αNπ2)3/2
+O

(
1

N

)
=

√
π

4α3/2
+O

(
1

N

)
(4.68)
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Corollary 4.1.

g(Nh, α) =

√
π

2α3/2
+O

(
1

Nh

)
(4.69)

Proof. This follows directly from the four previous claims.

Corollary 4.2.

N (α,N) =
4N

N3/2

[
k(α) +O

(
1

N

)]
(4.70)

Proof. For large N , we have

N (α,N) = 4N

[
N

−3/2
h g(Nh, α) +N

−3/2
h g

(
Nh,

α

α− 1

)
−N−3/2π−1/2

]

= 4N

[
N

−3/2
h

√
π

2α3/2
+N

−3/2
h

√
π

2 α
α−1

3/2
−N−3/2π−1/2

]

=
4N

N3/2

[√
π

2
+

√
π

2
(α− 1)3/2 − π−1/2 +O

(
1

N

)]

4.1.3 Entanglement Entropy

We are now ready to determine the scaling behavior of the entanglement in our
model. To this end, consider a partition of the Nh×Nv-torus into a (small) rectangle
Q of size Lh × Lv, and the (large) rest R. Our goal is to determine the zero Renyi
entropy S0(ρQ) of the reduced state on Q, this is, the logarithm of the Schmidt rank
of |ψNh×Nv(A,PBC)〉 in said partition. To this end, note that by construction

|ψNh×Nv(A,PBC)〉 = (ΨQ ⊗ΨR) |φ+〉|∂Q|
, (4.71)

where ΨQ is the linear map |ψLh×Lv(A, •)〉 from the boundary to the bulk in Q and
correspondingly for ΨR, and the |φ+〉|∂Q| are placed along the boundary between Q
and R which has length |∂Q| = 2Lh + 2Lv =: L.

As we have seen in the section 4.1.1, the map ΨQ provides a bijection between
the space Vallowed spanned by all |m∗(p)〉 with p an allowed matching, and its im-
age SLh×Lv . If ΨR is also bijective between the full staggered spin-0 space V0 and
its image in R, then |ψNh×Nv(A,PBC)〉 equals (ΠVallowed

⊗ ΠV0)|φ+〉|∂Q|, which has
Schmidt rank equal to dimVallowed = N (Lh, Lv). Using (4.22), we obtain that for a
fixed aspect ratio of Q, S0(ρQ) scales as

S0(ρQ) = L log 2− 3

2
log(L/2) + log k +O

(
1

L

)
(4.72)

with a non-universal constant log k that depends on the aspect ratio of Q.
It remains to show that the matrix ΨR : Vmatchings �→ V B

loops is indeed bijective. We
will now demonstrate this assuming that Q is sufficiently small as in that case there
are no forbidden matchings. Intuitively, this follows from the fact that forbidden
matchings arise due to space constraints at the corners, and the region Q is concave.
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More precisely, if the size of the rectangular hole is Lh×Lv and the torus is Nh×Nv,
then we require

min{Nh, Nv} >
3

2
(Lh + Lv) (4.73)

The kernel of ΨR is non-empty if and only if for every connectivity pattern, there
exists a loop pattern on R that is compatible with it. The following procedure
produces such a loop pattern for an arbitrary inside connectivity pattern.

(4.74)

Since we work on the torus, we can draw the rectangle in the center of our lattice.

1. Close any nearest neighbours in a minimal way (as shown in the figures).
Clearly, these cannot interfere with each other. This can be done within one
tile from the hole.

(4.75)

2. Remove the connected pairs from the connectivity pattern. There must nec-
essarily be at least one newly formed nearest neighbour pair. Connect these
minimally, avoiding the bonds that are already closed. This can be done within
two tiles from the hole.

(4.76)

3. Again remove the connected pairs from the connectivity pattern, creating new
nearest neighbours. As long as there is enough space on the torus, these pairs
can be closed minimally. For each nested bond, one more tile of space is needed
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(a) (b) (c) (d)

Figure 4.4: Typical configurations in the Fortuin-Kasteleyn expansion of the partition function
of the Potts model. The green lines correspond to the clusters in the expansion. Each cluster
configuration is associated with a unique loop pattern. (a) A typical configuration of the Potts
model in the ordered phase, (b) a typical configuration in the disordered phase, (c) the Potts model
at the phase transition point for Q > 4, (d) for values Q ≤ 4. Only for the latter, loops of all length
scales occur, whereas the bounded loop length in all other cases corresponds to a finite correlation
length.

(4.77)

4. Fill the rest of the loop pattern arbitrarily

For a hole of size Lh × Lv, there can be at most �Lh+Lv

2
� nested bonds. Therefore,

if min{Nh, Nv} > 3
2
(Lh + Lv), then there is enough space in every direction for the

above procedure to generate a compatible loop pattern.

4.1.4 Physical Intepretation of the State

In this section, we address the physical nature of our PEPS. This is most easily
understood working in a sublattice rotated frame, i.e., after applying a Pauli-X
rotation on the B-sublattice. For λ = 0 , we obtain a simple the classical state
with a maximum number of bubbles (Fig. 4.4(a)). The other extreme, λ → ∞
corresponds to simply shifting that state by one lattice site (Fig. 4.4(b)) (shifting
in the horizontal or vertical directions is equivalent). The nature of the state for
finite λ can be inferred from mapping the norm of the state to the partition function
of a classical Q-Potts model with Q = 16 . In this mapping, which we will carry
out in detail later in this section, the loops surround clusters of Potts spins that
are aligned. Therefore, λ acquires the role of temperature in the Potts model with
λ = 0 corresponding to the perfectly ordered state. The most interesting case
of λ = 1 corresponds precisely to the phase transition in the Potts model. The
transition is known to be of first-order in which regions of order (ABAB plaquettes)
and disorder (BABA plaquettes) coexist. In particular, even at the transition, there
is a characteristic length scale in the Potts model which translates to an exponential
suppression of long loops in the PEPS.

Let us now establish such a mapping rigorously. Concretely, we will show that
the staggered magnetization of the PEPS
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σ̃z(�x) :=

{
σz(�x) if �x is on the even sublattice

−σz(�x) if �x is on the odd sublattice
(4.78)

is equal to an appropriately defined observable in the standard Potts model and
decays exponentially even at λ = 1. In (4.78) and in the following we say that a
plaquette �x = (x1, x2) is on the even (odd) sublattice if x1 + x2 is even (odd). We
refer to the λ = 1-PEPS simply by |ψ〉.
Claim 4.7. (Exponential Decay of Staggered Magnetization)
The correlator

C[�x, �y] :=
〈ψ|σ̃z(�x)σ̃z(�y)|ψ〉

〈ψ|ψ〉 − 〈ψ|σ̃z(�x)|ψ〉 〈ψ|σ̃z(�y)|ψ〉
〈ψ|ψ〉2 (4.79)

decays exponentially.

Proof. Consider a classical Q-state Potts model with spins residing on the vertices of
the net lattice. The net lattice is a square lattice rotated by 45◦ where the distance
between the vertices is increased by a factor

√
2 (the vertices are marked with green

dots in figure 4.4). The classical spins take values σ ∈ {1, . . . , Q}. The Hamiltonian
of the model is given by

H = −
∑
<ij>

δ(σi, σj) (4.80)

where < ij > indicates nearest neighbours on the net lattice. For a plaquette of
the original square lattice located at �x, define by �xa and �xb the two spins adjacent
to that plaquette (the order will not matter for our purposes). Define the following
“link” observable in the Potts model that acts on two spins

O�x({σ}) :=
{
1 if σ�xa = σ�xb

1+Q
1−Q

if σ�xa �= σ�xb

(4.81)

Note that 〈O〉 = 1 for perfect order and 〈O〉 = −1 for perfect disorder just as
expected from the intuitive picture. Second, this link observable does not correspond
to the usual observable in the Potts model. For example, the correlator 〈σ�xσ�y〉 would
be a four-point correlation function in terms of the Potts spin variables. On the
other hand, usual Potts spin-spin correlators correspond to non-local correlators in
the PEPS, namely asking whether two points lie on the same loop.

Consider the expectation value of O�x in such a Potts model at inverse tempera-
ture β:

〈O�x〉 = 1

Z

∑
{σ}

O�x({σ})
∏
<ij>

e−βδ(σi,σj)

=
1

Z

∑
{σ}

O�x({σ})
∏
<ij>

[1 + vδ(σi, σj)], (4.82)

where v = eβ−1. We now expand the product in the spirit of the Fortuin-Kasteleyn
expansion [129, 130], yielding 2E terms, where E is the number of edges of the net
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lattice.

... =
1

Z

(∑
{σ}

O�x({σ})︸ ︷︷ ︸
1

4

3

2

�x

+v
∑
{σ}

O�x({σ})δ(σ1, σ2)︸ ︷︷ ︸
1

4

3

2

�x

+ . . .
)

(4.83)

Here we have associated subgraphs G′ of the net lattice G to each of the terms in
the expansion, where G′ has an edge between i and j if the expansion term contains
δ(σi, σj). Let us investigate each sum individually. The first sum runs over Q4

configurations. In Q3 of those, σ�xa = σ�xb
, implying O�x({σ}) = 1. In the other

Q3(Q − 1) terms, σ�xa �= σ�xb
and O�x({σ}) = (1 + Q)/(1 − Q). Therefore, the sum

evaluates to

∑
{σ}

O�x({σ}) = Q3 +Q3(Q− 1)
1 +Q

1−Q
= −Q4 (4.84)

The second sum containsQ3 configurations and because there is a δ-function between
spins 1 and 2, σ�xa = σ�xb

in all of them,∑
{σ}

O�x({σ})δ(σ1, σ2) = Q3 (4.85)

Adding all these of contributions yields

〈O�x〉 = 1

Z

∑
G′⊆G

Qn(G′)vb(G
′)Õ�x(G

′) (4.86)

where n(G′) is the number of connected components in G′, b(G′) is the number of
bonds and

Õ�x(G
′) =

{
1 if G′ has a link at �x

−1 otherwise
(4.87)

Each subgraph G′ of the net lattice can be associated to a unique loop pattern L(G′)
on the square lattice (figure 4.4), such that for the number of closed loops we have

nL(G′) = n(G′) + c(G′) and (4.88)

Õ�x(G
′) = 〈L(G′)|σ̃z(�x)|L(G′)〉 , (4.89)

where c(G′) is the number of circuits in G′. Plugging Euler’s relation

n(G′) = c(G′)− b(G′)− V, (4.90)

95



CHAPTER 4. SU(2)-SYMMETRY

with V the number of vertices in G and (4.88) into (4.86) yields

〈O�x〉 = 1

Z

∑
G′⊆G

√
Q

n(G′)√
Q

n(G′)
vb(G

′)Õ�x(G
′)

=

√
Q

−V

Z

∑
G′⊆G

√
Q

n(G′)+c(G′)
(

v√
Q

)b(G′)

Õ�x(G
′)

=

∑
L

√
Q

nL

(
v√
Q

)b(G′)
〈L|σ̃z(�x)|L〉∑

L

√
Q

nL

(
v√
Q

)b(G′)

β→log(1+
√
Q)−−−−−−−−→

∑
L

√
Q

nL 〈L|σ̃z(�x)|L〉∑
L

√
Q

nL

Q→16−−−→ 〈ψ|σ̃z(�x)|ψ〉
〈ψ|ψ〉 (4.91)

This argument can be repeated for the correlator

〈O�xO�y〉 = 〈ψ|σ̃z(�x)σ̃z(�y)|ψ〉
〈ψ|ψ〉 , (4.92)

thereby showing that

C[�x, �y] = 〈O�xO�y〉 − 〈O�x〉 〈O�y〉 , (4.93)

i.e. the staggered σz correlation function in the λ = 1-PEPS equal to the link-link
correlation of a classical Q = 16 Potts model at β = log(1 +

√
Q). The model is

known to undergo a phase transitions at that point for all values of Q. While this
transition is critical for Q ≤ 4 [131–139] , it is of first order for Q > 4 [140, 141],
implying that the local correlator (4.93) decays exponentially.

A more general, alternative proof invokes the mapping between the norm of the
PEPS to a Potts partition function. To this end, define the tensor network using
tensors (4.6) with independent variables on every site, i.e.:

|ψ(λ(1,1), λ(1,2), . . . , λ(Nh,Nv))〉 =: |ψ(�λ)〉 , (4.94)

Taking derivatives with respect to different λ will yield the expectation value of
some local diagonal operator acting on e.g., one site, DPEPS(�x)

∂

∂λ�x

log 〈ψ(�λ)|ψ(�λ)〉 = 〈ψ(�λ)|DPEPS(�x)|ψ(�λ)〉
〈ψ|ψ〉 (4.95)

Introducing the effective coupling strengths �β via

λ�x =

⎧⎨⎩
√

eβ�x−1√
Q

if �x is on the even sublattice√ √
Q

eβ�x−1
if �x is on the odd sublattice

, (4.96)

one can directly calculate that

〈ψ(�λ)|ψ(�λ)〉 = C(�β)
∑
L

√
Q

nL
∏
�x

(
eβ�x−1

√
Q

)b�x(L)

︸ ︷︷ ︸
Zinhom Potts

, (4.97)
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where b�x(L) is 1 if G′(L) has a bond at �x and 0 otherwise. Here, Zinhom Potts is the
partition function of a Potts model with different effective couplings between every
pair of spins, given by (4.96). The constant is given by

C(�β) =
∏
�x odd

(
eβ�x − 1√

Q

)
(4.98)

Therefore,

〈ψ(�λ)|DPEPS(�x)|ψ(�λ)〉
〈ψ|ψ〉 =

∂β�x

∂λ�x

∂

∂β�x

log
(
C(�β)Zinhom Potts

)
(4.99)

(4.100)

As usual, taking logarithmic derivatives of the partition function will yield some
classical observable DPotts(�x):

... = 〈DPotts(�x)〉 (4.101)

In particular, the point �λ = �1 corresponds to the original Potts model at its phase
transition with all coupling strengths equal.

〈DPEPS(�x)〉λ=1 = 〈DPotts(�x)〉β=1+
√
Q , (4.102)

Taking higher derivatives yields three-point and higher order correlators. In our case,
Q = 16 and all such operators decay exponentially even at the phase transition. This
argument can be expanded by linearity to conclude that all diagonal correlators of
the PEPS must decay exponentially.

Finally, for non-orthogonal loop states 〈0|1〉 �= 0, the mapping has to be carried
out with respect to two coupled Potts models, whose phase diagram is also known
[142–144]. As the nature of the phase transition remains unchanged, we expect the
correlation function to behave in the same manner as derived above.

Of course, the preceding discussion makes no statements about non-classical
correlation functions (i.e., those that are not diagonal in the σz-basis). It has been
observed in other loop models that all diagonal correlators can decay exponentially
and there is still a critical off-diagonal operator in the system [132]. To rule out
such a possibility, we investigate the λ = 1-PEPS with a Corner Transfer Matrix
algorithm. First, we use a single-site MPS ansatz for the fixed point of the transfer
matrix. The corresponding zero-dimensional channel operator has two leading real
eigenvalues with opposite sign that are degenerate to machine precision at boundary
bond dimension χ = 256. This is precisely what we would expect at the boundary of
a plaquette phase: the one-site ansatz forces the fixed point to form a non-injective
2-periodic cat state MPS, where the fixed points correspond to the “+”- and “−”-
superposition of the ordered and disordered (shifted) state. The transfer matrix
therefore likely realizes imaginary time evolution under two coupled Majumdar-
Ghosh-type chains. This evidence is corroborated by the fact that the boundary
channel acquires a unique fixed point when allowing a two-site unit cell. Overall, our
findings are compatible with a plaquette state that spontaneously breaks translation
symmetry at λ = 1 .
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4.2 Parent Hamiltonians

In the following, we will study how our SU(2)-invariant wave function can appear
as a ground state. To this end, we will construct its parent Hamiltonian and sub-
sequently characterize its ground space, both for open boundary conditions (OBC)
and on the torus. In particular, we will show that the parent Hamiltonian possesses
the intersection property and that we can obtain a unique ground state with OBC
by gapping out the boundary. For the remainder of this section, we will focus on
λ = 1.

4.2.1 Construction of the Hamiltonian and intersection prop-
erty

To construct a parent Hamiltonian, we use (1.24) and (1.25). In this case, the
Hamiltonian acts on a 2× 2 plaquette. We introduce the notation

H =
∑
x,y

h(x,y) (4.103)

where (x, y) is the top left spin of h(x,y), and the sum runs over all x and y on the
patch, according to the chosen boundary conditions. By construction, H ≥ 0 and
h(x,y) |ψNx×Ny(A,X)〉 = 0 for all X, and thus, any |ψNx×Ny(A,X)〉 is a ground state
of H.

The remaining question is thus to understand whether these states fully span
the ground space of H. As mentioned in section 1.1, for OBC, this is known as the
intersection property, i.e., the intersection of the ground spaces of the h(x,y) is given
by the PEPS with arbitrary boundary on the larger patch.

In order to understand the structure of an arbitrary ground state of H, let us
consider the action of h in terms of the loop picture. It is convenient to introduce
the following notation for loop states on 2×2 plaquettes:∣∣∣∣ 〉

= |B〉

∣∣∣∣ 〉
= |E1〉

∣∣∣∣ 〉
= |E2〉∣∣∣∣ 〉

= |E3〉
∣∣∣∣∣

〉
= |E4〉

∣∣∣∣ 〉
= |O1〉

∣∣∣∣ 〉
= |O2〉

∣∣∣∣ 〉
= |O3〉∣∣∣∣ 〉

= |O4〉
∣∣∣∣ 〉

= |O5〉
∣∣∣∣∣

〉
= |O6〉∣∣∣∣ 〉

= |O7〉
∣∣∣∣ 〉

= |O8〉
∣∣∣∣ 〉

= |O9〉∣∣∣∣ 〉
= |O10〉

∣∣∣∣ 〉
= |O11〉

(4.104)
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We will refer to |B〉 as bubbles, |Ei〉 as tadpoles, and |Oi〉 as bubble-free states.
Furthermore, define

|φ〉 = 1

2
√
2

[
2 |B〉+

4∑
i=1

|Ei〉
]

(4.105)

Then, each local term has 12 possible ground states:

|Oi〉 , i = 1, . . . , 11 and |φ〉 . (4.106)

Taking a general state |g〉 =
∑

i oi |Oi〉 +
∑

i ei |Ei〉 + b |B〉, a direct calculation
reveals that h |g〉 = 0 if and only if ei = ej ∀i, j and ei = b/2 ∀i. This is, in order
to be a ground state of h, the states |B〉 and |Ei〉 must appear with the relative
amplitudes 2 : 1 : 1 : 1 : 1, as in |φ〉 – and this is the only condition in order to be a
ground state.

We can thus interpret the Hamiltonian as defining a random walk on the space
of loop configurations,

2 � � � � (4.107)

i.e., any two states coupled by the transition (4.107) must appear in any ground
state in superposition with the given relative amplitude. Differently speaking, for
any orbit of the random walk (4.107) acting on all sites, there is at most one ground
state per orbit. In the following, we will call such a move between loop configurations
a surgery move and use the notation L′ = σ(L) to describe the fact that loop patterns
L′ and L are related by such a move. We will denote sequences of surgery moves by
capital letters, e.g. Σ = σ1 . . . σM .

We will now use this interpretation to prove that for H on an OBC rectangle,
there is exactly one ground state per connectivity pattern, this is, the ground space
is given by

SNh×Nv := span{|ψNh×Nv(A,X)〉 |X ∈ C(2Nh+2Nv)}
– this is precisely the intersection property. In particular, it entails that the degen-
eracy of the parent Hamiltonian is given by N (Nh, Nv).

To start with, note that each surgery move leaves the connectivity pattern in-
variant, i.e., 〈K|h|L〉 = 0 if K ∈ Cp �= Cq ! L. The Hamiltonian is therefore block
diagonal in the loop basis

H =
⊕
p

Hp , (4.108)

where the Hp are supported on V (Cp). Now pick the basis spanned by applying
the PEPS to the dual boundary vectors |ψp〉 := {|ψNh×Nv(A,m

∗(p))〉}p of SNh×Nv ,
cf. Eq. (4.16). Each of these states is by construction a ground state of H, and lives
in the corresponding block V (Cp) of the Hamiltonian. It thus remains to show that
the random walk defined by H couples any two configurations L,L′ ∈ Cp: As argued
above, this uniquely fixes the ratios of the coefficients

∑
L∈Cp

cL |L〉 for any given p,

which thus must be equal to those of |ψp〉. (Note that the fact that |ψp〉 is a ground
state implies that the ratio must be independent of the chosen path Σ(L) = L′ of
surgery moves.). Differently speaking, the random walk (4.107) should be ergodic
in the space of loop states with a fixed connectivity pattern.

99



CHAPTER 4. SU(2)-SYMMETRY

(a) (b) (c) (d)

Figure 4.5: Bringing a given loop pattern (a) into the canonical pattern with the same boundary
matching (d). In step 1, tadpoles and larger bubbles are cut off into small bubbles (b). Every path
is shortened as much as possible in step 2 (c). The remaining ambiguity is the trajectory of longer
paths. For the sake of uniqueness, they are moved as close as possible to the north-west boundary
(d).

We proceed to demonstrate such ergodicity in two steps: First, as we have shown
in 4.1.2, for any given connectivity pattern p, we can define a canonical pattern
L0. Second, we will now show that any L ∈ Cp can be connected to L0 through
a sequence Σ0 of surgery moves, L0 = Σ0(L), and thus, any two L,L′ ∈ Cp are
connected through a sequence Σ which goes through L0,

L = Σ−1
0 (Σ′

0(L
′)) , (4.109)

where L0 = Σ′
0(L

′).
The algorithm to arrive at the canonical loop pattern from an arbitrary starting

pattern from surgery moves contains three steps:

1. Tadpoles and larger bubbles are cut off.

2. All paths are consecutively made as short as possible. Any path with non-
minimal length must necessarily contain both vertical and horizontal bay-type
plaquettes (Fig. 4.5b). This pair must necessarily contain a loop in their
inside. The loop can be moved through the bay by three consecutive surgery
moves. If the bays had previously been adjacent, the path is now shorter,
otherwise the bays are now closer together. Therefore, any path can be made
as short as possible. Note that any surgery move only acts on one path plus
a surrounding loop so previously shortened paths will always stay shortest
during the application of further elementary moves in this step.

3. Every path now exclusively consists of up- and down-moves, the order of which
may still differ from the canonical loop pattern, i.e. the path might not run
as close as possible to the north-west boundary of the patch (Fig. 4.5c).
For the pattern to be compatible with the same boundary matching, the area
between the current and the desired trajectory for any given path must be filled
with small bubbles. We are finished after moving all the bubbles through the
appropriate bays.

This implies that (up to normalisation), on a OBC patch of size Nh ×Nv,

|ψp〉 =
∑
L∈Cp

2nL |L〉 (4.110)

is the unique ground state of H in sector p, i.e., H has one ground state per con-
nectivity pattern Cp, and the space of all ground states is given by SNh×Nv .
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4.2.2 Open boundary conditions and unique ground state

We have just seen that the parent Hamiltonian possesses the intersection property
– the ground space manifold on any rectangular patch is precisely given by those
configurations which can be obtained by choosing arbitrary boundary conditions.
In the following, we will show that, for Nh, Nv even, it is possible to gap out the
boundary, this is, to add boundary terms to the parent Hamiltonian which yield a
unique ground state.

To this end, we target

|ψ〉 =

A A AA

A A

A

A

A A A

A

(4.111)

as the unique ground state, and proceed by constructing its parent Hamiltonian.
In the bulk, the parent Hamiltonian will be the same as before. On the boundary,
however, extra terms appear. Specifically, we consider a 2× 1 tile

A A (4.112)

at either boundary, and define

R(2n−1,1),(2n,1) := span

⎧⎨⎩ A A

X

∣∣∣∣∣∣X ∈ (C2)⊗4

⎫⎬⎭ (4.113)

(and rotated versions thereof) and the corresponding parent Hamiltonian

h′
(x1,y1),(x2,y2)

= 1− ΠR(x1,y1),(x2,y2)
. (4.114)

It is easy to check that h′, together with the original parent Hamiltonian on the
corresponding 2 × 2 patch, has exactly the same ground space as the “true” par-
ent Hamiltonian derived from that patch of |ψ〉 including the boundary condition
(and containment, which suffices for |ψ〉 to be a ground state, holds trivially). On
the other hand, the parent Hamiltonians on the shifted patches remain unchanged.
Thus,

H ′ := H +

Nh/2∑
n=1

[h′
(2n−1,1),(2n,1) + h′

(2n−1,Nv),(2n,Nv)]

+

Nv/2∑
n=1

[h′
(1,2n−1),(1,2n) + h′

(Nh,2n−1),(Nh,2n)
] (4.115)

is a parent Hamiltonian of |ψ〉, and has |ψ〉 as a ground state.
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Let us now show that this ground state is unique. To this end, note that ground
states of h′ on a 2× 1 patch are spanned by the states

|θ1〉 = + + 2 ,

|θ2〉 = .
(4.116)

Thus, h′ imposes the additional constraint that in any ground state the states in |θ1〉
must appear as superpositions with the corresponding weights. Arguing as before,
this fixes the relative amplitudes of any two loop patterns coupled by the additional
surgery move

� � 2 (4.117)

on the corresponding 2 × 1 patches, and rotated versions thereof. Crucially, unlike
the bulk moves, this new surgery move allows us to change the connectivity class.
Equipped with both the original (bulk) surgery moves as well as the additional
surgery move (4.117) obtained from h′ allows us to transform any any loop pattern
to a loop pattern in the “minimal” connectivity class

pmin = . (4.118)

Claim 4.8. For every loop pattern L, there exists a sequence Σ of bulk moves
(4.107) and boundary moves (4.117), such that

p(Σ(L)) = pmin, (4.119)

where pmin is given by (4.118).

Proof. We are going to construct Σ explicitly, starting from an arbitrary loop pat-
tern L. We begin in the top left corner. Combining boundary moves on the first
horizontal and vertical dominos and potentially a bulk move on the plaquette in the
top left corner, we can transform the top left corner of L into

(4.120)

We proceed similarly for all other corners:

(4.121)

Now we continue sequentially, column by column. If the top domino looks like
or , transform it into using (4.117). If it is in the -state, we will

see now that the corresponding plaquette can be brought into the |B〉 state, after
which the bubble is cut off and the boundary move is applicable again.
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There are two scenarios: In the first, the top -domino has a bubble or tadpole
underneath it:

(4.122)

In this case, the bubble can be moved up to the topmost plaquette using bulk moves.
It can then be cut off to transform the top domino into . In the second scenario
there is no bubble or tadpole in the column:

(4.123)

Then, there must necessarily be Nv paths passing through the column left to right.
Only Nv − 4 of them can originate from the west boundary, since 4 + 4k out of the
Nv + 4k boundary points to the left of the k-th column are already connected with
their nearest neighbours. Therefore, at least two pairs of paths must actually be
a single path, which has a tadpole to the left of the column. This tadpole can be
moved into the column upon which we recover situation 1, e.g.:

→ (4.124)

The bottom tile is transformed into in the same manner to arrive at

(4.125)

After fixing the top and bottom dominos column by column, we apply the same
procedure to the left and right boundary. Evidently, once a boundary domino is
in the correct state (e.g., for top dominos), it will never be touched again
during this procedure, allowing us to sequentially bring the connectivity pattern
into minimal form.

103



CHAPTER 4. SU(2)-SYMMETRY

We have thus established that the minimal connectivity pattern can be reached
from arbitrary starting loop patterns. On the other hand, we have seen in Sec. 4.2.1
that any two loop patterns in a given connectivity class – specifically, the minimal
one above – are connected through bulk surgery moves. Thus, it follows that any
two loop patterns can be connected by combining bulk and boundary surgery moves,
and thus, the relative amplitudes of all loop patterns are fixed and therefore equal
to those found in |ψ〉, Eq. (4.111). We thus infer that |ψ〉 is the unique ground state
of H ′.

4.2.3 Periodic Boundary Conditions

Let us now study the ground space structure of the parent Hamiltonian (4.103) on
a system with periodic boundary conditions (PBC); recall from Sec. 4.1 that this
requires Nh and Nv to be even. To this end, we will resort to the description of the
PEPS in terms of the tensor Ã, Eq. (4.1), rather than A (see Sec. 4.1). Note that
due to the gauge relation (4.5) between them, both A and Ã have the same parent
Hamiltonian.

Let us first consider an approach which allowed to fully characterize the ground
space for G-injective PEPS with finite symmetry group G [20]. (In the following,
all matrices are applied from left to right and top to bottom by convention.) First,
note that the fundamental symmetry is stable under concatenation, e.g.

Ã Ã

U †
gU †

g

Ug Ug

U †
gUg = Ã ÃU †

g Ug

U †
gU†

g

Ug Ug

U †
gUg

= Ã Ã

(4.126)

i.e., any closed loop of symmetry operators leaves a simply connected patch invariant.
This is particularly interesting when we consider closed boundary conditions:

Ã

ÃU †
g

U †
g

=

Ã

Ã

U †
g

Ug

Ug

Ug

U †
g U†

g

U†
g

U †
g

UgU †
g

=

Ã

Ã U †
g

U †
g

(4.127)

Virtual string operators of the form U⊗Nv
g which wrap vertically around the torus

can therefore be freely moved around the torus, and correspondingly horizontal loops
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V ⊗Nh
h , i.e., the state

|ψNh×Nv{Ug, Vh}〉 =

Ug

Ug

Ug

Ug

VhVhVhVh

(4.128)

on the torus is independent of the position of the strings, as long as [Ug, Vh] = 0
(otherwise, the strings might not be movable where they intersect).

It is now clear that any such state |ψNh×Nv{Ug, Vh}〉 is a ground state of the
parent Hamiltonian H =

∑
h(x,y), since for any local term h(x,y), the strings can

be moved such that they are outside the region where h(x,y) acts. In the case of
G-injective PEPS with finite symmetry group, it could be shown that these states
precisely parameterize the full ground space of H [20]. For abelian groups, all (g, h)
yield linearly independent ground states |ψNh×Nv{Ug, Vh}〉, while for non-abelian
groups, linear dependencies arise as certain (g, h) yield identical states.

Let us now consider the case of G = SU(2). Clearly,

S ′ = span {|ψNh×Nv{U, V }〉 |U, V ∈ SU(2), [U, V ] = 0} (4.129)

is inside the ground space of H. What is the dimension of S ′? Without loss of
generality, we can restrict to U = diag(eiφ, e−iφ) – otherwise, we conjugate each Ã
with the the unitary which diagonalises U , leaving the state invariant. Then (up to
basis permutations),

U⊗Nv = eiNvφ1(Nv
0 )

⊕ ei(Nv−2)φ1(Nv
1 )

⊕
· · · ⊕ e−iNvφ1(Nv

Nv
),

(4.130)

for arbitrary values of φ, and thus, the closure U⊗Nv
g on its own parametrizes a (Nv+

1)–dimensional subspace (e.g. by choosing Fourier angles φk = 2πk/(2Nv + 1), k =
−Nv/2, . . . , Nv/2). In order to satisfy [U, V ] = 0, we must have V = diag(eiθ, e−iθ),
and thus, S ′ is at most (Nh + 1)(Nv + 1)-dimensional. However, it is easy to see
that there is at least one more redundancy: By conjugating each Ã with the Pauli
X-operator, we map φ → −φ, θ → −θ. This reduces the number of possibilities by
a factor of 2, except at φ = θ = 0.

If the remaining states are linearly independent, we have

dimS ′ =
(Nh + 1)(Nv + 1) + 1

2
. (4.131)

We were now show rigorously that these string-inserted states are indeed linearly
independent. We begin by making some useful definitions:
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Definition 4.8. For a tuple of (j, k) ∈ Z2, define a generalized greatest common
divisor

g(j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gcd(j, |k|) if j, k �= 0

j if k = 0, j > 0

|k| if j = 0, |k| > 0

1 if k=j=0

(4.132)

and make the following observations:

• The winding number of a non-trivial loop in, say, the horizontal direction is
equivalent to the difference of how many times that loop crosses the U -subset
of the right boundary vs. how many times it crosses the Ū -subset of the right
boundary cf. (4.128). An equivalent statement holds for non-trivial winding
in the vertical direction.

• If in a given loop pattern L there is a loop winding non-trivially around the
torus j times in the horizontal direction and k times in the vertical direction,
then all non-trivial loops have winding number (j, k) or (−j,−k) (in fact,
half of the loops will have winding number (j, k) and the other half (−j,−k)).
Therefore, we may denote the winding sector of such a loop pattern byW (L) =
(j, k). To remove ambiguity, we enforce j ≥ 0.

• A loop cannot wind around the torus (j, k) times if g(j, k) �= 1.

• For a loop pattern in a given winding sector (j, k), the number of non-trivial
loops is nNTL ∈ {2, 4, . . . ,min{�Nh/j , �Nv/k }}. Therefore we redefine the
winding sector of a loop pattern that has nNTL/2 loops wrapping around the
torus (j, k) times and nNTL/2 loops wrapping around the torus (−j,−k) times
as W (L) = (j × nNTL/2, k × nNTL/2).

Definition 4.9. Given Nh, Nv even, we define the index set

I =

{
(x, y)|x = 0, . . . , Nv/2,

y =

{
0, . . . Nh/2 if x = 0

−Nh/2, . . . , Nh/2 if x �= 0

}
(4.133)

Counting the number of elements in I reveals that

|I| = (Nh + 1)(Nv + 1) + 1

2
(4.134)

Besides these definitions, the following shorthand notation will be useful: we
denote

Ñh := Nh + 1 (4.135)

Ñv := Nv + 1. (4.136)
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Let us also introduce the states

|j, k〉 :=
∑
L s.t.

W (L)=(j,k)

2nL |L〉 (4.137)

where W (L) is the winding number from definition 4.8. By orthogonality of the
physical basis states, different |j, k〉 are clearly orthogonal:

〈j, k|j′, k′〉 := δjj′,kk′ || |j, k〉 ||2 (4.138)

and by the above observations || |j, k〉 ||2 �= 0 for all (j, k) ∈ I. Next, we define the
operators

Dφ =

(
eiφ 0
0 e−iφ

)
(4.139)

WNv(φ) : =

Nv/2⊗
i=1

Dφ ⊗ D̄φ (4.140)

W̃ l
Nv

: = WNv

(
πl

Ñv

)
(4.141)

which, in turn allow us to define the states

|ψφ,θ〉 := |ψ{Dφ, Dθ}〉 (4.142)

|ψ̃l,m〉 := |ψφ= πl

Ñv
,θ=πm

Ñh

〉 (4.143)

Here, we have used the notation introduced in (4.128), but suppressed the depen-
dance of |ψ〉 on Nh and Nv (and we will continue to do so for the remainder of this
section). Finally, we can Fourier transform (4.143)

|φkx,ky〉 :=
1

ÑvÑh

Nv∑
l=0

Nh∑
m=0

e
2πi

(
kxl

Ñv
+

kym

Ñh

)
|ψ̃l,m〉 (4.144)

and define the M-matrix

M(jk),(lm) :=

[
2 cos

(
πjl

g(j, k)Ñv

+
πkm

g(j, k)Ñh

)]2g(j,k)

(4.145)

for any set of integers j, k, l and m. To show that dimS ′ = |I|, we use a “sandwich”-
bound from below and above.

Claim 4.9. (Bound from above)

dimS ′ ≤ |I| (4.146)

Proof. Starting from the definition of S ′, we can first restrict the unitaries U and V
to be diagonal, i.e.

S ′ = span{|ψφ,θ〉 |φ, θ ∈ [0, 2π]} (4.147)
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This is because any state that is generated by non-diagonal U and V is related to a
state with U and V diagonal by conjugating the whole network with S, where S is
the unitary that simultaneously diagonalises U and V . Because of the fundamental
symmetry of the PEPS tensor, this conjugation leaves the state invariant.

As a first step, we are going to show that

S ′ = span{|ψ̃l,m〉} l=0,...Nv
m=0,...Nh

(4.148)

Because |ψφ,θ〉 depends linearly on WNv(φ)⊗WNh
(θ), it is sufficient to show that

span{WNv(φ)⊗WNh
(θ)} = span

{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv
m=0,...Nh

(4.149)

Clearly,

span{WNv(φ)⊗WNh
(θ)} ⊇ span

{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv
m=0,...Nh

(4.150)

and we will prove the reverse inclusion by showing that

ÑvÑh ≥ dim span{WNv(φ)⊗WNh
(θ)}

≥ dim span
{
W̃ l

Nv
⊗ W̃m

Nh

}
l=0,...Nv
m=0,...Nh

≥ ÑvÑh (4.151)

The first inequality of (4.151) follows by expanding the operator

WNv(φ) = eiNvφ1(Nv
0 )

⊕ ei(Nv−2)φ1(Nv
1 )

⊕
· · · ⊕ e−iNvφ1(Nv

Nv
), (4.152)

which, for general values of φ spans an Ñv-dimensional space. The second inequality
in (4.151) is a trivial conclusion of (4.150).

To see the validity of the third inequality, consider the matrix whose columns are
made up of the distinct diagonal entries of W̃ l

Nv
for l = Nv

2
, Nv

2
− 1, . . . , 0, Nv, Nv −

1, . . . , Nv

2
+ 1:

FNv =

⎛⎝ | |
diag(W̃

Nv/2
Nv

) diag(W̃
Nv/2−1
Nv

) . . .
| |

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6 . . .
1 ω3 ω6 ω9

...
. . .

⎞⎟⎟⎟⎟⎟⎠ (4.153)

which is simply Ñv times the Ñv × Ñv discrete Fourier matrix (we have set ω =

exp(2πi/Ñv)), and therefore has full rank equal to Ñv. Applying these arguments
to both tensor factors individually yields (4.151).
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Finally, we will prove that

span{|ψ̃l,m〉} l=0,...Nv
m=0,...Nh

= span{|ψ̃l,m〉}(l,m)∈I (4.154)

by showing that for each (l,m) /∈ I, there exists an (l′,m′) ∈ I such that |ψ̃l,m〉 =
|ψ̃l′,m′〉. The key observation is that

|ψ{U, V }〉 = |ψ{XUX†, XV X†}〉 (4.155a)

|ψ{U, V }〉 = |ψ{−U, V }〉 (4.155b)

|ψ{U, V }〉 = |ψ{U,−V }〉 (4.155c)

which follows from the fact that conjugating the whole tensor network with iX ∈
SU(2) leaves the state invariant and the numbers of Us and V s are both even.
Inserting

U = diag(exp(πil/Ñv), exp(−πil/Ñv)) and

V = diag(exp(πim/Ñh), exp(−πim/Ñh)), (4.156)

we obtain

|ψ̃l,m〉 = |ψ̃−l,−m〉 (4.157a)

|ψ̃l,m〉 = |ψ̃l±Ñv ,m
〉 (4.157b)

|ψ̃l,m〉 = |ψ̃l,m±Ñh
〉 (4.157c)

Using (4.157a) - (4.157c), for each (l,m) ∈ [0, . . . Nv] × [0, . . . Nh] we can now find
an (l′,m′) ∈ I such that |ψ̃l,m〉 = |ψ̃l′,m′〉 which imply (4.154) and, together with
(4.148) show that

dimS ′ ≤ |I| (4.158)

Claim 4.10. (Bound from below)

dimS ′ ≥ |I| (4.159)

Proof. Because of (4.148) and the |φkx,ky〉 being linear combinations of the |ψ̃l,m〉
via (4.144), it is clear that

S ′ ⊇ span{|φkx,ky〉}(kx,ky)∈I (4.160)

Also, from the observations made in the beginning of this section and (4.137) and
(4.145), we see that

|ψ̃l,m〉 =
∑
(jk)∈I

M(jk),(lm) |j, k〉 (4.161)
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The matrix elements of M can be simplified using the binomial theorem. For better
readability, we are going to suppress the argument of g = g(j, k).

M(jk),(lm) =

[
2 cos

(
jlπ

Ñvg
+

kmπ

Ñhg

)]2g

=

[
e

πi
g

(
jl

Ñv
+ km

Ñh

)
+ e

−πi
g

(
jl

Ñv
+ km

Ñh

)]2g

=

2g∑
a=0

e
2πi
g

(
jl

Ñv
+ km

Ñh

)
(a−g)

(
2g

a

)
(4.162)

Plugging (4.161) and (4.162) into (4.144) yields

|φ(kx,ky)〉 =
∑
(jk)∈I

2g∑
a=0

(
2g

a

)
|j, k〉

× 1

Ñv

Nv∑
l=0

[
e

2πi

Ñv
( j
g
(a−g)−kx)

]l
︸ ︷︷ ︸

δ j
g (a−g)−kx∈ÑvZ

× 1

Ñh

Nh∑
m=0

[
e

2πi

Ñh
( k
g
(a−g)−ky)

]m
︸ ︷︷ ︸

δ k
g (a−g)−ky∈ÑhZ

(4.163)

In principle, the constraints only enforce e.g.,

k

g
(a− g)− ky = nÑh (4.164)

for n ∈ Z. However, we will now show that if |n| ≥ 1, then it follows that |a−g| > g
which entails that either a < 0 or a > 2g, in both cases the summation on a will be
empty. Rearranging (4.164) and taking the absolute value yields

|a− g| = |nÑh + ky|
|k| g

≥ |n|Ñh − |ky|
|k| g

> Ñh
|n| − 1/2

|k| g

>
Ñh

2

2

Ñh

g

= g, (4.165)

(4.166)

where we have used that |a + b| > |a| − |b|, |n| ≥ 1, |ky| < Nh/2 and |k| < Nh/2.
This argument can be carried out for the constraints originating from both the
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summation over l and m, leaving us with:

j

g
(a− g) = kx (4.167)

k

g
(a− g) = ky (4.168)

These equations mean that

〈j, k|φ(kx,ky)〉 =
{(

2g
kxg/j+g

)
if kx/ky = j/k

0 otherwise
(4.169)

In particular, by orthogonality of the |j, k〉, sectors with different kx/ky are mutually
orthogonal. As a final step, we will investigate the sector that is spanned by the
vectors

{|φ(kx,ky)〉} (kx,ky)∈I
kx/ky=p/q

(4.170)

for a fixed, completely reduced fraction p/q. The vectors in this set have the form
|φ(p,q)〉 , |φ(2p,2q)〉 , . . . . Since

〈p, q|φ(bp,bq)〉 =
(

2

b+ 1

)
, (4.171)

only |φ(1p,1q)〉 has non-zero overlap with |p, q〉. Therefore, |φ(1p,1q)〉 must necessar-
ily be linearly independent from all other vectors in that sector. We can therefore
remove |φ(1p,1q)〉 from {|φ(kx,ky)〉}(kx,ky)∈I kx/ky=p/q and check the remaining basis vec-
tors for linear independence. Indeed we can iterate this procedure to show that in
the remaining set, there exists exactly one vector that has non-zero overlap with
|bp, bq〉, which is |φ(bp,bq)〉. Therefore,

dim span{|φ(kx,ky)〉}(kx,ky)∈I = |I| (4.172)

and by equation (4.160), it follows that

dimS ′ ≥ |I| (4.173)

We have shown that there is a polynomial number of ground states spanned by
string-inserted states. One might think that this parameterizes the full ground space
of H, just as for G-injective PEPS with finite G. However, this is not the case. To
see this, consider an arbitrary bit-string b ∈ {0, 1}Nh . Then, we define the product
state |v(b)〉 by stacking Nv copies of b on top of each other and then identifying
0 → |0〉 and 1 → |1〉, for example

|v(0101)〉 = (4.174)

Horizontally stacked states |h(b)〉 are defined accordingly. Clearly, there are 2Nh +
2Nv − 2 of these states (since only the all-0 and all-1 states are doubly counted).
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Finally, all of them are ground states, since, by definition, no plaquette locally
looks like any of |B〉 = |0 1

1 0〉, |E1〉 = |0 0
1 0〉, |E2〉 = |0 1

0 0〉, |E3〉 = |1 1
1 0〉 or |E4〉 = |0 1

1 1〉,
even across the boundary. Note that in all of these configurations, the winding
of the loops around the torus is maximal in at least one direction (horizontally or
vertically). We call these states isolated states, as they are not coupled to any other
loop configuration by the Hamiltonian.

We therefore find that the ground space degeneracy of H is at least exponential
in Nv and Nh, and thus cannot be parametrized by strings of symmetry operations
alone. In fact, e.g. the states

|v(0101)〉 = |v(1010)〉 = (4.175)

are indistinguishable by any such string operation. It is worth pointing out, however,
that all of these ground states are isolated and in the sector with maximal winding
number, so it might still be possible that in the remaining sectors, the ground space
can be parametrized succinctly in terms of the symmetry.

4.3 Conclusion

In this chapter, we have extended our study of symmetric PEPS to a non-abelian
continuous symmetry. We investigated a class of SU(2)-invariant PEPS with the
fundamental represention of SU(2), and studied their entanglement properties and
their relation to local Hamiltonians. First, we have introduced the most general
form of tensors invariant under the fundamental representation of SU(2). From the
local tensor, we have constructed local parent Hamiltonians acting on 2 × 2 sites,
and characterized their ground space structure. For open boundaries, we have found
that the ground space on rectangular patches on any size is always exactly param-
eterized by the PEPS, i.e., the intersection property is fulfilled. We were further
able to show that by choosing appropriate Hamiltonian terms at the boundary, the
system acquires a unique ground state. On a system with periodic boundary condi-
tions, we have found a ground space degeneracy which grows with the system size.
We were able to attribute this to at least two distinct mechanisms: First, closing the
boundaries with symmetry twists of SU(2), in analogy to finite symmetry groups,
yields a linearly growing number of ground states; and second, extremal isolated
spin configurations yield an exponentially growing number of states. Regarding the
entanglement properties of the state, we found that the zero Renyi entropy has a
logarithmic correction to the area law scaling and that there are further geometric
restrictions on long and thin bypartitions. Finally, we have mapped certain cor-
relation functions of the PEPS to a classical Potts model. Using this mapping, it
becomes clear that the physics of the isotropic (λ = 1) point is that of a translation
symmetry breaking plaquette state.

We are now equipped with a rigourous proof for the intersection property in a
PEPS with a continuous symmetry. It would be interesting to find a more general
(and potentially simpler) symmetry-based proof. Also, isolated states seem to be
common in the study of PEPS with continuous symmetries. Can a general proof for
their existence be constructed? Another interesting question concerns the existence
critical points in the non-abelian case.
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An interesting observation is that, for periodic boundaries and λ = 1, we obtain
exactly the wave function of a quantum loop model |ψNh×Nv(A,PBC)〉 =

∑
L d

nL |L〉
which was studied in [137, 138]. The main focus of those works is the case where
the so called topological weight is d = 2 cos

(
π

k+2

)
< 2 for k a positive integer. In

that case, a Hamiltonian with a finite number of ground states on the torus in the
thermodynamic limit can be found, in contrast to the exponential degeneracy we
find in our model. The topological weight in our PEPS wave function is given by
the bond dimension d = 2. While our construction can be extended to any integer
d > 2, it is unclear whether a PEPS description with constant bond dimension exists
for the quantum loop models investigated in the above references.

Finally, when computing diagonal observables, the PEPS contraction coincides
with the result of a Monto Carlo simulation [145]. This might indicate that PEPS
with continuous symmetries beyond this model are susceptible to Monte Carlo
schemes, and replacing the computationally heavy PEPS contraction in such a man-
ner may prove useful e.g., in variational calculations.
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Chapter 5

Subsystem Symmetry Protected
Topological Order

In this chapter we will consider elementary tensors whose symmetry is not described
by a simple group action of the form (2.3) but follows a more anisotropic form. The
resulting states differ from the wave functions considered so far: The PEPS actually
have a physical symmetry and this symmetry is neither local, nor global, but an
intermediate subsystem symmetry. They are the unique ground states of gapped
2D Hamiltonians on periodic boundary conditions. Still, these states can not be
deformed into a product state as long as the subsystem symmetries are respected.
We therefore speak about subsystem symmetry-protected topological (SSPT) order.
We have encountered topological order protected by global symmetries in chapter 1,
where we investigated the AKLT chain. Natural generalizations to two-dimensional
SPT order protected by global symmetries have also been obtained [146, 147]. While
states with subsytem symmetries generally also exhibit global symmetries (obtained
by applying many symmetries at once), the stronger symmetry condition entails
its own set of interesting consequences: First, such symmetries can be shown to
be necessary in the context of measurement-based quantum computation, that is,
the ground state in certain SSPT phases can be exploited as a resource to perform
universal quantum computation [148–151]. Second, subsystem symmetries can be
subjected to a generalized gauging procedure, yielding novel fracton phases of matter
in three dimensions [152–155].

One example of such an SSPT ordered phase is the Cluster Phase. In this
chapter the center stage is taken by the Cluster phase’s ground state entanglement
entropy. In section 5.1, we investigate the Renormalization Group fixed point deep
in the phase and show that it exhibits a subtractive correction to the area law.
This correction is identical to the correction in topologically ordered phases and
thus weakens measurements of the entanglement entropy as a phase classification
mechanism. On the other hand, recent studies conjectured this correction to be
spurious, only appearing at special points in the phase. In section 5.2, we show that
the opposite is the case: We give both analytical and numerical evidence that the
correction persists everywhere in the phase, except at certain fine-tuned points. We
discuss our conclusions and open questions in 5.3.
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Figure 5.1: The rotated square lattice on a cylinder with circumference N = 5. The horizontal and
vertical line symmetries Uh and Uv are shown as well as an entanglement cut next to a vertical
subsystem symmetry. Also shown are the terms of the stabilizer parent Hamiltonian both at the
Cluster (K) as well as the |θ = π〉 point (K ′). Figure courtesy of D. T. Stephen and reprinted with
permission c©The American Physical Society (2019).

5.1 The Cluster State

The purpose of this section is to set the stage by introducing the Cluster state, which
is both a paradigmatic example of SSPT order and our point of departure to explore
the surrounding quantum phase in the next section.

Throughout the first part of this chapter, we will work with a PEPS on the two-
dimensional square lattice that is rotated by 45◦ (Fig. 5.1). To facilitate notation,
throughout this chapter we will use X, Y, Z to mean the Pauli matrices.

5.1.1 Symmetries

We will now define symmetries of an elementary PEPS-tensor in such a way that
the resulting state is symmetric under the application of a unitary that is acting
strictly along a line of the (rotated) lattice (the lines Uh(c) and Uv(0) shaded in gray
in Fig. 5.1). To this end, consider a bond dimension D = 2-tensor C1 with physical
dimension d = 2 and the following constraints

= =

= = (5.1)
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The solution to the above constraints is given by the following one-parameter family
of fiducial states

|C1〉 = |α+〉
∣∣∣∣∣∣
0 +

0 +

〉
+ |α−〉

∣∣∣∣∣∣
1 −

1 −

〉
(5.2)

with |α±〉 = cos(α) |+〉± sin(α) |−〉. Denoting = X, = Z, we can apply a string
of X across the lattice:

=

= (5.3)

and

= (5.4)

for the adjacent line. We have applied the symmetries (5.2) in the shaded areas.
We make the following two observations: First, when periodic boundary condi-
tions are imposed, the line-symmetries become actual physical symmetries of the
state. Second, on open boundaries, the symmetry fractionalizes at the boundary in
a non-trivial way: While neighbouring lines commute in the bulk, the corresponding
virtual representations at the boundary anticommute. After blocking L×L sites of
a cylinder with circumference L, one therefore obtains an MPS with precisely the
same symmetry properties as the AKLT state (1.27): The line-symmetry has turned
into a single-site operator that pushes through to the virtual level as a non-trivial
projective representation. Indeed, it can be proven rigorously, that the the cluster
state possesses “strong” SSPT order, i.e., it cannot be connected to a product state
by a finite depth circuit, even if one allows the circuit to be merely linearly sym-
metric, i.e., to be comprised of gates that individually break the symmetry but can
be grouped in such a way that the subcircuit along a lower-dimensional retains the
relevant symmetry [156].
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5.1.2 Parent Hamiltonian

We now set α = π/4 in (5.2) and denote the resulting state as |C〉 (the Cluster State).
A few features of the resulting state can be verified: First, for each computational
basis state, one may assign the subgraph of the square lattice which has an edge
between two qubits if and only if they are both in the |1〉-state. Then, |C〉 is an equal-
weight superposition over all computational basis states, where the sign of each term
in the sum is (−1)ne , where ne is the number of edges in the corresponding subgraph.
This expression grants us access to the (non-symmetric) finite-depth unitary circuit
that connects the Cluster state to a product state:

|C〉 =
∏
e

CZe |+〉N , (5.5)

where the product runs over all the edges of the lattice and

CZ =

⎛⎜⎜⎝
1

1
1

−1

⎞⎟⎟⎠ . (5.6)

Using this expression, we readily see that

K(x,y) |C〉 = |C〉 , (5.7)

where K(x,y) = X(x,y)Z(x−1,y)Z(x,y−1)Z(x,y+1)Z(x+1,y), as shown in Fig. 5.1. This is
seen by plugging XiCZij = XiZj and (5.5) into (5.7). Therefore, |C〉 must be a
ground state of the stabilizer Hamiltonian

H = −
∑
(x,y)

K(x,y) (5.8)

and since there are as many independent constraints as there are qubits, it is the
unique ground state on periodic boundary conditions.

5.1.3 Entropy

The fact that |C〉 is a stabilizer state can be exploitet to compute the von-Neumann
entropy exactly. We choose to bipartition a long (the result will be independent of
the length of the system due to the area law) cylinder of circumference L by a cut
that runs along the compactified axis of the rotated cylinder (see Fig. 5.1). It has
been shown in [157] that the entropy of a bipartition of a stabilizer state into regions
A and B is given by

S(ρA) = |A| − log |GA|, (5.9)

where GA is the group generated by stabilizers acting exclusively within subregion
A. The number of such generators is easy to count: Out of the |A| generators that
act on A, there are L star operators K(x,y) in the immediate vicinity of the boundary
that act on both A and B (Fig. 5.1). However, the product of all K along the cut
is precisely the line-symmetry (5.3) which is completely contained in A. Therefore
log |GA| = 2|A|−L−1, yielding

S(ρA) = L− γ, (5.10)
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where the offset γ = 1 is independent of the size of the boundary. Owing to the
way the subsystem symmetries lead to the γ-term, we call this offset the Symmetry-
Protected Entanglement Entropy (SPEE). A correction to the area law of the form (5.10)
is familiar from the study of systems with intrinsic topological order. In such sys-
tems the ground state manyfold is characterized by wave functions that cannot be
continuously connected to any product state regardless of any symmetries imposed.
They therefore form a phase of matter that is rather distinct from the present case.
Detection of these topologically ordered phases is complicated by the fact that there
is no local order parameter that can be measured. Instead, it has been put for-
ward that one may use the entanglement entropy as a means to detect and classify
such phases. Using a suitable partition of the system [33, 34] one may measure the
entanglement entropy of a ground state and draw conclusions about the quantum
dimension of the underlying topologically ordered phase. However, as we have just
shown, under this scheme the 2D Cluster State is indistinguishable from e.g., the
Toric Code (at least with the present partition).

It was argued in [158] that the detection mechanism is rescued by the fact that
the correction of the Cluster State are spurious, i.e., there exist ground states in the
“Cluster Phase” that display a larger correction to the area law. It is the purpose of
the next section to show that these larger corrections are fine-tuned and - as long as
the geometry remains as shown in Fig. 5.1 - the correction γ = 1 is instead robust
throughout the phase.

5.2 The Cluster Phase

We will now begin exploring the Cluster Phase that surrounds the zero correlation
length Cluster State. In order to argue that the SPEE introduced in the previous
section is universal within the phase, except at fine-tuned points, we first introduce
an exactly solvable perturbation, then give a more general analytical argument and
finally conduct a numerical experiment.

5.2.1 An Exactly Solvable Perturbation

To illustrate our arguments, let us choose one particular path within that phase
that contains both the cluster state, as well as the state analyzed in [158], which
was found to exhibit a larger correction to the entanglement entropy. To this end
consider the states |θ〉 that are obtained by the following unitary circuit U(θ) applied
to the cluster state

|θ〉 =
∏
e

[(H ⊗H)Cθ(H ⊗H)]e |C〉 (5.11)

where, again, the product runs over all edges of the lattice and

H =
1√
2

(
1 1
1 −1

)
and

Cθ =

⎛⎜⎜⎝
1

1
1

eiθ

⎞⎟⎟⎠ (5.12)
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This finite-depth circuit is readily seen to describe a path of states contained within
the cluster phase, since each of the gates is diagonal in the localX-basis and therefore
commutes with all the subsystem symmetries. Up to complex conjugation, the path
is symmetric around θ = π, so we consider θ ∈ [0, π]. Let us now investigate the
quantity γ(θ) as defined by (5.10).

We have already shown that γ(0) = 1. For θ = π, we can carry out a similar
analysis, since the state is again a stabilizer state. This time, the operators stabi-
lizing the state are enlarged versions of the star operator that has grown under the
unitary evolution (cf. Fig. 5.1):

U(π)K(x,y)U
†(π) =X(x,y+2)X(x,y−2)Z(x−1,y)Z(x,y−1)

X(x,y)Z(x,y+1)Z(x+1,y)X(x−2,y)X(x+2,y). (5.13)

Repeating the analysis of surrounding (5.9), we find that there are now two inde-
pendent ways of multiplying stabilizers that act across the cut in such a way that
their product yields an operator that is completely contained within subregion A,
namely the star operators along a diagonal of distance one and two along the cut.
The size of |GA| is therefore 2|A|−L−2 and therefore γ(π) = 2.

For intermediate values of θ, there are several possibilities: First, γ could be a
smooth function of θ or there could be a jump for some value θ > 0. In both cases
we could immediately conclude that the correction γ = 1 would not be universal
within the phase. However, we will now show that γ = 1 for all θ, except at θ = π,
where a jump occurs. It follows that, at least along this particular path, γ = 1 is
universal.

Since, for intermediate values of θ, |θ〉 is not a stabilizer states we have to resort to
a different method in order to compute the entanglement entropy, inspired by [159]:
Fortunately, the calculation can be simplified using the knowledge of a short depth
circuit that disentangles the state, namely∏

e

CZeU(−θ) |θ〉 = |+〉N . (5.14)

Moreover, the entanglement entropy is invariant under applying local unitaries to
either subsystem. Applying those gates of

∏
e CZeU(−θ) that act on edges that

are contained exclusively in A or B, we obtain a new density matrix with the same
entropy as ρA:

ρ′A = TrB
∏
e

[(H ⊗H)Cθ(H ⊗H)]eCZe(|+〉 〈+|)L
∏
e

CZe[(H ⊗H)Cθ(H ⊗H)]e

(5.15)

The A(B)-subsystems now comprise the qubits immediately to the left (right) of the
cut (Fig. 5.1). Crucially, we have reduced the computation to a one-dimensional
one which is now amenable to tensor-network techniques. Since these techniques are
straightforward for higher integer Renyi entropies, but hard for the von-Neumann
entropy, we will focus on the Renyi 2-entropy S2(A) = Tr(ρ′A

2) from now on. We can
set up an expression for ρ′A

2 in terms of a Matrix Product Density Operator (MPDO)
(Fig. 5.2). For a cylinder of circumference L, there are two ways of contracting the
network corresponding to Tr(ρ′A

2): First, one may set up ρ′A
2 first and then take
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the trace, encountering an exponential overhead. It is much more advantageous to
contract “from-top-to-bottom” (cf. Fig. 5.2). We can therefore rewrite:

Tr(ρ′A(θ)
2) = Tr(QL(θ)), (5.16)

for Q(θ) the matrix defined in Fig. 5.2. The spectrum of Q(θ) allows us to make
statements even in the thermodynamic limit: If there is a unique largest eigenvalue
with magnitude r, then for L → ∞, we have that S2(θ) = Lr + O (

e−L
)
, i.e., r is

the prefactor of the area law and γ = 0. If there are multiple leading eigenvalues
λk = reiφk , the entropy becomes

S2(θ) = L log2 r − log2 m+O (
e−L

)
(5.17)

with m =
∑

k e
iLφk . Therefore, γ(θ) = log2 m is non-zero if Q(θ) has degenerate

leading eigenvalues and it may oscillate with system size depending on the phase
structure of these eigenvalues. From the definition of Q(θ) (Fig. 5.2), we see that
Q(θ) is a matrix of size 28 × 28 and can therefore be easily diagonalized, the result
of which is shown in Fig. 5.3. For θ �= π, there are two largest eigenvalues, both of
which are positive. We therefore have that γ = 1. For γ = π we find that the largest
eigenvalues are 1/4,−1/4, i/4 and −i/4 with degeneracies 8, 4, 2 and 2, respectively.
Therefore

S
(2)
A (π) =

⎧⎪⎨⎪⎩
2N − 4 if 4 | N
2N − 3 if 2 | N and 4 � N

2N − 2 if 2 � N

. (5.18)

We conclude that γ = 1 along the path (5.11), except at a single point θ = π, where
γ ∈ {2, 3, 4}, depending on the size of the system.

Figure 5.2: The network representing Trρ′A
2(θ) and the definition of the matrix Q(θ). Physical

legs are shown in blue, virtual legs are black. u1 and u2 are obtained from the singular value
decomposition of the two-body gates. The resulting A-and B-tensors each have bond dimension 4.

5.2.2 Generic Ground States

To bolster our case, we now consider generic ground states in the phase. Unfor-
tunately, we cannot employ a direct dimensionality reduction as in section 5.2.1
since we do not have access to the precise form of the quantum circuits that create
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those states from the Cluster state. Instead, we recall the bulk-boundary correspon-
dence (1.47): The reduced density matrix of one half of a long cylinder of a PEPS
can be written as ρ = U

√
σT
LσR

√
σT
LU

†, where σL and σR are the left and right
eigenvectors of the PEPS transfer matrix and U is an isometry. In particular, the
entanglement entropy of such a region is identical to the entropy of the symmetrised
fixed-point

σ :=
√

σT
LσR

√
σT
L . (5.19)

Equation (1.47) offers two distinct points of attack. First, we can exploit the sym-
metries of the tensor network (5.2) to analytically constrain σ at arbitrary points
in the cluster phase. Second, we may consider small perturbations away from the
Cluster Hamiltonian (5.8) and attempt to find σ numerically. We will explore both
avenues in sections 5.2.2 and 5.2.3, respectively.

Before we carry out these analyses, we introduce a slightly different representa-
tion of the system that will be useful in the subsequent sections. The new represen-
tation is formed by blocking two sites (e.g., (x, y) and (x+1, y)) into a new unit cell.
The new tensor has two physical indices that we call a and b. It can be checked that
this tensor can be recompressed to bond dimension D = 2. The symmetries (5.2)
induce the following symmetries for the blocked tensor:

= =

= (5.20)

The advantage is that we can now work on the more familiar non-rotated square
lattice while keeping the line-symmetries parallel to the axes of the cylinder and the
entanglement cut.

An Analytic Argument

We now set up an analytic argument that shows that γ = 1 throughout the phase
under relatively weak assumptions. The structure of the argument proceeds as
follows: First, we give an alternative proof for γ = 1 in the Cluster state, based
solely on the defining symmetry (5.2). Then, we use a theorem stating that those
symmetries are robust everywhere within the phase.

The symmetries (5.20) concatenate to yield the following commutation relations

121



CHAPTER 5. SUBSYSTEM SYMMETRY PROTECTED TOPOLOGICAL
ORDER

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

Figure 5.3: Absolute value of the 18 largest eigenvalues of the matrix Q(θ) cf. Fig. (5.2). Each dot
represents at least two degenerate eigenvalues and darker shading indicates larger degeneracies.
The leading eigenvalue is two-fold degenerate everywhere except at θ = π, where it is 16-fold
degenerate. Figure reprinted with permission c©The American Physical Society (2019).

for the transfer matrix

= =

= = (5.21)

Deep in the cluster phase, the fixed points σL and σR are unique and therefore satisfy
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the above symmetries, i.e.,

[Xk, σL/R] = 0 (5.22a)

[ZkZk+1, σL/R = 0 (5.22b)

X⊗NσL/R = σL/RX
⊗N = σL/R (5.22c)

Hence, there are 2N independent operators that stabilize the fixed point. The unique
solution to these constraints is

σL/R =
1+X⊗N

2
. (5.23)

Since this is nothing but a projector on the even-parity subspace, the entanglement
spectrum is

λ1 =, . . . ,= λ2N/2 = 2/2N (5.24)

λ2N/2+1 =, . . . ,= λ2N = 0 (5.25)

and

S = N − 1 (5.26)

for all Rényi entropies.
Next, we show that the above argument works everywhere in the Cluster phase,

except at fine-tuned points. Small excursions into the surrounding phase are real-
ized by adiabatic changes of the ground state wave function. Intuitively, such an
evolution should be well captured by applying a PEPO to the initial tensor 1

(5.27)

In case of the cluster phase, this decomposition has the special property that

. (5.28)

and this decomposition is valid everywhere within the phase [148]. The virtual space
is seen to be decomposed into a protected (C2) and junk (B2) subspace. Crucially,

1Figures in equations (5.27) and (5.28) courtesy of D. T. Stephen and reprinted with permission
c©The American Physical Society (2019).
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the fact that Xa/b pushes through the PEPO-tensor is sufficient to prove (5.21)
where all operators acting on the protected subspace. Furthermore, the fixed point
of the modified transfer matrix continues to be unique by adiabaticity. Therefore,
everywhere in the Cluster phase

σL/R =

(
1+X⊗N

2

)
protected

⊗ σ̃L/Rjunk
(5.29)

and consequently, the entanglement spectrum is equivalent to the spectrum of

σ =

(
1+X⊗N

2

)
protected

⊗ σ̃junk (5.30)

with σ̃ =
√

σ̃T
L σ̃R

√
σ̃T
L . Since the entropy is additive,

S = N − 1 + S(σ̃). (5.31)

We conclude that γ = 1 precisely, as long as σ̃ is a generic full rank matrix.

5.2.3 Generic Perturbations - Numerics

We have numerically proven γ = 1 along a specific path traversing the Cluster phase
(section 5.2.1) and provided an argument why γ = 1 generically. The purpose of
this section is to numerically tackle generic points in the phase. We consider both
symmetry-breaking as well as symmetry-preserving perturbations of the Cluster
Hamiltonian (5.8)

H = HC +
∑
x,y

h′
x,y (5.32)

According to our hypothesis, we should have γ = 1 for small arbitrary perturbations
that respect the line-symmetries and γ = 0 for symmetry-breaking terms. Indeed,
the numerical data we present in this subsection provides evidence for this hypoth-
esis. Once we have confirmed our hypothesis and established the correctness of our
numerical approach, we will then use the algorithm to probe a specific perturbation
that breaks the line-symmetries but keeps what we will call subsystem time rever-
sal symmetry. Surprisingly, we find that the SPEE (and hence the SSPT order) is
robust to this perturbation, indicating a new phase of matter beyond the cluster
phase.

To compute the ground state entropy we work in the blocked picture (5.20). An
optimal PEPS tensor for the ground state is found variationally using an iPEPS
algorithm [160, the optimization was done by M. Iqbal]. Technically, the algorithm
works directly in the thermodynamic limit but since there is a finite correlation
length, the same tensor should also describe with good accuracy the ground state
on a large cylinder. We then cut the cylinder in half and use the bulk-boundary
correspondence (1.47). Numerically, it is easiest to access the second Renyi entropy
S2(ρ) = − log2 Trρ

2. In terms of the fixed point this reads

S2 = − log2 Tr(σRσ
T
LσRσ

T
L) (5.33)
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If the fixed points are well approximated by MPOs, the same technique we used
in section 5.2.1 can be used theoretically, contracting it “from top to bottom”, cf.
Fig. 5.2:

Tr(σRσ
T
LσRσ

T
L) = Tr(QL). (5.34)

It remains to find an accurate MPO description of the fixed point tensors. From
the fixed point tensors, the matrix Q is obtained and the leading eigenvalues are
extracted. In the following, Q will always at most have two degenerate eigenvalues,
so we will call the leading two eigenvalues λ0 and λ1. In exact analogy with eq. (5.17),
we have that γ = 1 if the leading eigenvalue of Q is two-fold degenerate, while γ = 0
if it is unique. Measuring the ratio λ1/λ0 therefore gives us direct access to the
SPEE.

Benchmarking the Algorithm

We begin by studying four known models to determine if our algorithm is able to
detect and locate the transition points faithfully. The first two will be symmetry-
respecting while the latter two are symmetry-breaking. By definition of SSPT order,
we expect the symmetry-respecting perturbation to only drive the system into a
different phase if they are sufficiently strong, while the symmetry-breaking models
may have topologically trivial phases in the immediate vicinity of the Cluster point.
The data is shown in Fig. 5.4.

The first perturbation we consider is a local X-field

h′
x,y = −hXXx,y. (5.35)

Our data indicate that λ1/λ0 = 1 up to hX = 1, where a sudden drop occurs. We
explain this as follows: Clearly, for hX → ∞ the system will go into a topologically
trivial paramagnetic phase. At the same time, the perturbation respects the sub-
system symmetries, so a phase transition must occur for some finite value of hX .
We can find this value using a simple Kramers-Wannier argument [161, 162]: The
model is dual under hX → 1/hX , by conjugating the Hamiltonian with

∏
e CZe,

which maps K(x,y) ↔ X(x,y). Therefore, if there is a single phase transition, it must
occur at hX = 1. Indeed this has been confimed through a (non-local) mapping to
the transverse-field Xu-Moore model [163–167]. The proposed algorithm therefore
detects the phase transition successfully.

The second term we consider is the minimal perturbation containing Z-operators
but still commuting with the line symmetries

h′
x,y = −J�

ZZZZZx−1,yZx+1,yZx,y−1Zx,y+1. (5.36)

The data for this perturbation again indicates that λ1/λ0 = 1 up to a phase tran-
sition at J�

ZZZZ at which a downward jump occurs. This time, conjugating by
the unitary

∏
e CZe leaves the perturbation invariant, while the star operators are

mapped into local X-fields. This is precisely the definition of the transverse-field
Xu-Moore model and, by the argument from the last paragraph, there is a phase
transition at J�

ZZZZ = 1. Again, the existence and location of this transition is
accurately predicted by our numerics.
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Next, we benchmark our algorithm on perturbations that break the line symme-
tries. First consider the local field

h′
x,y = −hZZx,y. (5.37)

Under
∏

e CZe this family of Hamiltonians maps to the trivial paramagnet (along
an axis in the XZ-plane) and we expect λ1/λ0 to deviate from 1 for any hZ > 0.
Indeed, this is consistent with our data.

Finally, we consider the term

h′
x,y = −J×

ZZ (Zx,yZx+1,y+1 + Zx,yZx−1,y+1) . (5.38)

The reason to consider this term is two-fold: First, despite breaking the individual
line symmetries, this perturbation commutes with the global Z2 × Z2-symmetry
of the cluster state (applying X to the whole A or B-sublattice). It was shown
in [168, 169] that the cluster state possesses “weak” SPT order protected by this
symmetry, that is, it can be connected to a product state by a circuit respecting
the Z2 × Z2-symmetry if translation invariance is not enforced. This perturbation
therefore allows us to check if the SPEE is due to the line symmetries or if the overall
weak SPT order is sufficient. Second, (5.38) is slightly richer than the previous
perturbation, since

∏
e CZe maps the model to two uncoupled transverse field Ising

models which undergo a symmetry-breaking transition at J×
ZZ ≈ 0.3285. While not

tailored to detect such transitions, we would like to find out whether signatures
of the second-order phase transition are visible in the SPEE. The data shows that
λ1/λ0 < 1 for J×

ZZ > 0, confirming our first hypothesis that the global Z2 × Z2-
symmetry is not sufficient to protect the SPEE. Second, there is a clear signature of
singular behaviour at the expected value of J×

ZZ , suggesting that the algorithm may
even be useful to detect non-SSPT transitions.

Applying the Algorithm - A New Phase of Matter

Having established the correctness of the algorithm in the previous subsection, we
now turn to models that have not yet been studied. As a warm-up, we consider
another symmetry-preserving term:

h′
x,y = −JXX (Xx,yXx+1,y +Xx,yXx,y+1) . (5.39)

The reason to consider this additional perturbation is that we would like to strengthen
the claim that γ = 1 is generic for symmetric perturbations. By having access
to a third such perturbation, we can construct small random combinations of the
symmetry-respecting perturbations and validate that γ = 1 is always fulfilled. For
this particular choice we numerically find that λ1/λ0 = 1 in a finite region, as
expected. At −JXX ≈ 0.5, a sudden drop occurs, indicating the demise of the
SSPT order. We also verified that γ = 1 for a combination of (5.35), (5.36), (5.39)
and (5.41) (to be defined in the next paragraph):

h′
x,y =− 0.1Xx,y − 0.05 (Xx,yXx+1,y +Xx,yXx,y+1)

− 0.05Zx−1,yZx+1,yZx,y−1Zx,y+1 − 0.1Yx,y. (5.40)

Finally, we come to the most interesting perturbation of this section:

h′
x,y = −hY Yx,y. (5.41)
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Adding such a local Y -field breaks the line-symmetries and thus we would expect
λ1/λ0 < 1 for any hY > 0. However, our data clearly indicates λ1/λ0 = 1 as long as
hY < 1 (cf. Fig. 5.5).

One tempting explanation for the robustness to Y -perturbations relies on the fact
that the line symmetries considered so far are not necessary to protect the SSPT
order. Indeed, it was shown in [170] that the Cluster state is symmetric under the
application of a product of Y -operators in a fractal geometry. An immediate problem
with this explanation is given in the discussion surrounding eq. (5.38). There, we
found that the SPEE only exists in the presence of symmetries that are spatially
close to the cut, which is not the case for the fractal symmetries. To deliver the
final blow to the fractal hypothesis, we consider the perturbation

h′
x,y = −hXXx,y − hY Yx,y, (5.42)

which breaks both the line symmetries and the fractal symmetries explicitly. Still,
our data shows that γ = 1 for h2

X + h2
Y < 1 (Fig. 5.5). Before we move on, let us

make a comment about the effectiveness of γ as a detection mechanism for quantum
phases. Note that one could measure the onset of paramagnetic order in the X- or
Y -direction by using appropriate local order parameters. There is however, no clear
choice of order parameter that remains reliable along the entire transition line. The
SPEE, on the other hand, is agnostic to the phase that lies beyond the transition.

In this subsection, we have established that γ is a reliable indicator of non-trivial
SSPT order. In fact, we have used to to show that the Cluster Phase is embedded
in a larger SSPT phase, which will subsequently refer to as the XY Phase. What is
the nature of this phase and which is the symmetry protecting it?

Perturbation Theory

To resolve these questions, we turn to perturbation theory, which provides two
benefits to the present discussion. First, with the cluster state as the reference state,
pertubation theory may be carried out to arbitrary order analytically. Second, this
analytical understanding yields a PEPS representation of the perturbed state (at
any desired order). The latter will finally allow us to identify a symmetry that we
hypothesise to protect the SSPT order. Crucially, this symmetry is again found to
be geometrically close to the cut, unlike the fractal symmetries considered before.

h
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Figure 5.4: Ratio of the two largest eigenvalues of the matrix Q implicitly defined in (5.34). There
is a correction γ = 1 to the area law if λ1/λ0 = 1 and γ = 0 else. Inset: magnification of the region
indicated by the dotted circle, showing that the symmetry breaking J×

ZZ immediately destroys
the SPEE. Figure courtesy of M. Iqbal and reprinted with permission c©The American Physical
Society (2019).
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Figure 5.5: Phase diagram of the perturbation defined by (5.42). Shown are the X-and Y -
magnetization as well as the ground state energy per site. The last diagram shows the ratio
of the largest eigenvalues of the matrix Q and indicates that there is an extended SSPT phase in
the absence of both the line- and fractal symmetries. Figure courtesy of M. Iqbal and reprinted
with permission c©The American Physical Society (2019).

The starting point is the Hamiltonian H(hX , hY ) = HC − ∑
x,y hXXj − hY Yj.

Here, and in the remainder of this subsection, we denote a site simply by j = (x, y)
for shorter notation. Defining

V (hX , hY ) = (HC − EC)
−1(1 − |C〉 〈C|)

∑
j

h′
j, (5.43)

the ground state, to first order in perturbation, is given by

|ψ(hX , hY )〉 = [1 + V (hX , hY )] |C〉

=

[
1 −

∑
j

(HC − EC)
−1(1 − |C〉 〈C|) (hXXj + hY Yj)

]
|C〉 (5.44)

=

[
1 −

∑
j

(HC − EC)
−1 (hXXj + hY Yj)

]
|C〉 (5.45)

=

[
1 −

∑
j

(
hX

8
Xj +

hY

10
Yj

)]
|C〉 (5.46)

= Λ(hX , hY )
⊗N |C〉+O (

h2
X , h

2
Y , hXhY

)
(5.47)

for

Λ(hX , hY ) = 1 − hX

8
X − hY

10
Y. (5.48)

In going from (5.44) to (5.45), we have used that

〈C|Xj|C〉 = 〈+|⊗N

(∏
e

CZe

)
Xj

(∏
e′

CZe′

)
|+〉⊗N (5.49)

= 〈+|⊗N

(∏
e

CZe

)(∏
e′

CZe′

)
Xj

∏
j′∈N(j)

Zj′ |+〉⊗N (5.50)

= 〈+|+〉N−4 〈+|−〉4 (5.51)

= 0, (5.52)

where N(j) is the set of vertices neighbouring j. Similarly 〈C|Yj|C〉 = 0 ∀j, since

Yj

(∏
e

CZe

)
=

(∏
e

CZe

)
Yj

∏
j′∈N(j)

Zj′ (5.53)
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To go from Eq. (5.45) to (5.46), we exploited the fact that

−HCXj |C〉 =
∑
i

KiXj |C〉 (5.54)

=
∑

i∈N(j)

KiXj |C〉+
∑

i/∈N(j)

KiXj |C〉 (5.55)

= −
∑

i∈N(j)

XjKi |C〉+
∑

i/∈N(j)

XjKi |C〉 (5.56)

= 4
∑

i∈N(j)

Xj |C〉+ (4−N)
∑

i/∈N(j)

Xj |C〉 (5.57)

which implies that for all j, Xj |C〉 is an eigenstate of (HC − EC)
−1 with inverse

energy 1/8 (note that j /∈ N(j)). The same statement holds for Yj |C〉 with inverse
energy 1/10. The first order perturbation is implemented by acting on the cluster
state by acting with Λ on every site.

To reach higher orders in perturbation theory, we use

|ψ(hX , hY )〉 = e−V |C〉 . (5.58)

This exponentiated version of perturbation theory is not only more natural in the
language of Projected Entangled Pair Operators, but it is indeed the correct per-
turbative ansatz for a size-extensive many-body quantum wave function [171–173].
Therefore, we must evaluate terms like V 2 |C〉 , V 3 |C〉, and so on. We can use the
machinery of [171] to write down PEPOs enacting the perturbations with increas-
ing bond dimension for any given order. The extra bond dimension is needed to
account for the fact that higher powers of V will introduce products of Xs and Y s
with different prefactors, depending on the geometry of the operator. For exam-
ple, the second order contribution to the ground state contains both connected and
disconnected contributions and is given by⎡⎣h2

X

16

⎛⎝1

8

∑
|i−j|=1

XiXj +
1

4

∑
|i−j|=√

2

XiXj +
1

6

∑
|i−j|=2

XiXj +
1

8

∑
|i−j|>2

XiXj

⎞⎠
+
h2
Y

20

⎛⎝1

6

∑
|i−j|=1

YiYj +
1

6

∑
|i−j|=√

2

YiYj +
1

8

∑
|i−j|=2

YiYj +
1

10

∑
|i−j|>2

YiYj

⎞⎠ (5.59)

+
9hXhY

80

⎛⎝1

7

∑
|i−j|=1

XiYj +
1

4

∑
|i−j|=√

2

XiYj +
1

7

∑
|i−j|=2

XiYj +
1

9

∑
|i−j|>2

XiYj

⎞⎠
−hXhY

80

∑
i

XiYi

]
|C〉 ,

where the first four terms sum over nearest neighbours, next-nearest neighbours,
next-next-nearest neighbours, and all other pairings, respectively. For the sake
of completeness, and in order to formulate our hypothesis about the protecting
symmetry of the XY -phase, we write out one (not necessarily optimal) PEPO that
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implements this correction (the order of the virtual legs is north, west, south, east):

B0,0,0,0 = 1 + aX + bY + cXY

B0,0,0,1 = B0,0,1,0 = B0,2,0,0 = B2,0,0,0 = dX

B0,1,0,2 = B1,0,2,0 = 1

B1,1,0,0 = B0,0,2,2 = B1,0,0,2 = B0,1,2,0 = e1

B0,0,0,3 = B0,0,3,0 = B0,3,0,0 = B3,0,0,0 = fY

B0,4,0,0 = B0,0,0,5 = B4,0,0,0 = B0,0,5,0 = gY

B0,5,0,4 = B5,0,4,0 = 1 (5.60)

B4,4,0,0 = B4,0,0,5 = B0,0,5,5 = B0,4,5,0 = h1

B0,0,0,6 = B0,0,6,0 = B0,7,0,0 = B7,0,0,0 = kXX

B0,0,0,7 = B0,0,7,0 = B0,6,0,0 = B6,0,0,0 = kY Y

B0,0,0,8 = B0,8,0,0 = B11,0,0,0 = B0,11,0,0 = lXX

B0,9,0,0 = B9,0,0,0 = B0,0,10,0 = B0,0,0,10 = lY Y

B0,8,0,9 = B8,0,9,0 = B0,10,0,11 = B10,0,11,0 = 1

B10,8,0,0 = B8,10,0,0 = B0,8,9,0 = B0,10,11,0 = B8,0,0,9

= B9,0,0,11 = B0,0,11,9 = B0,0,10,11 = m1

a = d =
hX

8
, b =

hY

10
, c = −hXhY

80
, e = −191

192
, f =

hY

16

√
2

3
,

g =
hY

20
, h =

8

3
, kX = lX =

hX

280
, kY = lY = hY , m =

35

8
.

The critical observation between (5.48) and (5.60) is that, for any virtual configu-
ration of the PEPO tensor B, we have

XBijklX = Bijkl (5.61)

We will now argue why this holds to all orders in perturbation theory. First, as
long as the action of V n |C〉 on the cluster state can be expressed as sums of Pauli
strings of Xs and Y s with real coefficients, one can always find a PEPO B which
satisfied (5.61. In other words, we want to show that

V n |C〉 =
∑
ab

cabPab |C〉 (5.62)

for all n, where Pab =
⊗

k X
akY bk , a and b are bitstrings on the lattice and the

cab are real coefficients. We have seen explicitly that Eq. (5.62) holds for n = 1, 2.
Now, assuming Eq. (5.62) holds for some n, we have,

V n+1 |C〉 = V
∑
ab

cabPab |C〉

= (HC − EC)
−1(1 − |C〉 〈C|)

∑
x,y

h′
x,y

∑
ab

cabPab |C〉

=
∑
ab

c′abPab |C〉 , (5.63)
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where c′ab are also real. Therein, we have used that the perturbation h′ consists
of Pauli-Xs and Y s with real coefficients and the fact that each product of Pauli
matrices either maps the cluster state to an exact excitation or to itself, making
(HC −EC)

−1(1− |C〉 〈C|) act simply as a multiplication of each of the cab by a real
number. So Eq. (5.62) holds for all n by induction.

Therefore, it is clear that, at any given order, the corresponding PEPO-tensor
B describing the perturbation will again act as a real linear combination of 1, X, Y
and XY for any given virtual state. We conclude that there must exist a region of
convergence in (hX , hY )-space around the cluster point in which the ground state is
accurately described by a PEPO fulfilling Eq. (5.61) acting on the cluster state.

Local Time Reversal

Having derived a general form for a state in the XY -phase, we will now identify
the symmetry that is protecting its SSPT order. First, we draw inspiration from
the one-dimensional Cluster state for which the perturbation (5.41) has also been
considered. Despite the protecting symmetries (X on either sublattice) being broken
by this perturbation, the ground state remains in the SPT phase as the Cluster
state. The reason is that the Cluster state is additionally invariant under complex
conjugation and the product of complex conjugation and the on-site symmetry is
sufficient to protect the phase [174]. This combined symmetry action is called time
reversal symmetry.

The important difference in the present case is that, unlike the Z2×Z2-symmetry
of the 1D Cluster state, the protecting symmetries only act on subsystems. Indeed,
the Hamiltonian (5.42) does not commute with the line symmetries followed by
global complex conjugation. It is however invariant under conjugation by a line of
X followed by σ → σ for all Pauli operators σ that act on that same line.

While such a local version of time-reversal symmetry is generally ill-defined,
we can define its action on a wave function if a tensor network representation is
given [175]. Then, let Kx,y be an operator that locally conjugates the tensor at a
given site. We are then led to define local time reversal operators

UT
v (c) =

N∏
x=1

Xx,c−xKx,c−x,

UT
h (c) =

∞∏
x=−∞

Xx,c+xKx,c+x. (5.64)

We hypothesise that the SSPT order of the Cluster phase is stable as long as a
ground state description invariant under (5.64) exists.

We have given a first piece of evidence in section 5.2.3, the point of which was to
show that ground states in the XY -phase are described by a PEPO fulfilling (5.64)
to arbitrary orders in perturbation theory. On the other hand, it was confirmed
numerically that taking random bond dimension 4 tensors satisfying (5.61) yields a
SPEE of γ = 1, indicating that such local time reversal symmetry is sufficient for
SSPT order.
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5.3 Conclusion

In this chapter, we have studied anisotropic, mixed symmetries of an elementary
PEPS tensor. These can give rise to physical subsystem symmetries and therefore
make PEPS an excellent framework for studying SSPT ordered phases. Indeed, we
extensively used the PEPS bulk-boundary correspondence to investigate corrections
to the area law in the Cluster Phase. These corrections, as we have demonstrated,
are not spurious, but they occur everywhere in the phase except at fine-tuned points.
Their value coincides with the value for certain intrinsically topologically ordered
phases. This somewhat awkward situation can be remedied by measuring the en-
tanglement entropy across different cuts: we have confirmed numerically that the
value γ = 1 is unstable to deformations of the cut both in the cluster state as well
as the family of bond dimension D = 2-PEPS in the cluster phase (5.2).

Using the novel numerical and analytical tools developed in this chapter, we
discovered a new phase of matter that is compatible with subsystem time-reversal
symmetry. The latter notion raises important questions: Since we defined subsystem
time reversal in terms of an explicit PEPS representations, this suggests that the
elementary tensor is not merely a description of the physical state but rather of
fundamental importance. We leave an exhaustive study of the newly discovered
phase as an open problem.

Our arguments can be generalized to other SSPT phases beyond the Cluster
Phase. A difficulty is that the decomposition result (5.27) is particular to the Cluster
Phase. On the other, our algorithm is universally applicable and can be used to show
robustness in more general circumstances.
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Chapter 6

Conclusion and Outlook

In this Thesis, we have furthered the understanding of symmetric PEPS. This was
motivated by the fact that tensor networks are proven in one dimension and be-
lieved in higher dimensions to parameterize the ground states of realistic (i.e., local)
Hamiltonians. Symmetry, on the other hand, is the essential ingredient to under-
stand the universal features of the PEPS as demonstrated by MPS’ and PEPS’
ability to completely classify certain topological phases. The relation between sym-
metry and universality is exemplified by the fact that the both Six-Vertex model
from chapter 2 and the Resonating Valence Bond in chapter 3 are described by the
same field theory despite the microscopic details being completely different.

In chapter 2, we investigated the simplest continuous symmetry, U(1). We
showed that the max entanglement entropy in such states can be reduced to a
counting problem. There are logarithmic corrections to the area law with a com-
binatorialy universal prefactor. Besides the correction that depends on the size of
the cut, there is another correction for “thin enough” subsystems. This geometric
correction is not just reflected in the entanglement, but is also responsible for the
non-invertibility of the PEPS, as well as an additional symmetry of the transfer
matrix. Physically, large portions of the “Six-Vertex”-U(1)-PEPS are dominated
by either critical or symmetry-breaking behaviour. We explained this by proposing
a virtual Lieb-Schultz-Matthis theorem. We also put forward an explicit construc-
tion of the low-lying excitations for the critical cases. Our criteria are fulfilled in
cases that go beyond simple Rokhsar-Kivelson wavefunctions. They can be checked
with one-dimensional transfer matrix calculations. This dimensional reduction is
possible, because the PEPS is described by a classical 2+0D variant of conformal
invariance which arises as the ground state of a 2+1D critical point with dynamical
critical exponent z = 2.

Such connections with Conformal Field Theory are the backbone of chapter 3,
where we have studied the Resonating Valence Bond state, focusing in particular on
the kind with long-range singlets as it is a realistic description of certain frustrated
magnets. Our goal was to resolve the following puzzle: the long-range RVB state
was believed to possess an extended critical phase while at the same time long-range
singlets destroy the U(1)-symmetry of the nearest-neighbour RVB which is crucial
for the existence of the gapless virtual photons we have proposed in chapter 2. We
reconcile these two observations by showing that the putative critical phase is ac-
tually gapped, albeit with a gap that is too small to detect for current numerical
algorithms. To quantify this gap, we combined existing numerical tools with argu-
ments from Conformal Field Theory, allowing us to write down a scaling hypothesis.
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While this hypothesis works well for a range of models in between a proposed Quan-
tum Dimer-Solidomer and the Resonating Valence Bond model, at the RVB point,
we had to include subleading terms to set up a refined scaling hypothesis. This
hypothesis was then shown to agree with the numerical data and can now be used
to make predictions where numerical data is not available. Finally, we proposed a
model in which an emergent U(1)-symmetry could actually be observed in a PEPS.

In chapter 4, we extended our analysis to the non-abelian group SU(2). Due to
the entangled nature of non-abelian singlets, the model could naturally be described
as a loop model, corresponding to a Rokhsar-Kivelson line of classical systems with
non-local interactions. The combinatorial universality class of the entropy count-
ing problem was shown to be different from the U(1) case and compatible with
a prefactor (number of generators/2) for the logarithmic correction. The physics
of the PEPS is obtained from mapping its correlators to those of a classical Potts
model and is essentially that of a cat state over one-site translations, correspond-
ing to a symmetry breaking plaquette phase. In particular, there are no algebraic
correlations and the model does not describe a continuous transition into a topo-
logically ordered state, unlike the U(1) models. The PEPS also has a 2 × 2-local
parent Hamiltonian, the ground space of which it succinctly characterizes on open
boundary conditions (the intersection property). On a torus, there is both a poly-
nomial number of ground states arising from inserting symmetry strings as well as
an exponential number of frozen ground state configurations.

Taking a step back from continuous symmetries, we investigated a type of mixed
virtual-physical anisotropic symmetry in chapter 5 that gives rise to subsystem sym-
metries. Along cuts running parallel to such rigid line-like symmetries, the entan-
glement entropy exhibits a constant correction to the area law, despite no intrinsic
topological order in the system. We settled a recent debate about the universality
of such corrections by showing that they persist everywhere in the Cluster phase ex-
cept at fine-tuned points. In doing so, be provided an exactly solvable path through
the phase, a generic analytical argument and a numerical algorithm to measure the
Renyi 2-entropy. After testing the validity of the algorithm in a benchmark, we used
it to discover a novel subsystem-symmetry protected topological phase in which the
Cluster phase is embedded. A perturbative argument was provided to show that
the protecting symmetry is most aptly described as a local version of time-reversal
symmetry.

This research fills several gaps in the theory of symmetric PEPS, but it also
opens up new avenues of inquiry. A central theme in this Thesis is correspondence.
In all models that we have investigated we could not associate one Hamiltonian
with the PEPS but four : the parent Hamiltonian, a classical Hamiltonian whose
partition function equals the norm of the PEPS (and can thus be used to compute
diagonal correlation functions), an entanglement Hamiltonian whose spectrum is the
entanglement spectrum and that can be obtained from the fixed point of the transfer
matrix and, finally, a ladder Hamiltonian which turned out to be quasi-local in the
one example where it it accessible (3.15). A more general understanding of how
these Hamiltonians are related is desirable. For example, we constructed ladder
Hamiltonians with both critical and symmetry-breaking properties, but we know
from chapter 1 that there is a third possibility: can there be a PEPS with symmetry
protected topological order at the boundary? A natural candidate would be a 19-
vertex model in the absence of an external field. In this case, the transfer matrix has
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a commuting Z2 ×Z2-symmetry which can potentially push through the fixed point
as a nontrivial projective representation. What is the interpretation of the entangle-
ment degeneracy and the edge modes in terms of the corresponding classical model?

|ψPEPS〉
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ground states of continuously changing Hamiltonians. A further weakness is that
the symmetries of the PEPS and the Hamiltonian are the same by construction.
In particular, the parent Hamiltonian is not suited to describe symmetry-breaking
scenarios. Fortunately, there is a lot of freedom in choosing parent Hamiltonians:
one can, for example, freely change the excited space of the local Hamiltonian term
and still keep the PEPS in its ground space. Another interesting question is which
parent Hamiltonians appear in variationally optimized MPS. Finite χ can be seen
as a relevant perturbation to whichever Hamiltonian one is approximating and it
would be interesting to study this perturbation on the Hamiltonian level. Such
parent Hamiltonians become more and more nonlocal in the χ → ∞-limit, but the
size of their support only grows as logχ even at criticality.

While criticality is commonplace in the phase diagram of U(1)-PEPS, there
are no algebraically decaying correlations in the non–abelian case. In our model,
this is because the weight per closed loop is so large that configurations with long
loops are exponentially suppressed. Curiously, this loop fugacity is equal to the
bond dimension squared and putting higher SU(N) on the links only reduces the
correlation length further. Is it possible to construct a critical non-abelian model?

Another interesting direction concerns circumventing the computationally costly
PEPS contraction. Expectation values of the SU(2)-PEPS (including the non-local
“same-loop”-correlator) can be evaluated with a Monte Carlo algorithm. There
is no reason why that should be restricted to the specific model and it would be
exciting to combine the symmetry- and entanglement-based PEPS perspective with
the strengths of Monte Carlo [181, 182], especially when going to three dimensions.
In this regard, the perspective taken in chapter 5 could be fruitful to infer properties
of 3D states without any numerical computation at all. Hopefully, the contributions
of this Thesis will help to answer these and related questions.
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