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Introduction

In standard dental operative treatment procedures, a rubber dam isolation is recom-

mended [1]. However, there are situations where rubber dam isolation is not possible

or isolation protocol is violated, which leads to the operative site to be exposed to con-

tamination. These contaminants may or may not have a detrimental effect on improved

and advanced dental adhesive materials. The most common and probable contaminant

a clinician has to confront is the saliva.

Saliva contamination

It is recognized that saliva comprises of several hydrolytic enzymes that are competent of

reacting with the tooth and the material through different biochemical processes which

could modify the surface of the tooth structure and thus compromise bond strength [2].

It has been documented that saliva contact should be avoided since a surface that is acid-

etched, attracts salivary proteins, decreases the surface energy and makes it unreliable

for adhesion [3].

The modern self-etching adhesives comprise of monomers like bisphenol A diglycidyl ether

dimethacrylate (bis-GMA) that bonds to the enamel marvellously. However, the dentin

is moist and bis-GMA is hydrophobic, which will make it difficult to infiltrate into dentin.

Hence, more hydrophilic monomers like 2-hydroxylethyl methacrylate (HEMA) are used

to enhance the monomer penetration into the tubules. Additionally, monomers also con-

tain hydrophilic groups such as carboxylic acid, hydroxyl, ester and amine to boost the

water solubility of adhesives. These additives make them more prone to hydrolysis in

1



the mouth[4] because of water absorption occuring at the adhesive level and act as a

semi-permeable membrane [5]. When a universal adhesive is used on dentin, the precise

balance between the hydrophilic and hydrophobic components plays a significant role.

The monomers must primarily be hydrophilic enough to moisten, penetrate, and inter-

act with the dentin substrate, nevertheless after they are polymerized, if they remain

hydrophilic, they can escalate the water sorption, which could lead to hydrolysis and

degenerate the adhesive interface over time. After placing a universal adhesive, a highly

cross-linked hydrophobic polymer matrix is anticipated, which is attached to the dentin

on one end and restorative materials on the other end [6].

Several in-vitro studies are performed for understanding the possible influence of salivary

contamination on adhesives. A clinical study demonstrated lower bond strength when

subjected to contamination and suggested rubber-dam placement before cavity prepara-

tion resulted in significantly higher bond quality. SEM images of samples contaminated

with saliva disclosed the presence of structural imperfections at the interface and showed

a shorter resin tags on pull-out [7].

A recent in vitro study investigated the consequence of relative humidity and saliva con-

tamination on the bond strength in dentin after one year and observed that the two

self-etching adhesives showed a stable bond strength over time [8]. The concept of uni-

versal adhesives was introduced a decade ago and innovative universal adhesives with

distinctive features are endlessly produced by different manufacturers. It is recognized

that moisture trapped within the adhesive during polymerization may cause an inferior

polymerization of the adhesive monomers [9]. It is essential to identify the consequences

of salivary contamination on these new adhesives when the ingredients are sensitive to

moisture. A little or no evidence is available on the long term bonding performance of

universal adhesives to saliva contaminated dentin and on the comparative distinctions of

its properties in comparison with the well established self-etch systems.

2



Aim of the Study

The objective of this doctoral thesis was to contribute to a better understanding of the

influence of salivary contamination on the quality of bonding of contemporary dental

adhesives and its consequences on the bonding effectiveness to dentin in long term. Also,

if the effect of contamination is found to be substantial, the study also aims to un-

derstand which stage in the adhesive application is more vulnerable to contamination.

Furthermore, to understand if clinically feasible decontamination procedures can regain

the original bond quality.

The null hypothesis verified were that:

a. Salivary contamination does not affect the bond quality of modern dental adhesives

b. Decontamination methods employed at various stages of the restorative process

does not affect the bond quality of modern dental adhesives.

c. The stage of salivary contamination or decontamination is not critical to the bond

quality

d. The type of salivary decontamination is not imperative to the bond quality

e. Aging of the substrates does not alter their bond quality

f. The type of adhesive does not differ in their ability of bonding

g. The type of composite restorative material does not influence the bond strength.
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Organization of Thesis

This thesis is presented in a three-article dissertation construct.

• Chapter one of this thesis is dedicated to the literature review done on the adverse

effects of salivary contamination on the dental adhesives and is published in the

American Journal of dentistry.

• Chapter two describes a small pilot study that was done to test the methodology by

evaluating various commercially available bulk-fill RC in two different viscosities.

• Chapter three explains the major experiment, the long-term consequences of sali-

vary contamination on various stages of self-etching and universal adhesive appli-

cation and the clinically feasible remedies to decontaminate during the treatment

and also to identify the most vulnerable situation in case of salivary contamination

clinically.

4



References

1. Batchelder KF, Richter RS, Vaidyanathan TK. Clinical factors affecting the strength
of composite resin to enamel bonds. The Journal of the American Dental Association
1987; 114: 203-205.

2. Chauncey HH, Lionetti F, Winer RA, Lisanti VF. Enzymes of Human Saliva:I. the
Determination, Distribution, and Origin of whole Saliva Enzymes. Journal of Dental
Research 1954; 33: 321-334.

3. Buonocore MG. Caries prevention in pits and fissures sealed with an adhesive resin
polymerized by ultraviolet light: a two-year study of a single adhesive application. J Am
Dent Assoc 1971; 82: 1090-1093.

4. Aboushelib MN. Clinical performance of self-etching adhesives with saliva contam-
ination. J Adhes Dent 2011; 13: 489-493.

5. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dental
Materials 2006; 22: 211-222. 6. Tay FR, Frankenberger R, Krejci I, Bouillaguet S, Pash-
ley DH, Carvalho RM, Lai CNS. Single-bottle adhesives behave as permeable membranes
after polymerization. I. In vivo evidence. Journal of Dentistry 2004; 32: 611-621.

7. Van Landuyt KL, Snauwaert J, Peumans M, De Munck J, Lambrechts P, Van Meerbeek
B. The role of HEMA in one-step self-etch adhesives. Dent Mater 2008; 24: 1412-1419.

8. Amsler F, Peutzfeldt A, Lussi A, Flury S. Long-Term Bond Strength of Self-Etch
Adhesives to Normal and Artificially Eroded Dentin: Effect of Relative Humidity and
Saliva Contamination. J Adhes Dent 2017.

9. Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, Ferracane J,
Breschi L. The role of polymerization in adhesive dentistry. Dental Materials 2019; 35:
e1-e22.

5



Chapter 1

Adverse effects of salivary
contamination of adhesives in
restorative dentistry-a literature
review
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1.1 Abstract

Purpose: The study aims to review the literature concerning the influence of salivary

contamination on the bond quality of adhesives used in restorative materials by compar-

ing and contrasting the different adhesive materials and critically analyzing them.

Method: A detailed search on PUBMED, Cochrane Library, Google scholar and Web of

Science was carried out to identify publications on salivary contamination and dental ad-

hesive materials, from 1990-2017 (March) which resulted in a total of 6202 web-identified

publications. After screening titles/abstracts and de-duplicating, 54 publications were

selected, that matched the requirements for this review. The condition for selection was

English literature concerning the effect of salivary contamination on the adhesives used

in restorative dentistry. The obtained articles were systematically evaluated

Results: Salivary contamination of adhesives during restorative procedures statistically

(64.6%) shows an adverse effect on adhesives, occurring either at one or many stages of

restoration. Methodological dissimilarities impeded the direct comparison of the selected

studies. Nevertheless, it was observed that, 2-step etch and rinse adhesive were relatively

less vulnerable to salivary contamination than the others. Sixty five percent of the eval-

uated studies for decontamination, achieved improved bonding when the contaminated

surface was subjected decontamination procedure of some kind. However, the duration

and other specificities are not standard in all the evaluations and needs further research

to assess the course of action. It is necessary to do long term studies to evaluate the

effectiveness of contaminated adhesive over time.

Significance: Salivary contamination is a potential cause for a poor bond quality of

adhesive systems during restorative process and to provide a successful treatment proper

care must be taken to ensure the operating area is free from contamination. Understand-

ing the properties of the materials and its constituents as well as considering measures to

manage the potential vulnerabilities due to salivary contamination in the area of bonding

might help a clinician to produce better results.
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1.2 Introduction

Over the past decades, dental adhesives have progressed with changes in chemistry, appli-

cation and technique. The evolved adhesive materials have led to intense reconsiderations

in the practice of restorative dentistry. The foremost objective of a dental adhesive in

restorative dentistry is offering retention to composite fillings. In adjunct to enduring

shrinkage stress and mechanical forces from the overlaying RC material, an ideal adhe-

sive ought to be able to inhibit leakage at the margins of the restoration [1].

The ability of modern formulations of adhesives is based on dual function. On one end,

the adhesive attaches to the composite by co-polymerization of residual double bonds

(-C=C-) and on the other end, it holds on to the tooth substrate which is principally

based on micromechanical adhesion [2].This is achieved by substituting the inorganic

tooth material with resin monomers which form tags that gets intermingled in dentin on

polymerization [3].

The usual treatment procedures are often known to expose these materials to various

factors in and around the oral cavity which may result in contamination and cause dif-

ficulty in their infiltration to provide the necessary mechanical bonding and eventually

deteriorate quality. Saliva is the most common component present in oral cavity and

has a high probability to influence an operative field. It constitutes of 99.4% water and

0.6% solids. They are mainly aggregates of molecules such as glycoproteins, sugar, pro-

teins and amylase and inorganic components like sodium, chloride, calcium [4]. An acid

conditioned tooth surface readily absorbs salivary constituents and decreases the surface

energy, leaving the surface unfavorable for bonding [5]. A prerequisite for a durable ad-

hesive bonds is clean restorative surface and maintain a high energy state. Presence of

water, organic debris, and/or biofilms in a clinical condition might interfere with the

wetting and spreading [6, 7].

This review provides a gist of the published articles, concerning the influence of salivary

contamination on the quality of bonding of different generation of adhesives in restora-
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tive dentistry, and also critically analyses the approaches and protocols used by the

researchers.

1.3 Materials and Methods

For this literature review, 54 references [8-61] were selected. An extensive search on

PUBMED, Cochrane Library, Google scholar and Web of Science imparted a total of 6202

published articles. The search terminologies used for searching on the online database

were (saliva) AND (contamination) AND (adhesive) AND (dental). The search was

restricted for the years 1990-2017 (March). The web search was also supplemented by

a manual search of reference list from the identified papers. After screening titles and

de-duplicating, 54 papers were shortlisted that matched the conditions entirely.

The criteria for selection of articles for this review were English literature pertaining to

salivary contamination of adhesives in restorative dentistry. Studies were included if the

investigators evaluated the influence of salivary contamination of enamel, dentin or both

on the bond quality of adhesive systems in restorative dentistry. The obtained papers

were meticulously evaluated under various categories; Year of publishing, type of adhesive,

type of contaminant, type of test, parameters of the test, results, surface preparation,

method of contamination, quantity and details of contaminant, stages of contamination,

decontamination procedure, time between contamination and testing, type of aging, size

of bonding area, type of substrate and number of specimens.

1.4 Results

1.4.1 Dental Adhesives

Dental professionals use various adhesive systems in their day to day clinical practice.

Depending on the adhesive system used, bonding RC to tooth structure involves multiple

steps and the operating surface might get contaminated during any of these steps. Dental
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adhesives are broadly categorized into two groups, i.e. Etch and Rinse and Self-etch

adhesives (Fig.1.1) [62]. 64.6% of the evaluated adhesives were prone to have a deleterious

impact due to salivary contamination.

1.4.1.1 Etch and rinse adhesives

Etching with phosphoric acid dissolves the apatite crystals in hydroxyapatite rich enamel

surface to create microporosities, which increases the surface area as well as the surface

energy but does not modify the chemical alignment of the surface. In dentin, acid treat-

ment removes the smear layer and demineralises the surface of intertubular dentin to

reveal the underlying collagen matrix [63]. Subsequently, either a distinct primer along

with an adhesive resin is applied in a 3-step process or a mixture of primer and adhesive

resin combined together is applied in a shortened 2-step process [63]. The 3 and 2-step

etch-and-rinse adhesives depend on a adhesion mechanism that is similar. The intention

is to micro-mechanically interlock and polymerize the monomers that penetrates into the

etched enamel and the dentin tubules. It is implicit that etch and rinse adhesive involve

multiple steps in their application. Increased number of steps increases the vulnerability

of the restorative surface for salivary contamination.

• 3-step-etch and rinse

The seven reviewed articles tested nine 3-step etch and rinse adhesive for consequences

of salivary contamination (Table 1.1) and almost 77% of adhesives depicted a negative

impact when there was salivary contamination (Fig.1.2). It was observed that, it always

had an adverse effect when enamel was contaminated and 62.5% showed negative influence

on dentin. According to Xie et al.,[57] the contamination after etching reduced the bond

strength in enamel and dentin by 40% and rinsing the contaminated surface with water,

air drying and re-etching followed by application of the adhesive, the proteins could be

rinsed away improving the bond strength. Patil et al.,[39] reported that just rinsing the

contaminated surface after curing the adhesive in 3-step etch and rinse adhesive, could
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not reverse the harmful effect.

• 2-step-etch and rinse

A total of 30 articles investigated the influence of salivary contamination on 48 two-

step etch and rinse adhesive and 46% found to have a deleterious outcome on the bond

quality. The rest suggested that effect of salivary contamination was non-significant. 80%

of the contamination tested in enamel had an adverse impact however, 47.2% suffered

negatively in dentin. el Kalla et al.,[17] believed that saliva contamination did not prevent

hybrid layer formation in 2 step etch and rinse adhesives or the resin penetration into the

dentin tubules, while Park et al.,[38] suggested that following the salivary contamination

of etched surface, blotting and applying the primer could recover the bond strength.

1.4.1.2 Self-etch adhesives

Self-etching adhesives contain non-rinse acidic monomers that condition and prime dentin

alongside. Self-etching process dissolves and modifies the smear layer, however, it fails to

eliminate the dissolved calcium phosphates, as it is not rinsed. This method reduces the

clinical time as well as technique-sensitivity [3]. Self-etch adhesives are available as ‘two-

step’ and ‘one-step’ adhesives, depending on if they are available in 2 bottles of self-etching

primer and adhesive resin or if they are combined into one single solution (Fig 1.1). The

self-etch primers and self-etch adhesive systems contain a mixture of acidic functional

monomers, whose pH is slightly higher than phosphoric acid based etchant [64]. Most

self-etching adhesives comprises of functional monomers that defines the performance.

These monomers etch and improve infiltration into the tooth substrates and also creates

a chemical contact between the adhesive and the dental substrates [65].

• 2-step self-etch adhesives

Around 20 articles investigated 24 different 2-step self-etch. 81.5% suggested that salivary

contamination adversely influenced their bond quality (Fig.1.2). It was also interesting
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to note that many of the articles suggested that the contamination occurring after the

application of primer drastically affected the bond quality [10, 13, 31, 36, 38, 56]. 84.2%

of the investigation conducted on dentin and 85.7% on enamel reported an unfavourable

impact. Vieira et al., [56] suggested that salivary contamination in 2 step self-etching

adhesive was deleterious in enamel as well as dentin at all the steps and decontamination

methods like rinsing with water, air drying or reapplication of primer couldn’t restore

the bond quality. Cobanoglu et al.,[13] reported that when the salivary contamination

took place after curing the adhesive, repeating the bonding procedure regained the bond

strength. However, when the salivary contamination occurred before or after application

of the primer, it negatively affected their bond strength. Townsend et al.,[52] observed

that saliva contamination of the 2-step self-etching adhesive did not affect the dentin

shear bond strength but, it had a negative effect on enamel bond strength.

• 1-step self-etch

1-step self-etching adhesives are considered all in one adhesives. They are a mixture

of an etchant, primer and bonding agent, hence contain hydrophobic and hydrophilic

monomers, acidic functional monomers, organic solvents and water in one single formu-

lation. These one-step adhesives are also called ”Universal or Multi-Mode Adhesives”,

which is applied either on etched or un-etched enamel or dentin [62]. A total of 20

papers investigated 30 one step self-etch adhesives (Table 1.1). 73.3% of the adhesives

were found to have deleterious effect when contaminated with saliva (Fig.1.2). The neg-

ative effect was more pronounced when the contamination occurred either after adhesive

application or after polymerizing the adhesive. It was always negative when tested on

enamel and 66.6% tested negative on dentin. Bhatia et al.,[12] observed that the sali-

vary contamination significantly affected the bond strength of both 1-step self-etching

adhesives evaluated. However, the reapplication of the adhesive system after the sali-

vary contamination improved the bond strength values. Santschi et al.,[45] stated that

saliva contamination reduced the bond quality of 1-step self-etching adhesive and it was
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prominent when the contamination happened before polymerization than after. In both

conditions, decontamination by reapplying the adhesive reinstated the bond strength.

Figure 1.1: Stages of possible salivary contamination on different classes of adhesives
(classified as per to Van Meerbeek et al.,[3])
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Table 1.1: Articles included in the review describing the influence of salivary contamina-
tion on various adhesive

Sl.No Author Year Brand Name Type of Adhesive Substrate Test  
Contamination 

Result 

1 Abdalla 1998 Scotchbond 1 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Not significant 

   One step 
2-step etch and 
rinse 

Dentin  Not significant 

   Prime & Bond 2.1 
2-step etch and 
rinse 

Dentin  Not significant 

   Syntac SC 
2-step etch and 
rinse 

Dentin  Negative 

   Scotch Bond Multi 
Purpose Plus 

3-step etch and 
rinse 

Dentin  Not significant 

2 Aboushelib 2011 Clearfil SE Bond 2-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Negative 

3 Ari Hale 2008 Clearfil SE Bond 2-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Negative 

4 Benderli 1999 
Scotch Bond Multi 
Purpose 

3-step etch and 
rinse 

Enamel 
Shear Bond 
Strength 

Negative 

5 Bhatia 2015 Adper Easy One 1-step self etch Dentin 
Shear Bond 
Strength 

Negative 

   Xeno V 1-step self etch Dentin  Negative 

6 Cobanoglu 2013 Clearfil SE Bond 2-step self etch Dentin 
Shear Bond 
Strength 

Negative 

   Optibond Solo Plus 
SE 

2-step self etch Dentin  Negative 

7 Darabi 2012 Single Bond 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

     Enamel  Negative 

8 Dietrich 2000 Scotchbond 1 
2-step etch and 
rinse 

Dentin Microleakage Not significant 

9 Duarte 2005 Single Bond 
2-step etch and 
rinse 

Dentin 
Microscopic 
Analysis 

Negative 

   Single Bond 
2-step etch and 
rinse 

Enamel  Negative 

10 el-Kalla 1997 Prime & Bond 2.1 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Not significant 

     Enamel  Not significant 

   One step 
2-step etch and 
rinse 

Dentin  Not significant 

     Enamel  Not significant 

   Tenure Quik  
2-step etch and 
rinse 

Dentin  Not significant 

     Enamel  Not significant 

   Syntac SC 
2-step etch and 
rinse 

Dentin  Not significant 

     Enamel  Negative 
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Sl.No Author Year Brand Name Type of Adhesive Substrate Test  
Contamination 

Result 

11 el-Kalla 1999 Prime & Bond 2.1 
2-step etch and 
rinse 

Dentin 
Micromorphological 
assesment 

Not significant 

   One step 
2-step etch and 
rinse 

Dentin  Not significant 

   Tenure Quik  
2-step etch and 
rinse 

Dentin  Not significant 

   Syntac SC 
2-step etch and 
rinse 

Dentin  Not significant 

12 el-Kalla 1997 Prime & Bond 2.1 
2-step etch and 
rinse 

Enamel 
Micromorphological 
assesment 

Not significant 

   One step 
2-step etch and 
rinse 

Enamel  Not significant 

   Tenure Quik  
2-step etch and 
rinse 

Enamel  Not significant 

   Syntac SC 
2-step etch and 
rinse 

Enamel  Negative 

13 Elkassas 2016 Single Bond 
2-step etch and 
rinse 

Dentin 
Micro-Shear Bond 
Strength 

Negative 

14 Fakhri 2009 Clearfil SE Bond 2-step self etch Both Microleakage Not significant 

15 Farmer 2014 Optibond Solo Plus 
2-step etch and 
rinse 

Both Microleakage Negative 

16 Fritz 1998 
ARX( experimental 
adhesive) 

2-step etch and 
rinse 

Enamel 
Shear Bond 
Strength 

Negative 

     Dentin  Negative 

17 Guerriero 2009 Single Bond 2 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

18 Gupta 2015 Single Bond 
2-step etch and 
rinse 

Dentin 
Micro-Tensile Bond 
Strength 

Negative 

   Adper SE Plus 2-step self etch Dentin  Negative 

   
Single Bond 
Universal 

1-step self etch Dentin  Negative 

19 Hegde 2008 Xeno III 1-step self etch Dentin 
Shear Bond 
Strength 

Negative 

   Clearfil SE Bond 2-step self etch Dentin  Negative 

20 Hiraishi 2003 Clearfil SE Bond 2-step self etch Dentin 
Micro-Shear Bond 
Strength 

Negative 

21 Hitmi 1999 Syntac Sprint 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

   One step 
2-step etch and 
rinse 

Dentin  Negative 

   Clearfil liner bond 2 2-step self etch Dentin  Negative 

22 Jiang 2010 Clearfil SE Bond 2-step self etch Enamel 
Micro-Tensile Bond 
Strength 

Negative 

   Xeno III 1-step self etch Enamel  Negative 

   Frog 2-step self etch Enamel  Negative 

   FL Bond H 2-step self etch Enamel  Negative 
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Sl.No Author Year Brand Name Type of Adhesive Substrate Test  
Contamination 

Result 

23 Johnson 1994 All-Bond 2 
3-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Not significant 

   
Scotch Bond Multi 
Purpose 

3-step etch and 
rinse 

Dentin  Not significant 

24 Justin 2012 Single Bond 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

   UniFil bond 2-step self etch Dentin  Negative 

25 Kermanshah 2010 
Scotch Bond Multi 
Purpose Plus 

3-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

   Single Bond 
2-step etch and 
rinse 

Dentin  Negative 

   Adper Prompt L-Pop 1-step self etch Dentin  Not significant 

26 Khoroushi 2008 i-Bond 1-step self etch Enamel 
Shear Bond 
Strength 

Negative 

27 Koppolu 2012 Xeno III 1-step self etch Enamel 
Shear Bond 
Strength 

Negative 

     Dentin  Negative 

28 Kumar 2012 Single Bond 
2-step etch and 
rinse 

Both Microleakage Not significant 

   i-Bond 1-step self etch Both  Negative 

29 Munaga 2014 Filtek P90 2-step self etch Dentin 
Shear Bond 
Strength 

Negative 

30 Neelagiri 2010 AdheSE 2-step self etch Dentin 
Shear Bond 
Strength 

Negative 

   Adper Prompt L-Pop 1-step self etch Dentin  Negative 

31 Park 2004 One step 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

   Clearfil SE Bond 2-step self etch Dentin  Negative 

32 Patil 2014 
Scotch Bond Multi 
Purpose 

3-step etch and 
rinse 

Enamel 
Shear Bond 
Strength 

Negative 

     Dentin  Negative 

   Single Bond 
2-step etch and 
rinse 

Enamel  Negative 

     Dentin  Negative 

33 Pinzon 2010 Prime and Bond NT 
2-step etch and 
rinse 

Dentin 
Micro-Tensile Bond 
Strength 

Not significant 

   Single bond plus 
2-step etch and 
rinse 

Dentin  Negative 

   Clearfil SE Bond 2-step self etch Dentin  Negative 

   Clearfil S3 Bond 1-step self etch Dentin  Negative 

34 Pinzon 2011 One up bond F Plus 1-step self etch Dentin 
Shear Bond 
Strength 

Not significant 

   Adper Prompt L-Pop 1-step self etch Dentin  Not significant 

35 Powers 1995 Gluma 2000 
3-step etch and 
rinse 

Enamel 
Shear Bond 
Strength 

Negative 

     Dentin  Negative 
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Sl.No Author Year Brand Name Type of Adhesive Substrate Test  
Contamination 

Result 

36 
Ramires-
Romito 

2004 OptiBond Solo 2-step self etch Enamel 
Micro-Tensile Bond 
Strength 

Not significant 

   Prime and Bond NT 
2-step etch and 
rinse 

Enamel  Not significant 

37 Saayman 2005 Prime and Bond NT 
2-step etch and 
rinse 

Dentin Microleakage Not significant 

     Enamel  Negative 

38 Santschi 2015 Xeno V+ 1-step self etch Dentin 
Shear Bond 
Strength 

Negative 

   Scotchbond Universal 1-step self etch Dentin  Not significant 

39 Sattabanasuk 2006 One up bond F Plus 1-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Negative 

   Adper Prompt L-Pop 1-step self etch Dentin  Negative 

40 Sheikh 2010 Adper Prompt L-Pop 1-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Not significant 

   Adper Easy bond 1-step self etch Dentin  Not significant 

   Clearfil SE Bond 2-step self etch Dentin  Not significant 

41 Shimazu 2014 Clearfil S3 Bond 1-step self etch Enamel 
Microleakage and 
Shear Bond 
Strength 

Negative 

     Dentin  Negative 

   OptiBond Solo Plus 
2-step etch and 
rinse 

Enamel  Not significant 

     Dentin  Negative 

42 Suresh 2010 Single Bond 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

43 Suryakumari 2011 Single Bond 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Negative 

44 Taskonak 2002 Prime and Bond NT 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Not significant 

   Gluma one bond 
2-step etch and 
rinse 

Dentin  Not significant 

   Syntac SC 
2-step etch and 
rinse 

Dentin  Not significant 

45 Townsend 2004 na 2-step self etch Enamel 
Shear Bond 
Strength 

Negative 

    2-step self etch Dentin  Not significant 

46 Tuncer 2014 One step Plus 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength, 
Microleakage 

Negative 

   G- Bond 1-step self etch Dentin  Negative 

47 Ulusoy 2012 Prime and Bond NT 
2-step etch and 
rinse 

Dentin 
Micro-Tensile Bond 
Strength 

Negative 

   Clearfil Protect Bond 2-step self etch Dentin  Negative 
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Sl.No Author Year Brand Name Type of Adhesive Substrate Test  
Contamination 

Result 

48 
van 
Schalkwyk 

2003 Scotchbond 1 
2-step etch and 
rinse 

Dentin 
Shear Bond 
Strength 

Not significant 

   Prime and Bond NT 
2-step etch and 
rinse 

Dentin  Not significant 

49 Vieira 2010 
Clearfil SE Bond 
(24hrs) 

2-step self etch Enamel 
Micro-Tensile Bond 
Strength 

Negative 

     Dentin  Negative 

   
Clearfil SE Bond (6 
months) 

 Enamel  Negative 

     Dentin  Negative 

50 Xie 1993 All-Bond 2
3-step etch and 
rinse 

Enamel 
Tensile Bond 
Strength 

Negative 

     Dentin  Negative 

   
Scotch Bond Multi 
Purpose 

3-step etch and 
rinse 

Enamel  Negative 

     Dentin  Negative 

51 Yalcin 2013 Clearfil SE Bond 2-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Not significant 

   Clearfil S3 Bond 1-step self etch Dentin  Not significant 

52 Yazici 2007 Single Bond 
2-step etch and 
rinse 

Both Microleakage Not significant 

   Futura Bond NR 1-step self etch Both  Not significant 

53 Yoo(saliva) 2006 One up bond F Plus 1-step self etch Dentin 
Micro-Shear Bond 
Strength 

Negative 

   Xeno III 1-step self etch Dentin  Negative 

   Adper Prompt L-Pop 1-step self etch Dentin  Negative 

54 Yu 2014 Adper Easy One 1-step self etch Dentin 
Micro-Tensile Bond 
Strength 

Negative 

   Clearfil S3 Bond 1-step self etch Dentin  Negative 

 

1.4.2 Experimental Procedure

• Contamination

The foremost objective of evaluating contamination-based study is to simulate the possi-

ble oral condition and effectively create a situation that takes place in a clinical practice.

Most of the authors have described the procedure by mentioning, “contaminating the

specimen” or “applying saliva on the substrate”. Only 18.5% papers had specified quan-

tities of contaminants and 48.1% mentioned the duration of contamination. The saliva

used for testing were mostly natural (85.2%), and they were either freshly collected from
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one or many donors just prior to the experiment, or collected in advance, frozen at –80◦C

and thawed just before use [45, 46, 56]. Few investigators also used artificial saliva (14.8%)

for their experiments.

• Decontamination

70% of the articles indicated that some form of decontamination procedure might restore

the values to control levels and have adopted a variety of approaches. While 33.3% of

them tried to blow-dry the contaminant, 53.7% chose to rinse and dry, 20.4% re-etched

the contaminated surface, 11.1% re-primed and 25.9% reapplied the adhesive in order to

decontaminate.

Sheikh et al.,[47] proposed cleaning with agents like sodium hypochlorite, ethanol, acetone

and chlorhexidine to improve the quality but found saliva and the cleansing solutions had

no influence on the bond strengths in both one and two step self-etch adhesive systems.

When the priming stage was contaminated in 2 step self -etching adhesive, re-priming

improved the bond strengths considerably [21, 27, 36-38]. 65% have claimed to have

improved or restored the bond strength whereas 35% failed to restore the values or found

no significant difference after decontamination.
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.

Figure 1.2: Influence of contamination on different adhesives

• Type of test

Generally, the quality of bonding via experiments on contamination is determined in-

vitro, except for one study done in-vivo [9]. Although, intentionally contaminating a

tooth for the purpose of experiment in an in-vivo tests may be considered unreasonable.

Aboushelib et al., [9] carried out the study on teeth intending to be extracted for or-

thodontic purpose and the teeth were extracted 3 years after restoration. More than

half (54.7%) of the reviewed articles used shear bond strength test to evaluate the bond-

ing, followed by 22.6 % that used micro-tensile bond strength test and 11.3% that used

microleakage for assessment. The other testing procedures used were micro-shear bond

strength (3.8%), tensile bond strength (1.9%) and microscopic analysis (5.7%). All the

tests are almost always accompanied by a microscopic evaluation of the specimens by
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a stereomicroscope or a scanning electron microscope. The irregularities of each testing

method are represented (Table.1.2).

• Surface Preparation

Preparation of the surface varied in different test protocols and is often modified by

individual researchers. The adaptation of different materials and substrates to different

surface conditions could not be contrasted for an evaluation. The variability in the

surface preparation procedure in different test procedures used is illustrated (Table.1.2).

It is observed from the literatures that, grinding the surface with 600 grit silicon carbide

(SiC) paper is the most widely used method of surface preparation (38.9%) for bond

strength test, followed by serial grinding (27.8%) with 2 or more different grit size or

roughness of SiC.

In bond strength testing, while conducting a test following the ISO/TS 11405 (2003), the

most often overlooked specification is that “a limitation of the bonding area is important”

[66]. It is moreover essential to consider, if the precise bonding area is maintained from

the stage of etching. This step however, is not very clear from all of the literature. In

the methodology explained, even most of the newer studies in bond strength have not

specified whether the whole area or the defined area is subjected to the contamination,

etching or bonding. This may lead to discrepancy in the data.

• Substrate

Almost all (87%) of the investigations were done using human teeth as their substrates

and 7.5% were conducted on extracted primary teeth. 5% were investigated on enamel,

61% were on dentin and 29% were conducted on both enamel and dentin. However, 5.6%

studies were done on extracted bovine teeth.
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• Aging

The aging process can be simulated either by thermocycling or by storing for a stipulated

amount of time in water or different solutions. 27.7 % opted to perform thermocycling

and it was done between 5 and 55◦C and at various frequencies of 500, 1000, 2000, 2500

and 5000 cycles. Majority (62.9%) of the researchers stored the specimen for 24 hours at

37◦C (Table.1.2) in either distilled water or dye. Few studies combined different duration

of aging, in order to compare the variation. In-vivo/clinical study had an advantage of

leaving the test specimens in the natural oral environment, which ensured an authentic

condition for aging [9]. There was only one in-vitro study which examined the adhesive

efficacy for a longer term, after a 6-month interval [56].
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Table 1.2: Comparision of test parameters to demonstrate variability among studies

TYPE OF TEST

PARAMETERS VALUES
Shear 
bond

Tensile 
bond

Micro-
Shear

Micro-
Tensile

Microle
akage Others Total

SURFACE 
PREPERATION

600 grit SiC 9 1 3 7 0 1 21

<600 grit SiC 1 0 0 0 0 0 01

Serial grinding 13 0 0 2 0 0 15

Cavity preparation 1 0 0 2 6 2 11

Flattened with Bur/disc 5 0 0 0 0 0 05

Not available 0 0 0 1 0 0 01

SAMPLE 
SIZE/GROUP(n)

1-5 3 1 2 7 0 1 14

6-10 18 0 0 4 4 1 27

11-15 5 0 1 1 1 0 08

16-20 3 0 0 0 1 1 05

THERMOCYCLING
Yes 8 0 0 0 6 1 15

No 21 1 3 12 0 2 39

STORAGE TIME

24 hours 19 1 2 10 3 1 36

48 hours 6 0 0 0 0 1 7

1 week 0 0 1 0 1 0 2

3 weeks 1 0 0 0 1 0 2

6 months 0 0 0 1 0 0 1

3 years 0 0 0 1 0 0 1

Not available 3 0 0 0 1 1 5

DURATION OF 
CONTAMINATION

0-5 seconds 2 0 0 2 1 0 05

6-10 seconds 2 0 0 2 1 1 06

11-15 seconds 5 0 0 0 0 0 05

16-20 seconds 4 0 1 0 0 0 05

21-30 seconds 2 0 0 0 0 0 02

1 minute 0 0 1 1 0 0 02

Not available 14 1 1 7 4 2 29
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1.5 Discussion

Dental adhesives are complex blends of components. Insightful knowledge of these ingre-

dients is vital to recognise the performance of adhesives while using in clinic conditions.

Better understanding of the components provides awareness in the correct clinical use of

adhesives [62].

The idea of the possible interactions of adhesives with saliva are understood to be that,

when the surface gets contaminated with saliva after etching (in etch and rinse) or surface

preparation, the presence of water and glycoproteins of saliva on the surface may hamper

with the proper infiltration of adhesives and subsequently hamper the micromechanical

adhesion.

When the surfaces are contaminated with saliva after application of adhesive but before

polymerising, saliva may affect the degree of conversion because molecules with their

hydrophilic nature may hold moisture within the adhesive layer and get dispersed in wa-

ter, thus they become unable to participate in chain growth during polymerization and

eventually alter the bond strength.

When surfaces are contaminated after polymerization process, absorption of salivary pro-

teins to the polymerized surface may cause reduction of bond strength. These glyco-

proteins may prevent complete infiltration of the subsequent resin layer and prevent

copolymerization [32].

Hydrophilic monomers are incorporated in water, ethanol, or acetone to be used as

primers and form a hybrid layer. After applying the primer, air drying evaporates the

carrier solvent which deposits the resin material in the collagen. The bonding agent

co-polymerizes with the primer, wetting the dentin surface and facilitating further pene-

tration of the monomers [67].

Preferably, before light-curing, the applied adhesive must be devoid of all the solvents and

water. Hence, a bit of time for the sake of evaporation is provided between application

and curing of the adhesive resin. Nevertheless, the ratio of water to monomer decreases
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as water evaporates from the adhesive, lowering the vapor pressure of water and fur-

ther reduces the capacity of water and other solvents to completely evaporate from the

adhesive. In case of contamination, it is likely that residual moisture from saliva along

with the solvent will be confined inside the adhesive. This may degrade the bonding and

hamper the strength of the adhesive [67].

This review discovered that 2-step etch and rinse adhesive tolerated better when there is

salivary contamination. However, there were mixed thoughts observed. This variation in

behavior between the tested materials could be assigned to the difference in the chemical

configuration. Some of the materials tested include acetone as their solvent. Acetone is a

“water chaser” and assists to replace the water with primer on the dentin surface. When

acetone based primers come in contact with moistened surface, the boiling point of water

decreases and that of acetone increases and they evaporate leaving behind the resin [8,

68]. However, when water based solvents are used, the moisture in saliva tends to dilute

the adhesive, reducing its efficacy. The favorable response to salivary contamination in

dentin could be reasoned that, saliva increased the hydration of dentin surface producing

a favorable performance to acetone based primers [8].

In-vivo clinical performance of any adhesive cannot be represented entirely based on the

in-vitro results[69]. This does not however suggest, that proper technique and moisture

control should not be followed while applying these adhesives.

Although, there is a likelihood of salivary contamination during restorative process, 1-step

self-etching adhesives are simpler as well as faster than etch-and-rinse adhesives making

it less technique sensitive. The simplification of the bonding process will certainly have

clinical advantages, but these adhesives contain very hydrophilic monomers and they aid

in absorbing moisture from dentinal tubules through osmosis. Monomers that are not

polymerised tend to leach out through water sorption which leads to expansion of the

polymer. Usually, an increase in water sorption is coexistent with increase in solubility,

which leads to hydrolytic degradation and nanoleakage, resulting in a reduced bond qual-

ity over time [65, 70].
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Adhesive systems commonly contain Hydroxyethyl-methacrylate (HEMA) monomer. These

monomers are included to offer strength to the cross-linking formed from monomeric ma-

trix. HEMA-containing adhesives are vulnerable to moisture in saliva, as their presence

in the uncured adhesive encourages absorption of water and will end up diluting the

monomers to a degree that polymerization process is hinderd [62].

In a good scientific research, specificities of contaminants like the quantity and duration

are crucial to compare the results and also to validate exactly how much contaminant is

adversely affecting the material examined. The haphazardness of tests protocols makes

it difficult not only to compare the test specimens within the study but also from one

study to another. Thus, making the findings non-reproducible.

Few studies used artificial saliva for experiments. Various types of artificial saliva have

been formulated for the studies in dentistry. Although, these formulations try to have

a composition as similar as that of natural saliva, their use for contamination studies

is questionable. Saliva is known to be very inconsistent [71] and it comprises of sev-

eral hydrolytic enzymes competent of reacting with the tooth structure through different

biochemical processes, which could modify the surface of the tooth structure and also

compromise the material bond strength [72]. Hence, the studies excluding these organic

constituents might not entirely simulate the clinical contamination. One study however,

incorporated mucin alone in the artificial saliva but could not elicit dramatic ill effects

on bond strength [41]. Further investigations could be done to evaluate the effect of

other salivary proteins at different protein concentrations as well as the influence of other

salivary constituents in the adhesion to tooth structures in order to have a better under-

standing on the exact consequence.

There is still an apparent unpredictability in the decontamination procedures in all the

investigations. The duration and other precise details of the decontamination process

mentioned are not consistent and thus making it unsuitable for a comparative analysis.

But then again, findings indicate towards the fact that, if contamination is discovered,

the material strength could be salvaged if the remedial measures are taken.
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Unavailability of extracted human teeth and the need of a large sample group have com-

pelled researchers to find unconventional ways to conduct experiments. At present, bovine

teeth are widely used in experiments. Nakimichi et al.[73] found no statistical difference

in bond strength in human teeth and bovine teeth when enamel and the superficial layer

of dentin were used for experiment. Usually, an early or a 24-hour bond strength is veri-

fied but, it is necessary to test bonding efficiency of adhesives in a clinically appropriate

situations and after aging for longer durations. Undeniably, many commercially existing

adhesives have shown a good short-term bond strength, while the clinical results have

not been comparable [66].Therefore, more resilience testing of adhesion is required, than

only determining the intermediate bond strength.

Thermocycling and storing in water and are the most common methods to age the sub-

strate artificially [74].The co-relation of bond-strength tests and clinical results was ex-

plored and was concluded that, aging the specimens will encourage the results to be more

clinically relevant [66]. Also, long-term durability of dentin bonding adhesives depends

on the bonding capability of the functional monomer [75].

It is clear from the literature that, in most of the adhesives tested so far, saliva has the

potential to impair the immediate bond quality. These altered circumstances need to be

tested in a long-term study to understand if it deteriorates with time.

It is not an unfamiliar idea in dentistry that, contamination may harm the materials and

it will never become an old subject for research. There is constant research in developing

novel and improved adhesive materials. These newer materials ought to be verified under

simulated conditions of oral cavity. However, the test protocols need to be more stan-

dardized as well as the explanation of the test procedure need to be more transparent in

order for the tests to be reproducible and to get a fair comparison between the materials.
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Chapter 2

In-vitro Evaluation of Low and High
Viscosity Bulk-fill Restoratives vs
Conventional Resin Composite in
terms of their Shear Bond Strength
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2.1 Abstract

Purpose To evaluate the variance in high and low viscosity bulk-fill restorative material

and conventional resin composite in terms of their shear-bond strength to dentin.

Materials and Methods: Human third molars were sectioned mid-coronally, embed-

ded in cold-cure acrylic and wet ground with 600 grit silicon carbide paper in order to

attain flat dentinal surface and then randomly allocated into ten groups (n=20). The

region to be bonded was delimited and treated with self-etch adhesive (Clearfil SE 2).

Four high viscosity bulk-fill restorative materials (BF-RC); Sonic fill-2 (SF2), Tetric Evo-

Ceram (TEC), Admira Fusion x-tra (AFX) and Beautifil-bulk restorative (BBR) and

five low viscosity BF-RC; Tetric EvoFlow (TEF), Surefill SDR (SDR), Venus Bulk-fill

(VBF), Beautifil-bulk flowable (BBF) and Filtek Bulk-fill (FBF) were dispensed in one 4

mm increment and polymerized for 20 seconds. One conventional resin composite (RC);

Ceram-x (CX) was dispensed in two 2 mm increments. Shear bond strength (SBS) was

determined at a crosshead speed of 0.5 mm/min after seven days of storing submerged in

distilled water at 37◦C. The data was statistically analyzed using one-way ANOVA with

Tukey HSD post-hoc (α = 0.05) and Weibull statistical analysis.

Results: The study could not identify a statistically significant difference in SBS be-

tween the ten restorative materials tested. Weibull statistic ranked the materials in the

order BBR<CX<FBF<TEC<AFX<BBF<VBF<SDR<SF2<TEF

Clinical Significance: The BF-RC functions comparable to conventional RC in terms

of SBS and the type of material had no significant influence.
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2.2 Introduction

Improvements through the years in chemical configuration, filler permutations and ad-

hesive approaches, has steered the development of many new and modified categories of

resin composite (RC) materials. The entry of bulk-fill (BF) RCs into the market has been

very promising for the clinicians [1]. The BF-RC originated to address the limitation of

incremental material placement of conventional RC, as they exhibit an inadequate depth

of cure and increased polymerization shrinkage [2]. Moreover, the incremental placement

procedure has several drawbacks like the inclusion of voids or chances of contamination

between layers and increased effort to deposit in posterior cavities with inadequate access,

all of which makes it clinically time consuming. BF-RC allows a single 4-5 mm increment

to be polymerized efficiently and are reported to have improved curing and controlled

shrinkage [3], which effectively brings about reduction in the chair time [4, 5].

The BF-RCs that are commercially available differ in their rheological properties, chem-

ical composition and filler ratio and hence differ in their mechanical properties [6-8]. At

the moment, they are available in high viscosity or restorative/sculptable form and low

viscosity or flowable form. The low viscosity BF-RC are apt for procedures in narrow cav-

ities that are 4-5 mm deep, owing to its better flowability in the lesser accessible posterior

cavity configurations, where a higher adaptation is required [9]. They have proven to be

effectively used clinically in large cavities using a capping layer [10]. The high viscosity

BF-RC is used in high stress-bearing areas and in situations that necessitate producing

functional cuspal configurations [6, 9].

The junction of a RC and the tooth is often subjected to an assortment of stresses which

can theoretically lead to impairment of the restoration [11]. Much prior to the restored

tooth being exposed to functional burden and thermal stresses, it is subjected to an

interfacial stress that occurs between the RC and the tooth during the polymerization

[11]. It stems from the complex interaction between the volumetric contraction, reaction

kinesis, as well as the viscoelastic behaviors of the RC [12]. Thus, the primary concern
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of curing large increments is increased polymerization shrinkage stress at the interface.

When the stress value exceeds the adhesive resistance, it can lead to the formation of

gaps [13]. Therefore, an ideal restorative should develop low shrinkage stress to ensure

a better seal [14]. The adhesion of bonded RC to dental tissues is a primary concern

for clinical success and durability of restoration, especially when the innate property of

the materials demonstrate the potential to shrink when polymerized [11]. An inferior

adaptation tends to increase the risk of microleakage and result in debonding, secondary

caries and postoperative sensitivity [15].

With the intention of regulating the reaction kinetics and minimize stress formation in

RC, manufactures included advanced high-molecular-weight base monomers, pre-polymer

stress relievers, and stress-relaxant polymerization modulators in their bulk-fill materials

[7,16]. There has been a great deal of investigations on BF RCs in-vitro, which has ascer-

tained that they can be cured and used in increments up to 4 mm thickness successfully

[17]. BF-RC generated more controlled shrinkage stress when compared to conventional

RC, particularly when bigger increments were evaluated [2,14,16,18,19]. However, this

assumption is distinctively material dependent [20]. When the effect of viscosity on the

stress-reducing potential of BF-RC was investigated, the high viscosity BF-RC showed

similar stress values as a high viscosity conventional RC; whereas the low viscosity BF-

RC produced less stress than the conventional equivalent [2, 21]. Contrarily, in another

study, the low viscosity BF-RC showed more shrinkage compared with high viscosity BF-

RC [22]. Overall, BF-RC with high filler amount exhibited most satisfactory shrinkage

force properties [16].

Clinical performance so far has shown an assuring prospect for the BF-RC in the direct

restorations of posterior teeth which were similar to the conventional RC, within an inter-

val of12 to 72 months [10, 23]. There has been much debate regarding the bond strength

of BF-RCs. In one research, there was no significant difference between the micro-SBS

of low viscosity BF-RC, conventional or high viscosity BF-RC in terms of restoring the

occlusal layer [18], although in another study, low viscosity BF-RC showed more satis-
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factory micro tensile bond strength than conventional RC and different C-factors did not

affect the bond strength [24]. In few studies, bond strength of BF-RCs was found to be

product dependent [25, 26]; which was thought to be due to the differences in mechanical

properties and consistency than to differences in induced shrinkage stress.

A reduction in the degree of conversion, as well as an increase in increment thickness,

have been shown to negatively affect the bond strength of conventional RC to dentin

[27, 28] but, SBS remained constant with increasing increment thickness for BF-RC [25,

28]. If the differences in material properties distinguished by their viscosities affect the

adhesion to dentin and bond quality is still quite ambiguous. Therefore, this study aimed

to understand the influence materials of different viscosities on adhesion by comparing

the SBS of commercially available modern BF restoratives in both high viscosity and low

viscosity with a conventional nano-hybrid RC as reference.

The null hypotheses to be verified are;

a. The BF-RCs do not significantly differ from that of a conventional RC in terms of

their SBS.

b. The low viscosity and the high viscosity BF-RC do not demonstrate a significant

difference in terms of their SBS.

2.3 Materials and Methods

Extracted carious free third molars were stored in sodium azide solution at 4◦C. They

were thoroughly cleaned and then sectioned mid-coronally parallel to the occlusal line

(Fig.2.1A), using a low-speed diamond saw (Isomet, Buehler, Lake Bluff, IL, USA) with

water cooling to obtain two halves, “occlusal” and “cervical” sections. Each divided por-

tion was further sectioned into 2 or 4 parts depending on the size of the tooth (Fig.2.1B).

The obtained 200 dentin surfaces were embedded in methacrylate resin (Technovit 4004,

Heraeus Kulzer; Hanau, Germany) with the help of stainless-steel cylinders (Fig.2.1C).

The embedded dentin surfaces were ground with 600 grit silicon carbide grinding paper
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(Leco, St. Joseph; USA) on a grinding system (Exakt 400 cs, Norderstedt, Germany)

and ensured to have a flat surface (Fig.2.1D). They were then randomly allocated into

ten groups (n=20) (Fig.2.1). A thin adhesive sheet (Fig.2.1E) with a circular hole (3.2

mm diameter) was placed on the surface, delimiting the region to be bonded (Fig.2.1F).

The exposed surfaces of all substrates were then treated with a 2-step self-etching dental

adhesive Clearfil SE Bond 2 (Kuraray Noritake; Osaka, Japan, Lot:000031). The primer

was applied with a micro brush and left undisturbed for 20s. It was then blow-dried with

mild air for 5s so that the primer does not move anymore. Then the bond liquid was

applied with a micro brush and dried with mild air to ensure even and a thin layer of

application. The adhesive was then cured for 10s (Bluephase; Ivoclar-Vivadent; Schaan,

Lichtenstein). Custom made vinyl polysiloxane split mold (Regisil PB; Dentsply Caulk,

Milford, Delaware, USA) (Fig.2.1G) with a central cylindrical cavity (3.2 mm in diameter

and 4 mm in height) was positioned on the specimen.
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.

Figure 2.1: Diagrammatic representation of the overview of specimen preparation
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Ten restoratives were used (Fig.2.1), of which, four were high viscosity BF-RC; Sonic fill 2

(SF2), Tetric EvoCeram (TEC), Admira Fusion x-tra (AFX) and Beautifil-bulk restora-

tive (BBR), five were low viscosity BF-RC; Tetric EvoFlow (TEF), Surefill SDR (SDR),

Venus Bulk-fill (VBF), Beautifil-bulk flowable (BBF), Filtek Bulk-fill (FBF) and one con-

ventional nano-hybrid RC; Ceram-x (CX). The RC was then placed inside the cavity and

condensed for better adaptation. It was deposited in one increment of 4-mm for all the

BF-RC and cured for 20s with Bluephase curing lamp (Ivoclar-Vivadent; Schaan, Licht-

enstein) with an irradiance of 1316 ± 51 mW/cm2 as measured with MARC simulator

(BlueLight Analytics, Halifax, Canada) (Fig.2.1H). Two consecutive increments of 2 mm

thickness were polymerized for the conventional RC (CX).

The prepared samples (Fig.2.1I) were stored vertically for seven d at 37 ◦C in distilled

water and were subjected to SBS test with a broad chisel head in a universal testing ma-

chine (MCE 2000ST, Quicktest Prüfpartner; Langenfeld, Germany) at a crosshead speed

of 0.5 mm/min until fracture. The loaded force at fracture was recorded. The diameter

of the fractured fragments was measured at two perpendicular points (to calculate an

average), and then the bonded area was determined. The SBS was calculated by dividing

the loaded force by the bonded area.

The fractured bits were examined closely with a 10x magnification. The fracture pro-

gression was categorized to be in three distinct patterns. If the fracture followed straight

line between dentin and resin, it was identified as adhesive. A fracture that occurred

partly in tooth/RC to advance through one or both of the substrates (tooth/RC) defined

a mixed fracture. The occurrence of a fracture which did not follow the bonding surface

but ran exclusively through RC or dentin, such a pattern was designated as cohesive.
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Table 2.1: Material Description

Product (ACRONYM)
Manufacturer 
(Lot No)

Type Of RC Matrix Filler Filler %
Wt /Vol

Ceram-X (CX)
Dentsply Sirona, 
York, PA, USA
(1508000010)

Conventional RC

Methacrylate 
modified 
polysiloxane. 
Dimethacrylate 
resin

Ba-Al-F-B-Si 
Glass, SiO2

nano filler 77/55

Sonic fill 2  (SF2)
Kerr,Orange
CA, USA
(5767358)

High Viscosity  
BF-RC

Bis-GMA.
TEGDMA. 
EBADMA

SiO2 , 
zirconium
oxide,
Glass oxide 
and YbF3

83.5/66

Tetric EvoCeram (TEC)
Ivoclar vivadent, Schaan, 
Liechtenstein
(V08737)

High Viscosity  
BF-RC

Bis-GMA.
UDMA

Barium glass, 
YbF3 . mixed 
oxide and 
prepolymer.

77/54

Admira Fusion x-tra (AFX)
Voco, Cuxhaven
Germany
(1537600)

High Viscosity  
BF-RC Ormocer SiO2 84/69

Beautifil-bulk restorative (BBR)
Shofu, Kyoto
Japan 
(091301)

High Viscosity  
BF-RC

Bis-GMA.
UDMA. 
Bis-MPEPP.
TEGDMA

S-PRG based 
on fluoro-
boro-
alumino-
silicate glass.

87/74.5

Venus Bulk-fill (VBF)
Heraeus Kulzer, Hanau,
Germany
(010108)

Low Viscosity  
BF-RC

UDMA.
EBADMA

Ba-Al-F 
silicate glass. 
YbF3 . and 
SiO2

65/38

Tetric EvoFlow (TEF)
Ivoclar vivadent,Schaan, 
Liechtenstein
(U12113)

Low Viscosity  
BF-RC

Bis-GMA.
UDMA

Barium glass, 
YbF3 and 
copolymers

68.2/46.4

Surefill SDR (SDR)
Dentsply Sirona, 
York, PA, USA
(1508000518)

Low Viscosity  
BF-RC

Modified UDMA. 
TEGDMA. 
EBADMA

Ba-Al-F-B-Si 
glass and St-
Al-F-Si glass

68/44

Beautifil-bulk flowable (BBF)
Shofu, Kyoto
Japan 
(121301)

Low Viscosity  
BF-RC

Bis-GMA.
UDMA. 
Bis-MPEPP.
TEGDMA

S-PRG based 
on fluoro-
boro-
alumino-
silicate glass

72.5/51

Filtek bulk-fill (FBF)
3M ESPE, Seefeld
Germany 
(N692537)

Low Viscosity  
BF-RC

Bis-GMA.
EBADMA.
UDMA

Zirconia, 
SiO2

64.5/42.5

Bis-GMA: Bisphenol-A-GlycidylDimethacrylate, UDMA: Urethane Dimethacrylate, 
Bis-MPEPP: BisphenolA Polyethoxy Methacrylate, EBADMA: Ethoxylated Bisphenol-A-Dimethacrylate, 
TEGDMA: TriethyleneglycolDimethacrylate,
wt: weight percentage, vol: volume percentage.
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2.4 Statistical Analysis

The SBS results were statistically analyzed (Version 25.0; IBM SPSS Statistics. USA) for

normality and homogeneity of variance using the Kolmogorov-Smirnov test and Levene’s

test, respectively. The SBS results were then compared using a one-way analysis of vari-

ance (ANOVA) with the Tukey HSD post-hoc test (α = 0.05) and the univariate analysis

(general linear model with partial eta squared (η2p))(α = 0.05) verified the influence of

type of RC, part of the tooth and experimental groups on the bond strength. Statistical

power analysis and post-hoc power analysis was performed to verify if the sample size

was adequate.

Weibull is a representation for the cumulative probability of failure (Pf) at applied stress:

Pf (σc) = 1−exp
[
−
(
σc
σ0

)m ]
, m is the Weibull modulus, σc is the measured strength and

σ0 is the characteristic strength. It is described as the stress at which the probability of

failure is 0.63. The double logarithm of this expression gives:
(

1
1−F

)
=mln(σ)−mln(σ0).

By mapping lnln
(

1
1−F

)
versus ln(σ), a linear upward gradient m and its intersection

with the x-axis gives the logarithm of the characteristic strength (σ0). The scatter in the

computed Weibull parameters as well as the bias are analysed and compared to results

by using the Pf = (1−0.5)
n

estimator [29]

A Pearson’s correlation test was done to estimate if there was any correlation between

the filler weight % data (as per manufacturers) and the bond strength as well as the

obtained Weibull’s modulus.
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2.5 Results

Kolmogorov-Smirnov test ascertained that the data were normally distributed. One-way

ANOVA with Tukey HSD post hoc test (α = 0.05) failed to identify significant differences

among the different BF-RC (p = 0.232). The mean SBS value varied from 22.42 (2.43)

MPa for TEF and 19.37 (3.25) MPa for VBF (Table.2.2) (Fig.2.2) The univariate analysis

(general linear model with partial eta squared (η2p) (α = 0.05) demonstrated no significant

influence seen by the type of RC (p = 0.905), part of the tooth (p=0.078) and different

experimental groups (p = 0.232) on the SBS. A statistical power analysis suggested that at

least 14 samples were required for an adequate evaluation of bond strength. Therefore,

this experiment was performed with sample sizes of 20 and the posthoc power tests

indicated that the sample size was adequate.

The Weibull analysis revealed that TEF was the most reliable material, and BBR was

found to be the least reliable out of the tested materials (Table.2.2). The plot of the

statistics is presented in Fig.2.3.

A very weak inverse linear correlation (r = −.297, p < 0.001) was found between the filler

weight percentage and the Weibull’s modulus and no other significant correlations was

found between filler weight and SBS.

The overall fracture pattern was predominantly adhesive (58.5%) and mixed (35.5%),

with few cohesive (6%) (Fig.2.5), and no pre-failures were registered. In high viscosity

BF-RC, the fracture pattern was 53.75% adhesive, 36.25% mixed, and 10% cohesive.

In low viscosity BF-RC, 64% adhesive, 32% mixed and 4% cohesive. The conventional

composite showed a 50% adhesive and 50% mixed fractures and no cohesive fractures.

High viscosity BF-RC had more fractures involving the dentin (22%), and low viscosity

BF-RC had more fractures involving composite (25%). It was also observed that cohesive

failures are related to high bond strength with a mean of 23.59 (3.28) MPa.
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Table 2.2: Shear bond strength of all materials (mean with SD) and Weibull Statistics

Type Of RC Resin Composite
Shear Bond 
Strength (MPa)

Weibull Parameters
(at 95% confidence 
bounds)

Mean (SD) m (CI) s0 (MPa)

Conventional RC Ceram-X (CX) 21.31 (4.3) 5.04 (0.15) 23.27

High Viscosity BF-RC

Sonic Fill 2 (SF2) 20.08 (2.4) 9.81 (0.12) 21.12

Tetric Evoceram (TEC) 22.21 (4.5) 5.96 (0.16) 23.95

Admira Fusion X-Tra (AFX) 20.90 (3.9) 6.24 (0.11) 22.48

Beautifil Bulk Restorative (BBR) 21.77 (5.9) 3.77 (0.14) 24.21

Low Viscosity BF-RC

Venus Bulk-Fill (VBF) 19.37 (3.2) 7.16 (0.18) 20.68

Tetric Evoflow (TEF) 22.42 (2.4) 11.09 (0.11) 23.46

Surefil SDR (SDR) 21.51 (3.0) 8.36 (0.13) 22.79

Beautifil Bulk Flowable (BBF) 22.18 (3.7) 6.65 (0.13) 23.78

Filtek Bulkfill (FBF) 22.01 (4.2) 5.59 (0.10) 23.84

SD=Standard deviation, m=Weibull’s modulus, CI-Confidence interval, s0 =Characteristic strength, MPa=Megapascal
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Figure 2.2: Shear bond strength of all restorative materials

Figure 2.3: Weibull graph for all restorative materials
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2.6 Discussion

In this study, the BF-RC showed similar values for SBS as conventional RC, regardless

of their respective viscosities. Thus, both the null hypothesizes, that there was no sta-

tistically significant difference in mean SBS observed among the different viscosities of

BF-RC or with conventional RC was accepted.

The bond strength test results with just mean SBS with standard deviation does not

convey the complete information about the performance of the materials. In the major-

ity of cases, the 95% CI (confidence interval) is used to calculate variances in datasets,

as it provides a precise estimation. It is sometimes challenging to identify significant

differences among the mean values. Nonetheless, it is broadly exercised and establishes

a statistically significant difference between groups of data. Furthermore, this method

of measurement can not specify the intrinsic strength as it depends mainly on the test

methodology, the surface exposed to stress and the size of the test. Besides, the use of

low sample size may also increase the error from the true mean of the population and true

standard deviation [30]. We observed that the characteristic strength of BBR is highest

compared to the other tested materials, whereas the mean strength was 21.77 (5.9) MPa

(Table.2.2) (Fig.2.4). The characteristic strength value depicts the bond strength distri-

bution in a group of samples, instead of estimating the arithmetic mean bond strength

value. A change in σ0 shifts the whole strength distribution of the data set. Thus, this

value could be assumed as a statistical guide for estimating the strength of the material

[31].
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Figure 2.4: Comparison of mean shear bond strength and characteristic strength

Though the SBS results obtained in this study could not identify significant differences

with respect to mean SBS, Weibull statistical analysis could assess the materials as per

their reliability (Table.2.2) Weibull distribution is used to describe variability in measured

material strength of brittle materials. If the obtained SBS values show high disparity

among themselves, the computed Weibull modulus would be small. This reveals that

flaws are arranged inconsistently, and the measured strength will be unpredictable [29].

However, in commercially available products, the evaluation is not as straightforward.

There are various confounding features that result from dissimilarities in the preparation

such as the initiator amount, the filler concentration and other additives, which makes fair

comparisons of RCs challenging. Furthermore, stress formation depends on the shrinkage,
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degree of conversion and the elastic modulus of the material, and these properties are

affected by modifications in constituents [11, 32]. In bond strength testing, the specimen

undergoes an irregular propagation of stresses at the adhesive interface, which is highly

influenced by the testing variable. Hence, the absolute bond strength values should

never be adjudicated as an intrinsic material property, but rather a measure of material

performance under the experimental condition.

The SBS values are assumed to be susceptible to the location of the dentin substrate,

as the diameter of the dentinal tubules and the moisture content varies according to

the substrate position [33]. However, in order to increase the opportunity of using the

available dental tissue, during the substrate preparation the tooth was cut mid coronally

to obtain two portions, to obtain an “occlusal” and a “cervical” part. These parts though

varied in depth of the dentin only by the thickness of the diamond saw used to cut

(0.27mm). The bond strengths obtained in both these parts were compared irrespective

of the composite resin used, and there was no statistically significant difference between

the occlusal or cervical parts noticed. This indicates that the variation due to the slight

disparity in the substrate preparation was inconsequential.

The fractographic analysis revealed that the majority of failure patterns occurred as

adhesive, which was an interfacial failure between dentin surfaces and RCs (58%). A

mixed fracture involving the dentin were observed to be more in high viscosity than low

viscosity BF-RC, which imply that, the material with a higher filler concentration may

be more resistant to fracture load and does not become the weakest path for the fracture

propagation after initiation.
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Figure 2.5: Fracture pattern analysis of all restorative materials

Although, the commercially available products broadly fall under the umbrella of BF

restoratives, manufactures often bring about variations in their composition and try to

encompass innovative and technologically advanced formulations in their RC to facilitate

marketing of these products and also make them distinct. With the availability of such

diverse materials, it is vital to analyze how the difference in filler ratio and composition

affect the different classes of composites as the mechanical properties of BF-RC vary

mostly according to the nature of their filler content and composition [34].

The inorganic fillers are the stiffer component in a RC. Thus logically, the higher the

amount of filler content, the greater would be the composite elastic modulus ensuing in

a higher stress development when tested at low compliance. However, the logic is not

that straightforward, as the resin matrix, which has a lower elastic modulus than the

inorganic constituents, tends to shrink due to polymerization. Hence, the matrix to filler
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ratio has a substantial role in the strain and stress developed. Higher shrinkage, along

with a larger elastic modulus would generate added stress within the RC and the bonded

interface [35]. In the pre-gel stage, the composite exhibit adequate kinesis to re-arrange

and counteract for the shrinkage without generating internal and interfacial stresses [11,

36]. In the post-gel stage, the development of a semi-rigid polymer network hampers the

plastic deformation, due to the persistent polymerization shrinkage together with elastic

modulus development causing stresses within the material and at the tooth-restoration

interface. This state of stress is likely to accelerate gap formation, endangering the bond

quality and durability of the restored tooth [36].

The materials considered are different from each other not only in their viscosities but also

in their chemical compositions and filler ratio. The study included Ormocers, Giomers,

and modified Resin composites. It should be emphasized that evaluating the novel

restorative practices can only be achieved by considering different varieties of composites

since each procedure has explicit requirements that determine the materials to be used.

In the current study, we used the conventional incrementally-placed composite as a con-

trol or reference. The nano-hybrid conventional RC (CX) was used as a reference since, a

long-term clinical study has proved it to be a reliable material in comparison to a BF-RC

after six years [10].

The TEC and TEF both contain a germanium-based light-initiator system (Ivocerin)

which unlike the conventional camphorquinone/amine-based photoinitiator systems has

the ability to absorb light in the visible region intensively and has a high photoreactivity

[37]. The manufacturers claim that they contain a filler that is partly functionalized by

silanes which act as a shrinkage stress reliever. Once the RC is cured, the monomers in

the fillers along with the silanes initiate a cross-linking process which enables the forces

between the individual fillers to come in work and apply stress on the cavity walls. The

stress generated is controlled by volumetric shrinkage and the modulus of elasticity. Ow-

ing to its low elastic modulus, the shrinkage stress-relieving fillers within TEC and TEF

BF-RC functions like a spring among the usual glass fillers which have a greater elastic
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modulus. Eventually, the volumetric shrinkage and shrinkage stress in TEF and TEC are

reduced during polymerization[38].

BBR and BBF are Giomers which incorporate bioactive fillers like surface pre-reacted

glass that is believed to offer the clinical advantages of glass ionomers along with RC

[39]. BBR exhibited the least reliability among the tested materials which could be due

to its high ratio of filler content. Although a weak, there was an inverse correlation seen

between the filler weight % of the RC and the Weibull’s modulus. Therefore, probably

the high weight % of filler content made the material more rigid and resulted in lower

reliability as the fracture became unpredictable.

In contrast to the BBR, BBF showed a higher Weibull modulus. Similarly, TEF exhib-

ited better reliability when compared to the TEC. This implies that the low viscosity

equivalent of the material showed higher reliability. Even though, they are produced by

the same manufacturers and containing similar composition, a favorable adaptation, bet-

ter wettability, effortless delivery and void-free restoration produced by the low viscosity

BF-RC might be the reason for their higher reliability. Also, essential to consider is the

fact that, TEC, TEF, BBR and BBF contain pre-polymerized fillers which makes their

filler composition partially organic and thus, the considered filler amount as mentioned

by the manufacturer for a correlation might not be entirely inorganic and could cause

inadvertences. Pre-polymerized additives decrease the shrinkage of RC by reducing the

availability of functional groups to react initially. If the initial volume of a given monomer

is similar to the final conversion, a significant volumetric shrinkage is anticipated to trans-

form into higher polymerization stress, and in experimental RCs, a direct correlation has

already been established [32].

The bulk-fill nano-ormocer AFX does not contain any conventional methacrylate monomers

in the matrix. The organically modified ceramics (Ormocers) features a nanohybrid filler

technology with an inorganic filler content of 84% by weight [40]. This improved matrix is

believed to reduce the polymerization shrinkage and favor towards having a better bond

quality [11]. Previous findings have established that AFX develops lower shrinkage stress

52



as compared to conventional composites [41]. However, in this study, AFX showed no

significant difference in bond strength and exhibited a moderate Weibull modulus.

SF2 is an intriguing material which although is highly-filled high viscosity BF- RC, it

incorporates modifiers that react to sonic energy and alter their viscosity [42]. In all

the previous in vitro studies testing the mechanical properties which included the Sonic

Fill, the predecessor of SF2 has reported highly desirable properties and has been ranked

among one of the best in this category of materials [43, 44]. Our study, although could

not elicit significant difference in terms of their SBS but the material depicted a relatively

high Weibull’s modulus.

SDR has modified urethane di-methacrylate (UDMA) monomer, that is responsible for

the decrease in polymerization shrinkage and stress. It has been previously seen that

SDR improves the dentin bond strength when used in high C-factor cavities in bulk when

compared to a hybrid RC and a flowable RC [45]. SDR also showed significantly higher

bond strength values than a conventional nano-filler RC in Class II MOD preparations

with deep proximal boxes [46]. In this study, it showed comparable values for bond

strength as well as fairly high Weibull’s modulus.

VBF displayed the lowest SBS value among the tested materials, which also correlates

with previous studies showing a lower mechanical property like flexural strength and in-

dentation modulus when compared to other BF RCs [6]. Also, another study elicited that

VBF produced higher stress and strain compared to all other bulkfill resins tested [2].

However non-significant, the values on the lower end of the spectrum could be attributed

to its lower percentage of its filler content.

A 2 step self-etching adhesive Clearfil SE bond 2 (Kuraray Noritake; Osaka, Japan) was

used, which is a simplified, easy to use adhesive and the previous version of this adhesive

has been clinically proven to be consistent [47]. In addition, choosing only one type of

bonding agent would homogenize the influence of bonding agents as it has been already

witnessed that, the actual adhesive used to bond the BF-RC happens to be the most

influential factor in bond strength testing [25].
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Since the SBS had no significant difference among all of the BF materials analyzed in

this study, it can be assumed that under appropriate polymerization situations, a 4-mm

increment placed with high viscosity or low viscosity materials in bulk would present com-

parable outcomes in terms of their bond strength. However, this study was conducted

after one week of immersion time, and many of the properties may alter over time. It

is also essential to highlight that, differing enhancements adopted by the manufactures

can affect the performance of these materials in a longer time frame and therefore results

observed cannot be extrapolated for all the tested materials. Further studies are neces-

sary to define the influence of the aging procedures and quantify how much they degrade

the adhesion in relation to their composition. The stability of the adhesion should be

maintained over time to ensure a successful restoration.

The main strength of this study was that it enables a direct comparison among different

types of BF-RC and the specimen preparation was carried out in the same manner by a

single operator, consequently diminishing biases related to procedural inaccuracies, envi-

ronmental influences and other factors that alter the material. Additionally, important

to note is that the specimens in this study were prepared in an ideal setting where the

curing unit was placed right above the RC material, which is not the case in most of the

clinical situation. Thus, when the materials are clinically considered, there may be dis-

crepancies due to this difference. The clinician is in charge of choosing the right material

assessing the clinical situation, as according to the results of this study, BF-RC did not

show a varied performance as a category of materials than conventional RC and neither

did the type of the RC had any influence on the bond strength.
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Chapter 3

The long term consequence of
salivary contamination at various
stages of adhesive application and
clinically feasible remedies to
decontaminate
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3.1 Abstract

Purpose: To analyze the long term bond quality to dentin by simulating salivary con-

tamination and decontamination procedures at different stages of restoration.

Method: 1120 human dentin specimens were randomly allocated to 56 groups (14 x 4

intervals) (n=20) to be treated with a self-etching (Clearfil SE Bond 2(SE)) and Univer-

sal (Clearfil Universal(U)) adhesive. The experimental procedures were executed after

surface preparation, after primer application (for SE) and after adhesive system curing.

They were stored (37◦C, distilled water) for four intervals (one week, one month, three

months and one year) and subjected to shear bond strength (SBS) test at a crosshead

speed of 0.5 mm/min.

Results: One-way ANOVA with Tukey’s test (α=0.05) revealed significant reduction in

SBS in all the groups in U adhesive compared to the control group (no contamination)

at one week (p < 0.0001) and in SE when the contamination took place after primer

application. However, decontamination improved the SBS in SE but not in U adhesive.

The Weibull analysis showed reliability of U adhesive reduced over time compared to SE.

The univariate analysis confirmed significant influences (p < 0.0001) seen by the stage

of influence (η2p=0.600), experimental groups (η2p=0.518), type of adhesive (η2p=0.328),

aging (η2p=0.130) and treatment procedure (η2p=0.075).

Conclusion:Saliva contamination is detrimental after primer application in SE but, de-

contamination regained the SBS and maintained it over time. In U adhesive, SBS dete-

riorated over time irrespective of the contamination.

Clinical Relevance:The salivary contamination showed significant influence on SBS

when restoring with contemporary dental adhesives.
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3.2 Introduction

Adhesive systems have momentously transformed dentistry, allowing dental procedures

that were considered impossible in the past without fashioning retentive features in cavity

preparations and losing healthy tooth structure [1, 2]. Adhesives typically incorporate

monomers like bisphenol A diglycidyl ether dimethacrylate (bis-GMA) that functions ex-

ceptionally well while bonding to enamel, whereas, the dentin is moist and inherently hy-

drophilic, and bis-GMA being hydrophobic is incompetent to penetrate into the tubules

completely. Therefore, more hydrophilic monomers like 2-hydroxylethyl methacrylate

(HEMA) are used to enhance wetting. Additionally, monomers also contain hydrophilic

groups such as carboxylic acid, hydroxyl, ester, amine or ether moieties in order to assist

in encouraging the water miscibility of adhesive preparations. However, this renders them

to be more vulnerable to hydrolysis in the oral environment [3] owing to water sorption

in the adhesive layer, which then behaves as a permeable membrane [4]. In addition to

encouraging a reduction in bond quality between the com8posite and the substrate, such

perviousness of the adhesive layer appears to add up to the hydrolysis of resin polymers

and the consequential degeneration of tooth-resin bond over time [5].

While dealing with materials sensitive to moisture, isolation remains one of the critical

factors for ensuring good adhesion [6]. Despite this, due to various reasons when the

isolation protocol is breached, especially when the operative site is near or at the gingival

margin, the patient is unwilling, teeth are malpositioned or have cervical lesions, there is

a high likelihood of the operative surface being exposed to a variety of substances, result-

ing in contamination [6]. This creates hindrances for proper infiltration of the adhesives

that are required to offer the mechanical bonding and reduce the quality of the bond.

Saliva is one such element existing in the oral cavity which has a high probability of

contaminating the surface to be restored. It constitutes of 99.4% water and 0.6% solids.

They are mainly aggregates of molecules like glycoproteins, sugar, proteins and amylase

and inorganic components like sodium, chloride and calcium [7]. It has been observed
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that an acid conditioned tooth surface absorbs salivary constituents and decreases the

surface energy and ends up being detrimental for bonding [8]. Water, organic remains

and biofilms present in a clinical setting might interfere with the wetting and spreading

of the adhesives on the restorative surface [1]. The SEM evaluation of the restoration

revealed that saliva contamination did not inhibit hybrid layer formation but, it reduced

the adaptation of the restorative material to bonded surfaces [9].

In few of the prior studies, it was observed that 2-step etch and rinse adhesive were com-

paratively less susceptible to salivary contamination [10-13]. Nevertheless, while applying

etch-and-rinse adhesives in dentin, the acid-etching demineralizes the superficial (5–8 µm)

inter-tubular dentin matrix to produce porosities in the underlying collagen fibrillar ma-

trix. This facilitates infiltration of co-monomers into collagen fibrils to secure retention

for resin composite (RC) restorations [14] but, the collagen fibrils that gets demineralized

by acid will collapse post air-drying and does not give the required support for the resin,

resulting in a decreased bond quality [14].

The self-etching adhesive befits to be an idyllic adhesive for restorations in the dentin

while it does not eliminate the entire moisture but modifies the smear layer to form a

hybrid layer [15] making it a golden standard for bonding to dentin. It has been debated

that the self-etching adhesives are more vulnerable to salivary contamination in dentin

[16-22]. In contrast, few studies ascertained that there was no significant difference in

bond quality while bonding to dentin [23-25]. A recent study investigated the effect of

relative humidity and saliva contamination on bond strength in dentin after one year and

noticed that the two self-etching adhesives showed stable bond strength over time [25].

The earlier findings had also verified that when some sort of decontamination procedure

like rinsing the saliva or re-applying the adhesive system, the restoration attained im-

proved adhesion [10, 18, 22, 26-33]. However, there is no consistency in the procedure of

decontamination and findings thus varied [10].

Although immediate studies on the influence of bond strength post contamination have

been discussed in great detail, it is also essential to understand the consequences of
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contamination of these modern formulations together with clinically possible decontam-

ination methods post aging. Comprehending the altering structure of the interface and

its faults over time remains a task at hand. The purpose of this study was to evaluate the

long-term effects of salivary contamination on the bond strength of the self-etching and

universal adhesive and also, to find the clinically possible remedies using decontamina-

tion procedures at various stages of application. The null hypotheses that were evaluated

in this study are that the SBS in dentin is not affected by; a) the type of adhesive, b)

aging (one week, one month, three months and one year), c) salivary contamination, d)

decontamination methods and e) the stage of salivary contamination.

3.3 Materials and Methods

Extracted carious free human third molars were collected and stored in dilute sodium

azide solution at 4◦C. They were thoroughly cleaned and were sectioned mid-coronally,

parallel to the occlusal plane using a low speed saw (Isomet, Buehler, Lake Bluff, IL,

USA) to obtain two dentin segments labelled as “occlusal” and “cervical” (Fig.3.1a).

The obtained segments were further divided into 2 or 4 parts depending on the size of the

tooth, ensuring that there is enough (>3.2mm diameter) dentin to bond (Fig.3.1b). A

total of 1120 dentin substrates obtained were embedded in cold-curing methacrylate resin

(Technovit 4004, Heraeus Kulzer, Germany) with the help of stainless-steel cylindrical

moulds (Fig.3.1c). The substrates were wet ground with 600-grit silicon carbide grinding

paper (Leco, St. Joseph, USA) and a grinding system (Exakt 400 cs, Norderstedt, Ger-

many) to obtain and flat dentinal surface (Fig.3.1d). They were then randomly allocated

into 56 groups (n=20); 14 subgroups for four intervals; one week (1W), one month (1M),

three months (3M) and one year (1Y). They were treated with two adhesives; Clearfil SE

Bond 2(SE) and Clearfil Universal (U) (Table.3.1) (Fig. 3.3). A thin adhesive strip with

a circular hole (3.2 mm diameter) (Fig.3.1e) was placed on the prepared surface, limiting

the region to be bonded (Fig.3.1f). The exposed dentin surface was then treated with the
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adhesive according to the group allocated (Fig.3.3). Groups with no contamination (NC)

served as control and was treated as per the manufacturer’s instructions (Table.3.1). The

contamination(C) and decontamination (DC) treatment occurred in three stages; stage-1:

after surface preparation, stage-2: after primer (only for SE) and stage-3: after adhesive

curing (Fig 3.2). Detailed step wise process of specimen preparation for each group is

explained in Fig.3.3 and Fig.3.4.
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Figure 3.1: Diagrammatic representation of the overview of specimen preparation

 

occlusal

cervical

c
d e f

ghi

a

b

a) Diagrammatic representation of the cutting planes 
b) Diagrammatic representation of cross-section each segment 
c) Dentin substrate embedded in cold cure acrylic 
d) Horizontal view of the surface of the specimen 
e) Adhesive sheet with 3.2mm hole 
f) Adhesive sheet applied on the substrate to delimit to area of bonding 
g) Custom made vinyl polysiloxane split mold with a cylindric cavity of 3.2 mm diameter and 4 mm height 
h) Illustration of composite placement and light curing 
i) Design of restored final specimen 
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Table 3.1: Material composition and description

 

Material (ACRONYM) 
Manufacturer (Lot no) 

Type of 
material 

Composition Instructions for 
use 

Clearfil SE Bond 2 (SE) 
Kuraray Noritake (000031) 
 
 

2-step self-
etching 
adhesive 

Primer 
• 2-hydroxyethyl 

methacrylate 
• 10-Methacryloyloxydecyl 

dihydrogen phosphate 
• Hydrophilic aliphatic 

dimethacrylate  
• dl-Camphorquinone  
• Accelerators  
• Water  
• Dyes 
Adhesive 
• bisphenol A 

diglycidylmethacrylate 
• 2-hydroxyethyl 

methacrylate 
• 10-Methacryloyloxydecyl 

dihydrogen phosphate  
• Hydrophobic aliphatic 

dimethacrylate  
• Colloidal silica  
• dl-Camphorquinone  
• Initiators  
• Accelerators 

 

Apply Primer and leave 
for 20 Seconds. 
Dry with mild air. 
Apply bond. Make a 
uniform bond film using 
a gentle airflow. 
Light cure for 10 
seconds. 

Clearfil Universal (U) 
Kuraray Noritake (000017) 
 

Universal 
adhesive 

Adhesive 
• bisphenol A 

diglycidylmethacrylate 
• 2-hydroxyethyl 

methacrylate  
• ethanol 
• 10-Methacryloyloxydecyl 

dihydrogen phosphate 
• Hydrophilic aliphatic 

dimethacrylate 
• Colloidal silica 
• dl-Camphorquinone 
• Silane coupling agent 
• Accelerators 
• Initiators 
• Water 

Apply bond liquid and 
rub for 10 seconds 
Blow mild air to make a 
uniform bond film. 
Light cure for 10 
seconds 

Admira Fusion X-tra (AFX) 
Voco (1537600) 

Bulk fill 
resin 
composite 

Matrix: Ormocer 
Fillers: Silicon dioxide 

Dispense an increment 
of 4-mm and light cure 
for 20 seconds 
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Fresh unstimulated human saliva from a single individual was collected. It was made

sure to be collected at least one hour after the consumption of any food or drink, and just

before the substrate preparation. The contamination and decontamination procedures

simulated the clinical situation during the process of restoration. In all the contamination

and decontamination groups (C & DC), the salivary contamination was done with one

drop (0.025ml) of saliva for 20 seconds. In stage-1 contamination groups (C1), the surfaces

were contaminated after surface preparation with saliva (20 seconds) and air-dried (5

seconds) and in decontamination group (DC1), saliva was applied (20 seconds), and then

rinsed with water (10 seconds) and air-dried (5 seconds). In stage-2 (only in SE), the

saliva was applied (20 seconds) after the primer application (C2) and was decontaminated

by rinsing with water (10 seconds), air-dried (5 seconds) and the primer was re-applied

(20 seconds) (DC2). In stage-3, the saliva was applied after the adhesive system was

cured (C3) and was decontaminated in two ways, either by only rinsing with water (10

seconds) and air-drying (5 seconds) (DC3a) or by rinsing with water (10 seconds) air-

drying (5 seconds) and re-applying the bonding liquid and curing (10 seconds) (DC3b).

Except for the experimental modifications wherever mentioned, the rest of the procedures

in both SE and U adhesives were as per the manufacturer’s instructions (Table 3.1) using

the self-etch bonding method and cured for 10 seconds (Bluephase; Ivoclar-Vivadent;

Schaan, Lichtenstein) with a radiant emmitance of 1316 ± 5.1 mW/cm2 as measured

with MARC simulator (BlueLight Analytics Inc., Halifax, Canada). A custom-built vinyl

polysiloxane split mould (Regisil PB, Dentsply Caulk; USA) with a cylindrical cavity

(3.2 mm in diameter and 4 mm in height) (Fig.3.1g) was positioned on the specimen. An

ormocer based bulk-fill resin composite, Admira fusion x-tra (Voco, Cuxhaven, Germany)

was then placed in one 4-mm increment, followed by polymerizing it for 20 seconds

(Bluephase; Ivoclar-Vivadent; Schaan, Lichtenstein) (Fig.3.1h).
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Figure 3.2: Description of the experimental groups

 

Experimental 
groups

Control
No contamination

(NC)

Self etch
(NC-SE)

Universal
(NC-U)

After surface 
preparation
(STAGE 1)

Contamination
(C1)

Self etch
(C1-SE)

Universal
(C1-U)

Decontamination
(DC1)

Self etch
(DC1-SE)

Universal
(DC1-U)

After primer 
(STAGE 2)

Contamination
(C2)

Self etch
(C2-SE)

Decontamination
(DC2)

Self etch
(DC2-SE)

After adhesive 
curing 

(STAGE 3)

Contamination
(C3)

Self etch
(C3-SE)

Universal
(C3-U)

Decontamination
(DC3a)

Self etch
(DC3a-SE)

Universal
(DC3a-U)

Decontamination
(DC3b) 

Self etch
(DC3b-SE)

Universal
(DC3b-U)
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The prepared specimens (Fig.3.1i) were stored vertically immersed in distilled water

at 37 ◦C for four different time intervals (1W, 1M, 3M and 1Y). The distilled water

was periodically changed every week without disturbing the specimens. After storing the

specimens for the pre-determined durations, they were subjected to SBS test with a broad

chisel head in a universal testing machine (MCE 2000ST; Quicktest Prüfpartner GmbH,

Langenfeld, Germany) at a constant crosshead speed of 0.5 mm/min until fracture. Sub-

sequently, the loaded force at fracture was recorded. Post fracture, the diameter of the

fractured specimens was measured to a precision of 0.01mm using a digital micrometre

scale at two perpendicular positions (to calculate an average) and then the bonded area

was determined. The SBS was calculated by dividing the loaded force by the bonded

area. The fractured fragments were then closely examined with a 10x magnification.

Fracture patterns were categorized as an adhesive fracture if the failure occurred along

the adhesive interface, in a mixed failure a fracture line ran along of adhesive surface

together with the resin composite or dentin and cohesive failure occurred when fracture

occurred within the resin composite or dentin.
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Figure 3.3: Flowchart explaining the experimental procedure of each group in SE adhesive

 

Stage of 
influence Groups Procedure 
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No 
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(NC-SE) 

 

Stage 1 
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(C1-SE) 
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after primer 
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(DC2-SE) 

 

Stage 3 

after 
adhesive 

curing 
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(C3-SE) 
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(DC3a-SE) 

 

Decontamination 
(DC3b-SE) 

 

Surface 
preparation Primer Adhesive Resin 

composite

Surface 
preparation Saliva Primer Adhesive Resin 

composite

Surface 
preparation Saliva Rinse 

and Dry Primer Adhesive Resin 
composite

Surface 
preparation Primer Saliva Adhesive Resin 

composite

Surface 
preparation Primer Saliva Rinse,Dry 

& Reapply Adhesive Resin 
composite

Surface 
preparation Primer Adhesive Saliva Resin 

composite

Surface 
preparation Primer Adhesive Saliva Rinse 

and Dry
Resin 

composite

Surface 
preparation Primer Adhesive Saliva Rinse,Dry & 

Reapply
Resin 

composite
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Figure 3.4: Flowchart explaining the experimental procedure of each group in U adhesive

 

Stage of 
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composite
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3.4 Statistical Analysis

The SBS results were statistically analyzed (Version 25.0; IBM SPSS Statistics. USA)

for normality and homogeneity of variance using the Kolmogorov-Smirnov Test and Lev-

ene’s test, respectively. The SBS data of individual experimental groups over time were

evaluated using a one-way analysis of variance (ANOVA) with the Tukey HSD post-hoc

test (α=0.05). The univariate analysis (general linear model with partial eta squared

(η2p))(α=0.05) was used to analyse the influence of the factors; treatment procedures,

type of adhesive, aging, stage of influence, and experimental groups on the bond strength.

Additionally, SBS of specimens obtained from occlusal and cervical parts of the tooth

were compared within each control (NC) experimental group in order to assess a possible

influence of dentin substrate obtained from different areas of the tooth.

To assess the reliability of each experimental group, Weibull analysis was performed

based on the SBS data to determine the Weibull modulus and characteristic strength

(n=20), at a confidence level of 95%. The expression of Weibull distribution: Pf (σc) =

1 − exp

[
−

(
σc
σ0

)m ]
where Pf is the probability of fracture at applied stress, σ is the

measured strength, σ0 is the characteristic strength at which probability of fracture is

63.2%, and m is the Weibull modulus [34]. The double logarithm of this expression gives:(
1

1−F

)
=mln(σ) −mln(σ0). By mapping l

(
1

1−F

)
versus ln(σ), a straight ascending slope

m and its intersection with the x-axis gives the logarithm of the characteristic strength

(σ0). The scatter in the computed Weibull parameters as well as the bias were analyzed

and compared to results at 95% confidence level using Pf = (1−0.5)
n

estimator [35].
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3.5 Results

SBS data of SE adhesive (Table.3.2) (Fig.3.5) and U adhesive (Table.3.3) (Fig.3.6) de-

picts the aging behaviour of different groups pre and post contamination with saliva. It

can be observed that among the control groups, there is a drastic reduction in SBS in the

NC-U, while a stable bond strength was observed in NC-SE groups all throughout one

year of the aging period. Although, immediate bond strength comparison of the control

groups of both adhesives NC-SE and NC-U showed no significant difference (p=0.186) at

1W. There was a significant difference in the SBS of the control group over time.

Table 3.2: Shear bond strength (SBS) of self-etching adhesive (SE)

Stage of 
Influence

Groups

Shear bond strength (SE)
MPa (SD)

1 week 1 month 3 months 1 year p-value

No influence NC-SE 18.53 (5.27)A 20.29 (5.27)B 20.44 (3.40)E 18.51 (3.37)D 0.146

Stage 1
C1-SE 16.58 (3.28)A 18.61 (3.40)B 18.40 (5.20)E 17.51 (3.10)D 0.330

DC1-SE 16.92 (4.03)A 17.31 (4.02)B 18.18 (3.60)E 18.08 (4.56)D 0.546

Stage 2
C2-SE 12.73 (5.28)a 13.20 (3.49)b 13.91 (4.34)e 12.01 (3.48)d 0.170

DC2-SE 17.02 (3.25)A 18.65 (3.49)B 18.87 (4.07)E 19.87 (4.29)D 0.720

Stage 3

C3-SE 17.43 (3.31)A 18.25 (4.17)B 18.17 (4.98)E 15.74 (3.20)D 0.148

DC3a-SE 18.04 (2.97)A 17.5 (3.56)B 18.61 (3.33)E 18.93 (2.89)D 0.504

DC3b-SE 19.12 (3.59)A 17.09 (3.23)B 18.9 (3.45)E 16.99 (5.02)D 0.172

Same superscripts letters show mean values with no statistically significant differences within the respective 
interval. (p<0.001; α = 0.05)
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Figure 3.5: SBS of all groups in SE adhesive over time

All the control groups in U adhesive had significant reduction in SBS compared to

the control group of 1W storage (NC-U) (p<0.0001) (Fig.3.6). Whereas, there was no

significant influence of aging on the SBS in dentin on the control groups of SE adhesive

(NC-SE) (p=0.517) (Fig.3.5). At the 1W storage period, it can be observed that the sali-

vary contamination significantly reduced the SBS (C1-U, C3-U) in U adhesives compared

to the NC-U and the decontamination procedures (DC1-U, DC3a-U and DC3b-U) could

not restore the SBS to control levels (NC-U) (Table.3.3) (Fig.3.6). Nonetheless, in the

1M and 3M intervals, the influence of contamination although lower was not significantly

different as compared to the SBS values of control (NC-U) group. The lowest mean SBS

was recorded for the group C3-U (6.27 ± 4.06 MPa) at 1Y interval which was significantly

lower SBS compared to NC-U (10.51 ± 3.11 MPa) at 1Y (Table.3.3) (Fig.3.6)
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Table 3.3: Shear bond strength (SBS) of Universal adhesive (U)

Stage of 
Influence Groups

Shear bond strength (U)
MPa (SD)

1 week 1 month 3 months 1 year p-value

No influence NC-U 16.56 (3.92)a 10.56 (5.63)B 10.69 (3.52)C 10.51 (3.11)D 0.000

Stage 1

C1-U 9.64 (3.84)A 8.24 (4.58)B 8.33 (4.88)C 7.24 (3.67)Dd 0.372

DC1-U 10.40 (4.31)A 9.72 (4.41)B 9.84 (4.73)C 9.53 (4.99)Dd 0.470

Stage 3

C3-U 10.16 (4.04)A 8.77 (4.28)B 9.16 (4.29)C 6.27 (4.06)d 0.030

DC3a-U 10.68 (4.40)A 9.65 (4.86)B 9.77 (5.04)C 8.30 (3.08)Dd 0.816

DC3b-U 10.55 (4.51)A 10.20 (3.97)B 9.67 (5.38)C 9.68 (4.32)Dd 0.375

Same superscripted letters show mean values with no statistically significant differences within the respective 
interval. (p<0.001; α = 0.05)

Figure 3.6: SBS of all groups in U adhesive over time
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SE group showed a statistically significant reduction in the SBS only when the con-

tamination occurred after the application of primer (C2-SE) in all the intervals of aging.

(1W,1M,3M and 1Y) (Table.3.2) (Fig.3.5) Though, decontaminating the surface by rins-

ing, drying and replying the primer and adhesive considerably improved the SBS and

was similar to the control group levels at all the intervals of aging (DC2-SE) (Table.3.2)

(Fig.3.5). The general linear model with partial eta squared statistics revealed that there

was significant influence seen by the stage of influence (η2p = 0.600, p < 0.0001), experi-

mental groups (η2p = 0.518, p < 0.0001), type of adhesive (η2p = 0.328, p < 0.0001), aging

(η2p = 0.130, p = 0.003) and the treatment procedure (η2p = 0.075, p < 0.0001). The part

of the tooth (occlusal or cervical) exhibited no significant influence (p =0.527) on the

SBS when the control groups (NC) for both the adhesives across the aging process was

observed (Fig. 3.10 The Weibull analysis data of SE adhesive and U adhesive (Table 3.4)

(Fig.3.7), illustrates the Weibull modulus (m) at 95% confidence level and characteristic

strength (σ0) of each experimental group over time. The m values of U adhesive were

lower than SE in all the intervals irrespective of stages of contamination. The m values

in SE adhesive varied from 2.12 ± 0.3 to 7.39 ± 0.09 and in U adhesive, they ranged

from 1.50 ± 0.11 to 4.60 ± 0.10.
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Table 3.4: Weibull parameters of both SE and U adhesives over time

Weibull Parameters

Group 1 Week 1 Month 3 Months 1 Year

SE U SE U SE U SE U

NC
m ± CI 4.12 ±0.13 4.60 ± 0.10 3.75 ±0.15 1.69 ± 0.11 7.07 ± 0.15 2.73 ± 0.07 5.81 ± 0.13 3.78 ± 0.11

σ0 (MPa) 12.44 13.32 11.69 4.21 21.81 7.21 17.39 9.29

C1
m ± CI 5.53 ±0.11 2.63 ± 0.07 4.75 ± 0.24 1.78 ± 0.08 4.02 ± 0.10 1.50 ± 0.11 2.12 ± 0.3 2.00 ± 0.09

σ0 (MPa) 15.98 6.23 14.36 3.98 12.12 3.39 6.38 4.20

DC1
m ± CI 4.66 ±0.10 2.81 ± 0.13 4.71 ± 0.09 2.27 ± 0.14 6.02 ± 0.10 1.68 ± 0.13 4.13 ± 0.14 1.60 ± 0.19

σ0 (MPa) 13.61 6.90 13.85 5.54 17.91 4.33 12.37 3.50

C2
m ± CI 2.24 ±0.14 - 4.42 ± 0.09 - 3.68 ± 0.13 - 4.16 ± 0.14 -

σ0 (MPa) 6.01 - 11.8 - 10.07 - 10.86 -

DC2
m ± CI 6.28 ±0.15 - 6.31 ± 0.18 - 5.12 ± 0.10 - 3.24 ± 0.20 -

σ0 (MPa) 18.26 - 18.92 - 15.48 - 10.03 -

C3
m ± CI 6.27 ±0.10 2.53 ± 0.13 4.50 ± 0.12 2.42 ± 0.11 3.47 ± 0.16 2.53 ± 0.17 5.19 ± 0.10 1.67 ± 0.21

σ0 (MPa) 18.36 6.18 13.50 5.55 10.47 5.90 14.75 3.27

DC3a
m ± CI 7.22 ±0.08 2.55 ± 0.16 4.73 ± 0.17 1.92 ± 0.15 6.28 ± 0.10 1.66 ± 0.13 7.39 ± 0.09 1.88 ± 0.13

σ0 (MPa) 21.35 6.30 13.97 4.70 18.81 4.02 22.20 4.76

DC3b
m ± CI 6.38 ± 0.11 2.10 ± 0.16 6.20 ± 0.22 2.60 ± 0.11 6.52 ± 0.11 1.86 ± 0.15 3.46 ± 0.10 3.01 ± 0.13

σ0 (MPa) 19.26 5.24 18.07 6.81 19.62 4.45 10.19 6.71
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Figure 3.7: Weibull plot of all groups of SE and U adhesive over time
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The fracture pattern analysis indicated a low ratio of cohesive failures (0.9%) suggest-

ing a relatively decent set of SBS test results. U adhesive groups showed 89%of adhesive,

11% of mixed failures and no cohesive failure (Fig.3.9). Whereas, SE adhesive showed

52.6% of adhesive, 45.8% of mixed and 1.6% of cohesive failures (Fig.3.8). Higher SBS

values were associated with higher ratio of mixed and cohesive failures. Mean SBS of ad-

hesive failures (12.35 ± 5.70 MPa) were significantly lower compared to cohesive (18.72

± 4.50 MPa) and mixed failures (18.04 ± 4.30 MPa). There were no pre-test failures

observed.
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Figure 3.8: Fracture pattern observed in SE adhesive over time
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Figure 3.9: Fracture pattern observed in U adhesive over time
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Figure 3.10: The shear bond strength measured in occlusal and cervical parts of the teeth
in both adhesive
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3.6 Discussion

The quintessential goal of obtaining a good adhesion in restorative dentistry is to produce

an interface that is stable over time, guarantee adequate bond strength, good marginal

seal, assure clinical durability and have minimal imperfections [36].The structural and

morphological differences in dentin challenge the understanding of attaining a durable

bond between adhesive resin and dentin [37]. It is acknowledged that moisture trapped

within the adhesive during polymerization may cause an inferior polymerization of the

adhesive monomers [38]. Through this study, our intention was to recognize unfavourable

consequences of salivary contamination on the SBS of two contemporary adhesives over

time in dentin. Also, if the effect of contamination is found to be substantial, which

stage in the adhesive application is more vulnerable. Furthermore, does clinically feasible

decontamination procedures regain their original bond quality.

When bonded to dentin, the U adhesive applied in self-etching mode differed signifi-

cantly in their SBS compared to the SE adhesive over time. Thus, the null hypothesis

that there is no difference in SBS of adhesives used for bonding to dentin has to be

rejected. The parameter “type of adhesive” showed significant influence on the SBS

(η2p = 0.328, p < 0.0001). Hence, the type of adhesive used is proved to be crucial when

observed over time. The complexity of the dental substrate and the different characteris-

tics of enamel and dentin necessitates the availability of diverse dental adhesive systems

to contain various components that prepare the surface and interact with the different

components of the tooth surface efficiently [39] and therefore they react differently in the

oral environment.

The composition of universal adhesives is complex as it contains both hydrophobic as well

as hydrophilic monomer mixtures, due to which the presence of any residual moisture can

cause phase separation and result in blister formation [40]. Adhesive penetration of the

dentin is vital for the maintenance of durable bonds. The phase separation in BisG-

MA/HEMA adhesives can end up in lower bond quality as the adhesive tries to diffuse
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into the moist dentin matrix, the constituents split into hydrophilic HEMA-rich and hy-

drophobic BisGMA-rich phases [40]. The low cross-linking potential of HEMA makes it

unstable in aqueous environments which tends to degrade with exposure to oral fluids.

Consequently, this phase becomes the weak point for the adhesive bonding and adversely

affect their durability [5].

The effects of aging were evidently perceived on the U adhesive when irrespective of

the treatment group all groups were considered for each interval, the combined mean

SBS significantly reduced over time (p<0.0001). This result has also been established in

another study where the U adhesive showed a deteriorated micro tensile bond strength

after 1 year of aging [41]. Whereas, in SE adhesive there was no significant reduction in

SBS (p=0.085) over time. So, the null hypothesis that aging does not have a significant

influence on SBS is partially accepted.

The proposed null hypothesis that there will be no effect of salivary contamination for

both the adhesives were rejected as there were significant differences in the SBS values

exhibited by both the tested adhesives post contamination. In the SE adhesive, the con-

tamination was critical post primer application(C2-SE), but the contamination at stage 1

and stage 3 (C1-SE and C3-SE) did not show any detrimental effect on the bond quality.

Decreased SBS values significantly increased after decontamination (DC2-SE). It conveys

that if a noticeable salivary contamination is spotted at the priming stage, just a simple

water rinsing for 10 seconds, air-drying for 5 second and re-priming the area followed by

the adhesive application will bring the bond quality to control levels and also maintain

it long-term.

This finding is in accordance with previous researches deliberating the influence of saliva

contamination on the bond quality of self-etching adhesives which revealed that contam-

ination after primer application decreased the bond strength significantly[18,20,42,43].

The cause for this reduction is presumed to be due to the rinsing away of the hydrophilic

monomer (HEMA) in the SE primer with the saliva along with the moisture from the

dentin, that may have resulted in the collapsing of the collagen. The monomers in the
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adhesive could have failed to efficiently infiltrate into the dentin due to collapsed collagen.

In one of the study, the LV-SEM micrographs showed contaminant deposited on dental

surfaces, when saliva was applied after primer application, creating a physical barrier to

monomer diffusion and resulting in a deteriorated adhesion [43].

In the U adhesive, contamination (C1-U and C3-U) at all the intervals (1W, 1M, 3M

AND 1Y) reduced the mean SBS significantly as compared to the bond strength of con-

trol (NC-U) in 1W. The decontamination procedures (DC1-U, DC3a-U and DC3b-U) did

not bring back the SBS values to the control levels. The natural pH of saliva is between

6 to 7. The pH in salivary flow can range from 5.3 (low flow) to 7.8 (peak flow)[44].

In stage 1 contamination, the contaminated saliva on the prepared surface can act as a

buffer and reduce the etching capacity of monomers in the U adhesive whose pH is more

acidic (pH=2) compared to SE which result in reduced penetration into the dentinal

tubules and resulting in a decreased bond quality over time. This observation conforms

to the earlier studies [31, 33, 45-47] which established that the salivary contamination

in universal adhesives could be detrimental. The adverse effect of presence of saliva in

stage 3 may be partly justified due to the adsorption of glycoproteins on the polymerized

adhesive surface, which consequently inhibits oxygen and reduces bonding capacity [33].

The most substantial impact on the SBS was exercised by the parameter “stage of con-

tamination” (η2p = 0.600) followed by the “experimental group” (η2p =0.518) and then the

“type of adhesive”(η2p =0.328). The stage at which the contamination or decontamina-

tion occurred was the most critical in this study. It is evident from the C2-SE group, the

contamination occurring at stage 2 (after primer application) was significantly damaging

to the SBS in dentin. aging of the specimens had a significant, but relatively low influence

(η2p =0.130) on the SBS and treatment procedure (contamination or decontamination) of

the specimens had the least influence (η2p =0.075).

The scattered data cannot be exclusively attributed to the experimental error, it is like-

wise suggestive of the intrinsic material property. The Weibull analysis enables evaluation

of data scattering by relating the probability of failure to applied stress. Defining the SBS
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data only with mean and standard deviation does not convey the information about the

distribution of stresses at which the individual specimens failed, as these stresses could

be formed due to the distribution of the flaws, like the inconsistencies or interferences in

the adhesive layer, air bubbles, size and amount of filler particles, areas of inadequate

conversion and separated phases within the material [48].

In the Weibull analysis (Table.3.4), the lower values of m are indicative of an unreliable

underlying defect in the group, supposing that the specimen was examined accurately and

it fractured in a brittle manner. In contrast, a higher Weibull modulus is suggestive of

narrow distribution and resonates too closely placed stress values at which the specimens

failed indicative of a consistent flaw. It can be seen from the Weibull plot (Fig.3.7) that

the slopes (Weibull moduli) indicate the strength distribution at a given interval (1W,

1M, 3M and 1Y) for both the adhesives. The slopes in SE suggest imply that the flaw in

post contamination groups C2 were more inconsistent, hence a lower m value compared

to the control group (NC). It is very evident from the data that the U adhesives were

less reliable compared to SE adhesives, based on their overall Weibull modulus. The

deviances within the slopes in Weibull plot are not unpredicted and they are frequently

witnessed in small size sample sets. When comparing the Weibull parameters of the

control groups at 1W, it can be observed that the U adhesive (m=4.60 /pm 0.10, σ0

= 13.32 MPa) showed higher m and characteristic strength than the SE (m= 4.12 /pm

0.13, σ0 = 12.44 MPa). Nevertheless, the reliability of the U adhesive reduced over time.

In our study, since we have introduced the flaw of salivary contamination, it is evident

that this variability makes the result inconsistent among the various contamination and

decontamination groups.

Bond strength values have been previously reported to be sensitive to the depth of the

dentin used as a substrate, as it is influenced by the diameter of the dentinal tubules and

the water content [37]. While preparing the substrate, the tooth was cut mid coronally

to obtain two portions, an “occlusal” and a “cervical” segment. These parts differed

in depth of the dentin roughly by the thickness of the diamond saw used to cut the
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tooth (0.270 mm). When the bond strengths obtained in the control groups (NC-SE and

NC-U) of both these parts were analyzed, there was no statistically significant difference

(p= 0.527) between the occlusal or cervical parts even after one year of aging in both

the adhesives (Fig. 3.10). This implies that the incongruity due to the difference in the

dentin substrate was negligible. The substrate was prepared in such a manner in order to

maximize the potential of the available dental substrate as the study required a sizeable

number of specimens.

In general, the failure mode distribution correlated quite well with the bond strengths of

SE and U adhesives. The predominant failure mode was an adhesive failure, irrespective

of saliva contamination and aging (SE-52.6%; U-88.9%) (Fig.3.8 and Fig.3.9). This pri-

marily indicates a good set of data for SBS, as the critique of the methodology is often the

higher percentage of cohesive failures, because of non-uniform stress distribution. When

the break occurs cohesively in the composite resin or dentin, the value attained conveys

the cohesive strength. However, in the assessment of adhesive systems on substrates, the

intention is to analyze the bond of the adhesive with dentin, and not cohesive strength

of other regions such as the dentin or composite resin [49]. However, unlike micro-tensile

bond strength testing, SBS is conventional and does not require vast stress inducing pro-

cedure during specimen preparation, which often results in pre-test failures [49]. In this

study, no pre-test failures were recorded.

It is not surprising to see that the SE adhesive was more resilient to hydrolytic degra-

dation over time as they offer a distinct hydrophobic resin layer with their final step of

application unlike the U adhesive. Although, bond strength happens to be an essential

assessment, the lifespan of a bonding is the most important indicator of clinical success.

However, our findings in this study must not be generalized and should not be applied to

the whole class of universal adhesives because each material features different composition

and unique modifications to achieve their functional capability.
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3.7 Conclusion

Within the limitations of the study, the results indicate that when the universal adhesives

were used in the self-etching strategy on dentin, the bond strength deteriorated over time.

Regardless of contamination or decontamination, the universal adhesive couldn’t regain

the immediate bond strength of control group after aging. In self-etching adhesive, the

saliva contamination was most critical when the contamination occurred after primer

application. Decontaminating by rinsing, air-drying and re-applying the primer regained

the bond strength to control levels and maintained it over time.
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Summary and Conclusion

Summary of Thesis

The literature review on the influence of salivary contamination of contemporary ad-

hesives was done through a broad assessment in PUBMED, Cochrane Library, Google

Scholar and Web of Science to isolate publications from 1990-2017 (March) and a total

of 6202 articles were obtained. After title inspection for relevance and abstract read-

ing, 54 publications were acquired that were relevant to salivary contamination of dental

adhesives in restorative dentistry. These articles were thoroughly evaluated in various pa-

rameters like the year of publishing, type of adhesive, type of contaminant, type of test,

parameters of the test, results, surface preparation, method of contamination, quantity

and details of contaminant, stages of contamination, decontamination procedure, time

between contamination and testing, type of aging, size of bonding area, type of substrate

and number of specimens. The review revealed that 64.6% of the articles showed an

adverse effect on adhesives when there was salivary contamination occurring at one or

many points in restoration process. However, methodological variations hindered the di-

rect comparison of the selected studies. The study conveyed that, 2-step etch and rinse

adhesives were relatively less vulnerable to salivary contamination than the others. De-

contamination procedure of some kind delivered improved bonding performance in 65%

of the studies. However, the specificities of the procedures are not standard in all the

evaluations. It was concluded that long term studies are required to assess the aging

behaviour of the contaminated adhesives as well as understand the decontamination pro-

cedure.
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The main aim of this thesis was completed with a study that examined the consequences

of salivary contamination on the long-term shear bond strength of adhesive in dentin.

A total of 1120 human dentin substrates were prepared by cutting the tooth mid coro-

nally and embedding them in cold-cure acrylic resin. They were then randomly allocated

to 56 groups (14 groups x 4 intervals) (n=20). The two adhesives evaluated were a

2-step self-etching adhesive and Universal adhesive. The experimental procedures were

executed after surface preparation, after primer application (for self-etching) and after

adhesive system curing. The area to be bonded was delimited using an adhesive sheet.

One group with no contamination served as a control in both the adhesives. The saliva

was freshly collected by a single donor just preceding the experimental procedure. The

contamination process was done by using a drop (0.025ml) of saliva at every step of the

restorative process. The decontamination procedure was done either by rinsing with wa-

ter and air drying the surface or by rinsing with water, air drying and re-applying the

adhesive/primer. A custom made polysiloxane mould was used to restore an ormocer

based bulk-fill RC. The prepared samples were stored at 37◦C in distilled water for four

intervals; one week, one month, three months and one year. They were subjected to

shear bond strength (SBS) test at a crosshead speed of 0.5 mm/min, and the force at the

fracture was recorded. The diameter of the fractured fragments was measured, and the

fracture pattern was examined using 10x magnification.

The data obtained were statistically analyzed with one-way ANOVA with Tukey’s HSD

test (α = 0.05). A significant reduction in SBS in all the groups in universal adhe-

sive compared to the control group (no contamination) at one week (p < 0.0001) was

observed. In self-etching adhesive, when the contamination took place after primer ap-

plication, a significant reduction in bond strength was seen (p < 0.0001). However,

decontamination procedures improved the SBS in self-etching adhesive but not in univer-

sal adhesive. The Weibull analysis showed the reliability of universal adhesive reduced

over time compared to the self-etching adhesive. The univariate analysis established sig-

nificant influences (p < 0.0001) seen by the stage of influence (η2p = 0.600), experimental
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groups (η2p = 0.518), type of adhesive (η2p = 0.328), ageing (η2p = 0.130) and treatment

procedure (η2p = 0.075).

The results indicate that when the universal adhesives were used in the self-etching strat-

egy on dentin, the SBS depreciated over time. Regardless of contamination or decontam-

ination, the universal adhesive could not regain the immediate bond strength of control

group after ageing. In self-etching adhesive, the saliva contamination was most critical

when the contamination occurred after primer application. Decontaminating by rinsing,

air-drying and re-applying the primer regained the bond strength to control levels and

maintained it over time.

A small preliminary study was done to evaluate the testing methodology as well as to

understand if there are any variances in SBS of the high viscosity and low viscosity bulk-

fill RC when compared to conventional RC. The focus was directed to find whether the

differing viscosities and filler concentration affects the adhesion and SBS of the RCs. Four

high viscosity bulk-fill restorative materials, five low viscosity BF-RC were dispensed in

one 4 mm increment and polymerized for 20 seconds. One conventional resin composite

was dispensed in two 2 mm increments. The SBS was measured at a crosshead speed

of 0.5 mm/min after storing for seven days in distilled water at 37◦C. The data were

statistically analyzed using one-way ANOVA with Tukey HSD post-hoc (α = 0.05) and

Weibull statistical analysis. It was found that the bulk-fill RC functions comparable to

the conventional RC. Also, the type of the restorative material, filler content or their

viscosity had no significant effect on the SBS. Under proper polymerization conditions,

a 4-mm increment placed with high viscosity or low viscosity materials in bulk would

present comparable outcomes in terms of their bond strength.
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Conclusion

Within the limitations of the studies performed for this doctoral thesis, the following
conclusions were made:

a. Saliva contamination was detrimental for universal adhesive at all the stages of
application.

b. In universal adhesive, decontamination of saliva by rinsing and air-drying or rinsing,
air-drying and re-applying adhesive did not regain the SBS in dentin.

c. In self-etching adhesive, most vulnerable step for salivary contamination is after
primer application.

d. Decontaminating the saliva by rinsing, air drying and re-applying the primer re-
deemed the SBS of self-etching adhesive and maintained it throughout the one
year.

e. Salivary contamination was not detrimental for self-etching adhesive before and
after adhesive application.

f. The SBS of universal adhesive used in self-etching strategy in dentin deteriorated
over one year

g. The SBS of self-etching adhesive in dentin showed no significant difference after one
year

h. Based on the literature review, 2-step etch and rinse adhesive performance was
comparatively less susceptible to salivary contamination than the other type of
adhesives.

i. The type of RC does not have a significant influence on the SBS in dentin.

j. The bulk-fill RCs perform similar to the conventional RC applied in an incremental
technique.

k. The viscosity and filler content of bulk-fill RCs does not influence the SBS in dentin.
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